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Preface

Linear algebra is linear algebra is linear algebra. So why does the title

refer to data science? The answer is that the content of this text is what

I believe is what students in data sciences need to know. I tried not to

put here what I believe they can do without. Moreover, when exposing

students to the notation for vectors and matrices, I am avoiding using

physical interpretations such as forces. Best for data sciences students to

have in mind an array with figures when they visualize a vector. Likewise,

for a matrix.

Having said that, by glancing through the table of content, it is pos-

sible to see that the text deals with what appears in many text books:

vectors and matrices, linear subspaces, Gram–Schmidt process, projections

and least squares, linear functions, systems of linear equations, QR factor-

ization, inverses and pseudo inverses, determinants, eigensystems, symmet-

ric matrices, singular value decomposition and finally stochastic matrices.

I would like to mention that complex variables are not dealt with here as

I do not find them essential at this stage and may lead to an unnecessary

distraction. Good students can fill the gap for more specialized topics in

case it is needed at later stages of their studies.

With the exception of Chapter 12, besides high school algebra, there are

minimal prerequisites for this text. The text refers a few times to the sta-

tistical concepts of (empirical) mean, variance and covariance. There is no

need for prior exposure to linear regression. With a few exceptionsa, there

is no assumption for any previous knowledge in calculus. Some ease with

polynomials is required for Chapter 9. Chapter 12 deals with stochastic

aExample 3 in Chapter 1, Example 1 in Section 2.4, Section 3.3, a proof in Section 10.1
(which can be skipped) and the use of basic limit results in Chapter 12.

xi



xii Linear Algebra for Data Science

matrices. Some knowledge in elementary probability is required there and

admittedly without completing a basic course in probability, the content of

this chapter may appear as not having sufficient motivation. It is also the

only chapter where some results are left unproved.

This text is based on a course I delivered to second year bachelor stu-

dents at the Department of Statistics and Data Science at the Hebrew

University of Jerusalem in 2019–2020. It is mostly based on what I devel-

oped throughout many years of teaching statistics and operations research

on what are the essentials in linear algebra for these students, and moreover

what are the non-essentials, we can do without. I would like to mention the

text [3]. I have learned much from it. Sections 6.1–6.3 and Section 7.1 are

heavily based on it.

I was not alone in this project. Much thanks are due to Rachel Buchuk

who was my teaching assistant when this course was given. Many of the

exercises given here were dealt with in her tutorials. Yonathan Woodbridge

was in charge of the solutions given throughout this text. The high quality

of his solutions and presentation is clearly noticeable. He also made many

comments on the text itself. Zhenduo Wen did a nice work in constructing

all the illuminating depictions. Niv Brosh went over the text and made

many corrections and suggestions. Special thanks go to Tali Gat-Falik who

proof-read the text meticulously. Of course, all errors are mine. Financial

support by the Israel Science Foundation (ISF), grant no. 1512/19, is highly

appreciated.
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Chapter 1

Vector Algebra

1.1 Definition of Vectors

As in elementary school we need to get used to real numbers, here we need

to internalize the concept of vectors. Do not belittle what you have learned

in elementary school: the zero (“having nothing”) is not a trivial concept,

let alone the negative numbers (“having minus two eggs”).

We define a vector as an array with a number of entries, each of which

is a real number. We usually denote vectors by lower case letters such as,

u, v or x. The number of entries in the vector is called its dimension and

in the case where the dimension of v is n, we say that v ∈ Rn. The order

in which these n numbers are put matters, and when we write vi we point

to the ith entry, sometimes referred to as the ith component.

Example 1. Let

v =

⎛
⎜⎜⎜⎜⎝

4

−2
3

0

⎞
⎟⎟⎟⎟⎠.

Then, v ∈ R4 and, for example, v1 = 4.

At times the entries of a vector will be measured with some unit of mea-

surement such as meters, dollars or hours. Although technically possible,

sums of the type vi + vj when ui and uj are measured with different units

leads to some meaningless numerical value. On the other hand, in case of

a common unit, ui + uj is also measured with this unit.

The zero vector is as expected a vector where all its entries are zeros. It

is denoted by 0. In general, any vector where all its entries are equal to a

3
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constant a, will be denoted by a. A unit (or elementary) vector is a vector

where one entry is equal to 1, while the rest of the entries are equal to

0. Among the set of vectors of dimension n, there are n unit vectors. We

denote by ei the ith unit vector, namely the unit vector whose 1 appears

at the ith entry, 1 ≤ i ≤ n. In short, for an n-entry vector,

(ei)j =

{
1 1 ≤ j = i ≤ n

0 1 ≤ j �= i ≤ n.

For example, the unit vector e2 ∈ R4 is

e2 =

⎛
⎜⎜⎜⎜⎝

0

1

0

0

⎞
⎟⎟⎟⎟⎠.

Example 2. A polynomial is a function P (x) : R1 → R1, such that for

some vector a = (a0, a1, . . . , an) ∈ Rn+1, P (x) = Σn
i=0aix

i. Thus, there

is a one-on-one correspondence between n-degree polynomials and vectors

a ∈ Rn+1.

1.2 Vector Operations

We next define some algebra of vectors.

Scalar multiplication. A vector v ∈ Rn can be multiplied by a real

number, referred in this context as a scalar α, and hence αv is a vector

whose ith entry equals αvi, 1 ≤ i ≤ n. See Fig. 1.1.

Vector summation. Vectors can be summed-up but only if they are of the

same dimension: For u, v ∈ Rn, (u + v)i = ui + vi, 1 ≤ i ≤ n. Otherwise

vector summation is not well-defined. Note that v − u, which is vector

subtraction, is in fact u+ (−1× v). See Fig. 1.2.

Linear combination. Of course, (αu+ βv)i = αui + βvi, 1 ≤ i ≤ n. The

vector αu+βv is said to be a linear combination of u and v with coefficients

α and β, respectively. Of course, we can add more than two vectors. Also,
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Figure 1.1. Multiplication of a vector by a positive scalar (left), and a negative scalar
(right).

Figure 1.2. Vector summation (left), and subtraction (right).

observe that any vector v ∈ Rn is a linear combination of the n unit vectors.

Indeed,

v =

n∑
i=1

viei.

Exercise 1.1

Define the vectors: u = (2,−7, 1), v = (−3, 0, 4), w = (0, 5,−8).
Calculate: (a) 3u− 4v (b) 2u+ 3v − 5w
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Exercise 1.2

Find x and y that satisfy:

(a) (x, 3) = (2, x+ y) (b) (4, y) = x(2, 3)

Inner product. Vectors multiplication is a less obvious concept. We next

define the inner (or dot) product between two vectors.

Definition

Definition 1.1. For two vectors u, v ∈ Rn, define a scalar (number)

as their inner prod, and denote it by utv,

utv =
n∑

i=1

uivi. (1.1)

Note that the inner product is not well-defined for two vectors who do

not have the same dimension. It is easy to see that (v + u)tw = vtw+ utw

and that for a scalar a, (av)tu = a(vtu).

Example 1 (Descriptive statistics). Let x ∈ Rn. We denote by x the

(arithmetic) mean of the entries in x, namely x = 1
nΣ

n
i=1xi. Then, x =

1
nx

t1. Note that x ∈ Rn is the vector with all its entries equal the constant

x. Hence, it is possible to see that

Cov(x, y) =
1

n

n∑
i=1

(xi − x)(yi − y) =
1

n
(x− x)t(y − y)

=
1

n
(xty − nx× y − ny × x+ nx× y)

=
1

n
xty − x× y =

1

n
xty − 1

n
xt1× 1

n
yt1.

In particular,

Var(x) = Cov(x, x) =
1

n
(x− x)t(x− x) =

1

n
xtx− x2

=
1

n
xtx− 1

n

(
xtx− 1

n
(xt1)2

)
.

Example 2 (Evaluating polynomials). For the polynomial P (x)

assume that there exists for some a ∈ Rn+1 with a = (a0, a1, . . . , an),



Vector Algebra 7

such that P (x) = Σn
i=0x

i. Then, for any scalar x, P (x) = atv, where

v = (1, x, x2, . . . , xn).

Example 3 (Taylor expansion). Let f(x) : Rn → R1 be a real func-

tion. The vector of its partial derivatives, known as the gradient, is usually

denoted by ∇f(x) ∈ Rn. Thus, the first order (sometimes called the linear)

approximation of f(x) around the point x0 is

f(x) ≈ f(x0) +∇f(x0)
t(x− x0). (1.2)

1.3 Norm of a Vector and Orthogonality

Note that vtu = utv and if 1 is a vector of 1’s, then vt1 = Σn
i=1vi. Also

the mean value of the entries in v is 1
nv

t1. There is a special interest in

the square root of the inner product of a vector with itself. It is denoted

by ||v||, called the norm of v and is defined as
√∑n

i=1 v
2
i .

a Note that the

norm preserves the unit of measurement of the entries of v: If vi is measured

in meters, 1 ≤ i ≤ n, then the same is the case for ||v||. Also note that
1√
n
||v − 1

nv
t1|| returns SD(v), the standard deviation of the entries of v.

Three properties of the norm are mentioned below. The first two are

trivial. The third will be argued for later.

• ||v|| = 0 if and only if v = 0

• for any scalar α, ||αv|| = |α|||v||
• the triangle inequality:

||v + u|| ≤ ||v||+ ||u||. (1.3)

Remark. When one looks at the definition of the norm of a vector, one feels

that it summarizes in one number its magnitude. This fact is reinforced

by the second bullet above: when all entries are, for example, doubled,

then the same is the case with the norm. On the other hand, by dividing

all the entries of a vector by its norm, one gets a vector whose norm equals

one. The resulting vector, called the normalized vector, can be said to be

without magnitude as only the proportions between the original entries are

preserved. Put differently, its entries are free of a unit of measurement.

It is hence possible to look at u/||u|| as the direction of the vector u. In

particular, it is possible that two vectors are different (in norm) but equal in

aSometimes this norm is called the Euclidean norm in order to disassociate it with
other norms. There will be no ambiguity in this text so no further reference to Euclidean
norm will be made.
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their direction. Also, this definition allows size comparison between vectors

only when their direction is of concern.

Definition

Definition 1.2. Two vectors u and v are said to be orthogonal if

utv = 0.

The following exercises and their solutions appear in [8].

Exercise 1.3

Normalize the following vectors: (a) u = (−3, 4) (b) v = (4,−2,−3, 8)
(c) w = (12 ,

2
3 ,− 1

4 )

Exercise 1.4

For every u, v, w ∈ Rn and k ∈ R prove:

(a) (u+ v)tw = utw + vtw (b) (ku)tv = k(utv) (c) utv = vtu

Exercise 1.5

Find k such that the following vectors are orthogonal: u = (1, k,−3), v =

(2,−5, 4).
We next state the famous Pythagoras theorem.

Theorem

Theorem 1.1. The two vectors u and v are orthogonal if and

only if

||v + u||2 = ||v||2 + ||u||2.

Proof.

||v + u||2 = (v + u)t(v + u) = vtv + vtu+ utv + vv

= vtv + 2vtu+ utu = ||v||2 + 2vtu+ ||u||2

which indeed equals ||v||2 + ||u||2 if and only if v and u are orthogonal. �
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We next state another almost as famous theorem: Cauchy–Schwarz

inequality.

Theorem

Theorem 1.2. For any pair of non-zero vectors u, v ∈ Rn,

|vtu| ≤ ||v||||u||. (1.4)

Moreover, equality holds if and only if there exists some scalar x

such that v = xu.

Proof. First consider the following quadratic function of x:

||xu+ v||2 = ||u||2x2 + 2utvx+ ||v||2. (1.5)

Since it is a non-negative function, we get that 4(utv)2 ≤ 4||u||2||v||2,b
which is equivalent to |vtu| ≤ ||v||||u||, as required. Getting equality means

that there exists an x such that ||xu+v||2 = 0 or xu+v = 0. This completes

our proof. �

Remark. From inequality (1.4) we learn that

−1 ≤ vtu

||v||||u|| ≤ 1. (1.6)

The right (left, respectively) inequality is tight when u and v come with

the same (opposite, respectively) direction, namely u = αv for some a > 0

(α < 0, respectively). Moreover, the ratio equals zero if and only if the two

vectors are orthogonal. Hence, this ratio can be defined as a measure of

how close the directions of v and u are. An equivalent measure is to look

at

θ = arc cos
vtu

||v||||u|| , 0 ≤ θ ≤ π, (1.7)

as the angle between the two vectors. Indeed, given two vectors, θ is a

function only of their directions. Indeed, θ = π/2 (90 degrees) if the two

vectors are orthogonal, it equals θ = 0 when they share the same direction

and θ = π (180 degrees) when their directions are strictly opposing each

other.

bA reminder: a quadratic function ax2 + bx+ c with a > 0 is non-negative for any x
if and only if b2 − 4ac ≤ 0.
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Example (Descriptive statistics). Let x, y ∈ Rn. Invoking Inequal-

ity (1.6) to the two vectors u = x− x and v = y − y, we conclude that

−1 ≤ Corr(x, y) ≤ 1,

where Corr(x, y) = Cov(x,y)

SD(x)SD(y)
. In particular, Corr(x, y) = 0 if and only if

x− x and y − y are orthogonal.

Remark. Assuming both v and u are vectors where the means of their

entries equal zero, we can see that Inequality (1.6) implies the well-known

fact that the correlation between two variables is a fraction between −1
and 1. As the absolute value of the correlation in invariant with change of

scale, this inequality holds for vectors which are not necessarily centered at

zero.

We are now ready to prove the triangular inequality.

Proof of Inequality (1.3). We will show the equivalent inequality, that

is that

||v + u||2 ≤ (||v||+ ||u||)2.

Indeed, the left-hand side equals

||v||2 + 2vtu+ ||u||2,

while the right-hand side equals

||v||2 + 2||v||||u||+ ||u||2.

Invoking Cauchy–Schwarz inequality (see (1.4)), concludes the proof. Note

that we can also learn from the above proofs that an equality holds in (1.3)

if and only if v = αu for some positive α.

The definition of the norm of the difference between two vectors resem-

bles that of a distance between them. Indeed, ||v − u|| is positive unless

u = v, in which case it equals zero. This can be seen even further with the

following version of the triangle inequality.

Theorem

Theorem 1.3. For any three vectors v, u, w ∈ Rn,

||u− v|| ≤ ||u− w||+ ||w − v||.
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Proof. Note that

v − u = (v − w) + (w − u).

The rest now follows from (1.3). �

1.4 Projecting One Vector on Another

Our final concept to be introduced in this chapter is that of a projection of

one vector on another.

Definition

Definition 1.3. Assume v and u to be two non-zero vectors in Rn.

Let

x∗ = argmin
x∈R
||v − xu||. (1.8)

Then x∗u is called the projection of v on (or along) u and it is

denoted by Pu(v). The vector v − x∗u is called the residual of the

projection.

A hidden assumption in the above definition is that x∗ is uniquely

defined. This is indeed the case as the following theorem says.

Theorem

Theorem 1.4. x∗ as defined in (1.8) is unique. Moreover, it equals
vtu
||u||2 . Also, the projection of v on αu is invariant with respect to

α �= 0. In other words, Pαu(v) is not a function of α �= 0. Finally,

Pu(v) and v − Pu(v), namely the projection and its residual, are

orthogonal.

Proof. The quadratic function in x, ||v − xu||2, equals ||u||2x2 − 2vtux+

||v||2. This function has a unique minimum at x∗ = vtu
||u||2 . Regarding the

invariance with respect to α �= 0, by inspecting x∗ it is easy to see that as
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long as α �= 0, the projection of v on αu,

vtαu

||αu||2αu,

is not a function of α. Finally,

(v − x∗u)tx∗u = x∗(vtu− x∗||u||2) = x∗
(
vtu− vtu

||u||2 ||u||
2

)
= x∗0 = 0,

as required. �

From this theorem we can see that if ||u|| = 1 (which can be assumed

without loss of generality as far as the projection and its residual are of

concern), we get that the projection of v on u is (vtu)u and its residual

equals u− (vtu)u.

Consider the following two extreme cases. Firstly, if v = αu for some

value of α �= 0, we get that v and v’s projection on u coincide. The residual

then equals the zero vector. In particular, the projection of the projection is

the (original) projection, or Pu(Pu(v)) = Pu(v). Secondly and at the other

extreme, it is easy to see that the projection equals zero (or more loosely

said, does not exist) if and only if v and u are orthogonal. Finally, recall

that the norm of the difference between two vectors has the interpretation

of the distance between them. Then, Pu(v) is the closest vector to v among

all the vectors of the type αu, α �= 0.

Exercise 1.6

Given the vectors a = (2, 5.1, 7), b = (−3, 6.2, 4).
(a) Calculate ‖a− βb‖2 for β = 2 and β = 0.5.

(b) Find β which minimizes the above norm.

(c) Find the projection of a on b and its residual.



Chapter 2

Linear Independence and Linear Subspaces

2.1 Linear Independence

The concept of linear combination of a number of vectors was defined in the

previous chapter. In this chapter we ask whether or not a given vector can

be presented as a linear combination of a given set of vectors. Moreover,

in the case where the answer is positive, the next question is whether or not

the set of corresponding coefficients (the alphas) is unique or not. Towards

this end, we need to define the concept of linear independence among a set

of vectors.

Theorem

Theorem 2.1. Let v1, v2, . . . , vk be a set of k non-zero vectors in

Rn. The following are equivalent:

1. The unique way to express the zero vector as their linear combi-

nation is the trivial one. In other words, if Σk
i=1αiv

i = 0, then

αi = 0, 1 ≤ i ≤ k.

2. None of these k vectors can be expressed as a linear combination

of the other k − 1 vectors. In other words, for any i, there do

not exist k − 1 scalars α1, α2, . . . , αi−1, αi+1, . . . , αk, such that

vi = Σi−1
j=1αjv

j +Σk
j=i+1αjv

j, 1 ≤ i ≤ k.

13
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Theorem

Theorem 2.1. (Continued)

3. If a vector v ∈ Rn can be expressed as a linear combination of

this set of vectors, this can be done in a unique way. In other

words, if

k∑
i=1

βiv
i =

k∑
i=1

αiv
i,

then βi = αi, 1 ≤ i ≤ k.

Proof. Suppose condition 1 does not hold. Then, for some αi, 1 ≤ i ≤
n, not all of which equal to zero, 0 = Σk

i=1αiv
i. This implies that there

exists at least one (in fact, two) such non-zero α’s, say αi. Then, −αiv
i =

Σi−1
j=1αjv

j +Σk
j=i+1αjv

j , or

vi =

i−1∑
j=1

−αj

αi
vj +

k∑
j=i+1

−αj

αi
vj ,

namely condition 2 does not hold. In this case, we have just stated also a

counter-example for condition 3, which hence does not hold: the vector vi

is expressed as two linear combinations of vectors in this set (one of which

is trivial: itself). Finally, if condition 3 does not hold then

0 =

k∑
i=1

(αi − βi)v
i,

thereby violating condition 1, as αi − βi �= 0 for at least one index for i,

1 ≤ i ≤ k. �

Definition

Definition 2.1. A set of vectors v1, v2, . . . , vk is said to be linearly

independent if one (and hence all) of the conditions detailed in The-

orem 2.1 holds.
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Note that the vector 0 cannot be a member of a set of linearly inde-

pendent vectors. Also, if a set of vectors are linearly independent then the

same is the case with any subset thereof.

Example 1. Any two non-zero vectors in Rn are linearly independent,

unless each one of them is a scalar multiplication of the other.

Example 2. The set of n unit vectors ei ∈ Rn, 1 ≤ i ≤ n, are linearly

independent.

See Figs. 2.1 and 2.2 for an illustration of linear dependence and inde-

pendence.

Figure 2.1. Not linearly independent vectors.

Figure 2.2. Linearly independent vectors.
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2.2 Linear Subspaces

A word on terminology. We introduced below the concept of subspace while

not saying first what a space is. The reason is that we try to keep the

terminology in line with what is usually used elsewhere but without going

through the concept of a space, which for this text is not needed. The same

can be said on the word “linear”: all subspaces we deal with in the sequel

are linear. In doing that we go half-way [3], who refrained from using the

terminology of subspaces.

Definition

Definition 2.2. A set of vectors V ⊆ Rn is said to be a linear

subspace of Rn if it is not empty and if for any pair of vectors

v, u ∈ V and for any pair of scalars α and β,

αv + βu ∈ V. (2.1)

We state a few immediate observations. The first is that the zero vec-

tor is a member of any linear subspace. Put differently, the participation

of the zero vector in a linear subspace is a necessary and sufficient condi-

tion for its non-emptiness. The second is that unless the zero vector is the

only vector in V , V contains an infinite number of vectors. The third is

that (2.1) generalizes to any larger linear combination: If v1, . . . , vk ∈ V ,

then Σk
i=1αiv

i ∈ V for any set of k scalars αi, 1 ≤ i ≤ k.

Example 1. Rn itself is a linear subspace.

Example 2. Let v1, . . . , vk ∈ Rn. Then the set of all of their linear com-

binations, Σk
i=1αiv

i, is a linear subspace.

Example 3. Let V 1, V 2 ⊆ Rn be two linear subspaces. Then, V 1 ∩ V 2 is

a linear subspace but this is not necessarily so for V 1 ∪ V 2.

Example 4. Consider the following set of two linear equations:

3x1 − 2x2 + 4x3 = 0,

−x1 + 3x2 − 2x3 = 0.

Note that both entries in the right-hand side are zero and this is not coin-

cidental. The first thing to observe is that the zero vector, (x1, x2, x3) =

(0, 0, 0) obeys the set of equations, making the solution set not empty.

Second, it is a simple exercise to check that if two vectors in R3 solve
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them, then the same is the case with respect to any linear combina-

tion of them. Thus, the solution set of this set of equations is a lin-

ear subspace of R3. Note that had the right-hand side come with some

non-zero entries, this fact would not be true. In particular, the zero vec-

tor would not be a solution any more. Thus, having zeros on the right-

hand side here is critical for having a linear subspace as its solution

set. The importance of this can be deduced from the fact that such a

set of linear equations has a special title: homogeneous equations. More-

over, any set of equations has its counterpart in homogeneous equations.

They are the equations which results from replacing the original right-

hand side with a zero right-hand side. For example, consider the set of

equations

3x1 − 2x2 + 4x3 = 1,

−x1 + 3x2 − 2x3 = 2.

Let x ∈ R3 be a solution. (we do not claim here that such a solution

exists, although this is true for this set: for example, x = (−1/7, 9/7, 1)
is a solution.) Then if y is a solution to the corresponding homogeneous

equations (for example, y = (−8/7, 2/7, 1)), then x+y (for example, x+y =

(−9/7, 11/7, 2)) also solves them. The converse is also true: if z is another

solution to the non-homogeneous set (again we do not claim its existence),

then x − z is a solution to the homogeneous version. Needless to say, all

stated here holds for any set of linear equations. This is summarized in the

next theorem.

Theorem

Theorem 2.2. Let x be a solution to a set of linear equations. Then

the same is the case for x + y if and only if y is a solution to its

homogeneous version.

Note that the theorem does not assume the existence of such a solution.

Example 5. Recall the one-on-one correspondence between n-degree poly-

nomials and vectors in Rn, detailed in Example 2 in Section 1.2. It is

hence possible to say, when the focus is on the coefficient vectors of

the polynomials, that the n-degree polynomials form a linear subspace

of Rn+1.
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Exercise 2.1

Prove that all vectors which are orthogonal to a given vector v form a linear

subspace.

Exercise 2.2

Let V1, V2 be three linear subspaces of Rn.

(a) Prove that the intersection of V1 and V2 form a linear subspace.

(b) Show by a counter-example that the union of V1 and V2 does not nec-

essarily form a linear subspace.

2.3 Bases and Dimension

In the case where V = {0} we define the dimension of V as zero. Otherwise,

let v ∈ Rn be a non-zero vector. If you consider all the vectors of the form

αv, namely when you run through all possible scalars α, you can see that

you have generated a linear subspace.a We then say that the resulting linear

subspace is spanned by v. Suppose now that another non-zero vector u ∈ R

is appended to v. Now consider all vectors of the type αv+βu. Here too you

can observe that a linear subspace is formed. For the case where u = αv for

some α this linear subspace coincides with the previous one. Otherwise it

is larger and is called the subspace which is spanned by v and u. Note that

in the latter case, u and v are linearly independent. Consider now a third

non-zero vector w ∈ Rn and look at all vectors of the shape αv+ βu+ γw.

Again, if w itself is not already in the linear subspace spanned by v and

u, namely there are no α and β such that w = αv + βu, or put differently,

the set of three vectors {v, u, w} are linearly independent, a larger linear

subspace is formed.

Can we always add more and more vectors and get larger and larger

linear subspaces? The answer is no. For example, if you consider the set

of unit vectors {ei}ni=1, then any vector in Rn can be expressed as a linear

combination of this set. Indeed for any v ∈ Rn, v = Σn
i=1viei, and hence

no extra vectors can be generated via linear combinations when any v is

added to the set of unit vectors.

aTechnically speaking, this observation also holds for the zero vector but the generated,
trivial, linear subspace is not of our interest and for convenience is excluded.
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Figure 2.3. Linear span.

Definition

Definition 2.3. Let v1, . . . , vk be a set of non-zero vectors in Rn.

Consider the linear subspace

V =

{
v ∈ Rn|v =

k∑
i=1

αiv
i, {αi}ki=1

}
.

V is called the linear subspace spanned by the v1, . . . , vk and is

denoted by span{v1, . . . , vk}

Note that when considering the above set of vectors, we did not assume

that they are linearly independent. Indeed, we can see that if they are not,

then at least one vector from this set of vectors can be expressed as a linear

combination of the others. This vector can be deleted from this set without

harming the capacity of the set to generate vectors via linear combinations.

By the same token, we can see that if they are linearly independent, then

removing any of the vectors, say v1, will reduce the set of vectors that can

be generated. For example, v1 cannot be generated by the others and if it

is removed from the set {vi}ki=1, the set of vectors generated by their linear

combination is now reduced. This is not only due to the absenteeism of

v1 itself or any of its scalar multiplications, but also of those generated by

adding vectors of the shape αv1 to all vectors in span{v2, . . . , vk}.
Of course, even if a linear subspace is defined as the span of a number

of vectors, a different set of vectors can span the same linear subspace. For
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example, v1 can be replaced by αv1 for any α �= 0. Also, if v1 and v2 are

linearly independent, then any one of them (but not both) can be replaced

with any vector of the shape αv1 +βv2 for any non-zero pair of coefficients

α and β.

Consider again the linear subspace span{v1, . . . , vk}. As said, if the

set of vectors {vi}ki=1 are not linearly independent, one vector from this

set can be removed while the remaining subset still spans the same lin-

ear subspace. Assume this is the case and without loss of generality the

vector to be removed is vk. We like to note in passing, that if one vec-

tor can be removed, then there is at least one other vector which can be

removed instead. We can remove any one of them we wish but not necessar-

ily both. Thus, span{v1, . . . , vk−1} = span{v1, . . . , vk}. Suppose this pro-

cess of eliminating vectors goes on and on. Of course, it needs to be ended

after a finite number of steps, always leaving the final set not empty. Thus,

maybe after reordering the indices of the vectors, for some l, 1 ≤ l ≤ k,

span{v1, . . . , vl} = span{v1, . . . , vk},
where {vi}li=1 are linearly independent. This set of vectors is called a basis

for the linear subspace span{v1, . . . , vk}. As said, each time the process is

iterated, we have some freedom in selecting the vector to be removed. The

choices we make affect the terminal set of linearly independent vectors. As

we claim below, the size of the terminating set, denoted here by l, does not

depend on the selection of the removed vectors and hence it is a property

of the linear subspace span{v1, . . . , vk} itself. The value of l is called the

dimension of the linear subspace spanned by a number of vectors.

From now on throughout this text we deal only with linear subspaces

which are spanned by a number of vectors and thus for a linear subspace

V of dimension �, we denote:

dim(V ) = �.

The terminating set of vectors is said to be the basis of span{v1, . . . , vk}.
We, of course, by no means claim that the basis is unique.

Definition

Definition 2.4. A set of vectors v1, . . . , vk is called a basis for a sub-

space V if they are linearly independent and if V = span{v1, . . . , vk}
can be expressed as their linear combination.
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In other words, a set of linearly independent vectors forms a basis for

the subspace they span.

Theorem

Theorem 2.3. Let {vi}ki=1 and let {ui}li=1 be two sets of linearly

independent vectors. Suppose both span (and hence they are bases

of) the same linear subspace of Rn. Then k = l.

Proof. Aiming for a contradiction, assume without loss of generality that

k < l. Consider the vector u1. Since it is in the linear subspace, it can be

expressed as a linear combination of {vi}ki=1. Thus, we can replace one of

the v vectors in the former basis by u1 and keep the resulting set of vectors

as a basis. Note that the replaced one can be any vector in the former

basis whose coefficient in expressing u1 as a linear combination of {vi}ki=1

is non-zero. Assume without loss of generality that the replaced vector is v1.

Thus, (u1, v2, v3, . . . , vk) is also a basis. Consider now u2. It can also be

expressed as a linear combination of this set. True, it is possible that some

of the coefficients in this expression are zeros, but it is impossible that this

is the case for all v2, v3, . . . , vk due to the independence of {ui}li=1. Thus,

u2 can replace one of the vectors in v2, v3, . . . , vk, say v2, but still a basis

is formed. Thus, (u1, u2, v3, . . . , vk) is a basis too. This process can go on

and end with (u1, u2, u3, . . . , uk) which is hence a basis. In particular, uk+1

can be expressed as a linear combination of (u1, u2, u3, . . . , uk). This is a

contradiction to the assumption that {ui}li=1 is a basis. �

The following theorem is now immediate.

Theorem

Theorem 2.4. Rn = span{ei, 1 ≤ i ≤ n}. In particular, the set

of elementary vectors forms a basis for Rn and hence its dimension

equals n. Moreover, any set of n + 1 non-zero vectors in Rn are

not linearly independent. Also, any linear subspace of Rn is with a

dimension less than or equal to n.

The set of unit vectors is called the elementary basis for Rn. Of

course, there are other possible bases. One of interest is {fi}ni=1, where

fi = Σi
j=1ej , 1 ≤ i ≤ n. For a proof see Exercise B.4.
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Note that the definition above does not claim the existence of a basis

for any given arbitrary subspace. Yet, this is so far argued for only for

subspaces which were defined as the span of a given set of vectors. Toward

this end, note that the process of forming a basis stated above can be

reversed. Specifically, let V ∈ Rn be linear subspace. For example, it can

be the solution to a set of homogeneous linear equations. Look for a non-

zero vector in this subspace and initiate the basis with it. Then look for

another vector which is not a scalar multiplication of the first vector and

add it to the basis. If such a vector does not exist, you are done. Otherwise,

move on and on, each time adding a vector which is not a linear combination

of the previous ones. As we argue below this process stops after a finite

number of steps. The number of steps is invariant to the vectors which were

selected to be added to the set, and as you may recall, it is the dimension

of the subspace.

Exercise 2.3

We are given n vectors x1, . . . , xn ∈ Rn which are all non-zero, such that

x1, . . . , xn−1 are linearly independent. Prove that the vectors x1, . . . , xn

are linearly independent if and only if xn cannot be written as a linear

combination of x1, . . . , xn−1.

Exercise 2.4

Let V,W be linear subspaces of Rn.

(a) Define V +W = {v + w|v ∈ V,w ∈ W}. Prove that V +W is a linear

subspace.

(b) Prove that if V and W don’t have any common element except for the

zero vector, then dim(V +W ) = dim(V ) + dim(W ).

Exercise 2.5

Prove that the set of vectors {fi}ni=1, such that fi ∈ Rn and fi = Σi
j=1ej,

1 ≤ i ≤ n, forms a linear basis of Rn.

2.4 Projections on Subspaces

Our final point here deals with projections. You may recall our definition

of the projection of a vector on another; see (1.8). As was shown there the
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projection is invariant with respect to a scalar multiplication of the vector

one projects on. Using this section terminology, we can see that when we

defined the projection of v on u, we in fact have defined the projection of v

on the linear subspace spanned by u. This definition can now be extended

to the projection of a vector on any linear subspace.

Definition

Definition 2.5. Let v ∈ Rn be a vector and let V ⊆ Rn be a linear

subspace. Then, the projection of v on V is defined by

argmin
u∈V
||v − u||.

In words, it is the closest vector to v among the vectors in V .b In

particular, if V = span{vi, 1 ≤ i ≤ k}, then the projection of v on

V is Σk
i=1α

∗
i v

i, where

(α∗1, . . . , α
∗
k) ∈ arg min

α1,...,αk

||v −
k∑

i=1

αiv
i||.

bWe later argue that there exists a unique such vector.

Figure 2.4 illustrates a vector projection. Note that if {vi}ki=1 are lin-

early independent, namely they constitute a basis for V , then α∗1, . . . , α
∗
k

are unique, as we will show below. As expected, v−Σk
i=1α

∗
i v

i is called the

residual and the norm of this residual is defined as the distance between

Figure 2.4. Vector projection on the two-dimensional plane.
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the vector v and the linear subspace V . Of course, the distance equals zero

in the case where v ∈ V . Also, as hinted in Fig. 2.4, the projection and its

residual are orthogonal. In fact, the residual is orthogonal to all the vectors

in V and not only to the projection. Finding this projection is not a trivial

task. We will deal with it, as well as proving all stated here, in the next

chapter.

Example 1 (Linear equations). Consider the following set of linear

equations, which is called over determined as it comes with more equations

(constraints) than unknown variables:

2x1 + x2 = 10,

x1 + 2x2 = 11,

x1 + x2 = 8.

Simple inspection shows that a solution does not exist here. For example,

you can solve by high school algebra the first two equations and get that

uniquely x1 = 3 and x2 = 4. Since 3 + 4 �= 8, there is no solution for the

whole set of three equations. A second best approach is the least squares

criterion: look for a pair of x1 and x2 that minimizes

(10− (2x1 + x2))
2 + (11− (x1 + 2x2))

2 + (8− (x1 + x2))
2. (2.2)

This question is in fact looking for the projection of the vector (10, 11, 8)

on the linear subspace spanned by the two vectors (2, 1, 1) and (1, 2, 1).

Note that the first vector comes with the constants multiplying x1, while

the second does the same with x2. Finding the projection goes as follows.

Taking derivative of (2.2) once with respect to x1 and once with respect to

x2 and equating them to zero, leads to the linear equations

6x1 + 5x2 = 39,

5x1 + 6x2 = 40,

which are solved by x1 = 34/11 and x2 = 45/11. Hence, the projection

of the right-hand side vector on the subspace spanned by the two columns

defining the three linear equations is

34

11

⎛
⎝2

1

1

⎞
⎠+

45

11

⎛
⎝1

2

1

⎞
⎠ =

1

11

⎛
⎝103

124

79

⎞
⎠.
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Note that this projection does not coincide with the right-hand side vector

and hence we conclude that a solution to this set of linear equations does

not exist.

The casting out algorithm. The above example can be useful when one

deals with the issue of finding a basis for the linear subspace defined by a

set of vectors which span it. Specifically, let vi, 1 ≤ i ≤ m, be a set of m

vectors in Rn and denote by V the linear subspace they span. Our goal is to

find a minimal subset among them which spans V as well. The procedure is

as follows. Initialize with v1 being in the basis. Then check if v1 and v2 are

such that each one of them is a constant multiplication of the other. If the

answer is yes, remove v2. Otherwise, let v2 be in the basis. From now on

(and in fact we could have done that already), assume a number of linearly

independent vectors are already in the subset. Then, check whether or not

the system of linear equations where one tries to express the next one from

this set as a linear combination of those who are already in the basis, is

feasible. As seen above this is equivalent to checking whether or not the

projection of the next vector on the subspace spanned by the former ones

coincides with the candidate-to-enter vector. If the answer is “yes”, remove

the vector under consideration. Otherwise, enter it to the basis. Note that

the above example hints to what one can actually do here: check whether

or not a system of linear equations is feasible. How this issue is treated in

general is dealt with is an issue we differ to Section 7.1. In any case, move

on and consider the next vector. Due to this additional vector, the number

of unknowns goes up by one. Note that in the case where the subset comes

with n vectors, you can stop: the dimension of V ⊆ Rn cannot exceed n.

Also, note that although the end result may depend on the order in which

the vectors are considered, this is not the case with regard to the number

of vectors there as it coincides with the dimension of V . Finally, note that

the casting out algorithm also finds the dimension of V .

2.4.1 The complementary orthogonal subspace

Let W ⊂ Rn be a linear subspace. Denote by W+ the set of vectors that

are orthogonal to all vectors is W . It is easy to check that W+ is a linear

subspace itself, called the orthogonal linear subspace of W . Note that 0 =

W ∩ W+. Above we showed that any vector v ∈ Rn can be written as

v = w+w+ where w ∈ W and w+ ∈W+. Indeed, w was the projection of

v on W and w+ was its residual. Indirectly, we were able to show that any

vector can be written as the sum of two orthoganal vectors, one at a given
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linear subspace, while the other is in the orthogonal linear space. The next

question is if this can be done in a unique way. The answer is positive:

Theorem

Theorem 2.5. Let W and W+ be orthogonal linear subspaces with

W ∪W+ = V . Then for any v ∈ V there exists a unique decompo-

sition of v such that v = w + w+, where w ∈W and w+ ∈W+.

Proof. The existence part of the theorem was in fact already established

above. Towards uniqueness, let v = w1+w+
1 = w2+w+

2 where w1, w2 ∈W

and w1,
+ w+

2 ∈ W+. Hence, w1 − w2 = w+
1 − w+

2 . Clearly, w1 − w2 ∈ W

and w+
1 − w2

2 ∈ W+. Since they are equal, they belong to W ∩W+. But

as we have observed W ∩W+ = 0. This completes the proof. �

2.5 Simple Linear Regression

Suppose m individuals were sampled for their weights yi (in kg) and for

their heights xi (in cm), 1 ≤ i ≤ m. In linear regression one looks for an

affine function y = a+ bx which represents these data well. It is too good

to be true that all m points (xi, yi), 1 ≤ i ≤ m, lie on a single line, so a

possible criterion is that of least squares, namely the search for a pair of

(a, b) which minimizes the cost function Σm
i=1(yi−a−bxi)

2 = ||y−a−bx||2.
Note that a is measured in kg while b is kg/cm. The resulting line is called

the regression line of y on x. This problem is equivalent to looking for the

projection of the vector of y′s on the subspace spanned by two linearly

independent vectors: one vector with all its entries equal one (and hence it

is a constant for every xi, 1 ≤ i ≤ n), namely 1, and another which is the

vector of the x′s. The solution for this optimization problem is as follows.

Theorem

Theorem 2.6. The regression line y = a+ bx is with a slope

b =
Cov(x, y)

Var(x)
= Corr(x, y)

SD(y)

SD(x)
(2.3)

and an intercept

a = y − bx. (2.4)



Linear Independence and Linear Subspaces 27

Proof. First, a point on notation, as y is the scalar which equals the mean

of the entries of y, then y ∈ Rm is a vector having all its entries equal to y.

A similar definition applies for x. Then,

||y − a− bx||2 = ||y − y − b(x− x)− (a− y)− bx||2,
||y − y − b(x− x)||2 + ||(a− y) + bx||2

− 2(y − y − b(x− x))t((a− y) + bx).

Since (y− y)t1 = 0 and (x− x)t1 = 0, the third entry above is a zero. The

second term is non-negative but can be optimized to zero: for any choice

of b the corresponding optimal a is a = y − bx. This proves (2.4). Hence,

our problem boils down to minimizing the first term. Now,

||y − y − b(x− x)||2 = ||y − y||2 − 2b(y − y)t(x− x) + b2||x− x||2.
This is a quadratic function in b which is easily seen to be optimized by

b =
(y − y)t(x− x)

||x− x||2 ,

which is the same as (2.3). �

Inspecting (2.4), we observe that the regression line of y on x crosses

the point (x, y), which can be looked at as the center of gravity of the

data. Hence, an alternative definition of the regression line is the line

which crosses this point, and its slope is as stated in (2.3). Finally, min-

imal algebra leads to the following equivalent statement of the regression

line:

y − y

SD(y)
= Corr(x, y)

x− x

SD(x)
.

The presentation of the regression line is behind the terminology of regres-

sion. Specifically, if an individual comes with a value of x which is k times

SD(x) away from its mean x, the regression line assigns it a value which

is only Corr(x, y)k times SD(y) away from its mean y. In other words,

its value is regressed toward the center of the y values in comparison

with the position of the x value (both measured in standard deviation

units).

We leave this chapter with a few open questions. The first: Given a

set of vectors, what is the dimension of the linear subspace they span? In

particular, are they linearly independent and if not, which proper subset or

in fact subsets of them, form a basis to the linear subspace they all span?
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The second: For a vector in the linear subspace spanned by some basis,

what are the coefficients of these vectors when this vector is expressed as a

linear combination of them? The third: Given a vector which is not in this

linear subspace, what is its projection? These questions and more will be

dealt with in coming chapters.



Chapter 3

Orthonormal Bases and the Gram–Schmidt
Process

3.1 Orthonormal Bases

At the end of the previous chapter we have addressed a number of questions

which are of interest but their solutions are not that easy. However, there

is a special case where the answer is relatively easy. This is when the basis

is formed of orthonormal vectors.

Definition

Definition 3.1. A set of k non-zero vectors {vi}ki=1 is said to be

orthogonal if (vj)tvi = 0 for 1 ≤ i �= j ≤ k. In other words, they are

mutually orthogonal. Moreover, they are said to be orthonormal if

in addition ||vi|| = 1, 1 ≤ i ≤ k.

Since we are interested in issues of linear independence, the linear sub-

space spanned by a set of vectors, or the projection of a given vector on a

linear subspace spanned by a set of vectors, there is no loss of generality in

assuming that a set of orthogonal vectors, are in fact orthonormal. Indeed,

if one of them does not come with a norm of one, just normalize it by

dividing each of its entries with its norm. As we will see below, assuming

orthonormality provides much convenience.

Theorem

Theorem 3.1. Suppose the set of non-zero vectors {vi}ki=1 are

orthogonal. Then, they are linearly independent.

29
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Figure 3.1. Orthonormal basis.

Proof. Aiming for a contradiction, assume that

0 =

k∑
i=1

αiv
i,

for some scalars αi, 1 ≤ i ≤ k, not all of which are zero. Suppose for the

index i αi �= 0. Then look for the inner product between vi with the two

sides of the above inequality. On the left we of course get the zero scalar.

Since vj and vi are orthogonal for all j �= i, on the right we get αi||vi||2
which does not equal zero. We have reached a contradiction and the proof

is hence completed. �

The following theorem says that in the case of an orthonormal basis, it

is relatively easy to find the coefficients of each vector which is known to

belong to the subspace they span. Moreover, it states a condition which

determines whether or not a given vector is in the spanned subspace.

Theorem

Theorem 3.2. Let {wi}ki=1 be a set of non-zero orthonormal vectors

in Rn and assume that v ∈ Rn lies in the linear subspace they span,

i.e., v ∈ span{w1, . . . , wk}. Then,

v =
k∑

i=1

(vtwi)wi.
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Proof. By definition,

v =

k∑
i=1

αiw
i,

for some scalars αi, 1 ≤ i ≤ k. Look for the inner product between wi and

both hand sides of this equality. You should get that

(wi)tv = αi||wi||2, 1 ≤ i ≤ k.

The fact that ||wi|| = 1, 1 ≤ i ≤ k, concludes our proof. �

As the following theorem shows, finding the projection of a given vector

on a linear subspace is straightforward when the linear subspace is defined

via an orthonormal basis. In fact, the previous theorem is already doing it

for the case where the vector and its projection coincide.

Theorem

Theorem 3.3. Let {wi}ki=1 be a set of non-zero orthonormal vec-

tors in Rn and let v ∈ Rn. Then, the projection of v on the linear

subspace spanned by {wi}ki=1 is

k∑
i=1

(vtwi)wi. (3.1)

Proof. We are in fact asked to solve the following optimization problem:

min
αi,i=1,...,k

∥∥∥∥∥v −
k∑

i=1

αiw
i

∥∥∥∥∥
2

.

Towards this end, note that∥∥∥∥∥v −
k∑

i=1

αiw
i

∥∥∥∥∥
2

= ‖v‖2 − 2
k∑

i=1

αi(v
twi) +

k∑
i=1

αi

k∑
j=1

αj(w
i)twj ,

which by the orthonormality of the vectors {wi}ki=1 reduces to

‖v‖2 − 2

k∑
i=1

αi(v
twi) +

k∑
i=1

α2
i .
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Optimizing this function, we can see that it is separable with respect to αi,

1 ≤ i ≤ k, and for each i

−2αi(v
twi) + α2

i , 1 ≤ i ≤ k

can be optimized separately. These functions are quadratic and hence the

optimizers are easily seen to equal

αi = vtwi, 1 ≤ i ≤ k,

as required. �

Note that Theorem 3.2 in a special case of the result stated in Theorem 3.3

where v lies in vspan{w1, . . . , wk}.
Recalling the definition of the projection of one vector on another (see

Theorem 1.4), we can say that the projection on a linear subspace spanned

by orthogonal vectors is the sum of the individual projections of these

orthogonal vectors.

By definition v − Σk
i=1(v

twi)wi is the residual of the projection. As

expected, the projection Σk
i=1(v

twi)wi and its residual v − Σk
i=1(v

twi)wi

are orthogonal. Of course, this property remains regardless of the basis used

for span{w1, w2, . . . , wk}. In fact, we can state an even stronger result:

Theorem

Theorem 3.4. Let {wi}ki=1 be k orthonormal vectors. Then, the

residual v−Σk
i=1(v

twi)wi and wi are orthogonal for any i, 1 ≤ i ≤ k.

Proof.

(wi)t

⎛
⎝v −

k∑
j=1

(vtwj)wj

⎞
⎠

= (wi)tv − (vtwi)(wi)twi = (wi)tv − (vtwi) = 0, 1 ≤ i ≤ k.
�

3.2 The Gram–Schmidt Process

Due to all of the above we can conclude that all is nice and smooth when the

set of vectors are orthogonal. But what can be said in the case where they

are not? This is our next issue. What we present is an algorithm whose

input is a set of (not necessarily linearly independent) non-zero vectors and
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whose output is an orthonormal basis for the linear subspace spanned by

the input vectors. As a by-product we learn what is the dimension of this

linear subspace and in particular if the set of input vectors are linearly

independent. Before formally stating the procedure, we first motivate it.

Let v and u be two linearly independent vectors. Recall that u− utv
‖v‖2 v

is the residual of the of projection of u on v. Consider an arbitrary vector

x ∈ span(v, u). Clearly, for some unique coefficients α and β, x = αv+βu.

Clearly,

x =

(
α+ β

utv

‖v‖2
)
v + β

(
u− utv

‖v‖2 v
)
.

In other words, x can be expressed as linear combination of v and the

residual of the projection of u on v, two vectors which are orthogonal.

In particular, the latter couple of vectors form an orthogonal basis for

span(v, u). Of course, they both can be normalized in order to have an

orthonormal basis for span(v, u). Note that had v and u not been linearly

independent, the residual would have been the zero vector and the second

vector in the new basis will turn out to be a zero vector. Indeed, in this

case span(v, u) = span(v).

Suppose now that you have three linearly independent vectors v, u and

w which, by definition, form a basis for span(v, u, w). Can this basis be

replaced with an orthonormal basis? The answer is yes. Specifically, for v

and u repeat what was just described above and obtain two orthonormal

vectors vor and uor such that span(vor, uor) = span(v, u). Next generate

the residual of the projection of w on span(vor, uor):

w′ = w − (wtvor)vor − (wtuor)uor.

With the help of Theorem 3.4, it is possible to see that w′ is orthogonal

to both vor and uor and hence that span(vor, uor, w) = span(vor, uor, w
′).

All that is required now is to normalize w′ to w′/‖w′‖ in order to get

an orthonormal basis. Note that had we have w ∈ span(v, u), we would

get w′ = 0. Thus, the procedure outlined here does not only derive an

orthonormal basis, but it also generates at least one zero vector when the

original set of vectors are not linearly independent. In fact, the dimension

of span(v, u, w) equals three minus the number of zero vectors generated.

As one can guess, all these can be generalized to more than three vectors

given as input. The algorithm is based on the idea that adding a vector to

a set of vectors and adding the residual of the projection of this vector on

the linear subspace spanned by this set, are equivalent in terms of the new
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spanned linear subspace. The advantage of the latter option is that it leads,

when done recursively, to an orthogonal basis. As a bonus we have in hand

a procedure which determines if a set of vectors are linearly independent

and the dimension of the linear subspace they span.

The following procedure, known as the Gram–Schmidt process, does

exactly that.

The Gram–Schmidt process: General case

Input: v1, . . . , vm, m non-zero vectors

Output: k, the dimension of span(v1, . . . , vm), and k orthonormal vectors

w1, . . . , wk which form a basis to span(v1, . . . , vm).

Initialization: k = 1, w1 = 1
‖v1‖v

1

For i = 2, . . . ,m do:

x = vi −
k∑

j=1

((vi)twj)wj

if x �= 0, then k ← k + 1 and wk = 1
‖x‖x

Proof. Note that Σk
j=1((v

i)twj)wj is the projection of vi on the current

span{w1, w2, . . . , wk} and x is its residual. Hence, each time x turns out

to be the zero vector in the above procedure, the corresponding vi vector is

a linear combination of the previous vectors v1, . . . , vi−1 and hence vi can

be dropped from the set of vectors without losing anything in terms of the

linear subspace spanned by the original set of vectors. On the other hand,

when x �= 0, this is not the case, and vi adds capacity in terms of vector

generation, leading to an increase in k. The vector x thus replaces vi in

terms of the spanned linear subspace as it is the residual of the projection

of vi on the linear subspace spanned by the previous vectors. In particular,

it is orthogonal to all of the previous vectors. Finally, replacing x with wk

is in order to have in hand norm-one vectors. �

Note that the set of k output vector is a function of the way in which the

original m vectors are ordered. Of course, the output k is invariant with

this order.

For the sake of convenience and later reference we state the procedure

for the case where the input vectors are already known to be linearly inde-

pendent. In this case the dimension of the linear subspace coincides with
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the number of vectors we have. Moreover, the generate vectors we refer to

as x in the process are never the zero vector.

The Gram–Schmidt process: Linear independent case

Input: v1, . . . , vm non-zero and linearly independent vectors

Output: m orthonormal vectors w1, . . . , wm that form a basis to

span(v1, . . . , vm).

Initialization: k = 1, w1 = 1
‖v1‖v

1

For i = 2, . . . , n do:

ui = vi −
i−1∑
j=1

((vi)twj)wj , (3.2)

and

wi =
1

‖ui‖u
i. (3.3)

Remark. By inspecting (3.2), we can see that if for some j, 1 ≤ j < i, vi

and wj are orthogonal, then nothing is “removed” from vi in the direction

of wj towards the construction of ui. The opposite is true when vi and wj

have close or almost opposite directions, namely if the angle between vi

and wj (see (1.7) for definition) is close to zero or to π.

Example. Let

v1 =

⎛
⎝1

1

1

⎞
⎠, v2 =

⎛
⎝0

1

1

⎞
⎠, v3 =

⎛
⎝0

0

1

⎞
⎠.

First,

w1 = − 1√
3

⎛
⎝1

1

1

⎞
⎠.

Second,

u2 =

⎛
⎝0

1

1

⎞
⎠− ((v2)tw1)

1√
3

⎛
⎝ 1

1

1

⎞
⎠ =

⎛
⎝0

1

1

⎞
⎠− 2√

3

1√
3

⎛
⎝1

1

1

⎞
⎠ =

1

3

⎛
⎝−21

1

⎞
⎠
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and hence

w2 =
1√
6

⎛
⎝−21

1

⎞
⎠.

Finally,

u3 =

⎛
⎝0

0

1

⎞
⎠− ((v3)tw1)

1√
3

⎛
⎝1

1

1

⎞
⎠− ((v3)tw2)

1√
6

⎛
⎝−21

1

⎞
⎠

=

⎛
⎝0

0

1

⎞
⎠− 1√

3

1√
3

⎛
⎝1

1

1

⎞
⎠− 1√

6

1√
6

⎛
⎝−21

1

⎞
⎠ =

1

2

⎛
⎝ 0

−1
1

⎞
⎠

Figure 3.2. The Gram–Schmidt process.
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and

w3 =
1√
2

⎛
⎝ 0

−1
1

⎞
⎠.

Exercise 3.1

(a) Show that the set of all vectors which are orthogonal to any vector in

a linear subspace V ⊂ Rn, is a linear subspace itself. Denote it by V +.

(b) Show that (V +)+ = V (hint: use the Gram–Schmidt process).

(c) Show that for any given vector v in Rn, the residual of its projection

on V , is the projection on V +.

Exercise 3.2

Consider R4 and the subspace V = span{v1, v2, v3}, where v1 =

(1, 1, 1, 1), v2 = (1, 1, 2, 4) and v3 = (1, 2,−4,−3). Find an orthonormal

basis for V using the Gram–Schmidt process.

3.3 Optimization Under Equality Constraints

Firstly, a reminder. Let f(x) be a function from Rn to R. Denote by

∇f(x) ∈ Rn the vector with the partial derivatives of f(x). A point x ∈ Rn

is called a stationary point of f(x) if ∇f(x) = 0. A necessary condition for

a point x0 to be a local extreme point, be it a minimum or maximum point,

is that it is a stationary point.a The reason behind that is as follows. With-

out loss of generality assume that x0 = 0 and that f(0) = 0. Then, the

linear approximations for f(x) and for f(−x) around x0 = 0 (see (1.2))

equal

f(x) ≈ ∇f(0)tx and f(−x) ≈ −∇f(0)tx,
respectively. Thus, unless ∇f(0)tx = 0 for all x ∈ Rn, the function f(x)

cannot have an extreme point at 0 as otherwise one of the above two values

would be positive while the other be negative, making the former an ascend

direction (starting at 0) and the latter a descend direction. In particular,

aThe point x0 is said to be a local minimum if there exists some ε > 0 such that
for any x ∈ Rn with ‖x − x0‖ < ε, f(x0) ≤ f(x). A similar definition exists for local
maximum.
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0 would neither be a local maximum point, nor a minimum point. Finally,

clearly, ∇f(0)tx = 0 for all x ∈ Rn if and only if ∇f(0) = 0. Indeed,

otherwise, namely had ∇f(0) �= 0, a counter example would be x = ∇f(0).
Suppose now that one wishes to find an extreme point for f(x) but

under the constraint that g(x) = 0 where g(x) is also a function from Rn to

R. Note that the zero in the right-hand side is without loss of generality.

Suppose x0 is a feasible point, namely g(x0) = 0, and now the issue is if it is

a local extreme point of f(x) or not (among the set of those points meeting

the constraint). One can move away from x0 in many directions but only

those that (locally) preserve the constraint are of interest. A first-order

approximation for g(x) around x0 is g(x0)+∇g(x0)
t(x−x0) = ∇g(x0)

t(x−
x0). Thus, if we ignore second-order terms, we are interested in x, or more

precisely, in the direction x−x0, only in the cases where∇g(x0)
t(x−x0) = 0.

Looking indeed at x− x0 as a direction denoted by d where a tiny step in

this direction does not (practically) violate the constraint, we are interested

in directions d which are orthogonal to∇g(x0), namely∇g(x0)
td = 0. Note

that the set of such directions form a linear subspace. In particular, if d

is such a direction, then the same is the case with −d. Other directions

are of no interest: In order to get a local constrained extreme point for

f(x) at x0 we need x0 to be a stationary point for f(x) but only along

such directions, directions where locally, the feasibility of x0 is preserved.

Yet, for optimality with respect to the function f , we need ∇f(x0) too to

be orthogonal to all these directions. This means that ∇f(x0) and ∇g(x0)

need to come with the same (up to a sign) direction, or equivalently put,

∇f(x0) needs to be in the linear subspace spanned by ∇g(x0).

Suppose now that there are two constraints, g1(x) = g2(x) = 0. Now

the set of directions of interest are those which are in the intersection of

the two sets when each of these functions is treated individually as done

above. Note that the intersection between two linear subspaces is a linear

subspace too but of a reduced dimension. For the latter fact to be strictly

true, we assume the technical assumption (called regularity) that ∇g1(x0)

and ∇g2(x0) are linearly independent, namely one is not a constant mul-

tiplication of the other. Now the condition for a local constrained extreme

point is that ∇f(x0) is orthogonal to all the directions which are orthogonal

to both g1(x0) and ∇g2(x0). This means that it belongs to the subspace

which is formed by all vectors that are orthogonal to all those which are

orthogonal to both ∇g(x1) and ∇g(x2). Hence, it belongs to the subspace

spanned by these two vectors. In summary, a necessary condition for x0 to

be a stationary point is that the gradient of the objective at this point lies
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in the linear subspace spanned by the gradients of the constrained func-

tions at x0 (when the latter are assumed to be linearly independent). This

is equivalent to requiring the existence of two scalars λ1 and λ2 such that

∇f(x0) = λ1∇g1(x0) + λ2∇g2(x0).

Moreover, they are unique. In the optimization terminology λ1 and λ2 are

called Lagrange multipliers or dual variables.

The above can be extended to the case of m constraints as long as

m ≤ n. The requirement that m ≤ n enables the assumption that the

m gradients ∇gi(x0), 1 ≤ i ≤ m, which are vectors in Rn, are linearly

independent. Note that the larger m is, the harder it is to have gi(x0) = 0,

1 ≤ i ≤ m, as a larger set of constraints is concerned. On the other hand,

once a point is feasible, then the larger m means the larger is the subspace

the gradients of the constraints spanned, making the existence of a set of

Lagrangian multipliers more likely. In summary,

Theorem

Theorem 3.5. Assume that x0 is a feasible point and that ∇gi(x0),

1 ≤ i ≤ m, are linearly independent. Then a necessary condition

for x0 to an extreme point, be it a minimum or a maximum, is

that ∇f(x0) lies in the subspace spanned by ∇gi(x0), 1 ≤ i ≤ m.

Equivalently, if there exist scalars λ1, λ2, . . . , λm such that

∇f(x0) =

m∑
i=1

λi∇g(xi). (3.4)

Proof. For a formal proof see, e.g., [2, pp. 350–351]. �

Example. Consider the following constrained optimization:

optimizex1,x2,x3
f(x) =

1

2
(x2

1 + x2
2 + x2

3)

s.t. g1(x) = x1 + x2 = 1

g2(x) = x2 + x3 = 1

We next prove that (1/3, 2/3, 1/3) is a stationary point. Firstly, it is easy

to check that this is a feasible point. Secondly, the gradient of the objective

function at this point is (1/3, 2/3, 1/3). Thirdly, the gradient of the first

constraint at this point (as at any other point) is (1, 1, 0) and the gradient
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of the second there is (0, 1, 1). Note that these two gradients are linearly

independent. Finally, check that⎛
⎝1/3

2/3

1/3

⎞
⎠ =

1

3

⎛
⎝1

1

0

⎞
⎠+

1

3

⎛
⎝0

1

1

⎞
⎠.

In other words, λ1 = 1/3 and λ2 = 1/3 are the unique Lagrange multipliers.

Note that the key point here is not their uniqueness but their existence.



Chapter 4

Linear Functions

4.1 Definition

Let X and Y be two sets of elements. A function f assigns for any item

∈ X a (single) item in Y , called f(x). The set X is called the domain

(of definition) and Y is called the range. Note that it is possible to have

y ∈ Y without an x ∈ X with y = f(x). Also, it is possible for x1 �= x2,

f(x1) = f(x2). The set of all y ∈ Y such that there exists an x ∈ X with

y = f(x) is called the image of the function f and it is denoted by Img(f).

We are interested mainly in the case whereX = Rn and Y = Rm for some n

and m.

Remark. In the case where m = n we can say that when applying the

function f to x, then the magnitude of x has been changed from ||x|| to
||f(x)||, while its direction has been changed (or rotated) from x/||x|| to
f(x)/||f(x)||.

Definition

Definition 4.1. A function f : Rn → Rm is said to be linear if for

any pair of x1 and x2 in Rn and any pair of scalars α and β,

f(αx1 + βx2) = αf(x1) + βf(x2). (4.1)

Examples.

• f(x) = 3x is a linear function from R1 to R1.

• Let v be some vector in Rn and for any x ∈ Rn, let f(x) = vtx. Then

f : Rn → R1 is a linear function.

41
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• The following function f : R2 → R3 is linear : f(x1, x2) = (3x1 −
2x2, 0,−4x1+2x2). Note that if the zero in the right-hand side is replaced

by any other real number, the linearity of the function would be violated.

• If f(x) and g(x) are two linear functions from Rn to Rn, then the same is

the case with the function αf(x)+βg(x) (which equals f(αx)+g(βx)) for

any pair of scalars α and β. Loosely speaking, the set of linear functions

is linear itself.

• Projections are linear functions. Inspect (3.1) and notice that

k∑
i=1

((αv1 + βv2)
twi)wi = α

k∑
i=1

(vt1wi)w
i + β

k∑
i=1

(vt2wi)w
i.

Note the following properties. First, the summation in the left-hand side

of (4.1) is between two vectors in Rn while the one in the right-hand side

is between vectors in Rm. As f(0) = f(0 + 0) = f(0) + f(0), we conclude

that f(0) = 0 (but note that the two 0’s here are of different dimensions).

In words, any linear function crosses the origin. Indeed, the function from

R1 to R1, f(x) = 3x+2 is not linear as it does not pass through the origin:

f(0) = 2 and not 0. In some other contexts it is called a linear function

since it represents a line in the two-dimensional plane. In linear algebra

circles such a function is called an affine function.

Exercise 4.1

Let V = U = R3. Check whether or not T : U → V is a linear function,

where:

T
(

x
y
z

)
=
(

x+y
0

2x+z

)
.

Exercise 4.2

Let V = W = R2. Prove or disprove: the function f , which is defined as

follows, is linear:

f ( ab ) =
(
a2

b

)
.
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4.2 A Linear Function and Its Linear Subspaces

Definition

Definition 4.2. The set of vectors x ∈ Rn for which f(x) = 0 is

called the null set or the kernel of the function f .

Theorem

Theorem 4.1. The null set of a linear function f : Rn → Rm is a

linear subspace of vectors in Rn.

Proof. Suppose f(x1) = f(x2) = 0, namely both x1 and x2 are in the null

set of f . We need to show that for any pair of scalars α and β, f(αx1 +

βx2) = 0. Indeed, by the linearity of f , f(αx1+βx2) = αf(x1)+βf(x2) =

α0 + β0 = 0. �

Due to this theorem we refer in the case of a linear function to its null

set as its null space.

By definition, the domain and the range of a linear function are linear

subspaces. The following theorem says that the same is the case with its

image.

Figure 4.1. Illustration of the kernel.



44 Linear Algebra for Data Science

Theorem

Theorem 4.2. Let f : Rn → Rm be a linear function. Then the

set of vectors y ∈ Rm for which there exists an x ∈ Rn such that

y = f(x), namely Img(f), is a linear subspace of Rm.

Proof. First, the Img(f) is not empty since f(0) = 0. Second, let y1 and

y2 be two vectors in Img(f). We need to show that the same is the case with

αy1 + βy2 for any pair of α and β. Indeed, since y1 and y2 are in Img(f),

there exist x1 and x2 with y1 = f(x1) and y2 = f(x2). By the linearity

of f , we can see that f(αx1 + βx2) = αf(x1) + βf(x2) = αy1 + βy2, which

implies that αy1 + βy2 ∈ Img(f), as required. �

The following theorem relates the dimensions of the null space and of

the image for any linear function:

Theorem

Theorem 4.3. Let f : Rn → Rm be a linear function, then

dim(null(f)) + dim(Img(f)) = n.

Proof. Let r be dim(null(f)) for some, 0 ≤ r ≤ n, and let v1, v2, . . . , vr ∈
Rn be a basis for the linear subspace null(f). Note that the basis is empty

in the case where null(f) = 0, in which case r = 0. Append it with n− r

vectors vr+1, . . . , vn ∈ Rn and form a basis for Rn. Of course, there is

no need to add any such vectors in the case where dim(null(f)) = n. We

will next argue that f(vr+1), . . . , f(vn) form a basis for Img(f). Indeed, let

u ∈ Img(f). By definition, there exists a vector v ∈ Rn such that f(v) = u.

Clearly, for some coefficients α1, . . . , αn, v = Σn
i=1αiv

i and then

u = f(v) = f

(
n∑

i=1

αiv
i

)
=

n∑
i=1

αif(v
i) =

n∑
i=r+1

αif(v
i),

since f(vi) = 0 as vi is in the kernel of f(·), 1 ≤ i ≤ r. In particular, the

set of n − r vectors f(vr+1), . . . , f(vn) span Img(f). In order to complete

the proof, we need show that they are also linearly independent. Aiming

for a contradiction, assume that for some n − r coefficients αr+1, . . . , αn,
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not all of which are zero,

n∑
i=r+1

αif(v
i) = 0.

Thus, f(Σn
i=r+1αiv

i) = 0, namely Σn
i=r+1αiv

i is in the null(f). This con-

tradicts the way the vectors vr+1, . . . , vn were defined. �

Consider a linear function: f : Rn → Rm. For the n unit vectors ei ∈
Rn, denote f(ei) by fi, 1 ≤ i ≤ n. Let x ∈ Rn be an arbitrary vector. Of

course, some scalars xi, 1 ≤ i ≤ n, x = Σn
i=1xiei. Then, by the linearity

of f ,

f(x) = f

(
n∑

i=1

xiei

)
=

n∑
i=1

xif(ei) =

n∑
i=1

xifi.

In other words, f(x) preserves in Img(f) the linear combination expressing x

in the domain. As importantly, once a linear function assigns points (which

can be of one’s choice) in the range for the n unit vectors, there are no more

degrees of freedom in constructing the function for the other vectors: they

are determined by the former finite group of n vectors. Note that the same

observation holds for any basis for Rn and not only for the elementary

basis. Stated differently, we can say that if two linear functions agree when

applied to a basis in the domain, they are in fact the same function.

Suppose now that m = n, namely the domain and the range coincide.

From Theorem 4.3 we learn that dim(Img(f)) equals n too if and only

if dim(null(f)) = 0, namely f(x) = 0 if and only if x = 0. We can also

see then that f(x) = f(y) if and only if x = y as otherwise 0 �= x −
y ∈ null(f) too. It is also possible to argue that for any y ∈ Rn there

exists a unique x such that y = f(x): otherwise, dim(Img(f)) < n. In this

way we can assign for any vector in Img(f) a (now unique) vector in the

domain. This function is called the inverse of f and is denoted by f−1. We

repeat that this inverse function exists if and only if null(f) = 0. Note that

(f−1)−1 = f and if we apply the function f−1 after applying f , we in fact

apply the identity function as any x ∈ Rn lands back on x. Finally, note

that if f is linear, then same is the case with f−1. We leave the proof of

this final fact to the reader.

Our final point here concerns compositions of linear functions. Let f :

Rn → Rm and let g : Rm → Rk be two linear functions. We denote by

g ◦ f the function from Rn to Rk which is defined by g ◦ f(x) = g(f(x)).
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In words, take x ∈ Rn, apply the function f on it to get f(x) ∈ Rm.

Then, on this vector apply the function g. Note that the order in which

the composition is applied matters and in fact it is possible that g ◦ f is

well-defined while f ◦ g is not. The latter case occurs g(x) for some x in

the domain of g is not in the domain of f .

Theorem

Theorem 4.4. Let f and g be two linear functions, then the same

is the case with g ◦ f (which is assumed to be well defined).

Proof. First, note that g ◦ f(0) = 0. Second, for any pair of scalars α

and β,

(g ◦ f)(αx+ βy) = g(f(αx+ βy)) = g(αf(x) + βf(y))

= αg(f(x)) + βg(f(y))

= α(g ◦ f)(x) + β(g ◦ f)(y). �

Note that if f−1 exists then by definition both f−1 ◦ f and f ◦ f−1 exist

and are equal to the identity function.
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Matrices
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Chapter 5

Matrices and Matrix Operations

5.1 Basic Concepts

A matrix is a rectangular array having a number of rows and columns

with real numbers as its entries. We usually refer to matrices by upper

case letters. For example, the matrix

A =

⎛
⎜⎝

2 −1 5 7

3 0 −4 8

−1 7 0 9

⎞
⎟⎠

has three rows and four columns. We say that A ∈ R3×4. We refer by Aij

to the number in the ijth entry, namely the one in row i and column j.

For example, A23 = −4. A vector is in fact a matrix with one column and

a scalar is a matrix with one row and one column.

A matrix Am×n is said to be tall (wide, respectively) if m ≥ n (m ≤ n,

respectively). A matrix which is both tall and wide is called a square

matrix. Of course, in this case n = m. For any matrix A ∈ Rm×n, we

refer as its transpose matrix, and denote it by At. At is the matrix in

Rn×m and At
ji = Aij , 1 ≤ i ≤ m, 1 ≤ j ≤ n. A square matrix is said to

be symmetric if At = A. A square matrix A ∈ Rn×n is said to be upper-

triangular if Aij = 0 when 1 ≤ j < i ≤ n. It is said to be lower triangular

if At is upper-triangular. Finally, it is said to be diagonal if it is both-

upper and lower-triangular. Note that A ∈ Rn×n is diagonal if Aij = 0 for

1 ≤ i �= j ≤ n.

We next state two matrix operations.

Scalar multiplication. For a scalar a and matrix A ∈ Rm×n, we define

the matrix B ∈ Rm×n by B = aA where Bij = aAij , 1 ≤ i ≤ m, 1 ≤ j ≤ n.

49
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Matrix summation. For the matrices A,B ∈ Rm×n we define the matrix

A + B ∈ Rm×n via (A + B)ij = Aij + Bij . Note that the dimensions of

A coincide with the dimension in B. Otherwise, matrix summation is not

well-defined. Note that B+A = A+B (a matrix identity) and aA+ aB =

a(A+B) (ditto). Later we state the rationale behind these two definitions

(although they both seem natural, and at first glance one wonders why

justification is called for here).

5.2 Matrix by Vector Multiplication

Let A ∈ Rm×n and x ∈ Rn. Note that the number of columns in A is equal

to the number of entries in the x. We denote by Ax, and call it “A times

x”, the vector in Rm (recall that m is the number of rows in A), where

(Ax)i is defined via

(Ax)i =
n∑

j=1

Aijxj , 1 ≤ i ≤ m.

Note that Ax is the linear combination of the columns of A with coefficients

given in x. Indeed, Ax = Σm
i=1xiA.i, where A.i is the ith column of A,

1 ≤ i ≤ m. Also, when we look at the system of linear equations Ax = b

we are first looking if b is in the linear subspace spanned by the columns

of A. If this is the case, the solution x, which might or might not be unique,

means what are the coefficients of these columns when b is expressed as their

linear combination.

The following are immediate:

• For scalars α and β, vectors x, y ∈ Rn and matrix A ∈ Rm×n, A(αx +

βy) = αAx + βAy. Also, A0 = 0. In other words, matrix by vector

multiplication is a linear function.

• For two matrices A,B ∈ Rm×n, any two scalars α and β and vector

x ∈ Rn, (aA + βB)x = αAx + βBx. In words, the linearity of the two

matrix operations, Ax and Bx, is preserved under a linear operation on

the matrices themselves. Turning this fact on its head, it is this linearity

property which we wanted to preserve that led in fact to the way scalar

by matrix and matrix by vector multiplications were defined.

• Let I ∈ Rn×n be a diagonal matrix with Iii = 1, 1 ≤ i ≤ n. Then for

any x ∈ Rn, Ix = x. No wonder, I is called the identity matrix. Note

that for integer n there is an identity matrix of the corresponding size.
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• Let x, y ∈ Rn. Looking at x as a matrix, x ∈ Rn×1. Its transpose is the

matrix xt ∈ R1×n. Its matrix by vector multiplication with y, xty, yields

the scalar Σn
i=1xiyi which is the inner product between x and y. Note

that the notation used here coincides with the notation used when we

defined the inner product between two vectors. We can also observe that

ytx = xty.

As already said, for A ∈ Rm×n, Ax is a linear function. What we show

next is the converse of this fact.

Theorem

Theorem 5.1. Let f : Rn → Rm be a linear function. Then, there

exists a unique matrix A ∈ Rm×n such that Ax = f(x) for any x ∈
Rn. Moreover, in such a matrix, its jth column is f(ej), 1 ≤ j ≤ n.

Proof. It was already said in Chapter 4 that if two linear functions from

Rn to Rm agree when applied to n vectors that form a basis for Rn, they

agree elsewhere as well, and hence they are in fact the same function. It is

easy to see that Aej yields the jth column of A, so if we insert f(ej) in the

jth column of A, we will get that Aej = f(ej), 1 ≤ j ≤ n, as required. The

uniqueness follows from the fact that if Ax = Bx, and hence (A−B)x = 0

for all vectors x (with the required dimension), then A − B is the zero

vector, implying that B = A. �

Exercise 5.1

Let A ∈ Rm×n and f : Rn → Rm, such that the vector f(x) is defined as

(f(x))i =
∑n

j=1 Aijxj . Prove that f(x) is a linear function.

Exercise 5.2

The following function is linear (see exercise 4.1):

T
(

x
y
z

)
=
(

x+y
0

2x+z

)
.

Find the matrix A which represents the above function. For that purpose,

calculate T (ei) for 1 ≤ i ≤ 3, and calculate
∑3

i=1 xiT (ei).
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Exercise 5.3

(a) Prove that the residual of the projection of x on b is a linear function.

(b) Find the representative matrix A of the linear function specified in (a).

Exercise 5.4

Suppose that F (x) : Rn → Rn satisfies Fi(x) = x − x, such that x =
1
n

∑n
i=1 xi.

(a) Prove that F (x) is a linear function.

(b) What is the representative matrix A of the function F (x), with respect

to the elementary basis?

(c) What is dim(null(F ))?

5.3 The Rank of a Matrix

Let A ∈ Rm×n. By definition, the dimension of the range of Ax is m.

What is the dimension of its image? Note that a vector y ∈ Rm is in this

image if and only if there exists an x ∈ Rn such that Ax = y, namely y is

some linear combination of the n columns of A. Hence, the dimension of

this image is as the number of linearly independent columns among the n

columns of A. Thus, if these columns are the input of the Gram–Schmidt

process, one will get as output the dimension of this linear subspace. A

similar question can be asked about At. Now the input will be the rows of

A and the output will tell the number of linearly independent rows (since

now the rows of the matrix A are looked at as vectors in Rn) among the m

rows of A. The following is an interesting result.

Theorem

Theorem 5.2. The number of linearly independent columns and the

number of linearly independent rows in a matrix are equal.

Proof. Let A ∈ Rm×n. Denote by r ≤ m the number of linearly indepen-

dent rows in A. We will establish the theorem by showing that there exist r

vectors such that each of the columns of A is a linear combination of these r

vectors. This implies that the dimension of the linear subspace spanned by

the rows is greater than or equal to that spanned by the columns, but since

we can swap the roles of rows and columns, an equality in fact exists here.
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Let S1, . . . , Sr be a set of linearly independent rows. Write each of the

m rows of A, denoted here by R1, . . . , Rm, as their linear combination.

Thus, for some coefficients kij , 1 ≤ i ≤ m, 1 ≤ j ≤ n,

R1 = k11S1 + k12S2 + · · ·+ k1rSr

R2 = k21S1 + k22S2 + · · ·+ k2rSr

...

Rm = km1S1 + km2S2 + · · ·+ kmrSr

Look now at the jth entry across all vectors above, and note that the

values on the left hand sides are entries in the jth column of A. Specifically,

for j, 1 ≤ j ≤ n,

A1j = k11S1j + k12S2j + · · ·+ k1rSrj

A2j = k21S1j + k22S2j + · · ·+ k2rSrj

...

Amj = km1S1j + km2S2j + · · ·+ kmrSrj

Observe now that this column of A is expressed as a linear combination of r

vectors, the first vector among them being (k11, k21, . . . , km1)
t, the second

being (k12, k22, . . . , km2)
t, etc. As this can be done for any column, the

proof is completed. �

The common value addressed in the above theorem is called the rank of

A and is denoted by rank(A). A matrix A ∈ Rm×n is said to have a full

rank if rank(A) = min{m,n}. Also, denote by null(A) the dimension of

the null-space of the linear function Ax.

Recall that for a matrix A ∈ Rm×n, the operation f(x) = Ax is a

linear function f : Rn → Rm. The dimension of Img(f) coincides with

the number of linearly independent columns of A, namely with rank(A).

Invoking Theorem 4.3, we conclude that:

Theorem

Theorem 5.3.

dim(null(A)) = n− rank(A).
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5.4 Linear Equations and Homogeneous Equations

A linear set of equations with m equations and n unknowns can be defined

as Ax = b for some matrix A ∈ Rm×n and a vector b ∈ Rm, the latter some-

times referred to as the right-hand side vector. Since Ax is in fact a linear

combination of the columns of A, where x states the corresponding coeffi-

cients. The existence of a solution means that b lies in the linear subspace

spanned by the columns of A. Moreover, any solution consists of possible

coefficients defining a linear combination of these columns which yields b.

If the columns of A are linearly independent and a solution exists, then the

set of coefficients needs to be unique. Note that the converse is also true:

Any set of linear equations can be presented in the form of AX = b for

some matrix A and a right-hand side vector b.

For any set of linear equations Ax = b, there exists a corresponding set

of linear equations which are referred to as a homogeneous set of equations:

Ax = 0. All said above for any vector b holds for the homogeneous case.

But there is something which is unique for 0 as the right-hand side vector:

its solution set is never empty. Moreover, it forms a linear subspace of Rn.

This observation is easily seen so we omit a proof. The following theorem

appeared already as Example 4 in Section 2.2 and is repeated here for

convenience.

Theorem

Theorem 5.4. Consider the linear system of equations Ax = b.

Assume Ax∗ = b. Then Ax = b if and only if A(x − x∗) = 0.

Proof. Firstly, observe that if Ax∗ = b and Ax = b. Then, A(x − x∗) =
Ax − Ax∗ = b − b = 0. Secondly and for the converse, suppose Ax∗ = b

and A(x − x∗) = 0. Then, A(x∗ + (x − x∗)) = Ax∗ + A(x − x∗) =

b+ 0 = b. �

See Fig. 5.1 for illustration of the general solution of AX = b.

5.5 Matrix by Matrix Multiplication

Matrix summation defined above seems natural and maybe the one we

would apply without much agony. However, recall that this definition pre-

serves the linearity among linear functions themselves. When it comes to
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Figure 5.1. The general solution of Ax = b.

matrix multiplication things are less obvious but the definition of matrix

multiplication is based on the same idea.

Definition

Definition 5.1. Let A ∈ Rm×k and B ∈ Rk×n. The matrix C ∈
Rm×n which is called A times B, denoted in short by AB, is defined

by

Cij = (AB)ij =

k∑
�=1

Ai�B�j , 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Note that the ijth entry in the product of A and B is the inner product

between the ith row of A and the jth column of B. The first thing to

observe is that the product between two matrices is well defined if and only

if the number of columns of the left matrix is equal to the number of rows

of the right. In particular, it is possible that AB is well defined but BA

is not. Moreover, we do not have the commutative property: It is possible
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that both AB and BA are well defined but AB �= BA. In particular, the

dimensions of AB and BA might be different. Finally,

Theorem

Theorem 5.5.

(AB)t = BtAt. (5.1)

Proof. The first thing to observe is that the product AB is well defined

if and only if the same is the case with BtAt. The details are left to the

reader. Then, for all pairs of i and j,

(AB)tij = (AB)ji =
∑
k

AjkBki =
∑
k

At
kjB

t
ik =

∑
k

Bt
ikA

t
kj = (BtAt)ij .

�

Example 1. Note that AtA and AAt are well defined. Also note that

both of them are symmetric matrices. Indeed, (AtA)t = At(At)t (by (5.1)),

which is back AtA. Yet, unless A is a square matrix, the products lead to

symmetric matrices of different dimension. Note that A being square does

not guarantee that the two product coincide and usually they do not. They

do when A is symmetric.

Example 2 (Inner and outer product between vectors). Let v and

u be two non-zero vectors in Rn. Considering them as matrices, we can say

that v, u ∈ Rn×1. Consider the matrix multiplication vtu. It is well-defined

and it is a 1×1 matrix. In fact, it is the scalar Σn
i=1viui. Trivially, the rank

of this matrix is one. This coincides with the inner product between two

vectors as defined in (1.1). Note that vut is also well defined. Moreover,

vut ∈ Rn×n where

(vut)ij = viuj, 1 ≤ i, j ≤ n.

Note that all columns of vut are scalar multiplications of v. The same can

be said on the rows (when looked at as vectors), now with respect to u.

Thus, both linear subspaces spanned by the columns and by the rows of this

matrix have a dimension of one. In particular, vut is a rank-one matrix.

Example 3 (The identity matrix). You may recall the identity matrix,

I. It was defined as the diagonal (square) matrix whose all diagonal entries

equal one. It was called this way since for every vector x, if Ix is well
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defined, then Ix = x. The same can be said on matrix multiplication: If

AI and/or IA are well defined, then they equal A.

Example 4. The distributive law holds here:

A(B + C) = AB +BC.

The proof of this fact is left for the reader.

The following theorem is in fact the justification of the way matrix

multiplication is defined.

Theorem

Theorem 5.6. Let g : Rk → Rm and f : Rn → Rk be two linear

functions. Note that the range of f coincides with the domain of g.

In particular, the composite linear function g ◦ f : Rn → Rm is well

defined. Let A ∈ Rm×k, B ∈ Rk×n and C ∈ Rm×n be the matrices

which correspond to the linear functions g, f and g ◦ f, respectively.
Specifically, g(x) = Ax, f(x) = Bx and (g ◦ f)(x) = Cx for any

x ∈ Rn. Then, C = AB. Put differently, for any x ∈ Rn,

(AB)x = A(Bx).

Proof. We need to show that for any x ∈ Rn, [(AB)x]i = [A(Bx)]i,

1 ≤ i ≤ m. Indeed,

[(AB)x]i =

n∑
j=1

(AB)ijxj =

n∑
j=1

k∑
l=1

(AilBlj)xj

=

k∑
l=1

Ail

n∑
j=1

Bljxj =

k∑
l=1

Ail(Bx)l = [A(Bx)]i, 1 ≤ i ≤ m,

as required. �

Example 5 (The matrix of the projection operation). Recall that

the Σk
i=1(v

twi)w
i is the projection of the vector v on the subspace spanned

by the orthonomal set of vectors wi, 1 ≤ i ≤ k. See (3.1). It is possible

to see that (vtwi)w
i = wiwt

iv, 1 ≤ i ≤ k. Hence, the projection equals

Σk
i=1w

iwt
iv, which is turn equals (Σk

i=1w
iwt

i)v. In summary, for the matrix

A = Σk
i=1w

iwt
i , which is the sum of k rank-one matrices, Av yields the
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projection. Note that A is a square matrix. Moreover, since the projection

of the projection is the original projection, A2v = A(Av) = Av. From here

the fact that Am = A, for any m ≥ 1, follows.

Theorem

Theorem 5.7. Matrix multiplication is associative: for any A, B

and C, when well defined,

(AB)C = A(BC).

The proof is left as an exercise. Due to this theorem we can write the

product between three matrices as ABC, without the need to resort to

parenthesis. A corollary here is that, for example, for any square matrix,

A4 = (A2)2 so A4 can be computed with two, instead of three, matrix

multiplication. In general, A2k can be computed in k matrix multiplication,

instead of 2k − 1 when done one by one. Put differently, computing Ak

requires only log2 k matrix multiplications. Finally, Theorem 5.7 can be

generalized for the product among more than two matrices: (ABC)t =

CtBtAt, etc.

Exercise 5.5

Let A = ( 4 1 0
5 8 3 ) and B =

(
1 9 3 1
7 2 8 1
4 0 6 5

)
. Compute AB.

Exercise 5.6

Suppose that A ∈ Rm×k and B ∈ Rk×n.
(a) For C ∈ Rk×n, prove that A(B + C) = AB +AC.

(b) For C ∈ Rn×p, prove that (AB)C = A(BC).

Exercise 5.7

For A,B ∈ Rm×n and C ∈ Rn×k prove that:

(a) (A+B)C = AC + BC.

(b) (AtB)C = At(BC) = AtBC.
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5.6 The QR Factorization

Let A ∈ Rm×n be a tall matrix. Also assume that rank(A) = n, namely it

is a full-rank matrix, which also means that its n columns are linearly inde-

pendent. For this context, we denote its columns by vi ∈ Rm, 1 ≤ i ≤ n.

Applying the Gram–Schmidt process on these columns (see Section 3.2),

results in n orthonormal vectors, wi ∈ Rm, 1 ≤ i ≤ n. From (3.2) and (3.3)

we learn that

Fvi =

i−1∑
j=1

((vi)twj)wj + ||ui||wi, 1 ≤ i ≤ n. (5.2)

In particular, we can see that the ith column is a linear combination (only)

of the orthonormal vectors w1, . . . , wi, 1 ≤ i ≤ n. Note that ||ui||, which is

the coefficient of wi in (5.2), is strictly positive.
Denote byQ ∈ Rm×n the matrix whose columns are these wi, 1 ≤ i ≤ n,

vectors. From (5.2) we can see that

A =

⎛
⎜⎜⎜⎜⎝

...
... · · ·

...

v1 v2 · · · vn

...
... · · ·

...

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

...
... · · ·

...

w1 w2 · · · wn

...
... · · ·

...

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

R11 R12 cdots R1n

0 R22 · · · R2n

..

.
..
.

..

.
..
.

0 0 · · · Rnn

⎞
⎟⎟⎟⎟⎟⎠

= QR,

for some upper-triangular matrix R ∈ Rn×n. Note that the entries which

are in the diagonal of R or above it are Rii = ||ui||, 1 ≤ i ≤ n and

Rij = (vi)twj , 1 ≤ i < j ≤ n. In particular, the diagonal entries are all

strictly positive. Expressing a full-rank tall matrix A ∈ Rm×n, whose rank
equals m, as a product between two matrices: Q ∈ Rm×n, which comes

with orthonormal columns, and a square upper-triangular matrixR ∈ Rn×n

with a positive diagonal, is called the QR factorization of A. Note that the

factorization process when applied to A, is basically applying the Gram–

Schmidt procedure with the columns of A as input. Also note that if A

is not a full-rank matrix then some of the columns of Q turned out to be

all zeros, and then any choice for the corresponding column in R will do.

Moreover, the number of non-zero columns in Q coincides with rank(A).

Computing R given A and Q is quite straightforward. Specifically, it

can be easily verified that QtQ = I, as the columns of Q are orthonormal.

Thus, multiplying both sides of the equality A = QR by Qt from the left,

implies that QtA = QtQR = (QtQ)R = IR = R. We therefore conclude
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that R = QtA. This result is useful for the cases where A and Q are given

and one looks for R.

Example 1. Consider the example in page 35. In this case we have the

following QR factorization:

A =

⎛
⎜⎝

1 0 0

1 1 0

1 1 1

⎞
⎟⎠ =

⎛
⎜⎜⎝

1√
3

−2√
6

0

1√
3

1√
6

−1√
2

1√
3

1√
6

1√
2

⎞
⎟⎟⎠
⎛
⎜⎜⎝
√
3 2√

3
1√
3

0
√
6
3

1√
6

0 0 1√
2

⎞
⎟⎟⎠.

Example 2. The following matrix, as we will show below, plays an impor-

tant role in data science. For a given vector x ∈ Rn, let

A =

⎛
⎜⎜⎜⎜⎝

1 x1

1 x2

...
...

1 xm

⎞
⎟⎟⎟⎟⎠.

Then, its QR-factorization is

Q =
1√
m

⎛
⎜⎜⎜⎜⎜⎝

1 x1−x
SD(x)

1 x2−x
SD(x)

...
...

1 xm−x
SD(x)

⎞
⎟⎟⎟⎟⎟⎠ and R =

√
m

(
1 x

0 SD(x)

)
. (5.3)

Exercise 5.8

Let

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

2 0 0

0 4 1

0 0 9

1 7 0

0 0 −3

⎞
⎟⎟⎟⎟⎟⎟⎠
.

(a) Perform the Gram–Schmidt process on the columns of A.

(b) Find the QR factorization of A.
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Exercise 5.9

Compute the QR factorization of the following matrix:

A =

⎛
⎜⎝

12 −51 4

6 167 −68
−4 24 −41

⎞
⎟⎠.

5.7 Row and Column Operations

Let A ∈ Rm×n be a matrix. We next define three operations which can be

formed on the rows of A. Specifically, we state each one of them in words,

coupled with defining a square matrix E ∈ Rm×m such that the product

EA yields the same matrix as applying the corresponding row operation to

A. Such a matrix E is called a row-operation matrix.

1. Multiplying all entries of the ith row by a constant c �= 0. In this case

the non-zero entries in E are Ejj = 1, 1 ≤ j �= i ≤ n, and Eii = c.

2. Swap between the ith and the jth row. In this case the non-zero entries

of E are Ekk = 1, k �= i, j, and Eij = Eji = 1.

3. Subtracting c times the jth row from the ith row. In this case the non-

zero entries of E are Ekk = 1, 1 ≤ k ≤ n, and Eij = −c.

Note that in all above three cases E is in fact the unit matrix where the

corresponding row operation already.

Observe that if E is a row operation matrix, then the same is the case

with Et. Specifically, for the first and second row operations, Et = E, while

for the third, Et swaps the role of the two rows i and j. Note also that any

row operation can be reversed by applying some other (but related) row

operation. Note that in the second operation defined above, this in fact is

done by the repeating of the same operation. We leave it to the reader to

find what are the matrices in the two other cases.

Let E ∈ Rn×n be a row operation matrix. Consider the matrix AE.

It is easy to see that the corresponding operation was performed but on

the columns of A. Specifically, since AE = (EtAt)t, we can say that right

multiplying A by E is equivalent to performing the row operation Et on At

and then taking the transpose of the resulting matrix.
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Theorem

Theorem 5.8. A row (or column) operation preserves the rank of

a matrix.

Proof. It is possible to see that any vector which is in the span of the rows

of A is also in the span of the rows of the matrix which is derived from A by

any row operation. Since the same logic is applied when the row operation

is reserved, our proof is complete. �

5.8 Echelon Matrices and the Rank of a Matrix

Definition

Definition 5.2. Let A ∈ Rm×n. For 1 ≤ i ≤ n, let k(i) with

0 ≤ k(i) ≤ n, be the highest indexed column of A with Aij = 0 for

all j, 0 ≤ j ≤ k(i). Then, the matrix A is said to be an echelon

matrix if for any i, 1 ≤ i ≤ n, with k(i) < n, then d(i + 1) > d(i).

Otherwise, namely if d(i) = n, then d(i + 1) = n.

An echelon matrix is in fact a matrix in which, maybe with the excep-

tion of the first row, all rows commence with a series of zeros. Moreover,

each of these series is longer by at least one from the previous series, unless

of course the previous one is already a zero row, making all the following

zero rows too. It is certainly a possibility that the last row, or some of the

last rows, are full of zeroes. In fact, there is much interest in this case. An

example for 4× 6 echelon matrix is:

⎛
⎜⎜⎜⎜⎝

3 2 1 −1 2 8

0 1 −2 0 3 4

0 0 0 −1 2 5

0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎠. (5.4)
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Theorem

Theorem 5.9. All non-zero rows in an echelon matrix are linearly

independent. Hence, the rank of an echelon matrix equals the num-

ber of its non-zero rows. In particular, its non-zero rows form a

basis for the linear subspace span by its rows. Finally, the columns

which correspond to the echelons, namely those in which the first in

their row non-zero entry appears, form a basis for the linear subspace

spanned by its columns.

Proof. Express the row vector 0 ∈ R1×n as a linear combination of the

non-zero rows. Observe that due to the structure of the echelon matrix, the

coefficient of the first row needs to be zero. Once we know that, we can see

that the same is the case with the coefficient of the second row, etc. The

same argument goes with respect to the selected columns where now we go

from the right column to the left. �
Note that the rank of the matrix in (5.4) is three. Its first three rows

form a basis for the row subspace while columns 1, 2 and 4 form a basis for

the column subspace. Combining all stated so far in this section, we can see

that if within a finite number of row operations we convert a given matrix

into an echelon matrix, we will learn its rank as it equals the number of

non-zero rows. What is left to see is that this can be done for any matrix.

This is indeed the case and in fact, the procedure we design below also

derives a basis for the linear subspace spanned by the rows of A. Based on

Theorem 5.9 a by-product will be a basis for the subspace spanned by the

columns. Before we do that we remind the reader that another procedure

which does exactly that is the Gram–Schmidt process.

The goal here is to find the rank of a matrix. Thus, any performed

row operations do not change the rank of the matrix. The procedure we

described next does exactly that but it terminates with an echelon matrix,

whose rank is easily read using Theorem 5.9.

Row operations leading to an echelon matrix

Let A ∈ Rm×n. For convenience assume A to be wide, namely m ≤ n.

Otherwise, deal with At instead. Let j be the first non-zero column of A.

Assume that A1j �= 0. Otherwise swap the first row with any other row

with Aij �= 0. Also, assume A1j = 1. Otherwise, divide all entries in row i
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by A1j . Then, for any row i, 2 ≤ i ≤ m, subtract Aij times the first row

from it, thereby zeroing the Aij entry.a Repeat this when considering the

resulting matrix whose first row is row 2 and its first column is column j+1,

etc. Note that this procedure terminates after at most m steps of moving

from one row to next. The procedure can terminate after less than m steps

in the case where the submatrix left is full of zeros. By construction, the

final matrix is an echelon matrix. As said, the number of its non-zero rows

is the rank of the matrix we are looking for.

Example. j = 1.

A =

⎛
⎜⎝

1 2 −3
2 6 −11
1 −2 7

⎞
⎟⎠

R3 ← R3 −R1⎛
⎜⎝

1 2 −3
2 6 −11
0 −4 10

⎞
⎟⎠

R2 ← R2 − 2R1⎛
⎜⎝

1 2 −3
0 2 −5
0 −4 10

⎞
⎟⎠.

j = 2.

R3 ← R3 + 2R2⎛
⎜⎝

1 2 −3
0 2 −5
0 0 0

⎞
⎟⎠.

We have reached an echelon matrix whose rank is two. Note that we

ended up here with an upper-triangular matrix. This is not a coincidence:

Converting a square matrix to an echelon matrix, results in an upper-

triangular matrix.

aNote that this operation is superfluous in the case where Aij = 0.



Chapter 6

Invertible Matrices and the Inverse Matrix

6.1 Left-Inversesa

Let A ∈ Rm×n. The matrix X is said to be a left-inverse of A if

XA = I.

Note that X ∈ Rn×m (as the dimension of At) and I ∈ Rn×n. In the case

where such an X exists, we say that A is left-invertible. Note that if X is

a left-inverse of A, then not only that XA is well defined, but also AX is

well defined. However, by no means we claim that AX equals I ∈ Rm×m.

Examples.

• The scalar a is left-invertible if and only if a �= 0. In which case there

exists a unique left-inverse: 1/a.

• For a vector v ∈ Rn×1, and for some i, 1 ≤ i ≤ n, if vi �= 0, then

x ∈ R1×n with x = 1
vi
eti, 1 ≤ i ≤ n, is a left-inverse of v.

• If A is a matrix with orthonormal columns, then AtA = I. In other

words, A is left-invertible and At is a left-inverse of A.

• If X1 and X2 are left-inverses of A, then the same is the case with αX1+

βX2 for any scalars α and β with α+ β = 1.

Theorem

Theorem 6.1. If A ∈ Rm×n is left-invertible then its columns are

linearly independent. In particular, m ≥ n, namely A is a square or

a tall matrix.

aThe first three sections in this chapter are based on [3].

65
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Proof. Aiming for a contradiction, assume that a vector x �= 0 with Ax = 0

exists. Let X be a left-inverse of A. Then

0 = X(Ax) = (XA)x = Ix = x,

which is a contradiction. �

The converse of this theorem is also true. This issue is dealt with later

in the second item of Theorem 7.1.

Consider the linear system of equations Ax = b. We know from previous

sections that a solution exists if and only if b is in the linear subspace

spanned by the columns of A. Moreover, when such a solution exists, it is

unique if and only if the columns of A are linearly independent. This leads

to the following theorem.

Theorem

Theorem 6.2. Let A be a matrix and assume it has a left-inverse

X. Then Ax = b has a solution x if and only if x = Xb. In

particular, Xb is the unique solution.

Proof. Assume there exists an x such that Ax = b. Since A possesses a

left-inverse, we know from the previous theorem that the columns of A are

linearly independent and hence this solution, x, is unique. We next show

that x = Xb. Indeed,

Xb = X(Ax) = (XA)x = Ix = x. �

Note that the existence of a left-inverse X allows us to learn that for a

given b whether or not a vector x with Ax = b exists (or, equivalently, if

b lies in the linear subspace spanned by the columns of A): All one needs

to do is to check whether or not AXb equals b. Note in passing that the

product AX is well-defined.

Note that if m > n, namely there are more equations than unknowns,

the system is said to be over-determined. Loosely speaking, in most cases

there is no solution to the system Ax = b. See Example 1 in Section 2.4.

What this section certainly lacks is an algorithm or a formula for com-

puting a left-inverse when it exists or identifying thatA is not left-invertible.

This issue will be dealt with at length in Chapter 7 which in fact is devoted

for that, although the point of departure there is different.
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Figure 6.1. Illustration of a unique solution.

Figure 6.2. A case of infinite number of solutions.

Figure 6.3. A case of no solution.
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6.2 Right-Inverses

A matrix A ∈ Rm×n is said to have a right-inverse if At has a left-inverse.

In other words, if a matrix X exists such that AX = I (and then Xt is

a left-inverse of At). Note that if A ∈ Rm×n then I ∈ Rm×m and X ∈
Rn×m. If such a matrix X exists, we say that A is right-invertible. Based

on Theorem 6.1, we can say that if A is right-invertible, then its rows are

linearly independent. Moreover, m ≤ n, namely A is a square or a wide

matrix.

Suppose X is a right-inverse of A and consider the set of equations

Ax = b. It is easy to see that A(Xb) = (AX)b = Ib = b. In other words,

the existence of a right-inverse X implies the existence of a solution x for

any right-hand side b. Moreover, it states one: Xb. This, of course, says

nothing on the uniqueness of the solution and indeed more conditions are

needed to make it unique. As we will see in the next chapter, a necessary

and sufficient condition for that (once a right-inverse exists) is that A is a

square matrix.

The above two results are summarized by the following theorem.

Theorem

Theorem 6.3. If a matrix A ∈ Rn×n possesses a right-inverse X,

then

• its rows are linearly independent,

• for any vector b ∈ Rn there exists a solution to the system of

equations Ax = b. For example, Xb is such a solution.

Example.b Consider the matrix

A =

⎛
⎜⎝
−3 −4
4 6

1 1

⎞
⎟⎠.

Note that A is a full rank matrix whose degree is two. Consider two

more matrices:

B =
1

9

(
−11 −10 16

7 8 −11

)
C =

1

2

(
0 −1 6

0 1 −4

)
.

bThis example appears in [3].
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It is possible to check that the matrices B and C satisfy BA = CA = I,

namely they are both left-inverses ofA. Consider the set of equationAx = b

with bt = (1,−2, 0). Check that Bb = Cb = (1,−1)t and that ABb = b.

In particular, b is in the linear subspace spanned by the two columns of A.

Now change b to bt = (1,−1, 0) and notice that Cb = (0.5,−0.5), but now
ACb �= b. Hence, the set Ax = b does not have a solution for this vector b.

In particular, b is not in the linear subspace spanned by the columns of A.

Since B and C are left-inverses of A, then Bt and Ct are right-inverses

for At. Hence, for any b, both Btb and Ctb are solutions to Atx = b.

For example, if bt = (1, 2), they equal (1/3, 2/3,−2/3) and (0, 1/2,−1),
respectively. Note that these two vectors are different.

Exercise 6.1

A set C is convex if for any pair of points x, y ∈ C and for every λ ∈ [0, 1]

it holds that λx+(1−λ)y ∈ C. Now, let X,Y be two left-inverse matrices

of A. Show that any convex combination of these matrices yields a left-

inverse of A. Conclude that if more than one left-inverse of A exists, then

there is an infinite number of left-inverses of A.

Exercise 6.2

Let:

A =

(
−3 4 1

−4 6 1

)
, B =

1

9

⎛
⎜⎝

−11 7

−10 8

16 −11

⎞
⎟⎠, C =

1

2

⎛
⎜⎝

0 0

−1 1

6 −4

⎞
⎟⎠, b =

(
1

−2

)

(a) Show that the matrices B and C are right-inverses of A. Express by B

and C solutions to the set of linear equations Ax = b.

(b) Show that the difference between the above solutions yields a solution

to the homogeneous set of equations Ax = 0.

6.3 Invertible Matrices

Suppose the matrix A ∈ Rm×n has a left-inverse X (and hence m ≥ n) and

a right-inverse Y (and hence m ≤ n). Thus, the first thing to observe is

that A needs to be a square matrix. Moreover

Y = (XA)Y = X(AY ) = X.
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On top of the obvious conclusion that Y = X , we get that this inverse

matrix is unique: indeed, had there been another left inverse, say X ′, we
would still get that Y = X ′ and then X ′ = X . In this case we call this

unique left and right-inverse the inverse of A. In this case A is said to be

invertible or regular. Otherwise, it is called not-invertible or singular. The

inverse of A (when exists) is denoted by A−1 and it satisfies

A−1A = AA−1 = I. (6.1)

Note that A is now the inverse of A−1 and in particular, A−1 is regular too.

In other words, (A−1)−1 = A.

Remark. The reason behind the terminology of “the inverse of A” appears

in (6.1). In particular, looking at Ax and A−1x as linear functions, we

can see that each one of them is the inverse of the other: applying them

consecutively (in both possible orders) is equivalent to applying the identity

function, Ix.

Recall that the existence of the inverse here was based on the prior

existence of both left and right-inverses. What is further true is the fact that

if a square matrix A possesses a left (right, respectively) inverse then it also

possesses a right (left, respectively) inverse. In particular, it is invertible.

This is stated and proved in the following theorem.

Theorem

Theorem 6.4. If a square matrix A has a left-inverse, then it also

has a right-inverse. In particular, it is invertible.

Proof. From Theorem 6.1 we learn that since A ∈ Rn×n has a left-

inverse, its columns are linearly independent. Hence, the system of equa-

tions Ax = b has a unique solution for any vector b. Let xj be the solution

to Ax = ej , 1 ≤ j ≤ n. Let X ∈ Rn×n be the matrix whose jth column is

xj , 1 ≤ j ≤ n. It is easy to see that AX = I. Hence, A has a right-inverse.�

Once a matrix A is known to be invertible, the system of equations

Ax = b has a unique solution: x = A−1b. Indeed, this was expected in

line with Section 6.2 as A−1 is a right-inverse of A. Note that x is a linear

function of b and that A−1 defines the sensitivity of the solution to changes

in the vector b: The derivative of xi with respect to bj equals A−1ij . This of

course does leave open the computation question: Given A, how to derive
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A−1 when it exists or to show that such an inverse does not exist when this

is the case. This question is deferred to at a later section.

The following theorem summarizes what we have established by now.

Theorem

Theorem 6.5. For a square matrix A the following statements are

equivalent, namely they all hold if and only if one of them holds:

1. A has a right-inverse,

2. all columns of A are linearly independent,

3. all rows of A are linearly independent,

4. for any vector b, Ax = b possesses a solution,

5. for any vector b, Ax = b possesses a unique solution,

6. A has a left-inverse,

7. A is invertible.

Proof. The proof follows from Theorems 6.1, 6.3 and 6.4, coupled with

the fact that the number of linearly independent rows and the number of

linearly independent columns, coincide (see Theorem 5.2). �

We next state an interesting theorem. We leave the proof to the reader as

an exercise.

Theorem

Theorem 6.6. Given a square matrix A, the system of equations

Ax = b has a solution for any b if and only if Ax = b has a unique

solution for a particular b.

Exercise 6.3

Prove Theorem 6.6.

6.4 Solving a Set of Linear Equations

In the previous section, we dealt with the issue of the existence of the inverse

of a square matrix. We defer the issue of computing this matrix to the next

section. In the meantime consider the square set of linear equations Ax = b,
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where A ∈ Rn×n and b ∈ Rn. In the case where A−1 exists, we can see,

by multiplying both hand sides of Ax = b by A−1, that x = A−1b is the

unique solution.

What can we say in the case where A is not invertible? In this case

let m = rank(A) where m < n. The first thing to observe is that the set

of equations Ay = 0 has a non-zero solution as the columns of A are not

linearly independent. In fact, a non-trivial linear subspace of such solutions

exists. The set of equations Ay = 0 is called the homogeneous equations

associated with the set of equations Ax = b. Next observe that for any such

solution y, if Ax = b, then A(x+ y) = b, namely x+ y is also a solution to

the original set of equations. Conversely, if Ax1 = Ax2 = b, that c(x2−x1)

solves the homogeneous system for any constant c. From here we logically

conclude that the system Ax = b either does not have any solution at all or

that it has an infinite number of solutions. In particular, for any b ∈ Rn,

the system Ax = b does not possess a unique solution.

Still in the non-invertible case, the next question is: for a given b ∈ Rn

what is the situation: are there infinite number of solutions or no solution

at all? We next answer this question but wish to say first that we sel-

dom encounter the first option. We will be more specific on that shortly.

Without loss of generality assume that the first m rows of A are linearly

independent. If this is not the case, just change the indices of the rows to

make it like that. Denote the submatrix of A composed of these m rows

by C ∈ Rm×n. Note that the same change of indices is required with the

entries of b (but not of x). Also, denote the first m entries of b by bC . Then

the first m equations out of the n in Ax = b, can be written as Cx = bC .

Since C is a full-rank matrix, it comes with m (out of n) linearly inde-

pendent columns. Assume without loss of generality that these are the first

m columns of C. Otherwise, change the indices of the columns to make it

this way. This time you need to make the same change in the entries of

x (but not in b). Write C = (B,N) where B ∈ Rm×m are these m lin-

early independent columns and N ∈ Rm×(n−m) comes with the rest of

the columns of A.c Note that B is a full-rank m ×m matrix. In particu-

lar, B−1 exists. Partition x ∈ Rn in a similar fashion to (xB , xN ), where

xB ∈ Rm and xN ∈ Rn−m. The set of equations Cx = bC can be written

cThere is no consistency in the literature regarding terminology. Sometimes the first
m variables are referred to as basic or pivotal variables, while the others n − m are
referred to as non-basic or free variables.
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as (B,N)

(
xB

xN

)
= bC , or,

BxB +NxN = bC .

Thus, xB = B−1(bC − NxN ). In other words, one can select any xN one

wishes in order to solve the system Cx = bC . Then, as long as xB =

B−1(bC − NxN ), x obeys Cx = bC . Note that we have much freedom in

selecting xN . In fact, our choice of vectors for xN in a linear subspace with

a dimension of n−m.

Return now to the original set of equationsAx = b. Denote byAi the ith

row of A, 1 ≤ i ≤ n. Consider them+1th equation (which has been ignored

so far). The m+ 1th row of A can be expressed as a linear combination of

the first m rows. Thus, for some αi, 1 ≤ i ≤ m, Am+1 = Σm
i=1αiAi. Hence,

for any solution to Cx = bC , Am+1x = Σm
i=1αiAix = Σm

i=1αibi. Thus, in

order for Am+1x = bm+1 to hold too, which is a necessary condition for

x to solve Ax = b, it is required that bm+1 = Σm
i=1αibi. Otherwise, which

is usually the case, the set Ax = b does not have a solution. Of course, a

similar requirement applies for any bm+j , 1 ≤ j ≤ n−m. In particular, all

these n−m conditions must hold in order to have a solution to Ax = b. If

this is the case, then as said on the unrestricted choice for xN , there exist

an infinite number of solutions to the set Ax = b.

Remark. Although above we assumed that the matrix A is a square

matrix, this assumption can be easily removed and all the analysis holds

for any wide or tall matrix.

Remark. The above comes with a few steps which at this stage seem

theoretical as no algorithm is stated. Yet, this gap can be overcome. First,

finding the set of linearly independent rows can be done via reducing the

matrix to its echelon form as described in Section 5.8. Note that you need

to perform the same operations on the right-hand side vector b in order to

maintain the condition Ax = b. Observe that if at the end one of the zero

rows comes with a non-zero entry in the right-hand side, no solution exists.

Second, the matrix B can be composed out of the linearly independent

columns found inspected at the echelon matrix. See Theorem 5.9. Finally,

see the following section for how to invert an invertible matrix, leading to

the all-important B−1 defined above.

Remark. In the special case where b = 0, the system of equations Ax = 0,

is called homogeneous. They were introduced first above in Example 4 in
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Section 2.2. In particular, it was argued there that the corresponding solu-

tion set is a linear subspace. Running through all possible unit vectors for

xN , we can generate n −m solutions which span this linear subspace. In

particular, its dimension is at most n−m. Yet, invoking Theorem 4.3, the

dimension equals in fact to n−m.

6.5 Inverting Matrices

We start with a number of examples for the inverse of special matrices.

Examples.

• I−1 = I.

• If A ∈ Rn×n is a diagonal matrix with no zeros in the diagonal, then

A−1 exists, is diagonal too and A−1ii = 1/Aii, 1 ≤ i ≤ n. Note that

the requirement that all diagonal entries in a diagonal matrix should be

non-zero is also a necessary condition for the existence of its inverse. It

is possible in fact to see that the rank of this matrix coincides with the

number of non-zero entries.

• Suppose n = 2.

A =

(
a b

c d

)
.

Note that A is invertible if and only if ad − bc �= 0: it is possible to

see that otherwise each row (column, respectively) is a scalar multiplica-

tion of the other row (column, respectively), making them not linearly

independent. Then,

A−1 =
1

ad− bc

(
d −b
−c a

)
.

• The columns of A are orthonormal if and only if At = A−1. Equivalently,

if AtA = I = AAt. A matrix with property is called a unitary matrix.

The idea behind the terminology of unitary is the easy to see fact that

for a unitary matrix U , ||Ux|| = ||x||. Thus the operation of multiplying

a vector by a unitary matrix preserves its magnitude, as summarized by

its norm. In particular, only the direction of x is changed (or rotated)

from x/||x|| to Ux/||x||. Note that a unitary matrix also preserves the

distance between two vectors: ||Uv − Uu|| = ||U(v − u)|| = ||v − u||.
We can collect a few more results related to invertible matrices.
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• (At)−1 = (A−1)t.
• (Ak)−1 = (A−1)k for any positive or negative k.

• If A and B (of the same dimension) are invertible then AB is invertible

too. Moreover

(AB)−1 = B−1A−1.

Proof.

(B−1A−1)(AB) = B−1(A−1A)B = B−1IB = B−1B = I. �

• A row operation matrix is invertible. Moreover, the inverse of a row

operation matrix, is a row operation matrix itself.

• If A is not invertible, then the same is the case with AB for any

matrix B.

Proof. If B itself is not invertible, then there exists a vector x �= 0 such

that Bx = 0. Then, ABx = 0 too, implying that AB is not invertible.

Since A is not invertible, there exists a vector y �= 0 such that Ay = 0. If

B is invertible, then there exists a vector x �= 0 such that y = Bx (it is

x = B−1y). Then ABx = Ay = 0, implying that AB is not invetible as

required. �

Theorem

Theorem 6.7. An upper or lower triangular-matrix with non-zero

diagonal entries is invertible.

Proof. Suppose A ∈ Rn×n is lower-triangular and one looks for an x ∈ Rn

which solves Ax = 0. We need to show that x = 0 is the unique solution.

This set of equations can be put as⎛
⎜⎜⎜⎜⎜⎜⎜⎝

A11 0 0 . . . 0

A21 A22 0 . . . 0

A31 A32 A33 . . . 0

...
...

...
...

...

An1 An2 An3 . . . Ann

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x1

x2

...

...

xn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0

0
...
...

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
. (6.2)

By forward substitutions we can argue that x1 = x2 = · · · = xn = 0 is the

unique solution. Indeed, consider the first equation. Since A11 �= 0, the
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unique solution is x1 = 0. Use this value at the second equation and again

since A22 �= 0, we get x2 = 0. Going on this way completes the proof. �

A similar argument applies for an upper-triangular matrix. Alterna-

tively, note that if A is upper-triangular then At is lower-triangular and

the matrix is invertible if and only if its transpose is invertible. Note that

had one of the diagonal entries been zero, the solution would not be unique

and in particular, the matrix would not be invertible.

Consider again the set of equations stated in (6.2) and replace the right-

hand side with some other vector. Then, solving this system can be done in

the same way by forward substitutions. In particular, the resulting solution

is unique. Inspect now the special case where the right-hand side vector is

the unit vector ej. Then, it is possible to see that the resulting solution

can serve as the jth column of the inverse of A (if exists). Yet, since this

can be done for any ej , 1 ≤ j ≤ n, the existence of the inverse is hence

established. Denote the solution for Ax = ej by the vector whose entries

are A−1ij , 1 ≤ i ≤ n. It is possible to see that the first j − 1 entries turned

out to be zeros, namely, A−1ij = 0, 1 ≤ i < j ≤ n. Thus, we can conclude

that if A is lower-triangular, then the same is the case with its inverse (when

exists).

Example. For the matrix A which appears at page 60, we have already

computed its QR factorization:

A =

⎛
⎜⎜⎝

1 0 0

1 1 0

1 1 1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1√
3

−2√
6

0

1√
3

1√
6

−1√
2

1√
3

1√
6

1√
2

⎞
⎟⎟⎠
⎛
⎜⎜⎝
√
3 2√

3
1√
3

0
√
6
3

1√
6

0 0 1√
2

⎞
⎟⎟⎠ = QR.

We are interested in inverting the upper-triangular matrix R. Towards

this end, we look for the following three systems of equations:⎛
⎜⎜⎝
√
3 2√

3
1√
3

0
√
6
3

1√
6

0 0 1√
2

⎞
⎟⎟⎠
⎛
⎜⎝

x1

x2

x3

⎞
⎟⎠ =

⎛
⎜⎝

1

0

0

⎞
⎟⎠,

⎛
⎜⎜⎝
√
3 2√

3
1√
3

0
√
6
3

1√
6

0 0 1√
2

⎞
⎟⎟⎠
⎛
⎜⎝

x1

x2

x3

⎞
⎟⎠ =

⎛
⎜⎝

0

1

0

⎞
⎟⎠,

and ⎛
⎜⎜⎝
√
3 2√

3
1√
3

0
√
6
3

1√
6

0 0 1√
2

⎞
⎟⎟⎠
⎛
⎜⎝

x1

x2

x3

⎞
⎟⎠ =

⎛
⎜⎝

0

0

1

⎞
⎟⎠.
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Each of the above solution contributes a column to R−1, which turns out

to be

R−1 =

⎛
⎜⎜⎝

1√
3
−
√
6
3 0

0 3√
6
− 1√

2

0 0
√
2

⎞
⎟⎟⎠.

Our final point here considers the QR factorization of an invertible

matrix. It was shown in Section 5.5 that if the columns of A are linearly

independent (which in the case of a square matrix is equivalent to its invert-

ibility), we get that A = QR where (i) Q is an orthonormal matrix with

Q−1 = Qt, (ii) R is upper-triangular, and (iii) all diagonal entries in R are

non-zero (in fact, positive) and hence R−1 exists. Thus,

A−1 = (QR)−1 = R−1Q−1 = R−1Qt. (6.3)

Thus, once a square matrix is written in its QR factorization form, find-

ing its inverse is boiled down to finding the inverse of an upper-triangular

matrix. As was described in the previous paragraph, this can be done by

backward substitutions. To summarize, we can invert an invertible matrix

A ∈ Rn×n by taking the following steps: Firstly, find its QR factoriza-

tion, basically by doing the Gram–Schmidt process stated in Section 5.5.

Secondly, invert the upper-diagonal matrix R by applying the backward

substitution procedure n times. Finally, compute R−1Qt. This is our first

procedure for inverting matrices. There will be more.

Example (cont.) Back to the above example:

A−1 = R−1Qt =

⎛
⎜⎜⎝

1√
3

−
√

6
3

0

0 3√
6

− 1√
2

0 0
√
2

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1√
3

1√
3

1√
3

− 2√
6

1√
6

1√
6

0 − 1√
2

1√
2

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 0 0

−1 1 0

0 −1 1

⎞
⎟⎟⎠.

Exercise 6.4

Consider the following matrix:

A =

⎛
⎜⎝

12 −51 4

6 167 −68
−4 24 −41

⎞
⎟⎠.
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Given its QR factorization as computed in exercise 5.9, compute its

inverse: A−1.

6.6 Inverting a Matrix by Row Operations

In Eq. (6.3), we showed how to invert a matrix using its QR factorization.

The question we pose now is if it is possible to invert a matrix without

computing its QR factors first. We can draft to our mission the row opera-

tions defined in Section 5.6 and their use to convert a matrix to an echelon

matrix. Suppose this procedure is applied to a square matrix. By defini-

tion, this procedure terminates with an upper-triangular matrix. Thus, for

some row operation matrices E1, . . . , Ek,

EkEk−1 · · ·E1A = U,

where U is an upper-triangular matrix. Since by Theorem 5.8

rank(EkEk−1 · · ·E1A) = rank(A),

we conclude that A is invertible if and only if the same is the case with U ,

namely if and only if all diagonal entries in U are non-zero.d

As for computing A−1 we now have two options. The first is to invert

the upper-triangular matrix as suggested in the previous section. Indeed,

it is easy to see that U−1Ek · · ·E1 is the inverse of A:

(U−1Ek · · ·E1)A = U−1(Ek · · ·E1A) = U−1U = I.

The second option is as follows. Suppose we find another set of l row oper-

ation matrices, Ek+1, . . . , El such that

El · · ·Ek+1U = I,

then A−1 exists and it equals Ek+l · · ·Ek+1EkEk−1 · · ·E1. Note that this

is possible as described next. Firstly, by row operations, make all diago-

nal entries in U equal to one. This can be done by dividing all entries in

row i by Uii, 1 ≤ i ≤ n. Call this matrix U ′ and note that it is an upper-

triangular matrix with all its diagonal entries being equal to 1. Secondly,

all entries above the diagonal in U ′ can become zero by the corresponding

dInspecting how the conversion to an echelon matrix is done, the last entry in the
diagonal, namely Unn, tells it all: A is invertible if and only if Unn �= 0.
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row operations (without changing any zero entries into non-zero). Indeed,

in order to zero Uij with 1 ≤ i < j ≤ n − 1, do the following row

operation:

Ri ← Ri − U ′ijRj , i+ 1 ≤ j ≤ n, 1 ≤ i ≤ n− 1.

Note that we have a total of n(n− 1)/2 row operations which can be done

in any order. Yet, it is somewhat easier to apply them in a decreasing order

of i as one will meet more zeros from Rj , i < j < n.

In practice, what is usually done in order to compute Ek+l · · ·
Ek+1EkEk−1 · · ·E1, which of course equals Ek+l · · ·Ek+1EkEk−1 · · ·E1I,

is to apply the same row operations preformed on A (on the way toward I)

concurrently on I.

There was a practical question that was ignored above: how do we select

the row operations? Or put differently, how are we guaranteed that through

a finite sequence of row operations we indeed obtain A−1? We start with

inspecting A11. In case it equals zero, we perform the row operation which

is interchanging the first row with some row i with Ai1 �= 0, 2 ≤ i ≤ n. Of

course this is possible: had the first column been full of zeros the matrix

would not be invertible. The trick now is to use the entry in position (1, 1)

as a pivot for zeroing all entries in the first column:

Ri ← Ri − Ai1

A11
R1, 2 ≤ i ≤ n.

This takes care of the first column. Now repeat this for all entries below

the diagonal of the second column, while leaving the first row as is. Again,

check first if the diagonal term is zero or not. In case it is, interchange

row 2 with one of the rows i, 2 ≤ i ≤ n, which has a non-zero entry in

the second column. Finding such an entry is guaranteed. Next, zero all

entries in the second column below the diagonal using the (2, 2) entry as

a pivot. Then you do the same for the third column, keeping the first two

rows untouched, etc. This leads to an upper-triangular matrix, with no zero

entries on the diagonal. Then, make all diagonal entries one, by dividing

each row with its diagonal entry. Now zero the entries above the diagonal.

This is done first to the n− th column, then the (n− 1)th column, etc. See

the following example. Note the matrices on the right which correspond to

performing the same row operations on matrices initialized as the identity

matrix.
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Example.

A =

⎛
⎜⎝

1 −3 0

2 −2 2

3 −4 3

⎞
⎟⎠, I =

⎛
⎜⎝

1 0 0

0 1 0

0 0 1

⎞
⎟⎠

R3 ← R3 − 3R1⎛
⎜⎝

1 −3 0

2 −2 2

0 5 3

⎞
⎟⎠

⎛
⎜⎝

1 0 0

0 1 0

−3 0 1

⎞
⎟⎠

R2 ← R2 − 2R1⎛
⎜⎝

1 −3 0

0 4 2

0 5 3

⎞
⎟⎠

⎛
⎜⎝

1 0 0

−2 1 0

−3 0 1

⎞
⎟⎠

R3 ← R3 − 5

4
R2

⎛
⎜⎝

1 −3 0

0 4 2

0 0 0.5

⎞
⎟⎠

⎛
⎜⎝

1 0 0

−2 1 0

−0.5 −1.25 1

⎞
⎟⎠.

Note that we have reached an upper-triangular matrix. The procedure goes

on as follows:

R2 ← R2 − 4R3⎛
⎜⎝

1 −3 0

0 4 0

0 0 0.5

⎞
⎟⎠

⎛
⎜⎝

1 0 0

0 6 −4
−0.5 −1.25 1

⎞
⎟⎠

R1 ← R1 +
3

4
R2

⎛
⎜⎝

1 0 0

0 4 0

0 0 0.5

⎞
⎟⎠

⎛
⎜⎝

1 9/2 −3
−4 6 −3
−0.5 −1.25 1

⎞
⎟⎠.

Finally,

R3 ← 2R3 and R2 ← 1

4
R2
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lead to the identity matrix. In particular,

A−1 =

⎛
⎜⎝

1 4.5 −3
0 1.5 −1
−1 −2.5 2

⎞
⎟⎠.

Exercise 6.5

Let:

A =

⎛
⎜⎝

0 1 2

1 0 3

4 −3 8

⎞
⎟⎠ , b =

⎛
⎜⎝

1

1

1

⎞
⎟⎠.

(a) Solve the system of equations Ax = b by transforming to the sys-

tem Lx = b′, where L is an upper-triangular matrix, using row operations

on A.

(b) Solve the same system of linear equations (Ax = b) by transforming the

system Lx = b′ to Ix = b′′, using row operations on L.

(c) Find A−1 using row operations on A and the same operation on I.

Exercise 6.6

Show that if E is a row operation matrix then its inverse exists. Specifically,

1. if E multiplies all entries of row i by a c �= 0, then E−1 does the same

but with 1/c

2. if E swaps two rows, then E−1 = E, and

3. if E subtracts c times row j from row i, then E−1 adds c times row j to

row i.

Conclude that the inverse, as expected, cancels the originally performed

row operation.

6.7 Change of Bases and Similar Matrices

When we refer to a vector x ∈ Rn, we in fact have in mind Σn
i=1xiei. In

particular, xi is the ith coefficient when we express x as a linear combination

of the unit vectors which form the elementary basis for Rn. Suppose we

have another basis in mind and let V ∈ Rn×n be the matrix whose columns

coincide with the vectors in this basis. A natural question is what are the

coefficients of these vectors when one expresses x as a linear combination
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thereof. The answer is simple. Specifically, let α ∈ Rn be the vector of

coefficients. Then, x = V α and hence α = V −1x. If one takes another

basis whose matrix is U , x = Uβ and hence β = U−1x. In passing, note

that since V α = Uβ, we have that α = V −1Uβ and that β = U−1V α.

Example. Consider the vector x = (1, 2, 3). Expressing x as a linear com-

bination of the vectors (1, 1, 0), (1, 1, 2), (2, 0, 1), our task is to find the cor-

responding coefficients. Note that the three vectors form a linear basis of

R3 (a fact that will be established anyhow when we show that the matrix

formed out of these vectors as its columns is invertible). The corresponding

matrix V (whose columns form the basis) is

V =

⎛
⎜⎝

1 1 2

1 1 0

0 2 1

⎞
⎟⎠.

In order to find the coefficients, we need to invert this matrix. We do that

through a sequence of row operations El · · ·E1 which transform V into the

identity matrix. The product El · · ·E1 is therefore the inverse of V , which

can also be obtained by applying the same row operations to the identity

matrix. Details are given in the following table, describing all operations

step by step on the original and identity matrices:

Operation Result on Result on

Row operation matrix original matrix identity matrix

R2 ← R2 −R1 E1 =
(

1 0 0−1 1 0
0 0 1

) (
1 1 2
0 0 −2
0 2 1

) (
1 0 0−1 1 0
0 0 1

)
R2 ← R2 + 2R3 E2 =

(
1 0 0
0 1 2
0 0 1

) (
1 1 2
0 4 0
0 2 1

) (
1 0 0−1 1 2
0 0 1

)
R3 ← R3 − 1

2R2 E3 =
(

1 0 0
0 1 0
0 −0.5 1

) (
1 1 2
0 4 0
0 0 1

) ( 1 0 0−1 1 2
1/2 −1/2 0

)
R2 ← 1

4R2 E4 =
(

1 0 0
0 0.25 0
0 0 1

) (
1 1 2
0 1 0
0 0 1

) (
1 0 0
−1/4 1/4 1/2
1/2 −1/2 0

)

R1 ← R1 −R2 E5 =
(

1 −1 0
0 1 0
0 0 1

) (
1 0 2
0 1 0
0 0 1

) (
5/4 −1/4 −1/2
−1/4 1/4 1/2
1/2 −1/2 0

)

R1 ← R1 − 2R3 E6 =
(

1 0 −2
0 1 0
0 0 1

) (
1 0 0
0 1 0
0 0 1

) (
1/4 3/4 −1/2
−1/4 1/4 1/2
1/2 −1/2 0

)



Invertible Matrices and the Inverse Matrix 83

The inverse V −1 is given in the lower right box of the table. Standard

computation shows that it coincides with V −1 = E6 · · ·E1. Thus,

V −1 =

⎛
⎜⎝

1/4 3/4 −1/2
−1/4 1/4 1/2

1/2 −1/2 0

⎞
⎟⎠.

Finally, to find the coefficients we only need to compute V −1x, which leads

to:

V −1x =

⎛
⎜⎝

1/4 3/4 −1/2
−1/4 1/4 1/2

1/2 −1/2 0

⎞
⎟⎠
⎛
⎜⎝
1

2

3

⎞
⎟⎠ =

⎛
⎜⎝

1/4

7/4

−1/2

⎞
⎟⎠.

Let A ∈ Rm×n and consider the linear function y = Ax. Our default

assumes that both x are y are written as linear combination of {ei}ni=1 and

{ei}mi=1, respectively. Let V ∈ Rn×n and U ∈ Rm×m be basis matrices

for Rn and Rm, respectively. We are now interested in the matrix of this

linear function with respect to these two bases. Specifically, let x = V α

and y = Uβ. Then,

Ax = AV α = Uβ ⇒ β = U−1AV α,

So the answer is U−1AV . Note that in the special case where m = n and

one uses the same basis for the domain and for the range, namely U = V ,

we get that the matrix we are after is V −1AV .

Example. Let

A =

⎛
⎜⎝

0 2 1

0 −1 −1
1 2 3

⎞
⎟⎠.

Consider the columns of the following matrix:

V =

⎛
⎜⎝

1 −1 0

0 1 −1
0 0 1

⎞
⎟⎠.
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They form a basis of R3. What is the matrix that represents the same linear

function as A but with respect to this basis? To answer this question we

needed to compute V −1 which turns out to be

V −1 =

⎛
⎜⎝

1 1 1

0 1 1

0 0 1

⎞
⎟⎠ .

Finally,

V −1AV =

⎛
⎜⎝

1 2 0

1 0 1

1 1 1

⎞
⎟⎠

is the matrix we are after.

Definition

Definition 6.1. Two square matricesA and B are said to be similar

if there exists a matrix V such that

B = V −1AV.

An interpretation for this definition is as follows. Suppose a linear func-

tion Ax is given when the standard basis is used but one is interested in

the matrix of this linear function when another basis, V , is assumed. What

one needs to do is to first convert the given presentation into the one based

on the standard basis. This is done by multiplying it with V . Then apply

A to the result and finally multiply that by V −1 to convert the result back

to the original basis.

Exercise 6.7

(a) Show that if A,B are similar then also A− aI and B − aI are similar

for any a ∈ R.

(b) Let A,B ∈ Rn×n be similar matrices. Prove that trace(A) = trace(B)

where the trace of a square matrix is defined as the sum of the entries along
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its diagonal. Use the fact that trace(CD) = trace(DC) for any square

matrices C and D (both of the same dimension).

(c) Prove that the diagonal matrices

D1 =
(

a 0 0
0 b 0
0 0 c

)
, D2 =

(
c 0 0
0 a 0
0 0 b

)
,

are similar. What is the matrix S that satisfies D2 = SD1S
−1?

Exercise 6.8

Let A = ( 1 2
3 4 ) be the transformation matrix from R2 to R2 with respect to

the standard basis. Let ( 2
5 ), (

1
3 ) be another basis.

(a) Show that the transformation matrix with respect to that basis is B =(−5 −8
6 10

)
.

(b) Check your result: let S = ( 1 2
3 5 ). Compute S−1 and verify that A =

SBS−1.

Exercise 6.9

Let A ∈ Rn×n be a square matrix. Let E1, . . . , Em and F1, . . . , Fk two

sequences of row operation matrices. Suppose that:

Em · · ·E1AF1 · · ·Fk = I.

(a) Explain why A is invertible.

(b) Express A−1 in terms of the above row operation matrices.

Exercise 6.10

Let T : R2 → R2 be a linear transformation defined as:

T (x, y) =

(
3x+ 4y

2x− 5y

)
.

Given the following two bases:

E = {e1, e2}; S =

{(
1

2

)
,

(
2

3

)}

(a) Find the transformation matrix A which represents T with respect to

E, in both domain and range.
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(b) Find the transformation matrix A which represents T with respect to

S, in both domain and range.

(c) What is the transformation matrix if the domain subspace is expressed

in terms of S and the range subspace is expressed in terms of S ={(
−1
1

)
,

(
2

−1

)}
?

6.8 Special Inverses

6.8.1 Block matrices

Theorem

Theorem 6.8. Let A ∈ Rn×n. Its block presentation is

A =

(
A11 A21

A21 A22

)
,

where for some r, 1 ≤ r < n, A11 ∈ Rr×r, A12 ∈ Rr×(n−r), A21 ∈
R(n−r)×r and A22 ∈ R(n−r)×(n−r). Assume both A11 and A22 are
invertible. Then,

A−1 =

(
(A11 − A12A

−1
22 A21)−1 −A−1

11 A12(A22 − A21A
−1
11 A12)−1

−A−1
22 A21(A11 − A12A

−1
22 A21)−1 (A22 − A21A

−1
11 A12)−1

)
.

Proof. We look for matrices B11, B12, B21 and B22 such that(
A11 A21

A21 A22

)(
B11 B21

B21 B22

)
=

(
I 0

0 I

)
.

The fact that A21B11 + A22B21 = 0, implies that B21 = −A−122 A21B11.

Substituting that in the equation A11B11 +A21B21 = I leads to A11B11 −
A12A

−1
22 A21B11 = I, which can easily be solved for B11, as required. This

leads to the promised value for B21. Solving for B21 and B22 is similar. �

6.8.2 Rank-one updates

The following is the Sherman–Morrison formula. It says that if the inverse

of a matrix is at hand, it is possible to find the inverse of a rank-one update

of it more efficiently than by inverting the new matrix from scratch.
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Theorem

Theorem 6.9. Let A ∈ Rn×n be an invertible matrix. Let v, u ∈
Rn. The matrix A + uvt is invertible if and only if vtA−1u �= −1,
in which case

(A+ uvt)−1 = A−1 − 1

1 + vtA−1u
A−1uvtA−1.

In particular, the correction of A−1 is a rank-one correction too.

Proof. The result is established by a straightforward matrix multiplica-

tion, leading to the identity matrix. Indeed,

(A+ uvt)

(
A−1 − 1

1 + vtA−1u
A−1uvtA−1

)

= AA−1 + uvtA−1 − 1

1 + vtA−1u
(uvtA−1 + uvtA−1uvtA−1)

= I + uvtA−1 − 1

1 + vtA−1u
u(1 + vtA−1u)vtA−1,

I + uvtA−1 − uvtA−1 = I,

as required. Clearly, the assumption that vtA−1u �= −1 is necessary for

the above to make sense. What is left is to argue that when vtA−1u =

−1 the matrix A + uvt is not invertible. First, it implies that u �= 0 but

(A + uvt)A−1u = Iu − u = 0. Since A−1u �= 0, A + uvt is hence not

invertible. �
The above leads to an alternative procedure for computing the inverse of

a matrix. It is based on the idea that any square matrix can be presented as

the identity matrix plus the sum of n rank-one matrices. Then, its inverse

can be derived by n consecutive applications of the Sherman–Morrison for-

mula. Specifically, let Aj be the jth column of A and denote Aj − ej by

uj , 1 ≤ j ≤ n. Recall that ej is the jth unit vector, 1 ≤ j ≤ n. Then, by

replacing sequentially each of the (unit) columns of I by uj , 1 ≤ j ≤ n, we

can see that

A = I +

n∑
j=1

uje
t
j.

The following algorithm is now immediate.
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Input: an invertible matrix A ∈ Rn×n.

Output: its inverse A−1.

Set: uj = Aj − ej , 1 ≤ j ≤ n.

Initialization: A−1 = I.

For j = 1 until j = n do:

A−1 ← A−1 − 1

1 + etjA
−1uj

A−1uje
t
jA
−1.

j ← j + 1.

Note that above A−1ej (etjA
−1, respectively) is the jth row (column,

respectively) of the current A−1, 1 ≤ j ≤ n.

Example. Suppose

A =

(
1 1

1 2

)
and hence u1 =

(
0

1

)
, u2 =

(
1

1

)
.

Also,

A =

(
1 0

0 1

)
+

(
0 0

1 0

)
+

(
0 1

0 1

)
.

First iteration:

A−1 ←
(
1 0

0 1

)
− 1

1 + 0

(
1 0

0 1

)(
0 0

1 0

)(
1 0

0 1

)
=

(
1 0

−1 1

)

Second (and final) iteration:

A−1 ←
(

1 0

−1 1

)
− 1

1 + 0

(
1 0

−1 1

)(
0 1

0 1

)(
1 0

−1 1

)
=

(
2 −1
−1 1

)

A hidden assumption above is that when called for, 1 + etjA
−1uj �= 0.

There is no a-priori guarantee that this is the case, even when A−1 exists.

For example, suppose

A =

(
0 1

1 0

)
.

Clearly, A−1 = A. In particular, A−1 exists. Yet, at the first iteration,

1 + et1Iu1 = 1 + etu1 = 1 − 1 = 0 and the algorithm will produce an error
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message. Note that 1 + et2Iu2 = 0, so swapping the order between the two

rank-one updates does not lead to different results. Thus, a drawback of

this procedure is that it fails to tell that its input matrix is not invertible

even when this is the case. Put differently, if at some stage 1+etjA
−1uj = 0,

one will not be able to tell the reason behind it.
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Chapter 7

The Pseudo-Inverse Matrix, Projections and
Regression

7.1 Least Squares Solutionsa

We are now back to the issue of left-inverses. Our previous discussion of

this subject dealt with some of the properties possessed by any left-inverse

and we also state some sufficient conditions for their existence. Yet, we have

not developed as of now any method for computing at least one left-inverse

(when it exists). The exception was for the case of square matrices where

the left-inverse coincides with the inverse (when it exists) which was dealt

with in the previous chapter. Now that we are equipped with the concept

of the inverses of square matrices, this gap on left-inverses for tall matrices

can be filled up.

Theorem

Theorem 7.1. Let A ∈ Rm×n be a tall matrix (m ≥ n). Assume

it is a full rank matrix (namely, rank(A) = n and its columns are

linearly independent). Then,

1. AtA (called the Gram matrix) is invertible,

2. (AtA)−1At (called the Moore–Penrose (pseudo)-inverse) is a left-

inverse of A. In particular, A has a left-inverse,

3. if a solution to the system of equations Ax = b exists, then it is

uniquely (AtA)−1Atb.

aThis section is based on [3].

91
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Proof. Aiming for a contradiction, assume there exists a non-zero x ∈ Rn

with AtAx = 0. Then,

0 = xt0 = xtAtAx = ||Ax||2,

and hence Ax = 0, contradicting the fact that the columns of A are linearly

independent. Also,

((AtA)−1At)A = (AtA)−1(AtA) = I,

establishing the fact that (AtA)−1At is a left-inverse of A. The final state-

ment is now immediate from Theorem 6.2. �

Denote the matrix (AtA)−1At by A†. It was just established that

A†A = I, i.e., A† is a left-inverse of A.

Example. Find the Moore–Penrose pseudo-inverse of the following matrix:

A =

⎛
⎜⎝
−3 −4
4 6

1 1

⎞
⎟⎠.

By simple calculations we obtain:

AtA =

(
26 37

37 53

)
.

The next step is to invert this matrix. Since the matrix is of dimension

2× 2, we can use the inversion formula as given in page 74, and obtain:

(AtA)−1 =
1

26 · 53− 372

(
53 −37
−37 26

)
=

1

9

(
53 −37
−37 26

)

=

(
5.888889 −4.111111
−4.111111 2.888889

)
.

Therefore, the pseudo inverse is:

A† = (AtA)−1At =

(
−1.2222222 −1.1111111 1.777778

0.7777778 0.8888889 −1.222222

)
.
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Exercise 7.1

Denote AA† = E.

(a) Show that for every k ∈ N , Ek = E. Such matrices are called idempo-

tent matrices.

(b) Show that (I − E)E = E(I − E) = 0.

(c) Show that E is symmetric.

It is clear that if A is a square matrix then the existence of A† is equiv-
alent to the existence of A−1 (and they coincide), so the interest in A† is
mainly in case where m > n. Namely, A is a truly tall matrix (with linearly

independent columns), in which case A† is referred to as the pseudo-inverse

of A. It plays an important role in “solving” the system Ax = b in this case.

Indeed, if the system of equations Ax = b does not have a solution, namely,

b does not lie in the linear subspace spanned by the columns of A, a natural

question is then what is the vector in this space which is the closest to b,

namely, using terminology introduced in Chapter 3, what is the projection

of b on this linear subspace. The answer to this question is given next.

Theorem

Theorem 7.2. For the case where A ∈ Rm×n is a full rank tall

matrix,

A†b = arg min
x∈Rn

||Ax− b||.

In other words, AA†b is the projection of b on the linear subspace

spanned by the columns of A and its residual equals

(I −AA†)b.

Finally,

bt(I −AA†)b = min
x∈Rn

||Ax− b||2.

Proof. We next prove only the first and third parts of the theorem as

the second part then follows immediately from the first. Before doing that,

notice that we claim that A†b is the unique solution to the optimization

problem stated here. Denote A†b by x∗ and note that our goal is to show

that for any x ∈ Rn, x �= x∗,

||Ax∗ − b|| < ||Ax − b||.
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Indeed, for any x,

||Ax − b||2 = ||(Ax −Ax∗) + (Ax∗ − b)||2 = ||Ax−Ax∗||2 + ||Ax∗ − b||2

+2(Ax−Ax∗)t(Ax∗ − b).

We next show that the third term equals zero:

(Ax −Ax∗)t(Ax∗ − b) = (x− x∗)tAt(Ax∗ − b) = (x − x∗)t(AtAx∗ −Atb)

= (x− x∗)t(AtAA†b−Atb) = (x− x∗)t(AtA(AtA)−1Atb−Atb)

= (x− x∗)t(Atb−Atb) = 0,

as claimed.

In order to show uniqueness, we next argue that unless x = x∗, ||Ax −
Ax∗||2 > 0. Aiming for a contradiction, suppose ||Ax−Ax∗|| = 0 for some

x �= x∗. Then, Ax = Ax∗ and A(x−x∗) = 0, violating the assumption that

the columns of A are linearly independent.

The final statement of the theorem is based on the fact that

||Ax∗ − b||2 = ((I −AA†)b)t(I −AA†)b = bt(I −AA†)t(I −AA†)b

= bt(I −AA†)b,

which can be shown by some algebra. �

For exercising, you may like to check that the projection and its residual

are indeed orthogonal. In fact, we also know that the residual is orthogonal

to all columns of A. In the notation we used above,

At(b−Ax∗) = 0 ∈ Rm. (7.1)

Indeed,

At(I −AA†) = At −AtA(AtA)−1At = At −At = 0 ∈ Rm×m.

Finally, note that Item 3 of Theorem 7.1 is a special case of the above

theorem. Indeed, it deals with the case where b lies in the linear subspace

spanned by the columns, namely b and its projection coincides. In partic-

ular, the residual of the projection of b is the zero vector.
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Remark.b The optimization problem solved in Theorem 7.2 is equivalent

to minimizing

1

2
||Ax− b||2 =

1

2
xtAtAx− xtAtb+

1

2
||b||2.

The gradient of this function equals

AtAx −Atb.

Equating it to zero, we conclude, as above, that x∗ = (AtA)−1Atb. The

Hessien of this matrix is AtAx which is a positive matrix (see Section 10.2)

as xt(AtA)x = ||Ax||2 > 0 for any x �= 0.

The casting out algorithm (cont.). Note that Theorem 7.2 leads to a

procedure for finding if a set of linear equations Ax = b, where A is a full-

rank matrix, is feasible or no. Of course, this is equivalent to asking whether

or not the vector b lies in the linear subspace spanned by the columns of

A. Indeed, the answer for this question is yes or no depending whether

or not AA†b = b. A possible application for this result is the casting out

algorithm, introduced in Section 2.4, for selecting a subset of vectors out of

a given set of vectors which forms a basis for the linear subspace spanned

by the set of vectors. The idea there was to check whether or not a can-

didate for entering the basis lies in the linear subspace spanned by those

who are already in the basis. Since those that are already in the basis are

linearly independent, the matrix A having these vectors as its columns is

a full-rank one, we can check whether AA†vi = vi or not, where vi is the

candidate for entering the basis. Indeed, it enters if and only if the answer

is no.

An alternative way to derive A† is via the QR factorization of A:

Theorem

Theorem 7.3. Let QR be the QR factorization of the full-rank tall

(or square) matrix A. Then,

A† = R−1Qt. (7.2)

bThis remark is for those who are equipped with some calculus background. Other-
wise, it can be skipped without loss of continuity.
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Proof.

A† = (AtA)−1At = ((QR)tQR)−1(QR)t = (RtQtQR)−1RtQt

= (RtR)−1RtQt = R−1(Rt)−1RtQt = R−1Qt,

as required. �

Note that this theorem was already derived in (6.3) for the special case

where A is an invertible matrix.

Exercise 7.2

Assume A ∈ Rm×n withm ≥ n is a full-rank matrix. Show thatA† ∈ Rn×m

uniquely obeys for X ∈ Rn×m the following four conditions: AXA = A,

XAX = X , (AX)t = AX and (XA)t = XA.

Exercise 7.3

Let Qm×n be an orthonormal matrix with n ≤ m.

(a) Show that
∑n

i=1 qiq
t
i = QQt, where qi is the ith column of Q.

(b) Assume that A ∈ Rm×n, m ≥ n and that the columns ofA are linearly

independent. Show that AA† = QQt, where Q is the first term in the QR

factorization of A.

(c) Conclude that ‖QQtb− b‖ = minx ‖Ax− b‖.
(d) Show that QQt is the projection matrix of the subspace spanned by A’s

columns, and that I −QQt is the residual matrix.

Exercise 7.4

Let

A =

⎛
⎜⎝
−3 −4
4 6

1 1

⎞
⎟⎠, b =

⎛
⎜⎝

1

−2
0

⎞
⎟⎠

(a) Compute the QR factorization of A.

(b) Compute A†.
(c) Check if there exists a solution to Ax = b, and if so, then x = A†b is

the unique solution.
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7.2 Simple Linear Regression

We now look at the special case where n = 2 and the first column of

A is full of ones. This case was already defined and solved completely in

Example 2 in Section 2.4. We redo it here as an example for what appears

in the previous section. Recall that what we are looking for here is a line

y = ax+b, which minimizes Σn
i=1(yi−axi−b)2. To align the notation used

here with what was previously used, we denote Ai2 by xi, 1 ≤ i ≤ m, the

decision variables by (b, a), and the right-hand side vector b by yi, 1 ≤ i ≤ n.

Thus,

A =

⎛
⎜⎜⎜⎜⎝

1 x1

1 x2

...
...

1 xm

⎞
⎟⎟⎟⎟⎠ and b =

⎛
⎜⎜⎜⎜⎝

y1

y2
...

ym

⎞
⎟⎟⎟⎟⎠.

Then,

AtA =

(
1 1 . . . 1

x1 x2 . . . xm

)
⎛
⎜⎜⎜⎜⎝

1 x1

1 x2

...
...

1 xm

⎞
⎟⎟⎟⎟⎠ =

(
m

∑m
i=1 xi∑m

i=1 xi

∑m
i=1 x

2
i

)
,

and

(AtA)−1 =
1

m
∑m

i=1 x
2
i − (

∑m
i=1 xi)2

( ∑m
i=1 x

2
i −∑m

i=1 xi

−∑m
i=1 xi m

)

=
1

mVar(x)

(
x2 −x
−x 1

)
,

where x =
Σm

i=1xi

m and where x2 =
Σm

i=1x
2
i

m , coupled with the fact that

Var(x) = x2 − x2. Then,

A† = (AtA)−1At =
1

mVar(x)

(
x2 −x
−x 1

)(
1 1 . . . 1

x1 x2 . . . xm

)

=
1

mVar(x)

(
x2 − x1x x2 − x2x . . . x2 − xmx

x1 − x x2 − x . . . xm − x

)
. (7.3)
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Finally,

A†y =
1

mVar(x)

(
x2 − x1x x2 − x2x . . . x2 − xmx

x1 − x x2 − x . . . xm − x

)
⎛
⎜⎜⎜⎜⎝

y1

y2

...

ym

⎞
⎟⎟⎟⎟⎠

=
1

mVar(x)

(
x2
∑m

i=1 yi − x
∑m

i=1 xiyi∑m
i=1 xiyi − x

∑m
i=1 yi

)
=

1

Var(x)

(
x2y − x× xy

Cov(x, y)

)
,

as Cov(x, y) = (x− x1)(y − y1) = xy−xy. The second entry here, a which

is the slope, is easily seen to equal Corr(x, y)SD(y)

SD(x)
, while after some algebra

it can be seen that the first entry, b, which is the intercept, equals y − ax.

This is called the regression line of Y on X . This line is one of the pillars

of statistics and data science. Among others, it allows a quick and dirty

function relating two variables. Also, it assists in predicting (albeit with

an error) the Y value of a new entry that its X is given.

If we denote by e ∈ Rm the residual vector, namely ei = yi − axi − b,

1 ≤ i ≤ m, we learn from (7.1), that Σm
i=1ei = 0 and that Σm

i=1xiei = 0.

Denote axi + b by ŷi, 1 ≤ i ≤ m, known as the fitted values. Then, the last

two equations lead immediately to Σm
i=1ŷiei = 0.

Example. Consider the following data taken from [7, p. 591]:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 4

1 6

1 2

1 5

1 7

1 6

1 3

1 8

1 5

1 3

1 1

1 5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and b =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

197

272

100

228

327

279

148

377

238

142

66

239

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.



The Pseudo-Inverse Matrix, Projections and Regression 99

Then,

AtA =

(
12 55

55 299

)
and (AtA)−1 =

1

459

(
299 −55
−55 12

)
.

Finally, a = 44.41384 and b = 14.186652. It is straightforward to check

that A†A = I as required.

We next exemplify formula (7.2) for the computation of A† in this case.

Recall from (5.3) that the QR factorization is

Q =
1√
m

⎛
⎜⎜⎜⎜⎜⎝

1 x1−x
SD(x)

1 x2−x
SD(x)

...
...

1 xm−x
SD(x)

⎞
⎟⎟⎟⎟⎟⎠ and R =

√
m

(
1 x

0 SD(x)

)
.

Then,

R−1 =
1√
m

⎛
⎝1 − x

SD(x)

0 1

SD(x)

⎞
⎠,

and

A† = R−1Qt =
1

m

⎛
⎝1 − x

SD(x)

0 1

SD(x)

⎞
⎠
(

1 1 · · · 1

x1−x
SD(x)

x2−x
SD(x)

· · · xm−x
SD(x)

)
,

which is easily seen to coincide with (7.3).

7.3 Multiple Linear Regression

As in the previous section, suppose we sample m individuals but now each

possesses values for p + 1 variables, where p of which are the explaining

variables, denoted by X1, . . . , Xp and one is the explained variable, Y .

Thus, our data is X = (X1
i , X

2
i , . . . , X

p
i , Yi), 1 ≤ i ≤ m. Each of the

variables yields a numerical value across individuals. In many cases, as for
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example in the previous section, X1
i = 1, 1 ≤ i ≤ m. The matrix X is

usually referred to as the design matrix.

What we look for here is the set of p values

(w∗1 , . . . , w
∗
p) = arg min

w1,...,wp

m∑
i=1

⎛
⎝Yi −

p∑
j=1

wjX
j
i

⎞
⎠

2

.

Assume that p < m as otherwise we usually find a perfect fit and the

objective above receives the value of zero. So what we look for is the pro-

jection of the vector Y ∈ Rm on the linear subspace spanned by the vectors

X1, . . . , Xp ∈ Rm. We assume that X is a full rank matrix, namely its

p columns are linearly independent and hence rank(X) = p. Finally, the

coefficients we are after are

w∗ = X†Y,

where X† = (XtX)−1Xt. In particular, w∗ is uniquely defined.

The line Σp
j=1w

∗
jXj is known as the non-constant multiple regression line

of Y on the set of variables X1, . . . , Xp. When X1 equals constantly to 1 it

is the multiple regression line of Y on the set of variables X2, . . . , Xp. As in

the simple regression line, this line serves as an idea on how the explained

variable Y is related to the unexplained ones X2, . . . , Xp, and how the

value of the explained variable can be predicted once a new entry with the

unexplained variables is given. Additionally, wj has an interpretation of

a derivative. Indeed, it reflects the change of the explained variable due

to a unit change in the jth explaining variable, given all other explaining

variables are kept unchanged, 1 ≤ j ≤ p.

Example. Our goal is to perform multiple linear regression on the follow-

ing data matrix and observations:

X =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 2 1 3

1 3 −2 4

1 2 1 2

1 1 2 −1
1 6 −1 3

⎞
⎟⎟⎟⎟⎟⎟⎠
, Y =

⎛
⎜⎜⎜⎜⎜⎜⎝

1

2

3

4

5

⎞
⎟⎟⎟⎟⎟⎟⎠
.
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We need to compute X†Y = (XtX)−1XtY . Note that by standard

computation we get:

XtX =

⎛
⎜⎜⎜⎜⎝

5 14 1 11

14 54 −6 39

1 −6 11 −8
11 39 −8 39

⎞
⎟⎟⎟⎟⎠ =⇒ (XtX)−1

=

⎛
⎜⎜⎜⎜⎝

2.4995301 −0.395206767 −0.7852444 −0.470864662
−0.3952068 0.131109023 0.1094925 0.002819549

−0.7852444 0.109492481 0.3566729 0.185150376

−0.4708647 0.002819549 0.1851504 0.193609023

⎞
⎟⎟⎟⎟⎠.

On the other hand,

XtY =

⎛
⎜⎜⎜⎜⎝

15

48

3

28

⎞
⎟⎟⎟⎟⎠.

Altogether, we get:

w∗ = X†Y =

⎛
⎜⎜⎜⎜⎝

2.9830827

0.7725564

−0.2687970
−0.9511278

⎞
⎟⎟⎟⎟⎠.
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Chapter 8

Determinants

8.1 Permutations

Prior to defining the determinant of a square matrix, we need to deal with

permutation. You may have encountered this concept in a course in com-

binatorics or probability. The point of departure is the set of n integers

(1, 2, . . . , n), ordered in the natural way. When you permute them, in one

way or another, you get a permutation. For example, you can permute

(1, 2, 3) to (2, 3, 1), to (1, 3, 2) or even to (1, 2, 3). There are altogether six

possible permutations, or n! in the general case. An individual permuta-

tion is usually denoted by σ and the set of all permutations of the first n

integers is denoted by Sn.

An individual permutation σ ∈ Sn can be looked at as a function which

assigned for any integer i, 1 ≤ i ≤ n, another integer, say σ(i), with

σ(i) ∈ {1, 2, . . . , n}. Moreover, this is a one-on-one function in the sense

that if i �= j, then σ(i) �= σ(j). In particular, any j, 1 ≤ j ≤ n, comes

with a unique i, 1 ≤ i ≤ n, where σ(i) = j. This leads to the inverse

permutation, denoted by σ−1. Thus, if σ(i) = j, then σ−1(j) = i.

Example. Consider the permutation σ ∈ S5:

σ = (3, 4, 1, 2, 5). (8.1)

Note that σ means that σ(1) = 3, σ(2) = 4, σ(3) = 1, σ(4) = 2 and

σ(5) = 5. It is easy to see that σ−1(1) = 3, σ−1(2) = 4, σ−1(3) = 1,

σ−1(4) = 2 and σ−1(5) = 5, or in short

σ−1 = (3, 4, 1, 2, 5).

As it turns out in this example σ−1 = σ but this is not the case in general.

For example the inverse of (2, 3, 1) is (3, 1, 2).

103
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Note that σ = (σ−1)−1, namely the inverse permutation of the inverse

permutation is the original permutation. In particular, applying these two

permutations consecutively (in any of the two possible orders) is equivalent

to applying the identity permutation, namely the permutation (1, 2, . . . , n).

A special case of a permutation σ is a transposition. Here for a given i �= j,

σ(i) = j, σ(j) = i and σ(k) = k, k �= i, j. Note that for any transposition

σ, σ−1 = σ. It is possible to apply one permutation after another. The

end result is also a permutation. If σ, τ ∈ Sn, we denote their composition,

which is itself a permutation, by τ ◦ σ, where here σ is applied first and

then τ . There is no commutativity in general, however σ−1 ◦ σ = σ ◦ σ−1
and both equal the identity permutation.

Take two integers i and j and assume without loss of generality that

1 ≤ i < j ≤ n. Note that there are as many as n(n−1)/2 such pairs. Since

a permutation is a one-on-one function, one and only one of the following

is possible for any given permutation σ: either σ(i) < σ(j) or σ(i) > σ(j).

Definition

Definition 8.1. A permutation σ ∈ Sn is said to be a positive

permutation and its sign, denoted by sgn(σ) is set to 1, if the number

of (i, j) pairs out of the total n(n− 1)/2 pairs with 1 ≤ i < j ≤ n,

such that

σ(i) > σ(j) (8.2)

is even. Otherwise, it is said to be a negative permutation with

sgn(σ) = −1.

Example (cont.). Consider the permutation σ stated in (8.1). Check all

ten pairs i and j with 1 ≤ i < j ≤ 5, and find exactly four for which

σ(i) > σ(j), and hence, sgn(σ) = 1.

Note that the identity permutation, namely the permutation σ ∈ Sn

with σ(i) = i, 1 ≤ i ≤ n, is a positive permutation as zero is an even

number. It is possible to see that if σ is a transposition then sgn(σ) = −1.a

aProof. Suppose i < j and consider the transposition (1, 2, . . . , i−1, j, i+1, . . . , j−1,
i, j+1, . . . , n). All j− i−1 numbers which are strictly between i and j, when compared
to both i and j, contribute two integers where the inequality is reversed. Adding to it
the one inequality between i and j, and we get 2(j − i− 1)+1, which is an odd number.
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We also claim, without a proof, that sgn(τ ◦ σ) = sgn(τ)sgn(σ). Hence,

for any permutation σ ∈ Sn, sgn(σ
−1) = sgn(σ).

The exercise below and its solution are given in [8].

Exercise 8.1

For the following permutations:

σ1 =

(
1 2 3 4 5

2 4 5 1 3

)
, σ2 =

(
1 2 3 4 5

4 1 3 5 2

)
.

(a) Compute σ−1 and σ1 ◦ σ2.

(b) For every permutation, determine its sign (including permutations com-

puted in (a)).

(c) Show that in general sgn(σ) = sgn(σ−1).

8.2 The Determinant

Throughout this chapter we consider only square matrices so this fact is

not going to be repeated. Likewise, when we refer to the product AB we

assume that is it well-defined.

Definition

Definition 8.2. Let A ∈ Rn×n. The determinant of A, denoted by

det(A), is defined by

det(A) =
∑
σ∈Sn

n∏
i=1

sgn(σ)Aiσ(i) . (8.3)

Examples.

• For a scalar a, det(a) = a.

• For

A =

(
a b

c d

)
,

det(A) = ad − bc. You may recall this term which was used when the

inverse of a 2× 2 matrix was defined in Chapter 6.
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• Let A ∈ R3×3. Since 3! = 6, there are six permutations to be considered.

The three permutations (1, 2, 3), (2, 3, 1) and (3, 1, 2) are positive, while

the three permutations (3, 2, 1), (2, 1, 3) and (1, 3, 2) are negative. Hence,

det(A) = A11A22A33 +A12A23A31 +A13A21A32

−A13A22A31 −A12A21A33 −A11A23A32.

• det(At) = det(A).

Proof. When we run through all the permutations and the correspond-

ing products when det(At) is computed, we in fact get the same set of

products, but the factor that multiplied sgn(σ) when det(A) was com-

puted, now multiplies sgn(σ−1). Since sgn(σ−1) = sgn(σ) the proof is

completed. �
• If A is an upper or lower triangular matrix, then its determinant equals

the product of the entries along the diagonal. This is the case since with

exception of the identity permutation, all corresponding product comes

with at least one zero. Finally, if additionally, one of the diagonal entries

equals zero (and hence the matrix is not invertible), then also the prod-

uct which corresponds to the identity permutation equals zero. Also,

det(I) = 1.

Exercise 8.2

Compute the determinants of the following matrices:

A =

(
2 −3
4 7

)
, B =

⎛
⎜⎝

1 −2 3

2 4 −1
1 5 −2

⎞
⎟⎠, C =

⎛
⎜⎝

1/2 −1 −1/3
3/4 1/2 −1
1 −4 1

⎞
⎟⎠.

Exercise 8.3

Claim: for A ∈ Rn×n, we have det(A) = det(At). Prove that claim for

matrices of dimension 2× 2.

8.3 Determinants and Row Operations

In Section 5.6, we have defined three row operations. We next describe

what is the effect of each one of them, when applied, to the determinant of

a matrix.
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• If a row (or a column) is multiplied by a constant c, then the matrix

determinant is multiplied by c too.b

• If two rows (or columns) are swapped, then the determinant keeps its

absolute value but its sign is reversed. This implies that:

Theorem

Theorem 8.1. If a matrix has two identical rows (or columns),

its determinant equals zero.

• If c times of one row is subtracted from another, the determinant is kept

unaltered.

Exercise 8.4

Prove Theorem 8.1 using the three row/column operations and their effect

on the determinant.

Exercise 8.5

(a) Let A ∈ Rn×n and let A′ be the matrix obtained by multiplying the ith

row of matrix A by a scalar λ. Prove that det(A′) = λdet(A).

(b) Let A ∈ Rn×n and let A′ be the matrix obtained by swapping two rows

of matrix A. Prove that det(A′) = −det(A).

Exercise 8.6

Let A,B,C ∈ Rn×n. Suppose that A is identical to B, except the i∗th
column, and suppose that C is identical to A, but its i∗th column is the

sum A·i∗+B·i∗ . Find an expression for det(C) in term of det(A) and det(B).

Recall that applying a row operation on a matrix is equivalent to multi-

plying it from the left by the relevant matrix. If we denoted these matrices

by Ei, 1 ≤ i ≤ n then, keeping the order of the row operations stated

above, we get that det(E1) = c, det(E2) = −1 and det(E3) = 1.

bNote that this fact also holds for the constant zero, although zero was excluded when
this row operation was defined.
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Theorem

Theorem 8.2. For any row operation matrix E, det(EA) =

det(E)det(A).

Proof. We need to consider three row operations. Keeping the order in

which they were introduced above, the result is trivial for the first among

them. As for the second row operation, observe first that among the n!

products involved in computing det(E2), all but one are zero. The remain-

ing one gets an absolute value of one. We need to argue that the sign

of the corresponding permutation is −1. Indeed, suppose rows i and j

are swapped. Then clearly the permutation we are after is a transposi-

tion between i and j. As we showed above the sign of all transpositions

is −1. Finally, for the third operation. Suppose row j is deducted c times

from row i. Thus, wherever Aik appears in any product leading to det(A),

we now have (Aik − cAjk). Breaking all such products into a sum of two

products, one with Aik and another with −cAjk we get that the former

equals det(A) while the latter is in fact c times a determinant of a matrix

with two identical rows, as the original jth row now appears twice. This

determinant equals zero. �

Suppose a matrix B can be reached from A by applying a number of

row operations, called row equivalence, namely

B = EkEk−1 · · ·E2E1A,

for some series of row operations matrices, E1, E2, . . . , Ek, B = EkEk−1 · · ·
E2E1A. Then, from the last theorem we learn that

det(B) =

k∏
i=1

det(Ei)det(A).

Since I can be reached from A if and only if A is invertible, and since

det(I) = 1, we conclude:

Theorem

Theorem 8.3. A−1 exists if and only if det(A) �= 0. In which case

det(A−1) �= 0 too.
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Theorem

Theorem 8.4. det(AB) = det(A)det(B)

Proof. The case whereA is not invertible was already proved in Section 6.5

that the same is the case where AB. Hence in this case det(AB) and

det(A) = 0, making det(AB) = det(A)det(B) immediate. So assume

now that A is invertible. Hence, I = Ek · · ·E1A for some series of row

operation matrices E1, . . . , Ek. Then, A = E−11 · · ·E−1k . But the inverse

matrices in this product are themselves row operations matrices. Hence,

A = F1 · · ·Fk for some row operation matrices F1, . . . , Fk. Hence, by

Theorem 8.2, det(A) =
∏k

i=1 det(Fi). Then, AB =
∏k

i=1 FiB. Applying

Theorem 8.2 again we get that det(AB) =
∏k

i=1 det(Fi) det(B). The fact

that det(A) =
∏k

i=1 det(Fi) concludes our proof. �
The following three conclusions are now immediate:

Theorem

Theorem 8.5.

• if A is invertible, then det(A−1) = 1/det(A).

• if A and B are similar, then det(B) = det(A).

• for a unitary matrix U, det(U) = 1.

8.4 Minor Matrices and the Determinant

In (8.3), the definition for det(A) for An×n is given which is constructive

in the sense that it states a formula for computing it. We next deal with

an alternative computation scheme. It is recursive in nature in the sense

that a determinant of an n×n matrix is stated in terms of determinants of

(related) (n− 1)× (n− 1) matrices. They, in turn, can be computed using

determinants of (related) (n− 2)× (n− 2) matrices, etc., going all the way

to determinants of scalars which coincide with their values. The procedure

thus commences with determinants of 1×1 matrices, which are scalars. As

it turns out, these scalars are the n2 entries of the matrix. The main result

is stated next and we see later that it also has a theoretical merit. But first

we need the following definition.
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Definition

Definition 8.3. The Mij minor of a matrix A ∈ Rn×n is an

(n− 1)× (n− 1) matrix which is derived from A by removing its ith

row and its jth column, 1 ≤ i, j ≤ n.

Theorem

Theorem 8.6. Let A ∈ Rn×n. Then,

det(A) =

n∑
j=1

(−1)i+jAijdet(Mij), 1 ≤ i ≤ n. (8.4)

Proof. Suppose i = 1 and consider the entry A11. Factor it out from

all products which contain it when det(A) is computed. You will see that

it multiplies M11. Next factor out A12, A13, . . . , A1n. First, note that all

products in the summation defining det(A) appear exactly once. What, for

example, multiplies A12? Had it been in position (1, 1) in the case where the

first two columns have been swapped the answer clearly would have been

M12. But this swapping implies that any permutation was composite with

a transposition and hence its sign has been changed from 1 to −1 or from

−1 to 1. Thus, in fact, A12 is multiplied by −M12. Next consider M13.

A similar argument holds here but now two transpositions are involved

(column 3 and column 2 were firstly swapped and (the new) columns 2

and 1 were swapped next), keeping the sign unaltered. A similar argument

holds for all other entries in this row. Our proof is now complete for the

case where i = 1. For any other value for i, note that in order to place

Aij at the (1, 1) position, the total number of rows and column swaps

needed is i+ j− 2, and hence the term (−1)i+j = (−1)i+j−2 appears is the

product. �

The method for computing the determinant as it appears in Theorem 8.6

and formula (8.4) is known as developing the determinant along (or around)

a particular row.
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Example. Developing the determinant along the second row leads to:

det

⎛
⎜⎝

3 1 −2

4 2 5

1 −3 0

⎞
⎟⎠ = −4det

(
1 −2

−3 0

)
+ 2det

(
3 −2

1 0

)
− 5det

(
3 1

1 −3

)

= −4× (−6) + 2× 2− 5× (−9− 1) = 78.

Of course, if we elect to develop the determinant along some other row (or

column), the same will be the end result.

Since det(At) = det(A), we can replace the role of a row by that of a

column in (8.4). Specifically,

det(A) =

n∑
i=1

(−1)i+jAijdet(Mij), 1 ≤ j ≤ n.

Suppose one applies formula (8.4) but with a wrong row of A. Thus, Aij

is replaced with Akj for some k �= i (but the minors Mij stay untouched).

This is equivalent to computing the determinant of the matrix which is the

same as A but its ith row is replaced by the kth. Since the kth row remains

as is, we in fact compute the determinant of a matrix with two identical

rows. This determinant does not call for computation: We know that it

equals zero. In summary,

det(A) =
n∑

j=1

(−1)i+kAkjdet(Mij) = 0, 1 ≤ k �= i ≤ n. (8.5)

Of course, a similar result holds for columns:

det(A) =

n∑
i=1

(−1)i+kAikdet(Mij) = 0, 1 ≤ k �= j ≤ n.

Exercise 8.7

Compute the determinant of the following matrices:

A =

⎛
⎜⎝

2 0 1

2 0 5

3 7 2

⎞
⎟⎠ , B =

⎛
⎜⎜⎜⎜⎝

5 7 0 1

3 1 0 3

1 1 1 2

3 0 0 4

⎞
⎟⎟⎟⎟⎠ , C =

⎛
⎜⎜⎜⎜⎝

0 1 0 0

1 0 1 1

1 1 −1 0

1 1 0 −1

⎞
⎟⎟⎟⎟⎠
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Example (The Vandermonde determinant). Let xi, 1 ≤ i ≤ n, be a

set of n real numbers. Consider the following n× n matrix:

A =

⎛
⎜⎜⎜⎜⎝

1 x1 x2
1 · · · xn−1

1

1 x2 x2
2 · · · xn−1

2
...

...
...

...

1 xn x2
n · · · xn−1

n

⎞
⎟⎟⎟⎟⎠. (8.6)

We claim that the determinant of this matrix equals

det(A) =
∏
i>k

(xi − xk). (8.7)

For the case where two (or more) of the xi’s in this set are equal, this

product equals zero. Indeed, in this case two rows in the matrix A are

identical, a case where we already know that the determinant equals zero.

For a proof for the general case we will use an induction argument on n. For

the case where n = 1 we get that the matrix is the scalar one, making this

the determinant. Also, product (8.7) is now empty, which by definition,

sets it to 1. For good measure look also at the case of n = 2, where it

is easy to see that the product now equals x2 − x1, as required. Consider

now the general case. We can make the first row to be (1, 0, . . . , 0) by a

series of column operations. Specifically, this can be done by multiplying

the (n− 1)th column by x1 and subtracting it from the nth column. Now

do that but with the (n− 2)th and the (n− 1)th columns, etc. This leads

to the matrix⎛
⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0

1 x2 − x1 x2
2 − x1x1 · · · xn−1

2 − x1x
n−2
2

...
...

...
...

1 xn − x1 n2
1 − x1xn · · · xn−1

n − x1x
n−2
n

⎞
⎟⎟⎟⎟⎟⎠.

The determinant, so far, has not changed. Next we make the first column

the e1 vector. This can be easily done by subtracting the current first row

from all other rows. We then get⎛
⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0

0 x2 − x1 x2
2 − x1x1 · · · xn−1

2 − x1x
n−2
2

...
...

...
...

0 xn − x1 x2
n − x1xn · · · xn−1

n − x1x
n−2
n

⎞
⎟⎟⎟⎟⎟⎠.



Determinants 113

Again, no change in the determinant. Next, if we take the common factor

x2−x1 out of the second row, x3−x1 from the third row, etc., we then get

det(A) =

n∏
i=2

(xi − x1)det

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0

0 1 x2 · · · xn−2
2

...
...

...
...

...

0 1 xn · · · xn−2
n

⎞
⎟⎟⎟⎟⎟⎠.

Consider the determinant of the matrix above, while ignoring the multi-

plicative constant. By developing it along the first row, we get that it equals

one times the determinant of a Vandermonde matrix but with n− 1 points.

Invoking the induction hypothesis, its determinant equals Πi>k≥2(xi−xk).

Multiplying this by Πn
i=2(xi − x1) concludes the proof.

Exercise 8.8

Show that

det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 . . . 1

1 2− x 1 . . . 1

1 1 3− x . . . 1

...
...

...
. . .

...

1 1 1 . . . n+ 1− x

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
n∏

i=1

(i − x).

Hint : Use row/column operations to obtain a triangular matrix.

Exercise 8.9

Show that

det

⎛
⎜⎝

sin2α 1 cos2α

sin2β 1 cos2β

sin2γ 1 cos2γ

⎞
⎟⎠ = 0

using the fact that sin2α+ cos2α = 1.
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8.5 The Adjoint Matrix

This brings us to defining a matrix associated with matrix A, which is called

its adjoint and is denoted by adj(A):

Definition

Definition 8.4. For a matrix A ∈ Rn×n, denote its adjoint matrix

adj(A) ∈ Rn×n by

[adj(A)]ij = (−1)i+jdet(Mji), 1 ≤ i, j ≤ n.

Note that the order of the indices in Mji above is not an error.

Theorem

Theorem 8.7. For any matrix A,

Aadj(A) = det(A)I = adj(A)A.

In particular, if A is invertible, then

A−1 =
1

det(A)
adj(A). (8.8)

Proof. The (i, j)th entry in the product Aadj(A) equals

n∑
k=1

Aik[adj(A)]kj =

n∑
k=1

Aik(−1)k+jdet(Mjk), 1 ≤ i, j ≤ n.

In the case where i = j, we get det(A) as we are in effect developing it along

the ith row (see (8.4)). Otherwise, by (8.5), we get zero. This concludes

the proof for the first equality. The second equality can be shown in a

similar way. �

Example. The adjoint of

A =

⎛
⎜⎝

2 1 3

0 1 2

1 0 −2

⎞
⎟⎠ is

⎛
⎜⎝
−2 2 −1
2 −7 −4
−1 1 2

⎞
⎟⎠.
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Then,

Aadj(A) =

⎛
⎜⎝
−5 0 0

0 −5 0

0 0 −5

⎞
⎟⎠.

In particular, det(A) = −5.

Exercise 8.10

Let A ∈ Rn×n.
(a) Prove that for any scalar c, det(cA) = cndet(A).

(b) Prove that det(adj(A)) = det(A)n−1.

Exercise 8.11

Let:

A =

⎛
⎜⎝

2 3 4

5 6 7

8 9 1

⎞
⎟⎠, B =

⎛
⎜⎝

2 3 4

5 4 3

1 2 1

⎞
⎟⎠.

(a) Compute the adjoint matrix of each.

(b) Compute the inverse matrix of each.

8.6 Cramer’s Method for Solving Linear Equations

We deal with one more (and last) technique for solving a linear system of

equations Ax = b where A is invertible. It is known as Cramer’s method.

Theorem

Theorem 8.8. Consider the system of linear equations Ax = b

where A ∈ Rn×n is an invertible matrix. Let Δi be the determinant

of the matrix which is the same as A except that its ith column is

replaced by the vector b, 1 ≤ i ≤ n. Then, the unique solution for

this system is

xi =
Δi

det(A)
, 1 ≤ i ≤ n. (8.9)
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Proof. We already know from (8.8) that

x = A−1b =
1

det(A)
adj(A)b.

Looking at the ith entry here, we get that

xi =

∑n
j=1 bj [adj(A)]ij

det(A)
=

∑n
j=1 bj(−1)i+jdet(Mji)

det(A)
, 1 ≤ i ≤ n.

Note that had there been Aji instead of bj at the last summation, we

would get det(A) in the numerator. Thus, what we have there is in fact the

determinant of the matrix which is the same as A but its ith column has

been replaced with the vector b. �

Exercise 8.12

Use Cramer’s method to solve the following system of linear equations:

x1 + 4x2 + 2x3 = 8,

2x1 − 3x2 + x3 = 12,

6x1 + x2 − 8x3 = −29.

8.6.1 Fitting a polynomial

Let (xi, yi), 1 ≤ i ≤ n, be n points in the two-dimensional plane. Assume

none of the x values are being repeated. It is well-known that it is possible

to draw one and only (n − 1)-degree polynomial which passes through all

these points. I’ll spoil the show by telling you that this polynomial equals

p(x) =

n∑
i=1

yi

∏
k �=i(x− xk)∏
k �=i(xi − xk)

.

This is easily checked by inserting xi in p(x) and noticing that p(xi) = yi,

1 ≤ i ≤ n. The common denominator of the terms in the summation

defining p(x) is Π1≤i<k≤n(xi−xk), which is the Vandermonde determinant

(see (8.7)). Should this surprise us? The answer is no. Specifically, by def-

inition p(x) =
∑n−1

i=0 aix
i for some coefficients ai, 0 ≤ i ≤ n− 1. Then the

vector {ai}n−1i=0 solves the system of linear equations Ax = b where A is

stated in (8.6) and b comes with the y values, namely bi = yi, 1 ≤ i ≤ n.

If we solve this system using the Cramer method, we should get det(A),

namely the Vandemonde determinant, in the denominator of (8.9). As for
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Figure 8.1. Three points of a quadratic function.

the numerator, we do what is prescribed by Cramer’s and find the determi-

nant of matrix A where its jth column is replaced with the y vector. This

is illustrated in the example below.

Example. Consider the following three points in the two-dimensional

plane: (1, 2), (2, 1) and (3, 3). Suppose one looks for a polynomial of degree

two, namely a quadratic function, which crosses these three points (see

Fig. 8.1). Denote this polynomial by a0 + a1x + a2x
2. Thus, we look for

a0, a1 and a2 which solve⎛
⎜⎝

1 1 1

1 2 4

1 3 9

⎞
⎟⎠
⎛
⎜⎝

a0

a1

a2

⎞
⎟⎠ =

⎛
⎜⎝

2

1

3

⎞
⎟⎠.

The determinant of the constraint (Vandermonde) matrix equals (1 − 2)

(1 − 3)(2− 3) = 2. Hence,

a0 =

det

⎛
⎜⎝

2 1 1

1 2 4

3 3 9

⎞
⎟⎠

2
=

12

2
, a1 =

det

⎛
⎜⎝

1 2 1

1 1 4

1 3 9

⎞
⎟⎠

2
= −11

2
and

a2 =

det

⎛
⎜⎝

1 1 2

1 2 1

1 3 3

⎞
⎟⎠

2
=

3

2
.

Computing the above determinants, we conclude that the quadratic poly-

nomial is 6− 5.5x+ 1.5x2.
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Chapter 9

Eigensystems and Diagonalizability

9.1 The Characteristic Polynomial

Definition

Definition 9.1. Assume A ∈ Rn×n. The n degree polynomial in

t ∈ R, denoted by PA(t) and defined by det(tI − A), is called the

characteristic polynomial of A.

Example 1. Let

A =

⎛
⎝ 1 3 0

−2 2 −1
4 0 −2

⎞
⎠.

Then,

PA(t) = det(tI −A) = det

⎛
⎝t− 1 −3 0

2 t− 2 1

−4 0 t+ 2

⎞
⎠ = t3 − t2 + 2t+ 28.

Note that PA(0) = (−1)ndet(A).

119
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9.2 Right and Left Eigensystems

Definition

Definition 9.2. A scalar λ is said to be an eigenvalue of A if it is a

root of its characteristic polynomial, namely if PA(λ) = 0. Equiva-

lently, if there exists a non-zero vector v ∈ Rn such that Av = λv,

then v right eigenvector of A associated with λ, or, equivalently, if

there exists a non-zero vector u ∈ Rn, such that Atu = λu, then u

is called a left eigenvector of A associated with λ.a

aIf one allows scalars and vectors to come with complex numbers, the set of

eigenvalues and eignevectors may increase. Yet, we do not consider this option

throughout this text.

Example 2. For the matrix A ∈ R2×2

A =

(
a b

c d

)
,

PA(t) = x2 − trace(A)t+ det(A),

where trace(A) is the sum of the entries along the diagonal of A. In the case

where trace2(A) < 4det(A) no eigenvalues exist. Otherwise, the two eigen-

values exist and their values are (−trace(A) ±√trace2(A) − 4det(A))/2.

Note that trace(A) is their sum and det(A) is their product. Of course, the

two coincide in the case where trace2(A) = 4det(A).

It is easy to see that for any given eigenvalue, the corresponding set

of right eigenvectors form a linear subspace of Rn. An eigenvalue and its

associated eigenvectors are referred to as eigensystem. The same can be

said about the set of left eigenvectors.

Zero is certainly a candidate for being an eigenvalue, and indeed it is if

and only if A is singular, namely it comes with a nonzero vector x ∈ Rn

with Ax = 0. We do not claim that eignevalues exist at all, although we

herein state the spoiler that this is the case for symmetric matrices, which

is the subject of the next section.

Remark. Computing an eigenpair of an eigenvalue λ and its (right) eigen-

vector v is not an easy task, even if one knows in advance that such an

eigenpair exists. Yet, if one knows λ, then finding v is equivalent for solv-

ing a system of linear equations (A − λI)x = 0. If on the other hand v is
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given, then, as easily checked,

λ =
vtAv

vtv
.

Indeed,

vtAv

vtv
=

vtλv

vtv
= λ

vtv

vtv
= λ.

Another possibility is that more than one eigenvalue exists. In this case,

the following result holds.

Theorem

Theorem 9.1. Let λ and μ be two eigenvalues of A. Let v be a right

eigenvector associated with λ and u be a left eigenvector associated

with μ. If μ �= λ, then v and u are orthogonal.

Proof. It is easy to see that utAv equals to both λutv and μutv. This is

possible if μ = λ or if u and v are orthogonal (or both). �

Example 3.a Let

A =

(
1 2

3 2

)
and PA(x) = det

(
x− 1 −2
−3 x− 2

)
.

Thus, PA(t) = t2 − 3t− 4 which comes with two eigenvalues: λ1 = 4 and

λ2 = −1. In order to find a right eigenvector associated with 4 we need to

consider the two linear equations:

x1 + 2x2 = 4x1 and 3x1 + 2x2 = 4x2.

Yet, whatever solves the first equation, solves also the second, as expected.

A possible solution is (2, 3). In fact, the set of eigenvectors are all scalar

multiplications of this vector. In order to find a right eigenvector associated

with −1 we need to consider the two linear equations:

x1 + 2x2 = −x1 and 3x1 + 2x2 = −x2.

Here all the scalar multiplications of (1,−1) meet these conditions. As for

left eigenvectors we look for a solution to two systems of linear equations.

aThis example appears in [8, p. 309].
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First,

y1 + 3y2 = 4y1 and 2y1 + 2y2 = 4y2,

which is solved by all scalar multiplication of (1, 1). Second,

y1 + 3y2 = −y1 and 2y1 + 2y2 = −y2,

which is solved by all scalar multiplication of (3,−2). Note that (2, 3) and

(3,−2) are orthogonal. The same is true regarding the pair (1,−1) and

(1, 1).

Theorem

Theorem 9.2. Let λ be an eigenvalue of A ∈ Rn×n with u and

v being, respectively, its right and left eigenvectors. Assume that

utv = 1. Let μ �= λ be another eigenvector of A. Then, for the

matrix A− λvut:

1. 0 is an eigenvalue of it with v and u being, respectively, its right

and left eigenvectors

2. μ is its eigenvalue with the same set of eigenvectors as for A.

Proof. Left as an exercise. �

Exercise 9.1

(a) Let A,B be two square matrices. Show that both matrices AB and

BA have the same eigenvalues.

(b) Show that the matrix A ∈ Rn×n has the same characteristic polynomial

as At.

(c) Show that the set of vectors v ∈ Rn which satisfy Av = λv for a given

λ ∈ R, form a linear sub-space of Rn.

(d) Letb A =

(
3 −4
2 −6

)
. Find all eigenvalues and corresponding eigenvec-

tors of A.

bThis example appears in [8, p. 309].
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Exercise 9.2

Let:

A =

⎛
⎝1 4 3

0 3 1

0 2 −1

⎞
⎠ .

(a) What is the characteristic polynomial of A?

(b) Prove that 1 is an eigenvalue of A.

(c) Are there any more eigenvalues? If so, compute them.

9.3 Algebraic and Geometric Multiplicities of Eigenvalues

It is possible to see that λ is an eigenvalue of A if and only if PA(t) =

(t− λ)Q(t) for some n− 1 degree polynomial Q(t). This does not rule out

that λ is also a root of Q(t). In this case PA(t) = (t − λ)2T (t) for some

(n− 2)-degree polynomial T (t). This brings us to the following definition.

Definition

Definition 9.3. The eigenvalue λ of a square matrix A ∈ Rn×n

is said to have an algebraic multiplicity of m ≥ 1 if PA(t) = (t −
λ)mQ(t) for some polynomial Q(t) of degree n−m with Q(λ) �= 0.

An eigenvalue is called simple if its algebraic multiplicity equals

one.

Clearly, the algebraic multiplicity of an eigenvalue is an integer between

1 and n. Moreover, the sum of the algebraic multiplicities across the eigen-

values needs to be smaller than or equal to n. In particular, if λ1, . . . , λr are

the eigenvalues whose algebraic multiplicities are k1, . . . , kr, respectively,

then

PA(t) =

r∏
i=1

(t− λi)
kiQ(t),

for some polynomial Q(x) of degree n− Σk
i=1ri with Q(λi) �= 0, 1 ≤ i ≤ r.

For the special case where
∑r

i=1 ki = n, one gets the following.
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Theorem

Theorem 9.3. Let λ1, . . . , λr be the eigenvalues of A whose alge-

braic multiplicities are k1, . . . , kr. If
∑r

i=1 ki = n, then

PA(t) =

r∏
i=1

(t− λi)
ki .

Moreover, writing PA(t) as Σn
j=0ajt

j , then a0 = (−1)n∏r
i=1 λ

ki

i ,

an−1 = −Σr
i=1kiλi = Σn

i=1Aii (known as the trace of A) and an = 1.

Finally, det(A) = (−1)nPA(0) = (−1)na0 =
∏r

i=1 λ
ki

i .

Note the condition stated in the above theorem. By no means we say

that it always holds or even pretend that it does not hold only in some

pathological cases. Yet, as we show in the next chapter, it holds for sym-

metric matrices.

Next we define another concept related to eigenvalues.

Definition

Definition 9.4. The eigenvalue λ of the square matrix A ∈ Rn×n

is said to have a geometric multiplicity of k for some 1 ≤ k ≤ n,

if k = dim(null(λI −A)). Put differently (see Theorem 4.3), if the

dimension of the subspace of right (and hence of left) eigenvectors

associated with λ equals k.

We next state a theorem whose proof is deferred to a later section.

Theorem

Theorem 9.4. The algebraic multiplicity of an eigenvalue is larger

than or equal to its geometric multiplicity. In particular, the geo-

metric multiplicity of a simple eigenvalue is one.

This theorem is now exemplified.

Example 4. Let

A =

⎛
⎝3 −1 1

7 −5 1

6 −6 2

⎞
⎠.



Eigensystems and Diagonalizability 125

Some algebra leads to PA(x) = x3−12x+16 = (x−2)2(x−4). Thus, there

exist two eigenvalues 2 and 4. Their algebraic multiplicities are 2 and 1,

respectively. There is no question regarding the geometric multiplicity of

the eigenvalue 4: it equals 1. In order to find the geometric multiplicity

of the eigenvalue 2 we need to solve the homogeneous system of linear

equations:

3x1 − x2 + x3 = 2x1,

7x1 − 5x2 + x3 = 2x2.

Note that we ignore the third equation 6x1 − 6x2 + 2x3 = 2x3 as it

is automatically solved by any solutions to the previous two equations.

Since we have two linearly independent equations with three unknowns,

the dimension of their solution subspace is one. This subspace is spanned

by (1, 1, 0). In particular, the geometric multiplicity of the eigenvalue 2

is one.

Exercise 9.3

Prove that if the sum of the algebraic multiplicities of eigenvalues equals

n (the dimension of the matrix), then the coefficient of xn−1 in the char-

acteristic polynomial is minus the sum of the eigenvalues, where each is

multiplied by its algebraic multiplicity.

Exercise 9.4

Let A be the following matrix:

A =

⎛
⎜⎜⎜⎜⎝
2 1 0 0

0 2 0 0

0 0 1 1

0 0 −2 4

⎞
⎟⎟⎟⎟⎠.

(a) Compute det(A).

(b) Find the eigenvalues of A.

(c) Find the algebraic and geometric multiplicities of each of the above

eigenvalues.

(d) Show that the claim proved in Exercise 9.3 holds for matrix A.
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Exercise 9.5

Let A ∈ R2×2 be a symmetric matrix, namely A21 = A12.

(a) Prove the existence of the eigenvalues of A.

(b) Find an expression for the eigenvalues as a function of the matrix entries(
a b
b d

)
.

(c) Show that the two eigenvalues are different if the main diagonal entries

are different.

The analysis of the eigensystem in case of a lower or upper triangular

matrices is simple.

Theorem

Theorem 9.5. Assume that A ∈ Rn×n is a lower triangular

matrix. Then Aii is an eigenvalue of A, 1 ≤ i ≤ n. Also, the first

(respectively, last) i−1 entries of a right (respectively, left) eigenvec-

tor associated with the eigenvalue Aii are zero, 1 ≤ i ≤ n. The rest

of the entries can be found by forward (respectively, backward) substi-

tutions. Finally, the algebraic and geometric multiplicities coincide

across all eigenvalues.

Proof. It is easy to possible that the characteristic polynomial of A is

Πn
i=1(t−Aii) as the determinant of upper and lower triangular matrices is

the product of its diagonal entries. This implies that Aii is an eigenvalue of

A then, immediate, 1 ≤ i ≤ n. The statements regarding the corresponding

eigenvectors can be checked by inspection. Moreover, the correctness of

this statement implies equal multiplicities since vi and vi+1 (the stated

eigenvectors corresponding to the eigenvalues Aii and Ai+1,i+1) are linearly

independent, regardless if Aii and Ai+1,i+1 are identical or not. �

Note that the corresponding results for the case where A is upper tri-

angular are immediate since then At is lower triangular.

Theorem

Theorem 9.6. Let (λi, vi), 1 ≤ i ≤ n, be n eigenpairs of A ∈ Rn×n.
Assume none of the eigenvalues coincide. Then, for any scalar x,
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Theorem

Theorem 9.6. (Continued)

1. (1 − tλi, vi), 1 ≤ i ≤ n, are the n eigenpairs of I − tA.

2. In particular, (0, v1) and (1 − λi/λ1, vi), 2 ≤ i ≤ n, are the n

eigenpairs of I − λ1A.

Proof. Left as an exercise. �

9.4 Similar Matrices and Their Eigensystems

This section deals with similar matrices which were defined in Section 7.3.

Theorem

Theorem 9.7. Suppose A and B are similar (square) matrices.

Then they share the same set of eigenvalues.

We prove the theorem in two ways.

Proof. (1). We in fact show more here: A and B share the same char-

acteristic polynomial. Indeed, as for same matrix S, B = SAS−1, we get

that

PB(t) = det(tI −B) = det(tI − SAS−1) = det(tSIS−1 − SAS−1)

= det(S(tI −A)S−1) = det(S)det(tI −A)det(S−1) = PA(t).
�

Proof. (2). Since A and B are similar, then there exists a matrix S such

that B = SAS−1. Suppose Ax = λx. Then,

BSx = SAS−1Sx = SAx = λSx.

Hence, λ is an eigenvalue of B with Sx being a corresponding right

eigenvector. The converse is also true as we can swap the role of

A and B. �

The following lemma is immediate and it will be needed for later

analysis.
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Lemma

Lemma 9.1.

det

(
A C

0 B

)
= det(A)det(B).

Hence, PA(t)PB(t) is the characteristic polynomial of the matrix on

the left-hand side.

Proof of Theorem 9.4. Let r be the geometric multiplicity of the eigen-

value λ of A and let v1, . . . , vr be a set of r eigenvectors which form an

orthonormal basis for the right eigenspace of λ. In particular, Avi = λvi,

1 ≤ i ≤ r. Append this set with n − r vectors to form a basis for Rn.

Denote by V ∈ Rn×n the matrix whose n columns are these n basis vec-

tors. Of course, V −1 exists. Define the matrix B ∈ Rn×n via B = V −1AV
which is similar to A. Then,

AV = V B.

Moreover, due to the orthonormality of the selected eigenvectors, the first

r columns of B are hence λei, 1 ≤ i ≤ r. Hence, B is a matrix of the

shape dealt with in Lemma 9.1. As B is similar to A, we conclude by

Theorem 9.7, that PA(t) = PB(t). Finally, due to the shape of the matrix

B and by Lemma 9.1 one can see that

PB(t) = (t− λ)rQ(t),

for some polynomial Q(x) of degree n− r. Hence the algebraic multiplicity

of λ is at least r. This completes the proof.

9.5 Bases with Eigenvectors and Diagonalizable Matrices

The following theorem states that eigenvectors of different eigenvalues need

to be linearly independent.

Theorem

Theorem 9.8. Let {λi}ki=1 be k distinguished eigenvalues with the

corresponding k right (or left) eigenvectors {vi}ki=1. Then these vec-

tors are linearly independent.
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Proof. The proof will be by an induction argument. The case for k = 1

is obvious. Assume the result holds for k − 1. Aiming for a contradiction,

assume that for some set of coefficients {αi}ki=1, at least two of which are

not zero,

0 =

k∑
i=1

αiv
i. (9.1)

Multiplying both sides by A leads to

0 =

k∑
i=1

αiλiv
i. (9.2)

Multiply both sides of equality (9.1) by λk and subtract this equation from

Eq. (9.2). You should get that

0 =
k−1∑
i=1

αi(λi − λk)v
i.

Since at least one of the coefficients on the right-hand side is not a zero, we

conclude that {vi}k−1i=1 are not linearly independent. This contradicts the

induction hypothesis. �

Note that for a set of eigenvalues which are simple, their corresponding

eigenvectors are linearly independent. If, however, one of them comes with

a geometric multiplicity which is larger than one, then one can look for a

basis for the corresponding eigenspace. This basis coupled with the other

eigenvectors form a set of linearly independent eigenvectors which span a

linear subspace whose dimension is the sum of the geometric multiplicities

across these eigenvalues. Of course, each time a new eigenvalue joins this

set of eigenvalues, this dimension goes up by at least one. An upper bound

on this sum is n. One may wish to achieve this sum but this is not always

possible. As we will see in the next chapter, a sufficient condition for a

success here is having a symmetric matrix.

Suppose that a basis of n eigenvectors of matrix A ∈ Rn×n exists.

Denote the corresponding eigensystems by (λi, v
i), 1 ≤ i ≤ n. Let x ∈ Rn.

Thus, expressing this vector as a linear combination of these eigenvectors,

we conclude that there exists a set of scalars αi, 1 ≤ i ≤ n, such that
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x = Σn
i=1αiv

i. Then,

Ax = A

n∑
i=1

αiv
i =

n∑
i=1

αiAv
i =

n∑
i=1

αiλiv
i.

In other words, the linear function Ax is applied to each of the directions

defined by vi, 1 ≤ i ≤ n, separately: the ith component in x is multiplied

by λi, 1 ≤ i ≤ n. Loosely speaking, there is no further interaction between

these n directions.

We go on dealing with the special case where n simple eigenvalues

{λi}ni=1 exist.c Let {vi}ni=1 be a set of corresponding right eigenvectors.

Denote by D ∈ Rn×n the diagonal matrix with Dii = λi, 1 ≤ i ≤ n. Also,

let V ∈ Rn×n be a matrix whose columns are {vi}ni=1, 1 ≤ i ≤ n. Clearly,

V −1 exits. It is easy to see that AV = V D and hence

V −1AV = D and A = V DV −1. (9.3)

In particular, A is similar to a diagonal matrix. A square matrix which is

similar to a diagonal matrix is said to be diagonalizable. Finally, note the

rows for V −1 are linearly independent right eigenvectors of A. In particular,

the ith row of V −1 corresponds to λi, 1 ≤ i ≤ n.

Example 3 (cont.). Note that for the matrix presented in Example 1,

A =

(
1 2

3 2

)
=

1

5

(
2 1

3 −1
)(

4 0

0 −1
)(

1 1

3 −2
)
. (9.4)

We have seen above that the existence of n linearly independent eigen-

vectors is a sufficient condition for diagonalizability for A ∈ Rn×n. Yet, it

is also a necessary one. Indeed, it is possible to see that if A = V DV −1

for some diagonal matrix D, then Dii and the ith column of V form an

eigensystem for A. Indeed, denote this i column of V by vi, then,

Avi = V DV −1vi = V Dei = DiiV ei = Diiv
i,

cIn fact, all the below holds for the case where the sum of the geometric multiplicities
across the eigenvalues equals n. We assume here further that all multiplicities equal 1
in order to ease the exposition.
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as required. A consequence of this observation is that not all square

matrices are diagonalizable. For example, see Example 1 above which indi-

cates that this is the case where A ∈ R2×2, when A11A22 < A12A21.

Note that

Ak = (V DV −1) · · · (V DV −1) = V DkV −1, k ≥ 1.

Observe that the powers of D, as opposed to the powers of A, are easily

computed. Finally, observe that λk
i is an eigenvalue of Ak, and with the

same set of right eigenvectors, k ≥ 1. This result can be extended to neg-

ative values of k but, of course, as long as A is regular, namely all of its

eigenvalues (and not only the one under consideration) are non-zero. In

particular,

Theorem

Theorem 9.9. Let λ be an eigenvalue of the invertible matrix A

with Av = λv, then A−1v = 1
λv. Moreover, their geometric multi-

plicities coincide.

Proof. Av = λv if and only if v = λA−1v which holds for λ �= 0 if and

only if A−1v = 1
λv. �

Note that it is not claimed that the algebraic multiplicity of λ as an eigen-

value of A coincides with the algebraic multiplicity of λk in Ak.

Theorem

Theorem 9.10. Let QR be the QR factorization of a square and

invertible matrix A.a Then the matrices A and R share the same set

of eigenvalues. Moreover, their geometric multiplicities coincide.

aNote that the existence of Q follows the assumption that A is invertible.

Proof. Note that if Rv = λv, then QRv = λQv, namely Av = λQv, imply-

ing that Qv is an eigenvector of A with λ as the corresponding eigenvalue.

In a similar way, note that if v is an eigenvector of A, then Q−1v is an

eigenvector of R. �
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Exercise 9.6

Let

A =

⎛
⎝1 −3 3

3 −5 3

6 −6 4

⎞
⎠.

(a) Show that the eigenvalues of A are 4 and −2.
(b) Show that the eigenspace that corresponds to eigenvalue 4 is of dimen-

sion 1. Find the right and left eigenvectors whose scalar product is 1.

(c) Show that the eigenspace that corresponds to eigenvalue −2 is of

dimension 2. Find a basis for the right eigenvectors. Hint: show that

x1 = (1, 1, 0) and x2 = (1, 0,−1) span the eigenspace that corresponds

to eigenvalue −2.
(d) Show that the right eigenvectors of eigenvalue 4 do not belong to the

sub-space spanned by the basis found previously.

(e) Show that A is diagonalizable.

9.6 The Spectral Representation

Assume as in the previous section that {vi}ni=1 is a set of right eigenvectors

of A that form a basis for Rn. Denote by V the matrix whose columns are

these eigenvectors. Let {wi}ni=1 be a set of the corresponding left eigen-

vectors. Denote by W the matrix whose rows are these eigenvectors. Note

that vi and wi are associated with the same eigenvalue, 1 ≤ i ≤ n. Again,

we do not claim that such sets always exist (and indeed in many cases they

do not), so what is said below holds for the case when they do. Finally,

assume further that all eigenvalues are simple.

From Theorem 9.1 we learn that (wi)tvj = 0, 1 ≤ i �= j ≤ n. Based on

Theorem 9.8, we learn that each set of vectors forms a basis for Rn. From

Theorem 9.1 we also learn that WV is a diagonal matrix, with all diagonal

entries being non-zero. This fact can be proved as follows: Had (wi)tvi = 0

for some i, 1 ≤ i ≤ n, then (wi)tvj = 0 for all j, 1 ≤ j ≤ n, making wi

orthogonal to all vectors in Rn. Hence, wi = 0 which is a contradiction.

Moreover, by the right scaling, we can assume without loss of generality

that (wi)tvi = 1, 1 ≤ i ≤ n, in which case WV = I, or, put differently

W = V −1.
Finally, let Ei ∈ Rn×n = vi(wi)t, 1 ≤ i ≤ n. Note that all these

matrices are rank-one matrices: all their columns (and likewise all their
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rows) are parallel in the sense that up to a scalar multiplication, they are

all identical. As an exercise, check that Ek
i = Ei for any k ≥ 1 and that

EiEj = 0 for 1 ≤ i �= j ≤ n. The following theorem is known as the spectral

representation of a matrix.

Theorem

Theorem 9.11. Let λi, 1 ≤ i ≤ n, be n simple eigenvalues of A.

Then,

A =

n∑
i=1

λiEi (9.5)

We prove the theorem in two ways.

Proof. (1) From (9.3) we learn that A = V DV −1, where the V has vi,

1 ≤ i ≤ n, as its columns and where V −1 has wi, 1 ≤ i ≤ n, as it rows. Let

Di ∈ Rn×n be a matrix with all its entries equal zero, except for the ith

diagonal entry λi, 1 ≤ i ≤ n. Then,

A = V DV −1 = V

(
n∑

i=1

Di

)
V −1 =

n∑
i=1

V DiV
−1 =

n∑
i=1

λiEi,

as required. �

Proof. (2) First note that if for two matrices A and B, Ax = Bx for

any x, then A = B. Thus, we will show next that for any x ∈ Rn, Ax =∑n
i=1 λiEix. Indeed, since {vi}ni=1 form a basis for Rn, any x ∈ Rn can be

written as x = Σn
i=1αiv

i for some scalars {αi}ni=1. Then,

Ax = A
n∑

i=1

αiv
i =

n∑
i=1

αiAv
i =

n∑
i=1

αiλiv
i. (9.6)

On the other hand, since Eiv
j = 0 for any pair 1 ≤ i �= j ≤ n, and since

Eiv
i = vi for 1 ≤ i ≤ n, we get that

n∑
i=1

λiEix =

n∑
i=1

λiEi

n∑
i=1

αiv
i =

n∑
i=1

αiλiEiv
i =

n∑
i=1

αiλiv
i,

which coincides with (9.6). �
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Since

EiEj =

{
Ei if 1 ≤ i = j ≤ n,

0 if 1 ≤ i �= j ≤ n,

we conclude with the help of (9.5), that

Ak =

n∑
i=1

λk
i Ei, k ≥ 0. (9.7)

In particular, the case where k = 0 leads to Σn
i=1Ei = I.

Example 2 (cont.). Note that for the matrix presented in Example 2

(see (9.4)),

A =

(
1 2

3 2

)
= 4

(
2
5

3
5

)(
1 1

)
+ (−1)

(
1
5

− 1
5

)(
3 −2)

= 4

(
2
5

2
5

3
5

3
5

)
− 1

(
3
5 − 2

5

− 3
5

2
5

)
.

We can draw two conclusions from the Theorem 9.11. First, note that

when the matrix A is applied to any vector, it operates on each of its com-

ponents independently, where each component corresponds to a different

eigenvector: The component of vi, which originally came with the value

of αi is now with αiλi and this is regardless of the values of the other

components αj , j �= i, 1 ≤ i ≤ n. In particular, when applying A to an

eigenvector it does not mix up with other vectors: the direction stays the

same if λi > 0 or it is reversed if λi < 0. Moreover, the magnitude of the

change is determined by the corresponding value of λi. A similar result

does not hold when a vector in the basis is not an eigenvector. Secondly,

and assuming that |λ1| > |λ2| > · · · > |λn|, if one replaces A with

k∑
i=1

λiEi, (9.8)

for some k < n, the corresponding operation will be simpler, while the

quality of the approximation depends on how small is |λk+1| in comparison

with |λ1|.
Assume without loss of generality that λ1 is the largest eigenvalue in

absolute value, and for simplicity assume that this is the case without
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any ties. Then, by (9.7),

lim
k→∞

1

λk
1

Ak = E1.

Moreover, in the case where α1 �= 0, we obtain,

lim
k→∞

1

λk
1

Akx = E1x = E1

(
n∑

i=1

aiv
i

)
= α1E1v

1 = α1v
1,

which means that in the long-run we get an eigenvector which corresponds

to the largest eigenvalue, and this is regardless of the initial vector x. In

the case where α1 = 0, the limit matrix is 0.

Remark. Suppose that the matrix A possesses a spectral representation

Σn
l=1λlEl and it is also invertible, which is the case if and only if all its

eigenvalues are different from zero. In this case,

A−1 =
n∑

l=1

1

λl
El. (9.9)

Also, when solving the system of equations Ax = b by x = A−1b, we get

that

x =
n∑

l=1

1

λl
Elb.

How sensitive is this solution as a function of b? For this we look into the

derivative of xi with respect to bj . It is possible to see that

d xi

d bj
=

n∑
k=1

1

λk
vki w

k
j , 1 ≤ i, j ≤ n.

Here the dominant factor is the smallest eigenvalue (in absolute value): the

smaller it is, the more sensitive is the solution.

Remark. A related, but different, question, is when a matrix is “close” to

be singular. Assume that the matrix A comes with a spectral representa-

tion. We know that when det(A) = 0 the matrix is singular, so a possible

measure for the level of singularity is how close is det(A) to zero: The closer

it is, the less invertible is the matrix. This, in turn, is reflected (see (8.8))

by A−1 having large values. Put differently, now by (9.9), this should be

reflected by the matrix A having small eigenvalues, or more precisely that

mini |λi| is small. But there is a snag here. We feel that αA should be
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as invertible as A is for any scalar α. However, λ is an eigenvalue of A if

and only if αλ is an eigenvalue of αA. Thus, using the measure mini |λi|,
we can take smaller and smaller values for α and reduce the invertability

of a matrix.d This of course, does not make sense. Hence, we should look

for a measure which is invariant with respect to α and still keeps the idea

that the smaller mini |λi| is, the less invertible is the matrix. A possible

choice is

maxi |λi|
mini |λi| ,

which indeed is invariant with respect to α. This value is called the condi-

tion number.

Exercise 9.7

Suppose that matrix A has the following spectral representation:

A =

n∑
i=1

λiEi,

where λi is an eigenvalue, Ei = xiy
t
i , where xi and yi are the corresponding

right and left eigenvectors, respectively, 1 ≤ i ≤ n.

(a) Prove that
∑n

i=1 Ei = I.

(b) Prove that for any x, which is not an eigenvalue of A, it holds that:

(xI −A)−1 =

n∑
i=1

1

x− λi
Ei.

We conclude this section with the Cayley–Hamilton theorem.

Theorem

Theorem 9.12. Any square matrix zeroes its characteristic polyno-

mial. In other words, PA(A) = 0a.

aNote that PA(A) is a matrix and when one applies a polynomial on a matrix,

matrix operations such as power and additions are done as defined for matrices.

dNote det(αA) goes to zero even in a higher pace, that of αn.
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Proof. Let PA(x) =
∑n

j=0 ajx
j for some coefficients aj , 0 ≤ j ≤ n. We

need to show that
∑n

j=0 ajA
j = 0 where 0 ∈ Rn×n is a matrix having all its

entries equal to zero. The theorem holds for any square matrix and there is

no need to assume anything regarding its eigenvalues. In particular, there

is no need to assume their existence. Yet, our proof here is done under the

assumption that the matrix A comes with n simple eigenvalues. For this

case

PA(A) =

n∑
j=0

ajA
j =

n∑
j=0

aj

(
n∑

i=1

λiEi

)j

=

n∑
j=0

aj

n∑
i=1

λj
iEi

n∑
i=1

Ei

n∑
j=0

ajλ
j
i =

n∑
i=1

EiPA(λi) =

n∑
i=1

Ei0 = 0.

For a proof which removes the assumptions used here, see, e.g., [8, p. 308].

�
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Chapter 10

Symmetric Matrices

10.1 Eigensystems and Symmetric Matrices

A square matrix A is called symmetric if At = A. We have encountered

symmetric matrices before. Note that the matrix AtA, which was intro-

duced in Chapter 6, is symmetric. We deal here with the issue of eigensys-

tems for such matrices. The obvious point here is that a vector is a right

eigenvector if and only if it is also a left eigenvector. This, coupled with

Theorem 9.1, implies that eigenvectors corresponding to different eigenval-

ues are orthogonal. In fact, we can say much more.

Theorem

Theorem 10.1. For a symmetric matrix A ∈ Rn×n there exists

an orthonormal basis for Rn which is formed of n eigenvectors. In

particular, it is diagonalizable. Also, for any eigenvalue of A, its

geometric and algebraic multiplicities coincide.

Proof. Consider the following optimization problem.

x1 ∈ arg max
x∈Rn

xtAx,

s.t. ||x||2 − 1 = 0.

In order to solve it we use the Lagrange multipliers technique. Specifically,

using (3.4) for the case where m = 1, we get that x1 obeys

∇xtAx = λ1∇(xtIx− 1),

139
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for some scalar λ1. Hence,

2Ax1 = 2λ1x1.

In particular, λ1 and x1 are an eigenpair. Note that the corresponding

objective function value equals xt
1Ax1 = λ1x

t
1x1 = λ1. Also, x1 may be

non-unique, in which case x1 is selected arbitrarily among all the optimizer

vectors. Of course, λ1 is unique as it equals the optimal value of the objec-

tive function.

Next for i with 2 ≤ i ≤ n, define the ith optimization problem

xi ∈ arg max
x∈Rn

xtAx,

s.t. ||x||2 − 1 = 0.

xt
jx = 0, 1 ≤ j ≤ i− 1.

Note that xi is orthogonal to all vectors which solved the previous i − 1

optimization problems. We prove by induction that xi, 1 ≤ i ≤ n, which

by definition are orthonormal, are eigenvectors of A. Moreover, the corre-

sponding eigenvalue λi is the value of the ith optimal objective function

value, 1 ≤ i ≤ n. Also, as it turns out, λi is the Lagrange multiplier of

the constraints ||x||2 − 1 = 0, 1 ≤ i ≤ n in the ith optimization vec-

tor. Finally, note that in case of a tie and, for example, two orthogonal

vectors are optimal in the ith problem, the one who was selected is not

feasible for the (i + 1)th problem (as it would need to be orthogonal to

itself).

All was proved already for the case where i = 1. We next consider the

ith optimization problem and assume the induction hypothesis that the

result holds for all solutions up to and including i−1. Solving this problem

again with the Lagrange multipliers technique, we get that for some scalars

λi and μij , 1 ≤ j ≤ i− 1,

2Axi = 2λixi +
i−1∑
j=1

μijxj . (10.1)

Multiplying this from the left by xt
j , we get that

2xt
jAxi = 0 + μij = 0, 1 ≤ j ≤ i− 1.
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Invoking the induction hypothesis for 1 ≤ j ≤ i−1, which says that xj and

λj form an eigenpair of A, leads to

2λjx
t
jxi = μij , 1 ≤ j ≤ i− 1.

Since by definition xj and xi are orthogonal, we conclude that μij = 0,

1 ≤ j ≤ i− 1. Thus, by (10.1),

Axi = λixi,

as promised. From here we get that xt
iAxi = λxt

ixi, and since xt
ixi = 1,

the fact that λi is the objective function value follows.

Note that λ1 ≥ λ2 ≥ · · · ≥ λn. The fact just established that the

sum of geometric multiplicities across all eigenvalues equals n, and coupled

with Theorem 9.4, immediately imply that the algebraic and geometric

multiplicities of an eigenvalue of a symmetric matrix coincide. �

Note that the above proof was constructive in a sense that it iden-

tifies the eigenvalues and the corresponding eigenvectors as solutions of

constrained optimization problems (and not only proved their existence).

It stops short of telling us how to derive these values. For this one needs

to resort to optimization techniques which are beyond the scope of this

text.

The following is as important.

Theorem

Theorem 10.2. Let A ∈ Rn×n be a symmetric matrix. Let D ∈
Rn×n be a diagonal matrix whose diagonal entries are the eigenval-

ues of A, each of which appears as many times as its multiplicy pre-

scribes. Let V ∈ Rn×n be the matrix whose columns are orthonormal

eigenvectors of A.a Then,

A = V DV t. (10.2)

In particular, A is similar to a diagonal matrix.

aNote that we preserve their order as in the corresponding eigenvalues. More-

over, if the multiplicity of an eigenvalue is larger than one, we take vectors

which form a basis for their eigenspace.
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Proof. After observing that V t = V −1, the rest of the argument here

is similar to the one which appears in Section 10.4 and will not be

repeated. �

Exercise 10.1

Let

A =

(
2 1

1 3

)
.

(a) Find the eigenvalues of A.

(b) What is the value of the following objective? maxx:‖x‖=1 x
tAx.

(c) What is the value of the following objective? minx:‖x‖=1 x
tAx.

(d) For each of (b) and (c) above, find the vectors x1 and x2 that optimize

these objectives.

(e) What is the spectral representation of A?

(f) Prove that if any matrix B is symmetric, then so is Bk for any integer

k (including negative).

(g) Repeat (a)–(e) for A−1 and A2 (hint: use any knowledge on A instead

of computing the matrices A−1 and A2).

10.2 Positive Matrices

Definition

Definition 10.1. A square symmetric matrix A is called semi-

positive if xtAx ≥ 0 for any vector x. It is called positive if xtAx > 0

unless x = 0.a

aIn most text the term “semi-positive” (“positive”, respectively) is replaced with

“semi-positive definite” (“positive definite”, respectively).

Note that since for square matrix B, which is not necessarily symmetric

xtBx = xt(A+At

2 )x, where clearly A+At

2 is a symmetric matrix, the above

definition can be extended to non-symmetric matrices. Yet, since the below

is true only for symmetric matrices, we limit our considerations only to such

matrices.
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Theorem

Theorem 10.3. A square symmetric matrix A is semi-positive

(positive, respectively) if and only if all its eigenvalues are non-

negative (positive, respectively).

Proof. Suppose A is semi-positive. Let λ and v be an eigenvalue and its

eigenvector, respectively. Then, vtAv = vtλv = λ||v||2. As this value ought

to be non-negative, we must have λ ≥ 0. Conversely, let v1, . . . , vn be a

basis for Rn formed out of eigenvectors. Let λ1, . . . , λn be, in this order,

the corresponding set of eigenvalues. Note that we apply here repetitions

of eigenvalues if needed as specified by the corresponding multiplicity. We

assume that all of them are non-negative. Express any vector x ∈ Rn as

x = Σn
i=1αiv

i. Then,

xtAx = xtA

n∑
i=1

αivi = xt
n∑

i=1

αiλiv
i

=

n∑
i=1

αi(v
i)t

n∑
i=1

αiλiv
i =

n∑
i=1

λiα
2
i ||vi||2,

which is non-negative, as required. The claim for the case where A is pos-

itive can be similarly shown. �

Exercise 10.2

Consider the following symmetric matrix:

V =

⎛
⎜⎝

1 0 ρ

0 1 0

ρ 0 1

⎞
⎟⎠.

(a) Show that the characteristic polynomial of V equals PV (x) =

(x− 1)[(x− 1)2 − ρ2].

(b) Show that the there exists three eigenvalues: 1, 1 + ρ, and 1− ρ.

(c) Conclude that the matrix is positive if and only if −1 < ρ < 1.



144 Linear Algebra for Data Science

Exercise 10.3

Consider the following symmetric matrix:

V =

⎛
⎜⎝

1 ρ ρ

ρ 1 0

ρ 0 1

⎞
⎟⎠.

(a) Let x = (1,−√2/2,−√2/2)t. Which condition needs to be imposed on

ρ in order to guarantee that xtV x > 0.

(b) Repeat the previous item now with x = (1,
√
2/2,
√
2/2)t.

(c) What are the eigenvalues of V ? Conclude that the two conditions you

derived above are also sufficient for V being positive.

(d) Derive the corresponding eigenvectors and state the spectral represen-

tation of V .

Exercise 10.4

A matrix A is skew-symmetric if Aij = −Aji for any i �= j.

(a) Show that if λ is an eigenvalue of A then it is zero.

(b) Does that imply that A is singular? Prove if so, otherwise find a counter-

example.

Exercise 10.5

Let A =

(
2 −2
−2 5

)
be a symmetric matrix. The matrix represents linear

transformation on the elementary basis.

(a) Find a matrix P whose columns form an orthonormal basis of R2, such

that the transformation matrix is diagonal.

(b) How can you find P−1 in that case, without calculating the inverse

matrix?

(c) What is the spectral representation of A?

Exercise 10.6

Let A =

(
a+ b b

b c+ b

)
be a symmetric matrix with a, b, c ≥ 0. Prove that

A is a semi-positive matrix.
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Our next point is the square root of a semi-positive matrix. Let D ∈
Rn×n be a diagonal matrix with Dii = λi, 1 ≤ i ≤ n. Again, repetitions

appear here as the multiplicities prescribe. We denote the matrix D
1
2 to

also be a diagonal matrix, but now it is the square roots of the eignevalues

which appear in the diagonal. Of course, this matrix exists if and only

if λi ≥ 0, 1 ≤ i ≤ n, which is assumed. Moreover, D = D
1
2D

1
2 . Let

V ∈ Rn×n be the matrix whose columns are the eigenvectors of A. As said

above A = V DV t and recall that V t is also the inverse of V . Hence, it is

easy to see that A itself has a square root: It is the matrix A
1
2 = V D

1
2V t.

Indeed,

A
1
2A

1
2 = (V D

1
2 V t)V D

1
2V t = V DV t = A.

Moreover, this square root matrix is symmetric and semi-positive too.

10.2.1 Two criteria for the positiveness of matrices

The first criterion is known as Sylvester’s criterion. First we need the defi-

nition of the leading minor matrices, sometimes referred to as the principal

submatrices. There are n such square matrices, each time taking the entries

which appear in the first i rows and first i columns, 1 ≤ i ≤ n. The first is

A11, the second is a two-by-two matrix(
A11 A12

A21 A22

)
,

and so on, where the nth and last one is A itself. Obviously, they are called

the first, second, etc. leading minors of A.

Theorem

Theorem 10.4. The symmetric matrix A ∈ Rn×n is positive if and

only if the determinants of all its n leading minors are positive.

Proof. aWe start by proving sufficiency, so assume the symmetric matrixA

obeys this criterion and our goal is to prove that A is positive. The proof

is by induction on n. The case where n = 1 is clear so assume the theorem

holds for n− 1. Next we show that A has at most one negative eigenvalue.

aThis proof is based on notes by Mikhail Lavrov [6].
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Aiming for a contradiction, assume it has two. Let u and v be two orthogo-

nal eigenvectors, one for each eigenvalue. Clearly, utAu < 0 and vtAv < 0.

Let w = vnu−unv. Of course, wn = 0. Consider the quadratic form wtAw.

Since wn = 0, this is in fact a quadratic form in dimension n− 1, involving

only the n−1th leading minor of A. Invoking the induction hypothesis, we

conclude that wtAw > 0. Also,

wtAw = (vnu− unv)
tA(vnu− unv) = v2n(u

tAu) + v2n(v
tAv) < 0,

which contradicts the fact that wtAw > 0. Hence, Πn
i=1λi, which is the

product of the n eigenvalues of A, is a product of n− 1 positive eigenvalues

and (possibly) one negative eigenvalue. However, Πn
i=1λi = det(A) > 0

(see Theorem (9.3) and note that A is one of the leading minors involved).

Hence, all eigenvalues are positive and A is a positive matrix.

For the converse, assume that the symmetric matrix A is positive (which

implies that the same is the case with all its leading minors). The proof

will repeat the argument above. Specifically, and aiming for a contradiction,

assume for some k, 1 ≤ k ≤ n, that the first k−1 leading minors come with

positive determinant but the kth determinant is negative. Then, it means

that this leading minor has exactly one negative eigenvalue, violating the

assumption that this minor is positive. �
The advantage of this criterion over the one stated in Theorem 10.3 is

that it is easily checked without the need to resort to the computation of

the eigenvalues of the matrix under consideration, the latter being involved

with finding the roots of high order polynomial.

The second criterion stated next is only a sufficient one but it turns out

to be useful in many applications. But first we need the following definition.

We say that a matrix is irreducible if when we form a graph with n nodes

and a directed arc from node i to node j exists if and only if Aij �= 0,

1 ≤ i, j ≤ n, then there will be a directed path between any ordered pair

of nodes. We state the result without a proof.

Theorem

Theorem 10.5. An irreducible symmetric matrix A ∈ Rn×n is pos-

itive if

Aii ≥
∑
j �=i

|Aij |, 1 ≤ i ≤ n,

with at least one of these n inequalities being strict.
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10.3 Covariance Matrices

In this section, we relate semi-positive matrices with covariance matrices

(sometimes called variance–covariance matrices). Covariance matrices are

defined as follows. Let Xi ∈ Rn, 1 ≤ i ≤ m, be m vectors. Define X ∈
Rm×n as the matrix whose ith row coincides with Xi, 1 ≤ i ≤ m. One

can look at Xij as the value of variable i, 1 ≤ i ≤ m, at individual j,

1 ≤ j ≤ n, in a population of size n. Using Section 7.3 terminology, Xt ∈
Rn×m is the design matrix. Define the symmetric matrix Var(X) ∈ Rm×m

via Varij(X) = Cov(Xi, Xj), 1 ≤ i, j ≤ m.b. In particular, Varii(X) =

Var(Xi), 1 ≤ i ≤ m. Before stating the main result of this section we need

the following lemma.

Lemma

Lemma 10.1. Let Var(X) ∈ Rm×m be the covariance matrix of

some matrix X ∈ Rm×n. Also, let A ∈ Rp×m. Then,

Var(AX) = AVar(X)At ∈ Rp×p. (10.3)

Proof. For 1 ≤ i, j ≤ p,

Varij(AX) = Cov((AX)i, (AX)j) = Cov

(
m∑

k=1

AikXk,

m∑
l=1

AjlXl

)

=
m∑

k=1

m∑
l=1

AikCov(Xk, Xl)Ajl = (AVar(X)At))ij ,

where the last equality follows some algebra. �

Note that AX above can be looked as transforming the data given in

X via a linear transformation from Rm to Rp. In other words, for each

of the n individuals, the raw data presented by m variables is now put in

terms of p variables, each of which is a linear combination of the original

m variables.

The following lemma is also required. It is based on [4].

bRecall that for 1 ≤ i, j ≤ m,

Cov(Xi,Xj) =
1

n

n∑
k=1

(Xik −Xi)(Xjk −Xj),

where Xi = 1
n
Σn

j=1Xij , namely the mean value of the entries in the vector Xi, 1 ≤
i ≤ m.



148 Linear Algebra for Data Science

Lemma

Lemma 10.2. Let Xi ∈ Rm+1 be the ith unit vector in Rm with a

constant c appended as its m + 1th entry, 1 ≤ i ≤ n. Then, there

exists a constant c such that Cov(Xi, Xj) = 0, 1 ≤ i �= j ≤ m.

Proof. For 1 ≤ i �= j ≤ m,

(m+ 1)Cov(Xi, Xj) = (Xi −Xi)
t(Xj −Xj) =

(
Xi − 1 + c

m+ 1
1

)t

×
(
Xj − 1 + c

m+ 1
1

)

= Xt
iXj − 2

(1 + c)2

m+ 1
+

(1 + c)2

m+ 1
= c2 − (1 + c)2

m+ 1
.

Equating this to zero, we get that c obeys mc2− 2c− 1, from which we can

observe that c = 1±√1+m
m . �

Referring to the above lemma, we notice that Var(Xi) is identical across

all values of i, 1 ≤ i ≤ m. Moreover, as we can learn from the above proof,

for j �= i, (m + 1)Var(Xi) = (m + 1)Cov(Xi, Xj) + 1 = 0 + 1 = 1. Hence,

Var(Xi) = 1/(m + 1), 1 ≤ i ≤ m. Then, let Zi =
√
m+ 1Xi, 1 ≤ i ≤ m

and define Z ∈ Rm×(m+1) accordingly. Clearly, Var(Z) = I ∈ Rm×m.

In summary, there exists empirical multi-variable data whose covariance

matrix is the identity matrix.

Theorem

Theorem 10.6. Let A ∈ Rm×m be a symmetric matrix. Then,

there exists a matrix X ∈ Rm×n for some n whose covariance matrix

equals A if only if A is semi-positive.

Proof. Assume that A is the covariance matrix of X ∈ Rm×n. Let a ∈
Rm. Then by (10.3), Var(atX) = atVar(X)a = atAa. As the variance of

some variable this needs to be non-negative. As this inequality holds for

any vector a, we conclude that A is a non-negative matrix. For the converse

assume that A ∈ Rm×m is semi-positive and let Z ∈ Rm×m+1 be with

Var(Z) = I, whose existence was just established. Define X ∈ Rm×(m+1)



Symmetric Matrices 149

as A
1
2Z and recall that A

1
2 exists (see Section 10.2) and it is symmetric.

Then, by (10.3),

Var(X) = A
1
2Var(Z)(A

1
2 )t = A

1
2 I(A

1
2 )t = A

1
2A

1
2 = A.

This concludes the proof. �

10.4 Computing Eigensystems: The Power Method and

Deflation

In order to compute the largest (in absolute value) eigenvalue and the

corresponding eignevalue for symmetric matrices, we start with an iterative

procedure, known as the power method. This procedure does its task under

the assumption that this eigenvalue is simple.

Let vi, 1 ≤ i ≤ n, be a set of n orthonormal eigenvectors of A. Also, let

Ei = viv
t
i , 1 ≤ i ≤ n, be the corresponding rank-one projection matrices.

Recall that E2
i = Ei, 1 ≤ i ≤ n and that EiEj = 0, 1 ≤ i �= j ≤ n.

Moreover, by the spectral representation theorem (9.11), Ak = Σn
i=1λ

k
iEi.

Then, for any x ∈ Rn with x = Σn
i=1αivi, we get that

Akx =

(
n∑

i=1

λk
iEi

)(
n∑

i=1

αivi

)
=

n∑
i=1

αiλ
k
i vi

and that ||Akx||2 = Σn
i=1α

2
i λ

2k
i by the orthonormality of vi, 1 ≤ i ≤ n.

Then,

1

||Akx||A
kx =

1√
Σn

i=1α
2
i λ

2k
i

n∑
i=1

αiλ
k
i vi

=
1√

α2
1 +

∑n
i=2 α

2
i
λ2k
i

λ2k
1

(
a1v1 +

n∑
i=2

αi
λk
i

λk
1

vi

)
.

Assuming that α1 �= 0 and that |λ1| > |λi|, 2 ≤ i ≤ n, and taking the

limit when k goes to infinity, leads to (a constant multiplication of) v1, the

eigenvector associated with the largest eigenvalue. Note that the greater

λ1 is in comparison with the other eigenvalues, the faster the convergence

is. Thus, the ratio between the second largest and the largest eigenvalues

defines the rate of convergence of the power method.

Thus the power method provides, that as long as x has a component

in the direction of v1, convergence to (a constant multiplication of) v1
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is guaranteed. In practice, in order not to run into too large values (if

|λ1| > 1), or too small ones (if |λ1| < 1), scaling Akx to Akx/||Akx|| once
in a while, and re-initiating the power method from the just scaled vector,

is advised. In the unlikely event that a1 = 0 but α2 �= 0, the convergence

is to v2. In fact, the convergence is to the first vi whose αi �= 0, 1 ≤ i ≤ n.

Once v1 (or a good approximation thereof) is at hand, finding λ1 is

immediate: divide any component of Av1 by the corresponding component

in v1. Alternatively, note that λi =
1

||vi||2 v
t
iAvi, 1 ≤ i ≤ n.

Consider next the matrix A−λ1E1 (which you now have). It is easy to

see that its eigenvalues are 0 and λi, 2 ≤ i ≤ n. In particular, its smallest

(in absolute value) eigenvalue is 0. Moreover, the original eigenvectors are

preserved. Thus, if the power method is applied to it, the second largest

(in absolute value) eigenvalue of A, λ2, coupled with the rank-one matrix

E2, are computed. Once this is done, move on with A− λ1E1 − λ2E2, etc.

This procedure, where in each time one subtracts such a rank-one matrix,

is called deflation.

10.5 Cholesky Factorization

Let A be a semi-positive symmetric matrix. As in (10.2), write A as V tDV .

Define B = V tSV where S ∈ Rn×n is a diagonal matrix with Sii =
√
Dii,

1 ≤ i ≤ n. Clearly, Bt = B and B2 = A. In other words, B = A1/2.

Note that the matrix B is not well-defined in the case where A is not a

semi-positive matrix.

Theorem

Theorem 10.7. Let A be a semi-positive matrix and let B be a

symmetric matrix with B2 = A. Also, let QR be the QR factoriza-

tion of B. Then, A = RtR. In particular, A is the product between a

lower-triangular matrix (which is Rt) and its transpose (which is R).

Proof. Let B be a square root of A which as discussed above exists and

QR be its QR factorization. Recall that Q is a unitary matrix and that R

is an upper-triangular matrix. Then,

A = BB = BtB = (QR)tQR = RtQtQR = RtR. �

The above theorem leads to an algorithm for finding a lower-triangular

matrix L such that A = LLt. This is the matrix Rt looked at in
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Theorem 10.7. It is computed as follows. Firstly, derive the eigensystems

of A, compute the square roots of its eigenvalues, leading to the square root

B. Secondly, perform the Gram–Schmidt process on B, leading to its QR

factorization, B = QR. The resulting Rt is the matrix L you are looking

for. Note that in the case where the input matrix A is not semi-positive,

the algorithm will alert that, since at least one of the eigenvalues computed

on the way will turnout to be negative.

A better way exists for the case where A is positive. We next state an

alternative algorithm, knows as Cholesky factorization, for computing Rt

which detours the need to first derive the QR factorization of a square root

of A and will apply it directly to the entries of matrix A. This algorithm,

too, will also tell if the input matrix is positive or not. But before doing

that we need the following lemma.

Lemma

Lemma 10.3. Let A ∈ n× n be a symmetric matrix and express

it as

A =

(
A11 At

21

A21 A22

)
,

where A11 ∈ R1, A21 ∈ Rn−1 and A22 ∈ R(n−1)×(n−1). Then, A is

positive if and only if A22−A21A
t
21/A11 ∈ R(n−1)×(n−1) is positive.

Proof. A is positive if and only if for any scalar y and a vector x ∈ Rn−1

where not both of them equal zero, (y, xt)A(y, x) > 0. This is for exam-

ple the case where y = −xtA21/A11 (requiring that x �= 0). But for this

choice for y, some algebra implies that 0 < (y, xt)A(y, x) = xt(A22 −
A21A

t
21/A11)x when A is positive. Since this holds for any x �= 0, the

first direction of the lemma is established. For the converse, note first that

A11 > 0 which is a necessary condition for A to be positive. Then, if

A22 − A21A
t
21/A11 is not positive then there exists an x �= 0 ∈ Rn−1 such

that xt(A22 − A21A
t
21/A11)x ≤ 0. Then, for the corresponding choice for

y = −xtA21/A11, (y, x
t)A(y, x) ≤ 0, implying that A is not positive. This

completes our proof. �

Recall that our goal is to find for the case of a positive matrix A ∈ Rn×n,
a lower-triangular matrix L ∈ Rn×n such that A = LLt. Note that such
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an L can be written as

L =

(
L11 0t

L21 L22

)
,

where L11 is a (positive) scalar, L21 ∈ Rn−1, 0 ∈ Rn−1 and L22 ∈
R(n−1)×(n−1). Toward our goal, we try to solve for

A =

(
A11 At

21

A21 A22

)
=

(
L11 0t

L21 L22

)(
L11 Lt

21

0 Lt
22

)
= LLt,

namely A11 = L2
11 (and hence L11 =

√
A11), A

t
21 = L11L

t
21 (and hence

L21 = A21/L11 = A21/
√
A11) and A22 = L21L

t
21 + L22L

t
22 = (and hence

L22L
t
22 = A22−L21L

t
21 which in fact equals A22−A21A

t
21/A11). The good

news is that by (10.3) L22L
t
22 is positive. The bad news is that we do not

have (yet) L22: What we have is only L22L
t
22. However, and this is main

idea behind Cholesky factorization, the above can be repeated to the matrix

L22L
t
22, etc. Note that at each step one more of the columns of the matrix

L we look for is found. Finally, observe that at each step the square root

of a new term is computed. The proved fact that the resulting submatrix

is positive guarantees the positiveness of this term.

Example. The next is an example taken from [10] for a matrix A which

is factorized to the form LLt, where L is a lower-triangular matrix:⎛
⎜⎝

25 15 −5
15 18 0

−5 0 11

⎞
⎟⎠ =

⎛
⎜⎝

5 0 0

3 3 0

−1 1 3

⎞
⎟⎠
⎛
⎜⎝

5 3 −1
0 3 1

0 0 3

⎞
⎟⎠.

In particular, we conclude that A is a positive matrix. How was this matrix

computed? We start with⎛
⎜⎝

25 15 −5
15 18 0

−5 0 11

⎞
⎟⎠ =

⎛
⎜⎝

L11 0 0

L21 L22 0

L31 L32 L33

⎞
⎟⎠
⎛
⎜⎝

L11 L21 L23

0 L22 L32

0 0 L33

⎞
⎟⎠.

Firstly, we deal with the first column of L:⎛
⎜⎝

25 15 −5
15 18 0

−5 0 11

⎞
⎟⎠ =

⎛
⎜⎝

5 0 0

3 L22 0

−1 L32 L33

⎞
⎟⎠
⎛
⎜⎝

5 3 −1
0 L22 L32

0 0 L33

⎞
⎟⎠.
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As for the second column:

A22−L21Lt
21 =

(
18 0

0 11

)
−
(

3

−1

)(
3 −1) =

(
L22 0

L32 L33

)(
L22 L32

0 L33

)
,

namely, (
9 3

3 10

)
=

(
3 0

1 L33

)(
3 1

0 L33

)
.

Finally, for the last column we get that 10−1×1 = L2
33 and hence L33 = 3.

Finally, suppose the input matrix for Cholesky factorization is not a

positive matrix but the procedure is carried nevertheless. Of course, some-

thing should go wrong. Where will this take place? The answer lies in the

fact that sooner or later the upper-left corner of the resulting square matrix

(denoted above by L22L
t
22) will turn out to be non-positive, making this

submatrix (and hence, by Lemma 10.3, the input matrix) non-positive.

Once a lower-triangular matrix L with A = LLt is at hand it is possible

to easily solve the linear system of equations Ax = b. The first step is to

find a solution for Ly = b by forward substitutions. Once y is at hand, the

next step is to compute x which obeys Ltx = y by backward substitutions.

Application: Engineering the covariance matrix. Let X ∈ Rm×n

be a design matrix. It represents m individuals who possess values for

n variables. Thus, Xij is the value of variable j for the ith individual,

1 ≤ i ≤ m, 1 ≤ j ≤ n. Assume that X is a tall full-rank matrix. For

simplicity assume that the values of the variables are centered around zero,

namely 1tX = 0t. Thus, the positive matrix XtX is the covariance matrix

of the data. Denote it by S ∈ Rn×n. Suppose one wishes to convert the n

variables by a linear function to some other n variables but now the covari-

ance matrix will be matrix Σ ∈ Rn×n. It is of course assumed that Σ is

a symmetric non-negative matrix. Thus, we look for a matrix A ∈ Rn×n

such that (XA)t(XA) = Σ, or AtSA = Σ. Note that A multiplies X from

the right. Using the Cholesky factorization technique we can find a lower

triangular matrix L such that LLt = Σ. Hence, we look for an A such

that LLt = AtS
1
2S

1
2A. Taking a matrix A such that L = AtS

1
2 , namely

A = S−
1
2Lt will do. Note that we got more than we have bargained for: the

change of scales was done through an upper-triangular matrix. Note that if

S = I, namely the original variables were uncorrelated, then A is the upper-

triangular matrix resulting from applying the Cholesky factorization to the

matrix Σ. Conversely, if Σ = I, namely we wish to transform the original
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data given in a some design matrix to that with uncorrelated variables, we

get that A = S−
1
2 . This fact can also be seen with the help of (10.3).

10.6 Principal Components Analysis (PCA)

Recall the design matrix X ∈ Rn×p we have defined in Section 7.3 on mul-

tiple linear regression analysis. Assume further that none of its columns is

a constant column. We like to pose here the (not well defined question) of

what is the linear combination of the columns ofX which contains the most

information carried by these columns (that’s why columns with constants

are ignored). Note that this has got nothing to do with the Y variable.

For simplicity, but without loss of generality, assume all the variables are

centered around zero, namely 1tX = 0t.c Consider various sets of coeffi-

cients w = (w1, . . . , wp), all scaled such that ||w|| = 1. We like to say (in

fact, to define) that one linear combination w, better put in this context

as a direction defined by w, is better than another, if the corresponding n

values Σp
j=1wjXij , 1 ≤ i ≤ n, come with a higher variance. Yes, this is not

a mistake, the higher the variance the better, as the most information is

obtained. Indeed, high variance captures the variability in X in general in

the population. Thus, our goal is to find such w ∈ Rp which leads to the

highest variance. Hence and since Σn
i=1Σ

p
j=1wjXij = 0, the optimization

problem we need to solve is

max
w∈Rp

n∑
i=1

(
p∑

j=1

wjXij

)2

,

s.t. ||w|| = 1.

Inspecting the objective function we can see that it equals wtXtXw,

which is clearly non-negative for any w ∈ Rp. Note that XtX ∈ Rp×p is

the covariance matrix of X , or better put, the empirical covariance of the

p variables, each of which is sampled m times (since we assume that each

column is normalized such that the sum across its entries equals zero). In

particular, it is a semi-positive matrix. This problem was just solved: see

Theorem 10.1. The optimal objective function equals the largest eigenvalue

of XtX and the all important solution itself which is the (normalized)

cIf this is not the case one can replace Aij with Aij− 1
n
Σn

k=1Akj , 1 ≤ i ≤ n, 1 ≤ j ≤ p,
and get a matrix possessing this property.
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Figure 10.1. Illustration of the PCA.

eigenvector associated with it. See Fig. 10.1 for an illustration for the case

where p = 2.

Denote by w1 ∈ Rp the optimal solution and assume for simplicity that

it is unique. The vector Xw1, in fact its normalized version, Xw1/||Xw1||,
is then referred to as the most important component of the data presented

byX : much of the variability inX across the n-sized population is captured

while progressing along this direction. A possible measure for quantifying

this importance is

λ1∑p
i=1 λi

,
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where λ1 is the largest eigenvalue of XtX (which is associated with w1) and

λi, 2 ≤ i ≤ p, are the rest of the eigenvalues.d This can be explained by the

fact that λ1 is the optimal value of the objective function and it measures

the achieved variability. Recall that all these eigenvalues are non-negative.

Consider then the second largest eigenvalues of XtX . The corresponding

eigenvector leads to the second in importance direction in the data. How

to derive the second (and then the third, etc.) eigenvalues is the subject of

Section 10.4.

dEach eigenvalue appears as its multiplicity provides.



Chapter 11

Singular Value Decomposition

11.1 Introduction and Some Preliminaries

The issue of square matrices and diagonalization was introduced in Chap-

ter 9 where we dealt with eigensystems. In the previous chapter we showed

that symmetric matrices well-behave in the sense that they are diagonal-

izable. It is hence clear by now that some matrices are not diagonalizable.

What can be second best? One route, which we do not take, is to intro-

duce complex numbers. Another is to define the concept of singular value

decomposition (SVD). Its advantage (on top of not having to use complex

variables) is that it is not limited to square matrices. This is the subject of

this chapter. But first we would like to establish a few results which will

be useful later.

Theorem

Theorem 11.1. Let A ∈ Rm×n. Denote by p ≤ min{m,n} the

number of positive eigenvalue of AtA (repetition due to multiplicities

are allowed). Let λi > 0 be such an eigenvalue, 1 ≤ i ≤ p and denote

by vi, 1 ≤ i ≤ p, a corresponding set of orthogonal eigenvectors of

AtA. Then Avi, 1 ≤ i ≤ p, are non-zero orthogonal vectors.

Proof. First, had Avi = 0, then AtAvi = 0, contradicting the assumption

that vi is an eigenvector of AtA with a corresponding positive eigenvalue,

1 ≤ i ≤ p. Second,

(Avi)tAvj = (vi)tAtAvj = λj(v
i)tvj =

{
0 i �= j

λj ||vj ||2 i = j
, 1 ≤ i, j ≤ p.

�

157
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Theorem

Theorem 11.2. Let A ∈ Rm×n be a full-rank tall matrix and denote

by vi, 1 ≤ i ≤ n, a set of n orthogonal eigenvectors of AtA (which

is known to exist), then Avi, 1 ≤ i ≤ n, are all non-zero vectors and

they span the image of the linear function f : Rn → Rm, Ax.

Proof. The result is immediate from the just shown fact that Avi, 1 ≤
i ≤ n, are non-zero orthogonal and hence linearly independent vectors

in Rn, all in the image of f which is a linear subspace of Rm. Since

dim(img(f)) = n, by the full rank assumption, we conclude that they

form a basis for img(f). �

The matrix AtA was introduced in Chapter 7 and its usefulness was

already established there. We next collect a few results on this matrix.

Theorem

Theorem 11.3. Let Am×n. Then both AtA ∈ Rm×m and AAt ∈
Rn×n are symmetric semi-positive matrices.

Proof. For any x ∈ Rn,

xt(AtA)x = (Ax)tAx = ||Ax||2 ≥ 0.

The proof for the latter part is immediate: What is true for any A, holds

for At as well. �

Theorem

Theorem 11.4. λ > 0 is an eigenvalue of AtA if and only if it is

an eigenvalue of AAt. Moreover, their multiplicities coincide.

Proof. Suppose AtAv = λv for some non-zero vector v. Also, Av is a non-

zero vector. Then AAtAv = λAv or (AAt)Av = λAv. In other words, Av is

eigenvector of AAt with the same eigenvalue λ. Now invoke Theorem 11.1

and the fact that AtA is symmetric (making algebraic and geometric mul-

tiplicities agree). This concludes the proof. �
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Corollary 11.1. Let A ∈ Rm×n be a tall matrix, namely m ≥ n. Then the

multiplicity of the eigenvalue zero of AAt ∈ Rm×m is at least m− n.

Proof. Since AtA ∈ Rn×n and AAt ∈ Rm×m are symmetric matrices,

then by Theorem 10.2 the sum of the multiplicities of their eigenvalues are

n and m, respectively. The fact that n ≥ m coupled with the Theorem 11.4

concludes the proof. �

Note that Theorem 11.4 holds also where λ = 0 in the case where A

is a square matrix (in which case both A and At are singular). Note also

that if for a tall matrix A = QR, where this is its QR factorization, then

AtA = RtR. Similarly, observe that AAt = QRRtQt. The following is now

immediate.

Corollary 11.2. Let Am×n with m > n and assume it is a full-rank matrix.

Then AtA is a positive matrix. Moreover, AAt is semi-positive, but not a

positive, matrix.

Proof. The fact that both matrices are semi-positive was already shown in

Theorem 11.3. Aiming for a contradiction, assume AtA is a semi-positive

but not positive matrix. Hence, an x �= 0 with xtAtAx = ||Ax||2 = 0 exists.

Then, Ax = 0, violating the assumption that A is a full-rank matrix. As

for the second part, note from the previous corollary that zero is an eigen-

value of AAt. Let v �= 0 be a corresponding eigenvector. Then, AAtv = 0,

therefore vt(AAt)v = 0 and hence AAt is not a positive matrix. �

11.2 Singular Value Decomposition

Assume next that A ∈ Rm×n with m ≥ n, namely it is a square or a tall

matrix. We further assume that it is a full-rank matrix. This implies that

AtA is invertible and that all its eigenvalues are positive. Let V ∈ Rn×n

be the matrix whose columns are the orthonormal eigenvectors of AtA.

Recall that V tV = I = V V t. Let D ∈ Rn×n be the diagonal matrix all

its diagonal entries are the corresponding (positive) eigenvalues of AtA

(in the same order). Denote by S the diagonal matrix with Sii =
√
Dii,

1 ≤ i ≤ n. Note that S2 = D. Clearly, S−1 exists and it is a diagonal

matrix with S−1ii = 1/Sii, 1 ≤ i ≤ n. Denote Sii by σi, 1 ≤ i ≤ n, and

they are called the singular values of A (and not of AtA). Of course, they

are the square root of the eigenvalues of AtA. Denote the vector 1
σi
Avi by

ui ∈ Rm, 1 ≤ i ≤ n. This set of vectors was in fact shown to be orthogonal

in Theorem 11.1, while the normalization is easily seen. Indeed, ui was
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defined this way (and not for example as Avi) in order to have ||ui|| = 1,

1 ≤ i ≤ n. Denote the matrix whose columns are u1, . . . , un by U ∈ Rm×n,
then as said U tU = I ∈ Rn×n, namely U is a unitary matrix. Also, observe

that U = AV S−1. The following is now immediate.

Theorem

Theorem 11.5. The matrices U and V are unitary matrices, with

AV = US, AtU = V S, (11.1)

and

A = USV t. (11.2)

Equation (11.2) is referred to as the SVD of the matrix A. Recall that

vi is the ith column of V and ui is the ith column of U , 1 ≤ i ≤ n, and

hence we get from (11.1) that

Avi = σiu
i, Atui = σiv

i, 1 ≤ i ≤ n.

The singular values of A resemble eigenvalues but they are not as they

are the square roots of eigenvalues of another matrix, that of AtA. Yet,

in the case where A is a symmetric matrix its eigenvalues play the role of

the singular values, although they are not necessarily positive as it appears

in the above definition for singular values. The duality between vi and ui,

1 ≤ i ≤ n, is also shown in the next theorem.

Theorem

Theorem 11.6. Let ui be the ith column of the matrix U, 1 ≤
i ≤ n. Then, ui is an eigenvector of AAt which corresponds to the

eigenvalue σ2
i , 1 ≤ i ≤ n.

Proof. From (11.1), we learn that AtU = V S. Multiplying both side from

the left by A, we get that AAtU = AV S. But AV = US, hence AAtU =

US2. The facts that S2 = D and that Dii = σ2
i , 1 ≤ i ≤ n, concludes the

proof. �
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The SVD also leads to a spectral representation. Specifically, it is imme-

diate from (11.2) that

A =
n∑

i=1

σiu
i(vi)t =

n∑
i=1

(Avi)(vi)t. (11.3)

In this way A is written as the sum of n rank-one matrices. Let x ∈ Rn.

Then, for some coefficients αi, 1 ≤ i ≤ n, x = Σn
i=1αiv

i. Hence,

Ax =

n∑
i=1

σiu
i(vi)t

n∑
i=1

αiv
i =

n∑
i=1

αiσiu
i. (11.4)

There is an interesting interpretation for this result. When we apply

the matrix A to some vector x = Σn
i=1αiv

i ∈ Rn, we in fact apply it to

each of its components with respect to the basis {v1, . . . , vn} individually:
it replaces vi by ui = 1

σi
Avi, which can be seen as a rotation as the norm

(of 1) is preserved, while the corresponding coefficient αi is multiplied by

σi, 1 ≤ i ≤ n (which can be seen as a change of magnitude or as of scaling).

This resembles the stronger result (9.6) we have when we looked into eigen-

systems. Note however, that this representation is trivial once we recall

that ui = 1
σi
Avi, 1 ≤ i ≤ n. This may bring one to the following (wrong)

conclusion: Instead of defining ui through the division by σi, one can divide

it by any other value, say τi (making τi = 1, 1 ≤ i ≤ n a natural choice),

and get that A = Σn
i=1τiu

i(vi)t. Well, this is technically correct but what

will be ruined now is that ui, 1 ≤ i ≤ n, are not orthonormal anymore, but

only orthogonal. In particular, U would not be a unitary matrix, namely

a matrix which preserves the norm of a vector when multiplied with. In

summary, the matrices V and U in SVD are unitary matrices and hence

change the direction of the vectors they are applied to, something we refer

to as rotation. On the other hand, the matrix S changes the magnitude of

components of vectors when expressed as a linear combination of vectors

in the basis V . This is done in the same manner as the diagonal matrix of

eigenvalues behaves when a matrix is diagonalizable. Figure 11.1 depicts

the SVD for the matrix

A =

(
0.5 −2.5
1 −0.5

)
,

v1 = (−0.2898, 0.9571)t, v2 = (0.9571, 0.2898)t, σ1 = 2.6514, σ1 = 0.8486,

u1 = (−0.9571,−0.2898)t and u2 = (−0.2898, 0.9571)t.
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Figure 11.1. SVD visualization.

Remark. It is clear that in the case where the matrix A is wide, we can

do all of the above with At, find the SVD of At, and then use the fact that

(ABC)t = CtBtAt in order to get the SVD of A. An alternative and a

more concise way, is as follows. Back to the case where A is tall. Recall

from Theorem 11.6 that the columns of U are n orthonormal eigenvectors of

AAt corresponding to the non-zero eigenvalues of AAt. But this matrix also

possesses an additionalm−n orthonormal eigenvectors corresponding to its

zero eigenvalue. Redefine the U matrix by appending the original U with

these vectors, say placed to the right of the matrix. Denote this matrix by

Ũ . This will make the U matrix a square one: Ũ ∈ Rm×m. Next redefine

matrix S by appending it with m − n zero rows. Denote this matrix by

S̃. As opposed to the original S that was a square matrix, S̃ is now a tall

matrix as S̃ ∈ Rm×n. Yet, equality (11.2) is maintained:

A = Ũ S̃V t.

Suppose now that A is a wide matrix. Now AAt is non-singular while AtA

is singular and the roles of the new V and U are swapped. In particular, U

is regular, while Ṽ comes with n−m zero columns. Likewise, the new S̃ has

n −m zero columns. Hence, for a full-rank matrix A ∈ Rm×n, regardless
of whether A is tall or wide, A can be expressed as

A = USV t,

with U ∈ Rm×m, S ∈ Rm×n and V ∈ Rn×n and where U tU = I,

V tV = I and S is an enlarged diagonal matrix whose first min{m,n}
diagonal entries are positive while the rest of max{m,n} − min{m,n} of

them are zeros. Without a proof we claim that the same is the case for

any matrix which is not necessarily a full-rank matrix with the exception

that some of the first min{m,n} entries in the diagonal of S may now be

zero too.
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Example.a Let

A =

⎛
⎜⎝

3 2

2 3

2 −2

⎞
⎟⎠.

A is tall matrix in R3×2. Then,

AtA =

(
17 8

8 17

)
and AAt =

⎛
⎜⎝

13 12 2

12 13 −2
2 −2 8

⎞
⎟⎠.

The eigenvalues of AtA are 25 and 9 and hence the singular values of A

are σ1 = 5 and σ2 = 3. The corresponding orthonormal eigenvectors of

AtA are

v1 =

( 1√
2

1√
2

)
and v2 =

( 1√
2

− 1√
2

)
,

respectively. Two (out of the three) orthonormal eigenvectors of AAt are

u1 = 1
σ1
Av1 and u2 = 1

σ2
Av2. Denote by u3 the third one corresponding

to the eigenvalue 0 of AAt. Then,

u1 =

⎛
⎜⎜⎝

1√
2

1√
2

0

⎞
⎟⎟⎠ u2 =

⎛
⎜⎜⎝

1√
18

− 1√
18

4√
18

⎞
⎟⎟⎠ and u3 =

⎛
⎜⎝

2
3

− 2
3

− 1
3

⎞
⎟⎠.

The singular value decomposition of A is hence

A =

⎛
⎜⎝

3 2

2 3

2 −2

⎞
⎟⎠ =

( 1√
2

1√
2

1√
2
− 1√

2

)⎛⎜⎝
5 0

0 3

0 0

⎞
⎟⎠
⎛
⎜⎜⎝

1√
2

1√
18

2
3

1√
2
− 1√

18
− 2

3

0 4√
18

− 1
3

⎞
⎟⎟⎠.

Finally, using (11.3),

A = 5

⎛
⎜⎜⎝

1√
2

1√
2

0

⎞
⎟⎟⎠
(

1√
2
,
1√
2

)
+ 3

⎛
⎜⎜⎝

1√
18

− 1√
18

4√
18

⎞
⎟⎟⎠
(

1√
2
,− 1√

2

)
.

aBased on Jonathan Hui’s notes [5].
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We next show that the singular value decomposition of A leads to A†,
the pseudo-inverse of A which was dealt with extensively in Chapter 7.

Recall that A† = (AtA)−1At. Indeed,

Theorem

Theorem 11.7. Let A = USV t be the SVD of the matrix A.

Assume that A is full-rank. In particular, its Moore–Penrose inverse

matrix exists and it is denoted by A†. Then

A† = V S−1U t.

Proof. Note that since a regular matrix shares its eigenvectors with its

inverse, where the eigenvalues reciprocates, the fact that AtAV = V S2

implies that (AtA)−1V = V S−2. Now,

A† = (AtA)−1At = (AtA)−1(USV t)t = (AtA)−1V SU t

= V S−2SU t = V S−1U t,

as required. �

Inspecting (11.4), we can see that there are singular values which are

more important than others, those with a high value. Thus, it is possible

that A will be represented well only if a fraction of them are used, in

fact, rounding down all the others to zero. Specifically, assuming that σ1 ≥
σ2 ≥ · · · ≥ σn, then if we take the first k largest singular values we may well

approximate A by the rank-k matrix Σk
i=1σiu

i(vi)t. This is the counterpart

expression for the one given in (9.8) for symmetric matrices.

Application: Storing images. Suppose a black and white photo is pre-

sented by m × n pixels. It can be stored in a matrix A ∈ Rm×n, where
the entry Aij states, in numbers, the level of blackness of the (i, j)th pixel,

1 ≤ i ≤ m, 1 ≤ j ≤ n. This of course requires a storage of size m × n.

Much storage space can be saved if SVD is preformed. In particular, if

only k singular values of A are used, then the amount of storage needed is

k(1 +m+ n), which is quite a substantial saving. Clearly, there is a trade-

off between k and the quality of the stored photo. The same can be done

with colored photos. Now, one requires three matrices, one for each of the
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primary RGB colors, red, green and blue, in order to store a picture. Let

these matrices be R, G and B, all three matrices being in Rm×n. Thus,

one needs to perform SVD for each of these matrices separately, and not

necessarily the same number of singular values will be utilized in each of

these three matrices.
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Chapter 12

Stochastic Matrices

12.1 Introduction and the Case of Positive Transition

Probabilities

A square matrix P ∈ Rn×n is said to be stochastic (sometimes referred to as

right-stochastic) if Pij ≥ 0, 1 ≤ i, j ≤ n and Σn
j=1Pij = 1, 1 ≤ i ≤ n. It is

immediate that the scalar 1 and the vector 1 ∈ Rn form a right eigensystem

for this matrix.

Stochastic matrices are useful in modeling a situation in which a state

process evolves throughout a time period. Specifically, if at a given (dis-

crete) time epoch the current state of nature is i, then the next one will

be state j with probability Pij , 1 ≤ i, j ≤ n, and this is independent of

the previously visited states.a Moreover, these transition probabilities are

not a function of the time epoch the process considered is currently in.

In other words, any possible state is associated with a vector of probabili-

ties, called the transition probabilities which describe the statistic dynam-

ics of the process of movement from one state to another. Such processes

are called time-homogeneous Markov chains. Figure 12.1 gives an exam-

ple for a five-state process. Note that a lack of an arc emanating in i and

ending in j corresponds to zero transition probability. The corresponding

aThis by no means implies that the past and the future are independent. What we
have here is that given the present, they are independent.

167
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Figure 12.1. A five-state transition matrix.

transition matrix is

P =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.35 0.25 0.4 0 0

0 0.20 0.80 0 0

0 0 0.10 0.9 0

0 0.23 0 0.77 0

0 0 0.64 0 0.36

⎞
⎟⎟⎟⎟⎟⎟⎠
.

The first fact we like to mention is the following:

Theorem

Theorem 12.1. If P is a stochastic matrix, then the same is the

case with Pm, for any m ≥ 0. Moreover, Pm
ij is the probability that

a process which is currently at state i, visits state j (not necessarily

for the first time) m units of time afterwards.

Proof. The case where m = 0 is trivial. For m ≥ 1, we will use an induc-

tion argument. For the case where m = 1, this statement is true by defini-

tion. Suppose it holds for some m. Then,

Pm+1
ij = (PmP )ij =

n∑
k=1

Pm
ik Pkj . (12.1)
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Using the induction hypothesis, Pm
ik is the probability of visiting state k

in time-epoch m, 1 ≤ k ≤ n. The use of the law of total probability

tells us that what we have in (12.1) is the corresponding probability for

visiting state j at time-epoch m + 1. This probability is of course non-

negative. Finally, summing up these probabilities with respect to j leads

to the promised value of 1. �

In the rest of this section we limit our discussion to the case where

Pij > 0 for all pairs of i and j, 1 ≤ i, j ≤ n. This seems to be a grave sim-

plification, maybe leading to unrealistic modelling. Yet, in the last section

we will show that in fact much can be learned and projected on the general

case, once this case is analyzed completely.

Example. For some p and q, 0 < p, q < 1, let the stochastic matrix P ∈
R2×2 be:

P =

(
1− p p

q 1− q

)
.

Observe that (q, p) is a left eigenvector associated with the eignevalue 1.

It is possible to prove by an induction argument that for n ≥ 1,

Pn =
1

p+ q

(
q p

q p

)
+

(1− p− q)n

p+ q

(
p −p
−q q

)
.

Note (which eases the derivation) that the product between the above two

matrices equals 0 ∈ R2×2. It is also possible to verify that 1− p− q is the

second eigenvalue of P with left eigenvector (1,−1) and right eigenvector

(p, q)t. Observe that |1− p− q| ≤ 1, with equality if and only if p = q = 0

or p = q = 1, two options which violate our assumption that all entries of

P are positive. In fact,

P = 1

( q
p+q

p
p+q

q
p+q

p
p+q

)
+ (1− p− q)

( p
p+q − p

p+q

− q
p+q

q
p+q

)

is the spectral representation of P . Finally, note that unless |1−p− q| = 1,

lim
n→∞Pn =

( q
p+q

p
p+q

q
p+q

q
p+q

)
.

Note that this limit matrix is such a matrix that all its rows are identical

and equal to a probability vector, which is a right-eigenvector, which in

turn is associated with the eigenvalue 1.
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12.2 The Limit Probabilities

We next state a revealing lemma. It says that the range of the entries

for any given column of P, P 2, . . . , Pm, . . . shrinks by a factor of at most

1− 2ε each time one moves along this sequence, where ε = min1≤i,j≤n Pij .

Clearly, for P ∈ Rn×n, 0 < ε ≤ 1/n.

Lemma

Lemma 12.1. For m ≥ 1, denote mini P
m
ij by mm

j and maxi P
m
ij by

Mm
j . Then,

Mm+1
j −mm+1

j ≤ (1− 2ε)(Mm
j −mm

j ), 1 ≤ j ≤ n.

Proof. Take some vector x ∈ Rn (in our context it is a column of Pm)

and apply to it a number of weighted averages, each time with another set

of weights. This is what happens n times when the matrix P multiplies

x as each row of P states some positive weights which sum-up to 1. A

new vector y = Px ∈ Rn is attained. The lemma says that the range of y

shrinks by a factor of at least 1−2ε in comparison with that of x. Indeed, let

xmax = maxi xi and xmin = mini xi and define ymax and ymin accordingly.

Then,

ymax ≤ xmax − εxmax + εxmin = xmax − ε(xmax − xmin).

This is true since considering the largest number point in x, note that it

swaps at least a weight of ε with the smallest value, leading for further

reduction in its maximal value. Following the same reasoning, we get

ymin ≥ xmin + ε(xmax − xmin).

Subtracting the two inequalities, we conclude that

ymax − ymin ≤ (1− 2ε)(xmax − xmin).
�

A few things can be learned from the above theorem. First, as the range

in each of the columns of Pm converges to zero, we learn that limm→∞ Pm

exists and that it is a matrix with all its rows being equal. Denote this

limit matrix by P ∗ and its common row by πt. Moreover, since all entries

in Pm, m ≥ 1, are positive and bounded from below by ε, then the same

is the case with P ∗. This implies that π ∈ Rn is a probability vector with
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positive entries. Also,

P ∗ = 1πt,

which is a rank one matrix. In summary,

Theorem

Theorem 12.2.

lim
m→∞Pm

ij = πj , 1 ≤ i, j ≤ n.

In particular, the limit probabilities are not a function of the initial

state, but only of the target state.

The terminology used here is that in the long-run, the effect (on the

probabilities) of the initial states is scrambled.

It was already observed above that 1 is an eigenvalue of P , with a cor-

responding right eigenvector 1. The fact that limm→∞ Pm+1 = P ∗, implies

that

PP ∗ = P ∗ = P ∗P.

From here we can deduce that

πtP = πt,

namely π is a corresponding left eigenvector of P with the eigenvalue 1.

Moreover, for any m ≥ 1,

πtPm = πt,

namely if the initial state is drawn with the lottery prescribed by the prob-

ability vector π, then this probability vector holds for any other time epoch

(looked at as a snapshot). For this reason the limit probabilities are also

called the stationary distribution.

Example (cont.). Recall that since limn→∞(1−p−q)n = 0, we concluded

that

P ∗ = lim
n→∞Pn =

1

p+ q

(
q p

q p

)
.

In particular, πt =
(

q
p+q ,

p
p+q

)
.
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Theorem

Theorem 12.3. The geometric multiplicity of the eigenvalue 1 of

P equals 1.

Proof. Let u ∈ Rn be a left eigenvector of P associated with the eigen-

value 1. Then, utP = ut. It is easy to see that utP 2 = utP = ut, from

which we learn that utP ∗ = ut, or that ut1πt = ut. This is equivalent to

u being some constant multiplication of π. Note that this constant equals

ut1. �

As it turns out, one is also the algebraic multiplicity on the eigenvalue 1.

We next state it below without a proof. The interested reader can find a

proof in, e.g., [9, p. 7].b

Theorem

Theorem 12.4. The algebraic multiplicity of the eigenvalue 1 of P

equals 1.

For completeness, note that, by Theorem 9.4, Theorem 12.3 follows from

Theorem 12.4. The following result is now clear.

Theorem

Theorem 12.5.

rank(I − P ) = n− 1.

Proof. Theorem 12.3 says in fact that dim(null(I−P )) = 1. This coupled

with Theorem 5.3, implies that rank(I − P ) = n− 1. �

Remark. πj is the limit probability of visiting state j, 1 ≤ j ≤ n. Using

this definition and conditioning on the previous visited state, it also equals

bThis is part of Perron–Frubenius theorem which is applicable for any matrix that
obeys all the assumptions we made on P where the requirement that all row-sums equal 1
is not a necessary one. See, e.g., [9, pp. 3–7], for more on this theorem.
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Σn
i=1πiPij . This is the idea behind calling

xj =
n∑

i=1

xiPij , 1 ≤ j ≤ n,

the balance equations.

12.2.1 Computing the limit probabilities

From the previous theorem we learn that the system of equations xt(I −
P ) = 0t (usually called the balance equations) and xt1 = 1 have a unique

solution which is the vector π we are after. This is a set of n+1 equations

with n unknowns, for which we are guaranteed that a solution, π ∈ Rn,

exists and that it is the unique one. Can it be reduced into an equivalent

set of n equations? The answer is yes: out of the n+ 1 equations, one and

only one, given the others, is redundant. Which one is it? It is clearly not

the equation xt1 = 1 as xt(I − P ) = 0t for x = απ for any value for α. So

it needs to be one of the equations xt(I − P ) = 0t. In other words, one of

the columns of I−P needs to be replaced with a column of ones in order to

get an invertible matrix. But which column is this? The answer is simple:

any column. This is equivalent to saying that all sets of n− 1 out of the n

columns of P span the same linear subspace. We will argue for that soon.

Finally, replace one of the columns of I − P , say the first column, by a

column of ones. Denote this square and invertible matrix by A. Clearly,

πtA = et1, where e1 is the first unit vector. Then, πt = et1A
−1, namely πt

equals the first row of the matrix A−1. The fact that any column can serve

our purpose follows from the following lemma.

Lemma

Lemma 12.2. Let x ∈ Rn. Assume that xj = Σn
i=1xiPij , 1 ≤ j ≤

n− 1, and that xt1 = 1. Then, xn = Σn
i=1xiPin.

Proof.

xn = 1−
n−1∑
j=1

xj = 1−
n−1∑
j=1

n∑
i=1

xiPij = 1−
n∑

i=1

xi

n−1∑
j=1

Pij = 1−
n∑

i=1

xi(1−Pin),
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where the last equality follows from the fact that P is stochastic, and mov-

ing on, we get

= 1−
n∑

i=1

xi +

n∑
i=1

xiPin = 1− 1 +

n∑
i=1

xiPin =

n∑
i=1

xiPin,

as required. Finally, observe that the choice of the last state, state n, was

without loss of generality. �

Example (cont.). The balance equations are

π1 = π1(1− p) + π2q,

and

π2 = π1p+ π2(1− q).

Coupled with the equation π1 + π2 = 1, they are uniquely solved by π1 =

q/(p+ q) and π2 = p/(p+ q).

Exercise 12.1

1. Show that if x ∈ Rn, obeys xiPij = xjPji, 1 ≤ i, j ≤ n (called the

detailed balance equations), then it also solves the balance equations.

2. Give an example where the detailed balance equations do not have a

solution.

3. Show that if and only for any triple of nodes i, j and k, 1 ≤ i, j, k ≤
n, PijPjkPki = PikPkjPji, then the detailed balance equations have a

(unique) solution.

Exercise 12.2

Let (A,A) be a partition of the state space. Show that

∑
i∈A

xi

∑
j∈A

Pij =
∑
i∈A

xi

∑
j∈A

Pij ,

for any partition if and only if x is a constant multiplier of π.
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12.3 The Deviation Matrix

Before moving on consider the following lemma:

Lemma

Lemma 12.3. Let T be a square matrix with the property that

limm→∞ Tm = 0, where the right-hand side is a matrix with all

its entries being zero. Then I − T is invertible. Moreover,

(I − T )−1 =

∞∑
m=0

Tm. (12.2)

In particular, the summation above converges to a finite limit.

Proof. First note that for m ≥ 1,

(I − T )(I + T + · · ·+ Tm−1) = I − Tm. (12.3)

Consider a row vector x such that xt(I−T ) = 0t. Recall that our goal is to

show that x = 0. Premultiply (12.3) by x and get that 0t = xt − xtTm or

xt = xtTm for all m ≥ 0. Take limits while recalling that limm→∞ Tm = 0,

and deduce that x = 0 and hence I − T is indeed invertible. Premultiply

both sides of (12.3) with (I−T )−1, whose existence we have just established,
and obtain that

I + T + · · ·+ Tm−1 = (I − T )−1 − (I − T )−1Tm.

Take limits again. The right-hand side converges to (I − T )−1 since Tm

goes to the zero matrix. Hence, the left-hand side has a limit too, which

by definition is Σ∞m=0T
m. �

A matrix T with limm→∞ Tm = 0 is called a transient matrix.

Hence, (12.2) can be looked at as a generalization of a well-known result

in the case where T is a scalar whose absolute value is smaller than one.

Indeed, it determines a geometric series which initiates at 1 and its com-

mon multiplication factor equals T . It is well-known that in this case, the

sum of the infinite series equals 1/(1−T ). Also, from (12.2) we can deduce

that if all the entries in T are non-negative, then the same is the case with

(I − T )−1.
The results stated next are somewhat technical. Their usefulness will

be seen later. First, denote P − P ∗ by S.
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Lemma

Lemma 12.4.

•
Sm = Pm − P ∗, m ≥ 1. (12.4)

In particular, S is a transient matrix then

•
∞∑

m=0

Sm = (I − S)−1. (12.5)

In particular, the limit underlying the left-hand side exists and

likewise for the inverse of I − S (two properties which are not a

priori guaranteed).

•
m−1∑
k=0

Sk = (I − Sm)(I − S)−1, m ≥ 1. (12.6)

Proof. Equation (12.4) can be proved by induction. Indeed, in the case

where m = 1 the result is trivial. Then, by invoking the induction hypoth-

esis on m,

Sm+1 = Sm(P − P ∗) = (Pm − P ∗)(P − P ∗) = Pm+1 − P ∗, m ≥ 0.

This is the case since PmP ∗ = P ∗Pm = P ∗P ∗ = P ∗. Note that (12.4) does

not hold for m = 0 as S0 = I (and not I − P ∗). The other two properties

are based on the fact that S is transient, namely limm→∞ Sm = 0. See

Lemma 12.3. �

Denote by Y the matrix (I − S)−1 − P ∗ or, equivalently, (I − P +

P ∗)−1 − P ∗, which for reasons to be given shortly, is called the deviation

matrix of P . Note that by Lemma 12.4,

∞∑
m=0

(Pm − P ∗) = I − P ∗ +
∞∑

m=1

(Pm − P ∗) = I − P ∗ +
∞∑

m=1

(P − P ∗)m

=

∞∑
m=0

(P − P ∗)m − P ∗ = (I − P + P ∗)−1 − P ∗ = Y. (12.7)
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It is an easy exercise to check that

P ∗Y = 0 = Y P ∗

and then that

Y 1 = 0 and πtY = 0t.

Also,

Y (I −P ) = Y (I −P +P ∗) = [(I −P +P ∗)−1−P ∗](I −P −P ∗) = I −P ∗,

and likewise it can be argued that

(I − P )Y = I − P ∗. (12.8)

In summary, the deviation matrix Y obeys

Y (I − P ) = I − P ∗ = (I − P )Y. (12.9)

One can say that Y is a type of a generalized inverse matrix of the matrix

I−P which does not have an inverse. Indeed, Y (I−P ) “almost” equals I:

It deviates from I by a rank-one matrix.

The following is our main result for this section.

Theorem

Theorem 12.6. For m ≥ 1,

m−1∑
k=0

P k = mP ∗ + Y − PmY. (12.10)

Proof. The proof will be done by an induction argument. The case where

m = 1 is obvious and follows (12.8). Assuming the condition holds for m,

then in order to prove that it also holds for m+1, we will show an identical

property which is that

Pm = P ∗ + PmY − Pm+1Y.

Indeed, by (12.7)

PmY − Pm+1Y =
∞∑

k=m

(P k − P ∗)−
∞∑

k=m+1

(P k − P ∗) = Pm − P ∗,

as required. �
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Remark 12.1. The left-hand side of (12.10) is a (matrix) term which goes

to infinity with m. Also, as P ∗Y = 0, the third term on the right-hand side

there goes to zero when m goes to infinity. Finally, the other two terms on

the right-hand side of (12.10) can be looked at as an affine function of m

where P ∗ is the slope and Y is the intercept (in a matrix form). Note that

the slope is a function only of the second coordinate defining an entry in

the matrix P ∗ i.e., the column. This is the case since all rows of P ∗ are

identical. In fact, the various slopes coincide with the limit probabilities,

πj , 1 ≤ j ≤ n. In summary, mP ∗ + Y is the asymptote of
∑m−1

k=0 P k.

Remark 12.2. Inspect (12.10) again. Clearly, both
∑m−1

k=0 P k and mP ∗

go to infinity in all their entries when m goes to infinity. What about the

difference between them, namely the limit of
∑m−1

k=0 P k−mP ∗? The answer

is not a priori clear. In particular, there is no guarantee that a limit exists

here at all and if it exists then that it is finite. What (12.10) says is that

since limm→∞ PmY = 0, then

lim
m→∞

[
m−1∑
k=0

P k −mP ∗
]
= lim

m→∞

m−1∑
k=0

[P k − P ∗] = Y.

We next interpret this equality. First, note that at time k ≥ 0 the number

of visits in state j can be either zero or one. This is known as a Bernoulli

random variable. Hence, the expected number of such visits equals the

probability that this variable equals 1. Given that the initial state is i,

this probability equals P k
ij . Thus,

∑m−1
k=0 P k

ij is the expected number of

such visits during a horizon of length m, under these initial conditions.

Next, mP ∗ij has the same interpretation but where the initial state is ran-

domly selected in accordance with the probabilities π. What we have just

seen is that the difference between these two terms has a limit, it is finite

and equals Yij , 1 ≤ i, j ≤ n. This is the idea behind the terminology

of the deviation matrix. Note that the ratio between the two terms dis-

cussed here goes to 1 when m goes to infinity. Finally, note that Yij − Ykj

equals the limit difference between the total number of visits in state j

under two scenarios, first when i is the initial state and second, where it is

state k.

Remark 12.3. As (I − P )1 = 0, it is clear that the square matrix I −
P ∈ Rn×n is not invertible. If we “insist” on inverting this matrix we will

need to delete as many rows (as many columns, respectively) as needed

and get a full-rank matrix which has right (left, respectively) inverse (see
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Chapter 6). A special case will be to find the Moore–Penrose inverse of the

resulting non-square matrix (see Chapter 7). This is certainly a possibility

and our discussion on finding π implies that in fact the rank of I − P

equals n − 1 and that any row (column, respectively) can be deleted in

serving this purpose. Yet, there is a branch of linear algebra, which goes

under the umbrella of generalized inverses where the approach is different.

In particular, a generalized inverse is a square matrix in Rn×n, namely it

is of the same size as the original matrix. We will not attempt describing

this vast field here but will convey some of its main ideas through the

relationship between I − P and Y .

Recall that I − P is not invertible but inspecting (12.9) we can see

that it is “almost” invertible with the “almost” inverse Y : (I −P )Y which

does not equal I of course, but it equals I up to some rank-one matrix.

Moreover, you may recall that if Ax = λx where λ �= 0, then (assuming

A−1 exists) A−1x = 1
λx. We can see that something of this flavor is kept

when we consider I−P and its generalized inverse Y . First, note that I−P
and Y share the same eigenvalue of zero, and with the same right and left

eigenvectors being 1 and πt, respectively. Moreover,

Theorem

Theorem 12.7. (I − P )x = λx, where λ �= 0 is an eigenvalue

and x is a corresponding right eigenvector of I − P , if and only if

Y x = λ−1x. A similar result holds for left eigenvectors.

Proof. Let λ �= 0 and x ∈ Rn be such that (I − P )x = λx. Note that x

and π are orthogonal (see Theorem 9.1). Moreover, P ∗x = 1πtx = 01 = 0.

Then, Y (I − P )x = λY x, which by (12.9), implies that (I − P ∗)x = λY x.

Since P ∗x = 0, we have that x = λY x, or Y x = 1
λx, as required. The

converse is shown in a similar way. �

Example (cont.). Since 1 and 1 − p − q are the eigenvalues of P , then

1− 1 = 0 and 1− (1−p− q) = p+ q are the eigenvalues of I−P . See (9.6).

Moreover, the eigenvectors are preserved. Hence, the eigenvalues of Y are 0

and 1/(p+q), and again the eigenvectors are preserved. Hence, the spectral

representation of Y is

Y = 0

(
q p

q p

)
+

1

(p+ q)2

(
p −p
−q q

)
=

1

(p+ q)2

(
p −p
−q q

)
.
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12.4 Generalizations

Recall that we have assumed so far that all entries in the stochastic matrix

P are positive. In this section we gradually relax this assumption. But first

we would like to introduce the directed graph which is associated with P .

It is a graph with n nodes, each being associated with one of the states

underlining the process. Moreover, an arc which emanates from node i and

directs to node j exists if and only if Pij > 0. A path is a sequence of nodes

wherein each one of them is connected by a directed arc to the next. The

length of the path is the number of arcs along it. A special case of a path is

a cycle, namely a path from a node to itself without any intermediate nodes

being visited more than once. The period of a node is defined as the greatest

common divisor of the lengths of all cycles initiating (and terminating) from

that node.

12.4.1 The irreducible and a-periodic case

Above we have assumed that Pij > 0 for all pair of states i and j. The

following condition somewhat relaxes this assumption.

• Communicating: between any ordered pair of nodes i and j, 1 ≤ i, j ≤
n, there exists a directed path from node i to node j.

It is possible to observe that the period of state (i.e., node) i is the great-

est common divisor among all integers k with P k
ii > 0. Indeed, whether or

not P k
ij is zero or not is a question which is determined only by the topol-

ogy of the network associated with P , and not by the actual values of its

entries. We claim, without a proof, that in a communicating process, the

periodicity is a process (as opposed to a node) dependent entity, namely all

periods across its nodes are equal. Put differently, the period is an equiva-

lence property among nodes in a communicating process. For a proof, see,

e.g., [1 p. 226] or [9, p. 17].

Example. For the stochastic matrix P , where

P =

(
0 1

1 0

)

the period equals 2.
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Exercise 12.3

For the matrix

S =

⎛
⎜⎜⎜⎜⎝
0 1 0 0 0

1 0 0 0 0

0 0 0 1 0

0 0 0 0 1

0 0 1 0 0

⎞
⎟⎟⎟⎟⎠

compute S150 and S1001 (Hint: find the periodicity).

The following assumption will be required for this section.

• A-periodicity: A communicating process (and hence its corresponding

transition (stochastic) matrix) is said to be a-periodic if the (common)

period equals one. Note that a sufficient, but not a necessary, condition

for a-periodicity is Pii > 0 for some node i, 1 ≤ i ≤ n.

We claim that if the above two conditions hold, then for some m large

enough, Pm+k
ij > 0 for any k ≥ 0 and 1 ≤ i, j ≤ n. We do not prove

this claim but would like to say that the argument needed here is based

on number theory (and not on probability theory). This is the case due to

the fact that once Pij > 0, its actual value is immaterial when the issue of

a-periodicity is introduced. For a proof, see, e.g., [9, pp. 18–19]. Note that

if xtP = xt then for any m ≥ 1, xtPm = xt. This, coupled with the fact

that xtPm = xt has a unique solution (up to a multiplicative constant),

implies that all stated in Section 12.1 holds verbatim for Pm and hence for

the limit probabilities. This is known as the irreducible and a-periodic case.

Note, however, one can solve directly for xt = xtP : the reference for Pm is

done for the sake of arguing for this point. An example is given next.

Example. At times, when the stochastic matrix comes with a special

structure, it is possible to derive a closed form for its limit probabilities.

Consider the following example. Let pi be with 0 < pi < 1, 1 ≤ i ≤ n− 1.

These numbers can be looked at as probabilities. Note that it is not

assumed that they sum up to one. Let the stochastic matrix P ∈ Rn×n

be with Pi,i+1 = pi and Pi,1 = 1 − pi, 1 ≤ i ≤ n− 1, and Pn1 = 1. Other-

wise, all entries of P equal zero. One can imagine a process which initiates

at state 1 and where from state i it moves on to state i+1 with probability

pi or returns to the origin with the complementary probability of 1 − pi,

1 ≤ i ≤ n − 1. Also, state n is the final one in the sense that returning
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to the origin from there in a single hop is guaranteed. Below see P for the

case where n = 5

P =

⎛
⎜⎜⎜⎜⎜⎜⎝

1− p1 p1 0 0 0

1− p2 0 p2 0 0

1− p3 0 0 p3 0

1− p4 0 0 0 p4

1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠
.

Note that P is irreducible and a-periodic. The balance equations are as

follows:

π1 =

n−1∑
i=1

πi(1− pi) + πn

and

πi = πi−1pi−1, 2 ≤ i ≤ n.

Solving for this set, one can argue by an induction argument, that the last

n− 1 equations, lead to

πi = π1

i−1∏
j=1

pj , 1 ≤ i ≤ n.

Using the condition that
∑n

i=1 πi = 1, implies that π1 = [
∑n

i=1

∏i−1
j=1 pj ]

−1.
This completes the solution. Note that one of the balance equations, the

first one, is redundant toward this goal. In light of Lemma 12.2 this is not

a surprise.

12.4.2 The unichain and a-periodic case

What we have here is a single subset of states where a single square sub-

matrix associated with the transition probabilities in this subset is irre-

ducible. It is possible to argue that in the case where some of the states do

not belong to this subset, then from each one of them there exists a path

to one (and hence to all) states in the former subset. The states in this

subset are said to be recurrent, while all those in the complementary subset

are said to be transient. The reason behind this terminology is that if i is

transient, then sooner or later, it will not be visited again: the process will

eventually enter the recurrent subset and will stay there for good. In fact,

if T is the square sub-matrix of P representing the transition probabilities
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among transient states, then limm→∞ Tm = 0, namely T is a transient

matrix. Then, possibly after renumbering the states, P comes with the

following shape:

P =

(
T Q

0 P1

)
,

where P1 is an irreducible stochastic matrix. Note that

Pm =

(
Tm Qm

0 Pm
1

)
,

for some non-negative matrix Qm with limm→∞Qm being a non-negative

matrix with row-sums being equal to 1. In fact, initializing with Q1 = Q,

it is possible to see that Qm+1 = TQm + QPm
1 , m ≥ 1. Finally, observe

that as opposed to the set of recurrent states, the set of transient states

might be empty (bringing us back to the irreducible case).

The following lemma will be needed later.

Lemma

Lemma 12.5. If λ is an eigenvalue of a transient matrix T then

|λ| < 1.

Proof. Let v �= 0 be a corresponding right eigenvector, namely Tv = λv.

Then, Tmv = λmv for m ≥ 1. When m goes to infinity the left-hand side

goes to 0. Hence, the same is the limit of the right-hand side. Since v �= 0

this is possible if and only if |λ| < 1. �

All said in Section 12.1 holds here too with one exception: πi = 0 for

all transient states. In particular, if additionally P1 is irreducible, then

there exists a stationary distribution for the recurrent class, denoted by

π1, which obeys πt
1 = πt

1P1. Appending this with zeros as the number of

transient states prescribes, we will get the limit probabilities of the entire

state space.

12.4.3 The general a-periodic case

In the general case it is possible that there exists a number, say m ≥ 2,

of subsets, called equivalence classes, such that if the process is “trapped”

in one of them, it never leaves it. By its definition, all those in the same

class, called recurrent states are connected to each other in a sense that for
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any ordered pair of (i, j) among them there exists a path from i to j. For

simplicity, assume that each individual class is a-periodic. Also, assume

that there exists a (possibly empty) set of transient states where from each

one of them there exists a directed path to at least one recurrent state (and

hence to all states in the communicating class of the latter). Yet, there is

no path from any recurrent state to any of the transient states. The matrix

P , maybe after re-numbering the states, has the following shape (for the

case where m = 3),

P =

⎛
⎜⎜⎜⎜⎜⎝

T Q1 Q2 Q3

0 P1 0 0

0 0 P2 0

0 0 0 P3

⎞
⎟⎟⎟⎟⎟⎠.

Note that T here is a transient matrix, while Pi are irreducible and a-

periodic stochastic matrices, 1 ≤ i ≤ 3. Figure 12.1 depicts an example

where there are two communicating classes, {2, 4} and {4, 5}, and one tran-

sient state, {1}.

Theorem

Theorem 12.8.

1. The algebraic and geometric multiplicity of eigenvalue 1 of

P coincide. Moreover, they equal m, the number of recurrent

classes.

2. A basis for the left eigenspace of the eigenvalue 1, is formed of

m probability vectors, each of which is full of zeros except for the

corresponding entries of the relevant class, where it comes with

the limit probabilities of this class when looked at as an isolated

process. The same can be said about the right eigenvectors, but

the non-zero entries equal one.

Proof. From Lemma 9.1 we learn that, PP (t), the characteristic polyno-

mial of P is with

PP (t) = PT (t)

m∏
i=1

PPi(t),
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from Lemma 12.5 that 1 is not an eigenvalue of T and from Theorem 12.4

we learn that 1 is a simple eigenvalue of Pi, 1 ≤ i ≤ m. The fact that

m is the algebraic multiplicity of P is now clear. The second part of the

Theorem is easily proved by inspection, making the geometric multiplic-

ity of eigenvalue 1 being at least m. By Theorem 9.4 this multiplicity is

bounded by the just proved algebraic multiplicity of m. This concludes the

proof. �

12.4.4 The periodic and irreducible case

Recall the connectivity assumption made in Section 12.4.1. It is kept here

but the a-priodicity assumption is removed. Thus assume that the period

equals d ≥ 2. For the ease of exposition assume that d = 3. The gen-

eral case will then be easily deduced. Then, the state space can be parti-

tioned into three classes, say C1, C2 and C3 such that the process always

moves from class Ci to class C(i+1)mod(3). In other words, possibly after

re-numbering the states, the matrix P has the following shape:

P =

⎛
⎜⎜⎝

0 P1 0

0 0 P2

P3 0 0

⎞
⎟⎟⎠,

where Pi, 1 ≤ i ≤ 3, are not necessarily square matrices, all their entries

are non-negative and all their rows sum up to 1. It is then easy to see that

P 2 =

⎛
⎜⎜⎜⎝

0 0 P1P2

P2P3 0 0

0 P3P1 0

⎞
⎟⎟⎟⎠ and P 3 =

⎛
⎜⎜⎝
P1P2P3 0 0

0 P2P3P1 0

0 0 P3P1P2

⎞
⎟⎟⎠,

namely P 3 comes with three equivalence classes. For proof, see, e.g., [1,

p. 227]. Then all said in the previous section holds for P 3. Also, note that

the stochastic matrix

1

3
(P + P 2 + P 3)

is irreducible and a-periodic, so the results of Section 12.4.1 hold for this

(average) matrix.
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Chapter 13

Solutions to Exercises

13.1 Chapter 1

Exercise 1.1

Define the vectors: u = (2,−7, 1), v = (−3, 0, 4), w = (0, 5,−8).
Calculate: (a) 3u− 4v (b) 2u+ 3v − 5w.

Solution. (a) 3u − 4v = 3 × (2,−7, 1) − 4 × (−3, 0, 4) = (6,−21, 3) +
(12, 0,−16) = (18,−21,−13). (b) 2u + 3v − 5w = 2 × (2,−7, 1) +
3 × (−3, 0, 4) − 5 × (0, 5,−8) = (4,−14, 2) + (−9, 0, 12) + (0,−25, 40) =

(−5,−39, 54).
The next two exercises appear in Schaum’s series book.

Exercise 1.2

Find x and y that satisfy:

(a) (x, 3) = (2, x+ y) (b) (4, y) = x(2, 3).

Solution. (a) From vector equivalence, each element in the left-hand side

equals to the corresponding element in the right-hand side. Thus, we obtain

the following system of linear equations:

x = 2,

3 = x+ y,

whose solution is x = 2, y = 1.

187
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(b) Similar to (a), we obtain the linear system of equations:

4 = 2x,

y = 3x,

whose solution is x = 2, y = 6.

Exercise 1.3

Normalize the following vectors: (a) u = (−3, 4) (b) v = (4,−2,−3, 8)
(c) w = (12 ,

2
3 ,− 1

4 )

Solution. We normalize by dividing each of the above vector with its norm.

(a) ‖u‖ = √
u2
1 + u2

2 =
√
9 + 16 = 5. Therefore, the normalized vector is:

û = 1
5 (−3, 4) = (− 3

5 ,
4
5 ).

(b) ‖v‖ = √16 + 4 + 9 + 64 =
√
93 =⇒ v̂ = ( 4√

93
,− 2√

93
,− 3√

93
, 8√

93
).

(c) Note that normalization of w is invariant to multiple of w with any pos-

itive scalar. We can therefore multiply w with 12 to avoid use of frac-

tions. Setting w′ = 12w = (6, 8,−3), we have: ‖w′‖ = √36 + 64 + 9 =√
109. Thus, ŵ = ŵ′ = ( 6√

109
, 8√

109
,− 3√

109
).

Exercise 1.4

For every u, v, w ∈ Rn and k ∈ R prove:

(a) (u+ v)tw = utw + vtw (b) (ku)tv = k(utv) (c) utv = vtu

Solution. (a) Denote by ui, vi, wi the ith entry of u, v and w, respectively.

It therefore holds that:

(u + v)tw =

n∑
i=1

(ui + vi)wi =

n∑
i=1

uiwi + viwi

=

n∑
i=1

uiwi +

n∑
i=1

viwi = utw + vtw.

(b) It holds that:

(ku)tv =

n∑
i=1

(ku)ivi = k

n∑
i=1

uivi = k(utv).

(c)

utv =

n∑
i=1

uivi =

n∑
i=1

viui = vtu.
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Exercise 1.5

Find k such that the following vectors are orthogonal: u = (1, k,−3), v =

(2,−5, 4).
Solution. Recall that orthogonal vectors u, v ∈ Rn satisfy utv = 0. In

order to find k, we derive the term for utv and equate to zero:

utv = 2− 5k − 12 = 0 =⇒ k = −2.

Exercise 1.6

We are given the vectors a = (2, 5.1, 7), b = (−3, 6.2, 4).

(a) Calculate ‖a− βb‖2 for β = 2 and β = 0.5.

(b) Find β which minimizes the above norm.

(c) Find the projection of a on b and its residual.

Solution. (a) For β = 2 the term ‖a− βb‖2 becomes:

∥∥∥∥∥
⎛
⎝ 2

5.1

7

⎞
⎠− 2

⎛
⎝−36.2

4

⎞
⎠
∥∥∥∥∥
2

=

∥∥∥∥∥
⎛
⎝ 8

−7.3
−1

⎞
⎠
∥∥∥∥∥
2

= 118.29,

while for β = 0.5:

∥∥∥∥∥
⎛
⎝ 2

5.1

7

⎞
⎠− 0.5

⎛
⎝−36.2

4

⎞
⎠
∥∥∥∥∥
2

=

∥∥∥∥∥
⎛
⎝3.5

2

5

⎞
⎠
∥∥∥∥∥
2

= 41.25.

(b) We first derive an equivalent quadratic term for ‖a− βb‖2:

‖a− βb‖2 = (a− βb)t(a− βb)

= ata− βbta− βatb+ β2btb = β2btb− 2βbta+ ata.

In order to find its minimum, we differentiate w.r.t β and equate to zero:

d

dβ
β2btb− 2bta+ ata

= 2βbtb− 2βbta = 0 =⇒ βbtb = bta =⇒ β =
bta

btb
=

bta

‖b‖2 .
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We now plug in a, b to obtain:

β =

(−3, 6.2, 4)
⎛
⎝ 2

5.1

7

⎞
⎠

(−3)2 + 6.22 + 42
= 0.8452.

(c) Recall that the projection of a on b is bta
‖b‖2 b. In our case:

0.8452

⎛
⎝−36.2

4

⎞
⎠ =

⎛
⎝−2.53565.24029

3.38083

⎞
⎠.

The residual is

a− bta

‖b‖2 b =
⎛
⎝ 2

5.1

7

⎞
⎠−

⎛
⎝−2.53565.24029

3.38083

⎞
⎠ =

⎛
⎝ 4.53562421

−0.14029004
3.61916772

⎞
⎠.

13.2 Chapter 2

Exercise 2.1

Prove that all vectors which are orthogonal to a vector v form a linear

subspace.

Solution. Recall that if u,w belong to some linear subspace, then for every

α, β ∈ R also αu + βw belongs to that linear subspace. In our case we

would like to show that if u and w are orthogonal to v then also αu + βw

is orthogonal to v, for every α, β ∈ R. Indeed, (αu + βw)tv = αutv +

βwtv =︸︷︷︸
(i)

α× 0+β× 0 = 0, where equality (i) follows from the assumption

that u,w are orthogonal to v.

Exercise 2.2

Let V1, V2 be linear subspaces.

(a) Prove that the intersection of V1 and V2 form a linear subspace.

(b) Show by a counter-example that the union of V1 and V2 does not nec-

essarily form a linear subspace.
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Solution. (a) Define W = V1 ∩ V2. Since each of V1 and V2 is a linear

subspace, then 0 ∈ V1 and 0 ∈ V2, which implies that 0 ∈ V1 ∩ V2 = W ,

and so W is not an empty set. Next, suppose that w ∈ W . This implies

that w ∈ V1 and w ∈ V2, which in turn implies that αw ∈ V1 and αw ∈ V2

for every α ∈ R, from linear subspace properties. Thus, αw ∈ W for every

α ∈ R. Last, suppose that w1, w2 ∈ W . Then w1, w2 ∈ V1 and w1, w2 ∈ V2.

Since each of V1 and V2 is a linear subspace, then w1 + w2 ∈ V1 and

w1 + w2 ∈ V2, and therefore w1 + w2 ∈W .

(b) Consider V1 = {(α, 0)|α ∈ R} and V2 = {(0, α)|α ∈ R}. It is easy to

show that each set is a linear subspace (note that V1 consists of all linear

combinations of the vector (1, 0). Likewise, V2 consists of all linear com-

binations of the vector (0, 1). See example 2 in Section 2.2. Then clearly

(1, 0) ∈ V1 and (0, 1) ∈ V2 but their sum, (1, 1) is not in V1 ∪ V2. We

found an example where v1 ∈ V1 and v2 ∈ V2, so that v1, v2 ∈ V1 ∪ V2 but

v1 + v2 /∈ V1 ∪ V2, and therefore V1 ∪ V2 is not a linear subspace.

Exercise 2.3

We are given n vectors x1, . . . , xn ∈ Rn which are all non-zero, such that

x1, . . . , xn−1 are linearly independent. Prove that the vectors x1, . . . , xn

are linearly independent if and only if xn cannot be written as a linear

combination of x1, . . . , xn−1.

Solution. By way of contradiction, we will prove the equivalent state-

ment that x1, . . . , xn are not linearly independent if and only if xn can

be written as a linear combination of x1, . . . , xn−1. First, suppose that

x1, . . . , xn are not linearly independent. Then there exist α1, . . . , αn ∈ R,

not all of them being zero, such that
∑n

i=1 αixi = 0. Now, since it is

assumed that x1, . . . , xn−1 are linearly independent, then αn must be non-

zero (otherwise it holds that
∑n−1

i=1 αixi = 0, where not all α1, . . . , αn−1
are zero, which contradicts the above assumption). We can therefore iso-

late xn and write it as: xn = −∑n−1
i=1

αi

αn
xi, so that xn can be writ-

ten as a linear combination of x1, . . . , xn−1. We now prove the reverse

direction, which is trivial; if xn can be written as a linear combination:

xn =
∑n−1

i=1 αixi, then clearly xn−
∑n−1

i=1 αixi = 0. Note that the first coef-

ficient in the latter linear combination is 1. Thus, x1, . . . , xn are not linearly

independent.
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Exercise 2.4

Let V,W be linear subspaces of Rn.

(a) Define V +W = {v + w|v ∈ V,w ∈W}. Prove that V +W is a linear

subspace.

(b) Prove that if V and W don’t have any common element except from

the zero vector, then it holds that dim(V +W ) = dim(V ) + dim(W ).

Solution. (a) Since 0 ∈ V and 0 ∈W then 0 = 0+0 ∈ V+W and therefore

V +W is non-empty. Now, for any α ∈ R note that α(v+w) = αv+αw ∈
V +W , since αv ∈ V and αw ∈ W . Finally, taking vi + wi for i = 1, 2, it

holds that (v1 + w1) + (v2 + w2) = (v1 + v2) + (w1 + w2) ∈ V +W , since

∀v1, v2 ∈ V =⇒ v1 + v2 ∈ V , as well as ∀w1, w2 ∈W =⇒ w1 + w2 ∈ W .

(b) Let {v1, . . . , vk} be the basis of V and {w1, . . . , w�} be the basis

of W . That is, dim(V ) = k and dim(W ) = �. We then can write any vec-

tor u ∈ V +W as: u =
∑k

i=1 αivi +
∑�

j=1 βjwj , where αi, βj ∈ R for all

i = 1, . . . , k, j = 1, . . . , �. In other words, the set {v1, . . . , vk, w1, . . . , w�}
spans V + W . Next we show that all these vectors are linearly indepen-

dent. By contradiction, if these vectors are not linearly independent, then

there exists a non-trivial solution to
∑k

i=1 αivi +
∑�

j=1 βjwj = 0, which

can also be written as
∑k

i=1 αivi = −
∑�

j=1 βjwj . The vector in the left-

hand side is in V , while the one in the right-hand side is in W . Since

they are identical, both are in V ∩ W . But we know that the intersec-

tion consists only of the zero vector, and therefore
∑k

i=1 αivi = 0. Because

v1, . . . , vk are linearly independent (recall that they form the basis of V ),

then α1 = · · · = αk = 0. Likewise, −∑�
j=1 βjwj , and since w1, . . . , w�

are linearly independent, then β1 = · · · = β� = 0. We found that if∑k
i=1 αivi +

∑�
j=1 βjwj = 0 then α1 = · · · = αk = β1 = · · · = β� = 0,

and therefore the vectors in the set {α1, . . . , αk, β1, . . . , β�} are linearly

independent. Thus, {α1, . . . , αk, β1, . . . , β�} is the linear basis of V + W ,

and its dimension is dim(V +W ) = k + �.

Exercise 2.5

Prove that the set of vectors {fi}ni=1, such that fi ∈ Rn and fi = Σi
j=1ej,

1 ≤ i ≤ n, forms a linear basis of Rn.

Solution. For any vector v ∈ Rn, our goal is to show that it can be

written as a linear combination
∑n

i=1 αifi, for αi ∈ R, ∀i = 1, . . . , n. Note



Solutions to Exercises 193

that f1 = e1, and ei = fi− fi−1 for i ≥ 2. Thus, we have: v =
∑n

i=1 viei =

v1f1+
∑n

i=2 vi(fi−fi−1) =
∑n−1

i=1 (vi−vi+1)fi+vnfn. We showed that any

vector v ∈ Rn can be written as a linear combination of {fi}ni=1. Thus, Rn

is spanned by {fi}ni=1, whose dimension is n.

13.3 Chapter 3

Exercise 3.1

(a) Show that the set of all vectors which are orthogonal to any vector in

a linear subspace V ⊂ Rn, is a linear subspace itself. Denote it by V +.

(b) Show that (V +)+ = V (hint: use the Gram–Schmidt process).

(c) Show that for any given vector v in Rn, the residual of its projection

on V , is the projection on V +.

Solution. (a) The zero vector is orthogonal to all vectors in V , and there-

fore 0 ∈ V +, thus V + is non-empty. Now, if v1, v2 ∈ V +, then vt1u = 0 and

vt2u = 0 for any u ∈ V . It is clear that for any scalar α, β ∈ R we have

(αv1 + βv2)
tu = αvt1u+ βvt2u = 0 + 0 = 0, and therefore αv1 + βv2 ∈ V +.

This completes the proof.

(b) Since V ⊂ Rn is a linear subspace, we can construct an orthonor-

mal basis using the Gram–Schmidt process. Denote that orthonormal basis

by V = span{v1, . . . , vk} (assuming that dim(V ) = k). Let us construct

now an orthonormal basis for Rn that includes v1, . . . , vk. For instance,

we can begin with the set of vectors {v1, . . . , vk, e1, . . . , en} which clearly

spans Rn. Running the Gram–Schmidt process at that order, the vectors

v1, . . . , vk stay intact, since they are orthonormal. Thus, we end up with

an orthonormal basis {v1, . . . , vk, vk+1, . . . , vn}. We will show now that

V + = span{vk+1, . . . , vn}, by proving that (i) span{vk+1, . . . , vn} ⊆ V +

and (ii) V + ⊆ span{vk+1, . . . , vn}. The first direction (i) is trivial; if

u ∈ span{vk+1, . . . , vn} then it can be written as a linear combination∑n
i=k+1 αivi, and it is orthogonal to any linear combination

∑k
i=1 αivi, i.e.,

any vector in span{v1, . . . , vk}. We prove the second direction (ii) through

negation. If u /∈ span{vk+1, . . . , vn} then it must include some/all of

v1, . . . , vk in its representation as a linear combination; i.e., u =
∑n

i=1 αivi
where αi 
= 0 for at least one 1 ≤ i ≤ k. Assume, without loss of generality,

that α1 
= 0. Then utv1 = α1v
t
1v1 = α1 
= 0 (recall that v1, . . . , vn are all

orthonormal). Thus, u is not orthogonal to all vectors in V , and u /∈ V +.

We now complete the proof by showing that (V +)+ = span{v1, . . . , vk}
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(recall that V = span{v1, . . . , vk}), proving again two directions. (i) If

u ∈ span{v1, . . . , vk} then u =
∑k

i=1 αivi which is orthogonal to any vec-

tor in span{vk+1, . . . , vn} = V +, proving that span{v1, . . . , vk} ⊆ (V +)+.

(ii) Through negation, if u /∈ span{v1, . . . , vk}, then as a linear combination

of the orthonormal basis u =
∑n

i=1 αivi it includes at least one non-zero

coefficient αk+1, . . . , αn. Assume without loss of generality that αk+1 
= 0,

then utvk+1 = αk+1 
= 0, and it is not orthogonal to all vectors in V +.

Thus, u /∈ (V +)+. From (i)–(ii) we conclude that (V +)+ = V .

(c) Using the notations in (b), the vector v can be written as v =
∑n

i=1 αivi.

Note that since {v1, . . . , vn} is an orthonormal basis of Rn, then αi = vtvi
(Theorem 3.2.). Moreover, from Theorem 3.3. it follows that the projection

of v on V = span{v1, . . . , vk} equals to
∑k

i=1 αivi. Thus, the residual of its

projection on V is v−∑k
i=1 αivi =

∑n
i=k+1 αivi, which is the projection of

v on V + (Theorem 3.3). Recall that V + = span{vk+1, . . . , vn}.

Exercise 3.2

Consider R4 and the subspace V = span{v1, v2, v3}, where v1 =

(1, 1, 1, 1), v2 = (1, 1, 2, 4) and v3 = (1, 2,−4,−3). Find an orthonormal

basis for V using the Gram–Schmidt process.

Solution. Through the Gram–Schmidt process we will find an orthonormal

basis {w1, w2, w3}. We first set:

w1 =
v1
‖v1‖ =

1√
1 + 1 + 1 + 1

(
1
1
1
1

)
=

(
1/2
1/2
1/2
1/2

)
.

Next,

u2 = v2 − (vt2w1)w1

=

(
1
1
2
4

)
−
(
( 1 1 2 4 )

(
1/2
1/2
1/2
1/2

))(
1/2
1/2
1/2
1/2

)
=

(
1
1
2
4

)
−
(

2
2
2
2

)
=

(−1
−1
0
2

)
,

so we get

w2 =
u2

‖u2‖ =
1√

1 + 1 + 0 + 4

(−1
−1
0
2

)
=

1√
6

(−1
−1
0
2

)
.
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Finally, u3 = v3−(vt3w1)w1−(vt3w2)w2. Plugging in the vectors w1, w2 and

v3, we arrive at:

u3 =

(
1
2−4
−3

)
− (−2)

(
1/2
1/2
1/2
1/2

)
−
(
− 9√

6

)
· 1√

6

(−1
−1
0
2

)
=

(
1/2
3/2
−3
1

)
.

Thus,

w3 =
1√

1
4 + 9

4 + 9 + 1

(
1/2
3/2
−3
1

)
=

1√
12.5

(
1/2
3/2
−3
1

)
.

13.4 Chapter 4

Exercise 4.1

Let V = U = R3. Check whether or not f : U → V is a linear function,

where:

T
(

x
y
z

)
=
(

x+y
0

2x+z

)
.

Solution. In order to find whether or not T is linear we need to check if

the following holds: T (αa+ βb) = αT (a) + βT (b). Indeed,

T (αa+ βb) = T

((
αx1
αy1
αz1

)
+

(
βx2

βy2

βz2

))

= T

((
αx1+βx2

αy1+βy2

αz1+βz2

))
=

(
αx1+βx2+αy1+βy2

0
2(αx1+βx2)+αz1+βz2

)

= α
( x1+y1

0
2x1+z1

)
+ β

( x2+y2

0
2x2+z2

)
= αT (a) + βT (b).

Exercise 4.2

Let V = W = R2. Prove or disprove: the function f , which is defined as

follows, is linear:

f ( ab ) =
(
a2

b

)
.

Solution. The claim is not true. We will show that by a counter-example.

If f is a linear function, then it must satisfy f(αv) = αf(v). However, if
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a = b = 1 and α = 3 we get:

f
(
3 ( 11 )

)
= f ( 33 ) = ( 93 ) 
= ( 33 ) = 3f ( 11 ).

13.5 Chapter 5

Exercise 5.1

Let A ∈ Rm×n and f : Rn → Rm, such that the vector f(x) is defined as

(f(x))i =
∑n

j=1 Aijxj . Prove that f(x) is a linear function.

Solution. In order to check whether or not f is a linear function, let us

first find out if (f(αx + βy))i = α(f(x))i + β(f(y))i. Indeed,

(f(αx+ βy))i =

n∑
j=1

Aij(αx + βy)j =

n∑
j=1

Aij(αxj + βyj)

= α
n∑

j=1

Aijxj + β
n∑

j=1

Bijyj = α(f(x))i + β(f(y))j .

Exercise 5.2

The following function is linear (see Exercise 4.1):

T
(

x
y
z

)
=
(

x+y
0

2x+z

)
.

Find the matrix A which represents the above function. For that purpose,

calculate T (ei) for 1 ≤ i ≤ 3, and calculate
∑3

i=1 xiT (ei).

Solution. Since T is linear, we have:

T
(

x
y
z

)
= xT (e1) + yT (e2) + zT (e3) =

⎛
⎜⎝

...
...

...
T (e1) T (e2) T (e3)

...
...

...

⎞
⎟⎠(

x
y
z

)
.

We will therefore obtain the matrix A by calculating:

T (e1) = T
(

1
0
0

)
=
(

1
0
2

)
,

T (e2) = T
(

0
1
0

)
=
(

1
0
0

)
,

T (e3) = T
(

0
0
1

)
=
(

0
0
1

)
,
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and therefore,

A =

⎛
⎝1 1 0

0 0 0

2 0 1

⎞
⎠.

Exercise 5.3

(a) Prove that the residual of the projection of x on b is a linear function.

(b) Find the representative matrix A of the linear function specified in (a).

Solution. (a) As we know, the residual of the projection of x on b is given

by f(x) = x− xtb
‖b‖2 b. We will show that f(αx1 + βx2) = αf(x1) + βf(x2):

f(αx1 + βx2) = (αx1 + βx2)− (αx1 + βx2)
tb

‖b‖2 b

= (αx1 + βx2)− (αx1)
tb

‖b‖2 b− (βx2)
tb

‖b‖2 b

= αx1 − αxt
1b

‖b‖2 b+ βx2 − βxt
2b

‖b‖2 b

= α

(
x1 − xt

1b

‖b‖2 b
)
+ β

(
x2 − xt

2b

‖b‖2 b
)
= αf(x1) + βf(x2).

(b) Notice that f(ei) = ei − etib
‖b‖2 b = ei − bi

‖b‖2 b, and therefore:

f(x) =

⎛
⎜⎜⎝

...
...

...

f(e1) f(e2) · · · f(en)
...

...
...

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

x1

x2

...

xn

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1− bt1b1
‖b‖2 0− bt2b1

‖b‖2 · · · 0− btnb1
‖b‖2

0− bt1b2
‖b‖2 1− bt2b2

‖b‖2 · · · 0− btnb2
‖b‖2

...
... · · · ...

0− bt1bn
‖b‖2 0− bt2bn

‖b‖2 · · · 1− btnbn
‖b‖2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

x1

x2

...

xn

⎞
⎟⎟⎟⎟⎟⎟⎠

=

(
I − bbt

‖b‖2
)
⎛
⎜⎜⎜⎜⎜⎜⎝

x1

x2

...

xn

⎞
⎟⎟⎟⎟⎟⎟⎠
.
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Thus, the matrix A which represents the linear transformation from (a) is

A = I − bbt

‖b‖2 .

Exercise 5.4

Suppose that F (x) : Rn → Rn satisfies Fi(x) = xi − x, such that x =
1
n

∑n
i=1 xi.

(a) Prove that F (x) is a linear function.

(b) What is the representative matrix A of the function F (x), with respect

to the standard basis?

(c) What is dim(null(F ))?

Solution. (a) We will show that F (αx+βy) = αF (x)+βF (y), entry-wise:

Fi(αx + βy) = (αx+ βy)i − αx+ βy

= αxi + βyi − 1

n

n∑
i=1

(αx + βy)i

= αxi + βyi − 1

n

n∑
i=1

αxi − 1

n

n∑
i=1

βyi

α

(
xi − 1

n

n∑
i=1

xi

)
+ β

(
yi − 1

n

n∑
i=1

yi

)
= αFi(x) + βFi(y).

(b) For the ith member ei of the standard basis we have ei =
1
n . Then, it is

clear that F (ei) = ei − 1
n . We therefore construct the matrix A as follows:

A =

⎛
⎜⎝

...
...

F (e1) ··· F (en)

...
...

⎞
⎟⎠ =

⎛
⎝ 1− 1

n ··· − 1
n

...
. . .

− 1
n ··· 1− 1

n

⎞
⎠,

i.e., all A’s entries are − 1
n , except the main diagonal, whose entries are

1− 1
n .

(c) A vector v in null(F ) satisfies vi − v = 0 for each of i = 1, . . . , n. Since

v is a constant, this means that v1 = · · · = vn. That is, all entries of v must

be identical, and the vector v is written as v = α(1, . . . , 1), where α is a

scalar. In fact, it is easy to see the v ∈ null(F ) for any α ∈ R, and therefore

dim(null(F )) = 1, since null(F ) is a linear combination of (1, . . . , 1).
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Exercise 5.5

Let A = ( 4 1 0
5 8 3 ) and B =

(
1 9 3 1
7 2 8 1
4 0 6 5

)
. Compute AB.

Solution. In order to obtain the ijth entry of matrix AB, we need to

calculate the inner product between the ith row of A and the jth column

of B. We therefore get:

AB =

(
11 38 20 5

73 61 97 28

)
.

Exercise 5.6

Suppose that A ∈ Rm×k and B ∈ Rk×n.

(a) For C ∈ Rk×n, prove that A(B + C) = AB +AC.

(b) For C ∈ Rn×p, prove that (AB)C = A(BC).

Solution. (a) Following again Definition 5.1, we have (A(B + C))ij =∑k
�=1 Ai�(B+C)�j =

∑k
�=1 Ai�(B�j+C�j) =

∑k
�=1 Ai�B�j+

∑k
�=1 Ai�C�j =

AB +AC.

(b) It holds that ((AB)C)ij =
∑k

�=1(AB)i�C�j =
∑k

�=1(
∑k

h=1 AihBh�)C�j .

The right-hand side can be written as:

k∑
�=1

(Ai1B1� + · · ·+AikBk�)C�j =
k∑

�=1

Ai1B1�C�j + · · ·+
k∑

�=1

AikBk�C�j

= Ai1

k∑
�=1

B1�C�j + · · ·+Aik

k∑
�=1

Bk�C�j

= Ai1(BC)1j + · · ·+Aik(BC)kj =

k∑
h=1

Aih(BC)hj = A(BC).

Exercise 5.7

For A,B ∈ Rm×n and C ∈ Rn×k prove that:

(a) (A+B)C = AC +BC.

(b) (AtB)C = At(BC) = AtBC.
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Solution. (a) Indeed, for each i, jth entry we have:

((A+B)C)ij =
n∑

�=1

(A+B)i�C�j =
n∑

�=1

(Ai�C�j +Bi�C�j)

=

n∑
�=1

Ai�C�j +

n∑
�=1

Bi�C�j = (AC)ij + (BC)ij .

(b) Again, regarding the i, jth entry, note that (AtB)ij =
∑m

�=1 A�iB�j and

AtB ∈ Rn×n. We have:

((AtB)C)ij =
n∑

�=1

(AtB)i�C�j =
n∑

�=1

m∑
h=1

AhiBh�C�j .

On the other hand, it also holds that

(At(BC))ij =

m∑
h=1

Ahi(BC)hj =

m∑
h=1

Ahi

n∑
�=1

Bh�C�j =

n∑
�=1

m∑
h=1

AhiBh�C�j ,

and therefore ((AtB)C)ij and (At(BC))ij are identical.

Exercise 5.8

Let

A =

⎛
⎜⎜⎜⎜⎝
2 0 0

0 4 1

0 0 9

1 7 0

0 0 −3

⎞
⎟⎟⎟⎟⎠.

(a) Perform the Gram–Schmidt process on the columns of A.

(b) Find the QR factorization of A.

Solution. (a) Denote by ai ∈ R5 the column vectors of A, for i = 1, 2, 3.

Denote by ui ∈ R3 the orthogonal column vectors of A, and by vi ∈ R3 the

orthonormal column vectors of A, for i = 1, 2, 3. We first set u1 = a1. It is
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left to compute u2 and u3, using the Gram–Schmidt process:

u2 = a2 − Proju1
(a2) = a2 − at2u1

‖u1‖2u1 =

(
0
4
0
7
0

)
−

( 0 4 0 7 0 )

(
2
0
0
1
0

)

5

(
2
0
0
1
0

)

=

(
0
4
0
7
0

)
− 7

5

(
2
0
0
1
0

)
=

(−2.8
4
0
5.6
0

)
,

u3 = a3 − Proju1
(a3)− Proju2

(a3) = a3 − at3u1

‖u1‖2u1 − at3u2

‖u2‖2u2

=

(
0
1
9
0−3

)
−

( 0 1 9 0 −3 )

(
2
0
0
1
0

)

5

(
2
0
0
1
0

)
−

( 0 1 9 0 −3 )

(−2.8
4
0
5.6
0

)

55.2

(−2.8
4
0
5.6
0

)

=

(
0
1
9
0−3

)
− 4

55.2

(−2.8
4
0
5.6
0

)
=

(
0.2028986
0.7101449

9−0.4057971
−3

)
.

Now we can compute the orthonormal vectors v1, v2, v3:

v1 =
u1

‖u1‖ =
1√
5

(
2
0
0
1
0

)
=

(
2
0
0
1
0

)
=

(
0.8944272

0
0

0.4472136
0

)
,

v2 =
u2

‖u2‖ =

(−0.3768673
0.5383819

0
0.7537347

0

)
,

v3 =
u3

‖u3‖ =

(
0.02130351
0.07456226
0.94496251−0.04260701
−0.31498750

)
.

(b) From (a) we know that Q equals to:

Q =

⎛
⎜⎜⎜⎜⎝
0.8944272 −0.3768673 0.02130351

0 0.5383819 0.07456226

0 0 0.94496251

0.4472136 0.7537347 −0.04260701
0 0 −0.31498750

⎞
⎟⎟⎟⎟⎠.
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The matrix R is obtained through R = QtA:

R = QtA

=

(
0.894427 0 0 0.4472136 0
−0.3768673 0.5383819 0 0.7537347 0
0.02130351 0.07456226 0.94496251 −0.04260701 −0.31498750

)⎛
⎝ 2 0 0

0 4 1
0 0 9
1 7 0
0 0 −3

⎞
⎠,

which becomes:

R =

⎛
⎝2.2361 3.1305 0

0 7.4297 0.5384

0 0 9.5242

⎞
⎠.

Exercise 5.9

Compute the QR factorization of the following matrix:

A =

⎛
⎝12 −51 4

6 167 −68
−4 24 −41

⎞
⎠.

Solution. Let us find an orthonormal basis for the columns of A through

the Gram–Schmidt process in order to find the matrix Q. After this we

find a matrix R via the equation R = QtA. Denote by ai ∈ R3 the column

vectors of A, for i = 1, 2, 3. Denote by ui ∈ R3 the orthogonal column

vectors of A, and by vi ∈ R3 the orthonormal column vectors of A, for

i = 1, 2, 3. We begin with the Gram–Schmidt process:

u1 = a1 =
(

12
6−4

)
,

u2 = a2 − Proju1
(a2) = a2 − at2u1

‖u1‖2u1 =
(−51

167
24

)
−

(−51 167 24)
(

12
6−4

)
122 + 62 + (−4)2

(
12
6−4

)

=
(−69

158
30

)
,

u3 = a3 − Proju1
(a3)− Proju2

(a3) = a3 − at3u1

‖u1‖2u1 − at3u2

‖u2‖2u2

=
(

4−68
−41

)
−

(4 −68 −41)
(

12
6−4

)
196

(
12
6−4

)
−

(4 −68 −41)
(−69

158
30

)
30625

(−69
158
30

)

=

(−58/5
6/5
−33

)
.
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We now find orthonormal vectors:

v1 =
u1

‖u1‖ =
1

14

(
12
6−4

)
,

v2 =
u2

‖u2‖ =
1

175

(−69
158
30

)
,

v3 =
u3

‖u3‖ =
1

35

(−58/5
6/5
−33

)
.

Since Q =
(
v1 v2 v3

)
then:

Q =

⎛
⎝ 6/7 −69/175 −58/175

3/7 158/175 6/175

−2/7 30/175 −33/35

⎞
⎠.

It remains to compute R:

R = QtA =

⎛
⎝ 6/7 3/7 −2/7
−69/175 158/175 30/175

−58/175 6/175 −33/35

⎞
⎠
⎛
⎝12 −51 4

6 167 −68
−4 24 −41

⎞
⎠

=

⎛
⎝14 21 −14

0 175 −70
0 0 35

⎞
⎠.

13.6 Chapter 6

Exercise 6.1

A set C is convex if for any pair of points x, y ∈ C and for every λ ∈ [0, 1]

it holds that λx+(1−λ)y ∈ C. Now, let X,Y be two left-inverse matrices

of A. Show that any convex combination of these matrices yields a left-

inverse of A. Conclude that if more than one left-inverse of A exists, then

there is an infinite number of left-inverses of A.

Solution. The matrices X,Y are left-inverses of A. We will show that

λX + (1− λ)Y is also a left-inverse of A, for every λ ∈ [0, 1]. Indeed,

(λX + (1− λ)Y )A = λXA+ (1− λ)Y A = λI + (1− λ)I = I.

That is, if there are two left-inverses of A, then every convex combination

of them is also a left-inverse of A, and therefore there is an infinite number

of left-inverses.
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Exercise 6.2

Let:

A =

(−3 4 1

−4 6 1

)
, B =

1

9

⎛
⎝−11 7

−10 8

16 −11

⎞
⎠ , C =

1

2

⎛
⎝ 0 0

−1 1

6 −4

⎞
⎠ ,

b =

(
1

−2
)
.

(a) Show that the matrices B and C are right-inverses of A. Express by B

and C solutions to the set of linear equations Ax = b.

(b) Show that the difference between the above solutions yields a solution

to the homogeneous set of equations Ax = 0.

Solution. It is easy to check numerically that AC = AB = I. Now, choose

x1 = Cb, x2 = Bb,

and therefore

Ax1 = ACb = Ib = b,

Ax2 = ABb = Ib = b.

Thus, x1 and x2 are the solutions to the above equation. Computing them,

we get

x1 = Cb =
1

2

(
0 0−1 1
6 −4

) (
1−2
)
=
(

0−1.5
7

)
.

Checking this out:

Ax1 =
(−3 4 1
−4 6 1

) ( 0−1.5
7

)
=
(

1−2
)
.

Likewise

x2 = Bb =
1

9

(−11 7
−10 8
16 −11

) (
1−2
)
=

(−25/9
−26/9
38/9

)
.

Checkout

Ax2 =
(−3 4 1
−4 6 1

)(−25/9
−26/9
38/9

)
=
(

1−2
)
.

(b) It can be easily seen that

A(x1 − x2) = Ax1 −Ax2 = b− b = 0.
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Exercise 6.3

Prove theorem 7.3.

Solution. Assume that A ∈ Rn×n. Let us suppose first that the system

of equations Ax = b has a solution for any b. Since b ∈ Rn, and Ax can

be regarded as a linear combination of the columns of A, then we can say

that the n columns of A span Rn, which implies that the columns of A

are linearly independent (since the number of columns coincides with the

dimension of Rn). Thus, by (2.1) (item 3) the system of equations Ax = b

has a unique solution for any b. For the second part, suppose for some right-

hand side b, say b′ there exists a unique solution such that Ax = b′, say
Ax′ = b′. Consider next the system of linear equation Ax = 0. Had it have

a non-trivial solution Ay = 0, this would lead to A(x′ + y) = b′, violating
the uniqueness assumption of x′. Thus, Ax = 0 comes only with the trivial

solution. This implies that the columns of A are linearly independent and

since there are n of them, they form a basis. Thus, any vector b ∈ Rn can

be expressed a unique linear combination of these columns. In particular,

Ax = b has a unique solution for any b ∈ Rn, as required.

Exercise 6.4

Consider the following matrix:

A =

⎛
⎝12 −51 4

6 167 −68
−4 24 −41

⎞
⎠.

Given its QR factorization as computed in Exercise 5.9, compute its inverse:

A−1.

Solution. Using the results of Exercise 5.9, the QR factorization of A is

given as:

Q =

(
6/7 −69/175 −58/175
3/7 158/175 6/175
−2/7 30/175 −33/35

)
, R =

(
14 21 −14
0 175 −70
0 0 35

)
.

Since A−1 = R−1Qt, we need to find first the inverse of R. We do that

using backward substitution. Computing the first row of R−1:

(
14 21 −14
0 175 −70
0 0 35

)(
x1
x2
x3

)
=
(

1
0
0

)
=⇒

{
x3 = x2 = 0,

14x1 = 1 =⇒ x1 = 1/14.
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Second row of R−1:

(
14 21 −14
0 175 −70
0 0 35

)(
x1
x2
x3

)
=
(

0
1
0

)
=⇒

⎧⎪⎪⎨
⎪⎪⎩
x3 = 0

175x2 = 1 =⇒ x2 = 1/175

14x1 + 21 · 1
175 = 0 =⇒ x1 = −3/350.

Third row of R−1:

(
14 21 −14
0 175 −70
0 0 35

)(x1
x2
x3

)
=
(
0
0
1

)
=⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
x3 = 1/35

175x2 − 70 1
35 = 0 =⇒ x2 = 2/175

14x1 + 21 2
175 − 14 1

35 = 0 =⇒ x1 = 2/175.

Altogether, we get:

R−1 =

(
1/14 −3/350 2/175
0 1/175 2/175
0 0 1/35

)
,

and therefore:

A−1 = R−1Qt =

(
1/14 −3/350 2/175
0 1/175 2/175
0 0 1/35

)(
6/7 3/7 −2/7

−69/175 158/175 30/175
−58/175 6/175 −33/35

)

=

(
149/2450 57/2450 −8/245
−37/6125 34/6125 −12/1225
−58/6125 6/6125 −33/1225

)
.

Exercise 6.5

Let

A =

⎛
⎝0 1 2

1 0 3

4 −3 8

⎞
⎠, b =

⎛
⎝1

1

1

⎞
⎠.

(a) Solve the system of equations Ax = b by transforming to the system

Lx = b′, where L is an upper triangular matrix, using row operations

on A.

(b) Solve the same system of linear equations (Ax = b) by transforming to

Ix = b′′, using row operations on L.

(c) Find A−1 using row operations on A and the same operation to I.
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Solution. (a)

(
0 1 2 1
1 0 3 1
4 −3 8 1

)
R1↔R2=====⇒

(
1 0 3 1
0 1 2 1
4 −3 8 1

)
R3←−4R1+R3=========⇒

(
1 0 3 1
0 1 2 1
0 −3 −4 −3

)
R3←3R2+R3========⇒

(
1 0 3 1
0 1 2 1
0 0 2 0

)
,

and we obtained Lx = b′, i.e
(

1 0 3
0 1 2
0 0 2

)(
x1
x2
x3

)
=

(
1
0
0

)
, whose solution is

obtained through:

2x3 = 0 =⇒ x3 = 0,

x2 + 2x3 = 1 =⇒ x2 = 1,

x1 + 3x3 = 1 =⇒ x1 = 1.

(b)

(
1 0 3 1
0 1 2 1
0 0 2 0

)
R2←R2−R3=======⇒
R3← 1

2R3

(
1 0 3 1
0 1 0 1
0 0 1 0

)
R1←R1−3R3========⇒

(
1 0 0 1
0 1 0 1
0 0 1 0

)

and we got: x1 = x2 = 1, x3 = 0.

(c) We perform the same transformations as previously, now on the follow-

ing system:

(
0 1 2 1 0 0
1 0 3 0 1 0
4 −3 8 0 0 1

)

R1↔R2=====⇒
(

1 0 3 0 1 0
0 1 2 1 0 0
4 −3 8 0 0 1

)
R3←−4R1+R3=========⇒

(
1 0 3 0 1 0
0 1 2 1 0 0
0 −3 −4 0 −4 1

)

R3←3R2+R3========⇒
(

1 0 3 0 1 0
0 1 2 1 0 0
0 0 2 3 −4 1

)
R2←R2−R3=======⇒
R3← 1

2R3

(
1 0 3 0 1 0
0 1 0 −2 4 −1
0 0 1 3/2 −2 1/2

)

R1←R1−3R3========⇒
(

1 0 0 −9/2 7 −3/2
0 1 0 −2 4 −1
0 0 1 3/2 −2 1/2

)
,

and therefore

A−1 =

(−9/2 7 −3/2
−2 4 −1
3/2 −2 1/2

)
.
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Exercise 6.6

Show that if E is a row operation matrix then its inverse exists. Specifically,

1. if E multiplies all entries of row i by a c 
= 0, then E−1 does the same

but with 1/c,

2. if E swaps two rows, then E−1 = E, and

3. if E subtracts c times row j from row i, then E−1 adds c times row j to

row i.

Conclude that the inverse, as expected, cancels the row operation originally

made.

Solution. 1. Such E has the following structure:

E =

⎛
⎜⎜⎝

1

. . .
c

. . .
1

⎞
⎟⎟⎠,

where c 
= 0 is in the ith row. It is easy to see that E−1 is the same matrix

as E, only the diagonal at the ith row is 1/c.

2. The corresponding matrix E is obtained by swapping the ith and jth

row of the identity matrix. By standard computation, it can be seen that

if E is multiplied by the same matrix E then we get the identity matrix

again.

3. The corresponding matrix E is the same as the identity matrix, except

from the i, jth entry, whose value is −c. It can be seen then that the matrix

which is identical to E, except the i, j-entry whose value is c, is its inverse;

multiplying row i with column j yields −c+ c = 0, which is the i, jth (non-

diagonal) entry. All other non-diagonal entries are zero, and all diagonal

entries are 1.

Exercise 6.7

(a) Show that if A,B are similar then also A− aI and B − aI are similar

for any a ∈ R.

(b) Let A,B ∈ Rn×n be similar matrices. Prove that trace(A) = trace(B).

Use the fact that trace(CD) = trace(DC) for any square matrices C

and D (both of the same dimension).
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(c) Prove that the diagonal matrices

D1 =
(

a 0 0
0 b 0
0 0 c

)
, D2 =

(
c 0 0
0 a 0
0 0 b

)

are similar. What is S that satisfies D2 = SD1S
−1?

Solution. (a) Since A,B are similar, a square matrix P exists such that

A = P−1BP . This implies that

A− aI = P−1BP − aI = P−1BP − aP−1P

= P−1BP − aP−1IP = P−1(B − aI)P.

(b) There exists an invertible matrix P such that A = P−1BP . Thus,

trace(A) = trace(P−1BP ) = trace(BP−1P ) = trace(B),

using trace(CD) = trace(DC) in the second equation.

(c) We note that D2 can be obtained by re-arranging the diagonal entries of

D1, or in other words, performing elementary row and column operations

on D1. We choose:

S =
(

0 0 1
1 0 0
0 1 0

)
=⇒ S−1 =

(
0 1 0
0 0 1
1 0 0

)
,

therefore,

SD1S
−1 =

(
0 0 1
1 0 0
0 1 0

)(
a 0 0
0 b 0
0 0 c

)(
0 1 0
0 0 1
1 0 0

)
=
(

0 0 c
a 0 0
0 b 0

)(
0 1 0
0 0 1
1 0 0

)
=
(

c 0 0
0 a 0
0 0 b

)
= D2.

Exercise 6.8

Let A = ( 1 2
3 4 ) be the transformation matrix from R2 to R2 with respect to

the standard basis. Let ( 2
5 ), (

1
3 ) be another basis.

(a) Show that the transformation matrix with respect to that basis is B =(−5 −8
6 10

)
.

(b) Check your result: let S = ( 1 2
3 5 ). Compute S−1 and verify that A =

SBS−1.
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Solution. (a) We define S = ( 1 2
3 5 ). We then can compute B = S−1AS.

(b) Since S is a 2× 2 matrix, we can compute the inverse as follows:

S−1 =
1

5− 6

(
5 −2
−3 1

)
=

(−5 2

3 −1
)
,

and therefore,

A = SBS−1 =

(
1 2

3 5

)(−5 −8
6 10

)(−5 2

3 −1
)

=

(
7 12

15 26

)(−5 2

3 −1
)

=

(
1 2

3 4

)
.

Exercise 6.9

Let A ∈ Rn×n be a square matrix. Let E1, . . . , Em and F1, . . . , Fk two

sequences of row operation matrices. Suppose that

Em · · ·E1AF1 · · ·Fk = I

(a) Explain why A is invertible.

(b) Express A−1 in terms of the above row operation matrices.

Solution. (a) Note that the matrices at both sides of the equations are

fully ranked, since the one at the right-hand side is the identity matrix.

Since row and column operations preserve the rank, then A must be fully

ranked, and therefore invertible.

(b) We can multiply both sides of the equation by (AF1 · · ·Fk)
−1 =

F−1k · · ·F−11 A−1 from the right to obtain:

Em · · ·E1 = F−1k · · ·F−11 A−1.

To isolate A−1, we multiply both sides by F1 · · ·Fk to obtain:

F1 · · ·FkEm · · ·E1 = A−1.

Exercise 6.10

Let T : R2 → R2 be a linear transformation defined as

T (x, y) =

(
3x+ 4y

2x− 5y

)
.
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Given the following bases:

E = {e1, e2}; S =

{(
1

2

)
,

(
2

3

)}
.

(a) Find the transformation matrix A which represents T with respect to

E, in both domain and range.

(b) Find the transformation matrix A which represents T with respect to

S, in both domain and range.

(c) What is the transformation matrix if the domain subspace is expressed

in terms of S and the range subspace is expressed in terms of S ={(−1
1

)
,
(

2−1
)}

?

Solution. (a) The transformation matrix is given as

A = (T (1, 0), T (0, 1)) =

(
3 4

2 −5
)
.

(b) Denote C = ( 1 2
2 3 ). The transformation matrix then becomes

C−1AC =

(−49 −76
30 47

)
.

(c) Denote

B =

(−1 2

1 −1
)
.

We showed in this case that

B−1AC =

(−5 −4
3 7

)
.

13.7 Chapter 7

Exercise 7.1

Denote AA† = E.

(a) Show that for every k ∈ N it holds that Ek = E.

(b) Show that (I − E)E = E(I − E) = 0.

(c) Show that E is symmetric.
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Solution. (a) We prove that by induction. For k = 2 we have:

E2 = (AA†)2 = A(AtA)−1AtA(AtA)−1At = A(AtA)−1At.

Suppose now that Em = E holds for m = k − 1. We prove now that it

holds for m = k as well:

Ek = (AA†)k = (AA†)k−1AA† = (A(AtA)−1At)k−1A(AtA)−1At

= A(AtA)−1AtA(AtA)−1At = A(AtA)−1At = E.

(b)

E(I − E) = E − E2 = E − E = 0,

(I − E)E = E − E2 = E − E = 0.

(c)

Et = (AA†)t = (A(AtA)−1At)t = A[(AtA)−1]tAt

= (A(AtA)−1At)t = A(AtA)−1At = E.

Exercise 7.2

Assume A ∈ Rm×n withm ≥ n is a full-rank matrix. Show thatA† ∈ Rn×m

uniquely obeys for X ∈ Rn×m the following four conditions: AXA = A,

XAX = X , (AX)t = AX and (XA)t = XA.

Solution. First, we observe that if both X and Y obey these conditions

then AY = AX . Indeed,

AY = (AY )t = (AXAY )t = (AY )t(AX)t = AY AX = AX.

In the same fashion it is possible to argue that Y A = XA. Then,

Y = Y AY = XAY = XAX = X,

completing the uniqueness part of the proof. Second,

AA†A = A(AtA)−1AtA = AI = A,

A†AA† = (AtA)−1AtAA† = IA† = A†.

In Exercise 7.1, we showed that (AA†)t = AA†.
Finally, since A† is a left-inverse of A, A†A = I, which of course is a

symmetric matrix.
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Exercise 7.3

Let Qm×n be an orthonormal matrix with n ≤ m.

(a) Show that
∑n

i=1 qiq
t
i = QQt, where qi is the ith column of Q.

(b) Assume that A ∈ Rm×n, m ≥ n and that the columns of A are

linearly independent. Show that AA† = QQt, where Q is the first term

in the QR factorization of A.

(c) Conclude that ‖QQtb− b‖ = minx ‖Ax− b‖.
(d) Show that QQt is the projection matrix of the subspace spanned by

A’s columns, and that I −QQt is the residual matrix.

Solution. (a) It holds that

[
n∑

i=1

qiq
t
i

]
jk

=

n∑
i=1

[qiq
t
i ]jk =

n∑
i=1

[qi]j [q
t
i ]k.

On the other hand,

[QQt]jk =

n∑
i=1

QjiQ
t
ik =

n∑
i=1

QjiQki =

n∑
i=1

[qi]j [qi]k,

and we got that for every j, k[
n∑

i=1

qiq
t
i

]
jk

=
[
QQt

]
jk
.

(b)

AA† = A(AtA)−1At = QR((QR)tQR)−1(QR)t = QR(RtQtQR)−1RtQt

= QR(RtR)−1RtQt ∗= QRR−1(Rt)−1RtQt = QQt

* for invertible A,B it holds that (AB)−1 = B−1A−1.

(c) We know that the solution for minx ‖Ax − b‖ is x∗ = A†b =

(AtA)−1Atb, and therefore Ax∗ = A(AtA)−1Atb. Moreover, as shown pre-

viously, AA†b = QQtb, and therefore minx ‖Ax− b‖ = ‖QQtb− b‖.
(d) From previous results we know that AA† = QQt is a projection matrix.

The residual matrix is therefore I −QQt.
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Exercise 7.4

Let

A =

⎛
⎝−3 −4

4 6

1 1

⎞
⎠, b =

⎛
⎝ 1

−2
0

⎞
⎠.

(a) Compute the QR factorization of A.

(b) Compute A†.
(c) Check if there exists a solution to Ax = b, and if so, then x = A†b is

the unique solution.

Solution. (a) We obtain the matrix Q by applying the Gram–Schmidt

process on the columns of A

Q =

⎛
⎝−0.5883 −0.4576

0.7845 −0.5230
0.1961 0.7191

⎞
⎠.

We then obtain the matrix R through R = QtA

R =

(
5.099 7.2563

0 −0.5883
)
.

(b) We note that the matrix AtA is a 2× 2 matrix, and so we can use the

closed form solution to matrix inversion. Altogether

A† =
(−1.222 −1.11 1.778

0.778 0.889 −1.22
)
.

(c) We compute

x = A†b =
(−1.222 −1.11 1.778

0.778 0.889 −1.22
)⎛
⎝ 1

−2
0

⎞
⎠ =

(
1

−1
)
,

and check

Ax =

⎛
⎝−3 −4

4 6

1 1

⎞
⎠(

1

−1
)

=

⎛
⎝ 1

−2
0

⎞
⎠ = b.

The equality holds and thus we found a unique solution to Ax = b.
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13.8 Chapter 8

Exercise 8.1

For the following permutations:

σ1 =

(
1 2 3 4 5

2 4 5 1 3

)
, σ2 =

(
1 2 3 4 5

4 1 3 5 2

)
.

(a) Compute σ−1 and σ1 ◦ σ2.

(b) For every permutation, determine its sign (including permutations com-

puted in (a)).

(c) Show that in general sgn(σ) = sgn(σ−1).

Solution. (a)

σ−11 =

(
1 2 3 4 5

4 1 5 2 3

)
,

σ1 ◦ σ2 =

(
1 2 3 4 5

1 2 5 3 4

)
.

(b)

sgn(σ1) = −1 =⇒ sgn(σ−11 ) = −1,
sgn(σ2) = −1,

sgn(σ1 ◦ σ2) = sgn(σ1)sgn(σ2) = 1.

(c) We know that sgn(σ◦σ−1) = sgn(Id) = 1, and therefore sgn(σ◦σ−1) =
sgn(σ)sgn(σ−1) = 1. Thus, either both terms in the product equal to 1

or −1. In either case, we get sgn(σ) = sgn(σ−1).

Exercise 8.2

Compute the determinants of the following matrices:

A =

(
2 −3
4 7

)
, B =

⎛
⎝1 −2 3

2 4 −1
1 5 −2

⎞
⎠, C =

⎛
⎝1/2 −1 −1/3
3/4 1/2 −1
1 −4 1

⎞
⎠.
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Solution. Using the formula for a 2× 2 determinant, we get

det(A) = 2 · 7− (−3) · 4 = 26,

det(B) = 1 · det ( 4 −1
5 −2

)
+ 2 · det ( 2 −1

1 −2
)
+ 3 · det ( 2 4

1 5 ) = 9.

Regarding matrix C, we multiply its first row by 6 and its second row by

4, to get rid of the fractions. Denote the new matrix by C′, we use the

property proved in exercise ??:

det(C′) = 24det(C).

Compute then

det(C′) = det
(

3 −6 −2
3 2 −4
1 −4 1

)
= 28,

and therefore

det(C) =
1

24
det(C′) =

7

6
.

Exercise 8.3

Claim: for A ∈ Rn×n, we have det(A) = det(At). Prove that claim for

matrices of dimension 2× 2.

Solution.

A =

(
a11 a12
a21 a22

)
, At =

(
a11 a21
a12 a22

)

then

det(A) = a11a22 − a12a21 = a11a22 − a21a12 = det(At).

Exercise 8.4

Prove theorem equal rows using the three row/column operations and their

effect on the determinant.
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Solution. We know that if we swap two rows of a matrix A, then the

resulting matrix A′ satisfies det(A′) = −det(A). On the other hand, if

we swap two identical rows then the matrix A remains unchanged, and

therefore det(A′) = det(A). Altogether we get det(A) = 0. The same holds

for column operations.

Exercise 8.5

(a) Let A ∈ Rn×n and let A′ be the matrix obtained by multiplying the

ith row of matrix A by a scalar λ. Prove that det(A′) = λdet(A).

(b) Let A ∈ Rn×n and let A′ be the matrix obtained by swapping two rows

of matrix A. Prove that det(A′) = −det(A).

Solution. (a) Note that for i 
= j it holds that a′jσ(j) = ajσ(j), and for

j = i it holds that a′jσ(j) = λajσ(j) . Therefore,

det(A′) =
∑
σ∈Sn

sgn(σ)
n∏

j=1

a′jσ(j) =
∑
σ∈Sn

sgn(σ)a′iσ(i)

n∏
j=1,j 	=i

ajσ(j)

=
∑
σ∈Sn

sgn(σ)λaiσ(i)

n∏
j=1,j 	=i

ajσ(j) = λ
∑
σ∈Sn

sgn(σ)

n∏
j=1

ajσ(j)

= λdet(A).

(b) Let us compute the determinants det(A) and det(A′) according to the

definition

det(A) =
∑
σ∈Sn

sgn(σ)

n∏
k=1

akσ(k),

det(A′) =
∑
σ̂∈Sn

sgn(σ̂)

n∏
k=1

akσ̂(k).

where for every σ ∈ Sn, the permutation σ̂ equals to

σ̂(k) =

⎧⎨
⎩

σ(k) k 
= i, j,

σ(i) k = j,

σ(j) k = i.
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That is, the permutation σ̂ is exactly like σ, except the swap between i

and j. It is easy to see that σ̂ changes signs; from an even number of pairs

k1, k2 such that σ(k1) < σ(k2) to an odd number, or vice versa. Thus, the

sign of the whole determinant changes:

det(A′) =
∑
σ̂∈Sn

sgn(σ̂)

n∏
k=1

akσ̂(k)

=
∑
σ∈Sn

−sgn(σ)aiσ(j)ajσ(i)
n∏

k 	=i,j

akσ(k) = −
∑
σ∈Sn

sgn(σ)
n∏

k=1

akσ(k)

= −det(A).

Exercise 8.6

Let A,B,C ∈ Rn×n. Suppose that A is identical to B, except the i∗th
column, and suppose that C is identical to A, but its i∗th column is the

sum A·i∗ + B·i∗ . Find an expression for det(C) in terms of det(A) and

det(B).

Solution.

det(C) = det(Ct) =
∑
σ∈Sn

sgn(σ)

n∏
i=1

ciσ(i) =
∑
σ∈Sn

sgn(σ)ci∗σ(i∗)

n∏
i	=i∗

ciσ(i)

=
∑
σ∈Sn

sgn(σ)(ai∗σ(i∗) + bi∗σ(i∗))
n∏

i	=i∗
ciσ(i)

=
∑
σ∈Sn

sgn(σ)ai∗σ(i∗)

n∏
i	=i∗

ciσ(i) +
∑
σ∈Sn

sgn(σ)bi∗σ(i∗)

n∏
i	=i∗

ciσ(i)

=
∑
σ∈Sn

sgn(σ)ai∗σ(i∗)

n∏
i	=i∗

aiσ(i) +
∑
σ∈Sn

sgn(σ)bi∗σ(i∗)

n∏
i	=i∗

biσ(i)

=
∑
σ∈Sn

sgn(σ)

n∏
i=1

aiσ(i) +
∑
σ∈Sn

sgn(σ)

n∏
i=1

biσ(i) = det(A) + det(B).
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Exercise 8.7

Compute the determinant of the following matrices:

A =

⎛
⎝2 0 1

2 0 5

3 7 2

⎞
⎠, B =

⎛
⎜⎜⎝
5 7 0 1

3 1 0 3

1 1 1 2

3 0 0 4

⎞
⎟⎟⎠, C =

⎛
⎜⎜⎝
0 1 0 0

1 0 1 1

1 1 −1 0

1 1 0 −1

⎞
⎟⎟⎠.

Solution. We develop the determinant of A through its second column

det(A) =
3∑

i=1

(−1)i+2ai2Mi2 = −1 · 7 · det (2 1
2 5) = −56.

Developing det(B) through its fourth row, we get

det(B) =

4∑
j=1

(−1)4+jb4jM4j

= −1 · 3 · det
(

7 0 1
1 0 3
1 1 2

)
+ 4 · det

(
5 7 0
3 1 0
1 1 1

)
= 60− 64 = −4.

We computed the minors using the columns who are the most sparse.

Finally, we compute det(C) using the first row:

det(C) = (−1)1+2M12 = −det
(

1 1 1
1 −1 0
1 0 −1

)
= −3.

Exercise 8.8

Show that

det

⎛
⎜⎜⎜⎜⎜⎝

1 1 1 . . . 1

1 2− x 1 . . . 1

1 1 3− x . . . 1
...

...
...

. . .
...

1 1 1 . . . n+ 1− x

⎞
⎟⎟⎟⎟⎟⎠ =

n∏
i=1

(i− x).

Hint: Use row/column operations to obtain a triangular matrix.
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Solution. For every 2 ≤ i ≤ n we do Ri ← Ri − R1. The determinant is

invariant to these row operations. Thus,

det

⎛
⎜⎜⎜⎜⎜⎝

1 1 1 . . . 1

1 2− x 1 . . . 1

1 1 3− x . . . 1
...

...
...

. . .
...

1 1 1 . . . n+ 1− x

⎞
⎟⎟⎟⎟⎟⎠

= det

⎛
⎜⎜⎜⎜⎜⎝

1 1 1 . . . 1

0 1− x 0 . . . 0

0 0 2− x . . . 0
...

...
...

. . .
...

0 0 0 . . . n− x

⎞
⎟⎟⎟⎟⎟⎠ =

n∏
i=1

(i− x).

Exercise 8.9

Show that

det

⎛
⎝sin2α 1 cos2α

sin2β 1 cos2β

sin2γ 1 cos2γ

⎞
⎠ = 0

using the fact that sin2α+ cos2α = 1.

Solution. Clearly, the columns are linearly dependent, since the middle

column can be written as the sum of the first and third column. The deter-

minant therefore equals to zero.

Exercise 8.10

Let A ∈ Rn×n.

(a) Prove that for any scalar c, det(cA) = cndet(A).

(b) Prove that det(adj(A)) = det(A)n−1

Solution. (a) We know that multiplying a row of A by a scalar c, the

determinant of the resulting matrix A′ will satisfy det(A′) = c · det(A).
Since cA is equivalent to multiplying each row of A by c, with the total of

n rows, we get that det(cA) = cndet(A).
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(b) It holds that Aadj(A) = det(A)I. Therefore,

det(Aadj(A)) = det(det(A)I) ⇐⇒ det(A) · det(adj(A))
= det(A)ndet(I) ⇐⇒ det(A) · det(adj(A)) = det(A)n.

Thus, from the right-hand side equation we get that if det(A) 
= 0 then

det(adj(A)) = det(A)n−1, and if det(A) = 0 then det(adj(A)) = 0. In any

case, we proved that det(adj(A)) = det(A)n−1.

Exercise 8.11

Let

A =

⎛
⎝2 3 4

5 6 7

8 9 1

⎞
⎠, B =

⎛
⎝2 3 4

5 4 3

1 2 1

⎞
⎠.

(a) Compute the adjoint matrix of each.

(b) Compute the inverse matrix of each.

Solution. (a) Recall that adj(A)ij = (−1)i+jMji. Using that formula, we

obtain the following results

adj(A) =

⎛
⎝−57 33 −3

51 −30 6

−3 6 −3

⎞
⎠,

adj(B) =

⎛
⎝−2 5 −7
−2 −2 14

6 −1 −7

⎞
⎠.

(b) Since A−1 = adj(A)/det(A), then all we need is to compute the deter-

minants.

det(A) = −57det (−30 6
6 −3

)− 33det
(

51 6−3 −3
)− 3det

(
51 −30
−3 6

)
= 27,

det(B) = −2det (−2 14
−1 −7

)− 5det
(−2 14

6 −7
)− 7det

(−2 −2
6 −1

)
= 14.

Hence

A−1 =
1

27

⎛
⎝−57 33 −3

51 −30 6

−3 6 −3

⎞
⎠, B−1 =

1

14

⎛
⎝−2 5 −7
−2 −2 14

6 −1 −7

⎞
⎠.
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Exercise 8.12

Use Cramer’s method to solve the following system of linear equations:

x1 + 4x2 + 2x3 = 8,

2x1 − 3x2 + x3 = 12,

6x1 + x2 − 8x3 = −29.
Solution. Using Cramer’s rule, xi = det(Ai)/det(A), where Ai is identical

to A except the ith column, which is equal to b. In our case,

A =

⎛
⎝1 4 2

2 −3 1

6 1 −8

⎞
⎠, b =

⎛
⎝ 8

12

−29

⎞
⎠.

Then

det(A) = 1 · (3 · 8− 1)− 4 · (−2 · 8− 6) + 2 · (2− (−3) · 6) = 151.

This leads to:

det(A1) = det
(

8 4 2
12 −3 1
−29 1 −8

)
= 302 =⇒ x1 = 302/151,

det(A2) = det
(

1 8 2
2 12 1
6 −29 −8

)
= −151 =⇒ x2 = −151/151,

det(A3) = det
(

1 4 8
2 −3 12
6 1 −29

)
= 755 =⇒ x3 = 755/151.

Altogether, ⎛
⎝x1

x2

x3

⎞
⎠ =

⎛
⎝ 2

−1
5

⎞
⎠.

13.9 Chapter 9

Exercise 9.1

(a) Let A,B be two square matrices. Show that both matrices AB and

BA have the same eigenvalues.

(b) Show that the matrix A ∈ Rn×n has the same characteristic polynomial

as At.

(c) Show that the set of vectors v ∈ Rn which satisfy Av = λv for a given

λ ∈ R, form a linear sub-space of Rn.
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(d) Let A =
(
3 −4
2 −6

)
. Find all eigenvalues and corresponding eigenvectors

of A.

Solution. (a) If v is an eigenvector of AB corresponding to eigenvalue λ,

then it satisfies ABv = λv. Multiplying both sides by B from the left and

we obtain BA(Bv) = λBv. Thus, BA has the same eigenvalue (but not

the same corresponding eigenvector).

(b) We now form previous chapters that det(A) = det(At). The same

applies for characteristic polynomials, i.e., det(λI −A) = det((λI −A)t) =

det(λI−At). Thus, the characteristic polynomial of A and At are identical.

(c) Denote Vλ = {v ∈ Rn|Av = λv}. We will show closure with respect to

addition and multiplication by a scalar. For every v ∈ Vλ and α ∈ R we

have:

A(αv) = α(Av) = αλv = λαv =⇒ αv ∈ Vλ.

Now, for every v1, v2 ∈ Vλ we have:

A(v1 + v2) = Av1 +Av2 = λv1 + λv2 = λ(v1 + v2) =⇒ v1 + v2 ∈ Vλ.

(d)

det(λI −A) = det
(

λ−3 4
−2λ+6

)
= (λ− 3)(λ+ 6) + 8 = λ2 + 3λ− 10 = (λ+ 5)(λ− 2),

which implies that λ1 = −5 and λ2 = 2. Next we compute the correspond-

ing eigenvectors.

(
3 −4
2 −6

)(
x

y

)
=

(−5x
−5y

)
⇐⇒

{
3x− 4y = −5x
2x− 6y = −5y ⇐⇒ y = 2x,

and we can choose v1 = (1, 2). Similarly, for λ2:

(
3 −4
2 −6

)(
2x

2y

)
=

(−5x
−5y

)
⇐⇒

{
3x− 4y = 2x

2x− 6y = 2y
⇐⇒ 4y = x,

and we can choose v2 = (4, 1).
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Exercise 9.2

Let:

A =

⎛
⎝1 4 3

0 3 1

0 2 −1

⎞
⎠.

(a) What is the characteristic polynomial of A?

(b) Prove that 1 is an eigenvalue of A.

(c) Are there any more eigenvalues? If so, compute them.

Solution. (a)

fA(λ) = det

(
λ−1 −4 −3
0 λ−3 −1
0 −2 λ+1

)
= (λ− 1)(λ2 − 2λ− 5).

(b) If we plug the value 1 in the above characteristic polynomial, it will

vanish. Therefore, 1 is an eigenvalue.

(c) Solving λ2 − 2λ− 5 = 0 yields λ1,2 = 1±√6, which are eigenvalues as

well.

Exercise 9.3

Prove that if the sum of the algebraic multiplicities of eigenvalues equals

n (the dimension of the matrix), then the coefficient of xn−1 in the char-

acteristic polynomial is minus the sum of the eigenvalues, where each is

multiplied by its algebraic multiplicity.

Solution. Assuming k different eigenvalues, denote by mi the algebraic

multiplicity of the ith eigenvalue λi. The characteristic polynomial is there-

fore:

fA(λ) = (λ− λ1)
m1 + · · ·+ (λ− λk)

mk.

A simpler way to write our polynomial is by denoting λ1, . . . , λn all n

eigenvalues, including all multiplicities. We therefore have:

fA(λ) =

n∏
i=1

(λ − λi).

It can be shown that the coefficient of λn−1 is an−1 = −∑n
i=1 λi. Let us

prove that by induction: for a 1-degree polynomial, it is a free coefficient,
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whose sum is minus the only eigenvalue. For a 2-degree polynomial,

fA(λ) = (λ− λ1)(λ − λ2) = λ2 − (λ1 + λ2)λ+ λ1λ2,

and our claim therefore holds. Suppose now that for an (n − 1)-degree

polynomial, an−2 = −∑n−1
i=1 λi. Developing the nth degree polynomial:

fA(λ) =

n∏
i=1

(λ− λi) = (λ− λn)

n−1∏
i=1

(λ− λi)

= (λ− λn)

(
λn−1 −

(
n−1∑
i=1

λi

)
λn−1 + r(n−3)

)

= λn − λnλ
n−1 −

(
n−1∑
i=1

λi

)
λn−1 + rn−2

= λn −
(

n∑
i=1

λi

)
λn−1 + rn−2,

where r(n−1) and r(n−2) are (n−1), (n−2)-degree polynomials, respectively.

We therefore showed that an−1 = −∑n
i=1 λi for every n. Back to algebraic

multiplicities, it can be seen that an−1 = −∑k
i=1 miλi.

Exercise 9.4

Let A be the following matrix:

A =

⎛
⎜⎜⎝
2 1 0 0

0 2 0 0

0 0 1 1

0 0 −2 4

⎞
⎟⎟⎠.

(a) Compute det(A).

(b) Find the eigenvalues of A.

(c) Find the algebraic and geometric multiplicities of each of the above

eigenvalues.

(d) Show that the claim proved in Exercise 9.3 holds for matrix A.
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Solution. (a)

det(A) = 2 · 2 · (1 · 4 + 1 · 2) = 24.

(b)

fA(λ) = det

(
λ−2 −1 0 0
0 λ−2 0 0
0 0 λ−1 −1
0 0 2 λ−4

)

= (λ− 2)2((λ− 1)(λ− 4) + 2) = (λ− 2)3(λ− 3),

and therefore the eigenvalues are λ1 = 3, λ2 = 2.

(b) The algebraic multiplicity of λ1 is 1, and therefore its geometric multi-

plicity is 1 as well (recall that algebraic multiplicity is not smaller than the

geometric multiplicity).

(c) The algebraic multiplicity of λ2 is 3. Let us find its geometric multi-

plicity: for Av = 2v, we get the following set of equations:

2x1 + x2 = 2x1,

2x2 = 2x2,

x3 + x4 = 2x3,

−2x3 + 4x4 = 2x4,

which yields x2 = 0, x3 = x4. Thus, the eigenvector is of the form (x1, 0,

x3, x3) where x1, x3 
= 0, and therefore the geometric multiplicity of λ2 is 2.

(d) Examining the characteristic polynomial from (b), we can see that the

coefficient of λ3 is −9. On the other hand, we can see that −(1 · λ1 + 3 ·
λ2) = −9.

Exercise 9.5

Let A ∈ R2×2 be a symmetric matrix, i.e., the (1, 2) and (2, 1) entries are

identical (a formal definition will be given in the next chapter).

(a) Prove the existence of the eigenvalues of A.

(b) Find an expression for the eigenvalues as a function of the matrix entries(
a b
b d

)
.



Solutions to Exercises 227

(c) Show that the two eigenvalues are different if the main diagonal entries

are different.

Solution. (a) Since A is symmetric, it can be written as
(
a b
b d

)
. Computing

the characteristic polynomial, we get

det
(
λ−a −b
−b λ−d

)
= (λ− a)(λ− d)− b2 = λ2 − λ(a+ d) + ad− b2.

This polynomial has real number roots only if its discriminant is equal or

larger than 0, namely

(a+ d)2 − 4(ad− b2) ≥ 0.

But then

(a+ d)2 − 4(ad− b2) = a2 + 2ad+ d2 − 4ad+ 4b2

= a2 − 2ad+ d2 + 4b2 = (a− d)2 + 4b2 ≥ 0,

which in any case is non-negative, and therefore the eigenvalues exist.

(b) Based on (a), finding the roots is immediate

λ1 =
a+ d+

√
(a− d)2 + 4b2

2
,

λ2 =
a+ d−√

(a− d)2 + 4b2

2
.

(c) We can see that if the entries a and d are different, then the discriminant

is always positive, which leads to two different roots, or eigenvalues.

Exercise 9.6

Let

A =

⎛
⎝1 −3 3

3 −5 3

6 −6 4

⎞
⎠.

(a) Show that the eigenvalues are 4 and −2.
(b) Show that the eigenspace that corresponds to eigenvalue 4 is of dimen-

sion 1. Find the right and left eigenvectors whose scalar product is 1.

(c) Show that the eigenspace that corresponds to eigenvalue −2 is of

dimension 2. Find a basis for the right eigenvectors. Hint: show that
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x1 = (1, 1, 0) and x2 = (1, 0,−1) span the eigenspace that corresponds

to eigenvalue −2.
(d) Show that the right eigenvectors of eigenvalue 4 do not belong to the

sub-space spanned by the basis found previously.

(e) Show that A is diagonalizable.

Solution. (a) We will show that with these values, the characteristic poly-

nomial vanishes

det

(
λ−1 3 −3
−3 λ+5 −3
−6 6 λ−4

)
= (λ+ 2)(λ2 − 2λ− 8) = (λ+ 2)2(λ − 4).

(b) Note that the algebraic multiplicity of 4 is 1. Since the geometric mul-

tiplicity cannot be larger, we find that the geometric multiplicity of 4 is 1

as well. Thus, the dimension of the eigenspace of 4 is 1. Let us find the

right and left eigenvectors(
1 −3 3
3 −5 3
6 −6 4

)(
x
y
z

)
=
(

4x
4y
4z

)
.

The third equation in the system can be written as 6x−6y = 0 which implies

that x = y. Plugging that in the first equation, we arrive at z = 2x. We

can therefore choose u = (1/2, 1/2, 1)t as the right eigenvector. As for the

left eigenvector, the system of equations becomes

(x y z)
(

1 −3 3
3 −5 3
6 −6 4

)
= (4x 4y 4z).

The solution has the form of (−y, y,−y)t so we can choose v = (−1, 1,−1)t
as the left eigenvector. The inner product is utv = −1. To meet the ques-

tion’s requirements, we replace v with −v, the latter remains a left eigen-

vector of value 4, with the inner product ut(−v) now equals 1.

(c) We will find the right eigenspace of A, and show that it is spanned by

two vectors. The corresponding system of equations is(
1 −3 3
3 −5 3
6 −6 4

)(
x
y
z

)
=
(−2x
−2y
−2z

)
,

which is equivalent to x − y + z = 0. Two vectors that satisfy this

equation are (1, 1, 0) and (0, 1, 1), which are linearly independent, and

span a two-dimensional subspace of R3. The geometric multiplicity (the

eigenspace dimension) therefore equals 2.
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(d) We will show that any right eigenvector of eigenvalue 4 cannot be writ-

ten as a linear combination of (1, 1, 0) and (0, 1, 1). We need to find coeffi-

cient a, b such that (
1/2
1/2
1

)
= a

(
1
1
0

)
+ b

(
0
1
1

)
.

One can easily see that no such solution exists, and therefore (1/2, 1/2, 1)

is not spanned by the above two vectors.

(e) The sum of the geometric multiplicities equals the matrix dimension,

implying that the matrix is diagonalizable.

Exercise 9.7

Suppose that matrix A has the following spectral representation:

A =

n∑
i=1

λiEi,

where λi is the eigenvalue, Ei = xiy
t
I , xi and yi are the right and left

eigenvectors, respectively.

(a) Prove that
∑n

i=1 Ei = I.

(b) Prove that for any x, which is not an eigenvalue of A, it holds that

(xI −A)−1 =

n∑
i=1

1

x− λi
Ei.

Solution. (a) We will show that for any vector x,

n∑
i=1

Eix = Ix = x,

which will imply
∑n

i=1 Eix = I. Given coefficients α1, . . . , αn such that

x =
∑n

i=1 αixi (recall that x1, . . . , xn is a basis). Now,

n∑
i=1

Eix =

n∑
i=1

xiy
t
i

n∑
j=1

αjxj =

n∑
i=1

xi

n∑
j=1

αjy
t
ixj =

n∑
i=1

αixi = x,

where the third equality (from the left) follows from ytixi = 1 and ytixj = 0

for i 
= j.
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(b) We will show that (
∑n

i=1
1

x−λi
Ei)(xI −A) = I

(
n∑

i=1

1

x− λi
Ei

)
(xI −A) =

(
n∑

i=1

1

x− λi
Ei

)(
xI −

n∑
i=1

λiEi

)

=

n∑
i=1

1

x− λi
EixI −

n∑
i=1

⎛
⎝ 1

x− λi
Ei

n∑
j=1

λjEj

⎞
⎠

=

n∑
i=1

x

x− λi
Ei −

n∑
i=1

λi

x− λi
E2

i

=
n∑

i=1

x

x− λi
Ei −

n∑
i=1

λi

x− λi
Ei

=

n∑
i=1

x− λi

x− λi
Ei =

n∑
i=1

Ei = I.

The third equality follows from EiEj = xiy
t
ixjy

t
j = 0, ∀i 
= j, and the

fourth equality follows from E2
i = xiy

t
ixiy

t
i = xiy

t
i .

13.10 Chapter 10

Exercise 10.1

Let

A =

(
2 1

1 3

)
.

(a) Find the eigenvalues of A.

(b) What is the value of the following objective? maxx:‖x‖=1 x
tAx.

(c) What is the value of the following objective? minx:‖x‖=1 x
tAx.

(d) For each of the above problems, (b) and (c), find the vectors (x1, x2)

that optimize the objectives.

(e) What is the spectral representation of A?

(f) Prove that if any matrix B is symmetric, then so is Bk for any integer

k (including negative).

(g) Repeat (a)–(e) on A−1 and A2 (hint: use any knowledge on A instead

of computing the matrices A−1 and A2).
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Solution. (a) In Exercise 9.5, we developed closed form expressions for

the eigenvalues of a general symmetric 2× 2 matrix. Using this result here,

we get

λ1 =
a+ d+

√
(a− d)2 + 4b2

2
=

5 +
√
5

2
,

λ2 =
a+ d−√

(a− d)2 + 4b2

2
=

5−√5
2

.

(b) The maximal value is the largest eigenvalue of A, in our case λ1 = 5+
√
5

2 .

(c) The minimal value is the smallest eigenvalue of A, in our case λ2 =
5−√5

2 .

(d) Denote by v1, v2 the eigenvectors which match the eigenvalues λ1, λ2.

It holds that

λ1 = max
x:‖x‖=1

xtA and argmax
x:‖x‖=1

xtA =
v1
‖v1‖ , (10.1)

and

λ2 = min
x:‖x‖=1

xtA and argmin
x:‖x‖=1

xtA =
v1
‖v1‖ . (10.2)

Thus, all we need to do is to find these eigenvectors and normalize them

(
2 1

1 3

)(
x

y

)
=

(
λ1x

λ1y

)
⇐⇒ y =

1 +
√
5

2
x,

so we can select v1 =
(

1
1+

√
5

2

)
, and therefore v1

‖v1‖ =
1
1.9

(
1

1+
√

5
2

)
. Similarly,

(
2 1

1 3

)(
x

y

)
=

(
λ2x

λ2y

)
⇐⇒ y =

1−√5
2

x,

selecting v2 =
(

1
1−√

5
2

)
, we arrive at v2

‖v2‖ =
1

1.17

(
1

1−√
5

2

)
.

(e) Recall that the spectral representation is defined as
∑n

i=1 λixiy
t
i , where

xi is the right eigenvalues that matches λi, while yi is the left eigenval-

ues that matches λi. Since A is symmetric, the right and left eigenvectors
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coincide, and our spectral representation becomes:

λ1x1x
t
1 + λ2x2x

t
2

=
5 +
√
5

2

1

1.92

(
1

1+
√
5

2

)(
1 1+

√
5

2

)
+

5−√5
2

1

1.172

(
1

1−√5
2

)(
1 1−√5

2

)

=
5 +
√
5

2

1

1.92

(
1 1+

√
5

2
1+
√
5

2
3+
√
5

2

)
+

5−√5
2

1

1.172

(
1 1−√5

2
1−√5

2
3−√5

2

)
.

(f) We prove first through induction on positive k. It holds for k = 1 by

definition: At = A. For k = 2

A2 = AA = AtAt = (AA)t = (A2)t.

Suppose that it is true for k − 1. We will prove that for k:

Ak = Ak−1A = (Ak−1)tAt = (AAk−1)t = (Ak)t.

Now, for negative k, we will show that if A is symmetric then so is A−1.
This will imply that Ak is symmetric for k < 0, since A−k is symmetric. It

holds that:

AA−1 = I =⇒ (AA−1)t = It = I,

and therefore

(AA−1)t = AA−1 =⇒ (A−1)tAt = A−1A.

Since A is symmetric, (A−1)tA = A−1A, which implies that (A−1)t = A−1.

(g) The eigenvalues of A−1 are 1
λ1

and 1
λ2

for the same eigenvectors xi.

Therefore,

max
x:‖x‖=1

xtA−1x =
1

mini λi
=

2

5−√5 ,

min
x:‖x‖=1

xtA−1x =
1

maxi λi
=

2

5 +
√
5
,
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and we have: A−1 =
∑2

i=1
1
λi
xix

t
i. For A2, the eigenvalues are λ2

1 and λ2
2

for the same eigenvectors xi. Therefore,

max
x:‖x‖=1

xtA2x = (max
i

λi)
2 =

(
5 +
√
5

2

)2

,

min
x:‖x‖=1

xtA2x = (min
i

λi)
2 =

(
5−√5

2

)2

.

Finally, A2 =
∑2

i=1 λ
2
i xix

t
i.

Exercise 10.2

Consider the following symmetric matrix:

V =

⎛
⎝1 0 ρ

0 1 0

ρ 0 1

⎞
⎠.

(a) Show that the characteristic polynomial of V equals PV (x) = (x − 1)

[(x− 1)2 − ρ2].

(b) Show that there exists three eigenvalues: 1, 1 + ρ, and 1− ρ.

(c) Conclude that the matrix is positive if and only if −1 < ρ < 1.

Solution. (a) The characteristic polynomial is

det
(
xI −

( 1 0 ρ
0 1 0
ρ 0 1

))
= det

(
x−1 0 −ρ
0 x−1 0
−ρ 0 x−1

)

= (x− 1)det
(
x−1 0
0 x−1

)− ρ · det ( 0 x−1
−ρ 0

)
= (x− 1)3 − ρ2(x − 1) = (x− 1)[(x− 1)2 − ρ2].

(b) The roots of the above polynomial are: x1 = 1, and (x − 1)2 = ρ2,

which leads to: x2,3 = 1± ρ, and these are the eigenvalues.

(c) The matrix is positive if and only if all its eigenvalues are positive,

namely 1 + ρ > 0 and 1− ρ > 0, which is equivalent to −1 < ρ < 1.
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Exercise 10.3

Consider the following symmetric matrix:

V =

⎛
⎝1 ρ ρ

ρ 1 0

ρ 0 1

⎞
⎠.

(a) Let x = (1,−√2/2,−√2/2)t. Which condition needs to be imposed on

ρ in order to guarantee that xtV x > 0.

(b) Repeat the previous item but now with x = (1,
√
2/2,
√
2/2)t.

(c) What are the eigenvalues of V ? Conclude that the two conditions you

derived above are also sufficient for V being positive.

(d) Derive the corresponding eigenvectors and state the spectral represen-

tation of V .

Solution. (a) Deriving the expression for xtV x

(1,−
√
2/2,−

√
2/2)

(
1 ρ ρ
ρ 1 0
ρ 0 1

)(
1

−√2/2

−√2/2

)
= 1− 2

√
2ρ+ 1 = 2− 2

√
2ρ,

it is positive if ρ < 1/
√
2.

(b) Similarly,

(1,
√
2/2,
√
2/2)

(
1 ρ ρ
ρ 1 0
ρ 0 1

)(
1√
2/2√
2/2

)
= 1 + 2

√
2ρ+ 1 = 2 + 2

√
2ρ,

which is positive if ρ > −1/√2.
(c) Lets compute the characteristics polynomial

det(xI − V ) = det

(
x−1 −ρ −ρ
−ρ x−1 0
−ρ 0 x−1

)

= −ρdet ( −ρ −ρx−1 0

)
+ (x− 1)det

( x−1 −ρ
−ρ x−1

)
= −ρ2(x − 1) + (x− 1)[(x− 1)2 − ρ2]

= (x− 1)[(x− 1)2 − 2ρ2].

The eigenvalues are the roots of that polynomial, which are x1 = 1 and

x2,3 = 1 ± √2ρ. We now can see that the eigenvalues are positive if

−1/√2 < ρ < 1/
√
2.
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(d) To find the eigenvectors that match the values 1 ± √2ρ, we need to

solve the following system of equations

x1 + ρx2 + ρx3 = (1±√2ρ)x1,

ρx1 + x2 = (1±
√
2ρ)x2,

ρx1 + x3 = (1±√2ρ)x3.

(10.3)

Note that if ρ = 0, then we get the identity matrix, and any vector is an

eigenvector of eigenvalue 1. Suppose then that ρ 
= 0, then the above set

of equations is equivalent to

±
√
2x1 + x2 + x3 = 0,

x1 ±
√
2x2 = 0,

x1 ±
√
2x3 = 0.

Solving for
√
2, we obtain the vector

(
1

−√2/2

−√2/2

)
, as in (a). Solving for −√2,

we obtain the vector

(
1√
2/2√
2/2

)
. As for the eigenvalue 1, we need to replace

the right-hand side of the system (10.3) with
(

x1
x2
x3

)
. This system of equa-

tions is equivalent to

x2 + x3 = 0,

x1 = 0,

x1 = 0,

whose obvious orthonormal solution is

(
0

−√2/2√
2/2

)
. The spectral representa-

tion then becomes(
0

−√2/2√
2/2

)
(0,−√2/2,

√
2/2) + (1 +

√
2ρ)

(
1

−√2/2

−√2/2

)
(1,−√2/2,−√2/2)

+ (1−√2ρ)
(

1√
2/2√
2/2

)
(1,
√
2/2,
√
2/2)

=

(
0 0 0
0 1/2 −1/2
0 −1/2 1/2

)
+ (1 +

√
2ρ)

(
0 −√2/2 −√2/2

−√2/2 1/2 1/2

−√2/2 1/2 1/2

)

+(1−√2ρ)
(

0
√
2/2
√
2/2√

2/2 1/2 1/2√
2/2 1/2 1/2

)
.
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Exercise 10.4

A matrix A is skew-symmetric if Aij = −Aji for any i 
= j.

(a) Show that if λ is an eigenvalue of A then it is zero.

(b) Does that imply that A is singular? Prove if so, otherwise find a

counter-example.

Solution. (a) Since A is skew-symmetric, then At = −A. If λ is an eigen-

value then it holds that Av = λv for some vector v, and vtAv = λ‖v‖2.
On the other hand, applying transposition on vtAv we get vtAv = vtAtv =

−λ‖v‖2. Since ‖v‖2 
= 0, we get λ = −λ = 0.

(b) This is wrong, for example
(

1 2−2 1

)
is skew-symmetric but invertible.

Note that A here does not have eigenvalues.

Exercise 10.5

Let A =
(

2 −2
−2 5

)
be a symmetric matrix. The matrix represents linear

transformation on the elementary basis.

(a) Find a matrix P whose columns form an orthonormal basis of R2, such

that the transformation matrix is diagonal.

(b) How can you find P−1 in that case, without calculating the inverse

matrix?

(c) What is the spectral representation of A?

Solution. (a) We form a matrix P whose column are the normalized eigen-

vectors of A, and the transformation matrix is the diagonal with the eigen-

values in its main diagonal. We know that if a symmetric matrix has dif-

ferent values in its main diagonal, then it has different eigenvalues

λ1,2 =
a+ d±√

(a− d)2 + 4b2

2
=

7±√25
2

=⇒ λ1 = 6, λ2 = 1.

Let’s find the right eigenvectors for each of the above eigenvalues:

(
2 −2
−2 5

)(
x1

x2

)
=

(
6x1

6x2

)
⇐⇒

{
2x1 − 2x2 = 6x1

−2x1 + 5x2 = 6x2

⇐⇒ x2 = −2x1,
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we can choose v1 = (1,−2).
(

2 −2
−2 5

)(
x1

x2

)
=

(
x1

x2

)
⇐⇒

{
2x1 − 2x2 = x1

−2x1 + 5x2 = x2

⇐⇒ x1 = 2x2

choose v2 = (2, 1). Finally, the orthonormal matrix P becomes:

P =
1√
5

(
1 2

−2 1

)
=⇒ P−1AP =

(
λ1 0

0 λ2

)
.

(b) Since P is orthonormal then P−1 = P t.

(c) For the normalized v1, v2 we have:

E1 = v1v
t
1 =

1

5

(
1 −2
−2 4

)
,

E2 = v2v
t
2 =

1

5

(
4 2

2 1

)
,

so that A = λ1E1 + λ2E2.

Exercise 10.6

Let A =
(
a+b b
b c+b

)
be a symmetric matrix with a, b, c ≥ 0. Prove that A is

a semi-positive matrix.

Solution. For x ∈ R2

atAx = ax2
1 + b(x2

1 + 2x1x2 + x2
2) + cx2

2 = ax2
1 + b(x1 + x2)

2 + cx2
2,

which of course is not negative under the exercise’s assumptions.

13.11 Chapter 12

Exercise 12.1

1. Show that if x ∈ Rn, obeys xiPij = xjPji, 1 ≤ i, j ≤ n (called the

detailed balance equations, then it also solves the balance equations.

2. Give an example where the detailed balance equations do not have a

solution.

3. Show that if and only if for any triple of nodes i, j and K, 1 ≤ i, j, k ≤ n,

PijPjkPki = PikPkjPji, the detailed balance equations have a unique

solution.
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Solution.

1. Summing up with respect to i, the condition xjPji = xiPij , we get (since

ΣiPji = 1), xj = ΣixiPij , which is a balance equation.

2. bla

3. Assume the condition holds. For some state i0, fix without loss of gen-

erality, xio = 1. Now try the solution xi = Pi0,i/Pi,i0 . We need to show

that xiPij = xjPji. Given this guess, the left-hand side equals
Pi0,i

Pi,i0
Pij ,

while the right-hand side equals
Pi0,j

Pj,i0
Pji. This is easily seen to hold by

the assumed assumption. For the converse, let π ∈ Rn be a solution to

the detailed balanced equations (which without loss of generality comes

with the limit probabilities. Then for i, j, k, 1 ≤ i, j, k ≤ n,

πiPij = πjPji,

πjPjk = πkPkj ,

and

πkPki = πiPik.

Multiplying all right-hand sides and then all left-hand sides, leads to the

required condition.

Exercise 12.2

Let (A,A) be a partition of the state space. Show that∑
i∈A

xi

∑
j∈A

Pij =
∑
i∈A

xi

∑
j∈A

Pij ,

for any partition if and only if x is a constant multiplier for π.

Solution. One direction of the proof is trivial: Take A = {i} and A =

{1, 2, . . . , i−1.i+1, . . . , n}. For the converse, let x ∈ Rn obey xj = ΣixiPij .

Summing up across j ∈ A, we get∑
j∈A

xj

∑
i

Pji =
∑
j∈A

∑
i

xiPij ,

and

∑
j∈A

xj

⎛
⎝∑

i∈A
Pji +

∑
i∈A

Pji

⎞
⎠ =

∑
j∈A

⎛
⎝∑

i∈A
xiPij +

∑
i∈A

xiPij

⎞
⎠.
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The double summation with respect to A in both hand sides canceled each

other. What is left is what was requested.

Exercise 12.3

For the matrix

S =

⎛
⎜⎜⎜⎜⎝
0 1 0 0 0

1 0 0 0 0

0 0 0 1 0

0 0 0 0 1

0 0 1 0 0

⎞
⎟⎟⎟⎟⎠,

compute S150 and S1001 (Hint: find the periodicity).

Solution. We note two important things. First, S6 = S12 = S18 =

· · · = I. That is, S6n = I (equal to the identity matrix) for any n = 1, 2, . . ..

Second, standard computation shows that StS = I. It follows from the first

property that S150 = S6·25 = I. Finally, note that 1002 is a product of 6,

and therefore S1002 = I. On the other hand, S1002 = S1001S, so that S1001

is the inverse of S. Because St is also the inverse of S, then S1001 = St.
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Covariance matrices, 147
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Algebric multiplicity, 123, 131,
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Geometric multiplicity, 123, 131,
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Eigenvalue, 120, 127, 131, 136,
158

Eigenvector, 120, 158

Full rank, 159

Gram-Schmidt process, 32

Inner product, 6

Invertible matrices, 69, 78, 86, 136

Lagrange multipliers, 39

Left-inverse, 65, 70

Limit probabilities, 170

Linear combination, 5

Linear equations, 54

Homogeneous equations, 17, 73

Linear functions, 41

Linear independence, 13, 30

Linear regression

Multiple, 99

Simple, 26, 97

Linear subspaces, 16

Dimension, 20

Markov chains, 167

Matrix, 49

Adjoint, 114

Condition number, 136

Design, 100, 147, 153, 154

Deviation, 175

Diagonal, 49, 79, 141

Diagonalizable, 129

Echelon, 62
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Gram, 91
Idempotent, 93
Identity, 56
Irreducible, 146, 180
Leading minor, 145
Positive and semi-positive, 95,

142, 158
Regular, 70
Similar, 84, 127
Singular, 70, 136
Square, 49, 70
Stochastic, 167
Symmetric, 49, 129, 139, 141,

158
Tall (wide), 49, 91, 159
Transient, 175, 183
Transpose, 49
Triangular, 49, 79, 150
Unitary, 74, 109, 150, 160, 161

Matrix operations
Matrix by matrix multiplication,

54
Matrix summation, 49
Row and column operations, 61,

75, 78
Scalar multiplication, 49

Minors, 109, 145
Moore-Penrose inverse, 91, 92, 164
Multiple regression, 100

Optimization, 37, 139, 154
Orthogonality, 8
Orthonormal basis, 29, 32, 139
Orthonormality, 29

Period, 180
Periodicity, 181
Permutations, 103

Power method, 149
Principal components analysis

(PCA), 154
Projections

Subspaces, 23
Vectors, 11

Pseudo inverse, 92

QR factorization, 59, 131, 150

Rank of a matrix, 52, 63, 91
Recurrent, 183
Regression line, 98
Right-inverse, 68, 70
Rotation, 41, 74, 161
Row equivalence, 108

Sherman-Morrison formula, 86
Singular value decomposition (SVD),

157
Span, 30
Spectral representation, 133
Stationary distribution, 171
Stationary point, 37
Sylvester’s criterion, 145

Taylor expansion, 7
Trace, 85, 120, 124
Transformation matrix, 85
Transition probabilities, 167
Transposition, 104, 105
Triangle inequality, 7, 10

Vector, 3
Component, 3
Dimension, 3
Norm, 7
Operations, 4
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