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Linear Algebra for Data Science with Python provides an
introduction to vectors and matrices within the context of
data science. This book starts from the fundamentals of
vectors and how vectors are used to model data, builds up
to matrices and their operations, and then considers
applications of matrices and vectors to data fitting,
transforming time-series data into the frequency domain,
and dimensionality reduction. This book uses a
computational-first approach: the reader will learn how to
use Python and the associated data-science libraries to
work with and visualize vectors and matrices and their
operations, as well as to import data to apply these
techniques. Readers learn the basics of performing vector
and matrix operations by hand but are also shown how to
use several different Python libraries for performing these
operations.

Key Features:

Teaches the most important concepts and techniques for
working with multi-dimensional data using vectors and
matrices.



Introduces readers to some of the most important Python
libraries for working with data, including NumPy and
PyTorch.
Demonstrates the application of linear algebra in real
data and engineering applications.
Includes many color visualizations to illustrate
mathematical operations involving vectors and matrices.
Provides practice and feedback through a unique set of
online, interactive tools on the accompanying website.
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Preface

This book is an introduction to linear algebra and its use
in data science, including storing and transforming data,
solving systems of linear equations, performing data
interpolation and regression, and extracting features for
dimensionality reduction. This book is targeted toward
anyone who wants to learn about linear algebra and its
applications, given background knowledge of algebra and



basic computer programming. This book fits a unique niche
among books on linear algebra:

This book applies a modern, computational

approach to work with data.

– Many books on linear algebra are focused on the
mathematical details of matrix and vector
manipulation and on proofs of related properties. By
using computational tools, this book instead focuses
on how and why to apply the techniques of linear
algebra in data science, while also developing these
techniques from first principles.

This book uses real data sets.

– Many linear algebra books use contrived examples
that are small enough to print in a book and work
with using a calculator, but this results in data sets
that are unrealistic and uninteresting. The
computational approach used in this book allows the
use of real data sets that are too large for
manipulation by hand.

This book shows how to work with some of the most

important tools in the Python data-science stack,

including:

– NumPy and PyTorch for working with vectors and
matrices numerical functions,

– Pandas for loading, manipulating, and summarizing
data, and



– Matplotlib for plotting data.

This book was written alongside the book

Foundations of Data Science with Python, which

covers statistics, probability, and their application

to data science using the Python data-science stack.

– Techniques like dimensionality reduction combine
concepts from probability and statistics, like mean
and covariance, with techniques from linear algebra,
like eigendecomposition. Dimensionality reduction is
covered in each of these texts with minimal coverage
of those concepts that are not specific to that
particular book.

This book provides a unique set of online,

interactive tools to help students learn the material,

including:

– self-assessment quizzes,
– flashcards to aid in learning terminology,
– Python widgets and animated plots.

Interactive elements are available on the book's web site:
la4ds.net, which can also be accessed using the QR code
below:

http://la4ds.net/




1

Introduction

DOI: 10.1201/9781032664088-1

Welcome to Linear Algebra for Data Science with Python!
This chapter introduces the book and its place in the field
of linear algebra and data science. It then provides a brief
introduction to some of the tools that are used throughout
the book. By the end of this book, you will learn:

the fundamental operations on vectors and matrices,

how to use matrices and vectors to understand and solve
systems of linear equations,

the interpretation of matrix multiplication as a
transformation between vector spaces,

how a square matrix can have special vectors called
eigenvectors that preserve their direction when
multiplied by that matrix,

how to use matrix techniques for exact and approximate
data fitting, and

https://doi.org/10.1201/9781032664088-1


how to use alternate basis vectors to extract useful or
important features from data.

While this book does show how to perform many vector and
matrix operations and manipulations by hand, the emphasis
is on the meaning and application of the techniques.
Techniques to perform these operations are always shown
in Python using common Python data science libraries.



1.1 Who is this book for?

Although this book is generally designed for scientists and
engineers, it should be accessible to anyone who knows:

algebra and trigonometry,

some computer programming language (knowing Python
is helpful, but not required), and

complex numbers (minimal knowledge, in Chapter 6
only).

This book is written by an engineer with degrees in both
electrical and computer engineering. This book and its
companion, Foundations of Data Science with Python, were
written to provide the main textbooks for a 4-credit,
semester-long course for engineers, taught in the
Department of Electrical and Computer Engineering at the
University of Florida. These books are intended to be a
broad introduction to data science, but they are also
designed to replace courses in Engineering Statistics and
Computational Linear Algebra.

1.2 Why learn linear algebra from this book?

This book focuses on the most fundamental techniques of
linear algebra as they are applied in engineering and the
sciences, with a special emphasis on applications to data
science. Rather than emphasizing hand manipulation and



theory, this book focuses on how to use Python libraries to
work with vectors and matrices and how to use these
techniques for data science and engineering applications.
Using the computer to perform linear algebra not only
represents how linear algebra is used in practice but also
allows us to work with real data sets that are too large for
manipulation by hand to be practical. In addition, the use of
computer techniques allows us to better visualize data and
the effects of linear algebra techniques.

Interactive flashcards and self-assessment quizzes are
provided on the book's website and linked throughout the
book to help learners master the material and check their
understanding. The entire set of interactive materials can
be accessed on the book's website at la4ds.net.

The interactive materials use spaced repetition to help
readers retain knowledge as they progress through the
book. Starting with Section 2.7, the interactive chapter
reviews also give a random subset of review problems from
earlier chapters. Research shows that spaced repetition
improves the retention of material.

The online materials also include a list of “take-aways”
that help summarize the important points from each
chapter.

1.3 Brief Introduction to Data Science

Terminology

http://la4ds.net/


This book focuses on introducing the use of linear algebra
techniques for data science. This section reviews some of
the basic terminology used when discussing data:

DEFINITION

data

Collections of measurements, characteristics, or
facts about a group.

A simple definition of data science is:

DEFINITION

data science

The process of extracting meaning from data.

Data consists of data points:

DEFINITION

data point

A collection of one or more pieces of information
collected about a single individual or entity.

Each data point may contain variables and features:

DEFINITION



variables

Particular characteristics, measurements, or facts
that make up a data point.

features

Individual pieces of information in a data set.
While variables typically represent unprocessed or
raw data, features can include both variables and
processed versions of the variables.

In the machine-learning (ML) literature, the term feature is
often used for both raw and processed data, especially if
the data are used as the input for some ML process.

Variables and features may be either quantitative or
qualitative:

DEFINITION

quantitative data

Numeric data. Quantitative data may be either
discrete (such as the number of people in a family)
or continuous (such as grade point average).

qualitative data

Non-numeric data. Qualitative variables are
generally non-numeric categories that data may
belong to (such as hair color). Some categories
may have an order associated with them, but the
order does not imply a numeric nature to the



categories. For example, a survey question may
have responses from Strongly Disagree to
Strongly Agree.

Linear algebra is focused on the application of
mathematical techniques to quantitative variables.

Examples of quantitative variables:

height

weight

yearly income

college GPA

miles driven commuting to work

temperature

wind speed

population

Readers interested in qualitative variables and statistical
tests involving such variables can refer to the book
Foundations of Data Science with Python, also by John M.
Shea.

Terminology review and self-assessment questions

Interactive flashcards to review the terminology introduced
in this section and self-assessment questions are available



at la4ds.net/1-3, which can also be accessed using this QR
code:

http://la4ds.net/1-3


1.4 What topics from linear algebra does this

book cover?

This book provides an introduction to some of the most
important concepts in linear algebra for data science:

Chapter 2 covers vectors and vector operations, with a
special emphasis on correlation and projection. Vector
correlation provides a measure of how similar two
vectors are, and vector projection is used in alternate
representations that extract important information from
data.

Chapter 3 covers the fundamentals of matrices and
matrix operations, with emphasis on understanding
matrix-vector multiplication as transforming vectors
from one vector space to another vector space. The
concepts of determinant and eigenvalue-eigenvector
pairs are introduced based on this linear transformation
viewpoint.

Chapter 4 examines the application of matrices to
solving systems of linear equations. It explores different
cases that arise in systems of linear equations, and
multiple approaches are presented to solve such
systems of equations.

Chapter 5 covers the common problem of finding the
best linear or polynomial fit for a set of data.
Techniques are given to find exact polynomial fits for
small data sets and approximate polynomial fits for



larger data sets. An application to multiple linear
regression is shown.

Chapter 6 introduces the concept of representing data
using different bases. Here, a basis is a minimal set of
vectors that can be linearly combined to produce every
vector in some set. The concepts of universal and set-
specific bases are introduced, and an algorithm to find a
set-specific basis is given. Three different types of bases
are applied to problems in signal processing, digital
communications, and dimensionality reduction.

Self-assessment questions

Interactive self-assessment questions are available at
la4ds.net/1-4, which can also be accessed using this QR
code:

http://la4ds.net/1-4


1.5 What topics from linear algebra does this

book not cover?

This book focuses on introducing some of the most
fundamental ideas and operations in linear algebra for use
in data science. However, the field of linear algebra is
broad, and this book does not cover many important topics.
A few important omissions include:

I do not provide much discussion of vector spaces and
especially do not cover the row space or column space
of a matrix, nor the associated null spaces.

Matrix decompositions, in which a matrix is written as a
product of other matrices with special properties, are a
very important concept in linear algebra. Gilbert
Strang, one of the premier educators on linear algebra,
considers there to be seven fundamental matrix
decompositions. This book only focuses on one:
eigendecomposition, which can only be applied to
certain square matrices. I briefly touch on three others
that are closely related to the material covered in this
book: the LU, QR, and SVD decompositions.

I have omitted most discussion of computational issues,
such as the complexity and accuracy of matrix
operations carried out using a computer.

Many data science problems involve sparse matrices, in
which the majority of the entries in the matrices are
zeros. Because of the importance of sparse matrices in



big data problems, there are special ways to efficiently
store and operate on sparse matrices.

Self-assessment questions

Interactive self-assessment questions are available at
la4ds.net/1-5, which can also be accessed using this QR
code:

1.6 Extremely Brief Introduction to Jupyter

and Python

The purpose of this section is to briefly introduce users to
Jupyter and a few core concepts from Python that will be
needed to use Python for linear algebra. The content here
should be treated as an introduction to explore further and
is not meant to be comprehensive. There are a broad
variety of tutorials on the web for both of these topics, and
links are provided for users who need additional
instruction.

If you are already familiar with Jupyter and/or Python 3,
feel free to skip ahead. Similarly, if you are using this as a

http://la4ds.net/1-5


companion to the book Foundations of Data Science with

Python, you will find most of the material in this section
redundant, with the exception of the information on
PyTorch.

1.6.1 Why Jupyter notebooks?

According to the Project Jupyter web page
(https://jupyter.org), “The Jupyter Notebook is an open-
source web application that allows you to create and share
documents that contain live code, equations, visualizations
and narrative text. Uses include: data cleaning and
transformation, numerical simulation, statistical modeling,
data visualization, machine learning, and much more”.

The reasons that Jupyter notebook was chosen for this
book include:

Jupyter notebooks can integrate text, mathematics,
code, and visualization in a single document, which is
very helpful when conveying information about data. In
fact, this book and Foundations of Data Science with

Python were written together in a series of over 140
Juypter notebooks.

Jupyter notebooks allow for an evolutionary approach to
code development. Data processing can start as small
blocks of code that can then be modified and evolved to
create more complex workflows.

Jupyter notebooks are commonly used in the data
science field.

https://jupyter.org/


1.6.2 Why Python?

Python is a general-purpose programming language that
was originally created by Guido van Rossum and is
maintained and developed by the Python Software
Foundation. Python was chosen for this book for many
reasons:

Python is very easy to learn. Python has a simple
syntax that is very similar to C, which many engineers
and scientists will be familiar with. It is also easy to
transition to Python from MATLAB scripting, which
many engineers will be familiar with.

Python is an interpreted language, which means
that code can be run directly with immediate feedback
and without having to go through extra steps of
compiling programs.

Python interpreters are freely available and easy to

install. In addition, Python and Jupyter are available on
all major operating systems, including Windows,
MacOS, and Linux.

Python is popular for data science and machine

learning. Python is widely used for data science and
machine learning in both industry and universities.

Python has rich libraries for linear algebra and

data science. Python has many powerful libraries for
data science and machine learning. In addition, Python
has powerful libraries for a broad array of tasks beyond



the field of data science, which makes learning Python
have additional benefits.

1.6.3 How to Get Started with Jupyter and Python

Python and Jupyter are often packaged together in a
software distribution, which is a collection of related
software packages. The creators of several Python software
distributions include additional Python software libraries
for scientific computing. This book assumes the use of the
Anaconda distribution, which its creators bill as “The
world's most trusted open ecosystem for sourcing, building,
and deploying data science and AI initiatives” 1.

Anaconda's Individual Edition is freely available to
download from the Anaconda website at
https://www.anaconda.com/products/individual. Choose
the proper download based on your computer's operating
system. You may also have to select a version of Python.
This book is based on Python 3, and any version of Python
that starts with the number 3 and is at least as large as 3.6
should work with the code included in this book. For
instance, as of July 2024, the Anaconda distribution
included Python version 3.12.
_________________

 1https://www.anaconda.com/, retrieved July 19, 2024.⏎

WARNING

https://www.anaconda.com/products/individual
https://www.anaconda.com/


Python version 2 or Python versions after 3
may have syntax changes that cause the
code in this book to not run without
modification.

After downloading, install Anaconda however you usually
install software (for instance, by double-clicking on the
downloaded file). Anaconda will install Python and many
useful modules for data science, as well as Jupyter
notebook and JupyterLab.

Note:

The term “Jupyter notebook” refers to a file format (with
.ipynb extension), while “Jupyter Notebook” (with a
capital N) refers to an application with a web interface
to work with those files. To help avoid confusion, I will
write Jupyter notebook file or simply notebook whenever
referring to such a file, and we will use JuypterLab as
the web application for opening and working with such
files.

As of July 2024, JupyterLab “is a next-generation web-
based user interface for Project Jupyter” (from



https://jupyterlab.readthedocs.io/en/stable/). The Jupyter
Notebook application offers a simple interface for working
with notebooks and a limited number of other file types.
JupyterLab has a more sophisticated interface and can
include many different components, such as consoles,
terminals, and various editors. The interface for working
with notebooks is similar in both, and most users will be
able to use them interchangeably.

1.6.4 Getting Organized

We are almost ready to start using Jupyter and Python.
Before you do that, I recommend you take a minute to think
about how you will organize your files. Learning linear
algebra for data science requires actually working with
vectors, matrices, and data and performing analyses. This
will result in you generating a lot of Jupyter notebook files,
as well as some data files. I suggest that you create a folder
for this linear algebra book (or for the course if you are
using this as a course textbook). This folder should be
easily accessible from your home directory because that is
the location where JupyterLab will open by default if you
use the graphical launcher. You may wish to add additional
structure underneath that folder. For instance, you may
want to create one folder for each chapter or each project.
If you create separate folders for the data, I suggest you
make them subfolders of the one containing the notebooks
that access that data.

An example layout is shown in Fig. 1.1

https://jupyterlab.readthedocs.io/en/stable/


Fig. 1.1:  Example directory structure for organizing files
for working through the examples and exercises in this
book. ⏎

1.6.5 Getting Started in Jupyter

Let's begin exploring JupyterLab using an existing
notebook:

1) Download a Jupyter notebook file

We will use the file “jupyter-intro.ipynb”, which is
available at the website for Foundations of Data Science

with Python:

https://www.fdsp.net/notebooks/jupyter-intro.ipynb

If your browser displays the notebook as text, you will need
to tell it to save it as a file. You can usually do this by right-

https://www.fdsp.net/notebooks/jupyter-intro.ipynb


clicking or control-clicking in the browser window and
choosing to save the page as a file. For instance, in Safari
14, choose the “Save Page As…” menu item. Be sure to
name your file with a .ipynb ending.

Hint: If your file was saved to your default Downloads
folder, be sure to move it to an appropriate folder in your
linear-algebra folder to keep things organized!

2) Start JupyterLab

JupyterLab can be started from the Anaconda-Navigator
program that is installed with the Anaconda distribution.
Start Anaconda-Navigator, scroll to find JupyterLab, and
then click the Launch button under JupyterLab. JupyterLab
should start up in your browser.

Alternative for command-line users: From the command
prompt, you can start JupyterLab by typing jupyter lab

(provided the Anaconda bin directory is on the command
line search path). Because setting this up is specialized to
each operating system and command shell, the details are
omitted. However, details of how to set up the path for
Anaconda can be found at many sites online.

Your JupyterLab should open to a view that looks
something like the one in Fig. 1.2.



Fig. 1.2:  The JupyterLab interface. ⏎

WARNING

If you have used JupyterLab before, it may
not look like this – it will pick up where you
left off!

The JupyterLab interface has many different parts:



1. The menu bar is across the very top of the
JupyterLab app. I will introduce the use of menus
later in this lesson.

2. The left sidebar occupies the left side below the
menu bar. It includes several different tabs, which
you can switch between by clicking the various icons
on the very far left of the left sidebar. In Fig. 1.2, the
folder icon ( ) is highlighted, which indicates that
the File Browser is selected. For this book, we will
use the left sidebar only to access the File Browser (

).

3. The main work area is to the right of the left
sidebar. The main work area will usually show
whatever document you are working on. However, if
you have not opened any document yet, it will show
you different types of notebooks that you can open
and other tools that you can access. To start a
completely new Jupyter notebook file that can run
Python 3 code, you could click on the Python 3 icon
under Notebooks. For now, you do not need to do that.

Detailed documentation for JupyterLab is available at
https://jupyterlab.readthedocs.io/.

3) Navigate to the downloaded notebook

https://jupyterlab.readthedocs.io/


Use the File Browser ( ) in the left sidebar of
JupyterLab to navigate to the downloaded file.

If the File Browser ( ) is not already showing your

files, click on the folder icon ( ) on the very left-hand

side of the window to switch to it.

Navigation using the file browser should be similar to
navigating in most file selection boxes:

Single-click on items to select them.

Double-click on a folder to navigate into it.

Double-click on a file to open it.

As you navigate into folders, the current path (relative to
your starting path) is shown above the file list. You can
navigate back out of a folder by clicking on the parent
folder's name in the current path.

If you downloaded the file jupyter-intro.ipynb to the
chapter1 subdirectory of the data-science directory, which
lies in your home directory, then you would:

Double-click on the linear-algebra folder.

Double-click on the chapter1 folder.

Double-click on the file jupyter-intro.ipynb.

The file jupyter-intro.ipynb should open in the main work
area.



1.6.6 Learn the Basics of JupyterLab

After opening the jupyter-intro.ipynb notebook, take a
minute to scroll through the notebook before interacting
with it. Note that the notebook includes formatted text,
graphics, mathematics, and Python programming code.
Although this book focuses on using Python code for linear
algebra, I provide information on the other features
because they are useful for documenting and explaining
your work.

Notebook structure

Jupyter notebooks are subdivided into parts called cells.
Each cell can be used for different purposes; we will use
them for either Python code or for Markdown. Markdown is
a simple markup language that allows the creation of
formatted text with math and graphics. Code cells are
subdivided into Input and Output parts. Click on any part of
the intro.ipynb notebook to select a cell. The selected cell
will be indicated by a color bar along the entire left side of
the cell.

JupyterLab interface modes

The JupyterLab user interface can be in one of two modes,
and these modes affect what you can do with a cell:

In Edit Mode, the focus is on one cell, which will be
outlined in color (blue on my computer with the default



theme), and the cursor will contain a blinking cursor
indicating where typed text will appear.

In Command Mode, you cannot edit or enter text into a
cell. Instead, you can navigate among cells and use
keyboard shortcuts to act on them, including running
cells, selecting groups of cells, and
copying/cutting/pasting or deleting cells.

There are several ways to switch between modes:

In Command Mode, here are two ways to switch to Edit

Mode and begin editing a cell:

Double-click on a cell.

Select a cell using the cursor keys and then press
.

In Edit Mode, here are two ways to switch to Command

Mode:

Press . The current cell is not evaluated, but it will
be selected in Command Mode.

If editing a cell that is not the last cell in the notebook,
press +  to evaluate the current cell and
return to Command Mode. (If you are in the last cell of
the notebook, +  will evaluate the
current cell, create a new cell below it, and remain in
Edit Mode in the newly created cell.)

Enter

Esc

Shift Enter

Shift Enter



More on cells

In Edit Mode, code or Markdown can be typed into a cell.
Remember that each cell has a cell type associated with it.
The cell type does not limit what can be entered into a cell.
The cell type determines how a cell is evaluated. When
a cell is evaluated, the contents are parsed by either a
Markdown renderer (for a Markdown cell) or the Python
kernel (for a Code cell). A kernel is a process that can run
code that has been entered in the notebook. JupyterLab
supports different kernels, but we will only use a Python
kernel. Cells may be evaluated in many different ways.
Here are a few of the typical ways that we will use:

Most commonly, we will evaluate the current cell by
pressing +  or +  on the
keyboard. This will always evaluate the current cell. If
this is the last cell in the notebook, it will also insert a
new cell below the current cell, making it easy to
continue building the notebook.

It is also possible to evaluate a cell using the toolbar at
the top of the notebook. Use the triangular “play”
button (pointed to by the red arrow in the image in Fig.
1.3) to execute the currently selected cell or cells.

Sometimes we wish to make changes in the middle of an
existing notebook. To evaluate the current cell and
insert a new cell below it, press +  on the
computer keyboard.

Shift Enter Shift Return

Alt Enter



Cells can also be run by some of the commands in the
Kernel menu in the JupyterLab menu. For example, it is
always best to reset the Python kernel and run all the
cells in a notebook from top to bottom before sharing a
Jupyter notebook with someone else (for example,
before submitting an assignment). To do this, click on
the Kernel menu and choose the Restart Kernel and Run All
Cells… menu item.

Fig. 1.3:  Image of Jupyter interface indicating location of
“play” button for executing cells. ⏎

If you enter Markdown into a Code cell or Python into a
Markdown cell, the results will not be what you intend. For
instance, most Markdown is not valid Python, and so if
Markdown is entered into a Code cell, a syntax error will be
displayed when the cell is evaluated. Fortunately, you can
change the cell type afterward to make it evaluate
properly.

!

Important!

New cells, including the starting cell of a new
notebook, start as Code cells.



Cells start as Code cells, but we often want to enter
Markdown instead. We also may wish to switch a
Markdown cell back to a Code cell. There are three easy
ways to change the cell type:

As seen in Fig. 1.4, you can use the drop-down menu at
the top of the notebook to set the cell type to Code,

Markdown, or Raw.

If you are in command mode, you can use a keyboard
shortcut to change the type of a selected cell. The
standard keyboard shortcuts are  for Markdown and

 for Code.

If you are not in command mode, you can still use a
keyboard shortcut, but you will need to press

+  first, and then press either  for

Markdown or  for Code.

m

y

Control m m

y



Fig. 1.4:  Picture of JupyterLab interface showing the cell
type drop-down menu. ⏎

Intro to Markdown in Jupyter

This book primarily focuses on explaining linear-algebra
techniques and their application to analyzing data using
Python libraries. However, it is helpful to not only do the
mathematical and data manipulation but also to document
your results. Markdown can be used to add text, heading,
mathematics, and other graphics.

The example notebook jupyter-intro.ipynb demonstrates
the main features of Markdown. Recall that you can double-
click on any cell in the notebook to see the Markdown
source. The jupyter-intro.ipynb notebook illustrates the
features of Markdown listed below. A tutorial on how to
create each of these in Markdown is given online at
fdsp.net/1-6.

1. Headings are written like # Heading, where more # can
be added for subheadings.

2. Text and paragraphs. Paragraphs are indicated by blank
lines.

3. Emphasis can be added to text using asterisks, with
single asterisks indicating *italics* and double asterisks
indicating **bold**.

http://fdsp.net/1-6


4. Bulleted lists can be created by putting items after an
asterisk followed by a space: * my list item.

5. Numbered lists can be created by putting items after a
number, a period, and a space: 1. my numbered item.

6. Links can be created by putting the link text in square
brackets, followed by the link URL in parentheses, like
[Example link](http://google.com)

7. Images are created in a similar way to URLs, except
have an exclamation point (!) before the square
brackets: ![Image example]my_image.jpg.

8. Math can be entered using LaTeX notation.

A good reference for Markdown syntax is Markdown
Guide: https://www.markdownguide.org/extended-syntax/.

Getting Notebooks into and out of JupyterLab

There are several ways to get notebooks into JupyterLab:

As previously mentioned, you can use the File Browser

( ) to navigate to the current location of a file. Note
that you will be constrained to only navigating to files in
the directory in which Jupyter was started or in any
subdirectory below that. One disadvantage of this
approach is that your work will be saved wherever that
file currently resides. For instance, if you have
downloaded a notebook from the internet into your

http://google.com/
https://www.markdownguide.org/extended-syntax/


Downloads folder, your work on that notebook will remain
in the Downloads folder.

You can use drag-and-drop to copy any file into a
directory that you are currently browsing using
JupyterLab's File Browser ( ). To do this:

– Open the File Browser ( ) in Jupyter and
navigate to the directory where you want to work.

– In your operating system's file manager (e.g.,
Windows Explorer or Mac Finder), open the folder
containing the file you want to copy.

– Position and resize the folder and your web
browser's window so you can see both
simultaneously.

– Click and hold on the Jupyter notebook file that you
want to move. Then drag it onto the file list area of
the File Browser ( ).

– When the Jupyter notebook is over JupyterLab's File

Browser ( ) panel, the outline of the File

Browser panel will change to indicate that it is
ready for you to drop the file. Release the mouse
button or trackpad to copy the file into the selected
directory.

– Note that this makes a copy of the file from its

original location.



As an alternative to drag-and-drop, you can click on the
upload icon (an arrow with a line under it) at the very
top of the File Browser ( ) panel. This will bring up
a file selector that you can use to copy a file from
anywhere on your computer.

You can save your work by choosing Save Notebook in
JupyterLab's File menu or by pressing the keyboard
sequence listed next to that item in the menu. When you
manually save your work in this way, Jupyter actually saves
two copies of your work: it updates the .ipynb file that you
see in the file list, and it also updates a hidden checkpoint
file. When you are editing or running your notebook file,
Jupyter will also autosave your work periodically – the
default is every 120s. When Jupyter autosaves, it only
updates the .ipynb file. If Jupyter crashes or you quit it
without saving your notebooks, your last autosaved work
will be what you see in the .ipynb files. However, you can
always revert to the version you purposefully saved by
using the Revert Notebook to Checkpoint item in the File menu.

When starting new Jupyter notebooks, their initial name
will be “Untitled.ipynb”. You can easily rename your
notebook in a couple of ways. First, you can choose the
Rename Notebook… option from the file menu. As an alternative,
you can right-click on the notebook in the left-hand File

Browser ( ) panel and choose Rename. In both cases, be
sure to change only the part of the notebook name that is in



front of the .ipynb extension. Jupyter uses that file extension
to recognize Jupyter notebook files.

!

Important!

When you are finished working with a Jupyter
notebook, I recommend you perform the
following steps:

1. First, from the Kernel menu, choose Restart
Kernel and Run All Cells… This will clear the
previous output from your work and rerun
every cell from the top down.

2. Check over your notebook carefully to make
sure you have not introduced any errors or
produced any unexpected results from
having executed cells out of order or from
deleting cells or their contents. By
performing these first two steps, you help
make sure that someone else loading your
notebook file will be able to reproduce your
work.

3. Check the notebook file name and update it
if necessary.

4. Save the notebook.

5. Choose Close and Shutdown Notebook from
Jupyter's File menu.



6. If you are finished working in JupyterLab,
then choose Shut Down from JupyterLab's File
menu.

Another common workflow in JupyterLab is to use an
existing notebook as a starting point for a new notebook.
Again, there are several ways to do this:

If you already have the existing notebook open, then you
can save it under a new name by choosing Save Notebook
As… from Jupyter's File menu and giving the notebook a
new name. Note that after you use this option, the

notebook that is open in the main work area will be

the notebook with the new name. You will no longer

be working on the original notebook.

You can also duplicate a notebook by right-clicking on the
notebook's name in the File Browser ( ) panel on the
left-hand side and choosing Duplicate. A copy of the
notebook will be created with the name of the existing
notebook appended with a suffix like -Copy1 before the
.ipynb.

Jupyter magics

Code cells can also contain special instructions intended for
JupyterLab itself, rather than the Python kernel. These are
called magics, and a brief introduction to Jupyter magics is



available at the website for Foundations of Data Science

with Python at fdsp.net/1-6.

1.6.7 Getting Started in Python

In this section, I want to introduce a few Python concepts
that will be used throughout the following chapters. A more
general introduction to Python is available online at
fdsp.net/1-6. For users who want to learn more about
Python, the following resources are recommended:

A Whirlwind Tour of Python

(https://jakevdp.github.io/WhirlwindTourOfPython/) by
Jake VanderPlas is a free eBook that covers all the major
syntax and features of Python.

Learn Python for Free
(https://scrimba.com/learn/python) is a free 5-hour
online introduction to Python (signup required).

The Python documentation includes a Python Tutorial:
https://docs.python.org/3/tutorial/.

Python is an interpreted language, which means that
when any Code cell in a Jupyter notebook is evaluated, the
Python code will be executed. Any output or error
messages will appear in a new output portion of the cell
that will appear just after the input portion of the cell (that
contains the Python code). At the bottom of the jupyter-
intro.ipynb notebook, there is an empty cell where you can

http://fdsp.net/1-6
http://fdsp.net/1-6
https://jakevdp.github.io/WhirlwindTourOfPython/
https://scrimba.com/learn/python
https://docs.python.org/3/tutorial/


start entering Python code. If there is not already an empty
cell there, click on the last cell and press Alt-Enter.

First, Python variables are dynamically typed, meaning
that you do not have to specify what type of data they
contain. Python variable names must start with a letter and
consists of alpha-numeric characters and underscores (_).
You can create a Python variable by assigning to it:

x = 10

If we just want to see the value of a variable, we can
evaluate a Jupyter cell containing the variable's name:

x

10

More generally, many Python statements return results,
and if the last command in a cell returns results, these will
appear in a special output part of the cell.

We often want to combine some fixed text and some
variable output. To do this, we will use Python's print()
command with f-strings, which were added to Python in
version 3.6. An f-string is a special string that is created by
prefixing the first string-delimiter with the letter f. Any



part of an f-string contained within curly braces {} will be
evaluated before the string is used. For instance,

print(f'The square of x is {x**2}')

The square of x is 100

Lists, Tuples, and Zero-based Indexing

We will often be creating Python representations of two
types of linear algebra objects, vectors and matrices, that
can be stored as indexed sets of numbers. We will often use
a Python list object to pass the numbers that make up a
vector or matrix to whichever class that we are using to
represent that vector or matrix. A list is an ordered,
mutable store of information; mutable means that the
contents of a list can be changed. A Python list is indicated
by enclosing the members in square brackets [ ], with items
separated by commas. For example, the following code
creates a list with four elements and then evaluates that
list:

c = [1, 2, 4, 8]

c



[1, 2, 4, 8]

Elements in a list can be retrieved by passing the element
index in square brackets after the variable name. Computer
languages can usually be partitioned based on how they
index the first element in a variable that has multiple
elements. Python uses zero-based indexing, which means
that the first element in an object with n elements has
index 0, and the last element has index n − 1. The following
code prints the first element (at index 0) and the last
element (at index 3):

print(c[0], c[3])

1 8

Ranges of elements can be selected using [a:b] notation,
where a is the first element to be selected and b-1 is the last
element to be selected (so that [0:n] selects every element
in a length n object. For example, if we use the range
selector [1:3]] on c, we get:

print(c[1:3])



[2, 4]

More details and examples involving indexing are given in
Section 2.1.

The Python tuple data type is closely related to the list
type. Like lists, tuples are ordered collections of data, and
indexing works in the same way. Unlike lists, tuples are
immutable, which means that their contents cannot be
changed after creation. A tuple is indicated in Python by
enclosing its members in parentheses (). If there is only
one element in a tuple, that element must be followed by a
comma to distinguish that the parentheses are used to
indicate a tuple rather than to indicate mathematical or
logical grouping. In this book, tuples are primarily used for
passing collections of parameters to certain functions.
Although lists could be used for this purpose, tuples are
more common, and so I have chosen to stick with that
convention. Here is a tuple version of the list c:

ctup = (1, 2, 4, 8)

ctup

(1, 2, 4, 8)



The following shows what happens when we use a range
of the form [3:], which means from index 3 to the end.
Since there are no members beyond index 3, a tuple with
only one member is returned:

ctup[3:]

(8,)

Numerical Operations with NumPy

Almost all of our work on linear algebra will utilize the
NumPy (usually pronounced “Numb Pie”) module, which
contains many numerical functions. To use a module, you
must import it into your Python working environment. We
will use the standard convention of importing the NumPy
module into the np namespace as follows:

import numpy as np

To call a function from a namespace, we type the name of
the namespace, followed by a period, followed by the name
of the thing you are trying to access. For instance, the
value of π is a constant object named pi in NumPy. Now
that we have imported NumPy, we can access that value:



print(np.pi)

3.141592653589793

NumPy has many typical mathematical functions, which
we can call using the np namespace:

np.sin(np.pi / 4)

0.7071067811865475

The NumPy class that we will use to represent vectors
and matrices is the ndarray, or simply NumPy array. We can
create a NumPy array from our list c by passing it as the
sole argument to the function np.array():

cn = np.array(c)

cn

array([1, 2, 4, 8])



NumPy arrays also use zero-based indexing, and we can
retrieve elements from a NumPy array using the same type
of square-bracket notation as for lists:

cn[1:3]

array([2, 4])

We will use NumPy arrays instead of Python lists because
NumPy arrays have operators that work like vector and
matrix operators, and NumPy offers many functions for
working with matrices.

Linear Algebra Operations in PyTorch

PyTorch is an alternative to NumPy for most of the work
considered in this book. PyTorch is a popular library for
machine learning (ML), and many ML algorithms build on
linear algebra techniques. Unlike NumPy, PyTorch is not
installed by default in Anaconda. PyTorch can be installed
from the QT Console (available from the Anaconda
Navigator app) or from a terminal as:

conda install pytorch::pytorch



From within JupyterLab, you can install PyTorch by
running a code cell with the command above prepended
with an exclamation mark:

!conda install pytorch::pytorch

The installed library is called torch when importing, and the
equivalent to NumPy's ndarray is PyTorch's tensor object. We
can create a Python tensor from our list c as follows:

import torch

 

 

ct = torch.tensor(c)

ct

tensor([1, 2, 4, 8])

PyTorch tensor indexing is zero-based and works the
same as for NumPy arrays:

ct[1:3]

tensor([2, 4])



Choosing Between NumPy Arrays and PyTorch

Tensors

Both NumPy arrays and PyTorch tensors can represent
vectors and matrices, and they share many similar
operations. However, they are often used for different
purposes and have different advantages:

NumPy arrays are designed for efficient numerical
computing and data analysis. The key advantage of
NumPy arrays is their simplicity and wide support in the
data science ecosystem.

PyTorch tensors are specifically designed for machine
learning, particularly deep learning. The main advantage
of PyTorch tensors is their support of advanced features
used in machine learning, such as the ability to run
operations on GPUs.

!

Important!

For the linear algebra concepts covered in this
book, both NumPy arrays and PyTorch tensors
work equally well. I primarily present examples
using NumPy arrays because they are simpler
and more widely used in basic data science.
However, I also include information on carrying
out the same operations using PyTorch tensors,
and more details are included on the book's
website at la4ds.net.

http://la4ds.net/


Converting Between Arrays and Tensors

To convert a NumPy array to a PyTorch tensor:
torch.tensor(numpy_array)

To convert a PyTorch tensor to a NumPy array:
torch_tensor.numpy()

Objects and Methods

Python variables are more powerful than variables in many
languages because they are actually objects. Python is an
object-oriented programming language. This book does not
generally use an object-oriented approach; however, you
will need to know some fundamentals about objects and
classes:

Objects are special data types that have associated
properties and methods to work on those objects.
Properties are values that are associated with an object.
Properties of an object are accessed by giving the
variable/object name, adding a period, and then
specifying the property name. Methods are similar to
functions, except they are specialized to the object to
which they belong. Methods are called by giving the
variable/object name, adding a period, specifying the
method name, and then adding parentheses, with any
arguments provided in parentheses.

A class is a template for an object that defines an
object's properties and methods.



For example, NumPy arrays and vectors have a variety of
methods. We can call the sum() method of the NumPy
vector cn that we created previously:

cn.sum()

15

Loading and Analyzing Data in Pandas

Because this book focuses on the application of linear
algebra to data science, we will have the need to load,
display, and perform some basic operations on data sets.
Although we can load data files directly into NumPy arrays,
I instead show how to load data through Python's Pandas
library. Pandas is widely used for storing and manipulating
small datasets, and Pandas is used for this in the
companion book, Foundations of Data Science with Python.
We will import the Pandas library into the pd namespace:

import pandas as pd

Pandas is for working with tabular data, i.e., data that
can be tabulated into rows and columns. We will generally
store such data in a Pandas dataframe. A dataframe is
similar to a spreadsheet or a database table. It is a two-



dimensional structure in which each row corresponds to a
single data point. Each column stores one variable or
feature. Like tables in spreadsheets or databases, the
columns can be labeled, and the rows can be indexed by
consecutive integers or by the data in one of the columns.

Pandas has a read_csv() function for reading comma-
separated values (CSV) files or tab-separated values (TSV)
files, it has a read_excel() function for reading Microsoft
Excel files, and it has many other functions for reading data
from other statistical software, such as SAS and SPSS,
along with functions to read many other file types. The
following code reads a CSV file and stores its contents as a
Pandas Dataframe object called brfss. Then the first five
rows are displayed by using the head() method of the
Dataframe class.

brfss = pd.read_csv('https://www.fdsp.net/data/brfss21-

hw.csv')

brfss.head()

HTIN4 WEIGHT2

0 59.0 72.0
1 65.0 170.0
2 64.0 195.0
3 71.0 206.0
4 75.0 195.0

https://www.fdsp.net/data/brfss21-hw.csv


We can select data from a particular column by putting
column name in square brackets after the variable name
for the dataframe: brfss['HTIN4'].head()

HTIN4

0 59.0
1 65.0
2 64.0
3 71.0
4 75.0

When accessing one column of a Pandas dataframe, the
result is a Pandas Series object. A Pandas Series is similar to
a Python list, but each item has its own index value, and the
Series has many of the same methods as a dataframe. We will
introduce additional Pandas methods and functions as we
need them later in the book.

Self-assessment questions

Interactive self-assessment questions are available at
la4ds.net/1-6, which can also be accessed using this QR
code:

http://la4ds.net/1-6




1.7 Chapter Summary

This chapter introduced the topics that will be covered in
this book, as well as JuypterLab and Python, which are two
of the main tools used throughout the book. JupyterLab is
used to provide a computational notebook environment.
These notebooks can combine programming code, text,
graphics, and mathematics. We will use these to perform
numerical operations, analyze data, and present results.
Python is used because it is widely adopted by the data
science and machine learning communities, as well as
being a general-purpose programming language. Python
has well-developed libraries for data science and many
other applications, and we introduced a few of the libraries
that we will use throughout this book.

Access a list of key take-aways for this chapter, along with
interactive flashcards and quizzes at la4ds.net/1-7, which
can also be accessed using this QR code:

http://la4ds.net/1-7


2

Vectors and Vector Operation

DOI: 10.1201/9781032664088-2

Vectors provide a way to collect and operate on multiple pieces of
numerical data. In this chapter, I define vectors and introduce
different ways to visualize vector data. Then I introduce the most
common vector operations and their properties. The chapter ends
with a discussion of vector projection, which introduces concepts of
how we can approximate a vector as a scaled version of another
vector. This builds the foundation for our work on transforming
data in Chapter 6. Throughout, the concepts are demonstrated
through examples using Python and the NumPy library.

2.1 Introduction to Vectors

Let's begin by providing a simple definition of a vector:

DEFINITION

vector

An ordered collection of numbers that has an
accompanying set of mathematical operations.

Vectors are often used to represent quantities in two-dimensional or
three-dimensional Euclidean (regular geometric) space, in which

https://doi.org/10.1201/9781032664088-2


case we can consider vectors to have both magnitude and direction.
However, this book takes a much broader view of vectors. Vectors
are used throughout science and engineering as a way to store and
operate on collections of numerical phenomena. From a data
science perspective, we will use vectors to store data points or data
features.

We can consider vectors to be a collection of numbers indexed
along a single axis. In Chapter 3, we will consider similar
mathematical objects (matrices and tensors) for which the
collections are indexed across multiple axes. We will call the
number of indices the order:

DEFINITION

order

The number of axes used to index the contents of a
mathematical object, such as a vector, matrix, or tensor.

Thus, all vectors are of order one. For tensors, the order is also
sometimes called the rank (although rank has another meaning that
is covered in Section 4.2) or degree.

To distinguish between vectors and single numerical values, we
call the latter scalars:

DEFINITION

scalar

A single numerical value.

Scalars are considered to be of order zero. As previously
mentioned, vectors that represent quantities in Euclidean space can
be considered to have both magnitude and direction, whereas a



scalar has only a magnitude and sign. We will generally be dealing
with scalars and vector components that come from the real line,
which we denote by the symbol R.

!

Notation

In this text, vectors are written as bold, lowercase letters,
such as u, whereas scalars are written as non-bold,
lowercase letters, such as c. In handwriting, vectors
should be written as lowercase letters that are
underlined.

In other books, vectors are sometimes indicated using a
one-barbed, right-pointing arrow over the letter, like ⇀ u,
especially for geometric vectors that represent a
magnitude and direction in Euclidean space.

Vectors are usually represented mathematically as a column of
numbers enclosed in large square brackets, like

(2.1)

To save space, we can also write a column vector like
u = [0.75, −1, 1.75, 2.5]⊤, where the superscript ⊤ indicates that the
vector should be “transposed” from a row to a column.

Example 2.1: Vector in NumPy  ⏎

We can create a Python object that represents u using
NumPy's array class. For convenience of discussion, we will

u = .

0.75

−1

1.75

2.5



refer to either the mathematical object or it's Python
representation as a vector. To create a Python vector u, we can
pass a Python list of numbers to np.array():

import numpy as np

 

 

u = np.array([ 0.75, -1, 1.75, 2.5])

u

array([ 0.75, -1.   ,   1.75,   2.5 ])

In NumPy, the number of dimensions of the array corresponds
to the order of the mathematical object that the array
represents. We can get the order of u using the ndim property:

u.ndim

1

Example 2.2: Vector in PyTorch

PyTorch's tensor class is very similar to NumPy's array class in
terms of both methods and operators. Thus, we can create a
tensor object to represent u by either passing a list to



torch.tensor or by passing it a NumPy array object. Thus, we can
create a PyTorch tensor to represent u as follows:

import torch

 

 

u2 = torch.tensor(u)

u2

tensor([ 0.7500, -1.0000,   1.7500,   2.5000], dtype=torch.float64)

As with NumPy, the order of the PyTorch tensor can be
retrieved using the ndim property of the tensor class:

u2.ndim

1

Note:

For most of the mathematical operations considered in this book,
NumPy arrays and PyTorch tensors have the same methods and
operators. Thus, I will only present the NumPy version. The
PyTorch code is included on the book's website.

A vector consists of components or elements:



DEFINITION

component (vector),

element (vector)

One of the numerical values that make up the vector.

We will later generalize vectors to allow the components to be
variables that represent numbers.

For a vector u, we will denote its ith component by ui. Here, i is
called the index of the component. Consistent with the use of zero-
based indexing in Python, we will take the index of the first element
as 0. However, the reader should be aware that in general math
applications, the first index is often taken as 1.

Example 2.3: Accessing a Component of a Vector in

NumPy

For the vector u = [0.75, −1, 1.75, 2.5]⊤ from Example 2.1,
u2 = 1.75.

In NumPy, particular components of arrays can be retrieved
using indexing, in which an index or set of indices is specified
in square brackets following a vector variable. For instance, we
can retrieve component 2 of the NumPy vector u as shown in
the following:

u[2]

1.75



Example 2.4: Accessing a Component of a Vector in

PyTorch  ⏎

Retrieving a particular component of a vector is slightly
different in PyTorch because indexing into a PyTorch tensor
always returns a tensor. Consider the following example:

u2[2]

tensor(1.7500, dtype=torch.float64)

If we want to retrieve the value of that single-item tensor, we
can use the item() method:

u2[2].item()

1.75

Note that the item() method of a PyTorch tensor only works
on tensors with one element.

Example 2.5: NumPy Indexing by List



If the index is a list or vector of values, the result will be a
vector. For instance, we can retrieve elements 1 and 2 of u as
follows:

u[[1,2]]

array([-1.   ,   1.75])

Example 2.6: NumPy Indexing by Range

We can also specify a range of consecutive indices as a:b, but
remember that in Python, the upper end of the range is not
included in that range. Thus, to get elements 1 and 2 using
range notation, we need to do the following:

u[1:3]

array([-1.   ,   1.75])

Another useful way to index vectors by range is to specify a
step. The step is provided as the third component of a range
(after a second colon). Note that if no value is provided for the
first two components of a range, then the range is assumed to
go over all values of the vector. Thus, we can get every second
element of u, starting from element 0, as follows:



u[::2]

array([0.75, 1.75])

It is often helpful to find out how many elements a vector
contains:

DEFINITION

size (vector),

dimension (vector)

The number of components a vector contains.

WARNING

The size, or dimension, of a vector is also called the
length in some books, but this may lead to
confusion because it is generally not equal to the
length of the vector in Euclidean space.

Example 2.7: Size of a Vector in NumPy

The dimension of the vector u from Examples 2.1–2.4 is 4.



We will determine the size of a NumPy vector using the size
property of a NumPy vector: u.size or NumPy's np.size()

function: np.size(u).

np.size(u)

4

More generally, we can find the size of any NumPy array across
each of its indices using the shape property:

u.shape

(4,)

Example 2.8: Size of a Vector in PyTorch

PyTorch does not a have a torch.size() function, but we can
determine the size of a PyTorch tensor using that tensor's size()
method or shape property:

u2.size()



torch.Size([4])

u2.shape

torch.Size([4])

Both of these techniques return the same result. The result is a
Torch.Size object, but it can be treated the same as a tuple for
our purposes.

A vector of size n is called an n-dimensional vector, or simply an
n-vector. The set of all n-vectors whose components can be any real
number (i.e., each xi ∈ R) is denoted by Rn.

Terminology review and self-assessment questions

Interactive flashcards to review the terminology introduced in this
section and self-assessment questions are available at la4ds.net/2-
1, which can also be accessed using this QR code:

2.2 Visualizing Vectors

http://la4ds.net/2-1


Vectors are often visualized as displacements from a point, meaning
an indication of movement from some starting point to an ending
point. If no starting point is given, then the displacement is
measured from the origin.

We are only going to plot 2-vectors in this book. For 2-vectors, the
components of the vectors are interpreted as representing x and y
displacements:

One of the most common ways to illustrate 2-vectors is to draw
each 2-vector as an arrow from the origin to the coordinates given
in the vector. This is a special case of a quiver plot:

DEFINITION

quiver plot

A (two-dimensional) plot that illustrates one or more
vectors as arrows that are typically specified by a location,
which determines the coordinates of the tail of the vector,
and some specification of the direction and magnitude of
the vector. If no location is provided, then the origin (0, 0)
is used.

In some applications, quiver plot is used to refer to plots where
the vectors' locations are at points in a grid, and the vectors
indicate some magnitude and direction associated with that
location. For instance, such plots are used to illustrate fluid flows
over surfaces. I will use the term quiver plot to refer to any plot
that illustrates vectors as arrows.

a = [ ].
ax

ay



!

The PlotVec Library

To make it easier to create plots of vectors as arrows, I
have created a library of functions for plotting vectors
called PlotVec and made it available via the Python
Package Index (PyPI), which is a standard repository for
distributing Python libraries across distributions. To install
Python packages via PyPI, you can use the pip command,
which is a text-based (not graphical) command. In most
cases, you can run pip commands from within JupyterLab
by prefixing them with an exclamation point. To install the
PlotVec library from within JupyterLab, you can run the
following command in any code cell:

!pip install plotvec

If plotvec is already installed, you can upgrade to the latest
version as follows:

!pip install -U plotvec

If you have trouble, you can review additional information
on installing libraries via pip at
https://packaging.python.org/en/latest/tutorials/installing-
packages/.

In all future sections that rely on the plotvec() function, I
will assume that the plotvec module has been installed.

The PlotVec library contains two functions for plotting vectors,
plotvec() and plotvecR(). I will include parentheses after the function

https://packaging.python.org/en/latest/tutorials/installing-packages/


names to help distinguish them from the library name. Both
functions have essentially the same purpose: plot one or more
vectors as arrows. By default, the plotvec() function enforces an
equal aspect ratio on the vector plot, which means that a unit of
length will occupy the same amount of visual space in both the
horizontal and vertical directions. This is often useful when trying
to illustrate the relation among multiple vectors; however, we do
not need to enforce equal aspect ratios for the plots in this section.
We could pass the keyword argument square_aspect_ratio=False to
plotvec(); however, a more concise alternative is to use the function
plotvecR(), which uses a rectangular aspect ratio by default.

Assuming that you have installed the PlotVec library, import the
plotvecR() function into your global namespace:

from plotvec import plotvecR

Example 2.9: Plotting a Vector with plotvecR()

Consider the vector a = [2, 3]⊤. We can visualize this vector
using the following interpretation. Since no initial location is
specified, start at the origin. Then move 2 in the x direction (to
the right) and 3 in the y direction (up). We draw an arrow from
(0,0) to (2,3) to represent this Vector:

a = np.array([2, 3])

plotvecR(a)



Using this type of visualization, the vector has a direction and
magnitude, as previously mentioned. The direction can be
measured as the angle of the vector measured from the orientation
of the positive x-axis, and the magnitude can be measured as the
length of the vector. When plotted as an arrow, the vector is
considered to have a tail and head:

DEFINITION

tail (vector)

The tail of a vector is the starting point of a vector (the
initial point from which the displacement is measured).

DEFINITION

head (vector)



The head of a vector is the ending point of a vector (the
point at which the vector terminates after the specified
displacement from the tail).

For our example, the tail is at the origin (0, 0). Thus, the
displacement of (2, 3) results in the coordinates of the head of the
vector being the same as the displacement: (2, 3). Thus, we draw
the vector as an arrow from the tail at (0, 0) to the head at (2, 3),
with the tip of the arrow at the head.

Example 2.10: Plotting Two Vectors with Tails at

the Origin

Let's create a second vector. The plotvecR() function can
handle plotting multiple vectors:

b = np.array([1, -2])

plotvecR(a, b)



Exercise: Create another vector c, and plot it with a and b. Vary
the coordinates of c and see how that changes the figure.

Terminology review and self-assessment questions

Interactive flashcards to review the terminology introduced in this
section and self-assessment questions are available at la4ds.net/2-
2, which can also be accessed using this QR code:

http://la4ds.net/2-2


2.3 Applications

Vectors are used in many different ways. Below are some of the
ways that vectors are used, along with an example of each type of
use:

Geometrical features, such as location in space or

displacements between locations

Most of the target audience of this book will already be familiar
with this use from physics classes. Vectors can be used to represent
physical features of dynamical systems, such as position, velocity,
and acceleration in two- or three-dimensional Euclidean space.

In Fig. 2.1, the vectors shown as arrows with solid lines represent
the movement of a robot in a plane during two consecutive periods.
The robot starts at the origin, which is the tail of the blue vector. It
travels to the head of the blue vector during period 1. Its starting
position in period 2 is the same as the ending position in period 1,
so the tail of vector 2 is located at the head of vector 1. The head of
vector 2 is the position of the robot at the end of period 2. The
arrow shown with a dashed line indicates the vector from the
robot's initial position to its final position; later we will show that
this vector is the sum of the two movement vectors.



Fig. 2.1:  Two solid arrows represent vectors indicating movement
of a robot over two consecutive periods. Dashed arrow represents
vector pointing to final position of robot. ⏎

Multi-dimensional numerical data

We often represent a data set as a table. For instance, each row
may represent one data point, and each column may represent one
feature. If all of the data features are numeric or encoded as
numerical values, then we can use vectors to represent such data in
different ways. For instance, each data point can be represented as
a vector, or the observed values for a particular feature can be
represented as a vector.

Example 2.11: Vector Representations and Plots of

Heights and Weights



“The Behavioral Risk Factor Surveillance System (BRFSS) is
the nation's premier system of health-related telephone surveys
that collect state data about U.S. residents regarding their
health-related risk behaviors, chronic health conditions, and
use of preventive services”:
https://www.cdc.gov/brfss/index.html.

The BRFSS 2021 survey contains over 400,000 records and
over 300 variables. It takes a long time to load and work with
the full set of survey results, so I have extracted data for two
variables to analyze. The variables are as follows, and I
performed data cleaning for each variable as described:

HTIN4: A computed variable that lists height in inches.
Invalid responses (“Don't know/Not sure”, “Refused”, or
“Not asked or Missing”) have been dropped.

WEIGHT2: The reported weight in pounds. Again, I have
dropped invalid responses, as above.

Even after cleaning, the resulting data set has over 391,000
data points.

We can load the cleaned height and weight data into a
Pandas dataframe called brfss, as we did in Section 1.6.7. Here,
I again show how to load the CSV data into a dataframe and
display the first five rows:

import pandas as pd

 

 

brfss = pd.read_csv('https://www.fdsp.net/data/brfss21-hw.csv')

brfss.head()

https://www.cdc.gov/brfss/index.html
https://www.fdsp.net/data/brfss21-hw.csv


HTIN4 WEIGHT2

0 59.0 72.0
1 65.0 170.0
2 64.0 195.0
3 71.0 206.0
4 75.0 195.0

Because the data occupies a two-dimensional table, we can
decompose it into vectors in two different ways: we can treat
each row (i.e., data point) as a vector or each column (i.e.,
feature) as a vector. Let's start by treating each row as a 2-
vector and generate a plot of these vectors. Because it would be
hard to see and interpret over 391,000 arrows representing all
of the rows, let's plot the arrow representations for the first 50
rows. In the following code, I use a for loop to iterate over the
first 50 rows and call plotvec() for each one:

from plotvec import plotvec

 

 

for i in range(50):

  plotvec(brfss.iloc[i], color_offset=2*i, square_aspect_ratio=False,

          newfig=False)

plt.xlim(0,80)

plt.ylim(0,350)

plt.xlabel('Height (in)')

plt.ylabel('Weight (lbs)');



Do you notice any trend in the arrows? We expect them all to
point up and to the right because both height and weight are
positive quantities. However, you should notice an additional
trend that most of the arrows point in the same general
direction. This might indicate that these two features are not
independent of each other. Intuitively, you may guess that, as a
general trend, taller people are more likely to be heavier than
shorter people.

If we want to visualize more of the data, then plotting the
vectors as arrows is probably not the best approach. When
plotting data with two numerical features, it is much more
common to plot each data point as a single point in the plane,
where one of the features acts as the x-coordinate and the
other feature acts as the y-coordinate. Equivalently, we can
think that each point is located at the head of the



corresponding vector in the arrow plot. Such a plot is called a
scatter plot:

DEFINITION

scatter plot

A (two-dimensional) scatter plot takes a sequence of two-
dimensional data points (x0, y0), (x1, y1), …, (xn−1, yn−1)
and plots symbols (called markers) that represent the
locations of the points in a rectangular region of a plane.

With the exception of plotting vectors, we will use the
Matplotlib library to create plots. In fact, even PlotVec uses
Matplotlib to create quiver plots. The most common way to
make plots in Matplotlib is to use the PyPlot submodule, which
provides many plotting commands that are similar to those in
MATLAB. It is usually imported as plt:

import matplotlib.pyplot as plt

The function plt.scatter() can be used to create two-
dimensional scatter plots. Instead of accepting a sequence of n
two-dimensional data points, which might result in a large
number of inputs, plt.scatter() expects one n-vector of x-
coordinates and one n-vector of y-coordinates.

Thus, an alternative way to represent our two-dimensional
height and weight data is to represent each feature by one
vector. We can extract all of the height data as a Pandas Series
object by passing the column name ‘HTIN4’ as the index:



brfss[‘HTIN4’]. If we need this data as a NumPy vector, we can
convert it using the Pandas Series .to_numpy() method, like
brfss[‘HTIN4’].to_numpy(). However, for the purposes of passing
this data to plt.scatter(), that is not necessary because
plt.scatter() can directly accept the Pandas Series.

Even when using a scatter plot, plotting every data point
makes a plot that is very large in size when saved as a pdf.
Instead, we downsample to every 100th point, using the range
notation ::100. We apply this to both the ‘HTIN4’ column as the
independent (x-axis) data and the ‘WEIGHT2’ column as the
dependent (y-axis) data. The following code generates the
scatter plot:

plt.scatter(brfss['HTIN4'][::100], brfss['WEIGHT2'][::100], 4, 

alpha=0.7)

plt.xlabel('Height (in)')

plt.ylabel('Weight (lbs)')



Note that I have used the functions plt.xlabel() and plt.ylabel()
to add appropriate x-axis and y-axis labels, respectively.

The scatter plot shows a similar trend to what we saw in the
previous quiver plot. The general trend is that larger heights
are generally associated with larger weights.

Time-series data

Many data sets consists of observations of some phenomena over
time, and these are called time-series data:

DEFINITION

time-series data

Data that is collected over time, usually at regular
intervals. Each data point is associated with a timestamp



indicating when the data was collected.

For instance, the daily closing price of a stock over the past year
can be represented by a vector. Some other examples of time-series
data include weather and climate data.

Is the climate changing? That is a complicated question that is
outside of the scope of this book, but we can try to answer it on a
small scale. Since I live in Florida, let's consider the research
question, “Is the annual temperature changing over time in Miami-
Dade County, Florida?”

Example 2.12: Annual Temperature Data for Miami-

Dade County

Let's start by loading the annual temperature data for Miami-
Dade County from the National Oceanic and Atmospheric
Administration:

# Alternate site for accessing data:

# df = pd.read_csv('https://www.fdsp.net/data/miami-weather.csv', 

skiprows=4)

df=pd.read_csv('https://www.ncei.noaa.gov/access/monitoring/climate-

at-a-glance/'

               + 'county/time-series/FL-086/tavg/ann/5/'

               + '1895-2022.csv?

base_prd=true&begbaseyear=1895&endbaseyear=2022',

               skiprows=4)

df.head()

Date Value Anomaly

0 189512 73.6 −1.1

https://www.fdsp.net/data/miami-weather.csv
https://www.ncei.noaa.gov/access/monitoring/climate-at-a-glance/


Date Value Anomaly

1 189612 73.9 −0.8
2 189712 74.6 −0.1
3 189812 74.4 −0.3
4 189912 74.7 −0.0

The Value column contains the annual temperature. The Date
column contains the year followed by a two-digit month code,
which can be ignored because this is annual data. Let's create a
separate column for the year:

df['Year'] = df['Date'] // 100

df.head()

Date Value Anomaly Year

0 189512 73.6 −1.1 1895
1 189612 73.9 −0.8 1896
2 189712 74.6 −0.1 1897
3 189812 74.4 −0.3 1898
4 189912 74.7 −0.0 1899

The following code generates a scatter plot showing the annual
temperature (on the y-axis) as a function of the year (on the x-
axis):

plt.scatter(df['Year'], df['Value'], 15)

plt.xlabel('Year')

plt.ylabel('Annual temperature ($^\circ$F)')



The results seem to show an even stronger relation between
annual temperature and year than the relationship between
height and weight seen in the BRFSS data.

Distributional data

Vectors may be used to indicate distributions or allocations across
categories. For example, an investor's current net worth across
different categories (such as stocks, bonds, and real estate) can be
represented as a vector. In some cases, we are interested in the
proportional allocations, which we can get by dividing the un-
normalized distributions by the sum of the entries in the vector.

Example 2.13: Composition of the Dow Jones

Industrial Average



The Dow Jones Industrial Average (DJIA) is a stock market
index that is based on the prices of 30 major companies traded
on the New York Stock Exchange or NASDAQ exchange. This
index is computed by adding the trading prices of the 30
companies and then dividing by a factor that is used to
compensate for stock splits. The following code loads the price
and weight information for the 30 DJIA stocks as of November
26, 2024. (This data was retrieved from SlickCharts Dow Jones
Companies: https://www.slickcharts.com/dowjones):

dow = pd.read_csv('https://www.fdsp.net/data/dowjones-112624.csv')

dow.head()

Company Symbol Weight Price

0 UnitedHealth
Group

Incorporated

UNH 8.315803 606.79

1 Goldman Sachs
Group Inc.

GS 8.277370 605.50

2 Home Depot
Inc.

HD 5.884052 429.52

3 Microsoft Corp MSFT 5.748436 427.99
4 Caterpillar Inc CAT 5.568073 407.83

Here, the Weight is the proportion of the index that each stock
represents, expressed as a percentage. Stocks with higher
prices make up more of the index. Let's extract the Weight
column as a vector (unlike the previous examples, where we
extracted the rows as vectors). Although not necessary for
plotting the weights, it is more obvious that the weights can be

https://www.slickcharts.com/dowjones
https://www.fdsp.net/data/dowjones-112624.csv


considered as a vector of proportional data if we extract them
into a NumPy vector. The best way to do this is to use the
to_numpy() method of the Pandas dataframe and Series, as shown
in the following:

weights = dow['Weight'].to_numpy()

np.round(weights, 1)

array([8.3, 8.3, 5.9, 5.7, 5.6, 5.5, 4.7, 4.3, 4.2, 4.1, 4. , 3.6, 

3.4,

       3.2, 3.2, 3.1, 2.8, 2.4, 2.2, 2.1, 2.1, 1.9, 1.8, 1.6, 1.4, 

1.2,

       1.1, 0.9, 0.8, 0.6])

We can immediately observe that the index is heavily weighted
toward the top few stocks. For instance, if we sum the top five
weights, we get:

np.sum(weights[:5])

33.793734

Thus, the five stocks with the highest prices represent over a
third of the index.

When plotting proportions, it is most common to use either
bar charts or pie charts. However, there have been many issues



identified with pie charts – see, for example, “Why you
shouldn't use pie charts”:
https://scc.ms.unimelb.edu.au/resources/data-visualisation-
and-exploration/no_pie-charts. In particular, people are not
good at estimating proportions from angles. Therefore, I will
use a bar chart to illustrate proportional data:

DEFINITION

bar chart,
bar graph

Most commonly used with categorical data for which each
category has an associated quantity or measurement, a bar
is drawn for each category, where the height or width of
the bar is proportional to the associated quantity or
measurement.

The following code generates a bar chart that shows the
proportion of the index that each of the top 5 stocks represents:

plt.bar(dow[:5]['Symbol'], dow[:5]['Weight'])

plt.xlabel('Stock Symbols')

plt.ylabel('Proportion (%)')

plt.title('Proportion of Dow Jones Industrial Average; Top 5 Stocks');

https://scc.ms.unimelb.edu.au/resources/data-visualisation-and-exploration/no_pie-charts


Terminology review and self-assessment questions

Interactive flashcards to review the terminology introduced in this
section and self-assessment questions are available at la4ds.net/2-
3, which can also be accessed using this QR code:

2.4 Special Vectors

http://la4ds.net/2-3


Below are several types of vectors that are common enough to have
their own names and notations.

DEFINITION

zero vector

A vector of all zeros.

We will denote the zero vector of size n by 0n. For example,

We can create a zero vector in NumPy by passing the desired size
to np.zeros(). Thus we can create a Numpy representation of 05 as

zeros5 = np.zeros(5)

print(zeros5)

[0. 0. 0. 0. 0.]

DEFINITION

ones vector

A vector of all ones.

05 = .

0

0

0

0

0



We will denote the ones vector of size n by 1n. We can create a
ones vector in NumPy by passing the desired vector size to
np.ones():

np.ones(5)

array([1., 1., 1., 1., 1.])

DEFINITION

standard unit vector

A vector with all of its components equal to zero, except
one element that is equal to one.

For a given size n, we denote the standard unit vector with element
i equal to 1 by ei.

For example, the three standard unit vectors of dimension 3 are:

(2.2)

In NumPy, we can create a standard unit vector by creating a
zeros vector of the same size and then setting one desired
component to 1. For instance, we can create a NumPy
representation of e2 as

e2 = np.zeros(3)

e0 = , e1 = , ande2 = .

1

0

0

0

1

0

0

0

1



e2[2]=1

print(e2)

[0. 0. 1.]

Terminology review and self-assessment questions

Interactive flashcards to review the terminology introduced in this
section and self-assessment questions are available at la4ds.net/2-
4, which can also be accessed using this QR code:

2.5 Vector Operations

One of the main reasons to use vectors is that they enable simple
notation for, and implementation of, a variety of mathematical
operations for collections of numerical data. In this section, we
consider these operations and their visualization.

Let's start by loading the plotvec() function and visualizing two
vectors,

import numpy as np

a = [2, 3]⊤, and

b = [1, −2]⊤.

http://la4ds.net/2-4


from plotvec import plotvec

 

 

a = np.array([2, 3])

b = np.array([1, -2])

 

 

plotvec(a, b,

        labels = ['$\mathbf{a} = [ 2,3]^T$',

                     '$\mathbf{b} = [ 1, -2]^T$'],

        legendloc='upper left', square_aspect_ratio=False)

2.5.1 Vector Addition

Vector addition is one of the easiest operations because it is just
component-wise addition:



DEFINITION

addition (vectors)

The sum of n vectors a and b is a vector a + b such that
any component i of the vector sum is the sum of the ith
components of a and b; i.e.

(a + b)i = ai + bi, i = 0, 1, … ,n − 1.

We can visualize the sum of a series of vectors as the
displacement achieved from the consecutive (chained)
displacement of the vectors, where the head of each vector serves
as the tail of the next vector in the series. The plotvecR() function
will chain vectors in this way if given the keyword argument
chain=True:

plotvecR(a, b, chain=True)



The plotvecR() function can also plot the vector from the original tail
to the final head if we specify the plotsum=True parameter:

plotvecR(a, b, chain=True,   plotsum=True)



For NumPy vectors, the addition operator + performs vector
addition. Let c be the vector sum of a and b. Then:

c = a + b

c

array([3, 1])

Since vector addition is just scalar addition for each component,
and scalar addition is commutative (is unaffected by order), vector
addition is also commutative. We can check this for our example
vectors:



b + a

array([3, 1])

Compare the dashed line above, representing the result of
“chaining” vectors a and b with the plot of a+b shown in the
following figure; I set the limits of the axes to be the same as for the
chained vectors:

import matplotlib.pyplot as plt

 

 

plotvecR(a + b)

plt.xlim(-1, 4)

plt.ylim(-1, 4)



Note that if we change the order of the chained vectors, we still
get the same vector from the origin to the head of the second
vector. The following figure shows the result when we first draw
vector b and then chain a onto the head of b:

plotvecR(b, a, newfig=False, chain=True, plotsum=True)



We can sometimes use Python lists in place of NumPy vectors.
However, the + operator will not do component-wise addition on
Python lists:

g = [1, 2]

h = [-3, 4]

print(g + h)

[1, 2, -3, 4]

(The + operator concatenates lists.)

2.5.1.1 Properties of Vector Addition



Because vector addition is component-wise scalar addition, it
inherits many of its properties from scalar addition:

Commutative: a + b = b + a

Associative: (a + b) + c = a + (b + c)

Identity: The zero vector is the identity for vector addition:
a + 0 = a

2.5.2 Sum of Elements of a Vector

In data science, we often want to sum the data contained in a
vector. If u is a n-vector, then mathematically, the sum of the
elements of u would be written as

(Later in this section, we will introduce another approach for
finding the sum using a type of vector-vector multiplication.)

In Python, we can get the sum of the elements in u using np.sum()
or the built-in sum() method of a NumPy vector:

u = np.array( [1, -3, 4, 10] )

np.sum(u)

12

u.sum()

n−1

∑
i=0

ui.



12

2.5.3 Scalar-Vector Multiplication (Scaling)

In scalar-vector multiplication, a vector is multiplied by a scalar (a
number). This is achieved by multiplying every component of the
vector by the scalar:

DEFINITION

multiplication (scalar-vector)

Given a vector u and a scalar α, define αu such that each
component i of αu is given by (αu)i = αui. Thus,

αu = α[u0,u1, … ,un−1]⊤ = [αu0,αu1, … ,αun−1]⊤.

In NumPy, we can multiply a scalar by a vector using the usual *
multiplication symbol:



a1 = 0.5 * a

print(f'a = {a},   0.5*a = {a1}')

plotvecR(a, a1, labels=['$\mathbf{a}$', '$0.5 \mathbf{a}$'])

a = [2 3],   0.5*a = [1.   1.5]

b1 = 3 * b

print(f'b = {b},   3*b = {b1}')

 

 

# I swapped the order so that the vector b will not



# be hidden by the vector 3b

plotvecR(b1, b, labels=['3$\mathbf{b}$', ' $\mathbf{b}$'])

b = [ 1 -2],   3*b = [ 3 -6]

Note that multiplying a vector by a positive scalar yields an
output vector that is in the same direction as the original

vector, but its length has been changed in a way that depends on
the value of the scalar. Let's consider the effect of negative scalars:



a2 = -0.5 * a

print(f'a = {a},   -0.5*a = {a2}')

plotvecR(a, a2, labels=['$\mathbf{a}$', '$-0.5 \mathbf{a}$'])

a = [2 3],   -0.5*a = [-1.   -1.5]

b2 = -3 * b

print(f'b = {b},   -3*b = {b2}')

plotvecR(b, b2, labels=['$\mathbf{b}$', '-3$\mathbf{b}$'] )



b = [ 1 -2],   -3*b = [-3   6]

Multiplying by a negative scalar yields a vector that is in the
opposite direction as the original vector. The length of the new
vector is controlled by the scalar's magnitude (i.e., absolute value).
For either scalar with magnitude 0.5, the new vector is shorter than
the original vector. For either scalar with magnitude 3, the new
vector is longer than the original vector.

In general, if u is a vector and α is a scalar, then:

if |α| < 1, then αu will be shorter than u,

if |α| = 1, then αu will be the same length as u, and

if |α| > 1, then αu will be longer than u.

The details of how to show this have to wait until we define the
length of a vector later in this section.



In NumPy, scalar-vector multiplication is considered to be
broadcasting:

DEFINITION

broadcasting (NumPy)
In NumPy, broadcasting occurs in operations involving two
arrays of different shapes. The smaller array is broadcast

across the larger array by repeating values in the smaller
array in such a way that the shapes of the two arrays will
match.

In this instance, the scalar is treated as an array with a single
element. Under broadcasting, the scalar is repeated to match the
size of the vector, and then the two vectors are multiplied
component-wise. (This type of multiplication of vectors is called a
Hadamard product and is discussed more below.)

Readers interested in learning more about broadcasting can read
the NumPy documentation on broadcasting:
https://numpy.org/doc/stable/user/basics.broadcasting.html.

Properties of Scalar Multiplication

Since scalar-vector multiplication is component-wise multiplication
by a scalar, it inherits the properties below from normal
multiplication of real scalars.

If u and v are vectors of the same size, and α is a real scalar, then
these properties hold:

Commutative: αu = uα. It does not matter whether the
multiplying scalar is on the right or left of the vector.

https://numpy.org/doc/stable/user/basics.broadcasting.html


Associative: If α and β are scalars, then (αβ)u = α(βu). If
multiplying by two scalars, we will get the same result if we do
the scalar-scalar multiplication first or the scalar-vector
multiplication first.

Distributive over scalar addition: (α + β)u = αu + βu and
u(α + β) = uα + uβ

Distributive over vector addition: α(u + v) = αu + αv

2.5.4 Vector Subtraction

We can combine vector addition and scalar-vector multiplication to
define vector subtraction. We define b − a as b + (−1)a, which
yields

If we let c = b − a, then we can also write b = a + c, so c is the
vector that needs to be added to a for the result to be b. For
example, Fig. 2.2 shows the relations for some example vectors a, b
, and b − a.

b − a =
n−1

∑
i=1

(bi − ai).



Fig. 2.2:  Figure showing the relation among example two-vectors a
and b and the difference vector b − a. ⏎

The vector a − b is the negative of the vector b − a. Thus both
have the same length. The closer that a and b are to each other, the
smaller the length of the difference will be.

2.5.5 Component-wise Vector Multiplication: The Hadamard

Product

Component-wise multiplication of vectors is also known as the
Hadamard or Schur product:

DEFINITION

component-wise multiplication (vectors),
Hadamard product (vectors),



Schur product (vectors)

Given n-vectors u and v, the Hadamard product or Schur

product is denoted u ⊙ v and is the n-vector given by
component-wise multiplication of u and v,

u ⊙ v = [u0v0,u1v1, … ,un−1vn−1].

Because there are different types of vector multiplication, we
need different symbols to distinguish among them. Here we use the
symbol ⊙ to indicate component-wise multiplication. (Note that the
symbol ∗ that is used for multiplication in many computer
languages is not used to indicate multiplication in written
mathematics.) When printing from Python, we can use the Unicode
character 2299. Here we define a string odot containing this
Unicode character:

odot = '\u2299'

Then we can use f-strings to write out a product like u ⊙ y as

print(f'u {odot} v')

u ⊙ v

Component-wise multiplication is relatively uncommon in
mathematics; in fact, there is no standard notation for this
operation. However, it is a useful building block for other
operations and is easy to implement in NumPy. Somewhat
confusingly, even though ∗ is not used to indicate multiplication in



written mathematics, the standard Python multiplication operator *
performs component-wise multiplication:

g = np.array( [1, 2] )

h = np.array( [-3, 4] )

print(f'g {odot} h = {g * h}')

g   h = [-3   8]

Properties of Hadamard Product

Because the Hadamard product is just a collection of pairwise
scalar multiplications across all the elements in two vectors, it takes
on properties of scalar multiplication, such as being commutative
and distributive across addition:

Commutative: a ⊙ b = b ⊙ a

Associative with scalar multiplication: (γa) ⊙ b = γ(a ⊙ b)

Distributive across vector addition: (a + b) ⊙ c = a ⊙ c + b ⊙ c

Special cases:

Example 2.14: Hadamard Product with a 0 Vector

The Hadamard product of any vector with the zeros vector is
the zeros vector:

c= np.array([5,7,9])

z3 = np.zeros(3, dtype=int)



 

 

print(f'c {odot} z3    = {c * z3}')

c ⊙ z3   = [0 0 0]

Example 2.15: Hadamard Product with 1s Vector

The Hadamard product of a vector u with the ones vector
returns the vector u:

ones3 = np.ones(3, dtype=int)

 

 

print(f'c {odot} ones3 = {c * ones3}')

c ⊙  ones3 = [5 7 9]

Example 2.16: Hadamard Product with a Standard

Unit Vector

Recall that the standard unit vector ei is a vector that
contains all 0s, except for a single 1 in position i. Thus, the
Hadamard product of a vector u with ei consists of all zeros,
except it will take the value ui in position i:



e2= np.array([0,1,0])

 

 

print(

f'c {odot} e2 = {c * e2}')

c ⊙  e2 = [0 7 0]

Example 2.17: Hadamard Product of a Vector with

Itself

If we take the Hadamard product of a vector u with itself,
element i of the result is simply ui ⋅ ui = u2

i . Thus, the result is
a vector containing the squares of the elements in u:

print(f'c = {c}')

print(f'c {odot} c = {c * c}')

c = [5 7 9]

c ⊙ c = [25 49 81]

We can also get the squares of the elements by using the **
operator on a NumPy vector. It will perform element-wise
exponentiation:



print(f'c ** 2 = {c ** 2}')

c ** 2 = [25 49 81]

2.5.6 Vector-Vector Multiplication: Dot Product

The most common form of multiplication between vectors is called
the inner product or dot product. The input is two vectors of the
same length, and the output is a scalar:

DEFINITION

dot product,
inner product (vectors)

Given n-vectors u and v, the dot product or inner product

is denoted u ⋅ v or u⊤v and is the scalar value given by
multiplying corresponding components and summing them
up:

u ⋅ v =
n−1

∑
i=0

uivi.

Inner product is a concept that can be applied more broadly than to
just vectors and can also be denoted using other notation, such as
⟨u, v⟩.

We use the ⋅ symbol (a “dot”) for the dot product to distinguish it
from component-wise multiplication, which uses ⊙. To print the
“dot” sign in Python, we can use the Unicode character 0xB7. Let's
create a variable called dot that contains this unicode value:



dot = '\u00B7'

The following will print the equivalent of u ⋅ v in Python:

print(f'u{dot}v')

x · y

Example 2.18: Implementing Dot Product in

NumPy

The dot product combines two of the operations we
previously discussed: component-wise multiplication, followed
by summing up the elements. The following code computes the
dot product using these two operations:

g = np.array( [1, 2] )

h = np.array( [-3, 4] )

 

 

gh = g * h

 

 

g_dot_h = np.sum(gh)

 

 

print(f'g{dot}h   = {g_dot_h}')



g · h  = 5

We can perform the dot product directly using Python's matrix
multiply operator, which uses the @ (read “at”) symbol.

Example 2.19: Dot Product of NumPy Vectors Using

@ Operator

Here is an example of computing the dot product using the @
operator:

print(f'g{dot}h   = {g @ h}')

g · h  = 5

2.5.7 Properties of Dot Product

Because dot product is just the Hadamard product followed by a
summation operation, it inherits all of the properties of the
Hadamard product:

Commutative: a ⋅ b = b ⋅ a

Associative with scalar multiplication: (γa) ⋅ b = γ(a ⋅ b)

Distributive across vector addition: (a + b) ⋅ c = a ⋅ c + b ⋅ c

Special examples:

Example 2.20: Dot Product with 0 Vector



The Hadamard product of any vector with the zeros vector is
the zeros vector, so the dot product is the sum over the zeros
vector, which is zero:

c= np.array([5,7,9])

z3 = np.zeros(3, dtype=int)

 

 

print(f'c{dot}z3 = {c @ z3}')

c · z3 = 0

Example 2.21: Inner Product with 1s Vector

The Hadamard product of a vector u with the ones vector
returns u, so the dot product with the ones vector returns the
sum of the elements in u:

ones3 = np.ones(3, dtype=int)

 

 

print(f'c {dot} ones3 = {c @ ones3}')

print(f'sum(c) = {np.sum(c)}')

1 ⋅ u =
n−1

∑
i=0

ui.



c · ones3 = 21

sum(c) = 21

Example 2.22: Dot Product with a Standard Unit

Vector

The Hadamard product of a vector u with the standard unit
vector ei returns a vector of all zeros, except that element i will
be ui. Thus, the dot product is simply ui:

e2 = np.array([0,1,0])

 

 

print( f'c{dot}e2 = {c @ e2}')

c · e2 = 7

Example 2.23: Averaging

We can use the dot product to compute the average value of
the elements in a n-vector by dotting the vector with a vector
whose elements are all 1/n,

u = (
1

n
)1 ⋅ u = [1/n, 1/n, … , 1/n] ⋅ u.



In the following code, I compute the average using the dot
product and compare it with the average computed using the
np.mean() function:

div3 = np.ones(3)/3

print(div3)

[0.33333333 0.33333333 0.33333333]

print(f'The dot product of c with a vector of (1/3) values is {div3 @ 

c:.3f}')

print(f'The average of the values in c using np.mean() is {np.mean(c): 

.3f}')

The dot product of c with a vector of (1/3) values is 7.000

The average of the values in c using np.mean() is   7.000

Example 2.24: Dot Product of a Vector with Itself:

Sum of Squares

Recall that the Hadamard product of a vector u with itself is a
vector of the squares of the elements in u. Then the dot product
of a vector with itself is the sum of the squares of the elements
in the vector:

u ⋅ u =
n−1

∑
i=0

u2
i .



Let's try this out using our example vector, c:

print(f'c = {c}')

print(f'c {odot} c = {c * c}')

print(f'c{dot}c = {c @ c}')

c = [5 7 9]

c ⊙ c = [25 49 81]

c · c = 155

Taking the inner product of a mathematical object with itself is
common enough that mathematicians have introduced a special
name and notation for it:

DEFINITION

norm squared

For a mathematical object u with an inner product
operator ⟨, ⟩, the norm squared is denoted by ∥ u ∥2 and
defined as

∥ u ∥2= ⟨u, u⟩.

For vectors, the inner product operation is the dot product, and the
norm squared of a vector u is ∥ u ∥2= u ⋅ u.

2.5.8 Length or Magnitude of a Vector



Consider again the vector a = [2, 3]⊤, shown in Fig. 2.3(a). Then a
is the hypotenuse of a right triangle with sides 2 and 3, as shown in
Fig. 2.3(b). Let ℓa denote the length of a. By the Pythagorean
theorem,

Long Description for Figure 2.3

Fig. 2.3:  Example vector a and its interpretation as the hypotenuse
of a right triangle with sides determined by its coordinates. ⏎

or

For any 2-vector b = [b0, b1], the same mathematical approach will
give the length ℓb as

ℓ2
a = 22 + 32,

ℓa = √22 + 32.

ℓb =√b2
0 + b2

1.



The argument inside the square root is simply the norm-squared of
b, so we can write

which we can simplify to

The length of the vector b is the norm of b. The norm of any
mathematical object that has an associated inner product operation
is defined below:

DEFINITION

norm

For a mathematical object u with an inner product
operator ⟨, ⟩, the norm is denoted by ∥ u ∥ and defined as

‖u‖ =√⟨u, u⟩.

For an n-vector b, the norm is

which is the length of the vector, even if b has more than two
dimensions.

Example 2.25: Norm of Example Vector

ℓb =√∥ b ∥2,

ℓb =∥ b ∥.

∥b∥ = √b ⋅ b

=
n−1

∑
i=0

b2
i ,



Let's start by computing the length of a by working with the
individual elements of a :

print(f'|a| = {np.sqrt(a[0]**2 + a[1]**2): .2f}')

|a| =   3.61

Now, let's use the dot product to find the norm of a:

print(f'||a|| = {np.sqrt(a @ a): .2f}')

||a|| =   3.61

Finding the norm of a vector is a relatively common operation,
so NumPy has a norm operator in the np.linalg module:

print(f'||a|| = {np.linalg.norm(a): .2f}')

||a|| =   3.61

When using PyTorch tensors to represent vectors, use the
torch.linalg.vector_norm() function to find the vector norm. However,



this function only works on floating point or complex tensors. If you
try to use it on a tensor with integer values it will throw an error:

import torch

a2 = torch.tensor(a)

torch.linalg.vector_norm(a2)

--------------------------------------------------------------------

-------

RuntimeError                              Traceback (most recent 

call last)

Cell In[90], line 3

      1 import torch

      2 a2 = torch.tensor(a)

----> 3 torch.linalg.vector_norm(a2)

 

 

RuntimeError: linalg.vector_norm: Expected a floating point or 

complex tensor

as input. Got Long

You can easily convert a PyTorch integer tensor to a float tensor
by multiplying it by 1.0 to resolve this issue:

torch.linalg.vector_norm(1.0 * a2)

tensor(3.6056)



Example 2.26: Norm of Scaled Vector

Now recall our examples of scaling a by multiplying it by a
constant. Let w = γa, where γ is some constant. For example,
we previously considered γ = 0.5:

a1 = 0.5 * a

plotvec(a, a1, labels=['$\mathbf{a}$', '$0.5 \mathbf{a}$'])



For an arbitrary vector a, we can calculate the length of γa as



For our example, the length of 0.5a is 0.5 ∥ a ∥. Let's check:

w = 0.5*a

print(f'||a|| = {np.linalg.norm(a)}')

print(f'||0.5a|| = {np.linalg.norm(w)}')

||a|| = 3.605551275463989

||0.5a|| = 1.8027756377319946

We can see that the norm of 0.5a is one-half the norm of a.

Normalizing a Vector

Consider what happens if we divide a vector by its norm:

where the second line follows from the fact that 1/ ∥ a ∥ is a
constant, so we can factor it out of the norm. We say that ~a is a unit

vector:

∥ γa ∥ = √γa ⋅ γa

=√γ 2a ⋅ a

= |γ|√a ⋅ a

= |γ| ∥ a ∥.

∥ ~a ∥ =
a

∥ a ∥

=
1

∥ a ∥
∥a∥

= 1,



DEFINITION

unit vector

A vector v is a unit vector if ∥ v ∥= 1.

2.5.9 Distance between Vectors

We define the distance between two n-vectors as follows:

DEFINITION

distance between vectors

The distance between two n-vectors a and b is the norm of
the difference between the vectors,

d (a, b) = ∥a − b∥ = ∥b − a∥.

Terminology review and self-assessment questions

Interactive flashcards to review the terminology introduced in this
section and self-assessment questions are available at la4ds.net/2-
5, which can also be accessed using this QR code:

2.6 Vector Correlation and Projection

http://la4ds.net/2-5


In this section, I introduce some important math related to
representing one vector in terms of another vector. In Chapter 6,
we generalize this to the problem of representing a vector given a
collection of other vectors.

2.6.1 Vector Correlation

In the field of Statistics, Pearson's correlation is a metric that
quantifies the extent that two features can be characterized by a
linear relationship. It is a bounded metric that takes a maximum
absolute value of 1, when either of the features can be calculated as
a linear function of the other. When the sign of Pearson's
correlation coefficient is positive, the two features “move together”:
larger values of one of the features is generally associated with
larger values of the other feature. When the sign of Pearson's
correlation coefficient is negative, the opposite is true.

We would like to develop a correlation metric for vectors that is
similar to Pearson's correlation for data. Ideally, we would like
vector correlation to satisfy the following:

The vector correlation is 1 when the vectors point in the same
direction.

The vector correlation is -1 when the vectors point in the
opposite direction.

The vector correlation is 0 when the vectors are orthogonal in
some sense.

To find such a relation, we start with an observation about
vectors in R2. Consider again the vectors a, b, and b − a in Fig. 2.2.
To simplify the notation, let c = b − a. Let θ denote the angle
between a and b. Then the Law of Cosines provides a relation for
solving for ∥ c ∥2:



∥ c ∥2=∥ a ∥2 + ∥ b ∥2 −2 ∥ a ∥∥ b ∥ cos θ.

(2.3)

We can also use the properties of the norm-squared and dot product
to write

(2.4)

Comparing (2.3) and (2.4), we see that

a ⋅ b =∥ a ∥ ∥ b ∥ cos θ,

(2.5)

where θ is the angle between a and b. (The case where θ = 0 has to
be handled separately, but the result is the same.)

Now note the following properties of cos θ:

cos θ = 1 if θ = 0; i.e., if a and b point in the exact same
direction.

cos θ = −1 if θ = π; i.e., if a and b point in the exact opposite
direction.

cos θ = 0 if θ = ±π/2; i.e., if a and b are orthogonal
(perpendicular).

Rewriting (2.5), we have

cos θ =
a ⋅ b

∥ a ∥ ∥ b ∥
.

∥ c ∥2 = (b − a) ⋅ (b − a)

= b ⋅ b − b ⋅ a − a ⋅ b + a ⋅ a

=∥ a ∥2 + ∥ b ∥2 −2a ⋅ b.



(2.6)

We use this to define a vector correlation metric that holds for any
n-vectors:

DEFINITION

correlation (vectors),
cosine similarity

The correlation between n-vectors a and b is

r =
a ⋅ b

∥ a ∥ ∥ b ∥
.

It is sometimes called cosine similarity.

Using (2.6), we can define the angle between two vectors as shown
in the following definition.

DEFINITION

angle between vectors

The angle between n-vectors a and b is

θ = cos−1 (
a ⋅ b

∥ a ∥ ∥ b ∥
).

This formula for the angle holds for n-vectors even if n > 2.
Note that if the vectors are orthogonal, then θ = ±90∘. But we

can see that cos θ = 0 occurs if and only if a ⋅ b = 0. Thus, we define
orthogonal vectors as:



DEFINITION

orthogonal vectors

Vectors a and b are orthogonal if and only if

a ⋅ b = 0.

A special case of orthogonal vectors is if the vectors also have
unit norm. Then the vectors are called orthonormal:

DEFINITION

orthonormal vectors

Vectors a and b are orthonormal if and only if

a ⋅ b = 0

and ∥ a ∥=∥ b ∥= 1.

Vector correlation has properties that are similar to those of
Pearson's correlation, but the connection is actually much deeper
than that. First, let's write vector correlation in terms of the
arithmetic operations on the elements of a and b:

If we treat a and b as vectors of data features, the Pearson's
correlation coefficient is defined as

r =
∑i aibi

√∑i a
2
i√∑j b

2
j

.



For the special case ā = b̄ = 0, this simplifies to

So, vector correlation and Pearson's correlation have the same
exact form if the elements of each vector average to zero. (This will
occur if we subtract off the average of the elements of each vector
before calculating the vector correlation.)

2.6.2 Projecting a Vector Onto Another Vector

Consider the problem of taking a vector b and writing it as a linear
combination of some known vectors a0, a1, am−1. Then one of the
first goals might be to determine how much of the vector b is in the
direction of each representation vector ai.

Consider the example vectors b and ai shown in Fig. 2.4. If we
want to determine how much of b is in the direction of ai, we can
draw a vector along ai and define the error as the length of the line
from the head of that vector to the head of b. Three such error lines
are shown as the red dotted and solid lines in Fig. 2.5. From
inspection, the shortest error line is the one that is orthogonal to ai,
which is shown by the solid line.

ρab =
Cov(a, b)

σaσb

=
1

N−1 ∑i(ai − a)(bi − b)

√ 1
N−1 ∑i(ai − a)2√ 1

N−1 ∑j(bj − b)2

.

ρab =
∑i aibi

√∑i a
2
i√∑j b

2
j

.



Fig. 2.4:  Example vector b and a representation vector ai. ⏎



Fig. 2.5:  Example vector b and a representation vector ai, along
with three error lines. ⏎

Then it is easiest to determine the length of the vector along the
direction of ai that minimizes the error vector if we rotate the
vector ai onto the x-axis, as shown in Fig. 2.6. Then from the right
triangle, we see bi =∥ b ∥ cos θ. We call this length the scalar

projection of b onto ai. If |θ| > 90∘, then the scalar projection will
be negative. This occurs if b needs to be represented in terms of
−ai.



Fig. 2.6:  Example vector b and a representation vector ai, rotated
to make it easier to see the length of the vector along ai that
minimizes the error to b. ⏎

Compare the formula for bi with b ⋅ ai =∥ b ∥ ∥ ai ∥ cos θ. Then we
can rewrite the formula for bi as

bi =
b ⋅ ai

∥ ai ∥
.

We use this form in our definition of scalar projection:



DEFINITION

scalar projection

Given n-vectors a and b, the scalar projection of b onto a
has magnitude equal to the length of the vector in the
direction of a that minimizes the error to b. The sign is
positive if that component of b is in the same direction as
a and negative if not. It is given by

b ⋅ a

∥ a ∥
.

We can rewrite the formula for the scalar projection bi as

bi = b ⋅ (
ai

∥ ai ∥
).

Let ~a = a/ ∥a∥. Then from Section 2.5.8, ~a is a unit vector. Thus,
we can also write the scalar projection of b onto ai as b ⋅ ~ai.

The vector projection is the vector in the direction of ai that has
length equal to the scalar projection b ⋅ ~ai. Since ~ai is a unit vector
in the direction of ai, then the vector projection is simply

DEFINITION

vector projection

(b ⋅ ~ai)~ai = b ⋅ (
ai

∥ ai ∥
)(

ai

∥ ai ∥
)

=
b ⋅ ai

∥ai∥2
ai.



Let a and b be n-dimensional vectors. Then the vector

projection of b onto a, denoted proja b, is the vector in the
direction of a that minimizes the error to b. It is given by

proja b =
b ⋅ a

∥a∥2
a.

Example 2.27: Vector Projection in NumPy

Let a = [5, 2]⊤ and b = [3, 4]⊤. Find proja b. Let's start by
creating these vectors in NumPy and plotting them using
plotvec().

import numpy as np

from plotvec import plotvec

 

 

a = np.array([5, 2])

b = np.array([3, 4])

 

 

plotvec(a, b)



Using (Equation 2.6), we can calculate the angle between these
vectors as follows:

from numpy.linalg import norm

print(f'{np.rad2deg(np.arccos(a @ b / norm(a) / norm(b))) :.1f} 

degrees')

31.3 degrees



Let's find and visualize the projection of b onto a. First, let's
find ~a; in Python, I will label it a_t. Then, let's plot ~a on top of
the vectors a and b:

import matplotlib.pyplot as plt

 

 

a_t = a / norm(a)

plotvec(a, b, alpha=0.7)

plotvec(at, newfig=False, color_offset=2, width=0.015)

 

 

plt.annotate('unit $a$', (a_t[0], a_t[1] - 0.25))



Then the scalar projection of b onto ~a is

spb = b @ a / norm(a)

spb

4.270992778072193



To get the (vector) projection, proja b, we just need to multiply
~a by the scalar projection:

vpb = spb * a_t

vpb

array([3.96551724, 1.5862069 ])

plotvec(a, b, alpha=0.7)

plotvec(vpb, newfig=False, color_offset=2, width=0.02)

 

 

plt.annotate('$\operatorname{proj}_\mathbf{a}\mathbf{b}$',

             (vpb[0], vpb[1] - 0.25))



As expected, the error line from the vector projection to b is
orthogonal to a:

plotvec(a, b, vpb)

plt.plot([vpb[0], b[0]], [vpb[1], b[1]], color='C4', 

linestyle='dashed');



Example 2.28: Vector Projection with Vectors

Pointing Away from Each Other

Here is an example vector g whose projection onto a is in the
opposite direction of a:

a=np.array([5, 2])

g=np.array([-3, -6])

 



 

plotvec(a, g)

The scalar projection of g onto a is

spg = g @ a / norm(a)



spg

-5.0137741307804005

Since g points in the direction of −a instead of a, the scalar
projection is negative. The vector projection proja g is

vpg = spg * a_t

vpg

array([-4.65517241, -1.86206897])

These vectors and the vector projection of g onto a are shown
below. The error line from g to the projection of g onto a is also
shown as a dashed line. As expected, the error vector is
orthogonal to a.

plotvec(a, g, vpg)

plt.plot([vpg[0], g[0]], [vpg[1], g[1]], color='C4', 

linestyle='dashed');



Vector correlation is used to solve the larger problem of
representing a vector (or set of vectors) in terms of some other
given or derived vectors in Chapter 6.

Terminology review and self-assessment questions

Interactive flashcards to review the terminology introduced in this
section and self-assessment questions are available at la4ds.net/2-
6, which can also be accessed using this QR code:

http://la4ds.net/2-6




2.7 Chapter Summary

In this chapter, I introduced vectors and showed how to visualize
them using quiver plots. Several applications for vector data were
introduced to show the data science perspective, where vectors are
not geometric in nature and instead are used to represent ordered
collections of variables or features. In such cases, I showed that
vectors may also be illustrated using other types of plots, such as
scatter and bar plots. Special vectors were introduced and
techniques for creating these vectors in NumPy were given. Then
the most common vector operations were introduced and
demonstrated using NumPy. Finally, vector correlation, scalar
projection, and vector projection were defined. Vector correlation
was used to find the representation of a vector in terms of some
other given vector, to minimize the norm of the error.

Access a list of key take-aways for this chapter, along with
interactive flashcards and quizzes at la4ds.net/2-7, which can also
be accessed using this QR code:

http://la4ds.net/2-7
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Matrices and Operations

DOI: 10.1201/9781032664088-3

In Chapter 2, I introduced vectors and their operations. In this chapter, I
introduce another important type of mathematical object in linear
algebra, matrices. If vectors are collections of numbers with a single
index (i.e., order 1) that have specific mathematical operations, then
matrices are collections of numbers with two indices (order 2) that have
their own set of mathematical operations. We will often use matrices to
collect multiple vectors and enable simpler and more efficient numerical
operations. This chapter focuses on defining matrices, introducing
special types of matrices, and defining mathematical operations
involving matrices.

3.1 Introduction to Matrices and Tensors

In Chapter 2, we used vectors to store collections of variables or
features. However, what if we want to operate on multiple data points or
multiple features simultaneously? This will require a mathematical
object that can store data in more than one dimension. We will use
tensors or matrices for this purpose:

DEFINITION

tensor

A mathematical object that can be represented by an indexed
collection of numbers, where the number of indices (i.e., the

https://doi.org/10.1201/9781032664088-3


order) can be greater than 1.

DEFINITION

matrix

A tensor of order two; a matrix can be visualized as a two-
dimensional array of numbers.

The plural of “matrix” is “matrices”. In this book, we will focus our study
on matrices. In many data science applications, the numeric data we
encounter can be represented as a matrix.

Like a vector, a matrix has components or elements that can be
referenced by their indices. The mathematical notation for a matrix is a
two-dimensional table of its elements, enclosed in large square brackets.
I will use bold, capital letters for arrays. For example,

We often describe a matrix in terms of the number of rows and columns
it has. A matrix with m rows and n columns is called an m × n matrix.
Throughout this book, in NumPy, and in most mathematical literature,
rows are counted or indexed before columns.

Creating Matrices in NumPy

Note:

NumPy has two different data types called array (or ndarray) and
matrix, but the array type is more general and the one most commonly
used in data science and signal processing. For a detailed discussion
from the NumPy help pages, see
https://numpy.org/devdocs/user/numpy-for-matlab-
users.html#array-or-matrix-which-should-i-use.

W = .
0 1 2 3
0 1 4 9
0 1 8 27

https://numpy.org/devdocs/user/numpy-for-matlab-users.html#array-or-matrix-which-should-i-use


If you don't want to read that whole section, I will extract a bit of text
from the “Short answer” subsection:

“Use arrays.”

Thus, in this text, I only use the array type, and I will use the terms
array and matrix interchangeably when referring to two-dimensional
arrays.

We can represent a matrix using a Numpy array by calling np.array()
with the argument being a list of lists. The outer list contains the rows,
and each row is passed as a list containing the components that make up
that row. It sounds more confusing than it is in practice!

Example 3.1: Representing a Matrix Using a NumPy

Array

Let's make a NumPy version of the matrix above. We will use
white space to make the call to np.array() more intelligible by
putting each row of the matrix on a separate line. Recall that
elements in a list must be separated by commas. Then we can create
the NumPy array representation of W as follows:

import numpy as np

 

 

W = np.array([[0, 1, 2, 3],

              [0, 1, 4, 9],

              [0, 1, 8, 27]])

print(W)

[[ 0   1   2   3]



 [ 0   1   4   9]

 [ 0   1   8 27]]

Here, I have put the different rows of the matrix on different rows of
the Python code. This is not required but is allowed in Python, and it
makes the Python version of the array much easier to interpret. This
convention will be used throughout this book.

Matrix and Array Indexing

In mathematical notation, we can refer to an element of a matrix using a
lowercase, non-bold form of the array name with a subscript in the form
i,j, where i is the row and j is the column. To be consistent with the rest
of the text and with NumPy indexing, we use zero-based indexing. For
example, w1,2 = 4. The ith column of the matrix W is a vector, and we
can denote it by w∗i. Here, the ∗ symbol is in the row index and can be
interpreted as a “wildcard”, indicating that we take entries in any row of
W that are in column i. Because matrices are often interpreted as
collections of column vectors, the ith column is also denoted wi, and I
use this shorter notation in the rest of the text. The kth row of W is also
a vector, and I denote it by wi∗, indicating entries in row i and any
column.

Example 3.2: Array Indexing in NumPy

Array indexing in NumPy is performed by putting the indices in
square brackets after the variable name for the array. So we can get
the element w1,2 as

print( W[1, 2] )



4

If a single index is used in square brackets with an array, it will be
interpreted as the row index, and all of the columns of that row will
be returned as a vector (i.e., the example below returns w2∗):

print( W[2] )

[ 0   1   8 27]

!

Important!

Note the inconsistency between mathematical conventions
and NumPy/PyTorch conventions:

Mathematically, for a matrix W, the notation w2 refers to
column 2 of W.

For a NumPy array or PyTorch tensor W, the notation W[2]
returns row 2 of W.

If you find this confusing, one solution is to always use the
other mathematical notation for rows, w2∗ and always use the
following alternative way of referencing a row in
NumPy/PyTorch: W[2,:]. The : entry with no surrounding
numbers indicates the entire range of columns.

To access column 3 of W, we can use W[:,3], which indicates to use all
rows and column 3. Note the similarity to the alternative
mathematical notation for column 3, w∗3.



print( W[:,3] )

[ 3   9 27]

In general, we can specify a range of rows or columns in the form
a:b, where a represents a starting index, and b represents a stopping
index (that, as usual, will not be included). In Python, this is called
slicing. For instance, we can get the components in columns 1 and 2
of row 1 as follows:

print( W[1, 1:3] )

[1 4]

If we use a range of the form a:, where the stopping index is
omitted, the range goes to the end of that row or column. For
example, we can get all the values in column 2 from row 1 to the
end as follows:

print( W[1:, 2] )

[4 8]

If we use a range of the form :b, where the starting index is omitted,
then the range starts at the beginning of the row or column. We can



retrieve the elements in the first three columns of row 2 as follows:

print( W[2, :3] )

[0 1 8]

We can use ranges of rows and columns at the same time to select a
subarray. For example,

print( W[1:3, 1:3] )

[[1 4]

 [1 8]]

Finally, we can also pass lists of indices to pick out selected
elements. For instance, if we want to retrieve the elements at (0, 3)
and (1, 2), we could pass two lists of indices: first, the two row
indices and, second, the two column indices:

print( W[[0,1], [3,2]] )

[3 4]

WARNING



When we create slices of a NumPy array or PyTorch
tensor, or when we set a variable equal to an array or
tensor, it does not create a new array/tensor. It just
gives an alternative way to access the original object.

This alternative way of accessing the original array/tensor is called a
view.

Example 3.3: Effects of Changing Elements in a View of

an Array

Let's illustrate that slicing a NumPy array creates a view by
making a variable V that is the 2 × 2 submatrix in the upper right-
hand corner of W. We can use negative values to index from the end
of the rows:

V = W[:2, -2:]

print(V)

[[ 2 -1]

 [-1   9]]

Now, let's replace the negative values in V with zeros:

V[0,1] = 0

V[1,0] = 0

 



 

print(V)

[[2 0]

 [0 9]]

Now let's inspect the values in W:

print(W)

[[ 0   1   2   0]

 [ 0   1   0   9]

 [ 0   1   8 27]]

The values in W were updated when we changed the values in V
because V was a view of W. We will also get a view if we try to create
a copy of W by assigning it to a variable Z:

Z = W

W[0, 0] = 100

print(Z)

[[100    1   2    0]

 [   0   1   0    9]

 [   0   1   8   27]]



Because W and Z are views into the same NumPy array, changing a
value in W also changes that value in Z (and vice versa). To create a
variable that is an independent copy of the NumPy array pointed to
by W, call the copy() method on the array W when assigning it to a new
variable:

U = W[:2, :2].copy()

print(U)

[[100    1]

 [   0   1]]

U[0,0] = 0

print('U=',U)

print()

print('W=', W)

U= [[0 1]

 [0 1]]

 

 

W= [[100       1       2        0]

 [   0     1       0       9]

 [   0     1       8   27]]

For PyTorch tensors, use the clone() method to make a copy.

3.1.1 Some Special Types of Matrices



We will often encounter matrices that have the same number of rows
and columns; i.e., we have an m × m matrix. This is called a square

matrix:

DEFINITION

square matrix

A matrix for which the number of rows equals the number of
columns.

A slice that comes up somewhat frequently is one along the diagonal
elements of an m × m square matrix from element 0,0 to element
m − 1, m − 1. This is called the main diagonal:

DEFINITION

main diagonal

For an m × m matrix, the main diagonal or principal diagonal

is the vector of m elements at the indices k,k for
k = 0, 1, … , m − 1.

The NumPy function np.diag() performs two different operations,
depending on the form of its argument:

When its argument is a two-dimensional array, it returns a vector of
the elements on the main diagonal. (More generally, it can be passed
another argument to select other diagonals.)

When its argument is a vector (i.e., a one-dimensional array), it
returns a square two-dimensional array that has the elements of the
argument along its main diagonal and that has zero for its other
elements. The corresponding matrix is called a diagonal matrix:

DEFINITION

diagonal matrix



A square matrix for which the only nonzero components are
along the main diagonal.

Let's illustrate this with some examples. First, I give an example
matrix U, and np.diag(U) is used to extract the elements on its main
diagonal:

U = np.array([[1, 2, 3],

              [2, 3, 4],

              [3, 4, 5]])

print(np.diag(U))

[1 3 5]

Now let's create a diagonal matrix:

np.diag([7, 9, 11])

array([[ 7,   0,   0],

       [ 0,   9,   0],

       [ 0,   0, 11]])

When using PyTorch to create a diagonal matrix from a vector of its
diagonal elements, we can use the torch.diag() function, but the input
must be a PyTorch tensor:

torch.diag( torch.tensor([7, 9, 11]) )



tensor([[ 7,   0,   0],

        [ 0,   9,   0],

        [ 0,   0, 11]])

Some non-diagonal matrices have nonzero components either only in
the main diagonal and above or only in the main diagonal and below.
These are called triangular matrices, and they come in two varieties:

DEFINITION

upper triangular matrix

A square m × m matrix is an upper triangular matrix if its only
nonzero elements are in the main diagonal and above; in other
words, the only nonzero elements are those at positions k,l that
satisfy l ≥ k.

DEFINITION

lower triangular matrix

A square m × m matrix is a lower triangular matrix if its only
nonzero elements are in the main diagonal and below; in other
words, the only nonzero elements are those at positions k,l that
satisfy l ≤ k.

DEFINITION

triangular matrix

A square m × m matrix (two-dimensional array) that is an
upper triangular matrix or lower triangular matrix.

To illustrate this, let's start with a non-triangular square NumPy array,
V:



V = np.array([[ 1.1, 1.2, 1.3],

              [ 2.1, 2.2, 2.3],

              [ 3.1, 3.2, 3.3]])

print(V)

[[1.1 1.2 1.3]

 [2.1 2.2 2.3]

 [3.1 3.2 3.3]]

We can use the function np.triu() to create an upper triangular matrix
with the elements along the main diagonal and above:

print(np.triu(V))

[[1.1  1.2  1.3]

 [0.   2.2  2.3]

 [0.   0.   3.3]]

We can use the function np.tril() to create a lower triangular matrix
with the elements along the main diagonal and below:

print(np.tril(V))

[[1.1 0.   0. ]

 [2.1 2.2 0. ]

 [3.1 3.2 3.3]]



3.1.2 Special Matrices

There are several special matrices that are commonly defined and will
simplify our notation later. NumPy offers functions to create versions of
these as NumPy arrays. The first of these is the zeros matrix:

DEFINITION

zeros matrix

A matrix of all zeros.

We will denote the zero matrix of size m × n by 0m,n. For example,

We can create a zeros matrix in NumPy by passing the desired
dimensions as a tuple to np.zeros(). Thus, we can create a Numpy
representation of 02,5 as follows:

zeros2_5 = np.zeros( (2,5), dtype=int )

print(zeros2_5)

[[0 0 0 0 0]

 [0 0 0 0 0]]

(Note that in the example above and the following ones, I have set the
data type for the matrix elements to int so that the output is easier to
parse. However, in most cases, it is best to just use the default, which is
float.)

DEFINITION

ones matrix

02,5 = [ ].
0 0 0 0 0
0 0 0 0 0



A matrix of all ones.

We will denote the ones matrix of dimension m × n by 1m,n. We can
create a ones matrix in NumPy by passing the desired dimensions as a
tuple to np.ones(). For example, to create a ones matrix with four rows
and three columns:

np.ones( (4,3), dtype=int )

array([[1, 1, 1],

       [1, 1, 1],

       [1, 1, 1],

       [1, 1, 1]])

Another common matrix that consists only of 0s and 1s is the identity

matrix:

DEFINITION

identity matrix

A diagonal matrix in which the off-diagonal entries are all zero
and the diagonal entries are all equal to 1. The m × m identity
matrix is denoted Im. If Ij,k denotes the entry in row j and
column k, then Ij,k = 1 if j = k and Ij,k = 0 if j ≠ k.

We could create an identity matrix in NumPy using np.ones() and
np.diag(). However, the identity matrix is common enough that NumPy
provides the command np.eye() to create one. When passed a single
argument, it will create an identity matrix with the number of rows and
columns equal to its argument:



I5=np.eye(5, dtype=int)

I5

array([[1, 0, 0, 0, 0],

       [0, 1, 0, 0, 0],

       [0, 0, 1, 0, 0],

       [0, 0, 0, 1, 0],

       [0, 0, 0, 0, 1]])

In the next section, we introduce operations that involve matrices and
scalars, vectors, and other matrices.

Terminology review and self-assessment questions

Interactive flashcards to review the terminology introduced in this
section and self-assessment questions are available at la4ds.net/3-1,
which can also be accessed using this QR code:

3.2 Matrix Operations

There are a wide variety of mathematical operations that are defined
between two matrices or between a matrix and either a vector or a
scalar. In this section, I introduce many of the most important matrix
operations. I leave one of the most important and complicated to its own
section: general matrix-matrix multiplication is covered in Section 3.4.

http://la4ds.net/3-1


3.2.1 Matrix Addition and Subtraction

One of the simplest matrix operations to define is addition of two
matrices of the same dimensions:

DEFINITION

addition (matrices)
For m × n matrices A and B, the sum A + B is defined as the
elementwise sum:

Matrix addition in NumPy uses the usual + operator:

import numpy as np

 

 

A = np.array([[1, 2],

               [3, 4]])

B = np.array([[1, -1],

               [1, -1]])

print(A + B)

[[2 1]

 [4 3]]

Similarly, matrix subtraction is denoted A − B and defined by
elementwise subtraction,

A + B = .

a0,0 + b0,0 a0,1 + b0,1 … a0,n−1 + b0,n−1

a1,0 + b1,0 a1,1 + b1,1 … a1,n−1 + b0,n−1

⋮ ⋮ … ⋮
am−1,0 + bm−1,0 am−1,1 + bm−1,1 … am−1,n−1 + bm−1,n−1



Matrix subtraction with NumPy arrays uses the usual - operator:

print(A - B)

[[0 3]

 [2 5]]

Matrix addition and subtraction are only formally defined if the
dimensions of the two arrays are identical. However, NumPy will allow
addition or subtraction between a matrix and an array that matches in
one of the corresponding dimensions (i.e., between a m × n matrix and
a m × 1 vector or 1 × n vector) by repeating the vector to match the
dimensions of the array via broadcasting.

Properties of Matrix Addition

Because matrix addition is component-wise scalar addition, it inherits
many of its properties from scalar addition:

Commutative A + B = B + A

Associative: (A + B) + C = A + (B + C)

Identity: The additive identity is the zero matrix: A + 0 = 0 + A = A.

NumPy/PyTorch Only: Matrix-Scalar Addition and Subtraction

Addition and subtraction between a matrix and a scalar is not usually
defined mathematically. However, NumPy will broadcast scalar addition

A − B = .

a0,0 − b0,0 a0,1 − b0,1 … a0,n−1 − b0,n−1

a1,0 − b1,0 a1,1 − b1,1 … a1,n−1 − b0,n−1

⋮ ⋮ … ⋮
am−1,0 − bm−1,0 am−1,1 − bm−1,1 … am−1,n−1 − bm−1,n−1



or subtraction across all of the elements of a matrix. Thus, if c is a
scalar, then A + c is defined as

Subtraction is defined similarly. Examples are below:

A = np.array([[1, 2],

                [3, 4]])

print(A + 10)

print()

print(A - 1)

[[11 12]

 [13 14]]

 

 

[[0 1]

 [2 3]]

3.2.2 Scalar-Matrix Multiplication

A matrix may be left-multiplied or right-multiplied by a scalar with the
same result: each element in the matrix is multiplied by the scalar. We
can consider this to be broadcasting the scalar multiplication across the
elements of the array. Thus,

A + c = .

a0,0 + c a0,1 + c … a0,n−1 + c

a1,0 + c a1,1 + c … a1,n−1 + c

⋮ ⋮ … ⋮
am−1,0 + c am−1,1 + c … am−1,n−1 + c



Properties of Scalar Multiplication

Since scalar multiplication is component-wise multiplication by a
scalar, it inherits the properties below from normal multiplication of real
values.

If A is a vector and c is a real scalar, then these properties hold:

Commutative: cA = Ac. It does not matter whether the multiplying
scalar is on the right or left of the vector.

Associative: If b and c are scalars, then (bc)A = b(cA). If multiplying
by two scalars, we will get the same result if we do the scalar-scalar
multiplication first or the scalar-matrix multiplication first.

Distributive over scalar addition: (b + c)A = bA + cA and
A(b + c) = Ab + Ac.

Distributive over matrix addition: c(A + B) = cA + cB.

3.2.3 Dot Product as Matrix Multiplication

We will build up to general matrix multiplication by starting with the dot
product of two n-vectors. Recall from Section 2.5.6 that for n-vectors u
and v,

u ⋅ v =
n−1

∑
i=0

uivi.

As mentioned in Section 2.1, vectors are usually written as columns of
numbers. When we are working only with vectors and scalars, then we
can treat the vectors as one-dimensional objects. However, if we want to
perform operations involving matrices and vectors, then we will treat

cA = Ac = .

ca0,0 ca0,1 … ca0,n−1

ca1,0 ca1,1 … ca1,n−1

⋮ ⋮ … ⋮
cam−1,0 cam−1,1 … cam−1,n−1



the vectors as occupying one dimension of a two-dimensional matrix.
The usual convention, which is followed in this book, is that a vector is a
single-column matrix. We call such a vector a column vector. For
instance, the vector u can be written as

Note also that the dot product of u and v can be written in two forms.
Until now, we have used the form u ⋅ v, but the dot product can also be
written as u⊤v, which looks like this:

(3.1)

where the last line comes from the definition of the dot product.
The vector u⊤ is the transposed version of the column vector u, which

results in u⊤ being a row vector. We use (3.1) to define multiplication
between a row vector and a column vector. It is the same as the dot
product: the elements are multiplied component-wise, and the results
are summed. In NumPy the @ operator must be used between the two
vectors to perform multiplication. For instance, the code below
multiplies the row vector w = [ ] by the column vector
z = [ ]⊤.

w = np.array( [[ 1,   2, 4 ]] )

z = np.array( [[ 2, -2, 1 ]] ).T

u = .

u0

u1

⋮
un−1

u⊤v = [ ]

= u0v0 + u1v1 + … + un−1vn−1,

u0 u1 … un−1

v0

v1

⋮
vn−1

1 2 4
2 −2 1



 

 

print(w @ z)

[[2]]

3.2.4 Matrix-Vector Multiplication

A matrix can be used to store a collection of n-vectors by storing the
vectors as either the rows or columns of the matrix. More generally,
given a matrix, we can interpret that matrix as a collection of row or
column vectors. In this section, I motivate matrix-vector multiplication
by showing how matrix-vector multiplication enables efficient
multiplication between a vector and multiple other vectors. Matrix-
vector multiplication is usually just indicated by juxtaposing the matrix
and vector to be multiplied. For example, in the discussion below, we
consider multiplying the matrix M by the vector u. The product is
written Mu.

In all multiplication involving matrices, order is important, and this
holds when we have the product of a matrix and a vector. Thus,
Mu ≠ uM, and generally one of these products is not even defined. For
the product Mu, we say that u is left-multiplied by M. Matrix-vector
multiplication has two different interpretations, each of which will
provide useful insights about matrices later. We will refer to these as the
row interpretation and column interpretation.

Row Interpretation of Matrix-Vector Multiplication

If we have a p × q matrix M and a q × 1 column vector u, where the kth
row of M is denoted by mk∗, then



Here, the horizontal lines are shown to help indicate that mk∗ is a row
vector.

The ith component of the result vector is the dot product of the ith row
of M with the vector u. Each element of the output vector is a linear
combination of the elements in u, and we say that left-multiplication by
M is a linear transformation applied to u.

Computation of Matrix-Vector Product by Hand

To compute a matrix-vector product by hand, the usual approach is to
start at the top of the matrix and iterate down the rows. For each row,
we compute the dot product with u, which means that we just multiply
the elements in the row by the elements in u and sum.

Let's illustrate this using a concrete example. Consider the product

Let the result of product be denoted by z. From our previous work, we
know the product of a 3 × 2 matrix and 2 × 1 is a 3 × 1 vector. Each row
of the input matrix results in one entry in the output vector, and each
entry in the output vector depends on only one row in the input matrix.

Starting with the first row of the matrix, we compute the dot product
of the row with the column vector as follows: work simultaneously
across the row of the matrix and down the column of the vector,
computing the products of the corresponding elements, and then sum all
those products. The first two elements to be multiplied are shown below:

M u = u = .

m0∗

m1∗

⋮
mp−1∗

m0∗ ⋅ u

m1∗ ⋅ u

⋮
mp−1∗ ⋅ u

[ ].
3 4

−1 2
2 3

2
−1



Then the next two elements are multiplied and added to the first
element to get the first element of the output vector:

Proceeding to the second row, we simultaneously proceed across the
elements in the row and down the elements in the vector, compute the
products, and then sum them:



Finally, we conduct the same procedure using the last row of the
matrix:

The final result follows:



Let's check our work using NumPy. As with vector-vector
multiplication, we use the @ sign for matrix-vector multiplication:

M = np.array([[3, 4],

               [-1, 2],

               [2, 3]])

u = np.array([[2],

               [-1]])

print(M @ u)

[[ 2]

 [-4]

 [ 1]]

Note that I explicitly made the vector u to be a column vector, and the
result is also a column vector. If you instead use a one-dimensional form
for the vector, NumPy will compute the product in the same way, but the
result will be returned as a one-dimensional vector:

u2 = np.array([2, -1])

print(M @ u2)

[ 2 -4   1]

The procedure described above for calculating the matrix-vector
product generalizes to any size matrix and any size vector, provided that
the number of columns of the matrix is equal to the number of rows (i.e.,
the size) of the column vector.

Column Interpretation of Matrix-Vector Multiplication



There is another interpretation of matrix-vector multiplication that is
useful. Consider the form of the output vector:

Look at the first term in each of the summations. If we collect all those
terms into a vector, we have the column vector u0m0. If we do that for
each of the terms in the summation, we can rewrite the product as

Thus, the result vector is a linear combination of the columns of M,
where the coefficients are the values in the corresponding positions in
the vector u.

Let's confirm that we get the same answer for the matrix-vector
product Mu by implementing this approach in Python. Recall that the
ith column of the NumPy array M is M[:,i]. Then using the column
interpretation of matrix-vector multiplication, the product Mu is

u[0]*M[:,0] + u[1]*M[:,1]

array([ 2, -4,   1])

To find the matrix-vector product Mu using the column interpretation
by hand, first write the product as a linear combination of the columns
of M, where the coefficients are the corresponding entries in u. For our
example, this is the result:

m0,0u0 + m0,1u1 + … + m0,q−1uq−1

m1,0u0 + m1,1u1 + … + m1,q−1uq−1

⋮
mp−1,0u0 + mp−1,1u1 + … + mp−1,q−1uq−1

[ ].u0
|

m0
|

+ u1
|

m1
|

+ … + uq−1
|

mq−1
|



Next, carry out all the scalar-vector multiplications, and finally add the
scaled vectors:

3.2.5 Application of Matrix-Vector Multiplication: Feature

Extraction

Let's show how matrix multiplication can be used for feature extraction:

DEFINITION

feature extraction

The process of creating new features from raw data, often with
the intent of reducing the number of features.

We will show how to perform feature extraction using the Iris data set,
which contains data about flowers from three different Iris species. This
is one of the oldest and most famous data sets for classification
problems (where the goal is to infer the correct class from a data point's
features). This is a relatively simple data set, and we are going to
simplify it more for the purposes of this section. The data set is from
Robert Fisher's paper “The use of multiple measurements in taxonomic
problems”, Annual Eugenics, 7, Part II, 179–188 (1936).

The Iris data set can be loaded from a Python library called scikit-
learn, which contains many data sets and tools for machine learning. We
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can load the data set as follows:

from sklearn import datasets

 

 

iris = datasets.load_iris()

According to the DESCR property of the scikit-learn iris data set object:

This is perhaps the best known database [sic] to be found in the pattern 

recognition literature. Fisher's paper is a classic in the field and is 

referenced frequently to this day…. The data set contains 3 classes of 50 

instances each, where each class refers to a type of iris plant.

(To see the full description, run print(iris[‘DESCR’]) after loading the
Iris data set.) The DESCR property also explains the features present in
the data set:

print(iris['DESCR'][:500])

.. _iris_dataset:

 

 

Iris plants dataset

--------------------

 

 

**Data Set Characteristics:**

 

 

    :Number of Instances: 150 (50 in each of three classes)



    :Number of Attributes: 4 numeric, predictive attributes and the class

    :Attribute Information:

        - sepal length in cm

        - sepal width in cm

        - petal length in cm

        - petal width in cm

        - class:

                   - Iris-Setosa

                   - Iris-Versicolour

                   - Iris-Virginica

As the description indicates, each data point contains four features,
which are labeled in iris[‘feature_names’]. The data itself is contained in
iris[‘data’]:

print(iris['feature_names'])

print(iris['data'][:5])

['sepal length (cm)', 'sepal width (cm)',

 'petal length (cm)', 'petal width (cm)']

[[5.1  3.5  1.4 0.2]

 [4.9  3.   1.4 0.2]

 [4.7  3.2  1.3 0.2]

 [4.6  3.1  1.5 0.2]

 [5.   3.6  1.4 0.2]]

(An Iris flower consists of similarly colored sepals and petals, but the
sepals are longer and have a bulb shape that is wider than the petals, as
is indicated by the data.)

Each data point is also associated with its correct classification or
classification target. The iris[‘target’] member contains the numerical



classification target, and iris[‘target_names’] contains the description of
each class, which in this case are three different types of Irises:

iris['target'], iris['target_names']

(array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

        0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

        1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

        1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

        2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

        2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]),

 array(['setosa', 'versicolor', 'virginica'], dtype='<U10'))

The first 50 elements are of class 0, the next 50 are of class 1, and the
final 50 are of class 2. We will use this fact when plotting the data.

The usual goal when working with this data set is to determine a
classification function that maps from the four-dimensional data to the
three classes. Here, we simplify the problem to just the first two classes
and the first two features:

class01 = np.where(iris['target']<2)[0]

 

 

R = iris.data[class01][:,:2]

target2 = iris.target[class01]

The reduction to two features (sepal length and sepal width) allows us
to plot the data as points using a scatter plot, as shown in Fig. 3.1. The
code to generate this figure is online at la4ds.net/3-2.

http://la4ds.net/3-2


Fig. 3.1:  Plot of first two classes and first two features of Iris data set. ⏎

The plot of the data in Fig. 3.1 shows that these two features are
almost sufficient to distinguish between these two classes: data in the
lower-right of the plot correspond to Versicolor, whereas data in the
upper left correspond to Setosa. In fact, if we rotated the data by 40∘

counter-clockwise, we could distinguish between the classes using only
the first feature. This feature can be created using by projecting each
data point onto the vector ~x = [cos 40∘, − sin 40∘]⊤. I am going to create
that as a 2 × 1 column vector in NumPy:

x40cw = np.array([[ 0.76604444],

                  [-0.64278761]])



If we let the data point i be the column vector di, then the R matrix
has rows that are the transpose of these data vectors:

We can choose any row of R with indexing and perform feature
extraction by carrying out matrix multiplication between that 1 × 2 row
d⊤

i  and the 2 × 1 column vector x. For instance, here is row 2 times the
feature extraction vector:

R[2] @ x40cw

array([1.54348852])

The power of matrix multiplication is that it can do all of these row-
times-vector multiplications with a single operation. If we multiply the
100 × 2 matrix R by the 2 × 1 feature-extraction vector ~x, then we get a
100 × 1 column vector:

Here, the horizontal lines are again used to indicate that the d⊤
i  are row

vectors. Thus, we can perform the feature extraction with just the single
command:

R = .

d⊤
0

d⊤
1

⋮

d⊤
99

R ~x = ~x = .

d⊤
0

d⊤
1

⋮

d⊤
99

d⊤
0

~x

d⊤
1

~x

⋮

d⊤
99

~x



new_feature = R @ x40cw

For reference, let's print out the shapes of these three vectors. Here I
am showing them in the form that allows matching up with the equation

R ~x = f ,

where f  is the vector containing the extracted features:

print( f'{R.shape} x {x40cw.shape} = {new_feature.shape}')

(100, 2) x (2, 1) = (100, 1)

The inner two dimensions have to agree for the dot product to work, and
these two dimensions are reduced to a single value for each of the other
dimensions. Thus, the dimension of the result is determined by the outer
two dimensions, which, in this case, is (100, 1). In fact, this result holds
for all multiplication involving matrices. If A has dimensions k × ℓ and
B has dimensions ℓ × m, then AB is a matrix with dimensions k × m.

Now let's visualize the data to make sure that we achieved our goal of
feature extraction. The following code plots the values of the new
feature and shows each class. I have used a random model to choose the
y-values in the graph because otherwise too many of the data points are
overlapping and hard to see.

import scipy.stats as stats

import matplotlib.pyplot as plt

 

 

# use random values for the y data so the

# individual points are easier to see



N = stats.norm(0.6, 0.05)

ypos = N.rvs(100)

 

 

plt.figure(figsize=(6,3))

 

 

# Plot the remaining points

plt.scatter(new_feature[:50], ypos[:50],

            color='C0', alpha=0.6,

            marker='o', facecolor='none')

plt.scatter(new_feature[50:-1], ypos[50:-1],

            color='C1', alpha=0.8,

            marker='x')

 

 

plt.xlabel('Feature');

plt.ylim(0.2,1.2);

plt.yticks([]);

plt.gca().spines['left'].set_visible(False)

Let's study this type of matrix-vector multiplication a bit more to build
up some additional knowledge about it. Suppose we let D be the matrix
whose columns are the data vectors,



where I have added the vertical bars to help convey the sense that each
of the di is a column vector. Then the matrix-vector product D⊤~x looks
very similar to the dot product d⊤

i
~x and is equal to the vector of dot

products of the columns of D with the vector ~x:

Terminology review and self-assessment questions

Interactive flashcards to review the terminology introduced in this
section and self-assessment questions are available at la4ds.net/3-2,
which can also be accessed using this QR code:

3.3 Matrix-Vector Multiplication as a Linear

Transformation

We start by defining a vector space:

DEFINITION

vector space

D = ,
| | |

d0 d1 ⋯ d99

| | |

D⊤~x = .

d⊤
0

~x

d⊤
1

~x

⋮

d⊤
99

~x

http://la4ds.net/3-2


A vector space consists of a set of vectors and scalars, along
with addition and multiplication operators, such that the result
of any scalar-vector multiplication and any addition of vectors
in the vector space results in a vector contained in that vector
space.

We say that a vector space is closed under scalar multiplication and
vector addition. In this book, the multiplication and addition operators
will always be the standard operators for real vectors and scalars and
will not be explicitly listed when discussing vector spaces. Until Chapter
6, we only consider Euclidean vector spaces:

DEFINITION

Euclidean vector space

A Euclidean vector space of dimension n is denoted Rn and
contains all real n-vectors.

Consider an n-vector u and an m × n matrix M. Then v = Mu is an
m-vector, where each component of v is a linear combination of the
components of u. Since we can do this for any u ∈ R

n and for each u,
Mu ∈ R

m, we call this a linear transformation:

DEFINITION

linear transformation (from Rn
 to Rm

)

Let M be an m × n real matrix. For any vector u ∈ R
n,

v = Mu has components that are a linear combination of the
components of u, and v ∈ R

m. We say that M is a linear

transformation from Rn to Rm.

One of the most common linear transformations is from a vector space
to the same vector space; i.e., if M is a n × n square matrix, then both
the input and output vectors belong to Rn. However, the output vector



can have a completely different length and point in a completely
different direction than the input vector. Moreover, we will see that the
effect of multiplying by M is different depending on the direction in
which the vector u is pointing. On the other hand, it doesn't really
depend on the length ∥ u ∥ because we can write the vector u as
u =∥ u ∥ ~u, where ~u is a unit vector. Then

so different lengths ∥ u ∥ just change the result proportionately. Thus, it
is sufficient to understand how M affects different vectors by studying
its effect on the unit vectors.

Let's visualize this effect in 2-D space for the following matrix:

M = np.array([[0.5, -4],

              [-2,   3]])

We will use the function transform_unit_vecs() from the PlotVec library
to visualize the effect of this matrix on unit vectors. By default, this
function creates 16 unit vectors, evenly spaced around the unit circle, as
input vectors. It then left-multiplies each of these vectors by the
specified matrix and calculates the 16 output vectors. The input vectors
are plotted on the left, and the output vectors are plotted on the right:

from plotvec import transform_unit_vecs

transform_unit_vecs(M)

M u = M ∥ u ∥ ~u
=∥ u ∥ (M ~u),



The result is that the original unit vectors experience a combination of
rotation, stretching, and flipping (since the order of the colors around
the circle is reversed, and that cannot be achieved with just a rotation).
Let's investigate this in more detail by considering a couple of examples.

Consider first the unit vector u0 = [1, 0]⊤, which lies on the x-axis. The
corresponding output vector is

u0= np.array([1,0])

 

 

v0 = M @ u0

v0

array([ 0.5, -2. ])

Since the input vector lies on the positive x-axis, the angle of rotation is
equal to the angle of the output vector from the x-axis. This angle can
easily be calculated (in degrees) using trigonometry as



np.rad2deg(np.arctan2(v0[1], v0[0]))

-75.96375653207353

The input and output vectors are shown in Fig. 3.2. Although the input
vector's length is 1, the output vector's length is

np.linalg.norm(v0)

2.0615528128088303



Fig. 3.2:  Transformation of the unit vector x = [1, 0]⊤ by the matrix M.
⏎

If we instead consider the input vector u1 = [0, 1]⊤, which corresponds
to a unit vector on the positive y-axis, the output is

u1= np.array([0,1])

 

 



v1 = M @ u1

v1

array([-4.,   3.])

The angle of rotation is the difference between the angle of the output
vector from the x-axis and the angle (in degrees) of the input vector
from the x-axis (the latter of which we know is 90∘):

np.rad2deg(np.arctan2(v1[1], v1[0])) - np.rad2deg(np.arctan2(u1[1], u1[0]))

53.13010235415598

The input and output vectors in this case are shown in Fig. 3.3. We see
that not only are the vectors rotated by different amounts– they are even
rotated in different directions! In addition, the amount of scaling is
different. Again, the input vector length is 1, while the output vector's
length is

np.linalg.norm(v1)

5.0



Fig. 3.3:  Transformation of the unit vector y = [1, 0]⊤ by the matrix M.
⏎

Exercise

Let w be a unit vector that is at angle ϕ from the positive x-axis. Try to
modify the angle phi in the following code to:

1. Find a value of phi such that the output vector and the input vector
are at the same angle. Make note of that value of phi and the length
of the output vector.



2. Find a value of phi such that the output vector is in the opposite
direction of the input vector (i.e., the angle between the vectors is
±180∘). Make note of that value of phi and the length of the output
vector.

# input vector angle (in degrees)

phi = 90

 

 

# create the input vector

phi_rad = np.deg2rad(phi)

w = np.array( [ np.cos(phi_rad), np.sin(phi_rad) ] )

 

 

# find output vector

z = M @ w

 

 

# find rotation from linear tranform and length of output vector

print('Rotation between input and output:',

         f'{np.rad2deg(np.arctan2(z[1], z[0]))   - 

np.rad2deg(np.arctan2(w[1], w[0])):

.2f}')

print(f'Length of output vector: {np.linalg.norm(z): .2f}')

Rotation between input and output:   53.13

Length of output vector:   5.00

You should have been able to find values of phi that satisfy each of
these requirements. (In fact, there are two values in (−180∘, 180∘] that
will satisfy each of these requirements because if phi satisfies the



requirement, so does phi ±180∘). The unit vectors you found are called
eigenvectors of the matrix M. We study eigenvectors in more detail in
Section 3.6.

Now consider how a linear transformation affects a region of space. To
visualize this, we will represent a set of vectors within a region by points
located at the head of those vectors (as we did in Section 2.3). We will
use the function transform_field() from the PlotVec library to show the
points before and after the linear transformation (multiplication by M).
The transform_field() function generates a field of points in a square
region (by default, the square of side 6 that is centered at the origin).
This is shown in the plot on the left. The plot on the right shows how
those points are transformed when they are treated as vectors and left-
multiplied by M.

from plotvec import transform_field

transform_field(M, preserve_axes=False)

Because points in a given direction are rotated, flipped, and scaled by
the same amount, the result is that the points in the square have been
stretched out in space (notice the different ranges of the axes) to form a
parallelogram.



In 2-D space, a linear transformation will always map the points in a
square region into a parallelogram, except for some degenerate cases in
which the parallelogram reduces to a line. Because the scaling factors
are identical regardless of the distance of the input points from the
origin, the ratio of the area of the output parallelogram to the input
square is a fixed constant that depends on the matrix M. The ratio of
these areas is the absolute value of the determinant of M. The
determinant and its computation are discussed more in Section 3.5. In
NumPy, the determinant function is part of the linear algebra library
and can be called as np.linalg.det():

print(f'{np.abs( np.linalg.det(M) ):.2f}')

6.50

Since the area of the input rectangle is 6 × 6 = 36, the area of the
parallelogram is 36 × 6.5 = 234.

Terminology review and self-assessment questions

Interactive flashcards to review the terminology introduced in this
section and self-assessment questions are available at la4ds.net/3-3,
which can also be accessed using this QR code:

3.4 Matrix Multiplication

http://la4ds.net/3-3


Linear transformations are a powerful tool in feature extraction, as we
saw with the Iris data set. However, in most applications, we do not wish
to project the data onto only one vector, which creates only one feature.
We may want to extract multiple features for a high-dimensional data
set by projecting it onto many different vectors. We could iterate over
the set of vectors and compute the matrix-vector product for each one,
but fortunately we do not have to do that. Matrix-matrix multiplication
(we will just call this matrix multiplication) can be used to perform all of
the products in a single operation.

Matrix multiplication can be defined as an extension of matrix-vector
multiplication as follows:

DEFINITION

multiplication (matrix),
matrix product

The product of matrices A and B is written AB and is defined
if the inner dimensions of these matrices agree; that is, if A is a
k × ℓ matrix and B is an ℓ × m matrix. In that case, the output
is a k × m matrix C = AB, where the k,mth entry of C is given
by ck,m = ak∗ ⋅ bm (the dot product of the kth row of A with the
mth column of B).

To understand the definition of matrix multiplication better, let's see
how to compute a matrix product by hand.

3.4.1 Computation of Matrix Product by Hand

The algorithm for computing a matrix product by hand is very similar to
the algorithm for computing a matrix-vector product. Just as in matrix-
vector multiplication, we iterate down the rows. However, in matrix-
vector multiplication, we compute one dot product for each row. In
matrix multiplication, for each row in the left-hand matrix, we compute
dot products with each of the columns in the right-hand matrix. Let's



extend our previous example to multiply our 3 × 2 matrix M by a 2 × 2
matrix N, where

The product, which we will denote as W, has the outer dimensions of
the two matrices, × 2 by 2 × ; thus, W is a 3 × 2 matrix. We can
write the matrix product as

As before, we start with the first row (row 0) of the left matrix in the
matrix product. We begin by computing the output-matrix element w0,0

by computing the dot product of row 0 of the left matrix with column 0
of the right matrix. Since column 0 is the same as the vector used in our
previous matrix-vector example, the result is the same:

To compute the element w0,1, we compute the dot product of row 0 of
the left matrix with column 1 of the right matrix:

N = [ ].
2 1

−1 −2

3 2

[ ] = .
3 4

−1 2
2 3

2 1
−1 −2

w0,0 w0,1

w1,0 w1,1

w2,0 w2,1



The components w1,0 and w2,0 will be the same as the dot products of
rows 1 and 2, respectively, of M with the vector y, so in each of the
following visual representations, we include both those computations as
well as the corresponding element w1,1 or w2,1. Starting with row 1 of M
, we compute the dot products of that row with each of the columns of U
to get w1,0 and w1,1 as shown:

Finally, row 2 is used to compute w2,0 and w2,1:



The resulting matrix product values are:

Matrix multiplication in Python also uses the @ sign, and we can check
our work easily using NumPy:

M = np.array([[3, 4],

               [-1, 2],

               [2, 3]])

V = np.array([[2, 1],

               [-1, -2]])

print(M @ V)

[[ 2 -5]



 [-4 -5]

 [ 1 -4]]

Knowing how to perform matrix multiplication by hand is a useful skill
for engineers and scientists and will be helpful to data scientists
learning how machine learning algorithms work. However, in most
cases, a computer or calculator should be used for computing such
products to avoid errors in carrying out the many computations.

3.4.2 Properties of Matrix Multiplication

Note from the above discussion that the i,jth output element is always
the dot product of the ith row of the left matrix with the jth column of
the right matrix. Then consider arbitrary matrices A and B, where A

has dimensions k × ℓ and B has dimensions ℓ × m, the output is the
k × m matrix with the following form:

!

Important!

Order Matters!

Note that order is very important in matrix multiplication. In
general, AB ≠ BA. In fact, in many cases, one of these
products may be defined while the other is not defined
because matrix multiplication requires that the inner
dimensions of the matrices agree.

For instance, consider the matrices M and V in the example above.
The matrix product VM is not defined because V is 2 ×  and M is

× 2, so the inner dimensions (shown boxed) do not agree. If we try to
perform this multiplication in NumPy, it throws an error:

.

a0∗ ⋅ b0 a0∗ ⋅ b1 … a0∗ ⋅ bm−1

a1∗ ⋅ b0 a1∗ ⋅ b1 … a1∗ ⋅ bm−1

⋮ ⋮ ⋮
ak−1∗ ⋅ b0 ak−1∗ ⋅ b1 … ak−1∗ ⋅ bm−1

2
3



V @ M

-------------------------------------------------------------------------

--

ValueError                                Traceback (most recent call 

last)

Cell In[6], line 1

----> 1 V @ M

 

 

ValueError: matmul: Input operand 1 has a mismatch in its core dimension 

0,

with gufunc signature (n?,k),(k,m?)->(n?,m?) (size 3 is different from 2)

Even if the dimensions allow the order to be swapped, the product AB

is generally not equal to BA. For instance, let's append another column
to V to create a 2 × 3 matrix, Q:

new_col = np.array([[-4, 3]]).T

Q = np.hstack( (V, new_col))

print(Q)

[[ 2   1 -4]

 [-1 -2   3]]

Then not only is MQ ≠ QM, but the dimensions of the product even
differ:

The ordered dimensions for MQ, with the outer dimensions boxed,
are × 2 and 2 × . The product MQ will have dimension 3 × 3.3 3



The ordered dimensions for QM, with the outer dimensions boxed,
are × 3 and 3 × . The product MQ will have dimension 2 × 2.

Let's use NumPy to compute these products:

print("MQ = ")

print(M @ Q)

print()

 

 

print("QM = ")

print(Q @ M)

MQ =

[[ 2 -5      0]

 [-4 -5 10]

 [ 1 -4      1]]

 

 

QM =

[[-3 -2]

 [ 5   1]]

Multiplication with the Identity Matrix

If we left- or right-multiply any matrix A by an appropriately-sized
identity matrix, the result is the matrix A. Examples are shown below
using NumPy:

print('M = ')

print(M, '\n')

 

2 2



 

print('MI = ')

print( M @ np.eye(2, dtype=int), '\n' )

 

 

print("IM = ")

print( np.eye(3, dtype=int) @ M   )

M =

[[ 3   4]

 [-1   2]

 [ 2   3]]

 

 

MI =

[[ 3   4]

 [-1   2]

 [ 2   3]]

 

 

IM =

[[ 3   4]

 [-1   2]

 [ 2   3]]

Multiplication and Transpose

Recall again the form of the product AB, where A has dimensions k × ℓ
and B has dimensions ℓ × m,



If we take transposes of A and B, then the matrix product is not
generally defined because A⊤ is ℓ × k and B⊤ is m × ℓ. Moreover, the
product A⊤B⊤ would now be equivalent to multiplying the columns of
A with the rows of B, which would be very different than multiplying
the rows of A with the columns of B.

However, consider the product B⊤A⊤. The ordered dimensions agree:
m × ℓ and ℓ × k, and the dimensions of the product will be m × k. The
rows of B⊤ are the columns of B, and the columns of A⊤ are the rows
of A. Dot product commutes (does not care about order), so each
product of a row of B⊤ and a column of A⊤ is one of the components in
AB. We can write the product B⊤A⊤ as dot products of the rows of A
and columns of B as

Thus, the transpose of a product of matrices is the product of the
transposes of those individual matrices in reverse order.

3.4.3 Application of Matrix Multiplication to Rotating Data

.

a0∗ ⋅ b0 a0∗ ⋅ b1 … a0∗ ⋅ bm−1

a1∗ ⋅ b0 a1∗ ⋅ b1 … a1∗ ⋅ bm−1

⋮ ⋮ ⋮
ak−1∗ ⋅ b0 ak−1∗ ⋅ b1 … ak−1∗ ⋅ bm−1

B⊤A⊤ =

=

= (AB)⊤.

b0 ⋅ a0∗ b0 ⋅ a1∗ … b0 ⋅ ak−1∗

b1 ⋅ a0∗ b1 ⋅ a1∗ … b1 ⋅ ak−1∗

⋮ ⋮ ⋮
bm−1 ⋅ a0∗ bm−1 ⋅ a1∗ … bm−1 ⋅ ak−1∗

a0∗ ⋅ b0 a1∗ ⋅ b0 … ak−1∗ ⋅ b0

a0∗ ⋅ b1 a1∗ ⋅ b1 … ak−1∗ ⋅ b1

⋮ ⋮ ⋮
a0∗ ⋅ bm−1 a1∗ ⋅ bm−1 … ak−1∗ ⋅ bm−1



Recall the 40∘ rotation vector we used for feature extraction in Section
3.2.4, the vector ~x = [cos 40∘, − sin 40∘]⊤. We can create a vector at 90∘

to this vector as ~y = [sin 40∘, cos 40∘]⊤. If we stack these vectors into the
columns of a matrix, then it will be an orthogonal matrix:

DEFINITION

orthogonal matrix

A (real) square matrix whose columns are a set of orthonormal
vectors.

To check if a matrix is an orthogonal matrix, we just need to confirm
that the product of any two columns is equal to 0 and the product of any
column with itself is equal to 1. Note that the rows of U⊤ are the
columns of U. Thus, we can efficiently find all the products between all
pairs of columns using matrix multiplication of the form U⊤U. For
matrix U to be orthogonal, the equivalent conditions for U⊤U are:

all of the off-diagonal elements of U⊤U, which correspond to dot
products of two different columns, should be zero, and

all of the diagonal elements of U⊤U, which correspond to dot
products of columns with themselves, should be one.

If U is an orthogonal matrix, then U⊤U = I. Note that U⊤U is equal
to UU⊤ because the transpose of I is still I. So, we can check whether a
matrix is an orthogonal matrix by checking whether UU⊤ = I.

Let's check whether the matrix of rotation vectors is an orthogonal
matrix:

cos40 = np.cos( np.deg2rad(40) )

sin40 = np.sin( np.deg2rad(40) )

 

 

x40cw = np.array([[cos40, -sin40]]).T



y40cw = np.array([[sin40, cos40]]).T

 

 

U = np.hstack( (x40cw, y40cw) )

Here we used np.hstack() to horizontally stack the column vectors into a
matrix. Note that np.hstack()'s argument is a tuple containing the
vectors or matrices to be horizontally stacked together.

Let's calculate U⊤U and UU⊤ for this matrix:

print(np.round(U.T @ U, 10), '\n')

print(np.round(U @ U.T , 10))

[[1. 0.]

 [0. 1.]]

 

 

[[ 1. -0.]

 [-0.   1.]]

We see that either check confirms that U is an orthogonal matrix. In
fact, this is a special type of orthogonal matrix called a rotation matrix.
It is easy to see the effect of this rotation matrix as a linear
transformation by looking at the output of transform_field(U,

preserve_axes=False), which is shown in Fig. 3.4. I have fixed the axis
limits to be equal. The output field of points is a rotated version of the
input field of points.



Fig. 3.4:  Visualization of linear transformation of points for the matrix
U created from rotated basis vectors. ⏎

Gram Matrix

In our test for an orthogonal matrix, we found the inner products of all
pairs of columns of U. We can apply this same calculation to any matrix
A to get the Gram matrix:

DEFINITION

Gram matrix

For a matrix A, the Gram matrix is the matrix whose i,jth entry
is the dot product of columns i and j of A. The Gram matrix can
be calculated as A⊤A.

Let A be a k × m matrix, and let ai denote the ith column of A. Then
the Gram matrix has the following form:



Since dot product is commutative, we see that the i,jth element and
the j,ith element of the Gram matrix are equal. The Gram matrix is a
symmetric matrix:

DEFINITION

symmetric matrix

A matrix M is symmetric if the i,jth element is equal to the j,ith
element for any valid i and j. Equivalently, M⊤ = M.

Let's compute the Gram matrix for the matrix M that we have been
using in our examples:

print(M.T @ M)

[[14 16]

 [16 29]]

We see that the Gram matrix is symmetric, as expected. Note that the
Gram matrix of N = M⊤ is not the same as the Gram matrix of M

because it is equivalent to finding the inner products of all of the rows

of M.

N = M.T

print(N.T @ N)

A⊤A = .

a0 ⋅ a0 a0 ⋅ a1 … a0 ⋅ am−1

a1 ⋅ a0 a1 ⋅ a1 … a1 ⋅ am−1

⋮ ⋮ ⋮
am−1 ⋅ a0 am−1 ⋅ a1 … am−1 ⋅ am−1



[[25   5 18]

 [ 5   5   4]

 [18   4 13]]

Example Using Real Data: Extracting Multiple Features

Let's see how to use matrix multiplication to extract multiple features
simultaneously. For simplicity, I will again use the Iris data but now
create two features by projecting the data onto each of the orthogonal
vectors ~x and ~y from the example above.

If we want to get both features for the rotated data, we can use
matrix-vector multiplication twice, as shown in the code below:

from sklearn import datasets

iris = datasets.load_iris()

class01 = np.where(iris['target']<2)[0]

R = iris.data[class01][:,:2]

 

 

new_feature0 = R @ x40cw

new_feature1 = R @ y40cw

However, we could instead compute both features simultaneously using
matrix multiplication as

new_features = R @ U

print(new_features[:5])

[[1.65707001 5.95937235]

 [1.82525493 5.44779261]

 [1.54348852 5.47244398]



 [1.53116283 5.33156077]

 [1.5161868  5.97169803]]

If we compare with the outputs of the separate dot products, we see
that the results are the same. In general, the matrix multiplication
version will be faster because it can take advantage of vectorized
computations in the microprocessor and has the additional benefit that
the results are stored together in a single NumPy array.

print(new_feature0[:5])

print()

print(new_feature1[:5])

[[1.65707001]

 [1.82525493]

 [1.54348852]

 [1.53116283]

 [1.5161868 ]]

 

 

[[5.95937235]

 [5.44779261]

 [5.47244398]

 [5.33156077]

 [5.97169803]]

Terminology review and self-assessment questions

Interactive flashcards to review the terminology introduced in this
section and self-assessment questions are available at la4ds.net/3-4,
which can also be accessed using this QR code:

http://la4ds.net/3-4


3.5 Matrix Determinant and Linear Transformations

In Section 3.2.4, we found that an n × n square matrix can be seen as a
linear transformation from Rn to Rn. I showed by example that such a
linear transformation stretches or compresses space, and I claimed that
the amount of that stretch is related to a property of square matrices
called the determinant:

DEFINITION

determinant

For a square matrix M, the determinant is a scalar value that is
related to how M stretches or compresses space if it is used as
a linear transformation. The determinant of M is denoted by
det M or |M|. The determinant may be positive, negative, or
zero.

Note that I did not include a formula for the determinant. That is
because there is no simple formula for the determinant of general n × n

matrices. In this section, I will only teach you how to find the
determinant for 2 × 2 matrices by hand. There is also a simple approach
for finding the determinant of 3 × 3 matrices, but in most cases,
determinants should be found using computers or calculators. In a later
section, I will show you how to find the determinant for any matrix by
finding a related matrix that is in upper triangular form.

Finding the determinant for a 2 × 2 matrix is easy: multiply the
diagonal elements and subtract the product of the off-diagonal elements,



as shown below:

We can use the NumPy function np.linalg.det() or the PyTorch function
torch.linalg.det()to calculate the determinant of arrays or tensors,
respectively. If we have a SymPy Matrix object, we can call the det()
method. I give examples for NumPy and SymPy below.

Below I show several examples of 2 × 2 matrices and show how to
calculate the determinant for each. Each determinant is checked using
NumPy. Then I use a plot to show how each matrix translates a
uniformly spaced set of points in a rectangle of 2-D space to another 2-D
space. Finally, I discuss the interpretation of the determinant with
respect to how the matrix transforms points in 2-D space.

For each of the matrices, I plot the location of the points shown in Fig.
3.5 after the linear transformation. We again use the plot_field()

function from the PlotVec library that takes a square field of points and
plots the points after a linear transformation. Fig. 3.5 shows the default
field of points at the input, which is the output of plot_field() with the
default matrix parameter, which is I2, a 2 × 2 identity matrix. The code to
generate all of the plots of fields of points is available online at
la4ds.net/3-5. Note that the area of the input field of points is
[3 − (−3)] [(3 − (−3)] = 36.

http://la4ds.net/3-5


Fig. 3.5:  Field of points uniformly spaced over the region
[−3, 3] × [−3, 3]. ⏎

Example 3.4: Multiplication by a Diagonal Matrix with

Components Greater than 1

Let's start with a simple case: a diagonal matrix with positive
components that are greater than 1:

The transformed field of points is shown in Fig. 3.6, where the
range of the axes was increased to accommodate the transformed
field of points. The new field is still a rectangle, with lower-left
corner (-6, -15) and upper-right corner (6, 15), and no rotation of
the points has occurred. The x-coordinates have been expanded by a
factor of 2, and the y-coordinates have been expanded by a factor of

M1 = [ ].
2 0
0 5



5, corresponding to the components on the diagonal of M1: a
diagonal matrix individually scales the x- and y-coordinates.

Fig. 3.6:  Field of points after transformation by diagonal matrix
with components greater than 1. ⏎

The area of the region is 12 × 30 = 360, which is 10 times larger
than the area of the original field. The determinant calculation is
shown below:

Long Description Unnumbered Figure 1



The determinant is equal to the factor by which the linear
transformation changed the area of the field of points. Let's check
using NumPy:

M1 = np.diag([2,5])

print(M1)

print()

print(f'|M1| = {np.linalg.det(M1): .1f}')

[[2 0]

 [0 5]]

 

 

|M1| =    10.0

Example 3.5: Multiplication by a Diagonal Matrix with

Positive Components Smaller than 1

Now consider a diagonal matrix with positive components that are
smaller than 1:

Fig. 3.7 shows the field of points after the linear transformation. The
linearly transformed points fit in a small subregion of the original
area. As expected from our previous example, the x- and y-
components are individually scaled by the corresponding
components of the diagonal matrix. Thus, the field is scaled by 0.2 in
the x-dimension and 0.5 in the y-dimension. The ratio of the
resulting area to the area of the original field of points is 0.1, which
is the determinant of M2:

M2 = [ ].
0.2 0
0 0.5



Long Description Unnumbered Figure 2

Fig. 3.7:  Field of points after transformation by diagonal matrix
with positive components that are smaller than 1. ⏎

Let's check using NumPy:

M2 = np.diag([0.2, 0.5])

print(f'|M2| = {np.linalg.det(M2):.2f}')



|M2| = 0.10

Example 3.6: Multiplication by a Diagonal Matrix with

Positive and Negative Components

Next consider what happens if one of the elements is negative.
Consider the matrix

The field of transformed points is shown in Fig. 3.8. If you compare
the colors of the points in the original field of points with those in
the transformed field, it should be obvious the field of points has
been flipped in the y direction (i.e., around the x-axis). The factor of
-0.5 results in each positive y-component at the input being mapped
to a negative value at the output, and each negative y-component at
the input being mapped to a positive value at the output.

M3 = [ ].
0.2 0
0 −0.5



Fig. 3.8:  Field of points after transformation by diagonal matrix
with positive and negative components with magnitudes smaller
than 1. ⏎

The area is still scaled by 0.1, which is the absolute value of the
determinant, 0.2 ⋅ (−0.5) − 0 ⋅ 0 = −0.1. We can verify using
NumPy:

M3 = np.diag([0.2, -0.5])

print(f'|M3| = {np.linalg.det(M3):.2f}')

|M3| = -0.10

Example 3.7: Multiplication by an Orthogonal Matrix



Now let's consider the orthogonal matrix U from Section 3.4:

U = np.array([[ 0.76604444,   0.64278761],

              [-0.64278761,   0.76604444]])

The transformed field of points is shown in Fig. 3.9. From the figure,
it appears that the linear transformation using U does not scale the
area of the field of points but only rotates it by 40∘ clockwise.

Fig. 3.9:  Field of points after transformation by an orthogonal
matrix. ⏎

If the area of the field of points is unchanged, the determinant
should be 1. The determinant of this matrix is
(0.76604444)2 − (0.64278761)(−0.64278761) = 1. Let's check using
NumPy:



print(f'Determinant of U matrix: {np.linalg.det(U):.1f}')

Determinant of U matrix: 1.0

This is a general property that we will prove later: The determinant

of an orthogonal matrix is 1.

Example 3.8: General Linear Transformation

Consider again the matrix used to demonstrate a linear
transformation of a field of points in Section 3.3. This linear
transformation rotates, scales, and flips the points in the field,
transforming the original square region into a parallelogram, as
shown in Fig. 3.10. It can be shown that the area of the
parallelogram is equal to the product of the absolute value of the
determinant and the area of the original region, which is shown
below:

Long Description Unnumbered Figure 3



Fig. 3.10:  Field of points after transformation by a general matrix.
⏎

We can confirm this using NumPy:

M5 = np.array( [[0.5, -4],

                [ -2,   3]] )

np.linalg.det(M5)

print(f'determinant of matrix M5 = {np.linalg.det(M5):.1f}')

determinant of matrix M5 = -6.5

Thus the area of the parallelogram is equal to 36 |−6.5| = 234.



Example 3.9: Transformation by a Singular Matrix

Consider the following matrix and its determinant:

M6 = np.array([[1, -2],

              [2,   -4]])

print(f'determinant of matrix M6 = {np.linalg.det(M6):.1f}')

determinant of matrix M6 = 0.0

M6 is said to be singular:

DEFINITION

singular (matrix)

A square matrix M is singular if det M = 0.

The other matrices in our examples are nonsingular:

DEFINITION

nonsingular (matrix)

A square matrix M is nonsingular if det M ≠ 0.

Let's plot the field of transformed points to see the effect of
multiplication by a singular matrix:

plot_field(M6, preserve_axes=False)



The rectangular region of points has been mapped to a line
segment. The output points all lie along a single dimension within
the two-dimensional output space. In general, a linear
transformation that can be represented using a singular matrix will
map to a lower dimensional subspace within the output space. I will
provide additional interpretation of what it means for a matrix to be
singular/nonsingular in Section 4.2.

3.5.1 Properties of the Determinant

The determinant has many useful properties, but here are a few of the
most important ones:

1. The determinant of an identity matrix is 1.

2. The determinant of a matrix and the determinant of the

transpose of a matrix are the same: det M ⊤ =det M.



3. The determinant of a matrix product is the product of the

determinants: det (AB) = (det A) (det B).

4. For a triangular matrix, the determinant is the product of the

elements on the main diagonal. This property is useful for finding
the determinant without any special formula because we will show
how to put any matrix in upper-triangular form in Section 4.1.

Terminology review and self-assessment questions

Interactive flashcards to review the terminology introduced in this
section and self-assessment questions are available at la4ds.net/3-5,
which can also be accessed using this QR code:

3.6 Eigenvalues and Eigenvectors

Consider a square n × n matrix M that can be interpreted as a linear
transformation from Rn → R

n. As shown in Section 3.3, a matrix M can
transform different vectors in different ways. In particular, we can see
from the output of the transform_unit_vecs() command in Section 3.3 that
for a two-dimensional space, vectors at different angles are scaled and
rotated by different amounts.

For a nonsingular matrix, we can find output-vectors at every angle.
Since we can create input vectors at every angle, there may be some
input vectors for which the output vectors are at the same angle as the
input vectors. If u is such a vector, then Mu should be in the same
direction as u but may have a different length. Equivalently, Mu should
be a scaled version of u. Mathematically, such a vector would satisfy

http://la4ds.net/3-5


Mu = λu for some real constant λ. We call such a vector an eigenvector

of M:

DEFINITION

eigenvector

Given a square n × n matrix M, a non-zero n-vector u is an
eigenvector of M if there exists a real constant λ such that

Mu = λu

(3.2)

for some real constant λ.

Here, eigen is the German word for own, meaning that for a given
matrix, such vectors are special characteristics of that matrix. Any value
λ that satisfies this equation for some eigenvector u is called an
eigenvalue of M:

DEFINITION

eigenvalue

Given a square n × n matrix M, a constant λ is an eigenvalue

of M if there exists a non-zero vector u such that

Mu = λu.

!

Important!

There may be multiple vectors u that satisfy (3.2), so we add a
subscript i to distinguish them. Each eigenvector ui has an
associated eigenvalue λi to satisfy (3.2). It is best to think of
them as an eigenvector-eigenvalue pair, (ui, λi).



Suppose that (ui, λi) are an eigenvector-eigenvalue pair of a matrix M
. Consider a vector cui, where c is a constant. Then

Thus, cui is also an eigenvector of M with the same eigenvalue λi. From
a geometric perspective, this makes sense because cui is in the same (or
exact opposite) direction as ui, and so we expect a linear transformation
to affect it in the same way. Because of this, when we calculate and
report eigenvectors, we typically report the eigenvectors that have unit
norm; we will call these the unit eigenvectors. But you should keep in
mind that any scaled version of a unit eigenvector of a matrix is also an
eigenvector of that matrix. If (ui, λi) are a unit eigenvector and
eigenvalue pair, then −ui is also a unit eigenvector with eigenvalue λi,
and so we only report one of ui and −ui when reporting unit
eigenvectors. The choice of which one is reported depends on the
implementation for finding the eigenvectors.

NumPy has two commands to find the (unit) eigenvector-eigenvalue
pairs of a matrix. Both commands are part of NumPy's linalg module1.
For convenience, we will import this module as la. The most general
method works for arbitrary square matrices and can be called as
la.eig(). For real symmetric matrices (or more generally complex
matrices that are Hermitian – i.e., have complex-conjugate symmetry),
the la.eigh() function is faster and more accurate. Both la.eig() and
la.eigh() return an object that has two components:

1. The first output is a vector of the eigenvalues. We will use λ to
denote the vector of eigenvalues and Λ to denote a diagonal matrix
whose diagonal elements are the eigenvalues. However, in Python,
lambda is reserved keyword, and so I will use lam for the eigenvalue
vector.

M (cui) = cMui

= cλiui

= λi (cui).



2. The second output is a matrix with unit eigenvectors in its columns.
It is called the modal (pronounced moh-dull) matrix, and is usually
denoted by U.

_________________

 1PyTorch has equivalent commands that are part of PyTorch's linalg module. ⏎

DEFINITION

modal matrix

For a square matrix M, the modal matrix is a matrix whose
columns are the unit eigenvectors of M.

The outputs are aligned in the sense that the ith entry of the eigenvalue
vector corresponds to the ith column of the modal matrix.

Let's practice using NumPy to find the eigenvalues and eigenvectors
of a matrix with an example:

Example 3.10: Eigenvectors and Eigenvalues of a 2 × 2
Matrix  ⏎

In Section 3.3, a matrix M5 was used to study the effect of a
linear transformation. That section included an exercise in which
you were asked to experimentally find the orientations of unit
vectors that produced output vectors at the same angles. The
vectors at these orientations are the eigenvectors of that matrix.
The code below shows how to check your results by finding the
eigenvectors using la.eig():

import numpy.linalg as la

 

 

M5 = np.array([ [0.5, -4],

               [-2,     3] ])



lam5, U5 = la.eig(M5)

lam5, U5

(array([-1.34232922,    4.84232922]),

 array([[-0.90828954,    0.67752031],

        [-0.41834209, -0.73550406]]))

Let's confirm that the columns of the returned modal matrix (stored
in the variable U5) are eigenvectors of M5. Let u0 and u1 denote the
columns of U5. Then we first compute the output vectors Mu0 and
Mu1:

out0 = M5 @ U5[:, 0]

out0

array([1.21922359, 0.56155281])

out1 = M5 @ U5[:, 1]

out1

array([ 3.28077641, -3.56155281])

Now we can check to see if the output vectors are scaled versions of
u0 and u1. To test this, we can perform element-wise division on the
vectors and check whether the output is of the form c1 for some
constant c. Let's start with the first output vector:



out0 / U5[:, 0]

array([-1.34232922, -1.34232922])

Not only is the output a scaled version of the input, it is equal to
λ0u0, where λ0 is the eigenvalue that corresponds to eigenvector u0

.
Let's check for input vector u1:

out1 / U5[:, 1]

array([4.84232922, 4.84232922])

We can see that the output can be written as λ1u1.

Fig. 3.11 illustrates how the eigenvectors of the matrix M5 relate to
how that matrix linearly transform space2. The left subplot shows an
input field of points on the rectangle with x-values and y-values from -1
to 1. Overlaid on this subplot are the unit eigenvectors for M5 that we
found above. For each eigenvector, the closest point to the origin that is
in the general direction of that eigenvector, while being beyond the
head of that eigenvector, is marked with an ‘x’. The right subplot shows
the field of points after the linear transformation from multiplying by
M5. The output field of points is overlaid by each eigenvector of M5

scaled by its corresponding eigenvalue. For each input point in the left
subplot that is marked with ‘x’, the corresponding output point is
marked with ‘x’ in the right subplot. It can be seen from the figure that
the colors of the points in the directions of the eigenvectors are the



same in each plot. The points along the eigenvector with a negative
eigenvalue end up in an orientation that is flipped opposite of the origin.
The negative eigenvalue indicates that the matrix M5 results in not just
rotation and stretching, but also flipping of the points in space. The
magnitudes of the eigenvalues show how much the field of points is
stretched along the corresponding eigenvectors.

Fig. 3.11:  Field of points before and after linear transformation by
matrix M5. Input field is overlaid with unit eigenvectors; output field is
overlaid with unit eigenvectors scaled by corresponding eigenvalues. ⏎

_________________

 2The code to create this figure is online at la4ds.net/3-6 ⏎

We can solve Equation 3.2 for the eigenvalues and eigenvectors, but to
do so requires understanding how to solve systems of linear equations.
We introduce the necessary techniques in Chapter 4 and show how to
apply them in Section 6.4 to:

solve for the eigenvalues and eigenvectors of a matrix,

factor certain matrices in terms of their modal matrix and the
diagonal matrix of eigenvalues,

http://la4ds.net/3-6


calculate the determinant from the eigenvalues and determine
whether a matrix is singular based on its eigenvalues, and

use the eigenvectors to represent data in a way that allows us to
identify the most important information conveyed by that data.

Terminology review and self-assessment questions

Interactive flashcards to review the terminology introduced in this
section and self-assessment questions are available at la4ds.net/3-6,
which can also be accessed using this QR code:

http://la4ds.net/3-6


3.7 Chapter Summary

This chapter introduced matrices, special types of matrices, and
mathematical operations involving matrices. In particular, I showed that
matrix-vector and matrix-matrix multiplication generalize and extend
the dot product. I showed how matrix-vector multiplication can be used
for feature extraction. I also introduced the concept of matrix
multiplication as a linear transformation between vector spaces. I
introduced the determinant of a matrix, which quantifies how much a
matrix stretches or compresses space when used as a linear transform,
and we considered multiple examples to understand these concepts in
more detail. Finally, I introduced the concepts of eigenvectors and
eigenvalues of a matrix, showed how to find them using NumPy, and
showed how to interpret them.

Access a list of key take-aways for this chapter, along with interactive
flashcards and quizzes at la4ds.net/3-7, which can also be accessed
using this QR code:

http://la4ds.net/3-7


4

Solving Systems of Linear

Equations

DOI: 10.1201/9781032664088-4

Linear equations are often used to represent the relationships
among different variables or features. When we have multiple
linear equations describing such relationships, the set of
equations is called a system of linear equations. In this chapter, I
show how to use matrix techniques to solve systems of linear
equations. I also introduce matrix inverses and their properties.

https://doi.org/10.1201/9781032664088-4


4.1 Working with Systems of Linear Equations

Using Matrices and Vectors – Part 1

Matrices are very useful for working with systems of linear
equations. They allow us to write such equations concisely and to
solve them efficiently. Let's use some examples to motivate our
work.

Let's start with this simple equation:

y = 4x − 2.

This is the equation for the line shown in Fig. 4.1.





Fig. 4.1:  The line given by y = 4x − 2. ⏎

When we plot a line to represent that equation, what we are
really illustrating is the solution set for that equation:

DEFINITION

solution set (equation/system of equations)

Given an equation, the solution set is the set of all points
that satisfy the equation. For a system of equations, the
solution set is the set of all points that simultaneously
satisfy all of the equations.

The equation of this line is a linear equation:

DEFINITION

linear equation

A polynomial in one or more variables, in which all the
variables have degree 1. If the variables are
x0,x1, … ,xn−1, then a linear equation in the variables
can be written as

n−1

∑
i=0

aixi = c,

for some real constants ai, i = 0, 1, … ,n − 1 and c. Such
an equation specifies a line in n-dimensional Euclidean
space.

Note: Linear vs. Affine



Technically, what we call linear equations do not satisfy the
requirement for a function to be linear unless the constant
term is 0. When the constant term is nonzero, such equations
are said to be affine. However, we will use the usual
convention of referring to these as linear equations.

Now suppose that we have two different equations for lines in
2-D space, as shown in the following equations:

The lines representing these equations are shown in Fig. 4.2. As
can be seen from the figure, the lines intersect at the point (1, 2).
Another way to interpret this is that the point (1, 2) is the only
point that satisfies both these equations. When interpreted
together like this, we call the two equations a system of linear

equations:

y = 3 − x

y = 4x − 2.





Fig. 4.2:  Two linear equations. ⏎

DEFINITION

system of linear equations

A collection of linear equations on a common n-
dimensional space (typically Rn) that are interpreted
together, typically with the purpose of finding the subset
of the space that satisfies all of the equations
simultaneously.

A system of linear equations can be written concisely using
matrices and vectors. To do this, we have to allow vectors (and,
more generally, matrices) to contain variables. Let's see how this
works by writing each of the linear equations above as the dot
product of a coefficient vector and a variable vector. Start by
rewriting the equations with the variables on the left-hand side:

Create a variable vector [x, y]T . Then the first equation can be
written as

and the second equation has the same form,

x + y = 3
−4x + y = −2

[ ] [ ] = 3,1 1
x

y

[ ] [ ] = −2.−4 1
x

y



We have two dot products involving the same right-hand vector,
and we can express these concisely using matrix-vector
multiplication as

Now consider a general system of m equations in n variables
x0,x1, … ,xn−1:

The ith equation can be written as a dot product of the form

Let A be the coefficient matrix

and let

[ ] [ ] = [ ].
1 1

−4 1
x

y

3
−2

a0,0x0 + a0,1x1 + … + a0,n−1xn−1 = b0

a1,0x0 + a1,1x1 + … + a0,n−1xn−1 = b1

⋮
am−1,0x0 + am−1,1x1 + … + am−1,n−1xn−1 = bm−1.

[ ] = bi.ai,0 ai,1 … ai,n−1

⎡⎢⎣ x0

x1

⋮
xn−1

⎤⎥⎦ ,

⎡⎢⎣ a0,0 a0,1 … a0,n−1

a1,0 a1,1 … a0,n−1

⋮
am−1,0 am−1,1 … am−1,n−1

⎤⎥⎦



be a vector of variables. Let

Then we can write this system of linear equations concisely as

Ax = b.

We will call the vector b the result vector, but it is also sometimes
referred to as simply the right-hand side.

4.1.1 Types of Solution Sets

Given a system of linear equations represented by Ax = b, a
numerically valued vector v is a solution to the system of linear
equations if the system holds for x = v; i.e.,

Av = b.

Such a solution is not necessarily unique, nor does every system
of linear equations necessarily have any solutions. In general, the
solution set of a system of linear equations may consist of:

one unique solution,

many solutions, or

x =

⎡⎢⎣ x0

x1

⋮
xn−1

⎤⎥⎦b = .

⎡⎢⎣ b0

b1

⋮
bm−1

⎤⎥⎦



no solutions.

Let's build some intuition about these different cases, starting
with two-dimensional examples. We have already seen an
example of a system of equations with one solution, so in the
following examples, we consider systems with many or no
solutions:

Example 4.1: System of Linear Equations with

Many Solutions

Consider the equations

To plot these, let's rewrite each equation in the form
y = mx + b, which we do by first moving the x variable terms
to the right-hand side:

Next, divide the first equation by -1 and the second equation
by 3 to get

Both equations define the same line, as shown in Fig. 4.3.
The solution to each equation is the set of points shown along
the line in the figure. Thus, any of the points on the line

2x − y = −3
−6x + 3y = 9.

−y = −2x − 3
3y = 6x + 9.

y = 2x + 3
y = 2x + 3.



y = 2x + 3 is a valid solution to the system of equations.
There are an infinite number of such solutions.





Fig. 4.3:  Example of two linear equations that have many
solutions. ⏎

Example 4.2: System of Linear Equations with No

Solutions

Consider the equations

Writing these in slope-intercept form, we have

These equations have the same slopes but different y-
intercepts. A graph of the lines that represent the solutions to
these equations is shown in Fig. 4.4.

2x − y = −3
2x − y = 0.

y = 2x − 3
y = 2x + 0.





Fig. 4.4:  Plot of two linear equations with no solutions. ⏎

Because these lines have the same slopes, they are parallel
and thus never intersect. Thus, there are no points that can
simultaneously solve these equations. We say that this system
of equations is inconsistent:

DEFINITION

inconsistent (system of equations)

A system of equations is inconsistent if there are no
points that simultaneously satisfy all of the equations.

Example 4.3: Another System of Linear Equations

with No Solutions

Consider the set of equations shown below:

A graph of these lines is shown in Fig. 4.5.

x + y = 3
−4x + y = −2
6x + y = 3.





Fig. 4.5:  Graph of system of three linear equations with no
solution. ⏎

This set of equations has no solution because the three sets
of lines do not intersect at a common point. If we take any
two lines, then they intersect at a single point. The first two
equations are the same as in our original two-equation
example, and thus intersect at (1, 2). From the graph, we see
that the first and third equations intersect at (0, 3), and the
second and third intersect (0.5, 0).

Since there is no common intersection, there is no solution
to this set of equations. This system is overdetermined:

DEFINITION

overdetermined (system of equations)

A system of equations is overdetermined if there are
more equations than unknowns.

An overdetermined system of equations will often be
inconsistent and have no solutions (unless some equations can be
written as linear combinations of the other equations – we explore
this more in Section 4.2).

Example 4.4: Three-Dimensional System with

Many Solutions

Consider the set of equations

x1 + x2 = 1
x2 + x3 = 2.



This system of equations is underdetermined:

DEFINITION

underdetermined (system of equations)

A system of equations is underdetermined if there are
fewer equations than unknowns.

A system of underdetermined equations always has an

infinite number of solutions.

To see that this is true for this set of equations, suppose we
choose any value of x1. Then we are left with two equations in
two unknowns, and we can find a solution to the set of
equations. Since we can do this for every value of x1, there
are an infinite number of solutions. Fig. 4.6 shows the
solutions to the linear equations for three different values of
x1: when x1 = −1, when x1 = 0, and when x1 = 2. When x1 is
fixed to a particular value, then the first equation can be put
in the form x2 = c for some constant value c that depends on
the value to which x1 has been fixed. If we plot these two
equations with x2 on the horizontal axis and x3 on the vertical
axis, then the first equation is a vertical line for each value of
x1.



Fig. 4.6:  Example solution sets for system of
underdetermined equations in three variables. ⏎

Fig. 4.6 shows the vertical lines that correspond to the first
equation for each of the three different values of x1. It also
includes the line for the second equation. From the figure, we
see that this system of equations has a unique solution for

each different value of x1. This system of equations has a
different solution for each value of x1 and therefore has an
infinite number of solutions. Some of the solutions,
corresponding to the three values of x1 listed above, are
(2, −1, 3), (0, 1, 1), and (−1, 2, 0).



4.1.2 Solving Systems of Linear Equations through Row

Operations

In the remainder of this section, we will consider systems of n

linear equations in n variables with a single unique solution. We
will solve such a system and learn how we can apply matrix
techniques to facilitate solving the system. Consider the system of
three equations in three variables shown below:

This is an example of a critically determined system of
equations:

DEFINITION

critically determined (system of equations)

A system of equations is critically determined if the
number of equations equals the number of unknowns.

Such a system can be solved algebraically by using linear
combinations of the equations to eliminate variables. Let's see
one example of how this can be done and how this connects with
operations to the matrix representation.

Consider first eliminating the variable x0 from the second
equation. We can do this by multiplying the first row by 1/2 and
adding it to the second equation:

4x0 − 3x2 = −1
−2x0 + 3x1 + x2 = −4
3x1 − 4x2 = −15.



Consider the effect of this operation on the system of equations
expressed in matrix form, Ax = b. The original form of the
system of equation is

Let's define the corresponding coefficients matrix A and results
vector b as variables using NumPy:

# Be sure to include a decimal point after one of the numbers so 

that we are

# not restricted to integer values when we start manipulating this 

array

A = np.array([[   4.,   0,   -3],

              [   -2,   3,    1],

              [    0,   3,   -4]])

 

 

b= np.array([[-1.],

             [-4 ],

             [-15]])

− 2x0 + 3x1 + x2 = −1

+
1
2
[ 4x0 −3x2 = −4 ]

gives 3x1 −
1
2
x2 = −

9
2

.

= .
⎡⎢⎣ 4 0 −3

−2 3 1
0 3 −4

⎤⎥⎦⎡⎢⎣x0

x1

x2

⎤⎥⎦ ⎡⎢⎣ −1
−4

−15

⎤⎥⎦



The operation of adding 1/2 of the first equation to the second
equation can be implemented by

adding 1/2 of row 0 of A to row 1 of A, and

adding 1/2 of row 0 of b to row 1 of b.

Let A2 and b2 be the modified matrix and vector:

A2 = A.copy()

A2[1] = A2[1] + 0.5* A2[0]

 

 

print(A2)

[[ 4.   0.   -3. ]

 [ 0.   3.   -0.5]

 [ 0.   3.   -4. ]]

b2 = b.copy()

b2[1] = b2[1] + (1/2)* b2[0]

print(b2)

[[ -1. ]

 [ -4.5]

 [-15. ]]



Comparing the matrix equation with A2 and b2 to the algebraic
equation, we see that they are the same. It is tedious to have to
manipulate the rows of A and b separately. To simplify our work,
we can concatenate the columns of these matrices into an
augmented matrix:

DEFINITION

augmented matrix

For a system of linear equations that can be expressed in
matrix form Ax = b, the augmented matrix (A|b) is the
matrix created by concatenating the columns of A and b
. It is used to simplify the simultaneous manipulation of
A and b, which is usually done to simplify solving this
system of equations.

Let the augmented matrix be denoted by (A|b), which, from the
original form of our example system of equations, is

We use a vertical bar to indicate the boundary between the
portion of the matrix corresponding to A and that corresponding
to b.

NumPy provides the np.hstack() command to horizontally stack
matrices and vectors with the same number of rows. Let's refer to
the augmented matrix in Python as Ab. The starting form of Ab is
thus

.
⎡⎢⎣[rrr|r]4 0 −3 −1

−2 3 1 −4
0 3 −4 −15

⎤⎥⎦



Ab= np.hstack( (A,b) )

print(Ab)

[[   4.   0.   -3.   -1.]

 [ -2.    3.    1.   -4.]

 [   0.   3.   -4. -15.]]

Then we can perform the equivalent manipulation as above as
follows:

Ab[1] = Ab[1] + 1/2*Ab[0]

print(Ab)

[[   4.   0.   -3.     -1. ]

 [   0.   3.   -0.5   -4.5]

 [   0.   3.   -4.    -15. ]]

Adding a linear combination of rows to another is one example
of a row operation.

!

Important!

Linear operations on the rows change the form of the
system of linear equations but do not change the
solution set.



After this first row, we can eliminate the variable x1 from the
third equation by subtracting the second equation from the third
equation. Equivalently, we can subtract row 1 of the augmented
matrix from row 2:

Ab[2] = Ab[2] - Ab[1]

print(Ab)

[[   4.   0.   -3.    -1. ]

 [   0.   3.   -0.5   -4.5]

 [   0.   0.   -3.5 -10.5]]

The equivalent set of equations is

After these manipulations, the augmented matrix shown above
is said to be in row echelon form:

DEFINITION

row echelon form (REF)

A matrix is in row echelon form if

1. The first nonzero entry in each row, called the
leading coefficient, is to the right of the leading
coefficient in any row above it, and

4x0 − 3x2 = −1
3x1 + (−0.5)x2 = −4.5
−3.5x2 = 10.5.



2. Any all-zero rows are at the bottom of the matrix;
any rows with nonzero coefficients appear above the
all-zero rows.

Note:

Some books require the leading coefficients to be 1 for a
matrix to be in row echelon form.

LU Decomposition

The REF form of (A|b) is an upper triangular matrix; let's call
it U to distinguish it from the matrix (A|b) that we started
with. Since we created this upper triangular matrix using
linear combinations of the rows, there must be a matrix L such
that LU is equal to the original matrix (A|b). It can be shown
that the matrix L is a lower-triangular matrix.
The form LU is called the LU decomposition or LU

factorization of (A|b). If row swaps are required to get a
matrix in REF form, then the matrix can be factored as PLU,
where P is a permutation matrix, which performs row swaps.
The (P)LU-factorization of a matrix can be found using SciPy's
scipy.linalg.lu() function. Links to additional resources for the
LU-decomposition are available at la4ds.net/4-1.

We can solve the system of equations for our example by
iteratively solving the equations from bottom to top, where at
each step, we substitute the values of the variables found in the
previous step.

http://la4ds.net/4-1


We start by solving the last equation for x2, which we can do by
dividing the equation by −3.5:

We can perform the equivalent operation on the augmented
matrix by dividing the last row by −3.5:

Ab[2] = Ab[2] / -3.5

Ab

array([[ 4. ,   0. , -3. , -1. ],

       [ 0. ,   3. , -0.5, -4.5],

       [-0. , -0. ,   1. ,   3. ]])

Multiplying (or dividing) a row by a constant is a second type of
row operation.

We can use the solution to equation 2 (the last equation) to
solve the next-to-last equation in two different ways. In the first
approach, we substitute the -3 for x2 in equation 1 to reduce that
equation to one unknown:

−3.5x2 = −10.5

x2 =
−10.5
−3.5

= 3.

3x1 + −0.5x2 = −4.5
3x1 + −0.5(3) = −4.5
3x1+ = −3(by adding 1.5 to each side)
x1 = −1(dividing both sides by 3)



That approach is not simple to apply to our augmented matrix.
The second approach is to add a weighted version of equation 2

to equation 1 to eliminate the variable x2 in equation 1. If we
multiply equation 2 by 0.5 and then add it to equation 1, the x2
coefficient will be eliminated. In algebra, this looks like

If we add 1/2 of row 2 to row 1 of Ab, we get the equivalent
result:

Ab[1] = Ab[1] + 0.5*Ab[2]

Ab

array([[ 4.,   0.,  -3., -1.],

       [ 0.,   3.,   0., -3.],

       [-0.,  -0.,   1.,  3.]])

Then by dividing row 1 by 3, we can get that x1 = −1:

Ab[1] = Ab[1] / 3

Ab

array([[ 4.,   0., -3., -1.],

3x1+ − 0.5x2 = −4.5

+ 0.5( x2 = 3)

gives 3x1 = −3.



       [ 0.,   1.,   0., -1.],

       [-0., -0.,    1.,   3.]])

We can see that the same strategy will work for row 0. We can
eliminate the x2 variable by adding row 2 multiplied by 3:

Ab[0] = Ab[0] + 3*Ab[2]

Ab

array([[ 4.,   0.,   0.,   8.],

       [ 0.,   1.,   0., -1.],

       [-0., -0.,    1.,   3.]])

Dividing row 0 by 4 yields the solution:

Ab[0] = Ab[0]/4

Ab

array([[ 1.,   0.,   0.,   2.],

       [ 0.,   1.,   0.,  -1.],

       [-0., -0.,    1.,   3.]])

So x0 = 2.
Note that the portion of Ab that corresponds to the coefficient

matrix is an identity matrix. This matrix is said to be in reduced

row echelon form:



DEFINITION

reduced row echelon form (RREF)

A matrix is in reduced row echelon form if it is in row
echelon form and:

1. The leading coefficients are all 1.

2. For any column containing a leading coefficient, that
leading coefficient is the only nonzero value in that
column.

Note:

The fact that the matrix is already in row echelon form implies
that all of the coefficients below a leading coefficient (in the
same column) are zero. Condition 2 implies that all of the
coefficients above a leading coefficient are also zero.

Any matrix may be put into row echelon form through row
operations. In addition to the row operations described above, we
can also swap the rows representing any pair of equations (called
a row swap). Thus, we can define row operations as follows:

DEFINITION

row operations (matrix)

The following operations on the rows of a matrix are
called row operations:



1. Adding any linear combination of the other rows to a
row

2. Multiplying or dividing a row by a constant

3. Swapping two rows

For an augmented matrix that represents a system of linear
equations, row operations do not change the solution set. In
addition, the RREF is unique. As in our example, we can perform
row operations to find the solution of a system of linear equations
(when a unique solution exists).

Gaussian elimination, or Gauss-Jordan elimination is an
algorithm to systematically put a matrix in row-reduced echelon
form:

DEFINITION

Gaussian elimination,
Gauss-Jordan elimination

A systematic algorithm for transforming a matrix into
reduced row echelon form. The algorithm iterates down
the rows, performing row operations to get the matrix
into row echelon form with leading coefficients equal to
1. The algorithm then iterates back up the rows to
eliminate any variables above a leading coefficient
through adding an appropriate linear combination of the
lower row with that leading coefficient.

The basic method of Gaussian elimination follows the example
above. Readers who wish to learn how to perform Gaussian
elimination by hand can find many tutorials online. Instead of



performing Gaussian elimination by hand, we will use Python.
NumPy does not have a method to find the RREF of a NumPy
array. Instead, we can use another useful library called SymPy,
which has a Matrix class with an rref() method. We start by
importing the Matrix class and making our augmented matrix into
a SymPy Matrix object:

from sympy import Matrix

 

 

Ab2 = np.hstack( (A,b) )

M = Matrix(Ab2)

To get the reduced row-echelon form of the matrix M, we can
call M.rref(). By default M.rref() returns the RREF of M and a tuple
of pivot columns. For our purpose, we will only use the RREF, so
we can pass the keyword argument pivots=False to suppress that
output:

M.rref(pivots=False)

Example 4.5: Solving Two Equations in Two

Unknowns Using RREF  ⏎

Let's return to the original set of equations that we started
with in this section:

⎡⎢⎣1 0 0 2.0
0 1 0 −1.0
0 0 1 3.0

⎤⎥⎦



These equations are shown in Fig. 4.2.
Let's formulate these as a matrix equation and solve. The

matrix equation form is:

Then the augmented matrix is

Ab2 = np.array([

     [ 1, 1, 3],

     [-4, 1, -2]

])

We can use SymPy to find the RREF for Ab2:

M2 = Matrix(Ab2)

M2.rref(pivots=False)

                       [1    0    1]

                       [0    1    2]

The solution is x = 1, y = 2, which matches the intersection
of the two lines in Fig. 4.2.

y = 3 − x

y = 4x − 2.

[ ] [ ] = [ ].
1 1

−4 1
x

y

3
−2



4.1.3 Calculating the Determinant of a Matrix using Row

Echelon Form

Recall from Section 3.5 that there is no simple formula for the
determinant of a general n × n matrix. However, one of the useful
properties of the determinant is that the determinant of a
triangular matrix is the product of the diagonal elements. Let RA

be the REF form of A found using only linear combinations of the
rows. Then it can be shown that det A =det RA. Sometimes we
can simplify the mathematics of finding the REF by swapping
rows of the matrix. If row swaps are also used in finding the REF
and there are a total of k row swaps, then det A = (−1)k det RA.
However, if the rows are also scaled, then the determinant will
also be affected by these scaling factors. Such scaling is
commonly used to make the first non-zero entry be 1 or to make
them integer (such as can occur with SymPy's echelon_form()

method). I am not going to consider this case because it is largely
irrelevant. The only reason to use the REF to find the determinant
is if a computational tool is not available, and in this case, you can
calculate the determinant before applying any row scaling.

Example 4.6: Determinant of a 3 × 3 Matrix

Consider the matrix A from above. Based on the REF we
found for (A|b), an REF form of A is

Thus det A = (4)(3)(−3.5) = −42. Let's check by using
NumPy to compute the determinant of the original A matrix:

.
⎡⎢⎣4 0 −3

0 3 −0.5
0 0 −3.5

⎤⎥⎦



import numpy.linalg as la

la.det(A)

-42.00000000000001

4.1.4 Summary

For the two examples of solving a system of equations through
matrix operations, the number of equations was equal to the
number of variables (i.e., the system was not overdetermined or
underdetermined), and there was a single solution. In the next
section, we consider other cases that can occur with systems of
linear equations.

Terminology review and self-assessment questions

Interactive flashcards to review the terminology introduced in
this section and self-assessment questions are available at
la4ds.net/4-1, which can also be accessed using this QR code:

http://la4ds.net/4-1


4.2 Working with Systems of Linear Equations

Using Matrices and Vectors – Part 2

In Section 4.1, we introduced systems of linear equations and
showed examples of solving critically determined systems (with n
equations in n variables) for which the system has a unique
solution. In this section, we consider some other cases that we
may encounter with systems of linear equations.

4.2.1 Overdetermined Systems of Linear Equations

Recall that an overdetermined system of equations has more
equations than unknowns. Consider the following system of
equations:

The first three equations are the same as the three-equation
system of equations that we solved via the RREF in the previous
section. Now there is an additional equation, for a total of 4
equations in 3 variables. Thus, this is an overdetermined set of
equations.

Let's see what the implications of this are, starting with
creating the augmented matrix for the matrix equation:

import numpy as np

 

 

Ab = np.array([[ 4.,      0,   -3,   -1],

4x0 − 3x2 = −1
−2x0 + 3x1 + x2 = −4
3x1 − 4x2 = −15
x1 + 3x2 − 3x2 = −10



               [ -2,      3,    1,   -4],

               [     0,   3,   -4,  -15],

               [     1,   3,   -3,  -10]])

The RREF for this matrix is:

from sympy import Matrix

M = Matrix(Ab)

M.rref(pivots=False)

The first three rows of the RREF are exactly the same as when
we considered the system consisting of the first three equations.
The final row of the RREF is all zeros and corresponds to

This equation is always true and provides no information about
the variables. From the first three rows, we get the same solution
as when we considered the system of three equations: x0 = 2,
x1 = −1, and x2 = 3. So, the fourth equation seemingly had no
impact. Let's see why this occurred.

Consider if we add the first three equations together. We get

2x0 + 6x1 − 6x2 = −20.

⎡⎢⎣1 0 0 2.0
0 1 0 −1.0
0 0 1 3.0
0 0 0 0

⎤⎥⎦0 ⋅ x0 + 0 ⋅ x1 + 0 ⋅ x2 = 0
0 = 0.



Compare that with the fourth equation: the fourth equation is
equal to 1/2 times the sum of the first three equations. We say
that the fourth equation is a linear combination of the other three
equations.

It will be easier to express the concept of a linear combination
in terms of the equivalent rows of the augmented matrix:

DEFINITION

linear combination

For a matrix M, row mk∗ is a linear combination of the
other rows if there are constants ci such that

mk∗ =∑
i≠k

cimi∗.

An equivalent definition applies to columns.

Let (A|b)i∗ denote the ith row of the augmented matrix. Then
for this augmented matrix, we have

(A|b)3∗ =
1
2

(A|b)0∗ +
1
2

(A|b)1∗ +
1
2

(A|b)2∗.

The fact that we are expressing (A|b)3∗ in terms of the other
rows is a choice that arose from the order of equations. It is not
unique. We could rewrite the linear combination to express any of
the rows in terms of the other three rows. For instance, if we
solve for 1

2 (A|b)0∗, we get

1
2

(A|b)0∗ = (A|b)3∗ −
1
2

(A|b)1∗ −
1
2

(A|b)2∗

(A|b)0∗ = 2(A|b)3∗ − (A|b)1∗ − (A|b)2∗.



Let's check this expression using Python:

print(f'{"Ab[0] =":>24} {Ab[0]}')

print(f'{"2Ab[3] - Ab[1] -Ab[2] =":>24} {2*Ab[3] - Ab[1] -Ab[2]}')

                Ab[0] = [ 4.   0. -3. -1.]

2Ab[3] - Ab[1] -Ab[2] = [ 4.   0. -3. -1.]

When some row of a matrix can be written as a linear
combination of the other rows of the matrix, the rows of the
matrix are linearly dependent:

DEFINITION

linearly dependent (vectors)

A set of vectors {a0, a1, … , ak−1} are linearly dependent

if any of these vectors can be written as a linear
combination of the other. An equivalent condition is that
there exist nonzero constants β0,β1, … ,βk−1 such that

β0a0 + β1a1 + … + βk−1ak−1 = 0.

Using the second condition, we can show that for any of the
linearly dependent vectors, any of the vectors can be written as a
linear combination of the other vectors.

A set of vectors that are not linearly dependent are called
linearly independent:

DEFINITION



linearly independent (vectors)

A set of vectors that is not linearly dependent. For a set
of vectors {a0, a1, … , ak−1} and scalar variables
β0,β1, … ,βk−1, the only solution to the equation

β0a0 + β1a1 + … + tak−1ak−1 = 0

is if β0 = β1 = … = βk−1 = 0.

The maximum number of linearly independent columns of a
matrix is always equal to the maximum number of linearly
independent rows of a matrix. We call this number the rank of the
matrix:

DEFINITION

rank (of a matrix)

Given a matrix M, the rank is equal to the maximum
number of linearly independent columns (or,
equivalently, the maximum number of linearly
independent rows). It is denoted by rank M.

The maximum possible rank for a m × n matrix is min (m,n). If
a matrix has the maximum possible rank, it is said to be full rank:

DEFINITION

full rank (matrix)

A matrix with the maximum possible rank, which is equal
to the minimum of the number of rows and the number
of columns.



In general, it can be difficult to tell if a set of vectors are
linearly independent by inspection. A special case is a set of two
nonzero vectors: they are linearly independent unless they are
scaled versions of each other. Fortunately, NumPy has functions
that can help us determine whether a set of vectors is linearly
independent. The first step is to stack the vectors into either the
rows or the columns of a matrix. Vectors are usually treated as
column vectors and thus stacked in the columns of a matrix.

We can use two different functions or methods to get the rank
of a matrix, depending on whether we are using SymPy or only
NumPy. If we are using SymPy, then the Matrix object has a rank
method. Thus, the rank of the SymPy matrix M is

M.rank()

3

NumPy and PyTorch have equivalent functions called
np.linalg.matrix_rank() and torch.linalg.matrix_rank() that return
the rank of a matrix. I use NumPy in the examples below. For
convenience of typing, we will import np.linalg as la. Then we can
get the rank of the augmented matrix Ab for this example as
follows:

import numpy.linalg as la

 

 

la.matrix_rank(Ab)



3

Since the rank is three, but there are four rows and four
columns, this matrix is not full rank. We say it is rank deficient:

DEFINITION

rank deficient (matrix)

A matrix that is not full rank: its rank is smaller than the
maximum possible.

For a square matrix, the determinant is related to a matrix's
rank:

!

Important!

A square matrix A is full-rank if and only if it is
nonsingular, meaning det A ≠ 0.

Let's check for Ab:

la.det(Ab)

0.0

The matrix Ab has zero determinant, so it is a singular matrix and
does not have full rank.



Example 4.7: Overdetermined System with No

Solutions

Linear equations can be overdetermined without any of the
equations being linearly combinations of the others. For
example, consider this system of equations from the previous
section:

The graph of these equations is shown in Fig. 4.5. The
graph shows that this set of equations is inconsistent and
thus has no solution. The augmented matrix for this set of
equations is

Ab2 = np.array([

     [1, 1, 3],

     [-4, 1, -2],

     [6, 1, 3]

])

Then the RREF is

M2 = Matrix(Ab2)

M2.rref(pivots=False)

x + y = 3
−4x + y = −2
6x + y = 3.



At first, this may look reasonable, but remember that this
augmented matrix represents the following linear equation in
matrix form

In particular, the equation corresponding to the last row of
the coefficient matrix and last row of the results vector is

which is a contradiction. Thus, there is no solution to this
system of equations.

The rank of the augmented matrix is

M2.rank()

3

la.matrix_rank(Ab2)

⎡⎢⎣1 0 0
0 1 0
0 0 1

⎤⎥⎦[ ] = .
⎡⎢⎣1 0

0 1
0 0

⎤⎥⎦ x

y

⎡⎢⎣0
0
1

⎤⎥⎦0 ⋅ x + 0 ⋅ y = 1
⇒ 0 = 1,



3

This matrix is full rank. We can confirm this by checking that
the determinant is nonzero:

print(f'{la.det(Ab2):.2f}')

-25.00

However, we only have two unknowns. When the rank of the
augmented matrix exceeds the number of unknowns, the
system of equations will be inconsistent.

An overdetermined set of equations could also have an infinite
number of solutions if a sufficient number of those equations are
linearly dependent. In that case, the rank of the matrix will be
smaller than the number of unknowns.

4.2.2 Underdetermined Systems of Linear Equations

An underdetermined system of equations has fewer equations
than unknowns.

Example 4.8: Underdetermined System of

Equations in Three Variables

Consider the following system of linear equations from the
previous section:



The number of equations, and hence the maximum possible
value of the rank of the augmented matrix, is 2, whereas the
number of unknowns is 3. When the matrix rank is smaller
than the number of equations, the system will always have an
infinite number of solutions.

Let's confirm by computing the matrix rank with NumPy:

Ab3 = np.array([ [1, 1, 0, 2],

                 [0, 1, 1, 2] ])

la.matrix_rank(Ab3)

2

This is a full rank matrix. The RREF for this matrix is

M3 = Matrix(Ab3)

M3.rref(pivots=False)

[               ]

    1   0   −1 0

    0   1   1 2

x1 + x2 = 1
x2 + x3 = 2



We are left with two linear equations in three unknowns.
These two equations describe a line in three dimensions, and
thus there are an infinite number of solutions.

4.2.3 Critically Determined Systems of Equations

For a critically determined system of equations, the number of
equations is equal to the number of unknowns. The rank of the
augmented matrix is less than or equal to the number of
equations. Even when the system is critically determined, we may
still have no solutions, one solution, or an infinite number of
solutions.

Example 4.9: Critically Determined System with

No Solutions  ⏎

In Section 4.1.1, we showed that this system of equations is
inconsistent:

A graph of the lines that represent the solutions to these
equations is shown in Fig. 4.4. For these equations, the rank
of the augmented matrix is

M4 = Matrix([ [2, -1, -3],

              [2, -1,   0] ])

M4.rank()

2x − y = −3
2x − y = 0.



2

which is equal to the number of variables. In this case, there
will not be an infinite number of solutions, but we still have to
check the RREF to see if there is a solution:

M4.rref(pivots=False)

[ ]

Again, the last equation corresponds to 0 = 1, so there is no
solution to this system.

For the case of critically determined systems of linear
equations, it is more common to find the rank of the coefficients
matrix A instead of the augmented matrix (A|b). There are
several reasons for this.

First, for the system to have a unique solution, rank(A) must be
equal to the number of variables. If not, then we can perform row
operations on the augmented matrix to get all zeros in the
coefficients portion of the augmented matrix in all but rank(A)
rows. Then there are two possibilities:

1. For every row with all zeros coefficients, there is a zero in the
results portion of the row. Thus, these rows correspond to the
equation 0 = 0, which is always true. Thus, these rows can be
ignored; they correspond to rows in the original A matrix that

1 − 1
2 0

0 0 1



can be expressed as linear combinations of other rows. Since
we have fewer equations in the RREF than we have unknowns,
the system has an infinite number of solutions.

2. For some row with all zero coefficients, there is a nonzero
value in the results portion of that row. Such a row
corresponds to an equation of the form 0 = c, where c ≠ 0,
which is always false. In this case, the equations are
inconsistent, and there is no solution.

In either case, if rank(A) is smaller than the number of
variables, then there is not a unique solution. For a critically
determined system, the number of columns of A (corresponding
to the number of variables) is equal to the number of rows of A
(corresponding to the number of equations), and A is a square
matrix. Thus, A must be full rank for the system to have a unique
solution.

Let's check rank(A) for Example 4.9:

A4 = M4[:2,:2]

A4.rank()

1

We see that the rank is 1, but we have two variables. Thus, A is
not full rank, and we do not have a unique solution. By using the
rank of A instead of the rank of (A|b), we were able to identify
that the system did not have a unique solution without having to
find the RREF.



Secondly, for a critically determined system of equations, the A
matrix will be square, and we can easily check if A is full rank
(i.e., nonsingular) by checking if its determinant is nonzero.

A third reason for using the rank of the coefficients matrix is
that it gives an answer that does not depend on the results vector
b. In many scenarios, we are interested in finding solutions to a
system of linear equations for which the coefficients matrix
depends on the structure of some system and is fixed, but the
results vector varies over time. If A is of full rank, we can find the
solution for x regardless of the values in b.

Example 4.10: Critically Determined System with

Infinite Solutions

Consider again the following equations first introduced in
Section 4.1.1:

In Section 4.1.1, we showed that the solution set to both
equations is the same line, as shown in Fig. 4.3. In addition,
we showed that the second equation is equal to the first
equation multiplied by −3; equivalently the first equation is
equal to the second equation divided by -3. The two equations
are linearly dependent; therefore, we expect the matrix rank
will only be 1. Let's check:

M5 = Matrix([ [2, -1, -3],

2x − y = −3
−6x + 3y = 9



              [-6, 3,   9] ])

M5.rank()

1

The RREF for this matrix is

M5.rref(pivots=False)

[ ]

We see that we are left with one equation in two unknowns,
and thus the solution is all of the points that satisfy this
equation. There are an infinite number of such solutions,
corresponding to all of the points in the line shown in the
figure.

The rank of the coefficients matrix is

A5 = M5[:2,:2]

A5.rank()

1

1 − 1
2 − 3

2

0 0 0



Again, we see that A5 is not full rank, and therefore this
system of equations does not have a unique solution. Instead
of finding the rank, we could have checked the determinant.
The SymPy Matrix class has a method for computing the
determinant:

A5.det()

0

Since the determinant is zero, A5 is singular and cannot be of
full rank.

Example 4.11: Critically Determined System in

Two Unknowns with a Unique

Solution

Consider again the following system of equations from
Section 4.1:

A plot of the solution sets for these equations is show in
Fig. 4.2. The rank and determinant of the coefficients matrix
are shown below:

x + y = 3
−4x + y = −2



A6 = np.array([ [ 1, 1],

                [-4, 1] ])

 

 

print(f'rank: {la.matrix_rank(A6)}')

print(f'determinant: {la.det(A6): .1f}')

rank: 2

determinant:   5.0

The coefficients matrix is full rank, and this is confirmed by
the nonzero determinant. We found that the solution was
(1, 2) in Section 4.1.

Example 4.12: Critically Determined System in

Three Unknowns with One Solution

In Section 4.1.2, we solved the system

using row operations to find the RREF.
Let's check the rank and determinant of the A matrix:

A7 = np. array([ [4, 0, -3],

4x0 − 3x2 = −1
−2x0 + 3x1 + x2 = −4
3x1 − 4x2 = −15



                 [-2, 3, 1],

                 [0, 3, -4] ])

 

 

print(f'rank: {la.matrix_rank(A7)}')

print(f'determinant: {la.det(A7): .1f}')

rank: 3

determinant: -42.0

This matrix has full rank and is nonsingular. We found the
solution to be (2, −1, 3) in Section 4.1.2.

4.2.4 Summary

In this section, we considered examples of many different types of
situations that can occur with overdetermined, underdetermined,
and critically determined systems of linear equations. I
introduced the concepts of linear combinations of equations and
rows/columns of matrices, and I explained how these define the
rank of a matrix. Then I showed how the rank of the coefficients
matrix or augmented matrix can help us determine whether a
system of equations has a unique solution.

Terminology review and self-assessment questions

Interactive flashcards to review the terminology introduced in
this section and self-assessment questions are available at
la4ds.net/4-2, which can also be accessed using this QR code:

http://la4ds.net/4-2


4.3 Matrix Inverses and Solving Systems of Linear

Equations

Consider again the problem of solving a critically-determined
system of linear equations in matrix form,

Ax = b.

We have previously shown how to solve such a system using the
reduced row echelon form (RREF). One problem with solving a
system of linear equations using the RREF is that if b changes,
then we have to find the RREF again. Or do we?

Suppose that A is a square matrix with full rank (i.e., is
nonsingular). Then the system of equations has a unique solution.
The row operations needed to transform A into the identity
matrix do not depend on the results vector at all. Therefore, all
we need to do to solve the system of equations for different b is to
keep track of how the sequence of row operations affect b. Let's
do this for the two-dimensional example that has a unique
solution, which we previously solved using SymPy to find the
RREF of the augmented matrix in Example 4.5. Here, we will find
the RREF step-by-step to see what insight it gives to the general
problem.

Example 4.13: Tracking Row Operations Used to



Solve a Two Variable System

The following equations have a unique solution:

The augmented matrix is

import numpy as np

 

 

A = np.array([

  [1, 1],

  [-4, 1]])

 

 

b= np.array([

  [3],

  [-2]])

 

 

Ab = np.hstack( (A,b) )

To get the RREF, the first step is to add 4 times row 0 to row
1:

Ab[1] += 4*Ab[0]

x + y = 3
−4x + y = −2



Ab

array([[ 1,   1,   3],

       [ 0,   5, 10]])

Note that this changed the result vector from [3, −2]T  to
[3, 10]T , where the change in b1 is attributable to adding 4
times row 0 to row 1. The entry b0 is unchanged. We can
implement the effect of the row operation on the b vector
using matrix multiplication as

Let's verify this

np.array([

  [1, 0],

  [4, 1]]) @ b

array([[ 3],

       [10]])

The second row operation to get the augmented matrix in
RREF form is to multiply row 1 by 1/5, which yields

[ ]b.
1 0
4 1



Ab[1] = Ab[1] / 5

Ab

array([[1, 1, 3],

       [0, 1, 2]])

Again, we can implement this operation using matrix
multiplication. Let's first show this matrix multiplication as
occurring separately from the previous one:

Let's verify that this works:

np.array([

    [1, 0],

    [0, 1/5]]) @ \

np.array([

    [1, 0],

    [4, 1]]) @ \

b

array([[3.],

       [2.]])

[ ] [ ]b.
1 0
0 1/5

1 0
4 1



Finally, we need to subtract row 1 from row 0:

Ab[0] -= Ab[1]

Ab

array([[1, 0, 1],

       [0, 1, 2]])

Implementing this as a matrix, we get the following:

Let's check:

np.array([

    [1, -1],

    [0, 1]]) @ \

np.array([

    [1, 0],

    [0, 1/5]]) @ \

np.array([

    [1, 0],

    [4, 1]]) @ \

b

[ ] [ ] [ ]b.
1 −1
0 1

1 0
0 1/5

1 0
4 1



array([[1.],

       [2.]])

We can carry out all the matrix multiplications, except for the
multiplication with b, to find a single matrix that multiplies b.
That matrix is

np.array([

  [1, -1],

  [0, 1]]) @ \

np.array([

  [1, 0],

  [0, 1/5]]) @ \

np.array([

  [1, 0],

  [4, 1]])

array([[ 0.2, -0.2],

       [ 0.8,   0.2]])

Thus, the answer for any b is equal to

b.
⎡⎢⎣1/5 −1/5

4/5 1/5

⎤⎥⎦



There is an easy way to find the matrix that pre-multiplies b

during the Gaussian Elimination process. Instead of applying
Gaussian Elimination to (A|b), consider what happens if we
perform Gaussian Elimination on (A|I).

Below, we perform the same three row operations described
above, but now we perform them using the (A|I) matrix. First,
add 4 times row 0 to row 1.

AI = np.hstack ( (A, np.eye(2)) )

AI[1] += 4* AI[0]

AI

array([[1., 1., 1., 0.],

       [0., 5., 4., 1.]])

The submatrix in the rightmost two columns, which was I2

before the row operations, is now the same matrix we found
previously for multiplying b in the first step.

Now divide row 1 by 5:

AI[1] /= 5

AI

array([[1. , 1. , 1. , 0. ],

       [0. , 1. , 0.8, 0.2]])



The submatrix in the right two columns is now equal to the
product of the two matrices that we found through the first two
steps above.

Finally, subtract row 1 from row 0:

AI[0] -= AI[1]

AI

array([[ 1. ,   0. ,   0.2, -0.2],

       [ 0. ,   1. ,   0.8,   0.2]])

The submatrix in the right three columns is exactly the matrix
we need to multiply b to solve this equation.

Let's temporarily call this matrix C:

C = AI[:, 2:]

C

array([[ 0.2, -0.2],

       [ 0.8,   0.2]])

Let's see what happens if we use this matrix to left-multiply A:

np.round(C @ A, 10)



array([[ 1., -0.],

       [ 0.,   1.]])

We get the identity matrix! We created this matrix to implement
the effects of the row operations to transform A into an identity
matrix, so when we apply it to A, we get the identity matrix. We
call this the inverse of A:

DEFINITION

inverse (of a matrix)

Given a n × n square matrix

A, the inverse matrix (if it exists) is an n × n matrix
denoted A−1, such that

A
−1

A = I.

For a square matrix A, the inverse will exist if A has full rank.
In this case, we say that A is invertible:

DEFINITION

invertible (matrix)

A square matrix A is invertible if its inverse A−1 exists;
this corresponds to A having full rank, which is true if A
is nonsingular.

!

Important!



If A is an n × n matrix with full rank, we can find the
inverse matrix by putting (A|In) into RREF. The inverse
is the submatrix consisting of columns n to 2n − 1.

Example 4.14: Inverse of a 3 × 3 Matrix and Use in

Solving System of Three Equations in

Three Variables  ⏎

Let's test this with our three-dimensional system of
equations with a unique solution:

A2 = np. array([

  [4, 0, -3],

  [-2, 3, 1],

  [0, 3, -4]])

 

 

AI2 = np.hstack( (A2, np.eye(3)) )

from sympy import Matrix

 

 

M2 = Matrix(AI2)

M2r = M2.rref(pivots=False)

4x0 − 3x2 = −1
−2x0 + 3x1 + x2 = −4
3x1 − 4x2 = −15



Thus, the inverse matrix is

A2inv = M2r[:,3:]

A2inv

Let's check

A2inv @ A2

This confirms that the matrix A2inv is the inverse of A2. We can
get the solution to the system of equations by multiplying
A2inv by the results vector b:

b2 = np.array([

  [-1],

  [-4],

  [-15]])

 

⎡⎢⎣0.357142857142857 0.214285714285714 −0.214285714285714
0.19047619047619 0.380952380952381 −0.0476190476190476
0.142857142857143 0.285714285714286 −0.285714285714286

⎤⎥⎦⎡⎢⎣1.0 0 0
0 1.0 0
0 0 1.0

⎤⎥⎦



 

A2inv @ b2

This matches the answer we previously found.

In general, for a critically determined system of equations with
matrix A, where A has full rank, we can solve the system by left-
multiplying both sides by A−1:

We can find the inverse of a square, full-rank matrix using
NumPy's np.linalg.inv() function or PyTorch's torch.linalg.inv()
function. Note that PyTorch's method requires a tensor of floats,
so multiply an integer tensor by 1.0 if necessary. Here is an
example using NumPy:

import numpy.linalg as la

 

 

print('A =\n', A)

print('A^(-1) =\n', la.inv(A))

 

⎡⎢⎣2.0
−1.0
3.0

⎤⎥⎦Ax = b

A
−1

Ax = A
−1

b

Ix = A
−1

b

x = A
−1

b.



 

print()

print('A2 = \n', A2)

print('A2^(-1) = \n', la.inv(A2))

A =

 [[ 1        1]

 [-4     1]]

A^(-1) =

 [[ 0.2 -0.2]

 [ 0.8        0.2]]

 

 

A2 =

 [[ 4        0 -3]

 [-2     3        1]

 [ 0     3 -4]]

A2^(-1) =

 [[ 0.35714286         0.21428571 -0.21428571]

 [ 0.19047619          0.38095238 -0.04761905]

 [ 0.14285714          0.28571429 -0.28571429]]

When using a SymPy Matrix, we can use the inv() method to get
the inverse. One advantage is that the inverse is often expressed
in a nicer form (using fractions instead of reals):

M = Matrix(A)

M.inv()



[ ]

M2 = Matrix(A2)

M2.inv()

4.3.1 More on Determinants and Inverses

As previously mentioned, for a square matrix to be full rank, it
must be nonsingular. Thus, a simple criterion for a square matrix
to be invertible is:

!

Important!

A matrix is invertible (full rank) if and only if its

determinant is nonzero.

To see one reason this is true, recall that the determinant of a
matrix product is the product of the determinants. Suppose that
A is invertible but the determinant of A is zero. Then

where the last step follows from the facts that the determinant of
the identity matrix is 1 and the product of zero and anything is

1
5 − 1

5
4
5

1
5

⎡⎢⎣ 5
14

3
14 − 3

14
4
21

8
21 − 1

21
1
7

2
7 − 2

7

⎤⎥⎦det (A
−1

A) = det (A
−1)det (A)

det (I) = det (A
−1)(0)

1 = 0,



zero. Thus, this leads to a contradiction.
The same relation implies that if det A ≠ 0, then

det A
−1 =

1
det A

.

When using the determinant to check if A is invertible, be aware
that the results from NumPy may be subject to numerical errors
from floating point operations in the computer. For example,
consider the following coefficients matrix:

A3 = np.array([

  [4, -4, -1],

  [12, 4, -7],

  [4, 12, -5]])

la.det(A3)

-2.8421709430404045e-14

The value returned is nonzero, but that is due to computational
errors. The matrix is not invertible, as we can see from its RREF:

M3 = Matrix (A3)

M3.rref(pivots=False)

⎡⎢⎣1 0 − 1
2

0 1 − 1
4

0 0 0

⎤⎥⎦



Another advantage of using SymPy's Matrix object is that
determinants are calculated using fractions and do not suffer
from the same types of computational errors:

M3.det()

0

4.3.2 Special Cases

I recommend you use computational tools to find matrix inverses
when required.

!

Important!

You should always check the determinant of a matrix to
be sure the matrix is nonsingular before trying to invert
it.

For students that are not allowed to use a computer on an
exam, many scientific calculators can calculate matrix inverses.
However, it is helpful to know how to find the matrix inverse in
some special cases:

1. General Full-rank 2 × 2 Matrices

For a 2 × 2 matrix A of the form

the inverse is

A = [ ],
a b

c d



The relation can be summarized as follows:

swap the entries on the diagonal,

negate the entries off the diagonal, and

divide by the determinant of the original matrix.

2. Diagonal Matrices

A diagonal matrix is invertible if and only if all of the entries on
the diagonal are nonzero; otherwise, the determinant is zero. For
a diagonal matrix A of the form

the inverse is the diagonal matrix of inverses,

3. Orthogonal Matrices

If U is an orthogonal matrix, then its columns are orthogonal,
which implies that

U
T

U = I.

A
−1 =

1
det A

[ ].
d −b

−c a

A = ,

⎡⎢⎣a00 0 … 0
0 a11 … 0

⋮ ⋮ ⋱ ⋮
0 0 … an−1,n−1

⎤⎥⎦A
−1 = .

⎡⎢⎣1/a00 0 … 0
0 1/a11 … 0

⋮ ⋮ ⋱ ⋮
0 0 … 1/an−1,n−1

⎤⎥⎦



Thus, for an orthogonal matrix, its inverse is equal to its
transpose: U−1 = U

T .

4.3.3 Properties of Inverse

Three simple properties of matrix inverses are:

1. Inverse works on either side: Recall that matrix
multiplication is not generally commutative. Even for square
matrices A and B of the same size, AB is not generally equal
to BA. However, if A is a square matrix with inverse A

−1,
then A−1

A = AA
−1 = I.

2. Inverse of matrix transpose: If A is a square matrix with
inverse A−1, then (A

T )−1 = (A
−1)T .

3. Inverse of a matrix product: If A and B are invertible
matrices, then (AB)−1 = B−1A−1.

4.3.4 Summary and Discussion

In this section, I introduced matrix inverses and showed how they
can be used to solve systems of linear equations. Finding the
matrix inverse using RREF requires on the order of n3 operations
for an n × n matrix, but more efficient algorithms can reduce this
complexity to less than n

2.4. Using the matrix inverse is a
practical method to solve small systems of equations, especially if
the solution has to be found for multiple result vectors. In
practical systems with large matrices, it is generally
recommended to avoid using the matrix inverse for this purpose.
The reasons for this are:

1. Finding the matrix inverse can be more complex than direct
methods of solving the equations.



2. Using the matrix inverse is more likely to result in larger
numerical errors than direct methods of solving the equations.

3. Many practical matrix equations are sparse and can be stored
efficiently, but the matrix inverse is not sparse and therefore
may require too much storage space. In addition, operations
with that matrix will be inefficient because the data cannot be
kept in the CPU cache.

Terminology review and self-assessment questions

Interactive flashcards to review the terminology introduced in
this section and self-assessment questions are available at
la4ds.net/4-3, which can also be accessed using this QR code:

4.4 Application to Eigenvalues and Eigenvectors

We can use the information covered in the previous sections to
show how to solve by hand for the eigenvalues and eigenvectors
of a matrix. I also show how to decompose a non-singular matrix
into a matrix product involving the modal matrix and the matrix
with the eigenvalues on its diagonal. We also investigate the
relationship between the determinant and the eigenvalues.

4.4.1 Solving for Eigenvalues and Eigenvectors

http://la4ds.net/4-3


Consider again equation (3.2), which defines an eigenvector-
eigenvalue pair, and rewrite it slightly as shown:

(4.1)

(4.2)

Recall from the column interpretation of matrix multiplication
in Section 3.2.4 that a matrix-vector product can be interpreted
as a linear combination of the columns of the matrix, where the
linear coefficients are the components of the vector. Thus, each
eigenvector specifies a linear combination of the columns of
M − λI that add to give the zero vector. This implies that the
columns are linearly dependent. So M − λI is not full rank and is
a singular matrix. Singular matrices have determinant zero, and
any eigenvalue λ must satisfy

det (M − λI) = 0.

In practice, it is often more convenient to multiply the argument
of the determinant by -1, which does not change the solution. This
is called the characteristic equation:

DEFINITION

characteristic equation,
characteristic polynomial

Mv = λu

⇒ Mu − λu = 0

⇒ (M − λI)u = 0.



Given a n × n matrix M, the characteristic equation or
characteristic polynomial is

det (λI − M) = 0,

(4.3)

which is a polynomial equation in terms of λ that can be
used to solve for the eigenvalues (λ).

Although we will generally use NumPy to find the eigenvector-
eigenvalue pairs of a matrix, solving for the eigenvalues of a 2 × 2
matrix is relatively easy, as shown in the following example:

Example 4.15: Finding Eigenvalues Using the

Characteristic Equation

Consider finding the eigenvalues of the matrix M5. Then
the argument of the determinant in the characteristic
equation is

The determinant of the resulting matrix can be calculated by
taking the product of the diagonal elements and subtracting
the product of the off-diagonal elements:

[ ] − [ ] = [ ].
λ 0
0 λ

1/2 −4
−2 3

λ − 1/2 −4
−2 λ − 3

(λ − 1/2) (λ − 3) − (−4)(−2) = 0

λ2 − 3.5λ + 1.5 − 8 = 0

λ2 − 3.5λ − 6.5 = 0.



We can then solve for the eigenvalues using the quadratic
formula:

a = 1

b = -3.5

c = -6.5

 

 

print(f'Eigenvalue 1: {(-b - np.sqrt(b**2 -4*a*c))/(2*a) : .2f}')

Eigenvalue 1: -1.34

This value matches the first eigenvalue from la.eig(). Note
that I chose to use the smaller of the solutions as the one
called “Eigenvalue 1” here because it matches up with the
order of the solutions from la.eig(). However, in general, the
eigenvalues are not inherently ordered, and I could have
called the larger solution as “Eigenvalue 1”.

Let's check the other solution to the quadratic equation:

print(f'Eigenvalue 2: {(-b + np.sqrt(b**2 -4*a*c))/(2*a) : .2f}')

Eigenvalue 2:   4.84



As expected, the result is equal to the second eigenvalue
reported by la.eig().

When performing the calculations by hand for 2 × 2 matrices, a
much faster approach to finding the eigenvalues is given in
Section 4.4.4.

Now let's consider the problem of finding the eigenvectors
given that we have the eigenvalues. Recall that eigenvalues and
eigenvectors come in pairs. Thus, we solve for the ith eigenvector,
ui, by substituting the ith eigenvalue, λi into (4.2) and solving

(M − λiI)ui = 0.

(4.4)

But we know from our previous work that the matrix M − λiI is
singular. Let's check for our example:

Example 4.16: Determinant of Matrix in

Characteristic Equation for 2 × 2
Matrix

Consider again the the matrix M5, for which we found the
eigenvalues in Example 4.14. The eigenvalues are
approximately λ0 ≈ −1.34 and λ1 ≈ 4.84. Our previous work
says that the matrix M5 − λiI is singular and so should have
determinant zero. The code below verifies this using the
eigenvalues lam0 and lam1 found above:

la.det(M5 - lam0*np.eye(2)),   la.det(M5 - lam1*np.eye(2))



(-1.2070945703753258e-15, -9.641907759346243e-16)

The equations given by (4.4) for each i are always
underdetermined. This makes sense because we know that if u is
an eigenvalue of a matrix M, then cu is also an eigenvector of M
for any c ≠ 0. To solve (4.4), we just need to add another
constraint on ui. Ideally, we would use ∥ u ∥= 1 because we
usually want to get the unit-norm eigenvectors; however, that is a
nonlinear constraint because it can be written in terms of the
norm-squared as

∑
k

(ui,k)2 = 1.

Instead, we can use a linear constraint of our choice on the values
of the eigenvector, provided the choice is linearly independent of
the other linear equations to be solved. For this example, I
suggest to use

∑
k

ui,k = 1.

Mathematically, we can replace the last row of M − λiI with a
row of ones and replace the last entry in the zero vector on the
righthand side of (4.4) with a 1. Call the solution for this
constraint ~ui. After solving, we can find the unit-norm
eigenvector as ui = ~ui/ ∥ ~ui ∥. Let's demonstrate this using our
example:

Example 4.17: Calculation of Eigenvectors for

Example 2 × 2 Matrix



Consider again the matrix from Example 4.14. The code
below calculates N0 = M − λ0I, changes the last row to
ones, and then solves for u0 using the matrix inverse:

N0 = M5 - lam0*np.eye(2)

N0[1] = np.ones(2)

u0t = la.inv(N0) @ np.array( [[0, 1]] ).T

u0t

array([[0.68465844],

       [0.31534156]])

Let's confirm that this is an eigenvector. If it is, then if we
perform component-wise division of the projected vector by
the original vector, each of the elements of the results vector
should be the eigenvalue:

print(f'lambda 0 = {lam0:.3g}')

M5 @ v0t / v0t

lambda 0 = -1.34

array([[-1.34232922],



       [-1.34232922]])

We can create a unit-norm eigenvector by dividing the
eigenvector we found by its own norm:

u0t / la.norm(u0t)

array([[0.90828954],

       [0.41834209]])

Let's compare with the eigenvectors found via np.eig(). Recall
that the eigenvectors are the columns of the modal matrix,
which we found in using np.eig() in Example 3.10. The output
for this matrix is:

U

array([[-0.90828954,   0.67752031],

       [-0.41834209, -0.73550406]])

The eigenvector we found is the negative of the eigenvector
in the first column of the modal matrix. This can happen,
since both are unit-norm eigenvectors for λ0.



4.4.2 Eigendecomposition

Suppose we have an n × n matrix M with n known eigenvectors
ui, i = 0, 1, … ,n − 1. Now consider (4.1) again. Rather than
computing the left-hand side for each eigenvector, we can
compute the product of M with all of the eigenvectors using the
matrix product MU, where U is the modal matrix. Similarly, we
can compute the right-hand side of (4.1) for all of the
eigenvectors as ΛU, where Λ is the diagonal matrix of
eigenvalues:

Then the relation becomes

MU = ΛU.

(4.5)

Let's check that the two sides are equal for our example matrix:

Example 4.18: Checking Eigenvector Equality

Using the Modal Matrix:

Consider again the Python matrix M5, whose modal matrix U5
and eigenvalue vector lam5 we found in Example 3.10. Then
the following code computes first the left-hand and then the
right-hand side of (4.5) using Python:

Λ = .

⎡⎢⎣λ0 0 0 … 0
0 λ1 0 … 0

⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ λn−1

⎤⎥⎦



M5 @ U5

array([[ 1.21922359,   3.28077641],

       [ 0.56155281, -3.56155281]])

U5 @ np.diag(lam5)

array([[ 1.21922359,   3.28077641],

       [ 0.56155281, -3.56155281]])

The two outputs are equal, as expected.

Now suppose that we have a matrix M that satisfies (4.5) and
that has linearly independent eigenvectors. Then U has full rank,
and its inverse U

−1 exists. Right-multiplying both sides of the
equation above by U−1 yields a way to express M in terms of U
and Λ:

This is called the eigendecomposition of M:

DEFINITION

eigendecomposition,
matrix diagonalization

M = UΛU
−1.



Suppose M is a real n × n matrix with modal matrix U
and eigenvalue matrix Λ. If U has full rank, then the
eigendecomposition (also known as the diagonalization)
of M is the factorization

M = UΛU
−1.

Example 4.19: Eigendecomposition of Example

2 × 2 Matrix  ⏎

Let's confirm that eigendecomposition works for our 2 × 2
example matrix, M5:

Lam5 = np.diag(lam5)

 

 

U5 @ Lam5 @ la.inv(U5)

array([[ 0.5, -4. ],

       [-2. ,   3. ]])

The result is the original matrix M5.

We will use eigendecomposition in Section 6.4 to find an
alternate representation for data that allows us to extract the
portions of the data that are “most important” in a certain sense.

4.4.3 Relating Eigenvalues to Matrix Determinant



Let M be a n × n matrix that has eigendecomposition

where U has the same dimensions as M (i.e., M has n

eigenvectors). One of the properties of the determinant is that the
determinant of the product of matrices is the product of the
determinants, so

Another property of the determinant is that

Thus, we can write

where the last step follows from the fact that the determinant of a
diagonal matrix is the product of its diagonal elements.

Example 4.20: Calculating Determinant of a

Matrix from Its Eigenvalues

Consider again our 2 × 2 example matrix M5 whose
eigenvalues we have calculated using NumPy and stored in
the variable lam. We can easily calculate the determinant by

M = UΛU
−1,

det M = (det U) (det Λ) (det U
−1).

det U
−1 =

1
det U

.

det M = (det U)(
1

det U
) (det Λ)

=det Λ

=
n−1

∏
i=0

λi,



hand as shown in Section 3.5. The result is
(0.5)(3) − (−4)(−2) = −6.5. Let's check the product of
eigenvalues and the result from la.det():

np.prod(lam), la.det(M5)

(-6.499999999999999, -6.499999999999999)

The results agree, although there is some small
computational error.

So, if a matrix has an eigendecomposition, then its determinant
is equal to the product of its eigenvalues. In particular:

A matrix is singular if and only if its determinant is zero. Thus,
a matrix is singular if and only if it has a zero eigenvalue.

A matrix is nonsingular if and only if its determinant is
nonzero. Thus, a matrix is nonsingular if and only if all of its
eigenvalues are nonzero.

4.4.4 Matrix Trace and a Fast Way to Find Eigenvalues of a

2 × 2 Matrix

Although eigenvalues should generally be found using computer
techniques, like np.eig(), students are occasionally asked to find
them by hand for small matrices. In Section 4.4.1, we showed how
to find the eigenvalues of a matrix by solving the characteristic
equation (4.3). However, for an m × m matrix, this will mean



solving an mth degree polynomial. For the case of a 2 × 2 matrix,
it is relatively easy to solve the resulting quadratic, but there is
an easier way, which I originally learned from Grant Sanderson
(the creator of the YouTube channel 3Blue1Brown,
https://www.youtube.com/c/3blue1brown). I will introduce the
technique in the same way that Grant does in the video “A quick
trick for computing eigenvalues — Chapter 15, Essence of linear
algebra” (https://www.youtube.com/watch?v=e50Bj7jn9IQ). We
start with defining a very simple operation called matrix trace:

DEFINITION

trace (matrix)

The trace of a m × m matrix M, denoted tr(M), is the
sum of the elements on its main diagonal:

tr(M) =
m−1

∑
k=0

mk,k.

An interesting property of the matrix trace is that the trace of a
matrix is equal to the sum of its eigenvalues. Consider a 2 × 2
matrix M, and let the eigenvalues be denoted λ0 and λ1. Then

m00 + m11 = λ0 + λ1.

It will be convenient to divide both sides by 2, which implies that
the average value (mean) of the diagonal elements is equal to the
average value (mean) of the eigenvalues. Let m denote this value:

m =
m00 + m11

2
=

λ0 + λ1

2
.

https://www.youtube.com/c/3blue1brown
https://www.youtube.com/watch?v=e50Bj7jn9IQ


Recall also that the determinant of a matrix is equal to the
product of the eigenvalues, det (M) = λ0λ1, which we call p.
Then by matching terms in the solution of the characteristic
equation, Sanderson shows that for a 2 × 2 matrix, the
eigenvalues satisfy

λ = m ± √m2 − p.

The eigenvalues are symmetric around the mean of the diagonal
elements of the matrix, and the spread depends on that mean and
the determinant of the matrix.

Example 4.21: Solving for Eigenvalues Using

Trace and Determinant of a 2 × 2
Matrix

Consider again the matrix M5. In Example 4.19, we showed
that p =det M5 = −6.5. The trace is (M5) = 0.5 + 3 = 3.5, so
m = 1.75. Then the eigenvalues are

which match the values we previously found.

Terminology review and self-assessment questions

Interactive flashcards to review the terminology introduced in
this section and self-assessment questions are available at
la4ds.net/4-4, which can also be accessed using this QR code:

1.75 +√(1.75)2 − (−6.5) ≈ 4.84, and

1.75 −√(1.75)2 − (−6.5) ≈ −1.34,

http://la4ds.net/4-4


4.5 Approximate Solutions to Inconsistent Systems

of Linear Equations

Consider again the three inconsistent linear equations shown in
Fig. 4.7. These can be written in the matrix form

(4.6)

[ ] = .
⎡⎢⎣ 1 1

−4 1
6 1

⎤⎥⎦ x

y

⎡⎢⎣ 3
−2
3

⎤⎥⎦



Fig. 4.7:  Graph of system of three linear equations with no
solution. ⏎

More generally, consider the problem of finding the solution to a
set of equations of the form

Ax = b,

where A is a tall matrix:

DEFINITION

tall matrix

An m × n matrix A is tall if m > n; i.e., the number of
rows is greater than the number of columns.



Similarly, we can define a wide matrix:

DEFINITION

wide matrix

An m × n matrix A is wide if n > m; i.e., the number of
columns is greater than the number of rows.

For a matrix equation Ax = b:

If A is tall, then the system of equations is overdetermined and
generally has no solution. Since A is not square, it does not
have an inverse.

If A is wide, then the system of equations is underdetermined
and generally has many solutions. Again, since A is not square,
it does not have an inverse.

If A is square, then the system of equations is critically
determined. A has an inverse if the equations are linearly
independent.

To understand how we can find a “good” compromise solution
to a tall matrix, let's start by rewriting the matrix equation as
follows:

Ax − b = 0.

If there is no solution to the left-hand side that yields all zeros, we
can define the error as e(x) = Ax − b and try to find a solution
that minimizes the error in some sense. Since the result of
Ax − b can consist of both positive and negative errors, we
cannot just add up the values. Instead, we will use our usual



approach of minimizing the squared error. Since we have a vector
of values, we will use the norm-squared of the error:

∥e(x)∥2 = ∥Ax − b∥2.

(4.7)

The solution that minimizes (4.7) is called the least-squares
solution.

Recall that e(x) is a vector, and let ei(x) denote the ith
component of the error. Then the total squared error is

∥e(x)∥2 =
n−1

∑
i=0

[ei(x)]2.

(4.8)

Example 4.22: Finding the Least-Squares Solution

to Three Equations in Two Variables

Consider finding the least-squares solution to (4.6). Using
(4.7) and (4.8), we can write the squared error as

(x + y − 3)2 + (−4x + y + 2)2 + (6x + y − 3)2.

(4.9)

Thus, we want to find the values of x and y that minimize this
multinomial. Let's start by visualizing the squared error as a
function of x and y. To do this, in Fig. 4.8, I have plotted the
solution sets to the three linear equations, and I have overlaid
this with a heatmap that shows the squared error from (4.9).
For each point (x, y) in the figure, the squared error from
(4.9) is shown as a color, where every color maps to a



numerical value. The relation between colors and values is
shown in the color bar at the right of the figure. The
minimum values are shown in yellow, and the yellow elliptical
region is centered around approximately (0.5, 0.8).

Fig. 4.8:  Plot of three inconsistent linear equations overlaid
with contour plot of squared error from the point to these
lines. ⏎

We could use scipy.optimize.minimize() to search for a
solution or NumPy's np.argmin() function to search a grid for
the approximate value, but we can also find the exact value
using calculus, as shown below.



The value of x that minimizes ∥e(x)∥2 can be found by taking
the derivatives of this equation with respect to each of the
variables xi and setting them equal to zero:

In the language of multi-dimensional calculus, we can express this
concisely using gradient notation

Without going into details of the matrix calculus, the gradient of
e(x) is

∇e(x) = 2A
T (Ax − b).

Note the similarity of this form to the derivative of the single-
dimensional error, (ax − b)2:

d

dx
(ax − b)2 = 2a(ax − b).

Setting the gradient equal to zero and distributing, we have

These are called the normal equations, and the left side
contains the Gram matrix, ATA, which was introduced in Section
3.4. Note that the Gram matrix is a square matrix, and it is
invertible if the columns of A are linearly independent. If the
Gram matrix is invertible, then we can solve for the vector x that
minimizes the squared error as1

∂
∂xi

e(x) = 0, i = 0, 1, … ,n − 1.

∇e(x) = 0.

A
T

Ax − A
T

b = 0

⇒ A
T

Ax = A
T

b



x̂ = (A
T

A)
−1

A
T

b.

This the least-squares (LS) solution.

For the example shown in Fig. 4.8, the LS solution can be
found as shown below.

A = np.array([

     [1,   1],

     [-4, 1],

     [6,   1]

])

 

 

b = np.array([3, -2, 3])

 

 

xLS = la.inv(A.T @ A) @ A.T @ b

print(xLS)

[0.5   0.83333333]

This result matches the value found from the contour plot.

The matrix (ATA)−1AT  is called the pseudoinverse of A:
1As with other equations in this book involving matrix inverses, the normal equations

are usually solved via other more numerically stable methods. ⏎



DEFINITION

pseudoinverse,
Moore-Penrose pseudoinverse

For an m × n matrix real A with m > n (i.e., A is tall)
and linearly independent columns, the Moore-Penrose

pseudoinverse of A is denoted by A† and given by

A
† = (A

T
A)−1

A
T .

Example 4.23: Calculating the Pseudoinverse

Using NumPy

The following code calculates the pseduoinverse for the
coefficients matrix of (4.6) using the definition and directly
using the pinv() function from NumPy's linear algebra
module1:

_________________

 1PyTorch has an equivalent torch.linalg.pinv() function. ⏎

print( la.inv(A.T @ A) @ A.T)

print( np.round(la.pinv(A), 10) )

[[ 0.           -0.1         0.1       ]

 [ 0.33333333   0.43333333   0.23333333]]

[[ 0.           -0.1         0.1       ]

 [ 0.33333333   0.43333333   0.23333333]]



This process of finding x is called ordinary least squares:

DEFINITION

ordinary least squares (OLS)

Consider an over-constrained system of linear equations
of the form Ax = b, where A and b are known constant
matrices. Ordinary least squares (OLS) gives the value
for x that minimizes the norm of the error vector
∥ Ax − b ∥2. If A† (the Moore-Penrose inverse for A)
exists, then the OLS solution x is given by

x̂ = A
†
b.

pseduoinverse of a wide matrix

If A is a wide matrix with linearly independent rows, then the
pseudoinverse is defined as A

† = A
T (AA

T )−1. This form is
not used in this book but is included here for reference.

Terminology review and self-assessment questions

Interactive flashcards to review the terminology introduced in
this section and self-assessment questions are available at
la4ds.net/4-5, which can also be accessed using this QR code:

http://la4ds.net/4-5




4.6 Chapter Summary

This chapter focused on the application of matrix techniques to
systems of linear equations. We saw that a system of linear
equations can have no solution, one solution, or an infinite
number of solutions. I demonstrated how to use matrix
techniques to determine when a system of linear equations will
have a unique solution and different approaches to solve for the
solution(s). Finally, I showed how to find the least-squares
solution to a system of over-constrained linear equations. In
Chapter 5, I show the application of these techniques to problems
in data fitting, including polynomial fitting and linear regression.

Access a list of key take-aways for this chapter, along with
interactive flashcards and quizzes at la4ds.net/4-6, which can also
be accessed using this QR code:

http://la4ds.net/4-6


5

Exact and Approximate Data

Fitting

DOI: 10.1201/9781032664088-5

A common task in data science is finding a polynomial that
represents the relation between variables in a dataset.
Such representations provide information about how
different factors affect each other and can be used to make
predictions about scenarios that are different than those
that have already been observed. In this chapter, I show
how to use the techniques from Chapter 4 to find a
polynomial fit to a dataset. Both exact and approximate
data-fitting techniques are considered, and an application
to linear regression is shown.

5.1 Exact Data Fitting with Polynomials

Consider the problem of finding a polynomial that passes
through a set of n data points, where each data point is a
point (xi, yi) ∈ R

2 (the real plane). For example, consider

https://doi.org/10.1201/9781032664088-5


finding a polynomial to fit the four data points shown in
Fig. 5.1. If the data points are in the solution set for the
polynomial, then we say that the polynomial fits the data.
For example, Fig. 5.2 shows several different polynomials
that fit this data. The process of finding such a polynomial
from a set data points is called polynomial fitting. When the
polynomial fits the data exactly, it is called polynomial

interpolation.

Fig. 5.1:  Four data points in the real plane that are to be fit
with a polynomial. ⏎



Long Description for Figure 5.2

Fig. 5.2:  Four data points with different polynomials that
fit the data. ⏎

We will show that if we have a unique set of xi, then we
can always find a polynomial of degree less than or equal to
n − 1 that can fit the n data points exactly. Let the
polynomial be

p(x) = c0 + c1x + c2x2 + … cn−1xn−1.

To find a polynomial that fits the data, we want to solve for
the coefficients c0, c1, … , cn−1 such that the output of the
polynomial for each input xi is the corresponding value yi:



The ith equation looks like

(5.1)

At first glance, this may seem to be a set of nonlinear

equations. But that is not the case, because all of the values
for xi and yi are known. Thus, the powers of xi are all
deterministic constants. For each i, (5.1) is a linear
equation in the variables c0, c1, … cn−1. Since we have n

data points, this results in a system of n linear equations
that we can put in the form

Here, the coefficient matrix A is given by

p(x0) = y0

p(x1) = y1

⋯
p(xn−1) = yn−1.

yi = c0 + c1yi + c2y2
i + … cn−1yn−1

i .

Ac = y.

A = .

1 x0 x2
0 x3

0 ⋯ xn−1
0

1 x1 x2
1 x3

1 ⋯ xn−1
0

⋮ ⋮ ⋮ ⋮ ⋱ ⋯

1 xn−1 x2
n−1 x3

n−1 ⋯ xn−1
0



The vector of variables c consists of the values of ci that we
are trying to find,

The results vector is

Provided that the set of xi points is unique, the matrix A
will have full rank and thus be invertible. Therefore, we can
find the coefficients of the polynomial to fit the data as

c = A−1y.

Let's demonstrate this using the example data from Fig.
5.1:

Example 5.1: Exact Polynomial Fit for Four

Data Points  ⏎

The data values in Fig. 5.1 are (1, 3), (2, −1), (3, 2),
and (4, 1). Start by creating x and y vectors from the

c =

c0

c1

⋮
cn−1.

y = .

y0

y1

⋮
yn−1



data. When we create the x vector, we want to make
sure it is a two-dimensional NumPy array, so that we
can use np.hstack() to stack the powers of x into the
coefficients matrix A:

import numpy as np

 

 

x=np.array([[ 1, 2, 3, 4 ]]).T

y=np.array([[ 3, -1, 2, 1 ]]).T

Since we have 4 data points, we need four powers of x,
from 0 to 3, in our A matrix:

A=np.hstack((x**0, x**1, x**2, x**3))

A

array([[ 1,   1,   1,   1],

       [ 1,   2,   4,   8],

       [ 1,   3,   9,  27],

       [ 1,   4,  16,  64]])



We can check whether A is invertible using the
determinant:

import numpy.linalg as la

 

 

print(f'{la.det(A):.1f}')

12.0

Then the coefficients of the polynomial to fit this data
are given by A−1y, which yields

c = la.inv(A) @ y

print(c.T)

[[ 25.   -34.66666667   14.5   -1.83333333]]

The polynomial of degree 3 that fits this data is
(approximately) 25 − 34.67x + 14.5x2 − 1.83x3. Let's
plot this polynomial with our data:



import matplotlib.pyplot as plt

 

 

fig = plt.figure()

ax = fig.add_subplot(111)

 

 

# Plot the data

ax.scatter(x, y);

 

 

# Draw the polynomial

xl =np.linspace(-0.2, 4.2, 100)

y3 = 25 - 34.667*xl + 14.5*xl**2 - 1.8333*xl**3

 

 

plt.plot(xl, y3, 'C1')

 

 

ax.set_xlim(0.5, 4.25);

ax.set_ylim(-3, 6.5);

ax.spines['bottom'].set_position('zero');



Example 5.2: Fitting Four Data Points with a

Quadratic Polynomial

What happens if we try to fit the data from Example
5.1 with a quadratic polynomial instead of a cubic? The
matrix of powers of the x-coordinates (the A matrix) in
this case will consist of the first three columns of the A
matrix from Example 5.1:

A2=A[:, :3]

A2



array([[ 1,   1,   1],

       [ 1,   2,   4],

       [ 1,   3,   9],

       [ 1,   4,  16]])

From the dimensions of A2, we know that the rank of
this matrix is at most 3. We can use NumPy to verify
that its rank is equal to 3:

la.matrix_rank(A2)

3

We now have four equations in three unknowns. Let's
create the augmented matrix and see if these equations
are consistent:

from sympy import Matrix

 

 

Ab2 = np.hstack( (A2, y) )



M2 = Matrix(Ab2)

M2.rref(pivots=False)

The last equation corresponds to 0 = 1, so the
equations are not consistent, and there is no solution.
We need a third-order polynomial to fit this data
exactly.

The problem we will encounter with real data is that even
if the data follows a low-order polynomial trend, noise in
the data will require using a polynomial with the same
order as the data to find an exact fit. Thus, in Section 5.2,
we consider how to find a good polynomial fit to data when
the polynomial order does not allow an exact fit.

Before we leave the topic of exact fits, let's also see what
happens if the data can be fitted with a lower-order
polynomial.

Example 5.3: Polynomial Fit When Data Can

be Fit with Lower Order

Polynomial

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



Suppose our data consists of the following points:
(1, 3), (2, 8), (3, 15), and (4, 24), as shown in Fig. 5.3.
These data points are not linear, but it is hard to tell
what order polynomial is required to fit them. Let's see
what happens if we fit this data with a third-order
polynomial. First, note that our A matrix is unchanged
– the only part of the equation that changes is the
results vector. Let's call the new results vector y2. It is

y2 = np.array([[3, 8, 15, 24]]).T

Fig. 5.3:  Second example dataset consisting of four data
points in the real plane. ⏎



Then the third-order interpolating polynomial is

np.round(la.inv(A) @ y2, 10).T

array([[0., 2., 1., 0.]])

This is the polynomial 2x + x2. So, a quadratic is
sufficient to fit this data. Let's plot it and check:

plt.scatter(x, y2)

plt.plot(xl, 2*xl + xl**2, 'C1');



5.1.1 Summary and Discussion

In this section, I showed how to use linear algebra to find
an exact polynomial fit to a sequence of points in the real
plane. Given a set of n data points with different xi, I
showed how to find an interpolating polynomial of degree
less than or equal to n − 1 that fits the data exactly. Since
the coefficients matrix A created in this process is full
rank, the interpolating polynomial is unique. Then you may
be wondering — the beginning of this section shows many
different polynomials interpolating the same four data
points. If the interpolating polynomial is unique, how can
this be? The answer is that I took some creative liberty. To
create these different example polynomials, I first added



additional points outside the plotted area. I then fitted the
larger datasets with higher-order polynomials. The goal of
showing these different plots was to motivate the
discussion of polynomial fitting.

In the next section, I show how to find a polynomial to
approximately fit a set of data points when the order of the
polynomial is smaller than the number of data points.

Terminology review and self-assessment questions

Interactive flashcards to review the terminology introduced
in this section and self-assessment questions are available
at la4ds.net/5-1, which can also be accessed using this QR
code:

5.2 Approximate Data Fitting

In Section 5.1, we showed that we can fit a dataset with n
points with a polynomial of degree n − 1. However, we
often want to fit the data with a lower-order polynomial,
which can be more useful for describing the relation among
the data and for making predictions. To illustrate this, let's

http://la4ds.net/5-1


compare COVID-19 rates to gross domestic product (GDP)
per capita for the 50 US states. I have created a CSV file at
https://www.fdsp.net/data/covid-merged.csv that for each
state contains:

state: the state's name,

cases: the number of COVID-19 cases through April 30,
2020,

population: the US Census Bureau population estimate
published in December 2019,

gdp: the GDP as of the fourth quarter of 2019 as
reported by the US Department of Commerce, and

urban: the Urban Index, which is the percentage of the
state's population that lives in urban areas, as
determined by the US Census Bureau, as of 2010.

Fig. 5.4 shows a plot of normalized COVID rates versus
GDP for the 50 states. The x-axis is the GDP per capita,
reported in 1000s of dollars ($K), and the y-axis is the
COVID rate per 1000 residents.

https://www.fdsp.net/data/covid-merged.csv


Fig. 5.4:  Covid rates for GPD per capita for the 50 states of
the USA. ⏎

It is numerically challenging to find the correct
polynomial coefficients for the exact fit using the approach
presented in Section 5.1 because of computational errors.
To see why such a fit would not be particularly useful even
if we could find it, consider the first 10 data points and the
corresponding 9th-degree interpolation polynomial, which
are shown in Fig. 5.5. This polynomial is not useful because
it doesn't provide a meaningful description of the relation
among the data and can't be useful to make reasonable
predictions – it produces negative and highly nonmonotonic
predictions of the normalized COVID-19 rates. Instead, we



want to figure out how to find a good approximate

polynomial fit with a lower-order polynomial.

Fig. 5.5:  First 10 points of COVID rate and GDP data with
ninth order polynomial fit. ⏎

Before considering the general polynomial fitting
problem, we start with a common problem encountered in
statistics in which the data is fit with a linear equation.

5.2.1 Application to Linear Regression

Consider the relation between GDP per capita and COVID
rates shown in Fig. 5.4. We often want to understand
whether there is a relationship between two variables or
features in a dataset, and one of the simplest ways to
determine if data are related is to determine the best line



of fit and see if the slope is nonzero. This is called linear

regression and if the line of fit is chosen to minimize the
total squared error to the data, this is called ordinary least

squares (OLS). We can use the equations for solving for the
linear least-squares solution from Section 4.5 to find the
OLS solution to the linear regression problem.

In linear regression, we usually classify the variables as
either explanatory variables or response variables. We
generally consider only one response variable at a time and
classify the regression based on the number of explanatory
variables:

DEFINITION

simple linear regression

Linear regression with one explanatory variable
and one response variable.

DEFINITION

multiple linear regression

Linear regression with multiple explanatory
variables and a single response variable.

Consider first the simple linear regression problem. We
wish to find an equation y = mx + b that best matches the
observed data (yi, xi), where m is the slope of the line and
b is the y-intercept. Let x and y be vectors of the observed



explanatory and response values; note that the order of the
data in the vectors matters to the extent that xi and yi must
be a single observed pair of values. Let's let c1 = [mb]T  be
a vector of coefficients, which we wish to solve for. Then
the resulting linear equations can be written in matrix form
as

where 1 is a ones-vector of the same length as x and y.
This is usually an overdetermined set of equations. Let

A1 = [x1]. Then we will find the least-squares solution to
minimize ∥ A1c1 − y ∥. Comparing to Equation 4.7, we see
that the OLS solution is A

†
1y. Let's demonstrate this with

an example.

Example 5.4: Simple Linear Regression

Between GDP and COVID Rates

Consider again the data on state COVID rates and
GDP per capita shown in Fig. 5.4. Let's find the OLS
line of fit for this data. Let's start by importing the raw
data and computing the COVID rates per 1000 people
and GDP per capita in thousands of dollars:

import pandas as pd

covid = pd.read_csv( 'https://www.fdsp.net/data/covid-

merged.csv' )

y = [ ]c1,x 1

https://www.fdsp.net/data/covid-merged.csv


 

 

covid['gdp_norm'] = covid['gdp'] / covid['population'] * 

1000;

covid['cases_norm'] = covid['cases'] / covid['population'] * 

1000

To apply the least-square techniques described above,
let's set up the variables x, y, and A1 described above
for this dataset. We are interested in whether GDP (a
socioeconomic factor) affects COVID rates, so we set x
to the GDP values. The COVID rates are the response
data, so we assign them to y. The variable A1 is
created as a matrix that contains the explanatory data
x and a vector of 1s. Because the COVID data is
treated as a row vector, it is most convenient to
vertically stack the two vectors with np.vstack() and
then transpose the resulting matrix:

x = covid['gdp_norm']

y =   covid['cases_norm']

A1 = np.vstack( (x ,

                  np.ones_like(x)

                 ) ).T

A1[:5]



array([[47.06126732,   1.   ],

       [74.73866953,   1.   ],

       [52.07219899,   1.   ],

       [43.93804236,   1.   ],

       [81.11414283,   1.   ]])

Then the coefficient vector can be computed as follows:

c1 = la.pinv(A1) @ y

print(c1)

[ 0.13790867 -5.8341525 ]

Let's plot the data with the OLS line of fit:

m = c1[0]

b = c1[1]

y_fit1 = m*x + b

 

 

plt.scatter(x, y)

plt.xlabel("GDP per capita ($K)")



plt.ylabel("Covid rate per 1000 residents");

 

 

plt.plot(x, y_fit1, color='C1');

The positive slope indicates that there is a positive
association between GDP and COVID rates.

The squared error is

la.norm(y - y_fit1)**2



354.30246867168444

Let's see if we can reduce that error rate by using
multiple linear regression, where we will use more than
one explanatory variable. Let x0, x1, … , xk−1 be vectors,
where vector xi is the data for explanatory variable i. Then
Ak will be

Then the OLS solution to y = Akc is c = A
†
ky. Let's test

this with an example:

Example 5.5: Multiple Linear Regression

with COVID Data

Consider again the COVID dataset, but now let's
consider two explanatory variables. Let x0 be the
normalized GDP data, and let x1 be the urban index
data. Then we can create the matrix A2 as show below:

A2 = np.vstack( (covid['gdp_norm'],

                 covid['urban'],

                 np.ones_like(covid['urban'])

                ) ).T

A2[:5]

Ak = [ ].x0 x1 … 1



array([[47.06126732, 59.04   ,   1.   ],

       [74.73866953, 66.02   ,   1.   ],

       [52.07219899, 89.81   ,   1.   ],

       [43.93804236, 56.16   ,   1.   ],

       [81.11414283, 94.95   ,   1.   ]])

Then the solution of the OLS problem is:

c2 = la.pinv(A2) @ y

c2

array([ 0.10879662,   0.04307567, -7.19829654])

The values in c2 are the coefficients of the best linear
fit and should be interpreted as:

Let's calculate the predicted values and find the
norm-squared of the error vector:

ecovid = Acovid @ xcovid - bcovid

Normalized COVID Rate ≈
0.109(Normalized GDP) + 0.0431(Urban Index) − 7.20.



la.norm(ecovid)**2

340.84175401395896

By using two explanatory variables, the squared error
between the data and the predicted values is reduced
from approximately 354.3 to 340.8.

As usual, there is an easy way to implement simple or
multiple linear regression using one of the common Python
data science libraries, scikit-learn. We will import the
LinearRegression() function from the sklearn.linear

submodule. LinearRegression returns an object with methods
to perform tasks like fitting the model to the data (in this
case, performing OLS) and calculating predicted values
using the fitted model. When using LinearRegression(), it will
already include a constant term, so we only need to pass
the first two columns of Ak to the fit() method:

from sklearn.linear_model import LinearRegression

 

 

lr = LinearRegression()

lr.fit(Ak[:, :2], y);



The coefficients and constant term of the linear fit are
given by

lr.coef_, lr.intercept_

(array([0.10879662, 0.04307567]), -7.198296541829917)

These match the ones we found using NumPy.

5.2.2 Finding an Approximate Polynomial Fit to Data

Now consider the problem of trying to find a polynomial
p(x) to fit a sequence of data points
(x0, y0), (x1, y1), , … , (xn−1, yn−1). In Section 5.1, we
showed how to find an exact fit with a polynomial of degree
n − 1. However, if we wish to fit the data with a polynomial
of degree m < n − 1, we may need to find an approximate
fit. As before, we will use squared error as our measure of
“good” and try to minimize the total squared error between
the approximation and the data. Thus, if our polynomial fit
is p(x), then we want to choose the coefficients of p(x) to
minimize

∑
i

[yi − p(xi)]2.

(5.2)



Let's reformulate this to better reveal the nature of the
problem. Let n be the number of data points, and let m < n

be the degree of the polynomial that we want to use to
approximate the data. Then the polynomial is of the form
p(x) = c0 + c1x1 + c2x2 + … cm−1xm−1. We can calculate
all of the polynomial values using the matrix equation

Let x = [x0, x1, … , xn−1]T . Then we can write the left
matrix in this equation concisely as Am = [1xx2 … xm−1],
where we use xi to denote

Letting y = [y0, y1, … , yn−1]T , we can rewrite (5.2) as

∥ Amc − y ∥2.

Note that Amc − y is a linear equation, even though p(x)
is a polynomial; this is because it is linear in the

.

1 x0 x2
0 … xm−1

0

1 x1 x2
1 … xm−1

1

… … … ⋱ …

1 xn−1 x2
n−1 … xm−1

n−1

c0

c1

c2

…
cm−1

xi = .

xi
0

xi
1

⋮

xi
n−1



coefficients of the polynomial. Thus, this is exactly the
same type of ordinary least-squares problem that we
encountered in Section 4.5. Provided the Gram matrix
AT

mAm is invertible, the solution is c = A
†
my. (If the Gram

matrix is not invertible, the rows of Am are linearly
dependent, and the size of the Am matrix can be reduced
by dropping a row and hence reducing the order of the
polynomial by 1. This can be repeated until the Gram
matrix is invertible.)

Let's apply this to find a low-order polynomial fit to the
COVID data shown at the beginning of this section:

Example 5.6: Polynomial Fits to COVID and

GDP Data

Let's start by approximating our data using a
quadratic polynomial. This can be considered
polynomial regression. In simple linear regression in
Section 5.2.1, we created a matrix A1 whose columns
consisted of the data and a ones vector. Another way to
interpret this matrix is A1 = [x1x0] powers of our
input data. Here, we will use per-capita GDP as the
input variable. Unlike Section 5.1, the matrix of powers
of xi will not be square because we will only include
m + 1 columns, where m is the desired degree of the
polynomial. To approximate the data by a quadratic, we
will use the matrix A2 given by



We begin by creating this matrix as a NumPy array. The
function make_power_matrix() below takes as input a vector
and a maximum degree. It returns a matrix whose columns
are consecutive powers of the input vector, from degree 0
up to the specified degree1.
_________________

 1This function uses basic NumPy techniques for clarity. Many people use the

PolynomialFeatures class from scikit-learn for generating this type of matrix; an

example is given online at la4ds.net/5-2. ⏎

def make_power_matrix(xdata, degree):

  """stack the powers of the xdata into columns

        of a matrix to use in finding LS solution

 

 

  inputs:

    xdata:     column vector of input data

    degree: maximum degree to raise data to

 

 

  output:

 

A2 = .

1 x0 x2
0

1 x1 x2
1

⋮ ⋮ ⋮

1 xn−1 x2
n−1

http://la4ds.net/5-2


 

    power_matrix: matrix whose columns are the powers of 

xdata from 0 to degree

  """

 

 

  # Convert to ndarray, for instance for Pandas Series

  if type(xdata) != np.ndarray:

    xdata = np.array(xdata)

 

 

  # If passed a vector, convert to column array

  if len(xdata.shape) == 1:

    xdata = xdata[:, np.newaxis]

 

 

  # Initialize the first column

  power_matrix = np.ones_like(xdata)

 

 

  # Then consecutively add the powers

  for i in range(1,degree+1):

    power_matrix = np.hstack( (power_matrix, xdata**i) )

 

 

  return power_matrix

The first five rows of the A2 matrix are shown below:



A2 = make_power_matrix(covid['gdp_norm'], 2)

print(A2[:5])

[[1.00000000e+00 4.70612673e+01 2.21476288e+03]

 [1.00000000e+00 7.47386695e+01 5.58586872e+03]

 [1.00000000e+00 5.20721990e+01 2.71151391e+03]

 [1.00000000e+00 4.39380424e+01 1.93055157e+03]

 [1.00000000e+00 8.11141428e+01 6.57950417e+03]]

Let's confirm that the columns of A2 are linearly
independent by checking that the determinant of its Gram
matrix is nonzero:

la.det(A2.T @ A2)

495814305459.11523

Then the LS solution for the coefficients of the quadratic
is given by A†

2y, which is calculated as follows:

c2 =la.pinv(A2) @ covid['cases_norm']

print(c2)



[ 2.00857605e+01 -6.91061062e-01   6.39882763e-03]

The resulting quadratic is approximately
p(x) = 20.1 − 0.691x + 0.0064x2. The resulting fit is shown
in Fig. 5.6. Code to generate this plot is available online at
la4ds.net/5-2. The quadratic fit is nonmonotonic — it
decreases and then increases. Several possible
explanations for this are:

It may be some real phenomenon that causes this in the
data.

It may be because of randomness of the data.

It may because of limitations with such a low-order fit.

http://la4ds.net/5-2


Fig. 5.6:  Least-squares quadratic fit to COVID data. ⏎

The squared error is easily calculated by substituting this
solution back into the equation ∥A2c − y∥

2:

la.norm(A2 @ c2 - covid['cases_norm'])**2

295.2365377484128

This is the lowest squared error that we have achieved
yet. Since the overall trend seems from the graph to be that
the normalized COVID rates increase with normalized



GDPs, let's see if a higher-order polynomial fits the data
better. The following code determines the cubic (third-
order) least-squares fit. The resulting curve is shown with
the data in Fig. 5.7.

Long Description for Figure 5.7

Fig. 5.7:  Least-squares cubic fit to COVID data. ⏎

A3 = make_power_matrix(covid['gdp_norm'], 3)

c3 =la.pinv(A3) @ covid['cases_norm']

print(c3)

[-6.59326652e+01   3.48324894e+00 -5.92229731e-02   



3.34328413e-04]

The cubic polynomial shows an interesting trend in that it
is basically flat for most values of the percentage of GDP
per capita, but then increases when the GDP per capita
exceeds $75K. It has the deficiency that it goes negative for
small values of the Urban Index. However, those values are
outside the range of the data, so this is not necessarily a
severe problem. Let's check the error achieved by the cubic
polynomial fit:

la.norm(A2 @ c2 - covid['cases_norm'])**2

260.6011960010392

The error has been reduced again from 295 for the
quadratic fit to 260.6 for the cubic fit. The error will always
decrease if we increase the order of the polynomial fit, but
the resulting polynomial may not be useful as a model for
the data, as we have seen before. The graph below shows
the error as a function of the degree of the polynomial for
degrees up to 18:

errors = []

max_deg=18



for deg in range(1,max_deg):

  Ax = make_power_matrix(covid['gdp_norm'], deg)

  cx =la.pinv(Ax) @ covid['cases_norm']

  ex = la.norm(Ax @ cx - covid['cases_norm'])**2

  errors +=   [ex]

 

 

plt.plot(range(1,max_deg), errors);

 

 

plt.xlabel('Degree of polynomial fit')

plt.ylabel('Norm squared of error');



Beyond this point, numerical errors make the polynomial
approximation process break down. But we can see that up
through degree 18, there is little gain in using a polynomial
fit with degree greater than 4. This is typical behavior, and
this transition from a steep decrease in error to a more
gradual one (an “elbow in the curve”) is often used to
select the degree of fit.

Terminology review and self-assessment questions

Interactive flashcards to review the terminology introduced
in this section and self-assessment questions are available
at la4ds.net/5-2, which can also be accessed using this QR
code:

http://la4ds.net/5-2


5.3 Chapter Summary

This chapter focused on problems of finding polynomials to
fit a set of data points. We started with showing how to find
a polynomial to exactly fit a set of data points by solving a
system of linear equations, provided the degree of the
polynomial is sufficiently large. Then we considered a
special case where the number of data points is usually
much larger than the polynomial degree: linear regression.
We showed how to use ordinary least squares to find the
solution that minimizes the total squared error from the
polynomial to the data. Then we applied the same approach
to approximate polynomial fitting/polynomial regression.

Access a list of key take-aways for this chapter, along with
interactive flashcards and quizzes at la4ds.net/5-3, which
can also be accessed using this QR code:

http://la4ds.net/5-3


6

Transforming Data

DOI: 10.1201/9781032664088-6

This chapter focuses on techniques to represent data in different
ways. I will show how to represent a group of vectors using
another set of universal or specific vectors, called a basis. We will
investigate one important application of this, which is
transforming time-domain signals into the frequency domain. I will
also discuss techniques to represent a group of vectors by a set of
vectors with lower dimensionality. We will investigate applications
of this to the reception of communication signals in noise and to
dimensionality reduction.

6.1 Representing a Vector Using Projections:

Spanning Sets and Bases

As shown in Section 2.6.2, vector projection allows us to
determine how to represent an arbitrary n-vector b in terms of a
reference vector a. Then given a sufficient set of reference n-
vectors a0, a1, …, we should be able to reconstruct the original
vector in terms of its vector projections proja0

b, proja1
b, … . Let's

use an example to demonstrate some conditions in which this is
possible.

https://doi.org/10.1201/9781032664088-6


In Section 3.4.3, we showed how matrix multiplication can be
used to rotate a set of data points in two-dimensional space. Let's
delve deeper into this idea of representing a vector using a
rotated set of axes to build the basic concepts we need for general
vector representations. Let's start by formalizing the way we
usually represent a vector in two- or three-dimensional Euclidean
space. Any vector in these spaces can be written as a sum of
scaled versions of unit vectors from the standard basis:

DEFINITION

standard basis

In a Euclidean vector space, the standard basis consists
of a set of unique vectors whose components are all zeros
except for a single 1. For the real plane, R2, the standard
basis is

{ex = [1, 0], ey = [0, 1]},

and for three-dimensional Euclidean space, R3, the
standard basis is

{ex = [1, 0, 0], ey = [0, 1, 0], ez = [0, 0, 1]}.

It is worth noting two important properties of the vectors in any
standard basis. Below, we show the properties for R3 as an
example.

1. They are normal vectors: ∥ ex ∥=∥ ex ∥=∥ ez ∥= 1

2. They are mutually orthogonal, meaning that any pair of vectors
is orthogonal. In R3, ex ⋅ ey = 0, ex ⋅ ez = 0, and ey ⋅ ez = 0.



Any set of vectors satisfying these two properties is called an
orthonormal set:

DEFINITION

orthonormal set (of vectors)

A set of vectors {a0, a1, … , an−1} is an orthonormal set if
and only if:

1. The vectors are all normal; i.e., ∥ ai ∥= 1 for all
i = 0, 1, … ,n − 1.

2. The vectors are mutually orthogonal; i.e., ai ⋅ aj for
all i ≠ j in 0, 1, … ,n − 1.

We can interpret the components of an arbitrary vector as the
coefficients of a linear combination of the standard basis vectors.
For example, if w = [a, b], then w = aex + bey.

Example 6.1: Representation of Vector Using

Standard Basis Vectors

Consider the vector w = [2, 1.5]. Fig. 6.1 shows our usual
plot of w along with two vectors showing w = 2ex + 1.5ey.
Note also that the vectors 2ex and 1.5ey are the vector
projections of w onto ex and ey:

import numpy as np

from numpy.linalg import norm

 

 



w = np.array([2, 1.5])

ex = np.array([1, 0])

ey = np.array([0, 1])

 

 

wpx = w@ex * ex / norm(ex)**2

print(f'Projection of z onto e_x = {wpx}')

 

 

wpy = w@ey * ey / norm(ey)**2

print(f'Projection of z onto e_y = {wpy}')

Projection of z onto e_x = [2. 0.]

Projection of z onto e_y = [0. 1.5]



Fig. 6.1:  Representation of w = [2, 1.5] as linear combination of
standard basis vectors ex and ey. ⏎

Suppose we create new axes represented by unit vectors ex,θ

and ey,θ that are rotated θ degrees from the standard basis.

Example 6.2: Standard Basis Vectors Rotated 60∘

Counter-Clockwise

If we rotate the standard unit vectors by 60∘ counter-
clockwise, the resulting unit vectors are shown in Fig. 6.2.



From trigonometry, we can see that the unit vectors for the
axes are

Fig. 6.2:  Vectors from rotating standard unit vectors by 60∘

counter-clockwise. ⏎

Then for the particular case of 60∘, we define:

theta_r = np.deg2rad(60)

ex60 = np.array([   np.cos(theta_r), np.sin(theta_r)])

ey60 = np.array([ -np.sin(theta_r), np.cos(theta_r)])

 

 

ex,θ = [cos θ sin θ]

ey,θ = [cos (θ + 90∘) sin (θ + 90∘)]

= [ − sin θ cos θ].



print(f'x-axis rotated by 60 deg CCW = {ex60}')

print(f'y-axis rotated by 60 deg CCW = {ey60}')

x-axis rotated by 60 deg CCW = [0.5          0.8660254]

y-axis rotated by 60 deg CCW = [-0.8660254    0.5         ]

Note that rotating the axes does not change the fact that they
are an orthonormal set. First, let's check that they are still
normal vectors:

norm(ex60), norm(ey60)

(1.0, 1.0)

Now let's check that they are still orthogonal:

np.round(ex60 @ ey60, 10)

-0.0

Now lets consider what happens if we transform a vector by
projecting it onto a rotated set of axes, ex,θ and ey,θ.



Example 6.3: Projection of Vector onto Axes

Rotated 60∘
 CCW

The projection of the vector w = [2, 1.5] onto ex,60∘  and ey,60∘

is

wpx = w @ ex60

wpy = w @ ey60

 

 

print(f'The scalar projections of w onto the rotated axes: {wpx:.2f}, 

{wpy:.2f}')

The scalar projections of w onto the rotated axes: 2.30, -0.98

Now let's visualize the vector projections onto these axes. The
rotated axis vectors are shown as thin, black, non-transparent
vectors, and the projections are shown as thicker, colored,
and partially transparent vectors:

wx = wpx * xp

wy = wpy * yp

plotvec(xp, yp, width=0.005, colors=['k', 'k'])

plotvec(wx, wy, newfig=False, width=0.02, color_offset=3, alpha=0.7)

plt.xlim([-2, 2])

plt.ylim([-1, 2]);



Finally, let's make a figure that shows the representations
before and after rotation. The figure below shows:

1. The original vector w as a thin non-transparent vector.
2. The linear combination of the vector projections of w

onto the rotated axes. This second vector is shown as a
thicker, semi-transparent arrow.

The result shows that the linear combination of the vector
projections onto the rotated axes completely reconstructs the
original vector w.

plotvec(w, width=0.005, colors=['k'])



plotvec(wx + wy, newfig=False, width=0.02, color_offset=3, alpha=0.7)

We can confirm this by checking the norm of the error vector,
which is the difference between the original vector and the
sum of the vector projections:

e = w - (wx + wy)

print(f'The energy in the error vector is {norm(e) : .3f}')



The energy in the error vector is 0.000

In the results above, we still show w and the sum of the vector
projections on the original axes. To translate w to the rotated
axes, we create a new vector wθ for which the components are the
scalar projections of w onto the rotated axes:

Example 6.4: Projection onto Rotated Axes

Let w60 be the vector whose components are the scalar
projections of w onto ex,60∘  and ey,60∘:

w60 = np.array([wpx, wpy])

If we plot w60 and w on the same axes, then w60 is equivalent
to a 60∘ clockwise rotation of w. (In other words, when we
project onto a basis that is rotated 60∘ counter-clockwise from
the standard basis, the resulting vector representation is
equivalent to a 60∘ clockwise rotation of the original vector.)

plotvec(w, w60, labels=['$\mathbf{w}$', '$\mathbf{w}_{60}$'])

plt.xlim([-1, 3])

plt.ylim([-1.5, 2])

(-1.5, 2.0)



We can confirm this using our formula for the angle between
two vectors:

theta = np.arccos(w60 @ w / norm(w) / norm(w60))

print(f'theta = {np.rad2deg(theta): .2g}')

theta =   60



The representation of w using the rotated axes has the same
length as the original vector w:

print(f'Length of w = {norm(w) : .2f}')

print(f'Length of w projected onto rotated axes = {norm(w60) : .2f}')

Length of w = 2.50

Length of w projected onto rotated axes = 2.50

Any vector in R2 can be represented using these new axes –
we can simply rotate a vector by 60∘ clockwise to find its
representation on the rotated axes.

We say that S = {ex,θ, ey,θ} is a spanning set for R2 (or say that
S  spans R2):

DEFINITION

spanning set (vector space)

A set of vectors S = {x0, x1, … , xn−1} is a spanning set

for a vector space V if every vector in V can be
represented as a linear combination of the vectors in S.

Note that we cannot remove either of the vectors from S  and
still be able to represent everything in R2. For example, we need
both rotated axis vectors to represent w. We say that S  is
minimal:



DEFINITION

minimal (spanning set)

A spanning set S  for a vector space V is minimal if the
removal of any member of S  would stop it from being a
spanning set for V.

An equivalent condition for a spanning set to be minimal is that
the vectors in the spanning set are linearly independent.

A minimal spanning set is also called a basis:

DEFINITION

basis (vector space)

A set of vectors S  is a basis for a vector space V if S  is
a minimal spanning set for V.

The plural of basis is bases (pronounced “base-ease”).
We can always find a basis that is an orthonormal set, and such

a basis is called an orthonormal basis:

DEFINITION

orthonormal basis (for set of vectors)

A set of vectors S  is an orthonormal basis for a set of
vectors V  if

1. S  is an orthonormal set, and

2. S  is a minimal spanning set for V .



There are generally multiple bases for any vector space V, but
they all have the same cardinality:

DEFINITION

cardinality (set)

The cardinality of a set S  is denoted |S | and is equal to
the number of elements in the set.

We will only consider the cardinality for finite sets. The cardinality
of a basis for a vector space V is called its dimension:

DEFINITION

dimension (vector space)

The dimension of a vector space V, denoted dim V, is the
cardinality of a basis for V.

For Rn, one basis is Bn = {e0, e1, … , en−1}, where each ei is
taken to be the n-vector that consists of all zeros except for a 1 in
position i. Thus, the dimension of Rn is |Bn| = n. Even when
limiting to real n-vectors, there are infinitely many other vector
spaces other than Rn. One common way to form such a vector
space is to specify a set of vectors V  and then specify the vector
space V as the span of V :

DEFINITION

span (set of vectors)



Given a set of vectors V , the span of V , denoted span(V )
is the vector space that consists of all linear
combinations of the vectors in V .

I.e., if |V | = n, then span(V ) contains every vector of the form
c0v0 + c1v1 + … + cn−1vn−1 for all vi ∈ V  and all real constants
ci. By definition, V  is a spanning set for span(V ). If V  is a set of
linearly independent vectors, then V  is a basis for span(V ).

Example 6.5: Another Basis for R3

Consider the set V = {[1, 1, 0]⊤, [1, 0, 1]⊤, [0, 1, 1]⊤}. These

vectors are linearly independent, and thus V  is a basis for
span(V ). Note that dim span(V ) = 3, span(V ) ⊂ R3, and
dim R3 = 3. It can be shown that V  is a basis for R3 = 3.

Example 6.6: Example of a Vector Space of 3-

Vectors Other Than R3

Consider the set W = {[1, −1, 0]⊤, [1, 0, −1]⊤}. These

vectors are linearly independent, and thus W  is a basis for
span(W ). Since |W | = 2, span(W ) is a vector space of
dimension 2 and thus cannot be equal to R3.

It is also easy to see that there are vectors in R3 that are not
in span(W ), such as [1, 0, 0]⊤, [0, 1, 0]⊤, and [0, 0, 1]⊤. In fact, it
can be shown that if we interpret the vectors as points in
three-dimensional space, then span(W ) is the plane defined
by {(x, y, z) ∣ x + y + z = 0}, which is shown in Fig. 6.3. An
interactive version of this plot is available at la4ds.net/6-1.

http://la4ds.net/6-1


Fig. 6.3:  The three dimensional vector space with basis
{[1, −1, 0]⊺, [1, 0, −1]⊺} can be viewed as the plane shown, which
corresponds to the solution set of x + y + z = 0. ⏎

6.1.1 Applications of Alternative Bases

Alternative bases are useful for many different purposes in data
science and engineering:

1. Alternative bases can be used to provide an alternative
interpretation of data in terms of features such as frequency.

2. Alternative bases can be used when we want to detect signals
embedded in noise by projecting the noisy signal into those
dimensions that enhance the signal components and suppress
the noise.



3. Alternative bases can be used when we want to reduce the
dimensionality of a set of vectors. Instead of throwing away
some particular elements of a vector, we can find a basis that
captures the most important features of a set of vectors,
resulting in a smaller number of elements in a lossy
representation. This can be useful for:

1. Plotting high-dimensional data by projecting the data onto
a basis that reduces the data to 3 dimensions or fewer.

2. Applying two-dimensional statistical techniques (like 2-D
regression) to high-dimensional data.

3. Reducing the complexity of statistical methods, signal
processing techniques, or machine learning algorithms by
eliminating redundant or irrelevant information.

4. Performing data compression by preserving the most
important information and discarding the least important
information.

I will demonstrate these in the following sections. In the next
section, I show how an alternative basis constructed from complex
sinusoids can be used to find the frequency content of time-
domain vectors.

Terminology review and self-assessment questions

Interactive flashcards to review the terminology introduced in this
section and self-assessment questions are available at la4ds.net/6-
1, which can also be accessed using this QR code:

http://la4ds.net/6-1


6.2 Universal Bases and the Discrete Fourier

Transform

There are two fundamental types of bases for sets of vectors:

1. Universal bases can represent every vector in a Euclidean
vector space, Rn. For example, the rotated axis vectors used in
the last section can represent every vector in R2.

2. Set-specific bases can represent every vector in the span of a
specified set but generally cannot represent every real vector
of the same size.

Why do we not always use a universal basis?

Recall that the cardinality of a basis is the dimensionality of the
vector space that it can represent. The dimensionality of the
Euclidean vector space Rn is n, and so n basis vectors are
required. However, suppose we have a set S  of n-vectors,
where the cardinality is m < n. Then the dimensionality of
span(S ) is at most m, and thus fewer than n basis vectors are
required. If m is much smaller than n, this can make a
significant difference in computation. In Section 6.14, I show
how using a smaller basis can help distinguish a signal from
noise in a digital communication system.



In this section, we consider a particular universal basis made
out of sinusoids. This type of basis is often applied to time-series
data. When time-series data is represented using sinusoidal basis
functions, the representation characterizes the frequency content
of the signal. This frequency representation is useful in many
applications, including:

1. Audio: the frequency representation can be used to analyze or
manipulate the frequency content of speech or music signals.
For instance, the frequency representation can be used for
equalization, pitch shifting, or noise removal.

2. Financial data: the frequency representation can be used to
identify patterns in price changes of stocks or commodities.

3. Mechanical signals: time-series data from mechanical
systems, such as an engine, turbine, or machine, can be used
to identify vibrations.

4. Biological data: time-series data, such as electrical signals
from the brain or heart, can be analyzed to detect medical
problems.

6.2.1 Sinusoidal Basis

Let's begin by generating a set of sinusoidal basis vectors. We can
generate such a set as the rows of a special matrix called a
Discrete Fourier Transform (DFT) matrix. We will show how to
generate a DFT matrix using NumPy and how to interpret it using
plots. Readers who want to understand the math behind DFT
matrices can refer to the Wikipedia page:
https://en.wikipedia.org/wiki/DFT_matrix.

The DFT matrix for length-64 vectors can be created using
NumPy functions1 as follows:

https://en.wikipedia.org/wiki/DFT_matrix


import numpy as np

 

 

dft_len = 64

dft =   np.fft.fft(np.eye(dft_len), norm='ortho')

print(np.round(dft, 4))

[[0.125 +0.j     0.125 +0.j        0.125 +0.j   … 0.125 +0.j

  0.125 +0.j     0.125 +0.j    ]

 [0.125 +0.j     0.1244-0.0123j 0.1226-0.0244j … 0.1196+0.0363j

  0.1226+0.0244j 0.1244+0.0123j]

 [0.125 +0.j     0.1226-0.0244j 0.1155-0.0478j … 0.1039+0.0694j

  0.1155+0.0478j 0.1226+0.0244j]

 …

 [0.125 +0.j     0.1196+0.0363j 0.1039+0.0694j … 0.0793-0.0966j

  0.1039-0.0694j 0.1196-0.0363j]

 [0.125 +0.j     0.1226+0.0244j 0.1155+0.0478j … 0.1039-0.0694j

  0.1155-0.0478j 0.1226-0.0244j]

 [0.125 +0.j     0.1244+0.0123j 0.1226+0.0244j … 0.1196-0.0363j

  0.1226-0.0244j 0.1244-0.0123j]]

_________________

 1The equivalent function in PyTorch is torch.fft.fft(). ⏎

A few comments

The function name fft stands for fast Fourier transform,
which is a fast technique for computing the DFT when the
size is a power of 2. The term FFT is commonly used to



refer to the DFT and np.fft.fft() works even when the
length is not a power of 2.

There are two instances of “fft” in the function call
because the fft() function is part of NumPy's fft module.

The norm=‘ortho’ keyword argument is to make these
sinusoids have unit norm. The standard FFT does not give
vectors with unit norm and instead requires different
normalization in the inverse FFT (IFFT) function.

Most entries in the DFT matrix consist of the sum or
difference of two components, one of which has a “j” at
the end. This is because these DFT entries are complex
numbers. Python uses the suffix j on a numeric value to
indicate an imaginary number. (The letter j is typically
used for this purpose by electrical engineers because i is
used to denote current in a circuit.)

We can interpret the complex entries of a given row of the DFT
matrix as follows:

The real parts are samples of a cosine function at some
frequency.

The imaginary parts are samples of the negative of a sine
function at the same frequency.

The frequencies increase with the row number for the first half of
the rows, and then decrease during the second half of the rows.
Examples of these sinusoids are shown in Fig. 6.4, which includes
separate plots of the real and imaginary components of rows 0, 1,
and 4 of the FFT matrix2.



Long Description for Figure 6.4

Fig. 6.4:  Plots of the real and imaginary components of FFT
vectors 0, 1, and 4. ⏎

_________________

 2Code to create this plot is available at la4ds.net/6-2 ⏎

Let's confirm that all of the rows have unit norm:

np.linalg.norm(dft, axis=1)

array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 

1., 1.,

       1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 

1., 1.,

       1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 

http://la4ds.net/6-2


1., 1.,

       1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.])

The frequencies are such that all of the sinusoids at all of the
frequencies are orthogonal, and this results in the complex
vectors being orthogonal. For complex vectors a and b, the inner
product is defined as a ⋅ b∗, where the elements of b∗ are the
complex conjugates of the elements in b. Then if we take any two
rows, we will get an inner product of zero:

np.round(dft[0]@np.conj(dft[4]), 10), np.round( 

dft[1]@np.conj(dft[4]), 10)

((-0+0j), 0j)

Let's start by analyzing the frequency content of a simple signal
before using the DFT to analyze real data.

Example 6.7: DFT of Square Wave

We can generate a square wave signal using
scipy.signal.square(). Below I generate a length-64 square
wave with four cycles (I chose the parameters to get exactly
four cycles, starting with half a cycle):

import scipy.signal

offset=4

t = np.linspace(0, 8*(64+offset)/64*np.pi, 64+offset)[offset:]



sq = scipy.signal.square(t)

 

 

plt.plot(sq);

plt.title('Length-64 square wave with 4 cycles');

We can determine the frequency content of this wave by
multiplying its vector representation by the rows of the DFT
matrix. Let's do a few frequency components individually
before automating the process. Row 0 is a DC signal, so it
determines any DC component in the signal:

sq @ dft[0]



0j

Because we want to look at the scalar projection with many
different rows, let's make a function to print out the scalar
projections given a list of rows. If the result is very small, let's
provide an option to suppress the output:

def print_projections(signal, dft_matrix, rows, suppression_threshold 

= 0):

 ''' print the scalar projection between the signal vector

      and the rows of the dft matrix   '''

 for row in rows:

    proj = sq @ dft[row]

    if abs(proj) > suppression_threshold :

      print(f'scalar projection of row {row}: {proj:.2f}')

Here are the values for rows 1 and 2:

print_projections(sq, dft, [1, 2])

scalar projection of row 1: 0.00-0.00j

scalar projection of row 2: 0.00+0.00j

Interestingly, all of these scalar projections are 0. This is
because the waveform does not contain any of those low



frequencies. Now consider the scalar projection with rows 3
and 4:

print_projections(sq, dft, [3, 4], suppression_threshold = 0.05)

scalar projection of row 4: 5.03+1.00j

Although the scalar projection with row 3 is zero, the scalar
projection with row 4 is not. For real data, each row k in the
DFT has a “partner” at 64-k such that if we take twice the real
part of the scalar projection onto row k, we get the combined
effect of these two rows. The result is a sinusoid that could be
considered a very crude approximation of the square wave:

plt.plot(sq)

plt.plot(2*np.real(dft[4]@sq * dft[4]));



Now let's find what other projections are nonzero for the first
half of the DFT functions:

print_projections(sq, dft, range(5, 32), suppression_threshold=0.05)

scalar projection of row 12: -1.50-1.00j

scalar projection of row 20: 0.67+1.00j

scalar projection of row 28: -0.20-1.00j

Every 8th frequency component has a nonzero frequency
component. The code below combines different numbers of
projections. The approximation is plotted versus the original
square wave after each new vector projection is added:



fig, axs = plt.subplots(1, 3, figsize=(8,4) )

 

 

approximation = 2 * np.real(np.conj(dft[4]) @ sq * dft[4])

 

 

rows=[4]

 

 

for i, row in enumerate([12,20, 28]):

  approximation += 2 * np.real(np.conj(dft[row]) @ sq * dft[row])

 

 

  ax = axs[i]

  ax.plot(sq)

  ax.plot(approximation)

  rows += [row]

  ax.set_title(f'Square wave & approximation\nusing rows {rows}')

 

 

plt.tight_layout()



Long Description Unnumbered Figure 1

The original square wave is completely reconstructed from
the sum of the vector projections, as we can verify by
checking the norm of the error signal:

np.round(np.linalg.norm(sq - approximation), 10)

0.0

The scalar projections can all be found simultaneously using
matrix multiplication. Let v be an n-vector, and let Fn be the
n × n DFT matrix. Then we can get the DFT of v is

V = Fnv.

(6.1)



Note that we use an uppercase V for the frequency domain
representation, and a lowercase v for the time domain signal.
Equation 6.1 is called the analysis equation of the DFT:

DEFINITION

analysis equation

Let v be an n-vector from some set of vectors V , and let
B be a m × n matrix whose rows are the basis for V .
Then the DFT of v is given by the analysis equation,

V = Bv.

The analysis equation may be written in other forms, depending
on the application, but always corresponds to projecting the
vector that is to be represented onto each of the basis vectors.

The DFT can be found even more efficiently using the Fast
Fourier Transform (FFT) when the length of the vector is a power
of 2. We can get the DFT projections directly using NumPy using
the np.fft.fft() function as follows:

np.round(np.fft.fft(sq, norm='ortho'), 5)

array([ 0.     +0.j,   0.   +0.j,   0.   +0.j,   0.   +0.j,

        5.02734+1.j,   0.   +0.j,   0.   +0.j,   0.   +0.j,

        0.     +0.j,   0.   +0.j,   0.   +0.j,   0.   +0.j,

       -1.49661-1.j,   0.   +0.j,   0.   +0.j,   0.   +0.j,

        0.     +0.j,   0.   +0.j,   0.   +0.j,   0.   +0.j,

        0.66818+1.j,   0.   +0.j,   0.   +0.j,   0.   +0.j,



        0.     +0.j,   0.   +0.j,   0.   +0.j,   0.   +0.j,

       -0.19891-1.j,   0.   +0.j,   0.   +0.j,   0.   +0.j,

        0.     +0.j,   0.   +0.j,   0.   +0.j,   0.   +0.j,

       -0.19891+1.j,   0.   +0.j,   0.   +0.j,   0.   +0.j,

        0.     +0.j,   0.   +0.j,   0.   +0.j,   0.   +0.j,

        0.66818-1.j,   0.   +0.j,   0.   +0.j,   0.   +0.j,

        0.     +0.j,   0.   +0.j,   0.   +0.j,   0.   +0.j,

       -1.49661+1.j,   0.   +0.j,   0.   +0.j,   0.   +0.j,

        0.     +0.j,   0.   +0.j,   0.   +0.j,   0.   +0.j,

        5.02734-1.j,   0.   +0.j,   0.   +0.j,   0.   +0.j])

I will demonstrate how to use this function to analyze the
frequency content in a real biological signal in the following
example.

Example 6.8: Analyzing Frequency Content of ECG

Data

An electrocardiogram (ECG) is a record of the heart's
electrical activity. The file fdsp.net/data/ecg.csv contains the
ECG data for a healthy adult. ECGs often contain data for
multiple channels, but this contains data only from a single
lead (the I lead). Let's start by loading this data and looking at
the head of the dataframe:

import pandas as pd

 

 

ecg_df = pd.read_csv('https://fdsp.net/data/ecg.csv', header=None, 

skiprows=2)

http://fdsp.net/data/ecg.csv
https://fdsp.net/data/ecg.csv


ecg_df.rename(columns={0 : 'ecg'}, inplace=True)

ecg_df.head()

      ecg

0 -41.920

1 -44.644

2 -47.030

3 -49.050

4 -50.681

This is supposed to be time-series data, but the time stamps
are missing. However, the first line of this file says: Sample
Rate,512.242 hertz, which means that 512.242 samples were
taken per second. Thus the time between samples (in
seconds) is

1 / 512.242

0.0019522022793913817

We can assign a time to each ECG sample and plot versus
time as shown below:

ecg_df = ecg_df.assign(time = lambda x: x.index / 512.242)

 



 

plt.plot(ecg_df['time'], ecg_df['ecg'])

plt.xlabel('time (s)')

plt.ylabel('ECG signal strength ($\mu V$)');

There are some amplitude variations that were probably
caused by movement (these ECG results are from a smart
watch). Let's zoom in on a few cycles to get a better idea of
what the ECG data looks like:

s_min = 1370

s_max = 2665

plt.plot(ecg_df['time'].iloc[s_min:s_max], 

ecg_df['ecg'].iloc[s_min:s_max])



plt.xlabel('time (s)')

plt.ylabel('ECG signal strength ($\mu V$)');

From this plot, we can clearly see the repeating structure of
the ECG data. Each cycle of the ECG signal lasts
approximately 0.8s (from a visual inspection), implying a
heart rate in beats per minute of approximately:

60/0.8

75.0



If we want to estimate the heart rate across this data frame,
we have a couple of options. We could try to write a function
to 1) find the peaks, 2) find the differences between adjacent
peaks, and 3) average those differences. However, the time-
varying nature of the peaks may make this challenging. As an
alternative, we can transform the data into the frequency
domain as follows:

ecg = ecg_df['ecg']

ECG = np.fft.fft(ecg)

Again, I have used capital letters to indicate that ECG is a
frequency-domain representation of ecg. ECG is complex, but if
we plot its magnitude-squared, the result is proportional to
the power at each frequency. The power at each frequency is
called the power spectral density:

DEFINITION

power spectral density (of a vector)

For a n-vector x with DFT X, the power spectral density
is the power at each frequency component and is given
by

P [k] =
1

n
X[n] 2.

In the plots and analysis that follow, we are only interested in
the relative power at different frequencies, so I am going to



omit the normalization term 1/n. Let's start by plotting the
power spectral density for the whole ECG vector.

plt.plot(abs(ECG)**2);

plt.title('Magnitude-squared of DFT of ECG data');

First, note the symmetry in the PSD. As before, only the first
half of the DFT data is needed to capture all of the frequency
information for a real vector.

Second, two issues make this plot hard to use:

1. The dependent variable in this plot is the index of the rows
of the DFT matrix, not frequency.



2. The larger PSD values are concentrated at the lower
frequency indices, and we can't really see what is going on
when plotting the full range.

To plot against frequency, we can use a helper function
called np.fft.fftfreq() to return a vector of frequencies. Its
arguments are the length of the DFT vectors and the time
separation between samples. Since we have 512.242
samples/second, the time separation is the inverse of that
value. We can create a vector of frequencies and plot the first
few hundred components of the DFT versus frequency as
follows:

f = np.fft.fftfreq(len(ecg), 1/512.242)

 

 

plt.plot(f[:400], 1/len(ECG) * np.abs(ECG[:400])**2)

plt.title('Power spectral density for ECG signal');



Note:

In most real applications, we would estimate the PSD by
averaging over multiple time windows of the signal – see the
documentation for scipy.signal.ShortTimeFFT() for details.
However, we will see that the simple technique shown here
works well for this example.

Let's zoom in on the portion of the ECG signal that contains
the frequency with the highest power:

plt.plot(f[:80], np.abs(ECG[:80])**2)



plt.title('Power spectral density for ECG signal');

We can get the exact index of the peak using the argmax()
method:

peak_pos = (ECG[:400]**2).argmax()

peak_pos

36



and the corresponding frequency is:

f[peak_pos]

1.2000203032472179

This frequency is in Hertz. This frequency corresponds to the
heart rate during the ECG, which is approximately 1.2
beats/second, or 72 beats per minute.

For a periodic non-sinusoidal signal, the DFT will contain
harmonics at multiples of the base frequency. Thus, in the
power spectral density, we see peaks not only at 1.2 Hz but
also at 2.4 Hz, 3.6 Hz, and 4.8 Hz. Those other peaks are
related to the same 1.2 Hz electrical signal that is driving the
beating of the heart at 72 beats/minute. Although we will not
pursue further analysis of the ECG signal in this book, some
research articles do look at the power spectral density at the
lower frequencies below the heartbeat.

The DFT introduced in this section is one example of a universal
basis that is commonly used because it is a powerful and simple
technique for transforming a time-domain signal into a frequency-
domain representation.

Terminology review and self-assessment questions

Interactive flashcards to review the terminology introduced in this
section and self-assessment questions are available at la4ds.net/6-
2, which can also be accessed using this QR code:

http://la4ds.net/6-2


6.3 Set-Specific Bases: The Gram-Schmidt

Algorithm

In the previous section, we showed one example of universal bases
that consist of complex sinusoids: the rows of DFT matrices. The
advantage of a universal basis is that it can represent every vector
in some vector space Rn. The disadvantage is that the cardinality
of a universal basis in Rn is always n.

In this section, we consider finding a set-specific basis and show
that such a basis can have a much smaller cardinality than a
universal basis. Let's motivate the general approach using an
example.

Example 6.9: Finding a Set-Specific Basis for Four

8-Vectors  ⏎

Consider the vectors Sa = {s0, s1, s2, s3}, where

These vectors are from R8, so a universal basis for span(Sa)
would consist of 8 vectors. We know that Sa is a spanning set

s0 = [ ],

s1 = [ ],

s2 = [ ], and

s3 = [ ].

1 1 1 1 −1 −1 −1 −1

0 2 2 0 0 −2 −2 0

1 −1 −1 1 −1 1 1 −1

2 0 0 2 −2 0 0 −2



for span(Sa), and this implies that dim(span(Sa)) ≤ |Sa| = 4
. Let's see if we can find a basis for span(Sa).

Let fi be the ith basis vector. We iterate through the signals
one-by-one. We will end up with different bases depending on
the order in which we iterate over the signals, but for this
example, we will iterate over them in numerical order.

Signal s0

We start with s0 and create the basis vector f0 by
normalizing it:

import numpy as np

from numpy.linalg import norm

 

 

s0 = np.array([1,    1,   1,   1, -1, -1, -1, -1])

f0= s0 / norm(s0)

print(f0)

[ 0.35355339   0.35355339   0.35355339   0.35355339 -0.35355339 

-0.35355339

 -0.35355339  -0.35355339]

Note that ∥ s0 ∥2= 8, so it is easier to see f0 mathematically as

Then the projection of s0 onto f0 is

f0 =
1

√8
[ ].1 1 1 1 −1 −1 −1 −1



Let's check numerically:

s0 @ f0

2.82842712474619

Signal s1

To find a second basis vector, we start by finding the scalar
projection of s1 onto the basis vector f0:

s1 = np.array( [ 0,   2,   2,   0,   0, -2, -2,   0] )

 

 

s1 @ f0

2.82842712474619

⟨s0, f0⟩ = ⟨s0,
s0

∥ s0 ∥
⟩

=
1

∥ s0 ∥
⟨s0, s0⟩

=
∥ s0 ∥2

∥ s0 ∥

=∥ s0 ∥

= √8 ≈ 2.828.



Then the part of s1 that cannot be represented by f0 can be
found by subtracting the vector projection of s1 onto f0 from
the vector s1:

e1 = a1 - (a1 @ f0) * f0

print(e1)

[-1.   1.   1. -1.   1. -1. -1.   1.]

which has norm

norm(e1)

2.8284271247461903

Since the error signal has a nonzero norm, we need another
basis function that is orthogonal to f0. Fortunately, the error
signal is always orthogonal to the previous basis functions.
Let's check for this example:

np.round(e1 @ f0, 10)

0.0



Then to create our second basis vector, we can simply
normalize the error vector e1:

f1 = e1 / norm(e1)

print(f1)

[-0.35355339   0.35355339    0.35355339 -0.35355339   0.35355339 

-0.35355339

 -0.35355339   0.35355339]

As with f0 it is easier to write this mathematically as

The projection of s1 onto f1 is

s1 @ f1

2.8284271247461907

which is the norm of e1.

Signal s2

Note that it turns out that we could also write

f1 =
1

√8
[ ].−1 1 1 −1 1 −1 −1 1



f1 = −
1

√8
s2.

Another way to interpret this is that s2 is in the (opposite)
direction of f1. Thus, s2 should be orthogonal to f0 and so the
scalar product of s2 with f0 should be zero:

s2 = np.array( [1, -1, -1,   1, -1,   1,   1, -1] )

 

 

s2 @ f0

0.0

We can see that we can write s2 = −√8f1, which matches the
result from the numerical projection,

print(-(f1 * np.sqrt(8)))

print( s2.astype(float))

[ 1. -1. -1.   1. -1.   1.   1. -1.]

[ 1. -1. -1.   1. -1.   1.   1. -1.]

There is no remaining error, so we do not need any new basis
function.



Signal s3

Last, we try to represent s3. The scalar projection of s3 onto
f0 is

s3 =np.array( [ 2,   0,   0,   2, -2,   0,   0, -2] )

 

 

s3 @ f0

2.82842712474619

and the scalar projection of s3 onto f1 is

s3 @ f1

-2.8284271247461894

The error signal can be calculated by subtracting the sum of
the vector projections from s3,

e3 = s3 - ( (s3 @ f0)*f0 + (s3 @ f1)*f1 )

np.round(e3, 10)



array([ 0.,   0.,   0.,   0., -0., -0., -0., -0.])

Since the error signal is the zeros vector, we do not need to
create a new basis vector.

Signal Set Dimensionality

Two basis vectors are sufficient to represent all the signals
in Sa. In the context of communications, we say that the
dimension of this signal set is 2. (More generally, the
dimension of the vector space span(Sa) is two.) In
comparison, a universal basis would require 8 basis vectors.

6.3.1 Signal Space Representation

Given a signal set S , every signal in S  can be expressed as a
linear combination of the vectors in our orthonormal basis. If
there are N basis functions f0, f1, … , fN−1, then we can write

si =
N−1

∑
k=0

sikfk.

Here, each coefficient of the linear combination is given by the
scalar projection of si onto the basis fk, which is sik = si ⋅ fk. Then
given a particular basis, each signal can be represented by a
vector of the coefficients that multiply the basis function,
–si = [si,0, si,1, … , si,N−1]. The vector –si is called the signal-space

representation of si:

DEFINITION

signal-space representation



If S  is a set of vectors over Rn with orthonormal basis
F = {f0, f1, … , fN−1}, where

si =
N−1

∑
k=0

sikfk,

then the vector –si = [si,0, si,1, … , si,N−1] is the signal-

space representation of si.

We will use S  to denote the set of signal-space representations.

Note:

The signal-space representations depend on the orthonormal
basis used to represent the signals, and the basis is not unique.
However, we will see soon that the properties of the signal-
space representation do not depend on the choice of basis.

To understand this better, let's apply it to our example 4-ary
signal set:

Example 6.10: Signal Space Representation for

Example 4-ary Signal Set

Consider again the 4 signal vectors from Example 6.9 along
with the orthonormal basis we found, F = {f0, f1}. Then the
signal-space representation for si is

–si = [si ⋅ f0, si ⋅ f1].

Even though the original vectors were of length 8, the
signal-space representations are of length 2, because all of
the signals can be represented as linear combinations of two



basis functions. Since the new representation occupies only
two dimensions, we can now plot these vectors. The result is
shown in Fig. 6.5.



Fig. 6.5:  Signal-space representation for set of four vectors from
R8. ⏎

6.3.2 Properties of Signal-Space Representations

An important feature of signal-space representations is that they
preserve the most important aspects of the original signal set.
Consider a set of signals S  and corresponding signal-space
representations S .

Then the signal-space representations have the following
properties:

1. Inner-product preserving:

For alli, k, ⟨si, sk⟩ = ⟨–si, –sk⟩.

2. Norm preserving:

∥si∥ = ∥–si∥.

3. Distance preserving:

For alli, k, ∥si − sk∥ = ∥–si − –sk∥.

Properties 2 and 3 follow directly from Property 1. These
properties ensure that our signal-space representation is
meaningful. For instance, in our plot of the vectors using the
signal-space representation, the lengths of the vectors are the
norms of the original vectors, and we can measure the distance
between vectors as the length of a vector connecting the heads of
those vectors.

Let's check properties 2 and 3 for our example vectors:



Example 6.11: Checking Norm- and Distance-

Preserving Property of Signal-Space

Representation

Consider the signals and their signal-space representations
from Example 6.9. The following Python code compares the
norms of the signals to the norms of their corresponding
signal-space representations:

print('Property 2: Norm Preserving\n')

print(' i | Norm of original vector | Norm of signal-space rep')

print('-'*55)

 

 

for i in range(4):

  print(f'{i:^3}|{norm(A[i]):^25.1f}|{norm(Areps[i]):^25.1f}')

Property 2: Norm Preserving

 

 

 i | Norm of original vector | Norm of signal-space rep

-------------------------------------------------------

 0 |           2.8            |          2.8

 1 |           4.0            |          4.0

 2 |           2.8            |          2.8

 3 |           4.0            |          4.0

The following code compares the distances between all the
original signal vectors, dij =∥ si − sj ∥, to the distances



between their signal-space representations, 
–
dij =∥ –si − –sj ∥:

print('Property 3:\n')

print(' i, k | Dist for original vectors | Dist for signal-space 

reps')

print('-'*62)

for i in range(4):

  for k in range(0,4):

    print(f'{i:>2}, {k:<2}|{norm(A[i] - A[k]):^27.1f}|'

            +f'{norm(Areps[i] - Areps[k]):^27.1f}')

  print()

Property 3:

 

 

 i, k | Dist for original vectors | Dist for signal-space reps

--------------------------------------------------------------

 0, 0 |            0.0            |            0.0

 0, 1 |            2.8            |            2.8

 0, 2 |            4.0            |            4.0

 0, 3 |            2.8            |            2.8

 

 

 1, 0 |            2.8            |            2.8

 1, 1 |            0.0            |            0.0

 1, 2 |            6.3            |            6.3

 1, 3 |            5.7            |            5.7

 



 

 2, 0 |            4.0            |            4.0

 2, 1 |            6.3            |            6.3

 2, 2 |            0.0            |            0.0

 2, 3 |            2.8            |            2.8

 

 

 3, 0 |            2.8            |            2.8

 3, 1 |            5.7            |            5.7

 3, 2 |            2.8            |            2.8

 3, 3 |            0.0            |            0.0

6.3.3 Gram-Schmidt Process

The procedure we conducted above for finding an orthonormal
basis will work for any set of vectors. It is called the Gram-
Schmidt Process, and the general algorithm is shown below:

Given indexed vectors s0, s1, … , sK−1.

1. Let i = 0. Let F = () be the ordered collection of basis vectors
(initialized to empty).

2. For j = 0, … , |F | − 1: calculate the scalar projection of si onto
each of the basis vectors: sij = si ⋅ fj.

3. Calculate the error vector ei, which is the part of si that is
orthogonal to all the basis vectors up to this point:
ei = si − (si0f0 + si1f1 + …).

4. If ∥ ei ∥= 0, then si can be completely represented in terms of
the basis vectors in F . Increment i (i.e., i = i + 1) and go to
step 2.

5. Else normalize the error vector to create a new basis vector,
f|F | = ei/ ∥ei∥ and go to step 2.



In practice, step 4 needs to be modified to check if ∥ei∥ < ϵ

because limits of floating-point arithmetic often result in values
that should be zero returning some small value instead.

6.3.4 Dimensionality and Linear Independence

The dimension of a set of signals is the same as the maximum
number of linearly independent vectors in the set. We previously
showed that we can find the maximum number of linearly
independent vectors by stacking the vectors into the columns (or
rows) of a matrix and using np.linalg.matrix_rank(). Let's check this
with our example set of four 8-vectors:

Example 6.12: Dimensionality of Set of 8-Vectors

Using Matrix Rank

Let's create a matrix S whose columns are the vectors
s0, s1, s2, s3 from Example 6.9. As we've seen before, NumPy
treats vectors like the row of a matrix, so stacking them
horizontally with np.hstack() will result in one long vector.
Instead, we stack them vertically using np.vstack() and then
transpose the result to end up with the vectors in columns:

S = np.vstack((s0, s1, s2, s3)).T

S

array([[ 1,   0,   1,   2],

       [ 1,   2,  -1,   0],

       [ 1,   2,  -1,   0],

       [ 1,   0,   1,   2],



       [-1,   0,  -1,  -2],

       [-1,  -2,   1,   0],

       [-1,  -2,   1,   0],

       [-1,   0,  -1,  -2]])

Then the matrix rank is:

np.linalg.matrix_rank(S)

2

Since the maximum rank of an 8 × 4 matrix is min (8, 4) = 4,
this matrix is rank deficient.

If a matrix has full rank, then we can find a basis for the
columns of the matrix using the NumPy command np.linalg.qr(),
which gives the QR decomposition of the matrix. If the input is a
matrix M, then the output is M = Q ⋅ R, where Q has orthogonal
columns that are a basis for M.

However, if the matrix is rank deficient, the QR decomposition
may not yield the minimum number of orthogonal basis functions.
In general, it is better to use the SciPy function scipy.linalg.orth()
to find a basis for the columns. The resulting basis vectors are in
the columns of the returned matrix.

Example 6.13: Finding a Basis Using

scipy.linalg.orth()



We can find a basis for our example by passing the S matrix
as the sole argument of scipy.linalg.orth():

import scipy.linalg

Q = scipy.linalg.orth(S)

print(Q)

[[-0.35355339  -0.35355339]

 [ 0.35355339  -0.35355339]

 [ 0.35355339  -0.35355339]

 [-0.35355339  -0.35355339]

 [ 0.35355339   0.35355339]

 [-0.35355339   0.35355339]

 [-0.35355339   0.35355339]

 [ 0.35355339   0.35355339]]

To make this easier to compare with the basis we found using
the Gram-Schmidt algorithm, let's take the transpose and
multiply by √8. Below that matrix, we will print the basis
functions that we previous found, also scaled up by √8.

print(np.sqrt(8) * Q.T)

[[-1.  1.  1. -1.   1.   -1.  -1.   1.]

 [-1. -1. -1. -1.    1.   1.   1.   1.]]



print(np.sqrt(8) * f0)

print(np.sqrt(8) * f1)

[ 1.   1.   1.  1.  -1. -1. -1.  -1.]

[-1.   1.   1. -1.   1. -1. -1.   1.]

The first column of Q is the same as f1, and the second
column of Q is the same as −f0. Bases are not unique, but we
can see that they are very similar in this case.

In Fig. 6.6, I show the representation we found using the
Gram-Schmidt procedure and the representation using the
basis from scipy.linalg.orth(). The second representation is
equivalent to a 90∘ clockwise rotation of the first. Although
the representations are different, the norms and distances are
the same using either representation.



Long Description for Figure 6.6

Fig. 6.6:  Two signal-space representations of the four signals from
Example 6.9, based on two different bases. ⏎

Example 6.14: Detecting Communication Signals

Modern wireless communication systems use digital
communications, in which one or more bits of information are
used to select a communication waveform to send. Quadrature
phase-shift keying (QPSK) is a common signaling scheme that
is used in both WiFi wireless local area networks and in
cellular communication systems, such as LTE and 5G. QPSK
conveys two bits in each signaling interval. In its simplest
form, the waveforms for QPSK look like:

( ) ( )



Here, A and ω control the amplitude and frequency,
respectively, of the signal; p(t) is a signal that limits the
duration of the signal to one bit time.

These signals are shown in Fig. 6.7 for A = 1, ω = 2π, and

Long Description for Figure 6.7

Fig. 6.7:  Example of four QPSK digital modulation signals. ⏎

s0(t) = A cos(ωt +
π

4
)p(t) s1(t) = A cos(ωt −

π

4
)p(t)

s2(t) = A cos(ωt +
3π

4
)p(t) s3(t) = A cos(ωt −

3π

4
)p(t).

p(t) = {
1, 0 ≤ t ≤ 1

0, otherwise.



A digital receiver samples the received signal at multiple
samples per symbol. In the absence of noise, the sampled
signals are shown below for a sampling rate of 10
samples/symbol. The following code creates an array for
which column i contains the samples of signal i:

phases = [np.pi/4, -np.pi/4, 3*np.pi/4, -3*np.pi/4]

 

 

signals = np.zeros((10, 4))

t2 = np.linspace(0+1/20, 1+1/20, 10)

for signum in range(4):

  signals[:,signum] = np.cos(2*np.pi*t2 + phases[signum])

These vector signals are shown with each component's value
plotted as a dot versus its index in Fig. 6.8. We can find a
basis for these signals using scipy.linalg.orth():

sig_basis = scipy.linalg.orth(signals)

print(sig_basis)

[[ 4.26401433e-01  7.45228750e-16]

 [ 3.26642448e-01 -3.03012985e-01]

 [ 7.40438317e-02 -4.64242827e-01]

 [-2.13200716e-01 -4.08248290e-01]

 [-4.00686280e-01 -1.61229842e-01]

 [-4.00686280e-01   1.61229842e-01]



 [-2.13200716e-01   4.08248290e-01]

 [ 7.40438317e-02   4.64242827e-01]

 [ 3.26642448e-01   3.03012985e-01]

 [ 4.26401433e-01   8.39150995e-16]]

Long Description for Figure 6.8

Fig. 6.8:  Vectors representing four different QPSK symbols. ⏎

The signals have dimension 2, and the basis functions found
are essentially sampled cosine and sine waves, as shown in
Fig. 6.9.



Fig. 6.9:  Basis vectors for QPSK signal vectors. ⏎

Signal-space representations are commonly used for
communication signals. For one- and two-dimensional signal
sets, we often illustrate the signals by showing their signal-
space representations as points on a line or plane. These are
called signal constellations. A signal constellation for this
signal set is shown in Fig. 6.10. In most books on digital
communications, the basis is chosen such that the
constellation points are at ±45∘, ±135∘.



Fig. 6.10:  Signal constellation for QPSK. ⏎

One of the big advantages of using this signal-space
representation is that it can be used to make decisions about
a noisy signal. The thermal noise in receivers results in the
samples of the received signals being corrupted by noise from
a Normal (i.e., Gaussian) distribution. Let's create and plot an
example of receiving the signal s2(t) in the presence of
thermal noise:



import scipy.stats as stats

np.random.seed(7)

 

 

N = stats.norm(0, 1)

noise = N.rvs(10)

r = signals[:,2] + noise

plt.scatter(range(10), r)

plt.title('Received samples of signal $s_2(t)$ in presence of thermal 

noise');

The purpose of a receiver is to take the received noisy
samples and decide which signal was sent. From looking at



the plot of the example noisy signal, it seems unclear how this
decision should be made. From a visual comparison of the
samples of the received signal and the possible transmitted
signals, it seems difficult to know which signal was sent. To
enable us to make a decision, let's project the received signal
onto our basis:

r0 = r @ sig_basis[:,0]

r1 = r @ sig_basis[:,1]

print(f'The signal space representation of r is [{r0 : .3g},{r1 : 

.3g})']

The signal space representation of r is [-0.831, 0.544]

This creates a received vector r. Fig. 6.11 shows the signal
constellation along with the signal-space projection of the
received signal (the × mark annotated with r). The plot shows
that r is closest to the signal-space representation s2, and so
that is the best decision.



Fig. 6.11:  QPSK signal constellation (dots) with example noisy
received signal's signal-space representation (×). ⏎

The following code calculates the part of the received signal
that lies within the signal space and the part of the received
signal that lies outside of the signal space:

fig, axs = plt.subplots(1, 2, figsize=(8,4) )



 

 

axs[0].scatter(range(10), (r0*sig_basis[:,0] + r1*sig_basis[:,1]))

axs[0].set_title('Parts of received signal within the signal space');

 

 

axs[1].scatter(range(10), r - (r0*sig_basis[:,0] + 

r1*sig_basis[:,1]))

axs[1].set_title('Parts of received signal outside of signal space');

 

 

plt.tight_layout()

Note that the part of the signal that lies within the signal
space looks quite similar to s2, which corresponds to the
optimal decision. Moreover, the part of the signal that lies
outside the signal space corresponds to noise, and this noise
is effectively removed from the signal by projecting the
received signal into the signal space. Because all of the parts



of the received signal that contain information about the
transmitted signal are preserved in the signal-space
representation, an optimal decision can be made.

In the next section, we look at a simple example of how an
alternative basis can be used in classification when we do not
have a model for the data.

Terminology review and self-assessment questions

Interactive flashcards to review the terminology introduced in this
section and self-assessment questions are available at la4ds.net/6-
3, which can also be accessed using this QR code:

6.4 Alternative Bases via Eigendecomposition

Consider again the problem of feature extraction, which was
originally introduced in Section 3.2.5. In that section, we showed
how we can use matrix-vector multiplication to rotate a two-
dimensional data set to extract a feature that can be used for
classifying data as belonging to one of two classes. However, the
method introduced there was ad hoc (literally, “for this”) – it does
not provide a general method to solve other problems, and it is not
necessarily optimal in any sense. In this section, we develop a

http://la4ds.net/6-3


more systematic approach to address this issue by leveraging our
knowledge of bases and eigendecomposition.

From our previous work on eigenvalues and eigenvectors, we
know that if an n × n matrix M has n linearly independent
eigenvectors, then the matrix can be written as M = UΛU−1.
Then we can also diagonalize the matrix M as

This might be a useful property if it somehow allows us to use the
eigenvalues to extract the information down to a simpler form.
One issue is that matrices do not even have eigenvalues and
eigenvectors unless they are square, which is generally not the
case for most data sets. For instance, the Iris data set considered
in Section 3.2.5 consists of 150 data points, each of which has four
features, so we can represent it by a 150 × 4 or 4 × 150 matrix.

Rather than try to decompose the data directly, let's consider a
matrix that measures the variation and dependence among the
different features of the data and see whether we can use that
information to find a new basis for representing the data. The first
step in measuring “variation” of the data is to find some point the
data is varying around. We will use the average (mean) of each
feature as the point around which we measure the variation. If we
collect the means into a vector, it is called the mean vector:

DEFINITION

mean vector (data),
sample mean

U−1MU = U−1 (UΛU−1)U

= (U−1U)Λ (U−1U)

= IΛI

= Λ.



Consider an m × n matrix of data D, where each column
represents a data point and each row represents a
feature. Then the mean vector is the average of the
columns,

d =
1

n

n−1

∑
k=0

dk.

Example 6.15: Mean Vector for Iris Data

Let's load the Iris data from scikit-learn and compute the
mean vector. Since the default in scikit-learn is that the data
points are in rows of the data matrix, we will transpose that
data and store it into a variable called DIris. Then we will use
np.mean() to compute the average. By default np.mean()

computes the average of all of the data. To average by
feature, we use the keyword argument axis=1 to indicate to
average over the different data points, which are in the
columns (axis 1):

from sklearn import datasets

 

 

iris = datasets.load_iris()

DIris   = iris.data.T

 

 

np.mean(DIris, axis=1)



array([5.84333333, 3.05733333, 3.758, 1.19933333])

The ith entry in the vector is the average value of the data for
feature i. It is important to note that different features have
different averages. This may be inherent in the type of feature
(for instance, in this example the features correspond to
measurements of different parts of the Iris plant) or it may
also be caused by other factors, such as choice of unit. For
instance, all of these Iris measurements are in units of cm, but
if one of them was measured in mm, then the mean for that
feature would be 10 times higher than if it had been measured
in cm. In addition, measurements like this may be subject to
offsets based on how the measurements were conducted. For
instance, features 0 and 3 are sepal length and petal length;
different data sets might vary on whether the length was
measured to the stem or to the end of the sepal/petal after
removal. Later, we will consider ways to remove some of
these effects from our data.

Once we have the mean vector, we can calculate the variations
of the features away from their means. Let's start with the
simplest of these, which is called the variance. It is simply the
average squared distance of the data for a feature from the mean
for that feature:

DEFINITION

variance (data),
sample variance



Consider an m × n matrix of data D, where each column
represents a data point and each row represents a
feature. Let the mean vector be denoted d, and let the
average of the ith feature be denoted 

–
di. Then the

(unbiased) variance (or sample variance) of feature i is

s2
i =

1
n − 1

n−1

∑
k=0

(di,k −
–
di)

2
.

Note that the division by n − 1 in this definition is different than
the usual average of dividing by n. Some variance definitions use
division by n. But dividing by n − 1 gives a nice property called
unbiasedness, and so we will use division by n − 1 in this book.

Example 6.16: Variance of Iris Data

Consider again the Iris data stored in the NumPy array
DIris. We can get the variance for all of the features using the
NumPy function np.var(), but we need to pass several keyword
arguments to get the desired result. As with np.mean(), we
need to specify to only average over the columns using the
keyword argument axis=1. To use the divisor of n − 1, we need
to specify the keyword argument ddof=1, where ddof stands for
“delta degrees of freedom”, specifying how much smaller than
n the divisor should be. Thus, the variances are:

np.var(DIris, axis=1, ddof=1)



array([0.68569351, 0.18997942, 3.11627785, 0.58100626])

In Section 3.2.5, we introduced the concept of feature
extraction. A simpler approach is called feature selection:

DEFINITION

feature selection

In feature selection, only a subset of the features present
in the data are used or preserved.

Feature selection and feature extraction are two approaches
used for dimensionality reduction:

DEFINITION

dimensionality reduction

The process of going from a high-dimensional data set to
a lower-dimensional representation of that data set,
usually with the goal of preserving as much important
information as possible from the original data set.

The variance can give us insight into which features should be
preserved if we use feature selection. If the variance of a feature
is low, then, in general, that feature can be well approximated by
its mean. On the other hand, features with large variance take on
much more diverse values. To preserve the greatest amount of
information about the data, we should generally preserve those
features with high variance if using feature selection.



Variance does not tell the whole story because a data set my
have features that have high variance but where the features are
highly dependent on each other. For instance, we may be able to
use one feature to accurately predict the values of the other
features. This motivates using a feature-extraction approach that
can extract the most important information from the input
features. To do so, we need information not only on the variance
of the features but also measures of the dependence among the
features. A common statistic that is used for this is a
generalization of the variance called covariance:

DEFINITION

covariance (data),
sample covariance

Consider an m × n matrix of data D, where each column
represents a data point and each row represents a
feature. Let the mean vector be denoted d, and let the
average of the data for the ith feature be denoted 

–
di.

Then the (unbiased) covariance (or sample covariance)
between feature i and feature j is

Cov (di, dj) =
1

n − 1

n−1

∑
k=0

(di,k −
–
di)(dj,k −

–
dj).

In general, larger covariances (relative to the variances)
indicate that the features are more related to each other in the
sense that one variable can be well predicted using a linear
predictor based on the other variable. If the covariance between
two features is zero, we say that those features are uncorrelated.



For our purposes, if two features are uncorrelated, it means that
we cannot use a linear function of one feature to estimate the
other feature – that will not give us any additional information
about the feature being estimated. Additional interpretation is
outside the scope of this book, but readers are referred to
Foundations of Data Science with Python, also by John M. Shea.

All of the covariances among the features can be calculated
efficiently using matrix operations, but for our purposes, we will
use np.cov(). No keyword arguments are necessary because the
default divisor for this function is already n − 1. The results is a
covariance matrix where entry i,j is the covariance between
features i and j. The i,ith entry of the covariance matrix is the
variance of feature i. Let's test this on the Iris data:

Example 6.17: Covariance of Iris Data Features

The covariance matrix for the Iris data set is:

K = np.cov(DIris)

K

array([[ 0.68569351, -0.042434,    1.27431544,   0.51627069],

       [-0.042434,   0.18997942,  -0.32965638,  -0.12163937],

       [ 1.27431544, -0.32965638,  3.11627785,   1.2956094 ],

       [ 0.51627069, -0.12163937,   1.2956094,   0.58100626]])

Let's start with some observations that are specific to this
example:



The diagonal of the covariance matrix contains the
variances we previously found with np.var().

Some pairs of features have much larger covariances than
others. For instance, the covariance between features 0
and 1 is approximately -0.04, whereas the covariance
between features 2 and 3 is approximately 1.30.

We can see some properties generalize to any covariance
matrix:

Properties of Covariance Matrices

The diagonal of a covariance matrix corresponds to the
variances.

A covariance matrix is square and symmetric.

Unlike variance, covariances can be positive or negative.
Positive covariance indicate that the features “tend to move
in the same direction”, whereas negative features “tend to
move in opposite directions”.

In the following, we consider only a special case of covariance
matrices, where the determinant is strictly positive. In this case,
an n × n covariance matrix will have n positive eigenvalues, and
the modal matrix U will be an orthogonal matrix. Recall that for
an orthogonal matrix, UTU = U, so U−1 = UT . Thus, a
covariance matrix K can be factored as K = UΛUT . In addition,
for data matrix D with covariance matrix K, it can be shown that
the covariance matrix of ~

D = UTD is



Thus, the resulting data become uncorrelated, and the variances
of the transformed data are equal to the eigenvalues of K. We say
that we decorrelated the data through this linear transform.

Let's test this using the Iris data:

Example 6.18: Decorrelating the Iris Data  ⏎

Let's start by finding the eigendecomposition of the
covariance matrix for the Iris data and printing out the
eigenvalues. Because the covariance matrix is symmetric, it is
best to use the la.eigh() function to find the
eigendecomposition:

lam, U = la.eigh(K)

lam

array([0.02383509, 0.0782095 , 0.24267075, 4.22824171])

Now let's transform the data by left-multiplying by UT  and
calculate the covariance matrix of the transformed data:

Dt = U.T @ DIris

 

~
K = UTKU

= UT (UΛUT)U

= Λ.



 

np.round(np.cov(Dt), 3)

array([[ 0.024, -0.    , -0.    , -0.    ],

       [-0.   ,   0.078, -0.    , -0.    ],

       [-0.   , -0.    ,   0.243,   0.   ],

       [-0.   , -0.    ,   0.   ,   4.228]])

We can see that the off-diagonal elements of the transformed
data are all zero, and the diagonal elements equal the
eigenvalues of the covariance matrix. Note that the largest
variance after the transformation, 4.228, is bigger than the
largest variance in the original data, 3.116. Similarly, the
smallest variance after the transformation, 0.024, is smaller
than the smallest variance in the original data, 0.190.

This approach of left-multiplying the data by the transpose of
the modal matrix of the covariance matrix can be considered to be
a form of the discrete Karhunen-Loève Transform (KLT). In fact,
the KLT results in some even more useful properties:

The KLT achieves the projection with the largest variance
possible for projection onto a unit-norm vector. The resulting
variance is the largest eigenvalue of the covariance matrix.

If we consider maximizing the remaining variances by
projecting onto unit-norm vectors that are orthogonal to the
ones previously found, the resulting variances will be the
eigenvalues in decreasing order.



The above properties result in the minimum possible variance
achievable by projection onto a unit-norm vector being
achieved by the KLT and equal to the minimum eigenvalue.

These properties are very useful for dimensionality reduction
because we can preserve features that have as large a variance as
possible over all features that can be created with orthogonal
linear projections of the data, and the resulting features will be
uncorrelated. Let's apply this concept to visualize the Iris data:

Example 6.19: 2-D Visualization of the 4-D Iris

Data

The Iris data set has four features (dimensions), so there is
no way to directly visualize the data using a scatter plot.
However, if we transform the data as shown in Example 6.18,
we can then drop the two features with very low variances
and make a scatter plot of the remaining features. The result
is shown in Fig. 6.12, where I have used different markers to
distinguish the different classes present in the data. Feature 3
has the largest variance and is clearly the most useful in
distinguishing between the different classes.



Fig. 6.12:  Scatter plot of data using two features with largest
variance at output of KLT. ⏎

Note that the KLT has projected the data in such a way that
we can easily distinguish between the ‘setosa’ and ‘versicolor’
classes using KLT feature 3 – the KLT has created a feature
that achieves the same goal as the ad hoc approach we
showed in Section 3.2.5, but using an approach that can be
generalized to arbitrary data sets. Feature 3 can also be used
to perform most of the distinction between the ‘versicolor’ and
‘viriginica’ classes, but more sophisticated classifiers that use
both features 2 and 3 will perform better.

The combined approach of decorrelation and dropping low-
variance data is called principal components analysis (PCA):



DEFINITION

principal components analysis (PCA)

A dimensionality reduction technique that consists of

1. calculating the sample covariance matrix, K,

2. performing eigendecomposition on K to get the
eigenvalue vector λ and the modal matrix U,

3. projecting the data matrix D onto the columns of the
modal matrix as UTD, resulting in uncorrelated data
with covariance matrix Λ, and

4. dropping some number of output features with the
lowest variance.

One problem with directly applying KLT to the data covariance
matrix is that it is sensitive to the absolute magnitudes of the
features. Features with higher variance are more likely to play an
important role in the output features. However, the variances of
an input feature can be easily changed just by expressing it in
different units (for instance, if the sepal width in the Iris data set
were recorded in mm or μm instead of cm, the variance would be
much larger). To overcome this, we often standardize the data
before applying PCA (or other machine-learning algorithms):

DEFINITION

standardization

The process by which numerical data is transformed such
that each feature has mean zero and variance one.



We will use the StandardScaler class from scikit-learn's
preprocessing class to standardize data. Note that this class is
based on the biased covariance estimator, so we will pass the
keyword argument ddof=0 when checking the covariance matrix of
the output. Let's illustrate the use of this object and test this on
the Iris data.

Example 6.20: Standardization of the Iris Data

To standardize the Iris data, we must first instantiate an
object with the StandardScaler class. Then we can use the
object's fit_transform() method to standardize the data.
Because the scikit-learn methods expect data to be in rows,
we will transpose the Iris data in the argument of that method
and again on the method's output:

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

Ds = scaler.fit_transform(DIris.T).T

 

 

np.mean(Ds, axis=1), np.cov(Ds, ddof=0)

(array([-1.69031455e-15, -1.84297022e-15, -1.69864123e-15, 

-1.40924309e-15]),

 array([[ 1.        , -0.11756978,   0.87175378,   0.81794113],

        [-0.11756978,   1.       , -0.4284401 , -0.36612593],



        [ 0.87175378, -0.4284401 ,   1.        ,   0.96286543],

        [ 0.81794113, -0.36612593,   0.96286543,   1.        ]]))

The transformed data has zero mean vector and unit
variances.

We can apply the KLT to the standardized data in the same way
that we did when the data is not standardized. However, the usual
way to perform PCA on standardized data is using a different
transform called the singular value decomposition (SVD):

DEFINITION

singular value decomposition (SVD)

Every real m × n (i.e., not just square) matrix M can be
factored as

M = UΣVT ,

(6.2)

where U and V are orthogonal matrices, and Σ is a m × n

matrix with the only non-zero entries on the main diagonal.
The values on the diagonal of Σ are called singular values,
and they are similar to eigenvalues of square matrices.

For standardized data, we can get the same effect as KLT by
applying the transformation UT

S
D to the data, where US is the left

singular-vector matrix from the SVD.

Example 6.21: Two Approaches to KLT of

Standardized Iris Data



Let's decorrelate the standardized Iris data in two different
ways. First, we use eigendecomposition of the covariance
matrix:

Ks = np.cov(Ds)

lams, Us = la.eigh(Ks)

lams

array([0.02085386, 0.14774182, 0.9201649 , 2.93808505])

np.round(np.cov(Us.T @ Ds), 3)

array([[ 0.021,  -0.    ,   0.   ,   0.   ],

       [-0.   ,   0.148 ,   0.   ,  -0.   ],

       [ 0.   ,   0.    ,   0.92 ,   0.   ],

       [ 0.   ,  -0.    ,   0.   ,   2.938]])

We see that the data is decorrelated, and the variances are
equal to the eigenvalues of the covariance matrix. We could
again use this in PCA and plot the highest variance
components, but the result looks similar to that when the data
is not standardized. Thus, this is left as an exercise for the
reader.

Now let's apply the SVD to the data and then use the US

matrix to transform the standardized data:



Usvd, Ssvd, Vsvd = la.svd(Ds)

 

 

np.round(np.cov(Usvd.T @ Ds), 3)

array([[ 2.938,   0.   ,  -0.    ,   0.   ],

       [ 0.   ,   0.92 ,   0.    ,   0.   ],

       [-0.   ,   0.   ,   0.148 ,  -0.   ],

       [ 0.   ,   0.   ,  -0.    ,   0.021]])

The data is again decorrelated, and the variances are equal to
the eigenvalues of the covariance matrix. However, the
ordering of the output features is changed from that using
eigendecomposition of the covariance matrix.

When using NumPy's la.svd(), the singular values are sorted in
descending order. This makes it easy to apply PCA by preserving
the first features in the data. (For la.eigh(), the eigenvalues are in
increasing order, and the eigenvalues for la.eig() are not
necessarily ordered.)

As simple as KLT/PCA is, we can also perform it directly using
the PCA class from scikit-learn's decomposition module.

Example 6.22: Performing KLT/PCA Using scikit-

learn

The code below shows how to apply PCA by creating an
object of the PCA class and then transforming the data using
the fit_transform() method. Keep in mind that if each column



corresponds to a data point, then the data matrix needs to be
transposed at the input and output of this method.

from sklearn.decomposition import PCA

 

 

pca = PCA()

Ds_pca = pca.fit_transform(Ds.T).T

np.round(np.cov(Ds_pca), 3)

array([[ 2.938,   0.     ,   0.    ,   0.   ],

       [ 0.   ,   0.92   ,  -0.    ,  -0.   ],

       [ 0.   ,   -0.    ,   0.148 ,  -0.   ],

       [ 0.   ,   -0.    ,  -0.    ,   0.021]])

The result matches that from using the SVD, and is equivalent
to the result from using the modal matrix of the covariance
matrix.

Terminology review and self-assessment questions

Interactive flashcards to review the terminology introduced in this
section and self-assessment questions are available at la4ds.net/6-
4, which can also be accessed using this QR code:

http://la4ds.net/6-4




6.5 Chapter Summary

In this chapter, I introduced the concepts of universal and set-
specific bases for collections of vectors and showed the power of
projecting data onto different bases. First, I showed how to create
a sinusoidal basis for n-vectors using the DFT matrix, and we
applied this to determine the frequency of a person's heartbeat
captured from an electrocardiogram (ECG). Next, I showed how to
find a set-specific basis using the Gram-Schmidt procedure, and
we investigated the application of this to determining the
transmitted signal from a noisy received signal in a digital
communication system. Finally, I showed how we can transform a
data set to make the features uncorrelated and to identify the
maximum-variance features that can be created using linear
combinations of the input features. This is often used in principal
components analysis (PCA), which is a dimensionality reduction
technique. Multiple approaches to achieve this were shown using
eigendecomposition, singular-value decomposition, and the PCA

class from scikit-learn. We applied PCA to visualize the four-
dimensional Iris data set by plotting the two features with highest
variance after decorrelation.

Access a list of key take-aways for this chapter, along with
interactive flashcards and quizzes at la4ds.net/6-5, which can also
be accessed using this QR code:

http://la4ds.net/6-5
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