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Preface 

Linear Systems: Theory and Applications is one of the most fundamental and impor-
tant prerequisites necessary to study control engineering. The overall field of control 
engineering studies how systems respond to various inputs, and how to design 
controllers that ensure desired behaviors. Such a system is said to be linear if its 
governing model is linear, which means the following two properties. First, scaling 
the input of a linear system means that the output is also scaled proportionally. 
Second, adding two inputs of a linear system means that the output is also the sum 
of the outputs to each input individually. While many real-world control systems 
are affected by nonlinearities and uncertainties, it is often appealing to simplify 
them to the linear domain due to these convenient properties. In fact, the analysis of 
linear systems primarily uses only basic tools from linear algebra, linear differential 
equations, and frequency domain analysis. 

This textbook was conceived from the lecture notes I created and used while 
teaching the graduate-level linear systems course at KAIST in Spring 2024. While 
teaching the course, my notes were inspired by the many excellent references used 
by the linear systems courses taught at leading institutions like Caltech, Berkeley, 
MIT, Stanford, and others. This textbook differs from these courses in two main 
ways. First, it introduces foundational mathematics background (e.g., Jordan canon-
ical form, L2-space) as the topics progress, providing a more seamless transition 
to advanced linear systems topics. Second, it provides natural progressions towards 
more advanced subfields of control systems engineering, namely optimal control, 
state-estimation, and robust control, and their connections to the main linear systems 
topics are emphasized. 

This book is organized into four main parts: (1) Linear System Properties,  (2)  
Linear Stability,  (3)  Linear Control and Estimation, and (4) Linear Optimal Control 
and Estimation. Each part is itself composed of multiple chapters that cover all 
aspects of the focused topic.

• Part I introduces the basic classifications of signals and systems, important prop-
erties such as time invariance and causality, as well as their mathematical descrip-
tions in both time and frequency domains. The notion of what it means to “control”

v



vi Preface

and how “uncontrolled” systems differ from “controlled” ones is explained by way 
of block-diagrams. 

• Part II introduces stability, a particularly important property of general systems. 
Various different types of stability are introduced, such as input-output stability 
and internal stability. When a system is linear, its stability can be analyzed by 
discerning some properties of its eigenvalues. Lyapunov sense internal stability is 
especially crucial in more general systems which are not necessarily linear, and 
this book dedicates a few chapters towards the stability analysis of such nonlinear 
systems. 

• Part III finally builds upon the notion of “control” introduced in Part I. Two 
key preliminary questions are addressed: (1) the “what extent” can a system be 
controlled, which is characterized its controllability, and (2) to “what extent” can 
the system’s full state be observed, which is characterized by its observability. 
The duality between controllability and observability for linear systems is also 
explored. Methods for controlling a linear system are also introduced, including 
feedback control via pole-placement. 

• Part IV extends the methods of control and state-observation discussed in Part 
III. Pole-placement requires a predetermined collection of desired poles in order 
to perform control design, but it is often difficult to choose them in practice. 
Instead, the subfield of optimal control is concerned with the optimization of a 
specific cost functional, which quantifies properties of the state and control effort 
directly. The linear quadratic regulator (LQR) and Kalman filter, two hallmark 
methods in control theory beyond linear systems, are introduced and explored. In 
particular, the connection among LQR control and H2 and H1 robust control is 
also emphasized in one chapter. 

SooJean Han 
KAIST 

Daejeon, Korea (Republic of)
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Part I 
Linear System Properties



Chapter 1 
Introduction and System Definitions 

A system .H is a signal processor which transforms the some input signal into an 
output signal. In relation to terminologies from mathematics, signals are functions 
and systems are operators which take those functions as input and returns another 
function as output. Systems can be visually represented using block diagrams, where 
arrows and lines represent signals, and blocks represent system components. Some 
common simple block diagrams of systems are shown in Fig. 1.1. Arrows indicate 
the signals . u, . y, . w, and . z which are involved with the system. The main signals 
are the control input .u :R≥0 →R

m and the output signal .y :R≥0 →R
k . Additional 

signals include the following. Exogenous inputs.w :R≥0 →R
n model external inputs 

such as noise and external disturbances. Auxiliary outputs .z :R≥0 →R
� are outputs 

which are separate from . y in that it is typically used to measure some performance 
criteria. Here, .m, k, �∈N all represent their respective signal dimensions. Often, . H
is called the open-loop system or the plant, and we can also write the system as 
.y(t)=H{u}(t) for all time . t . Exogenous inputs and auxiliary outputs will mainly 
influence our discussion of more general linear systems in later chapters (see Part III 
and Part IV). 

When a controller is included, another block, typically labeled . K, is included 
beneath the plant. The overall system is then called a closed-loop system,  or  a  feed-
back interconnection, in reference to the fact that the output of the controller’s signal 
is being fed back to the plant. When a controller is involved, it is often useful to cate-
gorize the input and output signals according to what is being used by the controller 
and what is not. . z is called the regulated or auxiliary output while .w is an external 
disturbance. The main function of a controller is to change the natural behavior of a 
plant. There are many applications, including output regulation, reference tracking, 
disturbance rejection. 
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Fig. 1.1 Simplified system block diagrams describing only the input and output signals. [Left] . H
admits only one input . u and one output . y. [Right] .H with external disturbance .w and auxiliary 
output. z, and a feedback controller.K that uses output signal. y to construct input signal. u

1.1 State-Space Model Description 

Mathematical descriptions of systems include differential equations (or difference 
equations, in the case of discrete-time systems), including ordinary differential 
equations (ODEs), partial differential equations (PDEs), and stochastic differential 
equations (SDEs). Systems representation based on differential equations are often 
referred to as the state-space representation, where the system is characterized by 
an internal state signal (or simply, state) . x. 

.H �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ(t) = f (x(t),w(t),u(t)),

z(t) = g(x(t),w(t),u(t)),

y(t) = h(x(t),w(t),u(t)),

x(0) = x0 initial condition

(1.1) 

where the following variables are defined (same as before): 
• .x : R≥ 0 → R

n with initial condition .x0 ∈R
n is the (internal) state of . H,  of  

dimension . n ∈N

• .u : R≥ 0 → R
m is the control input of . H, of dimension . m ∈N

• .y : R≥ 0 → R
k is the output or measurement of . H, of dimension . k ∈N

• .w : R≥ 0 → R
d is another input, called the exogenous input,  o  f . H, of dimension 

. d ∈N

• .z : R≥ 0 → R
� is another output, called the auxiliary output,  o  f . H, of dimension 

. �∈N

Here, . f , . g, and . h are possibly nonlinear functions. In this book, however, we are 
primarily interested in linear systems, in which the state-space model is expressed 
as
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.H �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ(t) = Ax(t) + B1w(t) + B2u(t),

z(t) = C1x(t) + D11w(t) + D12u(t),

y(t) = C2x(t) + D21w(t) + D22u(t),

x(0) = x0 initial condition

(1.2) 

Here, .A∈R
n×n , .B2 ∈R

n×m , and the other coefficient matrices (defined with the 
appropriate dimensions) are called the system matrices of (1.2). 

In the following, we present a few examples of linear systems and their system 
matrices. Although many systems in the real world are nonlinear, one can con-
vert a nonlinear system (1.1) to a linear description (1.2) using a technique called 
linearization, which will be discussed in detail in Chap. 2. 

Example 1.1 (Simple Pendulum) Consider a simple pendulum suspended from a 
point in space. The bob has mass .m and the string attached to it has length . L .  Le  t
.θ ∈R represent the angle that the string of the pendulum makes with the vertical 
line pointing downwards from the suspension point. See Fig. 1.2 for a visualization. 
Applying Newton’s second law along the .x-axis of this system gives us the system 
dynamics: 

. − mg sin θ � Fx � ma = mL θ̈ =⇒ θ̈ = − g

L
sin θ (1.3) 

Note that this is a nonlinear system due to the sinusoidal term, which requires us 
to perform linearization to obtain a linear description. Define the state as . x(t) �
[
θ(t) θ̇(t)

]�
. We use the small-angle approximation .sin θ ≈ θ and get 

.ẋ(t) =
[

0 1
− g

L 0

]

x(t) (1.4) 

which is in the form of.ẋ(t) = Ax(t), with the other matrices equal to. 0. In particular, 
since there is no control input required to drive the system, this system is said to be 
an uncontrolled system. . �

Fig. 1.2 The simple 
pendulum of Example 1.1
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Fig. 1.3 The  simple  RLC  
series circuit of Example 1.2 

Example 1.2 (RLC Series Circuit) Consider a standard simple RLC series circuit 
composed of a resistor with resistance. R, inductor with inductance. L , and capacitor 
with capacitance. C connected in series to a constant voltage source. V . See Fig. 1.3 for 
a visualization. 

By Kirchoff’s voltage law, we know that the sum of the voltages across each 
component in the circuit must equal the total voltage: 

. V = VR(t) + VL(t) + VC(t) = RI (t) + L İ (t) + VC(0) + 1

C

∫ t

0
I (s)ds

=⇒ RI (t) + L İ (t) + VC(0) + 1

C

∫ t

0
I (s)ds

Taking the derivative across the entire equation yields . 0 = R İ (t) + L Ï (t) +
(1/C)I (t). Define the state to be .x(t) = [

I (t) İ (t)
]�
. Then the dynamics can be 

rewritten as 

.ẋ(t) =
[

0 1
− 1

LC − R
L

]

x(t) (1.5) 

which is again in the form of.ẋ(t) = Ax(t), and uncontrolled system. Note that since 
this circuit is already linear, no linearization is needed. . �

Why are linear systems like Examples 1.1 and 1.2 so appealing to study? There 
are two main, related reasons. 

1. They are easy to solve directly. 
2. They mostly require only linear algebra and differential equations background to 

analyze. 

To understand this simplicity, let us consider the scalar uncontrolled system. ẋ(t) =
ax(t) and.x(0) = x0, where .x(t), a ∈R for all . t . We can solve this ODE directly by 
separation of variables: 

. 
dx(t)

dt
= ax(t) =⇒ dx(t)

x(t)
= adt =⇒ ln x(t) − ln x0 = at =⇒ x(t) = eat x0

and this gives an explicit solution trajectory.x(t) over time. t . We can conduct a simple 
analysis of this solution form: the “stability” of the system depends on the sign of . a. 
Namely, if.a > 0, then.x(t) → ∞ as.t → ∞ but if.a < 0, then.x(t) → 0. We discuss 
stability of linear systems more formally in Part II.
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When a control term is introduced, we are still able to solve the scalar linear 
system explicitly. Consider the following controlled system 

. ẋ(t) = ax(t) + bu(t), x(0) = x0

where .x(t), u(t), a, b∈R for all . t . Using integrating factor .exp(− ∫ t
0 adt) = e−at : 

. 
dx(t)

dt
= ax(t) + bu(t) =⇒

(
dx(t)

x(t)
− ax(t)

)

e−at = bu(t)e−at

=⇒ x(t) = eat x0 +
∫ t

0
ea(t−s)bu(s)ds

Note that compared to the uncontrolled case, the controlled system has an additional 
convolution integral term .

∫ t
0 e

a(t−s)bu(s)ds. Essentially, this term accumulates the 
entire past history of the inputs .{u(s) : 0 ≤ s ≤ t} and stores this information in the 
state .x(t). This gives us a nice conceptual interpretation of the state .x(t): 

The state is an internal variable whose values .{x(s) : 0≤ s ≤ t} together 
with “future” input .u(t) are enough to determine the system output .y(t). 

Even in the vector case, the system can be solved directly via the integrating factor 
technique. For the uncontrolled system, we have 

. ẋ(t) = Ax(t) =⇒ e−At ẋ(t) − e−At Ax(t) = 0 =⇒ x(t) = eAtx0

and for controlled systems (with .B2 ≡ B and the other matrices in (1.2) still equal 
to . 0), we have 

. ẋ(t) = Ax(t) + Bu(t) =⇒ e−At (ẋ(t) − Ax(t)) = e−At Bu(t)

=⇒ x(t) = eAtx0 +
∫ t

0
eA(t−s)Bu(s)ds

The matrix exponential .eAt is a special type of square matrix we will investigate in 
the subsequent Chap. 2. 

Remark 1.1 Every concept discussed throughout this subsection can be extended 
to the discrete-time (DT) setting as well. The main difference is that the differential 
equations become difference equations. 

For the majority of this book until Part IV, we will focus on linear systems without 
noise. w and without considering the auxiliary output. z. Consequently, we will remove 
the subscripts in our system matrices in order to simplify notation. 

.H �

⎧
⎪⎨

⎪⎩

ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t),

x(0) = x0 initial condition

(1.6)



8 1 Introduction and System Definitions

A fundamental question for any linear system (and nonlinear systems too) is its 
realizability, which refers to the ability to implement a given state-space model using 
physical components or a practical control system. It is important because it ensures 
that the theoretical models we use to describe and design systems can actually be 
constructed in the real world. 

Definition 1.1 (Realization) A realization of a CT (linear) system is the 
representation of its input-output behavior in terms of a state-space model 
.{A(t), B(t),C(t), D(t)}, meaning 

. ẋ(t) = A(t)x(t) + B(t)u(t)

y(t) = C(t)x(t) + D(t)u(t)

Note that a realization does not have to be linear. Realizations also exist for DT 
systems, and are defined similarly to their CT counterparts. 

Definition 1.2 (Realizability) Input-to-output transfer function .H(s) for a CT LTI 
system is said to be realizable if there exists a finite-dimensional state-space 
.{A, B,C, D} such that .H(s)=C(s I − A)−1B + D. We have a similar definition 
for DT LTI systems, i.e., .H(z)=C(z I − A)−1B + D. 

Loosely-speaking, a system is realizable if there exists a physical or computational 
setup (such as a set of actuators, sensors, or algorithms) that can reproduce the 
behavior described by the model. 

Remark 1.2 We mention one caveat regarding the notion of realizability is the liter-
ature. Some may argue that improper transfer functions still have a valid realization. 
For example, the system realization.y(t) = u̇(t) has transfer function.y(s)/u(s) = s, 
which is clearly improper. However, it is difficult to implement a perfect derivative 
in reality, and it is this practicability that influences our choice to focus only on 
realizations for proper transfer matrices. 

1.2 Transfer Function Description 

Although most of our discussion in this book will be focused on the state-space 
model representation, it is worth mentioning a few remarks about the concepts that 
are widely used in the study of transfer function representations. Transfer functions 
are greatly used in the study of preliminary topics related control theory, such as 
signals and systems, the frequency domain, and various common transforms (e.g., 
Fourier, Laplace, . z). 

We first define a few common signals. 

Definition 1.3 (Continuous-time Impulse) The continuous-time impulse function 
(also called the Dirac Delta) is the function .δ(t) can be defined as the following 
limit:
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. δ(t) � lim
�→0

h�(t) = lim
�→0

g�(t) = · · ·

where 

. h�(t) �
{

1
�

(if − �
2 < t < �

2 )

0 (otherwise)
, g�(t) �

⎧
⎪⎨

⎪⎩

1
�

− 1
�2 t if 0 < t < �

1
�

+ 1
�2 t if − � < t < 0

0 otherwise

are a few common limiting functions that are used in the construction of the Dirac 
delta. Note that this means the method of constructing . δ is not unique; we can 
use any sequence curve such that the area underneath is always . 1. See Fig. 1.4 for 
visualization. 

The Dirac delta has a few useful properties: 

1. the sifting property: . 
∫ ∞
−∞ f (t)δ(t − τ)dt � lim�=⇒0

∫ ∞
−∞ f (t)hδ(t − τ)dt =

f (τ )

2. the Laplace transform is constant: . L{δ(t)} �
∫ ∞
0− δ(t)e−st dt = 1

Definition 1.4 (Unit Step) The unit step function is defined as 

. θ(t) =
{
0 if t < 0

1 if t ≥ 0

Note that .θ(t), which is a discontinuous function, can be constructed from a limit of 
continuous functions 

. g�(t) �

⎧
⎪⎨

⎪⎩

0 if t < −�
1
�

(t + �) if − � ≤ t < 0

1 if t ≥ 0

,

Fig. 1.4 The continuous-time impulse function (i.e., Dirac delta). [Left] Dirac delta. [Middle] The 
construction of the Dirac delta as the limit of rectangles. [Right] The construction of the Dirac delta 
as the limit of triangles, which further emphasizes that the construction of the Dirac delta is not 
unique



10 1 Introduction and System Definitions

Fig. 1.5 The continuous-time unit step. [Left] The limit of a sequence of continuous functions.g�. 
[Right] The unit step function, which.g� approaches as. �→ 0

as .θ(t)� lim�→0 g�(t). A visualization is shown in Fig. 1.5. 

Definition 1.5 (Impulse and Step Responses) The impulse response (typically 
denoted .h(t)) of a system .H is the output signal when input .u(t) = δ(t). Likewise, 
the step response is the output when the input is the step function .θ(t). 

If impulse response .h(t) is known for system . H, then the output of any general 
input .u(t) can be determined via convolution 

. ( f ∗ g)(t) :=
∫ ∞

−∞
f (τ )g(t − τ)dτ.

This can be seen as follows: 

. u(t) =
∫ ∞

−∞
u(τ )δ(t − τ)dτ,

. y(t) =
∫ ∞

−∞
u(τ )H(δ(t − τ))dτ =

∫ ∞

−∞
u(τ )h(t − τ)dτ.

Here, .
∫ ∞
−∞ u(τ )δ(t − τ)dτ can be viewed as a superposition of shifted impulse 

functions, where .δ(t − τ) is weighted by .u(τ ). 
We also note the following relationship by recalling that the Laplace transform of 

a convolution is multiplication: 

. y(t) =
∫ ∞

−∞
u(τ )h(t − τ)dτ =⇒ Y (s) = U (s)H(s), ∴ H(s) = Y (s)

U (s)

Here, .Y and .U are the Laplace transforms of . y and . u, respectively, and .H(s) is 
called the input-to-output transfer function. It is exactly the Laplace transform of the 
impulse response. 

Let’s compute the impulse response of our system by substituting the shifted 
impulse function .u(t)= δ(t − τ), for some time shift .τ ∈R. By taking the Laplace 
transform across our system dynamics (1.6), we get the transfer function represen-
tation:
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. X (s) = (s I − A)−1(x0 + Bu(s)), Y (s) = C(s I − A)−1(x0 + Bu(s)) + Du(s).
(1.7) 

By taking the inverse Laplace transform across (1.7), we can obtain the solution of 
.x(t) and .y(t) as functions of the input .u(t) and initial condition . x0. 

Let’s return to the time domain and derive the solution to (1.6) that way. Using 
the integrating factor method similar to what we did before in the scalar case, we get 
the solution of .ẋ(t) = Ax(t) + Bu(t): 

.x(t) = �(t, t0)x0 +
∫ t

t0

�(t, s)Bu(s)ds. (1.8) 

Here, we usually call .�(t, τ ) � eA(t−τ) as the state-transition matrix, which 
propagates initial state .x0 along forward in time. 

Substituting in (1.8), the measurement equation can be expressed as: 

.

y(t) =Cx(t) + Du(t)

=C�(t, t0)x0 +
∫ t

t0

C�(t, s)Bu(s)ds + Du(t)

=C�(t, t0)x0 +
∫ t

t0

(C�(t, s)B + Dδ(t − s))u(s)ds

(1.9) 

where.δ(t − s) is the shifted Dirac delta. Thus, if we recall that.L{eAt } = (s I − A)−1, 
the expressions in (1.7) make more sense. 

Substituting in (1.8) and (1.9) in the time-domain yields: 

. h(t) :=
∫ t

t0

(C�(t, s)B + Dδ(t − s)) δ(s − τ)ds =
{
C�(t, s)B if t �= τ

C�(t, s)B + D if t = τ

Definition 1.6 (Zero-Input and Zero-State Responses) .�(t, t0)x0, which captures 
the system response without any control inputs, is called the zero-input response, 
and .

∫ t
t0

�(t, s)Bu(s)ds, which captures how the input affects the system, is called 
the zero-state response. 

Remark 1.3 Discrete-time systems can also be characterized by its impulse 
response. The discrete-time impulse function .δt is simply a stem of height 1 posi-
tioned at .t = 0, and so it is obvious that any discrete-time signal can be written as a 
linear combination of shifted impulses, .ut = ∑∞

k=0 ukδt−k . Moreover, the output to 
any input can be written as a convolution .yt = ∑∞

k=0 ukht−k , and after applying the 
.z-transform, .Y (z) = U (z)H(z).



12 1 Introduction and System Definitions

1.3 Classification of Systems 

Systems can be categorized in many different ways. 

Definition 1.7 (CT versus DT) A  system  is  continuous-time (CT) if all its signals 
are CT. Likewise, a system is discrete-time (DT) if all its signals are DT.

We will henceforth abbreviate continuous-time as CT and discrete-time as DT. 
As a brief digression, there are also hybrid systems, where both CT and DT 

signals are involved in the system. An example of this is a thermostat with two dis-
crete modes (ON/OFF), trying to regulate a room around the temperature. C ∈ [C,C]
degrees. Here, .C and .C are the minimum and maximum possible temperatures that 
the thermostat can take, respectively. 

Let.x(t) be the temperature of the room at time. t . When the thermostat is OFF,  the  
temperature evolves according to the dynamics.ẋ(t)= − α(x(t) − C),  as  it  starts  to  
decrease towards . C . When the thermostat is ON, the temperature evolves according 
to the dynamics.ẋ(t)= − α(x(t) − C), as it starts to increase towards. C . Here,. α > 0
is the rate of the temperature’s change. 

The state of the overall system can be represented in two parts: .x(t)∈R
≥0 is the 

continuous temperature of the system, while .q(t)∈ {ON,OFF} is the discrete mode. 
In fact,.q(t) can still be interpreted as a CT signal, but it can be treated like a discrete 
object; this is shown in Fig. 1.6. 

Definition 1.8 (SISO versus MIMO) A  system  is  single-input, single-output (SISO) 
if it only has one input .u(t) and one output .y(t). Likewise, it is multi-input, multi-
output (MIMO) if it only has multiple inputs .u1(t), . . . , uM(t) and multiple outputs 
.y1(t), . . . , yN (t). 

Remark 1.4 Both SISO and MIMO systems can be related to each other by a vector 
representation. For example, a vector state .x(t)∈R

n can be thought of as a single 
vector input, or multiple scalar inputs .x(t) � [x1(t), . . . , xn(t)]�. 

Given Remark 1.4, one might wonder how to tell the difference between a SISO 
and a MIMO system. In general, it depends on the application of interest. For exam-
ple, wireless communication involving multiple transmitters and receivers requires 
different hardware than wireless communication involving a single transmitter and 
receiver pair. Written mathematically, however, the representation of each system 
may seem the same. 

Fig. 1.6 A sample trajectory 
of.q(t), a CT signal that can 
be interpreted in DT by a 
choice of “switching times” 
.{ti }
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Definition 1.9 (Linear) System .H is said to be linear if it satisfies the following 
two properties: 

1. additivity:  i  f .y1(t) = H{x1}(t) and .y2(t) = H{x2}(t), then . y1(t) + y2(t) =
H{x1 + x2}(t). 

2. homogeneity:  i  f .y(t) = H{x}(t), then for all scalars .α ∈R, .αy(t) = H{αx}(t). 
Combined together, a system is linear iff .αy1(t) + βy2(t) = H{αx1 + βx2}(t) for 
any scalars .α, β ∈R and any inputs .x1, x2 :R→R with respective outputs . yi =
H{xi }, ∀ i = 1, 2. 

Definition 1.10 (TI versus TV) For any signal . f , define the time-shift operator as 
.Sτ { f }(t) � f (t − τ) ∀t ∈ R. System.H is time-invariant (TI) if for any input signal 
. x , it commutes with .Sτ for any . τ : 

. y(t) = H{x}(t) =⇒ Sτ {y}(t) = Sτ {H{x}}(t) = H{Sτ {x}}(t), ∀ τ, t ∈ R

and it is time-varying (TV) if this property is not satisfied. 

Example 1.3 (TI versus TV ) The squaring system, defined by .y(t)= x2(t),  is  TI,  
while the system.y(t)= t x2(t) clearly isn’t. . �
Definition 1.11 (Causal) System.H is causal if its output depends only on the past 
and present input values. 

. ∀ τ ∈ R,

⎧
⎪⎨

⎪⎩

y1(t) = H(x1(t))

y2(t) = H(x2(t))

where x1(t) = x2(t) ∀ t ≤ τ

=⇒ y1(τ ) = y2(τ )

Example 1.4 The following two systems are respectively classified as 

. y(t) =
∫ t+1

t−1
u(s) ds is noncausal, y(t) =

{
2u(t) + 3 if t ≥ 1

0 else
is causal

. �
Definition 1.12 (Memoryless) CT system.H is memoryless if its output.y(t) depends 
only on the input .x(t) at the same time .t ∈R. 

Note that memoryless systems are always causal, but causal systems are not always 
memoryless since they might also depend on past inputs. 

Another way of defining a memoryless system is whether it requires “memory” 
of “any variables” in order to influence the current output y(t). For example, . y(t) =
u(t)2 is a memoryless system, while .y(t) = u(t) + u(t − 1) is not. Pure functions 
of time (e.g., .y(t) = t) are not memoryless because it requires you to store the time 
variable. t into memory. However,.y(t) = t “is” memoryless if your input signal itself 
is .u(t) = t . For the same reason, .y(t) = tu(t) is also not memoryless for general 
inputs .u(t).
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Definition 1.13 (Lumped versus Distributed) System .H is lumped (or lumped-
parameter) if its state-space is finite-dimensional. On the other hand,.H is distributed 
(or distributed-parameter) if its state-space is infinite-dimensional. 

Lumped systems are typically modeled where dependent variables of interest 
are a function of time alone. For instance, the pendulum and RLC circuit examples 
examined in Examples 1.1 and 1.2 are both lumped systems. Distributed systems have 
dependent variables which are functions of time and one or more spatial variables 
(e.g., partial differential equations). However, lumped approximations to distributed 
systems can be made. 

Example 1.5 The following systems have the respective classifications 

. y(t) =
∫ t+1

t−1
u(s) ds is distributed,

∂y(t, x)

∂t
=∂2y(t, x)

∂x2
+ u(t, x) is also distributed

The second system is a well-known PDE called the Heat Equation. It can have 
an approximate lumped representation via sampling the infinite-dimensional, con-
tinuous state .y(t, x) at specific points in space .{x1, . . . , xN }. See Fig. 1.7 for a 
visualization. . �

Throughout this textbook, we will mostly focus on lumped systems. 
As a brief remark, many concepts in control systems engineering use the termi-

nology “distributed” to mean “distributed control”, which differs from “centralized 
control” in the following way. Centralized control refers to a system where a single 
central unit or authority makes decisions and manages the entire operation, with 
all control functions concentrated in one location. In mathematical terms, we are 
designing a single. u signal for entire system.ẋ = Ax + Bu. Many introductory con-
trol systems courses (including linear systems) focus primarily on the centralized 
control setting. In contrast, distributed control involves multiple independent units 
or controllers that work collaboratively, with decision-making and control tasks dis-
tributed across different nodes or agents. In mathematical terms, we are designing 

Fig. 1.7 A lumped approximation [Right] to a distributed system [Left]
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a .ui for local subsystems, represented by .ẋi = Aix + Biui , where the full state is 
given by .x � (x�

1 , . . . , x�
N ) and .N ∈N is the number of subsystems. 

While centralized control offers simplicity and easier coordination, it may suf-
fer from bottlenecks and single points of failure. Distributed control, on the other 
hand, is more scalable and flexible, especially for larger systems. However, it can be 
more complicated to implement due to the need for communication and coordination 
among the decentralized units. 

The terminology “distributed” as described above is more relevant to decentralized 
control, multi-agent systems, and other related subfields. However in the context 
of Definition 1.13, “distributed” means something else. note that both centralized 
and decentralized/distributed systems are lumped-parameter systems, because their 
state admits a finite-dimensional vector representation. 

Definition 1.14 (Internal versus External) Another way to categorize system 
models is internal versus external models. 

• Internal models… 

– …describe the input, output signals like . u and. y, as well as all relevant internal 
state variables . x. 

– …are more suitable for representing complex systems, including nonlinear, 
time-varying, and more. Thus, it is often used in modern control approaches. 
For example, state-space models are one of the most common types of internal 
models. 

• External models… 

– …describe only how the input. u affects the output. y. The system itself is viewed 
as a black box functions. 

– …is typically only valid for LTI systems (although some research is being 
done towards extending external model representation beyond LTI systems). 
For example, transfer function models are one of the most common types of 
external models. 

1.4 Mathematical Reviews 

To conclude this introductory chapter, we provide a brief review of some of the linear 
algebra and analysis background that will be useful for the rest of the textbook. 

1.4.1 Matrix Properties, Matrix Algebra 

We start with some elementary properties and operations on matrices.
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Definition 1.15 (Row Echelon Form (REF)) A  matrix  is  in  row echelon form if the 
followings hold.

• Rows with zero entries must be below any row with entries. 
• The leading entry (that is, the left-most nonzero entry) of every nonzero row, called 
the pivot, is on the right of the leading entry of every row above. 

Many properties of matrices may be easily deduced from their row echelon form, 
such as the rank and the kernel. 

Definition 1.16 (Reduced Row Echelon Form (RREF)) A  matrix  is  in  reduced row 
echelon form if the f ollowings hold.

• It is in row echelon form. 
• The leading entry in each nonzero row is 1 (called a leading one). 
• A leading one is the only non-zero entry in its column. 

Definition 1.17 (Elementary Row Operations) There are three types of elementary 
row operations. 

• Swap two rows of a matrix. 
• Multiply a nonzero scalar to a row of a matrix. 
• Given two different rows .r1 and . r2, change .r2 into .r2 + cr1 where . c is a scalar. 

Fact: One can use elementary row operations to reduce any matrix into a reduced 
row echelon form. While a matrix may have several row echelon forms, it can have 
only one unique reduced row echelon form. 
Solving linear equations of the form .Ax = y: Form the augmented matrix .[A|y], 
and reduce this augmented matrix into a row-reduced echelon form; after being 
reduced, the system is trivial to solve. 

Definition 1.18 Let .A be an .m-by-. n matrix with entries in the set . F where . F = R

or .F = C. The column space or the range space of .A is defined as the set of all 
possible linear combinations of the columns of . A. The dimension of the column 
space is called the rank of the matrix . A. The kernel or nullspace of .A is defined as 
.ker(A) = {v ∈ F

n : Av = 0}. The dimension of .ker(A) is called the nullity of . A. 

Definition 1.19 The row space of .A is defined as the set of all possible linear 
combinations of the rows of . A. 

Theorem 1.1 (“row rank” equals “(column) rank”) The dimension of the row space 
of . A equals the rank of . A. 

Theorem 1.2 (Rank-Nullity Theorem) Let .A be an .m-by-. n matrix with entries in 
the set . F where .F = R or .F = C. Then, we have 

. rank(A) + nullity(A) = n. (1.10)
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Definition 1.20 (Determinant) Let .A be an .n-by-. n square matrix with complex 
entries. 

. det(A) =
∑

σ∈Sn
sgn(σ )

n∏

i=1

Ai,σ (i) (1.11) 

where.Sn is the set of all permutations on the set.{1, 2, . . . , n}, i.e., set of all bijections 
from the set.{1, 2, . . . , n} onto itself. Here,.sgn(σ ) = 1 for even permutations. σ ∈ Sn
and .sgn(σ ) = −1 for odd permutations .σ ∈ Sn . 

Theorem 1.3 The function .det is multilinear as a function on the columns of the 
input matrix, i.e., as .det : Cn × · · · × C

n → C.  Also  , .det(A) is zero whenever . A has 
two identical columns. Finally, .det(idn) = 1. 1

Definition 1.21 (Trace) Let .A be an .n-by-. n square matrix with complex entries. 
The trace of . A is defined as .tr(A) = ∑n

i=1 Aii . 

Proposition 1.1 (Cyclic invariance of trace) Let .Ai be .n-by-. n square matrices with 
complex entries. Then, the following equality holds. 

. tr(A1A2A3 · · · An) = tr(A2A3 · · · An A1) = tr(A3A4 · · · An A1A2) = · · · (1.12) 

Definition 1.22 (Inverse matrices) Let . A be an.n-by-. n square matrix with complex 
entries. A complex matrix .B with  the  same  size  is  said  to  be  the  inverse of .A if 
.AB = BA = idn . 

Proposition 1.2 The following hold. 

• If an inverse matrix exists, it is unique. The unique inverse of. A (if exists) is denoted 
as .A−1. 

• If a square matrix .A has real entries and .A−1 exists, then .A−1 has real entries, 
too. 

• If. A,. B are.n-by-. n matrices and.AB = id, then. A and. B are inverses to each other. 

1.4.2 Spaces and Basis 

Several types of mathematical spaces will be useful in our study of linear systems. 

Definition 1.23 (Field) Define.F � (F,+, ·) such that . F is a set containing at least 
two elements, .+ : F × F → F is an addition operator, and .· : F × F → F is a 
multiplication operator. Then . F is called a field if the following axioms hold: 

(A) • uniqueness: .∀ a, b ∈ F , .a + b is uniquely defined. 
• commutativity: .a + b = b + a.

1 Actually, these three properties uniquely determine the function.det : Cn × · · · × C
n → C. 
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• associativity: .(a + b) + c = a + (b + c), where .c ∈ F also. 
• additive identity: .∃ 0 ∈ F s.t. .∀ a ∈ F , .0 + a = a. 
• additive inverse: .∀ a ∈ F, ∃ (−a) ∈ F s.t. .a + (−a) = 0. 

(M) • uniqueness: .∀ a, b ∈ F , .a · b(≡ ab for simplicity)) is uniquely defined. 
• commutativity: .ab = ba. 
• associativity: .(ab)c = a(bc), where .c ∈ F also. 
• multiplicative identity: .∃ 1 ∈ F s.t. .∀ a ∈ F , .1a = a. 
• multiplicative inverse: .∀ a ∈ F, ∃ a−1 ∈ F s.t. .aa−1 = 1. 
• “non-degenerate”: .0 �= 1. 

(D) distributivity: .a(b + c) = ab + ac. 

Remarks It can be shown that the identity elements. 0 and. 1 are unique. Furthermore, 
if .ab = 0, then .a = 0 or .b = 0. 

Definition 1.24 Define .V � (V,F,+, ·) such that .V is a set of elements (vec-
tors), .+ : V × V → V is an addition operator, and .· : F × V → V is a scalar 
multiplication operator. Then .V is called a vector space if the following axioms 
hold: 

(A) • commutativity: .v + w = w + v. 
• associativity: .(v + w) + u = v + (w + u), where .u ∈ V also. 
• additive identity: .∃ 0 ∈ V s.t. .∀ v ∈ V , .0 + v = v. 
• additive inverse: .∀ v ∈ V, ∃ (−v) ∈ V s.t. .v + (−v) = 0. 

(SM) • associativity: .(ab)v = a(bv), where .b ∈ F also. 
• distributivity 1: .a(v + w) = av + aw. 
• distributivity 2: .(a + b)v = av + bv. 
• multiplicative identity: .∃ 1 ∈ F such that .1v = v,∀ v ∈ V . 

Definition 1.25 (Subspaces) A subspace.W of a vector space. V is a subset of vectors 
that itself forms a vector space. A necessary and sufficient condition for a nonempty 
subset to form a subspace is that it must be closed w.r.t. vector addition and scalar 
multiplication. 

Definition 1.26 (Linear (In)dependence) Let . V be a vector space over field . F and 
let .W � {v1, . . . , vn} ⊂ V be a subset of vectors. .W is linearly dependent if there 
exist .c1, . . . , cn ∈ F not all . 0 such that 

. c1v1 + · · · + cnvn = 0

.W is linearly independent if the only scalars which satisfy the condition above is 

.c1 = · · · = cn = 0. 

Definition 1.27 (Dimension) The maximal number of linearly independent vectors 
in a vector space . V is the dimension of . V (i.e., dim. V).
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Definition 1.28 (Basis and Span) A  se  t .W ⊂ V of vector space. V is a basis if every 
vector in . V can be expressed as a unique linear combination of the vectors in .W: 

. W � {v1, . . . , vN } =⇒ V � {c1v1 + · · · + cNvN : c1, . . . , cN ∈ F}

For example, . {e!, . . . , en} � {[1, 0, . . . , 0]�, [0, 1, . . . , 0]�, . . . , [0, 0, . . . , 1]�} ⊂
R

n is often called the standard basis of .Rn .  The  (linear) span of a set of vectors . S is 
the set of all linear combinations of the vectors in . S. For example, .V = span(W). 

Lemma 1.1 Let .V over field . F be a vector space such that dim .V = n ∈ N. Then 
any subset of . V which contains . n linearly independent vectors forms a basis for . V . 
(Consequently, .N in the notation of .W in Definition 1.28 is always equal to . n.) 

Definition 1.29 (Linear Operator) Let. V and.W be two vector spaces over the same 
field . F, and define a function .T : V → W such that .wi = f (vi ) for .i = 1, 2. Then 
.T is said to be a linear mapping (or linear transformation)  if  f . T (α1v1 + α2v2) =
α1w1 + α2w2 for any.α1, α2 ∈ F. Furthermore, . T is a linear operator when. W = V
(a linear map which maps to the same vector space as its domain). 

Definition 1.30 (Invariant) Let .V be a vector space and .T : V → V be a linear 
operator. A subspace .W ⊆ V is called an invariant subspace under . T if 

. v ∈ W =⇒ T (v) ∈ W

or equivalently, .TW ⊆ W . 

Theorem 1.4 (Rank-Nullity Theorem, Revisited) Let .T : V → W be a linear map-
ping between vector spaces .V and .W over the same field . F, and let .V be finite-
dimensional. Then Im.(T ) and Ker.(T ) are linear subspaces of . V which are invariant 
under . T , and 

. rank(T )
︸ ︷︷ ︸

�dimIm(T )

+ nullity(T )
︸ ︷︷ ︸

�dimKer(T )

= dimV

(Because a matrix is a type of linear mapping, the same property holds–see 
Theorem 1.2.) 

Theorem 1.5 (Range-Nullspace Decomposition) Suppose we have the same setup 
as in Theorem 1.4. If, in addition, Im.(V) ∩ Ker(V) = {0}, then 

. V = Im(V) ⊕ Ker(V)

is a decomposition of . V as a direct sun of subspaces invariant under . T . 

Lemma 1.2 (Range-Nullspace Decomposition of .Cn) For .A∈C
n, there exists a 

smallest .k ∈ N such that 

.C
n = Im(Ak) ⊕ Ker(Ak)
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Definition 1.31 (Vector norms) Let .V be a vector space over .F = R or .F = C.  A  
function .‖·‖ : V → R is called a (vector) norm on .V if the followings hold. 

• .‖v‖ ≥ 0 for all . v ∈ V
• .‖v‖ = 0 if and only if . v = 0
• .‖cv‖ = |c| ‖v‖ for all .c ∈ F and . v ∈ V
• .‖v1 + v2‖ ≤ ‖v1‖ + ‖v2‖ for all .v1, v2 ∈ V (triangle inequality) 

Definition 1.32 (Inner products) Let .V be a vector space over .F = R or .F = C.  A  
function .〈·, ·〉 : V × V → F is called an inner product on.V if the followings hold. 

• .〈v,w〉∗ = 〈w, v〉 where . 
∗ denotes complex conjugate 

• . 〈c1v1 + c2v2, w〉 = c1 〈v1, w〉 + c2 〈v2, w〉
• . 〈v, v〉 ≥ 0
• .〈v, v〉 = 0 if and only if . v = 0

A pair .(V, ‖·‖) is called a normed space if .‖·‖ : V → R is a norm on . V .  In  
an analogous manner, we can define inner product spaces as pairs .(V, 〈·, ·〉) for 
which.〈·, ·〉 : V → F is an inner product on. V . We often omit the inner product/norm 
symbols and simply say that .V is an inner product/normed space. 

Theorem 1.6 (Inner product spaces are normed spaces) Let .(V, 〈·, ·〉) be an inner 
product space. Define .‖v‖ = √〈v, v〉. Then, .(V, ‖·‖) is a normed space. 
Theorem 1.7 (Cauchy-Schwarz inequality) If .V is an inner product space, then for 
any vectors .v,w ∈ V , we have 

. |〈v,w〉| ≤ ‖v‖ ‖w‖ (1.13) 

where .‖·‖ is defined as in Theorem 1.6. 

Definition 1.33 (Induced norms) Let . V , .W be vector spaces over .F ∈ {R,C}. 
Assume moreover that .V is finite dimensional. 2 Let .L(V,W ) be the set of all lin-
ear transformations from .V to . W . Then, this set is a vector space over . F with the 
definitions.(cT )(v) = c(T (v)) and.(T1 + T2)(v) = T1(v) + T2(v). Moreover, each 
linear transformation.T ∈ L(V,W ) can be assigned a norm, called the induced norm, 
which is defined as follows. 3

. ‖T ‖ = sup
v �=0

‖T (v)‖
‖v‖

(

= max‖v‖=1

‖T (v)‖
‖v‖

)

. (1.14) 

Of course, the induced norm is indeed a norm.

2 This condition is needed to ensure that the definition for the induced norm results in a finite value; 
i.e., the supremum is not equal to.∞. 
3 The maximum is attained because. V is finite dimensional; this is a consequence of the Heine-Borel 
theorem. 
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Definition 1.34 (Completeness of normed spaces) Let.(V, ‖·‖) be a normed space. If 
for every sequence.v1, v2, · · · in .V such that . limm,n→∞ ‖vm − vn‖ = 04 there exists 
a.v ∈ V such that.limn→∞ ‖vn − v‖ = 0, the normed space. V is said to be complete. 

Theorem 1.8 A normed space .(V, ‖·‖) is complete if and only if every absolutely 
convergent series in .V converges, i.e., if and only if .

∑∞
n=1 ‖vn‖ < ∞ implies the 

convergence of .
∑∞

n=1 vn to an element in .V for any sequence .{vn}. 
Definition 1.35 (Equivalence of norms) Let .V be a vector space over . R or . C, and 
let .‖·‖1 and .‖·‖2 be norms on . V . These two norms are said to be equivalent if there 
exists two positive constants .C1,C2 such that .‖v‖2 ≤ C1 ‖v‖1 and . ‖v‖1 ≤ C2 ‖v‖2
for all .v ∈ V . 

Theorem 1.9 Let .V be a finite dimensional vector space over .R or . C. Then, it is 
complete under any norm on . V . Also, any two norms on .V are equivalent. 

Definition 1.36 (Banach spaces and Hilbert spaces) A complete normed space is 
called a Banach space. A complete inner product space (i.e., an inner product space 
which is complete as a normed space) is called a Hilbert space. 

If a Banach (Hilbert) space’s field of scalars . F equals . R (. C), it is said to be a real 
(complex) Banach (Hilbert) space. 

Definition 1.37 (Vector projection) Let .V be an inner product space, and let . u, v ∈
V . Suppose .u �= 0. Define the projection of . v onto . u as 

. proju(v) = 〈v, u〉
‖u‖2 u. (1.15) 

Note that this is a linear transformation from.V into itself. 

Theorem 1.10 (Gram-Schmidt orthogonalization) Let .v1, v2, . . . , vn ∈ V be lin-
early independent vectors in an inner product space . V . Define . u1, u2, . . . , un ∈ V
as follows. 

.u1 = v1 (1.16a) 

.u2 = v2 − proju1(v2) (1.16b) 

.u3 = v3 − proju1(v3) − proju2(v3) (1.16c) 

.
... (1.16d) 

Then,.ui �= 0 for all. i ,.span(u1, u2, . . . , uk) = span(v1, v2, . . . , vk) for all.1 ≤ k ≤ n, 
and .ui are mutually orthogonal. 

Remark 1.5 If we define .ei = ui
‖ui‖ for all . i , . span(e1, e2, . . . , ek) = span(v1, v2,

. . . , vk) for all .1 ≤ k ≤ n, and .ei are orthonormal. With this additional step, the 
whole procedure is called the Gram-Schmidt orthonormalization.

4 Such sequences are called Cauchy sequences. 



22 1 Introduction and System Definitions

1.4.3 Diagonalization and Jordan Form 

A  matri  x .A∈R
n×n can be viewed as a linear function which maps .Rn to itself: if 

.Ax= y for some .x, y∈R
n , then . x is mapped to . y. Recall that .Rn has the standard 

basis .{e!, . . . , en}. Then .Aek contains the coefficients use to represent vector . Aek
with respect to the standard basis. 

. 

⎡

⎣
| |

Ae1 · · · Aen
| |

⎤

⎦ = A

⎡

⎣
| |
e1 · · · en
| |

⎤

⎦

Consider a new basis .{v1, . . . , vn} of .Rn such that .A has a different representa-
tion . Ã∈R

n×n . Note that . Ã also maps .Rn to itself: . Ãx̃= ỹ. Here, .x̃, ỹ∈R
n are the 

representations of .x, y with respect to this new basis: 

. x̃ = V−1x, ỹ = V−1y, where V �

⎡

⎣
| |
v1 · · · vn
| |

⎤

⎦

This transformation procedure is often called a change-of-basis.  (Exercise: .V is a 
nonsingular matrix. Why?) We can relate the two matrices in the following way: 

. Ãx̃ = ỹ =⇒ ÃV−1x = V−1y =⇒ V ÃV−1
︸ ︷︷ ︸

≡A

x = y

The relationship .A= V ÃV−1, equivalently . Ã= V−1AV or .V Ã= AV , is called a 
similarity transformation. Note that 

. A

⎡

⎣
| |
v1 · · · vn
| |

⎤

⎦ =
⎡

⎣
| |

Av1 · · · Avn
| |

⎤

⎦ =
⎡

⎣
| |
v1 · · · vn
| |

⎤

⎦ Ã,

which means that the . kth column of . Ã is the representation of .Avk with respect to 
the new basis. 

Similarity transformations are useful for transforming a matrix to a simpler form. 
Before discussing various common forms, we recall a few more definitions. 

Definition 1.38 (Eigenvalues and Eigenvectors) Scalar .λ ∈R (or . C) is called an 
eigenvalue of square matrix .A∈R

n×n if there exists a vector .v∈R
n (or .Cn), . v �= 0

such that.Av= λv. Vector. v is the corresponding (right) eigenvector of. A associated 
with. λ.  (The  left eigenvector .w� ∈R

n (or.Cn),.w �= 0 satisfies the equation.wA= λw.) 

Eigenvalues are the solutions to the characteristic equation .χ(λ)= 0, where 
.χ(λ)� det(A − λI ) is the characteristic polynomial. The idea is that if .(A − λI ) is 
nonsingular, the only solution to .(A − λI )v= 0 is .v= 0, and so eigenvalues . λ are
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the places where.(A − λI ) are singular, i.e., have determinant zero. Because.χ(λ) is 
a polynomial of degree . n, there are always . n eigenvalues associated with . A. 

Definition 1.39 (Companion Matrices) Matrices of the form 

.. 

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 0 · · · 0 −αn

1 0 · · · 0 −αn−1

0 1 · · · 0 −αn−2
...

...
. . .

...
...

0 0 · · · 1 −α1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

⎡

⎢
⎢
⎢
⎢
⎢
⎣

−α1 1 0 · · · 0
−α2 0 1 · · · 0

...
...

...
. . .

...

−αn−1 0 0 · · · 1
−αn 0 0 · · · 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

and their transposes are called companion form matrices. They all have characteristic 
polynomials of the form: 

. χ(λ) = λn + α1λ
n−1 + α2λ

n−2 + · · · αn−1λ + αn,

with coefficients that can be easily determined from the matrix entries. 

Now, we are ready to review some common similarity transformations of square 
matrices. There are two cases depending on the structure of the eigenvalues. 

1. All distinct eigenvalues: .λi �= λ j for all .i, j = 1, . . . , n and .i �= j . 
Let .{v1, . . . , vn} denote the eigenvectors corresponding to the eigenvalues 
.{λ1, . . . , λn}. Clearly, .{v1, . . . , vn} are linearly independent, and can be used to 
form a basis for .Rn (Lemma 1.1). This gives rise to a similarity transformation 

. � = V−1AV, where V �

⎡

⎣
| |
v1 · · · vn
| |

⎤

⎦ and � �

⎡

⎢
⎢
⎢
⎣

λ1

λ2

. . .

λn

⎤

⎥
⎥
⎥
⎦

This particular similarity transformation .A → � is called diagonalization. 
(Exercise: Is this diagonalized form.� unique?) 

2. Some eigenvalues are repeating: there exist some .i, j = 1, . . . , n and . i �= j
such that .λi = λ j . 
The similarity transformation in this case is known as the Jordan canonical form: 

.J = V−1AV, where V �
⎡

⎣
| |
V1 · · · Vr
| |

⎤

⎦ and J �

⎡

⎢
⎢
⎢
⎢
⎣

J1
J2

. . .

Jr

⎤

⎥
⎥
⎥
⎥
⎦

, Jk �

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

λk 1 0 · · · 0
0 λk 1 · · · 0
.
.
.

.

.

.
.
.
.

. . .
.
.
.

0 0 0 · · · 1
0 0 0 · · · λk

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦
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Here, .r < n, .k = 1, . . . , r , and each .Jk ∈R
nk×nk is called a Jordan block, where 

.
∑

k nk = n. Each submatrix .Vk ∈R
n×nk contains the generalized eigenvectors 

corresponding to eigenvalue . λk : 

. Vk �

⎡

⎣
| |

v(k)
1 · · · v(k)

nk| |

⎤

⎦ such that ker(A − λk I )
nk = span{v(k)

1 , . . . , v(k)
nk }

and are generated by 

. v(k)
nk � v(k) → v(k)

nk−1 � (A − λk I )v(k)
nk → v(k)

nk−2 � (A − λk I )v
(k)
nk−1 → · · · → v(k)

1 � (A − λk I )v
(k)
2

where .v(k) �= 0 is the vector satisfying .(A − λk I )v(k) = 0. Note that these gen-
eralized eigenvectors are still linearly independent, and so can be used as a 
basis. 

1.4.4 Functions of Square Matrices 

The easiest class of functions to study are polynomials. Recall that polynomials 
. f : R → R of scalar variables .x ∈ R are defined 

.p(x) = c0x
k + c1x

k−1 + · · · + cn−1x + cn (1.17) 

To extend polynomials to matrices .A∈R
n×n , we first define the matrix power . Am

for any .m ∈ N to be .
∏m

i=1 A (i.e., . A multiplied .m times) and .A0 � I .  I  f . A is invert-
ible, negative powers of .A can be defined .A−m � (A−1)m for any .m ∈Z

≥0. Some 
properties of the matrix power include .Am Ak = Am+k for any .m, k ∈Z. 

The matrix version of (1.17) can then be expressed 

.p(A) = c0A
k + c1A

k−1 + · · · + cn−1A + cn I (1.18) 

Consider the similarity transform. Ã � V−1AV . Then for any matrix polynomial 
of the form (1.18), we have.p( Ã) = V−1 p(A)V . Furthermore, for any block-diagonal 
. A, it follows that 

. A =

⎡

⎢
⎢
⎢
⎣

A1

A2

. . .

Ar

⎤

⎥
⎥
⎥
⎦

=⇒ p(A) =

⎡

⎢
⎢
⎢
⎣

p(A1)

p(A2)

. . .

p(Ar )

⎤

⎥
⎥
⎥
⎦

This gives us an easy way of computing polynomials of .A matrices which can be 
diagonalized or decomposed into Jordan form.
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Definition 1.40 (Rational Functions) Scalar-valued functions . f is a rational func-
tion iff it can be written as .p(x)/q(x) for two polynomials . p and . q. In the square 
matrix case: 

. f (A) = p(A)

q(A)
� p(A)q(A)−1 = q−1(A)p(A)

can be defined as long as .q(A) is invertible. 

Theorem 1.11 (Cayley-Hamilton) Every complex-valued square matrix . A∈C
n×n

satisfies its own characteristic equation: 

. χ(A) � An + c1A
n−1 + c2A

n−2 + · · · + cn−1A + cn I = 0

A consequence of this is that the matrix power .An can be expressed as a linear 
combination of all the lower powers .{Ak : 0 ≤ k ≤ n − 1}. 
Proof This is easy to check for upper triangular matrices. From the fact that every 
complex-valued square matrix is similar to an upper triangular matrix, it can be 
generalized to arbitrary square matrices. �

Definition 1.41 (Power Series) A power series. f (x) in scalar variable. x is an infinite 
series of the form 

. f (x) =
∞∑

k=0

ckx
k

with scalar coefficients .{ck}. Likewise, power series of matrices can be written as 

. f (A) =
∞∑

k=0

ck A
k

A nice property is that if the scalar power series . f (x) is convergent for all . x , then 
the matrix equivalent . f (A) is convergent too, for any square . A. 

One especially common matrix function is the matrix exponential .eA, which can 
be defined by its power series 5

.eA � I + A + 1

2
A2 + 1

3! A
3 + · · · =

∞∑

k=0

1

k! A
k (1.19)

5 If two elements in a Banach space .V can be multiplied in a “nice” way, and the norm satisfies 
.‖xy‖ ≤ ‖x‖ ‖y‖ for all vectors. x and. y, .V is called a Banach algebra. If the multiplication has an 
identity element, the Banach algebra is said to be unital. In unital Banach algebras, elements can 
be exponentiated by an analogous power series definition; the matrix exponential is a special case 
in which.V = R

n×n or.V = C
n×n . 
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Properties of the matrix exponential include 6: 

. 1. e0 = I

2. Av = λv =⇒ eAv = eλv

3.
(
eA

)� = eA
�

4. det(eA) = etr(A)

5. if X,Y ∈ R
n×n commute, then eX+Y = eXeY = eY eX

6.
(
eA

)−1 = e−A

There are several ways we can compute the matrix exponential. We will see these 
discussed in class. 

1. direct computation (easy only if .A has special properties, e.g., nilpotent, 
idempotent, diagonal, etc.) 

2. via Cayley-Hamilton theorem 
3. via Jordan decomposition 

Some Recommended References 

Note that this section is just a brief summary to inform the reader about which 
topics from linear algebra and analysis are the most relevant in the study of lin-
ear systems. To the student who wishes to recover their full knowledge on these 
preliminaries, we recommend the following references, among many others. A stan-
dard undergraduate-level treatment of linear algebra is Axler’s Linear Algebra Done 
Right [ 1] and Strang’s Introduction to Linear Algebra [ 2]. The standard reference 
for real analysis is Rudin’s Principles of Mathematical Analysis [ 3]. References 
about matrix computations, properties, and related equations include Golub and van 
Loan’s Matrix Computations [ 4] and Horn and Johnson’s Matrix Analysis [ 5]. A more 
advanced and rigorous discussion of linear algebra topics is Hoffman and Kunze’s 
Linear Algebra [ 6]. And a more advanced discussion of real analysis subject, such 
as infinite dimensional Banach and Hilbert spaces, is Brezis’ Functional Analysis, 
Sobolev Spaces and Partial Differential Equations [ 7].

6 Property 5: if .X and. Y do not commute, there is a formula called the Baker-Campbell-Hausdorff 
formula which computes a solution. Z to.eX eY = eZ . 
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Chapter 2 
Characteristic Modes 

2.1 The Matrix Exponential 

In the previous chapter, we considered the controlled system dynamics . ẋ(t) =
Ax(t) + Bu(t) and obtained a solution.x(t) in terms of the matrix exponential.eA(t−s). 
The question we will address in the present chapter is as follows: how do we actually 
compute the matrix exponential? 

First, we will consider the matrix exponential without a time-index . t , i.e., .eA. 
Here, there are several ways to compute the matrix exponential. 

1. Direct calculation by truncation (using the properties of . A) 
2. the Cayley-Hamilton theorem 
3. the Jordan canonical form 

Let’s investigate each of these methods individually. 

2.1.1 Computing .eA via Power Series Expansion 

Just as how the scalar exponential function . f (x)= ex , .x ∈ R admits a power series 
representation, the matrix exponential also has a power series representation too. 
Given square matrix .A∈R

n×n ,  we  ha  ve

.eA �
∞∑

k=0

1

k! A
k = I + A + A2

2
+ A3

3! + · · · (2.1) 

This expression can be simplified depending on specific properties of . A: 

• If . A is nilpotent, i.e., .∃ n ∈N such that .An = 0, then the sum in (2.1) simply gets 
truncated: 
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. eA �
n−1∑

k=0

1

k! A
k .

• if. A is idempotent, i.e., .A2 = A, then. eA = I + ∑∞
k=1

1
k! A

k = I + (
∑∞

k=1
1
k! )A =

I + (e − 1)A. 
• if .A � diag(a1, . . . , an) is diagonal, then .eA is diagonal too: 

. eA =
⎛

⎜⎝
ea1 0

. . .

0 ean

⎞

⎟⎠

2.1.2 Computing .eA via Cayley-Hamilton Theorem 

For more general square matrices, direct computation of the matrix exponential is 
difficult. Instead, we can use one of the other two techniques, the Cayley-Hamilton 
theorem and the Jordan canonical form. 

Theorem 2.12 (Cayley-Hamilton) Every real-valued square matrix .A ∈ R
n×n sat-

isfies its own characteristic equation .det(A − λI ) = 0, i.e., 

. An = −cn−1A
n−1 − · · · − c2A

2 − c1A − c0 I

Theorem 2.12 implies that all powers of . A, i.e., .Am for .m ≥ n, can be written 
as linear combinations of .{Ak, 0 ≤ k ≤ n − 1}. For the matrix exponential, we can 
use Theorem 2.12 to simplify 

. eA =
∞∑

k=0

Ak

k! = α0 I + α1A + α2A
2 + · · · + αn−1A

n−1

where .αi are functions of .{c1, . . . , cn−1}. Thus, the infinite sum becomes truncated 
into a finite sum, and we can compute each term individually. 

2.1.3 Computing .eA via Jordan Canonical Form 

For a square matrix .A∈R
n×n , we recall the Jordan canonical form (JCF) (also 

called the Jordan decomposition)  a  s .A = V JV−1, where .J � diag(J1, . . . , Jr ) is a 
block-diagonal matrix, with Jordan block
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. Jk �

⎡

⎢⎢⎢⎢⎣

λk 1

λk
. . .

. . . 1
λk

⎤

⎥⎥⎥⎥⎦
∈ R

nk×nk ,

that has dimension .nk ∈ N such that .
∑r

k=1 nk = n, and 

. V �

⎡

⎣
| |
V1 · · · Vr

| |

⎤

⎦

is the stack of generalized eigenvectors, where .Vk ∈ R
n×n j is the submatrix of 

generalized eigenvectors corresponding specifically to eigenvalue . λk . 

. Vk �

⎡

⎣
| |

v
(k)
1 · · · v(k)

r
| |

⎤

⎦ such that ker(A − λk I )
nk = span{v(k)

1 , . . . , v(k)
r }.

Note that the Jordan decomposition gives us a block-diagonal structure . J . Thus, we 
can extend and apply the form of the matrix exponential for diagonal matrices to 
compute .eA for general . A. 

. eA = VeJ V−1 = V

⎡

⎢⎣
eJ1

. . .

eJr

⎤

⎥⎦ V−1 and eJk �

⎡

⎢⎢⎢⎢⎢⎢⎣

eλk eλk 1
2e

λk · · · 1
(nk−1)!e

λk

eλk eλk · · ·
eλk · · · ...

. . .

eλk

⎤

⎥⎥⎥⎥⎥⎥⎦
.

(2.2) 

The derivation of (2.2) follows from rote calculation. Note that we can write each 
Jordan block .Jk as a sum of a diagonal matrix and a nilpotent matrix. 

. Jk =
⎡

⎢⎣
λ1

. . .

λk

⎤

⎥⎦

︸ ︷︷ ︸
=λk I

+

⎡

⎢⎢⎢⎢⎣

0 1

0
. . .

. . . 1
0

⎤

⎥⎥⎥⎥⎦

︸ ︷︷ ︸
�Nk

Therefore, we can use the methods in Sect. 2.1.1 to compute the matrix exponential 
of each Jordan block, and subsequently compute te matrix exponential of. A. Consider
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a generic, smooth (i.e., infinitely-differentiable) real-valued function . f . By Taylor-
expanding . f (λ) at .λ = λk , we get 

. f (λ) = f (λk) + f ′(λk)(λ − λk) + 1

2
f ′′(λk)(λ − λk)

2 + · · ·

and replacing . λ with . A (while treating . f as a matrix-valued function now) leads to 

. f (A) = f (λk)I + f ′(λk)(A − λk I ) + 1

2
f ′′(λk)(A − λk I )

2 + · · ·

= f (λk)I + f ′(λk)(V JV−1 − λk I ) + 1

2
f ′′(λk)(V JV−1 − λk I )

2 + · · ·

= V

{
f (λk)I + f ′(λk)(J − λk I ) + 1

2
f ′′(λk)(J − λk I )

2 + · · ·
}
V−1

= V

{
f (λk)I + f ′(λk)Nk + 1

2
f ′′(λk)N

2
k + · · ·

}
V−1 = V f (Jk)V

−1.

Letting . f (A) = eA, f (λk) = eλk and . f (Jk) = eJk , we get 

. eJk = eλk I + eλk Nk + 1

2
eλk N 2

k + · · ·

= eλk I + eλk Nk + 1

2
eλk N 2

k + · · · + 1

(nk − 1)
eλk Nnk−1

k ,

where the second equality comes from the fact that .(Nk)
nk = 0 (due to nilpotence). 

Then, we have 

. eA = I + A + 1

2
A2 + · · ·

= V (I + J + 1

2
J 2 + · · · )

︸ ︷︷ ︸
=eJ

V−1

= V

⎡

⎢⎣
eJ1

. . .

eJr

⎤

⎥⎦ V−1,

with .eJk defined as above in (2.2). 

2.2 The Time-Indexed Matrix Exponential 

Now we are ready to address the original time-indexed matrix exponential .eAt .  The  
power series expansion still holds:
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. eAt �
∞∑

k=0

1

k! (At)
k = I + At + 1

2
A2t2 + 1

3
A3t3 + · · ·

and can be viewed as a matrix-valued function of time . t . 
There are several notable properties of the time-indexed matrix exponential: 

1. . Av = λv =⇒ eAtv = eλtv

2. . (eAt )	 = eA
	t

3. . det(eAt ) = etr(A)t

4. if .X,Y ∈ R
n×n commute, then . e(X+Y )t = eXt eY t = eY t eXt

5. . eA(t1+t2) = eAt1eAt2 = eAt2eAt1

6. . (eAt )−1 = e−At

7. If .A is skew symmetric, then .eAt is orthogonal for all . t : . eAt (eAt )	 = eAteA
	t =

eAte−At = I

We can use similar methods to explicitly compute the time-indexed matrix exponen-
tial. For example, with the JCF, we can compute .eAt as 

. eAt = V

⎡

⎢⎣

eJ1t

. . .

eJr t

⎤

⎥⎦ V−1 where eJk t �

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

eλk t teλk t 1
2 t

2eλk t · · · 1
(nk−1)! t

nk−1eλk t

eλk t teλk t · · ·
eλk t · · ·

.

.

.

. . .

eλk t

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.

Alternatively, we can also convert the matrix exponential to the frequency domain 
via Laplace transform. Recall that 

. L{t} =
∫ ∞

0
te−st dt = −1

s
te−st

∣∣∣
∞
0

+ 1

s

∫ ∞

0
e−st dt = 1

s2
,

and more generally, we can calculate via integration-by-parts: 

. L
{
1

k! t
k

}
=
∫ ∞

0

1

k! t
ke−st dt = − 1

k!
1

s
tke−st

∣∣∣
∞
0

+ 1

s

∫ ∞

0

1

(k − 1)! t
k−1e−st dt

= 1

sk−1

∫ ∞

0
te−st dt = 1

sk+1
.

Using the power series representation of the time-indexed matrix exponential, and 
taking the Laplace transform yields 

.L{eAt } =
∞∑

k=0

AkL
{
1

k! t
k

}
= 1

s

∞∑

k=0

(s−1A)k .



34 2 Characteristic Modes

Note that the scalar infinite series .
∑∞

k=0(s
−1x)k converges to . 1

1−s−1x if . |s−1x | < 1
due to the Geometric series. Therefore, 

.L{eAt } = 1

s

∞∑

k=0

(s−1A)k = s−1(I − s−1A)−1 = (s I − A)−1 (2.3) 

Deriving (2.3) in the way described above requires . s to be large enough for all 
eigenvalues of.s−1A to have magnitude less than 1. But.L{eAt } = (s I − A)−1 actually 
holds for all . s except at eigenvalues of . A. This can be more easily seen using the 
following alternative derivation. 

Recall the derivative property of the Laplace transform: . L{ d
dt f (t)} = sF(s) −

f (0) property. The time derivative of .eAt can be derived from the power series: 

. 
d

dt
{eAt } =

∞∑

k=0

1

k! A
k d

dt
{t k} =

∞∑

k=1

1

(k − 1)! A
ktk−1 =

( ∞∑

m=0

1

m! A
mtm

)
A = eAt A.

Furthermore, it can also be expressed as: 

. 
d

dt
{eAt } =

∞∑

k=0

1

k! A
k d

dt
{t k} =

∞∑

k=1

1

(k − 1)! A
ktk−1 = A

∞∑

m=0

1

m! A
mtm = AeAt .

. ∴ AeAt = eAt A

It shows that the matrix. A commutes with its matrix exponential. From there, the 
rest of the derivation follows straightforwardly: 

. AL{eAt } = L
{
d

dt
eAt

}
= sL{eAt } − e0 = sL{eAt } − I.

=⇒ (s I − A)L{eAt } = I.

. ∴ L{eAt } = (s I − A)−1

2.3 Equivalent Systems 

Following the Jordan decomposition method of computing the matrix exponential, 
we can simplify te analysis of linear systems by simply reviewing the change of 
coordinates principle from linear algebra. Define .x̃ := P−1x where 

.P :=
⎡

⎣
| |
P1 · · · Pr
| |

⎤

⎦ ∈ R
n×n
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is a nonsingular transformation, and . x̃ is the new coordinate of . x in the new basis. 
Then the LTI system.ẋ = Ax in the new.x̃-coordinate can be represented as: 

. P ˙̃x = APx̃ =⇒ ˙̃x = P−1APx̃ = Ãx̃

with .x̃(0) = P−1x0. The basis of the state space changes from .{e1, · · · , en} to 
.{P1, . . . , Pn}. 

In the case of diagonalizable . A, i.e., .A = V�V−1, we can change coordinates 
using . V . 

. ˙̃x = V−1AV x̃ = �x̃ =⇒

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

˙̃x1 = λ1 x̃1
˙̃x2 = λ2 x̃2
...

˙̃xn = λn x̃n

The coefficients . ci in (2.5) can be determined explicitly. 

. A = V�V−1 =
⎡

⎣
| |
V1 · · · Vn

| |

⎤

⎦

⎡

⎢⎣
λ1

. . .

λn

⎤

⎥⎦

⎡

⎢⎣
−w	

1 −
...

−w	
n −

⎤

⎥⎦

=
⎡

⎣
| |
V1 · · · Vn

| |

⎤

⎦

⎡

⎢⎣
−λ1w

	
1 −

...

−λnw
	
n −

⎤

⎥⎦

= λ1v1w	
1 + λ2v2w	

2 + · · · + λnvnw	
n ,

Substituting this back into the JCF method of computing the matrix exponential 
yields 

. eAt = Ve�t V−1 =
⎡

⎣
| |
V1 · · · Vn

| |

⎤

⎦

⎡

⎢⎣
eλ1t

. . .

eλn t

⎤

⎥⎦

⎡

⎢⎣
−w	

1 −
...

−w	
n −

⎤

⎥⎦

= eλ1tv1w	
1 + eλ2tv2w	

2 + · · · + eλn tvnw	
n .

Therefore, 
. x(t) = eAtx0 = eλ1tv1c1 + eλ2tv2c2 + · · · + eλn tvncn

. with c1 = w	
1 x0, c2 = w	

2 x0, . . . , cn = w	
n x0.

In the most general case, suppose matrix . A has JCF, i.e., .A = V JV−1. Then we 
can change coordinates using . V , i.e., .x̃ = V−1x .
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. x(t) = eAtx0 = VeJt V−1x0 =
⎡

⎣
| |
V1 · · · Vr
| |

⎤

⎦

⎡

⎢⎣

eJ1t

. . .

eJn t

⎤

⎥⎦

⎡

⎢⎣

−w	
1 −
.
.
.

−w	
r −

⎤

⎥⎦ x0 =
r∑

k=1

Vke
Jk tW	

k x0

(2.4) 

In conclusion, a change of coordinates yields.r ∈ N total independent LTI systems, 
with the . kth subsystem having state .x̃k(t) ∈ R

nk . 

. 

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

˙̃x1 = J1 x̃1
˙̃x2 = J2 x̃2

...

˙̃xn = Jr x̃r

The fact that a collection of independent subsystems are revealed through an 
eigendecomposition suggests that a change of coordinates (in the basis for the solution 
space. X ) can allow us to study the original system more easily. We will analyze this 
in the following section, on determining the solutions the autonomous linear systems. 

2.4 Solutions to Autonomous Systems 

Now we are ready to analyze the solution trajectories of the zero-input response (i.e., 
.B = 0 uncontrolled case). 

Definition 2.42 (Autonomous) A general (possibly nonlinear) system . ẋ(t) =
f (t, x(t)) is said to be autonomous if it has no explicit time-dependence aside 
from the state variable .x(t), i.e., .ẋ(t) = f (t, x(t)) = f (x(t)). 

Definition 2.43 (Solution Space)  The  solution space .X of uncontrolled LTI system 
.ẋ(t) = Ax(t) is the set of all its possible solutions: 

. X := {x : R ≥ 0 =⇒ R
n | ẋ(t) = Ax(t), x(0) = x0 ∈ R

n}.
Definition 2.44 (Characteristic Modes) Suppose .A ∈ R

n×n is a square matrix. If it 
is diagonalizable, .A = V�V−1, where 

. � :=
⎡

⎢⎣
λ1

. . .

λn

⎤

⎥⎦ and V :=
⎡

⎣
| |
V1 · · · Vn

| |

⎤

⎦ , V−1 :=
⎡

⎣
| |

w1 · · · wn

| |

⎤

⎦
	

.

The characteristic modes of LTI system .ẋ(t) = Ax(t) are the solutions from initial 
condition .x0 ≡ Vk .
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. x(t) = eAt Vk = eλk t Vk, k = 1, . . . , n

Alternatively, if .A is not diagonalizable, and the Jordan form must be used, each 
characteristic mode corresponds to each Jordan block. 

More intuitively, the characteristic modes of a linear system represent the natural 
solutions to the system’s dynamics, which typically arise from inherent phenomena of 
the system, such as vibrations or oscillations. They can be thought of as the “building 
blocks” of the system’s response. 

Since the eigenvectors .{v1, . . . , vn} form a basis of .Rn , we can write 

. x0 = c1v1 + · · · + cnvn for any x0 ∈ R
n, scalars ci .

Thus, the .n modes .{eλ1tv1, . . . , eλn tvn} form a basis of the solution space . X
(.dim(X ) = n), so any solution .x(t) of .ẋ(t) = Ax(t) can be written as a linear 
combination of the modes: 

.
x(t) = eAtx0 = c1e

Atv1 + c2e
Atv2 + · · · + cne

Atvn

= c1e
λ1tv1 + c2e

λ2tv2 + · · · + cne
λn tvn

(2.5) 

with the property .Av = λv =⇒ eAtv = eλtv. 

2.4.1 Connection to System Stability 

There are several types of characteristic modes that we can categorize. These different 
types of modes determine the stability of the system. We will formally describe linear 
stability in the following Part II 

1. If .λk ∈ R, the mode .eλk t Vk is 

(a) stable if .λk < 0 (.limt=⇒0 eλk t Vk = 0) 
(b) unstable if .λk > 0 (.limt=⇒0 eλk t Vk = ∞) 
(c) marginally stable if .λk = 0 (.limt=⇒0 eλk t Vk = Vk , mode is stationary) 

2. If .σk + jωk =: λk ∈ C and .Vk := V (R)
k + jV (C)

k , 

(a) there is another mode .eλ̄k t V̄k , since the mode is complex 
(b) a real solution in .X is . 2 Re(eλk t Vk)

Then, the stability type of .eλk t = eσk t e jωk t = eσk t (cos (ωk t) + j sin (ωk t)) can be 
determined by the real part of . λk : 

(a) stable if . σk < 0
(b) unstable if . σk > 0
(c) marginally stable if .σk = 0
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Fig. 2.1 Sample scalar state trajectories versus time for stable systems, with and without oscillations 

However, due to the.cos (ωk t) + j sin (ωk t) term, there is oscillation in the system. 
Sample trajectories for stable systems, with and without oscillations, is shown 
in Fig. 2.1. 

2.5 Discretization 

So far, our discussion has been focused on continuous-time (CT) systems rather than 
discrete-time (DT) systems. Discretization is a common procedure used to convert 
a CT system into a DT approximation. Discretization is often necessary in order to 
simulate such systems on a digital computer. We will present three methods. 

Start from the CT LTI system.ẋ(t) = Ax(t) + Bu(t). The approximation is based 
on the definition of derivative from calculus: 

. ẋ(t) = lim
�t→0

x(t + �t) − x(t)
�t

Choose a very small discretization timestep .�t , then we have 

. 
x(t + �t) − x(t)

�t
= Ax(t) + Bu(t).

We can calculate the state of the next time step from the current state 

. x(t + �t) = (I + A�t)x(t) + B�tu(t).

The DT system is then implemented on equally-spaced time steps . {tk}k∈N ≡
{k�t}k∈N, such that .x[k] ≡ x(k�t) and .u[k] ≡ u(k�t). Then 

.x[k + 1] = Adx[k] + Bdu[k], (2.6)
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where .Ad � I + A�t and .Bd � B�t . While method (2.6) is the easiest to imple-
ment, it is also the least accurate. The two other discretization methods involving the 
approximation of the matrix exponential are more accurate. 

Let the discretized input signal be piecewise-constant, i.e., for . t ∈ [k�t, (k +
1)�t), .k ∈ N, .u(t) ≡ u(k�t) � u[k]. Then 

. x(k�t) = eAk�tx0 +
∫ k�t

0
eA(k�t−τ )Bu(τ )dτ

x((k + 1)�t) = eA(k+1)�tx0 +
∫ (k+1)�t

0
eA((k+1)�t−τ )Bu(τ )dτ

= eA�t

(
eAk�tx0 +

∫ (k+1)�t

0
eA((k+1)�t−τ )Bu(τ )dτ

)

= eA�tx(k�t) + eA�t
∫ (k+1)�t

k�t
eA((k+1)�t−τ )Bu(τ )dτ

Since .u(t) = u(k�t) is a constant value for .t ∈ [k�t, (k + 1)�t), 

. x(k�t) = eA�tx(k�t) +
(
eA�t

∫ (k+1)�t

k�t
eA(k�t−τ )dτ

)
Bu(k�t)

= eA�tx(k�t) +
(∫ �t

0
eAsds

)
Bu(k�t)

Putting everything together 

.x((k + 1)�t) = eA�tx(k�t) + eA�t
∫ (k+1)�t

k�t
eA(k�t−τ )Bu(τ )dτ (2.7) 

Here we can also denote the formula like in (2.6). In this case, the .Ad � eA�t and 

.Bd �
(∫ �t

0 eAsds
)
B. 

The last discretization method is motivated from the fact that the integral in . Bd

may be difficult to compute. We can instead evaluate it using a power series. 

. Bd =
(∫ �t

0
eAsds

)
B =

∫ �t

0

(
I + As + 1

2
A2s2 + · · ·

)
dsB

=
(

�t I + 1

2
A�t

2 + 1

3! A
2�t3 + · · ·

)
B

= A−1
(
A�t + 1

2
A2�t2 + 1

3! A
3�t3 + · · ·

)
B

= A−1(Ad − I )B

One caveat is that this method of discretization is valid only for nonsingular A, as 
the formula above clearly depends on .A−1.
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Remark 2.6 The system matrices in the CT measurement equation stay the same 
as in the DT case: 

.y(k�t) = Cx(k�t) + Du(k�t) =⇒ y[t] = Cx[t] + Du[t]



Chapter 3 
State-Transition Matrix 

Previously, we’ve seen the explicit solution to the LTI system expressed as 

. x(t) = eA(t−t0)x0 +
∫ t

t0

eA(t−s)Bu(s)ds

with general initial condition.x(t0)= x0. More generally, we often express this form 
as 

. x(t) = �(t, t0)x0 +
∫ t

t0

�(t, s)Bu(s)ds

where .�(t, s)� eA(t−s) for any .s, t ∈ R is called the state transition matrix (STM). 
This specific form of the STM is for the CT LTI case, and it is evident that it is exactly 
equivalent to the time-indexed matrix exponential in the LTI case. 

There are also corresponding STMs for the DT cases and the LTV case, which 
we will derive throughout this chapter. 

3.1 STM for the DT LTI System 

Since we’ve already extensively investigated the properties of the matrix exponential 
(which is the STM in the CT LTI case), we dedicate a short discussion to the DT 
case. For the uncontrolled LTI DT system.x[t + 1] = Ax[t], we assume this system 
is uncontrolled and the initial state is . x0. The DT state-transition matrix can be 
computed simply via recursion 

. x[1] = Ax0 =⇒ x[2] = Ax[1] = A2x0 =⇒ · · · =⇒ x[k] = Ax[k − 1] = Akx0
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Matching the expression of the STM with the result of the recursion yields . x[t] =
�[t]x0 where .�[t] � At . 

In the DT case, the solution space . X � {x[t], t ∈ Z
≥0 : x[t + 1] = Ax[t], x0 ∈

R
n} still has dimension. n, with basis.{Atv1, . . . , Atvn}. And for diagonalizable. A =

V−1�V

. x[t] = Atx0 =< w1, x0 > λt
1v1 + · · · + 〈wn, x0〉λt

nvn

where.{λt
1v1, . . . , λ

t
nvn} are the n modes. We see that much of the concepts are quite 

similar in the DT case as in the CT case. Once main difference is that the stability of 
each mode is determined by comparing the corresponding eigenvalue’s magnitude 
with respect to unit circle: 

• .|λk | > 1 means unstable 
• .|λk | = 1 means marginally stable 
• .|λk | < 1 means stable. 

For general .A = V−1 JV , where .J is the Jordan form of . A, we get . x[t] =
Atx0 = ∑r

k=1 Vk J t
k 〈wk, x0〉, where the columns of .Vk J t

k are modes corresponding 
to eigenvalue . λk . 

3.2 STM for CT LTV Systems 

First, we remark that for scalar LTV systems .ẋ(t) = a(t)x(t) ∈ R with initial state 
is .x(0) = x0, the integrating factor approach can be used with .exp(− ∫ t

0 a(s)ds).  In  
the general matrix-vector ODE, however, this integrating factor solution is incorrect. 
In this section, we will derive the full solution for LTV systems, including proofs of 
the existence and uniqueness of these s olutions.

First, a few results from real analysis are needed. 

Definition 3.45 (Absolute Convergence) A series .
∑∞

n=0.an is said to converge 
absolutely if .

∑∞
n=0 |an| is finite. 

Definition 3.46 (Uniform Convergence) A sequence of function . fn , . fn : S =⇒ R

is uniformly convergent on . S, with limit . fn : S → R,  i  f .∀ε > 0 .∃N ∈ N, such that 
.∀n ≥ N , .x ∈ S, .| fn(x) − f (x)| < ε. 

Lemma 3.3 (Weierstrass M-Test) Let.{ fn} be a sequence of real (or complex) valued 
functions over some set. S. Suppose exist a sequence of numbers.Mn,.Mn ≥ 0 ∀n such 
that 

1. .∀x ∈ S and n ∈ M, . | fn(x)| ≤ Mn

2. .
∑∞

n=1 Mn converges 

Then the series .
∑∞

n=1 fn(x) converges uniformly and absolutely on . S.
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Lemma 3.4 (Gronwall-Bellman Inequality) Let.φ(t),.ψ(t) be continuous functions 
defined .∀t ≥ t0 with .ψ(t) ≥ 0∀t ≥ t0, and let .α ≥ 0 be some constant. Then 

φ(t) ≤ α +
∫ t 

t0 

ψ(s)φ( t)ds

.and . ∀t ≥ t0
φ(t) ≤ αe

∫ t 
t0 

ψ(s )ds

. 
We begin by proving existence of solutions because, depending on the properties 

of .A(t), the solutions .x(t) may or may not exist. Start by constructing the solution 
space 

X � {x(t), t ≥ 0 : ẋ(t) = A(t)x(t), x 0 ∈ R
n},

.where the dimension of .X is n. Our basic assumption is that .∀t ∈ R
≥0 A(t) is 

continuous and defined. 
Construct a sequence of approximate solutions.{xk(t)}∞k=0 on interval . [t0, t0 + T ]

for some chosen arbitrary time .T > 0.  By  using  Picard iterations, we can get

xk (t) = x0 +
∫ t 

t0 
A(t1)x0dt1 +

∫ t 

t0 
A(t1)

∫ t1 

t0 
A(t2)x0dt2dt1 +  · · ·  +  term with k integrals 

In fact, by factoring out the constant initial state . x0, we can obtain the LTV STM: 

. xk(t) =
(
I +

∫ t

t0
A(t1)dt1 +

∫ t

t0
A(t1)

∫ t1

t0
A(t2)dt2dt1 + · · · + term with k integrals

)

︸ ︷︷ ︸
��(t,t0)

x0

(3.1) 
This infinite-sum integral expression of .�(t, t0) is typically called the Peano-
Baker series. One might notice it resembles an integral version of the Taylor series 
expansion. 

Define 

. α � max
t∈[t0,t0+T ] ‖A(t)‖, β �

∫ t0+T

t0

‖A(s)x0‖ds, where ||A(t)|| � max||x ||=1
||Ax ||

Here, .α, β < ∞ since .A(t) is continuous and we are considering a finite time inter-
val .[t0, t0 + T ]. By considering the successive differences between the approximate 
solutions, we have 

.‖x1(t) − x0‖ =
∥∥∥∥
∫ t

t0

A(s)x0ds

∥∥∥∥ ≤
∫ t

t0

‖A(s)x0‖ds ≤ β

‖x2(t) − x1(t)‖ =
∥∥∥∥
∫ t

t0

A(s)x1(s)ds −
∫ t

t0

A(s)x0ds

∥∥∥∥
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≤
∫ t 

t0

‖A(s)‖‖x1(s) − x0‖ds  ≤ αβ(t − t0)

‖x3(t) − x2(t)‖ ≤
∫ t 

t0

‖A(s)‖‖x2(s) − x1(s)‖ds  

≤
∫ t 

t0 

α2 β(s − t0)ds  = β 
α 2(t − t0)2

2

In general, 

. ‖xk+1(t) − xk(t)‖ ≤
∫ t

t0

‖A(s)‖‖xk(s) − xk−1(s)‖ds ≤ β
αk(t − t0)k

k! , k ∈ N

(3.2) 
Note each .xk(t) can be expressed as a telescoping sum: 

.xk(t) = x0 +
k−1∑
i=0

(xi+1(t) − xi (t)) (3.3) 

Through (3.2) and (3.3), we can get an inequality of .||xk(t)||, 

.||xk(t)|| ≤ ||x0|| +
k−1∑
i=0

||xi+1(t) − xi (t)|| ≤ ||x0|| +
k−1∑
i=0

β
αi (t − t0)i

i ! (3.4) 

Apply the Weierstrass M-Test (Lemma 3.3) to the above inequality with . fk(x) =
||xk+1(t) − xk(t)|| and .Mk � β αk (t−t0)k

k! . 

1. According to (3.2)., ||xk+1(t) − xk(t)|| ≤ β αk (t−t0)k

k! ,  s  o . fk(x) ≤ Mk . 
2. Since .t ≤ t0 + T, t − t0 ≤ T .  A  s .k → ∞, 

.
∑k−1

i=0 β αi (t−t0)i

i ! ≤ ∑k−1
i=0 β (αT )i

i ! → βeαT . 

Thus, Lemma 3.3 tells us that .
∑∞

i=0 ||xi+1(t) − xi (t)|| converges uniformly and 
absolutely on .[t0, t0 + T ]. 

Denote.x(t) � x0 + ∑∞
i=0(xi+1(t) − xi (t)), which is also the limit of the sequence 

.{xk(t)}.  Note  x(t) is continuous on .[t0, t0 + T ] since each .xk(t) is continuous 
and because the convergence .xk(t) → x(t) is uniform. Thus, .x(t) satisfies . ẋ(t) =
A(t)x(t) and because both . x and .A are continuous in . t , .ẋ(t) is continuous too. In 
conclusion, the solution exists. 

Now, even if a solution exists, it isn’t clear whether it is unique or not. To prove 
uniqueness, define.z(t) � x1(t) − x2(t) and show that it is equal to . 0. Note that . z(t)
satisfies .ż(t) = A(t)z(t) with initial condition .z(t0) = 0. Integrating both sides of 
the ODE to get an integral equation instead yields 

.z(t) =
∫ t

t0

A(s)z(s)ds =⇒ ||z(t)|| ≤
∫ t

t0

||A(s)|| · ||z(s)||ds
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Next, apply Gronwall-Bellman (Lemma 3.4) to the above equation with .α = 0, 
.φ(t) = ||z(t)||, .ψ(t) = ||A(s)||. Then we get .||z(t)|| ≤ 0. Since the vector norms 
are positive-definite, if .||z(t)|| ≤ 0, then .||z(t)|| = 0, implying .z(t) = 0. Therefore, 
.x1(t) = x2(t). Thus, uniqueness of solutions to LTV systems is also proved. 

3.3 Fundamental Matrix for CT LTV Systems 

Now, how is the solution space .X constructed? Let us define .ψk(t) ∈ R
n to be the 

solution of.ẋ = A(t)x with.x0 = ek , where.ek is the.k-th standard basis vector of.Rn: 

. ek =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
...

1
...

0

⎞
⎟⎟⎟⎟⎟⎟⎠

Here,  the  1  is  in the . kth position. Any solution to the system can then be expressed 
as a linear combination of these basis solutions: 

. x(t) = x1(0)ψ1(t) + · · · + xn(0)ψn(t)

This motivates the following definition. 

Definition 3.47 (Fundamental Matrix)  The  fundamental matrix .
(t) is defined as 
the matrix 

. 
(t) ≡ [
ψ1(t) . . . ψn(t)

] ∈ R
n×n, ∀t ≥ 0,

which satisfies the following equation 

. 
̇(t) = A(t)
(t), 
(0) = I.

Remark 3.7 Note that .
(t) is non-singular for all .t ≥ 0 because the state .x(t) is 
uniquely determined from. x0: 

. x(t) = 
(t)x0 ⇐⇒ 
−1(t)x(t) = x0.

Therefore, we can use the LTV state-transition matrix . �, as defined above, and also 
it can be defined by the fundamental matrix: 

. �(t, τ ) = 
(t)
(τ)−1.

Furthermore, we have that .x(t2) = �(t2, t1)x(t1) for all .0 ≤ t1 ≤ t2.
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3.4 Fundamental Matrix for DT LTV Systems 

For DT LTV systems, the fundamental matrix is derived recursively as follows: 

. x[t + 1] = Atx[t] =⇒ x[t] = At−1At−2 · · · A0x0,

which is denoted by .
t = At−1At−2 . . . A0, the DT fundamental matrix. 

Remark 3.8 For DT LTV systems,.
t may be singular. Consequently, time reversal 
is generally not possible unless every matrix .As is nonsingular .∀s ∈ {1 · · · t}. 

3.5 Uniqueness of STM 

The fundamental matrix is not unique. One can choose any basis of .Rn (collection 
of . n linearly independent vectors) .B � {b1, . . . , bn} ⊆ R

n . Then any .
(t) is the 
solution to the .n × n matrix ODE: 

.

{
d
dt X (t) = A(t)X (t)

X (t0) =
[
b1 · · · bn

] where X (t) ∈ R
n×n (3.5) 

We mentioned .
(t) is non-singular .∀t ≥ t0 since .x(t) is uniquely determined 
from. x0: 

. x(t) = 
(t)x0 ⇐⇒ 
−1(t)x(t) = x0

The STM can be defined from any fundamental matrix 

. �(t, s) = 
(t)
(s)−1, t0 ≤ s ≤ t

The STM is also the unique solution of 

.
d

dt
�(t, t0) = A(t)�(t, t0), �(t0, t0) = I (3.6) 

However, you may ask that how the STM.�(t, s) is unique even if the fundamental 
matrix .
(t) is not unique. There are two ways to prove this. 

1. Use existence and uniqueness argument on matrix ODE (3.6). 
2. Let.
1(t),.
2(t)be two different fundamental matrices (i.e., solutions to (3.5) with 

different initial conditions .
1(t0), .
2(t0)). Show that .�1(t, s) = �2(t, s) ∀s, t . 
Recall the change of coordinates from linear algebra. To change the coordinate from 
one basis .B1 � {b1, . . . , bn} to another .B2 � {v1, . . . , vn}: 

.
[
v1 · · · vn

] = [
b1 · · · bn

]
C
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for some coordinate transformation .C ∈ R
n×n is invertible since .B1

C−→ B2 means 

.B2
C−1−−→ B1. 
Thus, there exists the invertible coordinate transformation .C ∈ R

n×n s.t. 

. 
2(t0) = 
1(t0)C

By assumption, . ddt 
1(t) = A(t)
1(t) ∀t ≥ t0. 
By system linearity, . ddt 
1(t)C = A(t)
1(t)C

. 
d

dt

2(t) = d

dt

1(t)C = A(t)
1(t)C = A(t)
2(t)

Thus, this . C applies for all time . t : .
2(t) = 
1(t)C .∀t ≥ t0. 
The STM.�1(t, s) corresponding to .
1(t) is given by 

. �1(t, s) = 
1(t)
1(s)
−1

. =⇒ �2(t, s) = 
2(t)
2(s)
−1 = 
1(t)CC

−1
1(s)
−1 = �1(t, s)

. ∴ �1(t, s) = �2(t, s) ∀s, t

which means that the STM.�(t, s) is always unique. 
The STM has the following properties 

1. . �(t, t) = I
2. . �−1(t, s) = [
(t)
(s)−1]−1 = 
(s)
(t)−1 = �(s, t)
3. .�(t, t0) = �(t, τ )�(τ, t0), . ∀τ ∈ [t0, t],

3.6 Special Topic: Periodic LTV Systems 

In Sect. 1.1, we discussed equivalence transformations and realizations for linear 
time-invariant (LTI) systems. Here, we will focus on the analogous case for linear 
time-varying (LTV) systems. 

. ẋ(t) = A(t)x(t) + B(t)u(t)

y(t) = C(t)x(t) + D(t)u(t)

Instead of a constant coordinate transformation.P ∈R
n , we now have a time-varying 

matrix.P(t)∈R
n×n which is continuously differentiable (. C1) and nonsingular for all 

. t . Consider a new state representation .x̃(t)� P(t)x(t). Then 

. ˙̃x(t) = Ṗ(t)x(t) + P(t)ẋ(t)
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= Ṗ(t)x(t) + P(t) A(t)x(t) + P(t)B(t)u(t) 
= (

Ṗ(t) + P(t)A(t)
)
P−1 (t)︸ ︷︷ ︸

� Ã(t) 

x̃(t) + P(t)B(t)︸ ︷︷ ︸
�B̃(t)

u(t)

and .y(t)=C(t)P−1(t)x̃(t) + D(t)u(t). 

Definition 3.48 (Equivalence: LTV Case)  Give  n .P(t)∈R
n×n which is .C1 and 

nonsingular for all . t , the LTV system .{A(t), B(t),C(t), D(t)} is (algebraically) 
equivalent to .{ Ã(t), B̃(t), C̃(t), D̃(t)}, where 

. Ã(t) �
(
Ṗ(t) + P(t)A(t)

)
P−1(t), B̃(t) � P(t)B(t), C̃(t) � C(t)P−1(t), D̃(t) � D(t)

.P(t) is then called an equivalence transformation. 

Note that if we apply the equivalence transformation .P(t) and then .P−1(t), 1

we return back to the original system; this is because . 

(
dP−1

dt + P−1(t) Ã(t)
)
P(t) =

dP−1

dt P(t) + P−1(t)Ṗ(t) + A(t) = A(t). 

Definition 3.49 (Lyapunov Transformation) A transformation .P(t) is a Lyapunov 
transformation if .P ∈ C1, nonsingular, and both .P(t) and .P−1(t) are bounded 
for all . t . Under a Lyapunov transformation .P(t), .{A(t), B(t),C(t), D(t)} and 
.{ Ã(t), B̃(t), C̃(t), D̃(t)} are said to be Lyapunov equivalent. 

3.6.1 Fundamental Matrices Under Equivalence 
Transformations 

Let’s briefly go back to the uncontrolled system, where.B(t)≡ 0. Recall that any fun-
damental matrix.
(t) of.ẋ(t)= A(t)x(t) satisfies the matrix ODE.
̇(t)= A(t)
(t), 
.
(0)= 
0. 

Given an equivalence transformation .P(t) and a fundamental matrix .
(t) of 
the LTV system .ẋ(t)= A(t)x(t), we can prove that .
̃(t)� P(t)
(t) is a funda-
mental matrix of the equivalent system .ẋ(t)= Ã(t)x(t), where . Ã(t) is given as in 
Definition 3.48. Note that the main property to prove in order to show that it’s a 

fundamental matrix is that it must satisfy the matrix ODE.
˙̃

(t)= Ã(t)
̃(t). 

First, since. P and.
 are both nonsingular for all. t , note that.
̃ is also nonsingular 
for all . t . Now let’s verify the ODE equation: 

.
˙̃

(t) = d

dt
(P(t)
(t))

= Ṗ(t)
(t) + P(t)
̇(t) + (Ṗ(t) + P(t)A(t))
(t)

1 Note that if .P(t) is an equivalence transformation,.P−1(t) is also.C1. 
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= ( Ṗ + P  A)P−1 (t)︸ ︷︷ ︸
Ã(t) 


̃(t)

Now we prove the following property, which suggests the equivalence between a 
LTV system and a LTI system. 

Theorem 3.13 There exists an equivalence transformation .P(t) which transforms 
.A(t) to any given constant matrix .A0 ∈C

n×n. 2

Proof Our proof will be divided into several steps. First, we construct an appropriate 
.P(t).  Le  t.
(t) be a fundamental matrix for the original LTV system.ẋ(t) = A(t)x(t). 
Note that the fundamental matrix for an LTI system.ẋ(t) = A0x(t) has form. 
̃(t) =
eA0t
0, and we choose initial condition.
0 = I for simplicity. We can rewrite. 
̃(t) =
P(t)
(t) as .P(t) = 
̃(t)
−1(t). We choose .P(t) = eA0t
−1(t). 

Obtain the derivative of the inverse .(d/dt)(
−1(t)) by invoking the identity 
.
−1
 = I and taking the derivatives of both sides. We get 

. (d/dt)(
−1(t)) = −
−1(t)A(t)

By rote calculation and applying Definition 3.48.: 

. Ã(t) = (P(t)A(t) + Ṗ(t))P−1(t)

=
(
eA0t
−1(t)A(t) + A0e

A0t
−1(t) + eA0t
d

dt
(
−1(t))

)

(t)e−A0t

= · · · = A0

Hence, this coordinate transformation .P(t) indeed changes LTV system 
.ẋ(t) = A(t)x(t) to LTI system.x̃(t) = A0x̃(t). . �

3.6.2 Introductory Floquet Theory 

Floquet theory (attributed to Gaston Floquet, 1883) is a branch of ODE theory which 
studies periodic, linear differential equations: 

. ẋ(t) = A(t)x(t), where ∃ T > 0 s.t. A(t) = A(t + T )

We won’t go into the full details of Floquet theory in this book, but it is still an 
interesting topic to know. 

Remark 3.9 If .
 is a fundamental matrix of the LTV system with periodic .A(t), 
it turns out that .
(t + T ) is also a fundamental matrix. To prove this, simply show 
that it satisfies the matrix ODE

2 If.A0 ∈ R
n×n ,  the  n.P(t) can be chosen to be also real-valued. 
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. 
̇(t + T ) = A(t + T )
(t + T ) = A(t)
(t + T )

To show that there exists a periodic equivalence transformation .P(t) such that 
.
(t)= P−1(t)eA0t , we will simply use the following two facts without proof 
(although, they are not too hard to show; see footnotes). 

• Fact 1 3: For periodic LTV .ẋ= A(t)x, there exists a nonsingular, constant matrix 
.Q ∈R

n×n such that .
(t + T ) = 
(t)Q for all . t .  Thi  s .Q is often called the 
monodromy matrix. 

• Fact 2 4: For monodromy matrix .Q ∈R
n×n corresponding to periodic LTV . ẋ =

A(t)x, there exists a constant matrix .A0 ∈C
n×n such that .eA0T = Q. 

To get an explicit form of .Q in terms of the fundamental matrix, we can set . t = 0
and take advantage of the fact that .Q is constant. 

. 
(T ) = 
(0)Q =⇒ Q = 
−1(0)
(T )

Now apply the construction of .P(t) from the proof of Theorem 3.13. Define 
.P(t)� eA0t
−1(t). Note that 

. P(t + T ) = eA0(t+T )
−1(t + T ) = eA0t eA0T · e−A0T
−1(t) = P(t)

Thus, a period of .P(t) is . T , the same as the period of the original LTV system. 
The decomposition of the fundamental matrix.
(t)= P−1(t)eA0t tells us that the 

solution trajectories .x(t) of periodic LTV systems .ẋ = A(t)x can be decomposed 
into a periodic part and an exponential part.

3 First, define .Q = 
−1(0)
(T ). Note that .t �→ 
(t)Q is a fundamental matrix, and coincides 
with.t �→ 
(t + T ) at.t = 0. By the uniqueness theorem for ODEs, we are done. 
4 This is a special case of: If .A ∈ C

n×n is invertible, there exists a matrix . log(A) ∈ C
n×n

such that .elog(A) = A. Proof sketch: Enough to show this for a Jordan block of the form 
.J = λI + N where .λ �= 0. A suggestive formula: . log(J ) = log(λ) + log(I + N/λ) = log(λ)I +∑

n≥1(−1)n+1(N/λ)n/n. This equation is not a formal proof, but a nice mnemonic motivated by 
the Taylor series of.log(1 + x). You should check that.elog(J ) = J . 



Chapter 4 
Problems and Exercises 

Mathematical Review 

Problem 1: Functions. Consider the vector-valued mapping . f : R3 → R
3

. f (x) = Ax, A �

⎡
⎣
1 2 0
0 3 0
0 0 4

⎤
⎦

Is . f a well-defined function? Is it surjective? Injective? Justify your answers. 

Problem 2: Vector Spaces. Identify whether the following objects are vector spaces 
or not. 

(a) real continuous scalar-valued functions .C0 � { f : R → R}. 
(b) the set of points .x ∈ R

3 satisfying .x21 + x22 + x23 = 1. 
(c) the set of solutions to .ẏ(t) + ay(t) = 0, where .y ∈ C1, a ∈ R. 
(d) .V � (Rn,+, ·) over field .F = C and where .+ is the usual addition and for 

. c ∈ C, v ∈ V, cv = |c|v
Problem 3: Subspaces.  Le  t .W1,W2 be two subspaces of some vector space . V on 
field . F. Identify whether the following operations are also subspaces or not. 

(a) the intersection .W1 ∩ W2. 
(b) the union .W1 ∪ W2. 
(c) the Minkowski sum of two subspaces . W1 ⊕ W2 � {w1 + w2|w1 ∈ W1,w2 ∈

W2}
Problem 4: Sequence Subspaces. Consider a set of sequences .W � { fk}∞k=0 sat-
isfying . fk = fk−1 + fk−2, starting from arbitrary real numbers . f0 and . f1.  I  s . W
a subspace of the vector space .V � (V,R,+, ·), where .V is the set of all real-
numbered sequences? 
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Problem 5: Eigenvalues and Eigenvectors.  Le  t .A∈R
n be a matrix, and let . p be 

the polynomial function (1.18) defined in Sect. 1.4.4. Show that if . λ is an eigenvalue 
of .A with corresponding eigenvector . v, then .p(λ) is an eigenvalue of .A with the 
same eigenvector . v. 

Problem 6: Linear Independence.  Le  t .V be the set of 2-tuples whose entries are 
complex-valued rational functions. Let .v1, v2 ∈ V be defined as 

. v1 =

⎡
⎢⎢⎢⎣

1

s − 1
1

s + 3

⎤
⎥⎥⎥⎦ , v2 =

⎡
⎢⎢⎢⎣

s + 2

(s − 1)(s + 3)

1

s − 1

⎤
⎥⎥⎥⎦

Are.v1 and .v2 linearly independent over the field of rational functions? What about 
over the field of real numbers? 

Problem 7: Basis.  Le  t .W be a subspace of .(R5,R,+, ·), defined by 

. W �
{[x1, x2, . . . , x5]�|x1 = 3x3, x2 = 5x5

}

Compute a basis for .W . 

Problem 8: Jordan Forms. 

(a) If.A∈R
n×n with characteristic polynomial.χ(λ) = (x − λ1)

n1 · · · (x − λr )
nr for 

some .r ∈N, what is the trace of . A? 
(b) How many possible Jordan forms are there for a .6 × 6 complex matrix with 

characteristic polynomial .(x + 2)3(x − 1)2(x + 1)? 
(c) Let .A∈R

n×n have eigenvalue . λ and define 

. Vλ � {v ∈ R
n : (A − λI )kv = 0 for some k

Show there always exists an .k∈N such that .Vλ = Ker(A − λI )k . 
(d) Show that, for the value of .k ∈ N which satisfies part c), .Im(A − λI )k and 

.Ker(A − λI )k are subspaces of .Rn that are invariant under . A. Then use the 
Range-Nullspace decomposition theorem to show 

. R
n = Im(A − λI )k ⊕ Ker(A − λI )k

is a decomposition of .Rn , where .⊕ denotes the direct sum. 
(e) How would you generalize part d to show that 

. R
n = Ker(A − λ1 I )

n1 ⊕ Ker(A − λ2 I )
n2 ⊕ · · · ⊕ Ker(A − λr I )

nr

A few sentences of explanation will suffice; no formal proof is necessary.
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Problem 9: Norms. Consider the inner product space . V and two vectors . x and . y in 
. V . Show, using the properties of the inner product, the following relationship (called 
the parallelogram law). 

. ‖x + y‖2 + ‖x − y‖2 = 2 ‖x‖2 + 2 ‖y‖2

where .‖·‖ is the norm induced by the inner product on . V . 

System Models and Classification 

Problem 10. Rewrite the . nth-order scalar linear ODE 

. y(2n)(t) + α2n−2(t)y
(2n−2)(t) + · · · + α0(t)y(t) = β0(t)u(t) + βn(t)u

(n)(t)

into state-space model form. What are the dimensions of the matrices. A,. B,. C , and. D? 

Problem 11: Pendulum and Double-Pendulum. Find state ODEs to model the 
pendulum and double-pendulum systems shown in Fig. 4.1. 

Use any small-angle approximations you can to rewrite your ODEs as state-space 
models. 

Problem 12: State versus Output Feedback. Consider a dynamical system 
described by 

. ẋ =
[
0 1
8 −4

]
x +

[
2
1

]
u, y = [

1 2
]
x

Fig. 4.1 [Left] The single pendulum. [Right] The double pendulum
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For each of the cases below, derive a state-space representation of the resulting 
closed-loop system and determine the characteristic equation of the resulting closed 
loop .Acl matrix. 

(a) . u = − [
f1 f2

]
x

(b) . u = −ky

Problem 13:  [  1] Show that if all eigenvalues of .A∈R
n×n are distinct, then . (s I −

A)−1 can be expressed as 

. 

n∑
i=1

1

s − λi
qipi

where .qi ,pi ∈ R
n are the right and left eigenvectors, respectively, of .A associated 

with . λi . 

Problem 14: Classification I. For each of the following systems, determine whether 
or not it is linear, time-invariant, or causal. 

. y[n] = ex[n], y(t) = x

(
t

4

)
, y(t) = 5x(t) sin(ω(t + 3))

y[n] =
{

+1 if x[n] ≥ 0

−1 if x[n] < 0
, y(t) =

∫ t+2

t−1
x(s)ds, y[n] = 3(x[n + 1]u[n] − x[n]) + 10

Problem 15: Classification II. Classify the following systems. Clearly justify your 
answers. 

(a) Are the following systems linear or nonlinear? 

. y[n] = δ[n], y(t) = Ax(t) ∈ R
n, A ∈ R

n×n, y[n] = x[−n]

(b) Are the following systems TI or TV? 

. y(t) = x(2t), y[n] = sin(x[n]), y(t) =
∫ t

−∞
x(s)ds

(c) Are the following systems causal or noncausal? 

. y[n] = 3x[n] − x2[n], y[n] = x[−n],
y[n] = x[n] cos[ω(n + 1)], ω �= 0, y(t) = dx(t)

dt
= x ′(t)

(d) Are the following systems memoryless or not? 

.y[n] = 3x[n] − x2[n], y[n] = x[−n], y(t) = x

(
t

5

)
,
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y[n]  =  3, y(t ) = t

(e) Check the invertibility of the following systems. If the system is invertible, what 
is its inverse? If it is not invertible, give an example of two different input signals 
.x1 and .x2 which produce the same output . y. 

. y(t) = αx(t), α �= 0, y[n] = x2[n], y(t) =
∫ 0

−∞
x(s)ds

Problem 16: Classification III. Suppose we are given the following DT state update 
equation.x[k + 1] = ax[k] with initial condition.x[0] = x0, and measurement output 
map .y[k] = x[k]. Here, .x[0], x[1], . . . , a ∈ R are scalars. Is this a linear system? 
Why or why not? If so, derive the state transition function. 

Problem 17: Classification IV. Suppose that the output of a system can be 
represented 

. y(t) =
∫ t

−∞
e−(t−τ)u(τ )dτ

Show that the system is time-invariant. You may choose the input space . U to be the 
set of bounded, piecewise-continuous real-valued functions on .(−∞,∞). 

Problem 18: Orbital Satellite [ 2, 3]. Consider the system comprised of a satellite 
orbiting around the Earth. If we model both the Earth and the satellite as particles, 
the normalized equations of motion simplify to 2D, with Lagrangian 

. L � 1

2
ṙ2 + 1

2
r2θ̇2 − k

r

where .(r, θ) is the polar coordinate representation of satellite relative to the surface 
of the Earth. 

(a) Derive the equations of motion from the Lagrangian . L. You should get two 
equations for . θ̈ and . r̈ , with inputs .u1 and .u2 for the tangential and radial forces 
due to the thrusters. 

(b) Note that the reference orbit with .u1 = u2 = 0 is circular with .r(t)= p and 
.θ(t)=ωt , for some constants . p and . ω. Linearize the equations of motion you 
got from part a) around this orbit. How many state variables are there? 

Problem 19: Inverted Double Pendulum on a Cart. Consider the inverted double-
pendulum on a cart system shown in Fig. 4.2. For simplicity, we will assume both 
pendulums have the same mass . m, length . l (with center of mass located at length 
.l/2), and moment of inertia . I . The mass of the cart is .M and a force .u(t) is applied 
to it to control the double-pendulum. We assume there is no friction between the 
surface and the cart’s wheels.
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Fig. 4.2 The inverted 
double-pendulum on a cart 

The equations of motion for this system are given by 

. (M + 2m)ẍ + 3

2
ml θ̈1 cos θ1 + 1

2
ml θ̈2 cos θ2

− 3

2
ml θ̇2

1 sin θ1 − 1

2
ml θ̇2

2 sin θ2 = u (4.1a) 

. 

(
I + 5

4
ml2

)
θ̈1 + 3

2
mlẍ cos θ1 + 1

2
ml2θ̈2 cos(θ1 − θ2)

+ 1

2
ml2θ̇2

2 sin(θ1 − θ2) − 3

2
mgl sin θ1 = 0 (4.1b) 

. 
1

2
mlẍ cos(θ2) + 1

2
ml2θ̈1 cos(θ1 − θ2) +

(
I + 1

4
ml2

)
θ̈2
2

− 1

2
ml θ̇2

1 sin(θ1 − θ2) − 1

2
mgl sin θ2 = 0 (4.1c) 

Linearize this system around the stationary upright position .θ1 = θ̇1 = θ2 = θ̇2 = 0. 
Represent your system in state-space form with .x(t) � [x, ẋ, θ1, θ̇1, θ2, θ̇2]�. 
(Hint: Use the small angle approximations .sin θ ≈ θ and .cos θ ≈ 1.) 

State and Fundamental Transition Matrices 

Problem 20: Matrix Exponential Properties [ 1]. Show that if . λ is an eigenvalue 
of .A∈R

n×n with eigenvector .x∈R
n , then . f (λ) is an eigenvalue of . f (A) with the 

same eigenvector . x. 

Problem 21: Matrix Exponential Properties [ 1]. Show that functions of the 
same matrix commute, i.e., . f (A)g(A) = g(A) f (A). Note: consequently, we have
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.AeAt = eAt A. 

Problem 22: Matrix Exponential Properties [ 1]. Suppose .A∈R
n×n is a matrix 

where all eigenvalues are distinct. Let .qi be a right eigenvector of . A associated with 
eigenvalue . λi , i.e., .Aqi = λiqi . Define 

. Q �
[
q1 q2 · · · qn

]
, P ≡

⎡
⎢⎢⎢⎣

p1
p2
...

pn

⎤
⎥⎥⎥⎦ � Q−1

Show that .pi is a left eigenvector of . A associated with the same. λi , i.e., .pi A= λipi . 

Problem 23: [ 4] For the LTV system.ẋ(t) = A(t)x(t), .x(t0) = x0, show that 

. ‖x(t)‖ ≤ ‖x0‖ exp
(∫ t

t0

‖A(s)‖ ds
)

, ∀ t ≥ t0

Problem 24.  Give  n

. A �

⎡
⎣

−1 3 −1
−3 6 −1
−3 3 1

⎤
⎦

determine .sin(eA). 

Problem 25. Suppose .A∈R
n×n is such that .det(A)= 0.  I  s .det(eA)= 0? 

Problem 26: Existence and Uniqueness of Solutions in the Linear Case [ 3]. 
Let .A(t) and .B(t) be respectively .n × n and .n × m matrices whose elements are 
real-valued piecewise-continuous functions on.R

+.  Le  t . u be a piecewise-continuous 
function from.R

+ to .R
m . Show that for any fixed such . u, the differential equation 

. ẋ(t) = A(t)x(t) + B(t)u(t)

satisfy the conditions of the fundamental theorem. 

Problem 27: Perturbed Nonlinear Systems. Suppose that a physical system obeys 
the differential equation 

. ẋ = f (t, x), x(t0) = x0, ∀ t ≥ t0

where . f (not necessarily a linear function) obeys the conditions of the fundamental 
theorem. Suppose that as a result of some perturbation, the equation is transformed 
to
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. ż = f (t, z) + g(t), z(t0) = x0 + δx0, ∀ t ≥ t0

Given that for .t ∈ [t0, t0 + T ], .‖ f (t)‖ ≤ ε1, and .‖δx0‖ ≤ ε0, find a bound on 
.‖z(t) − x(t)‖ that is valid on .[t0, t0 + T ]. 

Problem 28. Consider the uncontrolled LTI system of the form 

. ẋ(t) =
[
a 2

−2 −1

]
x(t)

where .a ∈R. 

(a) Express the trace, determinant, characteristic polynomial, and eigenvalues in 
terms of . a. 

(b) For specific values of .a ∈ {−6,−2, 1, 2, 3, 4, 5}, classify the stability of the 
system modes (stable, marginally stable, unstable). 

(c) For each value of . a in part (b), plot the solution trajectories 

i. by computing the matrix exponential and directly plotting .x(t). 
ii. by discretizing the system with .�t = 0.01 and simulating the difference 

equation. 

For each plot i. and ii., make two types of figures. The first figure is a plot of 
.x1(t) and .x2(t) versus time; the second figure is a plot of .x1(t) versus .x2(t). 
Organize all your plots in a .7 × 2 collection of subplots, with labeled legends 
where applicable. Make sure to choose various different initial conditions. 
(The second type of figure is called a phase portrait, and we will be seeing more 
on this when discussing stability in Part II.) 

Problem 29: Numerical Integration. Suppose that a conservative physical system is 
modeled by the linear differential equation .ẋ= Ax, with .A∈R

n×n . Further suppose 
it is normalized so that along any trajectory, .‖x(t)‖2 is constant for all time. 

(a) What can you say about the eigenvalues of . A? 
(b) Because continuous-time differential equations cannot be simulated on a com-

puter, we commonly use one of the following three numerical methods to 
discretize and solve it: 

• Forward Euler. .ξ k+1 = (I + hA)ξ k , .ξ 0 = x(0). 
• Backward Euler. .ξ k+1 = (I − hA)−1ξ k , .ξ 0 = x(0). 
• Forward and Backward Euler. .ξ k+1 = (I + h

2 A)(I − h
2 A)−1ξ k , .ξ 0 = x(0). 

where. h is the stepsize of the numerical method. Which of these three methods is 
appropriate to solve our differential equation, especially with.h < 2mini |λi (A)|? 

Problem 30: Lipschitz [ 2, 3]. Consider the following two systems of ODEs. 

.(A) �
{
ẋ1 = −x1 + 2et cos(x1 − x2)

ẋ2 = −x2 + 5et sin(x1 − x2)
, (B) �

{
ẋ1 = −x1 + 3x1x2
ẋ2 = −x2
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(a) Which one of these systems satisfy a global Lipschitz condition? 
(b) For system (B), your classmate claims that the solution trajectories are uniquely 

defined for all possible initial conditions. Furthermore, he claims that they all 
tend to zero regardless of initial condition. Is your classmate correct? 

Problem 31: Lipschitz. Consider the pendulum on the left subfigure of Fig. 4.1. 

(a) Rederive the (nonlinear) equation of motion for this pendulum, now assuming 
there is friction with coefficient . k and constant input torque . T . 

(b) Representing the system as.ẋ= f (x) for appropriately-defined state. x, determine 
whether. f is locally or globally Lipschitz. If it is locally Lipschitz, find the radius 
of the ball .Br = {x : ‖x(t)‖ ≤ r} for which it is. 

Problem 32: Discretization. Use the three methods discussed in Chap. 2 to discretize 
the following continuous-time system with .�t = 0.1. You may use MATLAB if 
you’d like. 

. ẋ(t) =
[−2 1
0 2

]
x(t) +

[
1
0

]
u(t),

Problem 33: Equivalence Transformation Proofs. Let the constant matrix 
.P ∈R

n×n be the equivalence transformation (i.e.,.x̃ = Px) which changes LTI system 
.ẋ(t)= Ax(t) + Bu(t) to LTI system. ˙̃x(t)= Ãx̃(t) + B̃u(t). 

(a) Prove that .(I − Ã)−1 = P(I − A)−1P−1. 
(b) Use induction to prove that . Ãk = PAk P−1 for all .k ∈Z≥0. 

Problem 34. Compute the fundamental and state transition matrices of the following 
systems: 

. (a) ẋ(t) =
[
0 1
0 t

]
x(t) (b) ẋ(t) =

[−1 e2t

0 −1

]
x(t) (c) ẋ(t) =

⎡
⎣
sin t cos t 1
0 sin t cos t
0 0 sin t

⎤
⎦ x(t)

Problem 35: [ 3] Compute the fundamental and state transition matrices when the. A
matrix of a CT linear system is given as follows: 

. (a) A(t) =
[−1 0
2 −3

]
(b)

[−2t 0
1 −1

]
(c)

[
0 ω(t)

−ω(t) 0

]

Hint: for part (c), define .�(t) �
∫ t
0 ω(s)ds and consider the matrix 

. 

[
cos�(t) sin�(t)

− sin�(t) cos�(t)

]

Problem 36. Consider the general, uncontrolled linear system 

.R
n � ẋ(t) = A(t)x(t), x(0) = x0 (4.2)
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with continuous .A(t) and state-transition matrix .
(t, τ ), where .n ∈N is the state 
dimension. 

(a) Consider also the linear system 

. ż(t) = A(t)z(t) + x(t), z(0) = z0

Express both .x(t) and .z(t) as a function of . x0, . z0, and . 
. (There should be no 
integrals in your solutions.) 

(b) Now, suppose .n = 2 and (4.2)  is  an  LTI  system  with .A(t) ≡ A given by 

. A =
[

0 1
−10 −7

]

Compute its state transition matrix. 
. Use change-of-coordinates to compute its 
characteristic modes. Classify the stability type of each mode. 

(c) Repeat part (b) when . A is instead given by 

. A =
[
3 2

−2 −1

]

(d) Now, suppose .n = 2 and (4.2)  is  LTV  wi  th .A(t) given by 

. A(t) =
[ −α cos(ωt)
sin(ωt) −β

]

where .α, β, ω > 0 are constants. Prove that (4.2) is uniformly asymptotically 
stable if .2αβ >

√
α2 + β2. 

Problem 37: Solving Matrix ODEs [ 4]. Consider the .n × n matrix ODE . Ẋ(t) =
X (t)A(t), with initial condition .X (t0) = X0. Express the solution in terms of an 
appropriate transition matrix. Use this to determine a closed-form expression of the 
solution to 

. Ẋ(t) = A1(t)X (t) + X (t)A�
2 (t) + Q(t), X (t0) = X0

where .A(t), A1(t), A2(t) are not all necessarily the same matrix. We will see a lot 
of equations that look like this when we discuss Lyapunov equations in Part II. 
(Hint: Take the transpose of the original matrix ODE. Use Leibniz’s Rule.) 

Problem 38: Extras on Discretization. A process .{x(t), t ≥ 0} (or .{xt }t∈N in 
discrete-time) is said to be time-reversible if the dynamics of the process remain 
well-defined when time runs backwards (i.e., there is a one-to-one mapping from 
.x(t) to .x(s) for any .s ≤ t). In continuous-time linear systems, we’ve seen this hold 
true for any .A(t) which is piecewise continuous, but for discrete-time systems, this 
is only true if each .{As, s = 1, . . . , t} is nonsingular.
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(a) Can you give an example of a continuous-time linear system which is nonre-
versible? If no such example exists, explain why (rigorous proof not required). 

(b) Consider the following discretized system: 

. ẋ(t) = Ax(t) + Bu(t) =⇒ xt+1 = eA�t︸︷︷︸
�Ad

xt +
(∫ �t

0
eAsds

)
B

︸ ︷︷ ︸
�Bd

ut

This is sometimes known as a sampled-data system with sampling period 
.�t ∈ R

+, i.e., a system where continuous-time dynamics are controlled with 
a piecewise-continuous input signal .u(t) (e.g., a digital clock). Is this system 
time-reversible? Why or why not? 

(c) Consider the class of DT systems called finite memory systems, whose trajectories 
look like .xt = 
tx0 with .Aτ = 0 after some time .τ ∈ N (i.e., the initial state 
influences the system evolution for only up to. τ , and its free motion is zero after 
. τ ). Is this system time-reversible? Why or why not? 
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Part II 
Linear Stability



Chapter 5 
Input-Output Stability 

An important prerequisite question that must be addressed for any dynamical system 
is stability. how does the system behave when there is no input signal .u(t) or . w(t)
given to it (i.e., “open-loop stability”)? If we give it a bounded input signal.u(t) such 
that .‖u(t)‖ ≤ ū for some. ū, does it also yield a bounded output signal .y(t)? What is 
the behavior of all signals inside the system, i.e., not just the input .u(t) and output 
.y(t), but the state .x(t) as well? 

The main idea of stability is to ensure that every bounded or finite-variance input 
signal (and possibly finite-variance disturbance) results in an output which does not 
“blow up” to infinity. We can easily imagine unstable systems in real-world scenarios, 
such as a bipedal robot falling down while walking, or an autonomous car which veers 
off the road. Consequently, one may also realize that every type of control problem (to 
be studied in detail in Part III) is essentially concerned with making the system stable 
in some sense. In disturbance-rejection problems, such as power outage mitigation in 
a power system network, the goal is to ensure that the output signal’s deviation away 
from some nominal value gradually goes to zero. Reference-tracking problems like 
robotic path-planning address the disturbance-rejection problem for a time-varying 
reference signal rather than a fixed value. 

There are many different notions of stability for dynamical systems (and not nec-
essarily systems which are linear). The most appropriate notion of stability to use 
for analysis depends greatly on the application of interest. In this chapter, we inves-
tigate two common notions linear stability– bounded-input, bounded-output (BIBO) 
stability and internal stability. The discussion of internal stability, in particular, leads 
naturally to Lyapunov stability, which is one of the most popular types of internal 
stability due to its applicability to more general nonlinear autonomous systems. 
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5.1 BIBO Stability for LTI Systems 

Definition 5.50 (Bounded) A signal .u(t) is bounded if .∃ū ∈ R
+ s.t. .‖u(t)‖ ≤ ū . ∀

.t ∈ R. 

Definition 5.51 (BIBO Stability) Given a bounded input signal .u(t),  syste  m .H is 
bounded-input, bounded-output (BIBO) stable if every bounded.u(t) yields bounded 
output .y(t), 

. i.e., ∃ȳ ∈ R
+ s.t. ‖y(t)‖ = ‖H{u}(t)‖ ≤ ȳ∀t ∈ R

While the above definition can be applied to general systems, we focus on 
specifically the linear case. 

Lemma 5.5 A linear system is BIBO stable if for .x0 = 0, .∃M < ∞ s.t. 

. sup
t≥0

‖y(t)‖ ≤ M · sup
t≥0

‖u(t)‖

Recall the impulse response.h(t), t ≥ 0 (in scalar notation) is the output of system 
. Hwhen.u(t) = δ(t), x0 = 0. The impulse response can be used to compute the output 
given any general input .u(t): 

. y(t) = (h ∗ u)(t) =⇒ y(s) = H(s)u(s) =⇒ H(s) = y(s)

u(s)

Theorem 5.14 A CT SISO LTI system is BIBO stable if and only if impulse response 
.h(t) is absolutely integrable: 

. 

∫ ∞

0
|h(t)|dt < ∞

Proof (Sufficiency) First we show that if .h(t) is absolutely integrable, then every 
bounded input excites a bounded output. Let.u(t) be an arbitrary input with. |u(t)| ≤
um ≤ ∞ for all .t ≥ 0. Then, 

. |y(t)| =
∣∣∣∣
∫ t

0
h(τ )u(t − τ)dτ

∣∣∣∣ ≤
∫ t

0
|h(τ )||u(t − τ)|dτ

≤ um

∫ ∞

0
|h(τ )|dτ ≤ umM

Thus the output is bounded. 
(Necessity.) Next we show intuitively that if.h(t) is not absolutely integrable, then 

the system is not BIBO stable. If .h(t) is not absolutely integrable, then there exists 
a . t1 such that 

.

∫ t1

0
|h(τ )|dτ = ∞.
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Let us choose 

. u(t1 − τ) =
{
1 if h(τ ) ≥ 0

−1 if h(τ ) < 0

Clearly . u is bounded. However, the output excited by this input equals 

. y(t1) =
∫ t1

0
h(τ )u(t1 − τ)dτ =

∫ t1

0
|h(τ )|dτ = ∞

which is not bounded. Thus the system is not BIBO stable. The proof is concluded 
by contradiction, showing that a non-absolutely integrable impulse response leads 
to BIBO instability. �

For continuous-time (CT) MIMO LTI systems, we can use norm instead of 
absolute value, and for discrete-time (DT) systems, the sum is used instead of the 
integral. 

Corollary 5.1 A CT MIMO LTI system is BIBO stable if and only if impulse response 
.h(t) is absolutely integrable: 

. 

∫ ∞

0
‖h(t)‖dt < ∞

Corollary 5.2 A DT MIMO LTI system is BIBO stable if and only if impulse response 
.h(t) is absolutely summable: 

. 

∞∑
t=0

‖h(t)‖ < ∞

Example 5.6 Consider the SISO system represented by the differential equation 

. y′′(t) + 5y′(t) + 6y(t) = u(t)

By applying the Laplace transform, we obtain 

. y(s)(s2 + 5 s + 6) = u(s) =⇒ H(s) = 1

s2 + 5 s + 6

We can factorize the denominator as 

. s2 + 5 s + 6 = (s + 2)(s + 3)

Using partial fraction decomposition, we find 

. 
1

s2 + 5 s + 6
= A

s + 2
+ B

s + 3
for some A, B

Solving for . A and . B, we get .A = − 1
4 , B = 1

4 . Therefore,
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. H(s) = − 1
4

s + 2
+

1
4

s + 3

which gives us 

. h(t) = −1

4
e−2t + 1

4
e−3t

The integral of .|h(t)| is finite: 

. 

∫ ∞

0
|h(t)|dt = 1

4

(∫ ∞

0
e−2t dt +

∫ ∞

0
e−3t dt

)
= 1

8
+ 1

12
< ∞

Therefore, the system is BIBO stable. �

Example 5.7 Consider first, the system 

. yt = 2ut + 3ut−1 =⇒ ht = 2δt + 3δt−1

This system is BIBO stable since 

. 

∞∑
t=0

|ht | = 5 < ∞

Now consider instead the system 

. yt + 2yt−1 = 3ut

Applying the Z-transform, we get 

. zy(z) + 2y(z) = 3zu(z) =⇒ H(z) = 3z

z + 2

From the table of Z-transforms, 

. Z{αt } = z

z − α
, t ∈ Z ≥ 0

Therefore, 
. ht = 3(−2)t

and 

. 

∞∑
t=0

|ht | =⇒ ∞

Thus, the system is not BIBO stable. �
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5.2 BIBO Stability for LTV Systems 

BIBO stability can also be extended to LTV systems. Recall the zero-state response 
of CT LTV systems: 

. y(t) =
∫ t

t0

C(t)�(t, s)B(s)u(s)ds + D(t)u(t)

Then impulse response is 

. h(t) =
∫ t

t0

C(t)�(t, s)B(s)δ(s)ds + D(t)δ(t)

. =⇒ ‖h(t)‖ ≤
∫ t

t0

‖C(t)�(t, s)B(s)‖ds + ‖D(t)‖

by the triangle inequality. 
A sufficient condition for LTV BIBO stability is 

. sup
t≥0

∫ t

0
‖h(t, τ )‖dτ < ∞ and sup

t≥0
‖D(t)‖ < ∞

where.h(t, τ ) � C(t)�(t, τ )B(τ ) is the impulse response with time-shifted impulse 
function .u(t) = δ(t − τ).



Chapter 6 
Internal Stability 

The previous chapter defined a notion of stability which is dependent only on the 
boundedness of the input and output signals. Here, we consider a stronger notion of 
stability which also investigates the boundedness of the internal state signal .x(t). 

The tests that we will use for internal stability can be applied more generally to 
nonlinear autonomous systems of the form.ẋ(t) = f (x(t)), where. x ∈ R

n, f : Rn →
R

n . In order to have existence and uniqueness of solutions .x(t) to the system, we 
must impose that . f is (locally) Lipschitz continuous over a domain .D ⊆ R

n: there 
exists .L > 0 such that .‖ f (x) − f (y)‖ ≤ L ‖x − y‖ for all .x, y ∈ D. We will first 
present the discussion beyond the scope of linear systems, then treat the linear case 
as a special instance. 

6.1 Linearization 

In order to justify the treatment of the nonlinear case before discussing the linear 
case, we first describe a technique used to relate the two: linearization. 

To make the system easier to analyze, simplifying these systems around a local 
neighborhood of . x is often necessary. 

Definition 6.1 (Equilibrium Point) For autonomous systems .ẋ(t)= f (x(t)), 
.x∗ ∈R

n is an equilibrium point (fixed point) if . f (x∗) = 0. 

Note: It is possible for a system to have multiple equilibrium points. 
Figure 6.1 are special types of graphs called phase portraits. They describe the 

geometrical evolution of state trajectories on the phase plane .(x1, . . . , xn). Conven-
tionally, the coordinate plane of .R2 is often shifted so that the equilibrium point lies 
at the origin. While phase portraits can be drawn for higher-dimensional systems, 
they are often most useful in the analysis of 2D or 3D systems. 
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Fig. 6.1 Sample phase portraits 

To linearize a nonlinear system, we select a neighborhood around an equilib-
rium point. The Taylor expansion for a function . f (x) near an equilibrium point . x∗, 
considering a small deviation .�x, is given by: 

. For x near x∗ + �x, ẋ = f (x) = f (x∗ + �x) = f (x∗) + ∇ f (x)

∣
∣
∣
∣
x=x∗

· �x + h.o.t.

where . f (x) is a vector function, “h.o.t” refers to higher-order terms, and .∇ f (x) is 
the Jacobian matrix: 

. f (x) =
⎡

⎢
⎣

f1(x)
...

fn(x)

⎤

⎥
⎦ , ∇ f (x) ≡

⎡

⎢
⎢
⎣

∂ f1
∂x1

· · · ∂ f1
∂xn

...
. . .

...
∂ fn
∂x1

· · · ∂ fn
∂xn

⎤

⎥
⎥
⎦

Since the equilibrium point is typically set to 0 by convention, the above can be 
rewritten as .x(t) = x∗ + �x(t) = �x(t). Therefore, the linearized dynamics of a 
nonlinear system, around equilibrium point .x∗ = 0,  ar  e

. �ẋ =
(

∇ f (x)

∣
∣
∣
∣
x=x∗

)

�x

where .∇ f (x∗) is analogous to . A in .ẋ = Ax form. 

Example 6.1 (Van der Pol Oscillator) Consider the Van der Pol oscillator, a 
nonlinear system characterized by the equation: 

. ẍ − μ(1 − x2)ẋ + x = 0

where. x is its position,.μ > 0 is a parameter that controls the nonlinearity and damping 
of the oscillator. To analyze the system’s behavior near an equilibrium point, we 
first convert it into a system of first-order differential equations. Letting .x1 � x and 
.x2 � ẋ , we obtain: 

.

{

ẋ1 = x2,

ẋ2 = μ(1 − x21 )x2 − x1.
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To linearize this system around the equilibrium point .(x1, x2) = (0, 0), we compute 

the Jacobian matrix with respect to.x1 and.x2 at the origin to get.A =
[

0 1
−1 μ

]

. Thus, 

the linearized system near the equilibrium point .(0, 0) is: 

. 

[

ẋ1
ẋ2

]

=
[

0 1
−1 μ

] [

x1
x2

]

It is important to remember that this linearization represents the system’s dynamics 
only near the equilibrium point. Nonlinear effects, especially those introduced by 
the term .μ(1 − x21 )x2, lead to complex behaviors such as limit cycles that are not 
captured by this linear model. As the parameter. μ increases, these nonlinear phenom-
ena become more pronounced, and the utility of the linear approximation diminishes 
away from the equilibrium. �

6.2 Determining Stability via Eigenvalues 

We are now ready to present the three main types of internal stability notions for 
general autonomous nonlinear systems. 

Definition 6.2 (Main Types of Stability) A CT nonlinear autonomous system. ẋ(t) =
f (x(t)) with equilibrium point . x∗ ∈R

n

1. is stable if for all .R > 0 there exists .r > 0 such that if .‖x0 − x∗‖ < r , then 
.‖x(t) − x∗‖ < R for all .t ≥ t0. The size of .R relative to . r does not matter. An 
example of a stable trajectory is .x(t) = sin t because .|x(t)| ≤ 1 for all . t . 

2. is asymptotically stable if it is stable and there exists .r > 0 such that for all 
.‖x0 − x∗‖ < r ,  we  have .limt→∞ x(t) = 0. An example of an asymptotically 
stable trajectory is .x(t) = 1

t+1 since for .t ≥ 0, .|x(t)| ≤ 1 and .limt→∞ x(t) = 0. 
3. is exponentially stable if there exists .M,α > 0 such that . ‖x(t) − x∗‖ ≤

M ‖x0 − x∗‖α(t−t0) for all.t ≥ t0. An example of an exponentially stable trajectory 
is .x(t) = e−t ; .M = α = 1 in this case. 

Definition 6.3 (Unstable) CT nonlinear autonomous system .ẋ(t) = f (x(t)) with 
equilibrium point .x∗ = 0 is unstable if there exists an initial condition .x0 ∈ R

n s.t. 
.limt→∞‖x(t)‖= ∞. 

Definition 6.4 (Marginal Stability) CT nonlinear autonomous system. ẋ(t)= f (x(t))
with equilibrium point .x∗ = 0 is marginally stable if: 

1. It is stable (in the sense of Definition 6.2). 
2. It is not asymptotically stable (in the sense of Definition 6.2), meaning that there 

exists at least one solution .x(t) such that: 

. lim
t→∞ ‖x(t) − x∗‖ �= 0.
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In other words, while trajectories starting near .x∗ remain close to the equilibrium 
point, they do not necessarily converge to .x∗ as .t → ∞. 

Remark 6.1 Exponential stability implies asymptotic stability, but the converse 
does not hold for general nonlinear systems. In the linear case, however, both 
directions hold because the state trajectories of linear systems naturally follow an 
exponential path. 

Checking stability using Definition 6.2 are often difficult to verify directly. For 
linear systems, there are a collection of equivalent conditions that may be used. 

Theorem 6.1 For CT LTI system . H, the following are equivalent: 

1. .H is asymptotically stable. 
2. .H is exponentially stable. 
3. . A is Hurwitz, i.e. all eigenvalues of . A are in the open left half complex plane .C

−. 

Moreover, .H being unstable means one of the following cases holds: 

1. . A has eigenvalues on the open right half complex plane .C
+. 

2. . A has at least one repeating eigenvalue of the . jω axis and marginally stable if A 
has some eigenvalues on the . jω axis which are simple. 

There are also analogous tests for the DT linear systems, i.e., .x[t + 1] = Atx[t]. 
Corollary 6.1 For DT LTI system . H, the following are equivalent: 

1. .H is asymptotically stable. 
2. .H is exponentially stable. 
3. . A is Schur, i.e. all eigenvalues of . A are in the open unit disk .{|z| < 1} ⊂ C. 

Moreover, .H is unstable if . A has eigenvalues outside the closed unit disk .{|z| > 1}. 
And .H is marginally stable if .A has some eigenvalues on the unit circle which are 
all simple. 

6.3 Classifying Types of Equilibria 

For CT LTI systems with .n = 2 (i.e. .x(t) ∈ R
2), there are 4 types of equilibria 

depending on the eigenvalues of the . A matrix. 

Type Condition 
Node .λ1,λ2 ∈ R \ {0} and sgn(.λ1)=sgn(.λ2) 
Saddle .λ1,λ2 ∈ R \ {0} and sgn(.λ1).�= sgn(.λ2) 
Focus .λ1,λ2 ∈ C and Re(.λ1).= Re(.λ2).�= 0 
Center .λ1,λ2 ∈ C and Re(.λ1).= Re(.λ2).= 0 

As we’ve seen in the previous section, the exact sign of the eigenvalues determines 
the stability, and the two characteristics could be combined together to describe the 
equilibrium point more precisely. For example, if .λ1,λ2 ∈ R\{0} and . sgn(λ1) =
sgn(λ2) < 0, then it is a stable node.
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Example 6.2 Consider the system given by 

. ẋ = f (x) =
[

x21 + 4x1 − 12
x1 − 2x2

]

∈ R
2

Then its equilibria are .x∗
1 = (2, 1), x∗

2 = (−6,−3). After linearization at each of 
these equilibria: 

.∇x f (x) =
[

2x1 + 4 0
−1 2

]

=⇒

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∇x f (x)|x=x∗
1

=
[

8 0

−1 2

]

λ = 8, 2 =⇒ unstable node

∇x f (x)|x=x∗
2

=
[

−8 0

−1 2

]

λ = −8, 2 =⇒ saddle

�

Now, how do the phase portraits of each type of equilibria look like? Let . v1, . v2
be the two eigenvectors corresponding to eigenvalues .λ1,λ2. 

6.3.1 Node Equilibria 

• Case 1: . λ1, .λ2 ∈ R (.λ1 �= λ2), assume.|λ1| < |λ2|. 
Denote the initial state .x0 = c1v1 + c2v2, where the .v1, v2 ∈R

2 are eigenvectors 
of . A. Then the state at time t is generally written as 

. x(t) = c1e
λ1tv1 + c2e

λ2tv2.

(We can do this because the eigenvectors always from a basis of .R2). Therefore, 

. x1(t) = c1e
λ1tv11 + c2e

λ2tv21

x2(t) = c1e
λ1tv12 + c2e

λ2tv22

Then we have 

.
dx2
dx1

= c1λ1eλ1tv12 + c2λ2eλ2tv22

c1λ1eλ1tv11 + c2λ2eλ2tv21
= c1λ1v12 + c2λ2e(λ2−λ1)tv22

c1λ1v11 + c2λ2e(λ2−λ1)tv21
(6.1) 

1. Subcase (sgn(. λ1) = sgn(. λ2) .< 0). 
In Eq. 6.1,  i  f .c1 �= 0,  a  s .t =⇒ ∞ .

dx2
dx1

= v12
v11

, and when .c1 = 0, . dx2dx1
= v22

v21
.  The  

phase portrait is shown in Fig. 6.2. 
2. Subcase (sgn(. λ1) = sgn(. λ2) .> 0  (.λ1 < λ2)). 

In this situation, the equilibrium point is an unstable ordinary node. In Fig. 6.3, 
the direction gets reversed compare with sgn(. λ1) = sgn(. λ2) .< 0.
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Fig. 6.2 Phase portrait for 
stable ordinary node 

• Case 2: . λ1, .λ2 ∈ R (.λ1 = λ2 = λ) 

1. Subcase .A = V�V−1 where .� =
[

λ 0
0 λ

]

. 

. ẋ1(t) = λx1(t)

ẋ2(t) = λx2(t)

We can get that .x1(t) = c1eλt , and .x2(t) = c2eλt , where .c1, c2 are the initial 
state. . dx2dx1

= c2
c1
. The phase portraits are shown in Figs. 6.4 and 6.5. 

2. Subcase .A = V�V−1 where .� =
[

λ 1
0 λ

]

. 

. ẋ1(t) = λx1(t) + x2(t)

ẋ2(t) = λx2(t)

In this case, shown in Figs. 6.6 and 6.7, matrix A only has one eigenvector . v1
such that.Av1 − λv1 = 0. The other eigenvector.v2 is the generalized eigenvec-
tor generated from . v1.  I  f .x0 = c1v1 + c2v2, then .x(t) = eJt x0 after change of 
coordinates 

. 

[

x1
x2

]

=
[

eλt teλt

0 eλt

] [

c1v11 + c2v21
c1v12 + c2v22

]

.

The node is called degenerate node or singular node (Fig. 6.4).
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Fig. 6.3 Phase portrait for 
unstable ordinary node 

Fig. 6.4 Phase portrait for 
stable dicritical node 

Fig. 6.5 Phase portrait for 
unstable dicritical node 

6.3.2 Saddle Equilibria 

Saddle equilibria occur when.λ1,λ2 ∈ R, sgn(λ1) �= sgn(λ2) < 0. The eigenvectors 
become separatrices and trajectories are hyperbolic. Like shown in Figs. 6.8 and 
6.9, the direction of the trajectory is dependent on the sign of .λ1 and . λ2. All saddle 
equilibria have opposite sign eigenvalues, indicating instability. Eigenvectors become 
separatrices and trajectories are hyperbolic.
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Fig. 6.6 Phase portrait for 
stable degenerate node 

Fig. 6.7 Phase portrait for 
unstable degenerate node 

Fig. 6.8 Phase portrait for 
saddle when. λ1 < 0

6.3.3 Focus Equilibria 

Focus equilibria occur when .λ1,λ2 ∈ C s.t. .Re(λ1) �= 0,Re(λ2) �= 0. Recall that 
conjugate pairs are always both eigenvalues/eigenvectors, i.e., we can write. λ1 =σ +
jω, .λ2 =σ − jω where.σ,ω ∈R, and.v1 =u + jw, .v2 =u − jw, where .u,w∈R

2. 
Now consider
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Fig. 6.9 Phase portrait for 
saddle when. λ1 > 0

. eλ1tv1 = e(σ+ jω)t (u + jw) = eσt (cosωt + j sinωt)(u + jw)

= eσt (u cosωt − w sinωt) + jeαt (u sinωt + w cosωt).

Likewise, 

. eλ2tv2 = eσt (u cosωt − w sinωt) − jeαt (u sinωt + w cosωt).

Thus general solutions .x(t) can be expressed as a linear combo of the real part and 
imaginary part: 

. x0 = c1v1 + c2v2

Here, . c1, .c2 ∈ C in order for.x0 ∈ R
2, since. v1, .v2 ∈ C

2. Introduce. r1, .r2 .∈ R so that 

. x(t) = r1e
αt (u cosωt − w sinωt) + r2e

αt (u sinωt + w cosωt).

Thus, .x(t) can also be written in terms of the basis vectors . u,w

. x(t) ≡ α(t)u + β(t)w.

Choose .r1 = c cos θt, r2 = c sin θt for some auxiliary angle . θ. Then . α(t) =
ceσt sin(ωt + θ) and .β(t) = ceσt cos(ωt + θ). The phase portraits are shown in 
Figs. 6.10 and 6.11 The phase trajectories are spirals that depend on sgn(. σ). 

6.3.4 Center Equilibria 

Center equilibria occur when .λ1,λ2 ∈ C s.t. .Re(λ1) = Re(λ2) = 0. The possible 
phase portraits for center equilibria are shown in Fig. 6.12. All center equilibria are 
marginally stable. Phase trajectories become nonintersecting ellipses. We leave it as 
an exercise to derive conditions for phase portrait curve orientation.



80 6 Internal Stability

Fig. 6.10 Phase portrait for 
stable focus. (sgn(σ) < 0)

Fig. 6.11 Phase portrait for 
unstable focus. (sgn(σ) > 0)

Fig. 6.12 Phase portrait for center 

Example 6.3 Draw the phase portrait of the system.ẋ =
[−3 4
−2 3

]

x. 

Solution 2: Let’s denote .A =
[−3 4
−2 3

]

. First calculate the eigenvalues and 

eigenvectors of . A. Through .det |λI − A| = 0, we can get .λ1 = 1 and .λ2 = −1. 
Meanwhile, the eigenvector .v1 = [1 1]�, .v2 = [2 1]�, respectively.
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Fig. 6.13 Phase portrait 
under. y frame 

Fig. 6.14 Phase portrait 
under. x frame 

Then let denote .P =
[

1 2
1 1

]

, .� =
[

1 0
0 −1

]

and .x = Py. Therefore .ẏ = �y.  For  

this system, it is easy to see that .ẏ1 = y1 and .ẏ2 = −y2, implies .y1(t) = c1et and 
.y2(t) = c2e−t . The phase portrait is shown in Fig. 6.13. Through the coordinate 
changes .x = Py.  Th  e .[1 0]� in the . y frame is .[1 1]� in the . x frame, and also the 
.[0 1]� in the . y frame is .[2 1]� in the . x frame. All these are shown in Fig. 6.14. �



Chapter 7 
Lyapunov Stability 

The evolution of the fundamental concepts of system and trajectory stabilities went 
through a long history, with many fruitful advances and developments, until the 
celebrated Ph.D. thesis of A. M. Lyapunov, The General Problem of the Stability of 
Motion, published in 1892 [ 1]. This monograph is so fundamental that its ideas and 
techniques are virtually leading all kinds of basic research and applications regarding 
stabilities of dynamical systems today. In fact, not only dynamical behavior analysis 
in modern physics, but also controllers design in engineering systems depend on the 
principles of Lyapunov’s stability theory. 

Lyapunov’s theory is very powerful, but there are cases where it fails to demon-
strate stability in specific situations. We will also examine another powerful theory, 
Lasalle’s Invariance principle [ 2], which can be applied in such situations. 

Lyapunov stability is a very common method of checking internal stability in 
modern control theory and often used to verify stability for autonomous linear or 
nonlinear systems [ 3]. It describes properties of the system’s equilibrium point. We 
can make future states .x(t), ∀t > t0 arbitrarily close to the equilibrium by taking 
the initial condition to be close enough. 

7.1 A Motivating Example 

Let’s consider the pendulum example we’ve seen before. In this case, we add a 
damping term related to the dissipation of the pendulum’s energy. 

. mL θ̈ (t) = −mg sin θ(t) − kL θ̇ (t) , k ≥ 0

The state-space equations becomes 
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. 

[
ẋ1
ẋ2

]
=

[
x2

− g
L sin x1 − k

m x2

] [
x1
x2

]

where.x1 = θ , x2 = θ̇ . Then, the system’s equilibria can be found by.ẋ =
[
x1
x2

]
= 0. 

This tells us .x2 = 0 and .x1 = nπ for every .n ∈ Z. 
Physically, the system has only two equilibria. One is pendulum hanging down, 

and the other is hanging up. A natural way to investigate stability of equilibria is to 
see how much energy it dissipates over time. 

• Case : . k = 0

. E(x) = K E(x) + PE(x) = 1

2
x22 +

∫ x1

0

g

L
sin z dz = 1

2
x22 + g

L
(1 − cos(x1))

Applying the Jacobian, 

. Ė(x) = ∂E

∂x1
ẋ1 + ∂E

∂x2
ẋ2 = g

L
sin x1 · x2 + x2 ·

(
− g

L
sin x1

)
= 0

It means that energy remains constant over time and there is no energy dissipation. 
• Case : . k > 0

. Ė(x) = g

L
sin x1(x2) + x2

(
− g

L
sin x1 − k

m
x2

)
= − k

m
x22 ≤ 0 ∀x2 ∈ R.

This means that energy is decreasing, which adheres to the intuition of stability 
(e.g., dissipative energy). 

Through the pendulum example, the concept of Lyapunov stability (stability in the 
sense of Lyapunov) takes this similar “energy” perspective of the system and intuition 
for the Lyapunov function. The Lyapunov function .V : Rn → R is a chosen energy 
function such that when it is decreasing over time, it tells us the stability of the 
system’s equilibrium. 

There are two common methods associated with the Lyapunov approach. But 
before we begin, let’s make some important function definition. 

7.2 Lyapunov-Sense Stability 

Stability in the sense of Lyapunov is often characterized with respect to an equilibrium 
point (see Definition 6.1). However, autonomous systems don’t always converge to 
an equilibrium point.
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7.2.1 Additional Definitions 

Definition 7.56 (Limit Cycle)  Le  t .O := {x(t)|x(t) = x(t + T )} be a periodic orbit 
with period .T > 0. Then .O is defined to be a limit cycle of the system .ẋ = f (x) if 
for all.y ∈ O, there exists a sequence of times.{tn} ⊆ R

+ such that. limn→∞ tn = +∞
and .limn→∞ x(tn) = y. Intuitive illustrations of the two concepts are in Fig. 7.1. 

As before, we will define most of our following concepts with respect to an 
equilibrium point, though they can be easily extended to limit cycles as well. This 
type of stability is commonly referred to as Lyapunov-sense stability. 

Lyapunov stability is a type of internal stability that describes the properties of 
the system’s equilibrium point(or limit cycle). We can make future states.x(t),. t > t0
arbitrarily close to the equilibrium by taking the initial condition to be “close enough”. 
Often used to verify stability for autonomous nonlinear systems. 

Definition 7.57 (Lyapunov-Sense Stability) Let system .ẋ(t) = f (x(t)) ∈ R
n have 

equilibrium point .x∗ ∈ R
n . Then .x∗ is 

• stable if.∀ε > 0,.∃δ > 0 such that if.||x0 − x∗|| ≤ δ then.||x(t) − x∗|| ≤ ε .∀t ≥ t0. 
• (locally) asymptotically stable if .∀ε > 0, .∃δ > 0 such that .||x0 − x∗|| ≤ δ then 

.||x(t) − x∗|| ≤ ε .∀t ≥ t0 and .limt→∞ x(t) = x∗. 
• (locally) exponentially stable if .∃ε, M, α > 0 such that .||x0 − x∗|| ≤ δ then 

.||x(t) − x∗|| ≤ Me−αt ||x(t) − x∗|| .∀t ≥ t0. 

Remark 7.11 Global asymptotic/exponential stability occurs when you can start 
the initial condition .x0 anywhere in .R

n and the trajectories still converge. 

Like the three main types of stability in Definition 6.2, the conditions presented 
in Definition 7.57 are difficult to verify directly. For LTI systems, we can characterize 

Fig. 7.1 Trajectory converging towards an equilibrium point(left) and a limit cycle (right)
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Fig. 7.2 Trajectory for a stable equilibrium point (left) versus an asymptotic or exponentially stable 
equilibrium point (right). Essentially, stability requires the trajectory to remain within a bounded 
error ball of the equilibrium point, while asymptotic or exponential stability requires convergence 
towards the equilibrium point 

stability by computing the eigenvalues. For more general systems and LTV systems, 
we instead have two main Lyapunov methods to check whether a system is stable 
and of what type (Fig. 7.2). 

7.2.2 Preliminary Mathematical Reviews 

Before we dive into a thorough discussion of Lyapunov stability methods, we first 
review a few mathematical preliminaries. 

Definition 7.58 (Symmetric and Skew-Symmetric Matrices)  Le  t .A∈R
n×n be a 

square matrix. 

1. . A is symmetric if.A� = A. Some common properties of symmetric matrices are: 

• all eigenvalues are real 
• all eigenvectors are orthogonal: . A = V�V−1 = V�V�

2. . A is skew-symmetric if.A� = −A. Some common properties of skew-symmetric 
matrices are: 

• all eigenvalues are purely imaginary 
• diagonalized by unitary matrix . V−1 = V ∗

Definition 7.59 (Quadratic Form)  A  quadratic form corresponding to symmetric Q 
is

. f (x) = x�Qx, x ∈ R
n.
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Fig. 7.3 Quadratic form in 
2D (ellipsoid) 

Fig. 7.4 Quadratic form in 
1D (function) 

The presentation of the quadratic form is unique: 

. x�Qx = x� Q̃x

so the.Q = Q̃. When Q is not symmetric, we can still derive a corresponding quadratic 
form with a symmetric matrix: 

. f (x) = x�Qx = 1

2
x�Qx + 1

2
x�Q�x = x�

[
1

2
(Q + Q�)

]
x

let .Q̃ = 1
2 (Q + Q�),  s  o .Q̃ is symmetric. 

Let.λmin < · · · < λmax be the sorted eigenvalues of Q. Then.∀x ∈ R
n
. λmin||x ||2 ≤

x�Qx ≤ λmax||x ||2. This means quadratic forms can be bounded (Figs. 7.3 and 7.4). 

Definition 7.60 (Definite and Semidefinite) Symmetric matrix .Q ∈ R
n×n is 

• positive semidefinite (.Q � 0)  i  f .x�Qx ≥ 0 . ∀x ∈ R
n

• positive definite (.Q � 0)  i  f .x�Qx > 0 . ∀x ∈ R
n

• negative semidefinite (.Q � 0)  i  f .x�Qx ≤ 0 . ∀x ∈ R
n

• positive definite (.Q ≺ 0)  i  f .x�Qx < 0 . ∀x ∈ R
n

Here, .Q � 0 means all eigenvalues of Q are not less than 0, and also means 
.∃P ∈R

n×m such that .Q = PP� (since .x�Qx = x�PP�x = y�y = ||y||2 ≥ 0).
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.Q � 0means all eigenvalues of Q are bigger than 0, and also means. ∃ onto. P ∈ R
n×m

such that .Q = PP�. 
We introduce the notation.Bε = B(x∗, ε), representing the collection of all points 

situated within a hyperball centered at the equilibrium point .x∗ with a radius of . ε, 
denoted as, i.e. .Bε = {x ∈ R

n|‖x − x∗‖ ≤ ε}. The property is 
• local, if it holds for all x within a hyperball . Bε

• global, if it holds for all x . ∈ R
n

• uniform, if it holds for all .t0 ≥ 0. 

Definition 7.61 (Positive Definite Functions (pdf)) A function.V : Rn → R is called 
positive definite for some continuous, strictly-increasing .α : R≥0 → R if and only 
if, 

.V (0) = 0, V (x) ≥ α(‖x‖) and lim‖x‖=⇒∞ α(‖x‖) = ∞ (7.1) 

(i.e. . α is radially unbounded). In short 

.
V (x) > 0 for x �= 0 and

V (x) = 0 for x = 0.
(7.2) 

Definition 7.62 (Positive Semidefinite Functions (psdf)) A function.V : Rn → R is 
called positive definite if and only if it takes nonnegative values, with the exception 
of yielding zero when .x = 0. In short 

.
V (x) ≥ 0 for x �= 0 and

V (x) = 0 for x = 0.
(7.3) 

Likewise, a function.V (x) is called negative definite,  i  f .−V (x) is positive definite 
and is called negative semidefinite,  i  f .−V (x) is positive semidefinite. 

Definition 7.63 (Decrescent Functions) A continuous function .V : Rn → R is 
decrescent if for some .ε > 0 and some continuous, strictly-increasing 
.β : R≥0 → R, 

.V (x) ≤ β(‖x‖) ∀x ∈ Bε ⊆ D (7.4) 

7.3 Lyapunov Indirect Method 

The first method is called the Lyapunov Indirect Method, which relies on the lin-
earization of a system. Define 

.A � ∂ f

∂x

∣∣∣∣
x=x∗
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to be the linearization of the nonlinear system .ẋ = f (x) about .x = x∗. Note that 
. f (x) must be twice continuously differentiable. 

1. If Re.(λi (A)) < 0 for all . i then .x∗ is locally asymptotically stable. 
2. If Re.(λi (A)) > 0 for some . i then .x∗ is unstable. 
3. If Re.(λi (A)) = 0 for some. i then it cannot be determined whether .x∗ is stable or 

not. 

If the linearized system is asymptotically stable (in the sense of Lyapunov), then 
.x∗ = 0 is a locally asymptotically stable equilibrium point of the original system. The 
following conclusions can be drawn for the equilibria .x∗ of the system: 

1. If all eigenvalues of the system matrix . A have a negative real part, then the equi-
librium.x∗ of the system is locally asymptotically stable in the sense of Lyapunov. 

2. If an eigenvalue of the system matrix. A has a real part, then the equilibrium.x∗ of 
the system is locally unstable. 

3. When at least one eigenvalue of the system matrix. A has a real part equal to zero 
and none have a positive real part, no clear conclusions can be drawn about the 
equilibrium .x∗ of the system. The equilibrium . x∗can be locally asymptotically 
stable, locally stable in the sense of Lyapunov, or locally unstable. 

The motivation for this type of test is derived from linear systems. Consider a scalar 
linear system.ẋ = ax . The solution is.x(t) = x0eat .  I  f .a < 0, then.limt→∞ x(t) = 0, 
which implies local asymptotic stability according to the definition above. If .a > 0, 
then the trajectory blows up and is clearly unstable. 

7.4 Lyapunov Direct Method 

A more refined test of stability is the Lyapunov Direct Method. We first shift the 
dynamics of the system such that its equilibrium point is at the origin: . ẋ = f (x −
x∗). Then we construct a continuously differentiable, real-valued, positive-definite 
function.V (x) over some domain.D that contains.x∗ ≡ 0. This function is called the 
Lyapunov function, and can be thought of as a potential energy-like function such 
that a decrease in its value implies a transition to a stabler, lower-energy state. 

1. If .V̇ (x) = ∂V
∂x ẋ = ∂V

∂x f (x) is nonpositive for all .x ∈ D, then the system is stable. 
2. If.V̇ (x) < 0 with strict inequality for all.x ∈ D, then the system is locally asymp-

totically stable. 
3. If.V (x) is radially unbounded, i.e.,.lim‖x‖→∞ V (x) = ∞, then the system is glob-

ally asymptotically stable. 

The choice of .V is not unique. In each case, the existence of a single .V that 
satisfies the condition is all that is needed to show the corresponding form of stability. 
Some popular forms are .V (x) = x�Px for positive definite .P or . V (x) = ∑

i ci x
2
i

for .ci > 0. Furthermore, the Direct method gives no insight into the instability of a 
system. In fact, to prove instability, one could take the converse of the first test, which
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means one would need to show that .V̇ (x) > 0 for all possible Lyapunov functions 
. V . Clearly this is an infeasible task. 

Example 7.11 Show that the following system is stable at its equilibrium points. 

. 

[
ẋ1
ẋ2

]
=

[
x2 − x31−x1 − x32

]

Note that .(0, 0) is the only equilibrium of this system. Further, choose Lyapunov 
function .V (x) = x21 + x22 . Note that it satisfies . C1, .V (0) = 0, .V (x) > 0 for all . x �=
0, and it is decrescent with .β(‖x‖) = 2‖x‖2 = 2(x21 + x22 ). .V (x) is also radially 
unbounded: 

. V̇ (x) = 2x1 ẋ1 + 2x2 ẋ2 = 2x1(x2 − x31) + 2x2(−x1 − x32) = −2x41 − 2x42

. =⇒ V̇ (x) < 0 ∀x �= 0

Altogether, the system is globally asymptotically stable. Note that the choice of . V
is not unique, and the stability proof of the above system also works with . V (x) =
2(x21 + x22 ). �

7.5 Exponential Stability 

The theorem presented so far makes statements about the stability of the equilibria 
but does not provide any information about the type of convergence. Accordingly, 
we define exponential stability for systems whose solutions decay exponentially. 

Definition 7.64 (Exponential Stability) Suppose we are given the autonomous non-
linear system 

.ẋ(t) = f (x(t)) (7.5) 

with. f : D → R
n locally Lipschitz over a domain.D ⊆ R

n , and the equilibrium point 
.x∗ = 0 ∈ D. Then.x∗ is exponentially stable if there exist constants.α, M, c > 0 such 
that for all .‖x(t0)‖ < c, 

.‖x(t)‖ ≤ M‖x(t0)‖e−α(t−t0). (7.6) 

If (7.6) holds for all .x(t0) ∈ R
n , then the equilibrium point is globally exponentially 

stable.
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Theorem 7.16 (Exponential Stability) Let .x∗ = 0 be an equilibrium of (7.5) and 
.V :Rn → R be a continuously differentiable function. If 

.

c1‖x‖2 ≤ V (x) ≤ c2‖x‖2,
V̇ (x) ≤ −c3‖x‖2,∥∥∥∥∂V (x)

∂x

∥∥∥∥ ≤ c4‖x‖
(7.7) 

holds locally and .∀t ≥ 0 for some constants .c1, c2, c3, c4 > 0, then .x∗ = 0 is expo-
nentially stable. If (7.7) holds globally (i.e., for all .x ∈ R

n), then .x∗ = 0 is globally 
exponentially stable. 

Now the question may arise, how is (7.7) related to (7.6)? Therefore, we first 
transform the first term and insert it into the second term. This results in 

.V̇ (x) ≤ −c3‖x‖2 ≤ −c3
c2
V (x). (7.8) 

The next step is to treat the new term like a scalar differential inequality: 

.ż(t) ≤ −c3
c2
z(t) (7.9) 

with initial condition.z(0) = V (x(0)). By applying the Gronwall-Bellman inequality 
and considering that all terms are nonnegative, we can obtain 

.‖x(t)‖ ≤
√
c2
c1

‖x(0)‖e− c3
2c2

t
. (7.10) 

Therefore, we can choose .M ≤
√
c2
c1

and .α ≥ c3
2c2

. 

For linear time-invariant (LTI) systems, we can also prove exponential stability 
using .V (x) = x�Px for .P � 0 as the Lyapunov function. 

7.6 Lyapunov Stability for LTI Systems 

For LTI systems where .ẋ(t) = Ax(t), we can simply choose a quadratic form to be 
our Lyapunov function: 

. V (x) = x�Px, P � 0 is a n × n symmetric matrix.

Because .P � 0., .V is a positive-definite function. We can verify that .V is . C1, and 
satisfies .V (0) = 0, decrescence with .β(‖x‖) = λmax(P)‖x‖2. Moreover, . V (x) ≥
λmax(P)‖x‖2 is radially-unbounded. so, asymptotic stability is global.
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. V̇ (x) = x�P ẋ + ẋ�Px = x�A�Px + x�PAx = x�(A�P + PA)x

This results gives us useful information for Lyapunov stability for LTI systems. 

Theorem 7.17 Such a LTI system is asymptotically stable if 

.A�P + PA < 0 (7.11) 

Equivalently, there must exist .n × n symmetric matrix .Q � 0 such that 

.A�P + PA = −Q (7.12) 

where (7.12) is called the Lyapunov equation. 

The MATLAB commands lyap for CT, dlyap for DT. Standard guesses for . Q
are .In or .q In for some .q ∈ R

+. 

Theorem 7.18 Suppose we are given autonomous nonlinear system . ẋ(t) = f (x(t))
with . f : D → R

n locally Lipschitz over domain .D ⊆ R
n, .0 ∈ D, and equilibrium 

point .x∗ = 0. Then .x∗ = 0 is locally exponentially stable iff .∃ε > 0 and Lyapunov 
function .V : Rn → R and .α1, α2, α3, α4 > 0 s.t. 

.

⎧⎪⎨
⎪⎩

α1‖x‖2 ≤ V (x) ≤ α2‖x‖2
V̇ (x) ≤ −α3‖x‖2 ∀x ∈ Bε ⊆ D

‖∇V (x)‖ ≤ α4‖x‖
(7.13) 

How is Theorem 7.18 related to the original condition for exponential stability 
from Definition 7.57? That is, .‖x(t)‖ ≤ Me−αt‖x0‖? Let’s combine the first two 
conditions in (7.13): 

. − α1‖x‖2 ≥ −V (x) ≥ −α2‖x‖2
V̇ (x) ≤ −α3‖x‖2 ≤ −α3

α2
V (x)

Treat this like a scalar differential inequality .ż(t) ≤ − α3
α2
z(t) with initial condition 

.z(0) = V (x(0)). By Gronwall-Bellman, .z(t) ≤ z(0)e− α3
α2

t , therefore, 

. V (x) ≤ V (x0)e
− α3

α2
t =⇒ ‖x‖2 ≤ α2

α1
‖x0‖2e− α3

α2
t =⇒ ‖x‖ ≤

√
α2

α1
‖x0‖e− α3

2α2
t

since all terms are non-negative, we can choose .M ≤
√

α2
α1
, .α ≥ α3

2α2
. 

For LTI systems, we can also prove exponential stability using the same Lyapunov 
function as before: .V (x) = x�Px, P � 0.
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Theorem 7.19 A continuous LTI system .ẋ = Ax is asymptotically (exponentially) 
stable if and only if.∀Q � 0,.Q = Q� ∈R

n×n, there exists a unique.P � 0,. P = P� ∈
R

n×n such that the Lyapunov equation (7.12) holds. 

Proof (Sufficiency.) Suppose .A�P + PA = −Q (the Lyapunov equation holds) 

. V̇ (x) = x�(A�P + PA)x = −x�Qx

. =⇒ −V̇ (x) = x�Qx ≥ λmin(Q)‖x‖2 and V (x) = x�Px ≤ λmax(P)‖x‖2

Therefore, 

. − V̇ (x) ≥ λmin(Q)

λmax(P)
‖x‖2 ≥ α for x �= 0, α = λmin(Q)

λmax(P)

. =⇒ V̇ (x) ≤ −αV (x)

Treat this like a scalar differential inequality .ż(t) ≤ −αz(t) with initial condition 
.z(0) = V (x0) as before. By Gronwall-Bellman, 

. z(t) ≤ z(0)e−αt =⇒ V (x(t)) ≤ V (x0)e−αt

. =⇒ V (x(t)) =⇒ 0 exponentially as t → ∞

Since .V (x(t)) ≥ λmin(P)‖x(t)‖2,  we  also  have .λmin(P)‖x(t)‖2 =⇒ 0 as .t → ∞. 
Since .λmin(P) > 0, this means, 

. ‖x(t)‖ =⇒ 0 exponentially as t → ∞ too.

(Necessity.) Suppose.ẋ = Ax is asymptotically stable. This means all eigenvalues 
.λi (A) have strictly negative real parts. This further implies that. A is nonsingular, and 
we can get the unique solution .x(t) = eAtx0 given .x(0) = x0. 

Let .Q � 0 be some .n × n matrix. Then .eA
�t QeAt � 0 for all .t ≥ 0. Consider 

.P �
∫ ∞

0
eA

�t QeAtdt. (7.14) 

Note that such a .P exists, is unique, is positive definite, and satisfies .‖P‖2 < ∞. 
Then,
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. A�P + PA =
∫ ∞

0

(
A�eA

�t QeAt + eA
�t QeAt A

)
dt

=
∫ ∞

0

d

dt

{
eA

�t QeAt
}
dt

= lim
t→∞ eA

�t QeAt − Q = −Q.

Therefore, .A�P + PA = −Q. �

7.7 Invariant Set Theorem 

LaSalle’s Invariant Set Theorem can help us conclude asymptotic stability even 
though the Lyapunov function we’ve constructed has negative semidefinite derivative 
so that it only lets us conclude stability. Suppose.�c := {x|V (x) ≤ c} is bounded and 
.V̇ (x) ≤ 0 on .�c.  Le  t .D be the largest invariant set in .

{
x|V̇ (x) = 0

}
; that is, every 

trajectory .x(t) that enters .D at some time . τ never leaves .D for all .t ≥ τ . Then all 
.x(t) such that .x0 ∈ �c tends to .D as .t → ∞. 

There is a similar version of LaSalle’s principle for limit cycles, called the Poicare-
Bendixson Theorem. Informally stated, let . C be a compact (forward) invariant set, 
i.e., once a trajectory enters . C, it never leaves it. If . C contains no equilibrium points, 
a limit cycle that must exist in it. It must clearly be the case that .V̇ (x) = 0 for all . x
on the limit cycle. Thus, all trajectories which begin in . C ultimately converge to the 
limit cycle in . C. 

This section introduces LaSalle’s invariance principle, which has two main appli-
cations. On the one hand, it is an extension of the stability analysis of Lyapunov. In 
some cases, with this principle, we can examine stability without.V (x) being (locally) 
positive definite. Secondly, it can be used to show that trajectories which start in a 
particular area, converge to an invariant set. An invariant set is defined as a set, where 
trajectories can no longer leave once they have entered. 

Definition 7.65 (Invariant Set)  A  s  et.S ⊂ R
n is said to be (positively) invariant,  also  

called (forward) invariant,  for a .ẋ = f(x) if .∀x0 ∈ S and .t0 ≥ 0, .x(t) ∈ S ∀t ≥ t0. 
That is, every trajectory of.ẋ = f(x)which enters set. S at time. τ never leaves.S ∀t ≥ τ . 

Theorem 7.20 Let .V : Rn → R be locally positive definite, and let 

.�c � {x ∈ R
n|V (x) ≤ c, V̇ (x) ≤ 0}, (7.15) 

where .c > 0, be a compact, invariant set with respect to .ẋ = f(x). Further define 

.M � {x ∈ R
n|V̇ (x) = 0} (7.16)
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Let .D be the largest invariant set in .M ∩ �c. Then all .x(t) such that .x0 ∈ �c con-
verges towards.D as.t → ∞.  And  i  f.D = {0}, then. 0 is (locally) asymptotically stable 
(Fig. 7.5). 

Remark 7.12 Sets of the form.{x ∈ R
n : V (x) = c}, c ∈ R are often called the level 

set of .V (at level . c), while sets .{x ∈ R
n : V (x) ≤ c} are often called sublevel set of 

.V (at level . c). 
(If .V is continuous, both level sets and sublevel sets of .V are closed.) 

Example 7.12 Recall the pendulum-with-friction example described in Sect. 7.1. 

. ẋ1 = x2, ẋ2 = − g

L
sin x − 1 − k

m
x2

Choose energy function to be the Lyapunov function 

. V (x) = 1

2
x22 + g

L
(1 − cos x1)

Fig. 7.5 A Lyapunov function portrayed over a domain.D and an invariant set .�c
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We saw that .V̇ (x) = − k
m x

2
2 ≤ 0 .=⇒ negative semidefinite. The Lyapunov direct 

method only tells us that .(0, 0) is a stable equilibrium. We will try to arrive at a 
stronger conclusion with LaSalle’s principle. 

Note that in order for .V̇ (x) = 0,  al  l .x(t) must be such that .x2(t) = 0 ∀t . 

. M = {x ∈ R
n|V̇ (x) = 0} = {x ∈ R

n|x2 = 0}

Choose .�c corresponding to .x1 ∈ (−π, π), x2 = 0: 

.�c �
{
x ∈ R

n|V (x) <
g

L
(1 − cosπ) = 2g

L

}
(7.17) 

For any .x ∈ �c, the system can maintain .V̇ (x) = 0 only when .x1 = 0. This means 
that.{0} is the largest invariant set in.M ∩ �c and so.(0, 0) is an asymptotically stable 
equilibrium point. �

Example 7.13 Consider the system 

. ẋ = f (x) =
[

x2
x1 − x21 x2

]

Construct Lyapunov function.V (x) = x21 + x22 . Clearly this is positive definite. Then 
.V̇ (x) = 2x1 ẋ1 + 2x2 ẋ2 = −2x21 x

2
2 . But this is only negative semidefinite. 

Consider the set .D = {
x ∈ R

n|V̇ (x) = 0
} = {x ∈ R

n|x1 = 0 or x2 = 0}.  Note  
that:

. x1(t) ≡ 0 =⇒ ẋ1(t) ≡ 0 =⇒ x2 ≡ 0

x2(t) ≡ 0 =⇒ x2(t) ≡ 0 and ẋ2(t) ≡ 0 =⇒ x1(t) ≡ 0 since x2 ≡ 0

So the only invariant set that the system converges to is.D = {x ∈ R
n|x1 ≡ x2 ≡ 0}. 

Therefore, .x∗ = 0 is asymptotically stable. �

Example 7.14 Consider the following system 

. ẋ1 = −4x2 + x1(1 − 1

4
x21 − x22 )

ẋ2 = x1 + x2(1 − 1

4
x21 − x22 )

Again use Lyapunov function .V (x) = 1
2

(
1
4 x

2
1 + x22

)
. Then 

.V̇ (x) = 1

4
x1 ẋ1 + x2 ẋ2 =

(
1

4
x21 + x22

)
︸ ︷︷ ︸

always ≥0

(
1 − 1

4
x21 − x22

)
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Fig. 7.6 Trajectories of the 
system when initial 
conditions are on the ellipse 
.
{ 1
4 x

2
1 + x22 = 2

}
or on the 

ellipse.
{ 1
4 x

2
1 + x22 = 1

2

}
. 

Indeed, convergence is 
towards the ellipse 
. 
{ 1
4 x

2
1 + x22 = 1

}

Consider the annulus .C = {
1
4 x

2
1 + x22 ≤ 2

} ∩ {
1
4 x

2
1 + x22 ≥ 1

2

}
. Note that on the 

outer boundary, .V̇ (x) ≤ 0, whereas on the inner boundary, .V̇ (x) ≥ 0, so all trajec-
tories that cross either boundary go inside the annulus and towards the invariant set 
.V̇ (x) = 0, given by the ellipse .

{
1
4 x

2
1 + x22 = 1

}
. Thus . C is a forward Limit Cycle 

invariant set that contains no equilibrium points (the only other equilibrium point 
that the system has is .(x1, x2) = 0). All trajectories that begin in . C must therefore 
converge to the limit cycle .

{
1
4 x

2
1 + x22 = 1

}
. 

Figure 7.6 illustrates the behavior of the system for some sample initial 
conditions. �
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Chapter 8 
Uniform Stability 

Most stability in the sense of Lyapunov (i.s.L.) definitions can be extended straightfor-
wardly to the nonautuonomous case:.ẋ(t) = f (t, x(t)),.ẋ(t) = A(t)x(t),.x(t0) = x0. 
Assume. f satisfies the standard conditions for existence and uniqueness of solutions. 

Definition 8.66 (Stability for Nonautonomous Systems) Nonautonomous system 
.ẋ(t) = f (t, x) is stable around .x∗ at . t0 if .∀ε > 0 .∃δ(t0) > 0 s.t. 

. ‖x0 − x∗‖ < δ(t0, ε) =⇒ ‖x(t) − x∗‖ < ε ∀t ≥ t0.

Remark 8.13 Compared to the autonomous case .ẋ = f (x), which had . δ ≡ δ(ε)

depend only on . ε, our new.δ ≡ δ(t0, ε) also depends on time. 

Definition 8.67 (Uniform Stability) .ẋ(t) = f (t, x) is uniformly stable around .x∗ if 
it is stable i.s.L. with .δ ≡ δ(t0). That is, we can choose . δ independently of time . t0. 

Definition 8.68 (Uniform Asymptotic Stability) Nonautnomous system . ẋ(t) =
f (t, x) is asymptotically stable at . t0 around.x∗ if it is stable i.s.L. and.∃δ(t0) > 0 s.t. 

. ‖x0 − x∗‖ < δ(t0) =⇒ lim
t→∞ ‖x(t) − x∗‖ = 0.

In addition, it is uniformly asymptotically stable (UAS) if it is uniformly stable and 
.∃δ > 0 s.t. 

. ‖x0 − x∗‖ < δ =⇒ lim
t→∞ ‖x(t) − x∗‖ = 0.

Note that in the definition of UAS, . δ is independent of time. 

Definition 8.69 (Uniform Exponential Stability) Nonautonomous system . ẋ(t) =
f (t, x) is uniformly exponentially stable (UES) at. t0 around.x∗ if.∃δ(t0) > 0,.M > 0, 

.α > 0 s.t. 

. ‖x0 − x∗‖ < δ(t0) =⇒ ‖x(t) − x∗‖ ≤ M‖x0 − x∗‖e−αt ∀t ≥ t0.
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Remark 8.14 UES implies UAS. 

Example 8.15 Consider the LTV system, 

. ẋ(t) = (5t sin t − 2t)x(t), x(t0) = x0

check whether this system is stable and uniformly stable. 
Using the separation of variables, 

. 
dx

x
= (5t sin t − 2t)dt

. ln x(t) − ln x0 =
∫ t

t0

(5r sin r − 2r)dr

= − 5(t cos t − sin t − t2 + 5(t0 cos t0 − sin t0) + t20 ≡ g(t, t0)

Rearranging variables, our solution is 

.x(t) = x0e
g(t,t0). (8.1) 

For fixed . t0, .g(t, t0) will eventually be dominated by .−t2 term, and .eg(t,t0) → 0. 
This implies that there exists constant .c(t0) s.t. .|x(t)| < c(t0)|x(t0)| for all .t ≥ t0. 

If we choose .δ(t0) = ε
c(t0)

, then 

. |x(t0)| < δ =⇒ |x(t)| < c(t0)|x(t0)| < c(t0)
ε

c(t0)
= ε.

. ∴ This system is stable i.s.L.

Considering the sequence .{t (n)
0 }n∈N, .t (n)

0 � 2πn, then 

. 
x(t)

x0
= x(t (n)

0 + π)

x(t (n)
0 )

= x ((2n + 1)π)

x(2πn)
= eg((2n+1)π,2πn) = Meαn

for .M = eπ(5−π) > 0 and .α = 4π(5 − π) > 0, where the third equality comes 
from (8.1). 

If .n → ∞, then .Meαn → ∞. Therefore, .| x(t)x0
| < |c(t0)| → ∞. Since the depen-

dence on . t0 is needed, 
Since the dependence on . t0 is needed, this system is not uniformly stable. �
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8.1 Lyapunov Direct Method for Nonautonomous Systems 

Theorem 8.22 Let .ẋ(t) = f (t, x) have equilibrium .x∗ = 0 with the usual existence 
and uniqueness conditions. Construct Lyapunov function.V (t, x),.V : R × R

n → R, 
.V ∈ C(1,2). Suppose that there exits continuous positive definite functions .α1, α2 and 
. α3, .αi : Rn → R s.t. 

. α1(x) ≤ V (t, x) ≤ α2(x),

. V̇ (t, x) ≤ −α3(x),

then 0 is UAS. 

Let’s make some comparisons with the autonomous-system version we saw in the 
previous chapter: 

1. .V (x) > 0 for.x 
= 0 (locally positive definite) becomes.α1(x) ≤ V (t, x) ≤ α2(x). 
.V needs to be sandwiched in between two positive definite functions that are 
independent of time . t . 

2. . V̇ has a partial derivative with respect to. t ..V̇ (x) < 0 for.x 
= 0 becomes. V̇ (t, x) ≤
−α3(x). .V̇ (t, x) is bounded by a negative definite function that is independent of 
time . t . 

8.1.1 LTV Case 

For LTV system 
. ẋ(t) = A(t)x(t), x(t0) = x0, x∗ = 0,

show that 
. V (t, x) � x�(t)P(t)x(t)

is a Lyapunov function for the system with the following statements: 

1. Suppose that there exists symmetric, positive definite, and .C1 function . P : R →
R

n×n s.t. 
.c1 I ≤ P(t) ≤ c2 I for some c1 > 0, c2 > 0 ∀t ≥ t0. (8.2) 

2. Assume that .P(t) also satisfies 

. − Ṗ(t) = A�(t)P(t) + P(t)A(t) + Q(t) (8.3) 

for some.Q(t) that is continuous, symmetric and positive definite s.t..Q(t) ≥ c3 I , 
.c3 > 0 .∀t ≥ t0.
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Proof By Theorem 8.22, check whether .V (t, x) satisfies 

. α1(x) ≤ V (t, x) ≤ α2(x) and V̇ (t, x) ≤ −α3(x)

with some continuous positive definite functions .α1, α2 and . α3, .αi : Rn → R. 
Using (8.2), we have 

. c1‖x‖2 ≤ x�P(t)x ≤ c2‖x‖2.

Taking .α1 = c1‖x |2 and .α2 = c2‖x‖2, it satisfies .α1(x) ≤ V (t, x) ≤ α2(x). 
Furthermore, we have 

.

V̇ (t, x) =ẋ�Px + x� Ṗx + x�P ẋ

=x�(A�P + Ṗ + PA)x

= − x�Qx

≤ − c3‖x‖2,

(8.4) 

where the third equality comes from (8.3). Taking.α3 = c3‖x‖2, it satisfies. V̇ (t, x) ≤
−α3(x). 

. ∴ V (t, x) = x�(t)P(t)x(t) is a Lyapunov function.

�

By Lyapunov Direct Method, .ẋ(t) = A(t)x(t) is UAS if there exists symmetric, 
positive definite, and .C1 function .P s.t. 

1. .c1 I ≤ P(t) ≤ c2 I for some .c1 > 0, .c2 > 0 ∀t ≥ t0. 
2. .−Ṗ(t) = A�(t)P(t) + P(t)A(t) + Q(t) for some .Q(t) that is continuous, 

symmetric and positive definite s.t. .Q(t) ≥ c3 I , .c3 > 0 ∀t ≥ t0. 

Note that 1. and 2. are only sufficient conditions for UAS of LTV system. Because 
eigenvalues are changing over time, they are difficult to use in stability proofs. Instead, 
we can use the STM. �. 

8.2 Comparison Functions 

Before we move on to the stability proof using the STM, let’s introduce some 
definitions for convenience. 

Definition 8.70 Continuous function.α : [0, a) =⇒ [0,∞) is class-. K if it is strictly 
increasing and .α(0) = 0. 

Definition 8.71 Continuous function .α : [0,∞) =⇒ [0,∞) is class-.K∞ if it is 
class-.K and radially-unbounded (.α(r) → ∞ as .r → ∞).
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Definition 8.72 Continuous function .β : [0, a) × [0,∞) =⇒ [0,∞) is class-. KL
if 

1. . ∀ fixed . s, .β(·, s) : [0, a) =⇒ [0,∞) is class-. K. 
2. . ∀ fixed . r , .β(r, ·) : [0,∞) =⇒ [0,∞) is decreasing s.t. .lims→∞ β(r, s) = 0. 

Comparison functions have some properties: 

1. . α ∈ K =⇒ α−1 ∈ K
2. . α1, α2 ∈ K =⇒ α1 ◦ α2 ∈ K
3. . α ∈ K∞ =⇒ α−1 ∈ K∞
4. . α1, α2 ∈ K, β ∈ KL =⇒ α1(β(α2(r), s)) ∈ KL

We can rewrite the conditions of uniform stability and uniform asymptotic stability 
in terms of class-.K and class-.KL functions: 

1. The system is uniformly stable iff .∃ class-.K function .α and .δ > 0 that is 
independent of . t0 s.t. 

. ‖x(t0) − x∗‖ < δ =⇒ ‖x(t) − x∗‖ ≤ α(‖x(t0) − x∗‖) ∀t ≥ t0.

2. The system is uniformly asymptotically stable iff. ∃ class-.KL function. β and. δ > 0
that is independent of . t0 s.t. 

. ‖x(t0) − x∗‖ < δ =⇒ ‖x(t) − x∗‖ ≤ β(‖x(t0) − x∗‖, t − t0) ∀t ≥ t0.

Note that exponential stability is achieved with .β(r, s) = Mre−αs . 

8.3 Proof of Stability Using STM 

Theorem 8.23 LTV system .ẋ(t) = A(t)x(t), .x(t0) = x0 is UAS at .x∗ = 0 iff 
.∃M, α > 0 s.t. 

. ‖�(t, t0)‖ ≤ Me−α(t−t0), ∀t ≥ t0.

Here, Theorem 8.23 shows that UAS. ⇐⇒ exponential stability (ES). 

Proof (Sufficiency) Suppose.‖�(t, t0)‖ ≤ Me−α(t−t0) for all.t ≥ t0. By the definition 
of STM, .x(t) = �(t, t0)x(t0). 

.‖x(t)‖ ≤‖�(t, t0)x(t0)‖
≤‖�(t, t0)‖‖x(t0)‖
≤M‖x(t0)‖e−α(t−t0)
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As.t → ∞,.‖x(t)‖ → 0 at a rate. α which is independent of. t0. Therefore, this system 
is UAS. 

Moreover, if .M‖x(t0)‖e−α(t−t0) holds for any .x(t0), it is also global UAS. 
(Necessity) Suppose.ẋ(t) = A(t)x(t) is UAS at .x∗ = 0. Then, there exists class-. KL
function . β s.t. 

. ‖x(t)‖ ≤ β(‖x(t0)‖, t − t0) ∀t ≥ t0.

Using the definition of induced matrix norm, we have 

. ‖�(t, s)‖ = max‖x‖=1
‖�(t, s)x‖ ≤ max‖x0‖=1

β(‖x‖, t − s) = β(1, t − s).

By Definition 8.72, .β(1, t − s) → 0 as .t → ∞ for fixed . s. Therefore, there exists 
.T > 0 s.t. .β(1, T ) ≤ e−1. 

For any .t ≥ t0,  le  t .N ∈ N be the smallest positive number s.t. . t0 + (N −
1)T ≤ t ≤ t0 + NT and partition .[t0, t0 + (N − 1)T ] into . {[t0, t0 + T ), [t0 +
T, t0 + 2T ), . . . , [t0 + (N − 2)T, t0 + (N − 1)T ), [t0 + (N − 1)T, t)}. Using this 
partition, rewriting transition matrix leads to 

. �(t, t0) = �(t, t0 + (N − 1)T )

N−1∏
k=1

�(t0 + kT, t0 + (k − 1)T )

. ‖�(t, t0)‖ ≤‖�(t, t0 + (N − 1)T )‖
N−1∏
k=1

‖�(t0 + kT, t0 + (k − 1)T )‖

≤β(1, t − t0 − (N − 1)T )β(1, T )N−1

≤β(1, 0)e1−N

=eβ(1, 0)e−N

≤eβ(1, 0)e− 1
T (t−t0)

=Me−α(t−t0)

. ∴ ‖�(t, t0)‖ ≤ Me−α(t−t0)

�

Example 8.16 Consider .ẋ(t) =
[−2 t
0 −2

]
x(t) =

([−2 0
0 −2

]
+

[
0 t
0 0

])
x(t). 

Then STM is given by 

.�(t, t0) =
[
e−2(t−t0) 1

2 (t − t0)2e−2(t−t0)

0 e−2(t−t0)

]
=

[
1 1

2 (t − t0)2

0 1

]
e−2(t−t0).
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Since .‖�(t, t0)‖ is dominated by .e−2(t−t0), .‖�(t, t0)‖ → 0 as .t → ∞. Therefore, 
this system is UAS. �

8.4 Converse Theorem for LTV Systems 

In this section, we will prove the system is UES by showing the Lyapunov function 
exists. 

Theorem 8.24 Let.ẋ(t) = A(t)x(t)with continuous and bounded.A(t) that has UES 
equilibrium point .x∗ = 0. Assume that .Q(t) be continuous, bounded, symmetric and 
positive definite .∀t > 0. Then, there exists .C1 bounded, symmetric, positive definite 
.P(t) s.t. 

. − Ṗ(t) = A�(t)P(t) + P(t)A(t) + Q(t) (8.5) 

and .V (t, x) � x�P(t)x is a Lyapunov function for this system. 

We already showed sufficiency via Lyapunov Direct Method (.x�Px Lyapunov 
function . =⇒ UES) in Theorem 8.22. 

Proof By Theorem 8.22, check whether .V (t, x) satisfies 

. α1(x) ≤ V (t, x) ≤ α2(x) and V̇ (t, x) ≤ −α3(x)

with some continuous positive definite functions .α1, α2 and . α3, .αi : Rn → R. 
Construct .P(t) = ∫ ∞

t ��(s, t)Q(s)�(s, t)ds. Then, 

. ∀x ∈ R
n , x�Px =

∫ ∞

t
x���(s, t)Q(s)�(s, t)xds.

Note that in the above equation,.�(s, t)x is the solution trajectory obtained by starting 
the system from state . x at time . t . 

1. Show.α1(x) ≤ V (t, x) ≤ α2(x). 
Since we assumed that .Q(t) is bounded and positive definite, there exists . c3 > 0
and .c4 > 0 s.t. .c3 I ≤ Q(t) ≤ c4 I for all . t . Then, 

.x�Px =
∫ ∞

t
x���(s, t)Q(s)�(s, t)xds

≤
∫ ∞

t
c4‖�(s, t)x‖2ds

≤
∫ ∞

t
c4

(
M2e−2α(s−t)

) ‖x‖2ds

=c4M
2‖x‖2

(
− 1

2α
e−2α(s−t)

) ∣∣∣∣
∞

t
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= 
c4 M2 

2α
‖x‖2 ,

where the second inequality is due to Theorem 8.23. 
Furthermore, using the assumption that the matrix.A(t) is bounded, i.e.,. ‖A(t)‖ ≤
a, we get 

. x�Px ≥ c3
2a

‖x‖2.

If we choose .α1(r) = c3
2a r

2 and.α2(r) = c4M2

2α r2, it satisfies . α1(‖x‖) ≤ V (t, x) ≤
α2(‖x‖). 

2. Show.V̇ (t, x) ≤ −α3(x). 
First, we will prove (8.5). Using that .∂t�(s, t) = −�(s, t)A(t) holds for each 
fixed . s,  we  ha  ve

. Ṗ(t) =
∫ ∞

t
∂t�

�(s, t)Q(s)�(s, t)ds +
∫ ∞

t
��(s, t)Q(s)∂t�(s, t)ds − Q(t)

= −
∫ ∞

t
A�(t)��(s, t)Q(s)�(s, t)ds −

∫ ∞

t
��(s, t)Q(s)�(s, t)A(t)ds − Q(t)

= − A�(t)P(t) − P(t)A(t) − Q(t).

If (8.5) holds, we already showed.V̇ (t, x) ≤ −α3(x) when.α3(r) = c3r2 in (8.4). 

. ∴ x�Px is a valid Lyapunov function.

�

With Theorems 8.22 and 8.24,  (8.5) becomes a necessary and sufficient condition 
to prove UES. 

8.5 Lyapunov Indirect Method for Nonautonomous 
Systems 

Consider nonautonomous system .ẋ = f (t, x) s.t. . f (t, 0) = 0 for all . t . In addition, 
define Jacobian .A(t) � ∇x f (t, x)|x∗=0. 

By Taylor expansion, we know the remainder 

. g(t, x) � f (t, x) − A(t)x

satisfies .limt→0 ‖g(t, x)‖ = 0 for each fixed . t . However, in order to approach 0 
uniformly, we need a stronger condition:
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. lim
x→0

sup
t≥0

‖g(t, x)‖
‖x‖ = 0 (8.6) 

Theorem 8.25 For nonautonomous system .ẋ = f (t, x) with bounded .A(t) and 
. f (t, 0) = 0 for all . t , assume that (8.6) also holds true. If 0 is UAS for .ẋ = A(t)x, 
then it is locally UAS for .ẋ = f (t, x).



Chapter 9 
Problems and Exercises 

Input-Output and BIBO Stability 

Problem 1. For each of the following systems, (1) calculate its impulse response 
.h(t), and (2) determine whether it is BIBO stable or not. It may help to consult a 
table of Laplace/. z transforms. 

(a) the scalar LTV system. y(t) = 1
2 (1 − e−2t )u(t)

(b) the CT first-order LTI system 

. ẏ(t) + ay(t) = u̇(t) − bu(t), a, b ∈ R, a, b > 0

(c) the DT second-order LTI system 

. yt + 0.9yt−1 + 0.2yt−2 = ut , t ∈ Z
≥0

Problem 2. For each of the following systems, (1) sketch its phase portrait by hand, 
(2) characterize the type of equilibria, and (3) verify your answers to a and b by 
plotting the phase portrait with MATLAB. 

. (a) ẋ(t) =
[
1 1
4 −2

]
x(t) (b) ẋ(t) =

[
4 −1
2 1

]
x(t) (c) ẋ(t) =

[
1 −1
1 1

]
x(t)

(d) A simple harmonic oscillator, which models the vibrations of a mass. m hanging 
from a spring: .mẍ(t) + kx(t) = 0. What is the physical interpretation of the 
orbits in your phase portrait? 

Problem 3. A very common system used to motivate the necessity of control theory 
is the inverted pendulum on a cart. The system is comprised of a pendulum attached 
to a cart which is only allowed to move side-to-side along a horizontal track. In the 
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stability problem, the cart’s objective is to maintain the upright position of the pole. 
See, for example, [Link] for a video demo. In the control problem (which we will get 
to late in the course), the objective of the cart is to get to its upright position by itself 
from any initial condition (i.e., swing the pole autonomously). See, for example, 
[Link] for a video demo. 

(a) Use Newton’s laws (and/or the Euler-Lagrange equations) to derive the equations 
of motions as 

. (M + m)ẍ(t) + bẋ(t) + mL θ̈ (t) cos θ(t) − mL θ̇2(t) sin θ(t) = F(t)

(I + mL2)θ̈(t) + mgL sin θ(t) + mLẍ(t) cos θ(t) = 0

where . x is the position of the cart, . θ is the angle of the pole with respect to the 
vertical line (down), .M is the mass of the cart, . L is the length of the pole, .m is 
the mass of the bob at the end of the pole, . b is the friction coefficient of the cart 
along the track, . I is the mass moment of inertia of the pendulum, and .F is the 
force input to the cart. 

(b) How many equilibria does this system have? Choose an appropriate state-space 
representation, then linearize the system dynamics around each equilibrium in 
terms of the parameters in part (a). Characterize the type of each equilibrium. 

(c) [MATLAB Coding] Choose values .M = 3, .m = 1, .b = 0.1, .L = 0.5, .I = 0.6, 
.g = 9.81 and simulate the system. Try injecting various force inputs .F and 
various initial conditions, then plot the system trajectories over time. Draw the 
phase portraits of each equilibria from part (b). 

Problem 4: Stiff Differential Equations [ 1]. In the simulation of several engineering 
systems, there are often “parasitic elements” which result in the differential equation 
becoming stiff (e.g., parasitic capacitances and inductances in electronic circuits). 
This phenomenon results in some state variables changing much more rapidly than 
others. 

(a) Consider a .(n + m)-dimensional system with .x1 ∈R
n representing the “slow” 

variables and .x2 ∈R
m representing the “fast” variables. 

. ẋ1 = A11x1 + A12x2

ẋ2 = 1

ε
A21x1 + 1

ε
A22x2

Here,.A22 is nonsingular. Show that. m eigenvalues tend to.∞ like.σ(A22)/ε and 
the other . n tend to .σ(A11 − A12A

−1
22 A21) as .ε → 0. 

(b) In circuit theory, the system 

.ẋ1 = A11x1 + A12x2
0 = A21x1 + A22x2

Link
 6164 748 a 6164
748 a
 
https://www.youtube.com/watch?v=nOSTzpA0nGk
Link
 -1678
4733 a -1678 4733 a
 
https://www.youtube.com/watch?v=4kIrcELC79o


9 Problems and Exercise 111

is often referred to as singularly-perturbed or a low-frequency approximation.  In  
addition to parasitic (small) capacitances, electronic circuits can also be affected 
by coupling (large) capacitances.

. ẋ1 = A11x1 + A12x2 + A13x3

ẋ2 = 1

ε
A21x1 + 1

ε
A22x2 + 1

ε
x3

x2 = 1

ρ
A21x1 + 1

ρ
A22x2 + 1

ρ
x3

where.ε > 0 is small, and.ρ > 0 is large. A mid-frequency model takes.ε = 0 and 
.ρ = ∞.  A  low-frequency model take s.ε = 0 and.ρ = ∞ in the.τ = t/ρ timescale, 
while a high-frequency model takes it in the .τ = t/ε timescale. What is the 
relationship among the eigenvalues in these three regimes? 

Problem 5 [ 2]. Consider a simple heat exchanger where. fC and. fH are the (assumed 
constant) flows of cold and hot water, .TC and .TH are the temperatures in the cold 
and hot compartments, and .VC and .VH are the volumes of the cold and hot water, 
respectively. The temperatures in both compartments evolve according to 

. VC
dTC
dt

= fC(TC0 − TC) + β(TH − TC) VH
dTH

dt
= fH (TH0 − TH ) − β(TH − TC)

where .TC0 and .TH0 are the respective initial temperatures of each compartment. 

(a) Write the state and output equations for this system in state-space model form. 
(b) In the absence of any input, what are .y1 and . y2? 
(c) Is the system BIBO stable? Show why or why not. 

Problem 6. Consider a 2D autonomous LTI system with the dynamics 

. ẋ(t) =
[
a b
c d

]
x(t), x(0) = x0

for some values.a, b, c, d ∈R. Suppose it has an equilibrium at.x∗ and two eigenvalues 
.λ1, λ2. 

(a) Recall that .x∗ was a degenerate node if .λ1 = λ2 ≡ λ and. A was not diagonaliz-
able. What are the conditions for determining the “direction” of each trajectory? 
See Fig. 9.1 for examples. 

(b) Recall that .x∗ was a focus if .λ1, λ2 ∈ C and their real parts were nonzero. 
What are the conditions for determining the orientation (clockwise or counter-
clockwise) of each spiral? 
(Hint: Write down the characteristic polynomial in terms of .a, b, c, d.)
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Fig. 9.1 Two types of “direction” in degenerate node trajectories 

(c) Recall that.x∗ was a center if.λ1, λ2 ∈ C and their real parts were zero. What are 
the conditions for determining the orientation (clockwise or counter-clockwise) 
of each orbit? 

(d) ode45 is one of the most common built-in functions of MATLAB which is used 
to solve nonstiff ODEs. Choose any sample values of .a, b, c, d and verify your 
answers in parts (a)–(c). Plot a few phase portraits to justify your answers. Use 
ode45 to simulate your linear systems without any of the three discretization 
methods we discussed in class. 

(e) Do any trajectories in a phase portrait, starting from different initial conditions, 
intersect with each other? Why or why not? Does your answer depend on the 
type of equilibrium? 

Problem 7 [ 2]. The equations of errors in an inertial navigation system can be 
approximated via the following system. 

. δ̇x = δv, δ̇v = −gδψ + EA, ˙δψ = 1

R
δv + EG

where.δx, δv, δψ are the position error, velocity error, and tilt of the platform, respec-
tively, .R is the radius of the Earth, and .EA, .EG are the biases in the accelerometer 
and gyroscope, respectively. 

(a) Is this system internally stable? Is it BIBO stable for any output 
.y=C[δx, δv, δψ]�? 

(b) Consider a constant gyro bias .EG and zero accelerometer bias .EA = 0. Discuss 
what happens to the position error as a function of time by deriving a concrete 
expression for it. 

Problem 8. Is the SISO LTI system with transfer function.G(s) = 1/(s2 + 4) BIBO 
stable?
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Lyapunov Stability, Direct and Indirect Methods 

Problem 9. For each of the following systems, use Lyapunov’s methods (direct or 
indirect) to classify the stability of the origin. 

. (a)

[
ẋ1
ẋ2

]
=

[
x2

−x1 − εx21 x2

]
, (b)

[
ẋ1
ẋ2

]
=

[−x31 + 2x32−2x1x22

]
, (c)

[
ẋ1
ẋ2

]
=

[−3x31 − x2
x51 − 2x32

]

(Hint: In part (a), make sure to specify some conditions on .ε ∈R. In part (c), try 
.V (x)= ax2c1 + bx2d2 and choose appropriate constants .a, b, c, d.) 

Problem 10. Consider the following system 

. ẋ1 = −4x2 + x1

(
1 − 1

4
x21 − x22

)

ẋ2 = x1 + x2

(
1 − 1

4
x21 − x22

)

Are there any equilibrium points or limit cycles in this system? Use the Lyapunov 
direct method and LaSalle’s invariant set theorem to classify the stability type of this 
system. 

Problem 11. Suppose there exist positive definite matrices .P, Q ∈R
n×n and some 

.λ > 0 such that 
. A�P + PA − 4λP = −Q

What can you say about the eigenvalues of . A? 

Problem 12. Consider the linear map.L : Rn×n → R
n×n defined by. L(P) � A�P +

PA. Show that is .λi + λ j 	= 0 for any eigenvalues .λi , λ j of . A, then the equation 

. A�P + PA = Q

has a unique symmetric solution for a given symmetric . Q. 

Asymptotic and Exponential Stability 

Problem 13. Consider the following non-autonomous system 

. 

[
ẋ1
ẋ2

]
=

[−x31 + α(t)x2
−α(t)x1 − x32

]

where.α(t) is a continuous, bounded function of time. Determine whether the system 
is exponentially stable or not.
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Problem 14. Given the matrix 

. A �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 1 0 0 0 0 0
0 −2 1 0 0 0 0
0 0 −2 1 0 0 0
0 0 0 −5 1 0 0
0 0 0 0 −5 1 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

is the system.ẋ= Ax exponentially stable? 

Problem 15.  I  f .A(t)= A�(t)∈R
n×n and the smallest eigenvalue of .A(t) satisfies 

.λmin(A(t)) ≤ −ε for all . t , show that the state transition matrix of .A(t) is asymptot-
ically stable. 

Uniform Stability 

Problem 16. We return to one of the previous problems seen before. 

. 

[
ẋ1
ẋ2

]
=

[−x31 + α(t)x2
−α(t)x1 − x32

]

where .α(t) is a continuous, bounded function of time. Use the Lyapunov func-
tion .V (x) = (1/2)(x21 + x22 ) to determine whether the origin is globally uniformly 
asymptotically stable or not. 

Problem 17. In this chapter, we presented a theorem which showed that for LTV 
systems, uniform asymptotic stability (UAS) implies exponential stability. Now, 
consider the following example. Suppose we have the scalar system .x(t0)= x0, 
.ẋ(t)= − (1/t)x(t) for.t ≥ t0 > 0. By the separation of variables, it has the solution 
.x(t)= (t0/t)x0, which shows that the equilibrium. 0 is UAS: 

• as .t → ∞, .x(t)→ 0 regardless of . t0 and . x0
• for any .ε > 0, the choice of .δ = ε means .|x0| < δ implies . |x | = |t0/t ||x0| < δ = ε

since .t ≥ t0. 

However, this system is clearly not exponentially stable, since .t0/t decays at a rate 
that is slower than any exponential of the form.e−αt , .α > 0. Then is this scalar LTV 
system a contradiction to the theorem? If not, can you find anything wrong with the 
argument presented above? 
(.Hint : There are alternative definitions of UAS; it may help to use them in your 
argument.)
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Part III 
Linear Control and Estimation



Chapter 10 
Canonical Forms 

So far, I and II focused mostly on uncontrolled systems, where there is no direct 
control input into the system. In this part, we will begin the study of controlled 
systems. 

First, we begin this part of the book by discussing canonical forms, which are 
crucial in linear systems theory because they provide simplified, standardized repre-
sentations of systems that make it easier to analyze their properties, such as controlla-
bility, observability, and stability. By transforming a system into a canonical form, its 
essential features are made more apparent, aiding in both theoretical understanding 
and practical applications like simulation and real-time control. 

Canonical forms are most meaningful in the context of LTI systems, and so this 
chapter will focus exclusively on the canonical forms for LTI systems. 

10.1 System Realizations 

We just discussed that the characteristic modes of a system can be more easily 
revealed by a change of coordinates .x̃(t) � V−1x(t) (see Chap. 2). In particular, we 
can choose .V such that .A � V ÃV−1 such that . Ã is the Jordan form of . A. 

Definition 10.73 (Algebraically Equivalent Systems)  Two  LTI  systems. (A, B,C, D)

and .( Ã, B̃, C̃, D̃) are said to be algebraically equivalent if they have the same 
solution space .X = X̃ . 

Theorem 10.26 For any nonsingular matrix .V ∈R
n×n, choosing . Ã = V−1AV , 

.B̃ = V−1B, .C̃ = CV , and .D̃ = D yields .( Ã, B̃, C̃, D̃) which is algebraically 
equivalent to .(A, B,C, D). 

The proof of this theorem is straightforward by implementing a change of 
coordinates on the state . x using the change-of-basis matrix . V . 
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Definition 10.74 (Zero-State Equivalence) Two transfer functions .H(s) and . H̃(s)
are said to be zero-state equivalent if .C(s I − A)−1B + D = C̃(s I − Ã)−1 B̃ + D̃, 
where .(A, B,C, D) and .( Ã, B̃, C̃, D̃) are the state-space equations to .H(s) and 
.H̃(s), respectively. 

By combining Definitions 10.74 and 10.73, we can see equivalent state-space 
models are always zero-state equivalent because they have the same characteristic 
polynomial, eigenvalues, and the same transfer function. 

Lemma 10.6 Two state-space models.(A, B,C, D) and.( Ã, B̃, C̃, D̃) are zero-state 
equivalent iff 

1. . D = D̃
2. . CAk B = C̃ Ãk B̃

The proof follows directly from applying the power-series expansion of 
.(s I − A)−1 to both sides and matching the coefficients of . s: 

. (s I − A)−1 = s−1(I − s−1A)−1 = s−1
∞∑

k=0

(s−1A)k

We leave the details to the interested reader. 

Remark 10.15 A transfer function.H(s) � N (s)/D(s) is realizable iff it is a rational 
proper matrix. The reason is that we have a realizable. H(s) = C(s I − A)−1B + D =
C adj(s I−A)

det(s I−A) B + D. The denominator .det(s I − A) (the determinant) is a polynomial 
in. s with degree. n, while the numerator.adj(s I − A) (the adjugate) has matrix entries 
which are polynomials of degree .≤ n − 1. Indeed, all .n2 entries of .H(s) are proper 
transfer functions. 

A realizable .H(s) has infinitely many realizations, but among them, there are 
some which are more conventional. In the following sections, we will introduce and 
discuss three main ones: controllable, observable, and modal canonical forms. 

10.2 Three Main Canonical Forms 

The three main canonical forms—controllable, observable, and modal—each empha-
size distinct system properties that are valuable in control applications. The control-
lable canonical form explicitly shows state controllability, making it easier to design 
inputs that reach any desired state. The observable canonical form highlights observ-
ability, ensuring that all internal states can be inferred from output measurements. 
Finally, the modal canonical form organizes the system around its characteristic 
modes (eigenvalues), simplifying stability analysis.
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In the following sections, we will explore each form in depth, examining how 
their structures align with various control objectives. Later, in Chap. 14, we will dis-
cuss the Kalman canonical form (also called the Kalman decomposition), which pro-
vides a system representation which reveals both the controllable and (un)observable 
subspaces (to be defined later). 

10.3 Controllable Canonical Form 

Let .H(s) be a proper .k × m transfer matrix. Decompose .H(s) as 

. H(s) = Hsp(s) + H∞,

where 

• .Hsp(s) = Nsp(s)
Dsp(s)

is the strictly proper part of .H(s), with .deg Nsp(s) < deg Dsp(s), 

• .H∞ ∈ R
n×m is the steady-state part of .H(s). 

Consider .Hsp(s) = Nsp(s)
Dsp(s)

. Write it in the form: 

. 
Nsp(s)

Dsp(s)
=

(
1

sr + α1sr−1 + · · · + αr−1s + αr

) (
N1s

r−1 + N2s
r−2 + · · · + Nr−1s + Nr

)

where 

• .r ∈ N, 
• .Dsp(s) � sr + α1sr−1 + · · · + αr−1s + αr is the least common denominator of all 
entries in .Hsp(s) (and we require .Dsp to be monic, i.e., the coefficient of .sr is . 1), 

• .Ni ∈ R
k×m , .1 ≤ i ≤ r , are constant matrix coefficients. 

The Controllable Canonical Form (CCF) is then obtained as 

. ẋ =

⎡

⎢⎢⎢⎢⎢⎢⎣

−α1 Im −α2 Im · · · −αr−1 Im −αr Im
Im 0 · · · 0 0
... Im

. . .
...

...

0
. . .

. . . 0 0
0 · · · 0 Im 0

⎤

⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
A

x +

⎡

⎢⎢⎢⎣

Im
0
...

0

⎤

⎥⎥⎥⎦

︸ ︷︷ ︸
B

u,

. y = [
N1 N2 · · · Nr

]
︸ ︷︷ ︸

C

x + H∞︸︷︷︸
D

u.

Remark 10.16 In the CCF, the state dimensions are .x(t) ∈ R
n (where .n = mr ), 

.u(t) ∈ R
m , .y(t) ∈ R

k .
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Example 10.17 (CCF)  Le  t

. H(s) = Y (s)

U (s)
= s3 + 5s2 + 10s + 15

s3 + 3s2 + 6s + 9
= 1 + 2s2 + 4s + 6

s3 + 3s2 + 6s + 9

where .n = mr = 3. Thus, .H(s) = H∞ + Hsp(s), with .H∞ = 1 and . Hsp(s) =
2s2+4s+6

s3+3s2+6s+9 . 

Choose .x1(t) such that 

(1) 

. 
Y (s)

X1(s)
= s3 + 5s2 + 10s + 15

(2) 

. 
X1(s)

U (s)
= 1

s3 + 3s2 + 6s + 9

From (1), 

. y(t) = ...
x 1(t) + 5ẍ1(t) + 10ẋ1(t) + 15x1(t) = ...

x 1 + 5x3 + 10x2 + 15x1

From (2), 
. u(t) = ...

x 1(t) + 3ẍ1(t) + 6ẋ1(t) + 9x1(t)

which implies 
. 
...
x 1(t) = u(t) − 3ẍ1(t) − 6ẋ1(t) − 9x1(t)

and 
. ẋ3(t) = u(t) − 3x3(t) − 6x2(t) − 9x1(t)

Choose 
. x2 = ẋ1, x3 = ẍ1.

Thus, 
. y(t) = u(t) + 2x3(t) + 4x2(t) + 6x1(t)

The CCF is: 

. 

⎡

⎣
ẋ3
ẋ2
ẋ1

⎤

⎦ =
⎡

⎣
−3 −6 −9
1 0 0
0 1 0

⎤

⎦

⎡

⎣
x3
x2
x1

⎤

⎦ +
⎡

⎣
1
0
0

⎤

⎦ u, y = [
2 4 6

]
⎡

⎣
x3
x2
x1

⎤

⎦ + u

Note that there are multiple equivalent CCFs (and other canonical forms in 
general) depending on how you order the state. For example,



10.4 Observable Canonical Form 123

. 

⎡

⎢⎣
x1
...

xn

⎤

⎥⎦ versus

⎡

⎢⎣
xn
...

x1

⎤

⎥⎦

We can represent the CCF using block diagrams. The diagram for this specific 
example is shown below.

�

10.4 Observable Canonical Form 

As before, decompose .H(s) = Hsp(s) + H∞ with 

. Hsp(s) =
(

1

sr + α1sr−1 + · · · + αr−1s + αr

) (
N1s

r−1 + N2s
r−2 + · · · + Nr−1s + Nr

)
.

Then Observable Canonical Form (OCF) is obtained as 

. ẋ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

−α1 Im Im 0 · · · 0

−α2 Im 0 Im
. . .

...
...

...
. . .

. . . 0
... 0 · · · 0 Im

−αr Im 0 · · · 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
A

x +

⎡

⎢⎢⎢⎣

N1

N2
...

Nr

⎤

⎥⎥⎥⎦

︸ ︷︷ ︸
B

u,

.y = [
Im 0 · · · 0]

︸ ︷︷ ︸
C

x + H∞︸︷︷︸
D

u.
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Example 10.18 (OCF) Following Example 10.17,  le  t

. H(s) = Y (s)

U (s)
= s3 + 5s2 + 10s + 15

s3 + 3s2 + 6s + 9
= 1 + 2s2 + 4s + 6

s3 + 3s2 + 6s + 9

where .n = mr = 3. Thus, .H(s) = H∞ + Hsp(s), with .H∞ = 1 and . Hsp(s) =
2s2+4s+6

s3+3s2+6s+9 . 

. Y (s)(s3 + 3s2 + 6s + 9) = U (s)(s3 + 5s2 + 10s + 15)

This expands to 

. s3(Y −U ) + s2(3Y − 5U ) + s(6Y − 10U ) + (9Y − 15U ) = 0

which implies 

. Y (s) = U (s) + 1

s
(5U − 3Y ) + 1

s2
(10U − 6Y ) + 1

s3
(15U − 9Y ).

Define 

. X1(s) = 1

s
(5U − 3Y ) + 1

s2
(10U − 6Y ) + 1

s3
(15U − 9Y ),

X2(s) = 1

s
(10U − 6Y ) + 1

s2
(15U − 9Y ),

X3(s) = 1

s
(15U − 9Y )

so that .Y = U + X1 and 

. y(t) = [
1 0 0

]
⎡

⎣
x1
x2
x3

⎤

⎦ + u(t)

From this, we have the following relations: 

.(1) sX1(s) = 5U (s) − 3Y (s) + 1

s
(10U − 6Y ) + 1

s2
(15U − 9Y )

= 5U − 3(U + X1) + X2

= −3X1 + X2 + 2U

(2) sX2(s) = 10U (s) − 6Y (s) + 1

s
(15U − 9Y )

= 10U − 6(U + X1) + X3

= −6X1 + X3 + 4U
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(3) s  X3(s) = 15U (s) − 9Y (s) 
= 15U − 9(U + X1) 

=  −  9X1 + 6U

Thus, 

.s

⎡

⎣
x1
x2
x3

⎤

⎦ =
⎡

⎣
−3 1 0
−6 0 1
−9 0 0

⎤

⎦

⎡

⎣
x1
x2
x3

⎤

⎦ +
⎡

⎣
2
4
6

⎤

⎦ u
L−1−−→ yields OCF.

�

10.5 Modal Canonical Form 

The modal canonical form (MCF) is concerned with representing the system matrix 
using a (block-)diagonal matrix . A. We’ve seen this before in our discussion with 
characteristic modes. For simplicity, we will discuss SISO cases (i.e., .H(s) is not a 
matrix), since the MIMO cases are similar. 

. Hsp(s) = N (s)

D(s)
with D(s) = sr + α1s

r−1 + · · · + αr−1s + αr

10.5.1 Case: .D(s) has Distinct Real Roots 

In this case, we can invoke partial fraction decomposition: 

. Hsp(s) = N (s)

D(s)
= N (s)

(s − λ1)(s − λ2) · · · (s − λr )
= N1

s − λ1
+ N2

s − λ2
+ · · · + Nr

s − λr

Here, the { .λ1,λ2, . . . ,λr } are called the poles of the transfer function .Hsp(s). 
Correspondingly, the roots of .N (s) are called the zeros of .Hsp(s). 

Since .H(s) = Y (s)
U (s) ,  we  also  h  ave

. Y (s) = N1
U (s)

s − λ1︸ ︷︷ ︸
X1(s)

+N2
U (s)

s − λ2︸ ︷︷ ︸
X2(s)

+ · · · + Nr
U (s)

s − λr︸ ︷︷ ︸
Xr (s)

+H∞U (s) (r = n)

. =⇒ Xi (s)(s − λi ) = U (s)
L−1−−→ ẋi (t) = λi xi (t) + u(t)
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. 

⎡

⎢⎢⎢⎣

ẋ1
ẋ2
...

ẋn

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎢⎣

λ1 0 · · · 0

0 λ2
. . . 0

...
...
. . .

...

0 0 · · · λn

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

x1
x2
...

xn

⎤

⎥⎥⎥⎦ +

⎡

⎢⎢⎢⎣

1
1
...

1

⎤

⎥⎥⎥⎦ u(t)

. y(t) = [
N1 N2 · · · Nn

]
x(t) + H∞u(t)

Example 10.19 (MCF with Distinct Real Roots)  Le  t

. H(s) = Y (s)

U (s)
= (s + 5)(s + 4)

(s + 1)(s + 2)(s + 3)
= N1

s + 1
+ N2

s + 2
+ N3

s + 3
.

For partial fraction decomposition, we need 

. (s + 5)(s + 4) = N1(s + 2)(s + 3) + N2(s + 1)(s + 3) + N3(s + 1)(s + 2).
(10.1) 

Expanding this equation, we get 

. (1.1) = (N1 + N2 + N3)s
2 + (5N1 + 4N2 + 3N3)s + (6N1 + 3N2 + 2N3).

This leads to the system of equations: 

. 

⎧
⎪⎨

⎪⎩

N1 + N2 + N3 = 1

5N1 + 4N2 + 3N3 = 9

6N1 + 3N2 + 2N3 = 20

=⇒ N1 = 6, N2 = −6, N3 = 1.

Thus, 

. 

⎡

⎣
ẋ1
ẋ2
ẋ3

⎤

⎦ =
⎡

⎣
−1 0 0
0 −2 0
0 0 −3

⎤

⎦

⎡

⎣
x1
x2
x3

⎤

⎦ +
⎡

⎣
1
1
1

⎤

⎦ u, y = [
6 −6 1

]
x.

A nice trick you can use to simplify solving.N1,.N2,.N3 here is to substitute in the 
poles for . s. 

. N1(s + 2)(s + 3) + N2(s + 1)(s + 3) + N3(s + 1)(s + 2) = s2 + 9s + 20

• .s = −1: . N1(1)(2) + 0 + 0 = (−1)2 + 9(−1) + 20 =⇒ 2N1 = 12 =⇒ N1 = 6
• .s = −2: . 0 + N2(−1)(1) + 0 = (−2)2 + 9(−2) + 20 =⇒ N2 = −6
• .s = −3: . 0 + 0 + N3(−2)(−1) = (−3)2 + 9(−3) + 20 =⇒ N3 = 1

MCF can also be represented using a block diagram, as shown below:
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�

10.5.2 Case: .D(s) has Some Repeating Real Roots 

In this case, we can invoke a special case of partial fractions, with repeating roots: 

. Hsp(s) = N (s)

D(s)
= N (s)

(s − λ1)k(s − λ2) · · · (s − λr )

= N11

s − λ1
+ N12

(s − λ1)2
+ · · · + N1k

(s − λ1)k
+ N2

s − λ2
+ · · · + Nr

s − λr

where .(r − 1 + k = n). 
Then the MCF is obtained as 

.ẋ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1 1 0 · · · 0 · · · 0

0 λ1
. . . 0 0 · · · 0

...
...
. . . 1

...
...

0 0 · · · λ1 0 · · · 0

0 0 · · · 0 λ2
. . . 0

...
. . .

...

0 0 · · · 0 0 · · · λr

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
A

x +

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...

0
1
1
...

1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸︷︷︸
B

u,
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where the first .k − 1 elements of . B are zeros and the last . r elements are ones. 

. y = [
N1k N1k−1 · · · N11 N2 · · · Nr

]
︸ ︷︷ ︸

C

x + H∞︸︷︷︸
D

u.

Remark 10.17 This structure corresponds to the Jordan Canonical Form (JCF) for 
. A. 

Example 10.20 (MCF with Some Repeated Real Roots)  Le  t

. H(s) = Y (s)

U (s)
= s2 + 9s + 10

(s + 1)2(s + 3)
.

Using partial fractions: 

. H(s) = N11

s + 1
+ N12

(s + 1)2
+ N2

s + 3
.

Thus, 

. Y (s) = N11
U (s)

s + 1︸ ︷︷ ︸
X1(s)

+N12
U (s)

(s + 1)
· 1

s + 1︸ ︷︷ ︸
X2(s)

+N2
U (s)

s + 3︸ ︷︷ ︸
X3(s)

.

Solve for coefficients: 

. =⇒ N11(s + 1)(s + 3) + N12(s + 3) + N2(s + 1)2 ≡ s2 + 9s + 10.

This leads to the system of equations: 

. 

⎧
⎪⎨

⎪⎩

N11 + N2 = 1

4N11 + N12 + 2N2 = 9

3N11 + 3N12 + N2 = 10

=⇒ N11 = 3, N12 = 1, N2 = −2.

Thus, 

.

⎡

⎣
ẋ2
ẋ1
ẋ3

⎤

⎦ =
⎡

⎣
−1 1 0
0 −1 0
0 0 −3

⎤

⎦

⎡

⎣
x2
x1
x3

⎤

⎦ +
⎡

⎣
0
1
1s

⎤

⎦ u, y = [
1 3 −2

]
⎡

⎣
x2
x1
x3

⎤

⎦ .

�



Chapter 11 
Minimum-Energy Input 

We now turn to the problem of computing the minimum-energy control (otherwise 
known as the minimum-energy input), which is the least amount of energy required to 
achieve a particular control task (e.g., reach a final state). Determining the minimum-
energy input is important in many control problems because it helps optimize the 
efficiency of a system. For example, in many applications, reducing the energy input 
directly correlates to lower operating cost, such as power, wear and tear on system 
components, etc. 

11.1 Preliminary Reviews and Background 

11.1.1 Least-Squares Methods 

We begin with a review of a key tool used to analyze minimum-energy control 
problems. (Linear) least-squares methods are typically used to solve a variety of 
regression problems: given a dataset .{(xi , yi )}ni=1, determine a model . f such that 
.yi = f (xi ) for all .i = 1 . . . , n. The input to our function is a vector .x ∈ R

d , where 
. d is some number of features, and the output is (for simplicity) a scalar .y ∈ R. 

Since we are given. n of these input-output pairs, we accordingly stack them up into 
a  matri  x .X ∈ R

n×d , where the .i-th row is .x�
i , and vector .y = (y1, . . . , yn)� ∈ R

n . 
Further define the mean .x := 1

n

∑n
i=1 xi ∈ R

d . We will assume that we’ve prepro-
cessed the data such that any input . x is centered, i.e., .x := 1

n

∑n
i=1 xi = 0. Let us 

similarly define .y := 1
n

∑n
i=1 yi . 

We would like to fit a linear model of the form. f (X) = Xw + w0 over this data, 
and determine the values of weights .w and .w0. Typically, we cannot find a model 
. f which perfectly satisfies .y = f (X) with equality. Thus, we take a least-squares 
approach, in which we aim to minimize the combined mean-squared error norm 
between the output of the model and the given labels: 
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. J (w0,w) = ‖y − (Xw + w01)‖22
where . 1 is the .n-dimensional vector of ones. 

Deriving the optimal values of .w0 and .w is straightforward using methods from 
vector calculus. First, expand out the cost: 

. J (w0,w) = (y� − w�X� − w01
�)(y − Xw − w01)

= y� − y�Xw − w0y�1 − w�X�y + w�X�Xw + w0w�X�1

− w01
�y + w01

�Xw + w2
0 1

�1︸︷︷︸
n

Differentiate this cost with respect to.w0 and. w separately, set each to 0, and solve 
a system of equations for the minimizing . w and .w0. 

. 
∂ J

∂w0
= −y�1 + w�X�1 − 1�y + 1�Xw + 2w0n

= −2
n∑

i=1

yi + 2w�X�1 + 2w0n � 0

=⇒ w0 = 1

n

n∑

i=1

yi + 1

n
w X�1︸︷︷︸

=nx=0

= y

. ∇w J = −X�y − X�y + 2X�Xw + w0X
�1 + w0X

�1

= −2X�y + 2X�Xw + 2w0X
�1 � 0

=⇒ w = (X�X)−1X�y

Including Constraints Now suppose that the model . f must satisfy some other 
conditions 

. min
w̃

J (w̃) s.t. Mw̃ = c

where .M ∈R
p×(n+1) and .c∈R

p are known constants. For notation simplicity, let 
.w̃ � (w0,w�)� ∈ R

n+1 and .X̃ � [1, X ] ∈ R
n×(n+1). 

We can write a matrix equation which solves the optimal weights of the constrained 
linear least squares problem, then solve it using Lagrange multipliers. Construct 

. L(w̃;λ) � J (w̃) + 2λ� (Mw̃ − c)

for some .λ ∈ R
p. Differentiate it and set it equal to zero.
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. ∇w̃L(w̃;λ) = 2
(
X̃� X̃w̃ − X̃�y + M�λ

)
= 0

We have two vectors of unknowns, .w̃ and . λ. The matrix equation to solve these 
unknowns comes from putting the above equation together with the constraints. 

. 

[
X̃� X̃ M�
M 0

] [
w̃
λ

]

=
[
X̃�y
c

]

Note that when.λ = 0, we obtain the original normal equations from the prior uncon-
strained problem: 

. w̃ = (X̃� X̃)−1 X̃�y

For general .λ �= 0, there are several algorithms to solve this matrix equation, includ-
ing LU factorization and QR factorization. We will not go into the details of these 
algorithms here. 

Constrained Least-Norm Problem Let’s take a look at the special case of the 
constrained linear least-squares problem where.y≡ 0 and.X ≡ I . We will also ignore 
the bias term (set .w0 = 0) for simplicity. 

. min
w

‖w‖22 s.t. Mw = c

In most applications, we have .M ∈R
m×n with linearly independent rows and . m < n

(i.e., an underdetermined system). Hence, there are infinitely-many solutions to 
.Mw= c. Since the goal is to find a solution . w of this equation with the least norm, 
this is sometimes called the least-norm problem. 

Since.M has linearly-independent rows, the following right pseudoinverse exists: 

. M† � M�(MM�)−1

We can show that .w∗ � M†c is the optimal solution to the least-norm problem 
above by verifying two things. 

1. .w∗ satisfies the equation: .Mw∗ = MM�(MM�)−1c = c. 
2. .w∗ achieves the least norm: for any other .w ∈ R

n which satisfies .Mw= c, note 
that 

. ‖w‖22 = ∥
∥w∗ + (w − w∗)

∥
∥2
2 = ∥

∥w∗∥∥2
2 + 2w∗�(w − w∗) + ∥

∥w − w∗∥∥2
2 (11.1) 

Note that 

.w∗�(w − w∗) = c�(M†)�(w − w∗) = c�(MM�)−1M(w − w∗) = 0
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Therefore 

. (2.1) = ∥
∥w∗∥∥2

2 + ∥
∥w − w∗∥∥2

2 ≥ ∥
∥w∗∥∥2

2 by nonnegativity of norms.

How would the solution change if we have .M ∈R
m×n with linearly independent 

columns and .m > n (i.e., an overdetermined system)? It turns out that the optimal 
solution is still given by.w∗ � M†c. However, now we have to use the left pseudoin-
verse (also called the Moore-Penrose inverse) 

. M† � (MM�)−1M�

which exists because .M has full column rank. 

Remark 11.18 In the literature, there are various versions of least squares problems 
depending on the types of constraints you have (e.g., quadratic, linear inequality, etc.) 
In machine learning literature, it is also common to add a regularization term. For 
our purposes, however, the linear equality constraint suffices. 

11.1.2 .L2 Space and Norm 

We are most familiar with norms of vectors in.R
n . For a vector. x = [

x1 x2 · · · xn
]� ∈

R
n , the discrete .�p norms for finite-dimensional vectors are defined as follows: 

• The .�p norm: 

. ‖x‖�p =
(

n∑

i=1

|xi |p
) 1

p

, p ∈ [1,∞)

• The .�∞ norm: 

. ‖x‖�∞ = max
1≤i≤n

|xi |

Similarly, for infinite sequences .x = (x1, x2, x3, . . . ),  th  e .�p norms are defined as: 

. ‖x‖�p =
( ∞∑

i=1

|xi |p
) 1

p

, p ∈ [1,∞)

We say that .x ∈ �p if .‖x‖�p < ∞.
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On the other hand, when dealing with functions . f : I → R defined over a con-
tinuous domain . I , we use the continuous .Lp norms: 

• The .Lp norm: 

. ‖ f ‖Lp =
(∫

I
| f (t)|p dt

) 1
p

, p ∈ [1,∞)

• The .L∞ norm: 
. ‖ f ‖L∞ = ess supt∈I | f (t)|

Here, .ess sup denotes the essential supremum, representing the maximum value of 
a function across its domain while ignoring any irregular values on sets of measure 
zero. And remark that.x(t), like. f (t), can also be expressed in terms of the.Lp norm. 

For vector-valued functions . f : I → R
n , where . f (t) = [ f1(t), f2(t), . . . ,

fn(t)]�, we define the .Lp norms by integrating the .�p norms of . f (t) over . I : 

. ‖ f ‖Lp =
(∫

D
‖ f (t)‖p

�p
dt

) 1
p

, p ∈ [1,∞).

Similarly, the .L∞ norm is defined as: 

. ‖ f ‖L∞ = ess supt∈I ‖ f (t)‖�∞ = ess supt∈I max
1≤i≤n

| fi (t)|.

We use .Lp(I ;Rn) to denote the space of vector-valued functions with finite . Lp

norms: 

. Lp(I ;Rn) = {
f : I → R

n
∣
∣ ‖ f ‖Lp < ∞}

.

In particular, for .p = 2: 

. L2(I ;Rn) = {
f : I → R

n
∣
∣ ‖ f ‖L2 < ∞}

.

Note: The distinction between the discrete .�p norms and the continuous .Lp norms 
is important: 

• .�p norms are used for finite-dimensional vectors and also for infinite sequences 
(discrete case). 

• .Lp norms are used for functions defined over continuous domains (continuous 
case). 

Note: .Lp(I ;Rn) is a Banach space for any .1 ≤ p < ∞, and .L2(I ;Rn) is a Hilbert 
space. 

Definition 11.75 (Banach Space)  A  Banach space is a complete normed vector 
space; that is, a vector space equipped with a norm such that every Cauchy sequence 
converges within the space.
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Definition 11.76 (Hilbert Space)  A  Hilbert space is a complete inner product space; 
that is, a vector space equipped with an inner product that induces a norm, and that 
is complete with respect to the metric induced by the norm.

All Hilbert spaces are Banach spaces (since the norm induced by the inner product 
makes it a normed space, and completeness ensures it is a Banach space), but not all 
Banach spaces are Hilbert spaces (since they may lack an inner product). 

Example 11.21 (A Banach Space that is not a Hilbert Space) The space.Lp(D) for 
.p �= 2, .1 ≤ p < ∞, is a Banach space but not a Hilbert space. This is because there 
is no inner product that induces the .Lp norm when .p �= 2. For instance, consider 
.L1(D), the space of absolutely integrable functions on. D. It is complete with respect 
to the.L1 norm, making it a Banach space. However, it lacks an inner product structure 
compatible with the .L1 norm, so it is not a Hilbert space. �

Definition 11.77 (Admissible Control)  Le  t .U ⊆ R
m be a set of control values for a 

system, .ẋ(t) = f (t, x(t),u(t)) where .u(t) ∈ U is the control input. The set 

.U �
{
u : R≥0 → U

∣
∣ u is measurable

}
(11.2) 

is then called the set of all admissible control inputs. 

11.1.3 Linear Mapping 

A linear mapping.M : V → W between two vector spaces.V,W over the same field 
. F satisfies 

. M(α1v1 + α2v2) = α1M(v1) + α2M(v2)

= α1w1 + α2w2, ∀v1, v2 ∈ V, ∀w1,w2 ∈ W, α1,α2 ∈ F

In other words, a linear mapping preserves vector addition and scalar multiplication. 
Since . V and .W are vector spaces, they have bases. Suppose .{vi }mi=1 is a basis for 

. V and .{w j }nj=1 is a basis for .W . Any vector .x ∈ V can be expressed as 

. x =
m∑

i=1

αivi , αi ∈ F

and its image under .M is 

.M(x) =
m∑

i=1

αiM(vi ) =
m∑

i=1

αiw′
i
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Fig. 11.1 Relationship between a linear mapping .M between vector spaces .V and .W ,  and  its  
matrix representation . M . This is a diagram that is commonly seen in linear algebra, but is useful 
for us to visualize too, while studying linear systems 

where .w′
i = M(vi ) ∈ W . Each .w′

i can be expressed in terms of the basis of .W: 

. w′
i =

n∑

j=1

Mjiw j

where .Mji ∈ F are the components of the matrix representation .M of .M. 
Note that as long as.dim V < ∞ and.dimW < ∞, there exists a matrix represen-

tation .M for any linear mapping .M. One common diagram used to visualize these 
relationships, especially in linear algebra courses and references, is Fig. 11.1. 

11.1.4 Adjoint Operators 

Definition 11.78 (Adjoint Operator)  The  adjoint operator .M∗ : W → V of a linear 
mapping.M : V → W , for two Hilbert spaces. V and.W over the same field, satisfies 

. 〈Mv,w〉W = 〈v,M∗w〉V , ∀v ∈ V, w ∈ W

where .〈·, ·〉W and .〈·, ·〉V denote inner products on .W and . V , respectively. 
Example 11.22 Let.V = R

n ,.W = R
m , and let.M ∈ R

m×n be a matrix representing 
a linear mapping .M : V → W . Then the adjoint operator is .M∗ = M� ∈ R

n×m , 
because 

.〈Mv,w〉W = (Mv)�w = v�M�w = 〈v,M�w〉V
�
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Example 11.23 (Integral Operator)  Le  t.K : [t0, t f ] × [t0, t f ] → R be a measurable 
function that satisfies 

. 

∫ t f

t0

∫ t f

t0

|K (t, s)|2 ds dt < ∞

Define a linear operator .M : L2(I ;R) → L2(I ;R) by 

. (Mu)(t) �
∫ t f

t0

K (t, s)u(s) ds

for .u ∈ L2(I ;R), where .I = [t0, t f ]. Then, for .u, v ∈ L2(I ;R), the inner product 
.〈·, ·〉L2(I ;R) satisfies: 

. 〈Mu, v〉L2 =
∫ t f

t0

(Mu)(t) v(t) dt

=
∫ t f

t0

(∫ t f

t0

K (t, s)u(s) ds

)

v(t) dt

=
∫ t f

t0

u(s)

(∫ t f

t0

K (t, s)v(t) dt

)

ds

= 〈u,M∗v〉L2

where the adjoint operator .M∗ is given by 

. (M∗v)(s) =
∫ t f

t0

K (t, s)v(t) dt

Note that .M is self-adjoint (i.e., .M = M∗) if and only if .K (t, s) = K (s, t) for all 
.s, t ∈ I . �

11.2 Minimum Energy Input: Continuous-Time Case 

We are now ready to pose the minimum-energy input problem using mathemat-
ical terms. We begin with the CT case, and discuss the DT case in the follow-
ing Section 11.3. 

Given linear system .ẋ(t) = A(t)x(t) + B(t)u(t) over .I � [t0, t f ], the control 
input .u(t) is used to steer or transfer the state from an initial state .x0 � x(t0) to 
a desired final state .x f = x(t f ). Towards designing the control input .u(t) for the 
purpose of using minimum energy, there are a few important questions we ask: 

1. How can we compute a control . u that successfully transfers the system from . x0
to .x f ?
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2. How quickly can we perform this transfer from.x0 to .x f ? 
3. How can we determine the most efficient control . u to minimize energy usage? 

The minimum energy control problem is easier to pose mathematically and solve for 
LTI systems, so we will restrict our focus to the LTI case. For a given controllable CT 
LTI .(A, B) with the initial state .x(t0) = x0, we aim to find an input .u(t) that steers 
the system to the final state while minimizing energy usage. Here, energy usage is 
quantified by the squared .L2-norm of the control, defined as: 

. ‖ũ‖2L2
�
∫ t f

t0

ũ�(t)ũ(t) dt ≤ ‖u‖2L2
�
∫ t f

t0

u�(t)u(t) dt ∀u : R≥0 → R
m

(11.3) 
In our context, we define the space .U of admissible control signals (see Defini-
tion 11.77) as the set of all input signals that are “allowed” for the system. 

. U = {
u : R≥0 → R

m
∣
∣ L{u(t)} exists for all t}

where .L{·} is the Laplace transform. 
For a controllable LTI system .(A, B), we can pose the problem of finding a 

minimum-energy input.ũ(t) as a constrained least-squares (CLS) optimization prob-
lem: 

. ũ = argmin
u∈U

‖u‖2L2
s.t. 0 = eA(t f −t0)x0 +

∫ t f

t0

eA(t f −τ )Bu(τ ) dτ

The constraint is a linear equality constraint: 

. − eA(t f −t0)x0 =
∫ t f

t0

eA(t f −τ )Bu(τ ) dτ

Multiplying .e−A(t f −t0) to both sides: 

. −x0︸︷︷︸
�c

=
∫ t f

t0

eA(t0−τ )Bu(τ ) dτ � Mu

Here, .M : L2(I ;Rm) → R
n , and .M(·) �

∫ t f
t0

eA(t0−τ )B(·) dτ is a linear mapping. 
The minimum-energy input problem solves the following CLS problem: 

. min
u∈U

‖u‖2L2
s.t. Mu = c (11.4) 

The optimal solution to generic CLS can be obtained using the Lagrangian method. 
Introduce the Lagrangian multiplier vector .λ ∈ R

n . Then, the Lagrangian can be 
formulated as follows:
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. L(u,λ) =
∫ t f

t0

u�(t)u(t) dt + λ�(Mu − c)

To find the optimal. u, we take the derivative of . L with respect to. u and set it to zero: 

. ∇uL =
∫ t f

t0

∂

∂u

(
u�(t)u(t)

)
dt + ∂

∂u

(
λ�(Mu − c)

) = 0

Since .M is an operator mapping from one Hilbert space to another, we can define 
its adjoint operator .M∗. 

. ∇uL =
∫ t f

t0

2u(t) dt + M∗λ = 2u(t) + M∗λ = 0

Solving for . u, we get: 

. u(t) = −1

2
M∗λ

Using the constraint, .Mu = c, we can get . λ: 

. M
(

−1

2
M∗λ

)

= c =⇒ λ = −2(MM∗)−1c

Thus, the optimal solution to generic CLS can be described as follows: 

.u = M∗(MM∗)−1c (11.5) 

Now we need to derive the form of the adjoint operator.M∗. Before we do so, let’s 
determine what the interpretation of the adjoint operator is in the context of control 
theory. 

Example 11.24 (Adjoint System) The concept of the adjoint operator is related to 
the adjoint system in control theory. Consider the system 

. ẋ(t) = A(t)x(t)

where .A(t) is a time-varying matrix. The adjoint system is given by 

. ż(t) = −A�(t)z(t)

Here, the negative transpose of.A(t) appears because, in the context of inner products, 
the adjoint of the differential operator involves the negative transpose. The state 
transition matrices (STMs) for .x(t) and .z(t) are related through transposition and 
inversion. �
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Next, let’s derive the adjoint operator, .M∗: 

. c = Mu =⇒ c�c = c� (Mu) =
∫ t f

t0

(M∗c
)�

(τ )u(τ ) dτ

=⇒ x�
0 x0 = −x�

0

(∫ t f

t0

eA(t0−τ )Bu(τ ) dτ

)

=
∫ t f

t0

(B�eA
�(t0−τ )

︸ ︷︷ ︸
M∗

(−x0)︸ ︷︷ ︸
c

)�u(τ ) dτ

This tells us the adjoint operator should be .(M∗c)(τ ) = B�eA�(t0−τ )c. Thus, the 
CLS solution is: 

. ũ(t) = M∗(MM∗)−1c(t) = −B� eA
�(t0−t)

︸ ︷︷ ︸
���(t0,t)
in LTI case

(∫ t f

t0

eA(t0−τ )BB�eA
�(t0−τ ) dτ

)−1

︸ ︷︷ ︸
�W−1

C (t0,t f ) in LTI case

x0

(11.6) 
Here,.WC(t0, t f ) is called the controllability Gramian, which we will see in Chapter 12. 

Remark 11.19 The CT controllability Gramian and CT reachability Gramian are 
defined as follows: 

. WC(t0, t f ) �
∫ t f

t0

�(t0, s)B(s)B�(s)��(t0, s)ds

WR(t0, t f ) �
∫ t f

t0

�(t f , s)B(s)B�(s)��(t f , s)ds

As their names suggest, these Gramians are often used the characterize the extent 
to which we can control a system and reach certain states. We will discuss more 
properties about these Gramians in Chapter 12. 

In general linear (LTV) systems, the minimum energy control input can be 
described as follows: 

.ũ(t) = −B�(t)��(t0, t)W
−1
C (t0, t f )x0 (11.7) 

There is some relationship between the controllability Gramian and reachability 
Gramian (you can derive them easily). Since .WR = �(t f , t0)WC��(t f , t0), 

.W−1
R = ��(t0, t f )W

−1
C �(t0, t f ), W−1

C = ��(t f , t0)W
−1
R �(t f , t0)
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From (11.7) and the Gramian relation, we can derive the minimum energy input 
in different forms: 

1. When .t0 = 0, and the system is LTI, 

. ũ(t) = −B�eA
�(t f −t)W−1

R (0, t f )e
At f x0

2. When .t0 = 0, .x f ∈ R
n, x f �= 0, and the system is LTI, 

. ũ(t) = −B�eA
�(t f −t)W−1

R (0, t f )(e
At f x0 − x f )

3. When .t0 = 0, .x f ∈ R
n, x f �= 0, and the system is LTV, 

. ũ(t) = −B�(t)��(t f , t)W
−1
R (0, t f )(�(t f , 0)x0 − x f )

11.3 Minimum Energy Input: Discrete-Time Case 

Now we will go over the derivation of the minimum-energy input in the DT case, 
which largely involves one of the simplest classes of linear mappings: matrices, 
which map from some.R

n to some other .Rm . 

Definition 11.79 Given controllable DT LTI .(A, B),  the  minimum energy input is
.u � {u[0],u[1], . . . ,u[t f − 1]} (taking .t0 = 0), a sequence that steers from .x0 to 
.x f at time .t f ∈ N using the smallest amount of “energy”, given by the .�2 norm 

.‖u‖22 �
∑t f −1

s=0 ‖u[s]‖22. 
As a constrained linear least-squares problem, we can write 

. min
u

‖u‖22 s.t. x f = At f x0 +
t f∑

s=1

At f −s Bu[s − 1]

Lemma 11.7 The minimum energy input in the DT case is given by 

.u[t] = −B�(A�)t f −1−t

⎛

⎝
t f −1∑

s=0

As BB�(A�)s

⎞

⎠

−1

(At f x0 − x f ) (11.8) 

Proof We follow basically the same steps as in the CT case. 

1. Manipulate the constraint to get a linear equality of the form.Mu = c:
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. − (At f x0 − x f ) =
t f∑

s=1

At f −s Bu[s − 1] = [
B AB · · · At f −1B

]

︸ ︷︷ ︸
�Cd (t f )

⎡

⎢
⎢
⎢
⎣

u[t f − 1]
u[t f − 2]

...

u[0]

⎤

⎥
⎥
⎥
⎦

where we will denote .Cd(t f ) to be the discrete-time controllability matrix until 
time .t f ∈N. In this case, .M ≡ Cd(t f ) and .c ≡ x f − At f x0. 

2. Note that .M is an underdetermined system because there are more columns than 
rows. Furthermore, .M is full row rank because the system is controllable. 

3. We must use the right-pseudoinverse solution to the least-norm problem above: 

. M† ≡ Cd(t f )† = C�
d (t f )(Cd(t f )C�

d (t f ))
−1

and so 

. 

⎡

⎢
⎢
⎢
⎢
⎣

u[t f − 1]
u[t f − 2]

.

.

.

u[0]

⎤

⎥
⎥
⎥
⎥
⎦

= −

⎡

⎢
⎢
⎢
⎢
⎣

B�
B�A�

.

.

.

B�(At f −1)�

⎤

⎥
⎥
⎥
⎥
⎦

⎛

⎜
⎜
⎜
⎜
⎝

[
B AB · · · At f −1B

]

⎡

⎢
⎢
⎢
⎢
⎣

B�
B�A�

.

.

.

B�(At f −1)�

⎤

⎥
⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎟
⎠

−1

(At f x0 − x f )

=

⎡

⎢
⎢
⎢
⎢
⎣

B�
B�A�

.

.

.

B�(At f −1)�

⎤

⎥
⎥
⎥
⎥
⎦

⎛

⎝
t f −1∑

s=0

As BB�(A�)s

⎞

⎠

−1

(At f x0 − x f )

The desired formula (11.8) comes from simply matching the matrix entries on 
the LHS and RHS. �



Chapter 12 
Controllability 

Now that we have discussed the canonical forms and the concepts of minimum-
energy inputs, it is necessary to study whether or not a system can be controlled in 
the first place. As we will see in this chapter controllability refers to the ability to 
steer or control a system from any initial state to any desired final state using the 
system’s inputs. If a system is controllable, other related questions can also be asked, 
such as “to what extent can the system be controlled”? Moreover, for systems that can 
be controlled, several different problems can be solved, such as reference-tracking, 
disturbance-rejection, regulation, and stabilization. 

12.1 Controllability and Reachability 

Definition 12.80 (Controllable) System .ẋ = Ax + Bu, .x(0) = x0 is controllable 
until time .t f > 0 for any .x0 ∈ R

n if .∃u which can steer the system from .x0 to 
.x f � x(t f ) = 0 over time interval .[0, t f ]. 

We note that there is no requirement on the system’s behavior after time . t f . 

Definition 12.81 (Controllable Subspace)  The  controllable subspace .C[t0, t f ] con-
sist of all .x0 for which .∃u : [t0, t f ] → R

m which transfers the state to . x f =
0. 

. C[t0, t f ] � {x0 ∈ R
n | ∃ u, 0 = �(t f , t0)x0 +

∫ t f

t0

�(t f , s)B(s)u(s)ds}
Definition 12.82 (Reachable Subspace) Analogous to Definition 12.81,  the  reach-
able subspace.R[t0, t f ] consists of all.x f which can be steered to from.x0 ≡ 0 (shifting 
coordinates for simplicity) 

. R[t0, t f ] � {x f ∈ R
n| ∃u, x(t f ) = x f =

∫ t f

t0

�(t f , s)B(s)u(s)ds}
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Definition 12.83 (Reachable) A system is reachable at time .t f > 0 if . R[t0, t f ] =
R

n . 

In summary, the controllability problem is posed as: given final state .x f at time . T , 
find the set of all initial states. x0, such that . ∃ trajectory.x(t) which steers.x0 at . t = t0
to.x f at .t = T . On the other hand, the reachability problem is posed as: given initial 
state .x0 at time. t0, find the set of all final states .x f , such that . ∃ trajectory .x(t) which 
steers .x0 at .t = t0 to .x f at .t = T . From these problem statements alone, you may 
guess that controllability and reachability are like related properties. In fact, for LTI 
systems they are equivalent, as shown in the following proposition. 

Proposition 12.3 (Controllability-Reachability Equivalence) The LTI system is 
controllable if and only if it is reachable. 

We will come back to prove this proposition later. First, we will discuss simpler ways 
of verifying controllability/reachability beyond using the direct definitions above. 

The following matrices are useful in characterizing the reachable and controllable 
subspaces. 

Definition 12.84 (Controllability and Reachability Gramians) Given times . t0 and 
.t f > t0,  the  reachability Gramian is:

. WR(t0, t f ) �
∫ t f

t0

�(t f , s)B(s)B�(s)��(t f , s)ds

and the controllability Gramian is: 

. WC(t0, t f ) �
∫ t f

t0

�(t0, s)B(s)B�(s)��(t0, s)ds

We’ve previously defined the Gramians in Remark 11.19, during the discussion of 
minimum-energy inputs. 

Theorem 12.27 A linear system (either LTI or LTV) is controllable iff .∀t > t0, 
.Wc(t0, t f ) is nonsingular. 

Proof (Sufficiency.) Suppose.Wc(t0, t f ) is nonsingular. Choose specific control input 

. u(t) = −B�(t)��(t0, t)W
−1
C (t0, t f )x0,

then 

.x f = �(t f , t0)x0 +
∫ t f

t0

�(t f , τ )B(τ )u(τ )dτ

= �(t f , t0)x0 −
∫ t f

t0

�(t f , τ )B(τ )B�(τ )��(t0, τ )W−1
C (t0, t f )x0dτ

= �(t f , t0)x0 − �(t f , t0)WC(t0, t f )W
−1
C (t0, t f )x0
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= 0(Necessity.) Now, suppose the system is controllable. Suppose for the sake of 
contradiction that .WC is singular. Therefore, .∃x̃ ∈ R

n , .x̃ �= 0 such that 

. 0 = x̃�WC(t0, t f )x̃ =
∫ t f

t0

x̃��(t0, τ )B(τ )B�(τ )��(t0, τ )x̃dτ.

The integrated is .‖x̃��(to, τ )B(τ )‖2 ≥ 0 for all τ . So the integral being 0 means 
the integrated is 0. 

. ‖x̃��(to, τ )B(τ )‖ = 0 ∀τ ∈ [t0, t f ]

Since the system is controllable, there exists continuous input u(t) s.t. 

. 0 = �(t f , t0)x̃ +
∫ t f

t0

�(t f , τ )B(τ )u(τ )dτ.

Thus we can obtain an expression for . x̃, 

. x̃ = −�−1(t f , t0)
∫ t f

t0

�(t f , τ )B(τ )u(τ )dτ = −
∫ t f

t0

�(t0, τ )B(τ )u(τ )dτ.

And, 

. ‖x̃‖22 = x̃�x̃ = −
∫ t f

t0

x̃��(t0, τ )B(τ )u(τ )dτ = 0

This contradicts .x̃ �= 0. Thus no such . x̃ can exist. . �

For LTI case, additional tests for controllability can be performed. 

Theorem 12.28 (Equivalent Conditions for Controllability) Given LTI .(A, B),  the  
following statements are equivalent:

CTRB1. .(A, B) is controllable. 
CTRB2. .WC(t0, t f ) �

∫ t f
t0

�(t0, s)BB���(t0, s)ds is nonsingular. 
CTRB3. The controllability matrix 

.C � [B AB A2B · · · An−1B] ∈ R
n×nm (12.1) 

has rank n (full row rank). 
CTRB4. The matrix .[A − λI B] ∈ R

n×(n+m) has full row rank .∀λ ∈ C (note: we 
only need to check this for .{λi } eigenvalues of A). 

CTRB5. .w�B �= 0 . ∀ left eigenvectors .w ∈ C
n of A. 

Additional properties: 

1. Controllability is preserved under equivalence transformations: .(A, B) is con-
trollable if and only if .(PAP−1, PB) is controllable for some equivalent 
transformation .x̃(t) = Px(t).
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A proof sketch of this fact can be seen by simply taking a transformation of the 
controllability matrix 

. [PB PAP−1PB · · · (PAP−1)n−1PB] = P[B AB · · · An−1B] = PC

which has the same rank as the original . C since P is nonsingular. 
2. Controllability can be related back to canonical forms. In particular, the Kalman 

controllable form (KCF) is given as 

. ẋ(t) =
[
ẋ(1)(t)
x(2)(t)

]
=

[
A11 A12

A22

] [
x(1)(t)
(2)(t)

]
+ [

B1
]
u(t)

We can get .ẋ2(t) = A22x2(t) that is the uncontrollable part of the system. 

Definition 12.85 (Stabilizability) LTI system .(A, B) is stabilizable if all uncon-
trollable modes are asymptotically stable, meaning that .limt→∞ ‖x(2)(t)‖ = 0,  fo  r
.x(2) in the KCF. Alternatively, another mathematical condition is to say .(A, B) is 
stabilizable if .∃K ∈ R

m×n s.t. .A − BK is stable. 

Stabilizability is weaker than controllability, because controllability requires the final 
state .x f to be exactly 0, but stabilizability only requires .x f to approach 0. We will 
discuss more about the KCF in future chapters. A similar PBH test can be used to 
check stabilizability. 

Theorem 12.29 (Equivalent Statements for Stabilizability) The following state-
ments are equivalent: 

1. .(A, B) is stabilizable. 
2. .A22 (the uncontrollable part of the CCF) is Hurwitz. 
3. .rank[A − λI B] = n holds .∀λ ∈ C̄

+. 

Conditions (CTRB4.) and (CTRB5.) in Theorem 12.28 are called the Popov-
Belevitch-Hautus (PBH) test. We will prove it in Sect. 12.2.2. 

Example 12.25 Consider CT LTI system with system matrices 

. A =
⎡
⎣ 0 1 0

0 0 1
−6 −11 −6

⎤
⎦ , B =

⎡
⎣ 0

1
−3

⎤
⎦

Let’s use one of the conditions in Theorem 12.28 to check its controllability. First, the 

eigenvalues of. A are.λ1 = −1, λ2 = −2, λ3 = −3, left eigenvectors are.w1 =
⎡
⎣6
5
1

⎤
⎦, 

.w2 =
⎡
⎣3
4
1

⎤
⎦, .w3 =

⎡
⎣2
3
1

⎤
⎦. Check.w�

3 B = [
2 3 1

]
⎡
⎣ 0

1
−3

⎤
⎦ =0. By the PBH eigenvector 

test, the system is not controllable. . �
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12.2 Proofs of Equivalence of the Controllability Tests 

In the following subsections, we will prove the equivalence of some of the statements 
in Theorem 12.28. 

12.2.1 Proof: (CTRB1.) and (CTRB2.) are Equivalent 
to (CTRB3.) 

CT LTI Case Before we prove this equivalence, let’s see the following lemma about 
the matrix exponential property. 

Lemma 12.8 For .A ∈ R
n×n, there exists scalar, analytic functions .{αk(t)}n−1

k=0 s.t. 

. eAt =
n−1∑
k=0

αk(t)A
k .

Proof Recall .�(t, 0) = eAt is the unique solution to matrix ODE . Ẋ(t) =
AX (t), X (0) = I . 

Verify .
∑n−1

k=0 αk(t)Ak satisfies ODE by using the following two steps. 

1. Show.X (0) = I . 

. 

n−1∑
k=0

αk(0)A
k = I

Then 
. α0(0) = 1, α1(0) = α2(0) = . . . = αn−1(0) = 0

by matching the coefficients of .Ak . 
2. Show.Ẋ(t) = AX (t). 

We have 

. Ẋ(t) =
n−1∑
k=0

α̇k(t)A
k

and 

.AX (t) =
n−1∑
k=0

αk(t)A
k+1

=
n−1∑
k=1

αk−1(t)A
k + αn−1(t)A

n
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= 
n−1∑
k=1 

αk−1(t) Ak − 
n−1∑
k=0 

ckαn−1(t)A
k 

=  −c0αn−1(t) + 
n−1∑
k=1 

(αk−1(t) − ckα n−1(t))A
k,

where the third equality is due to Cayley-Hamilton. 
In order for .Ẋ(t) = AX (t), we need .αk(t) to satisfy 

. 

{
α̇0(t) = −coαn−1(t)

αk(t) = αk−1(t) − ckαn−1(t) ∀k = 1, . . . , n − 1

by matching the coefficients. In the state-space form, we get 

. 

⎡
⎢⎢⎢⎢⎣

α̇0

α1

α2

αn−1

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

0 0 · · · 0 −c0
0 · · · 0 −c1
1 · · · 0 −c2
...

. . .
...

...

0 · · · 1 −cn−1

⎤
⎥⎥⎥⎥⎥⎦

[
α0

n − 1

]
,

⎡
⎢⎢⎢⎢⎣

α0(0)
(0)
(0)

n − 1(0)

⎤
⎥⎥⎥⎥⎦ = [

1
]
,

which looks exactly like the observable canonical form (OCF). 

As we proved the existence and uniqueness of the solutions to autonomous LTI 
systems, there clearly exists a solution .{αk(t)}n−1

k=0 to above state-space form. . �

In addition, recall the solution form for LTI .(A, B): 

. x(t f ) = eA(t f −t0)x(t0) +
∫ t f

t0

eA(t f −τ)Bu(τ )dτ

. e−At f x f − e−At0x0 =
∫ t f

t0

e−Aτ Bu(τ )dτ

Using Lemma 12.8, we get 

. e−Aτ =
n−1∑
k=0

αk(τ )Ak .

Then
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. e−At f x f − e−At0x0 =
∫ t f

t0

n−1∑
k=0

αk(τ )Ak Bu(τ )dτ = [
B AB · · · An−1B

]

⎡
⎢⎢⎢⎢⎢⎢⎣

∫ t f
t0

α0(τ )u(τ )dτ∫ t f
t0

α1(τ )u(τ )dτ∫ t f
t0

α2(τ )u(τ )dτ

.

.

.∫ t f
t0

αn−1(τ )u(τ )dτ

⎤
⎥⎥⎥⎥⎥⎥⎦

.

. ∴ ∀x0 ∈ R
n , the solution exists iff rank(C) = rank(

[
B AB · · · An−1B

]
) = n.

Now, let’s prove that (CTRB1.) and (CTRB2.) are indeed equivalent to (CTRB3.). 

Theorem 12.30 LTI system .(A, B) is controllable on .[t0, t f ] iff .rank(C) = n, where 
. C is the controllability matrix (12.1). 

Proof First, note that for all .p ≥ n, . rank(
[
B AB · · · Ap−1B

]
) = rank

(
[
B AB · · · An−1B

]
) because of Cayley-Hamilton. 

(.=⇒) Suppose .rank(C) < n. That means that there exists .x̃ �= 0, .x̃ ∈ R
n s.t. 

.x̃�Ak B = 0 for all .k = 0, . . . , n − 1. Then 

. x̃�Wc(t0, t f ) =
∫ t f

t0

x̃�eA(t0−t)BB�eA
�(t0−t)dt

=
∫ t f

t0

x̃�
(

n−1∑
k=0

αk(t0 − t)Ak

)
BB�eA

�(t0−t)dt

=
∫ t f

t0

(
n−1∑
k=0

αk(t0 − t)x̃�Ak B

)
B�eA

�(t0−t)dt = 0,

where the second equality results from Lemma 12.8, and the last equality is due to 
the assumption .x̃�Ak B = 0 for all .k = 0, . . . , n − 1. Therefore, there exists . x̃ �= 0
s.t..x̃�Wc(t0, t f ) = 0 =⇒ Wc(t0, t f ) is noninvertible. By contrapositive, we can get 
the following result: 

. ∴ Wc(t0, t f ) is nonsingular =⇒ rank(C) = n.

(.⇐=) Suppose.Wc(t0, t f ) is noninvertible. That means that there exists .x̃ �= 0 s.t. 

. 0 = x̃�Wc(t0, t f )x̃ =
∫ t f

t0

x̃�eA(t0−t)BB�eA
�(t0−t)x̃dt.

Using the fact that .x̃�eA(t0−t)BB�eA�(t0−t)x̃ = ‖x̃�eA(t0−t)B‖2 ≥ 0 for all . t , we can 
get 

.‖x̃�eA(t0−t)B‖2 = 0 =⇒ x̃�eA(t0−t)B = 0 ∀t ∈ [t0, t f ]. (12.2) 

When .t = t0 in (12.2), we have .x̃�B = 0. Differentiating (12.2) with .t = t0, 

. − x̃�AeA(t0−t)B = 0 =⇒ x̃�AB = 0. (12.3)
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Similarly, differentiating (12.2) twice with .t = t0, gives us .x̃�A2B = 0. In general, 
differentiating (12.2) . k times with .t = t0 yields 

. x̃�Ak B = 0 ∀ k ∈ N.

Thus, we have 
. x̃� [

B AB · · · An−1B
] = 0,

which means . rank(C) < n.

By contrapositive, we can get the following result: 

. ∴ rank(C) = n =⇒ Wc(t0, t f ) is nonsingular. �

CT LTV Case. For LTV systems, we can create a similar controllability matrix. First, 
a brief detour into adjoint systems. Uncontrolled linear system.ẋ(t) = A(t)x(t) with 
state transition matrix (STM) .�(t, t0) has an adjoint system given by 

. ż(t) = −A�(t)z(t)

with STM.��(t, t0). 
As we saw from Chap. 3, .�(t, t0) satisfies 

. 
∂�

∂t
(t, t0) = A(t)�(t, t0) and �(t0, t0) = I.

But .�(t0, t) satisfies 

.
∂�

∂t
(t0, t) = −�(t0, t)A(t) and �(t0, t0) = I. (12.4) 

This is easily verifiable for LTI case, .�(t, t0) = eA(t−t0). 

Definition 12.86 (Controllability Matrix Sequence for LTV systems)  For  LT  V
.(A(t), B(t)) with.A ∈ CN−1, .B ∈ CN , and .N ∈ N, define the controllability matrix 
sequence .{Ki (t)}Ni=0 s.t. 

. 

{
K0(t) = B(t)

Ki (t) = −A(t)Ki−1(t) + K̇i−1(t) i = 1, 2, . . . , N

Lemma 12.9 The sequence .{Ki (t)}Ni=0 has the following property: 

.∀t, τ , ∂ i

∂τ i
(�(t, τ )B(τ )) = �(t, τ )Ki (τ ) i = 1, 2, . . . (12.5)
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Proof Lemma 12.9 has a simple proof by induction. First, when .i = 0, the formula 
clearly holds since .K0(τ ) = B(τ ). Now suppose the formula holds when .i = j .  I  f
.i = j + 1, 

. 
∂ i

∂τ i
(�(t, τ )B(τ )) = ∂

∂τ

(
∂ i

∂τ i
(�(t, τ )B(τ ))

)

= ∂

∂τ
(�(t, τ )K j (τ ))

= �̇(t, τ )K j (τ ) + �(t, τ )K̇ j (τ )

= −�(t, τ )A(τ )K j (τ ) + �(t, τ )K̇ j (τ )

= �(t, τ )K j+1(τ ),

where the second equality comes from the induction case, and the fourth equality is 
due to (12.4). By induction, this concludes our proof. . �

Lemma 12.10 Suppose that there exists .N ∈ N s.t. .A ∈ CN−1, .B ∈ CN . Then LTV 
system .(A(t), B(t)) is controllable on .[t0, t f ] if for some .τ ∗ ∈ [t0, t f ], 

. rank(
[
K0(τ

∗) K1(τ
∗) · · · KN (τ ∗)

]
) = n.

Proof Suppose .(A(t), B(t)) is not controllable on .[t0, t f ]. That means that 
.Wc(t0, t f ) is noninvertable, and there exists .x̃ �= 0 s.t. . 0 = x̃�Wc(t0, t f )x̃ =∫ t f
t0

x̃��(t0, t)BB���(t0, t)x̃dt . 
Using the fact that.x̃��(t0, t)BB���(t0, t)x̃ = ‖x̃��(t0, t)B‖2 ≥ 0 for all. t ,  we  

can get
. ‖x̃��(t0, t)B‖2 = 0 =⇒ x̃��(t0, t)B = 0 ∀t ∈ [t0, t f ].

Let .x̂ = ��(t0, τ ∗)x̃, .x̂ �= 0 so that 

. x̂��(τ ∗, t)B(t) = x̃��(t0, τ
∗)�(τ ∗, t)B(t) = x̃��(t0, t)B(t) = 0 ∀t ∈ [t0, t f ].

(12.6) 
When .t = τ ∗ in (12.6), 

. x̂��(τ ∗, τ ∗)B(τ ∗) = x̂�B(τ ∗) = x̂�K0(τ
∗) = 0.

Differentiating (12.6), we get 

.0 = d

dt
(x̂��(τ ∗, t)B(t))

= x̂�(�̇(τ ∗, t)B(t) + �(τ ∗, t)Ḃ(t))

= x̂�(−�(τ ∗, t)A(t)B(t) + �(τ ∗, t)Ḃ(t))

= x̂��(τ ∗, t)(−A(t)B(t) + Ḃ(t))

= x̂��(τ ∗, t)K1(t),
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where the third equality results from (12.4), and the last equality is due to Defini-
tion 12.86. Then with .t = τ ∗, 

. x̂�K1(τ
∗) = 0.

Differentiate (12.6) . k times with .t = τ ∗, 

. x̂�K j (τ
∗) = 0.

Thus, we have 
. x̃� [

K0(τ
∗) K1(τ

∗) · · · KN (τ ∗)
] = 0,

then . rank(C) < n.

By contrapositive, we can get the following result: 

. ∴ rank(C) = n =⇒ LTV (A(t), B(t)) is controllable. �

DT LTI Case. Consider the DT LTI system. (A, B)

. x[t + 1] = Ax[t] + Bu[t].

Applying these system dynamics recursively through values of .t ∈ N, we get 

. x[1] = Ax0 + Bu[0]
x[2] = Ax[1] + Bu[1] = A2x0 + ABu[0] + Bu[1]

...

x[n] = Ax[n − 1] + Bu[n − 1]
= Anx0 + An−1Bu[0] + An−2Bu[1] + · · · + Bu[n − 1].

In matrix equation form, we have 

. x[n] − Anx0 = Cd

⎡
⎢⎢⎢⎣

u[n − 1]
u[n − 2]

...

u[0]

⎤
⎥⎥⎥⎦

with .Cd �
[
B AB · · · An−1B

]
. Here, the DT controllability matrix is basically the 

same as its CT counterpart. 

Corollary 12.4 DT LTI .(A, B) is controllable iff .rank(Cd) = n. 

Sometimes, .Cd is called the reachability matrix because the range .Im(Cd) is just 
the reachable subspace (setting .x0 = 0).
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1. .
[
B AB · · · An−1B

]
with .k < n is the reachability matrix in . k steps. 

2. The largest possible reachable set (maximum reachable set) is attained in at most 
.k = n steps. 

12.2.2 Proof: (CTRB1.) and (CTRB2.) are Equivalent 
to (CTRB4.) 

First, we prove the PBH rank test described by (CTRB4.). 

Proof of PBH rank test. Note this condition is automatically satisfied when. λ is not 
an eigenvalue of A. Thus, we only need to check it when . λ is an eigenvalue. 

(Sufficiency.) Suppose (A, B) is not controllable. Transforming to CCF yields a 
form where . Ã22 has a nonzero dimension. 

Let . λ be an eigenvalue of . Ã22. Then the matrix .[ Ã22 − λI B̃] has rank less than 
. n. Consequently, the matrix .[A − λI B] = P−1[ Ã22 − λI B̃]

[
P 0
0 I

]
also has rank 

less than . n. By contrapositive argument, the rank condition holds, which means the 
system is controllable. 

(Necessity.) Suppose rank.[λI − A B] < n, Then .∃ .x �= 0 x ∈ R
n , such that 

.x�[A − λI B] = 0, then we can get 

. x�(A − λI ) = 0, x�B = 0

Note.x�(A − λI ) = 0 implies .x�Ak = λkx�∀k ∈ N, so that . x�[B AB · · · An−1B]
=0. This doesn’t satisfy the controllability matrix test. 

Again, by contrapositive argument, the system is controllable when the rank 
condition holds. . �

Theorem 12.31 LTI .(A, B) is controllable on .[t0, t f ] iff . rank(
[
A − λI B

]
) =

n ∀λ ∈ C. 

Proof (.⇐=) Condition is satisfied when . λ is not an eigenvalue of . A, so we will 
check the condition only when . λ is eigenvalue of . A. 

Suppose that.rank(
[
A − λI B

]
) < n. That means that there exists.x̃ �= 0,. x̃ ∈ R

n

s.t. .x̃� [
A − λI B

] = 0. Then 

.x̃�(A − λI ) = 0, (12.7a) 

.x̃�B = 0 (12.7b) 

(12.7a)  implies  th  at
.x̃�A = λx̃�
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. =⇒ x̃�A2 = λx̃�A = λ2x̃�

. =⇒ x̃�A3 = λ2x̃�A = λ3x̃�

. 
...

. =⇒ x̃�Ak = λk x̃� ∀k ∈ N.

Using the above results and (12.7b), we get 

. x̃� [
B AB · · · An−1B

] = [
x̃�B λx̃�B · · · λn−1x̃�B

] = 0.

Therefore, it doesn’t satisfies .rank(C) = n test in (12.28). 
By contrapositive, we can get the following result: 

. ∴ LTI (A, B) is controllable =⇒ rank(
[
A − λI B

]
) = n.

(.=⇒) The proof of this direction follows similarly to the proof of the PBH rank test 
shown at the beginning of this section. 

12.2.3 Proof: (CTRB1.) and (CTRB2.) are Equivalent 
to (CTRB5.) 

Theorem 12.32 LTI .(A, B) is controllable on .[t0, t f ] iff .w�B �= 0 for all left 
eigenvectors .w ∈ C

n of . A. 

Proof (.⇐=) Suppose that there exists .w ∈ C
n , .w �= 0 s.t. 

. w�A = λw�, w�B = 0.

Then 
. w� [

B AB · · · An−1B
] = [

w�B λw�B · · · λn−1w�B
] = 0,

which means that .rank(
[
B AB · · · An−1B

]
) < n. 

Therefore, it doesn’t satisfies .rank(
[
B AB · · · An−1B

]
) = n test in (CTRB3.). 

By contrapositive, we can get the following result: 

. ∴ LTI (A, B) is controllable =⇒ w�B �= 0 for all left eigenvectors w ∈ C
n of A.

(.=⇒) Suppose that .rank(
[
B AB · · · An−1B

]
) < n. 

Then by changing coordinates, we get
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. Ã = T−1AT =
[
Ã11 Ã12

0 Ã22

]
, B̃ = T−1B =

[
B̃11

0

]
.

Let . λ be an eigenvalue of . Ã22, and .w22 is an left eigenvector of . Ã22. By defining 

. w = (T−1)�
[

0
w22

]
,

we have 

. w�A =
[

0
w22

]�
T−1

(
T

[
Ã11 Ã12

0 Ã22

]
T−1

)

= [
0 w�

22 Ã22

]
T−1

= [
0 λw�

22

]
T−1

= λ
[
0 w�

22

]
T−1

= λw�

and 

. w�B =
[

0
w22

]�
T−1

(
T

[
B̃11

0

])

= [
0 w�

22

] [
B̃11

0

]

= 0.

This shows that there exists .w ∈ C
n , .w �= 0 s.t. 

. w�A = λw�, w�B = 0.

By contrapositive, we can get the following result: 

.
∴w�B �= 0 for all left eigenvectors w ∈ C

n of A

=⇒ LTI (A, B) is controllable.
�



Chapter 13 
Observability 

A related system characteristic is observability, which refers to the ability to deter-
mine the internal state of a system just by looking at its outputs. If a system is 
observable, you can figure out what’s going on inside the system based only on 
what you can observe from the outside, like inferring the condition of an engine by 
listening to its sound or reading its temperature. In essence, controllability is about 
controlling the system, and observability is about being able to “see” the state of the 
system from the outside. 

Before delving into the intricacies of observability, let’s set the stage by defining 
the concept and its significance in control theory. Observability plays a crucial role 
in determining the extent to which we can extract information about the internal 
state of a system solely from its output. In this section, we’ll explore the definition 
of observability, key metrics such as the observability Gramian. First consider the 
linear system without any control input. 

Definition 13.87 (Observable) LTI or LTV system.ẋ = Ax,.x(t0),.y = Cx is observ-
able in time interval .[t0, t f ], .t f > t0 if any initial state .x0 ∈ R can be uniquely 
determined from.y(t), .t ∈ [t0, t f ]. 

If the initial-state. x0, can be found from. u and. ymeasured over a finite interval of 
time. t0, the system is said to be observable; otherwise the system is said to be unob-
servable. More intuitively, it asks how well can the internal state .x(t) be estimated 
given only output information .{y(s) : s ∈ [0, t)}. 
Remark 13.20 Unlike controllability, observability is not affected by the control 
input . u. We will see that conditions for observability only depend on system matrix 
. A and output matrix . C . 

Many of the definitions and concepts introduced for controllability and reacha-
bility are also applicable here for observability. 

Definition 13.88 (Observability Gramian)  The  observability Gramian for linear 
system.(A(t),C(t)) is 
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.WO(t0, t f ) �
∫ t f

t0

��(t, t0)C
�(t)C(t)�(t, t0) dt ∈ R

n×n (13.1) 

Theorem 13.33 .(A(t),C(t)) is observable iff .WO(t0, t f ) is nonsingular. 

Proof (Sufficiency.) Suppose .WO(t0, t f ) is nonsingular. Then . x0 = W−1
O (t0, t f )∫ t

t0
��(s, t0)C�(t)y(s) ds is constructed from.{y(s) : t0 ≤ s ≤ t} for any.t ∈ [t0, t f ]. 
Check that it satisfies the solution equation .y(t) = C(t)�(t, t0)x0 ∀t ∈ [t0, t f ]. 

. =⇒
∫ t

t0

��(s, t0)C
�(t)C(t)�(t, t0) dt

︸ ︷︷ ︸
�WO (t0,t f )

x0 =
∫ t

t0

��(s, t0)C
�(t)y(t) dt (13.2) 

Multiply both sides by .W−1
O (t0, t) to get the desired result. 

((Necessity.) Suppose .WO(t0, t f ) singular. Then 

.

=⇒ ∃x̃ ∈ R
n, x̃ �= 0 such that x̃�WO(t0, t f )x̃ = 0

=
∫ t f

t0

x̃��(s, t0)C
�(s)C(s)�(s, t0)x̃ ds

=
∫ t f

t0

‖C(s)�(s, t0)x̃‖22 ds
=⇒ C(s)�(s, t0)x̃ = 0 ∀s ∈ [t0, t f ]

(13.3) 

The solution equation is .y(t)=C(t)�(t, t0)x0. Hence, both .x0 = 0 and .x0 = x̃ yield 
the same output.y(t) = 0. Therefore, we cannot uniquely determine the input. xwhen 
we observe a zero output, and so the system is not observable. By contrapositive, 
observable .=⇒ .WO(t0, t f ) is nonsingular. �

Just as how stabilizability was considered to be a weaker version of controlla-
bility (see Definition 12.85), there is also a weaker version of observability called 
detectability. 

Definition 13.89 (Detectable) LTI system .(A,C) is detectable if all unobservable 
modes of the system are asymptotically stable. Alternatively, a more mathematical 
condition is to say .(A,C) is detectable if .∃L ∈ R

n×k s.t. .A − LC is stable. 

CT LTI Case. For the CT LTI case (i.e. .ẋ(t) = Ax(t), .y(t) = Cx(t)), we can check 
for observability using tests similar to controllability. 

Theorem 13.34 (Equivalent Conditions for Observability) Given LTI .(A,C),  the  
following statements are equivalent:
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OBSV1. .(A,C) is observable. 
OBSV2. .WO(t0, t f ) �

∫ t f
t0

��(t, t0)C�(t)C(t)�(t, t0) dt is nonsingular. 

OBSV3. The observability matrix .O(A,C) � .

⎡
⎣

C
CA
...

CAn−1

⎤
⎦ has full column rank (.= n). 

OBSV4. PBH rank test: .
[
A−λI
C

]
has full column rank .∀λ ∈ C. 

OBSV5. PBH eigenvector test: .Cv �= 0 ∀ right eigenvectors .v ∈ C
n of . A. 

The proofs of equivalence for these conditions follow very similarly to the 
controllability versions, and so we will not discuss them here. 

Example 13.26 Consider the system 

.
x =

[
− 8

45
1
30

− 1
45 − 1

10

]
x +

[
2
1

]
u, x0 =

[
5
2

]

y = [
3 4

]
x

(13.4) 

Let’s use one of the conditions in Theorem 13.34 to determine whether this system 
is observable or not. Since 

.rank

[
C
CA

]
= rank

[
3 4

− 28
45 − 3

10

]
= 2 (13.5) 

has full column rank, the system is observable. �

Definition 13.90 (Unobservable Subspace)  For  LT  I .(A,C),  the  unobservable 
subspace is .ker(O(A,C)), i.e. the nullspace of observability matrix. 

Theorem 13.35 LTI .(A,C) is observable iff .ker(O(A,C)) = {0}. 
DT LTI Case. Observability for DT LTI systems follows similarly to the DT LTI 
conditions for controllability. Given a DT LTI system . x[t + 1] = Ax[t], y[t] =
Cx[t], recursively iterate through time: 

. {
y[0] = Cx0
y[1] = Cx[1] = CAx0
y[2] = Cx[2] = CA2x0
...

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=⇒

⎡
⎢⎢⎢⎣

y[0]
y[1]

...

y[n − 1]

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

C
CA
...

CAn−1

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
�O

x0

Again, by Cayley-Hamilton, we do not need to consider powers .Ak for .k ≥ n.  The  
above system of equations has a unique solution .x0 to any output measurement 
sequence .{y[0] · · · y[n − 1]} iff .O is full column rank.
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CT LTV Case. For.A ∈ CN−1,.C ∈ CN for some.N ∈ N, define the sequence. {Li }Ni=0
such that 

.

{
L0(t) = C(t)

Li (t) = Li−1A(t) + L̇ i−1(t)
(13.6) 

Theorem 13.36 LTV .(A(t),C(t)) with .A ∈ CN−1, .C ∈ CN for some .N ∈ N is 
observable on .

[
t0, t f

]
if for some .τ ∗ ∈ [

t0, t f
]
, 

.rank

⎡
⎢⎢⎢⎣

L0(τ
∗)

L1(τ
∗)

...

LN (τ ∗)

⎤
⎥⎥⎥⎦ = n (13.7)



Chapter 14 
Minimal Realizations 

14.1 The Kalman Decomposition 

In Sect. 12.1, the Kalman decomposition was posed as follows 

. 

C( Ã, B̃) � PC(A, B) =
[
C1(A, B)
0(n−r)×nm

]
,

Ã � PAP−1 =
[
Ã11 Ã12

0 Ã22

]
, B̃ � PB =

[
B̃1

0

]

Here, we’ll look at how equivalence transformation .P should be constructed such 
that the original system.(A, B,C) can be transformed to the Kalman decomposition 
form. First, we will recall a few mathematical definitions from linear algebra. 

Definition 14.91 (Invariant Subspace)  Le  t .T : V → V be a linear operator. Then 
subspace.W ⊆ V is a.T -invariant subspace if.v ∈ W =⇒ T v ∈ W (i.e..TW ⊆ W). 

Remark 14.21 We’ve already introduced the notion of invariant sets while dis-
cussing LaSalle’s principle in Chap. 7. These invariant sets are directly related to Def-
inition 14.91. 

Definition 14.92 (Orthogonal Complement)  Le  t .W be subspace of .Rn . Then . W⊥
is the orthogonal complement of .W , defined by 

. W⊥ �
{
v ∈ R

n | 〈w, v〉 = 0 ∀w ∈ W}
, W ∩ W⊥ = {0}, W ⊕ W⊥ = R

n.

Note that our linear operator is .A : Rn → R
n (matrix case: .V = R

n in Defini-
tion 14.91). 

Suppose .W ⊆ R
n with .dimW = r(< n) is .A-invariant and .W has basis 

.{w1,w2, . . .wr } ,wi ∈ W . Choose subspace .U = W⊥ and denote its basis as 

.{ur+1, . . . un} ,ui ∈ U . Essentially,.{ur+1, . . . un} completes.{w1,w2, . . .wr } to form 
basis of .Rn . We write the coordinate transformation .P−1 as below. 
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. P−1 �

⎡
⎣ | | | |
w1 . . . wr ur+1 . . . un
| | | |

⎤
⎦ = [W U ]

.

Now, we can write equations for . A as block matrices: 

. 

Ã = PAP−1

=⇒ P−1 Ã = AP−1

=⇒ [W U ] [
Ã11 Ã12

Ã21 Ã22

]
= A

[W U ]

=⇒ [W Ã11 + U Ã21 W Ã12 + U Ã22

] = [
AW AU ]

where.W ∈ R
n×r ,.U ∈ R

n×(n−r),. Ã11 ∈ R
r×r ,. Ã12 ∈ R

r×(n−r),. Ã21 ∈ R
(n−r)×r ,. Ã22 ∈

R
(n−r)×(n−r). 
Since every column .wi of .W is .A-invariant, we know .Awi can still be written 

as a linear combination of .{w1, . . .wr }. This, combined with .W ∩ U = {0} means 
. Ã21 = 0. Thus, the “completely controllable” part of.(A, B) is.A-invariant subspace 
(Similarly, in equation .B̃ = PB, .B̃2 = 0.). 

Note that if . U also happens to be .A-invariant, then we have . Ã12 = 0 too. 
Then, we can check the results of Kalman Decomposition with specific equiva-

lence transformation . P: 

. 

C( Ã, B̃) � PC(A, B) = [
PB PAB . . . PAn−1B

]
= [

B̃ Ã B̃ . . . Ãn−1 B̃
]

=
[

B̃1 Ã11 B̃1 . . . Ãn−1
11 B̃1

0(n−r)×m 0(n−r)×m . . . 0(n−r)×m

]

=
[
C1(A, B)
0(n−r)×nm

]

where .rankC(A, B) = r , .B̃1 ∈ R
r×m , .C1(A, B) ∈ R

r×nm . 

14.2 Duality Principle 

It is important to recognize the close connection between controllability and observ-
ability via one fundamental principle of control theory: the duality principle.  This  
principle highlights the complementarity of controllability and observability and 
illustrates how the ability to control a system (controllability) corresponds to the 
ability to fully distinguish its internal dynamics from its output (observability). Here, 
we will look at the duality principle and its implications for systems analysis and
design.
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Definition 14.93 (Dual System)  The  dual system of linear . (A(t), B(t),C(t), D(t))
is the linear system .(A�(t),C�(t), B�(t), D�(t)). The dimension of the internal 
state is the same, but the control inputs/measurement outputs are switched. 

Theorem 14.37 LTI .(A, B) is controllable (stabilizable) iff.(A�, B�) is observable 
(detectable). 

This can be proven by seeing .C(A, B) = O(A�, B�). Moreover: . Im C(A, B) =
kerO(A�, B�)⊥. Let us now finish our discussion on Kalman decomposition from 
the previous lecture. 

1. So far: by choosing .x̃ � Pcx(t), where .Pc yields an equivalent system 

. Ã � Pc AP
−1
c =

[
Ãc Ã12

0 ÃC̄

]
, B̃ � PcB =

[
B̃C

0

]
, C̃ � CP−1

c = [
C̃C C̃C̄

]
,

(14.1) 
where .( ÃC , B̃C) form the controllable subspace (of dimension . r ) and subspace 
.( ÃC̄ , 0) is not affected at all by input . u. 

2. We can alternatively choose .x̃(t) = P0x(t), where .P0 such that 

. Ã � P0AP
−1
0 =

[
Ã0 0
Ã21 ÃŌ

]
, B̃ � P0B =

[
B̃O

B̃Ō

]
, C̃ � CP−1

O = [
C̃O 0

]
,

(14.2) 
where .( ÃO , C̃O) form the observable subspace. 

To construct the controllable and unobservable subspaces, we will use the concept 
of invariant subspaces (see Definition 14.91). Consider .Im B � {Bu|u ∈ R

m} and 
.kerC � {x ∈ R

n|Cx = 0} and define 

.VC � Im B + A Im B + · · · + An−1 Im B︸ ︷︷ ︸
reachable subspace

, VŌ �
n−1⋂
i=0

kerC ∗ Ai

︸ ︷︷ ︸
unobservable subspace

(14.3) 

Lemma 14.11 .AVC ⊆ AVC and .AVŌ ⊆ VŌ (.VC and .VŌ are both .A-invariant) 

Proof We will progress through the following steps. 

1. Any vector .v ∈ VC can be expressed as . v = Bu0 + ABu1 + · · · + An−1Bun−1

for some .ui ∈ R
m . 

. 

=⇒ Av = ABu0 + A2Bu1 + · · · + AnBun−1

= Bũ0 + ABũ1 + · · · + An−1Bũn−1 by Cayley-Hamilton theorem

∈ VC

(14.4) 
Note by using the Cayley-Hamilton theorem, .ũi ∈ R

m , which is expressed in 
terms of .ui ∈ R

m and the coefficients of .XA(λ).
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2. Any vector.v ∈ VŌ satisfies.CAiv = 0∀i = 0, 1, . . . , n − 1..=⇒.Av also satisfies 
.CAi (Av) = 0 ∀i = 0, 1, . . . , n − 2. 
When.i = n − 1, use Cayley-Hamilton theorem to show it is still equal to. 0. Thus, 
.Av ∈ VŌ . �

This tells us both the reachable subspace and unobservable subspace are.A-invariant. 

Lemma 14.12 The following relationships hold: 

. A(VC ∩ VŌ), A(VC + VŌ) ⊆ VC + VŌ

Decompose the state as: 
. R

n = V1 ⊕ V2 ⊕ V3 ⊕ V4,

where .V1 � VC ∩ VŌ and .V2,V3 satisfy 

1. .V2 ⊕ V1 = VC , 
2. .V3 ⊕ V1 = VŌ , 
3. .V4 completes the basis. 

Note that in order for the dimensions to match, we require 

. ni � dim Vi (i.e.,
4∑

i=1

ni = n)

Create transformation .P−1 � [P1 P2 P3 P4] ∈ R
n×n, Pi ∈ R

n×ni and let .x̃ = Px. 
Then 

.. Ã =

⎡
⎢⎢⎣
ACŌ A12 A13 A14

0 ACO 0 A24

0 0 AC̄ Ō A34

0 0 0 AC̄O

⎤
⎥⎥⎦ , B̃ =

⎡
⎢⎢⎣
BCŌ

BCO

0
0

⎤
⎥⎥⎦ , C̃ = [

0 CCO 0 CC̄O

]
(14.5) 

We have essentially decomposed a general LTI system.(A, B,C) into a form which 
readily gives us the controllable and observable parts: 

• Subsystem.(ACO , BCO ,CCO) is both controllable and observable 

• Subsystem.

([
ACŌ A12

0 ACO

]
,

[
BCŌ
BCO

]
,
[
0 CCO

])
is controllable 

• Subsystem.

([
ACO A24

0 AC̄O

]
,

[
BCO

0

]
,
[
CCO CC̄O

])
is observable 

You can also interpret the transformation . P: 

.P−1 � [P1 P2 P3 P4] ≡ [
PCŌ PCO PC̄ Ō PC̄O

]
(14.6)
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• .PCŌ columns from basis for states that are both reachable and observable 
• .PCO chosen so that columns .

[
PCŌ PCO

]
form basis for reachable subspace 

• .PC̄ Ō chosen so that columns of.
[
PCŌ PC̄ Ō

]
form basis for unobservable subspace 

• .PC̄O chosen to make .
[
PCŌ PCO PC̄ Ō PC̄O

]
invertible 

Remark 14.22 Some submatrix dimensions may be zero! In fact, for systems that 
are both controllable and observable, .P−1 = PCO . 

14.3 Controllability and Observability Properties 
in Realizations 

How do controllability and observability properties appear in input-output descrip-
tions of LTI systems? Recall a realization of proper, rational .H(s) is a collection of 
matrices .{A, B,C, D} such that .H(s) = C(s I − A)−1B + D. 

Definition 14.94 (Order of Transfer Function)  The  order of a transfer function. H(s)
is the highest exponent of .H(s). For proper and rational .H(s) = N (s)

D(s) , the order is 
the degree of the denominator polynomial. 

Example 14.27 Consider the following SISO example: 

. 
...
y (t) + 6ÿ(t) + 11ẏ(t) + 6y(t) = u̇(t) + 3u(t)

. =⇒ y(t) = s + 3

(s + 1)(s + 2)(s + 3)
= 1

(s + 1)(s + 2)

There is a pole-zero cancellation at .s = −3. . �

Theorem 14.38 Let .H(s) be an input-output transfer function description of a sys-
tem. 

• If there are no pole-zero cancellations in.H(s), then the system is both controllable 
and observable. 

• If there is a pole-zero cancellation in.H(s), then the system is either uncontrollable, 
unobservable, or both. 

Example 14.28 Suppose we are given that the CCF of a LTI system is 

.A =
⎡
⎣−6 −11 −6

1 0 0
0 1 0

⎤
⎦ , B =

⎡
⎣1
0
0

⎤
⎦ , C = [

0 1 3
]
, D = [

0
]
.
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The controllability matrix .C(A, B) is given by: 

. C(A, B) = [
B AB A2B

] =
⎡
⎣1 −6 25
0 1 −6
0 0 1

⎤
⎦

Hence .rank C = 3, thus the system is controllable. 
The observability matrix .O(A,C) is given by: 

. O(A,C) =
⎡
⎣ C
CA
CA2

⎤
⎦ =

⎡
⎣ 0 1 3

1 3 0
−3 −11 −6

⎤
⎦ ∼

⎡
⎣1 0 −9
0 1 3
0 0 0

⎤
⎦

Hence .rank O < 3, thus the system is unobservable. 
Now let’s try the CCF of the reduced order version .Ĥ(s)= 1

(s+1)(s+2) , and define 
the matrices for the reduced order state-space representation: 

. Â =
[−2 −3
1 0

]
, B̂ =

[
1
0

]
, Ĉ = [

0 1
]
, D̂ = D

Then the controllability and observability matrices for .( Â, B̂, Ĉ, D̂) are: 

. C( Â, B̂) =
[
1 −2
0 1

]
, O( Â, Ĉ) =

[
0 1
1 0

]

Both are full rank, which implies the reduced order system is controllable and observ-
able. . �

14.4 Minimal Realizations 

We are now ready to define minimal realizations, and investigate its relationship with 
the Kalman decomposition. 

Definition 14.95 (Minimal Realization) A realization of .H(s) is minimal if there 
is no other realization of .H(s) of a smaller order. Thus, minimal realizations don’t 
have pole-zero cancellations. 

Remark 14.23 For proper rational .H(s) = N (s)
D(s) , this means the polynomials . N (s)

and .D(s) are coprime. Recall that integers .a, b ∈ Z are coprime if their greatest 
common divisor (GCD) is 1. In proper rational transfer functions .H(s) = N (s)

D(s) ,  if  

there exist polynomials.Ñ (s), D̃(s) such that. N (s)
D(s) = Ñ (s)

D̃(s)
with.deg D̃(s) < deg D(s), 

then .N (s) and .D(s) are not coprime. Later, in Chap. 17, we’ll come back to the 
concept of coprime factorization.
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The Kalman decomposition especially gives us the realization: 

. H(z) = C̃(s I − Ã)−1 B̃ + D̃ = Cco(s I − Aco)
−1Bco + Dco

where .( Ã, B̃, C̃, D̃) is the Kalman decomposed version of the system. (A, B,C, D)

and .(Aco, Bco,Cco, Dco) is the controllable and observable part. This can be shown 
by using the transformation .P which created (14.5) and the zero-state equivalence 
property 

. D = D̃ and CAk B = C̃ Ãk B̃ ∀k ≥ 0

Theorem 14.39 (Kalman 1965) Realization .(A, B,C, D) of proper, rational trans-
fer matrix .H(s) is minimal if and only if it is both controllable and observable. 

The intuition here is that if .(A, B) not controllable, the order can be reduced. 
Similarly, if .(A,C) not observable, the order can be reduced. 

Instead of proving this theorem directly, let’s treat the two cases—controllability 
and observability—separately. We invoke the same notation used in Sect. 14.2. 

Controllability from a Minimal Realization. If we choose.x̃(t) = Pcx(t)where. Pc
yields equivalent system, we have: 

. Ã = Pc AP
−1
c , B̃ = PcB, C̃ = CP−1

c

Then note that: 

. C̃(s I − Ã)−1 B̃ = [
C̃c C̃c̄

] [
s Ir − Ãc Ã12

0 s In−r − Ãc̄

]−1 [
B̃c

0

]

Inverse of .2 × 2 block triangular matrix is 

. 

[
A B
0 D

]−1

=
[
A−1 B∗
0 D−1

]
where B∗ = −A−1BD−1

and we have: 

. C̃(s I − Ã)−1 B̃ = [
C̃c C̃c̄

] [
(s Ir − Ãc)−1 ∗

0 (s In−r − Ãc̄)
−1

] [
B̃c
0

]
= C̃c(s I − Ãc)

−1 B̃c

System order becomes reduced from. n to rank .C(A, B). 

Observability from a Minimal Realization. Similarly, if we choose. x̃(t) = Pox(t)
where .Po yields equivalent system, then
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. Ã = PoAP
−1
o =

[
Ão 0
Ã21 Ãō

]
, B̃ = PoB =

[
Bo

B̃ō

]
, C̃ = CP−1

o = [
C̃o 0

]

and 

. C̃(s I − Ã)−1 B̃ = C̃o(s I − Ão)
−1 B̃o

System order becomes reduced from. n to rank .O(A,C). 
Essentially, by combining the two pieces above, Theorem 14.39 suggests the 

combined joint reduction (a realization that is both controllable and observable) is 
possible. 

Lemma 14.13 The reachable subspace .Im(C(A, B)) is the smallest .A-invariant 
subspace containing . B, the column span of . B. 

Proof Suppose .∃ S which is another .A-invariant subspace such that: 

. B ⊆ S ⊆ Im(C(A, B))

Apply . A repeatedly across the entire relation: 

. AB ⊆ AS ⊆ S ⊆ Im(C(A, B))
A2B ⊆ AS ⊆ S ⊆ Im(C(A, B))

...

An−1B ⊆ AS ⊆ S ⊆ Im(C(A, B))

But .Im(C(A, B)) = {B, AB, . . . , An−1B} ⊆ S, hence .S = Im(C(A, B)). . �

Lemma 14.14 Unobservable subspace .Ker(O(A,C)) is the largest .A-invariant 
subspace contained in the kernel of . C. 

An .A-invariant subspace contained in the .Ker(C) follows similarly to above. The 
overall relationships between these null and range spaces is shown in Fig. 14.1. 

Fig. 14.1 The relationships among the reachable and unobservable subspaces, and the null and 
range spaces of .C and .B respectively. This visualizes the results we obtained in Lemmas 14.13 
and 14.14
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14.5 Gilbert Realization 

A common type of minimal realization is the Gilbert realization. It’s used only when 
.H(s) has distinct poles. (basically looks like MCF). 

The transfer function .H(s) is decomposed via partial fraction decomposition: 

. H(s) = N1

s − λ1
+ N2

s − λ2
+ · · · + Nr

s − λr

where .Ni ∈ R
k×m . 

Total size of realization is.
∑r

i=1 rank Ni .  Fin  d.Bi ∈ R
li×m ,.Ci ∈ R

k×li s.t.. Ci Bi =
Ni for .i = 1, . . . , r and .li = rank Ni . The form of .A, B,C will be: 

.A =
⎡
⎢⎣

λ1 Il1 0
. . .

0 λr Ilr

⎤
⎥⎦ , B =

⎡
⎢⎣
B1
...

Br

⎤
⎥⎦ , C = [C1 . . . Cr ]



Chapter 15 
Controller and Observer Design 

15.1 Pole-Placement 

In this section, let’s consider the CT LTI system with system matrices.(A, B,C) and 
initial condition .x0 ∈R

n . That is: 

. H �

⎧
⎪⎨

⎪⎩

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)

x(0) = x0.

We saw, in Chap. 3, that the explicit solution to this system can be expressed using 
the STM: 

. x(t) = eAtx0 +
∫ t

0
eA(t−s)Bu(s)ds

In particular, for open-loop system (with .u≡ 0), the state .x(t)= eAtx0 will decay to 
zero asymptotically (i.e., exponentially, since they are equivalent for linear systems, 
as we saw in II) for any .x0 if the eigenvalues of . A all have negative real part. In the 
case where not all eigenvalues of .A have negative real part (i.e., the system is not 
open-loop stable), the control input. u is valuable to turn the system into a stable one. 
Starting from this chapter, we will see several approaches to control design. 

15.1.1 State-Feedback Control 

One of the simplest forms of control law that can be used to close the loop (i.e., 
obtain a closed-loop response) is the following constant-gain state-feedback law 
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Fig. 15.1 A feedback configuration, where.H describes the open-loop system and. K describes the 
controller (i.e., .u=K{y}). In the case of constant-gain state-feedback, the .K is a constant matrix 
multiplication operation (i.e., .K{x} = Kx). Due to the loop-like structure of the system, it is also 
easy to see why the entire configuration is called “closed-loop” 

.u(t) = −Kx(t), (15.1) 

where .K ∈R
m×n is a constant gain matrix. We call this state feedback because the 

control input . u is directly proportional to the state . x, and is being fed back into the 
LTI system. State-feedback is usually implemented when the full state is available 
for use (i.e., .C = I and .y= x). 

Figure 15.1 modifies the general feedback interconnection from Chap. 1 into a 
version with only the components and signals that are most relevant to our discussion 
so far. The closed-loop system dynamics are obtained by substituting (15.1) into the 
open-loop dynamics. 

. ẋ(t) = (A − BK )x(t), y(t) = x(t), x(0) = x0

which is a fully autonomous system. Its system matrices are then given by . (A −
BK , 0, I ). Furthermore, the solution trajectory of the system is described by 

.x(t) = e(A−BK )tx0 (15.2) 

Similar to what we saw before,.x(t)will decay asymptotically/exponentially to. 0 if 
the eigenvalues of.A − BK have all negative real parts. This, of course, is dependent 
on the choice of. K . Thus, by appropriately designing the gain.K in the state-feedback 
law, we can convert a potentially unstable open-loop system. A into a stable closed-
loop system .A − BK . This procedure is called the eigenvalue placement problem. 
As we’ve seen in Chap. 10, the eigenvalues of a system also correspond to its poles, 
and so the eigenvalue placement problem is often interchangeably called the pole 
placement problem. 

Sometimes, even if .A is stable, it may be desired to move its poles to different 
locations on the complex plane. This may be to achieve other properties (e.g., faster 
decay rate to the steady-state value). We see one such example as follows.
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Example 15.29 (Pole/Eigenvalue Placement) Suppose we are given 2D LTI system 
with scalar control input, 

. ẋ(t) =
[−15 8
−15 7

]

x(t) +
[
1
1

]

u(t).

Note that the eigenvalues of the. Amatrix,.−5 and.−3, are already stable in open-loop. 
Let’s find a suitable state-feedback gain matrix .K which replaces the closed-loop 
eigenvalues at .−10 ± j . 

Since . u is one dimensional and . x is 2D, we have .K ∈R
1×2. Let’s specifically 

denote .K = [k1, k2]. Then, the characteristic polynomial of the closed-loop system 
matrix is computed as .det (λI − (A − BK )) = λ2 + (k1 + k2 + 8)λ + (k1 + 15). 

Now, we want this to equal .(λ + 10 + j) (λ + 10 − j). Comparing the coeffi-
cients, we have.k1 + k2 + 8 = 20 and.k1 + 15 = 101. Therefore, we have the unique 
solution .k1 = 86, .k2 = −74, i.e., .K = [86, − 74]. 

Substituting it back to obtain the closed-loop system .ẋ(t)= (A − BK )x(t), you 
can indeed verify that the eigenvalues are at .−10 ± j . �

Remark 15.24 Here, we used the feedback control law .u= − Kx. Actually, the 
sign convention of the state feedback law (i.e.,.u(t)= − Kx(t) versus.u(t)= Kx(t)) 
varies by reference. In the case the feedback law is given by .u(t)= Kx(t),  the  
closed-loop system matrix is given b y .A + BK instead of .A − BK . Regardless of 
the convention, the theory behind pole or eigenvalue placement remains the same, 
and in future subsections, we will often use.u= ± Kx interchangeably. But it is still 
important to be careful of which convention you are using in your calculations, and 
to make sure to stick to it. 

15.1.2 Ackermann’s Formula 

Ackermann’s formula gives us a more principled approach for performing pole-
placement, especially when the control input is scalar-valued (.u(t) ∈ R for all . t). 
Assume .H is controllable, with controllability matrix .C(A, B). Choose . u(t) =
k�x(t) where .k �

[
k1 k2 . . . kn

]
so that .Acl = A + Bk�. Write its characteristic 

polynomial as follows: 

. χAcl(λ) � λn + cn−1λ
n−1 + · · · + clλ + c0

=⇒ χAcl(Acl) = An
cl + cn−1A

n−1
cl + · · · + c1Acl + c0 I = 0 by Cayley-Hamilton

(15.3) 

Compute powers of .Acl in terms of .A, B, k:
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. 

A2
cl = (A + Bk�)2 = A2 + ABk� + Bk�A + (Bk�)2

︸ ︷︷ ︸
=Bk�Acl

A3
cl = (A2 + ABk� + Bk�Acl)(A + Bk�)

= A3 + A2Bk� + ABk�A + A(Bk�)2
︸ ︷︷ ︸

=ABk�Acl

+Bk�A2
cl

...

An
cl = An + An−1Bk� + An−2Bk�Acl + · · · + ABk�An−2

cl + Bk�An−1
cl

Substituting into (15.3) and simplifying yields 

. 

χAcl(Ac1) = χAcl(A)

+ (An−1Bk� + An−2Bk�Acl + · · · + ABk�An−2
cl + Bk�An−1

cl )

+ · · ·
+C2(ABk� + Bk�Acl) + C1Bk� � 0

. =⇒ χAcl(A) + [
B AB . . . An−1B

]

︸ ︷︷ ︸
C(A,B)

⎡

⎢
⎢
⎢
⎣

∗
∗
...

k�

⎤

⎥
⎥
⎥
⎦

= 0

. ∴

⎡

⎢
⎢
⎢
⎣

∗
∗
...

k�

⎤

⎥
⎥
⎥
⎦

= −C(A, B)−1χAcl(A).

where the terms that are irrelevant to our calculations are marked by . ∗. 
To solve for .k�, multiply .

[
0 0 . . . 0 1

]
to both sides: 

.k� = − [
0 0 . . . 0 1

]
C(A, B)−1χAcl(A). (15.4) 

While we presented Ackermann’s formula for scalar . u only, a similar argument 
can be made for vector-valued .u(t)∈R

m , .m ≥ 2. 

15.2 General Feedback Interconnection System 

More generic feedback control systems consist of system .H being feedback-
interconnected with another system . K; we’ve actually seen this before in I (and 
also Fig. 15.1). In the previous section, we assumed.K to be a constant-gain system, 
in which .K{x} simply multiplies a constant gain .K to the input signal . x. More gen-
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Fig. 15.2 A more general 
configuration of Fig. 15.1 
with output-feedback (note 
the. y instead of. x), and 
external disturbances.d1 and 
. d2

erally, the controller .K could have its own system dynamics with its own internal 
state .ξ(t)): 

.K �
{

ξ̇(t) = Akξ(t) + Bk y(t)
u(t) = Ckξ(t) + Dk y(t)

(Ak, Bk,Ck) stabilizable, detectable (15.5) 

In fact, note that the constant-gain state-feedback controller .u = −Kx(t) is equiv-
alent to (15.5) when .Ak = 0, Bk = 0,Ck = 0, Dk = −K with .y(t)= x(t) (i.e., 
.C = I ). A more general feedback interconnection with. K of the form (15.5)  is  shown  
in Fig. 15.2, including some disturbances. 

In II, we saw that internal stability of a system is concerned with the stability of 
its internal state.x(t). And for uncontrolled systems.ẋ(t)= Ax(t) or.ẋ(t)= A(t)x(t), 
we characterized internal stability using Lyapunov, asymptotic, exponential, uniform, 
etc. stability notions. One question is: how should we characterize the stability of 
more general feedback interconnected systems like Fig. 15.2? 

One way (loosely-speaking) is to say that .(H,K) is internally stable if for all 
initial states .x0, ξ0, and all bounded disturbance signals .d1 and . d2, all states and 
other signals (i.e. .x, ξ, y,u) remain bounded . ∀t . We will characterize the stability 
of general feedback interconnected systems in more detail in the following IV. For 
the rest of this chapter, however, we will focus on how the observability plays a role 
in the design of feedback control laws, since observer-based control design can be 
viewed as one type of system which abides by the configuration of Fig. 15.2. 

15.3 State Observers (State Estimators) 

In many practical control problems, we cannot directly observe the true internal state 
.x(t) of a system, so a state-feedback law .u(t)=K{x}(t) cannot be implemented. 
We thus require an additional component to develop an estimate .x̂(t) of the internal 
state .x(t) given inputs .{u(s) : s ∈ [0, t]} and measurements .{y(s) : s ∈ [0, t]} (which 
we can observe). This additional component is called a state observer. We especially
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wish to design an observer such that asymptotic state observation is satisfied i.e.: 

. lim
t→∞ ‖x(t) − x̂(t)‖ = 0. (15.6) 

There are two main types of state observers in the literature which satisfy (15.6): 

1. Full-order Observer: observes all state variables in the system, both variables 
available for direct measurement (via .y = Cx) and variables which are hidden. 

2. Reduced-order Observer: observes only state variables which are hidden. 

Here, hidden state variables are components .xi of the state . x that cannot be directly 
measured using the measurement equation .y = Cx. 

15.3.1 Full-Order Observers 

It is simpler to design a full-order observer rather than a reduced-order one, and so 
we will begin our discussion from here. The typical approach to satisfy (15.6)  is  to  
design another linear dynamics with internal state . x̂: 

. ˙̂x(t) = Ax̂(t) + Bu(t)
︸ ︷︷ ︸
linear dynamics term

+ L(y(t) − ŷ(t))
︸ ︷︷ ︸

correction term

, ŷ(t) = C x̂(t) (15.7) 

The observer (15.7) is composed of two main parts: 

• the linear dynamics term propagates the observer’s internal state. x̂ forward in time. 
• the correction term accounts for possible measurement errors by comparing the 
true measurement . y against the estimated measurement . ŷ, which is created by 
substituting the state estimate . x̂ into the measurement equation .y=Cx. 

The observer gain .L ∈R
n×p is another feedback gain matrix to be designed by the 

user. Its role is similar to the gain .K we’ve seen in pole placement problems from 
Sect. 15.1. 

Define.e(t)� x(t) − x̂(t) to be the state error. Then the observer’s error dynamics 
is given by: 

. ė(t) = ẋ(t) − ˙̂x(t)
= Ax(t) + Bu(t) − Ax̂(t) − Bu(t) + L(Cx(t) − C x̂(t))

= (A − LC)e(t) (15.8) 

This is precisely the design for a full-order observer. A block diagram representation 
of the observer, together with the plant, is shown in Fig. 15.3. 

Remark 15.25 Note that this structure resembles the general feedback interconnec-
tion shown in Fig. 15.2. Here, .H is the original LTI system with matrices.(A, B,C),
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Fig. 15.3 The full-order observer, attached to the plant in block-diagram form 

while .K is precisely the observer we designed, (15.7), with internal state .ξ ≡ x̂ and 
system matrices .(A − LC, B,C). 

Lemma 15.15 An LTI observer exists if and only if .(A,C) is detectable. 

We won’t prove this lemma, but the intuition is simple. Note that the LTI version 
of the observer error dynamics (15.8)  is  :

. ė(t) = (A − LC)e(t),

which is recognized from the definition of detectability (see Definition 13.89). 
Choosing the constant gain .L ∈R

n×p to place the eigenvalues of .A − LC on 
the open left-half plane allows for asymptotic stability of the error dynamics. This 
is analogous to the pole placement problem we saw in Sect. 15.1, where we chose 
controller gain .K ∈ R

n×m to ensure that .A − BK is Hurwitz. In fact, to design the 
gain for the observer, we can use the duality principle (see Sect. 14.2) and apply the 
same pole placement technique on the following dual system: 

. 

⎧
⎪⎨

⎪⎩

˙̃x(t) = A�x̃(t) + C�ũ(t)

ỹ(t) = B�x̃(t)

ũ(t) � −L x̃(t)

where all the system matrices are transposed due to the duality principle. 

Remark 15.26 In the case where the measurement is scalar (.y(t)∈R), Ackermann’s 
formula (Sect. 15.1) can also be performed to design the poles for an observer, where 
the gain . L is obtained from 

.L� = − [
0 0 . . . 0 1

]
O(A,C)−�χAcl(A

�). (15.9) 

Note the resemblance between (15.4) and (15.9).
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15.3.2 Reduced-Order Observers 

Now, suppose that only the first.k< n components of the state.x(t) can be measured. 
How do we design an observer in this case? 

First, partition .x(t)= [x�
m , x

�
m̄ ]�, where subscript .m denotes the components 

which can be measured, and the complement .m̄ denotes the components which are 
hidden. 

. 

[
xm(t)
xm̄(t)

]

=
[
A11 A12

A21 A22

] [
xm(t)
xm̄(t)

]

+
[
B1

B2

]

u(t), y(t) = [
Cm Cm̄

]
[
xm(t)
xm̄(t)

]

Since . k components can be measured, .C ∈ R
k×n is full row rank. We arrange the . C

matrix to be in the form.[Cm Cm̄] so that.C−1
m ∈ R

k×k exists. Then we can immediately 
compute 

. xm(t) = C−1
m y(t) =⇒ x̂m(t) = xm(t)

Remark 15.27 If the measured states are not ordered, we can apply equivalence 
transformation to the state equation. i.e. we can choose equivalence transformation 
.P such that .C̃ = CP = [

I 0
]
. 

In order to observe the hidden (unmeasured) states .xm̄ , consider designing a . z(t)
such that .x̂m̄(t) = Ly(t) + z(t). Then we can rewrite .z(t) as follows: 

. z = x̂m̄ − Ly = x̂m̄ − LCmxm

Then, .ż(t) is given as follows: 

. ż = ˙̂xm̄ − LCm ẋm

= A21xm + A22x̂m̄ + B2u − LCm A11xm − LCm A12x̂m̄ − LCm B1u

= (A22 − LCm A12)x̂m̄ + (A21 − LCm A11)xm + (B2 − LCm B1)u

= (A22 − LCm A12)(Ly + z) + (A21 − LCm A11)C
−1
m y + (B2 − LCm B1)u

= (A22 − LCm A12)z +
[
(A21 − LCm A11)C

−1
m + (A22 − LCm A12)L

]
y + (B2 − LCm B1)u

= Âz + Gy + Hu

where 

. Â � A22 − LCm A12, G � (A21 − LCm A11)C
−1
m + ÂL , H � B2 − LCmB1

We need to choose . Â,G, H, L to ensure (15.6) is satisfied. 

1. We already have .em(t) = xm(t) − x̂m(t) = 0. 
2. If we choose .em̄(t) = xm̄(t) − x̂m̄(t), then we can get .ėm̄(t) = Âem̄ because
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. ėm̄ = ẋm̄ − ˙̂xm̄
= (A21xm + A22xm̄ + B2u) − (ż + LCm ẋm)

= (A21xm + A22x̄m + B2u) − Âz − Gy − Hu − LCm(A11xm + A12xm̄ + B1u)

= (A21 − LCm A11)xm + (A22 − LCm A12)
︸ ︷︷ ︸

Â

xm̄ + (B2 − LCm B1)
︸ ︷︷ ︸

H

u − Hu − Âz

− (A21 − LCm A11)C
−1
m y

︸ ︷︷ ︸
xm

− (A22 − LCm A12)
︸ ︷︷ ︸

Â

Ly

= Âxm̄ − Âz − ÂLy = Âxm̄ − Â(x̂m̄ − Ly) − ÂLy

= Â(xm̄ − x̂m̄) = Âem̄ .

Thus, to create this reduced-order observer, we use pole placement to find. L that 
makes . Â Hurwitz. 

Note that both full-order observers and reduced-order observers can be constructed 
for systems even if not all state components.xi are measured. Which one you choose 
to implement in order to estimate your state is dependent upon the application you 
are using it for. Although the reduced-order observer might require more complex 
design techniques, it is more efficient than full-order observers as it estimates only 
hidden states, reducing computation load. 

15.4 Observer-Based Controllers 

As before, a state-feedback control law.u(t)= ± Kx(t) relies on knowing.x(t) pre-
cisely, but in many practical scenarios, this might not be the case. This motivates the 
construction of observer-based controllers, where observers (discussed in the previ-
ous section) are first used to construct. x̂, then used in the state-feedback control law. 
We are effectively combining everything together to create a observer and controller 
architecture for general linear systems. 

Theorem 15.40 Given LTI system 

. H �

⎧
⎪⎨

⎪⎩

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

x(0) = x0

,

the controller 

.K �
{ ˙̂x(t) = (A + LC + BK )x̂(t) − Ly(t)

u(t) = K x̂(t)
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(with .x̂ = ξ as its internal state) yields a closed-loop system 

. 

[
ẋ
˙̂x
]

= Acl

[
x
x̂

]

where .Acl, the closed-loop system matrix, has eigenvalues the same as .A + BK and 
.A + LC. 

Proof By substituting in the given equations, our closed-loop system is 

. 

[
ẋ
˙̂x
]

=
[

A BK
−LC A + BK + LC

]

︸ ︷︷ ︸

�Acl

[
x
x̂

]

Note that (as per Remark 15.24), we are now using the control law.u= Kx instead of 
with a. − sign, which is why our closed-loop matrix is.A+ BK rather than.A− BK . 

Use transformation .P =
[
I −I
0 I

]

to get equivalent system: 

. PAclP
−1 =

[
A + LC 0
−LC A + BK

]

which is clearly a block-diagonal matrix. Because the eigenvalues of a block-diagonal 
matrix are the combined eigenvalues of each of the matrices along the block-diagonal, 
we have that the eigenvalues of .Acl are eigenvalues of .A + LC and .A + BK . �

Remark 15.28 There are further important implications of Theorem 15.40. First, 
it tells us that controllability and observability of (.A, B,C) suffice to be able to 
place closed-loop eigenvalues anywhere. Second, stabilizability and detectability of 
(.A, B,C) suffice to be able to obtain an internally stabilizing controller, which we 
will discuss more about in Chap. 17. 

Theorem 15.40 also gives us an important result in regards to choosing the poles 
for the observer and the controller. 

Proposition 15.4 (Separation Principle) The state-feedback controller and state 
observer can be designed separately. This is because the eigenvalues of . A + BK
and .A + LC are separate (i.e., they lie on independent block matrices along the 
diagonal of the closed-loop system matrix .Acl ) 

Remark 15.29 (Rules of Thumb for Designing Estimator Poles) In control systems 
design, selecting appropriate poles for observers is crucial for achieving desirable 
system dynamics. Estimator poles are typically selected to be 2 to 6 times faster than 
controller poles to ensure quicker decay of estimation errors and maintain control 
dynamics dominance in the system response. However, making the observer respond
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faster, which means more noise from sensors can interfere with the actuators. So, if 
there is a lot of sensor noise, it may be better to set the observer poles to be slower than 
twice the speed of the controller poles. This slows down the system’s response but 
improves its ability to smooth out noise. In either case, the overall system behavior 
is more influenced by the observer than the controller. 

Additional references on controllability, observability, and reachability are [ 1, 2]. 
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Chapter 16 
Problems and Exercises 

System Realizations 

Problem 1. Represent the following input-output transfer functions in (1) control-
lable canonical form, (2) observable canonical form, and (3) modal canonical form. 
You are welcome to use MATLAB (or some other program) to solve any linear matrix 
equations. 

. (a) H(s) = s4 + 4s3 + 6s2 + 8s + 10

(s + 1)2(s + 2)2(s + 3)(s + 4)

(b) H(s) =

⎡
⎢⎢⎢⎣

s3 + 3s2 + 3s + 1

s3 + 6s2 + 11s + 6

s − 1

s3 + 6s2 + 11s + 6
s + 4

s3 + 6s2 + 11s + 6

s2 + 3s + 2

s3 + 6s2 + 11s + 6

⎤
⎥⎥⎥⎦

Problem 2: Modal Canonical Form. Recall we discussed modal canonical form 
(MCF) for distinct poles and for nonsimple, repeating poles. In this problem, we will 
consider what happens in other cases. 

(a) Consider a transfer function which, after partial fraction decomposition, yields 
a pair of complex conjugate poles: 

. H(s) = 2

s + (1 − j)
+ 2

s + (1 + j)
+ 3

s + 2
+ 5

s + 3

How would you represent this system in MCF? Sketch the corresponding block-
diagram of the system. 

(b) Suppose a strictly proper transfer function with denominator polynomial of 
degree. n has one simple repeating pole.λk with multiplicity. nk , .1< nk < n.  How  
would you represent this system in MCF?

Problem 3: LTV Equivalence Transformations. In this chapter, we discussed 
equivalence transformations for linear time-invariant (LTI) systems. In the analogous 
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case for linear time-varying (LTV) systems, our constant coordinate transformation 
.P ∈R

n , now becomes a time-varying matrix .P(t)∈R
n×n which is continuously-

differentiable (. C1) and nonsingular for all . t . 
We can define equivalence in a similar way for LTV systems too. Given equiva-

lence transformation .P(t)∈R
n×n which is.C1 and nonsingular for all. t , the LTV sys-

tem.{A(t), B(t),C(t), D(t)} is (algebraically) equivalent to.{ Ã(t), B̃(t), C̃(t), D̃(t)}, 
where 

. Ã(t) = (Ṗ(t) + P(t)A(t))P−1(t), B̃(t) = P(t)B(t),

C̃(t) = C(t)P−1(t), D̃(t) = D(t)

Prove that there exists an equivalence transformation.P(t) which transforms.A(t) to 
a constant matrix .A0 ∈R

n×n . 
(Hint: Consider a transformation of the form .P(t) � eA0t�−1(t), where .�(t) is a 
fundamental matrix to the LTV system.ẋ = A(t)x.) 

Minimum-Energy Input 

Problem 4. Consider the system 

. ẋ(t) =

⎡
⎢⎢⎢⎣

0 1

−1 0

⎤
⎥⎥⎥⎦ x(t) +

⎡
⎢⎢⎢⎣
1

0

⎤
⎥⎥⎥⎦ u(t)

with initial condition .x0 � (1, 0)�. 

(a) Show that this system is controllable. 
(b) Compute the minimum energy input which transfers the system from.x0 to . 0 in 

.t f timesteps. 
(c) Compute the minimum energy input .u∗(t) which transfers the system from . x0

to .x f = (2, 3)� in .t f timesteps. 
(d) For both parts (b) and (c), plot the resulting optimal trajectories for each of the 

values .t f ∈ {π, 10, 10−3}. 
(e) For both parts (b) and (c), plot .u∗(t) as a function of . t . Interpret your plot. 

Controllability, Reachability, and Observability 

Problem 5. This problem aims to derive equivalent conditions for output control-
lability of linear systems. First, the linear (LTI or LTV) system .(A(t), B(t),C(t)), 
given by 

. R
n � ẋ(t) = A(t)x(t) + B(t)u(t), x(t0) = x0, R

k � y(t) = C(t)x(t)

is called output controllable on .[t0, t f ] if for any .x0 (and corresponding .y0 � Cx0), 
there exists a .u : R≥0 → R

m which can steer .y0 towards .y f � y(t f ) = 0.
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(a) Define the “output version” of the controllability Gramian as 

. Wc,y(t0, t f ) �
∫ t f

t0

C(t f )�(t f , τ )B(τ )B�(τ )��(t f , τ )C�(t f )dτ

Prove that .(A(t), B(t),C(t)) if output controllable iff .Wc,y(t0, t f ) is nonsingu-
lar. Does your proof work if .rankC(t f )< k? 
(Hint: For the necessity proof, consider initial state . x0 = �(t0, t f )C�(t f )
(C(t f )C�(t f ))−1ỹ after defining .ỹ∈R

k to satisfy some property.) 
(b) Now let us consider specifically the LTI case.(A, B,C) with.rankC = k. Define 

a suitable controllability matrix .C to test output controllability. Prove that 
.(A, B,C) if output controllable iff .rank C = k. 

Problem 6: Cartpole Revisited. Recall, from the previous Parts II and I, the inverted 
pendulum on a cart system. You have previously derived linearized state-space mod-
els around two equilibria points .θ = 0 (pendulum down) and .θ = π (pendulum up). 
We will simplify the dynamics further, and instead use the following two lineariza-
tions for this problem. 

• Linearizing downwards (around .(x, ẋ, θ, θ̇) = (0, 0, 0, 0)) gives us 

.ẋ(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0

0 − b
M −mg

M 0

0 0 0 1

0 b
ML

(M+m)g
ML 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x(t) +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

1
M

0

− 1
ML

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

F(t) (16.1) 

• Linearizing upwards (around .(x, ẋ, θ, θ̇) = (0, 0,π, 0)) gives us 

.ẋ(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0

0 − b
M −mg

M 0

0 0 0 1

0 − b
ML − (M+m)g

ML 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x(t) +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

1
M

0

1
ML

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

F(t) (16.2)
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(a) Use MATLAB commands to convert each linearized state-space model into the 
three canonical forms (1) CCF, (2) OCF, and (3) MCF. In your implementation 
of sys, use measurement equation .y(t)= x(t). 

(b) Apply each of the 3 controllability tests (rank of the controllability matrix, PBH 
rank test, PBH eigenvector test) to each of the two linearized systems. 

Problem 7 [ 1]. Consider the LTI system with the state equation: 

. 

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ẋ1

ẋ2

ẋ3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0

0 0 1

−α3 −α2 −α1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0

0

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
u

Insert a state-feedback input .u = v − kx , where . v is the overall closed loop system 
input, where . k is a constant row vector. Show that given any polynomial . p(s) =∑3

k=0 aks
3−k with .a0 = 1, then there exists a row vector . k such that the closed-loop 

system has .p(s) as its characteristic equation. 
(This representation naturally extends to . n dimensions.) 

Problem 8. Consider a single-input system .ẋ= Ax + bu, where .u ∈R, with 
.A= diag(λ1, · · · ,λn) and the .λi not necessarily distinct. State the necessary and 
sufficient conditions for full controllability. Now, generalize this problem for the case 
that . A cannot be diagonalized, but can be converted into a Jordan form. 

Problem 9: Hankel Singular Values for Linear Systems [ 2]. Consider the control-
lability and observability Gramians .Wc, .Wo of a LTI system .(A, B,C) over some 
time period .[0, T ]. 
(a) Determine what happens to these Gramians under similarity transformations of 

the state-space .(PAP−1, PB,CP−1). 
(b) Prove that the eigenvalues of the produce.WcWo are constant under this similarity 

transform. P . 

(These eigenvalues are called the Hankel singular values of the linear operator rep-
resenting the linear system with zero initial condition.) 

Problem 10: Complete Controllability [ 1]. Given a LTI system. R, show that if. R is 
completely controllable on .[t0, t1], then . R is completely controllable on any .[t ′0, t ′1], 
where .t ′0 ≤ t0 < t1 ≤ t ′1. Show that this is no longer true when the interval .[t0, t1] is 
not a subset of .[t ′0, t ′1]. 
Problem 11: Cartpole Revisited. Consider the following problems about eigenvalue 
placement. 

(a) Given 2D LTI system
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. ẋ(t) =

⎡
⎢⎢⎢⎣

−15 8

−15 7

⎤
⎥⎥⎥⎦ x(t) +

⎡
⎢⎢⎢⎣
1

1

⎤
⎥⎥⎥⎦ u(t),

find a suitable state-feedback gain matrix.K which places the closed-loop eigen-
values at .−10 ± j . 
your calculations by hand. 

(b) Recall the inverted pendulum on a cart problem from a previous problem, and 
from II. We will apply eigenvalue placement and design .K to stabilize the pole 
around the upright pole position (.θ = π). Use the MATLAB command place 
to place the eigenvalues of the system at .(−1.1,−1.2,−1.3,−1.4).  Use  the  
linearized dynamics from (16.2) and choose parameter values .M = 3, .m = 1, 
.b = 0.1, .L = 0.5, .I = 0.6, .g = 9.81. 

(c) Use ode45 to plot the state trajectories (. x vs . t , . ẋ vs . t , . θ vs . t , and . θ̇ vs . t)  of  
the closed-loop system you designed in part b. Use the initial condition . x0 =
(1, 0,π − 0.1, 0)�. Are you able to successfully stabilize the system? 

(d) Repeat part c with initial condition .x0 = (1, 0,π/2, 0)�. What happens to the 
system? Why? 

(e) Repeat parts b and c (with original initial condition .x0 = (1, 0,π − 0.1, 0)�) 
to place the poles at .(−3.1,−3.2,−3.3,−3.4). How would you compare the 
behavior of the system against part c? 

You may notice there are infinitely many ways to place the poles of your system. 
But how do you make the best choice? The linear quadratic regulator (LQR) is a 
common method for choosing a set of eigenvalues which optimizes a specific linear 
quadratic cost, which is a function of the state and control input. We will talk more 
about LQR in the following Part IV. 

Problem 12: Pole-Placement [ 2]. Consider the following completely controllable 
and observable MIMO system with two inputs and two outputs: 

. ẋ = ax +
[
b1 b2

]
⎡
⎢⎢⎢⎣
u1

u2

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
y1

y2

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
c1

c2

⎤
⎥⎥⎥⎦ x

Define .αi to be the number of times you have to differentiate the . i th output before 
one of the two inputs appear on the right side. Show that we have
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. 

⎡
⎢⎢⎢⎣
yα1
1

yα2
2

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
aα1c1

aα2c2

⎤
⎥⎥⎥⎦ x +

⎡
⎢⎢⎢⎣
c1aα1−1b1 c1aα1−1b2

c2aα2−1b1 c2aα2−1b2

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
�M

⎡
⎢⎢⎢⎣
u1

u2

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
�u

Assume that .M is nonsingular and show that the control law 

. u = M−1

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣
c1aα1x

c2aα2x

⎤
⎥⎥⎥⎦ + v

⎞
⎟⎟⎟⎠

places .α1 + α2 poles of the closed-loop system at the origin, and the remaining at 
the zeros of the system.C(s I − A)−1B. 

Problem 13: Internal Model Principle [ 2]. Consider the completely-controllable 
and observable SISO system 

. ẋ = Ax + bu + w

y = cx

Here, .w is an unknown, constant disturbance. 

(a) A choice of state-feedback controller.u = − k�x will stabilize the system, but it 
will not yield.y → 0 as.t → ∞. For this reason, we can add a new state variable 
. q such that 

. q̇ = y

Give conditions on the transfer function of the open-loop system . c(s I − A)−1

so as to be able to stabilize the augmented system using the new state feedback 
law 

. u = −k�x − f q

Does this guarantee that .y(t) → 0 as .t → ∞? Why or why not? 
(b) Generalize this example to a disturbance of the form .weλt , where . λ is known 

but .w is not, by defining 

. q̇ = λq + y

then proceeding as described in part (a). What conditions do you need on the 
transfer function .c(s I − A)−1 in this case? 

(c) The processes described in parts (a) and (b), where as build a replica of the 
system generating the disturbance inside the system, is called the internal model
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principle. Generalize this process to disturbances of the form 

. 

b∑
i=1

wi e
λi t

Problem 14. While proving the equivalence of statements about controllability, we 
showed that complete controllability on .[t0, t1] of a linear system is equivalent to 
positive definiteness of the controllability Gramian. Prove the analogous version for 
observability: complete observability on .[t0, t1] of a linear system is equivalent to 
positive (semi)definiteness of the observability Gramian. 

Problem 15: Strong Observability [ 1]. Consider the zero-input response .y(t) of 
.ẋ(t) = A(t)x(t) + B(t)u(t) and .y(t) = C(t)x(t). 

(a) Show that 

. I0 �
∫ t1

t0

‖y(t)‖ dt = x∗
0Wo(t0, t1)x0

(b) Determine the states of the unit sphere that are the most observable (i.e., with 
the longest . I0). 

Minimal Realizations, Kalman Decomposition 

Problem 16: Balanced Realizations. Write the SVDs of .Wc and .Wo as . Uc�
2
cU

�
c

and .Uo�
2
oU

�
o . 

(a) Define.H = �oU�
o Uc�

2
cU

�
c Uo�o. Show that .H is positive-definite if the linear 

system is completely controllable and completely observable. 
(b) Let the SVD of .H be given by .Uh�

2
hU

�
h . Verify that the entries of .�h are the 

square roots of the eigenvalues of .WcWo. 
(c) Derive the controllability and the observability Gramians for the transformed 

system with .T =Uo�
−1
o Uh�

1/2
h . What can you conclude from your results? 

Problem 17: Zeros of a Multivariable Linear System [ 2]. Consider a square linear 
system (i.e., number of inputs is the same as the number of outputs, .ni = no) which 
is completely controllable and observable. Eigenvalue . λ is said to be a zero of the 
system if there exist.u0 ∈R

ni and.x0 ∈R
n such that the input.u(t)=u0eλt with initial 

condition .x0 produces zero output. Further, assume that .rank(B)= rank(C)= ni . 
Show that 

. det

⎡
⎢⎢⎢⎣

λI − A −B

C D

⎤
⎥⎥⎥⎦ = 0

Set .D = 0 and define .F ∈R
ni×n to be such that .Fx0 =u0. Is the system . (A +

BF, B,C, 0) completely controllable.
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Problem 18: Cartpole Revisited. Compute the Kalman decomposition of the system 

. ẋ(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0

0 1 0 0 0

0 0 2 0 0

0 0 0 3 0

0 0 0 0 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x(t) +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

1

0

0

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

u(t)

Try to do as much of the calculation by hand. You may use software to do basic 
computation (e.g., find matrix inverses). Do not use MATLAB commands that give 
you the answer in one line. 

Problem 19. This problem concerns the Kalman decomposition of LTI systems. 

(a) Compute the Kalman decomposition of the following system 

. A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0

0 2 0 0

1 0 0 1

0 0 0 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1

0 0

2 0

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, C =
[
2 1 0 0

]

Write down the matrix .P (or .P−1) used to transform the system. Identify both 
the reachable and unobservable subspaces. 

(b) What is the Kalman decomposition of a general LTI.(A, B,C, D) when.D �= 0? 
Justify your answer. 

Problem 20. This problem is concerned with minimal realizations. 

(a) Show that the LTI system .ẋ(t)= Ax(t) + Bu(t), .y(t)=Cx(t) with . x(t)∈R
n

and .u(t), y(t)∈R
m is minimal if and only if .ż(t)= (A + BC)z(t) + Bu(t), 

.y(t)=Cz(t) is minimal. 
Hint: Check the controllability/observability matrices for each system. 

(b) Show that the two realizations
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. ẋ(t) =

⎡
⎢⎢⎢⎣
2 1

0 1

⎤
⎥⎥⎥⎦ x(t) +

⎡
⎢⎢⎢⎣
1

0

⎤
⎥⎥⎥⎦ u(t), y(t) =

[
2 2

]
x(t)

and 

. ẋ(t) =

⎡
⎢⎢⎢⎣

2 0

−1 −1

⎤
⎥⎥⎥⎦ x(t) +

⎡
⎢⎢⎢⎣
1

2

⎤
⎥⎥⎥⎦ u(t), y(t) =

[
2 0

]
x(t)

are realizations of .H(s) � (2s + 2)/(s2 − s − 2). Are they minimal realiza-
tions? Are they equivalent? 

Observer Design 

Problem 21. This problem is concerned with state observers. 

(a) Complete the derivation of the reduced-order observer discussed in this chapter: 

LTI system.ẋ(t)= Ax(t)+ Bu(t)with measurement equation. y(t) =
[
Cm 0

]
x(t)

has asymptotically stable error dynamics if we choose 

. Â = A22 − LCm A12, G = (A21 − LCm A11)C
−1
m + ÂL , H = B2 − LCmB1

and . L to make . Â Hurwitz. 
(b) For the system 

. ẋ(t) =

⎡
⎢⎢⎢⎣
0 −1

1 −2

⎤
⎥⎥⎥⎦ x(t) +

⎡
⎢⎢⎢⎣
2

1

⎤
⎥⎥⎥⎦u(t), y(t) =

[
1 1

]
x(t)

compute a 2D full-order observer such that the error decays exponentially with 
a  rate  o  f.λ = 10. Repeat the same problem to compute a reduced-order observer. 

Problem 17: Echo Canceller [ 2]. This problem concerns with the design of the chip 
that is typically used to cancel echoing effects in telephone calls. The echo. y(t)∈R

is represented as a linear combination of delayed versions of your input (spoken) 
message signal .u(t) as follows. 

.y(t) =
N∑
i=1

aiu(t − i)
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Fig. 16.1 The velocity system 

where . t is a discrete time variable dependent on the sampling rate of the voice 
signal. The coefficients .ai ∈R model the characteristics of the telephone line, and 
are assumed unknown when you pick up the telephone at time .t = 0. However, you 
can obtain estimates of them over time, denoted.âi (t). The aim of the echo canceller 
is to update the estimates using the measurement of the echo.y(t) and the prediction 
error 

. e(t) � y(t) −
N∑
i=1

âi u(t − i)

From the model, note that it will take a .N -timestep delay after picking up the 
phone to be able to get all the .u(t − i). Thus, the echo canceller is initialized with 
.u(−1)= u(−2)= · · · = u(−N + 1)= 0. 

In this problem, we will set the echo canceller up as an observability problem, 
with the vector .a∈R

N representing the vector of the unknown coefficients . ai . 

(a) Find .â1 so that it is the vector closest to .â0 in the norm and gives the correct 
value of .y(1). 

(b) Turn your answer to part (a) into a recursive expression so that you can solve for 
.ât+1 from.ât and .y(t). 

Problem 22: Linearization by State-Feedback [ 2]. Consider the following single-
input, single-output nonlinear system 

. ξ̇1 = ξ2, ξ̇2 = ξ3, . . . , ξ̇r = α(ξ,η) + β(ξ,η)u, η̇ = q(ξ,η)

where .ξ ∈ R
r , .η ∈ R

n−r , .α,β : Rr × R
n−r → R, and .q : Rr × R

n−r → R
n−r .  Let  

the output be .y = ξ1, and consider the system with the state-feedback law 

. u = −−α(ξ,η) + v

b(ξ,η)

Use this law to find a relationship between . y and . u. Is the system with feedback 
observable? If not, what are the unobservable states, and why?
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Fig. 16.2 A simplified model for the control of a robot arm 

Problem 23: Observer Design [ 1]. Consider the a velocity observation system 
Fig. 16.1 where.x1 is the velocity to be observed. An observer is to be constructed to 
track. x1,  usin  g. u and.x2 as inputs. The variable.x2 is obtained from.x1 through a sensor 
having the known transfer function.G(s) = (2 − s)/(2 + s) (as shown in Fig. 16.1). 

(a) Derive a set of state-space equations for the system with state variables .x1 and 
. x2, input . u, and output . x2. 

(b) Design an observer with states.z1 and.z2 to track.x1 and. x2, respectively. Choose 
both observer eigenvalues to be at .−5. What are the state-space equations for 
the observer. 

(c) Derive the combined state equation for the system plus observer. Take, as state 
variables, . x1, . x2, and errors .ei = xi − zi with .i = 1, 2.  Tak  e . u as input and .z1 as 
the output. Is this system controllable and/or observable? 

(d) What is the transfer function relating . u to . z1? Explain your result. 

Problem 24: Simple Model of Robot Arm [ 1]. A simplified model for the control 
of a flexible robotic arm is shown in Fig. 16.2.  Here  i  s . k is a spring constant which 
models the flexibility of the arm, .M is the mass of the arm, . y is the mass position, 
and . u is the position of the end of the spring. Here, .k/M = 900 rad/sec2. 

(a) The equations of motion for this system are thus given by .Mÿ + k(y − u) = 0. 
Define state variables .x1 = y and .x2 = ẏ. 

(b) Design a full-state observer with observer eigenvalues at .s = − 100 ± 100 j . 
(c) Could both state-variables of the system be estimated if only a measurement 

of . ẏ.



194 16 Problems and Exercises

(d) Design a state-feedback controller with gain matrix .F giving the closed-loop 
system roots at .s = − 20 ± 20 j . 

(e) Would it be reasonable to design a control law for the system with roots at 
.s = − 200 ± 200 j? Why or why not? 
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Part IV 
Linear Optimal Control and Estimation



Chapter 17 
Feedback Stabilization 

17.1 Parametrizing Stabilizing Controllers 

In the previous Part III, we addressed the question about how to design a stabilizing 
(state-)feedback controller for any given LTI system . H. In this chapter, we will 
address an important, related question: how can we characterize an entire set . S(H)

of all controllers .K which internally stabilizes . H? 
As done before, we make the interconnection.(H,K)more general by allowing. K

to have its own internal dynamics. In Fig. 17.1, we emphasize this with the argument 
.(s), borrowing inspiration from the Laplace transform notation. 

The LTI plant dynamics (with .d1,d2 ≡ 0) on the left side of Fig. 17.1 follows the 
dynamical systems equation 

. H �

⎧
⎪⎪⎨

⎪⎪⎩

ẋ(t) = Ax(t) + [
B1 B2

]
[
w(t)
u(t)

]

[
z(t)
y(t)

]

=
[
C1

C2

]

x(t) +
[
D11 D12

D21 D22

] [
w(t)
u(t)

]

Here, we require that.(A, B2,C2) are stabilizable and detectable. A more compact 
notation for .H which is commonly used is 

. H(s) =
[
A B
C D

]

=
⎡

⎣
A B1 B2

C1 D11 D12

C2 D21 D22

⎤

⎦ =
[
H11(s) H12(s)
H21(s) H22(s)

]

Just like . H, a general controller .K can be written with an internal state .ξ(t).  In  
fact, we’ve seen this before with (15.5) in Sect. 15.2. We rewrite it here for self-
containment. 

.K �
{

ξ̇(t) = Akξ(t) + Bky(t)
u(t) = Ckξ(t) + Dky(t)

(Ak, Bk,Ck) stabilizable, detectable (17.1) 
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Fig. 17.1 A redrawing of Fig. 1.1 from Chap. 1, with additional signal notations and extra arguments 
.(s) to emphasize all internal dynamics 

There are two primary cases of the controller .K to ensure internal stability, which 
we have discussed before. We will organize it more closely as follows. 
Case 1. When .K� K ∈ R

m×n is static gain and the control law is state-feedback, 
we have .u(t)= Kx(t). 

. 
C2 = I, D22 = 0
Ak = 0, Bk = 0,Ck = 0, Dk = K

}

=⇒ ẋ(t) = (A + B2K )
︸ ︷︷ ︸

�Acl

x(t)

Internal stability here is equivalent to ensuring.Acl is Hurwitz, which can be achieved 
using the pole placement techniques described in Chap. 15. To characterize all such 
.K where .Acl is Hurwitz, we can use linear matrix inequalities (LMIs). Recall that a 
LMI in the variable .x∈R

n is an expression of the form 

. F(x) = F0 + x1F1 + x2F2 + . . . + xn Fn � 0

where the .Fi ∈R
m×m are symmetric. 

Lemma 17.16 .Acl is Hurwitz if . ∃ symmetric .X � 0 such that 

. AclX + X A�
cl ≺ 0 =⇒ (A + B2K )X + X (A + B2K )� ≺ 0

which can be rewritten as 

.AX + X A� + B2K X + XK�B�
2 ≺ 0 (17.2) 

Note that (17.2) is not a LMI of.K and. X because of bilinear cross terms.K X . Instead, 
let .Z � K X and rewrite (17.2)  as  a  LMI  in  terms of . Z and . X . This is written in the 
following theorem. 

Theorem 17.41 Static state-feedback controller .K (i.e., (17.1) with .Dk = K)  sta-
bilizes interconnection .(H,K) iff . ∃ symmetric .X ≺ 0, . Z s.t. .K = Z X−1 and



17.1 Parametrizing Stabilizing Controllers 199

.
[
A B2

]
[
X
Z

]

+ [
X Z�]

[
A�
B�
2

]

≺ 0 (17.3) 

Thus, the set of all stabilizing controllers of .H is written as: 

.S(H) �
{
Z X−1 | X � 0 symmetric, Z s.t. (17.3) holds

}

Case 2. When.K is a general (non-static) controller of the form (15.5), we first need 
to determine the following things before parametrizing anything: 

1. the conditions for which .(H,K) is well-posed, i.e., if unique solutions exist for 
. x(t), ξ(t), y(t),u(t)
∀ initial .x0, ξ0 and all disturbances .w(t). 

2. a definition of internal stability for generic .(H,K). 

To address point 1, note that combining .H and .K above together, we get 

.

[
I −Dk

−D22 I

]

︸ ︷︷ ︸
(∗)

[
u(t)
y(t)

]

=
[
0 Ck

C2 0

] [
x(t)
ξ(t)

]

+
[

0
D21

]

w(t) (17.4) 

System is well-posed if the matrix .(∗) is nonsingular (equivalently, if . I − D22Dk

nonsingular). 
To address point 2, let .w≡ 0 first. If the system is well-posed, we can write: 

. 

[
u(t)
y(t)

]

=
[

I −Dk

−D22 I

]−1 [
0 Ck

C2 0

] [
x(t)
ξ(t)

]

The closed-loop dynamics become 

.

[
ẋ(t)
ξ̇(t)

]

=
([

A 0
0 Ak

]

+
[
B2 0
0 Bk

] [
I −Dk

−D22 I

]−1 [
0 Ck

C2 0

])

︸ ︷︷ ︸
Acl

[
x(t)
ξ(t)

]

(17.5) 

Note that if the matrix .Acl is Hurwitz, then .x(t), ξ(t) → 0 as .t → ∞. 

Definition 17.96 When .w≡ 0, interconnection .(H,K) is internally stable if it is 
well-posed and .x(t), ξ(t) → 0 as .t → ∞ for all initial conditions .x0, ξ0. 

This addresses the two preliminary points from above. Now we are interested in the 
main question: how should we design internally stabilizing .K for .H when .w≡ 0? 

First, there exists such a .K iff .(A, B2,C2) is stabilizable and detectable. Directly 
from (17.4) and (17.5), we have 

.S(H) �
{

K � (Ak , Bk ,Ck , Dk)

∣
∣
∣
∣

[
A 0
0 Ak

]

+
[
B2 0
0 Bk

] [
I −Dk

−D22 I

]−1 [
0 Ck

C2 0

]

≺ 0

}
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This is not a LMI in terms of (.Ak, Bk,Ck, Dk), but we can impose a specific structure 
on (.Ak, Bk,Ck, Dk) to turn it into a LMI. One choice to achieve this is as follows: 

.Ak = A + B2K + LC2 + LD22K , Bk = −L , Ck = K , Dk = 0 (17.6) 

where .K and . L are constant matrices of appropriate dimension. This way, 

. 

Acl =
[
A 0
0 A + B2K + LC2 + LD22K

]

+
[
B2 0
0 −L

] [
I 0

−D22 I

]−1

︸ ︷︷ ︸

=
⎡

⎣
I 0

D22 I

⎤

⎦

[
0 K
C2 0

]

=
[

A B2K
−LC2 A + B2K + LC2

]

We’ve seen before in Chap. 15, that .Acl is Hurwitz iff we choose .K and .L s.t. 
.A + B2K and.A + LC2 are Hurwitz. (Again, as in Remark 15.24, be mindful of the 
sign convention.) A LMI characterization of .S(H) can then be derived as 

. S(H) � {(Ak , Bk ,Ck , Dk)| (17.6) holds, and ∃L , K s.t. A + B2K ≺ 0, A + LC2 ≺ 0}

When.w �= 0, this kind of LMI characterization based on the state-space matrices is 
generally difficult to do. In the following chapters of this part, we will discuss a few 
cases where it is possible. 

Now, let us consider the transfer function (input-output) description instead of 
the state-space description we’ve been mostly using in the previous parts. 

. H(s) =
[
H11(s) H12(s)
H21(s) H22(s)

]

Then when .d1 = 0,d2 = 0: 

.

[
z
y

]

=
[
H11 H12

H21 H22

] [
w
u

]

, u = K (s)y (17.7) 

Here, there is a slight abuse of notation, in that .w,u, y, etc. are used to denote the 
respective signal in both the time-domain and the frequency-domain. We write it this 
way with the understanding that the reader will be able to infer which domain is 
being used from the given context. 

We have a definition of internal stability based on transfer functions, more suitable 
for cases when .w �= 0. 

Definition 17.97 (Internal Stability: Transfer Function Version) Interconnection 
.(H,K) is internally stable if it is well-posed and for bounded exogenous inputs,
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Fig. 17.2 An example block diagram of an internally-stable transfer function 

every combination of transfer functions between every possible input-output pair of 
signals is stable. 

One example of an internally-stable transfer function block diagram is shown 
in Fig. 17.2. Note that each of the 16 transfer functions from .(d1,d2,d3,d4) to 
.(x,u, y, ξ) is stable (because they have negative real-part poles). By Definition 17.97, 
the entire system is internally stable. 

Note that we don’t need to check literally every possible transfer function from 
every possible input to every possible output because the stability of some transfer 
functions may automatically imply stability of others. Many schemes to parametrize 
the set of all internally stabilizing controllers .S(H) rely on this fact. For example, 
the algebraic manipulation of (17.7) allows us to get the .w �→ z transfer function 
.Gzw as follows: 

1. . y = H21w + H22u = H21w + H22Ky =⇒ y = (I − H22K )−1H21w
2. . z = H11w + H12Ky = (H11 + H12K (I − H22K )−1H21)︸ ︷︷ ︸

�Gzw

w

Define .Q � K (I − H22K )−1 so that .Gzw is an affine function of . Q: 

. Gzw = H11 + H12QH21

The transfer matrix.Q is often called the Youla parameter. Once.Q has been designed, 
.K can be computed using 

.K = (I + QH22)
−1Q (17.8) 

Parametrization of the controller .K is in the way of (17.8) is called the Youla 
parametrization. This parametrization is nice since it lets us characterize the set 
.S(H) of all stabilizing controllers for a given plant .H as (17.8) for any arbitrary 
stable transfer function . Q.
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17.2 Youla Parametrization 

We defined what it meant for two rational transfer functions to be coprime in 
Remark 14.23: if we can express a proper rational transfer function .H(s) as 
.H(s)= N (s)

D(s) without any further simplifications, this means the polynomials . N (s)
and .D(s) are coprime. We will use this concept in many parametrization methods 
for .S(H), starting with the Youla parametrization. 

Our goal remains the same: to stabilize (LTI) plant .H(s) via feedback intercon-
nection with controller.K (s). We further assume.H is strictly proper and.K is proper. 
So far, we defined the Youla parameter .Q s.t. .Q � K (I − H22K )−1. We claimed 
that a necessary and sufficient condition to make the closed-loop response internally 
stable is to find such a .Q which stabilizes .Gzw. 

Definition 17.98 (.RH∞) A transfer function .G(s) is an element of .RH∞ if it is 
real, rational, and proper. 

Example 17.30 To explain the exact meaning of real, rational, and proper, as used 
in Definition 17.98, let’s consider each of the terms individually. 

• Real: The coefficients of the polynomial or transfer function are all real numbers. 
For example, .3s2 + 2s + 1. 

• Rational: The transfer function can be expressed as the ratio of two polynomials. 
For example, .H(s) = 1

s+1 is the ratio of the constant polynomial 1 and the linear 
polynomial .s + 1. 

• Proper: The degree of the numerator polynomial is less than or equal to the degree 
of the denominator polynomial. For example, for.H(s) = 1

s+1 , degree(num) (0) is 
less than degree(den) (1). 

Note that.∀Q, R ∈ RH∞, we have that.QR ∈ RH∞ and.Q + R ∈ RH∞. However, 
.Q−1 may not be in.RH∞ since it might not be proper. For example,. Q(s) = s+1

s2+4s+4

.=⇒ .Q−1(s) = s2+4s+4
s+1 but degree 2 .> degree 1. 

Definition 17.99 (. Q)  Le  t .Q ⊆ RH∞ be the space of all stable, real rational proper 
transfer functions. 

17.2.1 Case 1: Stable Plant 

Suppose .H ∈ Q. Then the set of all stabilizing controllers is given by 

.S(H) = {(I + QH22)
−1 | Q ∈ Q} (17.9) 

Proof In the scalar case, (17.9) isn’t too hard to prove. 
Case . ⊆. Suppose .K ∈ S(H) achieves internal stability. From the general block 
diagram Fig. 17.1:
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. 

[
z
y

]

=
[
H11 H12

H21 H22

] [
w

u + d2

]

where .u = K (y + d2) and therefore: 

. u = K (H21w + H22u + H22d2) + Kd2

which simplifies to: 

. u = K

1 − H22K
(H21w + H22d1 + d2)

Define .Q as: 

. Q � K

1 − H22K

Note that .Q ⊆Q since it is the .d2 →u transfer function, which is stable because 
.K ∈ S(H) and .Q − QH22K = K implies .K = Q

1+QH22
. 

Case . ⊇. Suppose .K = Q
1+QH22

with .Q ∈ Q. 
Internal stability of the feedback system is achieved if all 9 transfer functions 

from.(w,d1,d2) to .(z, y,u) are stable. 
The .(w,d1,d2) → u transfer functions are already written above as: 

. u = − K

1 − H22K
(H21w + H22d1 + d2)

and thus for . z: 

. 

z = H11w + H12u + H12d1

=
(

H11 + K H21

1 − H22K

)

w +
(

H12 + K H22

1 − H22K

)

d1 + K H12

1 − H22K
d2

The .(w,d1,d2) → y transfer functions are similar. 
In particular, the shared .− K

1−H22K
term in all 9 transfer functions is exactly equal 

to .Q after some algebra. 
Together with the fact that .H ∈ Q, all 9 transfer functions are in . Q. �

Example 17.31 (Reference Tracking Problem) While the stabilization problem has 
the objective of driving all internal states.x(t) and output .y(t) to zero, the reference-
tracking problem aims to design controller .K (s) to drive the output signal .y(t) to 
some desired reference signal .r(t).
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Reference-tracking is another very common application of control theory. For exam-
ple, an autonomous vehicle should stay in its lane, and aircraft should maintain a 
desired angle of attack during takeoff. 

In this example, let’s try to find an internally stabilizing .K for the plant . H(s)=
1

(s+1)(s+2) so that scalar output.y(t) tracks a ramp signal, defined as.r(t)= t for. t ≥ 0

and.r(t)= 0 otherwise. The ramp has a Laplace transform.L{r(t)} = 1
s2 with a region 

of convergence .Re(s) > 0. 

Designing the Controller: It turns out that in order to track a ramp, the transfer func-
tion from.r(t) to.e(t) should have two zeros at .s = 0. The error signal .e(t), which is 
.r(t) − y(t), is affected by the controller .K (s) through the feedback loop involving 
.H(s). We can express .e(s) as: 

. e(s) = r(s) − H(s)K (s)e(s) − H(s)d1(s)

. =⇒ e(s) = 1

1 + H(s)K (s)
r(s) − H(s)

1 + H(s)K (s)
d1(s)

This is simplified via Youla parametrization as: 

.e(s) = 1

1 + H(s) Q(s)
1−Q(s)H(s)

r(s) − H(s)

1 + H(s)K (s)
d1(s) (17.10) 

where .Q(s) is chosen as a function that will provide the necessary cancellation of 
poles/zeros. 

.Choosing Q(s): Try choosing .Q(s) = as+b
s+1 with parameters . a and . b to be deter-

mined. Then the closed-loop transfer function from . r to . e (which is the first term 
of (17.10)) becomes: 

. 
1

1 + H(s)Q(s)
1−H(s)Q(s)

= 1 − HQ = s3 + 4s2 + (5 − a)s + (2 − b)

(s + 1)2(s + 2)

Choosing .a = 5 and .b = 2 yields:
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. 
s2(s + 4)

(s + 1)2(s + 2)

This setup not only provides the desired zeros at.s = 0 but also cancels both poles of 
.H(s) at .s = −1 and .s = −2. The resulting .K (s), by incorporating .H(s), becomes: 

. K (s) = (5s + 2)(s + 1)(s + 2)

s2(s + 4). �

17.2.2 Case 2: General, Possibly Unstable Plant 

First, we require a few further definitions. 

Definition 17.100 (Right and Left Coprime) Two transfer functions (or transfer 
matrices) .M, N ∈ RH∞ are right coprime if there exist .X,Y ∈ RH∞ such that 

.XN + YM = I (17.11) 

Likewise, they are left coprime if there exist .X̃ , Ỹ ∈ RH∞ such that 

.N X̃ + MỸ = I (17.12) 

Equations (17.11) and (17.12) are often called the Bezout Identities. 

Lemma 17.17 A right coprime factorization of transfer function .H is the factoriza-
tion .H = NM−1 where .N ,M ∈ RH∞, and .M−1 is proper. Likewise, a left coprime 
factorization is .H = M̃−1 Ñ where .Ñ , M̃ ∈ RH∞, and .M̃−1 is proper. 

Our general method for parametrizing .S(H) is to invoke coprime factorization. We 
will first express the right coprime factorization .H = NM−1, then parameterize 
.K = XY−1 where .X and . Y satisfy .XN + YM = I . 

Before we proceed with this method, there are a few preliminary remarks to 
address. 

1. Does there always exist such a factorization? 
2. There may be problem cases such as.Y (s) = 0 or.K (s) /∈ RH∞ because it might 

not be proper. For example, for scalar transfer function .H(s) = s−1
s−2 , one could 

take.N (s) = 1,.M(s) = s−2
s−1 . The easiest solution to.XN + YM = 1 is.X (s) = 1, 

.Y (s) = 0 but .K (s) = X/Y is undefined. 
3. To ensure internal stability, we will add an extra requirement and restrict . N ,M,

X,Y ∈ Q. How to construct such a coprime factorization under this new require-
ment?
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To address point 1 above, we have the following result, whose proof we will defer. 

Lemma 17.18 For any transfer function .H corresponding to a stabilizable and 
detectable system, there exist both a right and left coprime factorization . H =
NM−1 = M̃−1 Ñ s.t. . ∃X̃ , Ỹ , X,Y ∈ RH∞ with

. 

[
X Y
M̃ Ñ

] [
N
Ỹ

]

= I (“doubly coprime factorization”)

To address point 3 above, let’s further divide our analysis into two subcases. 

Case: Scalar Version. In the scalar version of the problem, there is no distinction 
between “left” or “right” coprime factorization. Euclid’s Algorithm can be used to 
obtain .X,Y given .N ,M with .deg(M) ≥ deg(N ). 

1. Divide to get .M = NQ1 + R1, where .deg(R1) < deg(N ). 
2. Divide to get .N = R1Q2 + R2, where .deg(R2) < deg(R1). 
3. Divide to get .Rk−1 = RkQk + Rk+1, where .deg(Rk+1) < deg(Rk)∀k ≥ 2. 
4. Stop until .Rk+1 is a constant number. 
5. If .Rk+1 = 0, .N and.M are not coprime and GCD is .Rk . Else, rewind steps 3 to 1 

to get 

. Rk+1 = WN + ZM =⇒ 1 = W

Rk+1
N + Z

Rk+1
M =⇒ 1 = XN + YM

Example 17.32 (Using Euclid’s Algorithm) Suppose we have a transfer function 
with .n(λ) = λ2 and .m(λ) = 6λ2 − 5λ + 1. Applying Euclid’s algorithm gives us 

. q1(λ) = 1

6
, r1(λ) = 5

6
λ − 1

6
, q2(λ) = 36

5
λ − 114

25
, r2(λ) = 6

25
.

Since .r2 is a nonzero constant, we stop after Step 2. Then the equations are 

. n = mq1 + r1,m = r1q2 + r2,

yielding 
. r2 = (1 + q1q2)m − q2n.

So we should take 

. x = −q2
r2
, y = 1 + q1q2

r2
,

that is, 
.x(λ) = −30λ + 19, y(λ) = 5λ + 1.. �
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Now to develop a full stabilization procedure with Euclid involved, the main idea is 
to transform variables, .s → λ, so that polynomials in . λ yield transfer functions in 
terms of . s. 

1. If .H ∈ Q,  se  t .N = H , .M = 1, .X = 0, .Y = 1. End. 
2. If .H /∈ Q, substitute .s → 1−λ

λ
to get .H

(
1−λ
λ

)
. 

3. Write .H
(
1−λ
λ

) = N (λ)
M(λ)

. 
4. Apply Euclid’s Algorithm to get .X (λ),Y (λ). 
5. Transform back.λ → 1

s+1 to get.N (s),M(s), X (s),Y (s). Essentially, we are plac-
ing poles at .−1 with this transformation. 

Example 17.33 (Full Stabilization Procedure)  Fo  r.G(s) = 1
(s−1)(s−2) , the algorithm 

gives: 

. G̃(λ) = λ2

6λ2 − 5λ + 1
=⇒ n(λ) = λ2,m(λ) = 6λ2 − 5λ + 1

. =⇒ x(λ) = −30λ + 19, y(λ) = 5λ + 1 (from Example 32).

Now, use the mapping .λ = 1
s+1 . 

. N (s) = 1

(s + 1)2
, M(s) = (s − 1)(s − 2)

(s + 1)2
,

. X (s) = 19s − 11

s + 1
, Y (s) = s + 6

s + 1
.

. �

Theorem 17.42 (Youla-Kucera Parametrization: Scalar Case) Suppose.H = N
M with 

.N ,M ∈ Q and suppose .∃X,Y ∈ Q such that .N ,M are coprime. Then the set of all 
internally stabilizing controllers .S(H) is given by: 

. S(H) =
{
X + MQ

Y − NQ
| Q ∈ Q

}

Proof We use the following result without proof: Let .K = W
Z be some coprime 

factorization over . Q. Then the feedback system is internally stable if and only if 
.(NW + MZ)−1 ∈ Q. 

Suppose .K ∈S(H). We must find a .Q ∈ Q such that .K = X+MQ
Y−NQ . Choose . W, Z

such that .K = W
Z , a coprime factorization over . Q, and define .V such that . (NW +

MZ)V = NWU + MZV = 1. 
Let.Q be the solution of.2V = Y − NQ so that.NWU + M(Y − NQ) = 1.  Also,  

from.N X + MY = 1, we get.N X + MY + NMQ − MNQ = 1. Comparing yields 
.WV = X + MQ, thus .K = W

Z = X+MQ
Y−NQ .
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Now, does .Q ∈Q? Using the results, we get .ZU X = XY − NQX and. WVY =
XY + MQY , thus.(MY + N X)Q = WVY − ZU X . Therefore,.Q ∈ Q and the the-
orem is proved. �

Case: Matrix Version. The Youla parametrization described in Theorem 17.42 can 
be extended to the more general matrix-vector case. 

Theorem 17.43 (Youla-Kucera Parametrization: Matrix Case) Suppose there exists 
a doubly coprime factorization .H = NM−1 = M̃−1 Ñ such that . ∃X,Y, X̃ , Ỹ ∈ Q
with 

. 

[
X Y
M̃ Ñ

] [
N
Ỹ

]

= I

Then the set of all internally stabilizing controllers .S(H) is given by: 

. S(H) = {
(X + MQ)(Y − NQ)−1 | Q ∈ Q} =

{
(Ỹ − Ñ Q)−1(X̃ + M̃Q) | Q ∈ Q

}

Remark 17.30 The transfer function .S � M(Y − NQ) is typically called the sen-
sitivity function, and.T = N (X + MQ) is called the complementary sensitivity func-
tion. They are often used in control system engineering to measure how variations 
in the plant parameters affect the closed-loop response. 

Remark 17.31 There are a lot of other interesting concepts which build upon what 
we discussed so far: 

• Strong stabilization:  i  f .H can be stabilized with a .K ∈ Q. 
• Simultaneous stabilization:  i  f .H1 and .H2 can be stabilized with the same . K .



Chapter 18 
The Linear Quadratic Regulator 

So far, we have approached the problem of feedback stabilization using eigenvalue 
(pole) placement techniques: design a state-feedback stabilizing controller.K for LTI 
system .(A, B) s.t. .λi (A − BK ) for .i = 1, . . . , n are placed at new pole locations 
.{λ̃i }ni=1. Feedback stabilization techniques like these assume that there already is a 
predetermined set of eigenvalues that we wish for the system to possess. In practice, 
it is more conventional to be given a certain performance index, which is a functional 
of the control and state trajectories (i.e., .Ju(x0)), and seek to find a control trajectory 
.u : R≥0 → R

m which optimizes it. This is the general framework of optimal control. 

18.1 Dynamic Programming 

Finding the optimal control trajectory by searching through all possible trajectories 
is computationally expensive and inefficient. In such cases, dynamic programming 
(DP) can be a powerful tool for solving complex optimization problems. Dynamic 
programming is a systematic approach that enables efficient computation by break-
ing a problem into smaller subproblems, solving them independently, and storing the 
results for reuse. It is particularly effective for problems that exhibit two character-
istics: optimal substructure and overlapping subproblems. 

Optimal Substructure. The key principle here is that the optimal solution to a 
problem can be constructed from the optimal solutions of its subproblems. 

. OPT(P) = Combine (OPT(P1),OPT(P2), . . . ,OPT(Pk)) ,

where .OPT(P) is the optimal solution to the overall problem . P , . OPT(P1), . . . ,
OPT(Pk) is the optimal solutions to subproblems .P1, . . . , Pk , and .Combine is a 
function that combines the subproblem solutions to construct the overall solution. 
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Fig. 18.1 The original grid 
. G, upon which we are 
seeking to find the optimal 
path 

Overlapping Subproblems. When the same subproblem is solved multiple times, 
its solution can be stored and reused, significantly reducing computational cost. 
This is implemented using memoization: if subproblem.Pi has already been memo-
ized, with Memo.[Pi ] being the previously-computed solution to subproblem. Pi , then 
OPT. (Pi )�Memo.[Pi ] is the optimal solution. 

Example 18.34 (Shortest Path DP) Consider a rectangular grid.G ∈R
H×L of num-

bers, as shown in Fig. 18.1. We are interested in determining the shortest path going 
from A to B. 

We first prepare a memoization table .T ∈R
H×L to keep track of all the optimal 

solutions to each subproblem. The optimal computation is performed backwards 
from the final goal . B. Note that the edges are the easiest entries to fill in, because 
the optimal path starting from any location along the edge is just a direct line to . B. 

. T [1, L] = 3, T [1, �] = G[1, �] + T [1, � + 1], T [h, L] = G[h, L] + T [h + 1, L]

To fill in the interior of the table. T , first consider the.[H − 1, L − 1]th entry. There are 
two possible paths: .[H − 1, L − 1] → [H, L − 1] → [H, L] versus . [H − 1, L −
1] → [H − 1, L] → [H, L]. By DP memoization, to get the optimal path between 
from.[H − 1, L − 1], we only need to compare the two paths: 

. T [H − 1, L − 1] = G[H − 1, L − 1] + min (T [H − 1, L], T [H, L − 1]) = 5 + 6 = 11

Now, we can fill in the .(H − 1)th row and the .(L − 1)th column. 
In general, we can see that 

. T [h, �] = G[h, �] + min (T [h, � + 1], T [h + 1, �])

and we obtain .T [H, 1] = 34, as the shortest path from .A→ B. All steps of the 
memoization process are shown in Fig. 18.2, with the final path highlighted in blue.
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Fig. 18.2 The memoization table. T , in which we are saving all optimal solutions to each subprob-
lem. Eventually, we reach the total optimal solution (shortest distance from.A → B) and the final 
optimal path. A → B

Essentially, for all DP problems, the computation of the optimal solutions to all 
subproblems is done backwards, while the final result is obtained as a forwards 
pass. �

18.2 Basic Derivations of the Linear Quadratic Regulator 

Since the primary focus of this text is on linear systems, we mainly investigate 
the specific class of linear optimal control techniques. Among these techniques, 
the linear quadratic regulator (LQR) is one of the most common methods used 
in practice. In state-feedback LQR, the cost functional .Ju(x0) is represented as a 
weighted sum of terms which are quadratic in . x and . u. There is also an output-
feedback version of LQR which represents .Ju(x0) as a weighted sum of terms that 
are quadratic in . y and. u. We will write and derive the LQR formulation for both CT 
and DT systems. As with III, we focus almost exclusively on LTI systems. 

Remark 18.32 Just as with eigenvalue placement in Chap. 17, .(A, B) is assumed 
to be stabilizable and .(A,C) is assumed detectable. 

18.2.1 Discrete-Time Dynamics 

First, we recall the DT LTI dynamics .x[t + 1] = Ax[t] + Bu[t], with . y[t] = x[t]
(full-state observable), and initial condition .x[0] = x0. There are two types of cost 
functionals depending on the horizon of the problem: 

. Finite-Horizon. Ju (x0) �
T−1∑

t=0

[
x�[t] u�[t]] Q̃

[
x[t]
u[t]

]

︸ ︷︷ ︸
“running cost”

+ x�[T ]Q f x[T ]︸ ︷︷ ︸
“terminal cost”

(18.1a)
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.Infinite-Horizon. Ju (x0) �
∞∑

t=0

[
x�[t] u�[t]] Q̃

[
x[t]
u[t]

]
(18.1b) 

where .Q̃ �
[
Q S
S� R

]
, .Q = Q� � 0, .R = R� � 0, .Q f = Q�

f � 0 and . u ∈ U ⊆
L2 ([0, T ];Rm). Here, .Q̃ and .Q f can be thought of as weights which determine 
how much to penalize the deviation of .x(t) from . 0, as well as the control input 
.u(t). Starting from any initial state . x0, we essentially seek to control the system s.t. 
.x(t) → 0 as quickly as possible without exerting too much control effort (i.e.,. ‖u(t)‖
should not be too large). Thus, the optimal control problem is posed as 

. J̃ (x0) � min
u ∈U

Ju(x0) s.t. x[t + 1] = Ax[t] + Bu[t] (18.2) 

and the optimal control input.u∗ which solves (18.2) is given by a linear state-feedback 
form.u[t] = K [t]x[t], where the gain.K [t] is to be determined. Note that.K [t] is not 
necessarily static-gain, as indicated by the time index .[t]. 
Remark 18.33 Minimum-energy input is special case of LQR with .Q = 0, . R = I
(For DT finite horizon). 

Because (18.2) is a convex optimization problem, we can use a variety of standard 
convex optimization techniques to solve it, including dynamic programming (DP) 
and via Lagrange multipliers. We will begin by applying DP to the case where. S = 0
in the finite-horizon LQR cost (18.1a). 

. Finite-Horizon. Ju (x0) �
T−1∑

t=0

x�[t]Qx[t] + u�[t]Ru[t] + x�[T ]Q f x[T ]
(18.3a) 

.Infinite-Horizon. Ju (x0) �
∞∑

t=0

x�[t]Qx[t] + u�[t]Ru[t] (18.3b) 

This means that the cost functional does not penalize any cross-term dependencies 
between. x and. u. (The case .S �= 0 is more natural in the output-feedback LQR case, 
which we will address in Sect. 18.2.5.) 

Lemma 18.19 (Bellman’s Principle of Optimality) While the principle of optimality 
can be posed for general optimization problems, we pose it specifically in the context 
of our DT LTI LQR problem. Let .x∗ ≡ {x∗[t]}Tt=0 be the optimal trajectory which 
results from applying optimal control .u∗ to the system . x[t + 1] = Ax[t] + Bu[t]
starting from . x0.  I  f .x∗[t] for any .t ∈ {0, 1, . . . , T } is a state on this optimal path, 
then the “sub-path” .{x[t], x[t + 1], . . . , x[T ]} is also an optimal path. 

Lemma 18.19 allows us to express (18.3a) in terms of the following recursion
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Fig. 18.3 The figure demonstrates how the cost-to-go function is optimized through backward 
recursion, evaluating feasible paths while minimizing the total cost. The optimal path (solid arrows) 
minimizes the cost function, while retained paths (dashed lines) indicate alternative path. The blue 
shaded regions denote infeasible state areas 

. Vt (x[t]) � min
u[t]∈Rm

(
x�[t]Qx[t] + u�[t]Ru[t] + Vt+1(xt+1)

)
s.t. x[t + 1] = Ax[t] + Bu[t]

= min
u[t]∈Rm

x�[t]Qx[t] + u�[t]Ru[t] + Vt+1(Ax[t] + Bu[t]) (18.4) 

Here,.Vt (x[t]) is typically called the cost-to-go function or the value function.  In  the  
terminology of Sect. 18.1, . V is the memoization table with an entry for each. t and. x. 
The first two terms of (18.4) indicate the cost incurred at current time, while the last 
term is the cost-to-go starting from time .t + 1 and current state .x[t]. Since we are 
computing the memoization table backwards, .Vt+1 is a function we already have all 
the information about (Fig. 18.3). 

Theorem 18.44 (Finite-Horizon DT LQR) The optimal cost-to-go and optimal con-
trol at each time is given by 

. Vt (x) = x�Ptx ∀x ∈ R
n, u[t] = K [t]x[t], ∀ t ∈ {0, 1, . . . , T }

where .Pt satisfies the following final-value problem and control gain .K can be 
computed from . P: 

. Pt =
{
Q + K [t]�RK [t] + (A + BK [t])� Pt+1 (A + BK [t]) if t ∈ {0, 1, . . . T − 1}
Q f if t = T

(18.5a) 

.K [t] � −
(
R + B�Pt+1B

)−1
B�Pt+1A (18.5b) 

One short remark before we prove the theorem: we use subscript notation for . Pt
in order to match the notation of the subscript in the value function .Vt .  We  do  not  
do the same for the control gain . K .
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Proof The proof of Theorem 18.44 follows directly by induction. First, when.t = T , 
the cost is independent of the control and so the optimal cost-to-go is 

. VT (x) = x�Q f x ∀x ∈ R
n =⇒ P[T ] = Q f .

Now, suppose (18.5) holds for .t = τ + 1.  From (18.4), we get 

. Vτ (x[τ ]) � min
u[τ ]∈Rm

x�[τ ]Qx[τ ] + u�[τ ]Ru[τ ] + Vτ+1 (Ax[τ ] + Bu[τ ])

= min
u[τ ]∈Rm

x�[τ ]Qx[τ ] + u�[τ ]Ru[τ ] + (Ax[τ ] + Bu[τ ])� Pτ+1 (Ax[τ ] + Bu[τ ])

= min
u[τ ]∈Rm

x�[τ ]Qx[τ ] + u�[τ ]Ru[τ ] + x�[τ ]A�Pτ+1Ax[τ ] + u�[τ ]B�Pτ+1Bu[τ ]

+ x�[τ ]A�Pτ+1Bu[τ ] + u�[τ ]B�Pτ+1Ax[τ ]

To get the optimal variable .u[τ ], simply differentiate the above with respect to . u[τ ]
and set the expression equal to zero: 

. 0 = 2u�[τ ]R + 2x�[τ ]A�Pτ+1B + 2u�[τ ]B�Pτ+1B =⇒ u∗[τ ]
= − (

R + B�Pτ+1B
)−1

B�Pτ+1A︸ ︷︷ ︸
�K [τ ] as defined by (18.5a)

x[τ ]

Substituting .u∗[τ ] back into .Vτ (x[τ ]) yields: 

. Vτ (x[τ ]) = x�[τ ]Qx[τ ] + u[τ ]∗�Ru∗[τ ] + (
Ax[τ ] + Bu∗[τ ])�

Pτ+1
(
Ax[τ ] + Bu∗[τ ])

= x�[τ ]
(
Q + K [τ ]�RK [τ ] + (A + BK [τ ])� Pτ+1 (A + BK [τ ])

)

︸ ︷︷ ︸
�Pτ as defined by (18.5b)

x[τ ]

Thus, the formula holds for the case .t = τ , and our induction is complete. �
In the infinite-horizon case (.T → ∞), DP can still be applied. 

Theorem 18.45 (Infinite-Horizon DT LQR) As .T → ∞ in Theorem 18.44,  the  
recursion in (18.5) reaches a steady-state solution. 

.P = Q + K�RK + (A + BK )�P(A + BK ) (18.6a) 

.K = −(R + B�PB)−1B�PA (18.6b) 

The optimal feedback control law becomes a static-gain law .u(t) = Kx(t). 
Remark 18.34 (18.6a) can alternatively be written as 

.P = Q + A�PA − A�PB
(
R + B�PB

)−1
B�PA (18.7) 

This is often called discrete algebraic Riccati equation (DARE).
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18.2.2 Continuous-Time Dynamics 

We recall the CT LTI dynamics.ẋ(t) = Ax(t) + Bu(t) with initial condition. x(0) =
x0. As with the DT case, there are two types of cost functionals depending on the 
horizon of the problem: 

. Finite-Horizon. Ju (x0) �
∫ T

0

[
x�(s) u�(s)

]
Q̃

[
x(s)
u(s)

]

︸ ︷︷ ︸
“running cost”

ds + x�(T )Q f x(T )︸ ︷︷ ︸
“terminal cost”

(18.8a) 

.Infinite-Horizon. Ju (x0) �
∫ ∞

0

[
x�(s) u�(s)

]
Q̃

[
x(s)
u(s)

]
ds (18.8b) 

where the weighting matrices .Q̃, Q, R, Q f have same definitions and conditions as 
in the DT case. The optimal cost is determined by solving 

. J̃ (x0) � inf
u ∈U

Ju(x0) s.t. ẋ(t) = Ax(t) + Bu(t)

Much like the DT case, we can invoke Lemma 18.19 to solve this problem. We 
will again consider the case where the cross-term weight .S = 0. 

The continuous version of the cost-to-go recursion (18.4), which we will represent 
as .V (t, x(t)), can be written using the Hamilton-Jacobi-Bellman (HJB) equation. 
Although the HJB equation is used for more general optimal control problems, we 
focus specifically on its application to our LQR problem. 

First, we assume the cost-to-go function.V (t, x) is.C1 in both. t and. x. The terminal 
condition is given by 

. V(T, x) = x�(T )Q f x(T )

For .t < T , we take an infinitesimally small timestep .�t from time . t to time . t + �t
to get, via the first-order Taylor expansion 

. V(t + �t, x(t + �t)) = V(t, x(t)) + ∂tV(t, x(t))�t + ∇xV(t, x(t))ẋ(t)�t + h.o.t.

=⇒ 1

�t
(V(t + �t, x(t + �t)) − V(t, x(t))) = ∂tV(t, x(t)) + ∇xV(t, x(t))ẋ(t) + h.o.t.

where h.o.t. denotes higher order terms. Integrate both sides, use the fact that 
.
∫ t+�t
t l(s) ds = l(t)�t + h.o.t. for some placeholder function . l. Then rearranging 
terms and taking .�t → 0 yields exactly the HJB equation we need. Substituting in 
the running cost from (18.8) and the system dynamics yields
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. 0 = min
u∈U

{
x�(t)Qx(t) + u�Ru(t) + ∂tV(t, x) + ∇xV(t, x)ẋ(t)

}

= min
u∈U

{
x�(t)Qx(t) + u�Ru(t) + ∂tV(t, x) + ∇xV(t, x) (Ax(t) + Bu(t))

}

(18.9) 

Theorem 18.46 (Finite-Horizon CT LQR) The optimal cost-to-go and optimal con-
trol at each time is given by 

. V(t, x) = x�P(t)x ∀x ∈ R
n, u(t) = K (t)x(t), ∀ t ∈ {0, 1, . . . , T }

where .P(t) satisfies the following final-value problem and the control gain .K can 
be computed from . P: 

. P(t) =
{
Q − P(t)BR−1B�P(t) + P(t)A + A�P(t) + Ṗ(t) = 0 if t < T

Q f if t = T

(18.10a) 

.K (t) � −R−1B�P(t) (18.10b) 

Proof We simply continue from the HJB equation (18.9). The minimizing .u∗ can 
be found by setting the gradient of (18.9)  to  0  .

.0 = 2u∗�(t)R + ∇xV(t, x)B =⇒ u∗(t) = −1

2
R−1B�∇xV(t, x)� (18.11) 

Similar to the DT case, we try a solution of the form .V(t, x) = x�P(t)x, where 
.P(t) = P�(t) � 0,∀t . Then.∂tV(t, x) = x� Ṗ(t)x and.∇xV (t, x) = 2x�P(t). Sub-
stituting these back into the above.u∗ and the HJB equation (18.9), we get the desired 
control input (18.10b) and 

. 0 = x� {
Q − P(t)BR−1B�P(t) + 2P(t)A + Ṗ(t)

}
x

which results in (18.10a). finally, substituting.∇xV(t, x)= 2x�P(t) into (18.11) and 
using .u∗(t)= − K (t)x(t) gives us (18.10b). �

Theorem 18.47 (Infinite-Horizon CT LQR) As .T → ∞ in Theorem 18.46,  the  
recursion in (18.10a) reaches a steady-state solution, i.e., set .Ṗ(t) = 0. 

.0 = Q − PBR−1B�P + PA + A�P (18.12) 

As .P(t)≡ P is constant, the optimal control law becomes a static-gain law, yielding 
.u(t)= Kx(t) = −R−1B�Px(t). 

This Eq. (18.12) is often referred to as the continuous algebraic Riccati equation 
(CARE).
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18.2.3 LQR via Lagrange Multipliers 

Since the LQR is an optimization problem, it can also be solved directly via Lagrange 
multipliers. Consider the discrete-time (DT) infinite-horizon case: 

. min
u

Ju(x0) � 1

2

∞∑

t=0

(
x[t]�Qx[t] + u[t]�Ru[t])

s.t. x[t + 1] = Ax[t] + Bu[t], x(0) = x0

Define Lagrangian .L(λ,u, x) with dual variable .λ � (λ1,λ2, . . .), .λt ∈ R
n: 

. L(λ,u, x) � Ju(x0) +
∞∑

t=0

λ�[t](Ax[t] + Bu[t] − x[t + 1])

For each . t : 

.∇uL(λ,u, x) = u�[t]R + λ�[t]B set= 0 =⇒ u[t] = −R−1B�λt (18.13) 

. ∇xL(λ,u, x) = x�[t]Q + λ�
t+1A − λ�[t] set= 0 =⇒ λt = A�λt+1 + Qx[t]

(2) 
Thus, the state equation runs forwards in . t : 

.x[t + 1] = Ax[t] + Bu[t], x(0) = x0 (18.14) 

and the costate equation runs backwards in . t : 

.λt−1 = A�λt + Qx[t] (18.15) 

The variable . λ is often called the costate, and (18.15) is referred to as the costate 
equation (or adjoint system, similar to definition in Chap. 11). Substituting (18.13) 
into (18.14) and (18.15) yields: 

. 

[
x[t + 1]

λt

]
=

[
A + BR−1B�A�Q −BR−1B�

−A�Q A�

] [
x[t]
λt−1

]

=⇒
[
x[t + 1]

λt+1

]
=

[
A −BR−1B�

−A�QA A�(I + QBR−1B�)

] [
x[t]
λt

]

Define .M1, M2 as: 

.M1 �
[
A + BR−1B�A�Q −BR−1B�

−A�Q A�
]

, M2 �
[

A −BR−1B�
−A�QA A�(I + QBR−1B�)

]
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It turns out .λt = Px[t + 1], where .P is the solution to the DARE from The-
orem 18.45. This can be shown by applying the Schur decomposition to .M1 and 
.M2, although we won’t delve into that here. We will see other uses of the Schur 
complement in the next chapter. 

Using .λt = Px[t + 1]: 

. u[t] = −R−1B�λt = −R−1B�Px[t + 1] = −R−1B�P(Ax[t] + Bu[t])

. =⇒ u[t] = −(R + B�PB)−1B�PAx[t]

by multiplying . R across and combining .u[t] terms. This is exactly the form of . u[t]
we derived in Theorem 18.45. 

The continuous-time (CT) case is similar. Let’s consider the finite-horizon sce-
nario this time: 

. min
u(t)

Ju(x0) � 1

2

∫ T

0
x�(t)Qx(t) + u�(t)Ru(t)dt + 1

2
x�(T )Q f x(T )

s.t. ẋ(t) = Ax(t) + Bu(t)

The Lagrangian, with dual variable .λ ∈ L2([0, T ];Rn), given by 

. L(λ,u, x) � Ju(x0) + 〈λ, Ax + Bu − ẋ〉L2

= Ju(x0) +
∫ T

0
λ�(s) (Ax(s) + Bu(s) − ẋ(s)) ds

. 

∇uL(λ,u, x) = u�(t)R + λ�(t)B
set= 0 =⇒ u(t) = −R−1B�λ(t)

∇xL(λ,u, x) = x�(t)Q + λ(T )A − ∇x

∫ T

0
λ�(s)ẋ(s)ds

and we use integration by parts: 

. 

∫ T

0
λ�(s)ẋ(s)ds = λ�(T )x(T ) − λ�(0)x0 −

∫ T

0
λ̇

�
(s)x(s)ds

. =⇒ ∇x

∫ T

0
λ�(s)ẋ(s)ds = −λ̇

�
(t)

. ∴ ∇xL(λ,u, x) set= 0 =⇒ λ̇(t) = −A�λ(t) − Qx(t) ∀t ∈ (0, T )

At .t = T : 
.∇xL(λ,u, x) set= 0 =⇒ λ(T ) = Q f x(T )
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Really, we need distribution theory and generalized functions to make concepts 
such as “.∇xL( f )” more precise. However, we won’t go through these details here, 
and use them informally. 

Thus, the optimality conditions are 

. 

[
ẋ
λ̇

]
=

[
A −BR−1B�

−Q −A�

] [
x
λ

]
with x(0) = x0 and λ(T ) = Q f x(T )

As in the DT case, we can show.λ(t) = P(t)x(t), where.P(t) satisfies the CARE 
from Theorem 18.47. 

18.2.4 LQR is a Stabilizing Controller 

So far, we have discussed the optimality of LQR control, but one might also wonder if 
the LQR actually stabilizes the plant.(A, B)? To show this, we connect our discussion 
back to Lyapunov stability, namely, stability analysis using the Lyapunov inequality. 

Recall Lyapunov equations of the form .A�P + PA + Q = 0 where .Q = Q�. 
Previous chapters on Lyapunov stability (see II) told us the following for the CT 
LTI case: Given any.Q � 0, ∃! P = P� � 0 s.t. .A�P + PA + Q = 0 iff.ẋ = Ax is 
globally asymptotically stable. We also saw how the Lyapunov Direct Method with 
Lyapunov function .x�Px can verify this. The steady-state continuous-time Riccati 
equation can be rewritten as a Lyapunov equation: 

. Q − PBR−1B�P + PA + A�P = 0, K � −R−1B�P

=⇒ Q + P(A + BK ) + A�P + K� (
B�P + RK

) = 0

=⇒ (A + BK )�P + P(A + BK ) + (
Q + K�RK

) = 0

where .Q + K�RK > 0 since .R � 0. Thus, by Lyapunov stability criteria above, 
.P = P� � 0 if and only if .A + BK is Hurwitz. 

So far, we saw several examples of matrix equations, including the Lyapunov 
equation .A�P + PA + Q = 0, which is linear in the variable .P (assuming known 
.A, Q). Both Lyapunov inequalities and Riccati inequalities are LMIs. In particular, 
Riccati inequalities can be shown to be equivalent to a linear form as follows. 

Definition 18.101 (Schur Complement) Riccati inequalities can be shown to be 
equivalent to a linear form as follows: 

.A�P + PA + PBR−1B�P + Q � 0, (18.16a) 

. ⇐⇒
[
A�P + PA + Q̃� Q̃ P B̃

B̃�P −I

]
� 0. (18.16b)
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where .Q � Q̃� Q̃ and .BR−1B� � B̃� B̃ can be defined because .Q = Q� � 0 and 
.R = R̃� � 0. The form (18.16b) is often called the Schur complement of (18.16a). 

Let’s try an alternative derivation, using these matrix equations, that . u(t) =
−R−1B�Px(t) is the control input that minimizes .Ju (x0) in the infinite-horizon 
CT LTI case. 

Lemma 18.20 (Comparison of Riccati Solutions) If .S � 0 and .Q2 � Q1 � 0, then 
the two solutions .P1 � 0, P2 � 0 to the respective Riccati equations 

. Q1 − P1SP1 + A�P1 + P1A = 0, Q2 − P2SP2 + A�P2 + P2A = 0,

are such that .P2 � P1 if and only if .A − SP2 is Hurwitz. 
Proof Let’s add the terms .(P1 − P2) S (P1 − P2) to the first Riccati equation. First 
expand 

. (P1 − P2) S (P1 − P2) = P1SP1 − P1SP2 − P2SP1 + P2SP2

We rewrite as 

. 
0 = Q1 − P1SP1 + A�P1 + P1A−P1SP2 − P2SP1 + P2SP2 +P1SP2 + P2SP1 − P2SP2

= Q1− (P1 − P2) S (P1 − P2) + (A − P2S)� P1 + P1 (A − SP2) + P2SP2
(18.17) 

For the second Riccati equation: 

.
0 = Q2 − P2SP2 + A�P2 + P2A + P2SP2 − P2SP2

= Q2 + (A − SP2)
� P2 + P2 (A − SP2) + P2SP2

(18.18) 

Subtracting (18.17) and (18.18) yields the Lyapunov equation 

. (A − SP2)
� (P2 − P1) + (P2 − P1) (A − SP2) + Q̃ = 0

where .Q̃ � (Q2 − Q1) + (P1 − P2) S (P1 − P2) � 0. Therefore, by the Lyapunov 
stability criteria above, .(P1 − P2) � 0 if .A − SP2 is Hurwitz. �

We can apply Lemma 18.20 when .S � BR−1B� � 0 and .Q1 � Q. The Riccati 
equation becomes: 

. Q − P1BR−1B�P1 + A�P1 + P1A = 0.

Considering: 

.Q + K�K + P2BK + K�B�P2 + A�P2 + P2A = 0,

=⇒ Q +
(
P2BR−1 + K�)

R
(
R−1B�P2 + K

)

︸ ︷︷ ︸
�Q2

− P2BR−1B�P2 + A�P2 + P2A = 0.
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Note that .Q2 � Q1 since .R � 0. Choose .K ∗ � −R−1B�P1, which makes . A −
SP1 = A − BR−1B�P1 Hurwitz. Then, for any other .K � −R−1B�P2 �= K ∗ that 
stabilizes .A − SP2, Lemma 18.20 states .P2 � P1. 

Thus, .x�P2x ≥ x�P1x for all .x∈R
n , i.e., the cost-to-go under .u(t) = Kx(t) is 

always larger than the cost-to-go under.u(t) = K ∗x(t). Hence, the minimum cost. Ju
is achieved with .u(t) = −R−1B�P1x(t). 

18.2.5 Output-Feedback Case 

LQR problems can also be posed for output-feedback control, i.e., when . C �= I
and.u = Ky. First, recall the general LTI system.ẋ(t) = Ax(t) + Bu(t) (. x[t + 1] =
Ax[t] + Bu[t] in DT) with measurement equation .y(t) = Cx(t) + Du(t) (i.e., 
.y[t] = Cx[t] + Du[t] in DT). The performance index becomes: 

. Ju(x0) =
∫ ∞

0
(y�(t)Qy(t) + u�(t)Ru(t)) dt

and similarly for the finite-horizon and DT cases. 
Note that substituting .y(t) = Cx(t) + Du(t) into .Ju(x0) gives us the usual per-

formance index in terms of . x and . u: 

. Ju(x0) =
∫ ∞

0

(
x�(t)C�QCx(t) + u�(t)(R + D�QD)u(t) + 2x�(t)C�QDu(t)

)
dt

=
∫ ∞

0

[
x�(t) u�(t)

] [
C�QC C�QD
D�QC R + D�QD

] [
x(t)
u(t)

]
dt

In fact, output-feedback LQR is a clear application of the LQR problem (18.8) with 
.S �= 0. 

A corresponding CARE can be derived. 

. A�P + PA + C�QC − (PB + C�QD)(R + D�QD)−1(PB + C�QD)� = 0
(18.19) 

Lemma 18.21 Suppose CARE (18.19) has a symmetric solution . P. Then 

. R + H�(s)QH(s) = (I + G(s))�(R + D�QD)(I + G(s))

where .H(s) � (C(s I − A)−1B + D and .G(s) = K (s I − A)−1B with control gain 
.K defined as: 

.K � (R + D�QD)−1(B�P + D�QC) (18.20) 

Proof Using the definition of . K ,  (18.19) can be rewritten as



222 18 The Linear Quadratic Regulator

. A�P + PA + C�QC − K�(R + D�QD)K = 0

. =⇒ −(−s I − A)�P − P(s I − A) + C�QC − K�(R + D�QD)K = 0

Multiply on the left side by.B�(−s I − A)−� and on the right side by.(s I − A)−1B: 

. =⇒ −B�P(s I − A)−1B − B�(−s I − A)−�PB

+ B�(−s I − A)−�C�QC − (K�(R + D�QD)K )(s I − A)−1B = 0

Note that .B�P = (R + D�QD)K − D�QC . Thus, we get 

. (D�QC − (R + D�QD)K )(s I − A)−1B − B�(−s I − A)−�(K�(R + D�QD) − C�QD)

+ B�(−s I − A)−�C�QC − K�(R + D�QD)K (s I − A)−1B = 0

Algebraic manipulation of this expression, using .C(s I − A)−1B = H(s) − D and 
.K (s I − A)−1B = J (s) − I yields the desired result. �

Remark 18.35 Lemma 18.21 is sometimes called the Kalman-Yakubovich-Popov 
(KYP) Lemma. It essentially checks whether the quadratic cost functional . Ju(x0)
is nonnegative or nonpositive for all signals .x(t) and .u(t) satisfying the system 
dynamics. Several variations of the return-difference matrix and KYP lemma (and 
another result called the KYP inequality) have a lot of application to robust control 
and stochastic control. We will see different variations of the KYP lemma and KYP 
inequality in the following chapters. 

18.3 Solving Riccati Equations 

So far, in Sect. 18.2, we have expressed the LQR optimal control problem in terms 
of several types of algebraic Riccati equations. To complete our derivation, we need 
to actually solve these equations. For simplicity, we will focus our discussion on the 
continuous-time, infinite horizon case. The general CARE can be represented as 

.A�P + PA − PSP + Q = 0 (18.21) 

where .Q � 0 and .S � 0. In the context of the LQR problem, . S can be defined as 
.S = BR−1B� in order to obtain the CARE (18.12). There are several ways to solve 
the general CARE (18.21).
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18.3.1 With the Hamiltonian Matrix 

We begin with a definition of a Hamiltonian matrix, which is a special type of matrix 
that is convenient for the analysis of Riccati equations. 

Definition 18.102 (Hamiltonian Matrix) Define the matrix.M �
[
M11 M12

M21 M22

]
,. Mi j ∈

R
n×n, M ∈ R

2n×2n . Then .M is Hamiltonian if it satisfies the property 

.JM J = M�, where J �
[
0 I

−I 0

]
(18.22) 

Remark 18.36 The matrix .J in Definition 18.102 satisfies several convenient 
properties, including .J−1 = J� = −J . The condition (18.22) can be rewritten as 
.JM + M� J = 0. 

Based  on (18.21), let’s construct a Hamiltonian matrix 

.M �
[

A −BR−1B�
−Q −A�

]
(18.23) 

Our general method of solving the CARE from Theorem 18.47 is as follows. First, 
let .U, V ∈R

n be matrices such that 

. 

[
U
V

]
≡

⎡

⎢⎢⎢⎢⎢⎢⎣

U

V

⎤

⎥⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

u11 · · · u1n
...

. . .
...

un1 · · · unn
v11 · · · v1n
...

. . .
...

vn1 · · · vnn

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

have columns which span a .M-invariant subspace of .R2n , i.e., 

.M

[
U
V

]
=

[
U
V

]
Z (18.24) 

where.Z ∈ R
n×n and the eigenvalues of. Z are a subset of the eigenvalues of. M .  Now,  

if .U is nonsingular, (18.24) yields 

. 

{
AU − SV = UZ
−QU − A�V = V Z

=⇒ 0 = Q + A�VU−1 + VU−1A − VU−1SVU−1

which is precisely in the form of the general CARE (18.21)  i  f .P � VU−1 . Thus, 
.VU−1 is a solution to (18.21).
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There are several additional questions we must address to be able to use this 
approach. Namely, how to choose . U , . V

• which spans the .M-invariant subspace? 
• such that .U is nonsingular? 
• such that .P stabilizes .(A, B)? 

To address these questions, we need a few more properties of the Hamiltonian matrix. 

Lemma 18.22 (Eigenvalue Pairing) If .λ ∈ C is an eigenvalue of . M, then .−λ̄ is also 
an eigenvalue. 

Lemma 18.23 (Eigenvector Relationship for Hamiltonian Matrices) If. v is an eigen-
vector of . M, then .Jv is an eigenvector of .M�. 

Lemma 18.24 (Characterization of Hamiltonian Matrices).M is Hamiltonian if and 
only if .M22 = −M�

11 and .M12, M21 are both symmetric. 

Proof Recall that .J =
[
0 I

−I 0

]
, and .J 2 = −

[
I 0
0 I

]
(and this resembles the imagi-

nary unit . j2 = −1, perhaps one of the reasons why this matrix is named . J ). 
It is easy to compute that we have 

.JM J =
[−M22 M21

M12 −M11

]
. (18.25) 

Therefore, .JM J = M� if and only if .M12, .M21 is symmetric and .M22 = −M�
11. �

Lemma 18.25 (Negative Eigenvalue Subspace) Let .M− be the subspace of . R2n

spanned by eigenvectors corresponding to .Re(λi (M)) < 0. Then .M− is an .M-
invariant subspace of .R2n. 

Proof This follows directly from eigenvector-eigenvalue relationship. Define 
.{v−

1 , . . . , v−
k }, .k ≤ n to be the eigenvectors corresponding to .Re(λi (M)) < 0. Then 

.v ∈ M− can be expressed as v = α1v−
1 + . . . + αkv−

k , which means . Mv = α1M
v−
1 + . . . + αkMv−

k = α1λ1v−
1 + . . . + αkλkv−

k ∈ span{v−
1 , . . . , v−

k } � M−. �

Remark 18.37 Suppose.M as defined by (18.23) is such that.Re(λi (M)) �= 0 for all 
.i = 1, . . . , 2n. This means the value of . k in Lemma 18.25 is exactly equal to . n, and 
we have the same number of negative eigenvalues as positive ones, by Lemma 18.22. 
This further means that .M has at least two distinct Jordan blocks of the form 

.M
[
V+ V−] = [

V+ V−] [
J+
M

J−
M

]
, (18.26) 

where .J+
M , J−

M ∈ C
n×n, V+, V− ∈ C

2n×n and .J−
M and .−J+

M are Hurwitz.
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Definition 18.103 (Sylvester Equation)  A  Sylvester equation, like the Lyapunov and 
Riccati equations, is another type of matrix equation. It is given b y

. AX + XB = C A ∈ C
n×n, B ∈ C

m×m,C ∈ C
n×m

where. X is the variable to be solved. The Sylvester equation has a unique solution. X ∈
C

n×m only when. A and.−B have no common eigenvalues. Moreover,. AX + XB = 0
admits only the solution .X = 0. 

Lemma 18.26 Let .V− �
[
X1

X2

]
be a decomposition of the .V− from (18.26). If . X1

is nonsingular, then .P � X2X
−1
1 solves (18.21). 

Proof Because.M− is .M-invariant, we have that .MV− = V− J−
M where.J−

M is Hur-
witz (this fact is also observed in (18.26)). Rote calculation gives us 

. MV− = V− J−
M =⇒

[
A −S

−Q −A�

] [
X1

X2

]
=

[
X1

X2

]
J−
M

=⇒
[

A −S
−Q −A�

] [
I
P

]
=

[
X1

X2

]
J−
M X−1

1 =
[
I
P

]
X1 J

−
M X−1

1

=⇒ [
P −I

] [
A −S

−Q −A�

] [
I
P

]
= [

P −I
] [

I
P

]
X1 J

−
M X−1

1 = 0

Expanding the left side of the equation gives us .A�P + PA − PSP + Q = 0 and 
indeed, .P satisfies (18.21). �

Lemma 18.27 The .P obtained from Lemma 18.26 is real, symmetric, and uniquely 
stabilizing. 

Proof (1) Since.M is real, conjugate.v̄ ∈ C
2n of complex eigenvector.v ∈ C

2n is also 
an eigenvector. Thus, rearranging the existing eigenvectors via some permutation 
matrix .� will yield 

. V̄− =
[
X̄1

X̄2

]
=

[
X1

X2

]
� =

[
X1�

X2�

]

. =⇒ P̄ = X̄2 X̄
−1
1 = X2��−1X−1

1 = X2X
−1
1 = P ∴ P is real.

(2) .P is symmetric if .P = X2X
−1
1 = X−�

1 X�
2 = P� =⇒ X�

1 X2 − X�
2 X1 = 0, 

so we will prove this. 
Let’s call .T � X�

1 X2 − X�
2 X1.  Not  e

.T = (V−)� JV− = [
X�
1 X�

2

] [
0 I

−I 0

] [
X1

X2

]
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Since .M is Hamiltonian, . JM + M� J = 0

. =⇒ (V−)� JMV− + (V−)�M� JV− = 0

Because .MV− = V− J−
M , (V−)�M� = (J−

M)�(V−)�, .M− is .M-invariant. Thus, 
.T J−

M + (J−
M)�T = 0. Because .J−

M is Hurwitz, the only solution to this Lyapunov 
equation is .T = 0. (Alternatively, this equation can be viewed as a Sylvester equa-
tion, and its only solution is .T = 0). Thus, .P is symmetric. 

(3) Similar to the proof of Lemma 18.26, 

. 
[
I 0

] [
A −S

−Q −A�

] [
I
P

]
= [

I 0
] [

I
P

]
X1 J

−
M X−1

1 =⇒ A − SP = X1 J
−
M X−1

1

Therefore, .A − SP is stable because it is similar to .J−
M , which is a Hurwitz matrix. 

To show uniqueness, assume there is a different .P̃ which is a stabilizing solution to 
(18.21). 

. 

0 = (A�P + PA − PSP + Q) − (A� P̃ + P̃ A − P̃ S P̃ + Q)

= A�(P − P̃) + (P − P̃)A − PSP + P̃ S P̃ − PS P̃ + PS P̃

= A�(P − P̃) + (P − P̃)A − PS(P − P̃) − (P − P̃)S P̃

= (A − SP)�(P − P̃) + (P − P̃)(A − SP)

This is a Sylvester equation with matrix variable.(P − P̃) because.A − SP and. A −
SP are both Hurwitz, and so.A − SP has all negative eigenvalues while. −(A − S P̃)

has all positive eigenvalues. Clearly, there are no shared eigenvalues. Thus, the only 
solution is .P − P̃ = 0, which means .P = P̃ . Thus, .P is unique. �

Now consider an example application of the Hamiltonian matrix method to fully 
solve a LQR problem. 

Example 18.35 Consider.ẋ(t) = Ax(t) + Bu(t) s.t..A =
[
0 2
5 0

]
and.B =

[
0
3

]
. Sup-

pose we want to minimize 

. Ju(x0) =
∫ ∞

0
x�(t)

[
1 0
0 1

]
x(t) + u�(t)u(t)dt

Our Hamiltonian matrix (18.23) is given by 

.M =
[

A −BR−1B�
−Q −A�

]
=

⎡

⎢⎢⎣

0 2 0 0
5 0 0 −9

−1 0 0 −5
0 −1 −2 0

⎤

⎥⎥⎦
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Get .M− via eigenvector decomposition (MATLAB) 

. J =

⎡

⎢⎢⎣

4.8080
2.4255

−4.8080
−2.4255

⎤

⎥⎥⎦ , V = [
V+
1 V+

2 V−
1 V−

2

]

Split .
[
V−
1 V−

2

]
into .

[
X1

X2

]
s.t. .X−1

1 exists. For this example: 

. 
[
V−
1 V−

2

] =

⎡

⎢⎢⎣

−0.3624 0.5501
0.8713 −0.6672
0.1993 0.4862
0.2641 0.1258

⎤

⎥⎥⎦ =
[
X1
X2

]
, X1 =

[−0.3624 0.5501
0.8713 −0.6672

]
=⇒ X−1

1 exists.

(In fact, for a controllable and observable system, .X1 can be shown to be always 
invertible.) 

Thus, .P � X2X
−1
1 =

[
0.1993 0.4862
0.2641 0.1258

] [
2.8089 2.3161
3.6683 1.5259

]
=

[
2.3432 1.2034
1.2034 0.8037

]
. 

One can check .P = P� � 0. Moreover, one can easily verify that the same result 
.K = −R−1B�P = lqr(A, B, Q, R, 0) comes from using MATLAB’s built-in lqr 
command. �



Chapter 19 
Linear Robust and Stochastic Control 

The general optimization problem for LQR, as discussed in Chap. 18 can alternatively 
be written as follows: 

. 

⎧
⎪⎪⎨

⎪⎪⎩

min
u∈U

Ju(x0)

s.t. ẋ(t) = Ax(t) + Bu(t)

( or x[t + 1] = Ax[t] + Bu[t])

=⇒

⎧
⎪⎪⎨

⎪⎪⎩

min
K (t)(or K [t])

Ju(x0)

s.t. ẋ(t) = Ax(t) + Bu(t),u(t) = K (t)x(t)

( or x[t + 1] = Ax[t] + Bu[t],u[t] = K [t]x[t])

and in the specific infinite-horizon case, this can be written generically as 

.

{
min
K

∥
∥S(H, K )

∥
∥

s.t. algebraic Riccati equation
(19.1) 

where .S(H, K ) is the closed-loop transfer function from .u → x (or .u → y in the 
output-feedback case). The norm.

∥
∥S(H, K )

∥
∥ can be used to represent the weighted 

sum associated with the cost functional (18.8)  (or  (18.1) in the DT case). Thus, a 
natural extension to other optimal control problems arises depending on different 
choices of this norm. This chapter focuses on two particular extensions–.H2 and . H∞
optimal control–as well as an introduction to stochastic optimal control via the linear 
quadratic Gaussian (LQG) framework. 

Following the notation of (19.1), the .H2 and .H∞ optimal control problems can 
generally be posed in the following way. 
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. H∞ control � min
K∈H∞

∥
∥S(H, K )

∥
∥
H∞

, H2 control �
{

min
K∈H∞

∥
∥S(H, K )

∥
∥
H2

s.t. S(H, K )∈H∞
(19.2) 

The remainder of this chapter is dedicated to defining each part of (19.2), such as 
the .H∞ space, as well as the .H∞ and .H2 system norms. More importantly, we will 
rewrite both optimization problems so that they can be tractably solved using standard 
computational tools like CVX and YALMIP. Our main tool for these reformulations 
are linear matrix inequalities (LMIs) (which we’ve already seen in Chap. 17). Using 
LMIs enables more flexible design of controllers, including being able to handle 
robustness constraints, structural constraints (in the case of distributed/network con-
trol), and maintenance of performance guarantees. As such, .H2 and .H∞ optimal 
control typically has wide applicability to the subfield of robust control. 

19.1 Stabilization Using LMIs 

We first investigate a LMI-based reformulation for the generic state-feedback sta-
bilization problem studied in Chap. 17: find (static) control gain .K ∈R

m×n s.t. 
.u(t) = Kx(t) which makes the closed-loop system .ẋ(t) = (A + BK )x(t) asymp-
totically stable. As we’ve seen using the Lyapunov inequality, this is equivalent to 
finding a.P = P� � 0 such that.(A + BK )�P + P(A + BK ) ≺ 0. Note that. P � 0
if and only if .P−1 � 0, and so we can multiply across the entire inequality by . P−1

without changing the order of the inequality: 

. P−1A� + P−1K�B� + AP−1 + BK P−1 ≺ 0

=⇒ X A� + Z�B� + AX + BZ ≺ 0 (19.3) 

Therefore, CT system.ẋ = Ax + Bu is stabilizable by.u = Kx iff .X = X� � 0 and 
.Z ∈ R

m×n such that (19.3) holds. The stabilizing feedback gain is than given by 
.K � Z X−1. 

Lemma 19.28 (Finsler) Let .x∈R
n, and .Z = Z�, Q = Q� ∈ R

n×n. The following 
identities are equivalent. 

(a) .x�Zx = 0 and . x 	= 0 =⇒ x�Qx ≺ 0
(b) . ∃μ > 0 s.t. Q − μZ ≺ 0

In addition, if .Z � 0 so that we can decompose .Z = Y�Y for some .Y ∈ R
m×n: 

(1) . x�Qx ≺ 0 ∀x ∈ R
n \ {0} s.t. Yx = 0

(2) . ∃μ > 0 s.t. Q − μY�Y ≺ 0
(3) .∃X ∈ R

m×m s.t. Q + XY + Y�X� ≺ 0
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Note that using the Lyapunov inequality to check closed-loop stability is the same 
form as condition (3) in Lemma 19.28: .A�P + PA + K�B�P + PBK ≺ 0.  The  
equivalence between (2) and (3) lets us eliminate . K : 

. 

∃μ > 0 s.t. A�P + PA − μPBB�P ≺ 0

=⇒ A�(μP) + (μP)A − (μP)BB�(μP) ≺ 0

=⇒ Ã� P̃ + P̃ Ã − P̃ BB� P̃ ≺ 0.

where .P̃ � μP is still positive definite because .μ> 0. This is not a LMI, but can be 
turned into one by simply multiplying across both sides via.P̃−1 ≺ 0 to get. P̃−1A� +
AP̃−1 − BB� ≺ 0. Later, we will see some common techniques to transform general 
matrix inequalities to LMIs, e.g., using the Schur complement. 

Now let’s consider again the state-feedback LQR studied in Chap. 18.  Using  
transfer function/block-diagram form, the full loop gain from. u to. v is. G(s) � V (s)

U (s) =
K (s I − A)−1B. 

Adding and subtracting .−s I in the CARE (18.12) tells us: 

. − (s I − A)�P − P(s I − A) − PBR−1B�P + Q = 0

Premultipling across by .B��(−s)� and postmultipling by .�(s)B let’s us simplify 
the above to 

. B�P�(s)B + B��(−s)�PB + B��(−s)�PBR−1B�P�(s)B = +B��(−s)�Q�(s)B + R

Note .G(s) = K (s I − A)−1B = K�B = R−1B�P�B, and .H(s) = �(s)B. Fur-
ther simplifying yields: 

.(I + G)∼R(I + G) = R + B��∼Q�B (19.4) 

where we use notation .∼ for .G∼(s)�G�(−s) for any generic transfer function . G. 
The transfer matrix .I + G(s) is often called the return-difference matrix because 
.G(s)u is the difference between original signal . u and the signal . v “returning” from 
the closed loop. In fact: 

. det(I + G(s)) = det(I + K (s I − A)−1B) = det(I + BK (s I − A)−1) (19.5) 

comes from the property . det(I + AB) = det(I + BA)

. (3.5) = det(s I − A)−1 det(s I − A + BK ) since det(AB) = det A det B

but.det(s I − A + BK ) is the closed-loop characteristic polynomial, while. det(s I −
A) is the open-loop characteristic polynomial.
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The relation (19.4) is another type of the KYP equality we’ve seen in Sect. 18.2. 
The KYP equality can be rewritten as an inequality condition by noticing that 
.B��∼Q�B � 0 and .�̃B � 0: 

. (I + G(s))�R(I + G(s)) � R

This form of the KYP makes it easier to handle in the context of LMIs. 

19.2 Hardy Spaces and System Norms 

We address two main questions in this section. First, how can we define the norm of 
a system, i.e., what do the norms in (19.2) mean? And how do we compute norms in 
the frequency domain? 

19.2.1 Signal Norms Review 

Recall that for time-domain signals . x we defined the .L2 and .L∞ norms as: 

.

‖x‖L2 �
(∫ ∞

−∞
‖x(τ )‖22 dτ

) 1
2

,

‖x‖L∞ � ess sup
t

‖x(t)‖∞ � inf{B | ‖x(t)‖∞ ≤ B a.e.}
(19.6) 

where “a.e” stands for almost everywhere except on sets of measure . 0.  We  also  s  ay
that .x∈L2(R,Rn) space or .L∞(R,Rn) space if .L2 and .L∞ norms are defined. 

We can extend the above norm spaces for complex-valued and matrix-valued 
signals. A complex matrix function .F is in .L2( jR) space if the .L2( jR) norm given 
below is bounded: 

.‖F‖L2 �
(∫ ∞

−∞
‖F(σ + jω)‖2F dω

) 1
2

(19.7) 

All real rational strictly proper transfer matrices with no poles on the imaginary 
axis form a (not closed) subspace of .L2( jR). The matrix norm inside the integral 
in (19.7)  is  the  Frobenius norm of a matrix which is defined for a matrix A as:

.‖A‖F =
√∑n

i=1

∑n
j=1 |ai j |2. 

Likewise, a complex matrix function.F is in .L∞( jR) space if the .L∞( jR) norm 
given below is bounded: 

.‖F‖L∞ � ess sup
σ,ω∈R

σmax (F(σ + jω)) . (19.8)
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where.σmax is the largest singular value. The space of all proper real rational transfer 
matrices with no poles on the imaginary axis is a subspace of .L∞. Note that while 
.L2 is a Hilbert space (because it can be induced by an inner product), .L∞ is only a 
Banach space. 

19.2.2 System Norms 

We reintroduce external disturbances and auxiliary output signals .z,w for our dis-
cussion, and focus on systems that are specifically in the configuration on the left 
of Fig. 17.1. As we’ve seen before, it is represented by the following set of equations 
(in the frequency domain): 

.

[
z
y

]

=
[
H11 H12

H21 H22

] [
w
u

]

, u = Ky (19.9) 

We would like to define a complex mapping with respect to. z to formulate the control 
problem. 

Definition 19.104 (Linear Fractional Transformation)  Le  t .H be a complex matrix 
partitioned as Eq. (19.9). The (lower) Linear Fractional Transformation (LFT) 
.S(H, K ) is given by: 

.S(H, K ) � z
w

= H11 + H12 (I − K H22)
−1 K H21 (19.10) 

provided the well-posedness conditions (.(I − K H22)
−1 is invertible, etc., as in Chap. 

17) are satisfied. 

The LFT is useful because it shows how the nominal system behavior, represented 
by .H11, is influenced by control perturbations. This framework allows us to design 
a controller .K that not only stabilizes the system but also maximizes some type of 
“system performance”. This is similar to the LQR problem from Chap. 18, where the 
system performance was quantified by a weighted sum of terms that were quadratic 
in . x and . u. By representing uncertainties and disturbances explicitly, the LFT helps 
in optimizing both the robustness and performance of the control system. 

Definition 19.105 (.H2 Hardy Space)  Th  e.H2 Hardy space is a (closed) subspace of 
.L2( jR) consisting of all matrix functions . f : C → C

n×m which are analytic (more 
simply,.C∞ and bounded) on the open right-half plane.C+, with norm.‖ · ‖H2 defined 
as: 

.‖H‖H2 � sup
σ>0

{(
1

2π

∫ ∞

−∞
‖H(σ + jω)‖2F dω

) 1
2

}

(19.11)
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Moreover, the orthogonal complement.H⊥
2 of.H2 is the subspace.L2 that contains all 

matrix functions . f : C → C
n×m which are analytic on the open left-half plane .C

−, 
with norm.‖ · ‖H⊥

2
defined as: 

.‖H‖H⊥
2

� sup
σ<0

{(
1

2π

∫ ∞

−∞
‖H(σ + jω)‖2F dω

) 1
2

}

(19.12) 

Definition 19.106 (.H∞ Hardy Space)  Th  e.H∞ Hardy space is a subspace of. L2( jR)

which consists of all matrix functions. f : C → C
n×m that are analytic (more simply, 

.C∞ and bounded) on the open right-half plane .C
+, with norm.‖ · ‖H∞ defined as: 

.‖F‖H∞= ess sup
σ>0

σmax (F(σ + jω)) . (19.13) 

The equations for .H2 and.H∞ can be further simplified using an important result 
from complex analysis called the Maximum Modulus Theorem, stated below without 
proof. 

Theorem 19.48 (Maximum Modulus Theorem) If scalar-valued. f (s) is defined and 
continuous on a closed-bounded set .S ⊂ C and analytic on the interior of . S, then 
.| f (s)| cannot attain the maximum in the interior of . S unless . f (s) is a constant. 

Theorem 19.48 implies that.| f (s)| can only achieve its maximum on the boundary 
of . S. Applying this to the definition of .H2 and .H∞ we get: 

.‖H‖H2 �
(

1

2π

∫ ∞

−∞
‖H( jω)‖2F dω

) 1
2

(19.14a) 

.‖H‖H∞ � ess sup
ω∈R

σmax (H( jω)) (19.14b) 

since the boundary of .{s ∈C | Re(s)> 0} is .{s ∈C | Re(s)= 0}. Moreover, in 
(19.14a), the Frobenius norm .‖H( jω)‖F of the matrix .H( jω) sums the squares 
of its elements, or, equivalently, the squares of the singular values. The definition 
translates to the trace of the product of .H and its conjugate transpose .H∗.  The  
expression (19.14a) integrates the squared Frobenius norm across all frequencies, 
effectively capturing the total energy of the system across the entire frequency spec-
trum. 

The .H2 norm defines the steady-state variance of output signal y when . x0 = 0
and .u(t)=w(t). To intuitively understand what the .H2 of a represents it’s useful to 
interpret it as the measure of the system’s response energy to stochastic inputs (e.g., 
Gaussian white noise). It effectively measures the expected energy of the system’s 
output due to noisy input. We will discuss the physical interpretation of the.H2 norm 
in more detail in Sect. 19.6 after establishing stochastic linear systems in Sect. 19.4. 

The.H∞ norm of a system on the other hand measures the worst-case amplification 
of disturbances through the system. It considers the maximum gain (amplification)
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from the input to the output over all frequencies. Moreover, the .H∞ norm can be 
defined for more general distributions of noise. w than Gaussian. The gain of a system 
.H = Y

U is defined by the .H∞ norm: 

. max
w 	=0

‖y‖L2

‖u‖L2

= ‖H‖H∞ (19.15) 

Remark 19.38 .RH∞, which is the space of real, rational proper transfer functions 
we defined in Definition 17.98, is a subspace of .H∞. In the same manner we can 
define other spaces for real-rational matrices: 

• .RL2: The space of real rational, strictly proper transfer matrices with no poles on 
imaginary axis. 

• .RH2: The space of real rational, strictly proper, stable transfer matrices. 
• .RH⊥

2 : The space of real rational, strictly proper transfer matrices with no poles in 
.Re s < 0. 

• .RL∞: The space of real rational, proper transfer matrices with no poles on imag-
inary axis. 

• .RH∞: The space of real rational, proper, stable transfer matrices. 

To compute these system norms in the frequency domain, we invoke the following 
Payley-Wiener lemma and Parseval identity to investigate the connection between 
Hilbert spaces in the time domain and frequency domain. 

Lemma 19.29 (Paley-Wiener) The Fourier transform is a Hilbert space isomor-
phism from .L2(−∞,∞) onto .L2.  It  maps .L2[0,∞) onto .H2 and .L2(−∞, 0] onto 
.H⊥

2 . 

Lemma 19.29 essentially says that .H2 is just the set of Laplace transforms of 
signals in .L2[0,∞), i.e., of signals on .t ≥ 0 of finite energy. 

Lemma 19.30 (Parseval’s Identity) For . f, g ∈ L2(R;R), 

.

∫ ∞

−∞
f (t)g(t) dt = 1

2π

∫ ∞

−∞
F( jω)G∗( jω) dω (19.16) 

where.F,G are the Fourier transforms of. f, g, i.e.,.F( jω) � F{ f (t)} = ∫ ∞
−∞ f (t)e− jωt dt, 

and .G∗( jω) is the complex conjugate transpose of .G( jω). 

Remark 19.39 A caveat: neither.RH∞ nor.RH2 are complete Banach spaces (i.e., 
the limit of a sequence of state-space realizations may itself not have a state-space 
realization). 

Lemma 19.31 (Computation of the .H2 Norm) Consider the transfer matrix . H(s)
in .RH∞ with realization .(A, B,C, 0) with . A Hurwitz and .D = 0 to make it strictly 
proper. Then 

.‖H‖2H2
= tr(B�WoB) = tr(CWcC

�) (19.17) 

where .Wc, .Wo are the controllability, observability Gramians of the system . H.
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Proof We’ve seen before that the impulse response of .H can be computed as 

. h(t) =
{
CeAt B if t ≥ 0

0 else

Plugging this into the formula of .H2-norm (and with Lemma 19.30): 

.‖H‖2H2
=

∫ ∞

0
tr(h�(t)h(t)) dt =

{∫ ∞
0 tr(B�eA�tC�CeAt B) dt

∫ ∞
0 tr(CeAt BB�eA�tC�) dt

(19.18) 

where the two cases are equivalent by the cyclic property of the trace. The top case 
of (19.18) is precisely .tr(B�WoB) while the bottom case is equal to 
.tr(CWcC�). �

Unlike the .H2 norm, there is no straightforward way to compute the .H∞ norm 
by hand. Instead, a more common approach is to rewrite the norm .‖H‖H∞ as an 
optimization problem.min γ s.t..‖H‖H∞ ≤ γ and to further convexify this constraint 
by using LMIs. In fact, this approach can be used for computing .H2 norms too, and 
is more appealing to use than Lemma 19.31 in .H2 optimal control problems where 
the Gramians of the LFT are difficult to compute. 

Our general pipelines for .H∞ and .H2 control are summarized as follows 

. min
K∈H∞

∥
∥S(H, K )

∥
∥H∞ =⇒

⎧
⎨

⎩

min
K∈H∞

γ

s.t.
∥
∥S(H, K )

∥
∥H∞ ≤ γ

=⇒

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min
K∈H∞

γ

s.t. linear matrix inequalities

equivalent to condition
∥
∥S(H, K )

∥
∥H∞ ≤ γ

. 

⎧
⎨

⎩

min
K∈H∞

∥
∥S(H, K )

∥
∥H2

s.t. S(H, K )∈H∞
=⇒

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min
K∈H∞

γ

s.t.
∥
∥S(H, K )

∥
∥H2

S(H, K ) ∈H∞

=⇒

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min
K∈H∞

γ

s.t. linear matrix inequalities

equivalent to condition
∥
∥S(H, K )

∥
∥H2

≤ γ

In the next section, we will describe what are the exact LMIs used in the pipeline 
for the .H∞ case. The .H2 case is treated in Sect. 19.6. 

Remark 19.40 One could use the MATLAB commands h2norm(sys) and 
hinfnorm(sys) to compute the .H2 and .H∞ norms, respectively. 

19.3 .H∞ Optimal Control 

We begin by stating the analogous.H∞ norm computation version of Lemma 19.31.
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Lemma 19.32 (Computation of the.H∞ Norm) Let.γ > 0 and let.H(s) be a transfer 
matrix in .RH∞ with realization .(A, B,C, D) with .A Hurwitz and no poles on the 
. jω axis. 

Then .‖H‖H∞ < γ if and only if .σmax(D) < γ and the Hamiltonian matrix 

.M �
[

A + BR−1D�C BR−1B�
−C�(I + DR−1D�)C −(A + BR−1D�C)�

]

, (19.19) 

where .R � γ2 I − D�D, has no eigenvalues . λ such that .Re λ = 0. 

Remark 19.41 By dividing through by. γ, we can rewrite.‖H‖H∞ < γ as.
∥
∥
∥ 1

γ
H

∥
∥
∥
H∞

< 1. 

Thus, we can typically assume WLOG that .γ = 1. 

While we can use methods such as Sect. 18.3 to compute (19.19), a more common 
alternative approach to compute the.H∞ norm in general is to formulate the problem 
using LMIs. 

Lemma 19.33 (Bounded Real KYP Lemma) Let .H(s) be a transfer matrix defined 
the same way as in Lemma 19.32. Then the following are equivalent. 

1. . ‖H‖H∞ ≤ γ
2. .∃P = P� � 0 such that 

.

[
A�P + PA PB

B�P −γ I

]

+ 1

γ

[
C�
D�

]
[
C D

] ≺ 0 (19.20) 

Proof The direction that (1) implies (2) can actually be proven in a similar fashion 
to Lemma 19.32. We will now prove the direction that (2) implies (1). Using (19.15), 
note that 1) is equivalent to the expression .‖y‖L2 ≤ γ‖u‖L2 . Because . A is Hurwitz, 
.∃P = P� � 0 such that .A�P + PA≺ 0. Because the inequality (19.20) is strict, 
there exists some .ε > 0 such that: 

.

[
A�P + PA PB

B�P −(γ − ε)I

]

+ 1

γ

[
C�
D�

]
[
C D

] � 0 (19.21) 

which comes from adding .

[
0 0
0 −εI

]

to the left side of the expression. Then for any 

state and control trajectories .x(t) and .u(t) of the system modeled by .H(s),  (19.21) 
is equivalent to:



238 19 Linear Robust and Stochastic Control

. 0 ≥
[
x(t)
u(t)

]� ([
A�P + PA PB

B�P −(γ − ε)I

] [
x(t)
u(t)

]

+ 1

γ

[
x(t)
u(t)

]� [
C�
D�

]
[
C D

]
) [

x(t)
u(t)

]

=
[
x(t)
u(t)

]� [
A�P + PA PB

B�P −(γ − ε)I

] [
x(t)
u(t)

]

+ 1

γ
y�(t)y(t)

= x�(A�P + PA)x + x�PBu + u�B�Px − (γ − ε)u�u + 1

γ
y�y

= (Ax + Bu)�Px + x�P(Ax + Bu) − (γ − ε)u�u + 1

γ
y�y (19.22) 

Note that.u�u= ‖u‖2L2
and likewise for.y�y. Choose function.V (x) � x�Px. Then 

. (19.22) = V̇ (x(t)) − (γ − ε)‖u(t)‖2 L2 
+ 

1 

γ
‖y( t)‖2L2

Integrating both sides of this inequality from. 0 to some time . T yields 

. 0 ≥
∫ T

0

(

V̇ (x(t)) − (γ − ε)‖u(t)‖2L2
+ 1

γ
‖y(t)‖2L2

)

dt.

Because. A is Hurwitz,.limT→∞ x(T ) = 0 =⇒ limT→∞ V (x(T )) = 0. This implies 

. 0 ≥ −(γ − ε)

∫ ∞

0
‖u(t)‖2L2

dt + 1

γ

∫ ∞

0
‖y(t)‖2L2

dt

=⇒ 0 ≥ −(γ − ε)‖u‖2L2
+ 1

γ
‖y‖2L2

Thus, .‖y‖2L2
≤ (γ2 − γε)‖u‖2L2

. By the equivalence from (19.15), . ‖H‖2H∞ ≤ (γ2 −
γε) ≤ γ2. Taking the square root of both sides yields the desired condition (1). �

Now, we are ready to take the first step in rewriting the original .H∞ optimal 
control problem. Note that under state-feedback: 

. S(H, K ) =
[

A + B2K B1

C1 + D12K D11

]

, where H �

⎡

⎣
A B1 B2

C1 D11 D12

C2 D21 D22

⎤

⎦

By the Bounded Real KYP Lemma,.‖S(H, K )‖H∞ ≤ γ iff.∃P = P� � 0 such that: 

. 

[
(A + B2K )�P + P(A + B2K ) PB1

B�
1 P −γ I

]

+ 1

γ

[
(C1 + D12K )�

D�
11

]
[
C1 + D12K D11

] ≺ 0

(19.23) 
Thus, we can write: .minK∈H∞ ‖S(H, K )‖H∞ ⇐⇒ minγ,K ,P γ s.t. (19.23). holds.
However, (19.23) is still nonlinear in its decision variables .γ, P, K , which means it 
is not a LMI and thus still difficult to solve using numerical methods (e.g., CVX).
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A very common tool that is often used to convert nonlinear matrix inequalities 
into LMIs is the Schur complement. 

Lemma 19.34 (Schur Complement) For any.Q = Q� ∈R
n×m,.R = R� ∈R

m×n, and 
.S ∈ R

n×m, the following are equivalent: 

(1) .

[
Q S
S� R

]

� 0 (or .

[
Q S
S� R

]

≺ 0). 

(2) .Q � 0 and .Q − SR−1S� � 0 (or .Q ≺ 0 and .Q − SR−1S� ≺ 0) 

Now, invoking Lemma 19.34 to (19.23) with 

. Q =
[
Ā�P + P Ā P B̄

B̄�P −γ I

]

, S =
[
C̄�
D̄�

]

, R = − 1

γ
I

where. Ā � A + B2K , B̄ � B1, C̄ � C1 + D12K , D̄ � D11, yields another matrix 
inequality: 

.

⎡

⎣
Ā�P + P Ā P B̄ C̄�

B̄�P −γ I D̄�
C̄ D̄ −γ I

⎤

⎦ ≺ 0 (19.24) 

which is bi-linear in both .P and . K . 
In Sect. 19.1, we demonstrated how to transform a Lyapunov inequality to a LMI 

with two new variables showed last class how to transform Lyapunov inequality 
.(A + BK )�P + P(A + BK )≺ 0 into a LMI with two new variables .X � P−1, 
.Z � K X . A similar variable substitution trick can be used to further convert (19.24) 
into a LMI 

.

⎡

⎢
⎢
⎣

−X 0 0 0
0 X A� + AX + Z�B�

2 + B2Z B1 XC�
1 + Z�D�

12
0 B�

1 −γ I D�
11

0 C1X + D12Z D11 −γ I

⎤

⎥
⎥
⎦ ≺ 0 (19.25) 

Thus, we can formalize the .H∞ optimal control pipeline mentioned at the end 
of Sect. 19.2 as follows: 

. min
K∈H∞

∥
∥S(H, K )

∥
∥H∞ =⇒

⎧
⎨

⎩

min
K∈H∞

γ

s.t.
∥
∥S(H, K )

∥
∥H∞ ≤ γ

=⇒
⎧
⎨

⎩

min
γ,K ,P

γ

s.t. (3.23) holds.
=⇒

⎧
⎨

⎩

min
γ,X,Z

γ

s.t. (3.25) holds.

(19.26) 
The static state-feedback gain control law.u∗(t) = Kx(t)which achieves the optimal 
.H∞ performance can then be implemented with .K � Z X−1 after solving for . X, Z
from (19.26). 

Remark 19.42 Output feedback .H∞ optimal control undergoes a similar transfor-
mation to a LMI form. 

Some more advanced treatments on .H∞ control are in [ 1, 2].
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19.4 Stochastic Linear Systems 

In order to begin a proper discussion of the .H2 and LQG optimal control frame-
works, we need to first delve into the mathematical foundations of how stochastic 
disturbances influence system dynamics. This section establishes some of the basic 
foundations of stochastic linear systems. 

19.4.1 System Dynamics 

Following the general feedback interconnection studied throughout this chapter, we 
are concerned with general linear systems of the form 

. H �
{
ẋ(t) = Ax(t) + B2u(t) + B1w(t)

y(t) = C2x(t) + D22u(t) + D12v(t)
or H �

{
x[t + 1] = Ax[t] + B2u[t] + B1w[t]
y[t] = C2x[t] + D22u[t] + D11v[t]

(19.27) 

Here, .w(t),w[t] ∈R
m is the disturbance/process noise, and .v(t), v[t] ∈R

k is the 
measurement noise. Typically, they are assumed zero-mean Gaussian with covariance 
matrices 

. E[w(t)w�(τ )] = �wδ(t − τ ), E[v(t)v�(τ )] =�vδ(t − τ )

E[w(t)v�(τ )] = 0, E[v(t)w�(τ )] =0

and likewise in the DT case. In the common literature, stochastic system dynamics 
are described using two related notations. A more mathematically precise notation 
comes from the field of stochastic differential equations (SDEs): 

.H �
{
dx(t) = (Ax(t) + B2u(t))dt + B1dw(t),

y(t) = C2x(t) + D22u(t) + D21v(t)
(19.28) 

A majority of our discussion will involve the “control-theoretic notation”  o  f (19.27). 
THe one time we will use the SDE notation, as well as some well-known results 
from SDEs, is when we compare the .H2 optimal control formulation versus the 
LQG formulation in Sect. 19.7. 

19.4.2 Interpretation of the .H2 System Norm 

Recall from Sect. 19.2 that the .H2 norm of a transfer function, noted as .‖H‖H2 , 
quantifies the energy of a system’s response to white noise inputs. We will describe
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in more detail what this means by going through a review of selected concepts from 
signals processing and random stochastic processes. 

19.4.3 Signal Processing Background 

Given a (scalar-valued) CT signal .x(t), we may be interested in analyzing the sta-
tistical average of some kind of “quantity” in its frequency domain representation 
(which relates it to the Fourier transform). This statistical average, which we’ll call 
.Sxx (so that .Sxx ( f ) is its value at frequency. f ∈ C), is typically called the spectrum 
of .x(t). There are two types of spectrum that are commonly used in practice. 

Definition 19.107 (Energy Spectral Density)  The  energy spectral density of a s ignal
.x(t) is defined by the squared magnitude of its Fourier transform: 

. Sxx ( f ) = |X ( f )|2

where.X ( f )�
∫ ∞
−∞ x(t)e− j2π f t dt , representing the Fourier transform of.x(t). Essen-

tially, the energy spectral density describes how the total energy of the signal, 
.E = ∫ ∞

−∞ |x(t)|2dt , is distributed across different frequencies. 
This relationship is formally expressed by Parseval’s identity (seen before in 

Lemma 19.30), which equates the total energy in the time domain with the total 
energy in the frequency domain. 

. 

∫ ∞

−∞
|x(t)|2 dt =

∫ ∞

−∞
|X ( f )|2 d f

Analyzing the energy spectral density is the most meaningful when. x has finite total 
energy. See, for example, the pulse signal of Fig. 19.1. 

Definition 19.108 (Power Spectral Density)  The  power spectral density , .Sxx ( f ), 
measures the distribution of power into frequency components composing the signal. 

. Sxx ( f ) = lim
T→∞

1

T
|XT ( f )|2

Essentially, the power spectral density describes how the average power . P =
limT→∞ 1

T

∫ T
2

− T
2
|x(t)|2 dt is distributed across frequency. 

To compute power spectral density practically, consider the truncated signal 
.xT (t) = x(t) · 1T (t), where .1T (t) is the indicator function that is non-zero only 
over an interval of length . T . This interval is chosen arbitrarily and depends on the 
physical properties of the signal itself; for example, if . x is periodic with period . T , 
then the choice of . T is obvious. The Fourier transform of the truncated signal .xT is:
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Fig. 19.1 Fourier transformation of rectangular and triangular pulses 

. XT ( f ) =
∫ ∞

−∞
xT (t)e− j2π f t dt

Using Parseval’s identity, the total power in the truncated signal’s time domain equals 
the total power in its frequency domain: 

. lim
T→∞

∫ ∞

−∞
|xT (t)|2 dt = lim

T→∞

∫ ∞

−∞
|XT ( f )|2 d f

19.4.4 Stochastic Processes Background 

For the purposes of our optimal control problems, we will focus on the case where 
signal.x(t) considered throughout Sect. 19.4.3 represents a stochastic process.  A  few  
more definitions are needed.

Definition 19.109 ((Strict-Sense) Stationary) A stochastic process.{X (t), t ≥ 0},  is  
strict-sense stationary (or simply, stationary) if its statistical properties (e.g., mean, 
covariance, pdf) do not change over time . t , i.e., the joint CDF of . {X (t1 + s), . . . ,
X (tn + s)} is the same for all .s ∈ R: 

.P(X (t1) ≤ x1, . . . , X (tn) ≤ xn) = P(X (t1 + s) ≤ x1, . . . , X (tn + s) ≤ xn) ∀t1, t2, . . . , tn ∈ R, n ∈ N
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(One may consider this as a “stochastic version” of the time-invariance property 
common in deterministic signals and functions). 
Remark 19.43 The terminology “stationary” appears quite frequently in the stochas-
tic processes literature. For example, the Brownian motion process has the following 
stationary increments property: for.t1 > t2 ≥ 0,.W (t1 + s) − W (t2 + s) has the same 
distribution as .W (t1) − W (t2) ∀s ∈ R. This is not equivalent to Definition 19.109. 
Although all stationary processes clearly have stationary increments, not all pro-
cesses with stationary increments are stationary. The Brownian motion itself is an 
example of this since .W (t) ∼ N (0, t) has a variance which depends on time . t . 

In practice, stationarity of a stochastic process is too strict of a condition. Wide-
sense stationary stochastic processes are much more common, and the power spectral 
density is usually defined for WSS processes. 

Definition 19.110 (Wide-Sense Stationary) A stochastic process .{X (t), t ≥ 0} is 
wide-sense stationary (WSS) if it satisfies: 

1. .E[X (t1)] = E[X (t2)] for all .t1, t2 ∈ R. 
2. .E[X (t1)X (t2)] = E[X (t1 + s)X (t2 + s)] ∀t1, t2, s ∈ R. 

i.e., the mean and variance of .X (t) are independent of . t . 
Definition 19.111 (Autocorrelation)  The  autocorrelation function of a stochastic 
process .{X (t), t ≥ 0} is defined as .Rxx (t1, t2) � E[X (t1)X (t2)]. 

Note that “auto” refers to “self”, and so.Rxx essentially computes how correlated 
the process is with itself at two different times .t1 and . t2. For WSS processes, the 
autocorrelation function simplifies to.Rx (s) = E[X (t + s)X (t)]; because mean and 
variance of .X (t) are independent of . t , we only need to care about the shift . s. 

In the following definitions, we will revert back to lowercase notation .x(t) in 
describing our stochastic process. Although the capitalized.X is common when dis-
cussing stochastic processes in the context of probability, we will henceforth use the 
signal notation and make them all lowercase . x . 

The power spectral density of WSS process .x(t) can be determined by its auto-
correlation function .Rx : 

. Sxx ( f ) = F{Rx(s)} =
∫ ∞

−∞
Rx (s)e

− j2π f s ds

Rx (s) = F−1{Sxx ( f )} =
∫ ∞

−∞
Sxx ( f )e

j2π f s d f

Note that when the shift is .s = 0: 

. E[x2(t)] = Rx (0) =
∫ ∞

−∞
Sxx ( f ) d f.

Thus, for WSS stochastic processes, .E[x2(t)] is equal to the expected power of the 
signal. x . Note that our entire discussion until now is independent of the fact that. x is 
a scalar-valued signal, and is easily applicable to the case where . x is vector-valued.
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Fig. 19.2 A visualization of Gaussian noise 

Fig. 19.3 A visualization of white noise. [Left] Its power spectral density. [Right] Its autocorrelation 
function. Without going into too much detail of the conventions from communications literature 
.
N0
2 represents the noise power per unit bandwidth 

19.4.5 The White Noise Terminology 

We write a brief clarification remark about some common misconceptions when 
discussing “Gaussian white noise”. First, not all Gaussian noise is white, and not all 
white noise is Gaussian. In fact, both terms are describing two distinct characteristics 
of a signal. 

• “Gaussian” refers to the probability distribution of the signal’s amplitude variations 
around its mean in the time domain. Specifically, the amplitudes follow a normal 
distribution with some mean . μ and variance .σ2. See Fig. 19.2 for an illustration. 

• “White” characterizes a signal that possesses a flat spectral density across all 
frequencies. In the frequency domain, this implies that the signal has equal power 
at all frequencies, commonly described as uniform noise power per unit bandwidth. 
Moreover, the autocorrelation function of white noise is the Dirac delta function 
.δ(t), indicating that successive values of the noise signal .w(t) are uncorrelated 
with each other. See Fig. 19.3 for a visualization.
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19.5 The Linear Quadratic Gaussian 

We are now ready to discuss the optimal control methods common for stochas-
tic linear systems of the form (19.27), starting with the linear quadratic Gaussian 
(LQG). We will focus exclusively on developing the optimal state-feedback law 
(i.e., .y(t) = x(t)) for LTI systems, since the derivation of the output-feedback case 
follows similarly through the extensions discussed in Chap. 18. 

The cost functional is defined very similarly to the LQR problem, but due to the 
additional randomness introduced by the noise process . w, the expectation needs to 
be taken. In the finite-horizon cases: 

. Ju(x0) = Ew

[∫ T

0
(x�(t)Qx(t) + u�(t)Ru(t))dt + x�(T )Q f x(T )

]

in CT

(19.29a) 

.Ju(x0) = Ew

[
T−1∑

t=0

(x�[t]Qx[t] + u[t]�Ru[t]) + x�
T Q f xT

]

in DT (19.29b) 

Moreover, in some cases, the initial condition .x0 may be drawn from some initial 
distribution . ρ. Then an additional expectation needs to be taken with respect to the 
initial condition .Ju � Ex0∼ρ [Ju(x0)]. In either case of (19.29), we seek the optimal 
.u∗ which attains .minu∈U Ju(x0) (or .minu∈U Ju). 

Note that because of the additional uncertainty in the system, we need to distin-
guish two cases: (1) when.x(t) is fully-known, and (2) when.x(t) is not fully-known. 
The LQG approach is used in the first case, and the optimal control sequence . {u[t]}
can be attained via stochastic dynamic programming. The second case, like observer 
design (see Chap. 17), requires an additional component which develops an estimate 
. x̂ of . x. This is usually achieved via Kalman filters, which can be thought of as the 
stochastic version of observers when .y(t) is perturbed by noise .v(t) too; we will 
discuss Kalman filtering in the following Chap. 20. 

Theorem 19.49 (DT Finite-Horizon LQG) For the DT finite-horizon LQG, define 
the cost-to-go function 

. Vτ (x[τ ]) = E{w[τ ],w[τ+1],...}

[
T−1∑

t=τ

(x�[t]Qx[t] + u[t]�Ru[t]) + Vτ+1(x[τ + 1])
∣
∣
∣
∣ x[τ ]

]

(19.30) 

with the cost-to-go recursion: 

. Vτ (x) =
{
minu[τ ]∈Rm

(
x�Qx + u[τ ]�Ru[τ ] + Ew[τ ]

[
Vτ+1(x[τ + 1])]) for all τ ≤ T − 1

x�Q f x if τ = T

(19.31) 

for all .x ∈ R
n.
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Proof (Proof Sketch of Theorem 19.49.) The derivation of the DT finite-horizon LQG 
follows very similarly to the DT finite-horizon LQR from Theorem 18.44. First, we 
assume a closed-form solution to recursion: 

. Vτ (x[τ ]) � x�[τ ]Pτx[τ ] + fτ

which is exactly the same original form as the LQR, with an extra term. fτ due to the 
noise. We proceed by induction. From the terminal condition, let.PT = Q f , then for 
a fixed time .τ ≤ T , suppose that the quadratic form of .Vτ+1(x) holds. Calculations 
show that 

. Vτ (x[τ ]) = min
u[τ ]∈Rm

(
x�[τ ]Qx[τ ] + u[τ ]�Ru[τ ] + Ew[τ ]

[
x�[τ + 1]Pτ+1x[τ + 1] + fτ+1

])

= min
u[τ ]∈Rm

(
x�[τ ](Q + A�Pτ+1A)x[τ ] + u[τ ]�(R + B�

2 Pτ+1B2)u[τ ]

+2x�[τ ]A�Pτ+1B2u[τ ] + tr(B�
1 Pτ+1B1�w) + fτ+1

)
(19.32) 

where the other terms cancel since .E[w[τ ]] = 0 for all .τ ∈ N. Similar to the proof 
of Theorem 18.44, differentiate the argument inside the .min operator above with 
respect to . u, and set it equal to . 0 to get the optimal control law.u[τ ]. �

Remark 19.44 (Certainty-Equivalence) An important result is observed: the noise 
process doesn’t affect the optimal control law as derived in the LQR case via (18.5): 

. u∗[τ ] = −(R + B�
2 Pτ+1B2)

−1B�
2 Pτ+1Ax[τ ]

where.Pτ needs to satisfy the same Riccati equation (18.5a). This is a property known 
as certainty-equivalence: the optimal control law for a system with and without noise 
are the same. Loosely-speaking, this property arises due to the noise process having 
mean zero. 

Proof (Proof Sketch of Theorem 19.49, continued.) We can derive the . fτ extra term 
via recursion too. 

. fτ = tr(B1Pτ+1B1�w) + fτ+1, fT = 0,

which comes from comparing the original deterministic LQR cost-to-go against 
(19.32) and absorbing all extra terms into. fτ . This recursion is easy to solve iteratively, 
and we get 

. f0 =
T−1∑

t=0

tr(B1Pt+1B1�w) (19.33)



19.6 H2 Optimal Control 247

The final optimum cost can be written as 

.J ∗ � min
u∈U

Ex0 [Ju(x0)] = Ex0 [V0(x0)] = Ex0

[
x�
0 P0x0

] + f0

�

19.6 .H2 Optimal Control 

Let .w(t) be some input noise process with power spectral density .Sww( jω), where 
.ω = 2π f (representing frequencies as radians/sec instead of Hertz). This means: 

. E[w�w(t)] = Rw(0) = 1

2π

∫ ∞

−∞
Sww( jω)e jω0 dω = 1

2π

∫ ∞

−∞
Sww( jω) dω.

Lemma 19.35 (Power Spectral Density Transformation for LTI Systems) For an 
LTI system with transfer function . H, if the input signal .w(t) has power spectral 
density .Sww( jω), then the output signal .z(t), where .z = Hw, has power spectral 
density: 

. Szz( jω) = H( jω)Sww( jω)H∗( jω)

Using the above lemma, the expected power of the output signal can be written 
as 

. E[z�z(t)] = 1

2π

∫ ∞

−∞
H( jω)Sww( jω)H∗( jω) dω

≤ ess supω∈RSww( jω) · 1

2π

∫ ∞

−∞
H( jω)H∗( jω) dω

= ‖Sww‖H∞ · ‖H‖2H2

Thus, for general noise .w(t) with power spectral density .Sww, the average power of 
the output signal .z = S(H, K )w is bounded as: 

. E[z�z] ≤ ‖Sww‖H∞ · ‖S(H, K )‖2H2

This gives as a nice physical interpretation of .H2 optimal control. Namely, it aims 
to minimize the average power of the output signal, given the system is perturbed by 
some noise signal with a specified power spectral density. 

We are now ready to proceed with formalizing the .H2 optimal control pipeline 
described at the end of Sect. 19.2. The original optimal control problem (19.2) should 
be rewritten as a tractable convex program that can be processed using numerical 
tools like CVX or YALMIP. We begin with a lemma similar to Lemma 19.33.
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Lemma 19.36 (The .H2 Norm) Suppose .H has the realization .(A, B,C, 0) (i.e., 
.H(s) = C(s I − A)−1B) with . A being Hurwitz. Then the following are equivalent: 

• . ‖H‖H2 ≤ γ
• there exists .X = X� � 0 such that 

. tr(CXC�) < γ and AX + X A� + BB� ≺ 0 (19.34) 

The proof of Lemma 19.36 is related to Lemma 19.31, and we won’t discuss it 
here. Under full-state feedback, i.e.,.u(t) = Kx(t) for some constant gain.K for plant 
. H ,  th  e .H2 optimal control problem can be formulated with the following result. 

Lemma 19.37 (The .H2 Norm: Alternative) Under the same conditions as Lemma 
19.36, .‖S(H, K )‖H2 < γ is equivalent to saying there exists .X = X� � 0 such that 

.

⎧
⎪⎨

⎪⎩

[
A B2

]
[
X
Z

]

+ [
X Z�]

[
A�
B�
2

]

+ B1B
�
1 ≺ 0,

tr
{
(C1X + D12Z) X−1 (C1X + D12Z)�

}
< γ

(19.35) 

The state-feedback gain is given by .K = Z X−1. 

This follows directly from applying Lemma 19.36 to the closed-loop system. 

. ẋ(t) = (A + B2K )x(t) + B1w(t), z(t) = (C1 + D12K )x(t)

Then use a change of variables .Z = K X . 
So far, the .H2 optimal control problem posed generically at the end of Sect. 19.2 

can be rewritten as .minγ,X,Z . γ s.t. (19.35) holds. However, this matrix inequality 
constraint contains terms that are nonlinear in our decision variables. To make this 
optimization problem easier to solve numerically, we convert them into LMIs using 
tricks like the Schur complement, similar to how we did for the.H∞ case in Sect. 19.3. 

Applying the Schur complement to (19.34) yields the following result: 

. ∃X = X� � 0, W = W� such that

AX + X A� + BB� ≺ 0,

[
X C�
C W

]

� 0, tr(W ) < γ

and likewise, for the closed-loop system, applying the Schur complement to (19.35) 
yields
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. ∃X = X� � 0, W = W�, and Z ∈ R
m×n such that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

[
A B2

]
[
X
Z

]

+ [
X Z�]

[
A�
B�
2

]

+ B1B
�
1 ≺ 0,

[
X (C1X + D12Z)�

C1X + D12Z W

]

� 0,

tr(W ) < γ

(19.36) 

Finally, we can formalize the .H2 optimal control pipeline as follows: 

. 

⎧
⎨

⎩

min
K∈H∞

∥
∥S(H, K )

∥
∥H2

s.t. S(H, K ) ∈H∞
=⇒

⎧
⎨

⎩

min
K∈H∞

γ

s.t.
∥
∥S(H, K )

∥
∥H2

≤ γ
=⇒

⎧
⎨

⎩

min
γ,X,Z

γ

s.t. (3.35) holds.
=⇒

⎧
⎨

⎩

min
γ,X,Z

γ

s.t. (3.6) holds.

(19.37) 
The static state-feedback gain control law.u∗(t) = Kx(t)which achieves the optimal 
.H2 performance can then be implemented with .K � Z X−1 after solving for . X, Z
from (19.37). 

19.7 Relationship Between .H2 and LQG 

To conclude this chapter, we provide a brief discussion about the relationship between 
the LQG studied in Sect. 19.5 and the .H2 problem. We require the infinite-horizon 
CT formulation of the LQG problem, which aims to solve: 

. min
u∈U

E(x0,w)

[∫ ∞

0
(x�(t)Qx(t) + u(t)�Ru(t)) dt

]

(19.38) 

s.t. ẋ(t) = Ax(t) + B2u(t) + B 1w(t),

where .w(t) is a Gaussian white noise signal and .u(t)= Kx(t). For simplicity, we’ll 
assume .x0 is deterministic and fixed (although in many LQR problems, .x0 ∼ ρ is 
assumed to be drawn randomly). Under state-feedback control law, the closed-loop 
system is given by 

. ẋ(t) = (A + B2K )x(t) + B1w(t),

where .Acl = A + B2K . In the SDE notation (see (19.28)): 

. dx(t) = Aclx(t)dt + B1dw(t),

which is a vector version of the Ornstein-Uhlenbeck process. The solution is given 
by:
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. x(t) = eAcltx0 +
∫ t

0
eAcl(t−s)B1dw(s).

Substituting this solution into the cost functional, we get: 

. 

Ju = E

[∫ ∞

0
x�(t)(Q + K�RK )x(t) dt

]

=
∫ ∞

0

(
x�
0 e

A�
cl t (Q + K�RK )eAcltx0

)
dt

+ 2
∫ ∞

0
E

[

x�
0 e

A�
cl t (Q + K�RK )

∫ t

0
eAcl(t−s)B1 dw(s)

]

dt

+
∫ ∞

0
E

[(∫ t

0
eAcl(t−s)B1 dw(s)

)�
(Q + K�RK )

(∫ t

0
eAcl(t−s)B1 dw(s)

)]

dt.

(19.39) 

Note that the second term is of the form.E

[∫ t
0 g(s)dw(s)

]
with matrix-valued func-

tion . g. By first property of the (Itô or Payley-Wiener-Zygmund) stochastic integral, 
this is equal to zero. 

Let .C1 �
[
Q

1
2

0

]

, .D12 �
[
0
R

1
2

]

. Then 

. (C1 + D12K )�(C1 + D12K ) =
[

Q
1
2
�

K�R
1
2
�]

[
Q

1
2

R
1
2 K

]

=
[

Q Q
1
2 (R

1
2 K )�

R
1
2 K Q

1
2 K�RK

]

and the matrices on the block diagonals are .Q and .K�RK . Thus we can mod-
ify (19.39)  as  :

.Ju (x0) =
∫ ∞
0

tr
(
(C1 + D12K )eAclt X0

)� (
(C1 + D12K )eAclt X0

)
dt (19.40) 

+
∫ ∞ 

0 
tr

[

E

[∫ t 

0

(
(C1 + D12 K )e

Acl(t−s) B1 dW (s)
)� ∫ t 

0

(
(C1 + D12 K )e

Acl(t−s) B1 dW ( s)
)]]

dt

We can apply the cyclic property of the trace to simplify. Note that the last term 
of (19.40)  is  of  the  fo  rm:

. E

[(∫ t

0
g(s)dw(s)

)� (∫ t

0
g(s)dw(s)

)]

Using the property of stochastic integrals (It’s Isometry), this is equal to 
.
∫ t
0 E[g(s)2] ds and thus: 

. 

(3.40) =
∫ ∞
0

tr
(
((C1 + D12K )eAcltx0)

�((C1 + D12K )eAcltx0)
)
dt

+
∫ ∞
0

tr
(
E

[
((C1 + D12K )eAcl(t−s)B1 dw(s))�((C1 + D12K )eAcl(t−s)B1 dw(s))

])
dt.

(19.41)
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Now, let’s derive the LFT.S(H, K ). Considering the system dynamics: 

. 

{
ẋ(t) = Aclx(t) + B1w(t)

z(t) = (C1 + D12)x(t)

and transforming into the Laplace domain gives: 

.X (s) = (s I − Acl)
−1x0 + (s I − Acl)

−1B1W (s) (19.42a) 

.Z(s) = (C1 + D12)(s I − Acl)
−1x0 + (C1 + D12)(s I − Acl)

−1B1W (s) (19.42b) 

Taking the .H2 norm and using Parseval’s identity on Eq. (19.42b) gives us exactly 
Eq. (19.41) (recall that .(s I − A)−1 is the Laplace transform of .eAt ). 

In conclusion, we can see that the LQG problem is a special case of the.H2 problem 
when .w(t) is Gaussian white noise, with: 

. Ae = A, B2 = B, C1 =
[
Q1/2

0

]

, D12 =
[

0
R1/2

]

.

This formulates a direct relationship between the LQG and.H2 control frameworks, 
illustrating how LQG is an .H2 optimization under specific noise conditions. 
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Chapter 20 
Linear State Estimation 

In Sect. 19.5, we discussed the need to consider two cases of optimal control for 
stochastic systems: (1) when the state .x(t) is fully known, and (2) when the . x(t)
is unknown. Case (1) was addressed using stochastic dynamic programming and a 
variant of the LQR problem called the LQG, for when the external disturbance. w(t)
was an uncorrelated Gaussian white noise process. Case (2), however, requires an 
extra step which produces an estimate .x̂(t) of the true state .x(t) from the measure-
ments .{y(s) : s ≤ t}. This problem, of optimal state estimation, is commonly known 
as filtering, especially Kalman filtering for linear stochastic systems, which is the 
focus of this chapter. 

We remark that we will first separate the filtering problem from the optimal control 
problem, and consider mostly uncontrolled systems. It turns out, that similar to the 
observer-based feedback system we analyzed in Chap. 17,  the  separation principle 
still applies to stochastic systems, i.e., we can design an optimal filter separately 
from the state-feedback stochastic controller .

20.1 Preliminaries: Minimum Mean-Squared Estimator 

At heart, all filtering problems are a type of linear least-squares problem, which 
we’ve seen before when discussing the minimum-energy input in Chap. 11.  We  
will begin by investigating the filtering problem in DT, although we will later study 
both the DT and the CT cases in this chapter. Moreover, in contrast to the previous 
discussions on optimal control (Chaps. 18 and 19), we look at the linear time-varying 
case. (Note that the optimal control methods discussed in Chaps. 18 and 19 can also 
be easily extended to the LTV setting). 
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Our (DT) state-space system model of consideration is 

.

{
x[t + 1] = Atx[t] + w[t]
y[t] = Ctx[t] + v[t] (20.1) 

where.{w[t]}t∈N, {v[t]}t∈N are independent Gaussian white noise processes with zero 
mean and covariances .E[w[t]w�[s]] = �wδ(t − s) and. E[v[t]v�[s]] = �vδ(t − s)
for any .s, t ∈N, much like the setting of the LQG in Sect. 19.5. 

We further assume a Markovian setting, i.e. 

1. Given.x[t], the next state.x[t + 1] is independent of past states. x[0], . . . , x[t − 1]
and all past measurements .y[1], . . . , y[t]. 

2. Given .x[t], the current measurement .y[t] is independent of all past states 
.x[0], . . . , x[t − 1] and all past measurements .y[1], . . . , y[t − 1]. 

The goal of a filtering problem is to estimate .x̂[t] of .x[t] from measurements . At ≡
{y[s] : s ≤ t}. 

.∀t ∈ N, x̂[t] ≡ argmin
z∈Rn

E
[‖x[t] − z‖22 | At

]
(20.2) 

Remark 20.45 In relation to Chap. 15, filtering can be thought of as stochastic 
observer design. 

20.1.1 Stochastic Linear Least-Squares 

For the purpose of relating the filtering problem to the linear least squares problem 
we’ve seen before, let’s (for the moment) forget about the time indices in (20.2). 
We consider static vectors.x ≡ x[t], y ≡ y[t], etc., and keep the set of measurements 
equal to .At with the understanding that it is just representing a set of vectors. We 
can expand the expression in (20.2) to get 

. E[‖x − z‖22 | At ] = E[x�x | At ] − 2z�
E [x | At ] + z�z

Take the gradient of the argument with respect to . z and set it equal to . 0. 

.z = E [x | At ] =⇒ x̂ ≡ E [x | At ] (20.3) 

The linear least squares method can be applied to the case when we have some prior 
estimate . x̃, with covariance . P̃ , and measurement . y of the current state . x, abiding 
by the linear measurement equation .y=Cx + v, where . v is a Gaussian white noise 
process with covariance .�v . 

.x̂ ≡ argmin
z

E

[
(z − x̃)� P̃−1(z − x̃) + (y − Cz)��−1

v (y − Cz)
]

(20.4)
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Note that the two terms in (20.4) represent a tradeoff in the two sources of information 
that are used to estimate. x. Here,.P̃−1 represents the amount of “confidence” we have 
in our prior estimate. x̃ and is used as a weighting factor: the less confidence we have 
in. x̃ being correct, the less we should use it to adjust our current estimate. z. Similarly, 
the noisy measurement’s precision matrix,.�−1

v , represents the amount of confidence 
we have in the measurement being correct; a noisier measurement indicates a larger 
covariance and thus, less precision. In this case, we should not rely on . y too much 
to get our current estimate . z. 

Similar to (20.2), taking the gradient of (20.4) with respect to. z and setting it equal 
to . 0 yields: 

. 2z� P̃−1 − 2x̃� P̃−1 − 2y��−1
v C + 2z�C��−1

v C = 0

=⇒ x̂ = x̃ + P̃C��−1
v (y − C x̃) where P̃−1 ≡ P−1 + C��−1

v C (20.5) 

We will see similar variations of expression (20.5) throughout this chapter. 

20.1.2 The Orthogonality Principle 

Define the space.L2(�;Rn)of random vectors in.Rn over probability space.(�,F ,P), 
equipped with the covariance .Cov(x, y) ≡ E[(x − E(x))(y − E(y))�] as the inner 
product. While the notation is similar, this.L2 can be viewed as like a stochastic ver-
sion of the.L2 space we’ve seen before for square-integrable deterministic functions. 
Let .V ⊂ L2 be a closed subspace. 

Theorem 20.50 (MMSE) The estimate .x̂∈V which achieves the minimum MSE 
(i.e., .E

[‖x − x̂‖2] ≤ E
[‖x − z‖2] for all .z ∈ V) is unique and satisfies . (x − x̂) ⊥

z ∀z ∈ V (i.e., .Cov(x − x̂, z) = 0). Here, . x̂ is called the minimum mean-squared 
estimator (MMSE) of . x, i.e., the projection of . x onto . V (Fig. 20.1). 

There are several useful properties of the MMSE: 

1. . ∀t ∈ N, E
[‖x − x̂‖22

] = E[(x − x̂)�(x − x̂)]

. = E[x�x − 2(x̂�x) + x̂�x̂] = E[x�x] − E[x̂�x]

2. The MMSE is an unbiased estimator, i.e., .E
[
x − x̂

] = 0. This can be seen 
from Theorem 20.50. 

Fig. 20.1 A geometric 
meaning of orthogonality



256 20 Linear State Estimation

Fig. 20.2 A visualization of 
the projection mechanism 
where. V is a line and 
.x ∈ R

n . Note that any other 
.z ∈ V does not achieve the 
minimum error 

Example 20.36 (MMSE for Linear Gaussian Case) Of particular interest is the form 
of the MMSE in the following linear Gaussian case: 

1. .y=Cx + v (a linear measurement equation) with .v∼N (0, �v). 
2. .V ≡ {Ay + b | A ∈ R

n×k, b ∈ R
n}. 

We will return to this case later. �

With this setup, the estimation problem posed to us in the beginning of Sect. 20.1 
can be restated as follows: determine the estimator of.x ∈ L2 over all. V with the least 
mean-squared error, i.e., we want to find the MMSE.z∗ ∈V such that. E[‖x − z∗‖2] ≤
E[‖x − z‖2] for all .z ∈ V . Correspondingly, .E[‖x − z∗‖2] is known as the minimum 
mean squared error. See Fig. 20.2 for visualization in the case where. V is a line (e.g., 
as in Example 20.36). 

Theorem 20.51 (Orthogonality Principle) The following conditions are equivalent: 

1. There exists a unique element .z∗ ∈ V which achieves the MMSE. 
2. Let .y ∈ L2. Then .y = z∗ iff the following two conditions hold: 

a. . y ∈ V
b. .(x − y) ⊥ z for all .z ∈ V . 

3. As a consequence of the above two conditions, the MMSE has a nice simplifica-
tion: 

. E[(x − z∗)�(x − z∗)] = E[x�x] − E[(z∗)�z∗] since (x − z∗) ⊥ z∗

Furthermore, the MMSE is an unbiased estimator, meaning .E[x − z∗] = 0. 

Example 20.37 (Orthogonality Principle for Linear Subspaces) We continue our 
discussion from Example 20.36. We specialize the analysis to the affine subspace 
.V = {c0 + c1y1 + · · · + cm ym; ci ∈ R

n} for a specific value .y � (y1, . . . , ym).  The  
projection o f . x onto .V is of the form .z∗ = Ay + b. The estimation error becomes 
.e = x − (Ay + b). Let’s use the Orthogonality Principle to determine what the coef-
ficients . A and . b should be. Namely, in order to have .e ⊥ z for all .z ∈ V , we need:
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• .E[e] = 0, which implies that.b = E[x] − AE[y]. Thus,.z∗ = E[x] + A(y − E[y]). 
• .Cov(e, y) = 0. Combined with the previous expression, we get: 

. Cov(x − E[x] − A(y − E[y]), y) = 0 =⇒ Cov(x, y) − ACov(y) = 0

=⇒ A = Cov(x, y)Cov(y)−1

Combined together, we have the final expression for the MMSE. To distinguish 
the notation between the general and the linear cases, we denote the conditional 
expectation for the linear case with .Ê instead of the usual . E. 

.x̂ � Ê[x|y] � E[x] + Cov(x, y)Cov(y)−1(y − E[y]) (20.6) 

Moreover, we find that Cov.(e) satisfies: 

..Cov(e) = Cov(x) − Cov(x̂) = Cov(x) − Cov(x, y)Cov(y)−1Cov(y, x).

�
Remark 20.46 Note that . x̂ in (20.5) is linear in . y, and would belong to . V when 

. A ≡ P̃C��−1
v , b ≡ x̃ − P̃C��−1

v C x̃

20.2 Sequential Estimation Over Time 

Now, we are ready to bring back the time indices (.x 
→ x[t],.y 
→ y[t], etc.) by using 
the dynamics and measurement Eq. (20.1). When there are successive measurements 
.y[1], . . . , y[t] over time, it may be the case that a part of .y[t] is already known (or 
can be inferred) from previous measurements.y[1], . . . , y[t − 1]. This motivates the 
construction of an innovations sequence .{ỹ[t]}t∈N, where: 

.ỹ[t] ≡ y[t] − E[y[t] | At−1] (20.7) 

We will touch more on (20.7) later in this section. 

20.2.1 The Linear Gaussian Case 

When the dynamics are linear and perturbed by an additive Gaussian noise process, as 
in Examples 20.36 and 20.37, two additional properties make the filtering approach 
more straightforward than the techniques we’ve seen previously. Namely, 

• Affine combinations of Gaussian random vectors are still Gaussian-distributed. 
So, if our initial condition.x(0) has a prior distribution which is Gaussian, all future
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state variables.x(t) (or.x[t], in the discrete-time case) will be Gaussian-distributed 
too. 

• Gaussian distributions are fully characterized by its mean and covariance matrix. 
As a consequence of this property, determining the mean and the covariance of 
the true state is enough to know everything about the full distribution. 

This gives rise to the Kalman filtering algorithm. Before we derive the Kalman 
filtering process, we first establish some necessary background in the next subsection 
about innovation processes, particularly in the case where the conditioned space is 
linear. 

20.2.2 The Innovations Sequence 

As mentioned previously, the motivation behind the construction of innovation 
sequences is as follows: it will often be the case that a new observation .y[t] at time 
.t ∈Z is not totally new if we’ve already observed previous values.y[1], . . . , y[t − 1]. 
The only innovation (new information about the system) will come from the com-
ponent of .y[t] that is orthogonal to the linear span of all previous observations 
.y[1], . . . , y[t − 1]. Thus, we can rewrite the above equation as 

.ỹ[t] = y[t] − Ê[y[t]|At−1] (20.8) 

where .Ê is the notation derived from (20.6), .Al represents the sigma algebra 
.σ(y[1], . . . , y[l]) spanned by the measurement vectors .y[1], . . . , y[l] for any .l ∈ Z, 
and 

. E[z | ˜At ] ≡ z̄ +
t∑

s=1

E
[
z − z̄ | ỹ[s]] , z̄ ≡ E[z]

for any placeholder . z. Furthermore, with this definition, .E[ỹ[k]] = 0. 

Remark 20.47 Both the innovation and observation sequences span the same 
space, i.e., .spanAt = span ˜At . One can think of .{ỹ0, . . . , ỹ[t]} being the orthog-
onalized basis created from .{y0, . . . , y[t]}. This consequently notes the similar-
ity of this construction process to the Gram-Schmidt orthonormalization process 
used in the context of linear algebra. Thus, from this construction, .E[ỹ[t]] = 0 and 
.ỹ[s] ⊥ ỹ[t] ∀s �= t . 

For this simplicity, we will often condition our estimate . x̂ around this linear 
innovations sequence .ỹ[1], ỹ[2], . . . as opposed to the original observation sequence 
.y[1], y[2], . . .. We write the notation as .Ê[x[t] | ˜At ]. 
Theorem 20.52 The estimate of. x based on the sequence of orthogonal observations 
.ỹ[1], ỹ[2], . . . , ỹ[n] is given by the joint projection:
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.Ê[x| ˜An] = x +
n∑

i=1

Ê[x − x|ỹ[i]] (20.9) 

where we denote . ˜An = σ(ỹ[1], . . . , ỹ[n]) and .x � E[x]. 
Remark 20.48 We can simplify the expression (20.9)  as  follow  s:

. Ê[x| ˜An] = x +
n∑

i=1

Ê[x − x|ỹ[i]] = x +
n∑

i=1

Cov(x, ỹ[i])Cov(ỹ[i])−1ỹ[i]

= Ê[x| ˜An−1] + Ê[x − x|ỹ[n]] (20.10) 

This gives us a recursive formula in terms of each new observation .ỹ[n]. 

20.3 The General Bayesian Filtering Problem 

We are now ready to continue the setup of the filtering problem started in the begin-
ning of Sect. 20.1. Our dynamics are given by (20.1) and we will again assume the 
Markovian setting. 

to restate the goal of a filtering problem more concretely beyond the form intro-
duced by (20.2): we seek to estimate the full state .x[t] given data observations 
.At � σ(y[1], . . . , y[t]). Taking a Bayesian inference approach, we construct the pdf 
.p(x[t]|At ) given .p(x[t − 1]|At−1) at each timestep . k through a two-step iterative 
process: prediction and measurement update. 

1. Prediction:  give  n .p(x[t − 1] | At−1), predict .p(x[t] | At−1). This uses the 
Chapman-Kolmogorov equation. 

. p(x[t] | At−1) =
∫

p(x[t] | x[t − 1],At−1)p(x[t − 1] | At−1)dx[t − 1]

=
∫

p(x[t] | x[t − 1])p(x[t − 1] | At−1)dx[t − 1] (20.11) 

where the second equality follows from Markovian assumptions. In this form, 
.p(x[t]|x[t − 1]) can be directly determined from the system dynamics. 

2. Measurement Update: given observation.y[t], update.p(x[t] | At−1) to. p(x[t] |
At ). This uses Bayes’ Rule.
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.p(x[t] | At ) = p(x[t] | y[t],At−1) = p(x[t], y[t] | At−1)

p(y[t] | At−1)
(20.12) 

= 
p(y[t]  |  x[t]) p(x[t]  |  At−1) 

p(y[t]  |  At−1) 

≡ p(y[t]  |  x[t])p(x[t]  |  At−1)∫
p(y[t]  |  x[t])p(x[t] | At−1)dx[t]

where the second equality follows from Markovian assumptions,.p(y[t]|x[t]) can 
be determined from the observation equation, and 

. p(y[t] | At−1) =
∫

p(y[t] | x[t])p(x[t] | At−1)dx[t]

It is based off of this two-step construction that we will build the DTKF in the 
next section. 

20.4 The Discrete-Time Kalman Filter 

We introduce some further notations and assumptions: . x0, v[0], v[1], . . . ,w[0],
w[1], . . . are all pairwise uncorrelated Gaussian-distributed random variables, and 
.E[w[t]] = 0,Cov(w[t]) = Qt ,E[v[t]] = 0,Cov(v[t]) = Rt are known constant 
matrices. Further assume that .x0 comes from a known Gaussian distribution with 
.E[x0] = x̄0,Cov(x0)= P0, and that it is pairwise uncorrelated with.w[t] and.v[t] for 
all . t . Denote .x[t] = E[x[t]] and .Pt = Cov(x[t]). These quantities are recursively 
determined for .t ≥ 1 by: 

. E[x[t + 1]] = AtE[x[t]] =⇒ x[k + 1] = Atx[t]
Pt+1 = At Pt A

�
t + Qt

As before, we will define .At = σ(y[0], y[1], . . . , y[t]) to be the sigma algebra of 
observations up until time . t . Then we define .x̂[t |s] � Ê[x[t]|As] for nonnegative 
integers .s, t , where .Ê[x[t]|As] is the linear MMSE given by 

. Ê[x[t]|y[s]] = E[x[t]] + Cov(x[t], y[s])Cov(y[s])−1(y[s] − E[y[s]])
=⇒ Ê[x[t]|As] = Ê[x[t]|As−1] + Cov(x[t], y[s])Cov(y[s])−1(y[s] − E[y[s]])

Finally, denote the associated covariance of error matrices. �t |s � Cov(x[t] − x̂[t |s])
for nonnegative integers .s, t .
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The goal is to compute an estimate of .x[t] at each timestep . t . We will do this by 
deriving a recursive relationship between successive state estimates . x̂[t − 1|t − 1]
and .x̂[t |t]. 

The filtering process takes the same two steps as in the Bayesian framework from 
Sect. 20.3: 

1. Prediction: we predict the value of .x̂[t |t − 1] given .x̂[t − 1|t − 1].  To  do  this,  
directly use the dynamics (20.1) and the fact that the noise random variables are 
uncorrelated from all the system variables. Equations yield: 

.x̂[t |t − 1] = At−1x̂[t − 1|t − 1] (20.13a) 

.�t |t−1 = At−1�t−1|t−1A
�
t−1 + Qt−1 (20.13b) 

2. Measurement Update: we modify our prediction from .x̂[t |t − 1] to .x̂[t |t] in 
order to take into account a new observation .y[t]. Because we are able to predict 
a part of .y[t] through the linear MMSE, the only innovation comes from the 
orthogonal component .ỹ[t] = y[t] − Ê[y[t]|At−1]. Alternatively written, this is: 

.ỹ[t] = y[t] − Ct x̂[t |t − 1] (20.14) 

Derive .x̂[t |t] from.x̂[t |t − 1]: 

.x̂[t |t] = x̂[t |t − 1] + Cov(x[t], ỹ[t])Cov(ỹ[t])−1ỹ[t] (20.15) 

Furthermore, the covariance of error is updated: 

.�t |t = �t |t−1 − Cov(x[t], ỹ[t])Cov(ỹ[t])−1Cov(ỹ[t], x[t]) (20.16) 

Intuitively, the use of the new observation.ỹ[t] reduces the covariance of error for 
predicting .x[t] from.�t |t−1 by the covariance matrix of the innovative part of the 
estimator. 
Let us define the gain.Lt � Cov(x[t], ỹk)Cov(ỹ[t])−1 so that we can simplify the 
information update equations as: 

.x̂[t |t] = x̂[t |t − 1] + Lt ỹ[t] (20.17a) 

.�t |t = �t |t−1 − LtCov(ỹ[t], x[t]) (20.17b) 

We can further calculate 

. Cov(x[t], ỹ[t]) = �t |t−1C
�
t , Cov(ỹ[t]) = Ct�t |t−1C

�
t + Rt

so that .Lt = �t |t−1C�
t (Ct�t |t−1C�

t + Rt )
−1. 

Combining the results of the two steps above, we obtain our final equations.
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Theorem 20.53 (The Discrete-Time Kalman Filtering Equations) The DTKF equa-
tions are given as follows: 

.x̂[t |t] = At−1x̂[t − 1|t − 1] + Lt ỹ[t] (20.18a) 

.�t |t = �t |t−1 − LtCt�t |t−1 = (I − LtCt )(At−1�t−1|t−1A
�
t−1 + Qt−1) (20.18b) 

where 

.Lt = �t |t−1C
�
t (Ct�t |t−1C

�
t + Rt )

−1 (20.19) 

Remark 20.49 The alternative, more common form of the Kalman filter equations 
is the update process from.x[t |t − 1] to .x[t + 1|t]: 

.. x̂k+1|k = At (x̂[t |t − 1] + Lt ỹ[t])
�k+1|k = At (�t |t−1 − LtCov(ỹk, x[t]))A�

t + Qt

20.5 The Continuous-Time Kalman Filter 

Now consider the continuous-time dynamics 

.ẋ(t) = Ax(t) + Bww(t) (20.20a) 

.y(t) = Cx(t) + v(t) (20.20b) 

where .x(t),w(t) ∈ R
n, y(t), v(t) ∈ R

m , and .A, Bw ∈ R
n×n,C ∈ R

m×n are known 
for all .t > 0. 

As in the discrete-time case, we make the following assumptions: .x(0)� x0, 
.{w(t)}, and .{v(t)} are pairwise uncorrelated for all .t > 0, and . E[w(t)] = 0,
Cov(w(s),w(t)) = E[w(s)w(t)] = Qδ(t − s),E[v(t)] = 0,Cov(v(s), v(t)) = Rδ
(t − s), where .Q and .R are known constant matrices. Further assume that . x0
comes from a known Gaussian distribution with .E[x0] = 0 (assumed for simplic-
ity), .Cov(x0) = �0. We will define .A (t) = σ{y(s) : 0 ≤ s < t} to represent the 
observations made until time . t . 

The goal is to estimate .x̂(t) of .x(t) given the observations .A (t) such that the 
MSE: 

.J � E
[
tr((x(t) − x̂(t))(x(t) − x̂(t))�)

]
(20.21) 

is minimized. In analogue to the DTKF, the MMSE.x̂(t) is given by.E[x(t) | A (t)]. 
This implies that .x̂(0) = E[x0] = 0. Additionally, one can derive the dynamics: 

. ˙̂x(t) = Ax̂(t) + L(y − C x̂(t))
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For the moment, we will take this as given, and use it to derive the covariance equation 
and the optimal Kalman filter gain. 

Define the error vector .e = x − x̂. Its dynamics are given by: 

. ė = ẋ − ˙̂x = Ax + Bww − Ax̂ − L(y − C x̂) = (A − LC)e + Bww − L (y − Cx)︸ ︷︷ ︸
v

Define the error covariance .� � E[ee�]. Then note that the MSE at time . t is 
exactly tr.(P). Derive the dynamics of .� as follows: 

. �̇ = E[ėe� + eė�]
= E[(A − LC)ee� + ee�(A� − C�L�)] + E[Bwwe� + ew�B�

w ] + E[−Lve� − ev�L]
= (A − LC)� + �(A� − C�L�) + E[Bwwe� + ew�B�

w ] + E[−Lve� − ev�L�] (20.22) 

Denote the state transition matrix.�(t0, t) � e(A−LC)(t−t0). Then we can write. e(t)
as: 

.e(t) = �(0, t)e0 +
∫ t

0
�(s, t)Bww(s)ds −

∫ t

0
�(s, t)Lv(s)ds (20.23) 

which implies that 

. E[ew�(t)B�
w ] = �(0, t)E[e0w�]B�

w +
∫ t

0
�(s, t)BwE[w(s)w�(t)]B�

w ds

−
∫ t

0
�(s, t)LE[w(s)v�(t)]B�

w ds

=
∫ t

0
�(s, t)BwQδ(t − s)B�

w ds

= 1

2
BwQB�

w since �(t, t) = I

One can make a symmetric argument for .E[Bwwe�] = 1
2 BwQB�

w . 
For the last line, we also have the following formula: 

. 

∫ b

a
f (x)δ(b − x)dx =

∫ 0

b−a
f (b − u)δ(u)du = 1

2
f (b)

Informally speaking, since the delta function occurs at one of the endpoints of the 
integral, only half the total weight gets integrated over. 

Similarly, (20.23)  implies  th  at.E[−ev�(t)L�] = E[−Lve�] = (1/2)LRL� since 
the minus signs cancel.
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Substituting everything back int (20.22) yields: 

.�̇ = (A − LC)� + �(A� − C�L�) + BwQB�
w + LRL� (20.24) 

= A� + �A� + Bw Q  B�
w − LC� − �C�L� + LRL�

. = A� + �A� + BwQB�
w + (LR − �C�)R−1(LR − �C�)� − �C�RC�

where the last line follows from completing the square. To minimize .J = tr(�(t)), 
we can minimize.�(t) by choosing. L so that.Ṗ(t) decreases by the maximum amount 
possible at time . t . This happens when the term.(LR − �C�)R−1(LR + �C�)� is 
equal to 0, since it can never be negative (like a square term). 

This implies: 

. L(t)R − �(t)C� = 0 =⇒ L(t) = �(t)C�R−1

Substituting this back into (20.24) yields the final covariance equation. 

Remark 20.50 More mathematically rigorously, we can determine the optimal gain 
. L by solving the following optimal control problem: 

. min
L

tr(�(t))

s.t. �̇ = A� + �A� + BwQB�
w − LC� − �C�L� + LRL�

�(0) = �0

Other well-known modern Bayesian filtering techniques, such as the extended 
Kalman filter (EKF), the unscented Kalman filter (UKF), and the particle filter can 
now be derived using similar principles as the Kalman filter. Additional treatment 
on these filtering techniques can be found in [ 1– 3]. 
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Chapter 21 
Problems and Exercises 

Feedback Stabilization 

Problem 1: Coprime Factorization [ 1]. The cascade compensation with unit feed-
back system is typically configured as shown in Fig. 21.1. We will take no external 
inputs other than the reference signal .r(t) (i.e., set .d = 0 and .n = 0). 

In this problem, we will compute a suitable .K (s) so that the configuration 
in Fig. 21.1 stabilizes plant.H(s) = 1/(s(s − 2)) such that the transfer function from 
. r to . y is given by 

. G yr (s) = β(s)

(s + 1)2
, degβ(s) ≤ 2 (which means β(s) = β0 + β1s + β2s2 for some βi ’s)

(a) Let .K (s) = N (s)/D(s). Write the polynomials .N (s) and .D(s) in terms of the 
coefficients of . β. 

(b) Choose . β2, .β1 such that .K (s)∈RH∞. Write the transfer function.G yr in terms 
of . β0. 

(c) Choose three different values of . β0. For each value, identify whether .G yr is 
stable or not. 

What you observe in part c is a consequence of requiring .G yr (s) to have the same 
denominator degree as the original plant .H(s). This illustrates why the coprime 
factorization approach is needed. 

Problem 2: Euclid’s Algorithm. Consider the plant 

. H(s) = 5(s − 2)

(s + 2)(s2 − 9s + 20)

Find a coprime factorization .H(s) = N (s)/M(s) such that .N , M ∈RH∞, .N and 
.M do not share any zeros on the open right-half plane, and the poles of .M are at 
.s = − 3 and .s = − 4. Use Euclid’s Algorithm to verify that your choices of .N and 
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Fig. 21.1 The cascade compensation.K (s) of plant.H(s)with unit feedback. Modified from Doyle, 
Francis, Tannenbaum [ 2]. Here, we will take.d = 0 and. n = 0

.M are coprime. 
Hint: Try starting with .N (s)= 5(s − 2)/p(s) and . M(s)= (s + 2)(s2 − 9s +
20)/p(s), where .p(s) is some polynomial of . s which satisfies the given con-
straints. 

Problem 3. Consider the plant as follows, with coprime factorization 

. H(s) = (s − 3)(s − 5)

(s − p)2(s + 8)
, N (s) = (s − 3)(s − 5)

(s + 2)2(s + 8)
, M(s) = (s − p)2

(s + 2)2

(a) Verify that the above .N and .M belong to the space . Q, defined in class. 
(b) An internally stabilizing controller .K ∈S(H) is said to be strongly stabilizing 

if .K itself is also a stable transfer function. If such a .K exists for the plant . H , 
then .H is said to be strongly stabilizable. 
Can you find a strongly stabilizing controller of .H when .p = 4? What about 
when .p = 3.1? 

Problem 4: Hamiltonian Matrices. A matrix 

. M =
[

M11 M12

M21 M22

]
, Mi j ∈ R

n×n

is said to be Hamiltonian if 

. 

[
0 I

−I 0

]
M

[
0 I

−I 0

]
= M�.

Here, we denote .J : −
[
0 I

−I 0

]
. 

(a) Prove that .M is Hamiltonian if and only if .M22 = −M�
11 and.M12, M21 are both 

symmetric. 
(b) Show that if . v is an eigenvector of . M , then .Jv is an eigenvector of .M�.  Also,  

show that if .λ ∈R is an eigenvalue of . M , then so is .−λ.
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Linear Quadratic Regulator 

Problem 5: Cartpole Pendulum via LQR. We return to the inverted pendulum on 
a cart system in this problem. Consider again the linearized model about the upright 
pole position (around .(x, ẋ, θ, θ̇) = (0, 0,π, 0)): 

. ẋ(t) =

⎡
⎢⎢⎣
0 1 0 0
0 − b

M −mg
M 0

0 0 0 1
0 − b

M L − (M+m)g
M L 0

⎤
⎥⎥⎦ x(t) +

⎡
⎢⎢⎣

0
1
M
0
1

M L

⎤
⎥⎥⎦ F(t)

(a) Choose the following matrices for .Q and . R

. Q =

⎡
⎢⎢⎣
1
1
10

100

⎤
⎥⎥⎦ , R = 0.01

and use MATLAB to design an infinite horizon LQR controller which stabilizes 
this system. Plot the position .x(t) versus time . t , angle .θ(t) versus time . t , and 
control.F(t) versus time. t on three separate (sub)plots. Be sure to choose at least 
10 different initial conditions close to the equilibrium. 

(b) Repeat part (a) for the following .Q and . R instead: 

. Q = 0.2I4 �

⎡
⎢⎢⎣
0.2

0.2
0.2

0.2

⎤
⎥⎥⎦ , R = 20

What do you observe? How does the performance of this LQR controller compare 
to that of part (a)? 

Problem 6: Infinite-Horizon LQR. Consider the following system described by the 
linear equations .ẋ = Ax + Bu with .y = Cx. 

. A =
[
0 1
0 0

]
, B =

[
0
1

]
, C = [

1 0
]

(a) Determine the optimal control .u∗(t)= F∗x(t) with .t ≥ 0 which minimizes the 
performance index .J = ∫ ∞

0 (y2(t) + ρu2(t))dt , where . ρ is positive and real. 
(b) Observe how the eigenvalues of the dynamic matrix of the resulting closed-loop 

system change as a function . ρ. What do the results tell you? 

Problem 7. Consider an object of mass .m = 1 moving along the .x-axis in response 
to a force input .u(t). The object’s dynamics can be described simply as .ẍ(t)= u(t). 
Suppose you would like to design an input which will move the object from any
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initial position and velocity, then come to rest at the position .x f = 5. Formulate this 
problem as a LQR and solve it in a coding language of your choice (e.g., MATLAB). 
Plot the state and control input trajectories over time for multiple different .Q and. R
weightings, as well as different initial conditions. 

Problem 8: Receding-Horizon LQR. In this problem, we will consider a special 
version of the LQR called the receding horizon LQR.  Le  t .xt+1 = Axt + But , . yt =
Cxt , and choose costs. Q,. R, and a horizon of length.T ∈N for the LQR problem. For 
each horizon .T ∈N, this controller takes a linear state-feedback form.ut = KT xt . 

(a) What happens to the system if . T is increased? 
(b) What is the smallest value of. T for which the closed-loop system becomes stable? 
(c) Write down a Riccati equation for this receding horizon LQR problem. Express 

the feedback gain.KT ∈R
1×4 in terms of. A,. B, and. Pi , the solution of the Riccati 

equation. 
(d) Suppose we wanted to implement the receding horizon controller when 

. A =

⎡
⎢⎢⎣

1 0.4 0 0
−0.7 1 0.5 0
0 0.5 1 −0.7
0 0 0.4 1

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣
1
0
0
0

⎤
⎥⎥⎦ , C = [

0 0 0 1
]

with state cost.Q = C�C , control cost.R = 1. Plot the feedback gain.KT versus 
the horizon length. T . Make sure each of the 4 entries of.KT are drawn as separate 
lines. Make sure that the range of. T you choose includes your answer to part b). 

(e) For the same values of .A, B, C, Q, R, and the same range of . T as part d), plot 
the spectral radius of the closed-loop .Acl,T � A + BKT . 

Problem 9: DT Finite-Horizon LQR. Prove that the optimal control input . u ∈ U
for the discrete-time (DT) finite-horizon LQR cost functional 

. Ju(x0) =
T −1∑
t=0

[
x�

t u�
t

] [
Q S
S� R

] [
xt ut

] + x�
t Q f xt ,

with .Q, Q f ≥ 0 and .R > 0, is given by 

. u∗
t = Kt xt , where Kt � −(R + B� Pt+1B)−1(S� + B� Pt+1 A), where Pt+1 is defined by the recursion

Pt =
{

Q + A� Pt+1 A − (S� + B� Pt+1 A)�(R + B� Pt+1B)−1(S� + B� Pt+1 A) if 0 ≤ t ≤ T − 1

Q f if t = T

We did the .S = 0 case earlier in this chapter. 

Problem 10. Solve the following LQR problems without using any computer 
program. Note that you are asked to compute the minimum value of the optimization 
problem.
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Fig. 21.2 The mass-spring system of Problem 11 

Hint: The Riccati equations can be solved by hand. 

. (a) min
u∈U

∫ t f

t0

(x2(t) + u2(t))dt s.t. ẋ(t) = u(t)

(b) min
u∈U

∫ ∞

0
(x2

1 (t) + u2(t))dt s.t.

{
ẋ1(t) = x2(t), x1(0) = x10
ẋ2(t) = u(t), x2(0) = x20

Problem 11: Mass-Spring System. We will design an LQR controller for the mass-
spring interconnection shown in Fig. 21.2. 

For .i = 1, . . . , 4, block . i has mass .mi ∈R
+ and its state is represented by is 

displacement .di ∈R from some designated equilibrium point. For simplicity, we 
will take .mi = 1 for all . i . We assume there are three main forces acting on these 
blocks, denoted .u1, u2, u3. 

The dynamics of such a system are given by 

. 
d̈1 = −k1d1 + k2(d2 − d1) + u1

d̈3 = −k3(d3 − d2) + k4(d4 − d3) + u2

d̈2 = −k2(d2 − d1) + k3(d3 − d2) − u1 − u3

d̈4 = −k4(d4 − d3) − u2

(a) Define an appropriate choice of state .x(t), then write this system in LTI state-
space form.ẋ(t) = Ax(t) + Bu(t). 

(b) Find the optimal state-feedback control law .u(t) which minimizes the cost 
functional 

. Ju(x0) �
∫ ∞

0
(‖d(t)‖22 + ‖u(t)‖22)dt

where .d � (d1, . . . , d4)�. What are the .Q and . R weights you should choose? 

(c) Use the Hamiltonian matrix method to solve the Riccati equation you got in part 
(b). Verify that you get the same result as in part (b). 

(d) Using the spring coefficients .ki = 1 for all . i ,  plo  t .d(t) versus time. t for both the 
open-loop dynamics (.u(t) = 0) and the feedback-stabilized closed-loop dynam-
ics. Plot your trajectories for at least 3 different initial conditions (not equal to 
0).
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Stochastic Differential Equations, Stochastic Systems 

Problem 12: Euler-Maruyama Algorithm. Recall that for deterministic linear sys-
tems .ẋ(t) = Ax(t) + Bu(t), we discussed several methods of discretization to DT 
systems of the form.xt+1 = Adxt + Bdut . This allows us to approximately simulate a 
CT linear system on a computer using well-known numerical algorithms (e.g., Euler 
integration, leapfrog, etc.). Note that discretization can be applied to any deterministic 
system, even nonlinear ones. 

An analogous technique used to discretize and simulate SDEs is the Euler-
Maruyama algorithm, whose pseudocode is written as follows. 

Algorithm 1 Euler-Maruyama 
Given SDE dx(t) = f (t, x(t))dt + σ(t, x(t))dW (t), initial condition x0. 

1: Partition time interval [0, T ] into {tn}N 
n=0,  where  tn+1 − tn = �T for some chosen �T . 

2: Set X0 = x0. 
3: for index n = 0,  .  .  .  ,  N − 1 do 
4: Generate normal random variable �Wn ∼ N (0,�T ). 
5: Set Xn+1 = Xn + f (tn, Xn)�T + σ(tn, Xn)�Wn 
6: end for
7: Return stochastic process {Xn}N

n=0, a sample path approximating the true x(t).

A few remarks: 

• The basic idea is that we are discretizing the SDE . dx(t) = f (t, x(t))dt +
σ(t, x(t))dW (t) using some fixed timestep .�T , and transforming it into a 
stochastic difference equation .Xn+1 = Xn + f (tn, Xn)�T + σ(tn, Xn)�Wn . 

• Note that .�Wn � W (tn+1) − W (tn) is just a .N (0,�T ) Gaussian random vari-
able because .tn+1 − tn = �T for all . n, and because of the stationary increments 
property of .W (t). 

Code and implement (via Python, MATLAB, your choice) the Euler-Maruyama 
algorithm for the two scalar linear SDEs we discussed in class: 

(a) the mean-reverting Ornstein-Uhlenbeck process . R 
 dx(t) = θ(μ − x(t))dt +
σdW (t) with .θ = 0.7,μ = 0.5,σ = 0.06. 

(b) the Geometric Brownian motion.R 
 dx(t) = θx(t)dt + σx(t)dW (t) with. θ =
0.7,σ = 0.2. 

For each one of your plots, fix the initial condition at .x0 = 1. 
Note: in contrast to deterministic linear systems, each .x0 does not give us a unique 
solution trajectory .x(t) in stochastic systems. This is clearly due to the randomness 
in the system’s dynamics. 

Now code and implement the Euler-Maruyama algorithm for the following 
nonlinear stochastic system: 

(c) .dx(t) = − sin x(t) + √
2σ2dW (t) with .σ = 0.1. Plot both .x(t) versus . t and 

.sin x(t) versus . t on separate subplots.
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Problem 13: Itô’s Formula. Itô’s formula (or Itô’s lemma) is an important identity 
in stochastic calculus. It is used to find the differential of a (time-dependent) function 
of some.x(t), where.x(t) evolves according to a stochastic process or SDE. One can 
think of it as the stochastic calculus version of the Taylor series expansion, or the 
chain rule. 

Given a scalar-valued SDE.dx(t) = f (t, x(t))dt + σ(t, x(t))dW (t), suppose we 
are interested in computing .y(t) � V (t, x(t)), where .V ∈ C(1,2) is a real-valued 
function. Then the formula tells us: 

. dy(t) = ∂t V (t, x(t))dt + ∂x V (t, x(t))dx(t) + 1

2
∂2

x V (t, x(t))d[x, x](t)

where .[·, ·] is the quadratic variation notation we discussed in class. Note that this 
can be written in an integral form: 

. y(t) = y(0) +
∫ t

0
∂s V (s, x(s))ds +

∫ t

0
∂x V (s, x(s))dx(s) + 1

2

∫ t

0
∂2

x V (s, x(s))d[x, x](s)

In order to complete the calculations, one must now substitute in the expressions for 
.dx(t) and .d[x, x](t). 

Now consider the following problems. 

(a) Use  Itô’s  formula  to  prove  t  hat

.

∫ t

0
W (s)dW (s) = 1

2

(
W 2(t) − t

)
(21.1) 

Hint: Consider applying Itô’s formula to some function . f of .W (t): 

. f (W (t)) � f (W (0)) +
∫ t

0
f ′(W (s))dW (s) + 1

2

∫ t

0
f ′′(W (s)) d[W, W ](s)︸ ︷︷ ︸

=ds

.

Then choose . f which gives you an expression for .
∫ t
0 W (s)dW (s) in terms of 

.W (t) and . t . 
Note: For more general functions .g(s), it is not always possible to compute 
stochastic integrals .

∫
(s)dW (s) explicitly, and the best we can do is to leave 

them in that expression. 
(b) Recall the solution to the mean-reverting Ornstein-Uhlenback process . dx(t) =

θ(μ − x(t))dt + σdW (t) is given by 

.x(t) = e−θt x0 + μ(1 − e−θt ) + σ

∫ t

0
e−θ(t−s)dW (s) (21.2) 

Apply Itô’s formula to the function .V (x(t)) � x(t)eθt and verify that you get 
the same result as (21.2).
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(c) Recall we derived a solution to the Geometric Brownian motion . dx(t) =
θx(t)dt + σx(t)dW (t) as 

.
dx(t)

x(t)
= θdt + σdW (t) =⇒ x(t) = x0exp

(∫ t

0
θds +

∫ t

0
σdW (s)

)
(21.3) 

by directly applying separation of variables. However, it turns out this solution 
is actually incorrect! Apply Itô’s formula to the function.V (x(t)) � log x(t) and 
derive the correct solution. 

(d) The Brownian bridge is another common type of SDE with many applications 
in physics and statistics. 

. dx(t) = − 1

1 − t
x(t)dt + dW (t) ∀ t ∈ [0, 1)

Show that the solution is given by 

.x(t) = (1 − t)
∫ t

0

1

1 − s
dW (s) (21.4) 

Verify this solution using both types of methods: (1) separation of variables 
and (2) Itô’s formula. For Itô’s formula, how do you think you should choose 
.V (t, x(t))? 
Note: the Brownian bridge can be viewed as a linear time-varying (LTV) 
stochastic system, where the .a(t) coefficient is .−1/(1 − t). 

(e) You may have noticed that typical methods to solve deterministic ODEs (e.g., 
integrating factors, separation of variables) works for some SDEs, but not others. 
Why do you think this is the case? 

A good textbook that is used a lot in SDE courses at various universities is Øksendal’s 
“Stochastic Differential Equations” [ 3]; Chap. 4 discusses Itô’s formula [ 4, 5]. 

Problem 14: Brownian Motion Processes. This problem is concerned with some 
miscellaneous properties of Gaussian processes and the Brownian motion. 

(a) Let.x ∼ N (μ, �)be a Gaussian random vector with mean.μ ∈ R
n and covariance 

matrix .� ∈ R
n×n .  Le  t .y � Ax + b be an affine transformation of . x,  for  som  e

.A ∈ R
n×n and .b ∈ R

n . What is the mean and covariance matrix of . y? 
(b) Recall that the autocorrelation function of a real-valued stochastic process 

.{X (t), t ≥ 0} is given by.RX (s, t) � E[X (t)X (s)] for any two times.s, t ∈ R
≥0. 

Prove that .RW (s, t) = min(s, t), where .W is the standard Brownian motion 
process. 

(c) Suppose.X1 and.X2 are two Brownian motion processes with variance parameters 
.σ1 and. σ2, respectively. What is the autocorrelation function of .X1 − X2?  Also,  
what is its pdf, . fX1−X2(x) for .x ∈ R?
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Hint: Generalizing part b), the autocorrelation function of a Brownian motion 
processes with variance parameter . σ is .σmin(s, t). 

(d) Let.x � [x�
1 , . . . , x�

n ] be a Gaussian random vector with mean. 0 and covariance 
matrix.�X . Show there exists a unitary matrix.U ∈ R

n×n (i.e., .U� = U−1) such 
that .{y1, . . . , yn}, defined as the entries in random vector .y � Ux, are uncorre-
lated random variables. 
Hint: Find a .U such that the covariance matrix .�Y of . y becomes a diagonal 
matrix. 

.H2 Control, and Linear Quadratic Gaussian 

Problem 15: Discounted LQG. We will consider the following discounted LQG 
problem. First, as usual, the DT linear dynamics are given by 

. xt+1 = Axt + But + wt , wt ∼ N (0, W ) i.i.d. ∀t ∈ Z
≥0

The infinite-horizon cost functional we are seeking to optimize is 

. Ju(x) � min
u∈U

E

[ ∞∑
t=0

γk(x�
t Qxt + u�

t Rut )

∣∣∣∣x0 = x

]

where we have the usual assumptions on.Q and. R, and.γ ∈ (0, 1] is called the discount 
factor. 

(a) Derive an optimal linear state-feedback control policy of the form.u∗
t = −K ∗xt , 

with an appropriate gain .K ∗. What is the form of the cost-to-go function (value 
function) .V (x) � E[∑∞

t=0 γk(x�
t Qxt + u�

t Rut )|x0 = x] that you should use? 
(b) In other fields (e.g., reinforcement learning), it is common to keep track of 

another type of value function called the Q-function (or state-action value func-
tion), defined as .Q(x, u) � E[∑∞

t=0 γk(x�
t Qxt + u�

t Rut )|x0 = x, u0 = u] Use 
Bellman’s principle of optimality to derive a similar recursion for the Q-value 

function. Write your final answer as a matrix equation in terms of .

[Q11 Q12

Q21 Q22

]
, 

which comes from 

. Q(x, u) = [
x� u�] [Q11 Q12

Q21 Q22

] [
x
u

]
+ F

where .F is an extra term due to the noise (you have to find an equation for . F
too). 
Hint: It should look somewhat similar to your recursion in part a. Note the two 
value functions are related via .V (x) = Q(x,−K ∗x).
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Fig. 21.3 Satellite system 
for Problem 5 

Problem 16: Satellite Control. Consider the system of a satellite orbiting around a 
spherical planet (like Earth). See Fig. 21.3. Its dynamics of motion can be expressed 
as 

. m(r̈ − r θ̇2) = −km

r2
+ u1 + w1, m(2ṙ θ̇ + r θ̈) = u2 + w2

where. m is the mass of the satellite,. r is the radius of its orbit,. θ is its angle with respect 
to the horizontal line, .u1 and .u2 are its thrust in the radial and tangential directions, 
respectively. Here,.w1 and.w2 are independent scalar Gaussian white noise processes 
with variances .σ2

1 and .σ2
2, respectively. 

Defining the state as .x � (r, θ, ṙ , θ̇)� and linearizing the dynamics around 
.(r̄ , 0, ω̄t, ω̄), where .ω̄ �

√
k/r̄3 yields 

. ẋ =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1

3ω̄2 0 0 2r̄ ω̄
0 0 −2ω̄/r̄ 0

⎤
⎥⎥⎦ x +

⎡
⎢⎢⎣
0 0
0 0
1
m 0
0 1

mr

⎤
⎥⎥⎦

([
u1

u2

]
+

[
w1

w2

])

Use an optimization toolbox of your choice (e.g., CVX, YALMIP, etc.) to find 
stabilizing controls 

(a) using .u2 only. 
(b) using both .u1 and . u2. 

For both parts, use the values .m = 100kg, .r = (R + r)km, where .r = 300km, 
.σ2

1 = σ2
2 = 0.1N, and.k = G M , where.G ≈ 6.673 × 10−11 Nm2/kg2 is the universal 

gravitational constant, and .M ≈ 5.98 × 1024 kg, .R ≈ 6.37 × 103 km are the mass, 
radius of Earth.
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Linear State Estimation and Kalman Filtering 

Problem 17: Delayed-Form DT Kalman Filter. Derive an alternative formulation 
of the discrete-time Kalman filter (DTKF) equations which updates .x̂t |t−1, �̂t |t−1 to 
.x̂t+1|t , �̂t+1|t . Be sure to apply the two steps of the Bayesian filtering procedure we 
used in class. 

Problem 18: CT Kalman Filter. In this problem, we will derive the Kalman filter 
in continuous-time (i.e., the CTKF), for the continuous-time LTI system 

. ẋ(t) = Ax(t) + Bww(t), y(t) = Cx(t) + v(t)

where.x0 ∼ N (0, �0),.{w(t)}, and.v(t) are all pairwise uncorrelated, with. E[w(t)] =
0,  Co  v.(w(t), w(s)) = �wδ(t − s) and .E[v(t)] = 0,  Co  v.(v(t), v(s)) = �vδ(t − s). 
As usual, the goal is to estimate .x̂(t) of .x(t) given observations . A(t) � {y(s) : 0 ≤
s < t} such that the MSE.E[∥∥x(t) − x̂(t)

∥∥2
2] is minimized for each . t . 

(a) Similar to observer dynamics (for deterministic systems), we can use the 
following dynamics for the state estimate 

. ˙̂x(t) = Ax̂(t) + L(t)(y(t) − C x̂(t)) (21.5) 

Note that .L(t) is time dependent. Derive dynamics for the error . e(t) � x(t) −
x̂(t) and the error covariance.�̂(t) � E[e(t)e�(t)]. Make sure that for both equa-
tions, you get a form that looks like .ȧ = Acla + other terms..., with the same 
“.Acl” and . a a placeholder for .e, �.  (.Acl is something you have to find in terms 
of the given parameters.) 

(b) Use the state transition matrix of the error equation (i.e., .�(t, τ ) � eAcl (t−τ ), 
with the .Acl you derived in part a) to prove that 

.E[e(t)w�(t)B�
w ] = E[Bww(t)e�(t)] = 1

2
Bw�w B�

w for all t (21.6) 

E[e(t)v�(t)L�(t)]  =  E[L(t)v(t)e�(t)]  =  −  
1 

2 
L(t)�v L �(t) for all t

Hint: Here, use.
∫ t
0 g(s)w(s)ds instead of stochastic integral.

∫ t
0 g(s)dW (s).  Also,  

the following formula may be helpful:

. 

∫ b

a
g(x)δ(b − x)dx =

∫ 0

b−a
g(b − u)δ(u)du = 1

2
g(b).

The factor . 12 can be justified by regarding the delta function.δ(x) as a “limit" of 

.
√

a
π

e−ax2
as .a → ∞.
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(c) Substitute the identities (21.6) into your dynamics for .�̂(t) from part a) and 
simplify. Show that 

. 
˙̂
�(t) = (A − L(t)C)�̂(t) + �̂(t)(A − L(t)C)� + Bw�w B�

w + L(t)�v L�(t)
(21.7) 

Note: in the steady-state case (i.e., .�̇(t) = 0 and .L(t) ≡ L), this is another 
algebraic Riccati equation! 

(d) Recall that the objective is to minimize .J (t) � E[∥∥x(t) − x̂(t)
∥∥2
2]. How would 

you rewrite .J (t) in terms of .�̂(t)? Show that the Kalman gain . L(t) �
�̂(t)C��−1

v yields the minimum .J (t) (where .�v is assumed to be invertible). 
Substitute.L(t) back into the dynamics for.x̂(t) and.�̂(t) to complete the deriva-
tion of the CTKF. 
Note: Some common alternative names for the CTKF are the Kalman-Bucy filter 
or the linear quadratic estimator (LQE). 

Problem 19: CT Kalman Filter. For the CT scalar integrator dynamics below: 

. ẋ(t) = w(t)

where.�w = 2, derive a Kalman filter for each of the following three sensor models. 

(a) one noisy measurement of . x is available: .y(t) = x(t) + v(t), �v = 1. 
(b) two independent noisy measurements of . x are available: 

. 

[
y1(t)
y2(t)

]
=

[
x(t)
x(t)

]
+

[
v1(t)
v2(t)

]
, �v =

[
1 0
0 2

]

(c) two dependent noisy measurements of . x are available: 

. 

[
y1(t)
y2(t)

]
=

[
x(t)
x(t)

]
+

[
v1(t)
v2(t)

]
, �v =

[
2 1
1 2

]

Problem 20: CT Kalman Filter. Here, we will derive a Kalman filter for the 
following 2-dimensional CT system 

. ẋ(t) =
[
0 1
1 0

]
x(t) +

[
1
0

]
u(t) + w(t), y(t) = [

1 0
]

x(t) + v(t)

where.{w(t)} and.{v(t)} are Gaussian white noise processes with covariance matrices 
.�w = 3I2 and .�v = 1. 

(a) Calculate the minimum observer error covariance.�̂(t) and the optimal Kalman 
gain .L(t). 

(b) Derive the filter equation for the state estimate .x̂(t).
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(c) Use the lqe command to compute .�̂(t) and .L(t). Compare these with your 
answers in part (a). 

General Bayesian Filtering 

Problem 21: Unscented Kalman Filter. In this problem, implement the unscented 
Kalman filter for the following three sample nonlinear systems: 

(a) tracking a planar circle, with.x-position. x1,.y-position. x2, and angle position. x3. 

. 

⎡
⎣x1

x2
x3

⎤
⎦ [t + 1] =

⎡
⎣ R cos(x3[t])

R sin(x3[t])
mod(x3[t] + π

M , 2π)

⎤
⎦ + w[t],

[
y1
y2

]
[t] =

[
x1
x3

]
[t] + v[t]

where .R = 5 (the radius of the circle), .M = 12, .w[t] ∼ N (0, 0.052 I3), and 
.v ∼ N (0, 0.12 I2). 
Note: we are using discrete-time notation.x[t] ≡ xt (with brackets instead of sub-
script) because “.xi,t” doesn’t look as good. Both types of notations are standard 
for DT systems anyway. 

(b) tracking a planar spiral. 

. 

⎡
⎣x1

x2
x3

⎤
⎦ [t + 1] =

⎡
⎣ γt R cos(x3[t])

γt R sin(x3[t])
mod(x3[t] + π

M , 2π)

⎤
⎦ + w[t],

[
y1
y2

]
[t] =

[
x1
x3

]
[t] + v[t]

with .γ = 0.95 and all other values are the same as in part a. 
(c) tracking a 3D helix (i.e., tornado), with .x-position . x1, .y-position . x2, and .z-

position . x3, and angle . x4. 

. 

⎡
⎢⎢⎣

x1
x2
x3
x4

⎤
⎥⎥⎦ [t + 1] =

⎡
⎢⎢⎣

γt R cos(x4[t])
γt R sin(x4[t])
(Px4[t]/2π)

x4[t] + π
M

⎤
⎥⎥⎦ + w[t],

⎡
⎣y1

y2
y3

⎤
⎦ [t] =

⎡
⎣x1

x2
x4

⎤
⎦ [t] + v[t]

with pitch .P = 0.5, .w[t] ∼ N (0, 0.052 I4), .v ∼ N (0, 0.12 I3), and all other 
values are the same as in parts a and b. 

For each part of the problem, plot at least three different sample paths for. Tsim = 100
timesteps, with various different .x0 ∼ N (μ, P) (i.e., you are free to choose . μ and 
. P), and .λ = nα2 − n with various different . α and . β. 

Problem 22: Particle Filter. Recall the following dynamics for the uncontrolled 
double-pendulum:
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. 2mL2θ̈1 + mL2θ̈2 cos(θ1 − θ2) + mL2θ̇22 sin(θ1 − θ2) + J1θ̈1 − 2mgL sin(θ1) = 0

mL2θ̈2 + mL2θ̈1 cos(θ1 − θ2) − mL2θ̇21 sin(θ1 − θ2) + J2θ̈2 − mgL sin(θ2) = 0

(These can be derived from the Euler-Lagrange equations.) 

Form a state space with state .x �
[
θ1 θ2 θ̇1 θ̇2

]T
and assume additive Gaussian 

white noise of .wt ∼ N (0, I4). Then, implement a particle filter that will estimate 

the entire state given only noisy measurements of .θ2 and . θ̇1, perturbed by additive 
Gaussian white noise of .vt ∼ N (0, I2). 

In your simulations, use the following the following system parameters: .m = 1, 
.L = 2, and .J1, J2 are inertias of the two respective pendulum bobs (i.e., . J1 =
mL2/12, .J2 = 4mL2/12). Also, start with initial condition .x0 = [

0 π
5 0 0

]T
.  Dis-

cretize the original dynamics via Euler integration with a timestep o f .�t = 0.1, and 
simulate your system for .Tsim = 50 timesteps with .N = 1000 particles. 
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