

 Artificial Intelligence and
Machine Learning for

Real-World Applications

This book introduces foundational and advanced concepts in artificial intelligence
(AI) and machine learning (ML), focusing on their real-world applications and
societal implications. Covering topics from knowledge representation and model
interpretability to deep learning and generative AI, Artificial Intelligence and
Machine Learning for Real-World Applications: A Beginner’s Guide with Case
Studies includes practical Python implementations and case studies from healthcare,
agriculture, and education. Beginning with core concepts such as AI fundamentals,
knowledge representation, and statistical techniques, the text gradually advances to
cover ML algorithms, deep learning architectures, and the basics of generative AI.
Detailed discussions of data preprocessing, model training, evaluation metrics, and
Python-based implementation make this book both practical and accessible.

 •	 Offers real-world examples and case studies illustrating the societal impact
and practical applications of AI and ML technologies

 •	 Discusses data preprocessing techniques, model selection, and evaluation
metrics with practical implementation in Python and in detail

 •	 Explores AI problem-solving processes, knowledge representation, and
model training strategies, catering to readers with varying levels of technical
expertise

 •	 Covers AI and ML principles spanning statistical techniques, ML algorithms,
deep learning structures, and generative AI basics

 •	 Focuses on societal applications in healthcare, agriculture, and education,
addressing challenges faced by the elderly and special needs individuals

This book is for professionals, researchers, and scholars interested in the applications
of AI and ML.

http://taylorandfrancis.com

 Artificial Intelligence and
Machine Learning for

Real-World Applications
 A Beginner’s Guide with

Case Studies

 Latesh Malik, Sandhya Arora, and Urmila Shrawankar

First edition published 2026
 by CRC Press
 2385 NW Executive Center Drive, Suite 320, Boca Raton FL 33431

 and by CRC Press
 4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

﻿﻿CRC Press is an imprint of Taylor & Francis Group, LLC﻿﻿

 © 2026 Latesh Malik, Sandhya Arora, Urmila Shrawankar

 Reasonable efforts have been made to publish reliable data and information, but the
author and publisher cannot assume responsibility for the validity of all materials or
the consequences of their use. The authors and publishers have attempted to trace
the copyright holders of all material reproduced in this publication and apologize to
copyright holders if permission to publish in this form has not been obtained. If any
copyright material has not been acknowledged please write and let us know so we
may rectify in any future reprint.

 Except as permitted under U.S. Copyright Law, no part of this book may be reprinted,
reproduced, transmitted, or utilized in any form by any electronic, mechanical, or
other means, now known or hereafter invented, including photocopying, microfilming,
and recording, or in any information storage or retrieval system, without written
permission from the publishers.

 For permission to photocopy or use material electronically from this work, access
﻿www.copyright.com or contact the Copyright Clearance Center, Inc. (CCC), 222
Rosewood Drive, Danvers, MA 01923, 978–750–8400. For works that are not
available on CCC please contact mpkbookspermissions@tandf.co.uk﻿

﻿Trademark notice : Product or corporate names may be trademarks or registered
trademarks and are used only for identification and explanation without intent to
infringe.

 ISBN: 978-1-032-87346-6 (hbk)
 ISBN: 978-1-032-87345-9 (pbk)
 ISBN: 978-1-003-53217-0 (ebk)

 DOI: 10.1201/9781003532170﻿

 Typeset in Times
 by Apex CoVantage, LLC

http://www.copyright.com
mailto:mpkbookspermissions@tandf.co.uk
https://doi.org/10.1201/9781003532170

v

Contents
 Preface�� xiii﻿
﻿Acknowledgments��� xv﻿
﻿About the Authors��� xvii﻿

hapter C 1	 Introduction to Artificial Intelligence and Machine Learning������������� 1

1.1	 Introduction�� 1
1.1.1	 Key Components of AI�� 3
1.1.2	 Branches of AI�� 3
1.1.3	 Fundamental Principles of ML������������������������������������� 3
1.1.4	 Types of ML�� 3
1.1.5	 Key Algorithms and Techniques����������������������������������� 4

1.2	 Understanding AI: Definition and Goals����������������������������������� 5
1.2.1	 What is AI?��� 5
1.2.2	 Understanding AI�� 5
1.2.3	 Weak and Strong AI�� 6
1.2.4	 Goals of AI�� 7

1.3	 History of AI�� 8
1.3.1	 Birth of AI (1950–1956)�� 9
1.3.2	 Turing Test (1950)�� 9
1.3.3	 The First AI Program (1951)��10
1.3.4	 Logical Reasoning and Problem-Fixing

(1955–1956)��10
1.3.5	 Birth of AI (1956)���10
1.3.6	 1974��10
1.3.7	 Biological Model (1957)���10
1.3.8	 Natural Language Processing (1966)���������������������������11
1.3.9	 First Intelligent Robot (1972)���������������������������������������11
1.3.10	 First AI Winter (1974–1980)��11
1.3.11	 Boom (1980–1987)�� 12
1.3.12	 Second AI Winter (1987–1993)����������������������������������� 12
1.3.13	 AI (1993–2011)�� 12
1.3.14	 AI (2011–Present)���13

1.4	 Problems and Techniques in AI��13
1.4.1	 Goal Formulation�� 15
1.4.2	 Well-Defined Problems and Solutions������������������������ 15

1.5	 Areas of AI��19
1.5.1	 AI Subfields��19
1.5.2	 AI Application Areas�� 28

1.6	 Future Scope of AI��� 29

vi Contents

hapter C 2	 Problem-Solving Methods and Search Strategies��������������������������������31

2.1	 Introduction���31
2.1.1	 Uniformed/Blind Search��31
2.1.2	 Informed Search�� 36

2.2	 State Space Representation��� 36
2.2.1	 State Space�� 37

2.3	 Problem Characteristics�� 45
2.4	 Production System and Control Strategies������������������������������� 48

2.4.1	 Production System��� 48
2.4.2	 Control System�� 49

2.5	 Informed and Uninformed Search��� 50
2.5.1	 Generate and Test Method�� 50
2.5.2	 Hill Climbing Method��52
2.5.3	 Best-First Search and A* Search��������������������������������� 56
2.5.4	 A* Search Algorithm��� 57
2.5.5	 Problem Reduction and AO* Algorithm��������������������� 64
2.5.6	 Constraint Satisfaction�� 68
2.5.7	 Case Studies on Production System���������������������������� 73

hapter C 3	 Knowledge Representation���74

3.1	 Knowledge Representation Using Predicate Logic������������������ 79
3.1.1	 Knowledge��� 79
3.1.2	 Knowledge Representation�� 79
3.1.3	 Predicate Logic��� 79
3.1.4	 Knowledge Representation Using Predicate Logic����� 80
3.1.5	 Representing Facts in Logic���81

3.2	 Using Predicate Logic Resolution Algorithm and
Deduction��� 82

3.3	 Forward versus Backward Chaining in AI������������������������������� 88
3.4	 Slot and Filler Structure��� 90
3.5	 Issues in Knowledge Representation�� 95

hapter C 4	 Data and Preprocessing: The Heart of Machine Learning����������������� 99

4.1	 Introduction to Machine Learning��� 99
4.2	 Need for ML��101
4.3	 Types of ML��101

4.3.1	 Supervised Learning��103
4.3.2	 Unsupervised Learning��� 104
4.3.3	 Semi-Supervised Learning��������������������������������������� 104
4.3.4	 Reinforcement Learning��� 104

4.4	 Understanding Data���105
4.4.1	 Big Data��105

4.5	 Dataset and Data Types�� 106

viiContents

4.6	 Data Preprocessing��107
4.6.1	 Missing Data Analysis���109
4.6.2	 Removal of Noise���109
4.6.3	 Data Integration and Data Transformation����������������110
4.6.4	 Data Reduction���111
4.6.5	 Dimensionality Reduction Using Python�������������������113
4.6.6	 Data Preprocessing in Python������������������������������������115

4.7	 Summary�� 123
References��� 123

hapter C 5	 Supervised Machine Learning�� 125

5.1	 Supervised Machine Learning��� 125
5.2	 Correlation and Regression Analysis������������������������������������� 125

5.2.1	 Correlation Analysis�� 125
5.2.2	 Regression Analysis���127
5.2.3	 Validation of Regression Methods�����������������������������129
5.2.4	 Simple Linear Regression in Python��������������������������131

5.3	 Classification���136
5.3.1	 k-NN Classification��137
5.3.2	 Decision Tree���138
5.3.3	 Support Vector Machine��146
5.3.4	 Naive Bayes Classification���151

5.4	 Metrics for Evaluating Classifier Performance�����������������������157
5.5	 Model Training and Cross-Validation�������������������������������������159

5.5.1	 Non-Exhaustive Methods���161
5.5.2	 Exhaustive Methods���164

5.6	 Regularization���165
5.6.1	 Types of Regularization���166

5.7	 Hyperparameter Tuning��166
5.7.1	 Methods for Hyperparameter Tuning�������������������������166

5.8	 Summary���169
References��� 170

hapter C 6	 Unsupervised Machine Learning���171

6.1	 Introduction���171
6.2	 Clustering��171
6.3	 Distance Measures���172
6.4	 k-Means Clustering��174

6.4.1	 k-Means Clustering Using Python�����������������������������174
6.5	 Hierarchical Clustering���183

6.5.1	 Hierarchical Clustering Using Python�����������������������188
6.6	 DBSCAN Clustering���188

6.6.1	 DBSCAN Clustering Using Python�������������������������� 190
6.7	 Association Rule Mining���193

6.7.1	 The a priori Algorithm���194

viii Contents

6.7.2	 Example of a priori Algorithm�����������������������������������196
6.7.3	 Case Study: Transactions in a Grocery Store�������������199

6.8	 Summary�� 200
References��� 200

hapter C 7	 Neural Networks and Deep Learning��� 202

7.1	 Introduction�� 202
7.2	 Introduction to Neural Networks�� 204
7.3	 Fundamentals of Neural Networks��� 205
7.4	 Neural Network Architectures��210
7.5	 Convolutional Neural Networks��211

7.5.1	 The Convolution Layer���212
7.5.2	 Pooling Layer���213
7.5.3	 Fully Connected Layer���214
7.5.4	 Loss Function���214
7.5.5	 Optimization Algorithms���214

7.6	 Recurrent Neural Networks���217
7.6.1	 Long Short-Term Memory Networks�������������������������218
7.6.2	 Gated Recurrent Units��219

References��� 221

hapter C 8	 Generative Artificial Intelligence�� 222

8.1	 Large Language Models��� 222
8.2	 Generative Adversarial Network�� 224
8.3	 Retrieval Augmentation Generation��������������������������������������� 226

8.3.1	 RAG versus LLMs�� 226
8.4	 Transfer Learning��� 228

hapter C 9	 AI in Healthcare: Diagnostics, Treatment, and Beyond�������������������� 230

9.1	 Introduction�� 230
9.1.1	 Overview of AI in Healthcare����������������������������������� 230

9.2	 AI in Diagnostics���231
9.2.1	 Transforming Healthcare with AI Applications���������232

9.3	 AI in Treatment���232
9.3.1	 Drug Discovery and Development�����������������������������232
9.3.2	 Personalized Medicine���233
9.3.3	 Robotic Surgery��233

9.4	 AI in Patient Management and Monitoring���������������������������� 234
9.4.1	 Wearable Technology�� 234
9.4.2	 Remote Patient Monitoring��������������������������������������� 234

9.5	 AI in Administrative Tasks���235
9.5.1	 Workflow Optimization��235
9.5.2	 Electronic Health Records���235

ixContents

9.6	 Ethical and Privacy Considerations���235
9.6.1	 Data Privacy���235
9.6.2	 Bias and Fairness��� 236
9.6.3	 Transparency and Accountability��������������������������� 236
9.6.4	 Balancing AI with Human Care������������������������������ 236

9.7	 Challenges and Limitations�� 237
9.7.1	 Technical Challenges�� 237
9.7.2	 Regulatory and Legal Challenges��������������������������� 237
9.7.3	 Cost and Infrastructure��� 237
9.7.4	 Public Perception��� 238

9.8	 Future Directions�� 238
9.8.1	 Emerging Trends��� 238
9.8.2	 Research and Development������������������������������������� 238
9.8.3	 Seamless AI Integration�� 239

9.9	 Case Studies��� 239
9.10	 Conclusion���241
References��� 242

hapter C 10	 Agriculture Developments Using ML and AI����������������������������������� 244

10.1	 Introduction�� 244
10.2	 Some Important Methodologies��� 245

10.2.1	 Soil Management��� 245
10.2.2	 Precision Soil Mapping��� 245
10.2.3	 Nutrient Management�� 245
10.2.4	 Soil Health Monitoring��� 245
10.2.5	 Erosion Prediction and Control������������������������������� 245
10.2.6	 Decision Support Systems��������������������������������������� 246
10.2.7	 Challenges and Opportunities��������������������������������� 246
10.2.8	 AI and ML Applications in Agriculture����������������� 246
10.2.9	 Challenges and Limitations������������������������������������� 248
10.2.10	 Future Trends and Opportunities���������������������������� 249

10.3	 Conclusion�� 250
References��� 250

hapter C 11	 AI Transforming Education: Personalized Learning and
Intelligent Tutoring Systems���252

11.1	 Introduction���252
11.1.1	 AI in Education��253
11.1.2	 AI Technologies: Progress and Application�������������253
11.1.3	 Application in Educational Environments���������������253
11.1.4	 Boosting Learning with AI-Driven

Analytics��� 254
11.1.5	 AI in Language Learning�� 254
11.1.6	 Ethical and Equity Considerations in AI

Education��� 254

x Contents

11.1.7	 Cultural and Contextual Adaptability of
AI Tools��255

11.1.8	 Effectiveness and Longevity in the Field�����������������255
11.1.9	 Scalability and Accessibility������������������������������������255
11.1.10	 Integrating Other Technologies��������������������������������255
11.1.11	 AI Adoption for Education across the Globe���������� 256
11.1.12	 Culture in AI Design and Deployment������������������� 256
11.1.13	 AI’s Ethical and Societal Dimensions��������������������� 256
11.1.14	 Future Directions and Policy Considerations���������� 256
11.1.15	 Advanced AI Applications in Education����������������� 256
11.1.16	 AI for Enhancing Teacher Professional

Development�� 256
11.1.17	 AI in Educational Administration��������������������������� 257
11.1.18	 Use of Data Analytics by Educational

Administrators��� 257
11.1.19	 AI Solutions in Education’s Sustainability�������������� 257
11.1.20	 Financial and Infrastructural Sustainability����������� 257
11.1.21	 Interdisciplinary Approaches to AI in

Education��� 257
11.1.22	 AI for Students with Disabilities����������������������������� 257
11.1.23	 Ethical AI in Education��� 258
11.1.24	 AI and Policy Development in a Developing

World��� 258
11.2	 Evolution of AI in Education�� 258

11.2.1	 Early Application Possibilities of AI in
Educational Technologies�� 258

11.2.2	 Key Milestones and Progress���������������������������������� 258
11.2.3	 The Impact of AI on Traditional Learning

Environments�� 259
11.3	 Personalized Learning through AI��� 260

11.3.1	 Challenges and Limitations������������������������������������� 263
11.3.2	 Increased Engagement��� 263

11.4	 Conclusion�� 263
References��� 264

hapter C 12	 Technological Uses of AI and ML for Helping Elderly
and Special Needs People��� 266

12.1	 Introduction�� 266
12.2	 AI and ML Overview��� 267
12.3	 Assistive Technologies for the Elderly����������������������������������� 267
12.4	 Supporting Individuals with Special Needs��������������������������� 268
12.5	 Personalized Healthcare for the Elderly��������������������������������� 268
12.6	 Cognitive Support Systems�� 269

xiContents

12.7	 Challenges in AI and ML Adoption for Elderly
and Individuals with Special Needs��������������������������������������� 269

12.8	 Case Studies��� 269
12.9	 Conclusion���278
References��� 279

Index��281

http://taylorandfrancis.com

xiii

Preface
Artificial intelligence (AI) and machine learning (ML) are revolutionizing the way we
interact with technology, solve complex problems, and make decisions across various
domains. These technologies are not only shaping industries but also transforming
our daily lives. From automating tasks and enhancing decision-making to advancing
healthcare and education, AI and ML have far-reaching societal applications.

This book, Artificial Intelligence and Machine Learning for Real-World Applica-
tions: A Beginner’s Guide with Case Studies, is designed to provide readers with a
structured and in-depth understanding of AI and ML, covering both theoretical foun-
dations and practical applications. The book is divided into twelve chapters, each
focusing on the critical aspects of AI and its role in various sectors.

Chapter 1 begins with an overview of AI and ML, discussing their historical
development, fundamental concepts, and key differences. This chapter explores the
evolution of AI from rule-based systems to modern deep learning models. It also
introduces various AI paradigms, including symbolic AI, statistical AI, and connec-
tionist AI, along with an overview of major AI applications in today’s world.

Chapter 2 is the core of AI. This chapter delves into various search algorithms
and strategies used in AI to solve complex problems efficiently. It covers uninformed
search techniques such as breadth-first search and depth-first search, as well as
informed search techniques like A* and heuristic-based searches. Additionally, the
chapter discusses constraint satisfaction problems and optimization methods used in
AI-driven solutions.

Chapter 3 discusses structured knowledge representation for reasoning and deci-
sion-making. It explores different representation techniques, including semantic net-
works, frames, ontologies, and first-order logic. It also discusses expert systems and
their applications, shedding light on how AI models store and retrieve information
effectively.

Chapter 4 introduces ML, different types of data, and their importance in training
ML models. Preprocessing of data, removal of noise, missing data handling, data
transformation, feature engineering, and dimensionality reduction of data are cov-
ered in this chapter. Preprocessing techniques are explained with snippets of code
for real-life application.

Chapter 5 covers key supervised learning algorithms, including linear regression,
logistic regression, decision trees, support vector machines (SVMs), naive Bayes
classifier, cross validation, and hyperparameter tuning. All techniques are explained
with snippets of code for practical applications such as spam detection, fraud detec-
tion, and medical diagnosis, which are discussed to illustrate real-world use cases.
Code snippets of algorithms are also given at relevant places.

Chapter 6 explains clustering, k-means, and hierarchical and DBSCAN clustering.
It also discusses the association rule mining concept, the a priori algorithm and its
example, and Python code snippets.

Chapter 7 discusses neural networks and convolutional neural networks and its
variants. Activation, loss, and regularization functions used in deep learning are

xiv Preface

covered here, along with some case studies that demonstrate how to program these
functions in Python.

Chapter 8 introduces generative AI. It starts with the basic architecture of large
language models (LLMs), basic LLMs, and its components. It explains the function-
ality of generative adversarial networks. Retrieval augmentation generation is dis-
cussed using a flowchart of activities. The use of transfer learning is also discussed.

Chapter 9 presents AI, which has many useful applications that ease human life.
Everyone’s health is an essential and highest priority concern. Therefore, the help of
technology in such an important part of life is very important. AI does it. It provides
many tools for the healthcare domain with the highest speed, accuracy, and comfort.
These tools are not only helping everyday people, but they are also assisting physi-
cians and medical professionals in a true sense.

Chapter 10 explains that nowadays agriculture is not only for farming and grow-
ing grains, fruits, and vegetables, but also for much more. It starts from checking the
quality of soil, source of water, prediction, growth of plants, marketing of products,
and finding distributors, to getting global recognition, and much more. Agriculture
is not just a farmer’s job, and technology is especially essential in helping farmers do
these tasks and make some profit. AI plays a very important role in this sector. The
inclusion of such AI technologies in agriculture will create a sustainable future and
growth in the economy for farmers, especially in rural areas with many challenges.

Chapter 11 elaborates how AI helps in transforming the education system. Now-
adays learning in only a physical environment has totally changed. AI has helped
enhance facilities and made these facilities available to everyone. This chapter pro-
vides a complete knowledge of AI-driven approaches for learning in a different
environment.

Chapter 12 provides complete details of how to create a quality life at any age or
with any physical disability. AI provides new opportunities and solutions, which may
help users perform everyday tasks with more ease and independence.

xv

Acknowledgments
This book is the outcome of curiosity, queries from students, our lecture notes, our
lab work, and our lab material. We have been associated with this subject matter for
more than 7 years through our research work, lectures, workshops, and seminars.

Many professionals have helped write this book. We take this opportunity to
thank the mentors, teachers, and friends for motivating us throughout this journey.

The authors thank all the students who motivated them by asking them the right
questions at the appropriate time. Without their help with queries and curiosity, the
idea of writing this book would never have occurred.

The authors also thank the principal at and colleagues in the Department of Com-
puter Science and Engineering, MKSSS’s Cummins College of Engineering for
Women, Pune; Government College of Engineering, Nagpur; and Ramdeobaba Uni-
versity, Nagpur for supporting them and molding this work. The authors acknowl-
edge the support of the reviewers who helped them through their critical comments
and creative suggestions, which eventually helped them improve the content of the
book. Many of the ideas in this book come from statistics and related courses like
data science and machine learning. The authors thank all the professors who helped
and taught them the basic concepts of subjects. Thanks to the editorial team at CRC
Press for their support and bringing the book to reality.

Finally, we would like to thank our family members for their support, good
wishes, encouragement, and understanding while we wrote this book.

http://taylorandfrancis.com

xvii

About the Authors
Latesh Malik is an associate professor and head of the Depart-
ment of Computer Science and Engineering, Government Col-
lege of Engineering, Nagpur, and chairman of the Board of
Studies, Computer Engineering Related Branch Board, RTM
Nagpur University (2022–2027). She earned her PhD (computer
science and engineering) at Visvesvaraya National Institute of
Technology in 2010; MTech (computer science and engineer-
ing) at Banasthali Vidyapith, Rajasthan; and BE (computer

engineering) at the University of Rajasthan. Dr. Malik is a gold medalist in BE and
MTech. She has more than 27 years of teaching experience. She is a life member
of ISTE, CSI, and ACM and has published more than 160 papers in international
journals and conferences. Dr. Malik is the recipient of two RPS and one MODROB
by AICTE. She has guided 30+ PG projects, and 12 students have earned their PhDs
under her guidance. She is the author of seven books published by University Press,
India, and CRC Press, USA.

Sandhya Arora is a full professor in the Department of Com-
puter Engineering, Cummins College of Engineering for
Women, Pune. She earned her PhD (computer science and engi-
neering) from Jadavpur University, Kolkata, in 2012; MTech
(computer science and engineering) from Banasthali Vidyapith,
Rajasthan; and BE (computer engineering) from the University
of Rajasthan, India. She has 27+ years of teaching experience.

She is a life member of ISTE, CSI, and ACM. She has contributed more than 60
research publications and authored seven books with University Press, India, and
CRC Press, USA.

Urmila Shrawankar, PhD, is a professor and director, School
of Computer Science and Engineering, Ramdeobaba Univer-
sity, Nagpur (MS), India. She is a recipient of many awards and
grants. She is the author of 2 books, editor of 4 books and 25
book chapters, and has published approximately 200 research
papers in international journals and conferences of high repute.
Also, Dr. Shrawankar has 8 granted and 10 published patents as
well as 20 registered copyrights. She is the editor-in-chief, an

editorial board member and a member, and is on the international advisory board of
many journals. Moreover, she serves as a reviewer for many refereed journals and
reputed conferences. Dr. Shrawankar participated in many international conferences
worldwide as a core organizing committee member, technical program committee
member, special session chair, and session chair. She is a member of IEEE (SM),
ACM (SM), CSI (LM), ISTE (LM), IE (LM), and IAENG. She was published in the
Marquis Who’s Who.

http://taylorandfrancis.com

DOI: 10.1201/9781003532170-1� 1

1 Introduction to Artificial
Intelligence and
Machine Learning

1.1 INTRODUCTION

Artificial intelligence (AI) is a multidisciplinary field of computer science that aims
to create intelligent machines capable of mimicking human cognitive functions.
These functions encompass a wide range of capabilities, including the following:

	 1.	Learning: The ability to acquire knowledge and skills from experience.
	 2.	Reasoning: Using logic to draw inferences and make decisions.
	 3.	Problem-solving: Finding solutions to complex issues.
	 4.	Perception: Interpreting and understanding sensory inputs (visual, audi-

tory, etc.).
	 5.	Natural language processing (NLP): Understanding, interpreting, and

generating human language.
	 6.	Planning: Devising strategies to achieve goals.
	 7.	Creativity: Generating novel ideas or artifacts.
	 8.	Emotional intelligence: Recognizing and responding to human emotions.

AI can be categorized into two main types:
Narrow or Weak AI is designed to perform specific tasks within a limited domain.

Examples include voice assistants such as Siri, Alexa, and Google Assistant, recom-
mendation systems, and spam filters.

General or Strong AI/Artificial General Intelligence (AGI) is a hypothetical AI
with human-like cognitive abilities across various domains. No examples are known
yet as it is a theoretical concept that is still mainly in research.

Machine learning (ML), a subset of AI, focuses on the development of algorithms and
statistical models that enable computer systems to improve their performance on a spe-
cific task through experience. Unlike traditional programming where rules are explicitly
coded, ML algorithms learn patterns from data to make predictions or decisions without
being explicitly programmed. ML can be broadly classified into three categories:

	 1.	Supervised Learning: The algorithm learns from labeled data to make pre-
dictions or decisions.

	 2.	Unsupervised Learning: The algorithm identifies patterns in unlabeled data.
	 3.	Reinforcement Learning: The algorithm learns through interaction with an

environment, receiving feedback in the form of rewards or penalties.

https://doi.org/10.1201/9781003532170-1

2 Artificial Intelligence and Machine Learning for Real-World Applications

Deep learning (DL) is a subset of ML that uses artificial neural networks with multi-
ple layers to learn and represent complex patterns in data. It excels at tasks like image
recognition, speech processing, and natural language understanding. DL models can
automatically learn hierarchical features from raw data, often outperforming tradi-
tional ML techniques on complex tasks.

FIGURE 1.1  Narrow AI versus General AI.

FIGURE 1.2  AI, ML, and Deep Learning Subsets.

3Introduction to Artificial Intelligence and Machine Learning

Natural language processing (NLP) focuses on the interaction between comput-
ers and human language. It combines computational linguistics, ML, and DL to enable
computers to understand, interpret, and generate human language. NLP powers appli-
cations like machine translation, sentiment analysis, chatbots, and text summarization.

Large language models (LLMs) are a recent advancement in AI, positioned at
the intersection between DL and NLP. These are massive neural networks trained on
vast amounts of text data, capable of understanding and generating human-like text.
LLMs like generative pre-trained transformer (GPT) models have shown remarkable
capabilities in tasks ranging from text completion to answering questions and even
basic reasoning.

Conversational AI (Conv. AI) refers to technologies that allow machines to
engage in human-like dialog. It typically combines ML and NLP and may incor-
porate DL and LLMs. Conv. AI systems can understand context, maintain coherent
conversations, and perform tasks based on user input. Applications include virtual
assistants, customer service chatbots, and interactive voice response systems.

1.1.1 � Key Components of AI

The key components of AI include ML, NLP, computer vision, robotics, and expert sys-
tems. These components work together to enable machines to perform complex tasks.

1.1.2 � Branches of AI

•	 ML: Algorithms that enable computers to learn from data.
•	 NLP: Techniques for understanding and generating human language.
•	 Computer Vision: Enabling machines to interpret and process visual

information.
•	 Robotics: Designing intelligent robots that interact with the environment.
•	 Expert Systems: Systems that mimic the decision-making abilities of

human experts.

1.1.3 �F undamental Principles of ML

ML is a subset of AI focused on creating algorithms that allow machines to learn
from and make decisions based on data.

1.1.4 �T ypes of ML

•	 Supervised Learning: Learning from labeled data (e.g., classification and
regression).

•	 Unsupervised Learning: Finding patterns in unlabeled data (e.g., cluster-
ing and association).

•	 Semi-supervised Learning: Combines labeled and unlabeled data for
training.

•	 Reinforcement Learning: Learning optimal actions through trial and
error.

4 Artificial Intelligence and Machine Learning for Real-World Applications

Key Concepts in ML

•	 Data: The backbone of ML; quality and quantity of data impact model
performance.

•	 Model: A mathematical representation of a process or system.
•	 Training and Testing: Training involves teaching the model using a data-

set; testing evaluates its performance.
•	 Overfitting and Underfitting: Challenges related to model generalization.
•	 Evaluation Metrics: Common evaluation metrics include accuracy, preci-

sion, recall, F1 score, and confusion matrix.

1.1.5 � Key Algorithms and Techniques

1.1.5.1 � Supervised Learning Algorithms
•	 Linear Regression: Predicting numerical values using a linear approach.
•	 Logistic Regression: Used for binary classification of problems.
•	 Decision Trees: Splitting data into branches to reach decisions.
•	 Support Vector Machines (SVMs): Finding the best boundary that sepa-

rates classes.

1.1.5.2 � Unsupervised Learning Algorithms
•	 K-Means Clustering: Partitioning data into clusters based on similarity.
•	 Hierarchical Clustering: Building a hierarchy of clusters.
•	 Principal Component Analysis (PCA): Reducing the dimensionality of

data.

Feature selection

Autoencoders

Principal component analysis

Big data visualization

Machine
learning

Image classification

Neural networks

Decision trees

Identity fraud detection

Targeted marketing

Recommender systems

Hierarchical clustering

Customer segmentation

Linear regression

Polynomial regression

Ridge & Lasso regression

Random forest regression

Market forecasting

Real-time decisions

Q-learning

Reward maximization

Policy gradients
Deep Q-networks

FIGURE 1.3  Different Tasks in ML.

5Introduction to Artificial Intelligence and Machine Learning

1.1.5.3 � Reinforcement Learning Algorithms
•	 Q-Learning: Learning a policy for optimal actions.
•	 Deep Q-Networks (DQNs): Combining Q-learning with DL.

1.1.5.4 � DL Techniques
•	 Neural Networks: Models inspired by the human brain.
•	 Convolutional Neural Networks (CNNs): Specialized for image

processing.
•	 Recurrent Neural Networks (RNNs): Used for sequential data.

1.2 � UNDERSTANDING AI: DEFINITION AND GOALS

1.2.1 � What is AI?

Artificial intelligence, i.e., AI, sometimes also called machine intelligence, is the
intelligence demonstrated by machines. AI is the science of making machines or
systems that act like humans and think like humans. It can do things that are con-
sidered “smart.”

AI is the wide-ranging branch of computer science that refers to the creation of
computer systems, concerned with building smart machines capable of performing
tasks that typically require human intelligence such as reasoning, decision-making,
leaning, understanding and problem-solving.

AI is like teaching computers to think, behave, and make decisions like humans
but with the help of algorithms and data. It is all about making machines smarter
so they can do tasks that usually require human intelligence, such as understanding
language, recognizing images, processing data, and solving problems. AI has a deep
impact on human lives and the economy.

Example: In 2017, Hurricane Harvey devastated the seacoast of Texas. The storm
caused wide flooding and damage, and it displaced thousands of people. In the wake
of the storm, a platoon of experimenters from Google AI used AI to help with the
relief efforts. They developed an AI-powered system that could dissect satellite
imagery to identify areas that had been swamped. The system was suitable to iden-
tify swamped areas much more snappily and directly than traditional methods. The
experimenters shared their system with the Federal Emergency Management Agency
(FEMA), and FEMA used it to coordinate relief efforts. The system helped FEMA
identify people who wanted to be saved and to deliver food and water to affected
areas. This story shows how AI can be used to break real-world problems. AI can
be used to dissect data snappily and directly, and it can be used to develop results to
complex problems.

1.2.2 �U nderstanding AI

AI systems can perform tasks commonly associated with human cognitive func-
tions or skills such as learning, self-correction, creativity, interpreting speech, and

6 Artificial Intelligence and Machine Learning for Real-World Applications

identifying patterns. Understanding AI involves grabbing the fundamental concepts,
application, and implications of this most revolutionary and rapidly advancing field.
AI systems typically learn how to do the tasks by processing the massive amount
of data, identifying the patterns, etc. Understanding the capabilities of AI gives the
means to capitalize on its potential, fueling progress and achieving breakthrough in
various fields. AI is a dynamic and evolving field, and staying informed and engaged
is essential to understanding its current state and future developments.

1.2.3 � Weak and Strong AI

There are two main approaches to AI: weak AI and strong AI. Strong AI is a more
ambitious concept that suggests machines could achieve human-level intelligence
and problem-solving abilities. Proponents of strong AI believe that computers, when
properly programmed, could surpass human experts in certain tasks and even pos-
sess a form of consciousness. This view contrasts with the idea of AI as simply a tool
for studying the human mind. John Searle is credited with coining the term “strong
AI” to represent this hypothesis about the potential for machines to exhibit genuine
reasoning and problem-solving skills.

Weak AI takes a more limited approach to AI. Unlike strong AI, it focuses on
developing machines that excel at specific tasks rather than achieving human-level
intelligence. Proponents of weak AI believe that while computers can be programmed
to mimic some aspects of human thought processes, they are unlikely to ever truly
replicate the full range of human cognitive abilities. Weak AI systems are valuable
tools for solving specific problems, but they lack the general intelligence and adapt-
ability found in humans. An illustrative example of weak AI is a chess program,
which can make strategic moves based on complex algorithms but cannot understand
the nuances of the game in the same way a human player can.

Strong AI delves into the philosophical question of whether machines can achieve
true intelligence, indistinguishable from human thought. This school of thought pro-
poses the possibility of building machines that replicate the full spectrum of human
cognitive abilities, not just mimic them. However, achieving this level of AI poses
significant challenges.

•	 Experiential Gap: A machine, unlike a human, wouldn’t possess the vast
repertoire of life experiences that shape human thought and decision-mak-
ing. It wouldn’t have encountered the complexities of emotions, values, and
moral dilemmas that inform human cognition.

•	 Embodied Intelligence: Even if a machine’s brain functioned similarly to
that of a human, its physical embodiment could significantly differ. A robotic
body with wheels instead of legs and sensors instead of eyes would perceive
and interact with the world in fundamentally different ways, impacting its
understanding.

These are just some of the hurdles that strong AI needs to overcome in its quest to
create machines with human-level intelligence.

7Introduction to Artificial Intelligence and Machine Learning

1.2.4 �G oals of AI

As we know, AI is a field of innovation and technical advancement; therefore, it also
has a vast area of application. The ultimate goal is to develop systems that can under-
stand, learn, and adapt to diverse tasks and challenges, contributing to advancements
in technology and transforming various industries.

The aim of AI is to develop technology that enables computers and machines to
work intelligently and independently. Following are some essential goals of AI.

•	 Reasoning and Problem-Solving
	  AI research places a strong focus on creating effective problem-solving

algorithms capable of logical reasoning and simulating human thinking
when dealing with complex puzzles. AI systems employ methods that handle
uncertain situations and address the challenge of incomplete information.

•	 Knowledge Representation
	  The primary goal of knowledge representation and engineering in AI is

to facilitate the ability of machines to solve complex real-world problems.
This can include tasks like medical diagnosis, natural language interaction,
recommendation systems, and more.

FIGURE 1.4  Goals of AI.

8 Artificial Intelligence and Machine Learning for Real-World Applications

•	 Learning
	  Learning is a core element of AI solutions, involving the ability of com-

puter algorithms to enhance an AI system’s knowledge based on observa-
tions and past experiences. In practical terms, AI programs process sets of
input–output pairs for specific functions and use this data to predict out-
comes for new, unseen inputs.

•	 Planning
	  Intelligent agents must possess the ability to set objectives and achieve

them effectively. To do this, they need to envision future scenarios, creating
a representation of the world’s state, and predict the consequences of their
actions. They should be capable of making decisions that maximize the
utility or value of the available choices.

•	 Social Intelligence
	  Affective computing, sometimes known as “emotion AI,” constitutes a

specific branch of AI that is concerned with the recognition, understand-
ing, and emulation of human experiences, feelings, and emotions. Ongoing
research efforts are oriented toward augmenting the social intelligence of
machines.

•	 Creativity
	  AI plays a crucial role in promoting creativity and improving human

problem-solving. It has the ability to analyze vast amounts of data, explore
multiple options, and come up with creative solutions that enhance our abil-
ity to perform tasks more effectively. For example, AI can offer a wide
range of interior design possibilities for a 3D-rendered apartment layout,
igniting creativity and enhancing the overall design experience.

•	 General Intelligence
	  AI researchers are dedicated to the development of machines possessing

general AI capabilities. The ultimate goal is to significantly enhance overall
productivity, leading to more efficient task execution. Moreover, this prog-
ress can alleviate humans from participating in hazardous activities, such as
bomb defusal, where AI systems can take on these tasks with lower risk.

1.3 � HISTORY OF AI

The history of AI is a story of an integrated, challenging path full of breakthroughs.
AI learns from experience, adjusts its processes based on what it learns, and uses the
knowledge to achieve specific goals. Over time, it has gathered a vast amount of data
and made a stronger impact on numerous fields, from marketing to space research,
analyzing the important factors and providing better solutions. AI began to grow as
an independent field of study in the 1940s and 1950s, when computers were gaining
shape and structure in the commercial market for the first time.

The 1940s and 1950s mark the birth of AI. The origins of AI date back to the mid-
20th century, when the foundations of the field were laid. In 1943, Warren McCulloch
and Walter Pitts introduced a simple computational neuron model that could be recog-
nized early for artificial neural networks. In 1950, Alan Turing published “The Turing
Test,” one of the first correspondences regarding the possibility of machine intelligence.

9Introduction to Artificial Intelligence and Machine Learning

1.3.1 � Birth of AI (1950–1956)

During the 1940s and 1950s, scientists across various disciplines, including mathe-
matics, psychology, engineering, economics, and political science, began exploring
the concept of AI.

1.3.2 �T uring Test (1950)

A computer scientist and a British mathematician, Alan Turing developed the Turing
test in 1950. The Turing test is a common method to test a machine’s ability to exhibit
human-like intelligence.

The basic idea of ​​the Turing test is simple: a human judge has a case-based con-
versation with a human and a machine and then decides which of the two is consid-
ered human. The Turing test is widely used as a measure of progress in AI and has
inspired much research and experimentation aimed at developing machines that can
pass the test.

1950
Turing test

2011–Present
1951

First Al
program

1993–2011
1955–1956

Logical
reasonning

1987–1993
Second Al

winter

History
of Al 1956

Birth of Al

1980–1987
Boom

1957
Biological

model

1972
First

intelligent
robot

1966
Natural

language
processing

FIGURE 1.5  History of AI.

10 Artificial Intelligence and Machine Learning for Real-World Applications

1.3.3 �T he First AI Program (1951)

In 1951, Christopher Strachey, a future director of the Systems Research Group at
Oxford University, developed the first successful AI program. This program, known
as Strachey Checkers, ran on a Ferranti Mark I computer at the University of Man-
chester and demonstrated the ability to play a complete game of checkers at a reason-
able pace by the summer of 1952.

1.3.4 �L ogical Reasoning and Problem-Fixing (1955–1956)

Logical reasoning has been the cornerstone of AI research. A significant milestone in
this area was the development of the Logic Theorist, a theorem-proving program cre-
ated in 1955–1956 by Allen Newell, J. Clifford Shaw, and Herbert Simon. This pro-
gram aimed to prove theorems from Principia Mathematica, a three-volume work by
Alfred North Whitehead and Bertrand Russell.

1.3.5 � Birth of AI (1956)

The term “artificial intelligence” was coined in the 1956 Dartmouth Conference,
considered a pivotal event in the history of AI. The conference was organized by
John McCarthy, Marvin Minsky, Nathaniel Rochester, and Claude Shannon, and
researchers from various fields spoke about the possibilities of AI. Early AI research
in this era focused on symbolic processes and problem-solving. One of the earliest
AI frameworks in this era was the Logic Theorist framework developed by Allen
Newell and J.C. McCarthy, and produced by McCarthy. The logician was able to
prove mathematical hypotheses, and the framework is considered one of the first
models of AI designs. The 1956 convention laid the groundwork for AI, but progress
was slower than initially expected due to limitations in computing power and the
difficulty in building intelligent machines. However, these limitations allowed for
further research and development over the next decades.

1.3.6 � 1974

The programs developed in the years after the Dartmouth Conference were mere
“miracles”: for most people, computers solved algebraic word problems, expressed
concepts in geometry, and learned English. At the time, few believed that machines
performed such “intelligent” actions and these were at all possible. The researchers
expressed great hope in the fields of privacy and publishing, predicting the develop-
ment of intelligent machines completely in less than 20 years.

1.3.7 � Biological Model (1957)

A landmark in the history of AI was the invention of perceptron by Frank Rosenblatt
in 1957. Perceptron was the first artificial neuron triggered by biological processes in
the human brain. It was designed to mimic the way the human brain processes sight
and sound.

11Introduction to Artificial Intelligence and Machine Learning

The perceptron was a simple algorithm capable of recognizing visual objects. It
was used to process visual features and make decisions based on the information
obtained. While the perceptron showed promise for solving simple problems, it was
limited by the technology and computing power available at the time.

Systematics of the 1960s: The 1960s saw the development of computers that
could emulate the decision-making abilities of experts around the world in special-
ized work. Dendral (pharmacological analysis) and MYCIN (medical opinion) are
currently undergoing expert development.

1.3.8 �N atural Language Processing (1966)

NLP dates back to the early days of AI research, i.e., the 1950s and 1960s. Early
work in NLP focused on developing systems that could understand human speech
and acquire it. One of the first influential programs was Newell and Simon’s 1956
creation of the “logician,” which could prove mathematical hypotheses. In the late
1950s and early 1960s, researchers began to investigate language translation and
original text analysis. But great strides were made in NLP in the 1970s and 1980s
when researchers began to develop more sophisticated algorithms for speech under-
standing and generation.

A notable achievement in this period is the first chatbot ELIZA developed
by Joseph Weizenbaum in 1966, which can engage in simple natural language
conversations.

1970s—Knowledge Representation*: In the 1970s, cognitive science focused
on knowledge representation to clarify the knowledge and understanding of experts.
High-level knowledge representation was also developed in management and seman-
tic communication.

1.3.9 �F irst Intelligent Robot (1972)

In Japan, Waseda University initiated the WABOT project in 1967 and in 1972 com-
pleted WABOT-1, the world’s first “intelligent” humanoid robot, or an android that
moves limbs using its hand and limb control system and can grab and move objects
using its touch-sensitive hands. Its vision system was capable of measuring distance
and direction using external receivers and artificial eyes and ears. Its dialog system
was capable of communicating in Japanese, with facial expressions.

1.3.10 �F irst AI Winter (1974–1980)

The term “AI summer” refers to a period of declining investment and interest in
AI as R&D effort stagnates or declines. The first AI winter occurred in the 1970s
and 1980s after an initial period of great anticipation and optimism about the pros-
pects of AI in the 1950s and 1960s. During AI winter, progress in AI research was
slower than expected, and some of the limitations of the existing technology became
increasingly apparent. Many early AI programs failed to live up to the high expec-
tations set by early AI pioneers. This has led to a decline in funding for AI research
and public and commercial interest in the project.

12 Artificial Intelligence and Machine Learning for Real-World Applications

The AI ​​winter was a time of reflection and reassessment for the AI ​​research com-
munity, resulting in a shift in focus to practical and achievable goals.

1.3.11 � Boom (1980–1987)

During the 1980s, the expert system framework gained widespread adoption by com-
panies globally, and knowledge engineering became a central focus of AI research.
Concurrently, the Japanese government significantly invested in AI through the
Fifth Generation Computer Systems project. Another promising development of the
era was the resurgence of neural network research, led by John Hopfield and David
Rumelhart.

1.3.12 �S econd AI Winter (1987–1993)

The financial crisis of the 1980s led to a decline in business interest in AI, as numer-
ous companies encountered difficulties. However, despite the setbacks, the field of
AI continued to advance. Researchers such as robotics pioneers Rodney Brooks and
Hans Moravec advocated for a new approach to AI.

1990s—Reinvention and Machine Learning: In the 1990s, AI experienced a
renaissance driven by advances in ML, neural networks, and NLP. The development
of experts and expert shells enables the real work of AI in many practical ways.

1.3.13 � AI (1993–2011)

Despite its long history of over half a century, the field of AI has recently made sig-
nificant strides in achieving its original goals. However, within the business world,
the reputation of AI is still perceived as less than perfect. This divide is evident
within the field itself, where there is no consensus on why the initial ambition of
creating human-level intelligence has yet to be fully realized. As a result, AI has
splintered into various subfields, each focused on tackling specific problems or uti-
lizing different approaches.

Deep Blue made history on May 11, 1997, when it defeated world chess champion
Garry Kasparov, marking the first time a computer program had achieved such a
feat. Developed by IBM, this specialized version of the framework was able to pro-
cess a staggering 200 million moves per second, twice as many as it had in its initial
loss against Kasparov. In another impressive display of technological advancement,
a Stanford robot emerged victorious in the 2005 DARPA Grand Challenge by navi-
gating a 131-mile uncharted desert trail without any human intervention.

2000s—Big Data and DL: The lack of big data and powerful computing gave
rise to DL, leading to major advances in imaging, AI speech, and NLP.

2010s—AI Is Integrated into Daily Life: AI-powered tasks and machines,
including virtual assistants, recommendations, and autonomous cars, became part of
daily life. DL, driven by advances in neural networks and graphics processing units
(GPUs), has revolutionized the field.

13Introduction to Artificial Intelligence and Machine Learning

1.3.14 � AI (2011–Present)

During the early years of the 21st century, a significant breakthrough was made
with the widespread availability of vast amount of data, commonly referred to as
“big data.” Coupled with increasingly affordable and efficient computers, as well as
advancements in ML technology, this development proved to be highly effective in
tackling various challenges across all sectors of the economy. In fact, as discussed
in the renowned paper “Big data: The next frontier for innovation, competition, and
productivity,” as the demand for AI-related products, hardware, and software contin-
ued to grow, it reached a whopping 8 billion dollars in 2016, as reported by the New
York Times, with the media even dubbing it a “frenzy.”

2020s—Ethics and Business Governance: The 2020s will see increased com-
munication on AI ethics, including AI algorithms and disruptive technologies and
business injustice. Countries and organizations develop policies and procedures for
the development and use of intelligence.

1.4 � PROBLEMS AND TECHNIQUES IN AI

Problem-solving techniques in AI refer to the approaches and strategies used to
address and solve complex problems or challenges in AI systems. These techniques

FIGURE 1.6  Major Events in History.

14 Artificial Intelligence and Machine Learning for Real-World Applications

are fundamental to AI’s goal of simulating human-like problem-solving and deci-
sion-making abilities. Here’s a definition of problem-solving techniques in AI:

Problem-solving techniques in AI encompass a diverse set of methodologies and algo-
rithms that enable AI systems to analyze, evaluate, and generate solutions for a wide
range of problems. These techniques often involve the application of logical reasoning,
optimization, search algorithms, and learning mechanisms to find efficient and effec-
tive solutions, ultimately contributing to the development of intelligent systems capable
of tackling complex real-world challenges.

These techniques include methods like search algorithms (e.g., depth-first search
and breadth-first search), knowledge representation and reasoning (e.g., expert sys-
tems), ML (e.g., supervised learning and reinforcement learning), and heuristic-based
approaches.

AI focuses on specific types of problem and particular techniques to be used to
obtain a solution.

To derive a solution, one must follow four steps, which are mentioned below and
characterized in the figure.

	 1.	Define and fix problem statements such that it can target the problem objec-
tive more effectively. The problem statement should also include the pre-
conditions and post-conditions to obtain an acceptable solution.

	 2.	Analyze the problem and select features that can majorly contribute in
deciding the success of the system.

	 3.	Bifurcate tasks into atomic subtasks, i.e., into tasks that cannot be decom-
posed further. Represent the role of each task and required knowledge nec-
essary to solve the problem.

	 4.	Analyze the tradeoff between available solving techniques and choose the
best problem-solving strategy to apply to the targeted problem for achieving
a viable solution.

FIGURE 1.7  Key Steps in AI to Deriving a Solution.

15Introduction to Artificial Intelligence and Machine Learning

Intelligence requires knowledge to be voluminous. If knowledge is hard to accu-
rately characterize, constantly changing, and organized differently from the way it
will be used, then AI methods are useful.

Problem-Solving Agents: A problem-solving agent is a goal-based agent that
decides what to do by finding a sequence of actions that leads to desirable states.

1.4.1 �G oal Formulation

Goal formulation outlines a process for choosing and developing a single goal from
a list of options. Problem formulation is defined as follows:

This stage defines the relevant actions and states needed to achieve a previously for-
mulated goal. Following this comes the search phase, where the system identifies the
best sequence of actions to reach the goal. A search algorithm analyzes the problem
and proposes a solution as a series of actions. Finally, the execution phase implements
the recommended actions.

1.4.2 � Well-Defined Problems and Solutions

A formal problem definition typically consists of four key elements:

	 1.	Initial State: This describes the starting point for the agent, where it begins
its journey toward the goal.

	 2.	Actions: These are the available options the agent can take in each state
it encounters. The initial state, actions, and transition model (implicit in
actions) collectively define the state space, encompassing all possible states
reachable from the starting point through a sequence of actions.

	 3.	Goal Test: This is a mechanism to determine if the agent has reached a
successful or desired state.

	 4.	Path Cost Function: This function assigns a cost value to each action
taken, reflecting the overall performance measure. It’s typically denoted as
c(s, a, s’), where s represents the current state, a is the action performed, and
s’ is the resulting state.

	 1)	Water Jug Problem:

The water jug problem involves two water jugs of different capacities to measure a
specific amount of water. The primary goal is to figure out how to use the jugs to
measure the exact amount of water required. The problem typically requires logical
thinking and can be presented in various scenarios with different jug sizes and target
amounts.

Example:

Problem:

You have two water jugs:
Jug A with a capacity of 3 liters.

16 Artificial Intelligence and Machine Learning for Real-World Applications

Jug B with a capacity of 5 liters.
The goal is to measure exactly 4 liters of water using these jugs.

Solution:

•	 Fill Jug B to its full capacity, which is 5 liters.
•	 Pour the water from Jug B into Jug A. After this step, Jug A has 3 liters of

water, and Jug B has 2 liters remaining.
•	 Empty Jug A completely.
•	 Pour the remaining 2 liters of water from Jug B into Jug A.
•	 Fill Jug B to its full capacity again, which is 5 liters.
•	 Carefully pour water from Jug B into Jug A. Stop pouring when Jug A is

full. At this point, you will have filled Jug A to its maximum capacity of 3
liters, leaving 4 liters of water in Jug B.

Now, you’ve successfully measured 4 liters of water using the 3-liter and 5-liter
jugs.

This solution uses a combination of filling, emptying, and pouring between the
two jugs to achieve the desired measurement of 4 liters without the need for any
additional equipment.

Implementation of the water jug problem in Python is given below. Data struc-
tures used to solve this problem is queue.

INPUT:

 from collections import deque

 def water_jug_problem(jug_a_capacity, jug_b_capacity,
target):
 # INITIALIZE BFS VARIABLES
 visited = set()
 queue = deque([(0, 0, [])])

 while queue:
 jug_a, jug_b, path = queue.popleft()

 # CHECK FOR SOLUTION
 if jug_a == target:
 return path + [(jug_a, jug_b)]

 if (jug_a, jug_b) in visited:
 continue

 visited.add((jug_a, jug_b))

 # GENERATE POSSIBLE NEXT STATES

 # Fill Jug-A

17Introduction to Artificial Intelligence and Machine Learning

 if jug_a < jug_a_capacity:
 queue.append((jug_a_capacity, jug_b, path +
[(jug_a_capacity, jug_b)]))

 # Fill Jug-B
 if jug_b < jug_b_capacity:
 queue.append((jug_a, jug_b_capacity, path +
[(jug_a, jug_b_capacity)]))

 # Empty Jug-A
 if jug_a > 0:
 queue.append((0, jug_b, path + [(0, jug_b)]))

 # Empty Jug-B
 if jug_b > 0:
 queue.append((jug_a, 0, path + [(jug_a, 0)]))

 # Pour from Jug-B to Jug-A
 pour = min(jug_b, jug_a_capacity - jug_a)
 if pour > 0:
 queue.append((jug_a + pour, jug_b - pour,
path + [(jug_a + pour, jug_b - pour)]))

 # Pour from Jug-A to Jug-B
 pour = min(jug_a, jug_b_capacity - jug_b)
 if pour > 0:
 queue.append((jug_a - pour, jug_b + pour,
path + [(jug_a - pour, jug_b + pour)]))

 return None # No solution found

 # PROBLEM PARAMETERS
 jug_a_capacity, jug_b_capacity, target = 4, 3, 2
 solution = water_jug_problem(jug_a_capacity, jug_b_
capacity, target)

 # PRINT SOLUTION
 if solution:
 print(f”Solution to measure {target} gallons using
{jug_a_capacity}-gallon and {jug_b_capacity}-gallon
jugs:”)
 for step, (a, b) in enumerate(solution):
 print(f”Step {step}: Jug-A = {a} gallons, Jug-B =
{b} gallons”)
 else:
 print(“No solution found.”)

18 Artificial Intelligence and Machine Learning for Real-World Applications

OUTPUT:

Solution to measure 2 gallons using 4-gallon and 3-gallon jugs:

Step 0:Jug-A = 4 gallons, Jug-B = 0 gallons

Step 1:Jug-A = 1 gallons, Jug-B = 3 gallons

Step 2:Jug-A = 1 gallons, Jug-B = 0 gallons

Step 3:Jug-A = 0 gallons, Jug-B = 1 gallons

Step 4:Jug-A = 4 gallons, Jug-B = 1 gallons

Step 5:Jug-A = 2 gallons, Jug-B = 3 gallons

Step 6:Jug-A = 2 gallons, Jug-B = 3 gallons

=== Code Execution Successful ===|

	 2)	Chess Problem:

In a chess problem, the start is the initial configuration of a chessboard. The final
state is the any board configuration, which is a winning position for any player. We
can have multiple final positions, and each board configuration can be thought of as
representing a state of the game. Whenever the player tries to move any piece, it leads
to another state of game.

State: Each legal arrangement of pieces on the chessboard is considered a state.
This includes the position of all pieces (pawns, rooks, knights, bishops, queen, and
king) for both white and black, along with whose turn it is to move.

Size: The number of possible states in chess is massive, estimated to be around
10120. It’s practically impossible to explore every single one.

Operators: The legal moves available to the player whose turn it is define the oper-
ators. Each move transforms the current state into a new state.

	 3)	Eight-Puzzle Problem:

Problem: The eight-puzzle problem, also known as the sliding puzzle, is a classic
problem-solving task in AI.

Description:

The eight-puzzle consists of a 3x3 grid with eight numbered tiles and one empty
space, often represented in numbers from 1 to 8 and an empty slot. The goal of the
puzzle is to rearrange the tiles from an initial configuration to a goal configuration
by sliding the tiles into the empty space. Each tile can be moved vertically or hori-
zontally into the adjacent empty slot.

State: Each unique arrangement of the numbered tiles on the 3x3 board is consid-
ered a state. This includes the position of the blank space as well.

Size: The number of possible states in the eight-puzzle is significantly smaller
than that in chess, at 9!/2 (around 362,880). This allows for more exhaustive search
techniques compared to those used in chess.

19Introduction to Artificial Intelligence and Machine Learning

Operators: The legal moves available define the operators. In this case, a move
involves sliding the blank space into an adjacent tile’s position, creating a new
state.

	 4)	Traveling Salesman Problem:

Problem:

The traveling salesman problem (TSP) is a classic combinatorial optimization prob-
lem in the field of AI.

Description:

In the TSP, a salesman is given a list of cities and the distances between each pair
of cities. The goal is to find the shortest possible route that the player visits each
city exactly once and returns to the starting city. This problem is NP-hard, meaning
that as the number of cities increases, the number of possible routes grows factori-
ally, making it computationally challenging to find the optimal solution for large
instances.

State: While there’s no single agreed-upon definition, a state in the TSP can rep-
resent different stages of the salesman’s journey. Here are two common approaches:

Partial Tour: The current set of cities visited, potentially including the starting
city and not necessarily complete.

Remaining Cities: The set of cities yet to be visited by the salesman.
Size: The number of states depends on the chosen representation and the num-

ber of cities (n). With n cities, the number of partial tours can grow exponen-
tially (roughly (n−1)!), making exhaustive search impractical.

Operators: An operator represents visiting a new city that hasn’t been visited
before.

1.5 � AREAS OF AI

Each subfield within the field of AI holds its own unique significance and contributes
to the overall advancement of AI in various ways. The introduction to AI is like
opening the door to a world where computers can think and learn like humans. It
involves various technologies, such as ML and robots, and has the power to change
how we work and live. But we need to be careful about how we use AI because it can
raise important ethical and social questions. Understanding AI is becoming more
and more important as it becomes a big part of our future.

1.5.1 � AI Subfields

The importance of a specific subfield can vary depending on its applications and
research objectives. Here are some key subfields within AI that hold considerable
importance.

20 Artificial Intelligence and Machine Learning for Real-World Applications

1.5.1.1 � Robotics
One of the most well-known subfields of AI is robotics. AI plays an important
role in robotics that enables machines to comprehend their surroundings, make
decisions, and carry out actions. Manufacturing and medical industries both use
robots.

Robotics combines AI with mechanical design and engineering and bridges the
gap between the digital and physical worlds. Robots are capable of perceiving their
surroundings, processing data, and carrying out actions determined by AI.

Robotics in AI is an innovative fusion of machines with AI that has resulted in the
creation of intelligent, adaptable, and autonomous robotic systems. The importance
of this integration is seen in its numerous applications across industries, where it con-
tributes to enhanced efficiency, precision, and robots’ capacity to operate in complex
and dynamic problems.

Significance:

Autonomous Operation: Robots with AI are able to perform tasks inde-
pendently, making decisions based on current knowledge without con-
stant human supervision. Applications in the manufacturing, logistics, and
healthcare sectors all depend on this.

Adaptability: AI-enabled robotic systems can adapt to dynamic environ-
ments and deal with unexpected scenarios. This adaptability is advan-
tageous in circumstances where responsibilities could change or differ
over time.

Reliable and Efficient: AI-enhanced robots are capable of carrying out jobs
more effectively and precisely. This is especially useful in manufacturing
operations where robots may optimize workflows and increase product
quality.

Human–Robot Collaboration: AI makes it possible for robots to comprehend
and react to human gestures, orders, and natural language, enabling a safer
and more effective human–robot collaboration.

Learning Experience: ML helps robots learn from the environments and from
experiences so that they can improve their performance. This is required
especially for operations where robotic grasping and object manipulation
are used.

Applications of Robotics:

Robotics is a common practice around the world, as we all know. Therefore, they are
used in multiple sectors, and a few of them are listed below:

•	 Manufacturing and industry
•	 Logistics and warehousing
•	 Medical field and argo industry
•	 Education and research
•	 Space exploration

21Introduction to Artificial Intelligence and Machine Learning

1.5.1.2 � Expert System
Expert systems are computer programs designed to mimic human experts in solving
complex problems. They utilize a structured knowledge base and rules to provide
recommendations and decisions. These systems have applications in fields such as
medicine, finance, engineering, customer support, and education, aiding in tasks
that require specialized human expertise. Examples of expert systems include DEN-
DRAL, MYCIN, PXDES, and CaDeT.

Basic Elements of Expert Systems:

	 1.	Knowledge Base: Knowledge base is a repository that stores information,
facts, and rules related to a specific domain. It contains the expertise of
human specialists and is the foundation for the decision-making process of
the expert system.

	 2.	User Interface: The user interface provides a platform where users can
interact with the system. Users can input information, ask questions, and
receive recommendations or solutions. The interface can be text-based
or graphical, depending on the complexity of the system and the user’s
preferences.

	 3.	Rule Base: Expert systems operate based on a set of rules that define the
relationships between different pieces of information and guide the deci-
sion-making process. These rules are typically represented in the form of
“if-then” statements, where the “if” part contains conditions or premises,
and the “then” part contains conclusions or actions.

	 4.	Inference Engine: Because it is the core processing unit of the system, the
inference engine is referred to as the expert system’s brain. It uses the knowl-
edge base and inference rules to draw conclusions or infer new information.
It assists in the generation of error-free answers to the user’s queries. The
system retrieves knowledge from a knowledge repository using an inference
engine. It employs various reasoning methods, such as forward chaining
(starting with known facts and deriving conclusions) or backward chaining
(starting with a goal and working backward to find supporting evidence).

Expert system

User
User-
interface

Inference
engine

Knowledge
base

Knowledge
from an
expert

FIGURE 1.8  Inference Engine in an Expert System.

22 Artificial Intelligence and Machine Learning for Real-World Applications

Significance:

The significance of expert systems lies in their ability to tackle complex problems
and provide solutions that would typically require human expertise. Expert systems
are more significant in knowledge representation and in decision-making processes.
Due to their consistency and availability, they are mostly used in various areas. Some
expert systems have the ability to learn from experience, refining their knowledge
base over time. This adaptability allows them to improve their performance and
accuracy.

Application of Expert System:

As we know, expert systems are capable of making their own decisions; therefore,
they are applied in various fields, such as the following:

•	 Medical diagnosis
•	 Financial analysis
•	 Troubleshooting technical problems
•	 Manufacturing processes
•	 Customer support.

1.5.1.3 � Machine Learning
ML is a major branch of AI. In ML, we use data and algorithms, which are also
used to imitate the way we humans reply and learn, adding the delicacy and the
effectiveness.

The term “machine learning” was actually developed in 1959 by Arthur Samuel,
an IBM hand who was a colonist in computer gaming and AI.

ML, a core component of AI, enables computers to learn from data and make
predictions. It encompasses various methods, including supervised learning (using
labeled data), unsupervised learning (identifying patterns in unlabeled data), and
reinforcement learning (decision-making based on rewards). ML has broad appli-
cations in NLP, computer vision, recommendation systems, and healthcare. Recent
advancements in ML and technology have led to innovations such as self-driving
cars and Netflix’s recommendation system. There are four primary ML modes: unsu-
pervised, semi-supervised, supervised, and reinforcement learning.

Significance:

Data-Driven Opinions: ML helps the colorful different associations use large
quantities of data to make meaningful perceptivity and to take data-driven
opinions.

Robotization and Effectiveness: So, with the help of colorful ML algorithms,
we can automate complex tasks and processes, which automatically reduces
the time and sweat needed to do them manually. This also automatically
leads to increased effectiveness in colorful different diligence.

Scientific Exploration and Disquisition: In the fields of scientific exploration
and disquisition, machine literacy is being increasingly used to dissect

23Introduction to Artificial Intelligence and Machine Learning

complex datasets, pretend the models, and make prognostications. It’s
helping scientists gain new perceptivity and accelerate new discoveries by
having colorful different operations in the fields of astronomy, climate mod-
eling, medicine discovery, etc.

Autonomous Vehicles and Robotics: So, ML algorithms play a veritably
important part in independent vehicles and robotics, as they enable these
systems to perceive and interpret their terrain, make the right opinions in
the real-time terrain, and acclimatize to the changing circumstances, which
ultimately lead to the advancements in robotic sidekicks, tone-driving
buses, drones, etc.

Healthcare Advancements: ML helps in diagnosing the complaint, planning
treatment, medicine discovery, and developing substantiated drugs.

Speech Recognition: The search machine Google allows users to search any-
thing with the help of the “search by voice” feature.

Traffic Prediction: The Google Maps used by numerous people at the moment
helps us find the shortest paths to take to reach our destination.

Spam Email Filtering: The machine learning algorithms help in filtering spam
emails and important emails.

1.5.1.4 � Deep Learning
DL is one of the most used field in AI. It solely focuses on the development and oper-
ation of artificial neural networks, which are called deep neural networks or deep
neural models, with multiple layers to autonomously learn and extract intricate pat-
terns from data. These models are said to be veritably important and inspired from
the structure and functioning of the mortal brain.

The algorithms for DL are designed in such a special way that enables them to
automatically learn and represent complex patterns, as well as connections among
the data by organizing multiple layers of connected artificial neurons.

DL drives numerous AI operations and services that ameliorate robotization, per-
forming logical and physical tasks without mortal intervention. DL technology lies
behind everyday products and services (similar to digital sidekicks, voice-enabled
television remotes, and credit card fraud discovery) and arising technologies (similar
to self-driving cars).

Significance:

Handling Complex Data: DL excels at processing and understanding complex
and high-dimensional data, similar to images, videos, audio, and textbooks.
It can automatically learn intricate patterns and representations from raw
data, enabling it to perform grueling tasks that were preliminarily delicate
or insolvable using traditional ML techniques.

Improved Performance: DL has achieved remarkable performance advance-
ments in several areas, including computer vision, NLP, speech recognition,
and recommendation systems. Deep neural networks can learn hierarchical
representations that capture both low-position and high-position features,
leading to more accurate and robust prognostications or opinions.

24 Artificial Intelligence and Machine Learning for Real-World Applications

End-to-End Learning: DL enables end-to-end learning, where models can
directly learn from raw input data and induce meaningful labor without
the need for homemade point engineering. This simplifies the development
process and reduces the dependence on sphere-specific knowledge, making
applying DL to new problems and disciplines easier.

Robotization and Effectiveness: DL allows for robotization and effec-
tiveness in colorful diligence. It can automate complex tasks, such as
image and speech recognition, data analysis, and decision-making pro-
cesses. By automating these tasks, DL reduces mortal trouble, increases
productivity, and enables real-time processing and decision-making
capabilities.

Advancements in Computer Vision: DL has revolutionized computer vision by
enabling accurate object discovery, image bracket, segmentation, and image
generation. Operations range from tone-driving buses and surveillance sys-
tems to medical imaging and stoked/virtual reality.

Natural Language Processing: DL has made significant advancements in NLP
tasks, including machine restatement, sentiment analysis, textbook gen-
eration, and question–answering systems. It has enabled more accurate
language understanding and generation, easing better mortal-computer
commerce and communication.

Scientific Research and Healthcare: DL has made significant benefactions to
scientific exploration and healthcare. It has been used to dissect large-scale
genomic data, help in medicine discovery, prognosticate complaints, and
support medical image analysis. DL models have the eventuality to acceler-
ate scientific discoveries and facilitate patient care.

Real-World Applications: DL has set up operations across colorful diligence,
including finance, retail, manufacturing, entertainment, and cybersecurity.
It has been used for fraud discovery, demand soothsaying, substantiated
marketing, quality control, content recommendations, and more, leading to
better effectiveness, client experience, and business issues.

Applications of DL:

•	 NLP
•	 Computer vision
•	 Healthcare
•	 Robotics
•	 Gaming

1.5.1.5 � Computer Vision
A branch of AI, computer vision enables computers and systems to extract useful
data from images, videos, and other visual inputs.

This extracted information can then be used to make decisions or provide sug-
gestions. Just as AI empowers computers to think, computer vision allows them to
perceive, examine, and comprehend the visual world.

25Introduction to Artificial Intelligence and Machine Learning

Human vision operates in a similar manner to computer vision but with one key
advantage: humans have extensive experience gained over a lifetime. This enables us
to distinguish objects, estimate their distance, detect motion, and identify anomalies
within an image.

Significance:

Autonomous Vehicles: Autonomous vehicles can comprehend their surround-
ings by using computer vision. In order to find road borders, understand
signposts, and recognize other vehicles, obstructions, and people, computer
vision algorithms assess the scene around the vehicle as it is being recorded
by several cameras. The autonomous vehicle can then drive itself on roads
and highways, avoid obstacles, and securely transport its occupants to their
destination.

Facial Identification: Programs that utilize computer vision to identify people
in photos, such as facial recognition software, heavily rely on this area of
research. Computer vision algorithms are used to recognize facial charac-
teristics in pictures, and they then compare those characteristics to recorded
face profiles. Facial recognition is becoming more common in consumer
gadgets to confirm the identification of the users. Social networking pro-
grams employ facial recognition to identify users and tag them. Law
enforcement utilizes facial recognition software to identify criminals in
surveillance films for the same reason.

Mixed and Augmented Reality: Computer vision plays a crucial role in aug-
mented reality, enabling the integration of digital content into real-world
environments via devices like smartphones and wearables. Augmented
reality applications utilize computer vision algorithms to identify surfaces
such as tabletops, ceilings, and floors, accurately determining depth and
scale, and positioning virtual objects within the real-world context.

Healthcare: The growth of health technology has been profoundly influenced
by computer vision. One of the many uses for computer vision algorithms is
automating the process of searching for cancerous moles on a person’s skin
or finding signs in an X-ray or MRI image.

Applications of Computer Vision:

•	 Lane Monitoring: An autonomous vehicle must have lane tracking in order
to determine which lane it should stay in and avoid idly moving about the
road.

•	 Detection of Traffic Signs: An important task accomplished with computer
vision and DL is the detection of traffic signs. Consider a driverless car that
doesn’t stop at a stop sign or speeds through a school zone. Thus, it is crucial
to recognize these signs and take appropriate action.

•	 Pathfinder: This is a self-driving car’s brain, which instructs the vehicle
where it can travel and how to safely plan its future route. Different algo-
rithms, like the PathNet algorithm, can be used to accomplish this.

26 Artificial Intelligence and Machine Learning for Real-World Applications

1.5.1.6 � Natural Language Processing
NLP is a branch of AI that focuses on the interaction between computers and human
language.

To enable machines to understand, interpret, and generate human language, algo-
rithms and models are developed. NLP has diverse applications, including machine
translation, chatbots, sentiment analysis, and text summarization. It plays a crucial
role in enhancing the efficiency and intuitiveness of human–computer interaction.

	 I.	NLU or Natural Language Understanding
	 II.	NLG or Natural Language Generation

There are specifically five main steps in NLP: lexical analysis, syntactic analysis,
semantic analysis, disclosure integration, and pragmatic analysis.

Significance:

Human–Computer Interaction: NLP enables more intuitive and natural
human–computer communication. This is evident in the growing preva-
lence of voice assistants, chatbots, and virtual agents in our daily lives.

Language Translation: NLP technology has enabled people to interact and
access information globally by bridging language barriers. This is vital for
business, education, diplomacy, and cross-cultural exchange.

Healthcare: NLP facilitates the development of drugs, epidemiological
research, record analysis, and effective patient care. In addition, it might
assist with the identification and treatment of disease prescriptions.

Data Analysis and Processing: Unstructured textual data can be investigated
using NLP to gather useful knowledge. It is necessary for social media anal-
ysis, market research, and business intelligence because it may be employed
for sentiment analysis, content analysis, and categorization.

Customer Service: Through the use of NLP for processing requests from cus-
tomers, chatbots and virtual assistants may improve the efficient function-
ing of support and customer service operations.

Applications of NLP:

The wide range of NLP relies on its applications. Here are some of the crucial fields
where NLP is utilized:

•	 Speech recognition
•	 Automatic voice input
•	 Chatbots and virtual assistants
•	 Text classification
•	 Machine translation

1.5.1.7 � Automation
AI automation offers the potential to improve productivity, decrease errors, and han-
dle jobs that might be too repetitive or data-intensive for people to handle. But it

27Introduction to Artificial Intelligence and Machine Learning

also calls into question the necessity for ethical and secure AI systems, its effect
on employment, and other issues. AI automation optimizes business processes by
integrating AI technologies with additional tools. Automation can take place via
hardware, such as robotic process automation (RPA) in the real world, or software,
wherein AI systems look into data, learn from it, and make options in the future.

Significance:

Increased Efficiency: Without tools, running a business can take a lot of time.
More repetitive tasks can be handled by AI, liberating workers to concen-
trate on more important work.

Enhanced Communication with Customers: Today’s clients expect the appro-
priate offers at the right time, which can be challenging for organizations
that must do their own in-house data analysis. AI automation has the capac-
ity to process vast volumes of client data, enabling the creation of tailored
interactions that enhance customer experience.

Cost Savings: By removing the need for human labor in routine and repetitive
operations, automated AI systems can save operating costs for companies
and organizations.

Error Reduction: AI automation reduces the possibility of human oversight in
quality control, data entry, and analysis processes, producing outputs that
are more accurate.

Enhanced Decision-making: Automation powered by AI can process com-
mercial and industry data far more quickly than humans. Businesses can
gain assistance with forecasting, future product trends, and other indus-
try insights by feeding AI with data. Their decision-making can then be
informed by this data.

Applications in Technology:

In the context of AI, automation is the application of AI methods and technology to
carry out operations and procedures without the need for direct human involvement.
The following are some crucial facets of AI automation:

•	 RPA
•	 Autonomous vehicles
•	 Smart home automation
•	 Cybersecurity
•	 Agricultural automation

1.5.1.8 � AI in Healthcare
AI in healthcare involves the application of ML algorithms to analyze, interpret,
and understand complex medical data. AI aims to augment human capabilities by
offering innovative approaches to disease diagnosis, treatment, and prevention.
A primary goal of AI in healthcare is to identify the relationship between clinical
data and patient outcomes. AI is being employed in various areas, including drug
discovery, personalized medicine, treatment protocol development, diagnostics, and

28 Artificial Intelligence and Machine Learning for Real-World Applications

patient monitoring. As the use of AI in healthcare is relatively recent, research into
its applications across different industries and medical fields is ongoing.

Significance:

Faster Detection and Disease Detection: AI is able to accurately and efficiently
evaluate patient data and medical imaging, which helps with the early and
accurate detection of a number of diseases, such as neurological disorders,
cancer, and cardiac issues.

Improved Treatment Planning: AI helps medical professionals create more
individualized and efficient treatment plans by considering each patient’s
particular genetic composition and past medical records.

Medication Management: AI improves medication safety and patient outcomes
by helping patients manage their medications by discovering drug interac-
tions, sending reminders, and keeping track of adherence.

Drug Development and Discovery: AI speeds up the process of finding new
drugs, which could cut down on the time and expense it takes to introduce
them to the market.

Saves Workers’ Time: By automating repetitive procedures, AI allows users
to concentrate on more intricate and patient-centered responsibilities. The
administrative demand on healthcare staff can be decreased by using AI to
automate administrative processes like insurance processing, billing, and
appointment scheduling.

Applications of AI in Healthcare:

AI is being used more and more in the healthcare industry to enhance patient out-
comes, expedite processes, and promote medical research. Here are a few well-
known uses of AI in healthcare:

•	 Medical imaging analysis
•	 Electronic health records (EHR) management
•	 Robot-assisted surgery
•	 Radiology and pathology
•	 Genomic data analysis
•	 Telemedicine and remote monitoring

1.5.2 � AI Application Areas

AI is increasingly indispensable in modern society. It offers efficient solutions to
complex problems across various industries, including entertainment, finance,
healthcare, and education. AI has penetrated numerous markets, with applications
in the following sectors:

AI in Astronomy: AI can be helpful for understanding and solving complex
universe problems such as how it works and the origin. AI is used in auton-
omous spacecraft, rovers for navigation, and data analysis on other planets.

29Introduction to Artificial Intelligence and Machine Learning

•	 AI in Healthcare: In recent years, AI has become increasingly bene-
ficial to the healthcare industry. AI tools assist doctors in diagnoses
and can alert them to deteriorating patient conditions, enabling timely
medical intervention.

•	 AI in Education: AI can streamline the grading and assessment process,
allowing teachers to focus on instructions. In the future, AI-powered
virtual tutors could provide personalized support to students at any time
and place.

•	 AI in Social Media: AI excels at organizing and managing large data-
sets. Social media platforms like Instagram, Snapchat, and LinkedIn
generate billions of data points that require efficient storage and man-
agement. AI analyzes this data to identify emerging trends, popular
hashtags, and user preferences.

•	 AI in Finance: AI-powered algorithms are used for high-frequency
trading and investment decision-making. AI models are used to help in
assessing credit risks and detecting fraudulent transaction.

•	 AI in Data Security: Given the rapid increase in cyberattacks, data secu-
rity is paramount for businesses. AI can enhance data security by iden-
tifying and mitigating threats. AI-powered tools like AEG bot and AI2
platforms can effectively detect software vulnerabilities and cyberattacks.

•	 AI in Robotics: AI-powered robots are prevalent in numerous indus-
tries, including manufacturing, healthcare, and logistics.

•	 AI in Travel: The travel industry is leveraging AI-powered chatbots to
provide human-like customer service, enhancing response times and
offering services like booking travel arrangements, and suggesting
hotels, flights, and optimal routes.

These are just few examples of AI applications across various domains. The
field continues to expand into new areas, creating innovative solutions
across multiple industries.

1.6 � FUTURE SCOPE OF AI

The scope of AI is expected to influence our daily life, and it is estimated that it will
help the economy by about $15.7 trillion globally. The following are the trends esti-
mated to be achieved by AI in the near future.

	 1.	Self-driving vehicles will be able to drive better than humans: Due to
the emerging progress in the transportation industry, Tesla and its release
of Dojo, a supercomputer, will surely become operational within the next
decade. It is also expected that by 2025 8 million driverless and self-auto-
mated cars will be on the roadway, creating $800 billion jobs in the automo-
bile industry.

	 2.	AI will work as a human: Fields such as NLP and sentiment analysis are
at its peak because generative AI is capable of creating a human-like input
with the vast amount of data fed into the system. All these facts ensure that
in the near future, AI will be able to work with human intelligence.

30 Artificial Intelligence and Machine Learning for Real-World Applications

	 3.	AI will potentially make the health sector better: According to the US
healthcare industry, 23% think that the advancements in AI with the ML
model will help achieve better and faster outcomes. With large data sets, its
predictive analysis will benefit patients and doctors in getting the insights.

	 4.	Deepfakes may become a problem in society: Fake videot and audio sam-
ples might be distributed rapidly because of people’s prejudices, anxieties,
and reservations.

	 5.	AI might affect in massive job losses: Udacity CEO Gabe Dalporto has
predicted that more than 1 billion people will lose their jobs due to AI
by 2030. Job functions like as driving an auto or truck, operating heavy
machineries, and rehearsing law will become increasingly automated. As a
result, many of these positions will become obsolete.

	 6.	The metaverse: The metaverse is about simulation. Incorporations can act,
within tightly defined parameters, as our agents and our companions, and
some may indeed be considered as coworkers. By 2050, we will be unfit to
tell the difference between a real person and an AI-generated one.

DOI: 10.1201/9781003532170-2� 31

2 Problem-Solving
Methods and Search
Strategies

2.1 � INTRODUCTION

Artificial intelligence (AI) utilizes search algorithms as a fundamental approach to
problem-solving, wherein these algorithms systematically navigate through poten-
tial solutions in order to identify an optimal one. These algorithms find extensive
application across a wide spectrum of AI domains, such as path finding, game
playing, planning, search space analysis, and optimization. Whether it’s determin-
ing the shortest route between two points, strategizing in complex games, charting
out future actions, or comprehending the structure of search spaces, search algo-
rithms play a pivotal role in these AI tasks by enabling efficient exploration and
decision-making. Here are some of the most well-known problem-solving tech-
niques in AI:

	 1.	Uniformed/Blind Search
a.	 Breadth-first search (BFS)
b.	 Depth-first search (DFS)
c.	 Uniform cost search (UCS)
d.	 Iterative deepening depth-first search
e.	 Bidirectional search

	 2.	Informed Search
a.	 Best-first search
b.	 A* search

2.1.1 �U niformed/Blind Search

Uniformed/blind search refers to a category of search algorithms that do not have
prior knowledge about the structure of the search space or the location of the
goal state. This algorithm works on the information available during the search
process.

Examples of uniformed or blind search algorithms include BFS, DFS, UCS, iter-
ative deepening DFS, and bidirectional search. These algorithms are also called as
“blind search” because they make decisions about which node to explore next, ignor-
ing additional information like heuristics or cost estimates.

https://doi.org/10.1201/9781003532170-2

32 Artificial Intelligence and Machine Learning for Real-World Applications

	 a.	Breadth-First Search: BFS is used for finding the shortest path by explor-
ing all nodes at a given level before moving to the next level, considering
all possible paths with a uniform cost. BFS uses queue data structure to
keep track of the node to be explored. The BFS will visit the node and mark
it as visited and places it into the queue. Then the BFS will visit the nearest
and unvisited nodes and mark them. The remaining nearest and unvisited
nodes on the graph will be analyzed marked and added to the queue. These
items will be deleted from the queue as they are received and printed as the
result.

Its implementation in Python is given below. Data structures are used in queue and
store unvisited nodes.

INPUT:

 # Import the deque class from the collections module
 # deque is used for efficient queue operations
 from collections import deque
 def bfs(graph, start):

Search algorithms

Uninformed search Informed search

Breadth-first search Best first search

Depth-first search A* search

Uniform cost search

Iterative deepening depth-
first search

Bidirectional search

FIGURE 2.1  Categorization of Search Algorithms.

33Problem-Solving Methods and Search Strategies

 # Initialize a set to keep track of visited vertices
 visited = set()

 # Create a queue and add the starting vertex
 queue = deque([start])

 # Mark the starting vertex as visited
 visited.add(start)

 # Continue until the queue is empty
 while queue:
 # Remove and return the leftmost vertex from the
queue
 vertex = queue.popleft()

 # Print the current vertex (part of BFS traversal)
 print(vertex, end=‘ ‘)

 # Explore all neighbors of the current vertex
 for neighbor in graph[vertex]:
 # If the neighbor hasn’t been visited yet
 if neighbor not in visited:
 # Mark it as visited
 visited.add(neighbor)
 # Add it to the queue for future
exploration
 queue.append(neighbor)

 # Define the graph as an adjacency list
 graph = {
 ‘A’: [‘B’, ‘C’],
 ‘B’: [‘A’, ‘D’, ‘E’],
 ‘C’: [‘A’, ‘F’],
 ‘D’: [‘B’],
 ‘E’: [‘B’, ‘F’],
 ‘F’: [‘C’, ‘E’]
 }

 # Print a message indicating the start of BFS
 print(“Breadth-First Search starting from vertex ‘A’:”)

 # Call the BFS function with the graph and starting ver-
tex ‘A’
 bfs(graph, ‘A’)

34 Artificial Intelligence and Machine Learning for Real-World Applications

OUTPUT:

	 b.	Depth-First Search: DFS is used for finding the shortest path by exploring
as deeply as possible along one branch of the search tree before backtrack-
ing. It can be carried out by using stack data structure.

For example, we connected components 1 -> 2 -> 3.
Then we connected component 4 -> 5.
The final connected component is vertex 6.
Graph G is disconnected here and has the components given below.
Its implementation in Python is given below.

FIGURE 2.2  DFS Traversal.

35Problem-Solving Methods and Search Strategies

INPUT:

 def dfs(graph, start, visited=None):
 # If this is the first call, initialize the visited
set
 if visited is None:
 visited = set()

 # Mark the current vertex as visited
 visited.add(start)

 # Print the current vertex (part of DFS traversal)
 print(start, end=‘ ‘)

 # Explore all neighbors of the current vertex
 for neighbor in graph[start]:
 # If the neighbor hasn’t been visited yet
 if neighbor not in visited:
 # Recursively call DFS on the neighbor
 dfs(graph, neighbor, visited)

 # Define the graph as an adjacency list
 graph = {
 ‘A’: [‘B’, ‘C’],
 ‘B’: [‘A’, ‘D’, ‘E’],
 ‘C’: [‘A’, ‘F’],
 ‘D’: [‘B’],
 ‘E’: [‘B’, ‘F’],
 ‘F’: [‘C’, ‘E’]
 }

 # Print a message indicating the start of DFS
 print(“Depth-First Search starting from vertex ‘A’:”)

 # Call the DFS function with the graph and starting ver-
tex ‘A’
 dfs(graph, ‘A’)

OUTPUT:

36 Artificial Intelligence and Machine Learning for Real-World Applications

	 c.	Uniform Cost Search: UCS is primarily used for finding the shortest path
in a weighted graph. UCS is effective in cases when different costs are avail-
able for each edge. A UCS is implemented by using priority queue. It selects
the child node with the lowest total cost and adds it to the priority queue. If
a lower cost path to an already visited node is discovered, the cost of that
node is updated in the priority queue.

	 d.	Iterative Deepening DFS: Iterative deepening DFS is a combination of
BFS and DFS. It performs a series of DFS iterations, each with an increasing
depth limit. In the first iteration, the depth limit is 0, which means it explores
nodes only at the initial state. If the goal state is not found at this depth, the
search proceeds to the next iteration with a depth limit of 1, then 2, and so
on. It explores as far as possible along a single branch, and if the depth limit
is reached, it backtracks to the previous level to explore other branches.

	 e.	Bidirectional Search: Bidirectional search algorithm runs two searches
simultaneously. One for the forward search (from the start state) and one for
the backward node (from the goal state). The goal is to meet in the middle
and find a common state that connects the two searches.

2.1.2 � Informed Search

Informed search is also known as heuristic search because it uses a heuristic function
to guide the search process. Here, heuristic function is the cost of moving from a
starting state to a goal state. It is represented by h(n).

2.1.2.1 � Heuristic Functions
A heuristic function is like a tour guide that helps in an efficient search process.
Common heuristic functions include the following:

Manhattan Distance: Useful for grid-based environments.
Euclidean Distance: Suitable for continuous space problems.
Diagonal Distance: A compromise between Manhattan and Euclidean

distances.
Custom Heuristics: Tailor-made heuristics for specific problem domains.

These algorithms are designed to make more informed decisions about which paths
to explore within a search space.

Search algorithms represent a foundational and indispensable component of AI,
serving as a methodical problem-solving approach. Whether tasked with identify-
ing the shortest distance between two points, formulating intricate game strategies,
devising prospective action plans, or comprehending the intricate structures within
search spaces, these algorithms assume a central role in facilitating the efficient
exploration of possibilities and informed decision-making.

2.2 � STATE SPACE REPRESENTATION

	 1.	Definition of State Space: State space encompasses all possible configura-
tions of a relevant object or system.

37Problem-Solving Methods and Search Strategies

	 2.	Initial States: In state space representation, one or more initial states are
specified as the starting point for a problem-solving process.

	 3.	Goal States: Goal states represent the expected solutions to the problem.
These are the desired outcomes.

	 4.	Action Rules: A set of rules is defined to describe the available actions or
operators in the problem space.

	 5.	Key Considerations: During the process of defining a state space search,
several considerations come into play:
•	 Determining the generality of the rules and the effort required to solve

the problem.
•	 Deciding whether to pre-compute certain aspects or represent them in

rule sets.
•	 Employing appropriate control strategies to navigate the problem space

from initial states to goal states.
•	 Identifying any assumptions that may not be explicitly stated in the

problem description.

Problem Solution

State space representation defines a problem as a set of states, with the solution being
a path from the initial state to a goal state. In some cases, simply reaching the goal
state is sufficient. A cost function assigns a numerical value to each path, reflecting
the cost of applying operators to transition between states. The quality of a solution
is determined by the cost function, with an optimal solution having the lowest cost
among all possible solutions. Depending on the problem and its requirements, the
goal might be to find any solution, the optimal solution (lowest cost), or all possible
solutions. The significance of cost depends on the specific problem context and the
nature of the desired solution.

Problem Description

•	 A problem description comprises the following elements:
•	 The current state of the world or system.
•	 The actions or movements that can transition one state into another.
•	 The desired goal state of the world.

2.2.1 �S tate Space

The state space is explicitly or implicitly defined and should include all necessary
information for problem-solving while excluding unnecessary details.

Initial State: The initial state is the starting point for the problem-solving
process.

Goal State: The goal state defines the desired conditions that need to be ful-
filled. It represents a complete or partial description of the desired state of
the world.

Operators: Operators are actions that transition a state to another. They
have two components: preconditions and effects. Preconditions define the

38 Artificial Intelligence and Machine Learning for Real-World Applications

necessary conditions for an operator to be applicable, while effects describe
the resulting state after the operator is executed.

Elements of the Domain: Elements of the domain are the components or enti-
ties relevant to the problem. Knowledge of the starting point is essential for
understanding the problem.

Problem-Solving: Problem-solving entails identifying a series of actions that
can transform the current state into a desired goal state.

Restrictions: Restrictions are related to the quality of the solution, which can
be any, optimal, or all based on the problem requirements. Quality restric-
tions may involve finding the shortest or least expensive sequence, or simply
identifying any valid sequence as quickly as possible.

Few case studies of state space representation are as follows:

•	 Traveling Salesman Problem

The traveling salesman problem (TSP) is a classic computational problem where a
salesman must visit each city in a given list exactly once, minimizing the total travel
distance. The problem is represented as a graph, with cities as nodes and distances
between cities as edges. The goal is to find the shortest possible route that visits all
cities and returns to the starting point. A state in this problem is represented as a pair
of cities and the distance between them.

Initial State (S₀):
At the beginning of the journey, the salesman starts at a specific city—let’s say

City 1. None of the cities other than City 1 is visited yet.

State Space (S):

The state space encompasses all possible combinations of cities visited by the
salesman, starting from the initial city. These states can be understood as
different permutations of cities, excluding the starting city. These permuta-
tions indicate the order in which the cities are visited.

Operators (Actions):

In the context of the TSP, operators symbolize the choices the salesman makes
to transition between states. The primary operator involves selecting the
next city to visit from the pool of unvisited cities. This choice modifies the
sequence in which cities are visited.

Transition Model:

The transition model defines how the salesman’s state changes when an
operator is applied. For instance, when the salesman picks the next city to
visit, the state updates to reflect the new order in which cities have been
visited.

39Problem-Solving Methods and Search Strategies

Goal State (Sᵢ):
Goal state signifies the completion of the tour, where every city has been vis-

ited once, and the salesman returns to the starting city. This final state is
characterized by a permutation of all cities, with the starting city appearing
as both the first and the last city in the sequence.

Let us now understand with an example.
The nodes represent cities, and the edges represent the distance between them.

Starting point: A

To find: The shortest possible route starting from A, covering all the nodes and
returning back to A (origin).

STATE SPACE

Initial state (State A): {A--B, A--C, A--D}

Possible routes

	 1.	ABDCA
	 2.	ABCDA
	 3.	ACBDA
	 4.	ACDBA
	 5.	ADCBA
	 6.	ADBCA

The best routes in this case are route 1 and route 4. Let’s go step by step starting with
node A.

Step 1: We select the starting node, that is, A.

A

FIGURE 2.3  Connected Cities and Distances.

40 Artificial Intelligence and Machine Learning for Real-World Applications

Step 2:

20
A

B

Step 3:

20

13
A

B

D

Step 4:

20

13

12

A

B

D

C

Step 5:

20

13

22

12

A

B

D

C

This is the final route, which costs 20 + 13 + 12 + 22 = 67.

•	 EIGHT-PUZZLE PROBLEM

Eight-puzzle problem is one of the classic problems solved by AI. In the below con-
text, we are going to see how this problem is represented by AI with the help of a
concept, i.e., “state space representation.”

41Problem-Solving Methods and Search Strategies

Let us understand what an eight-puzzle game is.
Eight puzzle is a 3 x 3 grid game with eight numbered tiles and one blank space.

The problem is to rearrange the tiles in the initial state so that we can reach the goal
state. Steps involve sliding the tiles on the adjacent blank space. The solution to this
problem is found by finding the minimum number of sequential moves required to
reach the goal state from the actual initial state.

Example:

State Space: Eight-Puzzle Problem
The state space of an eight-puzzle problem is somewhat large but finite. It per-

forms 9! permutations, which is approximately 362,880 different states. The state
space representation of an eight-puzzle problem includes the following points:

	 1.	State
		  The states in an eight-puzzle problem can be initial state and goal state,

where every new state is generated on each possible move of the tile. Here
the states represented in the figure are our states.

	 2.	Space
		  All the possible states generated by sliding the tile.
	 3.	Search
		  Search for the successive state in an eight-puzzle problem can be per-

formed with the help of various search algorithms such as BFS, DFS, and
various heuristic search techniques. Heuristic search provides faster solu-
tions than uninformed searches.

	 4.	Operators
		  Operators in eight-puzzle problems are used to slide the tile on the black

space, which are
•	 Moveup
•	 Movedown
•	 Moveleft
•	 Moveright

	 5.	Search Tree

Various possible states of eight-puzzle problems are represented in the form of a
search tree. In the search tree, each root node represents the initial state, and each
node in the search tree represents all possible states of the puzzle.

FIGURE 2.4  Eight-Puzzle Problem.

42 Artificial Intelligence and Machine Learning for Real-World Applications

The search tree for an eight-puzzle problem is given below.
Implementation of an eight-puzzle problem in Python is given below.

 # FOR PRIORITY QUEUE OPERATIONS
 import heapq
 class PuzzleState:
 def __init__(self, board, parent=None):
 self.board = board
 self.parent = parent
 self.cost = 0 if parent is None else parent.cost
+ 1
 self.lower_bound = self.calculate_misplaced_tiles()

 # LOWER BOUND CALCULATION (HEURISTIC)
 def calculate_misplaced_tiles(self):
 goal = [1, 2, 3, 4, 5, 6, 7, 8, 0]
 return sum(1 for i in range(9) if self.board[i]
!= goal[i] and self.board[i] != 0)

 # COMPARISON FOR PRIORITY QUEUE (BRANCH AND BOUND
PRIORITIZATION)

FIGURE 2.5  Space State Search Tree of an Eight-Puzzle Problem.

43Problem-Solving Methods and Search Strategies

 def __lt__(self, other):
 return (self.cost + self.lower_bound) < (other.
cost + other.lower_bound)

 def __eq__(self, other):
 return self.board == other.board

 # GENERATE BRANCHES (POSSIBLE MOVES)
 def get_neighbors(self):
 moves = [(‘LEFT’, -1), (‘RIGHT’, 1), (‘UP’, -3),
(‘DOWN’, 3)]
 empty_index = self.board.index(0)
 for move, offset in moves:
 new_position = empty_index + offset
 if 0 <= new_position < 9 and abs(empty_index
% 3 - new_position % 3) <= 1:
 new_board = self.board[:]
 new_board[empty_index], new_board[new_posi-
tion] = new_board[new_position], new_board[empty_index]
 yield PuzzleState(new_board, self)

 # BRANCH AND BOUND ALGORITHM
 def solve_puzzle(initial_state):
 open_set = []
 closed_set = set()
 heapq.heappush(open_set, initial_state)
 while open_set:
 # SELECT NODE WITH LOWEST BOUND
 current = heapq.heappop(open_set)

 # CHECK FOR GOAL STATE
 if current.board == [1, 2, 3, 4, 5, 6, 7, 8, 0]:
 solution_path = []
 while current.parent:
 solution_path.append((None, current.
board))
 current = current.parent
 return solution_path[::-1]

 closed_set.add(tuple(current.board))

 # BRANCH: EXPLORE NEIGHBORS
 for neighbor in current.get_neighbors():
 if tuple(neighbor.board) not in closed_set:

44 Artificial Intelligence and Machine Learning for Real-World Applications

 # BOUND: PRUNE OR EXPLORE BASED ON LOWER
BOUND
 if neighbor not in open_set or neighbor.
cost + neighbor.lower_bound < open_set[open_set.index-
(neighbor)].cost + open_set[open_set.index(neighbor)].
lower_bound:
 heapq.heappush(open_set, neighbor)

 return None

 # USAGE AND SOLUTION DISPLAY
 initial_board = [1, 2, 3, 4, 0, 5, 7, 8, 6]
 initial_puzzle_state = PuzzleState(initial_board)
 solution = solve_puzzle(initial_puzzle_state)

 # Print initial state and solution
 print(“Initial State:”)
 for i in range(0, 9, 3):
 print(“+---+---+---+”)
 print(f”| {initial_board[i] if initial_board[i] != 0
else ‘ ‘} | {initial_board[i+1] if initial_board[i+1]
!= 0 else ‘ ‘} | {initial_board[i+2] if initial_
board[i+2] != 0 else ‘ ‘} |”)
 print(“+---+---+---+”)

 if solution:
 print(“\nSolution:”)
 for step, (move, board) in enumerate(solution, 1):
 print(f”Step {step}: {move if move else “}”)
 for i in range(0, 9, 3):
 print(“+---+---+---+”)
 print(f”| {board[i] if board[i] != 0 else
‘ ‘} | {board[i+1] if board[i+1] != 0 else ‘ ‘} |
{board[i+2] if board[i+2] != 0 else ‘ ‘} |”)
 print(“+---+---+---+”)
 print(f”Solution found in {len(solution)} moves.”)
 else:
 print(“\nNo solution found.”)

45Problem-Solving Methods and Search Strategies

2.3 � PROBLEM CHARACTERISTICS

AI aims to create intelligent machines capable of mimicking human cognitive func-
tions like natural language processing, problem-solving, and decision-making. When
selecting an AI approach for a specific problem, the problem has to categorized into
one of given below characteristics.

46 Artificial Intelligence and Machine Learning for Real-World Applications

Can the problem be decomposed into smaller subproblems?
Are the solution steps reversible or irrelevant?
Is the problem’s environment predictable?
Is the optimal solution absolute or relative?
Is the solution a final state or a path?
What is the significance of knowledge in solving the problem?
Does the task require human input?

	 1.	Can the problem be decomposed into smaller subproblems?

Yes, many of the complex problems can be divided into smaller, more manageable sub-
problems. This approach is widely used in problem-solving, which is known as decompo-
sition. Decomposable problems can be solved by tackling each subproblem individually
and making it easier to find a solution using the divide and conquer approach.

Example: Symbolic integration.

∫(x2+4x+sin2x.cos2x)dx

∫x2dx ∫4xdx ∫sin2x.cos2xdx

∫(1-cos2x)cos2xdx

∫cos2xdx -∫cos4xdx

	 2.	Are the solution steps reversible or irrelevant?

The reversibility of the solution steps varies between problems. In some cases, steps
can be undone or ignored if they prove to be incorrect or lead to dead ends. However,
in other problems, this may result in a different or incomplete solution.

Example: a) Eight-puzzle problem
The eight-puzzle allows for reversible moves, enabling the exploration of different

tile arrangements. In contrast, some problems, like chess, have irreversible moves
where actions cannot be undone once performed.

1 2 3

8 4

7 6 5

47Problem-Solving Methods and Search Strategies

Initial state: goal state:

1 2 6

3 7

8 4 5

	 b)	 In water jug problems, moves can be undone.

	 3.	Is the problem’s environment predictable?

The predictability of a problem’s environment depends on its nature. Some problems
have deterministic outcomes, meaning the result can be predicted with certainty
based on given rules and conditions. For example, the water jug problem is deter-
ministic, involving only one person and predictable outcomes.

	 4.	Is the optimal solution absolute or relative?

The quality of a good solution can be absolute or relative. Solutions can vary depend-
ing on the problem and individual perspectives. An absolute solution is considered
sufficient once found, while a relative solution requires comparison with other possi-
bilities to determine the best option, often based on cost.

Example: Traveling salesman problem: This problem seeks the shortest route
among all problem routes, making it a relative.

In the water jug problem, we need not bother about other solutions once the solu-
tion is found. Hence it is absolute.

	 5.	Is the solution a final state or a path?

The solution of a particular problem can either be a specific state or a path, depending
on the nature of the problem. In some problems, appropriate outcome is a specific
state or a configuration that fulfils the problem requirement. The nature of a problem
often determines whether the solution is more about achieving a specific state or
following a particular path.

Example: In a maze-solving problem, the outcome is the path from the starting
point to the ending point.

	 6.	What is the significance of knowledge in solving a problem?

Knowledge plays a critical role in guiding a problem-solving process. The knowledge
in problem-solving varies based on the complexity and nature of the problem. In
many problems, extensive domain-specific knowledge is required to recognize the
pattern, constraints, and possible solutions.

Example: Chess requires deep knowledge of the game rules and strategic princi-
ples to make informed moves.

48 Artificial Intelligence and Machine Learning for Real-World Applications

	 7.	Does the task require human input?

Many problems require human interaction depending on the nature of the problem
and the system tools used to address it. some problems can be solved entirely by
automated systems, while others may benefit from human guidance, creativity, and
expertise. Human interaction is often necessary in a complex or subjective problem
domain where the system may try to replicate human judgment and understanding.

Example: Chess is a conversational problem, involving back-and-forth commu-
nication between the computer and the user to provide information or assistance.
Unlike other problem types, chess does not require additional human intervention.

2.4 � PRODUCTION SYSTEM AND CONTROL STRATEGIES

2.4.1 �P roduction System

Production systems are the rules of the form CA, where the left-hand side is the
condition and right-hand side is the action. CA implies the condition for which
action is needed to be performed.

If one adopts a system with a production rule and rule interpreter, then that system
is known as a production system. It helps in structuring the program in a way that
facilitates describing and performing the search process.

Production system is a model of computation that provides pattern-directed search
control using a set of production rules, working memory, and recognize–act cycle.

It has four parameters:

•	 Set of Rules: It consists of the if-then conditions that tell us what action
should be performed when such conditions occur.

•	 Knowledge Base: Stores the value according to the specific tasks; that is, it
stores the information related to the condition.

•	 Control Strategy: It specifies the order in which the rules are to be com-
pared to the databases so that the conflict can be resolved in the minimum
requirement/time.

•	 Rule Applier: It applies the rules on the basis of the control strategy.

Steps to Resolve a Problem:

	 1.	Reduce the problem in the form of a precise statement. It should clearly
show its states and goals.

	 2.	A problem can be solved by searching a path through space so that we can
reach the goal state from the start state.

	 3.	The process of solving a problem can be modeled through a production system.

Advantages of a Production System:

•	 It is an amazing tool for structuring AI problems.
•	 It is highly modular; that is, it gives the flexibility to change, delete, or

remove the rules.
•	 The production rules are expressed in the natural form, which makes the

rules easy to understand.

49Problem-Solving Methods and Search Strategies

Characteristics of a Production System:

	 1.	Monotonic Production System: The application of one rule never prevents
the later application of another rule; that is, rules are independent of each
other.

	 2.	Non-Monotonic Production System: It is not applicable for a production
system.

	 3.	Partially Commutative Production System: If the application of a particular
set of rules transforms from state X to state Y, then allowable permutation
of those rules also transforms from state X to state Y.
Example: XY, then their permutations, e.g., (r1, r2), will also transform

from XY.
	 4.	Commutative Production System: It is both monotonic and partially

commutative.

Monotonic Non-monotonic

Partially commutative Theory pruning
(solving ignorable problems)

Robot navigation
(changes occur but can be
reversed)

Non-partially commutative
(if changes occur, then they are
irreversible)

Chemical synthesis Bridge

2.4.2 � Control System

Control strategies refer to the methods and techniques used to manage, regulate, and
ensure the desired behavior, performance, and safety of AI systems. These strategies
are important for controlling AI systems, especially when AI systems have the abil-
ity to adapt, learn, or make autonomous decisions. It tells us about which rule has to
be applied next while searching for a solution for a problem within a problem space.

Here are some common control strategies in AI:

	 1.	Feedback Control:
		  It is a fundamental strategy that involves continuous monitoring of the

performance of an AI and making adjustments to keep it on track with the
desired objectives.

	 2.	Reinforcement Learning:
		  It is a type of control strategy where AI agents learn behavior through

interactions with their environment. They receive rewards or punishments
based on their actions, which guide their learning process.

	 3.	Proactive Control:
		  It involves predicting potential issues and taking action to prevent them before

they occur. It aims to anticipate problems and maintain system performance.
	 4.	Rule-Based Control:
		  It employs predefined rules or policies to enforce specific behaviors or

constraints on AI systems. It’s often used to ensure ethical behavior, com-
pliance with regulations, or predefined standards.

50 Artificial Intelligence and Machine Learning for Real-World Applications

	 5.	Model Predictive Control (MPC):
		  It is a control strategy that uses predictive models to optimize system per-

formance while adhering to constraints. It repeatedly solves optimization
problems to determine the best control actions.

	 6.	Explainable AI (XAI):
		  It is a control strategy that focuses on making AI systems transparent and

interpretable. It aims to provide users with insight into how AI decisions are
made, making it easier to trust and control the system.

	 7.	Adaptive Control:
		  It allows AI systems to adjust their behavior or parameters based on

changing conditions or environments. It’s often used in systems that need to
operate in dynamic and uncertain settings.

Implementing control strategies in AI involves the following:

	 1.	Objective Definition: Clearly define goals and constraints.
	 2.	Strategy Selection: Choose a suitable control strategy.
	 3.	Data Collection: Set up sensors and data sources.
	 4.	Policy/Rules Development: Create control policies or algorithms.
	 5.	Monitoring and Feedback: Continuously assess AI behavior.
	 6.	Control Algorithm Design: Generate corrective actions.
	 7.	Reference Values: Set desired states and error thresholds.
	 8.	Adaptation: Implement mechanisms for dynamic adjustments.
	 9.	Safety and Ethics: Incorporate constraints for responsible behavior.
	 10.	Testing and Optimization: Validate and fine-tune control strategies.
	 11.	User Interface: Develop tools for monitoring and intervention.
	 12.	Training and Documentation: Train personnel and document procedures.
	 13.	Deployment: Integrate control strategies into AI systems.
	 14.	Continuous Monitoring: Regularly review and adapt strategies.
	 15.	Contingency Planning: Prepare for unexpected situations.

2.5 � INFORMED AND UNINFORMED SEARCH

Uninformed and informed search are two primary approaches to problem-solving in
AI. Uninformed search algorithms explore the search space systematically without
prior knowledge of the goal, treating all paths equally. Examples include BFS and
DFS. These algorithms are simple but can be inefficient in large spaces. Informed
search algorithms leverage heuristic functions, which estimate the distance to the
goal, to guide the search toward promising paths. A* is a well-known informed
search algorithm that uses a combination of the actual cost and estimated cost to
prioritize states. While informed search is generally more efficient, the quality of the
heuristic function significantly impacts its performance.

2.5.1 �G enerate and Test Method

Generate and test is a heuristic search process based on DFS with backtracking,
which guarantees finding a solution if it is successful and a solution is found. In this

51Problem-Solving Methods and Search Strategies

process, all solutions are generated and the best ones are tested. It ensures that the
best solution is checked for all possible solutions.

It is also called the British Museum Search Algorithm because it seems to ran-
domly search or walk through the exhibits in the British Museum. It is done with a
heuristic function because all solutions are systematically generated in the algorithm
of generating and testing, but if there is at least one way that will lead us to the result,
it is not considered correct. Heuristics does this by ranking each option and often
does it well. Developing methods and experiments is useless when solving complex
problems. However, one method that can be improved in difficult cases is to reduce
the search space by combining the construction and testing of the search with other
strategies.

Algorithm

Identify a potential solution. This could involve selecting a specific point within the
problem area or devising a route starting from an initial state.

Next, verify if this candidate solution is valid by checking the selected point or the
endpoint of the created path against the defined acceptable goal states.

If a valid solution is identified, stop the process. If not, return to the first step.
Scenario: Imagine you’re a chef looking to create a new dessert with three unique

ingredients you can choose from a basket of five fruits (apple, banana, orange, mango,
and kiwi). You want to find a combination that tastes delicious.

Generate:

	 1.	State Representation: A state here represents a single dessert consisting of
three chosen fruits. We can represent it as a list of three fruits (e.g., [apple,
banana, mango]).

	 2.	Solution Generation: Here’s the generate part. You can simply pick three
fruits at random from the basket (five fruits) to create a possible dessert
(state). This random selection can be repeated to generate multiple dessert
options (states).

FIGURE 2.6  Generate and Test Method.

52 Artificial Intelligence and Machine Learning for Real-World Applications

Test:

	 1.	Evaluation Function: This is where you define what makes a dessert deli-
cious. It can be subjective (your taste preference) or objective (nutritional
balance). Let’s say you simply want a variety of flavors (not three of the
same fruit).

	 2.	Testing the Generated State: You would then evaluate each generated des-
sert (state) against your criteria. If a dessert has three different fruits, it’s a
valid solution (delicious dessert).

Process:

	 1.	You keep generating random dessert options (states) until you find one that
meets your criteria (a solution with three different fruit).

	 2.	 If after a set amount of tries you haven’t found a solution, you might need to
adjust your criteria or try to generate more options.

Limitations:

•	 This is a basic generate-and-test approach. With a larger basket of fruit,
randomly generating three unique fruit can become inefficient (especially if
there are many repeated picks).

•	 The efficiency depends on the size of the search space (possible combina-
tions) and how easy it is to evaluate solutions.

This method is simple to implement but can be slow for large search spaces. It’s a
good choice for problems where there’s no clear path to a solution and random explo-
ration might be helpful.

2.5.2 �H ill Climbing Method

It is one of the local search algorithms that move in the direction of increasing value
to find the best and optimal solution for the problem. It is terminated when it reaches
a peak value where no neighbor has a higher value. It mainly used to optimize the
problem. Traveling salesman is one of the popular examples of the hill climbing
method in AI. In this problem, the salesman always tries to find the minimum cost
root to reach the destination, and this method helps him find the optimal path. Since
it is always possible to find a better next state than the previous one, it is considered
a greedy algorithm as well. If good heuristics is available, then this search is used.
It is an efficient algorithm because we don’t have to maintain any type of graph and
search trees as it operate on a single state.

Current State: The state at which the agent is currently available.
Local Maxima: The state that is better than the previous one.
Global Maxima: The state that is always best; that is, no state is better than this.
End: No further move occurs.

53Problem-Solving Methods and Search Strategies

Types as given below:

Simple Hill Climbing: It is one of the simplest ways to implement hill climbing. This
algorithm compares the current state with the next state. If the next state is better than
the current state, it updates the current state with the next state. If the next state is not
optimal than the current, then the current state remains as it is. It always tries to find
a better state than the previous one. It is less time-consuming, but the solution is not
always guaranteed.

Steepest-Ascent Hill Climbing: In this method, the algorithm first examines
all the neighboring nodes of the current state and selects the node that is close to
the goal state. This algorithm takes more time than others due to its search for all
neighbors.

Stochastic Hill Climbing:

This algorithm does not examine all its neighbors before starting to move. This algo-
rithm chooses any random node and decides whether to choose the current state or not.
If it does not start, it examines other states.

Special Features of Hill Climbing:

•	 It does not backtrack the search space, and it does not remember the previ-
ous state.

•	 It is a greedy algorithm.
•	 It is a variant of the generate and test method.

FIGURE 2.7  Hill Climbing Method.

54 Artificial Intelligence and Machine Learning for Real-World Applications

FIGURE 2.8  Flowchart of Simple Hill Climbing.

Problems in Hill Climbing:

•	 Local maxima:
a. � Local maxima is a peak state in landscape that is better than it previous

state, but another state that is better than local maxima is also present.
b. � Backtracking method is the solution of local maxima as the backtracking

algorithm can backtrack and search paths.
•	 Plateau: It is a flat area of search space in which all neighbor states of the

current state contain the same value. Due to the same set of value, it is
impossible to find the best way. The solution for plateau is to take big steps

55Problem-Solving Methods and Search Strategies

or very little steps while searching to solve the problem. Select the step that
is far away from the current state.

•	 Ridges: A ridge is special form of local maxima. It has an area that is higher
than its surrounding area, but it has a scope and cannot be reached in a sin-
gle move. Bidirectional search is used to find a solution move in different
directions.

FIGURE 2.9  Trap of System in Local Maxima.

FIGURE 2.10  After Plateau Solution.

FIGURE 2.11  Ridges.

56 Artificial Intelligence and Machine Learning for Real-World Applications

2.5.3 � Best-First Search and A* Search

Best-first search is a widely used algorithm in computer science and AI. It is primar-
ily employed in various applications, such as path finding, puzzle solving, and deci-
sion-making. Best-first search is characterized by its ability to efficiently navigate
through a search space by selecting the most promising nodes to explore first.

2.5.3.1 � Understanding Best-First Search
Best-first search is a graph search algorithm that works by exploring the most prom-
ising nodes first. Unlike some other search algorithms, best-first search does not
necessarily follow a rigid order, like DFS or breadth-first search. Instead, it evaluates
nodes based on a heuristic function, which estimates the desirability of each node.

The algorithm maintains an open list of nodes, which initially contains the start
node. It then iteratively selects the most promising node from the open list based on
the heuristic value and expands it. The expansion involves generating all possible
successor nodes and evaluating them with the heuristic function. The best successor
is then added to the open list, and the process continues until the goal node is reached
or the open list becomes empty.

	 a.	Best-First Search: Best-first search finds solutions based on a specific
evaluation function or heuristic function h(n). It consistently chooses the
most favorable path available at the current moment. Here f(n) = h(n), where
h(n) = estimated cost from node n to the goal node.

We start from source “S” and search for goal “I” using the best-first search. We
use the given costs for the same.

FIGURE 2.12  Graph.

57Problem-Solving Methods and Search Strategies

The priority queue initially contains S.
Remove S from the priority queue and process unvisited neighbors of S to the

priority queue. The priority queue has {A, C, B}.
Remove A from the priority queue and process unvisited neighbors of A to the

priority queue.
The priority queue has {C, B, E, D}.
Remove C from the priority queue and process unvisited neighbors of C to the

priority queue.
The priority queue now has {B, H, E, D}.
Remove B from the priority queue and process unvisited neighbors of B to the

priority queue.
The priority queue now has {H, E, D, F, G}.
Remove H from the priority queue.
Since our goal “I” is a neighbor of H, we return.

Key Characteristics of Best-First Search

	 1.	Heuristic Function: The effectiveness of best-first search relies on the
accuracy of the heuristic function. A good heuristic provides an informed
estimate of the cost or distance from a node to the goal. In many cases, best-
first search uses admissible heuristics, which never overestimate the true
cost, to guarantee optimality.

	 2.	Open List: Best-first search maintains an open list, which is a priority queue
that stores the nodes to be explored. The priority of each node is determined
by the heuristic value: the lower the value, the higher the priority.

	 3.	Completeness: Best-first search is a complete algorithm, meaning it will
always find a solution if one exists. However, it may not be efficient in terms
of time and space in some cases.

	 4.	Optimality: If best-first search uses an admissible heuristic, it is guaran-
teed to find an optimal solution, i.e., the shortest path or the best solution
according to the given heuristic.

Best-first search is a versatile and effective algorithm with a wide range of applica-
tions in computer science and AI. Its ability to efficiently explore search spaces by
selecting the most promising nodes first, based on a heuristic function, makes it a
valuable tool for solving complex problems. When combined with admissible heuris-
tics, best-first search guarantees optimality, making it a crucial component in many
real-world systems.

2.5.4 � A* Search Algorithm

The A* search algorithm is a widely used and highly efficient path-finding algo-
rithm in computer science and AI. It is essential for solving problems like route
planning, maze solving, and even game AI development. In this comprehensive
guide, we will delve into the A* search algorithm, its principles, and how to imple-
ment it effectively.

58 Artificial Intelligence and Machine Learning for Real-World Applications

Understanding the Basics of A* Search:

A* (pronounced as “A star”) is a combination of two essential components:

	 1.	G-Cost (g(n)): The cost of reaching a particular node from the start node. It
is the total cost incurred from the start node to the current node.

	 2.	H-Cost (h(n)): The estimated cost from the current node to the goal node. It
is an educated guess of how far the current node is from the goal.

The A* algorithm balances these two factors by selecting the nodes with the lowest
total cost, which is defined as the sum of the G-Cost and H-Cost. The algorithm is
guided by the principle that it should explore nodes with lower total costs first, mak-
ing it both efficient and optimal.

A* Algorithm Workflow

	 1.	Initialize Open and Closed Lists: Formulate two lists: the open list and
the closed list. The open list includes nodes that are pending evaluation,
while the closed list consists of nodes that have already been assessed.

	 2.	Add the Start Node to the Open List: Start the search by adding the start-
ing node to the open list. Set its G-Cost to zero.

	 3.	While the Open List Is Not Empty:
a.	 Identify the Node with the Lowest F-Cost: Find the node in the open list

that has the lowest total cost (F-Cost).
b.	 Transfer the Selected Node to the Closed List: Take the node out of the

open list and add it to the closed list.
c.	 Check if the Selected Node Is the Goal Node: If it is, the path has been

located. Backtrack from the goal node to trace the optimal path.
d.	 Generate Successor Nodes: Expand the selected node by generating its

neighboring nodes.
e.	 For Each Neighbor:

i.	 Calculate the G-Cost: Calculate the G-Cost for the neighbor node.
ii.	 If the neighbor is in the closed list and the new G-Cost is lower,

update it: If the neighbor is already in the closed list but can be
reached with a lower G-Cost, update its values.

iii.	 If the neighbor is not in the open list, add it: If the neighbor is not in
the open list, calculate its F-Cost, add it to the open list, and set the
current node as its parent.

iv.	 Continue to the next neighbor.
	 4.	Path Not Found: If the open list has become empty and the goal node has

not been reached, that means there is no path from the start to the goal node.
		 A* Search: A* search is widely used to find the optimal path from a starting

state to a goal state in a search space, taking into account both the cost to
reach a node from the initial state (g) and an estimate of the cost from that
node to the goal state (h). It is given by

f(n) = g(n) + h(n)

59Problem-Solving Methods and Search Strategies

Consider the following graph.
Step 01: We begin with node A. Nodes B and F are accessible from node A. The

A* algorithm calculates f(B) and f(F). f(B) equals 6 plus 8, resulting in 14. f(F) equals
3 plus 6, resulting in 9. Because f(F) is less than f(B), we proceed to node F. The path
is A to F.

Step 02: Nodes G and H can be reached from node F.
A* algorithm calculates f(G) and f(H).

	 F(G) = (3 + 1) + 5 = 9
	 F(H) = (3 + 7) + 3 = 13

Since f(G) < f(H), it now moves to node G.
Step 03: Node I can be reached from nodes G and H.
A* algorithm calculates f(I).
From node G,

f(I) = (3 + 1 + 3) + 1 = 8

From node H,

f(I) = (3 + 7 + 2) +1 = 13

Since f(I) from node G < f(I) from node H, we move to node I from node G.
Therefore, Path A → F → G → I.
This is the required shortest path from node A to node I.
The A* search algorithm is a versatile and efficient approach to path-finding prob-

lems. By understanding its underlying principles and following the workflow, you

FIGURE 2.13  Graph.

60 Artificial Intelligence and Machine Learning for Real-World Applications

can apply A* to a wide range of applications, from games to logistics and robotics, to
find the shortest and most optimal paths.

The implementation of A* in Python is given below:

 import heapq

 class Node:
 def __init__(self, name):
 self.name = name
 self.edges = {}
 self.g = float(‘inf’) # cost from start node to
current node
 self.h = 0 # heuristic cost from current node to
goal node
 self.f = float(‘inf’) # total cost (g + h)
 self.parent = None

 # COMPARISON METHOD FOR PRIORITY QUEUE
 def __lt__(self, other):
 return self.f < other.f

 class Edge:
 def __init__(self, node, cost):
 self.node = node
 self.cost = cost

 class AStar:
 def __init__(self, start_node, goal_node):
 self.start_node = start_node
 self.goal_node = goal_node
 self.open_list = []
 self.closed_list = set()

 # HEURISTIC FUNCTION
 def calculate_heuristic(self, node):
 return abs(ord(node.name) - ord(self.goal_node.
name))

 def run(self):
 # INITIALIZE START NODE
 self.start_node.g = 0
 self.start_node.h = self.calculate_heuristic(-
self.start_node)
 self.start_node.f = self.start_node.g + self.
start_node.h
 heapq.heappush(self.open_list, self.start_node)

61Problem-Solving Methods and Search Strategies

 while self.open_list:
 # SELECT NODE WITH LOWEST F-SCORE
 current_node = heapq.heappop(self.open_list)
 self.closed_list.add(current_node)

 # CHECK FOR GOAL
 if current_node == self.goal_node:
 path = []
 while current_node:
 path.append(current_node.name)
 current_node = current_node.parent
 return path[::-1]

 # EXPLORE NEIGHBORS
 for edge in current_node.edges.values():
 neighbor = edge.node
 tentative_g = current_node.g + edge.
cost
 if neighbor not in self.closed_list or
tentative_g < neighbor.g:
 neighbor.parent = current_node
 neighbor.g = tentative_g
 neighbor.h = self.calculate_
heuristic(neighbor)
 neighbor.f = neighbor.g + neighbor.h
 heapq.heappush(self.open_list, neighbor)
 return None

 # Usage
 if __name__ == “__main__”:
 # Create nodes
 node_a = Node(“A”)
 node_b = Node(“B”)
 node_c = Node(“C”)
 node_d = Node(“D”)
 node_e = Node(“E”)

 # Create edges
 node_a.edges = {“B”: Edge(node_b, 2), “C”: Edge(node_c,
3)}
 node_b.edges = {“D”: Edge(node_d, 2), “E”: Edge
(node_e, 4)}
 node_c.edges = {“D”: Edge(node_d, 1)}
 node_d.edges = {“E”: Edge(node_e, 1)}

62 Artificial Intelligence and Machine Learning for Real-World Applications

 # RUN A* ALGORITHM
 astar = AStar(node_a, node_e)
 path = astar.run()
 print(“Shortest path:”, path)

3.5.4 Means–Ends Analysis: Means–ends analysis is a problem-solving tech-
nique commonly used in AI to narrow down the search space in AI applications.
This method employs strategies that can reason both forward and backward, making
it suitable for addressing large, complex problems. It functions by breaking down
larger problems into smaller, more manageable subproblems and then solving these
smaller parts sequentially.

Central to this technique is the evaluation of differences between the current state
and the desired goal, with the aim of reducing these disparities. An essential aspect
of intelligence is the ability to identify a series of actions that lead to a desired out-
come. A problem-solving system should be connected to its environment through
input (afferent) sensors and output (efferent) actions. A means-ends analysis system
also incorporates memory to store information about the environment’s state, sen-
sors, and actions.

Case: Goal Stack Planning

Goal stack planning involves organizing goals and subgoals in a hierarchi-
cal manner. We start at the goal state and try fulfilling the preconditions
required to be satisfied first. We iterate over the goals and subgoals until we
reach the initial state. A stack is used to hold these goals and the actions that
we need to perform.

Algorithm

	 1.	Push the original goal on stack.
	 2.	Repeat following until the stack is empty.

a.	 If stack-top is a compound goal, push its subgoals.
b.	 If stack-top is a single unsatisfied goal, replace it with action and its

preconditions.
c.	 If stack-top is action, pop and extend the knowledge base with action

effects.
d.	 If stack-top is a satisfying goal, pop it from the stack.

63Problem-Solving Methods and Search Strategies

Heuristic Guidance

Heuristics in MEA serve as problem-solving strategies that guide the selection and
application of means to achieve goals. Heuristics are the rules of thumb or guiding
principles that expedite the decision-making process, helping navigate through the
solution space more efficiently.

	 a.	Subgoal Ordering
		  Subgoal ordering involves prioritizing or ordering the resolution of sub-

goals based on certain criteria. This can include factors such as depen-
dencies between subgoals, the ease of resolution, or the significance of a
subgoal in achieving the overall objective.

	 b.	Difference Reduction
		  Difference reduction focuses on identifying the differences between the current

state and the desired goal state. The heuristic strategy involves selecting the means
that reduce these differences incrementally, guiding the system toward the goal.

	 c.	Means Refinement
		  Means refinement involves continuously improving and optimizing the

selected means during the problem-solving process. This heuristic ensures
that the chosen means are not only effective in achieving the subgoals but
also are refined iteratively to enhance efficiency.

Algorithmic Implementation

Initialization

The algorithm begins with the input of the problem description, including the initial
state and the desired goal state.

	 i.	Create an empty goal stack to present the hierarchy of goals and subgoals.
	 ii.	Push the top-level goal into the goal stack.
	 iii.	 Initialize the current state to the initial state of the problem.

Means Identification

At each iteration, pop the top goal from the goal stack.

	 i.	 Identify potential means (actions or subgoals) that can be applied to achieve
the current goal.

	 ii.	Apply heuristics to guide the selection of most suitable means.
	 iii.	Evaluate the effectiveness of each potential means based on the heuristics.

If means refinement is part of the strategy, adjust the chosen means to opti-
mize the solution path.

Iteration

	 a.	Check if the current state satisfies the goal at the top of the stack. If yes,
mark the goal as achieved and proceed to the next iteration.

64 Artificial Intelligence and Machine Learning for Real-World Applications

	 b.	 If the goal is not achieved, apply the selected means to transition the system
to a new state. Update the current state based on the side effects of the cho-
sen means.

	 c.	 If subgoals are generated in the process, push them onto the goal stack,
maintaining the hierarchical structure.

	 d.	Repeat the process from b. until the top level goal is marked as achieved.

The algorithm terminates once the top level goal is achieved. The sequence of means
and subgoals that lead from the initial state to the goal state represents the solution
path.

Extensions and Enhancements to MEA

Backward Chaining

Backward chaining is an extension of MEA that reverses the problem-solving
direction. Instead of starting with the initial state and progressing toward
the goal, backward chaining starts with the goal and works backward to
identify the means necessary to achieve it.

Backward chaining is particularly useful in scenarios where the final goal is
known, and the challenge lies in determining the prerequisite conditions or
subgoals to reach that goal.

Forward Chaining

In contrast to backward chaining, forward chaining starts with the initial state
and progresses toward the goal. It iteratively applies means to achieve sub-
goals, gradually building toward the top-level goal.

Forward chaining is effective when the initial state is known, and the challenge
is to determine the sequence of actions or subgoals that lead to the desired
outcome.

Domain Knowledge

The basic MEA algorithm can be enhanced by incorporating domain-spe-
cific knowledge. This involves leveraging information about the problem
domain to guide the selection of means and improve the efficiency of
problem-solving.

Incorporating domain-specific knowledge enhances the adaptability of MEA
by tailoring the problem-solving approach to the intricacies of a particular
domain. This is especially valuable when dealing with complex and special-
ized problem spaces.

2.5.5 �P roblem Reduction and AO* Algorithm

AI has redefined problem-solving strategies, offering innovative techniques
such as problem reduction and the AO* algorithm. Problem reduction, a key AI
approach, involves simplifying intricate problems by dividing them into manageable

65Problem-Solving Methods and Search Strategies

subproblems, streamlining the overall solution process. The AO* algorithm, a piv-
otal search algorithm in AI, extends the capabilities of the renowned A* algorithm,
enhancing search efficiency and solution optimization. By integrating these tech-
niques, AI systems can effectively address complex tasks, contributing significantly
to the development of intelligent problem-solving methodologies.

Problem Reduction:

Problem reduction is a critical technique in the field of AI that serves to simplify
complex problems by decomposing them into smaller, more manageable subproblems.
This method is crucial in AI because it allows for the effective resolution of intricate
tasks that may otherwise be too challenging or time-consuming to solve directly.

The significance of problem reduction in AI lies in its ability to streamline the
problem-solving process. By breaking down complex problems into simpler compo-
nents, AI systems can address each subproblem independently, making the overall
task more feasible and comprehensible. This approach not only reduces the compu-
tational burden but also enables the application of specific algorithms or techniques
tailored to each subproblem. As a result, AI systems can efficiently navigate and
resolve complex real-world issues, ranging from automated planning and reason-
ing to natural language processing and computer vision. Overall, problem reduction
plays a crucial role in enhancing the efficiency and effectiveness of AI systems, mak-
ing it an indispensable strategy in the realm of AI.

Why Problem Reduction Is Needed?

Problem reduction optimizes the allocation of computational resources, ensuring
that the AI system operates effectively within resource constraints. By facilitating a
systematic and targeted approach to addressing multifaceted real-world issues, prob-
lem reduction significantly contributes to the overall effectiveness of AI applications.

How Problem Reduction Is Performed in AI?

Problem reduction is typically performed through a systematic approach that
involves several key techniques:

•	 Decomposition: Breaking down complex problems into simpler subprob-
lems that are more manageable and easier to solve.

•	 Abstraction: Focusing on the essential aspects of the problem while ignor-
ing unnecessary details, allowing for a more streamlined analysis.

•	 Dependency Analysis: Identifying and understanding the relationships
and dependencies among different components of the problem to determine
their interconnections and dependencies.

•	 Heuristic Evaluation: Employing heuristic techniques to guide the prob-
lem-solving process and prioritize subproblems based on their estimated
potential for solution optimality.

•	 Constraint Satisfaction: Ensuring that the solutions generated for each
subproblem adhere to a set of predefined constraints or conditions, thus
maintaining the integrity of the overall problem-solving process.

66 Artificial Intelligence and Machine Learning for Real-World Applications

AO* Algorithm:

The AO* (A-star-Optimal) algorithm is an extension of the A* algorithm, commonly
used in AI for path finding and graph traversal. It aims to improve the efficiency and
optimality of the search process. AO* achieves this by integrating problem reduction
heuristics and additional techniques to guide the search more effectively toward the
optimal solution. The algorithm incorporates a heuristic function to estimate the cost
of reaching the goal from a particular node, thus guiding the search toward the most
promising paths. It also prioritizes node expansion based on the cost incurred so far
and the estimated cost to reach the goal, ensuring an optimal solution. The use of
problem reduction heuristics allows AO* to streamline the search process, making
it a powerful tool for solving complex optimization and path-finding problems in
various AI applications.

The AO* algorithm is a type of best-first search used for finding optimal solutions
in AND–OR graphs. Unlike A*, it works on graphs with alternative paths (OR) and
mandatory subgoals (AND).

AND–OR Graph: A graph with two types of nodes:
o	 AND Node: Requires all its child nodes to be reached to achieve the

goal.
o	 OR Node: Only one child node needs to be reached to achieve the goal.

f(n): Evaluation function, sum of actual cost (g(n)) from the start to the current
node and the estimated cost (h(n)) from the current node to the goal.

Open List: Stores nodes to be explored, ordered by f(n).
Closed List: Stores explored nodes.

Steps in Algorithm:

Steps:

	 1.	Initialize: Put the starting node in the open list with f(n) based on the
heuristic.

	 2.	Loop:
o	 Select the node with the lowest f(n) from the open list.
o	 If it’s a goal node, you have the optimal solution. Stop.
o	 If it’s an OR node, expand it by adding all its children to the open list

with f(n) calculated.
o	 If it’s an AND node:

–	 Expand all its children.
–	 For each child, check if it’s already in the closed list with a lower f(n).
–	 If yes, skip it (better path found previously).
–	 If no, add it to the open list with f(n) calculated.

o	 Update f(n) of the parent node based on the best child’s f(n) (propaga-
tion). This ensures the most promising path is explored first.

o	 Move the selected node to the closed list.

Imagine you need to travel from City A to City G. You can either drive (D) or take a
train (T). Driving allows a detour to City E (optional, OR node). A train goes directly

67Problem-Solving Methods and Search Strategies

to City G or City F (alternative, OR node). We have estimated travel times (heuristics)
between cities.

Graph:

A
/ \
D T
/ \ / \
B E F G

Travel Times:

•	 A-B: 1
•	 A-D: 2
•	 B-E: 3
•	 D-E: 1
•	 T-F: 4
•	 T-G: 5
•	 E-G: 2
•	 F-G: 1

Solution:

	 1.	Start with A, f(A) = 0 + estimated travel time to G (let’s say 7) = 7.
	 2.	Explore A’s children (D and T).

o	 D: f(D) = 2 + estimated travel time to G (let’s say 5) = 7.
o	 T: f(T) = 0 + 5 = 5 (lower than D, becomes priority).

	 3.	Explore T’s children (F and G).
o	 G is the goal, so stop! The optimal path is A -> T -> G with total cost 5.

We started with the most promising option (train) based on the heuristic. Since T
led directly to the goal, we didn’t need to explore the detour via driving (D). The
algorithm also ensured the best path within the train option (T -> G) by updating the
parent node’s (T) f(n) based on the child’s (G) actual cost.

This is a simplified example. In real-world scenarios, the heuristics might not be
perfect, and the algorithm might explore some unnecessary paths before finding the
optimal solution. However, AO* guarantees an optimal solution eventually and is
efficient for problems with alternative paths and mandatory subgoals.

•	 Optimal Path Selection: After reaching the goal node, trace back the path
from the goal node to the start node using the recorded parent nodes, thus
determining the optimal path.

Connection between AO* and Problem Reduction:

The AO* algorithm is closely connected to problem reduction in AI as it integrates
problem reduction heuristics to enhance search efficiency. By breaking down com-
plex problems into manageable subproblems, AO* prioritizes relevant nodes, thus

68 Artificial Intelligence and Machine Learning for Real-World Applications

guiding the search toward the most promising solutions. Its heuristic evaluation and
optimal path selection rely on problem decomposition, ensuring an effective and tar-
geted approach to complex problem-solving. This integration allows AO* to stream-
line the search process, leading to the efficient resolution of intricate tasks within AI
applications.

Problem reduction is indispensable for managing complex tasks, optimizing
resource allocation, and applying specialized techniques, enabling AI systems to
navigate intricate real-world challenges effectively. Meanwhile, the AO* algorithm’s
integration of problem reduction heuristics enhances search efficiency, prioritizing
relevant nodes and guiding the search toward optimal solutions. Its practical appli-
cations in robotics, logistics, and gaming underscore its significance in enabling
efficient pathfinding solutions and advancing intelligent systems. Together, these
methodologies drive the development of sophisticated AI systems.

2.5.6 � Constraint Satisfaction

Constraint satisfaction is the process of finding a solution through a set of constraints
that impose conditions that the variable must satisfy. Depending on the type of con-
straints under consideration, several strategies are employed in constraint satisfac-
tion. Constraints on a finite domains are widely employed, to the extent that issues
based on constraints on a finite domain are usually identified with constraint satis-
faction problems (CSPs). Typically, searches are used to tackle these kinds of issues;
specifically, local or backtracking searches are used. Another family of approaches
employed in similar situations is constraint propagation; generally speaking, most
of them are incomplete, meaning they may show the problem as unsatisfactory or
solve it, but not always. In addition, constraint propagation techniques are applied in
conjunction with search to reduce the complexity of a particular issue. Real or ratio-
nal numbers are other types of restrictions that are taken into consideration; issues
involving these constraints are solved.

Constraint encapsulation into programming languages was developed in the
1980s and 1990s. Prolog was the first language designed specifically to facilitate
constraint programming. Since then, constraint-programming libraries—like Choco
for Java—have been made accessible in languages other than C++ or Java.

In the 1970s, the science of AI introduced constraint satisfaction as a generic
issue. The field dates back to Joseph Fourier in the 19th century, however, when the
constraints were expressed as multidimensional linear equations defining (in)equal-
ities. George Dantzig’s 1946 invention of the simplex algorithm for linear program-
ming, a special case of mathematical optimization, made it possible to determine
workable solutions to problems with hundreds of variables.

The key components of constraint satisfaction include the following:

	 1.	Variables: These are the things or entities to which values must be allo-
cated in order to meet the restrictions. Generally, there is a range of values
that can be assigned to each variable.

	 2.	Domains: The collection of all potential values that a variable can have
is known as its domain. In a Sudoku problem, for instance, every cell rep-
resents a variable with a range of integers from 1 to 9.

69Problem-Solving Methods and Search Strategies

Constraints: Relationships or requirements that must be met between the variables
are known as constraints. These limitations can be stated as equations, logical state-
ments, or any other kind of relation. The combinations of variable assignments that
are allowed and not allowed are specified by constraints.

1.	 Constraint Satisfaction Problem:

A group of objects whose state must meet several restrictions or limits is referred
to as a CSP in mathematics. Constraint satisfaction techniques address the homoge-
neous collection of finite constraints over variables that CSPs describe as entities in
a problem.

Formal Definition of CSP:
Formally, a CSP is defined as a triple, where

•	 X= {X1, . . ., Xn} is a set of variables;
•	 X= {V1, . . ., Vn} is a set of their respective domains of values; and
•	 X= {C1, . . ., Cn} is a set of constraints.

CSP Algorithm:

The backtracking algorithm is a DFS technique that gradually explores the search
space of potential solutions until a solution that fulfills all the requirements is found.
Before continuously attempting to assign values to the other variables, the technique
first selects one variable and assigns a value to it. If at any moment a variable cannot
be provided a value that satisfies the requirements, the procedure goes back to the
previous variable and attempts a different value. The algorithm is complete after
every assignment has been tried or a solution that fulfills every requirement has been
found.

A modified version of the backtracking method that uses some form of local con-
sistency to reduce the search space is the forward-checking algorithm. The method
maintains a list of the remaining values for each unassigned variable and applies
local constraints to remove conflicting values from these sets. After a variable is
given a value, the algorithm looks at its neighbor to determine if any of the remain-
ing values becomes inconsistent. If they do, the program eliminates those neighbors
from the sets. If a variable has no more values after a forward check, the algorithm
reverses the direction.

•	 Local consistency and inference are two techniques used by algorithms for
propagating constraints to reduce the size of the search space. These algo-
rithms work by propagating limitations across variables and using the gath-
ered data to remove inconsistent values from the variable domains.

Algorithm Steps

•	 Choose an unassigned variable.
•	 Assign a value from its domain.

70 Artificial Intelligence and Machine Learning for Real-World Applications

•	 Check if the assignment violates any constraints with already assigned
variables.
–	 If yes, backtrack: Undo the assignment and try a different value for the

same variable.
–	 If no, proceed to the next unassigned variable.

•	 Repeat steps 2–4 until all variables are assigned or a dead end is reached (no
valid value for the current variable).

	 2.	Constraint Propagation:

Constraint propagation techniques improve backtracking by reducing the search
space. The idea is to remove inconsistent values from variable domains before
assigning them. This avoids exploring paths that will ultimately lead to failure. Here
are some common constraint propagation techniques:

•	 Arc Consistency (AC-3): This algorithm ensures that for any two variables
connected by a constraint, no value in one variable’s domain leads to a vio-
lation when paired with any value in the other variable’s domain.

Constraint propagation can significantly reduce the search space for backtracking,
making it more efficient for complex problems.

Here’s an example of a CSP:

Problem: Assigning colors (red, green, and blue) to three houses such that no
two neighboring houses have the same color.

Variables: House 1, House 2, House 3.
Domains: {Red, Green, Blue} for each house.
Constraints: House 1–House 2 (colors must be different), House 2–House 3

(colors must be different).

This problem can be solved using backtracking with constraint propagation (AC-3)
for efficiency.

These are just two basic algorithms for solving CSPs. There are many variations
and more advanced techniques depending on the specific problem characteristics.

Constraint Graph:

A constraint graph is a graphical representation of a CSP. A constraint graph has the
following elements:

	 1.	Nodes: Each node in the graph represents a variable in the CSP.
	 2.	Edges: An edge between two nodes represents a constraint between the

corresponding variables. If variables Xand Y have a constraint, there is an
edge between the nodes representing X and Y in the graph.

In constraint satisfaction research in AI and operation research, constraint graphs
and hypergraphs are used to represent the relationship among constraints in a CSP.

71Problem-Solving Methods and Search Strategies

A constraint graph is a special case of a factor graph that allows for the existence of
free variables.

Constraint Hypergraph:

A constraint fulfillment problem’s constraint hypergraph is a hypergraph in which
variables are represented by the vertices and constraints are represented by the hyp-
eredges. If the matching variables are those found in a constraint, then a group of
vertices forms a hyperedge.

	 1.	Primal Constraint Graph:

The graph where each node represents a variable of the issue and an edge connects
two nodes if the corresponding variables appear together in a constraint is known as
the primal constraint graph, also known as the primal graph or the Gaifman graph,
of a constraint fulfillment problem.

In the real world, the constraint hypergraph’s primary graph is the primal con-
straint graph.

Advantages of CSPs:

	 1.	Problem Modeling:
Adaptability:
CSPs are capable of modeling a variety of real-world issues, such as puz-

zles, scheduling, resource allocation, and configuration. They can be
used in a variety of fields because of their adaptability.

Natural Representation:
A large number of issues across various fields can be naturally represented

as CSPs, which facilitate comprehension and problem-solving for
problem-solvers.

	 2.	Effective Problem-Solving:
Optimization:
By establishing objective functions and incorporating them into the con-

straints, CSPs can be applied to optimization problems. This makes it
possible to identify solutions that meet particular requirements or those
that are ideal.

Heuristics:
A number of algorithms and heuristics have been devised to solve CSPs

effectively, which makes them useful in cases of huge and difficult
problems.

Incremental Problem-Solving (CSP): In dynamic situations, partial solu-
tions can be developed and refined over time, thanks to CSP solutions’
ability to be built incrementally.

	 3.	Real-World Applications:
Scheduling:
To maximize resource usage and reduce conflicts, CSPs are utilized in

timetabling, personnel scheduling, project management, and other
scheduling issues.

72 Artificial Intelligence and Machine Learning for Real-World Applications

Configuration: CSPs are used in product configuration, which includes
adjusting hardware, software, or services to meet the needs of the client.

Circuit Design:
By guaranteeing that components adhere to particular specifications and

limitations, CSPs support the design of electronic circuits.
In robotics, CSPs are useful for motion planning, which is the process

of guiding a robot through a given area while avoiding obstacles and
adhering to mobility restrictions.

Natural Language Processing:
CSPs are utilized for tasks such as word sense clarification and grammar

correction.
	 4.	Decision Support:

Diagnosis and Troubleshooting:
By modeling the relationships between symptoms and likely causes such as

constraints, CSPs can be utilized to diagnose system flaws.
Resource Allocation:
CSPs help in efficiently allocating resources like labor, equipment, and

funds to ensure maximum utilization.
	 5.	Collaborative Problem-Solving in Multi-Agent Systems:

In multi-agent systems, CSPs are used to simulate agent interactions and
promote cooperation and bargaining.

Building Consensus:
CSPs can assist parties in coming to an agreement by identifying solutions

that meet the needs and preferences of all parties.
	 6.	Educational Objectives:

Teaching Tool:
CSPs are used in AI and computer science courses to teach problem-solving

strategies, algorithms, and heuristics.
	 7.	Development and Research:

Algorithm Development:
In the fields of AI and optimization, researchers use CSPs as a framework

to create and test novel algorithms and methods.
CSPs are useful for prototyping and testing novel approaches to prob-

lem-solving before implementing them in more complicated systems.

Problems in CSPs:

Combinatorial Explosion in CSPs:
There can be a huge number of alternative assignment combinations, creating

a large search space. Pruning strategies and clever heuristics are essential for con-
trolling this explosion.

Local Minimum:

Occasionally, a CSP algorithm may become trapped in a situation where a solution is
actually there but unable to be found. Methods such as reverse engineering and intelli-
gent variable and value selection assist in reducing this issue.

73Problem-Solving Methods and Search Strategies

2.5.7 � Case Studies on Production System

Example 1: Let’s construct a basic production system to categorize geometric shapes
based on their properties:

Knowledge Base Rules:

Rule 1: If a shape has three sides and three angles, then it is a triangle.
Rule 2: If a shape has four equal sides and four right angles, then it is a square.
Rule 3: If a shape has four sides and opposite sides are parallel, then it is a

parallelogram.

Working Memory (Initial Facts):

The shape has three sides.
The shape has three angles.

Inference Engine:

The inference engine would match the first rule (Rule 1) based on the given facts,
place it on the agenda, and fire it. This would update the working memory with the
new fact: “The shape is a triangle.”

Expert Systems: Classic production systems in AI often incorporate expert
systems. These systems emulate the problem-solving capabilities of human experts
within specific fields. They employ a rule-based approach, where an inference engine
processes a knowledge base of rules to draw conclusions and offer expert advice.
Examples of expert systems include medical diagnosis systems and financial advi-
sory systems.

Manufacturing Control Systems:

In manufacturing, AI-powered production systems are utilized to supervise and
optimize process performance. Rules guide machine adjustments, inventory man-
agement, and quality control parameters. These systems enhance efficiency and
responsiveness in dynamic manufacturing environments.

Customer Support Chatbots:

Customer support chatbots leverage production rules to interact with users based on
predetermined criteria. The chatbot’s responses to user inquiries are governed by
rules that dictate its actions, such as providing information or escalating the issue
to a human supervisor. These systems improve customer satisfaction and streamline
support operations.

74� DOI: 10.1201/9781003532170-3

3 Knowledge
Representation

Knowledge representation is a fundamental aspect of artificial intelligence (AI) that
deals with the organization and structuring of information to facilitate machine
understanding and reasoning. In this chapter, we focus on the key subtopics of
knowledge representation: ontologies, objects, and events.

There are many subtopics in the field of knowledge representation:

	 1.	Ontologies:

Ontologies are a crucial component of knowledge representation in AI. They provide
a structured way to define and represent concepts, entities, and their interrelation-
ships within a specific domain. An ontology comprises a controlled vocabulary of
terms and a formal description of how these terms relate to one another. Ontologies
serve as a shared understanding of a domain, enabling machines to reason and make
inferences based on this structured knowledge.

	 2.	Objects:

Objects represent entities or things in the world that AI systems need to under-
stand and manipulate. Objects in knowledge representation are characterized by
their properties, attributes, and relationships with other objects. They serve as a
foundation for representing real-world entities in a structured manner, allowing AI
systems to reason about and interact with them. In AI, object-oriented knowledge
representation is used in applications such as robotics, computer vision, and expert
systems.

Objects play a crucial role in AI knowledge representation, providing a structured
way to model and represent entities, concepts, and their attributes within a given
domain. They are fundamental in organizing information and facilitating reason-
ing in various AI applications. Here are some key uses of objects in AI knowledge
representation:

	 a.	Entity Modeling: Objects represent entities or things in the world. In AI
systems, these entities can range from physical objects like cars or animals
to abstract concepts like ideas or events. Objects allow AI systems to work
with these entities in a structured manner.

	 b.	Attribute Representation: Each object can have attributes that describe
its characteristics or properties. For example, a “car” object may have attri-
butes like “color,” “model,” and “year.” This attribute–value representation
is vital for capturing essential information about objects.

https://doi.org/10.1201/9781003532170-3

	 c.	Relationship Modeling: Objects can be related to one another through
relationships. These relationships describe how objects interact or are con-
nected. For instance, a “person” object can have a “works for” relationship
with a “company” object, indicating employment.

	 d.	Hierarchical Organization: Objects can be organized hierarchically, cre-
ating a structured taxonomy. This hierarchy helps in classifying and cate-
gorizing objects based on their similarities and differences. For example, a
taxonomy of animals might include objects like “mammals,” “birds,” and
“reptiles.”

	 e.	Ontology Development: In building ontologies, which are formal represen-
tations of knowledge in a specific domain, objects play a central role. They
define the classes or concepts in the ontology and their associated properties
and relationships.

	 f.	Reasoning and Decision Support: Objects, their attributes, and relation-
ships enable AI systems to perform reasoning and decision-making. For
instance, a diagnostic system might use objects representing symptoms, dis-
eases, and patient information to make medical diagnoses.

In summary, objects are a foundational element of AI knowledge representation,
serving as a structured way to model and work with entities, concepts, and their
attributes and relationships in a domain. They are integral to various AI applications,
enabling systems to organize, reason about, and interact with the world in a more
intelligent and context-aware manner.

	 III)	 Events:

Events in knowledge representation refer to occurrences or happenings that can be
observed and described. Events are essential for capturing the dynamic aspects of the
world, such as processes, actions, and changes. Representing events involves specifying

FIGURE 3.1  Knowledge Representation.

75Knowledge Representation

76 Artificial Intelligence and Machine Learning for Real-World Applications

their participants, time, and the conditions under which they occur. Understanding
events is crucial for AI systems that need to model and reason about dynamic scenarios,
such as natural language understanding, process automation, and monitoring systems.

Events are essential elements in AI knowledge representation, particularly when
dealing with dynamic and temporal aspects of a domain. They allow AI systems
to capture, model, and reason about processes, changes, and occurrences. Here are
some key uses of events in the knowledge representation of AI:

	 1.	Process Modeling: Events are used to model and represent processes and
workflows. This is crucial in areas like business process management and
industrial automation.

	 2.	Temporal Reasoning: Events help AI systems reason about the sequence
of events over time. Temporal reasoning is essential in scheduling, plan-
ning, and tracking changes in dynamic environments.

	 3.	Change Detection: Events enable the detection and monitoring of changes
in a system. For example, they are used in intrusion detection systems to
identify suspicious events in network traffic.

	 4.	Causal Inference: Events can be used to establish causal relationships
between different occurrences, helping AI systems understand why certain
events happen as a result of others.

	 5.	Event Detection in Text: In natural language processing (NLP), events are
used to extract and understand actions, occurrences, and developments in
text, facilitating tasks like information extraction and event summarization.

	 6.	Event-Based Reasoning: AI systems can use events to reason about actions
and their consequences. This is valuable in automated planning and deci-
sion support.

FIGURE 3.2  Applications of Objects in AI.

77Knowledge Representation

Some of the uses of events in AI:

1. Process
modeling

4. Causal
inference

7. Event driven
systems

2. Temporal
reasoning

5. Event
detection in text

8. Environmental
monitoring

3. Change
detection

6. Event-based
reasoning

9. Healthcare
monitoring

FIGURE 3.3  Events in AI.

In AI, the use of events is paramount for understanding and modeling processes,
changes, and temporal dynamics in various domains. They enable AI systems to
make sense of and respond to the evolving and dynamic nature of the world.

Knowledge Representation and Mapping:

•	 Knowledge and Representation:
o Knowledge is the important element, or we can say it is the information

that current computer AI uses so that from the given knowledge that AI
may infer some useful statistical data for any organization or its use.

o Knowledge is information that prevails in the world. Representation is
the way knowledge is represented in different formats, e.g., encoding. It
defines a system’s performance in any computational tasks.

•	 Types of Knowledge:

The diagram illustrates the steps AI takes to achieve its objectives. It begins with
the perception component, which collects information from various sources such as
audio, video, text from platforms like Instagram, and social media.

Subsequently, the learning component plays a crucial role in acquiring knowledge
from the data gathered by perception. This process enables the AI system to adapt
and improve its performance.

However, the core of AI lies in the knowledge representation and reasoning com-
ponents. These two aspects are pivotal in enabling the machine to mimic human-like
activities. While they operate independently, they are also integrated to enhance the
AI’s capabilities.

Finally, the planning and execution phases rely heavily on the analysis of the
knowledge represented and reasoned upon. These stages are where AI translates its
acquired intelligence into practical actions to achieve its intended goals.

78 Artificial Intelligence and Machine Learning for Real-World Applications

Knowledge

Structural knowledge

Meta knowledge

Procedural

knowledge

Declarative

knowledge

Knowledge or data about any existing knowledge

It includes rules,
strategies, procedures

Descriptive knowledge and
expressed in
declarative sentences

Describes any relation persists
between any concepts or objects

FIGURE 3.4  AI Knowledge Cycle.

FIGURE 3.5  AI Components.

79Knowledge Representation

3.1 � KNOWLEDGE REPRESENTATION USING PREDICATE LOGIC

3.1.1 � Knowledge

Knowledge is any information or data that is well-organized and well-structured and
can be processed in such a way that it is efficient for an intelligent system to under-
stand, process, and infer results from. It also enables the system to act upon the data
and make necessary judgments or decisions.

Knowledge includes facts, concepts, rules, relationships, and all inferred or
derived results about a particular domain or problem. With this knowledge, an AI
system can solve problems, make informed decisions, and perform necessary tasks
and jobs.

There are two main types of knowledge in AI:
Declarative Knowledge: This represents facts and information about a particular

domain or a problem. It includes statements about objects, their properties, and the
relationships between them.

It answers questions like, “What is?”
Procedural Knowledge: This focuses on how to perform tasks and actions. It

also includes rules, procedures, algorithms, and strategies for solving problems or
for achieving goals.

It answers questions like, “How can I?”

3.1.2 � Knowledge Representation

In AI, knowledge representation is the process of encoding, structuring, and organiz-
ing knowledge in such a format that can be easily used by an AI system to make cal-
culated decisions and reasoning. Knowledge representation allows machines to store,
manipulate, and access information relevant to a particular task or domain, and due
to this reason, knowledge representation is a fundamental component of AI systems.

3.1.3 �P redicate Logic

Predicate logic is a mathematical model used in AI for reasoning with predicates. We
use predicates to model facts and use them to reason facts and derive results from the
facts or take informed decisions.

Some key components of predicate logic are as follows.

Predicates: Predicates are statements or properties that can be true or false
depending on the values of their arguments. In predicate logic, predicates
are represented by symbols or letters, often followed by variables. For
example,

P(x) might represent the predicate “x is a prime number.”

Variables: Variables are placeholders that can take on various values. In predicate
logic, variables are often denoted using letters, such as x, y, or z. They are used to
represent objects or elements in the domain of discourse.

80 Artificial Intelligence and Machine Learning for Real-World Applications

Quantifiers: We use two quantifiers in predicate logic: the universal quantifier
(") and the existential quantifier ($). These quantifiers allow us to make statements
about all or some elements in a domain.

Universal quantifier (") is used to express that a statement is true for all elements
in the domain. For example, "x P(x) might mean “For all values of x, P(x) is true.”

Existential quantifier ($) is used to express that a statement is true for at least one
element in the domain. For example, $x P(x) might mean “There exists at least one
value of x for which P(x) is true.”

3.1.4 � Knowledge Representation Using Predicate Logic

We can represent knowledge in predicate logic using the aforementioned compo-
nents. For example,

Rajesh is a soldier.
Suresh is a doctor.

The above facts or statements can be represented as

Rajesh is a solider.
Soldier(Rajesh)
Suresh is a doctor.
Doctor(Suresh)
We now use quantifiers to represent more complex facts.

Universal Quantifier ("):

"x: means “For all x.”
This means that something is true for all possible values of a variable: in this

case x.

For example:

Ketan knows everyone.
"x: knows (Ketan,x)
Existential Quantifier ($):
$x: means there exists some.
This means that there is some possible value of x for which this is true.

For example:

Somebody knows Ketan.
$x: knows(x, Ketan)

We can also use both quantifiers separately:

81Knowledge Representation

For example:

Everybody loves somebody.
"x: $y: loves(x, y)

3.1.5 �R epresenting Facts in Logic

Logic provides a precise language for expressing facts and knowledge. It eliminates
vagueness, which ensures that statements are clear and well-defined. Logic allows
for the formalization of facts and relationships, making it possible to represent
knowledge systematically. Logical representation enables automated inference and
reasoning. Logic allows us to check for inconsistencies in a set of facts. Logic is used
to represent problems, constraints, and goals. To represent facts in logic, we use a
structured approach that involves the following components.

Statements and Predicates:

Facts are expressed as statements. Predicates, typically written as “P(x),” con-
vey properties or relationships.

Constants and Variables:

Constants denote specific objects or elements within the domain, such as
“John” or “Alice.” Variables, like “x,” are used to represent general elements
and can stand for any specific object.

Quantifiers:

We use quantifiers, like " (for all) and $ (there exists), to specify the extent of
a statement’s validity.

Logical Connectives:

Logical connectives, including Ù (AND), Ú (OR), (NOT), → (IMPLIES), and
↔ (IF AND ONLY IF), are employed to combine and manipulate facts.
These connectives enable the formation of more intricate statements.

Functions:

Functions can represent relationships involving mappings between objects or
entities. For example, the function “Age(x)” might denote the age of an indi-
vidual, allowing for the representation of various attributes or characteristics.

Rules and Constraints:

Beyond simple facts, logic can be used to express rules, constraints, and depen-
dencies among facts. These rules define how facts interrelate and can be
employed for logical reasoning.

82 Artificial Intelligence and Machine Learning for Real-World Applications

3.2 � USING PREDICATE LOGIC RESOLUTION ALGORITHM
AND DEDUCTION

Predicate Logic Resolution Algorithm: The key concept of predicate logic infer-
ence is the resolution algorithm. It is employed to reconcile discrepancies, establish
the veracity of an argument, and extract new information from previously acquired
knowledge. There are two main steps in the algorithm:

Conversion to Clausal Form: Prior to applying resolution, we change the pred-
icate logic statements into clausal form. Through the reduction of complex
assertions into a series of clauses (disjunctions of literals), the representation
is made simpler.

For instance:

"x(P(x) Ú Q(x)) Ù P(a) is the original predicate logic statement.

Form of Clause: {P(x) Ù Q(x), P(a)}

	 a.	Resolution Rule: Utilizing complimentary literals (a literal and its nega-
tion) in various clauses, the resolution rule enables the deduction of a new
clause. The procedure is followed until a resolution is no longer achievable
after this new clause is introduced to the group of clauses.

For instance:

Clauses given: {P(x) Ú Q(x), P(a)}
Step of Resolution: {Q(a)}

The Deduction Process:

The process of drawing conclusions from premises through the application of logical
rules and inference mechanisms is known as deduction, and it is a fundamental idea
in both AI and logic. Deduction in predicate logic is the process of making inferences
about the world and drawing new conclusions from known facts.

Modus Ponens: A straightforward method of inference that allows us to conclude that
B is true if we have premises in the form of “If A then B.”

(A Þ B) and A is true.

For instance:

Concepts: A Þ B, A

83Knowledge Representation

Conclusion: B

	 b.	Resolution: As was previously mentioned, the resolution algorithm is an
effective technique for predicate logic deduction. It lets us resolve comple-
mentary literals to get new clauses.

For instance:

{P(x) Ú Q(x), P(a)} are the clauses.

Inference: {Q(a)}

	 c.	Universal and Existential Quantifiers: Using quantifiers to make deductions
requires thinking through the range of variables. While existential quantifica-
tion ($) requires the introduction of new variables to satisfy the statement, uni-
versal quantification (") allows us to instantiate variables to specific values.

For instance:

The hypothesis is: "x Human(x) Þ Mortal(x).
Conclusion: Socrates, a human, → Socrates, a mortal

Resolution Algorithm

Before learning resolution theorem, every fact in predicate needs to be converted in
clause form.

Conversion to Clause Form

	 1.	To eliminate → from fact.
		 X → Y º ¬X Ú Y
	 2.	Reduce the scope of each (negation) to a single term.
		 ¬(X Ú Y) º ¬X Ù ¬Y
		 ¬(X Ù Y) º ¬XÚ ¬Y
		 ¬"p: X º $p: ¬X
		 ¬$p: X º "p: ¬X
		 ¬¬X º X
	 3.	Now variables should to be standardized and each quantifier should bind

with a unique variable.
		 ("p: X(p)) Ú ($p: Y(p)) º ("p: X(p)) Ú ($q: Y(q))
	 4.	All quantifiers should be moved to the left without changing their relative

order.
		 ("p: X(p)) Ú ($q: Y(q)) º "p: $q: (X(p) Ú (Y(q))
	 5.	To remove $, Skolem constant or functions must be introduced. Depend-

ing on information, $ can be either replaced by constant or parameterized
function.

84 Artificial Intelligence and Machine Learning for Real-World Applications

		 $p: X(p) º X(c) Skolem constant
		 "p: $q X(p, q) º "p: X(p, f(p)) Skolem function
	 6.	Drop quantifier "
		 "p: X(p) º X(p)
	 7.	Now convert the formula into a conjunction of disjuncts (CNF). It will allow

the separation of the clause corresponding to each conjunct.
		 (X Ù Y) Ú Z º (X Ú Y) Ù (Y Ú Z)
		 Example of Conversion:
		 "x: [Rom (x) → (Pomp(x) Ù dislike (x, Caes))]
		 Step 1: In the above expression, eliminate → and Û. It will become
		 "x: [Rom (x) Ú (Pomp(x) Ù dislike (x, Caes))]
		 Step 2: Move to each term in braces and reduce the scope.
		 "x: [Rom (x) Ù (Pomp(x) Ù dislike (x, Caes))]
		 "x: [Rom (x) Ù (Pomp(x) Ú dislike (x, Caes))]
	 •	 Demonstration of Step 3 for standardization to bind unique quantifiers with

variables.
		 "x: [["y: animal_all (y) → cares(x, y)] → [$y: cares(y, x)]]
		 After this step, a new variable z is introduced with $ as y was bonded with

both quantifiers.
		 "x: [["y: animal_all (y) → cares(x, y)] → [$z: cares(z, x)]]
		 Demonstration of Step 4: Move all quantifiers to the left without changing

their relative order.
		 "x: [["y: animal_all (y) Ù cares(x, y)] Ú [$z: cares(z, x)]]
		 After applying Step 4, the above statement becomes
		 "x: "y: $z: [animal_all (y) Ù cares(x, y) Ú cares(z, x)]
		 This statement is said to be in PNF (prenex normal form).
		 Demonstration of Step 5: Skolemization to remove $ quantifier.
		 $y: king (y) transformed into King (S1)
		 There exist a value y that satisfies king, so Skolem constant S1 is introduced.
		 Example of Skolem function
		 $y: "x: better (y, x)
		 The value of y that satisfies “better” depends on the particular value of x, so

parameterized function has to be introduced.
		 "x: better (f(x), x)
		 Demonstration Step 6: Dropping of prefix ".
		 "x: "y: "z: [Rom (x) Ú know (x, y) Ú dislike(y, z)]

After the prefix is dropped,

[Rom (x) Ú know (x, y) Ú dislike(y, z)]

Example to demonstrate Step 7: Convert the formula into a CNF.

Rom (x) Ú ((dislike (x, caes) Ù loyalto (x, caes))

P Ú (Q Ù R) º (P Ú Q) Ù (P Ú R)

85Knowledge Representation

CLAUSE 1 (Rom (x) Ú (dislike (x, caes)) Ù

CLAUSE 2 (Rom (x) Ú loyalto (x, caes))

Unification: It is the process of matching two literals and finding whether they both
can become identical with some substitution.

•	 Example 1:

dislike(marcus , X) dislike (marcus , caes)

caes/ X

•	 Example 2:

dislike(X,Y) dislike(john, Z) could be unified as:

John/X and y/z

Unification

UNIFY(p, q) = unifier θ where SUBST(θ, p) = SUBST(θ, q)

"x: knows(John, x) → hates(John, x) knows(John, Jane)

"y: knows(y, Leonid)

"y: knows(y, mother(y))

"x: knows(x, Elizabeth)

UNIFY(knows(John,x), knows(John, Jane)) = {Jane/x} UNIFY(knows(John, x),
knows(y, Leonid)) = {Leonid/x, John/y}

UNIFY(knows(John, x), knows(y, mother(y))) = {John/y, mother(John)/x}
UNIFY(knows(John, x), knows(x, Elizabeth)) = FAIL
Resolution Algorithm: When multiple related facts are present, they can be used

for inference mechanism. To apply resolution algorithm, prepossessing steps dis-
cussed above must be applied to convert into CNF. If any sentence is not in the
clausal form, then convert it into the clausal form.

Resolution Algorithm Steps:

	 1.	Start with negation of the proposition that is to be proved.
	 2.	Combine the related facts and apply unification if needed.
	 3.	Repeat until contradiction is found or no progress can be made:
e.g.,

86 Artificial Intelligence and Machine Learning for Real-World Applications

X(p) ∨∨Y(p) Z(r) ∨∨ ¬ X(P)

Y(p) Z(p)∨∨

		 If the result is empty clause (E), then the contradiction has been found and
the fact is true.

M(x) ¬ M(x)

E [EMPTY CLAUSE]

Example

	 1.	Marcus was a man.
	 2.	Marcus was a Pomp.
	 3.	All Pomp were Rom.
	 4.	Caes was a king.
	 5.	All Pomp were either loyal to Caes or disliked him.
	 6.	Everyone is loyal to someone.
	 7.	People only try to assassinate the king they are not loyal to.
	 8.	Marcus tried to assassinate Caes.

	 1.	“Marcus was a man”
		 man(marcus)------------- 1
	 2.	“Marcus was a Pomp”
		 pomp (marcus)------------- 2
	 3.	“All Pomp’s were Rom”
		 => "x1: pomp(x1) → rom(x1).
		 => "x1: pomp(x1) Ú rom(x1)
		 pomp (x1) Ú rom(x1)----------------- 3
	 4.	“Caes was a king”
		 king (caes)----------------	 4
	 5.	“all Rom’s were either loyal to caes or disliked him”
		 => "x2: rom(x2) → [loyal_to(x2, caes) Ú dislike(x2, caes)]
		 => "x2: rom(x2) Ú loyal_to(x2, caes) Ú dislike(x2, caes)
		 => rom(x2) Ú loyal_to(x2, caes) Ú dislike(x2, caes)
		 rom (x2) Ú loyal_to (x2, caes) Ú dislike (x2, caes)------ 5
	 6.	“Everyone is loyal to someone”
		 => " x3: $ y1: loyal_to (x3, y1).
		 Let f(x3) be a Skolem function, then
		 => "x3: loyal_to(x3, f(x3)).
		 => loyal_to(x3, f(x3))
		 loyal_to (x3, f(x3))---------------- 6
	 7.	“People only try to assassinate king they are not loyal to.”
		 => "x4: "y2: [man(x4) Ù king(y2) Ù try_assassinate(x4, y2)] → loyal_to(x4, y2)
		 => "x4: "y2: [man(x4) Ù king (y2) Ù try_assassinate(x4, y2)]Ú loyal_to(x4, y2)
		 Þ "x4: "y2: man(x4) Ú king(y2) Ú try_assassinate(x4, y2) Úloyal_to(x4, y2)

87Knowledge Representation

		 Let f(x4) be Skolem function, then
		 Þ => "x4: man(x4) Ú ruler(f(x4)) Ú try_assassinate(x4, f(x4)) Ú loyal_to(x4,

f(x4))
		 Þ man(x4) Ú ruler(f(x4)) Ú try_assassinate(x4, f(x4)) Úloyal_to(x4, f(x4))
		 man(x4) Ú ruler(f(x4)) Ú try_assassinate(x4, f(x4)) Úloyal_to(x4,

f(x4))------- 7
	 8.	“Marcus tried to assassinate Caesar”
		 try_assassinate(marcus, caes)
		 try_assassinate(marcus, caes)------------ 8
		 To prove: marcus dislike caes
		 That is

dislike(marcus, caes)
•	 Assume

¬ dislike(marcus, caes) ¬ roman (x2) ∨∨ loyal_to (x2 , caes) ∨∨ dislike (x2 , caes)

x2 / marcus

ך dislike (marcus , caes)

¬ rom (marcus) ∨∨ loyal_to (marcus, caes) ¬ pompeian (x1) ∨ rom(x1)

x1 / marcus

pomp (Marcus) ¬ pomp (marcus) ∨ loyal_to (marcus, ceas)

loyal_to (marcus, caes)

¬ man(x4) ∨∨ ¬ king(f(x4)) ∨∨¬ try_assassinate(x4 , f(x4))

x4/ marcus f(x4)/ caes
¬ man(marcus) ∨∨ ¬ ruler(caes) ∨∨¬ try_assassinate(marcus , caes)

try_assassinate(marcus , caesar)

¬ man(marcus) ∨∨ ¬ ruler(caes)

man(marcus)

¬ ruler(caes) ruler(caes)

E

88 Artificial Intelligence and Machine Learning for Real-World Applications

Since we get an empty clause, i.e., contradiction, our assumption is that	
dislike(marcus, caes) is false; hence, dislike(marcus, caes) must be true.

3.3 � FORWARD VERSUS BACKWARD CHAINING IN AI

AI encompasses a diverse array of problem-solving techniques, among which for-
ward and backward chaining are prominent inference methods. These techniques
play a crucial role in knowledge representation and reasoning systems. This section
will delve into the concepts of forward and backward chaining, highlighting their
key characteristics and applications, while emphasizing the importance of original-
ity and integrity in academic and professional pursuits.

Forward Chaining:

Forward chaining, often referred to as data-driven reasoning, is an inference method
that starts with the available data and iteratively applies rules and facts to derive con-
clusions. In this approach, the system uses the existing information to make deductions,
gradually building toward a final goal or conclusion. Forward chaining is particularly
useful in scenarios where there is an abundance of data and a need to explore multiple
potential outcomes. In a forward chaining system, the process commences with the
known facts or data. These initial facts are then matched against a set of rules to draw
preliminary conclusions. If the derived conclusions lead to further inferences, the pro-
cess continues iteratively until no more conclusions can be drawn. This method is akin
to a domino effect, where one piece of information triggers the next logical step. It is
particularly advantageous in scenarios where there is a wealth of data available, allow-
ing the system to explore numerous potential outcomes and possibilities.

FIGURE 3.6  Forward Chaining.

89Knowledge Representation

Applications of Forward Chaining:

•	 Diagnostic Systems: Forward chaining is extensively employed in medical
diagnosis systems, where symptoms and test results are used to determine
potential ailments.

•	 Production Systems: It finds application in rule-based production systems,
such as expert systems, where a set of rules guides decision-making.

Backward Chaining:

Conversely, backward chaining, also known as goal-driven reasoning, starts with a
goal or a desired outcome and works backward through a series of rules to find the
necessary conditions or facts that lead to that goal. This approach is especially effec-
tive when there is a predefined objective and the system must identify the supporting
evidence or conditions. In contrast, backward chaining starts with a specific goal or
desired outcome in mind. The system then works in reverse, seeking the conditions
or facts necessary to achieve that goal. By recursively applying rules in the reverse
order, the system traces back through the chain of reasoning until it identifies the initial
conditions required to satisfy the goal. This approach is highly effective in situations
where a clear objective is defined, and the focus is on discerning the underlying causes
or prerequisites.

Applications of Backward Chaining:

•	 Expert Systems: Backward chaining is employed in expert systems for trou-
bleshooting, helping identify the root cause of a problem by tracing back
from the observed symptoms.

•	 Planning and Robotics: In AI planning and robotics, backward chaining is
utilized to establish a sequence of actions that leads to a specific goal.

FIGURE 3.7  Backward Chaining.

90 Artificial Intelligence and Machine Learning for Real-World Applications

Originality and Integrity in Academic Pursuits:

When discussing forward and backward chaining in AI, it is imperative to underscore
the significance of originality and integrity in academic and professional endeavors.
Plagiarism, the act of presenting someone else’s work or ideas as one’s own, is a breach
of ethical standards and hinders the progress of knowledge. Therefore, it is essential to
ensure that all written and verbal expressions are appropriately cited, giving due credit
to the original authors and sources.

Benefits and Trade-offs:

Both forward and backward chaining possess distinct advantages and are suitable for
different problem-solving scenarios. Forward chaining excels in situations where there
is an abundance of data, allowing for a comprehensive exploration of potential solu-
tions. Conversely, backward chaining is highly efficient when the objective is clearly
defined, as it concentrates efforts on identifying the critical conditions for goal attain-
ment. The choice between these methods depends on the specific nature of the problem
and the available data.

Forward and backward chaining are fundamental techniques in AI, each offer-
ing unique approaches to reasoning and problem-solving. While forward chaining
starts with available data and iteratively applies rules, backward chaining begins
with a goal and works backward to establish the required conditions. Understand-
ing the distinctions between these methods is crucial for effectively applying them
in various AI applications. Furthermore, upholding originality and integrity is par-
amount in academic and professional pursuits, promoting a culture of ethical and
innovative research. In summary, forward and backward chaining are pivotal rea-
soning methods in the realm of AI. Understanding their principles and applications
empowers AI practitioners to employ the most suitable approach for a given task.
It is imperative to uphold academic and professional integrity by avoiding plagia-
rism and ensuring that all sources are appropriately cited. This fosters a culture of
originality and ethical research, ultimately driving the progress and innovation of
AI technologies.

3.4 � SLOT AND FILLER STRUCTURE

The terms “slot” and “filler” are often used for information extraction and knowledge
representation in the context of AI and NLP. They describe how information is struc-
tured and how it is extracted from text or data.

	 a.	Slot: A slot can be described as a predefined category or attribute that
serves to represent a specific type of information, with the aim of extraction
or comprehension by an AI system. Slots are like placeholders used to store
a specific piece of information. For example, in a restaurant management
context, some slots can be “Date,” “Time”, “Location,” and “Party size.”

	 b.	Filler: The filler, which is also called a value or an argument, is the par-
ticular piece of information that gets stored in a “slot.” It can be called as

91Knowledge Representation

the actual data or content associated with a specific slot. Again, taking the
example of restaurant reservation, if slot is “Date,” then its filler could be
“Saturday, October 22th.”

In practical terms, slot–filler pairs are used to extract structured information from
unstructured text or speech. This information extraction process is a fundamen-
tal part of various NLP tasks, such as chatbots, virtual assistants, and information
retrieval systems.

For example, consider the following sentence: “I would like to book a table for two
at an Italian restaurant on Saturday at 7 PM.” In this sentence, the slots and fillers can
be identified as follows:

•	 Slot: “party size” - Filler: “five”
•	 Slot: “restaurant type” - Filler: “South Indian”
•	 Slot: “date” - Filler: “Saturday”
•	 Slot: “time” - Filler: “7 PM”

By extracting slots and their corresponding fillers from the input text, the AI sys-
tem can understand and act upon the user’s request effectively, such as making a
restaurant reservation. Structured information representation enables the AI system
to enhance the accuracy of processing user queries and providing responses.

Hierarchy:

	 1.	Weak Slot and Filler Structure:

The knowledge in slot and filler systems comprises sets of entities and their attri-
butes, forming a structure known as a weak slot and filler structure. Typically, this
refers to a pattern where a slot represents a category or attribute, and its relationship
with its corresponding filler is often loosely defined or lacks specificity. They are
“Knowledge-poor” as the structure contains knowledge that is not specific.

FIGURE 3.8  Slot and Filler Structures.

92 Artificial Intelligence and Machine Learning for Real-World Applications

There are two types of weak slot and filler structure:

	 a.	Semantic Nets: In the semantic net, a set of nodes are connected to each
other by a set of labeled arcs to represent the information. These act as an
alternative for predicate knowledge in knowledge representation. A seman-
tic net consists of nodes, links, and link label.
•	 Nodes represent various values of the attributes of the object.
•	 Arcs represent relations among nodes.

Inheritance association (is a relation) can be described using a semantic net-
work. Semantic networks provide direct indexing for objects, categories,
and the link between them.

Intersection Search: By spreading activation from two nodes and observing
where the activation intersects, we can seek relationships among objects.
Due to these various connections, the connection between blue color and
India can be found.

Partitioned sematic nets are used to represent quantified expressions.
Simple binary predicates, such as “isa (Person, Mammal)” can be easily

expressed in semantic nets. For more intricate nonbinary predicates, one
can make use of versatile predicates like “isa” and “instance.”

To convert predicates with three or more places into a binary form, a new
object can be created that represents the entire predicate statement. Then,
binary predicates can be introduced to depict relationships with this newly
created object.

•	 Example score (England, India, 300–350)

	 b.	Frames: A frame consists of attributes, which are called slots, along with
their associated values used to describe an entity in the world. Natural lan-
guage understanding requires inference, i.e., assumptions about what is typ-
ically true of the objects or situations under consideration. Such information
is coded into structures known as frames.

FIGURE 3.9  Example of Semantic Net.

93Knowledge Representation

•	 A frame is similar to a record structure, and corresponding to the fields
and values are slots and slot fillers. Here procedures are attached to
slots, which are called “procedural attachments.” They are mainly of
three types: 1) if needed, 2) defaults, and 3) if added.

•	 One frame by itself isn’t very helpful. To make them more useful, we
connect several frames together in a frame system. We do this because
sometimes the value of one detail in one frame talks about or points to
another frame.

•	 The types of frames are 1) procedural frames and 2) declarative frames.
•	 Frame system can be understood easily with the help of set theory.

Frame can be represented as a class or an instance. Considering an
example of cricket—batsman, bowler, and team can be considered as
classes, and Virat and India can be instances(entities).

Example: Frame for Book

Slot Filler

Publisher Pearson

Title AI-A modern approach

Author Stuart Russel

	 2.	Strong Slot and Filler Structure:

A strong slot and filler structure involves precise and well-defined relationships
between slots (categories or attributes) and their corresponding fillers (specific data
values). This structure is often used in cases where the data must adhere to clear pat-
terns and constraints for effective information extraction and processing.

	 a.	Conceptual Dependency (CD): It is a structured frame (strong slots and
fillers) used for the representation of complex and high-level knowledge for
solving complex problems.

FIGURE 3.10  Example of Semantic Net.

94 Artificial Intelligence and Machine Learning for Real-World Applications

•	 It has a collection of symbols that contain knowledge and information.
•	 It acts as a theoretical model representing information types about

events found in NLP.
•	 Various primitives used in CD are

  1)	 ATRANS
  2)	 PTRANS
  3)	 PROPEL
  4)	 MOVE
  5)	 GRASP
  6)	 XPEL
  7)	 MTRAN
  8)	 MBUILD
  9)	 ATTEND
10)	 INGEST

The symbols in CD have specific meanings:

•	 Arrows show the direction of dependency.
•	 Double arrows denote a two-way link between an actor and an action.
•	 p signifies past tense.
•	 ATRANS represents one of the basic acts within the theory, indicating the

transfer of possession.
•	 O signifies the object case relation.
•	 R represents the recipient case relation.

	 b.	Scripts: It describes a sequence of events in particular consents.

Scripts are frames like structures used to represent commonly occurring events such
as going to a movie.

o	 t contains a set of slots and information.
o	 If particular scripts are known to be appropriate in a given situation, then it

is very useful for determining whether the event has occurred or not.
o	 Script indicates how events are mentioned or related to each other.
o	 The key components of a script include the following:

FIGURE 3.11  Simple Conceptual Dependency Representation.

95Knowledge Representation

•	 Script Name: This serves as the title.
•	 Track: It represents special situations or specific variations.
•	 Roles: These are the people or participants involved in the events

described in the script.
•	 Entry Condition: It specifies the prerequisites needed for executing the

script.
•	 Props: These are nonliving objects used in the script.
•	 Scenes: These are the actual sequences of events.
•	 Result: It defines the conditions that will be true after the events described

in the script have occurred.

	 3.	Advantages (Slot and Filler Structure):
a.	 The efficiency of monotonic inheritance is notably enhanced through

these structures compared to pure logic, and they also readily accom-
modate non-monotonic inheritance.

b.	 The reason for this ease is rooted in the structured format of knowledge
within slot and filler systems, which organize information as entities
and their attributes.

c.	 This structured approach facilitates the swift retrieval of attribute val-
ues since assertions are indexed by the entities they represent.

d.	 Structured Knowledge: Slot and filler structures organize information
in a structured manner, making it easier for AI systems to comprehend
and manipulate data.

e.	 Efficient Retrieval: Information retrieval is efficient as the value for a
specific attribute is quickly obtained, thanks to the indexed nature of
assertions.

	 4.	Disadvantages (Slot and Filler Structure):
a.	 Lack of Formal Semantics: Slot and filler structures may not have

well-defined formal semantics, so it becomes difficult to perform com-
plex mathematical reasoning unlike predicate and propositional logic.

b.	 Scalability Issues: While they are more scalable than predicate logic,
slot and filler systems can still face scalability challenges when dealing
with very large or complex knowledge bases.

	 5.	Applications:
o	 Some common applications of slot and filler structures include the

following:
•	 NLP
•	 Creating knowledge bases
•	 Question-answering systems
•	 Expert systems

3.5 � ISSUES IN KNOWLEDGE REPRESENTATION

Issues in knowledge representation include difficulties in handling incomplete or
ambiguous information, ensuring representation consistency and accuracy, managing

96 Artificial Intelligence and Machine Learning for Real-World Applications

the scalability of knowledge basis, addressing contextual awareness and situational
adaptability, and mitigating potential biases or ethical concerns within the repre-
sented knowledge, all of which can impact the effectiveness and reliability of AI
systems.

	 1.	Important Attributes:

There are two attributes, “instance” and “isa”, that are of general importance. These
attributes are important because they support property inheritance and organizing
information in a structured manner.

•	 Instance Attribute:
	 The “instance” attribute is used to define the relationships between

specific objects and the more general categories to which they belong.
It allows to specify that a particular object is an instance of a broader
category.

	 Example: “Harry Potter and the Philosopher’s Stone” instance “Book.”
This states that this specific book is an instance of the class “Book.”

•	 Isa Attribute:
	 The “isa” attribute is used to express class–subclass relationships or inher-

itance. It defines that one class is a subclass of another, indicating a hierar-
chical relationship.

	 Example: Dog isa Mammal. This states that the class “Dog” is a subclass
of the more general class “Mammal.”

These attributes simplify knowledge representation and reasoning in AI systems
by allowing for the efficient propagation of attributes, which is essential for tasks like
classification, reasoning, and problem-solving.

	 2.	Relationships among Attributes:

The relationship between the attributes of an object, independent of the specific
knowledge it encodes, may hold properties like inverses, existence in an Isa hierar-
chy, single-valued attributes, and techniques for reasoning about values.

•	 Inverses:
	 Inverse attributes define a reciprocal relationship between objects. This

allows for a bidirectional understanding of relationships, where knowing
one attribute implies knowledge about its inverse.

	 Example: The inverse of the attribute “hasFather” might be “isChildOf.”
•	 Existence in an Isa Hierarchy:
	 In this hierarchy, attributes defined for a superclass are inherited by its

subclasses.
	 Example: If superclass “Animal” has an attribute “hasLegs,” all subclasses

like “Cat” and “Dog” inherit this attribute.

97Knowledge Representation

•	 Single-Valued Attributes:
	 Attributes can be single-valued, meaning they associate one value with an

object.
	 Example: An attribute “Age” associated with an object “Person” might

have a single value such as “30.”
•	 Techniques for Reasoning about Values:
	 To support reasoning, various techniques are employed, including deductive

reasoning, rule-based inference, and probabilistic reasoning.
	 Example: Age of person cannot be greater than the age of their parents.

The combination of these properties ensures that knowledge representation sys-
tems are capable of efficiently capturing and processing information about objects
and their attributes.

	 3.	Choosing the Granularity:

High-level facts may not be adequate for inference, while low-level primitives may
require a lot of storage.

Choosing the granularity of knowledge representation refers to determining the
level of detail or abstraction at which information is encoded. The granularity can
significantly impact how effectively an AI system operates.

In practice, a hybrid approach may be adopted, where fine-grained data is used for
real-time monitoring and immediate intervention, while coarse-grained data is used
for broader traffic management strategies and long-term planning.

Example: Online Product Catalog:

•	 Fine-Grained Granularity: Each product is represented with detailed attri-
butes such as the product’s name, brand, model, price, weight, color, dimen-
sions, materials used, and customer reviews.

•	 Coarse-Grained Granularity: Each product is represented more succinctly.
For instance, each product listing includes only the product’s name, a brief
description, and the price.

	 4.	Representing Set of Objects:

Representing a set of objects in knowledge representation involves defining a collec-
tion of objects that share a common characteristic or relationship.

There are several methods for representing sets of objects, including list or array,
logical predicate, graphs or networks, and data structures.

The choice of representation methods depends on the specific requirements of the
application and the level of complexity needed to describe the set and its relationships.

Example: Set of cities with population greater than 1 million.

•	 List or Array: [“Mumbai,” “Delhi,” “Kolkata,” “Bangalore,” . . .]
•	 Logical Predicate: {x | x is a city and population(x)>10000000}

98 Artificial Intelligence and Machine Learning for Real-World Applications

	 5.	Finding the Right Structure as Needed:

Finding the right structure in knowledge representation involves selecting an appro-
priate representation format or schema to best match the requirements of a given
application or problem domain.

It is a balance between the specific requirements of your application and the avail-
able tools and methods for representation. It often involves a combination of domain
knowledge, experimentation, and adaptation based on the evolving needs of the sys-
tem or application.

Example: Creating a customer relationship management (CRM) system involves
structuring customer data as profiles with attributes like contact information, pur-
chase history, and interactions, facilitating personalized communication and state
strategies.

DOI: 10.1201/9781003532170-4� 99

4 Data and Preprocessing
The Heart of Machine
Learning

4.1 � INTRODUCTION TO MACHINE LEARNING

A significant area of artificial intelligence (AI) is machine learning (ML). One of the
pioneers of AI, Arthur Samuel is often cited for his explanation of ML. According
to him, “the field of study that gives the computer the ability to learn without being
explicitly programmed” is ML.

The main principle of this definition is that the system should be able to learn on
its own without the need for explicit programming. How is that even possible? It is
well known that creating programs that teach computers how to perform computa-
tions is necessary for them to be completed.

In traditional programming, a thorough program design, such as an algorithm or
flowchart, is made after the problem is understood, and then the programs are gener-
ated using an appropriate programming language. This method might be challenging
to use for a variety of real-world issues, including complex image recognition appli-
cations, games, and riddles.

AI made an effort to comprehend these issues and manually create general-pur-
pose rules. To build intelligent systems, these rules were put into a software and
made logical. An expert system is a concept for creating intelligent systems via the
application of logic and reasoning, transforming the knowledge of an expert into a
collection of guidelines and instructions. The expertise of numerous doctors was
turned into a system and used to create an expert system for medical diagnosis, sim-
ilar to MYCIN. This strategy did not, however, yield much progress because the
systems lacked true intelligence. The majority of antibiotics have names that finish
in “mycin,” which is where the word “mycin” originated.

Because the aforementioned method still relied on human knowledge and did
not actually demonstrate intelligence, it was impractical in many fields. After then,
the focus switched to data-driven systems and ML. The primary objective of AI is
to construct intelligent systems using a data-driven technique, where data is used as
input to create intelligent models. These models can be used to predict output for
new input data. In order to accurately anticipate the unknown data, ML aims to auto-
matically learn a model [1] or a set of rules from the provided dataset. Like people
making decisions based on experience, computers build models based on patterns
they see in the input data. These data-filled models are then used by computers to
make predictions and make decisions. The learned model is the computer equivalent
of human experience.

https://doi.org/10.1201/9781003532170-4

100 Artificial Intelligence and Machine Learning for Real-World Applications

A model is a clear explanation of the patterns found in data, such as the following
[2]:

•	 Mathematical equations
•	 Relational diagrams like trees/graphs
•	 Logical if/else rules
•	 Groupings called clusters

In conclusion, a formula, process, or representation that may provide data judgments
can be called a model. Patterns and models differ in that the former are local and
only apply to specific attributes, while the latter are global and fit the whole set of
data. A model can be useful, for instance, in determining whether or not a certain
email is spam. The key element is that the provided data is automatically used to
construct the model.

Tom Mitchell is another AI pioneer. His definition of ML states, “A computer
program is said to learn from experience E, with respect to task T and some perfor-
mance measure P, if its performance on T measured by P improves with experience
E.” The three key elements of this definition are task T, performance measure P, and
experience E.

For instance, task T can involve identifying an object in a picture. With a training
dataset of thousands of photos, the machine can learn about objects. We refer to this
as experience E. Therefore, the goal is to apply experience E to the object detection
task T. Precision and recall are two performance metrics that indicate how well the
system can identify an object. To enhance the system’s performance, a course correc-
tion can be implemented based on the performance metrics.

Computer system models are analogous to human experience. Experience is based
on data. People acquire experience in different ways. They acquire knowledge by
memorization. They study others and try to emulate them. Books and teachers are
two great sources of knowledge for humans. They also pick up a lot of knowledge by
trial and error. When faced with a new issue after gaining knowledge, people look for
previous circumstances, create heuristics, and apply those to make predictions. But
in systems, experience is acquired by the following procedures:

	 1.	Collection of data
	 2.	After information is acquired, abstract notions are created using that infor-

mation. Concept generation is done through abstraction. This is comparable
to how people conceptualize objects; for instance, they can describe the
appearance of an elephant.

	 3.	The abstraction is transformed into a useful kind of intelligence by gener-
alization. You may think of it as an ordering of all possible concepts. Thus,
classification of concepts, drawing conclusions from them, and developing
heuristics are all part of generalization, which is a useful component of
intelligence. Heuristics are well-informed approximations for each task. For
instance, one’s formation of heuristics or human experience is the reason
behind running into or encountering danger. It happens in the same way
in machines. Although they often work, heuristics can also be ineffective.

101Data and Preprocessing

Since it is only a “rule of thumb,” heuristics are not to blame. The process
of making a course correction involves taking assessment measurements.
Evaluation verifies that the models are comprehensive and makes any nec-
essary course corrections to provide superior formulations.

4.2 � NEED FOR ML

ML is an emerging and rapidly advancing field. It enables top management to derive
insights from both structured and unstructured data stored across various organiza-
tional archives, aiding in decision-making processes.

In the past, the full potential of this data was not leveraged. This was partly due
to data being dispersed across different archival systems, making integration chal-
lenging for organizations. Additionally, there were limited software tools available to
extract valuable information from the data.

Business organizations are now adopting the latest technology, ML, to address
these issues. The rise of ML can be attributed to three main factors:

High volume of data: Companies like Facebook (now Meta), Twitter, and
YouTube generate massive amounts of data each year, with the data volume
expected to double annually.

Decreased storage costs: The cost of hardware has significantly dropped,
facilitating the capture, processing, storage, distribution, and transmission
of digital information.

Advanced algorithms: The development of deep learning has introduced
many sophisticated algorithms for ML.

As ML gains popularity and is readily adopted by businesses, it has become a lead-
ing technology trend.

4.3 � TYPES OF ML

Based on Figure 4.1, there are four categories of ML.
Understanding data is crucial before exploring the many forms of ML. Two cate-

gories of data exist: labeled and unlabeled. Although it can also be shown as a data
point, data is usually displayed in a tabular format. Each row in a table is a data
point, while the columns stand for characteristics/attribute/feature or traits. The trait
we are trying to predict among these attributes is the label. To demonstrate labeled
data, consider the Iris flower dataset, also known as Fisher’s Iris dataset. This dataset
contains 50 samples of Iris flowers [3], with four attributes: sepal length, sepal width,
petal length, and petal width. The target variable is called class, with three possible
classes: Iris sentosa, Iris virginica, and Iris versicolor. Thus, the data in Table 4.1 is
labeled data, where each row has an assigned value for the target variable.

Data may be in the form of images also. Various deep learning models can be
used for this data.

Unlabeled data comes without a label. Figure 4.2 shows labeled and unlabeled
image data.

102 Artificial Intelligence and Machine Learning for Real-World Applications

FIGURE 4.1  Types of ML.

TABLE 4.1 
Iris Dataset Example

Petal Length Petal Width Sepal Length Sepal Width Class

5.5 4.2 1.4 0.2 Sentosa

7 5.2 1.7 1.4 Versicolor

7.3 4 1.8 1.8 Virginica

FIGURE 4.2  Example of Labeled and Unlabeled Data.

103Data and Preprocessing

4.3.1 �S upervised Learning

Supervised algorithms utilize labeled datasets. As implied by the name, supervised
learning involves a supervisory or instructional component. This supervisor supplies
labeled data, enabling the model to be built and generate test data.

In supervised learning algorithms, the supervisor communicates the information
that the learner is supposed to know. The learner understands the received infor-
mation without the supervisor knowing whether the information has been grasped
by the learner or not. The supervisor tests the learner by asking a set of questions.
Typically, supervised learning employs two techniques:

•	 Classification: Predicting the “label” or “class” of discrete data is the goal
of classification, a supervised learning technique, for instance, identifying
an image as a dog or a cat. A classification algorithm uses a set of labeled
images (e.g., cats and dogs) to build a model that can classify unseen new
images.

Two stages of classification are involved. The learning algorithm uses a labeled data-
set in the first step, referred to as the training stage, to identify patterns and create
a model. The second step involves testing the built model with fresh or unidentified
samples and labeling them. This process defines classification.

For instance, using the Iris dataset, if a test sample is given as (6.3, 2.9, 5.6, 1.8,?),
the classification model will predict a label for it. Other examples of classification
include image recognition, disease diagnosis such as cancer classification, plant clas-
sification, email spam detection, and sentiment analysis.

Key classification algorithms include the following:

•	 Decision trees
•	 Random forests
•	 Support vector machines
•	 Naive Bayes
•	 Artificial neural networks and deep learning models like convolutional neu-

ral networks (CNNs)
•	 Regression: Regression models forecast continuous variables like prices, in

contrast to categorization techniques. Stated differently, they forecast actual
values. Regression models use an input of x and produce a model as a fitted
line, denoted by y = f(x). In this case, y is the dependent variable and x is
the independent variable, which may have one or more qualities. Sales of a
product, e.g., may vary depending on the sale week. Using the training data,
linear regression fits a line, as in product sales = 0.66 × Week + 0.54.

The regression coefficients in this equation, which were obtained from the data, are
0.66 and 0.54. This model has the advantage of predicting product sales (y) for weeks
that are not known (y). To forecast revenues for the eighth week, for instance, you
would enter 8 in place of x.

104 Artificial Intelligence and Machine Learning for Real-World Applications

Models for classification and regression are both classified as supervised algo-
rithms. They employ the principles of testing and training and include a supervisory
component. Regression models predict continuous variables, like product pricing,
while classification models concentrate on giving discrete labels, like classes or cate-
gories. This is the main distinction between the two types of models.

4.3.2 �U nsupervised Learning

This kind of learning entails self-training. As the name suggests, neither teachers nor
supervisors are involved. Without a guide, learning occurs mostly through self-in-
struction using a trial-and-error methodology. With unlabeled data, self-learning
takes place when the algorithm looks at samples and data and recognizes patterns
based on grouping principles. This grouping ensures that similar objects are clus-
tered together. Examples of unsupervised learning algorithms include cluster analy-
sis, association rule mining, and dimensionality reduction.

•	 Cluster analysis aims to group objects into distinct clusters based on their
attributes. Objects within the same cluster share similarities, while they sig-
nificantly differ from objects in other clusters. Key clustering algorithms
include the following:
	 k-means
	 Hierarchical clustering
	 DBSCAN

•	 Dimensionality reduction involves taking high-dimensional data and
transforming it into a lower-dimensional form by exploiting data variance.
This process reduces the dataset to fewer features without losing its gener-
ality. Principal component analysis (PCA) is a frequently employed method
for dimensionality reduction.

•	 Association rule mining discovers interesting associations and relation-
ships among large datasets. These rules indicate how frequently an itemset
appears in a transaction, such as in market basket analysis. These insights
help retailers identify items that are often purchased together. A priori algo-
rithm is commonly used to find association rules.

4.3.3 �S emi-Supervised Learning

A dataset may occasionally have a significant portion of unlabeled data mixed
together with a lesser quantity of labeled data. Because data labeling is an expen-
sive and difficult operation for humans, semi-supervised algorithms can be used.
These techniques provide pseudo-labels to the unlabeled data, enabling the training
of models using a combination of labeled and pseudo-labeled data.

4.3.4 �R einforcement Learning

Reinforcement learning emulates human behavior by providing an environment for
an agent to interact with and learn from. Instead of relying on data, the agent navi-
gates the environment to acquire knowledge. Similar to how humans use their senses

105Data and Preprocessing

to perceive the world and take actions, reinforcement learning enables the agent,
which could be a human, animal, robot, or software program, to interact with the
environment to receive rewards. These rewards allow the agent to accumulate expe-
rience, with the goal of maximizing the reward, which can be either positive or nega-
tive (in the form of punishment). When rewards are higher, behaviors are reinforced,
facilitating learning. Reinforcement learning finds applications in various domains,
including gaming, robotics, and autonomous vehicles.

4.4 � UNDERSTANDING DATA

All facts are data. In computer systems, bits encode facts present in numbers, text,
images, audio, and video. Data can be directly human-interpretable, such as numbers or
text, or be diffused, such as images or videos that can be interpreted only by a computer.

Data by itself is meaningless. It needs to be processed to generate any informa-
tion. A string of bytes is meaningless. Only when a label is attached, such as the
height of a person, does the data become meaningful. Information is defined as pro-
cessed data that has been given patterns, associations, and relationships. One way
to extract information from sales data analysis is to identify the product that sold in
larger amounts during the last quarter of the year.

4.4.1 � Big Data

Data whose volume is less and can be stored and processed by a small computer is
called small data. Big data, on the other hand, is data whose volume is much larger. It
must satisfy the 6Vs: volume, velocity, variety, veracity, validity and value. Big data is
measured in terms of petabytes (PB) and exabytes (EB). One exabyte is 1 million tera-
bytes. The high arrival speed of data and its increase in volume are noted as velocity of
data. Data comes in different forms ranging from text, graphs, audio, video, and maps
to composite data. Data also comes from various resources such as human conversa-
tion, transaction records, and old archive data. Data sources can be open/public, social
media, and multimodal. The veracity of data deals with aspects such as conformity
to facts, truthfulness, believability, and confidence in data. Veracity of data is one of
the important aspects of data as there may be many sources of error such as technical,
typographical, and human. Validity is the accuracy of data for taking decisions. Value
is the characteristic of big data that indicates the quality of the information that is
extracted from the data; it influences the decisions that are taken based on it.

In big data, there are three kinds of data:

•	 Structured data: Here, data is stored in an organized manner such as a
database, where it is available in the form of a table, and can be retrieved in
an organized manner using tools like SQL.

•	 Unstructured data: This includes video, image, and audio. It also includes
textual documents, programs, and blog data. Nowadays, 80% of data is
unstructured data.

•	 Semi-structured data: This type of data is partially structured and par-
tially unstructured. Examples are XML/JSON data, RSS feeds, and hierar-
chical data.

106 Artificial Intelligence and Machine Learning for Real-World Applications

Once a dataset is assembled, it must be stored in a structure that is suitable for analy-
sis. Data can be stored in flat files in plain ASCII or EBCDIC format. Comma-sepa-
rated values (CSV) and tab-separated values (TSV) are popular spreadsheet formats
for storing data.

Data can be stored in database files, which consist of original data and metadata.
Each set of tables in a relational database has rows and columns. With the use of
several tools like database administrator, query processing, and transaction manager,
a database management system seeks to manage data and enhance operator perfor-
mance. Transactional, time-series, and spatial are a few types of databases where
different types of data are stored.

The World Wide Web (WWW) provides diverse, worldwide online information.
Algorithms can be used to mine interesting patterns of information in WWW. eXten-
sible Markup Language (XML) is a machine-interpretable data format that can be
used to present data that needs to be shared across platforms. Dynamic data enters
and exits the observing environment as a data stream. Massive amounts of data, a
dynamic nature, fixed order movement, and real-time constraints are typical traits
of a data stream. Really Simple Syndication (RSS) is a format for sharing instant
feeds across services. JavaScript Object Notation (JSON) is another useful data inter-
change format that is often used for many ML algorithms.

4.5 � DATASET AND DATA TYPES

One way to think about a dataset is as a compilation of data entities. These entities
could be records, documents, samples, observations, cases, points, vectors, patterns,
or events. Each record encompasses multiple attributes, which can be described as
the defining characteristics or properties of an entity. Let’s contemplate the dataset
showcased in the example in Table 4.2.

There should be a value assigned to each attribute. We refer to this as measure-
ment. The type of attribute determines the data types, often referred to as measure-
ment scale types. The data types are shown in Figure 4.3.

Data can be broadly divided into two categories:

•	 Categorical or qualitative data can be nominal or ordinal. In Table 4.2,
student ID is nominal data. Because they are symbols, nominal data cannot
be handled like numerical data. The average student ID, for instance, defies

TABLE 4.2 
Student Placement Dataset

Practical Communication
Student ID CGPA Interactiveness Knowledge Skills Job Offer

1 >9 Yes Very good Good Yes

2 >8 No Average Moderate No

3 <8 No Good Poor No

107Data and Preprocessing

statistical interpretation. Likewise, job offer (Yes, No) and interactiveness
(Yes, No) are also nominal data. Nominal data types provide only informa-
tion but have no order. Only operators like (=, ¹) are meaningful for this
data.

	  Ordinal data provides information and has a natural order. For example,
communication skill (good, average, and poor) is ordinal data. Regardless
of value, poor is certainly less than average, and average is less than good.
This data can be transformed in any way to produce a different value.

•	 Numerical or quantitative data can be classified as discrete or continu-
ous. Another classification is interval and ratio. Discrete data is recorded
as integers. Employee identification number such as 10011 is discrete data.
Continuous data can be fitted into a range and includes decimal points, for
example, height. Age is a continuous data as height, age can be 120.3 cm,
12.5 years, respectively. Interval data consists of numerical values where
the distinctions between values hold significance. For instance, the disparity
between 30 and 40 degrees is meaningful. Permissible operations solely
include addition and subtraction. Conversely, ratio data encompasses mean-
ingful differences and ratios. The key disparity between ratio and interval
data lies in the position of zero on the scale. For instance, consider the con-
version between centigrade and Fahrenheit scales. The zero points on both
scales do not align, distinguishing this as interval data.

4.6 � DATA PREPROCESSING

In the real world, the available data is “dirty.” By this, we mean

•	 Incomplete data
•	 Outlier data
•	 Data with inconsistent value
•	 Inaccurate data
•	 Data with missing values
•	 Duplicate data

FIGURE 4.3  Types of Data.

108 Artificial Intelligence and Machine Learning for Real-World Applications

This “dirtiness” of data can be caused by

•	 Equipment malfunction
•	 Inconsistency with other recorded data, thus leading to deletion
•	 Data not entered due to misunderstanding
•	 Certain data may not be considered important at the time of entry
•	 Not registering history or changes in the data

As data preprocessing enhances the quality [4] of the data, it also enhances the qual-
ity of data mining techniques. This means improving accuracy, completeness, con-
sistency, timeliness, believability, and interpretability of data. The raw data must
be preprocessed to give accurate results. The process of detection and removal of
errors in data is called data cleaning. Some of the data errors include human errors
such as typographical errors or incorrect measurement and structural errors like
improper data formats. Additional causes of data errors include attribute duplication
and omission. A random component that causes a value to be distorted or an incor-
rect object to be introduced is referred to as noise. Typically, noise is present in data
that involves spatial or temporal components. Deterministic distortions, appearing as
streaks, are recognized as artifacts.

Consider Table 4.3. “Bad” or “dirty” data can be observed in this table.
It can be observed that data such as salary “” is incomplete. Date of birth for

Shreya, Tanu, and Pragnay is missing. Rishika’s age is recorded as 8, but her date
of birth is stated as 10/10/2006. This is called inconsistent data. Shreya’s salary is
−1500. It cannot be less than 0. It is an instance of noisy data.

Inconsistent data occurs due to problems in conversion, inconsistent formats, and
differences in units. Outliers are data points that display distinct characteristics and
possess unusual values compared to the rest of the dataset. For instance, Shreya’s age
recorded as 136 could potentially be a typographical error. It’s essential to differen-
tiate between noise and outlier values. Outliers may indeed represent legitimate data
and can even be of interest to ML algorithms. These errors often occur in the data
collection stage. They must be removed so that ML algorithms yield better results as
the quality of results is determined by the quality of input data. This removal process
is called data cleaning.

TABLE 4.3 
“Dirty” Data Example

Student ID Name Age Date of Birth Fever Salary

1 Shreya 136 Low −1500

2 Tanu 18 High Yes

3 Rishika 8 10/10/2006 Yes “”

4 Pragnay 17 High Yes

109Data and Preprocessing

4.6.1 �M issing Data Analysis

The primary data cleaning process is missing data analysis [5]. Data cleaning pro-
cedures aim to rectify data inconsistency, smooth out noise while detecting outliers,
and fill in missing data values. This enables ML to avoid overfitting of models. Fol-
lowing are a few techniques to solve the problem of missing data:

•	 Tuples lacking information—particularly the class label—are ignored.
A rise in the percentage of missing values renders this strategy ineffective.

•	 The data tables can be examined by the domain expert, who can also per-
form analysis and manually enter the numbers. This takes time, though, and
it might not be possible for big data sets.

•	 The properties that are lacking can be filled up with a global constant. The
missing value could be “infinity” or “unknown.” However, certain ML
algorithms may use these labels to produce false positives.

•	 For every sample in the same class, use the attribute mean. In this case, the
missing values for each tuple in this group are replaced by the average value.

•	 To fill in the missing value, use the value that is most likely to occur. Other
techniques, such as decision tree prediction and classification, can yield the
most likely value.

4.6.2 �R emoval of Noise

A random error or fluctuation in a measured value is called noise [6]. It can be
removed using binning. Binning is a technique that sorts and distributes the given
data values into equal frequency bins in order to eliminate it. Buckets are another
name for the bins. The neighbor values are used by the binning procedure to smooth
the noisy data.

Several often employed strategies include “smoothing by mean,” in which the bin
mean eliminates the bin values; “smoothing by bin median,” in which the bin median
substitutes the bin values; and “smoothing by bin boundary,” in which the closest bin
boundary substitutes the bin value. Bin boundaries are the highest and lowest values.

Binning methods may be used as a discretization technique. For example, apply-
ing binning technique using bins of size 3 on data {12,14,19,22,24,26,28,31,34}:

Smooth by equal frequency bin method:

Bin1: 12,14,19
Bin2: 22,24,26
Bin3: 28,31,32

Smooth by mean method:

Bin1: 15,15,15
Bin2: 24,24,24
Bin3: 30.3,30.3,30.3

110 Artificial Intelligence and Machine Learning for Real-World Applications

Smooth by bin boundary method:

Bin1: 12,12,19
Bin2: 22,22,26
Bin3: 28,32,32

4.6.3 �D ata Integration and Data Transformation

The process of combining data from several sources into one data source is known
as data integration. Finding and eliminating redundancies that result from data inte-
gration is the primary objective of data integration. To enhance the efficiency of ML
algorithms, data transformation procedures carry out tasks such as normalization or
standardization. Data must be transformed in order for it to be processed. In normal-
ization, the performance of ML algorithms is enhanced by scaling attribute values
to fit within a range (e.g., 0–1). Some of the normalization techniques used are as
follows:

•	 Min–Max Procedure (MinMax Scaler): Using this normalization tech-
nique, each variable V is normalized to a new range, say 0–1, by dividing
its difference with the minimum value within the range. Often, neural net-
works require this kind of normalization.

	 V
V

new new newA

A A
A A A′ =

−
−

+
min

max min
max min min(_ _ _) _ � (1)

Consider the marks {88,90,92,94}. To convert these marks to the 0–1 range, normal-
ization can be applied as

For mark 88:

v′ =
−()
−()

−()+ =
88 88

94 88
1 0 0 0*

For mark 90:

v′ =
−()
−()

−()+ =
90 88

94 88
1 0 0 0 33* .

For mark 92:

v′ =
−()
−()

−()+ =
92 88

94 88
1 0 0 066*

For mark 94:

v′ =
−()
−()

−()+ =
94 88

94 88
1 0 0 1*

111Data and Preprocessing

So the marks {88,90,92,94} are mapped to a new range {0,.33,.66,1}.
Z-Score Normalization (Standard Scaler): This procedure scales the difference

between the field value and mean value by the standard deviation of the attribute.

	 v′ =
−v A

A

µ
σ

� (2)

For example, applying z-score normalization in {10,20,30}, mean and standard
deviation of this data are required. The mean of 10,20,30 is 20, and the standard
deviation is 10.

Z-score of10 1=
−()
()

=−
10 20

10

Z-score of 20
20 20

10
0=

−()
()

=

Z-score of 30
30 20

10
1=

−()
()

=

Z-scores are used to detect outliers. Z-score function is extremely sensitive to
outliers as it is dependent on the mean.

4.6.4 �D ata Reduction

While reducing the quantity of the data, data reduction yields identical outcomes.
Data reduction can be done in a variety of methods, including dimensionality reduc-
tion, feature selection, wavelet transform, and sampling.

•	 Discrete wavelet transform (DWT) transforms the given data vector to
a numerically different data vector. The transformed vector is of the same
size as the original, but the wavelet transformed vector can be truncated.
The strongest wavelet coefficients, i.e., wavelet coefficients larger than some
specified threshold, can be retained and the rest can be set to 0. This helps in
data compression. As many data values become 0 after applying this trans-
form, data becomes sparse and computation becomes very fast in wavelet
space. Inverse DWT can be applied on a given set of wavelet coefficients,
which gives an approximation of the original data.

•	 PCA creates an alternative reduced set of variables from the original data,
resulting in dimensionality reduction of data. Original data is projected into
smaller spaces, and the projection that captures the largest amount of varia-
tion in data is found. It works only on numeric data. Data is first normalized
to make it more consistent and to make all attributes or variables in the
same range. Eigenvectors [7] of the covariance matrix are found. These

112 Artificial Intelligence and Machine Learning for Real-World Applications

eigenvectors define the new space, i.e., k orthogonal vectors, which are k
principal components of data, where k ≤ n. These principal components are
considered in decreasing order of “significance” or strength. Weak compo-
nents are those with low variance, and strong components have high vari-
ance. Therefore, strong components give more information to ML models.
Since only strong components are stored, the size of data is reduced.

•	 Feature subset selection helps in feature reduction as attributes are redun-
dant and sometimes irrelevant. There are heuristic methods for feature
selection:
o	 Step-wise forward selection [5]: Since the reduced set begins with an

empty set of features, it operates in a forward manner. The feature that
performs best in the original version is chosen and added to the smaller
set. Iteratively, the set gains the best of the remaining original features.

Initial attribute set = {A1, A2, A3, A4, A5, A6}
Initial reduced set: {}

— {A1}
—-{A1,A4}
—-Reduced attribute set {A1,A4, A6}
•	 Step-Wise Backward Elimination: It works in the backward direction as it

starts with a full set of features as the reduced set. The worst of the remain-
ing original features are removed at each step iteratively.

Initial attribute set = {A1, A2, A3, A4, A5, A6}
Initial reduced set: {A1, A2, A3, A4, A5, A6}
— {A1, A4, A5, A6}
—-Reduced attribute set {A1, A4, A6}

Combination of Forward Selection and Backward Elimination: It com-
bines both techniques discussed above. Here, the best features are added
and the worst features are removed from the remaining data.

• In sampling [6], a representative subset of data is selected, which helps
reduce data. Taking out samples randomly can result in poor performance
as data may be skewed. So adaptive sampling methods must be used for
better performance. Some sampling techniques are as follows:
o Simple random sampling: Here you choose any item with equal

probability.
o Sampling without replacement: Here, an item is removed from a popu-

lation after selection.
o Sampling with replacement: Here, an item is not removed from the pop-

ulation after selecting it. It means that the same sample can appear again.
o Cluster sampling: Data is clustered, and a cluster is randomly selected

from the population.
o Stratified sampling: This works well for skewed data. Here, the dataset

is partitioned and samples are drawn from each partition (proportionally
or in approximately the same percentage of the data).

•

113Data and Preprocessing

4.6.5 �D imensionality Reduction Using Python

For each data sample that chooses a set of primary features, the number of feature vari-
ables is reduced using the unsupervised ML technique known as dimensionality reduc-
tion. One of the popular dimensionality reduction methods offered in Sklearn is PCA.

By examining the features of the original dataset, PCA [8, 9] is a statistical tech-
nique that linearly projects the data into a new feature space. Picking out the “princi-
pal” qualities of the data and creating features based on them is the primary idea. It
will provide us with a new dataset that is small in size but which has all of the same
information as the original dataset. Computations become fast with a reduced dataset.

Here, we use the Iris dataset for explanation. It has one target variable, flower
category, and four independent variables: sepal length, sepal width, petal length, and
petal width. We reduce the feature space from four independent variables to two,
using PCA. So these two PCA components will have all the information contained
by the four independent variables.

First, import the libraries and load the Iris dataset. Then, separate the x and y
variables; x contains sepal length, sepal width, petal length, and petal width, and y
contains species. The pca() method and fit_transform() are used on x data. Features
are scaled using StandardScalar().

 from sklearn.preprocessing import StandardScaler
 import matplotlib.pyplot as plt
 import seaborn as sns
 import pandas as pd
 df = sns.load_dataset(‘iris’)
 x = df.drop(‘species’, axis =1)
 y = df[‘species’]

 x = StandardScaler().fit_transform(x)
 x = pd.DataFrame(x)
 from sklearn.decomposition import PCA
 pcatwofeatures = PCA()
 x_pca = pcatwofeatures.fit_transform(x)
 x_pca = pd.DataFrame(x_pca, columns=[‘PCA1’,’PCA2’,’PCA3
’,’PCA4’])
 print(x_pca.head())
 explained_variance = pca.explained_variance_ratio_
 print(explained_variance)

 plt.figure(figsize=(10, 10))
 sns.scatterplot(x_pca[‘PCA1’], [0] * len(x_pca), hue=y,
s=50)

 plt.figure(figsize=(10, 10))
 sns.scatterplot(x_pca[‘PCA2’], [0] * len(x_pca), hue=y,
s=50)

114 Artificial Intelligence and Machine Learning for Real-World Applications

 plt.figure(figsize=(10, 10))
 sns.scatterplot(x_pca[‘PCA3’], [0] * len(x_pca), hue=y,
s=50)
 plt.figure(figsize=(10, 10))
 sns.scatterplot(x_pca[‘PCA4’], [0] * len(x_pca), hue=y,
s=50)

Output:

 PCA1 PCA2 PCA3 PCA4
 0 −2.264703 0.480027 −0.127706 −0.024168
 1 −2.080961 −0.674134 −0.234609 −0.103007
 2 −2.364229 −0.341908 0.044201 −0.028377
 3 −2.299384 −0.597395 0.091290 0.065956
 4 −2.389842 0.646835 0.015738 0.035923

 [0.72962445 0.22850762 0.03668922 0.00517871]

PCA1 gives very accurate information, PCA2 gives less information compared to
PCA1, and PCA3 gives less information compared to PCA2 as shown in the below
figures.

Here, we can see that of the four features, the first two principal components
explain 96% of the variance of data, which is visible in Figures 4.4 and 4.5. We can
see that PCA1 separates the Sentosa class clearly from Virginica and Versicolor and
others. Virginica and Versicolor are tougher to classify, but we should still get most

FIGURE 4.4  Iris Flower Categorization Using PCA1.

115Data and Preprocessing

FIGURE 4.5  Iris Flower Categorization Using PCA2.

of the classifications correct only with a single principal component. Other principal
components PCA2, PCA3, and PCA4 do not help much to classify the data clearly.

4.6.6 �D ata Preprocessing in Python

Here, a few data preprocessing operations are performed in Python on the Fitness -
Fitness.csv dataset. Missing values in the dataset are checked first. They can be
replaced using the different strategies discussed above. Here, missing values are
present in the AGE feature, which is replaced with the mean of the same feature. The
dataset is uploaded to Google Colaboratory and then preprocessing [10] is performed.

4.6.6.1 � Handling Missing Data Values
First, upload the .csv file to Google Colaboratory.

 import io
 from google.colab import files

116 Artificial Intelligence and Machine Learning for Real-World Applications

 import pandas as pd
 import numpy as np
 uploaded= files.upload()
 datadf=pd.read_csv(io.BytesIO(uploaded[‘Fitness - Fit-
ness.csv’]))
 print(“ORIGINAL DATA”)
 print(datadf.isnull().sum())
 print(datadf)

This will print data attributes with the count of null values for each attribute.

Output:

Fitness - Fitness.csv (text/csv) - 390 bytes, last modified: n/a - 100% done
Saving Fitness - Fitness.csv to Fitness - Fitness (3).csv
ORIGINAL DATA
ID 0
Age 0
Gender 0
MaritalStatus 0
Fitness 0
Income 0
MilesRun 0
Fit 0
dtype: int64
ID Age Gender MaritalStatus Fitness Income MilesRun Fit
0 ST19 32 Female Single 4 34562 114 yes
1 ST19 33 Male Single 3 29342 75 no
2 ST19 21 Female Partnered 3 43214 65 yes
3 ST19 19 Male Single 3 30987 84 yes
4 ST19 22 Male Partnered 2 53234 46 yes
5 ST19 22 Female Partnered 3 28345 64 no
6 ST19 24 Male Partnered 3 36432 74 no
7 ST19 25 Female Single 3 30987 86 yes
8 ST19 24 Male Single 4 31234 142 yes

The .csv file has some missing values in the AGE attribute.

 # The data file with missing values
 uploaded= files.upload()
 df1=pd.read_csv(io.BytesIO(uploaded[‘Fitness - Fitness1.
csv’]))
 print(“DATA WITH MISSING VALUES IN AGE FEATURE”)
 print(df1.isnull().sum())
 x = df1.iloc[:, :-1].values
 print(x)

117Data and Preprocessing

Output:

Fitness - Fitness1.csv(text/csv) - 388 bytes, last modified: n/a - 100% done
Saving Fitness - Fitness1.csv to Fitness - Fitness1 (3).csv
DATA WITH MISSING VALUES IN AGE FEATURE
ID 0
Age 2
Gender 0
MaritalStatus 0
Fitness 0
Income 0
MilesRun 0
Fit 0
dtype: int64
[[‘ST19’ 32 ‘Female’ ‘Single’ 4 34562 114]
[‘ST19’ ‘Male’ ‘Single’ 3 29342 75]
[‘ST19’ 21 ‘Female’ ‘Partnered’ 3 43214 65]
[‘ST19’ 19 ‘Male’ ‘Single’ 3 30987 84]
[‘ST19’ 22 ‘Male’ ‘Partnered’ 2 53234 46]
[‘ST19’ ‘Female’ ‘Partnered’ 3 28345 64]
[‘ST19’ 24 ‘Male’ ‘Partnered’ 3 36432 74]
[‘ST19’ 25 ‘Female’ ‘Single’ 3 30987 86]
[‘ST19’ 24 ‘Male’ ‘Single’ 4 31234 142]]

The missing values can be computed by the methods discussed above. Here, Sim-
pleImputer() is used for preprocessing this data to handle missing data.

 from sklearn.impute import SimpleImputer
 impute = SimpleImputer(missing_values = np.nan, strat-
egy = ‘mean’)
 “ ‘ Using the fit method, we apply the ‘imputa’ object
on the matrix of our feature x, which is AGE here. The
‘fit()’ method identifies the missing values and com-
putes the mean of such feature a missing value is
present”‘
 impute.fit(x[:, 1:2])
 x[:, 1:2] = impute.transform(x[:, 1:2])
 print(“Imputed data (AGE feature missing values replaced
with mean of AGE) “)
 print(x)

Output:

Imputed data (AGE feature missing values replaced with mean of AGE)

[[‘ST19’ 32.0 ‘Female’ ‘Single’ 4 34562 114]

118 Artificial Intelligence and Machine Learning for Real-World Applications

[‘ST19’ 23.9 ‘Male’ ‘Single’ 3 29342 75]
[‘ST19’ 21.0 ‘Female’ ‘Partnered’ 3 43214 65]
[‘ST19’ 19.0 ‘Male’ ‘Single’ 3 30987 84]
[‘ST19’ 22.0 ‘Male’ ‘Partnered’ 2 53234 46]
[‘ST19’ 23.9 ‘Female’ ‘Partnered’ 3 28345 64]
[‘ST19’ 24.0 ‘Male’ ‘Partnered’ 3 36432 74]
[‘ST19’ 25.0 ‘Female’ ‘Single’ 3 30987 86]
[‘ST19’ 24.0 ‘Male’ ‘Single’ 4 31234 142]]

4.6.6.2 � Categorical Data Encoding
ML algorithms work on numeric data as they are based on forming mathematical
equations from the given data, so ML models require categorical data to be con-
verted to numeric data. Encoding techniques help convert categorical or textual data
into numeric data. Encoding techniques such as one-hot encoding and label encoding
[10] are available in Python, which converts text data into numeric. In the Fitness.
csv dataset, Gender, MaritalStatus and Fit are categorical data. One-hot encoding on
the Gender feature and Label encoding on the Fit feature is applied. For our data-
set, Gender has two values (Male and Female); 0 represents male and 1 represents
female. Numeric order between male and female does not matter. So one-hot encod-
ing helps as it converts the Gender column into three columns and creates a unique
binary vector for male and female. Male is converted to vector [0.0 1.0], and female
is converted to vector [1.0 0.0].

First, upload the .csv data file and view its contents.

 # Data Preprocessing -- Encoding of data
 import io
 from google.colab import files
 import pandas as pd
 import numpy as np
 uploaded= files.upload()
 datadf=pd.read_csv(io.BytesIO(uploaded[‘Fitness - Fit-
ness.csv’]))
 print(“ORIGINAL DATA”)
 print(datadf)

Output:

Fitness - Fitness.csv(text/csv) - 390 bytes, last modified: n/a - 100% done
Saving Fitness - Fitness.csv to Fitness - Fitness (4).csv
ORIGINAL DATA
ID Age Gender MaritalStatus Fitness Income MilesRun Fit
0 ST19 32 Female Single 4 34562 114 yes
1 ST19 33 Male Single 3 29342 75 no
2 ST19 21 Female Partnered 3 43214 65 yes
3 ST19 19 Male Single 3 30987 84 yes
4 ST19 22 Male Partnered 2 53234 46 yes
5 ST19 22 Female Partnered 3 28345 64 no

119Data and Preprocessing

6 ST19 24 Male Partnered 3 36432 74 no
7 ST19 25 Female Single 3 30987 86 yes
8 ST19 24 Male Single 4 31234 142 yes

The Fit feature has “Yes” or “No” values. The label encoder (discussed above) is used
to encode the Fit feature. Functions LabelEncoder() and fit_transform() are applied
on the Fit attribute.

 from sklearn.preprocessing import LabelEncoder
 ylabel = datadf.iloc[:, -1].values
 print(ylabel)
 le = LabelEncoder()
 ylabel = le.fit_transform(ylabel)
 print(“Label Encoded Fit Feature values”)
 print(ylabel)

Output:

[‘yes’ ‘no’ ‘yes’ ‘yes’ ‘yes’ ‘no’ ‘no’ ‘yes’ ‘yes’]
Label Encoded Fit Feature values
[1 0 1 1 1 0 0 1 1]

A one-hot encoder (discussed above) is used to encode the Fit feature. Functions
OneHotEncoder() and fit_transform() are applied on the Fit attribute.

 # One-hot encoding on Gender Feature
 from sklearn.compose import ColumnTransformer
 from sklearn.preprocessing import OneHotEncoder
 xinput = datadf.iloc[:, :-1].values
 colt = ColumnTransformer(transformers=[(‘encoder’, One-
HotEncoder(), [2])], remainder= ‘passthrough’)
 xinput = np.array(colt.fit_transform(xinput))
 print(“One-Hot encoding on Gender Feature”)
 print(xinput)

Output:

One-hot encoding on Gender feature

[[1.0 0.0 ‘ST19’ 32 ‘Single’ 4 34562 114]
[0.0 1.0 ‘ST19’ 33 ‘Single’ 3 29342 75]
[1.0 0.0 ‘ST19’ 21 ‘Partnered’ 3 43214 65]
[0.0 1.0 ‘ST19’ 19 ‘Single’ 3 30987 84]
[0.0 1.0 ‘ST19’ 22 ‘Partnered’ 2 53234 46]
[1.0 0.0 ‘ST19’ 22 ‘Partnered’ 3 28345 64]
[0.0 1.0 ‘ST19’ 24 ‘Partnered’ 3 36432 74]
[1.0 0.0 ‘ST19’ 25 ‘Single’ 3 30987 86]
[0.0 1.0 ‘ST19’ 24 ‘Single’ 4 31234 142]]

120 Artificial Intelligence and Machine Learning for Real-World Applications

4.6.6.3 � Scaling of Features
In some datasets, features have different values. Some features have very high-range
values, while others have small-range values. Features scaling must be performed
so that data becomes more relevant, and all the features are given the same weight
and importance. If the ML model is built on unscaled data, features with high-range
values will dominate those with small values and the ML model will treat the small-
range value features as though they do not exist. Python has two methods that help
scale data: StandardScaler() and MinMaxScaler(). StandardScaler() is applied on the
Miles feature of the Fitness.csv dataset.

First, upload the .csv data file and view its contents.

 # Data Preprocessing-Scaling of Data
 import io
 from google.colab import files
 import pandas as pd
 import numpy as np
 from sklearn.preprocessing import StandardScaler
 from sklearn.preprocessing import MinMaxScaler
 uploaded= files.upload()
 datadf=pd.read_csv(io.BytesIO(uploaded[‘Fitness - Fit-
ness.csv’]))
 print(“ORIGINAL DATA”)
 print(datadf)

Output:

Fitness - Fitness.csv(text/csv) - 390 bytes, last modified: n/a - 100% done
Saving Fitness - Fitness.csv to Fitness - Fitness (6).csv
ORIGINAL DATA
ID Age Gender MaritalStatus Fitness Income MilesRun Fit
0 ST19 32 Female Single 4 34562 114 yes
1 ST19 33 Male Single 3 29342 75 no
2 ST19 21 Female Partnered 3 43214 65 yes
3 ST19 19 Male Single 3 30987 84 yes
4 ST19 22 Male Partnered 2 53234 46 yes
5 ST19 22 Female Partnered 3 28345 64 no
6 ST19 24 Male Partnered 3 36432 74 no
7 ST19 25 Female Single 3 30987 86 yes
8 ST19 24 Male Single 4 31234 142 yes

Next, print the values of MilesRun as we want to apply scaling on this feature.

 datadf = datadf.iloc[:,[6]]
 print(“Miles column”)
 print(datadf)

121Data and Preprocessing

Output:

Miles column
MilesRun
0 114
1 75
2 65
3 84
4 46
5 64
6 74
7 86
8 142

 StandardScaler() is applied on the MilesRun column.

 stdc = StandardScaler()
 datadf = stdc.fit_transform(datadf)
 print(“Standard Scaled data of Miles”)
 print(datadf)

Output:

Standard-scaled data of MilesRun
[[1.12817638]
[−0.30656967]
[−0.67445327]
[0.02452557]
[−1.37343212]
[−0.71124163]
[−0.34335803]
[0.09810229]
[2.15825047]]

 MinMaxScaler() is applied on MilesRun. Both scaling
techniques use different formulas to scale the data.

 minmaxdc = MinMaxScaler()
 datadf = minmaxdc.fit_transform(datadf)
 print(“MinMax Scaled data of Miles”)
 print(datadf)

Output:

MinMax-scaled data of MilesRun
[[0.70833333]

122 Artificial Intelligence and Machine Learning for Real-World Applications

[0.30208333]
[0.19791667]
[0.39583333]
[0.]
[0.1875]
[0.29166667]
[0.41666667]
[1.]]

4.6.6.4 � Data Sampling
For sampling [11] data from population, Python uses random.choice() and random.
sample() functions, respectively, with and without replacement sampling.

import random
 # Sample population
 population = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
 # Sample size
 sample_size = 5
 # Random sampling without replacement
 randomsample = random.sample(population, sample_size)
 print(“Random Sample without replacement:”,
randomsample)
 randomsamplewithreplacement=[random.choice(population)
for _ in range(sample_size)]
 print(“Random Sample with replacement:”,
randomsamplewithreplacement)

Output:

 Random Sample without replacement: [1, 7, 10, 2, 9]
 Random Sample with replacement: [9, 5, 3, 6, 9]

As mentioned above, stratified sampling ensures representation from each subgroup
(stratum) in the population, leading to more precise estimates for the entire popula-
tion. Here dictionary data is created with two keys: “Category” and “Value.” “Cate-
gory” contains categorical data with three groups: “A,” “B,” and “C,” each repeated
four times. “Value” contains corresponding numerical values for each category.
Groups are formed on the DataFrame by the “Category” column and then a function
apply() is applied to each group to select n_samples from each group. This will select
different n_samples from each category on each run.

 import pandas as pd
 # Create a sample DataFrame
 data = {
 ‘Category’: [‘A’, ‘A’, ‘A’, ‘A’, ‘B’, ‘B’, ‘B’, ‘B’,
‘C’, ‘C’, ‘C’, ‘C’],

123Data and Preprocessing

 ‘Value’: [10, 20, 30, 40, 15, 25, 35, 45, 50, 60, 70,
80]
 }
 df = pd.DataFrame(data)
 # Number of samples to draw from each stratum
 n_samples = 2
 # Perform stratified sampling
 stratified_sample = df.groupby(‘Category’, group_keys=-
False).apply(lambda x: x.sample(n_samples))
 print(“Stratified Sample:\n”, stratified_sample)

Output:

 Stratified Sample:
 Category Value
 2 A 30
 3 A 40
 7 B 45
 4 B 15
 8 C 50
 9 C 60

4.7 � SUMMARY

This chapter serves as an introductory journey into the fundamentals of ML, equip-
ping readers with essential knowledge and skills. Starting with an exploration of the
basics of ML, readers are introduced to different types of ML paradigms. They gain
insights into the importance of datasets, understanding various data types, and the
foundational concepts of data preprocessing. Practical implementation using Python
covers crucial tasks such as data reduction, transformation, encoding, and handling
missing values, essential for preparing data for ML models. By the end of the chap-
ter, readers will have a solid foundation in handling data effectively to support their
ML endeavors.

REFERENCES

	 1.	 Aakanksha Sharaff, G. R. Sinha, Data Science and Its Applications, CRC Press, https://
doi.org/10.1201/9781003102380

	 2.	 https://danielnhliziyoblog.files.wordpress.com/2018/07/machine-learning-with-r-2nd-
edition.pdf

	 3.	 https://www.coursehero.com/file/p3qasj4d/Interpretation-For-every-addition-
al-unit-of-spending-on-TV-and-Radio-advertising/

	 4.	 Uwe Engel, Anabel Quan-Haase, Sunny Liu, Lars E. Lyberg, The Handbook of Com-
putational Social Science, CRC Press, https://doi.org/10.4324/9781003024583

	 5.	 https://sist.sathyabama.ac.in/sist_coursematerial/uploads/SIT1301.pdf
	 6.	 https://www.powershow.com/view4/83e0d2-NDA0M/Ahmed_K_Ezzat_powerpoint_

ppt_presentation
	 7.	 https://www.researchgate.net/publication/359917263_Pre-processamento_de_dados

https://doi.org/10.1201/9781003102380
https://doi.org/10.1201/9781003102380
https://danielnhliziyoblog.files.wordpress.com/2018/07/machine-learning-with-r-2nd-edition.pdf
https://danielnhliziyoblog.files.wordpress.com/2018/07/machine-learning-with-r-2nd-edition.pdf
https://www.coursehero.com/file/p3qasj4d/Interpretation-For-every-additional-unit-of-spending-on-TV-and-Radio-advertising/
https://www.coursehero.com/file/p3qasj4d/Interpretation-For-every-additional-unit-of-spending-on-TV-and-Radio-advertising/
https://doi.org/10.4324/9781003024583
https://sist.sathyabama.ac.in/sist_coursematerial/uploads/SIT1301.pdf
https://www.powershow.com/view4/83e0d2-NDA0M/Ahmed_K_Ezzat_powerpoint_ppt_presentation
https://www.powershow.com/view4/83e0d2-NDA0M/Ahmed_K_Ezzat_powerpoint_ppt_presentation
https://www.researchgate.net/publication/359917263_Pre-processamento_de_dados

124 Artificial Intelligence and Machine Learning for Real-World Applications

	 8.	 ht tps://towardsdatascience.com/dimension-reduction-techniques-with-py-
thon-f36ca7009e5c?gi=3d85851a8782

	 9.	 https://biapol.github.io/Quantitative_Bio_Image_Analysis_with_Python_2022/day3e_
dimensionality_reduction/02_UMAP.html

	 10.	 https://www.section.io/engineering-education/data-preprocessing-python/
	 11.	 https://almarefa.net/blog/how-to-effectively-loop-within-groups-in-pandas

https://towardsdatascience.com/dimension-reduction-techniques-with-python-f36ca7009e5c?gi=3d85851a8782
https://towardsdatascience.com/dimension-reduction-techniques-with-python-f36ca7009e5c?gi=3d85851a8782
https://biapol.github.io/Quantitative_Bio_Image_Analysis_with_Python_2022/day3e_dimensionality_reduction/02_UMAP.html
https://biapol.github.io/Quantitative_Bio_Image_Analysis_with_Python_2022/day3e_dimensionality_reduction/02_UMAP.html
https://www.section.io/engineering-education/data-preprocessing-python/
https://almarefa.net/blog/how-to-effectively-loop-within-groups-in-pandas

DOI: 10.1201/9781003532170-5� 125

5 Supervised Machine
Learning

5.1 � SUPERVISED MACHINE LEARNING

Labeled examples are used in supervised machine learning (ML) to train algorithms
to recognize patterns and make choices. This shows that each training case has an
output label attached to it. In supervised learning, the objective is to build a model
that can accurately map inputs to their corresponding outputs, allowing for predic-
tions on future data. Supervised learning seeks to learn a function that can take
inputs and produce accurate predictions of outputs, even for data it hasn’t encoun-
tered before. Regression and classification are the two primary categories into which
supervised learning tasks are typically divided. In regression, a continuous value is
predicted, for instance, estimating a house’s cost based on its characteristics. Classi-
fication predicts a distinct label, such as whether an email is spam.

5.2 � CORRELATION AND REGRESSION ANALYSIS

We often need to understand how changes in one factor affect another. For instance,
the amount of time spent studying can affect the marks obtained, or the level of rainfall
can impact crop production. To analyze these relationships, we use statistical meth-
ods like correlation and regression. Regression allows us to predict the value of one
variable based on another, whereas correlation assesses the strength of the relation.

5.2.1 � Correlation Analysis

The association between variables, i.e., correlation, can be studied graphically by
creating a scatter plot of variables or by calculating the correlation coefficient. Both
these ways of analysis are described below.

5.2.1.1 � Measures of Association
In statistics, correlation denotes some form of association between two variables. For
example, weight and height are correlated. The measured correlation can be positive,
negative, or zero (scatterplot in Figure 5.1).

Positive Correlation: If attribute A value increases with an increase in attri-
bute B value, and vice versa.

Negative Correlation: If attribute A value decreases with an increase in attri-
bute B value, and vice versa.

Zero Correlation: When attribute A value varies at random with attribute B
value, and vice versa.

https://doi.org/10.1201/9781003532170-5

126 Artificial Intelligence and Machine Learning for Real-World Applications

5.2.1.2 � Correlation Coefficient
A statistic known as correlation coefficient evaluates the linear relationship—along
with its strength and direction—between numerical variables. The indications (+ and
−) show the direction of the relationship, while the magnitude, which goes from 0
to 1 for a fully predicted relationship, denotes its strength. Strong positive relation-
ships are indicated by a correlation coefficient around 1, while strong negative linear
relationships are indicated by a value near −1. A coefficient of 0 denotes a weak or
nonexistent linear relationship between the variables.

To calculate the correlation coefficient between two numerical attributes, Karl
Pearson’s method is typically employed. For ordinal attributes, Charles Spearman’s
rank correlation coefficient is used, where ranks are assigned to the different values
of the ordinal variable.

Correlation and covariance describe the degree of a relationship. Correlation is
dimensionless, while covariance is not. Its unit is obtained by multiplying the units of
the two variables. To compute the correlation coefficient, a “scaleless” quantity, the
product of the standard deviations of x and y divides the covariance.

Covariance is defined in terms of mean as

S
n

x x y yxy i
i

n

i=
−

− −
=
∑1

1 1

()()

Here, xi, and yi are observations, (,)x y- - represent the mean of observations, and n
denotes the total number of observations.

Mathematically, the correlation coefficient is expressed as

	 gxy
xy

x y

S

S S
= ,� (1)

where Sx and Sy represent the standard deviations, and covariance is represented by
Sxy.

Positive correclation
7

6

5

4

3

2

1

1 2 3 4 5 6 7 1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8 9 10 11

7

6

5

4

3

2

1

7

6

5

4

3

2

1

Negative correlation Zero correlation

FIGURE 5.1  Scatterplot of Correlation (Types of Correlation).

127Supervised Machine Learning

5.2.1.3 � Correlation and Causation
While causality indicates a cause-and-effect link between two variables, correla-
tion identifies a relationship between two variables. It’s crucial to understand that
a correlation between two variables does not imply a cause-and-effect relationship.
A third variable that influences both variables may be the reason for the relation-
ship between the two. For instance, there is a correlation between temperature and
ice cream sales, but not a causal relationship. In a similar vein, sales of sunglasses
and ice cream may correlate, but this does not mean that one causes the other. The
common factor in both cases is warm weather, which drives the sales of both ice
cream and sunglasses. However, ice-cream sales does not cause warm weather, and
sunglasses do not cause ice-cream sales. A cause reflects a correlation with an under-
lying reason. For instance, the relationship between drinking coffee and productivity
is a correlation. While caffeine intake might make you feel more productive, it could
also be that working at a coffee shop, away from distractions at home, increases your
productivity. In this case, the cause–effect relationship is not definitive. On the other
hand, the relationship between exercise and muscle growth, and between overeat-
ing and obesity are clear examples of cause–effect relationships. Exercise leads to
muscle growth, and overeating leads to weight gain or obesity. In these cases, if X
occurs, Y follows. Understanding cause–effect relationships is particularly valuable
in business analysis, as it provides real-world context and meaning to correlations.
For example, you might want to identify the factors that contributed to a successful
marketing channel, understand why customers are buying your product, or determine
the most appreciated feature of your product.

5.2.2 �R egression Analysis

In order to forecast the value of a dependent variable, regression analysis analyzes the
relationship between the dependent variable and one or more independent variables.
This statistical modeling technique is used to establish a mathematical representation
of the relationship between variables. Regression models are broadly categorized
into linear and nonlinear types. Linear models can be further divided into simple and
multiple regression models, as depicted in Figure 5.2.

FIGURE 5.2  Regression Analysis Model.

128 Artificial Intelligence and Machine Learning for Real-World Applications

5.2.2.1 � Simple Linear Regression
Two variables are the main focus of basic linear regression: the independent variable,
also known as the regressor (X), and the dependent variable, commonly known as
the response (Y). Figure 5.3 shows how a linear equation expressing the relation
between X and Y is expressed.

Regression analysis quantifies the strength of the relation between Y and X by
finding the best fit among an infinite number of potential lines. Estimating the
regression coefficients, often represented by the symbols α and β, is the aim of
regression analysis. The least squares method seeks to minimize the sum of squared
errors in order to determine which regression line most closely matches the data
points. To accomplish this minimizing, linear regression computes the coefficients
α and β.

	 e = (Y X)i iΣ −β−α 2 � (2)

The sum of squared errors is differentiable and also positive, so it is used in linear
regression. To minimize the error, the equation is differentiated with respect to the
parameters and then equated to zero. The estimated values for the parameters α and
β are derived from this process.

	 α =
()−()()
()−()
XY X Y

Xi X2 2 � (3)

	 β −α=Y X � (4)

FIGURE 5.3  Simple Linear Regression.

129Supervised Machine Learning

Certain assumptions are necessary for drawing valid conclusions from linear
regression:

	 1.	Since they are raised to the first power and are not multiplied or divided by
one another, parameters β and α are linear.

	 2.	The independent variable is nonrandom.
	 3.	For every observation, the error term’s variance stays the same.
	 4.	The error term, ε, follows normal distribution and shows no correlation

across different observations.

5.2.2.2 � Multiple Linear Regression
When there are numerous independent variables (k-independent variables, x1, x2,
. . ., xk), multiple regression modeling can be applied. The multiple linear regression
model has linear coefficients, which may be expressed as follows:

	 y = + + +i 0 1 2 kb b b bx x xk1 2 � (5)

5.2.2.3 � Nonlinear Regression
When the regression equation is expressed with a degree greater than one (r > 1),
it is referred to as a nonlinear regression model. Additionally, if there are multiple
independent variables, x1, x2, . . ., xr, the model is known as a multiple nonlinear
regression model, or alternatively, a polynomial regression model. Generally, it is
represented as

	 y = + + +i 0 1 2 rb b b bx x xr2 � (6)

This approach can be useful when the relationship between the independent and
dependent variables is nonlinear. The equation above illustrates how to fit the data
using a polynomial regression model or you can transform the data into a linear form
in order to apply a linear regression model to nonlinear data.

5.2.3 �V alidation of Regression Methods

Regression model evaluation involves key metrics to assess performance: mean abso-
lute error (MAE) calculates the average magnitude of prediction errors by consid-
ering absolute differences between actual and predicted values. Mean squared error
(MSE), which squares these differences, highlights larger errors, making the model
sensitive to outliers. Root mean squared error (RMSE), the square root of MSE,
presents errors in their original units for easier interpretation. Finally, the R² score
(coefficient of determination) measures how well the model explains the variance in
the dependent variable, with a value close to 1 indicating a strong fit and values near
0 signifying poor model performance.

	 MAE
N

y yi
i

N

= −
=
∑1

1

| |ˆ ,

130 Artificial Intelligence and Machine Learning for Real-World Applications

	 MSE
N

y yi
i

N

= −
=
∑1 2

1

()ˆ ,

	 RMSE MSC
N

y yi
i

N

= = −
=
∑1 2

1

()ˆ ,

	 R
y y

y y
i

i

2
2

2
1= −

−
−

Σ
Σ

()

()

ˆ
,

where
ŷ predicted valueof y
y mean valueof y

-
- .

Example: Let’s assume the company’s 5 months sales data (in thousands) is as
given below. Apply the linear regression technique to predict the 8th and 12th month
sales.

Xi (Month) Yi (Sales in Thousands)

1 12

2 18

3 26

4 32

5 38

To fit the linear regression model, the parameters are calculated using the follow-
ing formulas for Y = X +α β .

	 α =
()−()()
()−()
XY X Y

Xi X2 2

	 β −α=Y X

Xi Yi (Xi)2 Xi * Yi

1 12 1 12

2 18 4 36

3 26 9 78

4 32 16 128

5 37 25 185

Sum = 15
Average of Xi = 15/5 = 3

Sum = 125
Average of Yi = 125/5 = 25

Sum = 55
Average of (Xi)2 =

55/5 = 11

Sum = 439
Average of (Xi*Yi) =
439/5 = 87.8

	 α = ((87.8) – (3)(25)) / (11 – 32) = 12.8/2 = 6.4

β = 25 – 6.4 * 3 = 5.8

131Supervised Machine Learning

Regression line Y = 6.4 X + 5.8

Sales of 8th month = 6.4 * 8 + 5.8 = 57

Sales of 12th month = 6.4 * 12 + 5.8 = 82.6

Given the actual sales of the 8th and 12th months are 60 and 80, respectively, errors
can also be calculated such as MSE, MAE, RMSE, and r2 score or R2.

	 MAE = ½ ((60 – 57) + abs(80 – 82.7)) = 2.85

MSE = ½ ((60 – 57)2 + (80 – 82.7)2) = 8.145

RMSE = sqrt(8.145) = 2.85

Y = 25

R2 = 1 − (((60 – 57)2 + (80 – 82.7)2) / ((60 – 25)2 + (80 – 25)2)) = .9961

R2 indicates the accuracy of the linear regression model is 99.61%.

5.2.4 �S imple Linear Regression in Python

This code uses an advertising.csv file, which contains the data on TV, radio, news-
paper, and sales. Here, the strongest linear relationship between data items is found
out and then a linear regression model is fit for those data items. The accuracy of the
model is also calculated, and the data is also represented using different graphical
methods.

First, Advertising.csv file is uploaded in Google Colab.

To load.csv file in colab
from google.colab import files
uploaded= files.upload()

 #Simple Linear Regression
 from matplotlib import pyplot
 import io
 import matplotlib.pyplot as plt
 import pandas as pd
 from sklearn.model_selection import train_test_split
 from sklearn.linear_model import LinearRegression
 from sklearn import metrics
 import scipy.stats

 dfval=pd.read_csv(io.BytesIO(uploaded[‘Advertising.
csv’]))
After the csv file is uploaded, correlation coefficients between TV, radio, newspaper,
and sales are calculated using Pearson’s, Spearman’s, and Kendall’s methods.

132 Artificial Intelligence and Machine Learning for Real-World Applications

 #Find the correlation between variables
 pearsoncorr = dfval.corr(method=‘pearson’)
 print(pearsoncorr)
 spearmancorr = dfval.corr(method=‘spearman’)
 print(spearmancorr)
 kendallcorr = dfval.corr(method=‘kendall’)
 print(kendallcorr)

Output:

 TV Radio Newspaper Sales
 TV 1.000000 0.054809 0.056648 0.782224
 Radio 0.054809 1.000000 0.354104 0.576223
 Newspaper 0.056648 0.354104 1.000000 0.228299
 Sales 0.782224 0.576223 0.228299 1.000000

 TV Radio Newspaper Sales
 TV 1.000000 0.056123 0.050840 0.800614
 Radio 0.056123 1.000000 0.316979 0.554304
 Newspaper 0.050840 0.316979 1.000000 0.194922
 Sales 0.800614 0.554304 0.194922 1.000000

 TV Radio Newspaper Sales
 TV 1.000000 0.041202 0.034156 0.621946
 Radio 0.041202 1.000000 0.207077 0.419447
 Newspaper 0.034156 0.207077 1.000000 0.132271
 Sales 0.621946 0.419447 0.132271 1.000000

By looking at the results printed, it appears that TV and sales follow a strong linear
relationship. Plot is printed on TV and sales attributes.

dataval1=dfval[‘TV’]
 dataval2=dfval[‘Sales’]
 # plot
 pyplot.scatter(dataval1, dataval2)
 pyplot.show()

Output:

The correlation coefficients of TV and sales can be printed using all three methods
of correlation.

 print(‘Using scipy, coorelation between two variables Tv
and Sales’)
 pearsoncorr=scipy.stats.pearsonr(dataval1,dataval2)[0]
 print(pearsoncorr)
 spearmancorr = scipy.stats.spearmanr(dataval1,dataval2)
[0]

133Supervised Machine Learning

 print(spearmancorr)
 kendallcorr = scipy.stats.kendalltau(dataval1,dataval2)
[0]
 print(kendallcorr)

Output:

 Using scipy, coorelation between two variables TV and
Sales
 0.7822244248616065
 0.8006143768505688
 0.6219463551009411

 As we see a strong linear relationship between TV and
sales data, a regression model can be built for these
parameters as coded below:

 Xval = dfval[‘TV’].values.reshape(-1,1)
 yval = dfval[‘Sales’].values.reshape(-1,1)

 Linear Regression model on TV and Sales data of
advertising
 Xval_train, Xval_test, yval_train, yval_test = train_
test_split(Xval, yval, test_size=0.3, random_state=0)
 regressorval = LinearRegression()

FIGURE 5.4  Scatterplot of TV and Sales (Shows Linear Relationship).

134 Artificial Intelligence and Machine Learning for Real-World Applications

 regressorval.fit(Xval_train, yval_train)
 #To retrieve the intercept and slope of linear regres-
sion model:
 print(regressorval.intercept_)
 print(regressorval.coef_)

Output:

 [7.31081017]
 [[0.04581434]]

 yval_pred = regressorval.predict(Xval_test)
 df = pd.DataFrame({‘Actual’: yval_test.flatten(), ‘Pre-
dicted’: yval_pred.flatten()})
 print(df)

Output:

 Actual Predicted
 0 11.3 10.481163﻿
 1 8.4 9.601527
 2 8.7 11.452427
 3 25.4 20.583225
 4 11.7 15.108411
 5 8.7 9.885576
 6 7.2 7.709395
 7 13.2 18.310834
 8 9.2 8.401192
 9 16.6 16.363724
 10 24.2 19.282098
 11 10.6 11.305821
 12 10.5 14.485336
 13 15.6 15.914744
 14 11.8 10.811026﻿
 15 13.2 12.817694

 57 14.4 15.213784
 58 16.6 16.588214
 59 5.5 7.645255

This will evaluate the performance of the regression model

 print(“)
 r2_score = regressorval.score(Xval_test, yval_test)
 print(‘accuracy of model is’)
 print(r2_score*100,’%’)

135Supervised Machine Learning

Output:

 accuracy of model is
 72.5606346597073 %

Bar graph of first 15 values to show actual and predicted values.

 dfval1 = df.head(15)
 dfval1.plot(kind=‘bar’,figsize=(16,10))
 plt.grid(which=‘major’, linestyle=‘:’, linewidth=‘0.6’,
color=‘red’)
 plt.grid(which=‘minor’, linestyle=‘-’, linewidth=‘0.6’,
color=‘green’)
 plt.show()

Output:

 Below code to shows Predicted Y value in line, points
shows actual Y values for test data

 plt.scatter(Xval_test, yval_test, color=‘gray’)
 plt.plot(Xval_test, yval_pred, color=‘red’, linewidth=2)
 plt.show()

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

5

10

15

20

25 Actual
Predicted

FIGURE 5.5  Actual and Predicted Values of Simple Linear Regression on Advertising Data.

136 Artificial Intelligence and Machine Learning for Real-World Applications

#output

FIGURE 5.6  Regression Line of Advertising Data.

From the Advertising.csv file, which contains the data on TV, radio, newspaper,
and sales, multiple linear regression can also be fitted. “Sales” data items are con-
sidered as a dependent variable, whereas TV, newspaper, and radio are considered as
independent variables. Using this model, sales is predicted based on TV, newspaper,
and radio. The accuracy of the multiple linear regression model is 86%, while that
of the simple linear regression model is 72% only, as discussed above. Here results
shows that the sales prediction is better considering those of TV, radio, and newspa-
per together instead of considering only TV data.

5.3 � CLASSIFICATION

Statistical ML methods, particularly classification techniques, are employed to cat-
egorize items based on specific traits or features.​ For example, classification can be
applied to label documents as “Secret” or “Confidential,” or to recognize handwrit-
ten characters in languages such as Gujarati, Bengali, and Devanagari.

Common classification algorithms include Naive Bayes, k-NN, logistic regression,
decision trees, and support vector machines.

Classification problems are generally divided into two primary types: binary clas-
sification and multiclass classification. Binary classification focuses on distinguish-
ing between two groups, such as determining whether cancer is present or classifying
an email as spam. In contrast, multiclass classification addresses scenarios with more
than two categories, such as identifying different faces, categorizing various plant
species, or recognizing distinct characters.

137Supervised Machine Learning

To adapt binary classification algorithms for multiclass scenarios, strategies like
one-versus-one and one-versus-rest can be employed. The one-versus-rest approach
involves training a separate binary classifier for each category against all other cat-
egories, while the one-versus-one method trains binary classifiers for every possible
pair of categories. These techniques can be effectively utilized by algorithms such
as support vector machines and logistic regression for multiclass classification tasks.

5.3.1 � k-NN Classification

k-NN is a straightforward, nonparametric ML method that doesn’t make any assump-
tions about the underlying data. Unlike many other algorithms that need a training
phase, k-NN classifies [1] incoming data points based on how similar they are to
preexisting data points. The effectiveness of k-NN is dependent on the choice of
k or the number of nearest neighbors considered. To classify a new data point, the
algorithm calculates its distance from the current data points (using methods such
as the Euclidean distance). k-NNs are estimated using these calculated distances.
In Figure 5.7, a new data point is classified in category 1 as of five neighbors, three
nearest neighbors are from category 1. As a constant, k has an odd value.

5.3.1.1 � k-NN Classification Using Python
Breast cancer data is used here to classify test data points as “malignant” or “benign.”
The k-value taken here is 5. The distance measure used here is Euclidean distance.
These parameters are specified in the KNeighborsClassifier() function of the sklearn
library. Data is split into training and test sets. The dataset contains a total of 570
data points, and 114 data points are considered as test data points. The k-NN classi-
fier classifies 109 points correctly, and the accuracy of the model is 95.61%.

 #K-nn Classification
 import numpy as np
 import pandas as pd

FIGURE 5.7  k-NN Classification.

138 Artificial Intelligence and Machine Learning for Real-World Applications

 from sklearn import datasets, metrics
 from sklearn.preprocessing import StandardScaler
 from sklearn.metrics import confusion_matrix
 from sklearn.neighbors import KNeighborsClassifier
 from sklearn.model_selection import train_test_split
 cancer = datasets.load_breast_cancer()
 Xval = cancer.data
 yval = cancer.target
 scaler = StandardScaler()
 X_scaledval = scaler.fit_transform(Xval)
 X_trainval, X_testval, y_trainval, y_testval = train_
test_split(X_scaledval, yval, test_size = 0.2, random_
state = 1)

 #K nearest neighbor classifier is built, which is using
euclidean distance measure to find 5 nearest points.
Prediction and accuracy is also calculated here.
 knnclassifier = KNeighborsClassifier(n_neighbors=5,
metric=‘euclidean’)
 knnclassifier.fit(X_trainval, y_trainval)
 y_pred = knnclassifier.predict(X_testval)
 print(confusion_matrix(y_testval, y_pred))

 r2_score = knnclassifier.score(X_testval, y_testval)
 print(‘accuracy of model is ‘)
 print(r2_score*100,’%’)

Output:

 [[37 5]
 [0 72]]
 accuracy of model is 95.6140350877193 %

5.3.2 �D ecision Tree

A decision tree is a flowchart-like graphic that shows the various possible outcomes
depending on a series of choices. It serves various purposes, including decision-mak-
ing, research analysis, and strategic planning. Tree-based algorithms are widely
employed in supervised learning tasks due to their versatility. Decision trees are
capable of processing numerical and categorical input, and they are valued for their
ease of interpretation and visualization. Typically, decision trees consist of three
main components:

Root Node: Represents the ultimate objective or the big decision you’re trying
to make.

Branches: Represent the options that are available when making a decision.
Leaf Node: Represents possible outcomes for each action.

139Supervised Machine Learning

Advantages of Decision Tree:

	 Minimal effort is needed for data preparation or cleaning during the prepro-
cessing phase.

	 Decision trees do not require data normalization or scaling.
	 Missing data does not significantly impact the decision tree building

process.
	 Decision trees are valued for their simplicity and clarity, making them easy

to explain to both technical teams and stakeholders.

Disadvantages of Decision Tree:

	 The tree structure can alter significantly even with little changes in the data.
	 In comparison to other methods, the necessary computations can get more

complicated.
	 The training process may be time-consuming, particularly with numerous

class labels and deeper tree structures.
	 Decision trees are less effective for regression tasks.

Working of Decision Tree Algorithm:

	 1.	Splitting: It is the procedure for dividing data into smaller groups.
	 2.	Pruning or Information Gain: It is the process of shortening the branches

of a decision tree to limit the tree depth. To keep the decision tree simple,
you need to ensure that the tree is small. To measure the information cor-
responding to each feature, information gain is calculated using entropy.
Entropy is a measure of the uncertainty, quantifying the amount of infor-
mation or disorder present in data.

	 3.	Tree Selection: This is the process of determining which tree, in terms of
size, best matches the data. To keep the decision tree simple, the informa-
tion present must be pure. Tree selection mainly deals with selecting the
best attribute for the root and other internal nodes. There are two techniques
that help in selecting the best attributes:
•	 Information gain
•	 Gini index

5.3.2.1 � Information Gain
Information gain tells about how much information that feature or attribute provided
about a class. Information gain can be calculated as

 Informatio_ Gain (A)= Entropy_Info(T)- Entropy_Info(T,A)

Here T is the training dataset, A is the set of attributes {A1, A2, . . ., An}, and m is the
number of classes in the training dataset. Let Pi be the probability that a data instance
“d” belongs to class Ci. It is calculated as: dCi

Pi =
dCi

T

140 Artificial Intelligence and Machine Learning for Real-World Applications

Pi = Total number of data instances that belongs to class Ci in T/Total number of
tuples in training set T.

Entropy specifies randomness in data. It measures the impurity in a given attri-
bute or feature. Entropy can be calculated as

 Entropy_Info T = - P log Pi 2 i()
=

∑
i

m

1
﻿

 Entropy_Info T,A =()
=∑ i

v Ai

T1
 * Entropy_Info(Ai)

Here, attribute A has got “v” distinct values {a1, a2, . . ., av}, Ai is the number of
instances for distinct value “” in attribute A, and Entropy_Info(Ai) is the entropy
for that set of instances. Entropy and information gain are inversely related; i.e., as
entropy increases, information gain decreases.

Example: To assess a student’s performance during his course of study and pre-
dict whether the student will get a job offer or not. The training dataset contains 10
instances with attributes CGPA, interactiveness, practical knowledge, and job offer.
The target class is a job offer. Let’s create a decision tree to solve this problem.

First, calculate the Entropy of the target class “job offer.”

	 Entropy_Info(target attribute = job offer) =

Entropy_Info(7,3) = −
7

10

7

10

3

10

3

102 2log log+












	 = .3599+ .5208 = .8807− − −()

TABLE 5.1 
Student Data

Practical
SN CGPA Interactiveness Knowledge Job Offer

1 ³ Yes Very good Yes9

2 ³ No Good Yes8

3 ³ No Average No9

4 < 8 No Average No

5 ³ Yes8 Good Yes

6 ³ 9 Yes Good Yes

7 < 8 Yes Good No

8 ³ 9 No Very good Yes

9 ³ 8 Yes Good Yes

10 ³ 8 Yes Average Yes

141Supervised Machine Learning

Now calculate the Entropy_Info and information gain for each attribute. First, let’s
calculate for the CGPA attribute, as shown in Table 5.2.

	

Entropy_Info T, CGPA =() − −












+ −

4

10

3

4

3

4

1

4

1

4
4

10

4

4

4

4

2 2

2

log log

log −−











+

0

4

0

4

2

102log

− −












0

2

0

2

2

2

2

22 2log log

= .3243

Gain(CGPA) = .8807 − .3243 = .5564

Next calculate the entropy and information gain for attribute Interactiveness as
shown in Table 5.3.

	 Entropy_Info(T, Interactiveness)t= − −











+

6

10

5

6

5

6

1

6

1

6

4

102 2log log

− −











= + =

2

4

2

4

2

4

2

4
3898 3998 78962 2 . . .log log

Gain(Interactiveness) = .8807 − .7896 = .0911
Likewise calculate entropy for practical knowledge. It is 0.2246. So the best split

is using CGPA as its information gain is highest among all attributes. The CGPA
attribute will become the root of the decision tree.

In the next step, the gain of the remaining attributes is calculated, and a decision
is made on the next level root node from the remaining attributes.

TABLE 5.2 
Entropy Information for CGPA

CGPA Job Offer = Yes Job Offer = No Total

³ 3 1 49

³ 48 0 4

< 8 0 2 2

TABLE 5.3 
Entropy Information for Interactiveness

Interactiveness Job Offer = Yes Job Offer = No Total

Yes 5 1 6

No 2 2 4

142 Artificial Intelligence and Machine Learning for Real-World Applications

CGPA <8 has job offer = “No” only, and CGPA³ 8 also has job offer = “No”
only. But CGPA³ 9 has job offer “Yes” and “No” both for the following data, as
shown in Table 5.4.

So in this step, the same process of computing Entropy_Info and Gain are repeated
with the above subset of data. This subset has only four data items. Of these four
data, three has job offer “Yes” and only one has job offer “No.”

	 Entropy_Info(target attribute = job offer) =

Entropy_Info(3,1) = −
3

4

3

4

1

4

1

42 2log log+












= .8108

	 Entropy_Info(T, Interactiveness) = − −











+

2

4

2

2

2

2

0

2

0

2

2

42 2log log

− −











= + =

1

2

1

2

1

2

1

2
0 4997 49972 2 . .log log

Gain(Interactiveness) = .8108 − .4497 = .3111

Entropy_Info(T, Practical knowledge) = − −











+

2

4

2

2

2

2

0

2

0

2 4

1
2 2log log

− −











+ − −

0

1

0

1

1

1

1

1

1

4

1

1

1

1

0

1

0

12 2 2 2log log log log











=0

Gain(Interactiveness) = .8108

Gain of practical knowledge is high compared to that of Interactiveness, so it
becomes the next level root node. The final decision tree is shown in Figure 5.8.

TABLE 5.4 
Data for CGPA ³ 9

Interactiveness Practical Knowledge Job Offer

Yes Very good Yes

No Average No

Yes Good Yes

No Very good Yes

143Supervised Machine Learning

Gini Impurity:

When there are many class labels in the data, this measure of misclassification metric
is applied. Gini is comparable to entropy, but it computes significantly more quickly.
Gini is used as an impurity parameter in algorithms such as CART (Classification
and Regression Tree) algorithms. Python, by default, uses the Gini index for identi-
fying the best attributes for decision-making.

Example: You want to find whether a person is married or not based on the data
collected on the age, income, and gender of different persons, as shown in Table 5.5.
A ML algorithm to construct a decision tree is required that best selects the branches

FIGURE 5.8  Final Decision Tree for Student Dataset Using Entropy and Information Gain.

144 Artificial Intelligence and Machine Learning for Real-World Applications

automatically considering each feature (here age, salary, and gender) to find how well
each feature separates people who are married and who are not.

In order to find out which split is better, information gain is calculated for each
feature, and the feature with the highest information gain is selected for decision
tree-making. Here in this case, there is impurity in each feature as none is saying
100% yes in any case. So the Gini impurity of the left and right leaves is calculated.
To do this, it is required to subtract the square of the fraction of people who are
married and the square of the fraction of people who are not married from 1 for that
feature. For example, Age feature Gini impurity can be calculated as

The age information gain calculated above is .0825, as shown in Figure 5.9. Like-
wise, the information gain of income and gender features can also be calculated. In

TABLE 5.5 
Personal Data

Married Age Income Gender

<30 >30 <50000 >50000 Male Female

Yes 43 90 59 102 83 96

No 77 30 61 18 37 24

FIGURE 5.9  Impurity Calculation Example.

145Supervised Machine Learning

this case, the information gain of the income feature is 0.1375 and the gender feature
is 0.1265. So in this case, root splitting will be best on the income feature, rather than
splitting on age and gender features. This process goes on for all next subsequent
nodes until a value below the threshold level is reached.

5.3.2.2 � Decision Tree Using Python
An “Iris” dataset is used here. The dataset contains three classes (Setosa, Versico-
lour, and Virginica) and four features, i.e., petal width, petal length, sepal width, and
sepal length. Python, by default, uses the Gini index for decision tree.

 import numpy as np
 import seaborn as sns
 from sklearn.metrics import classification_report, con-
fusion_matrix,acc uracy_score
 from sklearn.preprocessing import LabelEncoder
 from sklearn.tree import DecisionTreeClassifier
 from sklearn.model_selection import train_test_split
 import matplotlib.pyplot as plt
 from sklearn.tree import plot_tree

Load the Iris dataset on Google Colab. Some preprocessing operations such as
isnull() checking and applying labelencoder are performed on the target variable.
After preprocessing, a decision tree ML model is built on the dataset. The accuracy
of the model is 100%. The decision tree is also printed.

 dfd = sns.load_dataset(‘iris’)
 dfd.isnull().any()
 target = dfd[‘species’]
 dfd1 = dfd.copy()
 dfd1 = dfd1.shape
 X = dfd1
 lee = LabelEncoder()
 tar = lee.fit_transform(target)
 y = tar
 dectree=DecisionTreeClassifier()
 dectree.fit(X,y)
 print(‘Decision Tree Classifier Created’)
 ydpred=dectree.predict(X)
 cma = confusion_matrix(y, ydpred)
 print(cma)
 print(“Decision tree model accuracy(in %):”, accuracy_
score(y, ydpred)*100)

 # Visualising the graph without the use of graphviz
 plt.figure(figsize = (20,20))
 dec_tree = plot_tree(decision_tree=dectree, feature_
names = dfd1.columns,

146 Artificial Intelligence and Machine Learning for Real-World Applications

 class_names =[“setosa”, “vercicolor”, “verginica”],
filled = True, precision = 4, rounded = True)
 plt.savefig(“one.png”)

Output:

Decision Tree Classifier Created
[[50 0 0]
[0 50 0]
[0 0 50]]
Decision tree model accuracy(in %): 100.0

5.3.3 �S upport Vector Machine

Support vector machine (SVM) [2] is widely used for classification problems, but it
can also be used for regression problems. It is a supervised ML algorithm that finds
the separating line for two-dimensional and hyper planes for multidimensional data.

Petal_length <= 2.45
Gini = 0.6667

Samples = 150
Value = [50, 50, 50]

Class = Setosa

Gini = 0.0
Samples = 50

Value = [50, 0, 0)
Class = Setosa

Petal width <= 1.75
Gini = 0.5

Samples = 100
Value = [0, 50, 50)
Class = Vercicolor

Petal length <= 4.95
Gini = 0.168

Samples = 54
Value = [0, 49, 5]
Class = Vercicolor

Petal length <= 4.85
Gini = 0.0425
Samples = 46

Value = [10, 1, 45]
Class = Verginica

Petal width < = 1.65
Gini = 0.0408
Samples = 48

Value = [0, 47, 1]
Class = Vercicolor

Petal width < = 1.55
Gini = 0,4444
Samples = 6

Value = [0, 2, 4]
Class = Verginica

Sepal_length < = 5.95
Gini = 0.4444
Samples = 3

Value = [0, 1, 2]
Class = Verginica

Gini = 0.0
Samples - 43

Value=[0, 0, 43]
Class = Verginica

Gini = 0.0
Samples = 47
Value [0, 47,0]

Class Vercicolor

Gini = 0.0
Samples = 1

Value = [0, 0, 1]
Class = Verginica

Gini = 0.0
Samples = 3

Value = [0, 0, 3]
Class = Verginica

Sepal_length <= 6.95
Gini = 0.4444
Samples = 3

Value = [0, 2, 1]
Class = Vercicolor

Gini = 0.0
Samples = 1

Value = [0, 1, 0]
Class = Vercicolor

Gini = 0.0
Samples = 2

Value = [0, 0, 2]
Class = Verginica

Gini = 0.0
Samples = 2

Value = [0, 2, 0]
Class = Vercicolor

Gini = 0.0
Samples = 1

Value [0, 0, 1]
Class = Verginica

FIGURE 5.10  Decision Tree on Iris Data.

147Supervised Machine Learning

In two-dimensional data, there can be many separating lines, which helps separate
the data well. But the accuracy of these lines for real-life test data is not good. The
separating line calculated by the SVM has the maximum margin between the near-
est data points of the training data. As this line has the maximum margin, it gives
better accuracy for real-life test data points. Figure 5.11 shows the possible hyper-
planes and the hyperplane by supporting a vector machine of linearly separable data.
SVM performs well even if data points are not linearly separable [2], as shown in
Figure 5.12. SVM applies a kernel trick, which converts non-separable data points
to separable data points. SVM kernel is a function applied on low dimension space
to convert them to higher dimensional space. For Figure 5.12 data points, one more
dimension is added, i.e., z-axis along with x- and y-axes with z = x2 + y2. After adding
this dimension to the data points in Figure 5.12, there is a clear separation of plotted
data points in the x- and z-axes. The plot is shown in Figure 5.13. Polynomial, linear,
nonlinear, radial basis function, etc., are some of the kernel functions used in the
SVM algorithm.

The following are important concepts in SVM:

Support Vectors: These are the data points nearest to the hyperplane. They
are crucial in defining the position and orientation of the separating line.

Hyperplane: As illustrated in Figure 5.11, it is a decision boundary that sepa-
rates different classes in the dataset.

Margin: This is the distance between two lines drawn parallel to the hyper-
plane, passing through the closest data points from each class (the support
vectors). A larger margin is preferable as it indicates better separation
between the classes, whereas a smaller margin is less desirable.

The primary objective of SVM is to categorize the data points into classes by iden-
tifying a hyperplane that maximizes the margin (maximum marginal hyperplane or

FIGURE 5.11  Possible Hyperplanes and SVM.

148 Artificial Intelligence and Machine Learning for Real-World Applications

FIGURE 5.12  Nonlinearly Separable Data Points.

MMH). In contrast to the decision theoretic minimum distance classifier that uses
only one decision boundary, SVM uses a reference hyperplane and two decision
boundaries to classify the points. This is the major difference between SVM and all
other classifiers. This is shown in Figure 5.11, where there is a reference hyperplane
shown with a dark line and two parallel boundaries in dotted lines. The decision
boundary should be far away from the data points; hence, the distance should be
maximized between the line and the nearest data point.

As of now, let us consider a SVM that implements a binary classifier. This means
that there are only two classes, say +1 and −1. A multiclass SVM can also be imple-
mented. Let us consider a dataset:

D = x ,y , x ,y , x ,y1 1 2 2 n n() () (){ }, x Rn and y = -1,+1{ }

The aim of hard margin SVM is to find a hyperplane that maximally separates the
classes. Hyperplane equation:

	 h x = b+ w x + w x + + w x =01 1 2 2 n n()

	 or b+ w x =0T

149Supervised Machine Learning

Here, b is the intercept; w1, w2, . . ., wn are coefficients; and n is the dimension of data
points. For a simple two-dimension, the hyperplane equation can be written as wx
+ b = 0.

The hyperplane equation separates the data points x into two classes −1 and +1.
This hyperplane equation can also be written as wTx = 0. Here, w is the weight vec-
tor and b is the bias or offset from origin. SVM uses two decision lines constructed
using the reference hyperplane. The two lines act as two classifiers. This is written
as follows:

H1: w. xi + b ³ 0 for y = +1 and
H2: w. xi + b < 0 for y = −1

This classifier is suitable for two class problems. One can also bring the output y into
the above equation, and that changes to equation to

h(x) = yi (w.xi + b)³ 1 for I = 1, 2, 3 . . ., n,
or one can alternatively find predictions as

h(xi) = sign(w.xi + b)

The sign of h(x) is always positive if it is correctly classified. Its value is negative if
it is wrongly classified.

FIGURE 5.13  Kernel Trick Applied on Data Points Mentioned in Figure 5.12.

150 Artificial Intelligence and Machine Learning for Real-World Applications

Kernel Trick: In real-world classification problems, nonlinear hyperplanes are
required to separate the data as the data can be text, image, video, or sequence.
Kernel provides a solution to this problem. One solution to this problem is to map
the data into higher dimensional space and define a separating hyperplane. The map-
ping process, i.e., f (x), is the vector representation of the feature x. In short, the
mapping function transforms the data point in the input space and maps to another
point in space called feature space. Usually, mapping functions are used to map data
from a lower dimension to a higher dimension. When the data is mapped from two
dimension to another feature space, the data points are nicely segregated in different
planes and hence can be separated by a plane. While mapping functions play a major
role here, it makes the computation time high and also there is no generalized thumb
rule describing which transformation should be applied. Kernels are useful in this
context as it computes similar values without transforming the data. Kernels are a
set of functions used to transform data from low dimension to high dimension and to
manipulate data using dot products at a higher dimension.

Kernels are of different types as given below:

Linear Kernel: k x,y x (y x .y q) T q .
() () ()= =f f

defines the degree of polynomial.

RBF (Gaussian) Kernel: k x,y = ()
−()

exp
x y

)(
2

2 2s

5.3.3.1 � SVM Using Python
SVM is implemented here on the breast cancer dataset. It has 31 features. These fea-
tures are used to classify data into M or B class of the diagnosis feature.

First, upload the dataset. It has 31 features. The last column is used as the target
variable, which is stored in yval here. All the remaining features are in xval. Data is
preprocessed by applying standard scalar, and transforming data is done by using the
transform function.

 import numpy as np
 import pandas as pd
 from sklearn.metrics import accuracy_score
 from sklearn.model_selection import train_test_split
 from sklearn import datasets
 from sklearn import svm
 from sklearn.preprocessing import StandardScaler
 cancerdata = datasets.load_breast_cancer()
 df = pd.DataFrame(np.c_[cancerdata[‘data’], cancer-
data[‘target’]], columns = np.append(cancerdata[‘fea-
ture_names’], [‘target’]))

151Supervised Machine Learning

 df.head()
 Xval = df.iloc[:, 0:-1]
 yval = df.iloc[:, -1]
 x_trainval, x_testval, y_trainval, y_testval= train_
test_split(Xval, yval, test_size= 0.25, random_state=3)
 scs = StandardScaler()
 x_trainval = scs.fit_transform(x_trainval)
 x_testval = scs.transform(x_testval)

 #Create a svm Classifier
 clfsvm = svm.SVC(kernel=‘linear’) # Linear Kernel
 #Train the model using the training sets
 clfsvm.fit(x_trainval, y_trainval)
 #Predict the response for test dataset
 y_predval = clfsvm.predict(x_testval)
 from sklearn.metrics import confusion_matrix
 cm= confusion_matrix(y_testval, y_predval)
 print(cm)
 print(‘Accuracy of SVM is :’, accuracy_score(y_testval,
 y_predval))

Output:

 [[51 2]
 [1 89]]
 Accuracy of SVM is : 0.979020979020979

SVC() function is used to build SVM for the breast cancer dataset. As data is
linearly separable, linear kernel is used here. The SVM accuracy achieved is 97.9%.

5.3.4 �N aive Bayes Classification

It is a classification algorithm based on supervised learning. Its foundation is the
Bayes theorem, which is employed in the computation of conditional probabilities.

P A B
P B A P A

P B
(/)

(/) ()

()
= ,

where P(A/B), also known as posterior probability, is the chance that event A will
occur given that event B has already occurred.

P(B/A) is the probability that event B will occur in the event that event A has
already happened.

P(A) is the probability that event A will occur.
P(B) is the probability that event B will occur.

152 Artificial Intelligence and Machine Learning for Real-World Applications

P A/y ,y ,y ,........y = P y /A P y /A ...P y /A * P A1 2 3 n 1 2 n() () () () ()





() () ()





 /

P y P y ...P y1 2 n

= P A P y /A P y P y ...P y
i=1

n

i 1 2 n() ()




() () ()



∏ /

A = Argmax P A P y /Ai() ()
=∏i

n

1

P(A) = Class probability

P(yi/A) = Conditional probability

Given below is an example of Naive Bayes. Here, the data used is of stolen cars that
is presented in Table 6, which includes features such as color, type of car, and origin
of car and is classified as stolen or not.

Probabilities are calculated as given in the above formula. New data points, which
need to be classified as stolen (yes or no) will be based on the calculated maximum
probability of the class. The new data points given as (Red, Domestic, and SUV) can
be classified as “No” stolen class based on the given data.

P(Yes) = Probability of “Yes” class = 5/10 = .5
P(No) = Probability of “No” class = 5/10 = .5

The probability of color, type, and origin feature is shown in Tables 5.7, 5.8, and
5.9, respectively.

P(Red/Yes, Domestic/Yes, SUV/Yes) = ⅗ * ⅖ * ⅕ = 6/125
P(Red/No, Domestic/No, SUV/No) = ⅖ * ⅗ * ⅗ = 18/125

So P(Red, Domestic, SUV) will be classified as “No,” as the
probability of this class is higher.

TABLE 5.6 
Stolen Cars Data

SN Color Type Origin Stolen

1 Red Sports Imported Yes

2 Red SUV Imported No

3 Yellow SUV Domestic No

4 Yellow SUV Domestic Yes

5 Yellow SUV Domestic No

6 Yellow Sports Imported Yes

7 Yellow Sports Domestic No

8 Red Sports Domestic Yes

9 Red Sports Domestic No

10 Red Sports Domestic Yes

153Supervised Machine Learning

TABLE 5.7 
Probability of Color Feature

Color Feature Yes No P(Yes) P(No)

Red 3 2 3/5 2/5

Yellow 2 3 2/5 3/5

Total 5 5

TABLE 5.8 
Probability of Type Feature

Type Feature Yes No P(Yes) P(No)

Domestic 2 3 2/5 3/5

Imported 3 2 3/5 2/5

Total 5 5

TABLE 5.9 
Probability of Origin Feature

Origin Feature Yes No P(Yes) P(No)

SUV 1 3 1/5 3/5

Sport 4 2 4/5 2/5

Total 5 5

All variations of Naive Bayes classifiers operate on the same principle: the assump-
tion that feature values are independent of each other, given the class variable. Naive
Bayes requires minimal training data to estimate the necessary parameters for clas-
sification. Different types of data, such as categorical, binary, and numerical, require
different methods to estimate probability distribution parameters. For numerical data,
Gaussian distribution is used, while binary data (e.g., 0/1 or yes/no) relies on binomial
distribution, and categorical data uses multinomial distribution. These distributions
are so commonly applied that Naive Bayes classifiers are often named after them.

5.3.4.1 � Gaussian Naive Bayes
The assumption made here is that the data values associated with each class follow
a normal or Gaussian distribution. This works best with continuous data. The bell-
shaped normal distribution curve is symmetrical around the feature/attribute value
mean. It is assumed that the feature likelihood value is

P x y
x

i

y

i y

y

(|) exp
()

= −
−










1

2 22

2

2
πσ

µ

πσ

Python function GaussianNB() can be used to build the ML model.

154 Artificial Intelligence and Machine Learning for Real-World Applications

5.3.4.2 � Multinomial Naive Bayes
This is mostly utilized in the field of natural language processing (NLP) for docu-
ment classification and where the categorical data values are used for classification.
Frequencies of generation of events are represented in the feature vector, which fol-
lows a multinomial distribution, i.e., it considers the feature vector that represents the
number of times it appears in text or data.

log (|) log ())

log () log

p C p C pki

p C x pki

b

k k i

n
xi

k i
i

n

k

X

W

∞

= ⋅

= +

=

=
∑

Π
1

1
TTX

The example for multinomial Naive Bayes here considers the following data shown
in Table 5.10, and the test data is classified using multinomial Naive Bayes.

Probabilities cannot be zero, but in the given data some words do not occur in all
documents, so their probabilities will be calculated as zero. To avoid this, Laplace
smoothing can be used with value as

P=(X N + di +a a) / () , where a = 1 � (1)

d = Total different words = 6

d = [India, Beijing, Shanghai, Macao, Tokyo, Japan]

Nyes = 8

Nyes = [India Beijing India India India Shanghai India Macao]

Nno = 3

Nno = [Tokyo Japan India]

P(I) = P(India) = 3/4

P(I) = 1/4

TABLE 5.10 
Text Data of Documents

Doc No Words in Document In I = India??

Training data 1 India Beijing India yes

2 India India Shanghai yes

3 India Macao yes

4 Tokyo Japan India no

Test Data India India India Tokyo Japan ??

155Supervised Machine Learning

P(India/I) = (5 + 1)/(8 + 6) = 6/14 = 3/7 as India occurs five times in I =
India yes category. So applying equation (1) will give this probability

P(Tokyo/I) = (0 + 1)/(8 + 6) = 1/14   P(Japan/I) = (0 + 1)/(8 + 6) =1/14

P(India/ I) = (1 + 1)/(3 + 6) = 2/9 as India occurs once in I = India no category.
So applying equation (1) will give this probability

P(Tokyo/ I) = (1 + 1)/(3 + 6) = 2/9   P(Japan/ I) = (1 + 1)/(3 + 6) = 2/9

So the test data (India India India Tokyo Japan) to be categorized in India = Yes or
no will be determined by the calculated probability as follows:

P(India India India Tokyo Japan/I) = ¾ *(3/7 *3/7 *3/7* 1/14 * 1/14)

= .0003

P(India India India Tokyo Japan/ I) = ¼ *(2/9 * 2/9 *2/9 * 2/9* 2/9)

= .0001

The probability of the test data occurring in I India = yes class is higher than the
probability of it occurring in I India = no class, so the test data will be categorized
in India = yes.

5.3.4.3 � Bernoulli Naive Bayes
Bernoulli distribution [3] is used for binary data, i.e., where the data values take
the form of true/false, yes/no, 0/1, success/failure, presence/absence, etc. Bernoulli
Naive Bayes uses Bernoulli distribution, so feature values are binary in this case, and
the distribution works best on discrete data. This model is also popular for document
classification, but here binary term occurrences are used as features rather than the
frequencies of a word in the document.

The Bernoulli Distribution

p x p X x
q p x

p x
() []= = =

= − =
=






1 0

0

The example demonstrates the Bernoulli Naive Bayes for document classifi-
cation. The data given is related to either Sports(S) or Informatics(I). The train-
ing set has 11 documents, and the aim here is to estimate a Bernoulli document
model to classify the unlabeled document as S or I. Documents have eight fea-
ture words, i.e., w1 = goal, w2 = tutor, w3 = variance, w4 = speed, w5 = drink,
w6 = defense, w7 = performance, and w8 = field. We have six documents of the
Sports(S) category and five documents of the Informatics(I) category. B(Sports)
has eight feature occurrences (1/0) in six documents, so it has a dimension of 6 x 8,

156 Artificial Intelligence and Machine Learning for Real-World Applications

and B(Informatics) has eight feature occurrences (1/0) in five documents, so it has
a dimension of 5 x 8.

B(Sports) =

Goal Tutor Variance Speed Drink Defense Performance Field

1 0 0 0 1 1 1 1

0 0 1 0 1 1 0 0

0 1 0 1 0 1 1 0

1 0 0 1 0 1 0 1

1 0 0 0 1 0 1 1

0 0 1 1 0 0 1 1

B(Informatics) =

Goal Tutor Variance Speed Drink Defense Performance Field

0 1 1 0 0 0 1 0

1 1 0 1 0 0 1 1

0 1 1 0 0 1 0 0

0 0 0 0 0 0 0 0

0 0 1 0 1 0 1 0

Using the given data, if our aim is to classify b1 (1 0 0 1 1 1 0 1) and b2 (0 1 1 0 1 0
1 0) using Bernaulli Naive Bayes, calculating the probabilities is required as follows:

N = Total number of documents = 11

NS = Number of documents in sports = 6
NI = Number of documents in informatics = 5, so P(S) = 6/11 and P(T) = 5/11.

Feature
NS

(feature)

P(feature/S) Probability
Probability
of Feature
in Sports

Document

of Not
Occurring

That
Feature NI (feature)

P(feature/I)
Probability

of Feature in
Informatics
Document

Probability
of Not

Occurring
That

Feature

Goal 3 3/6 1–3/6 = 3/6 1 1/5 1–1/5 = 4/5

Tutor 1 1/6 1− 1/6 = 5/6 3 3/5 1–3/5 = 2/5

Variance 2 2/6 1− 2/6 = 4/6 3 3/5 1–3/5 = 2/5

Speed 3 3/6 1–3/6 = 3/6 1 1/5 1–1/5 = 4/5

Drink 3 3/6 1–3/6 = 3/6 1 1/5 1–1/5 = 4/5

Defense 4 4/6 1–4/6 = 2/6 1 1/5 1–1/5 = 4/5

Performance 4 4/6 1–4/6 = 2/6 3 3/5 1–3/5 = 2/5

Field 4 4/6 1–4/6 = 2/6 1 1/5 1–1/5 = 4/5

157Supervised Machine Learning

P(S/b1) = Probability of b1 occurring in S

b1 = (1 0 0 1 1 1 0 1)

P(S/b1) = 6/11 * (3/6 * ⅚ * 4/6 * 3/6 * 3/6 * 4/6 * 2/6 * 4/6)

P(S/b1) = 5.6 * 10−3

P(I/b1) = Probability of b1 occurring in I

b1 = (1 0 0 1 1 1 0 1)

P(I/b1) = 5/11 * (⅕ * ⅖ * ⅖ * ⅕ * ⅕ * ⅕ * ⅖ * ⅕)

P(I/b1) = 9.3 * 10−6

P(S/b1) is higher, so b1 will be classified in the Sports category.

P(S/b2) = Probability of b2 occurring in S

b2 = (0 1 1 0 1 0 1 0)

P(S/b2) = 6/11 * (3/6 *1/6 * 2/6 * 3/6 * 3/6 * 2/6 * 4/6 * 2/6)

P(S/b2) = 2.8 * 10−4

P(I/b2) = Probability of b1 occurring in I

b2 = (0 1 1 0 1 0 1 0)

P(I/b2) = 5/11 * (4/5 * 3/5 * 3/5 * 4/5 * 1/5 * 4/5 * 3/5 * 4/5)

P(I/b2) = 8.0 * 10−3

P(I/b2) is higher, so b2 will be classified in the informatics category.

5.4 � METRICS FOR EVALUATING CLASSIFIER PERFORMANCE

Evaluating classifier performance is an excellent way of getting feedback whether
what you are doing is correct or not. It is a tool for comparing the performance of
ML models. Ultimately, it is required to build a model of high-performance accu-
racy, which can help us make better decisions in real-world scenarios. The most
commonly used classification evaluation metric is to calculate its accuracy. But mea-
suring accuracy is not the correct measure of evaluating performance as data is not
balanced in real-life scenarios such as in spam email detection, financial cases (credit
card, fraud, etc.), and medical diagnosis. So, only measuring accuracy will not give
the correct picture of the constructed model: other measures are required to evalu-
ate the performance of classifiers. The confusion matrix shown [4] in Figure 5.14 is
the performance measure that gives the details of accuracy, recall, and precision.
F1-score and area under the ROC curve (AUC)-Receiver Operating Characteristic
(ROC) curve are also used as performance metrics [4].

158 Artificial Intelligence and Machine Learning for Real-World Applications

Actual Value

Positive Negative

Predicted
Value

Positive
TP

(True Positive)
FP

(False Negative)

Negative
FN

(False Negative)
TN

(True Negative)

•	 True Positive (TP): Observation is positive and is predicted to be positive.
•	 False Negative (FN): Observation is positive but is predicted to be negative.
•	 True Negative (TN): Observation is negative and is predicted to be negative.
•	 False Positive (FP): Observation is negative but is predicted to be positive.

FIGURE 5.14  Confusion Matrix.

Confusion matrix not only gives the correct picture of the model, which classes
are wrongly and correctly predicted or classified, but also tells what type of errors are
being made by the model. Here, TP, FP, FN, and TN are calculated for the model as
shown in Figure 5.15, which are useful for measuring precision, recall or sensitivity,
specificity, accuracy, and AUC-ROC curve of the model. The relevance of calculat-
ing precision, recall, accuracy, or specificity depends on the application. F1 score is
useful when the optimal blend of precision and recall is required. A good F1 score
(perfect model when the F1 score is 1 and model failure when the F1 score value is 0)
indicates low false negatives and low false positives, so the model is not disturbed by
false alarms. Classifiers can be characterized based on various performance metrics.
When every instance is correctly classified, it’s a perfect classifier; i.e., when its TP =
P and TN = N, accuracy will be 1. When every instance is wrongly classified, it’s a
worst classifier; i.e., when its TP = 0 and TN = 0, accuracy will be 0. When the clas-
sifier always predicts the positive class correctly, it’s a ultra-liberal classifier, i.e., its
FN = 0 and TN = 0. When the classifier always predicts the negative class correctly,
it’s a ultra-conservative classifier, i.e., its TP = 0 and FP = 0.

﻿
Accuracy:

ACC
TP TN

TP TN FP FN
=

+
+ + +

	
Recall:

Re call
TP

TP FN
=

+
﻿

﻿
Precision:

Precision=
+
TP

TP FP
	

F score:1

1

2
1 1

F

call

=
+

Re Precision

﻿

FIGURE 5.15  Key Classification Metrics.

159Supervised Machine Learning

ROC curve [4] is a visualization method that summarizes the true positive rate
(TPR) and false positive rate (FPR) of the model. It plots tpr versus fpr data, shown
in Figure 5.17. Performance of the model is assessed by the AUC. If it is less than 0.6,
the model is considered a failure; if the value is between 0.9 and 1, the model is excel-
lent; if the value is between 0.8 and 0.9, the model is good; if the value is 0.7–0.8, the
model is fair; and if the value is 0.6–0.7, the model is poor.

5.5 � MODEL TRAINING AND CROSS-VALIDATION

ML models can be trained in different ways based on chosen algorithms. Two import-
ant methods to mention here are batch and gradient descent.

Gradient Descent:

Gradient descent is a first-order optimization algorithm used to find the minimum
of a function. By calculating the gradient (slope) of the function at a given point,
it adjusts the parameters in the opposite direction to minimize the function. This
process is commonly applied to loss functions in ML to optimize model parameters.
There are two primary methods for gradient descent:

•	 Batch Gradient Descent: All training data is used to calculate the average
gradient, and the parameters are updated based on this average. It is suitable
for convex or relatively smooth error surfaces but can be inefficient for large
datasets.

•	 Stochastic Gradient Descent (SGD): A single training example is used to
calculate the gradient, and the parameters are updated immediately. This
method is more efficient for large datasets but can be noisy due to fluctua-
tions in gradients.

True Positive (TP): False Positive (FP):
Actuals are positive and are predicted as positive Type 1 error
Example: You predicted that a woman is pregnant Actuals are negative and are predicted as positive
and she actually is Example: You predicted that a man is pregnant, but

he actually is not

False Negative (FN): True Negative (TN):
Type 2 error Actuals are negative and are predicted as positive
Actuals are positive and are predicted as negative Example: You predicted that a man is not pregnant,
Example: You predicted that a woman is not and he actually is not
pregnant, and she actually is

FIGURE 5.16  TPR and FPR.

True positiverate
True positives

True positives False negatives
=

+
FFalse negatives rate

False positives

False positives True negat
=

+ iives

160 Artificial Intelligence and Machine Learning for Real-World Applications

FIGURE 5.17  ROC Curve.

Some examples where gradient descent can applied are as follows:

Example 1: Consider that you are attempting to fit a dataset of points to a
straight line. y = mx + b is the equation of the line. The objective is to deter-
mine the values of b (intercept) and m (slope) that minimize the separation
between the data points and the line. Iteratively adjusting m and b via gra-
dient descent can be done until the line best fits the data.

Example 2: The weights and biases of the neurons in a neural network control
the network’s output. To reduce the network’s error on a particular dataset,
these weights and biases are adjusted via gradient descent. This is often
accomplished by computing the gradient of the loss function with respect
to the weights and biases and then updating the parameters in the opposite
direction as the gradient.

161Supervised Machine Learning

One method for evaluating a ML model’s performance on a small dataset is cross-val-
idation [5]. It entails breaking up the dataset into smaller subsets, using few of those
subsets to train the model, and then testing the model’s performance on the remain-
ing subsets. To provide a more accurate estimate of the generalization performance
of the model, this step is performed several times. You can choose the best method
for your particular problem by utilizing cross-validation to compare the performance
of various models. Let’s say you have 100 samples in your dataset. Five subsets of the
dataset are created for five-fold cross-validation. The remaining four subsets are uti-
lized for training, while one subset is used for testing. This procedure is carried out
five times, with a different subset being tested each time. The model’s generalization
ability is determined by averaging performance across all folds. Two cross-validation
approaches exist: exhaustive and non-exhaustive.

5.5.1 �N on-Exhaustive Methods

Non-exhaustive cross-validation methods do not consider all ways of splitting the
original data. Holdout method and k-fold cross-validation methods [6] are non-ex-
haustive methods, as discussed below.

5.5.1.1 � Holdout Method
In this method, the entire dataset is divided into training set and test set. Usually
data is divided into ratios of 80:20 or 70:30, and data is shuffled randomly before
splitting. Model training is done using a training set, and the model accuracy is eval-
uated using a test set. There are some disadvantages of this method. Model can give
different results every time it is trained, and test it as data is shuffled randomly so
the model is trained on different data points every time. And we are never sure about
the train set that we picked to represent the whole dataset. Also, when the dataset is
small, there are high chances that the test data contain some important information
that is not present in the train set.

5.5.1.2 � k-Fold Cross-Validation
k-fold validation method shown in Figure 5.18 is an improvement on the holdout
method, as this method is not dependent on the way our training and testing dataset
is picked. In the k-fold cross-validation method, k subsets of the dataset are formed
and a holdout method is applied on each subset. So eventually the holdout method
is repeated k number of times as shown in Figure 5.18. Entire dataset is randomly
split into k subsets. For each fold, the model is trained on k−1 folds of the dataset
and test on the kth fold. And this process is repeated k times, so each fold will have
different training and testing sets. The overall accuracy of the model is calculated as
the average of k recorded accuracies. This method helps in increasing the accuracy
of the model.

The disadvantage of this method is that it requires k times more computation as
the training algorithm has to be rerun from scratch k times. And at times it is possi-
ble to get imbalanced folds; i.e., one fold might have the majority of data belonging
to one class and few of other classes. This can affect the accuracy of the model,

162 Artificial Intelligence and Machine Learning for Real-World Applications

and training will also get affected. Stratified k-fold cross-validation helps avoid this
imbalance process by using stratification.

5.5.1.3 � Non-Exhaustive Cross-Validation Using Python
 Python code to implement k-fold cross-validation method
 #Importing required libraries
 from matplotlib import pyplot
 import io
 import matplotlib.pyplot as plt
 import pandas as pd
 from sklearn.model_selection import train_test_split
 from sklearn.linear_model import LinearRegression
 from sklearn import metrics
 import scipy.stats
 from sklearn.model_selection import KFold
 from sklearn.metrics import accuracy_score

 from google.colab import files
 uploaded= files.upload()

 dfval=pd.read_csv(io.BytesIO(uploaded[‘Advertising.
csv’]))
 #Loading the dataset
 Xval = dfval.iloc[:,0:3]
 yval = dfval[‘Sales’].values.reshape(-1,1)

FIGURE 5.18  k-Fold Cross-Validation.

163Supervised Machine Learning

 #Implementing cross validation. Five-fold cross-
validation is done here. In each fold, i.e., in each
iteration, one fold is used as the testing set. Overall
accuracy is the average of all classifiers’ accuracy.
 k = 5
 kfd = KFold(n_splits=k, random_state=None)
 model = LinearRegression()
 accuracy_score = []
 for train_index, test_index in kfd.split(Xval):
 Xval_train, Xval_test=Xval.iloc[train_index,:],
Xval.iloc[test_index,:]
 yval_train, yval_test = yval[train_index],
yval[test_index]
 model.fit(Xval_train,yval_train)
 pred_values = model.predict(Xval_test)
 r2_score = model.score(Xval_test, yval_test)
 print(‘accuracy of model is’)
 print(r2_score*100,’%’)
 accuracy_score.append(r2_score)

 avg_accuracy_score = sum(accuracy_score)/k
 print(‘accuracy of each fold - {}’.
format(accuracy_score))
 print(‘Avg accuracy : {}’.format(avg_accuracy_score))

Output:

 accuracy of model is
 87.8651980483134 %
 accuracy of model is
 91.7632116561446 %
 accuracy of model is
 92.93303235799652 %
 accuracy of model is
 81.44390391722337 %
 accuracy of model is
 89.54782879224385 %
 accuracy of each fold - [0.878651980483134,
0.917632116561446, 0.9293303235799653,
0.8144390391722337, 0.8954782879224386]
 Avg accuracy : 0.8871063495438435

Here, the linear regression is performed on Advertising.csv file, which contains sales,
TV, newspaper, and radio fields. Details of this linear regression is discussed in the
previous chapter. k-fold cross-validation with k = 5 is implemented here. The dataset
is divided into five subsets. For each iteration, four subsets are used for training and

164 Artificial Intelligence and Machine Learning for Real-World Applications

one for testing. Calculate the accuracy of all five iterations, which is different for dif-
ferent iterations, i.e., 87.86%, 91.76%, 92.93%, 81.44%, and 89.54%. Overall accuracy
is the average accuracy of all iterations, which comes out to be 88.71%.

5.5.2 �E xhaustive Methods

Exhaustive cross-validation methods consider all ways of splitting the original data
into training and testing sets. Leave-one-out and leave-p-out cross-validation meth-
ods are exhaustive methods.

5.5.2.1 � Leave-p-Out Cross-Validation
In this method, p number of points are taken out from the whole dataset of total n
points. The (n-p) points are used for training the model, and the remaining p points
are used for testing the model. This process is iterated for all possible combinations
of p points. Overall accuracy of the model is the average of all iterations. Here, train-
ing is done for every possible combination of data points.

5.5.2.2 � Leave-One-Out Cross-Validation
If we set the value of p as one, the method is called leave-one-out cross-validation.
Taking p = 1 makes the method less exhaustive.

5.5.2.3 � Exhaustive Cross-Validation Using Python
First, import libraries in Google Colab. Cross-validation need not be implemented
manually, Scikit-learn library in Python provides a simple implementation that will
split the data accordingly. An array of few numbers are taken here and printed as an
independent variable and dependent variable, i.e., x and y, respectively. The function
LeaveOneOut() is used, and data is split using a for loop, and the splits are enumer-
ated and iterated through the training index and test index. And finally, the training
set and validation set are printed.

 # importing libraries
 import numpy as np
 from sklearn.model_selection import LeaveOneOut
 # creating the data
 X = np.array([[1, 2], [3, 4]])
 y = np.array([1, 2])
 # Independent variable
 print(“\nIndependent variable:”)
 print(X)
 # Dependent variable
 print(“\nDependent variable:”)
 print(y)
 # creating the leave one out function
 loo = LeaveOneOut()
 loo.get_n_splits(X)

165Supervised Machine Learning

 # printing the training and validation data
 for train_index, test_index in loo.split(X):
 X_train, X_test = X[train_index], X[test_index]
 y_train, y_test = y[train_index], y[test_index]
 print(“\nTraining set:”, X_train, y_train)
 print(“\nValidation set:”, X_test, y_test)

Output:

 Independent variable:
 [[1 2]
 [3 4]]
 Dependent variable:
 [1 2]
 Training set: [[1 2]] [1]
 Validation set: [[3 4]] [2]

5.6 � REGULARIZATION

Let’s understand regularization and its importance with a very simple example of
learning animal drawing. You practice drawing a lot of different animals. You might
draw dogs, cats, elephants, and birds. If you only practice drawing dogs over and
over, you’ll get really good at drawing dogs, but you might not be as good at drawing
other animals like cats or elephants. Now think of regularization applied in learning
to draw animals. Regularization is like balanced drawing practice. This is like your
art teacher giving you rules to follow so you become a better all-around artist, not
just an expert at drawing dogs. L1 regularization is where your teacher tells you to
only draw the most important parts of each animal. So, you might focus on the dog’s
ears and tail but keep the drawing simple. L2 regularization is when your teacher
tells you to draw every animal with light, smooth lines, not pressing too hard with
your pencil. This way, your drawings don’t have any overly dark, heavy lines that
stand out too much. So with regularization you become a better artist overall, able
to draw any animal you see, not just the ones you practiced the most. So in simple
terms, regularization is like having drawing rules from your art teacher to help you
become good at drawing all sorts of animals. Instead of just drawing dogs really
well, you learn to draw all animals nicely and clearly. This way, when you need to
draw a new animal you’ve never seen before, you can do it easily because you prac-
ticed drawing in a balanced way.

In ML models, regularization is a technique used to stop overfitting. When a
model learns the noise in the training data instead of the underlying pattern, it is
said to be overfitting and has poor generalization to new, unseen data. Regulariza-
tion encourages simpler, more broadly applicable models by introducing more con-
straints or penalties into the model. Regularization introduces bias into the model
but reduces variance, leading to a lower overall error on unseen data. It encourages
simpler models by penalizing large coefficients, thus reducing the risk of overfitting.

166 Artificial Intelligence and Machine Learning for Real-World Applications

5.6.1 �T ypes of Regularization

	 1.	L1 Regularization (Lasso):
o	 Imposes a penalty equivalent to the amount of the coefficients’ absolute

value.
o	 Encourages sparsity, leading to models where some feature weights

become exactly zero, effectively performing feature selection.
o	 Loss function with L1 regularization: L(θ)+λ∑i∣θi∣.

	 2.	L2 Regularization (Ridge):
o	 Applies a penalty that is the square of the coefficients’ magnitude.
o	 Helps in reducing the impact of correlated features and spreads out the

weights more evenly.
o	 Loss function with L2 regularization: L(θ)+λ∑iθi

2.
	 3.	Elastic Net:

o	 Combines L1 and L2 regularization.
o	 Useful when there are multiple features with high collinearity.
o	 Loss function: L(θ)+λ1∑i∣θi∣+λ2∑iθi

2​.

5.7 � HYPERPARAMETER TUNING

The settings made to an ML model prior to the start of the learning process are
known as hyperparameters. They serve to regulate the learning process rather than
being acquired from the data. An ML model’s performance and accuracy can be
greatly impacted by the selection of hyperparameters [7]. Improved model perfor-
mance, decreased overfitting, and increased efficiency all depend on hyperparameter
adjustment. Some common hyperparameters for various types of ML models are as
follows:

	 Learning Rate: Regulates the gradient descent optimization process’s step
size.

	 Batch Size: Number of training cases used in a single iteration.
	 Number of Epochs: Number of complete passes through the training

dataset.

However, specific models have specific hyperparameters. Some ML models’ hyper-
parameters are detailed in Table 5.11.

5.7.1 �M ethods for Hyperparameter Tuning

	 1.	Grid Search: Determines which combination of parameter values yields
the best performance by methodically going through several permutations
and cross-validating along the way.

	 2.	Random Search: In order to determine the ideal set of parameters, hyper-
parameters are sampled from specified distributions and evaluated using
the random search technique for hyperparameter tuning [6] in ML. It is
frequently compared to grid search, which does a thorough search over a
predetermined set of hyperparameters. Random search is more efficient in

167Supervised Machine Learning

TABLE 5.11 
Hyperparameters of ML Models

Model Hyperparameters

Linear models Regularization strength (α or λ) for L1, L2 regularization

k-NN n_neighbors: Number of neighbors
Weights: Indicates if the impact of each neighbor is the same or if those who are
closer have a bigger say

Metric: The measurement of distance that is utilized to determine the separation of
data points

Algorithm: The algorithm that calculates the closest neighbors
leaf_size: Size of leaf
Metric parameters: Additional parameters for the chosen distance metric

Decision Trees Max depth: The tree’s maximum depth
Minimum sample split: The smallest quantity of samples needed to split an internal
node

Minimum example leaf: The bare minimum of samples needed at each leaf node
Max features: The greatest number of features to take into account when choosing a
split

Bootstrap: Using bootstrap samples in tree construction

SVMs C (regularization parameter): Manages the trade-off between minimizing the
weights’ norm and obtaining a low error on the training set

Kernel type: Indicates the kind of kernel that will be applied to the method (e.g.,
RBF, polynomial, or linear).

Gamma: The kernel coefficient for “sigmoid,” “poly,” and “rbf”

Naive Bayes Gaussian Naive Bayes
➢ var_smoothing: The highest variance of all features added to variances for stability
Multinomial Naive Bayes
➢ Alpha: Additive smoothing parameter (Laplace/Lidstone)
➢ fit_prior: The decision to learn or not learn class prior probabilities
Bernoulli Naive Bayes
➢ Alpha: Additive smoothing parameter (Laplace/Lidstone)
➢ Binarize: The threshold at which sample features are binarized (mapped to Booleans)
➢ fit_prior: The decision to learn or not learn class prior probabilities

Neural Number of layers: The total number of the network’s hidden layers
Networks Number of units per layer: Neurons in each hidden layer

Activation function: Rectified Linear Unit (ReLU), Sigmoid, Tanh, and other similar
activation functions to be employed

Optimizer: Algorithm for optimization (such as SGD and Adam)
Dropout rate: Ratio of input units to be dropped in order to avoid overfitting

high-dimensional spaces because it does not evaluate all possible combina-
tions but rather a random subset.

	 3.	Bayesian Optimization: For hyperparameter tuning, Bayesian optimi-
zation is a more effective method than grid search, particularly in cases
involving vast search spaces. It makes use of probabilistic models to intel-
ligently explore the parameter space, concentrating on areas that have a
higher chance of producing ideal outcomes.

168 Artificial Intelligence and Machine Learning for Real-World Applications

	 4.	Hyperband: Hyperband is a powerful hyperparameter optimization algo-
rithm that uses adaptive resource allocation and early stopping to efficiently
search for the best hyperparameters. It is particularly effective for models
like SVMs, where training can be computationally expensive. It can signifi-
cantly enhance the performance of your ML model.

The code given below explains the random search for hyperparameter tuning of the
Decision Tree Classifier. Other methods like hyperband, Bayesian optimization, and
grid search can also be implemented on similar lines.

 import numpy as np
 from sklearn.tree import DecisionTreeClassifier
 from sklearn.datasets import load_iris
 from sklearn.model_selection import RandomizedSearchCV,
train_test_split
 from scipy.stats import randint

 # Load the Iris dataset
 data = load_iris()
 X = data.data
 y = data.target

 # Split the dataset into training and testing subsets
 X_train, X_test, y_train, y_test = train_test_split(X,
y, test_size=0.2, random_state=42)

 # Initialize the Decision Tree Classifier model
 decision_tree = DecisionTreeClassifier()

 # Define the hyperparameter search space with random
distributions
 hyperparameter_space = {
 ‘max_depth’: randint(1, 20),
 ‘min_samples_split’: randint(2, 20),
 ‘min_samples_leaf’: randint(1, 20),
 ‘criterion’: [‘gini’, ‘entropy’]
 }

 # Set the number of iterations for Randomized Search
 iterations = 110

 # Perform Randomized Search with cross-validation
 random_search = RandomizedSearchCV(
 estimator=decision_tree,
 param_distributions=hyperparameter_space,

169Supervised Machine Learning

 n_iter=iterations,
 cv=5, # Cross-validation strategy
 verbose=2, # Display detailed output
 random_state=42, # For reproducibility
 n_jobs=-1 # Utilize all available cores
)

 # Fit the Randomized Search to the training data
 random_search.fit(X_train, y_train)

 # Output the best hyperparameters found
 print(“Optimal hyperparameters: “, random_search.
best_params_)

 # Evaluate the optimized model on the test set
 best_decision_tree = random_search.best_estimator_
 accuracy = best_decision_tree.score(X_test, y_test)
 print(“Test set accuracy: “, accuracy)

Output:

 Fitting 5 folds for each of 100 candidates, totaling 500
fits
 Best parameters found: {‘criterion’: ‘entropy’, ‘max_
depth’: 15, ‘min_samples_leaf’: 3, ‘min_samples_split’:
9}
 Test set accuracy: 1.0

Selecting and tuning the right hyperparameters is often an iterative process and
essential for building effective and efficient ML models. Different methods can give
different results for the same model and dataset as their underlying principle of work-
ing is different.

5.8 � SUMMARY

In this chapter, readers delve into the foundational aspects of supervised ML,
beginning with an exploration of classification, correlation, and regression analy-
sis. They gain practical insights into applying simple and multiple linear regression
techniques, as well as understanding nearest neighbor learning through the k-NN
algorithm. The chapter covers essential concepts such as entropy, Gini index, and
information gain, which are pivotal in decision tree construction. Readers also grasp
the basics of probability theory and Bayes’ theorem, followed by a detailed study of
Naive Bayes classifiers—Bernoulli, multinomial, and Gaussian—for handling dis-
crete and continuous attributes. Introducing SVMs, the chapter elucidates the con-
cepts of hyperplanes, margins, and the kernel trick. Furthermore, readers learn to

170 Artificial Intelligence and Machine Learning for Real-World Applications

evaluate classifier performance using a confusion matrix and explore both exhaustive
and non-exhaustive methods of cross-validation to ensure robust model assessment.
The chapter concludes by imparting an understanding of regularization techniques
and hyperparameter tuning methods to optimize model performance effectively. All
concepts are detailed with their implementation using Python.

REFERENCES

	 1.	 https://towardsdatascience.com/knn-algorithm-what-when-why-how-41405c16c36f
	 2.	 https://www.analyticsvidhya.com/support-vector-machine/
	 3.	 https://mafiadoc.com/text-classification-using-naive-bayes_597a5c7c1723dd91e-

8e52ac6.html
	 4.	 https://www.kdnuggets.com/2020/04/performance-evaluation-metrics-classification.

html
	 5.	 https://www.turing.com/kb/different-types-of-cross-validations-in-machine-learn-

ing-and-their-explanations
	 6.	 https://www.mygreatlearning.com/blog/cross-validation/
	 7.	 https://www.analyticsvidhya.com/blog/2022/02/a-comprehensive-guide-on-hyperpa-

rameter-tuning-and-its-techniques/

https://towardsdatascience.com/knn-algorithm-what-when-why-how-41405c16c36f
https://www.analyticsvidhya.com/support-vector-machine/
https://mafiadoc.com/text-classification-using-naive-bayes_597a5c7c1723dd91e�8e52ac6.html
https://www.kdnuggets.com/2020/04/performance-evaluation-metrics-classification.html
https://www.kdnuggets.com/2020/04/performance-evaluation-metrics-classification.html
https://www.turing.com/kb/different-types-of-cross-validations-in-machine-learning-and-their-explanations
https://www.turing.com/kb/different-types-of-cross-validations-in-machine-learning-and-their-explanations
https://www.mygreatlearning.com/blog/cross-validation/
https://www.analyticsvidhya.com/blog/2022/02/a-comprehensive-guide-on-hyperparameter-tuning-and-its-techniques/
https://www.analyticsvidhya.com/blog/2022/02/a-comprehensive-guide-on-hyperparameter-tuning-and-its-techniques/
https://mafiadoc.com/text-classification-using-naive-bayes_597a5c7c1723dd91e�8e52ac6.html

DOI: 10.1201/9781003532170-6� 171

6 Unsupervised
Machine Learning

6.1 � INTRODUCTION

When a model is trained on data without predetermined labels or results, it is referred
to as unsupervised machine learning (ML). Finding patterns, structures, and rela-
tionships in data is the aim of this ML; however, there is no predetermined guidance
on what to look for. Unsupervised ML approaches include dimensionality reduction,
association rule mining, and clustering. This chapter will cover two main methods
for unsupervised learning: association rule mining and clustering. Few applications
where unsupervised ML techniques can be used are custom segmentation, anomaly
detection, recommendation systems, and identifying patterns in biological data.

Unsupervised learning provides powerful tools for making sense of data when
labels are not available, enabling the discovery of meaningful patterns and insights
that might not be evident through manual analysis.

6.2 � CLUSTERING

An unsupervised ML method called clustering is used to put related objects in one
group. This method of learning involves observation rather than examples. Mini-
mum and maximum intra-class and inter-class distances will be present in clustered
data. Data points in one group will have similar properties, while data points in
another group will have different properties. Data points are unlabeled for unsuper-
vised learning, and they help in finding hidden structures within data. The optimal
grouping is determined by the data’s structure. For instance, four distinct groupings
based on an individual’s salary might be created:

•	 Earning less than $10,000
•	 Earning between $10,000 and $30,000
•	 Earning between $30,000 and $60,000
•	 Earning more than $60,000

Here, income is used for grouping a person. Income, however, is not a reliable indi-
cator of how a group’s members relate to one another. In other words, there’s no
intrinsic reason to think that someone making $80,000 will act any differently than
someone making $10,000 or $120,000 [1]. Groupings of income are determined by
simple points of differentiation. If more variables are added such as qualification,
house size, age, experience, and expenditure, the grouping will change altogether.
Thus, as more dimensions are added to data, grouping becomes more meaningful
and complex.

https://doi.org/10.1201/9781003532170-6

172 Artificial Intelligence and Machine Learning for Real-World Applications

Clustering techniques help us find natural grouping of persons by considering
many dimensions. Instead of making any predictions, it organizes comparable data
by identifying similarities between data points based on data properties.

Different clustering methods [2, 3] use different distance measures. K-means uti-
lizes Euclidean/Manhattan/city block distance between points; DBSCAN uses dis-
tance between the nearest points; affinity propagation and spectral clustering are
based on graph distances; Gaussian mixtures are based on Mahalanobis distance.
Clustering techniques have numerous applications in marketing, economics, biology,
city planning, real estate, and various branches of science.

6.3 � DISTANCE MEASURES

Distance measure is the building block of clustering algorithms. It is the measure of
similarity and dissimilarity of data. Similarity is a numerical measure that defines
how alike the data points are. If similarity is high, data is more alike. Dissimilarity is
a numerical measure that defines how different the data points are. If dissimilarity is
high, data are more different. Different data types such as numerical, binary, ordinal,
and categorical have different distance measure metrics [4, 5].

Numeric Data Distance Measures:

•	 Euclidean Distance: It is among the most often applied distance metrics to
numerical data. Below is the Euclidean distance between the data points x
and y with n features:

d x y y xi i
i

n

(,) ()= −
=
∑ 2

1

•	 Manhattan Distance: This is also called city block distance, absolute value
distance, L1 norm, and boxcar. The Manhattan distance between x and y
data points with n features is given below:

d x y x yi
i

n

i(,) | |= −
=
∑

1

•	 Minkowski Distance: In general, all distances formulated above can be
generalized as given below. Here p is a parameter. The distance measure
is known as Euclidean distance when p is equal to 2 and as Manhattan
distance when p is equal to 1. With n features, the Minkowski distance
between x and y points is as follows:

D x y x yi i
p

i

n p

(,) | ||= −










=
∑

1

1

•	 Chebyshev Distance: This is often referred to as the maximum value dis-
tance or supremum distance. Given two points x and y and n features, the
Chebyshev distance between them is as follows:

D x y x yChebyshev
i

i i(,) max(| , |)=

173Unsupervised Machine Learning

Binary Data Distance Measures: Binay data can have only two values. The dis-
tance measures discussed above cannot be applied for binary data. To find the dis-
tance between binary attributes, a contingency table needs to be created. The entries
in the contingency table can be constructed by counting the number of matching
transactions: 0–0, 0–1, 1–0, 1–1.

Attributes matching 0 1

0 a b

1 c d

In this case, a = total number of attributes, where both x and y attributes are 0.

b = Total number of attributes where x and y attributes are 0 and 1, respectively.
c = Total number of attributes where x and y attributes are 1 and 0, respectively.
d = Total number of attributes where x and y both attributes are 1.

•	 Jaccard Coefficient: This is calculated for binary attributes as follows:
•	 J = d/(b + c + d)

•	 Simple Matching Coefficient (SMC): This is defined as the ratio of the
number of matching attributes and the number of attributes.
•	 SMC = (a + d)/(a + b + c + d)

•	 Hammond Distance: This indicates the number of positions at which the
characters or binary attributes are different. For example, the Hammond
distance between (1 0 1) and (1 1 0) is 2 as both differ in two positions. The
distance between “hood” and “wood” is 1 as both differ in just one position.

•	 Symmetric Data Distance: If both attribute values are equally valuable and
carry the same weight, for example, gender attribute is symmetric (male, female)
as both are equally valuable. the distance for these attributes is calculated as
•	 Distance = (b + c)/(a + b + c + d)

•	 Asymmetric Data Distance: If both attribute values are not equally valu-
able and do not carry the same weight, for example, positive and negative
outcomes of a disease test or examination. The distance for these attributes
is calculated as
•	 Distance = (b + c)/(b + c + d)

Categorical Data Distance Measures: Categorical data is a symbol or code to rep-
resent a value, for example, gender attribute, where code 0 can represent male and
1 can represent female. To find the distance between categorical attributes, we need
to check if they are equal or not. If they are equal, the distance will be 0; otherwise,
the distance will be 1.

Ordinal Data Distance Measures: Ordinal attributes are similar to categorical
attributes, but they have an inherent order. For example, qualification and job desig-
nation have an order. Job designation can be 1, 2, or 3, where 1 is higher than 2 and 2
is higher than 3. The distance between x and y can be calculated as

Distance () /X,Y n 1= ()− ()position X position Y −

174 Artificial Intelligence and Machine Learning for Real-World Applications

Here, position refers to the attribute position in the order and n is the total number
of orders.

6.4 � K-MEANS CLUSTERING

The k-means is the most popularly used clustering algorithm [6]. This is an iterative
partitioning algorithm that finds k groups in the data. Here, k denotes the requested
non-overlapping clusters or groups that must be established as stated. Two clusters
are indicated by the value k = 2, three clusters are indicated by the value k = 3, and so
on. Based on feature similarity, which is determined using Euclidean distance, data
points are clustered. The first step in k-means clustering is to use k distinct randomly
generated centroid points; each data point is matched to the closest centroid. The
centroid is computed as the average of all the points assigned to it once each point
has been assigned. Until the centroids are stabilized or a defined number of iterations
have been reached, this process is repeated.

The k-means algorithm steps are as follows:

	 1.	Choose a k value and select k random points from the data as centroids. (It
can be different from the input dataset).

	 2.	Assign each data point to its closest centroid by computing the Euclidean
distance. Here, x, y are data points of n dimension.

d x y y xi i
i

n

(,) ()= −
=
∑ 2

1

	 3.	Recompute the centroids of newly formed clusters by averaging (arithmetic
mean) the points assigned to that cluster.

	 4.	Repeat steps 2 and 3 till the centroids are stabilized or a defined number of
iterations have been reached.

6.4.1 � k-Means Clustering Using Python

Example 1: The grades_km_input.csv file contains data of the marks of 619 students
in maths, science, and English. This data needs to be grouped into three groups. The
results shown here are group 1 has 207 students, group 2 has 210 students, and group
3 has 202 students. The notations used for group 1, group 2, and group 3 are 0, 1, and
2, respectively . It takes 300 iterations to reach the three-group formation.

 from matplotlib import pyplot
 import io
 import pandas as pd
 from sklearn.cluster import KMeans
 import numpy as np
 from google.colab import files
 uploaded= files.upload()

175Unsupervised Machine Learning

 dfval=pd.read_csv(io.BytesIO(uploaded[‘grades_km_input.
csv’]))

 kmeans = KMeans(n_clusters=3, random_state=0).fit(dfval)
 print(“Cluster parameterrs are “,kmeans)
 print(“Cluster centers are “,kmeans.cluster_centers_)
 kmeans.predict(dfval)

Output:

Cluster parameterrs are KMeans(algorithm=‘auto’, copy_x=True, init=‘k-
means++’, max_iter=300,

n_clusters=3, n_init=10, n_jobs=None, precompute_distances=‘auto’,
random_state=0, tol=0.0001, verbose=0)
Cluster centers are [[306.5 85.04326923 77.26442308 79.11538462]
[515.42857143 72.8 66.61904762 66.04285714]
[101.5 95.5 90.21287129 93.59405941]]
array([2, 2,
2, 2,
2, 2,
2, 2,
2, 2,
2, 2,
2, 2,
2, 2,
2, 2,
2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1,
1, 1,
1, 1,
1, 1,
1, 1,
1, 1,
1, 1,
1, 1,
1, 1,
1, 1, 1, 1], dtype=int32)

176 Artificial Intelligence and Machine Learning for Real-World Applications

If multidimensional data needs to be visualized in 2D, it must be reduced to 2D. If
the centroids and groups of data need to be visualized, the following code is mod-
ified. Dimension reduction can be performed using principal component analysis
(PCA).

 from matplotlib import pyplot
 import io
 import pandas as pd
 from sklearn.cluster import KMeans
 import numpy as np
 import matplotlib.pyplot as plt
 from google.colab import files
 uploaded= files.upload()
 dfval=pd.read_csv(io.BytesIO(uploaded[‘grades_km_input.
csv’]))

 #plotting data
 from sklearn.decomposition import PCA
 pca = PCA(2)
 #Transform the data
 datadf = pca.fit_transform(dfval)
 kmeans = KMeans(n_clusters= 3)
 #predict the labels of clusters.
 label = kmeans.fit_predict(datadf)
 print(label)
 #Getting unique labels
 u_labels = np.unique(label)
 #plotting the results:
 #Getting the Centroids
 centroids = kmeans.cluster_centers_
 u_labels = np.unique(label)

 #plotting the results:

 for i in u_labels:
 plt.scatter(datadf[label == i, 0], datadf[la-
bel == i, 1], label
 = i)
 plt.scatter(centroids[:,0], centroids[:,1], s = 80,
color = ‘k’)
 plt.legend()
 plt.show()

177Unsupervised Machine Learning

Output:

[0 0
0 0
0 0
0 0
0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
2 2
2 2
2 2
2 2
2 2
2 2 2 1
1 1
1 1
1 1
1 1
1 1]

Example 2: A healthcare chain wants to open a series of hospitals in a region. It
has data about the location of highly accident-prone areas in the region. The chain
needs to decide the number of the hospitals to be opened and the location of these

FIGURE 6.1  k-Means Clustering for k = 3 on Marks Data.

178 Artificial Intelligence and Machine Learning for Real-World Applications

hospitals so that all the accident-prone areas are covered. The k-means clustering
algorithm is the most appropriate to determine the location of these hospitals to cover
that region. Here, the km_data.csv file contains the location latitude and number of
accidents for that location.

 import pandas as pd
 import numpy as np
 import matplotlib.pyplot as plt
 from sklearn.preprocessing import MinMaxScaler
 from sklearn.cluster import KMeans
 from math import sqrt

 df = pd.read_csv(“km_data.csv”,encoding=‘latin-1’)
 #read the location data
 #add a column for no. of accidents using randomly gener-
ated numbers
 #dataset is randomly sampled 3 times and each sample is
provided with #randomly generated numbers
 df1=df.sample(100, random_state=30)
 df2=df.drop(df1.index).sample(80, random_state=30)
 df3 = df.drop(df1.index)
 df3 = df3.drop(df2.index)
 np.random.seed(99999999)
 df1[‘No. of Accidents’] = np.random.randint(0, 40000,
df1.shape[0])
 df2[‘No.of Accidents’] = np.random.randint(50000,
100000, df2.shape[0])
 df3[‘No.of Accidents’] = np.random.randint(80000,
150000, df3.shape[0])
 data = pd.concat([df1,df2,df3])
 #scale the data
 scaler = MinMaxScaler()
 data[[‘latitude’,’No.ofAccidents’]]= scaler.fit_trans-
form(data[[‘latitude’,’No. of Accidents’]])
 #applying k-means clustering to group data into 4
clusters
 k=4
 km = KMeans(n_clusters=k)
 y_pred = km.fit_predict(data[[‘latitude’, ‘No. of
Accidents’]])
 data[‘cluster’]=y_pred #add the predicted cluster values
as a column to the dataset
 #plot each cluster as a scatter plot
 for i in range(k):

179Unsupervised Machine Learning

 plt.scatter(data[data.cluster==i][‘latitude’],data[-
data.cluster==i][‘No. of Accidents’])
 plt.xlabel(“Latitude”)
 plt.ylabel(“No. of Accidents”)
 print(“Centroid values using inbuilt KMeans are: “)
 sno=1
 for i in km.cluster_centers_:
 plt.scatter(i[0],i[1],marker=“*”,s=100,label=“centroid
{}”.format(sno))
 sno=sno+1
 print(i)

 plt.legend()
 plt.show()

Output:

Centroid values using inbuilt KMeans are:

[0.39613256 0.30321862]
[0.50697146 0.83881822]
[0.67967907 0.14859177]
[0.71794245 0.5813726]

FIGURE 6.2  k-Means Clustering for k = 4 on Healthcare Chain Data Using Built-in
Function.

180 Artificial Intelligence and Machine Learning for Real-World Applications

User-defined functions for k-means clustering for the km_data.csv file

 #creating an array of the datapoints
 user_data = []
 for x,y in zip(data[‘latitude’],data[‘No. of
Accidents’]):
 user_data.append([x,y])

 #function which randomly chooses the centroids (required
initially)
 def choose_centroids(X,k):
 #X is an array with each element of type [latitude, no.
of accidents]
 np.random.seed(90)
 positions = np.random.choice(range(len(X)), size=k,
replace=False) #randomly sample k no. of index values
 centroids=[]
 #choose the datapoints at the indices sampled above,
they will be the #centroids
 for i in positions:
 centroids.append(X[i])
 return centroids

 #function which creates the initial clusters using the
centroids chosen by choose_centroids()
 def initiate_cluster(X,k):
 #X is an array with each element of type [latitude, no.
of accidents]
 centroids = choose_centroids(X,k)
 clusters = [] #will store the clusters as lists, so
data points in one list belong to one cluster
 #create k no. of empty sub-lists for k no. of clusters
 for i in range(k):
 clusters.append([])

 #find distance of each datapoint from each cluster
centroid
 for dpoint in X:
 distances=[] #store the distances from each centroid
 for point in centroids:
 dist = sqrt((point[0]-dpoint[0])**2 +
(point[1]-dpoint[1])**2)
 distances.append(dist)
 #find the index of the cluster for which minimum dis-
tance is #obtained
 cluster_index = distances.index(min(distances))

181Unsupervised Machine Learning

 clusters[cluster_index].append(dpoint) #assign the
datapoint to that list(i.e. cluster) whose index is
obtained above
 return clusters

 #function which continues clustering after initial clus-
tering has been performed
 def calculate_cluster(X,og_data,k):
 #here X is a list of clusters
 #X is of form [[[x1,y1],[x2,y2],...],
[[a1,b1],[a2,b2]], [datapoints of cluster 3],...]

 new_centroids=[] #to store newly calculated centroids
of each cluster
 #below i is a list of datapoints [x,y] in an individual
cluster
 for i in X:
 x = [a[0] for a in i]
 y = [a[1] for a in i]
 centroid = [np.mean(x),np.mean(y)]
 new_centroids.append(centroid)
 clusters = [] #will store clusters as lists, so data-
points in one list #belong to one cluster
 #creating k no. of empty sublists to store datapoints
of k no. of #clusters
 for i in range(k):
 clusters.append([])
 #find distance of each datapoint from each cluster
centroid and assign the point to cluster with minimum
distance
 for dpoint in og_data:
 distances=[]
 for point in new_centroids:
 dist = sqrt((point[0]-dpoint[0])**2 +
(point[1]-dpoint[1])**2)
 distances.append(dist)
 cluster_index = distances.index(min(distances))
 clusters[cluster_index].append(dpoint)
 return clusters

 #function to check if two clustered datasets are equal
 def equality(cluster_1, cluster_2):
 for x,y in zip(cluster_1, cluster_2):
 if not (((len(x) == len(y)) and (all(i in x for i in
y)))):
 return False

182 Artificial Intelligence and Machine Learning for Real-World Applications

 return True

 #function for performing the whole process of kmeans
clustering using the above functions
 def fit_kmeans(X,k):
 clusters = initiate_cluster(X,k) #creating initial clusters
 old_clusters = calculate_cluster(clusters,X,k) #per-
form clustering on initially created clusters
 new_clusters = calculate_cluster(old_clusters,X,k)
#recluster again
 #keep reclustering until the datapoints stop changing
clusters
 while not(equality(old_clusters,new_clusters)):
 old_clusters = calculate_cluster(old_clusters,X,k)
 new_clusters = calculate_cluster(old_clusters,X,k)
 #plot each cluster as a scatter plot
 for i in new_clusters:
 plt.scatter([a[0] for a in i],[a[1] for a in i])
 plt.xlabel(“Latitude”)
 plt.ylabel(“No. of Accidents”)
 print(“cluster centroids are: “)
 global new_centroids
 new_centroids=[]
 for i in new_clusters:
 x = [a[0] for a in i]
 y = [a[1] for a in i]
 centroid = [np.mean(x),np.mean(y)]
 new_centroids.append(centroid)
 sno=1
 for i in new_centroids:
 plt.scatter(i[0],i[1],marker=“*”, s=100, label=“cen-
troid {}”.format(sno))
 sno = sno+1
 print(i)
 plt.legend()
 plt.show()
 return

 fit_kmeans(user_data,k)

Output:

Cluster centroids are

[0.3975908984795953, 0.28642034239739017]
[0.7180242213722119, 0.5822410919925798]
[0.4967087261507008, 0.8242655976854173]
[0.6817238823525831, 0.14801280894564953]

183Unsupervised Machine Learning

It can be observed that the results of the built-in function and user-defined func-
tion are exactly the same.

6.5 � HIERARCHICAL CLUSTERING

Hierarchical methods produce nested partitions of data with hierarchical relation-
ships among them. Hierarchical relationships are generally shown in the form of
dendrograms (Figure 6.4).

Hierarchical methods include agglomerative methods and divisive methods.
Agglomerative clustering uses a bottom-up approach, whereas divisive clustering
uses a top-down approach for grouping samples. In agglomerative methods, initially
all the individual samples are considered as a separate cluster, that is, a cluster with

FIGURE 6.3  k-Means Clustering for k = 4 on Healthcare Chain Data Using User-Defined
Function.

0020
15 20 25

P5

P4

P6

P2

P3

P1

30 35 40 45 50

25

30

35

40

45

P_1 P_2 P_3 P_4 P_5 P_6

05

10

15

20

25

Datasets

E
uc

lid
eq

n
di

st
an

e

2 clusters

FIGURE 6.4  Dendrogram.

184 Artificial Intelligence and Machine Learning for Real-World Applications

a single element. They are merged subsequently, and the process continues to obtain
a single cluster or desired number of clusters. Divisive methods consider all the sam-
ples in a single cluster and then partition it. This partition process is continued until
the cluster is split into smaller clusters or the desired number of clusters.

Agglomerative clustering [7] can be performed using the following three
methods:

•	 Single Linkage or MIN Slgorithm: In this algorithm, the distance (x,y),
where x is from one cluster and y is from another cluster, is the smallest
distance of two points in different clusters.

D c ,c = minimum d a,bSL i j a cj() () ci b,

•	 Complete Linkage or MAX Algorithm: In this algorithm, the distance
(x,y), where x is from one cluster and y is from another cluster, is the largest
distance of two points in different clusters.

D c ,c = maximum d a,bSL i j a cj() () ci b,

•	 Average Linkage or MIN Algorithm: In this algorithm, the average dis-
tance of all pairs of points across the clusters is used to form a cluster. The
average value computed between cluster ci and cj is given as follows:

D c ,c = avg d a,bAL i j a ci, b cj() () 

	– or

D c ,c = d a,bAL i j() ()∑1

mi mj a ci b cj ,

Here mi and mj are the sizes of clusters.
Example 1: Five data points of two dimensions are considered. We apply the sin-

gle linkage algorithm, complete linkage algorithm, and average linkage algorithm on
the given data to form two clusters.

Data Points:

Data Point No. x y

1 4 4

2 8 4

3 15 8

4 24 4

5 24 12

A table is computed considering the Euclidean distance among the given data
points:

185Unsupervised Machine Learning

{1} {2} {3} {4} {5}

{1} 0 4 11.7 20 21.5

{2} 0 8.1 16 17.9

{3} 0 9.8 9.8

{4} 0 8.0

{5} 0

Here, the minimum distance is 4, which is between data points 1 and 2. So data
points 1 and 2 form a single cluster {1,2}, and the distances are modified based on
the algorithm chosen. If the single linkage algorithm is applied, distances will be
modified as follows:

D c ,c = minimum d a,bSL i j a ci, b cj() () 

The distance between groups {1,2} and {3} is computed using the following
formula:

Minimum ({1,3},{2,3}) = Minimum {11.7, 8.1} = 8.1.
Thus, the distance between {1,2} and {4} is
Minimum ({1,4},{2,4}) = Minimum {20, 16} = 16.
Thus, the distance between {1,2} and {5} is
Minimum ({1,5},{2,5}) = Minimum {21.5, 17.9} = 17.9.

{1,2} {3} {4} {5}

{1,2} 0 8.1 16 17.9

{3} 0 9.8 9.8

{4} 0 8.0

{5} 0

The similarity matrix is modified, and there are still four different clusters. So
the minimum distance is found again in the modified similarity matrix, and the
clusters are formed. {4} and {5} will be combined in a single cluster now as the
minimum distance is 8. The distances will be modified according to the formula
as follows:

{1,2} {3} {4,5}

{1,2} 0 8.1 16

{3} 0 9.8

{4,5} 0

The distance of {1,2} with {4,5} will be calculated as
Minimum (({1,2},{4}), ({1,2},{5})) = Minimum {16, 17.9} = 16.

186 Artificial Intelligence and Machine Learning for Real-World Applications

There are still three clusters, so one more iteration of the process can be applied on
the data. The next minimum distance in the similarity matrix is 8.1, which is between
{3} and {1,2}. So they are combined from a single cluster as {1,2,3}. After applying
the single linkage algorithm on the given data points, the two clusters formed are
{1,2,3} and {4,5}.

Complete linkage algorithm can also be applied on the same data. Here, initially
{1} and {2} clusters are combined as they have a minimum distance of 4 between
them. The distances are modified using the following formula:

D c ,c = maximum d a,bCL i j a ci, b cj() () 

The distance between groups {1,2} and {3} is computed using the formula:
Maximum ({1,3},{2,3}) = Maximum {11.7, 8.1} = 11.7.

Thus, the distance between {1,2} and {4} is
Maximum ({1,4},{2,4}) = Maximum {20, 16} = 20.

Thus, the distance between {1,2} and {5} is
Maximum ({1,5},{2,5}) = Maximum {21.5, 17.9} = 21.5.

{1,2} {3} {4} {5}

{1,2} 0 11.7 20 21.5

{3} 0 9.8 9.8

{4} 0 8.0

{5} 0

The minimum distance between {4} and {5} is 8. So they form one cluster and the
distances are modified again considering the formula given above.

{1,2} {3} {4,5}

{1,2} 0 11.7 21.5

{3} 0 9.8

{4,5} 0

The distance of {1,2} with {4,5} will be calculated as
Maximum (({1,2},{4}), ({1,2},{5})) = Maximum {20, 21.5} = 21.5.

There are still three clusters, so one more iteration of the process can be applied
on the data. The next minimum distance in the similarity matrix is 9.8, which is
between {3} and {4,5}. So they are combined from a single cluster as {3,4,5}. After
applying the complete linkage algorithm on the given data points, the two clusters
formed are {1,2} and {3,4,5}.

187Unsupervised Machine Learning

Similarly, the average linkage algorithm can be applied on the same data. Here,
initially {1} and {2} clusters are combined as they have a minimum distance of 4
between them. The distances are modified using the formula

D c ,c = avg d a,bAL i j a ci, b cj() () 

or

D c ,c = d a,bAL i j() ()∑1

mi mj a ci b cj
......

, 

The distance between groups {1,2} and {3} is computed using the formula

Average ({1,3},{2,3}) = Average {11.7, 8.1} = 9.9.
Thus, the distance between {1,2} and {4} is

Average ({1,4},{2,4}) = Average {20, 16} = 18.
Thus, the distance between {1,2} and {5} is

Average ({1,5},{2,5}) = Average {21.5, 17.9} = 19.7.

{1,2} {3} {4} {5}

{1,2} 0 9.9 18 19.7

{3} 0 9.8 9.8

{4} 0 8.0

{5} 0

The minimum distance is 8 between {4} and {5}. So they form one cluster, and the
distances are modified again considering the formula given above.

{1,2} {3} {4,5}

{1,2} 0 9.9 18.9

{3} 0 9.8

{4,5} 0

The distance of {1,2} with {4,5} will be calculated as
Average (({1,2},{4}), ({1,2},{5})) = Average {18, 19.7} = 18.9.

There are still three clusters, so one more iteration of the process can be applied.
The next minimum distance in the similarity matrix is 9.8, which is between {3}
and {4,5}. So they are combined from a single cluster as {3,4,5}. After applying the
average linkage algorithm on the given data points, the two clusters formed are {1,2}
and {3,4,5}.

188 Artificial Intelligence and Machine Learning for Real-World Applications

6.5.1 �H ierarchical Clustering Using Python

The agglomerative clustering algorithm is implemented for the data given in the
example above. The data needs to be clustered into two groups.

 # Agglomerative clustering
 import numpy as np
 import matplotlib.pyplot as plt
 import pandas as pd
 import scipy.cluster.hierarchy as sch
 from sklearn.cluster import AgglomerativeClustering

 d = {“x”: [4, 8, 15, 24, 24], “y”: [4, 4, 8, 4, 12]}
 df = pd.DataFrame(d)
 print(df)
 dendro = sch.dendrogram(sch.linkage(df, method =
‘ward’))
 plt.title(‘Dendrogram’)
 plt.xlabel(‘data points’)
 plt.ylabel(‘Euclidean-distances’)
 plt.show()

 AC = AgglomerativeClustering(n_clusters = 2, affinity =
‘euclidean’, linkage = ‘ward’)
 cluster = AC.fit_predict(df)
 print (cluster)

Output:

x y
0 4 4
1 8 4
2 15 8
3 24 4
4 24 12
[1 1 0 0 0]

The given data is clustered into two groups, where data points 1 and 2 are in one
cluster and data points 3, 4, and 5 are in another cluster.

6.6 � DBSCAN CLUSTERING

The k-means clustering algorithm has some challenges to address. First, it may clus-
ter loosely related data together. It clusters every data point; that is, even if the data
point is very far in vector space, it will cluster the point. Using a very far point
to make clusters may affect the outcome of the whole cluster. DBSCAN clustering

189Unsupervised Machine Learning

algorithm [8] addresses this problem. Another challenge in k-means clustering is that
it works on the value of k; that is, the value of k should be known a priori or a number
of clusters beforehand. Many a times, the k value is not known a priori. In DBSCAN,
it is not required that the number of clusters must be specified, that is, the value of
k. DBSCAN only needs a function to calculate the distance between data points and
some information for defining closeness. The distance that will be considered as
close needs to be specified. DBSCAN produces reasonably good results. It produces
good results for arbitrary shape clusters also.

DBSCAN is a clustering algorithm based on density, which defines clusters
through density and connectivity. The central concept is that a cluster represents a
region of high density, distinguished from other clusters by regions of lower density.
The algorithm operates with two main parameters: the neighborhood radius (ε) and
the minimum number of points required (minPts) (see Figure 6.6).

A core point is identified if it has at least the minimum number of points (minPts)
within its ε-neighborhood. A border point has fewer than minPts within its neighbor-
hood but is adjacent to a core point. Points that are neither core nor border points are
classified as noise. The algorithm requires that each data point must have a minimum
number of neighbors within its ε-neighborhood, which must contain at least minPts
points.

The algorithm’s effectiveness relies on the concept of density connectivity. A point
X is considered densely reachable from point Y if X is within the ε-neighborhood
of Y, and Y is a core point. Additionally, X is densely reachable from Y if there is a

FIGURE 6.5  Dendogram of above Data.

190 Artificial Intelligence and Machine Learning for Real-World Applications

sequence of core points connecting Y to X. Points X and Y are densely connected if
there is a core point Z such that both X and Y are densely reachable from Z.

Steps in DBSCAN Clustering:

	 1.	Arbitrarily pick a point p in the data set and proceed till all the points are
visited. Compute the distance between p and all the other data points.

	 2.	Mark it as a core point by finding all the points from p with respect to its
neighborhood, and check if it has a minimum number of points m.

	 3.	A new cluster is formed if it is a core point or an existing cluster is enlarged.
	 4.	Move to the next point if it is a border point.
	 5.	Remove the point if it is a noise point.
	 6.	Merge the mergeable cluster dist (ci,cj) < ε.
	 7.	Repeat steps 3–6 for all data points.

6.6.1 �D BSCAN Clustering Using Python

Let’s use DBSCAN to cluster spherical data for better visualization. We’ll generate a
dataset with just two features to simplify the process. We will use a function called
PointsInCircum(), which accepts the radius and the number of data points as inputs
and returns an array of points that form a circle when plotted. To effectively observe
DBSCAN’s clustering capability, we will create three concentric circles with varying
radii, as a single circle alone may not demonstrate the clustering performance suffi-
ciently. Additionally, we will introduce some noise into the dataset to evaluate how
well the algorithm handles noisy data.

FIGURE 6.6  DBSCAN Points.

191Unsupervised Machine Learning

About 2,300 spherical training data points are generated with corresponding
labels. The plotted data points in the output show that it forms a circle. After that, the
features of the training data need to be standardized, and DBSCAN is applied from
the sklearn library.

The optimum value of epsilon is 30 in this case, and the minPts value is 6. These
optimum values can be found out using the k-distance graph method. The DBSCAN
algorithm is trained using these parameters. The results shown here indicate three
clusters are formed with values 0, 1, and 2 as their labels. −1 indicates noisy data.
About 2,300 points are created in total: 1,030 points are in cluster 0, 730 points are
in cluster 1, 318 points are in cluster 2, and 222 are noise points.

 #DBSCAN Algorithm
 import numpy as np
 import pandas as pd
 import math
 import matplotlib.pyplot as plt
 import matplotlib
 from sklearn.cluster import DBSCAN
 np.random.seed(42)

 # Function for creating datapoints in the form of a
circle
 def PointsInCircle(r,n=100):
 return [(math.cos(2*math.pi/n*x)*r+np.random.nor-
mal(-30,30),math.sin(2*math.pi/n*x)*r+np.random.nor-
mal(-30,30)) for x in range(1,n+1)]
 # Creating data points in the form of a circle

 df=pd.DataFrame(PointsInCircum(500,1000))
 df=df.append(PointsInCircum(300,700))
 df=df.append(PointsInCircum(100,300))

 # Adding noise to the dataset
 df=df.append([(np.random.randint(-600,600),np.random.
randint(-600,600)) for i in range(300)])

 plt.figure(figsize=(10,10))
 plt.scatter(df[0],df[1],s=15,color=‘red’)
 plt.title(‘Whole Dataset’,fontsize=22)
 plt.xlabel(‘Feature 1 values’,fontsize=16)
 plt.ylabel(‘Feature 2 values’,fontsize=16)
 plt.show()
 #DBSCAN and its plot
 dbscan_optclus=DBSCAN(eps=30,min_samples=6)
 dbscan_optclus.fit(df[[0,1]])
 df[‘DBSCAN_opt_labels’]=dbscan_optclus.labels_
 print(df[‘DBSCAN_opt_labels’].value_counts())

192 Artificial Intelligence and Machine Learning for Real-World Applications

 # Plotting the resulting clusters
 plt.figure(figsize=(10,10))
 plt.scatter(df[0],df[1],c=df[‘DBSCAN_opt_labels’],c-
map=matplotlib.colors.ListedColormap(colors),s=14)
 plt.title(‘DBSCAN Clustering on whole
dataset’,fontsize=22)
 plt.xlabel(‘Feature 1 values’,fontsize=16)
 plt.ylabel(‘Feature 2 values’,fontsize=16)
 plt.show()

Output:

0 1,030
1 730
2 318
-1 222
Name: DBSCAN_opt_labels, dtype: int64

FIGURE 6.7  Generated Data Points for DBSCAN Clustering.

193Unsupervised Machine Learning

FIGURE 6.8  DBSCAN Clustering Results on Generated Data Samples.

6.7 � ASSOCIATION RULE MINING

Association rule mining helps us find patterns in data. Market basket analysis, which tries
to find patterns in user purchases, is its primary application. An example of a pattern can
be that customers who purchase bread also purchase butter. So a store owner could place
bread and butter together in his/her store to increase sales. In 2004, Walmart observed
that people tend to stock up or buy strawberry pop-tarts before a hurricane struck. There
did not seem to be any relation between hurricanes and strawberry pop-tarts, but Walmart
mined their data and found this correlation. Later, it was discovered that strawberry pop-
tarts require no cooking and they last long, making them the most purchased item in a
disaster. One more example where association rule mining helped find the business strat-
egy was in combo meal offers in fast food chains. They learnt that because of the high salt
content in fast food, people feel thirsty. Thus customers bought food and drinks together.

Therefore, finding patterns using data mining is very helpful for companies’ deci-
sion-making. The ultimate aim of association rules is to discover interesting patterns
and relationships among items from a given transaction. They help identify the items

194 Artificial Intelligence and Machine Learning for Real-World Applications

that are frequently bought together. Association rules give an idea of user purchasing
behavior as well. Figure 6.9 shows the general idea behind association rules.

6.7.1 �T he a priori Algorithm

The a priori algorithm [9] is the most basic algorithm of association rule finding. “a priori”
means “using previous knowledge.” So, this algorithm finds frequent items using an itera-
tive approach. First, it finds 1-frequent item sets, and using this, it finds 2-frequent item sets
and continues to do so until no more frequent item sets can be found. The 1-frequent item
sets could be {bread}{milk}{butter} and 2-frequent item sets could be {bread, milk} {milk,
butter}. The a priori property of the item set helps reduce the search space. This property
states that if {milk, butter} is a frequent item set, then {milk} and {butter} should also be
frequent items. This property tells us that all subsets of frequent items must also be frequent.

This algorithm needs values for minimum support and confidence threshold too.
The formulas are given as shown in Figure 6.10.

The support parameter indicates how frequently that item appears in transactions.
Specifying minimum support value in a priori helps prune the transactions. If the data
item does not match the minimum support value, that particular data item is not consid-
ered further for finding association rules. Support indicates the popularity of the item.

Confidence indicates the likelihood of occurrence of both data items A and B. The
a priori algorithm takes an iterative approach to find frequent item sets, using “join”
and “prune.” The algorithm says that if the P(I) value is less than the minimum sup-
port value, that is, threshold value, then item I is not frequent. All those item sets and
supersets can be pruned or ignored when the support value is below the minimum
threshold value. The steps in the a priori algorithm (Figure 6.11) are as follows:

	 1.	Join: This deals with the generation of (k + 1) item sets using the k-item set
by joining items.

	 2.	Prune: In this step, reduction of the size of the candidate item set occurs.
Scanning of the count of each item set is performed and cross-checked with
minimum support value. Based on the count value and the minimum sup-
port threshold value, the item is regarded as frequent or infrequent.

FIGURE 6.9  Association Rule Mining.

195Unsupervised Machine Learning

FIGURE 6.10  Support, Confidence, and Lift in a priori Algorithm.

Support (A)=
Number of transaction in which Aappears

Total unmber of ttransactions

Confidence (A B)=
Support(AUB)

Support(A)
®

Lift(A B)=
Confidence(A B)

P(B)
P(A B)

P(A)P(B)

⇒
⇒

=
∪

FIGURE 6.11  A priori Algorithm.

 Algorithm a priori(T, min_support; mm confidence)
 Input:
 T → Transaction dataset
 min_support → Minimum support threshold
 min_confidence → Minimum confidence threshold
 Output:
 Frequent itemsets L
 Strong association rules

 1. C1 ← Generate all umque items from dataset T
 2. �LI ← Prune(Cl) //Remove items with support <

min_support
 3. k ← 2
 4. While L(k-1) # 0 do:
 a. Ck ←Jom(L(k-l))
 // Generate candidate itemsets by combining
(k-l)-size frequent itemsets
 b. For each transaction t m T do:
 If Ck c t then:
 Increment support count of Ck
 c. Lk ←Prune(Ck)
 fi Remove itemsets with support < mm_support
 d. k ← k + 1
 5. Frequent itemsets L ← u Lk
 6. Generate Association Rules:
 For each frequent itemset X m L do:
 For each subset A c X do:
 B ← X - A﻿
 If Confidence(A → B) > min_confidence then:
 Add rule A → B
 7. Return Frequent Itemsets L and Association Rules.

196 Artificial Intelligence and Machine Learning for Real-World Applications

6.7.2 �E xample of a priori Algorithm

Here, a table of six transactions of purchasing of milk, butter, jam, bread, and paneer
are shown. Using these transactions, the association rules can be found. Here, the
support threshold = 50% and confidence = 60%.

Solution: Here, the threshold value for support is 50%, that is, 0.5 x 6 = 3. So, the
minimum support is 3.

6.7.2.1 � Step 1: Counting Each Item

TABLE 6.1 
Transactions

Transaction List of Items

T1 Milk, butter, jam

T2 Butter, jam, bread

T3 Bread, paneer

T4 Milk, butter, bread

T5 Milk, butter, jam, paneer

T6 Milk, butter, jam, bread

TABLE 6.2 
Item Count

Item Count

Milk 4

Butter 5

Jam 4

Bread 4

Paneer 2

6.7.2.2 � Step 2: Prune
We can see from Table 6.2 that paneer does not meet the minimum support value cri-
terion. So this item will not be considered further. Only milk, butter, jam, and bread
meet min_sup count as their count values are more than 3.

6.7.2.3 � Step 3: Join
The two-item set can be formed from Table 6.3. Occurrences of the two-item set can
be found from the transactions given in Table 6.1.

6.7.2.4 � Step 4: Prune
From Table 6.4, we can see that the item sets {milk, bread} and {jam, bread} do not
meet the minimum support value; thus, these transactions are deleted or pruned and
not considered for further processing.

197Unsupervised Machine Learning

TABLE 6.3 
Data after Pruning

Item Count

Milk 4

Butter 5

Jam 4

Bread 4

TABLE 6.4 
Two-Item Sets

Item Count

Milk, butter 4

Milk, jam 3

Milk, bread 2

Butter, jam 4

Butter, bread 3

Jam, bread 2

6.7.2.5 � Step 5: Join and Prune
Using Table 6.1, the three-item set can be formed and their occurrences can be found.
For the item set {milk, butter, jam}, subsets {milk, butter}, {milk, jam}, and {butter,
jam} meet the minimum support criterion, and they occur in Table 6.5. So {milk,
butter, jam} is considered as frequent.

For the item set {milk, butter, bread}, subsets {milk, butter}, {milk, bread}, {but-
ter, bread}, and {milk, bread} are not frequent, as they do not meet the minimum
support criterion and do not occur in Table 6.5. Hence, {milk, butter, bread} is not
frequent, and it is pruned and not considered for further processing.

Only {milk, butter, jam} is frequent.

TABLE 6.5 
Pruning of Two-Item Sets

Item Count

Milk, butter 4

Milk, jam 3

Butter, jam 4

Butter, bread 3

198 Artificial Intelligence and Machine Learning for Real-World Applications

6.7.2.6 � Step 6: Generate Association Rules
We can form the association rule by using the frequent item set discovered above, as
follows:

 {milk, butter} => {jam}
 confidence = support {milk, butter, jam} / support
{milk, butter} = (3/ 4)* 100 = 75%
 lift = confidence / support {jam} =.75 / (4/6) = 1.12

 {milk, jam} => {butter}
 confidence = support {milk, butter, jam} / support
{milk, jam} = (3/ 3)* 100 = 100%
 lift = confidence / support {butter} = 1 / (5/6) = 1.2

 {butter, jam} => {milk}
 confidence = support {milk, butter, jam} / support {but-
ter, jam} = (3/ 4)* 100 = 75%
 lift = confidence / support {milk} =.75 / (4/6) = 1.12

 {milk} => {butter, jam}
 confidence = support {milk, butter, jam} / support
{milk} = (3/ 4)* 100 = 75%
 lift = confidence / support {butter, jam} =.75 / (4/6) =
1.12

 {butter} => {milk, jam}
 confidence = support {milk, butter, jam} / support {but-
ter} = (3/ 5)* 100 = 60%
 lift = confidence / support {milk, jam} =.60 / (3/6) =
1.2

 {jam} => {milk, butter}
 confidence = support {milk, butter, jam} / support
{jam} = (3/ 4)* 100 = 75%
 lift = confidence / support {milk, butter} =.75 /
(4/6) = 1.12

TABLE 6.6 
Three-Item Sets

Item

Milk, butter, jam

Milk, butter, bread

Milk, jam, bread

Butter, jam, bread

199Unsupervised Machine Learning

All of the above association rules are strong as the minimum confidence threshold
here is 60%.

6.7.3 � Case Study: Transactions in a Grocery Store

The example above illustrates the application of the a priori algorithm in a rela-
tively simple case that generalizes to those used in practice. Companies like Walmart
have made great use of the a priori algorithm in suggesting products bought by its
customers.

Here, the sample data is of six transactions of five items: milk, butter, jam, bread,
and paneer. Data is inserted in a .csv file as shown:

Milk Butter Jam

Butter Jam Paneer

Bread Paneer

Milk Butter Bread

Milk Butter Jam Paneer

Milk Butter Jam Bread

The a priori() function from the apyori package implements the a priori algo-
rithm to create frequent item sets and association rules. The apyori package can be
installed using the command:

 pip install apyori

Here, the minimum support value is set as 0.5 and confidence value as 0.6. In output,
only {milk, butter, jam} is considered as frequent. All the subsets of {milk, butter,
jam} have confidence greater than 60%.

 import io
 import numpy as np
 import pandas as pd
 from apyori import a priori
 from google.colab import files
 uploaded= files.upload()

 dfval=pd.read_csv(io.BytesIO(uploaded[‘a priorifile1.
csv’]))
 dfval.head()
 print(dfval.shape)
 listrecordset = []
 for i in range(0, 6):
 listrecordset.append([str(dfval.values[i,j]) for j
in range(0, 5)])

 print(listrecordset)

200 Artificial Intelligence and Machine Learning for Real-World Applications

 rulesofassociation = a priori(listrecordset, min_
support=0.5, min_confidence=0.6, min_lift=1.2,
min_length=2)
 resultsofassociation = list(rulesofassociation)
 print(resultsofassociation)

Output:

 (6, 5)

 [[‘nan’, ‘Butter’, ‘Jam’, ‘nan’, ‘Paneer’], [‘nan’,
‘nan’, ‘nan’, ‘Bread’, ‘Paneer’], [‘Milk’, ‘Butter’,
‘nan’, ‘Bread’, ‘nan’], [‘Milk’, ‘Butter’, ‘Jam’, ‘nan’,
‘Paneer’], [‘Milk’, ‘Butter’, ‘Jam’, ‘Bread’, ‘nan’],
[‘Milk’, ‘Butter’, ‘Jam’, ‘nan’, ‘nan’]]

 [RelationRecord(items=frozenset({‘Jam’, ‘Milk’,
‘Butter’}), support=0.5, ordered_statistics=[Or-
deredStatistic(items_base=frozenset({‘Butter’}),
items_add=frozenset({‘Jam’, ‘Milk’}), confidence=0.6,
lift=1.2), OrderedStatistic(items_base=frozenset({‘Jam’,
‘Milk’}), items_add=frozenset({‘Butter’}), confi-
dence=1.0, lift=1.2)]).........................

It displays all the subsets of {milk, butter, jam} with their support and confidence.
All the subsets have confidence values greater than 60.

6.8 � SUMMARY

A thorough review of unsupervised ML algorithms is given in this chapter, with
an emphasis on association rule mining and clustering methods. Investigating the
data’s underlying structure or distribution is the main objective. A crucial method
in unsupervised learning is clustering, which groups related data points into clus-
ters. This technique helps in identifying natural groupings within datasets. Distance
measures define the similarity between data points and significantly impact the clus-
tering results. Different distance measures and taxonomy of clustering algorithms
are also discussed in detail. Association rule mining is used to identify interesting
relationships between variables in large datasets, commonly applied in market basket
analysis. The chapter is accompanied by practical Python implementations to rein-
force all the concepts.

REFERENCES

	 1.	 https://archive.org/stream/big-data-collection-pdf/Data%20Science%20and%20
Big%20Data%20Analytics_%20Discovering%2C%20Analyzing%2C%20Visualiz-
ing%20and%20Presenting%20Data_djvu.txt

	 2.	 https://www.kdnuggets.com/2018/06/5-clustering-algorithms-data-scientists-need-
know.html

https://archive.org
https://archive.org
https://archive.org
https://www.kdnuggets.com/2018/06/5-clustering-algorithms-data-scientists-need-know.html
https://www.kdnuggets.com/2018/06/5-clustering-algorithms-data-scientists-need-know.html

201Unsupervised Machine Learning

	 3.	 https://www.analyticsvidhya.com/blog/2016/11/an-introduction-to-clustering-and-
different-methods-of-clustering/

	 4.	 “A concise guide to market research”, The Process, Data and Methods Using IBMSPSS
Statistics, Springer, https://doi.org/10.1007/978-3-662-56707-4

	 5.	 Krawczak, M., & Szkatuła, G. (2015). On asymmetric matching between sets. Informa-
tion Sciences, 312, 89–103, https://doi.org/10.1016/j.ins.2015.03.037

	 6.	 Bisong, E. (2019). Clustering. In: Building Machine Learning and Deep Learning
Models on Google Cloud Platform, Apress, Berkeley, CA, https://doi.org/10.1007/978-
1-4842-4470-8_25

	 7.	 https://www.coursehero.com/sitemap/schools/1475-Stevens-Institute-Of-Technology/
courses/6556972-CS513/

	 8.	 www.analyticsvidhya.com/blog/2020/09/how-dbscan-clustering-works/
	 9.	 ht tps://www.sl ideshare.net /search?utf8=%E2%9C%93&searchfrom=heade

r&q=apriori+algorithm

https://www.analyticsvidhya.com/blog/2016/11/an-introduction-to-clustering-and-different-methods-of-clustering/
https://www.analyticsvidhya.com/blog/2016/11/an-introduction-to-clustering-and-different-methods-of-clustering/
https://doi.org/10.1007/978-3-662-56707-4
https://doi.org/10.1016/j.ins.2015.03.037
https://doi.org/10.1007/978-1-4842-4470-8_25
https://doi.org/10.1007/978-1-4842-4470-8_25
https://www.coursehero.com/sitemap/schools/1475-Stevens-Institute-Of-Technology/courses/6556972-CS513/
https://www.coursehero.com/sitemap/schools/1475-Stevens-Institute-Of-Technology/courses/6556972-CS513/
http://www.analyticsvidhya.com/blog/2020/09/how-dbscan-clustering-works/
https://www.slideshare.net/search?utf8=%E2%9C%93&searchfrom=header&q=apriori+algorithm
https://www.slideshare.net/search?utf8=%E2%9C%93&searchfrom=header&q=apriori+algorithm

202� DOI: 10.1201/9781003532170-7

7 Neural Networks and
Deep Learning

7.1 � INTRODUCTION

The human brain is an interesting phenomenon, so little when looked at physically
yet incomprehensible when studied about. The working of the human mind has been
studied since the 17th century, and yet there exist certain phenomena we cannot find
an explanation for. Neurons are special cells that send messages all over one’s body
to enable one to do everything from breathing to talking to eating and thinking.
These neurons form what is called a neural network in our minds that light up when
one is thinking. Similarly, to make a computer algorithm “think”, we must recreate
this neural network to enable artificial intelligence (AI), similar to our own. The
following paragraphs shall explore various concepts and methods related to such
neural networks.

With the goal of transforming how robots or algorithms see, comprehend, and
interact with the environment, neural networks have emerged as revolutionary forces
in the field of AI in recent years. Neural networks are computer models made up of
neurons, which are interconnected nodes that analyze and learn from data. They
are inspired by the intricate workings of the human brain. A kind of machine learn-
ing (ML) called “deep learning” uses multilayered neural networks (hence the term
“deep”) to simulate intricate correlations and patterns [1] in big datasets that haven’t
been well examined before.

The power of deep learning and neural networks lies in their ability to automat-
ically identify and extract meaningful patterns from raw data, eliminating the need
for human feature engineering, which has become synonymous with ML applica-
tions. This has resulted in notable advancements in a variety of fields, including
speech and picture recognition, natural language processing, and gaming, frequently
surpassing human skills in these applications.

The structures, learning techniques, and applications of neural networks and deep
learning are examined in this chapter, which dives into their fundamentals. We will
look at the fundamental ideas that make them successful, like gradient descent and
backpropagation, as well as the difficulties and constraints they encounter. We can
use these potent tools to solve challenging issues and push the boundaries of AI
research if we comprehend their complexities.

A foundational aspect of neural networks is ML. Now, the basic concept behind
ML is that computer algorithms cannot comprehend data like images or audio or
video like the human mind does; rather it can be trained to observe patterns in data.
If we “train” a computer algorithm by providing it with some data and the observed
characteristics and repeat this process a reasonable number of times, we can accom-
plish an algorithm capable of finding patterns or “learning” from the data.

https://doi.org/10.1201/9781003532170-7

203Neural Networks and Deep Learning

Think about the task of recognizing faces—something we perform effort-
lessly every day. Whether it’s identifying family members or friends from their
faces or photographs, we can do so despite changes in pose, lighting, hairstyle,
and other variations. However, this process happens unconsciously, and we strug-
gle to explain exactly how we accomplish it. This makes it difficult to manually
program a computer to perform the same task. Yet, we know that a face is more
than a random assortment of pixels—it has a well-defined structure. Faces are
symmetrical, with key features like eyes, a nose, and a mouth arranged in specific
positions. Every face is characterized by a unique combination of these features.
By analyzing sample images of a person’s face, a learning algorithm can identify
the distinctive pattern associated with that individual. It then uses this pattern
to recognize the person in new images. This illustrates how pattern recognition
works in practice.

ML builds mathematical models using statistical principles, as its main objec-
tive is to infer patterns from sampled data. Computer science plays a critical role in
two main areas: first, during the training phase, it provides efficient algorithms to
address optimization problems and manage large datasets. Second, both the model’s
representation and the inference algorithms must be computationally efficient once
the model has been trained. In some scenarios, the computational efficiency of these
algorithms, measured by their space and time complexity, can be as important as the
model’s ability to make accurate predictions.

If a linear model falls short, one option is to generate new features by applying
nonlinear transformations to the input, such as higher-order terms, and then develop
a linear model in the resulting feature space. However, this requires prior knowl-
edge of effective basis functions. Another option is to leverage feature extraction
techniques like PCA or Isomap, which are advantageous because they are trained
directly on the data.

PCA is a common technique for reducing data complexity and can be very use-
ful when working with neural networks. PCA aims to identify the most significant
features or principal components in a dataset, allowing for the reduction of the input
dimensionality without losing too much of the original information. In the context of
neural networks, PCA can be employed in several ways:

	 1.	Feature Extraction and Preprocessing:
		  Prior to being fed into a neural network, PCA can be used as a prepro-

cessing step to extract the most pertinent characteristics from the input data.
Through the reduction of the input’s dimensionality, PCA can enhance the
neural network’s efficiency and overall performance, as it focuses on the
most informative features and reduces the risk of overfitting.

	 2.	Visualization and Interpretation:
		  PCA can simplify high-dimensional data by visualizing it in a low-

er-dimensional space, typically two or three dimensions. This can offer
important insights into the patterns and connections within the data, which
can aid in the interpretation and understanding of the neural network’s
behavior.

204 Artificial Intelligence and Machine Learning for Real-World Applications

	 3.	Regularization and Dimensionality Reduction:
		  PCA can be integrated directly into the neural network architecture as a

form of regularization. Projecting input data onto the principal components
encourages the network to focus on learning representations that align with
the data’s most significant features, which improves generalization and pre-
vents overfitting.

	 4.	 Initialization and Weight Optimization:
		  PCA can also be used to initialize the weights of a neural network, espe-

cially for the connections between the first hidden layer and the input layer.
Aligning the initial weights with the principal components can help the net-
work train faster and improve its performance. Overall, the integration of PCA
into neural network architectures and training processes can enhance the per-
formance, interpretability, and robustness of these powerful ML models.

Still, the best approach is to use a Multilayer Perceptron (MLP). It extracts these
features in its hidden layer, with the benefit that both the feature extraction in the first
layer and the combination of those features to predict the output in the second layer
are learned together in a connected and supervised way.

The goal of deep learning is to automatically learn features at various abstraction
levels with minimal human involvement. These methods are appealing because they
require less manual effort and there’s no need to design specific features, basis func-
tions, or even the network architecture manually. With enough data and computa-
tional power, we let the learning algorithm independently uncover what it needs. The
concept of multiple layers capturing progressively abstract features, which forms the
foundation of deep learning, is straightforward and intuitive. The concept of abstrac-
tion layers extends beyond visual tasks such as identifying handwritten digits or faces
and applies to many other fields. Discovering these abstract representations can pro-
vide valuable insights, improve visualization, and offer a clearer description of the
problem at hand.

7.2 � INTRODUCTION TO NEURAL NETWORKS

A neural network is a computational model inspired by the structure and function
of the human brain. It is used in ML and AI to solve complex problems by learning
patterns from data. Neural networks are particularly effective for tasks like image
recognition, natural language processing, and time-series prediction.

Neural networks, as previously mentioned, are made up of interconnected nodes or
“neurons” arranged in layers. They learn to perform tasks by adapting the strengths
of connections between neurons based on input data and feedback signals. This abil-
ity to adjust enables neural networks to approximate complex functions and uncover
intricate patterns in data without the need for explicitly programmed rules.

The growing focus on neural networks in recent years, often described as the
“deep learning revolution,” has been driven by several key factors.

	 1.	 Increased computational power, particularly through advancements in
graphics processing units (GPUs);

205Neural Networks and Deep Learning

	 2.	Availability of large-scale datasets for training;
	 3.	Advancements in network architectures and training algorithms;
	 4.	 Improved regularization techniques to prevent overfitting.

These advancements have facilitated the development of deep neural networks with
multiple layers, capable of learning hierarchical data representations and delivering
state-of-the-art performance across various tasks.

7.3 � FUNDAMENTALS OF NEURAL NETWORKS

	 1.	Biological Inspiration:
		  Neural networks draw inspiration from the structure and function of bio-

logical nervous systems. In the human brain, neurons communicate through
electrical and chemical signals, forming complex networks capable of pro-
cessing and storing information. Artificial neural networks aim to mimic
this biological architecture in a simplified form, with artificial neurons
(nodes) connected by weighted edges that represent synaptic strengths.

	 2.	Basic Structure:
Neurons (Nodes):

•	 The building blocks of a neural network.
•	 Each neuron receives input, processes it (via an activation function),

and produces output.
Layers:

•	 Input Layer: Accepts raw data features.
•	 Hidden Layers: Perform computations to extract patterns and

relationships.
•	 Output Layer: Produces the final predictions or classifications.

Weights and Biases:
•	 Weights determine the importance of inputs.
•	 Bias shifts the activation function to help the network fit the data

better.
Activation Functions:

•	 Functions like Rectified Linear Unit (ReLU), Sigmoid, and Soft-
max introduce nonlinearity, enabling the network to model complex
relationships.

	 3.	Activation Functions:
		  An activation function in a neural network determines whether a neuron

should be activated or not. It introduces nonlinearity into the network, enabling
it to learn and model complex patterns in the data. Without activation func-
tions, a neural network would simply perform linear transformations, severely
limiting its capability. Common activation functions include the following:

a.	 Sigmoid: f x
e x()=
+ −

1

1

b.	 Hyperbolic Tangent (tanh): f x
e e

e e

x x

x x()= −
+

−

−

206 Artificial Intelligence and Machine Learning for Real-World Applications

c.	 ReLU: f x x()= ()0,

d.	 Leaky ReLU: f x x x()= ()a , , where α is a small constant.

The selection of an activation function plays a crucial role in determining
the network’s performance and training behavior.

	 4.	Learning Process:
Neural networks undergo an iterative learning process where weights are

adjusted to reduce the error between predicted and actual outputs. This
process usually includes the following:
a.	 Forward Propagation: It is the process in which input data flows

through the layers of a neural network to generate predictions. Each
layer transforms the input data by applying numerical parameters
called weights and biases, which determine the strength and influ-
ence of connections between neurons. These transformations are
further enhanced by activation functions, which introduce nonlin-
earity, enabling the network to learn and model complex patterns in
the data. The final layer processes the transformed data to produce
predictions, which may represent probabilities for classification
tasks or numeric values for regression tasks. This step is essential
for the network to make decisions based on the input it receives.

b.	 Loss Calculation: The purpose of loss calculation is to measure
the difference between the neural network’s predicted outputs and
the actual target values, providing a way to evaluate the network’s
performance. This is achieved using a loss function, a mathematical
formula that quantifies the error. Common loss functions include
mean squared error (MSE), which is used for regression tasks to
measure the average squared differences between predictions and
targets, and cross-entropy loss, which is commonly applied in clas-
sification tasks to assess how well the predicted probability distri-
bution matches the actual labels. The loss function outputs a single
scalar value, with lower values indicating better performance of the
network. This loss value serves as the basis for improving the net-
work through backpropagation and weight adjustment.

c.	 Backpropagation: The purpose of backpropagation is to determine
how to adjust the weights and biases of a neural network to mini-
mize the loss, thereby improving its predictions. This is achieved
by calculating the gradient of the loss with respect to each weight
and bias using the chain rule of calculus. Gradients provide infor-
mation on how much a small change in a parameter will impact
the loss, guiding the network on how to update these parameters
effectively. The calculations flow backward through the network,
starting from the output layer and moving to the input layer, hence
the name “backpropagation.” This process identifies which weights
and biases contributed most to the error, enabling the network to
focus its adjustments where they are needed most.

d.	 Weight Adjustment: Weight adjustment is the process of updating
a neural network’s weights to reduce the loss and improve future

207Neural Networks and Deep Learning

predictions. This is done using optimization algorithms like gradi-
ent descent or its variants (e.g., Adam and RMSProp), which adjust
the weights by taking small steps in the direction of the negative
gradient of the loss. This iterative process involves repeating for-
ward propagation, loss calculation, backpropagation, and weight
adjustment over multiple iterations (epochs) until the loss reaches
an acceptable level or stops improving, enabling the network to
effectively learn from the data. This iterative process enables neu-
ral networks to achieve the accuracy required for practical, produc-
tion-level applications.

The code provided below demonstrates building and training a simple neural net-
work using TensorFlow to classify handwritten digit images from the digits dataset.
First, the dataset is loaded [2], normalized, and its labels are converted to one-hot
encoded format for multiclass classification. The data is then split into training and
testing sets. The neural network consists of an input layer, a single hidden layer with
64 neurons using ReLU activation, and an output layer with softmax activation to
predict the probability of each digit class (0–9). The model is compiled using the
Adam optimizer and categorical cross-entropy loss and then trained for ten epochs
with a batch size of 32. Finally, the model’s performance is evaluated on the test set,
displaying the loss and accuracy metrics.

 import tensorflow as tf
 from tensorflow.keras import layers, models
 from sklearn.datasets import load_digits
 from sklearn.model_selection import train_test_split
 from sklearn.preprocessing import OneHotEncoder
 import numpy as np

 # Load the digits dataset
 digits = load_digits()
 X = digits.data
 y = digits.target

 # Normalize the input data
 X = X / 16.0

 # One-hot encode the labels
 encoder = OneHotEncoder(sparse_output=False)
 y = encoder.fit_transform(y.reshape(-1, 1))

 # Split the data into training and testing sets
 train_X, test_X, train_y, test_y = train_test_split(X,
y, test_size=0.2, random_state=42)

 # Build the neural network model with one hidden layer
 model = models.Sequential([

208 Artificial Intelligence and Machine Learning for Real-World Applications

 layers.InputLayer(input_shape=(X.shape[1],)), #
Input layer
 layers.Dense(64, activation=‘relu’), # Single hidden
layer
 layers.Dense(y.shape[1], activation=‘softmax’) #
Output layer
])

 # Compile the model
 model.compile(optimizer=‘adam’,loss=‘categorical_cros-
sentropy’,
 metrics=[‘accuracy’])

 # Train the model
 model.fit(train_X, train_y, epochs=10, batch_size=32,
validation_split=0.2)

 # Evaluate the model on the test set
 loss, accuracy = model.evaluate(test_X,test_y)
 print(f”Test Loss: {loss:.4f}, Test Accuracy:
{accuracy:.4f}”)

This example illustrates how to preprocess data, construct a neural network, and
train it for classification tasks.

	 5.	Types of Learning:

Neural networks can adapt and learn in various ways, based on the characteristics of
the data and the specific problem being addressed.

The three main types of learning are as follows:

Supervised Learning: In supervised learning, the network is trained using a
labeled dataset, where each input is matched with a specific target or output.
The aim is to develop a mapping function capable of accurately predicting
outputs for previously unseen inputs.

Key Characteristics:

•	 Requires paired input–output data
•	 Widely applied in tasks like classification and regression
•	 Examples include image classification, speech recognition, and price prediction

Challenges:

•	 Acquiring large, precisely labeled datasets often requires significant time
and expense

•	 Risk of overfitting to the training data

209Neural Networks and Deep Learning

Unsupervised Learning: Unsupervised learning involves training on unlabeled
data, where the network attempts to discover inherent patterns or structures within
the data.

Key Characteristics:

•	 No predefined output or labels
•	 Applied in clustering, dimensionality reduction, and feature extraction

tasks
•	 Examples include customer segmentation, anomaly detection, and genera-

tive models

Challenges:

•	 Difficulty in evaluating the quality of learned representations
•	 Interpretability of discovered patterns

Reinforcement Learning: Reinforcement learning is a process where an agent
learns to make decisions through interactions with its environment. The agent
gets feedback in the form of rewards or punishments depending on the actions it
takes.

Key Characteristics:

•	 Learning through trial and error
•	 Maintains a balance between exploring new possibilities and utilizing

actions proven to be effective
•	 Used in game playing, robotics, and autonomous systems

Challenges:

•	 Designing appropriate reward functions
•	 Handling large state and action spaces
•	 Sample efficiency in learning

Semi-Supervised Learning: A combined method incorporating aspects of super-
vised and unsupervised learning, utilizing a small quantity of labeled data alongside
a substantial amount of unlabeled data.

Key Characteristics:

•	 Leverages both labeled and unlabeled data
•	 Can improve performance when labeled data is scarce
•	 Examples include text classification with limited annotations

Challenges:

•	 Balancing the influence of labeled and unlabeled data
•	 Designing effective algorithms to leverage unlabeled data

210 Artificial Intelligence and Machine Learning for Real-World Applications

7.4 � NEURAL NETWORK ARCHITECTURES

This section will brief about various architectures of neural network.

	 1.	Feedforward Neural Networks:

A feedforward neural network is a type of artificial neural network where data flows
in one direction, from the input layer through one or more hidden layers to the output
layer. It does not have loops or feedback connections, making it simple and efficient
for tasks like classification and regression. The network learns by adjusting weights
during training to minimize the error between predicted and actual outputs.

Key Features:

•	 Fully connected layers
•	 Suitable for tabular data and simple pattern recognition tasks
•	 Limited in capturing spatial or temporal dependencies

	 2.	Convolutional Neural Networks:

These are specialized for handling grid-based data, such as images, and employ con-
volutional layers to learn spatial hierarchies of features automatically. It uses convo-
lutional layers to automatically extract spatial features, making it highly effective for
tasks like image recognition, object detection, and video analysis.

Key Features:

•	 Local connectivity and parameter sharing
•	 Pooling layers for down-sampling
•	 Highly effective for image and video processing tasks

	 3.	Recurrent Neural Networks:

It is a type of neural network designed to process sequential data by retaining infor-
mation about previous inputs through hidden states. It is widely used in tasks like
time-series analysis, language modeling, and speech recognition, where understand-
ing temporal dependencies is crucial.

Key Features:

•	 Feedback connections
•	 Gated recurrent units (GRU) and long short-term memory (LSTM) are two

variants that are intended to solve the vanishing gradient issue.

	 4.	Transformer Networks:

Transformer networks, a recent introduction, rely entirely on self-attention mecha-
nisms to process sequential data.

211Neural Networks and Deep Learning

Key Features:

•	 Parallelizable computation
•	 Well-suited for modeling long-range dependencies
•	 Forms the foundation for numerous cutting-edge models in natural lan-

guage processing

	 5.	Generative Adversarial Networks:

Generative adversarial networks (GANs) are composed of two neural networks—a
generator and a discriminator—trained together using adversarial learning.

Key Features:

•	 Can generate new, synthetic data samples
•	 Applied in tasks such as image generation, style transfer, and data

augmentation
•	 Challenging to train due to instability issues

7.5 � CONVOLUTIONAL NEURAL NETWORKS

Convolutional neural networks (CNNs) are a class of deep learning models primarily
designed for processing data that has a grid-like topology, such as images. They are
highly effective for tasks like image recognition, object detection, and segmentation
but are also applied to other domains like video processing, speech recognition, and
natural language processing.

Convolutional layers provide the basis of CNNs; the term “convolution” describes
the mathematical process of combining two functions to create a third. The input
image is processed by these layers using learnable filters. These filters, also called as
kernels, are employed to identify discrete characteristics including textures, forms,
and edges. Moving the filters across the image enables them to detect and localize
features while constructing a hierarchical representation of the input data. One of the
main features of CNNs is their ability to handle the spatial and local dependencies
within images.

CNNs differ from traditional ML algorithms by automatically learning key fea-
tures from the data, reducing the necessity of manual feature engineering. This is
accomplished using shared weights and local connectivity, which minimize the num-
ber of parameters and enable the network to efficiently handle large-scale images.
A standard CNN architecture is composed of several convolutional layers, pooling
layers, and fully connected layers as shown in Figure 7.1.

Convolutional layers capture features from the input image, while pooling layers
shrink the spatial dimensions of the feature maps, improving the network’s resilience
to small changes in the input. The ultimate classification or prediction is made by
the completely connected layers at the end of the network. CNN training relies on
extensive datasets and significant computational resources. Through backpropaga-
tion, the network’s parameters are adjusted iteratively to minimize the discrepancy
between its predictions and the ground truth data. This process enables the network

212 Artificial Intelligence and Machine Learning for Real-World Applications

to uncover patterns and relationships within the image data, allowing it to make
accurate predictions on previously unseen images.

In recent years, CNNs have attained cutting-edge performance on various image
recognition benchmarks, like ImageNet and CIFAR-10. These advancements have
led to numerous applications and breakthroughs, from autonomous driving and med-
ical image analysis to facial recognition and object detection in surveillance systems.
Despite their success, CNNs are not without their challenges.

One of the main challenges is the interpretability of the learned features, as the
complex interactions between the convolutional filters can make it difficult to under-
stand how the network arrives at its predictions. Additionally, CNNs can be sensitive
to the quality and quantity of training data and may struggle with tasks that require
reasoning or abstraction beyond the patterns present in the images. As the field of
CNNs continues to evolve, researchers are exploring various techniques to address
these challenges, such as attention mechanisms, GANs, and transfer learning. These
advancements are likely to lead to even more powerful and versatile CNNs, capable
of tackling increasingly complex problems and driving innovation across various
domains.

7.5.1 �T he Convolution Layer

Convolutional layer is a fundamental component of CNNs, specifically designed for
analyzing grid-like data, such as images or time-series data. Convolution operation
is performed by this layer. In order to generate feature maps, small trainable filters,
also called as kernels, move across the input data, multiplying and adding elements
at each location. As the network gets deeper, it learns more sophisticated represen-
tations like structures, objects, and semantic information. Each filter is trained to
identify particular patterns or features, including edges, textures, or gradients. Filters

FIGURE 7.1  CNN Architecture.

213Neural Networks and Deep Learning

have adjustable sizes (e.g., 3 × 3, 5 × 5), and their number determines the depth of
the output feature map, with more filters allowing the network to capture a greater
variety of features [3].

The performance of the convolution operation is defined by various hyperparam-
eters, including the following:

	 1.	Stride: Determines the step size of the filter as it moves across the input,
influencing the spatial dimensions of the output. A stride of 1 results in a
dense feature map, while larger strides downsample the data.

	 2.	Padding: Decides how to handle the edges of the input. Common strategies
include the following:
o	 Valid Padding: No padding, resulting in reduced output size
o	 Same Padding: Adds padding so the output size matches the input size,

preserving spatial dimensions
	 3.	Activation Function: After the convolution, a nonlinear function like

ReLU is applied to introduce nonlinearity, enabling the network to learn
complex patterns and relationships.

The design of convolutional layers ensures efficiency and robustness through two
key principles:

•	 Parameter Sharing: A single filter is applied across the entire input, reduc-
ing the number of trainable parameters and making the network computa-
tionally efficient.

•	 Local Connectivity: Filters operate on localized regions of the input,
making the model focus on small, meaningful regions while reducing
complexity.

Translation invariance is another feature of these layers that allows them to identify
patterns in the input regardless of where they are located. For example, whether an
object is in the top-left corner or the center of an image, the convolutional layer can
still detect it. This property is critical in tasks like image recognition and object
detection, where patterns may appear at different locations.

7.5.2 �P ooling Layer

Pooling layers are a critical component of CNNs used to reduce the spatial dimen-
sions of feature maps, making the model more computationally efficient and less
prone to overfitting. Pooling layers allow the network to concentrate on important
information by summarizing small areas of a feature map keeping dominating fea-
tures while eliminating less important data. Common types of pooling include max
pooling, which selects the maximum value in a region to emphasize strong activa-
tions, and average pooling, which computes the average value for a smoother repre-
sentation. Global pooling is sometimes used to summarize entire feature maps into
single values before feeding them into fully connected layers. Pooling helps reduce

214 Artificial Intelligence and Machine Learning for Real-World Applications

dimensionality, computational costs, and overfitting while ensuring robust feature
generalization.

7.5.3 �F ully Connected Layer

The fully connected (FC) layer in a CNN is the final stage that connects all neurons
from the previous layer to every neuron in its layer, enabling global feature integra-
tion and decision-making. It takes the convolutional and pooling layers’ flattened
output as a collection of features and uses weights and biases to determine how they
relate to one another. Every neuron in the FC layer models complicated relationships
and generates predictions by performing a linear transformation and then an acti-
vation function (such as ReLU, sigmoid, or softmax). FC layers are primarily used
for classification, mapping learned features to class scores, or for regression tasks,
outputting continuous values.

7.5.4 �L oss Function

The loss function in a CNN measures the difference between the network’s pre-
dicted output and the actual target, guiding the model’s learning process. It mea-
sures the error and provides feedback during training, helping the network update its
weights using backpropagation and optimization techniques like stochastic gradient
descent (SGD). The choice of a loss function is crucial and varies based on the type
of task being solved, as different tasks require different methods to evaluate pre-
diction errors effectively. For classification tasks, the cross-entropy loss is one of
the most commonly used loss functions. It works by comparing the predicted prob-
abilities of the network with the true class labels, ensuring that the model outputs
higher probabilities for correct classes. Hinge loss, which is particularly useful for
margin-based classifiers like support vector machines (SVMs). This loss function
focuses on maximizing the margin between predicted and actual classes, enhancing
the classifier’s robustness. For regression tasks, where the goal is to predict con-
tinuous values, MSE and mean absolute error (MAE) are widely used, the former
focusing on squared differences and the latter on absolute differences. In image
segmentation tasks, where precise pixel-level predictions are required, specialized
loss functions like dice loss and Intersection over Union (IoU) loss are preferred.
By concentrating on their overlap, these losses are especially useful for comparing
predicted segmentation masks with ground truth, guaranteeing precise border iden-
tification and segmentation. Kullback–Leibler (KL) divergence is another advanced
loss function used in tasks like language modeling or probabilistic predictions, as it
measures the difference between two probability distributions, helping refine models
that output probabilities.

7.5.5 �O ptimization Algorithms

Optimization algorithms in CNNs are essential for minimizing the loss function and
updating network weights during training. The most basic algorithm, SGD, updates

215Neural Networks and Deep Learning

weights iteratively based on the gradient of the loss function with respect to the
weights, as shown below.

W W L W= − ()η∇

Here,

W = Weights
h = Learning rate
Ñ L W() = Gradient of the loss function with respect to W

The limitation of SGD is it can be slow and prone to oscillations. SGD with momen-
tum addresses these issues by adding a momentum term to accelerate convergence
and reduce oscillations. The update rule of SGD with momentum is as shown below:

	 v v L W= − ()γ η∇

	 W W v= −

Here, v is the velocity term and g is the momentum factor.
Adaptive methods like Adagrad adjust learning rates are based on historical gra-

dients, and the formula is as given below:

W W
G

L W
t

= −
−∈

()η
∇

Here, Gt is the sum of squared gradients and Î is a small constant.
This works well with sparse data, but it can diminish learning rates excessively,

an issue resolved by RMSProp, which uses an exponentially decaying average of
squared gradients.

W W
E g

L W

t

= −



 −∈

()η
2

∇

Here, E g
t

2


 is the exponentially weighted moving average of the squared gradients.

Adam combines the strengths of momentum and RMSProp by maintaining mov-
ing averages of both gradients and squared gradients, offering fast convergence and
robustness to noisy data.

	 m m L Wt t= − −() ()−β β1 1 11 ∇

	 v v L Wt t= − −() ()()−β β2 1 12

2
1 ∇

216 Artificial Intelligence and Machine Learning for Real-World Applications

	 W W
v

L W

t

= −
+∈

()η


∇

Here, mt and vt ​ are the biased estimates of the first and second moments, respectively.
Nesterov-accelerated Adaptive Moment Estimation (Nadam) is a variant of

Adam optimizer, which incorporates Nesterov momentum for further improve-
ment of convergence speed and performance. AdaDelta, an extension of Adagrad,
avoids diminishing learning rates by using a moving average of squared gradi-
ents. Selection of an algorithm depends upon dataset size, task complexity, and
the gradient behavior. Large datasets or complicated architectures frequently
benefit from adaptive techniques like Adam or RMSProp, which strike a bal-
ance between accuracy and efficiency, whereas simpler jobs could work well with
SGD.

The code given below builds, trains, and evaluates a simple CNN using Ten-
sorFlow [4] to classify the MNIST dataset of handwritten digits. First, it imports
required libraries and loads the MNIST dataset. The grayscale image data is reshaped
to include a channel dimension (28 x 28 x 1) and normalized to a range of 0–1. The
labels are one-hot encoded to represent the 10 classes (digits 0–9).

The CNN model is constructed using TensorFlow’s Sequential API. It includes
the following:

	 1.	A convolutional layer with 32 filters of size 3 x 3, followed by ReLU
activation.

	 2.	A max-pooling layer to reduce spatial dimensions.
	 3.	A second convolutional layer with 64 filters and ReLU activation, followed

by another max-pooling layer.
	 4.	A flattening layer to transform the 2D feature maps into a 1D vector.
	 5.	A fully connected dense layer with 128 neurons and ReLU activation.
	 6.	An output dense layer with 10 neurons and softmax activation for multiclass

classification.

The Adam optimizer and categorical cross-entropy as the loss function are used to
compile the model. Using the training data, it is trained for 50 epochs with a batch
size of 32, and the test data is used for validation. Finally, the model is evaluated on
the test set, and the test accuracy is printed.

 import tensorflow as tf
 from tensorflow.keras import Sequential
 from tensorflow.keras.layers import Conv2D, Max-
Pooling2D, Flatten, Dense
 from tensorflow.keras.datasets import mnist
 from tensorflow.keras.utils import to_categorical

 (train_x, train_y), (test_x, test_y) = mnist.load_
data()

217Neural Networks and Deep Learning

 train_x = train_x.reshape(-1, 28, 28,
1).astype(‘float32’) / 255.0
 test_x = test_x.reshape(-1, 28, 28, 1).astype(‘float32’)
/ 255.0

 train_y = to_categorical(train_y, 10)
 test_y = to_categorical(test_y, 10)

 model = Sequential([
 Conv2D(32, (3, 3), activation=‘relu’, input_shape=(28,
28, 1)),
 MaxPooling2D((2,2)),
 Conv2D(64, (3, 3), activation=‘relu’),
 MaxPooling2D((2, 2)),
 Flatten(),
 Dense(128, activation=‘relu’),
 Dense(10, activation=‘softmax’)
])

 model.compile(optimizer=‘adam’, loss=‘categorical_cros-
sentropy’, metrics=[‘accuracy’])

 model.fit(train_x, train_y, epochs=50, batch_size=32,
validation_data=(test_x, test_y))
 test_loss, test_acc = model.evaluate(test_x, test_y)
 print(f’Test Accuracy: {test_acc * 100:.2f}%’)

7.6 � RECURRENT NEURAL NETWORKS

Recurrent neural networks (RNNs) are a specialized type of neural network designed
for sequential data, capable of modeling temporal dependencies by maintaining a
hidden state that retains information from previous steps. Unlike feedforward net-
works, which assume independence between inputs, RNNs process input sequences
one element at a time, with shared weights across time steps, making them suitable for
tasks like natural language processing, time-series analysis, and speech recognition.

The core concept of RNNs is leveraging sequential information by retaining a
“memory” of past inputs. This is accomplished through recurrent connections, where
a neuron’s output at one time step serves as an input at the next. This recursive struc-
ture enables RNNs to handle sequences of varying lengths, offering a key advantage
over neural network architectures with fixed input sizes.

RNNs are extensively applied in various domains, including the following:

	 1.	Natural Language Processing: Applied to tasks like sentiment analysis,
generating text and machine translation.

	 2.	Speech Recognition: Converting spoken language into text.

218 Artificial Intelligence and Machine Learning for Real-World Applications

	 3.	Time-Series Prediction: Forecasting in financial markets, weather patterns,
and other dynamic systems.

	 4.	Music Generation: Composing melodies and harmonies.
	 5.	Video Analysis: Understanding and predicting sequences of images.

Traditional RNNs, despite their capabilities, struggle to learn long-term dependen-
cies due to the vanishing and exploding gradient problems. These challenges occur
during backpropagation through time, where gradients can shrink or grow expo-
nentially, making it challenging to capture relationships between temporally distant
events.

To overcome these challenges, various RNN variants have been developed. Nota-
bly, LSTM networks and GRUs use gating mechanisms to capture long-term depen-
dencies effectively, enabling the network to selectively retain or discard information
across long sequences.

7.6.1 �L ong Short-Term Memory Networks

An LSTM is a special type of RNN designed to address the limitations of traditional
RNNs, particularly the problem of vanishing gradients. This issue occurs when gra-
dients drop to extremely low values or vanish during backpropagation from the out-
put layers to earlier layers in standard RNNs. LSTMs achieve this through the use
of additional memory cells, as well as input and output gates. Memory cells store
information over long periods. These cells are the core of LSTMs and allow the
network to decide which information to retain or forget. Vanishing gradients are
addressed using additional additive components and forget gate activations, which
helps gradients flow through the network more effectively, preventing them from
diminishing too quickly.

LSTMs were proposed by Hochreiter and Schmidhuber in 1997. They address
the vanishing gradient problem discussed earlier through a gating mechanism that
allows for better control of information flow.

	 1.	Structure:
		 An LSTM unit contains three gates:

a.	 Forget gate: Determines what information to discard from the memory
cell.

b.	 Input gate: Decides what new information to store in the memory cell.
c.	 Output gate: Controls what information to output from the memory cell.

	 2.	Functioning:
•	 The forget gate employs a sigmoid function to produce values ranging

from 0 to 1, which determines the extent to which information from the
previous cell state is retained.

•	 The input gate determines what new information to store in the cell
state by utilizing both sigmoid and tanh functions.

•	 The cell state is updated by discarding unnecessary information and
incorporating new relevant information.

•	 The output gate uses the updated cell state to determine the output,
again employing sigmoid and tanh functions.

219Neural Networks and Deep Learning

	Examples:

1.	 Machine Translation: LSTMs are used in seq2seq models for trans-
lating between languages, capturing context and meaning across
sentences.

2.	 Speech Recognition: LSTMs can process audio waveforms to tran-
scribe speech to text, maintaining context over long audio sequences.

3.	 Sentiment Analysis: LSTMs can analyze text to determine sentiment,
considering the entire context of a review or comment.

The following code builds and trains a simple LSTM model for a binary classifi-
cation task using TensorFlow. It begins by generating dummy sequential data with
train_x consisting of 1,000 samples, each having 10 time steps and 1 feature per
step, and train_y containing binary labels (0 or 1) for each sample. The model is
created using TensorFlow’s Sequential API, starting with an LSTM layer with 50
units to process the temporal dependencies in the data, followed by a dense layer
with a sigmoid activation function to output probabilities for binary classifica-
tion. The model is compiled with the Adam optimizer, binary cross-entropy loss
function, and accuracy as a performance metric. It is trained for 50 epochs with
a batch size of 32, updating weights iteratively to minimize the loss and improve
accuracy.

This is a simple LSTM network for sequential data processing, and binary classi-
fication tasks are demonstrated in this configuration. It can be expanded to operate
with real-world datasets such as textual or time-series data.

 import numpy as np
 from tensorflow.keras.models import Sequential
 from tensorflow.keras.layers import LSTM, Dense

 train_x = np.random.random((1000, 10, 1))
 train_y = np.random.randint(2, size=(1000, 1))
 model = Sequential ()
 model.add(LSTM(50, input_shape=(10, 1)))
 model.add(Dense(1, activation=‘sigmoid’))
 model.compile(optimizer=‘adam’, loss=‘binary_crossen-
tropy’, metrics=[‘accuracy’])
 model.fit(train_x, train_y, epochs=50, batch_size=32)

7.6.2 �G ated Recurrent Units

GRUs merge the functionality of the input and forget gates in LSTMs into a single
update gate, which controls the retention and addition of information. Because of
this simplified design, there are fewer parameters, which facilitates easier imple-
mentation and faster training. GRUs effectively handle long-term dependencies
in sequential data by dynamically regulating the flow of information, adapting to
complex patterns based on the input sequence. Because of their memory efficiency
and adaptability, they are frequently used for applications where sequential data

220 Artificial Intelligence and Machine Learning for Real-World Applications

modeling is essential, such as speech recognition, time-series forecasting, and natu-
ral language processing.

A GRU features two gates:

	 1.	Reset Gate: Controls how much past information should be discarded.
	 2.	Update Gate: Manages what information to discard and what new informa-

tion to incorporate.
	 3.	Functionality:

•	 Reset Gate: Determines how new input is combined with previous
memory.

•	 Update Gate: Controls how much of the previous memory is retained.
•	 No Separate Cell State: Information is transferred using the hidden

state alone.
	 •	 Examples:

1.	 Text Generation: GRUs can be used to generate coherent paragraphs of
text, maintaining consistency in style and content.

2.	 Music Generation: GRUs can learn patterns in musical sequences to
compose new melodies or harmonies.

3.	 Stock Price Prediction: GRUs can analyze historical stock data to fore-
cast future prices, capturing both short-term and long-term trends.

	 •	 Comparison:
•	 LSTMs generally have a slight edge in performance for longer

sequences, but GRUs are computationally more efficient.
•	 GRUs have a smaller number of parameters, which makes them easier

to train and less likely to overfit on smaller datasets.
•	 The decision to use LSTM or GRU typically depends on the specific

task requirements and the computational resources available.

The following code demonstrates the model built using the Sequential API, with a
single GRU layer comprising 32 units to process the sequential data and learn tempo-
ral dependencies. This is followed by a dense output layer with a sigmoid activation
function, which outputs probabilities for binary classification.

 import numpy as np
 from tensorflow.keras.models import Sequential
 from tensorflow.keras.layers import GRU, Dense

 x_train = np.random.random((1000, 10, 1))
 y_train = np.random.randint(2, size=(1000, 1))

 model = Sequential([
 GRU(32, input_shape=(10, 1)),
 Dense(1, activation=‘sigmoid’)
])

221Neural Networks and Deep Learning

 model.compile(optimizer=‘adam’, loss=‘binary_crossen-
tropy’, metrics=[‘accuracy’])
 model.fit(x_train, y_train, epochs=50, batch_size=32)

Both LSTM and GRU have greatly enhanced the capability of RNNs to learn long-
term dependencies in sequential data, making them widely used in applications such
as time-series analysis and natural language processing.

REFERENCES

	 1.	 Masood S. Neural Networks and Deep Learning: A Comprehensive Overview of Mod-
ern Techniques and Applications. Journal Environmental Sciences and Technology.
2023 Dec 31;2(2):8–20.

	 2.	 https://github.com/rezkaaufar/pytorch-cvt
	 3.	 https://www.analyticsvidhya.com/blog/2020/10/what-is-the-convolutional-

neural-network-architecture/
	 4.	 https://www.tensorflow.org/tutorials/images/cnn

https://github.com/rezkaaufar/pytorch-cvt
https://www.analyticsvidhya.com/blog/2020/10/what-is-the-convolutional-neural-network-architecture/
https://www.analyticsvidhya.com/blog/2020/10/what-is-the-convolutional-neural-network-architecture/
https://www.tensorflow.org/tutorials/images/cnn

222� DOI: 10.1201/9781003532170-8

8 Generative Artificial
Intelligence

8.1 � LARGE LANGUAGE MODELS

A large language model (LLM) is a kind of artificial intelligence (AI) algorithm that
uses supervised learning techniques to process and comprehend human languages or
text by applying neural network techniques with many parameters. Applications of
the LLMs include chatbots, machine translation, text production, summary writing,
image generation from texts, machine coding, and conversational AI. Such LLMs
are Open AI’s ChatGPT and Google’s BERT (Bidirectional Encoder Representations
from Transformers).

Numerous methods have been attempted to accomplish tasks related to natural
language, but the LLM is solely built on deep learning approaches. LLMs are very
effective in capturing the intricate relationships between entities in the text at hand.
They can also produce the text using the syntactic and semantic structures of the
specific language we want to use.

LLMs:

Model Release Year Parameter

GPT-1 2018 117 million

GPT-2 2019 1.5 billion

GPT-3 2020 175 billion

GPT-4 2023 1.76 trillions

Input Embeddings: Each token is embedded into a continuous vector representa-
tion. Input text is tokenized into smaller units, like words or sub-words. The input’s
syntactic and semantic information is captured in this embedding step.

Positional Encoding: Positional encoding is applied to the input embeddings to
provide information about the token positions. This makes it possible for the model
to handle the tokens while accounting for their sequential order.

Encoder: An encoder is based on a neural network technique. It determines the
context and meaning of text data by analyzing the input text and generating a number
of hidden states. Each encoder layer has two basic subcomponents as given below.

	 Self-Attention Mechanism: By calculating attention scores, self-attention
mechanism allows the model to assess the relative relevance of various
tokens in the input sequence. It enables the model to take into account the
relationships and dependencies among various tokens in a context-aware
way.

https://doi.org/10.1201/9781003532170-8

	 Feed-Forward Neural Network: Each token has to pass through an indepen-
dent feed-forward neural network following the self-attention phase. FFNN
comprises fully connected layers with nonlinear activation functions. This
model can handle capture complex interactions between tokens.

FIGURE 8.1  LLM Components.

Generative Artificial Intelligence 223

224 Artificial Intelligence and Machine Learning for Real-World Applications

Decoder Layers: A decoder component is sometimes added with the encoder in
transformer-based models. Autoregressive generation, in which the model produces
successive outputs by attending to the previously generated tokens, is made possible
by the decoder layers.

Multi-Head Attention: Transformer architecture is used for multi-head attention,
which involves performing self-attention concurrently while using various learned
attention weights. This enables the model to simultaneously focus on multiple seg-
ments of the input sequence and capture different kinds of associations.

Layer Normalizing: In the transformer architecture, layer normalizing is applied
following each layer or subcomponent. It enhances the model’s capacity to generalize
across many inputs and stabilizes the learning process.

Output Layers: Depending on the particular task, the transformer model’s output
layers may change. For instance, in language modeling, probability distribution over
the subsequent token is typically generated by a linear projection followed by soft-
max activation.

8.2 � GENERATIVE ADVERSARIAL NETWORK

Generative adversarial network (GAN) has been one of the prominent topics in
research and production. The ability to generate new images from random numbers
has contributed a lot in the field of unsupervised learning. The ability to learn the dis-
tribution of datasets using various different techniques can be enhanced by changing
the architecture of the network. The goal of generative modeling is to independently
identify patterns in input data and enable the model to produce new examples that
feasibly resemble the original dataset.

The beginning of the GAN era was when the first paper of Goodfellow et al. was
published in NIPS 2014. Generator–discriminator-based training has changed the
course of image generation and has given a new method in the field of unsupervised
learning.

The idea where some random numbers are able to produce an image that has never
existed, or some random numbers generating a face that has never been seen, seems

FIGURE 8.2  Generative Matching Networks.

225Generative Artificial Intelligence

like a magic at first glance; however, the ability of computers aren’t magic but some
bunch of smart algorithms, which need a processing unit to produce such results.

The idea of generating image has been long there but has the inability to produce
better results. The underlying principle before GANs was to use random numbers,
with distribution as the input and vector as the output, which equals the dimension of
an image from the original dataset, with a generator based on the neural network, as
a function to learn the parameters. The model learns by comparing the output vector
with the image vector using different methods. This in turn is learned by the neural
network using the backpropagation algorithm.

Since the probability distribution of the dataset is a very complex one, the genera-
tor network is unable to learn the distribution most of times. This is a direct method
of training generative networks.

Since there was a need of new methods to learn the distribution and the idea of
GAN evolved, GAN is based on a min–max game, which consists of two networks—a
discriminator and a generator. The duty of a generator is to generate image, where
the input is a random vector generated from a predetermined distribution and the
output of the generator is having the dimension as that of the image. This generator
network learns using a discriminator network, whose role is to identify if an image
feed into a model is a real image or not, i.e., the output of model is a number between
0 and 1, where the higher value shows greater confidence in image input from a real
distribution.

GAN training has a generator and a discriminator, which are trained simultane-
ously to improve the output.

The generator and discriminator are trained simultaneously using backpropaga-
tion to reach a point where a discriminator is unable to identify whether the input is
from the real image distribution or generated as an output from a generator network.

In an ideal case, the generator and discriminator reach the point of Nash equilib-
rium. At this point, the discriminator has a value of 0.5 for any input, but in practical
applications, the GAN is an unstable model that is highly affected by the model
architecture and the values of hyperparameters. But still the results by the GAN was
convincing, producing a new method of training generator networks, which have

FIGURE 8.3  Roles of Generator and Discriminator in GAN.

226 Artificial Intelligence and Machine Learning for Real-World Applications

evolved greatly and revolutionized the field of unsupervised and semi-supervised
learning.

Hyperparameters are one of the major components of any network that requires
proper tuning for each use case. Especially for GANs that are very unstable in train-
ing, training of the networks is done simultaneously until the images are not clear.
Since GANs lack in proper evaluation metric, it is hard to evaluate them too.

As described earlier, GANs are highly unstable and it’s hard to train them, so
any change in architecture layers and learning rate can have adverse effects on the
network.

8.3 � RETRIEVAL AUGMENTATION GENERATION

It is a method that combines retrieval-based techniques with generative models to
produce more accurate and contextually relevant responses, especially when dealing
with vast amounts of information. The idea behind retrieval augmentation generation
(RAG) is to use external knowledge sources (like a database, a set of documents, or
a search engine) to fetch relevant information and then feed this information into
generative models (such as GPT-3 or GPT-4) to produce a final response.

8.3.1 �R AG versus LLMs

	 1.	Knowledge Limitations: LLMs have knowledgebase till 2021 and its was
trained on available data till date only. They are not updated to the current
level, so they cannot work on real data. This can lead to outdated/inaccurate
information. But RAG can provide us up-to-date information.

	 2.	 In RAG, it is possible to keep sensitive data out of training to have data
control and to maintain security.

	 3.	No need of retaining on full data all time leads to cost-efficiency.
	 4.	The source of information for regular LLMs is unknown, but RAG has a

verifiable source of information, which makes it more antithetic.

FIGURE 8.4  RAG Components.

227Generative Artificial Intelligence

FIGURE 8.5  RAG Architecture.

228 Artificial Intelligence and Machine Learning for Real-World Applications

In LLMs, user queries are directly forwarded, but in RAG a new component
knowledge base and RAG engine are added. Knowledge base is a collection of
documents. From input prompt, a query is forwarded to the retriever. Retriever
retrieves relevant information from the knowledge base. Only relevant documents
reache the retriever. The retriever will augment user query along with relevant
documents to LLMs, which will give the final response. RAG engines perform of
three roles: retrieval, augmentation, and generation. User query along with rele-
vant augmented documents makes RAG prompt and feed to LLMs, which leads to
improved output.

We will discuss each part below:

	 I.	Knowledge Base: It consist of 3 elements.
a.	 Document Collection: This is the source of information, a repository

of documents containing various knowledge sources (articles, manuals,
and product information).

b.	 Document Embedding: Each document is processed to create document
embedding (vector representations) that captures the semantic meaning
of text.

c.	 Vector databases: The embedding is stored in a vector database that
allows for faster retrieval based on similarity searches.
i.	 Input: This is the input from the user.
ii.	 Prepossessing: The user query is transformed into a query embed-

ding model, similar to how the documents were embedded.
	 2.	RAG Engine:a. Retriever: This component searches the vector database to

find relevant document embedding based on the similarity with the query
vector. It retrieves the most relevant chunks of information.
b.	 Context Builder: After retrieval, the selected chunks are compiled

into a formatted context that helps the language model to respond
accurately.

c.	 Prompt Constructor: It combines the user’s original query with the
retrieved context, creating a RAG prompt that can be fed into a lan-
guage model.

d.	 Generator (LLM): The final output is a generated response that uses
both the retrieved context and language model’s capabilities, providing
a more accurate and informative answer for the user.

8.4 � TRANSFER LEARNING

A technique called transfer learning enables models to apply previously learned
information to new, related tasks. A model can tackle new problems more success-
fully and efficiently by reusing what it has already learned rather than beginning
from scratch. When there is little data available for a novel topic, this method is quite
beneficial.

229Generative Artificial Intelligence

FIGURE 8.6  Transfer Learning Model.

In order to use preexisting information from a pretrained model for new tasks,
transfer learning entails a systematic process:

Pretrained Model: A model that is already trained on a large dataset for a spe-
cific task is a pretrained model. This pretrained model has picked up general
characteristics and patterns that apply to similar tasks.

Base Model: This pretrained model, sometimes referred to as the base model,
consists of layers that have learned hierarchical representations through
data processing, capturing features ranging from simple to intricate.

Transfer Layer: Find the base model’s layers that contain generic data relevant
to the original and new jobs. These layers, which are frequently found close
to the network’s top, record general, repeatable features.

Fine-tuning: Use the information from the new task to refine these chosen
layers. This procedure improves accuracy and flexibility by preserving pre-
viously learned information while modifying parameters to fit the demands
of the novel assignment.

Generative AI tools are very powerful tools for text, image, and video generation.
They have a variety of applications and can be used in different sectors of life for
different purposes, and the need for a better algorithm rises with increasing demand.
Tools like ChatGPT and Gemini have created personalized virtual assistants to this
community, and in the future, they will be explored more to empower the community.

230� DOI: 10.1201/9781003532170-9

9 AI in Healthcare
Diagnostics, Treatment,
and Beyond

9.1 � INTRODUCTION

9.1.1 �O verview of AI in Healthcare

•	 Definition and Scope: Artificial intelligence (AI) refers to a suite of tech-
nologies designed to enable machines to perform tasks that would typically
require human intelligence. These technologies include machine learning
(ML), which allows computers to learn from and make predictions based
on data and deep learning, a subset of ML that employs neural networks to
process complex data, such as images. In healthcare, AI is making its mark
by transforming how patient care is delivered and how administrative pro-
cesses are managed within healthcare organizations, including providers,
payers, and pharmaceutical companies (Kyrimi et al. 2025).

	  AI’s application in healthcare is vast and growing. It ranges from enhanc-
ing diagnostic accuracy and personalizing treatment plans to optimizing
administrative tasks. For instance, AI algorithms are now capable of ana-
lyzing medical imaging with a level of precision that often surpasses human
radiologists, identifying malignant tumors, and guiding clinical trial design
more efficiently. Despite these advances, the widespread replacement of
human roles in medical processes is still a distant reality. The current focus
is on leveraging AI to complement and enhance human capabilities rather
than replacing them entirely (Davenport and Kalakota 2019).

•	 Historical Context and Evolution: The integration of AI into health-
care began with early systems that aimed to replicate the decision-making
processes of medical experts. Initial efforts in the 20th century laid the
groundwork, but significant progress was hampered by limited data and
computational power. As the field evolved, the introduction of ML and,
later, deep learning (De Fauw et al. 2018) technologies marked pivotal mile-
stones. These advancements allowed for more sophisticated data analysis
and pattern recognition.

	  In recent years, the advent of big data and improved computational
resources has catalyzed AI’s role in healthcare (Talmele and Shrawankar
2022). Modern AI systems can now access and analyze extensive datasets
from electronic health records, medical imaging, and genetic informa-
tion. This capability enables AI to identify patterns and trends that may be
invisible to human observers, leading to earlier disease detection and more

https://doi.org/10.1201/9781003532170-9

231AI in Healthcare

effective treatment strategies. For example, AI can now uncover previously
unknown genetic markers linked to specific cancers, providing valuable
insights for both diagnosis and research (Steiner et al. 2018).

	  AI also excels in predictive analytics, assessing patient risks, and fore-
casting treatment outcomes. Its ability to predict complications and treat-
ment efficacy allows for more proactive and personalized care. Additionally,
AI streamlines administrative functions by automating routine tasks such
as scheduling, report generation, and data organization. This automation
not only reduces the burden on healthcare professionals but also improves
operational efficiency within healthcare systems (Shrawankar et al. 2021).

	  Despite these advancements, the full-scale implementation of AI in
healthcare faces several barriers. Challenges such as data privacy, integra-
tion with existing systems, and the need for regulatory frameworks are crit-
ical considerations. As AI continues to evolve, its integration into healthcare
promises to enhance patient care and operational efficiency while address-
ing these ongoing challenges (Wazalwar and Shrawankar 2021).

9.2 � AI IN DIAGNOSTICS

AI has become an essential tool in medical diagnostics (Kaczmarczyk et al. 2024),
transforming traditional methods by offering more precision and speed in disease
detection and analysis. Its applications span across various domains, including medi-
cal imaging, pathology, and genomics. AI’s ability to process large datasets and iden-
tify intricate patterns has paved the way for advancements in personalized medicine
and targeted treatment strategies (Pati 2024).

Medical Imaging

•	 AI in Radiology: AI algorithms are being used to analyze medical images
such as X-rays, CT scans, and MRIs. These tools can detect abnormalities,
like tumors or fractures, with high accuracy, often matching or surpassing
human radiologists. For instance, AI systems are used in mammography to
identify early signs of breast cancer, potentially improving survival rates.

•	 Case Studies: An example of AI’s impact is Google’s DeepMind, which
has developed systems that can accurately detect retinal diseases from eye
scans. Other startups are also developing AI-based image interpretation
tools to support diagnostic processes in radiology.

Pathology

•	 AI in Analyzing Biopsy Samples: AI has revolutionized the analysis of
tissue samples, making it quicker and more accurate. By scanning and pro-
cessing high-resolution biopsy images, AI can detect the presence of dis-
eases like cancer, providing pathologists with valuable insights. This leads
to more consistent and reliable diagnoses.

•	 Innovations in Digital Pathology: AI-powered digital pathology plat-
forms enhance diagnostic accuracy by processing complex tissue images,

232 Artificial Intelligence and Machine Learning for Real-World Applications

uncovering patterns that may be missed by human observation. These sys-
tems are now increasingly used in clinical practice, helping streamline the
workflow for pathologists (Aggarwal et al. 2025).

Genomics

•	 AI in Interpreting Genetic Data: AI assists in decoding vast amounts
of genetic information to identify variations that may cause diseases.
This capability supports healthcare providers in understanding patients’
genetic profiles, which is critical for developing personalized treatment
plans.

•	 Precision Medicine: AI’s ability to analyze genetic mutations has paved the
way for precision medicine, where treatments are tailored to an individual’s
genetic makeup. For example, in cancer care, AI can recommend targeted
drug therapies based on a patient’s specific genetic alterations, resulting in
more effective treatments.

9.2.1 �T ransforming Healthcare with AI Applications

AI is not limited to diagnostics; its applications in healthcare include robotic surgery,
drug discovery, and enhancing patient outcomes.

•	 Enhancing Diagnostic Accuracy: AI systems outperform traditional meth-
ods in identifying conditions like tumors, allowing for earlier interventions.

•	 Robotic Surgery: AI-driven robotic arms enable minimally invasive sur-
geries, providing surgeons with greater precision and reducing patient
recovery times (Knudsen et al. 2024).

•	 Accelerating Drug Discovery: AI speeds up the drug discovery process
by analyzing biological data to identify new treatment targets, significantly
reducing the time needed to bring new drugs to patients.

9.3 � AI IN TREATMENT

AI is significantly revolutionizing treatment methods in healthcare, by contribut-
ing to drug discovery, personalized medicine, and robotic surgery. Despite the chal-
lenges in implementation, its potential for transforming medical care is vast.

9.3.1 �D rug Discovery and Development

•	 AI’s Role in Identifying New Drugs: AI algorithms have the ability to
predict compounds that could be effective against various diseases, speed-
ing up the drug discovery process. Traditional drug development can take
years, with significant costs involved. AI reduces this timeline by analyzing
vast datasets of biological information and chemical compounds to iden-
tify promising drug targets. By simulating chemical interactions, AI can

233AI in Healthcare

efficiently screen large libraries of compounds, identifying potential candi-
dates for further testing. For instance, pharmaceutical companies leverage
AI to explore the efficacy of new molecules and compounds, leading to the
discovery of innovative treatments more quickly (Abbas 2024).

•	 Accelerating Clinical Trials: AI not only expedites drug discovery but
also optimizes clinical trials by identifying suitable candidates and analyz-
ing trial data in real time. Machine learning (ML) models can sort through
patient data, considering factors like genetics, medical history, and current
health status to select the best participants for a trial. This targeted approach
improves trial outcomes and accelerates the drug approval process, bring-
ing new treatments to patients faster.

9.3.2 �P ersonalized Medicine

•	 Tailoring Treatments Using AI: Personalized medicine is a groundbreak-
ing application of AI in healthcare, focusing on customizing treatment plans
based on individual patient data. By analyzing medical history, genetic pro-
files, lifestyle factors, and responses to past treatments, AI creates a tailored
approach to care, potentially leading to more effective outcomes. In cancer
care, for instance, AI can assess genetic mutations in tumors and suggest
targeted drug therapies specifically designed for those mutations, enhanc-
ing treatment effectiveness (Marra and Laskin 2020).

•	 Success Stories: Notable examples include AI-driven cancer treatment rec-
ommendations where AI systems identify the most effective therapies based
on a patient’s unique genetic markers. Companies like Foundation Medicine
and Flatiron Health are working on creating personalized cancer treatment
plans, addressing the complexity of genetic variants in cancer. The integration
of AI in precision medicine aims to shift from a one-size-fits-all approach to
individualized care, reducing adverse reactions and improving success rates.

9.3.3 �R obotic Surgery

•	 Advances in Robotic-Assisted Surgeries: AI is at the forefront of robot-
ic-assisted surgeries, enhancing precision and control during surgical pro-
cedures. Modern robotic systems, often guided by AI, allow for minimally
invasive surgeries that reduce recovery times and improve patient outcomes.
These systems provide surgeons with better visualization and dexterity,
allowing them to perform complex procedures with heightened accuracy
(BBC News 2024).

•	 Benefits and Limitations: While robotic surgery offers numerous advan-
tages such as minimal invasiveness, shorter recovery times, and reduced
risk of human error, it also comes with limitations. High costs and the need
for specialized training present challenges to widespread adoption. Addi-
tionally, technical difficulties and the need for seamless integration into
clinical workflows remain hurdles to be addressed.

234 Artificial Intelligence and Machine Learning for Real-World Applications

AI in treatment is already making strides in personalized medicine, accelerating
drug discovery, and enhancing robotic surgery. Its applications have the potential to
deliver more effective, tailored healthcare solutions, transforming traditional treat-
ment models. Although challenges in implementation and integration remain, ongo-
ing research and development promise a future where AI plays an indispensable role
in patient care.

9.4 � AI IN PATIENT MANAGEMENT AND MONITORING

AI’s integration into patient management and monitoring is transforming healthcare
delivery, making it more proactive and personalized. The use of AI-powered wearable
technology and remote patient monitoring is particularly impactful in managing chronic
diseases, enhancing patient outcomes, and improving accessibility to healthcare.

9.4.1 � Wearable Technology

•	 AI-Powered Wearables: Modern wearable devices, such as smartwatches,
fitness trackers, and health-monitoring patches, are equipped with AI algo-
rithms that continuously track a variety of health metrics. These devices
collect data on vital signs like heart rate, blood pressure, sleep patterns,
oxygen levels, and physical activity. AI then processes this vast amount
of data to provide personalized health insights and recommendations. For
instance, smartwatches can detect irregular heart rhythms, potentially iden-
tifying atrial fibrillation in its early stages, which is crucial for timely med-
ical intervention.

•	 Examples and Outcomes: Continuous glucose monitors (CGMs) for diabe-
tes provide real-time tracking of blood sugar levels, helping patients make
informed decisions. Wearable ECGs detect heart anomalies, allowing for
timely medical intervention, ultimately improving patient outcomes.

9.4.2 �R emote Patient Monitoring

•	 AI’s Role in Telemedicine: Telemedicine has become increasingly import-
ant, especially in remote and underserved areas. AI enhances remote patient
monitoring by facilitating virtual consultations, automating health assess-
ments, and analyzing patient data to support decision-making. AI-driven
platforms can collect data from wearable devices, smartphones, or home
health monitors and provide clinicians with actionable insights. For instance,
AI can process data from a patient’s digital health record and wearable
devices during a teleconsultation to offer a comprehensive health status anal-
ysis, guiding healthcare professionals in diagnosis and treatment planning.

•	 Impact on Chronic Disease Management: For chronic conditions like
heart disease and diabetes, AI analyses patient data over time, predicting
potential health issues and enabling early interventions, thereby reducing
hospital admissions and improving patient quality of life.

235AI in Healthcare

9.5 � AI IN ADMINISTRATIVE TASKS

AI streamlines healthcare administration by automating routine processes, manag-
ing patient data, and reducing operational costs.

9.5.1 � Workflow Optimization

•	 Automating Administrative Processes: AI applications, such as robotic
process automation (RPA), handle repetitive tasks like scheduling, billing,
and record-keeping. This automation reduces the administrative burden on
medical staff, allowing them to focus more on patient care. For example,
RPA can manage claims processing, clinical documentation, and revenue
cycle management, speeding up operations (Pahuja 2024).

•	 Reducing Operational Costs: By automating tasks, healthcare facilities
can significantly cut costs and enhance efficiency. With AI handling routine
activities, there’s a reduction in manual errors, ultimately saving time and
resources.

9.5.2 �E lectronic Health Records

•	 Managing and Analyzing Patient Data: AI improves electronic health
record (EHR) systems by enabling accurate data entry, predictive analyt-
ics, and seamless patient data management. Advanced AI can analyze vast
amounts of medical data, supporting clinicians in making informed deci-
sions for better patient care. AI’s role extends to detecting coding errors in
claims processing, saving stakeholders time and money through efficient
audits (Shah et al. 2024).

While AI’s impact on administrative tasks isn’t as revolutionary as in patient care, it
brings significant efficiency, addressing issues like 25% of nurses’ time spent on reg-
ulatory activities. Although technologies like chatbots have shown promise for tasks
such as prescription refills and appointment scheduling, usability concerns remain.

9.6 � ETHICAL AND PRIVACY CONSIDERATIONS

The integration of AI in healthcare brings significant ethical and privacy challenges,
particularly in data security, transparency, bias, and equitable access.

9.6.1 �D ata Privacy

•	 Ensuring Patient Data Security: With AI relying on vast amounts of sen-
sitive health data, safeguarding patient information is crucial. Measures like
data encryption, secure storage, and strict access controls are vital to pre-
vent data breaches. Healthcare organizations must prioritize protecting this
information to maintain patient trust and confidentiality.

236 Artificial Intelligence and Machine Learning for Real-World Applications

•	 Regulations and Compliance: Regulatory frameworks like Health Insur-
ance Portability and Accountability Act (HIPAA) in the United States and
General Data Protection Regulation (GDPR) in Europe govern data privacy.
These regulations enforce strict guidelines on how patient data is collected,
stored, and shared, ensuring that AI applications in healthcare adhere to
legal and ethical standards.

9.6.2 � Bias and Fairness

•	 Addressing AI Bias: AI systems can inadvertently introduce bias, affect-
ing healthcare outcomes. For example, predictive algorithms might show
bias based on gender or race, potentially leading to inequitable care. To
mitigate this, developers must ensure that AI models are trained on diverse
datasets and regularly monitored to identify and address biases.

•	 Ensuring Equitable Access: AI solutions must be designed to serve all
populations fairly, avoiding disparities in healthcare access. Equitable AI
should consider various socioeconomic, cultural, and regional factors,
ensuring that advancements in AI-driven healthcare do not widen existing
gaps.

9.6.3 �T ransparency and Accountability

AI systems, especially deep learning algorithms used for image analysis, often
operate as “black boxes,” making them difficult to interpret. When patients receive
diagnoses or treatment recommendations from AI, they deserve to understand the
reasoning behind those decisions. However, current AI technologies may lack the
ability to provide clear explanations.

•	 Accountability for Mistakes: AI systems in healthcare are not immune
to errors. Establishing accountability for incorrect diagnoses or treatment
recommendations made by AI is a complex issue that healthcare providers
and regulators need to address. Additionally, there is a risk that AI could
dehumanize healthcare, making decisions overly data-driven and poten-
tially overlooking the nuances of empathy and human judgment.

9.6.4 � Balancing AI with Human Care

As AI’s role in patient care grows, it’s crucial to maintain a balance between AI’s
efficiency and the human touch in healthcare. While AI can streamline processes
and enhance diagnosis accuracy, healthcare institutions and regulatory bodies must
monitor its impact and create governance mechanisms to address ethical challenges
responsibly. This ongoing attention will ensure that AI’s benefits are maximized
while minimizing potential negative consequences (Landau et al. 2025).

237AI in Healthcare

9.7 � CHALLENGES AND LIMITATIONS

While AI presents exciting possibilities for transforming healthcare, it also faces sev-
eral challenges and limitations that must be addressed for its successful integration
into the industry (Bertl et al. 2024).

9.7.1 �T echnical Challenges

•	 Limitations of Current AI Technologies: AI technologies are still evolv-
ing, and their current limitations include data quality issues and algorithmic
accuracy. Healthcare data is often fragmented, stored in different formats,
and filled with inconsistencies, making it difficult for AI systems to analyze
accurately. Additionally, many AI algorithms require extensive training
on high-quality datasets to ensure accuracy, and without this, their effec-
tiveness in real-world healthcare settings may be compromised. Moreover,
some AI models, particularly deep learning algorithms, function as “black
boxes,” providing little transparency into how they arrive at specific conclu-
sions, which can limit their use in clinical decision-making.

•	 Integration with Existing Systems: Integrating AI solutions into current
healthcare systems and workflows is a significant challenge. Many health-
care facilities use legacy systems that may not be easily compatible with
modern AI technologies. Moreover, a seamless integration requires health-
care professionals to adapt to new tools and processes, which often involves
a steep learning curve and potential disruptions to established workflows.
Customization and interoperability between AI systems and existing EHRs
are crucial for smooth implementation.

9.7.2 �R egulatory and Legal Challenges

•	 Navigating Complexity: AI tools must navigate complex regulations to
ensure patient safety, privacy, and unbiased operation. Establishing clear
guidelines is vital, balancing innovation with safety requirements.

•	 Liability Issues: When AI systems make errors, defining who is
responsible—the healthcare provider, AI developer, or institution—remains
unclear. Proper frameworks for accountability are essential to manage risks
and protect patients.

9.7.3 � Cost and Infrastructure

Implementing AI demands significant investment in IT infrastructure, data storage,
and computational resources. Smaller healthcare facilities, especially in underserved
areas, may struggle to afford these technologies, risking increased disparities in care
access.

238 Artificial Intelligence and Machine Learning for Real-World Applications

9.7.4 �P ublic Perception

•	 Building Trust and Acceptance: Public perception is a critical factor in
the adoption of AI in healthcare. Patients may be wary of relying on AI for
their health-related decisions due to concerns about privacy, data security,
and the impersonal nature of machine-driven care. Educating patients and
the public about the benefits and limitations of AI can help build trust and
alleviate concerns. Healthcare providers must emphasize that AI is a tool
to support, not replace, human expertise, highlighting its role in enhancing,
rather than detracting from, patient-centered care.

9.8 � FUTURE DIRECTIONS

AI’s future in healthcare is filled with promise, with several innovations and trends
shaping the next decade.

9.8.1 �E merging Trends

•	 Innovations on the Horizon: Upcoming advancements in AI will revolu-
tionize healthcare (Parthasarathy 2024), such as mental health applications
that provide personalized therapy and AI-driven gene editing for targeted
treatments. Additionally, real-time diagnostics, continuous patient monitor-
ing, and AI-powered virtual assistants will support patients in managing
their health independently.

•	 Predictions for AI’s Impact: AI is expected to drive a shift toward per-
sonalized medicine, allowing treatments tailored to each patient’s genetic
makeup and lifestyle. As AI’s capabilities in image analysis, speech, and
text recognition continue to grow, it will become integral to clinical tasks,
improving healthcare outcomes and reducing costs. However, AI will aug-
ment, rather than replace, clinicians—freeing them to focus on empathy,
patient communication, and holistic care.

9.8.2 �R esearch and Development

•	 Ongoing Research Efforts: Research initiatives are rapidly advancing AI
technologies, focusing on areas like precision medicine, drug discovery,
and disease prediction. AI-powered drug discovery is expected to uncover
novel treatment pathways for complex diseases such as cancer and Alzhei-
mer’s, significantly accelerating the process.

•	 Collaboration between Tech Companies and Healthcare Providers:
Partnerships between tech companies and healthcare institutions are vital
for developing new AI solutions. These collaborations will help ensure AI
tools are tailored to real-world healthcare needs, drive innovation, and facil-
itate the integration of AI into everyday clinical practice (Alowais et al.
2023).

239AI in Healthcare

AI’s role in healthcare’s future will hinge not only on technological capabilities but
also on overcoming adoption challenges. This includes gaining regulatory approval,
integrating AI with EHRs, and ensuring standardization. Widespread adoption will
likely take longer than technological maturity, with the limited use of AI in clinical
settings within the next 5 years and more extensive implementation within 10.

While AI will become more sophisticated, it won’t replace human clinicians.
Instead, it will support them, handling tasks like data analysis, diagnostics, and
patient communication. In turn, healthcare professionals will focus on unique human
skills, such as empathy and decision-making.

9.8.3 �S eamless AI Integration

The ultimate goal is seamless AI integration into healthcare, creating a future where
AI systems act as partners in care. As AI continues to advance, it will redefine
patient–provider relationships, enabling more efficient, effective, and personalized
healthcare experiences.

9.9 � CASE STUDIES

CASE STUDY  REMOTE SURGERY USING AI AND ROBOTICS

Background: In 2024, a notable remote surgery was performed on a 57-year-
old woman with a complex abdominal condition. The procedure was con-
ducted by a surgical team located over 1,200 kilometers away from the patient
(Panahi 2024).

TECHNOLOGY USED:

	 1.	da Vinci Surgical System: Advanced robotic platform enabling min-
imally invasive surgery.

	 2.	AI-Powered Navigation: Provided real-time guidance and feedback
during the procedure.

	 3.	High-Speed Connectivity: Enabled secure, real-time control and
video streaming.

Procedure: The surgery, involving complex laparoscopic techniques,
was successfully completed with the robotic system controlled remotely.
AI-enhanced navigation improved precision and outcomes.

OUTCOME:

•	 Success: The patient experienced minimal complications and a faster
recovery.

•	 Feedback: Surgeons praised the AI and robotic system for their accu-
racy and efficiency.

240 Artificial Intelligence and Machine Learning for Real-World Applications

LESSONS LEARNED:

	 1.	Access to Care: Remote surgery can provide specialized care to
underserved areas.

	 2.	Challenges: Issues included communication latency and cybersecu-
rity needs.

	 3.	Future Implications: This case highlights the potential for expand-
ing remote surgical capabilities globally.

SUCCESSFUL IMPLEMENTATIONS

	 1.	IBM Watson for Oncology
	 •	 Application: IBM Watson for Oncology uses AI to assist oncol-

ogists in diagnosing and treating cancer. It analyses patient data,
medical literature, and clinical trial results to recommend person-
alized treatment options (Somashekhar et al. 2018).

	 •	 Outcome: Successfully deployed in several hospitals, it has
shown promise in providing evidence-based treatment recom-
mendations and aiding in decision-making.

	 •	 Lessons Learned: The system demonstrated the potential of AI
to support complex medical decisions, but challenges included
integrating Watson into existing workflows and adapting it to var-
ious cancer types.

	 2.	Google’s DeepMind Health
	 •	 Application: DeepMind’s AI technology is used for diagnosing

eye diseases by analyzing retinal scans. It can detect conditions
like diabetic retinopathy and age-related macular degeneration
with high accuracy.

	 •	 Outcome: Implemented in the UK’s National Health Service
(NHS), it has improved diagnostic accuracy and reduced the time
required for analysis.

	 •	 Lessons Learned: The project highlighted the importance of
high-quality data and collaboration with healthcare providers. How-
ever, issues like data privacy and system integration were noted.

	 3.	PathAI
	 •	 Application: PathAI leverages AI to enhance the accuracy of

pathological diagnoses by analyzing medical images. It assists
pathologists in identifying cancerous tissues in biopsy samples.

	 •	 Outcome: The technology has been successfully used in several
pathology labs, leading to improved diagnostic accuracy and
efficiency.

	 •	 Lessons Learned: PathAI’s success underscores the value of AI
in augmenting human expertise. Challenges included ensuring
algorithm transparency and overcoming initial resistance from
pathologists.

241AI in Healthcare

LESSONS LEARNED

	 •	 Integration with Existing Systems: Successful AI applica-
tions often require seamless integration with existing healthcare
systems and workflows. Addressing interoperability issues and
ensuring that AI tools complement rather than disrupt current
practices is crucial.

	 •	 Data Quality and Privacy: High-quality data is essential for AI
effectiveness. Maintaining data privacy and addressing ethical
concerns about patient information are vital to the success and
acceptance of AI applications.

	 •	 User Training and Adoption: Training healthcare professionals
to effectively use AI tools and addressing their concerns about
new technologies can facilitate smoother adoption and maximize
the benefits of AI.

	 •	 Continuous Evaluation: Ongoing evaluation and iteration are
necessary to refine AI systems based on real-world feedback and
performance, ensuring that they continue to meet clinical needs
effectively.

	 •	 Contains supplementary charts and graphs that visually summa-
rize and support the key findings and data presented.

9.10 � CONCLUSION

SUMMARY OF KEY POINTS

•	 Impact of AI: AI is transforming healthcare through improved diag-
nostics, personalized treatment plans, and enhanced patient manage-
ment. Key areas of impact include faster and more accurate diagnoses,
predictive analytics for disease management, and advancements in
virtual and mental health support.

•	 Challenges and Considerations: Despite its potential, AI faces
challenges such as data privacy concerns, algorithmic bias, and the
need for effective integration with existing systems. Addressing
these issues is crucial for ensuring equitable and effective AI use in
healthcare.

IMPLICATIONS FOR THE FUTURE

•	 Shaping the Future: AI is set to revolutionize healthcare by aug-
menting the capabilities of healthcare professionals, leading to more
precise diagnoses, tailored treatments, and preventive measures. As

242 Artificial Intelligence and Machine Learning for Real-World Applications

AI technology evolves, its role in healthcare will expand, offering
new opportunities for improving patient outcomes and efficiency.

•	 Responsible Implementation: Ensuring the responsible use of AI
involves developing robust cybersecurity measures, establishing clear
guidelines for AI algorithms, and fostering collaboration between
healthcare organizations, researchers, and regulatory bodies. Contin-
uous investment in R&D and addressing limitations such as bias and
data quality will be essential.

•	 Public Perception and Trust: Building public trust in AI is vital.
While patients are open to using AI for health purposes, they still
value human interaction in complex cases. Effective communication
and education about AI’s benefits and limitations will help integrate
these technologies smoothly into healthcare practice.

Overall, the future of AI in healthcare promises significant advancements in
patient care, efficiency, and access to personalized treatment (Aparna 2024).
By overcoming current challenges and fostering collaboration, AI has the
potential to greatly enhance the healthcare landscape.

REFERENCES

Abbas, Ahmed. (2024). The Role of AI in Drug Discovery. Chemistry Europe. https://chemis-
try-europe.onlinelibrary.wiley.com/doi/10.1002/cbic.202300816

Aggarwal, Arpit, Bharadwaj, Satvika, Corredor, Germán, Pathak, Tilak, Badve, Sunil, &
Madabhushi, Anant. (2025). Artificial intelligence in digital pathology — time for a
reality check. The Nature Reviews of Clinical Oncology. https://link.springer.com/
article/10.1038/s41571-025-00991-6

Alowais, S. A., Alghamdi, S. S., Alsuhebany, N., Alqahtani, T., Alshaya, A. I., Almohareb,
S. N., Aldairem, A., Alrashed, M., Bin Saleh, K., Badreldin, H. A., Al Yami, M. S., Al
Harbi, S., & Albekairy, A. M. (2023). Revolutionizing healthcare: The role of artificial
intelligence in clinical practice. BMC Medical Education, 23, Article 689. https://bmc-
mededuc.biomedcentral.com/articles/10.1186/s12909-023-04698-z

Aparna, M. (2024). Role of AI in healthcare. Proceedings of the 5th International Confer-
ence on Data Science, Machine Learning and Applications, 2. https://link.springer.com/
chapter/10.1007/978-981-97-8043-3_153

BBC News. (2024, February 18). Surgeons perform world’s first remote surgery using 5G
technology. BBC News - Surgeons Perform World’s First Remote Surgery Using 5G
Technology.

Bertl, Markus, et al. (2024). Challenges for AI in healthcare systems. Bridging the Gap between AI
and Reality, 165–186. https://link.springer.com/chapter/10.1007/978-3-031-73741-1_11

Davenport, T., & Kalakota, R. (2019). The potential for artificial intelligence in healthcare.
Future Healthcare Journal, 6(2), 94–98. https://doi.org/10.7861/futurehosp.6-2-94

De Fauw, J., et al. (2018). Clinically applicable deep learning for diagnosis and referral in
retinal disease. Nature Medicine, 24(9), 1342–1350. https://www.nature.com/articles/
s41591-018-0107-6

https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cbic.202300816
https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cbic.202300816
https://link.springer.com/article/10.1038/s41571-025-00991-6
https://link.springer.com/article/10.1038/s41571-025-00991-6
https://bmcmededuc.biomedcentral.com/articles/10.1186/s12909-023-04698-z
https://bmcmededuc.biomedcentral.com/articles/10.1186/s12909-023-04698-z
https://link.springer.com/chapter/10.1007/978-981-97-8043-3_153
https://link.springer.com/chapter/10.1007/978-981-97-8043-3_153
https://link.springer.com/chapter/10.1007/978-3-031-73741-1_11
https://doi.org/10.7861/futurehosp.6-2-94
https://www.nature.com/articles/s41591-018-0107-6
https://www.nature.com/articles/s41591-018-0107-6

243AI in Healthcare

Kaczmarczyk, Robert, Wilhelm, Theresa Isabelle, Martin, Ron, & Roos, Jonas. (2024). Evalu-
ating multimodal AI in medical diagnostics. npj Digital Medicine, 7, Article 205. https://
link.springer.com/content/pdf/10.1038/s41746-024-01208-3.pdf

Knudsen, J. Everett, et al. (2024). Clinical applications of artifcial intelligence in robotic sur-
gery. Journal of Robotic Surgery. https://doi.org/10.1038/s41746-024-01208-3

Kyrimi, Evangelia, et al. (2025). Explainable AI: definition and attributes of a good explana-
tion for health AI. AI and Ethics. https://doi.org/10.1007/s43681-025-00668-x

Landau, Marina, Kroumpouzos, George, & Goldust, Mohamad. (2025). Balancing AI and
human interaction in aesthetic dermatology. The Archives of Dermatological Research,
317, Article 426. https://link.springer.com/article/10.1007/s00403-025-03997-3

Marra, Marco, & Laskin, Janessa. (2020). Personalized onco-genomics: Using whole genome
analysis to guide treatment decisions in cancer care. Nature Cancer, 1(7), 722–734.
https://doi.org/10.1038/s43018-020-0074-0

Pahuja, K. (2024, January 11). AI in healthcare: Beyond automation to transforma-
tion. Forbes. https://www.forbes.com/councils/forbesbusinesscouncil/2024/09/16/
ai-in-healthcare-beyond-automation-to-transformation/

Panahi, Omaid. (2024). AI in surgical robotics: Case studies. Austin Journal of Clinical
Case Reports. https://www.researchgate.net/publication/385498766_AI_in_Surgical_
Robotics_Case_Studies

Parthasarathy, R. (2024, June 21). 6 ways AI is reshaping healthcare diagnostics & treatment.
Fusemachines. https://hitconsultant.net/2024/06/21/6-ways-ai-is-reshaping-healthcare-
diagnostics-treatment/

Pati, R. (2024, July 3). AI Revolutionizing Healthcare: From Diagnosis to Treatment and
Beyond. https://dypsst.dpu.edu.in/blogs/ai-revolutionizing-healthcare

Shah, Nigam H., Halamka, John D., Saria, Suchi, Pencina, Michael, & Tazbaz, Troy. (2024).
A nationwide network of health AI assurance laboratories. JAMA, 331, 337–338. https://
doi.org/10.1001/jama.2023.23822

Shrawankar, U., Malik, L., & Arora, S. (Eds.). (2021). Cloud Computing Technologies for
Smart Agriculture and Healthcare (1st ed.). Chapman and Hall/CRC. https://doi.
org/10.1201/9781003203926

Somashekhar, S. P., Kumarc, C. R., Rauthan, A., & Arun, K. R. (2018). Application of IBM
Watson for Oncology in Indian tertiary cancer center: A double-blinded validation
study. JCO Clinical Cancer Informatics, 2, 1–9. https://ascopubs.org/doi/full/10.1200/
CCI.17.00055

Steiner, D. F., et al. (2018). Impact of deep learning assistance on the histopathologic
review of lymph nodes for metastatic breast cancer. The American Journal of Surgi-
cal Pathology, 42(12), 1636–1646. https://journals.lww.com/ajsp/Abstract/2018/12000/
Impact_of_Deep_Learning_Assistance_on_the.6.aspx

Talmele, Girish, & Shrawankar, Urmila. (2022). Real-time cyber-physical system for health-
care monitoring in COVID-19. International Journal of Web-Based Learning and Teach-
ing Technologies (IJWLTT), 17(5), 1–10. https://doi.org/10.4018/IJWLTT.297622

Wazalwar, S. S., & Shrawankar, U. (2021). Distributed education system for deaf and dumb
children and educator: A today’s need. In: Singh Mer, K. K., Semwal, V. B., Bijalwan,
V., & Crespo, R. G. (Eds.). Proceedings of Integrated Intelligence Enable Networks
and Computing. Algorithms for Intelligent Systems. Springer, Singapore. https://doi.
org/10.1007/978-981-33-6307-6_35

https://link.springer.com/content/pdf/10.1038/s41746-024-01208-3.pdf
https://link.springer.com/content/pdf/10.1038/s41746-024-01208-3.pdf
https://doi.org/10.1038/s41746-024-01208-3
https://doi.org/10.1007/s43681-025-00668-x
https://link.springer.com/article/10.1007/s00403-025-03997-3
https://doi.org/10.1038/s43018-020-0074-0
https://www.forbes.com/councils/forbesbusinesscouncil/2024/09/16/ai-in-healthcare-beyond-automation-to-transformation/
https://www.forbes.com/councils/forbesbusinesscouncil/2024/09/16/ai-in-healthcare-beyond-automation-to-transformation/
https://www.researchgate.net/publication/385498766_AI_in_Surgical_Robotics_Case_Studies
https://www.researchgate.net/publication/385498766_AI_in_Surgical_Robotics_Case_Studies
https://hitconsultant.net/2024/06/21/6-ways-ai-is-reshaping-healthcare-diagnostics-treatment/
https://hitconsultant.net/2024/06/21/6-ways-ai-is-reshaping-healthcare-diagnostics-treatment/
https://dypsst.dpu.edu.in/blogs/ai-revolutionizing-healthcare
https://doi.org/10.1001/jama.2023.23822
https://doi.org/10.1001/jama.2023.23822
https://doi.org/10.1201/9781003203926
https://doi.org/10.1201/9781003203926
https://ascopubs.org/doi/full/10.1200/CCI.17.00055
https://ascopubs.org/doi/full/10.1200/CCI.17.00055
https://journals.lww.com/ajsp/Abstract/2018/12000/Impact_of_Deep_Learning_Assistance_on_the.6.aspx
https://journals.lww.com/ajsp/Abstract/2018/12000/Impact_of_Deep_Learning_Assistance_on_the.6.aspx
https://doi.org/10.4018/IJWLTT.297622
https://doi.org/10.1007/978-981-33-6307-6_35
https://doi.org/10.1007/978-981-33-6307-6_35

244� DOI: 10.1201/9781003532170-10

10 Agriculture
Developments
Using ML and AI

10.1 � INTRODUCTION

Artificial intelligence (AI) (Liu 2020) is the study of tools and technologies used to
solve tasks that require human intelligence, including tasks such as natural language
understanding, processing, generation, visual perception, and decision-making.
Machine learning (ML) and deep learning (DL) are the two most widely used AI
approaches. With breakthrough technologies, AI has transformed every aspect of life,
including agriculture (Alaba et al. 2024). With more than 50% workforce employed
in agriculture, a low expert to farmer ratio requires necessary AI interventions like
automatic diagnosis and recommendation of proper advisories. The major hurdles in
agricultural production are decision-making related to crop production, disease and
pest infestation, weather forecasting, yield prediction, advisory systems for enhanced
crop productivity, etc. (Olson and Anderson 2021). Agricultural productivity is mostly
influenced by temperature, soil fertility, water availability, water quality, etc. For
predicting these parameters accurately, improved AI techniques are being applied.
While the technological explosion has made farming little easier, small and marginal
farmers still face many obstacles. Unlike other technologies, AI has the potential to
reach out to individual farmers much more easily and improve the life of farmers. The
consideration of two life cycles, namely, agriculture and farmers, has a gigantic scope
to intervene and enormously improve the same (Olson and Anderson 2021).

Agriculture life cycle starts from land preparation for the crop followed by seed
sowing, irrigation, weeding, fertilizer application, pest and disease management, har-
vesting, post-harvest processing, storage, and marketing. Various AI techniques have
the potential to affect and improve all the phases of the life cycle, some of which are
already available and some still need to be worked on. In an ideal smart ecosystem,
a farmer would be guided by an artificially intelligent assistant that would suggest
the most appropriate date and method to prepare the land based on the geographic
information system (GIS) and remote sensing data of that region. Using a block chain
and recommender system-enabled supply chain, farmers would collect quality seeds
to sow after land preparation. Scheduled weeding would be handled by low-cost
smart weeding and fertigation (fertilization and irrigation) systems. The identifica-
tion of pest and disease with their suitable management practices may be handled by
AI-enabled mobile applications. The yield prediction may be done through drone-
based smart application, and the predicted yield will help in selecting the appropriate
market and buyer.

https://doi.org/10.1201/9781003532170-10

245Agriculture Developments Using ML and AI

10.2 � SOME IMPORTANT METHODOLOGIES

10.2.1 �S oil Management

Soil management is a fundamental aspect of agricultural practices, directly influenc-
ing crop productivity, nutrient availability, and overall sustainability. The integra-
tion of AI and ML technologies into soil management strategies has emerged as a
promising avenue for optimizing agricultural processes and ensuring long-term soil
health. This section explores the literature and research findings pertaining to the
application of AI and ML in soil management (Pattnaik et al. 2023).

10.2.2 �P recision Soil Mapping

AI and ML algorithms have demonstrated their use in precision soil mapping, provid-
ing detailed insights into soil composition, nutrient levels, and moisture content. By
analyzing vast datasets derived from various sources such as remote sensing and soil
sensors, models were developed that can generate high-resolution soil maps (Ahila
Priyadharshini et al. 2019). These maps enable farmers to make informed decisions
about nutrient application, irrigation, and crop selection based on the specific needs
of different soil zones within a field.

10.2.3 �N utrient Management

Optimizing nutrient management is critical for maximizing crop yields while min-
imizing environmental impact. AI-powered models, as seen in the work can ana-
lyze soil data alongside historical crop performance to recommend precise fertilizer
applications. ML algorithms can adapt to changing conditions, allowing for dynamic
adjustments in nutrient prescriptions based on real-time data, weather patterns, and
crop development stages.

10.2.4 �S oil Health Monitoring

Maintaining soil health (Mamatha et al. 2024) is essential for sustainable agricul-
ture. AI and ML contribute to soil health monitoring by analyzing indicators such as
microbial activity, organic matter content, and soil structure. The use of AI in inter-
preting soil health data to identify trends and potential issues, aiding in the develop-
ment of proactive soil management strategies (Azizi et al. 2020).

10.2.5 �E rosion Prediction and Control

Soil erosion poses a significant threat to agricultural productivity and environmental
stability. AI models, exemplified in studies by utilizing machine learning to predict
erosion risk based on factors such as topography, land use, and weather conditions.
This information empowers farmers to implement targeted erosion control measures,
preserving soil structure and preventing loss of fertile topsoil.

246 Artificial Intelligence and Machine Learning for Real-World Applications

10.2.6 �D ecision Support Systems

Integrated decision support systems, combining AI and ML, offer comprehensive
solutions for soil management. These systems, showcased in their search by incor-
porating data on soil, weather, and crop conditions to provide actionable insights.
Farmers can leverage these recommendations for optimal land use planning, cover
cropping strategies, and erosion control practices.

10.2.7 � Challenges and Opportunities

While the application of AI and ML in soil management presents numerous bene-
fits, challenges also exist. Ensuring the accessibility of these technologies to small-
scale farmers, addressing data security concerns, and refining models for diverse
agroecosystems are key challenges discussed in works. Overcoming these challenges
requires collaborative efforts between researchers, policy-makers, and technology
developers.

10.2.8 � AI and ML Applications in Agriculture

In the present scenario, AI and ML techniques are being exponentially applied in
the various areas of the agricultural domain. These areas can be categorized into the
following groups: soil and water management, crop health management, crop pheno-
typing, recommender-based systems for crops, semantic web- and ontology-driven
expert systems for crops, and Geo-AI. The applications of AI-, ML-, and DL-based
techniques in these areas are discussed in the following sections.

Soil and Irrigation Management: (Azizi et al. 2020) Soil and irrigation are
the most viable components of agriculture, as they are the determinant fac-
tors for the optimum crop yield. In order to obtain enhanced crop yield
and to maintain the soil properties, appropriate knowledge about the soil
resources is required (Alkhudaydi and Zhou 2019). Irrigation scheduling
becomes crucial when water resources are scarce. Therefore, soil- and irri-
gation-related issues should be managed properly and cautiously to ensure a
potential yield in crops. In this regard, AI- and ML-based techniques have
shown potential ability to resolve soil- and irrigation-related issues in crops.
A range of ML models such as regression-based models, support vector
machines (or regressors), artificial neural networks, and random forest algo-
rithm are being used. Many researchers have used remote-sensing data with
ML techniques for determining soil health parameters (Archana and Sara-
nya 2020).

Crop Health Management: Every year a significant amount of yield is dam-
aged due to the attack of disease-causing pathogens and insect–pest infes-
tation. In order to manage the spread of diseases and insect pests, proper
management practices should be applied at the earliest. Therefore, there is
the requirement of an automatic disease and pest identification system. In
this regard, image-based diagnosis of diseases and pests have become the

247Agriculture Developments Using ML and AI

de facto standard of automatic stress identification. This kind of automated
detection methodology uses sophisticated DL-based AI techniques that
reduce the intervention of human experts. There have been several attempts
to diagnose the diseases and insects–pests in crops using DL techniques.

The application of AI in the food sector is becoming progressively significant owing
to its capability to assist in minimizing food wastage, improving production hygiene,
enhancing the cleaning process of machines, and managing disease and pest control;
therefore, there are numerous instances of employing AI and ML in the agri-food
industry (Shrawankar et al. 2021). Automated frameworks can collect a huge amount
of data in a matter of a few seconds on a single food item and analyze it rapidly.
Even though agriculture practice is broad, AI finds its application in some major
areas of the agriculture sector, such as supply chain management, soil, crop, dis-
eases, and pest management. Some of the proposed models using AI techniques with
their limitations are as follows. (a) For soil management: fuzzy logic-based SRC-
DSS (Soil Risk Characterization Decision Support System) for soil classification;
MOM (management-oriented modeling) for minimization of nitrate leaching; and
artificial neural network (ANN) to estimate soil enzyme activity and soil structure
classification (Pattnaik et al. 2023). (b) For crop management: CALEX to formulate
scheduling guidelines, PROLOG to remove redundant tools from the farm, ANN
to detect nutrition disorders in crops, and ANN to predict rice yield accurately. (c)
For disease management: computer vision system (CVS) to detect multiple diseases
at high speed; fuzzy logic-based database, which is accurate in test environments;
ANN-GIS, which has got an accuracy of 90%; and the expert system using rule-
base in disease detection for faster detection and treatment of disease. (d) For weed
control: invasive weed optimization (IWO), big data-based ANN-GA, and support
vector machines. All these methods did not consider all the parameters; they are all
application-specific toward a particular crop or environmental parameter. There is
a need to design AI frameworks using multiple parameters and that can be used for
multiple crops. There has been a critical pattern to ruminate about the utilization of
massive data procedures and strategies to agribusiness as a significant opportunity
for utilization of the information and communication technologypack, for financing,
and for achieving added significance inside the agriculture sector. Applications of
massive data in agriculture are not sternly regarding primary cultivation but also
assume a significant part in enhancing the effectiveness of the whole supply chain,
thus reducing food security worries.

Big Data Analytics: Big data analysis (Mark 2019) is outlined as a system in
which cutting-edge analytic methods operate on huge datasets. Therefore,
it is a combination of two technical entities with a massive amount of data-
sets, and a collection of analytical tool categories including data mining,
statistics, AI, predictive analytics, and natural language processing (NLP),
forming an important component of business intelligence (Shrawankar and
Dhule 2021). Lately, big data turns out to be a subject of broad and current
interest equally in academic research and industry. It characterizes enor-
mous and unstructured data generated by a large number of sources. Several

248 Artificial Intelligence and Machine Learning for Real-World Applications

of the most prevalent data processing techniques employ big data tech-
niques. Big data is depicted by the subsequent attributes. Big data is being
used in numerous fields such as big service business industries like Amazon
to learn customer behavior and needs more precisely to tailor product prices
accordingly, enhance operational productivity, and cut down personal costs.
Even social networking sites such as Facebook, Twitter, and other network-
ing sites utilize big data analytics to study your social behavior, interests,
and social connections and then endorse specific products. In an intelligent
transportation system, big data techniques can handle the enormous quan-
tity of diverse and complex data generated over the period to provide safe
and superior facilities aimed at drivers and passengers in the transportation
system. In the agriculture field, big data shows a huge potential for solving
many challenges of farming and consequently boosting the agriculture pro-
duction quality and quantity. Big data analytics can be used to determine
soil quality, diseases and pest interruption, and water requirement, and pre-
dict harvesting time for crops.

10.2.9 � Challenges and Limitations

Despite the promising potential of AI in agriculture (Dharmaraj and Vijayanand
2018), the practical application of AI-based techniques faces several challenges.
Understanding and addressing these challenges are crucial for the successful imple-
mentation and widespread adoption of AI technologies in the agriculture sector.

Limited Access to Technology:

One of the primary challenges is the limited access to AI technology, particularly
among small-scale and resource-constrained farmers. The high costs associated with
acquiring and implementing AI solutions, including hardware, software, and data
connectivity, create a digital divide. Bridging this gap and ensuring equitable access
to AI tools are essential for maximizing the benefits across diverse agricultural land-
scapes (Mishra and Mishra 2023).

Data Quality and Availability:

AI algorithms heavily rely on high-quality and extensive datasets for training and
decision-making. In agriculture, the availability of accurate and diverse datasets can
be a challenge. Issues such as inconsistent data quality, limited historical records,
and variability in data formats pose obstacles to the development of robust AI mod-
els. Collaborative efforts to collect, curate, and share agricultural data are essential
for enhancing the effectiveness of AI applications.

Interoperability and Standardization:

The agricultural sector comprises a variety of equipment, sensors, and software
solutions from different vendors. Ensuring interoperability and standardization of
AI-based technologies is a significant challenge. The lack of standardized data for-
mats and communication protocols hinders seamless integration of AI tools into

249Agriculture Developments Using ML and AI

existing farming practices. Developing industry-wide standards can promote com-
patibility and facilitate a more cohesive AI ecosystem.

User Acceptance and Education:

Farmers and agricultural stakeholders may face resistance to adopting AI technol-
ogies due to a lack of understanding or familiarity. The complexity of AI systems
and the need for specialized knowledge may deter users from embracing these tools.
Effective education and training programs are essential to demystify AI, empower
users with the necessary skills, and build confidence in the practical benefits of AI
applications in agriculture.

Data Privacy and Security Concerns:

Agriculture involves sensitive data related to crop performance, soil conditions, and
farm management practices. Concerns about data privacy and security are significant
barriers to the widespread adoption of AI. Farmers may be hesitant to share their
data due to fears of misuse or unauthorized access. Implementing robust data protec-
tion measures, clear privacy policies, and secure data-sharing frameworks is crucial
for addressing these concerns.

Tailoring Solutions to Local Contexts:

AI applications need to be tailored to the specific needs and contexts of diverse agri-
cultural systems. Solutions developed for one region or crop type may not be directly
applicable elsewhere. Understanding the local intricacies, cultural practices, and
environmental conditions is vital for designing AI applications that align with the
unique challenges faced by farmers in different geographic areas (Sarkar et al. 2022).

Ethical Considerations and Bias:

As AI algorithms learn from historical data, there is a risk of perpetuating biases
present in that data. In agriculture, this could lead to biased recommendations or
decisions, impacting resource distribution and outcomes. Addressing ethical con-
siderations and ensuring fairness in AI applications are crucial to building trust and
fostering responsible AI adoption in agriculture (Bhat and Huang 2021).

Scalability and Adaptability:

Implementing AI solutions that are scalable and adaptable to changing agricultural
practices and technologies is a challenge. The rapid evolution of both AI technologies
and agricultural methods requires flexible solutions that can accommodate new data
sources, sensors, and innovations. Scalability ensures that AI applications remain
relevant and effective as the agricultural landscape evolves.

10.2.10 �F uture Trends and Opportunities

The future of agricultural robots holds exciting possibilities. Ongoing research aims
to overcome current challenges, improve robot adaptability, and introduce new

250 Artificial Intelligence and Machine Learning for Real-World Applications

functionalities. Collaborative efforts between researchers, engineers, and farmers are
crucial for refining and expanding the capabilities of agricultural robots, ultimately
contributing to a more sustainable and technologically advanced agriculture sector.

10.3 � CONCLUSION

The application of AI and ML can provide viable solutions to major problems in
agriculture, such as soil health management, irrigation scheduling, crop health man-
agement, disease/pest identification, and crop phenomics. The use of AI and ML
techniques in the agriculture domain and the survey of different AI-related technol-
ogies discussed in this chapter will help in deducing a generic framework toward
precision agriculture that will improve the overall crop productivity. AI is a powerful
tool in the field of agriculture for accurate weather prediction, disease/pest forewarn-
ing, and assisting the stakeholders in accurate and real-time prediction of various
related parameters to obtain maximum yield at minimum cost. AI tools will trans-
form the agriculture industry with better agricultural practices, which in turn will
benefit the farmers and aid in improving the economy of the country.

REFERENCES

Ahila Priyadharshini, R., S. Arivazhagan, M. Arun, and A. Mirnalini. “Maize Leaf Disease
Classification Using Deep Convolutional Neural Networks.” Neural Computing and
Applications 31, no. 12 (2019): 8887–8895, https://doi.org/10.1007/s00542-018-4277-2.

Alaba, Fadele Ayotunde, Abayomi Jegede, Usman Sani, and Emmanuel Gbenga Dada. “Artifi-
cial Intelligence of Things (AIoT) Solutions for Sustainable Agriculture and Food Secu-
rity.” In Artificial Intelligence of Things for Achieving Sustainable Development Goals,
pp. 123–142. Cham: Springer Nature Switzerland, 2024.

Alkhudaydi, T. and J. Zhou. “SpikeletFCN: Counting Spikelets from Infield Wheat Crop
Images Using Fully Convolutional Networks.” Proceedings of the International Confer-
ence on Artificial Intelligence and Soft Computing, pp. 3–13, 2019.

Archana, K., and K. G. Saranya. “Crop Yield Prediction, Forecasting, and Fertilizer Recom-
mendation Using Voting-Based Ensemble Classifier.” International Journal of Com-
puter Science and Engineering 7, no. 5 (2020): 1–4.

Azizi, A., Y. A. Gilandeh, T. Mesri-Gundoshmian, A. A. Saleh-Bigdeli, and H. A. Moghaddam.
“Classification of Soil Aggregates: A Novel Approach Based on Deep Learning.” Soil &
Tillage Research 199 (2020): 104586, https://doi.org/10.1016/j.still.2020.104586.

Bhat, S. A., and N. F. Huang. “Big Data and AI Revolution in Precision Agriculture: Sur-
vey and Challenges.” IEEE Access 9 (2021): 110209–110222, https://doi.org/10.1109/
ACCESS.2021.3107585.

Dharmaraj, V., and C. Vijayanand. “Artificial Intelligence (AI) in Agriculture.” International
Journal of Current Microbiology and Applied Sciences 7, no. 12 (2018): 2122–2128.

Liu, Simon Y. “Artificial Intelligence (AI) in Agriculture.” IT Professional 22, no. 3 (2020):
14–15.

Mamatha, Bommireddy, Chandana Mudigiri, Guguloth Ramesh, Pakala Saidulu, Nayaki
Meenakshi, and Chuncha Laxmi Prasanna. “Enhancing Soil Health and Fertility Man-
agement for Sustainable Agriculture: A Review.” Asian Journal of Soil Science and
Plant Nutrition 10, no. 3 (2024): 182–190.

Mark, Ryan. “Ethics of Using AI and Big Data in Agriculture: The Case of a Large Agriculture
Multinational.” The ORBIT Journal 2, no. 2 (2019): 1–27.

https://doi.org/10.1007/s00542-018-4277-2
https://doi.org/10.1016/j.still.2020.104586
https://doi.org/10.1109/ACCESS.2021.3107585
https://doi.org/10.1109/ACCESS.2021.3107585

251Agriculture Developments Using ML and AI

Mishra, H., and D. Mishra. “Artificial Intelligence and Machine Learning in Agriculture: Trans-
forming Farming Systems.” Research Trends in Agricultural Science 1 (2023): 1–16.

Olson, Daniel, and James Anderson. “Review on Unmanned Aerial Vehicles, Remote Sensors,
Imagery Processing, and Their Applications in Agriculture.” Agronomy Journal 113, no.
2 (2021): 971–992.

Pattnaik, Binaya Kumar, Chandan Sahu, Shuvasish Choudhury, Subhas Chandra Santra, and
Debojyoti Moulick. “Importance of Soil Management in Sustainable Agriculture.” In
Climate-Resilient Agriculture, Vol. 1: Crop Responses and Agroecological Perspectives,
pp. 487–511. Cham: Springer International Publishing, 2023.

Sarkar, Md Ridoy, et al. “A Comprehensive Study on the Emerging Effect of Artificial Intel-
ligence in Agriculture Automation.” In 2022 IEEE 18th International Colloquium
on Signal Processing & Applications (CSPA). IEEE, 2022, https://doi.org/10.1109/
CSPA53579.2022.9769992.

Shrawankar, Urmila, and Chetan Dhule. “Virtualization Technology for Cloud-Based Ser-
vices.” In Cloud Computing Technologies for Smart Agriculture and Healthcare,
pp. 3–17. Chapman and Hall/CRC, 2021.

Shrawankar, Urmila, Latesh Malik, and Sandhya Arora, eds. Cloud Computing Technologies
for Smart Agriculture and Healthcare. CRC Press, 2021.

https://doi.org/10.1109/CSPA53579.2022.9769992
https://doi.org/10.1109/CSPA53579.2022.9769992

252� DOI: 10.1201/9781003532170-11

11 AI Transforming
Education
Personalized Learning and
Intelligent Tutoring Systems

11.1 � INTRODUCTION

The landscape of global education is constantly evolving, and one of the keys turning
points is the introduction of artificial intelligence (AI), which has begun to reshape
traditional teaching methods (Yang and Park 2021). Historically, educators have
been at the center of instructional practices, but AI is now stepping in to assist and
transform these conventional roles (Edwards and Roy 2023). This chapter explores
the diverse applications of AI in education, highlighting innovative approaches that
have the potential to revolutionize both teaching and learning (Sinha and Bose 2022).

The importance of AI in modern education cannot be overstated. Advanced
AI technologies provide educators with new tools to engage students, personalize
instruction, and reduce the workload associated with assessments (Garcia and Lee
2021). By leveraging data, AI can offer personalized learning experiences tailored
to the unique needs of individual students, moving away from the one-size-fits-all
model traditionally used in classrooms (Kumar and Sharma 2020). This shift allows
students to progress at their own pace, following their personal interests and learning
styles (Huang and Li 2020). Additionally, the COVID-19 pandemic has accelerated
the digital transformation of education, emphasizing the need for flexible and adap-
tive learning models that AI can provide (Jensen and Chen 2021).

This work seeks to examine the various roles AI plays in educational environ-
ments, from early childhood education to higher education institutions (Singh and
Chatterji 2020). Specifically, the study aims for the following:

•	 Analyze how AI-powered personalized learning tools impact student
engagement and academic achievement (Anderson and Thompson 2021).

•	 Investigate the effectiveness of AI-supported intelligent tutoring systems in
offering individualized feedback and assistance (Patel and Smith 2019).

•	 Explore AI’s role in managing administrative tasks and assessments to
reduce the workload on educators (Wilkinson and Crossley 2022).

•	 Assess the ethical challenges and considerations related to AI integration in
school systems (Vincent and Roberts 2020).

•	 Examine AI’s ability to address the educational needs of learners with
diverse abilities (Shaikh et al. 2023).

https://doi.org/10.1201/9781003532170-11

253AI Transforming Education

11.1.1 � AI in Education

The integration of AI in education has been an area of academic interest for sev-
eral decades. Early developments transitioned from basic programmed instruction to
advanced ML algorithms capable of adapting to specific learning needs (Zhang and
Maguire 2021). As education systems expanded, research shifted toward automat-
ing repetitive tasks in computer-assisted learning, focusing on streamlining routine
processes (Ullman and King 2021). Initial studies explored the benefits of comput-
er-assisted instruction for automating monotonous tasks, such as rote learning (Sol-
omon and Naik 2020). More recent research, however, has concentrated on adaptive
learning technologies, intelligent tutoring systems, and data-driven educational tools
(Lahiri and Bose 2022). These advancements have allowed for a more personalized
learning experience, tailoring study paths to match individual students’ responses
and prior knowledge (Kapoor and Kulshrestha 2020). The evolution of AI in educa-
tion demonstrates its potential to enhance accessibility to learning resources and cre-
ate immersive learning experiences that engage students deeply, driving AI toward
significant educational breakthroughs (Chen and Wang 2019).

To address the specific educational needs of learners with disabilities, such as
those who are deaf or dumb, the development of specialized educational systems
is crucial. The importance of such systems, like the Distributed Education System
for Deaf & Dumb Children and Educators, has been explored as a way to enhance
access to education for all learners (Wazalwar and Shrawankar 2020). Addition-
ally, speech user interfaces, which integrate AI to improve accessibility, have shown
promise in helping diverse student groups communicate and learn more effectively
(Shrawankar and Thakare 2010).

11.1.2 � AI Technologies: Progress and Application

The history of AI’s application in education is marked by continuous technological
advancements, evolving from rule-based expert systems in the 1980s to modern tools
powered by deep learning and natural language processing (NLP) (Diaz and Clark
2022). For example, AI-driven intelligent tutoring systems no longer rely solely on
numerical inputs but now provide adaptive feedback to help students navigate com-
plex problem-solving scenarios (Majid and Jafri 2021). Additionally, AI integrated
with virtual and augmented reality technologies is establishing new, immersive
learning environments (Fisher and Green 2021). Platforms like zSpace, which utilize
virtual reality, offer students hands-on learning experiences that could revolutionize
traditional education (Darrin and Smith 2021). While these technologies hold great
promise for individualized learning, they also raise potential concerns, such as the
risk of job displacement due to automation, societal homogenization, and environ-
mental impacts if not implemented carefully (Bennett and Marshall 2021).

11.1.3 � Application in Educational Environments

The education sector has seen a recent influx of AI applications, revolutionizing the
use of innovative technology for tasks like online testing, grading, and personalized

254 Artificial Intelligence and Machine Learning for Real-World Applications

learning (Garcia and Lee 2021). AI-powered adaptive learning systems, such as those
used by platforms like Khan Academy and Coursera, adjust content and assessments
to match the learner’s pace and level of proficiency (Singh and De Souza 2023). These
systems have demonstrated success across various subjects, including mathematics,
science, economics, and even philosophy (Sinha and Bose 2022). Additionally, AI
has proven effective in predictive analytics, identifying students at risk of dropping
out and highlighting areas where they face the most difficulties, allowing for timely
interventions (Jensen and Chen 2021). Despite these advancements, it is essential
to closely examine these learning gaps to ensure meaningful support is provided to
struggling students (Inam and Khan 2023). Research has also shown the importance
of developing accessible educational systems for learners with special needs, such as
those who are deaf or dumb. The Distributed Education System for Deaf & Dumb
Children and Educators is an example of an innovative approach to meeting these
needs (Wazalwar and Shrawankar 2020). Furthermore, speech user interfaces have
proven to be beneficial in facilitating more inclusive learning experiences for diverse
student populations (Shrawankar and Thakare 2010).

11.1.4 � Boosting Learning with AI-Driven Analytics

AI-driven analytics can significantly enhance the learning experience by providing
educators with detailed insights into student behavior and performance (Baker and
Greene 2020). With the integration of AI in various learning management systems
(LMS), educators can monitor student engagement and share performance data with
the entire class (Carson and Jenkins 2020). By analyzing time-lapse data that tracks
student progress over extended periods, educators can identify performance patterns,
pinpoint areas where students are struggling, and predict when and which students
require intervention (Zhao and Lin 2020). These AI-powered tools help create a more
adaptable educational environment by providing the data needed to plan targeted
interventions for diverse learning needs (Singh and Chatterji 2020).

11.1.5 � AI in Language Learning

AI has significantly transformed how students learn and practice new languages by
integrating intelligent tutoring systems with technologies like NLP (Lahiri and Bose
2022). These AI-driven tools provide interactive language practice through chatbots,
consistent feedback, and personalized assessments, adapting to the unique needs of
each learner (Singh and De Souza 2023). By offering a highly customizable learning
experience, AI enhances traditional language learning methods with accessible and
engaging drills, making it easier for students to grasp new concepts quickly and
effectively (Zhang and Maguire 2021).

11.1.6 �E thical and Equity Considerations in AI Education

As AI becomes more embedded in educational systems, its ethical and equity impli-
cations are gaining attention. Concerns regarding the fairness of AI algorithms,
especially in areas like student evaluation and admissions, highlight the need for

255AI Transforming Education

transparent systems that do not perpetuate historical biases (Vincent and Roberts
2020). This study stresses the importance of establishing clear ethical guidelines to
govern AI’s role in education (Diaz and Clark 2022).

The current study also explores the impact of AI on the teaching profession,
where gaps in understanding exist regarding how AI might alter the professional
responsibilities of teachers (Shaikh et al. 2023). The research addresses concern
about whether AI could undermine the traditional role of educators (Prasad and
Saini 2021). While much literature focuses on AI’s effect on students, there is a
significant lack of research into how AI reshapes teachers’ roles and the necessary
professional development to integrate AI effectively into classrooms (Edwards and
Roy 2023).

11.1.7 � Cultural and Contextual Adaptability of AI Tools

Another critical area for further research is the cultural adaptability of AI tools in
education. The effectiveness of AI applications varies across different cultural set-
tings, and it is essential to design tools that accommodate diverse perspectives (Sol-
omon and Naik 2020). Ensuring that AI educational technologies are inclusive and
globally accessible is vital to their success (Thakur and Hamilton 2022).

11.1.8 �E ffectiveness and Longevity in the Field

Long-term research is needed to assess the sustainability and impact of AI in edu-
cation over extended periods (Zhao and Lin 2020). While short-term studies have
shown positive outcomes, there is limited data on the long-term effects of AI on stu-
dent motivation, learning abilities, and overall success (Bennett and Marshall 2021).
Understanding how continuous use of AI affects these factors is crucial for determin-
ing its lasting influence (Adams and Brown 2022).

11.1.9 �S calability and Accessibility

The scalability of AI solutions in education presents mixed results. While many AI
tools have demonstrated scalability on a large scale, challenges remain in making
them accessible to institutions with limited resources (Bennett and Marshall 2021).
Scalability is key to AI’s success, but it requires adaptable models that do not depend
solely on high-capacity infrastructure (Adams and Brown 2022).

11.1.10 � Integrating Other Technologies

AI’s integration with other emerging technologies, such as blockchain for tam-
per-proof academic records and Internet of Things (IoT) devices for enriched learn-
ing environments, opens new possibilities for educational experiences (Carson and
Jenkins 2020). This convergence of technologies has the potential to create more
immersive and comprehensive educational opportunities. However, more research is
needed into the best ways to do this and the implications for data security and privacy
(Zhao and Lin 2020).

256 Artificial Intelligence and Machine Learning for Real-World Applications

11.1.11 � AI Adoption for Education across the Globe

AI adoption in education varies widely depending on the educational systems and
policies of different countries. Some nations have advanced rapidly in exploring and
implementing AI, while others are just starting to recognize its potential (Singh and
Chatterji 2020). Comparative research helps identify successful strategies that facili-
tate the effective integration of AI into diverse educational systems (Patel and Smith
2019). Moreover, specialized educational systems, such as the Distributed Education
System for Deaf & Dumb Children and Educators, have been developed to address
the unique learning needs of children with disabilities (Wazalwar and Shrawankar
2020). Additionally, advancements like speech user interfaces in computer-based
education systems offer significant improvements in accessibility for diverse student
populations (Shrawankar and Thakare 2010).

11.1.12 � Culture in AI Design and Deployment

Cultural factors significantly influence AI’s design and deployment in education.
Emerging research highlights that culturally responsive AI systems can better adapt
to the cultural and linguistic diversity of learners (Solomon and Naik 2020). This
approach ensures that AI tools provide inclusive educational support, respecting
local customs and learner contexts (Shaikh et al. 2023).

11.1.13 � AI’s Ethical and Societal Dimensions

The ethical and societal implications of AI in education are crucial, particularly
in terms of equity and fairness. Issues such as unequal access to AI tools and the
potential reinforcement of existing biases necessitate continuous research and policy
interventions to ensure AI’s equitable impact on educational processes (Vincent and
Roberts 2020).

11.1.14 �F uture Directions and Policy Considerations

Comprehensive policy frameworks are needed to guide AI’s integration into educa-
tional systems. These frameworks should address data protection, standards for ethi-
cal AI usage, equitable access to AI-driven education, and sustainability measures to
safeguard the interests of all stakeholders (Diaz and Clark 2022).

11.1.15 � Advanced AI Applications in Education

Advanced AI applications can transform curriculum development and instructional
design by analyzing large volumes of educational content and student performance
data. This enables educators to create dynamic, adaptive curricula that incorporate real-
time student feedback and improve learning outcomes (Anderson and Thompson 2021).

11.1.16 � AI for Enhancing Teacher Professional Development

Advanced AI applications can transform curriculum development and instructional
design by analyzing large volumes of educational content and student performance

257AI Transforming Education

data. This enables educators to create dynamic, adaptive curricula that incorporate
real-time student feedback and improve learning outcomes (Anderson and Thomp-
son 2021).

11.1.17 � AI in Educational Administration

AI is increasingly used in educational administration, from student enrolment and
resource allocation to scheduling (Wilkinson and Crossley 2022). Automating these
processes allows educational institutions to streamline operations, freeing up teach-
ers to focus on student engagement (Davis and Patel 2019).

11.1.18 �U se of Data Analytics by Educational Administrators

AI-driven data analytics enable educational administrators to make informed deci-
sions by analyzing vast datasets (Baker and Greene 2020). This facilitates policy
advice, optimization of teaching programs, and identification of effective practices
through data-driven insights (Zhao and Lin 2020).

11.1.19 � AI Solutions in Education’s Sustainability

As AI becomes more integrated into education, its environmental impact must be
considered. Research into sustainable AI models aims to mitigate the energy con-
sumption of AI algorithms and data centers, ensuring that AI use aligns with broader
environmental sustainability goals (Solomon and Naik 2020).

11.1.20 �F inancial and Infrastructural Sustainability

Sustainable AI integration in education must be both financially viable and adaptable
to various educational models (Bennett and Marshall 2021). Studies emphasize the
importance of considering the total cost of AI implementation, including mainte-
nance and scalability, to ensure long-term sustainability (Adams and Brown 2022).

11.1.21 � Interdisciplinary Approaches to AI in Education

AI in education opens new opportunities for interdisciplinary learning, enabling
educators to design experiences that integrate critical thinking and creativity across
subjects like STEAM (Science, Technology, Engineering, Arts, and Mathematics)
(Singh and Chatterji 2020).

The interdisciplinary nature of AI in education involves collaboration among
fields like computer science, education, psychology, and sociology. Such collabo-
rations ensure that AI solutions are pedagogically informed and culturally sensitive
(Wilkinson and Crossley 2022).

11.1.22 � AI for Students with Disabilities

AI technologies offer new ways to support students with disabilities through per-
sonalized learning experiences tailored to their needs (Shaikh et al. 2023). Assistive

258 Artificial Intelligence and Machine Learning for Real-World Applications

technologies, such as AI-driven speech-to-text conversion and reading aids, promote
equal access to educational resources (Solomon and Naik 2020).

11.1.23 �E thical AI in Education

The rise of AI in education necessitates the creation of ethical and legal frameworks
to prevent misuse and ensure that AI serves educational purposes ethically (Vincent
and Roberts 2020).

11.1.24 � AI and Policy Development in a Developing World

In developing countries, cost-effective AI solutions like chatbots and automated test
proctors provide affordable opportunities to enhance skills relevant for higher edu-
cation and employment (Patel and Smith 2019). Innovations in AI must consider both
educational value and affordability (Adams and Brown 2022).

11.2 � EVOLUTION OF AI IN EDUCATION

The integration of AI in education marks a shift from the traditional one-size-fits-
all approach to more adaptive, personalized learning environments. Historically,
education systems have relied on standardized teaching methods where all students
follow the same curriculum and pace, often ignoring each student’s individual learn-
ing needs and preferences (Singh and Chatterji 2020). Lack of personalization and
flexibility have been key factors in the adoption of AI technologies in the educational
environment (Kapoor and Kulshrestha 2020).

11.2.1 �E arly Application Possibilities of AI in Educational Technologies

Early applications of AI in education focused mainly on the development of intelli-
gent instructional systems (ITS) (Patel and Smith 2019). These systems were designed
to mimic the role of a human tutor and provide students with personalized instruction
and immediate feedback based on their performance (Huang and Li 2020). Unlike
traditional teaching methods, ITS used AI algorithms to analyze student responses
and adapt the learning material in real time, ensuring that each student received indi-
vidualized support tailored to their learning pace and style (Davis and Patel 2019).

In addition, AI-powered automated grading systems emerged that streamlined
the process of evaluating educators (Garcia and Lee 2021). Using NLP and ML tech-
niques, these systems provided faster and more consistent task feedback, allowing
educators to focus on more complex learning tasks (Gomez and Wang 2022). This is
an important milestone in reducing the administrative burden on teachers and pro-
viding timely feedback to students (Fisher and Green 2021).

11.2.2 � Key Milestones and Progress

Over the years, AI has continued to develop, playing an increasingly important
role in education. Several key advancements have been made in this field. One

259AI Transforming Education

such milestone is the development of adaptive learning systems. These systems,
such as Newton, use AI to analyze large amounts of data generated from student
interactions with educational content, allowing for the creation of customized
learning paths based on an individual’s strengths, weaknesses, and preferences
(Kapoor and Kulshrestha 2020). AI-powered systems can predict student perfor-
mance and provide tailored interventions before students fall behind (Davis and
Patel 2019).

Another significant development is the use of big data and learning analytics. By
collecting and analyzing data on student behavior, AI systems allow educators to
gain a deeper understanding of how students learn, informing teaching strategies
(Baker and Greene 2020). The increasing importance of data-driven decision-mak-
ing in modern education is largely driven by AI technologies. These changes have
led to more focused teaching practices and have provided a more student-centered
approach to learning (Jensen and Chen 2021).

The incorporation of AI into virtual and blended learning environments has also
transformed education. As the world shifts to online learning, AI-driven platforms
play a crucial role in managing complex data and personalizing student experiences
(Xu and Nguyen 2023). AI can adjust content delivery, monitor student participation,
and predict the risk of dropout, playing an essential role in ensuring student success
on online learning platforms (Young and Sullivan 2019).

11.2.3 �T he Impact of AI on Traditional Learning Environments

The impact of AI on traditional education is significant. AI not only improves the
efficiency of administrative tasks such as assessment but also enhances the quality
of learning through personalized learning systems (Anderson and Thompson 2021).
Unlike the rigid structure of conventional classrooms, AI-powered learning envi-
ronments offer flexibility, allowing students to learn at their own pace and receive
tailored support when needed (Lahiri and Bose 2022).

Furthermore, AI has changed the role of educators from simply providing
knowledge to facilitating personalized learning experiences (Majid and Jafri
2021). Teachers can now access real-time data about student performance,
allowing them to intervene at the right time and address each student’s specific
needs (Garcia and Lee 2021). This shift toward individualized education has
significantly improved student engagement and learning outcomes (Huang and
Li 2020).

Despite its numerous benefits, AI integration has also raised concerns, particu-
larly regarding data protection and accessibility (Diaz and Clark 2022). Ensuring
that AI technology remains fair and inclusive remains a crucial challenge, as students
from underprivileged backgrounds may lack the necessary resources to benefit from
these advancements (Bennett and Marshall 2021).

In conclusion, the evolution of AI in education represents a paradigm shift from
standardized teaching to a more individualized, data-driven approach. As AI contin-
ues to advance, it is poised to further transform the educational landscape, making
learning more accessible, efficient, and tailored to the needs of each student (Sharma
and Graham 2022).

260 Artificial Intelligence and Machine Learning for Real-World Applications

11.3 � PERSONALIZED LEARNING THROUGH AI

Personalized learning represents a shift from traditional, standardized learning
methods to a more flexible, student-centered approach. It recognizes that each stu-
dent has unique strengths, challenges, learning preferences, and needs. In traditional
classrooms, a one-size-fits-all model often fails to engage students—either because
the material is too difficult or because it is too easy. Personalized learning closes
this gap by tailoring the educational experience to individual learners, making the
process more relevant, engaging, and efficient.

This approach is based on meeting the needs of students so that they can develop
at their own pace. The adaptability of personalized learning helps students overcome
certain learning gaps and capitalize on their strengths. It shifts the focus from a
rigid curriculum to dynamic learning pathways, ensuring that content is not only
delivered but also understood, retained, and applied. It empowers students to take
control of their learning journey, fostering a greater sense of belonging, self-efficacy,
and motivation.

•	 Key AI Technologies in Personalized Learning: AI plays a critical role
in enabling personalized learning, making it more efficient and scalable. AI
technologies involved in personalized learning include the following:

•	 Machine Learning: ML analyses large amounts of educational material
to identify patterns in student behavior and performance. It then uses this
insight to dynamically adjust learning paths and recommend resources tai-
lored to student needs (Anderson and Thompson 2021, 150–165).

•	 Natural Language Processing: NLP allows AI systems to interact with
students using natural language, making the learning experience more
interactive and responsive. This is especially useful for tutoring systems or
chatbots that help students with questions (Diaz and Clark 2022, 223–237).

•	 Data Acquisition: Data acquisition technology helps analyze large datasets
to obtain significant insights, such as identifying overall student struggles
or outlier performance. These insights drive a personalized learning path
(Baker and Greene 2020, 34–49).

•	 Predictive Modelling: AI-based predictive models analyze past student
performance to predict future learning outcomes. By identifying students
who may be at risk of falling behind, educators can provide targeted support
interventions before learning problems become serious (Jensen and Chen
2021, 1–20).

These technologies work together to create a robust framework for personalized
learning that improves adaptability and effectiveness.

•	 Benefits of AI in Personalized Learning
•	 Adapting Learning Paths Based on Student Needs: AI-powered sys-

tems can create customized learning paths that adapt to each student’s
abilities, preferences, and learning pace. These systems can adjust course
content on the fly; provide additional resources, exercises, or simpler

261AI Transforming Education

explanations when students get stuck; and move on to more complex top-
ics as students progress (Kapoor and Kulshrestha 2020, 524–541).

•	 Increasing Engagement and Motivation: AI-powered personalized
learning increases engagement by tailoring learning materials to stu-
dents’ interests and preferred learning styles. This prevents students
from losing focus because the material is too easy or too difficult. By
presenting interactive and customized content, AI can keep students
motivated and encourage them to actively participate in learning (Majid
and Jafri 2021, 417–433).

•	 Improving Results through Adaptive Assessment: AI facilitates adap-
tive assessment that evolves based on student performance. Instead of
providing standardized tests, AI systems dynamically adjust the diffi-
culty of questions to match students’ current understanding. This helps
identify specific areas of weakness while maintaining engagement and
ensuring that the assessment is neither too overwhelming nor too easy
(Gomez and Wang 2022, 400–418).

•	 Instant Feedback for Continuous Improvement: AI can provide
instant feedback on assessments, assignments, and tasks, giving students
instant insight into their performance. Instead of waiting for a teacher
to grade, students can receive detailed feedback immediately after com-
pleting an assignment. It helps them understand mistakes, correct them
quickly, and strengthen their understanding of basic concepts (Garcia
and Lee 2021, 567–582).

•	 Challenges of AI-Driven Personalized Learning

While AI offers many benefits for personalized learning, it also poses significant
challenges:

•	 Privacy Concerns: AI systems rely on the collection and analysis of large
amounts of student data, raising concerns about data privacy and security.
Protecting sensitive student information and ensuring compliance with pri-
vacy regulations such as GDPR or FERPA are critical to building trust in
AI-powered education technology (Vincent and Roberts 2020, 144–162).

•	 Technological Limitations: Not all educational institutions have the neces-
sary infrastructure or technical expertise to effectively implement AI-based
personalized learning systems. Furthermore, the accuracy of AI predictions
and recommendations depends on the quality and variety of data used to
train the model. Insufficient or biased data can lead to erroneous conclu-
sions (Thakur and Hamilton 2022, 150–167).

•	 Teacher and Student Acceptance of AI-Driven Personalization: Inte-
grating AI into the classroom may face resistance from teachers and stu-
dents. Teachers may fear that AI will undermine their role, while students
may be hesitant to trust or rely on AI-driven systems for learning. Over-
coming this challenge requires fostering a deeper understanding of how AI
complements the role of educators and enhances the learning experience
without replacing human interaction (Shaikh et al. 2023, 56–66).

262 Artificial Intelligence and Machine Learning for Real-World Applications

•	 Bias in AI Models: AI systems are only as good as the data they are trained
on. If learning materials contain inherent biases, such as socioeconomic,
gender, or racial biases, AI systems may inadvertently incorporate these
biases into their recommendations or evaluations. Ensuring diversity in data
collection and training models to avoid bias is critical to fair and equitable
personalized training (Singh and Chatterji 2020, 214–247).

•	 AI’s Role in Predictive Modeling and Learning Path Adaptation
•	 AI supports predictive modeling, which can predict likely learning out-

comes based on past student performance. By analyzing historical data,
AI can identify students who are at risk of lagging behind and recom-
mend interventions before significant learning shortcomings develop.
This proactive approach ensures that students receive timely support, pre-
venting further academic difficulties (Baker and Greene 2020, 34–49).
The expected model can also help teachers customize their teaching
strategies to meet the needs of individual students without taking them
to the data. For example, AI can generate performance boards, gather
students’ progress, and highlight areas to be improved. Teachers can use
these insights for fine teaching and provide additional resources or per-
sonal assistance to students who need additional assistance (Kapoor and
Kulshrestha 2020, 524–541).

•	 The Role of AI in Creating Customized Learning Paths
•	 AI-managed platforms allow the creation of a personal learning path

based on the current level of student skills. Unlike traditional education
systems, which follow a rigid, linear progression, AI-enabled platforms
constantly adjust content and assessments to match a student’s learning
pace. For example, language-learning platforms like Duolingo use AI to
analyze student progress and adapt lessons accordingly (Majid and Jafri
2021, 417–433). This ensures that students continue to learn material that
is appropriately challenging while avoiding content that is too simple or
too advanced.

•	 By constantly adapting the learning experience, AI keeps students in
their zone of proximal development (ZPD), the zone where learning is
most effective because the task exceeds their current abilities but can still
be accomplished with instruction. This improves both the learning expe-
rience and knowledge retention (Singh and Chatterji 2020, 214–247).

•	 Artificial Intelligence Adaptive Feedback and Instant Evaluation
•	 Another important contribution of AI to personalized learning is real-

time assessment and adaptive feedback. Instead of waiting for periodic
teacher evaluations, AI systems can provide immediate feedback on
assignments, tests, or interactive tasks. This instant feedback helps stu-
dents understand their mistakes in real time, correct them, and improve
their understanding of key concepts (Garcia and Lee 2021, 567–582).
Instant feedback is especially useful in STEM subjects, where learning
is often based on foundational knowledge that needs to be reinforced
before moving on to more complex topics.

263AI Transforming Education

•	 AI-powered adaptive feedback also enables a more iterative learning
process. If a student struggles with a certain topic, AI can provide addi-
tional resources or remedial exercises to prevent abandonment. This
ensures that students continuously improve and all areas of weakness
are treated immediately, reducing the risk of falling behind (Gomez and
Wang 2022, 400–418).

11.3.1 � Challenges and Limitations

Some users noted that while AI tools are useful, they can also be challenging to use.
This indicates that the design and implementation of these tools may need further
improvement to enhance communication and usability (Vincent and Roberts 2020,
144–162).

11.3.2 � Increased Engagement

Participants frequently mentioned that AI tools increased their interest in subjects.
This suggests that when AI is effectively integrated into learning, it can boost stu-
dents’ motivation and effort (Majid and Jafri 2021, 417–433). The findings show that
AI can positively influence educational outcomes and engagement, particularly with
intelligent tutoring systems (ITSs). However, there are notable differences in how
effective these tools are, and the challenges highlighted indicate a need for further
refinement to meet diverse educational needs.

The strong link between engagement and improved learning emphasizes the
importance of designing educational AI tools that actively engage users. Overall,
the feedback themes not only highlight the potential benefits of AI in enhancing
learning experiences but also point out the existing challenges and limitations that
participants encounter (Singh and Chatterji 2020, 214–247).

11.4 � CONCLUSION

The analysis of participant feedback highlights both the benefits and challenges
of AI in education. While AI has the potential to significantly improve learning
experiences and increase student engagement, there is a need for better design and
implementation of these tools. Personalized learning through AI can help tailor edu-
cational experiences to individual students, improving their performance and moti-
vation. For example, adaptive learning platforms adjust the difficulty of tasks based
on a student’s performance, while ITSs provide immediate, personalized feedback
similar to a human tutor (Garcia and Lee 2021, 567–582).

AI’s integration into education is transformative, bringing both challenges and
opportunities. By addressing technical, ethical, and infrastructural issues, educators
and institutions can harness AI to create personalized, engaging, and effective learn-
ing environments. While the road to successful AI implementation is complex, these
proposed solutions provide a way forward, enabling a more adaptive and inclusive
educational future (Gomez and Wang 2022, 400–418).

264 Artificial Intelligence and Machine Learning for Real-World Applications

Overall, while the feedback shows that AI can enhance learning and engagement,
there are still challenges to address. Future improvements should focus on making
AI tools easier to use, more adaptable, and more accurate to fully realize their poten-
tial in education.

REFERENCES

Adams, R. J., and H. Brown. 2022. “Challenges of Implementing AI in Low-Resource Educa-
tional Settings.” Global Education Review 29 (1): 88–104.

Anderson, J. M., and L. R. Thompson. 2021. “The Impact of Artificial Intelligence on Person-
alized Learning and Student Engagement.” Journal of Educational Technology 45(2):
150–165.

Baker, S., and H. Greene. 2020. “Predictive Analytics in Education: Trends and Insights.”
Educational Data Science 3 (1): 34–49.

Bennett, S., and D. Marshall. 2021. “The Role of AI in Mitigating the Digital Divide in Edu-
cation.” Journal of Educational Policy 36 (2): 237–254.

Carson, T., and A. Jenkins. 2020. “Artificial Intelligence and the Future of Education Systems.”
Journal of Innovation in Education 8 (3): 175–191.

Chen, M., and J. Wang. 2019. “Virtual Reality in Education: A Tool for Learning in the Expe-
rience Age.” International Journal of Information and Educational Technology 9 (8):
545–550.

Darrin, C., and M. Smith. 2021. “Augmented Reality in Education: A New Technology for
Teaching and Learning.” New Horizons in Education 63 (1): 22–37.

Davis, L. E., and N. Patel. 2019. “AI-Driven Personalized Learning Paths and Their Impact on
High School Students’ Academic Performance.” Educational Technology Research and
Development 67 (3): 749–771.

Diaz, V., and M. Clark. 2022. “Ethical Considerations in the Use of AI for Education: A Review
of Challenges.” AI & Ethics 4 (3): 223–237.

Edwards, A., and P. Roy. 2023. “Ethical Implications of AI in Education: A Critical Review.”
Ethics and Information Technology 25 (2): 123–139.

Fisher, M., and S. T. Green. 2021. “Virtual Reality in the Classroom: Assessing the Impact
on Student Cognitive and Affective Outcomes.” IR in Education Journal 4 (1): 60–75.

Garcia, E., and R. Lee. 2021. “Automated Grading Systems and Feedback: A Study of Effec-
tiveness and Student Satisfaction.” Assessment & Evaluation in Higher Education 40
(4): 567–582.

Gomez, E., and Y. Wang. 2022. “Automated Teacher Systems: How AI Is Changing the Land-
scape of Student Assessment.” Assessment in Education: Principles, Policy & Practice
29 (4): 400–418.

Huang, X., and M. Li. 2020. “The Impact of Intelligent Tutoring Systems on Student Engage-
ment and Learning Outcomes.” Journal of Artificial Intelligence Learning Environments
2 (3): 528–539.

Inam, A., and B. Khan. 2023. “Analyzing the Digital Learning Divide: Social Inequalities and
Structural Barriers to Accessing Information Communication Technology in Classroom
Teaching in Intermediate (K to 12) Settings in Pakistan.” Journal of Positive School
Psychology 7 (5): 2458–2478.

Jensen, R., and L. Chen. 2021. “Practical Predictive Models for Identifying Higher Education
Students at Risk of Dropping Out.” Journal of Educational Data Mining 12 (1): 1–20.

Kapoor, A., and I. Kulshrestha. 2020. “Adaptive Learning Platforms in Higher Education:
Enhancing Student Engagement and Performance.” Journal of Learning Media 8 (5):
524–541.

265AI Transforming Education

Kumar, A., and P. Sharma. 2020. “Overcoming the Digital Divide with AI-Driven Educational
Platforms.” Education and Information Technologies 25 (6): 4071–4095.

Lahiri, S., and N. Bose. 2022. “Exploring the Benefits of AI-Based Language Learning Apps
on ESL Students’ Outcomes.” Language Learning & Technology 26 (1): 134–150.

Majid, I., and K. Jafri. 2021. “AI in the Classroom: Personalized Learning through Machine
Learning Algorithms.” Journal of Educational Research & Development 2 (3): 417–433.

Patel, R., and M. Smith. 2019. “Intelligent Tutoring Systems: Personalizing Instruction in Real
Time.” Education AI Research 3 (4): 41–60.

Prasad, K., and H. Saini. 2021. “Social and Ethical Considerations for AI Tutors in K-12 Edu-
cation.” AI & Ethics 4 (1): 55–58.

Shaikh, P., L. Graham, and A. A. Lashari. 2023. “A Perspective on Empowerment of Education
through AI for Disadvantaged Teachers: Inclusive Education in Pakistan.” Journal of
Positive School Psychology 7 (5): 56–66.

Sharma, P., and L. Graham. 2022. “Understanding the Role of AI in Personalized Education:
A Perspective on Policy and Practice.” Educational Policy 36 (3): 570–590.

Shrawankar, Urmila, V. M. Thakare. 2010, 15–17 December. “Speech User Interface for Com-
puter Based Education System.” ICSIP2010, Chennai, India, Scopus Indexed.

Singh, G., and M. Chatterji. 2020. “AI in Education: A Systematic Literature Review of Trends
and Challenges.” International Journal of Educational Technology 29 (3): 214–247.

Singh, P., and A. De Souza. 2023. “Exploring the Role of Augmented Reality in Enhancing
Interactive Learning Experiences in the Classroom.” Innovative Teaching 3 (4): 210–225.

Sinha, L., and M. Bose. 2022. “AI in Educational Technology: Review and Future Directions.”
Educational Technology Research & Development 47 (6): 735–758.

Solomon, A., and H. Naik. 2020. “Artificial Intelligence in Education: Bridging the Skills
Gap.” Fratern 122: 170–178.

Thakur, L., and E. Hamilton. 2022. “Machine Learning in Education Settings: Opportuni-
ties and Threats to Student Learning.” Journal of Applied Educational Research 10 (1):
150–167.

Ullman, B., and T. King. 2021. “Adaptive Study Models and Student Support Systems: A Road
Map for the Future of Learning with AI.” Educational Research: Theory & Practice 23
(1): 140–155.

Vincent, J., and N. Roberts. 2020. “Ethical Implications of Using Artificial Intelligence in
Schools.” Review of Research in Education 47 (3): 144–162.

Wazalwar, Sampada, Urmnila Shrawankar. 2020, September. “Distributed Education System
for Deaf & Dumb Children and Educator: A Today’s Need.” IIENC2020: Integrated
Intelligence Enable Networks and Computing, Gopeshwar, UK, India, https://doi.
org/10.1007/978-981-33-6307-6_35.

Wilkinson, D., and S. Crossley. 2022. “Leveraging Artificial Intelligence for Accessibility in
Higher Education.” Special Needs Education 17 (6): 419–430.

Xu, D., and C. Nguyen. 2023. “Investigating the Impact of AI on the Flipped Classroom
Model: A Case Study in Higher Education.” Computers in Education 14 (3): 1036–1028.

Yang, H., and S. Park. 2021. “A Review of AI in Higher Education Learning: A Review and
Future Directions.” Innovative Learning Technologies 3 (2): 112–127.

Young, J., and N. Sullivan. 2019. “Integrating AI into Online Learning: Potentials and Limita-
tions.” Online Education Journal 5 (1): 95–110.

Zhang, M., and G. Maguire. 2021. “AI Tutors in the Education Sector: Automatic Question
Generation and Student Feedback.” Educational AI Journal 9 (1): 91–105.

Zhao, Y., and H. Lin. 2020. “From Data to Decisions: The Role of Analytics in Educational
Leadership.” Educational Administration Quarterly 59 (1): 45–73.

https://doi.org/10.1007/978-981-33-6307-6_35
https://doi.org/10.1007/978-981-33-6307-6_35

266� DOI: 10.1201/9781003532170-12

12 Technological Uses of
AI and ML for Helping
Elderly and Special
Needs People

12.1 � INTRODUCTION

The use of artificial intelligence (AI) and machine learning (ML) is revolutioniz-
ing healthcare by creating innovative solutions that assist the elderly and individuals
with special needs. As populations age and the number of people with disabilities
increases, technology offers valuable tools to ensure independence, improved health
outcomes, and enhanced quality of life. This chapter explores the many ways AI
and ML are transforming care for these individuals by enabling predictive analytics,
personalized healthcare, and assistive technologies.

With the integration of AI and ML, assistive technologies are becoming more
intelligent, offering customized support that adapts to the needs of users. These sys-
tems have the potential to significantly reduce the burden on caregivers and medical
professionals by providing automated assistance for tasks ranging from monitor-
ing vital signs to improving mobility and even offering emotional companionship
(Simon and Aliferis, 2024).

AI is one of the emerging trends in today’s technological landscape. AI has given
huge contributions to industries and medical healthcare systems, but there is another
important area, that is, for a revolution and qualitative changes from the introduc-
tion of AI: it is the improvement of the lives of people with physical disabilities and
elderly people with needs.

Despite the fact that the life of people with disabilities has always been a
little more difficult and not a normal life in the context of understanding the
specifics of each individual, AI provides a sure shot guarantee of new opportu-
nities for these people by providing solutions that can help them perform every-
day tasks with more ease and independently. The contribution of AI in the life
of the elderly and specially visualized, physically impaired, and needy people
will be of great support to them, and this will make their lives easy, swift, and
comfortable.

Our assignment has explored various technological uses of AI and ML that are
designed to assist the elderly and needy people with special needs. It highlights the
solutions to the problems faced by them.

https://doi.org/10.1201/9781003532170-12

267AI-ML Technology for Helping Elderly & Special Needs People

12.2 � AI AND ML OVERVIEW

•	 AI encompasses a broad field that includes creating machines capable of
performing tasks that require human intelligence, such as recognizing
speech, making decisions, and solving complex problems. AI is employed
in natural language processing (NLP), computer vision, and robotics (Simon
and Aliferis, 2024).

•	 ML is a subset of AI focused on the ability of machines to learn from data
without being explicitly programmed. ML is used to develop models that
can predict outcomes and improve assistive technologies by learning user
preferences and behaviors (Rus et al., 2024).

•	 In healthcare, AI and ML help in predicting diseases, automating patient
monitoring, and offering decision support to caregivers (Chauhan et al.,
2023). These technologies are increasingly being embedded in smart
homes, wearable devices, and robotics to assist elderly and special needs
individuals (Frauendorf and de Souza, 2023).

12.3 � ASSISTIVE TECHNOLOGIES FOR THE ELDERLY

The elderly population faces numerous challenges related to mobility, cognitive
decline, and social isolation. AI and ML have enabled the creation of assistive
devices that help in managing these issues effectively.

•	 Wearable Devices: AI-driven wearables like smartwatches and health moni-
tors track essential health metrics such as heart rate, blood pressure, and oxy-
gen levels. These devices often come equipped with fall detection algorithms
that can send alerts to caregivers or emergency services when necessary.
•	 Example: Apple Watch and Fitbit use AI to monitor users’ health data

and send real-time alerts in case of irregularities.
•	 Smart Homes: AI is transforming homes into smart environments where

elderly individuals can live independently. Voice-controlled assistants like
Amazon Alexa and Google Home help control appliances, set reminders for
medications, and even order groceries.
•	 Automated Lighting: Smart lighting systems adjust based on movement

and time, providing safety during the night.
•	 Voice Commands: AI-powered voice assistants allow the elderly to con-

trol devices and access information without manual intervention.
•	 Robotics: Robots designed for elderly care are becoming more advanced

with AI integration. Robots like Honda’s ASIMO assist with daily tasks
such as mobility, medication reminders, and even companionship (Rincon
and Marco-Detchart, 2024).
•	 Emotional Support Robots: Robots like PARO, a robotic seal, provide

comfort to elderly individuals suffering from dementia by responding to
touch and voice.

268 Artificial Intelligence and Machine Learning for Real-World Applications

12.4 � SUPPORTING INDIVIDUALS WITH SPECIAL NEEDS

People with physical, sensory, or cognitive impairments face unique challenges that
AI and ML are helping mitigate. These technologies offer ways to improve commu-
nication, mobility, and learning (Park et al., 2025).

•	 Speech Recognition: For individuals with speech impairments, AI-
powered speech recognition systems can interpret limited vocal patterns
and convert them into understandable text or speech. Tools like Google’s
Speech-to-Text API are helping people with speech disabilities communi-
cate more effectively.
o	 Example: AI-based augmentative and alternative communication (AAC)

devices assist individuals with conditions such as autism or cerebral
palsy.
	– Computer Vision for the Visually Impaired: AI enables visually

impaired individuals to navigate their environment more easily.
Applications like Seeing AI by Microsoft use ML to describe objects
and people, and even read text aloud in real time.

o	 Example: OrCam MyEye is a wearable AI device that helps visually
impaired users read text, recognize faces, and identify objects using real-
time image processing (Mansoor et al., 2022).
	– AI in Prosthetics: AI-driven prosthetics use ML algorithms to adapt

to the user’s specific movement patterns, offering a more natural
range of motion. These prosthetics improve dexterity and mobility for
individuals with limb loss.

o	 Example: Open Bionics creates AI-powered prosthetics that adjust to
muscle signals, giving users greater control over their artificial limbs
(Gill et al., 2025).

12.5 � PERSONALIZED HEALTHCARE FOR THE ELDERLY

AI and ML are playing a significant role in creating personalized healthcare plans
tailored to the individual needs of elderly patients. These technologies analyze vast
amounts of data to predict health risks, recommend treatments, and monitor progress.

•	 Predictive Analytics: By analyzing historical health data, AI models can
predict the likelihood of health issues such as Alzheimer’s disease, heart
disease, or stroke. This allows for earlier interventions and more effective
care management.
•	 Example: ML models analyze genomic data to determine risks for

genetic disorders in elderly patients, enabling personalized treatments.
•	 Telemedicine: AI-powered telemedicine platforms provide elderly patients

with remote access to healthcare professionals. These systems can also ana-
lyze medical images and patient data to offer real-time diagnostic support.
•	 Example: Platforms like Babylon Health use AI to assist doctors in diag-

nosing conditions through video consultations, reducing the need for
in-person visits.

269AI-ML Technology for Helping Elderly & Special Needs People

12.6 � COGNITIVE SUPPORT SYSTEMS

As elderly individuals age, cognitive functions such as memory, attention, and prob-
lem-solving often decline. AI and ML are being used to develop systems that help
slow cognitive deterioration and maintain mental agility.

•	 Memory Enhancement Apps: AI-based applications offer memory training
exercises that are personalized to the user’s abilities. These apps help in
strengthening cognitive functions and slowing the onset of memory-related
diseases like dementia.
•	 Example: Apps like Lumosity use AI to create personalized training pro-

grams that adapt based on the user’s performance.
•	 Virtual Companions: AI-powered chatbots and virtual assistants provide

emotional support by engaging in conversations with elderly users. These
systems help reduce social isolation and promote mental well-being.
•	 Example: ElliQ is a virtual companion designed for the elderly that

encourages interaction and helps keep them mentally active.

12.7 � CHALLENGES IN AI AND ML ADOPTION FOR ELDERLY
AND INDIVIDUALS WITH SPECIAL NEEDS

Despite the numerous advantages, there are several challenges in adopting AI and
ML for assisting the elderly and individuals with special needs.

•	 Ethical Concerns: Privacy is a significant issue, especially when it comes to
handling sensitive healthcare data. AI systems must be designed to protect
user data and respect privacy while providing accurate and reliable support.

•	 Affordability: Advanced AI-driven assistive technologies can be expen-
sive, limiting access to those who cannot afford them. There is a need for
more affordable solutions that can be scaled for broader use.

•	 Technological Literacy: Many elderly individuals have difficulty using
modern technologies. There is a need for user-friendly interfaces and proper
education on how to use AI-based systems effectively.

12.8 � CASE STUDIES

Several companies and research institutions have developed AI-driven solutions to
assist the elderly and individuals with special needs. These case studies demonstrate
how technology is improving lives.

•	 OrCam MyEye: This AI-powered device helps the visually impaired by
reading texts aloud, recognizing faces, and identifying objects. The device
has been successfully used by thousands of individuals to regain a sense of
independence.

•	 ElliQ: Designed to help elderly individuals combat loneliness, Elliq uses AI
to engage in conversations, remind users of daily tasks, and connect them
with family members.

270 Artificial Intelligence and Machine Learning for Real-World Applications

Following are the case studies that we will discuss for the aforementioned individuals.

	 1.	Sign language recognition and translation (Microsoft AI)
	 2.	AI/ML system for visually impaired people
	 3.	AI-based fall detection systems for the safety of the elders
	 4.	AI/ML in wheelchair navigation and control

CASE STUDY 1  SIGN LANGUAGE RECOGNITION
AND TRANSLATION (MICROSOFT AI)

Deaf and mute individuals more often than not find it difficult to convey them-
selves to non-American Sign Language (ASL) speakers. Under Microsoft’s “AI
for Good” initiative, an advanced AI system was introduced to identify (ASL
through the use of computer vision (Srivastava et al., 2024).

The system uses ML models, particularly convolutional neural networks
(CNNs), along with cameras to capture and interpret hand and body movements.
These movements are then translated into text or speech in real time, facilitating
smoother communication, especially in places like hospitals, customer service
centers, and workspaces.

This aims to reduce the problems faced in a conversation with deaf and
mute people.

Problems Faced by Sign Language Users:

Limited Communication with Non-Signers:

•	 Difficulty communicating with individuals who do not know sign
language, leading to misunderstandings and exclusion (Sharma et al.,
2024).

Lack of Accessibility in Public Spaces:

•	 Many public services, such as hospitals, government offices, and
transportation systems, lack adequate provisions for sign language
interpretation (Wazalwar and Shrawankar, 2017).

Social Isolation:

•	 Difficulty engaging in casual or spontaneous conversations with
non-signers can lead to feelings of social isolation.

Technological Limitations:

•	 Many communication technologies (like voice-based systems) do not
accommodate sign language users effectively (Harshini et al., 2024).

271AI-ML Technology for Helping Elderly & Special Needs People

Working:

	 1.	Detection of Gestures Using Computer Vision:
•	 The AI leverages computer vision methods to capture movements

of the hands and body using a camera, such as those found on
smartphones or webcams.

•	 Pre-trained deep learning models, mainly CNNs, are utilized to
detect specific gestures in the video stream. These models have
been trained on extensive datasets featuring diverse sign language
gestures.

	 2.	Extracting Features:
•	 The system processes the video stream on a per-frame basis. It

extracts critical data points such as hand shapes, orientations,
movements, and facial expressions, which are crucial in sign lan-
guages like ASL.

•	 Microsoft employs skeleton tracking (a technology similar to
what was used in Kinect) to capture body and hand movements in
3D space for higher accuracy.

	 3.	Recognizing Gestures:
•	 Each video frame is analyzed by a gesture recognition algorithm,

which may be a CNN or a recurrent neural network (RNN), to
identify dynamic gestures.

•	 These models are trained on sign language datasets and can detect
both single gestures and sequences of signs that combine to form
sentences.

	 4.	Converting to Text or Speech:
•	 After detecting a gesture, the system maps it to the correspond-

ing text (either a word or a sentence) in the spoken language.
For more dynamic sign languages, an NLP module converts
the sequence of signs into grammatically correct sentences
(Shrawankar and Thakare, 2013).

•	 A text-to-speech engine then translates these recognized signs
into spoken language, facilitating real-time communication.

	 5.	Two-Way Communication:
•	 Microsoft’s AI system is equipped with speech-to-text capabili-

ties, enabling non-sign language users to speak, with their words
translated into animated sign language for deaf or mute individu-
als. This is achieved by integrating automatic speech recognition
(ASR) with an avatar-based system that animates sign language.

How It Is Helping People:

•	 Microsoft’s AI promotes smooth conversations between sign language
users and non-sign language users in real time, making it particularly
useful in situations where interpreters are unavailable.

272 Artificial Intelligence and Machine Learning for Real-World Applications

•	 In workplaces, the system helps deaf or mute employees engage in 	
meetings, presentations, and team activities, providing them with an
equal opportunity to participate.

•	 For students with hearing impairments, it offers a way to better inter-
act with teachers and classmates who don’t know sign language.
Additionally, it can serve as a tool for people who wish to learn sign
language.

•	 In healthcare, the system allows patients who are deaf or mute to
communicate directly with medical professionals, improving care
without requiring a live interpreter.

•	 In everyday scenarios like shopping, transport, or banking, this
AI-driven solution can break down communication barriers for deaf
and mute communities.

Limitations:

•	 There are hundreds of sign languages globally (e.g., ASL, BSL, and
Indian Sign Language). While Microsoft’s system supports some, like
ASL, many are not yet fully integrated.

•	 Differences in regional dialects and variations in signs can result in
recognition inaccuracies.

•	 Sign languages have unique grammatical structures that differ from
spoken languages. The AI may struggle to preserve context and
nuances in translations, affecting grammatical accuracy.

•	 Fingerspelling, where each letter is signed individually, is particularly
challenging for the AI, especially when users sign quickly.

•	 To develop highly accurate models, substantial datasets are required
for each sign language. However, acquiring these datasets is diffi-
cult, particularly for regional sign languages, limiting the system’s
scalability.

•	 Many datasets lack natural conversational flow, including transitions
between signs and region-specific colloquial gestures.

•	 People vary in their signing style due to factors such as speed, per-
sonal preference, or physical limitations (e.g., arthritis). The AI some-
times fails to adapt to these personal differences, lowering translation
quality.

CASE STUDY 2  AI/ML SYSTEM FOR
VISUALLY IMPAIRED PEOPLE

This report examines the diverse challenges encountered by visually impaired
individuals in areas such as accessibility, employment, education, and social
interactions. It highlights the role of AI in supporting those with visual

273AI-ML Technology for Helping Elderly & Special Needs People

impairments. The report briefly outlines the criteria for vision testing, dis-
cusses how researchers utilize deep learning models for diagnosing and clas-
sifying eye diseases, and explores the creation of AI-driven wearable devices
designed to assist people with visual disabilities (Boussihmed et al., 2024).

PROBLEMS FACED BY VISUALLY IMPAIRED INDIVIDUALS:

•	 Mobility Challenges:
•	 Difficulty recognizing oncoming traffic and changes in traffic

signals.
•	 Impaired ability to navigate their surroundings, especially in unfa-

miliar environments (Kim, 2024).
•	 Access to Visual Information:

•	 Difficulty accessing visually presented information, which can
hinder day-to-day activities and learning.

•	 Educational Challenges:
•	 Significant effort required to learn Braille and develop reading

and writing skills.
•	 Limited access to educational materials in accessible formats.

•	 Misconceptions:
•	 A common misconception is that all visually impaired individu-

als are completely blind, but rather it’s a spectrum (Bhatlawande
et al., 2023).

AI SOLUTIONS:

	 1. Navigation Assistance: AI-powered applications like Aira and Be
My Eyes provide real-time visual assistance through video calls, con-
necting users with sighted volunteers or professionals. GPS-based
systems further enhance navigation by offering verbal directions and
identifying obstacles in unfamiliar environments (Safiya and Pan-
dian, 2024).

	 2. Object Recognition: ML models are employed in apps such as See-
ing AI and Microsoft’s Soundscape to recognize and describe objects,
text, and scenes. This technology enables users to better understand
and interact with their surroundings.

	 3. Text Recognition: Optical character recognition (OCR) technolo-
gies, exemplified by apps like KNFB Reader, allow visually impaired
individuals to access printed materials. These apps convert text into
speech and can recognize different fonts and handwriting, broadening
access to written content.

	 4. Wearable Devices: Smart glasses and other wearable technologies,
such as OrCam MyEye, provide real-time audio feedback to assist
visually impaired users. These devices can recognize faces, read
text, and identify products, enhancing user engagement with their
environment.

274 Artificial Intelligence and Machine Learning for Real-World Applications

	 5. Social Interaction and Communication: AI-driven platforms,
including virtual assistants, facilitate communication for visually
impaired individuals by providing information and reminders through
voice commands.

WORKING OF SMART GLASSES FOR VISUALLY IMPAIRED
INDIVIDUALS

Smart glasses for visually impaired users leverage various technologies to
enhance daily living and navigation. Here’s an overview of their functionality:

	 1.	Camera and Sensors: Equipped with a camera and additional sen-
sors, the glasses capture live video of the surroundings.

	 2.	Real-Time Video Streaming: The video is streamed to a remote
operator or AI system for analysis.

	 3.	Object and Scene Recognition: Using computer vision, the system
identifies objects, people, and text, providing audio feedback.

	 4.	Audio Feedback: Visual information is converted into auditory cues
through speakers or earbuds.

	 5.	Navigation Assistance: Integrated GPS provides verbal directions
and alerts users to nearby obstacles.

	 6.	User Interaction: Users can interact via voice commands or buttons
for specific information or assistance.

	 7.	Connectivity with Other Devices: Many smart glasses can connect
to smartphones or other devices to enhance their functionality, allow-
ing users to access additional apps and services, such as calls or voice
assistants, for more independence in daily tasks.

LIMITATIONS:

•	 Limited Field of View and Object Detection: Smart glasses often
have a restricted field of view, limiting their ability to detect objects
outside of their focus range.

•	 Performance in Challenging Lighting Conditions: Smart glasses
rely heavily on cameras and sensors to detect and interpret objects or
text. In low light or very bright environments, their accuracy can be
compromised.

•	 Reliance on Stable Internet Connectivity: Many smart glasses that
use cloud-based AI systems for image recognition, navigation, or text
reading require stable Internet connectivity to process data and pro-
vide real-time feedback.

•	 Incomplete Scene Understanding: Smart glasses generally excel at
identifying individual objects but struggle with providing a holistic
understanding of complex scenes. For instance, while the glasses may

275AI-ML Technology for Helping Elderly & Special Needs People

recognize a table, they might not communicate its exact position or
the surrounding obstacles.

•	 Battery Life and Device Weight: Smart glasses, especially those
that provide real-time visual and audio feedback, consume significant
power. Many models have a limited battery life, which can restrict
their usage throughout the day.

CASE STUDY 3  AI-BASED FALL DETECTION
SYSTEMS FOR THE SAFETY OF THE ELDERS

Falls among the elderly pose serious health issues, leading to worst injury and
treatment costs. Early detection and intervention of such a fall can effectively
mitigate this fall risk. The purpose of this case study is to assess the efficacy of
AI- and ML-based fall detection systems in improving the safety and quality
of life for elderly people. According to the World Health Organization (WHO),
falls are estimated to be the second leading cause of accidental or unintentional
injury deaths worldwide (Periša et al., 2022).

PROBLEMS FACED BY ELDERLY INDIVIDUALS DUE TO FALL:

•	 Physical Injuries: Falls produce different fractures, head injuries,
internal soft tissue damages, and internal bleeding.

•	 Psychological Effects: They may lose confidence, become isolated
and withdrawn, anxious, and even experience depression due to the
fear of falling again.

•	 Long-Term Health Issues: Falls often lead to reduced mobility,
increased dependency, and chronic pain.

AI/ML INNOVATIVE SOLUTIONS:

	 1.	Wearable Devices for Fall Detection:
		  Wearable devices, equipped with sensors like accelerometers and

gyroscopes, worn by aged people can track the time-varying move-
ment of the elderly in real time. Algorithms based on ML process their
sensor data and detect a fall in the individuals. Previous case studies
have stated that the usage of wearable devices can help achieve high
accuracy in fall detection.

	 2.	Smart Flooring Systems:
		  A smart flooring system integrates sensors and IoT technologies

to detect falls. This can be installed in common areas of an assisted
living facility or at home. It is a non-intrusive method for detecting
falls. The data collected by the sensors is analyzed by ML algorithms
to recognize the fall events and alert caregivers.

276 Artificial Intelligence and Machine Learning for Real-World Applications

BENEFITS:

•	 Timely Alerts: Both systems offer timely alerts to caregivers, which
enhances the fall response time.

•	 High Accuracy: Advanced use of ML algorithms ensures high accu-
racy in fall detection.

•	 Improved Safety: These systems augment the safety and quality of
the life of geriatrics by minimizing extreme injuries from falls.

CHALLENGES/LIMITATIONS:

•	 Cost: The upfront cost of these systems is quite high.
•	 Maintenance: Continuous checking requires regular maintenance

and update for maximum performance.
•	 Privacy: Continuous monitoring raises the issue of privacy, which

should, therefore, be addressed.

AI- and ML-based fall detection systems will place important advances in the
safety and quality of elderly people’s lives. High accuracy level, along with
time alerts, would greatly minimize the possibility of severe injuries from
falls.

CASE STUDY 4  AI/ML IN WHEELCHAIR
NAVIGATION AND CONTROL

AI-powered wheelchair navigation represents a fusion of cutting-edge technol-
ogy and human-centered design, focusing on improving the quality of life for
individuals with mobility challenges. These wheelchairs use AI to assist users
in navigating their environment autonomously, making independent mobility
more accessible.

By combining sensors, cameras, and intuitive controls like voice commands
or touch interfaces, these wheelchairs allow users to safely and confidently
explore their surroundings.

PROBLEMS FACED BY HANDICAPPED INDIVIDUALS:

People with disabilities, particularly those with mobility challenges, which
include elderly individuals in a wheelchair, disabled people, or people suffer-
ing from sedentary syndromes, face many difficulties in daily life, such as the
following:

•	 Limited Mobility:
•	 Moving around independently is difficult, especially in public

spaces or rough terrain.

277AI-ML Technology for Helping Elderly & Special Needs People

•	 Accessibility Issues:
•	 Buildings, streets, and transportation systems are often not

designed to be easily navigable for wheelchair users.
•	 Dependence on Others:

•	 Many people with mobility issues rely on family members or
caregivers to assist them with daily tasks like moving around or
accessing specific locations.

•	 Navigational Challenges:
•	 For those who have difficulty with sight or hearing in addition to

mobility issues, navigating through unfamiliar or busy environ-
ments can be overwhelming.

•	 Physical Strain:
•	 Manually operating traditional wheelchairs can be exhausting,

especially over long distances or rough surfaces.

HOW IT HELPS HANDICAPPED AND ELDERLY PEOPLE

•	 Freedom to Move: These smart wheelchairs can drive themselves,
allowing users to go where they want without needing help from others.
This means more independence and the chance to explore new places.

•	 Safety First: With special sensors, these wheelchairs can see obsta-
cles in their path, like furniture or bumps in the ground. They can
steer around these obstacles, helping keep users safe from accidents.

•	 Learning to Help: The more a user interacts with the wheelchair, the
better it understands their preferences. It can learn which routes they
like best or how fast they prefer to go, making every journey smoother.

•	 Alerting Users: These smart systems can warn users about dangers,
like steps or curbs, helping them navigate tricky spots safely.

•	 Connecting to Home: Some wheelchairs can connect to smart home
devices, allowing users to control lights, sdoors, and other things in
their homes right from their wheelchair.

BENEFITS:

•	 Better Mobility: AI-powered wheelchairs can help people with lim-
ited physical abilities move around more easily by improving naviga-
tion and control.

•	 Improved Safety: These systems can detect obstacles and avoid col-
lisions, reducing the risk of accidents and keeping users safer.

•	 Cost-Effective in the Long Run: AI wheelchairs may eventually
be cheaper because they allow users to control the chair more inde-
pendently, reducing the need for help from caregivers.

•	 Personalized: The wheelchair’s settings can be adjusted to meet each
user’s specific needs.

•	 Increased Accessibility: AI-powered wheelchairs can handle dif-
ferent terrains, giving users more freedom to move around in public
spaces and improving their quality of life.

278 Artificial Intelligence and Machine Learning for Real-World Applications

FUTURE PROSPECTS AND POTENTIAL

The future of AI and ML in assisting the elderly and special needs individ-
uals is promising. Emerging technologies such as 5G, edge computing, and
brain–computer interfaces (BCIs) will enable more sophisticated assistive
devices.

•	 AI-Powered Rehabilitation: AI systems will continue to advance in
assisting with physical therapy and rehabilitation. These systems will
adapt to the patient’s progress and create personalized recovery plans.
•	 Example: AI-powered robotic exoskeletons are being developed

to assist individuals with mobility impairments in walking and
regaining strength.

•	 Smart Clothing: Integrating AI into wearable textiles will enable
real-time monitoring of health parameters and provide continuous
feedback to healthcare providers.
•	 Example: AI-powered smart textiles can monitor heart rates,

detect falls, and even track movements to alert caregivers in case
of emergencies.

The future potential of AI/ML projects in assisting elderly and special needs
people is highly promising. These technologies offer innovative solutions to
improve independence, safety, and quality of life. As advancements continue,
AI-powered tools like sign language translation systems, smart glasses, fall
detection devices, and autonomous wheelchairs will likely become more accu-
rate, accessible, and integrated into daily life.

However, challenges such as high costs, privacy concerns, and technical
limitations need to be addressed. Continued research and development will
be crucial to overcoming these hurdles, ensuring that these technologies
can serve a broader audience effectively. With further improvements, AI
and ML will revolutionize caregiving, healthcare, and mobility for indi-
viduals with disabilities and the elderly, fostering greater inclusion and
autonomy.

12.9 � CONCLUSION

AI and ML are transforming healthcare for the elderly and special needs populations
by offering intelligent, automated, and personalized solutions. These technologies
enable independence, improve health outcomes, and provide emotional support.
Despite challenges related to privacy, cost, and technological literacy, the future of
AI and ML in this field is bright. By continuing to innovate and address these bar-
riers, AI will play an ever-increasing role in shaping the future of healthcare for
vulnerable populations.

279AI-ML Technology for Helping Elderly & Special Needs People

REFERENCES

Bhatlawande, Shripad, Neel Gokhale, Dewang V. Mehta, Parag Gaikwad, Swati Shilaskar, and
Jyoti Madake. “Electronic Travel Aid for Crosswalk Detection for Visually Challenged
People.” In Intelligent Systems and Applications: Select Proceedings of ICISA 2022, pp.
249–259. Singapore: Springer Nature, 2023.

Boussihmed, Ahmed, Khalid El Makkaoui, Ibrahim Ouahbi, Yassine Maleh, and Abdelaziz
Chetouani. “A TinyML Model for Sidewalk Obstacle Detection: Aiding the Blind and
Visually Impaired People.” Multimedia Tools and Applications (2024): 1–28.

Chauhan, Ritu, Abhiyush Satyam, Eiad Yafi, and Megat F. Zuhairi. “Predict the Elderly Fall
Using IoT and AI Technology.” In International Conference on Cyber Security, Privacy
in Communication Networks, pp. 101–113. Singapore: Springer Nature, 2023.

Frauendorf, José Luiz, and Érika Almeida de Souza. The Architectural and Technological Rev-
olution of 5G. Springer, 2023.

Gill, Sukhpal Singh, Muhammed Golec, Jianmin Hu, Minxian Xu, Junhui Du, Huaming Wu,
Guneet Kaur Walia et al. “Edge AI: A Taxonomy, Systematic Review and Future Direc-
tions.” Cluster Computing 28, no. 1 (2025): 1–53.

Harshini, P. J., Mohammed Atheequr Rahman, James Allen Raj, and P. Durgadevi. “Sign
Language Recognition System for Seamless Human-AI Interaction.” In International
Research Conference on Computing Technologies for Sustainable Development, pp.
124–144. Cham, Switzerland: Springer Nature, 2024.

Kim, In-Ju. “Recent Advancements in Indoor Electronic Travel Aids for the Blind or Visually
Impaired: A Comprehensive Review of Technologies and Implementations.” Universal
Access in the Information Society (2024): 1–21.

Mansoor, C. M. M., Sarat Kumar Chettri, and H. M. M. Naleer. “A Remote Health Monitoring
System for the Elderly Based on Emerging Technologies.” In International Conference
on Emerging Global Trends in Engineering and Technology, pp. 513–524. Singapore:
Springer Nature, 2022.

Park, Jong Wan, Chang Woo Ko, Diane Youngmi Lee, and Jae Chul Kim. “Prediction of
Late-Onset Depression in the Elderly Korean Population Using Machine Learning Algo-
rithms.” Scientific Reports 15, no. 1 (2025): 1196.

Periša, Marko, Ivan Cvitić, Petra Zorić, and Ivan Grgurević. “Concept, Architecture, and Per-
formance Testing of a Smart Home Environment for the Visually Impaired Persons.”
In EAI International Conference on Management of Manufacturing Systems, pp. 3–14.
Cham: Springer International Publishing, 2022.

Rincon, J. A., and C. Marco-Detchart. “Robotic Precision Fitness: Accurate Pose Training for
Elderly Rehabilitation.” In International Conference on Intelligent Data Engineering
and Automated Learning, pp. 410–419. Cham, Switzerland: Springer Nature, 2024.

Rus, Cosmin, Monica Leba, and Remus Sibisanu. “SOS-My Grandparents: Using the Con-
cepts of IoT, AI and ML for the Detection of Falls in the Elderly.” In World Conference
on Information Systems and Technologies, pp. 164–173. Cham, Switzerland: Springer
Nature, 2024.

Safiya, K. M., and R. Pandian. “A Real-Time Image Captioning Framework Using Computer
Vision to Help the Visually Impaired.” Multimedia Tools and Applications 83, no. 20
(2024): 59413–59438.

Sharma, Vaidehi, Abhay Kumar Gupta, Abhishek Sharma, and Sandeep Saini. “A Unified
Approach for Continuous Sign Language Recognition and Translation.” International
Journal of Data Science and Analytics (2024): 1–15.

Shrawankar, Urmila, and Vilas Thakare. “A Hybrid Method for Automatic Speech Recognition
Performance Improvement in Real World Noisy Environment.” Journal of Computer
Science 9, no. 1 (2013): 94.

280 Artificial Intelligence and Machine Learning for Real-World Applications

Simon, G. J., and C. Aliferis, eds. Artificial Intelligence and Machine Learning in Health
Care and Medical Sciences: Best Practices and Pitfalls [Internet]. Cham (CH): Springer,
2024. PMID: 39836790.

Srivastava, Sharvani, Sudhakar Singh, Pooja, and Shiv Prakash. “Continuous Sign Language
Recognition System Using Deep Learning with MediaPipe Holistic.” Wireless Personal
Communications 137, no. 3 (2024): 1455–1468.

Wazalwar, Sampada S., and Urmila Shrawankar. “Interpretation of Sign Language into English
Using NLP Techniques.” Journal of Information and Optimization Sciences 38, no. 6
(2017): 895–910.

281

Index

A

A* search algorithm, 57
problem reduction, 64

agriculture
AI applications, 246
challenges, 248
decision support systems, 246
future trends, 249
irrigation scheduling, 246
nutrient management, 245
precision soil mapping, 245
soil health monitoring, 245

A priori algorithm, 194
case study, 199

Arora, Sandhya, 17
artificial intelligence (AI), see also machine

learning; neural networks
branches, 3
components, 3
definition, 5
goals, 7
history, 8 – 13
paradigms, 1
subfields, 19

assistive technologies
elderly, 267
special needs, 268

association rule mining, 193
average linkage, 184

B

Bernoulli Naive Bayes, 155
big data, 105

C

classification, 136
clustering, see also unsupervised learning

DBSCAN, 188
hierarchical, 183
k-means, 174

complete linkage, 184
computer vision, 3, 268, 271
confusion matrix, 158
convolutional neural networks (CNNs), see also

neural networks
convolution layer, 212
fully connected layer, 214
pooling layer, 213

correlation analysis, 125

cross validation, 159
exhaustive methods, 164
non-exhaustive methods, 161

D

data encoding, 118
data preprocessing, 107

dimensionality reduction, 113
missing data analysis, 109, 116
noise removal, 109
Python implementation, 115

data sampling, 122
data types, 106
decision trees, 138
deep learning (DL), 1, 202, see also neural

networks
distance measures, 172

E

education
AI in modern education, 252
AI-driven analytics, 254, see also intelligent

tutoring systems
AI tools in education, 255
digital transformation of education, 252
educational needs of learners with

disabilities, 253
ethical considerations, 254
personalized learning, 260
virtual and blended learning, 259

elderly
assistive technologies, 267
fall detection systems, 275
personalized healthcare, 268

elderly patients, 268
emerging technologies, 255
exhaustive methods, 164
expert systems, 3

F

fall detection systems, 275
wearable devices, 275
smart flooring, 275

feature subset selection, 112

G

Gaussian Naive Bayes, 153
generative adversarial networks (GANs), 224

282 Index

generative AI, 222, see also large language
models

Gini INdex, 143

H

healthcare
AI applications, 230
AI-powered wearable technology, 234
AI in radiology, 231
digital pathology, 231
drug discovery, 232
genomics, 232
Google’s DeepMind, 231
medical diagnostics, 231
ethical considerations, 235
personalized medicine, 233
predictive analytics, 231
robotic surgery, 233
telemedicine, 234

hyperparameter tuning, 166

I

information gain, 135
intelligent tutoring systems (ITSs), 253, 263

K

Kernel trick, 150
K-fold cross validation, 161
k-nearest neighbors (k-NN) classification, 137
k-NN classifier, 137
knowledge representation, 79

predicate logic, 79
semantic networks, 90

L

large language models (LLMs), 222, see also
generative AI

M

machine learning (ML)
fundamental principles, 3, see also supervised

learning; unsupervised learning
types, 3, 101

Malik, Latesh, 17
min max scaler, 110
multinomial Naive Bayes, 154

N

Naive Bayes classifier, 151
natural language processing (NLP), 3, 11,

21, 269
neural networks, 204, see also convolutional

neural networks; recurrent neural
networks

architectures, 210

P

personalized learning, 260
challenges, 263

predicate logic, 79
resolution algorithm, 82

R

regression, 127
regularization, 165
reinforcement learning, 104

deep Q-networks, 5
Q-learning, 5

retrieval augmentation generation
(RAG), 226

S

search strategies
informed, 36, see also A* search algorithm
search strategies, uninformed, 31

Shrawankar, Urmila, 17
single linkage, 184
standard scaler, 111
support vector machines (SVM), 147

T

types of machine learning, 101

U

understanding data, 105

	Cover
	Half Title
	Title
	Copyright
	Contents
	Preface
	Acknowledgments
	About the Authors
	Chapter 1 Introduction to Artificial Intelligence and Machine Learning
	1.1 Introduction
	1.1.1 Key Components of AI
	1.1.2 Branches of AI
	1.1.3 Fundamental Principles of ML
	1.1.4 Types of ML
	1.1.5 Key Algorithms and Techniques

	1.2 Understanding AI: Definition and Goals
	1.2.1 What is AI?
	1.2.2 Understanding AI
	1.2.3 Weak and Strong AI
	1.2.4 Goals of AI

	1.3 History of AI
	1.3.1 Birth of AI (1950–1956)
	1.3.2 Turing Test (1950)
	1.3.3 The First AI Program (1951)
	1.3.4 Logical Reasoning and Problem-Fixing (1955–1956)
	1.3.5 Birth of AI (1956)
	1.3.6 1974
	1.3.7 Biological Model (1957)
	1.3.8 Natural Language Processing (1966)
	1.3.9 First Intelligent Robot (1972)
	1.3.10 First AI Winter (1974–1980)
	1.3.11 Boom (1980–1987)
	1.3.12 Second AI Winter (1987–1993)
	1.3.13 AI (1993–2011)
	1.3.14 AI (2011–Present)

	1.4 Problems and Techniques in AI
	1.4.1 Goal Formulation
	1.4.2 Well-Defined Problems and Solutions

	1.5 Areas of AI
	1.5.1 AI Subfields
	1.5.2 AI Application Areas

	1.6 Future Scope of AI

	Chapter 2 Problem-Solving Methods and Search Strategies
	2.1 Introduction
	2.1.1 Uniformed/Blind Search
	2.1.2 Informed Search

	2.2 State Space Representation
	2.2.1 State Space

	2.3 Problem Characteristics
	2.4 Production System and Control Strategies
	2.4.1 Production System
	2.4.2 Control System

	2.5 Informed and Uninformed Search
	2.5.1 Generate and Test Method
	2.5.2 Hill Climbing Method
	2.5.3 Best-First Search and A* Search
	2.5.4 A* Search Algorithm
	2.5.5 Problem Reduction and AO* Algorithm
	2.5.6 Constraint Satisfaction
	2.5.7 Case Studies on Production System

	Chapter 3 Knowledge Representation
	3.1 Knowledge Representation Using Predicate Logic
	3.1.1 Knowledge
	3.1.2 Knowledge Representation
	3.1.3 Predicate Logic
	3.1.4 Knowledge Representation Using Predicate Logic
	3.1.5 Representing Facts in Logic

	3.2 Using Predicate Logic Resolution Algorithm and Deduction
	3.3 Forward versus Backward Chaining in AI
	3.4 Slot and Filler Structure
	3.5 Issues in Knowledge Representation

	Chapter 4 Data and Preprocessing: The Heart of Machine Learning
	4.1 Introduction to Machine Learning
	4.2 Need for ML
	4.3 Types of ML
	4.3.1 Supervised Learning
	4.3.2 Unsupervised Learning
	4.3.3 Semi-Supervised Learning
	4.3.4 Reinforcement Learning

	4.4 Understanding Data
	4.4.1 Big Data

	4.5 Dataset and Data Types
	4.6 Data Preprocessing
	4.6.1 Missing Data Analysis
	4.6.2 Removal of Noise
	4.6.3 Data Integration and Data Transformation
	4.6.4 Data Reduction
	4.6.5 Dimensionality Reduction Using Python
	4.6.6 Data Preprocessing in Python

	4.7 Summary
	References

	Chapter 5 Supervised Machine Learning
	5.1 Supervised Machine Learning
	5.2 Correlation and Regression Analysis
	5.2.1 Correlation Analysis
	5.2.2 Regression Analysis
	5.2.3 Validation of Regression Methods
	5.2.4 Simple Linear Regression in Python

	5.3 Classification
	5.3.1 k-NN Classification
	5.3.2 Decision Tree
	5.3.3 Support Vector Machine
	5.3.4 Naive Bayes Classification

	5.4 Metrics for Evaluating Classifier Performance
	5.5 Model Training and Cross-Validation
	5.5.1 Non-Exhaustive Methods
	5.5.2 Exhaustive Methods

	5.6 Regularization
	5.6.1 Types of Regularization

	5.7 Hyperparameter Tuning
	5.7.1 Methods for Hyperparameter Tuning

	5.8 Summary
	References

	Chapter 6 Unsupervised Machine Learning
	6.1 Introduction
	6.2 Clustering
	6.3 Distance Measures
	6.4 k-Means Clustering
	6.4.1 k-Means Clustering Using Python

	6.5 Hierarchical Clustering
	6.5.1 Hierarchical Clustering Using Python

	6.6 DBSCAN Clustering
	6.6.1 DBSCAN Clustering Using Python

	6.7 Association Rule Mining
	6.7.1 The a priori Algorithm
	6.7.2 Example of a priori Algorithm
	6.7.3 Case Study: Transactions in a Grocery Store

	6.8 Summary
	References

	Chapter 7 Neural Networks and Deep Learning
	7.1 Introduction
	7.2 Introduction to Neural Networks
	7.3 Fundamentals of Neural Networks
	7.4 Neural Network Architectures
	7.5 Convolutional Neural Networks
	7.5.1 The Convolution Layer
	7.5.2 Pooling Layer
	7.5.3 Fully Connected Layer
	7.5.4 Loss Function
	7.5.5 Optimization Algorithms

	7.6 Recurrent Neural Networks
	7.6.1 Long Short-Term Memory Networks
	7.6.2 Gated Recurrent Units

	References

	Chapter 8 Generative Artificial Intelligence
	8.1 Large Language Models
	8.2 Generative Adversarial Network
	8.3 Retrieval Augmentation Generation
	8.3.1 RAG versus LLMs

	8.4 Transfer Learning

	Chapter 9 AI in Healthcare: Diagnostics, Treatment, and Beyond
	9.1 Introduction
	9.1.1 Overview of AI in Healthcare

	9.2 AI in Diagnostics
	9.2.1 Transforming Healthcare with AI Applications

	9.3 AI in Treatment
	9.3.1 Drug Discovery and Development
	9.3.2 Personalized Medicine
	9.3.3 Robotic Surgery

	9.4 AI in Patient Management and Monitoring
	9.4.1 Wearable Technology
	9.4.2 Remote Patient Monitoring

	9.5 AI in Administrative Tasks
	9.5.1 Workflow Optimization
	9.5.2 Electronic Health Records

	9.6 Ethical and Privacy Considerations
	9.6.1 Data Privacy
	9.6.2 Bias and Fairness
	9.6.3 Transparency and Accountability
	9.6.4 Balancing AI with Human Care

	9.7 Challenges and Limitations
	9.7.1 Technical Challenges
	9.7.2 Regulatory and Legal Challenges
	9.7.3 Cost and Infrastructure
	9.7.4 Public Perception

	9.8 Future Directions
	9.8.1 Emerging Trends
	9.8.2 Research and Development
	9.8.3 Seamless AI Integration

	9.9 Case Studies
	9.10 Conclusion
	References

	Chapter 10 Agriculture Developments Using ML and AI
	10.1 Introduction
	10.2 Some Important Methodologies
	10.2.1 Soil Management
	10.2.2 Precision Soil Mapping
	10.2.3 Nutrient Management
	10.2.4 Soil Health Monitoring
	10.2.5 Erosion Prediction and Control
	10.2.6 Decision Support Systems
	10.2.7 Challenges and Opportunities
	10.2.8 AI and ML Applications in Agriculture
	10.2.9 Challenges and Limitations
	10.2.10 Future Trends and Opportunities

	10.3 Conclusion
	References

	Chapter 11 AI Transforming Education: Personalized Learning and Intelligent Tutoring Systems
	11.1 Introduction
	11.1.1 AI in Education
	11.1.2 AI Technologies: Progress and Application
	11.1.3 Application in Educational Environments
	11.1.4 Boosting Learning with AI-Driven Analytics
	11.1.5 AI in Language Learning
	11.1.6 Ethical and Equity Considerations in AI Education
	11.1.7 Cultural and Contextual Adaptability of AI Tools
	11.1.8 Effectiveness and Longevity in the Field
	11.1.9 Scalability and Accessibility
	11.1.10 Integrating Other Technologies
	11.1.11 AI Adoption for Education across the Globe
	11.1.12 Culture in AI Design and Deployment
	11.1.13 AI’s Ethical and Societal Dimensions
	11.1.14 Future Directions and Policy Considerations
	11.1.15 Advanced AI Applications in Education
	11.1.16 AI for Enhancing Teacher Professional Development
	11.1.17 AI in Educational Administration
	11.1.18 Use of Data Analytics by Educational Administrators
	11.1.19 AI Solutions in Education’s Sustainability
	11.1.20 Financial and Infrastructural Sustainability
	11.1.21 Interdisciplinary Approaches to AI in Education
	11.1.22 AI for Students with Disabilities
	11.1.23 Ethical AI in Education
	11.1.24 AI and Policy Development in a Developing World

	11.2 Evolution of AI in Education
	11.2.1 Early Application Possibilities of AI in Educational Technologies
	11.2.2 Key Milestones and Progress
	11.2.3 The Impact of AI on Traditional Learning Environments

	11.3 Personalized Learning through AI
	11.3.1 Challenges and Limitations
	11.3.2 Increased Engagement

	11.4 Conclusion
	References

	Chapter 12 Technological Uses of AI and ML for Helping Elderly and Special Needs People
	12.1 Introduction
	12.2 AI and ML Overview
	12.3 Assistive Technologies for the Elderly
	12.4 Supporting Individuals with Special Needs
	12.5 Personalized Healthcare for the Elderly
	12.6 Cognitive Support Systems
	12.7 Challenges in AI and ML Adoption for Elderly and Individuals with Special Needs
	12.8 Case Studies
	12.9 Conclusion
	References

	Index

