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Preface
Artificial intelligence (AI) and machine learning (ML) are revolutionizing the way we 
interact with technology, solve complex problems, and make decisions across various 
domains. These technologies are not only shaping industries but also transforming 
our daily lives. From automating tasks and enhancing decision-making to advancing 
healthcare and education, AI and ML have far-reaching societal applications.

This book, Artificial Intelligence and Machine Learning for Real-World Applica-
tions: A Beginner’s Guide with Case Studies, is designed to provide readers with a 
structured and in-depth understanding of AI and ML, covering both theoretical foun-
dations and practical applications. The book is divided into twelve chapters, each 
focusing on the critical aspects of AI and its role in various sectors.

Chapter  1 begins with an overview of AI and ML, discussing their historical 
development, fundamental concepts, and key differences. This chapter explores the 
evolution of AI from rule-based systems to modern deep learning models. It also 
introduces various AI paradigms, including symbolic AI, statistical AI, and connec-
tionist AI, along with an overview of major AI applications in today’s world.

Chapter 2 is the core of AI. This chapter delves into various search algorithms 
and strategies used in AI to solve complex problems efficiently. It covers uninformed 
search techniques such as breadth-first search and depth-first search, as well as 
informed search techniques like A* and heuristic-based searches. Additionally, the 
chapter discusses constraint satisfaction problems and optimization methods used in 
AI-driven solutions.

Chapter 3 discusses structured knowledge representation for reasoning and deci-
sion-making. It explores different representation techniques, including semantic net-
works, frames, ontologies, and first-order logic. It also discusses expert systems and 
their applications, shedding light on how AI models store and retrieve information 
effectively.

Chapter 4 introduces ML, different types of data, and their importance in training 
ML models. Preprocessing of data, removal of noise, missing data handling, data 
transformation, feature engineering, and dimensionality reduction of data are cov-
ered in this chapter. Preprocessing techniques are explained with snippets of code 
for real-life application.

Chapter 5 covers key supervised learning algorithms, including linear regression, 
logistic regression, decision trees, support vector machines (SVMs), naive Bayes 
classifier, cross validation, and hyperparameter tuning. All techniques are explained 
with snippets of code for practical applications such as spam detection, fraud detec-
tion, and medical diagnosis, which are discussed to illustrate real-world use cases. 
Code snippets of algorithms are also given at relevant places.

Chapter 6 explains clustering, k-means, and hierarchical and DBSCAN clustering. 
It also discusses the association rule mining concept, the a priori algorithm and its 
example, and Python code snippets.

Chapter 7 discusses neural networks and convolutional neural networks and its 
variants. Activation, loss, and regularization functions used in deep learning are 
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covered here, along with some case studies that demonstrate how to program these 
functions in Python.

Chapter 8 introduces generative AI. It starts with the basic architecture of large 
language models (LLMs), basic LLMs, and its components. It explains the function-
ality of generative adversarial networks. Retrieval augmentation generation is dis-
cussed using a flowchart of activities. The use of transfer learning is also discussed.

Chapter 9 presents AI, which has many useful applications that ease human life. 
Everyone’s health is an essential and highest priority concern. Therefore, the help of 
technology in such an important part of life is very important. AI does it. It provides 
many tools for the healthcare domain with the highest speed, accuracy, and comfort. 
These tools are not only helping everyday people, but they are also assisting physi-
cians and medical professionals in a true sense.

Chapter 10 explains that nowadays agriculture is not only for farming and grow-
ing grains, fruits, and vegetables, but also for much more. It starts from checking the 
quality of soil, source of water, prediction, growth of plants, marketing of products, 
and finding distributors, to getting global recognition, and much more. Agriculture 
is not just a farmer’s job, and technology is especially essential in helping farmers do 
these tasks and make some profit. AI plays a very important role in this sector. The 
inclusion of such AI technologies in agriculture will create a sustainable future and 
growth in the economy for farmers, especially in rural areas with many challenges.

Chapter 11 elaborates how AI helps in transforming the education system. Now-
adays learning in only a physical environment has totally changed. AI has helped 
enhance facilities and made these facilities available to everyone. This chapter pro-
vides a complete knowledge of AI-driven approaches for learning in a different 
environment.

Chapter 12 provides complete details of how to create a quality life at any age or 
with any physical disability. AI provides new opportunities and solutions, which may 
help users perform everyday tasks with more ease and independence.
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1 Introduction to Artificial 
Intelligence and 
Machine Learning

1.1  INTRODUCTION

Artificial intelligence (AI) is a multidisciplinary field of computer science that aims 
to create intelligent machines capable of mimicking human cognitive functions. 
These functions encompass a wide range of capabilities, including the following:

	 1.	Learning: The ability to acquire knowledge and skills from experience.
	 2.	Reasoning: Using logic to draw inferences and make decisions.
	 3.	Problem-solving: Finding solutions to complex issues.
	 4.	Perception: Interpreting and understanding sensory inputs (visual, audi-

tory, etc.).
	 5.	Natural language processing (NLP): Understanding, interpreting, and 

generating human language.
	 6.	Planning: Devising strategies to achieve goals.
	 7.	Creativity: Generating novel ideas or artifacts.
	 8.	Emotional intelligence: Recognizing and responding to human emotions.

AI can be categorized into two main types:
Narrow or Weak AI is designed to perform specific tasks within a limited domain. 

Examples include voice assistants such as Siri, Alexa, and Google Assistant, recom-
mendation systems, and spam filters.

General or Strong AI/Artificial General Intelligence (AGI) is a hypothetical AI 
with human-like cognitive abilities across various domains. No examples are known 
yet as it is a theoretical concept that is still mainly in research.

Machine learning (ML), a subset of AI, focuses on the development of algorithms and 
statistical models that enable computer systems to improve their performance on a spe-
cific task through experience. Unlike traditional programming where rules are explicitly 
coded, ML algorithms learn patterns from data to make predictions or decisions without 
being explicitly programmed. ML can be broadly classified into three categories:

	 1.	Supervised Learning: The algorithm learns from labeled data to make pre-
dictions or decisions.

	 2.	Unsupervised Learning: The algorithm identifies patterns in unlabeled data.
	 3.	Reinforcement Learning: The algorithm learns through interaction with an 

environment, receiving feedback in the form of rewards or penalties.

https://doi.org/10.1201/9781003532170-1


2 Artificial Intelligence and Machine Learning for Real-World Applications

Deep learning (DL) is a subset of ML that uses artificial neural networks with multi-
ple layers to learn and represent complex patterns in data. It excels at tasks like image 
recognition, speech processing, and natural language understanding. DL models can 
automatically learn hierarchical features from raw data, often outperforming tradi-
tional ML techniques on complex tasks.

FIGURE 1.1  Narrow AI versus General AI.

FIGURE 1.2  AI, ML, and Deep Learning Subsets.
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Natural language processing (NLP) focuses on the interaction between comput-
ers and human language. It combines computational linguistics, ML, and DL to enable 
computers to understand, interpret, and generate human language. NLP powers appli-
cations like machine translation, sentiment analysis, chatbots, and text summarization.

Large language models (LLMs) are a recent advancement in AI, positioned at 
the intersection between DL and NLP. These are massive neural networks trained on 
vast amounts of text data, capable of understanding and generating human-like text. 
LLMs like generative pre-trained transformer (GPT) models have shown remarkable 
capabilities in tasks ranging from text completion to answering questions and even 
basic reasoning.

Conversational AI (Conv. AI) refers to technologies that allow machines to 
engage in human-like dialog. It typically combines ML and NLP and may incor-
porate DL and LLMs. Conv. AI systems can understand context, maintain coherent 
conversations, and perform tasks based on user input. Applications include virtual 
assistants, customer service chatbots, and interactive voice response systems.

1.1.1 � Key Components of AI

The key components of AI include ML, NLP, computer vision, robotics, and expert sys-
tems. These components work together to enable machines to perform complex tasks.

1.1.2 � Branches of AI

•	 ML: Algorithms that enable computers to learn from data.
•	 NLP: Techniques for understanding and generating human language.
•	 Computer Vision: Enabling machines to interpret and process visual 

information.
•	 Robotics: Designing intelligent robots that interact with the environment.
•	 Expert Systems: Systems that mimic the decision-making abilities of 

human experts.

1.1.3 �F undamental Principles of ML

ML is a subset of AI focused on creating algorithms that allow machines to learn 
from and make decisions based on data.

1.1.4 �T ypes of ML

•	 Supervised Learning: Learning from labeled data (e.g., classification and 
regression).

•	 Unsupervised Learning: Finding patterns in unlabeled data (e.g., cluster-
ing and association).

•	 Semi-supervised Learning: Combines labeled and unlabeled data for 
training.

•	 Reinforcement Learning: Learning optimal actions through trial and 
error.
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Key Concepts in ML

•	 Data: The backbone of ML; quality and quantity of data impact model 
performance.

•	 Model: A mathematical representation of a process or system.
•	 Training and Testing: Training involves teaching the model using a data-

set; testing evaluates its performance.
•	 Overfitting and Underfitting: Challenges related to model generalization.
•	 Evaluation Metrics: Common evaluation metrics include accuracy, preci-

sion, recall, F1 score, and confusion matrix.

1.1.5 � Key Algorithms and Techniques

1.1.5.1 � Supervised Learning Algorithms
•	 Linear Regression: Predicting numerical values using a linear approach.
•	 Logistic Regression: Used for binary classification of problems.
•	 Decision Trees: Splitting data into branches to reach decisions.
•	 Support Vector Machines (SVMs): Finding the best boundary that sepa-

rates classes.

1.1.5.2 � Unsupervised Learning Algorithms
•	 K-Means Clustering: Partitioning data into clusters based on similarity.
•	 Hierarchical Clustering: Building a hierarchy of clusters.
•	 Principal Component Analysis (PCA): Reducing the dimensionality of 

data.

Feature selection

Autoencoders

Principal component analysis

Big data visualization

Machine 
learning

Image classification

Neural networks

Decision trees

Identity fraud detection

Targeted marketing

Recommender systems

Hierarchical clustering

Customer segmentation

Linear regression

Polynomial regression

Ridge & Lasso regression

Random forest regression

Market forecasting

Real-time decisions

Q-learning

Reward maximization

Policy gradients
Deep Q-networks

FIGURE 1.3  Different Tasks in ML.
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1.1.5.3 � Reinforcement Learning Algorithms
•	 Q-Learning: Learning a policy for optimal actions.
•	 Deep Q-Networks (DQNs): Combining Q-learning with DL.

1.1.5.4 � DL Techniques
•	 Neural Networks: Models inspired by the human brain.
•	 Convolutional Neural Networks (CNNs): Specialized for image 

processing.
•	 Recurrent Neural Networks (RNNs): Used for sequential data.

1.2 � UNDERSTANDING AI: DEFINITION AND GOALS

1.2.1 � What is AI?

Artificial intelligence, i.e., AI, sometimes also called machine intelligence, is the 
intelligence demonstrated by machines. AI is the science of making machines or 
systems that act like humans and think like humans. It can do things that are con-
sidered “smart.”

AI is the wide-ranging branch of computer science that refers to the creation of 
computer systems, concerned with building smart machines capable of performing 
tasks that typically require human intelligence such as reasoning, decision-making, 
leaning, understanding and problem-solving.

AI is like teaching computers to think, behave, and make decisions like humans 
but with the help of algorithms and data. It is all about making machines smarter 
so they can do tasks that usually require human intelligence, such as understanding 
language, recognizing images, processing data, and solving problems. AI has a deep 
impact on human lives and the economy.

Example: In 2017, Hurricane Harvey devastated the seacoast of Texas. The storm 
caused wide flooding and damage, and it displaced thousands of people. In the wake 
of the storm, a platoon of experimenters from Google AI used AI to help with the 
relief efforts. They developed an AI-powered system that could dissect satellite 
imagery to identify areas that had been swamped. The system was suitable to iden-
tify swamped areas much more snappily and directly than traditional methods. The 
experimenters shared their system with the Federal Emergency Management Agency 
(FEMA), and FEMA used it to coordinate relief efforts. The system helped FEMA 
identify people who wanted to be saved and to deliver food and water to affected 
areas. This story shows how AI can be used to break real-world problems. AI can 
be used to dissect data snappily and directly, and it can be used to develop results to 
complex problems.

1.2.2 �U nderstanding AI

AI systems can perform tasks commonly associated with human cognitive func-
tions or skills such as learning, self-correction, creativity, interpreting speech, and 
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identifying patterns. Understanding AI involves grabbing the fundamental concepts, 
application, and implications of this most revolutionary and rapidly advancing field. 
AI systems typically learn how to do the tasks by processing the massive amount 
of data, identifying the patterns, etc. Understanding the capabilities of AI gives the 
means to capitalize on its potential, fueling progress and achieving breakthrough in 
various fields. AI is a dynamic and evolving field, and staying informed and engaged 
is essential to understanding its current state and future developments.

1.2.3 � Weak and Strong AI

There are two main approaches to AI: weak AI and strong AI. Strong AI is a more 
ambitious concept that suggests machines could achieve human-level intelligence 
and problem-solving abilities. Proponents of strong AI believe that computers, when 
properly programmed, could surpass human experts in certain tasks and even pos-
sess a form of consciousness. This view contrasts with the idea of AI as simply a tool 
for studying the human mind. John Searle is credited with coining the term “strong 
AI” to represent this hypothesis about the potential for machines to exhibit genuine 
reasoning and problem-solving skills.

Weak AI takes a more limited approach to AI. Unlike strong AI, it focuses on 
developing machines that excel at specific tasks rather than achieving human-level 
intelligence. Proponents of weak AI believe that while computers can be programmed 
to mimic some aspects of human thought processes, they are unlikely to ever truly 
replicate the full range of human cognitive abilities. Weak AI systems are valuable 
tools for solving specific problems, but they lack the general intelligence and adapt-
ability found in humans. An illustrative example of weak AI is a chess program, 
which can make strategic moves based on complex algorithms but cannot understand 
the nuances of the game in the same way a human player can.

Strong AI delves into the philosophical question of whether machines can achieve 
true intelligence, indistinguishable from human thought. This school of thought pro-
poses the possibility of building machines that replicate the full spectrum of human 
cognitive abilities, not just mimic them. However, achieving this level of AI poses 
significant challenges.

•	 Experiential Gap: A machine, unlike a human, wouldn’t possess the vast 
repertoire of life experiences that shape human thought and decision-mak-
ing. It wouldn’t have encountered the complexities of emotions, values, and 
moral dilemmas that inform human cognition.

•	 Embodied Intelligence: Even if a machine’s brain functioned similarly to 
that of a human, its physical embodiment could significantly differ. A robotic 
body with wheels instead of legs and sensors instead of eyes would perceive 
and interact with the world in fundamentally different ways, impacting its 
understanding.

These are just some of the hurdles that strong AI needs to overcome in its quest to 
create machines with human-level intelligence.
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1.2.4 �G oals of AI

As we know, AI is a field of innovation and technical advancement; therefore, it also 
has a vast area of application. The ultimate goal is to develop systems that can under-
stand, learn, and adapt to diverse tasks and challenges, contributing to advancements 
in technology and transforming various industries.

The aim of AI is to develop technology that enables computers and machines to 
work intelligently and independently. Following are some essential goals of AI.

•	 Reasoning and Problem-Solving
	   AI research places a strong focus on creating effective problem-solving 

algorithms capable of logical reasoning and simulating human thinking 
when dealing with complex puzzles. AI systems employ methods that handle 
uncertain situations and address the challenge of incomplete information.

•	 Knowledge Representation
	   The primary goal of knowledge representation and engineering in AI is 

to facilitate the ability of machines to solve complex real-world problems. 
This can include tasks like medical diagnosis, natural language interaction, 
recommendation systems, and more.

FIGURE 1.4  Goals of AI.
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•	 Learning
	   Learning is a core element of AI solutions, involving the ability of com-

puter algorithms to enhance an AI system’s knowledge based on observa-
tions and past experiences. In practical terms, AI programs process sets of 
input–output pairs for specific functions and use this data to predict out-
comes for new, unseen inputs.

•	 Planning
	   Intelligent agents must possess the ability to set objectives and achieve 

them effectively. To do this, they need to envision future scenarios, creating 
a representation of the world’s state, and predict the consequences of their 
actions. They should be capable of making decisions that maximize the 
utility or value of the available choices.

•	 Social Intelligence
	   Affective computing, sometimes known as “emotion AI,” constitutes a 

specific branch of AI that is concerned with the recognition, understand-
ing, and emulation of human experiences, feelings, and emotions. Ongoing 
research efforts are oriented toward augmenting the social intelligence of 
machines.

•	 Creativity
	   AI plays a crucial role in promoting creativity and improving human 

problem-solving. It has the ability to analyze vast amounts of data, explore 
multiple options, and come up with creative solutions that enhance our abil-
ity to perform tasks more effectively. For example, AI can offer a wide 
range of interior design possibilities for a 3D-rendered apartment layout, 
igniting creativity and enhancing the overall design experience.

•	 General Intelligence
	   AI researchers are dedicated to the development of machines possessing 

general AI capabilities. The ultimate goal is to significantly enhance overall 
productivity, leading to more efficient task execution. Moreover, this prog-
ress can alleviate humans from participating in hazardous activities, such as 
bomb defusal, where AI systems can take on these tasks with lower risk.

1.3 � HISTORY OF AI

The history of AI is a story of an integrated, challenging path full of breakthroughs. 
AI learns from experience, adjusts its processes based on what it learns, and uses the 
knowledge to achieve specific goals. Over time, it has gathered a vast amount of data 
and made a stronger impact on numerous fields, from marketing to space research, 
analyzing the important factors and providing better solutions. AI began to grow as 
an independent field of study in the 1940s and 1950s, when computers were gaining 
shape and structure in the commercial market for the first time.

The 1940s and 1950s mark the birth of AI. The origins of AI date back to the mid-
20th century, when the foundations of the field were laid. In 1943, Warren McCulloch 
and Walter Pitts introduced a simple computational neuron model that could be recog-
nized early for artificial neural networks. In 1950, Alan Turing published “The Turing 
Test,” one of the first correspondences regarding the possibility of machine intelligence.
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1.3.1 � Birth of AI (1950–1956)

During the 1940s and 1950s, scientists across various disciplines, including mathe-
matics, psychology, engineering, economics, and political science, began exploring 
the concept of AI.

1.3.2 �T uring Test (1950)

A computer scientist and a British mathematician, Alan Turing developed the Turing 
test in 1950. The Turing test is a common method to test a machine’s ability to exhibit 
human-like intelligence.

The basic idea of ​​the Turing test is simple: a human judge has a case-based con-
versation with a human and a machine and then decides which of the two is consid-
ered human. The Turing test is widely used as a measure of progress in AI and has 
inspired much research and experimentation aimed at developing machines that can 
pass the test.

1950 
Turing test
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History 
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FIGURE 1.5  History of AI.
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1.3.3 �T he First AI Program (1951)

In 1951, Christopher Strachey, a future director of the Systems Research Group at 
Oxford University, developed the first successful AI program. This program, known 
as Strachey Checkers, ran on a Ferranti Mark I computer at the University of Man-
chester and demonstrated the ability to play a complete game of checkers at a reason-
able pace by the summer of 1952.

1.3.4 �L ogical Reasoning and Problem-Fixing (1955–1956)

Logical reasoning has been the cornerstone of AI research. A significant milestone in 
this area was the development of the Logic Theorist, a theorem-proving program cre-
ated in 1955–1956 by Allen Newell, J. Clifford Shaw, and Herbert Simon. This pro-
gram aimed to prove theorems from Principia Mathematica, a three-volume work by 
Alfred North Whitehead and Bertrand Russell.

1.3.5 � Birth of AI (1956)

The term “artificial intelligence” was coined in the 1956 Dartmouth Conference, 
considered a pivotal event in the history of AI. The conference was organized by 
John McCarthy, Marvin Minsky, Nathaniel Rochester, and Claude Shannon, and 
researchers from various fields spoke about the possibilities of AI. Early AI research 
in this era focused on symbolic processes and problem-solving. One of the earliest 
AI frameworks in this era was the Logic Theorist framework developed by Allen 
Newell and J.C. McCarthy, and produced by McCarthy. The logician was able to 
prove mathematical hypotheses, and the framework is considered one of the first 
models of AI designs. The 1956 convention laid the groundwork for AI, but progress 
was slower than initially expected due to limitations in computing power and the 
difficulty in building intelligent machines. However, these limitations allowed for 
further research and development over the next decades.

1.3.6 � 1974

The programs developed in the years after the Dartmouth Conference were mere 
“miracles”: for most people, computers solved algebraic word problems, expressed 
concepts in geometry, and learned English. At the time, few believed that machines 
performed such “intelligent” actions and these were at all possible. The researchers 
expressed great hope in the fields of privacy and publishing, predicting the develop-
ment of intelligent machines completely in less than 20 years.

1.3.7 � Biological Model (1957)

A landmark in the history of AI was the invention of perceptron by Frank Rosenblatt 
in 1957. Perceptron was the first artificial neuron triggered by biological processes in 
the human brain. It was designed to mimic the way the human brain processes sight 
and sound.
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The perceptron was a simple algorithm capable of recognizing visual objects. It 
was used to process visual features and make decisions based on the information 
obtained. While the perceptron showed promise for solving simple problems, it was 
limited by the technology and computing power available at the time.

Systematics of the 1960s: The 1960s saw the development of computers that 
could emulate the decision-making abilities of experts around the world in special-
ized work. Dendral (pharmacological analysis) and MYCIN (medical opinion) are 
currently undergoing expert development.

1.3.8 �N atural Language Processing (1966)

NLP dates back to the early days of AI research, i.e., the 1950s and 1960s. Early 
work in NLP focused on developing systems that could understand human speech 
and acquire it. One of the first influential programs was Newell and Simon’s 1956 
creation of the “logician,” which could prove mathematical hypotheses. In the late 
1950s and early 1960s, researchers began to investigate language translation and 
original text analysis. But great strides were made in NLP in the 1970s and 1980s 
when researchers began to develop more sophisticated algorithms for speech under-
standing and generation.

A notable achievement in this period is the first chatbot ELIZA developed 
by Joseph Weizenbaum in 1966, which can engage in simple natural language 
conversations.

1970s—Knowledge Representation*: In the 1970s, cognitive science focused 
on knowledge representation to clarify the knowledge and understanding of experts. 
High-level knowledge representation was also developed in management and seman-
tic communication.

1.3.9 �F irst Intelligent Robot (1972)

In Japan, Waseda University initiated the WABOT project in 1967 and in 1972 com-
pleted WABOT-1, the world’s first “intelligent” humanoid robot, or an android that 
moves limbs using its hand and limb control system and can grab and move objects 
using its touch-sensitive hands. Its vision system was capable of measuring distance 
and direction using external receivers and artificial eyes and ears. Its dialog system 
was capable of communicating in Japanese, with facial expressions.

1.3.10 �F irst AI Winter (1974–1980)

The term “AI summer” refers to a period of declining investment and interest in 
AI as R&D effort stagnates or declines. The first AI winter occurred in the 1970s 
and 1980s after an initial period of great anticipation and optimism about the pros-
pects of AI in the 1950s and 1960s. During AI winter, progress in AI research was 
slower than expected, and some of the limitations of the existing technology became 
increasingly apparent. Many early AI programs failed to live up to the high expec-
tations set by early AI pioneers. This has led to a decline in funding for AI research 
and public and commercial interest in the project.
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The AI ​​winter was a time of reflection and reassessment for the AI ​​research com-
munity, resulting in a shift in focus to practical and achievable goals.

1.3.11 � Boom (1980–1987)

During the 1980s, the expert system framework gained widespread adoption by com-
panies globally, and knowledge engineering became a central focus of AI research. 
Concurrently, the Japanese government significantly invested in AI through the 
Fifth Generation Computer Systems project. Another promising development of the 
era was the resurgence of neural network research, led by John Hopfield and David 
Rumelhart.

1.3.12 �S econd AI Winter (1987–1993)

The financial crisis of the 1980s led to a decline in business interest in AI, as numer-
ous companies encountered difficulties. However, despite the setbacks, the field of 
AI continued to advance. Researchers such as robotics pioneers Rodney Brooks and 
Hans Moravec advocated for a new approach to AI.

1990s—Reinvention and Machine Learning: In the 1990s, AI experienced a 
renaissance driven by advances in ML, neural networks, and NLP. The development 
of experts and expert shells enables the real work of AI in many practical ways.

1.3.13 � AI (1993–2011)

Despite its long history of over half a century, the field of AI has recently made sig-
nificant strides in achieving its original goals. However, within the business world, 
the reputation of AI is still perceived as less than perfect. This divide is evident 
within the field itself, where there is no consensus on why the initial ambition of 
creating human-level intelligence has yet to be fully realized. As a result, AI has 
splintered into various subfields, each focused on tackling specific problems or uti-
lizing different approaches.

Deep Blue made history on May 11, 1997, when it defeated world chess champion 
Garry Kasparov, marking the first time a computer program had achieved such a 
feat. Developed by IBM, this specialized version of the framework was able to pro-
cess a staggering 200 million moves per second, twice as many as it had in its initial 
loss against Kasparov. In another impressive display of technological advancement, 
a Stanford robot emerged victorious in the 2005 DARPA Grand Challenge by navi-
gating a 131-mile uncharted desert trail without any human intervention.

2000s—Big Data and DL: The lack of big data and powerful computing gave 
rise to DL, leading to major advances in imaging, AI speech, and NLP.

2010s—AI Is Integrated into Daily Life: AI-powered tasks and machines, 
including virtual assistants, recommendations, and autonomous cars, became part of 
daily life. DL, driven by advances in neural networks and graphics processing units 
(GPUs), has revolutionized the field.
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1.3.14 � AI (2011–Present)

During the early years of the 21st century, a significant breakthrough was made 
with the widespread availability of vast amount of data, commonly referred to as 
“big data.” Coupled with increasingly affordable and efficient computers, as well as 
advancements in ML technology, this development proved to be highly effective in 
tackling various challenges across all sectors of the economy. In fact, as discussed 
in the renowned paper “Big data: The next frontier for innovation, competition, and 
productivity,” as the demand for AI-related products, hardware, and software contin-
ued to grow, it reached a whopping 8 billion dollars in 2016, as reported by the New 
York Times, with the media even dubbing it a “frenzy.”

2020s—Ethics and Business Governance: The 2020s will see increased com-
munication on AI ethics, including AI algorithms and disruptive technologies and 
business injustice. Countries and organizations develop policies and procedures for 
the development and use of intelligence.

1.4 � PROBLEMS AND TECHNIQUES IN AI

Problem-solving techniques in AI refer to the approaches and strategies used to 
address and solve complex problems or challenges in AI systems. These techniques 

FIGURE 1.6  Major Events in History.



14 Artificial Intelligence and Machine Learning for Real-World Applications

are fundamental to AI’s goal of simulating human-like problem-solving and deci-
sion-making abilities. Here’s a definition of problem-solving techniques in AI:

Problem-solving techniques in AI encompass a diverse set of methodologies and algo-
rithms that enable AI systems to analyze, evaluate, and generate solutions for a wide 
range of problems. These techniques often involve the application of logical reasoning, 
optimization, search algorithms, and learning mechanisms to find efficient and effec-
tive solutions, ultimately contributing to the development of intelligent systems capable 
of tackling complex real-world challenges.

These techniques include methods like search algorithms (e.g., depth-first search 
and breadth-first search), knowledge representation and reasoning (e.g., expert sys-
tems), ML (e.g., supervised learning and reinforcement learning), and heuristic-based 
approaches.

AI focuses on specific types of problem and particular techniques to be used to 
obtain a solution.

To derive a solution, one must follow four steps, which are mentioned below and 
characterized in the figure.

	 1.	Define and fix problem statements such that it can target the problem objec-
tive more effectively. The problem statement should also include the pre-
conditions and post-conditions to obtain an acceptable solution.

	 2.	Analyze the problem and select features that can majorly contribute in 
deciding the success of the system.

	 3.	Bifurcate tasks into atomic subtasks, i.e., into tasks that cannot be decom-
posed further. Represent the role of each task and required knowledge nec-
essary to solve the problem.

	 4.	Analyze the tradeoff between available solving techniques and choose the 
best problem-solving strategy to apply to the targeted problem for achieving 
a viable solution.

FIGURE 1.7  Key Steps in AI to Deriving a Solution.
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Intelligence requires knowledge to be voluminous. If knowledge is hard to accu-
rately characterize, constantly changing, and organized differently from the way it 
will be used, then AI methods are useful.

Problem-Solving Agents: A  problem-solving agent is a goal-based agent that 
decides what to do by finding a sequence of actions that leads to desirable states.

1.4.1 �G oal Formulation

Goal formulation outlines a process for choosing and developing a single goal from 
a list of options. Problem formulation is defined as follows:

This stage defines the relevant actions and states needed to achieve a previously for-
mulated goal. Following this comes the search phase, where the system identifies the 
best sequence of actions to reach the goal. A search algorithm analyzes the problem 
and proposes a solution as a series of actions. Finally, the execution phase implements 
the recommended actions.

1.4.2 � Well-Defined Problems and Solutions

A formal problem definition typically consists of four key elements:

	 1.	Initial State: This describes the starting point for the agent, where it begins 
its journey toward the goal.

	 2.	Actions: These are the available options the agent can take in each state 
it encounters. The initial state, actions, and transition model (implicit in 
actions) collectively define the state space, encompassing all possible states 
reachable from the starting point through a sequence of actions.

	 3.	Goal Test: This is a mechanism to determine if the agent has reached a 
successful or desired state.

	 4.	Path Cost Function: This function assigns a cost value to each action 
taken, reflecting the overall performance measure. It’s typically denoted as 
c(s, a, s’), where s represents the current state, a is the action performed, and 
s’ is the resulting state.

	 1)	Water Jug Problem:

The water jug problem involves two water jugs of different capacities to measure a 
specific amount of water. The primary goal is to figure out how to use the jugs to 
measure the exact amount of water required. The problem typically requires logical 
thinking and can be presented in various scenarios with different jug sizes and target 
amounts.

Example:

Problem:

You have two water jugs:
Jug A with a capacity of 3 liters.
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Jug B with a capacity of 5 liters.
The goal is to measure exactly 4 liters of water using these jugs.

Solution:

•	 Fill Jug B to its full capacity, which is 5 liters.
•	 Pour the water from Jug B into Jug A. After this step, Jug A has 3 liters of 

water, and Jug B has 2 liters remaining.
•	 Empty Jug A completely.
•	 Pour the remaining 2 liters of water from Jug B into Jug A.
•	 Fill Jug B to its full capacity again, which is 5 liters.
•	 Carefully pour water from Jug B into Jug A. Stop pouring when Jug A is 

full. At this point, you will have filled Jug A to its maximum capacity of 3 
liters, leaving 4 liters of water in Jug B.

Now, you’ve successfully measured 4 liters of water using the 3-liter and 5-liter 
jugs.

This solution uses a combination of filling, emptying, and pouring between the 
two jugs to achieve the desired measurement of 4 liters without the need for any 
additional equipment.

Implementation of the water jug problem in Python is given below. Data struc-
tures used to solve this problem is queue.

INPUT:

  from collections import deque  

  def water_jug_problem(jug_a_capacity, jug_b_capacity, 
target):  
      # INITIALIZE BFS VARIABLES 
      visited = set()  
      queue = deque([(0, 0, [])])  

      while queue:  
           jug_a, jug_b, path = queue.popleft()  

          # CHECK FOR SOLUTION 
          if jug_a == target:  
              return path + [(jug_a, jug_b)]  

          if (jug_a, jug_b) in visited:  
              continue  

          visited.add((jug_a, jug_b))  

          # GENERATE POSSIBLE NEXT STATES  

          # Fill Jug-A 



17Introduction to Artificial Intelligence and Machine Learning

          if jug_a < jug_a_capacity:  
              queue.append((jug_a_capacity, jug_b, path + 
[(jug_a_capacity, jug_b)]))  

          # Fill Jug-B 
          if jug_b < jug_b_capacity:  
              queue.append((jug_a, jug_b_capacity, path + 
[(jug_a, jug_b_capacity)]))  

          # Empty Jug-A 
          if jug_a > 0:  
              queue.append((0, jug_b, path + [(0, jug_b)]))  

          # Empty Jug-B 
          if jug_b > 0:  
              queue.append((jug_a, 0, path + [(jug_a, 0)]))  

          # Pour from Jug-B to Jug-A 
          pour = min(jug_b, jug_a_capacity - jug_a)  
          if pour > 0:  
              queue.append((jug_a + pour, jug_b - pour, 
path + [(jug_a + pour, jug_b - pour)]))  

          # Pour from Jug-A to Jug-B 
          pour = min(jug_a, jug_b_capacity - jug_b)  
          if pour > 0:  
              queue.append((jug_a - pour, jug_b + pour, 
path + [(jug_a - pour, jug_b + pour)]))  

      return None  # No solution found 

  # PROBLEM PARAMETERS 
  jug_a_capacity, jug_b_capacity, target = 4, 3, 2  
  solution = water_jug_problem(jug_a_capacity, jug_b_
capacity, target)  

  # PRINT SOLUTION 
  if solution:  
     print(f”Solution to measure {target} gallons using 
{jug_a_capacity}-gallon and {jug_b_capacity}-gallon 
jugs:”)  
     for step, (a, b) in enumerate(solution):  
          print(f”Step {step}: Jug-A = {a} gallons, Jug-B = 
{b} gallons”)  
  else:  
     print(“No solution found.”)  
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OUTPUT:

Solution to measure 2 gallons using 4-gallon and 3-gallon jugs:

Step 0:Jug-A = 4 gallons, Jug-B = 0 gallons

Step 1:Jug-A = 1 gallons, Jug-B = 3 gallons

Step 2:Jug-A = 1 gallons, Jug-B = 0 gallons

Step 3:Jug-A = 0 gallons, Jug-B = 1 gallons

Step 4:Jug-A = 4 gallons, Jug-B = 1 gallons

Step 5:Jug-A = 2 gallons, Jug-B = 3 gallons

Step 6:Jug-A = 2 gallons, Jug-B = 3 gallons

=== Code Execution Successful ===|

	 2)	Chess Problem:

In a chess problem, the start is the initial configuration of a chessboard. The final 
state is the any board configuration, which is a winning position for any player. We 
can have multiple final positions, and each board configuration can be thought of as 
representing a state of the game. Whenever the player tries to move any piece, it leads 
to another state of game.

State: Each legal arrangement of pieces on the chessboard is considered a state. 
This includes the position of all pieces (pawns, rooks, knights, bishops, queen, and 
king) for both white and black, along with whose turn it is to move.

Size: The number of possible states in chess is massive, estimated to be around 
10120. It’s practically impossible to explore every single one.

Operators: The legal moves available to the player whose turn it is define the oper-
ators. Each move transforms the current state into a new state.

	 3)	Eight-Puzzle Problem:

Problem: The eight-puzzle problem, also known as the sliding puzzle, is a classic 
problem-solving task in AI.

Description:

The eight-puzzle consists of a 3x3 grid with eight numbered tiles and one empty 
space, often represented in numbers from 1 to 8 and an empty slot. The goal of the 
puzzle is to rearrange the tiles from an initial configuration to a goal configuration 
by sliding the tiles into the empty space. Each tile can be moved vertically or hori-
zontally into the adjacent empty slot.

State: Each unique arrangement of the numbered tiles on the 3x3 board is consid-
ered a state. This includes the position of the blank space as well.

Size: The number of possible states in the eight-puzzle is significantly smaller 
than that in chess, at 9!/2 (around 362,880). This allows for more exhaustive search 
techniques compared to those used in chess.
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Operators: The legal moves available define the operators. In this case, a move 
involves sliding the blank space into an adjacent tile’s position, creating a new 
state.

	 4)	Traveling Salesman Problem:

Problem:

The traveling salesman problem (TSP) is a classic combinatorial optimization prob-
lem in the field of AI.

Description:

In the TSP, a salesman is given a list of cities and the distances between each pair 
of cities. The goal is to find the shortest possible route that the player visits each 
city exactly once and returns to the starting city. This problem is NP-hard, meaning 
that as the number of cities increases, the number of possible routes grows factori-
ally, making it computationally challenging to find the optimal solution for large 
instances.

State: While there’s no single agreed-upon definition, a state in the TSP can rep-
resent different stages of the salesman’s journey. Here are two common approaches:

Partial Tour: The current set of cities visited, potentially including the starting 
city and not necessarily complete.

Remaining Cities: The set of cities yet to be visited by the salesman.
Size: The number of states depends on the chosen representation and the num-

ber of cities (n). With n cities, the number of partial tours can grow exponen-
tially (roughly (n−1)!), making exhaustive search impractical.

Operators: An operator represents visiting a new city that hasn’t been visited 
before.

1.5 � AREAS OF AI

Each subfield within the field of AI holds its own unique significance and contributes 
to the overall advancement of AI in various ways. The introduction to AI is like 
opening the door to a world where computers can think and learn like humans. It 
involves various technologies, such as ML and robots, and has the power to change 
how we work and live. But we need to be careful about how we use AI because it can 
raise important ethical and social questions. Understanding AI is becoming more 
and more important as it becomes a big part of our future.

1.5.1 � AI Subfields

The importance of a specific subfield can vary depending on its applications and 
research objectives. Here are some key subfields within AI that hold considerable 
importance.
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1.5.1.1 � Robotics
One of the most well-known subfields of AI is robotics. AI plays an important 
role in robotics that enables machines to comprehend their surroundings, make 
decisions, and carry out actions. Manufacturing and medical industries both use 
robots.

Robotics combines AI with mechanical design and engineering and bridges the 
gap between the digital and physical worlds. Robots are capable of perceiving their 
surroundings, processing data, and carrying out actions determined by AI.

Robotics in AI is an innovative fusion of machines with AI that has resulted in the 
creation of intelligent, adaptable, and autonomous robotic systems. The importance 
of this integration is seen in its numerous applications across industries, where it con-
tributes to enhanced efficiency, precision, and robots’ capacity to operate in complex 
and dynamic problems.

Significance:

Autonomous Operation: Robots with AI are able to perform tasks inde-
pendently, making decisions based on current knowledge without con-
stant human supervision. Applications in the manufacturing, logistics, and 
healthcare sectors all depend on this.

Adaptability: AI-enabled robotic systems can adapt to dynamic environ-
ments and deal with unexpected scenarios. This adaptability is advan-
tageous in circumstances where responsibilities could change or differ 
over time.

Reliable and Efficient: AI-enhanced robots are capable of carrying out jobs 
more effectively and precisely. This is especially useful in manufacturing 
operations where robots may optimize workflows and increase product 
quality.

Human–Robot Collaboration: AI makes it possible for robots to comprehend 
and react to human gestures, orders, and natural language, enabling a safer 
and more effective human–robot collaboration.

Learning Experience: ML helps robots learn from the environments and from 
experiences so that they can improve their performance. This is required 
especially for operations where robotic grasping and object manipulation 
are used.

Applications of Robotics:

Robotics is a common practice around the world, as we all know. Therefore, they are 
used in multiple sectors, and a few of them are listed below:

•	 Manufacturing and industry
•	 Logistics and warehousing
•	 Medical field and argo industry
•	 Education and research
•	 Space exploration
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1.5.1.2 � Expert System
Expert systems are computer programs designed to mimic human experts in solving 
complex problems. They utilize a structured knowledge base and rules to provide 
recommendations and decisions. These systems have applications in fields such as 
medicine, finance, engineering, customer support, and education, aiding in tasks 
that require specialized human expertise. Examples of expert systems include DEN-
DRAL, MYCIN, PXDES, and CaDeT.

Basic Elements of Expert Systems:

	 1.	Knowledge Base: Knowledge base is a repository that stores information, 
facts, and rules related to a specific domain. It contains the expertise of 
human specialists and is the foundation for the decision-making process of 
the expert system.

	 2.	User Interface: The user interface provides a platform where users can 
interact with the system. Users can input information, ask questions, and 
receive recommendations or solutions. The interface can be text-based 
or graphical, depending on the complexity of the system and the user’s 
preferences.

	 3.	Rule Base: Expert systems operate based on a set of rules that define the 
relationships between different pieces of information and guide the deci-
sion-making process. These rules are typically represented in the form of 
“if-then” statements, where the “if” part contains conditions or premises, 
and the “then” part contains conclusions or actions.

	 4.	Inference Engine: Because it is the core processing unit of the system, the 
inference engine is referred to as the expert system’s brain. It uses the knowl-
edge base and inference rules to draw conclusions or infer new information. 
It assists in the generation of error-free answers to the user’s queries. The 
system retrieves knowledge from a knowledge repository using an inference 
engine. It employs various reasoning methods, such as forward chaining 
(starting with known facts and deriving conclusions) or backward chaining 
(starting with a goal and working backward to find supporting evidence).

Expert system

User
User-
interface

Inference
engine

Knowledge
base

Knowledge 
from an 
expert

FIGURE 1.8  Inference Engine in an Expert System.
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Significance:

The significance of expert systems lies in their ability to tackle complex problems 
and provide solutions that would typically require human expertise. Expert systems 
are more significant in knowledge representation and in decision-making processes. 
Due to their consistency and availability, they are mostly used in various areas. Some 
expert systems have the ability to learn from experience, refining their knowledge 
base over time. This adaptability allows them to improve their performance and 
accuracy.

Application of Expert System:

As we know, expert systems are capable of making their own decisions; therefore, 
they are applied in various fields, such as the following:

•	 Medical diagnosis
•	 Financial analysis
•	 Troubleshooting technical problems
•	 Manufacturing processes
•	 Customer support.

1.5.1.3 � Machine Learning
ML is a major branch of AI. In ML, we use data and algorithms, which are also 
used to imitate the way we humans reply and learn, adding the delicacy and the 
effectiveness.

The term “machine learning” was actually developed in 1959 by Arthur Samuel, 
an IBM hand who was a colonist in computer gaming and AI.

ML, a core component of AI, enables computers to learn from data and make 
predictions. It encompasses various methods, including supervised learning (using 
labeled data), unsupervised learning (identifying patterns in unlabeled data), and 
reinforcement learning (decision-making based on rewards). ML has broad appli-
cations in NLP, computer vision, recommendation systems, and healthcare. Recent 
advancements in ML and technology have led to innovations such as self-driving 
cars and Netflix’s recommendation system. There are four primary ML modes: unsu-
pervised, semi-supervised, supervised, and reinforcement learning.

Significance:

Data-Driven Opinions: ML helps the colorful different associations use large 
quantities of data to make meaningful perceptivity and to take data-driven 
opinions.

Robotization and Effectiveness: So, with the help of colorful ML algorithms, 
we can automate complex tasks and processes, which automatically reduces 
the time and sweat needed to do them manually. This also automatically 
leads to increased effectiveness in colorful different diligence.

Scientific Exploration and Disquisition: In the fields of scientific exploration 
and disquisition, machine literacy is being increasingly used to dissect 
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complex datasets, pretend the models, and make prognostications. It’s 
helping scientists gain new perceptivity and accelerate new discoveries by 
having colorful different operations in the fields of astronomy, climate mod-
eling, medicine discovery, etc.

Autonomous Vehicles and Robotics: So, ML algorithms play a veritably 
important part in independent vehicles and robotics, as they enable these 
systems to perceive and interpret their terrain, make the right opinions in 
the real-time terrain, and acclimatize to the changing circumstances, which 
ultimately lead to the advancements in robotic sidekicks, tone-driving 
buses, drones, etc.

Healthcare Advancements: ML helps in diagnosing the complaint, planning 
treatment, medicine discovery, and developing substantiated drugs.

Speech Recognition: The search machine Google allows users to search any-
thing with the help of the “search by voice” feature.

Traffic Prediction: The Google Maps used by numerous people at the moment 
helps us find the shortest paths to take to reach our destination.

Spam Email Filtering: The machine learning algorithms help in filtering spam 
emails and important emails.

1.5.1.4 � Deep Learning
DL is one of the most used field in AI. It solely focuses on the development and oper-
ation of artificial neural networks, which are called deep neural networks or deep 
neural models, with multiple layers to autonomously learn and extract intricate pat-
terns from data. These models are said to be veritably important and inspired from 
the structure and functioning of the mortal brain.

The algorithms for DL are designed in such a special way that enables them to 
automatically learn and represent complex patterns, as well as connections among 
the data by organizing multiple layers of connected artificial neurons.

DL drives numerous AI operations and services that ameliorate robotization, per-
forming logical and physical tasks without mortal intervention. DL technology lies 
behind everyday products and services (similar to digital sidekicks, voice-enabled 
television remotes, and credit card fraud discovery) and arising technologies (similar 
to self-driving cars).

Significance:

Handling Complex Data: DL excels at processing and understanding complex 
and high-dimensional data, similar to images, videos, audio, and textbooks. 
It can automatically learn intricate patterns and representations from raw 
data, enabling it to perform grueling tasks that were preliminarily delicate 
or insolvable using traditional ML techniques.

Improved Performance: DL has achieved remarkable performance advance-
ments in several areas, including computer vision, NLP, speech recognition, 
and recommendation systems. Deep neural networks can learn hierarchical 
representations that capture both low-position and high-position features, 
leading to more accurate and robust prognostications or opinions.
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End-to-End Learning: DL enables end-to-end learning, where models can 
directly learn from raw input data and induce meaningful labor without 
the need for homemade point engineering. This simplifies the development 
process and reduces the dependence on sphere-specific knowledge, making 
applying DL to new problems and disciplines easier.

Robotization and Effectiveness: DL allows for robotization and effec-
tiveness in colorful diligence. It can automate complex tasks, such as 
image and speech recognition, data analysis, and decision-making pro-
cesses. By automating these tasks, DL reduces mortal trouble, increases 
productivity, and enables real-time processing and decision-making 
capabilities.

Advancements in Computer Vision: DL has revolutionized computer vision by 
enabling accurate object discovery, image bracket, segmentation, and image 
generation. Operations range from tone-driving buses and surveillance sys-
tems to medical imaging and stoked/virtual reality.

Natural Language Processing: DL has made significant advancements in NLP 
tasks, including machine restatement, sentiment analysis, textbook gen-
eration, and question–answering systems. It has enabled more accurate 
language understanding and generation, easing better mortal-computer 
commerce and communication.

Scientific Research and Healthcare: DL has made significant benefactions to 
scientific exploration and healthcare. It has been used to dissect large-scale 
genomic data, help in medicine discovery, prognosticate complaints, and 
support medical image analysis. DL models have the eventuality to acceler-
ate scientific discoveries and facilitate patient care.

Real-World Applications: DL has set up operations across colorful diligence, 
including finance, retail, manufacturing, entertainment, and cybersecurity. 
It has been used for fraud discovery, demand soothsaying, substantiated 
marketing, quality control, content recommendations, and more, leading to 
better effectiveness, client experience, and business issues.

Applications of DL:

•	 NLP
•	 Computer vision
•	 Healthcare
•	 Robotics
•	 Gaming

1.5.1.5 � Computer Vision
A branch of AI, computer vision enables computers and systems to extract useful 
data from images, videos, and other visual inputs.

This extracted information can then be used to make decisions or provide sug-
gestions. Just as AI empowers computers to think, computer vision allows them to 
perceive, examine, and comprehend the visual world.
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Human vision operates in a similar manner to computer vision but with one key 
advantage: humans have extensive experience gained over a lifetime. This enables us 
to distinguish objects, estimate their distance, detect motion, and identify anomalies 
within an image.

Significance:

Autonomous Vehicles: Autonomous vehicles can comprehend their surround-
ings by using computer vision. In order to find road borders, understand 
signposts, and recognize other vehicles, obstructions, and people, computer 
vision algorithms assess the scene around the vehicle as it is being recorded 
by several cameras. The autonomous vehicle can then drive itself on roads 
and highways, avoid obstacles, and securely transport its occupants to their 
destination.

Facial Identification: Programs that utilize computer vision to identify people 
in photos, such as facial recognition software, heavily rely on this area of 
research. Computer vision algorithms are used to recognize facial charac-
teristics in pictures, and they then compare those characteristics to recorded 
face profiles. Facial recognition is becoming more common in consumer 
gadgets to confirm the identification of the users. Social networking pro-
grams employ facial recognition to identify users and tag them. Law 
enforcement utilizes facial recognition software to identify criminals in 
surveillance films for the same reason.

Mixed and Augmented Reality: Computer vision plays a crucial role in aug-
mented reality, enabling the integration of digital content into real-world 
environments via devices like smartphones and wearables. Augmented 
reality applications utilize computer vision algorithms to identify surfaces 
such as tabletops, ceilings, and floors, accurately determining depth and 
scale, and positioning virtual objects within the real-world context.

Healthcare: The growth of health technology has been profoundly influenced 
by computer vision. One of the many uses for computer vision algorithms is 
automating the process of searching for cancerous moles on a person’s skin 
or finding signs in an X-ray or MRI image.

Applications of Computer Vision:

•	 Lane Monitoring: An autonomous vehicle must have lane tracking in order 
to determine which lane it should stay in and avoid idly moving about the 
road.

•	 Detection of Traffic Signs: An important task accomplished with computer 
vision and DL is the detection of traffic signs. Consider a driverless car that 
doesn’t stop at a stop sign or speeds through a school zone. Thus, it is crucial 
to recognize these signs and take appropriate action.

•	 Pathfinder: This is a self-driving car’s brain, which instructs the vehicle 
where it can travel and how to safely plan its future route. Different algo-
rithms, like the PathNet algorithm, can be used to accomplish this.
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1.5.1.6 � Natural Language Processing
NLP is a branch of AI that focuses on the interaction between computers and human 
language.

To enable machines to understand, interpret, and generate human language, algo-
rithms and models are developed. NLP has diverse applications, including machine 
translation, chatbots, sentiment analysis, and text summarization. It plays a crucial 
role in enhancing the efficiency and intuitiveness of human–computer interaction.

	 I.	NLU or Natural Language Understanding
	 II.	NLG or Natural Language Generation

There are specifically five main steps in NLP: lexical analysis, syntactic analysis, 
semantic analysis, disclosure integration, and pragmatic analysis.

Significance:

Human–Computer Interaction: NLP enables more intuitive and natural 
human–computer communication. This is evident in the growing preva-
lence of voice assistants, chatbots, and virtual agents in our daily lives.

Language Translation: NLP technology has enabled people to interact and 
access information globally by bridging language barriers. This is vital for 
business, education, diplomacy, and cross-cultural exchange.

Healthcare: NLP facilitates the development of drugs, epidemiological 
research, record analysis, and effective patient care. In addition, it might 
assist with the identification and treatment of disease prescriptions.

Data Analysis and Processing: Unstructured textual data can be investigated 
using NLP to gather useful knowledge. It is necessary for social media anal-
ysis, market research, and business intelligence because it may be employed 
for sentiment analysis, content analysis, and categorization.

Customer Service: Through the use of NLP for processing requests from cus-
tomers, chatbots and virtual assistants may improve the efficient function-
ing of support and customer service operations.

Applications of NLP:

The wide range of NLP relies on its applications. Here are some of the crucial fields 
where NLP is utilized:

•	 Speech recognition
•	 Automatic voice input
•	 Chatbots and virtual assistants
•	 Text classification
•	 Machine translation

1.5.1.7 � Automation
AI automation offers the potential to improve productivity, decrease errors, and han-
dle jobs that might be too repetitive or data-intensive for people to handle. But it 
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also calls into question the necessity for ethical and secure AI systems, its effect 
on employment, and other issues. AI automation optimizes business processes by 
integrating AI technologies with additional tools. Automation can take place via 
hardware, such as robotic process automation (RPA) in the real world, or software, 
wherein AI systems look into data, learn from it, and make options in the future.

Significance:

Increased Efficiency: Without tools, running a business can take a lot of time. 
More repetitive tasks can be handled by AI, liberating workers to concen-
trate on more important work.

Enhanced Communication with Customers: Today’s clients expect the appro-
priate offers at the right time, which can be challenging for organizations 
that must do their own in-house data analysis. AI automation has the capac-
ity to process vast volumes of client data, enabling the creation of tailored 
interactions that enhance customer experience.

Cost Savings: By removing the need for human labor in routine and repetitive 
operations, automated AI systems can save operating costs for companies 
and organizations.

Error Reduction: AI automation reduces the possibility of human oversight in 
quality control, data entry, and analysis processes, producing outputs that 
are more accurate.

Enhanced Decision-making: Automation powered by AI can process com-
mercial and industry data far more quickly than humans. Businesses can 
gain assistance with forecasting, future product trends, and other indus-
try insights by feeding AI with data. Their decision-making can then be 
informed by this data.

Applications in Technology:

In the context of AI, automation is the application of AI methods and technology to 
carry out operations and procedures without the need for direct human involvement. 
The following are some crucial facets of AI automation:

•	 RPA
•	 Autonomous vehicles
•	 Smart home automation
•	 Cybersecurity
•	 Agricultural automation

1.5.1.8 � AI in Healthcare
AI in healthcare involves the application of ML algorithms to analyze, interpret, 
and understand complex medical data. AI aims to augment human capabilities by 
offering innovative approaches to disease diagnosis, treatment, and prevention. 
A primary goal of AI in healthcare is to identify the relationship between clinical 
data and patient outcomes. AI is being employed in various areas, including drug 
discovery, personalized medicine, treatment protocol development, diagnostics, and 
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patient monitoring. As the use of AI in healthcare is relatively recent, research into 
its applications across different industries and medical fields is ongoing.

Significance:

Faster Detection and Disease Detection: AI is able to accurately and efficiently 
evaluate patient data and medical imaging, which helps with the early and 
accurate detection of a number of diseases, such as neurological disorders, 
cancer, and cardiac issues.

Improved Treatment Planning: AI helps medical professionals create more 
individualized and efficient treatment plans by considering each patient’s 
particular genetic composition and past medical records.

Medication Management: AI improves medication safety and patient outcomes 
by helping patients manage their medications by discovering drug interac-
tions, sending reminders, and keeping track of adherence.

Drug Development and Discovery: AI speeds up the process of finding new 
drugs, which could cut down on the time and expense it takes to introduce 
them to the market.

Saves Workers’ Time: By automating repetitive procedures, AI allows users 
to concentrate on more intricate and patient-centered responsibilities. The 
administrative demand on healthcare staff can be decreased by using AI to 
automate administrative processes like insurance processing, billing, and 
appointment scheduling.

Applications of AI in Healthcare:

AI is being used more and more in the healthcare industry to enhance patient out-
comes, expedite processes, and promote medical research. Here are a few well-
known uses of AI in healthcare:

•	 Medical imaging analysis
•	 Electronic health records (EHR) management
•	 Robot-assisted surgery
•	 Radiology and pathology
•	 Genomic data analysis
•	 Telemedicine and remote monitoring

1.5.2 � AI Application Areas

AI is increasingly indispensable in modern society. It offers efficient solutions to 
complex problems across various industries, including entertainment, finance, 
healthcare, and education. AI has penetrated numerous markets, with applications 
in the following sectors:

AI in Astronomy: AI can be helpful for understanding and solving complex 
universe problems such as how it works and the origin. AI is used in auton-
omous spacecraft, rovers for navigation, and data analysis on other planets.
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•	 AI in Healthcare: In recent years, AI has become increasingly bene-
ficial to the healthcare industry. AI tools assist doctors in diagnoses 
and can alert them to deteriorating patient conditions, enabling timely 
medical intervention.

•	 AI in Education: AI can streamline the grading and assessment process, 
allowing teachers to focus on instructions. In the future, AI-powered 
virtual tutors could provide personalized support to students at any time 
and place.

•	 AI in Social Media: AI excels at organizing and managing large data-
sets. Social media platforms like Instagram, Snapchat, and LinkedIn 
generate billions of data points that require efficient storage and man-
agement. AI analyzes this data to identify emerging trends, popular 
hashtags, and user preferences.

•	 AI in Finance: AI-powered algorithms are used for high-frequency 
trading and investment decision-making. AI models are used to help in 
assessing credit risks and detecting fraudulent transaction.

•	 AI in Data Security: Given the rapid increase in cyberattacks, data secu-
rity is paramount for businesses. AI can enhance data security by iden-
tifying and mitigating threats. AI-powered tools like AEG bot and AI2 
platforms can effectively detect software vulnerabilities and cyberattacks.

•	 AI in Robotics: AI-powered robots are prevalent in numerous indus-
tries, including manufacturing, healthcare, and logistics.

•	 AI in Travel: The travel industry is leveraging AI-powered chatbots to 
provide human-like customer service, enhancing response times and 
offering services like booking travel arrangements, and suggesting 
hotels, flights, and optimal routes.

These are just few examples of AI applications across various domains. The 
field continues to expand into new areas, creating innovative solutions 
across multiple industries.

1.6 � FUTURE SCOPE OF AI

The scope of AI is expected to influence our daily life, and it is estimated that it will 
help the economy by about $15.7 trillion globally. The following are the trends esti-
mated to be achieved by AI in the near future.

	 1.	Self-driving vehicles will be able to drive better than humans: Due to 
the emerging progress in the transportation industry, Tesla and its release 
of Dojo, a supercomputer, will surely become operational within the next 
decade. It is also expected that by 2025 8 million driverless and self-auto-
mated cars will be on the roadway, creating $800 billion jobs in the automo-
bile industry.

	 2.	AI will work as a human: Fields such as NLP and sentiment analysis are 
at its peak because generative AI is capable of creating a human-like input 
with the vast amount of data fed into the system. All these facts ensure that 
in the near future, AI will be able to work with human intelligence.
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	 3.	AI will potentially make the health sector better: According to the US 
healthcare industry, 23% think that the advancements in AI with the ML 
model will help achieve better and faster outcomes. With large data sets, its 
predictive analysis will benefit patients and doctors in getting the insights.

	 4.	Deepfakes may become a problem in society: Fake videot and audio sam-
ples might be distributed rapidly because of people’s prejudices, anxieties, 
and reservations.

	 5.	AI might affect in massive job losses: Udacity CEO Gabe Dalporto has 
predicted that more than 1 billion people will lose their jobs due to AI 
by 2030. Job functions like as driving an auto or truck, operating heavy 
machineries, and rehearsing law will become increasingly automated. As a 
result, many of these positions will become obsolete.

	 6.	The metaverse: The metaverse is about simulation. Incorporations can act, 
within tightly defined parameters, as our agents and our companions, and 
some may indeed be considered as coworkers. By 2050, we will be unfit to 
tell the difference between a real person and an AI-generated one.
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2 Problem-Solving 
Methods and Search 
Strategies

2.1 � INTRODUCTION

Artificial intelligence (AI) utilizes search algorithms as a fundamental approach to 
problem-solving, wherein these algorithms systematically navigate through poten-
tial solutions in order to identify an optimal one. These algorithms find extensive 
application across a wide spectrum of AI domains, such as path finding, game 
playing, planning, search space analysis, and optimization. Whether it’s determin-
ing the shortest route between two points, strategizing in complex games, charting 
out future actions, or comprehending the structure of search spaces, search algo-
rithms play a pivotal role in these AI tasks by enabling efficient exploration and 
decision-making. Here are some of the most well-known problem-solving tech-
niques in AI:

	 1.	Uniformed/Blind Search
a.	 Breadth-first search (BFS)
b.	 Depth-first search (DFS)
c.	 Uniform cost search (UCS)
d.	 Iterative deepening depth-first search
e.	 Bidirectional search

	 2.	Informed Search
a.	 Best-first search
b.	 A* search

2.1.1 �U niformed/Blind Search

Uniformed/blind search refers to a category of search algorithms that do not have 
prior knowledge about the structure of the search space or the location of the 
goal state. This algorithm works on the information available during the search 
process.

Examples of uniformed or blind search algorithms include BFS, DFS, UCS, iter-
ative deepening DFS, and bidirectional search. These algorithms are also called as 
“blind search” because they make decisions about which node to explore next, ignor-
ing additional information like heuristics or cost estimates.

https://doi.org/10.1201/9781003532170-2
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	 a.	Breadth-First Search: BFS is used for finding the shortest path by explor-
ing all nodes at a given level before moving to the next level, considering 
all possible paths with a uniform cost. BFS uses queue data structure to 
keep track of the node to be explored. The BFS will visit the node and mark 
it as visited and places it into the queue. Then the BFS will visit the nearest 
and unvisited nodes and mark them. The remaining nearest and unvisited 
nodes on the graph will be analyzed marked and added to the queue. These 
items will be deleted from the queue as they are received and printed as the 
result.

Its implementation in Python is given below. Data structures are used in queue and 
store unvisited nodes.

INPUT:

  # Import the deque class from the collections module 
  # deque is used for efficient queue operations 
  from collections import deque  
  def bfs(graph, start):  

Search algorithms

Uninformed search Informed search

Breadth-first search Best first search

Depth-first search A* search

Uniform cost search

Iterative deepening depth-
first search

Bidirectional search

FIGURE 2.1  Categorization of Search Algorithms.
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      # Initialize a set to keep track of visited vertices 
      visited = set()  

      # Create a queue and add the starting vertex 
      queue = deque([start])  

      # Mark the starting vertex as visited 
      visited.add(start)  

      # Continue until the queue is empty 
      while queue:  
          # Remove and return the leftmost vertex from the 
queue 
          vertex = queue.popleft()  

          # Print the current vertex (part of BFS traversal) 
          print(vertex, end=‘ ‘)  

          # Explore all neighbors of the current vertex 
          for neighbor in graph[vertex]:  
              # If the neighbor hasn’t been visited yet 
              if neighbor not in visited:  
                  # Mark it as visited 
                  visited.add(neighbor)  
                  # Add it to the queue for future 
exploration 
                  queue.append(neighbor)  

  # Define the graph as an adjacency list 
  graph = {  
      ‘A’: [‘B’, ‘C’],  
      ‘B’: [‘A’, ‘D’, ‘E’],  
      ‘C’: [‘A’, ‘F’],  
      ‘D’: [‘B’],  
      ‘E’: [‘B’, ‘F’],  
      ‘F’: [‘C’, ‘E’]  
  }  

  # Print a message indicating the start of BFS 
  print(“Breadth-First Search starting from vertex ‘A’:”)  

  # Call the BFS function with the graph and starting ver-
tex ‘A’ 
  bfs(graph, ‘A’)  
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OUTPUT:

	 b.	Depth-First Search: DFS is used for finding the shortest path by exploring 
as deeply as possible along one branch of the search tree before backtrack-
ing. It can be carried out by using stack data structure.

For example, we connected components 1 -> 2 -> 3.
Then we connected component 4 -> 5.
The final connected component is vertex 6.
Graph G is disconnected here and has the components given below.
Its implementation in Python is given below.

FIGURE 2.2  DFS Traversal.
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INPUT:

  def dfs(graph, start, visited=None):  
      # If this is the first call, initialize the visited 
set 
      if visited is None:  
          visited = set()  

      # Mark the current vertex as visited 
      visited.add(start)  

      # Print the current vertex (part of DFS traversal) 
      print(start, end=‘ ‘)  

      # Explore all neighbors of the current vertex 
      for neighbor in graph[start]:  
          # If the neighbor hasn’t been visited yet 
          if neighbor not in visited:  
              # Recursively call DFS on the neighbor 
              dfs(graph, neighbor, visited)  

  # Define the graph as an adjacency list 
  graph = {  
      ‘A’: [‘B’, ‘C’],  
      ‘B’: [‘A’, ‘D’, ‘E’],  
      ‘C’: [‘A’, ‘F’],  
      ‘D’: [‘B’],  
      ‘E’: [‘B’, ‘F’],  
      ‘F’: [‘C’, ‘E’]  
  }  

  # Print a message indicating the start of DFS 
  print(“Depth-First Search starting from vertex ‘A’:”)  

  # Call the DFS function with the graph and starting ver-
tex ‘A’ 
  dfs(graph, ‘A’)  

OUTPUT:
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	 c.	Uniform Cost Search: UCS is primarily used for finding the shortest path 
in a weighted graph. UCS is effective in cases when different costs are avail-
able for each edge. A UCS is implemented by using priority queue. It selects 
the child node with the lowest total cost and adds it to the priority queue. If 
a lower cost path to an already visited node is discovered, the cost of that 
node is updated in the priority queue.

	 d.	Iterative Deepening DFS: Iterative deepening DFS is a combination of 
BFS and DFS. It performs a series of DFS iterations, each with an increasing 
depth limit. In the first iteration, the depth limit is 0, which means it explores 
nodes only at the initial state. If the goal state is not found at this depth, the 
search proceeds to the next iteration with a depth limit of 1, then 2, and so 
on. It explores as far as possible along a single branch, and if the depth limit 
is reached, it backtracks to the previous level to explore other branches.

	 e.	Bidirectional Search: Bidirectional search algorithm runs two searches 
simultaneously. One for the forward search (from the start state) and one for 
the backward node (from the goal state). The goal is to meet in the middle 
and find a common state that connects the two searches.

2.1.2 � Informed Search

Informed search is also known as heuristic search because it uses a heuristic function 
to guide the search process. Here, heuristic function is the cost of moving from a 
starting state to a goal state. It is represented by h(n).

2.1.2.1 � Heuristic Functions
A heuristic function is like a tour guide that helps in an efficient search process. 
Common heuristic functions include the following:

Manhattan Distance: Useful for grid-based environments.
Euclidean Distance: Suitable for continuous space problems.
Diagonal Distance: A  compromise between Manhattan and Euclidean 

distances.
Custom Heuristics: Tailor-made heuristics for specific problem domains.

These algorithms are designed to make more informed decisions about which paths 
to explore within a search space.

Search algorithms represent a foundational and indispensable component of AI, 
serving as a methodical problem-solving approach. Whether tasked with identify-
ing the shortest distance between two points, formulating intricate game strategies, 
devising prospective action plans, or comprehending the intricate structures within 
search spaces, these algorithms assume a central role in facilitating the efficient 
exploration of possibilities and informed decision-making.

2.2 � STATE SPACE REPRESENTATION

	 1.	Definition of State Space: State space encompasses all possible configura-
tions of a relevant object or system.
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	 2.	Initial States: In state space representation, one or more initial states are 
specified as the starting point for a problem-solving process.

	 3.	Goal States: Goal states represent the expected solutions to the problem. 
These are the desired outcomes.

	 4.	Action Rules: A set of rules is defined to describe the available actions or 
operators in the problem space.

	 5.	Key Considerations: During the process of defining a state space search, 
several considerations come into play:
•	 Determining the generality of the rules and the effort required to solve 

the problem.
•	 Deciding whether to pre-compute certain aspects or represent them in 

rule sets.
•	 Employing appropriate control strategies to navigate the problem space 

from initial states to goal states.
•	 Identifying any assumptions that may not be explicitly stated in the 

problem description.

Problem Solution

State space representation defines a problem as a set of states, with the solution being 
a path from the initial state to a goal state. In some cases, simply reaching the goal 
state is sufficient. A cost function assigns a numerical value to each path, reflecting 
the cost of applying operators to transition between states. The quality of a solution 
is determined by the cost function, with an optimal solution having the lowest cost 
among all possible solutions. Depending on the problem and its requirements, the 
goal might be to find any solution, the optimal solution (lowest cost), or all possible 
solutions. The significance of cost depends on the specific problem context and the 
nature of the desired solution.

Problem Description

•	 A problem description comprises the following elements:
•	 The current state of the world or system.
•	 The actions or movements that can transition one state into another.
•	 The desired goal state of the world.

2.2.1 �S tate Space

The state space is explicitly or implicitly defined and should include all necessary 
information for problem-solving while excluding unnecessary details.

Initial State: The initial state is the starting point for the problem-solving 
process.

Goal State: The goal state defines the desired conditions that need to be ful-
filled. It represents a complete or partial description of the desired state of 
the world.

Operators: Operators are actions that transition a state to another. They 
have two components: preconditions and effects. Preconditions define the 
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necessary conditions for an operator to be applicable, while effects describe 
the resulting state after the operator is executed.

Elements of the Domain: Elements of the domain are the components or enti-
ties relevant to the problem. Knowledge of the starting point is essential for 
understanding the problem.

Problem-Solving: Problem-solving entails identifying a series of actions that 
can transform the current state into a desired goal state.

Restrictions: Restrictions are related to the quality of the solution, which can 
be any, optimal, or all based on the problem requirements. Quality restric-
tions may involve finding the shortest or least expensive sequence, or simply 
identifying any valid sequence as quickly as possible.

Few case studies of state space representation are as follows:

•	 Traveling Salesman Problem

The traveling salesman problem (TSP) is a classic computational problem where a 
salesman must visit each city in a given list exactly once, minimizing the total travel 
distance. The problem is represented as a graph, with cities as nodes and distances 
between cities as edges. The goal is to find the shortest possible route that visits all 
cities and returns to the starting point. A state in this problem is represented as a pair 
of cities and the distance between them.

Initial State (S₀):
At the beginning of the journey, the salesman starts at a specific city—let’s say 

City 1. None of the cities other than City 1 is visited yet.

State Space (S):

The state space encompasses all possible combinations of cities visited by the 
salesman, starting from the initial city. These states can be understood as 
different permutations of cities, excluding the starting city. These permuta-
tions indicate the order in which the cities are visited.

Operators (Actions):

In the context of the TSP, operators symbolize the choices the salesman makes 
to transition between states. The primary operator involves selecting the 
next city to visit from the pool of unvisited cities. This choice modifies the 
sequence in which cities are visited.

Transition Model:

The transition model defines how the salesman’s state changes when an 
operator is applied. For instance, when the salesman picks the next city to 
visit, the state updates to reflect the new order in which cities have been 
visited.



39Problem-Solving Methods and Search Strategies

Goal State (Sᵢ):
Goal state signifies the completion of the tour, where every city has been vis-

ited once, and the salesman returns to the starting city. This final state is 
characterized by a permutation of all cities, with the starting city appearing 
as both the first and the last city in the sequence.

Let us now understand with an example.
The nodes represent cities, and the edges represent the distance between them.

Starting point: A

To find: The shortest possible route starting from A, covering all the nodes and 
returning back to A (origin).

STATE SPACE

Initial state (State A): {A--B, A--C, A--D}

Possible routes

	 1.	ABDCA
	 2.	ABCDA
	 3.	ACBDA
	 4.	ACDBA
	 5.	ADCBA
	 6.	ADBCA

The best routes in this case are route 1 and route 4. Let’s go step by step starting with 
node A.

Step 1: We select the starting node, that is, A.

A

FIGURE 2.3  Connected Cities and Distances.



40 Artificial Intelligence and Machine Learning for Real-World Applications

Step 2:

20
A

B

Step 3:

20   

13
A

B

D

Step 4:

20   

13

12

A

B

D

C

Step 5:

20   

13

22

12

A

B

D

C

This is the final route, which costs 20 + 13 + 12 + 22 = 67.

•	 EIGHT-PUZZLE PROBLEM

Eight-puzzle problem is one of the classic problems solved by AI. In the below con-
text, we are going to see how this problem is represented by AI with the help of a 
concept, i.e., “state space representation.”
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Let us understand what an eight-puzzle game is.
Eight puzzle is a 3 x 3 grid game with eight numbered tiles and one blank space. 

The problem is to rearrange the tiles in the initial state so that we can reach the goal 
state. Steps involve sliding the tiles on the adjacent blank space. The solution to this 
problem is found by finding the minimum number of sequential moves required to 
reach the goal state from the actual initial state.

Example:

State Space: Eight-Puzzle Problem
The state space of an eight-puzzle problem is somewhat large but finite. It per-

forms 9! permutations, which is approximately 362,880 different states. The state 
space representation of an eight-puzzle problem includes the following points:

	 1.	State
		    The states in an eight-puzzle problem can be initial state and goal state, 

where every new state is generated on each possible move of the tile. Here 
the states represented in the figure are our states.

	 2.	Space
		    All the possible states generated by sliding the tile.
	 3.	Search
		    Search for the successive state in an eight-puzzle problem can be per-

formed with the help of various search algorithms such as BFS, DFS, and 
various heuristic search techniques. Heuristic search provides faster solu-
tions than uninformed searches.

	 4.	Operators
		    Operators in eight-puzzle problems are used to slide the tile on the black 

space, which are
•	 Moveup
•	 Movedown
•	 Moveleft
•	 Moveright

	 5.	Search Tree

Various possible states of eight-puzzle problems are represented in the form of a 
search tree. In the search tree, each root node represents the initial state, and each 
node in the search tree represents all possible states of the puzzle.

FIGURE 2.4  Eight-Puzzle Problem.
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The search tree for an eight-puzzle problem is given below.
Implementation of an eight-puzzle problem in Python is given below.

  # FOR PRIORITY QUEUE OPERATIONS  
  import heapq 
  class PuzzleState: 
      def __init__(self, board, parent=None): 
          self.board = board 
          self.parent = parent 
          self.cost = 0 if parent is None else parent.cost 
+ 1 
          self.lower_bound = self.calculate_misplaced_tiles() 

      # LOWER BOUND CALCULATION (HEURISTIC)  
      def calculate_misplaced_tiles(self): 
          goal = [1, 2, 3, 4, 5, 6, 7, 8, 0] 
          return sum(1 for i in range(9) if self.board[i] 
!= goal[i] and self.board[i] != 0) 

      # COMPARISON FOR PRIORITY QUEUE (BRANCH AND BOUND 
PRIORITIZATION)  

FIGURE 2.5  Space State Search Tree of an Eight-Puzzle Problem.
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      def __lt__(self, other): 
          return (self.cost + self.lower_bound) < (other.
cost + other.lower_bound) 

      def __eq__(self, other): 
          return self.board == other.board 

      # GENERATE BRANCHES (POSSIBLE MOVES)  
      def get_neighbors(self): 
          moves = [(‘LEFT’, -1), (‘RIGHT’, 1), (‘UP’, -3), 
(‘DOWN’, 3)] 
          empty_index = self.board.index(0) 
          for move, offset in moves: 
              new_position = empty_index + offset 
              if 0 <= new_position < 9 and abs(empty_index 
% 3 - new_position % 3) <= 1: 
                 new_board = self.board[:] 
                 new_board[empty_index], new_board[new_posi-
tion] = new_board[new_position], new_board[empty_index] 
                 yield PuzzleState(new_board, self) 

  # BRANCH AND BOUND ALGORITHM  
  def solve_puzzle(initial_state): 
      open_set = [] 
      closed_set = set() 
      heapq.heappush(open_set, initial_state) 
      while open_set: 
          # SELECT NODE WITH LOWEST BOUND  
          current = heapq.heappop(open_set) 

          # CHECK FOR GOAL STATE  
          if current.board == [1, 2, 3, 4, 5, 6, 7, 8, 0]: 
              solution_path = [] 
              while current.parent: 
                  solution_path.append((None, current.
board)) 
                  current = current.parent 
              return solution_path[::-1] 

          closed_set.add(tuple(current.board)) 

          # BRANCH: EXPLORE NEIGHBORS  
          for neighbor in current.get_neighbors(): 
              if tuple(neighbor.board) not in closed_set: 
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                  # BOUND: PRUNE OR EXPLORE BASED ON LOWER 
BOUND  
                  if neighbor not in open_set or neighbor.
cost + neighbor.lower_bound < open_set[open_set.index-
(neighbor)].cost + open_set[open_set.index(neighbor)].
lower_bound: 
                        heapq.heappush(open_set, neighbor) 

      return None 

  # USAGE AND SOLUTION DISPLAY  
  initial_board = [1, 2, 3, 4, 0, 5, 7, 8, 6] 
  initial_puzzle_state = PuzzleState(initial_board) 
  solution = solve_puzzle(initial_puzzle_state) 

  # Print initial state and solution 
  print(“Initial State:”) 
  for i in range(0, 9, 3): 
      print(“+---+---+---+”) 
      print(f”| {initial_board[i] if initial_board[i] != 0 
else ‘ ‘} | {initial_board[i+1] if initial_board[i+1] 
!= 0 else ‘ ‘} | {initial_board[i+2] if initial_
board[i+2] != 0 else ‘ ‘} |”) 
  print(“+---+---+---+”) 

  if solution: 
      print(“\nSolution:”) 
      for step, (move, board) in enumerate(solution, 1): 
          print(f”Step {step}: {move if move else “}”) 
          for i in range(0, 9, 3): 
              print(“+---+---+---+”) 
              print(f”| {board[i] if board[i] != 0 else 
‘ ‘} | {board[i+1] if board[i+1] != 0 else ‘ ‘} | 
{board[i+2] if board[i+2] != 0 else ‘ ‘} |”) 
          print(“+---+---+---+”) 
      print(f”Solution found in {len(solution)} moves.”) 
  else: 
      print(“\nNo solution found.”) 
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2.3 � PROBLEM CHARACTERISTICS

AI aims to create intelligent machines capable of mimicking human cognitive func-
tions like natural language processing, problem-solving, and decision-making. When 
selecting an AI approach for a specific problem, the problem has to categorized into 
one of given below characteristics.
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Can the problem be decomposed into smaller subproblems?
Are the solution steps reversible or irrelevant?
Is the problem’s environment predictable?
Is the optimal solution absolute or relative?
Is the solution a final state or a path?
What is the significance of knowledge in solving the problem?
Does the task require human input?

	 1.	Can the problem be decomposed into smaller subproblems?

Yes, many of the complex problems can be divided into smaller, more manageable sub-
problems. This approach is widely used in problem-solving, which is known as decompo-
sition. Decomposable problems can be solved by tackling each subproblem individually 
and making it easier to find a solution using the divide and conquer approach.

Example: Symbolic integration.

∫(x2+4x+sin2x.cos2x)dx

∫x2dx                           ∫4xdx                             ∫sin2x.cos2xdx

∫(1-cos2x)cos2xdx

∫cos2xdx                            -∫cos4xdx

	 2.	Are the solution steps reversible or irrelevant?

The reversibility of the solution steps varies between problems. In some cases, steps 
can be undone or ignored if they prove to be incorrect or lead to dead ends. However, 
in other problems, this may result in a different or incomplete solution.

Example: a) Eight-puzzle problem
The eight-puzzle allows for reversible moves, enabling the exploration of different 

tile arrangements. In contrast, some problems, like chess, have irreversible moves 
where actions cannot be undone once performed.

1 2 3

8 4

7 6 5
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Initial state: goal state:

1 2 6

3 7

8 4 5

	 b)	 In water jug problems, moves can be undone.

	 3.	Is the problem’s environment predictable?

The predictability of a problem’s environment depends on its nature. Some problems 
have deterministic outcomes, meaning the result can be predicted with certainty 
based on given rules and conditions. For example, the water jug problem is deter-
ministic, involving only one person and predictable outcomes.

	 4.	Is the optimal solution absolute or relative?

The quality of a good solution can be absolute or relative. Solutions can vary depend-
ing on the problem and individual perspectives. An absolute solution is considered 
sufficient once found, while a relative solution requires comparison with other possi-
bilities to determine the best option, often based on cost.

Example: Traveling salesman problem: This problem seeks the shortest route 
among all problem routes, making it a relative.

In the water jug problem, we need not bother about other solutions once the solu-
tion is found. Hence it is absolute.

	 5.	Is the solution a final state or a path?

The solution of a particular problem can either be a specific state or a path, depending 
on the nature of the problem. In some problems, appropriate outcome is a specific 
state or a configuration that fulfils the problem requirement. The nature of a problem 
often determines whether the solution is more about achieving a specific state or 
following a particular path.

Example: In a maze-solving problem, the outcome is the path from the starting 
point to the ending point.

	 6.	What is the significance of knowledge in solving a problem?

Knowledge plays a critical role in guiding a problem-solving process. The knowledge 
in problem-solving varies based on the complexity and nature of the problem. In 
many problems, extensive domain-specific knowledge is required to recognize the 
pattern, constraints, and possible solutions.

Example: Chess requires deep knowledge of the game rules and strategic princi-
ples to make informed moves.
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	 7.	Does the task require human input?

Many problems require human interaction depending on the nature of the problem 
and the system tools used to address it. some problems can be solved entirely by 
automated systems, while others may benefit from human guidance, creativity, and 
expertise. Human interaction is often necessary in a complex or subjective problem 
domain where the system may try to replicate human judgment and understanding.

Example: Chess is a conversational problem, involving back-and-forth commu-
nication between the computer and the user to provide information or assistance. 
Unlike other problem types, chess does not require additional human intervention.

2.4 � PRODUCTION SYSTEM AND CONTROL STRATEGIES

2.4.1 �P roduction System

Production systems are the rules of the form CA, where the left-hand side is the 
condition and right-hand side is the action. CA  implies the condition for which 
action is needed to be performed.

If one adopts a system with a production rule and rule interpreter, then that system 
is known as a production system. It helps in structuring the program in a way that 
facilitates describing and performing the search process.

Production system is a model of computation that provides pattern-directed search 
control using a set of production rules, working memory, and recognize–act cycle.

It has four parameters:

•	 Set of Rules: It consists of the if-then conditions that tell us what action 
should be performed when such conditions occur.

•	 Knowledge Base: Stores the value according to the specific tasks; that is, it 
stores the information related to the condition.

•	 Control Strategy: It specifies the order in which the rules are to be com-
pared to the databases so that the conflict can be resolved in the minimum 
requirement/time.

•	 Rule Applier: It applies the rules on the basis of the control strategy.

Steps to Resolve a Problem:

	 1.	Reduce the problem in the form of a precise statement. It should clearly 
show its states and goals.

	 2.	A problem can be solved by searching a path through space so that we can 
reach the goal state from the start state.

	 3.	The process of solving a problem can be modeled through a production system.

Advantages of a Production System:

•	 It is an amazing tool for structuring AI problems.
•	 It is highly modular; that is, it gives the flexibility to change, delete, or 

remove the rules.
•	 The production rules are expressed in the natural form, which makes the 

rules easy to understand.
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Characteristics of a Production System:

	 1.	Monotonic Production System: The application of one rule never prevents 
the later application of another rule; that is, rules are independent of each 
other.

	 2.	Non-Monotonic Production System: It is not applicable for a production 
system.

	 3.	Partially Commutative Production System: If the application of a particular 
set of rules transforms from state X to state Y, then allowable permutation 
of those rules also transforms from state X to state Y.
Example: XY, then their permutations, e.g., (r1, r2), will also transform 

from XY.
	 4.	Commutative Production System: It is both monotonic and partially 

commutative.

Monotonic Non-monotonic

Partially commutative Theory pruning
(solving ignorable problems)

Robot navigation
(changes occur but can be 
reversed)

Non-partially commutative
(if changes occur, then they are 
irreversible)

Chemical synthesis Bridge

2.4.2 � Control System

Control strategies refer to the methods and techniques used to manage, regulate, and 
ensure the desired behavior, performance, and safety of AI systems. These strategies 
are important for controlling AI systems, especially when AI systems have the abil-
ity to adapt, learn, or make autonomous decisions. It tells us about which rule has to 
be applied next while searching for a solution for a problem within a problem space.

Here are some common control strategies in AI:

	 1.	Feedback Control:
		    It is a fundamental strategy that involves continuous monitoring of the 

performance of an AI and making adjustments to keep it on track with the 
desired objectives.

	 2.	Reinforcement Learning:
		    It is a type of control strategy where AI agents learn behavior through 

interactions with their environment. They receive rewards or punishments 
based on their actions, which guide their learning process.

	 3.	Proactive Control:
		    It involves predicting potential issues and taking action to prevent them before 

they occur. It aims to anticipate problems and maintain system performance.
	 4.	Rule-Based Control:
		    It employs predefined rules or policies to enforce specific behaviors or 

constraints on AI systems. It’s often used to ensure ethical behavior, com-
pliance with regulations, or predefined standards.
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	 5.	Model Predictive Control (MPC):
		    It is a control strategy that uses predictive models to optimize system per-

formance while adhering to constraints. It repeatedly solves optimization 
problems to determine the best control actions.

	 6.	Explainable AI (XAI):
		    It is a control strategy that focuses on making AI systems transparent and 

interpretable. It aims to provide users with insight into how AI decisions are 
made, making it easier to trust and control the system.

	 7.	Adaptive Control:
		    It allows AI systems to adjust their behavior or parameters based on 

changing conditions or environments. It’s often used in systems that need to 
operate in dynamic and uncertain settings.

Implementing control strategies in AI involves the following:

	 1.	Objective Definition: Clearly define goals and constraints.
	 2.	Strategy Selection: Choose a suitable control strategy.
	 3.	Data Collection: Set up sensors and data sources.
	 4.	Policy/Rules Development: Create control policies or algorithms.
	 5.	Monitoring and Feedback: Continuously assess AI behavior.
	 6.	Control Algorithm Design: Generate corrective actions.
	 7.	Reference Values: Set desired states and error thresholds.
	 8.	Adaptation: Implement mechanisms for dynamic adjustments.
	 9.	Safety and Ethics: Incorporate constraints for responsible behavior.
	 10.	Testing and Optimization: Validate and fine-tune control strategies.
	 11.	User Interface: Develop tools for monitoring and intervention.
	 12.	Training and Documentation: Train personnel and document procedures.
	 13.	Deployment: Integrate control strategies into AI systems.
	 14.	Continuous Monitoring: Regularly review and adapt strategies.
	 15.	Contingency Planning: Prepare for unexpected situations.

2.5 � INFORMED AND UNINFORMED SEARCH

Uninformed and informed search are two primary approaches to problem-solving in 
AI. Uninformed search algorithms explore the search space systematically without 
prior knowledge of the goal, treating all paths equally. Examples include BFS and 
DFS. These algorithms are simple but can be inefficient in large spaces. Informed 
search algorithms leverage heuristic functions, which estimate the distance to the 
goal, to guide the search toward promising paths. A* is a well-known informed 
search algorithm that uses a combination of the actual cost and estimated cost to 
prioritize states. While informed search is generally more efficient, the quality of the 
heuristic function significantly impacts its performance.

2.5.1 �G enerate and Test Method

Generate and test is a heuristic search process based on DFS with backtracking, 
which guarantees finding a solution if it is successful and a solution is found. In this 
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process, all solutions are generated and the best ones are tested. It ensures that the 
best solution is checked for all possible solutions.

It is also called the British Museum Search Algorithm because it seems to ran-
domly search or walk through the exhibits in the British Museum. It is done with a 
heuristic function because all solutions are systematically generated in the algorithm 
of generating and testing, but if there is at least one way that will lead us to the result, 
it is not considered correct. Heuristics does this by ranking each option and often 
does it well. Developing methods and experiments is useless when solving complex 
problems. However, one method that can be improved in difficult cases is to reduce 
the search space by combining the construction and testing of the search with other 
strategies.

Algorithm

Identify a potential solution. This could involve selecting a specific point within the 
problem area or devising a route starting from an initial state.

Next, verify if this candidate solution is valid by checking the selected point or the 
endpoint of the created path against the defined acceptable goal states.

If a valid solution is identified, stop the process. If not, return to the first step.
Scenario: Imagine you’re a chef looking to create a new dessert with three unique 

ingredients you can choose from a basket of five fruits (apple, banana, orange, mango, 
and kiwi). You want to find a combination that tastes delicious.

Generate:

	 1.	State Representation: A state here represents a single dessert consisting of 
three chosen fruits. We can represent it as a list of three fruits (e.g., [apple, 
banana, mango]).

	 2.	Solution Generation: Here’s the generate part. You can simply pick three 
fruits at random from the basket (five fruits) to create a possible dessert 
(state). This random selection can be repeated to generate multiple dessert 
options (states).

FIGURE 2.6  Generate and Test Method.
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Test:

	 1.	Evaluation Function: This is where you define what makes a dessert deli-
cious. It can be subjective (your taste preference) or objective (nutritional 
balance). Let’s say you simply want a variety of flavors (not three of the 
same fruit).

	 2.	Testing the Generated State: You would then evaluate each generated des-
sert (state) against your criteria. If a dessert has three different fruits, it’s a 
valid solution (delicious dessert).

Process:

	 1.	You keep generating random dessert options (states) until you find one that 
meets your criteria (a solution with three different fruit).

	 2.	 If after a set amount of tries you haven’t found a solution, you might need to 
adjust your criteria or try to generate more options.

Limitations:

•	 This is a basic generate-and-test approach. With a larger basket of fruit, 
randomly generating three unique fruit can become inefficient (especially if 
there are many repeated picks).

•	 The efficiency depends on the size of the search space (possible combina-
tions) and how easy it is to evaluate solutions.

This method is simple to implement but can be slow for large search spaces. It’s a 
good choice for problems where there’s no clear path to a solution and random explo-
ration might be helpful.

2.5.2 �H ill Climbing Method

It is one of the local search algorithms that move in the direction of increasing value 
to find the best and optimal solution for the problem. It is terminated when it reaches 
a peak value where no neighbor has a higher value. It mainly used to optimize the 
problem. Traveling salesman is one of the popular examples of the hill climbing 
method in AI. In this problem, the salesman always tries to find the minimum cost 
root to reach the destination, and this method helps him find the optimal path. Since 
it is always possible to find a better next state than the previous one, it is considered 
a greedy algorithm as well. If good heuristics is available, then this search is used. 
It is an efficient algorithm because we don’t have to maintain any type of graph and 
search trees as it operate on a single state.

Current State: The state at which the agent is currently available.
Local Maxima: The state that is better than the previous one.
Global Maxima: The state that is always best; that is, no state is better than this.
End: No further move occurs.
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Types as given below:

Simple Hill Climbing: It is one of the simplest ways to implement hill climbing. This 
algorithm compares the current state with the next state. If the next state is better than 
the current state, it updates the current state with the next state. If the next state is not 
optimal than the current, then the current state remains as it is. It always tries to find 
a better state than the previous one. It is less time-consuming, but the solution is not 
always guaranteed.

Steepest-Ascent Hill Climbing: In this method, the algorithm first examines 
all the neighboring nodes of the current state and selects the node that is close to 
the goal state. This algorithm takes more time than others due to its search for all 
neighbors.

Stochastic Hill Climbing:

This algorithm does not examine all its neighbors before starting to move. This algo-
rithm chooses any random node and decides whether to choose the current state or not. 
If it does not start, it examines other states.

Special Features of Hill Climbing:

•	 It does not backtrack the search space, and it does not remember the previ-
ous state.

•	 It is a greedy algorithm.
•	 It is a variant of the generate and test method.

FIGURE 2.7  Hill Climbing Method.
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FIGURE 2.8  Flowchart of Simple Hill Climbing.

Problems in Hill Climbing:

•	 Local maxima:
a. � Local maxima is a peak state in landscape that is better than it previous 

state, but another state that is better than local maxima is also present.
b. � Backtracking method is the solution of local maxima as the backtracking 

algorithm can backtrack and search paths.
•	 Plateau: It is a flat area of search space in which all neighbor states of the 

current state contain the same value. Due to the same set of value, it is 
impossible to find the best way. The solution for plateau is to take big steps 
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or very little steps while searching to solve the problem. Select the step that 
is far away from the current state.

•	 Ridges: A ridge is special form of local maxima. It has an area that is higher 
than its surrounding area, but it has a scope and cannot be reached in a sin-
gle move. Bidirectional search is used to find a solution move in different 
directions.

FIGURE 2.9  Trap of System in Local Maxima.

FIGURE 2.10  After Plateau Solution.

FIGURE 2.11  Ridges.
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2.5.3 � Best-First Search and A* Search

Best-first search is a widely used algorithm in computer science and AI. It is primar-
ily employed in various applications, such as path finding, puzzle solving, and deci-
sion-making. Best-first search is characterized by its ability to efficiently navigate 
through a search space by selecting the most promising nodes to explore first.

2.5.3.1 � Understanding Best-First Search
Best-first search is a graph search algorithm that works by exploring the most prom-
ising nodes first. Unlike some other search algorithms, best-first search does not 
necessarily follow a rigid order, like DFS or breadth-first search. Instead, it evaluates 
nodes based on a heuristic function, which estimates the desirability of each node.

The algorithm maintains an open list of nodes, which initially contains the start 
node. It then iteratively selects the most promising node from the open list based on 
the heuristic value and expands it. The expansion involves generating all possible 
successor nodes and evaluating them with the heuristic function. The best successor 
is then added to the open list, and the process continues until the goal node is reached 
or the open list becomes empty.

	 a.	Best-First Search: Best-first search finds solutions based on a specific 
evaluation function or heuristic function h(n). It consistently chooses the 
most favorable path available at the current moment. Here f(n) = h(n), where 
h(n) = estimated cost from node n to the goal node.

We start from source “S” and search for goal “I” using the best-first search. We 
use the given costs for the same.

FIGURE 2.12  Graph.
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The priority queue initially contains S.
Remove S from the priority queue and process unvisited neighbors of S to the 

priority queue. The priority queue has {A, C, B}.
Remove A from the priority queue and process unvisited neighbors of A to the 

priority queue.
The priority queue has {C, B, E, D}.
Remove C from the priority queue and process unvisited neighbors of C to the 

priority queue.
The priority queue now has {B, H, E, D}.
Remove B from the priority queue and process unvisited neighbors of B to the 

priority queue.
The priority queue now has {H, E, D, F, G}.
Remove H from the priority queue.
Since our goal “I” is a neighbor of H, we return.

Key Characteristics of Best-First Search

	 1.	Heuristic Function: The effectiveness of best-first search relies on the 
accuracy of the heuristic function. A good heuristic provides an informed 
estimate of the cost or distance from a node to the goal. In many cases, best-
first search uses admissible heuristics, which never overestimate the true 
cost, to guarantee optimality.

	 2.	Open List: Best-first search maintains an open list, which is a priority queue 
that stores the nodes to be explored. The priority of each node is determined 
by the heuristic value: the lower the value, the higher the priority.

	 3.	Completeness: Best-first search is a complete algorithm, meaning it will 
always find a solution if one exists. However, it may not be efficient in terms 
of time and space in some cases.

	 4.	Optimality: If best-first search uses an admissible heuristic, it is guaran-
teed to find an optimal solution, i.e., the shortest path or the best solution 
according to the given heuristic.

Best-first search is a versatile and effective algorithm with a wide range of applica-
tions in computer science and AI. Its ability to efficiently explore search spaces by 
selecting the most promising nodes first, based on a heuristic function, makes it a 
valuable tool for solving complex problems. When combined with admissible heuris-
tics, best-first search guarantees optimality, making it a crucial component in many 
real-world systems.

2.5.4 � A* Search Algorithm

The A* search algorithm is a widely used and highly efficient path-finding algo-
rithm in computer science and AI. It is essential for solving problems like route 
planning, maze solving, and even game AI development. In this comprehensive 
guide, we will delve into the A* search algorithm, its principles, and how to imple-
ment it effectively.
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Understanding the Basics of A* Search:

A* (pronounced as “A star”) is a combination of two essential components:

	 1.	G-Cost (g(n)): The cost of reaching a particular node from the start node. It 
is the total cost incurred from the start node to the current node.

	 2.	H-Cost (h(n)): The estimated cost from the current node to the goal node. It 
is an educated guess of how far the current node is from the goal.

The A* algorithm balances these two factors by selecting the nodes with the lowest 
total cost, which is defined as the sum of the G-Cost and H-Cost. The algorithm is 
guided by the principle that it should explore nodes with lower total costs first, mak-
ing it both efficient and optimal.

A* Algorithm Workflow

	 1.	Initialize Open and Closed Lists: Formulate two lists: the open list and 
the closed list. The open list includes nodes that are pending evaluation, 
while the closed list consists of nodes that have already been assessed.

	 2.	Add the Start Node to the Open List: Start the search by adding the start-
ing node to the open list. Set its G-Cost to zero.

	 3.	While the Open List Is Not Empty:
a.	 Identify the Node with the Lowest F-Cost: Find the node in the open list 

that has the lowest total cost (F-Cost).
b.	 Transfer the Selected Node to the Closed List: Take the node out of the 

open list and add it to the closed list.
c.	 Check if the Selected Node Is the Goal Node: If it is, the path has been 

located. Backtrack from the goal node to trace the optimal path.
d.	 Generate Successor Nodes: Expand the selected node by generating its 

neighboring nodes.
e.	 For Each Neighbor:

i.	 Calculate the G-Cost: Calculate the G-Cost for the neighbor node.
ii.	 If the neighbor is in the closed list and the new G-Cost is lower, 

update it: If the neighbor is already in the closed list but can be 
reached with a lower G-Cost, update its values.

iii.	 If the neighbor is not in the open list, add it: If the neighbor is not in 
the open list, calculate its F-Cost, add it to the open list, and set the 
current node as its parent.

iv.	 Continue to the next neighbor.
	 4.	Path Not Found: If the open list has become empty and the goal node has 

not been reached, that means there is no path from the start to the goal node.
		  A* Search: A* search is widely used to find the optimal path from a starting 

state to a goal state in a search space, taking into account both the cost to 
reach a node from the initial state (g) and an estimate of the cost from that 
node to the goal state (h). It is given by

f(n) = g(n) + h(n)
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Consider the following graph.
Step 01: We begin with node A. Nodes B and F are accessible from node A. The 

A* algorithm calculates f(B) and f(F). f(B) equals 6 plus 8, resulting in 14. f(F) equals 
3 plus 6, resulting in 9. Because f(F) is less than f(B), we proceed to node F. The path 
is A to F.

Step 02: Nodes G and H can be reached from node F.
A* algorithm calculates f(G) and f(H).

	 F(G) = (3 + 1) + 5 = 9
	 F(H) = (3 + 7) + 3 = 13

Since f(G) < f(H), it now moves to node G.
Step 03: Node I can be reached from nodes G and H.
A* algorithm calculates f(I).
From node G,

f(I) = (3 + 1 + 3) + 1 = 8

From node H,

f(I) = (3 + 7 + 2) +1 = 13

Since f(I) from node G < f(I) from node H, we move to node I from node G.
Therefore, Path A → F → G → I.
This is the required shortest path from node A to node I.
The A* search algorithm is a versatile and efficient approach to path-finding prob-

lems. By understanding its underlying principles and following the workflow, you 

FIGURE 2.13  Graph.
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can apply A* to a wide range of applications, from games to logistics and robotics, to 
find the shortest and most optimal paths.

The implementation of A* in Python is given below:

  import heapq 

  class Node: 
      def __init__(self, name): 
          self.name = name 
          self.edges = {} 
          self.g = float(‘inf’) # cost from start node to 
current node 
          self.h = 0 # heuristic cost from current node to 
goal node 
          self.f = float(‘inf’) # total cost (g + h) 
          self.parent = None 

      # COMPARISON METHOD FOR PRIORITY QUEUE  
      def __lt__(self, other): 
          return self.f < other.f 

  class Edge: 
      def __init__(self, node, cost): 
          self.node = node 
          self.cost = cost 

  class AStar: 
      def __init__(self, start_node, goal_node): 
          self.start_node = start_node 
          self.goal_node = goal_node 
          self.open_list = [] 
          self.closed_list = set() 

      # HEURISTIC FUNCTION  
      def calculate_heuristic(self, node): 
          return abs(ord(node.name) - ord(self.goal_node.
name)) 

      def run(self): 
          # INITIALIZE START NODE  
          self.start_node.g = 0 
          self.start_node.h = self.calculate_heuristic(-
self.start_node) 
          self.start_node.f = self.start_node.g + self.
start_node.h 
          heapq.heappush(self.open_list, self.start_node) 
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          while self.open_list: 
              # SELECT NODE WITH LOWEST F-SCORE  
              current_node = heapq.heappop(self.open_list) 
              self.closed_list.add(current_node) 

              # CHECK FOR GOAL  
              if current_node == self.goal_node: 
                  path = [] 
                  while current_node: 
                      path.append(current_node.name) 
                      current_node = current_node.parent 
                  return path[::-1] 

               # EXPLORE NEIGHBORS  
               for edge in current_node.edges.values(): 
                   neighbor = edge.node 
                   tentative_g = current_node.g + edge.
cost 
                   if neighbor not in self.closed_list or 
tentative_g < neighbor.g: 
                       neighbor.parent = current_node 
                       neighbor.g = tentative_g 
                       neighbor.h = self.calculate_ 
heuristic(neighbor) 
                       neighbor.f = neighbor.g + neighbor.h 
                       heapq.heappush(self.open_list, neighbor) 
          return None 

  # Usage 
  if __name__ == “__main__”: 
      # Create nodes 
      node_a = Node(“A”) 
      node_b = Node(“B”) 
      node_c = Node(“C”) 
      node_d = Node(“D”) 
      node_e = Node(“E”) 

      # Create edges 
      node_a.edges = {“B”: Edge(node_b, 2), “C”: Edge(node_c, 
3)} 
      node_b.edges = {“D”: Edge(node_d, 2), “E”: Edge 
(node_e, 4)} 
      node_c.edges = {“D”: Edge(node_d, 1)} 
      node_d.edges = {“E”: Edge(node_e, 1)} 
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      # RUN A* ALGORITHM  
      astar = AStar(node_a, node_e) 
      path = astar.run() 
      print(“Shortest path:”, path)       

3.5.4 Means–Ends Analysis: Means–ends analysis is a problem-solving tech-
nique commonly used in AI to narrow down the search space in AI applications. 
This method employs strategies that can reason both forward and backward, making 
it suitable for addressing large, complex problems. It functions by breaking down 
larger problems into smaller, more manageable subproblems and then solving these 
smaller parts sequentially.

Central to this technique is the evaluation of differences between the current state 
and the desired goal, with the aim of reducing these disparities. An essential aspect 
of intelligence is the ability to identify a series of actions that lead to a desired out-
come. A problem-solving system should be connected to its environment through 
input (afferent) sensors and output (efferent) actions. A means-ends analysis system 
also incorporates memory to store information about the environment’s state, sen-
sors, and actions.

Case: Goal Stack Planning

Goal stack planning involves organizing goals and subgoals in a hierarchi-
cal manner. We start at the goal state and try fulfilling the preconditions 
required to be satisfied first. We iterate over the goals and subgoals until we 
reach the initial state. A stack is used to hold these goals and the actions that 
we need to perform.

Algorithm

	 1.	Push the original goal on stack.
	 2.	Repeat following until the stack is empty.

a.	 If stack-top is a compound goal, push its subgoals.
b.	 If stack-top is a single unsatisfied goal, replace it with action and its 

preconditions.
c.	 If stack-top is action, pop and extend the knowledge base with action 

effects.
d.	 If stack-top is a satisfying goal, pop it from the stack.
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Heuristic Guidance

Heuristics in MEA serve as problem-solving strategies that guide the selection and 
application of means to achieve goals. Heuristics are the rules of thumb or guiding 
principles that expedite the decision-making process, helping navigate through the 
solution space more efficiently.

	 a.	Subgoal Ordering
		    Subgoal ordering involves prioritizing or ordering the resolution of sub-

goals based on certain criteria. This can include factors such as depen-
dencies between subgoals, the ease of resolution, or the significance of a 
subgoal in achieving the overall objective.

	 b.	Difference Reduction
		    Difference reduction focuses on identifying the differences between the current 

state and the desired goal state. The heuristic strategy involves selecting the means 
that reduce these differences incrementally, guiding the system toward the goal.

	 c.	Means Refinement
		    Means refinement involves continuously improving and optimizing the 

selected means during the problem-solving process. This heuristic ensures 
that the chosen means are not only effective in achieving the subgoals but 
also are refined iteratively to enhance efficiency.

Algorithmic Implementation

Initialization

The algorithm begins with the input of the problem description, including the initial 
state and the desired goal state.

	 i.	Create an empty goal stack to present the hierarchy of goals and subgoals.
	 ii.	Push the top-level goal into the goal stack.
	 iii.	 Initialize the current state to the initial state of the problem.

Means Identification

At each iteration, pop the top goal from the goal stack.

	 i.	 Identify potential means (actions or subgoals) that can be applied to achieve 
the current goal.

	 ii.	Apply heuristics to guide the selection of most suitable means.
	 iii.	Evaluate the effectiveness of each potential means based on the heuristics. 

If means refinement is part of the strategy, adjust the chosen means to opti-
mize the solution path.

Iteration

	 a.	Check if the current state satisfies the goal at the top of the stack. If yes, 
mark the goal as achieved and proceed to the next iteration.
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	 b.	 If the goal is not achieved, apply the selected means to transition the system 
to a new state. Update the current state based on the side effects of the cho-
sen means.

	 c.	 If subgoals are generated in the process, push them onto the goal stack, 
maintaining the hierarchical structure.

	 d.	Repeat the process from b. until the top level goal is marked as achieved.

The algorithm terminates once the top level goal is achieved. The sequence of means 
and subgoals that lead from the initial state to the goal state represents the solution 
path.

Extensions and Enhancements to MEA

Backward Chaining

Backward chaining is an extension of MEA that reverses the problem-solving 
direction. Instead of starting with the initial state and progressing toward 
the goal, backward chaining starts with the goal and works backward to 
identify the means necessary to achieve it.

Backward chaining is particularly useful in scenarios where the final goal is 
known, and the challenge lies in determining the prerequisite conditions or 
subgoals to reach that goal.

Forward Chaining

In contrast to backward chaining, forward chaining starts with the initial state 
and progresses toward the goal. It iteratively applies means to achieve sub-
goals, gradually building toward the top-level goal.

Forward chaining is effective when the initial state is known, and the challenge 
is to determine the sequence of actions or subgoals that lead to the desired 
outcome.

Domain Knowledge

The basic MEA algorithm can be enhanced by incorporating domain-spe-
cific knowledge. This involves leveraging information about the problem 
domain to guide the selection of means and improve the efficiency of 
problem-solving.

Incorporating domain-specific knowledge enhances the adaptability of MEA 
by tailoring the problem-solving approach to the intricacies of a particular 
domain. This is especially valuable when dealing with complex and special-
ized problem spaces.

2.5.5 �P roblem Reduction and AO* Algorithm

AI has redefined problem-solving strategies, offering innovative techniques 
such as problem reduction and the AO* algorithm. Problem reduction, a key AI 
approach, involves simplifying intricate problems by dividing them into manageable 
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subproblems, streamlining the overall solution process. The AO* algorithm, a piv-
otal search algorithm in AI, extends the capabilities of the renowned A* algorithm, 
enhancing search efficiency and solution optimization. By integrating these tech-
niques, AI systems can effectively address complex tasks, contributing significantly 
to the development of intelligent problem-solving methodologies.

Problem Reduction:

Problem reduction is a critical technique in the field of AI that serves to simplify 
complex problems by decomposing them into smaller, more manageable subproblems. 
This method is crucial in AI because it allows for the effective resolution of intricate 
tasks that may otherwise be too challenging or time-consuming to solve directly.

The significance of problem reduction in AI lies in its ability to streamline the 
problem-solving process. By breaking down complex problems into simpler compo-
nents, AI systems can address each subproblem independently, making the overall 
task more feasible and comprehensible. This approach not only reduces the compu-
tational burden but also enables the application of specific algorithms or techniques 
tailored to each subproblem. As a result, AI systems can efficiently navigate and 
resolve complex real-world issues, ranging from automated planning and reason-
ing to natural language processing and computer vision. Overall, problem reduction 
plays a crucial role in enhancing the efficiency and effectiveness of AI systems, mak-
ing it an indispensable strategy in the realm of AI.

Why Problem Reduction Is Needed?

Problem reduction optimizes the allocation of computational resources, ensuring 
that the AI system operates effectively within resource constraints. By facilitating a 
systematic and targeted approach to addressing multifaceted real-world issues, prob-
lem reduction significantly contributes to the overall effectiveness of AI applications.

How Problem Reduction Is Performed in AI?

Problem reduction is typically performed through a systematic approach that 
involves several key techniques:

•	 Decomposition: Breaking down complex problems into simpler subprob-
lems that are more manageable and easier to solve.

•	 Abstraction: Focusing on the essential aspects of the problem while ignor-
ing unnecessary details, allowing for a more streamlined analysis.

•	 Dependency Analysis: Identifying and understanding the relationships 
and dependencies among different components of the problem to determine 
their interconnections and dependencies.

•	 Heuristic Evaluation: Employing heuristic techniques to guide the prob-
lem-solving process and prioritize subproblems based on their estimated 
potential for solution optimality.

•	 Constraint Satisfaction: Ensuring that the solutions generated for each 
subproblem adhere to a set of predefined constraints or conditions, thus 
maintaining the integrity of the overall problem-solving process.
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AO* Algorithm:

The AO* (A-star-Optimal) algorithm is an extension of the A* algorithm, commonly 
used in AI for path finding and graph traversal. It aims to improve the efficiency and 
optimality of the search process. AO* achieves this by integrating problem reduction 
heuristics and additional techniques to guide the search more effectively toward the 
optimal solution. The algorithm incorporates a heuristic function to estimate the cost 
of reaching the goal from a particular node, thus guiding the search toward the most 
promising paths. It also prioritizes node expansion based on the cost incurred so far 
and the estimated cost to reach the goal, ensuring an optimal solution. The use of 
problem reduction heuristics allows AO* to streamline the search process, making 
it a powerful tool for solving complex optimization and path-finding problems in 
various AI applications.

The AO* algorithm is a type of best-first search used for finding optimal solutions 
in AND–OR graphs. Unlike A*, it works on graphs with alternative paths (OR) and 
mandatory subgoals (AND).

AND–OR Graph: A graph with two types of nodes:
o	 AND Node: Requires all its child nodes to be reached to achieve the 

goal.
o	 OR Node: Only one child node needs to be reached to achieve the goal.

f(n): Evaluation function, sum of actual cost (g(n)) from the start to the current 
node and the estimated cost (h(n)) from the current node to the goal.

Open List: Stores nodes to be explored, ordered by f(n).
Closed List: Stores explored nodes.

Steps in Algorithm:

Steps:

	 1.	Initialize: Put the starting node in the open list with f(n) based on the 
heuristic.

	 2.	Loop:
o	 Select the node with the lowest f(n) from the open list.
o	 If it’s a goal node, you have the optimal solution. Stop.
o	 If it’s an OR node, expand it by adding all its children to the open list 

with f(n) calculated.
o	 If it’s an AND node:

–	 Expand all its children.
–	 For each child, check if it’s already in the closed list with a lower f(n).
–	 If yes, skip it (better path found previously).
–	 If no, add it to the open list with f(n) calculated.

o	 Update f(n) of the parent node based on the best child’s f(n) (propaga-
tion). This ensures the most promising path is explored first.

o	 Move the selected node to the closed list.

Imagine you need to travel from City A to City G. You can either drive (D) or take a 
train (T). Driving allows a detour to City E (optional, OR node). A train goes directly 
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to City G or City F (alternative, OR node). We have estimated travel times (heuristics) 
between cities.

Graph:

A
/ \
D T
/ \ / \
B E F G

Travel Times:

•	 A-B: 1
•	 A-D: 2
•	 B-E: 3
•	 D-E: 1
•	 T-F: 4
•	 T-G: 5
•	 E-G: 2
•	 F-G: 1

Solution:

	 1.	Start with A, f(A) = 0 + estimated travel time to G (let’s say 7) = 7.
	 2.	Explore A’s children (D and T).

o	 D: f(D) = 2 + estimated travel time to G (let’s say 5) = 7.
o	 T: f(T) = 0 + 5 = 5 (lower than D, becomes priority).

	 3.	Explore T’s children (F and G).
o	 G is the goal, so stop! The optimal path is A -> T -> G with total cost 5.

We started with the most promising option (train) based on the heuristic. Since T 
led directly to the goal, we didn’t need to explore the detour via driving (D). The 
algorithm also ensured the best path within the train option (T -> G) by updating the 
parent node’s (T) f(n) based on the child’s (G) actual cost.

This is a simplified example. In real-world scenarios, the heuristics might not be 
perfect, and the algorithm might explore some unnecessary paths before finding the 
optimal solution. However, AO* guarantees an optimal solution eventually and is 
efficient for problems with alternative paths and mandatory subgoals.

•	 Optimal Path Selection: After reaching the goal node, trace back the path 
from the goal node to the start node using the recorded parent nodes, thus 
determining the optimal path.

Connection between AO* and Problem Reduction:

The AO* algorithm is closely connected to problem reduction in AI as it integrates 
problem reduction heuristics to enhance search efficiency. By breaking down com-
plex problems into manageable subproblems, AO* prioritizes relevant nodes, thus 
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guiding the search toward the most promising solutions. Its heuristic evaluation and 
optimal path selection rely on problem decomposition, ensuring an effective and tar-
geted approach to complex problem-solving. This integration allows AO* to stream-
line the search process, leading to the efficient resolution of intricate tasks within AI 
applications.

Problem reduction is indispensable for managing complex tasks, optimizing 
resource allocation, and applying specialized techniques, enabling AI systems to 
navigate intricate real-world challenges effectively. Meanwhile, the AO* algorithm’s 
integration of problem reduction heuristics enhances search efficiency, prioritizing 
relevant nodes and guiding the search toward optimal solutions. Its practical appli-
cations in robotics, logistics, and gaming underscore its significance in enabling 
efficient pathfinding solutions and advancing intelligent systems. Together, these 
methodologies drive the development of sophisticated AI systems.

2.5.6 � Constraint Satisfaction

Constraint satisfaction is the process of finding a solution through a set of constraints 
that impose conditions that the variable must satisfy. Depending on the type of con-
straints under consideration, several strategies are employed in constraint satisfac-
tion. Constraints on a finite domains are widely employed, to the extent that issues 
based on constraints on a finite domain are usually identified with constraint satis-
faction problems (CSPs). Typically, searches are used to tackle these kinds of issues; 
specifically, local or backtracking searches are used. Another family of approaches 
employed in similar situations is constraint propagation; generally speaking, most 
of them are incomplete, meaning they may show the problem as unsatisfactory or 
solve it, but not always. In addition, constraint propagation techniques are applied in 
conjunction with search to reduce the complexity of a particular issue. Real or ratio-
nal numbers are other types of restrictions that are taken into consideration; issues 
involving these constraints are solved.

Constraint encapsulation into programming languages was developed in the 
1980s and 1990s. Prolog was the first language designed specifically to facilitate 
constraint programming. Since then, constraint-programming libraries—like Choco 
for Java—have been made accessible in languages other than C++ or Java.

In the 1970s, the science of AI introduced constraint satisfaction as a generic 
issue. The field dates back to Joseph Fourier in the 19th century, however, when the 
constraints were expressed as multidimensional linear equations defining (in)equal-
ities. George Dantzig’s 1946 invention of the simplex algorithm for linear program-
ming, a special case of mathematical optimization, made it possible to determine 
workable solutions to problems with hundreds of variables.

The key components of constraint satisfaction include the following:

	 1.	Variables: These are the things or entities to which values must be allo-
cated in order to meet the restrictions. Generally, there is a range of values 
that can be assigned to each variable.

	 2.	Domains: The collection of all potential values that a variable can have 
is known as its domain. In a Sudoku problem, for instance, every cell rep-
resents a variable with a range of integers from 1 to 9.
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Constraints: Relationships or requirements that must be met between the variables 
are known as constraints. These limitations can be stated as equations, logical state-
ments, or any other kind of relation. The combinations of variable assignments that 
are allowed and not allowed are specified by constraints.

1.	 Constraint Satisfaction Problem:

A group of objects whose state must meet several restrictions or limits is referred 
to as a CSP in mathematics. Constraint satisfaction techniques address the homoge-
neous collection of finite constraints over variables that CSPs describe as entities in 
a problem.

Formal Definition of CSP:
Formally, a CSP is defined as a triple, where

•	 X= {X1, . . ., Xn} is a set of variables;
•	 X= {V1, . . ., Vn} is a set of their respective domains of values; and
•	 X= {C1, . . ., Cn} is a set of constraints.

CSP Algorithm:

The backtracking algorithm is a DFS technique that gradually explores the search 
space of potential solutions until a solution that fulfills all the requirements is found. 
Before continuously attempting to assign values to the other variables, the technique 
first selects one variable and assigns a value to it. If at any moment a variable cannot 
be provided a value that satisfies the requirements, the procedure goes back to the 
previous variable and attempts a different value. The algorithm is complete after 
every assignment has been tried or a solution that fulfills every requirement has been 
found.

A modified version of the backtracking method that uses some form of local con-
sistency to reduce the search space is the forward-checking algorithm. The method 
maintains a list of the remaining values for each unassigned variable and applies 
local constraints to remove conflicting values from these sets. After a variable is 
given a value, the algorithm looks at its neighbor to determine if any of the remain-
ing values becomes inconsistent. If they do, the program eliminates those neighbors 
from the sets. If a variable has no more values after a forward check, the algorithm 
reverses the direction.

•	 Local consistency and inference are two techniques used by algorithms for 
propagating constraints to reduce the size of the search space. These algo-
rithms work by propagating limitations across variables and using the gath-
ered data to remove inconsistent values from the variable domains.

Algorithm Steps

•	 Choose an unassigned variable.
•	 Assign a value from its domain.
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•	 Check if the assignment violates any constraints with already assigned 
variables.
–	 If yes, backtrack: Undo the assignment and try a different value for the 

same variable.
–	 If no, proceed to the next unassigned variable.

•	 Repeat steps 2–4 until all variables are assigned or a dead end is reached (no 
valid value for the current variable).

	 2.	Constraint Propagation:

Constraint propagation techniques improve backtracking by reducing the search 
space. The idea is to remove inconsistent values from variable domains before 
assigning them. This avoids exploring paths that will ultimately lead to failure. Here 
are some common constraint propagation techniques:

•	 Arc Consistency (AC-3): This algorithm ensures that for any two variables 
connected by a constraint, no value in one variable’s domain leads to a vio-
lation when paired with any value in the other variable’s domain.

Constraint propagation can significantly reduce the search space for backtracking, 
making it more efficient for complex problems.

Here’s an example of a CSP:

Problem: Assigning colors (red, green, and blue) to three houses such that no 
two neighboring houses have the same color.

Variables: House 1, House 2, House 3.
Domains: {Red, Green, Blue} for each house.
Constraints: House 1–House 2 (colors must be different), House 2–House 3 

(colors must be different).

This problem can be solved using backtracking with constraint propagation (AC-3) 
for efficiency.

These are just two basic algorithms for solving CSPs. There are many variations 
and more advanced techniques depending on the specific problem characteristics.

Constraint Graph:

A constraint graph is a graphical representation of a CSP. A constraint graph has the 
following elements:

	 1.	Nodes: Each node in the graph represents a variable in the CSP.
	 2.	Edges: An edge between two nodes represents a constraint between the 

corresponding variables. If variables Xand Y have a constraint, there is an 
edge between the nodes representing X and Y in the graph.

In constraint satisfaction research in AI and operation research, constraint graphs 
and hypergraphs are used to represent the relationship among constraints in a CSP. 
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A constraint graph is a special case of a factor graph that allows for the existence of 
free variables.

Constraint Hypergraph:

A constraint fulfillment problem’s constraint hypergraph is a hypergraph in which 
variables are represented by the vertices and constraints are represented by the hyp-
eredges. If the matching variables are those found in a constraint, then a group of 
vertices forms a hyperedge.

	 1.	Primal Constraint Graph:

The graph where each node represents a variable of the issue and an edge connects 
two nodes if the corresponding variables appear together in a constraint is known as 
the primal constraint graph, also known as the primal graph or the Gaifman graph, 
of a constraint fulfillment problem.

In the real world, the constraint hypergraph’s primary graph is the primal con-
straint graph.

Advantages of CSPs:

	 1.	Problem Modeling:
Adaptability:
CSPs are capable of modeling a variety of real-world issues, such as puz-

zles, scheduling, resource allocation, and configuration. They can be 
used in a variety of fields because of their adaptability.

Natural Representation:
A large number of issues across various fields can be naturally represented 

as CSPs, which facilitate comprehension and problem-solving for 
problem-solvers.

	 2.	Effective Problem-Solving:
Optimization:
By establishing objective functions and incorporating them into the con-

straints, CSPs can be applied to optimization problems. This makes it 
possible to identify solutions that meet particular requirements or those 
that are ideal.

Heuristics:
A number of algorithms and heuristics have been devised to solve CSPs 

effectively, which makes them useful in cases of huge and difficult 
problems.

Incremental Problem-Solving (CSP): In dynamic situations, partial solu-
tions can be developed and refined over time, thanks to CSP solutions’ 
ability to be built incrementally.

	 3.	Real-World Applications:
Scheduling:
To maximize resource usage and reduce conflicts, CSPs are utilized in 

timetabling, personnel scheduling, project management, and other 
scheduling issues.
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Configuration: CSPs are used in product configuration, which includes 
adjusting hardware, software, or services to meet the needs of the client.

Circuit Design:
By guaranteeing that components adhere to particular specifications and 

limitations, CSPs support the design of electronic circuits.
In robotics, CSPs are useful for motion planning, which is the process 

of guiding a robot through a given area while avoiding obstacles and 
adhering to mobility restrictions.

Natural Language Processing:
CSPs are utilized for tasks such as word sense clarification and grammar 

correction.
	 4.	Decision Support:

Diagnosis and Troubleshooting:
By modeling the relationships between symptoms and likely causes such as 

constraints, CSPs can be utilized to diagnose system flaws.
Resource Allocation:
CSPs help in efficiently allocating resources like labor, equipment, and 

funds to ensure maximum utilization.
	 5.	Collaborative Problem-Solving in Multi-Agent Systems:

In multi-agent systems, CSPs are used to simulate agent interactions and 
promote cooperation and bargaining.

Building Consensus:
CSPs can assist parties in coming to an agreement by identifying solutions 

that meet the needs and preferences of all parties.
	 6.	Educational Objectives:

Teaching Tool:
CSPs are used in AI and computer science courses to teach problem-solving 

strategies, algorithms, and heuristics.
	 7.	Development and Research:

Algorithm Development:
In the fields of AI and optimization, researchers use CSPs as a framework 

to create and test novel algorithms and methods.
CSPs are useful for prototyping and testing novel approaches to prob-

lem-solving before implementing them in more complicated systems.

Problems in CSPs:

Combinatorial Explosion in CSPs:
There can be a huge number of alternative assignment combinations, creating 

a large search space. Pruning strategies and clever heuristics are essential for con-
trolling this explosion.

Local Minimum:

Occasionally, a CSP algorithm may become trapped in a situation where a solution is 
actually there but unable to be found. Methods such as reverse engineering and intelli-
gent variable and value selection assist in reducing this issue.
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2.5.7 � Case Studies on Production System

Example 1: Let’s construct a basic production system to categorize geometric shapes 
based on their properties:

Knowledge Base Rules:

Rule 1: If a shape has three sides and three angles, then it is a triangle.
Rule 2: If a shape has four equal sides and four right angles, then it is a square.
Rule 3: If a shape has four sides and opposite sides are parallel, then it is a 

parallelogram.

Working Memory (Initial Facts):

The shape has three sides.
The shape has three angles.

Inference Engine:

The inference engine would match the first rule (Rule 1) based on the given facts, 
place it on the agenda, and fire it. This would update the working memory with the 
new fact: “The shape is a triangle.”

Expert Systems: Classic production systems in AI often incorporate expert 
systems. These systems emulate the problem-solving capabilities of human experts 
within specific fields. They employ a rule-based approach, where an inference engine 
processes a knowledge base of rules to draw conclusions and offer expert advice. 
Examples of expert systems include medical diagnosis systems and financial advi-
sory systems.

Manufacturing Control Systems:

In manufacturing, AI-powered production systems are utilized to supervise and 
optimize process performance. Rules guide machine adjustments, inventory man-
agement, and quality control parameters. These systems enhance efficiency and 
responsiveness in dynamic manufacturing environments.

Customer Support Chatbots:

Customer support chatbots leverage production rules to interact with users based on 
predetermined criteria. The chatbot’s responses to user inquiries are governed by 
rules that dictate its actions, such as providing information or escalating the issue 
to a human supervisor. These systems improve customer satisfaction and streamline 
support operations.
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3 Knowledge 
Representation

Knowledge representation is a fundamental aspect of artificial intelligence (AI) that 
deals with the organization and structuring of information to facilitate machine 
understanding and reasoning. In this chapter, we focus on the key subtopics of 
knowledge representation: ontologies, objects, and events.

There are many subtopics in the field of knowledge representation:

	 1.	Ontologies:

Ontologies are a crucial component of knowledge representation in AI. They provide 
a structured way to define and represent concepts, entities, and their interrelation-
ships within a specific domain. An ontology comprises a controlled vocabulary of 
terms and a formal description of how these terms relate to one another. Ontologies 
serve as a shared understanding of a domain, enabling machines to reason and make 
inferences based on this structured knowledge.

	 2.	Objects:

Objects represent entities or things in the world that AI systems need to under-
stand and manipulate. Objects in knowledge representation are characterized by 
their properties, attributes, and relationships with other objects. They serve as a 
foundation for representing real-world entities in a structured manner, allowing AI 
systems to reason about and interact with them. In AI, object-oriented knowledge 
representation is used in applications such as robotics, computer vision, and expert 
systems.

Objects play a crucial role in AI knowledge representation, providing a structured 
way to model and represent entities, concepts, and their attributes within a given 
domain. They are fundamental in organizing information and facilitating reason-
ing in various AI applications. Here are some key uses of objects in AI knowledge 
representation:

	 a.	Entity Modeling: Objects represent entities or things in the world. In AI 
systems, these entities can range from physical objects like cars or animals 
to abstract concepts like ideas or events. Objects allow AI systems to work 
with these entities in a structured manner.

	 b.	Attribute Representation: Each object can have attributes that describe 
its characteristics or properties. For example, a “car” object may have attri-
butes like “color,” “model,” and “year.” This attribute–value representation 
is vital for capturing essential information about objects.

https://doi.org/10.1201/9781003532170-3


	 c.	Relationship Modeling: Objects can be related to one another through 
relationships. These relationships describe how objects interact or are con-
nected. For instance, a “person” object can have a “works for” relationship 
with a “company” object, indicating employment.

	 d.	Hierarchical Organization: Objects can be organized hierarchically, cre-
ating a structured taxonomy. This hierarchy helps in classifying and cate-
gorizing objects based on their similarities and differences. For example, a 
taxonomy of animals might include objects like “mammals,” “birds,” and 
“reptiles.”

	 e.	Ontology Development: In building ontologies, which are formal represen-
tations of knowledge in a specific domain, objects play a central role. They 
define the classes or concepts in the ontology and their associated properties 
and relationships.

	 f.	Reasoning and Decision Support: Objects, their attributes, and relation-
ships enable AI systems to perform reasoning and decision-making. For 
instance, a diagnostic system might use objects representing symptoms, dis-
eases, and patient information to make medical diagnoses.

In summary, objects are a foundational element of AI knowledge representation, 
serving as a structured way to model and work with entities, concepts, and their 
attributes and relationships in a domain. They are integral to various AI applications, 
enabling systems to organize, reason about, and interact with the world in a more 
intelligent and context-aware manner.

	 III)	 Events:

Events in knowledge representation refer to occurrences or happenings that can be 
observed and described. Events are essential for capturing the dynamic aspects of the 
world, such as processes, actions, and changes. Representing events involves specifying 

FIGURE 3.1  Knowledge Representation.
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their participants, time, and the conditions under which they occur. Understanding 
events is crucial for AI systems that need to model and reason about dynamic scenarios, 
such as natural language understanding, process automation, and monitoring systems.

Events are essential elements in AI knowledge representation, particularly when 
dealing with dynamic and temporal aspects of a domain. They allow AI systems 
to capture, model, and reason about processes, changes, and occurrences. Here are 
some key uses of events in the knowledge representation of AI:

	 1.	Process Modeling: Events are used to model and represent processes and 
workflows. This is crucial in areas like business process management and 
industrial automation.

	 2.	Temporal Reasoning: Events help AI systems reason about the sequence 
of events over time. Temporal reasoning is essential in scheduling, plan-
ning, and tracking changes in dynamic environments.

	 3.	Change Detection: Events enable the detection and monitoring of changes 
in a system. For example, they are used in intrusion detection systems to 
identify suspicious events in network traffic.

	 4.	Causal Inference: Events can be used to establish causal relationships 
between different occurrences, helping AI systems understand why certain 
events happen as a result of others.

	 5.	Event Detection in Text: In natural language processing (NLP), events are 
used to extract and understand actions, occurrences, and developments in 
text, facilitating tasks like information extraction and event summarization.

	 6.	Event-Based Reasoning: AI systems can use events to reason about actions 
and their consequences. This is valuable in automated planning and deci-
sion support.

FIGURE 3.2  Applications of Objects in AI.
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Some of the uses of events in AI:

1. Process 
modeling

4. Causal 
inference

7. Event driven 
systems

2. Temporal 
reasoning

5. Event 
detection in text

8. Environmental 
monitoring

3. Change 
detection

6. Event-based 
reasoning

9. Healthcare 
monitoring

FIGURE 3.3  Events in AI.

In AI, the use of events is paramount for understanding and modeling processes, 
changes, and temporal dynamics in various domains. They enable AI systems to 
make sense of and respond to the evolving and dynamic nature of the world.

Knowledge Representation and Mapping:

•	 Knowledge and Representation:
o Knowledge is the important element, or we can say it is the information 

that current computer AI uses so that from the given knowledge that AI 
may infer some useful statistical data for any organization or its use.

o Knowledge is information that prevails in the world. Representation is 
the way knowledge is represented in different formats, e.g., encoding. It 
defines a system’s performance in any computational tasks.

•	 Types of Knowledge:

The diagram illustrates the steps AI takes to achieve its objectives. It begins with 
the perception component, which collects information from various sources such as 
audio, video, text from platforms like Instagram, and social media.

Subsequently, the learning component plays a crucial role in acquiring knowledge 
from the data gathered by perception. This process enables the AI system to adapt 
and improve its performance.

However, the core of AI lies in the knowledge representation and reasoning com-
ponents. These two aspects are pivotal in enabling the machine to mimic human-like 
activities. While they operate independently, they are also integrated to enhance the 
AI’s capabilities.

Finally, the planning and execution phases rely heavily on the analysis of the 
knowledge represented and reasoned upon. These stages are where AI translates its 
acquired intelligence into practical actions to achieve its intended goals.
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Knowledge

Structural knowledge

Meta knowledge

Procedural 

knowledge

Declarative

knowledge

Knowledge or data about any existing knowledge

It includes rules, 
strategies, procedures

Descriptive knowledge and 
expressed in 
declarative sentences

Describes any relation persists 
between any concepts or objects

FIGURE 3.4  AI Knowledge Cycle.

FIGURE 3.5  AI Components.
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3.1 � KNOWLEDGE REPRESENTATION USING PREDICATE LOGIC

3.1.1 � Knowledge

Knowledge is any information or data that is well-organized and well-structured and 
can be processed in such a way that it is efficient for an intelligent system to under-
stand, process, and infer results from. It also enables the system to act upon the data 
and make necessary judgments or decisions.

Knowledge includes facts, concepts, rules, relationships, and all inferred or 
derived results about a particular domain or problem. With this knowledge, an AI 
system can solve problems, make informed decisions, and perform necessary tasks 
and jobs.

There are two main types of knowledge in AI:
Declarative Knowledge: This represents facts and information about a particular 

domain or a problem. It includes statements about objects, their properties, and the 
relationships between them.

It answers questions like, “What is?”
Procedural Knowledge: This focuses on how to perform tasks and actions. It 

also includes rules, procedures, algorithms, and strategies for solving problems or 
for achieving goals.

It answers questions like, “How can I?”

3.1.2 � Knowledge Representation

In AI, knowledge representation is the process of encoding, structuring, and organiz-
ing knowledge in such a format that can be easily used by an AI system to make cal-
culated decisions and reasoning. Knowledge representation allows machines to store, 
manipulate, and access information relevant to a particular task or domain, and due 
to this reason, knowledge representation is a fundamental component of AI systems.

3.1.3 �P redicate Logic

Predicate logic is a mathematical model used in AI for reasoning with predicates. We 
use predicates to model facts and use them to reason facts and derive results from the 
facts or take informed decisions.

Some key components of predicate logic are as follows.

Predicates: Predicates are statements or properties that can be true or false 
depending on the values of their arguments. In predicate logic, predicates 
are represented by symbols or letters, often followed by variables. For 
example,

P(x) might represent the predicate “x is a prime number.”

Variables: Variables are placeholders that can take on various values. In predicate 
logic, variables are often denoted using letters, such as x, y, or z. They are used to 
represent objects or elements in the domain of discourse.
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Quantifiers: We use two quantifiers in predicate logic: the universal quantifier 
(") and the existential quantifier ($). These quantifiers allow us to make statements 
about all or some elements in a domain.

Universal quantifier (") is used to express that a statement is true for all elements 
in the domain. For example, "x P(x) might mean “For all values of x, P(x) is true.”

Existential quantifier ($) is used to express that a statement is true for at least one 
element in the domain. For example, $x P(x) might mean “There exists at least one 
value of x for which P(x) is true.”

3.1.4 � Knowledge Representation Using Predicate Logic

We can represent knowledge in predicate logic using the aforementioned compo-
nents. For example,

Rajesh is a soldier.
Suresh is a doctor.

The above facts or statements can be represented as

Rajesh is a solider.
Soldier(Rajesh)
Suresh is a doctor.
Doctor(Suresh)
We now use quantifiers to represent more complex facts.

Universal Quantifier ("):

"x: means “For all x.”
This means that something is true for all possible values of a variable: in this 

case x.

For example:

Ketan knows everyone.
"x: knows (Ketan,x)
Existential Quantifier ($):
$x: means there exists some.
This means that there is some possible value of x for which this is true.

For example:

Somebody knows Ketan.
$x: knows(x, Ketan)

We can also use both quantifiers separately:
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For example:

Everybody loves somebody.
"x: $y: loves(x, y)

3.1.5 �R epresenting Facts in Logic

Logic provides a precise language for expressing facts and knowledge. It eliminates 
vagueness, which ensures that statements are clear and well-defined. Logic allows 
for the formalization of facts and relationships, making it possible to represent 
knowledge systematically. Logical representation enables automated inference and 
reasoning. Logic allows us to check for inconsistencies in a set of facts. Logic is used 
to represent problems, constraints, and goals. To represent facts in logic, we use a 
structured approach that involves the following components.

Statements and Predicates:

Facts are expressed as statements. Predicates, typically written as “P(x),” con-
vey properties or relationships.

Constants and Variables:

Constants denote specific objects or elements within the domain, such as 
“John” or “Alice.” Variables, like “x,” are used to represent general elements 
and can stand for any specific object.

Quantifiers:

We use quantifiers, like " (for all) and $ (there exists), to specify the extent of 
a statement’s validity.

Logical Connectives:

Logical connectives, including Ù (AND), Ú (OR), (NOT), → (IMPLIES), and 
↔ (IF AND ONLY IF), are employed to combine and manipulate facts. 
These connectives enable the formation of more intricate statements.

Functions:

Functions can represent relationships involving mappings between objects or 
entities. For example, the function “Age(x)” might denote the age of an indi-
vidual, allowing for the representation of various attributes or characteristics.

Rules and Constraints:

Beyond simple facts, logic can be used to express rules, constraints, and depen-
dencies among facts. These rules define how facts interrelate and can be 
employed for logical reasoning.
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3.2 � USING PREDICATE LOGIC RESOLUTION ALGORITHM  
AND DEDUCTION

Predicate Logic Resolution Algorithm: The key concept of predicate logic infer-
ence is the resolution algorithm. It is employed to reconcile discrepancies, establish 
the veracity of an argument, and extract new information from previously acquired 
knowledge. There are two main steps in the algorithm:

Conversion to Clausal Form: Prior to applying resolution, we change the pred-
icate logic statements into clausal form. Through the reduction of complex 
assertions into a series of clauses (disjunctions of literals), the representation 
is made simpler.

For instance:

"x(P(x) Ú Q(x)) Ù P(a) is the original predicate logic statement.

Form of Clause: {P(x) Ù Q(x), P(a)}

	 a.	Resolution Rule: Utilizing complimentary literals (a literal and its nega-
tion) in various clauses, the resolution rule enables the deduction of a new 
clause. The procedure is followed until a resolution is no longer achievable 
after this new clause is introduced to the group of clauses.

For instance:

Clauses given: {P(x) Ú Q(x), P(a)}
Step of Resolution: {Q(a)}

The Deduction Process:

The process of drawing conclusions from premises through the application of logical 
rules and inference mechanisms is known as deduction, and it is a fundamental idea 
in both AI and logic. Deduction in predicate logic is the process of making inferences 
about the world and drawing new conclusions from known facts.

Modus Ponens: A straightforward method of inference that allows us to conclude that 
B is true if we have premises in the form of “If A then B.”

(A Þ B) and A is true.

For instance:

Concepts: A Þ B, A
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Conclusion: B

	 b.	Resolution: As was previously mentioned, the resolution algorithm is an 
effective technique for predicate logic deduction. It lets us resolve comple-
mentary literals to get new clauses.

For instance:

{P(x) Ú Q(x), P(a)} are the clauses.

Inference: {Q(a)}

	 c.	Universal and Existential Quantifiers: Using quantifiers to make deductions 
requires thinking through the range of variables. While existential quantifica-
tion ($) requires the introduction of new variables to satisfy the statement, uni-
versal quantification (") allows us to instantiate variables to specific values.

For instance:

The hypothesis is: "x Human(x) Þ Mortal(x).
Conclusion: Socrates, a human, → Socrates, a mortal

Resolution Algorithm

Before learning resolution theorem, every fact in predicate needs to be converted in 
clause form.

Conversion to Clause Form

	 1.	To eliminate → from fact.
		  X → Y º ¬X Ú Y
	 2.	Reduce the scope of each (negation) to a single term.
		  ¬(X Ú Y) º ¬X Ù ¬Y
		  ¬(X Ù Y) º ¬XÚ ¬Y
		  ¬"p: X º $p: ¬X
		  ¬$p: X º "p: ¬X
		  ¬¬X º X
	 3.	Now variables should to be standardized and each quantifier should bind 

with a unique variable.
		  ("p: X(p)) Ú ($p: Y(p)) º ("p: X(p)) Ú ($q: Y(q))
	 4.	All quantifiers should be moved to the left without changing their relative 

order.
		  ("p: X(p)) Ú ($q: Y(q)) º "p: $q: (X(p) Ú (Y(q))
	 5.	To remove $, Skolem constant or functions must be introduced. Depend-

ing on information, $ can be either replaced by constant or parameterized 
function.
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		  $p: X(p) º X(c) Skolem constant
		  "p: $q X(p, q) º "p: X(p, f(p)) Skolem function
	 6.	Drop quantifier "
		  "p: X(p) º X(p)
	 7.	Now convert the formula into a conjunction of disjuncts (CNF). It will allow 

the separation of the clause corresponding to each conjunct.
		  (X Ù Y) Ú Z º (X Ú Y) Ù (Y Ú Z)
		  Example of Conversion:
		  "x: [Rom (x) → (Pomp(x) Ù dislike (x, Caes))]
		  Step 1: In the above expression, eliminate → and Û. It will become
		  "x: [Rom (x) Ú (Pomp(x) Ù dislike (x, Caes))]
		  Step 2: Move to each term in braces and reduce the scope.
		  "x: [Rom (x) Ù (Pomp(x) Ù dislike (x, Caes))]
		  "x: [Rom (x) Ù (Pomp(x) Ú dislike (x, Caes))]
	 •	 Demonstration of Step 3 for standardization to bind unique quantifiers with 

variables.
		  "x: [["y: animal_all (y) → cares(x, y)] → [$y: cares(y, x)]]
		  After this step, a new variable z is introduced with $ as y was bonded with 

both quantifiers.
		  "x: [["y: animal_all (y) → cares(x, y)] → [$z: cares(z, x)]]
		  Demonstration of Step 4: Move all quantifiers to the left without changing 

their relative order.
		  "x: [ ["y: animal_all (y) Ù cares(x, y)] Ú [$z: cares(z, x)] ]
		  After applying Step 4, the above statement becomes
		  "x: "y: $z: [ animal_all (y) Ù cares(x, y) Ú cares(z, x) ]
		  This statement is said to be in PNF (prenex normal form).
		  Demonstration of Step 5: Skolemization to remove $ quantifier.
		  $y: king (y) transformed into King (S1)
		  There exist a value y that satisfies king, so Skolem constant S1 is introduced.
		  Example of Skolem function
		  $y: "x: better (y, x)
		  The value of y that satisfies “better” depends on the particular value of x, so 

parameterized function has to be introduced.
		  "x: better (f(x), x)
		  Demonstration Step 6: Dropping of prefix ".
		  "x: "y: "z: [Rom (x) Ú know (x, y) Ú dislike(y, z)]

After the prefix is dropped,

[Rom (x) Ú know (x, y) Ú dislike(y, z)]

Example to demonstrate Step 7: Convert the formula into a CNF.

Rom (x) Ú ((dislike (x, caes) Ù loyalto (x, caes))

P Ú (Q Ù R) º (P Ú Q) Ù (P Ú R)
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CLAUSE 1 (Rom (x) Ú (dislike (x, caes)) Ù

CLAUSE 2 (Rom (x) Ú loyalto (x, caes))

Unification: It is the process of matching two literals and finding whether they both 
can become identical with some substitution.

•	 Example 1:

dislike( marcus , X) dislike (marcus , caes)

caes/ X

•	 Example 2:

dislike(X,Y) dislike( john, Z)    could be unified as:

John/X  and y/z

Unification

UNIFY(p, q) = unifier θ where SUBST(θ, p) = SUBST(θ, q)

"x: knows(John, x) → hates(John, x) knows(John, Jane)

"y: knows(y, Leonid)

"y: knows(y, mother(y))

"x: knows(x, Elizabeth)

UNIFY(knows(John,x), knows(John, Jane))  = {Jane/x} UNIFY(knows(John, x), 
knows(y, Leonid)) = {Leonid/x, John/y}

UNIFY(knows(John, x), knows(y, mother(y))) = {John/y, mother(John)/x}
UNIFY(knows(John, x), knows(x, Elizabeth)) = FAIL
Resolution Algorithm: When multiple related facts are present, they can be used 

for inference mechanism. To apply resolution algorithm, prepossessing steps dis-
cussed above must be applied to convert into CNF. If any sentence is not in the 
clausal form, then convert it into the clausal form.

Resolution Algorithm Steps:

	 1.	Start with negation of the proposition that is to be proved.
	 2.	Combine the related facts and apply unification if needed.
	 3.	Repeat until contradiction is found or no progress can be made:
e.g.,
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X(p) ∨∨Y(p) Z(r) ∨∨ ¬ X(P)

Y(p) Z(p)∨∨

		  If the result is empty clause (E), then the contradiction has been found and 
the fact is true.

M(x) ¬ M(x)

E [ EMPTY CLAUSE]

Example

	 1.	Marcus was a man.
	 2.	Marcus was a Pomp.
	 3.	All Pomp were Rom.
	 4.	Caes was a king.
	 5.	All Pomp were either loyal to Caes or disliked him.
	 6.	Everyone is loyal to someone.
	 7.	People only try to assassinate the king they are not loyal to.
	 8.	Marcus tried to assassinate Caes.

	 1.	“Marcus was a man”
		  man(marcus)------------- 1
	 2.	“Marcus was a Pomp”
		  pomp (marcus)------------- 2
	 3.	“All Pomp’s were Rom”
		  => "x1: pomp(x1) → rom(x1).
		  => "x1: pomp(x1) Ú rom(x1)
		  pomp (x1) Ú rom(x1)----------------- 3
	 4.	“Caes was a king”
		  king (caes)----------------	 4
	 5.	“all Rom’s were either loyal to caes or disliked him”
		  => "x2: rom(x2) → [loyal_to(x2, caes) Ú dislike(x2, caes)]
		  => "x2: rom(x2) Ú loyal_to(x2, caes) Ú dislike(x2, caes)
		  => rom(x2) Ú loyal_to(x2, caes) Ú dislike(x2, caes)
		  rom (x2) Ú loyal_to (x2, caes) Ú dislike (x2, caes)------ 5
	 6.	“Everyone is loyal to someone”
		  => " x3: $ y1: loyal_to (x3, y1).
		  Let f(x3) be a Skolem function, then
		  => "x3: loyal_to(x3, f(x3)).
		  => loyal_to(x3, f(x3))
		  loyal_to (x3, f(x3))---------------- 6
	 7.	“People only try to assassinate king they are not loyal to.”
		  => "x4: "y2: [man(x4) Ù king(y2) Ù try_assassinate(x4, y2)] → loyal_to(x4, y2)
		  => "x4: "y2: [man(x4) Ù king (y2) Ù try_assassinate(x4, y2)]Ú loyal_to(x4, y2)
		  Þ "x4: "y2: man(x4) Ú king(y2) Ú try_assassinate(x4, y2) Úloyal_to(x4, y2)
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		  Let f(x4) be Skolem function, then
		  Þ => "x4: man(x4) Ú ruler(f(x4)) Ú try_assassinate(x4, f(x4)) Ú loyal_to(x4, 

f(x4))
		  Þ man(x4) Ú ruler(f(x4)) Ú try_assassinate(x4, f(x4)) Úloyal_to(x4, f(x4))
		  man(x4) Ú ruler(f(x4)) Ú try_assassinate(x4, f(x4)) Úloyal_to(x4, 

f(x4))------- 7
	 8.	“Marcus tried to assassinate Caesar”
		  try_assassinate(marcus, caes)
		  try_assassinate(marcus, caes)------------ 8
		  To prove: marcus dislike caes
		  That is

dislike(marcus, caes)
•	 Assume

¬ dislike(marcus, caes) ¬ roman ( x2) ∨∨ loyal_to (x2 , caes) ∨∨ dislike (x2 , caes)

x2 / marcus

ך dislike (marcus , caes)

¬ rom ( marcus) ∨∨ loyal_to (marcus, caes) ¬ pompeian (x1) ∨ rom(x1)

x1 / marcus

pomp (Marcus) ¬ pomp (marcus) ∨ loyal_to (marcus, ceas)

loyal_to (marcus, caes)

¬ man( x4) ∨∨ ¬ king( f(x4) ) ∨∨¬ try_assassinate( x4 , f(x4) )

x4/ marcus f(x4)/ caes
¬ man( marcus) ∨∨ ¬ ruler( caes ) ∨∨¬ try_assassinate( marcus , caes)

try_assassinate( marcus , caesar )

¬ man( marcus) ∨∨ ¬ ruler( caes )

man( marcus)

¬ ruler( caes ) ruler( caes)

E
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Since we get an empty clause, i.e., contradiction, our assumption is that	
dislike(marcus, caes) is false; hence, dislike(marcus, caes) must be true.

3.3 � FORWARD VERSUS BACKWARD CHAINING IN AI

AI encompasses a diverse array of problem-solving techniques, among which for-
ward and backward chaining are prominent inference methods. These techniques 
play a crucial role in knowledge representation and reasoning systems. This section 
will delve into the concepts of forward and backward chaining, highlighting their 
key characteristics and applications, while emphasizing the importance of original-
ity and integrity in academic and professional pursuits.

Forward Chaining:

Forward chaining, often referred to as data-driven reasoning, is an inference method 
that starts with the available data and iteratively applies rules and facts to derive con-
clusions. In this approach, the system uses the existing information to make deductions, 
gradually building toward a final goal or conclusion. Forward chaining is particularly 
useful in scenarios where there is an abundance of data and a need to explore multiple 
potential outcomes. In a forward chaining system, the process commences with the 
known facts or data. These initial facts are then matched against a set of rules to draw 
preliminary conclusions. If the derived conclusions lead to further inferences, the pro-
cess continues iteratively until no more conclusions can be drawn. This method is akin 
to a domino effect, where one piece of information triggers the next logical step. It is 
particularly advantageous in scenarios where there is a wealth of data available, allow-
ing the system to explore numerous potential outcomes and possibilities.

FIGURE 3.6  Forward Chaining.
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Applications of Forward Chaining:

•	 Diagnostic Systems: Forward chaining is extensively employed in medical 
diagnosis systems, where symptoms and test results are used to determine 
potential ailments.

•	 Production Systems: It finds application in rule-based production systems, 
such as expert systems, where a set of rules guides decision-making.

Backward Chaining:

Conversely, backward chaining, also known as goal-driven reasoning, starts with a 
goal or a desired outcome and works backward through a series of rules to find the 
necessary conditions or facts that lead to that goal. This approach is especially effec-
tive when there is a predefined objective and the system must identify the supporting 
evidence or conditions. In contrast, backward chaining starts with a specific goal or 
desired outcome in mind. The system then works in reverse, seeking the conditions 
or facts necessary to achieve that goal. By recursively applying rules in the reverse 
order, the system traces back through the chain of reasoning until it identifies the initial 
conditions required to satisfy the goal. This approach is highly effective in situations 
where a clear objective is defined, and the focus is on discerning the underlying causes 
or prerequisites.

Applications of Backward Chaining:

•	 Expert Systems: Backward chaining is employed in expert systems for trou-
bleshooting, helping identify the root cause of a problem by tracing back 
from the observed symptoms.

•	 Planning and Robotics: In AI planning and robotics, backward chaining is 
utilized to establish a sequence of actions that leads to a specific goal.

FIGURE 3.7  Backward Chaining.
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Originality and Integrity in Academic Pursuits:

When discussing forward and backward chaining in AI, it is imperative to underscore 
the significance of originality and integrity in academic and professional endeavors. 
Plagiarism, the act of presenting someone else’s work or ideas as one’s own, is a breach 
of ethical standards and hinders the progress of knowledge. Therefore, it is essential to 
ensure that all written and verbal expressions are appropriately cited, giving due credit 
to the original authors and sources.

Benefits and Trade-offs:

Both forward and backward chaining possess distinct advantages and are suitable for 
different problem-solving scenarios. Forward chaining excels in situations where there 
is an abundance of data, allowing for a comprehensive exploration of potential solu-
tions. Conversely, backward chaining is highly efficient when the objective is clearly 
defined, as it concentrates efforts on identifying the critical conditions for goal attain-
ment. The choice between these methods depends on the specific nature of the problem 
and the available data.

Forward and backward chaining are fundamental techniques in AI, each offer-
ing unique approaches to reasoning and problem-solving. While forward chaining 
starts with available data and iteratively applies rules, backward chaining begins 
with a goal and works backward to establish the required conditions. Understand-
ing the distinctions between these methods is crucial for effectively applying them 
in various AI applications. Furthermore, upholding originality and integrity is par-
amount in academic and professional pursuits, promoting a culture of ethical and 
innovative research. In summary, forward and backward chaining are pivotal rea-
soning methods in the realm of AI. Understanding their principles and applications 
empowers AI practitioners to employ the most suitable approach for a given task. 
It is imperative to uphold academic and professional integrity by avoiding plagia-
rism and ensuring that all sources are appropriately cited. This fosters a culture of 
originality and ethical research, ultimately driving the progress and innovation of 
AI technologies.

3.4 � SLOT AND FILLER STRUCTURE

The terms “slot” and “filler” are often used for information extraction and knowledge 
representation in the context of AI and NLP. They describe how information is struc-
tured and how it is extracted from text or data.

	 a.	Slot: A  slot can be described as a predefined category or attribute that 
serves to represent a specific type of information, with the aim of extraction 
or comprehension by an AI system. Slots are like placeholders used to store 
a specific piece of information. For example, in a restaurant management 
context, some slots can be “Date,” “Time”, “Location,” and “Party size.”

	 b.	Filler: The filler, which is also called a value or an argument, is the par-
ticular piece of information that gets stored in a “slot.” It can be called as 
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the actual data or content associated with a specific slot. Again, taking the 
example of restaurant reservation, if slot is “Date,” then its filler could be 
“Saturday, October 22th.”

In practical terms, slot–filler pairs are used to extract structured information from 
unstructured text or speech. This information extraction process is a fundamen-
tal part of various NLP tasks, such as chatbots, virtual assistants, and information 
retrieval systems.

For example, consider the following sentence: “I would like to book a table for two 
at an Italian restaurant on Saturday at 7 PM.” In this sentence, the slots and fillers can 
be identified as follows:

•	 Slot: “party size” - Filler: “five”
•	 Slot: “restaurant type” - Filler: “South Indian”
•	 Slot: “date” - Filler: “Saturday”
•	 Slot: “time” - Filler: “7 PM”

By extracting slots and their corresponding fillers from the input text, the AI sys-
tem can understand and act upon the user’s request effectively, such as making a 
restaurant reservation. Structured information representation enables the AI system 
to enhance the accuracy of processing user queries and providing responses.

Hierarchy:

	 1.	Weak Slot and Filler Structure:

The knowledge in slot and filler systems comprises sets of entities and their attri-
butes, forming a structure known as a weak slot and filler structure. Typically, this 
refers to a pattern where a slot represents a category or attribute, and its relationship 
with its corresponding filler is often loosely defined or lacks specificity. They are 
“Knowledge-poor” as the structure contains knowledge that is not specific.

FIGURE 3.8  Slot and Filler Structures.
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There are two types of weak slot and filler structure:

	 a.	Semantic Nets: In the semantic net, a set of nodes are connected to each 
other by a set of labeled arcs to represent the information. These act as an 
alternative for predicate knowledge in knowledge representation. A seman-
tic net consists of nodes, links, and link label.
•	 Nodes represent various values of the attributes of the object.
•	 Arcs represent relations among nodes.

Inheritance association (is a relation) can be described using a semantic net-
work. Semantic networks provide direct indexing for objects, categories, 
and the link between them.

Intersection Search: By spreading activation from two nodes and observing 
where the activation intersects, we can seek relationships among objects. 
Due to these various connections, the connection between blue color and 
India can be found.

Partitioned sematic nets are used to represent quantified expressions.
Simple binary predicates, such as “isa (Person, Mammal)” can be easily 

expressed in semantic nets. For more intricate nonbinary predicates, one 
can make use of versatile predicates like “isa” and “instance.”

To convert predicates with three or more places into a binary form, a new 
object can be created that represents the entire predicate statement. Then, 
binary predicates can be introduced to depict relationships with this newly 
created object.

•	 Example score (England, India, 300–350)

	 b.	Frames: A frame consists of attributes, which are called slots, along with 
their associated values used to describe an entity in the world. Natural lan-
guage understanding requires inference, i.e., assumptions about what is typ-
ically true of the objects or situations under consideration. Such information 
is coded into structures known as frames.

FIGURE 3.9  Example of Semantic Net.
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•	 A frame is similar to a record structure, and corresponding to the fields 
and values are slots and slot fillers. Here procedures are attached to 
slots, which are called “procedural attachments.” They are mainly of 
three types: 1) if needed, 2) defaults, and 3) if added.

•	 One frame by itself isn’t very helpful. To make them more useful, we 
connect several frames together in a frame system. We do this because 
sometimes the value of one detail in one frame talks about or points to 
another frame.

•	 The types of frames are 1) procedural frames and 2) declarative frames.
•	 Frame system can be understood easily with the help of set theory. 

Frame can be represented as a class or an instance. Considering an 
example of cricket—batsman, bowler, and team can be considered as 
classes, and Virat and India can be instances(entities).

Example: Frame for Book

Slot  Filler

Publisher Pearson

Title AI-A modern approach

Author Stuart Russel

	 2.	Strong Slot and Filler Structure:

A strong slot and filler structure involves precise and well-defined relationships 
between slots (categories or attributes) and their corresponding fillers (specific data 
values). This structure is often used in cases where the data must adhere to clear pat-
terns and constraints for effective information extraction and processing.

	 a.	Conceptual Dependency (CD): It is a structured frame (strong slots and 
fillers) used for the representation of complex and high-level knowledge for 
solving complex problems.

FIGURE 3.10  Example of Semantic Net.
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•	 It has a collection of symbols that contain knowledge and information.
•	 It acts as a theoretical model representing information types about 

events found in NLP.
•	 Various primitives used in CD are

  1)	 ATRANS
  2)	 PTRANS
  3)	 PROPEL
  4)	 MOVE
  5)	 GRASP
  6)	 XPEL
  7)	 MTRAN
  8)	 MBUILD
  9)	 ATTEND
10)	 INGEST

The symbols in CD have specific meanings:

•	 Arrows show the direction of dependency.
•	 Double arrows denote a two-way link between an actor and an action.
•	 p signifies past tense.
•	 ATRANS represents one of the basic acts within the theory, indicating the 

transfer of possession.
•	 O signifies the object case relation.
•	 R represents the recipient case relation.

	 b.	Scripts: It describes a sequence of events in particular consents.

Scripts are frames like structures used to represent commonly occurring events such 
as going to a movie.

o	 t contains a set of slots and information.
o	 If particular scripts are known to be appropriate in a given situation, then it 

is very useful for determining whether the event has occurred or not.
o	 Script indicates how events are mentioned or related to each other.
o	 The key components of a script include the following:

FIGURE 3.11  Simple Conceptual Dependency Representation.
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•	 Script Name: This serves as the title.
•	 Track: It represents special situations or specific variations.
•	 Roles: These are the people or participants involved in the events 

described in the script.
•	 Entry Condition: It specifies the prerequisites needed for executing the 

script.
•	 Props: These are nonliving objects used in the script.
•	 Scenes: These are the actual sequences of events.
•	 Result: It defines the conditions that will be true after the events described 

in the script have occurred.

	 3.	Advantages (Slot and Filler Structure):
a.	 The efficiency of monotonic inheritance is notably enhanced through 

these structures compared to pure logic, and they also readily accom-
modate non-monotonic inheritance.

b.	 The reason for this ease is rooted in the structured format of knowledge 
within slot and filler systems, which organize information as entities 
and their attributes.

c.	 This structured approach facilitates the swift retrieval of attribute val-
ues since assertions are indexed by the entities they represent.

d.	 Structured Knowledge: Slot and filler structures organize information 
in a structured manner, making it easier for AI systems to comprehend 
and manipulate data.

e.	 Efficient Retrieval: Information retrieval is efficient as the value for a 
specific attribute is quickly obtained, thanks to the indexed nature of 
assertions.

	 4.	Disadvantages (Slot and Filler Structure):
a.	 Lack of Formal Semantics: Slot and filler structures may not have 

well-defined formal semantics, so it becomes difficult to perform com-
plex mathematical reasoning unlike predicate and propositional logic.

b.	 Scalability Issues: While they are more scalable than predicate logic, 
slot and filler systems can still face scalability challenges when dealing 
with very large or complex knowledge bases.

	 5.	Applications:
o	 Some common applications of slot and filler structures include the 

following:
•	 NLP
•	 Creating knowledge bases
•	 Question-answering systems
•	 Expert systems

3.5 � ISSUES IN KNOWLEDGE REPRESENTATION

Issues in knowledge representation include difficulties in handling incomplete or 
ambiguous information, ensuring representation consistency and accuracy, managing 
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the scalability of knowledge basis, addressing contextual awareness and situational 
adaptability, and mitigating potential biases or ethical concerns within the repre-
sented knowledge, all of which can impact the effectiveness and reliability of AI 
systems.

	 1.	Important Attributes:

There are two attributes, “instance” and “isa”, that are of general importance. These 
attributes are important because they support property inheritance and organizing 
information in a structured manner.

•	 Instance Attribute:
	 The “instance” attribute is used to define the relationships between 

specific objects and the more general categories to which they belong. 
It allows to specify that a particular object is an instance of a broader 
category.

	 Example: “Harry Potter and the Philosopher’s Stone” instance “Book.” 
This states that this specific book is an instance of the class “Book.”

•	 Isa Attribute:
	 The “isa” attribute is used to express class–subclass relationships or inher-

itance. It defines that one class is a subclass of another, indicating a hierar-
chical relationship.

	 Example: Dog isa Mammal. This states that the class “Dog” is a subclass 
of the more general class “Mammal.”

These attributes simplify knowledge representation and reasoning in AI systems 
by allowing for the efficient propagation of attributes, which is essential for tasks like 
classification, reasoning, and problem-solving.

	 2.	Relationships among Attributes:

The relationship between the attributes of an object, independent of the specific 
knowledge it encodes, may hold properties like inverses, existence in an Isa hierar-
chy, single-valued attributes, and techniques for reasoning about values.

•	 Inverses:
	 Inverse attributes define a reciprocal relationship between objects. This 

allows for a bidirectional understanding of relationships, where knowing 
one attribute implies knowledge about its inverse.

	 Example: The inverse of the attribute “hasFather” might be “isChildOf.”
•	 Existence in an Isa Hierarchy:
	 In this hierarchy, attributes defined for a superclass are inherited by its 

subclasses.
	 Example: If superclass “Animal” has an attribute “hasLegs,” all subclasses 

like “Cat” and “Dog” inherit this attribute.
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•	 Single-Valued Attributes:
	 Attributes can be single-valued, meaning they associate one value with an 

object.
	 Example: An attribute “Age” associated with an object “Person” might 

have a single value such as “30.”
•	 Techniques for Reasoning about Values:
	 To support reasoning, various techniques are employed, including deductive 

reasoning, rule-based inference, and probabilistic reasoning.
	 Example: Age of person cannot be greater than the age of their parents.

The combination of these properties ensures that knowledge representation sys-
tems are capable of efficiently capturing and processing information about objects 
and their attributes.

	 3.	Choosing the Granularity:

High-level facts may not be adequate for inference, while low-level primitives may 
require a lot of storage.

Choosing the granularity of knowledge representation refers to determining the 
level of detail or abstraction at which information is encoded. The granularity can 
significantly impact how effectively an AI system operates.

In practice, a hybrid approach may be adopted, where fine-grained data is used for 
real-time monitoring and immediate intervention, while coarse-grained data is used 
for broader traffic management strategies and long-term planning.

Example: Online Product Catalog:

•	 Fine-Grained Granularity: Each product is represented with detailed attri-
butes such as the product’s name, brand, model, price, weight, color, dimen-
sions, materials used, and customer reviews.

•	 Coarse-Grained Granularity: Each product is represented more succinctly. 
For instance, each product listing includes only the product’s name, a brief 
description, and the price.

	 4.	Representing Set of Objects:

Representing a set of objects in knowledge representation involves defining a collec-
tion of objects that share a common characteristic or relationship.

There are several methods for representing sets of objects, including list or array, 
logical predicate, graphs or networks, and data structures.

The choice of representation methods depends on the specific requirements of the 
application and the level of complexity needed to describe the set and its relationships.

Example: Set of cities with population greater than 1 million.

•	 List or Array: [“Mumbai,” “Delhi,” “Kolkata,” “Bangalore,” . . .]
•	 Logical Predicate: {x | x is a city and population(x)>10000000}
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	 5.	Finding the Right Structure as Needed:

Finding the right structure in knowledge representation involves selecting an appro-
priate representation format or schema to best match the requirements of a given 
application or problem domain.

It is a balance between the specific requirements of your application and the avail-
able tools and methods for representation. It often involves a combination of domain 
knowledge, experimentation, and adaptation based on the evolving needs of the sys-
tem or application.

Example: Creating a customer relationship management (CRM) system involves 
structuring customer data as profiles with attributes like contact information, pur-
chase history, and interactions, facilitating personalized communication and state 
strategies.
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4 Data and Preprocessing
The Heart of Machine 
Learning

4.1 � INTRODUCTION TO MACHINE LEARNING

A significant area of artificial intelligence (AI) is machine learning (ML). One of the 
pioneers of AI, Arthur Samuel is often cited for his explanation of ML. According 
to him, “the field of study that gives the computer the ability to learn without being 
explicitly programmed” is ML.

The main principle of this definition is that the system should be able to learn on 
its own without the need for explicit programming. How is that even possible? It is 
well known that creating programs that teach computers how to perform computa-
tions is necessary for them to be completed.

In traditional programming, a thorough program design, such as an algorithm or 
flowchart, is made after the problem is understood, and then the programs are gener-
ated using an appropriate programming language. This method might be challenging 
to use for a variety of real-world issues, including complex image recognition appli-
cations, games, and riddles.

AI made an effort to comprehend these issues and manually create general-pur-
pose rules. To build intelligent systems, these rules were put into a software and 
made logical. An expert system is a concept for creating intelligent systems via the 
application of logic and reasoning, transforming the knowledge of an expert into a 
collection of guidelines and instructions. The expertise of numerous doctors was 
turned into a system and used to create an expert system for medical diagnosis, sim-
ilar to MYCIN. This strategy did not, however, yield much progress because the 
systems lacked true intelligence. The majority of antibiotics have names that finish 
in “mycin,” which is where the word “mycin” originated.

Because the aforementioned method still relied on human knowledge and did 
not actually demonstrate intelligence, it was impractical in many fields. After then, 
the focus switched to data-driven systems and ML. The primary objective of AI is 
to construct intelligent systems using a data-driven technique, where data is used as 
input to create intelligent models. These models can be used to predict output for 
new input data. In order to accurately anticipate the unknown data, ML aims to auto-
matically learn a model [1] or a set of rules from the provided dataset. Like people 
making decisions based on experience, computers build models based on patterns 
they see in the input data. These data-filled models are then used by computers to 
make predictions and make decisions. The learned model is the computer equivalent 
of human experience.

https://doi.org/10.1201/9781003532170-4
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A model is a clear explanation of the patterns found in data, such as the following 
[2]:

•	 Mathematical equations
•	 Relational diagrams like trees/graphs
•	 Logical if/else rules
•	 Groupings called clusters

In conclusion, a formula, process, or representation that may provide data judgments 
can be called a model. Patterns and models differ in that the former are local and 
only apply to specific attributes, while the latter are global and fit the whole set of 
data. A model can be useful, for instance, in determining whether or not a certain 
email is spam. The key element is that the provided data is automatically used to 
construct the model.

Tom Mitchell is another AI pioneer. His definition of ML states, “A computer 
program is said to learn from experience E, with respect to task T and some perfor-
mance measure P, if its performance on T measured by P improves with experience 
E.” The three key elements of this definition are task T, performance measure P, and 
experience E.

For instance, task T can involve identifying an object in a picture. With a training 
dataset of thousands of photos, the machine can learn about objects. We refer to this 
as experience E. Therefore, the goal is to apply experience E to the object detection 
task T. Precision and recall are two performance metrics that indicate how well the 
system can identify an object. To enhance the system’s performance, a course correc-
tion can be implemented based on the performance metrics.

Computer system models are analogous to human experience. Experience is based 
on data. People acquire experience in different ways. They acquire knowledge by 
memorization. They study others and try to emulate them. Books and teachers are 
two great sources of knowledge for humans. They also pick up a lot of knowledge by 
trial and error. When faced with a new issue after gaining knowledge, people look for 
previous circumstances, create heuristics, and apply those to make predictions. But 
in systems, experience is acquired by the following procedures:

	 1.	Collection of data
	 2.	After information is acquired, abstract notions are created using that infor-

mation. Concept generation is done through abstraction. This is comparable 
to how people conceptualize objects; for instance, they can describe the 
appearance of an elephant.

	 3.	The abstraction is transformed into a useful kind of intelligence by gener-
alization. You may think of it as an ordering of all possible concepts. Thus, 
classification of concepts, drawing conclusions from them, and developing 
heuristics are all part of generalization, which is a useful component of 
intelligence. Heuristics are well-informed approximations for each task. For 
instance, one’s formation of heuristics or human experience is the reason 
behind running into or encountering danger. It happens in the same way 
in machines. Although they often work, heuristics can also be ineffective. 
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Since it is only a “rule of thumb,” heuristics are not to blame. The process 
of making a course correction involves taking assessment measurements. 
Evaluation verifies that the models are comprehensive and makes any nec-
essary course corrections to provide superior formulations.

4.2 � NEED FOR ML

ML is an emerging and rapidly advancing field. It enables top management to derive 
insights from both structured and unstructured data stored across various organiza-
tional archives, aiding in decision-making processes.

In the past, the full potential of this data was not leveraged. This was partly due 
to data being dispersed across different archival systems, making integration chal-
lenging for organizations. Additionally, there were limited software tools available to 
extract valuable information from the data.

Business organizations are now adopting the latest technology, ML, to address 
these issues. The rise of ML can be attributed to three main factors:

High volume of data: Companies like Facebook (now Meta), Twitter, and 
YouTube generate massive amounts of data each year, with the data volume 
expected to double annually.

Decreased storage costs: The cost of hardware has significantly dropped, 
facilitating the capture, processing, storage, distribution, and transmission 
of digital information.

Advanced algorithms: The development of deep learning has introduced 
many sophisticated algorithms for ML.

As ML gains popularity and is readily adopted by businesses, it has become a lead-
ing technology trend.

4.3 � TYPES OF ML

Based on Figure 4.1, there are four categories of ML.
Understanding data is crucial before exploring the many forms of ML. Two cate-

gories of data exist: labeled and unlabeled. Although it can also be shown as a data 
point, data is usually displayed in a tabular format. Each row in a table is a data 
point, while the columns stand for characteristics/attribute/feature or traits. The trait 
we are trying to predict among these attributes is the label. To demonstrate labeled 
data, consider the Iris flower dataset, also known as Fisher’s Iris dataset. This dataset 
contains 50 samples of Iris flowers [3], with four attributes: sepal length, sepal width, 
petal length, and petal width. The target variable is called class, with three possible 
classes: Iris sentosa, Iris virginica, and Iris versicolor. Thus, the data in Table 4.1 is 
labeled data, where each row has an assigned value for the target variable.

Data may be in the form of images also. Various deep learning models can be 
used for this data.

Unlabeled data comes without a label. Figure 4.2 shows labeled and unlabeled 
image data.
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FIGURE 4.1  Types of ML.

TABLE 4.1 
Iris Dataset Example

Petal Length Petal Width Sepal Length Sepal Width Class

5.5 4.2 1.4 0.2 Sentosa

7 5.2 1.7 1.4 Versicolor

7.3 4 1.8 1.8 Virginica

FIGURE 4.2  Example of Labeled and Unlabeled Data.
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4.3.1 �S upervised Learning

Supervised algorithms utilize labeled datasets. As implied by the name, supervised 
learning involves a supervisory or instructional component. This supervisor supplies 
labeled data, enabling the model to be built and generate test data.

In supervised learning algorithms, the supervisor communicates the information 
that the learner is supposed to know. The learner understands the received infor-
mation without the supervisor knowing whether the information has been grasped 
by the learner or not. The supervisor tests the learner by asking a set of questions. 
Typically, supervised learning employs two techniques:

•	 Classification: Predicting the “label” or “class” of discrete data is the goal 
of classification, a supervised learning technique, for instance, identifying 
an image as a dog or a cat. A classification algorithm uses a set of labeled 
images (e.g., cats and dogs) to build a model that can classify unseen new 
images.

Two stages of classification are involved. The learning algorithm uses a labeled data-
set in the first step, referred to as the training stage, to identify patterns and create 
a model. The second step involves testing the built model with fresh or unidentified 
samples and labeling them. This process defines classification.

For instance, using the Iris dataset, if a test sample is given as (6.3, 2.9, 5.6, 1.8,?), 
the classification model will predict a label for it. Other examples of classification 
include image recognition, disease diagnosis such as cancer classification, plant clas-
sification, email spam detection, and sentiment analysis.

Key classification algorithms include the following:

•	 Decision trees
•	 Random forests
•	 Support vector machines
•	 Naive Bayes
•	 Artificial neural networks and deep learning models like convolutional neu-

ral networks (CNNs)
•	 Regression: Regression models forecast continuous variables like prices, in 

contrast to categorization techniques. Stated differently, they forecast actual 
values. Regression models use an input of x and produce a model as a fitted 
line, denoted by y = f(x). In this case, y is the dependent variable and x is 
the independent variable, which may have one or more qualities. Sales of a 
product, e.g., may vary depending on the sale week. Using the training data, 
linear regression fits a line, as in product sales = 0.66 × Week + 0.54.

The regression coefficients in this equation, which were obtained from the data, are 
0.66 and 0.54. This model has the advantage of predicting product sales (y) for weeks 
that are not known (y). To forecast revenues for the eighth week, for instance, you 
would enter 8 in place of x.
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Models for classification and regression are both classified as supervised algo-
rithms. They employ the principles of testing and training and include a supervisory 
component. Regression models predict continuous variables, like product pricing, 
while classification models concentrate on giving discrete labels, like classes or cate-
gories. This is the main distinction between the two types of models.

4.3.2 �U nsupervised Learning

This kind of learning entails self-training. As the name suggests, neither teachers nor 
supervisors are involved. Without a guide, learning occurs mostly through self-in-
struction using a trial-and-error methodology. With unlabeled data, self-learning 
takes place when the algorithm looks at samples and data and recognizes patterns 
based on grouping principles. This grouping ensures that similar objects are clus-
tered together. Examples of unsupervised learning algorithms include cluster analy-
sis, association rule mining, and dimensionality reduction.

•	 Cluster analysis aims to group objects into distinct clusters based on their 
attributes. Objects within the same cluster share similarities, while they sig-
nificantly differ from objects in other clusters. Key clustering algorithms 
include the following:
	 k-means
	 Hierarchical clustering
	 DBSCAN

•	 Dimensionality reduction involves taking high-dimensional data and 
transforming it into a lower-dimensional form by exploiting data variance. 
This process reduces the dataset to fewer features without losing its gener-
ality. Principal component analysis (PCA) is a frequently employed method 
for dimensionality reduction.

•	 Association rule mining discovers interesting associations and relation-
ships among large datasets. These rules indicate how frequently an itemset 
appears in a transaction, such as in market basket analysis. These insights 
help retailers identify items that are often purchased together. A priori algo-
rithm is commonly used to find association rules.

4.3.3 �S emi-Supervised Learning

A dataset may occasionally have a significant portion of unlabeled data mixed 
together with a lesser quantity of labeled data. Because data labeling is an expen-
sive and difficult operation for humans, semi-supervised algorithms can be used. 
These techniques provide pseudo-labels to the unlabeled data, enabling the training 
of models using a combination of labeled and pseudo-labeled data.

4.3.4 �R einforcement Learning

Reinforcement learning emulates human behavior by providing an environment for 
an agent to interact with and learn from. Instead of relying on data, the agent navi-
gates the environment to acquire knowledge. Similar to how humans use their senses 
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to perceive the world and take actions, reinforcement learning enables the agent, 
which could be a human, animal, robot, or software program, to interact with the 
environment to receive rewards. These rewards allow the agent to accumulate expe-
rience, with the goal of maximizing the reward, which can be either positive or nega-
tive (in the form of punishment). When rewards are higher, behaviors are reinforced, 
facilitating learning. Reinforcement learning finds applications in various domains, 
including gaming, robotics, and autonomous vehicles.

4.4 � UNDERSTANDING DATA

All facts are data. In computer systems, bits encode facts present in numbers, text, 
images, audio, and video. Data can be directly human-interpretable, such as numbers or 
text, or be diffused, such as images or videos that can be interpreted only by a computer.

Data by itself is meaningless. It needs to be processed to generate any informa-
tion. A string of bytes is meaningless. Only when a label is attached, such as the 
height of a person, does the data become meaningful. Information is defined as pro-
cessed data that has been given patterns, associations, and relationships. One way 
to extract information from sales data analysis is to identify the product that sold in 
larger amounts during the last quarter of the year.

4.4.1 � Big Data

Data whose volume is less and can be stored and processed by a small computer is 
called small data. Big data, on the other hand, is data whose volume is much larger. It 
must satisfy the 6Vs: volume, velocity, variety, veracity, validity and value. Big data is 
measured in terms of petabytes (PB) and exabytes (EB). One exabyte is 1 million tera-
bytes. The high arrival speed of data and its increase in volume are noted as velocity of 
data. Data comes in different forms ranging from text, graphs, audio, video, and maps 
to composite data. Data also comes from various resources such as human conversa-
tion, transaction records, and old archive data. Data sources can be open/public, social 
media, and multimodal. The veracity of data deals with aspects such as conformity 
to facts, truthfulness, believability, and confidence in data. Veracity of data is one of 
the important aspects of data as there may be many sources of error such as technical, 
typographical, and human. Validity is the accuracy of data for taking decisions. Value 
is the characteristic of big data that indicates the quality of the information that is 
extracted from the data; it influences the decisions that are taken based on it.

In big data, there are three kinds of data:

•	 Structured data: Here, data is stored in an organized manner such as a 
database, where it is available in the form of a table, and can be retrieved in 
an organized manner using tools like SQL.

•	 Unstructured data: This includes video, image, and audio. It also includes 
textual documents, programs, and blog data. Nowadays, 80% of data is 
unstructured data.

•	 Semi-structured data: This type of data is partially structured and par-
tially unstructured. Examples are XML/JSON data, RSS feeds, and hierar-
chical data.
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Once a dataset is assembled, it must be stored in a structure that is suitable for analy-
sis. Data can be stored in flat files in plain ASCII or EBCDIC format. Comma-sepa-
rated values (CSV) and tab-separated values (TSV) are popular spreadsheet formats 
for storing data.

Data can be stored in database files, which consist of original data and metadata. 
Each set of tables in a relational database has rows and columns. With the use of 
several tools like database administrator, query processing, and transaction manager, 
a database management system seeks to manage data and enhance operator perfor-
mance. Transactional, time-series, and spatial are a few types of databases where 
different types of data are stored.

The World Wide Web (WWW) provides diverse, worldwide online information. 
Algorithms can be used to mine interesting patterns of information in WWW. eXten-
sible Markup Language (XML) is a machine-interpretable data format that can be 
used to present data that needs to be shared across platforms. Dynamic data enters 
and exits the observing environment as a data stream. Massive amounts of data, a 
dynamic nature, fixed order movement, and real-time constraints are typical traits 
of a data stream. Really Simple Syndication (RSS) is a format for sharing instant 
feeds across services. JavaScript Object Notation (JSON) is another useful data inter-
change format that is often used for many ML algorithms.

4.5 � DATASET AND DATA TYPES

One way to think about a dataset is as a compilation of data entities. These entities 
could be records, documents, samples, observations, cases, points, vectors, patterns, 
or events. Each record encompasses multiple attributes, which can be described as 
the defining characteristics or properties of an entity. Let’s contemplate the dataset 
showcased in the example in Table 4.2.

There should be a value assigned to each attribute. We refer to this as measure-
ment. The type of attribute determines the data types, often referred to as measure-
ment scale types. The data types are shown in Figure 4.3.

Data can be broadly divided into two categories:

•	 Categorical or qualitative data can be nominal or ordinal. In Table 4.2, 
student ID is nominal data. Because they are symbols, nominal data cannot 
be handled like numerical data. The average student ID, for instance, defies 

TABLE 4.2 
Student Placement Dataset

Practical Communication 
Student ID CGPA Interactiveness Knowledge Skills Job Offer

1 >9 Yes Very good Good Yes

2 >8 No Average Moderate No

3 <8 No Good Poor No
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statistical interpretation. Likewise, job offer (Yes, No) and interactiveness 
(Yes, No) are also nominal data. Nominal data types provide only informa-
tion but have no order. Only operators like (=, ¹ ) are meaningful for this 
data.

	   Ordinal data provides information and has a natural order. For example, 
communication skill (good, average, and poor) is ordinal data. Regardless 
of value, poor is certainly less than average, and average is less than good. 
This data can be transformed in any way to produce a different value.

•	 Numerical or quantitative data can be classified as discrete or continu-
ous. Another classification is interval and ratio. Discrete data is recorded 
as integers. Employee identification number such as 10011 is discrete data. 
Continuous data can be fitted into a range and includes decimal points, for 
example, height. Age is a continuous data as height, age can be 120.3 cm, 
12.5 years, respectively. Interval data consists of numerical values where 
the distinctions between values hold significance. For instance, the disparity 
between 30 and 40 degrees is meaningful. Permissible operations solely 
include addition and subtraction. Conversely, ratio data encompasses mean-
ingful differences and ratios. The key disparity between ratio and interval 
data lies in the position of zero on the scale. For instance, consider the con-
version between centigrade and Fahrenheit scales. The zero points on both 
scales do not align, distinguishing this as interval data.

4.6 � DATA PREPROCESSING

In the real world, the available data is “dirty.” By this, we mean

•	 Incomplete data
•	 Outlier data
•	 Data with inconsistent value
•	 Inaccurate data
•	 Data with missing values
•	 Duplicate data

FIGURE 4.3  Types of Data.
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This “dirtiness” of data can be caused by

•	 Equipment malfunction
•	 Inconsistency with other recorded data, thus leading to deletion
•	 Data not entered due to misunderstanding
•	 Certain data may not be considered important at the time of entry
•	 Not registering history or changes in the data

As data preprocessing enhances the quality [4] of the data, it also enhances the qual-
ity of data mining techniques. This means improving accuracy, completeness, con-
sistency, timeliness, believability, and interpretability of data. The raw data must 
be preprocessed to give accurate results. The process of detection and removal of 
errors in data is called data cleaning. Some of the data errors include human errors 
such as typographical errors or incorrect measurement and structural errors like 
improper data formats. Additional causes of data errors include attribute duplication 
and omission. A random component that causes a value to be distorted or an incor-
rect object to be introduced is referred to as noise. Typically, noise is present in data 
that involves spatial or temporal components. Deterministic distortions, appearing as 
streaks, are recognized as artifacts.

Consider Table 4.3. “Bad” or “dirty” data can be observed in this table.
It can be observed that data such as salary “” is incomplete. Date of birth for 

Shreya, Tanu, and Pragnay is missing. Rishika’s age is recorded as 8, but her date 
of birth is stated as 10/10/2006. This is called inconsistent data. Shreya’s salary is 
−1500. It cannot be less than 0. It is an instance of noisy data.

Inconsistent data occurs due to problems in conversion, inconsistent formats, and 
differences in units. Outliers are data points that display distinct characteristics and 
possess unusual values compared to the rest of the dataset. For instance, Shreya’s age 
recorded as 136 could potentially be a typographical error. It’s essential to differen-
tiate between noise and outlier values. Outliers may indeed represent legitimate data 
and can even be of interest to ML algorithms. These errors often occur in the data 
collection stage. They must be removed so that ML algorithms yield better results as 
the quality of results is determined by the quality of input data. This removal process 
is called data cleaning.

TABLE 4.3 
“Dirty” Data Example

Student ID Name Age Date of Birth Fever Salary

1 Shreya 136 Low −1500

2 Tanu 18 High Yes

3 Rishika 8 10/10/2006 Yes “”

4 Pragnay 17 High Yes
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4.6.1 �M issing Data Analysis

The primary data cleaning process is missing data analysis [5]. Data cleaning pro-
cedures aim to rectify data inconsistency, smooth out noise while detecting outliers, 
and fill in missing data values. This enables ML to avoid overfitting of models. Fol-
lowing are a few techniques to solve the problem of missing data:

•	 Tuples lacking information—particularly the class label—are ignored. 
A rise in the percentage of missing values renders this strategy ineffective.

•	 The data tables can be examined by the domain expert, who can also per-
form analysis and manually enter the numbers. This takes time, though, and 
it might not be possible for big data sets.

•	 The properties that are lacking can be filled up with a global constant. The 
missing value could be “infinity” or “unknown.” However, certain ML 
algorithms may use these labels to produce false positives.

•	 For every sample in the same class, use the attribute mean. In this case, the 
missing values for each tuple in this group are replaced by the average value.

•	 To fill in the missing value, use the value that is most likely to occur. Other 
techniques, such as decision tree prediction and classification, can yield the 
most likely value.

4.6.2 �R emoval of Noise

A random error or fluctuation in a measured value is called noise [6]. It can be 
removed using binning. Binning is a technique that sorts and distributes the given 
data values into equal frequency bins in order to eliminate it. Buckets are another 
name for the bins. The neighbor values are used by the binning procedure to smooth 
the noisy data.

Several often employed strategies include “smoothing by mean,” in which the bin 
mean eliminates the bin values; “smoothing by bin median,” in which the bin median 
substitutes the bin values; and “smoothing by bin boundary,” in which the closest bin 
boundary substitutes the bin value. Bin boundaries are the highest and lowest values.

Binning methods may be used as a discretization technique. For example, apply-
ing binning technique using bins of size 3 on data {12,14,19,22,24,26,28,31,34}:

Smooth by equal frequency bin method:

Bin1: 12,14,19
Bin2: 22,24,26
Bin3: 28,31,32

Smooth by mean method:

Bin1: 15,15,15
Bin2: 24,24,24
Bin3: 30.3,30.3,30.3
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Smooth by bin boundary method:

Bin1: 12,12,19
Bin2: 22,22,26
Bin3: 28,32,32

4.6.3 �D ata Integration and Data Transformation

The process of combining data from several sources into one data source is known 
as data integration. Finding and eliminating redundancies that result from data inte-
gration is the primary objective of data integration. To enhance the efficiency of ML 
algorithms, data transformation procedures carry out tasks such as normalization or 
standardization. Data must be transformed in order for it to be processed. In normal-
ization, the performance of ML algorithms is enhanced by scaling attribute values 
to fit within a range (e.g., 0–1). Some of the normalization techniques used are as 
follows:

•	 Min–Max Procedure (MinMax Scaler): Using this normalization tech-
nique, each variable V is normalized to a new range, say 0–1, by dividing 
its difference with the minimum value within the range. Often, neural net-
works require this kind of normalization.

	 V
V

new new newA

A A
A A A′ =

−
−

+
min

max min
max min min( _ _ _ ) _ � (1)

Consider the marks {88,90,92,94}. To convert these marks to the 0–1 range, normal-
ization can be applied as

For mark 88:

v′ =
−( )
−( )

−( )+ =
88 88

94 88
1 0 0 0*
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v′ =
−( )
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1 0 0 1*
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So the marks {88,90,92,94} are mapped to a new range {0,.33,.66,1}.
Z-Score Normalization (Standard Scaler): This procedure scales the difference 

between the field value and mean value by the standard deviation of the attribute.

	 v′ =
−v A

A

µ
σ

� (2)

For example, applying z-score normalization in {10,20,30}, mean and standard 
deviation of this data are required. The mean of 10,20,30 is 20, and the standard 
deviation is 10.
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30 20
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Z-scores are used to detect outliers. Z-score function is extremely sensitive to 
outliers as it is dependent on the mean.

4.6.4 �D ata Reduction

While reducing the quantity of the data, data reduction yields identical outcomes. 
Data reduction can be done in a variety of methods, including dimensionality reduc-
tion, feature selection, wavelet transform, and sampling.

•	 Discrete wavelet transform (DWT) transforms the given data vector to 
a numerically different data vector. The transformed vector is of the same 
size as the original, but the wavelet transformed vector can be truncated. 
The strongest wavelet coefficients, i.e., wavelet coefficients larger than some 
specified threshold, can be retained and the rest can be set to 0. This helps in 
data compression. As many data values become 0 after applying this trans-
form, data becomes sparse and computation becomes very fast in wavelet 
space. Inverse DWT can be applied on a given set of wavelet coefficients, 
which gives an approximation of the original data.

•	 PCA creates an alternative reduced set of variables from the original data, 
resulting in dimensionality reduction of data. Original data is projected into 
smaller spaces, and the projection that captures the largest amount of varia-
tion in data is found. It works only on numeric data. Data is first normalized 
to make it more consistent and to make all attributes or variables in the 
same range. Eigenvectors [7] of the covariance matrix are found. These 
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eigenvectors define the new space, i.e., k orthogonal vectors, which are k 
principal components of data, where k ≤ n. These principal components are 
considered in decreasing order of “significance” or strength. Weak compo-
nents are those with low variance, and strong components have high vari-
ance. Therefore, strong components give more information to ML models. 
Since only strong components are stored, the size of data is reduced.

•	 Feature subset selection helps in feature reduction as attributes are redun-
dant and sometimes irrelevant. There are heuristic methods for feature 
selection:
o	 Step-wise forward selection [5]: Since the reduced set begins with an 

empty set of features, it operates in a forward manner. The feature that 
performs best in the original version is chosen and added to the smaller 
set. Iteratively, the set gains the best of the remaining original features.

Initial attribute set = {A1, A2, A3, A4, A5, A6}
Initial reduced set: {}

— {A1}
—-{A1,A4}
—-Reduced attribute set {A1,A4, A6}
•	 Step-Wise Backward Elimination: It works in the backward direction as it 

starts with a full set of features as the reduced set. The worst of the remain-
ing original features are removed at each step iteratively.

Initial attribute set = {A1, A2, A3, A4, A5, A6}
Initial reduced set: {A1, A2, A3, A4, A5, A6}
— {A1, A4, A5, A6}
—-Reduced attribute set {A1, A4, A6}

Combination of Forward Selection and Backward Elimination: It com-
bines both techniques discussed above. Here, the best features are added 
and the worst features are removed from the remaining data.

• In sampling [6], a representative subset of data is selected, which helps 
reduce data. Taking out samples randomly can result in poor performance 
as data may be skewed. So adaptive sampling methods must be used for 
better performance. Some sampling techniques are as follows:
o Simple random sampling: Here you choose any item with equal 

probability.
o Sampling without replacement: Here, an item is removed from a popu-

lation after selection.
o Sampling with replacement: Here, an item is not removed from the pop-

ulation after selecting it. It means that the same sample can appear again.
o Cluster sampling: Data is clustered, and a cluster is randomly selected 

from the population.
o Stratified sampling: This works well for skewed data. Here, the dataset 

is partitioned and samples are drawn from each partition (proportionally 
or in approximately the same percentage of the data).

• 
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4.6.5 �D imensionality Reduction Using Python

For each data sample that chooses a set of primary features, the number of feature vari-
ables is reduced using the unsupervised ML technique known as dimensionality reduc-
tion. One of the popular dimensionality reduction methods offered in Sklearn is PCA.

By examining the features of the original dataset, PCA [8, 9] is a statistical tech-
nique that linearly projects the data into a new feature space. Picking out the “princi-
pal” qualities of the data and creating features based on them is the primary idea. It 
will provide us with a new dataset that is small in size but which has all of the same 
information as the original dataset. Computations become fast with a reduced dataset.

Here, we use the Iris dataset for explanation. It has one target variable, flower 
category, and four independent variables: sepal length, sepal width, petal length, and 
petal width. We reduce the feature space from four independent variables to two, 
using PCA. So these two PCA components will have all the information contained 
by the four independent variables.

First, import the libraries and load the Iris dataset. Then, separate the x and y 
variables; x contains sepal length, sepal width, petal length, and petal width, and y 
contains species. The pca() method and fit_transform() are used on x data. Features 
are scaled using StandardScalar().

  from sklearn.preprocessing import StandardScaler 
  import matplotlib.pyplot as plt 
  import seaborn as sns 
  import pandas as pd 
  df = sns.load_dataset(‘iris’) 
  x = df.drop(‘species’, axis =1) 
  y = df[‘species’] 

  x = StandardScaler().fit_transform(x) 
  x = pd.DataFrame(x) 
  from sklearn.decomposition import PCA 
  pcatwofeatures = PCA() 
  x_pca = pcatwofeatures.fit_transform(x) 
  x_pca = pd.DataFrame(x_pca, columns=[‘PCA1’,’PCA2’,’PCA3
’,’PCA4’]) 
  print(x_pca.head()) 
  explained_variance = pca.explained_variance_ratio_ 
  print(explained_variance) 

  plt.figure(figsize=(10, 10)) 
  sns.scatterplot(x_pca[‘PCA1’], [0] * len(x_pca), hue=y, 
s=50) 

  plt.figure(figsize=(10, 10)) 
  sns.scatterplot(x_pca[‘PCA2’], [0] * len(x_pca), hue=y, 
s=50) 
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  plt.figure(figsize=(10, 10)) 
  sns.scatterplot(x_pca[‘PCA3’], [0] * len(x_pca), hue=y, 
s=50) 
  plt.figure(figsize=(10, 10)) 
  sns.scatterplot(x_pca[‘PCA4’], [0] * len(x_pca), hue=y, 
s=50) 

Output:

  PCA1 PCA2 PCA3 PCA4  
  0 −2.264703 0.480027 −0.127706 −0.024168  
  1 −2.080961 −0.674134 −0.234609 −0.103007  
  2 −2.364229 −0.341908 0.044201 −0.028377  
  3 −2.299384 −0.597395 0.091290 0.065956  
  4 −2.389842 0.646835 0.015738 0.035923  

  [0.72962445 0.22850762 0.03668922 0.00517871]   

PCA1 gives very accurate information, PCA2 gives less information compared to 
PCA1, and PCA3 gives less information compared to PCA2 as shown in the below 
figures.

Here, we can see that of the four features, the first two principal components 
explain 96% of the variance of data, which is visible in Figures 4.4 and 4.5. We can 
see that PCA1 separates the Sentosa class clearly from Virginica and Versicolor and 
others. Virginica and Versicolor are tougher to classify, but we should still get most 

FIGURE 4.4  Iris Flower Categorization Using PCA1.
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FIGURE 4.5  Iris Flower Categorization Using PCA2.

of the classifications correct only with a single principal component. Other principal 
components PCA2, PCA3, and PCA4 do not help much to classify the data clearly.

4.6.6 �D ata Preprocessing in Python

Here, a few data preprocessing operations are performed in Python on the Fitness -  
Fitness.csv dataset. Missing values in the dataset are checked first. They can be 
replaced using the different strategies discussed above. Here, missing values are 
present in the AGE feature, which is replaced with the mean of the same feature. The 
dataset is uploaded to Google Colaboratory and then preprocessing [10] is performed.

4.6.6.1 � Handling Missing Data Values
First, upload the .csv file to Google Colaboratory.

  import io 
  from google.colab import files 
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  import pandas as pd 
  import numpy as np 
  uploaded= files.upload() 
  datadf=pd.read_csv(io.BytesIO(uploaded[‘Fitness - Fit-
ness.csv’])) 
  print(“ORIGINAL DATA”) 
  print(datadf.isnull().sum()) 
  print(datadf) 

This will print data attributes with the count of null values for each attribute.

Output:

Fitness - Fitness.csv (text/csv) - 390 bytes, last modified: n/a - 100% done
Saving Fitness - Fitness.csv to Fitness - Fitness (3).csv
ORIGINAL DATA
ID 0
Age 0
Gender 0
MaritalStatus 0
Fitness 0
Income 0
MilesRun 0
Fit 0
dtype: int64
ID Age Gender MaritalStatus Fitness Income MilesRun Fit
0 ST19 32 Female Single 4 34562 114 yes
1 ST19 33 Male Single 3 29342 75 no
2 ST19 21 Female Partnered 3 43214 65 yes
3 ST19 19 Male Single 3 30987 84 yes
4 ST19 22 Male Partnered 2 53234 46 yes
5 ST19 22 Female Partnered 3 28345 64 no
6 ST19 24 Male Partnered 3 36432 74 no
7 ST19 25 Female Single 3 30987 86 yes
8 ST19 24 Male Single 4 31234 142 yes

The .csv file has some missing values in the AGE attribute.

  # The data file with missing values 
  uploaded= files.upload() 
  df1=pd.read_csv(io.BytesIO(uploaded[‘Fitness - Fitness1.
csv’])) 
  print(“DATA WITH MISSING VALUES IN AGE FEATURE”) 
  print(df1.isnull().sum()) 
  x = df1.iloc[:, :-1].values 
  print(x) 
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Output:

Fitness - Fitness1.csv(text/csv) - 388 bytes, last modified: n/a - 100% done
Saving Fitness - Fitness1.csv to Fitness - Fitness1 (3).csv
DATA WITH MISSING VALUES IN AGE FEATURE
ID 0
Age 2
Gender 0
MaritalStatus 0
Fitness 0
Income 0
MilesRun 0
Fit 0
dtype: int64
[[‘ST19’ 32 ‘Female’ ‘Single’ 4 34562 114]
[‘ST19’ ‘Male’ ‘Single’ 3 29342 75]
[‘ST19’ 21 ‘Female’ ‘Partnered’ 3 43214 65]
[‘ST19’ 19 ‘Male’ ‘Single’ 3 30987 84]
[‘ST19’ 22 ‘Male’ ‘Partnered’ 2 53234 46]
[‘ST19’ ‘Female’ ‘Partnered’ 3 28345 64]
[‘ST19’ 24 ‘Male’ ‘Partnered’ 3 36432 74]
[‘ST19’ 25 ‘Female’ ‘Single’ 3 30987 86]
[‘ST19’ 24 ‘Male’ ‘Single’ 4 31234 142]]

The missing values can be computed by the methods discussed above. Here, Sim-
pleImputer() is used for preprocessing this data to handle missing data.

  from sklearn.impute import SimpleImputer 
  impute = SimpleImputer(missing_values = np.nan, strat-
egy = ‘mean’) 
  “ ‘ Using the fit method, we apply the ‘imputa’ object 
on the matrix of our feature x, which is AGE here. The 
‘fit()’ method identifies the missing values and com-
putes the mean of such feature a missing value is 
present”‘ 
  impute.fit(x[:, 1:2]) 
  x[:, 1:2] = impute.transform(x[:, 1:2]) 
  print(“Imputed data (AGE feature missing values replaced 
with mean of AGE) “) 
  print(x) 

Output:

Imputed data (AGE feature missing values replaced with mean of AGE)

[[‘ST19’ 32.0 ‘Female’ ‘Single’ 4 34562 114]
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[‘ST19’ 23.9 ‘Male’ ‘Single’ 3 29342 75]
[‘ST19’ 21.0 ‘Female’ ‘Partnered’ 3 43214 65]
[‘ST19’ 19.0 ‘Male’ ‘Single’ 3 30987 84]
[‘ST19’ 22.0 ‘Male’ ‘Partnered’ 2 53234 46]
[‘ST19’ 23.9 ‘Female’ ‘Partnered’ 3 28345 64]
[‘ST19’ 24.0 ‘Male’ ‘Partnered’ 3 36432 74]
[‘ST19’ 25.0 ‘Female’ ‘Single’ 3 30987 86]
[‘ST19’ 24.0 ‘Male’ ‘Single’ 4 31234 142]]

4.6.6.2 � Categorical Data Encoding
ML algorithms work on numeric data as they are based on forming mathematical 
equations from the given data, so ML models require categorical data to be con-
verted to numeric data. Encoding techniques help convert categorical or textual data 
into numeric data. Encoding techniques such as one-hot encoding and label encoding 
[10] are available in Python, which converts text data into numeric. In the Fitness.
csv dataset, Gender, MaritalStatus and Fit are categorical data. One-hot encoding on 
the Gender feature and Label encoding on the Fit feature is applied. For our data-
set, Gender has two values (Male and Female); 0 represents male and 1 represents 
female. Numeric order between male and female does not matter. So one-hot encod-
ing helps as it converts the Gender column into three columns and creates a unique 
binary vector for male and female. Male is converted to vector [0.0 1.0], and female 
is converted to vector [1.0 0.0].

First, upload the .csv data file and view its contents.

  # Data Preprocessing -- Encoding of data 
  import io 
  from google.colab import files 
  import pandas as pd 
  import numpy as np 
  uploaded= files.upload() 
  datadf=pd.read_csv(io.BytesIO(uploaded[‘Fitness - Fit-
ness.csv’])) 
  print(“ORIGINAL DATA”) 
  print(datadf) 

Output:

Fitness - Fitness.csv(text/csv) - 390 bytes, last modified: n/a - 100% done
Saving Fitness - Fitness.csv to Fitness - Fitness (4).csv
ORIGINAL DATA
ID Age Gender MaritalStatus Fitness Income MilesRun Fit
0 ST19 32 Female Single 4 34562 114 yes
1 ST19 33 Male Single 3 29342 75 no
2 ST19 21 Female Partnered 3 43214 65 yes
3 ST19 19 Male Single 3 30987 84 yes
4 ST19 22 Male Partnered 2 53234 46 yes
5 ST19 22 Female Partnered 3 28345 64 no
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6 ST19 24 Male Partnered 3 36432 74 no
7 ST19 25 Female Single 3 30987 86 yes
8 ST19 24 Male Single 4 31234 142 yes

The Fit feature has “Yes” or “No” values. The label encoder (discussed above) is used 
to encode the Fit feature. Functions LabelEncoder() and fit_transform() are applied 
on the Fit attribute.

  from sklearn.preprocessing import LabelEncoder 
  ylabel = datadf.iloc[:, -1].values 
  print(ylabel) 
  le = LabelEncoder() 
  ylabel = le.fit_transform(ylabel) 
  print(“Label Encoded Fit Feature values”) 
  print(ylabel) 

Output:

[‘yes’ ‘no’ ‘yes’ ‘yes’ ‘yes’ ‘no’ ‘no’ ‘yes’ ‘yes’]
Label Encoded Fit Feature values
[1 0 1 1 1 0 0 1 1]

A one-hot encoder (discussed above) is used to encode the Fit feature. Functions 
OneHotEncoder() and fit_transform() are applied on the Fit attribute.

  # One-hot encoding on Gender Feature 
  from sklearn.compose import ColumnTransformer 
  from sklearn.preprocessing import OneHotEncoder 
  xinput = datadf.iloc[:, :-1].values 
  colt = ColumnTransformer(transformers=[(‘encoder’, One-
HotEncoder(), [ 2 ])], remainder= ‘passthrough’) 
  xinput = np.array(colt.fit_transform(xinput)) 
  print(“One-Hot encoding on Gender Feature”) 
  print(xinput) 

Output:

One-hot encoding on Gender feature

[[1.0 0.0 ‘ST19’ 32 ‘Single’ 4 34562 114]
[0.0 1.0 ‘ST19’ 33 ‘Single’ 3 29342 75]
[1.0 0.0 ‘ST19’ 21 ‘Partnered’ 3 43214 65]
[0.0 1.0 ‘ST19’ 19 ‘Single’ 3 30987 84]
[0.0 1.0 ‘ST19’ 22 ‘Partnered’ 2 53234 46]
[1.0 0.0 ‘ST19’ 22 ‘Partnered’ 3 28345 64]
[0.0 1.0 ‘ST19’ 24 ‘Partnered’ 3 36432 74]
[1.0 0.0 ‘ST19’ 25 ‘Single’ 3 30987 86]
[0.0 1.0 ‘ST19’ 24 ‘Single’ 4 31234 142]]
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4.6.6.3 � Scaling of Features
In some datasets, features have different values. Some features have very high-range 
values, while others have small-range values. Features scaling must be performed 
so that data becomes more relevant, and all the features are given the same weight 
and importance. If the ML model is built on unscaled data, features with high-range 
values will dominate those with small values and the ML model will treat the small-
range value features as though they do not exist. Python has two methods that help 
scale data: StandardScaler() and MinMaxScaler(). StandardScaler() is applied on the 
Miles feature of the Fitness.csv dataset.

First, upload the .csv data file and view its contents.

  # Data Preprocessing-Scaling of Data 
  import io 
  from google.colab import files 
  import pandas as pd 
  import numpy as np 
  from sklearn.preprocessing import StandardScaler 
  from sklearn.preprocessing import MinMaxScaler 
  uploaded= files.upload() 
  datadf=pd.read_csv(io.BytesIO(uploaded[‘Fitness - Fit-
ness.csv’])) 
  print(“ORIGINAL DATA”) 
  print(datadf) 

Output:

Fitness - Fitness.csv(text/csv) - 390 bytes, last modified: n/a - 100% done
Saving Fitness - Fitness.csv to Fitness - Fitness (6).csv
ORIGINAL DATA
ID Age Gender MaritalStatus Fitness Income MilesRun Fit
0 ST19 32 Female Single 4 34562 114 yes
1 ST19 33 Male Single 3 29342 75 no
2 ST19 21 Female Partnered 3 43214 65 yes
3 ST19 19 Male Single 3 30987 84 yes
4 ST19 22 Male Partnered 2 53234 46 yes
5 ST19 22 Female Partnered 3 28345 64 no
6 ST19 24 Male Partnered 3 36432 74 no
7 ST19 25 Female Single 3 30987 86 yes
8 ST19 24 Male Single 4 31234 142 yes

Next, print the values of MilesRun as we want to apply scaling on this feature.

 datadf = datadf.iloc[:,[ 6 ]]
 print(“Miles column”)
 print(datadf)
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Output:

Miles column
MilesRun
0 114
1 75
2 65
3 84
4 46
5 64
6 74
7 86
8 142

  StandardScaler() is applied on the MilesRun column. 

  stdc = StandardScaler() 
  datadf = stdc.fit_transform(datadf) 
  print(“Standard Scaled data of Miles”) 
  print(datadf) 

Output:

Standard-scaled data of MilesRun
[[1.12817638]
[−0.30656967]
[−0.67445327]
[0.02452557]
[−1.37343212]
[−0.71124163]
[−0.34335803]
[0.09810229]
[2.15825047]]

  MinMaxScaler() is applied on MilesRun. Both scaling 
techniques use different formulas to scale the data. 

  minmaxdc = MinMaxScaler() 
  datadf = minmaxdc.fit_transform(datadf) 
  print(“MinMax Scaled data of Miles”) 
  print(datadf) 

Output:

MinMax-scaled data of MilesRun
[[0.70833333]
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[0.30208333]
[0.19791667]
[0.39583333]
[0.]
[0.1875]
[0.29166667]
[0.41666667]
[1.]]

4.6.6.4 � Data Sampling
For sampling [11] data from population, Python uses random.choice() and random.
sample() functions, respectively, with and without replacement sampling.

import random
  # Sample population 
  population = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] 
  # Sample size 
  sample_size = 5 
  # Random sampling without replacement 
  randomsample = random.sample(population, sample_size) 
  print(“Random Sample without replacement:”, 
randomsample) 
  randomsamplewithreplacement=[random.choice(population) 
for _ in range(sample_size)] 
  print(“Random Sample with replacement:”, 
randomsamplewithreplacement) 

Output:

  Random Sample without replacement: [1, 7, 10, 2, 9] 
  Random Sample with replacement: [9, 5, 3, 6, 9] 

As mentioned above, stratified sampling ensures representation from each subgroup 
(stratum) in the population, leading to more precise estimates for the entire popula-
tion. Here dictionary data is created with two keys: “Category” and “Value.” “Cate-
gory” contains categorical data with three groups: “A,” “B,” and “C,” each repeated 
four times. “Value” contains corresponding numerical values for each category. 
Groups are formed on the DataFrame by the “Category” column and then a function 
apply() is applied to each group to select n_samples from each group. This will select 
different n_samples from each category on each run.

  import pandas as pd 
  # Create a sample DataFrame 
  data = { 
   ‘Category’: [‘A’, ‘A’, ‘A’, ‘A’, ‘B’, ‘B’, ‘B’, ‘B’, 
‘C’, ‘C’, ‘C’, ‘C’], 
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   ‘Value’: [10, 20, 30, 40, 15, 25, 35, 45, 50, 60, 70, 
80] 
  } 
  df = pd.DataFrame(data) 
  # Number of samples to draw from each stratum 
  n_samples = 2 
  # Perform stratified sampling 
  stratified_sample = df.groupby(‘Category’, group_keys=-
False).apply(lambda x: x.sample(n_samples)) 
  print(“Stratified Sample:\n”, stratified_sample) 

Output:

  Stratified Sample: 
   Category Value 
  2 A 30 
  3 A 40 
  7 B 45 
  4 B 15 
  8 C 50 
  9 C 60    

4.7 � SUMMARY

This chapter serves as an introductory journey into the fundamentals of ML, equip-
ping readers with essential knowledge and skills. Starting with an exploration of the 
basics of ML, readers are introduced to different types of ML paradigms. They gain 
insights into the importance of datasets, understanding various data types, and the 
foundational concepts of data preprocessing. Practical implementation using Python 
covers crucial tasks such as data reduction, transformation, encoding, and handling 
missing values, essential for preparing data for ML models. By the end of the chap-
ter, readers will have a solid foundation in handling data effectively to support their 
ML endeavors.
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5 Supervised Machine 
Learning

5.1 � SUPERVISED MACHINE LEARNING

Labeled examples are used in supervised machine learning (ML) to train algorithms 
to recognize patterns and make choices. This shows that each training case has an 
output label attached to it. In supervised learning, the objective is to build a model 
that can accurately map inputs to their corresponding outputs, allowing for predic-
tions on future data. Supervised learning seeks to learn a function that can take 
inputs and produce accurate predictions of outputs, even for data it hasn’t encoun-
tered before. Regression and classification are the two primary categories into which 
supervised learning tasks are typically divided. In regression, a continuous value is 
predicted, for instance, estimating a house’s cost based on its characteristics. Classi-
fication predicts a distinct label, such as whether an email is spam.

5.2 � CORRELATION AND REGRESSION ANALYSIS

We often need to understand how changes in one factor affect another. For instance, 
the amount of time spent studying can affect the marks obtained, or the level of rainfall 
can impact crop production. To analyze these relationships, we use statistical meth-
ods like correlation and regression. Regression allows us to predict the value of one 
variable based on another, whereas correlation assesses the strength of the relation.

5.2.1 � Correlation Analysis

The association between variables, i.e., correlation, can be studied graphically by 
creating a scatter plot of variables or by calculating the correlation coefficient. Both 
these ways of analysis are described below.

5.2.1.1 � Measures of Association
In statistics, correlation denotes some form of association between two variables. For 
example, weight and height are correlated. The measured correlation can be positive, 
negative, or zero (scatterplot in Figure 5.1).

Positive Correlation: If attribute A value increases with an increase in attri-
bute B value, and vice versa.

Negative Correlation: If attribute A value decreases with an increase in attri-
bute B value, and vice versa.

Zero Correlation: When attribute A value varies at random with attribute B 
value, and vice versa.

https://doi.org/10.1201/9781003532170-5
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5.2.1.2 � Correlation Coefficient
A statistic known as correlation coefficient evaluates the linear relationship—along 
with its strength and direction—between numerical variables. The indications (+ and 
−) show the direction of the relationship, while the magnitude, which goes from 0 
to 1 for a fully predicted relationship, denotes its strength. Strong positive relation-
ships are indicated by a correlation coefficient around 1, while strong negative linear 
relationships are indicated by a value near −1. A coefficient of 0 denotes a weak or 
nonexistent linear relationship between the variables.

To calculate the correlation coefficient between two numerical attributes, Karl 
Pearson’s method is typically employed. For ordinal attributes, Charles Spearman’s 
rank correlation coefficient is used, where ranks are assigned to the different values 
of the ordinal variable.

Correlation and covariance describe the degree of a relationship. Correlation is 
dimensionless, while covariance is not. Its unit is obtained by multiplying the units of 
the two variables. To compute the correlation coefficient, a “scaleless” quantity, the 
product of the standard deviations of x and y divides the covariance.

Covariance is defined in terms of mean as

S
n

x x y yxy i
i

n

i=
−

− −
=
∑1

1 1

( )( )

Here, xi, and yi are observations, ( , )x y- -  represent the mean of observations, and n 
denotes the total number of observations.

Mathematically, the correlation coefficient is expressed as
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where Sx and Sy represent the standard deviations, and covariance is represented by 
Sxy.
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FIGURE 5.1  Scatterplot of Correlation (Types of Correlation).
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5.2.1.3 � Correlation and Causation
While causality indicates a cause-and-effect link between two variables, correla-
tion identifies a relationship between two variables. It’s crucial to understand that 
a correlation between two variables does not imply a cause-and-effect relationship. 
A  third variable that influences both variables may be the reason for the relation-
ship between the two. For instance, there is a correlation between temperature and 
ice cream sales, but not a causal relationship. In a similar vein, sales of sunglasses 
and ice cream may correlate, but this does not mean that one causes the other. The 
common factor in both cases is warm weather, which drives the sales of both ice 
cream and sunglasses. However, ice-cream sales does not cause warm weather, and 
sunglasses do not cause ice-cream sales. A cause reflects a correlation with an under-
lying reason. For instance, the relationship between drinking coffee and productivity 
is a correlation. While caffeine intake might make you feel more productive, it could 
also be that working at a coffee shop, away from distractions at home, increases your 
productivity. In this case, the cause–effect relationship is not definitive. On the other 
hand, the relationship between exercise and muscle growth, and between overeat-
ing and obesity are clear examples of cause–effect relationships. Exercise leads to 
muscle growth, and overeating leads to weight gain or obesity. In these cases, if X 
occurs, Y follows. Understanding cause–effect relationships is particularly valuable 
in business analysis, as it provides real-world context and meaning to correlations. 
For example, you might want to identify the factors that contributed to a successful 
marketing channel, understand why customers are buying your product, or determine 
the most appreciated feature of your product.

5.2.2 �R egression Analysis

In order to forecast the value of a dependent variable, regression analysis analyzes the 
relationship between the dependent variable and one or more independent variables. 
This statistical modeling technique is used to establish a mathematical representation 
of the relationship between variables. Regression models are broadly categorized 
into linear and nonlinear types. Linear models can be further divided into simple and 
multiple regression models, as depicted in Figure 5.2.

FIGURE 5.2  Regression Analysis Model.
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5.2.2.1 � Simple Linear Regression
Two variables are the main focus of basic linear regression: the independent variable, 
also known as the regressor (X), and the dependent variable, commonly known as 
the response (Y). Figure  5.3 shows how a linear equation expressing the relation 
between X and Y is expressed.

Regression analysis quantifies the strength of the relation between Y and X by 
finding the best fit among an infinite number of potential lines. Estimating the 
regression coefficients, often represented by the symbols α and β, is the aim of 
regression analysis. The least squares method seeks to minimize the sum of squared 
errors in order to determine which regression line most closely matches the data 
points. To accomplish this minimizing, linear regression computes the coefficients 
α and β.

	 e = (Y X )i iΣ −β−α 2 � (2)

The sum of squared errors is differentiable and also positive, so it is used in linear 
regression. To minimize the error, the equation is differentiated with respect to the 
parameters and then equated to zero. The estimated values for the parameters α and 
β are derived from this process.

	 α =
( )−( )( )
( )−( )
XY X Y

Xi X2 2 � (3)

	 β −α=Y X � (4)

FIGURE 5.3  Simple Linear Regression.
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Certain assumptions are necessary for drawing valid conclusions from linear 
regression:

	 1.	Since they are raised to the first power and are not multiplied or divided by 
one another, parameters β and α are linear.

	 2.	The independent variable is nonrandom.
	 3.	For every observation, the error term’s variance stays the same.
	 4.	The error term, ε, follows normal distribution and shows no correlation 

across different observations.

5.2.2.2 � Multiple Linear Regression
When there are numerous independent variables (k-independent variables, x1, x2, 
. . ., xk), multiple regression modeling can be applied. The multiple linear regression 
model has linear coefficients, which may be expressed as follows:

	 y = +  +  +i 0 1 2 kb b b bx x xk1 2 � (5)

5.2.2.3 � Nonlinear Regression
When the regression equation is expressed with a degree greater than one (r > 1), 
it is referred to as a nonlinear regression model. Additionally, if there are multiple 
independent variables, x1, x2, . .  ., xr, the model is known as a multiple nonlinear 
regression model, or alternatively, a polynomial regression model. Generally, it is 
represented as

	 y = +  +  +i 0 1 2 rb b b bx x xr2 � (6)

This approach can be useful when the relationship between the independent and 
dependent variables is nonlinear. The equation above illustrates how to fit the data 
using a polynomial regression model or you can transform the data into a linear form 
in order to apply a linear regression model to nonlinear data.

5.2.3 �V alidation of Regression Methods

Regression model evaluation involves key metrics to assess performance: mean abso-
lute error (MAE) calculates the average magnitude of prediction errors by consid-
ering absolute differences between actual and predicted values. Mean squared error 
(MSE), which squares these differences, highlights larger errors, making the model 
sensitive to outliers. Root mean squared error (RMSE), the square root of MSE, 
presents errors in their original units for easier interpretation. Finally, the R² score 
(coefficient of determination) measures how well the model explains the variance in 
the dependent variable, with a value close to 1 indicating a strong fit and values near 
0 signifying poor model performance.
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Example: Let’s assume the company’s 5 months sales data (in thousands) is as 
given below. Apply the linear regression technique to predict the 8th and 12th month 
sales.

Xi (Month) Yi (Sales in Thousands)

1 12

2 18

3 26

4 32

5 38

To fit the linear regression model, the parameters are calculated using the follow-
ing formulas for Y = X +α β .

	 α =
( )−( )( )
( )−( )
XY X Y

Xi X2 2

	 β −α=Y X

Xi Yi (Xi)2 Xi * Yi

1 12 1 12

2 18 4 36

3 26 9 78

4 32 16 128

5 37 25 185

Sum = 15
Average of Xi = 15/5 = 3

Sum = 125
Average of Yi = 125/5 = 25

Sum = 55
Average of (Xi)2 = 

55/5 = 11

Sum = 439
Average of (Xi*Yi) = 
439/5 = 87.8

	 α = ((87.8) – (3)(25)) / (11 – 32) = 12.8/2 = 6.4

β = 25 – 6.4 * 3 = 5.8
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Regression line Y = 6.4 X + 5.8

Sales of 8th month = 6.4 * 8 + 5.8 = 57

Sales of 12th month = 6.4 * 12 + 5.8 = 82.6

Given the actual sales of the 8th and 12th months are 60 and 80, respectively, errors 
can also be calculated such as MSE, MAE, RMSE, and r2 score or R2.

	 MAE = ½ ((60 – 57) + abs(80 – 82.7)) = 2.85

MSE = ½ ((60 – 57)2 + (80 – 82.7)2) = 8.145

RMSE = sqrt(8.145) = 2.85

Y = 25

R2 = 1 − (((60 – 57)2 + (80 – 82.7)2) / ((60 – 25)2 + (80 – 25)2)) = .9961

R2 indicates the accuracy of the linear regression model is 99.61%.

5.2.4 �S imple Linear Regression in Python

This code uses an advertising.csv file, which contains the data on TV, radio, news-
paper, and sales. Here, the strongest linear relationship between data items is found 
out and then a linear regression model is fit for those data items. The accuracy of the 
model is also calculated, and the data is also represented using different graphical 
methods.

First, Advertising.csv file is uploaded in Google Colab.

# To load.csv file in colab
from google.colab import files
uploaded= files.upload()

  #Simple Linear Regression 
  from matplotlib import pyplot 
  import io 
  import matplotlib.pyplot as plt 
  import pandas as pd 
  from sklearn.model_selection import train_test_split 
  from sklearn.linear_model import LinearRegression 
  from sklearn import metrics 
  import scipy.stats 

  dfval=pd.read_csv(io.BytesIO(uploaded[‘Advertising.
csv’])) 
After the csv file is uploaded, correlation coefficients between TV, radio, newspaper, 
and sales are calculated using Pearson’s, Spearman’s, and Kendall’s methods.
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  #Find the correlation between variables 
  pearsoncorr = dfval.corr(method=‘pearson’) 
  print(pearsoncorr) 
  spearmancorr = dfval.corr(method=‘spearman’) 
  print(spearmancorr) 
  kendallcorr = dfval.corr(method=‘kendall’) 
  print(kendallcorr) 

Output:

                   TV        Radio   Newspaper     Sales 
  TV         1.000000   0.054809   0.056648   0.782224  
  Radio      0.054809   1.000000   0.354104   0.576223 
  Newspaper  0.056648   0.354104   1.000000   0.228299 
  Sales      0.782224   0.576223   0.228299   1.000000 

                   TV      Radio   Newspaper     Sales 
  TV         1.000000   0.056123   0.050840   0.800614  
  Radio      0.056123   1.000000   0.316979   0.554304 
  Newspaper  0.050840   0.316979   1.000000   0.194922 
  Sales      0.800614   0.554304   0.194922   1.000000 

                   TV      Radio   Newspaper     Sales 
  TV         1.000000   0.041202   0.034156   0.621946  
  Radio      0.041202   1.000000   0.207077   0.419447 
  Newspaper  0.034156   0.207077   1.000000   0.132271 
  Sales      0.621946   0.419447   0.132271   1.000000 

By looking at the results printed, it appears that TV and sales follow a strong linear 
relationship. Plot is printed on TV and sales attributes.

dataval1=dfval[‘TV’]
  dataval2=dfval[‘Sales’] 
  # plot 
  pyplot.scatter(dataval1, dataval2) 
  pyplot.show() 

Output:

The correlation coefficients of TV and sales can be printed using all three methods 
of correlation.

  print(‘Using scipy, coorelation between two variables Tv 
and Sales’) 
  pearsoncorr=scipy.stats.pearsonr(dataval1,dataval2)[0] 
  print(pearsoncorr) 
  spearmancorr = scipy.stats.spearmanr(dataval1,dataval2)
[0] 
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  print(spearmancorr) 
  kendallcorr = scipy.stats.kendalltau(dataval1,dataval2)
[0] 
  print(kendallcorr) 

Output:

  Using scipy, coorelation between two variables TV and 
Sales 
  0.7822244248616065 
  0.8006143768505688 
  0.6219463551009411  

  As we see a strong linear relationship between TV and 
sales data, a regression model can be built for these 
parameters as coded below: 

  Xval = dfval[‘TV’].values.reshape(-1,1) 
  yval = dfval[‘Sales’].values.reshape(-1,1) 

  Linear Regression model on TV and Sales data of 
advertising 
  Xval_train, Xval_test, yval_train, yval_test = train_
test_split(Xval, yval, test_size=0.3, random_state=0) 
  regressorval = LinearRegression() 

FIGURE 5.4  Scatterplot of TV and Sales (Shows Linear Relationship).
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  regressorval.fit(Xval_train, yval_train) 
  #To retrieve the intercept and slope of linear regres-
sion model: 
  print(regressorval.intercept_) 
  print(regressorval.coef_) 

Output:

  [7.31081017] 
  [[0.04581434]] 

  yval_pred = regressorval.predict(Xval_test) 
  df = pd.DataFrame({‘Actual’: yval_test.flatten(), ‘Pre-
dicted’: yval_pred.flatten()}) 
  print(df) 

Output:

        Actual     Predicted 
  0       11.3     10.481163﻿
  1        8.4      9.601527 
  2        8.7     11.452427 
  3       25.4     20.583225 
  4       11.7     15.108411 
  5        8.7      9.885576 
  6        7.2      7.709395 
  7       13.2     18.310834 
  8        9.2      8.401192 
  9       16.6     16.363724 
  10      24.2     19.282098 
  11      10.6     11.305821 
  12      10.5     14.485336 
  13      15.6     15.914744 
  14      11.8     10.811026﻿
  15      13.2     12.817694  
 . . . . . . . . . . . . 
  57      14.4     15.213784 
  58      16.6     16.588214 
  59       5.5      7.645255  

This will evaluate the performance of the regression model

  print(“) 
  r2_score = regressorval.score(Xval_test, yval_test) 
  print(‘accuracy of model is’) 
  print(r2_score*100,’%’) 
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Output:

  accuracy of model is 
  72.5606346597073 %  

Bar graph of first 15 values to show actual and predicted values.

  dfval1 = df.head(15) 
  dfval1.plot(kind=‘bar’,figsize=(16,10)) 
  plt.grid(which=‘major’, linestyle=‘:’, linewidth=‘0.6’, 
color=‘red’) 
  plt.grid(which=‘minor’, linestyle=‘-’, linewidth=‘0.6’, 
color=‘green’) 
  plt.show() 

Output:

          Below code to shows Predicted Y value in line, points 
shows actual Y values for test data 

  plt.scatter(Xval_test, yval_test, color=‘gray’) 
  plt.plot(Xval_test, yval_pred, color=‘red’, linewidth=2) 
  plt.show() 
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FIGURE 5.5  Actual and Predicted Values of Simple Linear Regression on Advertising Data.
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#output

FIGURE 5.6  Regression Line of Advertising Data.

From the Advertising.csv file, which contains the data on TV, radio, newspaper, 
and sales, multiple linear regression can also be fitted. “Sales” data items are con-
sidered as a dependent variable, whereas TV, newspaper, and radio are considered as 
independent variables. Using this model, sales is predicted based on TV, newspaper, 
and radio. The accuracy of the multiple linear regression model is 86%, while that 
of the simple linear regression model is 72% only, as discussed above. Here results 
shows that the sales prediction is better considering those of TV, radio, and newspa-
per together instead of considering only TV data.

5.3 � CLASSIFICATION

Statistical ML methods, particularly classification techniques, are employed to cat-
egorize items based on specific traits or features.​ For example, classification can be 
applied to label documents as “Secret” or “Confidential,” or to recognize handwrit-
ten characters in languages such as Gujarati, Bengali, and Devanagari.

Common classification algorithms include Naive Bayes, k-NN, logistic regression, 
decision trees, and support vector machines.

Classification problems are generally divided into two primary types: binary clas-
sification and multiclass classification. Binary classification focuses on distinguish-
ing between two groups, such as determining whether cancer is present or classifying 
an email as spam. In contrast, multiclass classification addresses scenarios with more 
than two categories, such as identifying different faces, categorizing various plant 
species, or recognizing distinct characters.
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To adapt binary classification algorithms for multiclass scenarios, strategies like 
one-versus-one and one-versus-rest can be employed. The one-versus-rest approach 
involves training a separate binary classifier for each category against all other cat-
egories, while the one-versus-one method trains binary classifiers for every possible 
pair of categories. These techniques can be effectively utilized by algorithms such 
as support vector machines and logistic regression for multiclass classification tasks.

5.3.1 � k-NN Classification

k-NN is a straightforward, nonparametric ML method that doesn’t make any assump-
tions about the underlying data. Unlike many other algorithms that need a training 
phase, k-NN classifies [1] incoming data points based on how similar they are to 
preexisting data points. The effectiveness of k-NN is dependent on the choice of 
k or the number of nearest neighbors considered. To classify a new data point, the 
algorithm calculates its distance from the current data points (using methods such 
as the Euclidean distance). k-NNs are estimated using these calculated distances. 
In Figure 5.7, a new data point is classified in category 1 as of five neighbors, three 
nearest neighbors are from category 1. As a constant, k has an odd value.

5.3.1.1 � k-NN Classification Using Python
Breast cancer data is used here to classify test data points as “malignant” or “benign.” 
The k-value taken here is 5. The distance measure used here is Euclidean distance. 
These parameters are specified in the KNeighborsClassifier() function of the sklearn 
library. Data is split into training and test sets. The dataset contains a total of 570 
data points, and 114 data points are considered as test data points. The k-NN classi-
fier classifies 109 points correctly, and the accuracy of the model is 95.61%.

  #K-nn Classification  
  import numpy as np  
  import pandas as pd  

FIGURE 5.7  k-NN Classification.
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  from sklearn import datasets, metrics  
  from sklearn.preprocessing import StandardScaler  
  from sklearn.metrics import confusion_matrix  
  from sklearn.neighbors import KNeighborsClassifier  
  from sklearn.model_selection import train_test_split  
  cancer = datasets.load_breast_cancer()  
  Xval = cancer.data  
  yval = cancer.target  
  scaler = StandardScaler()  
  X_scaledval = scaler.fit_transform(Xval)  
  X_trainval, X_testval, y_trainval, y_testval = train_
test_split(X_scaledval, yval, test_size = 0.2, random_
state = 1)  

  #K nearest neighbor classifier is built, which is using 
euclidean distance measure to find 5 nearest points. 
Prediction and accuracy is also calculated here.  
  knnclassifier = KNeighborsClassifier(n_neighbors=5, 
metric=‘euclidean’)  
  knnclassifier.fit(X_trainval, y_trainval)  
  y_pred = knnclassifier.predict(X_testval)  
  print(confusion_matrix(y_testval, y_pred))  

  r2_score = knnclassifier.score(X_testval, y_testval)  
  print(‘accuracy of model is ‘)  
  print(r2_score*100,’%’)  

Output:

  [[37 5]  
   [ 0 72]]  
  accuracy of model is 95.6140350877193 %    

5.3.2 �D ecision Tree

A decision tree is a flowchart-like graphic that shows the various possible outcomes 
depending on a series of choices. It serves various purposes, including decision-mak-
ing, research analysis, and strategic planning. Tree-based algorithms are widely 
employed in supervised learning tasks due to their versatility. Decision trees are 
capable of processing numerical and categorical input, and they are valued for their 
ease of interpretation and visualization. Typically, decision trees consist of three 
main components:

Root Node: Represents the ultimate objective or the big decision you’re trying 
to make.

Branches: Represent the options that are available when making a decision.
Leaf Node: Represents possible outcomes for each action.
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Advantages of Decision Tree:

	 Minimal effort is needed for data preparation or cleaning during the prepro-
cessing phase.

	 Decision trees do not require data normalization or scaling.
	 Missing data does not significantly impact the decision tree building 

process.
	 Decision trees are valued for their simplicity and clarity, making them easy 

to explain to both technical teams and stakeholders.

Disadvantages of Decision Tree:

	 The tree structure can alter significantly even with little changes in the data.
	 In comparison to other methods, the necessary computations can get more 

complicated.
	 The training process may be time-consuming, particularly with numerous 

class labels and deeper tree structures.
	 Decision trees are less effective for regression tasks.

Working of Decision Tree Algorithm:

	 1.	Splitting: It is the procedure for dividing data into smaller groups.
	 2.	Pruning or Information Gain: It is the process of shortening the branches 

of a decision tree to limit the tree depth. To keep the decision tree simple, 
you need to ensure that the tree is small. To measure the information cor-
responding to each feature, information gain is calculated using entropy. 
Entropy is a measure of the uncertainty, quantifying the amount of infor-
mation or disorder present in data.

	 3.	Tree Selection: This is the process of determining which tree, in terms of 
size, best matches the data. To keep the decision tree simple, the informa-
tion present must be pure. Tree selection mainly deals with selecting the 
best attribute for the root and other internal nodes. There are two techniques 
that help in selecting the best attributes:
•	 Information gain
•	 Gini index

5.3.2.1 � Information Gain
Information gain tells about how much information that feature or attribute provided 
about a class. Information gain can be calculated as

 Informatio_ Gain (A)= Entropy_Info(T)- Entropy_Info(T,A)

Here T is the training dataset, A is the set of attributes {A1, A2, . . ., An}, and m is the 
number of classes in the training dataset. Let Pi be the probability that a data instance 
“d” belongs to class Ci. It is calculated as: dCi

Pi =
dCi

T
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Pi = Total number of data instances that belongs to class Ci in T/Total number of 
tuples in training set T.

Entropy specifies randomness in data. It measures the impurity in a given attri-
bute or feature. Entropy can be calculated as

 Entropy_Info T  = - P log Pi 2 i( )
=

∑
i

m

1
﻿

 Entropy_Info T,A  =( )
=∑ i

v Ai

T1
  * Entropy_Info(Ai )

Here, attribute A has got “v” distinct values {a1, a2, . . ., av}, Ai  is the number of 
instances for distinct value “” in attribute A, and Entropy_Info(Ai) is the entropy 
for that set of instances. Entropy and information gain are inversely related; i.e., as 
entropy increases, information gain decreases.

Example: To assess a student’s performance during his course of study and pre-
dict whether the student will get a job offer or not. The training dataset contains 10 
instances with attributes CGPA, interactiveness, practical knowledge, and job offer. 
The target class is a job offer. Let’s create a decision tree to solve this problem.

First, calculate the Entropy of the target class “job offer.”

	 Entropy_Info(target attribute = job offer) =

Entropy_Info(7,3) = −
7

10

7

10

3

10

3

102 2log log+












	 = .3599+ .5208 = .8807− − −( )

TABLE 5.1 
Student Data

Practical 
SN CGPA Interactiveness Knowledge Job Offer

1 ³ Yes Very good Yes9

2 ³ No Good Yes8

3 ³ No Average No9

4 < 8 No Average No

5 ³ Yes8 Good Yes

6 ³ 9 Yes Good Yes

7 < 8 Yes Good No

8 ³ 9 No Very good Yes

9 ³ 8 Yes Good Yes

10 ³ 8 Yes Average Yes
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Now calculate the Entropy_Info and information gain for each attribute. First, let’s 
calculate for the CGPA attribute, as shown in Table 5.2.

	

Entropy_Info T, CGPA =( ) − −
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=  .3243

Gain(CGPA) = .8807 − .3243 = .5564

Next calculate the entropy and information gain for attribute Interactiveness as 
shown in Table 5.3.

	 Entropy_Info(T, Interactiveness)t= − −
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Gain(Interactiveness) = .8807 − .7896 = .0911
Likewise calculate entropy for practical knowledge. It is 0.2246. So the best split 

is using CGPA as its information gain is highest among all attributes. The CGPA 
attribute will become the root of the decision tree.

In the next step, the gain of the remaining attributes is calculated, and a decision 
is made on the next level root node from the remaining attributes.

TABLE 5.2 
Entropy Information for CGPA

CGPA Job Offer = Yes Job Offer = No Total

³ 3 1 49

³ 48 0 4

< 8 0 2 2

TABLE 5.3 
Entropy Information for Interactiveness

Interactiveness Job Offer = Yes Job Offer = No Total

Yes 5 1 6

No 2 2 4
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CGPA <8 has job offer = “No” only, and CGPA³  8 also has job offer = “No” 
only. But CGPA³  9 has job offer “Yes” and “No” both for the following data, as 
shown in Table 5.4.

So in this step, the same process of computing Entropy_Info and Gain are repeated 
with the above subset of data. This subset has only four data items. Of these four 
data, three has job offer “Yes” and only one has job offer “No.”

	 Entropy_Info(target attribute = job offer) =

Entropy_Info(3,1) = −
3
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Gain(Interactiveness) = .8108 − .4497 = .3111
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Gain(Interactiveness) = .8108

Gain of practical knowledge is high compared to that of Interactiveness, so it 
becomes the next level root node. The final decision tree is shown in Figure 5.8.

TABLE 5.4 
Data for CGPA ³  9

Interactiveness Practical Knowledge Job Offer

Yes Very good Yes

No Average No

Yes Good Yes

No Very good Yes
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Gini Impurity:

When there are many class labels in the data, this measure of misclassification metric 
is applied. Gini is comparable to entropy, but it computes significantly more quickly. 
Gini is used as an impurity parameter in algorithms such as CART (Classification 
and Regression Tree) algorithms. Python, by default, uses the Gini index for identi-
fying the best attributes for decision-making.

Example: You want to find whether a person is married or not based on the data 
collected on the age, income, and gender of different persons, as shown in Table 5.5. 
A ML algorithm to construct a decision tree is required that best selects the branches 

FIGURE 5.8  Final Decision Tree for Student Dataset Using Entropy and Information Gain.
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automatically considering each feature (here age, salary, and gender) to find how well 
each feature separates people who are married and who are not.

In order to find out which split is better, information gain is calculated for each 
feature, and the feature with the highest information gain is selected for decision 
tree-making. Here in this case, there is impurity in each feature as none is saying 
100% yes in any case. So the Gini impurity of the left and right leaves is calculated. 
To do this, it is required to subtract the square of the fraction of people who are 
married and the square of the fraction of people who are not married from 1 for that 
feature. For example, Age feature Gini impurity can be calculated as

The age information gain calculated above is .0825, as shown in Figure 5.9. Like-
wise, the information gain of income and gender features can also be calculated. In 

TABLE 5.5 
Personal Data

Married Age Income Gender

<30 >30 <50000 >50000 Male Female

Yes 43 90 59 102 83 96

No 77 30 61  18 37 24

FIGURE 5.9  Impurity Calculation Example.
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this case, the information gain of the income feature is 0.1375 and the gender feature 
is 0.1265. So in this case, root splitting will be best on the income feature, rather than 
splitting on age and gender features. This process goes on for all next subsequent 
nodes until a value below the threshold level is reached.

5.3.2.2 � Decision Tree Using Python
An “Iris” dataset is used here. The dataset contains three classes (Setosa, Versico-
lour, and Virginica) and four features, i.e., petal width, petal length, sepal width, and 
sepal length. Python, by default, uses the Gini index for decision tree.

  import numpy as np  
  import seaborn as sns  
  from sklearn.metrics import classification_report, con-
fusion_matrix,acc uracy_score  
  from sklearn.preprocessing import LabelEncoder  
  from sklearn.tree import DecisionTreeClassifier  
  from sklearn.model_selection import train_test_split  
  import matplotlib.pyplot as plt  
  from sklearn.tree import plot_tree  

Load the Iris dataset on Google Colab. Some preprocessing operations such as 
isnull() checking and applying labelencoder are performed on the target variable. 
After preprocessing, a decision tree ML model is built on the dataset. The accuracy 
of the model is 100%. The decision tree is also printed.

  dfd = sns.load_dataset(‘iris’)  
  dfd.isnull().any()  
  target = dfd[‘species’]  
  dfd1 = dfd.copy()  
  dfd1 = dfd1.shape  
  X = dfd1  
  lee = LabelEncoder()  
  tar = lee.fit_transform(target)  
  y = tar  
  dectree=DecisionTreeClassifier()  
  dectree.fit(X,y)  
  print(‘Decision Tree Classifier Created’)  
  ydpred=dectree.predict(X)  
  cma = confusion_matrix(y, ydpred)  
  print(cma)  
  print(“Decision tree model accuracy(in %):”, accuracy_
score(y, ydpred)*100)  

  # Visualising the graph without the use of graphviz  
  plt.figure(figsize = (20,20))  
  dec_tree = plot_tree(decision_tree=dectree, feature_
names = dfd1.columns,  
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  class_names =[“setosa”, “vercicolor”, “verginica”], 
filled = True, precision = 4, rounded = True)  
  plt.savefig(“one.png”)  

Output:

Decision Tree Classifier Created
[[50 0 0]
[0 50 0]
[0 0 50]]
Decision tree model accuracy(in %): 100.0

5.3.3 �S upport Vector Machine

Support vector machine (SVM) [2] is widely used for classification problems, but it 
can also be used for regression problems. It is a supervised ML algorithm that finds 
the separating line for two-dimensional and hyper planes for multidimensional data. 

Petal_length <= 2.45 
Gini = 0.6667 

Samples = 150 
Value  = [50, 50, 50] 

Class = Setosa

Gini = 0.0 
Samples = 50 

Value = [50, 0, 0) 
Class = Setosa

Petal width <= 1.75 
Gini = 0.5 

Samples = 100 
Value = [0, 50, 50) 
Class = Vercicolor

Petal length <= 4.95 
Gini = 0.168 

Samples = 54 
Value = [0, 49, 5] 
Class = Vercicolor

Petal length <= 4.85 
Gini = 0.0425 
Samples = 46 

Value = [10, 1, 45] 
Class = Verginica

Petal width < = 1.65 
Gini = 0.0408 
Samples = 48 

Value = [0, 47, 1] 
Class = Vercicolor

Petal width < = 1.55 
Gini = 0,4444 
Samples = 6 

Value = [0, 2, 4] 
Class = Verginica

Sepal_length < = 5.95 
Gini = 0.4444 
Samples = 3 

Value = [0, 1, 2] 
Class = Verginica

Gini = 0.0 
Samples - 43 

Value=[0, 0, 43] 
Class = Verginica

Gini = 0.0 
Samples = 47 
Value [0, 47,0] 

Class Vercicolor

Gini = 0.0 
Samples = 1 

Value = [0, 0, 1]
Class =  Verginica

Gini = 0.0 
Samples = 3 

Value = [0, 0, 3] 
Class = Verginica

Sepal_length <= 6.95 
Gini = 0.4444 
Samples = 3 

Value = [0, 2, 1] 
Class = Vercicolor

Gini = 0.0 
Samples = 1 

Value = [0, 1, 0] 
Class = Vercicolor

Gini = 0.0 
Samples = 2 

Value = [0, 0, 2] 
Class = Verginica

Gini = 0.0 
Samples = 2 

Value = [0, 2, 0] 
Class = Vercicolor

Gini = 0.0 
Samples = 1 

Value [0, 0, 1] 
Class = Verginica

FIGURE 5.10  Decision Tree on Iris Data.
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In two-dimensional data, there can be many separating lines, which helps separate 
the data well. But the accuracy of these lines for real-life test data is not good. The 
separating line calculated by the SVM has the maximum margin between the near-
est data points of the training data. As this line has the maximum margin, it gives 
better accuracy for real-life test data points. Figure 5.11 shows the possible hyper-
planes and the hyperplane by supporting a vector machine of linearly separable data. 
SVM performs well even if data points are not linearly separable [2], as shown in 
Figure 5.12. SVM applies a kernel trick, which converts non-separable data points 
to separable data points. SVM kernel is a function applied on low dimension space 
to convert them to higher dimensional space. For Figure 5.12 data points, one more 
dimension is added, i.e., z-axis along with x- and y-axes with z = x2 + y2. After adding 
this dimension to the data points in Figure 5.12, there is a clear separation of plotted 
data points in the x- and z-axes. The plot is shown in Figure 5.13. Polynomial, linear, 
nonlinear, radial basis function, etc., are some of the kernel functions used in the 
SVM algorithm.

The following are important concepts in SVM:

Support Vectors: These are the data points nearest to the hyperplane. They 
are crucial in defining the position and orientation of the separating line.

Hyperplane: As illustrated in Figure 5.11, it is a decision boundary that sepa-
rates different classes in the dataset.

Margin: This is the distance between two lines drawn parallel to the hyper-
plane, passing through the closest data points from each class (the support 
vectors). A  larger margin is preferable as it indicates better separation 
between the classes, whereas a smaller margin is less desirable.

The primary objective of SVM is to categorize the data points into classes by iden-
tifying a hyperplane that maximizes the margin (maximum marginal hyperplane or 

FIGURE 5.11  Possible Hyperplanes and SVM.
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FIGURE 5.12  Nonlinearly Separable Data Points.

MMH). In contrast to the decision theoretic minimum distance classifier that uses 
only one decision boundary, SVM uses a reference hyperplane and two decision 
boundaries to classify the points. This is the major difference between SVM and all 
other classifiers. This is shown in Figure 5.11, where there is a reference hyperplane 
shown with a dark line and two parallel boundaries in dotted lines. The decision 
boundary should be far away from the data points; hence, the distance should be 
maximized between the line and the nearest data point.

As of now, let us consider a SVM that implements a binary classifier. This means 
that there are only two classes, say +1 and −1. A multiclass SVM can also be imple-
mented. Let us consider a dataset:

D = x ,y , x ,y , x ,y1 1 2 2 n n( ) ( ) ( ){ }, x Rn  and y = -1,+1{ }

The aim of hard margin SVM is to find a hyperplane that maximally separates the 
classes. Hyperplane equation:

	 h x = b+ w x + w x + + w x =01 1 2 2 n n( ) ............

	 or b+ w x =0T
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Here, b is the intercept; w1, w2, . . ., wn are coefficients; and n is the dimension of data 
points. For a simple two-dimension, the hyperplane equation can be written as wx 
+ b = 0.

The hyperplane equation separates the data points x into two classes −1 and +1. 
This hyperplane equation can also be written as wTx = 0. Here, w is the weight vec-
tor and b is the bias or offset from origin. SVM uses two decision lines constructed 
using the reference hyperplane. The two lines act as two classifiers. This is written 
as follows:

H1: w. xi + b ³  0 for y = +1 and
H2: w. xi + b < 0 for y = −1

This classifier is suitable for two class problems. One can also bring the output y into 
the above equation, and that changes to equation to

h(x) = yi (w.xi + b)³  1 for I = 1, 2, 3 . . ., n,  
or one can alternatively find predictions as

h(xi) = sign(w.xi + b)

The sign of h(x) is always positive if it is correctly classified. Its value is negative if 
it is wrongly classified.

FIGURE 5.13  Kernel Trick Applied on Data Points Mentioned in Figure 5.12.
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Kernel Trick: In real-world classification problems, nonlinear hyperplanes are 
required to separate the data as the data can be text, image, video, or sequence. 
Kernel provides a solution to this problem. One solution to this problem is to map 
the data into higher dimensional space and define a separating hyperplane. The map-
ping process, i.e., f (x), is the vector representation of the feature x. In short, the 
mapping function transforms the data point in the input space and maps to another 
point in space called feature space. Usually, mapping functions are used to map data 
from a lower dimension to a higher dimension. When the data is mapped from two 
dimension to another feature space, the data points are nicely segregated in different 
planes and hence can be separated by a plane. While mapping functions play a major 
role here, it makes the computation time high and also there is no generalized thumb 
rule describing which transformation should be applied. Kernels are useful in this 
context as it computes similar values without transforming the data. Kernels are a 
set of functions used to transform data from low dimension to high dimension and to 
manipulate data using dot products at a higher dimension.

Kernels are of different types as given below:

Linear Kernel: k x,y x (y x .y q) T q .
( ) ( ) ( )= =f f  

defines the degree of polynomial.

RBF (Gaussian) Kernel: k x,y  = ( )
−( )

exp
x y

)(
2

2 2s

5.3.3.1 � SVM Using Python
SVM is implemented here on the breast cancer dataset. It has 31 features. These fea-
tures are used to classify data into M or B class of the diagnosis feature.

First, upload the dataset. It has 31 features. The last column is used as the target 
variable, which is stored in yval here. All the remaining features are in xval. Data is 
preprocessed by applying standard scalar, and transforming data is done by using the 
transform function.

  import numpy as np 
  import pandas as pd 
  from sklearn.metrics import accuracy_score 
  from sklearn.model_selection import train_test_split 
  from sklearn import datasets 
  from sklearn import svm 
  from sklearn.preprocessing import StandardScaler 
  cancerdata = datasets.load_breast_cancer() 
  df = pd.DataFrame(np.c_[cancerdata[‘data’], cancer-
data[‘target’]], columns = np.append(cancerdata[‘fea-
ture_names’], [‘target’])) 
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  df.head() 
  Xval = df.iloc[:, 0:-1] 
  yval = df.iloc[:, -1] 
  x_trainval, x_testval, y_trainval, y_testval= train_
test_split(Xval, yval, test_size= 0.25, random_state=3) 
  scs = StandardScaler() 
  x_trainval = scs.fit_transform(x_trainval) 
  x_testval = scs.transform(x_testval) 

  #Create a svm Classifier 
  clfsvm = svm.SVC(kernel=‘linear’) # Linear Kernel 
  #Train the model using the training sets 
  clfsvm.fit(x_trainval, y_trainval) 
  #Predict the response for test dataset 
  y_predval = clfsvm.predict(x_testval) 
  from sklearn.metrics import confusion_matrix 
  cm= confusion_matrix(y_testval, y_predval) 
  print(cm) 
  print(‘Accuracy of SVM is :’, accuracy_score(y_testval, 
  y_predval)) 

Output:

  [[51 2]  
   [ 1 89]]  
  Accuracy of SVM is : 0.979020979020979  

SVC() function is used to build SVM for the breast cancer dataset. As data is 
linearly separable, linear kernel is used here. The SVM accuracy achieved is 97.9%.

5.3.4 �N aive Bayes Classification

It is a classification algorithm based on supervised learning. Its foundation is the 
Bayes theorem, which is employed in the computation of conditional probabilities.

P A B
P B A P A

P B
( / )

( / ) ( )

( )
= ,

where P(A/B), also known as posterior probability, is the chance that event A will 
occur given that event B has already occurred.

P(B/A) is the probability that event B will occur in the event that event A has 
already happened.

P(A) is the probability that event A will occur.
P(B) is the probability that event B will occur.
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P(A) = Class probability

P(yi/A) = Conditional probability

Given below is an example of Naive Bayes. Here, the data used is of stolen cars that 
is presented in Table 6, which includes features such as color, type of car, and origin 
of car and is classified as stolen or not.

Probabilities are calculated as given in the above formula. New data points, which 
need to be classified as stolen (yes or no) will be based on the calculated maximum 
probability of the class. The new data points given as (Red, Domestic, and SUV) can 
be classified as “No” stolen class based on the given data.

P(Yes) = Probability of “Yes” class = 5/10 = .5
P(No) = Probability of “No” class = 5/10 = .5

The probability of color, type, and origin feature is shown in Tables 5.7, 5.8, and 
5.9, respectively.

P(Red/Yes, Domestic/Yes, SUV/Yes) = ⅗ * ⅖ * ⅕ = 6/125
P(Red/No, Domestic/No, SUV/No) = ⅖ * ⅗ * ⅗ = 18/125

So P(Red, Domestic, SUV) will be classified as “No,” as the  
probability of this class is higher.

TABLE 5.6 
Stolen Cars Data

SN Color Type Origin Stolen

1 Red Sports Imported Yes

2 Red SUV Imported No

3 Yellow SUV Domestic No

4 Yellow SUV Domestic Yes

5 Yellow SUV Domestic No

6 Yellow Sports Imported Yes

7 Yellow Sports Domestic No

8 Red Sports Domestic Yes

9 Red Sports Domestic No

10 Red Sports Domestic Yes
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TABLE 5.7 
Probability of Color Feature

Color Feature Yes No P(Yes) P(No)

Red 3 2 3/5 2/5

Yellow 2 3 2/5 3/5

Total 5 5

TABLE 5.8 
Probability of Type Feature

Type Feature Yes No P(Yes) P(No)

Domestic 2 3 2/5 3/5

Imported 3 2 3/5 2/5

Total 5 5

TABLE 5.9 
Probability of Origin Feature

Origin Feature Yes No P(Yes) P(No)

SUV 1 3 1/5 3/5

Sport 4 2 4/5 2/5

Total 5 5

All variations of Naive Bayes classifiers operate on the same principle: the assump-
tion that feature values are independent of each other, given the class variable. Naive 
Bayes requires minimal training data to estimate the necessary parameters for clas-
sification. Different types of data, such as categorical, binary, and numerical, require 
different methods to estimate probability distribution parameters. For numerical data, 
Gaussian distribution is used, while binary data (e.g., 0/1 or yes/no) relies on binomial 
distribution, and categorical data uses multinomial distribution. These distributions 
are so commonly applied that Naive Bayes classifiers are often named after them.

5.3.4.1 � Gaussian Naive Bayes
The assumption made here is that the data values associated with each class follow 
a normal or Gaussian distribution. This works best with continuous data. The bell-
shaped normal distribution curve is symmetrical around the feature/attribute value 
mean. It is assumed that the feature likelihood value is
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Python function GaussianNB() can be used to build the ML model.
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5.3.4.2 � Multinomial Naive Bayes
This is mostly utilized in the field of natural language processing (NLP) for docu-
ment classification and where the categorical data values are used for classification. 
Frequencies of generation of events are represented in the feature vector, which fol-
lows a multinomial distribution, i.e., it considers the feature vector that represents the 
number of times it appears in text or data.
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The example for multinomial Naive Bayes here considers the following data shown 
in Table 5.10, and the test data is classified using multinomial Naive Bayes.

Probabilities cannot be zero, but in the given data some words do not occur in all 
documents, so their probabilities will be calculated as zero. To avoid this, Laplace 
smoothing can be used with value as

P=(X N + di +a a) / ( ) , where a = 1 �  (1)

d = Total different words = 6

d = [India, Beijing, Shanghai, Macao, Tokyo, Japan]

Nyes = 8

Nyes = [India Beijing India India India Shanghai India Macao]

Nno = 3

Nno = [Tokyo Japan India]

P(I) = P(India) = 3/4

P( I ) = 1/4

TABLE 5.10 
Text Data of Documents

Doc No Words in Document In I = India??

Training data 1 India Beijing India yes

2 India India Shanghai yes

3 India Macao yes

4 Tokyo Japan India no

Test Data India India India Tokyo Japan ??
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P(India/I) = (5 + 1)/(8 + 6) = 6/14 = 3/7 as India occurs five times in I =  
India yes category. So applying equation (1) will give this probability

P(Tokyo/I) = (0 + 1)/(8 + 6) = 1/14    P(Japan/I) = (0 + 1)/(8 + 6) =1/14

P(India/ I ) = (1 + 1)/(3 + 6) = 2/9 as India occurs once in I = India no category.  
So applying equation (1) will give this probability

P(Tokyo/ I ) = (1 + 1)/(3 + 6) = 2/9    P(Japan/ I ) = (1 + 1)/(3 + 6) = 2/9

So the test data (India India India Tokyo Japan) to be categorized in India = Yes or 
no will be determined by the calculated probability as follows:

P(India India India Tokyo Japan/I) = ¾ *(3/7 *3/7 *3/7* 1/14 * 1/14)

= .0003

P(India India India Tokyo Japan/ I ) = ¼ *(2/9 * 2/9 *2/9 * 2/9* 2/9)

= .0001

The probability of the test data occurring in I India = yes class is higher than the 
probability of it occurring in I India = no class, so the test data will be categorized 
in India = yes.

5.3.4.3 � Bernoulli Naive Bayes
Bernoulli distribution [3] is used for binary data, i.e., where the data values take 
the form of true/false, yes/no, 0/1, success/failure, presence/absence, etc. Bernoulli 
Naive Bayes uses Bernoulli distribution, so feature values are binary in this case, and 
the distribution works best on discrete data. This model is also popular for document 
classification, but here binary term occurrences are used as features rather than the 
frequencies of a word in the document.

The Bernoulli Distribution

p x p X x
q p x

p x
( ) [ ]= = =

= − =
=






1 0

0

The example demonstrates the Bernoulli Naive Bayes for document classifi-
cation. The data given is related to either Sports(S) or Informatics(I). The train-
ing set has 11 documents, and the aim here is to estimate a Bernoulli document 
model to classify the unlabeled document as S or I. Documents have eight fea-
ture words, i.e., w1  = goal, w2  = tutor, w3  = variance, w4  = speed, w5  = drink, 
w6 = defense, w7 = performance, and w8 = field. We have six documents of the 
Sports(S) category and five documents of the Informatics(I) category. B(Sports) 
has eight feature occurrences (1/0) in six documents, so it has a dimension of 6 x 8,  
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and B(Informatics) has eight feature occurrences (1/0) in five documents, so it has 
a dimension of 5 x 8.

B(Sports) =

Goal Tutor Variance Speed Drink Defense Performance Field

1 0 0 0 1 1 1 1

0 0 1 0 1 1 0 0

0 1 0 1 0 1 1 0

1 0 0 1 0 1 0 1

1 0 0 0 1 0 1 1

0 0 1 1 0 0 1 1

B(Informatics) =

Goal Tutor Variance Speed Drink Defense Performance Field

0 1 1 0 0 0 1 0

1 1 0 1 0 0 1 1

0 1 1 0 0 1 0 0

0 0 0 0 0 0 0 0

0 0 1 0 1 0 1 0

Using the given data, if our aim is to classify b1 (1 0 0 1 1 1 0 1) and b2 (0 1 1 0 1 0 
1 0) using Bernaulli Naive Bayes, calculating the probabilities is required as follows:

N = Total number of documents = 11

NS = Number of documents in sports = 6
NI = Number of documents in informatics = 5, so P(S) = 6/11 and P(T) = 5/11.

Feature
NS 

(feature)

P(feature/S) Probability 
Probability 
of Feature 
in Sports 

Document

of Not 
Occurring 

That 
Feature NI (feature)

P(feature/I)
Probability 

of Feature in 
Informatics 
Document

Probability 
of Not 

Occurring 
That 

Feature

Goal 3 3/6 1–3/6 = 3/6 1 1/5 1–1/5 = 4/5

Tutor 1 1/6 1− 1/6 = 5/6 3 3/5 1–3/5 = 2/5

Variance 2 2/6 1− 2/6 = 4/6 3 3/5 1–3/5 = 2/5

Speed 3 3/6 1–3/6 = 3/6 1 1/5 1–1/5 = 4/5

Drink 3 3/6 1–3/6 = 3/6 1 1/5 1–1/5 = 4/5

Defense 4 4/6 1–4/6 = 2/6 1 1/5 1–1/5 = 4/5

Performance 4 4/6 1–4/6 = 2/6 3 3/5 1–3/5 = 2/5

Field 4 4/6 1–4/6 = 2/6 1 1/5 1–1/5 = 4/5
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P(S/b1) = Probability of b1 occurring in S

b1 = (1 0 0 1 1 1 0 1)

P(S/b1) = 6/11 * (3/6 * ⅚ * 4/6 * 3/6 * 3/6 * 4/6 * 2/6 * 4/6)

P(S/b1) = 5.6 * 10−3

P(I/b1) = Probability of b1 occurring in I

b1 = (1 0 0 1 1 1 0 1)

P(I/b1) = 5/11 * (⅕ * ⅖ * ⅖ * ⅕ * ⅕ * ⅕ * ⅖ * ⅕)

P(I/b1) = 9.3 * 10−6

P(S/b1) is higher, so b1 will be classified in the Sports category.

P(S/b2) = Probability of b2 occurring in S

b2 = (0 1 1 0 1 0 1 0)

P(S/b2) = 6/11 * (3/6 *1/6 * 2/6 * 3/6 * 3/6 * 2/6 * 4/6 * 2/6)

P(S/b2) = 2.8 * 10−4

P(I/b2) = Probability of b1 occurring in I

b2 = (0 1 1 0 1 0 1 0)

P(I/b2) = 5/11 * (4/5 * 3/5 * 3/5 * 4/5 * 1/5 * 4/5 * 3/5 * 4/5)

P(I/b2) = 8.0 * 10−3

P(I/b2) is higher, so b2 will be classified in the informatics category.

5.4 � METRICS FOR EVALUATING CLASSIFIER PERFORMANCE

Evaluating classifier performance is an excellent way of getting feedback whether 
what you are doing is correct or not. It is a tool for comparing the performance of 
ML models. Ultimately, it is required to build a model of high-performance accu-
racy, which can help us make better decisions in real-world scenarios. The most 
commonly used classification evaluation metric is to calculate its accuracy. But mea-
suring accuracy is not the correct measure of evaluating performance as data is not 
balanced in real-life scenarios such as in spam email detection, financial cases (credit 
card, fraud, etc.), and medical diagnosis. So, only measuring accuracy will not give 
the correct picture of the constructed model: other measures are required to evalu-
ate the performance of classifiers. The confusion matrix shown [4] in Figure 5.14 is 
the performance measure that gives the details of accuracy, recall, and precision. 
F1-score and area under the ROC curve (AUC)-Receiver Operating Characteristic 
(ROC) curve are also used as performance metrics [4].
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Actual Value

Positive Negative

Predicted
Value

Positive
TP

(True Positive)
FP

(False Negative)

Negative
FN

(False Negative)
TN

(True Negative)

•	 True Positive (TP): Observation is positive and is predicted to be positive.
•	 False Negative (FN): Observation is positive but is predicted to be negative.
•	 True Negative (TN): Observation is negative and is predicted to be negative.
•	 False Positive (FP): Observation is negative but is predicted to be positive.

FIGURE 5.14  Confusion Matrix.

Confusion matrix not only gives the correct picture of the model, which classes 
are wrongly and correctly predicted or classified, but also tells what type of errors are 
being made by the model. Here, TP, FP, FN, and TN are calculated for the model as 
shown in Figure 5.15, which are useful for measuring precision, recall or sensitivity, 
specificity, accuracy, and AUC-ROC curve of the model. The relevance of calculat-
ing precision, recall, accuracy, or specificity depends on the application. F1 score is 
useful when the optimal blend of precision and recall is required. A good F1 score 
(perfect model when the F1 score is 1 and model failure when the F1 score value is 0) 
indicates low false negatives and low false positives, so the model is not disturbed by 
false alarms. Classifiers can be characterized based on various performance metrics. 
When every instance is correctly classified, it’s a perfect classifier; i.e., when its TP = 
P and TN = N, accuracy will be 1. When every instance is wrongly classified, it’s a 
worst classifier; i.e., when its TP = 0 and TN = 0, accuracy will be 0. When the clas-
sifier always predicts the positive class correctly, it’s a ultra-liberal classifier, i.e., its 
FN = 0 and TN = 0. When the classifier always predicts the negative class correctly, 
it’s a ultra-conservative classifier, i.e., its TP = 0 and FP = 0.
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FIGURE 5.15  Key Classification Metrics.
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ROC curve [4] is a visualization method that summarizes the true positive rate 
(TPR) and false positive rate (FPR) of the model. It plots tpr versus fpr data, shown 
in Figure 5.17. Performance of the model is assessed by the AUC. If it is less than 0.6, 
the model is considered a failure; if the value is between 0.9 and 1, the model is excel-
lent; if the value is between 0.8 and 0.9, the model is good; if the value is 0.7–0.8, the 
model is fair; and if the value is 0.6–0.7, the model is poor.

5.5 � MODEL TRAINING AND CROSS-VALIDATION

ML models can be trained in different ways based on chosen algorithms. Two import-
ant methods to mention here are batch and gradient descent.

Gradient Descent:

Gradient descent is a first-order optimization algorithm used to find the minimum 
of a function. By calculating the gradient (slope) of the function at a given point, 
it adjusts the parameters in the opposite direction to minimize the function. This 
process is commonly applied to loss functions in ML to optimize model parameters. 
There are two primary methods for gradient descent:

•	 Batch Gradient Descent: All training data is used to calculate the average 
gradient, and the parameters are updated based on this average. It is suitable 
for convex or relatively smooth error surfaces but can be inefficient for large 
datasets.

•	 Stochastic Gradient Descent (SGD): A single training example is used to 
calculate the gradient, and the parameters are updated immediately. This 
method is more efficient for large datasets but can be noisy due to fluctua-
tions in gradients.

True Positive (TP): False Positive (FP):
Actuals are positive and are predicted as positive Type 1 error
Example: You predicted that a woman is pregnant Actuals are negative and are predicted as positive
and she actually is Example: You predicted that a man is pregnant, but 

he actually is not

False Negative (FN): True Negative (TN):
Type 2 error Actuals are negative and are predicted as positive
Actuals are positive and are predicted as negative Example: You predicted that a man is not pregnant, 
Example: You predicted that a woman is not and he actually is not
pregnant, and she actually is

FIGURE 5.16  TPR and FPR.
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FIGURE 5.17  ROC Curve.

Some examples where gradient descent can applied are as follows:

Example 1: Consider that you are attempting to fit a dataset of points to a 
straight line. y = mx + b is the equation of the line. The objective is to deter-
mine the values of b (intercept) and m (slope) that minimize the separation 
between the data points and the line. Iteratively adjusting m and b via gra-
dient descent can be done until the line best fits the data.

Example 2: The weights and biases of the neurons in a neural network control 
the network’s output. To reduce the network’s error on a particular dataset, 
these weights and biases are adjusted via gradient descent. This is often 
accomplished by computing the gradient of the loss function with respect 
to the weights and biases and then updating the parameters in the opposite 
direction as the gradient.
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One method for evaluating a ML model’s performance on a small dataset is cross-val-
idation [5]. It entails breaking up the dataset into smaller subsets, using few of those 
subsets to train the model, and then testing the model’s performance on the remain-
ing subsets. To provide a more accurate estimate of the generalization performance 
of the model, this step is performed several times. You can choose the best method 
for your particular problem by utilizing cross-validation to compare the performance 
of various models. Let’s say you have 100 samples in your dataset. Five subsets of the 
dataset are created for five-fold cross-validation. The remaining four subsets are uti-
lized for training, while one subset is used for testing. This procedure is carried out 
five times, with a different subset being tested each time. The model’s generalization 
ability is determined by averaging performance across all folds. Two cross-validation 
approaches exist: exhaustive and non-exhaustive.

5.5.1 �N on-Exhaustive Methods

Non-exhaustive cross-validation methods do not consider all ways of splitting the 
original data. Holdout method and k-fold cross-validation methods [6] are non-ex-
haustive methods, as discussed below.

5.5.1.1 � Holdout Method
In this method, the entire dataset is divided into training set and test set. Usually 
data is divided into ratios of 80:20 or 70:30, and data is shuffled randomly before 
splitting. Model training is done using a training set, and the model accuracy is eval-
uated using a test set. There are some disadvantages of this method. Model can give 
different results every time it is trained, and test it as data is shuffled randomly so 
the model is trained on different data points every time. And we are never sure about 
the train set that we picked to represent the whole dataset. Also, when the dataset is 
small, there are high chances that the test data contain some important information 
that is not present in the train set.

5.5.1.2 � k-Fold Cross-Validation
k-fold validation method shown in Figure  5.18 is an improvement on the holdout 
method, as this method is not dependent on the way our training and testing dataset 
is picked. In the k-fold cross-validation method, k subsets of the dataset are formed 
and a holdout method is applied on each subset. So eventually the holdout method 
is repeated k number of times as shown in Figure 5.18. Entire dataset is randomly 
split into k subsets. For each fold, the model is trained on k−1 folds of the dataset 
and test on the kth fold. And this process is repeated k times, so each fold will have 
different training and testing sets. The overall accuracy of the model is calculated as 
the average of k recorded accuracies. This method helps in increasing the accuracy 
of the model.

The disadvantage of this method is that it requires k times more computation as 
the training algorithm has to be rerun from scratch k times. And at times it is possi-
ble to get imbalanced folds; i.e., one fold might have the majority of data belonging 
to one class and few of other classes. This can affect the accuracy of the model, 
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and training will also get affected. Stratified k-fold cross-validation helps avoid this 
imbalance process by using stratification.

5.5.1.3 � Non-Exhaustive Cross-Validation Using Python
 Python code to implement k-fold cross-validation method
  #Importing required libraries  
  from matplotlib import pyplot  
  import io  
  import matplotlib.pyplot as plt  
  import pandas as pd  
  from sklearn.model_selection import train_test_split  
  from sklearn.linear_model import LinearRegression  
  from sklearn import metrics  
  import scipy.stats  
  from sklearn.model_selection import KFold  
  from sklearn.metrics import accuracy_score  

  from google.colab import files  
  uploaded= files.upload()  

  dfval=pd.read_csv(io.BytesIO(uploaded[‘Advertising.
csv’]))  
  #Loading the dataset  
  Xval = dfval.iloc[:,0:3]  
  yval = dfval[‘Sales’].values.reshape(-1,1)  

FIGURE 5.18  k-Fold Cross-Validation.
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  #Implementing cross validation. Five-fold cross- 
validation is done here. In each fold, i.e., in each 
iteration, one fold is used as the testing set. Overall 
accuracy is the average of all classifiers’ accuracy.  
  k = 5  
  kfd = KFold(n_splits=k, random_state=None)  
  model = LinearRegression()  
  accuracy_score = []  
  for train_index, test_index in kfd.split(Xval):  
      Xval_train, Xval_test=Xval.iloc[train_index,:], 
Xval.iloc[test_index,:]  
      yval_train, yval_test = yval[train_index], 
yval[test_index]  
      model.fit(Xval_train,yval_train)  
      pred_values = model.predict(Xval_test)  
      r2_score = model.score(Xval_test, yval_test)  
      print(‘accuracy of model is’)  
      print(r2_score*100,’%’)  
      accuracy_score.append(r2_score)  

  avg_accuracy_score = sum(accuracy_score)/k  
  print(‘accuracy of each fold - {}’.
format(accuracy_score))  
  print(‘Avg accuracy : {}’.format(avg_accuracy_score))  

Output:

  accuracy of model is 
  87.8651980483134 %  
  accuracy of model is 
  91.7632116561446 %  
  accuracy of model is 
  92.93303235799652 %  
  accuracy of model is 
  81.44390391722337 %  
  accuracy of model is 
  89.54782879224385 %  
  accuracy of each fold - [0.878651980483134, 
0.917632116561446, 0.9293303235799653, 
0.8144390391722337, 0.8954782879224386] 
  Avg accuracy : 0.8871063495438435 

Here, the linear regression is performed on Advertising.csv file, which contains sales, 
TV, newspaper, and radio fields. Details of this linear regression is discussed in the 
previous chapter. k-fold cross-validation with k = 5 is implemented here. The dataset 
is divided into five subsets. For each iteration, four subsets are used for training and 
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one for testing. Calculate the accuracy of all five iterations, which is different for dif-
ferent iterations, i.e., 87.86%, 91.76%, 92.93%, 81.44%, and 89.54%. Overall accuracy 
is the average accuracy of all iterations, which comes out to be 88.71%.

5.5.2 �E xhaustive Methods

Exhaustive cross-validation methods consider all ways of splitting the original data 
into training and testing sets. Leave-one-out and leave-p-out cross-validation meth-
ods are exhaustive methods.

5.5.2.1 � Leave-p-Out Cross-Validation
In this method, p number of points are taken out from the whole dataset of total n 
points. The (n-p) points are used for training the model, and the remaining p points 
are used for testing the model. This process is iterated for all possible combinations 
of p points. Overall accuracy of the model is the average of all iterations. Here, train-
ing is done for every possible combination of data points.

5.5.2.2 � Leave-One-Out Cross-Validation
If we set the value of p as one, the method is called leave-one-out cross-validation. 
Taking p = 1 makes the method less exhaustive.

5.5.2.3 � Exhaustive Cross-Validation Using Python
First, import libraries in Google Colab. Cross-validation need not be implemented 
manually, Scikit-learn library in Python provides a simple implementation that will 
split the data accordingly. An array of few numbers are taken here and printed as an 
independent variable and dependent variable, i.e., x and y, respectively. The function 
LeaveOneOut() is used, and data is split using a for loop, and the splits are enumer-
ated and iterated through the training index and test index. And finally, the training 
set and validation set are printed.

 # importing libraries
 import numpy as np
 from sklearn.model_selection import LeaveOneOut
 # creating the data
 X = np.array([[1, 2], [3, 4]])
 y = np.array([1, 2])
 # Independent variable
 print(“\nIndependent variable:”)
 print(X)
 # Dependent variable
 print(“\nDependent variable:”)
 print(y)
 # creating the leave one out function
 loo = LeaveOneOut()
 loo.get_n_splits(X)
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 # printing the training and validation data
 for train_index, test_index in loo.split(X):
 X_train, X_test = X[train_index], X[test_index]
 y_train, y_test = y[train_index], y[test_index]
 print(“\nTraining set:”, X_train, y_train)
 print(“\nValidation set:”, X_test, y_test)

Output:

 Independent variable:
 [[1 2]
 [3 4]]
 Dependent variable:
 [1 2]
 Training set: [[1 2]] [1]
 Validation set: [[3 4]] [2]   

5.6 � REGULARIZATION

Let’s understand regularization and its importance with a very simple example of 
learning animal drawing. You practice drawing a lot of different animals. You might 
draw dogs, cats, elephants, and birds. If you only practice drawing dogs over and 
over, you’ll get really good at drawing dogs, but you might not be as good at drawing 
other animals like cats or elephants. Now think of regularization applied in learning 
to draw animals. Regularization is like balanced drawing practice. This is like your 
art teacher giving you rules to follow so you become a better all-around artist, not 
just an expert at drawing dogs. L1 regularization is where your teacher tells you to 
only draw the most important parts of each animal. So, you might focus on the dog’s 
ears and tail but keep the drawing simple. L2 regularization is when your teacher 
tells you to draw every animal with light, smooth lines, not pressing too hard with 
your pencil. This way, your drawings don’t have any overly dark, heavy lines that 
stand out too much. So with regularization you become a better artist overall, able 
to draw any animal you see, not just the ones you practiced the most. So in simple 
terms, regularization is like having drawing rules from your art teacher to help you 
become good at drawing all sorts of animals. Instead of just drawing dogs really 
well, you learn to draw all animals nicely and clearly. This way, when you need to 
draw a new animal you’ve never seen before, you can do it easily because you prac-
ticed drawing in a balanced way.

In ML models, regularization is a technique used to stop overfitting. When a 
model learns the noise in the training data instead of the underlying pattern, it is 
said to be overfitting and has poor generalization to new, unseen data. Regulariza-
tion encourages simpler, more broadly applicable models by introducing more con-
straints or penalties into the model. Regularization introduces bias into the model 
but reduces variance, leading to a lower overall error on unseen data. It encourages 
simpler models by penalizing large coefficients, thus reducing the risk of overfitting.
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5.6.1 �T ypes of Regularization

	 1.	L1 Regularization (Lasso):
o	 Imposes a penalty equivalent to the amount of the coefficients’ absolute 

value.
o	 Encourages sparsity, leading to models where some feature weights 

become exactly zero, effectively performing feature selection.
o	 Loss function with L1 regularization: L(θ)+λ∑i∣θi∣.

	 2.	L2 Regularization (Ridge):
o	 Applies a penalty that is the square of the coefficients’ magnitude.
o	 Helps in reducing the impact of correlated features and spreads out the 

weights more evenly.
o	 Loss function with L2 regularization: L(θ)+λ∑iθi

2.
	 3.	Elastic Net:

o	 Combines L1 and L2 regularization.
o	 Useful when there are multiple features with high collinearity.
o	 Loss function: L(θ)+λ1∑i∣θi∣+λ2∑iθi

2​.

5.7 � HYPERPARAMETER TUNING

The settings made to an ML model prior to the start of the learning process are 
known as hyperparameters. They serve to regulate the learning process rather than 
being acquired from the data. An ML model’s performance and accuracy can be 
greatly impacted by the selection of hyperparameters [7]. Improved model perfor-
mance, decreased overfitting, and increased efficiency all depend on hyperparameter 
adjustment. Some common hyperparameters for various types of ML models are as 
follows:

	 Learning Rate: Regulates the gradient descent optimization process’s step 
size.

	 Batch Size: Number of training cases used in a single iteration.
	 Number of Epochs: Number of complete passes through the training 

dataset.

However, specific models have specific hyperparameters. Some ML models’ hyper-
parameters are detailed in Table 5.11.

5.7.1 �M ethods for Hyperparameter Tuning

	 1.	Grid Search: Determines which combination of parameter values yields 
the best performance by methodically going through several permutations 
and cross-validating along the way.

	 2.	Random Search: In order to determine the ideal set of parameters, hyper-
parameters are sampled from specified distributions and evaluated using 
the random search technique for hyperparameter tuning [6] in ML. It is 
frequently compared to grid search, which does a thorough search over a 
predetermined set of hyperparameters. Random search is more efficient in 
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TABLE 5.11 
Hyperparameters of ML Models

Model Hyperparameters

Linear models Regularization strength (α or λ) for L1, L2 regularization

k-NN n_neighbors: Number of neighbors
Weights: Indicates if the impact of each neighbor is the same or if those who are 
closer have a bigger say

Metric: The measurement of distance that is utilized to determine the separation of 
data points

Algorithm: The algorithm that calculates the closest neighbors
leaf_size: Size of leaf
Metric parameters: Additional parameters for the chosen distance metric

Decision Trees Max depth: The tree’s maximum depth
Minimum sample split: The smallest quantity of samples needed to split an internal 
node

Minimum example leaf: The bare minimum of samples needed at each leaf node
Max features: The greatest number of features to take into account when choosing a 
split

Bootstrap: Using bootstrap samples in tree construction

SVMs C (regularization parameter): Manages the trade-off between minimizing the 
weights’ norm and obtaining a low error on the training set

Kernel type: Indicates the kind of kernel that will be applied to the method (e.g., 
RBF, polynomial, or linear).

Gamma: The kernel coefficient for “sigmoid,” “poly,” and “rbf”

Naive Bayes Gaussian Naive Bayes
➢ var_smoothing: The highest variance of all features added to variances for stability
Multinomial Naive Bayes
➢ Alpha: Additive smoothing parameter (Laplace/Lidstone)
➢ fit_prior: The decision to learn or not learn class prior probabilities
Bernoulli Naive Bayes
➢ Alpha: Additive smoothing parameter (Laplace/Lidstone)
➢ Binarize: The threshold at which sample features are binarized (mapped to Booleans)
➢ fit_prior: The decision to learn or not learn class prior probabilities

Neural Number of layers: The total number of the network’s hidden layers
Networks Number of units per layer: Neurons in each hidden layer

Activation function: Rectified Linear Unit (ReLU), Sigmoid, Tanh, and other similar 
activation functions to be employed

Optimizer: Algorithm for optimization (such as SGD and Adam)
Dropout rate: Ratio of input units to be dropped in order to avoid overfitting

high-dimensional spaces because it does not evaluate all possible combina-
tions but rather a random subset.

	 3.	Bayesian Optimization: For hyperparameter tuning, Bayesian optimi-
zation is a more effective method than grid search, particularly in cases 
involving vast search spaces. It makes use of probabilistic models to intel-
ligently explore the parameter space, concentrating on areas that have a 
higher chance of producing ideal outcomes.
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	 4.	Hyperband: Hyperband is a powerful hyperparameter optimization algo-
rithm that uses adaptive resource allocation and early stopping to efficiently 
search for the best hyperparameters. It is particularly effective for models 
like SVMs, where training can be computationally expensive. It can signifi-
cantly enhance the performance of your ML model.

The code given below explains the random search for hyperparameter tuning of the 
Decision Tree Classifier. Other methods like hyperband, Bayesian optimization, and 
grid search can also be implemented on similar lines.

  import numpy as np 
  from sklearn.tree import DecisionTreeClassifier 
  from sklearn.datasets import load_iris 
  from sklearn.model_selection import RandomizedSearchCV, 
train_test_split 
  from scipy.stats import randint 

  # Load the Iris dataset 
  data = load_iris() 
  X = data.data 
  y = data.target 

  # Split the dataset into training and testing subsets 
  X_train, X_test, y_train, y_test = train_test_split(X, 
y, test_size=0.2, random_state=42) 

  # Initialize the Decision Tree Classifier model 
  decision_tree = DecisionTreeClassifier() 

  # Define the hyperparameter search space with random 
distributions 
  hyperparameter_space = { 
      ‘max_depth’: randint(1, 20), 
      ‘min_samples_split’: randint(2, 20), 
      ‘min_samples_leaf’: randint(1, 20), 
      ‘criterion’: [‘gini’, ‘entropy’] 
  } 

  # Set the number of iterations for Randomized Search 
  iterations = 110 

  # Perform Randomized Search with cross-validation 
  random_search = RandomizedSearchCV( 
      estimator=decision_tree, 
      param_distributions=hyperparameter_space, 
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      n_iter=iterations, 
      cv=5, # Cross-validation strategy 
      verbose=2, # Display detailed output 
      random_state=42, # For reproducibility 
      n_jobs=-1 # Utilize all available cores 
  ) 

  # Fit the Randomized Search to the training data 
  random_search.fit(X_train, y_train) 

  # Output the best hyperparameters found 
  print(“Optimal hyperparameters: “, random_search.
best_params_) 

  # Evaluate the optimized model on the test set 
  best_decision_tree = random_search.best_estimator_ 
  accuracy = best_decision_tree.score(X_test, y_test) 
  print(“Test set accuracy: “, accuracy) 

Output:

  Fitting 5 folds for each of 100 candidates, totaling 500 
fits 
  Best parameters found: {‘criterion’: ‘entropy’, ‘max_
depth’: 15, ‘min_samples_leaf’: 3, ‘min_samples_split’: 
9} 
  Test set accuracy: 1.0 

Selecting and tuning the right hyperparameters is often an iterative process and 
essential for building effective and efficient ML models. Different methods can give 
different results for the same model and dataset as their underlying principle of work-
ing is different.

5.8 � SUMMARY

In this chapter, readers delve into the foundational aspects of supervised ML, 
beginning with an exploration of classification, correlation, and regression analy-
sis. They gain practical insights into applying simple and multiple linear regression 
techniques, as well as understanding nearest neighbor learning through the k-NN 
algorithm. The chapter covers essential concepts such as entropy, Gini index, and 
information gain, which are pivotal in decision tree construction. Readers also grasp 
the basics of probability theory and Bayes’ theorem, followed by a detailed study of 
Naive Bayes classifiers—Bernoulli, multinomial, and Gaussian—for handling dis-
crete and continuous attributes. Introducing SVMs, the chapter elucidates the con-
cepts of hyperplanes, margins, and the kernel trick. Furthermore, readers learn to 
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evaluate classifier performance using a confusion matrix and explore both exhaustive 
and non-exhaustive methods of cross-validation to ensure robust model assessment. 
The chapter concludes by imparting an understanding of regularization techniques 
and hyperparameter tuning methods to optimize model performance effectively. All 
concepts are detailed with their implementation using Python.
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6 Unsupervised 
Machine Learning

6.1 � INTRODUCTION

When a model is trained on data without predetermined labels or results, it is referred 
to as unsupervised machine learning (ML). Finding patterns, structures, and rela-
tionships in data is the aim of this ML; however, there is no predetermined guidance 
on what to look for. Unsupervised ML approaches include dimensionality reduction, 
association rule mining, and clustering. This chapter will cover two main methods 
for unsupervised learning: association rule mining and clustering. Few applications 
where unsupervised ML techniques can be used are custom segmentation, anomaly 
detection, recommendation systems, and identifying patterns in biological data.

Unsupervised learning provides powerful tools for making sense of data when 
labels are not available, enabling the discovery of meaningful patterns and insights 
that might not be evident through manual analysis.

6.2 � CLUSTERING

An unsupervised ML method called clustering is used to put related objects in one 
group. This method of learning involves observation rather than examples. Mini-
mum and maximum intra-class and inter-class distances will be present in clustered 
data. Data points in one group will have similar properties, while data points in 
another group will have different properties. Data points are unlabeled for unsuper-
vised learning, and they help in finding hidden structures within data. The optimal 
grouping is determined by the data’s structure. For instance, four distinct groupings 
based on an individual’s salary might be created:

•	 Earning less than $10,000
•	 Earning between $10,000 and $30,000
•	 Earning between $30,000 and $60,000
•	 Earning more than $60,000

Here, income is used for grouping a person. Income, however, is not a reliable indi-
cator of how a group’s members relate to one another. In other words, there’s no 
intrinsic reason to think that someone making $80,000 will act any differently than 
someone making $10,000 or $120,000 [1]. Groupings of income are determined by 
simple points of differentiation. If more variables are added such as qualification, 
house size, age, experience, and expenditure, the grouping will change altogether. 
Thus, as more dimensions are added to data, grouping becomes more meaningful 
and complex.

https://doi.org/10.1201/9781003532170-6
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Clustering techniques help us find natural grouping of persons by considering 
many dimensions. Instead of making any predictions, it organizes comparable data 
by identifying similarities between data points based on data properties.

Different clustering methods [2, 3] use different distance measures. K-means uti-
lizes Euclidean/Manhattan/city block distance between points; DBSCAN uses dis-
tance between the nearest points; affinity propagation and spectral clustering are 
based on graph distances; Gaussian mixtures are based on Mahalanobis distance. 
Clustering techniques have numerous applications in marketing, economics, biology, 
city planning, real estate, and various branches of science.

6.3 � DISTANCE MEASURES

Distance measure is the building block of clustering algorithms. It is the measure of 
similarity and dissimilarity of data. Similarity is a numerical measure that defines 
how alike the data points are. If similarity is high, data is more alike. Dissimilarity is 
a numerical measure that defines how different the data points are. If dissimilarity is 
high, data are more different. Different data types such as numerical, binary, ordinal, 
and categorical have different distance measure metrics [4, 5].

Numeric Data Distance Measures:

•	 Euclidean Distance: It is among the most often applied distance metrics to 
numerical data. Below is the Euclidean distance between the data points x 
and y with n features:
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•	 Manhattan Distance: This is also called city block distance, absolute value 
distance, L1 norm, and boxcar. The Manhattan distance between x and y 
data points with n features is given below:
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•	 Minkowski Distance: In general, all distances formulated above can be 
generalized as given below. Here p is a parameter. The distance measure 
is known as Euclidean distance when p is equal to 2 and as Manhattan 
distance when p is equal to 1. With n features, the Minkowski distance 
between x and y points is as follows:
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•	 Chebyshev Distance: This is often referred to as the maximum value dis-
tance or supremum distance. Given two points x and y and n features, the 
Chebyshev distance between them is as follows:

D x y x yChebyshev
i

i i( , ) max(| , |)=
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Binary Data Distance Measures: Binay data can have only two values. The dis-
tance measures discussed above cannot be applied for binary data. To find the dis-
tance between binary attributes, a contingency table needs to be created. The entries 
in the contingency table can be constructed by counting the number of matching 
transactions: 0–0, 0–1, 1–0, 1–1.

Attributes matching 0 1

0 a b

1 c d

In this case, a = total number of attributes, where both x and y attributes are 0.

b = Total number of attributes where x and y attributes are 0 and 1, respectively.
c = Total number of attributes where x and y attributes are 1 and 0, respectively.
d = Total number of attributes where x and y both attributes are 1.

•	 Jaccard Coefficient: This is calculated for binary attributes as follows:
•	 J = d/(b + c + d)

•	 Simple Matching Coefficient (SMC): This is defined as the ratio of the 
number of matching attributes and the number of attributes.
•	 SMC = (a + d)/(a + b + c + d)

•	 Hammond Distance: This indicates the number of positions at which the 
characters or binary attributes are different. For example, the Hammond 
distance between (1 0 1) and (1 1 0) is 2 as both differ in two positions. The 
distance between “hood” and “wood” is 1 as both differ in just one position.

•	 Symmetric Data Distance: If both attribute values are equally valuable and 
carry the same weight, for example, gender attribute is symmetric (male, female) 
as both are equally valuable. the distance for these attributes is calculated as
•	 Distance = (b + c)/(a + b + c + d)

•	 Asymmetric Data Distance: If both attribute values are not equally valu-
able and do not carry the same weight, for example, positive and negative 
outcomes of a disease test or examination. The distance for these attributes 
is calculated as
•	 Distance = (b + c)/(b + c + d)

Categorical Data Distance Measures: Categorical data is a symbol or code to rep-
resent a value, for example, gender attribute, where code 0 can represent male and 
1 can represent female. To find the distance between categorical attributes, we need 
to check if they are equal or not. If they are equal, the distance will be 0; otherwise, 
the distance will be 1.

Ordinal Data Distance Measures: Ordinal attributes are similar to categorical 
attributes, but they have an inherent order. For example, qualification and job desig-
nation have an order. Job designation can be 1, 2, or 3, where 1 is higher than 2 and 2 
is higher than 3. The distance between x and y can be calculated as

Distance ( ) /X,Y  n 1= ( )− ( )position X position Y −
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Here, position refers to the attribute position in the order and n is the total number 
of orders.

6.4 � K-MEANS CLUSTERING

The k-means is the most popularly used clustering algorithm [6]. This is an iterative 
partitioning algorithm that finds k groups in the data. Here, k denotes the requested 
non-overlapping clusters or groups that must be established as stated. Two clusters 
are indicated by the value k = 2, three clusters are indicated by the value k = 3, and so 
on. Based on feature similarity, which is determined using Euclidean distance, data 
points are clustered. The first step in k-means clustering is to use k distinct randomly 
generated centroid points; each data point is matched to the closest centroid. The 
centroid is computed as the average of all the points assigned to it once each point 
has been assigned. Until the centroids are stabilized or a defined number of iterations 
have been reached, this process is repeated.

The k-means algorithm steps are as follows:

	 1.	Choose a k value and select k random points from the data as centroids. (It 
can be different from the input dataset).

	 2.	Assign each data point to its closest centroid by computing the Euclidean 
distance. Here, x, y are data points of n dimension.
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	 3.	Recompute the centroids of newly formed clusters by averaging (arithmetic 
mean) the points assigned to that cluster.

	 4.	Repeat steps 2 and 3 till the centroids are stabilized or a defined number of 
iterations have been reached.

6.4.1 � k-Means Clustering Using Python

Example 1: The grades_km_input.csv file contains data of the marks of 619 students 
in maths, science, and English. This data needs to be grouped into three groups. The 
results shown here are group 1 has 207 students, group 2 has 210 students, and group 
3 has 202 students. The notations used for group 1, group 2, and group 3 are 0, 1, and 
2, respectively . It takes 300 iterations to reach the three-group formation.

  from matplotlib import pyplot 
  import io 
  import pandas as pd 
  from sklearn.cluster import KMeans 
  import numpy as np 
  from google.colab import files 
  uploaded= files.upload() 
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  dfval=pd.read_csv(io.BytesIO(uploaded[‘grades_km_input.
csv’])) 

  kmeans = KMeans(n_clusters=3, random_state=0).fit(dfval) 
  print(“Cluster parameterrs are “,kmeans) 
  print(“Cluster centers are “,kmeans.cluster_centers_) 
  kmeans.predict(dfval) 

Output:

Cluster parameterrs are KMeans(algorithm=‘auto’, copy_x=True, init=‘k-
means++’, max_iter=300,

n_clusters=3, n_init=10, n_jobs=None, precompute_distances=‘auto’,
random_state=0, tol=0.0001, verbose=0)
Cluster centers are [[306.5 85.04326923 77.26442308 79.11538462]
[515.42857143 72.8 66.61904762 66.04285714]
[101.5 95.5 90.21287129 93.59405941]]
array([2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1], dtype=int32)
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If multidimensional data needs to be visualized in 2D, it must be reduced to 2D. If 
the centroids and groups of data need to be visualized, the following code is mod-
ified. Dimension reduction can be performed using principal component analysis 
(PCA).

  from matplotlib import pyplot 
  import io 
  import pandas as pd 
  from sklearn.cluster import KMeans 
  import numpy as np 
  import matplotlib.pyplot as plt 
  from google.colab import files 
  uploaded= files.upload() 
  dfval=pd.read_csv(io.BytesIO(uploaded[‘grades_km_input.
csv’])) 

  #plotting data 
  from sklearn.decomposition import PCA 
  pca = PCA(2) 
  #Transform the data 
  datadf = pca.fit_transform(dfval) 
  kmeans = KMeans(n_clusters= 3) 
  #predict the labels of clusters. 
  label = kmeans.fit_predict(datadf) 
  print(label) 
  #Getting unique labels 
  u_labels = np.unique(label) 
  #plotting the results: 
  #Getting the Centroids 
  centroids = kmeans.cluster_centers_ 
  u_labels = np.unique(label) 

  #plotting the results: 

  for i in u_labels: 
      plt.scatter(datadf[label == i, 0], datadf[la-
bel == i, 1], label 
 = i) 
  plt.scatter(centroids[:,0], centroids[:,1], s = 80, 
color = ‘k’) 
  plt.legend() 
  plt.show() 



177Unsupervised Machine Learning

Output:

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]

Example 2: A healthcare chain wants to open a series of hospitals in a region. It 
has data about the location of highly accident-prone areas in the region. The chain 
needs to decide the number of the hospitals to be opened and the location of these 

FIGURE 6.1  k-Means Clustering for k = 3 on Marks Data.
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hospitals so that all the accident-prone areas are covered. The k-means clustering 
algorithm is the most appropriate to determine the location of these hospitals to cover 
that region. Here, the km_data.csv file contains the location latitude and number of 
accidents for that location.

  import pandas as pd 
  import numpy as np 
  import matplotlib.pyplot as plt 
  from sklearn.preprocessing import MinMaxScaler 
  from sklearn.cluster import KMeans 
  from math import sqrt 

  df = pd.read_csv(“km_data.csv”,encoding=‘latin-1’) 
  #read the location data 
  #add a column for no. of accidents using randomly gener-
ated numbers 
  #dataset is randomly sampled 3 times and each sample is 
provided with #randomly generated numbers 
  df1=df.sample(100, random_state=30) 
  df2=df.drop(df1.index).sample(80, random_state=30) 
  df3 = df.drop(df1.index) 
  df3 = df3.drop(df2.index) 
  np.random.seed(99999999) 
  df1[‘No. of Accidents’] = np.random.randint(0, 40000, 
df1.shape[0]) 
  df2[‘No.of Accidents’] = np.random.randint(50000, 
100000, df2.shape[0]) 
  df3[‘No.of Accidents’] = np.random.randint(80000, 
150000, df3.shape[0]) 
  data = pd.concat([df1,df2,df3]) 
  #scale the data 
  scaler = MinMaxScaler() 
  data[[‘latitude’,’No.ofAccidents’]]= scaler.fit_trans-
form(data[[‘latitude’,’No. of Accidents’]]) 
  #applying k-means clustering to group data into 4 
clusters 
  k=4 
  km = KMeans(n_clusters=k) 
  y_pred = km.fit_predict(data[[‘latitude’, ‘No. of 
Accidents’]]) 
  data[‘cluster’]=y_pred #add the predicted cluster values 
as a column to the dataset 
  #plot each cluster as a scatter plot 
  for i in range(k): 
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   plt.scatter(data[data.cluster==i][‘latitude’],data[-
data.cluster==i][‘No. of Accidents’]) 
  plt.xlabel(“Latitude”) 
  plt.ylabel(“No. of Accidents”) 
  print(“Centroid values using inbuilt KMeans are: “) 
  sno=1 
  for i in km.cluster_centers_: 
  plt.scatter(i[0],i[1],marker=“*”,s=100,label=“centroid 
{}”.format(sno)) 
   sno=sno+1 
   print(i) 

  plt.legend() 
  plt.show() 

Output:

Centroid values using inbuilt KMeans are:

[0.39613256 0.30321862]
[0.50697146 0.83881822]
[0.67967907 0.14859177]
[0.71794245 0.5813726]

FIGURE  6.2  k-Means Clustering for k  = 4 on Healthcare Chain Data Using Built-in 
Function.
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User-defined functions for k-means clustering for the km_data.csv file

  #creating an array of the datapoints 
  user_data = [] 
  for x,y in zip(data[‘latitude’],data[‘No. of 
Accidents’]): 
   user_data.append([x,y]) 

  #function which randomly chooses the centroids (required 
initially) 
  def choose_centroids(X,k): 
   #X is an array with each element of type [latitude, no. 
of accidents] 
    np.random.seed(90) 
   positions = np.random.choice(range(len(X)), size=k, 
replace=False) #randomly sample k no. of index values 
    centroids=[] 
   #choose the datapoints at the indices sampled above, 
they will be the #centroids 
   for i in positions: 
     centroids.append(X[i]) 
   return centroids 

  #function which creates the initial clusters using the 
centroids chosen by choose_centroids() 
  def initiate_cluster(X,k): 
   #X is an array with each element of type [latitude, no. 
of accidents] 
   centroids = choose_centroids(X,k) 
   clusters = [] #will store the clusters as lists, so 
data points in one list belong to one cluster 
   #create k no. of empty sub-lists for k no. of clusters 
   for i in range(k): 
     clusters.append([]) 

   #find distance of each datapoint from each cluster 
centroid 
   for dpoint in X: 
     distances=[] #store the distances from each centroid 
     for point in centroids: 
       dist = sqrt((point[0]-dpoint[0])**2 + 
(point[1]-dpoint[1])**2) 
       distances.append(dist) 
     #find the index of the cluster for which minimum dis-
tance is #obtained 
     cluster_index = distances.index(min(distances)) 
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     clusters[cluster_index].append(dpoint) #assign the 
datapoint to that list(i.e. cluster) whose index is 
obtained above 
   return clusters 

  #function which continues clustering after initial clus-
tering has been performed 
  def calculate_cluster(X,og_data,k): 
   #here X is a list of clusters 
   #X is of form [ [[x1,y1],[x2,y2],...], 
[[a1,b1],[a2,b2]], [datapoints of cluster 3],... ] 

   new_centroids=[] #to store newly calculated centroids 
of each cluster 
   #below i is a list of datapoints [x,y] in an individual 
cluster 
   for i in X: 
     x = [a[0] for a in i] 
     y = [a[1] for a in i] 
     centroid = [np.mean(x),np.mean(y)] 
     new_centroids.append(centroid) 
   clusters = [] #will store clusters as lists, so data-
points in one list #belong to one cluster 
   #creating k no. of empty sublists to store datapoints 
of k no. of #clusters 
   for i in range(k): 
     clusters.append([]) 
   #find distance of each datapoint from each cluster 
centroid and assign the point to cluster with minimum 
distance 
   for dpoint in og_data: 
     distances=[] 
     for point in new_centroids: 
       dist = sqrt((point[0]-dpoint[0])**2 + 
(point[1]-dpoint[1])**2) 
       distances.append(dist) 
     cluster_index = distances.index(min(distances)) 
     clusters[cluster_index].append(dpoint) 
   return clusters 

  #function to check if two clustered datasets are equal 
  def equality(cluster_1, cluster_2): 
   for x,y in zip(cluster_1, cluster_2): 
     if not (((len(x) == len(y)) and (all(i in x for i in 
y)))): 
   return False 
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   return True 

  #function for performing the whole process of kmeans 
clustering using the above functions 
  def fit_kmeans(X,k): 
   clusters = initiate_cluster(X,k) #creating initial clusters 
     old_clusters = calculate_cluster(clusters,X,k) #per-
form clustering on initially created clusters 
   new_clusters = calculate_cluster(old_clusters,X,k) 
#recluster again 
   #keep reclustering until the datapoints stop changing 
clusters 
   while not(equality(old_clusters,new_clusters)): 
     old_clusters = calculate_cluster(old_clusters,X,k) 
     new_clusters = calculate_cluster(old_clusters,X,k) 
   #plot each cluster as a scatter plot 
   for i in new_clusters: 
     plt.scatter([a[0] for a in i],[a[1] for a in i]) 
   plt.xlabel(“Latitude”) 
   plt.ylabel(“No. of Accidents”) 
   print(“cluster centroids are: “) 
   global new_centroids 
   new_centroids=[] 
   for i in new_clusters: 
     x = [a[0] for a in i] 
     y = [a[1] for a in i] 
     centroid = [np.mean(x),np.mean(y)] 
     new_centroids.append(centroid) 
   sno=1 
   for i in new_centroids: 
     plt.scatter(i[0],i[1],marker=“*”, s=100, label=“cen-
troid {}”.format(sno)) 
     sno = sno+1 
     print(i) 
   plt.legend() 
   plt.show() 
   return 

  fit_kmeans(user_data,k) 

Output:

Cluster centroids are

[0.3975908984795953, 0.28642034239739017]
[0.7180242213722119, 0.5822410919925798]
[0.4967087261507008, 0.8242655976854173]
[0.6817238823525831, 0.14801280894564953]
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It can be observed that the results of the built-in function and user-defined func-
tion are exactly the same.

6.5 � HIERARCHICAL CLUSTERING

Hierarchical methods produce nested partitions of data with hierarchical relation-
ships among them. Hierarchical relationships are generally shown in the form of 
dendrograms (Figure 6.4).

Hierarchical methods include agglomerative methods and divisive methods. 
Agglomerative clustering uses a bottom-up approach, whereas divisive clustering 
uses a top-down approach for grouping samples. In agglomerative methods, initially 
all the individual samples are considered as a separate cluster, that is, a cluster with 

FIGURE 6.3  k-Means Clustering for k = 4 on Healthcare Chain Data Using User-Defined 
Function.
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a single element. They are merged subsequently, and the process continues to obtain 
a single cluster or desired number of clusters. Divisive methods consider all the sam-
ples in a single cluster and then partition it. This partition process is continued until 
the cluster is split into smaller clusters or the desired number of clusters.

Agglomerative clustering [7] can be performed using the following three 
methods:

•	 Single Linkage or MIN Slgorithm: In this algorithm, the distance (x,y), 
where x is from one cluster and y is from another cluster, is the smallest 
distance of two points in different clusters.

D c ,c  = minimum d a,bSL i j a  cj( ) ( ) ci b,

•	 Complete Linkage or MAX Algorithm: In this algorithm, the distance 
(x,y), where x is from one cluster and y is from another cluster, is the largest 
distance of two points in different clusters.

D c ,c  = maximum d a,bSL i j a  cj( ) ( ) ci b,

•	 Average Linkage or MIN Algorithm: In this algorithm, the average dis-
tance of all pairs of points across the clusters is used to form a cluster. The 
average value computed between cluster ci and cj is given as follows:

D c ,c  = avg d a,bAL i j a ci, b cj( ) ( ) 

	– or

D c ,c  = ...... d a,bAL i j( ) ( )∑1

mi mj a ci b cj ,

Here mi and mj are the sizes of clusters.
Example 1: Five data points of two dimensions are considered. We apply the sin-

gle linkage algorithm, complete linkage algorithm, and average linkage algorithm on 
the given data to form two clusters.

Data Points:

Data Point No. x y

1 4 4

2 8 4

3 15 8

4 24 4

5 24 12

A table is computed considering the Euclidean distance among the given data 
points:
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{1} {2} {3} {4} {5}

{1} 0 4 11.7 20 21.5

{2} 0 8.1 16 17.9

{3} 0 9.8 9.8

{4} 0 8.0

{5} 0

Here, the minimum distance is 4, which is between data points 1 and 2. So data 
points 1 and 2 form a single cluster {1,2}, and the distances are modified based on 
the algorithm chosen. If the single linkage algorithm is applied, distances will be 
modified as follows:

D c ,c  = minimum d a,bSL i j a ci, b cj( ) ( ) 

The distance between groups {1,2} and {3} is computed using the following 
formula:

Minimum ({1,3},{2,3}) = Minimum {11.7, 8.1} = 8.1.
Thus, the distance between {1,2} and {4} is
Minimum ({1,4},{2,4}) = Minimum {20, 16} = 16.
Thus, the distance between {1,2} and {5} is
Minimum ({1,5},{2,5}) = Minimum {21.5, 17.9} = 17.9.

{1,2} {3} {4} {5}

{1,2} 0 8.1 16 17.9

{3} 0 9.8 9.8

{4} 0 8.0

{5} 0

The similarity matrix is modified, and there are still four different clusters. So 
the minimum distance is found again in the modified similarity matrix, and the 
clusters are formed. {4} and {5} will be combined in a single cluster now as the 
minimum distance is 8. The distances will be modified according to the formula 
as follows:

{1,2} {3} {4,5}

{1,2} 0 8.1 16

{3} 0 9.8

{4,5} 0

The distance of {1,2} with {4,5} will be calculated as
Minimum (({1,2},{4}), ({1,2},{5})) = Minimum {16, 17.9} = 16.
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There are still three clusters, so one more iteration of the process can be applied on 
the data. The next minimum distance in the similarity matrix is 8.1, which is between 
{3} and {1,2}. So they are combined from a single cluster as {1,2,3}. After applying 
the single linkage algorithm on the given data points, the two clusters formed are 
{1,2,3} and {4,5}.

Complete linkage algorithm can also be applied on the same data. Here, initially 
{1} and {2} clusters are combined as they have a minimum distance of 4 between 
them. The distances are modified using the following formula:

D c ,c  = maximum d a,bCL i j a ci, b cj( ) ( ) 

The distance between groups {1,2} and {3} is computed using the formula:
Maximum ({1,3},{2,3}) = Maximum {11.7, 8.1} = 11.7.

Thus, the distance between {1,2} and {4} is
Maximum ({1,4},{2,4}) = Maximum {20, 16} = 20.

Thus, the distance between {1,2} and {5} is
Maximum ({1,5},{2,5}) = Maximum {21.5, 17.9} = 21.5.

{1,2} {3} {4} {5}

{1,2} 0 11.7 20 21.5

{3} 0 9.8 9.8

{4} 0 8.0

{5} 0

The minimum distance between {4} and {5} is 8. So they form one cluster and the 
distances are modified again considering the formula given above.

{1,2} {3} {4,5}

{1,2} 0 11.7 21.5

{3} 0 9.8

{4,5} 0

The distance of {1,2} with {4,5} will be calculated as
Maximum (({1,2},{4}), ({1,2},{5})) = Maximum {20, 21.5} = 21.5.

There are still three clusters, so one more iteration of the process can be applied 
on the data. The next minimum distance in the similarity matrix is 9.8, which is 
between {3} and {4,5}. So they are combined from a single cluster as {3,4,5}. After 
applying the complete linkage algorithm on the given data points, the two clusters 
formed are {1,2} and {3,4,5}.
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Similarly, the average linkage algorithm can be applied on the same data. Here, 
initially {1} and {2} clusters are combined as they have a minimum distance of 4 
between them. The distances are modified using the formula

D c ,c  = avg d a,bAL i j a ci, b cj( ) ( ) 

or

D c ,c  = d a,bAL i j( ) ( )∑1

mi mj a ci b cj
......

, 

The distance between groups {1,2} and {3} is computed using the formula

Average ({1,3},{2,3}) = Average {11.7, 8.1} = 9.9.
Thus, the distance between {1,2} and {4} is

Average ({1,4},{2,4}) = Average {20, 16} = 18.
Thus, the distance between {1,2} and {5} is

Average ({1,5},{2,5}) = Average {21.5, 17.9} = 19.7.

{1,2} {3} {4} {5}

{1,2} 0 9.9 18 19.7

{3} 0 9.8 9.8

{4} 0 8.0

{5} 0

The minimum distance is 8 between {4} and {5}. So they form one cluster, and the 
distances are modified again considering the formula given above.

{1,2} {3} {4,5}

{1,2} 0 9.9 18.9

{3} 0 9.8

{4,5} 0

The distance of {1,2} with {4,5} will be calculated as
Average (({1,2},{4}), ({1,2},{5})) = Average {18, 19.7} = 18.9.

There are still three clusters, so one more iteration of the process can be applied. 
The next minimum distance in the similarity matrix is 9.8, which is between {3} 
and {4,5}. So they are combined from a single cluster as {3,4,5}. After applying the 
average linkage algorithm on the given data points, the two clusters formed are {1,2} 
and {3,4,5}.
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6.5.1 �H ierarchical Clustering Using Python

The agglomerative clustering algorithm is implemented for the data given in the 
example above. The data needs to be clustered into two groups.

  # Agglomerative clustering 
  import numpy as np 
  import matplotlib.pyplot as plt 
  import pandas as pd 
  import scipy.cluster.hierarchy as sch 
  from sklearn.cluster import AgglomerativeClustering 

  d = {“x”: [4, 8, 15, 24, 24], “y”: [4, 4, 8, 4, 12]} 
  df = pd.DataFrame(d) 
  print(df) 
  dendro = sch.dendrogram(sch.linkage(df, method = 
‘ward’)) 
  plt.title(‘Dendrogram’) 
  plt.xlabel(‘data points’) 
  plt.ylabel(‘Euclidean-distances’) 
  plt.show() 

  AC = AgglomerativeClustering(n_clusters = 2, affinity = 
‘euclidean’, linkage = ‘ward’) 
  cluster = AC.fit_predict(df) 
  print (cluster) 

Output:

x y
0 4 4
1 8 4
2 15 8
3 24 4
4 24 12
[1 1 0 0 0]

The given data is clustered into two groups, where data points 1 and 2 are in one 
cluster and data points 3, 4, and 5 are in another cluster.

6.6 � DBSCAN CLUSTERING

The k-means clustering algorithm has some challenges to address. First, it may clus-
ter loosely related data together. It clusters every data point; that is, even if the data 
point is very far in vector space, it will cluster the point. Using a very far point 
to make clusters may affect the outcome of the whole cluster. DBSCAN clustering 
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algorithm [8] addresses this problem. Another challenge in k-means clustering is that 
it works on the value of k; that is, the value of k should be known a priori or a number 
of clusters beforehand. Many a times, the k value is not known a priori. In DBSCAN, 
it is not required that the number of clusters must be specified, that is, the value of 
k. DBSCAN only needs a function to calculate the distance between data points and 
some information for defining closeness. The distance that will be considered as 
close needs to be specified. DBSCAN produces reasonably good results. It produces 
good results for arbitrary shape clusters also.

DBSCAN is a clustering algorithm based on density, which defines clusters 
through density and connectivity. The central concept is that a cluster represents a 
region of high density, distinguished from other clusters by regions of lower density. 
The algorithm operates with two main parameters: the neighborhood radius (ε) and 
the minimum number of points required (minPts) (see Figure 6.6).

A core point is identified if it has at least the minimum number of points (minPts) 
within its ε-neighborhood. A border point has fewer than minPts within its neighbor-
hood but is adjacent to a core point. Points that are neither core nor border points are 
classified as noise. The algorithm requires that each data point must have a minimum 
number of neighbors within its ε-neighborhood, which must contain at least minPts 
points.

The algorithm’s effectiveness relies on the concept of density connectivity. A point 
X is considered densely reachable from point Y if X is within the ε-neighborhood 
of Y, and Y is a core point. Additionally, X is densely reachable from Y if there is a 

FIGURE 6.5  Dendogram of above Data.
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sequence of core points connecting Y to X. Points X and Y are densely connected if 
there is a core point Z such that both X and Y are densely reachable from Z.

Steps in DBSCAN Clustering:

	 1.	Arbitrarily pick a point p in the data set and proceed till all the points are 
visited. Compute the distance between p and all the other data points.

	 2.	Mark it as a core point by finding all the points from p with respect to its 
neighborhood, and check if it has a minimum number of points m.

	 3.	A new cluster is formed if it is a core point or an existing cluster is enlarged.
	 4.	Move to the next point if it is a border point.
	 5.	Remove the point if it is a noise point.
	 6.	Merge the mergeable cluster dist (ci,cj) < ε.
	 7.	Repeat steps 3–6 for all data points.

6.6.1 �D BSCAN Clustering Using Python

Let’s use DBSCAN to cluster spherical data for better visualization. We’ll generate a 
dataset with just two features to simplify the process. We will use a function called 
PointsInCircum(), which accepts the radius and the number of data points as inputs 
and returns an array of points that form a circle when plotted. To effectively observe 
DBSCAN’s clustering capability, we will create three concentric circles with varying 
radii, as a single circle alone may not demonstrate the clustering performance suffi-
ciently. Additionally, we will introduce some noise into the dataset to evaluate how 
well the algorithm handles noisy data.

FIGURE 6.6  DBSCAN Points.
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About 2,300 spherical training data points are generated with corresponding 
labels. The plotted data points in the output show that it forms a circle. After that, the 
features of the training data need to be standardized, and DBSCAN is applied from 
the sklearn library.

The optimum value of epsilon is 30 in this case, and the minPts value is 6. These 
optimum values can be found out using the k-distance graph method. The DBSCAN 
algorithm is trained using these parameters. The results shown here indicate three 
clusters are formed with values 0, 1, and 2 as their labels. −1 indicates noisy data. 
About 2,300 points are created in total: 1,030 points are in cluster 0, 730 points are 
in cluster 1, 318 points are in cluster 2, and 222 are noise points.

  #DBSCAN Algorithm 
  import numpy as np 
  import pandas as pd 
  import math 
  import matplotlib.pyplot as plt 
  import matplotlib 
  from sklearn.cluster import DBSCAN 
  np.random.seed(42) 

  # Function for creating datapoints in the form of a 
circle 
  def PointsInCircle(r,n=100): 
      return [(math.cos(2*math.pi/n*x)*r+np.random.nor-
mal(-30,30),math.sin(2*math.pi/n*x)*r+np.random.nor-
mal(-30,30)) for x in range(1,n+1)] 
  # Creating data points in the form of a circle 

  df=pd.DataFrame(PointsInCircum(500,1000)) 
  df=df.append(PointsInCircum(300,700)) 
  df=df.append(PointsInCircum(100,300)) 

  # Adding noise to the dataset 
  df=df.append([(np.random.randint(-600,600),np.random.
randint(-600,600)) for i in range(300)]) 

  plt.figure(figsize=(10,10)) 
  plt.scatter(df[0],df[1],s=15,color=‘red’) 
  plt.title(‘Whole Dataset’,fontsize=22) 
  plt.xlabel(‘Feature 1 values’,fontsize=16) 
  plt.ylabel(‘Feature 2 values’,fontsize=16) 
  plt.show() 
  #DBSCAN and its plot 
  dbscan_optclus=DBSCAN(eps=30,min_samples=6) 
  dbscan_optclus.fit(df[[0,1]]) 
  df[‘DBSCAN_opt_labels’]=dbscan_optclus.labels_ 
  print(df[‘DBSCAN_opt_labels’].value_counts()) 
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  # Plotting the resulting clusters 
  plt.figure(figsize=(10,10)) 
  plt.scatter(df[0],df[1],c=df[‘DBSCAN_opt_labels’],c-
map=matplotlib.colors.ListedColormap(colors),s=14) 
  plt.title(‘DBSCAN Clustering on whole 
dataset’,fontsize=22) 
  plt.xlabel(‘Feature 1 values’,fontsize=16) 
  plt.ylabel(‘Feature 2 values’,fontsize=16) 
  plt.show() 

Output:

0 1,030
1 730
2 318
-1 222
Name: DBSCAN_opt_labels, dtype: int64

FIGURE 6.7  Generated Data Points for DBSCAN Clustering.
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FIGURE 6.8  DBSCAN Clustering Results on Generated Data Samples.

6.7 � ASSOCIATION RULE MINING

Association rule mining helps us find patterns in data. Market basket analysis, which tries 
to find patterns in user purchases, is its primary application. An example of a pattern can 
be that customers who purchase bread also purchase butter. So a store owner could place 
bread and butter together in his/her store to increase sales. In 2004, Walmart observed 
that people tend to stock up or buy strawberry pop-tarts before a hurricane struck. There 
did not seem to be any relation between hurricanes and strawberry pop-tarts, but Walmart 
mined their data and found this correlation. Later, it was discovered that strawberry pop-
tarts require no cooking and they last long, making them the most purchased item in a 
disaster. One more example where association rule mining helped find the business strat-
egy was in combo meal offers in fast food chains. They learnt that because of the high salt 
content in fast food, people feel thirsty. Thus customers bought food and drinks together.

Therefore, finding patterns using data mining is very helpful for companies’ deci-
sion-making. The ultimate aim of association rules is to discover interesting patterns 
and relationships among items from a given transaction. They help identify the items 
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that are frequently bought together. Association rules give an idea of user purchasing 
behavior as well. Figure 6.9 shows the general idea behind association rules.

6.7.1 �T he a priori Algorithm

The a priori algorithm [9] is the most basic algorithm of association rule finding. “a priori” 
means “using previous knowledge.” So, this algorithm finds frequent items using an itera-
tive approach. First, it finds 1-frequent item sets, and using this, it finds 2-frequent item sets 
and continues to do so until no more frequent item sets can be found. The 1-frequent item 
sets could be {bread}{milk}{butter} and 2-frequent item sets could be {bread, milk} {milk, 
butter}. The a priori property of the item set helps reduce the search space. This property 
states that if {milk, butter} is a frequent item set, then {milk} and {butter} should also be 
frequent items. This property tells us that all subsets of frequent items must also be frequent.

This algorithm needs values for minimum support and confidence threshold too. 
The formulas are given as shown in Figure 6.10.

The support parameter indicates how frequently that item appears in transactions. 
Specifying minimum support value in a priori helps prune the transactions. If the data 
item does not match the minimum support value, that particular data item is not consid-
ered further for finding association rules. Support indicates the popularity of the item.

Confidence indicates the likelihood of occurrence of both data items A and B. The 
a priori algorithm takes an iterative approach to find frequent item sets, using “join” 
and “prune.” The algorithm says that if the P(I) value is less than the minimum sup-
port value, that is, threshold value, then item I is not frequent. All those item sets and 
supersets can be pruned or ignored when the support value is below the minimum 
threshold value. The steps in the a priori algorithm (Figure 6.11) are as follows:

	 1.	Join: This deals with the generation of (k + 1) item sets using the k-item set 
by joining items.

	 2.	Prune: In this step, reduction of the size of the candidate item set occurs. 
Scanning of the count of each item set is performed and cross-checked with 
minimum support value. Based on the count value and the minimum sup-
port threshold value, the item is regarded as frequent or infrequent.

FIGURE 6.9  Association Rule Mining.
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FIGURE 6.10  Support, Confidence, and Lift in a priori Algorithm.

Support (A)=
Number of transaction in which Aappears

Total unmber of ttransactions

Confidence (A B)=
Support(AUB)

Support(A)
®

Lift(A B)=
Confidence(A B)

P(B)
P(A B)

P(A)P(B)

⇒
⇒

=
∪

FIGURE 6.11  A priori Algorithm.

 Algorithm a priori(T, min_support; mm confidence)
 Input:
   T → Transaction dataset
   min_support → Minimum support threshold
   min_confidence → Minimum confidence threshold
 Output:
 Frequent itemsets L
 Strong association rules

 1. C1 ← Generate all umque items from dataset T
 2. �LI ← Prune(Cl) //Remove items with support < 

min_support
 3. k ← 2
 4. While L(k-1) # 0 do:
     a. Ck ←Jom(L(k-l))
        // Generate candidate itemsets by combining 
(k-l)-size frequent itemsets
     b. For each transaction t m T do:
         If Ck c t then:
            Increment support count of Ck
     c. Lk ←Prune(Ck)
        fi  Remove itemsets with support < mm_support
     d. k ← k + 1
 5. Frequent itemsets L ← u Lk
 6. Generate Association Rules:
     For each frequent itemset X m L do:
       For each subset A c X do:
          B ← X - A﻿
         If Confidence(A → B) > min_confidence then:
            Add rule A → B
 7. Return Frequent Itemsets L and Association Rules.
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6.7.2 �E xample of a priori Algorithm

Here, a table of six transactions of purchasing of milk, butter, jam, bread, and paneer 
are shown. Using these transactions, the association rules can be found. Here, the 
support threshold = 50% and confidence = 60%.

Solution: Here, the threshold value for support is 50%, that is, 0.5 x 6 = 3. So, the 
minimum support is 3.

6.7.2.1 � Step 1: Counting Each Item

TABLE 6.1 
Transactions

Transaction List of Items

T1 Milk, butter, jam

T2 Butter, jam, bread

T3 Bread, paneer

T4 Milk, butter, bread

T5 Milk, butter, jam, paneer

T6 Milk, butter, jam, bread

TABLE 6.2 
Item Count

Item Count

Milk 4

Butter 5

Jam 4

Bread 4

Paneer 2

6.7.2.2 � Step 2: Prune
We can see from Table 6.2 that paneer does not meet the minimum support value cri-
terion. So this item will not be considered further. Only milk, butter, jam, and bread 
meet min_sup count as their count values are more than 3.

6.7.2.3 � Step 3: Join
The two-item set can be formed from Table 6.3. Occurrences of the two-item set can 
be found from the transactions given in Table 6.1.

6.7.2.4 � Step 4: Prune
From Table 6.4, we can see that the item sets {milk, bread} and {jam, bread} do not 
meet the minimum support value; thus, these transactions are deleted or pruned and 
not considered for further processing.
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TABLE 6.3 
Data after Pruning

Item Count

Milk 4

Butter 5

Jam 4

Bread 4

TABLE 6.4 
Two-Item Sets

Item Count

Milk, butter 4

Milk, jam 3

Milk, bread 2

Butter, jam 4

Butter, bread 3

Jam, bread 2

6.7.2.5 � Step 5: Join and Prune
Using Table 6.1, the three-item set can be formed and their occurrences can be found. 
For the item set {milk, butter, jam}, subsets {milk, butter}, {milk, jam}, and {butter, 
jam} meet the minimum support criterion, and they occur in Table 6.5. So {milk, 
butter, jam} is considered as frequent.

For the item set {milk, butter, bread}, subsets {milk, butter}, {milk, bread}, {but-
ter, bread}, and {milk, bread} are not frequent, as they do not meet the minimum 
support criterion and do not occur in Table 6.5. Hence, {milk, butter, bread} is not 
frequent, and it is pruned and not considered for further processing.

Only {milk, butter, jam} is frequent.

TABLE 6.5 
Pruning of Two-Item Sets

Item Count

Milk, butter 4

Milk, jam 3

Butter, jam 4

Butter, bread 3
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6.7.2.6 � Step 6: Generate Association Rules
We can form the association rule by using the frequent item set discovered above, as 
follows:

 {milk, butter} => {jam}
 confidence = support {milk, butter, jam} / support 
{milk, butter} = (3/ 4)* 100 = 75%
 lift = confidence / support {jam} =.75 / (4/6) = 1.12

 {milk, jam} => {butter}
 confidence = support {milk, butter, jam} / support 
{milk, jam} = (3/ 3)* 100 = 100%
 lift = confidence / support {butter} = 1 / (5/6) = 1.2

 {butter, jam} => {milk}
 confidence = support {milk, butter, jam} / support {but-
ter, jam} = (3/ 4)* 100 = 75%
 lift = confidence / support {milk} =.75 / (4/6) = 1.12

 {milk} => {butter, jam}
 confidence = support {milk, butter, jam} / support 
{milk} = (3/ 4)* 100 = 75%
 lift = confidence / support {butter, jam} =.75 / (4/6) = 
1.12

 {butter} => {milk, jam}
 confidence = support {milk, butter, jam} / support {but-
ter} = (3/ 5)* 100 = 60%
 lift = confidence / support {milk, jam} =.60 / (3/6) = 
1.2

 {jam} => {milk, butter}
 confidence = support {milk, butter, jam} / support 
{jam} = (3/ 4)* 100 = 75%
 lift = confidence / support {milk, butter} =.75 / 
(4/6) = 1.12

TABLE 6.6 
Three-Item Sets

Item

Milk, butter, jam

Milk, butter, bread

Milk, jam, bread

Butter, jam, bread
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All of the above association rules are strong as the minimum confidence threshold 
here is 60%.

6.7.3 � Case Study: Transactions in a Grocery Store

The example above illustrates the application of the a priori algorithm in a rela-
tively simple case that generalizes to those used in practice. Companies like Walmart 
have made great use of the a priori algorithm in suggesting products bought by its 
customers.

Here, the sample data is of six transactions of five items: milk, butter, jam, bread, 
and paneer. Data is inserted in a .csv file as shown:

Milk Butter Jam

Butter Jam Paneer

Bread Paneer

Milk Butter Bread

Milk Butter Jam Paneer

Milk Butter Jam Bread

The a priori() function from the apyori package implements the a priori algo-
rithm to create frequent item sets and association rules. The apyori package can be 
installed using the command:

  pip install apyori 

Here, the minimum support value is set as 0.5 and confidence value as 0.6. In output, 
only {milk, butter, jam} is considered as frequent. All the subsets of {milk, butter, 
jam} have confidence greater than 60%.

  import io 
  import numpy as np 
  import pandas as pd 
  from apyori import a priori 
  from google.colab import files 
  uploaded= files.upload() 

  dfval=pd.read_csv(io.BytesIO(uploaded[‘a priorifile1.
csv’])) 
  dfval.head() 
  print(dfval.shape) 
  listrecordset = [] 
  for i in range(0, 6): 
      listrecordset.append([str(dfval.values[i,j]) for j 
in range(0, 5)]) 

  print(listrecordset) 
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  rulesofassociation = a priori(listrecordset, min_
support=0.5, min_confidence=0.6, min_lift=1.2, 
min_length=2) 
  resultsofassociation = list(rulesofassociation) 
  print(resultsofassociation) 

Output:

  (6, 5) 

  [[‘nan’, ‘Butter’, ‘Jam’, ‘nan’, ‘Paneer’], [‘nan’, 
‘nan’, ‘nan’, ‘Bread’, ‘Paneer’], [‘Milk’, ‘Butter’, 
‘nan’, ‘Bread’, ‘nan’], [‘Milk’, ‘Butter’, ‘Jam’, ‘nan’, 
‘Paneer’], [‘Milk’, ‘Butter’, ‘Jam’, ‘Bread’, ‘nan’], 
[‘Milk’, ‘Butter’, ‘Jam’, ‘nan’, ‘nan’]] 

  [ RelationRecord(items=frozenset({‘Jam’, ‘Milk’, 
‘Butter’}), support=0.5, ordered_statistics=[Or-
deredStatistic(items_base=frozenset({‘Butter’}), 
items_add=frozenset({‘Jam’, ‘Milk’}), confidence=0.6, 
lift=1.2), OrderedStatistic(items_base=frozenset({‘Jam’, 
‘Milk’}), items_add=frozenset({‘Butter’}), confi-
dence=1.0, lift=1.2)])......................... 

It displays all the subsets of {milk, butter, jam} with their support and confidence. 
All the subsets have confidence values greater than 60.

6.8 � SUMMARY

A thorough review of unsupervised ML algorithms is given in this chapter, with 
an emphasis on association rule mining and clustering methods. Investigating the 
data’s underlying structure or distribution is the main objective. A crucial method 
in unsupervised learning is clustering, which groups related data points into clus-
ters. This technique helps in identifying natural groupings within datasets. Distance 
measures define the similarity between data points and significantly impact the clus-
tering results. Different distance measures and taxonomy of clustering algorithms 
are also discussed in detail. Association rule mining is used to identify interesting 
relationships between variables in large datasets, commonly applied in market basket 
analysis. The chapter is accompanied by practical Python implementations to rein-
force all the concepts.
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7 Neural Networks and 
Deep Learning

7.1 � INTRODUCTION

The human brain is an interesting phenomenon, so little when looked at physically 
yet incomprehensible when studied about. The working of the human mind has been 
studied since the 17th century, and yet there exist certain phenomena we cannot find 
an explanation for. Neurons are special cells that send messages all over one’s body 
to enable one to do everything from breathing to talking to eating and thinking. 
These neurons form what is called a neural network in our minds that light up when 
one is thinking. Similarly, to make a computer algorithm “think”, we must recreate 
this neural network to enable artificial intelligence (AI), similar to our own. The 
following paragraphs shall explore various concepts and methods related to such 
neural networks.

With the goal of transforming how robots or algorithms see, comprehend, and 
interact with the environment, neural networks have emerged as revolutionary forces 
in the field of AI in recent years. Neural networks are computer models made up of 
neurons, which are interconnected nodes that analyze and learn from data. They 
are inspired by the intricate workings of the human brain. A kind of machine learn-
ing (ML) called “deep learning” uses multilayered neural networks (hence the term 
“deep”) to simulate intricate correlations and patterns [1] in big datasets that haven’t 
been well examined before.

The power of deep learning and neural networks lies in their ability to automat-
ically identify and extract meaningful patterns from raw data, eliminating the need 
for human feature engineering, which has become synonymous with ML applica-
tions. This has resulted in notable advancements in a variety of fields, including 
speech and picture recognition, natural language processing, and gaming, frequently 
surpassing human skills in these applications.

The structures, learning techniques, and applications of neural networks and deep 
learning are examined in this chapter, which dives into their fundamentals. We will 
look at the fundamental ideas that make them successful, like gradient descent and 
backpropagation, as well as the difficulties and constraints they encounter. We can 
use these potent tools to solve challenging issues and push the boundaries of AI 
research if we comprehend their complexities.

A foundational aspect of neural networks is ML. Now, the basic concept behind 
ML is that computer algorithms cannot comprehend data like images or audio or 
video like the human mind does; rather it can be trained to observe patterns in data. 
If we “train” a computer algorithm by providing it with some data and the observed 
characteristics and repeat this process a reasonable number of times, we can accom-
plish an algorithm capable of finding patterns or “learning” from the data.

https://doi.org/10.1201/9781003532170-7
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Think about the task of recognizing faces—something we perform effort-
lessly every day. Whether it’s identifying family members or friends from their 
faces or photographs, we can do so despite changes in pose, lighting, hairstyle, 
and other variations. However, this process happens unconsciously, and we strug-
gle to explain exactly how we accomplish it. This makes it difficult to manually 
program a computer to perform the same task. Yet, we know that a face is more 
than a random assortment of pixels—it has a well-defined structure. Faces are 
symmetrical, with key features like eyes, a nose, and a mouth arranged in specific 
positions. Every face is characterized by a unique combination of these features. 
By analyzing sample images of a person’s face, a learning algorithm can identify 
the distinctive pattern associated with that individual. It then uses this pattern 
to recognize the person in new images. This illustrates how pattern recognition 
works in practice.

ML builds mathematical models using statistical principles, as its main objec-
tive is to infer patterns from sampled data. Computer science plays a critical role in 
two main areas: first, during the training phase, it provides efficient algorithms to 
address optimization problems and manage large datasets. Second, both the model’s 
representation and the inference algorithms must be computationally efficient once 
the model has been trained. In some scenarios, the computational efficiency of these 
algorithms, measured by their space and time complexity, can be as important as the 
model’s ability to make accurate predictions.

If a linear model falls short, one option is to generate new features by applying 
nonlinear transformations to the input, such as higher-order terms, and then develop 
a linear model in the resulting feature space. However, this requires prior knowl-
edge of effective basis functions. Another option is to leverage feature extraction 
techniques like PCA or Isomap, which are advantageous because they are trained 
directly on the data.

PCA is a common technique for reducing data complexity and can be very use-
ful when working with neural networks. PCA aims to identify the most significant 
features or principal components in a dataset, allowing for the reduction of the input 
dimensionality without losing too much of the original information. In the context of 
neural networks, PCA can be employed in several ways:

	 1.	Feature Extraction and Preprocessing:
		    Prior to being fed into a neural network, PCA can be used as a prepro-

cessing step to extract the most pertinent characteristics from the input data. 
Through the reduction of the input’s dimensionality, PCA can enhance the 
neural network’s efficiency and overall performance, as it focuses on the 
most informative features and reduces the risk of overfitting.

	 2.	Visualization and Interpretation:
		    PCA can simplify high-dimensional data by visualizing it in a low-

er-dimensional space, typically two or three dimensions. This can offer 
important insights into the patterns and connections within the data, which 
can aid in the interpretation and understanding of the neural network’s 
behavior.
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	 3.	Regularization and Dimensionality Reduction:
		    PCA can be integrated directly into the neural network architecture as a 

form of regularization. Projecting input data onto the principal components 
encourages the network to focus on learning representations that align with 
the data’s most significant features, which improves generalization and pre-
vents overfitting.

	 4.	 Initialization and Weight Optimization:
		    PCA can also be used to initialize the weights of a neural network, espe-

cially for the connections between the first hidden layer and the input layer. 
Aligning the initial weights with the principal components can help the net-
work train faster and improve its performance. Overall, the integration of PCA 
into neural network architectures and training processes can enhance the per-
formance, interpretability, and robustness of these powerful ML models.

Still, the best approach is to use a Multilayer Perceptron (MLP). It extracts these 
features in its hidden layer, with the benefit that both the feature extraction in the first 
layer and the combination of those features to predict the output in the second layer 
are learned together in a connected and supervised way.

The goal of deep learning is to automatically learn features at various abstraction 
levels with minimal human involvement. These methods are appealing because they 
require less manual effort and there’s no need to design specific features, basis func-
tions, or even the network architecture manually. With enough data and computa-
tional power, we let the learning algorithm independently uncover what it needs. The 
concept of multiple layers capturing progressively abstract features, which forms the 
foundation of deep learning, is straightforward and intuitive. The concept of abstrac-
tion layers extends beyond visual tasks such as identifying handwritten digits or faces 
and applies to many other fields. Discovering these abstract representations can pro-
vide valuable insights, improve visualization, and offer a clearer description of the 
problem at hand.

7.2 � INTRODUCTION TO NEURAL NETWORKS

A neural network is a computational model inspired by the structure and function 
of the human brain. It is used in ML and AI to solve complex problems by learning 
patterns from data. Neural networks are particularly effective for tasks like image 
recognition, natural language processing, and time-series prediction.

Neural networks, as previously mentioned, are made up of interconnected nodes or 
“neurons” arranged in layers. They learn to perform tasks by adapting the strengths 
of connections between neurons based on input data and feedback signals. This abil-
ity to adjust enables neural networks to approximate complex functions and uncover 
intricate patterns in data without the need for explicitly programmed rules.

The growing focus on neural networks in recent years, often described as the 
“deep learning revolution,” has been driven by several key factors.

	 1.	 Increased computational power, particularly through advancements in 
graphics processing units (GPUs);
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	 2.	Availability of large-scale datasets for training;
	 3.	Advancements in network architectures and training algorithms;
	 4.	 Improved regularization techniques to prevent overfitting.

These advancements have facilitated the development of deep neural networks with 
multiple layers, capable of learning hierarchical data representations and delivering 
state-of-the-art performance across various tasks.

7.3 � FUNDAMENTALS OF NEURAL NETWORKS

	 1.	Biological Inspiration:
		    Neural networks draw inspiration from the structure and function of bio-

logical nervous systems. In the human brain, neurons communicate through 
electrical and chemical signals, forming complex networks capable of pro-
cessing and storing information. Artificial neural networks aim to mimic 
this biological architecture in a simplified form, with artificial neurons 
(nodes) connected by weighted edges that represent synaptic strengths.

	 2.	Basic Structure:
Neurons (Nodes):

•	 The building blocks of a neural network.
•	 Each neuron receives input, processes it (via an activation function), 

and produces output.
Layers:

•	 Input Layer: Accepts raw data features.
•	 Hidden Layers: Perform computations to extract patterns and 

relationships.
•	 Output Layer: Produces the final predictions or classifications.

Weights and Biases:
•	 Weights determine the importance of inputs.
•	 Bias shifts the activation function to help the network fit the data 

better.
Activation Functions:

•	 Functions like Rectified Linear Unit (ReLU), Sigmoid, and Soft-
max introduce nonlinearity, enabling the network to model complex 
relationships.

	 3.	Activation Functions:
		    An activation function in a neural network determines whether a neuron 

should be activated or not. It introduces nonlinearity into the network, enabling 
it to learn and model complex patterns in the data. Without activation func-
tions, a neural network would simply perform linear transformations, severely 
limiting its capability. Common activation functions include the following:

a.	 Sigmoid: f x
e x( )=
+ −

1

1

b.	 Hyperbolic Tangent (tanh): f x
e e

e e

x x

x x( )= −
+

−

−
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c.	 ReLU: f x x( )= ( )0,

d.	 Leaky ReLU: f x x x( )= ( )a , , where α is a small constant.

The selection of an activation function plays a crucial role in determining 
the network’s performance and training behavior.

	 4.	Learning Process:
Neural networks undergo an iterative learning process where weights are 

adjusted to reduce the error between predicted and actual outputs. This 
process usually includes the following:
a.	 Forward Propagation: It is the process in which input data flows 

through the layers of a neural network to generate predictions. Each 
layer transforms the input data by applying numerical parameters 
called weights and biases, which determine the strength and influ-
ence of connections between neurons. These transformations are 
further enhanced by activation functions, which introduce nonlin-
earity, enabling the network to learn and model complex patterns in 
the data. The final layer processes the transformed data to produce 
predictions, which may represent probabilities for classification 
tasks or numeric values for regression tasks. This step is essential 
for the network to make decisions based on the input it receives.

b.	 Loss Calculation: The purpose of loss calculation is to measure 
the difference between the neural network’s predicted outputs and 
the actual target values, providing a way to evaluate the network’s 
performance. This is achieved using a loss function, a mathematical 
formula that quantifies the error. Common loss functions include 
mean squared error (MSE), which is used for regression tasks to 
measure the average squared differences between predictions and 
targets, and cross-entropy loss, which is commonly applied in clas-
sification tasks to assess how well the predicted probability distri-
bution matches the actual labels. The loss function outputs a single 
scalar value, with lower values indicating better performance of the 
network. This loss value serves as the basis for improving the net-
work through backpropagation and weight adjustment.

c.	 Backpropagation: The purpose of backpropagation is to determine 
how to adjust the weights and biases of a neural network to mini-
mize the loss, thereby improving its predictions. This is achieved 
by calculating the gradient of the loss with respect to each weight 
and bias using the chain rule of calculus. Gradients provide infor-
mation on how much a small change in a parameter will impact 
the loss, guiding the network on how to update these parameters 
effectively. The calculations flow backward through the network, 
starting from the output layer and moving to the input layer, hence 
the name “backpropagation.” This process identifies which weights 
and biases contributed most to the error, enabling the network to 
focus its adjustments where they are needed most.

d.	 Weight Adjustment: Weight adjustment is the process of updating 
a neural network’s weights to reduce the loss and improve future 



207Neural Networks and Deep Learning

predictions. This is done using optimization algorithms like gradi-
ent descent or its variants (e.g., Adam and RMSProp), which adjust 
the weights by taking small steps in the direction of the negative 
gradient of the loss. This iterative process involves repeating for-
ward propagation, loss calculation, backpropagation, and weight 
adjustment over multiple iterations (epochs) until the loss reaches 
an acceptable level or stops improving, enabling the network to 
effectively learn from the data. This iterative process enables neu-
ral networks to achieve the accuracy required for practical, produc-
tion-level applications.

The code provided below demonstrates building and training a simple neural net-
work using TensorFlow to classify handwritten digit images from the digits dataset. 
First, the dataset is loaded [2], normalized, and its labels are converted to one-hot 
encoded format for multiclass classification. The data is then split into training and 
testing sets. The neural network consists of an input layer, a single hidden layer with 
64 neurons using ReLU activation, and an output layer with softmax activation to 
predict the probability of each digit class (0–9). The model is compiled using the 
Adam optimizer and categorical cross-entropy loss and then trained for ten epochs 
with a batch size of 32. Finally, the model’s performance is evaluated on the test set, 
displaying the loss and accuracy metrics.

  import tensorflow as tf 
  from tensorflow.keras import layers, models 
  from sklearn.datasets import load_digits 
  from sklearn.model_selection import train_test_split 
  from sklearn.preprocessing import OneHotEncoder 
  import numpy as np 

  # Load the digits dataset 
  digits = load_digits() 
  X = digits.data 
  y = digits.target 

  # Normalize the input data 
  X = X / 16.0 

  # One-hot encode the labels 
  encoder = OneHotEncoder(sparse_output=False) 
  y = encoder.fit_transform(y.reshape(-1, 1)) 

  # Split the data into training and testing sets 
  train_X, test_X, train_y, test_y = train_test_split(X, 
y, test_size=0.2, random_state=42) 

  # Build the neural network model with one hidden layer 
  model = models.Sequential([ 
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      layers.InputLayer(input_shape=(X.shape[1],)), # 
Input layer 
      layers.Dense(64, activation=‘relu’), # Single hidden 
layer 
      layers.Dense(y.shape[1], activation=‘softmax’) # 
Output layer 
  ]) 

  # Compile the model 
  model.compile(optimizer=‘adam’,loss=‘categorical_cros-
sentropy’, 
                metrics=[‘accuracy’]) 

  # Train the model 
  model.fit(train_X, train_y, epochs=10, batch_size=32, 
validation_split=0.2) 

  # Evaluate the model on the test set 
  loss, accuracy = model.evaluate(test_X,test_y) 
  print(f”Test Loss: {loss:.4f}, Test Accuracy: 
{accuracy:.4f}”) 

This example illustrates how to preprocess data, construct a neural network, and 
train it for classification tasks.

	 5.	Types of Learning:

Neural networks can adapt and learn in various ways, based on the characteristics of 
the data and the specific problem being addressed.

The three main types of learning are as follows:

Supervised Learning: In supervised learning, the network is trained using a 
labeled dataset, where each input is matched with a specific target or output. 
The aim is to develop a mapping function capable of accurately predicting 
outputs for previously unseen inputs.

Key Characteristics:

•	 Requires paired input–output data
•	 Widely applied in tasks like classification and regression
•	 Examples include image classification, speech recognition, and price prediction

Challenges:

•	 Acquiring large, precisely labeled datasets often requires significant time 
and expense

•	 Risk of overfitting to the training data
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Unsupervised Learning: Unsupervised learning involves training on unlabeled 
data, where the network attempts to discover inherent patterns or structures within 
the data.

Key Characteristics:

•	 No predefined output or labels
•	 Applied in clustering, dimensionality reduction, and feature extraction  

tasks
•	 Examples include customer segmentation, anomaly detection, and genera-

tive models

Challenges:

•	 Difficulty in evaluating the quality of learned representations
•	 Interpretability of discovered patterns

Reinforcement Learning: Reinforcement learning is a process where an agent 
learns to make decisions through interactions with its environment. The agent 
gets feedback in the form of rewards or punishments depending on the actions it 
takes.

Key Characteristics:

•	 Learning through trial and error
•	 Maintains a balance between exploring new possibilities and utilizing 

actions proven to be effective
•	 Used in game playing, robotics, and autonomous systems

Challenges:

•	 Designing appropriate reward functions
•	 Handling large state and action spaces
•	 Sample efficiency in learning

Semi-Supervised Learning: A combined method incorporating aspects of super-
vised and unsupervised learning, utilizing a small quantity of labeled data alongside 
a substantial amount of unlabeled data.

Key Characteristics:

•	 Leverages both labeled and unlabeled data
•	 Can improve performance when labeled data is scarce
•	 Examples include text classification with limited annotations

Challenges:

•	 Balancing the influence of labeled and unlabeled data
•	 Designing effective algorithms to leverage unlabeled data
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7.4 � NEURAL NETWORK ARCHITECTURES

This section will brief about various architectures of neural network.

	 1.	Feedforward Neural Networks:

A feedforward neural network is a type of artificial neural network where data flows 
in one direction, from the input layer through one or more hidden layers to the output 
layer. It does not have loops or feedback connections, making it simple and efficient 
for tasks like classification and regression. The network learns by adjusting weights 
during training to minimize the error between predicted and actual outputs.

Key Features:

•	 Fully connected layers
•	 Suitable for tabular data and simple pattern recognition tasks
•	 Limited in capturing spatial or temporal dependencies

	 2.	Convolutional Neural Networks:

These are specialized for handling grid-based data, such as images, and employ con-
volutional layers to learn spatial hierarchies of features automatically. It uses convo-
lutional layers to automatically extract spatial features, making it highly effective for 
tasks like image recognition, object detection, and video analysis.

Key Features:

•	 Local connectivity and parameter sharing
•	 Pooling layers for down-sampling
•	 Highly effective for image and video processing tasks

	 3.	Recurrent Neural Networks:

It is a type of neural network designed to process sequential data by retaining infor-
mation about previous inputs through hidden states. It is widely used in tasks like 
time-series analysis, language modeling, and speech recognition, where understand-
ing temporal dependencies is crucial.

Key Features:

•	 Feedback connections
•	 Gated recurrent units (GRU) and long short-term memory (LSTM) are two 

variants that are intended to solve the vanishing gradient issue.

	 4.	Transformer Networks:

Transformer networks, a recent introduction, rely entirely on self-attention mecha-
nisms to process sequential data.
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Key Features:

•	 Parallelizable computation
•	 Well-suited for modeling long-range dependencies
•	 Forms the foundation for numerous cutting-edge models in natural lan-

guage processing

	 5.	Generative Adversarial Networks:

Generative adversarial networks (GANs) are composed of two neural networks—a 
generator and a discriminator—trained together using adversarial learning.

Key Features:

•	 Can generate new, synthetic data samples
•	 Applied in tasks such as image generation, style transfer, and data 

augmentation
•	 Challenging to train due to instability issues

7.5 � CONVOLUTIONAL NEURAL NETWORKS

Convolutional neural networks (CNNs) are a class of deep learning models primarily 
designed for processing data that has a grid-like topology, such as images. They are 
highly effective for tasks like image recognition, object detection, and segmentation 
but are also applied to other domains like video processing, speech recognition, and 
natural language processing.

Convolutional layers provide the basis of CNNs; the term “convolution” describes 
the mathematical process of combining two functions to create a third. The input 
image is processed by these layers using learnable filters. These filters, also called as 
kernels, are employed to identify discrete characteristics including textures, forms, 
and edges. Moving the filters across the image enables them to detect and localize 
features while constructing a hierarchical representation of the input data. One of the 
main features of CNNs is their ability to handle the spatial and local dependencies 
within images.

CNNs differ from traditional ML algorithms by automatically learning key fea-
tures from the data, reducing the necessity of manual feature engineering. This is 
accomplished using shared weights and local connectivity, which minimize the num-
ber of parameters and enable the network to efficiently handle large-scale images. 
A standard CNN architecture is composed of several convolutional layers, pooling 
layers, and fully connected layers as shown in Figure 7.1.

Convolutional layers capture features from the input image, while pooling layers 
shrink the spatial dimensions of the feature maps, improving the network’s resilience 
to small changes in the input. The ultimate classification or prediction is made by 
the completely connected layers at the end of the network. CNN training relies on 
extensive datasets and significant computational resources. Through backpropaga-
tion, the network’s parameters are adjusted iteratively to minimize the discrepancy 
between its predictions and the ground truth data. This process enables the network 
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to uncover patterns and relationships within the image data, allowing it to make 
accurate predictions on previously unseen images.

In recent years, CNNs have attained cutting-edge performance on various image 
recognition benchmarks, like ImageNet and CIFAR-10. These advancements have 
led to numerous applications and breakthroughs, from autonomous driving and med-
ical image analysis to facial recognition and object detection in surveillance systems. 
Despite their success, CNNs are not without their challenges.

One of the main challenges is the interpretability of the learned features, as the 
complex interactions between the convolutional filters can make it difficult to under-
stand how the network arrives at its predictions. Additionally, CNNs can be sensitive 
to the quality and quantity of training data and may struggle with tasks that require 
reasoning or abstraction beyond the patterns present in the images. As the field of 
CNNs continues to evolve, researchers are exploring various techniques to address 
these challenges, such as attention mechanisms, GANs, and transfer learning. These 
advancements are likely to lead to even more powerful and versatile CNNs, capable 
of tackling increasingly complex problems and driving innovation across various 
domains.

7.5.1 �T he Convolution Layer

Convolutional layer is a fundamental component of CNNs, specifically designed for 
analyzing grid-like data, such as images or time-series data. Convolution operation 
is performed by this layer. In order to generate feature maps, small trainable filters, 
also called as kernels, move across the input data, multiplying and adding elements 
at each location. As the network gets deeper, it learns more sophisticated represen-
tations like structures, objects, and semantic information. Each filter is trained to 
identify particular patterns or features, including edges, textures, or gradients. Filters 

FIGURE 7.1  CNN Architecture.
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have adjustable sizes (e.g., 3 × 3, 5 × 5), and their number determines the depth of 
the output feature map, with more filters allowing the network to capture a greater 
variety of features [3].

The performance of the convolution operation is defined by various hyperparam-
eters, including the following:

	 1.	Stride: Determines the step size of the filter as it moves across the input, 
influencing the spatial dimensions of the output. A stride of 1 results in a 
dense feature map, while larger strides downsample the data.

	 2.	Padding: Decides how to handle the edges of the input. Common strategies 
include the following:
o	 Valid Padding: No padding, resulting in reduced output size
o	 Same Padding: Adds padding so the output size matches the input size, 

preserving spatial dimensions
	 3.	Activation Function: After the convolution, a nonlinear function like 

ReLU is applied to introduce nonlinearity, enabling the network to learn 
complex patterns and relationships.

The design of convolutional layers ensures efficiency and robustness through two 
key principles:

•	 Parameter Sharing: A single filter is applied across the entire input, reduc-
ing the number of trainable parameters and making the network computa-
tionally efficient.

•	 Local Connectivity: Filters operate on localized regions of the input, 
making the model focus on small, meaningful regions while reducing 
complexity.

Translation invariance is another feature of these layers that allows them to identify 
patterns in the input regardless of where they are located. For example, whether an 
object is in the top-left corner or the center of an image, the convolutional layer can 
still detect it. This property is critical in tasks like image recognition and object 
detection, where patterns may appear at different locations.

7.5.2 �P ooling Layer

Pooling layers are a critical component of CNNs used to reduce the spatial dimen-
sions of feature maps, making the model more computationally efficient and less 
prone to overfitting. Pooling layers allow the network to concentrate on important 
information by summarizing small areas of a feature map keeping dominating fea-
tures while eliminating less important data. Common types of pooling include max 
pooling, which selects the maximum value in a region to emphasize strong activa-
tions, and average pooling, which computes the average value for a smoother repre-
sentation. Global pooling is sometimes used to summarize entire feature maps into 
single values before feeding them into fully connected layers. Pooling helps reduce 
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dimensionality, computational costs, and overfitting while ensuring robust feature 
generalization.

7.5.3 �F ully Connected Layer

The fully connected (FC) layer in a CNN is the final stage that connects all neurons 
from the previous layer to every neuron in its layer, enabling global feature integra-
tion and decision-making. It takes the convolutional and pooling layers’ flattened 
output as a collection of features and uses weights and biases to determine how they 
relate to one another. Every neuron in the FC layer models complicated relationships 
and generates predictions by performing a linear transformation and then an acti-
vation function (such as ReLU, sigmoid, or softmax). FC layers are primarily used 
for classification, mapping learned features to class scores, or for regression tasks, 
outputting continuous values.

7.5.4 �L oss Function

The loss function in a CNN measures the difference between the network’s pre-
dicted output and the actual target, guiding the model’s learning process. It mea-
sures the error and provides feedback during training, helping the network update its 
weights using backpropagation and optimization techniques like stochastic gradient 
descent (SGD). The choice of a loss function is crucial and varies based on the type 
of task being solved, as different tasks require different methods to evaluate pre-
diction errors effectively. For classification tasks, the cross-entropy loss is one of 
the most commonly used loss functions. It works by comparing the predicted prob-
abilities of the network with the true class labels, ensuring that the model outputs 
higher probabilities for correct classes. Hinge loss, which is particularly useful for 
margin-based classifiers like support vector machines (SVMs). This loss function 
focuses on maximizing the margin between predicted and actual classes, enhancing 
the classifier’s robustness. For regression tasks, where the goal is to predict con-
tinuous values, MSE and mean absolute error (MAE) are widely used, the former 
focusing on squared differences and the latter on absolute differences. In image 
segmentation tasks, where precise pixel-level predictions are required, specialized 
loss functions like dice loss and Intersection over Union (IoU) loss are preferred. 
By concentrating on their overlap, these losses are especially useful for comparing 
predicted segmentation masks with ground truth, guaranteeing precise border iden-
tification and segmentation. Kullback–Leibler (KL) divergence is another advanced 
loss function used in tasks like language modeling or probabilistic predictions, as it 
measures the difference between two probability distributions, helping refine models 
that output probabilities.

7.5.5 �O ptimization Algorithms

Optimization algorithms in CNNs are essential for minimizing the loss function and 
updating network weights during training. The most basic algorithm, SGD, updates 
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weights iteratively based on the gradient of the loss function with respect to the 
weights, as shown below.

W W L W= − ( )η∇

Here,

W  = Weights
h  = Learning rate
Ñ L W( )  = Gradient of the loss function with respect to W

The limitation of SGD is it can be slow and prone to oscillations. SGD with momen-
tum addresses these issues by adding a momentum term to accelerate convergence 
and reduce oscillations. The update rule of SGD with momentum is as shown below:

	 v v L W= − ( )γ η∇

	 W W v= −

Here, v  is the velocity term and g  is the momentum factor.
Adaptive methods like Adagrad adjust learning rates are based on historical gra-

dients, and the formula is as given below:
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Here, Gt  is the sum of squared gradients and Î  is a small constant.
This works well with sparse data, but it can diminish learning rates excessively, 

an issue resolved by RMSProp, which uses an exponentially decaying average of 
squared gradients.
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  is the exponentially weighted moving average of the squared gradients.

Adam combines the strengths of momentum and RMSProp by maintaining mov-
ing averages of both gradients and squared gradients, offering fast convergence and 
robustness to noisy data.

	 m m L Wt t= − −( ) ( )−β β1 1 11 ∇
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Here, mt  and vt ​ are the biased estimates of the first and second moments, respectively.
Nesterov-accelerated Adaptive Moment Estimation (Nadam) is a variant of 

Adam optimizer, which incorporates Nesterov momentum for further improve-
ment of convergence speed and performance. AdaDelta, an extension of Adagrad, 
avoids diminishing learning rates by using a moving average of squared gradi-
ents. Selection of an algorithm depends upon dataset size, task complexity, and 
the gradient behavior. Large datasets or complicated architectures frequently 
benefit from adaptive techniques like Adam or RMSProp, which strike a bal-
ance between accuracy and efficiency, whereas simpler jobs could work well with 
SGD.

The code given below builds, trains, and evaluates a simple CNN using Ten-
sorFlow [4] to classify the MNIST dataset of handwritten digits. First, it imports 
required libraries and loads the MNIST dataset. The grayscale image data is reshaped 
to include a channel dimension (28 x 28 x 1) and normalized to a range of 0–1. The 
labels are one-hot encoded to represent the 10 classes (digits 0–9).

The CNN model is constructed using TensorFlow’s Sequential API. It includes 
the following:

	 1.	A convolutional layer with 32 filters of size 3 x 3, followed by ReLU 
activation.

	 2.	A max-pooling layer to reduce spatial dimensions.
	 3.	A second convolutional layer with 64 filters and ReLU activation, followed 

by another max-pooling layer.
	 4.	A flattening layer to transform the 2D feature maps into a 1D vector.
	 5.	A fully connected dense layer with 128 neurons and ReLU activation.
	 6.	An output dense layer with 10 neurons and softmax activation for multiclass 

classification.

The Adam optimizer and categorical cross-entropy as the loss function are used to 
compile the model. Using the training data, it is trained for 50 epochs with a batch 
size of 32, and the test data is used for validation. Finally, the model is evaluated on 
the test set, and the test accuracy is printed.

  import tensorflow as tf
 from tensorflow.keras import Sequential
 from tensorflow.keras.layers import Conv2D, Max-
Pooling2D, Flatten, Dense
 from tensorflow.keras.datasets import mnist
 from tensorflow.keras.utils import to_categorical

 (train_x, train_y), (test_x, test_y) = mnist.load_ 
data()
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 train_x = train_x.reshape(-1, 28, 28, 
1).astype(‘float32’) / 255.0
 test_x = test_x.reshape(-1, 28, 28, 1).astype(‘float32’) 
/ 255.0

 train_y = to_categorical(train_y, 10)
 test_y = to_categorical(test_y, 10)

 model = Sequential([
 Conv2D(32, (3, 3), activation=‘relu’, input_shape=(28, 
28, 1)),
 MaxPooling2D((2,2)),
 Conv2D(64, (3, 3), activation=‘relu’),
 MaxPooling2D((2, 2)),
 Flatten(),
 Dense(128, activation=‘relu’),
 Dense(10, activation=‘softmax’)
 ]) 

 model.compile(optimizer=‘adam’, loss=‘categorical_cros-
sentropy’, metrics=[‘accuracy’])

  model.fit(train_x, train_y, epochs=50, batch_size=32, 
validation_data=(test_x, test_y))
 test_loss, test_acc = model.evaluate(test_x, test_y)
 print(f’Test Accuracy: {test_acc * 100:.2f}%’)   

7.6 � RECURRENT NEURAL NETWORKS

Recurrent neural networks (RNNs) are a specialized type of neural network designed 
for sequential data, capable of modeling temporal dependencies by maintaining a 
hidden state that retains information from previous steps. Unlike feedforward net-
works, which assume independence between inputs, RNNs process input sequences 
one element at a time, with shared weights across time steps, making them suitable for 
tasks like natural language processing, time-series analysis, and speech recognition.

The core concept of RNNs is leveraging sequential information by retaining a 
“memory” of past inputs. This is accomplished through recurrent connections, where 
a neuron’s output at one time step serves as an input at the next. This recursive struc-
ture enables RNNs to handle sequences of varying lengths, offering a key advantage 
over neural network architectures with fixed input sizes.

RNNs are extensively applied in various domains, including the following:

	 1.	Natural Language Processing: Applied to tasks like sentiment analysis, 
generating text and machine translation.

	 2.	Speech Recognition: Converting spoken language into text.
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	 3.	Time-Series Prediction: Forecasting in financial markets, weather patterns, 
and other dynamic systems.

	 4.	Music Generation: Composing melodies and harmonies.
	 5.	Video Analysis: Understanding and predicting sequences of images.

Traditional RNNs, despite their capabilities, struggle to learn long-term dependen-
cies due to the vanishing and exploding gradient problems. These challenges occur 
during backpropagation through time, where gradients can shrink or grow expo-
nentially, making it challenging to capture relationships between temporally distant 
events.

To overcome these challenges, various RNN variants have been developed. Nota-
bly, LSTM networks and GRUs use gating mechanisms to capture long-term depen-
dencies effectively, enabling the network to selectively retain or discard information 
across long sequences.

7.6.1 �L ong Short-Term Memory Networks

An LSTM is a special type of RNN designed to address the limitations of traditional 
RNNs, particularly the problem of vanishing gradients. This issue occurs when gra-
dients drop to extremely low values or vanish during backpropagation from the out-
put layers to earlier layers in standard RNNs. LSTMs achieve this through the use 
of additional memory cells, as well as input and output gates. Memory cells store 
information over long periods. These cells are the core of LSTMs and allow the 
network to decide which information to retain or forget. Vanishing gradients are 
addressed using additional additive components and forget gate activations, which 
helps gradients flow through the network more effectively, preventing them from 
diminishing too quickly.

LSTMs were proposed by Hochreiter and Schmidhuber in 1997. They address 
the vanishing gradient problem discussed earlier through a gating mechanism that 
allows for better control of information flow.

	 1.	Structure:
		  An LSTM unit contains three gates:

a.	 Forget gate: Determines what information to discard from the memory 
cell.

b.	 Input gate: Decides what new information to store in the memory cell.
c.	 Output gate: Controls what information to output from the memory cell.

	 2.	Functioning:
•	 The forget gate employs a sigmoid function to produce values ranging 

from 0 to 1, which determines the extent to which information from the 
previous cell state is retained.

•	 The input gate determines what new information to store in the cell 
state by utilizing both sigmoid and tanh functions.

•	 The cell state is updated by discarding unnecessary information and 
incorporating new relevant information.

•	 The output gate uses the updated cell state to determine the output, 
again employing sigmoid and tanh functions.
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	Examples:

1.	 Machine Translation: LSTMs are used in seq2seq models for trans-
lating between languages, capturing context and meaning across 
sentences.

2.	 Speech Recognition: LSTMs can process audio waveforms to tran-
scribe speech to text, maintaining context over long audio sequences.

3.	 Sentiment Analysis: LSTMs can analyze text to determine sentiment, 
considering the entire context of a review or comment.

The following code builds and trains a simple LSTM model for a binary classifi-
cation task using TensorFlow. It begins by generating dummy sequential data with 
train_x consisting of 1,000 samples, each having 10 time steps and 1 feature per 
step, and train_y containing binary labels (0 or 1) for each sample. The model is 
created using TensorFlow’s Sequential API, starting with an LSTM layer with 50 
units to process the temporal dependencies in the data, followed by a dense layer 
with a sigmoid activation function to output probabilities for binary classifica-
tion. The model is compiled with the Adam optimizer, binary cross-entropy loss 
function, and accuracy as a performance metric. It is trained for 50 epochs with 
a batch size of 32, updating weights iteratively to minimize the loss and improve 
accuracy.

This is a simple LSTM network for sequential data processing, and binary classi-
fication tasks are demonstrated in this configuration. It can be expanded to operate 
with real-world datasets such as textual or time-series data.

  import numpy as np 
  from tensorflow.keras.models import Sequential 
  from tensorflow.keras.layers import LSTM, Dense 

  train_x = np.random.random((1000, 10, 1)) 
  train_y = np.random.randint(2, size=(1000, 1)) 
  model = Sequential () 
  model.add(LSTM(50, input_shape=(10, 1))) 
  model.add(Dense(1, activation=‘sigmoid’)) 
  model.compile(optimizer=‘adam’, loss=‘binary_crossen-
tropy’, metrics=[‘accuracy’]) 
  model.fit(train_x, train_y, epochs=50, batch_size=32)  

7.6.2 �G ated Recurrent Units

GRUs merge the functionality of the input and forget gates in LSTMs into a single 
update gate, which controls the retention and addition of information. Because of 
this simplified design, there are fewer parameters, which facilitates easier imple-
mentation and faster training. GRUs effectively handle long-term dependencies 
in sequential data by dynamically regulating the flow of information, adapting to 
complex patterns based on the input sequence. Because of their memory efficiency 
and adaptability, they are frequently used for applications where sequential data 
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modeling is essential, such as speech recognition, time-series forecasting, and natu-
ral language processing.

A GRU features two gates:

	 1.	Reset Gate: Controls how much past information should be discarded.
	 2.	Update Gate: Manages what information to discard and what new informa-

tion to incorporate.
	 3.	Functionality:

•	 Reset Gate: Determines how new input is combined with previous 
memory.

•	 Update Gate: Controls how much of the previous memory is retained.
•	 No Separate Cell State: Information is transferred using the hidden 

state alone.
	 •	 Examples:

1.	 Text Generation: GRUs can be used to generate coherent paragraphs of 
text, maintaining consistency in style and content.

2.	 Music Generation: GRUs can learn patterns in musical sequences to 
compose new melodies or harmonies.

3.	 Stock Price Prediction: GRUs can analyze historical stock data to fore-
cast future prices, capturing both short-term and long-term trends.

	 •	 Comparison:
•	 LSTMs generally have a slight edge in performance for longer 

sequences, but GRUs are computationally more efficient.
•	 GRUs have a smaller number of parameters, which makes them easier 

to train and less likely to overfit on smaller datasets.
•	 The decision to use LSTM or GRU typically depends on the specific 

task requirements and the computational resources available.

The following code demonstrates the model built using the Sequential API, with a 
single GRU layer comprising 32 units to process the sequential data and learn tempo-
ral dependencies. This is followed by a dense output layer with a sigmoid activation 
function, which outputs probabilities for binary classification.

 import numpy as np
  from tensorflow.keras.models import Sequential
 from tensorflow.keras.layers import GRU, Dense

 x_train = np.random.random((1000, 10, 1))
 y_train = np.random.randint(2, size=(1000, 1))

 model = Sequential([
 GRU(32, input_shape=(10, 1)),
 Dense(1, activation=‘sigmoid’)
 ])
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 model.compile(optimizer=‘adam’, loss=‘binary_crossen-
tropy’, metrics=[‘accuracy’])
 model.fit(x_train, y_train, epochs=50, batch_size=32) 

Both LSTM and GRU have greatly enhanced the capability of RNNs to learn long-
term dependencies in sequential data, making them widely used in applications such 
as time-series analysis and natural language processing.
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8 Generative Artificial 
Intelligence

8.1 � LARGE LANGUAGE MODELS

A large language model (LLM) is a kind of artificial intelligence (AI) algorithm that 
uses supervised learning techniques to process and comprehend human languages or 
text by applying neural network techniques with many parameters. Applications of 
the LLMs include chatbots, machine translation, text production, summary writing, 
image generation from texts, machine coding, and conversational AI. Such LLMs 
are Open AI’s ChatGPT and Google’s BERT (Bidirectional Encoder Representations 
from Transformers).

Numerous methods have been attempted to accomplish tasks related to natural 
language, but the LLM is solely built on deep learning approaches. LLMs are very 
effective in capturing the intricate relationships between entities in the text at hand. 
They can also produce the text using the syntactic and semantic structures of the 
specific language we want to use.

LLMs:

Model Release Year Parameter

GPT-1 2018 117 million

GPT-2 2019 1.5 billion

GPT-3 2020 175 billion

GPT-4 2023 1.76 trillions

Input Embeddings: Each token is embedded into a continuous vector representa-
tion. Input text is tokenized into smaller units, like words or sub-words. The input’s 
syntactic and semantic information is captured in this embedding step.

Positional Encoding: Positional encoding is applied to the input embeddings to 
provide information about the token positions. This makes it possible for the model 
to handle the tokens while accounting for their sequential order.

Encoder: An encoder is based on a neural network technique. It determines the 
context and meaning of text data by analyzing the input text and generating a number 
of hidden states. Each encoder layer has two basic subcomponents as given below.

	 Self-Attention Mechanism: By calculating attention scores, self-attention 
mechanism allows the model to assess the relative relevance of various 
tokens in the input sequence. It enables the model to take into account the 
relationships and dependencies among various tokens in a context-aware 
way.

https://doi.org/10.1201/9781003532170-8


	 Feed-Forward Neural Network: Each token has to pass through an indepen-
dent feed-forward neural network following the self-attention phase. FFNN 
comprises fully connected layers with nonlinear activation functions. This 
model can handle capture complex interactions between tokens.

FIGURE 8.1  LLM Components.
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Decoder Layers: A  decoder component is sometimes added with the encoder in 
transformer-based models. Autoregressive generation, in which the model produces 
successive outputs by attending to the previously generated tokens, is made possible 
by the decoder layers.

Multi-Head Attention: Transformer architecture is used for multi-head attention, 
which involves performing self-attention concurrently while using various learned 
attention weights. This enables the model to simultaneously focus on multiple seg-
ments of the input sequence and capture different kinds of associations.

Layer Normalizing: In the transformer architecture, layer normalizing is applied 
following each layer or subcomponent. It enhances the model’s capacity to generalize 
across many inputs and stabilizes the learning process.

Output Layers: Depending on the particular task, the transformer model’s output 
layers may change. For instance, in language modeling, probability distribution over 
the subsequent token is typically generated by a linear projection followed by soft-
max activation.

8.2 � GENERATIVE ADVERSARIAL NETWORK

Generative adversarial network (GAN) has been one of the prominent topics in 
research and production. The ability to generate new images from random numbers 
has contributed a lot in the field of unsupervised learning. The ability to learn the dis-
tribution of datasets using various different techniques can be enhanced by changing 
the architecture of the network. The goal of generative modeling is to independently 
identify patterns in input data and enable the model to produce new examples that 
feasibly resemble the original dataset.

The beginning of the GAN era was when the first paper of Goodfellow et al. was 
published in NIPS 2014. Generator–discriminator-based training has changed the 
course of image generation and has given a new method in the field of unsupervised 
learning.

The idea where some random numbers are able to produce an image that has never 
existed, or some random numbers generating a face that has never been seen, seems 

FIGURE 8.2  Generative Matching Networks.
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like a magic at first glance; however, the ability of computers aren’t magic but some 
bunch of smart algorithms, which need a processing unit to produce such results.

The idea of generating image has been long there but has the inability to produce 
better results. The underlying principle before GANs was to use random numbers, 
with distribution as the input and vector as the output, which equals the dimension of 
an image from the original dataset, with a generator based on the neural network, as 
a function to learn the parameters. The model learns by comparing the output vector 
with the image vector using different methods. This in turn is learned by the neural 
network using the backpropagation algorithm.

Since the probability distribution of the dataset is a very complex one, the genera-
tor network is unable to learn the distribution most of times. This is a direct method 
of training generative networks.

Since there was a need of new methods to learn the distribution and the idea of 
GAN evolved, GAN is based on a min–max game, which consists of two networks—a 
discriminator and a generator. The duty of a generator is to generate image, where 
the input is a random vector generated from a predetermined distribution and the 
output of the generator is having the dimension as that of the image. This generator 
network learns using a discriminator network, whose role is to identify if an image 
feed into a model is a real image or not, i.e., the output of model is a number between 
0 and 1, where the higher value shows greater confidence in image input from a real 
distribution.

GAN training has a generator and a discriminator, which are trained simultane-
ously to improve the output.

The generator and discriminator are trained simultaneously using backpropaga-
tion to reach a point where a discriminator is unable to identify whether the input is 
from the real image distribution or generated as an output from a generator network.

In an ideal case, the generator and discriminator reach the point of Nash equilib-
rium. At this point, the discriminator has a value of 0.5 for any input, but in practical 
applications, the GAN is an unstable model that is highly affected by the model 
architecture and the values of hyperparameters. But still the results by the GAN was 
convincing, producing a new method of training generator networks, which have 

FIGURE 8.3  Roles of Generator and Discriminator in GAN.
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evolved greatly and revolutionized the field of unsupervised and semi-supervised 
learning.

Hyperparameters are one of the major components of any network that requires 
proper tuning for each use case. Especially for GANs that are very unstable in train-
ing, training of the networks is done simultaneously until the images are not clear. 
Since GANs lack in proper evaluation metric, it is hard to evaluate them too.

As described earlier, GANs are highly unstable and it’s hard to train them, so 
any change in architecture layers and learning rate can have adverse effects on the 
network.

8.3 � RETRIEVAL AUGMENTATION GENERATION

It is a method that combines retrieval-based techniques with generative models to 
produce more accurate and contextually relevant responses, especially when dealing 
with vast amounts of information. The idea behind retrieval augmentation generation 
(RAG) is to use external knowledge sources (like a database, a set of documents, or 
a search engine) to fetch relevant information and then feed this information into 
generative models (such as GPT-3 or GPT-4) to produce a final response.

8.3.1 �R AG versus LLMs

	 1.	Knowledge Limitations: LLMs have knowledgebase till 2021 and its was 
trained on available data till date only. They are not updated to the current 
level, so they cannot work on real data. This can lead to outdated/inaccurate 
information. But RAG can provide us up-to-date information.

	 2.	 In RAG, it is possible to keep sensitive data out of training to have data 
control and to maintain security.

	 3.	No need of retaining on full data all time leads to cost-efficiency.
	 4.	The source of information for regular LLMs is unknown, but RAG has a 

verifiable source of information, which makes it more antithetic.

FIGURE 8.4  RAG Components.
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FIGURE 8.5  RAG Architecture.
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In LLMs, user queries are directly forwarded, but in RAG a new component 
knowledge base and RAG engine are added. Knowledge base is a collection of 
documents. From input prompt, a query is forwarded to the retriever. Retriever 
retrieves relevant information from the knowledge base. Only relevant documents 
reache the retriever. The retriever will augment user query along with relevant 
documents to LLMs, which will give the final response. RAG engines perform of 
three roles: retrieval, augmentation, and generation. User query along with rele-
vant augmented documents makes RAG prompt and feed to LLMs, which leads to 
improved output.

We will discuss each part below:

	 I.	Knowledge Base: It consist of 3 elements.
a.	 Document Collection: This is the source of information, a repository 

of documents containing various knowledge sources (articles, manuals, 
and product information).

b.	 Document Embedding: Each document is processed to create document 
embedding (vector representations) that captures the semantic meaning 
of text.

c.	 Vector databases: The embedding is stored in a vector database that 
allows for faster retrieval based on similarity searches.
i.	 Input: This is the input from the user.
ii.	 Prepossessing: The user query is transformed into a query embed-

ding model, similar to how the documents were embedded.
	 2.	RAG Engine:a. Retriever: This component searches the vector database to 

find relevant document embedding based on the similarity with the query 
vector. It retrieves the most relevant chunks of information.
b.	 Context Builder: After retrieval, the selected chunks are compiled 

into a formatted context that helps the language model to respond 
accurately.

c.	 Prompt Constructor: It combines the user’s original query with the 
retrieved context, creating a RAG prompt that can be fed into a lan-
guage model.

d.	 Generator (LLM): The final output is a generated response that uses 
both the retrieved context and language model’s capabilities, providing 
a more accurate and informative answer for the user.

8.4 � TRANSFER LEARNING

A technique called transfer learning enables models to apply previously learned 
information to new, related tasks. A model can tackle new problems more success-
fully and efficiently by reusing what it has already learned rather than beginning 
from scratch. When there is little data available for a novel topic, this method is quite 
beneficial.
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FIGURE 8.6  Transfer Learning Model.

In order to use preexisting information from a pretrained model for new tasks, 
transfer learning entails a systematic process:

Pretrained Model: A model that is already trained on a large dataset for a spe-
cific task is a pretrained model. This pretrained model has picked up general 
characteristics and patterns that apply to similar tasks.

Base Model: This pretrained model, sometimes referred to as the base model, 
consists of layers that have learned hierarchical representations through 
data processing, capturing features ranging from simple to intricate.

Transfer Layer: Find the base model’s layers that contain generic data relevant 
to the original and new jobs. These layers, which are frequently found close 
to the network’s top, record general, repeatable features.

Fine-tuning: Use the information from the new task to refine these chosen 
layers. This procedure improves accuracy and flexibility by preserving pre-
viously learned information while modifying parameters to fit the demands 
of the novel assignment.

Generative AI tools are very powerful tools for text, image, and video generation. 
They have a variety of applications and can be used in different sectors of life for 
different purposes, and the need for a better algorithm rises with increasing demand. 
Tools like ChatGPT and Gemini have created personalized virtual assistants to this 
community, and in the future, they will be explored more to empower the community.
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9 AI in Healthcare
Diagnostics, Treatment, 
and Beyond

9.1 � INTRODUCTION

9.1.1 �O verview of AI in Healthcare

•	 Definition and Scope: Artificial intelligence (AI) refers to a suite of tech-
nologies designed to enable machines to perform tasks that would typically 
require human intelligence. These technologies include machine learning 
(ML), which allows computers to learn from and make predictions based 
on data and deep learning, a subset of ML that employs neural networks to 
process complex data, such as images. In healthcare, AI is making its mark 
by transforming how patient care is delivered and how administrative pro-
cesses are managed within healthcare organizations, including providers, 
payers, and pharmaceutical companies (Kyrimi et al. 2025).

	   AI’s application in healthcare is vast and growing. It ranges from enhanc-
ing diagnostic accuracy and personalizing treatment plans to optimizing 
administrative tasks. For instance, AI algorithms are now capable of ana-
lyzing medical imaging with a level of precision that often surpasses human 
radiologists, identifying malignant tumors, and guiding clinical trial design 
more efficiently. Despite these advances, the widespread replacement of 
human roles in medical processes is still a distant reality. The current focus 
is on leveraging AI to complement and enhance human capabilities rather 
than replacing them entirely (Davenport and Kalakota 2019).

•	 Historical Context and Evolution: The integration of AI into health-
care began with early systems that aimed to replicate the decision-making 
processes of medical experts. Initial efforts in the 20th century laid the 
groundwork, but significant progress was hampered by limited data and 
computational power. As the field evolved, the introduction of ML and, 
later, deep learning (De Fauw et al. 2018) technologies marked pivotal mile-
stones. These advancements allowed for more sophisticated data analysis 
and pattern recognition.

	   In recent years, the advent of big data and improved computational 
resources has catalyzed AI’s role in healthcare (Talmele and Shrawankar 
2022). Modern AI systems can now access and analyze extensive datasets 
from electronic health records, medical imaging, and genetic informa-
tion. This capability enables AI to identify patterns and trends that may be 
invisible to human observers, leading to earlier disease detection and more 
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effective treatment strategies. For example, AI can now uncover previously 
unknown genetic markers linked to specific cancers, providing valuable 
insights for both diagnosis and research (Steiner et al. 2018).

	   AI also excels in predictive analytics, assessing patient risks, and fore-
casting treatment outcomes. Its ability to predict complications and treat-
ment efficacy allows for more proactive and personalized care. Additionally, 
AI streamlines administrative functions by automating routine tasks such 
as scheduling, report generation, and data organization. This automation 
not only reduces the burden on healthcare professionals but also improves 
operational efficiency within healthcare systems (Shrawankar et al. 2021).

	   Despite these advancements, the full-scale implementation of AI in 
healthcare faces several barriers. Challenges such as data privacy, integra-
tion with existing systems, and the need for regulatory frameworks are crit-
ical considerations. As AI continues to evolve, its integration into healthcare 
promises to enhance patient care and operational efficiency while address-
ing these ongoing challenges (Wazalwar and Shrawankar 2021).

9.2 � AI IN DIAGNOSTICS

AI has become an essential tool in medical diagnostics (Kaczmarczyk et al. 2024), 
transforming traditional methods by offering more precision and speed in disease 
detection and analysis. Its applications span across various domains, including medi-
cal imaging, pathology, and genomics. AI’s ability to process large datasets and iden-
tify intricate patterns has paved the way for advancements in personalized medicine 
and targeted treatment strategies (Pati 2024).

Medical Imaging

•	 AI in Radiology: AI algorithms are being used to analyze medical images 
such as X-rays, CT scans, and MRIs. These tools can detect abnormalities, 
like tumors or fractures, with high accuracy, often matching or surpassing 
human radiologists. For instance, AI systems are used in mammography to 
identify early signs of breast cancer, potentially improving survival rates.

•	 Case Studies: An example of AI’s impact is Google’s DeepMind, which 
has developed systems that can accurately detect retinal diseases from eye 
scans. Other startups are also developing AI-based image interpretation 
tools to support diagnostic processes in radiology.

Pathology

•	 AI in Analyzing Biopsy Samples: AI has revolutionized the analysis of 
tissue samples, making it quicker and more accurate. By scanning and pro-
cessing high-resolution biopsy images, AI can detect the presence of dis-
eases like cancer, providing pathologists with valuable insights. This leads 
to more consistent and reliable diagnoses.

•	 Innovations in Digital Pathology: AI-powered digital pathology plat-
forms enhance diagnostic accuracy by processing complex tissue images, 
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uncovering patterns that may be missed by human observation. These sys-
tems are now increasingly used in clinical practice, helping streamline the 
workflow for pathologists (Aggarwal et al. 2025).

Genomics

•	 AI in Interpreting Genetic Data: AI assists in decoding vast amounts 
of genetic information to identify variations that may cause diseases. 
This capability supports healthcare providers in understanding patients’ 
genetic profiles, which is critical for developing personalized treatment 
plans.

•	 Precision Medicine: AI’s ability to analyze genetic mutations has paved the 
way for precision medicine, where treatments are tailored to an individual’s 
genetic makeup. For example, in cancer care, AI can recommend targeted 
drug therapies based on a patient’s specific genetic alterations, resulting in 
more effective treatments.

9.2.1 �T ransforming Healthcare with AI Applications

AI is not limited to diagnostics; its applications in healthcare include robotic surgery, 
drug discovery, and enhancing patient outcomes.

•	 Enhancing Diagnostic Accuracy: AI systems outperform traditional meth-
ods in identifying conditions like tumors, allowing for earlier interventions.

•	 Robotic Surgery: AI-driven robotic arms enable minimally invasive sur-
geries, providing surgeons with greater precision and reducing patient 
recovery times (Knudsen et al. 2024).

•	 Accelerating Drug Discovery: AI speeds up the drug discovery process 
by analyzing biological data to identify new treatment targets, significantly 
reducing the time needed to bring new drugs to patients.

9.3 � AI IN TREATMENT

AI is significantly revolutionizing treatment methods in healthcare, by contribut-
ing to drug discovery, personalized medicine, and robotic surgery. Despite the chal-
lenges in implementation, its potential for transforming medical care is vast.

9.3.1 �D rug Discovery and Development

•	 AI’s Role in Identifying New Drugs: AI algorithms have the ability to 
predict compounds that could be effective against various diseases, speed-
ing up the drug discovery process. Traditional drug development can take 
years, with significant costs involved. AI reduces this timeline by analyzing 
vast datasets of biological information and chemical compounds to iden-
tify promising drug targets. By simulating chemical interactions, AI can 
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efficiently screen large libraries of compounds, identifying potential candi-
dates for further testing. For instance, pharmaceutical companies leverage 
AI to explore the efficacy of new molecules and compounds, leading to the 
discovery of innovative treatments more quickly (Abbas 2024).

•	 Accelerating Clinical Trials: AI not only expedites drug discovery but 
also optimizes clinical trials by identifying suitable candidates and analyz-
ing trial data in real time. Machine learning (ML) models can sort through 
patient data, considering factors like genetics, medical history, and current 
health status to select the best participants for a trial. This targeted approach 
improves trial outcomes and accelerates the drug approval process, bring-
ing new treatments to patients faster.

9.3.2 �P ersonalized Medicine

•	 Tailoring Treatments Using AI: Personalized medicine is a groundbreak-
ing application of AI in healthcare, focusing on customizing treatment plans 
based on individual patient data. By analyzing medical history, genetic pro-
files, lifestyle factors, and responses to past treatments, AI creates a tailored 
approach to care, potentially leading to more effective outcomes. In cancer 
care, for instance, AI can assess genetic mutations in tumors and suggest 
targeted drug therapies specifically designed for those mutations, enhanc-
ing treatment effectiveness (Marra and Laskin 2020).

•	 Success Stories: Notable examples include AI-driven cancer treatment rec-
ommendations where AI systems identify the most effective therapies based 
on a patient’s unique genetic markers. Companies like Foundation Medicine 
and Flatiron Health are working on creating personalized cancer treatment 
plans, addressing the complexity of genetic variants in cancer. The integration 
of AI in precision medicine aims to shift from a one-size-fits-all approach to 
individualized care, reducing adverse reactions and improving success rates.

9.3.3 �R obotic Surgery

•	 Advances in Robotic-Assisted Surgeries: AI is at the forefront of robot-
ic-assisted surgeries, enhancing precision and control during surgical pro-
cedures. Modern robotic systems, often guided by AI, allow for minimally 
invasive surgeries that reduce recovery times and improve patient outcomes. 
These systems provide surgeons with better visualization and dexterity, 
allowing them to perform complex procedures with heightened accuracy 
(BBC News 2024).

•	 Benefits and Limitations: While robotic surgery offers numerous advan-
tages such as minimal invasiveness, shorter recovery times, and reduced 
risk of human error, it also comes with limitations. High costs and the need 
for specialized training present challenges to widespread adoption. Addi-
tionally, technical difficulties and the need for seamless integration into 
clinical workflows remain hurdles to be addressed.



234 Artificial Intelligence and Machine Learning for Real-World Applications

AI in treatment is already making strides in personalized medicine, accelerating 
drug discovery, and enhancing robotic surgery. Its applications have the potential to 
deliver more effective, tailored healthcare solutions, transforming traditional treat-
ment models. Although challenges in implementation and integration remain, ongo-
ing research and development promise a future where AI plays an indispensable role 
in patient care.

9.4 � AI IN PATIENT MANAGEMENT AND MONITORING

AI’s integration into patient management and monitoring is transforming healthcare 
delivery, making it more proactive and personalized. The use of AI-powered wearable 
technology and remote patient monitoring is particularly impactful in managing chronic 
diseases, enhancing patient outcomes, and improving accessibility to healthcare.

9.4.1 � Wearable Technology

•	 AI-Powered Wearables: Modern wearable devices, such as smartwatches, 
fitness trackers, and health-monitoring patches, are equipped with AI algo-
rithms that continuously track a variety of health metrics. These devices 
collect data on vital signs like heart rate, blood pressure, sleep patterns, 
oxygen levels, and physical activity. AI then processes this vast amount 
of data to provide personalized health insights and recommendations. For 
instance, smartwatches can detect irregular heart rhythms, potentially iden-
tifying atrial fibrillation in its early stages, which is crucial for timely med-
ical intervention.

•	 Examples and Outcomes: Continuous glucose monitors (CGMs) for diabe-
tes provide real-time tracking of blood sugar levels, helping patients make 
informed decisions. Wearable ECGs detect heart anomalies, allowing for 
timely medical intervention, ultimately improving patient outcomes.

9.4.2 �R emote Patient Monitoring

•	 AI’s Role in Telemedicine: Telemedicine has become increasingly import-
ant, especially in remote and underserved areas. AI enhances remote patient 
monitoring by facilitating virtual consultations, automating health assess-
ments, and analyzing patient data to support decision-making. AI-driven 
platforms can collect data from wearable devices, smartphones, or home 
health monitors and provide clinicians with actionable insights. For instance, 
AI can process data from a patient’s digital health record and wearable 
devices during a teleconsultation to offer a comprehensive health status anal-
ysis, guiding healthcare professionals in diagnosis and treatment planning.

•	 Impact on Chronic Disease Management: For chronic conditions like 
heart disease and diabetes, AI analyses patient data over time, predicting 
potential health issues and enabling early interventions, thereby reducing 
hospital admissions and improving patient quality of life.
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9.5 � AI IN ADMINISTRATIVE TASKS

AI streamlines healthcare administration by automating routine processes, manag-
ing patient data, and reducing operational costs.

9.5.1 � Workflow Optimization

•	 Automating Administrative Processes: AI applications, such as robotic 
process automation (RPA), handle repetitive tasks like scheduling, billing, 
and record-keeping. This automation reduces the administrative burden on 
medical staff, allowing them to focus more on patient care. For example, 
RPA can manage claims processing, clinical documentation, and revenue 
cycle management, speeding up operations (Pahuja 2024).

•	 Reducing Operational Costs: By automating tasks, healthcare facilities 
can significantly cut costs and enhance efficiency. With AI handling routine 
activities, there’s a reduction in manual errors, ultimately saving time and 
resources.

9.5.2 �E lectronic Health Records

•	 Managing and Analyzing Patient Data: AI improves electronic health 
record (EHR) systems by enabling accurate data entry, predictive analyt-
ics, and seamless patient data management. Advanced AI can analyze vast 
amounts of medical data, supporting clinicians in making informed deci-
sions for better patient care. AI’s role extends to detecting coding errors in 
claims processing, saving stakeholders time and money through efficient 
audits (Shah et al. 2024).

While AI’s impact on administrative tasks isn’t as revolutionary as in patient care, it 
brings significant efficiency, addressing issues like 25% of nurses’ time spent on reg-
ulatory activities. Although technologies like chatbots have shown promise for tasks 
such as prescription refills and appointment scheduling, usability concerns remain.

9.6 � ETHICAL AND PRIVACY CONSIDERATIONS

The integration of AI in healthcare brings significant ethical and privacy challenges, 
particularly in data security, transparency, bias, and equitable access.

9.6.1 �D ata Privacy

•	 Ensuring Patient Data Security: With AI relying on vast amounts of sen-
sitive health data, safeguarding patient information is crucial. Measures like 
data encryption, secure storage, and strict access controls are vital to pre-
vent data breaches. Healthcare organizations must prioritize protecting this 
information to maintain patient trust and confidentiality.
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•	 Regulations and Compliance: Regulatory frameworks like Health Insur-
ance Portability and Accountability Act (HIPAA) in the United States and 
General Data Protection Regulation (GDPR) in Europe govern data privacy. 
These regulations enforce strict guidelines on how patient data is collected, 
stored, and shared, ensuring that AI applications in healthcare adhere to 
legal and ethical standards.

9.6.2 � Bias and Fairness

•	 Addressing AI Bias: AI systems can inadvertently introduce bias, affect-
ing healthcare outcomes. For example, predictive algorithms might show 
bias based on gender or race, potentially leading to inequitable care. To 
mitigate this, developers must ensure that AI models are trained on diverse 
datasets and regularly monitored to identify and address biases.

•	 Ensuring Equitable Access: AI solutions must be designed to serve all 
populations fairly, avoiding disparities in healthcare access. Equitable AI 
should consider various socioeconomic, cultural, and regional factors, 
ensuring that advancements in AI-driven healthcare do not widen existing 
gaps.

9.6.3 �T ransparency and Accountability

AI systems, especially deep learning algorithms used for image analysis, often 
operate as “black boxes,” making them difficult to interpret. When patients receive 
diagnoses or treatment recommendations from AI, they deserve to understand the 
reasoning behind those decisions. However, current AI technologies may lack the 
ability to provide clear explanations.

•	 Accountability for Mistakes: AI systems in healthcare are not immune 
to errors. Establishing accountability for incorrect diagnoses or treatment 
recommendations made by AI is a complex issue that healthcare providers 
and regulators need to address. Additionally, there is a risk that AI could 
dehumanize healthcare, making decisions overly data-driven and poten-
tially overlooking the nuances of empathy and human judgment.

9.6.4 � Balancing AI with Human Care

As AI’s role in patient care grows, it’s crucial to maintain a balance between AI’s 
efficiency and the human touch in healthcare. While AI can streamline processes 
and enhance diagnosis accuracy, healthcare institutions and regulatory bodies must 
monitor its impact and create governance mechanisms to address ethical challenges 
responsibly. This ongoing attention will ensure that AI’s benefits are maximized 
while minimizing potential negative consequences (Landau et al. 2025).
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9.7 � CHALLENGES AND LIMITATIONS

While AI presents exciting possibilities for transforming healthcare, it also faces sev-
eral challenges and limitations that must be addressed for its successful integration 
into the industry (Bertl et al. 2024).

9.7.1 �T echnical Challenges

•	 Limitations of Current AI Technologies: AI technologies are still evolv-
ing, and their current limitations include data quality issues and algorithmic 
accuracy. Healthcare data is often fragmented, stored in different formats, 
and filled with inconsistencies, making it difficult for AI systems to analyze 
accurately. Additionally, many AI algorithms require extensive training 
on high-quality datasets to ensure accuracy, and without this, their effec-
tiveness in real-world healthcare settings may be compromised. Moreover, 
some AI models, particularly deep learning algorithms, function as “black 
boxes,” providing little transparency into how they arrive at specific conclu-
sions, which can limit their use in clinical decision-making.

•	 Integration with Existing Systems: Integrating AI solutions into current 
healthcare systems and workflows is a significant challenge. Many health-
care facilities use legacy systems that may not be easily compatible with 
modern AI technologies. Moreover, a seamless integration requires health-
care professionals to adapt to new tools and processes, which often involves 
a steep learning curve and potential disruptions to established workflows. 
Customization and interoperability between AI systems and existing EHRs 
are crucial for smooth implementation.

9.7.2 �R egulatory and Legal Challenges

•	 Navigating Complexity: AI tools must navigate complex regulations to 
ensure patient safety, privacy, and unbiased operation. Establishing clear 
guidelines is vital, balancing innovation with safety requirements.

•	 Liability Issues: When AI systems make errors, defining who is 
responsible—the healthcare provider, AI developer, or institution—remains 
unclear. Proper frameworks for accountability are essential to manage risks 
and protect patients.

9.7.3 � Cost and Infrastructure

Implementing AI demands significant investment in IT infrastructure, data storage, 
and computational resources. Smaller healthcare facilities, especially in underserved 
areas, may struggle to afford these technologies, risking increased disparities in care 
access.
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9.7.4 �P ublic Perception

•	 Building Trust and Acceptance: Public perception is a critical factor in 
the adoption of AI in healthcare. Patients may be wary of relying on AI for 
their health-related decisions due to concerns about privacy, data security, 
and the impersonal nature of machine-driven care. Educating patients and 
the public about the benefits and limitations of AI can help build trust and 
alleviate concerns. Healthcare providers must emphasize that AI is a tool 
to support, not replace, human expertise, highlighting its role in enhancing, 
rather than detracting from, patient-centered care.

9.8 � FUTURE DIRECTIONS

AI’s future in healthcare is filled with promise, with several innovations and trends 
shaping the next decade.

9.8.1 �E merging Trends

•	 Innovations on the Horizon: Upcoming advancements in AI will revolu-
tionize healthcare (Parthasarathy 2024), such as mental health applications 
that provide personalized therapy and AI-driven gene editing for targeted 
treatments. Additionally, real-time diagnostics, continuous patient monitor-
ing, and AI-powered virtual assistants will support patients in managing 
their health independently.

•	 Predictions for AI’s Impact: AI is expected to drive a shift toward per-
sonalized medicine, allowing treatments tailored to each patient’s genetic 
makeup and lifestyle. As AI’s capabilities in image analysis, speech, and 
text recognition continue to grow, it will become integral to clinical tasks, 
improving healthcare outcomes and reducing costs. However, AI will aug-
ment, rather than replace, clinicians—freeing them to focus on empathy, 
patient communication, and holistic care.

9.8.2 �R esearch and Development

•	 Ongoing Research Efforts: Research initiatives are rapidly advancing AI 
technologies, focusing on areas like precision medicine, drug discovery, 
and disease prediction. AI-powered drug discovery is expected to uncover 
novel treatment pathways for complex diseases such as cancer and Alzhei-
mer’s, significantly accelerating the process.

•	 Collaboration between Tech Companies and Healthcare Providers: 
Partnerships between tech companies and healthcare institutions are vital 
for developing new AI solutions. These collaborations will help ensure AI 
tools are tailored to real-world healthcare needs, drive innovation, and facil-
itate the integration of AI into everyday clinical practice (Alowais et al. 
2023).
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AI’s role in healthcare’s future will hinge not only on technological capabilities but 
also on overcoming adoption challenges. This includes gaining regulatory approval, 
integrating AI with EHRs, and ensuring standardization. Widespread adoption will 
likely take longer than technological maturity, with the limited use of AI in clinical 
settings within the next 5 years and more extensive implementation within 10.

While AI will become more sophisticated, it won’t replace human clinicians. 
Instead, it will support them, handling tasks like data analysis, diagnostics, and 
patient communication. In turn, healthcare professionals will focus on unique human 
skills, such as empathy and decision-making.

9.8.3 �S eamless AI Integration

The ultimate goal is seamless AI integration into healthcare, creating a future where 
AI systems act as partners in care. As AI continues to advance, it will redefine 
patient–provider relationships, enabling more efficient, effective, and personalized 
healthcare experiences.

9.9 � CASE STUDIES

CASE STUDY  REMOTE SURGERY USING AI AND ROBOTICS

Background: In 2024, a notable remote surgery was performed on a 57-year-
old woman with a complex abdominal condition. The procedure was con-
ducted by a surgical team located over 1,200 kilometers away from the patient 
(Panahi 2024).

TECHNOLOGY USED:

	 1.	da Vinci Surgical System: Advanced robotic platform enabling min-
imally invasive surgery.

	 2.	AI-Powered Navigation: Provided real-time guidance and feedback 
during the procedure.

	 3.	High-Speed Connectivity: Enabled secure, real-time control and 
video streaming.

Procedure: The surgery, involving complex laparoscopic techniques, 
was successfully completed with the robotic system controlled remotely. 
AI-enhanced navigation improved precision and outcomes.

OUTCOME:

•	 Success: The patient experienced minimal complications and a faster 
recovery.

•	 Feedback: Surgeons praised the AI and robotic system for their accu-
racy and efficiency.
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LESSONS LEARNED:

	 1.	Access to Care: Remote surgery can provide specialized care to 
underserved areas.

	 2.	Challenges: Issues included communication latency and cybersecu-
rity needs.

	 3.	Future Implications: This case highlights the potential for expand-
ing remote surgical capabilities globally.

SUCCESSFUL IMPLEMENTATIONS

	 1.	IBM Watson for Oncology
	 •	 Application: IBM Watson for Oncology uses AI to assist oncol-

ogists in diagnosing and treating cancer. It analyses patient data, 
medical literature, and clinical trial results to recommend person-
alized treatment options (Somashekhar et al. 2018).

	 •	 Outcome: Successfully deployed in several hospitals, it has 
shown promise in providing evidence-based treatment recom-
mendations and aiding in decision-making.

	 •	 Lessons Learned: The system demonstrated the potential of AI 
to support complex medical decisions, but challenges included 
integrating Watson into existing workflows and adapting it to var-
ious cancer types.

	 2.	Google’s DeepMind Health
	 •	 Application: DeepMind’s AI technology is used for diagnosing 

eye diseases by analyzing retinal scans. It can detect conditions 
like diabetic retinopathy and age-related macular degeneration 
with high accuracy.

	 •	 Outcome: Implemented in the UK’s National Health Service 
(NHS), it has improved diagnostic accuracy and reduced the time 
required for analysis.

	 •	 Lessons Learned: The project highlighted the importance of 
high-quality data and collaboration with healthcare providers. How-
ever, issues like data privacy and system integration were noted.

	 3.	PathAI
	 •	 Application: PathAI leverages AI to enhance the accuracy of 

pathological diagnoses by analyzing medical images. It assists 
pathologists in identifying cancerous tissues in biopsy samples.

	 •	 Outcome: The technology has been successfully used in several 
pathology labs, leading to improved diagnostic accuracy and 
efficiency.

	 •	 Lessons Learned: PathAI’s success underscores the value of AI 
in augmenting human expertise. Challenges included ensuring 
algorithm transparency and overcoming initial resistance from 
pathologists.
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LESSONS LEARNED

	 •	 Integration with Existing Systems: Successful AI applica-
tions often require seamless integration with existing healthcare 
systems and workflows. Addressing interoperability issues and 
ensuring that AI tools complement rather than disrupt current 
practices is crucial.

	 •	 Data Quality and Privacy: High-quality data is essential for AI 
effectiveness. Maintaining data privacy and addressing ethical 
concerns about patient information are vital to the success and 
acceptance of AI applications.

	 •	 User Training and Adoption: Training healthcare professionals 
to effectively use AI tools and addressing their concerns about 
new technologies can facilitate smoother adoption and maximize 
the benefits of AI.

	 •	 Continuous Evaluation: Ongoing evaluation and iteration are 
necessary to refine AI systems based on real-world feedback and 
performance, ensuring that they continue to meet clinical needs 
effectively.

	 •	 Contains supplementary charts and graphs that visually summa-
rize and support the key findings and data presented.

9.10 � CONCLUSION

SUMMARY OF KEY POINTS

•	 Impact of AI: AI is transforming healthcare through improved diag-
nostics, personalized treatment plans, and enhanced patient manage-
ment. Key areas of impact include faster and more accurate diagnoses, 
predictive analytics for disease management, and advancements in 
virtual and mental health support.

•	 Challenges and Considerations: Despite its potential, AI faces 
challenges such as data privacy concerns, algorithmic bias, and the 
need for effective integration with existing systems. Addressing 
these issues is crucial for ensuring equitable and effective AI use in 
healthcare.

IMPLICATIONS FOR THE FUTURE

•	 Shaping the Future: AI is set to revolutionize healthcare by aug-
menting the capabilities of healthcare professionals, leading to more 
precise diagnoses, tailored treatments, and preventive measures. As 
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AI technology evolves, its role in healthcare will expand, offering 
new opportunities for improving patient outcomes and efficiency.

•	 Responsible Implementation: Ensuring the responsible use of AI 
involves developing robust cybersecurity measures, establishing clear 
guidelines for AI algorithms, and fostering collaboration between 
healthcare organizations, researchers, and regulatory bodies. Contin-
uous investment in R&D and addressing limitations such as bias and 
data quality will be essential.

•	 Public Perception and Trust: Building public trust in AI is vital. 
While patients are open to using AI for health purposes, they still 
value human interaction in complex cases. Effective communication 
and education about AI’s benefits and limitations will help integrate 
these technologies smoothly into healthcare practice.

Overall, the future of AI in healthcare promises significant advancements in 
patient care, efficiency, and access to personalized treatment (Aparna 2024). 
By overcoming current challenges and fostering collaboration, AI has the 
potential to greatly enhance the healthcare landscape.
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10 Agriculture 
Developments 
Using ML and AI

10.1 � INTRODUCTION

Artificial intelligence (AI) (Liu 2020) is the study of tools and technologies used to 
solve tasks that require human intelligence, including tasks such as natural language 
understanding, processing, generation, visual perception, and decision-making. 
Machine learning (ML) and deep learning (DL) are the two most widely used AI 
approaches. With breakthrough technologies, AI has transformed every aspect of life, 
including agriculture (Alaba et al. 2024). With more than 50% workforce employed 
in agriculture, a low expert to farmer ratio requires necessary AI interventions like 
automatic diagnosis and recommendation of proper advisories. The major hurdles in 
agricultural production are decision-making related to crop production, disease and 
pest infestation, weather forecasting, yield prediction, advisory systems for enhanced 
crop productivity, etc. (Olson and Anderson 2021). Agricultural productivity is mostly 
influenced by temperature, soil fertility, water availability, water quality, etc. For 
predicting these parameters accurately, improved AI techniques are being applied. 
While the technological explosion has made farming little easier, small and marginal 
farmers still face many obstacles. Unlike other technologies, AI has the potential to 
reach out to individual farmers much more easily and improve the life of farmers. The 
consideration of two life cycles, namely, agriculture and farmers, has a gigantic scope 
to intervene and enormously improve the same (Olson and Anderson 2021).

Agriculture life cycle starts from land preparation for the crop followed by seed 
sowing, irrigation, weeding, fertilizer application, pest and disease management, har-
vesting, post-harvest processing, storage, and marketing. Various AI techniques have 
the potential to affect and improve all the phases of the life cycle, some of which are 
already available and some still need to be worked on. In an ideal smart ecosystem, 
a farmer would be guided by an artificially intelligent assistant that would suggest 
the most appropriate date and method to prepare the land based on the geographic 
information system (GIS) and remote sensing data of that region. Using a block chain 
and recommender system-enabled supply chain, farmers would collect quality seeds 
to sow after land preparation. Scheduled weeding would be handled by low-cost 
smart weeding and fertigation (fertilization and irrigation) systems. The identifica-
tion of pest and disease with their suitable management practices may be handled by 
AI-enabled mobile applications. The yield prediction may be done through drone-
based smart application, and the predicted yield will help in selecting the appropriate 
market and buyer.

https://doi.org/10.1201/9781003532170-10
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10.2 � SOME IMPORTANT METHODOLOGIES

10.2.1 �S oil Management

Soil management is a fundamental aspect of agricultural practices, directly influenc-
ing crop productivity, nutrient availability, and overall sustainability. The integra-
tion of AI and ML technologies into soil management strategies has emerged as a 
promising avenue for optimizing agricultural processes and ensuring long-term soil 
health. This section explores the literature and research findings pertaining to the 
application of AI and ML in soil management (Pattnaik et al. 2023).

10.2.2 �P recision Soil Mapping

AI and ML algorithms have demonstrated their use in precision soil mapping, provid-
ing detailed insights into soil composition, nutrient levels, and moisture content. By 
analyzing vast datasets derived from various sources such as remote sensing and soil 
sensors, models were developed that can generate high-resolution soil maps (Ahila 
Priyadharshini et al. 2019). These maps enable farmers to make informed decisions 
about nutrient application, irrigation, and crop selection based on the specific needs 
of different soil zones within a field.

10.2.3 �N utrient Management

Optimizing nutrient management is critical for maximizing crop yields while min-
imizing environmental impact. AI-powered models, as seen in the work can ana-
lyze soil data alongside historical crop performance to recommend precise fertilizer 
applications. ML algorithms can adapt to changing conditions, allowing for dynamic 
adjustments in nutrient prescriptions based on real-time data, weather patterns, and 
crop development stages.

10.2.4 �S oil Health Monitoring

Maintaining soil health (Mamatha et al. 2024) is essential for sustainable agricul-
ture. AI and ML contribute to soil health monitoring by analyzing indicators such as 
microbial activity, organic matter content, and soil structure. The use of AI in inter-
preting soil health data to identify trends and potential issues, aiding in the develop-
ment of proactive soil management strategies (Azizi et al. 2020).

10.2.5 �E rosion Prediction and Control

Soil erosion poses a significant threat to agricultural productivity and environmental 
stability. AI models, exemplified in studies by utilizing machine learning to predict 
erosion risk based on factors such as topography, land use, and weather conditions. 
This information empowers farmers to implement targeted erosion control measures, 
preserving soil structure and preventing loss of fertile topsoil.
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10.2.6 �D ecision Support Systems

Integrated decision support systems, combining AI and ML, offer comprehensive 
solutions for soil management. These systems, showcased in their search by incor-
porating data on soil, weather, and crop conditions to provide actionable insights. 
Farmers can leverage these recommendations for optimal land use planning, cover 
cropping strategies, and erosion control practices.

10.2.7 � Challenges and Opportunities

While the application of AI and ML in soil management presents numerous bene-
fits, challenges also exist. Ensuring the accessibility of these technologies to small-
scale farmers, addressing data security concerns, and refining models for diverse 
agroecosystems are key challenges discussed in works. Overcoming these challenges 
requires collaborative efforts between researchers, policy-makers, and technology 
developers.

10.2.8 � AI and ML Applications in Agriculture

In the present scenario, AI and ML techniques are being exponentially applied in 
the various areas of the agricultural domain. These areas can be categorized into the 
following groups: soil and water management, crop health management, crop pheno-
typing, recommender-based systems for crops, semantic web- and ontology-driven 
expert systems for crops, and Geo-AI. The applications of AI-, ML-, and DL-based 
techniques in these areas are discussed in the following sections.

Soil and Irrigation Management: (Azizi et al. 2020) Soil and irrigation are 
the most viable components of agriculture, as they are the determinant fac-
tors for the optimum crop yield. In order to obtain enhanced crop yield 
and to maintain the soil properties, appropriate knowledge about the soil 
resources is required (Alkhudaydi and Zhou 2019). Irrigation scheduling 
becomes crucial when water resources are scarce. Therefore, soil- and irri-
gation-related issues should be managed properly and cautiously to ensure a 
potential yield in crops. In this regard, AI- and ML-based techniques have 
shown potential ability to resolve soil- and irrigation-related issues in crops. 
A  range of ML models such as regression-based models, support vector 
machines (or regressors), artificial neural networks, and random forest algo-
rithm are being used. Many researchers have used remote-sensing data with 
ML techniques for determining soil health parameters (Archana and Sara-
nya 2020).

Crop Health Management: Every year a significant amount of yield is dam-
aged due to the attack of disease-causing pathogens and insect–pest infes-
tation. In order to manage the spread of diseases and insect pests, proper 
management practices should be applied at the earliest. Therefore, there is 
the requirement of an automatic disease and pest identification system. In 
this regard, image-based diagnosis of diseases and pests have become the 
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de facto standard of automatic stress identification. This kind of automated 
detection methodology uses sophisticated DL-based AI techniques that 
reduce the intervention of human experts. There have been several attempts 
to diagnose the diseases and insects–pests in crops using DL techniques.

The application of AI in the food sector is becoming progressively significant owing 
to its capability to assist in minimizing food wastage, improving production hygiene, 
enhancing the cleaning process of machines, and managing disease and pest control; 
therefore, there are numerous instances of employing AI and ML in the agri-food 
industry (Shrawankar et al. 2021). Automated frameworks can collect a huge amount 
of data in a matter of a few seconds on a single food item and analyze it rapidly. 
Even though agriculture practice is broad, AI finds its application in some major 
areas of the agriculture sector, such as supply chain management, soil, crop, dis-
eases, and pest management. Some of the proposed models using AI techniques with 
their limitations are as follows. (a) For soil management: fuzzy logic-based SRC-
DSS (Soil Risk Characterization Decision Support System) for soil classification; 
MOM (management-oriented modeling) for minimization of nitrate leaching; and 
artificial neural network (ANN) to estimate soil enzyme activity and soil structure 
classification (Pattnaik et al. 2023). (b) For crop management: CALEX to formulate 
scheduling guidelines, PROLOG to remove redundant tools from the farm, ANN 
to detect nutrition disorders in crops, and ANN to predict rice yield accurately. (c) 
For disease management: computer vision system (CVS) to detect multiple diseases 
at high speed; fuzzy logic-based database, which is accurate in test environments; 
ANN-GIS, which has got an accuracy of 90%; and the expert system using rule-
base in disease detection for faster detection and treatment of disease. (d) For weed 
control: invasive weed optimization (IWO), big data-based ANN-GA, and support 
vector machines. All these methods did not consider all the parameters; they are all 
application-specific toward a particular crop or environmental parameter. There is 
a need to design AI frameworks using multiple parameters and that can be used for 
multiple crops. There has been a critical pattern to ruminate about the utilization of 
massive data procedures and strategies to agribusiness as a significant opportunity 
for utilization of the information and communication technologypack, for financing, 
and for achieving added significance inside the agriculture sector. Applications of 
massive data in agriculture are not sternly regarding primary cultivation but also 
assume a significant part in enhancing the effectiveness of the whole supply chain, 
thus reducing food security worries.

Big Data Analytics: Big data analysis (Mark 2019) is outlined as a system in 
which cutting-edge analytic methods operate on huge datasets. Therefore, 
it is a combination of two technical entities with a massive amount of data-
sets, and a collection of analytical tool categories including data mining, 
statistics, AI, predictive analytics, and natural language processing (NLP), 
forming an important component of business intelligence (Shrawankar and 
Dhule 2021). Lately, big data turns out to be a subject of broad and current 
interest equally in academic research and industry. It characterizes enor-
mous and unstructured data generated by a large number of sources. Several 
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of the most prevalent data processing techniques employ big data tech-
niques. Big data is depicted by the subsequent attributes. Big data is being 
used in numerous fields such as big service business industries like Amazon 
to learn customer behavior and needs more precisely to tailor product prices 
accordingly, enhance operational productivity, and cut down personal costs. 
Even social networking sites such as Facebook, Twitter, and other network-
ing sites utilize big data analytics to study your social behavior, interests, 
and social connections and then endorse specific products. In an intelligent 
transportation system, big data techniques can handle the enormous quan-
tity of diverse and complex data generated over the period to provide safe 
and superior facilities aimed at drivers and passengers in the transportation 
system. In the agriculture field, big data shows a huge potential for solving 
many challenges of farming and consequently boosting the agriculture pro-
duction quality and quantity. Big data analytics can be used to determine 
soil quality, diseases and pest interruption, and water requirement, and pre-
dict harvesting time for crops.

10.2.9 � Challenges and Limitations

Despite the promising potential of AI in agriculture (Dharmaraj and Vijayanand 
2018), the practical application of AI-based techniques faces several challenges. 
Understanding and addressing these challenges are crucial for the successful imple-
mentation and widespread adoption of AI technologies in the agriculture sector.

Limited Access to Technology:

One of the primary challenges is the limited access to AI technology, particularly 
among small-scale and resource-constrained farmers. The high costs associated with 
acquiring and implementing AI solutions, including hardware, software, and data 
connectivity, create a digital divide. Bridging this gap and ensuring equitable access 
to AI tools are essential for maximizing the benefits across diverse agricultural land-
scapes (Mishra and Mishra 2023).

Data Quality and Availability:

AI algorithms heavily rely on high-quality and extensive datasets for training and 
decision-making. In agriculture, the availability of accurate and diverse datasets can 
be a challenge. Issues such as inconsistent data quality, limited historical records, 
and variability in data formats pose obstacles to the development of robust AI mod-
els. Collaborative efforts to collect, curate, and share agricultural data are essential 
for enhancing the effectiveness of AI applications.

Interoperability and Standardization:

The agricultural sector comprises a variety of equipment, sensors, and software 
solutions from different vendors. Ensuring interoperability and standardization of 
AI-based technologies is a significant challenge. The lack of standardized data for-
mats and communication protocols hinders seamless integration of AI tools into 
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existing farming practices. Developing industry-wide standards can promote com-
patibility and facilitate a more cohesive AI ecosystem.

User Acceptance and Education:

Farmers and agricultural stakeholders may face resistance to adopting AI technol-
ogies due to a lack of understanding or familiarity. The complexity of AI systems 
and the need for specialized knowledge may deter users from embracing these tools. 
Effective education and training programs are essential to demystify AI, empower 
users with the necessary skills, and build confidence in the practical benefits of AI 
applications in agriculture.

Data Privacy and Security Concerns:

Agriculture involves sensitive data related to crop performance, soil conditions, and 
farm management practices. Concerns about data privacy and security are significant 
barriers to the widespread adoption of AI. Farmers may be hesitant to share their 
data due to fears of misuse or unauthorized access. Implementing robust data protec-
tion measures, clear privacy policies, and secure data-sharing frameworks is crucial 
for addressing these concerns.

Tailoring Solutions to Local Contexts:

AI applications need to be tailored to the specific needs and contexts of diverse agri-
cultural systems. Solutions developed for one region or crop type may not be directly 
applicable elsewhere. Understanding the local intricacies, cultural practices, and 
environmental conditions is vital for designing AI applications that align with the 
unique challenges faced by farmers in different geographic areas (Sarkar et al. 2022).

Ethical Considerations and Bias:

As AI algorithms learn from historical data, there is a risk of perpetuating biases 
present in that data. In agriculture, this could lead to biased recommendations or 
decisions, impacting resource distribution and outcomes. Addressing ethical con-
siderations and ensuring fairness in AI applications are crucial to building trust and 
fostering responsible AI adoption in agriculture (Bhat and Huang 2021).

Scalability and Adaptability:

Implementing AI solutions that are scalable and adaptable to changing agricultural 
practices and technologies is a challenge. The rapid evolution of both AI technologies 
and agricultural methods requires flexible solutions that can accommodate new data 
sources, sensors, and innovations. Scalability ensures that AI applications remain 
relevant and effective as the agricultural landscape evolves.

10.2.10 �F uture Trends and Opportunities

The future of agricultural robots holds exciting possibilities. Ongoing research aims 
to overcome current challenges, improve robot adaptability, and introduce new 
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functionalities. Collaborative efforts between researchers, engineers, and farmers are 
crucial for refining and expanding the capabilities of agricultural robots, ultimately 
contributing to a more sustainable and technologically advanced agriculture sector.

10.3 � CONCLUSION

The application of AI and ML can provide viable solutions to major problems in 
agriculture, such as soil health management, irrigation scheduling, crop health man-
agement, disease/pest identification, and crop phenomics. The use of AI and ML 
techniques in the agriculture domain and the survey of different AI-related technol-
ogies discussed in this chapter will help in deducing a generic framework toward 
precision agriculture that will improve the overall crop productivity. AI is a powerful 
tool in the field of agriculture for accurate weather prediction, disease/pest forewarn-
ing, and assisting the stakeholders in accurate and real-time prediction of various 
related parameters to obtain maximum yield at minimum cost. AI tools will trans-
form the agriculture industry with better agricultural practices, which in turn will 
benefit the farmers and aid in improving the economy of the country.
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11 AI Transforming 
Education
Personalized Learning and 
Intelligent Tutoring Systems

11.1 � INTRODUCTION

The landscape of global education is constantly evolving, and one of the keys turning 
points is the introduction of artificial intelligence (AI), which has begun to reshape 
traditional teaching methods (Yang and Park 2021). Historically, educators have 
been at the center of instructional practices, but AI is now stepping in to assist and 
transform these conventional roles (Edwards and Roy 2023). This chapter explores 
the diverse applications of AI in education, highlighting innovative approaches that 
have the potential to revolutionize both teaching and learning (Sinha and Bose 2022).

The importance of AI in modern education cannot be overstated. Advanced 
AI technologies provide educators with new tools to engage students, personalize 
instruction, and reduce the workload associated with assessments (Garcia and Lee 
2021). By leveraging data, AI can offer personalized learning experiences tailored 
to the unique needs of individual students, moving away from the one-size-fits-all 
model traditionally used in classrooms (Kumar and Sharma 2020). This shift allows 
students to progress at their own pace, following their personal interests and learning 
styles (Huang and Li 2020). Additionally, the COVID-19 pandemic has accelerated 
the digital transformation of education, emphasizing the need for flexible and adap-
tive learning models that AI can provide (Jensen and Chen 2021).

This work seeks to examine the various roles AI plays in educational environ-
ments, from early childhood education to higher education institutions (Singh and 
Chatterji 2020). Specifically, the study aims for the following:

•	 Analyze how AI-powered personalized learning tools impact student 
engagement and academic achievement (Anderson and Thompson 2021).

•	 Investigate the effectiveness of AI-supported intelligent tutoring systems in 
offering individualized feedback and assistance (Patel and Smith 2019).

•	 Explore AI’s role in managing administrative tasks and assessments to 
reduce the workload on educators (Wilkinson and Crossley 2022).

•	 Assess the ethical challenges and considerations related to AI integration in 
school systems (Vincent and Roberts 2020).

•	 Examine AI’s ability to address the educational needs of learners with 
diverse abilities (Shaikh et al. 2023).

https://doi.org/10.1201/9781003532170-11
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11.1.1 � AI in Education

The integration of AI in education has been an area of academic interest for sev-
eral decades. Early developments transitioned from basic programmed instruction to 
advanced ML algorithms capable of adapting to specific learning needs (Zhang and 
Maguire 2021). As education systems expanded, research shifted toward automat-
ing repetitive tasks in computer-assisted learning, focusing on streamlining routine 
processes (Ullman and King 2021). Initial studies explored the benefits of comput-
er-assisted instruction for automating monotonous tasks, such as rote learning (Sol-
omon and Naik 2020). More recent research, however, has concentrated on adaptive 
learning technologies, intelligent tutoring systems, and data-driven educational tools 
(Lahiri and Bose 2022). These advancements have allowed for a more personalized 
learning experience, tailoring study paths to match individual students’ responses 
and prior knowledge (Kapoor and Kulshrestha 2020). The evolution of AI in educa-
tion demonstrates its potential to enhance accessibility to learning resources and cre-
ate immersive learning experiences that engage students deeply, driving AI toward 
significant educational breakthroughs (Chen and Wang 2019).

To address the specific educational needs of learners with disabilities, such as 
those who are deaf or dumb, the development of specialized educational systems 
is crucial. The importance of such systems, like the Distributed Education System 
for Deaf & Dumb Children and Educators, has been explored as a way to enhance 
access to education for all learners (Wazalwar and Shrawankar 2020). Addition-
ally, speech user interfaces, which integrate AI to improve accessibility, have shown 
promise in helping diverse student groups communicate and learn more effectively 
(Shrawankar and Thakare 2010).

11.1.2 � AI Technologies: Progress and Application

The history of AI’s application in education is marked by continuous technological 
advancements, evolving from rule-based expert systems in the 1980s to modern tools 
powered by deep learning and natural language processing (NLP) (Diaz and Clark 
2022). For example, AI-driven intelligent tutoring systems no longer rely solely on 
numerical inputs but now provide adaptive feedback to help students navigate com-
plex problem-solving scenarios (Majid and Jafri 2021). Additionally, AI integrated 
with virtual and augmented reality technologies is establishing new, immersive 
learning environments (Fisher and Green 2021). Platforms like zSpace, which utilize 
virtual reality, offer students hands-on learning experiences that could revolutionize 
traditional education (Darrin and Smith 2021). While these technologies hold great 
promise for individualized learning, they also raise potential concerns, such as the 
risk of job displacement due to automation, societal homogenization, and environ-
mental impacts if not implemented carefully (Bennett and Marshall 2021).

11.1.3 � Application in Educational Environments

The education sector has seen a recent influx of AI applications, revolutionizing the 
use of innovative technology for tasks like online testing, grading, and personalized 
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learning (Garcia and Lee 2021). AI-powered adaptive learning systems, such as those 
used by platforms like Khan Academy and Coursera, adjust content and assessments 
to match the learner’s pace and level of proficiency (Singh and De Souza 2023). These 
systems have demonstrated success across various subjects, including mathematics, 
science, economics, and even philosophy (Sinha and Bose 2022). Additionally, AI 
has proven effective in predictive analytics, identifying students at risk of dropping 
out and highlighting areas where they face the most difficulties, allowing for timely 
interventions (Jensen and Chen 2021). Despite these advancements, it is essential 
to closely examine these learning gaps to ensure meaningful support is provided to 
struggling students (Inam and Khan 2023). Research has also shown the importance 
of developing accessible educational systems for learners with special needs, such as 
those who are deaf or dumb. The Distributed Education System for Deaf & Dumb 
Children and Educators is an example of an innovative approach to meeting these 
needs (Wazalwar and Shrawankar 2020). Furthermore, speech user interfaces have 
proven to be beneficial in facilitating more inclusive learning experiences for diverse 
student populations (Shrawankar and Thakare 2010).

11.1.4 � Boosting Learning with AI-Driven Analytics

AI-driven analytics can significantly enhance the learning experience by providing 
educators with detailed insights into student behavior and performance (Baker and 
Greene 2020). With the integration of AI in various learning management systems 
(LMS), educators can monitor student engagement and share performance data with 
the entire class (Carson and Jenkins 2020). By analyzing time-lapse data that tracks 
student progress over extended periods, educators can identify performance patterns, 
pinpoint areas where students are struggling, and predict when and which students 
require intervention (Zhao and Lin 2020). These AI-powered tools help create a more 
adaptable educational environment by providing the data needed to plan targeted 
interventions for diverse learning needs (Singh and Chatterji 2020).

11.1.5 � AI in Language Learning

AI has significantly transformed how students learn and practice new languages by 
integrating intelligent tutoring systems with technologies like NLP (Lahiri and Bose 
2022). These AI-driven tools provide interactive language practice through chatbots, 
consistent feedback, and personalized assessments, adapting to the unique needs of 
each learner (Singh and De Souza 2023). By offering a highly customizable learning 
experience, AI enhances traditional language learning methods with accessible and 
engaging drills, making it easier for students to grasp new concepts quickly and 
effectively (Zhang and Maguire 2021).

11.1.6 �E thical and Equity Considerations in AI Education

As AI becomes more embedded in educational systems, its ethical and equity impli-
cations are gaining attention. Concerns regarding the fairness of AI algorithms, 
especially in areas like student evaluation and admissions, highlight the need for 
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transparent systems that do not perpetuate historical biases (Vincent and Roberts 
2020). This study stresses the importance of establishing clear ethical guidelines to 
govern AI’s role in education (Diaz and Clark 2022).

The current study also explores the impact of AI on the teaching profession, 
where gaps in understanding exist regarding how AI might alter the professional 
responsibilities of teachers (Shaikh et al. 2023). The research addresses concern 
about whether AI could undermine the traditional role of educators (Prasad and 
Saini 2021). While much literature focuses on AI’s effect on students, there is a 
significant lack of research into how AI reshapes teachers’ roles and the necessary 
professional development to integrate AI effectively into classrooms (Edwards and 
Roy 2023).

11.1.7 � Cultural and Contextual Adaptability of AI Tools

Another critical area for further research is the cultural adaptability of AI tools in 
education. The effectiveness of AI applications varies across different cultural set-
tings, and it is essential to design tools that accommodate diverse perspectives (Sol-
omon and Naik 2020). Ensuring that AI educational technologies are inclusive and 
globally accessible is vital to their success (Thakur and Hamilton 2022).

11.1.8 �E ffectiveness and Longevity in the Field

Long-term research is needed to assess the sustainability and impact of AI in edu-
cation over extended periods (Zhao and Lin 2020). While short-term studies have 
shown positive outcomes, there is limited data on the long-term effects of AI on stu-
dent motivation, learning abilities, and overall success (Bennett and Marshall 2021). 
Understanding how continuous use of AI affects these factors is crucial for determin-
ing its lasting influence (Adams and Brown 2022).

11.1.9 �S calability and Accessibility

The scalability of AI solutions in education presents mixed results. While many AI 
tools have demonstrated scalability on a large scale, challenges remain in making 
them accessible to institutions with limited resources (Bennett and Marshall 2021). 
Scalability is key to AI’s success, but it requires adaptable models that do not depend 
solely on high-capacity infrastructure (Adams and Brown 2022).

11.1.10 � Integrating Other Technologies

AI’s integration with other emerging technologies, such as blockchain for tam-
per-proof academic records and Internet of Things (IoT) devices for enriched learn-
ing environments, opens new possibilities for educational experiences (Carson and 
Jenkins 2020). This convergence of technologies has the potential to create more 
immersive and comprehensive educational opportunities. However, more research is 
needed into the best ways to do this and the implications for data security and privacy 
(Zhao and Lin 2020).
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11.1.11 � AI Adoption for Education across the Globe

AI adoption in education varies widely depending on the educational systems and 
policies of different countries. Some nations have advanced rapidly in exploring and 
implementing AI, while others are just starting to recognize its potential (Singh and 
Chatterji 2020). Comparative research helps identify successful strategies that facili-
tate the effective integration of AI into diverse educational systems (Patel and Smith 
2019). Moreover, specialized educational systems, such as the Distributed Education 
System for Deaf & Dumb Children and Educators, have been developed to address 
the unique learning needs of children with disabilities (Wazalwar and Shrawankar 
2020). Additionally, advancements like speech user interfaces in computer-based 
education systems offer significant improvements in accessibility for diverse student 
populations (Shrawankar and Thakare 2010).

11.1.12 � Culture in AI Design and Deployment

Cultural factors significantly influence AI’s design and deployment in education. 
Emerging research highlights that culturally responsive AI systems can better adapt 
to the cultural and linguistic diversity of learners (Solomon and Naik 2020). This 
approach ensures that AI tools provide inclusive educational support, respecting 
local customs and learner contexts (Shaikh et al. 2023).

11.1.13 � AI’s Ethical and Societal Dimensions

The ethical and societal implications of AI in education are crucial, particularly 
in terms of equity and fairness. Issues such as unequal access to AI tools and the 
potential reinforcement of existing biases necessitate continuous research and policy 
interventions to ensure AI’s equitable impact on educational processes (Vincent and 
Roberts 2020).

11.1.14 �F uture Directions and Policy Considerations

Comprehensive policy frameworks are needed to guide AI’s integration into educa-
tional systems. These frameworks should address data protection, standards for ethi-
cal AI usage, equitable access to AI-driven education, and sustainability measures to 
safeguard the interests of all stakeholders (Diaz and Clark 2022).

11.1.15 � Advanced AI Applications in Education

Advanced AI applications can transform curriculum development and instructional 
design by analyzing large volumes of educational content and student performance 
data. This enables educators to create dynamic, adaptive curricula that incorporate real-
time student feedback and improve learning outcomes (Anderson and Thompson 2021).

11.1.16 � AI for Enhancing Teacher Professional Development

Advanced AI applications can transform curriculum development and instructional 
design by analyzing large volumes of educational content and student performance 
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data. This enables educators to create dynamic, adaptive curricula that incorporate 
real-time student feedback and improve learning outcomes (Anderson and Thomp-
son 2021).

11.1.17 � AI in Educational Administration

AI is increasingly used in educational administration, from student enrolment and 
resource allocation to scheduling (Wilkinson and Crossley 2022). Automating these 
processes allows educational institutions to streamline operations, freeing up teach-
ers to focus on student engagement (Davis and Patel 2019).

11.1.18 �U se of Data Analytics by Educational Administrators

AI-driven data analytics enable educational administrators to make informed deci-
sions by analyzing vast datasets (Baker and Greene 2020). This facilitates policy 
advice, optimization of teaching programs, and identification of effective practices 
through data-driven insights (Zhao and Lin 2020).

11.1.19 � AI Solutions in Education’s Sustainability

As AI becomes more integrated into education, its environmental impact must be 
considered. Research into sustainable AI models aims to mitigate the energy con-
sumption of AI algorithms and data centers, ensuring that AI use aligns with broader 
environmental sustainability goals (Solomon and Naik 2020).

11.1.20 �F inancial and Infrastructural Sustainability

Sustainable AI integration in education must be both financially viable and adaptable 
to various educational models (Bennett and Marshall 2021). Studies emphasize the 
importance of considering the total cost of AI implementation, including mainte-
nance and scalability, to ensure long-term sustainability (Adams and Brown 2022).

11.1.21 � Interdisciplinary Approaches to AI in Education

AI in education opens new opportunities for interdisciplinary learning, enabling 
educators to design experiences that integrate critical thinking and creativity across 
subjects like STEAM (Science, Technology, Engineering, Arts, and Mathematics) 
(Singh and Chatterji 2020).

The interdisciplinary nature of AI in education involves collaboration among 
fields like computer science, education, psychology, and sociology. Such collabo-
rations ensure that AI solutions are pedagogically informed and culturally sensitive 
(Wilkinson and Crossley 2022).

11.1.22 � AI for Students with Disabilities

AI technologies offer new ways to support students with disabilities through per-
sonalized learning experiences tailored to their needs (Shaikh et al. 2023). Assistive 



258 Artificial Intelligence and Machine Learning for Real-World Applications

technologies, such as AI-driven speech-to-text conversion and reading aids, promote 
equal access to educational resources (Solomon and Naik 2020).

11.1.23 �E thical AI in Education

The rise of AI in education necessitates the creation of ethical and legal frameworks 
to prevent misuse and ensure that AI serves educational purposes ethically (Vincent 
and Roberts 2020).

11.1.24 � AI and Policy Development in a Developing World

In developing countries, cost-effective AI solutions like chatbots and automated test 
proctors provide affordable opportunities to enhance skills relevant for higher edu-
cation and employment (Patel and Smith 2019). Innovations in AI must consider both 
educational value and affordability (Adams and Brown 2022).

11.2 � EVOLUTION OF AI IN EDUCATION

The integration of AI in education marks a shift from the traditional one-size-fits-
all approach to more adaptive, personalized learning environments. Historically, 
education systems have relied on standardized teaching methods where all students 
follow the same curriculum and pace, often ignoring each student’s individual learn-
ing needs and preferences (Singh and Chatterji 2020). Lack of personalization and 
flexibility have been key factors in the adoption of AI technologies in the educational 
environment (Kapoor and Kulshrestha 2020).

11.2.1 �E arly Application Possibilities of AI in Educational Technologies

Early applications of AI in education focused mainly on the development of intelli-
gent instructional systems (ITS) (Patel and Smith 2019). These systems were designed 
to mimic the role of a human tutor and provide students with personalized instruction 
and immediate feedback based on their performance (Huang and Li 2020). Unlike 
traditional teaching methods, ITS used AI algorithms to analyze student responses 
and adapt the learning material in real time, ensuring that each student received indi-
vidualized support tailored to their learning pace and style (Davis and Patel 2019).

In addition, AI-powered automated grading systems emerged that streamlined 
the process of evaluating educators (Garcia and Lee 2021). Using NLP and ML tech-
niques, these systems provided faster and more consistent task feedback, allowing 
educators to focus on more complex learning tasks (Gomez and Wang 2022). This is 
an important milestone in reducing the administrative burden on teachers and pro-
viding timely feedback to students (Fisher and Green 2021).

11.2.2 � Key Milestones and Progress

Over the years, AI has continued to develop, playing an increasingly important 
role in education. Several key advancements have been made in this field. One 
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such milestone is the development of adaptive learning systems. These systems, 
such as Newton, use AI to analyze large amounts of data generated from student 
interactions with educational content, allowing for the creation of customized 
learning paths based on an individual’s strengths, weaknesses, and preferences 
(Kapoor and Kulshrestha 2020). AI-powered systems can predict student perfor-
mance and provide tailored interventions before students fall behind (Davis and 
Patel 2019).

Another significant development is the use of big data and learning analytics. By 
collecting and analyzing data on student behavior, AI systems allow educators to 
gain a deeper understanding of how students learn, informing teaching strategies 
(Baker and Greene 2020). The increasing importance of data-driven decision-mak-
ing in modern education is largely driven by AI technologies. These changes have 
led to more focused teaching practices and have provided a more student-centered 
approach to learning (Jensen and Chen 2021).

The incorporation of AI into virtual and blended learning environments has also 
transformed education. As the world shifts to online learning, AI-driven platforms 
play a crucial role in managing complex data and personalizing student experiences 
(Xu and Nguyen 2023). AI can adjust content delivery, monitor student participation, 
and predict the risk of dropout, playing an essential role in ensuring student success 
on online learning platforms (Young and Sullivan 2019).

11.2.3 �T he Impact of AI on Traditional Learning Environments

The impact of AI on traditional education is significant. AI not only improves the 
efficiency of administrative tasks such as assessment but also enhances the quality 
of learning through personalized learning systems (Anderson and Thompson 2021). 
Unlike the rigid structure of conventional classrooms, AI-powered learning envi-
ronments offer flexibility, allowing students to learn at their own pace and receive 
tailored support when needed (Lahiri and Bose 2022).

Furthermore, AI has changed the role of educators from simply providing 
knowledge to facilitating personalized learning experiences (Majid and Jafri 
2021). Teachers can now access real-time data about student performance, 
allowing them to intervene at the right time and address each student’s specific 
needs (Garcia and Lee 2021). This shift toward individualized education has 
significantly improved student engagement and learning outcomes (Huang and 
Li 2020).

Despite its numerous benefits, AI integration has also raised concerns, particu-
larly regarding data protection and accessibility (Diaz and Clark 2022). Ensuring 
that AI technology remains fair and inclusive remains a crucial challenge, as students 
from underprivileged backgrounds may lack the necessary resources to benefit from 
these advancements (Bennett and Marshall 2021).

In conclusion, the evolution of AI in education represents a paradigm shift from 
standardized teaching to a more individualized, data-driven approach. As AI contin-
ues to advance, it is poised to further transform the educational landscape, making 
learning more accessible, efficient, and tailored to the needs of each student (Sharma 
and Graham 2022).
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11.3 � PERSONALIZED LEARNING THROUGH AI

Personalized learning represents a shift from traditional, standardized learning 
methods to a more flexible, student-centered approach. It recognizes that each stu-
dent has unique strengths, challenges, learning preferences, and needs. In traditional 
classrooms, a one-size-fits-all model often fails to engage students—either because 
the material is too difficult or because it is too easy. Personalized learning closes 
this gap by tailoring the educational experience to individual learners, making the 
process more relevant, engaging, and efficient.

This approach is based on meeting the needs of students so that they can develop 
at their own pace. The adaptability of personalized learning helps students overcome 
certain learning gaps and capitalize on their strengths. It shifts the focus from a 
rigid curriculum to dynamic learning pathways, ensuring that content is not only 
delivered but also understood, retained, and applied. It empowers students to take 
control of their learning journey, fostering a greater sense of belonging, self-efficacy, 
and motivation.

•	 Key AI Technologies in Personalized Learning: AI plays a critical role 
in enabling personalized learning, making it more efficient and scalable. AI 
technologies involved in personalized learning include the following:

•	 Machine Learning: ML analyses large amounts of educational material 
to identify patterns in student behavior and performance. It then uses this 
insight to dynamically adjust learning paths and recommend resources tai-
lored to student needs (Anderson and Thompson 2021, 150–165).

•	 Natural Language Processing: NLP allows AI systems to interact with 
students using natural language, making the learning experience more 
interactive and responsive. This is especially useful for tutoring systems or 
chatbots that help students with questions (Diaz and Clark 2022, 223–237).

•	 Data Acquisition: Data acquisition technology helps analyze large datasets 
to obtain significant insights, such as identifying overall student struggles 
or outlier performance. These insights drive a personalized learning path 
(Baker and Greene 2020, 34–49).

•	 Predictive Modelling: AI-based predictive models analyze past student 
performance to predict future learning outcomes. By identifying students 
who may be at risk of falling behind, educators can provide targeted support 
interventions before learning problems become serious (Jensen and Chen 
2021, 1–20).

These technologies work together to create a robust framework for personalized 
learning that improves adaptability and effectiveness.

•	 Benefits of AI in Personalized Learning
•	 Adapting Learning Paths Based on Student Needs: AI-powered sys-

tems can create customized learning paths that adapt to each student’s 
abilities, preferences, and learning pace. These systems can adjust course 
content on the fly; provide additional resources, exercises, or simpler 
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explanations when students get stuck; and move on to more complex top-
ics as students progress (Kapoor and Kulshrestha 2020, 524–541).

•	 Increasing Engagement and Motivation: AI-powered personalized 
learning increases engagement by tailoring learning materials to stu-
dents’ interests and preferred learning styles. This prevents students 
from losing focus because the material is too easy or too difficult. By 
presenting interactive and customized content, AI can keep students 
motivated and encourage them to actively participate in learning (Majid 
and Jafri 2021, 417–433).

•	 Improving Results through Adaptive Assessment: AI facilitates adap-
tive assessment that evolves based on student performance. Instead of 
providing standardized tests, AI systems dynamically adjust the diffi-
culty of questions to match students’ current understanding. This helps 
identify specific areas of weakness while maintaining engagement and 
ensuring that the assessment is neither too overwhelming nor too easy 
(Gomez and Wang 2022, 400–418).

•	 Instant Feedback for Continuous Improvement: AI can provide 
instant feedback on assessments, assignments, and tasks, giving students 
instant insight into their performance. Instead of waiting for a teacher 
to grade, students can receive detailed feedback immediately after com-
pleting an assignment. It helps them understand mistakes, correct them 
quickly, and strengthen their understanding of basic concepts (Garcia 
and Lee 2021, 567–582).

•	 Challenges of AI-Driven Personalized Learning

While AI offers many benefits for personalized learning, it also poses significant 
challenges:

•	 Privacy Concerns: AI systems rely on the collection and analysis of large 
amounts of student data, raising concerns about data privacy and security. 
Protecting sensitive student information and ensuring compliance with pri-
vacy regulations such as GDPR or FERPA are critical to building trust in 
AI-powered education technology (Vincent and Roberts 2020, 144–162).

•	 Technological Limitations: Not all educational institutions have the neces-
sary infrastructure or technical expertise to effectively implement AI-based 
personalized learning systems. Furthermore, the accuracy of AI predictions 
and recommendations depends on the quality and variety of data used to 
train the model. Insufficient or biased data can lead to erroneous conclu-
sions (Thakur and Hamilton 2022, 150–167).

•	 Teacher and Student Acceptance of AI-Driven Personalization: Inte-
grating AI into the classroom may face resistance from teachers and stu-
dents. Teachers may fear that AI will undermine their role, while students 
may be hesitant to trust or rely on AI-driven systems for learning. Over-
coming this challenge requires fostering a deeper understanding of how AI 
complements the role of educators and enhances the learning experience 
without replacing human interaction (Shaikh et al. 2023, 56–66).
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•	 Bias in AI Models: AI systems are only as good as the data they are trained 
on. If learning materials contain inherent biases, such as socioeconomic, 
gender, or racial biases, AI systems may inadvertently incorporate these 
biases into their recommendations or evaluations. Ensuring diversity in data 
collection and training models to avoid bias is critical to fair and equitable 
personalized training (Singh and Chatterji 2020, 214–247).

•	 AI’s Role in Predictive Modeling and Learning Path Adaptation
•	 AI supports predictive modeling, which can predict likely learning out-

comes based on past student performance. By analyzing historical data, 
AI can identify students who are at risk of lagging behind and recom-
mend interventions before significant learning shortcomings develop. 
This proactive approach ensures that students receive timely support, pre-
venting further academic difficulties (Baker and Greene 2020, 34–49). 
The expected model can also help teachers customize their teaching 
strategies to meet the needs of individual students without taking them 
to the data. For example, AI can generate performance boards, gather 
students’ progress, and highlight areas to be improved. Teachers can use 
these insights for fine teaching and provide additional resources or per-
sonal assistance to students who need additional assistance (Kapoor and 
Kulshrestha 2020, 524–541).

•	 The Role of AI in Creating Customized Learning Paths
•	 AI-managed platforms allow the creation of a personal learning path 

based on the current level of student skills. Unlike traditional education 
systems, which follow a rigid, linear progression, AI-enabled platforms 
constantly adjust content and assessments to match a student’s learning 
pace. For example, language-learning platforms like Duolingo use AI to 
analyze student progress and adapt lessons accordingly (Majid and Jafri 
2021, 417–433). This ensures that students continue to learn material that 
is appropriately challenging while avoiding content that is too simple or 
too advanced.

•	 By constantly adapting the learning experience, AI keeps students in 
their zone of proximal development (ZPD), the zone where learning is 
most effective because the task exceeds their current abilities but can still 
be accomplished with instruction. This improves both the learning expe-
rience and knowledge retention (Singh and Chatterji 2020, 214–247).

•	 Artificial Intelligence Adaptive Feedback and Instant Evaluation
•	 Another important contribution of AI to personalized learning is real-

time assessment and adaptive feedback. Instead of waiting for periodic 
teacher evaluations, AI systems can provide immediate feedback on 
assignments, tests, or interactive tasks. This instant feedback helps stu-
dents understand their mistakes in real time, correct them, and improve 
their understanding of key concepts (Garcia and Lee 2021, 567–582). 
Instant feedback is especially useful in STEM subjects, where learning 
is often based on foundational knowledge that needs to be reinforced 
before moving on to more complex topics.
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•	 AI-powered adaptive feedback also enables a more iterative learning 
process. If a student struggles with a certain topic, AI can provide addi-
tional resources or remedial exercises to prevent abandonment. This 
ensures that students continuously improve and all areas of weakness 
are treated immediately, reducing the risk of falling behind (Gomez and 
Wang 2022, 400–418).

11.3.1 � Challenges and Limitations

Some users noted that while AI tools are useful, they can also be challenging to use. 
This indicates that the design and implementation of these tools may need further 
improvement to enhance communication and usability (Vincent and Roberts 2020, 
144–162).

11.3.2 � Increased Engagement

Participants frequently mentioned that AI tools increased their interest in subjects. 
This suggests that when AI is effectively integrated into learning, it can boost stu-
dents’ motivation and effort (Majid and Jafri 2021, 417–433). The findings show that 
AI can positively influence educational outcomes and engagement, particularly with 
intelligent tutoring systems (ITSs). However, there are notable differences in how 
effective these tools are, and the challenges highlighted indicate a need for further 
refinement to meet diverse educational needs.

The strong link between engagement and improved learning emphasizes the 
importance of designing educational AI tools that actively engage users. Overall, 
the feedback themes not only highlight the potential benefits of AI in enhancing 
learning experiences but also point out the existing challenges and limitations that 
participants encounter (Singh and Chatterji 2020, 214–247).

11.4 � CONCLUSION

The analysis of participant feedback highlights both the benefits and challenges 
of AI in education. While AI has the potential to significantly improve learning 
experiences and increase student engagement, there is a need for better design and 
implementation of these tools. Personalized learning through AI can help tailor edu-
cational experiences to individual students, improving their performance and moti-
vation. For example, adaptive learning platforms adjust the difficulty of tasks based 
on a student’s performance, while ITSs provide immediate, personalized feedback 
similar to a human tutor (Garcia and Lee 2021, 567–582).

AI’s integration into education is transformative, bringing both challenges and 
opportunities. By addressing technical, ethical, and infrastructural issues, educators 
and institutions can harness AI to create personalized, engaging, and effective learn-
ing environments. While the road to successful AI implementation is complex, these 
proposed solutions provide a way forward, enabling a more adaptive and inclusive 
educational future (Gomez and Wang 2022, 400–418).
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Overall, while the feedback shows that AI can enhance learning and engagement, 
there are still challenges to address. Future improvements should focus on making 
AI tools easier to use, more adaptable, and more accurate to fully realize their poten-
tial in education.
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12 Technological Uses of 
AI and ML for Helping 
Elderly and Special 
Needs People

12.1 � INTRODUCTION

The use of artificial intelligence (AI) and machine learning (ML) is revolutioniz-
ing healthcare by creating innovative solutions that assist the elderly and individuals 
with special needs. As populations age and the number of people with disabilities 
increases, technology offers valuable tools to ensure independence, improved health 
outcomes, and enhanced quality of life. This chapter explores the many ways AI 
and ML are transforming care for these individuals by enabling predictive analytics, 
personalized healthcare, and assistive technologies.

With the integration of AI and ML, assistive technologies are becoming more 
intelligent, offering customized support that adapts to the needs of users. These sys-
tems have the potential to significantly reduce the burden on caregivers and medical 
professionals by providing automated assistance for tasks ranging from monitor-
ing vital signs to improving mobility and even offering emotional companionship 
(Simon and Aliferis, 2024).

AI is one of the emerging trends in today’s technological landscape. AI has given 
huge contributions to industries and medical healthcare systems, but there is another 
important area, that is, for a revolution and qualitative changes from the introduc-
tion of AI: it is the improvement of the lives of people with physical disabilities and 
elderly people with needs.

Despite the fact that the life of people with disabilities has always been a 
little more difficult and not a normal life in the context of understanding the 
specifics of each individual, AI provides a sure shot guarantee of new opportu-
nities for these people by providing solutions that can help them perform every-
day tasks with more ease and independently. The contribution of AI in the life 
of the elderly and specially visualized, physically impaired, and needy people 
will be of great support to them, and this will make their lives easy, swift, and 
comfortable.

Our assignment has explored various technological uses of AI and ML that are 
designed to assist the elderly and needy people with special needs. It highlights the 
solutions to the problems faced by them.

https://doi.org/10.1201/9781003532170-12
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12.2 � AI AND ML OVERVIEW

•	 AI encompasses a broad field that includes creating machines capable of 
performing tasks that require human intelligence, such as recognizing 
speech, making decisions, and solving complex problems. AI is employed 
in natural language processing (NLP), computer vision, and robotics (Simon 
and Aliferis, 2024).

•	 ML is a subset of AI focused on the ability of machines to learn from data 
without being explicitly programmed. ML is used to develop models that 
can predict outcomes and improve assistive technologies by learning user 
preferences and behaviors (Rus et al., 2024).

•	 In healthcare, AI and ML help in predicting diseases, automating patient 
monitoring, and offering decision support to caregivers (Chauhan et al., 
2023). These technologies are increasingly being embedded in smart 
homes, wearable devices, and robotics to assist elderly and special needs 
individuals (Frauendorf and de Souza, 2023).

12.3 � ASSISTIVE TECHNOLOGIES FOR THE ELDERLY

The elderly population faces numerous challenges related to mobility, cognitive 
decline, and social isolation. AI and ML have enabled the creation of assistive 
devices that help in managing these issues effectively.

•	 Wearable Devices: AI-driven wearables like smartwatches and health moni-
tors track essential health metrics such as heart rate, blood pressure, and oxy-
gen levels. These devices often come equipped with fall detection algorithms 
that can send alerts to caregivers or emergency services when necessary.
•	 Example: Apple Watch and Fitbit use AI to monitor users’ health data 

and send real-time alerts in case of irregularities.
•	 Smart Homes: AI is transforming homes into smart environments where 

elderly individuals can live independently. Voice-controlled assistants like 
Amazon Alexa and Google Home help control appliances, set reminders for 
medications, and even order groceries.
•	 Automated Lighting: Smart lighting systems adjust based on movement 

and time, providing safety during the night.
•	 Voice Commands: AI-powered voice assistants allow the elderly to con-

trol devices and access information without manual intervention.
•	 Robotics: Robots designed for elderly care are becoming more advanced 

with AI integration. Robots like Honda’s ASIMO assist with daily tasks 
such as mobility, medication reminders, and even companionship (Rincon 
and Marco-Detchart, 2024).
•	 Emotional Support Robots: Robots like PARO, a robotic seal, provide 

comfort to elderly individuals suffering from dementia by responding to 
touch and voice.
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12.4 � SUPPORTING INDIVIDUALS WITH SPECIAL NEEDS

People with physical, sensory, or cognitive impairments face unique challenges that 
AI and ML are helping mitigate. These technologies offer ways to improve commu-
nication, mobility, and learning (Park et al., 2025).

•	 Speech Recognition: For individuals with speech impairments, AI-
powered speech recognition systems can interpret limited vocal patterns 
and convert them into understandable text or speech. Tools like Google’s 
Speech-to-Text API are helping people with speech disabilities communi-
cate more effectively.
o	 Example: AI-based augmentative and alternative communication (AAC) 

devices assist individuals with conditions such as autism or cerebral 
palsy.
	– Computer Vision for the Visually Impaired: AI enables visually 

impaired individuals to navigate their environment more easily. 
Applications like Seeing AI by Microsoft use ML to describe objects 
and people, and even read text aloud in real time.

o	 Example: OrCam MyEye is a wearable AI device that helps visually 
impaired users read text, recognize faces, and identify objects using real-
time image processing (Mansoor et al., 2022).
	– AI in Prosthetics: AI-driven prosthetics use ML algorithms to adapt 

to the user’s specific movement patterns, offering a more natural 
range of motion. These prosthetics improve dexterity and mobility for 
individuals with limb loss.

o	 Example: Open Bionics creates AI-powered prosthetics that adjust to 
muscle signals, giving users greater control over their artificial limbs 
(Gill et al., 2025).

12.5 � PERSONALIZED HEALTHCARE FOR THE ELDERLY

AI and ML are playing a significant role in creating personalized healthcare plans 
tailored to the individual needs of elderly patients. These technologies analyze vast 
amounts of data to predict health risks, recommend treatments, and monitor progress.

•	 Predictive Analytics: By analyzing historical health data, AI models can 
predict the likelihood of health issues such as Alzheimer’s disease, heart 
disease, or stroke. This allows for earlier interventions and more effective 
care management.
•	 Example: ML models analyze genomic data to determine risks for 

genetic disorders in elderly patients, enabling personalized treatments.
•	 Telemedicine: AI-powered telemedicine platforms provide elderly patients 

with remote access to healthcare professionals. These systems can also ana-
lyze medical images and patient data to offer real-time diagnostic support.
•	 Example: Platforms like Babylon Health use AI to assist doctors in diag-

nosing conditions through video consultations, reducing the need for 
in-person visits.
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12.6 � COGNITIVE SUPPORT SYSTEMS

As elderly individuals age, cognitive functions such as memory, attention, and prob-
lem-solving often decline. AI and ML are being used to develop systems that help 
slow cognitive deterioration and maintain mental agility.

•	 Memory Enhancement Apps: AI-based applications offer memory training 
exercises that are personalized to the user’s abilities. These apps help in 
strengthening cognitive functions and slowing the onset of memory-related 
diseases like dementia.
•	 Example: Apps like Lumosity use AI to create personalized training pro-

grams that adapt based on the user’s performance.
•	 Virtual Companions: AI-powered chatbots and virtual assistants provide 

emotional support by engaging in conversations with elderly users. These 
systems help reduce social isolation and promote mental well-being.
•	 Example: ElliQ is a virtual companion designed for the elderly that 

encourages interaction and helps keep them mentally active.

12.7 � CHALLENGES IN AI AND ML ADOPTION FOR ELDERLY 
AND INDIVIDUALS WITH SPECIAL NEEDS

Despite the numerous advantages, there are several challenges in adopting AI and 
ML for assisting the elderly and individuals with special needs.

•	 Ethical Concerns: Privacy is a significant issue, especially when it comes to 
handling sensitive healthcare data. AI systems must be designed to protect 
user data and respect privacy while providing accurate and reliable support.

•	 Affordability: Advanced AI-driven assistive technologies can be expen-
sive, limiting access to those who cannot afford them. There is a need for 
more affordable solutions that can be scaled for broader use.

•	 Technological Literacy: Many elderly individuals have difficulty using 
modern technologies. There is a need for user-friendly interfaces and proper 
education on how to use AI-based systems effectively.

12.8 � CASE STUDIES

Several companies and research institutions have developed AI-driven solutions to 
assist the elderly and individuals with special needs. These case studies demonstrate 
how technology is improving lives.

•	 OrCam MyEye: This AI-powered device helps the visually impaired by 
reading texts aloud, recognizing faces, and identifying objects. The device 
has been successfully used by thousands of individuals to regain a sense of 
independence.

•	 ElliQ: Designed to help elderly individuals combat loneliness, Elliq uses AI 
to engage in conversations, remind users of daily tasks, and connect them 
with family members.
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Following are the case studies that we will discuss for the aforementioned individuals.

	 1.	Sign language recognition and translation (Microsoft AI)
	 2.	AI/ML system for visually impaired people
	 3.	AI-based fall detection systems for the safety of the elders
	 4.	AI/ML in wheelchair navigation and control

CASE STUDY 1  SIGN LANGUAGE RECOGNITION 
AND TRANSLATION (MICROSOFT AI)

Deaf and mute individuals more often than not find it difficult to convey them-
selves to non-American Sign Language (ASL) speakers. Under Microsoft’s “AI 
for Good” initiative, an advanced AI system was introduced to identify (ASL 
through the use of computer vision (Srivastava et al., 2024).

The system uses ML models, particularly convolutional neural networks 
(CNNs), along with cameras to capture and interpret hand and body movements. 
These movements are then translated into text or speech in real time, facilitating 
smoother communication, especially in places like hospitals, customer service 
centers, and workspaces.

This aims to reduce the problems faced in a conversation with deaf and 
mute people.

Problems Faced by Sign Language Users:

Limited Communication with Non-Signers:

•	 Difficulty communicating with individuals who do not know sign 
language, leading to misunderstandings and exclusion (Sharma et al., 
2024).

Lack of Accessibility in Public Spaces:

•	 Many public services, such as hospitals, government offices, and 
transportation systems, lack adequate provisions for sign language 
interpretation (Wazalwar and Shrawankar, 2017).

Social Isolation:

•	 Difficulty engaging in casual or spontaneous conversations with 
non-signers can lead to feelings of social isolation.

Technological Limitations:

•	 Many communication technologies (like voice-based systems) do not 
accommodate sign language users effectively (Harshini et al., 2024).
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Working:

	 1.	Detection of Gestures Using Computer Vision:
•	 The AI leverages computer vision methods to capture movements 

of the hands and body using a camera, such as those found on 
smartphones or webcams.

•	 Pre-trained deep learning models, mainly CNNs, are utilized to 
detect specific gestures in the video stream. These models have 
been trained on extensive datasets featuring diverse sign language 
gestures.

	 2.	Extracting Features:
•	 The system processes the video stream on a per-frame basis. It 

extracts critical data points such as hand shapes, orientations, 
movements, and facial expressions, which are crucial in sign lan-
guages like ASL.

•	 Microsoft employs skeleton tracking (a technology similar to 
what was used in Kinect) to capture body and hand movements in 
3D space for higher accuracy.

	 3.	Recognizing Gestures:
•	 Each video frame is analyzed by a gesture recognition algorithm, 

which may be a CNN or a recurrent neural network (RNN), to 
identify dynamic gestures.

•	 These models are trained on sign language datasets and can detect 
both single gestures and sequences of signs that combine to form 
sentences.

	 4.	Converting to Text or Speech:
•	 After detecting a gesture, the system maps it to the correspond-

ing text (either a word or a sentence) in the spoken language. 
For more dynamic sign languages, an NLP module converts 
the sequence of signs into grammatically correct sentences 
(Shrawankar and Thakare, 2013).

•	 A text-to-speech engine then translates these recognized signs 
into spoken language, facilitating real-time communication.

	 5.	Two-Way Communication:
•	 Microsoft’s AI system is equipped with speech-to-text capabili-

ties, enabling non-sign language users to speak, with their words 
translated into animated sign language for deaf or mute individu-
als. This is achieved by integrating automatic speech recognition 
(ASR) with an avatar-based system that animates sign language.

How It Is Helping People:

•	 Microsoft’s AI promotes smooth conversations between sign language 
users and non-sign language users in real time, making it particularly 
useful in situations where interpreters are unavailable.
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•	 In workplaces, the system helps deaf or mute employees engage in 	
meetings, presentations, and team activities, providing them with an 
equal opportunity to participate.

•	 For students with hearing impairments, it offers a way to better inter-
act with teachers and classmates who don’t know sign language. 
Additionally, it can serve as a tool for people who wish to learn sign 
language.

•	 In healthcare, the system allows patients who are deaf or mute to 
communicate directly with medical professionals, improving care 
without requiring a live interpreter.

•	 In everyday scenarios like shopping, transport, or banking, this 
AI-driven solution can break down communication barriers for deaf 
and mute communities.

Limitations:

•	 There are hundreds of sign languages globally (e.g., ASL, BSL, and 
Indian Sign Language). While Microsoft’s system supports some, like 
ASL, many are not yet fully integrated.

•	 Differences in regional dialects and variations in signs can result in 
recognition inaccuracies.

•	 Sign languages have unique grammatical structures that differ from 
spoken languages. The AI may struggle to preserve context and 
nuances in translations, affecting grammatical accuracy.

•	 Fingerspelling, where each letter is signed individually, is particularly 
challenging for the AI, especially when users sign quickly.

•	 To develop highly accurate models, substantial datasets are required 
for each sign language. However, acquiring these datasets is diffi-
cult, particularly for regional sign languages, limiting the system’s 
scalability.

•	 Many datasets lack natural conversational flow, including transitions 
between signs and region-specific colloquial gestures.

•	 People vary in their signing style due to factors such as speed, per-
sonal preference, or physical limitations (e.g., arthritis). The AI some-
times fails to adapt to these personal differences, lowering translation 
quality.

CASE STUDY 2  AI/ML SYSTEM FOR 
VISUALLY IMPAIRED PEOPLE

This report examines the diverse challenges encountered by visually impaired 
individuals in areas such as accessibility, employment, education, and social 
interactions. It highlights the role of AI in supporting those with visual 
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impairments. The report briefly outlines the criteria for vision testing, dis-
cusses how researchers utilize deep learning models for diagnosing and clas-
sifying eye diseases, and explores the creation of AI-driven wearable devices 
designed to assist people with visual disabilities (Boussihmed et al., 2024).

PROBLEMS FACED BY VISUALLY IMPAIRED INDIVIDUALS:

•	 Mobility Challenges:
•	 Difficulty recognizing oncoming traffic and changes in traffic 

signals.
•	 Impaired ability to navigate their surroundings, especially in unfa-

miliar environments (Kim, 2024).
•	 Access to Visual Information:

•	 Difficulty accessing visually presented information, which can 
hinder day-to-day activities and learning.

•	 Educational Challenges:
•	 Significant effort required to learn Braille and develop reading 

and writing skills.
•	 Limited access to educational materials in accessible formats.

•	 Misconceptions:
•	 A common misconception is that all visually impaired individu-

als are completely blind, but rather it’s a spectrum (Bhatlawande 
et al., 2023).

AI SOLUTIONS:

	 1. Navigation Assistance: AI-powered applications like Aira and Be 
My Eyes provide real-time visual assistance through video calls, con-
necting users with sighted volunteers or professionals. GPS-based 
systems further enhance navigation by offering verbal directions and 
identifying obstacles in unfamiliar environments (Safiya and Pan-
dian, 2024).

	 2. Object Recognition: ML models are employed in apps such as See-
ing AI and Microsoft’s Soundscape to recognize and describe objects, 
text, and scenes. This technology enables users to better understand 
and interact with their surroundings.

	 3. Text Recognition: Optical character recognition (OCR) technolo-
gies, exemplified by apps like KNFB Reader, allow visually impaired 
individuals to access printed materials. These apps convert text into 
speech and can recognize different fonts and handwriting, broadening 
access to written content.

	 4. Wearable Devices: Smart glasses and other wearable technologies, 
such as OrCam MyEye, provide real-time audio feedback to assist 
visually impaired users. These devices can recognize faces, read 
text, and identify products, enhancing user engagement with their 
environment.
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	 5. Social Interaction and Communication: AI-driven platforms, 
including virtual assistants, facilitate communication for visually 
impaired individuals by providing information and reminders through 
voice commands.

WORKING OF SMART GLASSES FOR VISUALLY IMPAIRED  
INDIVIDUALS

Smart glasses for visually impaired users leverage various technologies to 
enhance daily living and navigation. Here’s an overview of their functionality:

	 1.	Camera and Sensors: Equipped with a camera and additional sen-
sors, the glasses capture live video of the surroundings.

	 2.	Real-Time Video Streaming: The video is streamed to a remote 
operator or AI system for analysis.

	 3.	Object and Scene Recognition: Using computer vision, the system 
identifies objects, people, and text, providing audio feedback.

	 4.	Audio Feedback: Visual information is converted into auditory cues 
through speakers or earbuds.

	 5.	Navigation Assistance: Integrated GPS provides verbal directions 
and alerts users to nearby obstacles.

	 6.	User Interaction: Users can interact via voice commands or buttons 
for specific information or assistance.

	 7.	Connectivity with Other Devices: Many smart glasses can connect 
to smartphones or other devices to enhance their functionality, allow-
ing users to access additional apps and services, such as calls or voice 
assistants, for more independence in daily tasks.

LIMITATIONS:

•	 Limited Field of View and Object Detection: Smart glasses often 
have a restricted field of view, limiting their ability to detect objects 
outside of their focus range.

•	 Performance in Challenging Lighting Conditions: Smart glasses 
rely heavily on cameras and sensors to detect and interpret objects or 
text. In low light or very bright environments, their accuracy can be 
compromised.

•	 Reliance on Stable Internet Connectivity: Many smart glasses that 
use cloud-based AI systems for image recognition, navigation, or text 
reading require stable Internet connectivity to process data and pro-
vide real-time feedback.

•	 Incomplete Scene Understanding: Smart glasses generally excel at 
identifying individual objects but struggle with providing a holistic 
understanding of complex scenes. For instance, while the glasses may 
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recognize a table, they might not communicate its exact position or 
the surrounding obstacles.

•	 Battery Life and Device Weight: Smart glasses, especially those 
that provide real-time visual and audio feedback, consume significant 
power. Many models have a limited battery life, which can restrict 
their usage throughout the day.

CASE STUDY 3  AI-BASED FALL DETECTION 
SYSTEMS FOR THE SAFETY OF THE ELDERS

Falls among the elderly pose serious health issues, leading to worst injury and 
treatment costs. Early detection and intervention of such a fall can effectively 
mitigate this fall risk. The purpose of this case study is to assess the efficacy of 
AI- and ML-based fall detection systems in improving the safety and quality 
of life for elderly people. According to the World Health Organization (WHO), 
falls are estimated to be the second leading cause of accidental or unintentional 
injury deaths worldwide (Periša et al., 2022).

PROBLEMS FACED BY ELDERLY INDIVIDUALS DUE TO FALL:

•	 Physical Injuries: Falls produce different fractures, head injuries, 
internal soft tissue damages, and internal bleeding.

•	 Psychological Effects: They may lose confidence, become isolated 
and withdrawn, anxious, and even experience depression due to the 
fear of falling again.

•	 Long-Term Health Issues: Falls often lead to reduced mobility, 
increased dependency, and chronic pain.

AI/ML INNOVATIVE SOLUTIONS:

	 1.	Wearable Devices for Fall Detection:
		    Wearable devices, equipped with sensors like accelerometers and 

gyroscopes, worn by aged people can track the time-varying move-
ment of the elderly in real time. Algorithms based on ML process their 
sensor data and detect a fall in the individuals. Previous case studies 
have stated that the usage of wearable devices can help achieve high 
accuracy in fall detection.

	 2.	Smart Flooring Systems:
		    A smart flooring system integrates sensors and IoT technologies 

to detect falls. This can be installed in common areas of an assisted 
living facility or at home. It is a non-intrusive method for detecting 
falls. The data collected by the sensors is analyzed by ML algorithms 
to recognize the fall events and alert caregivers.
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BENEFITS:

•	 Timely Alerts: Both systems offer timely alerts to caregivers, which 
enhances the fall response time.

•	 High Accuracy: Advanced use of ML algorithms ensures high accu-
racy in fall detection.

•	 Improved Safety: These systems augment the safety and quality of 
the life of geriatrics by minimizing extreme injuries from falls.

CHALLENGES/LIMITATIONS:

•	 Cost: The upfront cost of these systems is quite high.
•	 Maintenance: Continuous checking requires regular maintenance 

and update for maximum performance.
•	 Privacy: Continuous monitoring raises the issue of privacy, which 

should, therefore, be addressed.

AI- and ML-based fall detection systems will place important advances in the 
safety and quality of elderly people’s lives. High accuracy level, along with 
time alerts, would greatly minimize the possibility of severe injuries from 
falls.

CASE STUDY 4  AI/ML IN WHEELCHAIR 
NAVIGATION AND CONTROL

AI-powered wheelchair navigation represents a fusion of cutting-edge technol-
ogy and human-centered design, focusing on improving the quality of life for 
individuals with mobility challenges. These wheelchairs use AI to assist users 
in navigating their environment autonomously, making independent mobility 
more accessible.

By combining sensors, cameras, and intuitive controls like voice commands 
or touch interfaces, these wheelchairs allow users to safely and confidently 
explore their surroundings.

PROBLEMS FACED BY HANDICAPPED INDIVIDUALS:

People with disabilities, particularly those with mobility challenges, which 
include elderly individuals in a wheelchair, disabled people, or people suffer-
ing from sedentary syndromes, face many difficulties in daily life, such as the 
following:

•	 Limited Mobility:
•	 Moving around independently is difficult, especially in public 

spaces or rough terrain.
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•	 Accessibility Issues:
•	 Buildings, streets, and transportation systems are often not 

designed to be easily navigable for wheelchair users.
•	 Dependence on Others:

•	 Many people with mobility issues rely on family members or 
caregivers to assist them with daily tasks like moving around or 
accessing specific locations.

•	 Navigational Challenges:
•	 For those who have difficulty with sight or hearing in addition to 

mobility issues, navigating through unfamiliar or busy environ-
ments can be overwhelming.

•	 Physical Strain:
•	 Manually operating traditional wheelchairs can be exhausting, 

especially over long distances or rough surfaces.

HOW IT HELPS HANDICAPPED AND ELDERLY PEOPLE

•	 Freedom to Move: These smart wheelchairs can drive themselves, 
allowing users to go where they want without needing help from others. 
This means more independence and the chance to explore new places.

•	 Safety First: With special sensors, these wheelchairs can see obsta-
cles in their path, like furniture or bumps in the ground. They can 
steer around these obstacles, helping keep users safe from accidents.

•	 Learning to Help: The more a user interacts with the wheelchair, the 
better it understands their preferences. It can learn which routes they 
like best or how fast they prefer to go, making every journey smoother.

•	 Alerting Users: These smart systems can warn users about dangers, 
like steps or curbs, helping them navigate tricky spots safely.

•	 Connecting to Home: Some wheelchairs can connect to smart home 
devices, allowing users to control lights, sdoors, and other things in 
their homes right from their wheelchair.

BENEFITS:

•	 Better Mobility: AI-powered wheelchairs can help people with lim-
ited physical abilities move around more easily by improving naviga-
tion and control.

•	 Improved Safety: These systems can detect obstacles and avoid col-
lisions, reducing the risk of accidents and keeping users safer.

•	 Cost-Effective in the Long Run: AI wheelchairs may eventually 
be cheaper because they allow users to control the chair more inde-
pendently, reducing the need for help from caregivers.

•	 Personalized: The wheelchair’s settings can be adjusted to meet each 
user’s specific needs.

•	 Increased Accessibility: AI-powered wheelchairs can handle dif-
ferent terrains, giving users more freedom to move around in public 
spaces and improving their quality of life.
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FUTURE PROSPECTS AND POTENTIAL

The future of AI and ML in assisting the elderly and special needs individ-
uals is promising. Emerging technologies such as 5G, edge computing, and 
brain–computer interfaces (BCIs) will enable more sophisticated assistive 
devices.

•	 AI-Powered Rehabilitation: AI systems will continue to advance in 
assisting with physical therapy and rehabilitation. These systems will 
adapt to the patient’s progress and create personalized recovery plans.
•	 Example: AI-powered robotic exoskeletons are being developed 

to assist individuals with mobility impairments in walking and 
regaining strength.

•	 Smart Clothing: Integrating AI into wearable textiles will enable 
real-time monitoring of health parameters and provide continuous 
feedback to healthcare providers.
•	 Example: AI-powered smart textiles can monitor heart rates, 

detect falls, and even track movements to alert caregivers in case 
of emergencies.

The future potential of AI/ML projects in assisting elderly and special needs 
people is highly promising. These technologies offer innovative solutions to 
improve independence, safety, and quality of life. As advancements continue, 
AI-powered tools like sign language translation systems, smart glasses, fall 
detection devices, and autonomous wheelchairs will likely become more accu-
rate, accessible, and integrated into daily life.

However, challenges such as high costs, privacy concerns, and technical 
limitations need to be addressed. Continued research and development will 
be crucial to overcoming these hurdles, ensuring that these technologies 
can serve a broader audience effectively. With further improvements, AI 
and ML will revolutionize caregiving, healthcare, and mobility for indi-
viduals with disabilities and the elderly, fostering greater inclusion and 
autonomy.

12.9 � CONCLUSION

AI and ML are transforming healthcare for the elderly and special needs populations 
by offering intelligent, automated, and personalized solutions. These technologies 
enable independence, improve health outcomes, and provide emotional support. 
Despite challenges related to privacy, cost, and technological literacy, the future of 
AI and ML in this field is bright. By continuing to innovate and address these bar-
riers, AI will play an ever-increasing role in shaping the future of healthcare for 
vulnerable populations.
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