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Preface 

Data science is an exciting, emerging research area in the forthcoming digital age. It 
draws from a multitude of disciplines. We intend to show the reader the fundamental 
role of linear algebra in data science. This book showcases various data science 
topics as seen through the lens of linear algebra. 

This book evolved from lecture notes for a second year university course in 
applications of linear algebra. We have deliberately tried to maintain that flavor in 
this book. We emphasize understanding over rigor and don’t espouse the Theorem 
and Proof style of text. We also encourage students to use technology as much 
as possible for solving applications. The text examples are usually solved using 
technology, with answers rounded to the appropriate number of decimals. 

We assume the reader is either familiar with foundational results in linear algebra 
or willing to consult a linear algebra text of their choice for specific results as 
they read our text. Readers with the basic linear algebra knowledge and who are 
interested in data science courses will find our text useful. Linear algebra is a 
pillar for data science, and understanding this will enable the student to grasp the 
procedures and techniques used. It will also provide the student with the ability to 
go further into the data science paradigm. 

We start our exposition by briefly contemplating the rationale behind various 
basic matrix operations. We follow that with the fundamental linear algebra idea of 
projections and their under-appreciated applications in statistics. This is followed 
by a presentation on matrix algebra. Following these developments, we dive into 
various topics where linear algebra is a foundation, topics such as singular value 
decomposition of a matrix, the Haar transform, frequency filtering, and neural 
networks. We encourage the reader to review the concepts of a vector space, linear 
operator, matrices, and other relevant concepts from linear algebra. The reader can 
refer to the Appendix in our text to help to refresh the key topics. 

Our text was written with the understanding that the reader has the desire to 
explore the linear algebra foundations in data science. The exposition in our text can 
be seen both as an invitation to explore the topic presented as well as a challenge to 
see deeper connections between linear algebra and data science. This is manifested 
by our choice of exercises, where basic rudimentary exercises with computational 
nature are blended with challenging ones, some with new approaches. Moreover,
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vi Preface

the interested reader will also find practice projects that one could find in real life 
settings. 

Let us now consider the use of matrices, vectors, and the associated operations 
in the field of Data Science. 

Calgary, AB, Canada Peter Zizler 
Roberta La Haye



Contents 

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 

2 Projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25 
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  34 

3 Matrix Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  35 
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  43 
Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  49 

4 Rotations and Quaternions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  51 
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  60 
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  63 

5 Haar Wavelets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  65 
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  71 
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  71 

6 Singular Value Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  73 
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  93 
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  101 

7 Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  103 
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  111 
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  112 

8 Frequency Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  113 
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  126 
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  133 

9 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  135 
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  142 

10 Some Wavelet Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  143 
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  167

vii



viii Contents

A Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  169 
Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  169 
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  177 
Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  180 
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  195



1Introduction

We are about to embark on a journey to understand the key role linear algebra
plays in data science. As our expedition progresses many results in linear algebra
are invoked along the way. While it is possible to initially rely on the intuitive
explanations and reasoning given in our book, it is imperative the reader reaches out
for rigorous developments in linear algebra as needed. We mention a few excellent
textbooks along these lines, [1, 3, 4] or [2].

Before we delve into data science applications, we will first ponder a few of
the most basic linear algebra objects and operations. It is good to have some
understanding as to why things are defined the way they are in advance of using
them.

Data Science and Linear Algebra Data are often stored in arrays with the number
of rows m and the number of columns n. As far as data storage or data retrieval is
concerned, this can be enough. For instance, consider the .m = 4 by .n = 6 array of
data

.

⎛
⎜⎜⎝

2 3 −3 4 3 2
1 0 6 9 −2 1
0 1 3 −3 0 12
4 0 −7 8 13 1

⎞
⎟⎟⎠ .

This array stores 24 numbers that can be referenced by their row and column
address. For example, the entry in row 3 and column 4 is a .−3.

Analyzing data mathematically involves the two basic operations of addition and
multiplication. Consider two .2 × 3 arrays, both of the same size. It is natural to
think of adding the matrices together component-wise (even if we have no a priori
justification for doing so). Thus,

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
P. Zizler, R. La Haye, Linear Algebra in Data Science, Compact Textbooks in
Mathematics, https://doi.org/10.1007/978-3-031-54908-3_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-54908-3protect T1	extunderscore 1&domain=pdf
https://doi.org/10.1007/978-3-031-54908-3_1
https://doi.org/10.1007/978-3-031-54908-3_1
https://doi.org/10.1007/978-3-031-54908-3_1
https://doi.org/10.1007/978-3-031-54908-3_1
https://doi.org/10.1007/978-3-031-54908-3_1
https://doi.org/10.1007/978-3-031-54908-3_1
https://doi.org/10.1007/978-3-031-54908-3_1
https://doi.org/10.1007/978-3-031-54908-3_1
https://doi.org/10.1007/978-3-031-54908-3_1
https://doi.org/10.1007/978-3-031-54908-3_1
https://doi.org/10.1007/978-3-031-54908-3_1


2 1 Introduction

.A + B =
(

1 −1 2
−3 2 5

)
+

(
2 1 −4
1 −2 0

)

=
(

3 0 −2
−2 0 5

)
.

When it comes to array multiplication, a natural implementation might be a point-
wise entry multiplication. For two arrays of the same size we obtain

.A � B =
(

1 −1 2
−3 2 5

)
�

(
2 1 −4
1 −2 0

)

=
(

2 −1 −8
−3 −4 0

)
.

The .(i, j) entry in the matrix .A � B is the product of the .(i, j) entry in the matrix
A and the .(i, j) entry in the matrix B. This point-wise array multiplication is called
the Hadamard matrix product. While it is a straightforward operation, there are
other considerations. These considerations lead to a different definition of matrix
multiplication.

Linear algebra gives data arrays an important interpretation as linear operators
on the space of vectors. A data array of size .m × n will be referred to as a .m × n

matrix. We will have a new matrix multiplication which will be needed due to the
existence of vectors. Vectors are quantities that consist of multiple data entries.
Vectors can be added and multiplied by a scalar number, a real number or possibly
a complex number. Vectors naturally appear in many applications, for instance,
in physics, engineering, and statistics where the vectors typically are comprised
of a large number of entries. Working with vectors requires creating new vectors
possibly having different sizes. The data entries in the new vectors are created as
linear combinations of the data entries in the old vectors.

Consider a .3 × 1 column vector

.x =
⎛
⎝

x1

x2

x3

⎞
⎠ .

We will transform the .3 × 1 vector .x into a .2 × 1 vector .y as follows. Denote

.y =
(

y1

y2

)

and set

.y1 = 2x1 − 5x2 + 6x3 and y2 = −3x1 + 2x2 + 7x3.
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We can capture this as

.

(
2 −5 6

−3 2 7

) ⎛
⎝

x1

x2

x3

⎞
⎠ =

(
2x1 − 5x2 + 6x3

−3x1 + 2x2 + 7x3

)

=
(

y1

y2

)
.

We denote the above as a matrix equation .Ax = y with A representing the matrix
of the linear combinations as rows, in particular

.A =
(

2 −5 6
−3 2 7

)
.

We can think of the matrix A, an array of numbers, as a linear transformation on
the space of vectors. As a consequence of the above we have an induced matrix
addition which is in fact the same as the array addition we had previously. When
two matrices are added, they have to be of the same size .m × n. We will motivate
the reasoning for the matrix addition on a specific size for the sake of notational
simplicity. The general case readily follows. Let

.x =

⎛
⎜⎜⎝

x1

x2

x3

x4

⎞
⎟⎟⎠

be a .4 × 1 column vector. Let A and B be two .3 × 4 matrices. In particular

.A =
⎛
⎝

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

⎞
⎠ and B =

⎛
⎝

b11 b12 b13 b14

b21 b22 b23 b24

b31 b32 b33 b34

⎞
⎠ .

The matrix addition comes from the desire that

.

⎛
⎝

⎛
⎝

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

⎞
⎠ +

⎛
⎝

b11 b12 b13 b14

b21 b22 b23 b24

b31 b32 b33 b34

⎞
⎠

⎞
⎠

⎛
⎜⎜⎝

x1

x2

x3

x4

⎞
⎟⎟⎠

should be equal to
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.

⎛
⎝

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

⎞
⎠

⎛
⎜⎜⎝

x1

x2

x3

x4

⎞
⎟⎟⎠ +

⎛
⎝

b11 b12 b13 b14

b21 b22 b23 b24

b31 b32 b33 b34

⎞
⎠

⎛
⎜⎜⎝

x1

x2

x3

x4

⎞
⎟⎟⎠ .

The above statement can be viewed as a sum of matrix transformations of vectors
and thus equals

.

⎛
⎝

a11x1 + a12x2 + a13x3 + a14x4

a21x1 + a22x2 + a23x3 + a24x4

a31x1 + a32x2 + a33x3 + a34x4

⎞
⎠ +

⎛
⎝

b11x1 + b12x2 + b13x3 + b14x4

b21x1 + b22x2 + b23x3 + b24x4

b31x1 + b32x2 + b33x3 + b34x4

⎞
⎠ .

Assuming that vector addition should be coordinate-wise, this means

.

⎛
⎝

a11x1 + b11x1 + a12x2 + b12x2 + a13x3 + b13x3 + a14x4 + b14x4

a21x1 + b21x1 + a22x2 + b22x2 + a23x3 + b23x3 + a24x4 + b24x4

a31x1 + b31x1 + a32x2 + b32x2 + a33x3 + b33x3 + a34x4 + b34x4

⎞
⎠ .

But this expression is equal to

.

⎛
⎝

a11 + b11 a12 + b12 a13 + b13 a14 + b14

a21 + b21 a22 + b22 a23 + b23 a24 + b24

a31 + b31 a32 + b32 a33 + b33 a34 + b34

⎞
⎠

⎛
⎜⎜⎝

x1

x2

x3

x4

⎞
⎟⎟⎠ .

Thus, the matrix addition we suggested earlier is not only natural; it is consistent
with our desire to use matrices as linear operators:

.A + B =
⎛
⎝

a11 + b11 a12 + b12 a13 + b13 a14 + b14

a21 + b21 a22 + b22 a23 + b23 a24 + b24

a31 + b31 a32 + b32 a33 + b33 a34 + b34

⎞
⎠ .

To provide the rationale behind matrix multiplication, we consider a .2 × 3 matrix

.A =
(

a11 a12 a13

a21 a22 a23

)

and a .3 × 4 matrix

.B =
⎛
⎝

b11 b12 b13 b14

b21 b22 b23 b24

b31 b32 b33 b34

⎞
⎠ .
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Once again, we chose specific matrix sizes for the sake of notational simplicity. The
general case readily follows. The matrix multiplication comes from the desire that

.

⎛
⎝

(
a11 a12 a13

a21 a22 a23

) ⎛
⎝

b11 b12 b13 b14

b21 b22 b23 b24

b31 b32 b33 b34

⎞
⎠

⎞
⎠

⎛
⎜⎜⎝

x1

x2

x3

x4

⎞
⎟⎟⎠

should be equal to

.

(
a11 a12 a13

a21 a22 a23

)
⎛
⎜⎜⎝

⎛
⎝

b11 b12 b13 b14

b21 b22 b23 b24

b31 b32 b33 b34

⎞
⎠

⎛
⎜⎜⎝

x1

x2

x3

x4

⎞
⎟⎟⎠

⎞
⎟⎟⎠ .

Since B is a matrix operator on the column vector, this is equal to

.

(
a11 a12 a13

a21 a22 a23

)⎛
⎝

b11x1 + b12x2 + b13x3 + b14x4

b21x1 + b22x2 + b23x3 + b24x4

b31x1 + b32x2 + b33x3 + b34x4

⎞
⎠ .

Now matrix A transforms the .3 × 1 vector .Bx to give the following .2 × 1 vector:

.

⎛
⎝ a11

(∑4
j=1 b1j xj

)
+ a12

(∑4
j=1 b2j xj

)
+ a13

(∑4
j=1 b3j xj

)

a21

(∑4
j=1 b1j xj

)
+ a22

(∑4
j=1 b2j xj

)
+ a23

(∑4
j=1 b3j xj

)
⎞
⎠ .

But this is equal to

.

⎛
⎝

∑3
i=1 a1ibi1

∑3
i=1 a1ibi2

∑3
i=1 a1ibi3

∑3
i=1 a1ibi4

∑3
i=1 a2ibi1

∑3
i=1 a2ibi2

∑3
i=1 a2ibi3

∑3
i=1 a2ibi4

⎞
⎠

⎛
⎜⎜⎝

x1

x2

x3

x4

⎞
⎟⎟⎠ .

Thus, the matrix product of the .2× 3 matrix A with the .3× 4 matrix B is the .2× 4
matrix:

.AB =
⎛
⎝

∑3
i=1 a1ibi1

∑3
i=1 a1ibi2

∑3
i=1 a1ibi3

∑3
i=1 a1ibi4

∑3
i=1 a2ibi1

∑3
i=1 a2ibi2

∑3
i=1 a2ibi3

∑3
i=1 a2ibi4

⎞
⎠ .

Let us now consider the use of matrices, vectors, and the associated operations in
the field of data science.



6 1 Introduction

References

1. Aggarwal, C.: Linear Algebra and Optimization for Machine Learning. Springer Cham,
Switzerland (2020)

2. Deisenroth, M.P., Faisal, A.A., Ong, C.S.: Mathematics for Machine Learning. Cambridge
University Press, Cambridge (2020)

3. Kutz, J.N.: Data-Driven Modeling & Scientific Computation. Oxford University Press, Oxford
(2013)

4. Strang, G.: Linear Algebra and Learning from Data. Wellesley-Cambridge Press, Wellesley
(2019)



2Projections 

The concept of a projection is a pivotal mathematical idea. This fundamental tool 
is used in data analysis in many forms and disguises. It is a foundation behind data 
compression, trend capturing, detail removal, or dimension reduction. Projection 
techniques appear in diverse areas of data science. We introduce this concept as the 
first step and then examine how it applies to the statistical concept of correlation. 

We consider a vector space V over the real numbers or complex numbers. 
Depending on the context, we will identify the vector space V with . Rn or . Cn. We  
equip the vector space V with an inner product (dot product) .〈·, ·〉 . This allows us 
to introduce euclidean geometry to the vector space. One consequence is that we 
can discuss the notion of orthogonality among vectors. For convenience, we will 
use two equivalent notations for the inner product: 

. x · y = 〈x, y〉 .

The reader can consult the appendix in our text should the need arise to reacquaint 
themselves with relevant concepts for the forthcoming exposition. 

Let W be a vector subspace of V . Using the subspace W we can perform an 
orthogonal decomposition of a vector space V : 

. V = W + W⊥

where 

. W⊥ = {y ∈ V | 〈y, x〉 = 0 for all x ∈ W }

is the subspace of all vectors in V that are orthogonal to all vectors in W . 
Let .z ∈ V. We can write .z = u + v where .u ∈ W and .v ∈ W⊥. The choice 

of the vectors . u and . v is unique given the vector . z. As a result we can define an 
(orthogonal) projection P onto W along .W⊥ by 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 
P. Zizler, R. La Haye, Linear Algebra in Data Science, Compact Textbooks in 
Mathematics, https://doi.org/10.1007/978-3-031-54908-3_2

7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-54908-3protect T1	extunderscore 2&domain=pdf
https://doi.org/10.1007/978-3-031-54908-3_2
https://doi.org/10.1007/978-3-031-54908-3_2
https://doi.org/10.1007/978-3-031-54908-3_2
https://doi.org/10.1007/978-3-031-54908-3_2
https://doi.org/10.1007/978-3-031-54908-3_2
https://doi.org/10.1007/978-3-031-54908-3_2
https://doi.org/10.1007/978-3-031-54908-3_2
https://doi.org/10.1007/978-3-031-54908-3_2
https://doi.org/10.1007/978-3-031-54908-3_2
https://doi.org/10.1007/978-3-031-54908-3_2
https://doi.org/10.1007/978-3-031-54908-3_2


8 2 Projections

. P z = u.

The projection P is a linear transformation with the following properties: 

. P 2 = P ; P ∗ = P meaning 〈Px, y〉 = 〈x, Py〉 for all x, y ∈ V

(so P is self-adjoint).

To see this, first let .z = u + v and observe 

. P 2(z) = P (P (u + v)) = P(u) = u = P z.

Now let .z1 = u1 + v1 and .z2 = u2 + v2. Consider . 〈P z1, z2〉 .

. 〈P z1, z2〉 = 〈u1, (u2 + v2)〉
= 〈u1,u2〉
= 〈(u1 + v1),u2〉
= 〈z1, P z2〉 .

We remind the reader of the formula for projections. Suppose . x and . y are vectors in 
. V. For convenience, we use .x ·y for the inner product. The projection of the vector . x
onto the vector . z is denoted by .projzx. The expression for the projection is given by 

. projzx = x · z
||z||2 z

where .||z|| denotes the norm of the vector . z. 
For example, suppose .x = (x1, x2, x3, x4)

T is a vector in V = R4. The projec-
tion of the vector . x onto the unit vector .w = 1

2 (1, 1, 1, 1)
T is 

. projwx =
(

1
2 (x1 + x2 + x3 + x4)

1

)
1

2
(1, 1, 1, 1)T

= 1

4
(x1 + x2 + x3 + x4)(1, 1, 1, 1)

T .

We now move from projecting onto a vector to projecting onto a subspace. We 
consider orthogonal decompositions of . V. Our discussion involves the projection 
formula, the matrix of a projection linear operator, and an orthonormal basis. 

One orthonormal basis for .V = R4 is 

.

{
1

2
(1, 1, 1, 1)T ,

1

2
(1, 1,−1,−1)T ,

√
2

2
(1,−1, 0, 0)T ,

√
2

2
(0, 0, 1,−1)T

}
.
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Let . wi denote the . ith vector in this list for .i = 1, 2, 3, and 4. Let us consider 
projections in terms of vectors and bases. 

The projection, P , onto one-dimensional subspace .span{w1} along . (span{w1})⊥
is the same as the projection of the vector . x onto the vector .w1. So if vector .x ∈ V , 

. Px = projspan{w1}x = projw1
x = 1

4
(x1 + x2 + x3 + x4)(1, 1, 1, 1)

T .

Since projections are linear operators, they can be expressed as matrix transforma-
tions. The matrix representation of P , with respect to the standard basis, is given 
by 

. P =

⎛
⎜⎜⎝

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

⎞
⎟⎟⎠ .

Note that 

. Pw1 = w1 and Pwi = 0 for i ∈ {2, 3, 4}.

Let .W = span ({w1,w2}) and .x ∈ V . Then . Q, the (orthogonal) projection onto 
.W along W⊥, is defined as follows: 

. Qx = projw1
x + projw2

x

= 1

4
(x1 + x2 + x3 + x4)(1, 1, 1, 1)

T + 1

4
(x1 + x2 − x3 − x4)(1, 1,−1,−1)T

=
(
1

2
(x1 + x2),

1

2
(x1 + x2),

1

2
(x3 + x4),

1

2
(x3 + x4)

)T

.

The matrix representation of Q is given by 

. Q =

⎛
⎜⎜⎝

1
2

1
2 0 0

1
2

1
2 0 0

0 0 1
2

1
2

0 0 1
2

1
2

⎞
⎟⎟⎠ .

Note that 

. Qwi = wi for i ∈ {1, 2} and Qwi = 0 for i ∈ {3, 4}.

Similarly if R is the (orthogonal) projection onto .W⊥ = span ({w3,w4}) along W 
and .x ∈ V , then
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. Rx = projw3
x + projw4

x

= 1

2
(x1 − x2)(1,−1, 0, 0)T + 1

2
(x3 − x4)(0, 0, 1,−1)T

=
(
1

2
(x1 − x2),

1

2
(−x1 + x2),

1

2
(x3 − x4),

1

2
(−x3 + x4)

)T

.

The matrix representation of R is given by 

. R =

⎛
⎜⎜⎝

1
2 − 1

2 0 0
− 1

2
1
2 0 0

0 0 1
2 − 1

2
0 0 − 1

2
1
2

⎞
⎟⎟⎠ .

Note that 

. Rwi = wi for i ∈ {3, 4} and Rwi = 0 for i ∈ {1, 2}.

Also note that 

. Q + R = I.

So if we add the projections of a vector .x ∈ R4 onto W and . W⊥, then we get the 
vector . x, as we would expect. (. Qx + Rx = x.)

Now let us consider applications to statistics. In statistics correlation usually 
deals with the degree to which two variables x and y are linearly related. Pairs 
of data .{(xi, yi)}ni=1 are collected and a scatterplot will show if there is a linear 
relationship between the underlying variables. If there is a linear trend to the data, 
the regression line is said to be the line that best describes the linear relationship in 
the data. 

The correlation coefficient is a number derived from the data pairs that quantifies 
the strength of the linear relationship and captures if the correlation is positive or 
negative. The correlation coefficient is between . −1 and . 1. If it is close to 0, there 
is little or no correlation, and if it is close to . −1 or 1, there is strong correlation. 
The coefficient of determination is the square of the correlation coefficient. It is 
interpreted as the proportion of the y-variable explained by the x-variable. We can 
replace the data pairs by vectors . x and . y and discuss correlation in linear algebra 
terms. 

This notion of correlation in statistics reflects the notion of the inner product 
between vectors when the vectors are shifted and normalized. Partial correlation 
formulae become intuitive when we understand the notion of a projection onto a 
subspace.
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Correlation and Partial Correlation We shall see shortly that simple correlation 
can be described by the inner product alone. Partial correlation will require the 
partial inner product we discuss below. 

Let . x, y, and . z be vectors in . Rn. The vector 

. rx = x − projzx

is the component of . x orthogonal to . z. Note that .rx = projz⊥x where 

. z⊥ = (span{z})⊥ = {w ∈ Rn such that 〈z,w〉 = 0}.

We assume the vector . z is normalized so 

. rx = x − (x · z)z.

Consequently, 

. rx · ry = (x − (x · z)z) · (y − (y · z)z)
= x · y − (x · z)(y · z) − (x · z)(y · z) + (x · z)(y · z)(z · z)
= x · y − (x · z)(y · z)

and 

. rx · rx = (x − (x · z)z) · (x − (x · z)z)
= x · x − (x · z)(x · z) − (x · z)(x · z) + (x · z)(x · z)(z · z)
= x · x − (x · z)2.

The expression 

. 
x · y

||x||||y||
can be interpreted as the cosine of the angle between the original vectors . x and . y.

The expression 

. 
rx · ry

||rx|| ||ry|| = x · y − (x · z)(y · z)√
x · x − (x · z)2√y · y − (y · z)2

can be interpreted geometrically as the cosine of the angle between the projections 
of . x and . y onto the hyperplane . z⊥. We can think of .rx ·ry as the partial inner product 
of the vectors . x and . y with the effect of the vector . z removed.
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To illustrate we consider 

. x =
(
1

2
,
1

2
,
1

2
,
1

2

)T

, y =
(√

2

2
, 0,

√
2

2
, 0

)T

and z =
(

1√
3
,

1√
3
, 0,

1√
3

)T

.

Note that 

. 
x · y

||x|| ||y|| = x · y =
√
2

2
.

Thus, the angle between vectors . x and . y in . Rn is .45◦ . Now  

. rx =
(
1

2
,
1

2
,
1

2
,
1

2

)T

−
√
3

2

(
1√
3
,

1√
3
, 0,

1√
3

)T

= (0, 0,
1

2
, 0)T

and 

. ry =
(√

2

2
, 0,

√
2

2
, 0

)T

− 1√
6

(
1√
3
,

1√
3
, 0,

1√
3

)T

=
(√

2

3
,

−1

3
√
2
,

1√
2
,

−1

3
√
2

)T

.

Hence, 

. 
rx · ry

||rx|| ||ry|| = 0.77.

Thus, the angle between .projz⊥x and .projz⊥y in the hyperplane . z⊥ is about .39.2◦. 
We can now present the ideas of correlation and partial correlation in terms of 

vectors and projections. We shall develop the ideas through an example. 

Example 

Suppose we have a random sample of ten students and note both their weights 
and a standardized math score they receive out of . 10. These 10 pairs of data 
points can be thought of in terms of vectors. Consider the row data vector . x of 
the weights in pounds of students and the row data vector . y of their corresponding 
math scores: 

.x = (50, 60, 80, 60, 100, 120, 140, 100, 160, 180)
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and 

. y = (3, 5, 3, 6, 5, 8, 7, 8, 10, 8).

Thus, the student weighing 50 pounds received a score of 3 and so on. A 
scatterplot of the data points would suggest a modest positive linear relationship 
between weight and math scores. We shall calculate the correlation coefficient 
which quantifies the strength of the linear relationship. In terms of the 10 data 
pairs the linear regression line will have the form 

. ŷ = b1x + b0

where . ŷ denotes the math score predicted by this linear model for the given . x,

.b1 /= 0 and . b0 is some real number. The linear regression line in vector form is 

.ŷ = b1x + b0(1, 1, . . . , 1)
T .

◀

We can shift the vectors . y and . x so that the linear model goes through the origin 
(i.e. .b0 = 0). This makes the situation easier to interpret. The key to the shift is the 
means of the two data sets, . x̄ and . ȳ. If the linear regression line is . ŷ = b1x + b0,

then a well-known relationship is that .y = b1x + b0 and thus .b0 = y − b1x. If 
we shift the weight and math score data so that the shifted means are both 0, then 
the data points, scatterplot, and regression line are shifted so that .b0 = 0. However, 
. b1 and the strength of the linear relationship are unchanged. The mean of the 10 
weight data is .105, while the mean of the 10 math scores is . 6.3. Replace . x by 
.x̃ = x − 105(1, 1, . . . , 1)T and . y by .ỹ = y − 6.3(1, 1, . . . , 1)T . Thus, 

. ̃x = (−55,−45,−25,−45,−5, 15, 35,−5, 55, 75)

and 

. ̃y = (−3.30,−1.30,−3.30,−0.30,−1.30, 1.70, 0.70, 1.70, 3.70, 1.70).

Note that the mean of the entries in both . ̃x and . ̃y are . 0.
The scatterplots of the original data and the shifted data are in Fig. 2.1. The  

figure was made with Microsoft Excel and includes the linear regression line and 
coefficient of determination for each graph. As noted, shifting the data does not 
affect the slope of the regression line or the coefficient of determination/correlation 
coefficient. We now find the correlation coefficient with projections and verify if it 
agrees with the one noted in Fig. 2.1. 

Our linear model in vector form is now 

. ˆ̃y = b1x̃.
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Fig. 2.1 Scatterplots of original and shifted data 

Fig. 2.2 The strength of the 
linear relationship is linked to 
the angle . θ

The strength of the linear relationship translates to how close the shifted math score 
vector . ̃y is to being a nonzero scalar multiple of the shifted weight vector . ̃x (see 
Fig. 2.2). 

This can be quantified as the cosine of the angle between . ̃x and . ̃y. This quantity 
is the correlation coefficient for this example, .ρ(x, y) = cos(θ). 

Interpreting correlation as an angle between the shifted weight and math scores 
among students yields 

. ρ(x, y) = cos(θ) =
〈
x̃, ỹ
〉

||x̃|| ||ỹ|| = 0.77,

to two decimals. This agrees with the Excel calculations noted in Fig. 2.1. The  
coefficient of determination is .ρ2(x, y) ≈ 0.59, so we say that about 59% of the 
variation in math scores is explained by weight. Note that Fig. 2.2 suggests, and 
it is indeed the case that, the best approximation of . ̃y as a scalar multiple of . ̃x is 
.b1x̃ = projx̃(ỹ). We will look at the equation of the regression line later in this 
chapter using least squares. 

Let us summarize what we have done for the general setting. Suppose we have 
two vectors, . u and . v in .Rn, with the mean . μu and . μv, respectively (the mean of a 
vector being the arithmetic mean of its entries). Define 

.ũ = u − μu(1, 1, . . . , 1)
T and ṽ = v − μv(1, 1, . . . , 1)

T .
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The means of . ̃u and . ̃v are both 0. The correlation between . u and . v can be written in 
linear algebra terms as the number 

. ρ(u, v) =
〈
ũ, ṽ
〉

||ũ|| ||ṽ|| ,

and it is the cosine of the angle between . ̃u and . ̃v.
Partial correlation is similarly linked to the partial inner product. Suppose the 

vectors . x, y, and . z are random variables. First, assume vectors . x, . y, and . z each have 
zero mean and . z is a unit vector (note that under these circumstances . z can then 
be thought of as a vector of statistical z scores). In this situation the mean of the 
vectors . rx and . ry noted above is also zero. The partial correlation is given by the 
partial inner product: 

. ρ(x, y/z) = rx · ry

||rx|| ||ry|| = x · y − (x · z)(y · z)√
x · x − (x · z)2√y · y − (y · z)2 .

The above formula can be used to obtain the following well-known formula. The 
formula below gives the partial correlation coefficient .ρ(x, y/z) of the vectors . x, y
with the effect of . z removed, without putting restrictions on the vectors . x, y, and . z: 

. ρ(x, y/z) = ρ(x, y) − ρ(x, z)ρ(y, z)√
1 − ρ2(x, z)

√
1 − ρ2(y, z)

.

Example 

Suppose we revisit our sample of ten students who had their weights and math 
scores recorded in vectors . x and . y.We identify a confounding variable, the school 
grade years of the students. Students come from various grades and we record 
them as a row vector 

. (3, 4, 5, 6, 7, 8, 9, 10, 11, 12).

The mean of this vector is .7.5. We subtract it from each entry and normalize the 
vector to obtain 

. z = (−0.50,−0.39,−0.28,−0.17,−0.06, 0.06, 0.17, 0.28, 0.39, 0.50).

The reader can check that the partial correlation between the weight and the math 
scores with the effect of the school grade removed is 

. ρ(x, y/z) = −0.20.

The correlation is now much weaker and negative. Note .ρ2(x, y/z) = 0.04 and 
we say that about 4% of variation in the math scores is now explained by weight
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when the effect of the school grade is removed. For more information on statistics 
and these concepts, we refer the reader to [1]. ◀

We wish to investigate the relationship between correlation and projections 
further. Specifically, we want to see how to remove the effect of more than one 
confounding variable. We also wish to understand the regression line in terms of 
projections. 

Before we do this, we will briefly review further linear algebra topics (the 
appendix contains a more detailed discussion on this topic). In preparation for later 
chapters we will go through the theory in the more general context of complex 
vector spaces. The reader can find more information on complex vector spaces in 
the appendix. The first thing to note is that if .x, y ∈ Cn, 

. 〈x, y〉 = x · y = Σn
i=1xiyi,

where . yi is the complex conjugate of . yi. Also note that if A is an .n × k complex 
matrix, then the Hermitian adjoint of A, denoted . A∗, is the .k×n matrix with its rows 
the complex conjugates of the columns of A. (If  A is a real matrix, then . A∗ = AT .)

We now revisit projections in terms of a matrix and its Hermitian adjoint. 

Projection Matrices Consider a unit vector .u ∈ Cn and the .n × n matrix given by 
.P = uu∗. The matrix P is the orthogonal projection onto the span of . u along . u⊥. 
Indeed if .x ∈ Cn, then we have 

. Px = uu∗x = 〈x,u〉u.

We observe 

. ker(P ) = {x ∈ Cn such that < x,u >= 0
} = u⊥

and 

. Im(P ) = span{u}.

We can generalize as follows. Assume we want to (orthogonally) project onto a 
subspace W having an orthonormal basis .{u1,u2, . . . ,uk}. We thus form the . n × k

matrix A whose columns are the vectors .{ui}ki=1. The Hermitian adjoint of A is the 
.k × n matrix . A∗. We now  form  the .n × n matrix 

. P = AA∗

and observe



2 Projections 17

. Px = AA∗x =
k∑

i=1

〈x,ui〉ui .

This makes the matrix P the projection matrix onto W along . W⊥. 
Now we relax the orthonormal condition on the basis .{u1,u2, . . . ,uk} and have 

just a linearly independent set of spanning vectors. We still wish to have a projection 
matrix P onto W along . W⊥. It turns out the .n × n matrix 

. P = A
(
A∗A

)−1
A∗

is such a matrix. 
To see this, let .x ∈ Cn and write .Px = Az, for  some  .k × 1 vector . z. We must  

have the vector .x − Px = x − Az orthogonal to all the columns of A. It is noted in 
the appendix that .Ker(A∗) = (Im(A))⊥. Therefore, we have 

. A∗ (x − Az) = 0.

This yields 

. A∗x = A∗Az thus z = (A∗A
)−1

A∗x.

Hence, 

. Px = Az = A
(
A∗A

)−1
A∗x.

Least Squares Consider the over-constrained system of linear equations: 

. 

⎛
⎜⎜⎝

1 3
−1 4
4 3
2 −3

⎞
⎟⎟⎠
(

x

y

)
=

⎛
⎜⎜⎝
2
5
4
6

⎞
⎟⎟⎠ .

Write the system as .Ax = b. The system has no solution; however, we can solve the 
following: 

. A∗Ax0 = A∗b

x0 = (A∗A
)−1

A∗b.

Consequently, 

.Ax0 = A
(
A∗A

)−1
A∗b = b0
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where . b0 is an orthogonal projection of the vector . b onto the subspace spanned by 
the columns of A. Thus, we have found the best approximate solution, . x0, in the  
least squares sense. In particular, with the choice of . x0 we have minimized 

. {||Ax − b||}

over all vectors . x. In our example 

. x0 = (1.0586, 0.3420)T and b0 = (2.0847, 0.3094, 5.2606, 1.0912)T .

In general, we assume the columns of the matrix A are linearly independent. 
We can apply this to find the regression line for a set of data points. 

Example 

Suppose vector .b = (440,000, 380,020, 650,050, 395,600, 860,000)T is the 
data on the asking prices for five houses and their corresponding square footage 
is given by the vector .y = (1200, 1000, 2800, 2000, 3100)T . We want to best 
approximate, in the least squares sense, the asking price for the house in terms of 
the square footage using a linear relationship 

. bi = myi + k for i = 1, ..., 5.

The situation is captured by Fig. 2.3. ◀

In the matrix form this request translates to finding the best approximate solution 
. x, to  

. Ax = b

Fig. 2.3 Scatterplot of the 
relationship between square 
footage and asking price of a 
sample of houses



2 Projections 19

where 

. A =

⎛
⎜⎜⎜⎜⎜⎝

1200 1
1000 1
2800 1
2000 1
3100 1

⎞
⎟⎟⎟⎟⎟⎠ , x =

(
m

k

)
and b =

⎛
⎜⎜⎜⎜⎜⎝

440,000
380,020
650,050
395,600
860,000

⎞
⎟⎟⎟⎟⎟⎠ .

We solve (using technology like Minitab) and find 

. x = (AT A)−1AT b =
(

194.81
151,612.40

)
.

Thus, .m = 194.81 and .k = 151,612.40 and the regression line for the data is 

. b = 194.8127y + 151,612.4025.

The line indicates that the asking price of the house increases by about 195 dollars 
per additional square foot. The expression is the best linear approximation of the 
relationship between asking price and square footage in the least squares sense. 

Minimal Solution to Under-constrained Systems Consider the under-
constrained system of linear equations 

. 

(
1 3 4 −2

−1 8 −1 3

)⎛⎜⎜⎝
x

y

z

w

⎞
⎟⎟⎠ =

(−2
3

)
.

Write the system as .Ax = b. The system has infinitely many solutions of the form 

. {x | x = x0 + z}

with . x0 being some particular solution to .Ax = b and . z being a solution to the 
homogenous system .Az = 0. View  .x = A∗y, for some vector . y. We shall look for 
solutions . x that are in the image space of . A∗ (which is the same as the orthogonal 
compliment to the kernel of A). Thus, we look for the solution that minimizes its 
least squares norm. We have 

.AA∗y = b

y = (AA∗)−1 b

A∗y = A∗ (AA∗)−1 b.
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With this choice of .x0 = A∗y, we have a solution . x to . Ax = b
with the minimal least squares norm. In our example we have . x0 =
(−0.1466, 0.1735, −0.4190, 0.3489)T . 

In general, we assume the rows of the matrix A are linearly independent. For 
more information on this subject we refer the reader to [2] and [5]. 

We now return to examining partial correlation with the goal of finding the 
correlation between 2 variables with the effects of more than one confounding 
variable removed. 

Partial Correlation Revisited Consider vectors . x and . y in . Rn and a set of not 
necessarily mutually orthonormal vectors .{zi}ki=1 in . Rn. We define the partial inner 
product between the vectors . x and . y with the effect of the vectors .{zi}ki=1 removed. 
Consider a matrix A whose columns are the vectors .{zi}ki=1. Let  

. W = span{z1, z2, ..., zk}

and form the (orthogonal) projection matrix 

. P = A
(
A∗A

)−1
A∗.

P projects a vector . x orthogonally onto W . Let . rx be the projection vector of . x onto 
.W⊥ and . ry be the projection vector of . y onto . W⊥. So  

. rx = x − A
(
A∗A

)−1
A∗x

and 

. ry = y − A
(
A∗A

)−1
A∗y.

Observe that the identity 

. 

〈
u, A

(
A∗A

)−1
A∗v

〉
=
〈
A∗u,

(
A∗A

)−1
A∗v

〉
holds for any two vectors . u and . v. 

We obtain the partial inner product between the vectors . x and . y with the effect of 
the vectors .{zi}ki=1 removed as 

.
rx · ry

||rx||||ry||

= < x, y > − < A∗x, (A∗A)−1 A∗y >√
< x, x > − < A∗x, (A∗A)−1A∗x >

√
< y, y > − < A∗y, (A∗A)−1 A∗y >

.
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The identity 

. 

〈
A
(
A∗A

)−1
A∗u, A

(
A∗A

)−1
A∗v

〉
=
〈
A
(
A∗A

)−1
A∗u, A

(
A∗A

)−1
A∗v

〉
=
〈
A∗A

(
A∗A

)−1
A∗u,

(
A∗A

)−1
A∗v

〉
=
〈
A∗u,

(
A∗A

)−1
A∗v

〉

might be useful. If we further assume the vectors .{zi}ki=1 are mutually orthonormal, 
then we obtain a simplified formula 

. 
rx · ry

||rx||||ry|| = < x, y > − < A∗x, A∗y >√
< x, x > − < A∗x, A∗x >

√
< y, y > − < A∗y, A∗y >

.

Example 

Consider the row vectors 

. z1 = (1, 2, 3,−3) ; z2 = (1,−2,−2, 3) ; x = (3, 2, 4, 5) ; y = (−2, 3, 2, 1)

and note 

. 
x · y

||x|| ||y|| = 0.4170.

We will now remove the effects of the vectors . z1 and . z2 from the inner product 
above. To that end consider 

. W = span{z1, z2}.

We form the matrix 

. A =

⎛
⎜⎜⎝

1 1
2 −2
3 −2

−3 3

⎞
⎟⎟⎠

and obtain (using technology) 

. rx = x − A
(
A∗A

)−1
A∗x = (−1.33, 2.67, 2.67, 4.00)T

and 

.ry = y − A
(
A∗A

)−1
A∗y = (−0.70, 2.00, 1.40, 2.50)T .
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. 
rx · ry

||rx|| ||ry|| = 0.99.

We now apply this concept to a specific statistics example once again. To that 
end we take the vectors . x, . y and the vectors .{zi}ki=1 with their respective means 
zero. Then the partial inner product between the vectors . x and . y with the effect 
of the vectors .{zi}ki=1 removed is just the partial correlation between the vectors 
. x and . y with the effect of the vectors .{zi}ki=1 removed. ◀

Example 

Suppose we have chosen at random 8 basketball players playing the same 
position on the court. Let 

. x = (20, 18, 21, 14, 7, 20, 18, 16)

be the average number of points scored in a basketball game by the 8 players. Let 

. y = (20, 30, 25, 28, 27, 20, 22, 23)

denote their ages. Suppose 

. z1 = (180, 190, 202, 210, 200, 185, 200, 230)

denote their heights in cm and 

. z2 = (200, 180, 190, 200, 210, 180, 175, 195)

denotes their weights in pounds. The correlation coefficient between . x and . y, the  
points per game versus age, is given by 

. ρ(x, y) = −0.47.

Thus, about 22% of variation in points per game is explained by age. (Recall we 
needed to subtract the mean from the data when using the dot product.) ◀

This correlation was done with the effects of height and weight included. Now 
we will remove the effects of height and weight from the correlation. We remove 
the mean from the vectors . z1 and . z2 and calculate the partial correlation between . x
and . y with the effects . z1 and . z2 removed, using the above approach. We obtain 

. ρ(x, y/{z1, z2}) = −0.44

which is not much of a change. Thus, about 20% of variation in points per game is 
explained by age when the effects of height and weight are excluded.
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We end this chapter with a few more insights on projections that will be used in 
the next chapter and beyond. 

Rank One Skew Projections Let . u be a unit vector in . Cm and . v be unit vector in 
. Cn. We define a .m × n matrix P by 

. P = uv∗.

Let .x ∈ Cn. Then 

. Px = uv∗x = 〈x, v〉u.

We have 

. Im(P ) = span {u}

and 

. Ker(P ) = v⊥ = {x ∈ Cn such that 〈x, v〉 = 0}.

The matrix P is a (skew) projection matrix onto . u along . v⊥. The matrix P is not 
necessarily an orthogonal projection matrix. It becomes an orthogonal projection 
matrix in the case when .v = u. Below is a picture that shows the geometry of this 
(skew) projection (if .m = n) (Fig. 2.4). 

Note that the skew projection of .x, Px is a vector with the magnitude of . projvx
but has the direction of . u.

To illustrate, consider the unit vectors .u = 1√
5
(1,−2)T and . v = 1√

21
(2, 1, 4)T

and .x = (3,−1, 2)T . Then 

Fig. 2.4 A skew projection
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. P = 1√
105

(
1

−2

) (
2 1 4

) = 1√
105

(
2 1 4

−4 −2 −8

)

and 

. Px = 1√
105

(
2 1 4

−4 −2 −8

)⎛⎝ 3
−1
2

⎞
⎠ = 1√

105

(
13

−26

)

and 

. projvx = 13√
21

v.

Note that . Px has the same magnitude as .projvx and is in the direction of . u.

Suppose .m = n so that . P 2 is defined. We note that . P 2 does not necessarily equal 
P , but it is at least a scalar multiple of . P. Indeed 

. P 2 = (uv∗)(uv∗) = 〈u, v〉uv∗ = 〈u, v〉P.

Observe 

. Pu = uv∗u = 〈u, v〉 u

which implies that . u is an eigenvector for P with corresponding eigenvalue . λ =
〈u, v〉. Moreover, . v⊥ is the eigenspace for the eigenvalue .λ = 0. A special case 
occurs when . v is perpendicular to . u and in particular .u ∈ v⊥. Then the only 
eigenvalue of P is .λ = 0 with an eigenspace . v⊥. In this case . P 2 is the zero matrix. 
This is an example of a non-diagonalizable matrix. 

The Hermitian adjoint of P is given by 

. P ∗ = (uv∗)∗ = vu∗.

Recall .ker(P ) = v⊥ and note that .Im(P ∗) = span{v}. It follows that . ker(P ))⊥ =
Im(P ∗). Furthermore, 

. P ∗P = vu∗uv∗ = vv∗

which yields an orthogonal projection onto . v along . v⊥. Similarly, 

. PP ∗ = uv∗vu∗ = uu∗

yields an orthogonal projection onto . u along . u⊥. These matrices will play a big role 
in later chapters.
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Exercises 

1. Consider an orthonormal set of vectors in . R8

. u1 =
√
2

4
(1, 1, 1, 1, 1, 1, 1, 1)T ; u2 =

√
2

4
(1, 1, 1, 1,−1,−1,−1,−1)T

and 

. u3 = 1

2
(1, 1,−1,−1, 0, 0, 0, 0)T ; u4 = 1

2
(0, 0, 0, 0, 1, 1,−1,−1)T .

Find the projection matrix P onto .W = span {u1,u2,u3,u4} along . W⊥. 
2. Consider the subspace W of . R6 spanned by the vectors 

. 

{
(1, 2,−1, 0, 3, 6)T , (2, 0, 1,−1,−1, 2)T , (1, 0, 1, 0,−3, 4)T

}
.

Find the projection matrix P onto W along . W⊥. 
3. Consider the vectors 

. x = (−1, 2, 1,−1, 1, 3, 4, 5, 6, 8, 12, 5)T ;

y = (−2, 3, 1,−2, 4, 5, 0, 5, 6, 5, 2, 3)T

and 

. z = (1,−1, 1,−1, 1,−1, 1,−1, 1,−1, 1,−1)T .

Find the partial correlation between the vectors . x and . y with the effect of . z
removed. 

4. Consider the vectors 

. z1 = (−1, 1, 3,−4, 2, 1, 0, 2, 1, 1, 0,−1)T

z2 = (1,−2,−2, 3, 0, 0, 1, 1, 2,−3, 3, 2)T

z3 = (1, 2,−3,−3, 4, 4, 5, 5, 3, 4, 0, 2)T

x = (3, 0,−2, 2, 4, 5,−2,−3, 1, 1, 1, 2)T

y = (0, 0, 2, 1, 5, 4,−2,−6,−1, 2,−2, 3)T .

Find the partial correlation between the vectors . x and . y with the effects of the 
vectors .z1, z2, and . z3 removed.
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5. Consider the over-constrained system of linear equations: 

. 

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 3 4
−1 2 −6
4 3 3
2 −3 6
1 3 −3
5 −8 6
3 2 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎝x

y

z

⎞
⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2
4
7
3
1

−5
−3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Find the least squares approximate solution to the system. 
6. Consider the under-constrained system of linear equations: 

. 

⎛
⎜⎜⎝

3 −2 4 −2 6 8
−1 −2 1 3 1 −3
5 2 3 4 −2 −2
3 2 7 −4 1 −3

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x1

x2

x3

x4

x5

x6

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎝

3
5

−1
2

⎞
⎟⎟⎠ .

Find the solution to this system with the least squares norm. 
7. Consider .n×1 vectors . x, . b and .1 = (1, 1, · · · , 1)T . Let . ŵ and . ̂b be the solution 

to the least squares problem 

. Aw = b

where .A = [x ; 1], and the two columns of A are . x and . 1, respectively. Assume 
the mean of the entries in . x is zero and .||x|| = 1. Assume  the same for  . b. 
In statistical language we can say that the entries in the vectors . x and . b are z 
scores. 
a. Show that .〈x, 1〉 = 0 and .〈b, 1〉 = 0. 
b. Define 

. W = span {x, 1}

and show that 

. projWb = projxb = b̂.

c. Let .θx,b denote the (smaller) angle between . x and . b and let .θb,b̂ denote the 

(smaller) angle between . b and . ̂b. Show that 

.| cos (θx,b) | = | cos
(
θb,b̂

)
|.
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In statistical language the correlation coefficient between . x and . b is the same 
in absolute value as the correlation coefficient between . b and . ̂b. 

8. Linear Discriminant Analysis. Imagine we have two groups of data. The first 
group . C1 consists of test scores from mathematics and social science collected 
from a group of 8 students. We record the data into the 8 rows of the matrix 
A. For example, the student number 2, in the group . C1, has their mathematics 
score .0.35 and their social science score .0.55. In particular, we have 

A =  

0.40 0.50 
0.35 0.55 
0.30 0.60 
0.20 0.40 
0.42 0.53 
0.43 0.65 
0.50 0.50 
0.31 0.48. 

The second group . C2 consists of the test scores from mathematics and social 
science collected from another group of 10 students. We record the data into 
the 10 rows of the matrix B. For example, the student number 3, in the group 
. C2, has their mathematics score .0.65 and their social science score .0.75. In  
particular, we have 

B =  

0.60 0.80 
0.70 0.90 
0.65 0.75 
0.62 0.88 
0.80 0.80 
0.98 0.93 
0.66 0.48 
0.70 0.90 
0.60 0.84 
0.75 0.78. 

Our task now is to best differentiate the two groups . C1 and . C2 by one 
measurement only, based on the test scores in mathematics and social science, 
or some linear combination of these two scores. One solution is to go purely by 
the mathematics score alone or the social science score alone, but most likely 
the best choice will be some combination of these two. In particular, we seek a 
unit vector .v = (v1, v2)

T so that when we define
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. ai = 〈xi , v〉 ; bi = 〈yi , v〉

we have the best possible separation of these two groups . C1 and . C2 using only 
.{ai}8i=1 and .{bi}10i=1. Here the vectors .{xi}8i=1 are the mathematics and social 
science test scores in the group . C1, the rows of the matrix A, and the vectors 
.{yi}10i=1 are the mathematics and social science test scores in the group . C2, 
the rows of the matrix B. For example, if .v = (0.32, 0.95)T , then the second 
student in group . C1 would have their one-dimensional measurement, projection 
measurement, given by 

. 〈x2, v〉 = (0.35)(0.32) + (0.55)(0.95) = 0.63.

To seek the best unit vector . v, for the above separation, we define the following 
quantities. First, we define the means of the data vectors .m1,m2 and the means 
of their projections .μ1, μ2. Recall .{xi}8i=1 and .{yi}10i=1 are now the column 
vectors coming out of rows of A and B, respectively. Hence, 

. m1 = 1

8

8∑
i=1

xi ;m2 = 1

10

10∑
i=1

yi

and 

. μ1 = 1

8

8∑
i=1

ai ; μ2 = 1

10

10∑
i=1

bi.

We also define the variances of the projections of the data vectors. 

. s21 =
8∑

i=1

(ai − μ1)
2 and s22 =

10∑
i=1

(bi − μ2)
2 .

To find the best choice of the unital projection vector . v, we maximize the square 
of the difference between the projected means . μ1 and . μ2 in relation to the 
projection variances . s21 and . s22 . In particular, we optimize 

. max||v||=1
(μ1 − μ2)

2

s21 + s22

.

a. Show that 

.(μ1 − μ2)
2 = 〈Sbv, v〉
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where the matrix . Sb is given by 

. Sb = (m1 − m2) (m1 − m2)
T .

Also show that the matrix . Sb is a .2 × 2 rank one projection matrix and is a 
symmetric matrix. 

b. Show that 

. s21 = 〈S1v, v〉 and s22 = 〈S2v, v〉

where the matrices . S1 and . S2 are given as 

. S1 =
8∑

i=1

(xi − m1) (xi − m1)
T and S2 =

10∑
i=1

(yi − m2) (yi − m2)
T .

Observe the matrices . S1 and . S2 are .2 × 2 symmetric matrices. 
c. Define .Sw = S1 + S2 and show 

. max||v||=1
(μ1 − μ2)

2

s21 + s22

= max||v||=1
〈Sbv, v〉
〈Swv, v〉 .

d. Show the matrix .S−1
w Sb, asssuming . Sw is invertible, is a rank one matrix 

having only one nonzero eigenvalue . λ which is positive. 
e. Show the best choice of the unit vector . v is a normalized eigenvector of 

.S−1
w Sb for the eigenvalue . λ. In particular, the best choice of the unit vector . v

is a solution to 

. S−1
w Sbv = λv or equivalently Sbv = λSwv.

f. With our data above, show that 

. m1 = (0.36, 0.53)T ; m2 = (0.71, 0.81)T

and 

. Sb =
(
0.12 0.10
0.10 0.08

)
.

g. Show that 

.S1 =
(
0.06 0.02
0.02 0.04

)
, S2 =

(
0.12 0.04
0.04 0.15

)
and Sw =

(
0.18 0.06
0.06 0.19

)
.
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h. Show that 

. S−1
w Sb =

(
0.53 0.43
0.33 0.27

)

with its only nonzero eigenvalue being .λ = 0.80 and a corresponding 
normalized eigenvector .v = (0.85, 0.53)T . Observe the vector . v is the 
optimal vector . v that we seek. 

i. The one-dimensional projections of the group . C1 are given by 

. {ai}8i=1 = (0.60, 0.59, 0.57, 0.38, 0.64, 0.71, 0.69, 0.52)

and the one-dimensional projections of the group . C2 are given by 

. {bi}10i=1 = (0.93, 1.07, 0.95, 0.99, 1.10, 1.32, 0.81, 1.07, 0.95, 1.05).

j. The best projected mean separations between the groups . C1 and . C2 are given 
by 

. μ1 = 〈m1, v〉 = 0.59 ; μ2 = 〈m2, v〉 = 1.03

along with the projected variances being 

. s21 = 〈S1v, v〉 = 0.08 and s22 = 〈S2v, v〉 = 0.16.

9. The linear discriminant analysis can be implemented to allocate new data to the 
old groups. Suppose a new student comes with the mathematics score of . 0.50
and the social science score of .0.70, .x = (0.50, 0.70)T . We have to determine 
to which group, . C1 or . C2, we should allocate the new student, based on their 
performance. The new student has their corresponding projection value given 
by 

. a = 〈x, v〉 = 0.79.

To decide which group to choose for the new student, . C1 or . C2, we compute 
the following z scores. If the new student belonged to the group . C1, then their z 
score, for the corresponding a value, would be . z1. Similarly, if the new student 
belonged to the group . C2, then their z score, for the corresponding a value, 
would be . z2. We compute and compare . z1 and . z2. 

. z1 = a − 0.59√
0.08

= 0.71 ; z2 = a − 1.03√
0.16

= −0.60.

Since .|−0.60| < |0.71| we allocate the new student to the group . C2. The above 
developments can be readily generalized to higher dimensions or possibly to
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Fig. 2.5 Mercedes Benz 
logo frame 

more groups given. For more information on the linear discriminant method, 
sometimes referred to as the Fisher’s linear discriminant, we refer the reader to 
[3]. 

10. Consider the vectors, the Mercedes Benz logo frame, (Fig. 2.5), 

. 

⎧⎨
⎩u1 =

√
2

3
(0, 1)T ,u2 =

√
2

3

(
−

√
3

2
,−1

2

)T

,u3 =
√
2

3

(√
3

2
,−1

2

)T
⎫⎬
⎭

and form the matrices 

. U =
√
2

3

(
0 −

√
3
2

√
3
2

1 − 1
2 − 1

2

)
and UT =

√
2

3

⎛
⎜⎝

0 1

−
√
3
2 − 1

2√
3
2 − 1

2

⎞
⎟⎠ .

a. Show .UUT = I . 
b. Let .x ∈ R2. Show that 

. x = 〈x,u1〉 u1 + 〈x,u2〉 u2 + 〈x,u3〉u.

c. Denote 

.P = UT U =
⎛
⎝ 2

3 − 1
3 − 1

3
− 1

3
2
3 − 1

3
− 1

3 − 1
3

2
3

⎞
⎠ .
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Show that .P 2 = P and .P T = P ; in particular P is an (orthogonal) 
projection. 

d. Show that 

. Im(P ) = span

{√
2

2
(0,−1, 1)T ,

√
6

6
(2,−1,−1)T

}

and 

. ker(P ) = span

{√
3

3
(1, 1, 1)T

}
.

11. Moore-Penrose Inverse Consider a .m × n real matrix A with .m < n. Assume 
the .m × m matrix .AAT is invertible. Define the Moore-Penrose inverse of A, 
the .n × m matrix 

. A† = AT
(
AAT

)−1
.

a. Show that 

. AA† = Im.

b. Show 

. P = A†A

is an (orthogonal) projection on .Im(AT ) along .ker(A). 
c. Let .x ∈ Rm. Let  . ui be the ith column of the matrix A and let . vi be the ith 

row of the matrix . A†. Show that 

. x = 〈x, v1〉u1 + 〈x, v2〉 u2 + · · · + 〈x, vn〉 un.

d. Let .x ∈ Rm be given. Show that among all solutions . ci to 

. x =
n∑

i=1

ciui

the choice of .ci = 〈x, vi〉 produces the vector of coordinates . c =
(c1, c2, . . . , cn)

T with the least squares norm. 
e. Let 

.A =
(
2 −1 3
2 1 −2

)
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show that 

. A† =
⎛
⎝ 0.2051 0.2906

−0.0513 0.0940
0.1795 −0.1624

⎞
⎠

and for any .x ∈ R2 we have 

. x =
〈
x, (0.2051, 0.2906)T

〉 ( 2
2

)
+
〈
x, (−0.0513, 0.0940)T

〉 (−1
1

)

+
〈
x, (0.1795,−0.1624)T

〉 ( 3
−2

)
.

Project 
The following data are drawn from [4]. We collect the data on the total annual death count in 
Canada as well as the annual population count over the past 21 years. The vector total denotes 
the annual population in Canada. The first entry .31.36 denotes the estimated number of people 
(in millions) living in Canada in the year 2001. The last entry .38.74 is the estimated Canadian 
population (in millions) in the year 2022. 

. total = [31.36, 31.64, 31.94, 32.24, 32.57, 32.89, 33.24, 33.63, 34.01, 34.33, 34.71,

. 35.08, 35.44, 35.70, 36.11, 36.55, 37.07, 37.54, 38.04, 38.23, 38.74].

The vector death denotes the annual deaths in Canada. The first entry . 220.49
denotes (in thousands) the death count in the year June .30 2001, to June .30 2002. 
The last entry .323.22 denotes (in thousands) the annual death count in the year June 
30, 2021, to June 30, 2022. 

. death = [220.49, 223.91, 228.83, 229.91, 225.49, 233.83, 236.53, 237.71, 237.14,
245.5, 242.41, 251.66, 253.05, 266.16, 262.09, 274.26,

283.76, 282.89, 296.81, 306.47, 323.22].

1. Find m and b so that 

. death(i) ≈ m total(i) + b

is optimized in the least squares sense for all .i ∈ {1, 2, . . . , 21}. 
2. Define the vector .predict by 

.predict(i) = m total(i) + b
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for all .i ∈ {1, 2, . . . , 21}. Verify  

. predict = [213.00, 216.43, 220.11, 223.79, 227.84, 231.76, 236.05, 240.84,
245.50, 249.42, 254.08, 258.62, 263.04, 266.23, 271.25, 276.65,

283.03, 288.79, 294.92, 297.25, 303.51].

3. Define .diff (i) = death(i) − predict(i) for all .i ∈ {1, 2, . . . , 21}. Find and give 
interpretation to the vector . diff . 

4. Define 

. per(i) = diff (i)

predict(i)

for all .i ∈ {1, 2, . . . , 21}. Find and give interpretation to the vector . per. 
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3Matrix Algebra 

We have already used matrix operations such as addition, multiplication, and inver-
sion in Chap. 2. Working with matrices and understanding the meaning of matrix 
addition and multiplication is crucial for success in understanding problems and 
their solutions in data analysis. In this chapter we will look at matrix multiplication 
in terms of rank one skew projections. We will go over a few factorizations of 
matrices. The perspectives and the intuitive understanding obtained here will be 
used in later applications of our text. We also look at the Kalman filter (a technique 
for updating an estimate of a measurement by incorporating a second estimate) as 
an application of matrix multiplication. 

Let .u ∈ Cm and .v, x ∈ Cn. Note that if . u and . v are not assumed to be unit vectors 
and .P = uv∗, then .Px = 〈x, v〉 u. Thus, matrix P is still a skew projection matrix. 

We use the skew projection viewpoint of matrix multiplication to understand the 
QR factorization of a matrix as well as just to give an alternate explanation of the 
associativity of matrix multiplication. 

Let A be a real .m × n matrix and let B be real .n × p matrix. Let . ui denote the 
. ith column of A for .i = 1, 2, . . . , n and let . vi denote the . ith row of B for . i =
1, 2, . . . , n. Let .Pi = uivi . So . Pi is a .m × p rank one, skew projection matrix. The 
matrix product AB can be seen as the sum of skew projection matrices as follows: 

. AB = (
u1 u2 · · · un

)

⎛

⎜⎜⎜
⎝

v1
v2
...

vn

⎞

⎟⎟⎟
⎠

=
n∑

i=1

uivi =
n∑

i=1

Pi.
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For example, let 

. A =
(
1 −1 0
2 1 1

)
and B =

⎛

⎝
0 1 2
3 −1 1
5 2 1

⎞

⎠ .

So 

. AB =
(
1
2

) (
0 1 2

) +
(−1

1

) (
3 −1 1

) +
(
0
1

) (
5 2 1

)

=
(
0 1 2
0 2 4

)
+

(−3 1 −1
3 −1 1

)
+

(
0 0 0
5 2 1

)

=
(−3 2 1

8 3 6

)
.

Consider a .m × n matrix A so that . xi is the . ith column of A for .i = 1, 2, . . . , n and 
. yj is the . j th row of A for .j = 1, 2, . . . , n. We can write 

. A = Im×mA = AIn×n

where .Ip×p is the .p × p identity matrix. Interpreting A as a matrix product in 
this manner leads to the two fundamental interpretations of a matrix multiplying a 
column vector discussed in the appendix. Indeed, if we write .A = AIn×n, then 

. A =
n∑

i=1

xie∗
i ,

where . ei is the .n × 1 column vector with all zeros except in the . ith position. 
Consequently, if .z ∈ Rn, then we view . Az as a linear combination of the columns 
of . A :

. Az =
n∑

i=1

〈z, ei〉 xi =
n∑

i=1

zixi .

If we write .A = Im×mA, then we have 

. A =
m∑

i=1

eiyi ,

where . ei is the .m × 1 column vector with all zeros except a 1 in the . ith position. 
Thus, if .z ∈ Rn, then we have
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. Az =
m∑

i=1

〈
z, y∗

i

〉
ei ,

and we view . Az in terms of the dot product of . z with the rows of matrix . A.

Let A be a real .m×n matrix and let B be a real .n×p matrix. Let .{wi}mi=1 denote 
the rows of A and .{zi}pi=1 denote the columns B. The matrix product AB can be 
also viewed as 

. AB =

⎛

⎜⎜⎜
⎝

w1

w2
...

wm

⎞

⎟⎟⎟
⎠

(
z1 z2 · · · zp

)

=

⎛

⎜⎜⎜
⎝

〈z1,w1〉 〈z2,w1〉 · · · 〈
zp,w1

〉

〈z1,w2〉 〈z2,w2〉 · · · 〈
zp,w2

〉

...
...

...
...

〈z1,wm〉 〈z2,wm〉 · · · 〈
zp,wm

〉

⎞

⎟⎟⎟
⎠

.

Now let us consider further factorizations of an .m×n matrix A. Consider writing 
.A = CD, with the matrix C being a .m × p matrix with . ith column . ci for . i =
1, 2, . . . , p and D being a .p × n matrix with . j th row . {dj for .j = 1, 2, . . . , p. We  
say CD is a factorization of matrix A or a matrix decomposition of A and we can 
write A as a sum of skew projections as 

. A =
p∑

i=1

cidi .

As matrix factorizations are not unique, we can require the vectors .{ci}pi=1 and 
.{di}pi=1 to have various properties. There are various decomposition algorithms 
for matrices. The LU and QR decompositions are discussed below. For more 
information on this subject we refer the reader to [1]. The Cholesky factorization 
writes a positive definite matrix as a product of a lower triangular matrix and its 
conjugate transpose; it is not discussed here but is noted in [1]. 

LU Factorization The LU factorization decomposes a matrix into a product of 
a lower triangular matrix with an upper triangular matrix. The following example 
will illustrate how we can obtain a LU decomposition by carrying a matrix to row 
echelon form using elementary row operations. Consider the matrix 

.A =
⎛

⎝
1 2 −1
2 1 −1
3 1 2

⎞

⎠ .
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Matrix A can be carried to row echelon form (an upper triangular matrix) by the 
three elementary row operations noted below. First, place the second row of A by 
. −2 times the first row in A plus the second row of A. Next, replace the third row 
in the resulting matrix with . −3 times the first row plus the third row. Finally, in the 
resulting matrix replace the third row with .−5/3 times the second row plus the third 
row. 

Recall that if we perform an elementary row operation on an identity matrix, we 
get an elementary matrix. Further recall that the product of the appropriately sized 
elementary matrix with matrix M gives the same result as performing the elementary 
row operation on . M. Consequently, 

. 

⎛

⎝
1 0 0
0 1 0
0 −5/3 1

⎞

⎠

⎛

⎝
1 0 0
0 1 0

−3 0 1

⎞

⎠

⎛

⎝
1 0 0

−2 1 0
0 0 1

⎞

⎠

⎛

⎝
1 2 −1
2 1 −1
3 1 2

⎞

⎠ =
⎛

⎝
1 2 −1
0 −3 1
0 0 10/3

⎞

⎠ .

The elementary matrices are invertible; thus, we can write A in terms of their 
inverses and the upper triangular matrix as 

. A =
⎛

⎝
1 2 −1
2 1 −1
3 1 2

⎞

⎠ =
⎛

⎝
1 0 0
2 1 0
0 0 1

⎞

⎠

⎛

⎝
1 0 0
0 1 0
3 0 1

⎞

⎠

⎛

⎝
1 0 0
0 1 0
0 5/3 1

⎞

⎠

⎛

⎝
1 2 −1
0 −3 1
0 0 10/3

⎞

⎠ .

Thus, 

. A =
⎛

⎝
1 2 −1
2 1 −1
3 1 2

⎞

⎠ =
⎛

⎝
1 0 0
2 1 0
3 5/3 1

⎞

⎠

⎛

⎝
1 2 −1
0 −3 1
0 0 10/3

⎞

⎠ = LU,

where L is the lower triangular matrix obtained by multiplying the three (inverted) 
elementary matrices and U is the upper triangular matrix obtained by performing the 
three elementary row operations on . A. Note that matrix L has 1’s on its diagonal. 

QR Factorization The QR factorization expresses a matrix as a product of a 
unitary matrix and an upper triangular matrix. It is linked to the Gram-Schmidt 
orthogonalization procedure. We illustrate with an example. 

Consider the following non-orthogonal basis for . R3: 

. 

{
u1 = (1, 1, 1)T ,u2 = (2, 1, 1)T ,u3 = (1, 1, 0)T

}
.

In the appendix we use the Gram-Schmidt orthogonalization process to construct 
the new orthonormal basis for . R3:
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. {w1,w2,w3} =
{√

3

3
(1, 1, 1)T ,

√
6

6
(2,−1,−1)T ,

√
2

2
(0, 1,−1)T

}

.

Application of the Gram-Schmidt orthogonalization process resulted in vector . w1
being written in terms of . u1, vector . w2 being written in terms of . u1 and . u2, and 
vector . w3 being written in terms of .u1,u2, and . u3. Now consider how to write 
.u1,u2, and . u3 in terms of the orthonormal basis vectors .w1,w2, and .w3. As a 
consequence of the Gram-Schmidt procedure we now know . u1 is a scalar multiple 
of . w1, and . u2 will be a linear combination of . w1 and . w2, while . u3 will be a linear 
combination of .w1,w2, and . w3. It follows  that  

. u1 = projw1
u1, u2 = projw1

u2+projw2
u2 and u3 = projw1

u3+projw2
u2+projw3

u3.

Thus, 

. u1 = 〈u1,w1〉w1,u2 = 〈u2,w1〉w1 + 〈u2,w2〉w2 and

u3 = 〈u3,w1〉w1 + 〈u3,w2〉w2 + 〈u3,w3〉w3.

In terms of matrix multiplication this means that 

. A = (
u1 u2 u3

) = (
w1 w2 w3

)
⎛

⎝
〈u1,w1〉 〈u2,w1〉 〈u3,w1〉

0 〈u2,w2〉 〈u3,w2〉
0 0 〈u3,w3〉

⎞

⎠ = QR,

where Q is the unitary matrix whose columns are the vectors .{w1,w2,w3} and R is 
an upper triangular matrix. In terms of our given vectors 

. A =
⎛

⎝
1 2 1
1 1 1
1 1 0

⎞

⎠ =
⎛

⎜
⎝

√
3
3

√
6
3 0√

3
3 −

√
6
6

√
2
2√

3
3 −

√
6
6 −

√
2
2

⎞

⎟
⎠

⎛

⎝
1.7321 2.3094 1.1547

0 0.8165 0.4082
0 0 0.7071

⎞

⎠ .

Thus, we have factored the matrix A whose columns are the vectors . {u1,u2,u3}
by viewing the Gram-Schmidt orthogonalization process as a matrix factorization 
problem. The matrix A can be perceived as an action of an upper triangular matrix 
on the orthonormal basis making up the columns of Q. 

Associativity of Matrix Multiplication Elementary algebra classes take care to 
point out that, in general, 

. AB /= BA,

for matrices A and . B. That is, matrix multiplication is not commutative. However, 
matrix multiplication is associative. That is, whenever the matrix product of three 
matrices .A,B, and C is defined,
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. (AB)C = A(BC).

This allows us to write the matrix product ABC as bracket-free. Note that products 
of appropriately sized column and row vectors is associative. For example, if . x =
(x1, x2, . . . , xn)

T , y = (y1, y2, . . . , ym)T and .z = (z1, z2, . . . , zm)T , then 

. (xy∗)z =

⎛

⎜
⎜⎜
⎝

x1y1 x1y2 . . . x1ym

x2y1 x2y2 . . . x2ym
...

...
. . .

...

xny1 xny2 . . . xnym

⎞

⎟
⎟⎟
⎠

⎛

⎜
⎜⎜
⎝

z1

z2
...

zm

⎞

⎟
⎟⎟
⎠

=
m∑

i=1

yizix = x(y∗z).

Multiplication of skew projection matrices .P,Q,R is also associative. Indeed, 
suppose 

. P = u1v∗
1, Q = u2v∗

2 and R = u3v∗
3.

Then 

. (PQ)R = (
u1v∗

1u2v
∗
2

)
u3v∗

3

= (
v∗
1u2

)
u1v∗

2u3v
∗
3

= (
v∗
1u2

) (
v∗
2u3

)
u1v∗

3

and 

. P(QR) = u1v∗
1

(
u2v∗

2u3v
∗
3

)

= (
v∗
2u3

)
u1v∗

1u2v
∗
3

= (
v∗
2u3

) (
v∗
1u2

)
u1v∗

3.

The key observation is the fact that .v∗
1u2, .v

∗
2u3 are scalar values and commute, and 

this leads to concluding . (PQ)R = P(QR).

Any matrix can be expressed as a sum of skew symmetric matrices (since we can 
view .A = AI , for example). Thus, if .A = ∑

Pi, B = ∑
Qj , and . C = ∑

Rk,

where the .Pi,Qj and Rk are all skew symmetric, then .A(BC) will be a sum of 
matrices of the form .Pi(QjRk) = (PiQj )Rk = PiQjRk . Matrix product . (AB)C

will be a sum of the same matrices and thus . A(BC) = (AB)C.

Kalman Filter The Kalman filter is an engineering idea. We will use their 
notation even though it is inconsistent with standard statistics notation. Imagine 
a measurement . μ1, an imprecise measurement for a certain quantity. This measure-
ment comes with a variance . σ 2

1 , Assume the distribution for the measurement is
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normal. A second measurement . μ2 is made for the same quantity. It is also an 
imprecise measurement, normally distributed with a variance . σ 2

2 . Based on these 
two measurements the best estimate for the quantity, in least squares sense, is given 
by 

. μ = σ 2
2 μ1 + σ 2

1 μ2

σ 2
1 + σ 2

2

.

This updated measurement comes with a variance 

. σ 2 = σ 2
1 σ 2

2

σ 2
1 + σ 2

2

.

We can view this updated measurement . μ as an update on the first measurement . μ1
as follows: 

. μ = μ1 + σ 2
1

σ 2
1 + σ 2

2

(μ2 − μ1) .

The updated variance for . μ is given by 

. σ 2 =
(

1 − σ 2
1

σ 2
1 + σ 2

2

)

σ 2
1 .

The value 

. K = σ 2
1

σ 2
1 + σ 2

2

is referred to as the Kalman gain. The above can be expressed in vector form 
as follows. Imagine a vector measurement . μ1 an imprecise measurement for a 
vector quantity. Instead of having a variance, this vector measurement comes with a 
covariance matrix . Σ1, assuming normal distribution. A second measurement . μ2 is 
made for the same vector quantity. Say this second measurement has a covariance 
matrix . Σ2, assuming normal distribution as well. Based on these two measurements 
the best vector estimate for the given vector quantity, in least squares sense, is the 
following update: 

. μ = μ1 + Σ1 (Σ1 + Σ2)
−1 (μ2 − μ1) .

The matrix 

.K = Σ1 (Σ1 + Σ2)
−1
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is referred to as the Kalman gain matrix. The updated covariance matrix is given by 

. Σ = (1 − K)Σ1.

Consider now an example. Suppose a player shoots free throws during a basketball 
game when fouled, two throws one after the other. The proportion of successes 
on the first and second throws respectively is given as a vector .μ1 = (0.6, 0.4)T , 
understanding the first throw was successful 60% of the time during the free throws 
and the second throw was successful 40% of the time. View this as a measurement 
of the player’s true free throw ability. We know this measurement has a covariance 
matrix 

. Σ1 =
(
0.0759 0.0126
0.0126 0.0285

)
.

There is a positive covariance between the player’s first and second throws during 
this game. The same player plays in the next game with their throw proportion 
success .μ2 = (0.5, 0.3)T . View this as another measurement of the player’s true 
free throw ability. Suppose we are given that this measurement has a covariance 
matrix 

. Σ2 =
(

0.0892 −0.0223
−0.0223 0.0457

)
.

The Kalman update yields 

. μ = μ1 + Σ1 (Σ1 + Σ2)
−1 (μ2 − μ1)

= (0.5295, 0.3503)T

and 

. Σ = (I − K)Σ1

=
(
I − Σ1 (Σ1 + Σ2)

−1
)

Σ1

=
(
0.0371 0.0000
0.0000 0.0159

)
.

In particular, the updated estimate for the first throw success is .52.95% and the 
second throw success is .35.03%.
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Exercises 

1. Let 

. A =
⎛

⎝
3 0 1

−1 −2 1
4 1 −3

⎞

⎠ .

Write A = QR where Q is unitary and R is upper triangular. 
2. The QR algorithm. Assume A is a symmetric matrix. Perform the QR decom-

position of A 

. A = A1 = Q1R1.

Set 

. A2 = R1Q1.

Next, perform the QR decomposition of A2 

. A2 = Q2R2

and (by reverse multiplication) define 

. A3 = R2Q2.

In general we have 

. Ai−1 = Qi−1Ri−1 and Ai = Ri−1Qi−1.

The matrices {Ai} converge, as i → ∞, to a diagonal matrix whose entries are the 
eigenvalues of A. The corresponding eigenvectors can be obtained as the columns 
of the matrix 

. Q = lim
i→∞ Q1 · · · Qi.

The key observation in the proof of the QR algorithm is the following. Let n be a 
natural number and consider the nth power of A. Show that 

. An = Q1 · · ·QnRn · · · R1.

Consider an example
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. A =
⎛

⎝
2 1 5
1 3 4
5 4 1

⎞

⎠ .

Upon 10 iterations of the QR algorithm 

> for n=1:10 [Q,R]=qr(A); A=R*Q; end; 

we obtain 

. A10 =
⎛

⎝
8.7361 0.0125 0.0000
0.0125 −4.3628 −0.0022
0.0000 −0.0022 1.6267

⎞

⎠ .

The eigenvalues of A are approximated by {8.7361,−4.3628, 1.6267}. Verify  
this claim. For more details on the QR algorithm we refer the reader to [1]. 

3. The Schur decomposition. Let  A be a n × n complex valued matrix. There 
exists at least one eigenvalue λ for A with a corresponding eigenvector v. Show 
that there exists a unitary matrix Q so that 

. AQ = QU

where U is an upper triangular matrix, all entries below the main diagonal are 
zero. Hint: Decompose 

. Cn = span{v} + v⊥.

4. Consider the matrix equation Ax = b where b = (3, −2, 1)T . Write A = LU 
where 

. A =
⎛

⎝
1 2 −1
2 1 −1
3 1 2

⎞

⎠

=
⎛

⎝
1 0 0
2 1 0
3 5

3 1

⎞

⎠

⎛

⎝
1 2 −1
0 −3 1
0 0 10

3

⎞

⎠ .

We are solving the matrix equation Ax = LUx = b. Set y = Ux and solve the 
matrix equation Ly = b by back substitution to obtain y = (3,−8, 16 3 )

T . Then 
solve the matrix equation Ux = y, again by back substitution, to obtain x = 
(− 9 

5 , 
16 
5 , 

8 
5 )

T . Observe the vector x is the solution to the original system Ax = b. 
We say that we have solved the system Ax = b using the LU factorization.
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5. Sherman-Morrison formula. Let A be a n × n invertible matrix and let u and v 
be vectors in Cn. Then A + uv∗ is invertible if and only if v∗A−1u /= −1. Under 
this condition we have 

. 
(
A + uv∗)−1 = A−1 − 1

1 + v∗A−1u

(
A−1uv∗A−1

)
.

Note 1 + v∗A−1u is a scalar value. This can be seen as follows: 

. 

(
A−1 − 1

1 + v∗A−1u

(
A−1uv∗A−1

))
(
A + uv∗)

= I + A−1uv∗ − 1

1 + v∗A−1u

(
A−1uv∗ + A−1uv∗A−1uv∗)

= I + A−1uv∗ − 1

1 + v∗A−1u

(
A−1u

(
1 + v∗A−1u

)
v∗)

= I + A−1uv∗ − 1

1 + v∗A−1u

(
1 + v∗A−1u

) (
A−1uv∗)

= I + A−1uv∗ − A−1uv∗

= I.

a. Let u and v be vectors in Cn. Show that if u · v /= −1, then 

. 
(
I + uv∗)−1 = I − 1

1 + u · vuv
∗

b. Let u = (1,−2, 1, 3)T and v = (1,−1, 4, 2)T . Verify  

.
(
I + uv∗)−1 =

⎛

⎜
⎜
⎝

2 −1 4 2
−2 3 −8 −4
1 −1 5 2
3 −3 12 7

⎞

⎟
⎟
⎠

−1

=

⎛

⎜
⎜
⎝

0.9286 0.0714 −0.2857 −0.1429
0.1429 0.8571 0.5714 0.2857

−0.0714 0.0714 0.7143 −0.1429
−0.2143 0.2143 −0.8571 0.5714

⎞

⎟
⎟
⎠

= I − 1

14
uv∗

= I − 1

14

⎛

⎜
⎜
⎝

1 −1 4 2
−2 2 −8 −4
1 −1 4 2
3 −3 12 6

⎞

⎟
⎟
⎠ .
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6. Householder reflection. Let v be a unit vector in Rn. Define a linear transforma-
tion by 

. R = I − 2vv∗

where I is the n × n identity matrix. This transformation is referred to as the 
Householder transformation. Let 

. v⊥ = span {u | 〈u, v〉 = 0} .

a. Let R be a Householder transformation as above. Show that 

. Rv = −v and Ru = u for u ∈ v⊥.

b. Justify the claim that the Householder transformation is in fact Householder 
reflection. In particular, this linear map reflects any vector x ∈ Rn through the 
hyperplane v⊥. 

c. Verify 

. R−1 = R = R∗.

In particular, the linear map R is a unitary transformation. 
d. Show that 

. R =

⎛

⎜
⎜
⎝

1
3 − 2

3 − 2
3 − 2

3
− 2

3
1
3 − 2

3 − 2
3

− 2
3 − 2

3
1
3 − 2

3
− 2

3 − 2
3 − 2

3
1
3

⎞

⎟
⎟
⎠

is a Householder reflection through the plane x + y + z = 0. 
7. Hessenberg decomposition. Consider a symmetric matrix 

. A =

⎛

⎜
⎜
⎝

1 −2 3 4
−2 −1 −2 1
3 −2 1 1
4 1 1 2

⎞

⎟
⎟
⎠ .

Extract the vector u = (−2, 3, 4)T and set v = ||u||(1, 0, 0)T = (5.3852, 0, 0)T . 
Define a unital vector 

. n = 1

||v − u|| (v − u) .

Consider the corresponding Householder reflection discussed in the previous 
exercise. Let
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. R = I − 2nn∗

=
⎛

⎝
−0.3714 0.5571 0.7428
0.5571 0.7737 −0.3017
0.7428 −0.3017 0.5977

⎞

⎠ .

This transformation reflects u into v through the hyperplane (passing through the 
origin) perpendicular to n. Now  set  

. R1 =
(
1 0
0 R

)
=

⎛

⎜⎜
⎝

1 0 0 0
0 −0.3714 0.5571 0.7428
0 0.5571 0.7737 −0.3017
0 0.7428 −0.3017 0.5977

⎞

⎟⎟
⎠ .

Observing R∗
1 = R1 = R−1 

1 we obtain 

. B = R1AR1 =

⎛

⎜⎜
⎝

1 5.3852 0 0
5.3852 2.3793 1.0761 0.3826

0 1.0761 −2.0568 −1.1588
0 0.3826 −1.1588 1.6775

⎞

⎟⎟
⎠ .

Show the following is true in general regardless of the choice of the symmetric 
matrix A. The entries in the first row (except first two) must all be zero as well as 
the entries in the first column (except the first two) must all be zero. 

Without introducing new notation for the vectors we now pivot about the 
location (2, 2) in the matrix B. Extract the (new) vector u = (1.0761, 0.3826)T 

and set (new) v = ||u||(1, 0)T = (1.1421, 0)T . Define 

. n = 1

||v − u|| (v − u) .

The corresponding Householder reflection is defined as 

. R = I − 2nn∗

=
(
0.9422 0.3350
0.3350 −0.9422

)
.

This transformation reflects u into v through the hyperplane (passing through the 
origin) perpendicular to n. We set  

.R2 =
⎛

⎝
1 0 0
0 1 0
0 0 R

⎞

⎠ =

⎛

⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 0.9422 0.3350
0 0 0.3350 −0.9422

⎞

⎟⎟
⎠ .
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Observe 

. C = R2BR2

= R2R1AR1R2

= (R1R2)
∗ A (R1R2)

=

⎛

⎜⎜
⎝

1 5.3852 0 0
5.3852 2.3793 1.1421 0

0 1.1421 −2.3693 −0.2798
0 0 −0.2798 1.9900

⎞

⎟⎟
⎠ .

The matrix C is a triagonal matrix, obtained from A by an orthonormal change of 
basis. In fact any symmetric matrix can be reduced to the tridiagonal form using 
the Householder reflections. A tridiagonal matrix is a matrix whose entries are 
all zero except possibly along the main diagonal as well as the diagonals above 
and below the main diagonal. 

Show the following. For a general matrix A, not necessarily symmetric, the 
above technique reduces A, by an orthonormal change of basis, into an upper 
Hessenberg form, a matrix that must have all zeros below the diagonal that is just 
below the main diagonal. 

8. Consider an idealized solar system where the Earth rotates around the Sun in 
a circular motion. The global Sun coordinates, an orthonormal set I, J, K, are  
such that the Earth moves counterclockwise in an orbital plane spanned by I and 
J. Consider the Earth with local coordinates i, j, k. The initial position of the 
Earth in the orbit is such that the Earth coordinate system i, j,k is identical to 
I, J,K. Next, the Earth is tilted by an angle φ towards the Sun counterclockwise 
in the plane spanned by I and K. After this, the Earth is rotated counterclockwise 
in the plane spanned by I and J by an angle τ . Furthermore, the Earth is 
rotating counterclockwise in the plane spanned by its local coordinates i and j, 
perpendicular to the axis k, angle of rotation denoted by θ . Consider a location 
on the Earth given by x = (x, y, z)T = xi + yj + zk. Show the position of the 
Sun with respect to the local Earth coordinates i, j,k given by 

. p =

⎛

⎜
⎜
⎝

cos(τ ) − sin(τ ) 0

sin(τ ) cos(τ ) 0

0 0 1

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

cos(φ) 0 − sin(φ)

0 1 0

sin(φ) 0 cos(φ)

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

x

y

z

⎞

⎟
⎟
⎠ .

In particular, the vector p is a vector starting at center of the Earth, O, and ending 
a point on Earth that is co-linear with the Sun and the origin O. The sunrise and 
the sunset would be determined by the condition 〈p, x〉 = 0. 

9. Nonnegative matrix factorization. Let m, n, and p be given natural numbers, 
p <  min{m, n}. Consider a m × n matrix V with all of its entries nonnegative. 
Algorithms are developed to approximate V ≈ WH , in the Frobenious norm 
(square root of the sum of all the matrix entries squared):
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. min||V − WH ||F
over all m × p matrices W with nonnegative entries and p × n matrices H with 
nonnegative entries while sometimes imposing a further condition HHT = Ip. 
Under certain restrictive conditions we have V = WH . Let  

. V =

⎛

⎜⎜
⎝

1.0000 0.7071 0.7071
1.0000 1.4142 1.4142
2.0000 2.8284 2.8284

.

⎞

⎟⎟
⎠

a. Show that 

. V = WH

=
⎛

⎝
1 1
2 1
4 2

⎞

⎠
(
0 0.7071 0.7071
1 0 0

)

with the conditions for W and H satisfied. 
b. Define 

. P = HT H =
⎛

⎝
1.0000 0 0

0 0.5000 0.5000
0 0.5000 0.5000

⎞

⎠

and show that V = V P . 

Reference 

1. Trefethen, N.L., Bau III, D.: Numerical Linear Algebra. Society for Industrial and Applied 
Mathematics, Philadelphia (1997)



4Rotations and Quaternions 

In two-dimensional space, we can model rotations about the origin using complex 
numbers or matrix multiplication. In this chapter we will consider rotations in three-
dimensional space. First, recall rotations in two-dimensional space using complex 
numbers. Suppose . z1 = r1(cos θ1 + i sin θ1) and z2 = r2(cos θ2 + i sin θ2) are two 
complex numbers written in polar form where .ri ≥ 0 is the modulus of . zi and . θi is 
the (smaller) angle between . zi and the positive imaginary axis for .i = 1 and 2. We 
remind the reader that their product is then 

. z1z2 = r1r2 (cos(θ1 + θ2) + i sin(θ1 + θ2)) .

So if . z1 has modulus one, then its effect on . z2 is to rotate . z2 counterclockwise by an 
angle of . θ1 about the origin in the complex plane. 

To implement rotations in three dimensions, it is convenient to introduce a new 
number system, a generalization of complex numbers. Before we do so, let us 
consider rotations as matrix transformations. 

Rotation Matrices The .2 × 2 matrix 

. 

(
cos(θ) − sin(θ)

sin(θ) cos(θ)

)

represents rotation by the angle . θ counterclockwise about the origin in . R2. In three 
dimensions a rotation involves both the angle of rotation and the axis of rotation. 
In . R3, an important class of matrices are the rotation matrices by an angle about 
a coordinate axis in . R3. These matrices are unitary and a generalization of two-
dimensional matrix rotations. (A square matrix A is unitary if . A∗ = A−1.)

Euler Angles Consider rotation matrices by an angle . θ counterclockwise about the 
x-axis, y-axis, and z-axis, respectively. These matrices are defined as follows. 
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1. Roll. Rotation about the x-axis by the angle . θ counterclockwise is a roll by angle 
. θ. It is represented by a matrix 

. Rx =
⎛
⎝1 0 0
0 cos(θ) − sin(θ)

0 sin(θ) cos(θ)

⎞
⎠ .

2. Pitch. Rotation about the y-axis by the angle . θ counterclockwise is a pitch by 
angle . θ. It is represented by a matrix 

. Ry =
⎛
⎝ cos(θ) 0 − sin(θ)

0 1 0
sin(θ) 0 cos(θ)

⎞
⎠ .

3. Yaw. Rotation about the z-axis by the angle . θ counterclockwise is a yaw by angle 
. θ. It is represented by a matrix 

. Rz =
⎛
⎝ cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0
0 0 1

⎞
⎠ .

Roll, pitch, and yaw are terms borrowed from aviation. The three rotation types can 
be combined to place any three-dimensional object (like a plane) in any orientation. 
We shall now consider quaternions and use them to model rotations. We will also 
use them to find a matrix transformation for a rotation about the axis defined by any 
unit vector . u by the angle . θ counterclockwise. 

Quaternions We can identify complex numbers with vectors in . R2 and view 
multiplying complex numbers as defining a multiplication on vectors in . R2. It gives 
us a way to perform rotations. We can attempt to define a multiplication on the 
vectors in . R3 for a similar purpose. However, we explain intuitively below that 
vectors in three dimensions do not form an algebra for vector multiplication, and 
therefore, the proper setting for algebraization of rotations in three dimensions is in 
fact in four dimensions, where the algebra of quaternions is considered. 

Recall that in . R3 the vector .u × v is the cross product 

. u × v = (u2v3 − u3v2, v1u3 − u1v3, u1v2 − u2v1)
T .

The cross product is a vector in . R3 that is orthogonal to both . u and . v. The norm of 
the cross product is given by 

.||u × v|| = ||u||||v|| sin(θ)
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where . θ is the (smaller) angle between the vectors . u and . v. Note .u × v = −v × u. 
Consider vectors . u and .v ∈ R3 of unit length. If all vectors of unit length were 

orthogonal, then we could define a vector multiplication as 

. uv = u × v.

The multiplication would make a product of unit vectors a vector of unit length. 
However, for non-orthogonal vectors this attempted multiplication does not yield 

a vector of unit length. In fact an extreme case is .u × u = 0. The key observation 
here is that, while the norm of the cross product is reduced, the magnitude of the dot 
product in absolute value rises. In fact, for unit vectors in . R3 we have the following 
identity: 

. (u × v) · (u × v) + (u · v)2 = 1.

To keep track of both the cross product and the dot product of two vectors in . R3 (and 
thus ensure the product of unit vectors is always a unit vector), we have to extend 
the multiplication to . R4. In particular, we define 

. uv = (−u · v,u × v) .

For convenience in calculations, we shall denote . uv by .−u · v + u × v. Like the 
cross product, this multiplication is not commutative but it does have the standard 
properties of being associative, commuting with scalars and distributing through 
addition and subtraction. 

Observe that if . u and . v are unit vectors in . R3, then . uv as a unit vector in . R4. Note  
. uu = −1 + 0 = vv.

Let .a1, a2 be real numbers and . u1 and . u2 be two vectors in . R3. We define 
quaternions . q1 and . q2 as 

. q1 = a1 + u1 and q2 = a2 + u2.

The set of all quaternions, . H, form an algebra. Addition and multiplication are 
defined, respectively, by 

. q1 + q2 = (a1 + a2) + (u1 + u2)

and 

. q1q2 = (a1a2 − u1 · u2) + (a1u2 + a2u1 + u1 × u2).

Note that if . a1 and . a2 are both zero, then the multiplication reverts to the vector 
multiplication we defined above.
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If .q = a + u is a quaternion, then its conjugate is the quaternion . q = a − u.

We refer to a as the real part and . u as the imaginary part. The magnitude of the 
quaternion q is . 

√
qq.

If . q1 and . q2 are quaternions, then the conjugation of . q1 by . q2 is the quaternion 
.q2q1q2. We shall use the conjugation of quaternions to see how to describe rotations 
in .R3. The vector triple product identity below is important and used in our 
calculations repeatedly. If . a, .b and c ∈ R3, then 

. c × (a × b) = (c · b)a − (c · a)b.

Assume, for now, that . u and .v ∈ R3 are orthogonal and . u is a unit vector. Consider 
conjugation by a purely imaginary quaternion .q = cos

(
π
2

) + sin
(

π
2

)
u = u. We  

have 

. qvq = uvu

= (−u · v + u × v)(−u)

= −(u × v)u

= −(−(u × v) · u + (u × v) × u)

= −(u × v) × u

= u × (u × v)

= (u · v)u − (u · u)v

= −v.

We drop the orthogonal assumption for . u and . v and obtain 

. qvq = uvu

= (−u · v + u × v)(−u)

= (u · v)u − (u × v)u

= (u · v)u − (−(u × v) · u + (u × v) × u)

= (u · v)u − (u × v) × u

= (u · v)u + u × (u × v)

= (u · v)u + ((u · v)u − (u · u)v

= 2(u · v)u − v.

This is actually a rotation of . v by .180◦ about the . u axis. To see this write 

.v = (v · u)u + (v − (v · u)u) = proju(v) + (v − proju(v)).
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Rotate . v by .180◦ counterclockwise about the . u axis. Then .proju(v) is untouched 
while the component of . v perpendicular to . u is essentially reflected in . u. We get 

. (v · u)u − (v − (v · u)u) = 2(v · u)u − v.

In general, rotation of a non-unit vector . v by an angle . θ counterclockwise along the 
axis defined by the unit vector . u is given by 

. qvq

where 

. q = cos

(
θ

2

)
+ sin

(
θ

2

)
u and q = cos

(
θ

2

)
− sin

(
θ

2

)
u.

Note that q is a unit quaternion. Write 

. v = (u · v)u + (v − (u · v)u) = proju(v) + (
v − proju(v)

) = v|| + v⊥

where . v⊥ is the component of . v perpendicular to . u and . v|| is the component of . v
parallel to . u.

We now calculate . qvq. It is a lengthy calculation, referred to as the Euler-
Rodrigues formula. We start by using the definition of quaternion multiplication, 
the definition of vector multiplication of . R4, and the properties of these operations: 

.qvq =
(
cos

(
θ

2

)
+ sin

(
θ

2

)
u
)
v

(
cos

(
θ

2

)
− sin

(
θ

2

)
u
)

= cos2
(

θ

2

)
v + (uv − vu) sin

(
θ

2

)
cos

(
θ

2

)
− uvu sin2

((
θ

2

))

= cos2
(

θ

2

)
v + 2(u × v) sin

(
θ

2

)
cos

(
θ

2

)
− (u × v − (u · v))u sin2

(
θ

2

)

= cos2
(

θ

2

)
v + 2(u × v) sin

(
θ

2

)
cos

(
θ

2

)

−((u × v)u − (u · v)u) sin2
(

θ

2

)

= cos2
(

θ

2

)
v + 2(u × v) sin

(
θ

2

)
cos

(
θ

2

)

−(((u × v) × u − (u × v) · u) − (u · v)u) sin2
(

θ

2

)
.
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We now use the vector triple product identity and simplify some more to get 

. qvq = cos2
(

θ

2

)
v + 2(u × v) sin

(
θ

2

)
cos

(
θ

2

)

−((v − (u · v)u) − (u · v)u) sin2
(

θ

2

)

= cos2
(

θ

2

)
v + 2(u × v) sin

(
θ

2

)
cos

(
θ

2

)
− (v − 2(u · v)u) sin2

(
θ

2

)

= cos2
(

θ

2

)
v + 2(u × v) sin

(
θ

2

)
cos

(
θ

2

)
− v sin2

(
θ

2

)

+2(u · v)u sin2
(

θ

2

)
.

We now rearrange it to use the trigonometry double identity formulae: 

. qvq =
(
cos2

(
θ

2

)
− sin2

(
θ

2

))
v + (u × v)

(
2 sin

(
θ

2

)
cos

(
θ

2

))

+(u • v)u
(
2 sin2

(
θ

2

))

= cos(θ)v + (u × v) sin(θ) + (u · v)u (1 − cos(θ))

= cos(θ)v + (u × v) sin(θ) + (u · v)u − cos(θ)(u · v)u.

Finally, we rearrange to put it in terms of the projection onto the unit vector . u: 

. qvq = (v − (u · v)u) cos(θ) + (u × v) sin(θ) + (u · v)u
= v⊥ cos θ + (u × v) sin(θ) + v||.

In this last form .qvq corresponds to a rotation of the vector . v about the axis defined 
by the unit vector . u by the angle . θ counterclockwise. 

Consider now the matrix R that corresponds to a rotation by an angle . θ
counterclockwise about an axis defined by the unital vector . u in . R3. Let  . q =
cos

(
θ
2

) + sin
(

θ
2

)
u. Let . i, j, and . k be the standard basis for . R3. We form the matrix 

R whose columns are . qiq, . qjq, and .qkq. Thus, 

. R =⎛
⎝ cos θ + u21(1 − cos(θ)) u1u2(1 − cos(θ)) − u3 sin(θ) u1u3(1 − cos(θ)) + u2 sin(θ)

u2u1(1 − cos(θ)) + u3 sin(θ) cos(θ) + u22(1 − cos(θ)) u2u3(1 − cos(θ)) − u1 sin(θ)

u3u1(1 − cos(θ)) − u2 sin(θ) u3u2(1 − cos(θ)) + u1 sin(θ) cos(θ) + u23(1 − cos(θ))

⎞
⎠

where .u = (u1, u2, u3)
T .
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We revisit the Euler angles. Suppose we have a sequence of roll, pitch, and yaw 
by angles, . θ , . φ, and . ψ , respectively. This composition of rotations about different 
axes by different angles is a rotation by some angle . α about some unit vector . u. We  
find . α and . u below. Again let . i, j, and . k be the standard basis for . R3.

1. Roll along x-axis by the angle . θ counterclockwise is represented by a quaternion 

. qx = cos

(
θ

2

)
+ sin

(
θ

2

)
i.

2. Pitch along y-axis by the angle . φ counterclockwise is represented by a quaternion 

. qy = cos

(
φ

2

)
+ sin

(
φ

2

)
j.

3. Yaw along z-axis by the angle . ψ counterclockwise is represented by a quaternion 

. qz = cos

(
ψ

2

)
+ sin

(
ψ

2

)
k.

The resulting rotation is by an angle . α about an axis defined by the unital vector . u. 
To find the angle . α and the unit vector . u, we perform the sequences of rotations on 
a vector . v: 

. qz

(
qy

(
qxv qx

)
qy

)
qz = quv qu

with .qu = qzqyqx and . u is the imaginary part of . qu. The angle . α is extracted from 
the real part of . qu; do watch for two solutions. 

For example, consider a roll by .180◦ counterclockwise followed by pitch of . 90◦
counterclockwise and then yaw by . 90◦ clockwise. The resulting rotation parameters 
are obtained as follows: 

.qu =
(√

2

2
−

√
2

2
k

)(√
2

2
+

√
2

2
j

)
i

=
(
1

2
+ 1

2
j − 1

2
k + 1

2
i
)
i.

= 1

2
i − 1

2
k − 1

2
j − 1

2

= −1

2
+ 1

2
(i − j − k)

= −1

2
+

√
3

2

(√
3

3
i −

√
3

3
j −

√
3

3
k

)
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= cos
(α 
2

)
+ sin

(α 
2

)
u. 

Thus, .α = 240◦ and .u = (
√
3
3 ,−

√
3
3 ,−

√
3
3 )T is a solution. However, there is a 

second solution! Namely, 

. qu = −1

2
−

√
3

2

(
−

√
3

3
e1 +

√
3

3
e2 +

√
3

3
e3

)

with angle .α = −240◦ and .u = (−
√
3
3 ,

√
3
3 ,

√
3
3 )T . Observe the right-handed system 

as the vector . u switches direction. 
For more information on this subject we refer the reader to [2]. 

Octonions A cross product between two vectors can be defined also in . R7. In fact, 
it can be shown that the cross product only exists in three and seven dimensions. 
Consider a row vector .u ∈ R7 and split it into a group of three . a, singleton . λ, and 
another group of three . b. In particular 

. u = (a, λ,b).

The cross product between two vectors .u, v ∈ R7 can be defined as 

. u × v = (a1, λ1,b1) × (a2, λ2,b2)

which equals to 

. (λ1b2 − λ2b1 + a1 × a2 − b1 × b2, a2 · b1 − a1 · b2,
λ2a1 − λ1a2 − a1 × b2 − b1 × a2)

The above cross product gives rise to a multiplication in . R8 resulting in normed 
division algebra called the octonions. Let .λ, β ∈ R and .u, v ∈ R7. We define two 
octonions: 

. o1 = (λ,u) and o2 = (β, v).

The octonion product is defined as 

. o1o2 = (λβ − u · v, λv + βu + u × v) .

Unlike quaternions, octonion multiplication is not associative. In general 

. (o1o2) o3 /= o1 (o2o3) .
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Suppose .λ ∈ R and .u ∈ R7 are given. Consider the corresponding octonion . o =
(λ,u). The conjugate of . o is given by .o = (λ,−u). We have,  .o−1 denoting the 
multiplicative inverse of . o, 

. oo = oo = ||o||2 and o−1 = 1

||o||2 o.

Let . θ be a real number and . u be a unit vector in . R7. We define a unit octonion and 
its conjugate: 

. o = (cos(θ), sin(θ)u) ; o = (cos(θ),− sin(θ)u)

noting .oo = 1. Any unit octonion can be realized in this way. Let .u, v ∈ R7. 
For convenience of notation, the product . uv stands for the octonion product 
.(0,u)(0, v) = (−u · v,u × v). We note some key properties that follow from above: 

. u × v = −v × u

u × v = 1

2
(uv − vu)

||u × v|| = ||u||||v|| sin(θ)

where . θ is the (smaller) angle between . u and . v. 

To illustrate consider .u = (1,−2, 3, 4, 2,−3, 1) and . v = (−1, 4, 2, 1,−1, 5, 2)
.∈ R7. The cross product between . u and . v is given by 

. u × v = (−11, 23, 2,−7, 34,−8,−13).

We verify .||u × v|| = ||u||||v|| sin(θ). Indeed, 

. ||u × v|| = 45.74 = (6.63)(7.21)(0.96) = ||u||||v|| sin(θ),

where .θ = 107.02◦ is the (smaller) angle between the vectors . u and . v. We define 
two octonions .o1, o2 ∈ R8, as follows: 

. o1 = (3,u) = (3, 1,−2, 3, 4, 2,−3, 1) and

o2 = (−2, v) = (−2,−1, 4, 2, 1,−1, 5, 2).

The product of these two octonions is equal to 

. o1o2 = (8,−16, 39, 2,−12, 27, 13,−9).

For more information on octonions we refer the reader to [1].
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Exercises 

1. Consider an axis in . R3 defined by the unital vector . u = (0.2673,−0.5345,
.0.8018)T . 
a. Write down the expression for rotation about this axis by an angle . θ = 35◦

counterclockwise using quaternions. 
b. Write down the rotation matrix for the above action. 

2. Implement a roll by . 25◦, pitch by . 56◦, and yaw by . 18◦ all counterclockwise. Find 
the corresponding rotation angle . α and the unital . u defining the axis of rotation. 

3. Let 

. q = (q0, q1, q2, q3)
T =

(
cos

(
θ

2

)
, sin

(
θ

2

)
u1, sin

(
θ

2

)
u2, sin

(
θ

2

)
u3

)

be a unital quaternion with .u21 + u22 + u23 = 1. Let  .x = (x0, x1, x2, x3)
T be any 

quaternion. 
a. Show that 

. qx =

⎛
⎜⎜⎝

q0 −q1 −q2 −q3

q1 q0 −q3 q2

q2 q3 q0 −q1

q3 −q2 q1 q0

⎞
⎟⎟⎠ x

and 

. xq =

⎛
⎜⎜⎝

q0 −q1 −q2 −q3

q1 q0 q3 −q2

q2 −q3 q0 q1

q3 q2 −q1 q0

⎞
⎟⎟⎠ x.

b. Show that 

.qxq =

⎛
⎜⎜⎝

q0 q1 q2 q3

−q1 q0 −q3 q2

−q2 q3 q0 −q1

−q3 −q2 q1 q0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

q0 −q1 −q2 −q3

q1 q0 −q3 q2

q2 q3 q0 −q1

q3 −q2 q1 q0

⎞
⎟⎟⎠ x

=

⎛
⎜⎜⎝
1 0 0 0
0 q2

0 + q2
1 − q2

2 − q2
3 2(q1q2 − q0q3) 2(q1q3 + q0q2)

0 2(q1q2 + q0q3) q2
0 − q2

1 + q2
2 − q2

3 2(q2q3 − q0q1)

0 2(q1q3 − q0q2) 2(q0q1 + q2q3) q2
0 − q2

1 − q2
2 + q2

3

⎞
⎟⎟⎠ x

=
(
1 0
0 R

)
x
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where 

. R =⎛
⎝ cos θ + u21(1 − cos(θ)) u1u2(1 − cos(θ)) − u3 sin(θ) u1u3(1− cos(θ))+u2 sin(θ)

u2u1(1 − cos(θ)) + u3 sin(θ) cos(θ) + u22(1 − cos(θ)) u2u3(1 − cos(θ)) − u1 sin(θ)

u3u1(1 − cos(θ)) − u2 sin(θ) u3u2(1 − cos(θ)) + u1 sin(θ) cos(θ) + u23(1 − cos(θ))

⎞
⎠ .

In particular, .R(x1, x2, x3)
T corresponds to a rotation of the vector . (x1, x2, x3)

T

about the axis defined by the unital vector .u = (u1, u2, u3)
T by an angle . θ

counterclockwise. 
4. Consider two unit vectors .u, v ∈ R7. 

a. Show the Malcev identity: 

. u × (u × v) = −v + (u · v)u.

b. Use the Malcev identity to show 

. (uv)u = u (vu)

= v − 2(u · v)u.

c. Let . θ be an angle and define a unit octonion .o = (
cos

(
θ
2

)
, sin

(
θ
2

)
u
)
. 

i. Show that 

. (ov) o = o (vo)

understanding . ov as octonion product .o(0, v). 
ii. Show 

. ovo = (0, cos(θ) (v − (u · v) u) + sin(θ) (u × v) + (u · v)u) .

iii. Euler-Rodrigues formula for octonions Show that the octonion . ovo
represents the rotation of the vector . v about the axis determined by the 
vector . u by an angle . θ counterclockwise. The rotation is done in the plane 
spanned by . v⊥ and .u × v where .v⊥ = v − (u · v)u is the vector part of . v
perpendicular to . u. 

iv. Choose two arbitrary unit vectors .u, v ∈ R7. Verify the above result. 
5. Let A be a .n × n matrix with real entries. 

a. Show that the matrix A can be uniquely written as .A = G + H , where G 
is a .n × n real symmetric matrix, .GT = G, and H is a .n × n real skew 
symmetric matrix, .HT = −H . Show that, in particular, .G = 1

2

(
A + AT

)
and 

.H = 1
2

(
A − AT

)
. 

b. Suppose .n = 3 show that 

.H = Hω
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= 

⎛ 

⎝ 
0 −ω3 ω2 

ω3 0 −ω1 

−ω2 ω1 0 

⎞ 

⎠ 

for some vector .ω = (ω1, ω2, ω3)
T ∈ R3. 

c. Let .x ∈ R3 be arbitrary. Show that 

. Hωx =
⎛
⎝ 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎞
⎠ x

= ω × x

where .ω × x denotes the cross product between the vectors . ω and . x. 
d. Let .ω, ζ ∈ R3. Show that 

. Hω×ζ = HωHζ − Hζ Hω.

e. Let 

. A =
⎛
⎝ 1 2 0

−3 2 −1
1 −2 −1

⎞
⎠ .

Show that 

. Ax = (G + Hω) x

=
⎛
⎝ 1 − 1

2
1
2

− 1
2 2 − 3

2
1
2 − 3

2 −1

⎞
⎠ x +

⎛
⎝ 0 5

2 − 1
2

− 5
2 0 1

2
1
2 − 1

2 0

⎞
⎠ x

=
⎛
⎝ 1 − 1

2
1
2

− 1
2 2 − 3

2
1
2 − 3

2 −1

⎞
⎠ x +

(
−1

2
,−1

2
,−5

2

)T

× x.

6. Let 

. (a1, λ1,b1)T and (a2, λ2,b2)T

be two vectors in . R7 where .a1,b1, a2,b2 ∈ R3 and .λ1, λ2 ∈ R. A cross product 
.(a1, λ1,b1) × (a2, λ2,b2) can be defined as 

. (λ1b2 − λ2b1 + a1 × a2 − b1 × b2, a2 · b1 − a1 · b2,
λ2a1 − λ1a2 − a1 × b2 − b1 × a2) .
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a. Show that for a given .ω = (a, λ,b)T ∈ R7 and arbitrary .x ∈ R7 we have 

. ω × x = Aωx

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −a3 a2 −b1 λ b3 −b2

a3 0 −a1 −b2 −b3 λ b1

−a2 a1 0 −b3 b2 −b1 λ

b1 b2 b3 0 −a1 −a2 −a3

−λ b3 −b2 a1 0 a3 −a2

−b3 −λ b1 a2 −a3 0 a1

b2 −b1 −λ a3 a2 −a1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
x

where 

. a = (a1, a2, a3)
T ; b = (b1, b2, b3)

T .

b. Show that .Aωω = 0 verifying .ω × ω = 0. 
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5Haar Wavelets 

An orthonormal basis provides a convenient way to decompose data into layers. 
The projection methods to do so are straightforward and numerically stable. An 
important instance of an orthonormal basis is the Haar basis. The Haar basis gives 
rise to the Haar transform. In this chapter we shall define a new product for matrices 
and use it to define Haar matrices and Haar transformations. We also go through a 
simple example. The example hints at the potential of the Haar transform to coarsen 
data. The Haar transform will be needed in later chapters. We start by defining a 
new product on vectors and on matrices. In this section we will work only with real 
valued vectors and matrices but the concepts generalize to complex valued vectors 
and matrices, replacing transpose with the Hermitian adjoint. 

Kronecker Product First, we consider two column vectors. Suppose .x ∈ Rm and 
.y ∈ Rn. The tensor product (Kronecker product) of the two vectors . x and . y is the 
.mn × 1 vector: 

. x ⊗ y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1y1
...

x1yn

...

xmy1
...

xmyn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Next, we consider the Kronecker product of a column vector with a row vector. 
Suppose vector .u ∈ Rm and vector .v ∈ Rn. So . vT is a .1 × n row vector. The tensor 
product of . u and . vT is the .m × n matrix: 
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. u ⊗ vT = uvT =

⎛
⎜⎜⎜⎝

u1v1 u1v2 · · · u1vn

u2v1 u2v2 · · · u2vn

...
...

. . .
...

umv1 umv2 · · · umvn

⎞
⎟⎟⎟⎠ .

Thus, .u ⊗ vT is the skew projection discussed in Chaps. 2 and 3. 

Finally, we shall consider the tensor product of two matrices. Suppose we have 
an .m×n matrix .A = [aij ] and .p× r matrix .B = [bij ]. Then the Kronecker (tensor) 
product of the matrices A and B is an .mp × nr matrix: 

. A ⊗ B =

⎛
⎜⎜⎜⎝

a11B a12B · · · a1nB

a21B a22B · · · a2nB
...

...
. . .

...

am1B am2B · · · amnB

⎞
⎟⎟⎟⎠ .

For example, let 

. A =
(
1 2
3 −1

)
and B =

(−1 2 4
2 −1 1

)
.

Then the .4 × 6 matrix .A ⊗ B is 

. A ⊗ B =
(
1B 2B
3B −1B

)

=

⎛
⎜⎜⎝

−1 2 4 −2 4 8
2 −1 1 4 −2 2

−3 6 12 1 −2 −4
6 −3 3 −2 1 −1

⎞
⎟⎟⎠ .

%Kronecker product 
>> A=[1 2;3 -1] ; B=[-1 2 4;2 -1 1]; 
>> kron(A,B); 

Now that we have defined the Kronecker product of matrices, we shall note some of 
its properties. Let A be an .m×n matrix and B be a .p × r matrix. Let vector . x ∈ Rn

and let vector .y ∈ Rr . Then .A ⊗ B is an .mp × nr matrix that can act on the . nr × 1
vector .x ⊗ y to obtain an .mp × 1 vector. The following property holds: 

. (A ⊗ B) (x ⊗ y) = Ax ⊗ By.

We will illustrate a special case for notational simplicity. Let A be a .2 × 2 matrix, 
so that both . x and . Ax must be a .2 × 1 vectors. Let B be a .p × r matrix; then . By is
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a .p × 1 vector. We have .x ⊗ y is a .2r × 1 vector and .(A ⊗ B) (x ⊗ y) is a . 2p × 1
vector. More specifically, 

. (A ⊗ B) (x ⊗ y) =
(

a11B a12B

a21B a22B

)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1y1

x1y2
...

x1yr

x2y1

x2y2
...

x2yr

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
(

a11x1By + a12x2By
a21x1By + a22x2By

)
.

This is a .2p × 1 vector. Factoring out the . By term we get 

. (A ⊗ B) (x ⊗ y) =
(

a11x1 + a12x2

a21x1 + a22x2

)
⊗ By = Ax ⊗ By,

as expected. 
We also note two more key properties of the Kronecker products. Given matrices 

of the appropriate sizes, 

. (A ⊗ B) (C ⊗ D) = (AC ⊗ BD) and (A ⊗ B)T =
(
AT ⊗ BT

)
.

We can now define Haar matrices. Recall a square matrix is orthogonal if its rows 
form an orthogonal set of vectors as well as its columns. If the rows are actually 
orthonormal as well as the columns, then the inverse of the matrix is actually its 
transpose. 

The Haar Matrix We will consider orthogonal matrices .HT
n defined recursively 

with n being a power of two. We will also briefly suggest an application. The . 2 × 2
and .4 × 4 Haar matrices are 

. HT
2 =

(
1 1
1 −1

)
and HT

4 =

⎛
⎜⎜⎝

1 1 1 1
1 1 −1 −1
1 −1 0 0
0 0 1 −1

⎞
⎟⎟⎠ .

When the rows of .HT
4 are normalized, these rows are referred to as the Haar wavelet 

basis for . R4. We still denote it by . HT
4 . If .x ∈ R4, then the entries in the vector .HT

4 x,
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when .HT
4 is normalized, indicate how much of the normalized row vector, the Haar 

wavelet, is contained in the vector . x. The normalized .HT
4 matrix is given by 

. HT
4 = 1

2

⎛
⎜⎜⎝

1 1 1 1
1 1 −1 −1√
2 −√

2 0 0
0 0

√
2 −√

2

⎞
⎟⎟⎠ .

Note that .H4H
T
4 = HT

4 H4 = I4 and the matrix is unitary. Let us consider an 
example. 

Example 

Let .x = (−1, 2, 3, 1)T and let .y = HT
4 x. Then .y = (2.50,−1.50,− 3

√
2

2 ,
√
2)T . 

So, for example, the entry .−1.50 indicates how much of the row vector 
.( 12 ,

1
2 ,− 1

2 ,− 1
2 )

T is contained in . x. We have the following full Haar wavelet 
decomposition of the vector . x: 

.x = H4y

= 2.50
1

2
(1, 1, 1, 1)T − 1.50

1

2
(1, 1, −1,−1)T

−3
√
2

2

1

2

(√
2, −√

2, 0, 0
)T + √

2
1

2

(
0, 0,

√
2, −√

2
)T

= 1.25 (1, 1, 1, 1)T − 0.75 (1, 1, −1,−1)T

−3
√
2

4

(√
2,−√

2, 0, 0
)T +

√
2

2

(
0, 0,

√
2, −√

2
)T

= (−1, 2, 3, 1)T .

◀

If we examine this decomposition of . x into a sum of four vectors more carefully, 
we note something of interest. Note that the sum of the first two vectors in the 
decomposition is 

. 2.50
1

2
(1, 1, 1, 1)T − 1.50

1

2
(1, 1,−1,−1)T = (0.5, 0.5, 2, 2)T .

Thus, vector .x = (−1, 2, 3, 1)T was projected down to a coarser scale that averaged 
pairs of coordinates. The first two coordinates in . x (the . −1 and 2) were each replaced 
by their average (namely, by the value . 0.5). Similarly the remaining two values 3 
and 1 in . x were each replaced by their average (2) for the last two entries in the 
projection. Continuing further, the first vector in the decomposition is
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. 2.50
1

2
(1, 1, 1, 1)T = (1.25, 1.25, 1.25, 1.25)T .

So we can view the vector . x as being projected down to a coarser scale by replacing 
each value by an average of all the values (namely, the value .1.25). 

If we then consider the remaining two terms of the 4-term Haar decomposition, 
we have an interpretation for that as well. Note 

. − 3
√
2

2

1

2

(√
2,−√

2, 0, 0
)T + √

2
1

2

(
0, 0,

√
2,−√

2
)T =

(
−3

2
,
3

2
, 1,−1

)T

.

This indicates what to add to the entries in .(0.5, 0.5, 2, 2)T to get back to 
.(−1, 2, 3, 1)T . Specifically 

. (0.5, 0.5, 2, 2)T +
(

−3

2
,
3

2
, 1,−1

)T

= (−1, 2, 3, 1)T .

This coarsening of data has applications. The forthcoming sections will discuss 
some. This Haar projection to coarser scales is referred to as the Haar transform. 

Returning to the definition of the Haar matrices, the .2n × 2n Haar matrix, . HT
2n, 

is constructed recursively using the Kronecker product. 

. HT
2 =

(
1 1
1 −1

)
and HT

2n =
(

HT
n ⊗ (1, 1)

In ⊗ (1,−1)

)
, n = 2, 3, ... .

In particular, we can check that 

. HT
4 =

(
HT

2 ⊗ (1, 1)
I2 ⊗ (1,−1)

)
=

⎛
⎜⎜⎝

1 1 1 1
1 1 −1 −1
1 −1 0 0
0 0 1 −1

⎞
⎟⎟⎠

and note that 

. HT
8 =

(
HT

4 ⊗ (1, 1)
I4 ⊗ (1,−1)

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 0 0 0 0
0 0 0 0 1 1 −1 −1
1 −1 0 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 0 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The normalized Haar matrices (also denoted) .HT
n are unitary matrices.
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Let us consider the normalized matrix . HT
8 . Let  .{w1,w2, . . . ,w8} denote the 

columns of . H8. These 8 column vectors are the Haar basis for . R8. Define a . 8 × n

matrix .H8(k) whose columns are the vectors .{wi}ki=1. Then the (orthogonal) Haar 
projection of a vector . x onto 

. Wk = span{wi}ki=1

is given by 

. Pkx = H8(k)HT
8 (k)x.

For example, we have 

. P4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
2
4

√
2
4

1
2 0√

2
4

√
2
4

1
2 0√

2
4

√
2
4 − 1

2 0√
2
4

√
2
4 − 1

2 0√
2
4 −

√
2
4 0 1

2√
2
4 −

√
2
4 0 1

2√
2
4 −

√
2
4 0 − 1

2√
2
4 −

√
2
4 0 − 1

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

√
2
4

√
2
4

√
2
4

√
2
4

√
2
4

√
2
4

√
2
4

√
2
4√

2
4

√
2
4

√
2
4

√
2
4 −

√
2
4 −

√
2
4 −

√
2
4 −

√
2
4

1
2

1
2 − 1

2 − 1
2 0 0 0 0

0 0 0 0 1
2

1
2 − 1

2 − 1
2

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2

1
2 0 0 0 0 0 0

1
2

1
2 0 0 0 0 0 0

0 0 1
2

1
2 0 0 0 0

0 0 1
2

1
2 0 0 0 0

0 0 0 0 1
2

1
2 0 0

0 0 0 0 1
2

1
2 0 0

0 0 0 0 0 0 1
2

1
2

0 0 0 0 0 0 1
2

1
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The projection . P4 of a vector .x = (x1, x2, x3, x4, x5, x6, x7, x8)
T has, as its 

coordinates, the average of consecutive pairs of coordinates of . x.

. P4x =
(

x1 + x2

2
,
x1 + x2

2
,
x3 + x4

2
,
x3 + x4

2
,
x5 + x6

2
,

× x5 + x6

2
,
x7 + x8

2
,
x7 + x8

2

)T

.

In applications these . Pk corresponds to projecting the data vector . x down to coarser 
and coarser levels with decreasing k. This procedure will be naturally sped up via 
the Haar transform in the relevant upcoming section.
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For more information on this subject we refer the reader to [1] and [2]. 

%Haar matrices using the Kronecker product 
>> Hstar=[1 1;1 -1]; 
for n=1:3 
Hstar=[kron(Hstar,[1 1]);kron(eye(2^n),[1 -1])]; 

end; 

%Normalize the rows in Hstar 
>> N=16; 
for n=1:N 
Hstar(n,:) = Hstar(n,:) ./ norm(Hstar(n,:)); 

end; 

%form the H matrix 
>> H=Hstar’; 

%projection matrix P onto the span of the first 14 columns of H 
>> P14=H(:,1:14)*H(:,1:14)’; 

Exercises 

1. Consider the row vector 

. x = (1,−2, 3, 23,−5, 3, 8, 4,−5, 4, 10,−6, 0, 2, 3,−7) ∈ R16.

a. Calculate numerically the Haar projection P14 and then interpret what it does to a general 
vector x. 

b. Calculate numerically the Haar projection P6 and interpret what it does to a general vector x. 
2. Let A be a m × m matrix and let B be a n × n matrix. Suppose u is an eigenvector of A with an 

eigenvalue λ and v is an eigenvector of B with an eigenvalue β. Show that u⊗v is an eigenvector 
of A ⊗ B with an eigenvalue λβ. 

3. Let u be a m × 1 vector and v be a 1 × n row vector. Show that 

. u ⊗ v = v ⊗ u.

4. A Hadamard matrix is an orthogonal matrix whose entries are all either +1 or  −1. Prove that 
the Kronecker product of two Hadamard matrices is another Hadamard matrix. 
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6Singular Value Decomposition 

Singular value decomposition is a powerful tool in dimension reduction of arrays of 
data, possibly extended to higher dimensions. This reduction has been used exten-
sively in both statistical considerations and deterministic ones. The applications are 
vast and this powerful tool has found its way to virtually all sciences, both exact and 
social. The main idea arising from the singular value decomposition is that it allows 
us to decompose a matrix into array layers, formed by tensor (Kronecker) products. 
These layers then provide the relevant dimension reduction needed in the specific 
application. Closely related to the singular value decomposition is the statistical 
technique called the principal component analysis (PCA). This technique is popular 
in exact sciences. Principal component analysis finds uncorrelated orthogonal vec-
tors, the principal components, via eigen-decomposition of the covariance matrix. 
For this chapter we will assume all matrices are real. This ensures the matrices 
.AT A and .AAT discussed below have nonnegative eigenvalues (i.e., are both positive 
semi-definite). For statistical applications we refer the interested reader to [2]. 

The key property we will be using throughout the exposition is the following. Let 
A be an .m × n matrix; then 

. max{||Av|| such that ||v|| = 1} = σ,

where . σ is the largest (positive) eigenvalue of .AT A. Moreover, the maximum is 
attained at an eigenvector of .AT A corresponding to the eigenvalue . σ . The appendix 
discusses various properties of the inner product, conjugate transpose, and hermitian 
matrices that we use heavily below to justify our assertions regarding . σ . Observe 

. ||Av||2 = 〈Av, Av〉
=

〈
AT Av, v

〉
.
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Let C be the .n × n matrix .C = AT A. Then C is a hermitian matrix and thus has 
real eigenvalues. We need only to show that 

. max{〈Cv, v〉 such that ||v|| = 1} = σ 2

and that the maximum is attained at an eigenvector of C corresponding to . σ . Since 
C is hermitian, it is unitarily diagonalizable and we can write 

. C = UDUT

with U being a unitary matrix and D being a diagonal matrix with the entries being 
the (real) eigenvalues of C. Assume without loss of generality that the eigenvalues 
on the diagonal are in descending order of size, in particular .d11 = σ . Let  . v be a 
unit vector. Since U is unitary, .UT = U−1 and .< UT v, UT v >=< v, v >. Thus, 
.UT v is also a unit vector. Let .UT v = (z1, z2, . . . , zn)

T . Observe that 

. max 〈Cv, v〉 = max
〈
UDUT v, v

〉

= max
〈
DUT v, UT v

〉

= max

{
n∑

i=1

diiz
2
i

}
.

Since .d11 = σ is the largest eigenvalue, the maximum is attained at a unit vector . v
such that .UT v = e1 where .e1 = (1, 0, . . . , 0)T . Since .UT = U−1, .v = Ue1. Thus, 
. v is the first column of U and, since U is unitary, this means . v is a unit eigenvector 
corresponding to eigenvalue . σ . Now that we have confirmed how to maximize . ||Av||
for all unit vectors . v, we shall discuss the Frobenius norm and inner product. The 
Frobenius norm will help us understand how to decompose a matrix into layers. 

Frobenius Norm The Frobenius norm of an .m × n matrix .A, .||A||F , is simply the 
square root of the sum of all of its entries squared. It is the entry-wise euclidean 
norm for a matrix. For example, consider the .3 × 2 matrix 

. A =
(
1 −2 3
2 −1 4

)
.

Then .||A||2F = 12 + (−2)2 + 32 + 22 + (−1)2 + 42 = 35. 

This means that if the rows of an .m × n matrix A are .a1,a2, . . . , am, then 

.||A||2F =
n∑

i=1

〈
aT
i , aT

i

〉
.
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Matrices of a fixed size, say .m × n, can be given an inner product that yields the 
Frobenius norm. In particular, if .A = [aij ] and .B = [bij ] are .m × n matrices, then 
.AT B is an .n × n matrix and we define the Frobenius inner product by 

. 〈A,B〉F =
m∑

i=1

n∑
i=1

aij bij = tr
(
AT B

)
.

Thus, .< A,B >F is the sum of the product of all corresponding entries of A and 
. B. Equivalently, we can calculate .< A,B >F as the trace of matrix . AT B.

It follows that 

. ||A||2F =< A,A >F .

For example, let 

. A =
(
1 −2 3
2 −1 4

)
and B =

(
4 1 2

−1 2 1

)
.

First, we check that the Frobenius norm .< A,B >F is the trace of a .AT B. 

. 〈A,B〉F = (1)(4) + (−2)(1) + (3)(2) + (2)(−1) + (−1)(2) + (4)(1) = 8,

while 

. tr
(
AT B

)
= tr

((
1 −2 3
2 −1 4

)T (
4 1 2

−1 2 1

))

= tr

⎛
⎝

2 5 4
−7 −4 −5
8 11 10

⎞
⎠

= 2 + (−4) + 10

= 8.

Finally, we confirm that the Frobenius norm can be calculated using the Frobenius 
inner product: 

. 〈A,A〉F = (1)2 + (−2)2 + 32 + 22 + (−1)2 + 42 = 35 = ||A||2F ,

as expected. 
Also note that if .x, y ∈ Rn, then 

. < x, y >F =< x, y > .
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The Frobenius product of symmetric matrices simplifies nicely. Consider two tensor 
(Kronecker) products .P1 = u1vT

1 and .P2 = u2vT
2 , where . u1 and .u2 ∈ Rn unit 

vectors and . v1 and .v2 ∈ Rm are four unit vectors. The Frobenius inner product 
between . P1 and . P2 is given by 

. 〈P1, P2〉F = tr(P T
1 P2)

= tr

((
u1vT

1

)T (
u2vT

2

))

= tr
(
v1uT

1 u2v
T
2

)

= 〈u1,u2〉 tr
(
v1vT

2

)

= 〈u1,u2〉 tr
(
vT
2 v1

)

= 〈u1,u2〉 〈v1, v2〉 .

Thus, we have 

. u1 ⊥ u2 or v1 ⊥ v2 if and only if 〈P1, P2〉F = 0.

It also follows that, if . u and . v are appropriately sized unit vectors, . ||uvT ||F = 1.
The Frobenius projection of a matrix A along .uvT (.u, v unit vectors) is defined 

to be 

. projuvT (A) =< A,uvT >F uvT .

The matrix .projuvT (A) is the best approximation of A by .uvT in the Frobenius norm. 

ApproximatingMatrix A by a Skew ProjectionMatrix Let A be an .m×nmatrix. 
Suppose .u ∈ Rn and .v ∈ Rm are both unit vectors. Think of the matrix . A = [aij ]
as an array of data and the .m × n matrix .P = uvT as a tensor product. So we can 
interpret P as an array of data created out of the vectors . u and . v. In particular, 
the .(i, j) entry of P is .uivj . Here we have array entries that were predictably 
created using just two direction vectors . u and . v. The matrix P is the rank one skew 
projection matrix discussed previously in Chap. 2. 

We will now find constant k and unit vectors . u and . v so that the matrix .kuvT is 
the best approximation of A in the Frobenius norm. First, we find k in terms of .A,u, 
and . v. 

Suppose an .m×n tensor product matrix .P = uvT is given with both . u and . v unit 
vectors. The Frobenius projection is the best approximation of the .m × n matrix A 
by a scalar multiple of the matrix .P.
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. projuvT (A) =
〈
A,uvT

〉
F
uvT

= tr
(
AT uvT

)
uvT

= tr
(
uvT AT

)
uvT

= tr
(
u (Av))T

)
uvT

= tr
(
(Av))T u

)
uvT

= 〈Av,u, 〉F uvT

= 〈u, Av〉 P.

Thus, .k = 〈u, Av〉 will give the best approximation of A by .kuvT. 

Example 

Let 

. A =
(
1 −2 3
2 −1 4

)
; u =

√
10

10

(
1
3

)
and vT =

√
6

6

(
2 1 1

)
.

Then the best approximation of A by .kuvT is given by 

. 

(
1 −2 3
2 −1 4

)
≈ 3.0984

(
0.2582 0.1291 0.1291
0.7746 0.3873 0.3873

)
=

(
0.8000 0.4000 0.4000
2.4000 1.2000 1.2000

)
.

Now that we have established how to find the best scalar value k for given unit 
vectors . u and . v, we will determine how to choose the best vectors . v and . u for the 
approximation. The choice of . u in terms of . v is straightforward. ◀

If we are given a normalized vector . v, then the best choice of the normalized 
vector . u is the vector .

1
||Av||Av. This follows from the observation that the maximum 

of .〈u, Av〉 over all normalized vectors . u for a given normalized . v occurs when 
.u = 1

||Av||Av. 

Finally, we need to find the best choice of the normalized vector . v so that . kuvT

is the best approximation of A by a skew symmetric matrix. Imagine we want to fit 
the best vector . v to all the rows of A, denoted by .a1, a2, . . . am. Thus, we want to 
minimize the least squares differences: 

.

∑
i

||aT
i −

〈
aT
i , v

〉
v||2.
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We proceed as follows: 

. 
∑

i

||aT
i −

〈
aT
i , v

〉
v||2 =

∑
i

〈
aT
i −

〈
aT
i , v

〉
v, aT

i −
〈
aT
i , v

〉
v
〉

=
∑

i

(〈
aT
i , aT

i

〉
− 2|

〈
aT
i , v

〉
|2 + |

〈
aT
i , v

〉
|2

)

=
∑

i

(〈
aT
i , aT

i

〉
− |

〈
aT
i , v

〉
|2

)

=
∑

i

〈
aT
i , aT

i

〉
−

∑
i

|
〈
aT
i , v

〉
|2

= ||A||2F − ||Av||2.

Thus, the minimal value for the least squares differences occurs when .||Av|| is 
maximal. As we have already noted in this chapter, that means the best choice of 
the vector . v is a normalized eigenvector corresponding to the largest eigenvalue of 
.AT A as all eigenvalues of .AT A are nonnegative. 

Singular Value Decomposition We now turn to the idea of the singular value 
decomposition of a matrix. 

Consider an .m × n matrix A. The rows of A span the row space of A and the 
columns of A span the column space of A. Suppose r is the common dimension of 
both the row space of A and the column space of . A. There exists an orthonormal 
basis of the row space of A, .{vi}ri=1, such that, under the action of A, this basis 
gets mapped one-to-one and onto nonzero scalar multiples of an orthonormal basis, 
.{ui}ri=1, of the column space of A. The corresponding scalars, . σi , are referred to as 
the singular values of A. In other words, 

. Avi = σiui for i = 1, 2, . . . , r.

The orthonormal vectors .{vi}ri=1 are a subset of the columns of an .n × n matrix V 
that orthogonally diagonalizes .AT A. The columns of V are eigenvectors of .AT A. 
Similarly, the orthonormal vectors .{ui}ri=1 are a subset of the columns of an . m × m

matrix U that orthogonally diagonalizes .AAT . The columns of U are eigenvectors 
of .AAT . We can write .A = UDV T where D is an .m × n matrix with the singular 
values on the diagonals and zeros everywhere else. This factorization of A is the 
singular value decomposition. We explain how this is possible below. 

Indeed, since A is an .m × n matrix, then .AT A is an .n × n matrix and .AAT is an 
.m × m matrix. Both of these matrices are hermitian. As noted in the appendix, the 
nonzero eigenvalues of these two matrices are real and match, up to and including 
multiplicity. The zero eigenvalues do not match. Since both .AT A and .AAT are 
hermitian, both are orthogonally diagonalizable. In particular .AT A = V D1V

T
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where . D1 is an .n × n diagonal matrix and V is a unitary .n × n matrix. . AAT =
UD2U

T where . D2 is an .m × m diagonal matrix and U is a unitary .m × m matrix. 
The diagonal matrices . D1 and . D2 have different sizes if .m /= nwith possibly zero 

diagonal entries. However, we can require that the nonzero diagonal entries match 
both in value and position for . D1 and . D2. We can also require that the diagonal 
entries are descending in size. The nonzero entries will be the squares of the singular 
values of A. 

Observe, if . vi and . vj are two eigenvectors for .AT A, orthogonal to each other 
(with different or the same eigenvalues, . σ 2

1 and . σ 2
2 ), then .AT Avi = σ 2

i vi and 
.AT Avj = σ 2

j vj . Note that .Avi is an eigenvector of .AAT corresponding to 

eigenvalue . σ 2
i . Furthermore, A sends the orthogonal vectors . vi and . vj to orthogonal 

vectors as 
.< Avi , Avj >=< AT Avi , vj >=< σ 2

i vi , vj >= σ 2
i < vi , vj >= 0. 

Also, .||Avi|| = σi. This means .Avi = σiui , or equivalently, .AV = UD, or  
.A = UDV T and we have established the singular value decomposition of . A.

Decomposing a Matrix into Data Layers Observe that 

. ||Av1|| = σ1 = max{||Ax|| such that x ∈ Rn, ||x|| = 1}.

The rank one matrix (scaled tensor) 

. σ1P1 = σ1u1vT
1

approximates the matrix A the best among all rank one matrices (scaled tensors). In 
particular for any . x ∈ Rn

. Ax ≈ σ1u1vT
1 x = σ1 〈x, v1〉u1.

The matrix A has the following decomposition: 

. A =
m∑

i=1

σiPi where Pi = uivT
i

providing the tensor data layers mentioned in the introduction of the chapter. (The 
distinct layers are perpendicular in terms of the Frobenius inner product as the 
corresponding basis vectors are orthogonal.) 

Example 

Consider 

.A =
(
2 1 3
1 3 −1

)
.
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After finding .AAT ,AT A we can find the common eigenvalues (15 and 10) and 
corresponding orthogonal unit eigenvectors for each of these two matrices. We 
then can write the singular value decomposition of A as 

. A =
(−0.8944 −0.4472

−0.4472 0.8944

) (
3.8730 0 0

0 3.1623 0

)

×
⎛
⎝

−0.5774 −0.5774 −0.5774
−0.0000 −0.7071 0.7071
−0.8165 0.4082 0.4082

⎞
⎠ .

We can decompose A into the two layers .σ1P1 and .σ2P2 below: 

. σ1P1 = 3.8730

(−0.8944
−0.4472

) (−0.5774 −0.5774 −0.5774
)

= 3.8730

(
0.5164 0.5164 0.5164
0.2582 0.2582 0.2582

)

. σ2P2 = 3.1623

(−0.4472
0.8944

) (−0.0000 −0.7071 0.7071
)

= 3.1623

(
0 0.3162 −0.3162
0 −0.6324 0.6324

)
.

The reader can verify that .A = σ1P1 + σ2P2. ◀

Geometric Interpretation Consider a real valued .m × n matrix A. Consider the 
unit ball in . Rn. The image of the unit ball under the action of A is an ellipsoid in . Rm. 
The ellipsoid has principal axes .{ui}m1 . The dominant major axis of this ellipsoid is 
along . u1 of length . σ1. The remaining principal axes of the ellipsoid are along the 
remaining vectors . ui with the length of the axis being the nonzero singular value . σi . 
For a hermitian matrix A, .m = n, these axes are also eigenvector directions for A 
and thus the vector . ui coincides with the vector . vi when normalized accordingly. 

The vectors . ui play the role of the vectors . vi when the matrix A is replaced by 
the matrix . AT . To this end, we observe 

.AT ui = AT

(
1

σi

Avi

)

=
(
1

σi

AT Avi

)



6 Singular Value Decomposition 81

=
(
1 

σi 
σ 2 

i vi

)

= σvi . 

Offense and Defense Scores Consider a hockey tournament with 4 teams playing 
round-robin. We summarize the results in the following matrix: 

. 

⎛
⎜⎜⎝

0 4 2 6
2 0 3 3
2 2 0 6
4 4 2 0

⎞
⎟⎟⎠

where the entry at location .(i, j) indicates how many goals team i scored against 
team j . We alter this matrix to create an offense and defense performance matrix 
A. The off diagonal entry .A(i, j) is the amount of goals team i scored against team 
j . For example, .A(1, 2) = 4, meaning that team one scored 4 goals against team 
two. The entry .A(2, 1) = 2 indicates that team two scored 2 goals against team 
one. Thus, the score was .4 : 2 in favor of team one. The entry .A(1, 2) contributes 
the offense ability of team one where as the entry .A(2, 1) contributes to the defense 
ability or lack thereof for team one. The diagonal entry .A(i, i) is the mean of all row 
i and column i entries, excluding the diagonal, all 6 of them. The diagonal entry 
.A(i, i) averages out the goals scored by team i and goals scored against team i. As  
any team does not play against itself, the diagonal entry estimates simultaneously 
the offensive prowess of the team as well as its defensive ability. In particular, we 
have 

. A =

⎛
⎜⎜⎝

3.3333 4.0000 2.0000 6.0000
2.0000 3.0000 3.0000 3.0000
2.0000 2.0000 2.8333 6.0000
4.0000 4.0000 2.0000 4.1667

⎞
⎟⎟⎠ .

The results of the round-robin tournament reflect the teams’ offensive prowess 
ability as well as their defensive ability. As the teams play in the tournament, they 
score goals against other teams during the matches. The total amount of goals scored 
by a team in the tournament is a possible way to measure the team’s offensive 
prowess; however, it values each goal scored equally, goal against a good defensive 
team in the same way as a goal against a poor defensive team. It is harder to score 
against defensive teams. Similarly, each team has a certain amount of goals scored 
on them. The count of goals against is a possible measure for the team’s defensive 
ability; however, it is easier to defend against a poor offensive team as opposed 
to a good offensive team. Offense and defense scores for the teams, which are 
sensitive to this aspect, can be obtained from the singular value decomposition of 
a matrix, the offense, defense performance matrix associated with the given round-
robin tournament.
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We wish to assign the team their defensive measure (i.e., their tendency to defend 
against getting scored on in the tournament) and their offensive measure (i.e., their 
tendency to score goals in the tournament). The defense vector . v = (v1, v2, v3, v4)

T

will be normalized and the entry . vi measures how defensive team i is in the 
tournament. Similarly, the offense vector .u = (u1, u2, u3, u4)

T will be normalized 
as well with the entry . ui measuring how offensive team i is in the tournament. We 
obtain the singular decomposition of the matrix A as .A = UDV T where 

. U =

⎛
⎜⎜⎝

0.5845 0.0217 −0.4717 −0.6598
0.3848 0.1724 0.8651 −0.2718
0.4981 −0.7785 0.0524 0.3782
0.5120 0.6031 −0.1626 0.5897

⎞
⎟⎟⎠

. D =

⎛
⎜⎜⎝

13.9390 0 0 0
0 2.4948 0 0
0 0 1.6463 0
0 0 0 0.5192

⎞
⎟⎟⎠

. V =

⎛
⎜⎜⎝

0.4134 0.5100 −0.2355 0.7166
0.4690 0.5849 0.0989 −0.6543
0.3414 −0.1760 0.8960 0.2228
0.7019 −0.6056 −0.3632 −0.0932

⎞
⎟⎟⎠ .

We obtain the defense vector and the offense vector, respectively, for the teams: 

. v = (0.4134, 0.4690, 0.3414, 0.7019)T and

u = (0.5845, 0.3848, 0.4981, 0.5120)T .

For example, the normalized defense rank for team 3 is .v3 = 0.3414 and the 
normalized offense rank for team 2 is .u2 = 0.3848. The higher the value in the 
vector . v, the poorer the defense, while the higher the value in the vector . u, the better 
the offense. 

Note that we have 

.A ≈ 13.9390

⎛
⎜⎜⎝

0.5845
0.3848
0.4981
0.5120

⎞
⎟⎟⎠

(
0.4134 0.4690 0.3414 0.7019

)

=

⎛
⎜⎜⎝

3.3682 3.8209 2.7817 5.7189
2.2172 2.5152 1.8311 3.7645
2.8703 3.2561 2.3704 4.8734
2.9502 3.3467 2.4364 5.0091

⎞
⎟⎟⎠ .



6 Singular Value Decomposition 83

This can be interpreted as follows. If the teams were to play again, then the predicted 
goal scoring of team 3 against team 2, based purely on these rankings, is . 3.2561
goals. Similarly, the predicted goal scoring of team 4 against team 1, based purely 
on these rankings, is .2.9502 goals. This example was motivated by the paper [1]. 

Image Compression In grayscale imaging a picture can be viewed as an . m × n

array of pixel values, 0 to 255. In Matlab® [6] an image of a clown in gray scale 
consists of a .200 × 320 matrix X. We perform the singular value decomposition of 
the matrix X and we keep its largest 20 singular values along with the corresponding 
columns in the matrix V as well as the matrix U . We then attempt to reconstruct the 
image of the clown with a matrix Y that has the remaining singular values set to 
zero. In particular, 

. X = UDV T and Y = UD0V
T

where the .(i, i) entry of .D0 is . dii for .i = {1, 2, . . . , 20} and 0 for . i =
{21, 2, . . . , 200}. The singular values of X descend in size in the diagonal matrix D. 
The image Y is compressed as a result. For this compression we needed to store 20 
vectors, columns of U and 20 vectors, columns of V , and the additional 20 singular 
values themselves. Altogether we had to store .4000+6400+20 = 10,420 values for 
the matrix Y where as we had to store .(200)(320) = 64,000 values for the original 
matrix X. Thus, we achieved compression to about 16% of the original size. To see 
the difference in images we refer the reader to the images below (Fig. 6.1). On the 
left we see the original image, the matrix X, and on the right we see the compressed 
image Y . The question how the possible negative pixels in the image are resolved in 
the default Matlab® procedures is not addressed here. 

Fig. 6.1 Original image and compressed image side by side
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SVD and Arrays of Data We can arrive at the decomposition of an .m × n matrix 
into tensor data layers (via the SVD) in a different way. This new approach is used 
later in this chapter to generalize to three-dimensional data and beyond. The key 
is to treat the matrix as a rectangular array of data with the Frobenius norm on its 
entries. Consider two .m × n matrices 

. A = [aij ] and B = [bij ].

We recall the Frobenius inner product, between A and B, as  

. 〈A,B〉F =
∑

ajibij = tr
(
AT B

)
.

Choose a vector .u ∈ Rm and let .vT = (v1, v2, . . . , vn)
T be any given .1 × n row 

vector. We consider the .m × n matrix 

. P(u, v) = uvT =
n∑

j=1

vjPj (u)

where .Pj (u) is the .m × n matrix with all entries zero with the exception of column 
j that consists of the vector . u. Consider skew matrices 

. P1 = P(u1, v1) and P2 = P(u2, v2).

We have noted earlier that . u1 ⊥ u2 or v1 ⊥ v2 if and only if 〈P1, P2〉F = 0.
Choose and fix .u ∈ Rm of unit length. Recall .Pj (u) is the .m × n matrix with 
all entries zero with the exception of column j that consists of the vector . u. Define 

. Pu = span{Pj (u) | j = 1, . . . , n}

and observe that .{Pj (u)}nj=1 form an orthonormal basis for . Pu and the dimension 
of . Pu is . n. Moreover, 

. Pu1 ⊥ Pu2 if and only if u1 ⊥ u2.

Thus, if .{ui}mi=1 is an orthonormal basis of . Rm, then we can express .Rm×n as a direct 
sum. Specifically, 

. Rm×n = ⊕m
i=1P(ui ).

Project the matrix A onto . Pu to obtain 

.projPu
A =

∑
j

〈
A,Pj (u)

〉
F

Pj (u) = u
(
AT u

)T

.
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The Frobenius norm of the projection is given by 

. ||u
(
AT u

)T ||2F = 〈u,u〉
〈
AT u, AT u

〉

=
〈
AT u, AT u

〉

=
〈
u, AAT u

〉
.

Thus, we have 

. A =
m∑

i=1

〈ui , Avi〉 uivT
i

where .
〈
ui ,uj

〉 = δij , and vector . vi is a unit vector with .vi = 1
||AT ui ||A

T ui . 

Singular value decomposition targets the largest projections. First, a unit vector 
. u1 is chosen so that 

. 

〈
u1, AAT u1

〉
=

〈
AT u1, AT u1

〉

is the largest possible. Then we choose a unit vector .u2 ∈ u⊥
1 so that 

. 

〈
u2, AAT u2

〉
=

〈
AT u2, AT u2

〉

is the largest possible and continue. The vectors .{ui}mi=1 form an orthonormal basis 
for . Rm and, thus chosen, satisfy 

. AAT ui = σ 2
i ui .

They are eigenvectors of .AAT with the corresponding positive eigenvalues .{σ 2
i } in 

descending order. In particular, we have 

. A =
m∑

i=1

〈ui , Avi〉uivT
i =

m∑
i=1

σiuivT
i .

If we work with rows of the matrix as opposed to the columns from the beginning, 
or alternatively work with the transpose of the matrix A, we would get similar 
relationships for the vectors .{vi}nj=1 with the relationship 

.AT Avi = σ 2
i vi .
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SVD in Higher Dimensions. The above approach provides a great venue to 
a generalization to three-dimensional data and beyond. Imagine we have three-
dimensional data; one can think of it as a box of data, directions x, y, and z, and size 
.m×n×p. Assume without loss of generality .m ≥ n ≥ p. Denote the data array by 
.a(·, ·, ·). We give an example with .m = 3, n = 2, p = 2. Consider a 3D data given 
by 

. a(·, ·, 1) =
⎛
⎝
2 −1
1 2
3 4

⎞
⎠ and a(·, ·, 2) =

⎛
⎝
1 1
5 0
3 −2

⎞
⎠ .

Form a .mn × p matrix, .6 × 2 matrix, 

. A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2 1
1 5
3 3

−1 1
2 0
4 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

We decompose the matrix A into tensor layers via the SVD to obtain 

. u1 = (0.2938, 0.6957, 0.6236, 0.0360, 0.1719, 0.1000)T ; v1 = (0.5760, 0.8174)T

with .D(1, 1) = 6.7032 and 

. u2 = (0.1931,−0.3762, 0.1321,−0.2541, 0.2981, 0.8064)T ;

v2 = (0.8174,−0.5760)T

with .D(2, 2) = 5.4833. Observe that 

. A = D(1, 1)u1v
T
1 + D(2, 2)u2v

T
2 .

Define 

. U1 =
⎛
⎝
0.2938 0.0360
0.6957 0.1719
0.6236 0.1000

⎞
⎠ and U2 =

⎛
⎝

0.1931 −0.2541
−0.3762 0.2981
0.1321 0.8064

⎞
⎠

and observe that 

. a(·, ·, 1) = D(1, 1)v1(1)U1 + D(2, 2)v2(1)U2

and
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. a(·, ·, 2) = D(1, 1)v1(2)U1 + D(2, 2)v2(2)U2.

Now we perform the singular value decomposition of the matrix . U1 to obtain 

. u11 = (0.2954, 0.7167, 0.6317)T and

v11 = (0.9804, 0.1972)T with D1(1, 1) = 0.9989

and 

. u12 = (0.4913,−0.6811, 0.5429)T and

v12 = (0.1972,−0.9804)T with D1(2, 2) = 0.0461.

Similarly, we perform the singular value decomposition of the matrix . U2 to obtain 

. u21 = (0.3006,−0.3674,−0.8802)T and

v21 = (0.0890,−0.9960)T with D2(1, 1) = 0.8992

and 

. u22 = (0.3880,−0.7959, 0.4647)T and

v22 = (0.9960, 0.0890)T with D2(2, 2) = 0.4375.

We observe 

. U1 = D1(1, 1)u11v
T
11+D1(2, 2)u12v

T
12 and U2 = D2(1, 1)u21v

T
21+D2(2, 2)u22v

T
22.

Now we write 

. a(·, ·, 1) = D(1, 1)v1(1)U1 + D(2, 2)v2(1)U2

= D(1, 1)v1(1)
(
D1(1, 1)u11v

T
11 + D1(2, 2)u12v

T
12

)

+ D(2, 2)v2(1)
(
D2(1, 1)u21v

T
21 + D2(2, 2)u22v

T
22

)

= D(1, 1)D1(1, 1)v1(1)u11v
T
11 + D(1, 1)D1(2, 2)v1(1)u12v

T
12

+ D(2, 2)D2(1, 1)v2(1)u21v
T
21 + D(2, 2)D2(2, 2)v2(1)u22v

T
22

.a(·, ·, 2) = D(1, 1)v1(2)U1 + D(2, 2)v2(2)U2

= D(1, 1)v1(2)
(
D1(1, 1)u11v

T
11 + D1(2, 2)u12v

T
12

)
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+ D(2, 2)v2(2)
(
D2(1, 1)u21v

T 
21 + D2(2, 2)u22v

T 
22

)

= D(1, 1)D1(1, 1)v1(2)u11vT 
11 + D(1, 1)D1(2, 2)v1(2)u12vT 

12 

+ D(2, 2)D2(1, 1)v2(2)u21vT 
21 + D(2, 2)D2(2, 2)v2(2)u22vT 

22. 

Combining we obtain 

. a(·, ·, ·) = D(1, 1)D1(1, 1)u11 ⊗ vT
11 ⊗ v1 + D(1, 1)D1(2, 2)u12 ⊗ vT

12 ⊗ v1

+ D(2, 2)D2(1, 1)u21 ⊗ vT
21 ⊗ v2 + D(2, 2)D2(2, 2)u22 ⊗ vT

22 ⊗ v2

= 6.6958(0.2954, 0.7167, 0.6317)T ⊗ (0.9804, 0.1972)

⊗ (0.5760, 0.8174)T

+ 0.3090(0.4913,−0.6811, 0.5429)T ⊗ (0.1972,−0.9804)

⊗ (0.5760, 0.8174)T

+ 4.9306(0.3006,−0.3674,−0.8802)T ⊗ (0.0890,−0.9960)

⊗ (0.8174,−0.5760)T

+ 2.3989(0.3880,−0.7959, 0.4647)T ⊗ (0.9960, 0.0890)

⊗ (0.8174,−0.5760)T .

To give an example we calculate 

. a(2, 1, 2) = (6.6958)(0.7167)(0.9804)(0.8174)

+ (0.3090)(−0.6811)(0.1972)(0.8174)

+ (4.9306)(−0.3674)(0.0890)(−0.5760)

+ (2.3989)(−0.7959)(0.9960)(−0.5760)

= 5.

Specifically, we have 

. T1 = (0.2954, 0.7167, 0.6317)T ⊗ (0.9804, 0.1972) ⊗ (0.5760, 0.8174)T .

T1(:,:,1) = 

0.1668 0.0336 
0.4047 0.0814 
0.3567 0.0718.
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T1(:,:,2) = 

0.2367 0.0476 
0.5743 0.1155 
0.5062 0.1018. 

. T2 = (0.4913,−0.6811, 0.5429)T ⊗ (0.1972,−0.9804) ⊗ (0.5760, 0.8174)T

T2(:,:,1) = 

0.0558 -0.2774
-0.0774 0.3846 
0.0617 -0.3066. 

T2(:,:,2) = 

0.0792 -0.3937
-0.1098 0.5458 
0.0875 -0.4351. 

. T3 = (0.3006,−0.3674,−0.8802)T ⊗ (0.0890,−0.9960) ⊗ (0.8174,−0.5760)T .

T3(:,:,1) = 

0.0219 -0.2447
-0.0267 0.2991
-0.0640 0.7166. 

T3(:,:,2) =

-0.0154 0.1725 
0.0188 -0.2108 
0.0451 -0.5050. 

.T4 = (0.3880,−0.7959, 0.4647)T ⊗ (0.9960, 0.0890) ⊗ (0.8174,−0.5760)T .
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T4(:,:,1) = 

0.3159 0.0282
-0.6480 -0.0579 
0.3783 0.0338. 

T4(:,:,2) =

-0.2226 -0.0199 
0.4566 0.0408

-0.2666 -0.0238. 

Collecting we get 

. a(·, ·, ·) = 6.6958T1 + 0.3090T2 + 4.9306T3 + 2.3989T4.

Noting the weights on . T1, . T3, . T4, and . T2 are descending order. 
Consider a vector space of fixed size .m × n × p 3D matrices. We can define an 

inner product on this space. Let .a(·, ·, ·) and .b(·, ·, ·) be given then 

. 〈a(·, ·, ·), b(·, ·, ·)〉 =
∑
i,j,k

a(·, ·, ·)b(·, ·, ·)

Consider a tensor .u × vT ⊗ w where 

. 

(
u ⊗ vT ⊗ w

)
(i, j, k) = u(i)vT (j)w(k).

Now given any two tensors .u1 ⊗ vT
1 ⊗ w1 and .u2 ⊗ vT

2 ⊗ w2, we have  

. 

〈
u1 ⊗ vT

1 ⊗ w1,u2 ⊗ vT
2 ⊗ w2

〉
= 〈u2,u1〉 〈v1, v2〉 〈w2,w1〉 .

Two tensors .u1 ⊗ vT
1 ⊗ w1 and .u2 ⊗ vT

2 ⊗ w2 are orthogonal if and only if at least 
one of the following inner products is zero, .〈u2,u1〉,.〈v1, v2〉,.〈w2,w1〉. The above 
decomposition in our example is an orthonormal decomposition with respect to an 
orthonormal basis. Moreover, the decomposition is chosen so that the weights (inner 
products) are the most front loaded as possible. 

The numerical calculations can get intense for large dimensions. Therefore, it is 
imperative to have fast and efficient algorithms to either find or approximate singular 
values and the corresponding vectors for large matrix sizes. 

Approximations in SVD Many times in applications the entries in the matrix are 
nonnegative. In this case we can implement a fast approximation of the largest
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singular value and the corresponding singular vector very fast with a high accuracy. 
In the case of a two-dimensional array, matrix A, the largest singular vector . v1 can 
be approximated as a weighted sum of the rows of the matrix. The weights for each 
row are the sums of the individual row entries. Then we normalize. Similarly, the 
weighted sums of columns of the matrix with the weights being the sums of the 
individual columns give rise to the largest singular vector . u1, upon normalization. 
The largest singular value can then be approximates as 

. 〈u1, Av1〉 .

In the case of a three-dimensional array we proceed as follows. Let .a = a(·, ·, ·) be 
an array of size .M ×N ×K . The vector . w1, along the z direction, of size K , can be 
approximated as follows. We obtain the non-normalized . w1 as 

. w1(k) =
∑
m,n

T (m, n)a(m, n, k) where T (m, n) =
∑

k

a(m, n, k).

Similarly, we obtain the approximation for the vectors . v1 and . u1. Upon normaliza-
tion of the vectors, we then obtain the largest tensor 

. u1 ⊗ vT
1 ⊗ w1

and write 

. a ≈ σu1 ⊗ vT
1 ⊗ w1 =

⎛
⎝ ∑

m,n,k

a(m, n, k)u1(m)v1(n)w1(k)

⎞
⎠u1 ⊗ vT

1 ⊗ w1.

We now give an example. We generate a random .9×7×6 3D data array .a = a(·, ·, ·). 
Each entry is a number between zero and one drawn from a uniform distribution. 

a(:,:,1) = 

0.3846 0.3439 0.4253 0.6999 0.7184 0.2665 0.6377 
0.5830 0.5841 0.3127 0.6385 0.9686 0.1537 0.9577 
0.2518 0.1078 0.1615 0.0336 0.5313 0.2810 0.2407 
0.2904 0.9063 0.1788 0.0688 0.3251 0.4401 0.6761 
0.6171 0.8797 0.4229 0.3196 0.1056 0.5271 0.2891 
0.2653 0.8178 0.0942 0.5309 0.6110 0.4574 0.6718 
0.8244 0.2607 0.5985 0.6544 0.7788 0.8754 0.6951 
0.9827 0.5944 0.4709 0.4076 0.4235 0.5181 0.0680 
0.7302 0.0225 0.6959 0.8200 0.0908 0.9436 0.2548.
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a(:,:,2) = 

0.2240 0.9160 0.0358 0.2428 0.5466 0.2362 0.4162 
0.6678 0.0012 0.1759 0.9174 0.4257 0.1194 0.8419 
0.8444 0.4624 0.7218 0.2691 0.6444 0.6073 0.8329 
0.3445 0.4243 0.4735 0.7655 0.6476 0.4501 0.2564 
0.7805 0.4609 0.1527 0.1887 0.6790 0.4587 0.6135 
0.6753 0.7702 0.3411 0.2875 0.6358 0.6619 0.5822 
0.0067 0.3225 0.6074 0.0911 0.9452 0.7703 0.5407 
0.6022 0.7847 0.1917 0.5762 0.2089 0.3502 0.8699 
0.3868 0.4714 0.7384 0.6834 0.7093 0.6620 0.2648. 

a(:,:,3) = 

0.3181 0.7210 0.3658 0.0938 0.3477 0.3592 0.2703 
0.1192 0.5225 0.7635 0.5254 0.1500 0.7363 0.1971 
0.9398 0.9937 0.6279 0.5303 0.5861 0.3947 0.8217 
0.6456 0.2187 0.7720 0.8611 0.2621 0.6834 0.4299 
0.4795 0.1058 0.9329 0.4849 0.0445 0.7040 0.8878 
0.6393 0.1097 0.9727 0.3935 0.7549 0.4423 0.3912 
0.5447 0.0636 0.1920 0.6714 0.2428 0.0196 0.7691 
0.6473 0.4046 0.1389 0.7413 0.4424 0.3309 0.3968 
0.5439 0.4484 0.6963 0.5201 0.6878 0.4243 0.8085. 

a(:,:,4) = 

0.7551 0.7689 0.4070 0.6787 0.6967 0.5277 0.5860 
0.3774 0.1673 0.7487 0.4952 0.5828 0.4795 0.2467 
0.2160 0.8620 0.8256 0.1897 0.8154 0.8013 0.6664 
0.7904 0.9899 0.7900 0.4950 0.8790 0.2278 0.0835 
0.9493 0.5144 0.3185 0.1476 0.9889 0.4981 0.6260 
0.3276 0.8843 0.5341 0.0550 0.0005 0.9009 0.6609 
0.6713 0.5880 0.0900 0.8507 0.8654 0.5747 0.7298 
0.4386 0.1548 0.1117 0.5606 0.6126 0.8452 0.8908 
0.8335 0.1999 0.1363 0.9296 0.9900 0.7386 0.9823. 

a(:,:,5) = 

0.7690 0.2094 0.1231 0.4991 0.5650 0.6210 0.9844 
0.5814 0.5523 0.2055 0.5358 0.6403 0.5737 0.8589 
0.9283 0.6299 0.1465 0.4452 0.4170 0.0521 0.7856 
0.5801 0.0320 0.1891 0.1239 0.2060 0.9312 0.5134 
0.0170 0.6147 0.0427 0.4904 0.9479 0.7287 0.1776 
0.1209 0.3624 0.6352 0.8530 0.0821 0.7378 0.3986 
0.8627 0.0495 0.2819 0.8739 0.1057 0.0634 0.1339 
0.4843 0.4896 0.5386 0.2703 0.1420 0.8604 0.0309 
0.8449 0.1925 0.6952 0.2085 0.1665 0.9344 0.9391.
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a(:,:,6) = 

0.3013 0.3479 0.5400 0.1781 0.4685 0.1341 0.1967 
0.2955 0.4460 0.7069 0.3596 0.9121 0.2126 0.0934 
0.3329 0.0542 0.9995 0.0567 0.1040 0.8949 0.3074 
0.4671 0.1771 0.2878 0.5219 0.7455 0.0715 0.4561 
0.6482 0.6628 0.4145 0.3358 0.7363 0.2425 0.1017 
0.0252 0.3308 0.4648 0.1757 0.5619 0.0538 0.9954 
0.8422 0.8985 0.7640 0.2089 0.1842 0.4417 0.3321 
0.5590 0.1182 0.8182 0.9052 0.5972 0.0133 0.2973 
0.8541 0.9884 0.1002 0.6754 0.2999 0.8972 0.0620. 

We implement the above algorithm and obtain 

. w1 = (0.4018, 0.4145, 0.3997, 0.4812, 0.3827, 0.3592)T

v1 = (0.4180, 0.3536, 0.3373, 0.3555, 0.3958, 0.3810, 0.3978)T

u1 = (0.3078, 0.3249, 0.3422, 0.3206, 0.3326, 0.3211, 0.3391, 0.3196, 0.3859)T

with .σ = 9.6550. Thus, 

. a(·, ·, ·) ≈ σu1vT
1 w1.

This technique readily generalizes to higher dimensions . Rn. The weights are 
obtained by summing up along the axis we project on, and the cross sections are 
perpendicular of dimension .n − 1. For more information on the choice of weights 
we refer the reader to [7]. An excellent reference for the exposition of the singular 
value decomposition of a matrix is [5]. 

Exercises 

1. Let 

. A =

⎛
⎜⎜⎝

1 0 2 3 4
−3 2 4 1 −2
4 −1 2 3 −1

−1 2 4 0 2

⎞
⎟⎟⎠ .

Let u = 
√
33 
33 (2, −3, 2, 4)T and v = 1 4 (1,−1, 1, 2, 3)T . Find  k so that the (scaled) 

tensor P = kuv∗ best approximates A in the Frobenius norm. 
2. Let
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. A =
⎛
⎝

1 0 2 3
−3 2 4 1
2 3 −1 1

⎞
⎠ .

a. Find the singular value decomposition of A, i.e., write A = UDV  T , with U, V 
unitary matrices of appropriate sizes. 

b. Find the rank one tensor that best approximates A in the least squares sense. 
3. Consider an m × n matrix A and consider a tensor T = uvT where u =

1√
m (1, 1, . . .  1)T and v = 1√

n (1, 1, . . . 1)
T . Show that the best k, in the Frobenius 

norm, so that 

. A ≈ kuvT

is given by the average (mean) of all the entries in the matrix A. 
4. During the FIFA World Cup in Qatar, in the 2022, a very interesting scenario 

arose when Argentina, Poland, Mexico, and Saudi Arabia played round-robin 
games, from which two teams would advance. If a team wins against another 
team, the winning team gets awarded three points, and the team that lost gets 
zero points. If the match results in a tie, then both teams get awarded one point. 
The two teams with the most points advance. However, many teams might have 
the same number of points; in fact, this happens relatively often. In such an event, 
the goal difference then decides. One collects all the goals scored by the team (in 
the three matches) minus the goals conceded by the team (in the three matches). 
If this still fails to decide, then only the number of goals scored by the team in 
the three matches decide without any consideration to the conceded goals by the 
team. If this does not decide, then the team’s head-to-head results decide who 
advances. If this still does not decide, then the teams with fewer disciplinary 
actions against them advance, a rule that involves yellow and red cards. This is 
referred to as the fair play rule. Finally, if this still does not decide, then a toss of 
a coin will. 
We now return to our group mentioned. The results from the round-robin are 
summarized below: 

Argentina Poland Mexico Saudi Arabia 

Argentina x 2:0 2:0 1:2 

Poland 0:2 x 0:0 2:0 

Mexico 0:2 0:0 x 2:1 

Saudi Arabia 2:1 0:2 1:2 x 

Argentina had 6 points, Poland had 4 points, Mexico had 4 points, and Saudi 
Arabia had 3 points. Argentina would advance, and Saudi Arabia is the last. The 
decision had to be made between Poland and Mexico. Poland goal differential 
was 0, whereas Mexico goal differential was −1. Poland advanced. However, the
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excitement at the time was the following. Argentina played Poland and Mexico 
played Saudi Arabia as the last two games in the group simultaneously. Argentina 
lead 2 : 0 and Mexico lead 2 : 0 to the very last minutes of the games. If the score 
remained as such, then the decision would had to be made by the fair play rule. 
However, Saudi Arabia scored. 
We will find the offense prowess scores and defense ability scores for the teams 
using the singular value decomposition. We form the matrix 

. A =

⎛
⎜⎜⎝

1.1667 2.00 2.00 1.00
0 0.6667 0 2.00
0 0 0.8333 2.00
2.00 0 1.00 1.3333

⎞
⎟⎟⎠ .

The diagonal value (i, i) is the average of all row i and column i entries 
(excluding the diagonal), all 6 of them. 
a. The teams’ offense prowess vector is given by 

. u1 = (0.6652, 0.3629, 0.4038, 0.5127)T ;

the higher the value, the better the offense. 
b. The teams’ defense ability vector is given by 

. v1 = (0.4158, 0.3629, 0.5030, 0.6652)T ;

the higher the value, the worse the defense. 
5. Polar Decomposition. Let  A be a real square matrix. Consider the singular value 

decomposition of A and write 

. A = UDV T = (UV T )V DV T = ZP or A = UDV T = UDUT (UV T ) = QZ

where P and Q are hermitian matrices with nonnegative eigenvalues and Z is a 
unitary matrix. This factorization of A is referred to as the polar decomposition 
of the matrix A. Here it is presented in the case of a square matrix; however, it has 
its analogue in the case of a rectangular matrix; see [4]. Consider the tournament 
performance matrix from the above chapter: 

. A =

⎛
⎜⎜⎝

3.3333 4.0000 2.0000 6.0000
2.0000 3.0000 3.0000 3.0000
2.0000 2.0000 2.8333 6.0000
4.0000 4.0000 2.0000 4.1678

⎞
⎟⎟⎠ .

Show that
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. Z =

⎛
⎜⎜⎝

−0.1091 0.6720 −0.3739 0.6299
−0.1514 0.5447 0.8156 −0.1232
0.0674 −0.4640 0.4383 0.7668
0.9801 0.1908 0.0543 −0.0016

⎞
⎟⎟⎠

. P =

⎛
⎜⎜⎝

3.3887 3.1646 1.4786 3.3803
3.1646 4.1573 2.0450 3.6770
1.4786 2.0450 3.0494 3.0595
3.3803 3.6770 3.0595 8.0039

⎞
⎟⎟⎠

. Q =

⎛
⎜⎜⎝

5.3560 2.5659 3.8459 4.1291
2.5659 3.4083 2.3580 2.6907
3.8459 2.3580 5.0494 2.4859
4.1291 2.6907 2.4859 4.7856

⎞
⎟⎟⎠ .

The matrix P indicates what the tournament results would be if the teams’ offense 
attributes reflected the teams’ defense attributes. A team with a good defense 
score, low value, as a result has a poor offense score and vice versa. In particular, 
we have ui = vi for all i ∈ {1, 2, 3, 4}. Similarly, the matrix Q indicates what 
the tournament results would be if the defense attributes reflected the offense 
attributes of the teams. In this case we have vi = ui for all i ∈ {1, 2, 3, 4}. 

6. Let 

. A =
(
1 0
1 1

)
.

This matrix represents a vertical shearing in the plane, a linear transformation 
that is not diagonalizable. 
a. Show 

. ||A|| = max||x||=1 {||Ax||} = φ

where φ = 1.6180 . . .  is the golden ratio. 
b. Verify the singular value decomposition of A is given by 

. A = σ1

(
0.5257
0.8507

) (
0.8507 0.5257

) + σ2

(−0.8507
0.5257

) (−0.5257 0.8507
)

=
(
0.7236 0.4472
1.1708 0.7236

)
+

(
0.2764 −0.4472

−0.1708 0.2764

)

where σ1 = φ and σ2 = 1 
φ = φ − 1. 

c. Recall the polar decomposition of a matrix; see the previous example. Show 
that
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. A = PW

=
(
0.8944 0.4472
0.4472 1.3416

)(
0.8944 −0.4472
0.4472 0.8944

)

= WQ

=
(
0.8944 −0.4472
0.4472 0.8944

) (
1.3416 0.4472
0.4472 0.8944

)

where P,  Q  are hermitian matrices, positive definite, with eigenvalues φ and 
φ − 1. The matrix W is a unitary matrix, rotation matrix counterclockwise by 
an angle 26.57◦. 

7. Factor Analysis. Imagine we are given test scores from a large group of students, 
their test scores in chemistry, the vector X1; their test scores in biology, the vector 
X2; and their test scores in social science, the vector X3. 
The variables {Xi}3 i=1 are assumed to be of zero mean and variance one; in 
particular, the variables are the z scores. The test scores in these three disciplines 
are assumed to be driven by two independent factors f1, f2. The factor f1 is 
the measurement of the student quantitative ability and the factor f2 is the 
measurement of the student qualitative ability. It is assumed that these two factors 
are normalized measurements and that they are independent. In particular, we 
assume for i, j ∈ {1, 2} 

. 
〈
fi, fj

〉 = 0 if i /= j and 〈fi, fi〉 = 1.

We have to determine the loadings on the factors f1 and f2 when determining 
the variables {Xi}3 i=1. In particular, we have to determine the influence of the 
quantitative and qualitative skills in the performance in chemistry, biology, and 
social science. We write 

. X1 = λ11f1 + λ12f2 + ϵ1

X2 = λ21f1 + λ22f2 + ϵ2

X3 = λ31f1 + λ32f2 + ϵ3.

Define 

.Λ =
⎛
⎝

λ11 λ12

λ21 λ22

λ31 λ32

⎞
⎠

X =
⎛
⎝

X1

X2

X3

⎞
⎠
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f =
(

f1 

f2

)

ϵ = 

⎛ 

⎝
ϵ1

ϵ2

ϵ3 

⎞ 

⎠ . 

The above reads as 

. X = Λ f + ϵ.

The random variables {ϵi}3 i=1 are assumed to be independent, normally dis-
tributed random variables with a certain variance 〈ϵi, ϵi〉. To determine the 
loadings λij we will use the knowledge of the covariances of the variables Xi 
and Xj , in particular the covariance matrix 

. 

⎛
⎝

〈X1, X1〉 〈X1, X2〉 〈X1, X3〉
〈X2, X1〉 〈X2, X2〉 〈X2, X3〉
〈X3, X1〉 〈X3, X2〉 〈X3, X3〉

⎞
⎠

We assume the random variables {ϵi}3 i=1 are independent of the factors; in 
particular we assume

〈
ϵi, fj

〉 = 0 for all i ∈ {1, 2, 3} and j ∈ {1, 2}. We seek the 
best least squares approximation: 

. Λ Λ ∗ ≈
⎛
⎝

〈X1, X1〉 〈X1, X2〉 〈X1, X3〉
〈X2, X1〉 〈X2, X2〉 〈X2, X3〉
〈X3, X1〉 〈X3, X2〉 〈X3, X3〉

⎞
⎠ −

⎛
⎝

〈ϵ1, ϵ1〉 0 0
0 〈ϵ2, ϵ2〉 0
0 0 〈ϵ3, ϵ3〉

⎞
⎠

=
⎛
⎝

〈X1, X1〉 − 〈ϵ1, ϵ1〉 〈X1, X2〉 〈X1, X3〉
〈X2, X1〉 〈X2, X2〉 − 〈ϵ2, ϵ2〉 〈X2, X3〉
〈X3, X1〉 〈X3, X2〉 〈X3, X3〉 − 〈ϵ3, ϵ3〉

⎞
⎠

= C.

To illustrate the above, set i = 2, j = 3, and we compute 

. 〈X2, X3〉 = (λ21f1 + λ22f2 + ϵ2) (λ31f1 + λ32f2 + ϵ3)

= λ21λ31 + λ22λ32.

Similarly, set i = 1, j = 1, and we compute 

. 〈X1, X1〉 = (λ11f1 + λ12f2 + ϵ1) (λ11f1 + λ12f2 + ϵ1)

= λ11λ11 + λ12λ12 + 〈ϵ1, ϵ1〉 .
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The matrix Λ Λ T has at most two nonzero (positive) eigenvalues since the size 
of the matrix Λ is 3 × 2. Assume the matrix C is positive definite with three 
distinct (positive) eigenvalues

{
σ 2 

i

}3 
i=1, ordered in descending order. The best 

least squares approximation Λ Λ T for C is obtained by choosing the two largest 
eigenvalues of C,

{
σ 2 
1 , σ

2 
2

}
, with some choice of corresponding eigenvectors 

{u1,u2}. The (nonunique) loading matrix is then given by 

. Λ = σ1u1vT
1 + σ2u2vT

2

where the orthonormal vectors {v1, v2} are arbitrary. In particular, the unitary 
matrix V = [v1, v2] is arbitrary, where the vectors v1 and v2 are the two columns. 
As a result, the factor loadings are not unique and the art of factor analysis is to 
choose the unitary matrix V in such a way as to have certain properties for the 
loadings. Having nonnegative loadings is many times preferred along with other 
requests. We refer the reader to [3] for more on factor analysis. Consider the 
following specific covariance matrix for the variables {Xi}3 i=1 assumed to be in  
the z score format: 

. C =
⎛
⎝
1.00 0.70 0.20
0.70 1.00 0.40
0.20 0.40 1.00

⎞
⎠ .

For example, the entry value 0.7 in the  (2, 1) entry measures the covariance 
between biology and chemistry test scores. Similarly, the entry value 0.4 in the  
(3, 2) entry measures the covariance between social science and biology test 
scores. Though hypothetical, these covariances are not surprising, due to the 
nature of the subject. Assume that 80% of all the test scores is determined by 
the factors with the loadings and the remaining 20% is determined by random 
outcomes. In particular, we assume 〈ϵi, ϵi〉 = 0.2 for  i ∈ {1, 2, 3}. We have  

. C =
⎛
⎝
1.00 0.70 0.20
0.70 1.00 0.40
0.20 0.40 1.00

⎞
⎠ −

⎛
⎝
0.20 0.00 0.00
0.00 0.20 0.00
0.00 0.00 0.20

⎞
⎠ =

⎛
⎝
0.80 0.70 0.20
0.70 0.80 0.40
0.20 0.40 0.80

⎞
⎠ .

a. Show that 

. σ1 = 1.30 ; σ2 = 0.79 ; u1 = (0.61, 0.66, 0.43)T ;

u2 = (0.46, 0.14,−0.87)T .

b. Show that with the choice of a unitary matrix 

.V T =
(

cos(θ) sin(θ)

− sin(θ) cos(θ)

)
=

(
0.50 −0.87
0.87 0.50

)
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a rotation matrix by  θ = 60◦ clockwise, we get the following loading matrix: 

. Λ =
⎛
⎝
0.88 0.08
0.81 0.34
0.14 0.88

⎞
⎠ .

In particular, we have 

. X1 ≈ 0.88f1 + 0.08f2 + ϵ1

X2 ≈ 0.81f1 + 0.34f2 + ϵ2

X3 ≈ 0.14f1 + 0.88f2 + ϵ3.

It is not surprising that for the chemistry test scores the loading on quantitative 
factor f1 is much higher than the loading on the qualitative factor f2. For  
the biology test scores similar loadings hold, albeit higher loading on the 
qualitative factor. For the test scores in social science, factor loadings are 
reversed with significantly higher loading on the qualitative factor than the 
quantitative one. We remind the reader, once again, these loadings are not 
unique. 

Project 
Find below the Alberta census data spanning the years 2001–2004. Alberta is a province in 
Canada. The entry in the data matrix A indicates the population count in the given year and the 
given age category. The rows indicate the age groups and the columns indicate the years. The 
first age group (in years) is 0 − 4, the second is 5 − 9, and so on. The one before the last is 
95−99 and the last one is 100 years and over. For example, in the age category of 45−49 years 
in the year 2002, we had 248,790 people in Alberta. Perform the singular value decomposition 
of this data matrix A and give interpretation to the unit vectors u and v corresponding to the 
dominant singular value of A. 

A =  

191488 192146 193926 196601 
211250 210192 208169 206697 
224681 227569 228804 228051 
227725 233126 235439 238834 
229514 237269 243021 249297 
227800 234017 238825 244250 
230505 234961 237856 240152 
261604 256478 249416 243594 
272069 277097 280342 281992 
235868 248790 258867 266597 
190719 196831 204290 215278 
137636 149997 160638 170022 
106839 111309 116795 122728
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93324 94268 95393 97036 
80972 82913 84327 85273 
62305 63492 65434 67312 
40844 43586 45821 47835 
22379 23239 23873 24551 
8308 8722 9310 9948 
2027 2146 2227 2305 
251 281 292 315. 
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7Convolution 

Frequency analysis of data, either in one dimension or higher, is another fundamen-
tal concept, a tool, in data analysis. The procedure to accomplish this in the time 
domain is the method of convolution by a specific mask, implementing weighted 
averages on shifted data. Proper choices of convolution masks yield the desired 
frequency responses. 

Shift Operator Consider a linear transformation S given by a right cyclic shift on 
the coordinates of a vector. In particular, if .x = (x0, x1, x2, x3)

T ∈ C4, then 

. S(x0, x1, x2, x3)
T = (x3, x0, x1, x2)

T .

The matrix representation of this operator, with respect to the standard basis, is given 
by 

. S =

⎛
⎜⎜⎝

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎟⎟⎠ .

It turns out the matrix S will have an orthonormal set of eigenvectors with 
corresponding eigenvalues. However, we have to consider this orthonormal basis 
as a basis for the complex space . Cn. We have seen in the Appendix that hermitian 
matrices give rise to an orthonormal basis of eigenvectors in . Rn. We can have non-
hermitian matrices giving rise to an orthonormal basis consisting of eigenvectors as 
well, but we have to be in the complex domain. The right shift is a unitary matrix 
with .S∗S = SS∗ = I , where . S∗ is the left shift. 

Let n be an integer, and let w be a real number. For simplicity, we first assume w 
is an integer as well. The complex exponential is given by 
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. e
2πi
n

ω = cos

(
2π

n
ω

)
+ i sin

(
2π

n
ω

)
.

Note that the exponential expression is arising from 

. 

(
e
2πi
n

ω
)2 =

(
cos

(
2π

n
ω

)
+ i sin

(
2π

n
ω

))2

= cos2
(
2π

n
ω

)
− sin2

(
2π

n
ω

)
+ 2icos

(
2π

n
ω

)
sin

(
2π

n
ω

)

= cos

(
2
2π

n
ω

)
+ i sin

(
2
2π

n
ω

)

= cos

(
4π

n
ω

)
+ i sin

(
4π

n
ω

)

= e
4πi
n

ω.

The normalized eigenvectors of S are given by 

. 
1√
4

{
e
2π i
4 j(·)}3

j=0
= 1

2

{
e
2π i
4 j(·)}3

j=0

where the . kth coordinate of vector .e
2π i
4 j(·) is 

. 

(
e
2π i
4 j(·)) (k) = e

2πi
4 jk for k = 0, 1, 2, 3.

In particular, we have 

. e
2π i
4 (0)(·) = (1, 1, 1, 1)T , e

2π i
4 (1)(·) = (1, i,−1,−i)T ,

. e
2π i
4 (2)(·) = (1,−1, 1,−1)T and e

2π i
4 (3)(·) = (1,−i,−1, i)T .

Note that 

. e
2π i
4 (3)(·) = e

2π i
4 (−1)(·) and, in general, e

2π i
n (j)(·) = e

2π i
n (j−n)(·).

These eigenvectors are known as the Fourier eigenvectors or the Fourier exponen-
tials. 

The corresponding eigenvalues are 

.

{
e− 2πi

4 j
}3

j=0
= {1,−i,−1, i} .
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The action of the right cyclic shift on the eigenvector .e
2π i
4 j(·) is given by 

. Se
2π i
4 j(·) = e

2π i
4 j((·)−1) = e− 2πi

4 je
2π i
4 j(·).

Define a Fourier (orthonormal) basis matrix V whose columns are the respective 
normalized Fourier eigenvectors. Define the diagonal matrix D whose diagonal 
entries are the corresponding eigenvalues. Then 

. V = 1

2

⎛
⎜⎜⎝

1 1 1 1
1 i −1 −i

1 −1 1 −1
1 −i −1 i

⎞
⎟⎟⎠ and D =

⎛
⎜⎜⎝

1 0 0 0
0 −i 0 0
0 0 −1 0
0 0 0 i

⎞
⎟⎟⎠ .

We obtain the relationship .V D = SV. So 

. 
1

2

⎛
⎜⎜⎝

1 1 1 1
1 i −1 −i

1 −1 1 −1
1 −i −1 i

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1 0 0 0
0 −i 0 0
0 0 −1 0
0 0 0 i

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎟⎟⎠

1

2

⎛
⎜⎜⎝

1 1 1 1
1 i −1 −i

1 −1 1 −1
1 −i −1 i

⎞
⎟⎟⎠ .

Circulant Matrices We can go beyond cyclic shift operators and create cyclic 
weighted shift operators which we will refer to as convolution operators. The vector 
of weights .c = (c0, c1, . . . , cn)

T will be called a mask. The arising matrices will 
be referred to as circulant matrices. For example, with .n = 4 we have a circulant 
matrix 

. C =

⎛
⎜⎜⎝

c0 c3 c2 c1

c1 c0 c3 c2

c2 c1 c0 c3

c3 c2 c1 c0

⎞
⎟⎟⎠ .

For any .4 × 1 vector . x, the action of the circulant matrix on . x is given by 

. Cx =

⎛
⎜⎜⎝

c0 c3 c2 c1

c1 c0 c3 c2

c2 c1 c0 c3

c3 c2 c1 c0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

x0

x1

x2

x3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

c0x0 + c3x1 + c2x2 + c1x3

c1x0 + c0x1 + c3x2 + c2x3

c2x0 + c1x1 + c0x2 + c3x3

c3x0 + c2x1 + c1x2 + c0x3

⎞
⎟⎟⎠ .

We note two things. First, the circulant matrix C satisfies .C∗C = CC∗, so it is what 
is known as a normal matrix. Second, for each term .cixj appearing in the .4×1 vector 
.Cx, the sum .i + j = m, (modulo 4) where .m = 0, 1, 2, 3 is the row containing the 
term. From this observation we realize that the .mth entry of . Cx is
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. 

3∑
k=0

cm−kxk =
3∑

k=0

ckxm−k,

where the subscripts are calculated . modulo 4.

We shall now verify that the Fourier basis consisting of the four Fourier 
exponentials, 

. 

{
e
2π i
4 j(·)}3

j=0
,

are eigenvectors for the circulant matrix . C with the corresponding eigenvalues 

. 

3∑
k=0

cke
− 2πi

4 jk j = 0, 1, 2, 3.

This is the case regardless of the weights and the shifts involved, and regardless of 
the mask . c. They form an orthonormal basis for the space . C4. The values .{j}3j=0 are 
referred to as the (Fourier) frequencies. The corresponding eigenvalues, naturally, 
depend on the mask . c. 

Now consider the action of the circulant matrix C on .x = e
2π i
4 j(.), the . j th Fourier 

eigenvector. Specifically, consider the .mth entry of . Cx = Ce
2π i
4 j(.), for m =

0, 1, 2, 3.

. 

(
Ce

2π i
4 j(.)

)
(m) =

3∑
k=0

cke
2πi
4 j (·)(m − k)

=
3∑

k=0

cke
2πi
4 j (m−k)

=
(

3∑
k=0

cke
−2πi
4 jk

)
e
2πi
4 jm.

Thus, 

. Ce
2π i
4 j(.) =

(
3∑

k=0

cke
−2πi
4 jk

)
e
2π i
4 j(.),

and we have established that the orthonormal Fourier basis is indeed the eigen-
vectors of C with the stated corresponding eigenvalues. It follows from the 
diagonalization ideas discussed in the Appendix that
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. 
1

2

⎛
⎜⎜⎝

1 1 1 1
1 i −1 −i

1 −1 1 −1
1 −i −1 i

⎞
⎟⎟⎠

×

⎛
⎜⎜⎜⎝

∑3
k=0 ck 0 0 0

0
∑3

k=0 cke
− 2πi

4 (1)k 0 0

0 0
∑3

k=0 cke
− 2πi

4 (2)k 0

0 0 0
∑3

k=0 cke
− 2πi

4 (3)k

⎞
⎟⎟⎟⎠

must equal to the following matrix product 

. 

⎛
⎜⎜⎝

c0 c3 c2 c1

c1 c0 c3 c2

c2 c1 c0 c3

c3 c2 c1 c0

⎞
⎟⎟⎠

1

2

⎛
⎜⎜⎝

1 1 1 1
1 i −1 −i

1 −1 1 −1
1 −i −1 i

⎞
⎟⎟⎠ .

Observe the eigenvalue for the circulant matrix C is obtained as an inner product of 
the mask . c with the Fourier eigenvector. In particular, we have 

. 

〈
c, e

2π i
4 j(.)

〉
=

3∑
k=0

cke
−2πi
4 jk.

Circulant matrices, aka cyclic convolution operators, act as filters on frequencies. 

The resulting eigenvalue suppresses the given frequency .e
2πi
4 j (.). For example, 

.(1, 1, 1, 1)T is an eigenvector of . C. If we set .c = (1, 1, 1, 1)T , then the convolution 
operator turns out to be just the (orthogonal) projection onto .span

{
(1, 1, 1, 1)T

}
. 

In another words, the zero frequency gets retained while the others are suppressed. 
This is due to the fact that 

. 

〈
c, e

2π i
4 j(.)

〉
= 0 for all j /= 0.

We note that 

. (2V )∗c = d

where . d is a vector of eigenvalues. Observe 

. c = 1

2
V d.

Thus, we can get the mask . c from the requested frequency responses, the vector of 
eigenvalues. If the mask entries are to be real, then the eigenvalues have to appear 
in conjugate pairs. For example, request .d = (1, i, 0,−i)T . Then
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. c =
(
1

2

)(
1

2

)
⎛
⎜⎜⎝

1 1 1 1
1 i −1 −i

1 −1 1 −1
1 −i −1 i

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1
i

0
−i

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1
4

− 1
4
1
4
3
4

⎞
⎟⎟⎠ .

We can then find the eigenvalues corresponding to each Fourier basis vector by 
calculating the inner product of . c with the Fourier basis vectors. (We could also find 
them by constructing the arising circulate matrix and noting its action on the Fourier 
basis.) We find 

. 
1

2
(1, 1, 1, 1)T ⍿→ 1

2
(1, 1, 1, 1)T and

1

2
(1,−1, 1,−1)T ⍿→ 0,

. i
1

2
e
2π i
4 (1)(·) = 1

2
e

π i
2 e

2π i
4 (1)(·)

= 1

2
e
2π i
4 e

2π i
4 (1)(·)

= 1

2
e
2π i
4 ((1)(·)+1)

and 

. − i
1

2
e
2π i
4 (3)(·) = −i

1

2
e
2π i
4 (−1)(·)

= 1

2
e

−π i
2 e

2π i
4 (−1)(·)

= 1

2
e

−2π i
4 e

2π i
4 (−1)(·)

= 1

2
e
2π i
4 ((−1)(·)−1)

= 1

2
e

−2π i
4 ((1)(·)+1).

Suppose we let .x = (1, 2, 3, 4)T . Then 

.Cx = 1

4

⎛
⎜⎜⎝

1 3 1 −1
−1 1 3 1
1 −1 1 3
3 1 −1 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1
2
3
4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1.5
3.5
3.5
1.5

⎞
⎟⎟⎠ .
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Note 

. 
1

2
V ∗x =

⎛
⎜⎜⎝

5
−1 + i

−1
−1 − i

⎞
⎟⎟⎠ .

Denote 

. w0 = 1

2
(1, 1, 1, 1)T ; w1 = 1

2
e
2π i
4 1(·);w2 = 1

2
(1,−1, 1,−1)T and w3 = 1

2
e
2π i
4 3(·).

. Cx = C(〈x,w0〉w0 + 〈x,w1〉w1

+ 〈x,w2〉w2 + 〈x,w3〉w3)

= (1)(5)
1

2
(1, 1, 1, 1)T + (i)(−1 + i)

1

2
(1, i,−1,−i)T

+ (0)(−1)
1

2
(1,−1, 1,−1) + (−i)(−1 − i)

1

2
(1,−i,−1, i)T

= (1.5, 3.5, 3.5, 1.5)T .

The ideas discussed above generalize to .Cn. Consider, for example, a mask . c =
(1/7) (4, 2, 1, 0, 0, 0)T and the corresponding circulant matrix 

. C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0.5714 0 0 0 0.1429 0.2857
0.2857 0.5714 0 0 0 0.1429
0.1429 0.2857 0.5714 0 0 0

0 0.1429 0.2857 0.5714 0 0
0 0 0.1429 0.2857 0.5714 0
0 0 0 0.1429 0.2857 0.5714

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

>> c=(1/7)*[4 2 1 0 0 0]; 
>> P=gallery(’circul’,c)’; 

The eigenvalues of C are given by 

. 

{〈
c, e

2π i
6 j(·)〉}5

j=0

= {1, 0.6429 − 0.3712i, 0.3571 − 0.1237i, 0.4286, 0.3571 + 0.1237i, 0.6429

+0.3712i}

with the corresponding normalized Fourier eigenvectors .
1√
6

{
e
2π i
6 j(·)

}5
j=0

.
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Frequency Response for Real Data Consider an .n × n circulant matrix C with 
the complex frequency response, the eigenvalue .d(j) for the Fourier basis vector 

.e
2π i
n j(·), and the eigenvalue .d(n − j) for the Fourier basis vector .e

2π i
n (n−j)(·). We  

observe 

. d(n − j) = d(j) ; e
2π i
n (n−j)(·) = e− 2π i

n j(·).

We give an example, fix j , and set .d(j) = 1 − i. We observe 

. Ccos

(
2π

n
j (·)

)
= C

1

2

(
e
2π i
n j(·) + e− 2π i

n j(·))

= 1

2

(
(1 − i)e

2π i
n j(·) + (1 + i)e− 2π i

n j(·))

= 1

2

(√
2e

−πi
4 e

2π i
n j(·) + √

2e
πi
4 e− 2π i

n j(·))

=
√
2

2

(
e
i
(
2π
n j(·)− π

4

)
+ e

−i
(
2π
n j(·)− π

4

))

= √
2

(
cos

(
2π

n
j (·) − π

4

))

and 

. C sin

(
2π

n
j (·)

)
= C

1

2i

(
e
2π i
n j(·) − e− 2π i

n j(·))

= 1

2i

(
(1 − i)e

2π i
n j(.) − (1 + i)e− 2π i

n j(.)
)

= 1

2i

(√
2e

−πi
4 e

2π i
n j(·) − √

2e
π i
4 e− 2π i

n j(·))

=
√
2

2i

(
e
i
(
2π
n j(·)− π

4

)
− e

−i
(
2π
n j(·)− π

4

))

= √
2

(
sin

(
2π

n
j (·) − π

4

))
.

The following identity is useful in understanding the above effect. 

. 
√
2cos

(
θ − π

4

)
= √

2
(
cos(θ)cos

(π

4

)
+ sin(θ) sin

(π

4

))

= cos(θ) + sin (θ) .

For more on this subject, we refer the reader to [2] and [1].
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Exercises 

1. Consider the mask .c = 1
10 (6, 4, 2, 0,−2)T and the corresponding circulant 

matrix C. 
a. Calculate the eigenvalues of C. 
b. Find the singular value decomposition of C. 

2. Consider the mask .c = 1
12 (1, 1, 1, 1, 2, 1, 1, 1, 1)

T and the corresponding 
circulant matrix C. 
a. Calculate the eigenvalues of C. 
b. Find the singular value decomposition of C. 

3. Consider the frequency response .d = (−1, 1+ 2i, 1− i, i, 3,−i, 1+ i, 1− 2i)T . 
Find the circulant matrix that would implement this frequency response. 

4. Let . bk , .k ∈ {0, 1, · · · , N −1}, be a .p×p real matrix. Consider a .Np×Np block 
circulant matrix 

. B =

⎛
⎜⎜⎜⎝

b0 bN−1 · · · b1
b1 b0 · · · b2
...

...
...

...

bN−1 bN−2 · · · b0

⎞
⎟⎟⎟⎠ .

For example, let 

. b0 =
(
1 1
2 0

)
; b1 =

(
3 2
1 1

)
; b2 =

(
1 1
2 1

)
.

We have 

. B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 3 2
2 0 2 1 1 1
3 2 1 1 1 1
1 1 2 0 2 1
1 1 3 2 1 1
2 1 1 1 2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Denote .ρk = e
2πik
N , .k ∈ {0, 1, . . . , N − 1}. Show that 

.Bṽ = λṽ
⎛
⎜⎜⎜⎝

b0 bN−1 · · · b1
b1 b0 · · · b2
...

...
...

...

bN−1 bN−2 · · · b0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

v
ρkv
...

ρN−1
k v

⎞
⎟⎟⎟⎠ = λ

⎛
⎜⎜⎜⎝

v
ρkv
...

ρN−1
k v

⎞
⎟⎟⎟⎠
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whenever 

. Hkv = λv(
b0 + bN−1ρk + bN−2ρ

2
k + · · · + b1ρ

N−1
k

)
v = λv.

In particular . ̃v is an eigenvector for B with the eigenvalue . λ. Show that .ṽ ⊥ w̃ if 
. v is an eigenvector for . Hj and . w is an eigenvector for . Hk with .j /= k. 
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8Frequency Filtering 

We consider a signal to be a row data vector. As an example we consider a signal 
that has been sampled at a sampling rate (sampling frequency) of 

. fs = 441,000Hz .

The above number means .441,000 samples per second were recorded. The duration 
for the signal is .T0 = 60 seconds. The total number of samples in the signal, over 
this duration, is then given by 

. N = fsT0 = (44,100)(60) = 2646,000.

The sampling time, the time between two samples, is given by 

. T = 1

fs

.

The frequency resolution, df, is the lowest detectable frequency for the signal. It is 
given by 

. df = fs

N
= 1

T0
= 1

60
Hz.

Consider the frequencies .fj = jdf for .j ∈ {0, 1, . . . , N}. Note that .f1 = df and 
.fN = fs . We refer to the j values as the corresponding Fourier bins. Note that 
.j = fjT0. 

The complex exponential with the frequency . fj is given by 

. e2πi
j
N

(·) = e
2πi

fj
fs

(·)

= e2πi
fj
N

T0(·).
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A signal of a purring cat has .N = 244, 515 samples recorded at a sampling rate of 
.fs = 22,050Hz. Therefore, the duration time for the signal is 

. T0 = N

fs

= 244,515

22,050
≈ 11 seconds.

The lowest detectable frequency in the signal is .df = 1
11 Hz. 

We will now assume, without loss of generality, the lowest detectible frequency 
in the signal is .df = 1Hz. (This is equivalent to assuming that the duration for the 
signal is .T0 = 1 seconds.) In this case the frequency . fj is identified with the Fourier 
bin j , in particular .fj = j . 

Discrete Fourier Transform Let . x be a row vector of size .1 × N , a data signal. 
The discrete Fourier transform of . x, .DFT(x), is given by 

. DFT(x)(j) = X(j) =
N−1∑

n=0

x(n)e− 2πi
N

jn,

where .x(n) is the . nth coordinate of row vector . x, n = 0, 1, . . . , N − 1.

The possibly complex value .X(j) detects how much of the frequency j is 
contained in the vector . x. To invert the Fourier transform, we write 

. x(n) = 1

N

N−1∑

j=0

X(n)e
2πi
N

nj .

A fast version of the discrete Fourier transform called the fast Fourier Transform 
(FFT) is employed to implement these calculations quickly. 

Fast Fourier Transform The discrete Fourier transform has an unnecessary high 
computational complexity. The fast Fourier transform significantly cuts down the 
number of calculations needed to implement the discrete Fourier transform. If the 
discrete Fourier transform were implemented as it stands, the matrix multiplication 
costs would be on the order of . N2 calculations, where N is the number of data 
points. This is too costly even for relatively small values of N . The fast Fourier 
transform cuts down the order to .n log2(n) calculations. This is a crucial step that 
makes the Fourier transform a practical tool in applications. We illustrate on an 
example and hope the reader will make the necessary generalization. 

Consider a row data vector .x = (x(0), x(1), x(2), x(3)) = (1, 2,−3, 1) with 
.n = 4. Set .ξ = e

−2π
4 i and group the algebraic operations in the discrete Fourier 

transform as follows:
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. a(0) = 1

2

(
1

2
(x(0) + x(2)) + 1

2
(x(1) + x(3))

)
,

a(1) = 1

2

(
1

2
(x(0) − x(2)) + 1

2

(
x(1)ξ + x(3)ξ3

))

= 1

2

(
1

2
(x(0) − x(2)) + 1

2
(x(1)ξ − x(3)ξ)

)
,

a(2) = 1

2

(
1

2
(x(0) + x(2)) − 1

2
(x(1) + x(3))

)
,

a(3) = 1

2

(
1

2

(
x(0) + x(2)ξ6

)
+ 1

2

(
x(1)ξ3 + x(3)ξ9

))

= 1

2

(
1

2
(x(0) − x(2)) − 1

2
(x(1)ξ − x(3)ξ)

)
.

Define .
1
2F2(x(0), x(2)) = (b0, b2) and .

1
2F2(x(1), x(3)) = (b1, b3). We have  

. b0 = 1

2
(x(0) + x(2)) and b2 = 1

2
(x(0) − x(2))

and 

. b1 = 1

2
(x(1) + x(3)) and b3 = 1

2
(x(1) − x(3)) .

Note 

. a(0) = 1

2
(b0 + b1) ,

a(1) = 1

2
(b2 + b3ξ) ,

a(2) = 1

2
(b0 − b1) ,

a(3) = 1

2
(b2 − b3ξ) .

Now consider the data vector .x = (1,−2, 3,−2, 3, 2, 2,−4) and set . xe =
(1, 3, 3, 2) (even entries) and .xo = (−2,−2, 2,−4) (odd entries). Denote 

.
1

8
F8(x) = F and

1

4
F4(xe) = Fe and

1

4
F4(xo) = Fo.
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We have (.ξ = e−2πi/8) and 

. F(0) = 1

2
(Fe(0) + Fo(0)) ,

F (1) = 1

2

(
Fe(1) + ξ1Fo(1)

)
,

F (2) = 1

2

(
Fe(2) + ξ2Fo(2)

)
,

F (3) = 1

2

(
Fe(3) + ξ3Fo(3)

)
,

F (4) = 1

2
(Fe(0) − Fo(0)) ,

F (5) = 1

2

(
Fe(1) − ξ1Fo(1)

)
,

F (6) = 1

2

(
Fe(2) − ξ2Fo(2)

)
,

F (7) = 1

2

(
Fe(3) − ξ3Fo(3)

)
.

The fast Fourier transform in a matrix form translates to 

. F8(x) =
(
F4 D4F4
F4 −D4F4

) (
xe

xo

)

=
(
F4 0
0 F4

) (
I4 I4
I4 −I4

) (
I4 0
0 D4

) (
xe

xo

)

where 

. D4 =

⎛

⎜⎜⎝

1 0 0 0
0 ξ 0 0
0 0 ξ2 0
0 0 0 ξ3

⎞

⎟⎟⎠ and I4 =

⎛

⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟⎟⎠ .

>> x=[1 -2 3 -2 3 2 2 -4] 
% FFT of x 
>> X=fft(x); 
%inverse FFT recovers x 
>> ifft(X) 

For more on the fast Fourier transform and its applications, we refer the reader to 
[2].
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Example 

Consider a .1 × 24 vector 

. x = [7.93, 8.32, 9.01, 9.82, 10.61, 11.55, 12.58, 13.52, 14.41, 15.19, 15.81,
16.12, 16.09, 15.74, 15.07, 14.27, 13.31, 12.36, 11.40,

10.46, 9.52, 8.75, 8.18, 7.88].

The entries indicate the length of day in hours (i.e., the length of time between 
sunrise and sunset) at the latitude of .50◦ North. The entries are recorded twice a 
month, on the first day of the month and on the sixteenth day of the month. For 
example, .8.32 hours is the length of day on January 16. Consider now the Fourier 
transform of . x

. X = [287.90,−47.64 − 7.65i, 0.30 − 0.21i,−1.21 − 0.79i,−0.01 − 0.20i,

− 0.19 − 0.04i,−0.18 + 0.16i,−0.01 + 0.10i, 0.09 − 0.03i,

0.07 − 0.01i,−0.08i, 0.02 + 0.07i,−0.06, 0.02 − 0.07i, 0.08i,

0.07 + 0.01i, 0.09 + 0.03i,−0.01 − 0.10i,−0.18 − 0.16i,−0.19 + 0.04i,

− 0.01 + 0.20i,−1.21 + 0.79i, 0.30 + 0.21i,−47.64 + 7.65i].

The geometry of the Earth’s tilt is reflected in these Fourier coefficients. The 
value .X(0) = 287.90 when divided by 24 yields the average length of day over 
the year, circa 12 hours. The Fourier coefficient .X(1) = −47.64 − 7.65i along 
with its conjugate pair .X(23) = −47.64+7.65i captures the frequency of 1 cycle 
per 24, giving the changes in the length of day had the only contributing factor 
be the annual sinusoidal variation. In particular, 

. 
2|X(1)|

24
≈ 4

hours is the annual variation in the length of day drawn from the annual sinusoid. 
The phase shift of 

. 
365angle(X(1))

2π
= −173.25

days puts the peak length of day to June 22, noting this is based on ignoring 
the rest of the Fourier coefficients and following only the annual sinusoid. The 
minimum in the length of day would be reached 6 months later. ◀

The remaining Fourier coefficients are negligible with the exception of . X(3) =
−1.21−0.79i. This number captures the frequency of 3 cycles per 24, with a period 
of 4 months. In particular,
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Fig. 8.1 The interpolated continuous function . f (t)

. 
2|X(3)|

24
≈ 0.12

hours, which is about . 7.2 minutes, yields the time variation in the length of day 
every 4 months on top of the annual sinusoid variation. The phase shift of 

. 
365angle(X(3))

(3)(2π)
= −49.65

days puts us to the peak contribution, a positive value of . 7.2 minutes, over the annual 
sinusoid variation, to Feb 18. The minimum contribution, a negative value of . −7.2
minutes, then occurs near the middle of April, there is a peak again near the middle 
of June, and so on. 

We interpolate the given data by a continuous function for .t ∈ [0, 24] consisting 
of the constant term, the annual sinusoid, and the correction sinusoid having the 4 
months as the period. Find the plot, (Fig. 8.1), (done on MatLab ® [8]): 

. f (t) = 1

24
X(0) + 2

24
|X(1)| cos

(
2πt

24
+ angle(X(1))

)

+ 2

24
|X(3)| cos

(
6πt

24
+ angle(X(3))

)
.

Suppose now we collect data from a lower latitude, say .30◦ North. The value 
.X(0) remains the same, reflecting the average length of day being almost the same. 
We obtain
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. 
2|X(1)|

24
≈ 1.89

hours, the annual sinusoid variation in the length of day. The phase shift of 

. 
365angle(X(1))

2π
= −173.24

days puts the peak length of day to June 22 again based on the annual sinusoid. 
Once again, the remaining Fourier coefficients are negligible with the exception of 
.X(3). We have  

. 
2|X(3)|

24
≈ 0.04

hours which is about .2.3-minute time variation in the length of day every 4 months, 
significantly lower than the higher latitude case. The phase shift of 

. 
365 angle(X(3))

(3)(2π)
= −48.53

days puts us to the peak contribution, a positive value of . 2.3 minutes, over the annual 
sinusoid variation to Feb 17, a day earlier than at the higher latitude. 

Subsampling and Aliasing Subsampling a signal is a common technique in signal 
processing. Assume the data row vector . x is of size .1 × 2N . If we collect only the 
even entries in the vector . x, we obtain a vector . y defined by 

. y(n) = x(2n)

for .n = {0, 1, . . . , N − 1}. We can relate .DFT(x) and .DFT(y) as follows. Fix . j ∈
{0, 1, . . . , N − 1}. We have  

.DFT(y)(j) =
N−1∑

n=0

y(n)e− 2πi
N

jn

=
N−1∑

n=0

x(2n)e− 2πi
2N j (2n)

= 1

2

(
2N−1∑

n=0

x(n)e− 2πi
2N jn +

2N−1∑

n=0

x(n)e− 2πi
2N jneπin

)

= 1

2

(
2N−1∑

n=0

x(n)e− 2πi
2N jn +

2N−1∑

n=0

x(n)e− 2πi
2N (j−N)n

)

= 1

2
(DFT(x)(j) + DFT(x)(j − N)) .
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Thus, the content of the frequency j in the signal . y is the average of the content of 
the frequency j in the signal . x and the aliased (folded) frequency .j −N in the signal 
. x. Therefore, the high frequencies in . x get aliased (folded) into the low frequencies 
of the signal . y when we subsample the original signal . x. 

Let .x = (1, 2,−1, 4, 0, 3,−2, 1)T then .y = (1,−1, 0,−2)T . Let  .j = 1 be 
given. We extract 

. DFT(y)(1) = 1 − i

and 

. DFT(x)(1) = −1.8284 − 2.4141i ; DFT(x)(5) = 3.8284 + 0.4142i.

Observe 

. 1 − i = 1

2
(−1.8284 − 2.4141i + 3.8284 + 0.4142i) .

Aliasing can be detected in audio signals when we halve the sampling frequency 
of a signal and aliased frequencies occur in the sound. The cat purring signal, 
when sampled at half the rate, becomes a lion’s growl. In image processing aliasing 
manifests itself as blurring of pictures. The equivalent of time duration of an audio 
signal is the picture size (area); the equivalent of sampling rate is the number of 
picture data per unit area. Suppose a given picture is expanded on a screen by a 
factor of 4, horizontally by a factor of 2 and vertically by a factor of 2. The number 
of picture data values does not change upon the expansion. As the picture area 
quadruples, the (picture) sampling rate must reduce to a quarter. As a result aliasing 
(blurring) of a picture occurs. 

On the other hand, aliasing has been used to develop even faster algorithms 
for the discrete Fourier transform. These algorithms are even faster than the fast 
Fourier transform under certain assumptions. One such assumption is that we have 
sparse frequencies in the given signal. For more on this topic and the sparse Fourier 
transform, we refer the reader to [3]. 

Filtering Consider a bi-infinite row data vector .{x(n)}∞−∞, a signal, indexed by 
the whole numbers. The sampling rate is assumed to be .fs = 1Hz and the lowest 
detectable frequency is assumed to be .df = 0. As a result, the detectable angular 
frequencies w lie in the interval .[0, 2π). Consider the complex exponentials 

. {eiwn | w ∈ [0, 2π)}.

We attempt to view the signal f as a linear combination of these complex 
exponentials. At this stage this is purely an intuitive claim. A more rigorous 
justification on how to view this linear combination, when the angular frequencies
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belong to the interval .[0, 2π), requires advanced mathematics in real analysis. We 
refer the reader to [5] for discussion of the theory of distributions. 

Consider a convolution filter 

. y(n) = 1

4
x(n − 1) + 1

2
x(n) + 1

4
x(n + 1).

In particular, every data value .g(n) is a weighted average of the value itself, with 
a weight of . 1/2, and the neighbors to the left and right with the weights of . 1/4, 
respectively. The frequency response to this convolution filter is given by 

. eiwn → 1

4
eiw(n−1) + 1

2
eiwn + 1

4
eiw(n+1)

= eiwn

(
1

4
e−iw + 1

2
+ 1

4
eiw

)

= eiwn

(
1

2
+ 1

2
cos(w)

)

= eiwnH(w).

We have 

. {einw} → H(w){eiwn}.

In particular, the signal .{eiwn} gets multiplied by the value .H(w), the  transfer 
function, which only depends on the value w itself. In this example, the transfer 
function .H(w) is real valued, and in fact, .H(w) ≥ 0. This convolution filter totally 
annihilates the angular frequency of .w = π and lets the angular frequency of . w = 0
go through intact. Any exponential data vector with a frequency w gets scaled by the 
non-negative number .H(w) and therefore only the amplitude gets affected with no 
phase changes. The convolution filter is determined by the transfer function .H(w). 

We now break the symmetry and consider the following convolution filter: 

. y(n) = 1

2
x(n) + 1

4
x(n + 1) + 1

4
x(n + 2)

with its action on the complex exponential with w angular frequency 

.eiwn → 1

2
eiwn + 1

4
eiw(n+1) + 1

4
eiw(n+2)

= eiwn

(
1

2
+ 1

4
eiw + 1

4
e2wi

)

= eiwnH(w).
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This time the transfer function .H(w) = r(w)eiφ(w) is complex valued. Its effect 
on the complex exponential with the angular frequency w is easy to describe. The 
amplitude stretches by the factor of .|H(w)| and the phase angle shifts by .φ(w). 

Fourier Transform in Higher Dimensions Suppose we have a .M × N array 
of data .a = [a(m, n)]m={0,1,...,M−1},n={0,1,...,N−1}. The Fourier transform of a is 
defined as 

. A(j, k) =
M−1∑

m=0

N−1∑

n=0

a(m, n)e− 2πi
M

jme− 2πi
N

kn.

If the data in a are real, then we have the following symmetry: 

. A(j, k) = A(M − j,N − k).

For example, let 

. a =

⎛

⎜⎜⎜⎜⎜⎝

2 3 4 2
4 2 6 4
5 8 9 2
3 4 1 6
4 3 2 6

⎞

⎟⎟⎟⎟⎟⎠
.

We get 

. A =

⎛

⎜⎜⎜⎜⎝

80.0000 + 0.0000i −4.0000 + 0.0000i 0.0000 + 0.0000i −4.0000 + 0.0000i
−10.1631 − 6.8289i −6.0353 + 11.1121i 2.9271 − 12.5352i 5.2714 + 3.5498i
−2.3369 + 8.9228i 4.4026 − 9.6364i −0.4271 + 5.3961i −9.6387 + 2.9260i
−2.3369 − 8.9228i −9.6387 − 2.9260i −0.4271 − 5.3961i 4.4026 + 9.6364i
−10.1631 + 6.8289i 5.2714 − 3.5498i 2.9271 + 12.5352i −6.0353 − 11.1121i

⎞

⎟⎟⎟⎟⎠
.

>> a=[2 3 4 2;4 2 6 4;5 8 9 2;3 4 1 6;4 3 2 6]; 
% FFT of a 
>>A=fft2(a); 
% Inverse FFT of A recovers a 
>>ifft2(A); 

Note, for example, 

. A(1, 3) = 5.2714 + 3.5498i = A(4, 1) = 5.2714 − 3.5498i.

Consider the image of a clown as before (Fig. 8.2). The size of the associated matrix 
with gray scale values is .200 × 320. We reconstruct the image using MatLab ® [8]
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Fig. 8.2 The original clown picture and the reconstructed image 

from the lowest 8 frequencies, both along rows and columns, keeping . 0.1% of the  
data. 

Unilateral Z Transform Consider a causal signal . x indexed by non-negative whole 
numbers, in particular, .x = {x(n)}∞n=0. Think of the signal . x as a signal in the time 
domain with n denoting time. Define 

. er,θ = {er,θ (n)}∞n=0

where 

. er,θ (n) = rneiθn = zn with z = reiθ .

Consider 

. Z(x) = 〈
x, er,θ

〉

=
∑

n

x(n)z−n

= X(z).

The complex value .X(z) detects how much of the vector .er,θ is contained in the 
signal . x. This can be seen as a generalization of the Fourier transform.
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Convolution between two signals is given by 

. (x ∗ y) (n) =
∞∑

m=0

x(m)y(n − m).

The key property for the Z transform is 

. Z (x ∗ y) =
∞∑

n=0

(x ∗ y) (n)z−n

=
∞∑

n=0

∞∑

m=0

x(m)y(n − m)z−n

=
∞∑

m=0

x(m)

∞∑

n=0

y(n − m)z−n

=
∞∑

m=0

x(m)

∞∑

n=0

y(n)z−(n+m)

=
∞∑

m=0

x(m)z−m
∞∑

n=0

y(n)z−n

= X(z)Y(z).

As an example we consider the following convolution: 

. (x ∗ y) (n) = 1

2
y(n) + 1

2
y(n − 1)

with 

. x =
{
1

2
,
1

2
, 0, 0, . . .

}
and y = {y(0), y(1), y(2), y(3) . . .} .

Note that 

. X(z) = 1

2
+ 1

2
z−1.

Transfer Function Consider the difference equation 

.y(n) = 1

2
y(n − 1) + 1

2
x(n)
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where .y = {y(n)}∞n=0 is the state vector and .x = {x(n)}∞n=0 is the control vector. 
Recall that . X and . Y are the Z transforms of . x and . y, respectively. Thus, the transfer 
function . H is defined as 

. H(z) = Y(z)

X(z)
or equivalently Y(z) = H(z)X(z).

In our example we have 

. Y(z) = 1

2
z−1Y(z) + 1

2
X(z)

(
1 − 0.5z−1

)
Y(z) = 1

2
X(z)

Y(z)

X(z)
= 0.5

1 − 0.5z−1

H(z) = 0.5

1 − 0.5z−1 .

We can think of the transfer function . H as being an impulse response in the z 
domain. To obtain the impulse response in the time domain, we implement the 
inverse Z transform on the transfer function . H. To that end we write 

. H(z) = 0.5

1 − 0.5z−1

= 1

2

(
1 + 1

2
z−1 + 1

4
z−2 + · · ·

)

= 1

2
+ 1

4
z−1 + 1

8
z−2 + · · · .

Thus, 

. Inv (H) =
{
1

2
,
1

4
,
1

8
, . . .

}
.

Consider the control sequence being the impulse sequence 

. e = (1, 0, 0, . . .) .

The Z transform of . e is given by 

.X(z) = 1.
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We observe that 

. Y(z) = H(z)X(z) = H(z).

Observe that the state variable . y is equal to . h in the time domain. Therefore, the 
impulse response, as a response to the impulse control sequence . e, is given by 

. h =
{
1

2
,
1

4
,
1

8
, . . .

}
.

We can give an interpretation as follows. Upon the impulse sequence . e, as the control 
sequence, the state variable response . y, equal to . h, is the impulse response. Set 
.z = 0.3ei π

4 for example. The value 

. H(z) = −0.0628 − 0.4147i = 0.4195e−1.7211i

tells us how much of the time domain signal 

. er,θ (n) = rneiθn with r = 0.3 and θ = π

4

is contained in the impulse response . y. It scales the amplitude of .er,θ by a factor of 
.0.4195 and simultaneously implements the phase shift on .er,θ by .−1.7211 radians. 

Exercises 

1. Consider the convolution filter 

. y(n) = 1

4
x(n − 2) + 1

2
x(n) + 1

4
x(n + 1).

Find its transfer function H(w). 
2. Consider the convolution filter 

. y(n) = 1

8
x(n − 3) + 1

2
x(n) + 3

8
x(n + 1).

Find its transfer function H(w). 
3. Find the transfer function H(z) for the difference equation 

.y(n) = 1

4
y(n − 1) + 1

4
y(n − 2) + 1

3
x(n).
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4. Find the transfer function H(z) for the difference equation 

. y(n) = 1

4
y(n − 2) + 1

8
y(n − 3) + 1

3
x(n) + 1

6
x(n − 2).

5. Fix k ∈ {1, . . . , N  − 1} and define a row vector of size 1 × N 

. ck(n) =
√

2

N
cos

(
ωk

(
n + 1

2

))
for n ∈ {0, 1, . . . , N − 1}

where 

. ωk = 2π

2N
k.

For k = 0 set  

. c0 =
√

1

N
(1, 1, . . . , 1) .

a. Show the set of vectors (as columns) 

. {ck}N−1
k=0

is an orthonormal basis for RN . 
Hint: show the vectors {ck}N−1 

k=0 are eigenvectors for the matrix 

. C8 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 0 0 · · · 0
−1 2 −1 0 · · · 0
0 −1 2 −1 · · · 0
...

...
...

...
...

...

0 0 · · · −1 2 −1
0 0 · · · 0 −1 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The following trigonometric identity might help: 

. − cos ((j − 1)θ) + 2 cos (jθ) − cos ((j + 1)θ) = (2 − 2 cos(θ)) cos (jθ) .

This approach was drawn from [7]. 
b. Show the N × N matrix CN with its columns {c0, c1, . . . , cN−1} is a unitary 

matrix.
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c. Set N = 8 and verify the matrix 

. C8 =
⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.3536 0.4904 0.4619 0.4157 0.3536 0.2778 0.1913 0.0975
0.3536 0.4157 0.1913 −0.0975 −0.3536 −0.4904 −0.4619 −0.2778
0.3536 0.2778 −0.1913 −0.4904 −0.3536 0.0975 0.4619 0.4157
0.3536 0.0975 −0.4619 −0.2778 0.3536 0.4157 −0.1913 −0.4904
0.3536 −0.0975 −0.4619 0.2778 0.3536 −0.4157 −0.1913 0.4904
0.3536 −0.2778 −0.1913 0.4904 −0.3536 −0.0975 0.4619 −0.4157
0.3536 −0.4157 0.1913 0.0975 −0.3536 0.4904 −0.4619 0.2778
0.3536 −0.4904 0.4619 −0.4157 0.3536 −0.2778 0.1913 −0.0975

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

is a unitary matrix. 
d. Let x be a real row data vector of size N . The discrete cosine transform of x is 

given by 

. DCT(x) = 2
N−1∑

n=0

x(n) cos

(
πk

2N
(2n + 1)

)
= 2

N−1∑

n=0

x(n) cos

(
ωk

(
n + 1

2

))

for k ∈ {0, 1, . . . , N  − 1}. View the vector x as a column vector and show that 

. DCT(x) = CT
Nx.

e. Show that the inverse discrete cosine transform, IDCT, is given by 

. x(n) =
√

2

N

N−1∑

k=0

DCT(x)(k)λk cos

(
ωk

(
n + 1

2

))

for n ∈ {0, 1, . . . , N−1} where λ0 = 1√
2 
and λk = 1 for  k ∈ {1, 2, . . . , N−1}. 

f. Consider a (column) vector y and show that 

. IDCT(y) = CNy.

g. Consider a (column) vector x and show that 

. CNCT
Nx = x.

h. Consider a vector x = (1, 2,−2, 2, 3, 0, 1, 3)T . Let  P be a 8×7 matrix whose 
columns are the first 7 columns of the matrix C. We find 

.y = PP T x = (1.0794, 1.7739,−1.6616, 1.6008, 3.3992,
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− 0.3384, 1.2261, 2.9206)T . 

Give an interpretation to the column vector y. 
i. The discrete cosine transform is accomplished fast utilizing the fast Fourier 
transform. Show that 

. DCT(x) = e
iωk
2 F2N(x) + e− iωk

2 F2N(x)

where 

. F2N(x) =
N−1∑

n=0

x(n)e
2πikn
2N for k ∈ {0, 1, . . . , N − 1}.

For more on the discrete cosine transform, we refer the reader to [6]. 
6. Let x be a real row vector and X be its Fourier transform. Show that 

a. If N is even for n ∈ {0, . . . , N  − 1}, we have  

. x(n) = 1

N

⎛

⎜⎝X(0) +
N
2 −1∑

k=1

2rk cos

(
2πi

N
nk + φk

)
+ (−1)n

∣∣∣∣X
(

N

2

)∣∣∣∣

⎞

⎟⎠

where 

. X(k) = rke
iφk for k =

{
1, . . . ,

N

2
− 1

}
.

b. If N is odd for n ∈ {0, . . . , N  − 1}, we have  

. x(n) = 1

N

⎛

⎜⎝X(0) +
N−1
2∑

k=1

2rk cos

(
2πi

N
nk + φk

)
⎞

⎟⎠

where 

. X(k) = rke
iφk for k =

{
1, . . . ,

N − 1

2

}
.

c. Define 
i. If N is even, then 

.

⎧
⎨

⎩

Y(k) = 0 if k = 0 or k = N
2

Y(k) = −iX(k) for k = {
1, . . . , N

2 − 1
}

Y(k) = iX(N − k) for k = {
N
2 + 1, . . . , N − 1

}
.
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ii. If N is odd, we have 

. 

⎧
⎪⎪⎨

⎪⎪⎩

Y(k) = 0 if k = 0

Y(k) = −iX(k) for k =
{
1, . . . , N−1

2

}

Y(k) = iX(N − k) for k =
{

N+1
2 , . . . , N − 1

}
.

Show that X and Y are orthogonal, in particular 

. 〈X,Y〉 = 0.

d. Show that 
i. If N is even, the inverse Fourier transform of Y is 

. y(n) = 1

N

⎛

⎜⎝

N
2 −1∑

k=1

2rk sin

(
2πi

N
nk + φk

)
⎞

⎟⎠

where 

. X(k) = rke
iφk for k =

{
1, . . . ,

N

2
− 1

}
.

ii. If N is odd, the inverse Fourier transform of Y is 

. y(n) = 1

N

⎛

⎜⎝

N−1
2∑

k=1

2rk sin

(
2πi

N
nk + φk

)
⎞

⎟⎠

where 

. X(k) = rke
iφk for k =

{
1, . . . ,

N − 1

2

}
.

The vector y is called the Hilbert transform of x. 
e. Show that 

i. If N is even, we have 

. (x + iy) (n) = 1

N

⎛

⎜⎝X(0) +
N
2 −1∑

k=1

2rke
2πi
N

nk+φk

⎞

⎟⎠

= IFFT (Z) .

ii. If N is odd, we have
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. (x + iy) (n) = 1

N

⎛

⎜⎝X(0) +
N−1
2∑

k=1

2rke
2πi
N

nk+φk

⎞

⎟⎠

= IFFT (Z)

where the IFFT denotes the inverse Fourier transform. The vector Z is defined 
as 
i. If N is even, we have 

. 

⎧
⎨

⎩

Z(k) = X(k) if k = 0 or k = N
2

Z(k) = 2X(k) for k = {
1, . . . , N

2 − 1
}

Z(k) = 0 for k = {
N
2 − 1, . . . , N − 1

}

ii. If N is odd, we have 

. 

⎧
⎪⎪⎨

⎪⎪⎩

Z(k) = X(k) if k = 0

Z(k) = 2X(k) for k =
{
1, . . . , N−1

2

}

Z(k) = 0 for k =
{

N+1
2 , . . . , N − 1

}
.

The complex valued vector x + iy has the same spectral properties as 
the row vector x. For a given n, fixed time, the magnitude and phase of 
the complex number (x + iy) (n) have instantaneous magnitude and phase 
interpretations. For more on Hilbert transform, see [4]. 

f. Show the row vector x and its Hilbert transform y are orthogonal vectors, in 
particular 

. 〈x, y〉 = 0.

g. Suppose a row vector x is given of size N . Consider the corresponding 
complex valued row vector 

. z = x + iy

where y is the Hilbert transform of x. Show the vector z can be obtained as 
z = Cx where C is the cyclic convolution matrix with a mask c. The  mask  c 
is outlined below. 
i. If N is even, then for n ∈ {0, 1, . . . , N  − 1} we have 

.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c(n) = 1 if n = 0
c(n) = 0 if n is even and nonzero

c(n) = 2 sin
(
2πn
N

)

N
(
1−cos

(
2πn
N

)) i if n is odd
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ii. If N is odd, then for n ∈ {0, 1, . . .  , N  − 1} we have 

. 

⎧
⎪⎪⎨

⎪⎪⎩

c(n) = 1 if n = 0

c(n) = − sin( πn
N )

N(cos( πn
N )+1)

i if n is even and nonzero

c(n) = cos( πn
N )+1

N sin( πn
N )

i if n is odd.

h. Consider z = x+ iy. Show that, for large N , the  mask  c for the corresponding 
cyclic convolution matrix action z = Cx can be approximated by: 
i. If N is even, 

. 

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c(0) = 1 if n = 0
c(n) = 0 if n = N

2 or n is even and nonzero
c(n) = 2i

πn
if n is odd and n < N

2
c(n) = 2i

π(n−N)
if n is odd and n > N

2 .

ii. If N is odd, 

. 

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c(0) = 1 if n = 0
c(n) = 0 if n even and nonzero
c(n) = 2i

πn
if n is odd and n ≤ N−1

2
c(n) = 2i

π(n−N)
if n is odd and n ≥ N+1

2 .

7. A finite chirp is a complex row vector of size 1 × N defined as 

. ck
N (n) = e

πin(n−N)k
N .

Let N be given and let j and k be integers between 0 and N −1 inclusive. Define 

. vj,k(n) = 1

N
e
2πijn

N ck
N (n) = 1

N
e

πin
N (2j+(n−N)k).

Form a N × N2 matrix V whose columns are the vectors {vj,k}N−1 
j,k=0 seen as 

columns. Show that 

. V V ∗ = I in particular V V ∗x = x for all vectors x ∈ CN.

For more on chirps on cyclic groups, see [1].
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9Neural Networks 

Machine learning and neural networks are relatively recent topics, propelled by the 
digital revolution and advances in computing ability. The main idea might seem 
simple: learn from data, update weights in neuron layers, and predict using weighted 
sums. The more one studies this topic, the more one realizes how deep and intricate 
the subject is. Questions such as how to update the weights, how many hidden layers 
to implement, and what input data to use are just a few crucial questions needed to 
be answered. 

Suppose we are given an input row data vector .x = (x, y) along with some 
resulting value d that can be attempted to be estimated from the row vector . x. In  
particular, 

. d ≈ w1x + w2y.

The input weights . w1 and . w2 are unknown, yet to be determined. Suppose we are 
getting a stream of input vectors .xi = (xi, yi) and the stream of the corresponding 
resulting values . di . We are seeking the row vector of weights, . w, that best fits the 
data 

. di ≈ w1xi + w2yi.

Our task is to estimate the best choice of the weight vector .w = (w1, w2). We  
have two approaches. We will use row vectors and column vectors interchangeably, 
depending on context, for simplicity of exposition. 

• Least Squares. We can form a matrix A where the row vectors are the . xi . We  
then consider the .2×1 vector of unknowns weights .w = (w1, w2)

T . The vector . d
is a column vector of the values . di . We solve the over-constrained linear system 
of equations 
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. Aw = d ; A∗Aw = A∗d ; w = (A∗A)−1A∗d

to get the best least squares estimate for the weight vector . w. 
• Machine Learning. We still seek a method to find the best choice for the weight 

vector . w in the least squares sense. We will start with some estimate for the 
weight vector . w. With each new resulting value . di along with the new input 
vector . xi , we update the estimate for . wi according to the forthcoming rules. Thus, 
we have the name machine learning. This approach has two main advantages. 
First, we can update at each step without any reference to the matrix A where we 
would need to know all vectors . xi . Second, this technique can be generalized to 
more complicated systems with several layers of neural networks. 
We assign some arbitrary values to the weights . w1 and . w2. For a given input row 
vector .(x, y) and the corresponding observed value d, we define the cost function 
(error function) 

. C(w) = 1

2
(d − (w1x + w2y))2 .

The choice of the constant . 12 is for convenience of taking derivatives. The partial 
derivatives of C with respect to the components of the vector . w are given 
respectively as 

. 
∂C

∂w1
= − (d − (w1x + w2y)) x ;

∂C

∂w2
= − (d − (w1x + w2y)) y.

This yields the gradient vector 

. ∇C = (− (d − (w1x + w2y)) x,− (d − (w1x + w2y)) y)T .

The new improved weight vector .wnew is updated as 

. wnew = wold − μ∇C

where the constant . μ is some small constant value reflecting the speed of machine 
learning. We improve the estimate for .wnew by following the reverse path along 
the gradient . ∇C, thus heading toward a minimum for C. Now suppose we are 
getting a stream of input row vectors .(xi, yi) and the corresponding stream of 
output values . di . The update above translates to the following matrix iterations: 

. wi+1 = wi + μ

(
di

(
xi

yi

)
−

(
x2
i xiyi

xiyi y2
i

)
wi

)
.

We can see this iterative matrix equation in the context of least squares as follows. 
Imagine we apply the least squares technique with only one equation and solve 
the following:
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. 
(
xi yi

) (
w1

w2

)
= di,

(
xi

yi

)
.
(
xi yi

) (
w1

w2

)
= di

(
xi

yi

)
,

(
x2
i xiyi

xiyi y2
i

) (
w1

w2

)
= di

(
xi

yi

)
,

di

(
xi

yi

)
−

(
x2
i xiyi

xiyi y2
i

) (
w1

w2

)
= 0.

Let us turn to a specific example. Assume the initial estimate for the weight 
vector is .w = (1, 4). We generate input row vectors .xi = (xi, yi) with entries 
being random numbers drawn from .[0, 1]. The resulting values . di (which we 
pretend not to know) are obtained, by the rule .di = 2xi + 3yi + 0.2ei , where 
. ei is a random variable, normally distributed with the mean .μ = 0 and the 
standard deviation .σ = 0.2. We choose the learning constant .μ = 0.1. After  
many iterations of updates, we get .w ≈ (2, 3)T . 

>> w=[1 4]’; 

for n=1:400 
x=rand(1,2); 
d=2*x(1)+3*x(2)+0.2*randn(1); 
M = [(x(1))^2 x(1)*x(2); x(1)*x(2) (x(2))^2]; 
w = w+0.1*(d*[x(1) x(2)]’-M*w); 

end; 

>> w 

w =  

2.0213 
3.0094 

Nonlinear Networks with a Bias Once again, consider an input row data vector 
.x = (x, y). We predict 

. z = w1x + w2y + b

where b is some unknown value called the bias. Moreover, we continue with 
prediction using a nonlinear term to predict
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. c = σ (z)

where 

. σ(z) = 1

1 + e−z

is the sigmoid function that has a range .[0, 1]. Note that the derivative, .σ '(z), 
satisfies the equation .σ '(z) = σ(z)(1 − σ(z)). Suppose now for each . x we have 
the true value  d, in the range .[0, 1], or a binary answer .{0, 1}. We calculate the cost 
function as before 

. C(w) = 1

2
(d − c)2 .

The partial derivatives of C with respect to the components of the weight vector . w
and the bias b are given respectively 

. 
∂C

∂w1
= − (d − c) σ (z)(1 − σ(z))x,

∂C

∂w2
= − (d − c) σ (z)(1 − σ(z))y,

∂C

∂b
= − (d − c) σ (z)(1 − σ(z)).

As before, we start with an initial choice for the weights . w1, . w2 and the bias b. The  
weights as well as the bias get updated with each new input vector . x. 

. w1 = w1 − μ
∂C

∂w1
,

w2 = w2 − μ
∂C

∂w2
,

b = b − μ
∂C

∂b
.

Now consider a slightly more complicated situation where we predict two outputs. 

. w11x + w12y + b1 = z1

w21x + w22y + b2 = z2

.c1 = σ(z1)

c2 = σ(z2),
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with the corresponding true values . d1 and . d2 in the range .[0, 1], or binary answers 
.{0, 1}. The cost function is given by 

. C = 1

2
(d1 − c1)

2 + 1

2
(d2 − c2)

2.

This yields 

. 
∂C

∂w11
= −(d1 − c1)σ (z1)(1 − σ(z1))x,

∂C

∂w12
= −(d1 − c1)σ (z1)(1 − σ(z1))y,

∂C

∂w21
= −(d2 − c2)σ (z2)(1 − σ(z2))x,

∂C

∂w22
= −(d2 − c2)σ (z2)(1 − σ(z2))y,

∂C

∂b1
= −(d1 − c1)σ (z1)(1 − σ(z1)),

∂C

∂b2
= −(d2 − c2)σ (z2)(1 − σ(z2)).

The same paradigm follows. Namely, we start with an initial choice for the weights 
and the biases and then successively update them along the steepest descent along 
the gradient. 

Now let us consider a hidden layer in the neural network. As an example, suppose 
we have two inputs, . x1 and . x2, that represent a student’s mathematics and computing 
grade in the first semester at a university. At the end of the undergraduate degree, the 
student writes two graduate school entrance examinations, one mathematics exam 
and one computing exam. Further, suppose the outcome for each exam is either 
fail or pass (binary outputs .{0, 1}). We note that in our model here we can also 
have the input data vector . x to attain binary .{0, 1}, fail or pass values. We set up a 
neural network with a hidden layer to predict the success of these two pass and fail 
examinations based on the . x1 and . x2 values. In particular, we are seeking weights 
. wij and . rij and biases .a1, a2, b1, b2 so that 

. w11x1 + w12x2 + a1 = s1

w21x1 + w22x2 + a2 = s2

.σ(s1) = e1

σ(s2) = e2
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and 

. r11e1 + r12e2 + b1 = c1

r21e1 + r22e2 + b2 = c2

. σ(c1) = f1

σ(c2) = f2.

The cost function yields 

. C = 1

2
(d1 − f1)

2 + 1

2
(d2 − f2)

2

where . d1 and . d2 are the binary outputs, pass or fail, for the mathematics and 
computing entrance examinations, respectively. The values . f1 and . f2 are the 
predicted outcomes for these based on the student input vector . x using the neural 
network with one hidden layer. The interpretation for the hidden layer with two 
interim outputs . e1 and . e2 can be some intermediate performance in mathematics 
and computing during the university studies; it is left unspecified in the model. The 
relevant partial derivatives for the cost function are given as follows: 

. 
∂C

∂r11
= −(d1 − f1)f1(1 − f1)e1,

∂C

∂r12
= −(d1 − f1)f1(1 − f1)e2,

∂C

∂r21
= −(d2 − f2)f2(1 − f2)e1,

∂C

∂r22
= −(d2 − f2)f2(1 − f2)e2,

∂C

∂b1
= −(d1 − f1)f1(1 − f1),

∂C

∂b2
= −(d2 − f2)f2(1 − f2).

Also, 

.
∂C

∂w11
= −(d1 − f1)f1(1 − f1)r11e1(1 − e1)x1

−(d2 − f2)f2(1 − f2)r21e1(1 − e1)x1,
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∂C 
∂w12 

= −(d1 − f1)f1(1 − f1)r11e1(1 − e1)x2 

−(d2 − f2)f2(1 − f2)r21e1(1 − e1)x2, 
∂C 
∂a1 

= −(d1 − f1)f1(1 − f1)r11e1(1 − e1) − (d2 − f2)f2(1 − f2)r21e1(1 − e1), 

∂C 
∂w21 

= −(d1 − f1)f1(1 − f1)r12e2(1 − e2)x1 

−(d2 − f2)f2(1 − f2)r22e2(1 − e2)x1, 
∂C 

∂w22 
= −(d1 − f1)f1(1 − f1)r12e2(1 − e2)x2 

−(d2 − f2)f2(1 − f2)r22e2(1 − e2)x2, 
∂C 
∂a2 

= −(d1 − f1)f1(1 − f1)r12e2(1 − e2) − (d2 − f2)f2(1 − f2)r22e2(1 − e2). 

With each new student, the new input vector .(x1, x2), and the new output vector 
.(d1, d2), we update the weights. After many iterations the updated weights converge 
to the choice of weights . rij and .wij that minimize the cost function. The network 
has learned how to predict the outputs from inputs. In particular, the network has 
learned how to predict the success of the mathematics and computing entrance 
examinations in terms of the first semester mathematics and computing grades. The 
input vector . x can itself be a vector with binary inputs, pass or fail, on the first 
semester mathematics and computing courses. For more on neural networks, we 
refer the reader to [1] and [2]. 

Project 
To decide an output d from an incoming row data vector .x = (x1, x2, x3)

T , with non-negative 
entries, the rule stipulates the following weighted test with a pass threshold: 

test=0.1x(1)+0.5x(2)+0.4x(3); 

if (test>0.8) 
d=1; 

else 
d=0; 

end; 

We can think of the input vector as a data set of test scores between 0 and 1 written by a student. 
The final student score is then obtained by a weighted average of these test scores with the weights 
given. Suppose that if the student gets more than . 0.8 final score, the student passes; otherwise they 
do not. Further, suppose now we do not know these weights nor the threshold value of . 0.8. We are  
going to train the neural network to estimate these weights by feeding results of passing or failing
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for many students. An initial guess of the weights is .w = ( 13 , 1
3 , 1

3 ) and the initial guess for the 
threshold value is . 0.6. We implement the neural network with one layer only with a bias. 

function f=neuralsigmoid(N) 

mu=0.1; 
w=[1/3 1/3 1/3 0.6]; 

for n=1:N 
x=rand(1,3); 

test=0.1*x(1)+0.5*x(2)+0.4*x(3); 

if (test>0.8) 
d=1; 

else 
d=0; 

end; 

z=w(1)*x(1)+w(2)*x(2)+w(3)*x(3)+w(4); 

c=1/(1+exp(-z)); 

Cw1=-(d-c)*c*(1-c)*x(1); 
Cw2=-(d-c)*c*(1-c)*x(2); 
Cw3=-(d-c)*c*(1-c)*x(3); 
Cb=-(d-c)*c*(1-c); 
C=[Cw1 Cw2 Cw3 Cb]; 

w=w-mu*C; 

end; 

w=(1/norm(w(1:3),1))*w; 

f=w; 

After implementing .N = 100,000 iterations, we obtain .w = (0.0966, 0.4840, 0.4194) with a bias 
.−0.8238. Study the sensitivity of this neural network on the machine precision . μ and the number 
of iterations N . Study also how the neural network performs if the initial guess for the weights and 
the bias are closer to the true values. 
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10Some Wavelet Transforms 

When large data sets are given, it is frequently of uttermost interest to be able to 
extract trends in the data and to separate the detail. One needs to create a procedure 
where some wavelet transforms are accomplished contingent on how much detail 
one needs to suppress or equivalently on how much trend to extract. There are many 
procedures to accomplish this and we will discuss two basic ones in this chapter, 
starting with the Haar transform. 

We will motivate by a specific example. Suppose we are given a set of data 
which consists of the monthly average house prices (in dollars) in Calgary starting 
in September 2009 and ending in April 2010. Calgary is a city in Alberta, a province 
in Canada. 

. 

September 2009 459,085
October 2009 462,465
November 2009 464,444
December 2009 451,349
January 2010 441,217
February 2010 458,254
March 2010 471,269
April 2010 460,378.

We set 

. S8 = (459,085, 462,465, 464,444, 451,349, 441,217, 458,254, 471,269, 460,378).

We have eight data points representing the house prices in each month. We want to 
report only four data points which would reflect the bi-monthly house prices. An 
obvious solution is to average the two neighboring months. 
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. 

September to October 2009 460,775
November to December 2009 457,897
January to February 2010 449,736
March to April 2010 465,824

and obtain 

. S4 = (460,775, 457,897, 449,736, 465,824).

We can think of the . S4 data points as the coarse trend extracted from our original 
eight data points. The average of all . S4 values obtained equals the average of all 
original . S8 values. Now that we obtained the coarse trend let us extract the detail 
from our original . S8 data points. This detail information will allow us to retrieve 
the . S8 data points from the . S4 data points. The detail . D4 data points will be the 
differences in the monthly house prices. Namely, we have 

. 

September to October 2009 +3380
November to December 2009 −13,095
January to February 2010 +17,037
March to April 2010 −10,891

In particular 

. D4 = (3380,−13,095, 17,037,−10,891).

For example .D4(1) is the October 2009 house price minus the September 2009 
house price. To get the other . D4 data we take the consecutive differences in the 
monthly house prices. 

We now continue and create the . S2 coarse data and the . D2 detail data from the 
. S4 data alone. The . S4 data points are, of course, the averages over the 4 months. 

. 
September to December 2009 459,336
January to April 2010 457,780

We have 

. S2 = (459,336, 457,780)

and the detail data 

. 
September to December 2009 −2878
January to April 2010 16,088

with
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. D2 = (−2878, 16,088).

Finally the overall 8-month trend is just the average of the original data points 

. September 2009 to April 2010 458,558.

In particular, 

. S1 = 458,558

with the detail 

. September 2009 to April 2010 −1556.

having 

. D1 = −1556.

This type of analysis allows you to view the house prices in Calgary not by monthly 
data, which can fluctuate, but rather by bi-monthly, over the span of 4 months, less 
of fluctuations, and so on. Therefore, we see the coarser trends in the housing data. 
By focusing on the coarser trends we get the general trends in the housing prices by 
removing the fluctuations on various scales. First, we remove the month to month 
fluctuations, then we remove the bi-monthly fluctuations and so on. Note that we 
need the original number of data points to be a power of 2. 

Given the coarse trend together with the corresponding detail, we can recover the 
S data that is one level above. To illustrate take the . S1 and . D1 data and we recover 
the . S2 data as 

. S2(1) = S1 − D1/2 = 459,336 and S2(2) = S1 + D1/2 = 457,780.

We can continue further and find 

. S4(1) = S2(1) − D2(1)/2

S4(2) = S2(1) + D2(1)/2

S4(3) = S2(2) − D2(2)/2

S4(4) = S2(2) + D2(2)/2

and 

.S8(1) = S4(1) − D4(1)/2

S8(2) = S4(1) + D4(1)/2
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S8(3) = S4(2) − D4(2)/2 

S8(4) = S4(2) + D4(2)/2 

S8(5) = S4(3) − D4(3)/2 

S8(6) = S4(3) + D4(3)/2 

S8(7) = S4(4) − D4(4)/2 

S8(8) = S4(4) + D4(4)/2. 

This is based on the fact that 

. 
a + b

2
− b − a

2
= a and

a + b

2
+ b − a

2
= b.

The decomposition presented above is referred to as the Haar transform. To connect 
it to the Haar wavelet basis and the H matrices, we note that the coarse trend 
extraction from the input vector . x is given by 

. Pnx where Pn = H2n(n)H ∗
2n(n)

and the detail data is given by 

. x − Pnx.

To illustrate further, consider the following plot of data X which record the global 
average temperature data anomalies over the last 128 years in relation to the average 
temperature over the last 50 years. The temperature anomalies are multiplied by 
100 to get integer values. For example, the global temperature 128 years ago was 
.0.22◦ lower than the global temperature average over the last 50 years. We denote 
.X(0) = −22. We apply the Haar transform over the coarser and coarser scales, 
starting with 16-year averages, then 32-year averages, then 64-year averages, and 
finally, the 128-year average, which is just the mean of the data. The graphs were 
done on MatLab ® [5] (Figs. 10.1, 10.2, 10.3 and 10.4). 

Consider a row data vector of size . 2n. We will implement the Haar transform 
using a lifting scheme to create the so-called coarse and detail data, two row vectors 
of size .2n−1. Computations are done in place. Let the row data vector be given as 
follows: 

. (a0, b0, a1, b1, a2, b2, . . .).

The Predict operation takes the top values and predicts the bottom values. This 
prediction takes the value itself as the prediction. The Update operation takes the 
values at the bottom and updates the top values. This Update just halves the value 
itself. We decompose 

(a_0, b_0, a_1, b_1, ...)
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Fig. 10.1 Haar transform 
with scale 16 
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Fig. 10.2 Haar transform 
with scale 32 
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Fig. 10.3 Haar transform 
with scale 64 
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Fig. 10.4 Haar transform 
with scale 128 
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split 

even (a_0, a_1, a_2, ... ) top + Update(bottom) 

odd (b_0, b_1, b_2, ... ) bottom - Predict(top) 

and simplify 

(a_0 + (b_0-a_0)/2, a_1 + (b_1-a_1)/2,...) 

(b_0-a_0, b_1-a_1,...). 

This yields 

((a_0+b_0)/2, (a_1+b_1)/2,...) coarse 

(b_0 - a_0, b_1 - a_1, ... ) detail. 

We can reconstruct the original data from the coarse and detail data 

((a_0 + b_0)/2, (a_1 + b_1)/2, ... ) top-Update(bottom) 

(b_0 - a_0, b_1 - a_1, ... ) bottom+Predict(top). 

Simplify 

((a_0+b_0)/2 - (b_0-a_0)/2, (a_1+b_1)/2 - (b_1-a_1)/2,...) 

(b_0 - a_0, b_1 - a_1, ... )
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Simplify 

(a_0, a_1, ...) 

(b_0-a_0+a_0, b_1-a_1+a_1, ... ) 

This yields 

(a_0, a_1, ...) 

(b_0, b_1, ...) 

and we merge the data 

(a_0, b_0, a_1, b_1, ... ). 

The Haar transform takes data sets of size . 2n and decomposes it into two row 
vectors, coarse and detail, both of size .2n−1. While keeping aside the detail, we 
take the coarse data sets of size .2n−1 and decompose it yet again to a coarse data 
set of size .2n−2 and a detail data set of size .2n−2. We then continue recursively. For 
more on wavelet lifting scheme we refer the reader to [4]. 

The Haar transform can be extended to a multivariate setting. Consider the 
following array data that indicate the height elevations over a certain terrain. The 
data are recorded in a .4 × 4 matrix as follows: 

. 

⎛
⎜⎜⎝

150 120 100 80
170 90 60 45
130 110 88 70
90 80 50 40

⎞
⎟⎟⎠ .

Suppose we wish to have a coarse trend which retains the local height elevation 
averages and compresses the data to 25%. To that end we implement the two-
dimensional Haar transform first along the rows 

. 

⎛
⎜⎜⎝

135 90
130 52.5
120 79
85 45

⎞
⎟⎟⎠

and then along the columns to get a matrix SS 

.SS =
(
132.5000 71.2500
102.5000 62

)
.
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The local averages are retained as the moving quadrant averages comprise the trend 
.2 × 2 matrix. Observe 

. (150 + 120 + 170 + 90)/4 = 132.5

(100 + 80 + 60 + 45)/4 = 71.25

(130 + 110 + 90 + 80)/4 = 102.5

(88 + 70 + 50 + 40)/4 = 62.

The coarse data matrix can be expanded to a .4× 4 matrix to have a compatible size 
with the original data matrix. 

. 

⎛
⎜⎜⎝

132.5000 132.5000 71.2500 71.2500
132.5000 132.5000 71.2500 71.2500
102.5000 102.5000 62 62
102.5000 102.5000 62 62

⎞
⎟⎟⎠ .

Upon constructing the coarse matrix we also generate three detail matrices along 
the way, which we denote SD, DS, and DD. Now  

. SD =
( −5 −37.5

−35 −34

)

where we first capture the coarse trend along rows and then detail along columns, in 
particular, 

. (170 + 90 − 150 − 120)/2 = −5

(60 + 45 − 100 − 80)/2 = −37.5

(90 + 80 − 130 − 110)/2 = −35

(50 + 40 − 88 − 70)/2 = −34.

The matrix DS is as follows: 

. DS =
(−55 −17.5

−15 −14

)
.

Matrix DS is where we first capture the detail along rows and then the coarse trend 
along columns, in particular, 

.(120 + 90 − 150 − 170)/2 = −55

(80 + 45 − 100 − 60)/2 = −17.5
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(110 + 80 − 130 − 90)/2 = −15 

(70 + 40 − 88 − 50)/2 = −14. 

Finally, we have the matrix DD: 

. DD =
(−50 5

10 8

)
.

Matrix DD is where we first capture the detail along rows and then detail along 
columns as well, in particular, 

. (150 + 90 − 120 − 170) = −50

(100 + 45 − 80 − 60) = 5

(130 + 80 − 110 − 90) = 10

(88 + 40 − 70 − 50) = 8.

Corresponding reconstruction formulae using the four matrices SS, SD, DS, and 
DD can be developed. We just have to respect the order of rows and columns 
appropriately. 

To summarize the above procedure, when reduced to a .2 × 2 matrix 

. 

(
a b

c d

)

we have the resulting values 

. SS = 1

4
(a + b + c + d)

SD = 1

2
(c + d − a − b)

DS = 1

2
(b + d − a − c)

DD = (a + d − b − c) .

To reconstruct we have 

.S1 = SS − 1

2
SD = 1

2
a + 1

2
b

S2 = SS + 1

2
SD = 1

2
c + 1

2
d
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D1 = DS − 
1 

2 
DD = b − a 

D2 = DS + 
1 

2 
DD = d − c. 

Reconstructing we get 

. 

(
S1 − 1

2D1 S1 + 1
2D1

S2 − 1
2D2 S2 + 1

2D2

)
=

⎛
⎝

(
1
2a + 1

2b
)

− 1
2 (b − a)

(
1
2a + 1

2b
)

+ 1
2 (b − a)(

1
2c + 1

2d
)

− 1
2 (d − c)

(
1
2c + 1

2d
)

+ 1
2 (d − c)

⎞
⎠

=
(

a b

c d

)
.

We can apply several decomposition techniques to get coarser and coarser data sets, 
provided we have a sufficiently large data matrix whose rows and column sizes are 
powers of 2. Each step compresses the data set to 25% of the original. 

Consider the gray scale image of the clown, uploaded in MatLab® [5] of  
size .200 × 320. The corresponding matrix is denoted by A. We perform the Haar 
transform at various levels. First, we decompose A to SS and replace A with the 
matrix SS. This results in the second picture below, of size .100 × 160. Then, we 
continue one level down yet again and replace the SS matrix, yielding the third 
picture below, of size .50× 80. After that we go one more level down yet again. The 
result is the fourth picture below of size .25 × 40 (Figs. 10.5, 10.6, 10.7 and 10.8). 

Daubechies Transform Coarsening a data vector and capturing its detail can be 
obtained by other methods. One of the generalizations of the Haar transform is the 
so-called Daubechies transform. Define coefficients 

Fig. 10.5 Original image of 
a clown
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Fig. 10.6 Clown image 
using Haar transform to halve 
the data 

Fig. 10.7 Clown image 
using Haar transform to 
quarter the data 

. h0 = 1 + √
3

4
√
2

, h1 = 3 + √
3

4
√
2

, h2 = 3 − √
3

4
√
2

, h3 = 1 − √
3

4
√
2

and 

. g0 = h3 , g1 = −h2, g2 = h1 and g3 = −h0.

We will illustrate on matrices of a specific size. Define the right shift matrix and the 
left shift matrix 

.Sr(4) =

⎛
⎜⎜⎝

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎞
⎟⎟⎠ , Sl(4) =

⎛
⎜⎜⎝

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎟⎟⎠
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Fig. 10.8 Clown image 
using Haar transform to retain 
one eighth the data 

along with 

. H0 =
(

h0 h1

g0 g1

)
=

(
0.4830 0.8365

−0.1294 −0.2241

)
and

H1 =
(

h2 h3

g2 g3

)
=

(
0.2241 −0.1294
0.8365 −0.4830

)
.

Note that .Sl(4) = S∗
r (4) and .Sl(4)Sr(4) = I4. Moreover, 

. H0H
∗
0 + H1H

∗
1 =

(
1 0
0 1

)
and H0H

∗
1 =

(
0 0
0 0

)
.

Define the Daubechies matrix 

. D8 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h0 h1 h2 h3 0 0 0 0
g0 g1 g2 g3 0 0 0 0
0 0 h0 h1 h2 h3 0 0
0 0 g0 g1 g2 g3 0 0
0 0 0 0 h0 h1 h2 h3

0 0 0 0 g0 g1 g2 g3

h2 h3 0 0 0 0 h0 h1

g2 g3 0 0 0 0 g0 g1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= I4 ⊗ H0 + Sr(4) ⊗ H1

and observe that
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. D∗
8 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h0 g0 0 0 0 0 h2 g2

h1 g1 0 0 0 0 h3 g3

h2 g2 h0 g0 0 0 0 0
h3 g3 h1 g1 0 0 0 0
0 0 h2 g2 h0 g0 0 0
0 0 h3 g3 h1 g1 0 0
0 0 0 0 h2 g2 h0 g0

0 0 0 0 h3 g3 h1 g1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= I4 ⊗ H ∗
0 + Sl(4) ⊗ H ∗

1 .

The Daubechies matrix . D8 is a unitary matrix. 

. D8D
∗
8 = (I4 ⊗ H0 + Sr(4) ⊗ H1)

(
I4 ⊗ H ∗

0 + Sl(4) ⊗ H ∗
1

)

= I4 ⊗ H0H
∗
0 + Sl(4) ⊗ H0H

∗
1 + Sr(4) ⊗ H1H

∗
0 + I4 ⊗ H1H

∗
1

= I4 ⊗ H0H
∗
0 + I4 ⊗ H1H

∗
1

= I4 ⊗ (
H0H

∗
0 + H1H

∗
1

)

= I4 ⊗ I2

= I8.

Consider an input vector .x = (x0, x1, x2, x3, x4, x5, x6, x7)
T . We obtain 

. 

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h0 h1 h2 h3 0 0 0 0
g0 g1 g2 g3 0 0 0 0
0 0 h0 h1 h2 h3 0 0
0 0 g0 g1 g2 g3 0 0
0 0 0 0 h0 h1 h2 h3

0 0 0 0 g0 g1 g2 g3

h2 h3 0 0 0 0 h0 h1

g2 g3 0 0 0 0 g0 g1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x0

x1

x2

x3

x4

x5

x6

x7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c0

d0

c1

d1

c2

d2

c3

d3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with 

.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h0 g0 0 0 0 0 h2 g2

h1 g1 0 0 0 0 h3 g3

h2 g2 h0 g0 0 0 0 0
h3 g3 h1 g1 0 0 0 0
0 0 h2 g2 h0 g0 0 0
0 0 h3 g3 h1 g1 0 0
0 0 0 0 h2 g2 h0 g0

0 0 0 0 h3 g3 h1 g1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c0

d0

c1

d1

c2

d2

c3

d3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x0

x1

x2

x3

x4

x5

x6

x7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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The vector .c = (c0, c1, c2, c3)
T is the coarse trend and the vector . d =

(d0, d1, d2, d3)
T is the detail. To illustrate we have 

. D8 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.4830 0.8365 0.2241 −0.1294 0 0 0 0

−0.1294 −0.2241 0.8365 −0.4830 0 0 0 0

0 0 0.4830 0.8365 0.2241 −0.1294 0 0

0 0 −0.1294 −0.2241 0.8365 −0.4830 0 0

0 0 0 0 0.4830 0.8365 0.2241 −0.1294

0 0 0 0 −0.1294 −0.2241 0.8365 −0.4830

0.2241 −0.1294 0 0 0 0 0.4830 0.8365

0.8365 −0.4830 0 0 0 0 −0.1294 −0.2241

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Take .x = (1, 2, 3, 4, 5, 5, 4, 3)T and obtain 
.D8x = (2.3108, 0, 5.2686, 0.4830, 7.1057, 0.1294, 4.4067,−1.3195)T . 
This yields .c = (2.3108, 5.2686, 7.1057, 4.4067)T and . d = (0.0000, 0.4830,
.0.1294,−1.3195)T . 

To reconstruct the data purely from its coarse trend, we set 

. ̂x0 = D∗
8(2.3108, 0, 5.2686, 0, 7.1057, 0, 4.4067, 0)

T

and obtain 

. ̂x0 = (2.1038, 1.3627, 3.0625, 4.1083, 4.6127, 5.2623, 3.7210, 2.7667)T .

The detail in the data vector . x is given by 

. ̂x1 = D∗
8(0, 0, 0, 0.4830, 0, 0.1294, 0,−1.3195)T .

This simplifies as 

. ̂x1 = (−1.1038, 0.6373,−0.0625,−0.1083, 0.3873,−0.2623, 0.2790, 0.2333)T .

Observe that 

. ̂x0 + x̂1 = x.

Observe that the mean of the vector . x is equal to the mean of . ̂x0 and the mean of . ̂x1
is zero. Once the coarse data vector c is obtained of half the size, we can recursively 
continue. Set .x = c, and coarse down to the next level. 

The previously discussed Haar transform can be viewed as follows:
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. 

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2

1
2 0 0 0 0 0 0

1 −1 0 0 0 0 0 0
0 0 1

2
1
2 0 0 0 0

0 0 1 −1 0 0 0 0
0 0 0 0 1

2
1
2 0 0

0 0 0 0 1 −1 0 0
0 0 0 0 0 0 1

2
1
2

0 0 0 0 0 0 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x0

x1

x2

x3

x4

x5

x6

x7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c0

d0

c1

d1

c2

d2

c3

d3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with 

. 

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1
2 0 0 0 0 0 0

1 − 1
2 0 0 0 0 0 0

0 0 1 1
2 0 0 0 0

0 0 1 − 1
2 0 0 0 0

0 0 0 0 1 1
2 0 0

0 0 0 0 1 − 1
2 0 0

0 0 0 0 0 0 1 1
2

0 0 0 0 0 0 1 − 1
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c0

d0

c1

d1

c2

d2

c3

d3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x0

x1

x2

x3

x4

x5

x6

x7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We set 

. 

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2

1
2 0 0 0 0 0 0

1 −1 0 0 0 0 0 0
0 0 1

2
1
2 0 0 0 0

0 0 1 −1 0 0 0 0
0 0 0 0 1

2
1
2 0 0

0 0 0 0 1 −1 0 0
0 0 0 0 0 0 1

2
1
2

0 0 0 0 0 0 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= I4 ⊗ H with H =
( 1

2
1
2

1 −1

)

and 

. 

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1
2 0 0 0 0 0 0

1 − 1
2 0 0 0 0 0 0

0 0 1 1
2 0 0 0 0

0 0 1 − 1
2 0 0 0 0

0 0 0 0 1 1
2 0 0

0 0 0 0 1 − 1
2 0 0

0 0 0 0 0 0 1 1
2

0 0 0 0 0 0 1 − 1
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= I4 ⊗ H−1.

Moreover, we set
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. 

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= I4 ⊗ J with J =
(
1 0
0 0

)

and 

. 

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= I4 ⊗ K with K =
(
0 0
0 1

)
.

Note that 

. 

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c0

d0

c1

d1

c2

d2

c3

d3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= (I4 ⊗ J )

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c0

d0

c1

d1

c2

d2

c3

d3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c0

0
c1

0
c2

0
c3

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and 

. 

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c0

d0

c1

d1

c2

d2

c3

d3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= (I4 ⊗ K)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c0

d0

c1

d1

c2

d2

c3

d3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
d0

0
d1

0
d2

0
d3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The reconstruction with the detail removed is now given by
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. ̂x0 =
(
I4 ⊗ H−1

)
(I4 ⊗ J ) (I4 ⊗ H) x

=
(
I4 ⊗ H−1JH

)
x

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2

1
2 0 0 0 0 0 0

1
2

1
2 0 0 0 0 0 0

0 0 1
2

1
2 0 0 0 0

0 0 1
2

1
2 0 0 0 0

0 0 0 0 1
2

1
2 0 0

0 0 0 0 1
2

1
2 0 0

0 0 0 0 0 0 1
2

1
2

0 0 0 0 0 0 1
2

1
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= P0x.

The reconstruction with the coarse removed, detail kept, is given by 

. ̂x1 =
(
I4 ⊗ H−1

)
(I4 ⊗ K) (I4 ⊗ H) x

=
(
I4 ⊗ H−1KH

)
x

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2 − 1

2 0 0 0 0 0 0
− 1

2
1
2 0 0 0 0 0 0

0 0 1
2 − 1

2 0 0 0 0
0 0 − 1

2
1
2 0 0 0 0

0 0 0 0 1
2 − 1

2 0 0
0 0 0 0 − 1

2
1
2 0 0

0 0 0 0 0 0 1
2 − 1

2
0 0 0 0 0 0 − 1

2
1
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= P1x.

Note that .P0 + P1 = I ; both .P0, P1 are hermitian matrices and orthogonal 
projections: 

. P 2
0 =

(
I ⊗ H−1JH

)2 = I ⊗ (H−1JH)(H−1JH) = I ⊗ (H−1JH) = P0,

. P 2
1 =

(
I ⊗ H−1KH

)2 = I ⊗ (H−1KH)(H−1KH) = I ⊗ (H−1KH) = P1,

.P0P1 =
(
I ⊗ H−1JH

) (
I ⊗ H−1KH

)
= 0
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and 

. P1P0 =
(
I ⊗ H−1KH

) (
I ⊗ H−1JH

)
= 0.

In the Haar transform the coarse reconstruct vector . x0 has the same mean as . x. 
The Daubechies transform can now be viewed similarly as 

. ̂x0 = D∗
8 (I4 ⊗ J )D8x

= (
I4 ⊗ H ∗

0 + Sl(4) ⊗ H ∗
1

)
(I4 ⊗ J ) (I4 ⊗ H0 + Sr(4) ⊗ H1) x

= (
I4 ⊗ H ∗

0 JH0 + Sl(4) ⊗ H ∗
1 JH0 + Sr(4) ⊗ H ∗

0 JH1 + I4 ⊗ H ∗
1 JH1

)
x

= (
I4 ⊗ (

H ∗
0 JH0 + H ∗

1 JH1
) + Sl(4) ⊗ H ∗

1 JH0 + Sr(4) ⊗ H ∗
0 JH1

)
x

= P0x

and 

. ̂x1 = D∗
8 (I4 ⊗ K)D8x

= (
I4 ⊗ H ∗

0 + Sl(4) ⊗ H ∗
1

)
(I4 ⊗ K) (I4 ⊗ H0 + Sr(4) ⊗ H1) x

= (
I4 ⊗ H ∗

0 KH0 + Sl(4) ⊗ H ∗
1 KH0 + Sr(4) ⊗ H ∗

0 KH1 + I4 ⊗ H ∗
1 KH1

)
x

= (
I4 ⊗ (

H ∗
0 KH0 + H ∗

1 KH1
) + Sl(4) ⊗ H ∗

1 KH0 + Sr(4) ⊗ H ∗
0 KH1

)
x

= P1x

where 

.P0 =
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h20 + h22 h0h1 + h2h3 h0h2 h0h3 0 0 h0h2 h1h2

h0h1 + h2h3 h21 + h23 h1h2 h1h3 0 0 h0h3 h1h3

h0h2 h1h2 h20 + h22 h0h1 + h2h3 h0h2 h0h3 0 0

h0h3 h1h3 h0h1 + h2h3 h21 + h23 h1h2 h1h3 0 0

0 0 h0h2 h1h2 h20 + h22 h0h1 + h2h3 h0h2 h0h3

0 0 h0h3 h1h3 h0h1 + h2h3 h21 + h23 h1h2 h1h3

h0h2 h0h3 0 0 h0h2 h1h2 h20 + h22 h0h1 + h2h3

h1h2 h1h3 0 0 h0h3 h1h3 h0h1 + h2h3 h21 + h23

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Hence, 

. P0 =
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.2835 0.3750 0.1082 −0.0625 0 0 0.1082 0.1875

0.3750 0.7165 0.1875 −0.1082 0 0 −0.0625 −0.1082

0.1082 0.1875 0.2835 0.3750 0.1082 −0.0625 0 0

−0.0625 −0.1082 0.3750 0.7165 0.1875 −0.1082 0 0

0 0 0.1082 0.1875 0.2835 0.3750 0.1082 −0.0625

0 0 −0.0625 −0.1082 0.3750 0.7165 0.1875 −0.1082

0.1082 −0.0625 0 0 0.1082 0.1875 0.2835 0.3750

0.1875 −0.1082 0 0 −0.0625 −0.1082 0.3750 0.7165

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Also 

. P1 =
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g20 + g22 g0g1 + g2g3 g0g2 g0g3 0 0 g0g2 g1g2

g0g1 + g2g3 g21 + g23 g1g2 g1g3 0 0 g0g3 g1g3

g0g2 g1g2 g20 + g22 g0g1 + g2g3 g0g2 g0g3 0 0

g0g3 g1g3 g0g1 + g2g3 g21 + g23 g1g2 g1g3 0 0

0 0 g0g2 g1g2 g20 + g22 g0g1 + g2g3 g0g2 g0g3

0 0 g0g3 g1g3 g0g1 + g2g3 g21 + g23 g1g2 g1g3

g0g2 g0g3 0 0 g0g2 g1g2 g20 + g22 g0g1 + g2g3

g1g2 g1g3 0 0 g0g3 g1g3 g0g1 + g2g3 g21 + g23

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

So 

. P1 =
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.7165 −0.3750 −0.1082 0.0625 0 0 −0.1082 −0.1875

−0.3750 0.2835 −0.1875 0.1082 0 0 0.0625 0.1082

−0.1082 −0.1875 0.7165 −0.3750 −0.1082 0.0625 0 0

0.0625 0.1082 −0.3750 0.2835 −0.1875 0.1082 0 0

0 0 −0.1082 −0.1875 0.7165 −0.3750 −0.1082 0.0625

0 0 0.0625 0.1082 −0.3750 0.2835 −0.1875 0.1082

−0.1082 0.0625 0 0 −0.1082 −0.1875 0.7165 −0.3750

−0.1875 0.1082 0 0 0.0625 0.1082 −0.3750 0.2835

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Once again note that .P0 +P1 = I . Also observe .P0, P1 are hermitian matrices, and 
they are orthogonal projections. Indeed
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. P 2
0 = (

D∗ (I4 ⊗ J ) D
)2

= (
D∗ (I4 ⊗ J ) D

) (
D∗ (I4 ⊗ J ) D

)

= (
D∗ (I4 ⊗ J ) D

)

= P0

. P 2
1 = (

D∗ (I4 ⊗ K)D
)2

= (
D∗ (I4 ⊗ K)D

) (
D∗ (I4 ⊗ K)D

)

= (
D∗ (I4 ⊗ K)D

)

= P1

. P0P1 = (
D∗ (I4 ⊗ J )D

) (
D∗ (I4 ⊗ K)D

) = 0

and 

. P1P0 = (
D∗ (I4 ⊗ K)D

) (
D∗ (I4 ⊗ J )D

) = 0.

The general Daubechies matrix can be obtained using the following formula: 

. D2n = In ⊗ H0 + Sr(n) ⊗ H1.

Consider the plot (Fig. 10.9) of detail removal from a data input vector of size 
.N = 64. The first plot reconstructs the signal after one coarsening, the second 
plot, (Fig. 10.10), reconstructs the signal after two coarsenings, and the third plot, 
(Fig. 10.11), reconstructs the signal after three coarsenings. We refer the reader to 
[2] for more on the subject. All plots were done on MatLab ® [5]. 

Daubechies Lifting Scheme Similar to the Haar transform lifting scheme, the 
Daubechies lifting scheme can also be implemented. The input data vector 

706050403020100 
0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

Fig. 10.9 Reconstruction of signal after one coarsening
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Fig. 10.10 Reconstruction of signal after two coarsenings 
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Fig. 10.11 Reconstruction of signal after three coarsenings 

.x = (a0, b0, a1, b1, . . . , an−1, bn−1)
T is split into the even top wire . a =

(a0, a1, . . . an−1)
T and the bottom odd wire .b = (b0, b1, . . . , bn−1)

T . We have  
two updates and one predict operation. The forward Daubechies lifting scheme 
produces two vectors of half the size. The top even wire will produce the coarse 
trend . c and the bottom odd wire will produce the detail . d, albeit with a cyclic shift 
as compared to the action of the Daubechies matrix D. Implementing this we get: 

. Update1 : √
3ai .

Then 

. odd = odd − Update1(even)

is followed by 

.Predict :
√
3

4
bi +

√
3 − 2

4
bi+1
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. with cyclic wrap around

√
3

4
bn−1 +

√
3 − 2

4
b1.

When this is implemented we get 

. even = even + Predict(odd)

followed by 

. Update2 : ai−1 with cyclic wrap around an−1.

When this is implemented we get 

. odd = odd + Update2(even).

Finally, we normalize to get 

. even =
√
3 + 1√
2

even and odd = 1 − √
3√

2
odd.

The resulting data on the top even wire correspond to the coarse trend . c when the 
Daubechies matrix D was applied to the input vector . x. Similarly, the data on the 
bottom odd wire correspond to the detail . d when the Daubechies matrix D was 
applied to the input vector . x. 

Now consider the inverse Daubechies lifting scheme. It takes the input as two 
vectors . c and . d. The vector . c, the coarse trend, is put on the top even wire and the 
vector . d, the detail, is put on the bottomwire. We proceed as follows. First normalize 

. even =
√
3 − 1√
2

even and odd = −
√
3 + 1√
2

odd.

Then let 

. odd = odd − Update2(even)

and 

. even = even − Predict(odd)

and follow this by redefining 

.odd = odd + Update1(even).
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Fig. 10.12 Daubechies 
reconstruction of clown 
image 

Fig. 10.13 The 
corresponding Haar transform 
reconstruction of clown 
image 

This recovers the vector . x, upon merging the even and the odd wire. The material 
presented here was drawn from [1]. 

Figure 10.12 shows the Daubechies reconstruction of the clown image from 
the coarse data set, two levels down, with the corresponding details ignored. 
The next picture, Fig. 10.13, shows the Haar transform equivalent, in particular, a 
reconstruction from the coarse data, two levels down, detailed ignored. 

Wavelet transform is typically introduced in the context of functions defined on 
the real line. Still using the example of Daubechies wavelets, the scaling function 
(known as the father wavelet), .φ(t), is defined on the real line, satisfying the two-
scale relation 

.φ(t) = h0φ(2t) + h1φ(2t − 1) + h2φ(2t − 2) + h3φ(2t − 3).
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Fig. 10.14 Daubechies father wavelet 

The mother wavelet, .ψ(t), is defined on the real line satisfying the two-scale 
relation: 

. ψ(t) = g0φ(2t) + g1φ(2t − 1) + g2φ(2t − 2) + g3φ(2t − 3).

Using the matrix approach above we can obtain the father wavelet as follows. 
Choose a standard basis vector .e = (1, 0, 0, 0)T . The size of this vector is arbitrary. 
Use this vector as the coarse vector and produce a vector . φ0 in . R8 having the vector 
. e as its coarse content with zero detail. Once again, use this vector . φ0 to produce a 
vector . φ1 in .R16 having the vector . φ0 as the coarse content with zero detail. Continue 
this recursion indefinitely. In the limit we obtain the father wavelet upon proper 
rescaling. The plot for the Daubechies father wavelet is given in Fig. 10.14. (This  
plot and the corresponding mother wavelet were done on MatLab ® [5].) 

To obtain the mother wavelet we proceed as follows. Choose a standard basis 
vector .e = (1, 0, 0, 0)T ; the size of this vector is once again arbitrary. Use the 
vector e to produce a vector . ψ0 in . R8 having the vector . e as its detail content with 
zero coarse content. Now use this vector . φ0 to produce a vector . φ1 in .R16 having 
the vector . φ0 as the coarse content with zero detail. We continue this recursion 
indefinitely. In the limit we obtain the mother wavelet upon proper rescaling. Find 
below the plot for the Daubechies mother wavelet (Fig. 10.15).
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Fig. 10.15 Daubechies mother wavelet 

Project 
Find below the weekly ICU admissions in Alberta, Canada, starting with the week 3/23/2020– 
3/29/2020 and ending with the week 8/23/2021–8/29/2021. We have 64 data entries. Perform the 
Haar transform on this data by removing the details at various levels. Do a similar analysis using 
the Daubechies transform. 

x =  
[7  12  8 5 10  2 1 1 2 1 7  
6 4 4 0 1 16 9 8 9 3 3  
4 3 5 10 13 9 8 9 13 13 26  
51 38 66 82 59 44 86 81 46 41 29 
33 24 17 26 20 11 26 38 27 54 67 
88 199 77 99 77 60 33 24 19] 
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AAppendix 

Vectors 

Linear Independence We denote by . R the field of real numbers and by . C the 
field of complex numbers. We will work with a vector space .V = Cn or . V = Rn

depending on the context. Vectors will be seen as columns and will be denoted by 
the transpose of a row vector in the running text, for example, 

. x = (x1, x2, x3)
T =

⎛
⎝

x1

x2

x3

⎞
⎠ .

When considering a data vector we will sometimes refer to it as a row data vector 
and view it as a row. We say that a set of vectors .{xi}ki=1 in V is linearly independent 
if 

. 

k∑
i=1

cixi = 0 implies ci = 0 for all i;

otherwise, we will refer to the set of vectors as linearly dependent. 
For example, the vectors 

. {(1, 2,−3, 4)T , (0, 1, 1, 1)T , (0,−1, 1, 0)T }

are linearly independent. Indeed, if 

. c1(1, 2,−3, 4)T + c2(0, 1, 1, 1)
T + c3(0,−1, 1, 0)T = 0
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we obtain the linear system of equations 

. c1 = 0

2c1 + c2 − c3 = 0

−3c1 + c2 + c3 = 0

4c1 + c2 = 0.

This set of equations implies that .c1 = c2 = c3 = 0. This means that no vector in 
the set can be expressed as a linear combination of the remaining ones. The above 
test for linear independence of vectors is a very powerful tool, as checking directly 
which vectors might be linearly dependent on other vectors would be virtually 
impossible given a large set of vectors. 

The following set of vectors 

. {(3,−1, 5, 2)T , (0, 1, 1, 1)T , (1,−1, 1, 0)T }

is linearly dependent since 

. (1)(3,−1, 5, 2)T − (2)(0, 1, 1, 1)T − (3)(1,−1, 1, 0)T = 0.

This set of vectors is small in size and one might have spotted that the following 
linear relationship holds 

. (3,−1, 5, 2)T = 2(0, 1, 1, 1)T + 3(1,−1, 1, 0)T .

Spanning Set We say that a set of vectors {xi}k 
i=1 in V is a spanning set for V if, 

for every vector y ∈ V there exist scalars {ci}k 
i=1 such that 

. y =
k∑

i=1

cixi .

For example, the set of vectors 

. {(1, 1, 1)T , (−1, 2, 2)T , (−1, 1, 1)T , (0, 1, 0)T }

is a spanning set for R3. To confirm this fact we must show that for any y = 
(y1, y2, y3)

T ∈ R3 there exist c1, c2, c3, c4 so that 

.(y1, y2, y3)
T = c1(1, 1, 1)

T + c2(−1, 2, 2)T + c3(−1, 1, 1)T + c4(0, 1, 0)
T .
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This vector equation yields the linear system 

. c1 − c2 − c3 = y1

c1 + 2c2 + c3 + c4 = y2

c1 + 2c2 + c3 = y3.

When written in matrix form we obtain 

. Ac = y

where 

. A =
⎛
⎝
1 −1 −1 0
1 2 1 1
1 2 1 0

⎞
⎠ , c =

⎛
⎜⎜⎝

c1

c2

c3

c4

⎞
⎟⎟⎠ and y =

⎛
⎝

y1

y2

y3

⎞
⎠ .

To show that a solution vector c exists for any vector y we consider the reduced 
row echelon form for A 

. 

⎛
⎝
1 0 −1/3 0
0 1 2/3 0
0 0 0 1

⎞
⎠ .

The number of leading ones in the reduced row echelon form of A is 3. This 
means that the augmented matrix (A y) is consistent and the above set of vectors 
spans R3. 

However, the set of vectors 

. {(1, 1, 1)T , (−1, 2, 2)T , (0, 3, 3)T , (2,−1,−1)T }

is not a spanning set for R3. Let  y = (0, −1, 1)T ∈ R3. We show that there do not 
exist c1, c2, c3, c4 so that 

. (0,−1, 1)T = c1(1, 1, 1)
T + c2(−1, 2, 2)T + c3(0, 3, 3)

T + c4(2,−1,−1)T .

We consider a system of equations and obtain 

.c1 − c2 + 2c4 = 0

c1 + 2c2 + 3c3 − c4 = −1

c1 + 2c2 + 3c3 − c4 = 1.
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The reduced row echelon form for this augmented linear system is given by 

. 

⎛
⎝
1 0 1 1 0
0 1 1 −1 0
0 0 0 0 1

⎞
⎠ .

The last row in this augmented matrix is inconsistent, which indicates that no 
solution c = (c1, c2, c3, c4)T exists for the system. Also note that the coefficient 
matrix has only two leading ones in its reduced row echelon form. This also shows 
the above set of vectors cannot span R3. 

Rank We could have phrased our arguments above regarding the existence of 
solutions in terms of the rank of matrix A. If A is an m × n matrix then the rank 
of A is the number of leading ones in the reduced row echelon form of A. If the 
rank of A is m, then the linear system Ax = y is consistent. If the rank of A is less 
than the rank of the augmented matrix (A y), then the linear system is inconsistent. 
Thus, if the rank of A is less than m then there is a choice of y so that Ax = y is 
inconsistent. In the case where m = n, if the rank of A is n, then the linear system 
Ax = y has a unique solution for all possible vectors y. 

Basis We say that a set of vectors {xi}k 
i=1 in V is a basis for the vector space V 

if this set is both a linearly independent set and a spanning set for V . If we have  n 
vectors in Rn or Cn , it is sufficient to test either linear independence or the spanning 
condition. The test for linear independence is much easier. Therefore, if a set of n 
vectors in Rn or Cn is linearly independent, then the set is also a spanning set and 
thus constitutes a basis. 

The following set of vectors is a basis for R3 : 

. 

{
(1, 1, 1)T , (2, 1,−1)T , (1,−1,−1)T

}
.

Indeed, the matrix 

. 

⎛
⎝
1 2 1
1 1 −1
1 −1 −1

⎞
⎠

has rank 3. However, the set of vectors 

. 

{
(1, 1, 1)T , (2, 1, 1)T , (5, 3, 3)T

}

is not a basis for R3 as the matrix
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. 

⎛
⎝
1 2 5
1 1 3
1 1 3

⎞
⎠

has rank 2. 
If two sets of vectors {xi}n 

i=1 and {yi}m 
i=1 are each a basis for V then we must 

have n = m. Thus, we can say that vector space V has dimension n, and denote it 
by dim(V ) = n. 

The standard basis (whether we are working in Rn or Cn ) are  the  n vectors 
{e1, e2, · · ·  , en} , where ei is the n × 1 column vector with a one in the ith position 
and zeros everywhere else. 

Inner Product Spaces Let V be a vector space and k be the complex conjugate of 
scalar k. Consider a function 

. 〈·, ·〉 : V × V → C

satisfying for all vectors x, y, z ∈ V and scalars k 

• 〈x, y〉 = 〈y, x〉
• 〈kx, y〉 = k 〈x, y〉 and 〈x, ky〉 = k 〈x, y〉
• 〈x + y, z〉 = 〈x, z〉 + 〈y, z〉
• 〈x, x〉 ≥ 0 
• 〈x, x〉 = 0 implies x = 0. 

This function induces an inner product on V and endows the vector space V with 
euclidean geometry. Sometimes the inner product is referred to as the dot product, 
with the notation 

. 〈x, y〉 = x · y

In Rn and Cn we have a default inner product. Suppose x = (x1, x2, · · ·  , xn)
T 

and y = (y1, y2, · · ·  , yn)
T are vectors in V.  If V = Rn 

. 〈x, y〉 = x · y =
n∑

i=1

xiyi .

If V = Cn then we have 

. 〈x, y〉 = x · y =
n∑

i=1

xiyi .
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For example, let 

. x = (4, 1,−i, 2 + 3i)T and y = (−2i,−1, i − 2,−3)T .

Then 

. 〈x, y〉 = x · y = (4)(−2i) + (1)(−1) + (−i)(i − 2) + (2 + 3i)(−3)

= (4)(2i) + (1)(−1) + (−i)(−2 − i) + (2 + 3i)(−3)

= i − 8.

The euclidean norm (or length) of a vector x, denoted by ||x||, is the non-negative 
real number given by 

. ||x||2 = 〈x, x〉 .

Let x = (4, 1,−i, 2 + 3i)T then ||x|| = √
31 as 

. ||x||2 = (4)(4) + (1)(1) + (−i)(i) + (2 + 3i)(2 − 3i) = 16 + 1 + 1 + 13 = 31.

The geometric interpretation for the inner product of two not necessarily 
orthogonal vectors x and y is drawn from the following relationship: 

. 〈x, y〉 = ||x||||y|| cos(θ),

where θ is the (smaller) angle between the vectors x and y. 
Two vectors are orthogonal (perpendicular) if and only if x · y = 0. For example, 

. x = (1,−1, 2)T and y =
(

−2,−1,
1

2

)T

are orthogonal. Their inner product x · y = (1)(−2) + (−1)(−1) + (2)( 1 2 ) = 0. 
A basis that consists of mutually orthogonal vectors with unit length is called an 

orthonormal basis. 

Projection Consider two vectors x and y. The projection of x onto y is a vector z 
that is a multiple of y with the further property that 〈z, x − z〉 = 0. It follows that 

. z = projyx = 〈x, y〉
||y||2 y and ||z|| = | 〈x, y〉 |

||y|| .

Indeed, if z = ky then 

. 〈z, x − z〉 = 〈ky, x − ky〉
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= k 〈y, x〉 − kk 〈y, y〉
= 0. 

Consequently 

. k = 〈x, y〉
||y||2 .

We can think of the vector z as the component of the vector x as seen along y. 
The vector x− z is the component of the vector x that is orthogonal to y, i.e., purely 
independent of y. Vector x is the sum of these components: 

. x = z + (x − z) .

See Fig. A.1. 
For example, let 

. x = (1, 2, 1)T and y = (−1, 1, 1)T .

We have 

. z = projyx = 2

3
(−1, 1, 1)T

and 

. x − z = (1, 2, 1)T − 2

3
(−1, 1, 1)T =

(
5

3
,
4

3
,
1

3

)T

= 1

3
(5, 4, 1)T .

Fig. A.1 The components of 
vector x
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Note 

. z · (x − z) = 2

3
(−1, 1, 1)T · 1

3
(5, 4, 1)

= 2

9
((−1)(5) + (1)(4) + (1)(1))

= 0.

Gram-Schmidt Orthogonalization Consider the following vectors: 

. u1 = (1, 1, 1)T ,u2 = (2, 1, 1)T and u3 = (1, 1, 0)T .

The set of vectors {u1,u2,u3} is a basis for R3 but it is not orthogonal. Our inten-
tion here is to use the dot product to construct an orthonormal basis {w1,w2,w3} 
for R3. To that end we implement the Gram-Schmidt orthogonalization process. 

• Normalize the first basis vector u1 to obtain w1, 

. w1 =
√
3

3
(1, 1, 1)T .

• Consider 

. projw1
u2 =

〈
(2, 1, 1)T ,

√
3

3
(1, 1, 1)T

〉 √
3

3
(1, 1, 1)T = 4

3
(1, 1, 1)T .

Calculate u2 − projw1 
u2 = 1 3 (2, −1, −1)T and normalize the result to obtain the 

second basis vector w2 = 
√
6 
6 (2, −1, −1)T . 

• Consider 

. projw1
u3 = 2

3
(1, 1, 1)T and projw2

u3 = 1

6
(2,−1,−1)T .

Calculate u3 − projw1 
u3 − projw2 

u3 = 1 2 (0, 1,−1)T and normalize the result to 

obtain our third basis vector w3 = 
√
2 
2 (0, 1,−1)T . 

After performing Gram-Schmidt orthogonalization we obtain an orthonormal set, 
which must be a basis for R3, 

. {w1,w2,w3} =
{√

3

3
(1, 1, 1)T ,

√
6

6
(2,−1,−1)T ,

√
2

2
(0, 1,−1)T

}
.
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In general, if a vector space V has basis {ui}k 
i=1 then, after performing the Gram-

Schmidt orthogonalization process, we have the orthogonal basis {wi}k 
i=1 for V . In  

particular 

. span {ui}ki=1 = span {wi}ki=1 with wi · wj = 0 for i /= j, and ||wi || = 1,

i = 1, 2, . . . , k.

Orthogonal Complement of a Subspace Let V be a vector space of dimension n. 
Let W be a linear subspace of V of dimension k. The orthogonal complement of W 
is 

. W⊥ = {x ∈ V such that 〈x, y〉 = 0 for all y ∈ W } .

W⊥ is a subspace of V,  W ∩W⊥ = {0} and dim(W)+dim(W⊥) = k+(n−k) = n. 

For example, consider 

. W = span{(−1, 3, 2, 7)T , (3,−8,−3,−24)T }.

To find W⊥ we can form 

. A =
(−1 3 2 7

3 −8 −3 −24

)

and solve the system Ax = 0. We find 

. W⊥ = span
{
(16, 3, 0, 1)T , (−7,−3, 1, 0)T

}
.

The exercises below can provide a practice for the fundamental concepts and we 
encourage the reader to use mathematical software to accomplish the task. 

Exercises 

1. Show the following set of vectors is linearly dependent. 

. {(1, 2,−2, 1)T , (4, 2,−1, 1)T , (−5, 2,−4, 1)T }.

2. Show 

. span{(0, 2,−1, 1, 0)T , (1, 4, 2,−1, 1)T , (−5, 2, 1,−4, 1)T ,

.(0, 0, 1, 1, 1)T , (1,−1, 1,−1, 0)T } = R5.
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3. Show the following set of vectors 

. {(2, 3, 1, 2, 3)T , (−2, 3, 2, 1, 2)T , (−2, 1, 1, 1, 5)T }

is linearly independent. 
4. Use the Gram Schmidt orthogonalization to find an orthonormal basis for 

. W = span{(1, 0, 1,−1, 0)T , (1, 1, 1, 1, 1)T , (2, 0, 1, 0, 1)T , (−1, 1,−1, 1, 0)}.

5. Consider the subspace W of R5 given by 

. W = span
{
(1, 0,−2, 3, 2)T , (1,−1, 1, 0, 2)T , (3, 2, 0, 1,−1)T

}
.

a. Find an orthonormal basis for W . 
b. Find an orthonormal basis for W⊥. 

6. The Simplex Method. Consider an optimization problem 

. maximize z = 2x1 + 3x2

subject to 

. x1 + 3x2 ≤ 12

x1 + x2 ≤ 5.

Both variables x1 and x2 are assumed to be positive. Rewrite the above system as 
a system with equalities 

. z − 2x1 − 3x2 = 0

x1 + 3x2 + s = 12

x1 + x2 + t = 5.

Here we maximize z subject to x1, x2, s, t  ≥ 0. The variables s, t are called 
slack variables introduced in order to have equalities. We create a tableau; the 
first column corresponds to variable z, the second column to variable x1, the third 
column to x2, the fourth column to s, the fifth column to t , and the last column six 
are the constraint values. The first row of the tableau is the optimization request 
and the next rows are the constraint equations. In particular, 

.

⎛
⎝
1 −2 −3 0 0 0
0 1 3 1 0 12
0 1 1 0 1 5

⎞
⎠ .
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A basic solution, an obvious beginning step, is obtained as follows. Set x1 = 
x2 = 0, s = 12, t = 5, and, as a result, z = 5. This is a first step in the so 
called simplex method to search for improvements in the feasible solutions until 
an optimization is reached. At each stage, there are two fundamental steps in the 
method. 

• Locate the variable x1 or x2 that has the smallest corresponding (negative) 
number in the first row. We detect the variable for which we would record 
the biggest improvement toward the optimization. We select the variable x2 
associated with the value −3 in the  first  row.  

• Constraints have to be satisfied. This will be ensured by choosing the smaller 
value between 

. 
12

3
= 4 vs

5

1
= 5.

The entries in the last (constraint) column of the tableau are divided by the 
entries in the x2 column, the chosen variable. We skip the first row. Since 
4 < 5 we choose second row. We now have a pivot, the value 3, the entry in 
the second row, and the third column of the tableau. We have 

⎛
⎝
1 −2 −3 0 0 0
0 1 3 1 0 12
0 1 1 0 1 5

⎞
⎠ .. 

We now perform elementary operations. First, we multiply row two by 1 3 . Then 
proper multiples of this new row are added to all the remaining rows in the 
tableau. In particular, 

. 

⎛
⎝
1 −2 −3 0 0 0
0 1

3 1 1
3 0 4

0 1 1 0 1 5

⎞
⎠ →

⎛
⎝
1 −1 0 1 0 12
0 1

3 1 1
3 0 4

0 2
3 0 − 1

3 1 1

⎞
⎠ .

We implement the next step. We identify the variable corresponding to the lowest 
(negative) value in the first row. The variable x1 is located corresponding to the 
value −1 in the first row of the new tableau. We now compare 

. 
4
1
3

= 12 vs
1
2
3

= 3

2
.

The third row is chosen and we pivot about the entry 2 3 , located in the row three 
and the column two of the tableau. We have
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. 

⎛
⎝
1 −1 0 1 0 12
0 1

3 1 1
3 0 4

0 2
3 0 − 1

3 1 1

⎞
⎠ .

Multiply row three by 3 2 and create a new row three. Then add proper multiples 
of this row to the remaining rows in the tableau. In particular, 

. 

⎛
⎝
1 −1 0 1 0 12
0 1

3 1 1
3 0 4

0 1 0 − 1
2

3
2

3
2

⎞
⎠ →

⎛
⎝
1 0 0 1

2
3
2

27
2

0 0 1 1
2 − 1

2
7
2

0 1 0 − 1
2

3
2

3
2

⎞
⎠ .

All the tableau entries in row one are now non-negative, the algorithm ends. To 
read off the solution to our optimization problem we set the slack variables s, t = 
0 and we obtain the solution 

. x1 = 3

2
and x2 = 7

2
.

Verify this is indeed a feasible solution to our system and check its optimality 
using geometrical arguments. The topic of linear programming, the simplex 
method, is a very rich subject with crucial applications in many vital branches 
of the sciences. The art of the subject is to ensure fast algorithms to solve large 
systems. 

Matrices 

Matrices We say that A is a linear operator from a vector space V into a vector 
space W if for all vectors . x, y ∈ V

• . A(x + y) = Ax + Ay.
• .A(cx) = cAx for all scalars . c.

If we choose a basis for V then the linear operator A can be represented as a 
matrix with respect to that basis. We will refer to a linear operator and its matrix 
representation in the standard basis interchangeably depending on the context. 

Consider the vector .x = (x1, x2, x3)
T = x1e1 + x2e2 + x3e3 and let 

.A =
⎛
⎝

a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞
⎠ .
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Consider 

. Ax =
⎛
⎝

a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞
⎠

⎛
⎝

x1

x2

x3

⎞
⎠

=
⎛
⎝

a11x1 + a12x2 + a13x3

a21x1 + a22x2 + a23x3

a31x1 + a32x2 + a33x3

⎞
⎠ .

There are fundamentally two ways to see this product. One way is to observe that 
the image of . x is the linear combination of the column vectors in A, in particular, 

. Ax = x1

⎛
⎝

a11

a21

a31

⎞
⎠ + x2

⎛
⎝

a12

a22

a32

⎞
⎠ + x3

⎛
⎝

a13

a23

a33

⎞
⎠ .

The other way utilizes the inner product: 

. Ax =
⎛
⎝

〈
x, a∗

1

〉
〈
x, a∗

2

〉
〈
x, a∗

3

〉

⎞
⎠

= 〈
x, a∗

1

〉
e1 + 〈

x, a∗
2

〉
e2 + 〈

x, a∗
3

〉
e3,

where . a∗
i is the conjugate transpose of the . ith row in the matrix A. Both interpreta-

tions of this product will be useful in this text. 

Kernel and Image Let V and W be vector spaces of dimension n and m, 
respectively. Let A be a m × n matrix representing a linear transformation from 
V to W . The kernel of A is defined as 

. ker(A) = {x ∈ V such that Ax = 0} .

The kernel of A is a subspace of V and its dimension is called the nullity of A. 
The image of A is 

. Im(A) = {y ∈ W such that y = Ax for some x ∈ V } .

The image of A is a subspace of W. The image space is sometimes referred to as 
the range space. The dimension of the image of A is the rank of the matrix A, i.e., 

.dim(Im(A)) = rank(A).
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An important application of the Gauss-Jordan elimination algorithm is the observa-
tion that 

. nullity(A) + rank(A) = n.

For example, the matrix A below has rank 2. 

. A =
⎛
⎝
1 2 −1 1 2
1 1 2 0 3
0 −1 3 −1 1

⎞
⎠ .

Viewing A as a linear transformation from R5 to R3, the nullity is 3 and n = 5. As 
expected, 

. nullity(A) + rank(A) = 3 + 2 = 5.

We say that a n × n matrix A is invertible (nonsingular) if there exists a n × n 
matrix A−1 so that for any vector x 

. A−1Ax = x;

otherwise we say that the matrix A is singular. Note that if we have A−1Ax = x for 
all x, then we must have AA−1x = x for all x as well. Thus, AA−1 = A−1A = In, 
where I is the n × n identity matrix. (The n × n identity matrix is the matrix with 
all zero entries except the diagonal entries are ones). 

Eigenvalues and Eigenvectors Let λ be a complex number. A nonzero vector v is 
called an eigenvector for an n × n matrix A with the corresponding eigenvalue λ if 
and only if 

. Av = λv or equivalently (λI − A) v = 0.

Note that if v is an eigenvector for an eigenvalue λ, then any nonzero multiple of 
v is also an eigenvector for the same eigenvalue. 

Consider 

. A =
(
2 1
2 3

)
.

We have the eigenvalues λ1 = 1 with a normalized eigenvector v1 =
1√
2 
(−1, 1)T = (−0.7071, 0.7071)T and λ2 = 4 with a normalized eigenvector 

v2 = 1√
5 
(1, 2)T = (0.4472, 0.8944)T . (We encourage the use of technology
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in calculations and thus are satisfied with decimal approximations of the exact 
answers.) If we let 

. P =
(−0.7071 0.4472

0.7071 0.8944

)
and D =

(
1 0
0 4

)

we find that 

. AP = PD.

The action of matrix A on the columns of P , the given eigenvectors of A, is  
equivalent to multiplying the columns of P by the respective diagonal elements in 
D. The diagonal elements are the eigenvalues of A. Matrices that can be written in 
this way are called diagonalizable matrices. More specifically, a square matrix A is 
said to be diagonalizable if there exists an invertible matrix P so that 

. A = PDP −1,

where D is a diagonal matrix, with the diagonal entries consisting of eigenvalues of 
A, possibly repeated. The matrix P will have, as its columns, linearly independent 
eigenvectors of A. The ith column of P will be an eigenvector corresponding to 
the eigenvector in the (i, i) position of diagonal matrix D. (We need n linearly 
independent eigenvectors for diagonalization of an n × n matrix A to be possible.) 

Let λ be an eigenvalue of A. The eigenspace corresponding to eigenvector λ is 

. Wλ = {
v ∈ Cn such that (λI − A) v = 0

} = ker (λI − A) .

It is a subspace of Cn. It consists of all eigenvectors of A corresponding to the 
eigenvalue λ along with the zero vector. 

Every distinct eigenvalue of A adds at least one new linearly independent 
eigenvector. To see this, consider for simplicity of notation three eigenvectors of 
A, {v1, v2, v3} corresponding to distinct eigenvalues λ, β, γ , respectively. Suppose 

. c1v1 + c2v2 + c3v3 = 0

for some scalars c1, c2, c3. Then 

. (λI − A) (βI − A) (c1v1 + c2v2 + c3v3) = 0.

We can use the fact that matrices (λI − A) and (βI − A) commute to simplify this 
equation to the following: 

.c3 (λI − A) (βI − A) v3 = 0.
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Furthermore, 

. (λI − A)(βI − A)v3 = (λI − A)(βv3 − γ v3)

= (λI − A)(β − γ )(v3)

= (β − γ )(λI − A)v3

= (β − γ )(λ − γ )v3,

which is a nonzero vector because the eigenvalues are distinct. Thus, c3 = 0. 
Similarly we conclude that c2 = 0 and c1 = 0 by considering multiplication 

by (λI − A) (γ I  − A) and (βI − A) (γ I  − A) respectively. Thus we are forced to 
conclude the vectors are linearly independent. 

If an n × n matrix has n distinct eigenvalues, then the matrix is guaranteed to 
be diagonalizable, though this is not a necessary condition. (We would have the 
required n linearly independent eigenvectors needed to form matrix P .) 

If we have a repeated eigenvalue and not sufficiently many linearly independent 
eigenvectors, the matrix will not be diagonalizable. An example of such a matrix is 

. A =
(
0 1
0 0

)
.

One can confirm that there are no matrices P and D (D diagonal and P not the 
zero matrix), so that AP = PD.  The only eigenvalue of A is the zero eigenvalue and 
the corresponding eigenspace consists only of the multiples of the vector (1, 0)T . A  
matrix can be diagonalizable when it has repeated eigenvalues. However, it has to 
have sufficiently large corresponding eigenspaces. 

To find the eigenvectors for a given matrix A, in general, we find its eigenvalues 
first and then look for the corresponding eigenvectors. To find the eigenvalues, we 
look for possibly complex values λ so that the linear system 

. (λI − A) v = 0

has a nonzero solution. The value λ is an eigenvalue for A and the vector v is a 
corresponding eigenvector for the eigenvalue λ. The eigenvalues of A are obtained 
by finding the values λ so that 

. det (λI − A) = 0.

This is an equivalent condition for the above linear system to have a nonzero 
solution. Consider again the matrix 

.A =
(
2 1
2 3

)
.
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We set up the characteristic polynomial for the matrix A 

. det (λI − A) = 0

det

(
λ

(
1 0
0 1

)
−

(
2 1
2 3

))
= 0

det

(
λ − 2 −1

−2 λ − 3

)
= 0

(λ − 2)(λ − 3) − 2 = 0

λ2 − 5λ + 4 = 0

(λ − 1)(λ − 4) = 0

yielding the eigenvalues λ = 1, 4. To obtain an eigenvector for the eigenvalue λ = 1, 
we consider the linear system 

. 

(
(1)

(
1 0
0 1

)
−

(
2 1
2 3

))
v = 0

(−1 −1
−2 −2

)
v = 0.

This yields v1, an eigenvector for the eigenvalue λ = 1, to be any multiple of the 
vector (−0.7071, 07071)T . Similarly, to obtain an eigenvector for the eigenvalue 
λ = 4, we consider the linear system 

. 

(
(4)

(
1 0
0 1

)
−

(
2 1
2 3

))
v = 0

(
2 −1

−2 1

)
v = 0,

thus yielding v2, an eigenvector for the eigenvalue λ = 4, to be any multiple of the 
vector (0.4472, 0.8944)T . 

The action of the matrix A can be seen in terms of a vector decomposition with 
respect to the eigenvectors v1 and v2. See Fig. A.2. Let  x be a given vector and write 
x = xv1 + yv2 then 

.Ax = A (xv1 + yv2)

= xA(v1) + yA(v2)

= xv1 + 4yv2.
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Fig. A.2 The action of the matrix A on a vector decomposition 

The Power Method The above analysis can be utilized to find an eigenvector 
corresponding to the largest eigenvalue of a matrix, if it exists. Staying with the 
above example we choose an arbitrary vector x = (x, y)T . We observe 

. Anx = xv1 + 4nyv2

= 4n

(
1

4n
xv1 + yv2

)

≈ 4nyv2.

This suggests the following recursive procedure to find the largest eigenvalue of 
a matrix, assuming certain conditions are met. 

Choose an arbitrary vector x0. Write 

1. x1 = Ax0 ; x1 = 1 
||x1||x1. 

2. xn = Axn−1 ; xn = 1 
||xn||xn. 

The unit vectors {xn} converge, as n → ∞, to an eigenvector of A corresponding 
to the largest eigenvalue of A. 

A matrix with real entries need not have a real eigenvalue; however, every matrix 
has an eigenvalue if we allow complex eigenvalues. For example, let 

. A =
(
0 −1
1 0

)
.

This matrix represents a 90-degree rotation counterclockwise in a plane. This 
matrix has no real eigenvalues. However, it has an eigenvalue λ1 = i with an 
eigenvector u1 = ( 

√
2 
2 , − 

√
2 
2 i)

T and an eigenvalue λ2 = −i with an eigenvector 
u1 = ( 

√
2 
2 , 

√
2 
2 i)

T .
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Trace of a Matrix Consider an n × n matrix A = [aij ]. The trace of A is defined 
as the sum of its diagonal values. That is, 

. tr(A) =
n∑

i=1

aii .

A fundamental property of trace is the following identity: 

. tr(AB) = tr(BA).

It turns out the trace of a matrix is the sum of its eigenvalues. While true in 
general we explain this property in the special case of a diagonalizable matrix. Let 
A = PDP −1 and observe 

. tr(A) = tr(PDP −1) = tr(DP −1P) = tr(D) =
∑

dii =
∑

aii .

The trace of the matrix A is the sum of the inner products of the columns of A 
(or rows of A) with the standard basis vectors. It measures the expansion of A along 
the standard basis. 

For example, suppose 

. A =
⎛
⎝

4 2 1
−1 7 6
5 10 −5

⎞
⎠ .

Note that tr(A) = 4 + 7 − 5 = 6. The eigenvalues of A are λ1 = −8.8833, 
λ2 = 3.8134 and λ3 = 11.0700. Observe that 

. λ1 + λ2 + λ3 = −8.8833 + 3.8134 + 11.0700 = 6.

The matrix that represents the rotation by 90◦ counterclockwise in the plane is: 

. A =
(
0 −1
1 0

)
.

This matrix has trace zero, and its eigenvalues are ±i. 

The Hermitian Adjoint Let A be a m × n matrix. The conjugate transpose of the 
matrix A is denoted A∗. It is what the name suggests. You transpose the matrix A 
and then replace every entry by its conjugate. For example, a specific matrix and its 
conjugate transpose are:
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. A =
(

3 −1 + 2i
4 − 5i i

)
and A∗ =

(
3 4 + 5i

−1 − 2i −i

)
.

The hermitian adjoint of A is a n × m matrix B so that, for any choice of vectors 
x ∈ Cn and y ∈ Cm , 〈Ax, y〉 = 〈x, By〉 . It turns out that B = A∗. That is, the 
hermitian adjoint of A is the conjugate transpose of the matrix A so 

. 〈Ax, y〉 = 〈
x, A∗y

〉
for any choice of vectors x ∈ Cn and y ∈ Cm.

Consider, for example, 2 × 2 matrices where x = (x1, x2)T and y = (y1, y2)T are 
any two vectors in Cm . 

. 

〈(
a b

c d

)
x, y

〉
= (ax1 + bx2)y1 + (cx1 + dx2)y2

= x1(ay1 + cy2) + x2(by1 + dy2)

= x1(ay1 + cy2) + x2(by1 + dy2)

=
〈
x,

(
a c

b d

)
y
〉
.

Let A be a square matrix such that A = A∗. Such a matrix is called a 
hermitian matrix and the corresponding linear operator is referred to as the self-
adjoint operator. A hermitian matrix is conjugate symmetric about its diagonal. The 
columns of A∗ are the conjugate rows of A and vice versa. For example, 

. B =

⎛
⎜⎜⎝

2 i 1 + i 2 − 3i
−i 3 4 5
1 − i 4 6 7
2 + 3i 5 7 2

⎞
⎟⎟⎠

is a hermitian matrix. 
Let A and B be possibly rectangular matrices of compatible sizes. The following 

property holds: 

. (AB)∗ = B∗A∗.

This complex relationship can be justified using the inner product. Let u and v 
be any two vectors of correct sizes. Consider 

. 〈ABu, v〉 = 〈
Bu, A∗v

〉

= 〈
u, B∗A∗v

〉

= 〈
u, (AB)∗v

〉
.
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Given an invertible square matrix A, the actions of taking a hermitian adjoint of 
A and taking the inverse of A are connected. We will see that if the matrix A has 
columns consisting of orthonormal vectors (making A a so-called unitary matrix), 
then these actions are identical. 

Unitary Matrices A square n × n matrix U is said to be unitary if for all n × 1 
vectors x and y we have 

. < x, y >=< Ux, Uy > .

Note that unitary matrices are norm preserving. That is, ||Ux|| = ||x|| for all x ∈ Cn. 
Indeed 

. 〈Ux, Ux〉 = 〈
U∗Ux, x

〉 = 〈x, x〉 .

Unitary matrices also preserve normality. Hence, unitary matrices map an orthonor-
mal basis to an orthonormal basis. 

For a unitary matrix U , the rows and columns of the matrix form an orthonormal 
set of vectors and U∗ is the inverse of U . In other words 

. UU∗ = I and U∗U = I.

Consider a vector x and a n × n unitary matrix U with columns {ui}n 
i=1. Then the 

relationship 

. UU∗x = x implies x =
n∑

i=1

〈x,ui〉 ui .

The following matrix is a unitary matrix 

. U =
⎛
⎜⎝
1 0 0

0
√
2
2 −

√
2
2

0
√
2
2

√
2
2

⎞
⎟⎠ .

Observe U∗U = UU∗ = I . This property holds in general. In fact a square 
matrix U is unitary if and only if U∗ = U. 

For a general m × n matrix A with columns {ai}n 
i=1 we have 

.AA∗x =
n∑

i=1

〈x, ai〉 ai .
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One can say that for a square matrix A its hermitian adjoint A∗ attempts to invert 
the matrix A as if the columns of A were orthonormal. 

Hermitian Matrices Suppose a n × n matrix A is a hermitian matrix. The 
eigenvalues of A must be real and the matrix is unitarily diagonalizable, in 
particular, P −1 = P ∗. To see this let u be a normalized eigenvector of A for the 
eigenvalue λ. We have  

. λ = λ 〈u,u〉
= 〈λu,u〉
= 〈Au,u〉
= 〈u, Au〉
= 〈u, λu〉
= λ 〈u,u〉
= λ.

Hence, λ must be real. Now consider the subspace 

. V = u⊥ = {v such that 〈u, v〉 = 0} .

Since 

. 0 = λ 〈u, v〉
= 〈λu, v〉
= 〈Au, v〉
= 〈u, Av〉 ,

it follows that Av ∈ V for any v ∈ V . Now  let  β be an eigenvalue of the 
matrix A when restricted to the subspace V . It gives a rise to an eigenvector of A 
corresponding to the eigenvalue β and this eigenvector is orthogonal to u. Note that 
the case β = λ is possible. We continue in this way and create n mutually orthogonal 
eigenvectors for the n eigenvalues of A, possibly repeated. Thus, the columns of the 
matrix P are orthogonal and A is unitarily diagonalizable. Therefore, any hermitian 
matrix A is unitarily diagonalizable and we can write 

. A = PDP ∗

with the diagonal entries in D being the real eigenvalues of A.
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Consider now a n × n matrix A that is diagonalizable, but not necessarily 
hermitian. Recall that a sufficient condition for diagonalizability is having n distinct 
eigenvalues for A. Observe that 

. P −1P = I(
P −1P

)∗ = I ∗

P ∗ (
P −1

)∗ = I.

This implies that 

. 

(
P −1

)∗ = (
P ∗)−1

.

Consequently if A = PDP −1 then 

. A∗ = (P −1)∗D∗P ∗ = (P ∗)−1D∗P ∗.

Therefore, the eigenvalues of A∗ are the complex conjugates of the eigenvalues 
of A. The corresponding eigenvectors for the eigenvalues of A∗ are the columns of 
(P ∗)−1 which then can be normalized. 

For example, let 

. A =
(
2 1
3 4

)
.

The matrix A has an eigenvalue λ1 = 1 with a corresponding unit eigenvector 
u1 = (−0.7071, 0.7071)T and an eigenvalue λ2 = 5 with a corresponding unit 
eigenvector u2 = (0.3162, 0.9487)T . 

The matrix 

. A∗ =
(
2 3
1 4

)

has the eigenvalue λ1 = 1 with a corresponding eigenvector v1 = (−0.9487, 0.3162)T 

as well as the eigenvalue λ2 = 5 with a corresponding eigenvector v2 = 
(0.7071, 0.7071)T . 

For a diagonalizable matrix A, the eigenvectors of A are called the right 
eigenvectors of A and the eigenvectors of A∗ are called left eigenvectors of A. The  
reason for the expression left eigenvector is simple enough. Let v be an eigenvector 
of A corresponding to the eigenvalue λ. Note that v∗ is a row vector. Then 

.Av = λv

(Av)∗ = (λv)∗

v∗A∗ = λv∗.
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We can check these ideas hold for our matrix A. Observe that Au1 = λ1u1 

. 

(
2 1
3 4

) (−0.7071
0.7071

)
= (1)

(−0.7071
0.7071

)

and Au2 = λ2u2 

. 

(
2 1
3 4

)(
0.3162
0.9487

)
=

(
1.5811
4.7434

)
= 5

(
0.3162
0.9487

)
.

If we consider the left eigenvalues of A we see v∗
1A = λ1v∗

1 

. 
(−0.9487 0.3162

) (
2 1
3 4

)
= (1)

(−0.9487 0.3162
)

and v∗
2A = λ2v∗

2 

. 
(
0.7071 0.7071

) (
2 1
3 4

)
= (

3.5355 3.5355
) = (5)

(
0.7071 0.7071

)
.

Observe that (v∗
1A)T = A∗v1 = λ1v1 

. 

((−0.9487 0.3162
) (

2 1
3 4

))T

=
(
2 3
1 4

) (−0.9487
0.3162

)
= (1)

(−0.9487
0.3162

)

and (v∗
2A)T = A∗v2 = λ2v2 

. 

((
0.7071 0.7071

) (
2 1
3 4

))T

=
(
2 3
1 4

) (
0.7071
0.7071

)
= (5)

(
0.7071
0.7071

)
.

Note that 

. P =
(−0.7071 0.3162

0.7071 0.9487

)
and (P −1)∗ =

(−1.0607 0.7906
0.3535 0.7906

)
.

The normalized columns of (P −1)∗ are indeed v1 and v2 

.

(−0.9487 0.7071
0.3162 0.7071

)
.
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Consider now the inverse of A 

. A−1 =
(

0.8 −0.2
−0.6 0.4

)
.

Observe that 

. 

〈
(2, 1)T , (−0.2, 0.4)T

〉
= 0 ;

〈
(3, 4)T , (0.8,−0.6)T

〉
= 0

and 

. 

〈
(2, 1)T , (0.8,−0.6)T

〉
= 1 ;

〈
(3, 4)T , (−0.2, 0.4)T

〉
= 1.

The first column of A∗ is orthogonal to the second column of A−1. The second 
column of A∗ is orthogonal to the first column of A−1. 

Let A is an m × n matrix. Note that for all x ∈ Im(A) and y ∈ Ker(A) we have 

. 
〈
A∗x, y

〉 = 〈x, Ay〉 = 0.

This implies 

. Im(A∗) = (Ker(A))⊥ and Ker(A∗) = (Im(A))⊥ .

Consider the matrix 

. A =
(
2 1 3 2
2 3 4 2

)
.

We have 

. ker(A) = span{(−0.6454,−0.3316, 0.6632,−0.1836)T ,

(−0.5251, 0.1146,−0.2291, 0.8116)T }
Im(A∗) = span{(0.3963, 0.4278, 0.7092, 0.3963)T ,

(−0.3882, 0.8330,−0.0687,−0.3882)T }.

Note Im(A∗) = (Ker(A))⊥ , as we expected. 
For the special case of a hermitian matrix, A, it must follow that 

.Im(A) = (Ker(A))⊥ .
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For example, consider the hermitian matrix 

. A =
⎛
⎝
2 2 0
2 1 1
0 1 −1

⎞
⎠ .

Ker(A) = span{(1,−1, −1)T } and Im(A) = {(2, 2, 0)T , (2, 1, 1)T }. 
A fundamental property for a m × n matrix A and its n × m conjugate transpose 

A∗ is that 

. rank(A∗) = rank(A).

To see this we recall 

. rank(A∗) + nullity(A∗) = m.

Combining this fact with 

. Ker(A∗) = (Im(A))⊥

we obtain 

. rank(A∗) + nullity(A∗) = m

rank(A∗) + dim
(
(Im(A))⊥

)
= m

rank(A∗) + m − rank(A) = m

rank(A∗) = rank(A).

For example, consider 

. A =
⎛
⎝
2 1 3 2
2 3 4 2
4 4 7 4

⎞
⎠ and A∗ =

⎛
⎜⎜⎝

2 2 4
1 3 4
3 4 7
2 2 4

⎞
⎟⎟⎠ .

Observe that 

. rank(A) = rank(A∗) = 2.

We encourage the reader to use some mathematical software to answer the 
exercises below.
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Exercises 

1. Consider the matrix 

. A =
⎛
⎝
2 3 4
2 3 4
2 1 −2

⎞
⎠ .

a. Find right eigenvectors for A. 
b. Find left eigenvectors for A. 

2. Consider the matrix 

. A =

⎛
⎜⎜⎝

3 −1 −1 3
−1 −1 1 2
−1 1 2 4
3 2 4 5

⎞
⎟⎟⎠ .

a. Find eigenvectors and eigenvalues of A. 
b. Find the trace of A and verify that the sum of the eigenvalues of A equals to 

the trace of A. 
3. Consider a 2 × 2 matrix  A with real entries, 

. A =
(

a b

c d

)
.

a. Show that 

. det (λI − A) = λ2 − tr(A)λ + det(A).

b. Show that the matrix A above has complex eigenvalues if and only if 

. (a − d)2 + 4bc < 0.

c. Show that a sufficient condition for the matrix A to have real eigenvalues only 
is that b and c are of the same sign. This condition is not necessary. 

4. Consider the matrix 

.A =

⎛
⎜⎜⎝

1 −1 3 0 6 7
0 1 1 1 −1 1
1 2 −2 3 4 −1
1 −4 8 −3 8 15

⎞
⎟⎟⎠ .
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Verify 

. Im(A∗) = (Ker(A))⊥ and Ker(A∗) = (Im(A))⊥ .

5. Hermitian matrices have the property that Im(A) = (Ker(A))⊥. However, the 
converse need not be true. Let 

. A =
⎛
⎝

−6 −3 4
6 0 −2

−2 1 0

⎞
⎠ .

Show that Im(A) = (Ker(A))⊥ while A is not hermitian. 
6. Social Wisdom. The following connects many areas of mathematics: linear 

algebra, calculus, differential equations, and complex numbers. It is an idealized 
hypothetical scenario of human society. 
It is said that tough times make strong people, which in turn make times easier, 
and as a result people get weaker. Weaker people then produce tough times again 
and the cycle continues. 
Let x = x(t) denote the measurement of difficulty of times with t representing 
time. Positive x means tough times; negative x means easy times. Let y = y(t) 
denote the strength of people; positive y indicates strength and negative y denotes 
weakness. The above social wisdom can be mathematically described by a system 
of differential equations with an initial condition. (The dot above the variable 
indicates the time derivative.) 

. ẋ = −y ; ẏ = x ; x(0) = 0 ; y(0) = 1.

At time t = 0 we assume times are neutral and the strength of people is set at one 
unit. The above initial value problem translates to 

. 

(
ẋ

ẏ

)
=

(
0 −1
1 0

) (
x

y

)
.

Denote 

. x =
(

x

y

)
and A =

(
0 −1
1 0

)

and the above reads as 

. ̇x = Ax ; x(0) = (0, 1)T

a. Show that A can be diagonalized as
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. A = PDP −1

where 

. P =
(

i −i

1 1

)
and D =

(
i 0
0 −i

)
.

b. Show the solution to the system of differential equations ẏ = Dy is given by 

. y =
(

Aeit

Be−it

)

where A, B are arbitrary constants. 
c. Recall the initial value problem 

. ̇x = Ax ; x(0) = (0, 1)T .

Diagonalize A = PDP −1 and set 

. x = Py =
(

i −i

1 1

) (
Aeit

Be−it

)
.

Show that along with the initial condition x(0) = (0, 1)T we obtain the 
solution 

. x =
(− sin(t)

cos(t)

)

and thus the cyclical nature of human society. 
7. Markov Chains. Consider a fictitious scenario of three locations A (location 

1), B (location 2), and C (location 3). All of the country’s population resides in 
either of these locations. The initial proportion of people in location A is 0.1 
(10%), in location B is 0.2 (20%), and in location C is 0.7 (70%). Every year 
people move from a location to another location or possibly stay in the same 
location. The following are the rules of movement. Note all row sums as well as 
all column sums are equal to 1. We note that the annual movements are very high 
for practical settings with people. 

0.50 0.10 0.40 

0.20 0.30 0.50 

0.30 0.60 0.10
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For example, the (2, 3) entry of 0.50 indicates that annually 50% of inhabitants in 
location C moves to location B. In general the entry (i, j) indicates the proportion 
of people in location j moving to location i. The diagonal entry (i, i) indicates 
the proportion of people staying in location i annually. We will show that in 
the long run, as the years go by, each location will have the same proportion of 
inhabitants. 
a. Denote 

. A =
⎛
⎝
0.50 0.10 0.40
0.20 0.30 0.50
0.30 0.60 0.10

⎞
⎠ .

Show the largest eigenvalue (in absolute value) of A is λ = 1 with the 
corresponding eigenvectors being multiples of (1, 1, 1)T . 

b. Diagonalize A = PDP −1 and show An = PDn P −1. 
c. Denote the initial proportions in locations A, B, and C as x0 = (0.1, 0.2, 0.7)T . 

Let xn denote the proportions of inhabitants in the three locations A,B and C in 
the year n. The long-term proportions in the locations can be found as follows: 

. lim
n→∞ xn = lim

n→∞ Anx0

= lim
n→∞ PDnP −1x0

= P

⎛
⎝
1 0 0
0 0 0
0 0 0

⎞
⎠ P −1x0.

d. Conclude that in the long run, as the years go by, each location will have the 
same proportion of inhabitants. 

8. Strategy and Games. Consider a probabilistic problem where a pitcher throws 
three types of balls at the batter (fastball, screwball, or curveball). Evidently, the 
batter does not know what type of throw is coming and therefore he needs to 
prepare for any of the three. Below is a table that indicates the probabilities of 
success for the batter depending on the pitcher throw (row) and batter preparation 
(column). If the pitcher throws a fastball and the batter prepares for screwball, 
there is a 0.3 probability of success for the batter. This is indicated in the (1, 2) 
entry. 

Fastball Screwball Curveball 

Fastball 0.4 0.3 0.2 

Screwball 0.2 0.4 0.3 

Curveball 0.2 0.1 0.4
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Naturally, if the batter always gets ready for the screwball, the pitcher will 
always throw curveball and the probability of the batter’s success is minimized 
at 0.1. However, the batter can mix it up. Let df , ds , and dc be the proportions of 
batter readiness for the types of throws; the subscript indicates the type of throw. 
We have 

. df + ds + dc = 1.

The pitcher will mix it up as well. Let af , as and ac be the proportions of types 
of balls the pitcher throws, the subscript indicates the type of throw. We have 

. af + as + ac = 1.

Consider 

. P =
⎛
⎝

p11 p12 p12

p21 p22 p23

p31 p32 p33

⎞
⎠ =

⎛
⎝
0.4 0.3 0.2
0.2 0.4 0.3
0.2 0.1 0.4

⎞
⎠ .

a. Show the expected batter success is given by the quadratic form 

. 〈Pd, a〉 with d = (df , ds, dc)
T and a = (af , as, ac)

T ,

subject to 

. df + ds + dc = 1 and af + as + ac = 1.

b. Show that if d = (0.4, 0.5, 0.1)T and a = (0.3, 0.2, 0.5)T then the batter 
success is given by 

. 〈Pd, a〉 = 0.2460.
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