Vastery

A Comprehensive Guide for
Java Developers and New Programmers

Arnika Patel
Keshav Kumar
Dr. Bishwajeet Pandey

APress®

Kotlin Mastery

A Comprehensive Guide for Java
Developers and New Programmers

Arnika Patel
Keshav Kumar
Dr. Bishwajeet Kumar Pandey

Apress-

Kotlin Mastery: A Comprehensive Guide for Java Developers and New Programmers

Arnika Patel Keshav Kumar
Paul University, Vadodara, Gujarat, India Kanpur, Uttar Pradesh, India

Dr. Bishwajeet Kumar Pandey
GL Bajaj Institute of Technology and Management, Greater Noida West, Uttar Pradesh, India

ISBN-13 (pbk): 979-8-8688-1617-8 ISBN-13 (electronic): 979-8-8688-1618-5
https://doi.org/10.1007/979-8-8688-1618-5

Copyright © 2025 by Arnika Patel, Keshav Kumar, and Dr. Bishwajeet Kumar Pandey

This work is subject to copyright. All rights are reserved by the publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image, we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Melissa Duffy

Development Editor: James Markham

Editorial Assistant: Gryffin Winkler

Copy Editor: April Rondeau

Cover designed by eStudioCalamar
Cover image designed by Milad Fakurian on Unsplash

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 New York Plaza,
New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or
visit www.springeronline.com. Apress Media, LLC is a Delaware LLC and the sole member (owner) is
Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint, paperback,
or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub. For more detailed information, please visit https://www.apress.com/gp/services/
source-code.

If disposing of this product, please recycle the paper

https://doi.org/10.1007/979-8-8688-1618-5
https://orcid.org/0009-0000-9660-1481

Table of Contents

About the AUtROIS.........ccemmismnmmsmsmssnssssnssssss s san s ssn s an s anna s nnnnnsnnnnns xiii
About the Technical REVIEWETccccesssmsmsssnnsssssnsssssssssssnsssssnsssssnsssssnsssssnsssssnnsnssns XV
Chapter 1: Introduction to Kotlin......ccccccciiiiininnssessnmniinnnssssssssnnsnssssssssssssssssesnsns 1
B I TR - TR 1
1.2 FEAtUres Of KONccovceeieercserec s 4
1.3 Benefits and Drawbacks of KOtlin..........ccoccvirinennisnsensessessss s sessessssenens 6
BENETILS ...vevieircerirc e e 6
DIAWDACKS......ceeereeeresirere s r e n e 7

1.4 Applications 0F KONccovvevcerierernsiriene e sesse s ses e ss s e s snesasssssessesaessssessesaees 7
1.5 Setting Up Your Development ENVIFONMENTccccvvververiernnensereressssessessesssssssessessessssessessees 8
FOr COMMANG LINE ... 8
Running Kotlin Commands in the Command Linecccveevvvrrrierrerensensesesssessesessessssessessens 9
Development Environment for Intellid IDEA..........co o rrvrie v 13
Creating Your First Application in KONccvevievrrnininnsenrene s senesessssessesseseesessessessens 15

1.6 SUMMATY......c i e e e e e e e e R b e e e e nennis 18
1.7 Test YOUr KNOWIBAQEcoveueereecrerceree s 18
T.8 ANSWENS ..cvieerrreerreesesse e s ss e s e s e s e s e se e b e e e s e Re e e e e e R e R e e e e e Re e nRe e e e e e 21
Chapter 2: Fundamentals of Kotlin Programmingcccusssssssmmmmmnnmmsssssssssssssssssssnes 23
2.1 BasiC Structure and SYNTAX.........cccvveernerininsss s s e s 23
KON QUEPUL.....ceecce et s 24

2.2 Using Comments iN KON.......ccooevvninineresersene s sesse s ssssessessesssssssessessesssssssesseses 25
Single-Line COMMENTScccvierierererrereresse s sessesse e ssesas e ssesaesassessesaesaessssessesaesassensesaens 25
Multi-Line COMMENTSccviiiicririrsssse s 25

B T 1T 1] SR 26

iii

TABLE OF CONTENTS

iv

B - - 11 1< S 26
2.5 OPEIALOISuecueie iR E e R e e e R e e R s 27
Arithmetic OPEratorsccccvecvcrere s s 27
LOGICAl OPEIALOrSccceericiriere s s s b e e s p e e e nne 29
AsSIgNMENT OPEIAtOrSc..coveierierere st s sr e s 30
ComPArisSON OPEIALOrS......cocceviruerere et e e e se et 31
2.6 KON STNGS ..o s e e 32
SHHNG LENGN ... e e 33
SHNG FUNCTIONS ... e 33
2.7 KON AITAYS.....coveeeerreerreesessesessssessssesessesssssssssssesesssssssssssssssssssssssssssssansssssssssssnsssansssnssssnsenens 34
LN\ I o SRR 35
Array EIement Change.........ccovvererenerrnsmsensesesssessssesesssesssse s s sessssessssesssssssssssssssssssssssssssnens 35
Checking If an [tem EXiSISccccovivnmrnnmnnsesenssersse s s s sesse s 36
Accessing Array Items USING LOOPccovveererererrenersnsmsesesessssessssesessssessssessssssssssssssssssssssssssenens 36
2.8 CONTIOI FIOWcovieeicreeriscseses e p e 37
) OO 37
2] SRS 38
IS I ittt nr e nne 39
L1 3 OOSSRST S 40
P N 00 S 41
WHITE ...ttt b e e 41
0. WNIIB . ——————— 42
0] P 43
2.10 Return and JUMPS.....cocviiiiniriersie s s e s s s s s s s s e sae s s e sssessesaes s sssesaesannns 43
1] 12T 1 43
(10111 T 44
(=1 01 1 45
211 TYPE CRECKS ...cuveeereerieeririe et es et st sa e e a s s et a e st e et e ae e e et e e nnn e 45
212 SMANE CASTo e e 46

TABLE OF CONTENTS

2.13 Real-Life Programming PraCliCeSccccuvvrierinnnneninninnis e sessessse s ssessse s ssessesssesaessesnas 46
2,14 SUMIMAIY....c.ceeeiruereeeneresesenesesesesss e sessesessesesssseses e e ssesessssesessesesse e ssesesessessssenessanessssessssenens 49
2.15 TeSt YOUr KNOWIBUGEcoveeeereeereecreree e e se e ses e nsnnens 49
216 ANSWELScveeerseeersesessssesessesessese s e e sse e s e sss e e s e e sse e sss e sense s nsesessesssensssssssnsssansssnsssnsenens 52
Chapter 3: Functions in Kotlincccccuseemmmmnssmmnmmnssssnmmsssssmmmssssssmmssssssmsssssssnns 53
3.1 A CIOSEI LOOK ...cvrveereerrnesisseses et ss s se s ssa e srs s e sssssssnnsanens 53
User-Defined FUNCHONSccoveeiinennsc e s 53
Parameters in FUNCHONS. ..o 54
BOdY Of FUNCHIONScovieiriiicce e e 54
Return Value of the FUNCHIONS ... 54
Calling FUNCLIONSoucoeieieriseriscsene e s nr e e 55
Standard Library FUNCHIONScccveerinenneninesesse s s ss s s ssssssessssessssessns 56
Advantages and Disadvantages of Using Functions in Kotlin..........cccovvninnininininnensenienne, 57
3.2 Functions with Default and Named ArgumEntscccocevevnrnienienesensessese s e ssesessessessenes 58
Default ArQUMENTS.....ccccerererir e s sae e e e e se e s ae e e e e e ne e 58
NamMed ArQUMENTS ..o s s s r e e e 60
3.3 ReCUrSIVe FUNCLIONS........ccoiierre s 61
Normal FUNCHON Call...........oceirriccrsssee s 61
Recursive FUNCLION Call..........cccovriiiienenirsssse s se s sesssssssas 63
3.4 Tail ReCUrSIVE FUNCHIONScoveeeeriecrereerese e 64
3.5 Programming PractiCescccuerrrrrerererenereseresese e ese s se s sesesensnnens 65
3.0 SUMIMAIY.....citierrriserreserrssesesse e srs e s e s e s s se s e se e s e e s e snnse e r e e ne s e e nRe e nse e nensnnnsnnens 68
3.7 Test YOUr KNOWIBUGEcoveerereieirererie s s 69
B T R Al

Chapter 4: Object-Oriented Programming with Kotlin..........cccccnnsemmnnnssennnnnsssnnnnnns 73

4.1 ClasSES ANU ODJECES......everrrrerrererersersersersessssesessessssessessessessssessessessssessessesssssssessessesssssnsesseses 74
ClASSES ...uvueueresrsrssesese e e e R e e R 74
03T £ 75
NESTEA CIASSESvviueueereresrsseesese s sesp s 78
INNEE ClASSESv.vvceccerisrsecise e n s 79

TABLE OF CONTENTS

A] 1 11T (0] 80
Primary CONSIIUCTOLccvevueierierereresserere s ses s se s e ssesre s s e sesaesassa s e saesaesssnesaesaessssesnesneses 81
Using Secondary CONSITUCTOIScccvvererererserere s sere s s ssessessssessessesssssssessesaesassensesaens 84

11412 g e Uy Lo TSRS 86
Kotlin Override Property ...t s se s ens 87
Kotlin Inheritance with Primary CONStruCtorccccorecvnvenrie e 88
Kotlin Inheritance with Secondary ConsStructor...........ccoccvrvevrecrssrncnrc e 89
Calling Base Class Secondary Constructor from Derived Class Secondary Constructor....... 90

[(-] g 2T LSRR Cl
Default Values and Methods ..o 92
Properties in INTErfaCeS ... e s 93
INheritance in INTEITACES........covcorerere e 94
MURIPIE INTEITACES......cciceeerre e e e e e 95

4.5 ViSiDility MOGIfIErS......cccrrieererereresersse s se s ensnnens 96

B o (07T o TSRS 99
ClaSS PrOPEILIES......cueeerreerrnersssesesese s sr s se s sr s n e sr s sn s e p e nr e 99
Setters and GELLErS........cucviirerererr s s 100
AcCeSS GELter and SETLEr........coucvierrrereri s 101
Custom Setter and GELEr..........cccvvrernererese s 101

4L T 8 102
Overriding Non-abstract Open Member with the Abstractcccccvvvvrirnnrncnennsensenen 103
MUIIPIE DEFVEA CIASSESvecvrereerierererersesessessessessssessessesaesessessessessssessessesssssssessesasssssessesaes 104

D L 8 PR 105

4.9 SEAIBH CIASSececuererererrereeereressssesesesesesssseese e s se s ss e se s s s s s e e ss s s s e sessnsensaes 107

4,10 ENUM CIASScuvvenereeererseseeesesesesese e sesesessesesss e ses e sss e sss e sessssessssessssssessssesssssssssssenns 108
Enum Properties and Methods ... 109

4.11 Practical Programming EXEICISEScccueerrrrerererersesersssmssssessenns 111

4,12 SUMIMEAIY...ccviueiriresersesessssesesesessssessssessssasessssessssessssesessssesssssssssasssssssssssensssassssasessssensssasesnns 124

4.13 Test YOUr KNOWIBUQEccovvereririere sttt sn s s s s s s s 124

1T 126

TABLE OF CONTENTS

Chapter 5: Error Handling and EXCeptions........ccccvumssmmmnmsssssnssssssssnsssssssssssssssssnnnss 127
5.1 Exception-Handling BaSiCScucvierernninsinenn s snsse s ses e s ses e s sssssssesnesnes 127
The try-catch Block @s an EXPresSionccuccnreniennsinsensesesss s e ssssessesesssssssessesnes 129
FINAIY BIOCK ...ccueiveiicircric et s b s e 130
TRIOW KEYWOIQ........eviie et s s s 132

5.2 NeSted try BIOCK.........cccoeeeeeeer e 133
Multiple CatCh BIOCKS.......cccucrcirereninsirc et se s s s sn s 134
Using When in Catch BIOCK..........ccvvriinnsinicne s sss e sne s 136

5.3 CUSTOM EXCEPLIONScviiiiriere sttt 137
5.4 Real-Life Programming PracliCesc.cccumrernrenmnnennsessnessssse s ssssssessssessssesenns 138
LTI 111111 R 143
5.6 TeST YOUr KNOWIBAUEcvcveeereririe st sn e s s ae s s s sae s s 143
B.7 ANSWELSeeeeeeeeeeereeesense e se s sesse e se e ses e sesae e ae e e e e e sse e s e e e neeae e s Re e e e e e senae e nse e nee e e nns 145
Chapter 6: Collections and GENEriCS......ccxussmrrsssnsrsssnsrsssnsesssnsesssnsesssnnssssnnssssnnssssas 147
Lo 01 T 0§ 147
22 1 OSSR 148
8.3 Sl —————————————————————— 153
6.4 IVIAPSeeieere st E AR E R e g e R ae s 158
LRI T o 164
BaSICS Of GENEIICScuccerererriscsese s 164

6.6 Real-Life Programming PractiCesc.coouumrmininnnninesssssese s sese s ssessssessesnes 170
6.7 SUMIMAIY.....coviiereeereeerensesesese s sesse e se e ses e sse e s se e see e e sse e sse e senaesesse e see e sensesensenesennssenns 172
6.8 TeSt YOUr KNOWIEBUGEceeoereeerreresesesrese s se e s se s sesss s s sesssnenns 172
6.9 ANSWELScoueieerreeeesessessesessessesss s s e s e s e s s e e s e s e sre e s e aaesrese e e n e e aesee e a e aaenaens e e n e naenre e n e nnnnnes 175
Chapter 7: Kotlin Coroutings.......ccuusemmmmsssnmmmmssssssnmsssssssssssssssssssssssssssssssssnssssssnnnnss 177
48 1100 1 (o 177
7.2 Creating COrOUTINEScivierierereresserersessssesessessessssessessesssssssessesasssssessessessssessessesssssssessesses 177
7.3 SEructured CONCUITEINCYccccerirerereririeserise et se s as e e se e se s e e se s 178
7.4 Extract Function Refactoring.........cooocoeeeerrecnreseresc s 179

vii

TABLE OF CONTENTS

7.5 Scope Builder and CONCUITENCY ...vuveverereererserersessssersessesssssssessessesssssssessesssssssessessessssessesses 179
ST o T= 5 11 [T O 179
CONGUITEIICY 1uvveveeeersersessessssessesssssssessessessessssessessessssessessessessssessesssssssessssaessessssessesssssnsesseses 180

7.6 AN EXPIICIT JOD......oiircccce it 181

7.7 Coroutines Are LIghtWeight..........coeorerrrecrrerer e 182

7.8 Coroutine Exception Handling.........coocoervnernsmnenesmsssesessesessss s sessesessssessssssessssssssssssssssenns 182

7.9 Corouting EXCEption HANAIEN.........ccveeerecernesine s se s e sens 183

7.10 Cancellation and EXCEPLIONSccccvcereveririere e nersere s sse e e e s s e sesaessesessesaesnes 184

7.11 EXCeplion AGQregationccucvverriniinnenie s s sss s s s e s s e sses s s ssesaessesssesaesaesnens 185

7.12 Real-Life Programming PracliCesccuuuvmirninsnininssssese s sesse s e snas 186

A T 11 0] 10 T 188

7.14 Test YOUr KNOWIBUGEc.covreeerrreresesesee e e s sessesesssse s sessssssssssssssssessssessssssesssenns 188

TG ANSWELS ...eeereeieesesseseeses e sse e s e s s e e s s re e s e e s re e e e n e e Re e e e e e e naesRe s e e e n e e Renee e n e nnnnnis 191

Chapter 8: Kotlin Domain-Specific Language (DSL).......ccsssssesssssnsssssnsssssanssssnnssssns 193

8.1 Introduction 10 KON DSLS ..o sesssssnsaes 193
Advantages 0f DSLS........ccciereriniisisssssssse s 193

8.2 Writing OUr FirSt DSL........cccoiirirnnccsirssssss s e s 194

8.3 DSL by Applying Builder Patternccccvrvvrennescrnscrire e ses e sese s ssssesenns 197

8.4 DSL With COIECHONScceeeeeeerieererese e 198

8.5 DSL with @DsIMarker ANNOTatioN..........cccvveererreseresernsesese s 201

8.6 Real-Life Programming PracliCes........cccvmrermenmnnsesnsessnessssse e ssssesessssessssesenns 202

I 1111111 R 208

8.8 TeSt YOUr KNOWIBAUEcrcveeereririe sttt s s s s a e s s s sae s s 208

BLO ANSWELSeceeecereeereee e se e e e e s e s s e Re e e e ne s Re e se e e ne e e e e Re e e e e e e Re e e Re e e e e e ens 212

Chapter 9: Kotlin Standard Library......cc.cccsimmnmmmmmmmmssssnmsmssssssmssssssssssssssssssssssnsns 213

9.1 Introduction to the Kotlin Standard LiDrary...........cocoorenrenresnnseseresersesese e 213

9.2 ColleCtion FUNCLIONS.......cccorenerrnsesesesesesesessesessesesss e sessesessessssssesesssssssssesssssssssssssssssssnsssenns 213
830] 0 P 213

9.3 SErNG FUNCLIONS......coviceiticsisee s 220

viii

TABLE OF CONTENTS

9.4 EXtension FUNCHONS.........ccoiiiriirinie s s 224
Extended LiDrary ClaSSEScucvrevererserierersnsessessessssessessesssssssessessessssessessesssssssessesassssssssesses 225
9.5 Null Safety FUNCHIONSccoeererieccrererseese e as 225
9.6 File and I/0 FUNCHIONScoeoereecrereereeres s 226
L0 T TN 1 226
WHEING 10 FlR .. 226
Reading from Filecoc e 226
DL] N TS 227
9.7 Real-Life Programming PracliCesc.ccovmrmrrrenmrssernsesesesessssesessssessssessssssessssessssssessesenns 227
0.8 SUMIMAIY.....citiirrireserrese s e s e e e s e R e R e e e e R e b e e n e e b e e e e e nne 229
9.9 Test YOUr KNOWIBAGEccoerieriiriniine s s 229
e L0 T 233
Chapter 10: Testing in Kotlincccvimmnsmmnmmmsnmmsmmssmmssmssmmssmmssssasmssssssssas 235
101 UNIETESTING ..evveiveiecirererr s e e p e e s p e nne 235
The Significance of UNit TESTINGccceeereirnicrrcsr s ene e 235
Establishing the Testing Environment............ccccovinininncncnn s 236
Composing Your Initial Unit TESTcccorreiercrririrsesese s sesenes 236
Optimal Strategies for Unit TESHING......c.cooveeererrereneencsesers e seens 239
Testing FrameWOrKScov oo 241
10.2 Kotlin Unit Testing With MOCKKccooeomrereerrcrererere e 242
Mocking and MockK: mocking in kotlin behaves like external real
dependencies and mockK is powerful and lightweight mocking library..........ccccccecvnenene. 243
T TaT QA T 0 L0 LT 243
MOCKK KEYWOITUSccueereecrencrerneesseesesesessese e e sesse e se s ses e s e ses e sesss e ssssesenas 245
10.3 Kotlin Integration TeSHNGcccvverrnmrnerrrsse s senns 245
Integration Testing in Kotlin With KIOFcccovenncsnes s 248
10.4 CONCIUSIONveveirreerieesrsesssse s s e se e sr s s r e e e s e e e e R b e e nrnns 248
10.5 TeSt YOUr KNOWIBAQEocueiirieie et ss e s s e s sn s sn e s s ss e sne s 250
T0.6 ANSWELS ..ot se e e s e e e e e R e s e e ne e 253

ix

TABLE OF CONTENTS

Chapter 11: Kotlin Reactive EXteNSioN.......ccccussemnsssssssnnsssssssssssssssssnssssssssnsssssssnnnss 255
11.1 Introduction t0 RXKOHIN........ceomeeeceeeeeeee e 255
11.2 COre BX CONCEPIS.....cocciiriirirc ettt st st s st st 256

Streams: The Heart of Reactive Programmingccovoeorenrnncnnnesesenessscsesesesese e 257
Hot and Cold ODSErVaDIES ... 257
Flow of Hot and Cold SIreams...........ccoeerrierrenererc e 257
11,3 USAGE OF RX.uvrueerreerieeressesessesesse s sesesessese s sessssesssss s s e sessssesssssssssessssssessssssssnnsssssnesssenns 258
BasiC RXKOLIN USAQE........cccrrrererirmrresmrrnsesessesessesessssesessesesssssssssessssssessssssssssssssssssssnssssnsnsnnes 258
Using filter and diStiNCtcoovcerecnresres s 259
Observable.Interval for Periodic EMISSIONSc.cveeeerenernsmsrsssenesesesssssssssessssesessssessssessnnes 260
11.4 KOtliN COrOULINES.....covecereierirsenenrese e ss s sr s 261
11.5 Reactive Programming Patternscccvvvrvninninnni s sessese e sesse s ssessssessesnens 262
11.6 Best Practices for Testing Reactive COUE........cevvrerrerrerienenserseressssessessessessssessessessssessessens 263
11,7 CONCIUSION ...oveeeeeeseses e se s se e sa e se e e e s n e e s s s e s 264
11.8 Real-Life Programming PracliCescoverrnrrnicnereneresesesesese s 264
11.9 TeSt YOUr KNOWIBUGEceeereeereerereseseese s s e s ss s s sesssnenns 266
TT O ANSWELS ..eeeereeeeese e se s re e s e s e s e e s s sre e s e e e s rene s e naesse s e e s e e aeesenen e nannrensanrnnnnnnns 268

Chapter 12: Working with APl and Networking..........cccinnsseemmmnssssnnnmnsssssssmsssssnnns 269
12.1 Introduction 10 Kotlin APIS........ccinnicnsse s 269
12.2 Android DevelopmeNnt APIS ..o e sae s 270
12.3 NEIWOTKING APIS......oceeceirere et p e 272
12.4 Database & STOrage APIScoecrrerereeree s e 272
12.5 Ul & GraphiCs APIS......c..coiiirieririesin et se s st sa s s st se s sne s 273
12.6 Machine Learning & 10T APIS ... ssssesenns 273
12.7 MURIMEAIA APIS ... s 274
12.8 Cloud & BACKEN APIS........cccoererrrriiisisrrssssssse s ss s e se s sesss s 275
12.9 CASE STUDY 1: Using Google Map APl in Kotlinccccccvvvvnienniescnsccrncnese e 275

STEP 1. Enable Google MapS APL..........c.cccorenrenernerene s ses et se s se e e sessessens 275
STEP 2. Add DEPENUAENCIES.......courueerrererireriresere e res e ses e e se e ss e se s se e sss e se s sessesesessesenns 276
STEP 3. Add API Key t0 Manifestccovvvreirinsrrcnne e ses e 276

TABLE OF CONTENTS

STEP 4. Add @ Map Fragment.........cccerrernnmieniernnensersesessssessesesssssssessessesssssssessessessssessessens 276
STEP 5. Load the Map in KONccocevevnienienierrrenseresessssesese s sessessessessssessessesasssssessessens 277
STEP 6. RUN thE APP .evevreierererreseseressessssesessesssssssessessesssssssessesasssssessessessssessessesasssssensessens 278
EXIra FEAUIES ... 278
12.10 CASE STUDY 2: Using MQTT APIin KOthin.......ccoueeeererereneneseeesssssssssssssssssssssssssssesenenes 278
STEP 1. Create a New Kotlin Project in IntelliJ IDEAc.ccorverienreccrnrcrerenereseresenene 278
STEP 2. Add MQTT DEPENUENCYcoecerrrerireiriecrinesese e st se s e s ses s e ens 279
STEP 3. Implement MQTT Client in KOtin ... 279
STEP 4. Run the MQTT ClENt........cccoeeerereinessnssnsnsnssssssssssssesesesesesesesessssssssssssssssssssssssssnnns 281
STEP 5. EXPlANALiON.......ccceeerirerirecere st 281
STEP 6. EXEra FEAIUIESocoveeeccerer et 281
12.11 Conclusion and FULUIE SCOPEcccvvererriririnirn s se s s s se s snens 281
12.12 Test YOUr KNOWIBUGEcovreeerreerenesesseesre e ses e sesse e ses e s sesssssssssessssssesssenns 282
T2.13 ANSWELSeeeecreeeeseeeesessesese s sseses e s ss s e s saesre e s e saesrese e e naessess e e n e nnesse e n e nansrenennrnnnnnnns 284
Chapter 13: Advanced Kotlin Programmingccccuusseesnmssssssnsmssssssnsssssssssssssssssnnss 285
13,1 INEFOAUCTION......vecett s 285
13.2 NUIT SAFELY...cvveeccereee s bbb p s np e s 286
Safe Call Operator in KONcccvierenninienenrressere s sessese e ssssessessessssessessesaessssessessens 287
Elvis Operator in KONcvcviernininiere s sessese e sessesse s ssssessessesssssssessesasssssessesaes 288
Non-Null Assertion (1) in KOtlincccvvenninininnrnn s ssessesssessessenns 290

T L (= 0= T B T R 291

L= ST ed0] o= 1T [4 T] 292
13.3 Higher-Order Functions and Lambdasccccovvnvnrninnsnncncnssinsesess s sesesnens 294
Higher-Order Function with Lambda ... 294
Higher-Order Function Returns a FUNClion........c.ccococvinininncnncnc s 296
Using Lambda with List FUNCLIONSccvciiiiniirsnc e 297
13.4 Lazy INIIAlIZALIONcceeeeeeeee e e 299
13.5 Property Delegationcocuceeerenernsmsenesesese s s e se s sesessssssessesesessssenns 300
13.6 CONCIUSIONcoveeireerree i r e e e e ne e r s 302
13,7 FUUIE SCOPE...cvevteererrerirsir e re et sse e s e s saesae e s saese s e s s e e e s s aesae e s e naesae st e e naenaees 302

TABLE OF CONTENTS

13.8 Real-Life Programming PractiCe........c..ccucvrrvrinnininsinsen s ssessesssesessessesssesessessssssessesannns 303
13.9 Test YOUr KNOWIBAQEccverereirirene s nnens 306
L T L0 T T 309
Chapter 14: Data Analysis with Kotlin..........cccoorrmmmmmmnnnnnnnnssssssnnnmmnsssssssssnns 311
14.1 Get Started with Kotlin NOtEDOOK.........cccoerverrerrcsere e 311
14.2 Add Library to Kotlin NOtEDOOKcccovererriiernserincsesese e sesse e 315
14.3 Working With Data SOUICES........cevvvrreririnrirrererssessese s se e sss e s e ssessesessessessesssssssesaens 316
14.4 Data Visualization in Kotlin Notebook with Kandy............cccocrrrinnininnnnnnininsensenienienns 320
Create Line Chart.........ooceierirccsesn s 320
Create POINES Char...........cccovriiccr s 322
Create Bar Chart ... 323
14.5 Libraries for Data Analysis in KOtlin...........ccccvriinnninsnsncsessssnsese s sessesnens 325
14.6 Real-Life Programming PractiCe........c.ccocorerrninnrererene e 325
T4.7 SUMIMANY.....citiisesresesresesessesese e e sesseses e e e sss e s e e sseseses e sesse s ssssessa e sessessnsenessasensnssssnns 327
14.8 Test YOUr KNOWIBUQEcceecererieieereres e s 327
L LT 330

15.1 Introduction to Kotlin MUultiplatformccccvvrienninvn e 333
HOW [EWOTKS ...t s s 334
BeNefitsS Of KIMP.......ccoiice s 335
USE CASES ...cueerririucseeressssassesesesss s s e s ss s se s se et se s p e p e 335

15.2 Setting Up a Multiplatform Project for i0S..........cooevrrvrncrnicnre s 336
Steps for Creating i0S Project.........ccoccvrvvrerresrnce et 338
Shared Module Configuration and Implementation...........ccccccovvvninrircrncnnscs e 339

15.3 Multiplatform LIiDraries ... seses s sse s ssssessessessssessesnens 340
Dependency on @ Kotlin LIDrary.........ccoeorenrenernsc s senns 341
Dependency on Another Multiplatform Project..........c.oooveeererrnseseneeserese e 342

15.4 TeSt YOUr KNOWIBUGEceeereeerreereresesese e sss e e e e s s s sessssssesssnenns 343

T5.5 ANSWELSeouereereeseesesessesresesse s e e s e s e e e s s s re e s e e aesrese s e nae e Rene e e s e s aeere e n e nannRensanennnnnnes 345

1T - 347

About the Authors

Arnika Patel currently serves as assistant professor at Parul
University, Vadodara, Gujarat, where she continues to
inspire and educate future tech innovators. She was a Kotlin
developer with over six months’ experience in the tech
industry, which was in addition to more than two and a half
years as an assistant professor. Holding a master’s degree

in engineering, her expertise in both software development
and academia is well established. In 2015, she was honored
with the prestigious Devang Mehta IT Award, a testament to
her contributions to the field. She is also a proud member of
the Indian Society for Technical Education (ISTE), reflecting
her commitment to advancing the field of engineering education. Her blend of practical
experience and academic insight informs her writing, offering valuable perspectives

for both technology enthusiasts and professionals. Her area of specialization includes
mobile ad-hoc networks, artificial intelligence, machine learning, and so forth.

Keshav Kumar is an assistant professor at the Department
of Electronics and Communication Engineering at the
Pranveer Singh Institute of Technology, Kanpur, India. His
areas of specialization include deep learning, hardware
security, green communication, low-power VLSI design,
machine learning techniques, Wireless Sensor Networks
(WSN), and Internet of Things (IoT). He has experience
teaching Python programming, embedded systems, IoT,
computer networks, and digital electronics.

xiii

ABOUT THE AUTHORS

Xiv

Dr. Bishwajeet Kumar Pandey is a professor at GL Bajaj
College of Technology and Management, Greater Noida,
India. He has been a senior member of IEEE since 2019. He
has over 15 years of industry and teaching experience and
has authored and co-authored more than 170 papers. He has
experience teaching ethical hacking, application and web
security, cloud migration, incident handling and response,
information security, artificial intelligence, machine
learning, computer networks, and digital logic.

About the Technical Reviewer

Siddharth Kumar Patel has experience in successfully
building and deploying a production Android application
using current technologies like Kotlin and Jetpack Compose.
He also has a solid Java background and extensive
experience in Agile methodologies, which positions him as

o
mﬁ,‘.“g‘gf v a good Android developer. His proficiency in developing
gﬁ%ﬁ‘?‘ﬁg‘;ﬁ \ data-intensive, responsive applications and his skill set with

g
‘E,Enam

relevant industry tools further underscores his suitability.
His proactive approach to continuous learning, evidenced
by completing Google-designed learning pathways, indicates a dedication to staying
current with evolving Android best practices.

CHAPTER 1

Introduction to Kotlin

Kotlin is an object-oriented programming language developed by Jetbrains in 2016.
Sponsored by Google, and one of the official languages for Android, Kotlin has become
very popular because of its compatibility with Java and different platforms, such as
Windows, Mac, Linux, and Raspberry Pi. In this chapter we’ll get you grounded with
some basics and close by setting up your development environment.

1.1 Kotlin vs. Java

Kotlin and Java are both good programming languages, and both are object-oriented
programming languages, though developed for different reasons. Kotlin is mainly
used for Android application development, whereas Java is mainly used for enterprise
application development.

Java, a very popular programming language, was developed in 1996. Over the years it
has developed quite a large community, but Kotlin is a new programming language with
some modern features, making it an attraction for developers.

One of the most important differences between Kotlin and Java is syntax. Kotlin
has very concise syntax as compared to Java, so one needs to write less code than when
using Java. Also, Kotlin is more readable than Java. In Kotlin there is no need to define
datatypes, as the compiler will automatically define them according to the values
assigned.

In Java there is the possibility of any variable facing a null value, which can result
in null pointer exceptions at runtime. Kotlin differs here, as in Kotlin you can decide
whether the variable can be null or not. Thus you can avoid null pointer exceptions,
which are very common in Java.

Kotlin uses extension functions, which means we can use any function of a class
without creating a new class and inheriting it. In Java, to use the functionality of one class
you need to create other class and inherit the class whose functionality you want to use.

© Arnika Patel, Keshav Kumar, and Dr. Bishwajeet Kumar Pandey 2025
A. Patel et al., Kotlin Mastery, https://doi.org/10.1007/979-8-8688-1618-5_1

https://doi.org/10.1007/979-8-8688-1618-5_1#DOI

CHAPTER 1 INTRODUCTION TO KOTLIN

In Android, one component that belongs to one application runs in the same process
and same thread, which is the main thread and is responsible for the user interface (UT).
Network operations and CPU operations are very lengthy, resulting in slow performance.
To avoid this type of blockage, Java uses multithreading, where all of these operations
run on multiple threads, making it more complex to handle. Kotlin uses coroutines,
which is more clear and concise than handling multiple threads.

In Java there is a need to create fields or variables to store the data, constructors, and
getter and setter for variables or fields, in addition to other functions like toString(),
equals(), and so on. These classes are mainly intended to store data rather than having
any functionality. Meanwhile, Kotlin provides a very simple way to create data classes—
give keyword data as a prefix of the class name, and the compiler will automatically
generate all the getters and setters for variables, and also constructors.

Kotlin uses a smart cast feature, which means the compiler will automatically handle
redundant casts using the is-checks keyword. But in Java, the developer must check a
variable’s type in compatibility operations.

In Java there is checked exception support, so there must be a catch statement and
exception declaration as needed. This ensures robust code, because errors are handled
by checked exceptions. But it can be time consuming. Kotlin doesn’t have checked
exception support, meaning no declaration of exceptions or catch is required.

Kotlin is a mix of object-oriented and functional programming languages. Functional
programming handles computational or mathematical functions. Higher-order
functions and lambdas are examples of functional programming concepts present in
Kotlin. Whereas Java is purely an object-oriented programming language, Java 8 has
lambda functions.

Kotlin does not have wildcards (?- question mark -unknown type of variable),
ternary operators, and public fields. Java does have wildcards, ternary operators, and
public fields. Table 1-1 shows the pointed differences between Java and Kotlin.

Table 1-1. Kotlin vs. Java

CHAPTER 1

Kotlin

Java

Type
First stable version
released on

Product of

Community Support

Use

Extensions

Line of Code (LOC)
Datatype

Null Safety
Extension Function

Coroutine

Data Class

Smart Casts
Checked Exception

Object-oriented and functional
programming language

15 February 2016

Jetbrains

As it is new technology, smaller
community than Java

Used for mobile application
development and server-side
applications

.kt (kotlin source file)
ks (kotlin script file)
.ktm (kotlin module)

Less as compared to Java

No need to assign, compiler will
automatically assign datatype to
variable

Available
We can create extension functions

We can create multiple threads in
Kotlin by using coroutines

We can create data class in kotlin
by giving prefix “data”

Supported
Not Available

Purely object-oriented programming
language

23 January 1996

Oracle

Large Community of Developers

Used for enterprise applications,
desktop applications, mobile
applications

java (java source file)
.class (class file)
Jar (archived file)

More as compared to Kotlin

Compulsory to assign datatype to
variable

Not Available
Not supported by Java

In Java, coroutines are not available;
we need to use multithreading for
creating multiple threads, which is
more complex

We cannot create data classes in
Java

Not Supported

Available

(continued)

INTRODUCTION TO KOTLIN

CHAPTER 1 INTRODUCTION TO KOTLIN

Table 1-1. (continued)

Kotlin Java
Lambdas and Higher- Available in Kotlin Available after Java 8 version
Order Functions
Wildcards Not Available Available
Public Fields Not Available Available
Ternary Operator Not Available Available

1.2 Features of Kotlin

Kotlin provides many features that make it very popular among developers. The
following list shows each and every feature of Kotlin:

o Interoperability: Kotlin is designed in such a way that it can be
interoperable with Java. That means Java code can be called from
Kotlin and Kotlin code can be called from Java. This allows all
developers to smoothly migrate from Java to Kotlin or to use existing
Java libraries in Kotlin code.

e Concise: In Kotlin when you declare a variable there is no need to
give the datatype, as the Kotlin compiler will automatically decide it.
This and other functionalities, like null safety, extension functions,
and so forth, are decided by Kotlin, thus reducing the amount of code
required, as compared to Java.

e Null Safety: In Java most developers face a common exception
known as a null pointer exception, which can be very distressing. In
Kotlin, the developer can mostly eliminate null pointer exceptions
by using a null safety feature to decide whether the variable can be
null or not.

o Data Classes: Data classes are generally used for storing data. In
Java the developer needs to declare the variable, getter, setter, and
constructors, but in Kotlin the developer just needs to create one
class by giving the prefix data before the class name, which will
automatically create constructors, getter, and setter for the given
variables.

CHAPTER 1 INTRODUCTION TO KOTLIN

Smart Casts: Kotlin uses a smart cast feature, which means there is
no need to check types. All casting checks are automatically handled
by compiler using the is-checks keyword.

Compilation Time: In Kotlin compilation time depends on

various factors, like usage of complex code structure, development
environment, which build system the developer is using, and the use
of higher order functions. These will affect the compilation speed,
but as compared to other languages like Java, the compilation speed
of Kotlin is still faster.

Extension Function: Extension functions allow you to add new
methods or functions to existing classes without extending that class
or changing the code of that class; i.e., without using inheritance. By
using extension functions one can use any frameworks, libraries, or

classes.

Lambdas and Higher Order Functions: Kotlin is a functional
programming language. That means it handles all the mathematical
and computational functions. Higher order functions and lambdas
are one of the functional programming features.

Companion Objects: In Kotlin, a companion object is used in the
same way as static variables are used in Java. We can say thatitis a
replacement for static variables. Companion objects are defined by
the Companion keyword. The Companion keyword can be accessed
by using a class name. Using companion objects will improve code
organization and encapsulation.

Kotlin Multiplatform (KMP): Kotlin multiplatform allows you to
reuse Kotlin code to create cross-platform applications usable in
platforms like i0S, macOS, Linux, Windows, Android, and so on.
Using KMP, you can control different functionalities on different
platforms and can extend existing applications on multiplatform
modules.

CHAPTER 1

INTRODUCTION TO KOTLIN

Coroutine: Kotlin includes the way of doing asynchronous
programming by using coroutines. Coroutines can be used when
developing multithreaded applications, those applications in which
user experience as well as scalability is required. Coroutines handle
multiple threads without their blocking each other.

Lazy Loading: Kotlin uses an important feature called lazy
loading, mostly while developing Android applications. In Android
applications having a quicker startup time will enhance the user
experience, which can be achieved using the lazy loading feature.
This means that the application loads only those data that are
required at the time.

1.3 Benefits and Drawbacks of Kotlin

While Kotlin is a modern, concise, object-oriented, and functional programming

language, like any other programming language it has its benefits and drawbacks.

Benefits

Kotlin is easy to learn because its syntax and structure are very easy.
If you have worked in Java then you will easily understand Kotlin in
no time.

Kotlin can use Java code inside Kotlin or Kotlin code inside Java.
Developers can also use Java libraries or frameworks in Kotlin.

Coroutines are beneficial for working with multithreaded
applications and asynchronous programming. Kotlin handles
multiple threads via coroutines without blocking another thread.

Kotlin has some powerful features like lambdas, higher order
functions, smart casts, companion objects, extension functions, and

more that enhance the performance of applications.

Kotlin is more reliable in terms of being a faulty or buggy system.
There are fewer chances of bugs because before releasing the final
version of Kotlin it goes through many alpha and beta versions.

CHAPTER 1 INTRODUCTION TO KOTLIN

Kotlin is easy to learn for all Java developers, as the skills that a
Java developer uses to develop Android applications will work for
Kotlin too.

Kotlin is also multiplatform and can be used across iOS, Android,
macOS, Linux, Windows, etc.

Drawbacks

Being a modern and new programming language, Kotlin has less
community support. It will be more difficult for developers to find
resources, libraries, or frameworks while developing software
applications. It can also be difficult for a new developer to switch to
Kotlin because resources are limited for learning purposes.

In Android development, Kotlin applications might have a large APK
size due to the usage of Kotlin’s standard library.

Despite being a very popular programming language, there are fewer
skilled programmers available to recruit from all over the world.

Though Kotlin is generally faster, in some cases where the usage
of lambdas or extension functions is high one might see slow
compilation speeds.

1.4 Applications of Kotlin

Following are some applications in which we can incorporate the Kotlin programming

language:

Google announced in Google I/0 17 that Kotlin is the preferred
language for Android application development.

Kotlin can also be used to develop backend web applications and

services.

Kotlin multiplatform mobile is used to develop applications for both
iOS and Android platforms.

CHAPTER 1 INTRODUCTION TO KOTLIN

e Kotlin can be used with JavaScript; i.e., Kotlin/JS for web
development.

¢ Kotlin has many libraries for data science and machine learning,
which allows developers to use Kotlin for those purposes.

e Kotlin can also be used in game development or in cross-platform
game development.

e Kotlin can be used with AWS and Google Cloud to develop serverless
applications.

¢ Kotlin/Native can be used to develop projects for embedded systems.

1.5 Setting Up Your Development Environment
For Command Line

To set up the Kotlin development environment, we need to follow four steps. First, we
will install JDK, or if it’s already installed we will verify the installation. Then we must
download the Kotlin compiler, set up the environment variable, and then, finally, verify
the installation. Here we are following the installation process for the Windows operating
system. For Mac users, the steps will be same.

Kotlin runs on the Java virtual machine (JVM), so first you need to install JDK or
verify if it is already installed. To install it you can download it from the official Oracle
website and run that .exe file.

1. Type the commands shown in Figure 1-1. If it is installed then it
will give the version name (java 18). Otherwise, it will give an error

that the command javas is not recognized.

C:\Users\key>javac -version

javac 18

Figure 1-1. Verify Java version

CHAPTER 1 INTRODUCTION TO KOTLIN

2. Download the latest version of the Kotlin compiler, place it in the
folder you want, and extract that zip file. You'll then see all the files
required to run Kotlin in the “bin” folder (Figure 1-2).

This PC » Local Disk (C:) » Users » key » kotlinc » bin

.
7

A
MName

| kapt

(%] kapt.bat

|| kotlin

[%] kotlin.bat

| kotlinc

[%] kotlinc.bat

| kotlinc-js

[%] kotlinc-js.bat
| kotlinc-jvm
[%] kotlinc-jvm.bat
.| kotlin-dce-js
[%] kotlin-dce-js.bat

Figure 1-2. Files that run Kotlin

Running Kotlin Commands in the Command Line

Now you need to set the PATH environment variable by location of the Kotlin compiler.

1. Right-click on “This PC” and select “Properties” (Figure 1-3).

CHAPTER 1 INTRODUCTION TO KOTLIN

] kotlinc-jvm

@ This PC

¥ 3D Objec
I Desktop
Documer
¥ Downloa
JS Music
Pictures

m Videos

% Local Dis

¥ Network

! jftems

Collapse

Manage

Pin to Start

Map network drive...
Open in new window

Pin to Quick access

Disconnect network drive...

Add a network location

Delete

Rename

Properties

Figure 1-3. Right-click “This PC”

2. Select “Advanced System Settings” (Figure 1-4).

About

Your PC is monitored and protected.

See details in Windows Security

Device specifications

Device name DESKTOP-PC8JST2

Processor Intel(R) Core(TM) i5-7440HQ CPU @ 2.80GHz 2.80

GHz
Installed RAM 8.00 GB (7.62 GB usable)

nea I NCCXACDA RAMT7 A1MAD Q7CA DN7ACOQ17C,ENQ

Figure 1-4. Advanced system settings

10

Related settings
BitLocker settings

Device Manager

Remote desktop

System protection
Advanced system settings

Rename this PC (advanced)

CHAPTER 1 INTRODUCTION TO KOTLIN

3. Select “Environment Variables” (Figure 1-5).

System Properties X
Computer Name Hardware Advanced System Protection Remote
You must be logged on as an Administrator to make most of these changes.
Performance
Visual effects, processor scheduling, memory usage, and virtual memory
Settings...
User Profiles
Desktop settings related to your sign-in
Settings...
Startup and Recovery
System startup, system failure, and debugging information
Settings...
Environment Variables...
OK Cancel Apply

Figure 1-5. Environment Variables

11

CHAPTER 1 INTRODUCTION TO KOTLIN
4. Select “Path” under “System variables” (Figure 1-6).

System variables

Variable Value
ComSpec C:\Windows\system32\cmd.exe
DriverData C:\Windows\System32\Drivers\DriverData
GIT LFS_PATH C\Program Files\Git LFS
NUMBER_OF PROCESSORS 4
oS Windows_NT
C\Program Files\Common Files\Oracle\Java\javapath;C:\Progra...
PATHEXT .COM;.EXE;.BAT;.CMD;.VBS;.VBE;.JS;.JSE; WSF,WSH;. MSC
PROCFSSOR ARCHITFCTURF _AMNDG4

Figure 1-6. System variables

5. Add files that run Kotlin by clicking on the Browse button
(Figure 1-7).

12

CHAPTER 1 INTRODUCTION TO KOTLIN

Edit environment variable X
C:\Program Files\Common Files\Oracle\Java\javapath New
C\Program Files (x86)\Java
%SystemRoot% Edit
%SystemRoot%\System32\Wbem
%SYSTEMROOT%\System32\WindowsPowerShell\v1.0\ _—
%SYSTEMROOT%\System32\OpenSSH\

C:\Program Files\Git\cmd
C:\Program Files\nodejs\ Delete
C\Program Files\Git LFS
Move Up
Move Down
Edit text..

Figure 1-7. Add Kotlin-run files

Now we have successfully set up the environment variable. The next step is to
download and install the development environment for kotlin.

Development Environment for IntelliJ IDEA

In this section, first we will install the Intelli] IDEA for developing Kotlin code. We
will then verify the installation by running a sample program. Note that there are two
versions of Intelli], Ultimate and Community. The Community version is free to use. The
installation steps for both of them are the same.

Kotlin is developed by JetBrains, which developed integrated development
environments (IDEs) like Intelli] IDEA. It also has a toolkit to run Kotlin.

13

CHAPTER 1 INTRODUCTION TO KOTLIN

1. To start installation, first download the most recent version of
Intelli] IDEA from the JetBrains website.

E¥ Intell) IDEA Ultimate
The Leading Java and Kotlin IDE

Free 30-day trial

Figure 1-8. Intelli] IDEA

2. Once you have downloaded the .exe file, double-click it to start the
installation process. Figures 1-9 and 1-10 show the process.

Intelli) IDEA Setup

Welcome to IntelliJ IDEA Setup

Setup will guide you through the installation of Intelli] IDEA.
It is recommended that you close all other applications before
starting Setup. This will make it possible to update relevant
system files without having to reboot your computer.

Click Next to continue.

| Next > | Cancel

Figure 1-9. Install Intelli] IDEA

14

CHAPTER 1 INTRODUCTION TO KOTLIN

2] IntelliJ IDEA User Agreement

JETBRAINS USER AGREEMENT

Version 1.4, effective as of September 22, 2021
IMPORTANT! READ CAREFULLY:

THIS IS A LEGAL AGREEMENT. BY CLICKING ON THE “l AGREE” (OR SIMILAR)
BUTTON THAT IS PRESENTED TO YOU AT THE TIME OF YOUR FIRST USE OF
THE JETBRAINS SOFTWARE, SUPPORT, OR PRODUCTS, YOU BECOME A
PARTY TO THIS AGREEMENT, YOU DECLARE YOU HAVE THE LEGAL
CAPACITY TO ENTERINTO SUCH AGREEMENT, AND YOU CONSENT TO BE
BOUND BY ALL THE TERMS AND CONDITIONS SET FORTH BELOW.

1. PARTIES

1.1. “JetBrains” or “we” means JetBrains s.r.o., having its principal place of
business at Na Hrebenech 11 1718/10, Prague, 14000, Czech Republic,

&~ | confirm that | have read and accept the terms of this User Agreement

Exit Continue

Figure 1-10. Agree to terms

Creating Your First Application in Kotlin

After installation, create a new Kotlin application by clicking on “New Project,” as shown
in Figure 1-11.

Iy | IntelliJ IDEA

-

Projects
e Welcome to IntelliJ IDEA
B SSH
& WSL
Dev Containers
Customize

Plugins

Learn New Project Get from VCS

Figure 1-11. Create new project

15

CHAPTER 1 INTRODUCTION TO KOTLIN

1. Select “Kotlin” and click the Next button (Figure 1-12).

REVE

Kotlin
Groovy

2 Empty Project

Figure 1-12. Select “Kotlin”

2. Name the project and click the Finish button (Figure 1-13).

©] New Project

Name: FirstProjecd

Java

A Location: ~\IdeaProjects
Kotlin
Groovy

Create Git repositor
C3 Empty Project > J

Build system: IntelliJ Maven Gradle

Maven Archetype N
JDK: (3 liberica-20
A Jakarta EE

» Spring Boot ~ Add sample code

B JavaFX ¥ Generate code with onboarding tips

%] Quarkus ~ Use compact project structure
H Micronaut

» Ktor

Figure 1-13. Name the project

16

CHAPTER 1 INTRODUCTION TO KOTLIN

3. Create a new Kotlin file under the “src” folder and name it
“Mainka” (Figure 1-14).

= PP FirstProject v Version control v CurentFilev |

Project |,

v [3 FirstProject
) 0idea
sfc
Mainkt
@ gitignore
[FirstProjectim
> (T Extemal Libraries

= Scratches and Consoles

Figure 1-14. Main.kt program

4. Create a sample function to print “Hello world” and then test
whether it runs correctly (Figure 1-15). To run the program, click
on the green triangle that appears to the left of fun main(). Note
that whenever you run a Kotlin program for the first time it will
take some time to compile the functionalities.

17

CHAPTER 1 INTRODUCTION TO KOTLIN

v (3 FirstProject
[idea
out
st

Mainkt

@ gitignore

[FirstProject.iml
> (Th External Libraries

= Scratches and Consoles

les\JetBrains\IntelliJ IDEA 2024.2.6.2\

Figure 1-15. Run program

1.6 Summary

In this chapter, we have learned about what Kotlin is, the benefits and drawbacks of
Kotlin, and its features. We’ve seen how to set up the development environment for
creating and running Kotlin programs and also have tested our installation by running a
small program.

1.7 Test Your Knowledge

1. Which command is used for checking if JDK is installed or not?
a. jdk
b. java -i
c. javac -v

d. javac -version

18

CHAPTER 1 INTRODUCTION TO KOTLIN

Which Kotlin feature helps prevent null pointer exceptions?
a. smart casts

b. null safety

c. lazy initialization

d. lambdas

What is the main benefit of using the 1azy keyword in Kotlin?

a. It ensures that variables initialize only when they are first accessed
in the program.

b. It helps in preventing null pointer exceptions.

c. It prevents part of the program from compiling.

d. It optimizes the memory usage by deleting unused variables.
Which keyword is used to declare static-like variables in Kotlin?
a. static

b. final

c. object

d. companion

Which of the following is the main usage of the Kotlin
programming language?

®

web application development

b. system programming

c. enterprise programming

d. Android application development

Which of the following is true about the Kotlin programming
language?

a. object-oriented programming language

b. functional programming language

19

CHAPTER 1 INTRODUCTION TO KOTLIN

c. both (a) and (b)
d. none of above
7. Which of the following features is not supported by Kotlin?
a. ternary operator
b. smart casts
c. extension function
d. coroutines
8. The Kotlin programming language is fully compatible with ____~
a. Python
b. C
c. Java
d. Swift
9. Who developed the Kotlin programming language?
a. Google
b. Oracle
c. Jetbrains
d. Microsoft

10. Inwhich year was Kotlin announced as an official programming
language for Android application development by Google I/0?

a. 2021
b. 2017
c. 2016

d. 2015

20

1.8 Answers

10. b

CHAPTER 1

INTRODUCTION TO KOTLIN

21

CHAPTER 2

Fundamentals of
Kotlin Programming

2.1 Basic Structure and Syntax

In chapter 1, we saw how to install Kotlin and run our first program to print “Hello
World!” For that, we use the following code:

fun main() {
println("Hello world")

Where the fun keyword is used for declaring a function; print1ln() is used for
printing lines written inside brackets; and main() is the function that will be available
in each and every Kotlin program. It indicates the starting point of code execution in a
Kotlin program. Any lines of code written inside thismain() function’s curly brackets will
be executed.

In previous versions of Kotlin before version 1.3 it was required to add parameters
to amain() function. The following is an example of using a main() function with a
parameter:

fun main(args : Array<String>) {
println("Hello World")
}

Output:

Hello World

23
© Arnika Patel, Keshav Kumar, and Dr. Bishwajeet Kumar Pandey 2025

A. Patel et al., Kotlin Mastery, https://doi.org/10.1007/979-8-8688-1618-5_2

https://doi.org/10.1007/979-8-8688-1618-5_2#DOI

CHAPTER 2 FUNDAMENTALS OF KOTLIN PROGRAMMING

This is not required anymore in the upgraded versions of Kotlin, but it will not
cause any harm to your program if you were previously using it and continue to use it.
However, programs will run fine without it.

Kotlin OQutput

The println() function is used for printing output or any text or numbers in Kotlin. You
can also add multiple println() functions in your program. Here, every new println()
will add a new line to your output. The following shows the multiple print1n()

functions:

fun main() {
println("1. Hello Kotlin...")
println("2. Welcome to Kotlin Learning Experience...")
println("3. Have a great experience...")

Output:

1. Hello Kotlin...
2. Welcome to Kotlin Learning Experience...
3. Have a great experience...

However, if you want to output text without creating a new line, then you can add
this with the use of the print() function instead of using print1ln(). The following is an
example of using a print () function instead of a print1ln() function.

fun main() {
print("1. Hello Kotlin...")
print("2. Welcome to Kotlin Learning Experience...")
print("3. Have a great experience...")

Output:

1. Hello Kotlin...2. Welcome to Kotlin Learning Experience...3. Have a
great experience...

24

CHAPTER 2 FUNDAMENTALS OF KOTLIN PROGRAMMING

2.2 Using Comments in Kotlin

Comments are used to explain the code or to not run a particular line or block of code.
There are two ways to add comments in your code.

Single-Line Comments

Single-line comments can be added by using two forward slashes (//). Any text after //
in the same line will not be executed or will be ignored at runtime.
The following shows the usage of single-line comments before a line of code:

fun main() {
//print hello world
print("Hello Kotlin...")

Output:
Hello Kotlin..
The following is the usage of a single-line comment at the end of a line of code:

fun main() {
print("Hello Kotlin...") //print hello kotlin

Output:

Hello Kotlin..

Multi-Line Comments

To ignore or to not run a block of code, multi-line comments are used. Multi-line
comments start with /* and end with */. Any text between /*..*/ will be ignored or not
run during the program run.

The following is an example of multi-line comments:

fun main() {

/*

25

CHAPTER 2 FUNDAMENTALS OF KOTLIN PROGRAMMING

The following is an example that will print “Hello Kotlin”:

*/
print("Hello Kotlin...")

Output:

Hello Kotlin..

2.3 Variables

Variables are generally used for storing values. In Kotlin programming, we can create
variables by using var or val. The following is the syntax for declaring a variable:

value

var variablename
val variablename = value

For example,

var bookname = "kotlin"
val bookpublisher = "apress"

The difference between var and val is, when we create a variable using val it cannot
be changed or modified, but when we create a variable using var it can be. Using val, we
can assign a value that is not going to change at any point of time in program; using var,
we can assign a value that can be changed in the program. For example,

val pi = 3.14
var name = "kotlin"
name = "kotlin programming"

2.4 Datatypes

A datatype is a variable or attribute that indicates the type of data a parameter is holding.
It is very important because users and programs need to know how to handle that

variable or parameter.

26

CHAPTER 2 FUNDAMENTALS OF KOTLIN PROGRAMMING

In Kotlin programming, the type of variable is decided when we declare a variable

and assign its value. For example,

val num = 4 // Int
val numAverage = 3.0 // Double
val word = 'k' // Char
val isTrue = true // Boolean
val myName = "kotlin" // String

2.5 Operators

Operators in Kotlin are used to perform operations on values or variables. The
operations are called operators, while the values are known as operands. Table 2-1 shows
an example of the difference between operators and operands.

Table 2-1. Difference between Operator and Operand

Operand Operator Operand
30 + 40
50 - 60

There are four types of operators available in Kotlin:
1. Arithmetic operators
2. Logical operators
3. Assignment operators

4. Comparison operators

Arithmetic Operators

To perform general mathematical operations, arithmetic operators are used. Table 2-2
shows the various arithmetic operators available in Kotlin.

27

CHAPTER 2 FUNDAMENTALS OF KOTLIN PROGRAMMING

Table 2-2. Arithmetic Operators

Operator Name Example Description

+ Addition A+B Use to perform addition operation

- Subtraction A-B Use to perform subtraction operation

* Multiplication A*B Use to perform multiplication operation
/ Division A/B Use to perform division operation

% Modulus A%B Use to perform modulus operation

++ Increment A++ Use to increment value by one

-- Decrement B-- Use to decrement value by one

Let’s take an example of using arithmetic operators in Kotlin code. Here I have used
the string interpolation ($A, $B) to print the values of A and B, which is described in a
later section (i.e., string function and Table 2-6).

fun main() {
var A=40
var B=30
println("$A+$B="+(A+B))
println("$A-$B="+(A-B))
println("$A*$B="+(A*B))
println("$A/$B="+(A/B))
print("$A++=")
A++
println(A)
print("$B--=")
B__
println(B)

Output:

40+30=70
40-30=10
40*30=1200

28

CHAPTER 2 FUNDAMENTALS OF KOTLIN PROGRAMMING

40/30=1
40++=41
30--=29

Logical Operators

Table 2-3 shows the various logical operations available in Kotlin.

Table 2-3. Logical Operators

Operator Name Example Description

&& Logical AND A>10&&B>20 Returns true if both the operations’ results are true;
otherwise returns false

Il Logical OR A>1011B>20 Returns true if any of the operations’ results are true

! Logical NOT Al Returns true if the operation’s result is false and
returns false if the operation result is true

Let’s see an example of using logical operators in Kotlin code:

fun main() {
val A=40
val B=30
val C=20
val D=10
println(A>B && C>D)
println(A>B Il C<D)
println(!true)

Output:

true
true
false

29

CHAPTER 2 FUNDAMENTALS OF KOTLIN PROGRAMMING

Assignment Operators

To assign values to variables, we use assignment operators. Table 2-4 shows several
assignment operators.

Table 2-4. Assignment Operators

Operator Example Equivalent To
= A=2 A=2

+= A+=2 A=A+2

-= A-=2 A=A-2

= A=2 A=A*2

/= A/=2 A=A/2

%= A %=2 A=A%2

Let’s see an example of using assignment operators in Kotlin code:

fun main() {

var A=50

println("A = "+A)
A+=2

println("A+=2 is "+A)
A-=2

println("A-=2 is "+A)
A*=2

println("A*=2 is "+A)
A/=2

println("A/=2 is "+A)
A%=2

println("A%=2 is "+A)

30

CHAPTER 2 FUNDAMENTALS OF KOTLIN PROGRAMMING

Output:

A =50

A+=2 is 52

A-=2 is 50
A*=2 is 100
A/=2 is 50
A%=2 is 0

Comparison Operators

Comparison operators are used to compare values, which will result in false or true
according to the result of comparison. Table 2-5 displays the multiple comparison
operators which we can use in Kotlin.

Table 2-5. Comparison Operators

Operator Name Example
== Equal To A==

I= Not Equal To Al=B

> Greater Than A>B

< Less Than A= Greater Than or Equal To A>=B
<= Less Than or Equal To A<=B

The following is an example of using a comparison operator in Kotlin:

fun main() {
val A=50
val B=20
println("A=$A")
println("B=$B")
println("A == B is ${A==B}")
println("A > B is ${A>B}")

31

CHAPTER 2 FUNDAMENTALS OF KOTLIN PROGRAMMING

println("A < B is ${A<B}")
println("A >= B is ${A>=B}")
println("A <= B is ${A<=B}")

Output:

A=50
B=20
A =
> B is true

< B is false
>= B is true
<= B is false

B is false

> > =

2.6 Kotlin Strings

Strings are generally defined as a collection of words. Kotlin strings are used to store text.
We can define any variable as a string by giving its value inside double quotes, as follows:

var myFirstString = "Welcome Kotlin"

The Kotlin compiler is smart enough to understand that the type of myFirstString is
String as we have assigned its value by using double quotes. However, like Java, you can
assign a type to a variable as follows:

var myFirstString : String = "Welcome Kotlin"

If you want to create a string without giving its value, then the type specification is a
must; otherwise, it will give an error. The following is an example:

var myFirstString : String
myFirstString = "Welcome Kotlin"

32

CHAPTER 2 FUNDAMENTALS OF KOTLIN PROGRAMMING

String Length

The number of characters present in a string is called its length. The following is an
example of how you can find the length of a string:

var alphabetText = "abcdefghij"
println("The length of alphabetText is "+alphabetText.length)

String Functions

In Kotlin there are many functions available to perform string operations. Table 2-6
describes all the available functions.

Table 2-6. String Functions

Function Name Description

compareTo() Use for comparing two strings and returns result 0 if both strings are equal
indexOf() Use for searching for the first occurrence of specific word

uppercase() Use to convert string into uppercase

lowercase() Use to convert string into lowercase

Concatenation (+) Used for concatenation of two strings

String Templates/ Instead of using Concatenation we can use this for merging two strings.

Interpolation ($) This can also be used when you want to print the value of a variable inside
println function—i.e., $varName. To print the result of some operation on a
variable, it can be used with curly braces—i.e., ${varName.anyFunction}

Let’s see an example of using all these functions in the Kotlin program:

fun main() {
val first="Hello"
val second="Kotlin"
var first second=""
println("Length of String first: ${first.length}")
println("String Compare: ${first.compareTo("Hello")}")
println("Convert String to Uppercase: ${first.uppercase()}")

println("Convert String to Lowercase:+${first.lowercase()}")

33

CHAPTER 2 FUNDAMENTALS OF KOTLIN PROGRAMMING

first second=first+second
println("String Concatenation: $first second")
println("String Templates/Interpolation: $first$second”)
println("Finding the indexof String kotlin: ${first second.
indexOf("Kotlin")}")

}

Output:

Length of String first: 5

String Compare: 0

Convert String to Uppercase: HELLO

Convert String to Lowercase: hello

String Concatenation: HelloKotlin

String Templates/Interpolation: HelloKotlin
Finding the indexof String kotlin: 5

2.7 Kotlin Arrays

Arrays are used for storing lists of items of the same type. Declaring many variables to
store their values can be tedious, time-consuming, and complex, so instead we can just
declare one array and store all the values in that array.

In Kotlin, the array0f() function is used for declaring an array, as follows:
val numbers = arrayof(o,1,2,3,4,5,6,7,8,9) //array of integers

val colors = arrayOf("red","green","blue”, "orange", "yellow") //array
of strings

Example:

fun main() {

val colors = arrayOf("red", "green”, "blue")

println(colors[0]) //print value from array at position 0
println(colors[1]) //print value from array at position 1
println(colors[2]) //print value from array at position 2

34

CHAPTER 2 FUNDAMENTALS OF KOTLIN PROGRAMMING

Output:

red
green
blue

The preceding example declares the array of colors and prints it using its index. To
access the values of an array we need to use the name of the array followed by indices of
the element we need to access.

Array Length

To find how many elements are stored in an array, we can use the size property of an
array, as follows:

fun main() {

val colors = arrayOf("red","green", "blue")
println(colors.size)

Output:

Array Element Change

Following is an example of how we can change an existing element of an array:

fun main() {

val colors = arrayOf("red", "green”, "blue")
println("colors[o] is: ${colors[0]}")
colors[o]="black"

println("colors[0] is: ${colors[0]}")

Output:

colors[0] is: red
colors[0] is: black

35

CHAPTER 2 FUNDAMENTALS OF KOTLIN PROGRAMMING

In the preceding example, it will first print the existing value of index 0 in the colors
array. After that, we change the value of that by assigning new value to index 0. Last, it
will print the newly assigned value.

Checking If an Item Exists

The in operator is used to check if a particular item exists in an array, as follows:

fun main() {

val colors = arrayOf("red","green", "blue")
if("red" in colors){

println("It exists")
telsef

println("It does not exists")

}
}

Output:
It exists

This example uses the in operator so see if red is exists in the colors array, and it
prints the value accordingly.

Accessing Array Items Using Loop

We can access array elements by using loops instead of using indices all the time. The
following shows this:

fun main() {

val colors = arrayOf("red", "green”, "blue”, "purple”, "white")
for(color in colors){
println(color)

36

CHAPTER 2 FUNDAMENTALS OF KOTLIN PROGRAMMING

Output:

red
green
blue
purple
white

This example shows that by using a for loop we can access all the elements of an
array. It will loop through the colors array and print all the elements present in the array.

2.8 Control Flow

In Kotlin, programmers can use conditions to complete different actions. Following are
the conditional statements available in Kotlin.

if
The if statement will check the condition inside the if statement, and if it is true then

the block of code written inside the if will run; otherwise it will not.
Syntax:

If(condition){
// block of code to execute if condition is true

}
Example:
fun main() {
val Age=80
if(Age > 60){
println("Senior Citizen")
}
}
Output:

Senior Citizen

37

CHAPTER 2 FUNDAMENTALS OF KOTLIN PROGRAMMING

In the preceding example, first we define the variable Age. After that, we use the if
statement to check whether the age is greater than 60 or not. If the age is greater than 60,

than it will print “Senior Citizen”; otherwise it will not.

else

The block of code written inside else will run when the condition inside the if
statement is false.
Syntax:

If(condition){

// block of code to execute if condition is true
telse{

// block of code to execute if condition is false

Example:

fun main() {
val Age=40

if(Age > 60){

println("Senior Citizen")
telse{

println("“Not Senior Citizen")

Output:
Not Senior Citizen

In the preceding example, if the age is greater than 60 than it will print “Senior
Citizen,” and if the age is not greater than 60 then the else block will run and it will print
“Not Senior Citizen.”

38

CHAPTER 2 FUNDAMENTALS OF KOTLIN PROGRAMMING

else if

An else if statement will give a new condition to test if the previous or first condition
is false.
Syntax:

If(conditionA){

// block of code to execute if conditionA is true
telse if(conditionB){

// block of code to execute if conditionA is false and
conditionB is true
telse{

// block of code to execute if conditionA is false and conditionB
is false

}

Example:

fun main() {
val Age=19
if(Age > 60){
println("Senior Citizen")
}else if(Age >30 8& Age < 60){
println("Middle Age")
}else if(Age <30 8& Age > 17){
println("Young")
telse{
println("Kid")

}
}
Output:
Young

In the preceding example, first it will check if the age is greater than 60; if it’s true
then it will print “Senior Citizen,” otherwise a second condition will be checked. If the
age is greater than 30 and less than 60 then it will print “Middle Age”; otherwise, the

39

CHAPTER 2 FUNDAMENTALS OF KOTLIN PROGRAMMING

next condition will be checked. If the age is greater than 17 and less than 30 then it will
print “Young”; and lastly, if all conditions are false then it will print “Kid” inside the
else block.

when

Awhen statement provides multiple blocks of code to run with different conditions.
Syntax:

when(condition that needs to check){
condition1 -> { // run if conditioni is true }
condition2 -> { // run if condition2 is true }
condition3 -> { // run if condition3 is true }
else -> { // run if above all conditions are false }

Example:

fun main() {
val Month=8

when(Month){

-> {println("January")}
-> {println("February")}
-> {println("March")}

-> {println("April")}

-> {println("May")}

-> {println("June")}

-> {println("July")}

-> {println("August”)}

-> {println("September")}
10 -> {println("October")}
11 -> {println("November")}
else -> {println("December")}

XY

O© o N O 1 N W N

40

CHAPTER 2 FUNDAMENTALS OF KOTLIN PROGRAMMING
Output:
August

In the preceding example, first we assign the value of the month, which is 8. After
assigning the value the when statement will check for all the cases from 1 to 7, all of which
are false, and then check 8, which is true, so it will print “August.” Similarly, when there
are multiple choices available in a program then instead of using multiple else. .if
statements we can use when.

2.9 Loops

In programming languages, loops are used for performing a specified block of code until
the condition matches. In Kotlin, multiple types of loops are available, like while, do. .
while, and for.

while

A while loop runs the block of code until the given condition inside the while block
is true.
Syntax:

while(condition){
// block of code will be executed until above condition is true

Example:

fun main() {

var number = 1

while(number <= 10){
print(" "+number)
number++

41

CHAPTER 2 FUNDAMENTALS OF KOTLIN PROGRAMMING
Output:
12345678910

This example will print values of numbers from 1 until the given condition
number <=10is true.

do..while

In a do. .while loop, the block of code will be executed once; after that, it will check
the condition. Until the condition is true, the code written inside the do block will be
executed.

Syntax:

do {
// block of code will be executed until below condition is true
}while(condition)

Example:

fun main() {

var number = 1

do{
print(
number++

Jwhile(number <= 10)

non

+number)

Output:
12345678910

In the preceding example, first the block of code written inside the do will be
executed, which will print a number and increment the value by one. After that, it will
print numbers until the condition written in the while is true, so the output of the
program will be numbers from 1 to 10.

42

CHAPTER 2 FUNDAMENTALS OF KOTLIN PROGRAMMING

for

In programming languages when we use arrays and want to perform operations on
them, we can use a for loop to iterate and perform the required operations.
Syntax:

for(range){
// operation needs to perform for given range

Example:

fun main() {
val days = arrayOf("Sun","Mon","Tue","Wed","Thu","Fri","Sat")
for(day in days){
print(" $day")

Output:
Sun Mon Tue Wed Thu Fri Sat

The preceding example will print each day one by one from the array “days.” The
output will be all the elements from that array.

2.10 Return and Jumps

To perform a jump out of the loops or a return from functions, Kotlin has three structural
types of jump and return statements available.

break

The break statement is used for jumping out of the enclosing loop.
Example:

fun main() {

var i=1
while(i<8){

43

CHAPTER2 FUNDAMENTALS OF KOTLIN PROGRAMMING
print("$i ")
i++
if(i==6){
break

}

Output:
12345

This will print numbers from 1 to 5, and when the value of i will be equal to 6 it will
be jumped out from the loop.

continue
Use continue to move to the next step after jumping out of the loop.
Example:
fun main() {
var i=1
while(i<8){
print("$i ")
I++
if(i==6){
i++
continue
}
}
}
Output:
123457

This will print numbers from 1 to 7 and skip the number 6 because of the continue
statement written inside the if code block.

44

CHAPTER 2 FUNDAMENTALS OF KOTLIN PROGRAMMING

return

This will return from the enclosing function.
Example:

fun main() {
for(i in 1..5){

print("$i ")
if(i==4){
return
}
}
}
Output:
1234

In this example, when the value of i is equal to 4, then it will return from the
enclosing loop and print the values from 1 to 4 and skip the 5.

2.11 Type Checks

In Kotlin we use type checks to enable users or programmers to check the type of the
variable. To do so at runtime use is or ! is operators.

fun main() {
val first="Hello"

if(first is String){
println("Length of String first: "+first.length)
}
if(first !is String){
println("These will not print as the type of first is String")

Output:

Length of String first: 5

45

CHAPTER 2 FUNDAMENTALS OF KOTLIN PROGRAMMING

2.12 Smart Cast

In Kotlin, most of the time you don’t need to use casting of the type, because Kotlin will
automatically cast the datatype of the variable according to the assigned value. This is
known as a smart class feature.

fun main() {
var A:Any

A="variable now cast to string"
println(A)

Output:
variable now cast to string

In the preceding example, at the time of declaration we did not specify the value of
the variable. That’s why the type of the variable is not decided. In the next line we gave
the value to the variable A which is of type string, so it will automatically cast to the

string type.

2.13 Real-Life Programming Practices

The following are some examples that can be developed after learning the fundamental
concepts of Kotlin.

1. Calculate the ticket price for an amusement park according to the
age of visitor. Table 2-7 shows the prices according to the age of

visitor.

Table 2-7. Price List

Age Price

0 to 5 years Free entry
5to 14 years $5

15 to 25 years $7

Above 25 years $10

46

CHAPTER 2 FUNDAMENTALS OF KOTLIN PROGRAMMING

Solution:

fun main() {

val age=30
if(age<5 && age>0){

println("There is no Ticket for Age:$age")
}else if(age>5 88 age<14){

println("Ticket Price for the Age:$age is $5")
}else if(age>14 88 age<25){

println("Ticket Price for the Age:$age is $7")
telse{

println("Ticket Price for the Age:$age is $10")

Output:

Ticket Price for the Age: 30 is $10

2. Write a program that evaluates a student’s grade according to the
percentage. Table 2-8 shows the criteria for evaluating.

Table 2-8. Grade with Score

Total Score Grade
>=90 A
>=75 B
>=60 C
>=30 D

<50 FAIL

Solution:

fun main() {

val score=65
when{

47

CHAPTER 2 FUNDAMENTALS OF KOTLIN PROGRAMMING

score >= 90 -> {println("Grade for $score is A")}
score >= 75 -> {println("Grade for $score is B")}
score >= 60 -> {println("Grade for $score is C")}
score >= 50 -> {println("Grade for $score is D")}
score < 50 -> {println("FAIL")}

}

Output:
Grade for 65 is C

3. Write a program that evaluates a student’s eligibility for the exam
based on their attendance in the classroom; i.e., if attendance is
greater than 75% then student is allowed to sit in exam; otherwise
they are not.

Solution:

fun main() {

val attendance = 60

if(attendance>75){
println("You are allowed to sit in exam because your
attendance is $attendance%")

telse{
println("You are not allowed to sit in exam because your
attendance is $attendance%")

}

Output:

You are not allowed to sit in exam because your attendance is 60%.

48

CHAPTER 2 FUNDAMENTALS OF KOTLIN PROGRAMMING

4. Write a program that calculates the total price of products
available in cart.

Solution:

fun main() {
val cart = array0f(19.34,56.33,32.45,23.33,6.90,
200.90,347.90,235.00)
var totalPrice=0.0
for(item in cart){
totalPrice+=item

}

println("Total Cart Price is: $totalPrice")
}
Output:

Total Cart Price is: 922.15

2.14 Summary

In this chapter, we have learned all the core topics of Kotlin, like the structure of the
program, using comments, data types, variables, arrays, strings, loops, return-jumps,
conditional statements, and more, with some real-life programming examples.

2.15 Test Your Knowledge

1. Which of the following operators is used for comparing
two values?

a. ==

49

CHAPTER 2 FUNDAMENTALS OF KOTLIN PROGRAMMING

50

2. Which property is used for finding the length of the string?
a. sizeOf
b. len
C. size

d. length

3. Which symbol is used for string interpolation?

a. .
b. #
c. $

d. ++

4. What is a correct syntax to output “Hi there!!” in Kotlin?

a. println("Hi there!!”)
b. cout << “Hi there!"”
c. system.out.println(“Hi there!!”)

d. console.writeline(“Hi there!!”)

5. How can you insert a single-line comment in Kotlin?

a. //
b. /*
c. #

d. <!--

6. Which keyword is used to declare a variable in Kotlin?

a. fun
b. val
c. class

d. define

10.

CHAPTER 2 FUNDAMENTALS OF KOTLIN PROGRAMMING

How do you declare a floating point number 3.4 in Kotlin?

a. num=3.4

b. double num =3.4

c. valnum =34

d. floatnum=3.4

What will be the output of the following code: (4>3 && 3<5)?
a. True

b. False

In Kotlin programming code, a semicolon is necessary at the end
of the statement.

a. True
b. False

What will be the output of the following code?

val x = 8
val y = 16
println(y%x)

a. 2
b. 0

51

CHAPTER 2 FUNDAMENTALS OF KOTLIN PROGRAMMING

2.16 Answers

10. b

52

CHAPTER 3

Functions in Kotlin

Having learned the fundamentals of Kotlin, in this chapter you will learn how to create
functions. This will help you minimize the code inside the main method. You can also
use functions that are already available.

3.1 A Closer Look

Functions are generally used to perform repetitive tasks, also known as methods. In
many programming languages, functions are used to perform special tasks and break the
main program into smaller chunks, making it more manageable.

For example, we can call average(A,B,C) multiple times, and it will print the average
of three numbers.

There are two types of functions available in Kotlin: user defined and standard
library. Let’s take a closer look at them now.

User-Defined Functions

A function that is made or defined by a user is known as a user-defined function.
Following is the syntax of a user-defined function:

fun function name(argument: datatype): return type if any{
// block of code that needs to run
return if any

o fun: fun is the keyword that is used for creating functions.

o function_name: function_name is the name of the function, which is

given by the user.

53
© Arnika Patel, Keshav Kumar, and Dr. Bishwajeet Kumar Pandey 2025

A. Patel et al., Kotlin Mastery, https://doi.org/10.1007/979-8-8688-1618-5_3

https://doi.org/10.1007/979-8-8688-1618-5_3#DOI

CHAPTER 3 FUNCTIONS IN KOTLIN

o argument: This is also known as a parameter, which is given to the
function for performing desired operations.

e return_type: This is used for specifying or telling the datatype of the
return value of the function, if available.

e {....}J: Curly braces are used to show the function boundary or the
block of code that defines the function, as follows:

fun addition(numberi:Int,number2:Int): Int{
var addition=0
addition = numberi+number2
return addition

Parameters in Functions

Function parameters are also known as arguments and are given to the function to
perform the desired operation.

In preceding example, two parameters are given to the function addition. The first
parameter is number1 and is of the integer type. The second parameter is number2, which
is also of the integer type.

Body of Functions

The body of the function is what we write inside the function block. In the preceding
example, statements declare the variable addition; assign the value of addition of two
numbers to the declared variable; and represent the returned value of addition as the
body of the function.

Return Value of the Functions

The return value for the function is the value that is returned from the function after
performing the desired operations. In the preceding example, after assigning the value
for the function, the variable addition is returned from the function as the output of the

function.

54

CHAPTER 3 FUNCTIONS IN KOTLIN

The preceding example is a Kotlin function that has the same type of parameters.
Next, let’s see a Kotlin function that has different types of multiple arguments:

fun student(name:String,roll no:Int){
println(name)
println(roll no)

In this case, we have different types of arguments for the function named student;
i.e., name as string and roll no as integer.

Calling Functions

To execute a function, you need to call that function from the main() function. When the
line with the function call comes in the main program, the control of the main program
transfers to the function to execute that function and returns the value of that function to
the main program. The execution of the main program then resumes from where it left
off. Following is an example of calling an addition function with two integer arguments
that return the sum of two integers:

fun main() {

var result=0
result=addition(5,2)
println("Addition is: "+result)

fun addition(numberi:Int,number2:Int):Int{
var result=0
result=numberi+number2
return result

Output:

Addition is: 7

55

CHAPTER 3 FUNCTIONS IN KOTLIN

Standard Library Functions

In Kotlin there are multiple library functions available. These functions are built-in
functions, so users just need to follow the structure and use it, without defining it. One of
the common examples of this kind of function is print1n(), which is a built-in function

of Kotlin and is used for printing on the console screen whatever is written inside the

brackets. Table 3-1 shows some other built-in functions that are available for use in

Kotlin’s standard library.

Table 3-1. Additional Built-in Functions

Function Description Example
printin() Prints anything written inside the bracket and printin(“Hello from Kotlin”)
returns with new line
print() Prints anything written inside the bracket and print(“hello from Kotlin”)
returns without new line
arrayOf() Declares the array of values written inside the array0f(1,2,3,4,5,6,7,8,9)
bracket
tolnt() Converts the string value to an integer “2024” .tolnt()
toLong() Converts the integer value to Long val a:Int=6
a.toLong()
toString() Converts the value to String 2024.toString()
toLowerCase() ~ Converts the value of given string to lowercase “HELLO FROM KOTLIN”.
toLowerCase()
toUpperCase() Converts the value of given string to uppercase “hello from Kotlin”.
toUpperCase()
sum() Used for adding all the values of an array array0f(1,2,3,4).sum()
rem() To get remainder of numbers when divided by ~ var numi1 = 26
each other var num2 = 3

var result = num1.rem(num2)

56

CHAPTER 3 FUNCTIONS IN KOTLIN

Advantages and Disadvantages of Using Functions
in Kotlin

Following are some advantages and disadvantages when we use functions in Kotlin. This

also gives you an idea of when to use functions in your program.

Advantages:

Reusability: Once the function is written, it can be used multiple
times in the code without worrying about the internal working of that

function.

Readability: Using functions will enhance the readability of the code,
as the code will be divided into multiple functions. Hence, it will be
easier for the programmer to comprehend it.

Modularity: Functions will divide the code into smaller chunks,
making it modular. Modular programs will be more manageable and
easy to change.

Abstraction: Functions will hide the complex logic, and users just
need to write the name of the function and use it, without worrying

about internal implementation.

Avoid Code Repetition: Functions can be used in programs multiple
times, which will save users lines of code and effort as well as
repetitive code.

Reduce Program Size: Functions will be helpful for programmers by
reducing lines of code, because once the function is written there is
no need to write that function again in that program.

Disadvantages:

Complex Debugging: Functions can make your program debugging
complex, if you have used multiple functions that call one another for

execution.

Poor Memory Management: Memory management is an important
aspect of programming. While working with complex programs, if
programmers fail to manage it properly it will result in memory leaks.

57

CHAPTER 3 FUNCTIONS IN KOTLIN

3.2 Functions with Default and Named Arguments

In traditional programming languages, programmers need to specify all the parameters
at the time of that function’s being called. In Kotlin, one of the most important features
is that a programmer does not need to do this. We can make the function’s parameters
optional. There are two types of arguments that are passed to a function in Kotlin:

1. Default Arguments

2. Named Arguments

Default Arguments

In Kotlin, the programmer can add a default value that needs to be used for that
parameter, using a default argument. This means that if the parameter’s value is not
passed at the time that function is called, then the default value will be used, and if the
parameter value is passed then the given value will be used. The following example
shows how the function call is executed without any argument:

fun main() {

person()
}
fun person(name: String ="James",age: Int = 23, designation: String =
"Developer”) {
println("Name is $name")
println("Age is $age")
println("Designation is $designation”)

Output:

Name is James
Age is 23
Designation is Developer

In the preceding example, the default argument for the name is “James,” for age is
“23,” and for designation is “Developer.” It will print all the default arguments, as shown
in the output, when called without any arguments. Now let’s see an example of calling a
function with partial arguments:

58

CHAPTER 3 FUNCTIONS IN KOTLIN

fun main() {

val name="Jacob"

val age=28

person(name, age)
}
fun person(name: String ="James",age: Int = 23, designation: String =
"Developer"”) {

println("Name is $name")

println("Age is $age")

println("Designation is $designation”)

Output:

Name is Jacob
Age is 28
Designation is Developer

In this example, the function is called with the arguments of name and age, so it will
be used as given, and for designation, the default argument will be used, as shown in the
output. Let’s see an example of a function called with all the arguments:

fun main() {

val name="William"

val age=35

val designation="Manager"

person(name, age, designation)
}
fun person(name: String ="James",age: Int = 23, designation: String =
"Developer"”) {

println("Name is $name")

println("Age is $age")

println("Designation is $designation”)

59

CHAPTER 3 FUNCTIONS IN KOTLIN

Output:

Name is William
Age is 35
Designation is Manager

In this example, the function is called with all the arguments so it will be used as

given in arguments, as shown in the output.

Named Arguments

In Kotlin, while working with named arguments, if we do not follow the proper order
of arguments then it will give an error due to type mismatch, or it will take it in the
order of the parameters as it is defined. The following example shows the mismatch of
arguments:

fun main() {

val name="William"
val designation="Manager"
person(name, designation)
}
fun person(name: String ="James",age: Int = 23, designation: String =
"Developer") {
println("Name is $name")
println("Age is $age")
println("Designation is $designation")

Output:

Error: Argument type mismatch: actual type is 'kotlin.String', but 'kotlin.
Int' was expected.

To overcome the preceding error, we need to use named arguments so that the
compiler knows which value is related to which argument. The following shows the
usage of named arguments in the preceding example:

fun main() {

val name="William"

60

CHAPTER 3 FUNCTIONS IN KOTLIN

val designation="Manager"
person(name=name, designation=designation)
}
fun person(name: String ="James",age: Int = 23, designation: String =
"Developer"”) {
println("Name is $name")
println("Age is $age")
println("Designation is $designation”)

Output:

Name is William
Age is 23
Designation is Manager

Now the compilation error is solved as the compiler has the information about the
name of the arguments that need to be used for the given value.

3.3 Recursive Functions

In Kotlin programming, recursive functions are available as in all the other programming
languages. A function that calls itself is known as a recursive function. The process of
calling functions repeatedly is known as recursion.

In Kotlin, there are two types of function calls possible:

1. Normal Function Call

2. Recursive Function Call

Normal Function Call

A normal function call is when a function is called only from the main() method. If we
want to execute the function multiple times, then we need to call it from main() method
again and again. Let’s see an example of a normal function call:

fun main() {

println("Function call 1")

61

CHAPTER 3 FUNCTIONS IN KOTLIN

student("Alice",11,18)
println("Function call 2")
student("Jeh",24,19)
println("Function call 3")
student("Jacob", 34,20)
println("Function call 4")
student("Jaya",2,18)
}
fun student(name:String, rollno:Int, age:Int){
println("Name is $name")
println("Roll No is $rollno")
println("Age is $age")
println("")

Output:

Function call 1
Name is Alice
Roll No is 11
Age is 18

Function call 2
Name is Jeh
Roll No is 24
Age is 19

Function call 3
Name is Jacob
Roll No is 34
Age is 20

Function call 4
Name is Jaya
Roll No is 2
Age is 18

62

CHAPTER 3 FUNCTIONS IN KOTLIN

Recursive Function Call

When a function calls itself from the same function, then it is known as a recursive
function. Note that every recursive function must have one condition to terminate the
function call or else that function call will run infinitely, which will give an error of stack
overflow. Let’s see an example of a recursive function without a terminating condition:

fun main() {

val n=1
countNumber (n)

}

fun countNumber (number:Int){
println(number)
countNumber (number+1)

}

Output:
Error: Exception in thread "main" java.lang.StackOverflowError

In the preceding example, we did not use a condition to exit from the recursive
call. That’s why the function runs infinitely and the output of the function is an error, as
exception f stack overflow occurs.

Now let’s add a condition to exit from the preceding example:

fun main() {

val n=1
countNumber (n)

}

fun countNumber (number :Int){
println(number)
if(number<10){

countNumber (number+1)

}

}

63

CHAPTER 3 FUNCTIONS IN KOTLIN

Output:

W 60N O LT & W N -

=
o

To overcome the example’s exception, we have added one condition. In this
example, when the value of a number exceeds the value 10, then it will not execute
recursive calls. Hence, we get the output that prints the value from 1 to 10.

3.4 Tail Recursive Functions

In recursive functions, we execute the function call first and then calculate the value of
the result. Instead of this, in tail recursion, we calculate the result first and then execute
the function calls. This will result in no more stack overflow exceptions or errors in the
program. The rule of tail recursion is: The recursive function call must occur at the last

line of the function. Let’s see an example of a tail recursive function:

fun main() {

val n = 1

val result = Factorial(5,n)

println("Factorial of 5 is: $result")
}
fun Factorial(number: Int, r:Int):Long{

return if(number==1){

r.tolong()

telse{

Factorial (number-1,r*number)

}

64

CHAPTER 3 FUNCTIONS IN KOTLIN
Output:
factorial of 5 is: 120

In the preceding example, first it executes the exit condition value, and after that the
recursive function call occurs. This will eliminate the stack overflow exception because
the function call occurs at the last line of the function, so there is no need to save the
current function call in the memory.

3.5 Programming Practices

In this section we will see some real-life examples where you can use your knowledge of
functions and build real-life applications.

1. Write a program that converts the temperature from Celsius to
Fahrenheit and Fahrenheit to Celsius.

Solution:

fun celsiusToFahrenheitConverter(celsiusTemp: Double): Double {
return (celsiusTemp * 9 / 5) + 32

}

fun fahrenheitToCelsiusConverter(fahrenheitTemp: Double): Double {
return (fahrenheitTemp - 32) * 5/ 9

fun main() {
val celsiusTemp = 34.0
val fahrenheitTemp = 45.0
val convertedFahrenheitTemp = celsiusToFahrenheitConverter
(celsiusTemp)
println("$celsiusTemp °C is $convertedFahrenheitTemp °F")
val convertedCelsiusTemp = fahrenheitToCelsiusConverter
(fahrenheitTemp)
println("$fahrenheitTemp °F is $convertedCelsiusTemp °C")

65

CHAPTER 3 FUNCTIONS IN KOTLIN
Output:

34.0 °C is 93.2 °F
45.0 °F is 7.222222222222222 °C

2. Write a program that finds the area of a circle.

Solution:

fun areaOfCircle(radius: Double): Double {
return (3.14 * radius * radius)

}

fun main() {
val radius = 4.0
val area = areaOfCircle(radius)
println("Area of Circle is $area")

Output:

Area of Circle is 50.24

3. Write a program to find the maximum from two numbers.

Solution:

fun max(number1:Int,number2:Int) {
if(number1>number2){
printIn("Maximum number from $numberi and $number2 is
$number1")
telse{
printIn("Maximum number from $numberi and $number2 is
$number2")

}

fun main() {
max(10,12)

66

4.

5.

CHAPTER 3 FUNCTIONS IN KOTLIN

Output:

Maximum number from 10 and 12 is 12

Write a program to check if a given number is even or odd.
Solution:

fun evenOrOdd(number:Int) {
if(number%2==0){
println("$number is EVEN number")
telse{
println("$number is ODD number")

}

fun main() {
even0r0dd(17)

Output:

17 is ODD number

Write a program that creates a simple calculator that calculates
arithmetic operations like addition, subtraction, division,
multiplication, and modulus.

Solution:

fun addition(number1: Int, number2: Int): Int{
return numberi+number2

}

fun subtraction(numberi: Int, number2: Int): Int{
return numberi-number2

}

fun multiplication(numberi: Int, number2: Int): Int{
return number1*number2

67

CHAPTER 3 FUNCTIONS IN KOTLIN

fun division(numberi: Int, number2: Int): Double{
if(number2!=0){
return (number1/number2).toDouble()
telse{
return 0.0

fun modulus(numberi: Int, number2: Int): Int{
return numberi%number2

fun main() {
println("Addition of 12 and 13 is: ${addition(12, 13)}")
println("Subtraction 15 and 10 is: ${subtraction(15, 10)}")
println("Multiplication 2 and 6 is: ${multiplication(2, 6)}")
println("Division of 22 and 2 is: ${division(22, 2)}")
println("Modulus of 22 and 2 is: ${modulus(22, 2)}")

Output:

Addition of 12 and 13 is: 25
Subtraction 15 and 10 is: 5
Multiplication 2 and 6 is: 12
Division of 22 and 2 is: 11.0
Modulus of 22 and 2 is: 0

3.6 Summary

In this chapter we have learned all about functions in Kotlin, which enables you to write
your own functions and use already available functions. We have also seen some real-life
examples where you can apply knowledge of functions to create different applications.

68

CHAPTER 3 FUNCTIONS IN KOTLIN
3.7 Test Your Knowledge

1. Which keyword is used to define a function in Kotlin?
a. function
b. fun
c. define
d. def

2. Which of the following is the correct syntax for declaring a
function in Kotlin?

a. fun fun_name(): return_type{}

b. function fun_name(): return_type{}

c. fun fun_name(argumentl:type, argument2:type): return_type{}
d. fun fun_name(): {return_type}

3. Which of the following statements is applicable for Kotlin
standard library functions?

a. They are built-in functions, available to use without defining them.
b. They need to be defined by user.

c. They do not return values.

d. They only work with string inputs.

4. Which of the following is a Kotlin standard library function that
converts values to strings?

a. toVal()
b. toChar()
c. tolnt()

d. toString()

69

CHAPTER 3 FUNCTIONS IN KOTLIN

5. What is the advantage of using functions in Kotlin programming?
a. Reduce memory usage
b. Make debugging easier
c. Reduce code duplication
d. Increase complexity

6. Which of the following is a disadvantage of functions in Kotlin

programming?

a. Poor memory management in complex programs
b. Faster execution

c. Increased readability

d. Modularity

7. Which of the following functions is used to convert a string into
uppercase?

a. toUpper()

o

. toUpperCase()
. toStringUpper()

o

(o

. toStringUpperCase()

8. What will happen if we do not provide the correct order of

arguments in a function call with named arguments?
a. The program will execute successfully.

b. The program will run but will give wrong values.
c. There will be a type mismatch error.

d. It will give runtime error.

9. What will be the output of the following code?

fun countNumber (number: Int) {
println(number)
countNumber (number + 1)

70

10.

CHAPTER 3

fun main() {
countNumber (8)

a. Infinite loop without error
b. 1

c. StackOverFlowError

d. 1,2,3,4,5,6,7,8,9,10

Which of the following function prints the text to the console
without adding a new line?

a. println()
b. output()
c. printWithoutLine()

d. print()

3.8 Answers

10.

FUNCTIONS IN KOTLIN

71

CHAPTER 4

Object-Oriented
Programming with Kotlin

Object-oriented programming (OOP) supports programming based on objects. Instead
of using functions or logic, programming is dependent upon objects, which contain data

or code. Figure 4-1 shows the key concepts included in an object-oriented programming

language.

Abstraction

Encapsulation

Object
Oriented
Programming
Concepts

Polymorphism

Figure 4-1. Object-oriented programming concepts

© Arnika Patel, Keshav Kumar, and Dr. Bishwajeet Kumar Pandey 2025
A. Patel et al., Kotlin Mastery, https://doi.org/10.1007/979-8-8688-1618-5_4

73

https://doi.org/10.1007/979-8-8688-1618-5_4#DOI

CHAPTER 4 OBJECT-ORIENTED PROGRAMMING WITH KOTLIN

o Classes and Objects are the basic elements of OOP. They are
generally used for representing real-world objects. A class is a
collection of methods or properties with which multiple objects can
be created. Objects are real-life entities and are visible to users.

o Abstraction is a property that can give access to only required
information to a user. Information that is confidential or private will
not be visible to the user.

o Encapsulation refers to “data hiding.” Using this property, we can
protect data from the outside world.

o Inheritance is a property that allows the inheriting of methods of one
class by another class.

e Polymorphism is the ability to appear in many forms. This can
be achieved using methods with the same name and different
parameters.

In this chapter, we will learn how these OOP concepts are applied to the Kotlin
programming language.

4.1 Classes and Objects
Classes

Classes are a collection of methods and properties, which in turn are used for creating
multiple objects. To create multiple objects, first we need to define the class, using the
class keyword. Class definition includes the name of the class, header of the class, and
members and properties included inside the class (which is also known as the body
of the class) enclosed within the curly braces. The following is the syntax of a class
declaration:

Syntax:

class class_name{ //class header
//class property
//class methods

74

CHAPTER 4 OBJECT-ORIENTED PROGRAMMING WITH KOTLIN

o Class Name: We can give any name to the class. Each and every class
has a unique name.

o Class Header: Header of the class includes parameter or constructor
of the class.

o Class Body: Body of the class consists of the methods or properties
related to the class. It is enclosed by the curly braces.

The following is an example of declaring a class in Kotlin:
Example:

class people{
// class property
var name:String =

var age:Int = 0
var gender:String = ""
// class methods or function
fun name(){

//fun body
}
fun age(){

//fun body
}
fun gender(){

//fun body

Objects

In Kotlin programming, objects are a real-life entity and have some properties and
methods. We can access properties and methods using objects. We can create multiple
objects of the same class. Objects consist of identity, attributes, and behavior.

o Identity: Object’s identity is a unique name, which we can assign to
each and every object. Objects can also interact with other objects
using identity.

75

CHAPTER 4 OBJECT-ORIENTED PROGRAMMING WITH KOTLIN

o Attribute: This refers to the state of an object. It is also known as a
property of the object. It can have more than one.

e Behavior: This is generally represented as the methods of an object.
It can also show the response from one object to another object.

Creating an Object

We can create an object using the name of the class and the following syntax:

Syntax:
var obj = className()

Access the property of the class

We can access the properties of the class using objects. For that, first we need to
create an object and then use that object to access the properties.

Syntax:

Obj.nameOfProperty

Access the Member Function of the Class

We can access the member function of the class using an object. First we need to create
an object and then use that object to access the member functions.
Syntax:

Obj. functionName(parameters)

Let’s see an example of creating a Kotlin object and accessing properties as well as
member functions.
Example:

fun main() {
val peoplel = people()
val people2 = people()
peoplel.printValues("John", 23, "Male")
people2.name("Jacob")
people2.age(25)
people2.gender("Male")
println("“Name: ${people2.name}")

76

CHAPTER 4 OBJECT-ORIENTED PROGRAMMING WITH KOTLIN

println("Age: ${people2.age}")
println("Gender: ${people2.gender}")
}
class people{
// class property
var name:String = ""
var age:Int = 0
var gender:String =
// class methods or function
fun name(n:String){
this.name=n

nmn

}

fun age(a:Int){
this.age=a

}

fun gender(g:String){
this.gender=g

}

fun printValues(n:String,a:Int,g:String){
println("Name:$n")
println("Age:$a")
println("Gender:$g")

Output:

Name: John
Age: 23
Gender: Male
Name: Jacob
Age: 25
Gender: Male

77

CHAPTER 4 OBJECT-ORIENTED PROGRAMMING WITH KOTLIN

Nested Classes

Nested classes are defined as classes inside other classes. In Kotlin, we can define one
class in another class. Nested classes can’t access properties or methods from outer
classes, but outer classes can access properties and methods from nested classes. The
following is the syntax of nested classesa.

Syntax:

class outerClass{
//outer class properties or functions
class nestedClass{
// nested class properties or functions

Let’s see an example of a nested class. This example declares the nested class and
accesses the value of the nested class from the outer class.
Example:

class outerClassHere {
var outerClassProperty = "property of outer class”
// nested class declaration
class nestedClassHere {
val nestedClassPropertyl = "property 1 of nested class”
val nestedClassProperty2 = "property 2 of nested class"

}

fun main(args: Array<String>) {
// accessing member of Nested class
println(outerClassHere.nestedClassHere().nestedClassProperty1)
println(outerClassHere.nestedClassHere().nestedClassProperty2)

Output:

property 1 of nested class
property 2 of nested class

78

CHAPTER 4 OBJECT-ORIENTED PROGRAMMING WITH KOTLIN

Inner Classes

We have seen that nested classes cannot access properties or methods from outer
classes. In inner classes this limitation is overcome because an inner class can access the
properties and methods from outer classes. Like nested classes, inner classes also are
declared inside the outer class but using the inner keyword. Following is the syntax of
using an inner class.

Syntax:

class outerClass{
//outer class properties or functions
inner class innerClass{
// inner class properties or functions

Let’s see an example of an inner class. The following example declares the inner class
and accesses the value of an outer class property from inside the inner class.

Example:

class outerClassHere {
var outerClassProperty = "property of outer class"
// inner class declaration
inner class innerClassHere {
val innerClassPropertyl = "property 1 of inner class"
val innerClassProperty2 = "property 2 of inner class”
fun accessOuterClassProperty(){
println("Accessing property of outer class from inner class:
$outerClassProperty”)

}

fun main(args: Array<String>) {
// accessing member of inner class
println(outerClassHere().innerClassHere().innerClassProperty1)
println(outerClassHere().innerClassHere().innerClassProperty2)
outerClassHere().innerClassHere().accessOuterClassProperty()

79

CHAPTER 4 OBJECT-ORIENTED PROGRAMMING WITH KOTLIN

Accessing property of outer class from inner class: property of outer class
Output:

property 1 of inner class
property 2 of inner class

1. Advantages of Using Nested and Inner Classes

a. Provides Encapsulation: Nested and inner classes allow you
to keep certain functionality separate from the rest of the code;
hence, it provides encapsulation.

b. Improves Accessibility: Inner classes can access the properties of
outer classes, which improves accessibility.

c. Code Reuse: Nested and inner classes can be reused within
multiple classes or the same class, which reduces code repetition.

2. Disadvantages of Using Nested and Inner Classes

a. If multiple nested or inner classes are used in a class, then it will be
difficult for one to debug the program.

b. Using multiple levels of nested and inner classes can slow down
the performance of the program.

c. Using deep nested and inner classes will make the program more
complex, less readable, and harder to understand.

In conclusion, we can use nested and inner classes in our program but they must be
used in the proper way, which will be more advantageous.

4.2 Constructors

A constructor is a method used for initializing objects. It is called when the object of the
class is created. If we do not create a constructor, then the compiler creates the default
constructor. There are two types of constructors available in Kotlin.

1. Primary Constructor

2. Secondary Constructor

80

CHAPTER 4 OBJECT-ORIENTED PROGRAMMING WITH KOTLIN

Kotlin classes can contain one primary constructor and multiple secondary
constructors. Generally, a primary constructor is used for initializing the class and the
secondary constructor is used to initialize as well as add extra functionality.

Primary Constructor

Primary constructors can be initialized in the class header using the constructor
keyword. We can also use parameters in primary constructors if required. Following is an
example of using a primary constructor.

Example:

class person constructor(val name:String){
//class body

Writing the constructor keyword is not necessary if no annotations or modifiers are

used. Hence, we can omit it.

class person(val name:String){
//class body

Let’s see a program for Kotlin that has a primary constructor with output.
Example:

class person constructor(val first name:String, val last name:String) {
val full name = first name+last_name

}

fun main(args: Array<String>) {
val person = person("Mark", "Brown")
println("Full Name: ${person.full name}")

Output:

Full Name: MarkBrown
The following is the same example without using the constructor keyword.

81

CHAPTER 4 OBJECT-ORIENTED PROGRAMMING WITH KOTLIN
Example:

class person(val first name:String, val last name:String) {
val full name = first name+last name

}

fun main(args: Array<String>) {
val person = person("Mark", "Brown")
println("Full Name: ${person.full name}")

Output:

Full Name: MarkBrown

Init Block

This is used to initialize member variables. It is called when the object of the class is
created. There can be multiple init blocks inside one class. Init blocks get called before
the constructor of the class is called. The following is an example of using an init block
inside a class.

Example:

class person(val first name:String, val last name:String) {
val full name = first name+last_name
init{
println("Inside first init block")

}
init{
println("Inside second init block")
}
init{
println("Inside third init block")
}
init{
println("Full Name: $full name")
}

82

CHAPTER 4 OBJECT-ORIENTED PROGRAMMING WITH KOTLIN

fun main(args: Array<String>) {
val person = person("Mark", "Brown")

Output:

Inside first init block
Inside second init block
Inside third init block
Full Name: MarkBrown

Using Default Value in Primary Constructor

Similar to the use of default values in functions, we can also use them with constructors,
as follows.
Example:

class person(first_name:String = "Mark", last_name:String = "Brown") {
val full name = first name+last name
init{
println("Full Name: $full name")

}

fun main(args: Array<String>) {
val personi = person()
val person2 = person(last name="Bell")
val person3 = person("Evan")

Output:

Full Name: MarkBrown
Full Name: MarkBell
Full Name: EvanBrown

83

CHAPTER 4 OBJECT-ORIENTED PROGRAMMING WITH KOTLIN

Using Secondary Constructors

Kotlin secondary constructors can be used for initialization as well as to add more
functionality. Kotlin programs can have more than one secondary constructor.
Secondary constructors are prefixed by the keyword constructor. Following is an
example of using a secondary constructor.

Example:

class person{
constructor(first name:String,last name:String){
val full name = first name+last_name
println("Full Name: $full name")

}
fun main(args: Array<String>) {
person("Mark", "Brown")

Output:

Full Name: MarkBrown

Using Multiple Secondary Constructors Inside the Same Class

In the following example we declare three constructors: one for name, one for age, and
one for gender. We create the object of the class according to the required constructor.
Example:

class person{
constructor(first name:String,last name:String){
val full name = first name+last _name
println("Full Name: $full name")
}
constructor (age:Int){
println("Age: $age")

84

CHAPTER 4 OBJECT-ORIENTED PROGRAMMING WITH KOTLIN

constructor(gender:String){
println("Gender: $gender"”)

}

fun main(args: Array<String>) {
person("Mark", "Brown")
person(24)
person("Male")

Output:

Full Name: MarkBrown
Age: 24
Gender: Male

Calling One Secondary Constructor from Another

We can call one constructor from another constructor using the this() function. We are
calling the full name constructor from the age constructor in the following example.
Example:

class person{
constructor(first name:String,last name:String){
val full name = first name+last_name
println("Full Name: $full name")
}
constructor(age:Int):this("Mark", "Brown"){
println("Age: $age")

}

}

fun main(args: Array<String>) {
person(24)

}
Output:

Full Name: MarkBrown
Age: 24
85

CHAPTER 4 OBJECT-ORIENTED PROGRAMMING WITH KOTLIN

4.3 Inheritance

Inheritance is one of the most important OOP concepts. Kotlin supports inheritance.
It enables the code reuse feature. Inheritance is defined as using properties or features
from a parent class in a child class. The parent class is also called the super class or base
class, and the child class also called the subclass or derived class. A subclass can also add
new properties or methods if required. Following is the syntax of using inheritance in
Kotlin. The open keyword is used in the base class to enable it to use a base class for the
derived class.

Syntax:

open class baseClass(a:Int){
// class body

}
class derivedClass(a:Int):baseClass(a){

// class body

Following is an example of using inheritance in Kotlin. This example declares the
base class Fruits and inherits it in derived classes Apple and Banana.
Example:

open class Fruits{

fun run(){
println("Fruits are good for health")

}
class Apple:Fruits(){

fun color(){
println("Apples have red color")

}

class Banana:Fruits(){

fun color(){

println("Bananas have yellow color")

86

CHAPTER 4 OBJECT-ORIENTED PROGRAMMING WITH KOTLIN

fun main(args: Array<String>) {
val apple = Apple()
println("For Apple Subclass")
apple.run()
apple.color()
println()
val banana = Banana()
println("For Banana Subclass")
banana.run()
banana. color()

Output:

For Apple Subclass
Fruits are good for health
Apples have red color

For Banana Subclass
Fruits are good for health
Bananas have yellow color

Kotlin Override Property

If the base class and the derived class both have the same name property or function,
then we can override the base class property or function using the override keyword.
Let’s see an example where the apple class has the same function run and so we need
to use the override keyword in the apple class and make the base class function run in
order to open.

Example:

open class Fruits{

open fun run(){
println("Fruits are good for health")

87

CHAPTER 4 OBJECT-ORIENTED PROGRAMMING WITH KOTLIN

class Apple:Fruits(){
override fun run(){
println("Apples are good for health")
}

fun color(){
println("Apples have red color")

}

fun main(args: Array<String>) {
val apple = Apple()
apple.run()
apple.color()

Output:

Apples are good for health
Apples have red color

Kotlin Inheritance with Primary Constructor

Inheritance and primary constructors can also be used together.
Example:

open class baseClass(first name:String,last name:String){
val full name = first name+last name
}
class derivedClass(first name:String,last name:String,age:Int):baseClass
(first_name,last name){
init{
println("Full Name: $full name")
println("Age: $age")

}

fun main(args: Array<String>) {
derivedClass("Mark","Brown",24)

88

CHAPTER 4 OBJECT-ORIENTED PROGRAMMING WITH KOTLIN

Output:

Full Name: MarkBrown
Age: 24

Kotlin Inheritance with Secondary Constructor

Inheritance and secondary constructors can also be used together. When a derived class

object is created it uses and initializes the base class too. We also need to add all the

parameters of the secondary constructor in the derived class, as shown in this example.
Example:

open class baseClass{
constructor(first _name:String,last _name:String){
val full name = first name+last_name
println("Full Name: $full name")

}

class derivedClass(first _name:String,last name:String,age:Int):baseClass
(first _name,last_name){
init{

println("Age: $age")

}
fun main(args: Array<String>) {
derivedClass("Mark", "Brown",24)

Output:

Full Name: MarkBrown
Age: 24

89

CHAPTER 4 OBJECT-ORIENTED PROGRAMMING WITH KOTLIN

Calling Base Class Secondary Constructor from Derived
Class Secondary Constructor

We can call a secondary constructor of a base class from the secondary constructor of a
derived class using the super keyword.
Example:

open class baseClass{
constructor(first name:String,last name:String){
val full name = first name+last name
println("From Base Class")
println("Full Name:$full name")

}

class derivedClass:baseClass{
constructor(first name:String,last name:String,age:Int):super(first
name, last name){
println("From Derived Class")
println("Full Name: $first name+$last name")
println("Age: $age")

}
fun main(args: Array<String>) {
derivedClass("Mark", "Brown",24)

Output:

From Base Class
Full Name: MarkBrown

From Derived Class
Full Name: Mark+Brown
Age: 24

90

CHAPTER 4 OBJECT-ORIENTED PROGRAMMING WITH KOTLIN

4.4 Interfaces

Interfaces are generally referred to as the blueprint of the class. An interface contains all
the abstract methods and properties that are common for classes that implement that
interface. Interfaces can be implemented by multiple classes. They help achieve OOP
concepts like abstraction and polymorphism. Interface declaration in Kotlin starts with
the keyword interface followed by name of that interface; after that goes the bracket for
starting and ending the interface. The following is the syntax for this.

Syntax:

Declaration of interface

interface interface name{
//interface body

Implementing interface

class class name : interface name{
//class body

The following is an example of an interface. It shows the interface calculator having
two methods to implement and that the class that implements this interface will override
these two methods and implement it.

Example:

interface calculator{
fun add(a:Int,b:Int)
fun subtract(a:Int,b:Int)
}
class myCalculator : calculator{
override fun add(a:Int,b:Int){
println("Addition of $a and $b is: "+(a+b))
}
override fun subtract(a:Int,b:Int){
println("Subtraction of $a and $b is: "+(a-b))

91

CHAPTER 4 OBJECT-ORIENTED PROGRAMMING WITH KOTLIN

fun main(){
val mycalc = myCalculator()

mycalc.add(6,8)
mycalc.subtract(9,6)

Output:

Addition of 6 and 8 is: 14
Subtraction of 9 and 6 is: 3

Default Values and Methods

We can use default values and methods in interfaces. Building on the preceding
example, let’s implement one default method and override it in another class and also
add default values in the add and subtract methods.

Example:

interface calculator{
fun add(a:Int,b:Int = 5)
fun subtract(a:Int,b:Int = 3)
fun defaultMethodPrint(){
println("Default method run")

}

class myCalculator : calculator{

override fun add(a:Int,b:Int){
println("Addition of $a and $b is: "+(a+b))

}

override fun subtract(a:Int,b:Int){
println("Subtraction of $a and $b is: "+(a-b))

}

override fun defaultMethodPrint(){
super.defaultMethodPrint() //interface default method run
println("Default Method override")

92

CHAPTER 4 OBJECT-ORIENTED PROGRAMMING WITH KOTLIN

fun main(){
val mycalc = myCalculator()

mycalc.add(6)
mycalc.subtract(9)
mycalc.defaultMethodPrint()

Output:

Addition of 6 and 5 is: 11
Subtraction of 9 and 3 is: 6
Default Method run

Default Method override

Properties in Interfaces

Interfaces can also have properties. All the properties can be declared inside the
interface either abstractly or by implementation. The following example shows the usage
of interface properties.

Example

interface interfacePropertyDemo{
val X:Int
val Y:String
}
class propertyClass : interfacePropertyDemo{
override val X : Int = 30
override val Y : String = "Override Property"

}

fun main(){
val obj = propertyClass()

println("X = ${obj.X}")
println("Y = ${obj.Y}")

93

CHAPTER 4 OBJECT-ORIENTED PROGRAMMING WITH KOTLIN
Output:

X =30
Override Property

<
I}

Inheritance in Interfaces

Interfaces can also inherit another interface. To do so, it gets the property and methods
from the base interface, and also it can add its own methods and properties. The class
that implements these interfaces has to implement all the methods from the base and
derived interfaces. Interfaces can inherit multiple interfaces. Following is an example of
inheritance in interfaces.

Example:

interface baseInterface{

val a:Int
val b:Int
}
interface derivedInterface : baselInterface{
fun add()
fun subtract()
}
class myCalculator : derivedInterface{
override val a:Int = 10
override val b:Int = 5
override fun add(){
println("Addition of $a and $b is: "+(a+b))
}
override fun subtract(){
println("Subtraction of $a and $b is: "+(a-b))
}
}

fun main(){
val mycalc = myCalculator()

mycalc.add()
mycalc. Subtract()

94

CHAPTER 4 OBJECT-ORIENTED PROGRAMMING WITH KOTLIN

Output:
Addition of 10 and 5 is: 15
Subtraction of 10 and 5 is: 5

Multiple Interfaces

In Kotlin one class can implement more than one interface. A class needs to implement
all the methods from all implemented interfaces. The following example shows the
usage of multiple interface implementation in a single class.

Example:

interface add{
fun addition(a:Int,b:Int)
}
interface subtract {
fun subtraction(a:Int,b:Int)
}
class myCalculator : add,subtract{
override fun addition(a:Int,b:Int){
println("Addition of $a and $b is: "+(a+b))
}
override fun subtraction(a:Int,b:Int){
println("Subtraction of $a and $b is: "+(a-b))

}

fun main(){
val mycalc = myCalculator()

mycalc.addition(10,6)
mycalc.subtraction(8,6)

Output:

Addition of 10 and 6 is: 16
Subtraction of 8 and 6 is: 2

95

CHAPTER 4 OBJECT-ORIENTED PROGRAMMING WITH KOTLIN

4.5 Visibility Modifiers

Visibility modifiers in Kotlin are used to control the visibility of things like class,
methods, properties, and so on. Following are the visibility modifiers that are available in
the Kotlin language.

1. Public: In Kotlin, public is the default visibility modifier. The
public modifier makes the variables and methods visible to all the
other variables and methods available in particular file. If we don’t
declare any modifier then by default it is public. If we declare top-
level components like classes or methods, then all the code inside
that class or method is public. Following is an example of using a
public modifier.

Example:

//this class is by default public, because modifier is not
declared
class X{

fun runX(){

println("X class: Accessible everywhere")

}
}
//public modifier declared
class Y{
fun runY(){
println("Y class: Accessible everywhere")
}
}
fun main(){
val objX = X()
val objY = Y()
objX.runX()
objY.runY()
}
Output:

X class: Accessible everywhere
96

CHAPTER 4 OBJECT-ORIENTED PROGRAMMING WITH KOTLIN

Y class: Accessible everywhere

Private: Private makes the modifier visible to only a particular
class; outside that class, it is not visible. Following is an example of
a private modifier.

Example:

// class X is accessible from same file
private class X {

private val num = 40

fun run()

{

// we can access num here in same class
println(num)
println("Accessing num successful”)

}
fun main(args: Array<String>){
var obj = X()
obj.run()
//we can't access num here, it is private in class X
println(obj.num)
}

Output:
Error: Cannot access 'val num: Int': it is private in '/X'.

Internal: An internal modifier makes the code visible to the
particular module in which it is declared. A module is a set of
Kotlin files that are compiled together. Following is an example of
an internal modifier.

Example:

// class X is accessible from same module
internal class X {

97

CHAPTER 4 OBJECT-ORIENTED PROGRAMMING WITH KOTLIN

98

internal val num = 40

fun run()
{
println("Accessing from same module")
}
}
fun main(args: Array<String>){
var obj = X()
obj.run()
}
Output:

Accessing from same module

Protected: A protected modifier is related to inheritance. The
modifier is visible to only the class it is declared in and its
subclass. Following is an example of using a protected modifier.

Example:

open class X{
val num = 30

}
class Y: X(){

fun accessX(){
println("Access from X: $num")

}
fun main(){
val objY = Y()
objY.accessX()
}

Output:

Access from X: 30

CHAPTER 4 OBJECT-ORIENTED PROGRAMMING WITH KOTLIN

4.6 Property

A property is declared the same way as variables are declared—by using the var and val
keywords in classes or methods. A property declared using var can be changed, while
one declared with val cannot be changed. Following is the syntax of declaring a property
in a class.

Syntax:

Using var

var <propertyName>[: <PropertyType>] [= <property initializer>]
[<getter>]
[¢setter>]

Using val

val <propertyName>[: <PropertyType>] [= <property initializer>]
[<getter>]

Initializer, getter, and setter are optional. When using val, we can’t use setter,
because val properties cannot be changed—they are constant.

Example:
fun main() {
var x:Int = 10
val y:Int = 20
x=30 //can be reassigned because it is var

y=20 //cannot be reassigned because it is val

Output:

Error: 'val' cannot be reassigned.

Class Properties

In Kotlin, just as we declare properties in the main function, we can also declare them
inside the class. The meanings of the val and var keywords is the same.

99

CHAPTER 4 OBJECT-ORIENTED PROGRAMMING WITH KOTLIN
Example:

class X(
val name:String,
val age:Int

H
//class body

}

fun main() {
val obj = X("Mark",24)
println("Name: ${obj.name}")
println("Age: ${obj.age}")

Output:

Name: Mark
Age: 24

Setters and Getters

Setter, as its name suggests, is used to set the value, while getter is used to get the

value. Getters and setters are generally auto-generated in the code. Let’s take an example

of a person class. Define the property name in that class and assign the value Mark to it.
Example:

class person{
var name:String = "Mark"

The preceding code is equivalent to the following code.

class person {
var name: String = "Mark"
get() = field // getter
set(value) { field = value } // setter

100

CHAPTER 4 OBJECT-ORIENTED PROGRAMMING WITH KOTLIN

Access Getter and Setter

fun main(){
val obj = person()

obj.name="Evan" //setter
println("“Name: ${obj.name}") //getter

Where value and field are used in the preceding program, value is assigned to
field and field is assigned to get().

Custom Setter and Getter

We can create custom getters and setters in the program, as shown in the following code.
Example:

class X(age:Int){
var age:Int = age //custom
set(value) {
field = if(value > 18) value else 0
}

var isEligible:Boolean = false //custom

get(){

return age>18

}

fun main() {
val obj = X(19)
obj.age = 10
println("isEligible:${obj.isEligible}")
println("Age: ${obj.age}")

Output:

iskligible:false
Age: 0

101

CHAPTER 4 OBJECT-ORIENTED PROGRAMMING WITH KOTLIN

4.7 Abstract Class

An abstract class is used to define a template for the class, methods, and properties
inside this class that cannot be instantiated. An abstract class can be declared using the
abstract keyword. Following is the syntax for declaring an abstract class.

Syntax:

abstract class class_name{

//code

Objects cannot be created for an abstract class. Methods and properties declared
inside an abstract class are not abstract unless they are declared as abstract. The
following is an example.

abstract class class_name{
abstract var a:Int //abstract
abstract fun run() //abstract
fun run2(){
printIn(“Non abstract”)

The following is an example of using abstract and non-abstract properties as well as
methods in abstract classes.
Example:

//abstract class

abstract class People(val name: String) { // Non-Abstract Property
// Abstract Property (Must be overridden by Subclasses)
abstract var age: Int

// Abstract Methods (Must be implemented by Subclasses)
abstract fun birthDate(date:String)

// Non-Abstract Method

fun peopleDisplay() {
println("Name: $name")

102

CHAPTER 4 OBJECT-ORIENTED PROGRAMMING WITH KOTLIN

// derived class
class person(name: String) : People(name) {
override var age = 34
override fun birthDate(date:String){
println("Date of Birth is: $date")

}

fun main(args: Array<String>) {
val obj = person("Mark")
obj.peopleDisplay()
obj.birthDate("12 January 1992")

Output:

Name: Mark
Date of Birth is: 12 January 1992

Overriding Non-abstract Open Member with the Abstract

In Kotlin, we can override a non-abstract method or property from an open class to an
abstract class and use it in a different class, as follows.
Example:

open class MainClass(){

open fun run(){
println("Animals can run")

}

abstract class Animal:MainClass(){
override abstract fun run()
}
class Lion:Animal(){
override fun run(){
println("Lions can run")

103

CHAPTER 4 OBJECT-ORIENTED PROGRAMMING WITH KOTLIN

fun main(){

val objmain = MainClass()
objmain.zrun()

val objlLion = Lion()
objlLion.run()

Output:

Animals can run
Lions can run

Multiple Derived Classes

We can use an abstract member of an abstract class in multiple classes that derive the
abstract class. Following is an example. The abstract class animal with the abstract
method run can be derived by the Tiger, Lion, and Dog classes.

Example:

abstract class Animal{
abstract fun run()
}
class Lion:Animal(){
override fun run(){
println("Lions can run")

}
class Tiger:Animal(){

override fun run(){
println("Tigers can run")

}
class Dog:Animal(){

override fun run(){
println("Dogs can run")

104

CHAPTER 4 OBJECT-ORIENTED PROGRAMMING WITH KOTLIN

fun main(){
val objlLion = Lion()
objLion.run()
val objTiger = Tiger()
objTiger.run()
val objDog = Dog()
objDog.run()

Output:

Lions can run
Tigers can run
Dogs can run

4.8 Data Class

In Kotlin, we can create data classes to seize data inside them. There are some derivable
functions available for that data that are automatically derived from the data class. To
create a data class, the keyword data is required. Following is an example of a data class.

Example:

data class Person(val name: String, val age: Int)

There are some rules for creating a data class, as follows:

e Primary constructor must have at least one parameter.

o Data classes cannot be abstract class, sealed class, or inner class.

o Itmayimplement interfaces.

o Primary constructor must be declared using either val or var.
Functions that are automatically derived by the compiler are as follows:

1. toString(): This function creates a string of all parameters
available in the class. The following is an example of that.

Example:

fun main(){
data class people(val name:String, val age:Int)

105

CHAPTER 4 OBJECT-ORIENTED PROGRAMMING WITH KOTLIN

106

val obj = people("Mark",23)
println(obj.toString())
}

Output:
people(name=Mark, age=23)

hashCode(): This function returns the hashcode of the object.
The following is an example of using this function.

Example:

fun main(){

data class people(val name:String, val age:Int)
val obj = people("Mark",23)
println("Hashcode: "+obj.hashCode())

}

Output:
Hashcode: 74113738

equals(): This method is used to compare two objects, and if both
are similar it returns true. The following is an example.
Example:

fun main(){

data class people(val name:String, val age:Int)

val obj1 = people("Mark",23)

val obj2 = people("Mark",23)

val obj3 = people("Evan",25)

println("Compare obj1 and obj2: "+obji.equals(obj2))

println("Compare obj1 and obj3: "+obji.equals(obj3))
}

Output:

Compare obj1 and obj2: true
Compare obj1 and obj3: false

CHAPTER 4 OBJECT-ORIENTED PROGRAMMING WITH KOTLIN

4. copy(): Using this, we can copy all the parameters defined in the
primary constructor. Sometimes we need this function to copy an
object to another object. The following is an example.

Example:

fun main(){

data class people(val name:String, val age:Int)

val obj = people("Mark",23)

println(obj.toString())

val obj2 = obj.copy() //copy all parameters
val obj3 = obj.copy(age=24) //copy only name
println(obj2.toString())

println(obj3.toString())

}

Output:

people(name=Mark, age=23)
people(name=Mark, age=23)
people(name=Mark, age=24)

4.9 Sealed Class

As their name suggests, sealed classes are used for bounded hierarchies. A sealed
class defines a set of subclasses within it. It restricts that type to be matched at compile
time rather than at runtime. Sealed classes are by default abstract, so they cannot be
instantiated. All subclasses of the sealed class need to be declared in the same file. To
declare a sealed class use the following syntax.

Syntax:

sealed class class_name
Following is an example of its usage.

107

CHAPTER 4 OBJECT-ORIENTED PROGRAMMING WITH KOTLIN
Example:

sealed class Animal(){
class Dog:Animal(){

fun display(){
println("Subclass Dog of Sealed class Animal ")

}
class Cat:Animal(){

fun display(){
println("Subclass Cat of sealed class Animal")

}

fun main(){
val obj =Animal.Dog()
obj.display()
val obji=Animal.Cat()
obj1.display()

Output:

Subclass Dog of sealed class Animal
Subclass Cat of sealed class Animal

4.10 Enum Class

In Kotlin programming there will sometimes be the need for constants, and for that,
enumeration is used. Enum is nothing but a named list of constants, and it has its own
type. Following are some important points related to enum in Kotlin:

e An enum can have methods and properties.
o [Itacts as a separate instance of a class and is separated by comma.
e [Itincreases readability.

e Aninstance of the enum class cannot be created using constructors.

108

CHAPTER 4 OBJECT-ORIENTED PROGRAMMING WITH KOTLIN

The following is an example of using the enum class.
Example:

Enum class Months{
January,
February,
March,
April,
May,

June,
July,
August,
September,
October,
November,
December

}

An enum class can have constructor. It is initialized by passing some value to the
primary constructor, as follows:

enum class colors(val name:String){
color1i(“Red”),
color2(“Green”)

To access these colors we need to write the following line in code:

val color = colors.colori.name

Enum Properties and Methods

Let’s look at several enum properties and methods.
Properties:

e Ordinal: This property stores the value of constants.

e Name: This property stores the name of the constants.

109

CHAPTER 4 OBJECT-ORIENTED PROGRAMMING WITH KOTLIN

Methods:

o values: This method returns the list of all constants defined in
that enum.

o valueOf: This method returns the value of enum defined
in the class, and if it is not available then it returns an
I1legalArgumentException error.

The following is an example of using enum with functions and properties.
Example:

enum class Colors(val isPrimarycolor: Boolean = false){

Red(true),

Green(true),

Blue(true),

Orange,

Purple;

companion object{

public fun check(obj: Colors): Boolean {

return obj.name.compareTo("Red") == 0 || obj.name.
compareTo("Green") == 0

}
fun main(){

for(color in Colors.values()) {
println("${color.ordinal} = ${color.name} and is primary ${color.
isPrimarycolor}")
}
val objColor = Colors.Orange
println("$objColor Is Primary Color ${Colors.check(objColor)}")

}
Output:
0 = Red and is primary true
1 = Green and is primary true

Blue and is primary true

110

CHAPTER 4 OBJECT-ORIENTED PROGRAMMING WITH KOTLIN

3
4 = Purple and is primary false
Orange Is Primary Color false

Orange and is primary false

4.11 Practical Programming Exercises

1. Create a banking management system that can manage
different types of accounts, such as savings, current, and fixed
deposit. Each account must have parameters—account holder
name, account number, balance. Each account type can do the
following:

e Savings Account: Allows you to withdraw and deposit money.
Offers calculating interest rate on balance.

o Fixed Deposit Account: It offers a higher interest rate, and in this
type of account money cannot be withdrawn until fixed deposit
period ends.

o Current Account: Allows deposit and withdrawal of money but
does not offer interest.

Solution:

open class classBankAccount(
val accountHolderName: String,
val accountNo: String,
protected var balanceAvailable: Double
)M
open fun depositMoney(money: Double) {
if (money > 0) {
balanceAvailable += money
println("Deposit $$money. New balance available:
$8balanceAvailable")

} else {

println("Invalid Money.")

111

CHAPTER 4 OBJECT-ORIENTED PROGRAMMING WITH KOTLIN

}
open fun withdrawMoney(money: Double) {

if (money <= balanceAvailable && money > 0) {
balanceAvailable -= money
println("withdraw $$money. New balance available:
$8balanceAvailable")

} else {
println("Insufficient balance or invalid money.")

}
fun accountDetails() {

println("Account Holder Name: $accountHolderName")
println("Account Number: $accountNo")
println("Available Balance: $$balanceAvailable”)

}

open fun calculateInterestRate(): Double {
return 0.0

}

}

class classSavingsAccount(
accountHolderName: String,
accountNo: String,
balanceAvailable: Double,
val interest: Double
) : classBankAccount (accountHolderName, accountNo,
balanceAvailable) {
override fun depositMoney(money: Double) {
super.depositMoney (money)
println("Deposit into Savings Account with interest of
$interest%")
}
override fun calculateInterestRate(): Double {
return balanceAvailable * (interest / 100)

112

CHAPTER 4 OBJECT-ORIENTED PROGRAMMING WITH KOTLIN

class classCurrentAccount(

)

accountHolderName: String,
accountNo: String,
balanceAvailable: Double

: classBankAccount (accountHolderName, accountNo,

balanceAvailable) {

}

override fun depositMoney(money: Double) {
super . depositMoney(money)
println("Deposit into Current Account without interest")

}

override fun calculateInterestRate(): Double {
return 0.0

}

class classFixedDepositAccount(

) :

accountHolderName: String,

accountNo: String,

balanceAvailable: Double,

val fixedDepositPeriod: Int, // In months

val interest: Double

classBankAccount (accountHolderName, accountNo,

balanceAvailable) {

override fun depositMoney(money: Double) {
if (fixedDepositPeriod > 0) {
println("Deposit into Fixed Deposit Account is not
allowed until the period ends.")
} else {
super .depositMoney (money)

}
override fun calculateInterestRate(): Double {

if (fixedDepositPeriod > 0) {
return balanceAvailable * (interest / 100)

113

CHAPTER 4 OBJECT-ORIENTED PROGRAMMING WITH KOTLIN

114

}

} else {
println("Interest cannot be calculated until the
deposit period ends.")
return 0.0

fun main() {

val savingsAccount = classSavingsAccount("Mark", "SA234788",
3000.0, 4.0)

val currentAccount
"CA340099", 1000.0)
val fixedDepositAccount = classFixedDepositAccount("Alice”,
"FD343434", 5000.0, 12, 6.0)
savingsAccount.accountDetails()
savingsAccount.depositMoney(500.0)
savingsAccount.withdrawMoney(500.0)

println("Interest Savings Account: ${savingsAccount.
calculateInterestRate()}")

println()

currentAccount.accountDetails()
currentAccount.depositMoney(200.0)
currentAccount.withdrawMoney(100.0)

println("Interest Current Account: ${currentAccount.
calculateInterestRate()}")

println()

fixedDepositAccount.accountDetails()
fixedDepositAccount.depositMoney(400.0)
fixedDepositAccount.withdrawMoney(300.0)

println("Interest Fixed Deposit Account:
${fixedDepositAccount.calculateInterestRate()}")

classCurrentAccount("Evan",

CHAPTER 4 OBJECT-ORIENTED PROGRAMMING WITH KOTLIN

Output:

Account Holder Name: Mark

Account Number: SA234788

Available Balance: $3000.0

Deposit $500.0. New balance available: $3500.0
Deposit into Savings Account with interest of 4.0%
withdraw $500.0. New balance available: $3000.0
Interest Savings Account: 120.0

Account Holder Name: Evan

Account Number: CA340099

Available Balance: $1000.0

Deposit $200.0. New balance available: $1200.0
Deposit into Current Account without interest
withdraw $100.0. New balance available: $1100.0
Interest Current Account: 0.0

Account Holder Name: Alice

Account Number: FD343434

Available Balance: $5000.0

Deposit into Fixed Deposit Account is not allowed until the
period ends.

withdraw $300.0. New balance available: $4700.0

Interest Fixed Deposit Account: 282.0

Develop a library management system that is able to manage
various books, track their details, and calculate late fees for
overdue book. Book should have attributes like title, author,
ISBN, availability. Include functionality to borrow book, return
book, display book details, calculate overdue book fees, and check
availability.

Solution:

import java.time.localDate
import java.time.temporal.ChronoUnit
class Book(

val booktitle: String,

115

CHAPTER 4 OBJECT-ORIENTED PROGRAMMING WITH KOTLIN

val author: String,
val isbn: String,
var isAvailable: Boolean = true,
val dueDate: LocalDate,
val lateFeePerDay: Double = 1.0
) {
fun checkAvailability() {
if (isAvailable) {
println("The book '$booktitle' is available")
} else {
println("The book '$booktitle' is borrowed.")

fun borrowBook() {
if (isAvailable) {
isAvailable = false
println("You have borrowed the book '$booktitle’.")
} else {
println("Sorry, the book '$booktitle' is currently
unavailable.")

fun returnBook(returnDate: LocalDate): Double {
if (!isAvailable) {
isAvailable = true
val lateFee = calculatelateFee(returnDate)
println("You have returned the book '$booktitle'.")
if (latefee > 0) {
println("Late fee: $$latefee”)
telse{
println("Late fee: $0.0")
}
return lateFee
} else {
println("The book '$booktitle' was not borrowed.")
return 0.0

116

fun

CHAPTER 4 OBJECT-ORIENTED PROGRAMMING WITH KOTLIN

}

private fun calculatelateFee(returnDate: LocalDate): Double {
if (returnDate.isAfter(dueDate)) {
val daysLate = ChronoUnit.DAYS.between(dueDate,

returnDate)

return dayslLate * lateFeePerDay
}
return 0.0

}
fun displayDetails() {

println("Book Title: $booktitle")

println("Author: $author")

printIn("ISBN: $isbn")

println("Available: ${if (isAvailable) "Yes" else "No"}")
println("Due Date: $dueDate")

main() {
val book1 = Book(

booktitle = "The Great Gatsby",
author = "F. Scott Fitzgerald",
isbn = "9780743273565",
dueDate = LocalDate.of (2024, 11, 10)
)
book1.displayDetails()
println()
book1.checkAvailability()
println()
book1 . borrowBook ()
println()
val returnDatelate = LocalDate.of(2024, 11, 15)
book1.returnBook(returnDatelate)
book1.displayDetails()
println()

117

CHAPTER 4 OBJECT-ORIENTED PROGRAMMING WITH KOTLIN

book1.borrowBook ()

println()

val returnDateOnTime = LocalDate.of(2024, 11, 10)
book1.returnBook(returnDateOnTime)

println()

}

Output:

Book Title: The Great Gatsby
Author: F. Scott Fitzgerald
ISBN: 9780743273565
Available: Yes

Due Date: 2024-11-10

The book 'The Great Gatsby' is available
You have borrowed the book 'The Great Gatsby'.

You have returned the book 'The Great Gatsby'.
Late fee: $5.0

Book Title: The Great Gatsby

Author: F. Scott Fitzgerald

ISBN: 9780743273565

Available: Yes

Due Date: 2024-11-10

You have borrowed the book 'The Great Gatsby'.

You have returned the book 'The Great Gatsby'.
Late fee: $0.0

2. Create a geometric shape management system that has
different types of shapes, like rectangle, triangle, and circle.
Calculate area of all the shapes.

Solution:

abstract class Shape {
abstract fun calculateAreaOfShape(): Double

118

CHAPTER 4 OBJECT-ORIENTED PROGRAMMING WITH KOTLIN

class classCircle(val radius: Double) : Shape() {
override fun calculateAreaOfShape(): Double {
return Math.PI * radius * radius

}
class classRectangle(val width: Double, val height: Double) :

Shape() {
override fun calculateAreaOfShape(): Double {
return width * height

}

class classTriangle(val base: Double, val height: Double) :
Shape() {
override fun calculateAreaOfShape(): Double {
return 0.5 * base * height

}

fun displayAreaofShape(shape: Shape) {
println("The area of the shape is: ${shape.
calculateAreaOfShape()}")

fun main() {

val circle = classCircle(6.0)

val rectangle = classRectangle(4.0, 5.0)
val triangle = classTriangle(4.0, 5.0)
displayAreaofShape(circle)
displayAreaofShape(rectangle)
displayAreaofShape(triangle)

Output:

The area of the shape is: 113.09733552923255
The area of the shape is: 20.0
The area of the shape is: 10.0

119

CHAPTER 4 OBJECT-ORIENTED PROGRAMMING WITH KOTLIN

120

3. Create a student management system that displays and

manages students. Each student has a name, email, phone

number, roll number, and department. Display information of

students.

Solution:

data class student(val name: String, val roll no:Int, val
department: String, val email:String, val phone: String){

}

fun displayStudentDetails(){
println("Name: $name")
println(“Roll No: $roll no")
println("“Department: $department”)
println("Email: $email")
println("Phone Number: $phone"”)

fun main(){

val student1 = student("Mark",1, "Computer

Engineering", "mark123@gmail.com", "9433434343")

val student2 = student("Evan",2,"IT Engineering”, "evan123@
gmail.com", "9953433334")

val student3 = student("bOB",2, "Automobile

Engineering”, "evan123@gmail.com", "9953433334")

println()

println("Student 1 Details")
student1.displayStudentDetails()

println()

println("Student 2 Details")
student2.displayStudentDetails()

println()

println("Student 3 Details")
student3.displayStudentDetails()

println()

println("student1 == student2: "+studenti.equals(student2))
println()

CHAPTER 4 OBJECT-ORIENTED PROGRAMMING WITH KOTLIN

val student4 = studenti.copy(name = "Alice"”, roll no = 3)
println("Updated student1"”)
student4.displayStudentDetails()

}

Output:

Student 1 Details

Name: Mark

Roll No: 1

Department: Computer Engineering
Email: mark123@gmail.com

Phone Number: 9433434343

Student 2 Details

Name: Evan

Roll No: 2

Department: IT Engineering
Email: evan123@gmail.com
Phone Number: 9953433334

Student 3 Details

Name: bOB

Roll No: 2

Department: Automobile Engineering
Email: evan123@gmail.com

Phone Number: 9953433334

studentl == student2: false

Updated student1

Name: Alice

Roll No: 3

Department: Computer Engineering
Email: mark123@gmail.com

Phone Number: 9433434343

121

CHAPTER 4 OBJECT-ORIENTED PROGRAMMING WITH KOTLIN

4. Create a cinema ticket calculation system that calculates ticket
price according to the morning, evening, and afternoon show;
ticket type needs to be basic, premium, or VIP.

Solution:

enum class classTicketType(val basePrice: Double) {
BASIC(15.0),
PREMIUM(20.0),
VIP(30.0);
fun getDetails(): String {
return when (this) {
BASIC -> "Basic seat"
PREMIUM -> "Premium seat"
VIP -> "VIP seat"

}
enum class classShowTime(val showTimeValue: Double) {
MORNING(5.0),
AFTERNOON(4.0),
EVENING(3.5);
fun getDetails(): String {
return when (this) {
MORNING -> "Morning Show"
AFTERNOON -> "Afternoon Show"
EVENING -> "Evening Show"

}

class CinemaTicket(
val ticketType: classTicketType,
val showTime: classShowTime

) {
fun calculatePrice(): Double {

return ticketType.basePrice * showTime.showTimeValue

122

fun

CHAPTER 4 OBJECT-ORIENTED PROGRAMMING WITH KOTLIN

fun displayTicketInfo() {
println("Ticket: ${ticketType.getDetails()}")
println("Showtime: ${showTime.getDetails()}")
println("Final Price: $${"%.2f".format(calculatePrice())}")
println()

main() {

val basicEveningTicket = CinemaTicket(classTicketType.BASIC,
classShowTime.EVENING)
basicEveningTicket.displayTicketInfo()

val premiumAfternoonTicket = CinemaTicket(classTicketType.
PREMIUM, classShowTime.AFTERNOON)
premiumAfternoonTicket.displayTicketInfo()

val vipMorningTicket = CinemaTicket(classTicketType.VIP,
classShowTime.MORNING)

vipMorningTicket.displayTicketInfo()

Output:

Ticket: Basic seat

Showtime: Evening Show
Final Price: $52.50

Ticket: Premium seat
Showtime: Afternoon Show
Final Price: $80.00

Ticket: VIP seat
Showtime: Morning Show
Final Price: $150.00

123

CHAPTER 4 OBJECT-ORIENTED PROGRAMMING WITH KOTLIN

4.12 Summary

In this chapter we have learned various object-oriented programming concepts,
like abstraction, encapsulation, and inheritance, along with some advanced options
for using them. Each concept has its own syntax, libraries, methods, and hands-on
exercises.

4.13 Test Your Knowledge

1. Which of the following is true about classes?
a. Class must have constructors.
b. Class only has constructors.

c. Class is a blueprint for creating objects and contains properties
and methods.

d. Class only has methods and not properties.
2. Inner class can access the property of outer class.
a. True
b. False
3. Nested class can access property of outer class.
a. True
b. False
4. How many primary constructors can a Kotlin class have?
a. one
b. two
c. three

d. multiple

124

CHAPTER 4 OBJECT-ORIENTED PROGRAMMING WITH KOTLIN

Which keyword is used in Kotlin to enable a class to be inherited
by another class?

a. inherit

b. open

C. super

d. this

Select correct way to define an interface.
a. class interfacenamef{}

b. abstract class interfacename{}

c. interface interfacename() {}

d. interface interfacename{}

How do you declare an abstract property in Kotlin?
a. abstract var propertyName: Type

b. var propertyName: Type = value

c. abstract property propertyName: Type
d. propertyName: abstract Type

Which of the following function is derived in data classes
in Kotlin?

a. toString()

b. equals()

c. hashcode()

d. All of the above

What is the default modifier for members in a Kotlin class?
a. private

b. public

c. protected

d. inner

125

CHAPTER 4 OBJECT-ORIENTED PROGRAMMING WITH KOTLIN

10.

Can an abstract class be instantiated in Kotlin?

a. Yes, if itimplements all abstract methods.

b. Yes, if abstract class has a constructor.

c. No, abstract class cannot be instantiated directly.

d. Yes, if it is instantiated in a constructor.

4.14 Answers

126

10.

CHAPTER 5

Error Handling
and Exceptions

In programming, when a program behaves abnormally for any of the input from a user or
experiences any event that causes a disturbance in the flow of the program, it is known
as an error in the code. Errors occur in the program at the runtime. To handle errors

that can disturb the flow of the program, an exception-handling mechanism is available
in Kotlin.

5.1 Exception-Handling Basics

An exception is unwanted behavior by a program or any unexpected event that can
occur at runtime of the program and cause a disturbance in the normal flow of the
program. “Exception handling” means handling those events or exceptions that can
cause error or disrupt the normal flow of a program.

There are two types of exceptions available in general:

1. Checked Exception: Exceptions that are set with methods
and checked at compile time of the program, like
FileNotFoundException.

2. Unchecked Exception: Exceptions that are checked at runtime
and generally arise due to logical errors in programs, like
NullPointerException.

In Kotlin, only unchecked exceptions are available. All unchecked exceptions can
be caught at the runtime of a program. All the exception classes are derived from the
Throwable class. The keyword throw is used for throwing an exception object.

127
© Arnika Patel, Keshav Kumar, and Dr. Bishwajeet Kumar Pandey 2025

A. Patel et al., Kotlin Mastery, https://doi.org/10.1007/979-8-8688-1618-5_5

https://doi.org/10.1007/979-8-8688-1618-5_5#DOI

CHAPTER5 ERROR HANDLING AND EXCEPTIONS
Syntax:
throw Exception("throw statement")

Let’s see the following example of an ArithmeticException:

fun main(){

val num = 30/0 //throw an exception
println(num)

}
Output:

Exception in thread "main" java.lang.ArithmeticException: / by zero

In the preceding program, we initialize the value of num to 30/0, but as we know from
barithmetric division operations, we cannot divide any number by zero. That’s why at
runtime this program gives an error of divide by zero. To solve this problem, we can use a
try-catch block.

In Kotlin, we use try-catch block for handling exceptions at runtime like in the
preceding example. In a try block, we need to write code, which can throw an exception.
This try block must be written inside the main method. Every try block is followed by
either a catch block or a finally block or both. The following shows the syntax of a try-
catch block.

Syntax:

try{
//code that can throw an exception
}catch(e: ExceptionName){
//statement that catch the exception and handle it

}
The following shows the Kotlin program that can handle arithmetic exceptions.
Example:
fun main(){
try{
val num = 20/0
println(num)

}catch(e: ArithmeticException){

128

CHAPTER5 ERROR HANDLING AND EXCEPTIONS

println("Divide by zero is not applicable")

Output:
Divide by zero is not applicable

In the preceding example, the variable numis assigned the value of 10/0. In
mathematics, dividing by zero is not available or not defined; that’s why the variable num
throws an exception, which is already written inside the try block. The exception thrown
is handled by a catch block, which is written and prints the appropriate result or the
warning message to alert the user that an exception occurred in the program.

The try-catch Block as an Expression

We can use a try-catch block as an expression in Kotlin. The expression evaluation
result will be the last statement in the try block as well as in the catch block. If an
exception occurs, then the catch block will return the value accordingly. The following
shows this:

Example:

fun division(x: Int, y: Int) : Any {
return try {
x/y
}
catch(e:Exception){
println(e)
"Divide by zero not applicable"

fun main(args: Array<String>) {
// invoke division function

var resulti = division(15,3) //executes try block
println(result1)

var result2 = division(15,0) // executes catch block
println(result2)

129

CHAPTER 5 ERROR HANDLING AND EXCEPTIONS
Output:

5
java.lang.ArithmeticException: / by zero
Divide by zero not allowed

In the preceding example, we have created one function for division, which executes
try and catch blocks according to the input provided inside the main function. In the
main method we first gave 15 and 3 as an input, which executed the try block and gave
the division result 5. Then in the next line we gave 15 and 0 as an input, which executed
the try block for the result, but as input y = 0, an exception occurred, and it executes the
catch block.

Finally Block

In Kotlin, the finally block is always executed, whether the catch block is executed or
not. We use the finally block to execute some important code. We can use it with or
without the catch block.

Syntax of finally block with try block:

try{
//code which can throw exception
}
finally{
//important code which always executes
}

The following shows the finally block without a catch block. First, it will execute
the given try block, and then the finally block is executed. Here, an exception occurs
and is not handled by the catch block, so it will throw an error with the name of the
exception, as written in the output.

Example:
fun main(){
try{
val num = 30/0
println(num)
}

130

CHAPTER5 ERROR HANDLING AND EXCEPTIONS

finally{
println("Inside finally block::this will run always")

Output:

Inside finally block::this will run always
Exception in thread "main" java.lang.ArithmeticException: / by zero

Syntax of finally block with try-catch block:

try{
//code which can throw exception

}catch(e:Exception){
//code which can handle exception

}
finally{

//important code which always executes
}

The following shows an example that handles the divide by zero exception seen in
the previous example with the finally block, which always executes.

Example:
fun main(){
try{
val num = 30/0
println(num)

}catch(e: ArithmeticException){
println("Divide by zero is not Applicable")

}
finally{

println("Inside finally block::this will run always")
}

131

CHAPTER5 ERROR HANDLING AND EXCEPTIONS

Output:

Divide by zero is not Applicable
Inside finally block::this will run always

Throw Keyword

In Kotlin we use the throw keyword as name suggests, for throwing an exception. The
exception thrown by the throw keyword can be explicit or custom. The following shows
an example of throwing an exception.

Example:

fun main(args: Array<String>) {
demo("kotlin programming")
println("kotlin programming accepted")
demo("k")
println("k not accepted")
}
fun demo(name: String) {
if (name.length < 6)
throw ArithmeticException("Name is too short")

else
println("Accepted"”)
}
Output:
Accepted

kotlin programming accepted
Exception in thread "main" java.lang.ArithmeticException: Name is too short

In the preceding example, we check whether the name is of a length less than 6 or
not. If it is less than 6, then it will throw a custom-generated exception; otherwise, it will
print the line name accepted.

132

CHAPTER5 ERROR HANDLING AND EXCEPTIONS

5.2 Nested try Block

In Kotlin we can implement one try block inside another try block, which is known as a
nested try block. The following shows the syntax for a nested try block.
Syntax:

// try block 1

try
{
// try block 2 inside try block 1
try
{
// code which can throw exception
}
catch(e: Exception)
{
// catch the exception and handle it
}
}
catch(e: Exception)
{

// catch the exception and handle it

The following is an example of using a nested try block.
Example:

fun main(args: Array<String>) {
val numArray = arrayOf(1,2,3,4,5,6,7,8)
try {
for (i in numArray.indices) {
try {
var r = (0..8).random()
println(numArray[i+1]/r)
} catch (e: ArithmeticException) {
println(e)

133

CHAPTER5 ERROR HANDLING AND EXCEPTIONS

}
} catch (e: ArrayIndexOutOfBoundsException) {
println(e)
}
}
Output:
2
1
2
java.lang.ArithmeticException: / by zero
2
7
1

java.lang.ArrayIndexOutOfBoundsException: Index 8 out of bounds for
length 8

In the preceding example, numArray is assigned values from 0 to 8, and in the for
loop there are two possibilities of exceptions. One is a dividing by zero exception and
the other is an ArrayIndexOutOfBound exception. The first outer try block handles
the ArrayIndexOutOfBound exception, and the inner try block handles the arithmetic
exception (divide by zero).

Note Here the output will be different every time when you run the program
because we are using a function to generate random numbers.

Multiple Catch Blocks

In Kotlin one try block can have multiple catch blocks. When we are not aware of which
type of exception may occur in the program, then we can use multiple catch blocks to
handle different types of exceptions that may occur in the program. The following shows
the syntax of using multiple catch blocks with single try block.

134

CHAPTER 5
Syntax:

try {
// code that can throw exception

} catch(e: ExceptionOne) {

// catch exception one and handle it
} catch(e: ExceptionTwo) {

// catch exception two and handle it

Let’s see an example of using multiple catch blocks.
Example:

fun main(args: Array<String>) {
try {
val numArray = arrayOf(1,2,3,4,5,6,7,8)
for(i in numArray.indices){
var r = (0..4).random()
println(numArray[i+1]/r)

}
} catch (e: ArithmeticException) {
println(e)
} catch (e: ArrayIndexOutOfBoundsException) {
println(e)
}
}
Output:
2
1
4
1

java.lang.ArithmeticException: / by zero

ERROR HANDLING AND EXCEPTIONS

This example handles exceptions for arithmetic and ArrayIndexOutOfBound.

According to the exception that occurs, the appropriate catch block will run.

135

CHAPTER5 ERROR HANDLING AND EXCEPTIONS

Note Here the output will be different every time when you run the program
because we are using a function to generate random numbers.

Using When in Catch Block

In Kotlin, instead of using multiple catch blocks, we can use the when keyword. The
following shows an example of using the when expression.
Example:

fun main(args: Array<String>) {
try {
val numArray = arrayOf(1,2,3,4,5,6,7,8)
for(i in numArray.indices){
var r = (0..4).random()
println(numArray[i+1]/r)

}
} catch (e: Exception) {
when(e){
is ArithmeticException -> {
println(e)
}
is ArrayIndexOutOfBoundsException -> {
println(e)
}
}
}
}
Output:
0
3

java.lang.ArithmeticException: / by zero

136

CHAPTER5 ERROR HANDLING AND EXCEPTIONS

In the preceding example we have replaced the previous example’s two catch blocks
with one single catch block and one when expression. Every time, the catch block will
handle all types of exceptions and check inside the when expression, and print according
to the type of exception.

Note Here the output will be different every time when you run the program
because we are using a function to generate random numbers.

5.3 Custom Exceptions

In addition to the already available exceptions, you can build your own exceptions
that can handle your own error cases in the program. When a user creates their own
expression that is different from the built-in expression, it is known as a custom
exception or user-defined exception. The following shows the syntax to create a custom
exception.

Syntax:

class CustomException(message:String): Exception(message)
To throw the exception write below line:

throw CustomException("throw custom exception™)

Let’s take an example of custom exception.

Example:

class WrongPasswordException(message:String):Exception(message)
fun main(args: Array<String>) {

try {

val password = "hello1™

if(password.length<8){

throw WrongPasswordException("Password must be greater than length 8")
}

}catch (e: WrongPasswordException) {

println(e)

}

}

137

CHAPTER 5 ERROR HANDLING AND EXCEPTIONS
Output:

WrongPasswordException: Password must be greater than length 8

5.4 Real-Life Programming Practices

1. Write a program for a payment-processing system and handle
situations where the payment fails.

Code:

fun tryPayment (payment :Double){
try {
if(payment <= 0){
throw IllegalArgumentException("Payment must be
greater than zero")
telse if((1..10).random() <3){
throw Exception("Payment Gateway Error")
telse{
println("Payment Successful")
}
}catch (e: IllegalArqumentException) {
println(e)
}catch(e:Exception){
println(e)

}

fun main(args: Array<String>) {
tryPayment(0.0)
tryPayment(200.0)

}

Output:

java.lang.IllegalArgumentException: Payment must be greater
than zero
Payment Successful

138

CHAPTER5 ERROR HANDLING AND EXCEPTIONS

2. Write a program to handle invalid user data (name,
password, age).

Code:

class InvalidDataException(message:String):Exception(message)
fun checkUserData(name:String,age:Int,password:String){
try {
if(password.length<8){
throw InvalidDataException("Password must be greater
than length 8")
}
if(name.isBlank()){
throw InvalidDataException("Name must not be blank")
}
if(age<18){
throw InvalidDataException("Age must be greater
than 18")
}
}catch (e: InvalidDataException) {
println(e)

}

fun main(args: Array<String>) {
checkUserData("", 19, "123456789")
checkUserData("kotlin", 10, "123456789")
checkUserData("kotlin",19,"1234")

}

Output:

InvalidDataException: Name must not be blank
InvalidDataException: Age must be greater than 18
InvalidDataException: Password must be greater than length 8

139

CHAPTER5 ERROR HANDLING AND EXCEPTIONS

3. Write a program for connecting to a database and handle a
situation when database connection fails.

Code:

fun connectToDatabase(){

var retryCount = 0

var maxtryCount = 3

while (retryCount < maxtryCount) {

try {

println("Attempt database query...")
if ((1..10).random() < 7) throw Exception("Database
query not successful")
println("Query successful!™)

return
} catch (e: Exception) {
retryCount++
println(e)
}
}
println("Maximum retries reached.")
}
fun main(args: Array<String>) {
connectToDatabase()
}
Output:

Attempt database query...

java.lang.Exception: Database query not successful
Attempt database query...

java.lang.Exception: Database query not successful
Attempt database query...

Query successful!

140

CHAPTER5 ERROR HANDLING AND EXCEPTIONS

4. Write a program for requesting network connection and
handle a situation when connection is not available and
request times out.

Code:

fun tryNetworkRequest() {

try {
println("Trying network request...")
val success = (1..10).random() > 2 // Random
success/failure
if (!success) throw Exception("Network timeout")
printIn("Network request successfull!™)

} catch (e: Exception) {
println(e)

}

fun main() {

tryNetworkRequest()
}

Output:

Trying network request...
java.lang.Exception: Network timeout

5. Write a program to find the square root of a number given by
user and handle the cases when input is negative and not a
usable number.

Code:

import kotlin.math.sqrt
fun squareRoot() {
val input = -2

try {
val number = input?.toDouble() ?: throw

I1legalArgumentException("Input cannot be null")

141

CHAPTER5 ERROR HANDLING AND EXCEPTIONS

if (number < 0) throw IllegalArqumentException(“Number
cannot be negative")
println("Squareroot is ${sqrt(number)}")
} catch (e: NumberFormatException) {
println("Invalid input!")
} catch (e: IllegalArgumentException) {
println(e.message)
} catch (e: Exception) {
println(e)

}

fun main() {
squareRoot ()

Output:
Number cannot be negative
6. Write a program that divides two numbers by zero and handles

the case when dividing by zero.

Code:

fun division() {

try {
val input = 20/0
}catch (e: Exception) {
println(e)

}
fun main() {

division()

Output:

java.lang.ArithmeticException: / by zero

142

CHAPTER5 ERROR HANDLING AND EXCEPTIONS

5.5 Summary

In this chapter we have learned about how the Kotlin program handles exceptions. We
have also seen how to use try, catch, and finally blocks with their syntax, usage, and
examples. We've also seen real-life programming exercises.

5.6 Test Your Knowledge

1.

4.

What is the benefit of using when inside a catch block?

a. It allows handling multiple exceptions in a single block.

b. It reduces code redundancy.

c. Bothaandb.

d. None of the above.

How can you define a custom exception in Kotlin?

a. by extending the Throwable class.

b. by extending the Exception class.

c. by implementing a catch block.

d. None of the above

What is the advantage of using multiple catch blocks in Kotlin?
a. It allows handling different types of exceptions separately.
b. It reduces the need for nested try blocks.

c. Bothaandb

d. None of the above

Why are nested try blocks used in Kotlin?

a. to handle multiple types of exceptions hierarchically

b. to optimize code performance

c. toreplace the finally block

d. None of the above

143

CHAPTER5 ERROR HANDLING AND EXCEPTIONS

5. What does the throw keyword do in Kotlin?
a. It handles exceptions.
b. It explicitly raises an exception.
c. It terminates the program immediately.
d. None of the above
6. InKotlin, can a finally block exist without a catch block?
a. Yes
b. No
c. Only if a throw statement is present
d. None of the above
7. What is the role of a finally block in Kotlin?
a. to handle exceptions
b. to execute important code regardless of exception occurrence
c. toreplace the catch block
d. None of the above
8. Whatis the purpose of a try block?
a. to handle exceptions
b. to close resources
c. to write code that might throw exceptions
d. None of the above
9. All exception classes in Kotlin inherit from which class?
a. Exception
b. RuntimeException
c. Error

d. Throwable

144

CHAPTER 5 ERROR HANDLING AND EXCEPTIONS
10. What is an exception in programming?
a. a compile-time error
b. an unwanted event disrupting the program flow at runtime
c. alogical issue identified during debugging

d. None of the above

5.7 Answers

1. c
2. b
3. ¢
4. a
5 b
6. a
7. b
8. ¢
9. d
10. b

145

CHAPTER 6

Collections and Generics

6.1 Collections

In Kotlin, collections are used to store and manipulate data or objects. Collections are
used in real-world applications to efficiently store, retrieve, and update data. Some
examples of real-world applications are shopping carts, game development, and social
media feeds. There are many types of collections available in Kotlin, as follows:

o Lists: Lists are ordered collections that can have duplicate elements.

e Set: Sets are unordered collections that do not include duplicate
elements.

e Map: Maps are collections with key-value pairs; in map the key
cannot be duplicated but the value can be the same.

e Arrays: Arrays are fixed-size collections with the same type of
elements inside it. We have already covered arrays in Chapter 2.

Kotlin collections are similar to Java collections. A collection generally contains a
number of objects or data of the same type, which are known as items or elements. The
Kotlin standard library provides a wide set of tools for managing collections. There are
two types of Kotlin collections:

o Immutable Collections: “Immutable” means that it supports
read-only functions and cannot modify its elements. Immutable
collections are as follows:

¢ Immutable List
¢ Immutable Set

¢ Immutable Map

147
© Arnika Patel, Keshav Kumar, and Dr. Bishwajeet Kumar Pandey 2025

A. Patel et al., Kotlin Mastery, https://doi.org/10.1007/979-8-8688-1618-5_6

https://doi.org/10.1007/979-8-8688-1618-5_6#DOI

CHAPTER6 COLLECTIONS AND GENERICS

e Mutable Collections: Mutable collections support both read and
write access. You can add as well as remove elements from mutable
collections. The following are the types of mutable collections:

¢ Mutable List
e Mutable Set

¢ Mutable Map

Let’s learn all the collections—Ilist, set, and map—in detail.

6.2 List

o Immutable List: This is an ordered collection with duplicate values.
Values inside an immutable list can be repeated multiple times. We
can access elements or items by using indices or integer numbers,
which give the position of the elements. Immutable lists can be
created by using the 11st0f() method. As this is an immutable list
we can only access the elements and cannot perform add or remove
operations. The following is an example of an immutable list that
prints the elements present in the list immutableNamelList.

Example:

fun main() {
val immutableNamelist = 1istOf("Bob","Alice","Jacob","Alice")

for(item in immutableNamelist){
println(item)

Output:

Bob

Alice
Jacob
Alice

148

CHAPTER6 COLLECTIONS AND GENERICS

Mutable List: As it is mutable we can update or add elements to
the list. To create a mutable list, functions like mutableList0Of(),
arraylListOf(), and ArraylList are used. The following shows an

example of using a mutable list.

Example:

fun main() {

var mutableNamelist = mutablelistOf("Bob","Alice","Jacob",

"Alice")

}

println("Before Add Operation...")

for(item in mutableNamelist){
println(item)

}

mutableNamelList.add("Mark") //add

println("After Add Operation...")

for(item in mutableNamelist){
println(item)

}

mutableNamelist[3]="George" //update

println("After updating 4th Element...")

for(item in mutableNamelist){
println(item)

Output:

Before Add Operation...

Bob

Alice

Jacob
Alice
After Add Operation...

Bob

Alice
Jacob
Alice

149

CHAPTER6 COLLECTIONS AND GENERICS

150

Mark

After updating 4th Element...
Bob

Alice

Jacob

George

Mark

In this example, first we created a mutable list with four elements.
After that we added one element and updated one element in the list.

Accessing First and Last Elements in List

We can access or retrieve the first and last elements of a list using the
methods first() and last(). The following shows an example of
accessing both elements.

Example:

fun main() {
val numList = 1istOf(1,2,3,4,5)
println(numList. first())
println(numList.last())

}

Output:

1

List-Traversing Methods

In Kotlin, we can access a list using multiple methods. The following
shows the different methods, with an example of accessing elements
of a list one after another.

Example:

fun main() {
val numList = 1ist0f(1,2,3,4,5)
// method 1
println("Method 1")

CHAPTER6 COLLECTIONS AND GENERICS

for (name in numList) {
print("$name, ")
}
// method 2
println()
println("Method 2")
for (i in 0 until numList.size) {
print("${numList[i]} ")
}
// method 3
println()
println("Method 3")
numList.forEachIndexed({i, j -> println("numList[$i] = $7")})
// method 4
println("Method 4")
val it: ListIterator<Int> = numList.listIterator()
while (it.hasNext()) {
val 1 = it.next()
print("$i ")

Output:

Method 1

1, 2, 3, 4, 5,
Method 2
12345
Method 3
numList[0]
numList[1]
numList[2]
numList[3]
numList[4]
Method 4
12345

I}
Ui B W N

151

CHAPTER6 COLLECTIONS AND GENERICS

Method 1: In this method we used for loop to traverse each and
every element one by one and print it

Method 2: In this method we used again for loop but using position
of element we print the value of that element.

Method 3: In this method a forEach loop is used to print elements
of the list with position access and value.

Methods 4: In this method we used iterator function to iterate
through the list until its last element and print its elements.

e Sorting List

In Kotlin we can sort a list in ascending or descending order using
functions sorted() and sortedDescending(). The following
example shows that.

Example:

fun main() {
val list = 1ist0f(8, 4, 7, 1, 2, 3, 0, 5, 6)
println("List")
println(list)
val asc = list.sorted()
println("Ascending Order")
println(asc)
val desc = list.sortedDescending()
println("Descending Order")
println(desc)

Output:

List

[8) 4} 7) 1) 2) 3} 0) 5) 6]
Ascending Order

[0) 1) 2) 3) 4) 5) 6) 7) 8]
Descending Order

[8J 7) 6) 5) 4) 3) 2) 1) 0]

152

CHAPTER6 COLLECTIONS AND GENERICS

o Advantages and Disadvantages of Lists

o Immutable: The 1ist0f() function creates an immutable list,
which means that the data cannot be changed after list creation.
It can be a disadvantage if your program needs to change the list
at runtime.

o Type Safety: The 1ist0f() function provides type safety because
it allows only the same type of elements inside it.

o Convenience: Without writing multiple lines of code, list creation
is simple and easy in Kotlin.

e Performance Overhead: Immutable lists can have some
performance overhead when you need to perform multiple
operations in the list. Due to immutability, each new operation
will require creating a new list, thus making it expensive in terms

of memory.

e The advantage of using a list is immutability, type safety, and
convenience, while disadvantages are performance overhead and
again immutability if multiple operations are required on the list.
According to the need of the program, we need to decide whether
list can be used or not.

6.3 Set

e Immutable Set: An immutable set is an unordered collection of
elements without duplication. As it is an immutable set, we cannot
perform add or remove operations. Immutable sets can be created
using the set0f() method. The following shows an example of
creating and using sets in Kotlin. In the example, we can see that
though we gave values of 9, 0, and Alice multiple times, in the set it
will only print the unique values.

153

CHAPTER6 COLLECTIONS AND GENERICS

154

Example:

fun main(args: Array<String>) {
var immutableSet = set0f(6,9,9,0,0, "Alice", "Bob", "Alice")
for(item in immutableSet){
println(item)

Alice
Bob

Mutable Set: In a mutable set we can read or write elements to or
from the set. To create a mutable set, the mutableSet0f() function is
used. The following shows an example of a mutable set.

Example:

fun main() {
var mutableNameSet = mutableSetOf("Bob","Alice","Jacob")

println("Before Add Operation...")

for(item in mutableNameSet){
println(item)

}

mutableNameSet.add("Mark") //add

println("After Add Operation...")

for(item in mutableNameSet){
println(item)

CHAPTER6 COLLECTIONS AND GENERICS

Output:

Before Add Operation...
Bob

Alice

Jacob

After Add Operation...
Bob

Alice

Jacob

Mark

Set First and Last Elements

In Kotlin we can get the first as well as last elements of the set. The
following example shows that. Functions first() and last() are
used for accessing first and last elements, respectively.

Example:

fun main(args: Array<String>){
val names = setOf(1,2,3,4, "mark","Jacob", "Paulo”, "Smith")
println("The first element of the set is: "+names.first())
println("The last element of the set is: "+names.last())

Output:

The first element of the set is: 1
The last element of the set is: Smith

Set Indexing

In Kotlin, a set can be created using the set0f() function.

To traverse through the index we can use the index0f() and
lastIndex0f() functions. Also, to find elements at a specific
position we can use a function like elementAt (). The following
shows an example.

155

CHAPTER6 COLLECTIONS AND GENERICS

156

Example:

fun main(args: Array<String>){
val names = set0f(1,2,3,4, "mark","Jacob", "Paulo"”, "Smith")
println("The element at index 2 is: "+names.elementAt(2))
println("The index of element is : "+names.indexOf("Paulo"))
println("The last index of element is: "+names.
lastIndexOf("Paulo"))

}

Output:

The element at index 2 is: 3
The index of element is : 6
The last index of element is: 6

Set Basic Functions

In a Kotlin set, there are some basic functions available that can be
used for multiple operations on the set. The following shows the
list of functions:

+ count(): It is used to count the number of elements in the set.
o max(): Itis used to find out the maximum element from the set.
« min(): Itis used to find out the minimum element from the set.
o sum(): It is used for finding the sum of all elements in the set.

o average(): It is used to find out the average of the elements of
the set.

« contains(): This method is used to check if the set contains a

particular element or not.

« containsAll(): This method is used to check if a set contains all
the elements of given set or not.

« isEmpty(): This function is used to check if a given set is
empty or not.

CHAPTER6 COLLECTIONS AND GENERICS

The following shows the example of using all the functions in the
Kotlin program.

Example:

fun main(args: Array<String>){
val numSet = setof(s ,7, 6, 4, 10, 3, 2, 8, 9, 1, 0)
val emptySetDemo = setOf<String>()
println("The number of element in the set is: "+numSet.
count())
println("The maximum element in the set is: "+numSet.max())
println("The minimum element in the set is: "+numSet.min())
println("The sum of the elements in the set is:
"+numSet.sum())
println("The average of elements in the set is: "+numSet.
average())
println("The set contains the element 6 or not?" +
"+numSet.contains(6))
println("The set contains the given elements or not?" +
"+numSet.containsAll(set0f(1,3,4)))
println("The set emptySetDemo is empty? "+emptySetDemo.

isEmpty())

n

Output:

The number of element in the set is: 11

The maximum element in the set is: 10

The minimum element in the set is: 0

The sum of the elements in the set is: 55

The average of elements in the set is: 5.0

The set contains the element 6 or not? true

The set contains the given elements or not? true
The set emptySetDemo is empty? true

157

CHAPTER6 COLLECTIONS AND GENERICS

Advantages and Disadvantages of Sets

o Creating and using a set is very easy and a simple method. Since
the set we use is immutable it offers no updates in the set, which
can be used when multi-threading.

o Ifyouwant to change elements of the set, and an immutable
set is used at that time, it is a disadvantage. According to the
requirement of the program, the set can be made either mutable
or immutable.

6.4 Maps

o Immutable Map: Maps are key-value pairs, where the key must be
unique, or unable to be duplicated, and the value can be repeated.
Each key in a map has one value available. As it is an immutable
map, we can only read the values. We cannot add to or remove from
immutable maps. An immutable map can be created using the
mapOf () method. The following shows an example of creating and
using immutable maps. It prints the value of each and every key, and
we can see that the values of keys 1 and 3 are the same.

Example:

fun main() {
var immutableMap = mapOf(1 to "Alice",2 to "Bob",3 to "Alice")

for(key in immutableMap.keys){
println(immutableMap[key])

Output:

Alice
Bob
Alice

158

CHAPTER6 COLLECTIONS AND GENERICS

Mutable Map: It consists of key-value pairs and has functionalities

like put, remove, clear, and so on. The following shows an example

of using a mutable map.

Example:

fun main() {

var mutableMap = mutableMapOf(1 to "Alice"”,2 to "Bob",3 to

"Alice")

println("Before Add Operation...")

for(key in mutableMap.keys){
println(mutableMap[key])

}

println("After Add Operation...")

mutableMap.put (4, "Mark")
for(key in mutableMap.keys){
println(mutableMap[key])

}

//add value

println("After Updating 1st value...")

mutableMap.put(1, "George")
for(key in mutableMap.keys){
println(mutableMap[key])

}

Output:

Before Add Operation...
Alice

Bob

Alice

After Add Operation...
Alice

Bob

Alice

Mark

After Updating 1st value...

George

//update value

159

CHAPTER6 COLLECTIONS AND GENERICS

Bob
Alice
Mark

e Map Keys, Values, and Entries:

We can iterate through the keys, values, and entries of the map. The
following example shows this.

Example:

fun main(args: Array<String>){
val map = mapOf(1 to "Mark", 2 to "Jacob” , 3 to "Bob", 4
to "Iris")
println("Map Entries : "+map)
println("Map Keys: "+map.keys)
println("Map Values: "+map.values)

}

Output:

Map Entries : {1=Mark, 2=Jacob, 3=Bob, 4=Iris}
Map Keys: [1, 2, 3, 4]
Map Values: [Mark, Jacob, Bob, Iris]

e Map Size:

Two methods are available for determining the size of the map: size
and count. The following demonstrates the usage of both.

Example:

fun main(args: Array<String>){
val map = mapOf(1 to "Mark", 2 to "Jacob" , 3 to "Bob", 4
to "Iris")
println("Map Size: "+map.size)
println("Map Size: "+map.count())

160

CHAPTER6 COLLECTIONS AND GENERICS

Output:

Map Size: 4
Map Size: 4
Empty Map:

We can create an empty, serializable map using the mapOf () function.
The following shows an example.

Example:

fun main(args: Array<String>){
val map = mapOf<String , Int>()
println("Entries: " + map.entries) //entries of map
println("Keys: " + map.keys) //keys of map

println("Values: " + map.values) //values of map

}

Output:
Entries: []
Keys: []
Values: []

Traversing Through the Map Values Using Different Methods:

We can access values from the map using multiple methods, as is
demonstrated in the following program. In method one, we directly
access values using the name of the map and the position required.
In the second method, we use the getValue() function to retrieve
the particular value. In the third method, we use the getOrDefault()
function, which will retrieve the value if available; otherwise it will
return the default value. In the fourth method, we use the method
getOrElse(), which will return the value if available; otherwise, it
will return an else value.

Example:

fun main(args: Array<String>){
val map = mapOf(1 to "Mark", 2 to "Jacob" , 3 to "Bob", 4
to "Iris")
//method 1
161

CHAPTER6 COLLECTIONS AND GENERICS

println("Element 1 is: "+map[1])

//method 2

println("Element 3 is: "+map.getValue(3))
//method 3

println("Element 4 is: "+map.getOrDefault(4, 0))
// method 4

val newMap = map.getOrElse(2 ,{ 0 })
println(newMap)

}

Output:

Element 1 is: Mark
Element 3 is: Bob

Element 4 is: Iris
Jacob

e Map Contains Key or Value:

We can check if the given map contains a particular key or value
using functions like containsKey() and containsValue(). The
following shows the use of both functions.

Example:

fun main(args: Array<String>){
val map = mapOf(1 to "Mark", 2 to "Jacob" , 3 to "Bob", 4
to "Iris")
if (map.containsKey(3)) {
println("Yes, it contains key 3")
} else {
println("No, it does not contain key 3")
}
if (map.containsValue("Iris")) {
println("Yes, it contains value Iris")
} else {
println("No, it does not contain value Iris")

162

CHAPTER6 COLLECTIONS AND GENERICS

Output:

Yes, it contains key 3
Yes, it contains value Iris

Two Values and Same Key:

We can assign two different values to the same key, but the map will
consider only the last value of the key.

Example:

fun main(args: Array<String>){
val map = mapOf(1 to "Mark", 2 to "Jacob", 3 to "Bob", 1
to "Iris")
println("Entries of map :

n

+ map.entries)

}

Output:
Entries of map : [1=Iris, 2=Jacob, 3=Bob]

Advantages and Disadvantages of Maps

o The map0f() function is easy and simple to use and it
creates a read-
only map, which is advantageous in multi-thread programming.

e TItuses a key-value pair structure, which helps in storing and
organizing data.

e Due to its read-only nature, we cannot add or remove elements in

an immutable map.

o Ifthe data store is large, then the map will become insufficient.

163

CHAPTER6 COLLECTIONS AND GENERICS

6.5 Generics
Basics of Generics

In Kotlin, generics allow users to define type-safe classes, methods, and properties. It
assures compile-time type safety. Using generics, we can create a parameterized class.
To create it we use (< >) angle brackets. The following shows the syntax of declaring a
generic class.

Syntax:

class myClass<T>(text: T){
var name = text

The following shows the line of code creating an instance of a generic type class by
providing type arguments:

val myClassi : myClass<String> = myClass<String>(“Hello World”)

If a type can be inferred from the constructor, then we can omit the type while
declaring the instance:

val myClassi = muClass(“Hello World”)

The following shows why we need to use generics in Kotlin programs.
Example:

class People (text: String) {
var x = text
init{
println(x)

}
fun main(args: Array<String>){
var name: People = People("Hello World")
var rank: People = People(23)// compile time error

Output:
Argument type mismatch: actual type is 'kotlin.Int', but 'kotlin.String' was expected.

164

CHAPTER6 COLLECTIONS AND GENERICS

The preceding program will give a compile-time error if we pass the integer
argument to the people class. To solve this problem we need to use generics. The
following shows how this is done.

Example:

class People<T> (text: T) {
var x = text
init{
println(x)

}
fun main(args: Array<String>){
var name: People<String> = People<String>("Hello World")
var rank: People<Int> = People<Int>(23)// compile time error

Output:

Hello World
23

e Variance:

Invariance is defined as when functions or methods are defined
using one data type and thus cannot accept or return another
data type. “Any” is the super type of all the other data types. In
Kotlin, arrays are invariant by default. Extended generic types
are invariant in Kotlin, which can be managed using in and out
keywords. Variance is of two types:

1. Declaration-site variance: In and out keywords

2. Use-site Variance: Type projections

165

CHAPTER6 COLLECTIONS AND GENERICS

166

Kotlin In and Out Keywords

Out Keyword: Using the out keyword in a generic class
means that we can assign the reference to any of its super
type. An out value can only be produced by and not
consumed by the given class.

Example:

class OutClassDemo<out T>(val value: T) {
fun getVal(): T {
return value

}

fun main(args: Array<String>){
val out = OutClassDemo("string")
val ref: OutClassDemo<Any> = out
println(ref.getVal())

}

Output:
String

In the preceding program we have created OutClassDemo,
which can produce the values of type T. If we do not use
the out keyword, it will give a compile-time error.

In Keyword: Using the in keyword in a generic class means
that we can assign a reference to any of its subtypes. The

in keyword can only be used for a parameter type that

is consumed and not produced. The following shows an
example of using it in a program.

Example:

class InClass<in T> {
fun toString(value: T): String {
return value.toString()

CHAPTER6 COLLECTIONS AND GENERICS

}

fun main(args: Array<String>){
val inClassObject: InClass<Number> = InClass()
val ref: InClass<Int> = inClassObject
println(ref.toString(23))

}

Output:

23

In the preceding example, we have declared a function
named toString(), which can consume value with the
type of T only. After that we can assign a number to the
reference of its subtype: Int.

Covariance:

In Kotlin, covariance is defined as being able to substitute subtypes
but not supertypes. For example, a generic class can accept a
subtype of data type that is already defined; i.e., a class that is
defined for Number can accept Int, but a class that is defined for Int
cannot accept Number. The following shows the implementation of

covariance in a program.

Example:

fun main(args: Array<String>) {
val y: MyClass<Any> = MyClass<String>() // Compiles
without error

}

class MyClass<out T>

Contracovariance:

In Kotlin, contracovariance is exactly opposite of covariance. It is
defined as being able to substitute a supertype value in the subtypes.
For example, a generic class can accept a supertype of the data type
that is already defined; e.g., a generic class that is defined for Int

167

CHAPTER6 COLLECTIONS AND GENERICS

168

can accept Number, but a generic class that is defined for Number
cannot accept Int. The following shows the implementation of

contracovariance in a Kotlin program.

Example:

fun main(args: Array<String>) {
var a: Container<Ford> = Container<Car>() //compiles
without error

// var b: Container<Car> = Container<Ford>() //gives

compilation error

}

open class Car

class Ford : Car()

class Container<in T>

Type Projections:

Using type projections we can copy one type of element to the Any
type of element. For example, if we want to copy elements of one
array of some type to another array of Any type, then it is possible.
The following shows this.

Example:

fun copy(mainArray: Array<out Any>, copyArray: Array<Any>) {

assert(mainArray.size == copyArray.size)
println("printing elements of main array...")
for (i in mainArray.indices) {
println(mainArray[i])
}
// copying (mainArray) array to (copyArray) array
for (i in mainArray.indices)

copyArray[i] = mainArray[i]
println("printing elements of copied array...")
for (i in copyArray.indices) {

CHAPTER6 COLLECTIONS AND GENERICS

println(copyArray[i])
}

}

fun main(args :Array<String>) {
val intsArray: Array<Int> = arrayOf(1, 2, 3)
val anyArray :Array<Any> = Array<Any>(3) { "" }
copy(intsArray, anyArray)

Output:

printing elements of main array...

1

2

3

printing elements of copied array...
1

2

3

Star Projections(*):

When we want to print an element of an array whose type is not
known by us, then we can use star(*) projection. The following shows

an example.

Example:

fun printArray(array: Array<*>) {
array.forkach { print(it) }
}

fun main(args :Array<String>) {
val name = arrayOf("Mark","Jacob", "Aries"
println("printing String array...")
printArray(name)
println()
val age = array0f(20,23,24)

169

CHAPTER6 COLLECTIONS AND GENERICS

println("printing Int array...")
printArray(age)
}

Output:

printing String array...
MarkJacobAries

printing Int array...
202324

6.6 Real-Life Programming Practices

170

1.

Create an online shopping platform that can manage various
types of products, such as electronics, clothing, and books.
Each product has unique attributes, and the platform should be
able to handle them efficiently while ensuring type safety and
reusability. Additionally, the system should keep track of customer
orders, which may contain a list of products with varying
categories.

Solution:

// Generic class to represent a Product of any type
class Product<T>(val id: Int, val name: String, val price: Double,
val category: T) {
fun getProductInfo() {
println("ID: $id, Name: $name, Price: $$price, Category:
$category”)

}

// Enum representing different product categories
enum class Category {
ELECTRONICS, CLOTHING, BOOKS

CHAPTER6 COLLECTIONS AND GENERICS

// Data class to represent an Order containing a list of products
data class Order(val orderId: Int, val productlist:
List<Product<*>>, val totalAmount: Double)

// Repository to manage orders using a Mutablelist collection
class OrderRepository {
private val orders: Mutablelist<Order> = mutablelListOf()

fun addOrder(order: Order) {
orders.add(order)
println("Order with ID ${order.orderId} added
successfully.")

}

fun listOrders() {
for (order in orders) {
println("Order ID: ${order.orderId}, Total Amount:
$8{order. totalAmount}")
order.productlist.forEach { it.getProductInfo() }

}

// Main function demonstrating the usage of generics and
collections
fun main() {
// Creating products of different types using generics
val laptop = Product(101, "Laptop", 1200.0, Category.
ELECTRONICS)
val tShirt = Product(102, "T-Shirt", 25.0, Category.CLOTHING)
val book = Product(103, "Kotlin Programming", 40.0,
Category.BOOKS)

// Adding products to a list
val productlist = 1listOf(laptop, tShirt, book)

// Creating an order with a list of products
val orderl = Order(1, productlist, productlList.sumOf {
it.price })

171

CHAPTER6 COLLECTIONS AND GENERICS

// Creating an order repository and adding the order
val orderRepo = OrderRepository()
orderRepo. addOrder (order1)

// Listing all orders
println("\nAll Orders:")
orderRepo.1listOrders()

Output:
Order with ID 1 added successfully.

All Orders:

Order ID: 1, Total Amount: $1265.0

ID: 101, Name: Laptop, Price: $1200.0, Category: ELECTRONICS

ID: 102, Name: T-Shirt, Price: $25.0, Category: CLOTHING

ID: 103, Name: Kotlin Programming, Price: $40.0, Category: BOOKS

6.7 Summary

In this chapter, we have learned about collections and generics in Kotlin. We have seen

that collections are used for storing, manipulating, and retrieving data, and that generics

enable code reusability, clear structure, and null safety. Both are useful for writing code

that is robust, flexible, and scalable.

6.8 Test Your Knowledge

172

Which of the following collections in Kotlin allows duplicate
elements?

a. Set

2.

3.

4.

5.

CHAPTER6 COLLECTIONS AND GENERICS

b. Map

c. List

d. None of the above

Which function is used to create an immutable list in Kotlin?
a. list()

b. listOf()

c. arrayListOf()

d. mutableListOf()

What will happen if you try to add elements to an immutable list

in Kotlin?

a. The elements will be added successfully.
b. A runtime error will occur.

c. A compile-time error will occur.

d. The elements will be replaced.

Which of the following methods can be used to access the first
element of a list in Kotlin?

a. first()
b. getFirst()

c. accessFirst()

(o

. fetchFirst()

Which function is used to create an immutable set in Kotlin?
a. hashSetOf{()

b. listOf()

c. mutableSetOf()

d. setOf()

173

CHAPTER6 COLLECTIONS AND GENERICS

174

6.

10.

In Kotlin maps, can keys be duplicated?
a. Yes

b. No

Which of the following is not a valid function for traversing a list
in Kotlin?

a. forEach()

b. forEachIndexed()

c. iterator()

d. getElement()

Which function is used to check if a list is empty in Kotlin?
a. isNull()

b. hasElements()

c. isEmpty()

d. isBlank()

Which method is used to remove an element from a

mutable map?

a. remove()

o

. delete()

c. discard()

d. pop()

What is the advantage of using immutable collections in Kotlin?

a. better performance

CHAPTER6 COLLECTIONS AND GENERICS

b. thread safety
c. can modify elements easily

d. less memory consumption

6.9 Answers

-
o

S
A T A

10. b

175

CHAPTER 7

Kotlin Coroutines

7.1 Introduction

Over the years while developing applications, all programmers have worried about one
classical problem: how to stop our applications from blocking. Irrespective of the type
of application, whether it is a website, mobile application, or server-side application,
everyone wants to minimize the user’s wait time, due to asynchronous programming
blocking is the main reason that prevents applications from scaling.

There are many approaches to solve this problem, like threading, callbacks, futures,
promises, reactive extensions, and coroutines. Following are the advantages of using
coroutines for asynchronous programming in Kotlin.

Lightweight: Coroutines are lightweight, so you can run many coroutines on single
threads, which does not block the thread where the coroutine is running. You can
suspend the running thread at any time, which can prevent memory blocking.

Fewer Memory Leaks: To avoid memory leaks use structured concurrency to run
operations.

Built-in Cancellation: Provides built-in cancellation support.

Kotlin provides a minimal, low-level API, kotlinx.coroutines, which is a library for
coroutines in Kotlin and is developed by Jetbrains.

7.2 Creating Coroutines

Kotlin Coroutines are conceptually similar to threads, as it runs the block of assigned
code concurrently with the rest of the code. However, it is not bound to a particular
thread, so it can suspend its execution from one thread and start running another thread.

177

© Arnika Patel, Keshav Kumar, and Dr. Bishwajeet Kumar Pandey 2025
A. Patel et al., Kotlin Mastery, https://doi.org/10.1007/979-8-8688-1618-5_7

https://doi.org/10.1007/979-8-8688-1618-5_7#DOI

CHAPTER 7 KOTLIN COROUTINES

The following shows the usage of coroutines in Kotlin.
Example:

import kotlinx.coroutines.*
fun main() = runBlocking { // this: CoroutineScope
launch { // launch new coroutine
delay(1000L) // delay for 1 second which is non-blocking
println("World!") // print after delay
}
println("Hello") // main continues while a previous one is delayed,
printed first

The following is the explanation of the preceding program.

launch: This is used as the builder for the coroutine. It launches the new coroutine
concurrently with the rest of the code, which works continuously—that’s why Hello will
be printed first.

delay: This is a function that is used to suspend a coroutine for a specific time
period. Suspension of the particular coroutine will not block the thread; rather, it allows
the running of another block of code.

runBlocking: This is also a builder function. It is used as a bridge between non-
coroutine code and coroutine code. If we try to remove runBlocking from the preceding
program, then an error will be generated—i.e., unresolved reference launch—because a
launch can’t be declared without a coroutine scope.

7.3 Structured Concurrency

Coroutines follow structured concurrency, meaning that we can declare new coroutines
only inside the scope of a coroutine. In the preceding example, we saw that the
runBlocking function is used for setting the scope of coroutines in the program and that
is why the program waits until work gets printed after the delay and then exits.

In real-world applications, there will be multiple coroutines to launch and run in a
single application, hence structured concurrency ensures that coroutines are not lost,
nor are there memory leaks.

Structured concurrency avoids leaking, offers a clear structure with better error
handling, and cancels the child coroutines automatically.

178

CHAPTER 7 KOTLIN COROUTINES

7.4 Extract Function Refactoring

In coroutines we can extract whatever is written inside the launch {...} and make a
separate function for that. When we perform this, a new function will be created that is
a suspend function. Suspend functions are the same as normal functions, but they can in
turn use other suspending functions to suspend execution of coroutines.

Example:

import kotlinx.coroutines.*
fun main() = runBlocking { // this: CoroutineScope

launch {
printiWorld()
}
println(“Hello")
}
suspend fun printWorld(){
delay(1000L)
println("World!") // print after delay
}
Output:
Hello
World!

7.5 Scope Builder and Concurrency
Scope Builder

It is possible for coroutines to declare their own scope instead of having it defined by
scope builders. It creates its scope and lets all its children complete. There are two types
of scope builders available: runBlocking and coroutineScope. They are similar because
they both let every child complete its task, and after that they exit. The difference is only
that runBlocking blocks the current thread for other usage and coroutineScope only
suspends the thread. That is why runBlocking is a regular function and coroutineScope
is a suspending function.
The following shows both scope builders being used in a program.

179

CHAPTER 7 KOTLIN COROUTINES
Example:

import kotlinx.coroutines.*
fun main() = runBlocking {
printWorld()
}
suspend fun printWorld() = coroutineScope { // this: CoroutineScope
launch {
delay(1000L)
println("World!")

}
println("Hello")

Output:

Hello
World!

Concurrency

We can launch multiple concurrent coroutine scopes inside a suspending function, as
follows. This example runs two launch blocks continuously, which is why first world 1
will be printed and after that world 2.

Example:

import kotlinx.coroutines.*
// Sequentially executes doWorld followed by "Done"
fun main() = runBlocking {
printWorld()
println("Done")
}
// Concurrently executes both sections
suspend fun printWorld() = coroutineScope { // this: CoroutineScope
launch {
delay(2000L)
println("World 2")

180

CHAPTER 7 KOTLIN COROUTINES

launch {
delay(1000L)
println("World 1")

}
println("Hello")

Output:

Hello
World 1
World 2
Done

7.6 An Explicit Job

At launch the coroutine scope builder returns a job object that is a handle to launched
operations and can be used for waiting for a child coroutine to run, after which it will
print a Done string. The following is an example.

Example:

import kotlinx.coroutines.*
val job = launch { // launch a new coroutine and keep a reference
to its Job
delay(1000L)
println("World!")
}
println("Hello")
job.join() // wait until child coroutine completes
println("Done")

Output:

Hello
World!
Done

181

CHAPTER 7 KOTLIN COROUTINES

7.7 Coroutines Are Lightweight

Coroutines are lightweight, and they take less memory than threads do. The following
is an example of a coroutine launching 60,000 different coroutines. Each waits for five
seconds and then prints Done, and it consumes very little memory.

If we create the same example using threads, it will consume a lot of memory
depending upon the version of JDK and the operating system on which it was developed.
It may throw an out-of-memory exception.

Example:

import kotlinx.coroutines.*
fun main() = runBlocking {
repeat(60 000) { // launch a lot of coroutines
launch {
delay(5000L)
println("done")

7.8 Coroutine Exception Handling

A cancelled coroutine throws an exception named CancellationException. Coroutine
exceptions can be thrown automatically or by exposing them to users. When coroutine
builders throw an exception from the root coroutine, which is not part of any other
exception, it is treated as an uncaught exception. All other exceptions rely on the users
to consume the exception via await or receive. The following is an example of the root
coroutine using the GlobalScope API.

Example:

import kotlinx.coroutines.*

@0ptIn(DelicateCoroutinesApi::class)

fun main() = runBlocking {

val job = GlobalScope.launch { // root coroutine with launch

println("Throwing exception from launch")
throw ExceptionInInitializerError() // printed by Thread.
defaultUncaughtExceptionHandler

182

CHAPTER 7 KOTLIN COROUTINES

}

job.join()

println("Joined failed job")

val deferred = GlobalScope.async { // root coroutine with async
println("Throwing exception from async")
throw ArrayIndexOutOfBoundsException() //user to call await nothing
is printed

}

try {
deferred.await()

println("Unreached")
} catch (e: ArrayIndexOutOfBoundsException) {
println("Caught ArrayIndexOutOfBoundsException™)

Output:

Throwing exception from launch

Exception in thread "DefaultDispatcher-worker-1 @coroutine#2" java.lang.
ExceptionInInitializerError

Joined failed job

Throwing exception from async

Caught ArrayIndexOutOfBoundsException

7.9 Coroutine Exception Handler

We can customize the way of printing uncaught exceptions.

CoroutineExceptionHandler can be used as a generic catch block to handle

all the coroutines of the parent and all its children. We can not recover from

CoroutineExceptionHandler.
CoroutineExceptionHandler is generally used for all the uncaught exceptions that

were not handled in the program. The following is an example of using it.

183

CHAPTER 7 KOTLIN COROUTINES
Example:

import kotlinx.coroutines.*
@ptIn(DelicateCoroutinesApi::class)
fun main() = runBlocking {
val handler = CoroutineExceptionHandler { , exception ->
println("CoroutineExceptionHandler got $exception™)
}
val job = GlobalScope.launch(handler) { // root coroutine
throw ExceptionInInitializerError()
}
val deferred = GlobalScope.async(handler) { // also root, but async
instead of launch
throw ArrayIndexOutOfBoundsException() // nothing printed, user to
call deferred.await()

}
joinAll(job, deferred)

Output:

CoroutineExceptionHandler got java.lang.ExceptionInInitializerError

7.10 Cancellation and Exceptions

Cancellation and exceptions are related to each other. For the exceptions that are
ignored by handlers, which are only used for additional information, the coroutine uses
CancellationException to cancel them. It will not affect the parent coroutine. In the
following example we use the yield() function, which is generally used to temporarily
suspend one coroutine and allow another coroutine to run.

Example:

import kotlinx.coroutines.*
fun main() = runBlocking {
val job = launch {
val child = launch {

try {

184

CHAPTER 7 KOTLIN COROUTINES

delay(Long.MAX VALUE)
} finally {
println("Child is cancelled")

}

yield()

println("Cancelling child soon...")
child.cancel()

child.join()

yield()

println("Parent is running, not cancelled")

}
job.join()

Output:

Cancelling child soon...
Child is cancelled
Parent is running, not cancelled

7.11 Exception Aggregation

This is generally used when a program fails with multiple exceptions. When this situation
occurs, the exception that is first will win and be handled. All the other exceptions are
aggregated with the first one. The following example shows that.

Example:

import kotlinx.coroutines.*
@ptIn(DelicateCoroutinesApi::class)
fun main() = runBlocking {
val handler = CoroutineExceptionHandler { , exception ->
println("CoroutineExceptionHandler got $exception with ${exception.
suppressed.contentToString()}")

}
val job = GlobalScope.launch(handler) {

185

CHAPTER 7 KOTLIN COROUTINES

launch {
try {
delay(Long.MAX_VALUE)
} finally {
throw ArrayIndexOutOfBoundsException() // the second
exception
}
}
launch {
delay(100)
throw IllegalArgumentException() // the first exception
}
delay(Long.MAX VALUE)
}
job.join()
}
Output:

CoroutineExceptionHandler got java.lang.IllegalArgumentException with
[java.lang.ArrayIndexOutOfBoundsException]

7.12 Real-Life Programming Practices

1. Afood delivery application needs to perform several
asynchronous tasks, such as the following:

o Fetching restaurant details from a remote APIL
e Calculating estimated delivery time based on live traffic.

e Processing user’s order and updating the UI without blocking the
main thread.

Since these operations can take time, running them on the main
Ul thread could lead to laggy and unresponsive Ul

186

CHAPTER 7 KOTLIN COROUTINES
Solution:

import kotlinx.coroutines.*
suspend fun fetchRestaurantDetails(): String {
delay(2000) // Simulating network delay
return "Restaurant: Foodie's Delight, Rating: 4.5"
}
suspend fun calculateDeliveryTime(): String {
delay(1500) // Simulating calculation
return "Estimated Delivery Time: 30 mins"
}
suspend fun processOrder(): String {
delay(3000) // Simulating order processing
return "Order Confirmed! Tracking ID: #12345XYZ"
}
fun placeOrder() {
println("Placing your order...")
// Using Dispatchers.Default instead of Main/I0 for Kotlin
Playground compatibility
runBlocking {
val restaurantDetails = async(Dispatchers.Default) {
fetchRestaurantDetails() }
val deliveryTime = async(Dispatchers.Default) {
calculateDeliveryTime() }
val orderConfirmation = async(Dispatchers.Default) {
processOrder() }
println(restaurantDetails.await())
println(deliveryTime.await())
println(orderConfirmation.await())
println("Thank you for ordering with us!")

}
// Entry point

fun main() {

placeOrder()

187

CHAPTER 7 KOTLIN COROUTINES

Output:

Placing your order...

Restaurant: Foodie's Delight, Rating: 4.5
Estimated Delivery Time: 30 mins

Order Confirmed! Tracking ID: #12345XYZ
Thank you for ordering with us!

7.13 Summary

In this chapter, we have learned about Kotlin coroutines, which allow developers to
write asynchronous and non-blocking code in a structured manner. They also allow
developers to suspend and resume without blocking threads. Using coroutines,
developers can write cleaner, safer, and more efficient code without a complex chain of
threads.

7.14 Test Your Knowledge

1. Which of the following is NOT an advantage of using coroutines
for asynchronous programming in Kotlin?

a. lightweight
b. built-in cancellation
c. high memory consumption
d. fewer memory leaks
2. What is the purpose of the launch builder in Kotlin coroutines?
a. to block the main thread
b. tolaunch a new coroutine concurrently with the rest of the code
c. to handle exceptions

d. to create a new thread

188

CHAPTER 7 KOTLIN COROUTINES

3. What happens if runBlocking is removed from the given

5.

6.

program?

a.
b.
C.

d.

The program runs faster.
An unresolved reference error occurs.
The launch function works without issues.

Nothing changes.

Which statement about structured concurrency is TRUE?

a.
b.

C.

d.

Coroutines can run independently without scope.
Coroutines are always bound to a single thread.

New coroutines must be declared inside the scope of another
coroutine.

Structured concurrency increases memory leaks.

What is a suspend function in Kotlin coroutines?

a.
b.
C.

d.

a function that can suspend execution without blocking the thread
a function that blocks the main thread
a function that never returns

a normal function without any difference

Which function is used to delay a coroutine without blocking
the thread?

a.

sleep()

b. wait()

c. pause()

d.

delay()

189

CHAPTER 7 KOTLIN COROUTINES

190

7.

10.

Why are coroutines considered lightweight compared to
threads?

a.

b.
C.

d.

Thousands of coroutines can run on a few threads without
blocking them.

They require complex hardware resources.
They use more CPU resources.

They consume more memory.

What is the role of CoroutineExceptionHandler?

a.
b.
C.

d.

It blocks the main thread.
It handles uncaught exceptions in coroutines.
It cancels running coroutines.

It stops the coroutine from executing further.

What does the yield() function do in a coroutine?

a.
b.
C.

d.

completely stops the coroutine
immediately cancels the coroutine
blocks the thread permanently

temporarily suspends the coroutine to allow others to run

What does the job.join() function do in Kotlin coroutines?

pauses the main thread indefinitely
cancels the coroutine
starts a new coroutine

waits for the coroutine to complete

CHAPTER 7 KOTLIN COROUTINES

7.15 Answers

N
o

10.

191

CHAPTER 8

Kotlin Domain-Specific
Language (DSL)

8.1 Introduction to Kotlin DSLs

Domain-specific languages are in contrast to the general-purpose languages—for
example, Java or Kotlin—which can be used to develop an application and can be
written in multiple parts of an application. DSL is more concise and readable, as it
mostly reads like an English statement. An example of DSL is the SQL language, which is
readable and expressive rather than another general-purpose language.

Kotlin as a modern programming language supports DSL, or domain-specific
language. It gives the customer the ease of writing Kotlin code. It will be easier for
developers to read the code as it increases the readability. DSL can be divided into two
parts; i.e., internal or external. Internal DSLs are part of the host language, and external
DSLs are standalone language.

When we develop DSLs with existing general-purpose language, it is termed as using
internal DSLs because we will not create a whole new language; we will define some way
to use a language that is already available, like Kotlin.

We should not make or use DSLs everywhere we create classes, instead only doing so
where a configuration class or library interface is used in the code.

Advantages of DSLs

Following are the advantages of using DSLs in kotlin. Increase Readability: Using
DSLs with Kotlin will increase the code’s readability, mostly for those who are non-
technical investors.

More Expressive: By reducing the boilerplate code, DSLs allow you to write code
that is more expressive and concise.

193
© Arnika Patel, Keshav Kumar, and Dr. Bishwajeet Kumar Pandey 2025

A. Patel et al., Kotlin Mastery, https://doi.org/10.1007/979-8-8688-1618-5_8

https://doi.org/10.1007/979-8-8688-1618-5_8#DOI

CHAPTER 8 KOTLIN DOMAIN-SPECIFIC LANGUAGE (DSL)

Specific to Domain: Rather than writing a whole application and creating a whole
language, in Kotlin we use DSLs that are internal and used only in the specific part of an
application.

Type Safe: DSLs can provide type safety by ensuring that no error or bug will be
there during compilation time.

8.2 Writing Our First DSL

In this part we will be using three Kotlin features:
1. Lambdas outside of method parentheses
2. Lambdas with receivers
3. Extension functions

Let’s create a simple DSL with which we will instantiate an object of a Student class.

val student = Student {
name = "Jacob"

age = 20
class = “Engineering”
address {
street = "Street 3"
number = 21

city = "New York"

Let’s take a deep dive into the code. The code is self-descriptive, so people who are
non-technical can understand what we are trying to write or are able to make changes in
the code. To create this code, first we must create a new file for the Student class. We will
put our DSLs in different files and the code in another file. Let’s look at how we create a
Student class separately.

data class Student(var name: String? = null,
var age: Int? = null,
var class:String = null,
var address: Address? = null){}

194

CHAPTER 8 KOTLIN DOMAIN-SPECIFIC LANGUAGE (DSL)

data class Address(var street: String? = null,
var number: Int? = null,
var city: String? = null){}

Looking at the preceding code, we can see that properties of the Student class are
defined within the curly brackets, and these curly brackets are nothing but the lambdas.
Here we use lambdas outside the method parentheses.

When the last parameter in the function is lambda, we can simply put it outside of
the function parentheses and remove the parentheses completely. In our example, we
can describe that Student{} is equal to Student ({}). This creates a structure with less
syntax. The following is the first way to write our student function.

fun student(block: (Student) -> Unit): Student {
val s = Student()
block(s)
return s

This is a function that creates the Student object. It requires 1ambda, which we create
in the second line, and before execution we want the object to get its properties. The
following shows the usage of the function.

val student = student {
it.name = "Jacob"
it.age = 20

it.class = “Engineering”

The lambda receives only one argument, and we can call the student object with it.
Using it in our DSL is not good enough, so another feature comes into the picture—i.e.,
lambdas with receivers.

For this feature, we add a receiver function‘()’ to the lambda. When the function is in
the scope of the receiver, we can execute the lambda on the receiver without providing it

as an argument, as follows:

fun student(block: Student.() -> Unit): Student {
val s = Student()
s.block()
return s

195

CHAPTER 8 KOTLIN DOMAIN-SPECIFIC LANGUAGE (DSL)
We can rewrite the preceding code in one line using Kotlin’s apply function:

fun student(block: Student.() -> Unit): Student = Student().apply(block)
Hence, we can now remove it from our DSL:

val student = student {
name = "Jacob"
age = 20

class = “Engineering”

}

We want to leave one thing: the Address class. It is almost the same as the Student
class, but is given as an argument to the Student class. To do this, we will use the last
feature of Kotlin—the extension function.

Extension functions allow you to add classes of the function without accessing the
source code. The following is the final DSL class:

fun student(block: Student.() -> Unit): Student = Student().apply(block)

fun Student.address(block: Address.() -> Unit) {
address = Address().apply(block)

In the preceding code we have added an Address class that accepts the address in
the Student class without a receiver. Now, finally, we have created DSL.

val student = Student {
name = "Jacob"

age = 20
class = “Engineering”
address {
street = "Street 3"
number = 21

city = "New York"

This is how we write simple Kotlin DSLs. In the following sections we will see how we
can add collections and use the @Ds1Marker annotation.

196

CHAPTER 8 KOTLIN DOMAIN-SPECIFIC LANGUAGE (DSL)

8.3 DSL by Applying Builder Pattern

In the previous example, we saw a basic model for starting purposes. Those classes

had mutable variables, which are very easy to change the properties of whenever it’s
required. If we use or change it to immutable values, then we will get a compile-time
error saying that Val cannot be reassigned. To avoid this, we need to use builder classes.
The following is our model.

data class Student(val name: String,
val dateOfBirth: Date,
var address: Address?)

data class Address(val street: String,
val number: Int,
val city: String)

If we want to create this object, we need to create constructors along with their
property values. The builders will collect the data and call the build function that will
create the object using its constructor. The following code shows that.

Code:

fun student(block: StudentBuilder.() -> Unit): Student = StudentBuilder().
apply(block).build()
class StudentBuilder {

var name: String =

private var dob: Date = Date()

var dateOfBirth: String = ""

set(value) {
dob = SimpleDateFormat("yyyy-MM-dd").parse(value)

nn

}

private var address: Address? = null
fun address(block: AddressBuilder.() -> Unit) {
address = AddressBuilder().apply(block).build()

}
fun build(): Student = Student(name, dob, address)

197

CHAPTER 8 KOTLIN DOMAIN-SPECIFIC LANGUAGE (DSL)

class AddressBuilder {
var street: String =
var number: Int = 0

nmn

nn

var city: String =
fun build() : Address = Address(street, number, city)

In this example, we have created another string, which uses a setter function to set
the date value, so the date will be available in a format that is simple to read.

val student = student {
name = "Jacob"
dateOfBirth = "2002-09-02"

address {
street = "Street 3"
number = 21

city = "New York"

8.4 DSL with Collections

Now that we have added builders to our DSL, we next turn to the use of collections in

DSLs. Let’s assume that one particular student has multiple addresses. To store the

addresses, we will use a collection. We will convert the Address property mentioned

in the builder class to MutablelList<Address>, add multiple addresses to the address

function, and pass the list of addresses to the constructor. The following are the changes.
Code:

data class Student(val name: String,
val dateOfBirth: Date,
val addresses: List<Address>)
class StudentBuilder {
// ... other properties
private val addresses = mutablelistOf<Address>()

198

CHAPTER 8 KOTLIN DOMAIN-SPECIFIC LANGUAGE (DSL)

fun address(block: AddressBuilder.() -> Unit) {
addresses.add(AddressBuilder().apply(block).build())

}
fun build(): Student = Student(name, dob, addresses)

}
// result
val student = student {
name = "Jacob"
dateOfBirth = "2002-09-02"

address {
street = "Street 3"
number = 21
city = "New York"

}

address {
street = "Street 5"
number = 22
city = "London"

}

From this example we can see that there are multiple blocks for addresses, and we
don’t want to see multiple blocks of the same content. The way to solve this problem is
to use a helper class with the address method and add the receiver with lambda in the
class StudentBuilder.

Code:

fun student(block: StudentBuilder.() -> Unit): Student = StudentBuilder
().apply(block).build()
class StudentBuilder {
var name: String =
private var dob: Date = Date()
var dateOfBirth: String = ""
set(value) { dob = SimpleDateFormat("yyyy-MM-dd").parse(value) }
private val addresses = mutablelistOf<Address>()

199

CHAPTER 8 KOTLIN DOMAIN-SPECIFIC LANGUAGE (DSL)

fun addresses(block: ADDRESSES.() -> Unit) {
addresses.addA11(ADDRESSES().apply(block))

}
fun build(): Student = Student(name, dob, addresses)

}
class ADDRESSES: Arraylist<Address>() {
fun address(block: AddressBuilder.() -> Unit) {
add(AddressBuilder().apply(block).build())

}

class AddressBuilder {
var street: String =

nn

var number: Int = 0

var city: String =
fun build() : Address = Address(street, number, city)

In this code the helper class is created using capital letters so that it can be identified
easily. Now the following is the structured result:

val student = student {
name = "Jacob"
dateOfBirth = "2002-09-02"
addresses {

address {
street = "Street 3"
number = 21
city = "New York"
}
address {
street = "Street 5"
number = 22
city = "London"
}

200

CHAPTER 8 KOTLIN DOMAIN-SPECIFIC LANGUAGE (DSL)

8.5 DSL with @DsIMarker Annotation

The preceding code is simple, easy, readable, and safe. But there is one issue with this
code: as we can see we are creating lambdas inside lambdas; thus, we can access the
receiver of the outer lambdas. Though the following code will change the name from
Jacob to Mark, it will run without any compilation errors.

Code:

val student = student {
name = "Jacob"
dateOfBirth = "2002-09-02"
addresses {
address {
addresses {
name = "Mark"
}
street = "Street 5"
number = 22
city = "London"

}

To avoid name changing, we can use @DslMarker annotation in Kotlin 1.1 or later.
This will be added in a custom annotation class, and after that it will be used inside your
DSL class. The following shows how to create and use @DsIMarker annotation.

Code:

@DsIMarker
annotation class StudentDsl

@ StudentDsl

class StudentBuilder {
Y/

}

201

CHAPTER 8 KOTLIN DOMAIN-SPECIFIC LANGUAGE (DSL)

@ StudentDsl
class ADDRESSES: Arraylist<Address>() {

/..
}

@ StudentDs1
class AddressBuilder {

/..
}

Now, in the previous example where we use name inside the address block, it will give
the error “name and addresses can’t be called in this context by implicit receiver.”

8.6 Real-Life Programming Practices

1. Create a custom HTML builder in Kotlin without using string

concatenation.

Code:

@DsIMarker
annotation class HtmlDsl1

@HtmIDs1
class Html {
private val elements = mutablelistOf<String>()

fun body(init: Body.() -> Unit) {
val body = Body().apply(init)
elements.add("<body>${body.render () }</body>")
}

fun render(): String = "<html>${elements.
joinToString("")}</html>"

}

@HtmIDs1
class Body {
private val elements = mutablelistOf<String>()

202

CHAPTER 8 KOTLIN DOMAIN-SPECIFIC LANGUAGE (DSL)

fun hi(text: String) {
elements.add("<hi>$text</h1>")
}

fun p(text: String) {
elements.add("<p>$text</p>")

}

fun render(): String = elements.joinToString("")

}

fun html(init: Html.() -> Unit): String {
val html = Html().apply(init)
return html.render()

}
//using above dsl to generate html

fun main() {
val page = html {
body {
h1("Welcome to Kotlin DSL!")
p("This is an example of a Kotlin DSL for
generating HTML.")

}
println(page)

Output:

<html>
<body>
<h1>Welcome to Kotlin DSL!</h1>
<p>This is an example of a Kotlin DSL for generating
HTML.</p>
</body>
</html>

203

CHAPTER 8 KOTLIN DOMAIN-SPECIFIC LANGUAGE (DSL)

2. Create a Kotlin DSL for generating a database query.

Code:

@Ds 1Marker
annotation class SqlDsl

// Base class for queries
abstract class SqlQuery {
abstract fun build(): String

}

// SELECT Query Builder

@Sq1Ds1

class SelectQueryBuilder : SqlQuery() {
private var table: String = ""
private val columns = mutablelistOf<String>()
private var whereClause: String? = null

fun select(vararg cols: String) {
columns.addAll(cols)

}

fun from(tableName: String) {
table = tableName

}

fun where(condition: String) {
whereClause = condition

}

override fun build(): String {
val columnPart = if (columns.isEmpty()) "*" else columns.
joinToString(", ")
val wherePart = whereClause?.let { " WHERE $it" } 2: ""
return "SELECT $columnPart FROM $table$wherePart;"

204

CHAPTER 8 KOTLIN DOMAIN-SPECIFIC LANGUAGE (DSL)

// INSERT Query Builder
@Sq1Ds1
class InsertQueryBuilder : SqlQuery() {
private var table: String = ""
private val values = mutableMapOf<String, Any>()

fun into(tableName: String) {
table = tableName

}

fun values(init: ValuesBuilder.() -> Unit) {
values.putAll(ValuesBuilder().apply(init).build())

}

override fun build(): String {
val columns = values.keys.joinToString(", ")
val vals = values.values.joinToString(", ") { "'$it'" }
return "INSERT INTO $table ($columns) VALUES ($vals);"

}

// UPDATE Query Builder

@Sq1Ds1

class UpdateQueryBuilder : SqlQuery() {
private var table: String = ""
private val updates = mutableMapOf<String, Any>()
private var whereClause: String? = null

fun table(tableName: String) {
table = tableName

}

fun set(init: ValuesBuilder.() -> Unit) {
updates.putAll(ValuesBuilder().apply(init).build())

}

fun where(condition: String) {
whereClause = condition

205

CHAPTER 8 KOTLIN DOMAIN-SPECIFIC LANGUAGE (DSL)

206

override fun build(): String {
val setPart = updates.entries.joinToString(", ")
{ "${it.key} = '${it.value}'" }
val wherePart = whereClause?.let { " WHERE $it" } 2: ""
return "UPDATE $table SET $setPart$wherePart;"

}

// Helper class for inserting/updating values
@Sq1Ds1
class ValuesBuilder {

private val values = mutableMapOf<String, Any>()

infix fun String.to(value: Any) {
values[this] = value

}

fun build(): Map<String, Any> = values
}

// DSL Wrapper Functions
fun selectQuery(init: SelectQueryBuilder.() -> Unit): String {
return SelectQueryBuilder().apply(init).build()

}

fun insertQuery(init: InsertQueryBuilder.() -> Unit): String {
return InsertQueryBuilder().apply(init).build()
}

fun updateQuery(init: UpdateQueryBuilder.() -> Unit): String {
return UpdateQueryBuilder().apply(init).build()
}

//using above dsl to generate query
fun main() {
// SELECT Query Example
val selectSQL = selectQuery {
select("id", "name", "email")
from("users"

CHAPTER 8 KOTLIN DOMAIN-SPECIFIC LANGUAGE (DSL)

where("age > 18")
}
println(selectSQL) // Output: SELECT id, name, email FROM
users WHERE age > 18;
// INSERT Query Example
val insertSQL = insertQuery {
into("users"
values {
"name" to "John Doe"
"email"” to "john@example.com"
"age" to 30

}
println(insertSQL) // Output: INSERT INTO users (name, email,

age) VALUES ('John Doe', 'john@example.com', '30');
// UPDATE Query Example
val updateSQL = updateQuery {
table("users"
set {
"email" to "newemail@example.com"
"age" to 31
}
where("id = 1")
}
println(updateSQL) // Output: UPDATE users SET email =
‘newemail@example.com’, age = '31' WHERE id = 1;

Output:

SELECT id, name, email FROM users WHERE age > 18;

INSERT INTO users (name, email, age) VALUES ('John Doe', 'john@
example.com', '30');

UPDATE users SET email = 'newemail@example.com', age = '31'
WHERE id = 1;

207

CHAPTER 8 KOTLIN DOMAIN-SPECIFIC LANGUAGE (DSL)

8.7 Summary

In this chapter, we have learned about Kotlin DSL, which is commonly used by
developers to create expressive, concise, and clear code. DSLs create more-descriptive
code. Overall, it increases readability by adding domain-focused mini-languages

inside Kotlin.

8.8 Test Your Knowledge

1. Whatis the primary advantage of using DSLs in Kotlin?
a. They reduce the size of the compiled application.
b. They improve code readability and expressiveness.
c. They replace the need for general-purpose languages.
d. They are faster than all general-purpose languages.

2. How is an internal DSL different from an external DSL?

a. Internal DSLs are separate programming languages, while external DSLs
are embedded in a host language.

b. Internal DSLs are part of a host language, while external DSLs are

standalone languages.
c. Internal DSLs require a separate compiler, while external DSLs do not.
d. Internal DSLs must be interpreted, while external DSLs are compiled.
3. Which of the following is NOT an advantage of DSLs?
a. increased readability
b. more expressiveness

c. universal applicability across all domains

d. type safety

208

CHAPTER 8 KOTLIN DOMAIN-SPECIFIC LANGUAGE (DSL)

4. What is the purpose of the @Ds1Marker annotation in
Kotlin DSLs?

a. It allows external DSLs to work within Kotlin.

b. It prevents accidental access to outer lambda receivers in
nested DSL blocks.

c. Ithelps in compiling the DSL faster.
d. It converts Kotlin DSLs into external DSLs.

5. What Kotlin feature allows functions to execute within the

scope of a receiver?

a. lambda expressions

b. extension functions

c. higher-order functions
d. lambdas with receivers

6. What Kotlin function simplifies DSL object creation by
applying configuration inside its scope?

a. apply
b. with
c. let
d. run
7. Why do we use builder classes in Kotlin DSLs?
a. to allow mutable variables to be reassigned dynamically
b. to support immutable objects and avoid reassigning val properties
c. to replace the need for Kotlin’s default constructors

d. to prevent objects from being instantiated

209

CHAPTER 8 KOTLIN DOMAIN-SPECIFIC LANGUAGE (DSL)

8. What happens if we don’t use @Ds1Marker in a nested DSL
structure?

a. The code will not compile.

b. The DSL will run, but it might modify unintended properties due to
implicit receivers.

c. It will automatically prevent outer lambda access.
d. The DSL will be slower in execution.

9. What is a key characteristic of Kotlin DSLs that makes them
different from general-purpose Kotlin code?

a. They use special syntax that Kotlin does not support normally.

b. They are executed using an external Kotlin compiler.

c. They allow domain-specific configurations using a structured format.
d. They can only be used in Android development.

10. Which of the following Kotlin DSL features helps in creating
structured domain-specific configurations?

a. infix functions

b. named parameters
c. extension functions
d. reflection

11. What is the primary benefit of using lambdas with receivers in
Kotlin DSLs?

a. They improve performance by reducing memory allocation.

b. They allow functions to be called on a receiver object without explicitly
passing it.

c. They replace constructors in class instantiation.

d. They make Kotlin DSLs work faster in Android applications.

210

CHAPTER 8 KOTLIN DOMAIN-SPECIFIC LANGUAGE (DSL)

12. What is the main reason for using the builder pattern in
Kotlin DSLs?

a. to enforce immutability while constructing objects
b. to eliminate the need for object creation

c. to allow runtime modifications of objects

d. to simplify function overloading

13. What does the following Kotlin DSL block represent?

val student = student {
name = "Alice"
dateOfBirth = "1998-04-15"
addresses {

address {
street = "Park Avenue"
number = 10

city = "New York"

}

address {
street = "Baker Street"
number = 221
city = "London"

}

a. a Kotlin class that cannot be modified

b. astructured DSL configuration for a Student object with multiple
addresses

c. afunction that initializes two address objects separately

d. a Kotlin singleton instance

211

CHAPTER 8 KOTLIN DOMAIN-SPECIFIC LANGUAGE (DSL)

8.9 Answers

1. b

10. c
11. b
12. a

13. b

212

CHAPTER 9

Kotlin Standard Library

9.1 Introduction to the Kotlin Standard Library

The Kotlin standard library is a very rich set of functions and extensions that help
simplify complex programming problems or tasks. These functions are very easy to
understand because they were built in the Kotlin language and provide easy access to
multiple functions.

By using standard library functions, developers can write easy, readable, clean, and
concise code that will be more efficient than normal code. In the following sections we
will see some of the categories provided by the Kotlin standard library.

9.2 Collection Functions

Collections are a powerful feature that provides numerous functions to work with, like
lists, sets, and maps. Some common operations that we can perform on collection
functions are sorting, filtering, and transforming. Following are several examples.

Sorting

When working with certain collections, the order of an element may play a pivotal role.
For example, if we create two lists with the same elements but one has elements sorted
in ascending order and the other has the elements sorted in descending order, both

lists will be considered different because the order of elements is different in each list.
There are four ways in which we can use sorting: natural sorting, custom sorting, reverse
sorting, and random sorting.

213
© Arnika Patel, Keshav Kumar, and Dr. Bishwajeet Kumar Pandey 2025

A. Patel et al., Kotlin Mastery, https://doi.org/10.1007/979-8-8688-1618-5_9

https://doi.org/10.1007/979-8-8688-1618-5_9#DOI

CHAPTER9 KOTLIN STANDARD LIBRARY

Natural Sorting

In natural sorting, we will either sort the given collection in ascending order or in

descending order using the sorted() and sortedDescending() functions, respectively.
The following example shows sorting in ascending and descending order.
Example:

fun main() {
val numbers = 1ist0f(3,5,2,6,1,8,7,4)
println("Sorted ascending: ${numbers.sorted()}")
println("Sorted descending: ${numbers.sortedDescending()}")

Output:

Sorted ascending: [1, 2, 3, 4, 5, 6, 7, 8]
Sorted descending: [8, 7, 6, 5, 4, 3, 2, 1]

Custom Sorting

To use custom sorting, we use comparators. Collections will be sorted according to
the given conditions either in ascending order using the sortedBy() function or in
descending order using the sortedDescending() function.

The following shows both functions, which sort the list of names, first by length in
ascending order and then by length in descending order.

Example:

fun main() {
val names = 1istOf("Aly", "Mark", "Jacob", "Bob","Lee")

val sortedNamesAscending = names.sortedBy { it.length }
println("Sorted by length ascending: $sortedNamesAscending")

val sortedNamesDescending = names.sortedByDescending { it.length }
println("Sorted by length descending: $sortedNamesDescending")

Output:

Sorted by length ascending: [Aly, Bob, Lee, Mark, Jacob]
Sorted by length descending: [Jacob, Mark, Aly, Bob, Lee]

214

CHAPTER9 KOTLIN STANDARD LIBRARY

Reverse Sorting

Reverse sorting sorts the whole collection in reverse order. We can use the function

reversed() to sort the collection in reverse order. It returns a new collection with

copies of the elements, so if we change the original collection there will not be any

effect on previously obtained reversed collections. The following is an example of using

reverserd(). We can see both the output before and after adding an element.
Example:

fun main() {
val numbers = mutablelistOf(3,5,2,6,1,8,7,4)
val reverse = numbers.reversed()
println("Before Adding Element: "+reverse)
numbers.add(0)
println("After Adding Element: "+reverse)

Output:

Before Adding Element: [4, 7, 8, 1, 6, 2, 5, 3]
After Adding Element: [4, 7, 8, 1, 6, 2, 5, 3]

Now if we want to change the collection after reversing it, we can use the
asReversed() function. This function will create a reversed view of the same collection.
If we change the collection after reversing it, then it will be added to the reversed list also.

The following example shows this. First it will print the list of elements in reversed
order with the original list. After that, ‘0’ is added to the list. When we check the reversed
list, we can see that the new element just added inside the original list is added in the
reversed list as well. Using asReversed() instead of reversed() is advantageous because
it’s lightweight and dynamic.

Example:

fun main() {

val numbers

mutablelist0f(3,5,2,6,1,8,7,4)
val reverse = numbers.asReversed()
println("Before Adding Element: "+reverse)
numbers.add(0)
println("After Adding Element: "+reverse)

215

CHAPTER9 KOTLIN STANDARD LIBRARY

Output:

Before Adding Element: [4, 7, 8, 1, 6, 2, 5, 3]
After Adding Element: [0, 4, 7, 8, 1, 6, 2, 5, 3]

Random Sorting

At last, we have the function shuffled(), which will print the collection in a random
order every time you call it.
The following example shows that it will give a different output every time you run it.
Example:

fun main() {
val numbers = 1ist0f(3,5,2,6,1,8,7,4)
println(numbers.shuffled())

Output:

[5) 7) 1) 61 3) 4) 2) 8]

Filtering

Filtering will return the list of elements that match the condition given. It uses the
filter() function. There are several types by which to filter the collections.

The first one is filter by predicate, which filters collections according to the given
condition.

Example:

fun main() {
val numbers = 1istOf(1, 2, 3, 4, 5)
val evenNumbers = numbers.filter { it % 2 == 0 }
println("Even Numbers: "+evenNumbers)

Output:

Even Numbers: [2, 4]

216

CHAPTER9 KOTLIN STANDARD LIBRARY

If we want to predicate the condition where collections fails to match, then we can
use the function filterNot(), as in the following example.

Here we are printing all the elements that don’t match the given condition. Hence, it
will print a list of odd numbers, as displayed in the output.

Example:

fun main() {
val numbers = 1listOf(1, 2, 3, 4, 5)
val oddNumbers = numbers.filterNot { it % 2 == 0 }
println("0dd Numbers: "+oddNumbers)

Output:
0dd Numbers: [1, 3, 5]

We can also filter values that are not null in the collection using the filterNotNull()
function. It returns List<T: Any>. The following example prints the values that are not
null from the list.

Example:

fun main() {
val numbers = 1istOf(null, "Mark", "Jacob", null)

numbers. filterNotNull().forEach {

println(it)
}
}
Output:
Mark
Jacob

The function filterIsInstance() returns the collection of elements of the given
type. If we called a function on List<Any>, filterIsInstance<T>() returns a List<T>.
The following example returns the list of type string.

217

CHAPTER9 KOTLIN STANDARD LIBRARY

Example:

fun main() {
val numbers = listOf(null, 1, "Mark", 2.0, "John","Jacob",3.44)

numbers. filterIsInstance<String>().forEach {
println(it)
}

Output:

Mark
John
Jacob

Another type of filtering is done by using the function partition(), which filters the
collection according to the given condition and also puts the remaining elements in a
separate list.

Example:

fun main() {
val names = 1istOf("John", "Mark", "Bob", "Aly","Lee")

val (match, rest) = names.partition { it.length > 3 }
println(match)
println(rest)

Output:

[John, Mark]
[Bob, Aly, Lee]

The last type simply tests the predicate for all the elements available in the
collection. any () returns true if any of the elements match the condition, all() returns
true if all the elements match the condition, and none() returns true if none of the
elements match the condition.

218

CHAPTER9 KOTLIN STANDARD LIBRARY

Example:

fun main() {
val names = 1istOf("John", "Mark", "Bob", "Aly","Lee")
val empty = emptylist<String>()

println("Use with Predicate")
println(names.any { it.endsWith("e") })
println(names.none { it.endsWith("a") })
println(names.all { it.endsWith("e") })
println("Use without Predicate")
println(names.any())
println(empty.any())
println(names.none())
println(empty.none())

Output:

Use with predicate
true

true

false

Use without predicate
true

false

false

true

Transforming

The map() function will transform each element from a given collection into another
form, which will be specified. In the following program we have declared one list and
applied the mapping function to transform each element by multiplying it by 3.

219

CHAPTER9 KOTLIN STANDARD LIBRARY

Example:

fun main() {
val numbers = 1istOf(1, 2, 3, 4, 5)
val transformedNumbers = numbers.map{it*3}
println("Transformed Numbers: "+transformedNumbers)

Output:
Transformed Numbers: [3, 6, 9, 12, 15]

These functions are called as the part of Kotlin’s rich set of functional programming,
which allows the developers to write some common operations concisely.

9.3 String Functions

Kotlin provides multiple string manipulation functions, which simplify common tasks.
Let’s revisit these. The following table shows the name and use of the function given.

Table 9-1. String Manipulation Functions

Function Name Description

format() This function is used to convert the given string in
specific a certain format.

get(index: Int) Used to get specified character at given index
substring(startindex:Int, endindex:Int) Give substring from start index to end index
drop(i: Int) It will remove the first ‘i’ characters
dropLast(i:Int) It will remove the last ‘i’ characters
take(i:Int) It will take the first ‘i’ characters
takeLast(i:Int) It will take the last ‘i’ characters
uppercase() It converts string to uppercase
lowercase() It converts string to lowercase
capitalize() It capitalizes the first character
(continued)

220

Table 9-1. (continued)

CHAPTER9 KOTLIN STANDARD LIBRARY

Function Name

Description

decapitalize()
replaceFirstChar{it.uppercaseChar()}
replace(oldValue:String, newValue:String)
replace(oldChar:Char, newChar:Char)

replaceFirst(oldValue:String, newValue:String)
replaceAfter(delimiter:String, newValue:String)
replaceBefore(delimiter:String, newValue:String)
replaceAfterLast(delimiter:String,

newValue:String)

replaceBeforeLast(delimiter:String,
newValue:String)

trim()

trimStart()

trimEnd()

trimindent()
trimMargin(prefix: String = “1”)
padStart(length:int, charValue:Char =)

padEnd(length:Int, charValue:Char =)

It converts the first character to lowercase

It capitalizes the first character

It replaces the old string with new string

It replaces the old character with new character

It replaces only the first occurrence of old string to
new string

It replaces the string that comes after the first
occurrence of the delimiter.

It replaces the string that comes before the
specified delimiter.

It replaces the string after the last occurrence of
the delimiter.

It replaces the string before the last occurrence of
the delimiter.

It is used for removing leading and trailing
whitespaces from the string.

It removes the starting or leading whitespace from
the string.

It removes the ending or trailing whitespace from
the string.

It removes leading whitespaces from each line.
It removes the specified margin prefix.

It starts padding to the beginning until it reaches
the length mentioned in parameter.

It starts padding to the ending until it reaches to
the length mentioned in the parameter.

(continued)

221

CHAPTER9 KOTLIN STANDARD LIBRARY

Table 9-1. (continued)

Function Name

Description

split(delimiter:String, ignoreCase:Boolean,

limit:Int = 0)

split(delimiter:Char, limit:Int = 0)

lines()

chunked(size:int)

windowed(size:Int, steps:Int,
partialWindow:Boolean = false)

joinToString(separator: String = “,”)

contains(substring:String, ignoreCase:
Boolean = false)

startsWith(prefix:String, ignoreCase:
Boolean = false)

endsWith(suffix:String, ignoreCase:
Boolean = false)

indexOf(substring:string, startindex:
Int = 0, ignoreCase:Boolean = false

indexOf(charValue:Char, startindex:
Int = 0, ignoreCase:Boolean = false)

lastindexOf(substring:String, startindex:
Int = this.length, ignoreCase:Boolean = false)

compareTo(stringValue:String,
ignoreCase:Boolean = false)

equals(stringValue:String, ignoreCase:
Boolean = false)

It is used to divide a string into multiple substring
based on delimeter within a given limit and taking
case in consideration.

It is used to divide a string into multiple substring
based on delimeter within given limit.

It is used to split the string into lines based on line
breaks.

It splits the string into equal-size chunks.

It splits the string into equal-size chunks, but with
overlapping and given step size.

It converts the given collection into string with
given separator.

It checks if the given substring exists or not, with
considering case if it is false.

It checks if given string starts with specified
substring or not.

It checks if given string ends with specified
substring or not.

It finds the occurrence of a substring from start
index.

It finds the occurrence of a character from start
index.

It finds the last occurrence of a given substring
from start index.

[t compares the two strings in dictionary order and
returns the integer value indicating their order.

It checks if the two strings are equal or not.

222

(continued)

Table 9-1. (continued)

CHAPTER9 KOTLIN STANDARD LIBRARY

Function Name

Description

matches(regex:Regex)

contains(regex:Regex)

replace(regex:Regex, replacement:String)

replaceFirst(regex:Regex, replacement:String)

split(regex:Regex)

iSEmpty()
isNotEmpty()
isBlank()

isNotBlank()

toCharArray()
reversed()
toString()
first()

last()
firstOrNull()

lastOrNull()

slice(IntRange)

It checks if entire string matches the given regular
expression or not.

It checks if entire string contains a match for the
given regular expression or not.

It replaces all the matches of string with the
replacement string.

It replace only the first match of string with
replacement string.

It splits the string based on given regular
expression.

It checks if the string is empty or not.
It checks if the string is not empty.

It checks if the string is empty or if it contains only
white space characters.

It checks if string is non-empty or does not
contain whitespace characters.

It converts the string into array of characters.
It reverses the string.

It converts the object into string.

It returns the first character of the string.

It returns the last character of the string.

It returns the first character or null if the string is
empty.
It returns the last character or null if the string is
empty.

It extracts the substring using a given range of
integers.

223

CHAPTER9 KOTLIN STANDARD LIBRARY

9.4 Extension Functions

Kotlin extension functions add a rich set of functionalities to the already available classes
without changing their source code.

These functions can be used to add methods to standard library types or classes,
which greatly enhances code readability.

To add an extension function to a class, we need to define the new function
appended to the class name, as shown in the following example.

Example:

// A sample class to demonstrate extension functions
class ArithmeticOperation (val a: Int, val b:Int){
// member function of class
fun add(): Int{
return a+b;

}
fun main(){

// Extension function created for a class Circle
fun ArithmeticOperation.subtraction(): Int{
return a-b;
}
val arithmeticOperation = ArithmeticOperation(5,2);
// invoke member function
println("Addition is: ${arithmeticOperation.add()}")
// invoke extension function
println("Subtraction is ${arithmeticOperation.subtraction()}")

Output:

Addition is: 7
Subtraction is 3

224

CHAPTER9 KOTLIN STANDARD LIBRARY

Extended Library Classes

Kotlin also has some library classes that can be extended. Following is an example of
doing so.

fun main(){
// Extension function defined for Int type

fun Int.Square() : Int{
return this*this

}
println(4.Square())
}
Output:
16

9.5 Null Safety Functions

Kotlin provides null safety by overcoming the very common NullPointerException. The
Kotlin compiler also throws a NullPointerException if it is found in the program. We
can overcome these by using the ! ! operator or using the safe call operator (?.).

For example,

name? . toString()
is equal to

If(name!=null)

{

name. toString()
telse{

null
}

We will revisit null safety in detail in chapter 13.

225

CHAPTER9 KOTLIN STANDARD LIBRARY

9.6 File and 1/0 Functions

Kotlin provides file handling using the library java.io.File and also the kotlin.io
package. Let’s see how we can create, read, and write files and also how to delete files.

Create File

The resolve() function is used to create a file if there is no such file or directory in the
file object’s path. If the file already exists, then it will open the file.

import java.io.File
var fileDirectiry = File(“.”) //get the root directory
val newFile = File(“.”).resolve(“newFile.txt”)

Writing to File
The writeText () function is used for writing inside the file. Following is an example:

newFile.writeText(“Hello Kotlin...!!”)

Reading from File

The readText () function is used for reading all the contents of the file. To read the
large contents of the file, we can use the readLines () function. The following example
shows that.

val newFileData:String = newFile.readText()
or

newFile.readlines().forEach { line ->
//do something with line

}

To handle big file-reading operations, we need to read lines into streams. The
following example shows that.

226

CHAPTER9 KOTLIN STANDARD LIBRARY

newFile.bufferedReader().use { br ->
br.1lines().forEach{
line->
// do something with line

Delete File

The delete() function is used for deleting a file or an empty directory. The following is
an example.

val isDeleted:Boolean = newFile.delete()

The deleteRecursively() function deletes all the files and its sub-directories in a
directory, as follows.

val isDeleted:Boolean = newFile.deleteRecursively()

9.7 Real-Life Programming Practices

1. Scenario: Employee Management System
This program allows you to store employee details, sort them,
filter based on conditions, manipulate names using string
functions, and save the data to a file.

Code:

import java.io.File

// Data class for Employee

data class Employee(val id: Int, val name: String, val
salary: Double)

// Extension function to format employee details
fun Employee.displayInfo(): String {
return "ID: $id, Name: ${name.capitalize()}, Salary: $$salary"

227

CHAPTER9 KOTLIN STANDARD LIBRARY

fun main() {

228

// Sample list of employees

val employees = 1istOf(
Employee(101, "alice", 50000.0),
Employee(102, "bob", 60000.0),
Employee(103, "charlie", 45000.0),
Employee(104, "david", 70000.0),
Employee(105, "eve", 55000.0)

)

// Sorting employees by salary (ascending)

val sortedEmployees = employees.sortedBy { it.salary }
println("Employees sorted by salary:")
sortedEmployees. forEach { println(it.displayInfo()) }

// Filtering employees with salary > 50000

val highEarners = employees.filter { it.salary > 50000 }
println("\nEmployees earning more than $50000:")
highEarners.forEach { println(it.displayInfo()) }

// Transforming names to uppercase
val transformedNames = employees.map { it.name.uppercase() }
println("\nEmployee names in uppercase: $transformedNames")

// Save employees to a file

val file = File("employees.txt")

file.writeText("Employee Details:\n")

employees. forEach { file.appendText(it.displayInfo() + "\n") }
println("\nEmployee details saved to employees.txt")

Output:

Employees sorted by salary:

ID:
ID:
ID:
ID:

103, Name: Charlie, Salary: $45000.0
101, Name: Alice, Salary: $50000.0
105, Name: Eve, Salary: $55000.0
102, Name: Bob, Salary: $60000.0

CHAPTER9 KOTLIN STANDARD LIBRARY
ID: 104, Name: David, Salary: $70000.0

Employees earning more than $50000:
ID: 105, Name: Eve, Salary: $55000.0
ID: 102, Name: Bob, Salary: $60000.0
ID: 104, Name: David, Salary: $70000.0

Employee names in uppercase: [ALICE, BOB, CHARLIE, DAVID, EVE]

Employee details saved to employees.txt

9.8 Summary

In this chapter, we have learned about Kotlin standard library functions available,

including syntax and examples. In short, Kotlin standard library functions enable

developers to develop programs faster, cleaner, and more easily by providing some

built-in functions.

9.9 Test Your Knowledge

1.

2.

Which function is used to sort a list in ascending order?
a. sortedDescending()

b. sortBy()

c. sorted()

d. reverse()

What function is used for filtering elements that do not match a
given condition?

a. filter()
b. filterNot()
c. filterIsInstance()

d. filterNotNull()

229

CHAPTER9 KOTLIN STANDARD LIBRARY

230

3.

Which function is used to check whether all elements of a
collection satisfy a given condition?

a. all()

b. any()

c. none()

d. filter()

Which function is used to shuffle elements randomly in a list?
a. sorted()

b. reversed()

c. shuffled()

d. sortBy()

Which function can be used to safely access elements in a

collection without throwing an exception?

o

. getOrElse()

o

. get()
. getOrNull()

o

d. bothaandc

What function is used to get the first character of a
string safely?

a. first()

b. firstOrNull()
c. charAt(0)
d. get(0)

Which function is used to capitalize the first character of

a string?
a. uppercase()

b. capitalize()

10.

11.

12.

CHAPTER9 KOTLIN STANDARD LIBRARY

c. toUpperCase()
d. replaceFirstChar { it.uppercaseChar() }

Which function can be used to remove leading and trailing
whitespaces from a string?

a. trimStart()
b. trimEnd()
c. trim()
d. strip()

What is the main advantage of using Kotlin standard library

functions?

a. They make code less readable.

b. They provide easy access to multiple functions.
c. They make the code more complex.

d. They slow down execution.

Which function is used to sort a list in natural ascending order?
a. sortAscending()

b. sortList()

c. sorted()

d. sortByAscending()

What does asReversed() do in Kotlin?

a. reverses the collection and creates a new list

b. modifies the original collection

c. creates areversed view of the original collection
d. removes the last element of the list

Which function is used to shuffle a list randomly?
a. randomSort()

b. shufflelList()
231

CHAPTER9 KOTLIN STANDARD LIBRARY

232

13.

14.

15.

16.

17.

c. shuffled()
d. randomize()

Which function returns a new string with leading and trailing
whitespaces removed?

a. trimSpaces()

o

. removeSpaces ()
c. trim()
d. clean()

What is the correct function to check if a string is empty
in Kotlin?

a. isBlank()

b. isNullOrEmpty()

c. length ==

d. All of the above

Which function is used to write data into a file?
a. writeFile()

b. writeText()

c. write()

d. appendText()

What function reads all the content of a file as a single string?
a. readFile()

b. readText()

c. getFileContent()

d. readlLines()

Which function is used to delete a file in Kotlin?
a. deleteFile()

b. removeFile()

CHAPTER9 KOTLIN STANDARD LIBRARY

c. delete()
d. deleteNow()
18. What does the function partition() return?
a. alist of elements matching the condition
b. asingle element that matches the condition
c. apair of lists, one matching and one not matching the condition
d. an empty list
19. Whatdoes !! (double exclamation mark) do in Kotlin?
a. forces a nullable variable to be non-null
b. converts a string to uppercase
c. checks if a variable is null
d. throws an exception if the variable is null
20. What does filterNotNull() do?
a. removes all null values from a list
b. returns only null values
c. filters elements that match a given condition

d. converts null values to empty strings

9.10 Answers

1. ¢
2. b
3. a
4. c
5. d
6. b

233

CHAPTER9 KOTLIN STANDARD LIBRARY

10. c
11. c
12. c

13.

o

14.

15.

o T o

16.

17. ¢

19. a

20. a

234

CHAPTER 10

Testing in Kotlin

Testing is one of the key parts of the software development process. This ensures the
correctness, reliability, and maintenance of the code. The Kotlin language supports all
the major testing frameworks, as this language is interoperable with the Java language.

10.1 Unit Testing

Unit testing is an essential component of Android application development that
guarantees code stability, minimizes defects, and facilitates maintenance. This chapter
will examine the principles of unit testing on Android utilizing Kotlin. It offers a
comprehensive foundation for both novices and those seeking to enhance their unit
testing abilities, enabling the creation of effective and robust unit tests for Android Kotlin
applications.

The Significance of Unit Testing

Unit testing is essential in software development. It enables developers to evaluate
discrete pieces, such as procedures or functions, in isolation to ascertain their accuracy.
The following are some key advantages of unit testing:

e Proactive Bug Identification: Unit tests facilitate the early detection
of coding flaws, averting their escalation into more substantial
difficulties.

e Enhanced Code Quality: The practice of writing unit tests promotes
modular and loosely connected code, resulting in superior code
quality and maintainability.

e Accelerated Development Cycles: Through test automation,
developers can swiftly detect regressions and confirm that new
modifications do not compromise current functionality.

235
© Arnika Patel, Keshav Kumar, and Dr. Bishwajeet Kumar Pandey 2025

A. Patel et al., Kotlin Mastery, https://doi.org/10.1007/979-8-8688-1618-5_10

https://doi.org/10.1007/979-8-8688-1618-5_10#DOI

CHAPTER 10 TESTING IN KOTLIN

Establishing the Testing Environment

Prior to initiating the composition of unit tests, let us establish the testing environment
within our Android Kotlin project, as follows:

» Launch your project in Android Studio.
e Access the project view and go to the app module.

e Right-click on the application module and choose “New” »
“Folder” » “Java Folder”

e Select the “Test” source directory option and click “Finish.”

Composing Your Initial Unit Test

We shall compose two straightforward tests: one for evaluating two numbers in a basic
function and another for assessing strings in a different function.

lllustration 1

Let us compose the initial example of a straightforward unit test for a hypothetical class
named Calculator, which possesses a function called add that sums two values. An
illustration of the potential structure of the Calculator class is presented here:

class Calculator {
fun add(a: Int, b: Int): Int {
return a + b

We will now construct a unit test class for the aforementioned example. To develop a
comparable unit test class for the Calculator class, adhere to the following steps:

e Access the Java directory established for testing purposes.
o Right-click on the package in which you wish to create the test class.
e Choose “New” » “Kotlin Class/File.”

e Designate a name for the test class (e.g., CalculatorTest) and choose
the “Class” type.

236

CHAPTER 10 TESTING IN KOTLIN
Select “OK” to generate the test class.

import org.junit.jupiter.api.Assertions.assertEquals
import org.junit.jupiter.api.Test

class CalculatorTest {
private val calculator = Calculator()

@Test
fun “add should return the sum of two numbers™ () {
val result = calculator.add(2, 3)
assertEquals(5, result, "Expected 2 + 3 to equal 5")

}

In the aforementioned example, we import the requisite classes from JUnit

and compose a test method annotated with @Test. Within the test function, we

instantiate the Calculator class, use the add method with test inputs, then employ the

assertEquals method to validate the anticipated outcome.

Running Unit Tests

To run the unit tests, follow these steps:

1.

2.

Go to the toolbar in Android Studio.
Click on the “Build Variants” tab.
Choose the desired test configuration (e.g., app » Unit Tests).

Click on the green play button or use the shortcut Shift + F10 to
run the tests.

237

CHAPTER 10 TESTING IN KOTLIN

lllustration 2

We will now develop a simple class named StringUtils, which has a function called
reverseString to invert a specified string. Here is an example implementation of the

StringUtils class:

class StringUtils {
fun reverseString(input: String): String {

return input.reversed()

Now, let’s write a unit test inside the StringUtilsTest class. To write a

corresponding unit test for the reverseString method, follow these steps:

1.
2.
3.

238

Navigate to the Java directory you created for tests.
Right-click on the package where you want to create the test class.
Select “New” » “Kotlin Class/File.

Provide a name for the test class (e.g., StringUtilsTest) and
select the “Class” type.

Click “OK” to create the test class.

import org.junit.jupiter.api.Assertions.assertEquals
import org.junit.jupiter.api.Test

class StringUtilsTest {
private val stringUtils = StringUtils()

@Test

fun “reverseString should return the reversed string () {

val original = "hello"
val expected = "olleh"
val result = stringUtils.reverseString(original)

assertEquals(expected, result, "Expected reverse of

'hello' to be 'olleh'")

CHAPTER 10 TESTING IN KOTLIN

@Test
fun “reverseString should return empty string when input is

empty” () {
val result = stringUtils.reverseString("")

assertkquals("", result, "Expected reverse of empty string
to be empty")

}

@Test

fun “reverseString should handle single-character strings™ () {
val result = stringUtils.reverseString("A")
assertkquals("A", result, "Expected reverse of 'A' to
be IAIII)

Optimal Strategies for Unit Testing

To compose effective and sustainable unit tests, consider the following recommended

practices:

Test One Aspect at a Time: Each unit test must concentrate on a
particular behavior or functionality, guaranteeing that tests are
succinct and independent.

Employ Descriptive Nomenclature: Assign descriptive names to your
test methods and test classes to enhance comprehension of their
objectives.

Organize, Execute, Validate: Structure your tests utilizing the “Organize,
Execute, Validate” framework. Initially, establish the requisite
preconditions (setup), then execute the operation under examination
(act), and ultimately validate the anticipated result (assert).

Employ Mocking: When evaluating classes with dependencies, such
as network queries or database activities, it is advisable to utilize
mocking frameworks such as Mockito or MockK. Mocking facilitates
the creation of simulated dependencies, permitting the isolation of

the unit under examination and concentrating only on its behavior.

239

CHAPTER 10 TESTING IN KOTLIN

o Employ Assertions: Assertions are essential in unit tests as they
facilitate the validation of anticipated outcomes. Employ assertion
techniques offered by testing frameworks such as JUnit or Kotlin's
native assert functions (e.g., assertEquals, assertTrue, etc.) to
juxtapose actual values against predicted values.

e Maintain Independence and Order Insensitivity of Tests: Unit tests
must remain autonomous, ensuring that the result of one test does
not influence the result of another. Refrain from depending on a
particular execution sequence or the exchange of state among tests.
This guarantees that tests may be conducted independently or in any
sequence, enhancing their robustness and maintainability.

e Utilize Test Coverage Instruments: Test coverage tools, such as
JaCoCo, assess the proportion of code included by tests. Strive for
extensive code coverage to guarantee that essential components of
your codebase are comprehensively evaluated. Nonetheless, it is
essential to recognize that complete coverage does not ensure the
absence of bugs; hence, prioritize comprehensive testing of crucial
and intricate components.

o Evaluate Edge Instances and Boundary Circumstances: It is
important to assess not just standard situations but also edge
instances and boundary circumstances. Examine inputs at both
the lower and higher thresholds, null values, empty collections,
or any other situations that may influence the behavior of the unit
under evaluation. These assessments reveal possible problems and

guarantee resilience.

e Preserve Test Suites: As your software expands, categorize your
unit tests into coherent test suites. Test suites consolidate linked
tests, facilitating the execution of specified test sets, optimizing test
execution duration, and augmenting test maintenance.

o Conduct Tests Consistently: Establish continuous integration (CI)
or continuous delivery (CD) pipelines to execute your unit tests
automatically with each code commit or build. Consistent testing
facilitates the early detection of regressions and instills trust in the
stability of your software.

240

CHAPTER 10 TESTING IN KOTLIN

Testing Frameworks

Kotlin supports various testing frameworks, each catering to different use cases and

preferences. Some of the most popular ones include the following:

1.

JUnit: JUnit, especially JUnit 5, is the most prevalent testing
framework in Kotlin. It offers a comprehensive API for executing
and conducting tests.

Features:

¢ Annotation-driven test specifications (@Test, @BeforeEach,
@AfterEach, etc.)

e Assertions to validate anticipated outcomes
o Parameterized tests for executing an identical test with various inputs
o Assistance for test lifecycle management

Example:

import org.junit.jupiter.api.Assertions.*
import org.junit.jupiter.api.Test

class CalculatorTest {
@Test
fun testAddition() {
val result = 2 + 3
assertEquals(5, result, “Addition should be correct”)

}

KotlinTest (Kotest): Kotest is a powerful and flexible testing framework
for Kotlin, offering expressive DSLs and additional matchers.

Features:

o Concise syntax and expressive matchers
o DProperty-based testing support

o Test configuration and tagging

o Custom assertions and matchers

241

CHAPTER 10 TESTING IN KOTLIN
Example:

import io.kotest.core.spec.style.StringSpec
import io.kotest.matchers.shouldBe
class SampleTest : StringSpec({
"Addition should work correctly" {
(2 + 3) shouldBe 5

)
3. Spek

Spek is a specification-based testing framework that encourages
behavior-driven development (BDD).

Features:

e DSL for writing structured and readable tests
¢ Nested test structures

e Support for lifecycle hooks

Example:

import org.spekframework.spek2.Spek
import org.spekframework.spek2.style.specification.describe
import kotlin.test.assertEquals

object CalculatorSpec : Spek({
describe("Calculator") {
it("should add two numbers correctly") {
assertkquals(5, 2 + 3)

1)

10.2 Kotlin Unit Testing with MockK

One of the most intricate facets of constructing resilient test suites is guaranteeing the
ability to simulate the data required and processed by your code. Numerous libraries

242

CHAPTER 10 TESTING IN KOTLIN

provide straightforward and adaptable solutions for this demand, with MockK being one
of the most prominent.

Mocking and MockK: mocking in kotlin behaves like
external real dependencies and mockK is powerful and
lightweight mocking library

Mocking refers to the process of creating an imitation of a real dependency (class, interface,
or an external service, etc.) that behaves like a real dependency but allows you to control the
behavior for the purpose of testing. The imitations we want to create may have specific (and
different) return values, exceptions that we want to throw, or interactions that we want to verify.

MockK is a popular, powerful, lightweight API for mocking in Kotlin. MockK will
work with most SQLite features (such as coroutines, extension functions, and object
classes) which makes it easy to utilize.

e Mocking: In unit testing, mocking entails the creation of simulated
objects (mocks) that replicate the behavior of actual dependents. This
enables the segregation of the unit under examination (your code) from
extraneous elements, facilitating independent functionality testing.

e MockK s a succinct and efficient mocking library explicitly tailored
for Kotlin. It provides a seamless API for generating mocks, specifying
their behavior, and validating interactions with them during testing.

Let us examine the distinctive features of the MockK library.

MockK Annotations

MockK annotations provide an efficient method for specifying mock objects and
their interactions in Kotlin tests. They offer a declarative methodology, enhancing the
conciseness and readability of your test code. Let’s look at a few of them.

1. @MockK

This annotation designates a property as a fake object. It is
generally utilized for a property that signifies a dependence or
collaborator we intend to simulate.

243

CHAPTER 10 TESTING IN KOTLIN

MockK
private lateinit var myInterface: MyInterface

@MockK
private lateinit var myClass: MyClass

2. @RelaxedMockK

This annotation resembles @MockK; however, it generates a relaxed
mock, implying that, by default, the relaxed mock will not raise
exceptions when using methods that have not been explicitly
stubbed. This is beneficial for testing when verification of

interactions is not a priority.

@RelaxedMockK
private lateinit var myInterface: MyInterface

3. @Spyk

The @SpyK annotation facilitates the creation of a partial mock,
enabling the use of actual implementations for certain methods of
a class while mocking others.

@Spyk
private lateinit var myRealObject: MyRealObject

4. @UnmockK

This annotation serves to unmock a property or object that was
previously designated as a mock using @MockK or other annotations.
This is beneficial when we must restore a mock to its original functionality.

@UnmockK
lateinit var unmockedService: SomeService

5. @Test

An annotation commonly employed in testing frameworks (such
as JUnit) to signify that a method constitutes a test case.

244

CHAPTER 10 TESTING IN KOTLIN

@Test
fun everyExample() {
val mock = mockk<MyClass>()
every { mock.doSomething() } returns "Mocked result"

}
6. @Before

An annotation commonly utilized in testing frameworks to indicate
that a method should be performed before to each test case.

@Before

fun setUp() {
MockKAnnotations.init(this)
Dispatchers.setMain(Dispatchers.Unconfined)
newsViewModel = NewsViewModel(newsUseCase)

}
MockK Keywords

When using the MockK library for mocking and validating interactions in Kotlin tests,
it is imperative to be acquainted with many fundamental keywords and methods. The
following are a few frequently utilized keywords and functions in MockK:

Keyword Description

mockk<T>() Creates a mock of type T

mockk<T>(relaxed = true) Creates a mock with default return values (no need to stub everything)

spyk(obj) Creates a spy (partial mock) on a real object
slot<T>() Captures arguments passed to mocked functions
mockkObject(MyQObject) Mocks a Kotlin object (singleton)

mockkClass(MyClass::class) Mocks a class (useful for final classes)

10.3 Kotlin Integration Testing

Integration testing verifies that various components/modules of your program function
cohesively, including services, repositories, controllers, and the database.

245

CHAPTER 10 TESTING IN KOTLIN

In contrast to unit tests, which utilize mocks, integration tests typically employ actual

or in-memory databases and genuine HTTP queries.

¢ Dependencies

dependencies {
testImplementation("org.springframework.boot:spring-boot-
starter-test")
testImplementation("io.mockk:mockk:1.13.5") // optional
testImplementation("org.testcontainers:junit-jupiter:1.19.0")
// for real DBs

}

o Basic Setup

@SpringBootTest

@AutoConfigureMockMvc
@TestInstance(TestInstance.Lifecycle.PER_CLASS)
class UserControllerIntegrationTest {

@Autowired
lateinit var mockMvc: MockMvc

@Test
fun “should return user by id™ () {
mockMvc . perform(get("/users/1"))
.andExpect(status().is0k)
.andExpect(jsonPath("$.name").value("John"))

}

o Using a Real DB with Testcontainers
@Testcontainers

@SpringBootTest
@AutoConfigureTestDatabase(replace = AutoConfigureTestDatabase.
Replace.NONE)
class UserServicelT {
companion object {

246

CHAPTER 10 TESTING IN KOTLIN

@Container
val postgresContainer = PostgreSQLContainer("postgres:
14-alpine")
-apply {
withDatabaseName("testdb")
withUsername("test")
withPassword("test")

@DynamicPropertySource

fun datasourceConfig(registry: DynamicPropertyRegistry) {
registry.add("spring.datasource.url”,
postgresContainer::getJdbcUrl)
registry.add("spring.datasource.username", postgres
Container: :getUsername)
registry.add("spring.datasource.password”, postgres
Container: :getPassword)

@Autowired
lateinit var userRepository: UserRepository

@Test

fun “should fetch user from real PostgreSQL DB () {
userRepository.save(User(name = "Alice"))
val user = userRepository.findByName("Alice")
assertEquals("Alice", user?.name)

247

CHAPTER 10 TESTING IN KOTLIN

Integration Testing in Kotlin with Ktor

Integration testing in Kotlin with Ktor focuses on testing your entire application flow,
including routing, middleware (features), serialization, and sometimes even database or
external service integration, rather than just isolated components (as in unit testing).

e Dependencies

testImplementation("io.ktor:ktor-server-tests:2.3.2")
testImplementation("org.jetbrains.kotlin:kotlin-test")

}

e Setup

fun Application.testModule() {
configureRouting()
configureDatabase()

}

o HTTP Integration Test
class UserRouteTest {

@Test
fun testGetUser() = testApplication {
application {
testModule()
}

val response = client.get("/users/1")
assertEquals(HttpStatusCode.OK, response.status)
assertTrue(response.bodyAsText().contains("John"))

10.4 Conclusion

This chapter examined the fundamental importance of testing in the Kotlin development
environment, emphasizing the components of unit testing, mocking, and integration
testing. As software systems grow in complexity, the significance of ensuring code

248

CHAPTER 10 TESTING IN KOTLIN

dependability, maintainability, and correctness escalates, with testing serving as the
cornerstone for achieving these objectives.

We started with the principles of unit testing, emphasizing its essential significance
within the software development lifecycle. Unit testing is not a mere formality but rather a
proactive strategy to identify defects early, reduce technical debt, and enforce clean, modular
code. By unit-testing discrete components of functionality—typically methods or classes—we
can verify their behavior in controlled settings. This degree of detail facilitates rapid feedback
during development, allows for secure reworking, and accelerates the delivery pace.

We also examined the most prevalent testing libraries for Kotlin. Among them, JUnit
5 remains a preferred choice, including robust annotations, lifecycle management,
and assertion capabilities. Kotlin's compatibility with Java enables developers to utilize
JUnit while also capitalizing on Kotlin’s expressive syntax and capabilities, such as
extension functions and lambdas. Moreover, libraries like TestNG and Kotest offer
distinctive capabilities for more expressive or behavior-driven testing methodologies,
accommodating various team preferences.

Then, we discussed the methodology for developing effective unit tests. Merely
composing exams is inadequate; the tests must also be of high quality. Effective unit tests
are rapid, autonomous, repeatable, and meaningful. We addressed the establishment
of tests using naming conventions that precisely convey purpose, ensuring effective
setup and deconstruction of resources, and the use of assertions that evaluate not just
anticipated outcomes but also edge cases. Kotlin facilitates the creation of unit tests that
are both clear and succinct, allowing developers to focus on the test logic rather than
excessive verbosity.

Subsequently, we proceeded to mocking, an essential technique for isolating
dependencies and conducting unit tests in appropriate isolation. We were introduced to
MockK, the idiomatic and robust mocking library for Kotlin. In contrast to traditional Java-
based mocking libraries, MockK is designed for Kotlin, including capabilities like relaxed
mocks, coroutine support, argument capture, and object mocking. We demonstrated the
use of MockK to simulate database access, external service contacts, and other engagements
through real-world situations, ensuring that tests remain isolated, predictable, and efficient.

Finally, we examined integration testing, which shifts the emphasis from isolation
to cooperation. Integration tests validate that various components—such as services,
repositories, and external systems—interact appropriately. While unit tests validate the
functionality of individual components, integration tests verify the proper interaction
between these components. We acquired knowledge on developing integration tests in
Spring Boot, utilizing annotations like @SpringBootTest and tools such as MockMvc,

249

CHAPTER 10 TESTING IN KOTLIN

as well as testing Ktor apps with testApplication. We highlighted the benefits of
employing Testcontainers to initiate actual databases during testing, therefore bridging
the divide between development and production environments.

Kotlin’s testing is robust and focused on developers. Its modern language features
enhance the expressiveness and conciseness of tests, while its robust array of supporting
tools, including JUnit, MockK, and Testcontainers, equips developers with all the
essentials to design solid test suites. Kotlin provides comprehensive support for testing,
whether you are developing unit tests for business logic, mocking dependencies for
isolated feature testing, or doing integration tests to ensure cohesive system operation.

Implementing a rigorous testing methodology enhances code quality, increases
developer trust, and promotes project sustainability. As teams increasingly choose
Kotlin for production-grade apps, testing should be regarded not as a burden but as an
essential facilitator of sustained success. Utilizing appropriate tools and a conducive
mentality, testing in Kotlin can be both effective and pleasurable.

10.5 Test Your Knowledge

1. What is the main purpose of unit testing?
a. to test the entire application end-to-end
b. to test the interactions between modules
c. to validate the functionality of individual components in isolation
d. to deploy the code to production

2. Which testing framework is most commonly used with Kotlin
for unit testing?

a. Mocha
b. JUnit
c. Jasmine

d. Cucumber

250

CHAPTER 10 TESTING IN KOTLIN

What does the @SpringBootTest annotation do in a Spring Boot
application?

a. runs a single unit test

b. disables dependency injection

c. boots the full application context for integration testing
d. automatically mocks all dependencies

In MockK, what does the relaxed = true parameter do when
creating a mock?

a. enables random behavior

b. automatically throws exceptions for unstubbed methods
c. provides default values for all functions

d. disables mocking

Which function in MockK is used to define a behavior for a
mocked function?

a. define {}
b. when {}
c. every { } returns
d. doReturn {}
What is the purpose of integration testing?
a. to mock external services
b. to verify a single class behaves as expected

c. to ensure multiple components work together correctly

o,

. to test UI behavior

251

CHAPTER 10 TESTING IN KOTLIN

7. Which keyword in MockK verifies that a mocked method
was called?

a. check{}

b. verify {}

c. call{}

d. assertCalled {}

8. Which Kotlin test library is specifically designed with native
coroutine support and idiomatic syntax?

a. Mockito
b. TestNG
c. MockK
d. JUnit 4

9. What is the advantage of using Testcontainers in
integration tests?

a. mocks all network calls

b. enables mocking of private methods

c. spins up real databases or services in containers for realistic testing
d. speeds up compilation time

10. In Ktor testing, which function is used to simulate a test
environment for integration tests?

a. simulateApp()
b. testServer()
c. testApplication()

d. mockServer()

252

CHAPTER 10 TESTING IN KOTLIN

10.6 Answers

10. c

253

CHAPTER 11

Kotlin Reactive Extension

11.1 Introduction to RxKotlin

RxKotlin is a Kotlin-specific wrapper and extension for RxJava, making it easier to use
reactive programming in Kotlin applications. It provides Kotlin-friendly APIs, extension
functions, and utilities for working with reactive streams in a more idiomatic manner.
Based on extension function, null safety, and conciseness features, there are significant
differences between RxJava and RxKotlin, as shown in Table 11-1. Kotlin can be
integrated and tested with existing Java. Kotlin’s strong interoperability with Java enables
the use of RxJava and RxKotlin to write reactive programs. RxJava and RxKotlin libraries
from the ReactiveX (Rx) project are used to add reactive capabilities [1]. Reactive
libraries, such as Reactor, can also be used. At the same time, coroutines and suspension
functions are used as a reactive extension in Kotlin [2]. RxJava serves as the backbone
for other ReactiveX JVM ports, including RxScala and RxKotlin [3]. RxKotlin utilizes the
majority of RxJava operators, as outlined on its GitHub page for Kotlin. RxAndroid is
RxJava bindings for Android [4].

Table 11-1. Features of RxJava and RxKotlin

Feature RxJava RxKotlin
Language Java Kotlin
Extension Functions No Yes

Null Safety No Yes
Conciseness Less More

255
© Arnika Patel, Keshav Kumar, and Dr. Bishwajeet Kumar Pandey 2025

A. Patel et al., Kotlin Mastery, https://doi.org/10.1007/979-8-8688-1618-5_11

https://doi.org/10.1007/979-8-8688-1618-5_11#DOI

CHAPTER 11 KOTLIN REACTIVE EXTENSION

RxKotlin has an inbuilt API that makes RxJava easier to use in Kotlin. The idiomatic
Kotlin APT adds a Kotlin extension to make RxJava easier to use. Kotlin has an upper
hand over Java because it features a unique null safety mechanism that reduces the
potential null pointer exception issues associated with Java.

Another feature of Kotlin is the use of lambda expressions, which reduce boilerplate
by allowing functions to be written in more concise code. RxKotlin is interoperable with
RxJava, allowing developers to integrate RxJava code into their Kotlin code. RxKotlin is
also compatible with Kotlin coroutines. Idiomatic Kotlin API, null safety, more concise
code, interoperability, and coroutine compatibility are five key features of RxKotlin, as
shown in Figure 11-1.

Idiomatic Kotlin
API

Coroutines
Compatibility

Rx Kotlin
Features

_ More Concise
Interoperatibility Code

Figure 11-1. Features of RxKotlin

11.2 Core Rx Concepts

Reactive programming in Kotlin, primarily seen in asynchronous Kotlin applications,

is designed and developed with Android, RxKotlin, Reactor Kotlin, and Spring [5].
Reactive programming changes how apps interact with data in software development.
It enables systems to manage data flows and respond to changes promptly. It’s centered

256

CHAPTER 11 KOTLIN REACTIVE EXTENSION

around asynchronous programming, which boosts app adaptability and efficiency. At

its core, reactive programming is about data flow and change propagation. It relies on
data streams for handling real-time data. This method allows apps to automatically
adjust to data or behavior changes, enhancing response times. Reactive programming is
crucial, especially in Android apps developed with Kotlin. It’s built on streams in reactive
programming, the observer pattern, and knowing the difference between cold streams
and hot streams. Understanding these helps improve app responsiveness and data
management.

Streams: The Heart of Reactive Programming

Streams send sequences of data that can be handled asynchronously. Streams in Kotlin
enable developers to manage changing data, such as user input or network data. Using
the RxJava library’s observable, single, and flowable makes managing these streams in
reactive programming easier. For instance, an observable might send out items each
second. This lets apps respond quickly to what’s happening.

Hot and Cold Observables

Hot observables have no side effects during a subscription, regardless of the context.
The context taken under consideration is usually neither usable to RxSwift nor capable
of determining either scheduler or thread-based information on its own. In contrast to
hot observables, cold observables have many side effects and do not produce any events
until a subscriber establishes a valid subscription. That’s why cold observables have no
provision for threading or scheduling [6].

Flow of Hot and Cold Streams

Understanding the concepts of cold streams and hot streams is crucial for effective data
management. Cold streams, like Kotlin Flow, start sending data only when activated.
This ensures all data is received. Hot streams, however, send data regardless of whether
observers are ready, meeting real-time needs, but requiring careful management, as
shown in Table 11-2.

257

CHAPTER 11 KOTLIN REACTIVE EXTENSION

Table 11-2. Stream Type

Stream Type Emission Timing Use Cases

Cold Streams ~ Emit data on time for collection Data fetching, Ul updates, and so on

Hot Streams Emit data regularly Real-time updates, event notification, and so on

Kotlin flows offer a straightforward approach to handling asynchronous data
management. Kotlin is used to create a data stream that sends out values over time.
This makes managing asynchronous tasks simpler, improving app performance and
response times. Defining flows in Kotlin involves setting up a cold data stream. This
stream starts only when there is a collector. This differs from hot streams, which emit
values without requiring a collector. Flows are ideal for tasks such as network calls and
database queries, making apps faster and more responsive. Kotlin flows include the flow
builder, operators, and collectors. The flow builder enables developers to create data
streams easily. Operators change data and manage execution threads. Collectors then
gather and process this data. This process improves memory use and app performance.
Consider using Kotlin flows for real-time data updates. This helps keep the user interface
responsive by managing state with flows. For example, a flow could send out user
interactions or server data. Flows can be adjusted through operations like filtering and
mapping to meet specific needs.

11.3 Usage of Rx

RxKotlin is a Kotlin wrapper for RxJava, providing extension functions and enhanced
idiomatic support for reactive programming.

Basic RxKotlin Usage

The Kotlin code shown in Figure 11-2 demonstrates how to convert a Kotlin list into an
observable using the toObservable() method. The subscribeBy extension function

is used for handling emitted items, errors, and completion. The onNext callback prints
each emitted item, and the onComplete callback prints a message when the stream
finishes, as shown in Figure 11-2.

258

CHAPTER 11 KOTLIN REACTIVE EXTENSION

import io.reactivex.rxjava3.core.Observable
import io.reactivex.rxjava3.kotlin.subscribeBy

import io.reactivex.rxjava3.kotlin.toObservable

fun main() {
// Creating an Observable from a List using RxKotlin extension

val items = listof("Apple", "Banana", "Cherry", "Date")

val observable: Observable<String> = items.toObservable()
// Subscribing to the observable
observable.subscribeBy(

onNext = { println("Received: $it") },

ontError = { println("Error: $it") },

onComplete = { println("Completed!") }

}

Figure 11-2. Creating an observable in Kotlin

Using filter and distinct

This Kotlin code in Figure 11-3 creates an observable from a list of numbers. The filter
is used to retain only even numbers. Distinct removes duplicate values to ensure
each emitted item is unique. The filtered and different values are printed as shown in

Figure 11-3.

259

CHAPTER 11 KOTLIN REACTIVE EXTENSION

fun main() {
val observable = listof(1, 2, 2, 3, 4, 4, 5).toObservable()
filter { it % 2 == @ } // Keep only even numbers
.distinct() // Remove duplic

observable.subscribeBy(
onNext = { println(it) },

onComplete = { println("Filtered stream complete!") }

}

Figure 11-3. Usage of filter and distinct in Kotlin

Observable.Interval for Periodic Emissions

Observable.interval() emits numbers at regular time intervals (one second, in this
case). Take(5) ensures that only the first five emissions are processed before completion.
Thread. sleep(6000) keeps the program running long enough to observe all emissions,
as shown in Figure 11-4.

260

CHAPTER 11 KOTLIN REACTIVE EXTENSION

import io.reactivex.rxjava3.core.Observable

import java.util.concurrent.TimeUnit

fun main() {
Observable.interval(1, TimeUnit.SECONDS)
.take(5) //
.subscribeBy(
onNext = { println("Tick: $it") },

onComplete = { println("Timer finished!") }

Thread.sleep(6000) // Kec
1
J

Figure 11-4. Usage of observable interval in Kotlin

11.4 Kotlin Coroutines

Researchers found that 87 out of 90 Android applications (96%) used Kotlin coroutines
[7]. Kotlin coroutines represent a significant leap forward in asynchronous programming
in Kotlin. The coroutines in Kotlin make it simpler to write code that doesn’t block. This
means developers can create apps that do tasks more effectively. This chapter explores
what coroutines are and how Kotlin coroutines help with reactive programming. Kotlin
coroutines enable developers to perform asynchronous tasks clearly and concisely. This
section outlines how coroutines in Kotlin make writing code easier than the old callback
methods. Coroutines can run multiple tasks concurrently without consuming excessive
memory. Knowing how to use Kotlin effectively, especially with extension functions

and lambdas, is crucial. Coroutines enhance reactive programming by simplifying
asynchronous task handling and aligning perfectly with reactive programming, resulting
in improved data handling and app performance. The coroutine scope concept helps

261

CHAPTER 11 KOTLIN REACTIVE EXTENSION

manage the lifecycles of coroutines, allowing tasks to be stopped when needed. This
helps apps run more efficiently and use resources more wisely. Table 11-3 demonstrates
that Kotlin coroutines outperform traditional methods in terms of features such as
memory usage, code reusability, lifecycle management, and error handling.

Table 11-3. Kotlin Coroutines and Traditional Threads

Feature Kotlin Coroutines Traditional Threads
Memory Usage Low High

Support Thousands of coroutines A few concurrent threads
Code Readability Easier to read Not easy to read
Lifecycle Can cancel easily Difficult to manage

Error Handling Structures with easy-to-manage exceptions Complex procedures

Understanding Kotlin coroutines helps developers handle the challenges of
asynchronous programming. This enhances their ability to utilize reactive programming
effectively.

11.5 Reactive Programming Patterns

Exploring reactive programming patterns is crucial for creating responsive apps.
Through these patterns, developers can handle data wisely and boost user interaction.
Using subjects, observables, and event streams demonstrates how reactive ideas work
in practice. The following three approaches shine when using reactive programming
patterns: subjects work as both observers and observables, providing multicast
capabilities. Observables emit values over time and are crucial in real-world reactive
apps. Event streams help manage event streams, which are key for reacting to user

and data changes. These patterns often use libraries like RxJava. It makes defining
observables, changing items, and handling threads easier. Shifting from traditional to
reactive programming enables developers to respond more effectively to changes. This
improves app quality and user happiness. Reactive programming patterns are used in
many apps for real-time updates. Chat and social media apps use real-time updates to
show data changes to users instantly. Interactive user interfaces make interfaces smooth
and responsive to user actions and data updates. Data management apps efficiently

262

CHAPTER 11 KOTLIN REACTIVE EXTENSION

manage extensive data flows, remaining responsive even under heavy load. These
patterns not only enhance app design but also facilitate scaling across various platforms.
Kotlin sequences, for example, work significantly better than traditional lists in terms of
resource conservation. As more developers adopt these methods, the future of reactive
apps appears promising, with improved performance and enhanced user experiences.
Subjects, observables, and event streams are popular Kotlin patterns, as shown in

Table 11-4.

Table 11-4. Usage of Kotlin Pattern

Pattern Description Usage Example

Subjects Act as both observer and observable Sending notification to multiple subscribers

Observables Asynchronous data streams Fetching data from repositories and update Ul
Event Generating reactive responses Managing button clicks or Ul interactions
Streams smoothly

11.6 Best Practices for Testing Reactive Code

Using best practices for testing improves app quality. Key strategies include the following
five steps: utilizing JUnit, applying unit testing, using integration testing, leveraging
Kotlin features, and utilizing testing techniques from reactive libraries. The developer
needs to utilize JUnit or Mockito for testing, supporting async operations and reactive
programming tools. The developer must apply unit testing to coroutines and flows,
ensuring that async tasks are thoroughly covered. They must ensure that integration
tests verify the seamless integration of components, providing a smooth user experience.
Developers use Kotlin coroutines’ try-catch blocks for better error handling and
debugging. The developer has to utilize testing utilities from reactive libraries to simplify
testing and identify issues early. Adequate verification in debugging reactive code
ensures that applications are robust and reliable. Developers should ensure that all
flows and Ul elements function correctly under various conditions. Testing practices
encompass unit testing, integration testing, error handling, mocking and stubbing, and
performance testing, as outlined in Table 11-5.

263

CHAPTER 11 KOTLIN REACTIVE EXTENSION

Table 11-5. Testing Practices for Reactive Code

Testing Description

Unit Testing Tests the individual component to ensure the working of a specific unit
Integration Testing Check whether a group of units is working together or not

Error Handling Handle exceptions of reactive code

Mocking and Stubbing Simulate external dependencies

Performance Testing Test reliability and scalability

By following the testing practices outlined in Table 11-5, developers ensure their
testing is thorough and adequate. This leads to reliable and efficient reactive apps.

11.7 Conclusion

Reactive programming has significantly improved Android development, thanks to
Kotlin. It enables apps to respond faster and makes them easier to maintain. This
approach is now key in creating smooth user experiences. Kotlin’s rise as the go-to
language for Android shows a move toward advanced programming. Developers are
getting behind live data and flow. These tools help manage data and app life cycles
efficiently. This represents a significant step forward in Android’s development, with
Kotlin at its core. Tools like RxJava and ReactiveX improve teamwork in big projects.
Yet it’s essential to use reactive methods wisely so that reactive programming will make
things simpler, not more complex.

11.8 Real-Life Programming Practices

1. Scenario: Live Stock Price Updater

This program simulates fetching stock prices from an API and
updates them every two seconds using RxKotlin. The program
leverages:

< Observables (RxKotlin) for real-time updates
</ Kotlin coroutines for async operations

264

CHAPTER 11 KOTLIN REACTIVE EXTENSION

</ Flow and cold streams for better efficiency

Code:

import io.reactivex.rxjava3.core.Observable
import kotlinx.coroutines.*

import kotlinx.coroutines.flow.*

import kotlin.random.Random

// Simulating an API call that fetches stock prices
fun getStockPrice(stock: String): Observable<Double> {
return Observable.create { emitter ->
while (lemitter.isDisposed) {

val price = Random.nextDouble(100.0, 500.0) //
Simulated stock price
emitter.onNext(price) // Emit new stock price
Thread.sleep(2000) // Wait for 2 seconds before
next update

}

// Using Kotlin Flow (Cold Stream) to fetch stock data when needed
fun getStockFlow(stock: String): Flow<Double> = flow {
while (true) {
val price = Random.nextDouble(100.0, 500.0)
emit(price)
delay(2000) // Emit new price every 2 seconds

}

fun main() = runBlocking {
println("Stock Price Updater Started!")

// Example using RxKotlin Observable

val stockObservable = getStockPrice("AAPL")
stockObservable.subscribe { price -> println("RxKotlin: AAPL
Stock Price: $$price”) }

265

CHAPTER 11 KOTLIN REACTIVE EXTENSION

// Example using Kotlin Flow
launch {
getStockFlow("GOOGL").collect { price ->
println("Flow: GOOGL Stock Price: $$price")

}
}
// Keep the main thread alive for demo purposes
delay(10000)
}
Output:

Stock Price Updater Started!
RxKotlin: AAPL Stock Price: $250.45
Flow: GOOGL Stock Price: $320.12
RxKotlin: AAPL Stock Price: $265.78
Flow: GOOGL Stock Price: $299.99
RxKotlin: AAPL Stock Price: $275.63
Flow: GOOGL Stock Price: $310.45

11.9 Test Your Knowledge

1. What is the main goal of reactive programming in Android
development?

a. to create static user interfaces
b. to handle data flows and changes efficiently
c. to avoid using multithreading

d. to write only synchronous code

266

CHAPTER 11 KOTLIN REACTIVE EXTENSION

2. How does Kotlin support reactive programming?

o

. by using Java callbacks

b. by providing libraries like RxJava and coroutines
c. by enforcing single-thread execution

d. by disabling asynchronous operations

3. What is the key difference between hot and cold streams in

reactive programming?

a. Hot streams always wait for an observer before emitting data,
while cold streams do not.

b. Hot streams emit data regardless of observers, while cold streams
start only when an observer subscribes.

c. Cold streams emit data continuously, while hot streams only emit

on demand.
d. Both function the same way and emit data randomly.

4. What is the primary use of Kotlin flows in reactive

programming?
a. to handle blocking operations in the UI thread
b. to convert synchronous functions into asynchronous ones
c. toreplace all LiveData instances
d. to manage asynchronous data streams in a cold manner

5. Which of the following are common patterns in reactive

programming?
a. using subjects, observables, and event streams
b. writing only synchronous code
c. avoiding any event-based programming

d. using only Java’s default threading model

267

CHAPTER 11 KOTLIN REACTIVE EXTENSION

6. How can developers ensure reliability in reactive applications?

o

. by avoiding testing since streams are automatically reliable

o

. by limiting the use of observables and subjects

O

. by using proper testing and debugging frameworks for reactive
programming

d. by writing only single-threaded synchronous code

7. What is the advantage of reactive programming in Android app
development?

a. Itreduces the need for user interaction.
b. It simplifies UI design but limits responsiveness.

c. It enhances performance and user experience by handling
data efficiently.

d. It completely removes the need for threading.

11.10 Answers

1. b
2. b
3. b
4. d
5. a
6. ¢
7. C

268

CHAPTER 12

Working with API
and Networking

12.1 Introduction to Kotlin APIs

In Kotlin, we can use over a hundred APIs depending on the domain we are working

in. We can categorize all Kotlin APIs into the following families: Android, networking,
database, graphical, machine learning, multimedia, and cloud. The Android API
provides core functionality for building Android applications using Jetpack components,
such as ViewModel, LiveData, Navigation, and WorkManager. It also includes permission
handling, lifecycle management, and Ul components.

The networking API is used to manage network communication using libraries such
as Retrofit (for RESTful APIs), OkHttp (a low-level HTTP client), Ktor (an asynchronous
HTTP client), and WebSockets (for real-time communication). For handling HTTP
requests, two popular options are Retrofit and Ktor. Retrofit simplifies network
requests in Kotlin, with GsonConverterFactory converting JSON into Kotlin objects.

The enqueue () method is used for asynchronous calls, while coroutines (suspend
functions) provide a modern approach to handling API requests efficiently. Ktor Client
is a lightweight and coroutine-friendly networking library. HTTP requests are managed
using client.get() and client.post(), with gson() handling serialization. While
runBlocking {} can be used in main() for simplicity, real applications should rely on
suspend functions for better performance. In Kotlin, we typically need a dependency
known as com.squareup.retrofit2:retrofit to use Retrofit. Ktor is preferable to
Retrofit because Ktor supports WebSocket communication.

The database API provides broad support for data storage using Room (SQLite ORM),
Realm (NoSQL), and Firebase Firestore (Cloud NoSQL). Room simplifies database
interactions, while Firebase enables cloud-based data storage and management.

269
© Arnika Patel, Keshav Kumar, and Dr. Bishwajeet Kumar Pandey 2025

A. Patel et al., Kotlin Mastery, https://doi.org/10.1007/979-8-8688-1618-5_12

https://doi.org/10.1007/979-8-8688-1618-5_12#DOI

CHAPTER 12 WORKING WITH APl AND NETWORKING

The graphical API enables UI development for a better user experience (UX) with Jetpack
Compose (declarative UI), Canvas API (custom drawing), and MotionLayout (advanced
animations). These tools facilitate the creation of modern and dynamic user interfaces.

Machine learning APIs typically integrate AI/ML using ML Kit (Google’s Al tools),
TensorFlow Lite (on-device ML models), and Hugging Face (NLP models). These APIs
enable features such as face detection, object recognition, and sentiment analysis.
The multimedia API in Kotlin supports media handling through CameraX (camera
integration), MediaPlayer (audio and video playback), and ExoPlayer (advanced video
streaming). These enable multimedia-rich applications. The Kotlin-based cloud API
facilitates cloud computing and storage with Firebase Authentication, Firebase Cloud
Storage, AWS SDK for Kotlin, and Google Cloud Functions.

These APIs provide authentication, data storage, and serverless computing. Each
of these APIs plays a crucial role in Android app development, enabling efficient
networking, data handling, graphics, Al, multimedia, and cloud integrations. Dagger
Hilt and Koin are both dependency injection (DI) frameworks for Kotlin and Android.
Dagger Hilt is an officially recommended DI framework for Android, built on top of
Dagger 2. Koin is a lightweight DI framework for Kotlin that utilizes runtime injection.
Kotlin coroutines and flow API are both used for asynchronous programming, but they
serve different purposes. The Kotlin coroutines API is a way to handle asynchronous
tasks efficiently using suspend functions. Flow is a cold stream that emits multiple values
over time. In Kotlin, Firebase, Outh and Encryption are application and security APIs.
The Google Maps API, Fused Location API, and Geocoder API are geolocation APIs
supported by Kotlin. The MQTT API, along with the Nearby AP], is specifically designed
to support Internet of Things (IoT) applications. For testing Kotlin-based development,
there are various APIs available, including Espresso, JUnit, and Mockito.

12.2 Android Development APIs

The Android SDK APIs, including Jetpack Compose API, Room AP],
LiveData&ViewModel API, Navigation API, and WorkManager API, are fully supported
by Kotlin and utilized in Android development with Kotlin, as shown in Table 12-1.
The Android SDK APIs are a standard set of application programming interfaces (APIs)
for developing Android applications. Jetpack Compose API is one of the most popular
user interface (UI) APIs for modern Android UI development. Room API is a database
persistence library that is part of Jetpack. The LiveData and ViewModel APIs are used

270

CHAPTER 12 WORKING WITH API AND NETWORKING

to manage Ul-based data, enhancing the user experience (UX). Navigation API is used

for handling app navigation. WorkManager API is used for background tasks and job

scheduling.

Table 12-1. Android Development APIs Supported by Kotlin

Android Development API
Name

Support with Kotlin

Android SDK APIs

Jetpack Compose API

Room API

LiveData & ViewModel API [4]

Navigation API

WorkManager API

Google officially supports Kotlin for Android development, and
all Android SDK APIs work seamlessly with Kotlin. Developers
are advised to merely use the public APIs released by the
AndroidSDK for building apps [1].

Jetpack Compose is Kotlin-first, built entirely with Kotlin in mind
for modern Ul development. It replaces XML-based Ul development
with declarative programming. Jetpack Compose dramatically
changes the way we write Uls on Android [2].

Jetpack library that provides a Kotlin-friendly API, simplifying
database management [3]. It supports Kotlin coroutines and flow
for reactive programming.

Kotlin works perfectly with LiveData and ViewModel, ensuring
lifecycle-aware data management and Ul updates. It also
supports StateFlow and SharedFlow as alternatives. ViewModel
differentiates the business logic from the Ul code [4]

Kotlin integrates seamlessly with the Navigation API, enabling
type-safe navigation through Safe Args and the Kotlin DSL for
defining navigation graphs.

The WorkManager API is Kotlin-compatible and supports
coroutines for scheduling background tasks and periodic tasks
efficiently [3].

271

CHAPTER 12 WORKING WITH APl AND NETWORKING

12.3 Networking APIs

Retrofit, OKHTTP, Ktor, and Volley are the most popular networking APIs usable with
Kotlin, as shown in Table 12-2. Ktor or Retrofit are the best choices among these four
popular networking APIs. Retrofit is the best for structured REST APIs with automatic
parsing. OkHttp is a better choice if you need low-level HTTP handling, WebSockets,

or custom network requests. Ktor is ideal for Kotlin-first applications and coroutines.
Volley is suitable for small, quick network requests but is generally outdated. If you need
maximum control, OkHttp is the most preferred API. Volley is mostly legacy at this point.

Table 12-2. Networking APIs Supported by Kotlin

Networking APIs Support with Kotlin

Name

Retrofit API Retrofit is a type-safe HTTP client for REST API calls. This APl is used for
designing applications for both online digital libraries and data repositories [5].

OkHttp API HTTP clients utilize this API to handle network requests.

Ktor API This is an asynchronous framework for building web services and clients [6].

Volley API Volley is Google’s HTTP library for networking operations [7].

12.4 Database & Storage APls

The SQLite API, Firebase Firestore Realtime Database API, and DataStore API are the
most popular database and storage APIs, as shown in Table 12-3. We should use the
SQLite API (with Room) when we need structured, relational data storage locally.
Firebase Firestore is used when we need a cloud-based NoSQL database with flexible
queries. It is the preferred API for ultra-fast, real-time syncing, such as in chat apps. If we
need to store small user settings or preferences efficiently, then the DataStore API is the
best fit. If you're working with Kotlin, Room (SQLite) and DataStore API integrate well
with coroutines, while Firestore is the best option for cloud-based storage.

272

CHAPTER 12 WORKING WITH API AND NETWORKING

Table 12-3. Database APIs Supported by Kotlin

Database APls Name Support with Kotlin

SQLite API This is the most standard Android database API [8].

Firebase Firestore & Kotlin also supports cloud-based NoSQL databases. Firestone is
Realtime Database API related to Firebase APIs and Firebase SDKs. These APIs offer various

unique characteristics. [9]

DataStore API Jetpack’s alternative to SharedPreferences.

12.5 Ul & Graphics APls

The Jetpack Compose API, Canvas API, and Glide/Picasso API are the most popular Ul
and graphics APIs, as shown in Table 12-4. Jetpack Compose is the most popular UI API
for building native Android Uls declaratively. This API uses Kotlin-based declarative
syntax for the UL. It eliminates the need for XML layouts. The Jetpack Compose API

is optimized for UI performance and compositing. Jetpack provides built-in support

for animations, gestures, and theming. The Canvas API is used for low-level drawing
operations in Jetpack Compose or the traditional Android View system. Both Glide and
Picasso are widely used for loading and caching images in Android apps.

Table 12-4. Ul & Graphics APIs Supported by Kotlin

Networking APls Name Support with Kotlin

Jetpack Compose API The most popular Ul toolkit for creating native Uls [10].
Canvas API For drawing custom graphics.

Glide/Picasso API Image loading and caching libraries [11].

12.6 Machine Learning & loT APIs

The TensorFlow Lite API helps us to run machine learning algorithms on mobile,
embedded, and IoT devices. It’s optimized for on-device inference, meaning it can
perform machine learning tasks directly on the device without needing a constant
internet connection. This improves latency and privacy. The ML Kit API is a widely

273

CHAPTER 12 WORKING WITH APl AND NETWORKING

used mobile SDK. This API leverages the benefits of Google’s machine-learning
expertise for both Android and iOS developers. The ML Kit API provides ready-to-use
APIs for machine learning functions, including image labelling in supervised learning,
face detection, text recognition, and more. It simplifies the integration of machine
learning into mobile apps. The MQTT (Message Queuing Telemetry Transport) APl is a
messaging protocol designed for IoT devices and networks with low bandwidth and high
latency. The MQTT API enables devices to publish and subscribe to messages, making

it an ideal choice for IoT applications that require efficient communication, as shown in
Table 12-5.

Table 12-5. Machine Learning and IoT APIs Supported by Kotlin

Machine Learning and Support with Kotlin

loT APIs Name

TensorFlow Lite API Machine learning on Android devices. It is used for detecting
leaf diseases [12].

ML Kit API Google’s machine learning APIs, including image labelling, face
detection, etc.

MQTT API This API is specially designed for loT-based applications [14].

In [13], the researchers utilized Kotlin and Google’s ML Kit to develop Android
applications with optical character recognition capabilities.

12.7 Multimedia APIs

CameraX, MediaRecorder, and ExoPlayer are multimedia APIs available in Kotlin,
as shown in Table 12-6. To achieve robust video playback capabilities, developers
use ExoPlayer [17]. CameraX is a powerful tool for seamless photo capturing and
editing [18].

This table highlights key multimedia APIs in Android with Kotlin support.

It includes ExoPlayer for advanced media playback, MediaRecorder for audio/video
recording, and CameraX for easy camera integration.

274

CHAPTER 12 WORKING WITH API AND NETWORKING

Table 12-6. Multimedia APIs Supported by Kotlin

Multimedia APIs Name Support with Kotlin

ExoPlayer API Advanced media playback for Android.
MediaRecorder API Recording audio and video.
CameraX API Simplified camera integration.

12.8 Cloud & Backend APIs

Cloud-based APIs, such as Firebase Cloud Messaging (FCM) API, AWS SDK API, Google
Cloud AP], and Google Maps AP]I, are shown in Table 12-7.

Table 12-7. Cloud APIs Supported by Kotlin

Cloud APIs Name Support with Kotlin

Firebase Cloud Messaging (FCM) API For push notifications.

AWS SDK for Kotlin AWS services integration.
Google Cloud APIs Various cloud services for computing, storage, and Al.
Google Map API Integrating Google Maps in the Kotlin application.

12.9 CASE STUDY 1: Using Google Map API in Kotlin

To use Google Maps API in a Kotlin project (Android app), we need to go through the
following steps.

STEP 1. Enable Google Maps API

1. Openhttps://console.cloud.google.com/.
2. Create a new project or select an existing one.

3. Navigate to APIs & Services » Library.

275

https://console.cloud.google.com/

CHAPTER 12 WORKING WITH APl AND NETWORKING

4. Locate and enable Google Maps SDK for Android.

5. Go to Credentials, create an API Key, and restrict it to Android apps.

STEP 2. Add Dependencies

Open your app's build.Gradle.kt file and add the following before syncing our app:

dependencies {
implementation("com.google.android.gms:play-services-maps:18.2.0")
implementation("com.google.android.gms:play-services-location:21.0.1")
// For GPS & location updates

}
STEP 3. Add API Key to Manifest

In AndroidManifest.xml, add:

<manifest>
<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/>
<uses-permission android:name="android.permission.ACCESS COARSE LOCATION"/>

<application>

<meta-data
Android:name="com.google.android.geo.API_KEY"
android:value="YOUR _API KEY HERE"/>
</application>

</manifest>

Replace "YOUR_API_KEY HERE" with your actual Google Maps API key.

STEP 4. Add a Map Fragment

In res/layout/activity_main.xml, add:

<fragment

android:id="@+id/mapFragment"
android:name="com.google.android.gms.maps.SupportMapFragment"
android:layout width="match parent"

android:layout height="match parent"/>

276

CHAPTER 12 WORKING WITH API AND NETWORKING

STEP 5. Load the Map in Kotlin

Modify MainActivity.kt:

import
import
import
import
import
import
import
import

class MainActivity :

android.os.

androidx.appcompat.app.
android.gms.
android.gms.
android.gms.

com.google.
com.google.
com.google.
com.google.
com.google.
com.google.

Bundle

android.gms.
android.gms.
android.gms.

AppCompatActivity
maps.CameraUpdateFactory
maps .GoogleMap
maps.OnMapReadyCallback
maps . SupportMapFragment
maps.model.LatLng
maps.model.MarkerOptions

AppCompatActivity(), OnMapReadyCallback {

private lateinit var googleMap: GoogleMap

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity main)

}

// Load the map
valmapFragment = supportFragmentManager

.findFragmentById(R.id.mapFragment) as SupportMapFragment
mapFragment.getMapAsync(this)

override fun onMapReady(map: GoogleMap) {
googleMap = map

}

// Set initial location (e.g., New York)

valnewYork = LatLng(40.7128, -74.0060)

googleMap.addMarker (MarkerOptions().position(newYork).title("New York"))
googleMap.moveCamera(CameraUpdateFactory.newLatLngZoom(newYork, 12f))

277

CHAPTER 12 WORKING WITH APl AND NETWORKING

STEP 6. Run the App

Run your app on an emulator with Google Play services or an actual Android device.

Extra Features

Enable Location Tracking

a. Request runtime permissions (ACCESS_FINE_LOCATION).

b. Use FusedLocationProviderClient to retrieve the user’s location.
Customize Markers & Polylines

a. Add custom marker icons.

b. Draw routes using PolylineOptions.

Google Places API

a. Get place details, autocomplete search, etc.

12.10 CASE STUDY 2: Using MQTT API in Kotlin

To use MQTT (Message Queuing Telemetry Transport) in a Kotlin application within
Intelli] IDEA, you can use the Eclipse Paho MQTT client.

STEP 1. Create a New Kotlin Project in IntelliJ IDEA

278

Open Intelli] IDEA and create a New Project.
Select Kotlin (JVM) and click Next.
Name your project and choose a location.

Click Finish.

CHAPTER 12 WORKING WITH API AND NETWORKING

STEP 2. Add MQTT Dependency

Edit your build.gradle.kts file to include the Paho MQTT library:

kotlin

CopyEdit

dependencies {
implementation("org.eclipse.paho:org.eclipse.paho.client.mqttv3:1.2.5")

Sync the project to download dependencies.

STEP 3. Implement MQTT Client in Kotlin

Create a new Kotlin file, e.g., MgttClientExample.kt, and add the following:

kotlin

CopyEdit

import org.eclipse.paho.client.mqttv3.*

import org.eclipse.paho.client.mqttv3.persist.MemoryPersistence

fun main() {

val broker = "tcp://broker.hivemq.com:1883" // Public broker for testing
valclientId = "KotlinMQTTClient"

val topic = "test/kotlin/mqtt"

val persistence = MemoryPersistence()

try {
val client = MgttClient(broker, clientId, persistence)

// MQTT Callback
client.setCallback(object : MgttCallback {
override fun connectionLost(cause: Throwable?) {
println("Connection lost: ${cause?.message}")

}

override fun messageArrived(topic: String?, message:
MgttMessage?) {
println("Message received: ${message.toString()} on topic: $topic")

}
279

CHAPTER 12 WORKING WITH APl AND NETWORKING

override fun deliveryComplete(token: IMqttDeliveryToken?) {
println("Message delivered")

}
1)

// MQTT Connection Options
val options = MgttConnectOptions().apply {
isCleanSession = true

}

println("Connecting to broker: $broker")
client.connect(options)
println("Connected!")

// Subscribe to a Topic
client.subscribe(topic, 1)

// Publish a Message
val message = MgttMessage("Hello from Kotlin!".toByteArray()).apply {
qos =1

}

println("Publishing message: ${message.toString()}")
client.publish(topic, message)
println("Message published")

// Keep running to listen for messages
Thread.sleep(5000)

// Disconnect
client.disconnect()
println("Disconnected")

} catch (e: MgttException) {
e.printStackTrace()

}

280

CHAPTER 12 WORKING WITH API AND NETWORKING
STEP 4. Run the MQTT Client

1. InIntelli] IDEA, right-click the MgttClientExample.kt file.
2. ClickRun 'MgttClientExampleKt'.

3. Youshould see logs confirming connection, message publishing,
and subscription.

STEP 5. Explanation

1. Uses broker.hivemq.com:1883 (public broker) for testing.
2. Implements MgttCallback for handling incoming messages.

3. Connects, subscribes, publishes a message, and listens for

responses.

STEP 6. Extra Features

Secure Connection (TLS/SSL): Use ssl://broker:8883.

User Authentication: Set username and password in
MgttConnectOptions.

Keep Alive: Adjust setKeepAliveInterval() to maintain a
connection.

12.11 Conclusion and Future Scope

There are over 100 APIs that are usable in the Kotlin programming language. We

have discussed the most popular APIs in various categories, including Android API,
networking API, database API, graphical API, machine learning API, multimedia API,
IoT API, and cloud API, among others. We have illustrated two popular APIs: the MQTT
API and the Google Location API. Retrofit simplifies HTTP requests in Kotlin. The APIs
discussed are not the only APIs available for Kotlin. New APIs are being introduced at
regular intervals. The next edition of this book will update the new APIs that will be
released in or after 2025.

281

CHAPTER 12 WORKING WITH APl AND NETWORKING

12.12 Test Your Knowledge

In order to test your knowledge for after reading this chapter, here are following 10 MCQ
(Multiple Choice Questions) on Networking APIs in Kotlin, focusing on Ktor and Retrofit:

1. Whatis Retrofit used for in Kotlin?
a. database management
b. making network requests
c. Ulrendering dependency injection
2. Which dependency is required to use Retrofit in Kotlin?
a. com.squareup.retrofit2:retrofit
b. io.ktor:ktor-client-core
c. androidx.lifecycle:lifecycle-viewmodel
d. com.google.dagger:dagger

3. What does Retrofit use to convert JSON responses into Kotlin

objects?
a. Moshi
b. Gson
c. Kotlin Serialization
d. All of the above
4. In Retrofit, which function makes an API request asynchronously?
a. execute()
b. enqueue()
c. start()

d. runBlocking {}

282

CHAPTER 12 WORKING WITH API AND NETWORKING

What is the primary advantage of Ktor over Retrofit?
a. Ktor is synchronous by default.
b. Ktor supports WebSocket communication.
c. Ktor does not require coroutines.
d. Retrofit is faster than Ktor.
Which Ktor module is used for JSON serialization?
a. ktor-client-serialization
b. ktor-client-gson
c. ktor-client-json
d. ktor-serialization-kotlinx-json
How do you define a GET request in Retrofit?
a. @HttpGet("/posts")
b. @Request(GET, "posts")
c. @GET("posts")
d. GET("posts")
What is the default HTTP engine used by Ktor Client?
a. OkHttp
b. CIO
c. Apache
d. None
Which function in Ktor makes a network call asynchronously?
a. suspend fun

b. runBlocking {}

o

. launch {}

s

execute()

283

CHAPTER 12 WORKING WITH APl AND NETWORKING

10. Whatis the main purpose of ContentNegotiation in Ktor?

a. handling authentication

=3

enabling logging

o

serializing and deserializing request/response bodies

o,

. handling API errors

12.13 Answers

1. b
2. a
3. d
4. b
5. b
6. d
7. C
8 b
9. a
10. ¢

284

CHAPTER 13

Advanced Kotlin
Programming

13.1 Introduction

The Alphabet, Inc. (then Google) declared Kotlin an official language for Android in
2017.1In 2019, Google revised their former declaration about Kotlin and declared Kotlin
the preferred language for Android app development. Intellij IDEA has two associations
for Kotlin. The first association is .kt (DOT K-T) is used for Kotlin source code and treated
as a Kotlin class. The second association is .kts (DOT K-T-S), which is used for Kotlin
script or Gradle Kotlin DSL.

Kotlin enhances Android development by reducing boilerplate, improving safety,
and simplifying asynchronous programming. Kotlin may call Java code and vice versa.
This feature of Kotlin makes the migration of an existing Java project to Kotlin possible.
Java allows null by default that leads to null pointer exceptions (NPEs). Kotlin has native
null safety (? and ! ! operators) support to prevent NPEs and to reduce the possibility of
runtime crashes [1]. Kotlin deals with the notorious null pointer exceptions in Java by
focusing on null safety and integrating null safety operators in Kotlin [2]. In addition to
null safety, this chapter also covers high order functions, lambdas, lazy initialization, and
property delegation, as shown in Figure 13-1.

285
© Arnika Patel, Keshav Kumar, and Dr. Bishwajeet Kumar Pandey 2025

A. Patel et al., Kotlin Mastery, https://doi.org/10.1007/979-8-8688-1618-5_13

https://doi.org/10.1007/979-8-8688-1618-5_13#DOI

CHAPTER 13 ADVANCED KOTLIN PROGRAMMING

Lazy

Lambda Initialization

Advanced

Concepts
in Kotlin

Property Higher Order
Delegation Functions

Figure 13-1. Advanced concepts in Kotlin

13.2 Null Safety

Kotlin offers several techniques to handle null values, including the non-null
assertion (!!), safe call operator (?.), safe casts (as?), let scope function, and the Elvis
operator (?:)

286

CHAPTER 13 ADVANCED KOTLIN PROGRAMMING

Safe Call Operator in Kotlin

The operator safe call (?.) in Kotlin allows accessing a property or calling a function only
when the object is not null. Safe call is one of the three most used Kotlin features. The
other two most used features in Kotlin are type inference and lambda [3].

Main.kt

Shift || F10

fun main() {

Figure 13-2. Safe call operator when value is not null

Output is 6 for the program shown in Figure 13-2. Here name is not null, which is

why ?. length is executed.

Main.kt

Shift || F10

fun main() 4
val name: String? = null

println(name?.length)

Figure 13-3. Safe call operator when value is null

We are getting null output after executing the program shown in Figure 13-3. Here
name is null , and Kotlin returns null instead of throwing an error.

287

CHAPTER 13 ADVANCED KOTLIN PROGRAMMING

Elvis Operator in Kotlin

The Elvis operator (? :) provides a default value if the left-hand side of the Elvis operator
is null [4]. The Elvis operator is developed in Kotlin to change the literal value associated
with the Elvis operator in Kotlin code by changing the string literal to a constant string
(shown in 13-5) as shown in Figure 13-4.

Main.kt

Shift || F10

fun main() {
name: String? = null

3 -

length = name?.length

println(length)

Figure 13-4. Elvis operator to assign some value when variable is null

Output is 5 for the Kotlin program shown in Figure 13-4, as the Elvis operator assigns
avalue of 5 to the length variable. The name “Elvis operator” refers to the fact that when
its common notation, ?:, is not viewed with technical glass, it looks like the signature
hairstyle of famous singer Elvis Presley, as shown in Figure 13-5 [5].

288

CHAPTER 13 ADVANCED KOTLIN PROGRAMMING

rJREEN

" rotate - =

Elvis operator

Figure 13-5. Elvis Presley signature hairstyle

289

CHAPTER 13 ADVANCED KOTLIN PROGRAMMING

Non-Null Assertion (!!) in Kotlin

The non-null assertion (! !) in Kotlin asserts that the variable is a non-null variable,
throwing an NPE if it is actually null. Kotlin emphasizes type safety by introducing
non-nullable types. This makes programs less prone to being null [2].

Main.kt

Shift || F10

in() {4

~ name: String? =

Figure 13-6. Non-null assertion when variable is not null

Output is 10 when we execute the non-null assertion operator on a variable that is
not null but has a length of 10 in Kotlin, as shown in Figure 13-6.

Main.kt

Shift || F10

fun main() {
name: String? = null
__I*l

Figure 13-7. Non-null assertion when variable is not null

290

CHAPTER 13 ADVANCED KOTLIN PROGRAMMING

In the Kotlin program shown in Figure 13-7, we unknowingly assert that name is not
null but in reality it is null. Kotlin throws a null pointer exception as the String type
variable name is null, as shown in Figure 13-8.

"C:\Program Files\Eclipse Adoptium\jdk-21.0.2.13-hotspot\bin\java.exe"

Process finished with exit code 1

Figure 13-8. Kotlin program terminated with a NullPointerException at line 5 in
Main.kt, indicating an attempt to access or operate on a null reference

So, we conclude that we shall use a non-null assertion (!!) only when we are 100%
sure that the variable is never null.

Safe Cast (as?)

The safe cast (as?) operator tries to cast an object but returns null if the cast fails, instead
of throwing an exception. Kotlin’s characteristic features are safety, compatibility with Java,
and suitability for Android app development. These features have made Kotlin the second
most preferred programming language for Android app development, following Java [6].

Main.kt

Shift || F10

fun main() {

val obj: Any =

val str: String? =obj as? String
! printlh(stv}

1
J

Figure 13-9. Kotlin program with safe cast

291

CHAPTER 13 ADVANCED KOTLIN PROGRAMMING

Output is Bishwajeet when we execute the Kotlin program shown in Figure 13-9
because safe cast successfully type cast obj as String and store typecasted value on str.

Main.kt

Shift || F10

fun main() ‘[

val obj: Any =

val number: Int? =c
® .rJr‘inﬂn(number*b

1
}

Figure 13-10. Kotlin program with unsuccessful safe cast

Output is null as safe cast failed to type cast the obj as an integer based on the syntax
of Kotlin program written in Figure 13-10.

let Scope Function

The let function executes code only if the variable is not null.

292

CHAPTER 13 ADVANCED KOTLIN PROGRAMMING

Main.kt

Shift

fun main() {

val name: String? =
name?.let {

println(

Figure 13-11. Kotlin program with let scope function

Output is 10 when the Kotlin program using the let scope function is executed and
when the variable has a value stored with a length of 10, as shown in Figure 13-11.

Main.kt

Shift || F10

fun main() {

waﬂ name: String? = null

name?.let {

println("Le

Figure 13-12. Kotlin program with let scope function

There is no output as the let scope function did not allow it to execute because the
variable is a null, as shown in the Kotlin program illustrated in Figure 13-12.

293

CHAPTER 13 ADVANCED KOTLIN PROGRAMMING

13.3 Higher-Order Functions and Lambdas

Java did not have functional features (e.g., streams, lambdas) till after Java 7. These
functional features were first introduced in Java 8. Whereas, Kotlin has higher-order
functions, such as lambda, that make functional programming easier as compared

to traditional Java programming. A higher-order function is a special type of function
that either takes another function as a parameter or returns a function. A lambda is an
anonymous function that can be passed as an argument. Both Kotlin and Swift leverage
higher-order functions extensively. Kotlin has rich support for higher-order functions
that help developers in getting the benefits of encapsulation in mobile devices [7].

Higher-Order Function with Lambda

. Main .kt

Shift || F10

alculate (a:Int,b:Int, operation: (Int, Int)-> Int):Int{
return operation(a, b) |

fun main() {

val sum = calculate(a 5, b: 3) {x,y -> x + y}
val multiply = calculate (a 5, b: 3) {x,y -> x * y}
println("Sum: $sum")

println("Multiply: $multiply")

Figure 13-13. Kotlin program of higher-order functions with lambda

The Kotlin program shown in Figure 13-13 demonstrates the use of higher-order
functions and lambda expressions and has the following explanation.

294

CHAPTER 13 ADVANCED KOTLIN PROGRAMMING

Explanation:

1. Higher-Order Function (calculate):

a. Ittakes three parameters:
a and b are two integers.

An operation function that accepts a and b and returns an
integer.

b. Higher-order function calls the lambda function passed as
operation on a and b.

2. Main Function Execution:

a. Calls calculate(5,3), passing a lambda function for
addition (x, y ->x +Y).

b. Calls calculate(5,3), passing a lambda function for
multiplication (x, y -> x * y).

c. Prints the results.

This showcases Kotlin’s ability to use lambda functions to pass behavior as a
parameter, making code more flexible and reusable.

MainKt

"C:\Program Files\Eclipse Adoptium\jdk-21.0.2.13-hotspot\bin\java.exe"

Sum: 8
Multiply: 15

Figure 13-14. Output of Kotlin program of higher-order functions with lambda

The sum is 8 and result of multiplying is 15; these are the two outputs of the Kotlin
program of higher-order function with lambda shown in Figure 13-14.

295

CHAPTER 13 ADVANCED KOTLIN PROGRAMMING

Higher-Order Function Returns a Function

Main .kt

Shift || F10

tion(type: String): (Int, Int) -> Int {
when (type) {
->{a,b->a+b}
->{a,b->axb}

>{_, _->0}

in() {
al addFunction = operation(

val multiplyFunction = operation(

printiln(dition: ${addFunction(7, 2)}")

@ printin(1tipl : ${multiplyFunction(7,

Figure 13-15. Returns a function from a higher-order function in Kotlin

In Kotlin, a higher-order function can return another function. Kotlin usually

support higher-order functions that allow you to provide functions as parameters and

return functions from other functions. Figure 13-15 is an example of a Kotlin program

that demonstrates this concept, and has the following explanation:

1. operation(type: String) is ahigher-order function in Kotlin
returning a function of type (Int, Int) -> Int.

2. Based on the type parameter, it returns:

a. alambda for addition: { a, b -> a + b }

b. alambda for multiplication:{ a, b -> a * b }

3. Inmain(), the returned functions are stored in addFunction and

multiplyFunction, then executed with arguments; they give

output shown in Figure 13-16.

296

CHAPTER 13 ADVANCED KOTLIN PROGRAMMING

MainKt

"C:\Program Files\Eclipse Adoptium\jdk-21.0.2.13-hotspot\bin\java.exe"

Addition: 9

Multiplication: 14

cess finished with exit code 0O

Figure 13-16. Output of Kotlin program returning a function from a higher-order
function

Using Lambda with List Functions

Kotlin provides powerful lambda expressions that can be used with list functions like
map, filter, forEach, reduce, any, all, count, and more. Figure 13-17 is an example
demonstrating the use of lambda functions with a list.

Main .kt

in() {
Al numbers = list0f(1,

evenNumbers = numbers.filt

printin(| $evenNumbers"™)

squaredNumbers = numbers.map { it * it }

printin(| $squaredNumbers")
numbers.forEach { printin(: FEL)NE

sum = numbers. { acc, num -> acc + num }

printin(f $sum")

hasLargeNumber = numbers. { it > }

printin(hasLargeNumber")

L allPositive = numbers. 1 it > ¥

printin(t allPositive")

L countGreaterThan5 = numbers. 4t > }

println(t countGreaterThan5")

Figure 13-17. Kotlin program of lambda expression with list function
297

CHAPTER 13 ADVANCED KOTLIN PROGRAMMING

The filter {it % 2 == 0} is used to filter even numbers. The map {it * it}isused
to transform each element (squares it). The forEach {println(it) }isused to iterate
and print each item. The reduce {acc, num -> acc + num} accumulates values (sum).
The any {it > 8} returns true if any number is greater than 8. The all {it > 0}
returns true if all numbers are positive. The count { it > 5 } counts elements greater
than 5, as shown in Figure 13-18.

"C:\Program Files\Eclipse Adoptium\jdk-21.0.2.13-hotspot\bin\java.exe"

Even Numbers: [2, 4, 6, 8, 10]
Squared Numbers: [1, 4, 9, 16, 25, 49, 64, 81, 100]
Number: 1

Number:

Number:

Number:

Number:

Number:

Number:

Number:

Number: 9

Number: 10

Sum of Numbers: 55

Has number > 8: true

A1l numbers are positive: true
Numbers greater than 5: 5

Process finished with exit code 0O

Figure 13-18. Output of Kotlin lambda expression with list function

298

13.4

CHAPTER 13 ADVANCED KOTLIN PROGRAMMING

Lazy Initialization

Lazy initialization in Kotlin is a mechanism where an object is initialized only when it

is accessed for the first time rather than at the time of declaration. Lazy initialization

improves performance and reduces unnecessary memory usage as it works on a

principle called “If not needed then it never initializes.” First access triggers initialization,

and subsequent accesses return cached value, as shown in Figure 13-19.

. Main.kt

class LazyExample {
ilue: String by lazy {
tln("Initializi

fun main() {

val example = LazyExample()

println("Before accessing

println(example.lazyValue)

println(example.lazyValue)

Figure 13-19. Kotlin program of lazy initialization

The code in Figure 13-19 has following explanation:

1.

lazyValue is initialized lazily using by lazy {}

a. The first time lazyValue is accessed, the block inside 1lazy executes.
b. The result ("Hello, Kotlin!") is stored and reused for future accesses.
In main():

a. val example = LazyExample() creates an object.

b. "Before accessing lazyValue" is printed.

299

CHAPTER 13 ADVANCED KOTLIN PROGRAMMING

c. The first access (example.lazyValue) triggers initialization, prints
"Initializing lazyValue...", andreturns "Hello, Kotlin!"as
shown in Figure 13-20.

d. The second access returns the cached value without re-
initializing, as shown in Figure 13-20.

MainKt

"C:\Program Files\Eclipse Adoptium\jdk-21.0.2.13-hotspot\bin\java.exe"

Before accessing lazyValue
Initializing lazyValue...
Hello, Kotlin!

Hello, Kotlin!

Process finished with exit code O

Figure 13-20. Output of Kotlin program with lazy initialization

Lazy initialization (by 1lazy) delays object creation until it’s needed. First access
initializes the value, and subsequent accesses reuse it. This helps optimize memory
and performance by preventing unnecessary computations. This technique is useful for
initializing heavy resources, database connections, or API calls efficiently.

13.5 Property Delegation

A getter is a function that get the value of a property. A setter is a function that

updates the value of a property. In Kotlin, we usually customize getter and setter for
encapsulation, validation, transformation of data, and property delegation. Property
delegation allows us to delegate the getter and setter logic of a property to another object
instead of defining them manually.

300

CHAPTER 13 ADVANCED KOTLIN PROGRAMMING

Main.kt

import kotlin.properties.Delegates

» name: String by Delegates.observable(initi "Unknown") { _, old,

println("Name changed from $old to $new")

fun main() {

val user = User()

Figure 13-21. Kotlin code of property delegation

new ->

Kotlin provides built-in delegates like Delegates.observable to track property

changes, as shown in the Kotlin program written in Figure 13-21. This code has the

following explanation:
e var name: String by Delegates.observable("Unknown")
o Initializes name with "Unknown."
e Whenever name is changed, the observer lambda function is called.
e It prints the old and new values.
e Settinguser.name = "Alice"

o The observer prints "Name changed from Unknown to Alice" as
shown in Figure 13-22.

e Settinguser.name = "Bob"

o The observer prints "Name changed from Alice to Bob" asshown
in Figure 13-22.

301

CHAPTER 13 ADVANCED KOTLIN PROGRAMMING

MainKt

"C:\Program Files\Eclipse Adoptium\jdk-21.0.2.13-hotspot\bin\java.exe"

Name changed from Unknown to Alice
Name changed from Alice to Bob

Process finished with exit code O

Figure 13-22. Output of Kotlin code of property delegation

13.6 Conclusion

In contrary to Java, which usually leads to null pointer exception, Kotlin offers several
techniques to handle null values, including the non-null assertion (! !), safe call
operator (?.), safe casts (as?), let scope function, and the Elvis operator. Kotlin provides
powerful lambda expressions that can be used with list functions like map, filter,
forEach, reduce, any, all, count, and more. Lazy initialization (by lazy) delays object
creation until it’s needed, which helps to improve perfromance and achieve memory
optimization. Kotlin provides built-in delegates like Delegates.observable to track
property changes.

13.7 Future Scope

In this era of ongoing evolution, every programming language is coming up with new
versions with newer features; e.g., Python 1, 2,3 and Java 1,2,3,4,5,6,7,8,.. and so on.
Kotlin is also not a perfect language, and there is always scope for improvement. This
book covers all available advanced concepts available at time of writing (null safety,
property delegation, higher-order function, lambda, and so on), but when new features
integrate in Kotlin, this advanced Kotlin programming chapter will need to be updated.

302

CHAPTER 13 ADVANCED KOTLIN PROGRAMMING

13.8 Real-Life Programming Practice

1.

Task Manager App: This simple task manager app allows
users to add tasks, check pending tasks, and mark tasks as
completed.

Concepts Covered:
Null Safety: Safe call (?.), Elvis (?:), non-null assertion (!!)

Higher-Order Functions & Lambdas: Functional programming for
task filtering

Lazy Initialization: Delaying the creation of a list until it's needed

Property Delegation: Using Delegates.observable to
track changes

Code:
import kotlin.properties.Delegates

// Data Class for Task
data class Task(val id: Int, var description: String, var
isCompleted: Boolean = false)

// Task Manager Class
class TaskManager {
// Lazy Initialization: Tasks list is created only when
accessed
private val tasks: MutableList<Task> by lazy {
mutableListOf() }
// Observable Property: Tracks changes in total tasks count
var totalTasks: Int by Delegates.observable(0) { _, old,
new ->
println("Total tasks changed from $old to $new")

303

CHAPTER 13 ADVANCED KOTLIN PROGRAMMING

// Function to Add a Task (Using Safe Call Operator)

fun addTask(description: String?) {
val taskDescription = description?.trim() ?: "Untitled
Task" // Elvis Operator
tasks.add(Task(tasks.size + 1, taskDescription))
totalTasks = tasks.size // Updates observable property
println("Task Added: $taskDescription™)

}

// Function to Display Pending Tasks (Using Higher-Order
Function)
fun showPendingTasks() {
val pendingTasks = tasks.filter { !it.isCompleted }
// Lambda
if (pendingTasks.isEmpty()) {
println("No pending tasks.")
} else {
println("Pending Tasks:")
pendingTasks.forEach { println("- [] ${it.
description}") }

}

// Function to Mark a Task as Completed (Using Safe
Call and !!)
fun completeTask(taskId: Int) {
val task = tasks.find { it.id == taskId } // Finds
task by ID
task?.let {
it.isCompleted = true
println("Task Completed: ${it.description}")
} ?: println("Task not found!") // Elvis Operator

304

CHAPTER 13 ADVANCED KOTLIN PROGRAMMING

// Main Function

fun main() {
val taskManager = TaskManager()
taskManager.addTask("Buy groceries") // Adds task
taskManager.addTask("Finish Kotlin project")
taskManager.addTask(null) // Handles null safely
taskManager . showPendingTasks() // Shows pending tasks

taskManager.completeTask(1) // Completes task 1
taskManager.showPendingTasks() // Shows pending tasks after
completion

Output:

Total tasks changed from 0 to 1
Task Added: Buy groceries

Total tasks changed from 1 to 2
Task Added: Finish Kotlin project
Total tasks changed from 2 to 3
Task Added: Untitled Task
Pending Tasks:

- [] Buy groceries

- [] Finish Kotlin project

- [] Untitled Task

Task Completed: Buy groceries
Pending Tasks:

- [] Finish Kotlin project

- [] Untitled Task

305

CHAPTER 13 ADVANCED KOTLIN PROGRAMMING
13.9 Test Your Knowledge

1. What is a higher-order function in Kotlin?

a. afunction that takes another function as a a parameter or
return a function

b. a function with multiple parameters
c. afunction that can be overridden
d. afunction that has default arguments

2. What will be the output of the following code?

fun calculate (a: Int, b : Int, operation: (Int, Int) ->
Int): Int {
return operation(a,b)

}

fun main() {
Val result = calculate (4,2) {x,y -> x-y }
println(result)

d. 4
3. What is lambda expression in Kotlin?
a. a function without a return type

b. an anonymous function that can be assigned to a variable or
passed as an argument

c. afunction that must be declared inside a class

d. afunction that cannot take parameters

306

CHAPTER 13 ADVANCED KOTLIN PROGRAMMING

How do you write a lambda expression that multiplies two
numbers in Kotlin?

a. {a,b->a*b}
b. {a,b =>a*b}
c. fun(ab)=a*b
d. lambda (a,b) ->a*b
What does the ?. (safe call) operator do in Kotlin?
a. forces a property to be non-null
b. calls a method or property only if the object is not null
c. converts a nullable type to a non-nullable
d. throws a null pointer exception if the value is null

What is the output of the following code?

Var name: String? =null
Println(name?.length ?: “No Name”)

a. 0

b. “No Name”

c. Null

d. Compilation Error

Which operator forces a nullable variable to be non-null,
potentially throwing an exception?

a. 2.
b. 2

c. !l

307

CHAPTER 13 ADVANCED KOTLIN PROGRAMMING

8. Which built-in property delegate is used for lazy initialization
in Kotlin?

a. observable
b. lazy

c. vetoable
d. delegate

9. What will happen if you access a lazy property before it is
initialized?

a. It will throw an error.

b. It will return null.

c. Itwill initialize the property on first access.
d. The program will crash.

10. What will be the output of the following code?

val numbers = 1ist0f(1,2,3,4,5)
val result = numbers.filter { it % 2 == 0 }

println(result)
a. [1,3,5]

b. [2,4]

c. [1,2,3,4,5]

d. [2,4,6]

11. What is the purpose of the let function in Kotlin?
a. executes a block of code only if the object is null
b. executes a block of code only if the object is not null
c. converts a nullable variable into a non-nullable one

d. none of the above

308

12.

13.

14.

CHAPTER 13 ADVANCED KOTLIN PROGRAMMING

What is the correct syntax to create a function that returns another
function in Kotlin?

a. fun getOperation(): (Int, Int) -> Int

b. fun getOperation(): Int

c. Fun getOperation() -> (Int, Int) -> Int
d. Fun getOperation() : Function

In Android, which Kotlin feature is commonly used to avoid
NullPointerException when accessing SharedPreferences?

a. !' (Non Null Assertion)

b. ?:(Elvis Operator)

c. ?.(Safe Call)

d. Observable
What does the following code do in Kotlin?
lateinit var text: String

a. initializes text with an empty string

b. allows text to be assigned later before use

c. makes text nullable

d. prevents text from ever being null

13.10 Answers

309

CHAPTER 13 ADVANCED KOTLIN PROGRAMMING

10. b
11. b
12. a
13. ¢

14. b

310

CHAPTER 14

Data Analysis with Kotlin

14.1 Get Started with Kotlin Notehook

For data analysis, we use Kotlin Notebook, which is an interactive tool that lets you write
clean code with visuals and analytics.
Following are the steps to install Kotlin Notebook.

Step 1: Download and install the latest version of Intelli] IDEA
(Kotlin Notebook will require Ultimate Edition).

Step 2: In Intelli] IDEA, select Intelli] IDEA » Settings » Plugins
or File » Settings » Plugins.

Step 3: In the Marketplace tab, browse to the Kotlin Notebook
plugin and install it, as in Figure 14-1.

- kotlin
Kotlin Notebook RO Kotlin Notebook

Restart IDE

EC): BugKotlinDocument

KDoc-er - Kotlin Doc Generator

CO: kotlintest

CC): Cucumber for Kotlin

Kotlin Code Sorter

Kotlin Auto fill

Figure 14-1. Install Kotlin Notebook

311
© Arnika Patel, Keshav Kumar, and Dr. Bishwajeet Kumar Pandey 2025

A. Patel et al., Kotlin Mastery, https://doi.org/10.1007/979-8-8688-1618-5_14

https://doi.org/10.1007/979-8-8688-1618-5_14#DOI

CHAPTER 14 DATA ANALYSIS WITH KOTLIN

Step 4: Click OK to apply changes and restart your IDE.
Next is to create a Kotlin notebook.

Step 1: Go to File » New Project and give it an appropriate name,
as in Figure 14-2.

I

2] New Project

Q
FirstKotIinNotebook|
O Java > >
Location: ~\ldeaProjects
Kotlin
Groovy))
Create Git repository
C3 Empty Project
Build system: IntelliJ Maven Gradle

SR L JDK: (3 BellSoft Liberica 20.0.2

A Jakarta EE

» Spring Boot ¥ Add sample code

8 JavaFx « Generate code with onboarding tips

¢) Quarkus ¥| Use compact project structure
M Micronaut

Ktor

Compose Multiplatform > Advanced Settings
8§ HTML
& React
ex Express

Angular CLI

Vue.js
W vite

2 Create Cancel

Figure 14-2. Create a new project

Step 2: After creating the project, select File » New » Kotlin
Notebook and create one Kotlin notebook (Figure 14-3).

312

CHAPTER 14 DATA ANALYSIS WITH KOTLIN

File Edit View Navigate Code Refactor Build Run Tools VCS Window Help

\Il from Disk
Kotlin Notebook

lidats

Figure 14-3. Create a notebook

Step 3: In an open tab, write the following code in the code cell:

println("This is my first kotlin notebook")

Step 4: To run the code cell, click the Play button or press
Shift + Return (Figure 14-4).

printin("Thin

Thin is my first notebooﬂ

Figure 14-4. Run code

Step 5: Add a markdown cell by clicking the Add Markdown
Cell button.

Step 6: Write any title, like New Operation, and run it like
mentioned in Step 4.

313

CHAPTER 14 DATA ANALYSIS WITH KOTLIN

Step 7: In a new cell, write 30+10 and run it (Figure 14-5).

New Operations

+16]

Figure 14-5. New Operations run

Step 8: Add a new cell and declare one variable a = 10 and runiit.
After that, add a new cell and print a*a. See Figure 14-6.

= [FK FirstKotlinNotebook Version control

Project

2 FirstKotlinNotebook

New Operations

B @

{} Code miMarkdown

© ©

Figure 14-6. Kotlin notebook with all operations

Step 9: Run all code.

That'’s it. We have created out first Kotlin notebook successfully.

314

CHAPTER 14 DATA ANALYSIS WITH KOTLIN

14.2 Add Library to Kotlin Notebook

Let’s add Kotlin library dependencies to the Kotlin library. We will add Kandy and
Dataframe libraries, as follows.

Step 1: Create notebook and add code cell.

Step 2: Enter the code shown in Figure 14-7.

%uselLatestDescriptors

%use dataframe

%use kandy

Figure 14-7. Add libraries

Step 3: Run the cell. It will download all the required libraries, so it
will take some time.

Step 4: To import a raw CSV file, write the code shown in

Figure 14-8.

val df = DataFrame.read(

1-20v > Dl

Index ¢ Height ¢ Weight

Figure 14-8. Read CSV file and print
315

CHAPTER 14 DATA ANALYSIS WITH KOTLIN

14.3 Working with Data Sources

We can read data from JSON files, and also we can update, add, filter, or remove data
from such files. Following are the steps to follow.

Step 1: Create a new project.
Step 2: Create a new Kotlin notebook.

Step 3: Add the people. json file (Figure 14-9).

= R FirstKotlinNotebook

Figure 14-9. The people.json file

Step 4: In a new Kotlin notebook, add the required libraries, as
shown in the previous section.

Step 5: Read the JSON file. Figure 14-10 shows the code.

316

CHAPTER 14 DATA ANALYSIS WITH KOTLIN

run_kernel.py myNewJsonRead.ipynb people.json

K 1T T G & @ Code Al Project Libraries ~ Run in Separate Process v

%uselatestDescriptors

%use dataframe

%use kandy

f = DataFrame.read("

10 rows v
id ¢ name : ¢ gender ¢ email ¢ phone ¢ address
Main St, N
Elm St, Lo
3 Robert Johnso 4 robe j on@example. 1- -8765 789 Oak St, Chica

4 Emily Davis 9 Female ple.col 21 101 Pine St, Houston, TX

Figure 14-10. Read JSON file

Step 6: Let’s check the type of each column in our dataset using

the function schema(). Figure 14-11 shows that.

Figure 14-11. JSON file schema

Step 7: Let’s use a filter function to filter a group of people having
an age higher than 30. Figure 14-12 shows that.

317

CHAPTER 14 DATA ANALYSIS WITH KOTLIN

name % ¢+ gender ¢ email ¢ phone

2 Jane Smith 34 Female jane.smit xample.com +1-555-5678 d Elm St, Los Angeles, CA
Ro t Johnson 40 Male robert.johnson@ mple.com +1-555-8765 Oak St, Chicago, IL
Michael Brown 37 Male michael.brown@example.com +1-555-2468 1 , Phoenix,

Jessica Wilson 31 Female onge: = +1-555-1357 303 a , Philadelph

Figure 14-12. The adult data filter

Step 8: Add a new schema named birthyear to the JSON file.
Figure 14-13 shows that.

10 rows
gender s email ¢ phone
28 Male john.doe@example.com +1-555-1234 123 Mai , New York, NY
34 Female jane.s ample.com +1-555-5678 4 Lm . Los Angeles, CA
40 Male robert.johnson@example.com 5 89 Oak St, Chicago, IL

29 Female emily.davis@example.com =558 Pine St, Houston,

Figure 14-13. Add birthyear

Step 9: Remove the schema age. Figure 14-14 shows that.

10 rows v

id ¢ name ¢ gender ¢ email ¢+ phone ¢ address
John Doe Male john.doe@example.com +1-555- 123 Main St, New York, NY
Jane Smith Female jane.smith@example.com -555- 456 , Los Angeles, CA

3 Robert hnson Male robert.johnson@example.com e 8765 7 K , Chicago, IL

4 Emily Davis Female emily.davis@example.com - 101 Pine S Houston, TX

5 Michael Brown Male michael.br xamnle.com = = Birch St. Phoenix. AZ

Figure 14-14. Remove age

Step 10: Save the removed age data to our people. json file using
the writeJson() function. Figure 14-15 shows that.

318

CHAPTER 14 DATA ANALYSIS WITH KOTLIN

Figure 14-15. Save JSON file

Step 11: Convert this dataframe to an HTML table and open in a

browser. Figure 14-16 shows how we can do so.

neHTML (DisplayConfiguration(r

null)).openInBrowser()

Figure 14-16. Convert dataframe to HTML table

Step 12: Figure 14-17 shows the data converted from dataframe to

HTML table.

id name gender email phone address
1 John Doe Male john.doe@example.com +1-555-1234 123 Main St, New York, NY
2 Jane Smith Female jane.smith@example.com +1-555-5678 456 Elm St, Los Angeles, CA
3 Robert Johnson Male robert.johnson@example.com +1-555-8765 789 Oak St, Chicago, IL

4 Emily Davis Female emily.davis@example.com +1-555-4321 101 Pine St, Houston, TX

5 Michael Brown Male michael.brown@example.com +1-5565-2468 202 Birch St, Phoenix, AZ

6 Jessica Wilson Female jessica.wilson@example.com +1-55656-1357 303 Cedar St, Philadelphia, PA
7 David Martinez Male david.martinez@example.com +1-555-9753 404 Maple St, San Antonio, TX
8 Sarah Taylor Female sarah.taylor@example.com +1-555-7531 505 Walnut St, San Diego, CA
9 Daniel Anderson Male daniel.anderson@example.com +1-555-8520 606 Spruce St, Dallas, TX

10 Olivia Hernandez Female olivia.hernandez@example.com +1-555-3698 707 Aspen St, San Jose, CA

DataFrame [10 x 6]

Figure 14-17. Converted HTML table data

319

CHAPTER 14 DATA ANALYSIS WITH KOTLIN

14.4 Data Visualization in Kotlin Notebook
with Kandy

Kotlin offers powerful feature data visualization, using the Kandy library. We can access
complex datasets and visualize data in the form of different techniques. Let’s take one
example of plotting different charts.

Create Line Chart

Step 1: Create New Project » New Kotlin Notebook.
Step 2: Add required libraries Dataframe and Kandy using %use.
Step 3: Create a new dataframe that stores month, temperature,

and city name. Figure 14-18 shows that.

onths = listOf(

val tempCamden =
list0of(

listof(

1ist0F(-

nths,
pIndia + tempFlorid

en" } + List(12) { "I Ty List(a2) {0t

Figure 14-18. New dataframe for storing temperature

320

CHAPTER 14 DATA ANALYSIS WITH KOTLIN

Step 4: You can see the structure of the data using the head
method. Figure 14-19 shows that.

4 rows v

Month ¢+ Temperature $ City
NELIETRY .2 Camden

February .3 Camden

March .3 Camden

April .1 Camden

Figure 14-19. Structure of data

Step 5: Plot the graph using the following code. Figure 14-20 shows
that, where line is the type of chart. The x and y show the axis of
the chart and color shows the city-wise color differentiation.

Figure 14-20. Code for plotting line chart

321

CHAPTER 14 DATA ANALYSIS WITH KOTLIN

Step 6: Figure 14-21 shows the output of the line chart.

City
Camden
— India

— Florida

o
2
=
®
o
[
o
£
3]
-

yolep
1snBny
Jaquaydag

JaquIsAoN

Aieniga

Month

Figure 14-21. Line chart

Create Points Chart

Begin as in the preceding example, but you need to change in Step 5 (Figure 14-20), as

shown in Figure 14-22.

color(City) {

Color.YE

Figure 14-22. Cde for points chart

322

CHAPTER 14 DATA ANALYSIS WITH KOTLIN
Figure 14-23 shows the output of the points chart.

Temperature per month

City

@® Camden
) @® |India

@ Florida
o

[0
—
=
=
©
—
[0
%
=
3]
}_

Aenuer
1snbny
Jaqwaydes

Figure 14-23. Points chart

Create Bar Chart

In this example you need to change in Step 5 (Figure 14-20), as shown in Figure 14-24.

323

CHAPTER 14 DATA ANALYSIS WITH KOTLIN

x(Month
y(Temperature)

fillColor(city) {

Figure 14-24. Code for bar chart
Figure 14-25 shows the output of the bar chart.

Temperature per month

City
Camden

III India
. Florida

)
L
=

©

—

)

o

=

[)

'_

0

Aenuep
Areniga4
yose
1snbny
JaquianoN
laquisosg

Figure 14-25. A bar chart

324

CHAPTER 14 DATA ANALYSIS WITH KOTLIN

14.5 Libraries for Data Analysis in Kotlin

Kotlin provides multiple data analysis libraries for data collection, manipulation, and

visualization. Table 14-1 shows the name of each library and its purpose.

Table 14-1. Data Analysis Libraries

Library Name

Purpose

Kotlin Dataframe
Kandy

KotlinDL

Multik

Kotlin for Apache Spark

Lets-Plot
KMath

Kravis

Data Collection, Data Cleaning, Data Processing
Data Exploration, Data Visualization

Model Building

Data Cleaning, Data Processing, Model Building

Data Collection, Data Cleaning, Data Processing, Data Exploration,
Data Visualization, Model Building

Data Exploration, Data Visualization

Data Cleaning, Data Processing, Data Exploration, Data Visualization,
Model Building

Data Exploration, Data Visualization

14.6 Real-Life Programming Practice

1. Imagine you work for a retail company, and you need to

analyze sales data from a CSV file. You will:

1. Load the CSV file into a Kotlin dataframe.

2. Filter sales data for a specific product category.

3. Summarize total revenue per category.

4. Visualize the results using a bar chart.

325

CHAPTER 14 DATA ANALYSIS WITH KOTLIN
Code:

// Import necessary libraries
@file:DependsOn("org.jetbrains.kotlinx:dataframe")
@file:DependsOn("org.jetbrains.kotlinx:kandy")

import org.jetbrains.kotlinx.dataframe.api.*
import org.jetbrains.kotlinx.kandy.dsl.plot

import org.jetbrains.kotlinx.kandy.dsl.layers.bar
import org.jetbrains.kotlinx.kandy.lets.categories
import java.io.File

// Load sales data from a CSV file
val salesDF = DataFrame.readCSV("sales data.csv")

// Display first few rows
salesDF.head(5).print()

// Filter sales for "Electronics" category
val electronicsSales = salesDF.filter { it["Category"] ==
"Electronics" }

// Summarize total revenue per category
val revenueByCategory = salesDF
.groupBy("Category")
.aggregate {
sum("Revenue") into "Total Revenue"

}

// Print summarized data
revenueByCategory.print()

// Visualize revenue per category using a bar chart
plot(revenueByCategory) {

x(categories("Category"))

y("Total Revenue")

bar ()

326

CHAPTER 14 DATA ANALYSIS WITH KOTLIN

14.7 Summary

In this chapter, we have learned Kotlin data analysis, which is Kotlin with modern
structure and syntax to process, manipulate, and visualize data. Kotlin is not a language
like Python, but it provides data analysis through some libraries and functions.

14.8 Test Your Knowledge

1. What is the primary purpose of Kotlin Notebooks?
a. writing and running Kotlin scripts interactively

b. creating Android applications

o

. developing web applications
d. managing databases
2. How can you install Kotlin Notebooks in Jupyter?
a. by installing JupyterLab and adding the Kotlin kernel
b. by using Android Studio
c. by installing Intelli] IDEA
d. by using Kotlin Playground

3. Which library is required to work with Kotlin dataframes in a
Kotlin notebook?

a. kotlinx.serialization
b. kotlin.reflect
c. org.jetbrains.kotlinx.dataframe
d. kotlinx.coroutines
4. How can you add dependencies in a Kotlin notebook?
a. using @file:DependsOn("<dependency>")

b. using import dependency.kotlin

327

CHAPTER 14 DATA ANALYSIS WITH KOTLIN

c. using dependency install <dependency>
d. using @KotlinDependencies("<dependency>")
5. What is the default format for saving a dataframe using Kotlin?
a. JSON
b. CSV
c. Excel
d. TXT

6. Which of the following is NOT a supported data source for
Kotlin dataframes?

a. CSV
b. JSON
c. XML
d. Markdown

7. Which Kotlin function is used to read a CSV file into a

dataframe?
a. DataFrame.loadCsv("file.csv")
b. readCsv("file.csv")
c. DataFrame.read("file.csv")
d. DataFrame.fromCsv("file.csv")
8. What is the primary purpose of Kandy in Kotlin Notebooks?
a. data encryption
b. visualizing data
c. managing dependencies

d. debugging Kotlin code

328

10.

11.

12.

CHAPTER 14 DATA ANALYSIS WITH KOTLIN

How do you create a bar chart in Kotlin Notebooks
using Kandy?

a. barChart(data)

b. plotBar(data)

c. plot(data).bar()

d. dataFrame.barPlot()

What is the recommended function to export a Kotlin
dataframe as a CSV file?

a. df.writeCsv("output.csv")
b. df.saveAsCsv("output.csv")
c. df.write("output.csv")

d. df.exportCsv("output.csv")

What command is used to install a Kotlin dataframe and Kandy
in Kotlin Notebook?

a. @file:DependsOn("org.jetbrains.kotlinx:dataframe")
b. @file:Install("org.jetbrains.kotlinx:dataframe")
c. import org.jetbrains.kotlinx.dataframe

d. dependency install dataframe

How do you filter rows in a Kotlin dataframe where a column
named “Age” is greater than 25?

a. df.filter { it["Age"] > 25}
b. df.select { Age > 25 }

o

. df.filter { Age > 25 }

o,

. df.where { it.Age > 25 }

329

CHAPTER 14 DATA ANALYSIS WITH KOTLIN

13.

14.

15.

What is the function used to display the first few rows of a
dataframe?

a. df.head(5)

b. df.first(s)

c. df.top(5)

d. df.show(5)

How do you add a new column to an existing Kotlin dataframe?
a. df.addColumn("NewColumn", value)

b. df.insert("NewColumn", value)

c. df.append("NewColumn", value)

d. df.add("NewColumn") { value }

Which format is commonly used for visualizing data using
Kandy in Kotlin Notebook?

a. pie chart
b. line chart
c. heatmap

d. radar chart

14.9 Answers

330

10.

11.

12.

13.

14.

15.

CHAPTER 14 DATA ANALYSIS WITH KOTLIN

331

CHAPTER 15

Kotlin Multiplatform

15.1 Introduction to Kotlin Multiplatform

Kotlin Multiplatform (KMP) is an innovative software development framework that
allows the developers to create shared code that can be workable across numerous
platforms, including iOS, Android, web, desktop, and embedded devices. It is a major
component of the Kotlin system that aims to offer a balance between cross-platform
code exchange and platform-specific customization. Unlike other cross-platform
frameworks such as Flutter or React local, which generate user interfaces for several
operating systems, KMP prioritizes the exchange of business logic, data models,

and network logic, while ensuring that the user experience remains local to a given
platform. It is developed and maintained by JetBrains, the same organization that
created. The Kotlin KMP allows the development of common code in Kotlin while
using platform-specific implementations as required. It has several advantages, such
as better integration into existing projects and allowing the progressive adoption of the
new standard without compromising the comprehensive rewrites of applications. An
overview of KMP is shown in Figure 15-1.

333
© Arnika Patel, Keshav Kumar, and Dr. Bishwajeet Kumar Pandey 2025

A. Patel et al., Kotlin Mastery, https://doi.org/10.1007/979-8-8688-1618-5_15

https://doi.org/10.1007/979-8-8688-1618-5_15#DOI

CHAPTER 15 KOTLIN MULTIPLATFORM

iOS
Web
Client
c Multiplatform
ommon Android

Multiplatform

| —
.

Server

| —

Desktop

N —

Figure 15-1. Overview of KMP

How It Works

KMP consists of multiple components, which allows the developers to share the code
seamlessly over platform-specific customization. One of the generalized methods that is
commonly used is shared module; i.e., Use Code Share Mechanism.

Sharing code among a certain group of like targets might occasionally be more
advantageous. Kotlin Multiplatform offers a method to streamline the construction
process with a preset hierarchy template. It comprises a predetermined list of
intermediate source sets generated according to the goals specified in your project.

To utilize platform-specific APIs from common code, one might employ another

Kotlin feature: expected and actual declarations. This approach allows you to specify

an expectation for a platform-specific API within shared code while offering distinct
implementations for each target platform. This method may be utilized with several
Kotlin concepts, including functions, classes, and interfaces. For instance, one can
delineate a function in shared code while executing its implementation using a platform-
specific library within the appropriate source set. KMP allows you to write the code for a
specific environment, which is commonly known as platform-specific code; for example,
Swift for iOS or Kotlin/Java for Android. Other supported platforms for KMP include the
following:

¢ Native: For macOS, iOS, Windows, and Linux.

e WASM (Web Assembly): It allows you to write the code in
a web browser.

334

CHAPTER 15 KOTLIN MULTIPLATFORM

JavaScript: Used for web applications.

Java Virtual Machine (JVM): For backend services.

Benefits of KMP

KMP allows developers to address the major challenges that arise in modern software

development. The major benefits of KMP are the following:

Native Platforms: Unlike most of the other cross-platform solutions
that depend on interpretation layer or virtual machine, KMP allows
you to compile the code as per the requirements. This guarantees
enhanced performance and latency, making it suitable for responsive
applications.

Code Reusability: With the help of KMP, developers can use the code
across multiple platforms and for multiple applications.

Flexibility: KMP allows developers to incrementally present shared
logic. They can begin with a limited area of the codebase, e.g.,
network operations or data storage, and then extend it to other
regions.

Interoperability: KMP allows developers to use Swift, Java, and
JavaScript along with Kotlin, allowing steady adoption without the
need for full-scale migration.

Use Cases

Backend & Web Development: KMP shares logic, data validation,
models, and APIs between backend services and web applications
that are running on JavaScript.

Mobile Development: It shares the logic between the mobile OSes,
such as i0S and Android. Thus, the Ul experience gets enhanced.

335

CHAPTER 15 KOTLIN MULTIPLATFORM

e Embedded and IoT: Native/Kotlin permits KMP to be used in
Internet of Things (IoT) and embedded applications, allowing cross-
platform firmware and software development.

e Desktop Applications: With the support for Native/Kotlin and JVM,
KMP can be used to build cross-platform desktop applications for
macOS, Windows, and Linux.

15.2 Setting Up a Multiplatform Project for i0S

While targeting a multiplatform project for iOS, a developer has to set up the integration
of KMP with the iOS app using a shared module scheme. To do so, an iOS framework is
generate, and then it is added with a local or remote dependency of the iOS project. Here
there are two things a developer has to target: local integration and remote integration.
The structure of a KMP integration is shown in Figure 15-2.

KMP Shared
module

i0S

Android app framework

i0S app

Figure 15-2. KMP integration structure for project

336

CHAPTER 15 KOTLIN MULTIPLATFORM

Local integration: In a local configuration, there exist two primary integration
alternatives. Direct integration may be achieved using a specialized script, integrating
the Kotlin build into the iOS build. Utilize the CocoaPods integration method if your
Kotlin Multiplatform project includes Pod dependencies.

Direct integration: Integrate the iOS framework directly into the Kotlin
Multiplatform project by incorporating a specific script into your Xcode project. The
script is incorporated into the build process of your project’s configuration settings. This
integration approach is applicable if you do not use CocoaPods requirements in your
Kotlin Multiplatform project. The KMP web wizard can be accessed at : https://kmp.
jetbrains.com/? gl=1*17n39m1* gcl au*NzM3NjcIMDAzLJE3NDAXMjcOMjA.* ga*MTY
ANDM20TUWNC4XNzIONzYIMTEx* ga 93976D]Z68*MTcOMzEOMDk40C44LjEUMTcOMZEOMTkz
Mi42MC4wLjA.

When creating a project in Android Studio, select the “Regular” framework option
to enable automated setup generation. Utilizing the Kotlin Multiplatform web wizard
results in direct integration’s being implemented by default.

Integration of CocoaPods with a local podspec: The iOS framework from the Kotlin
Multiplatform project may be integrated using CocoaPods, a widely used dependency
management option for Swift and Objective-C applications.

This integration approach is applicable in the following cases:

» A mono repository configuration is established with an iOS project
utilizing CocoaPods.

e Youinclude CocoaPods dependencies in your Kotlin Multiplatform
project.

To establish a workflow with a local CocoaPods dependency, you may either modify
the scripts manually or utilize a wizard in Android Studio to construct the project.

Remote integration: Your project may utilize the Swift Package management (SPM)
or the CocoaPods dependency management for remote integration to link the iOS
framework from a Kotlin Multiplatform project.

Swift Package Manager using XCFrameworks: One may establish a Swift Package
Manager (SPM) dependency utilizing XCFrameworks to integrate the iOS framework
and the Kotlin Multiplatform project.

Integration of CocoaPods with XCFrameworks: The Kotlin CocoaPods Gradle
plugin enables the creation of XCFrameworks, allowing for the independent distribution

of common components from mobile applications via CocoaPods.

337

https://kmp.jetbrains.com/?_gl=1*17n39m1*_gcl_au*NzM3Njc1MDAzLjE3NDAxMjc0MjA.*_ga*MTY4NDM2OTUwNC4xNzI0NzY1MTEx*_ga_9J976DJZ68*MTc0MzE0MDk4OC44LjEuMTc0MzE0MTkzMi42MC4wLjA
https://kmp.jetbrains.com/?_gl=1*17n39m1*_gcl_au*NzM3Njc1MDAzLjE3NDAxMjc0MjA.*_ga*MTY4NDM2OTUwNC4xNzI0NzY1MTEx*_ga_9J976DJZ68*MTc0MzE0MDk4OC44LjEuMTc0MzE0MTkzMi42MC4wLjA
https://kmp.jetbrains.com/?_gl=1*17n39m1*_gcl_au*NzM3Njc1MDAzLjE3NDAxMjc0MjA.*_ga*MTY4NDM2OTUwNC4xNzI0NzY1MTEx*_ga_9J976DJZ68*MTc0MzE0MDk4OC44LjEuMTc0MzE0MTkzMi42MC4wLjA
https://kmp.jetbrains.com/?_gl=1*17n39m1*_gcl_au*NzM3Njc1MDAzLjE3NDAxMjc0MjA.*_ga*MTY4NDM2OTUwNC4xNzI0NzY1MTEx*_ga_9J976DJZ68*MTc0MzE0MDk4OC44LjEuMTc0MzE0MTkzMi42MC4wLjA

CHAPTER 15 KOTLIN MULTIPLATFORM

Set up compilations: Each target may possess numerous compilations for various
objectives, often for production or testing, while also allowing for the definition of
bespoke compilations.

Kotlin Multiplatform enables the configuration of all project compilations, the
establishment of specialized compilations within a target, and the creation of distinct
compilations. During compilation configuration, one can adjust compiler parameters,
oversee dependencies, or establish compatibility with native languages.

Steps for Creating i0S Project

o Software required:

¢ macOS

¢ Xcode

e CocoaPods

e Android Studio or Intellij IDEA
o Latest Kotlin plugin

e JDK 11+ and Gradle7+

Creating Project using Android Studio or Intellij IDEA

To create a project,we have to follow a few steps, which are as follows:
a. Open the Android Studio or Intellij IDEA.
b. Go to New Project under File section.
c. Select KMP of iOS or Android.
d. Give a name to the project (e.g., ABC) and select the directory.

e. Lastis FINISH.

Defining Project Structure

The created project structure will appear as follows:

338

CHAPTER 15 KOTLIN MULTIPLATFORM

ABC
— androidApp/ # Android-specific code
F— iosApp/ # 10S-specific code (Xcode project)
— shared/ # Shared Kotlin code (business logic)

| F— src/

| — commonMain/ # Shared business logic

| F——— commonTest/ # Shared tests

| |— iosMain/ # 10S-specific implementations
| |— iosTest/ # 10S-specific tests

— build.gradle.kts # Root Gradle configuration

— settings.gradle.kts

— gradle.properties

Shared Module Configuration and Implementation

To configure the shared module, we have to open shared/build.gradle.kts and then
add the KMP plugin, and then we have to target iOS. The code is given as follows:

plugins {
kotlin("multiplatform")
kotlin("native.cocoapods") // CocoaPods support for i0S

}

kotlin {
iosX64() // For i0S Simulator
iosArm64() // For physical i0S devices
iosSimulatorArmé64() // For Apple Silicon Macs

sourceSets {
valcommonMain by getting {
dependencies {
implementation(kotlin("std1lib"))

339

CHAPTER 15 KOTLIN MULTIPLATFORM

valiosMain by creating {
dependsOn(commonMain)

}

}

cocoapods {
summary = "Shared Kotlin Code for iOS"
homepage = "https://github.com/example/ABC"
ios.deploymentTarget = "14.0"
framework {
baseName = "shared"

}

This configuration is suitable for both iosArm 64 and iosX64, which support
CocoaPods. To implement the shared code, we have to creagte a new file as Platform.
kt: and to write the following code:

expect class Platform {
fun getPlatformName(): String= “i0S”

It will permit the code to identify the platform and return “i0OS” for Apple devices.

15.3 Multiplatform Libraries

Each software requires a collection of libraries to function well. A KMP project may rely
on multiplatform libraries compatible with all target platforms, platform-

specific libraries, and additional multiplatform projects. To incorporate a library
dependency, modify your build.gradle(.kts) file located in the directory of your
project that contains the shared code. Establish a dependent of the specified type (e.g.,
implementation) within the dependencies {} block, as follows:

kotlin {
sourceSets {
commonMain.dependencies {

340

CHAPTER 15 KOTLIN MULTIPLATFORM

implementation("com.example:my-library:1.0") // library shared
for all source sets

Dependency on a Kotlin Library

A dependency on a standard library (stdlib) in each source set is included automatically.

The version of the standard library corresponds to the version of the KMP plugin. For

platform-specific source sets, the relevant platform-specific variation of the library is

utilized, while a common standard library is included for the remainder. The Kotlin

Gradle plugin will choose the suitable JVM standard library based on the compiler

options. jymTarget compiler option in your Gradle build script.

Test libraries

For test purposes an API named Kotlin.test is available. While
creating a KMP project we can add the test dependencies for each
and every source set by using a common single dependency, such as
commonTest:

kotlin {
sourceSets {
commonTest.dependencies {
implementation(kotlin("test")) // Brings all the
platform dependencies automatically

}
}

Kotlinx libraries

In case of shared code, the kotlinx-coroutines-core: libraryis
used for the KMP project:

kotlin {
sourceSets {
commonMain.dependencies {

341

CHAPTER 15 KOTLIN MULTIPLATFORM

implementation("org.jetbrains.kotlinx:kotlinx-
coroutines-core:1.10.1")

Dependency on Another Multiplatform Project

One multiplatform project can be linked to another as a dependency. To do this, just
incorporate a project dependency in the requisite source set. To utilize a reliance across
all source sets, incorporate it into the common set. In this instance, alternative source

sets will receive their versions automatically.

kotlin {
sourceSets {
commonMain {
dependencies {
implementation project(':some-other-multiplatform-module")

}

androidMain {
dependencies {
// platform part of :some-other-multiplatform-module will
be added automatically

KMP is an important advancement in cross-platform programming, allowing the
benefits of shared logic alongside a native experience. KMP provides a unified approach
to writing stable and efficient code for mobile applications, web apps, and backend

services.

342

CHAPTER 15 KOTLIN MULTIPLATFORM

15.4 Test Your Knowledge

1.

What is Kotlin Multiplatform primarily used for?
a. writing Android-only applications
b. writing cross-platform applications with shared logic
c. replacing Java in backend development
d. creating UI frameworks for web development

Which Gradle plugin is required for a Kotlin Multiplatform

project?

a. kotlin-android

b. kotlin-jvm

c. kotlin-multiplatform
d. kotlin-native

How do you define a shared Kotlin function that requires
platform-specific implementations?

a. using interface

b. using sealed class

c. using expect and actual keywords
d. using abstract class

Which tool is commonly used for dependency management in
Kotlin Multiplatform projects?

a. CocoaPods
b. Maven
c. Gradle

d. npm

343

CHAPTER 15 KOTLIN MULTIPLATFORM

5. In aKotlin Multiplatform project, which module contains the
shared business logic?

a. androidApp/
b. iosApp/

c. shared/

d. commonMain/

6. Which Kotlin library is commonly used for networking in
multiplatform projects?

a. Retrofit
b. Ktor

c. Volley
d. OkHttp

7. What is the purpose of the CocoaPods block in build.
gradle.kts?

a. to enable iOS support in a Kotlin Multiplatform project
b. to configure Android-specific dependencies

c. to link external iOS libraries via CocoaPods

d. bothAand C

8. Which Kotlin library is used for JSON serialization in Kotlin
Multiplatform?

a. Gson

b. Moshi

c. kotlinx.serialization
d. Jackson

9. How do you run an iOS application in a Kotlin Multiplatform
project?

a. using the Android Emulator

b. running ./ gradlewrunIos in the terminal
344

CHAPTER 15 KOTLIN MULTIPLATFORM

c. opening the .xcworkspace file in Xcode and running the project
d. running flutter run

10. Which statement is TRUE about Kotlin Multiplatform?
a. Itforces developers to use a single UI framework for all platforms.
b. It allows sharing business logic while keeping platform-specific UI.
c. It does not support native iOS development.

d. Itrequires writing duplicate code for each platform.

15.5 Answers

1. b
2. ¢
3. ¢
4. c
5. ¢
6. b
7. d
8. ¢
9. ¢
10. b

345

Index

A

Abstract class, 102
multiple derived classes, 104
override non-abstract method/
property, 103
syntax, 102
Address class, 196
Advanced Kotlin concepts, 286, 302
Android, 2
APIs, see Application programming
interfaces (APIs)
Application programming interfaces
(APIs), 281
Android development, 270, 271
categories, 269, 281
cloud/backend, 275
coroutines, 270
database, 269
database/storage, 272
Google Maps, 270, 281
graphical, 270
I0T, 273, 274
ML, 270, 273, 274
MOTT, 270
MQTT, 281
multimedia, 274, 275
networking, 269, 272
Uls/graphics, 273
Apply function, 196
Arithmetic operators, 27, 28
ArrayIndexOutOfBound exception,
134, 135

arrayOf() function, 34, 56
Arrays, 34

arrayOf() function, 34

element change, 35, 36

length, 35

loops, 36, 37

in operator, 36
asReversed() function, 215
Assignment operators, 30, 31
average(), 156

B

BDD, see Behavior-driven
development (BDD)

Behavior-driven development (BDD), 242

Blocking, 177, 188

Break statement, 43, 44
Build function, 197
build.gradle(.kts) file, 340

C

Calculator class, 236, 237
CD, see Continuous delivery (CD)
CJ, see Continuous integration (CI)
Classes, 74
abstract class (see Abstract class)
class definition, 74
constructors (see Constructors)
data classes, 105-107
enum, 108-110
inner classes, 79, 80

© Arnika Patel, Keshav Kumar, and Dr. Bishwajeet Kumar Pandey 2025
A. Patel et al., Kotlin Mastery, https://doi.org/10.1007/979-8-8688-1618-5

347

https://doi.org/10.1007/979-8-8688-1618-5#DOI

INDEX

Classes (cont.)
interfaces (see Interfaces)
nested classes, 78
property (see Property)
sealed classes, 107
syntax, class declaration, 74, 75
CocoaPods, 337
Collections, 147,213
arrays, 147
filtering, 216-219
immutable, 147
lists, 147, 148 (see also Lists)
maps, 147
mutable, 148
sets, 147
advantages and
disadvantages, 158
basic functions, 156
first and last elements, 155
immutable set, 153
indexing, 155
mutable set, 154
sorting, 213
custom sorting, 214
natural sorting, 214
random sorting, 216
reverse sorting, 215
transforming, 219
types, 147
Comments, 25
multi-line comments, 25, 26
single-line comments, 25
Comparison operators, 31
Constructors
primary constructors, 81
init blocks, 82, 83
use default values, 83
secondary constructors, 84

348

call one constructor from another

constructor, 85
inside same class, 84
types, 80
contains(), 156
containsAll(), 156
containsKey(), 162
containsValue(), 162
Continue statement, 44
Continuous delivery (CD), 240
Continuous integration (CI), 240
Contracovariance, 167, 168
Control flow
else statement, 38
else if statement, 39
if statement, 37
when statement, 40, 41
copy(), 107
Coroutines
advantages, 177
asynchronous tasks, 261
cancellation, 184, 185
CancellationException, 182, 183
concurrency, 180
CoroutineExceptionHandler,
183, 184
create apps, 261
creation, 178
exception aggregation, 185, 186
exceptions, 184, 185
explicit job, 181
extract function refactoring, 179
food delivery application, 186, 187
memory, 182
scope builders, 179, 180
structured concurrency, 178
vs. threads, 182
vs. traditional methods, 262

count(), 156
Covariance, 167

CSV file, 325

Custom exception, 137

D

Dagger Hilt, 270
Data analysis
CSVfile, 325
libraries, 325
use Kotlin Notebook (see Kotlin
Notebook)
Data classes, 105
copy(), 107
equals(), 106
hashCode(), 106
Person(val name: String, val
age: Int), 105
toString(), 105
delete() function, 227
deleteRecursively() function, 227
Dependency injection (DI)
frameworks, 270
Domain-specific language (DSL), 193
Address class, 196
advantages, 193
apply function, 196
builder pattern, 197, 198
collections, 198-200
creation, 194, 204-207
@DslMarker annotation, 201, 202
extension functions, 196
external, 193
HTML builder, 202, 203
internal, 193
lambda, 195
Student class, 194, 196

INDEX

student function, 195

uses, 208
do..while loop, 42
DSL, see Domain-specific language (DSL)
@DslMarker annotation, 201, 202

E

elementAt(), 155

else if statement, 39

else statement, 38

Elvis operator (?:), 288

Employee management system,

227-229

Enum class, 108, 109
methods, 110
properties, 109

equals(), 106

Exception handler, 183, 184

Exception handling, 127, 182, 183
checked exception, 127
database connection fails, 140
finally block, 130, 131
find square root of number, 141
handle invalid user data, 139
program for payment-processing

system, 138

request network connection, 141
throw block, 132
try-catch block, 128-130
unchecked exception, 127

Extension functions, 196, 224

F

File handling, 226, 227
filter() function, 216
Filtering, 216-219

349

INDEX

filterIsInstance() function, 217
filterNot() function, 217
filterNotNull() function, 217
Finally block, 130, 131
Food delivery application, 186, 187
forEach {println(it) }, 298
for loop, 43
Function, 53
advantages, 57
body of function, 54
and build real-life applications, 65
built-in functions, 56
call, 55
with default arguments, 58-60
disadvantages, 57
with named arguments, 60-61
parameters, 54
recursive functions, 61
normal function call, 61
recursive function call, 63, 64
tail recursive function, 64
return value, 54
standard library functions, 56
user-defined function, 53
Functional programming, 2

G

Generics, 164
contracovariance, 167, 168
covariance, 167
invariance, 165
in Kotlin programs, 164
online shopping platform,

170-172
star(*) projection, 169
syntax, 164
type projections, 168

350

variance, 165
declaration-site, 165
in keyword, 166, 167
out keyword, 166
use-site, 165
getOrDefault() function, 161
getValue() function, 161
Google Maps API
add dependencies, 276
API key to manifest, 276
app run, 278
enabling, 275
features, 278
load map, 277
map fragment, 276

H

hashCode(), 106
Higher-order functions
Kotlin program, 294
lambda, 294, 295
lambda expressions with list functions,
297, 298
returns a function, 296, 297
HTML builder, 202, 203

IDEs, see Integrated development
environments (IDEs)

if statement, 37

Immutable collections, 147

Immutable list, 148

Immutable map, 158

immutableNamelList, 148

Immutable set, 153

indexOf() function, 155

Inheritance, 86
call secondary constructor from
derived class secondary
constructor, 90
definition, 86
in interfaces, 94
Kotlin override property, 87
multiple interface implementation, 95
open keyword, 86
parent class, 86
with primary constructors, 88
with secondary constructor, 89
subclass, 86
Inner classes, 79, 80
Integrated development environments
(IDEs), 13
Integration testing, 245
in-memory databases/HTTP queries,
246, 247
Ktor, 248, 250
and unit tests, 249
Intelli] IDEA, 13-15
Interfaces, 91
calculator, 91
default values and methods, 92
properties, 93
syntax, 91
Internal modifier, 97
Internet of Things (IoT), 270, 274
10T, see Internet of Things (I0T)
isEmpty(), 156

J

Java, 1-4

Java virtual machine (JVM), 8, 335

Jump and return statements
break statement, 43, 44

INDEX

continue statement, 44
return statement, 45
JUnit, 241, 249
JVM, see Java virtual machine (JVM)

K

Kandy, 325
KMath, 325
KMP, see Kotlin multiplatform (KMP)
Koin, 270
Kotest, 241
Kotlin, 1
Android, 264
applications, 7
benefits, 6
companion objects, 5
compilation time, 5
concise, 4
coroutines, 6
data keyword, 2
data classes, 4
data stream, 258
development environment
command line, 8, 9
create application, 15-18
Intelli] IDEA, 13-15
drawbacks, 7
DSL (see Domain-specific
language (DSL))
environment variable, 11
advanced system settings, 10
run files, 12, 13
system variables, 12
This PC option, 9, 10
extension functions, 5
features, 194, 250
flows, 258

351

INDEX

Kotlin (cont.)
higher order functions/lambdas, 5
interoperability, 4
KMP, 5
lazy loading, 6
null safety, 4
output, 24
patterns, 263
products, cart, 49
smart casts, 5
structure, 23, 24
student’s eligibility, attendance, 48
student’s grade, percentage, 47, 48
syntax, 23, 24
syntax and capabilities, 249
testing frameworks, 250
JUnit, 241
Kotest, 241, 242
Spek, 242
testing libraries, 249
ticket price, amusement
park, 46, 47
Kotlin Dataframe, 325
KotlinDL, 325
Kotlin for Apache Spark, 325
Kotlin function, see Function
Kotlin Gradle plugin, 341
Kotlin multiplatform (KMP), 5
backend & web development, 335
benefits, 335
desktop applications, 336
embedded and IoT, 336
JavaScript, 335
JVM, 335
mobile development, 335
multiplatform libraries, 340
dependency on multiplatform
project, 342

352

dependency on standard library
(stdlib), 341
Kotlinx libraries, 341
test libraries, 341
multiplatform project for iOS
CocoaPods integration, 337
CocoaPods with
XCFrameworks, 337
create project using Android
Studio/Intellij IDEA, 338
define project structure, 338
direct integration, 337
KMP integration structure, 336
local integration, 337
remote integration, 337
set up compilations, 338
shared module configuration and
implementation, 339, 340
software, 338
SPM dependency using
XCFrameworks, 337
native, 334
overview, 333, 334
platform-specific code, 334
shared module, 334
sharing code, 334
WASM (Web Assembly), 334
Kotlin Notebook, 311
add birthyear, 318
add libraries, 315
adult data filter, 318
with all operations, 314
converted HTML table data, 319
create new project, 312
create notebook, 312, 313
data visualization, using Kandy
library, 320
create bar chart, 323, 324

create line chart, 320-322
create points chart, 322, 323
function schema(), 317
to HTML table, 319
installation, steps, 311
JSON file schema, 317
new operations run, 314
people.json file, 316
read JSON file, 317
remove age, 318
run code, 313
save JSON file, 319
Kotlin system, 333
KotlinTest (Kotest), 241, 341
Kotlin vs. Java, 1, 3, 4
Android, 2
checked exception support, 2
extension functions, 1
languages, 2
null value, 1
smart cast feature, 2
syntax, 1
variables/fields, 2
wildcards/ternary operators/and
public fields, 2
Kotlinx libraries, 341
Kravis, 325
kt (DOT K-T), 285
Ktor, 248, 250, 269, 272
kts (DOT K-T-S), 285

L

Lambda expressions, 256, 294, 297,
298, 302

lastIndexOf() function, 155

Lazy initialization, 299, 300

lazyValue, 299

INDEX

Let scope function, 292, 293
Lets-Plot, 325
Library classes, 225
listOf() function, 153
Lists
access first and last elements, 150
advantages and disadvantages, 153
immutable list, 148
mutable list, 149, 150
sorting list, 152
traversing methods, 150, 152
Live stock price updater, 264, 266
Logical operations, 29
Loops, 41
do..while loop, 42
for loop, 43
while loop, 41, 42

Machine learning (ML), 270, 273, 274
main() function, 23, 55
main() method, 61, 296
map() function, 219
mapOf() function, 158, 161, 163
Maps, 158
access values from multiple
methods, 161
advantages and disadvantages, 163
empty, 161
immutable map, 158
keys, values and entries, 160
key/value, 162
mutable map, 159
size, 160
two different values to same
key, 163
max(), 156

353

INDEX

Message Queuing Telemetry
Transport (MOTT)
add dependencies, 279
app run, 281
create project, 278
explanation, 281
features, 281
implementation, 279, 280
Message Queuing Telemetry Transport
(MQTT), 274
min(), 156
Mocking, 243, 249
MockK, 243, 249
annotations, 243
@Before, 245
@MockK, 243
@RelaxedMockK, 244
@SpyK, 244
@Test, 244
@UnmockK, 244
keywords and functions, 245
Multik, 325
Mutable collections, 148
Mutable list, 149, 150
Mutable map, 159
Mutable set, 154
mutableSetOf() function, 154

N

Nested classes, 78

Nested try block, 133
multiple catch blocks, 134, 135
catch blocks, 136-137

Null pointer exceptions (NPEs), 285, 290

Null safety, 285
non-null assertion (), 290, 291
safe cast (as?) operator, 291, 292

354

Elvis operator (?:), 288

let scope function, 292, 293

null values, 286

safe call operator (?.), 287
Null safety functions, 225
numArray, 134

O

Object-oriented programming
(O0P), 1,73
abstraction, 74
banking management system,
111-118
cinema ticket calculation
system, 122-123
classes and objects, 74
encapsulation, 74
geometric shape management
system, 118-119
inheritance, 74
key concepts, 73 (see also OOP
concepts)
polymorphism, 74
student management system,
120-121
Objects, 75
access member function of the
class, 76
attribute, 76
behavior, 76
create object, 76
identity, 75
OKkHittp, 269, 272
OQP concepts, 73, 74
classes (see Classes)
inheritance (see Inheritance)
objects (see Objects)

Operators, 27
arithmetic, 27, 28
assignment, 30, 31
comparison, 31, 32
logical, 29
vs. operands, 27

types, 27

P, Q

partition() function, 218
print(), 56
println() function, 24, 56
Private modifier, 97
Property, 99
access getter and setter, 101
class properties, 99
custom setter and getter, 101
setters and getters, 100
using val, 99
Property delegation, 300-302
Protected modifier, 98
Public modifier, 96

R

Reactive code, best practices,
263, 264
Reactive extension, 255
Reactive programming, 255-257, 264
Reactive programming patterns, 262
ReactiveX (Rx)
cold/hot streams, 257, 258
concepts, 256
filter/distinct, 259
Observable.interval(), 260, 261
observables, 257
RxKotlin, uses, 258

INDEX

streams, 257

uses, 255
readText() function, 226
Recursive functions, 61

normal function call, 61

recursive function call, 63, 64

tail function call, 64
rem(), 56
resolve() function, 226
Retrofit, 269, 272
Return statement, 45
reverseString function, 238
RxJava, 255, 256, 264
RxKotlin, 255

API, 256

features, 256

uses, 258

vs. RxJava, 255

S

Safe cast (as?) operator, 291, 292
Satatypes, 26
Sealed classes, 107
setOf() function, 155
Setter function, 198
Smart cast, 46
Software systems, 248
sorted(), 152
sortedDescending(), 152
Sorting, 213

custom sorting, 214

natural sorting, 214

random sorting, 216

reverse sorting, 215
Spek, 242
Standard library functions, 213, 229
star(*) projection, 169

355

INDEX

Streams, 257
String functions, 33, 34, 220-223
Strings, 32
double quotes, 32
functions, 33, 34
length, 33
StringUtils class, 238
Student class, 194-196
sum(), 56, 156
Swift Package Manager (SPM), 337

T

Task Manager App, 303-305

Testing, 235, 250
integration testing (see Integration

testing)

production-grade apps, 250
unit testing (see Unit testing)

this() function, 85

throw block, 132

toInt(), 56

toLong(), 56

toLowerCase(), 56

toString(), 56, 105, 167

toUpperCase(), 56

Try-catch block, 128-130

Type checks, 45

U

Ul, see User interface (UI)

Unit testing, 235
advantages, 235
discrete pieces, 235

functionality-typically methods, 249

356

identify defects, 249
methodology, 249
mocking, 243
MockK, 243, 249
annotations, 243, 244
keywords and functions, 245
strategies, 239, 240
strings, different function, 236, 238, 239
testing environment, 236
two numbers, basic function, 236, 237
User-defined exception, 137
User-defined function, 53, 54
User experience (UX), 271
User interface (UI), 2
UX, see User experience (UX)

\'

Variables, 26

Visibility modifiers, 96
internal, 97
private, 97
protected, 98
public, 96

Volley, 272

w

WebSockets, 269

when statement, 40, 41
while loop, 41, 42
writeText() function, 226

XY, Z

XCFrameworks, 337

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Chapter 1: Introduction to Kotlin
	1.1 Kotlin vs. Java
	1.2 Features of Kotlin
	1.3 Benefits and Drawbacks of Kotlin
	Benefits
	Drawbacks

	1.4 Applications of Kotlin
	1.5 Setting Up Your Development Environment
	For Command Line
	Running Kotlin Commands in the Command Line
	Development Environment for IntelliJ IDEA
	Creating Your First Application in Kotlin

	1.6 Summary
	1.7 Test Your Knowledge
	1.8 Answers

	Chapter 2: Fundamentals of Kotlin Programming
	2.1 Basic Structure and Syntax
	Kotlin Output

	2.2 Using Comments in Kotlin
	Single-Line Comments
	Multi-Line Comments

	2.3 Variables
	2.4 Datatypes
	2.5 Operators
	Arithmetic Operators
	Logical Operators
	Assignment Operators
	Comparison Operators

	2.6 Kotlin Strings
	String Length
	String Functions

	2.7 Kotlin Arrays
	Array Length
	Array Element Change
	Checking If an Item Exists
	Accessing Array Items Using Loop

	2.8 Control Flow
	if
	else
	else if
	when

	2.9 Loops
	while
	do..while
	for

	2.10 Return and Jumps
	break
	continue
	return

	2.11 Type Checks
	2.12 Smart Cast
	2.13 Real-Life Programming Practices
	2.14 Summary
	2.15 Test Your Knowledge
	2.16 Answers

	Chapter 3: Functions in Kotlin
	3.1 A Closer Look
	User-Defined Functions
	Parameters in Functions
	Body of Functions
	Return Value of the Functions
	Calling Functions
	Standard Library Functions
	Advantages and Disadvantages of Using Functions in Kotlin

	3.2 Functions with Default and Named Arguments
	Default Arguments
	Named Arguments

	3.3 Recursive Functions
	Normal Function Call
	Recursive Function Call

	3.4 Tail Recursive Functions
	3.5 Programming Practices
	3.6 Summary
	3.7 Test Your Knowledge
	3.8 Answers

	Chapter 4: Object-Oriented Programming with Kotlin
	4.1 Classes and Objects
	Classes
	Objects
	Creating an Object
	Access the Member Function of the Class

	Nested Classes
	Inner Classes

	4.2 Constructors
	Primary Constructor
	Init Block
	Using Default Value in Primary Constructor

	Using Secondary Constructors
	Using Multiple Secondary Constructors Inside the Same Class
	Calling One Secondary Constructor from Another

	4.3 Inheritance
	Kotlin Override Property
	Kotlin Inheritance with Primary Constructor
	Kotlin Inheritance with Secondary Constructor
	Calling Base Class Secondary Constructor from Derived Class Secondary Constructor

	4.4 Interfaces
	Default Values and Methods
	Properties in Interfaces
	Inheritance in Interfaces
	Multiple Interfaces

	4.5 Visibility Modifiers
	4.6 Property
	Class Properties
	Setters and Getters
	Access Getter and Setter
	Custom Setter and Getter

	4.7 Abstract Class
	Overriding Non-abstract Open Member with the Abstract
	Multiple Derived Classes

	4.8 Data Class
	4.9 Sealed Class
	4.10 Enum Class
	Enum Properties and Methods

	4.11 Practical Programming Exercises
	4.12 Summary
	4.13 Test Your Knowledge
	4.14 Answers

	Chapter 5: Error Handling and Exceptions
	5.1 Exception-Handling Basics
	The try-catch Block as an Expression
	Finally Block
	Throw Keyword

	5.2 Nested try Block
	Multiple Catch Blocks
	Using When in Catch Block

	5.3 Custom Exceptions
	5.4 Real-Life Programming Practices
	5.5 Summary
	5.6 Test Your Knowledge
	5.7 Answers

	Chapter 6: Collections and Generics
	6.1 Collections
	6.2 List
	6.3 Set
	6.4 Maps
	6.5 Generics
	Basics of Generics

	6.6 Real-Life Programming Practices
	6.7 Summary
	6.8 Test Your Knowledge
	6.9 Answers

	Chapter 7: Kotlin Coroutines
	7.1 Introduction
	7.2 Creating Coroutines
	7.3 Structured Concurrency
	7.4 Extract Function Refactoring
	7.5 Scope Builder and Concurrency
	Scope Builder
	Concurrency

	7.6 An Explicit Job
	7.7 Coroutines Are Lightweight
	7.8 Coroutine Exception Handling
	7.9 Coroutine Exception Handler
	7.10 Cancellation and Exceptions
	7.11 Exception Aggregation
	7.12 Real-Life Programming Practices
	7.13 Summary
	7.14 Test Your Knowledge
	7.15 Answers

	Chapter 8: Kotlin Domain-Specific Language (DSL)
	8.1 Introduction to Kotlin DSLs
	Advantages of DSLs

	8.2 Writing Our First DSL
	8.3 DSL by Applying Builder Pattern
	8.4 DSL with Collections
	8.5 DSL with @DslMarker Annotation
	8.6 Real-Life Programming Practices
	8.7 Summary
	8.8 Test Your Knowledge
	8.9 Answers

	Chapter 9: Kotlin Standard Library
	9.1 Introduction to the Kotlin Standard Library
	9.2 Collection Functions
	Sorting
	Natural Sorting
	Custom Sorting
	Reverse Sorting
	Random Sorting
	Filtering
	Transforming

	9.3 String Functions
	9.4 Extension Functions
	Extended Library Classes

	9.5 Null Safety Functions
	9.6 File and I/O Functions
	Create File
	Writing to File
	Reading from File
	Delete File

	9.7 Real-Life Programming Practices
	9.8 Summary
	9.9 Test Your Knowledge
	9.10 Answers

	Chapter 10: Testing in Kotlin
	10.1 Unit Testing
	The Significance of Unit Testing
	Establishing the Testing Environment
	Composing Your Initial Unit Test
	Illustration 1
	Running Unit Tests

	Illustration 2

	Optimal Strategies for Unit Testing
	Testing Frameworks

	10.2 Kotlin Unit Testing with MockK
	Mocking and MockK: mocking in kotlin behaves like external real dependencies and mockK is powerful and lightweight mocking library
	MockK Annotations
	MockK Keywords

	10.3 Kotlin Integration Testing
	Integration Testing in Kotlin with Ktor

	10.4 Conclusion
	10.5 Test Your Knowledge
	10.6 Answers

	Chapter 11: Kotlin Reactive Extension
	11.1 Introduction to RxKotlin
	11.2 Core Rx Concepts
	Streams: The Heart of Reactive Programming
	Hot and Cold Observables
	Flow of Hot and Cold Streams

	11.3 Usage of Rx
	Basic RxKotlin Usage
	Using filter and distinct
	Observable.Interval for Periodic Emissions

	11.4 Kotlin Coroutines
	11.5 Reactive Programming Patterns
	11.6 Best Practices for Testing Reactive Code
	11.7 Conclusion
	11.8 Real-Life Programming Practices
	11.9 Test Your Knowledge
	11.10 Answers

	Chapter 12: Working with API and Networking
	12.1 Introduction to Kotlin APIs
	12.2 Android Development APIs
	12.3 Networking APIs
	12.4 Database & Storage APIs
	12.5 UI & Graphics APIs
	12.6 Machine Learning & IoT APIs
	12.7 Multimedia APIs
	12.8 Cloud & Backend APIs
	12.9 CASE STUDY 1: Using Google Map API in Kotlin
	STEP 1. Enable Google Maps API
	STEP 2. Add Dependencies
	STEP 3. Add API Key to Manifest
	STEP 4. Add a Map Fragment
	STEP 5. Load the Map in Kotlin
	STEP 6. Run the App
	Extra Features

	12.10 CASE STUDY 2: Using MQTT API in Kotlin
	STEP 1. Create a New Kotlin Project in IntelliJ IDEA
	STEP 2. Add MQTT Dependency
	STEP 3. Implement MQTT Client in Kotlin
	STEP 4. Run the MQTT Client
	STEP 5. Explanation
	STEP 6. Extra Features

	12.11 Conclusion and Future Scope
	12.12 Test Your Knowledge
	12.13 Answers

	Chapter 13: Advanced Kotlin Programming
	13.1 Introduction
	13.2 Null Safety
	Safe Call Operator in Kotlin
	Elvis Operator in Kotlin
	Non-Null Assertion (!!) in Kotlin
	Safe Cast (as?)
	let Scope Function

	13.3 Higher-Order Functions and Lambdas
	Higher-Order Function with Lambda
	Explanation:

	Higher-Order Function Returns a Function
	Using Lambda with List Functions

	13.4 Lazy Initialization
	13.5 Property Delegation
	13.6 Conclusion
	13.7 Future Scope
	13.8 Real-Life Programming Practice
	13.9 Test Your Knowledge
	13.10 Answers

	Chapter 14: Data Analysis with Kotlin
	14.1 Get Started with Kotlin Notebook
	14.2 Add Library to Kotlin Notebook
	14.3 Working with Data Sources
	14.4 Data Visualization in Kotlin Notebook with Kandy
	Create Line Chart
	Create Points Chart
	Create Bar Chart

	14.5 Libraries for Data Analysis in Kotlin
	14.6 Real-Life Programming Practice
	14.7 Summary
	14.8 Test Your Knowledge
	14.9 Answers

	Chapter 15: Kotlin Multiplatform
	15.1 Introduction to Kotlin Multiplatform
	How It Works
	Benefits of KMP
	Use Cases

	15.2 Setting Up a Multiplatform Project for iOS
	Steps for Creating iOS Project
	Creating Project using Android Studio or Intellij IDEA
	Defining Project Structure

	Shared Module Configuration and Implementation

	15.3 Multiplatform Libraries
	Dependency on a Kotlin Library
	Dependency on Another Multiplatform Project

	15.4 Test Your Knowledge
	15.5 Answers

	Index

