

Image Analysis,
Classification and Change

Detection in Remote
Sensing

The fifth edition of this core textbook in advanced remote sensing continues to maintain
its emphasis on statistically motivated, data-driven techniques for remote sensing image
analysis. The theoretical substance remains essentially the same, with new material on
convolutional neural networks, transfer learning, image segmentation, random forests,
and an extended implementation of sequential change detection with radar satellites. The
tools which apply the algorithms to real remote sensing data are brought thoroughly up to
date. As these software tools have evolved substantially with time, the fifth edition replaces
the now obsolete Python 2 with Python 3 and takes advantage of the high-level packages
that are based on it, such as Colab, TensorFlow/KERAS, Scikit-Learn, and the Google
Earth Engine Python API.

New in the Fifth Edition:

• Thoroughly revised to include the updates needed in all chapters because of the neces-
sary changes to the software.

• Replaces Python 2 with Python 3 tools and updates all associated subroutines, Jupyter
notebooks and Python scripts.

• Presents easy, platform-independent software installation methods with Docker con-
tainers.

• Each chapter concludes with exercises complementing or extending the material in the
text.

• Utilizes freely accessible imagery via the Google Earth Engine and provides many ex-
amples of cloud programming (Google Earth Engine API).

• Examines deep learning examples including TensorFlow and a sound introduction to
neural networks.

This new text is essential for all upper-level undergraduate and graduate students pursuing
degrees in Geography, Geology, Geophysics, Environmental Sciences and Engineering,
Urban Planning, and the many subdisciplines that include advanced courses in remote
sensing. It is also a great resource for researchers and scientists interested in learning tech-
niques and technologies for collecting, analyzing, managing, processing, and visualizing
geospatial datasets.

http://taylorandfrancis.com

Image Analysis,
Classification and Change

Detection in Remote
Sensing

With Algorithms for Python
Fifth Edition

Morton John Canty

https://www.crcpress.com

Designed cover image: Mort Canty, Figure 7.18: Segmentation of manmade structures with a convo-
lutional neural network.

Fifth edition published 2025
by CRC Press
2385 NW Executive Center Drive, Suite 320, Boca Raton FL 33431

and by CRC Press
4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2025 Morton John Canty

First edition published by CRC Press 2007
Second edition published by CRC Press 2010
Third edition published by CRC Press 2014
Fourth edition published by CRC Press 2019

Reasonable efforts have been made to publish reliable data and information, but the author and pub-
lisher cannot assume responsibility for the validity of all materials or the consequences of their use.
The authors and publishers have attempted to trace the copyright holders of all material reproduced
in this publication and apologize to copyright holders if permission to publish in this form has not
been obtained. If any copyright material has not been acknowledged please write and let us know so
we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information stor-
age or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, access www.copyright.com
or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400. For works that are not available on CCC please contact mpkbookspermissions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks and are
used only for identification and explanation without intent to infringe.

ISBN: 978-1-032-82168-9 (hbk)
ISBN: 978-1-032-82170-2 (pbk)
ISBN: 978-1-003-50328-6 (ebk)

DOI: 10.1201/9781003503286

Typeset in CMR10 font
by KnowledgeWorks Global Ltd.

Access the Support Material: www.routledge.com/9781032821689

Publisher’s Note: This book has been prepared from camera-ready copy provided by the author.

https://www.copyright.com
https://www.routledge.com/9781032821689
mailto:mpkbookspermissions@tandf.co.uk
https://doi.org/10.1201/9781003503286

Designed cover image: Mort Canty, Figure 7.18: Segmentation of manmade structures with a convo-
lutional neural network.

Fifth edition published 2025
by CRC Press
2385 NW Executive Center Drive, Suite 320, Boca Raton FL 33431

and by CRC Press
4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2025 Morton John Canty

First edition published by CRC Press 2007
Second edition published by CRC Press 2010
Third edition published by CRC Press 2014
Fourth edition published by CRC Press 2019

Reasonable efforts have been made to publish reliable data and information, but the author and pub-
lisher cannot assume responsibility for the validity of all materials or the consequences of their use.
The authors and publishers have attempted to trace the copyright holders of all material reproduced
in this publication and apologize to copyright holders if permission to publish in this form has not
been obtained. If any copyright material has not been acknowledged please write and let us know so
we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information stor-
age or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, access www.copyright.com
or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400. For works that are not available on CCC please contact mpkbookspermissions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks and are
used only for identification and explanation without intent to infringe.

ISBN: 978-1-032-82168-9 (hbk)
ISBN: 978-1-032-82170-2 (pbk)
ISBN: 978-1-003-50328-6 (ebk)

DOI: 10.1201/9781003503286

Typeset in CMR10 font
by KnowledgeWorks Global Ltd.

Access the Support Material: www.routledge.com/9781032821689

Publisher’s Note: This book has been prepared from camera-ready copy provided by the author.

Contents

Preface to the First Edition xi

Preface to the Second Edition xiii

Preface to the Third Edition xv

Preface to the Fourth Edition xvii

Preface to the Fifth Edition xix

Author Biography xxi

1 Images, Arrays, and Matrices 1
1.1 Multispectral satellite images 4
1.2 Synthetic aperture radar images 8
1.3 Linear algebra of vectors and matrices 10

1.3.1 Elementary properties 11
1.3.2 Square matrices . 13
1.3.3 Singular matrices . 15
1.3.4 Symmetric, positive definite matrices 15
1.3.5 Linear dependence and vector spaces 17
1.3.6 Eigenvalues and eigenvectors 17
1.3.7 Singular value decomposition 19
1.3.8 Tensors . 21

1.4 Finding minima and maxima 22
1.5 Exercises . 29

2 Image Statistics 31
2.1 Random variables . 31

2.1.1 Discrete random variables 32
2.1.2 Continuous random variables 33
2.1.3 Random vectors . 36
2.1.4 The normal distribution 39
2.1.5 The gamma distribution and its derivatives 41

2.2 Parameter estimation . 44
2.2.1 Random samples . 44
2.2.2 Sample distributions and interval estimators 47

v

vi Contents

2.3 Multivariate distributions . 50
2.3.1 Vector sample functions and the data matrix 51
2.3.2 Provisional means . 53
2.3.3 Real and complex multivariate sample distributions . . 55

2.4 Bayes’ Theorem, likelihood, and classification 57
2.5 Hypothesis testing . 60
2.6 Ordinary linear regression . 65

2.6.1 One independent variable 66
2.6.2 Coefficient of determination (R2) 67
2.6.3 More than one independent variable 68
2.6.4 Regularization, duality, and the Gram matrix 72

2.7 Entropy and information . 73
2.7.1 Kullback–Leibler divergence 75
2.7.2 Mutual information . 76

2.8 Exercises . 78

3 Transformations 83
3.1 The discrete Fourier transform 83
3.2 The discrete wavelet transform 88

3.2.1 Haar wavelets . 89
3.2.2 Image compression . 93
3.2.3 Multiresolution analysis 96

3.3 Principal components . 103
3.3.1 Principal components on the GEE 105
3.3.2 Image compression and reconstruction 107
3.3.3 Primal solution . 110
3.3.4 Dual solution . 110

3.4 Minimum noise fraction . 112
3.4.1 Additive noise . 112
3.4.2 Minimum noise fraction via PCA 115

3.5 Spatial correlation . 117
3.5.1 Maximum autocorrelation factor 117
3.5.2 Noise estimation . 120

3.6 Exercises . 123

4 Filters, Kernels, and Fields 127
4.1 The convolution theorem . 127
4.2 Linear filters . 132
4.3 Wavelets and filter banks . 135

4.3.1 One-dimensional arrays 136
4.3.2 Two-dimensional arrays 141

4.4 Kernel methods . 145
4.4.1 Valid kernels . 146
4.4.2 Kernel PCA . 149

4.5 Gibbs–Markov random fields 152
4.6 Exercises . 156

vi Contents

2.3 Multivariate distributions . 50
2.3.1 Vector sample functions and the data matrix 51
2.3.2 Provisional means . 53
2.3.3 Real and complex multivariate sample distributions . . 55

2.4 Bayes’ Theorem, likelihood, and classification 57
2.5 Hypothesis testing . 60
2.6 Ordinary linear regression . 65

2.6.1 One independent variable 66
2.6.2 Coefficient of determination (R2) 67
2.6.3 More than one independent variable 68
2.6.4 Regularization, duality, and the Gram matrix 72

2.7 Entropy and information . 73
2.7.1 Kullback–Leibler divergence 75
2.7.2 Mutual information . 76

2.8 Exercises . 78

3 Transformations 83
3.1 The discrete Fourier transform 83
3.2 The discrete wavelet transform 88

3.2.1 Haar wavelets . 89
3.2.2 Image compression . 93
3.2.3 Multiresolution analysis 96

3.3 Principal components . 103
3.3.1 Principal components on the GEE 105
3.3.2 Image compression and reconstruction 107
3.3.3 Primal solution . 110
3.3.4 Dual solution . 110

3.4 Minimum noise fraction . 112
3.4.1 Additive noise . 112
3.4.2 Minimum noise fraction via PCA 115

3.5 Spatial correlation . 117
3.5.1 Maximum autocorrelation factor 117
3.5.2 Noise estimation . 120

3.6 Exercises . 123

4 Filters, Kernels, and Fields 127
4.1 The convolution theorem . 127
4.2 Linear filters . 132
4.3 Wavelets and filter banks . 135

4.3.1 One-dimensional arrays 136
4.3.2 Two-dimensional arrays 141

4.4 Kernel methods . 145
4.4.1 Valid kernels . 146
4.4.2 Kernel PCA . 149

4.5 Gibbs–Markov random fields 152
4.6 Exercises . 156

Contents vii

5 Image Enhancement and Correction 159
5.1 Lookup tables and histogram functions 159
5.2 High-pass spatial filtering and feature extraction 161

5.2.1 Sobel filter . 161
5.2.2 Laplacian-of-Gaussian filter 164
5.2.3 OpenCV and GEE algorithms 166
5.2.4 Invariant moments . 171

5.3 Panchromatic sharpening . 176
5.3.1 HSV fusion . 177
5.3.2 Brovey fusion . 178
5.3.3 PCA fusion . 179
5.3.4 DWT fusion . 179
5.3.5 À trous fusion . 181
5.3.6 A quality index . 182

5.4 Radiometric correction of polarimetric SAR imagery 184
5.4.1 Speckle statistics . 184
5.4.2 Multilook data . 187
5.4.3 Speckle filtering . 192

5.5 Topographic correction . 200
5.5.1 Rotation, scaling, and translation 200
5.5.2 Imaging transformations 201
5.5.3 Camera models and RFM approximations 201
5.5.4 Stereo imaging and digital elevation models 204
5.5.5 Slope and aspect . 210
5.5.6 Illumination correction 211

5.6 Image–image registration . 216
5.6.1 Frequency domain registration 217
5.6.2 Feature matching . 220
5.6.3 Re-sampling with ground control points 223

5.7 Exercises . 226

6 Supervised Classification Part 1 231
6.1 Maximizing the a posteriori probability 233
6.2 Training data and separability 234
6.3 Bayes maximum-likelihood classification 239

6.3.1 Naive Bayes on the GEE 240
6.3.2 Scripts for supervised classification 242

6.4 Gaussian kernel classification 245
6.5 Neural networks . 250

6.5.1 The neural network classifier 254
6.5.2 Cost functions . 257
6.5.3 Back propagation . 259
6.5.4 Deep learning networks 265
6.5.5 Over fitting and generalization 268

viii Contents

6.6 Support vector machines . 270
6.6.1 Linearly separable classes 270
6.6.2 Overlapping classes . 276
6.6.3 Solution with sequential minimal optimization 278
6.6.4 Multiclass SVMs . 279
6.6.5 Kernel substitution . 280

6.7 Exercises . 284

7 Supervised Classification Part 2 289
7.1 Postprocessing . 289

7.1.1 Majority filtering . 290
7.1.2 Probabilistic label relaxation 290

7.2 Evaluation and comparison of classification accuracy 293
7.2.1 Accuracy assessment 293
7.2.2 Accuracy assessment on the GEE 298
7.2.3 Cross-validation on parallel architectures 299
7.2.4 Model comparison . 302

7.3 Ensembles . 305
7.3.1 Adaptive boosting . 306
7.3.2 Binary decision trees and random forests 312

7.4 Classification of polarimetric SAR imagery 316
7.5 Hyperspectral image analysis 318

7.5.1 Spectral mixture modeling 319
7.5.2 Unconstrained linear unmixing 322
7.5.3 Intrinsic end-members and pixel purity 322
7.5.4 Anomaly detection: The RX algorithm 324
7.5.5 Anomaly detection: The kernel RX algorithm 326

7.6 Convolutional neural networks 331
7.6.1 Transfer learning . 334
7.6.2 Semantic segmentation 340

7.7 Exercises . 346

8 Unsupervised Classification 351
8.1 Simple cost functions . 352
8.2 Algorithms that minimize the simple cost functions 354

8.2.1 K-means clustering . 355
8.2.2 Kernel K-means clustering 358
8.2.3 Extended K-means clustering 361
8.2.4 Agglomerative hierarchical clustering 365
8.2.5 Fuzzy K-means clustering 367

8.3 Gaussian mixture clustering 369
8.3.1 Expectation maximization 370
8.3.2 Simulated annealing 373
8.3.3 Partition density . 373
8.3.4 Implementation notes 375

viii Contents

6.6 Support vector machines . 270
6.6.1 Linearly separable classes 270
6.6.2 Overlapping classes . 276
6.6.3 Solution with sequential minimal optimization 278
6.6.4 Multiclass SVMs . 279
6.6.5 Kernel substitution . 280

6.7 Exercises . 284

7 Supervised Classification Part 2 289
7.1 Postprocessing . 289

7.1.1 Majority filtering . 290
7.1.2 Probabilistic label relaxation 290

7.2 Evaluation and comparison of classification accuracy 293
7.2.1 Accuracy assessment 293
7.2.2 Accuracy assessment on the GEE 298
7.2.3 Cross-validation on parallel architectures 299
7.2.4 Model comparison . 302

7.3 Ensembles . 305
7.3.1 Adaptive boosting . 306
7.3.2 Binary decision trees and random forests 312

7.4 Classification of polarimetric SAR imagery 316
7.5 Hyperspectral image analysis 318

7.5.1 Spectral mixture modeling 319
7.5.2 Unconstrained linear unmixing 322
7.5.3 Intrinsic end-members and pixel purity 322
7.5.4 Anomaly detection: The RX algorithm 324
7.5.5 Anomaly detection: The kernel RX algorithm 326

7.6 Convolutional neural networks 331
7.6.1 Transfer learning . 334
7.6.2 Semantic segmentation 340

7.7 Exercises . 346

8 Unsupervised Classification 351
8.1 Simple cost functions . 352
8.2 Algorithms that minimize the simple cost functions 354

8.2.1 K-means clustering . 355
8.2.2 Kernel K-means clustering 358
8.2.3 Extended K-means clustering 361
8.2.4 Agglomerative hierarchical clustering 365
8.2.5 Fuzzy K-means clustering 367

8.3 Gaussian mixture clustering 369
8.3.1 Expectation maximization 370
8.3.2 Simulated annealing 373
8.3.3 Partition density . 373
8.3.4 Implementation notes 375

Contents ix

8.4 Including spatial information 375
8.4.1 Multiresolution clustering 376
8.4.2 Spatial clustering . 377

8.5 A benchmark . 380
8.6 The Kohonen self-organizing map 382
8.7 Image segmentation and the mean shift 386
8.8 Exercises . 388

9 Change Detection 395
9.1 Naive methods . 396
9.2 Principal components analysis (PCA) 398

9.2.1 Iterated PCA . 400
9.2.2 Kernel PCA . 402

9.3 Multivariate alteration detection 404
9.3.1 Canonical correlation analysis (CCA) 405
9.3.2 Orthogonality properties 408
9.3.3 Iteratively re-weighted MAD 409
9.3.4 Scale invariance . 412
9.3.5 Regularization . 412
9.3.6 Postprocessing . 415
9.3.7 Unsupervised change classification 415
9.3.8 iMAD on the Google Earth Engine 418

9.4 Change detection with polarimetric SAR imagery 420
9.4.1 Scalar imagery: the gamma distribution 420
9.4.2 Polarimetric imagery: the complex Wishart

distribution . 425
9.4.3 Python software . 430
9.4.4 SAR change detection on the Google Earth Engine . . 435

9.5 Radiometric normalization of visual/infra-red images 441
9.5.1 Scatter plot matching 442
9.5.2 Automatic radiometric normalization 442

9.6 Exercises . 447

A Mathematical Tools 451
A.1 Cholesky decomposition . 451
A.2 Vector and inner product spaces 453
A.3 Complex numbers, vectors, and matrices 454
A.4 Least squares procedures . 456

A.4.1 Recursive linear regression 456
A.4.2 Orthogonal linear regression 458

A.5 Proof of Theorem 7.1 . 461

x Contents

B Neural Network Training Algorithms 465
B.1 The Hessian matrix . 465

B.1.1 The R-operator . 466
B.1.2 Calculating the Hessian 469

B.2 Scaled conjugate gradient training 470
B.2.1 Conjugate directions 471
B.2.2 Minimizing a quadratic function 472
B.2.3 The algorithm . 475

B.3 Extended Kalman filter training 479
B.3.1 Linearization . 479
B.3.2 The algorithm . 481

C Software 485
C.1 Installation . 485
C.2 Command line utilities . 486

C.2.1 gdal . 486
C.2.2 earthengine . 486
C.2.3 ipcluster . 487

C.3 Source code and documentation 487
C.4 Solutions manual . 488

Mathematical Notation 489

References 491

Index 505

x Contents

B Neural Network Training Algorithms 465
B.1 The Hessian matrix . 465

B.1.1 The R-operator . 466
B.1.2 Calculating the Hessian 469

B.2 Scaled conjugate gradient training 470
B.2.1 Conjugate directions 471
B.2.2 Minimizing a quadratic function 472
B.2.3 The algorithm . 475

B.3 Extended Kalman filter training 479
B.3.1 Linearization . 479
B.3.2 The algorithm . 481

C Software 485
C.1 Installation . 485
C.2 Command line utilities . 486

C.2.1 gdal . 486
C.2.2 earthengine . 486
C.2.3 ipcluster . 487

C.3 Source code and documentation 487
C.4 Solutions manual . 488

Mathematical Notation 489

References 491

Index 505

Preface to the First Edition

This textbook had its beginnings as a set of notes to accompany seminars and
lectures conducted at the Geographical Institute of Bonn University and at its
associated Center for Remote Sensing of Land Cover. Lecture notes typically
continue to be refined and polished over the years until the question inevitably
poses itself: “Why not have them published?” The answer of course is “By all
means, if they contribute something new and useful.”

So what is “new and useful” here? This is a book about remote sensing
image analysis with a distinctly mathematical-algorithmic-computer-oriented
flavor, intended for graduate-level teaching and with, to borrow from the re-
mote sensing jargon, a rather restricted FOV. It does not attempt to match
the wider fields of view of existing texts on the subject, such as Schowengerdt
(1997), Richards (2012), Jensen (2005) and others. However, the topics that
are covered are dealt with in considerable depth, and I believe that this cov-
erage fills an important gap. Many aspects of the analysis of remote sensing
data are quite technical and tend to be intimidating to students with moder-
ate mathematical backgrounds. At the same time, one often witnesses a desire
on the part of students to apply advanced methods and to modify them to
fit their particular research problems. Fulfilling the latter wish, in particular,
requires more than superficial understanding of the material.

The focus of the book is on pixel-oriented analysis of visual/infrared Earth
observation satellite imagery. Among the topics that get the most attention
are the discrete wavelet transform, image fusion, supervised classification with
neural networks, clustering algorithms and statistical change detection meth-
ods. The first two chapters introduce the mathematical and statistical tools
necessary in order to follow later developments. Chapters 3 and 4 deal with
spatial/spectral transformations, convolutions and filtering of multispectral
image arrays. Chapter 5 treats image enhancement and some of the prepro-
cessing steps that precede classification and change detection. Chapters 6 and
7 are concerned, respectively, with supervised and unsupervised land cover
classification. The last chapter is about change detection with heavy emphasis
on the use of canonical correlation analysis. Each of the 8 chapters concludes
with exercises, some of which are small programming projects, intended to
illustrate or justify the foregoing development. Solutions to the exercises are
included in a separate booklet. Appendix A provides some additional mathe-
matical/statistical background and Appendix B develops two efficient training
algorithms for neural networks. Finally, Appendix C describes the installation

xi

xii Preface to the First Edition

and use of the many computer programs introduced in the course of the
book.

I’ve made considerable effort to maintain a consistent, clear mathemati-
cal style throughout. Although the developments in the text are admittedly
uncompromising, there is nothing that, given a little perseverance, cannot
be followed by a reader who has grasped the elementary matrix algebra and
statistical concepts explained in the first two chapters. If the student has am-
bitions to write his or her own image analysis programs, then he or she must
be prepared to “get the maths right” beforehand. There are, heaven knows,
enough pitfalls to worry about thereafter.

All of the illustrations and applications in the text are programmed in RSI’s
ENVI/IDL. The software is available for download at the publisher’s website:

http://www.crcpress.com/e products/downloads/default.asp

Given the plethora of image analysis and geographic information system (GIS)
software systems on the market or available under open source license, one
might think that the choice of computer environment would have been diffi-
cult. It wasn’t. IDL is an extremely powerful, array- and graphics-oriented,
universal programming language with a versatile interface (ENVI) for im-
porting and analyzing remote sensing data—a peerless combination for my
purposes. Extending the ENVI interface in IDL in order to implement new
methods and algorithms of arbitrary sophistication is both easy and fun.

So, apart from some exposure to elementary calculus (and the aforesaid
perseverance), the only other prerequisites for the book are a little familiarity
with the ENVI environment and the basic knowledge of IDL imparted by such
excellent introductions as Fanning (2000) or Gumley (2002). For everyday
problems with IDL at any level from “newbie” on upward, help and solace
are available at the newsgroup comp.lang.idl-pvwave frequented by some
of the friendliest and most competent gurus on the net.

I would like to express my thanks to Rudolf Avenhaus and Allan Nielsen
for their many comments and suggestions for improvement of the manuscript
and to CRC Press for competent assistance in its preparation. Part of the
software documented in the text was developed within the Global Monitor-
ing for Security and Stability (GMOSS) network of excellence funded by the
European Commission.

Morton Canty

http://www.crcpress.com/e_products/downloads/default.asp

xii Preface to the First Edition

and use of the many computer programs introduced in the course of the
book.

I’ve made considerable effort to maintain a consistent, clear mathemati-
cal style throughout. Although the developments in the text are admittedly
uncompromising, there is nothing that, given a little perseverance, cannot
be followed by a reader who has grasped the elementary matrix algebra and
statistical concepts explained in the first two chapters. If the student has am-
bitions to write his or her own image analysis programs, then he or she must
be prepared to “get the maths right” beforehand. There are, heaven knows,
enough pitfalls to worry about thereafter.

All of the illustrations and applications in the text are programmed in RSI’s
ENVI/IDL. The software is available for download at the publisher’s website:

http://www.crcpress.com/e products/downloads/default.asp

Given the plethora of image analysis and geographic information system (GIS)
software systems on the market or available under open source license, one
might think that the choice of computer environment would have been diffi-
cult. It wasn’t. IDL is an extremely powerful, array- and graphics-oriented,
universal programming language with a versatile interface (ENVI) for im-
porting and analyzing remote sensing data—a peerless combination for my
purposes. Extending the ENVI interface in IDL in order to implement new
methods and algorithms of arbitrary sophistication is both easy and fun.

So, apart from some exposure to elementary calculus (and the aforesaid
perseverance), the only other prerequisites for the book are a little familiarity
with the ENVI environment and the basic knowledge of IDL imparted by such
excellent introductions as Fanning (2000) or Gumley (2002). For everyday
problems with IDL at any level from “newbie” on upward, help and solace
are available at the newsgroup comp.lang.idl-pvwave frequented by some
of the friendliest and most competent gurus on the net.

I would like to express my thanks to Rudolf Avenhaus and Allan Nielsen
for their many comments and suggestions for improvement of the manuscript
and to CRC Press for competent assistance in its preparation. Part of the
software documented in the text was developed within the Global Monitor-
ing for Security and Stability (GMOSS) network of excellence funded by the
European Commission.

Morton Canty

Preface to the Second Edition

Shortly after the manuscript for the first edition of this book went to the
publisher, ENVI 4.3 appeared along with, among other new features, a support
vector machine classifier. Although my decision not to include the SVM in
the original text was a conscious one (I balked at the thought of writing my
own IDL implementation), this event did point to a rather glaring omission
in a book purporting to be partly about land use/land cover classification.
So, almost immediately, I began to dream of a Revised Second Edition and
to pester CRC Press for a contract. This was happily forthcoming and the
present edition now has a fairly long section on supervised classification with
support vector machines.

The SVM is just one example of so-called kernel methods for nonlinear
data analysis, and I decided to make kernelization one of the themes of the
revised text. The treatment begins with a dual formulation for ridge regression
in Chapter 2 and continues through kernel principal components analysis in
Chapters 3 and 4, support vector machines in Chapter 6, kernel K-means clus-
tering in Chapter 8 and nonlinear change detection in Chapter 9. Other new
topics include entropy and mutual information (Chapter 1), adaptive boosting
(Chapter 7) and image segmentation (Chapter 8). In order to accommodate
the extended material on supervised classification, discussion is now spread
over the two Chapters 6 and 7. The exercises at the end of each chapter have
been extended and re-worked and, as for the first edition, a solutions manual
is provided.

I have written several additional IDL extensions to ENVI to accompany the
new themes, which are available, together with updated versions of previous
programs, for download on the Internet. In order to accelerate some of the
more computationally intensive routines for users with access to CUDA (par-
allel processing on NVIDIA graphics processors), code is included which can
make use of the IDL bindings to CUDA provided by Tech-X Corporation in
their GPULib product:

http://gpulib.txcorp.com

Notwithstanding the revisions, the present edition remains a monograph
on pixel-oriented analysis of intermediate-resolution remote sensing imagery
with emphasis on the development and programming of statistically moti-
vated, data-driven algorithms. Important topics such as object-based feature
analysis (for high-resolution imagery), or the physics of the radiation/surface
interaction (for example, in connection with hyperspectral sensing) are only

xiii

http://gpulib.txcorp.com

xiv Preface to the Second Edition

touched upon briefly, and the huge field of radar remote sensing is left out
completely. Nevertheless, I hope that the in-depth focus on the topics covered
will continue to be of use both to practitioners as well as to teachers.

I would like to express my appreciation to Peter Reinartz and the German
Aerospace Center for permission to use the traffic scene images in Chapter 9
and to NASA’s Land Processes Distributed Active Archive Center for free and
uncomplicated access to archived ASTER imagery. Thanks also go to Peter
Messmer and Michael Galloy, Tech-X Corp., for their prompt responses to my
many cries for help with GPULib. I am especially grateful to my colleagues
Harry Vereecken and Allan Nielsen, the former for generously providing me
with the environment and resources needed to complete this book, the latter
for the continuing inspiration of our friendship and long-time collaboration.

Morton Canty

xiv Preface to the Second Edition

touched upon briefly, and the huge field of radar remote sensing is left out
completely. Nevertheless, I hope that the in-depth focus on the topics covered
will continue to be of use both to practitioners as well as to teachers.

I would like to express my appreciation to Peter Reinartz and the German
Aerospace Center for permission to use the traffic scene images in Chapter 9
and to NASA’s Land Processes Distributed Active Archive Center for free and
uncomplicated access to archived ASTER imagery. Thanks also go to Peter
Messmer and Michael Galloy, Tech-X Corp., for their prompt responses to my
many cries for help with GPULib. I am especially grateful to my colleagues
Harry Vereecken and Allan Nielsen, the former for generously providing me
with the environment and resources needed to complete this book, the latter
for the continuing inspiration of our friendship and long-time collaboration.

Morton Canty

Preface to the Third Edition

A main incentive for me to write a third edition of this book stemmed from my
increasing enthusiasm for the Python programming language. I began to see
the advantage of illustrating the many image processing algorithms covered
in earlier editions of the text not only in the powerful and convenient, but
not inexpensive, ENVI/IDL world, but also on a widely available open source
platform. Python, together with the NumPy and Scipy packages, can hold its
own with any commercial array processing software system. Furthermore, the
Geospatial Data Abstraction Library (GDAL) and its Python wrappers allow
for great versatility and convenience in reading, writing and manipulating dif-
ferent image formats. This was enough to get me going on a revised textbook,
one which I hope will have appeal beyond the ENVI/IDL community.

Another incentive for a new edition was hinted at in the preface to the
previous edition, namely the lack of any discussion of the vast and increas-
ingly important field of radar remote sensing. Obviously this would be a topic
for (at least) a whole new book, so I have included material only on a very
special aspect of particular interest to me, namely multivariate statistical clas-
sification and change detection algorithms applied to polarimetric synthetic
aperture radar (polSAR) data. Up until recently, not many researchers or
practitioners have had access to this kind of data. However with the advent
of several spaceborne polarimetric SAR instruments such as the Japanese
ALOS, the Canadian Radarsat-2, the German TerraSAR-X, and the Italian
COSMO-SkyMed missions, the situation has greatly improved. Chapters 5,
7, and 9 now include treatments of speckle filtering, image co-registration,
supervised classification, and multivariate change detection with multi-look
polSAR data.

The software associated with the present edition includes, along with the
ENVI/IDL extensions, Python scripts for all of the main processing, classifi-
cation and change detection algorithms. In addition, many examples discussed
in the text are illustrated with Python scripts as well as in IDL. The Appen-
dices C and D separately document the installation and use of the ENVI/IDL
and Python code. For readers who wish to use the Eclipse/Pydev development
environment (something which I highly recommend), the Python scripts are
provided in the form of a Pydev project.

What is missing in the Python world, of course, is the slick GUI provided
by ENVI. I have made no attempt to mimic an ENVI graphical environment
in Python, and the scripts provided content themselves with reading imagery
from, and writing results to, the file system. A rudimentary command line

xv

xvi Preface to the Third Edition

script for RGB displays of multispectral band combinations in different his-
togram enhancement modes is included.

For an excellent introduction to scientific computing in Python see Lang-
tangen (2009). The book by Westra (2013) provides valuable tips on geospatial
development in Python, including GDAL programming. The definitive refer-
ence on IDL is now certainly Galloy (2011), an absolute must for anyone who
uses the language professionally.

With version 5.0, a new ENVI graphics environment and associated API has
appeared which has a very different look and feel to the old “ENVI Classic”
environment, as it is officially referred to. Fortunately the classic environment
is still available and, for reasons of compatibility with previous versions, the
IDL programming examples in the text use the classic interface and its asso-
ciated syntax. Most of the ENVI/IDL extensions as documented in Appendix
C are provided both for the new as well as for the classic GUI/API.

I would like to express my appreciation to the German Aerospace Center
for permission to use images from the TerraSAR-X platform and to Henning
Skriver, DTU Space Denmark, for allowing me to use his EMISAR polari-
metric data. My special thanks go to Allan Nielsen and Frank Thonfeld for
acquainting me with SAR imagery analysis and to Rudolf Avenhaus for his
many helpful suggestions in matters statistical.

Morton Canty

xvi Preface to the Third Edition

script for RGB displays of multispectral band combinations in different his-
togram enhancement modes is included.

For an excellent introduction to scientific computing in Python see Lang-
tangen (2009). The book by Westra (2013) provides valuable tips on geospatial
development in Python, including GDAL programming. The definitive refer-
ence on IDL is now certainly Galloy (2011), an absolute must for anyone who
uses the language professionally.

With version 5.0, a new ENVI graphics environment and associated API has
appeared which has a very different look and feel to the old “ENVI Classic”
environment, as it is officially referred to. Fortunately the classic environment
is still available and, for reasons of compatibility with previous versions, the
IDL programming examples in the text use the classic interface and its asso-
ciated syntax. Most of the ENVI/IDL extensions as documented in Appendix
C are provided both for the new as well as for the classic GUI/API.

I would like to express my appreciation to the German Aerospace Center
for permission to use images from the TerraSAR-X platform and to Henning
Skriver, DTU Space Denmark, for allowing me to use his EMISAR polari-
metric data. My special thanks go to Allan Nielsen and Frank Thonfeld for
acquainting me with SAR imagery analysis and to Rudolf Avenhaus for his
many helpful suggestions in matters statistical.

Morton Canty

Preface to the Fourth Edition

The fourth revision marks the completion of a transition, begun in the pre-
ceding edition, from ENVI/IDL to the Python language for implementing the
algorithms discussed in the text. It was with some hesitation that I abandoned
the comfort and convenience of the powerful ENVI/IDL environment and ven-
tured into the raw world of open source. But it has become apparent that open
source software is the future for scientific computing in general and for geo-
spatial analysis in particular. The popularity of R, JavaScript, or Python in
the remote sensing community, the potential of machine learning software
such as TensorFlow for object recognition, the Python and JavaScript APIs
to the wonderful Google Earth Engine, the many open source mapping plat-
forms and servers like Mapbox, OpenLayers, Leaflet, or the OpenStreetMap
project, the elegance of Jupyter notebooks for interactive and collaborative
development, the power of container technology like Docker for painless distri-
bution of scientific software, all of the advantages of these languages, tools and
platforms are freely available and under continual development by a gigantic
community of software engineers, both commercial and voluntary.

So I have jumped off the fence and onto the open source bandwagon in order
to ensure that the computer code used in the present version of the book will
be not only in line with the current trend, but also accessible to anyone,
student or scientist, with a computer and an Internet connection. Each of the
nine chapters of the text is now accompanied by its own Jupyter notebook
illustrating all, or almost all, of the concepts and algorithms presented in that
chapter. The Python scripts are uniformly command-line oriented so as to be
able to be started easily from within a notebook input cell. All of the software
is packaged into a single Docker container which, when run on the user’s
machine, serves the Jupyter notebooks to his or her favourite web browser.
The necessary packages and modules, including the Google Earth Engine and
TensorFlow APIs, are already built into the container so that there is no need
to install anything at all, apart from the Docker engine. This is of course great
for the reader, and for me it means no longer worrying about 32-bit vs. 64-
bit Windows vs. Linux vs. MacOS, or who has what pre-installed version of
which Python package. The container is pulled from DockerHub automatically
when run for the first time, and the source software can be cloned/forked from
GitHub. The details are all given in an appendix.

Had I approached this revision just a couple of years ago, I would have had
some misgivings about retaining the long and rigorous descriptions of neural
network training algorithms in Chapter 6 and Appendix B. Neural network

xvii

xviii Preface to the Fourth Edition

land cover classifiers had until recently gone somewhat out of fashion, giv-
ing way to random forests, support vector machines and the like. However,
given the present artificial intelligence craze, the mathematical detail in the
text should help to provide a solid background for anyone interested in un-
derstanding and exploiting deep learning techniques.

Like the earlier editions, this is not a text on programming or on the in-
tricacies of the various packages, tools, and APIs referred to in the text. As
a solid introduction to scientific computing with Python, I would still recom-
mend Langtangen (2009) and, for TensorFlow, the book by Géron (2017). I
expect that I’m not alone in hoping for a good textbook on the Google Earth
Engine API. Fortunately the on-line documentation is excellent.

Apart from taking advantage of many of these exciting advances in open
source computing, the revised text continues to concentrate on an in-depth
treatment of pixel-oriented, data-driven, statistical methods for remote sens-
ing image processing and interpretation. The choice of topics and algorithms
is by no means all-encompassing and reflects strongly the author’s personal in-
terests and experience. Those topics chosen, however, are presented in depth
and from first principles. Chapters 1 and 2 on linear algebra and statistics
continue to be pretty much essential for an understanding of the rest of the
material. Especially new in the present edition is the discussion of an ele-
gant sequential change detection method for polarimetric synthetic aperture
radar imagery developed by Knut Conradsen and his colleagues at the Danish
Technical University. It has been a pleasure for me to be involved in its imple-
mentation, both in “conventional” Python and for the Google Earth Engine
Python and JavaScript APIs.

I would like to thank my editor Irma Shagla Britton at CRC Press for
waking me up to the idea of a fourth edition, and to give a big thank you to
the friendly, competent and infinitely patient GEE development team.

Morton Canty

xviii Preface to the Fourth Edition

land cover classifiers had until recently gone somewhat out of fashion, giv-
ing way to random forests, support vector machines and the like. However,
given the present artificial intelligence craze, the mathematical detail in the
text should help to provide a solid background for anyone interested in un-
derstanding and exploiting deep learning techniques.

Like the earlier editions, this is not a text on programming or on the in-
tricacies of the various packages, tools, and APIs referred to in the text. As
a solid introduction to scientific computing with Python, I would still recom-
mend Langtangen (2009) and, for TensorFlow, the book by Géron (2017). I
expect that I’m not alone in hoping for a good textbook on the Google Earth
Engine API. Fortunately the on-line documentation is excellent.

Apart from taking advantage of many of these exciting advances in open
source computing, the revised text continues to concentrate on an in-depth
treatment of pixel-oriented, data-driven, statistical methods for remote sens-
ing image processing and interpretation. The choice of topics and algorithms
is by no means all-encompassing and reflects strongly the author’s personal in-
terests and experience. Those topics chosen, however, are presented in depth
and from first principles. Chapters 1 and 2 on linear algebra and statistics
continue to be pretty much essential for an understanding of the rest of the
material. Especially new in the present edition is the discussion of an ele-
gant sequential change detection method for polarimetric synthetic aperture
radar imagery developed by Knut Conradsen and his colleagues at the Danish
Technical University. It has been a pleasure for me to be involved in its imple-
mentation, both in “conventional” Python and for the Google Earth Engine
Python and JavaScript APIs.

I would like to thank my editor Irma Shagla Britton at CRC Press for
waking me up to the idea of a fourth edition, and to give a big thank you to
the friendly, competent and infinitely patient GEE development team.

Morton Canty

Preface to the Fifth Edition

In 2019, in the preface to the fourth edition of this book, I proudly proclaimed
that I had dropped the commercial ENVI/IDL software environment entirely
and committed to open source and to the Python universe. As a reward for my
conversion to the true faith, Python 2.7 was officially “sunsetted” on January
1, 2020 in favour of the rather incompatible Python 3. The Python 2 soft-
ware exclusively used in the fourth edition was packaged into a self-contained
Docker image, but by then the Earth Engine authentication procedure had
changed and the situation was anything but satisfactory. So when my pub-
lisher contacted me in February 2024 for a fifth revision I happily agreed, my
first thought being: now you can upgrade the damn software. Which I have
done and believe me, it doesn’t just involve adding parentheses to the print

statements.
Another incentive for me for a fifth edition was the unbelievable evolution

of neural networks in so many aspects of data analysis in the last few years.
The classic feed forward network was always given prominence in the dis-
cussion of supervised image classification in the earlier editions, but to move
with the times I’ve taken the opportunity to extend the treatment to include
convolutional networks for supervised transfer learning and segmentation of
remote sensing image data. The examples are programmed in the latest Ten-
sorFlow/Keras environment, compatible with the GPU runtime available on
Google’s Colab. The new neural network transformer architectures, LLMs and
generative AI in general are not (yet) relevant to the material discussed here,
but I have also included an experimental LLM/RAG application for informally
querying the book’s content.

Other novelties in the present edition include a treatment of binary classifi-
cation trees and random forests, an improved and extended implementation of
the sequential SAR change detection algorithm including the Loewner order
definition of change direction, and a new adaptive temporal speckle filtering
application. The accompanying JupyterLab notebooks now provide interactive
widget interfaces to the GEE archives for bi-temporal change detection with
visual/infrared imagery, multi-temporal sequential SAR change detection, as
well as high resolution building segmentation with a fully convolutional neural
network.

Although quite old and not especially good, in the present edition I have
kept the same ground truth data that were∗ used in all of the previous editions

∗A propos moving or not moving with the times, when I went to school the word data

was the plural of datum. In this textbook, at least, it still is.

xix

xx Preface to the Fifth Edition

to demonstrate the various supervised classification approaches. This, if only
because I collected the training data myself, on my bicycle, on the same sunny
day in May, 2007 that the ASTER satellite passed overhead and acquired the
multispectral scene. Unfortunately, at 15m ground resolution, you can see
neither me nor my bicycle.

As for the rest, everything I said in the prefaces to the earlier editions still
holds. So I don’t want to repeat myself, save once again to thank my editor
Irma Britton and CRC Press for so faithfully providing me with a platform
over the last 18 years.

Morton Canty

xx Preface to the Fifth Edition

to demonstrate the various supervised classification approaches. This, if only
because I collected the training data myself, on my bicycle, on the same sunny
day in May, 2007 that the ASTER satellite passed overhead and acquired the
multispectral scene. Unfortunately, at 15m ground resolution, you can see
neither me nor my bicycle.

As for the rest, everything I said in the prefaces to the earlier editions still
holds. So I don’t want to repeat myself, save once again to thank my editor
Irma Britton and CRC Press for so faithfully providing me with a platform
over the last 18 years.

Morton Canty

Author Biography

Morton John Canty, now semi-retired, was a senior research scientist in the
Institute for Bio- and Geosciences at the Jülich Research Center in Germany.

He received his PhD in Nuclear Physics in
1969 at the University of Manitoba, Canada
and, after post-doctoral positions in Bonn,
Groningen and Marburg, began work in Jülich
in 1979. There, his principal interests have
been the development of statistical and game-
theoretical models for the verification of inter-
national treaties and the use of remote sensing
data for monitoring global treaty compliance.
He has served on numerous advisory bodies
to the German Federal Government and to
the International Atomic Energy Agency in
Vienna and was a coordinator within the Eu-
ropean Network of Excellence on Global Mon-
itoring for Security and Stability, funded by

the European Commission. Morton Canty is the author of three monographs
in the German language: on the subject of non-linear dynamics (Chaos und
Systeme, Vieweg, 1995), neural networks for classification of remote sensing
data (Fernerkundung mit neuronalen Netzen, Expert, 1999), and algorithmic
game theory (Konfliktlösungen mit Mathematica, Springer 2000). The lat-
ter text has appeared in a revised English version (Resolving Conflicts with
Mathematica, Academic Press, 2003). He is co-author of a monograph on
mathematical methods for treaty verification (Compliance Quantified, Cam-
bridge University Press, 1996). He has published many papers on the sub-
jects of experimental nuclear physics, nuclear safeguards, applied game theory,
and remote sensing and has lectured on nonlinear dynamical growth models
and remote sensing digital image analysis at Universities in Bonn, Berlin,
Freiberg/Saxony, and Rome.

xxi

http://taylorandfrancis.com

1

Images, Arrays, and Matrices

There are many Earth observation satellite-based sensors, both active and
passive, currently in orbit or planned for the near future. In representative of
these, we briefly describe the multispectral ASTER system (Abrams et al.,
1999) and the TerraSAR-X synthetic aperture radar satellite (Pitz and Miller,
2010). See Jensen (2018), Richards (2012), and Mather and Koch (2010) for
overviews of major remote sensing satellite platforms.

The Advanced Spaceborne Thermal Emission and Reflectance Radiometer
(ASTER) instrument was launched in December 1999 on the Terra space-
craft. It is being used to obtain detailed maps of land surface temperature,
reflectance and elevation and consists of sensors to measure reflected solar
radiance and thermal emission in three spectral intervals:

• VNIR: Visible and near-infrared bands 1, 2, 3N, and 3B, in the spectral
region between 0.52 and 0.86 µm (four arrays of charge-coupled detectors
(CCDs) in pushbroom scanning mode).

• SWIR: Short wavelength infrared bands 4 to 9 in the region between
1.60 and 2.43 µm (six cooled PtSi-Si Schottky barrier arrays, pushbroom
scanning).

• TIR: Thermal infrared bands 10 to 14 covering a spectral range from 8.13
to 11.65 µm (cooled HgCdTe detector arrays, whiskbroom scanning).

The altitude of the spacecraft is 705 km. The across- and in-track ground
sample distances (GSDs), i.e., the detector widths projected through the sys-
tem optics onto the Earth’s surface, are 15 m (VNIR), 30 m (SWIR), and
90 m (TIR).∗ The telescope associated with the 3B sensors is back-looking at
an angle of 27.6o to provide, together with the 3N sensors, along-track stereo
image pairs. In addition, the VNIR camera can be rotated from straight down
(nadir) to ± 24o across-track. The SWIR and TIR instrument mirrors can be
pointed to ± 8.5o across-track. Like most platforms in this ground resolution
category, the orbit is near polar, sun-synchronous. Quantization levels are 8
bits for VNIR and SWIR and 12 bits for TIR. The sensor systems have an

∗At the time of writing, both the VNIR and TIR systems are still producing good data.
The SWIR sensor was declared to be unusable in 2008.

DOI: 10.1201/9781003503286-1 1

https://doi.org/10.1201/9781003503286-1

2 Images, Arrays, and Matrices

FIGURE 1.1

ASTER color composite image (1000× 1000 pixels) of VNIR bands 1 (blue),
2 (green), and 3N (red) over the towns of Jülich and Düren in Germany,
acquired on May 1, 2007. The bright areas are open-cast lignite coal mines.

average duty cycle of 8% per orbit (about 650 scenes per day, each 60×60 km2

in area) with revisit times between 4 and 16 days.
Figure 1.1 shows a spatial/spectral subset of an ASTER scene. The image is

a UTM (Universal Transverse Mercator) projection oriented along the satellite
path (rotated approximately 16.4o from the north) and orthorectified using a
digital terrain model generated from the stereo bands.

Unlike passive multi- and hyperspectral imaging sensors, which measure
reflected solar energy or the Earth’s thermal radiation, synthetic aperture
radar (SAR) airborne and satellite platforms supply their own microwave
radiation source, allowing observations which are independent of time of day

2 Images, Arrays, and Matrices

FIGURE 1.1

ASTER color composite image (1000× 1000 pixels) of VNIR bands 1 (blue),
2 (green), and 3N (red) over the towns of Jülich and Düren in Germany,
acquired on May 1, 2007. The bright areas are open-cast lignite coal mines.

average duty cycle of 8% per orbit (about 650 scenes per day, each 60×60 km2

in area) with revisit times between 4 and 16 days.
Figure 1.1 shows a spatial/spectral subset of an ASTER scene. The image is

a UTM (Universal Transverse Mercator) projection oriented along the satellite
path (rotated approximately 16.4o from the north) and orthorectified using a
digital terrain model generated from the stereo bands.

Unlike passive multi- and hyperspectral imaging sensors, which measure
reflected solar energy or the Earth’s thermal radiation, synthetic aperture
radar (SAR) airborne and satellite platforms supply their own microwave
radiation source, allowing observations which are independent of time of day

Images, Arrays, and Matrices 3

FIGURE 1.2

A 5000×5000-pixel spatial subset of the HH polarimetric band of a TerraSAR-
X quad polarimetric image acquired over the Rhine River, Germany, in so-
called Stripmap mode. The data are slant-range, single-look, complex. The
gray-scale values correspond to the magnitudes of the complex pixel values.

or cloud cover. The radar antenna on the TerraSAR-X satellite, launched in
June, 2007, emits and receives X-band radar (9.65 GHz) in both horizontal and
vertical polarizations to provide surface imaging with a geometric resolution
from about 18 m (scanSAR mode, 10 km×150 km swath) down to 1 m (high-
resolution Spotlight mode, 10 km×5 km swath). It flies in a sun-synchronous,
near-polar orbit at an altitude of 514 km with a revisit time for points on
the equator of 11 days. Figure 1.2 shows a TerraSAR-X HH polarimetric
band (horizontally polarized radiation emitted and detected) acquired over
the Rhine River, Germany, in April, 2010. The data are at the single-look,
slant-range complex (SLC) processing level, and are not map-projected.

4 Images, Arrays, and Matrices

In the following two sections of this chapter, the properties of multispectral
and SAR images in general are described in more detail. In the third section,
we go into some of the mathematical properties of the numerical arrays which
represent those images, and conclude in Section 1.4 with simple methods for
finding extrema in image properties.

1.1 Multispectral satellite images

A multispectral, optical/infrared image such as that shown in Figure 1.1 may
be represented as a three-dimensional array of gray-scale values∗ or pixel in-
tensities

gk(i, j), 1 ≤ i ≤ c, 1 ≤ j ≤ r, 1 ≤ k ≤ N,

where c is the number of pixel columns (also called samples) and r is the
number of pixel rows (or lines). The index k denotes the spectral band, of
which there are N in all. For data at an early processing stage, a pixel may be
stored as a digital number (DN), often in a single byte so that 0 ≤ gk ≤ 255.
This is the case for the ASTER VNIR and SWIR bands at processing level L1A
(unprocessed reconstructed instrument data), whereas the L1A TIR data are
quantized to 12 bits (as unsigned integers) and thus stored as digital numbers
from 0 to 212 − 1 = 4095. Processed image data may of course be stored in
byte, integer, or floating point format and can have negative or even complex
values.

The gray-scale values in the various bands encode measurements of the
radiance L∆λ(x, y) in wavelength interval ∆λ due to sunlight reflected from
some point (x, y) on the Earth’s surface, or due to thermal emission from
that surface, and focused by the instrument’s optical system along the array
of sensors. Ignoring all absorption and scattering effects of the intervening
atmosphere, the at-sensor radiance available for measurement from reflected
sunlight from a horizontal, Lambertian surface, i.e., a surface which scatters
reflected radiation uniformly in all directions, is given by

L∆λ(x, y) = E∆λ · cos θz ·R∆λ(x, y)/π. (1.1)

The units are [W/(m2 · sr · µm)], E∆λ is the average spectral solar irradiance
in the spectral band ∆λ, θz is the solar zenith angle, R∆λ(x, y) is the surface
reflectance at coordinates (x, y), a number between 0 and 1, and π accounts
for the upper hemisphere of solid angle. The conversion between DN and
at-sensor radiance is determined by the sensor calibration as measured (and

∗Which we will usually denote by the letter g throughout the text.

4 Images, Arrays, and Matrices

In the following two sections of this chapter, the properties of multispectral
and SAR images in general are described in more detail. In the third section,
we go into some of the mathematical properties of the numerical arrays which
represent those images, and conclude in Section 1.4 with simple methods for
finding extrema in image properties.

1.1 Multispectral satellite images

A multispectral, optical/infrared image such as that shown in Figure 1.1 may
be represented as a three-dimensional array of gray-scale values∗ or pixel in-
tensities

gk(i, j), 1 ≤ i ≤ c, 1 ≤ j ≤ r, 1 ≤ k ≤ N,

where c is the number of pixel columns (also called samples) and r is the
number of pixel rows (or lines). The index k denotes the spectral band, of
which there are N in all. For data at an early processing stage, a pixel may be
stored as a digital number (DN), often in a single byte so that 0 ≤ gk ≤ 255.
This is the case for the ASTER VNIR and SWIR bands at processing level L1A
(unprocessed reconstructed instrument data), whereas the L1A TIR data are
quantized to 12 bits (as unsigned integers) and thus stored as digital numbers
from 0 to 212 − 1 = 4095. Processed image data may of course be stored in
byte, integer, or floating point format and can have negative or even complex
values.

The gray-scale values in the various bands encode measurements of the
radiance L∆λ(x, y) in wavelength interval ∆λ due to sunlight reflected from
some point (x, y) on the Earth’s surface, or due to thermal emission from
that surface, and focused by the instrument’s optical system along the array
of sensors. Ignoring all absorption and scattering effects of the intervening
atmosphere, the at-sensor radiance available for measurement from reflected
sunlight from a horizontal, Lambertian surface, i.e., a surface which scatters
reflected radiation uniformly in all directions, is given by

L∆λ(x, y) = E∆λ · cos θz ·R∆λ(x, y)/π. (1.1)

The units are [W/(m2 · sr · µm)], E∆λ is the average spectral solar irradiance
in the spectral band ∆λ, θz is the solar zenith angle, R∆λ(x, y) is the surface
reflectance at coordinates (x, y), a number between 0 and 1, and π accounts
for the upper hemisphere of solid angle. The conversion between DN and
at-sensor radiance is determined by the sensor calibration as measured (and

∗Which we will usually denote by the letter g throughout the text.

Multispectral satellite images 5

maintained) by the satellite image provider. For example, for ASTER VNIR
and SWIR L1A data,

L∆λ(x, y) = A ·DN/G+D.

The quantities A (linear coefficient), G (gain), and D (offset) are tabulated
for each of the detectors in the arrays and included with each acquisition. At-
mospheric scattering and absorption models may be used to deduce at-surface
radiance, surface temperature, and emissivity or surface reflectance from the
observed radiance at the sensor. Reflectance and emissivity are directly re-
lated to the physical properties of the surface being imaged. See Schowengerdt
(2006) for a thorough discussion of atmospheric effects and their correction.

Various conventions are used for storing the image array gk(i, j) in computer
memory or other storage media. In band interleaved by pixel (BIP) format, for
example, a two-channel, 3× 3 pixel image would be stored as

g1(1, 1) g2(1, 1) g1(2, 1) g2(2, 1) g1(3, 1) g2(3, 1)
g1(1, 2) g2(1, 2) g1(2, 2) g2(2, 2) g1(3, 2) g2(3, 2)
g1(1, 3) g2(1, 3) g1(2, 3) g2(2, 3) g1(3, 3) g2(3, 3),

whereas in band interleaved by line (BIL), it would be stored as

g1(1, 1) g1(2, 1) g1(3, 1) g2(1, 1) g2(2, 1) g2(3, 1)
g1(1, 2) g1(2, 2) g1(3, 2) g2(1, 2) g2(2, 2) g2(3, 2)
g1(1, 3) g1(2, 3) g1(3, 3) g2(1, 3) g2(2, 3) g2(3, 3),

and in band sequential (BSQ) format as

g1(1, 1) g1(2, 1) g1(3, 1)
g1(1, 2) g1(2, 2) g1(3, 2)
g1(1, 3) g1(2, 3) g1(3, 3)
g2(1, 1) g2(2, 1) g2(3, 1)
g2(1, 2) g2(2, 2) g2(3, 2)
g2(1, 3) g2(2, 3) g2(3, 3).

In the computer language Python, augmented with the numerical package
numpy, so-called row-major indexing is used for arrays and the elements in
an array are numbered from zero. This means that if a gray-scale image g
is assigned to a Python array variable g, then the intensity value g(i, j) is
addressed as g[j-1,i-1]. An N -band multispectral image is stored in BIP
format as an r× c×N array in numpy, in BIL format as an r ×N × c and in
BSQ format as an N × r × c array. So, for example, in BIP format the value
gk(i, j) is stored at g[j-1,i-1,k-1].

Auxiliary information, such as image acquisition parameters and georef-
erencing, is sometimes included with the image data on the same file, and
the format may or may not make use of compression algorithms. Examples

6 Images, Arrays, and Matrices

Listing 1.1: Reading and displaying an image band in Python.

1 #!/usr/bin/env python3

2 # Name: ex1_1.py

3 import numpy as np

4 import sys

5 from osgeo import gdal

6 from osgeo.gdalconst import GA_ReadOnly

7 import matplotlib .pyplot as plt

8

9 def disp (infile , n):

10 ’’’read a multispectral image

11 and display n’th band ’’’

12 gdal. AllRegister ()

13 inDataset = gdal.Open(infile , GA_ReadOnly)

14 cols = inDataset .RasterXSize

15 rows = inDataset .RasterYSize

16 bands = inDataset .RasterCount

17 image = np.zeros((bands , rows , cols))

18 for b in range(bands):

19 band = inDataset .GetRasterBand (b+1)

20 image[b,:,:] = band.ReadAsArray (0,0,cols ,rows)

21 inDataset = None

22 band = image[n-1, :, :]

23 mn = np.amin(band)

24 mx = np.amax(band)

25 plt.imshow ((band -mn)/(mx-mn), cmap=’gray ’)

26 plt.show ()

27

28 i f __name__ == ’__main__ ’:

29 infile = sys.argv [1]

30 bandnumber = int (sys.argv [2])

31 disp(infile , bandnumber)

are the GeoTIFF∗ file format used, for instance, by Space Imaging Inc. for
distributing Carterra c© imagery and which includes lossless compression, the
HDF-EOS (Hierarchical Data Format-Earth Observing System) files in which
ASTER images are distributed, and the PCIDSK format employed by PCI
Geomatics c© with its image processing software, in which auxiliary informa-
tion is in plain ASCII and the image data are not compressed. ENVI (c©Harris

∗GeoTIFF is an open-source specification and refers to TIFF files which have geographic
(or cartographic) data embedded as tags within the file. The geographic data can be used
to position the image in the correct location and geometry on the screen of a geographic
information display.

6 Images, Arrays, and Matrices

Listing 1.1: Reading and displaying an image band in Python.

1 #!/usr/bin/env python3

2 # Name: ex1_1.py

3 import numpy as np

4 import sys

5 from osgeo import gdal

6 from osgeo.gdalconst import GA_ReadOnly

7 import matplotlib .pyplot as plt

8

9 def disp (infile , n):

10 ’’’read a multispectral image

11 and display n’th band ’’’

12 gdal. AllRegister ()

13 inDataset = gdal.Open(infile , GA_ReadOnly)

14 cols = inDataset .RasterXSize

15 rows = inDataset .RasterYSize

16 bands = inDataset .RasterCount

17 image = np.zeros((bands , rows , cols))

18 for b in range(bands):

19 band = inDataset .GetRasterBand (b+1)

20 image[b,:,:] = band.ReadAsArray (0,0,cols ,rows)

21 inDataset = None

22 band = image[n-1, :, :]

23 mn = np.amin(band)

24 mx = np.amax(band)

25 plt.imshow ((band -mn)/(mx-mn), cmap=’gray ’)

26 plt.show ()

27

28 i f __name__ == ’__main__ ’:

29 infile = sys.argv [1]

30 bandnumber = int (sys.argv [2])

31 disp(infile , bandnumber)

are the GeoTIFF∗ file format used, for instance, by Space Imaging Inc. for
distributing Carterra c© imagery and which includes lossless compression, the
HDF-EOS (Hierarchical Data Format-Earth Observing System) files in which
ASTER images are distributed, and the PCIDSK format employed by PCI
Geomatics c© with its image processing software, in which auxiliary informa-
tion is in plain ASCII and the image data are not compressed. ENVI (c©Harris

∗GeoTIFF is an open-source specification and refers to TIFF files which have geographic
(or cartographic) data embedded as tags within the file. The geographic data can be used
to position the image in the correct location and geometry on the screen of a geographic
information display.

Multispectral satellite images 7

Geospatial Solutions) uses a simple “flat binary” file structure with an addi-
tional ASCII header file.

0 200 400 600 800 1000

0

200

400

600

800

1000

FIGURE 1.3

Output of the Python script in Listing 1.1 in a Jupyter notebook.

Listing 1.1 is a simple and fairly self-explanatory Python script which reads
a multispectral image into a numpy array in BSQ interleave format with the
aid of GDAL (the Geospatial Data Abstraction Library) and then displays
a spectral band using the matplotlib.pyplot package. The script takes two
arguments, the image filename, and the band number to be displayed and
is run from the command prompt in Windows or from a console window on
Unix-like systems with the command python ex1 1.py *args. In the Unix
case, the “shebang” #! in the first line allows it to be run simply by typing
the filename, assuming the path to the env utility is /usr/bin/env. In this
book, we will prefer to work almost exclusively from within Jupyter notebooks,
where the script can be executed with the so-called line magic %run without
the .py extension, producing the output shown in Figure 1.3:

%run scripts/ex1_1 imagery/AST_20070501 .tif 3

8 Images, Arrays, and Matrices

For commonly used line magics like %run, the % is optional. We shall be
making extensive reference to the Jupyter notebooks which accompany each
of the chapters. Software installation and Python scripts are documented in
Appendix C.

1.2 Synthetic aperture radar images

Synthetic aperture radar (SAR) systems differ significantly from optical/
infrared sensor-based platforms. Richards (2009) and Oliver and Quegan (2004)
provide thorough introductions to SAR remote sensing, SAR image statistics,
image analysis, and interpretation. Here we only treat briefly those aspects
relevant to our focus on classification and change detection.

The power received by a radar transmitting/receiving antenna reflected
from a distributed (as opposed to point) target at a distance D from the
antenna is given by (Richards, 2009)

PR =
PTGTGRλ

2σo∆a∆r

(4π)3D4
[W], (1.2)

where PT is the transmitted power [W · m−2], λ is the operating wave-
length [m], GT (GR) is the transmitting (receiving) antenna gain, ∆a(∆r)
is the azimuth (ground range) resolution [m], and σo is the unitless scattering
coefficient (referred to as the radar cross section) of the target surface. The
scattering coefficient is related to the (bio)physical properties of the surface
being irradiated, notably its water content.

In later chapters, we will be concerned primarily with fully and partially
polarized SAR data. A full, or quad, polarimetric SAR measures a 2 × 2
scattering matrix S at each resolution cell on the ground. The scattering
matrix relates the incident and the backscattered electric fields Ei and Eb

according to

Eb = SEi or

(
Eb

h

Eb
v

)

=

(
shh shv
svh svv

)(
Ei

h

Ei
v

)

. (1.3)

Here E
i(b)
h and E

i(b)
v denote the horizontal and vertical components of the

incident (backscattered) oscillating electric fields directly at the target. These
can be deduced from the transmitted and received radar signals via the so-
called far-field approximations; see Richards (2009). If both horizontally and
vertically polarized radar pulses are emitted and discriminated, then they
determine, from Equation (1.3), the four complex scattering matrix elements.

Complex numbers provide a convenient representation of the amplitude E
of an electric field:

E = |E|cos(ωt+ φ) = Re
(

|E|ei(ωt+φ)
)

,

8 Images, Arrays, and Matrices

For commonly used line magics like %run, the % is optional. We shall be
making extensive reference to the Jupyter notebooks which accompany each
of the chapters. Software installation and Python scripts are documented in
Appendix C.

1.2 Synthetic aperture radar images

Synthetic aperture radar (SAR) systems differ significantly from optical/
infrared sensor-based platforms. Richards (2009) and Oliver and Quegan (2004)
provide thorough introductions to SAR remote sensing, SAR image statistics,
image analysis, and interpretation. Here we only treat briefly those aspects
relevant to our focus on classification and change detection.

The power received by a radar transmitting/receiving antenna reflected
from a distributed (as opposed to point) target at a distance D from the
antenna is given by (Richards, 2009)

PR =
PTGTGRλ

2σo∆a∆r

(4π)3D4
[W], (1.2)

where PT is the transmitted power [W · m−2], λ is the operating wave-
length [m], GT (GR) is the transmitting (receiving) antenna gain, ∆a(∆r)
is the azimuth (ground range) resolution [m], and σo is the unitless scattering
coefficient (referred to as the radar cross section) of the target surface. The
scattering coefficient is related to the (bio)physical properties of the surface
being irradiated, notably its water content.

In later chapters, we will be concerned primarily with fully and partially
polarized SAR data. A full, or quad, polarimetric SAR measures a 2 × 2
scattering matrix S at each resolution cell on the ground. The scattering
matrix relates the incident and the backscattered electric fields Ei and Eb

according to

Eb = SEi or

(
Eb

h

Eb
v

)

=

(
shh shv
svh svv

)(
Ei

h

Ei
v

)

. (1.3)

Here E
i(b)
h and E

i(b)
v denote the horizontal and vertical components of the

incident (backscattered) oscillating electric fields directly at the target. These
can be deduced from the transmitted and received radar signals via the so-
called far-field approximations; see Richards (2009). If both horizontally and
vertically polarized radar pulses are emitted and discriminated, then they
determine, from Equation (1.3), the four complex scattering matrix elements.

Complex numbers provide a convenient representation of the amplitude E
of an electric field:

E = |E|cos(ωt+ φ) = Re
(

|E|ei(ωt+φ)
)

,

Synthetic aperture radar images 9

FIGURE 1.4

A Sentinel-1 image extracted from the GEE database and displayed in the
Jupyter notebook Chapter1.ipynb.

where ω = 2πf and φ are the angular frequency and phase of the radiation
and Re denotes “real part”.∗ It is usually convenient to work exclusively with
complex amplitudes |E|ei(ωt+φ), bearing in mind that only the real part is
physically significant. When the oscillating electric fields are described by
complex numbers in this way, the scattering matrix elements are also complex.
A full polarimetric, or quad polarimetric SAR image then consists of four
complex bands shh, shv, svh, and svv, one for each pixel-wise determination
of an element of the scattering matrix. So-called reciprocity (Richards, 2009),
which normally applies to natural targets, implies that shv = svh. The squared
amplitudes of the scattering coefficients, i.e., |shh|2, |shv|2, etc., constitute the
radar cross sections for each polarization combination. These in turn replace
σo in Equation (1.2) and determine the received power in each polarization
channel.

The dual polarimetric Sentinel-1 sensor† transmits in only one polarization
and receives in two, thus measuring only the bands svv and svh or shh and shv.
To see an example we make our first encounter with the Google Earth Engine
(GEE) (Gorelick et al., 2017). Here we use GEE’s Python API (application
programming interface) to access and display a Sentinel-1 scene from the GEE
public data catalogue:

∗A brief introduction to complex numbers is given in Appendix A.
†https://www.esa.int/Applications/Observing the Earth/Copernicus/Sentinel-1

https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-1

10 Images, Arrays, and Matrices

%matplotlib inline

import IPython.display as disp

import ee

ee. Initialize ()

minlon = 6.31

minlat = 50.83

maxlon = 6.58

maxlat = 50.95

rect=ee.Geometry. Rectangle ([minlon ,minlat ,maxlon ,maxlat])

collection = ee.ImageCollection (’COPERNICUS /S1_GRD’) \

.filterBounds (rect) \

.filterDate (ee.Date (’2017-05-01 ’),ee.Date (’2017-06-01 ’))\

. f i l t e r (ee.Filter.eq(’transmitterReceiverPolarisation’,

[’VV’,’VH’])) \

. f i l t e r (ee.Filter.eq(’resolution_meters ’, 10)) \

. f i l t e r (ee.Filter.eq(’instrumentMode ’, ’IW’))

image = ee.Image(collection .first ()). clip (rect)

url = image.select(’VV’). getThumbURL ({’min’:-20,’max’:0})

disp.Image(url=url)

The code above runs in the Jupyter notebook Chapter1.ipynb which accom-
panies the text. It accesses and displays a spatial subset of the VV polarimetric
band of a Sentinel-1 dual polarimetric image from May 2017, over roughly the
same area as Figure 1.1. The archived image was acquired in interferometric
wide swath (IW) mode and processed to the ground range detected (GRD)
product with a pixel size of 10× 10 m. The gray-scale values in the notebook
output cell shown in Figure 1.4 correspond to the logarithms of the backscatter
intensities after averaging (multi-looking) of the single-look complex backscat-
tered signal. The projection used is “Maps Mercator” (EPSG:3857) which is
the default for the GEE. The image is displayed in decibels.

1.3 Linear algebra of vectors and matrices

It is very convenient, in fact essential, to use a vector representation for mul-
tispectral or SAR image pixels. In this book, a pixel will be represented in the
form

g(i, j) =






g1(i, j)
...

gN(i, j)




 , (1.4)

which is understood to be a column vector of spectral intensities or gray-scale

10 Images, Arrays, and Matrices

%matplotlib inline

import IPython.display as disp

import ee

ee. Initialize ()

minlon = 6.31

minlat = 50.83

maxlon = 6.58

maxlat = 50.95

rect=ee.Geometry. Rectangle ([minlon ,minlat ,maxlon ,maxlat])

collection = ee.ImageCollection (’COPERNICUS /S1_GRD’) \

.filterBounds (rect) \

.filterDate (ee.Date (’2017-05-01 ’),ee.Date (’2017-06-01 ’))\

. f i l t e r (ee.Filter.eq(’transmitterReceiverPolarisation’,

[’VV’,’VH’])) \

. f i l t e r (ee.Filter.eq(’resolution_meters ’, 10)) \

. f i l t e r (ee.Filter.eq(’instrumentMode ’, ’IW’))

image = ee.Image(collection .first ()). clip (rect)

url = image.select(’VV’). getThumbURL ({’min’:-20,’max’:0})

disp.Image(url=url)

The code above runs in the Jupyter notebook Chapter1.ipynb which accom-
panies the text. It accesses and displays a spatial subset of the VV polarimetric
band of a Sentinel-1 dual polarimetric image from May 2017, over roughly the
same area as Figure 1.1. The archived image was acquired in interferometric
wide swath (IW) mode and processed to the ground range detected (GRD)
product with a pixel size of 10× 10 m. The gray-scale values in the notebook
output cell shown in Figure 1.4 correspond to the logarithms of the backscatter
intensities after averaging (multi-looking) of the single-look complex backscat-
tered signal. The projection used is “Maps Mercator” (EPSG:3857) which is
the default for the GEE. The image is displayed in decibels.

1.3 Linear algebra of vectors and matrices

It is very convenient, in fact essential, to use a vector representation for mul-
tispectral or SAR image pixels. In this book, a pixel will be represented in the
form

g(i, j) =






g1(i, j)
...

gN(i, j)




 , (1.4)

which is understood to be a column vector of spectral intensities or gray-scale

Linear algebra of vectors and matrices 11

values at the image position (i, j). It can be thought of as a point in N -
dimensional Euclidean space, commonly referred to as input space or feature
space. In the case of SAR images, as explained in the preceding section, the
vector components may be complex numbers.

Since we will be making extensive use of the vector notation of Equation
(1.4), some of the basic properties of vectors, and of matrices which gen-
eralize them, will be reviewed here. One can illustrate these properties for
2-component vectors and 2 × 2 matrices, and this section is accordingly a
very simple introduction to so-called linear algebra. A list of frequently used
mathematical symbols is given at the end of the book.

1.3.1 Elementary properties

�
�

�
�
�
�

x

x2

x1

�✒

FIGURE 1.5

A vector with two components.

The transpose of the two-component
column vector

x =

(
x1

x2

)

, (1.5)

shown in Figure 1.5 is the row vector

x⊤ = (x1, x2). (1.6)

The sum of two column vectors is
given by

x+y =

(
x1

x2

)

+

(
y1
y2

)

=

(
x1 + y1
x2 + y2

)

,

(1.7)
and their inner product by

x⊤y = (x1, x2)

(
y1
y2

)

= x1y1 + x2y2. (1.8)

❃

✿

x

yθ
x cos θ

FIGURE 1.6

Illustrating the inner product.

The length or Euclidean norm of the
vector x is

�x� =
√

x2
1 + x2

2 =
√
x⊤x . (1.9)

The inner product of x and y can
be expressed in terms of the vector
lengths and the angle θ between the
two vectors:

x⊤y = �x��y� cos θ; (1.10)

12 Images, Arrays, and Matrices

see Figure 1.6 and Exercise 1. If θ = 90o, the vectors are said to be orthogonal,
in which case x⊤y = 0.

Any vector can be expressed in terms of orthogonal unit vectors, e.g.,

x =

(
x1

x2

)

= x1

(
1
0

)

+ x2

(
0
1

)

= x1i+ x2j , (1.11)

where the symbols i and j denote vectors of unit length along the x and y
directions, respectively.

A 2× 2 matrix is written in the form

A =

(
a11 a12
a21 a22

)

. (1.12)

The first index of a matrix element indicates its row, the second its column.
Numerical Python (Python plus numpy) indexes two-dimensional array and
matrix objects in this way. When a matrix is multiplied with a vector, the
result is another vector, e.g.,

Ax =

(
a11 a12
a21 a22

)(
x1

x2

)

=

(
a11x1 + a12x2

a21x1 + a22x2

)

= x1

(
a11
a21

)

+ x2

(
a12
a22

)

.

In general, for A = (a1,a2 . . .aN), where the vectors ai are the columns of A,

Ax = x1a1 + x2a2 + · · ·+ xNaN . (1.13)

The Python numpy package is very efficient in manipulating arrays, vec-
tors and matrices. The scalar multiplication operator ∗ is interpreted as ma-
trix multiplication for matrix operands. Running the Python interpreter in a
command window as opposed to a Jupyter notebook, for example:

>>> import numpy

>>> X = numpy.mat ([[1] ,[2]])

>>> A = numpy.mat ([[1 ,2],[3,4]])

>>> print(A)

[[1 2]

[3 4]]

>>> print(A*X)

[[5]

[11]]

The product of two 2× 2 matrices is given by

AB =

(
a11 a12
a21 a22

)(
b11 b12
b21 b22

)

=

(
a11b11 + a12b21 a11b12 + a12b22
a21b11 + a22b21 a21b12 + a22b22

)

and is another matrix. More generally, the matrix product AB is allowed
whenever A has the same number of columns as B has rows. So if A has
dimension ℓ×m and B has dimension m×n, then AB is ℓ×n with elements

(AB)ij =

m∑

k=1

aikbkj i = 1 . . . ℓ, j = 1 . . . n. (1.14)

12 Images, Arrays, and Matrices

see Figure 1.6 and Exercise 1. If θ = 90o, the vectors are said to be orthogonal,
in which case x⊤y = 0.

Any vector can be expressed in terms of orthogonal unit vectors, e.g.,

x =

(
x1

x2

)

= x1

(
1
0

)

+ x2

(
0
1

)

= x1i+ x2j , (1.11)

where the symbols i and j denote vectors of unit length along the x and y
directions, respectively.

A 2× 2 matrix is written in the form

A =

(
a11 a12
a21 a22

)

. (1.12)

The first index of a matrix element indicates its row, the second its column.
Numerical Python (Python plus numpy) indexes two-dimensional array and
matrix objects in this way. When a matrix is multiplied with a vector, the
result is another vector, e.g.,

Ax =

(
a11 a12
a21 a22

)(
x1

x2

)

=

(
a11x1 + a12x2

a21x1 + a22x2

)

= x1

(
a11
a21

)

+ x2

(
a12
a22

)

.

In general, for A = (a1,a2 . . .aN), where the vectors ai are the columns of A,

Ax = x1a1 + x2a2 + · · ·+ xNaN . (1.13)

The Python numpy package is very efficient in manipulating arrays, vec-
tors and matrices. The scalar multiplication operator ∗ is interpreted as ma-
trix multiplication for matrix operands. Running the Python interpreter in a
command window as opposed to a Jupyter notebook, for example:

>>> import numpy

>>> X = numpy.mat ([[1] ,[2]])

>>> A = numpy.mat ([[1 ,2],[3,4]])

>>> print(A)

[[1 2]

[3 4]]

>>> print(A*X)

[[5]

[11]]

The product of two 2× 2 matrices is given by

AB =

(
a11 a12
a21 a22

)(
b11 b12
b21 b22

)

=

(
a11b11 + a12b21 a11b12 + a12b22
a21b11 + a22b21 a21b12 + a22b22

)

and is another matrix. More generally, the matrix product AB is allowed
whenever A has the same number of columns as B has rows. So if A has
dimension ℓ×m and B has dimension m×n, then AB is ℓ×n with elements

(AB)ij =

m∑

k=1

aikbkj i = 1 . . . ℓ, j = 1 . . . n. (1.14)

Linear algebra of vectors and matrices 13

Matrix multiplication is not commutative, i.e., AB �= BA in general. How-
ever, it is associative:

(AB)C = A(BC) (1.15)

so we can write, for example,

(AB)C = A(BC) = ABC (1.16)

without ambiguity. The outer product of two vectors of equal length, written
xy⊤, is a matrix, e.g.,

xy⊤ =

(
x1

x2

)

(y1, y2) =

(
x1 0
x2 0

)(
y1 y2
0 0

)

=

(
x1y1 x1y2
x2y1 x2y2

)

. (1.17)

Matrices, like vectors, have a transposed form, obtained by interchanging
their rows and columns:

A⊤ =

(
a11 a21
a12 a22

)

. (1.18)

Transposition has the properties

(A+B)⊤ = A⊤ +B⊤

(AB)⊤ = B⊤A⊤.
(1.19)

The analogous operation to transposition for complex vectors and matrices
is conjugate transposition (see Appendix A), for which aij is replaced by a∗ji,
where the asterisk denotes complex conjugation. (The complex conjugate of
a+ ib is a− ib.) We will write the conjugate transpose of A as A†. Conjugate
transposition has the same properties as given above for ordinary transposi-
tion.

1.3.2 Square matrices

A square matrix A has equal numbers of rows and columns. The determinant
of a p× p square matrix is written |A| and defined as

|A| =
∑

(j1...jp)

(−1)f(j1...jp)a1j1a2j2 · · · apjp . (1.20)

The sum is taken over all permutations (j1 . . . jp) of the integers (1 . . . p) and
f(j1 . . . jp) is the number of transpositions (interchanges of two integers) re-
quired to change (1 . . . p) into (j1 . . . jp). The determinant of a 2 × 2 matrix,
for example, is given by

|A| = a11a22 − a12a21.

14 Images, Arrays, and Matrices

The determinant has the properties

|AB| = |A||B|
|A⊤| = |A|.

(1.21)

The identity matrix is a square matrix with ones along its diagonal and
zeroes everywhere else. For example,

I =

(
1 0
0 1

)

,

and for any A,
IA = AI = A. (1.22)

The matrix inverse A−1 of a square matrix A is defined in terms of the
identity matrix by the requirements

A−1A = AA−1 = I. (1.23)

For example, it is easy to verify that a 2× 2 matrix has inverse

A−1 =
1

|A|

(
a22 −a12
−a21 a11

)

.

In Python, continuing the previous dialogue:

>>> print(numpy.linalg.det(A)) # determinant

-2.0

>>> print(A.I) # shorthand for inverse

[[-2. 1.]

[1.5 -0.5]]

>>> print(A.I*A) # yields identity matrix

[[1.00000000 e+00 0.00000000 e+00]

[0.00000000 e+00 1.00000000 e+00]]

>>>

The matrix inverse has the properties

(AB)−1 = B−1A−1

(A−1)⊤ = (A⊤)−1.
(1.24)

If the transpose of a square matrix is its inverse, i.e., if

A⊤A = I, (1.25)

then it is referred to as an orthonormal matrix.
A system of n linear equations of the form

yi =

n∑

j=1

ajxj(i), i = 1 . . . n, (1.26)

14 Images, Arrays, and Matrices

The determinant has the properties

|AB| = |A||B|
|A⊤| = |A|.

(1.21)

The identity matrix is a square matrix with ones along its diagonal and
zeroes everywhere else. For example,

I =

(
1 0
0 1

)

,

and for any A,
IA = AI = A. (1.22)

The matrix inverse A−1 of a square matrix A is defined in terms of the
identity matrix by the requirements

A−1A = AA−1 = I. (1.23)

For example, it is easy to verify that a 2× 2 matrix has inverse

A−1 =
1

|A|

(
a22 −a12
−a21 a11

)

.

In Python, continuing the previous dialogue:

>>> print(numpy.linalg.det(A)) # determinant

-2.0

>>> print(A.I) # shorthand for inverse

[[-2. 1.]

[1.5 -0.5]]

>>> print(A.I*A) # yields identity matrix

[[1.00000000 e+00 0.00000000 e+00]

[0.00000000 e+00 1.00000000 e+00]]

>>>

The matrix inverse has the properties

(AB)−1 = B−1A−1

(A−1)⊤ = (A⊤)−1.
(1.24)

If the transpose of a square matrix is its inverse, i.e., if

A⊤A = I, (1.25)

then it is referred to as an orthonormal matrix.
A system of n linear equations of the form

yi =

n∑

j=1

ajxj(i), i = 1 . . . n, (1.26)

Linear algebra of vectors and matrices 15

can be written in matrix notation as

y = Aa, (1.27)

where y = (y1 . . . yn)
⊤, a = (a1 . . . an)

⊤, and Aij = xj(i). Provided A is non
singular (see below), the solution for the parameter vector a is given by

a = A−1y. (1.28)

The trace of a square matrix is the sum of its diagonal elements, e.g., for a
2× 2 matrix,

tr(A) = a11 + a22. (1.29)

The trace has the properties

tr(A+B) = trA+ trB

tr(AB) = tr(BA).
(1.30)

1.3.3 Singular matrices

If |A| = 0, then A has no inverse and is said to be a singular matrix. If A is
non singular, then the equation

Ax = 0 (1.31)

only has the so-called trivial solution x = 0. To see this, multiply from the
left with A−1. Then A−1Ax = Ix = x = 0.

If A is singular, Equation (1.31) has at least one non-trivial solution x �= 0.
This, again, is easy to see for a 2 × 2 matrix. Suppose |A| = 0. Writing
Equation (1.31) out fully:

a11x1 + a12x2 = 0

a21x1 + a22x2 = 0.

To get a non-trivial solution, assume without loss of generality that a12 �= 0.
Just choose x1 = 1. Then the above two equations imply that

x2 = −a11
a12

and a21 − a22
a11
a12

= 0.

The latter equality is satisfied because |A| = a11a22 − a12a21 = 0.

1.3.4 Symmetric, positive definite matrices

The covariance matrix, which we shall meet in the next chapter and which
plays a central role in digital image analysis, is both symmetric and positive
definite.

16 Images, Arrays, and Matrices

DEFINITION 1.1 A square matrix is said to be symmetric if A⊤ = A.
The p× p matrix A is positive definite if

x⊤Ax > 0 (1.32)

for all p-dimensional vectors x �= 0.

The expression x⊤Ax in the above definition is called a quadratic form. If
x⊤Ax ≥ 0 for all x, then A is positive semi-definite. Definition 1.1 can be
generalized to complex matrices; see Exercise 9.

We can extract the covariance matrix from a multispectral image in the
accompanying Jupyter notebook as follows:

from osgeo import gdal

from osgeo.gdalconst import GA_ReadOnly

gdal.AllRegister ()

infile = ’imagery/AST_20070501 .tif’

inDataset = gdal.Open(infile , GA_ReadOnly)

cols = inDataset .RasterXSize

rows = inDataset .RasterYSize

data matrix

G = np.zeros((rows*cols ,3))

k = 0

for b in range(3):

band = inDataset .GetRasterBand (b+1)

tmp = band .ReadAsArray (0,0,cols ,rows). ravel()

G[:,b] = tmp - np.mean (tmp)

covariance matrix

C = np.mat(G).T*np.mat(G)/(cols*rows -1)

C

The image bands, after subtraction of their mean values, are read into an
array G, in which each pixel vector constitutes a row of the array. We will
refer to such an array as a centered data design matrix or simply data matrix;
see Section 2.3.1. Many of our Python programs will involve manipulations of
the data matrix. Here, the data matrix is transposed, multiplied by itself and
divided by the number of observations minus one to obtain (more precisely:
to estimate) the covariance matrix. This will be explained in Chapter 2. The
result for the three VNIR bands 1, 2, and 3N of the ASTER image in Figure
1.1 is a symmetric 3× 3 matrix:

matrix ([[407.13229638 , 442.18038527 , -78.32374081] ,

[442.18038527 , 493.57036427 , -120.64197555],

[-78.32374081 , -120.64197555 , 438.95704379]])

We will see how to show that this matrix is positive definite in Section 1.4.

16 Images, Arrays, and Matrices

DEFINITION 1.1 A square matrix is said to be symmetric if A⊤ = A.
The p× p matrix A is positive definite if

x⊤Ax > 0 (1.32)

for all p-dimensional vectors x �= 0.

The expression x⊤Ax in the above definition is called a quadratic form. If
x⊤Ax ≥ 0 for all x, then A is positive semi-definite. Definition 1.1 can be
generalized to complex matrices; see Exercise 9.

We can extract the covariance matrix from a multispectral image in the
accompanying Jupyter notebook as follows:

from osgeo import gdal

from osgeo.gdalconst import GA_ReadOnly

gdal.AllRegister ()

infile = ’imagery/AST_20070501 .tif’

inDataset = gdal.Open(infile , GA_ReadOnly)

cols = inDataset .RasterXSize

rows = inDataset .RasterYSize

data matrix

G = np.zeros((rows*cols ,3))

k = 0

for b in range(3):

band = inDataset .GetRasterBand (b+1)

tmp = band .ReadAsArray (0,0,cols ,rows). ravel()

G[:,b] = tmp - np.mean (tmp)

covariance matrix

C = np.mat(G).T*np.mat(G)/(cols*rows -1)

C

The image bands, after subtraction of their mean values, are read into an
array G, in which each pixel vector constitutes a row of the array. We will
refer to such an array as a centered data design matrix or simply data matrix;
see Section 2.3.1. Many of our Python programs will involve manipulations of
the data matrix. Here, the data matrix is transposed, multiplied by itself and
divided by the number of observations minus one to obtain (more precisely:
to estimate) the covariance matrix. This will be explained in Chapter 2. The
result for the three VNIR bands 1, 2, and 3N of the ASTER image in Figure
1.1 is a symmetric 3× 3 matrix:

matrix ([[407.13229638 , 442.18038527 , -78.32374081] ,

[442.18038527 , 493.57036427 , -120.64197555],

[-78.32374081 , -120.64197555 , 438.95704379]])

We will see how to show that this matrix is positive definite in Section 1.4.

Linear algebra of vectors and matrices 17

1.3.5 Linear dependence and vector spaces

Vectors are said to be linearly dependent when any one can be expressed as a
linear combination of the others. Here is a formal definition:

DEFINITION 1.2 A set S of vectors x1 . . .xr is said to be linearly
dependent if there exist scalars c1 . . . cr, not all of which are zero, such that
∑r

i=1 cixi = 0. Otherwise, they are linearly independent.

A matrix is said to have rank r if the maximum number of linearly inde-
pendent columns is r. If the p× p matrix A = (a1 . . .ap), where ai is its ith
column, is nonsingular, then it has full rank p. If this were not the case, then
there must exist a set of scalars c1 . . . cp, not all of which are zero, for which

c1a1 + . . .+ cpap = Ac = 0.

In other words, there would be a nontrivial solution to Ac = 0, contradicting
the fact that A is non singular.

The set S in Definition 1.2 is said to constitute a basis for a vector space
V , comprising all vectors that can be expressed as a linear combination of the
vectors in S. The number r of vectors in the basis is called the dimension of
V . The vector space V is also an inner product space by virtue of the inner
product definition Equation (1.8) in Subsection 1.3.1. Inner product spaces
are elaborated upon in Appendix A.

1.3.6 Eigenvalues and eigenvectors

In image analysis, it is frequently necessary to solve an eigenvalue problem. In
the simplest case, and the one which will concern us primarily, the eigenvalue
problem consists of finding eigenvectors u and eigenvalues λ that satisfy the
matrix equation

Au = λu, (1.33)

where A is both symmetric and positive definite. Geometrically, we seek spe-
cial vectors u that, when matrix multiplied with A, change at most their sign
and length but not their direction: these are the “own” or “eigen” vectors of
A. Equation (1.33) can be written equivalently as

(A− λI)u = 0, (1.34)

so for a nontrivial solution for u, we must have

|A− λI| = 0. (1.35)

This is known as the characteristic equation for the matrix A. For instance,
in the case of a 2× 2 matrix eigenvalue problem,

(
a11 a12
a21 a22

)(
u1

u2

)

= λ

(
u1

u2

)

, (1.36)

18 Images, Arrays, and Matrices

the characteristic equation is, for a symmetric matrix,

(a11 − λ)(a22 − λ)− a212 = 0,

which is a quadratic equation in λ with solutions

λ(1) =
1

2

(

a11 + a22 +
√

(a11 + a22)2 − 4(a11a22 − a212)

)

λ(2) =
1

2

(

a11 + a22 −
√

(a11 + a22)2 − 4(a11a22 − a212)

)

.

(1.37)

Thus there are two eigenvalues and, correspondingly, two eigenvectors u(1)

and u(2).∗ The eigenvectors can be obtained by first substituting λ(1) and
then λ(2) into Equation (1.36) and solving for u1 and u2 each time. It is easy
to show (Exercise 10) that the eigenvectors are orthogonal

(u(1))⊤u(2) = 0. (1.38)

Moreover, since the left- and right-hand sides of Equation (1.33) can be mul-
tiplied by any constant, the eigenvectors can always be chosen to have unit
length, �u(1)� = �u(2)� = 1. The matrix formed by two such eigenvectors,
e.g.,

U = (u(1),u(2)) =

(
u
(1)
1 u

(2)
1

u
(1)
2 u

(2)
2

)

, (1.39)

is said to diagonalize the matrix A. That is, if A is multiplied from the left
by U⊤ and from the right by U , the result is a diagonal matrix with the
eigenvalues along the diagonal:

U⊤AU = Λ =

(
λ(1) 0
0 λ(2)

)

, (1.40)

as can easily be verified. Note that U is an orthonormal matrix: U⊤U = I

and therefore Equation (1.40) can be written as

AU = UΛ. (1.41)

All of the above statements generalize in a straightforward fashion to square
matrices of any size.

Suppose that A is a p × p symmetric matrix. Then its eigenvectors u(j),
j = 1 . . . p, are orthogonal and any p-component vector x can be expressed as
a linear combination of them,

x =

p
∑

j=1

βju
(j). (1.42)

∗The special case of degeneracy, which arises when the two eigenvalues are equal, will
be ignored here.

18 Images, Arrays, and Matrices

the characteristic equation is, for a symmetric matrix,

(a11 − λ)(a22 − λ)− a212 = 0,

which is a quadratic equation in λ with solutions

λ(1) =
1

2

(

a11 + a22 +
√

(a11 + a22)2 − 4(a11a22 − a212)

)

λ(2) =
1

2

(

a11 + a22 −
√

(a11 + a22)2 − 4(a11a22 − a212)

)

.

(1.37)

Thus there are two eigenvalues and, correspondingly, two eigenvectors u(1)

and u(2).∗ The eigenvectors can be obtained by first substituting λ(1) and
then λ(2) into Equation (1.36) and solving for u1 and u2 each time. It is easy
to show (Exercise 10) that the eigenvectors are orthogonal

(u(1))⊤u(2) = 0. (1.38)

Moreover, since the left- and right-hand sides of Equation (1.33) can be mul-
tiplied by any constant, the eigenvectors can always be chosen to have unit
length, �u(1)� = �u(2)� = 1. The matrix formed by two such eigenvectors,
e.g.,

U = (u(1),u(2)) =

(
u
(1)
1 u

(2)
1

u
(1)
2 u

(2)
2

)

, (1.39)

is said to diagonalize the matrix A. That is, if A is multiplied from the left
by U⊤ and from the right by U , the result is a diagonal matrix with the
eigenvalues along the diagonal:

U⊤AU = Λ =

(
λ(1) 0
0 λ(2)

)

, (1.40)

as can easily be verified. Note that U is an orthonormal matrix: U⊤U = I

and therefore Equation (1.40) can be written as

AU = UΛ. (1.41)

All of the above statements generalize in a straightforward fashion to square
matrices of any size.

Suppose that A is a p × p symmetric matrix. Then its eigenvectors u(j),
j = 1 . . . p, are orthogonal and any p-component vector x can be expressed as
a linear combination of them,

x =

p
∑

j=1

βju
(j). (1.42)

∗The special case of degeneracy, which arises when the two eigenvalues are equal, will
be ignored here.

Linear algebra of vectors and matrices 19

Multiplying from the right with u(i)⊤,

u(i)⊤x (= x⊤u(i)) =

p
∑

j=1

βju
(i)⊤u(j) = βi, (1.43)

so that we have

x⊤Ax = x⊤ ∑

i

βiλiu
(i) =

∑

i

β2
i λi, (1.44)

where λi, i = 1 . . . p, are the eigenvalues of A. We can conclude, from the
definition of positive definite matrices given in Section 1.3.4, that A is positive
definite if and only if all of its eigenvalues λi, i = 1 . . .N , are positive. This
holds also for Hermitian matrices. (See Appendix A. The reader is asked to
show in Exercise 9 that the eigenvalues of an Hermitian matrix A† = A are
real numbers.)

The eigenvalue problem for symmetric and Hermitian matrices can be solved
in Python with the built-in function numpy.linalg.eigh(). This function
returns arrays for the eigenvalues and eigenvectors, the latter as the columns
of the matrix U :

eigenvalues , eigenvectors = np.linalg.eigh(C)

print(eigenvalues)

print(eigenvectors)

[4.77425683 399.58595201 935.2994956]

[[-0.73352328 0.22653637 -0.64080018]

[0.67736254 0.16613156 -0.71664517]

[0.05588906 0.95972995 0.27530862]]

U = eigenvectors

print(U.T*U)

[[1.00000000 e+00 -7.63278329e-17 1.75207071 e-16]

[-7.63278329e-17 1.00000000 e+00 0.00000000 e+00]

[1.75207071 e-16 0.00000000 e+00 1.00000000 e+00]]

Notice that, due to rounding errors, U⊤U has finite but very small off-
diagonal elements. The eigenvalues are all positive, so the covariance matrix
calculated in the script is positive definite.

1.3.7 Singular value decomposition

Rewriting Equation (1.41), we get a special form of singular value decompo-
sition (SVD) for symmetric matrices:

A = UΛU⊤. (1.45)

20 Images, Arrays, and Matrices

This says that any symmetric matrix A can be factored into the product of an
orthonormal matrix U times a diagonal matrix Λ, whose diagonal elements
are the eigenvalues of A, times the transpose of U . This is also called the
eigendecomposition or spectral decomposition of A and can be written alter-
natively as a sum over outer products of the eigenvectors (Exercise 11),

A =

p
∑

i=1

λiu
(i)u(i)⊤. (1.46)

For the general form for singular value decomposition of nonsymmetric or
nonsquare matrices, see Press et al. (2002).

SVD is a powerful tool for the solution of systems of linear equations and
is often used when a solution cannot be determined by other numerical algo-
rithms. To invert a nonsingular symmetric matrix A, we simply write

A−1 = UΛ−1U⊤, (1.47)

since U−1 = U⊤. The matrix Λ−1 is the diagonal matrix whose diagonal
elements are the inverses of the diagonal elements of Λ. If A is singular (has
no inverse), clearly at least one of its eigenvalues is zero.

The matrix A is said to be ill-conditioned or nearly singular if one or more
of the diagonal elements of Λ is close to zero. SVD detects this situation
effectively, since the factorization in Equation (1.45) is always possible, even
if A is truly singular. The numpy procedure for singular value decomposition
is numpy.linalg.svd. For example, the code:

import numpy as np

b = np.mat([1 ,2,3])

an almost singular matrix

A = b.T*b + np.random.rand (3 ,3)*0.001

a symmetric almost singular matrix

A = A + A.T

print(’determinant :�%f’%np.linalg.det(A))

singular value decomposition

U,Lambda ,V = np.linalg.svd(A)

print(’Lambda�=�%s’% str (Lambda))

print(’U�=�%s’% str (U))

print(’V�=�%s’% str (V))

determinant : -0.000010

Lambda = [2.80019985 e+01 6.92874899 e-04 4.90453619 e -04]

U = [[-0.26728335 -0.58367438 -0.76673582]

[-0.5345376 -0.5722321 0.62194853]

[-0.80176628 0.57608561 -0.15904779]]

V = [[-0.26728335 -0.5345376 -0.80176628]

[0.58367438 0.5722321 -0.57608561]

[-0.76673582 0.62194853 -0.15904779]]

20 Images, Arrays, and Matrices

This says that any symmetric matrix A can be factored into the product of an
orthonormal matrix U times a diagonal matrix Λ, whose diagonal elements
are the eigenvalues of A, times the transpose of U . This is also called the
eigendecomposition or spectral decomposition of A and can be written alter-
natively as a sum over outer products of the eigenvectors (Exercise 11),

A =

p
∑

i=1

λiu
(i)u(i)⊤. (1.46)

For the general form for singular value decomposition of nonsymmetric or
nonsquare matrices, see Press et al. (2002).

SVD is a powerful tool for the solution of systems of linear equations and
is often used when a solution cannot be determined by other numerical algo-
rithms. To invert a nonsingular symmetric matrix A, we simply write

A−1 = UΛ−1U⊤, (1.47)

since U−1 = U⊤. The matrix Λ−1 is the diagonal matrix whose diagonal
elements are the inverses of the diagonal elements of Λ. If A is singular (has
no inverse), clearly at least one of its eigenvalues is zero.

The matrix A is said to be ill-conditioned or nearly singular if one or more
of the diagonal elements of Λ is close to zero. SVD detects this situation
effectively, since the factorization in Equation (1.45) is always possible, even
if A is truly singular. The numpy procedure for singular value decomposition
is numpy.linalg.svd. For example, the code:

import numpy as np

b = np.mat([1 ,2,3])

an almost singular matrix

A = b.T*b + np.random.rand (3 ,3)*0.001

a symmetric almost singular matrix

A = A + A.T

print(’determinant :�%f’%np.linalg.det(A))

singular value decomposition

U,Lambda ,V = np.linalg.svd(A)

print(’Lambda�=�%s’% str (Lambda))

print(’U�=�%s’% str (U))

print(’V�=�%s’% str (V))

determinant : -0.000010

Lambda = [2.80019985 e+01 6.92874899 e-04 4.90453619 e -04]

U = [[-0.26728335 -0.58367438 -0.76673582]

[-0.5345376 -0.5722321 0.62194853]

[-0.80176628 0.57608561 -0.15904779]]

V = [[-0.26728335 -0.5345376 -0.80176628]

[0.58367438 0.5722321 -0.57608561]

[-0.76673582 0.62194853 -0.15904779]]

Linear algebra of vectors and matrices 21

indicates that A is ill-conditioned (two of the three diagonal elements of Λ
are close to zero).

If A is singular and we order the eigenvalues and eigenvectors by decreasing
eigenvalue, then the eigendecomposition reads

A =

r�

i=1

λiu
(i)u(i)⊤, (1.48)

where r is the number of nonzero eigenvalues. Accordingly, Equation (1.45)
becomes

A = U rΛrU
⊤
r , (1.49)

where

U r = (u(1), . . . ,u(r)), Λ =







λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λr







.

The pseudo-inverse of the symmetric, singular matrix A is then defined as

A+ = U rΛ
−1
r U⊤

r . (1.50)

The pseudo inverse has the property that A+A − I, where I is the p × p
identity matrix, is minimized (Press et al., 2002) and for a full rank (non-
singular) matrix, A+A− I = 0, or A+ = A−1.

1.3.8 Tensors

The vectors and matrices of the preceding sections are special cases of mul-
tidimensional arrays, which nowadays in the context of machine learning are
often referred to as tensors. The numpy package, as we have seen, is good at
handling such arrays, but it is not optimized for parallel computation on GPU
hardware such as Google Colab. The tensorflow and pytorch packages are
designed to run both on CPUs and GPUs and have established themselves
in deep learning applications (which are essentially synonymous with large
neural networks). The more “pythonic” of the two is pytorch; however, we
will prefer to use tensorflow wherever appropriate since it is more closely
integrated with the GEE. The numpy and tensorflow arrays are virtually
interchangeable:

import tensorflow as tf

import numpy as np

data = [[1., 2.],[3., 4.]]

tf_data = tf.constant (data)

np_array = np.array(tf_data)

tf_np = tf.constant (np_array)

print(tf_np)

22 Images, Arrays, and Matrices

tf.Tensor(

[[1. 2.]

[3. 4.]], shape=(2, 2), dtype=float32)

but note that the default precision in tensorflow (and pytorch) computa-
tions is float32 as opposed to float64 in numpy.∗

1.4 Finding minima and maxima

In order to enhance some desirable properties of a remote sensing image, such
as signal-to-noise ratio or spread in intensity, we often need to take derivatives
with respect to vectors. A vector partial derivative operator is written in the
form ∂

∂x . For instance, in two dimensions,

∂

∂x
=

(
1
0

)
∂

∂x1
+

(
0
1

)
∂

∂x2
= i

∂

∂x1
+ j

∂

∂x2
.

Such an operator (also called a gradient) arranges the partial derivatives of
any scalar function of the vector x with respect to each of the components of
x into a column vector, e.g.,

∂f(x)

∂x
=

(
∂f(x)
∂x1

∂f(x)
∂x2

)

.

Many of the operations with vector derivatives correspond exactly to opera-
tions with ordinary scalar derivatives (and can all be verified easily by writing
out the expressions component by component):

∂

∂x
(x⊤y) = y analogous to

∂

∂x
xy = y

∂

∂x
(x⊤x) = 2x analogous to

∂

∂x
x2 = 2x.

For quadratic forms, we have

∂

∂x
(x⊤Ay) = Ay

∂

∂y
(x⊤Ay) = A⊤x

and
∂

∂x
(x⊤Ax) = Ax+A⊤x.

∗See also https://www.tensorflow.org/guide/basics.

https://www.tensorflow.org/guide/basics

22 Images, Arrays, and Matrices

tf.Tensor(

[[1. 2.]

[3. 4.]], shape=(2, 2), dtype=float32)

but note that the default precision in tensorflow (and pytorch) computa-
tions is float32 as opposed to float64 in numpy.∗

1.4 Finding minima and maxima

In order to enhance some desirable properties of a remote sensing image, such
as signal-to-noise ratio or spread in intensity, we often need to take derivatives
with respect to vectors. A vector partial derivative operator is written in the
form ∂

∂x . For instance, in two dimensions,

∂

∂x
=

(
1
0

)
∂

∂x1
+

(
0
1

)
∂

∂x2
= i

∂

∂x1
+ j

∂

∂x2
.

Such an operator (also called a gradient) arranges the partial derivatives of
any scalar function of the vector x with respect to each of the components of
x into a column vector, e.g.,

∂f(x)

∂x
=

(
∂f(x)
∂x1

∂f(x)
∂x2

)

.

Many of the operations with vector derivatives correspond exactly to opera-
tions with ordinary scalar derivatives (and can all be verified easily by writing
out the expressions component by component):

∂

∂x
(x⊤y) = y analogous to

∂

∂x
xy = y

∂

∂x
(x⊤x) = 2x analogous to

∂

∂x
x2 = 2x.

For quadratic forms, we have

∂

∂x
(x⊤Ay) = Ay

∂

∂y
(x⊤Ay) = A⊤x

and
∂

∂x
(x⊤Ax) = Ax+A⊤x.

∗See also https://www.tensorflow.org/guide/basics.

Finding minima and maxima 23

Note that, if A is a symmetric matrix, this last equation can be written

∂

∂x
(x⊤Ax) = 2Ax. (1.51)

Suppose x∗ is a stationary point of the function f(x), by which is meant
that its first derivative vanishes at that point:

d

dx
f(x∗) =

d

dx
f(x)

∣
∣
∣
x=x∗

= 0; (1.52)

see Figure 1.7. Then f(x∗) is a local minimum if the second derivative at x∗

is positive,
d2

dx2
f(x∗) > 0.

x∗

x

f(x)

d
dxf(x

∗) = 0
✲

✻

FIGURE 1.7

A function of one variable with a minimum at x∗.

This becomes obvious if f(x) is expanded in a Taylor series about x∗,

f(x) = f(x∗) + (x− x∗)
d

dx
f(x∗) +

1

2
(x − x∗)2

d2

dx2
f(x∗) + (1.53)

The second term is zero, so for |x−x∗| sufficiently small, f(x) is approximately
a quadratic function

f(x) ≈ f(x∗) +
1

2
(x− x∗)2

d2

dx2
f(x∗), (1.54)

with a minimum at x∗ when the second derivative is positive, a maximum
when it is negative, and a point of inflection when it is zero.

24 Images, Arrays, and Matrices

The situation is similar for scalar functions of a vector. In this case, the
Taylor expansion is

f(x) = f(x∗) + (x− x∗)⊤
∂f(x∗)
∂x

+
1

2
(x− x∗)⊤H(x− x∗) + . . . , (1.55)

where H is called the Hessian matrix. Its elements are given by

(H)ij =
∂2f(x∗)
∂xi∂xj

, (1.56)

and it is a symmetric matrix.∗ At the stationary point, the vector derivative
with respect to x vanishes,

∂f(x∗)
∂x

= 0,

so we get the second-order approximation

f(x) ≈ f(x∗) +
1

2
(x− x∗)⊤H(x− x∗). (1.57)

Now the condition for a local minimum is clearly that the Hessian matrix be
positive definite at the point x∗. Note that the Hessian can be expressed in
terms of an outer product of vector derivatives as

∂

∂x

∂f(x)

∂x⊤ =
∂2f(x)

∂x∂x⊤ . (1.58)

Suppose that we wish to find the position x∗ of a minimum (or maximum)
of a scalar function f(x). If there are no constraints, then we solve the set of
equations

∂f(x)

∂xi
= 0, i = 1, 2 . . .

or, in terms of our notation for vector derivatives,

∂f(x)

∂x
= 0, (1.59)

and examine the Hessian matrix at the solution point. However, suppose that
x is constrained by the condition

h(x) = 0. (1.60)

For example, in two dimensions we might have the constraint

h(x) = x2
1 + x2

2 − 1 = 0,

∗Because the order of partial differentiation does not matter.

24 Images, Arrays, and Matrices

The situation is similar for scalar functions of a vector. In this case, the
Taylor expansion is

f(x) = f(x∗) + (x− x∗)⊤
∂f(x∗)
∂x

+
1

2
(x− x∗)⊤H(x− x∗) + . . . , (1.55)

where H is called the Hessian matrix. Its elements are given by

(H)ij =
∂2f(x∗)
∂xi∂xj

, (1.56)

and it is a symmetric matrix.∗ At the stationary point, the vector derivative
with respect to x vanishes,

∂f(x∗)
∂x

= 0,

so we get the second-order approximation

f(x) ≈ f(x∗) +
1

2
(x− x∗)⊤H(x− x∗). (1.57)

Now the condition for a local minimum is clearly that the Hessian matrix be
positive definite at the point x∗. Note that the Hessian can be expressed in
terms of an outer product of vector derivatives as

∂

∂x

∂f(x)

∂x⊤ =
∂2f(x)

∂x∂x⊤ . (1.58)

Suppose that we wish to find the position x∗ of a minimum (or maximum)
of a scalar function f(x). If there are no constraints, then we solve the set of
equations

∂f(x)

∂xi
= 0, i = 1, 2 . . .

or, in terms of our notation for vector derivatives,

∂f(x)

∂x
= 0, (1.59)

and examine the Hessian matrix at the solution point. However, suppose that
x is constrained by the condition

h(x) = 0. (1.60)

For example, in two dimensions we might have the constraint

h(x) = x2
1 + x2

2 − 1 = 0,

∗Because the order of partial differentiation does not matter.

Finding minima and maxima 25

which requires x to lie on a circle of radius 1. An obvious procedure would
be to solve the above equation for x1, say, and then substitute the result
into Equation (1.59) to determine x2. This method is not always practical,
however. It may be the case, for example, that the constraint Equation (1.60)
cannot be solved analytically.

A more convenient and generally applicable way to find an extremum of
f(x) subject to h(x) = 0 is to determine an unconstrained minimum or max-
imum of the expression

L(x) = f(x) + λh(x). (1.61)

This is called a Lagrange function and λ is a Lagrange multiplier. The Lagrange
multiplier is treated as though it were an additional variable. To find the
extremum, we solve the set of equations

∂

∂x
(f(x) + λh(x)) = 0,

∂

∂λ
(f(x) + λh(x)) = 0

(1.62)

for x and λ. To see this, note that a minimum or maximum need not generally
occur at a point x∗ for which

∂

∂x
f(x∗) = 0, (1.63)

because of the presence of the constraint. This possibility is taken into account
in the first of Equations (1.62), which at an extremum reads

∂

∂x
f(x∗) = −λ

∂

∂x
h(x∗). (1.64)

It implies that, if λ �= 0, any small change in x away from x∗ causing a change
in f(x∗), i.e., any change in x which is not orthogonal to the gradient of
f(x∗), would be accompanied by a proportional change in h(x∗). This would
necessarily violate the constraint, so x∗ is an extremum. The second equation
is just the constraint h(x∗) = 0 itself. For more detailed justifications of this
procedure, see Bishop (1995), Appendix C; Milman (1999), Chapter 14; or
Cristianini and Shawe-Taylor (2000), Chapter 5.

As a first example illustrating the Lagrange method, let f(x) = ax2
1 + bx2

2

and h(x) = x1 + x2 − 1. Then we get the three equations

∂

∂x1
(f(x) + λh(x)) = 2ax1 + λ = 0

∂

∂x2
(f(x) + λh(x)) = 2bx2 + λ = 0

∂

∂λ
(f(x) + λh(x)) = x1 + x2 − 1 = 0.

26 Images, Arrays, and Matrices

0 200 400 600 800

0

200

400

600

800

ex1_2.tif: equalization: (1, 2, 3): [0, 0, 1000, 1000]

FIGURE 1.8

RGB composite of the first three principal components of the spectral bands
for the ASTER image of Figure 1.1 calculated with the script ex1 2.py in
Listing 1.2 and displayed with the Python script dispms.py.

The solution for x is

x1 =
b

a+ b
, x2 =

a

a+ b
.

A second—and very important—example: Let us find the maximum of

f(x) = x⊤Cx,

where C is symmetric positive definite, subject to the constraint

h(x) = x⊤x− 1 = 0.

26 Images, Arrays, and Matrices

0 200 400 600 800

0

200

400

600

800

ex1_2.tif: equalization: (1, 2, 3): [0, 0, 1000, 1000]

FIGURE 1.8

RGB composite of the first three principal components of the spectral bands
for the ASTER image of Figure 1.1 calculated with the script ex1 2.py in
Listing 1.2 and displayed with the Python script dispms.py.

The solution for x is

x1 =
b

a+ b
, x2 =

a

a+ b
.

A second—and very important—example: Let us find the maximum of

f(x) = x⊤Cx,

where C is symmetric positive definite, subject to the constraint

h(x) = x⊤x− 1 = 0.

Finding minima and maxima 27

Listing 1.2: Principal components analysis in Python.

1 #!/usr/bin/env python3

2 #Name: ex1_2.py

3 import numpy as np

4 from osgeo import gdal

5 import sys

6 from osgeo.gdalconst import GA_ReadOnly , GDT_Float32

7

8 def pca(infile , outfile):

9 gdal .AllRegister ()

10 inDataset = gdal.Open(infile , GA_ReadOnly)

11 cols = inDataset .RasterXSize

12 rows = inDataset .RasterYSize

13 bands = inDataset .RasterCount

14 # data matrix

15 G = np.zeros((rows *cols ,bands))

16 k = 0

17 for b in range(bands):

18 band = inDataset .GetRasterBand (b+1)

19 tmp = band .ReadAsArray (0,0,cols ,rows). ravel()

20 G[:, b] = tmp - np.mean (tmp)

21 # covariance matrix

22 C = np.mat(G).T*np.mat(G)/(cols *rows -1)

23 # diagonalize

24 lams ,U = np.linalg.eigh(C)

25 # sort

26 idx = np.argsort(lams)[::-1]

27 lams = lams [idx]

28 U = U[:, idx]

29 # project

30 PCs = np.reshape(np.array(G*U),(rows ,cols ,bands))

31 # write to disk

32 i f outfile:

33 driver = gdal .GetDriverByName (’Gtiff’)

34 outDataset = driver.Create(outfile ,

35 cols ,rows ,bands ,GDT_Float32)

36 projection = inDataset .GetProjection ()

37 i f projection i s not None :

38 outDataset .SetProjection (projection)

39 for k in range(bands):

40 outBand = outDataset .GetRasterBand (k+1)

41 outBand.WriteArray (PCs[:, :, k], 0, 0)

42 outBand.FlushCache ()

43 outDataset = None

44 inDataset = None

28 Images, Arrays, and Matrices

The Lagrange function is

L(x) = x⊤Cx− λ(x⊤x− 1).

Any extremum of L must occur at a value of x for which

∂L

∂x
= 2Cx− 2λx = 0,

which is the eigenvalue problem

Cx = λx. (1.65)

Let u be an eigenvector with eigenvalue λ. Then

f(u) = u⊤Cu = λu⊤u = λ.

So to maximize f(x), we must choose the eigenvector of C with maximum
eigenvalue.

If C is the covariance matrix of a multispectral image, then, as we shall see
in Chapter 3, the above maximization corresponds to a principal components
analysis (PCA). Listing 1.2 gives a rudimentary function for doing PCA on a
multispectral image in numpy. After estimating the covariance matrix in line
22 (see Chapter 2), the eigenvalue problem, Equation (1.65), is solved in line
24 using the numpy.linalg.eigh() function. The order of eigenvalues lams
and eigenvectors (the columns of U) is undefined, so the eigenvalues and eigen-
vectors are sorted into decreasing order in lines 26 and 27. Then the principal
components are calculated by projecting the original image bands along the
eigenvectors and the resulting data matrix is rearranged in BIP format (line
30). Finally, the principal components are stored on disk, preserving the map
projection.

The following commands from within the Jupyter notebook run the script
and display an RGB color composite of the first three principal components:

%run scripts/ex1_2 imagery/AST_20070501 .tif \

imagery/ex1_2.tif

%run scripts/dispms -f ’imagery/ex1_2.tif’ \

-p [1,2,3] -e 4

see Figure 1.8. See Appendix C for documentation of the script dispms.py

invoked above. It can be used to view histogram-enhanced RGB composites
of 3-band combinations of any multi-band image stored on disk.

28 Images, Arrays, and Matrices

The Lagrange function is

L(x) = x⊤Cx− λ(x⊤x− 1).

Any extremum of L must occur at a value of x for which

∂L

∂x
= 2Cx− 2λx = 0,

which is the eigenvalue problem

Cx = λx. (1.65)

Let u be an eigenvector with eigenvalue λ. Then

f(u) = u⊤Cu = λu⊤u = λ.

So to maximize f(x), we must choose the eigenvector of C with maximum
eigenvalue.

If C is the covariance matrix of a multispectral image, then, as we shall see
in Chapter 3, the above maximization corresponds to a principal components
analysis (PCA). Listing 1.2 gives a rudimentary function for doing PCA on a
multispectral image in numpy. After estimating the covariance matrix in line
22 (see Chapter 2), the eigenvalue problem, Equation (1.65), is solved in line
24 using the numpy.linalg.eigh() function. The order of eigenvalues lams
and eigenvectors (the columns of U) is undefined, so the eigenvalues and eigen-
vectors are sorted into decreasing order in lines 26 and 27. Then the principal
components are calculated by projecting the original image bands along the
eigenvectors and the resulting data matrix is rearranged in BIP format (line
30). Finally, the principal components are stored on disk, preserving the map
projection.

The following commands from within the Jupyter notebook run the script
and display an RGB color composite of the first three principal components:

%run scripts/ex1_2 imagery/AST_20070501 .tif \

imagery/ex1_2.tif

%run scripts/dispms -f ’imagery/ex1_2.tif’ \

-p [1,2,3] -e 4

see Figure 1.8. See Appendix C for documentation of the script dispms.py

invoked above. It can be used to view histogram-enhanced RGB composites
of 3-band combinations of any multi-band image stored on disk.

Exercises 29

1.5 Exercises

1. Demonstrate that the definition

x⊤y = �x��y� cos θ

is equivalent to
x⊤y = x1y1 + x2y2.

Hint: Use the trigonometric identity cos(α−β) = cosα cosβ+sinα sinβ.

2. Show that the outer product of two two-dimensional vectors is a singular
matrix. What is its rank?

3. Verify the matrix identity

(AB)⊤ = B⊤A⊤

in Python. You must import the numpy package.

4. Show that three two-dimensional vectors representing three points, all
lying on the same line, are linearly dependent.

5. Show that the determinant of a symmetric 2× 2 matrix is given by the
product of its eigenvalues.

6. Prove that the inverse of a symmetric nonsingular matrix is symmetric.

7. Prove that the eigenvectors of A−1 are the same as those of A, but with
reciprocal eigenvalues.

8. Prove the identity
x⊤Ax = tr(Axx⊤)

with the aid of the second of Equations (1.30).

9. A square complex matrix A is said to be Hermitian if A† = A, which
is a generalization of Definition 1.1 for a symmetric real matrix. It is
positive semi-definite if x†Ax ≥ 0 for all non-zero complex vectors x.
The matrix B = A†A is obviously Hermitian (why?). Prove that, if the
complex matrix A is Hermitian, its eigenvalues are real.

10. Prove that the eigenvectors of a 2× 2 symmetric matrix are orthogonal.

11. Demonstrate the equivalence of Equations (1.45) and (1.46) for a sym-
metric 2× 2 matrix.

12. Prove, from Equation (1.46), that the trace of a symmetric matrix is the
sum of its eigenvalues.

30 Images, Arrays, and Matrices

13. Differentiate the function
1

x⊤Ay

with respect to y.

14. Calculate the eigenvectors of the (nonsymmetric!) matrix





1 2 3
4 5 6
7 8 9





with Python. You will need the numpy.linalg package.

15. Plot the function f(x) = x2
1 − x2

2 using the matplotlib package. Find
its minima and maxima subject to the constraint h(x) = x2

1+x2
2−1 = 0.

30 Images, Arrays, and Matrices

13. Differentiate the function
1

x⊤Ay

with respect to y.

14. Calculate the eigenvectors of the (nonsymmetric!) matrix





1 2 3
4 5 6
7 8 9





with Python. You will need the numpy.linalg package.

15. Plot the function f(x) = x2
1 − x2

2 using the matplotlib package. Find
its minima and maxima subject to the constraint h(x) = x2

1+x2
2−1 = 0.

2

Image Statistics

In an optical/infrared or a synthetic aperture radar image, a given pixel value
g(i, j), derived from the measured radiation field at a satellite sensor, is never
exactly reproducible. It is the outcome of a complex measurement influenced
by instrument noise, atmospheric conditions, changing illumination, and so
forth. It may be assumed, however, that there is an underlying random pro-
cess or mechanism with an associated probability distribution which restricts
the possible outcomes in some way. Each time we make an observation, we
are sampling from that probability distribution or, put another way, we are
observing a different possible realization of the random process. In this chap-
ter, some basic statistical concepts for multispectral and SAR images viewed
as random processes will be introduced.

2.1 Random variables

A random variable can be used to represent a quantity, in the present context
an image gray-scale value, which changes in an unpredictable way each time it
is observed. In order to make a precise definition, let us consider some chance
experiment which has a set Ω of possible outcomes. This set is referred to
as the sample space for the experiment. Subsets of Ω are called events. An
event will be said to have occurred whenever the outcome of the experiment
is contained within it.

To make this clearer, consider the random experiment consisting of the
throw of two dice. The sample space is the set of 36 possible outcomes

Ω = {(1, 1), (1, 2), (2, 1) . . . (6, 6)}.

An event is then, for example, that the sum of the points is 7. It is the subset

{(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}

of the sample space. If, for instance, (3, 4) is thrown, then the event has
occurred.

DOI: 10.1201/9781003503286-2 31

https://doi.org/10.1201/9781003503286-2

32 Image Statistics

DEFINITION 2.1 A random variable Z : Ω �→ IR is a function which
maps all outcomes onto the set IR of real numbers such that the set

{ω ∈ Ω | Z(ω) ≤ z}

is an event, i.e., a subset of Ω. This subset is usually abbreviated as {Z ≤ z}.

Thus, for the throw of two dice, the sum of points S is a random variable,
since it maps all outcomes onto real numbers:

S(1, 1) = 2, S(1, 2) = S(2, 1) = 3, . . . S(6, 6) = 12,

and sets such as

{S ≤ 4} = {(1, 1), (1, 2), (2, 1), (1, 3), (3, 1), (2, 2)}

are subsets of the sample space. The set {S ≤ 1} is the empty set, whereas
{S ≤ 12} = Ω, the entire sample space.

On the basis of the probabilities for the individual outcomes, we can asso-
ciate a function P (z) with the random variable Z as follows:

P (z) = Pr(Z ≤ z).

This is the probability of observing the event that the random variable Z
takes on a value less than or equal to z. The probability of an event may be
thought of as the relative frequency with which it occurs in n repetitions of
a random experiment in the limit as n → ∞. (For the complete, axiomatic
definition, see, e.g., Freund (1992).) In the dice example, the probability of
throwing a four or less is

P (4) = Pr(S ≤ 4) = 6/36 = 1/6,

for instance.

DEFINITION 2.2 Given the random variable Z, then

P (z) = Pr(Z ≤ z), −∞ < z < ∞, (2.1)

is called its distribution function.

2.1.1 Discrete random variables

When, as in the case of the dice throw, a random variable Z is discrete and
takes on values z1 < z2 < z3 < . . . , then the probabilities of the separate
outcomes

p(zi) = Pr(Z = zi) = P (zi)− P (zi−1), i = 1, 2 . . .

32 Image Statistics

DEFINITION 2.1 A random variable Z : Ω �→ IR is a function which
maps all outcomes onto the set IR of real numbers such that the set

{ω ∈ Ω | Z(ω) ≤ z}

is an event, i.e., a subset of Ω. This subset is usually abbreviated as {Z ≤ z}.

Thus, for the throw of two dice, the sum of points S is a random variable,
since it maps all outcomes onto real numbers:

S(1, 1) = 2, S(1, 2) = S(2, 1) = 3, . . . S(6, 6) = 12,

and sets such as

{S ≤ 4} = {(1, 1), (1, 2), (2, 1), (1, 3), (3, 1), (2, 2)}

are subsets of the sample space. The set {S ≤ 1} is the empty set, whereas
{S ≤ 12} = Ω, the entire sample space.

On the basis of the probabilities for the individual outcomes, we can asso-
ciate a function P (z) with the random variable Z as follows:

P (z) = Pr(Z ≤ z).

This is the probability of observing the event that the random variable Z
takes on a value less than or equal to z. The probability of an event may be
thought of as the relative frequency with which it occurs in n repetitions of
a random experiment in the limit as n → ∞. (For the complete, axiomatic
definition, see, e.g., Freund (1992).) In the dice example, the probability of
throwing a four or less is

P (4) = Pr(S ≤ 4) = 6/36 = 1/6,

for instance.

DEFINITION 2.2 Given the random variable Z, then

P (z) = Pr(Z ≤ z), −∞ < z < ∞, (2.1)

is called its distribution function.

2.1.1 Discrete random variables

When, as in the case of the dice throw, a random variable Z is discrete and
takes on values z1 < z2 < z3 < . . . , then the probabilities of the separate
outcomes

p(zi) = Pr(Z = zi) = P (zi)− P (zi−1), i = 1, 2 . . .

Random variables 33

are said to constitute the mass function for the random variable. This is
best illustrated with a practical example. As we shall see in Chapter 7, the
evaluation of a land cover classification model involves repeated trials with a
finite number of independent test observations, keeping track of the number
of times the model fails to predict the correct land cover category. This will
lead us to consideration of a discrete random variable having the so-called
binomial distribution. We can derive its mass function as follows.

Let θ be the probability of failure in a single trial. The probability of getting
y misclassifications (and hence n − y correct classifications) in n trials in a
specific sequence is

θy(1− θ)n−y.

In this expression, there is a factor θ for each of the y misclassifications and a
factor (1− θ) for each of the n− y correct classifications. Taking the product
is justified by the assumption that the trials are independent of each other.
The number of such sequences is just the number of ways of selecting y trials
from n possible ones. This is given by the binomial coefficient

(
n

y

)

=
n!

(n− y)! y!
, (2.2)

so that the probability for y misclassifications in n trials is

(
n

y

)

θy(1 − θ)n−y.

A discrete random variable Y is said to be binomially distributed with param-
eters n and θ if its mass function is given by

pn,θ(y) =

{(
n
y

)
θy(1 − θ)n−y for y = 0, 1, 2 . . . n

0 otherwise.
(2.3)

Note that the values of pn,θ(y) are the terms in the binomial expansion of

[θ + (1− θ)]n = 1n = 1,

so the sum over the probabilities equals 1, as it should.

2.1.2 Continuous random variables

In the case of continuous random variables, which we are in effect dealing with
when we speak of pixel intensities, the distribution function is not expressed
in terms of the discrete probabilities of a mass function, but rather in terms
of a probability density function p(z).

DEFINITION 2.3 A function with values p(z), defined over the set of all
real numbers, is called a probability density function of the continuous random

34 Image Statistics

variable Z if and only if

Pr(a ≤ Z ≤ b) =

∫ b

a

p(z)dz (2.4)

for any real numbers a ≤ b.

The quantity p(z)dz is the probability that the associated random variable
Z lies within the infinitesimal interval [z, z + dz]. The integral (sum) over all
such intervals is one: ∫ ∞

−∞
p(z)dz = 1. (2.5)

The distribution function P (z) can be written in terms of the density function
and vice versa as

P (z) =

∫ z

−∞
p(t)dt, p(z) =

d

dz
P (z). (2.6)

The distribution function has the limiting values

P (−∞) = 0, P (∞) =

∫ ∞

−∞
p(t)dt = 1.

The following theorem can often be used to determine the probability den-
sity of a function of some random variable whose density is known. For a
proof, see Freund (1992).

THEOREM 2.1

Let pz(z) be the density function for random variable Z and

y = u(z) (2.7)

a monotonic function of z for all values of z for which pz(z) �= 0. For these z
values, Equation (2.7) can be solved for z to give z = w(y). Then the density
function of the random variable Y = u(Z) is given by

py(y) = pz(z)

∣
∣
∣
∣

dz

dy

∣
∣
∣
∣
= pz(w(y))

∣
∣
∣
∣

dz

dy

∣
∣
∣
∣
. (2.8)

As an example of the application of Theorem 2.1, suppose that a random
variable Z has the exponential distribution (Section 2.1.5) with density func-
tion

pz(z) =

{

e−z for z > 0
0 otherwise,

34 Image Statistics

variable Z if and only if

Pr(a ≤ Z ≤ b) =

∫ b

a

p(z)dz (2.4)

for any real numbers a ≤ b.

The quantity p(z)dz is the probability that the associated random variable
Z lies within the infinitesimal interval [z, z + dz]. The integral (sum) over all
such intervals is one: ∫ ∞

−∞
p(z)dz = 1. (2.5)

The distribution function P (z) can be written in terms of the density function
and vice versa as

P (z) =

∫ z

−∞
p(t)dt, p(z) =

d

dz
P (z). (2.6)

The distribution function has the limiting values

P (−∞) = 0, P (∞) =

∫ ∞

−∞
p(t)dt = 1.

The following theorem can often be used to determine the probability den-
sity of a function of some random variable whose density is known. For a
proof, see Freund (1992).

THEOREM 2.1

Let pz(z) be the density function for random variable Z and

y = u(z) (2.7)

a monotonic function of z for all values of z for which pz(z) �= 0. For these z
values, Equation (2.7) can be solved for z to give z = w(y). Then the density
function of the random variable Y = u(Z) is given by

py(y) = pz(z)

∣
∣
∣
∣

dz

dy

∣
∣
∣
∣
= pz(w(y))

∣
∣
∣
∣

dz

dy

∣
∣
∣
∣
. (2.8)

As an example of the application of Theorem 2.1, suppose that a random
variable Z has the exponential distribution (Section 2.1.5) with density func-
tion

pz(z) =

{

e−z for z > 0
0 otherwise,

Random variables 35

and we wish to determine the probability density of the random variable
Y =

√
Z. The monotonic function y = u(z) =

√
z can be inverted to give

z = w(y) = y2.

Thus ∣
∣
∣
∣

dz

dy

∣
∣
∣
∣
= |2y|, pz(w(y)) = e−y2

,

and we obtain
py(y) = 2ye−y2

, y > 0.

For many practical applications, it is sufficient to characterize a distribution
function by a small number of its moments. The mean or expected value of a
continuous random variable Z is commonly written �Z� or E(Z).∗ It is defined
in terms of its density function pz(z) according to

�Z� =
∫ ∞

−∞
z · pz(z)dz. (2.9)

The mean has the important property that, for two random variables Z1 and
Z2 and real numbers a0, a1, and a2,

�a0 + a1Z1 + a2Z2� = a0 + a1�Z1�+ a2�Z2�, (2.10)

a fact which follows directly from Equation (2.9).
The variance of Z, written var(Z), describes how widely the realizations

scatter around the mean. It is defined as

var(Z) =
〈
(Z − �Z�)2

〉
, (2.11)

that is, as the mean of the random variable Y = (Z − �Z�)2. In terms of the
density function py(y) of Y , the variance is given by

var(Z) =

∫ ∞

−∞
y · py(y)dy,

but in fact can be written ((Freund, 1992); Theorem 4.1) more conveniently
as

var(Z) =

∫ ∞

−∞
(z − �Z�)2pz(z)dz, (2.12)

which is also referred to as the second moment about the mean. For discrete
random variables, the integrals in Equations (2.9) and (2.12) are replaced
by summations over the allowed values of Z and the probability density is
replaced by the mass function.

∗We will prefer to use the former.

36 Image Statistics

As a simple example, consider a uniformly distributed random variable Z
with density function

p(z) =
{
1 if 0 ≤ z ≤ 1
0 otherwise.

We calculate the moments to be

�Z� =
∫ 1

0

z · 1 dz = 1/2

var(Z) =

∫ 1

0

(z − 1/2)2 · 1 dz = 1/12.

Since the populations we are dealing with in the case of actual measurements
are infinite, it is clear that mean and variance can, in reality, never be known
exactly. As we shall discuss Section 2.3, they must be estimated from the
available data.

Two very useful identities follow from the definition of variance (Exercise 1):

var(Z) = �Z2� − �Z�2

var(a0 + a1Z) = a21 var(Z).
(2.13)

2.1.3 Random vectors

The idea of a distribution function may be extended to more than one random
variable. For convenience, we consider only two continuous random variables
in the following discussion, but the generalization to any number of continuous
or discrete random variables is straightforward.

Let Z = (Z1, Z2)
⊤ be a random vector, i.e., a vector the components of

which are random variables. The joint distribution function of Z is defined by

P (z) = P (z1, z2) = Pr(Z1 ≤ z1 and Z2 ≤ z2) (2.14)

or, in terms of the joint density function p(z1, z2),

P (z1, z2) =

∫ z1

−∞

∫ z2

−∞
p(t1, t2)dt1dt2 (2.15)

and, conversely,

p(z1, z1) =
∂2

∂z1∂z2
P (z1, z2). (2.16)

The marginal distribution function for Z1 is given by

P1(z1) = P (z1,∞) =

∫ z1

−∞

[∫ ∞

−∞
p(t1, t2)dt2

]

dt1 (2.17)

and similarly for Z2. The marginal density is defined as

p1(z1) =

∫ ∞

−∞
p(z1, z2)dz2, (2.18)

36 Image Statistics

As a simple example, consider a uniformly distributed random variable Z
with density function

p(z) =
{
1 if 0 ≤ z ≤ 1
0 otherwise.

We calculate the moments to be

�Z� =
∫ 1

0

z · 1 dz = 1/2

var(Z) =

∫ 1

0

(z − 1/2)2 · 1 dz = 1/12.

Since the populations we are dealing with in the case of actual measurements
are infinite, it is clear that mean and variance can, in reality, never be known
exactly. As we shall discuss Section 2.3, they must be estimated from the
available data.

Two very useful identities follow from the definition of variance (Exercise 1):

var(Z) = �Z2� − �Z�2

var(a0 + a1Z) = a21 var(Z).
(2.13)

2.1.3 Random vectors

The idea of a distribution function may be extended to more than one random
variable. For convenience, we consider only two continuous random variables
in the following discussion, but the generalization to any number of continuous
or discrete random variables is straightforward.

Let Z = (Z1, Z2)
⊤ be a random vector, i.e., a vector the components of

which are random variables. The joint distribution function of Z is defined by

P (z) = P (z1, z2) = Pr(Z1 ≤ z1 and Z2 ≤ z2) (2.14)

or, in terms of the joint density function p(z1, z2),

P (z1, z2) =

∫ z1

−∞

∫ z2

−∞
p(t1, t2)dt1dt2 (2.15)

and, conversely,

p(z1, z1) =
∂2

∂z1∂z2
P (z1, z2). (2.16)

The marginal distribution function for Z1 is given by

P1(z1) = P (z1,∞) =

∫ z1

−∞

[∫ ∞

−∞
p(t1, t2)dt2

]

dt1 (2.17)

and similarly for Z2. The marginal density is defined as

p1(z1) =

∫ ∞

−∞
p(z1, z2)dz2, (2.18)

Random variables 37

with a similar expression for p2(z2). So to get a marginal density value at z1
we integrate (sum) over all of the probabilities for z2 at fixed z1.

The mean of the random vector Z is the vector of mean values of Z1 and Z2,

�Z� =
(
�Z1�
�Z2�

)

,

where the vector components are calculated with Equation (2.9) using the
corresponding marginal densities.

Next we formalize the concept of statistical independence.

DEFINITION 2.4 Two random variables Z1 and Z2 are said to be in-
dependent when their joint distribution is the product of their marginal dis-
tributions:

P (z1, z2) = P1(z1)P2(z2)

or, equivalently, when their joint density is the product of their marginal den-
sities:

p(z1, z2) = p1(z1)p2(z2).

Thus we have, for the mean of the product of two independent random
variables,

�Z1Z2� =
∫ ∞

−∞

∫ ∞

−∞
z1z2p(z1, z2)dz1dz2

=

∫ ∞

−∞
z1p1(z1)dz1

∫ ∞

−∞
z2p2(z2)dz2 = �Z1��Z2�.

In particular, if Z1 and Z2 have the same distribution function with mean
�Z�, then

�Z1Z2� = �Z�2. (2.19)

The following Theorem generalizes Theorem 2.1 to random vectors (Freund,
1992):

THEOREM 2.2

Let pz(z1, z2) be the joint probability density of the random variables Z1 and Z2

and the functions y1 = u1(z1, z2) and y2 = u2(z1, z2) be partially differentiable
and represent a one-to-one transformation for all values within the range of Z1

and Z2 for which p(z1, z2) �= 0. For these values of z1 and z2, the equations can
be uniquely solved for z1 and z2 to give z1 = w1(y1, y2) and z2 = w2(y1, y2).
For the corresponding values of y1 and y2, the joint probability density of the
random variables Y1 = u1(Z1, Z2) and Y2 = u2(Z1, Z2) is given by

py(y1, y2) = pz(w1(y1, y2), w2(y1, y2))|J |,

38 Image Statistics

where the Jacobian J is the determinant of the partial derivatives

J =

∣
∣
∣
∣

∂z1
∂y1

∂z1
∂y2

∂z2
∂y1

∂z2
∂y2

∣
∣
∣
∣
.

The covariance of random variables Z1 and Z2 is a measure of how their
realizations are dependent upon each other and is defined to be the mean of
the random variable (Z1 − �Z1�)(Z2 − �Z2�), i.e.,

cov(Z1, Z2) = � (Z1 − �Z1�)(Z2 − �Z2�) � . (2.20)

Their correlation is defined by

ρ12 =
cov(Z1, Z2)

√

var(Z1)var(Z2)
. (2.21)

The correlation is unitless and restricted to values −1 ≤ ρ12 ≤ 1. If |ρ12| =
1, then Z1 and Z2 are linearly dependent. Two simple consequences of the
definition of covariance are

cov(Z1, Z2) = �Z1Z2� − �Z1��Z2�
cov(Z1, Z1) = var(Z1).

(2.22)

A convenient way to represent the variances and covariances of the com-
ponents of a random vector is in terms of the variance–covariance matrix.
Let a = (a1, a2)

⊤ be any constant vector. Then the variance of the random
variable a⊤Z = a1Z1 + a2Z2 is, according to the preceding definitions,

var(a⊤Z) = cov(a1Z1 + a2Z2, a1Z1 + a2Z2)

= a21var(Z1) + a1a2cov(Z1, Z2) + a1a2cov(Z2, Z1) + a22var(Z2)

= (a1, a2)

(
var(Z1) cov(Z1, Z2)

cov(Z2, Z1) var(Z2)

)(
a1
a2

)

.

The matrix in the above equation is the variance–covariance matrix,∗ usually
denoted by the symbol Σ,

Σ =

(
var(Z1) cov(Z1, Z2)

cov(Z2, Z1) var(Z2)

)

. (2.23)

Therefore, we have
var(a⊤Z) = a⊤Σa. (2.24)

Note that, since cov(Z1, Z2) = cov(Z2, Z1), Σ is a symmetric matrix. More-
over, since a is arbitrary and the variance of any random variable is (generally)
positive, Σ is also positive definite, see Definition 1.1.

∗For the sake of brevity, we will simply call it the covariance matrix from now on.

38 Image Statistics

where the Jacobian J is the determinant of the partial derivatives

J =

∣
∣
∣
∣

∂z1
∂y1

∂z1
∂y2

∂z2
∂y1

∂z2
∂y2

∣
∣
∣
∣
.

The covariance of random variables Z1 and Z2 is a measure of how their
realizations are dependent upon each other and is defined to be the mean of
the random variable (Z1 − �Z1�)(Z2 − �Z2�), i.e.,

cov(Z1, Z2) = � (Z1 − �Z1�)(Z2 − �Z2�) � . (2.20)

Their correlation is defined by

ρ12 =
cov(Z1, Z2)

√

var(Z1)var(Z2)
. (2.21)

The correlation is unitless and restricted to values −1 ≤ ρ12 ≤ 1. If |ρ12| =
1, then Z1 and Z2 are linearly dependent. Two simple consequences of the
definition of covariance are

cov(Z1, Z2) = �Z1Z2� − �Z1��Z2�
cov(Z1, Z1) = var(Z1).

(2.22)

A convenient way to represent the variances and covariances of the com-
ponents of a random vector is in terms of the variance–covariance matrix.
Let a = (a1, a2)

⊤ be any constant vector. Then the variance of the random
variable a⊤Z = a1Z1 + a2Z2 is, according to the preceding definitions,

var(a⊤Z) = cov(a1Z1 + a2Z2, a1Z1 + a2Z2)

= a21var(Z1) + a1a2cov(Z1, Z2) + a1a2cov(Z2, Z1) + a22var(Z2)

= (a1, a2)

(
var(Z1) cov(Z1, Z2)

cov(Z2, Z1) var(Z2)

)(
a1
a2

)

.

The matrix in the above equation is the variance–covariance matrix,∗ usually
denoted by the symbol Σ,

Σ =

(
var(Z1) cov(Z1, Z2)

cov(Z2, Z1) var(Z2)

)

. (2.23)

Therefore, we have
var(a⊤Z) = a⊤Σa. (2.24)

Note that, since cov(Z1, Z2) = cov(Z2, Z1), Σ is a symmetric matrix. More-
over, since a is arbitrary and the variance of any random variable is (generally)
positive, Σ is also positive definite, see Definition 1.1.

∗For the sake of brevity, we will simply call it the covariance matrix from now on.

Random variables 39

The covariance matrix can be written as an outer product:

Σ = � (Z − �Z�)(Z − �Z�)⊤ � = �ZZ⊤� − �Z��Z�⊤, (2.25)

as is easily verified. Indeed, if �Z� = 0, we can write simply

Σ = �ZZ⊤�. (2.26)

The correlation matrix R is similar to the covariance matrix, except that
each matrix element (Σ)ij is divided by

�
var(Zi)var(Zj) as in Equation

(2.21):

R =

�
1 ρ12
ρ21 1

�

=





1 cov(Z1,Z2)√
var(Z1)var(Z2)

cov(Z2,Z1)√
var(Z1)var(Z2)

1



 , (2.27)

where ρ12 = ρ21 is the correlation of Z1 and Z2.

2.1.4 The normal distribution

It is very often the case that random variables are well described by the normal
or Gaussian density function

p(z) =
1√
2πσ

exp

�

− 1

2σ2
(z − µ)2

�

, (2.28)

where −∞ < µ < ∞ and σ2 > 0. In that case, it follows from Equation (2.9)
and Equation (2.12) that

�Z� = µ, var(Z) = σ2.

This is commonly abbreviated by writing

Z ∼ N (µ, σ2).

If Z is normally distributed, then the standardized random variable (Z−µ)/σ
has the standard normal distribution Φ(z) with zero mean and unit variance

Φ(z) =
1√
2π

� z

−∞
exp(−t2/2)dt =

� z

−∞
φ(t)dt, (2.29)

where the standard normal density φ(t) is given by

φ(t) =
1√
2π

exp(−t2/2). (2.30)

Since it is not possible to express the normal distribution function Φ(z) in
terms of simple analytical functions, it is tabulated (nowadays of course ap-
proximated in a software procedure or function). From the symmetry of the
density function it follows that

Φ(−z) = 1− Φ(z), (2.31)

40 Image Statistics

so it is sufficient to give tables (functions) only for z ≥ 0. Note that

P (z) = Pr(Z ≤ z) = Pr

(
Z − µ

σ
≤ z − µ

σ

)

= Φ

(
z − µ

σ

)

, (2.32)

so that values for any normally distributed random variable can be read from
the table.

Proofs of the following two important theorems are given in Freund (1992).

THEOREM 2.3

(Additivity) If the random variables Z1, Z2 . . . Zm are independent (see Defi-
nition 2.4) and normally distributed, then the linear combination

a1Z1 + a2Z2 + . . .+ amZm

is normally distributed with moments

µ = a1µ1 + a2µ2 + . . .+ amµm, σ2 = a21σ
2
1 + a22σ

2
2 + . . . a2mσ2

m.

THEOREM 2.4

(Central Limit Theorem) If random variables Z1, Z2 . . . Zm are independent
and have equal distributions with mean µ and variance σ2, then the random
variable

1

σ
√
m

m∑

i=1

(Zi − µ) =
Z̄ − µ

σ/
√
m

with Z̄ = (1/m)
∑

i Zi is standard normally distributed in the limit m → ∞.

Theorem 2.3 implies that, if Zi, i = 1 . . .m, is a random sample drawn
from a population which is distributed with mean µ and variance σ2, then the
sample mean (see Section 2.2),

Z̄ =
1

m

m∑

i=1

Zi ,

is normally distributed with mean µ and variance σ2/m (Exercise 6). Theorem
2.4, on the other hand, justifies approximating the distribution of the mean
Z̄ with a normal distribution having mean µ and variance σ2/m for large m,
even when the Zi are not normally distributed.

As an illustration of the Central Limit Theorem, the code:

import numpy as np

import matplotlib .pyplot as plt

r = np.random.rand (10000,12)

array = np.sum(r ,1)

p = plt.hist (array ,bins =12)

40 Image Statistics

so it is sufficient to give tables (functions) only for z ≥ 0. Note that

P (z) = Pr(Z ≤ z) = Pr

(
Z − µ

σ
≤ z − µ

σ

)

= Φ

(
z − µ

σ

)

, (2.32)

so that values for any normally distributed random variable can be read from
the table.

Proofs of the following two important theorems are given in Freund (1992).

THEOREM 2.3

(Additivity) If the random variables Z1, Z2 . . . Zm are independent (see Defi-
nition 2.4) and normally distributed, then the linear combination

a1Z1 + a2Z2 + . . .+ amZm

is normally distributed with moments

µ = a1µ1 + a2µ2 + . . .+ amµm, σ2 = a21σ
2
1 + a22σ

2
2 + . . . a2mσ2

m.

THEOREM 2.4

(Central Limit Theorem) If random variables Z1, Z2 . . . Zm are independent
and have equal distributions with mean µ and variance σ2, then the random
variable

1

σ
√
m

m∑

i=1

(Zi − µ) =
Z̄ − µ

σ/
√
m

with Z̄ = (1/m)
∑

i Zi is standard normally distributed in the limit m → ∞.

Theorem 2.3 implies that, if Zi, i = 1 . . .m, is a random sample drawn
from a population which is distributed with mean µ and variance σ2, then the
sample mean (see Section 2.2),

Z̄ =
1

m

m∑

i=1

Zi ,

is normally distributed with mean µ and variance σ2/m (Exercise 6). Theorem
2.4, on the other hand, justifies approximating the distribution of the mean
Z̄ with a normal distribution having mean µ and variance σ2/m for large m,
even when the Zi are not normally distributed.

As an illustration of the Central Limit Theorem, the code:

import numpy as np

import matplotlib .pyplot as plt

r = np.random.rand (10000,12)

array = np.sum(r ,1)

p = plt.hist (array ,bins =12)

Random variables 41

3 4 5 6 7 8 9 10

0

500

1000

1500

2000

FIGURE 2.1

Histogram of sums of 12 uniformly distributed random numbers.

calculates 10,000 sums of m = 12 random numbers uniformly distributed on
the interval [0, 1] and plots their histogram; see Figure 2.1. Note the use of the
NumPy function np.sum(r,1), which sums the two-dimensional NumPy array
r along its second dimension (dimensions are numbered from 0), i.e., along its
column index. The histogram closely approximates a normal distribution.

2.1.5 The gamma distribution and its derivatives

A random variable Z is said to have a gamma distribution if its probability
density function is given by

pG;α,β(z) =

{
1

βαΓ(α)z
α−1e−z/β for z > 0

0 elsewhere,
(2.33)

where α > 0 and β > 0 and where the gamma function Γ(α) is given by

Γ(α) =

∫ ∞

0

zα−1e−zdz, α > 0. (2.34)

The gamma function has the recursive property

Γ(α) = (α− 1)Γ(α− 1), α > 1,

42 Image Statistics

and generalizes the notion of a factorial; see Exercise 7. It is easy to show
(Exercise 8(a)) that the gamma distribution has mean and variance

µ = αβ, σ2 = αβ2. (2.35)

The regularized incomplete gamma function is

γ(α, z) =
1

Γ(α)

∫ z

0

tα−1e−tdt (2.36)

and must be approximated numerically.
A special case of the gamma distribution arises for α = 1. Since Γ(1) =

∫∞
0 e−zdz = 1, we obtain the exponential distribution with density function

pE;β(z) =

{
1
β e

−z/β for z > 0
0 elsewhere,

(2.37)

where β > 0. According to Equation (2.35), the exponential distribution has
mean β and variance β2. In addition we have (Exercise 8(b)) the following
theorem:

THEOREM 2.5

If random variables Z1, Z2 . . . Zm are independent and exponentially dis-
tributed according to Equation (2.37), then the random variable Z =

∑m
i=1 Zi

is gamma distributed with α = m.

An immediate consequence of this Theorem is that if random variables Z1

and Z2 are are gamma distributed with α = m and α = n with the same
values of β, then Z1 + Z2 is gamma distributed with α = m + n, β. That
is, Z1 + Z2 can be expressed as the sum of m + n exponentially distributed
random variables with parameter β; see also Theorem 2.7 below.

The chi-square distribution with m degrees of freedom is another special
case of the gamma distribution. We get its density function with β = 2 and
α = m/2, i.e.,

pχ2;m(z) =

{
1

2m/2Γ(m/2)
z(m−2)/2e−z/2 for z > 0

0 otherwise.
(2.38)

It follows that the chi-square distribution has mean µ = m and variance
σ2 = 2m. It is straightforward to show (Exercise 3) that the corresponding
probability distribution can be written in terms of the incomplete gamma
function, Equation (2.36), as

Pχ2;m(z) =
1

2m/2Γ(m/2)

∫ z

0

x(m−2)/2e−x/2dx = γ(m/2, z/2). (2.39)

The reader is asked to prove a special case of the following theorem in
Exercise 4.

42 Image Statistics

and generalizes the notion of a factorial; see Exercise 7. It is easy to show
(Exercise 8(a)) that the gamma distribution has mean and variance

µ = αβ, σ2 = αβ2. (2.35)

The regularized incomplete gamma function is

γ(α, z) =
1

Γ(α)

∫ z

0

tα−1e−tdt (2.36)

and must be approximated numerically.
A special case of the gamma distribution arises for α = 1. Since Γ(1) =

∫∞
0 e−zdz = 1, we obtain the exponential distribution with density function

pE;β(z) =

{
1
β e

−z/β for z > 0
0 elsewhere,

(2.37)

where β > 0. According to Equation (2.35), the exponential distribution has
mean β and variance β2. In addition we have (Exercise 8(b)) the following
theorem:

THEOREM 2.5

If random variables Z1, Z2 . . . Zm are independent and exponentially dis-
tributed according to Equation (2.37), then the random variable Z =

∑m
i=1 Zi

is gamma distributed with α = m.

An immediate consequence of this Theorem is that if random variables Z1

and Z2 are are gamma distributed with α = m and α = n with the same
values of β, then Z1 + Z2 is gamma distributed with α = m + n, β. That
is, Z1 + Z2 can be expressed as the sum of m + n exponentially distributed
random variables with parameter β; see also Theorem 2.7 below.

The chi-square distribution with m degrees of freedom is another special
case of the gamma distribution. We get its density function with β = 2 and
α = m/2, i.e.,

pχ2;m(z) =

{
1

2m/2Γ(m/2)
z(m−2)/2e−z/2 for z > 0

0 otherwise.
(2.38)

It follows that the chi-square distribution has mean µ = m and variance
σ2 = 2m. It is straightforward to show (Exercise 3) that the corresponding
probability distribution can be written in terms of the incomplete gamma
function, Equation (2.36), as

Pχ2;m(z) =
1

2m/2Γ(m/2)

∫ z

0

x(m−2)/2e−x/2dx = γ(m/2, z/2). (2.39)

The reader is asked to prove a special case of the following theorem in
Exercise 4.

Random variables 43

THEOREM 2.6

If the random variables Zi, i = 1 . . .m, are independent and standard nor-
mally distributed (i.e., with mean 0 and variance 1), then the random variable
Z =

∑m
i=1 Z

2
i is chi-square distributed with m degrees of freedom.

One can use the Python function scipy.stats.chi2.cdf() to calculate the
chi-square probability distribution function or scipy.stats.chi2.ppf() to
calculate its percentiles (values of z for given Pχ2 ;m(z)). They may be imported
with the scipy.stats package. The Scipy statistics package also provides the
function chi2.pdf() to calculate the chi-square probability density∗ function.
Here we apply it in the Jupyter notebook to generate the plots shown in Figure
2.2.

import scipy.stats as st

z = np.linspace (1,20 ,200)

ax = plt.subplot (111)

for i in range(1 ,6):

ax.plot(z,st.chi2.pdf(z,i),label = str (i))

ax.legend()

The gamma and exponential distributions will be essential for the characteri-
zation of SAR speckle noise in Chapter 5. The chi-square distribution plays a
central role in the iterative change detection algorithm IR-MAD of Chapter 9.

Finally, we mention the beta distribution which has a probability density
function defined only between zero and one:

pB:α,β(z) =
1

B(α, β)
zα−1(1 − z)β−1, 0 ≤ z ≤ 1, α > 0, β > 0, (2.40)

where the beta function B(α, β) is given by

B(α, β) =
Γ(α)Γ(β)

Γ(α+ β)
. (2.41)

The following result (Exercise 9) will play a role in the discussion of the
sequential SAR change detection algorithm in Chapter 9:

THEOREM 2.7

If the random variables X and Y are independent and gamma distributed
with parameters (m,β) and (n, β), respectively, then the random variables
S = X + Y and U = X/(X + Y) are independent. Moreover, S is gamma
distributed with parameters (m+ n, β) and U is (m,n)-beta distributed.

∗Note the unfortunate ambiguity of the abbreviation “pdf”!

44 Image Statistics

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

0.00

0.05

0.10

0.15

0.20

0.25

0.30

1

2

3

4

5

FIGURE 2.2

Plots of the chi-square probability density for m = 1 . . . 5 degrees of freedom.

2.2 Parameter estimation

Having introduced distribution functions for random variables, the question
arises as to how to estimate the parameters which characterize those dis-
tributions, most importantly their means, variances and covariances, from
observations.

2.2.1 Random samples

Consider a multispectral image and a specific land cover category within it. We
might choose n pixels belonging to that category and use them to estimate the
moments of the underlying distribution. That distribution will be determined
not only by measurement noise, atmospheric disturbances, etc., but also by
the spread in reflectances characterizing the land cover category itself. For
example, Figure 2.3 shows a region of interest (ROI) marking an area of mixed
forest contained within the ASTER image of Figure 1.1. Recalling that the
ASTER scene was acquired on May 1, 2007, we can extract the corresponding
histogram from the GEE data archive with the script:

import ee

ee.Initialize ()

im = ee.Image(ee.ImageCollection (’ASTER/AST_L1T_003 ’) \

44 Image Statistics

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

0.00

0.05

0.10

0.15

0.20

0.25

0.30

1

2

3

4

5

FIGURE 2.2

Plots of the chi-square probability density for m = 1 . . . 5 degrees of freedom.

2.2 Parameter estimation

Having introduced distribution functions for random variables, the question
arises as to how to estimate the parameters which characterize those dis-
tributions, most importantly their means, variances and covariances, from
observations.

2.2.1 Random samples

Consider a multispectral image and a specific land cover category within it. We
might choose n pixels belonging to that category and use them to estimate the
moments of the underlying distribution. That distribution will be determined
not only by measurement noise, atmospheric disturbances, etc., but also by
the spread in reflectances characterizing the land cover category itself. For
example, Figure 2.3 shows a region of interest (ROI) marking an area of mixed
forest contained within the ASTER image of Figure 1.1. Recalling that the
ASTER scene was acquired on May 1, 2007, we can extract the corresponding
histogram from the GEE data archive with the script:

import ee

ee.Initialize ()

im = ee.Image(ee.ImageCollection (’ASTER/AST_L1T_003 ’) \

Parameter estimation 45

.filterBounds (ee.Geometry.Point ([6.5 ,50.9])) \

.filterDate (’2007-04-30 ’,’2007-05-02 ’) \

.first()) \

.select(’B3N’)

roi = ee.Geometry .Polygon (

[[6.382713317871094 ,50.90736285477543] ,

[6.3961029052734375 ,50.90130070888041] ,

[6.4015960693359375 ,50.90519789328594] ,

[6.388206481933594 ,50.91169247570916] ,

[6.382713317871094 ,50.90736285477543]])

sample = im.sample(roi ,scale=15) \

.aggregate_array (’B3N’). getInfo ()

p = plt.hist (sample ,bins =20)

The histogram of the observations in the 3N band of the Aster image of
Figure 1.1 under the mask is shown in Figure 2.4. It is, generously speaking, a
normal distribution. The masked observations might thus be used to calculate
an approximate mean and variance for a random variable describing mixed
forest land cover.

FIGURE 2.3

A region of interest covering an area of mixed forest. The polygon was set in
the GEE code editor.

46 Image Statistics

70 80 90 100 110 120 130 140

0

100

200

300

400

500

FIGURE 2.4

Histogram of the pixels in the 3N band of the ASTER image in the ROI of
Figure 2.3.

More formally, let Z1, Z2 . . . Zm be independent random variables which all
have the same distribution function P (z) with mean �Z� and variance var(Z).
These random variables are referred to as a sample of the distribution and are
said to be independent and identically distributed (i.i.d.). Any function of them
is called a sample function and is itself a random variable. The pixel intensities
contributing to Figure 2.4 are a particular realization of some sample of the
distribution corresponding to the land cover category mixed forest. For our
present purposes, the sample functions of interest are those which can be
used to estimate the mean and variance of the distribution P (z). These are
the sample mean

Z̄ =
1

m

m∑

i=1

Zi (2.42)

and the sample variance

S =
1

m− 1

m∑

i=1

(Zi − Z̄)2. (2.43)

These two sample functions are also called unbiased estimators because their
expected values are equal to the corresponding moments of P (z), that is,

�Z̄� = �Z� (2.44)

46 Image Statistics

70 80 90 100 110 120 130 140

0

100

200

300

400

500

FIGURE 2.4

Histogram of the pixels in the 3N band of the ASTER image in the ROI of
Figure 2.3.

More formally, let Z1, Z2 . . . Zm be independent random variables which all
have the same distribution function P (z) with mean �Z� and variance var(Z).
These random variables are referred to as a sample of the distribution and are
said to be independent and identically distributed (i.i.d.). Any function of them
is called a sample function and is itself a random variable. The pixel intensities
contributing to Figure 2.4 are a particular realization of some sample of the
distribution corresponding to the land cover category mixed forest. For our
present purposes, the sample functions of interest are those which can be
used to estimate the mean and variance of the distribution P (z). These are
the sample mean

Z̄ =
1

m

m∑

i=1

Zi (2.42)

and the sample variance

S =
1

m− 1

m∑

i=1

(Zi − Z̄)2. (2.43)

These two sample functions are also called unbiased estimators because their
expected values are equal to the corresponding moments of P (z), that is,

�Z̄� = �Z� (2.44)

Parameter estimation 47

and
�S� = var(Z). (2.45)

The first result, Equation (2.44), follows immediately:

�Z̄� = 1

m

∑

i

�Zi� =
1

m
m�Z� = �Z�.

To see that Equation (2.45) holds, consider

(m− 1)S =
∑

i

(Zi − Z̄)2 =
∑

i

(

Z2
i − 2ZiZ̄ − Z̄2

)

=
∑

i

Z2
i − 2mZ̄2 +mZ̄2.

Therefore,

(m− 1)S =
∑

i

Z2
i −mZ̄2 =

∑

i

Z2
i −m

1

m2

(
∑

i

Zi

)(
∑

i

Zi

)

.

Expanding the product of sums yields

(m− 1)S =
∑

i

Z2
i − 1

m

∑

i

Z2
i − 1

m

∑

i�=i′

ZiZi′ .

But Zi and Zi′ are independent random variables; see Definition 2.4 and
Equation (2.19), so that

�ZiZi′� = �Z�2.
Therefore, since the double sum above has m(m− 1) terms,

(m− 1)�S� = m�Z2� − 1

m
m�Z2� − 1

m
m(m− 1)�Z�2

or
�S� = �Z2� − �Z�2 = var(Z).

The denominator (m− 1) in the definition of the sample variance is thus seen
to be required for unbiased estimation of the covariance matrix and to be due
to the appearance of the sample mean Z̄ rather than the distribution mean
�Z� in the definition. The maximum likelihood method, which we will meet
in Section 2.4, will lead to the same sample mean, but to a slightly different
sample variance estimator.

2.2.2 Sample distributions and interval estimators

It follows from Theorem 2.3 that the sample mean Z̄ =
∑

i Zi/m for Zi ∼
N (µ, σ2) is normally distributed with mean µ and variance σ2/m. For the
sample variance, we have (Freund, 1992) the following theorem:

48 Image Statistics

THEOREM 2.8

If S is the sample variance

S =
1

m− 1

m∑

i=1

(Zi − Z̄)2

of a random sample Zi, i = 1 . . .m, drawn from a normally distributed popu-
lation with mean µ and variance σ2, then the random variable

(m− 1)S/σ2

is independent of Z̄ and has the chi-square distribution with m− 1 degrees of
freedom.

The estimators in Equations (2.42) and (2.43) are referred to as point esti-
mators, since their realizations involve real numbers. The estimated value of
any distribution parameter will of course differ from the true value. Gener-
ally, one prefers to quote an interval within which, to some specified degree
of confidence, the true value will lie.

To give an important example, consider again a N (µ, σ2)-distributed ran-
dom sample Z1 . . . Zm. Then

Z̄ ∼ N (µ, σ2/m),

and the variance in the sample mean decreases inversely with sample size m.
Moreover, (Z̄ − µ)/(σ/

√
m) is standard normally distributed. Therefore, for

any t > 0, and with Equation (2.31),

Pr

(

−t <
Z̄ − µ

σ/
√
m

≤ t

)

= Φ(t)− Φ(−t) = 2Φ(t)− 1.

This may be written in the form

Pr

(

Z̄ − t
σ√
m

≤ µ < Z̄ + t
σ√
m

)

= 2Φ(t)− 1.

Thus, we can say that the probability that the random interval
(

Z̄ − t
σ√
m
, Z̄ + t

σ√
m

)

(2.46)

covers the unknown mean value µ is 2Φ(t)−1. Once a realization of the random
interval has been obtained and reported, i.e., by plugging a realization of Z̄
into Equation (2.46), then µ either lies within it or it doesn’t. Therefore, one
can no longer properly speak of probabilities. Instead, a degree of confidence
for the reported interval is conventionally given and expressed in terms of a
(usually small) quantity α defined by

1− α = 2Φ(t)− 1.

48 Image Statistics

THEOREM 2.8

If S is the sample variance

S =
1

m− 1

m∑

i=1

(Zi − Z̄)2

of a random sample Zi, i = 1 . . .m, drawn from a normally distributed popu-
lation with mean µ and variance σ2, then the random variable

(m− 1)S/σ2

is independent of Z̄ and has the chi-square distribution with m− 1 degrees of
freedom.

The estimators in Equations (2.42) and (2.43) are referred to as point esti-
mators, since their realizations involve real numbers. The estimated value of
any distribution parameter will of course differ from the true value. Gener-
ally, one prefers to quote an interval within which, to some specified degree
of confidence, the true value will lie.

To give an important example, consider again a N (µ, σ2)-distributed ran-
dom sample Z1 . . . Zm. Then

Z̄ ∼ N (µ, σ2/m),

and the variance in the sample mean decreases inversely with sample size m.
Moreover, (Z̄ − µ)/(σ/

√
m) is standard normally distributed. Therefore, for

any t > 0, and with Equation (2.31),

Pr

(

−t <
Z̄ − µ

σ/
√
m

≤ t

)

= Φ(t)− Φ(−t) = 2Φ(t)− 1.

This may be written in the form

Pr

(

Z̄ − t
σ√
m

≤ µ < Z̄ + t
σ√
m

)

= 2Φ(t)− 1.

Thus, we can say that the probability that the random interval
(

Z̄ − t
σ√
m
, Z̄ + t

σ√
m

)

(2.46)

covers the unknown mean value µ is 2Φ(t)−1. Once a realization of the random
interval has been obtained and reported, i.e., by plugging a realization of Z̄
into Equation (2.46), then µ either lies within it or it doesn’t. Therefore, one
can no longer properly speak of probabilities. Instead, a degree of confidence
for the reported interval is conventionally given and expressed in terms of a
(usually small) quantity α defined by

1− α = 2Φ(t)− 1.

Parameter estimation 49

This determines the value of t to be used in Equation (2.46) according to

Φ(t) = 1− α/2. (2.47)

For a given α, t can be read from the table of the normal distribution. One
then says that the interval covers the unknown parameter µ with confidence
1− α.

We can similarly derive a confidence interval for the estimated variance S.
Define χ2

α;m by

Pr(Z ≥ χ2
α;m) = α

for a random variable Z having the chi-square distribution with m degrees of
freedom. Then from Theorem 2.8,

Pr

(

χ2
1−α/2;m−1 <

(m− 1)S

σ2
< χ2

α/2;m−1

)

= 1− α

or

Pr

(

(m− 1)S

χ2
α/2;m−1

< σ2 <
(m− 1)S

χ2
1−α/2;m−1

)

= 1− α.

So we can say that, if s is the estimated variance (realization of S) of a random
sample of size m from a normal population, then

(m− 1)s

χ2
α/2;m−1

< σ2 <
(m− 1)s

χ2
1−α/2;m−1

is a 1− α confidence interval for σ2.

The following Python script calculates 95% mean and variance confidence
intervals for a uniformly distributed random sample with m = 1000:

from scipy.stats import norm ,chi2

def x2(a,m):

return chi2 .ppf(1-a,m)

m = 1000

a = 0.05

g = np.random.random(m)

gbar = np.sum(g)/m

s = np.sum((g-gbar)**2)/(m-1)

print(’sample�variance :�%f’%s)

lower = (m-1)*s/x2(a/2,m-1)

upper = (m-1)*s/x2(1-a/2,m-1)

print(’%i�percent �confidence �interval :�(%f,�%f)’\

%(int ((1-a)*100) , lower ,upper))

print(’sample�mean :�%f’%gbar)

t = norm.ppf(1-a/2)

50 Image Statistics

sigma = np.sqrt(s)

lower = gbar -t*sigma/np.sqrt(m)

upper = gbar+t*sigma/np.sqrt(m)

print(’%i�percent �confidence �interval :�(%f,�%f)’\

%(int ((1-a)*100) , lower ,upper))

The result is

sample variance: 0.083693

95 percent confidence interval: (0.076813, 0.091546)

sample mean: 0.508182

95 percent confidence interval: (0.490251, 0.526112)

According to the Central Limit Theorem, the mean approaches 0.5 and the
variance tends to 1/12 = 0.08333 as m → ∞; see Section 2.1.2.

2.3 Multivariate distributions

As with continuous random variables, the continuous random vector Z =
(Z1, Z2)

⊤ is often assumed to be described by a bivariate normal density
function p(z) given by

p(z) =
1

(2π)N/2
√

|Σ|
exp

(

−1

2
(z − µ)⊤Σ−1(z − µ)

)

, (2.48)

with N = 2. For N > 2, the same definition applies and we speak of a multi-
variate normal density function. The mean vector �Z� is µ and the covariance
matrix is Σ. This is indicated by writing

Z ∼ N (µ,Σ).

We have the following important result (see again Freund (1992)):

THEOREM 2.9

If two random variables Z1, Z2 have a bivariate normal distribution, they are
independent if and only if ρ12 = 0, that is, if and only if they are uncorrelated.

In general, a zero correlation does not imply that two random variables are
independent. However, this theorem says that it does if the variables are
normally distributed.

A complex Gaussian random variable Z = X+iY is a complex random vari-
able whose real and imaginary parts are bivariate normally distributed. Under
certain assumptions (Goodman, 1963), the real-valued form for the multivari-
ate distribution, Equation (2.48), can be carried over straightforwardly to the

50 Image Statistics

sigma = np.sqrt(s)

lower = gbar -t*sigma/np.sqrt(m)

upper = gbar +t*sigma/np.sqrt(m)

print(’%i�percent �confidence �interval :�(%f,�%f)’\

%(int ((1-a)*100) , lower ,upper))

The result is

sample variance: 0.083693

95 percent confidence interval: (0.076813, 0.091546)

sample mean : 0.508182

95 percent confidence interval: (0.490251, 0.526112)

According to the Central Limit Theorem, the mean approaches 0.5 and the
variance tends to 1/12 = 0.08333 as m → ∞; see Section 2.1.2.

2.3 Multivariate distributions

As with continuous random variables, the continuous random vector Z =
(Z1, Z2)

⊤ is often assumed to be described by a bivariate normal density
function p(z) given by

p(z) =
1

(2π)N/2
√

|Σ|
exp

(

−1

2
(z − µ)⊤Σ−1(z − µ)

)

, (2.48)

with N = 2. For N > 2, the same definition applies and we speak of a multi-
variate normal density function. The mean vector �Z� is µ and the covariance
matrix is Σ. This is indicated by writing

Z ∼ N (µ,Σ).

We have the following important result (see again Freund (1992)):

THEOREM 2.9

If two random variables Z1, Z2 have a bivariate normal distribution, they are
independent if and only if ρ12 = 0, that is, if and only if they are uncorrelated.

In general, a zero correlation does not imply that two random variables are
independent. However, this theorem says that it does if the variables are
normally distributed.

A complex Gaussian random variable Z = X+iY is a complex random vari-
able whose real and imaginary parts are bivariate normally distributed. Under
certain assumptions (Goodman, 1963), the real-valued form for the multivari-
ate distribution, Equation (2.48), can be carried over straightforwardly to the

Multivariate distributions 51

domain of complex random vectors. In particular, it is assumed that the real
and imaginary parts of each component of the complex random vector are
uncorrelated and have equal variances, although the real and imaginary parts
of different components can be correlated. As we shall see in Chapter 5, this
corresponds closely to the properties of SAR amplitude data. The complex
covariance matrix for a zero-mean complex random vector Z is, similar to
Equation (2.26), given by

Σ = �ZZ†�, (2.49)

where the † denotes conjugate transposition as defined in Chapter 1 and
Appendix A. Note that Σ is Hermitian and positive semi-definite (see Ex-
ercise 9 in Chapter 1). The complex random vector Z is said to be complex
multivariate normally distributed with zero mean and covariance matrix Σ if
its density function is

p(z) =
1

πN |Σ| exp(−z†Σ−1z). (2.50)

This is indicated by writing Z ∼ NC(0,Σ).

2.3.1 Vector sample functions and the data matrix

Random vectors will, in our context, always represent pixel observation vectors
in remote sensing images. The sample functions of interest are, as in the scalar
case, those which can be used to estimate the vector mean and covariance
matrix of a joint distribution P (z), namely, the vector sample mean∗

Z̄ =
1

m

m∑

ν=1

Z(ν) (2.51)

and the sample covariance matrix

S =
1

m− 1

m∑

ν=1

(Z(ν)− Z̄)(Z(ν) − Z̄)⊤. (2.52)

These two sample functions are unbiased estimators because again, as in the
scalar case, their expected values are equal to the corresponding parameters
of P (z), that is,

�Z̄� = �Z� (2.53)

and
�S� = Σ. (2.54)

∗We shall prefer to use the Greek letter ν to index random vectors and their realizations
from now on.

52 Image Statistics

Suppose that we have made i.i.d. observations z(ν), ν = 1 . . .m. They may
be arranged into an m×N matrix Z in which each N -component observation
vector forms a row, i.e.,

Z =







z(1)⊤

z(2)⊤

...
z(m)⊤







, (2.55)

which, as mentioned in Section 1.3.4, is a very useful construct, and is called
the data matrix. (Mardia et al. (1979) explain the theory of multivariate statis-
tics entirely in terms of the data matrix!) The calligraphic font is chosen to
avoid confusion with the random vector Z. The unbiased estimate z̄ of the
sample mean vector Z̄ is just the vector of the column means of the data
matrix Z . It can be conveniently written as

z̄ =
1

m
Z⊤1m, (2.56)

where 1m denotes a column vector of m ones. If the column means have been
subtracted out, then the data matrix is said to be column centered, in which
case an unbiased estimate s for the covariance matrix Σ is given by

s =
1

m− 1
Z⊤Z . (2.57)

Note that the order of transposition is reversed relative to Equation (2.26)
because the observations are stored as rows. The rules of matrix multiplica-
tion, Equation (1.14), take care of the sum over all observations, so it only
remains to divide by m− 1 to obtain the desired estimate. If d is the diagonal
matrix having the diagonal elements of s,

(d)ij =

�

(s)ij for i = j
0 otherwise,

then an unbiased estimate r of the correlation matrix R, see Equation 2.27,
is given by (Exercise 13)

r = d−1/2sd−1/2. (2.58)

In terms of a column centered data matrix stored in the numerical Python
matrix Z , for instance, the covariance and correlation matrices can be coded as

s = Z.T*Z/(Z.shape[0]-1)

d = np.mat(np.diag(np.sqrt (np.diag(s))))

r = d.I*s*d.I

52 Image Statistics

Suppose that we have made i.i.d. observations z(ν), ν = 1 . . .m. They may
be arranged into an m×N matrix Z in which each N -component observation
vector forms a row, i.e.,

Z =







z(1)⊤

z(2)⊤

...
z(m)⊤







, (2.55)

which, as mentioned in Section 1.3.4, is a very useful construct, and is called
the data matrix. (Mardia et al. (1979) explain the theory of multivariate statis-
tics entirely in terms of the data matrix!) The calligraphic font is chosen to
avoid confusion with the random vector Z. The unbiased estimate z̄ of the
sample mean vector Z̄ is just the vector of the column means of the data
matrix Z . It can be conveniently written as

z̄ =
1

m
Z⊤1m, (2.56)

where 1m denotes a column vector of m ones. If the column means have been
subtracted out, then the data matrix is said to be column centered, in which
case an unbiased estimate s for the covariance matrix Σ is given by

s =
1

m− 1
Z⊤Z . (2.57)

Note that the order of transposition is reversed relative to Equation (2.26)
because the observations are stored as rows. The rules of matrix multiplica-
tion, Equation (1.14), take care of the sum over all observations, so it only
remains to divide by m−1 to obtain the desired estimate. If d is the diagonal
matrix having the diagonal elements of s,

(d)ij =

�

(s)ij for i = j
0 otherwise,

then an unbiased estimate r of the correlation matrix R, see Equation 2.27,
is given by (Exercise 13)

r = d−1/2sd−1/2. (2.58)

In terms of a column centered data matrix stored in the numerical Python
matrix Z , for instance, the covariance and correlation matrices can be coded as

s = Z.T*Z/(Z.shape[0]-1)

d = np.mat(np.diag(np.sqrt (np.diag(s))))

r = d.I*s*d.I

Multivariate distributions 53

Listing 2.1: A Python object class for the method of provisional means.

1 c lass Cpm(object):

2 ’’’Provisional means algorithm ’’’

3 def __init__ (self ,N):

4 self .mn = np.zeros(N)

5 self.cov = np.zeros((N,N))

6 self .sw = 0.0000001

7

8 def update(self ,Xs,Ws=None):

9 lngth = len(np.shape(Xs))

10 i f lngth==2:

11 n,N = np.shape(Xs)

12 e l se:

13 N = len(Xs)

14 n = 1

15 i f Ws i s None :

16 Ws = np.ones(n)

17 sw = ctypes.c_double (self .sw)

18 mn = self.mn

19 cov = self.cov

20 provmeans (Xs ,Ws ,N,n,ctypes.byref(sw),mn ,cov)

21 self.sw = sw.value

22 self .mn = mn

23 self .cov = cov

24

25 def covariance (self):

26 c = np.mat(self.cov /(self .sw -1.0))

27 d = np.diag (np.diag (c))

28 return c + c.T - d

29

30 def means(self):

31 return self .mn

2.3.2 Provisional means

In Chapter 1, a Python script was given which estimated the covariance matrix
of an image by sampling all of its pixels. As we will see in subsequent chapters,
this operation is required for many useful transformations of multi-spectral
images. For large datasets, however, this may become impractical since it
requires that the image array be stored completely in memory. An alternative
is to use an iterative algorithm reading and processing small portions of the
image at a time. The procedure we describe here is referred to as the method
of provisional means, and we give it in a form which includes the possibility
of weighting each sample.

Let g(ν) = (g1(ν), g2(ν) . . . gN(ν))⊤ denote the νth sample from an N -
band multispectral image with some distribution function P (g). Set ν = 0

54 Image Statistics

and define the following quantities and their initial values:

ḡk(ν = 0) = 0, k = 1 . . .N

ckℓ(ν = 0) = 0, k, ℓ = 1 . . .N.

The ν+1st observation is given weightwν+1 and we define the update constant

rν+1 =
wν+1

∑ν+1
ν′=1 wν′

.

Each new observation g(ν + 1) leads to the following updates:

ḡk(ν + 1) = ḡk(ν) + (gk(ν + 1)− ḡk(ν))rν+1

ckℓ(ν + 1) = ckℓ(ν) + wν+1(gk(ν + 1)− ḡk(ν))(gℓ(ν + 1)− ḡℓ(ν)(1 − rν+1).

Then, after m observations, ḡ(m) = (ḡ1(m) . . . ḡN (m))⊤ is a realization of the
(weighted) sample mean, Equation (2.51), and ckℓ(m) is a realization of the
(k, ℓ)th element of the (weighted) sample covariance matrix, Equation (2.52).

To see that this prescription gives the desired result, consider the case in
which wν = 1 for all ν. The first two mean values are

ḡk(1) = 0 + (gk(1)− 0) · 1 = gk(1)

ḡk(2) = gk(1) + (gk(2)− gk(1)) ·
1

2
=

gk(1) + gk(2)

2

as expected. The first two cross products are

ckℓ(1) = 0 + (gk(1)− 0)(gℓ(1)− 0)(1− 1) = 0

ckℓ(2) = 0 + (gk(2)− gk(1))(gℓ(2)− gℓ(1))(1 − 1/2)

=
1

2
(gk(2)− gk(1))(gℓ(2)− gℓ(1))

=
1

2− 1

2∑

ν=1

(

gk(ν)−
gk(1) + gk(2)

2

)(

gℓ(ν) −
gℓ(1) + gℓ(2)

2

)

again as expected.
Listing 2.1 shows the Python class Cpm , which is part of the auxil package.

The update() method takes as input a single row of a multispectral image
in the form of a data matrix Xs, together with weights Ws if desired. The
provmeans function called in line 20 is coded in C and accessed with Python’s
ctypes package. It loops through the pixels in the Xs array, updating the
mean self.mn and upper diagonal part of the covariance array self.cov as
it goes. Thus, we can calculate the covariance matrix of the VNIR bands of
the ASTER image as follows:

54 Image Statistics

and define the following quantities and their initial values:

ḡk(ν = 0) = 0, k = 1 . . .N

ckℓ(ν = 0) = 0, k, ℓ = 1 . . .N.

The ν+1st observation is given weightwν+1 and we define the update constant

rν+1 =
wν+1

∑ν+1
ν′=1 wν′

.

Each new observation g(ν + 1) leads to the following updates:

ḡk(ν + 1) = ḡk(ν) + (gk(ν + 1)− ḡk(ν))rν+1

ckℓ(ν + 1) = ckℓ(ν) + wν+1(gk(ν + 1)− ḡk(ν))(gℓ(ν + 1)− ḡℓ(ν)(1 − rν+1).

Then, after m observations, ḡ(m) = (ḡ1(m) . . . ḡN (m))⊤ is a realization of the
(weighted) sample mean, Equation (2.51), and ckℓ(m) is a realization of the
(k, ℓ)th element of the (weighted) sample covariance matrix, Equation (2.52).

To see that this prescription gives the desired result, consider the case in
which wν = 1 for all ν. The first two mean values are

ḡk(1) = 0 + (gk(1)− 0) · 1 = gk(1)

ḡk(2) = gk(1) + (gk(2)− gk(1)) ·
1

2
=

gk(1) + gk(2)

2

as expected. The first two cross products are

ckℓ(1) = 0 + (gk(1)− 0)(gℓ(1)− 0)(1− 1) = 0

ckℓ(2) = 0 + (gk(2)− gk(1))(gℓ(2)− gℓ(1))(1 − 1/2)

=
1

2
(gk(2)− gk(1))(gℓ(2)− gℓ(1))

=
1

2− 1

2∑

ν=1

(

gk(ν)−
gk(1) + gk(2)

2

)(

gℓ(ν) −
gℓ(1) + gℓ(2)

2

)

again as expected.
Listing 2.1 shows the Python class Cpm , which is part of the auxil package.

The update() method takes as input a single row of a multispectral image
in the form of a data matrix Xs, together with weights Ws if desired. The
provmeans function called in line 20 is coded in C and accessed with Python’s
ctypes package. It loops through the pixels in the Xs array, updating the
mean self.mn and upper diagonal part of the covariance array self.cov as
it goes. Thus, we can calculate the covariance matrix of the VNIR bands of
the ASTER image as follows:

Multivariate distributions 55

from osgeo import gdal

from osgeo.gdalconst import GA_ReadOnly

import auxil.auxil1 as auxil

gdal.AllRegister ()

infile = ’imagery/AST_20070501 .tif’

inDataset = gdal.Open(infile ,GA_ReadOnly)

cols = inDataset .RasterXSize

rows = inDataset .RasterYSize

Xs = np.zeros((cols ,3))

cpm = auxil.Cpm(3)

rasterBands =[inDataset .GetRasterBand (k+1)

for k in range(3)]

for row in range(rows):

for k in range(3):

Xs[:,k]= rasterBands [k]. ReadAsArray (0,row ,cols ,1)

cpm.update(Xs)

print cpm.covariance ()

The output is the same as in Section 1.3.4 apart from small rounding errors:

[[407.13229638 442.18038333 -78.32374081]

[442.18038333 493.57036037 -120.6419761]

[-78.32374081 -120.6419761 438.95704379]]

2.3.3 Real and complex multivariate sample distributions

For the purposes of interval estimation and hypothesis testing, and also for
image classification and change detection, we require not only sample vector
estimators, but also their distributions. We concluded, from Theorem 2.3 in
Section 2.1.4, that the mean ofm normally distributed samples Zi ∼ N (µ, σ2),

Z̄ =
1

m

m∑

i=1

Zi,

is normally distributed with mean µ and variance σ2/m. Similarly, according
to Theorem 2.8, (m − 1)S/σ2, where S is the sample variance, is chi-square
distributed with m− 1 degrees of freedom.

In the multivariate case, we have a similar situation. The sample mean
vector

Z̄ =
1

m

m∑

ν=1

Z(ν)

is multivariate normally distributed with mean µ and covariance matrix Σ/m
for samples Z(ν) ∼ N (µ,Σ), ν = 1 . . .m. The sample covariance matrix S is
described by a Wishart distribution in the following sense. Suppose Z(ν) ∼

56 Image Statistics

N (0,Σ), ν = 1 . . .m. We then have, with Equation (2.52),

(m− 1)S =

m∑

ν=1

Z(ν)Z(ν)⊤ =: X. (2.59)

Realizations x of the random sample matrix X, namely

x =
m∑

ν=1

z(ν)z(ν)⊤,

are symmetric and, for sufficiently large m, positive definite.

THEOREM 2.10

(Anderson, 2003) The probability density function of X given by Equation
(2.59) is the Wishart density with m degrees of freedom

pW (x) =
|x|(m−N−1)/2 exp(−tr(Σ−1x)/2)

2Nm/2πN(N−1)/4|Σ|m/2
∏N

i=1 Γ[(m+ 1− i)/2]
(2.60)

for x positive definite, and 0 otherwise.

We write X ∼ W(Σ, N,m). Since the gamma function Γ(α), Equation (2.34),
is not defined for α ≤ 0, the Wishart distribution is undefined for m < N .
Equation (2.60) generalizes the chi-square density, Equation (2.38), as may
easily be seen by setting N → 1, x → x and Σ → 1.

Now define, in analogy to Equation (2.59), the random complex sample
matrix

X =

m∑

ν=1

Z(ν)Z(ν)†, (2.61)

where Z(ν) ∼ NC(0,Σ). Its realizations are Hermitian and, again for suffi-
ciently large m, positive definite.

THEOREM 2.11

(Goodman, 1963) The probability density function of X given by Equation
(2.61) is the complex Wishart density with m degrees of freedom

pWc(x) =
|x|(m−N) exp(−tr(Σ−1x))

πN(N−1)/2|Σ|m ∏N
i=1 Γ(m+ 1− i)

. (2.62)

This is denoted X ∼ WC(Σ, N,m). The complex Wishart density function
plays an important role in the discussions of polarimetric SAR imagery in
Chapters 5, 7, and 9. In particular, we will need the following theorem:

56 Image Statistics

N (0,Σ), ν = 1 . . .m. We then have, with Equation (2.52),

(m− 1)S =

m∑

ν=1

Z(ν)Z(ν)⊤ =: X. (2.59)

Realizations x of the random sample matrix X, namely

x =
m∑

ν=1

z(ν)z(ν)⊤,

are symmetric and, for sufficiently large m, positive definite.

THEOREM 2.10

(Anderson, 2003) The probability density function of X given by Equation
(2.59) is the Wishart density with m degrees of freedom

pW (x) =
|x|(m−N−1)/2 exp(−tr(Σ−1x)/2)

2Nm/2πN(N−1)/4|Σ|m/2
∏N

i=1 Γ[(m+ 1− i)/2]
(2.60)

for x positive definite, and 0 otherwise.

We write X ∼ W(Σ, N,m). Since the gamma function Γ(α), Equation (2.34),
is not defined for α ≤ 0, the Wishart distribution is undefined for m < N .
Equation (2.60) generalizes the chi-square density, Equation (2.38), as may
easily be seen by setting N → 1, x → x and Σ → 1.

Now define, in analogy to Equation (2.59), the random complex sample
matrix

X =

m∑

ν=1

Z(ν)Z(ν)†, (2.61)

where Z(ν) ∼ NC(0,Σ). Its realizations are Hermitian and, again for suffi-
ciently large m, positive definite.

THEOREM 2.11

(Goodman, 1963) The probability density function of X given by Equation
(2.61) is the complex Wishart density with m degrees of freedom

pWc(x) =
|x|(m−N) exp(−tr(Σ−1x))

πN(N−1)/2|Σ|m ∏N
i=1 Γ(m+ 1− i)

. (2.62)

This is denoted X ∼ WC(Σ, N,m). The complex Wishart density function
plays an important role in the discussions of polarimetric SAR imagery in
Chapters 5, 7, and 9. In particular, we will need the following theorem:

Bayes’ Theorem, likelihood, and classification 57

THEOREM 2.12

If X1 and X2 are both complex Wishart distributed with covariance matrix
Σ and m degrees of freedom, then the random matrix X1 + X2 is complex
Wishart distributed with 2m degrees of freedom.

Proof. The theorem is an immediate consequence of Theorem 2.11. Let
Z1(ν),Z2(ν) ∼ NC(0,Σ), ν = 1 . . .m, and

X1 =

m∑

ν=1

Z1(ν)Z1(ν)
†, X2 =

m∑

ν=1

Z2(ν)Z2(ν)
†.

But since Z1 and Z2 have the same distribution, the sum X1 +X2 has the
same form as Equation (2.61) with m replaced by 2m.

2.4 Bayes’ Theorem, likelihood, and classification

If A and B are two events, i.e., two subsets of a sample space Ω, such that the
probability of A andB occurring simultaneously is Pr(A,B), and if Pr(B) �= 0,
then the conditional probability of A occurring given that B occurs is defined
to be

Pr(A | B) =
Pr(A,B)

Pr(B)
. (2.63)

We have Theorem 2.13 (Freund, 1992):

THEOREM 2.13

(Theorem of Total Probability) If A1, A2 . . . Am are disjoint events associated
with some random experiment and if their union is the set of all possible
events, then for any event B

Pr(B) =

m∑

i=1

Pr(B | Ai)Pr(Ai) =

m∑

i=1

Pr(B,Ai). (2.64)

It should be noted that both Equations (2.63) and (2.64) have their coun-
terparts for probability density functions:

p(x, y) = p(x | y)p(y) (2.65)

and

p(x) =

∫ ∞

−∞
p(x | y)p(y)dy =

∫ ∞

−∞
p(x, y)dy. (2.66)

58 Image Statistics

Bayes’ Theorem∗ follows directly from the definition of conditional proba-
bility and is the basic starting point for inference problems using probability
theory as logic.

THEOREM 2.14

(Bayes’ Theorem) If A1, A2 . . . Am are disjoint events associated with some
random experiment, their union is the set of all possible events, and if Pr(Ai) �=
0 for i = 1 . . .m, then for any event B for which Pr(B) �= 0

Pr(Ak | B) =
Pr(B | Ak)Pr(Ak)

∑m
i=1 Pr(B | Ai)Pr(Ai)

. (2.67)

Proof: From the definition of conditional probability, Equation (2.63),

Pr(Ak | B)Pr(B) = Pr(Ak, B) = Pr(B | Ak)Pr(Ak),

and therefore

Pr(Ak | B) =
Pr(B | Ak)Pr(Ak)

Pr(B)
=

Pr(B | Ak)Pr(Ak)
∑m

i=1 Pr(B | Ai)Pr(Ai)

from the Theorem of Total Probability.

We will use Bayes’ Theorem primarily in the following form: Let g be a
realization of a random vector associated with a distribution of multi-spectral
image pixel intensities (gray values), and let {k | k = 1 . . .K} be a set of
possible class labels (e.g., land cover categories) for all of the pixels. Then, the
a posteriori conditional probability for class k, given the observation g, may
be written using Bayes’ Theorem as

Pr(k | g) = Pr(g | k)Pr(k)
Pr(g)

, (2.68)

where Pr(k) is the a priori probability for class k, Pr(g | k) is the conditional
probability of observing the value g if it belongs to class k, and

Pr(g) =

K∑

k=1

Pr(g | k)Pr(k) (2.69)

is the total probability for g.
One can formulate the problem of classification of multi-spectral imagery

as the process of determining posterior conditional probabilities for all of the

∗Named after Rev. Thomas Bayes, an 18th-century hobby mathematician who derived
a special case.

58 Image Statistics

Bayes’ Theorem∗ follows directly from the definition of conditional proba-
bility and is the basic starting point for inference problems using probability
theory as logic.

THEOREM 2.14

(Bayes’ Theorem) If A1, A2 . . . Am are disjoint events associated with some
random experiment, their union is the set of all possible events, and if Pr(Ai) �=
0 for i = 1 . . .m, then for any event B for which Pr(B) �= 0

Pr(Ak | B) =
Pr(B | Ak)Pr(Ak)

∑m
i=1 Pr(B | Ai)Pr(Ai)

. (2.67)

Proof: From the definition of conditional probability, Equation (2.63),

Pr(Ak | B)Pr(B) = Pr(Ak, B) = Pr(B | Ak)Pr(Ak),

and therefore

Pr(Ak | B) =
Pr(B | Ak)Pr(Ak)

Pr(B)
=

Pr(B | Ak)Pr(Ak)
∑m

i=1 Pr(B | Ai)Pr(Ai)

from the Theorem of Total Probability.

We will use Bayes’ Theorem primarily in the following form: Let g be a
realization of a random vector associated with a distribution of multi-spectral
image pixel intensities (gray values), and let {k | k = 1 . . .K} be a set of
possible class labels (e.g., land cover categories) for all of the pixels. Then, the
a posteriori conditional probability for class k, given the observation g, may
be written using Bayes’ Theorem as

Pr(k | g) = Pr(g | k)Pr(k)
Pr(g)

, (2.68)

where Pr(k) is the a priori probability for class k, Pr(g | k) is the conditional
probability of observing the value g if it belongs to class k, and

Pr(g) =
K∑

k=1

Pr(g | k)Pr(k) (2.69)

is the total probability for g.
One can formulate the problem of classification of multi-spectral imagery

as the process of determining posterior conditional probabilities for all of the

∗Named after Rev. Thomas Bayes, an 18th-century hobby mathematician who derived
a special case.

Bayes’ Theorem, likelihood, and classification 59

classes. This is accomplished by specifying prior probabilities Pr(k) (if prior
information exists), modeling the class-specific probabilities Pr(g | k) and
then applying Bayes’ Theorem. Thus we might choose a class-specific density
function as our model:

Pr(g | k) ∼ p(g | θk),
where θk is a set of parameters for the density function describing the kth class
(for a multivariate normal distribution, for instance, just the mean vector µk

and covariance matrix Σk). In this case Equation (2.68) takes the form

Pr(k | g) = p(g | θk)Pr(k)
p(g)

, (2.70)

where p(g) is the unconditional density function for g,

p(g) =

K∑

k=1

p(g | θk)Pr(k), (2.71)

which is independent of k. As we will see in Chapter 6, under reasonable as-
sumptions the observation g should be assigned to the class k which maximizes
Pr(k | g).

In order to find that maximum, we require estimates of the parameters
θk, k = 1 . . .K. If we have access to measured values (realizations) that are
known to be in class k, g(ν), ν = 1 . . .mk, say, then we can form the product
of probability densities

L(θk) =

mk∏

ν=1

p(g(ν) | θk), (2.72)

which is called a likelihood function, and take its logarithm

L(θk) =
mk∑

ν=1

log p(g(ν) | θk), (2.73)

which is the log-likelihood. Taking products is justified when the g(ν) are re-

alizations of independent random vectors. The parameter set θ̂k which max-
imizes the likelihood function or its logarithm, i.e., which gives the largest
value for all of the realizations, is called the maximum-likelihood estimate of
θk. For normally distributed random vectors, maximum-likelihood parameter
estimators for θk = {µk,Σk} turn out to correspond (almost) to the unbiased
estimators, Equations (2.51) and (2.52).

To illustrate this for the class mean, write out Equation (2.73) for the
multivariate normal distribution, Equation (2.48):

L(µk,Σk) = mk
N

2
log 2π−mk

1

2
log |Σk|−

1

2

mk∑

ν=1

(g(ν)−µk)
⊤Σ−1

k (g(ν)−µk).

60 Image Statistics

To maximize with respect to µk, we set

∂L(µk,Σk)

∂µk

=

mk∑

ν=1

Σ−1
k (g(ν)− µk) = 0,

giving

µ̂k =
1

mk

mk∑

i=1

g(ν), (2.74)

which is the realization ḡk of the unbiased estimator for the sample mean,
Equation (2.51). In a similar way (see, e.g., Duda et al. (2001)), one can show
that

Σ̂k =
1

mk

mk∑

ν=1

(g(ν)− µ̂k)(g(ν)− µ̂k)
⊤, (2.75)

which is (almost) the realization s of the unbiased sample covariance matrix
estimator, Equation (2.52), except that the denominator mk − 1 is replaced
by mk, a fact which can be ignored for large mk.

The observations, of course, must be chosen from the appropriate class k in
each case. For supervised classification (Chapters 6 and 7), there exists a set
of training data with known class labels. Therefore, maximum-likelihood esti-
mates can be obtained and posterior probability distributions for the classes
can be calculated from Equation (2.70) and then used to generalize to all of
the image data. In the case of unsupervised classification, the class member-
ships are not initially known. How this conundrum is solved will be discussed
in Chapter 8.

2.5 Hypothesis testing

A statistical hypothesis is a conjecture about the distributions of one or more
random variables. It might, for instance, be an assertion about the mean of a
distribution, or about the equivalence of the variances of two different distri-
butions. One distinguishes between simple hypotheses, for which the distribu-
tions are completely specified, for example: the mean of a normal distribution
with variance σ2 is µ = 0, and composite hypotheses, for which this is not the
case, e.g., the mean is µ ≥ 0.

In order to test such assertions on the basis of samples of the distributions
involved, it is also necessary to formulate alternative hypotheses. To distin-
guish these from the original assertions, the latter are traditionally called null
hypotheses. Thus, we might be interested in testing the simple null hypothe-
sis µ = 0 against the composite alternative hypothesis µ �= 0. An appropriate
sample function for deciding whether or not to reject the null hypothesis in

60 Image Statistics

To maximize with respect to µk, we set

∂L(µk,Σk)

∂µk

=

mk∑

ν=1

Σ−1
k (g(ν)− µk) = 0,

giving

µ̂k =
1

mk

mk∑

i=1

g(ν), (2.74)

which is the realization ḡk of the unbiased estimator for the sample mean,
Equation (2.51). In a similar way (see, e.g., Duda et al. (2001)), one can show
that

Σ̂k =
1

mk

mk∑

ν=1

(g(ν)− µ̂k)(g(ν)− µ̂k)
⊤, (2.75)

which is (almost) the realization s of the unbiased sample covariance matrix
estimator, Equation (2.52), except that the denominator mk − 1 is replaced
by mk, a fact which can be ignored for large mk.

The observations, of course, must be chosen from the appropriate class k in
each case. For supervised classification (Chapters 6 and 7), there exists a set
of training data with known class labels. Therefore, maximum-likelihood esti-
mates can be obtained and posterior probability distributions for the classes
can be calculated from Equation (2.70) and then used to generalize to all of
the image data. In the case of unsupervised classification, the class member-
ships are not initially known. How this conundrum is solved will be discussed
in Chapter 8.

2.5 Hypothesis testing

A statistical hypothesis is a conjecture about the distributions of one or more
random variables. It might, for instance, be an assertion about the mean of a
distribution, or about the equivalence of the variances of two different distri-
butions. One distinguishes between simple hypotheses, for which the distribu-
tions are completely specified, for example: the mean of a normal distribution
with variance σ2 is µ = 0, and composite hypotheses, for which this is not the
case, e.g., the mean is µ ≥ 0.

In order to test such assertions on the basis of samples of the distributions
involved, it is also necessary to formulate alternative hypotheses. To distin-
guish these from the original assertions, the latter are traditionally called null
hypotheses. Thus, we might be interested in testing the simple null hypothe-
sis µ = 0 against the composite alternative hypothesis µ �= 0. An appropriate
sample function for deciding whether or not to reject the null hypothesis in

Hypothesis testing 61

favor of its alternative is referred to as a test statistic, often denoted by the
symbol Q. An appropriate test procedure will partition the possible realiza-
tions of the test statistic into two subsets: an acceptance region for the null
hypothesis and a rejection region. The latter is customarily referred to as the
critical region.

DEFINITION 2.5 Referring to the null hypothesis as H0, there are two
kinds of errors which can arise from any test procedure:

1. H0 may be rejected when in fact it is true. This is called an error of the
first kind and the probability that it will occur is denoted α.

2. H0 may be accepted when in fact it is false, which is called an error of
the second kind with probability of occurrence β.

The probability of obtaining a value of the test statistic within the critical
region when H0 is true is thus α. The probability α is also referred to as the
level of significance of the test, in some contexts as the false alarm probability.
It is generally the case that the lower the value of α, the higher is the prob-
ability β of making a second kind error. Traditionally, significance levels of
0.01 or 0.05 are used. Such values are obviously arbitrary, and for exploratory
data analysis it is common to avoid specifying them altogether. Instead, the
P-value (which we will represent with the calligraphic P to avoid confusion
with the probability distribution function P) for the test is stated:

DEFINITION 2.6 Given the observed value q of a test statistic Q, the
P-value P is the lowest level of significance at which the null hypothesis could
have been rejected.

Formulated differently, the P-value is the probability of getting a test statis-
tic that is at least as extreme as the one observed, given the null hypothesis,
for example,

P = 1− Pr(Q < q | H0).

So if this probability is smaller than the prescribed significance level α, then
the null hypothesis is rejected. Again, if the null hypothesis is true, and if the
test statistic were determined many times, the fraction of P-values smaller
than the significance level α would be just α. This implies that the P-values
are distributed uniformly over the interval [0, 1] under the null hypothesis.
The reader is asked to give a more formal demonstration of this in Exercise
15. In any case, high P-values provide evidence in favor of accepting the null
hypothesis, without actually forcing one to commit to a decision.

The theory of statistical testing specifies methods for determining the most
appropriate test statistic for a given null hypothesis and its alternative. Fun-
damental to the theory is the Neyman–Pearson Lemma, which gives for simple

62 Image Statistics

hypotheses a prescription for finding the test procedure which maximizes the
probability 1−β of rejecting the null hypothesis when it is false for a fixed level
of significance α, see, e.g., Freund (1992). The following definition deals with
the more general case of tests involving composite hypotheses H0 and H1.

DEFINITION 2.7 Consider random samples z(ν), ν = 1 . . .m, from
a multivariate population whose density function is p(z | θ). The likelihood
function for the sample is (see Equation (2.72))

L(θ) =

m∏

ν=1

p(z(ν) | θ). (2.76)

Let ω be space of all possible values of the parameter set θ and ω0 be a subset
of that space. The likelihood ratio test (LRT) for the null hypothesis θ ∈ ω0

against the alternative θ ∈ ω − ω0 has the critical region

Q =
maxθ∈ω0

L(θ)

maxθ∈ω L(θ)
≤ k. (2.77)

This definition simply reflects the fact that, if H0 is true, the maximum
likelihood for θ when restricted to ω0 should be close to the maximum likeli-
hood for θ without that restriction. Therefore, if the likelihood ratio is small,
(less than or equal to some small value k), then H0 should be rejected.

To illustrate, consider scalar random samples z(1), z(2) . . . z(m) from a nor-
mal distribution with mean µ and known variance σ2. The likelihood ratio test
at significance level α for the simple hypothesis H0 : µ = µ0 against the al-
ternative composite hypothesis H1 : µ �= µ0 has, according to Definition 2.7,
the critical region

Q =
L(µ0)

L(µ̂)
≤ kα,

where µ̂ maximizes the likelihood function and kα depends on α. Therefore,
we have

µ̂ = z̄ =
1

m

m∑

ν=1

z(ν).

The critical region is then (Exercise 17)

Q =
L(µ0)

L(µ̂)
= exp

(

− 1

2σ2/m
(z̄ − µ0)

2

)

≤ kα. (2.78)

Equivalently,

e−x2 ≤ kα, where x =
z̄ − µ0√
2σ/

√
m
.

Since the above exponential function is maximum at x = 0 and vanishes
asymptotically for large values of |x|, the critical region can also be written in

62 Image Statistics

hypotheses a prescription for finding the test procedure which maximizes the
probability 1−β of rejecting the null hypothesis when it is false for a fixed level
of significance α, see, e.g., Freund (1992). The following definition deals with
the more general case of tests involving composite hypotheses H0 and H1.

DEFINITION 2.7 Consider random samples z(ν), ν = 1 . . .m, from
a multivariate population whose density function is p(z | θ). The likelihood
function for the sample is (see Equation (2.72))

L(θ) =

m∏

ν=1

p(z(ν) | θ). (2.76)

Let ω be space of all possible values of the parameter set θ and ω0 be a subset
of that space. The likelihood ratio test (LRT) for the null hypothesis θ ∈ ω0

against the alternative θ ∈ ω − ω0 has the critical region

Q =
maxθ∈ω0

L(θ)

maxθ∈ω L(θ)
≤ k. (2.77)

This definition simply reflects the fact that, if H0 is true, the maximum
likelihood for θ when restricted to ω0 should be close to the maximum likeli-
hood for θ without that restriction. Therefore, if the likelihood ratio is small,
(less than or equal to some small value k), then H0 should be rejected.

To illustrate, consider scalar random samples z(1), z(2) . . . z(m) from a nor-
mal distribution with mean µ and known variance σ2. The likelihood ratio test
at significance level α for the simple hypothesis H0 : µ = µ0 against the al-
ternative composite hypothesis H1 : µ �= µ0 has, according to Definition 2.7,
the critical region

Q =
L(µ0)

L(µ̂)
≤ kα,

where µ̂ maximizes the likelihood function and kα depends on α. Therefore,
we have

µ̂ = z̄ =
1

m

m∑

ν=1

z(ν).

The critical region is then (Exercise 17)

Q =
L(µ0)

L(µ̂)
= exp

(

− 1

2σ2/m
(z̄ − µ0)

2

)

≤ kα. (2.78)

Equivalently,

e−x2 ≤ kα, where x =
z̄ − µ0√
2σ/

√
m
.

Since the above exponential function is maximum at x = 0 and vanishes
asymptotically for large values of |x|, the critical region can also be written in

Hypothesis testing 63

✻

✲

φ(x)

x = z̄−µ0√
2σ/

√
m

0 k̃αk̃α

✴

1− Φ(k̃α)

Reject H0Reject H0✛ ✲

✇

Φ(−k̃α)

−
FIGURE 2.5

Critical region for rejecting the hypothesis µ = µ0 at significance level α.

the form |x| ≥ k̃α, where k̃α also depends on α. But we know that z̄ is normally
distributed with mean µ0 and variance σ2/m. Therefore, x has the standard
normal distribution Φ(x) with probability density φ(x); see Equations (2.29)
and (2.30). Thus, k̃α is determined by (see Figure 2.5)

Φ(−k̃α) + 1− Φ(k̃α) = α,

or
1− Φ(k̃α) = α/2.

This example is straightforward because we assume that the variance σ2

is known. Suppose, as is often the case, that the variance is unknown and
that we wish nevertheless to make a statement about µ in terms of some
realization of an appropriate test statistic. To treat this and similar problems,
it is necessary to define some additional distribution functions.

If the random variables Zi, i = 0 . . .m, are independent and standard nor-
mally distributed, then the random variable

T =
Z0

√
1
m (Z2

1 + . . .+ Z2
m)

is said to be Student-t distributed with m degrees of freedom. The correspond-
ing density is given by

pt;m(z) = dm

(

1 +
z2

m

)−(m+1)/2

, −∞ < z < ∞, (2.79)

where dm is a normalization factor. The Student-t distribution converges to
the standard normal distribution for m → ∞. The Python/SciPy functions

64 Image Statistics

scipy.stats.t.cdf() and scipy.stats.t.ppf() may be used to calculate
the distribution and its percentiles.

The Student-t distribution is used to make statements regarding the mean
when the variance is unknown. Thus if Zi, ν = 1 . . .m, is a sample from a
normal distribution with mean µ and unknown variance, and

Z̄ =
1

m

m∑

i=1

Zi, S =
1

m

m∑

i=1

(Zi − Z̄)2,

then the random variable

T =
Z̄ − µ
√

S/m
(2.80)

is Student-t distributed with m−1 degrees of freedom (Freund, 1992). |T | ≤ k
is the critical region for a likelihood ratio test for H0 : µ = µ0 against H1 :
µ �= µ0.

If Xi and Yi, i = 1 . . .m, are samples from normal distributions with equal
variance, then the random variable

Td =
X̄ − Ȳ − (µX − µY)
√

(SX + SY)/m
(2.81)

is Student-t distributed with 2m − 2 degrees of freedom. It may be used to
test the hypothesis µX = µY , for example.

Given independent and standard normally distributed random variables Yi,
i = 1 . . . n and Xi, i = 1 . . .m, the random variable

F =
1
m (X2

1 + . . .+X2
m)

1
n (Y

2
1 + . . .+ Y 2

n)
(2.82)

is F -distributed with m and n degrees of freedom. Its density function is

pf ;m,n(z) =

{

cmnz
(m−2)/2

(
1 + m

n z
)−(m+n)/2

for z > 0
0 otherwise,

(2.83)

with normalization factor cmn. Note that F is the ratio of two chi-square
distributed random variables. One can compute the F -distribution function
and its percentiles in Python with scipy.stats.f.cdf() and scipy.stats.f

.ppf(), respectively.
The F -distribution can be used for hypothesis tests regarding two variances.

If SX and SY are sample variances for samples of size n and m, respectively,
drawn from normally distributed populations with variances σ2

X and σ2
Y , then

F =
σ2
Y SX

σ2
XSY

(2.84)

is a random variable having an F -distribution with n− 1 and m− 1 degrees
of freedom. F ≤ k is the critical region for a likelihood ratio test for

H0 : σ2
X = σ2

Y , H1 : σ2
X < σ2

Y .

64 Image Statistics

scipy.stats.t.cdf() and scipy.stats.t.ppf() may be used to calculate
the distribution and its percentiles.

The Student-t distribution is used to make statements regarding the mean
when the variance is unknown. Thus if Zi, ν = 1 . . .m, is a sample from a
normal distribution with mean µ and unknown variance, and

Z̄ =
1

m

m∑

i=1

Zi, S =
1

m

m∑

i=1

(Zi − Z̄)2,

then the random variable

T =
Z̄ − µ
√

S/m
(2.80)

is Student-t distributed with m−1 degrees of freedom (Freund, 1992). |T | ≤ k
is the critical region for a likelihood ratio test for H0 : µ = µ0 against H1 :
µ �= µ0.

If Xi and Yi, i = 1 . . .m, are samples from normal distributions with equal
variance, then the random variable

Td =
X̄ − Ȳ − (µX − µY)
√

(SX + SY)/m
(2.81)

is Student-t distributed with 2m − 2 degrees of freedom. It may be used to
test the hypothesis µX = µY , for example.

Given independent and standard normally distributed random variables Yi,
i = 1 . . . n and Xi, i = 1 . . .m, the random variable

F =
1
m (X2

1 + . . .+X2
m)

1
n (Y

2
1 + . . .+ Y 2

n)
(2.82)

is F -distributed with m and n degrees of freedom. Its density function is

pf ;m,n(z) =

{

cmnz
(m−2)/2

(
1 + m

n z
)−(m+n)/2

for z > 0
0 otherwise,

(2.83)

with normalization factor cmn. Note that F is the ratio of two chi-square
distributed random variables. One can compute the F -distribution function
and its percentiles in Python with scipy.stats.f.cdf() and scipy.stats.f

.ppf(), respectively.
The F -distribution can be used for hypothesis tests regarding two variances.

If SX and SY are sample variances for samples of size n and m, respectively,
drawn from normally distributed populations with variances σ2

X and σ2
Y , then

F =
σ2
Y SX

σ2
XSY

(2.84)

is a random variable having an F -distribution with n− 1 and m− 1 degrees
of freedom. F ≤ k is the critical region for a likelihood ratio test for

H0 : σ2
X = σ2

Y , H1 : σ2
X < σ2

Y .

Ordinary linear regression 65

In many cases, the likelihood ratio test will lead to a test statistic whose
distribution is unknown. The LRT has, however, an important asymptotic
property; see, for example, Mardia et al. (1979):

THEOREM 2.15

In the notation of Definition 2.7, if ω is a region of IRq and ω0 is an r-
dimensional subregion, then for each θ ∈ ω0, −2 logQ has an asymptotic
chi-square distribution with q − r degrees of freedom as m → ∞.

Thus if we take minus twice the logarithm of the LRT statistic in Equation
(2.78), we obtain

−2 logQ = −2 ·
(

− 1

2σ2/m
(z̄ − µ0)

2

)

=
(z̄ − µ0)

2

σ2/m
,

which is chi-square distributed with one degree of freedom (see Section 2.1.5).
Since ω0 consists of the single point µ0, its dimension is r = 0, whereas ω is
all real values of µ, so q = 1. Hence, q − r = 1. In this simple case, Theorem
2.15 holds for all values of m.

2.6 Ordinary linear regression

Many image analysis tasks involve fitting a set of data points with a straight
line∗

y(x) = a+ bx. (2.85)

We review here the standard procedure for determining the parameters a
and b and their uncertainties, namely ordinary linear regression, in which it
is assumed that the dependent variable y has a random error but that the
independent variable x is exact. The procedure is then generalized to more
than one independent variable and the concepts of regularization and duality
are introduced.

Linear regression can also be carried out sequentially by updating the best
fit after each new observation. This topic, as well as orthogonal linear regres-
sion, where is assumed that both variables have random errors associated with
them, are discussed in Appendix A.

∗Relative radiometric normalization, which we will meet in Chapter 9, as well as simi-
larity warping, Chapter 5, are good examples.

66 Image Statistics

2.6.1 One independent variable

Suppose that the dataset consists of m pairs {x(ν), y(ν) | ν = 1 . . .m}. An
appropriate statistical model for linear regression is

Y (ν) = a+ bx(ν) +R(ν), ν = 1 . . .m. (2.86)

Y (ν) is a random variable representing the νth measurement of the dependent
variable and R(ν), referred to as the residual error, is a random variable
representing the measurement uncertainty. The x(ν) are exact. We will assume
that the individual measurements are uncorrelated and that they all have the
same variance:

cov(R(ν), R(ν′)) =

{

σ2 for ν = ν′

0 otherwise.
(2.87)

The realizations of R(ν) are y(ν) − a − bx(ν), ν = 1 . . .m, from which we
define a least squares goodness-of-fit function

z(a, b) =

m∑

ν=1

(
y(ν)− a− bx(ν)

σ

)2

. (2.88)

If the residuals R(ν) are normally distributed, then we recognize Equation
(2.88) as a realization of a chi-square distributed random variable. For the
“best” values of a and b, Equation (2.88) is in fact chi-square distributed
with m − 2 degrees of freedom (Press et al., 2002). The best values for the
parameters a and b are obtained by minimizing z(a, b), that is, by solving the
equations

∂z

∂a
=

∂z

∂b
= 0

for a and b. The solution is (Exercise 18)

b̂ =
sxy
sxx

, â = ȳ − b̂x̄, (2.89)

where

sxy =
1

m

m∑

ν=1

(x(ν) − x̄)(y(ν) − ȳ)

sxx =
1

m

m∑

ν=1

(x(ν) − x̄)2

x̄ =
1

m

m∑

ν=1

x(ν), ȳ =
1

m

m∑

ν=1

y(ν).

(2.90)

The uncertainties in the estimates â and b̂ are given by (Exercise 19)

σ2
a =

σ2
∑

x(ν)2

m
∑

x(ν)2 − (
∑

x(ν))2

σ2
b =

mσ2

m
∑

x(ν)2 − (
∑

x(ν))2
.

(2.91)

66 Image Statistics

2.6.1 One independent variable

Suppose that the dataset consists of m pairs {x(ν), y(ν) | ν = 1 . . .m}. An
appropriate statistical model for linear regression is

Y (ν) = a+ bx(ν) +R(ν), ν = 1 . . .m. (2.86)

Y (ν) is a random variable representing the νth measurement of the dependent
variable and R(ν), referred to as the residual error, is a random variable
representing the measurement uncertainty. The x(ν) are exact. We will assume
that the individual measurements are uncorrelated and that they all have the
same variance:

cov(R(ν), R(ν′)) =

{

σ2 for ν = ν′

0 otherwise.
(2.87)

The realizations of R(ν) are y(ν) − a − bx(ν), ν = 1 . . .m, from which we
define a least squares goodness-of-fit function

z(a, b) =

m∑

ν=1

(
y(ν)− a− bx(ν)

σ

)2

. (2.88)

If the residuals R(ν) are normally distributed, then we recognize Equation
(2.88) as a realization of a chi-square distributed random variable. For the
“best” values of a and b, Equation (2.88) is in fact chi-square distributed
with m − 2 degrees of freedom (Press et al., 2002). The best values for the
parameters a and b are obtained by minimizing z(a, b), that is, by solving the
equations

∂z

∂a
=

∂z

∂b
= 0

for a and b. The solution is (Exercise 18)

b̂ =
sxy
sxx

, â = ȳ − b̂x̄, (2.89)

where

sxy =
1

m

m∑

ν=1

(x(ν) − x̄)(y(ν) − ȳ)

sxx =
1

m

m∑

ν=1

(x(ν) − x̄)2

x̄ =
1

m

m∑

ν=1

x(ν), ȳ =
1

m

m∑

ν=1

y(ν).

(2.90)

The uncertainties in the estimates â and b̂ are given by (Exercise 19)

σ2
a =

σ2
∑

x(ν)2

m
∑

x(ν)2 − (
∑

x(ν))2

σ2
b =

mσ2

m
∑

x(ν)2 − (
∑

x(ν))2
.

(2.91)

Ordinary linear regression 67

The goodness of fit can be determined by substituting the estimates â and b̂
into Equation (2.88) which, as we have said, will then be chi-square distributed

with m− 2 degrees of freedom. The probability of finding a value z = z(â, b̂)
or higher by chance (the P -value) is

P = 1− Pχ2;m−2(z),

where Pχ2;m−2(z) is given by Equation (2.38). If P < 0.01, one would typically
reject the fit as being unsatisfactory.

If σ2 is not known a priori, then it can be estimated by

σ̂2 =
1

m− 2

m∑

ν=1

(y(ν)− â− b̂x(ν))2, (2.92)

in which case the goodness-of-fit procedure cannot be applied, since we assume
the fit to be good in order to estimate σ2 with Equation (2.92) (Press et al.,
2002).

2.6.2 Coefficient of determination (R2)

The fitted or predicted values are

ŷ(ν) = â+ b̂x(ν) ν = 1 . . .m.

Consider the total variation of the observed variables y(ν), ν = 1 . . .m, about
their mean value ȳ,

∑

ν

(y(ν) − ȳ)2 =
∑

ν

(y(ν) − ŷ(ν) + ŷ(ν) − ȳ)2

=
∑

ν

(y(ν)− ŷ(ν))2 + (ŷ(ν)− ȳ)2 + 2(y(ν)− ŷ(ν))(ŷ(ν) − ȳ).

The last term in the summation is, with r(ν) = y(ν)− ŷ(ν),

∑

ν

2r(ν)(ŷ(ν) − ȳ) = 2
∑

ν

r(ν)ŷ(ν)− 2ȳ
∑

ν

r(ν) = 0,

since the errors are uncorrelated with the predicted values ŷ(ν) and have mean
zero. Therefore, we have

∑

ν

(y(ν) − ȳ)2 =
∑

ν

(y(ν) − ŷ(ν))2 +
∑

ν

(ŷ(ν)− ȳ)2

or

1 =

∑

ν(y(ν) − ŷ(ν))2
∑

ν(y(ν)− ȳ)2
+

∑

ν(ŷ(ν)− ȳ)2
∑

ν(y(ν)− ȳ)2

or

1 =

∑

ν(y(ν)− ŷ(ν))2
∑

ν(y(ν)− ȳ)2
+R2,

68 Image Statistics

where the coefficient of determination R2,

R2 =

�

ν(ŷ(ν) − ȳ)2
�

ν(y(ν) − ȳ)2
, 0 ≤ R2 ≤ 1, (2.93)

is the fraction of the variance in Y that is explained by the regression model.
It is easy to show (Exercise 22) that

R = corr(y, ŷ) =

�

ν(y(ν) − ȳ)(ŷ(ν)− ȳ)
��

ν(y(ν) − ȳ)2
�

ν(ŷ(ν)− ȳ)2
. (2.94)

In words: The coefficient of determination is the square of the sample corre-
lation between the observed and predicted values of y.

2.6.3 More than one independent variable

The statistical model of the preceding section may be written more generally
in the form

Y (ν) = wo +

N�

i=1

wixi(ν) +R(ν), ν = 1 . . .m, (2.95)

relating m measurements of the N independent variables x1 . . . xN to a mea-
sured dependent variable Y via the parameters w0, w1 . . . wN . Equivalently,
in vector notation, we can write

Y (ν) = w⊤x(ν) +R(ν), ν = 1 . . .m, (2.96)

where x = (x0 = 1, x1 . . . xN)⊤ and w = (w0, w1 . . . wN)⊤. The random vari-
ables R(ν) again represent the measurement uncertainty in the realizations
y(ν) of Y (ν). We assume that they are independent and identically distributed
with zero mean and variance σ2, whereas the values x(ν) are, as before, as-
sumed to be exact. Now we wish to determine the best value for parameter
vector w.

Introducing the m× (N + 1) data matrix

X =






x(1)⊤

...
x(m)⊤




 ,

we can express Equation (2.95) or (2.96) in the form

Y = Xw +R, (2.97)

where Y = (Y (1) . . . Y (m))⊤, R = (R(1) . . . R(m))⊤ and, by assumption,

ΣR = �RR⊤� = σ2I.

68 Image Statistics

where the coefficient of determination R2,

R2 =

�

ν(ŷ(ν) − ȳ)2
�

ν(y(ν) − ȳ)2
, 0 ≤ R2 ≤ 1, (2.93)

is the fraction of the variance in Y that is explained by the regression model.
It is easy to show (Exercise 22) that

R = corr(y, ŷ) =

�

ν(y(ν) − ȳ)(ŷ(ν)− ȳ)
��

ν(y(ν) − ȳ)2
�

ν(ŷ(ν)− ȳ)2
. (2.94)

In words: The coefficient of determination is the square of the sample corre-
lation between the observed and predicted values of y.

2.6.3 More than one independent variable

The statistical model of the preceding section may be written more generally
in the form

Y (ν) = wo +

N�

i=1

wixi(ν) +R(ν), ν = 1 . . .m, (2.95)

relating m measurements of the N independent variables x1 . . . xN to a mea-
sured dependent variable Y via the parameters w0, w1 . . . wN . Equivalently,
in vector notation, we can write

Y (ν) = w⊤x(ν) +R(ν), ν = 1 . . .m, (2.96)

where x = (x0 = 1, x1 . . . xN)⊤ and w = (w0, w1 . . . wN)⊤. The random vari-
ables R(ν) again represent the measurement uncertainty in the realizations
y(ν) of Y (ν). We assume that they are independent and identically distributed
with zero mean and variance σ2, whereas the values x(ν) are, as before, as-
sumed to be exact. Now we wish to determine the best value for parameter
vector w.

Introducing the m× (N + 1) data matrix

X =






x(1)⊤

...
x(m)⊤




 ,

we can express Equation (2.95) or (2.96) in the form

Y = Xw +R, (2.97)

where Y = (Y (1) . . . Y (m))⊤, R = (R(1) . . . R(m))⊤ and, by assumption,

ΣR = �RR⊤� = σ2I.

Ordinary linear regression 69

The identity matrix I is m×m. The goodness-of-fit function analog to Equa-
tion (2.88) is

z(w) =

m∑

ν=1

[
y(ν)−w⊤x(ν)

σ

]2

=
1

σ2
(y −Xw)⊤(y −Xw). (2.98)

This is minimized by solving the equations

∂z(w)

∂wk
= 0, k = 0 . . .N.

Using the rules for vector differentiation, we obtain (Exercise 20)

X⊤y = (X⊤X)w . (2.99)

Equation (2.99) is referred to as the normal equation. The estimated param-
eters of the model are obtained by solving for w,

ŵ = (X⊤X)−1X⊤y =: X+y. (2.100)

The matrix
X+ = (X⊤X)−1X⊤ (2.101)

is the pseudo inverse of the data matrix X .∗

The following code snippet mimics the solution of the normal equation for
some simulated data in Python/NumPy:

biased data matrix X (3 independent variables)

X = np.random.rand (100,3)

X = np.mat(np.append(np.ones ((100 ,1)) ,X,axis =1))

a parameter vector

w = np.mat ([[3.0] ,[4.0] ,[5.0] ,[6.0]])

noisy dependent variable y with sigma = 0.1

y = X*w + np.random.normal (0,0.1,(100,1))

pseudo inverse

Xp = (X.T*X).I*X.T

estimated parameter vector

w = Xp*y

w

matrix ([[3.01289152] ,

[3.99940076] ,

[4.99011592] ,

[5.97549588]])

As a very trivial encounter with tensorflow, here is the same calculation:

∗In terms of the singular value decomposition (SVD) of X , namely X = UΛV ⊤, the
pseudo inverse is X

+ = V Λ
−1U⊤, generalizing the definition for a symmetric square

matrix given by Equation (1.50).

70 Image Statistics

import tensorflow as tf

X1 = tf.constant (X)

y1 = tf.constant (y)

X1T = tf. transpose (X1)

X1p = tf.linalg.matmul(tf.linalg.inv(

tf.linalg.matmul(tf.transpose (X1), X1)),

tf.transpose (X1))

w = tf.linalg.matmul(X1p ,y1)

print(w)

tf.Tensor(

[[2.95078213]

[4.04382244]

[5.02639515]

[6.03419036]] , shape=(4, 1), dtype=float64)

And once again the same calculation, now with the GEE Python API:

ee.Initialize ()

set up JSON description of the calculation

X1 = ee.Array(X.tolist())

y1 = ee.Array(y.tolist())

X1T = X1. matrixTranspose ()

X1p = X1T.matrixMultiply (X1) \

.matrixInverse () \

.matrixMultiply (X1T)

w = X1p.matrixMultiply (y1)

run on GEE server

np.round(w.getInfo (),4)

array ([[3.0097],

[4.0259] ,

[5.0152] ,

[5.9958]])

In order to obtain the uncertainty in the estimate ŵ, Equation (2.100), we
can think of w as a random vector with mean value �w�. Its covariance matrix
is then given by

Σw =
〈
(w − �w�)(w − �w�)⊤

〉

≈
〈
(w − ŵ)(w − ŵ)⊤

〉

=
〈
(w −X+y)(w −X+y)⊤

〉

=
〈
(w −X+(Xw + r))(w −X+(Xw + r))⊤

〉
.

But from Equation (2.101), we see that X+X = I, so

Σw ≈ �(−X+r)(−X+r)⊤� = X+�rr⊤�X+⊤

= σ2X+X+⊤
.

70 Image Statistics

import tensorflow as tf

X1 = tf.constant (X)

y1 = tf.constant (y)

X1T = tf. transpose (X1)

X1p = tf.linalg.matmul(tf.linalg.inv(

tf.linalg.matmul(tf.transpose (X1), X1)),

tf.transpose (X1))

w = tf.linalg.matmul(X1p ,y1)

print(w)

tf.Tensor(

[[2.95078213]

[4.04382244]

[5.02639515]

[6.03419036]] , shape=(4, 1), dtype=float64)

And once again the same calculation, now with the GEE Python API:

ee.Initialize ()

set up JSON description of the calculation

X1 = ee.Array(X.tolist())

y1 = ee.Array(y.tolist())

X1T = X1. matrixTranspose ()

X1p = X1T.matrixMultiply (X1) \

.matrixInverse () \

.matrixMultiply (X1T)

w = X1p.matrixMultiply (y1)

run on GEE server

np.round(w.getInfo (),4)

array ([[3.0097],

[4.0259] ,

[5.0152] ,

[5.9958]])

In order to obtain the uncertainty in the estimate ŵ, Equation (2.100), we
can think of w as a random vector with mean value �w�. Its covariance matrix
is then given by

Σw =
〈
(w − �w�)(w − �w�)⊤

〉

≈
〈
(w − ŵ)(w − ŵ)⊤

〉

=
〈
(w −X+y)(w −X+y)⊤

〉

=
〈
(w −X+(Xw + r))(w −X+(Xw + r))⊤

〉
.

But from Equation (2.101), we see that X+X = I, so

Σw ≈ �(−X+r)(−X+r)⊤� = X+�rr⊤�X+⊤

= σ2X+X+⊤
.

Ordinary linear regression 71

Again with Equation (2.101), we get finally the error covariance matrix as

Σw ≈ σ2(X⊤X)−1. (2.102)

Continuing the example with simulated data, Σw evaluates as:

np.round(0.01*(X.T*X).I,6)

array([[1.194e-03, -6.110e-04, -6.510e-04, -8.350e-04],

[-6.110e-04, 1.067e-03, 3.900e-05, 6.500e-05],

[-6.510e-04, 3.900e-05, 1.315e-03, -2.200e-05],

[-8.350e-04, 6.500e-05, -2.200e-05, 1.482e-03]])

To check that Equation (2.102) is indeed a generalization of ordinary linear
regression on a single independent variable, identify the parameter vector w
with the straight line parameters a and b, i.e.,

w =

�
w0

w1

�

=

�
a
b

�

.

The matrix X and vector y are correspondingly

X =







1 x(1)
1 x(2)
...

...
1 x(m)







, y =







y(1)
y(2)
...

y(m)







.

Thus the best estimates for the parameters are

ŵ =

�
â
b̂

�

= (X⊤X)−1(X⊤y).

Evaluating:

(X⊤X)−1 =

�
m

�
x(ν)

�
x(ν)

�
x(ν)2

�−1

=

�
m mx̄
mx̄

�
x(ν)2

�−1

.

Recalling the expression for the inverse of a 2 × 2 matrix in Chapter 1, we
then have

(X⊤X)−1 =
1

m
�

x(ν)2 +m2x̄2

��
x(ν)2 −mx̄

−mx̄ m

�

.

Furthermore,

X⊤y =

�
mȳ

�
x(ν)y(ν)

�

.

Therefore, the estimate for b is

b̂ =
1

m
�

x(ν)2 +m2x̄2
(−m2x̄ȳ +m

�

x(ν)y(ν)) =
−mx̄ȳ +

�
x(ν)y(ν)

m
�

x(ν)2 +m2x̄2
.

(2.103)

72 Image Statistics

From Equation (2.102), the uncertainty in b is given by σ2 times the (2,2)
element of (X⊤X)−1,

σ2
b = σ2 m

m
∑

x(ν)2 +m2x̄2
. (2.104)

Equations (2.103) and (2.104) correspond to Equations (2.89) and (2.91).

2.6.4 Regularization, duality, and the Gram matrix

For ill-conditioned regression problems (e.g., large amount of noise, insufficient
data or X⊤X nearly singular), the solution ŵ in Equation (2.100) may be
unreliable. A remedy is to restrict w in some way, the simplest one being
to favor a small length or, equivalently, a small squared norm �w�2. In the
modified goodness-of-fit function

z(w) = (y −Xw)⊤(y −Xw) + λ�w�2, (2.105)

where we have assumed σ2 = 1 for simplicity, the parameter λ defines a trade-
off between minimum residual error and minimum norm. Equating the vector
derivative with respect to w with zero as before then leads to the normal
equation

X⊤y = (X⊤X + λIN+1)w, (2.106)

where the identity matrix IN+1 has dimensions (N +1)× (N + 1). The least
squares estimate for the parameter vector w is now

ŵ = (X⊤X + λIN+1)
−1X⊤y. (2.107)

For λ > 0, the matrix X⊤X +λIN+1 can always be inverted. This procedure
is known as ridge regression and Equation (2.107) may be referred to as its
primal solution. Regularization will be encountered in Chapter 9 in the context
of change detection.

With a simple manipulation, Equation (2.107) can be put in the form

ŵ = X⊤α =

m∑

ν=1

ανx(ν), (2.108)

where α is given by

α =
1

λ
(y −X ŵ); (2.109)

see Exercise 23. Equation (2.108) expresses the unknown parameter vector ŵ
as a linear combination of the observation vectors x(ν). It remains to find a
more suitable expression for the vector α. We can eliminate ŵ from Equation
(2.109) by substituting Equation (2.108) and solving for α,

α = (XX⊤ + λIm)−1y, (2.110)

72 Image Statistics

From Equation (2.102), the uncertainty in b is given by σ2 times the (2,2)
element of (X⊤X)−1,

σ2
b = σ2 m

m
∑

x(ν)2 +m2x̄2
. (2.104)

Equations (2.103) and (2.104) correspond to Equations (2.89) and (2.91).

2.6.4 Regularization, duality, and the Gram matrix

For ill-conditioned regression problems (e.g., large amount of noise, insufficient
data or X⊤X nearly singular), the solution ŵ in Equation (2.100) may be
unreliable. A remedy is to restrict w in some way, the simplest one being
to favor a small length or, equivalently, a small squared norm �w�2. In the
modified goodness-of-fit function

z(w) = (y −Xw)⊤(y −Xw) + λ�w�2, (2.105)

where we have assumed σ2 = 1 for simplicity, the parameter λ defines a trade-
off between minimum residual error and minimum norm. Equating the vector
derivative with respect to w with zero as before then leads to the normal
equation

X⊤y = (X⊤X + λIN+1)w, (2.106)

where the identity matrix IN+1 has dimensions (N +1)× (N + 1). The least
squares estimate for the parameter vector w is now

ŵ = (X⊤X + λIN+1)
−1X⊤y. (2.107)

For λ > 0, the matrix X⊤X +λIN+1 can always be inverted. This procedure
is known as ridge regression and Equation (2.107) may be referred to as its
primal solution. Regularization will be encountered in Chapter 9 in the context
of change detection.

With a simple manipulation, Equation (2.107) can be put in the form

ŵ = X⊤α =

m∑

ν=1

ανx(ν), (2.108)

where α is given by

α =
1

λ
(y −X ŵ); (2.109)

see Exercise 23. Equation (2.108) expresses the unknown parameter vector ŵ
as a linear combination of the observation vectors x(ν). It remains to find a
more suitable expression for the vector α. We can eliminate ŵ from Equation
(2.109) by substituting Equation (2.108) and solving for α,

α = (XX⊤ + λIm)−1y, (2.110)

Entropy and information 73

where Im is the m×m identity matrix. Equations (2.108) and (2.110) taken
together constitute the dual solution of the ridge regression problem, and
the components of α are called the dual parameters. Once they have been
determined from Equation (2.110), the solution for the original parameter
vector ŵ is recovered from Equation (2.108). Note that in the primal solution,
Equation (2.107), we are inverting a (N + 1)× (N + 1) matrix,

X⊤X + λIN+1

whereas in the dual solution, we must invert the (often much larger) m ×m
matrix

XX⊤ + λIm.

The matrix XX⊤ is called a Gram matrix. Its elements consist of all inner
products of the observation vectors

x(ν)⊤x(ν′), ν, ν′ = 1 . . .m,

and it is obviously a symmetric matrix. Moreover, it is positive semi-definite
since, for any vector z with m components,

z⊤XX⊤z = �X⊤z�2 ≥ 0.

The dual solution is interesting because the dual parameters are expressed
entirely in terms of inner products of observation vectors x(ν). Moreover,
predicting values of y from new observations x can be expressed purely in
terms of inner products as well. Thus

y = ŵ
⊤
x =

(
m∑

ν=1

ανx(ν)
⊤
)

x =

m∑

ν=1

αν x(ν)⊤x. (2.111)

Later we will see that the inner products can be substituted by so-called kernel
functions, which allow very elegant and powerful non-linear generalizations of
linear methods such as ridge regression.

2.7 Entropy and information

Suppose we make an observation on a discrete random variable X with mass
function

p
(
X = x(i)

)
= p(i), i = 1 . . . n.

Qualitatively speaking, the amount of information we receive on observing
a particular realization x(i) may be thought of as the “amount of surprise”
associated with the result. The information content of the observation should

74 Image Statistics

be a monotonically decreasing function of the probability p(i) for that obser-
vation: if the probability is unity, there is no surprise; if p(i) ≪ 1, the surprise
is large. The function chosen to express the information content of x(i) is

h(x(i)) = − log p(i). (2.112)

This function is monotonically decreasing and zero when p(i) = 1. It also has
the desirable property that, for two independent observations x(i), x(j),

h(x(i), x(j)) = − log p(X = x(i), X = x(j))

= − log [p(X = x(i))p(X = x(j))]

= − log [p(i)p(j)] = h(x(i)) + h(x(j)),

that is, information gained from two independent observations is additive.
The average amount of information that we expect to receive on observing

the random variable X is called the entropy of X and is given by

H(X) = −
n∑

i=1

p(i) log p(i). (2.113)

The entropy can also be interpreted as the average amount of information
required to specify the random variable.

The discrete distribution with maximum entropy can be determined by
maximizing the Lagrange function

L (p(1) . . . p(n)) = −
∑

i

p(i) log p(i) + λ

(
∑

i

p(i)− 1)

)

.

Equating the derivatives to zero,

∂L

∂p(i)
= − log p(i)− 1 + λ = 0,

so p(i) is independent of i. The condition
∑

i p(i) = 1 then requires that

p(i) = 1/n.

The Hessian matrix is easily seen to have diagonal elements given by

(H)ii =
∂2L

∂p(i)2
= − 1

p(i)
,

and off-diagonal elements zero. It is therefore negative definite, i.e., for any
x > 0,

x⊤Hx = − 1

p(1)
x2
1 − . . .− 1

p(n)
x2
n < 0.

Thus, the uniform distribution indeed maximizes the entropy.

74 Image Statistics

be a monotonically decreasing function of the probability p(i) for that obser-
vation: if the probability is unity, there is no surprise; if p(i) ≪ 1, the surprise
is large. The function chosen to express the information content of x(i) is

h(x(i)) = − log p(i). (2.112)

This function is monotonically decreasing and zero when p(i) = 1. It also has
the desirable property that, for two independent observations x(i), x(j),

h(x(i), x(j)) = − log p(X = x(i), X = x(j))

= − log [p(X = x(i))p(X = x(j))]

= − log [p(i)p(j)] = h(x(i)) + h(x(j)),

that is, information gained from two independent observations is additive.
The average amount of information that we expect to receive on observing

the random variable X is called the entropy of X and is given by

H(X) = −
n∑

i=1

p(i) log p(i). (2.113)

The entropy can also be interpreted as the average amount of information
required to specify the random variable.

The discrete distribution with maximum entropy can be determined by
maximizing the Lagrange function

L (p(1) . . . p(n)) = −
∑

i

p(i) log p(i) + λ

(
∑

i

p(i)− 1)

)

.

Equating the derivatives to zero,

∂L

∂p(i)
= − log p(i)− 1 + λ = 0,

so p(i) is independent of i. The condition
∑

i p(i) = 1 then requires that

p(i) = 1/n.

The Hessian matrix is easily seen to have diagonal elements given by

(H)ii =
∂2L

∂p(i)2
= − 1

p(i)
,

and off-diagonal elements zero. It is therefore negative definite, i.e., for any
x > 0,

x⊤Hx = − 1

p(1)
x2
1 − . . .− 1

p(n)
x2
n < 0.

Thus, the uniform distribution indeed maximizes the entropy.

Entropy and information 75

If X is a continuous random variable with probability density function p(x),
then its entropy∗ is defined analogously to Equation (2.113) as

H(X) = −
∫

p(x) log[p(x)]dx. (2.114)

The continuous distribution function which has maximum entropy is the nor-
mal distribution; see Bishop (2006), Chapter 1, for a derivation of this fact.

If p(x, y) is a joint density function for random variables X and Y , then the
conditional entropy of Y given X is

H(Y | X) = −
∫

p(x)

(∫

p(y | x) log[p(y | x)]dy
)

dx

= −
∫ ∫

p(x, y) log[p(y | x)]dydx.
(2.115)

For the second equality, we have used Equation (2.65). This is just the infor-
mation − log[p(y | x)] gained on observing y given x, averaged over the joint
probability for x and y. If Y is independent of X , then p(y | x) = p(y) and
H(Y | X) = H(Y).

We can express the entropy H(X,Y) associated with the random vector
(X,Y)⊤ in terms of conditional entropy as follows:

H(X,Y) = −
∫ ∫

p(x, y) log[p(x, y)]dxdy

= −
∫ ∫

p(x, y) log[p(y | x)p(x)]dxdy

= −
∫ ∫

p(x, y) log[p(y | x)]dxdy −
∫ ∫

p(x, y) log[p(x)]dxdy

= H(Y | X)−
∫ (∫

p(x, y)dy

)

log[p(x)]dx

= H(Y | X)−
∫

p(x) log[p(x)]dx

or
H(X,Y) = H(Y | X) +H(X). (2.116)

2.7.1 Kullback–Leibler divergence

Let p(x) be some unknown density function for a random variable X , and let
q(x) represent an approximation of that density function. Then, the informa-
tion required to specify X when using q(x) as an approximation for p(x) is
given by

−
∫

p(x) log[q(x)]dx.

∗More correctly, differential entropy (Bishop, 2006).

76 Image Statistics

The additional information required relative to that for the correct density
function is called the Kullback–Leibler (KL) divergence between density func-
tions p(x) and q(x) and is given by

KL(p, q) = −
∫

p(x) log[q(x)]dx −
(

−
∫

p(x) log[p(x)]dx

)

= −
∫

p(x) log

[
q(x)

p(x)

]

dx.

(2.117)

The KL divergence can be shown to satisfy (Exercise 24)

KL(p, q) > 0, p(x) �= q(x), KL(p, p) = 0,

and is thus a measure of the dissimilarity between p(x) and q(x).

2.7.2 Mutual information

Consider two gray-scale images represented by random variables X and Y .
Their joint probability distribution is p(x, y). If the images are completely
independent, then

p(x, y) = p(x)p(y).

Thus the extent I(X,Y) to which they are not independent can be measured
by the KL divergence between p(x, y) and p(x)p(y):

I(X,Y) = KL(p(x, y), p(x)p(y)) = −
∫ ∫

p(x, y) log

[
p(x)p(y)

p(x, y)

]

dxdy,

(2.118)
which is called the mutual information between X and Y . Expanding:

I(X,Y) = −
∫ ∫

p(x, y)
[
log[p(x)] + log[p(y)]− log[p(x, y)]

]
dxdy

= H(X) +H(Y) +

∫ ∫

p(x, y) log[p(x | y)p(y)]dxdy

= H(X) +H(Y)−H(X | Y)−H(Y),

and thus
I(X,Y) = H(X)−H(X | Y). (2.119)

Mutual information measures the degree of dependence between the two
images, a value of zero indicating statistical independence. This is to be con-
trasted with correlation, where a value of zero implies statistical independence
only for normally distributed quantities; see Theorem 2.9.

In practice, the images are quantized, so that if p1 and p2 are their nor-
malized histograms (i.e.,

∑

i p1(i) =
∑

i p2(i) = 1) and p12 is the normalized

76 Image Statistics

The additional information required relative to that for the correct density
function is called the Kullback–Leibler (KL) divergence between density func-
tions p(x) and q(x) and is given by

KL(p, q) = −
∫

p(x) log[q(x)]dx −
(

−
∫

p(x) log[p(x)]dx

)

= −
∫

p(x) log

[
q(x)

p(x)

]

dx.

(2.117)

The KL divergence can be shown to satisfy (Exercise 24)

KL(p, q) > 0, p(x) �= q(x), KL(p, p) = 0,

and is thus a measure of the dissimilarity between p(x) and q(x).

2.7.2 Mutual information

Consider two gray-scale images represented by random variables X and Y .
Their joint probability distribution is p(x, y). If the images are completely
independent, then

p(x, y) = p(x)p(y).

Thus the extent I(X,Y) to which they are not independent can be measured
by the KL divergence between p(x, y) and p(x)p(y):

I(X,Y) = KL(p(x, y), p(x)p(y)) = −
∫ ∫

p(x, y) log

[
p(x)p(y)

p(x, y)

]

dxdy,

(2.118)
which is called the mutual information between X and Y . Expanding:

I(X,Y) = −
∫ ∫

p(x, y)
[
log[p(x)] + log[p(y)]− log[p(x, y)]

]
dxdy

= H(X) +H(Y) +

∫ ∫

p(x, y) log[p(x | y)p(y)]dxdy

= H(X) +H(Y)−H(X | Y)−H(Y),

and thus
I(X,Y) = H(X)−H(X | Y). (2.119)

Mutual information measures the degree of dependence between the two
images, a value of zero indicating statistical independence. This is to be con-
trasted with correlation, where a value of zero implies statistical independence
only for normally distributed quantities; see Theorem 2.9.

In practice, the images are quantized, so that if p1 and p2 are their nor-
malized histograms (i.e.,

∑

i p1(i) =
∑

i p2(i) = 1) and p12 is the normalized

Entropy and information 77

two-dimensional histogram,
∑

ij p12(i, j) = 1, then the mutual information is
approximately

I(1, 2) = −
∑

ij

p12(i, j)
(
log[p1(i)] + log[p2(j)]− log[p12(i, j)]

)

=
∑

ij

p12(i, j) log
p12(i, j)

p1(i)p2(j).

(2.120)

The following code is a (naive; see Kraskov et al. (2004)) calculation of
the mutual information of VNIR band combinations for the ASTER image of
Figure 1.1:

def mi(arr1 ,arr2):

’’’mutual information of two uint8 arrays ’’’

p12 = np.histogram2d (arr1 ,arr2 ,bins =256,

density=True)[0].ravel()

p1 = np.histogram (arr1 ,bins =256,density=True)[0]

p2 = np.histogram (arr2 ,bins =256,density=True)[0]

p1p2 = np.outer(p1 ,p2). ravel()

idx = p12 >0

return np.sum(p12[idx]*np.log(p12[idx]/p1p2 [idx]))

gdal .AllRegister ()

infile = ’imagery/AST_20070501 .tif’

inDataset = gdal.Open(infile ,GA_ReadOnly)

cols = inDataset .RasterXSize

rows = inDataset .RasterYSize

image = np.zeros((3, rows*cols))

VNIR bands

for b in range(3):

band = inDataset .GetRasterBand (b+1)

image[b,:]= np.byte(band.ReadAsArray (0,0,cols ,rows))\

.ravel()

print(mi(image[0,:], image[1 ,:]))

print(mi(image[0,:], image[2 ,:]))

print(mi(image[1,:], image[2 ,:]))

1.81539975948

0.507049223344

0.636113398912

The first two bands (visual spectrum) have a higher mutual information or
dependency than either of the visual bands with the third (near infrared or
vegetation) band.

78 Image Statistics

2.8 Exercises

1. Derive Equations (2.13).

2. Let the random variable X be standard normally distributed with den-
sity function

φ(x) =
1√
2π

exp(−x2/2), −∞ < x < ∞.

Show that the random variable |X | has the density function

p(x) =
{
2φ(x) for x > 0
0 otherwise.

3. (a) Show that the chi-square distribution can be expressed in terms of
the lower incomplete gamma function:

Pχ2;m(z) = γ(m/2, z/2).

(b) Program the scipy.stats.ch2.ppf() function in the GEE Python
API by using the incomplete gamma function.

4. Use Equation (2.8) and the result of Exercise 2 to show that the random
variable Y = X2, whereX is standard normally distributed, has the chi-
square density function, Equation (2.38), with m = 1 degree of freedom.

5. IfX1 andX2 are independent random variables, both standard normally
distributed, show that X1+X2 is normally distributed with mean 0 and
variance 2. (Hint: Write down the joint density function f(x1, x2) for
X1 and X2. Then treat x1 as fixed and apply Theorem 2.1.)

6. Show from Theorem 2.3 that the sample mean

Z̄ =
1

m

m∑

i=1

Zi ,

is normally distributed with mean µ and variance σ2/m.

7. Prove that, for α > 1, Γ(α) = (α − 1)Γ(α − 1) and hence that, for
positive integers n, Γ(n) = (n− 1)! (Hint: Use integration by parts.)

8. (a) Show that the mean and variance of a random variable Z with the
gamma probability density, Equation (2.33), are µ = αβ and σ2 = αβ2.

78 Image Statistics

2.8 Exercises

1. Derive Equations (2.13).

2. Let the random variable X be standard normally distributed with den-
sity function

φ(x) =
1√
2π

exp(−x2/2), −∞ < x < ∞.

Show that the random variable |X | has the density function

p(x) =
{
2φ(x) for x > 0
0 otherwise.

3. (a) Show that the chi-square distribution can be expressed in terms of
the lower incomplete gamma function:

Pχ2;m(z) = γ(m/2, z/2).

(b) Program the scipy.stats.ch2.ppf() function in the GEE Python
API by using the incomplete gamma function.

4. Use Equation (2.8) and the result of Exercise 2 to show that the random
variable Y = X2, whereX is standard normally distributed, has the chi-
square density function, Equation (2.38), with m = 1 degree of freedom.

5. IfX1 andX2 are independent random variables, both standard normally
distributed, show that X1+X2 is normally distributed with mean 0 and
variance 2. (Hint: Write down the joint density function f(x1, x2) for
X1 and X2. Then treat x1 as fixed and apply Theorem 2.1.)

6. Show from Theorem 2.3 that the sample mean

Z̄ =
1

m

m∑

i=1

Zi ,

is normally distributed with mean µ and variance σ2/m.

7. Prove that, for α > 1, Γ(α) = (α − 1)Γ(α − 1) and hence that, for
positive integers n, Γ(n) = (n− 1)! (Hint: Use integration by parts.)

8. (a) Show that the mean and variance of a random variable Z with the
gamma probability density, Equation (2.33), are µ = αβ and σ2 = αβ2.

Exercises 79

(b) (Proof of Theorem 2.5 for m = 2) Suppose that Z1 and Z2 are
independent and exponentially distributed random variables with den-
sity functions as in Equation (2.37). Then, we can write the probability
distribution of Z = Z1 + Z2 in the form

P (z) = Pr(Z1 + Z2 < z) =

∫ z

0

∫ z−z2

0

1

β
e−z1/β

1

β
e−z2/βdz1dz2.

Evaluate this double integral and then take its derivative with respect
to z to show that the probability density function for Z is the gamma
density with α = 2, i.e.,

p(z) =

{
1

β2Γ(2)ze
−z/β for z > 0

0 elsewhere.

9. Prove Theorem 2.7 by noticing that the inverse transformation of s =
x + y, u = x/(x + y) is given by x = su, y = s(1 − u) and applying
Theorem 2.2.

10. For constant vectors a and b and random vector G with covariance
matrix Σ, demonstrate that cov(a⊤G, b⊤G) = a⊤Σb.

11. Write down the multivariate normal probability density function p(z)
for the case Σ = σ2I. Show that probability density function p(z) for
a one-dimensional random variable Z is a special case. Using the fact
that

∫∞
−∞ p(z)dz = 1, demonstrate that �Z� = µ.

12. Given the m×N (uncentered) data matrix Z , show that the covariance
matrix estimate can be written in the form

(m− 1)s = Z⊤HZ ,

where the centering matrix H is given by

H = Imm − 1

m
1m1⊤

m.

Show that H is not only symmetric, but also idempotent (HH = H).
Use this fact to prove that s is positive semi-definite.

13. Demonstrate Equation (2.58).

14. In the game Lets Make a Deal! a contestant is asked to choose between
one of three doors. Behind one of the doors, the prize is an automobile.
After the contestant has chosen, the quiz master opens one of the other
two doors to show that the automobile is not there. He then asks the
contestant if she wishes to change her mind and switch from her original
choice to the other unopened door. Use Bayes’ Theorem to prove that
her correct answer is “yes.”

80 Image Statistics

15. Starting from the definition of the P-value, we can write

P = 1− Pr(Q < q | H0) = 1− F0(q),

where F0 is the probability distribution function of the test statistic Q
under the null hypothesis. Use the fact that F0 is monotonic increasing
to show that

Pr(F0(Q) < F0(q)) = F0(q)

and thus that F0(Q) (and hence P) follows a uniform distribution.

16. Write a Python script to generate two normal distributions with the
random number generator numpy.random.randn() and test them for
equal means with the Student-t test (scipy.stats.ttest ind()) and
for equal variance with the F -test (scipy.stats.bartlett()).

17. Show that the critical region for the likelihood ratio test for µ = µ0

against µ �= µ0 for known variance σ2 and m samples can be written as

exp

(

− 1

2σ2/m
(z̄ − µ0)

2

)

≤ k.

18. Prove Equations (2.89) for the regression parameter estimates â and b̂.
Demonstrate that these values correspond to a minimum of the goodness-
of-fit function, Equation (2.88), and not to a maximum.

19. Derive the uncertainty for a in Equation (2.91) from the formula for
error propagation for uncorrelated errors

σ2
a =

n∑

i=1

σ2

(
∂a

∂y(i)

)2

.

20. Derive Equation (2.99) by applying the rules for vector differentiation
to minimize the goodness-of-fit function, Equation (2.98).

21. Write a Python program to calculate the regression coefficients of spec-
tral band 2 on spectral band 1 of a multi-spectral image. (The built-in
function for ordinary linear regression is numpy.linalg.lstsq() .)

22. Prove Equation (2.94) by replacing (y(ν)−ȳ) in the numerator by (y(ν)+
ŷ(ν) − ŷ(ν) + ȳ) and expanding.

23. Show that Equations (2.107) and (2.108) are equivalent to Equation
(2.109).

80 Image Statistics

15. Starting from the definition of the P-value, we can write

P = 1− Pr(Q < q | H0) = 1− F0(q),

where F0 is the probability distribution function of the test statistic Q
under the null hypothesis. Use the fact that F0 is monotonic increasing
to show that

Pr(F0(Q) < F0(q)) = F0(q)

and thus that F0(Q) (and hence P) follows a uniform distribution.

16. Write a Python script to generate two normal distributions with the
random number generator numpy.random.randn() and test them for
equal means with the Student-t test (scipy.stats.ttest ind()) and
for equal variance with the F -test (scipy.stats.bartlett()).

17. Show that the critical region for the likelihood ratio test for µ = µ0

against µ �= µ0 for known variance σ2 and m samples can be written as

exp

(

− 1

2σ2/m
(z̄ − µ0)

2

)

≤ k.

18. Prove Equations (2.89) for the regression parameter estimates â and b̂.
Demonstrate that these values correspond to a minimum of the goodness-
of-fit function, Equation (2.88), and not to a maximum.

19. Derive the uncertainty for a in Equation (2.91) from the formula for
error propagation for uncorrelated errors

σ2
a =

n∑

i=1

σ2

(
∂a

∂y(i)

)2

.

20. Derive Equation (2.99) by applying the rules for vector differentiation
to minimize the goodness-of-fit function, Equation (2.98).

21. Write a Python program to calculate the regression coefficients of spec-
tral band 2 on spectral band 1 of a multi-spectral image. (The built-in
function for ordinary linear regression is numpy.linalg.lstsq() .)

22. Prove Equation (2.94) by replacing (y(ν)−ȳ) in the numerator by (y(ν)+
ŷ(ν) − ŷ(ν) + ȳ) and expanding.

23. Show that Equations (2.107) and (2.108) are equivalent to Equation
(2.109).

Exercises 81

24. A convex function f(x) satisfies f(λa+(1− λ)b) ≤ λf(a) + (1− λ)f(b).
Jensen’s inequality states that, for any convex function f(x), any func-
tion g(x) and any probability density p(x),

∫

f(g(x))p(x)dx ≥ f

(∫

g(x)p(x)dx

)

. (2.121)

Use this to show that the KL divergence satisfies

KL(p, q) > 0, p(x) �= q(x), KL(p, p) = 0.

25. Explain why the KL divergence, Equation (2.117), although a measure
of the difference between two probability distributions, is not an appro-
priate distance measure.

http://taylorandfrancis.com

3

Transformations

Thus far, we have thought of visual/infrared and polarimetric SAR images
as three-dimensional arrays of pixel intensities (columns × rows × bands)
representing, more or less directly, measured radiances. In the present chapter,
we consider other, more abstract representations which are useful in image
interpretation and analysis and which will play an important role in later
chapters.

The discrete Fourier and wavelet transforms that we treat in Sections 3.1
and 3.2 convert the pixel values in a given spectral band to linear combinations
of orthogonal functions of spatial frequency and distance. They may therefore
be classified as spatial transformations. The principal components, minimum
noise fraction, and maximum autocorrelation factor transformations (Sections
3.3 to 3.5), on the other hand, create at each pixel location new linear combi-
nations of the pixel intensities from all of the spectral bands and can properly
be called spectral transformations (Schowengerdt, 2006).

3.1 The discrete Fourier transform

Let the function g(x) represent the radiance at a point x focused along a row
of push broom-geometry sensors, and g(j) be the corresponding pixel inten-
sities stored in a row of a digital image. We can think of g(j) approximately
as a discrete sample∗ of the function g(x), taken c times at some sampling
interval ∆, c being the number of columns in the image, i.e.,

g(j) = g(x = j∆), j = 0 . . . c− 1.

For convenience, that is, to correspond to Python/NumPy array indexing, the
pixels are numbered from zero, a convention that will be adhered to in the
remainder of the book. The interval ∆ is the sensor width or, projected back
to the Earth’s surface, the across-track ground sample distance (GSD).

∗More correctly, g(j) is a result of convolutions of the spatial and spectral response
functions of the detector with the focused signal; see Chapter 4.

DOI: 10.1201/9781003503286-3 83

https://doi.org/10.1201/9781003503286-3

84 Transformations

The theory of Fourier analysis states that the function g(x) can be expressed
in the form

g(x) =

∫ ∞

−∞
ĝ(f)ei2πfxdf, (3.1)

where ĝ(f) is called the Fourier transform of g(x). Equation (3.1) describes a
continuous superposition of periodic complex functions of x,

ei2πfx = cos(2πfx) + i sin(2πfx),

having frequency f . Most often, frequency is associated with inverse time
(cycles per second). Here, of course, we are speaking of spatial frequency, or
cycles per meter.

In general, we require a continuum of periodic functions ei2πfx to represent
g(x) in this way. However, if g(x) is in fact itself periodic with period T , that
is, if g(x+T) = g(x), then the integral in Equation (3.1) can be replaced by an
infinite sum of discrete periodic functions of frequency kf for −∞ < k < ∞,
where f is the fundamental frequency f = 1/T :

g(x) =

∞∑

k=−∞
ĝ(k)ei2π(kf)x. (3.2)

If we think of the sampled series of pixels g(j), j = 0 . . . c − 1, as also being
periodic with period T = c∆, that is, repeating itself to infinity in both
positive and negative directions, then we can replace x in Equation (3.2) by
j∆ and express g(j) in a similar way:

g(j) = g(j∆) =
∞∑

k=−∞
ĝ(k)ei2π(kf)j∆ =

∞∑

k=−∞
ĝ(k)ei2πkj/c, (3.3)

where in the last equality we have used f∆ = ∆/T = 1/c.
The limits in the summation in Equation (3.3) must, however, be truncated.

This is due to the fact that there is a limit to the highest frequency kmaxf
that can be measured by sampling at the interval ∆. The limit is called the
Nyquist critical frequency fN . It may be determined simply by observing that
the minimum number of samples needed to describe a sine wave completely is
two per period (e.g., at the maximum and minimum values). Therefore, the
shortest period measurable is 2∆ and the Nyquist frequency is

fN =
1

2∆
=

cf

2
.

Hence, kmax = c/2. Taking this into account in Equation (3.3), we obtain

g(j) =

c/2
∑

k=−c/2

ĝ(k)ei2πkj/c, j = 0 . . . c− 1. (3.4)

84 Transformations

The theory of Fourier analysis states that the function g(x) can be expressed
in the form

g(x) =

∫ ∞

−∞
ĝ(f)ei2πfxdf, (3.1)

where ĝ(f) is called the Fourier transform of g(x). Equation (3.1) describes a
continuous superposition of periodic complex functions of x,

ei2πfx = cos(2πfx) + i sin(2πfx),

having frequency f . Most often, frequency is associated with inverse time
(cycles per second). Here, of course, we are speaking of spatial frequency, or
cycles per meter.

In general, we require a continuum of periodic functions ei2πfx to represent
g(x) in this way. However, if g(x) is in fact itself periodic with period T , that
is, if g(x+T) = g(x), then the integral in Equation (3.1) can be replaced by an
infinite sum of discrete periodic functions of frequency kf for −∞ < k < ∞,
where f is the fundamental frequency f = 1/T :

g(x) =

∞∑

k=−∞
ĝ(k)ei2π(kf)x. (3.2)

If we think of the sampled series of pixels g(j), j = 0 . . . c − 1, as also being
periodic with period T = c∆, that is, repeating itself to infinity in both
positive and negative directions, then we can replace x in Equation (3.2) by
j∆ and express g(j) in a similar way:

g(j) = g(j∆) =
∞∑

k=−∞
ĝ(k)ei2π(kf)j∆ =

∞∑

k=−∞
ĝ(k)ei2πkj/c, (3.3)

where in the last equality we have used f∆ = ∆/T = 1/c.
The limits in the summation in Equation (3.3) must, however, be truncated.

This is due to the fact that there is a limit to the highest frequency kmaxf
that can be measured by sampling at the interval ∆. The limit is called the
Nyquist critical frequency fN . It may be determined simply by observing that
the minimum number of samples needed to describe a sine wave completely is
two per period (e.g., at the maximum and minimum values). Therefore, the
shortest period measurable is 2∆ and the Nyquist frequency is

fN =
1

2∆
=

cf

2
.

Hence, kmax = c/2. Taking this into account in Equation (3.3), we obtain

g(j) =

c/2
∑

k=−c/2

ĝ(k)ei2πkj/c, j = 0 . . . c− 1. (3.4)

The discrete Fourier transform 85

The effect of truncation depends upon the nature of the function g(x) being
sampled. According to the Sampling Theorem, see, e.g., Press et al. (2002),
g(x) is completely determined by the samples g(j) in Equation (3.4) if it
is bandwidth limited to frequencies smaller than fN , i.e., provided that, in
Equation (3.1), ĝ(f) = 0 for all |f | ≥ fN . If this is not the case, then any
frequency component outside the interval (−fN , fN) is spuriously moved into
that range, a phenomenon referred to as aliasing.

To bring Equation (3.4) into a more convenient form, we have to make a
few simple manipulations. To begin with, note that the exponents in the first
and last terms in the summation are equal, i.e.,

ei2π(−c/2)j/c = e−iπj = (−1)j = eiπj = ei2π(c/2)j/c,

so we can lump those two terms together and write Equation (3.4) equiva-
lently as

g(j) =

c/2−1
∑

k=−c/2

ĝ(k)ei2πkj/c, j = 0 . . . c− 1.

Rearranging further,

g(j) =

c/2−1
∑

k=0

ĝ(k)ei2πkj/c +

−1∑

k=−c/2

ĝ(k)ei2πkj/c

=

c/2−1
∑

k=0

ĝ(k)ei2πkj/c +

c−1∑

k′=c/2

ĝ(k′ − c)ei2π(k
′−c)j/c

=

c/2−1
∑

k=0

ĝ(k)ei2πkj/c +

c−1∑

k′=c/2

ĝ(k′ − c)ei2πk
′j/c.

Thus, we have finally

g(j) =
c−1∑

k=0

ĝ(k)ei2πkj/c, j = 0 . . . c− 1, (3.5)

provided that we interpret ĝ(k) as meaning ĝ(k − c) when k ≥ c/2.
Equation (3.5) is a set of c equations in the c unknown frequency compo-

nents ĝ(k). Its solution is called the discrete Fourier transform and is given by

ĝ(k) =
1

c

c−1∑

j=0

g(j)e−i2πkj/c, k = 0 . . . c− 1. (3.6)

This follows (Exercise 2) from the orthogonality property of the exponentials:

c−1∑

j=0

ei2π(k−k′)j/c = cδk,k′ , (3.7)

86 Transformations

where δk,k′ is the delta function,

δk,k′ =
{
1 if k = k′

0 otherwise.

Equation (3.5) itself is the discrete inverse Fourier transform. We write

g(j) ⇔ ĝ(k),

to signify that g(j) and ĝ(k) constitute a discrete Fourier transform pair.
Determining the frequency components in Equation (3.6) from the original

pixel intensities would appear to involve, in all, c2 floating point multiplica-
tion operations. The fast Fourier transform (FFT) exploits the structure of
the complex e-functions to reduce this to order c log c, a very considerable sav-
ing in computation time for large arrays. For good explanations of the FFT
algorithm see, e.g., Press et al. (2002) or Gonzalez and Woods (2017).

The discrete Fourier transform is easily generalized to two dimensions. Let
g(i, j), i = 0 . . . c − 1, j = 0, r − 1, represent a gray-scale image. Its discrete
inverse Fourier transform is

g(i, j) =
c−1∑

k=0

r−1∑

ℓ=0

ĝ(k, ℓ)ei2π(ik/c+jℓ/r) (3.8)

and the discrete Fourier transform is

ĝ(k, ℓ) =
1

cr

c−1∑

i=0

r−1∑

j=0

g(i, j)e−i2π(ik/c+jℓ/r). (3.9)

The frequency coefficients ĝ(k, ℓ) in Equations (3.8) and (3.9) are complex
numbers. In order to represent an image in the frequency domain as a raster,
one can calculate its power spectrum, which is defined as∗

P (k, ℓ) = |ĝ(k, ℓ)|2 = ĝ(k, ℓ)ĝ∗(k, ℓ). (3.10)

Rather than displaying P (k, ℓ) directly, which, according to the usual dis-
play convention, would place zero frequency components k = 0, ℓ = 0 in the
upper left-hand corner, use can be made of the translation property (Exercise
4) of the Fourier transform:

g(i, j)ei2π(k0i/c+ℓ0j/r) ⇔ ĝ(k − k0, ℓ− ℓ0). (3.11)

In particular, for k0 = c/2 and ℓ0 = r/2, we can write

ei2π(k0i/c+ℓ0j/r) = eiπ(i+j) = (−1)i+j .

∗The magnitude |z| of a complex number z = x + iy is
√

x2 + y2 =
√
zz∗, where

z∗ = x− iy is the complex conjugate of z; see Appendix A.

86 Transformations

where δk,k′ is the delta function,

δk,k′ =
{
1 if k = k′

0 otherwise.

Equation (3.5) itself is the discrete inverse Fourier transform. We write

g(j) ⇔ ĝ(k),

to signify that g(j) and ĝ(k) constitute a discrete Fourier transform pair.
Determining the frequency components in Equation (3.6) from the original

pixel intensities would appear to involve, in all, c2 floating point multiplica-
tion operations. The fast Fourier transform (FFT) exploits the structure of
the complex e-functions to reduce this to order c log c, a very considerable sav-
ing in computation time for large arrays. For good explanations of the FFT
algorithm see, e.g., Press et al. (2002) or Gonzalez and Woods (2017).

The discrete Fourier transform is easily generalized to two dimensions. Let
g(i, j), i = 0 . . . c − 1, j = 0, r − 1, represent a gray-scale image. Its discrete
inverse Fourier transform is

g(i, j) =
c−1∑

k=0

r−1∑

ℓ=0

ĝ(k, ℓ)ei2π(ik/c+jℓ/r) (3.8)

and the discrete Fourier transform is

ĝ(k, ℓ) =
1

cr

c−1∑

i=0

r−1∑

j=0

g(i, j)e−i2π(ik/c+jℓ/r). (3.9)

The frequency coefficients ĝ(k, ℓ) in Equations (3.8) and (3.9) are complex
numbers. In order to represent an image in the frequency domain as a raster,
one can calculate its power spectrum, which is defined as∗

P (k, ℓ) = |ĝ(k, ℓ)|2 = ĝ(k, ℓ)ĝ∗(k, ℓ). (3.10)

Rather than displaying P (k, ℓ) directly, which, according to the usual dis-
play convention, would place zero frequency components k = 0, ℓ = 0 in the
upper left-hand corner, use can be made of the translation property (Exercise
4) of the Fourier transform:

g(i, j)ei2π(k0i/c+ℓ0j/r) ⇔ ĝ(k − k0, ℓ− ℓ0). (3.11)

In particular, for k0 = c/2 and ℓ0 = r/2, we can write

ei2π(k0i/c+ℓ0j/r) = eiπ(i+j) = (−1)i+j .

∗The magnitude |z| of a complex number z = x + iy is
√

x2 + y2 =
√
zz∗, where

z∗ = x− iy is the complex conjugate of z; see Appendix A.

The discrete Fourier transform 87

0 200 400 600 800

0

200

400

600

800

FIGURE 3.1

Logarithm of the power spectrum for the 3N band of the ASTER image of
Figure 1.1.

Therefore
g(i, j)(−1)i+j ⇔ ĝ(k − c/2, ℓ− r/2),

so if we multiply an image by (−1)i+j before transforming, zero frequency will
be at the center. This is illustrated in the following code:

import numpy as np

from numpy import fft

from osgeo import gdal

from osgeo.gdalconst import GA_ReadOnly

import matplotlib .pyplot as plt

gdal .AllRegister ()

infile = ’imagery/AST_20070501 .tif’

inDataset = gdal.Open(infile ,GA_ReadOnly)

cols = inDataset .RasterXSize

rows = inDataset .RasterYSize

band = inDataset .GetRasterBand (2)

image = band.ReadAsArray (0,0,cols ,rows)

88 Transformations

arrays of i and j values

a = np.reshape (range(rows *cols),(rows ,cols))

i = a % cols

j = a / cols

shift Fourier transform to center

image = (-1)**(i+j)* image

compute power spectrum and display

image = np.log(abs(fft.fft2 (image))**2)

mn = np.amin(image)

mx = np.amax(image)

plt.imshow((image -mn)/(mx -mn), cmap=’gray ’)

The above script performs a fast Fourier transform of an image band using
the Python function numpy.fft() and displays the logarithm of the power
spectrum with zero frequency at the center; see Figure 3.1. We shall return to
discrete Fourier transforms in the next chapter when we discuss convolutions
and filters.

3.2 The discrete wavelet transform

1

1
✲

✻φ(x)

x

FIGURE 3.2

The Haar scaling function.

Unlike the Fourier transform,
which represents an array of
pixel intensities in terms of pure
frequency functions, the wavelet
transform expresses an image ar-
ray in terms of functions which
are restricted both in terms of
frequency and spatial extent. In
many image processing applica-
tions, this turns out to be par-
ticularly efficient and useful. The
traditional (and most intuitive)
way of introducing wavelets is in
terms of the Haar scaling func-
tion (Strang, 1989), Aboufadel
and Schlicker (1999), Gonzalez
and Woods (2017), and we will

adopt this approach here as well, in particular following the development
in Aboufadel and Schlicker (1999).

Fundamental to the definition of wavelet transforms is the concept of an
inner product of real-valued functions and the associated inner product space
(Appendix A).

88 Transformations

arrays of i and j values

a = np.reshape (range(rows *cols),(rows ,cols))

i = a % cols

j = a / cols

shift Fourier transform to center

image = (-1)**(i+j)* image

compute power spectrum and display

image = np.log(abs(fft.fft2 (image))**2)

mn = np.amin(image)

mx = np.amax(image)

plt.imshow((image -mn)/(mx -mn), cmap=’gray ’)

The above script performs a fast Fourier transform of an image band using
the Python function numpy.fft() and displays the logarithm of the power
spectrum with zero frequency at the center; see Figure 3.1. We shall return to
discrete Fourier transforms in the next chapter when we discuss convolutions
and filters.

3.2 The discrete wavelet transform

1

1
✲

✻φ(x)

x

FIGURE 3.2

The Haar scaling function.

Unlike the Fourier transform,
which represents an array of
pixel intensities in terms of pure
frequency functions, the wavelet
transform expresses an image ar-
ray in terms of functions which
are restricted both in terms of
frequency and spatial extent. In
many image processing applica-
tions, this turns out to be par-
ticularly efficient and useful. The
traditional (and most intuitive)
way of introducing wavelets is in
terms of the Haar scaling func-
tion (Strang, 1989), Aboufadel
and Schlicker (1999), Gonzalez
and Woods (2017), and we will

adopt this approach here as well, in particular following the development
in Aboufadel and Schlicker (1999).

Fundamental to the definition of wavelet transforms is the concept of an
inner product of real-valued functions and the associated inner product space
(Appendix A).

The discrete wavelet transform 89

DEFINITION 3.1 If f and g are two real functions on the set of real
numbers IR, then their inner product is given by

�f, g� =
∫ ∞

−∞
f(x)g(x)dx. (3.12)

The inner product space L2(IR) is the collection of all functions f : IR �→ IR
with the property that

�f, f� =
∫ ∞

−∞
f(x)2dx is finite. (3.13)

3.2.1 Haar wavelets

The Haar scaling function is the function

φ(x) =
{
1 if 0 ≤ x ≤ 1
0 otherwise

(3.14)

shown in Figure 3.2. We shall use it to represent pixel intensities.
The quantities g(j), j = 0, c − 1, representing a row of pixel intensities,

can be thought of as a piecewise constant function of x. This is indicated in
Figure 3.3. The abscissa has been normalized to the interval [0, 1], so that j

✲

0 1

1
c

c−1
c

x

ḡ(x)
✻

FIGURE 3.3

A row of c pixel intensities on the interval [0, 1] as a piecewise constant function
ḡ(x) ∈ L2(IR). In the text, it is assumed that c = 2n for some integer n.

90 Transformations

measures the distance in increments of 1/c along the pixel row, with the last
pixel occupying the interval [c−1

c , 1]. We have called this piecewise constant
function ḡ(x) to distinguish it from g(j). According to Definition 3.1, it is in
L2(IR).

✻

x✲

✲

✲

φ(2nx)

φ(2nx− 1)

φ(2nx− k)
. . .

FIGURE 3.4

Basis functions Cn for space Vn.

Now let Vn be the collection of
all piecewise constant functions on
the interval [0, 1] that have possi-
ble discontinuities at the rational
points j · 2−n, where j and n are
nonnegative integers. If the num-
ber of pixels c in Figure 3.3 is a
power of two, c = 2n say, then
ḡ(x) clearly is a function which be-
longs to Vn, i.e., ḡ(x) ∈ Vn. The
(possible) discontinuities occur at

x = 1 · 2−n, 2 · 2−n . . . (c− 1) · 2−n.

Certainly all members of Vn also
belong to the function space
L2(IR), so that Vn ⊂ L2(IR). Any

function in Vn confined to the interval [0, 1] in this way can be expressed as
a linear combination of the standard Haar basis functions. These are scaled
and shifted versions of the Haar scaling function of Figure 3.2 and comprise
the set

Cn = {φn,k(x) = φ(2nx− k) | k = 0, 1 . . .2n − 1}, (3.15)

see Figure 3.4.
Note that φ0,0(x) = φ(x). The index n corresponds to a compression or

change of scale by a factor of 2−n, whereas the index k shifts the basis function
across the interval [0, 1]. The row of pixels in Figure 3.3 can be expanded in
terms of the standard Haar basis trivially as

ḡ(x) = g(0)φn,0(x) + g(1)φn,1(x) + . . .+ g(c− 1)φn,c−1(x)

=
c−1∑

j=0

g(j)φn,j(x).
(3.16)

The Haar basis functions are clearly orthogonal:

�φn,k, φn,k′� =
∫ 1

0

φn,k(x)φn,k′ (x)dx =
1

2n
δk,k′ . (3.17)

The expansion coefficients g(j) are therefore given formally by

g(j) =
�ḡ, φn,j�

�φn,j , φn,j�
= 2n�ḡ, φn,j�. (3.18)

90 Transformations

measures the distance in increments of 1/c along the pixel row, with the last
pixel occupying the interval [c−1

c , 1]. We have called this piecewise constant
function ḡ(x) to distinguish it from g(j). According to Definition 3.1, it is in
L2(IR).

✻

x✲

✲

✲

φ(2nx)

φ(2nx− 1)

φ(2nx− k)
. . .

FIGURE 3.4

Basis functions Cn for space Vn.

Now let Vn be the collection of
all piecewise constant functions on
the interval [0, 1] that have possi-
ble discontinuities at the rational
points j · 2−n, where j and n are
nonnegative integers. If the num-
ber of pixels c in Figure 3.3 is a
power of two, c = 2n say, then
ḡ(x) clearly is a function which be-
longs to Vn, i.e., ḡ(x) ∈ Vn. The
(possible) discontinuities occur at

x = 1 · 2−n, 2 · 2−n . . . (c− 1) · 2−n.

Certainly all members of Vn also
belong to the function space
L2(IR), so that Vn ⊂ L2(IR). Any

function in Vn confined to the interval [0, 1] in this way can be expressed as
a linear combination of the standard Haar basis functions. These are scaled
and shifted versions of the Haar scaling function of Figure 3.2 and comprise
the set

Cn = {φn,k(x) = φ(2nx− k) | k = 0, 1 . . .2n − 1}, (3.15)

see Figure 3.4.
Note that φ0,0(x) = φ(x). The index n corresponds to a compression or

change of scale by a factor of 2−n, whereas the index k shifts the basis function
across the interval [0, 1]. The row of pixels in Figure 3.3 can be expanded in
terms of the standard Haar basis trivially as

ḡ(x) = g(0)φn,0(x) + g(1)φn,1(x) + . . .+ g(c− 1)φn,c−1(x)

=
c−1∑

j=0

g(j)φn,j(x).
(3.16)

The Haar basis functions are clearly orthogonal:

�φn,k, φn,k′� =
∫ 1

0

φn,k(x)φn,k′ (x)dx =
1

2n
δk,k′ . (3.17)

The expansion coefficients g(j) are therefore given formally by

g(j) =
�ḡ, φn,j�

�φn,j , φn,j�
= 2n�ḡ, φn,j�. (3.18)

The discrete wavelet transform 91

We will now derive a new and more interesting orthogonal basis for Vn.

1

1 ✲

ψ(x)

x

✻

FIGURE 3.5

The Haar mother wavelet.

Consider, first of all, the func-
tion spaces V0 and V1 with stan-
dard Haar bases {φ0,0(x)} and
{φ1,0(x), φ1,1(x)}, respectively.
According to the Orthogonal De-
composition Theorem (Appendix
A, Theorem A.4), any function in
V1 can be expressed as a linear
combination of the basis for V0

plus some function in a residual
space V ⊥

0 which is orthogonal to
V0 (i.e., any function in V ⊥

0 is or-
thogonal to any function in V0).
This is denoted formally by writ-
ing

V1 = V0 ⊕ V ⊥
0 . (3.19)

For example, the basis function
φ1,0(x) of V1 is also in V1, and so can be written in the form

φ1,0(x) =
�φ1,0, φ0,0�
�φ0,0, φ0,0�

φ0,0(x) + r(x) =
1

2
φ0,0(x) + r(x).

The function r(x) is in the residual space V ⊥
0 . We see that, in this case,

r(x) = φ1,0(x)−
1

2
φ0,0(x) = φ(2x) − 1

2
φ(x).

But we can express φ(x) as φ(x) = φ(2x) + φ(2x− 1) so that

r(x) = φ(2x)− 1

2
(φ(2x) + φ(2x − 1)) =

1

2
(φ(2x) − φ(2x− 1)) =:

1

2
ψ(x).

The function
ψ(x) = φ(2x)− φ(2x− 1) (3.20)

is shown in Figure 3.5. It is orthogonal to φ(x) and is called the Haar mother
wavelet. Thus, an alternative basis for V1 is

B1 = {φ0,0, ψ0,0},

where for consistency we have defined ψ0,0(x) = ψ(x).
This argument can be repeated (Exercise 6) for V2 = V1⊕V ⊥

1 to obtain the
basis

B2 = {φ0,0, ψ0,0, ψ1,0, ψ1,1}

92 Transformations

for V2, where now {ψ1,0, ψ1,1} is an orthogonal basis for V ⊥
1 given by

ψ1,0 = ψ(2x), ψ1,1 = ψ(2x− 1).

Indeed, the argument can be continued indefinitely, so in general the Haar
wavelet basis for Vn is

Bn = {φ0,0, ψ0,0, ψ1,0, ψ1,1 . . . ψn−1,0, ψn−1,1 . . . ψn−1,2n−1},

where {ψm,k = ψ(2mx− k) | k = 0 . . . 2m − 1} is an orthogonal basis for V ⊥
m ,

and
Vn = Vn−1 ⊕ V ⊥

n−1 = V0 ⊕ V ⊥
0 ⊕ . . .⊕ V ⊥

n−2 ⊕ V ⊥
n−1.

In terms of this new basis, the function ḡ(x) in Figure 3.3 can now be
expressed as

ḡ(x) = ĝ(0)φ0,0(x) + ĝ(1)ψ0,0(x) + . . .+ ĝ(c− 1)ψn−1,c−1(x), (3.21)

where c = 2n. The expansion coefficients ĝ(j) are called the wavelet coeffi-
cients. They are still to be determined.

In the case of the Haar wavelets, their determination turns out to be quite
easy because there is a simple correspondence between the basis functions
(φ, ψ) and the space of 2n-component vectors (Strang, 1989). Consider for
instance n = 2. Then, the correspondence is

φ0,0 =






1
1
1
1




 , φ1,0 =






1
1
0
0




 , φ1,1 =






0
0
1
1




 , φ2,0 =






1
0
0
0




 , . . .

and

ψ0,0 =






1
1
−1
−1




 , ψ1,0 =






1
−1
0
0




 , ψ1,1 =






0
0
1
−1




 .

Thus, the orthogonal basis B2 may be represented equivalently by the mutu-
ally orthogonal vectors

B2 =












1
1
1
1




 ,






1
1
−1
−1




 ,






1
−1
0
0




 ,






0
0
1
−1












.

This gives us a more convenient representation of the expansion in Equation
(3.21), namely

ḡ = Bnĝ, (3.22)

where ḡ =
�
g(0) . . . g(c− 1)

�⊤
is a column vector of the original pixel inten-

sities, ĝ =
�
ĝ(0) . . . ĝ(c − 1)

�⊤
is a column vector of the wavelet coefficients,

92 Transformations

for V2, where now {ψ1,0, ψ1,1} is an orthogonal basis for V ⊥
1 given by

ψ1,0 = ψ(2x), ψ1,1 = ψ(2x− 1).

Indeed, the argument can be continued indefinitely, so in general the Haar
wavelet basis for Vn is

Bn = {φ0,0, ψ0,0, ψ1,0, ψ1,1 . . . ψn−1,0, ψn−1,1 . . . ψn−1,2n−1},

where {ψm,k = ψ(2mx− k) | k = 0 . . . 2m − 1} is an orthogonal basis for V ⊥
m ,

and
Vn = Vn−1 ⊕ V ⊥

n−1 = V0 ⊕ V ⊥
0 ⊕ . . .⊕ V ⊥

n−2 ⊕ V ⊥
n−1.

In terms of this new basis, the function ḡ(x) in Figure 3.3 can now be
expressed as

ḡ(x) = ĝ(0)φ0,0(x) + ĝ(1)ψ0,0(x) + . . .+ ĝ(c− 1)ψn−1,c−1(x), (3.21)

where c = 2n. The expansion coefficients ĝ(j) are called the wavelet coeffi-
cients. They are still to be determined.

In the case of the Haar wavelets, their determination turns out to be quite
easy because there is a simple correspondence between the basis functions
(φ, ψ) and the space of 2n-component vectors (Strang, 1989). Consider for
instance n = 2. Then, the correspondence is

φ0,0 =






1
1
1
1




 , φ1,0 =






1
1
0
0




 , φ1,1 =






0
0
1
1




 , φ2,0 =






1
0
0
0




 , . . .

and

ψ0,0 =






1
1
−1
−1




 , ψ1,0 =






1
−1
0
0




 , ψ1,1 =






0
0
1
−1




 .

Thus, the orthogonal basis B2 may be represented equivalently by the mutu-
ally orthogonal vectors

B2 =












1
1
1
1




 ,






1
1
−1
−1




 ,






1
−1
0
0




 ,






0
0
1
−1












.

This gives us a more convenient representation of the expansion in Equation
(3.21), namely

ḡ = Bnĝ, (3.22)

where ḡ =
�
g(0) . . . g(c− 1)

�⊤
is a column vector of the original pixel inten-

sities, ĝ =
�
ĝ(0) . . . ĝ(c − 1)

�⊤
is a column vector of the wavelet coefficients,

The discrete wavelet transform 93

and Bn is a transformation matrix whose columns are the basis vectors of
Bn. The wavelet coefficients for the pixel vector are then given by inverting
the representation:

ĝ = B−1
n ḡ. (3.23)

A full gray-scale image is transformed by first applying Equation (3.23) to
its columns and then to its rows. Wavelet coefficients for gray-scale images
thus obtained tend to have “simple statistics” (Gonzalez and Woods, 2017),
e.g., they might be approximately Gaussian with zero mean.

3.2.2 Image compression

The fact that many of the wavelet coefficients are close to zero makes the
wavelet transformation useful for image compression. This is illustrated in the
following script. First we define a function to return the Haar basis functions:

The Haar mother wavelet

def psi_m(x):

i f x<0: return 0.0

e l i f x<=0.5: return 1.0

e l i f x<=1.0: return -1.0

e l se:return 0.0

The Haar basis functions

def psi(m,k,n):

c = 2**n

result = np.zeros(c)

x = np.linspace (0,1,num=c)

for i in range(c):

result[i] = psi_m((2**m)*x[i]-k)

return result

and use it to generate the basis for n = 8:

Generate wavelet basis B_8

n = 8

B = np.ones ((2**n,2**n))

i = 1

for m in range(n):

for k in range(2** m):

B[:,i] = psi(m,k,n)

i += 1

B = np.mat(B)

Next we perform the wavelet transformation of a subset of the image used in
the previous subsection:

256x256 subset

G = np.mat(image [200:456 ,200:456])

Wavelet transformation

94 Transformations

Gw = np.mat(np.zeros ((256 ,256)))

Filter the columns

for j in range(256):

Gw[:,j] = B.I*G[:,j]

Filter the rows

for i in range(256):

Gw[i,:] = (B.I*Gw[i,:]. T).T

Histogram of wavelet coefficients

Gw = np.array(Gw). ravel()

p = plt.hist (Gw,bins =30, range=(-10,10))

The resulting histogram is shown in Figure 3.6, where it is apparent that the
wavelet coefficients are tightly distributed about zero and that, in this case,
most have absolute magnitudes less than about 2.5. The script is slow due to
the many floating point operations involved in the transformations. This will
be remedied in Chapter 4 when we treat filters and the fast wavelet transform.

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0

0

2000

4000

6000

8000

10000

12000

14000

16000

FIGURE 3.6

Histogram of the Haar wavelet coefficients.

Finally, we set all wavelet coefficients smaller than 2.0 equal to zero and
invert the transformation:

Truncate and reshape

Gw = np.reshape(np.where(np.abs(Gw)<2,0, Gw) ,(256 ,256))

94 Transformations

Gw = np.mat(np.zeros ((256 ,256)))

Filter the columns

for j in range(256):

Gw[:,j] = B.I*G[:,j]

Filter the rows

for i in range(256):

Gw[i,:] = (B.I*Gw[i,:]. T).T

Histogram of wavelet coefficients

Gw = np.array(Gw). ravel()

p = plt.hist (Gw,bins =30, range=(-10,10))

The resulting histogram is shown in Figure 3.6, where it is apparent that the
wavelet coefficients are tightly distributed about zero and that, in this case,
most have absolute magnitudes less than about 2.5. The script is slow due to
the many floating point operations involved in the transformations. This will
be remedied in Chapter 4 when we treat filters and the fast wavelet transform.

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0

0

2000

4000

6000

8000

10000

12000

14000

16000

FIGURE 3.6

Histogram of the Haar wavelet coefficients.

Finally, we set all wavelet coefficients smaller than 2.0 equal to zero and
invert the transformation:

Truncate and reshape

Gw = np.reshape (np.where(np.abs(Gw)<2,0, Gw) ,(256 ,256))

The discrete wavelet transform 95

Invert the transformation

Gw = np.mat(Gw)

Gc = np.mat(np.zeros ((256 ,256)))

for i in range(256):

Gc[i,:] = (B*Gw[i ,:]. T).T

for j in range(256):

Gc[:,j] = B*Gc[:,j]

f, ax = plt.subplots (1,2,figsize =(16 ,8))

ax[0]. imshow(np.array(G)/255, cmap=’gray ’)

ax[1]. imshow(np.array(Gc)/255, cmap =’gray ’)

The original and recovered images are shown in Figure 3.7.

0 50 100 150 200 250

0

50

100

150

200

250

0 50 100 150 200 250

0

50

100

150

200

250

FIGURE 3.7

Left: a 256×256 spatial subset of the 3N band of the Jülich ASTER image of
Figure 1.1. Right: the same subset after transformation to the Haar wavelet
basis B8, compression, and restoration with the inverse transformation.

By converting the original image and its wavelet representation to sparse
matrix form we can see the amount of compression achievable:

from scipy import sparse

sG = sparse.csr_matrix (G)

sGw = sparse.csr_matrix (Gw)

print sG.data .nbytes

print sGw.data.nbytes

262144

117088

so about a factor of 2.3, at the expense of the considerable degradation visible
in Figure 3.7.

96 Transformations

3.2.3 Multiresolution analysis

So far we have represented only functions on the interval [0, 1] with the stan-
dard basis φn,k(x) = φ(2nx − k), k = 1 . . . 2n − 1. We can extend this to
functions defined on all real numbers in a straightforward way, still restricting
ourselves, however, to functions with compact support. These are zero every-
where outside a closed, bounded interval. Thus

{φ(x− k) | k ∈ Z},

where Z is the set of all integers, is a basis for the space V0 of all piecewise
constant functions with compact support having possible breaks at integer
values. Note that φ(x − k) = φ0,k is an orthonormal basis for V0, that is,

�φ(x − k), φ(x− k′)� = δk,k′ ,

whereas φ(2nx − k) = φn,k with n > 0 is only an orthogonal basis for Vn,
since the inner products for equal k are not unity. Quite generally then, an
orthogonal basis for the set Vn of piecewise constant functions with possible
breaks at j · 2−n and compact support is

{φ(2nx− k) | k ∈ Z}. (3.24)

One can even allow n < 0. For example, n = −1 means that the possible
breaks are at even integer values.

We can think of the collection of nested subspaces of piecewise constant
functions as being generated by the Haar scaling function φ. Such a collec-
tion is an example of a multi resolution analysis (MRA). There are many
other possible scaling functions that define or generate an MRA. Although
the subspaces will no longer consist of simple piecewise constant functions,
nevertheless, based on our experience with the Haar wavelets, we can appre-
ciate the following definition (Aboufadel and Schlicker, 1999):

DEFINITION 3.2 An MRA is a collection of nested subspaces

. . . ⊆ V−1 ⊆ V0 ⊆ V1 ⊆ V2 ⊆ . . . ⊆ L2(IR),

with the following properties:

1. For any function f ∈ L2(IR), there exists a series of functions, one in
each Vn, which converges to f .

2. The only function common to all Vn is f(x) = 0.

3. The function f(x) ∈ Vn if and only if f(2−nx) ∈ V0.

4. The scaling function φ is an orthonormal basis for the function space
V0, i.e., �φ(x − k), φ(x − k′)� = δkk′ .

96 Transformations

3.2.3 Multiresolution analysis

So far we have represented only functions on the interval [0, 1] with the stan-
dard basis φn,k(x) = φ(2nx − k), k = 1 . . . 2n − 1. We can extend this to
functions defined on all real numbers in a straightforward way, still restricting
ourselves, however, to functions with compact support. These are zero every-
where outside a closed, bounded interval. Thus

{φ(x− k) | k ∈ Z},

where Z is the set of all integers, is a basis for the space V0 of all piecewise
constant functions with compact support having possible breaks at integer
values. Note that φ(x − k) = φ0,k is an orthonormal basis for V0, that is,

�φ(x − k), φ(x− k′)� = δk,k′ ,

whereas φ(2nx − k) = φn,k with n > 0 is only an orthogonal basis for Vn,
since the inner products for equal k are not unity. Quite generally then, an
orthogonal basis for the set Vn of piecewise constant functions with possible
breaks at j · 2−n and compact support is

{φ(2nx− k) | k ∈ Z}. (3.24)

One can even allow n < 0. For example, n = −1 means that the possible
breaks are at even integer values.

We can think of the collection of nested subspaces of piecewise constant
functions as being generated by the Haar scaling function φ. Such a collec-
tion is an example of a multi resolution analysis (MRA). There are many
other possible scaling functions that define or generate an MRA. Although
the subspaces will no longer consist of simple piecewise constant functions,
nevertheless, based on our experience with the Haar wavelets, we can appre-
ciate the following definition (Aboufadel and Schlicker, 1999):

DEFINITION 3.2 An MRA is a collection of nested subspaces

. . . ⊆ V−1 ⊆ V0 ⊆ V1 ⊆ V2 ⊆ . . . ⊆ L2(IR),

with the following properties:

1. For any function f ∈ L2(IR), there exists a series of functions, one in
each Vn, which converges to f .

2. The only function common to all Vn is f(x) = 0.

3. The function f(x) ∈ Vn if and only if f(2−nx) ∈ V0.

4. The scaling function φ is an orthonormal basis for the function space
V0, i.e., �φ(x − k), φ(x − k′)� = δkk′ .

The discrete wavelet transform 97

Clearly, property 1 is met for the Haar MRA, since any function in L2(IR)
can be approximated to arbitrary accuracy with successively finer piecewise
constant functions. Being common to all Vn means being piecewise constant
on all intervals. The only function in L2(IR) with this property and compact
support is f(x) = 0, so property 2 is also satisfied for the Haar MRA. If
f(x) ∈ V1 then it is piecewise constant on intervals of length 1/2. Therefore,
the function f(2−1x) is piecewise constant on intervals of length 1, that is,
f(2−1x) ∈ V0, etc., and so property 3 is satisfied as well. Finally, property 4
also holds for the Haar scaling function.

3.2.3.1 The dilation equation and refinement coefficients

In the following, we will think of φ(x) as any scaling function which gener-
ates an MRA in the sense of Definition 3.2. Since {φ(x − k) | k ∈ Z} is an
orthonormal basis for V0, it follows that {φ(2x− k) | k ∈ Z} is an orthogonal
basis for V1. That is, let f(x) ∈ V1. Then by property 3, f(x/2) ∈ V0, hence

f(x/2) =
∑

k

akφ(x − k),

which implies that

f(x) =
∑

k

akφ(2x− k).

In particular, since φ(x) ∈ V0 ⊂ V1, we have the dilation equation

φ(x) =
∑

k

ckφ(2x− k). (3.25)

The constants ck are called the refinement coefficients. For example, the dila-
tion equation for the Haar scaling function is

φ(x) = φ(2x) + φ(2x− 1),

so that the refinement coefficients are c0 = c1 = 1, ck = 0 otherwise. Note
that c20 + c21 = 2. This is a general property of the refinement coefficients:

1 = �φ(x), φ(x)� = �
∑

k

ckφ(2x− k),
∑

k′

ck′φ(2x− k′)� = 1

2

∑

k

c2k

and therefore,
∞∑

k=−∞
c2k = 2, (3.26)

which is also called Parseval’s formula. In a similar way, one can show (Ex-
ercise 7)

∞∑

k=−∞
ckck−2j = 0 for all j �= 0. (3.27)

98 Transformations

3.2.3.2 The cascade algorithm

Some of the scaling functions which generate an MRA cannot be expressed
as simple, analytical functions. Nevertheless, we can work with an MRA even
when there is no simple representation for the scaling function which gener-
ates it. For instance, once we have the refinement coefficients for a scaling
function, it can be approximated to any desired degree of accuracy using
the dilation equation. The idea is to iterate the refinement equation with a
so-called cascade algorithm until it converges to a sequence of points which
approximates φ(x).

The following recursive scheme can be used to estimate a scaling function
with up to five non-zero refinement coefficients c0, c1 . . . c4:

f0(x) = δx,0

fi(x) = c0fi−1(2x) + c1fi−1(2x− 1) + c2fi−1(2x− 2) + c3fi−1(2x− 3)

+ c4fi−1(2x− 4).

In this scheme, x takes on values j/2n, where j, n are any integers. The first
definition is the termination condition for the recursion and approximates the
scaling function to zeroth order as the delta function

δx,0 =
{
1 if x = 0
0 otherwise.

The second relation defines the ith approximation to the scaling function in
terms of the (i − 1)th approximation using the dilation equation. We can
calculate the set of values

φ ≈ fn

(
j

2n

)

for j = 0 . . . 4 · 2n

for some n > 1 as a point-wise approximation of φ on the interval [0, 4]. The
cascade algorithm is in this case as follows:

def F(x,i,c):

i f i==0:

i f x==0:

return 1.0

e l se:

return 0.0

e l se:

return c[0]* F(2*x,i-1,c)+c[1]*F(2*x-1,i-1,c) \

+c[2]* F(2*x-2,i-1,c)+c[3]*F(2*x-3,i-1,c) \

+c[4]* F(2*x-4,i-1,c)

Haar refinement coefficients

c = np.zeros(5)

c[0] = 1.0; c[1] = 1.0

98 Transformations

3.2.3.2 The cascade algorithm

Some of the scaling functions which generate an MRA cannot be expressed
as simple, analytical functions. Nevertheless, we can work with an MRA even
when there is no simple representation for the scaling function which gener-
ates it. For instance, once we have the refinement coefficients for a scaling
function, it can be approximated to any desired degree of accuracy using
the dilation equation. The idea is to iterate the refinement equation with a
so-called cascade algorithm until it converges to a sequence of points which
approximates φ(x).

The following recursive scheme can be used to estimate a scaling function
with up to five non-zero refinement coefficients c0, c1 . . . c4:

f0(x) = δx,0

fi(x) = c0fi−1(2x) + c1fi−1(2x− 1) + c2fi−1(2x− 2) + c3fi−1(2x− 3)

+ c4fi−1(2x− 4).

In this scheme, x takes on values j/2n, where j, n are any integers. The first
definition is the termination condition for the recursion and approximates the
scaling function to zeroth order as the delta function

δx,0 =
{
1 if x = 0
0 otherwise.

The second relation defines the ith approximation to the scaling function in
terms of the (i − 1)th approximation using the dilation equation. We can
calculate the set of values

φ ≈ fn

(
j

2n

)

for j = 0 . . . 4 · 2n

for some n > 1 as a point-wise approximation of φ on the interval [0, 4]. The
cascade algorithm is in this case as follows:

def F(x,i,c):

i f i==0:

i f x==0:

return 1.0

e l se:

return 0.0

e l se:

return c[0]* F(2*x,i-1,c)+c[1]*F(2*x-1,i-1,c) \

+c[2]* F(2*x-2,i-1,c)+c[3]*F(2*x-3,i-1,c) \

+c[4]* F(2*x-4,i-1,c)

Haar refinement coefficients

c = np.zeros(5)

c[0] = 1.0; c[1] = 1.0

The discrete wavelet transform 99

fourth order approximation

n = 4

x = range(4*2**n)

FF = np.zeros(4*2**n)

for i in range(4*2**n):

FF[i] = F(x[i]/2**n,n,c)

plt.plot (x,FF)

plt.ylim (-1,2)

The result using the Haar refinement coefficients is shown in Figure 3.8 and
is seen to be an approximation of Figure 3.2.

0�0 0�5 1�0 1�5 2�0 2�5 3�0 3�5 4�0

−1�0

−0�5

0�0

0�5

1�0

1�5

2�0

FIGURE 3.8

Approximation to the Haar scaling function with the cascade algorithm and
n = 4 iterations.

3.2.3.3 The mother wavelet

For a general MRA, we also require a generalization of Equation (3.20), which
relates the Haar mother wavelet to the scaling function. Let some MRA have
a scaling function φ defined by the dilation Equation (3.25). Since

�φ(2x − k), φ(2x− k)� = 1

2
· �φ(x), φ(x)� = 1

2
,

100 Transformations

the functions
√
2φ(2x− k) are both normalized and orthogonal. We can write

Equation (3.25) in the form

φ(x) =
∑

k

hk

√
2φ(2x− k), (3.28)

where
hk =

ck√
2
.

It follows from Equation (3.26) that

∑

k

h2
k = 1. (3.29)

Now we assume, in analogy to Equation (3.28), that the mother wavelet ψ
can also be expressed in terms of the scaling function as∗

ψ(x) =
∑

k

gk
√
2φ(2x− k). (3.30)

Since φ ∈ V0 and ψ ∈ V ⊥
0 , we have

�φ, ψ� =
∑

k

hkgk = 0. (3.31)

Similarly, with some simple index manipulations,

�ψ(x− k), ψ(x−m)� =
∑

i

gigi−2(k−m) = δk,m. (3.32)

A set of coefficients that satisfies Equations (3.31) and (3.32) is given by

gk = (−1)kh1−k. (3.33)

So we obtain, finally, the general relationship between the mother wavelet and
the scaling function:

ψ(x) =
∑

k

(−1)kh1−k

√
2φ(2x− k) =

∑

k

(−1)kc1−kφ(2x− k). (3.34)

3.2.3.4 The Daubechies D4 scaling function

A family of MRAs which is very useful in digital image analysis is generated by
the Daubechies scaling functions and their associated wavelets (Daubechies,
1988). The Daubechies D4 scaling function, for example, can be derived by
placing the following two additional requirements on an MRA (Aboufadel and
Schlicker, 1999):

∗The coefficients gk should not be confused with pixel intensities.

100 Transformations

the functions
√
2φ(2x− k) are both normalized and orthogonal. We can write

Equation (3.25) in the form

φ(x) =
∑

k

hk

√
2φ(2x− k), (3.28)

where
hk =

ck√
2
.

It follows from Equation (3.26) that

∑

k

h2
k = 1. (3.29)

Now we assume, in analogy to Equation (3.28), that the mother wavelet ψ
can also be expressed in terms of the scaling function as∗

ψ(x) =
∑

k

gk
√
2φ(2x− k). (3.30)

Since φ ∈ V0 and ψ ∈ V ⊥
0 , we have

�φ, ψ� =
∑

k

hkgk = 0. (3.31)

Similarly, with some simple index manipulations,

�ψ(x− k), ψ(x−m)� =
∑

i

gigi−2(k−m) = δk,m. (3.32)

A set of coefficients that satisfies Equations (3.31) and (3.32) is given by

gk = (−1)kh1−k. (3.33)

So we obtain, finally, the general relationship between the mother wavelet and
the scaling function:

ψ(x) =
∑

k

(−1)kh1−k

√
2φ(2x− k) =

∑

k

(−1)kc1−kφ(2x− k). (3.34)

3.2.3.4 The Daubechies D4 scaling function

A family of MRAs which is very useful in digital image analysis is generated by
the Daubechies scaling functions and their associated wavelets (Daubechies,
1988). The Daubechies D4 scaling function, for example, can be derived by
placing the following two additional requirements on an MRA (Aboufadel and
Schlicker, 1999):

∗The coefficients gk should not be confused with pixel intensities.

The discrete wavelet transform 101

1. Compact support: The scaling function φ(x) is required to be zero outside
the interval 0 < x < 3. This means that the refinement coefficients ck
vanish for k < 0 and for k > 3. To see this, note that

c−3 = 2�φ(x), φ(2x + 3)� =
∫ 3

0

φ(x)φ(2x + 3)dx = 0

and similarly for k ≤ −4 and for k ≥ 6. Therefore, from the dilation
equation,

φ(−1/2) = 0 = c−2φ(−1 + 2) + c−1φ(−1 + 1) + . . . implying c−2 = 0

and similarly for k = −1, 4, 5. Thus, from Equation (3.26), we can con-
clude that

c20 + c21 + c22 + c23 = 2 (3.35)

and from Equation(3.27) with j = 1, that

c0c2 + c1c3 = 0. (3.36)

2. Regularity: All constant and linear polynomials can be written as a linear
combination of the basis {φ(x − k) | k ∈ Z} for V0. This implies that
there is no residual in the orthogonal decomposition of f(x) = 1 and
f(x) = x onto the basis, that is,

∫ ∞

−∞
1 · ψ(x)dx =

∫ ∞

−∞
x · ψ(x)dt = 0. (3.37)

With Equation (3.34), the mother wavelet is

ψ(x) = −c0φ(2x− 1) + c1φ(2x)− c2φ(2x + 1) + c3φ(2x+ 2)

=

3∑

k=0

(−1)k+1ckφ(2x− 1 + k).
(3.38)

The first requirement in Equation (3.37) gives immediately

−c0 + c1 − c2 + c3 = 0. (3.39)

From the second requirement, we have

0 =

∫ ∞

−∞
xψ(x)dx =

3∑

k=0

(−1)k+1ck

∫ ∞

−∞
xφ(2x − 1 + k)dx

=

3∑

k=0

(−1)k+1ck

∫ ∞

−∞

u+ 1− k

4
φ(u)du

=
0

4
·
∫ ∞

−∞
uφ(u)du+

−c0 + c2 − 2c3
4

∫ ∞

−∞
φ(u)du,

using Equation (3.39). Thus

−c0 + c2 − 2c3 = 0. (3.40)

102 Transformations

0�0 0�5 1�0 1�5 2�0 2�5 3�0 3�5 4�0

−1�0

−0�5

0�0

0�5

1�0

1�5

2�0

FIGURE 3.9

Approximation to the Daubechies D4 scaling function with the cascade algo-
rithm after n = 4 iterations.

Equations (3.35), (3.36), (3.39), and (3.40) comprise a system of four (non-
linear) equations in four unknowns. A solution is given by

c0 =
1 +

√
3

4
, c1 =

3 +
√
3

4
, c2 =

3−
√
3

4
, c3 =

1−
√
3

4
,

which are known as the D4 refinement coefficients. Figure 3.9 shows the cor-
responding scaling function, determined with the cascade algorithm:

Daubechies D4 refinement coefficients

c = np.zeros(5)

c[0] = (1+np.sqrt (3))/4; c[1] = (3+np.sqrt (3))/4

c[2] = (3-np.sqrt (3))/4; c[3] = (1-np.sqrt (3))/4

c[4] = 0.0

for i in range(4*2**n):

FF[i] = F(x[i],n,c)

plt.plot (x,FF)

plt.ylim (-1,2)

The D4 scaling function and the subspaces that it generates are thus anything
but simple. The scaling function is continuous but not everywhere differen-
tiable and also self-similar (the tail is an exact but re-scaled copy of the entire

102 Transformations

0�0 0�5 1�0 1�5 2�0 2�5 3�0 3�5 4�0

−1�0

−0�5

0�0

0�5

1�0

1�5

2�0

FIGURE 3.9

Approximation to the Daubechies D4 scaling function with the cascade algo-
rithm after n = 4 iterations.

Equations (3.35), (3.36), (3.39), and (3.40) comprise a system of four (non-
linear) equations in four unknowns. A solution is given by

c0 =
1 +

√
3

4
, c1 =

3 +
√
3

4
, c2 =

3−
√
3

4
, c3 =

1−
√
3

4
,

which are known as the D4 refinement coefficients. Figure 3.9 shows the cor-
responding scaling function, determined with the cascade algorithm:

Daubechies D4 refinement coefficients

c = np.zeros(5)

c[0] = (1+np.sqrt (3))/4; c[1] = (3+np.sqrt (3))/4

c[2] = (3-np.sqrt (3))/4; c[3] = (1-np.sqrt (3))/4

c[4] = 0.0

for i in range(4*2**n):

FF[i] = F(x[i],n,c)

plt.plot (x,FF)

plt.ylim (-1,2)

The D4 scaling function and the subspaces that it generates are thus anything
but simple. The scaling function is continuous but not everywhere differen-
tiable and also self-similar (the tail is an exact but re-scaled copy of the entire

Principal components 103

function). Nevertheless, the D4 wavelets provide a much more useful repre-
sentation of digital images than the Haar wavelets. We will return to them
in Chapter 4 when we treat the fast wavelet transform and examine pyramid
algorithms for image processing.

3.3 Principal components

The principal components transformation, also called principal components
analysis (PCA), generates linear combinations of multispectral pixel inten-
sities which are mutually uncorrelated and which have maximum variance.
Specifically, consider a multispectral image represented by the random vector
G (for vector of gray-scale values) and assume that �G� = 0, so that the
covariance matrix is given by Σ = �GG⊤�. Let us seek a linear combination
Y = w⊤G whose variance w⊤Σw is maximum. This quantity can trivially be
made as large as we like by choosingw sufficiently large, so that the maximiza-
tion only makes sense if we restrict w in some way. A convenient constraint
is w⊤w = 1. According to the discussion in Section 1.6, we can solve this
problem by maximizing the unconstrained Lagrange function

L = w⊤Σw − λ(w⊤w − 1).

This leads directly, see Equation (1.65), to the eigenvalue problem

Σw = λw. (3.41)

Denote the orthogonal and normalized eigenvectors of Σ obtained by solv-
ing the above problem byw1 . . .wN , sorted according to decreasing eigenvalue
λ1 ≥ . . . ≥ λN . These eigenvectors are the principal axes and the correspond-
ing linear combinations w⊤

i G are projections along the principal axes, called
the principal components of G. The individual principal components

Y1 = w⊤
1 G, Y2 = w⊤

2 G, . . . , YN = w⊤
NG

can be expressed more compactly as a random vector Y by writing

Y = W⊤G, (3.42)

where W is the matrix whose columns comprise the eigenvectors, that is,

W = (w1 . . .wN).

Since the eigenvectors are orthogonal and normalized, W is an orthonormal
matrix:

W⊤W = I.

104 Transformations

Listing 3.1: Principal components analysis with the GEE Python API.

1 #!/usr/bin/env python3

2 # Name: eepca.py

3 import ee

4

5 def pca(image ,scale=30, nbands=6, maxPixels =1e9):

6 # center the image

7 bandNames =image.bandNames ()

8 meanDict =image.reduceRegion (ee.Reducer.mean (),

9 scale=scale ,maxPixels =maxPixels)

10 means=ee.Image.constant (meanDict.values(bandNames))

11 centered =image.subtract (means)

12 # principal components analysis

13 pcNames = [’pc’+ str (i+1) for i in range(nbands)]

14 centered =centered.toArray ()

15 covar=centered .reduceRegion (

16 ee.Reducer.centeredCovariance (),

17 scale=scale ,maxPixels =maxPixels)

18 covarArray =ee.Array(covar.get(’array’))

19 eigens=covarArray .eigen()

20 # get eigenvalues from 1st column

21 lambdas=eigens. s l i c e (1, 0, 1)

22 # get eigenvectors from rest of array

23 eivs=eigens. s l i c e (1, 1)

24 centered =centered.toArray (1)

25 pcs=ee.Image(eivs). matrixMultiply (centered) \

26 .arrayProject ([0]) \

27 .arrayFlatten ([pcNames])

28 return (pcs ,lambdas)

29

30 i f __name__ == ’__main__ ’:

31 pass

If the covariance matrix of the principal components vector Y is called Σ′,
then we have

Σ′ = �Y Y ⊤� = �W⊤GG⊤W �

= W⊤ΣW =







λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λN







=: Λ.
(3.43)

The eigenvalues are thus seen to be the variances of the principal compo-
nents, and all of the covariances are zero. The first principal component Y1

has maximum variance var(Y1) = λ1, the second principal component Y2 has
maximum variance var(Y2) = λ2 subject to the condition that it is uncor-
related with Y1, and so on. The fraction of the total variance in the original

104 Transformations

Listing 3.1: Principal components analysis with the GEE Python API.

1 #!/usr/bin/env python3

2 # Name: eepca.py

3 import ee

4

5 def pca(image ,scale=30, nbands=6, maxPixels =1e9):

6 # center the image

7 bandNames =image.bandNames ()

8 meanDict =image.reduceRegion (ee.Reducer.mean (),

9 scale=scale ,maxPixels =maxPixels)

10 means=ee.Image.constant (meanDict.values(bandNames))

11 centered =image.subtract (means)

12 # principal components analysis

13 pcNames = [’pc’+ str (i+1) for i in range(nbands)]

14 centered =centered.toArray ()

15 covar=centered .reduceRegion (

16 ee.Reducer.centeredCovariance (),

17 scale=scale ,maxPixels =maxPixels)

18 covarArray =ee.Array(covar.get(’array’))

19 eigens=covarArray .eigen()

20 # get eigenvalues from 1st column

21 lambdas =eigens. s l i c e (1, 0, 1)

22 # get eigenvectors from rest of array

23 eivs=eigens. s l i c e (1, 1)

24 centered =centered.toArray (1)

25 pcs=ee.Image(eivs). matrixMultiply (centered) \

26 .arrayProject ([0]) \

27 .arrayFlatten ([pcNames])

28 return (pcs ,lambdas)

29

30 i f __name__ == ’__main__ ’:

31 pass

If the covariance matrix of the principal components vector Y is called Σ′,
then we have

Σ′ = �Y Y ⊤� = �W⊤GG⊤W �

= W⊤ΣW =







λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λN







=: Λ.
(3.43)

The eigenvalues are thus seen to be the variances of the principal compo-
nents, and all of the covariances are zero. The first principal component Y1

has maximum variance var(Y1) = λ1, the second principal component Y2 has
maximum variance var(Y2) = λ2 subject to the condition that it is uncor-
related with Y1, and so on. The fraction of the total variance in the original

Principal components 105

multispectral image which is accounted for by the first i principal components
is

λ1 + . . .+ λi

λ1 + . . .+ λi + . . .+ λN
.

3.3.1 Principal components on the GEE

The Google Earth Engine API can be programmed to perform principal com-
ponents analysis on the Earth Engine servers. Listing 3.1 is a port to the
Python API of the JavaScript code for PCA given in the GEE documentation.
The script is included in the auxil package in the accompanying software and
is intended to be imported as a Python module. It illustrates several aspects
of scripting with the Python API and is worth looking at in detail.

In lines 8 and 9 the reduceRegion() method of an Image object is used
together with the Reducer.mean() reducer to return a dictionary of mean
values of the image bands. The dictionary keys are the image bandNames. In
line 10 a constant image of band means is constructed from the dictionary
values and then in line 11 subtracted from the original image to produce
a centered image. In line 14, the centered image is converted to an array
form which is analogous to what we have called a data matrix. Then the
reduceRegion() method is invoked again (lines 15–17), this time with the
Reducer.centeredCovariance() reducer to return the covariance matrix in
a dictionary. The actual matrix is accessed with the dictionary key array in
line 18. The covariance matrix is diagonalized (line 19) and the eigenvalues
and eigenvectors extracted in lines 20–23 (see the GEE documentation for
ee.Array.slice()). Finally (lines 24–27), the principal components are de-
termined as the projection of the centered image array along the eigenvectors.

FIGURE 3.10

RGB composite of the first three principal components of a LANDSAT 7
ETM+ image calculated with the script in Listing 3.1.

106 Transformations

It is important to realize that the function pca() in Listing 3.1 doesn’t
actually calculate anything. It returns, in the variables pcs and lambdas,
JavaScript Object Notation (JSON) structures which merely describe the nec-
essary calculations to be performed on the GEE servers. Only when the user
wishes to see the result, e.g., display the principal components or print out
the eigenvalues, are the JSON structures sent to the servers for execution.
For example, the following Jupyter notebook code determines the principal
components of the non-thermal bands of a LANDSAT 7 ETM+ full scene
acquired on June 26, 2001 over an area southwest of Cologne, Germany. The
script also illustrates the use of the ipyleaflet package to allow displaying
interactive “slippy maps” in Jupyter notebook output cells:

import ee

from ipyleaflet import (Map , DrawControl , TileLayer)

from auxil import eepca

ee.Initialize ()

def GetTileLayerUrl (image):

map_id = ee.Image(image). getMapId ()

return map_id["tile_fetcher "]. url_format

get the image

im = ee.Image(

’LANDSAT/LE07/C02/T1_RT_TOA /LE07_197025_20010626 ’) \

.select(’B1’, ’B2’, ’B3’, ’B4’, ’B5’,’B7’)

perform principal components analysis

pcs , lambdas = eepca.pca(im)

display default base map and overlay the PCA image

m = Map(center =[50.7, 6.4], zoom =7)

m.add_layer (TileLayer (url=GetTileLayerUrl (

pcs.select(’pc1’, ’pc2’, ’pc3’) \

.visualize (min=-0.1, max=0.1, opacity =1.0)

)

))

m

It is the very last command m, requesting display of the map and the overlay in
the Jupyter notebook, that actually triggers the server-side calculation. The
output cell is shown in Figure 3.10. In order to work with the principal com-
ponents image, the user has the choice of exporting it to his or her GEE assets
folder, cloud storage bucket or Google Drive for eventual local processing. For
instance, in the last case:

gdexporttask = ee.batch.Export.image.toDrive(pcs ,

description =’driveExportTask ’,

folder=’EarthEngineImages ’,

fileNamePrefix =’ASTER_PCS ’,

106 Transformations

It is important to realize that the function pca() in Listing 3.1 doesn’t
actually calculate anything. It returns, in the variables pcs and lambdas,
JavaScript Object Notation (JSON) structures which merely describe the nec-
essary calculations to be performed on the GEE servers. Only when the user
wishes to see the result, e.g., display the principal components or print out
the eigenvalues, are the JSON structures sent to the servers for execution.
For example, the following Jupyter notebook code determines the principal
components of the non-thermal bands of a LANDSAT 7 ETM+ full scene
acquired on June 26, 2001 over an area southwest of Cologne, Germany. The
script also illustrates the use of the ipyleaflet package to allow displaying
interactive “slippy maps” in Jupyter notebook output cells:

import ee

from ipyleaflet import (Map , DrawControl , TileLayer)

from auxil import eepca

ee.Initialize ()

def GetTileLayerUrl (image):

map_id = ee.Image(image). getMapId ()

return map_id["tile_fetcher "]. url_format

get the image

im = ee.Image(

’LANDSAT/LE07/C02/T1_RT_TOA /LE07_197025_20010626 ’) \

.select(’B1’, ’B2’, ’B3’, ’B4’, ’B5’,’B7’)

perform principal components analysis

pcs , lambdas = eepca.pca(im)

display default base map and overlay the PCA image

m = Map(center =[50.7, 6.4], zoom =7)

m.add_layer (TileLayer (url=GetTileLayerUrl (

pcs.select(’pc1’, ’pc2’, ’pc3’) \

.visualize (min=-0.1, max=0.1, opacity =1.0)

)

))

m

It is the very last command m, requesting display of the map and the overlay in
the Jupyter notebook, that actually triggers the server-side calculation. The
output cell is shown in Figure 3.10. In order to work with the principal com-
ponents image, the user has the choice of exporting it to his or her GEE assets
folder, cloud storage bucket or Google Drive for eventual local processing. For
instance, in the last case:

gdexporttask = ee.batch.Export.image.toDrive(pcs ,

description =’driveExportTask ’,

folder=’EarthEngineImages ’,

fileNamePrefix =’ASTER_PCS ’,

Principal components 107

scale=30,

maxPixels =1e9)

gdexporttask .start()

3.3.2 Image compression and reconstruction

If the original multispectral channels are highly correlated, as is often the case,
then the first few principal components will usually account for a very high
percentage of the total variance in the image. For example, a color composite of
the first three principal components of a LANDSAT 7 ETM+ scene displays
essentially all of the information contained in the six non-thermal spectral
components in one single image. The principal components transformation is
therefore often used for dimensionality reduction of imagery prior, for instance,
to land cover classification (Chapters 6, 7, and 8).

Alternatively, one can think of the first few principal components as being
the main contributing factors to the observed image and then reconstruct the
image from those factors. With Equation (3.42), we can recover the original
image losslessly by inverting,

G = (W⊤)−1Y = WY .

Suppose that the first r principal components account for (explain) most of
the variance in the data and let W = (W r,W r−), where

W r = (w1, . . .wr), W r− = (wr+1, . . .wN),

and similarly

Y =

(
Y r

Y r−

)

.

Now reconstruct G from Y r = (Y1 . . . Yr)
⊤ and W r,

G ≈ Gr = W rY r,

so we can write
G = W rY r + ǫ, (3.44)

where the reconstruction error ǫ is

ǫ = G−Gr = G−W rW
⊤
r G = (I −W rW

⊤
r)G = W r−W

⊤
r−G.

The covariance matrix for the error term is given by

�ǫǫ⊤� = �W r−W
⊤
r−GG⊤W r−W

⊤
r−�

= �W r−Y r−Y
⊤
r−W r−�

= W r−Λr−W
⊤
r−,

(3.45)

108 Transformations

Listing 3.2: Image reconstruction from principal components.

1 #!/usr/bin/env python3

2 #Name: ex3_1.py

3 import numpy as np

4 from osgeo import gdal

5 from osgeo.gdalconst import GA_ReadOnly

6

7 def main ():

8 gdal .AllRegister ()

9 infile = ’imagery/AST_20050911 ’

10 i f infile:

11 inDataset = gdal.Open(infile , GA_ReadOnly)

12 cols = inDataset .RasterXSize

13 rows = inDataset .RasterYSize

14 bands = inDataset .RasterCount

15 e l se:

16 return

17 # transposed data matrix

18 m = rows *cols

19 G = np.zeros((bands ,m))

20 for b in range(bands):

21 band = inDataset .GetRasterBand (b+1)

22 tmp = band .ReadAsArray (0,0,cols ,rows)\

23 .astype(f l oat). ravel()

24 G[b,:] = tmp - np.mean (tmp)

25 G = np.mat(G)

26 # covariance matrix

27 S = G*G.T/(m-1)

28 # diagonalize and sort eigenvectors

29 lamda ,W = np.linalg.eigh(S)

30 idx = np.argsort(lamda)[:: -1]

31 lamda = lamda[idx]

32 W = W[:,idx]

33 # get principal components and reconstruct

34 r = 2

35 Y = W.T*G

36 G_r = W[:,:r]*Y[:r,:]

37 # reconstruction error covariance matrix

38 print (((G-G_r)*(G-G_r).T/(m-1))[:3 ,:3])

39 # Equation (3.45)

40 print((W[:,r:]*np.diag (lamda[r:])*W[:,r:].T)[:3 ,:3])

41 inDataset = None

42

43 i f __name__ == ’__main__ ’:

44 main ()

108 Transformations

Listing 3.2: Image reconstruction from principal components.

1 #!/usr/bin/env python3

2 #Name: ex3_1.py

3 import numpy as np

4 from osgeo import gdal

5 from osgeo.gdalconst import GA_ReadOnly

6

7 def main ():

8 gdal .AllRegister ()

9 infile = ’imagery/AST_20050911 ’

10 i f infile:

11 inDataset = gdal.Open(infile , GA_ReadOnly)

12 cols = inDataset .RasterXSize

13 rows = inDataset .RasterYSize

14 bands = inDataset .RasterCount

15 e l se:

16 return

17 # transposed data matrix

18 m = rows *cols

19 G = np.zeros((bands ,m))

20 for b in range(bands):

21 band = inDataset .GetRasterBand (b+1)

22 tmp = band .ReadAsArray (0,0,cols ,rows)\

23 .astype(f l oat). ravel()

24 G[b,:] = tmp - np.mean (tmp)

25 G = np.mat(G)

26 # covariance matrix

27 S = G*G.T/(m-1)

28 # diagonalize and sort eigenvectors

29 lamda ,W = np.linalg.eigh(S)

30 idx = np.argsort(lamda)[:: -1]

31 lamda = lamda[idx]

32 W = W[:,idx]

33 # get principal components and reconstruct

34 r = 2

35 Y = W.T*G

36 G_r = W[:,:r]*Y[:r,:]

37 # reconstruction error covariance matrix

38 print (((G-G_r)*(G-G_r).T/(m-1))[:3 ,:3])

39 # Equation (3.45)

40 print((W[:,r:]*np.diag (lamda[r:])*W[:,r:].T)[:3 ,:3])

41 inDataset = None

42

43 i f __name__ == ’__main__ ’:

44 main ()

Principal components 109

where

Λr− =







λr+1 0 · · · 0
0 λr+2 · · · 0
...

...
. . .

...
0 0 · · · λN







.

Thus, the smaller the eigenvalues (variances) of the disregarded principal com-
ponents are, the smaller is the reconstruction error. Obviously the dataset
{W r,Y r} can be considerably smaller than the original image G. Equation
(3.44) is in the form of a factor analysis model; see Mardia et al. (1979). In
this case the factors are the first r principal components. The elements of W r

are called the factor loadings.
The Python script in Listing 3.2 illustrates the reconstruction process for

r = 2 with an ASTER image over Isfahan in Iran (filename AST 20050911,
non-thermal bands only, included in ENVI format in the imagery folder)
without actually saving the reconstructed image; but see Exercise 11. For
clarity, a transposed data matrix is used so that the code corresponds closely
with the above equations. In line 38 part of the reconstruction error covariance
matrix is printed. It is identical to Equation (3.45), printed for comparison in
line 40. Running the script from the Jupyter notebook:

run scripts /ex3_1

[[48.276122 25.10956254 -33.83129098]

[25.10956254 42.98112067 -33.23172804]

[-33.83129098 -33.23172804 37.61442228]]

[[48.276122 25.10956254 -33.83129098]

[25.10956254 42.98112067 -33.23172804]

[-33.83129098 -33.23172804 37.61442228]]

<Figure size 640 x480 with 0 Axes >

We can further illustrate (using the Python script pca.py included in the
scripts subdirectory; see Appendix C) to perform the transformation:

%run scripts/pca -r 2 -n imagery/AST_20050911

------------ PCA ---------------

Wed Aug 14 18:48:03 2024

Input imagery/AST_20050911

Eigenvalues : [6.11586715 e+03 1.77518619 e+02

1.32004293 e+02 3.14826406 e+01 2.11086622 e+01

1.57776347 e+01 1.32005399 e+01 3.77242660 e+00

2.65003835 e+00]

PCs written to: imagery/AST_20050911_pca

Reconstruction written to: imagery/ AST_20050911_recon

elapsed time : 0.36631035804748535

The flag -n suppresses graphical output and the flag -r 2 instructs the script
to reconstruct the original image from the first two principal components

110 Transformations

0 200 400 600 800

0

200

400

600

800

AST_20050911: linear2pc: (4, 6, 9): [0, 0, 1000, 1000]

0 200 400 600 800

0

200

400

600

800

AST_20050911_recon: linear2pc: (4, 6, 9): [0, 0, 1000, 1000]

FIGURE 3.11

RGB color composites (2% linear saturation) of three short wave infrared
bands of an ASTER image acquired September 11, 2005 over Isfahan, Iran
(left) and after reconstruction from the first two principal components (right).

(there are nine altogether). To display the result, we use the dispms.py script
and show RGB composites of three of the short wave infrared bands, original
and reconstructed:

%run scripts/dispms \

-f imagery/ AST_20050911 -p [4,6,9] -e 3 \

-F imagery/ AST_20050911_recon -P [4,6,9] -E 3

see Figure 3.11.

3.3.3 Primal solution

In order to perform PCA in practice, one calculates the estimate s of the
covariance matrix Σ in terms of a data matrix G, see Equation (2.57), and
then solves the eigenvalue problem, Equation (3.41), in the form

sw =
1

m− 1
G⊤Gw = λw. (3.46)

This is the primal problem for PCA (see the discussion of primal and dual
formulations for ridge regression in Section 2.6.4). The Python programs in
Listing 1.2 in Chapter 1 and in Listing 3.2 illustrate the procedure explicitly.

3.3.4 Dual solution

The normalized eigenvectors of the estimated covariance matrix s are wi, i =
1 . . .N . These, as explained, are the principal vectors, and we now show how

110 Transformations

0 200 400 600 800

0

200

400

600

800

AST_20050911: linear2pc: (4, 6, 9): [0, 0, 1000, 1000]

0 200 400 600 800

0

200

400

600

800

AST_20050911_recon: linear2pc: (4, 6, 9): [0, 0, 1000, 1000]

FIGURE 3.11

RGB color composites (2% linear saturation) of three short wave infrared
bands of an ASTER image acquired September 11, 2005 over Isfahan, Iran
(left) and after reconstruction from the first two principal components (right).

(there are nine altogether). To display the result, we use the dispms.py script
and show RGB composites of three of the short wave infrared bands, original
and reconstructed:

%run scripts/dispms \

-f imagery/ AST_20050911 -p [4,6,9] -e 3 \

-F imagery/ AST_20050911_recon -P [4,6,9] -E 3

see Figure 3.11.

3.3.3 Primal solution

In order to perform PCA in practice, one calculates the estimate s of the
covariance matrix Σ in terms of a data matrix G, see Equation (2.57), and
then solves the eigenvalue problem, Equation (3.41), in the form

sw =
1

m− 1
G⊤Gw = λw. (3.46)

This is the primal problem for PCA (see the discussion of primal and dual
formulations for ridge regression in Section 2.6.4). The Python programs in
Listing 1.2 in Chapter 1 and in Listing 3.2 illustrate the procedure explicitly.

3.3.4 Dual solution

The normalized eigenvectors of the estimated covariance matrix s are wi, i =
1 . . .N . These, as explained, are the principal vectors, and we now show how

Principal components 111

to express them in terms of the eigenvectors of the Gram matrix GG⊤, which
was initially introduced in Section 2.6.4 in connection with ridge regression.
Recall that the Gram matrix is symmetric, positive semi-definite.

Assume that the number of observationsm > N and consider an eigenvector-
eigenvalue pair (vi, λi) for the Gram matrix GG⊤. Then we can write with
Equation 3.46

s(G⊤vi) =
1

m− 1
(G⊤G)(G⊤vi) =

1

m− 1
G⊤(GG⊤)vi =

1

m− 1
λi(G

⊤vi),

(3.47)
so that (G⊤vi, λi/(m− 1)) is an eigenvector-eigenvalue pair for s. The norm
of the eigenvector G⊤vi is

�G⊤vi� =

√

v⊤
i GG

⊤vi =
√

λi. (3.48)

For λ1 > λ2 > . . . λN > 0, the normalized principal vectors wi can thus be
expressed equivalently in the form

wi = λ
−1/2
i G⊤vi, i = 1 . . .N.

In fact, the Gram matrix GG⊤ has exactly N positive eigenvalues, the rest
being zero (GG⊤ has rank N). Informally, every positive eigenvalue for GG⊤

generates, via Equation (3.47), an eigenvector-eigenvalue pair for s, and s has
only N eigenvectors. For example, for m = 100, N = 2:

column -centered data matrix for random 2D data

m, N = 100, 2

G = np.mat(2*np.random.rand (m, N))-1

covariance matrix

S = G.T*G/(m-1)

Gram matrix

K = G*G.T

lambda_s , _ = np.linalg.eigh(S)

lambda_k , _ = np.linalg.eigh(K)

sort eigenvalues in decreasing oder

idx = np.argsort(lambda_s)[::-1]

lambda_s = lambda_s[idx]

idx = np.argsort(lambda_k)[::-1]

lambda_k = lambda_k[idx]

compare

print(lambda_s)

print(lambda_k [0:3]/(m -1))

[0.33175673 0.27894934]

[3.31756725 e-01 2.78949340 e-01 6.71767647 e-17]

The eigenvalues of s = G⊤G are equal to the first two eigenvalues of k = GG⊤

when divided by m − 1. The remaining m − N eigenvalues are, apart from
rounding errors, zero.

112 Transformations

In terms of m-dimensional dual vectors αi = λ
−1/2
i vi, we have

wi = G⊤αi =

m∑

ν=1

(αi)νg(ν), i = 1 . . .N. (3.49)

So, just as for ridge regression, we get the dual form by expressing the pa-
rameter vector as a linear combination of the observations. The projection of
any observation g along a principal axis is then

w⊤
i g =

m∑

ν=1

(αi)ν(g(ν)
⊤g), i = 1 . . .N. (3.50)

Thus, we can alternatively perform PCA by finding eigenvalues and eigen-
vectors of the Gram matrix. The observations g(ν) appear only in the form
of inner products, both in the determination of the Gram matrix as well as
in the projection of any new observations, Equation (3.50). This forms the
starting point for non-linear, or kernel PCA. Non-linear kernels will be in-
troduced in Chapter 4 with application to nonlinear PCA and appear again
in connection with support vector machine classification in Chapter 6, hyper
spectral anomaly detection in Chapter 7, and unsupervised classification in
Chapter 8. Chapter 9 gives an example of kernel PCA for change detection.

3.4 Minimum noise fraction

Principal components analysis maximizes variance. This doesn’t always lead to
images of the desired quality (e.g., having minimal noise). The minimum noise
fraction (MNF) transformation (Green et al., 1988) can be used to maximize
the signal-to-noise ratio (SNR) rather than maximizing variance, so, if this
is the desired criterion, it is to be preferred over PCA. In the following, we
derive the MNF transformation directly by maximizing the ratio of signal
variance to noise variance. This will be seen to involve the solution of a so-
called generalized eigenvalue problem. Then we demonstrate how to perform
the same transformation with principal components analysis alone.

3.4.1 Additive noise

A noisy multispectral image G may often be represented in terms of an addi-
tive noise model, i.e., as a sum of signal and noise contributions∗

G = S +N . (3.51)

∗The phenomenon of speckle in SAR imagery, on the other hand, can be treated as a
form of multiplicative noise; see Chapter 5.

112 Transformations

In terms of m-dimensional dual vectors αi = λ
−1/2
i vi, we have

wi = G⊤αi =

m∑

ν=1

(αi)νg(ν), i = 1 . . .N. (3.49)

So, just as for ridge regression, we get the dual form by expressing the pa-
rameter vector as a linear combination of the observations. The projection of
any observation g along a principal axis is then

w⊤
i g =

m∑

ν=1

(αi)ν(g(ν)
⊤g), i = 1 . . .N. (3.50)

Thus, we can alternatively perform PCA by finding eigenvalues and eigen-
vectors of the Gram matrix. The observations g(ν) appear only in the form
of inner products, both in the determination of the Gram matrix as well as
in the projection of any new observations, Equation (3.50). This forms the
starting point for non-linear, or kernel PCA. Non-linear kernels will be in-
troduced in Chapter 4 with application to nonlinear PCA and appear again
in connection with support vector machine classification in Chapter 6, hyper
spectral anomaly detection in Chapter 7, and unsupervised classification in
Chapter 8. Chapter 9 gives an example of kernel PCA for change detection.

3.4 Minimum noise fraction

Principal components analysis maximizes variance. This doesn’t always lead to
images of the desired quality (e.g., having minimal noise). The minimum noise
fraction (MNF) transformation (Green et al., 1988) can be used to maximize
the signal-to-noise ratio (SNR) rather than maximizing variance, so, if this
is the desired criterion, it is to be preferred over PCA. In the following, we
derive the MNF transformation directly by maximizing the ratio of signal
variance to noise variance. This will be seen to involve the solution of a so-
called generalized eigenvalue problem. Then we demonstrate how to perform
the same transformation with principal components analysis alone.

3.4.1 Additive noise

A noisy multispectral image G may often be represented in terms of an addi-
tive noise model, i.e., as a sum of signal and noise contributions∗

G = S +N . (3.51)

∗The phenomenon of speckle in SAR imagery, on the other hand, can be treated as a
form of multiplicative noise; see Chapter 5.

Minimum noise fraction 113

The signal S (not to be confused here with the covariance matrix estimator
s) is understood as the component carrying the information of interest. Noise,
introduced most often by the sensors, corrupts the signal and masks that in-
formation. If both components are assumed to be normally distributed with
respective covariance matrices ΣS and ΣN , to have zero mean and, further-
more, to be uncorrelated, then the covariance matrix Σ for the image G is
given by

Σ = �GG⊤� = �(S +N)(S +N)⊤� = �SS⊤�+ �NN⊤�,

the covariance �NS⊤� being zero by assumption. Thus the image covariance
matrix is simply the sum of signal and noise contributions,

Σ = ΣS +ΣN . (3.52)

The signal-to-noise ratio in the ith band of a multi-spectral image is usually
expressed as the ratio of the variance of the signal and noise components,

SNRi =
var(Si)

var(Ni)
, i = 1 . . . N.

Let us now seek a linear combination Y = a⊤G of image bands for which
this ratio is maximum. That is, we wish to maximize

SNR =
var(a⊤S)
var(a⊤N)

=
a⊤ΣSa

a⊤ΣNa
. (3.53)

The ratio of quadratic forms on the right is referred to as a Rayleigh quotient.
With Equation (3.52), we can write the Equation (3.53) equivalently in the

form

SNR =
a⊤Σa

a⊤ΣNa
− 1. (3.54)

Setting its vector derivative with respect to a equal to zero, we get

∂

∂a
SNR =

1

a⊤ΣNa
2Σa− a⊤Σa

(a⊤ΣNa)2
2ΣNa = 0

or, equivalently,
(a⊤ΣNa)Σa = (a⊤Σa)ΣNa.

This condition is met when a solves the symmetric generalized eigenvalue
problem

ΣNa = λΣa, (3.55)

as can easily be seen by substitution. In Equation (3.55), both ΣN and Σ are
symmetric and positive definite. The equation can be reduced to the standard

114 Transformations

eigenvalue problem that we are familiar with by performing a Cholesky de-
composition of Σ. As explained in Appendix A, Cholesky decomposition will
factor Σ as Σ = LL⊤, where L is a lower triangular matrix. Substituting this
into Equation (3.55) gives

ΣNa = λLL⊤a

or, multiplying both sides of the equation from the left by L−1 and inserting
the identity (L⊤)−1L⊤,

L−1ΣN (L⊤)−1L⊤a = λL⊤a.

Now let b = L⊤a. From the commutativity of the operations of inverse and
transpose, it follows that

[L−1ΣN (L−1)⊤]b = λb, (3.56)

a standard eigenvalue problem for the symmetric matrix L−1ΣN (L−1)⊤. Let
its (orthogonal and normalized) eigenvectors be bi, i = 1 . . .N . Then

b⊤i bj = a⊤
i LL⊤aj = a⊤

i Σaj = δij .

Therefore, we see that the variances of the transformed components Yi = a⊤
i G

are all unity:
var(Yi) = a⊤

i Σai = 1, i = 1 . . .N,

and that they are mutually uncorrelated:

cov(Yi, Yj) = a⊤
i Σaj = 0, i, j = 1 . . .N, i �= j.

Listing 3.3 shows a Python routine for solving the generalized eigenvalue
problem with Cholesky decomposition. The Cholesky algorithm is programmed
explicitly,∗ but we could just as well have used the numpy.linalg.cholesky()
function.

With the definition A = (a1,a2 . . .aN), the complete minimum noise frac-
tion (MNF) transformation can be represented as

Y = A⊤G, (3.57)

in a manner similar to the principal components transformation, Equation
(3.42). The covariance matrix of Y is (compare with Equation (3.43))

Σ′ = A⊤ΣA = I, (3.58)

where I is the N ×N identity matrix.

∗As described in http://en.wikipedia.org/wiki/Cholesky decomposition.

http://en.wikipedia.org/wiki/Cholesky_decomposition

114 Transformations

eigenvalue problem that we are familiar with by performing a Cholesky de-
composition of Σ. As explained in Appendix A, Cholesky decomposition will
factor Σ as Σ = LL⊤, where L is a lower triangular matrix. Substituting this
into Equation (3.55) gives

ΣNa = λLL⊤a

or, multiplying both sides of the equation from the left by L−1 and inserting
the identity (L⊤)−1L⊤,

L−1ΣN (L⊤)−1L⊤a = λL⊤a.

Now let b = L⊤a. From the commutativity of the operations of inverse and
transpose, it follows that

[L−1ΣN (L−1)⊤]b = λb, (3.56)

a standard eigenvalue problem for the symmetric matrix L−1ΣN (L−1)⊤. Let
its (orthogonal and normalized) eigenvectors be bi, i = 1 . . .N . Then

b⊤i bj = a⊤
i LL⊤aj = a⊤

i Σaj = δij .

Therefore, we see that the variances of the transformed components Yi = a⊤
i G

are all unity:
var(Yi) = a⊤

i Σai = 1, i = 1 . . .N,

and that they are mutually uncorrelated:

cov(Yi, Yj) = a⊤
i Σaj = 0, i, j = 1 . . .N, i �= j.

Listing 3.3 shows a Python routine for solving the generalized eigenvalue
problem with Cholesky decomposition. The Cholesky algorithm is programmed
explicitly,∗ but we could just as well have used the numpy.linalg.cholesky()
function.

With the definition A = (a1,a2 . . .aN), the complete minimum noise frac-
tion (MNF) transformation can be represented as

Y = A⊤G, (3.57)

in a manner similar to the principal components transformation, Equation
(3.42). The covariance matrix of Y is (compare with Equation (3.43))

Σ′ = A⊤ΣA = I, (3.58)

where I is the N ×N identity matrix.

∗As described in http://en.wikipedia.org/wiki/Cholesky decomposition.

Minimum noise fraction 115

Listing 3.3: Solving the generalized eigenvalue problem in Python by Cholesky
decomposition (excerpt from auxil.auxil1.py).

1 def choldc(A):

2 ’’’Cholesky -Banachiewicz algorithm ,

3 A is a numpy matrix ’’’

4 L = A - A

5 for i in range(len(L)):

6 for j in range(i):

7 sm = 0.0

8 for k in range(j):

9 sm += L[i,k]*L[j,k]

10 L[i,j] = (A[i,j]-sm)/L[j,j]

11 sm = 0.0

12 for k in range(i):

13 sm += L[i,k]*L[i,k]

14 L[i,i] = math.sqrt(A[i,i]-sm)

15 return L

16

17 def geneiv(A,B):

18 ’’’solves A*x = lambda*B*x for numpy matrices A, B

19 returns eigenvectors in columns ’’’

20 Li = np.linalg.inv(choldc(B))

21 C = Li*A*(Li.transpose ())

22 C = np.asmatrix ((C + C.transpose ())*0.5 ,np.float32)

23 lambdas ,V = np.linalg.eig(C)

24 return lambdas , Li.transpose ()*V

It follows from Equation (3.54) that the SNR for eigenvalue λi is just

SNRi =
a⊤
i Σai

a⊤
i (λiΣai)

− 1 =
1

λi
− 1. (3.59)

Thus, the projection Yi = a⊤
i G corresponding to the smallest eigenvalue λi

will have largest signal-to-noise ratio. Note that with Equation (3.55), we can
write

ΣNA = ΣAΛ, (3.60)

where Λ is the diagonal matrix with diagonal elements λ1 . . . λN .

3.4.2 Minimum noise fraction via PCA

The MNF transformation can be carried out somewhat differently with the
solution two successive ordinary eigenvalue problems, which are, as we shall
now show, equivalent to the above derivation.

In the first step the noise contribution to the observation G is “whitened,”
that is, a transformation is performed after which the noise component N has

116 Transformations

covariance matrix ΣN = I, the identity matrix. This can be accomplished by
first doing a transformation which diagonalizes ΣN . Suppose that the trans-
formation matrix for this operation is C and that Z is the resulting random
vector. Then

Z = C⊤G, C⊤ΣNC = ΛN , C⊤C = I, (3.61)

where ΛN is a diagonal matrix, the diagonal elements of which are the vari-
ances of the transformed noise component C⊤N . Next apply the transforma-

tion Λ
−1/2
N (the diagonal matrix whose diagonal elements are the square roots

of the diagonal elements of ΛN) to give a new random vector X,

X = Λ
−1/2
N Z = Λ

−1/2
N C⊤G.

Then the covariance matrix of the noise component Λ
−1/2
N C⊤N is given by

Λ
−1/2
N ΛNΛ

−1/2
N = I,

as desired, and the noise contribution has been “whitened.” At this stage of
affairs, the covariance matrix of the transformed random vector X is

ΣX = Λ
−1/2
N C⊤ΣCΛ

−1/2
N . (3.62)

In the second step, an ordinary principal components transformation is
performed on X, leading finally to the random vector Y representing the
MNF components:

Y = B⊤X, B⊤ΣXB = ΛX , B⊤B = I. (3.63)

The overall transformation is thus

Y = B⊤Λ−1/2
N C⊤G = A⊤G, (3.64)

where A = CΛ
−1/2
N B. To see that this transformation is indeed equivalent to

solving the generalized eigenvalue problem, Equation (3.60), consider

ΣNA = ΣNCΛ
−1/2
N B

= CΛNΛ
−1/2
N B from Equation (3.61)

= CΛ
1/2
N B

= CΛ
1/2
N (ΣXBΛ−1

X) from Equation (3.63)

= CΛ
1/2
N Λ

−1/2
N C⊤ΣCΛ

−1/2
N BΛ−1

X from Equation (3.62)

= ΣAΛ−1
X .

(3.65)

This is the same as Equation (3.60) with Λ replaced by Λ−1
X , that is,

λXi =
1

λi
= SNRi + 1, i = 1 . . .N,

using Equation (3.59). Note that the MNF components returned here, unlike
those of Section 3.4.1, do not have unit variance. Their variances are the
eigenvalues λXi. They are equal to the SNR plus one, so that values equal to
one correspond to “pure noise.”

116 Transformations

covariance matrix ΣN = I, the identity matrix. This can be accomplished by
first doing a transformation which diagonalizes ΣN . Suppose that the trans-
formation matrix for this operation is C and that Z is the resulting random
vector. Then

Z = C⊤G, C⊤ΣNC = ΛN , C⊤C = I, (3.61)

where ΛN is a diagonal matrix, the diagonal elements of which are the vari-
ances of the transformed noise component C⊤N . Next apply the transforma-

tion Λ
−1/2
N (the diagonal matrix whose diagonal elements are the square roots

of the diagonal elements of ΛN) to give a new random vector X,

X = Λ
−1/2
N Z = Λ

−1/2
N C⊤G.

Then the covariance matrix of the noise component Λ
−1/2
N C⊤N is given by

Λ
−1/2
N ΛNΛ

−1/2
N = I,

as desired, and the noise contribution has been “whitened.” At this stage of
affairs, the covariance matrix of the transformed random vector X is

ΣX = Λ
−1/2
N C⊤ΣCΛ

−1/2
N . (3.62)

In the second step, an ordinary principal components transformation is
performed on X, leading finally to the random vector Y representing the
MNF components:

Y = B⊤X, B⊤ΣXB = ΛX , B⊤B = I. (3.63)

The overall transformation is thus

Y = B⊤Λ−1/2
N C⊤G = A⊤G, (3.64)

where A = CΛ
−1/2
N B. To see that this transformation is indeed equivalent to

solving the generalized eigenvalue problem, Equation (3.60), consider

ΣNA = ΣNCΛ
−1/2
N B

= CΛNΛ
−1/2
N B from Equation (3.61)

= CΛ
1/2
N B

= CΛ
1/2
N (ΣXBΛ−1

X) from Equation (3.63)

= CΛ
1/2
N Λ

−1/2
N C⊤ΣCΛ

−1/2
N BΛ−1

X from Equation (3.62)

= ΣAΛ−1
X .

(3.65)

This is the same as Equation (3.60) with Λ replaced by Λ−1
X , that is,

λXi =
1

λi
= SNRi + 1, i = 1 . . .N,

using Equation (3.59). Note that the MNF components returned here, unlike
those of Section 3.4.1, do not have unit variance. Their variances are the
eigenvalues λXi. They are equal to the SNR plus one, so that values equal to
one correspond to “pure noise.”

Spatial correlation 117

3.5 Spatial correlation

Before the MNF transformation can be performed, it is of course necessary
to estimate both the image and noise covariance matrices Σ and ΣN . The
former poses no problem, but how does one estimate the noise covariance
matrix? The spatial characteristics of the image can be used to estimate ΣN ,
taking advantage of the fact that the intensity of neighboring pixels is usually
approximately constant. This property is quantified as the autocorrelation of
an image. We shall first find a spectral transformation that maximizes the
autocorrelation and then see how to relate it to the image noise statistics.

3.5.1 Maximum autocorrelation factor

Let x = (x1, x2)
⊤ represent the coordinates of a pixel within image G and

assume that �G� = 0. The spatial covariance C(x,h) is defined as the covari-
ance of the original image, represented by G(x), with itself, but shifted by
the amount h = (h1, h2)

⊤,

C(x,h) = �G(x)G(x+ h)⊤�. (3.66)

We make the so-called second-order stationarity assumption, namely that
C(x,h) = C(h) is independent of x. Then C(0) = �GG⊤� = Σ, and
furthermore

C(−h) = �G(x)G(x− h)⊤�
= �G(x+ h)G(x)⊤�
= �(G(x)G(x+ h)⊤)⊤�
= C(h)⊤.

(3.67)

The multivariate variogram, Γ(h), is defined as the covariance matrix of the
difference image G(x)−G(x+ h),

Γ(h) = �(G(x)−G(x+ h))(G(x)−G(x+ h)⊤�
= �G(x)G(x)⊤�+ �G(x+ h)G(x+ h)⊤�

− �G(x)G(x+ h)⊤� − �G(x+ h)G(x)⊤�
= 2Σ−C(h)−C(−h).

(3.68)

Now let us look at the covariance of projections Y = a⊤G of the original

118 Transformations

and shifted images. This is given by

cov(a⊤G(x),a⊤G(x+ h)) = a⊤�G(x)G(x+ h)⊤�a
= a⊤C(h)a

= a⊤C(−h)a

=
1

2
a⊤(C(h) +C(−h))a,

(3.69)

where we have used Equation (3.67). From Equation (3.68), C(h)+C(−h) =
2Σ− Γ(h), and so we can write Equation (3.69) in the form

cov(a⊤G(x),a⊤G(x+ h)) = a⊤Σa− 1

2
a⊤Γ(h)a. (3.70)

The spatial autocorrelation of the projections is therefore given by

corr(a⊤G(x),a⊤G(x+ h)) =
a⊤Σa− 1

2a
⊤Γ(h)a

√

var(a⊤G(x))var(a⊤G(x+ h))

=
a⊤Σa− 1

2a
⊤Γ(h)a

√

(a⊤Σa)(a⊤Σa)

= 1− 1

2

a⊤Γ(h)a
a⊤Σa

.

(3.71)

The maximum autocorrelation factor (MAF) transformation determines the
vector a which maximizes Equation (3.71). We obtain it by minimizing the
Rayleigh quotient

R(a) =
a⊤Γ(h)a
a⊤Σa

.

Setting the vector derivative equal to zero gives

∂R

∂a
=

1

a⊤Σa

1

2
Γ(h)a− a⊤Γ(h)a

(a⊤Σa)2
1

2
Σa = 0

or
(a⊤Σa)Γ(h)a = (a⊤Γ(h)a)Σa.

This condition is met when a solves the generalized eigenvalue problem

Γ(h)a = λΣa, (3.72)

which is seen to have the same form as Equation (3.55), with Γ(h) replacing
the noise covariance matrix ΣN . Again, both Γ(h) and Σ are symmetric,
and the latter is also positive definite. We obtain as before, via Cholesky
decomposition, the standard eigenvalue problem

[L−1Γ(h)(L−1)⊤]b = λb, (3.73)

118 Transformations

and shifted images. This is given by

cov(a⊤G(x),a⊤G(x+ h)) = a⊤�G(x)G(x+ h)⊤�a
= a⊤C(h)a

= a⊤C(−h)a

=
1

2
a⊤(C(h) +C(−h))a,

(3.69)

where we have used Equation (3.67). From Equation (3.68), C(h)+C(−h) =
2Σ− Γ(h), and so we can write Equation (3.69) in the form

cov(a⊤G(x),a⊤G(x+ h)) = a⊤Σa− 1

2
a⊤Γ(h)a. (3.70)

The spatial autocorrelation of the projections is therefore given by

corr(a⊤G(x),a⊤G(x+ h)) =
a⊤Σa− 1

2a
⊤Γ(h)a

√

var(a⊤G(x))var(a⊤G(x+ h))

=
a⊤Σa− 1

2a
⊤Γ(h)a

√

(a⊤Σa)(a⊤Σa)

= 1− 1

2

a⊤Γ(h)a
a⊤Σa

.

(3.71)

The maximum autocorrelation factor (MAF) transformation determines the
vector a which maximizes Equation (3.71). We obtain it by minimizing the
Rayleigh quotient

R(a) =
a⊤Γ(h)a
a⊤Σa

.

Setting the vector derivative equal to zero gives

∂R

∂a
=

1

a⊤Σa

1

2
Γ(h)a− a⊤Γ(h)a

(a⊤Σa)2
1

2
Σa = 0

or
(a⊤Σa)Γ(h)a = (a⊤Γ(h)a)Σa.

This condition is met when a solves the generalized eigenvalue problem

Γ(h)a = λΣa, (3.72)

which is seen to have the same form as Equation (3.55), with Γ(h) replacing
the noise covariance matrix ΣN . Again, both Γ(h) and Σ are symmetric,
and the latter is also positive definite. We obtain as before, via Cholesky
decomposition, the standard eigenvalue problem

[L−1Γ(h)(L−1)⊤]b = λb, (3.73)

Spatial correlation 119

Listing 3.4: Estimation of the noise covariance matrix in Python from the
difference of one-pixel shifts.

1 #!/usr/bin/env python3

2 #Name: ex3_2.py

3 import numpy as np

4 from osgeo import gdal

5 import sys

6 from osgeo.gdalconst import GA_ReadOnly

7

8 def noisecovar (infile):

9 gdal .AllRegister ()

10 inDataset = gdal.Open(infile ,GA_ReadOnly)

11 cols = inDataset .RasterXSize

12 rows = inDataset .RasterYSize

13 bands = inDataset .RasterCount

14 # data matrix for difference images

15 D = np.zeros((cols *rows ,bands))

16 for b in range(bands):

17 band = inDataset .GetRasterBand (b+1)

18 tmp = band .ReadAsArray (0,0,cols ,rows)

19 D[:,b] = (tmp -np.roll (tmp ,1,axis =0)). ravel()

20 # noise covariance matrix

21 return np.mat(D).T*np.mat(D)/(2*(rows*cols -1))

22

23 i f __name__ == ’__main__ ’:

24 infile = sys.argv [1]

25 S_N = noisecovar (infile)

26 np. set_printoptions (precision =2, suppress =True)

27 print(’Noise�covariance ,�file �%s’%infile)

28 print(S_N)

for the symmetric matrix L−1Γ(h)(L−1)⊤ with b = L⊤a.
Let the eigenvalues of Equation (3.73) be ordered from smallest to largest,

λ1 ≤ . . . ≤ λN , and the corresponding (orthogonal) eigenvectors be bi. We
have

b⊤i bj = a⊤
i LL⊤aj = a⊤

i Σaj = δij (3.74)

so that, like the components of the MNF transformation, the MAF com-
ponents Yi = a⊤

i G, i = 1 . . .N , are orthogonal (uncorrelated) with unit
variance. Moreover, with Equation (3.71),

corr(a⊤
i G(x),a⊤

i G(x+ h)) = 1− 1

2
λi, i = 1 . . . N, (3.75)

and the first MAF component has maximum autocorrelation.

120 Transformations

3.5.2 Noise estimation

The similarity of Equation (3.72) and Equation (3.55) is a result of the fact
that Γ(h) is, under fairly general circumstances, proportional to ΣN . We can
demonstrate this as follows (Green et al., 1988). Let

G(x) = S(x) +N (x)

and assume
�S(x)N (x)⊤� = 0

�S(x)S(x± h)⊤� = bhΣS

�N (x)N (x± h)⊤� = chΣN ,

(3.76)

where bh and ch are constants. Under these assumptions, C(h) = C(−h)
from Equation (3.67) and, from Equation (3.68), we can conclude that

Γ(h) = 2(Σ−C(h)). (3.77)

But with Equation (3.66)

C(h) = �
(
S(x) +N(x)

)(
S(x+ h) +N(x+ h)

)⊤�
or, with Equation (3.76),

C(h) = bhΣS + chΣN . (3.78)

Finally, combining Equations (3.77), (3.78), and (3.52) gives

1

2
Γ(h) = (1− bh)Σ+ (bh − ch)ΣN . (3.79)

For a signal with high spatial coherence and for random (“salt and pepper”)
noise, we expect that in Equation (3.76)

bh ≈ 1 ≫ ch

and therefore, from Equation (3.79), that

ΣN ≈ 1

2
Γ(h). (3.80)

Thus we can obtain an estimate for the noise covariance matrix by estimating
the multivariate variogram

Γ(h) = �(G(x)−G(x+ h))(G(x)−G(x+ h)⊤�
and dividing the result by 2. This is illustrated in Listing 3.4. There, the matrix
Γ(h) is determined by calculating the covariance matrix of the difference of
the image with itself, shifted horizontally by one pixel.∗ Here is the result for
the nine optical and infrared bands of the ASTER image of Figure 1.1.

∗This will tend to overestimate the noise in an image in which the signal itself varies
considerably. The noise determination should be restricted to regions having as little detailed
structure as possible.

120 Transformations

3.5.2 Noise estimation

The similarity of Equation (3.72) and Equation (3.55) is a result of the fact
that Γ(h) is, under fairly general circumstances, proportional to ΣN . We can
demonstrate this as follows (Green et al., 1988). Let

G(x) = S(x) +N (x)

and assume
�S(x)N (x)⊤� = 0

�S(x)S(x± h)⊤� = bhΣS

�N (x)N (x± h)⊤� = chΣN ,

(3.76)

where bh and ch are constants. Under these assumptions, C(h) = C(−h)
from Equation (3.67) and, from Equation (3.68), we can conclude that

Γ(h) = 2(Σ−C(h)). (3.77)

But with Equation (3.66)

C(h) = �
(
S(x) +N(x)

)(
S(x+ h) +N(x+ h)

)⊤�
or, with Equation (3.76),

C(h) = bhΣS + chΣN . (3.78)

Finally, combining Equations (3.77), (3.78), and (3.52) gives

1

2
Γ(h) = (1− bh)Σ+ (bh − ch)ΣN . (3.79)

For a signal with high spatial coherence and for random (“salt and pepper”)
noise, we expect that in Equation (3.76)

bh ≈ 1 ≫ ch

and therefore, from Equation (3.79), that

ΣN ≈ 1

2
Γ(h). (3.80)

Thus we can obtain an estimate for the noise covariance matrix by estimating
the multivariate variogram

Γ(h) = �(G(x)−G(x+ h))(G(x)−G(x+ h)⊤�
and dividing the result by 2. This is illustrated in Listing 3.4. There, the matrix
Γ(h) is determined by calculating the covariance matrix of the difference of
the image with itself, shifted horizontally by one pixel.∗ Here is the result for
the nine optical and infrared bands of the ASTER image of Figure 1.1.

∗This will tend to overestimate the noise in an image in which the signal itself varies
considerably. The noise determination should be restricted to regions having as little detailed
structure as possible.

Spatial correlation 121

0 200 400 600 800

0

200

400

600

800

AST_20070501_mnf.tif: linear2pc: (1, 2, 3): [0, 0, 1000, 1000]

FIGURE 3.12

RGB color composite of MNF bands 1, 2, 3 of the ASTER image of Figure
1.1.

run scripts /ex3_2 imagery /AST_20070501 .tif

Noise covariance , file imagery /AST_20070501 .tif

[[15.89 15.5 -0.21 1.45 0.45 0.51 0.44 0.36 0.24]

[15.5 16.93 -2.69 1.58 0.5 0.57 0.49 0.4 0.26]

[-0.21 -2.69 24.95 -0.17 -0.1 -0.11 -0.1 -0.08 -0.06]

[1.45 1.58 -0.17 0.21 0.06 0.07 0.06 0.05 0.03]

[0.45 0.5 -0.1 0.06 0.02 0.02 0.02 0.02 0.01]

[0.51 0.57 -0.11 0.07 0.02 0.03 0.02 0.02 0.01]

[0.44 0.49 -0.1 0.06 0.02 0.02 0.02 0.02 0.01]

[0.36 0.4 -0.08 0.05 0.02 0.02 0.02 0.01 0.01]

[0.24 0.26 -0.06 0.03 0.01 0.01 0.01 0.01 0.01]]

122 Transformations

FIGURE 3.13

Signal to noise ratios in the nine MNF bands.

The program mnf.py in the scripts subdirectory uses the above ideas to
perform the MNF transformation on multi-spectral imagery; see Appendix C.
For example:

run scripts /mnf -n imagery /AST_20070501 .tif

------------MNF ---------------

Wed Feb 21 12:17:54 2024

Input imagery/AST_20070501 .tif

Signal to noise ratios: [

686.3224 143.42426 104.36482

100.94557 61.796833 35.90177

15.710253 14.701647 7.14548]

MNFs written to: imagery/AST_20070501_mnf .tif

elapsed time : 0.5313358306884766

The code

run scripts /dispms -f imagery /AST_20070501_mnf .tif

-p [1,2,3] -e 3

generates the MNF image shown in Figure 3.12, and Figure 3.13 is a plot of
the signal to noise ratios.

122 Transformations

FIGURE 3.13

Signal to noise ratios in the nine MNF bands.

The program mnf.py in the scripts subdirectory uses the above ideas to
perform the MNF transformation on multi-spectral imagery; see Appendix C.
For example:

run scripts /mnf -n imagery /AST_20070501 .tif

------------MNF ---------------

Wed Feb 21 12:17:54 2024

Input imagery/AST_20070501 .tif

Signal to noise ratios: [

686.3224 143.42426 104.36482

100.94557 61.796833 35.90177

15.710253 14.701647 7.14548]

MNFs written to: imagery/AST_20070501_mnf .tif

elapsed time : 0.5313358306884766

The code

run scripts /dispms -f imagery /AST_20070501_mnf .tif

-p [1,2,3] -e 3

generates the MNF image shown in Figure 3.12, and Figure 3.13 is a plot of
the signal to noise ratios.

Exercises 123

3.6 Exercises

1. Show for g(x) = sin(2πx) in Equation (3.1), that the corresponding
frequency coefficients in Equation (3.4) are given by

ĝ(−1) = − 1

2i
, ĝ(1) =

1

2i
,

and ĝ(k) = 0 otherwise.

2. Demonstrate Equation (3.6) with the help of Equation (3.7).

3. Calculate the discrete Fourier transform of the sequence 2, 4, 6, 8 from
Equation (3.5). You have to solve four simultaneous equations, the first
of which is

2 = ĝ(0) + ĝ(1) + ĝ(2) + ĝ(3).

Verify your result in Python with

>>> fft.fft([2,4,6,8])/4

4. Prove the Fourier translation property, Equation (3.11).

5. Derive the discrete form of Parseval’s Theorem,

c−1∑

k=0

|ĝ(k)|2 =
1

c

c−1∑

j=0

|g(j)|2,

using the orthogonality property, Equation (3.7).

6. Show that
B2 = {φ0,0(x), ψ0,0(x), ψ1,0(x), ψ1,1(x)},

where
ψ1,0(x) = ψ(2x), ψ1,1(x) = ψ(2x− 1)

is an orthogonal basis for the subspace V ⊥
1 .

7. Prove Equation (3.27).

8. It can be shown that, for any MRA,
∫∞
−∞ φ(x)dx �= 0. Show that this

implies that the refinement coefficients satisfy

∑

k

ck = 2.

9. The cubic B-spline wavelet has the refinement coefficients c0 = c4 =
1/8, c1 = c3 = 1/2, c2 = 3/4. Use the cascade algorithm (in notebook
Chapter3.ipynb) to display the scaling function.

124 Transformations

10. (a) (Strang and Nguyen, 1997) Given the dilation Equation (3.25) with
n non-zero refinement coefficients c0 . . . cn−1, argue on the basis of the
cascade algorithm, that the scaling function φ(x) must be zero outside
the interval [0, n− 1].

(b) Prove that φ(x) is supported on (extends over) the entire interval
[0, n− 1].

11. Complete the Python script in Listing 3.2 to have it store the recon-
structed image to disk.

12. As discussed in Section 3.3.3, for PCA, one estimates the covariance
matrix Σ of an image in terms of the m×N data matrix G, solving the
eigenvalue problem

1

m− 1
G⊤Gw = λw.

Alternatively, consider the singular value decomposition of G itself:

G = UWV ⊤,

where U is m×N , V is N ×m, W is a diagonal N ×N matrix, and

U⊤U = V ⊤V = I.

Explain why the columns of V are the principal axes (eigenvectors) of
the transformation and the corresponding variances (eigenvalues) are
proportional to the squares of the diagonal elements of W .

13. The routine

a 2D two -class image

n1 = np.random.randn (1000)

n2 = n1 + np.random.randn (1000)

B1 = np.zeros ((1000 ,2))

B2 = np.zeros ((1000 ,2))

B1[:,0] = n1

B1[:,1] = n2

B2[:,0] = n1+4

B2[:,1] = n2

G = np.concatenate ((B1,B2))

center the image

G[:,0] = G[:,0] - np.mean (G[:,0])

estimate covariance and diagonalize

C = np.mat(G).T*np.mat(G)/2000

_,U = np.linalg.eigh(C)

slopes of the principal axes

s1 = U[1 ,1]/U[0,1]

s2 = U[1 ,0]/U[0,0]

plot

124 Transformations

10. (a) (Strang and Nguyen, 1997) Given the dilation Equation (3.25) with
n non-zero refinement coefficients c0 . . . cn−1, argue on the basis of the
cascade algorithm, that the scaling function φ(x) must be zero outside
the interval [0, n− 1].

(b) Prove that φ(x) is supported on (extends over) the entire interval
[0, n− 1].

11. Complete the Python script in Listing 3.2 to have it store the recon-
structed image to disk.

12. As discussed in Section 3.3.3, for PCA, one estimates the covariance
matrix Σ of an image in terms of the m×N data matrix G, solving the
eigenvalue problem

1

m− 1
G⊤Gw = λw.

Alternatively, consider the singular value decomposition of G itself:

G = UWV ⊤,

where U is m×N , V is N ×m, W is a diagonal N ×N matrix, and

U⊤U = V ⊤V = I.

Explain why the columns of V are the principal axes (eigenvectors) of
the transformation and the corresponding variances (eigenvalues) are
proportional to the squares of the diagonal elements of W .

13. The routine

a 2D two -class image

n1 = np.random.randn (1000)

n2 = n1 + np.random.randn (1000)

B1 = np.zeros ((1000 ,2))

B2 = np.zeros ((1000 ,2))

B1[:,0] = n1

B1[:,1] = n2

B2[:,0] = n1+4

B2[:,1] = n2

G = np.concatenate ((B1,B2))

center the image

G[:,0] = G[:,0] - np.mean (G[:,0])

estimate covariance and diagonalize

C = np.mat(G).T*np.mat(G)/2000

_,U = np.linalg.eigh(C)

slopes of the principal axes

s1 = U[1 ,1]/U[0,1]

s2 = U[1 ,0]/U[0,0]

plot

Exercises 125

�" �2 0 2 "

�"

�2

0

2

"

FIGURE 3.14

Two classes of observations in a two-dimensional feature space. The solid lines
are the principal axes.

plt.xlim ((-5,5))

plt.ylim ((-5,5))

plt.plot(G[:,0],G[:,1], ’b.’,

[-5,5],[-5* s1 ,5*s1],’k’,

[-5,5],[-5* s2 ,5*s2],’k’)

simulates two classes of observations B1 and B2 in a two-dimensional
feature space and calculates the principal axes of the combined data; see
Figure 3.14. While the classes are nicely separable in two dimensions,
their one-dimensional projections along the x- or y-axes or along either
of the principal axes are obviously not. A dimensionality reduction with
PCA would thus result in a considerable loss of information about the
class structure. Fisher’s linear discriminant projects the observations g
onto a direction w, such that the ratio J(w) of the squared difference
of the class means of the projections v = w⊤g to their overall variance
is maximized (Duda and Hart, 1973). Specifically, define

mi =
1

ni

∑

g∈Bi

g, Ci =
1

ni

∑

g∈Bi

(g −mi)(g −mi)
⊤, i = 1, 2.

126 Transformations

(a) Show that the objective function can be written in the form

J(w) =
w⊤CBw

w⊤(C1 +C2)w
, (3.81)

where CB = (m1 −m2)(m1 −m2)
⊤.

(b) Show that the desired projection direction is given by

w = (C1 +C2)
−1(m1 −m2). (3.82)

(c) Modify the above script to calculate and plot the projection direc-
tion w.

14. Using the code in Listings 3.1 and 3.3 as a starting point, write a Python
module to perform the MNF transformation on the GEE Python API.

15. Show from Equation (3.50) that the variance of the principal compo-
nents is given in terms of the eigenvalues λi of the Gram matrix by

var(w⊤
i g) =

λi

m− 1
.

16. Formulate the primal and dual problems for the MNF transformation.
(Hint: Similarly to the case for PCA, Equation (3.49), a dual problem
can be obtained by writing a ∝ G⊤α.) Write the dual formulation in the
form of a symmetric generalized eigenvalue problem. Can it be solved
with Cholesky decomposition?

126 Transformations

(a) Show that the objective function can be written in the form

J(w) =
w⊤CBw

w⊤(C1 +C2)w
, (3.81)

where CB = (m1 −m2)(m1 −m2)
⊤.

(b) Show that the desired projection direction is given by

w = (C1 +C2)
−1(m1 −m2). (3.82)

(c) Modify the above script to calculate and plot the projection direc-
tion w.

14. Using the code in Listings 3.1 and 3.3 as a starting point, write a Python
module to perform the MNF transformation on the GEE Python API.

15. Show from Equation (3.50) that the variance of the principal compo-
nents is given in terms of the eigenvalues λi of the Gram matrix by

var(w⊤
i g) =

λi

m− 1
.

16. Formulate the primal and dual problems for the MNF transformation.
(Hint: Similarly to the case for PCA, Equation (3.49), a dual problem
can be obtained by writing a ∝ G⊤α.) Write the dual formulation in the
form of a symmetric generalized eigenvalue problem. Can it be solved
with Cholesky decomposition?

4

Filters, Kernels, and Fields

This chapter is somewhat of a catch-all, intended mainly to consolidate and
extend material presented in the preceding chapters and to help lay the foun-
dation for the rest of the book. In Sections 4.1 and 4.2, building on the discrete
Fourier transform introduced in Chapter 3, the concept of discrete convolution
is introduced and filtering, both in the spatial and in the frequency domain,
is discussed. Frequent reference to filtering will be made in Chapter 5 when
we treat enhancement and geometric and radiometric correction of visual/in-
frared and SAR imagery and in the discussion of convolutional neural networks
in Chapter 7. In Section 4.3, it is shown that the discrete wavelet transform of
Chapter 3 is equivalent to a recursive application of low- and high-pass filters
(a filter bank) and a pyramid algorithm for multi-scale image representation
is described and programmed in Python/Numpy. Wavelet pyramid represen-
tations are applied in Chapter 5 for panchromatic sharpening and in Chapter
8 for contextual clustering. Section 4.4 introduces so-called kernelization, in
which the dual representations of linear problems described in Chapters 2 and
3 can be modified to treat nonlinear data. Kernel methods are illustrated with
a non-linear version of the principal components transformation and they will
be met again in Chapter 6 when we consider support vector machines for
supervised classification, in Chapter 7 in connection with anomaly detection,
and in Chapter 8 in the form of a kernel K-means clustering algorithm. Finally,
Section 4.5 describes Gibbs–Markov random fields which are invoked in Chap-
ter 8 in order to include spatial context in unsupervised classification.

4.1 The convolution theorem

The convolution of two continuous functions g(x) and h(x), denoted by h ∗ g,
is defined by the integral

(h ∗ g)(x) =
∫ ∞

−∞
h(t)g(x− t)dt. (4.1)

This definition is symmetric, i.e., h ∗ g = g ∗ h, but often one function, g(x)
for example, is considered to be a signal and the other, h(x), an instrument

DOI: 10.1201/9781003503286-4 127

https://doi.org/10.1201/9781003503286-4

128 Filters, Kernels, and Fields

response or kernel which is more local than g(x) and which “smears” the signal
according to the above prescription.

In the analysis of digital images, of course, we are dealing mainly with
discrete signals. In order to define the discrete analogue of Equation (4.1),
we will again make reference to a signal consisting of a row of pixels g(j),
j = 0 . . . c − 1. The discrete convolution kernel is any array of values h(ℓ),
ℓ = 0 . . .m − 1, where m < c. The array h is referred to as a finite impulse
response (FIR) filter kernel with durationm. The discrete convolution f = h∗g
is then defined as

f(j) =

{∑m−1
ℓ=0 h(ℓ)g(j − ℓ) for m− 1 ≤ j ≤ c− 1
0 otherwise.

(4.2)

Discrete convolution can be performed with the function numpy.convolve().
The restriction on j in Equation (4.2) is necessary because of edge effects: g(j)
is not defined for j < 0. This can be circumvented in convolve() by setting
the keyword mode = ’valid’.

Suppose we extend the kernel h(ℓ) to have the same length m = c as the
signal g(j) by padding it with zeroes, that is, h(ℓ) = 0, ℓ = m. . . c−1. Then
we can write Equation (4.2), assuming edge effects have been accommodated,
simply as

f(j) =
c−1∑

ℓ=0

h(ℓ)g(j − ℓ), j = 0 . . . c− 1. (4.3)

The following theorem provides us with a useful alternative to performing this
calculation explicitly.

THEOREM 4.1

(Convolution Theorem) In the frequency domain, convolution is replaced by

multiplication, that is, h ∗ g ⇔ c · ĥ · ĝ.

Proof: Taking the Fourier transform of Equation (4.3), we have

f̂(k) =
1

c

c−1∑

j=0

f(j)e−i2πkj/c =
1

c

c−1∑

ℓ=0

h(ℓ)
c−1∑

j=0

g(j − ℓ)e−i2πkj/c.

But from the translation property, Equation (3.11),

1

c

c−1∑

j=0

g(j − ℓ)e−i2πkj/c = ĝ(k)e−i2πkℓ/c,

therefore

f̂(k) =

c−1∑

ℓ=0

h(ℓ)e−i2πkℓ/c · ĝ(k) = c · ĥ(k) · ĝ(k).

128 Filters, Kernels, and Fields

response or kernel which is more local than g(x) and which “smears” the signal
according to the above prescription.

In the analysis of digital images, of course, we are dealing mainly with
discrete signals. In order to define the discrete analogue of Equation (4.1),
we will again make reference to a signal consisting of a row of pixels g(j),
j = 0 . . . c − 1. The discrete convolution kernel is any array of values h(ℓ),
ℓ = 0 . . .m − 1, where m < c. The array h is referred to as a finite impulse
response (FIR) filter kernel with durationm. The discrete convolution f = h∗g
is then defined as

f(j) =

{∑m−1
ℓ=0 h(ℓ)g(j − ℓ) for m− 1 ≤ j ≤ c− 1
0 otherwise.

(4.2)

Discrete convolution can be performed with the function numpy.convolve().
The restriction on j in Equation (4.2) is necessary because of edge effects: g(j)
is not defined for j < 0. This can be circumvented in convolve() by setting
the keyword mode = ’valid’.

Suppose we extend the kernel h(ℓ) to have the same length m = c as the
signal g(j) by padding it with zeroes, that is, h(ℓ) = 0, ℓ = m. . . c−1. Then
we can write Equation (4.2), assuming edge effects have been accommodated,
simply as

f(j) =
c−1∑

ℓ=0

h(ℓ)g(j − ℓ), j = 0 . . . c− 1. (4.3)

The following theorem provides us with a useful alternative to performing this
calculation explicitly.

THEOREM 4.1

(Convolution Theorem) In the frequency domain, convolution is replaced by

multiplication, that is, h ∗ g ⇔ c · ĥ · ĝ.

Proof: Taking the Fourier transform of Equation (4.3), we have

f̂(k) =
1

c

c−1∑

j=0

f(j)e−i2πkj/c =
1

c

c−1∑

ℓ=0

h(ℓ)
c−1∑

j=0

g(j − ℓ)e−i2πkj/c.

But from the translation property, Equation (3.11),

1

c

c−1∑

j=0

g(j − ℓ)e−i2πkj/c = ĝ(k)e−i2πkℓ/c,

therefore

f̂(k) =

c−1∑

ℓ=0

h(ℓ)e−i2πkℓ/c · ĝ(k) = c · ĥ(k) · ĝ(k).

The convolution theorem 129

0 000 000 000 000 0000 0000

0000

0

000

0000

0000

FIGURE 4.1

Illustrating the equivalence of convolution in the spatial (upper curve) and
frequency (lower curve) domains.

A full statement of the theorem includes the fact that h · g ⇔ c · ĥ ∗ ĝ, but
that needn’t concern us here. Theorem 4.1 says that we can carry out the
convolution operation, Equation (4.3), by performing the following steps:

1. doing a Fourier transform on the signal and on the (padded) filter,

2. multiplying the two transforms together (and multiplying with c), and

3. performing the inverse Fourier transform on the result.

The FFT, as its name implies, is very fast and ordinary array multiplica-
tion is much faster than convolution. So, depending on the size of the arrays
involved, convolving them in the frequency domain may be the better alterna-
tive. A pitfall when doing convolution in this fashion has to do with so-called
wraparound error. The discrete Fourier transform assumes that both arrays
are periodic. That means that the signal might overlap at the edges with a pre-
ceding or following period of the kernel, thus falsifying the result. The problem
can be avoided by padding both arrays to c+m− 1, see, e.g., Gonzalez and
Woods (2017), Chapter 4. The two alternative convolution procedures are il-
lustrated in the following code, where a single row of image pixels is convolved
with a smoothing filter kernel. They are seen to be completely equivalent; see
Figure 4.1:

130 Filters, Kernels, and Fields

%matplotlib inline

import numpy as np

from numpy import fft

from osgeo import gdal

from osgeo.gdalconst import GA_ReadOnly

import matplotlib .pyplot as plt

get an image band

gdal.AllRegister ()

infile = ’imagery/AST_20070501 .tif’

inDataset = gdal.Open(infile ,GA_ReadOnly)

cols = inDataset .RasterXSize

rows = inDataset .RasterYSize

pick out the middle row of pixels

band = inDataset .GetRasterBand (3)

G = band .ReadAsArray (0, rows /2, cols ,1). flatten()

define a FIR kernel of length m = 5

h = np.array([1 ,2 ,3 ,2 ,1])

convolve in the spatial domain

Gs = np.convolve (h,G)

pad the arrays to c + m - 1

G = np.concatenate ((G,[0, 0, 0, 0]))

hp = G*0

hp[0:5] = h

convolve in the frequency domain

Gf = fft.ifft (fft.fft (G)* fft.fft(hp)) -500

x = np.array(range(1004))

plt.plot (x,Gs,x,Gf)

As a second example, we illustrate the use of convolution for radar ranging,
which is also part of the SAR imaging process (Richards, 2009). In order
to resolve ground features in the range direction (transverse to the direction
of flight of the antenna) frequency modulated bursts (chirps), emitted and
then received by the antenna after reflection from the Earth’s surface, are
convolved with the original signal. This allows discrimination of features on
the ground even when the reflected bursts are not resolved from one another.
This is mimicked in the following script; see Figure 4.2:

def chirp(t,t0):

result = 0.0* t

idx = np.array(range(2000))+ t0

tt = t[idx] - t0

result[idx] = np.sin(2*np.pi*2e -3*(tt+1e-3*tt **2))

130 Filters, Kernels, and Fields

%matplotlib inline

import numpy as np

from numpy import fft

from osgeo import gdal

from osgeo.gdalconst import GA_ReadOnly

import matplotlib .pyplot as plt

get an image band

gdal.AllRegister ()

infile = ’imagery/AST_20070501 .tif’

inDataset = gdal.Open(infile ,GA_ReadOnly)

cols = inDataset .RasterXSize

rows = inDataset .RasterYSize

pick out the middle row of pixels

band = inDataset .GetRasterBand (3)

G = band .ReadAsArray (0, rows /2, cols ,1). flatten()

define a FIR kernel of length m = 5

h = np.array([1 ,2 ,3 ,2 ,1])

convolve in the spatial domain

Gs = np.convolve (h,G)

pad the arrays to c + m - 1

G = np.concatenate ((G,[0, 0, 0, 0]))

hp = G*0

hp[0:5] = h

convolve in the frequency domain

Gf = fft.ifft (fft.fft (G)* fft.fft(hp)) -500

x = np.array(range(1004))

plt.plot (x,Gs,x,Gf)

As a second example, we illustrate the use of convolution for radar ranging,
which is also part of the SAR imaging process (Richards, 2009). In order
to resolve ground features in the range direction (transverse to the direction
of flight of the antenna) frequency modulated bursts (chirps), emitted and
then received by the antenna after reflection from the Earth’s surface, are
convolved with the original signal. This allows discrimination of features on
the ground even when the reflected bursts are not resolved from one another.
This is mimicked in the following script; see Figure 4.2:

def chirp(t,t0):

result = 0.0* t

idx = np.array(range(2000))+ t0

tt = t[idx] - t0

result[idx] = np.sin(2*np.pi*2e -3*(tt+1e-3*tt **2))

The convolution theorem 131

return result

t = np.array(range(5000))

plt.plot(t,chirp(t ,400)+9)

plt.plot(t,chirp(t ,800)+6)

plt.plot(t,chirp(t ,1400)+3)

signal = chirp(t ,400)+ chirp(t ,800)+ chirp(t ,1400)

kernel = chirp(t ,0)[:2000]

kernel = kernel [::-1]

plt.plot(t,signal)

plt.plot (0.003* np.convolve (signal ,kernel ,\

mode =’same ’)-5)

plt.xlabel(’Time ’)

plt.ylim ((-8,12))

Convolution of a two-dimensional array is a straightforward extension of
Equation (4.3). For a two-dimensional kernel h(k, ℓ) which has been appro-

� 0��� 0��� 0��� 0��� 0���

Time

−0

�

0

0�

FIGURE 4.2

Illustrating radar ranging. The upper three signals represent reflections of
a frequency modulated radar pulse (chirp) from three ground points lying
close to one another. Their separation in time is proportional to the distances
separating the ground features along the direction of pulse emission, that
is, transverse to the flight direction. The fourth signal is the superposition
actually received. By convolving it with the emitted signal waveform, the
arrival times are resolved (bottom signal).

132 Filters, Kernels, and Fields

priately padded, the convolution with a c× r pixel array g(i, j) is given by

f(i, j) =
c−1�

k=0

r−1�

ℓ=0

h(k, ℓ)g(i− k, j − ℓ). (4.4)

The Convolution Theorem now reads

h ∗ g ⇔ c · r · ĥ · ĝ, (4.5)

so that convolution can be carried out in the frequency domain using the
Fourier and inverse Fourier transforms in two dimensions, Equations (3.9)
and (3.8).

Convolution in two dimensions will be the basis of our discussion supervised
semantic segmentation with convolutional neural networks in Chapter 7.

4.2 Linear filters

Linear filtering of images in the spatial domain generally involves moving a
template across the image array, forming some specified linear combination of
the pixel intensities within the template and associating the result with the
coordinates of the pixel at the template’s center. Specifically, for a rectangular
template h of dimension (2m+ 1)× (2n+ 1),

f(i, j) =

m�

k=−m

n�

ℓ=−n

h(k, ℓ)g(i+ k, j + ℓ), (4.6)

where g represents the original image array and f the filtered result. The
similarity of Equation (4.6) to convolution, Equation (4.4), is readily apparent
and spatial filtering can be carried out in the frequency domain if desired.
Whether or not the Convolution Theorem should be used to evaluate Equation
(4.6) depends again on the size of the arrays involved. Richards (2012) gives
a detailed discussion and calculates a cost factor

F =
m2

2 log2 c+ 1
· e

for an m×m template on a c× c image. If F > 1, it is economical to convolve
in the frequency domain.

Linear smoothing templates are usually normalized so that
�

k,ℓ h(k, ℓ) = 1.
For example, the 3× 3 “weighted average” filter

h =
1

16





1 2 1
2 4 2
1 2 1



 (4.7)

132 Filters, Kernels, and Fields

priately padded, the convolution with a c× r pixel array g(i, j) is given by

f(i, j) =
c−1�

k=0

r−1�

ℓ=0

h(k, ℓ)g(i− k, j − ℓ). (4.4)

The Convolution Theorem now reads

h ∗ g ⇔ c · r · ĥ · ĝ, (4.5)

so that convolution can be carried out in the frequency domain using the
Fourier and inverse Fourier transforms in two dimensions, Equations (3.9)
and (3.8).

Convolution in two dimensions will be the basis of our discussion supervised
semantic segmentation with convolutional neural networks in Chapter 7.

4.2 Linear filters

Linear filtering of images in the spatial domain generally involves moving a
template across the image array, forming some specified linear combination of
the pixel intensities within the template and associating the result with the
coordinates of the pixel at the template’s center. Specifically, for a rectangular
template h of dimension (2m+ 1)× (2n+ 1),

f(i, j) =

m�

k=−m

n�

ℓ=−n

h(k, ℓ)g(i+ k, j + ℓ), (4.6)

where g represents the original image array and f the filtered result. The
similarity of Equation (4.6) to convolution, Equation (4.4), is readily apparent
and spatial filtering can be carried out in the frequency domain if desired.
Whether or not the Convolution Theorem should be used to evaluate Equation
(4.6) depends again on the size of the arrays involved. Richards (2012) gives
a detailed discussion and calculates a cost factor

F =
m2

2 log2 c+ 1
· e

for an m×m template on a c× c image. If F > 1, it is economical to convolve
in the frequency domain.

Linear smoothing templates are usually normalized so that
�

k,ℓ h(k, ℓ) = 1.
For example, the 3× 3 “weighted average” filter

h =
1

16





1 2 1
2 4 2
1 2 1



 (4.7)

Linear filters 133

might be used to suppress uninteresting small details or random noise in an
image prior to intensity thresholding in order to identify larger objects. How-
ever the Convolution Theorem suggests the alternative approach of designing
filters in the frequency domain right from the beginning. This is often more
intuitive, since suppressing fine details in an image g(i, j) is equivalent to
attenuating high spatial frequencies in its Fourier representation ĝ(k, ℓ) (low-
pass filtering). Conversely, enhancing detail, for instance for performing edge
detection, can be done by attenuating the low frequencies in ĝ(k, ℓ) (high-pass
filtering). Both effects are achieved by transforming g(i, j) to ĝ(k, ℓ), choosing

an appropriate form for ĥ(k, ℓ) in Equation (4.5) without reference to a spatial
filter h, multiplying the two together and then doing the inverse transforma-
tion. The following code illustrates the procedure in the case of a Gaussian
filter:

import matplotlib .pyplot as plt

from mpl_toolkits .mplot3d import Axes3D

from matplotlib import cm

from auxil import auxil1

load the 3rd band from ASTER image

infile = ’imagery/AST_20070501 .tif’

inDataset = gdal.Open(infile ,GA_ReadOnly)

cols = inDataset .RasterXSize

rows = inDataset .RasterYSize

band = inDataset .GetRasterBand (3)

G = band .ReadAsArray (0,0,cols ,rows)

Fourier transform

Gf = fft.fft2 (G)

create a Gaussian filter in frequency space

sigma = 50

Hf = auxil1.gaussfilter (sigma ,1000 ,1000)

low - and high -pass filtering in frequency domain

Gl = np.real(fft.ifft2(Gf*Hf))

Gh = np.real(fft.ifft2(Gf*(1.-Hf)))

plot the filter

fig , ax = plt.subplots(subplot_kw ={"projection ": "3d"})

x, y = np.meshgrid (range(rows),range(cols))

ax.plot_surface (x, y, np.roll (Hf, (rows //2, cols //2),

(0, 1)), cmap=cm.coolwarm)

save and plot the filtered bands

from osgeo import gdal

from osgeo.gdalconst import GDT_Float32

134 Filters, Kernels, and Fields

driver = gdal .GetDriverByName (’Gtiff’)

outDataset = driver.Create(’imagery/Gh.tif’,

cols ,rows ,2, GDT_Float32)

outBand = outDataset .GetRasterBand (1)

outBand.WriteArray (Gl ,0,0)

outBand = outDataset .GetRasterBand (2)

outBand.WriteArray (Gh ,0,0)

%run scripts/dispms -f ’imagery/Gh.tif ’ -p [1,1,1] -e 3

%run scripts/dispms -f ’imagery/Gh.tif ’ -p [2,2,2] -e 3

Figure 4.3 shows the Gaussian low-pass filter

ĥ(k, ℓ) = exp(d2/σ2), d2 =
(
(k − c/2)2 + (ℓ− r/2)2

)

generated by the script; see the gaussfilter() function in the auxil.py

module. The high-pass filter is its complement 1− ĥ(k, ℓ). Figures 4.4 and 4.5
display the result of applying them to a LANDSAT 7 ETM+ image band. We
will return to the subject of low- and high-pass filters in Chapter 5, where we
discuss image enhancement.

0

200

400

600

800

1000

0

200

400

600

800

1000

0.2

0.4

0.6

0.8

1.0

FIGURE 4.3

Gaussian filter in the frequency domain with σ = 50. Zero frequency is at the
center.

134 Filters, Kernels, and Fields

driver = gdal .GetDriverByName (’Gtiff’)

outDataset = driver.Create(’imagery/Gh.tif’,

cols ,rows ,2, GDT_Float32)

outBand = outDataset .GetRasterBand (1)

outBand.WriteArray (Gl ,0,0)

outBand = outDataset .GetRasterBand (2)

outBand.WriteArray (Gh ,0,0)

%run scripts/dispms -f ’imagery/Gh.tif ’ -p [1,1,1] -e 3

%run scripts/dispms -f ’imagery/Gh.tif ’ -p [2,2,2] -e 3

Figure 4.3 shows the Gaussian low-pass filter

ĥ(k, ℓ) = exp(d2/σ2), d2 =
(
(k − c/2)2 + (ℓ− r/2)2

)

generated by the script; see the gaussfilter() function in the auxil.py

module. The high-pass filter is its complement 1− ĥ(k, ℓ). Figures 4.4 and 4.5
display the result of applying them to a LANDSAT 7 ETM+ image band. We
will return to the subject of low- and high-pass filters in Chapter 5, where we
discuss image enhancement.

0

200

400

600

800

1000

0

200

400

600

800

1000

0.2

0.4

0.6

0.8

1.0

FIGURE 4.3

Gaussian filter in the frequency domain with σ = 50. Zero frequency is at the
center.

Wavelets and filter banks 135

0 200 400 600 800

0

00

00

00

00

Gh.tif: equalization: (1, 1, 1): [0, 0, 1000, 1000]

2

4

6

8

FIGURE 4.4

The third band of an ASTER image after filtering with the low-pass Gaussian
filter of Figure 4.3.

4.3 Wavelets and filter banks

Using the Haar scaling function of Section 3.2.1, we were able to carry out
the wavelet transformation in an equivalent vector space. In general, as was
pointed out there, one can’t represent scaling functions and wavelets in this
way. In fact, usually all that we have to work with are the refinement coef-
ficients of Equation (3.25) or (3.28). So how does one perform the wavelet
transformation in this case?

136 Filters, Kernels, and Fields

0 200 400 600 800

0

200

400

600

800

Gh.tif: equalization: (2, 2, 2): [0, 0, 1000, 1000]

FIGURE 4.5

The third band of an ASTER image after filtering with a high-pass Gaussian
filter (complement of Figure 4.3).

4.3.1 One-dimensional arrays

To answer this question, consider again a row of pixel intensities in a satellite
image, which we now write in the form of a row vector f = (f0, f1, . . . fc−1),

∗

where we assume that c = 2n for some integer n.
In the multi resolution analysis (MRA) (see Definition 3.2) generated by a

scaling function φ, such as the Daubechies D4 scaling function of Figure 3.9,
the signal f defines a function fn(x) in the subspace Vn on the interval [0, 1]

∗Rather than our usual g, in order to avoid confusion with the wavelet coefficients gk.

136 Filters, Kernels, and Fields

0 200 400 600 800

0

200

400

600

800

Gh.tif: equalization: (2, 2, 2): [0, 0, 1000, 1000]

FIGURE 4.5

The third band of an ASTER image after filtering with a high-pass Gaussian
filter (complement of Figure 4.3).

4.3.1 One-dimensional arrays

To answer this question, consider again a row of pixel intensities in a satellite
image, which we now write in the form of a row vector f = (f0, f1, . . . fc−1),

∗

where we assume that c = 2n for some integer n.
In the multi resolution analysis (MRA) (see Definition 3.2) generated by a

scaling function φ, such as the Daubechies D4 scaling function of Figure 3.9,
the signal f defines a function fn(x) in the subspace Vn on the interval [0, 1]

∗Rather than our usual g, in order to avoid confusion with the wavelet coefficients gk.

Wavelets and filter banks 137

according to

fn(x) =
c−1∑

j=0

fjφn,j(x) =
c−1∑

j=0

fjφ(2
nx− j). (4.8)

Assume that the Vn basis functions φn,j(x) are appropriately normalized:

�φn,j(x), φn,j′ (x)� = δj,j′ .

Now let us project fn(x) onto the subspace Vn−1, which has a factor of two
coarser resolution. The projection is given by

fn−1(x) =

c/2−1
∑

k=0

�fn(x), φ(2n−1x−k)�φ(2n−1x−k) =

c/2−1
∑

k=0

(Hf)kφ(2
n−1x−k),

where we have introduced the quantity

(Hf)k = �fn(x), φ(2n−1x− k)�, k = 0 . . . c/2− 1. (4.9)

This is the kth component of a vector Hf representing the row of pixels in
Vn−1. The notation implies that H is an operator. Its effect is to average the
pixel vector f and to reduce its length by a factor of two. It is thus a kind of
low-pass filter. More specifically, we have from Equation (4.8),

(Hf)k =

c−1∑

j=0

fj�φ(2nx− j), φ(2n−1x− k)�. (4.10)

The dilation Equation (3.28) with normalized basis functions can be written
in the form

φ(2n−1x− k) =
∑

k′

hk′φ(2nx− 2k − k′). (4.11)

Substituting this into Equation (4.10), we have

(Hf)k =

c−1∑

j=0

fj
∑

k′

hk′�φ(2nx− j), φ(2nx− 2k − k′)�

=
c−1∑

j=0

fj
∑

k′

hk′δj,k′+2k.

Therefore, the filtered pixel vector has components

(Hf)k =

c−1∑

j=0

hj−2kfj , k = 0 . . .
c

2
− 1 (= 2n−1 − 1). (4.12)

Let us examine this vector in the case of the four non-vanishing refinement
coefficients

h0, h1, h2, h3

138 Filters, Kernels, and Fields

of the Daubechies D4 wavelet. The elements of the filtered signal are

(Hf)0 = h0f0 + h1f1 + h2f2 + h3f3

(Hf)1 = h0f2 + h1f3 + h2f4 + h3f5

(Hf)2 = h0f4 + h1f5 + h2f6 + h3f7

...

We recognize the above as the convolution H ∗ f of the low-pass filter kernel
H = (h3, h2, h1, h0) (note the order!) with the vector f (see Equation (4.3)),
except that only every second result is retained. This is referred to as down
sampling or decimation and is illustrated in Figure 4.6.

f HfH

✗✔
↓✖✕

FIGURE 4.6

Schematic representation of Equation (4.12). The symbol ↓ indicates down
sampling by a factor of two.

The residual, that is, the difference between the original vector f and its
projection Hf onto Vn−1, resides in the orthogonal subspace V ⊥

n−1. It is the
projection of fn(x) onto the wavelet basis

ψn−1,j(x), j = 0 . . . 2n−1 − 1.

A similar argument (Exercise 4) then leads us to the high-pass filter G,
which projects fn(x) onto V ⊥

n−1 according to

(Gf)k =

c−1∑

j=0

gj−2kfj , k = 0 . . .
c

2
− 1 = 2n−1 − 1. (4.13)

The gk are related to the hk by Equation (3.33), i.e.,

gk = (−1)kh1−k

so that the non-zero high-pass filter coefficients are actually

g−2 = h3, g−1 = −h2, g0 = h1, g1 = −h0. (4.14)

The concatenated vector

(Hf , Gf) = (f1,d1) (4.15)

138 Filters, Kernels, and Fields

of the Daubechies D4 wavelet. The elements of the filtered signal are

(Hf)0 = h0f0 + h1f1 + h2f2 + h3f3

(Hf)1 = h0f2 + h1f3 + h2f4 + h3f5

(Hf)2 = h0f4 + h1f5 + h2f6 + h3f7

...

We recognize the above as the convolution H ∗ f of the low-pass filter kernel
H = (h3, h2, h1, h0) (note the order!) with the vector f (see Equation (4.3)),
except that only every second result is retained. This is referred to as down
sampling or decimation and is illustrated in Figure 4.6.

f HfH ✖✕
✗✔
↓

FIGURE 4.6

Schematic representation of Equation (4.12). The symbol ↓ indicates down
sampling by a factor of two.

The residual, that is, the difference between the original vector f and its
projection Hf onto Vn−1, resides in the orthogonal subspace V ⊥

n−1. It is the
projection of fn(x) onto the wavelet basis

ψn−1,j(x), j = 0 . . . 2n−1 − 1.

A similar argument (Exercise 4) then leads us to the high-pass filter G,
which projects fn(x) onto V ⊥

n−1 according to

(Gf)k =

c−1∑

j=0

gj−2kfj , k = 0 . . .
c

2
− 1 = 2n−1 − 1. (4.13)

The gk are related to the hk by Equation (3.33), i.e.,

gk = (−1)kh1−k

so that the non-zero high-pass filter coefficients are actually

g−2 = h3, g−1 = −h2, g0 = h1, g1 = −h0. (4.14)

The concatenated vector

(Hf , Gf) = (f1,d1) (4.15)

Wavelets and filter banks 139

is thus the projection of fn(x) onto Vn−1 ⊕ V ⊥
n−1. It has the same length as

the original vector f and is an alternative representation of that vector. Its
generation is illustrated in Figure 4.7 as a filter bank.

f H

G d1

f1✖✕
✗✔
↓

✖✕
✗✔
↓

FIGURE 4.7

Schematic representation of the filter bank H,G.

The projections can be repeated on f1 = Hf to obtain the projection

(Hf1, Gf1, Gf) = (f2,d2,d1) (4.16)

onto Vn−2⊕V ⊥
n−2⊕V ⊥

n−1, and so on until the complete wavelet transformation
has been obtained. Since the filtering process is applied recursively to arrays
which are, at each application, reduced by a factor of two, the procedure
is very fast. It constitutes Mallat’s algorithm (Mallat, 1989) and is also re-
ferred to as the fast wavelet transform, discrete wavelet transform or pyramid
algorithm.

The original vector can be reconstructed at any stage by applying the in-
verse operators H∗ and G∗. For recovery from (f1,d1), these are defined by

(H∗f1)k =

c/2−1
∑

j=0

hk−2jf
1
j , k = 0 . . . c− 1 = 2n − 1, (4.17)

(G∗d1)k =

c/2−1
∑

j=0

gk−2jd
1
j , k = 0 . . . c− 1 = 2n − 1, (4.18)

with analogous definitions for the other stages. To understand what’s hap-
pening, consider the elements of the filtered vector in Equation (4.17). These

140 Filters, Kernels, and Fields

are
(H∗f1)0 = h0f

1
0

(H∗f1)1 = h1f
1
0

(H∗f1)2 = h2f
1
0 + h0f

1
1

(H∗f1)3 = h3f
1
0 + h1f

1
1

(H∗f1)4 = h2f
1
1 + h0f

1
2

(H∗f1)5 = h3f
1
1 + h1f

1
2

...

This is just the convolution of the filter H∗ = (h0, h1, h2, h3) with the vector

f1
0 , 0, f

1
1 , 0, f

1
2 , 0 . . . f

1
c/2−1, 0,

which is called an up sampled array. The filter of Equation (4.17) is represented
schematically in Figure 4.8.

f1 H∗f1H∗✖✕
✗✔
↑

FIGURE 4.8

Schematic representation of the filter H∗. The symbol ↑ indicates up sampling
by a factor of two.

Equation (4.18) is interpreted in a similar way. Finally we add the two
results to get the original pixel vector:

H∗f1 +G∗d1 = f . (4.19)

To see this, write the equation out for a particular value of k:

(H∗f1)k + (G∗d1)k =

c/2−1
�

j=0

hk−2j





c−1�

j′=0

hj′−2jfj′ + gk−2j

c−1�

j′=0

gj′−2jfj′



 .

Combining terms and interchanging the summations, we get

(H∗f1)k + (G∗d1)k =

c−1�

j′=0

fj′

c/2−1
�

j=0

[hk−2jhj′−2j + gk−2jgj′−2j].

Now, using gk = (−1)kh1−k,

(H∗f1)k + (G∗d1)k =

c−1�

j′=0

fj′

c/2−1
�

j=0

[hk−2jhj′−2j + (−1)k+j′h1−k+2jh1−j′+2j].

140 Filters, Kernels, and Fields

are
(H∗f1)0 = h0f

1
0

(H∗f1)1 = h1f
1
0

(H∗f1)2 = h2f
1
0 + h0f

1
1

(H∗f1)3 = h3f
1
0 + h1f

1
1

(H∗f1)4 = h2f
1
1 + h0f

1
2

(H∗f1)5 = h3f
1
1 + h1f

1
2

...

This is just the convolution of the filter H∗ = (h0, h1, h2, h3) with the vector

f1
0 , 0, f

1
1 , 0, f

1
2 , 0 . . . f

1
c/2−1, 0,

which is called an up sampled array. The filter of Equation (4.17) is represented
schematically in Figure 4.8.

f1 H∗f1H∗✖✕
✗✔
↑

FIGURE 4.8

Schematic representation of the filter H∗. The symbol ↑ indicates up sampling
by a factor of two.

Equation (4.18) is interpreted in a similar way. Finally we add the two
results to get the original pixel vector:

H∗f1 +G∗d1 = f . (4.19)

To see this, write the equation out for a particular value of k:

(H∗f1)k + (G∗d1)k =

c/2−1
�

j=0

hk−2j





c−1�

j′=0

hj′−2jfj′ + gk−2j

c−1�

j′=0

gj′−2jfj′



 .

Combining terms and interchanging the summations, we get

(H∗f1)k + (G∗d1)k =

c−1�

j′=0

fj′

c/2−1
�

j=0

[hk−2jhj′−2j + gk−2jgj′−2j].

Now, using gk = (−1)kh1−k,

(H∗f1)k + (G∗d1)k =

c−1�

j′=0

fj′

c/2−1
�

j=0

[hk−2jhj′−2j + (−1)k+j′h1−k+2jh1−j′+2j].

Wavelets and filter banks 141

With the help of Equations (3.26) and (3.27), it is easy to show that the
second summation above is just δj′k. For example, suppose k is even. Then

c/2−1
∑

j=0

[hk−2jhj′−2j + (−1)k+j′h1−k+2jh1−j′+2j] =

h0hj′−k + h2hj′−k+2 + (−1)j
′

[h1h1−j′+k + h3h3−j′+k].

If j′ = k, the right-hand side reduces to

h2
0 + h2

1 + h2
2 + h2

3 = 1,

from Equation (3.26) and the fact that hk = ck/
√
2. For any other value of

j′, the expression is zero. Therefore, we can write

(H∗f1)k + (G∗d1)k =

c−1∑

j′=0

fj′δj′k = fk, k = 0 . . . c− 1, (4.20)

as claimed. The reconstruction of the original vector from f1 and d1 is shown
in Figure 4.9 as a synthesis bank.

4.3.2 Two-dimensional arrays

The extension of the procedure to two-dimensional arrays is straightforward.
Figure 4.10 shows an application of the filters H and G to the rows and
columns of an image array fn(i, j) at scale n. The image is filtered and down
sampled into four quadrants:

• fn−1, the result of applying the low-pass filter H to both rows and
columns plus down sampling;

• CH
n−1, the result of applying the low-pass filter H to the columns and

then the high-pass filter G to the rows plus down sampling;

f1 H∗

G∗

f

d1

+

✖✕
✗✔
↑

✖✕
✗✔
↑

FIGURE 4.9

Schematic representation of the synthesis bank H∗, G∗.

142 Filters, Kernels, and Fields

H

G

H

H

G

G

✖✕
✗✔
↓

✖✕
✗✔
↓

✖✕
✗✔
↓

✖✕
✗✔
↓

✖✕
✗✔
↓

✖✕
✗✔
↓

✲ ✲ ✲

✲

✲

✲

✲ ✲

✲

✲

✲

✲

✲

✲

✲

✲

fn(i, j)

fn−1(i, j)

CH
n−1(i, j)

CV
n−1(i, j)

CD
n−1(i, j)

Columns Rows

FIGURE 4.10

Wavelet filter bank. H is a low-pass filter and G a high-pass filter derived
from the refinement coefficients of the wavelet transformation. The symbol ↓
indicates down sampling by a factor of two.

• CV
n−1, the result of applying the high-pass filter G to the columns and

then the low-pass filter H to the rows plus down sampling; and

• CD
n−1, the result of applying the high-pass filter G to both the columns

and the rows plus down sampling.

The original image can be losslessly recovered by inverting the filter as in
Figure 4.8.

The filter bank of Figure 4.10 (and the corresponding synthesis filter bank)
is implemented in Python as the object class DWTArray, which uses the
Daubechies D4 MRA and is included in the auxil.auxil1.py module; see
Appendix C. An excerpt is shown in Listing 4.1 in which the forward trans-
formation, the method filter(), is implemented.

The following code illustrates the DWT filter with the ASTER image band
3 (in the variable G) from Section 4.2:

from auxil.auxil import DWTArray

instantiate a DWTArray object

dwtarr = DWTArray (G ,1000 ,1000)

data0 = np.copy(dwtarr.data)

filter once

dwtarr. f i l t e r ()

data1 = np.copy(dwtarr.data)

quad1 = np.abs(dwtarr. get_quadrant (1))

142 Filters, Kernels, and Fields

H

G

H

H

G

G

✖✕
✗✔
↓

✖✕
✗✔
↓

✖✕
✗✔
↓

✖✕
✗✔
↓

✖✕
✗✔
↓

✖✕
✗✔
↓

✲ ✲ ✲

✲

✲

✲

✲ ✲

✲

✲

✲

✲

✲

✲

✲

✲

fn(i, j)

fn−1(i, j)

CH
n−1(i, j)

CV
n−1(i, j)

CD
n−1(i, j)

Columns Rows

FIGURE 4.10

Wavelet filter bank. H is a low-pass filter and G a high-pass filter derived
from the refinement coefficients of the wavelet transformation. The symbol ↓
indicates down sampling by a factor of two.

• CV
n−1, the result of applying the high-pass filter G to the columns and

then the low-pass filter H to the rows plus down sampling; and

• CD
n−1, the result of applying the high-pass filter G to both the columns

and the rows plus down sampling.

The original image can be losslessly recovered by inverting the filter as in
Figure 4.8.

The filter bank of Figure 4.10 (and the corresponding synthesis filter bank)
is implemented in Python as the object class DWTArray, which uses the
Daubechies D4 MRA and is included in the auxil.auxil1.py module; see
Appendix C. An excerpt is shown in Listing 4.1 in which the forward trans-
formation, the method filter(), is implemented.

The following code illustrates the DWT filter with the ASTER image band
3 (in the variable G) from Section 4.2:

from auxil.auxil import DWTArray

instantiate a DWTArray object

dwtarr = DWTArray (G ,1000 ,1000)

data0 = np.copy(dwtarr.data)

filter once

dwtarr. f i l t e r ()

data1 = np.copy(dwtarr.data)

quad1 = np.abs(dwtarr. get_quadrant (1))

Wavelets and filter banks 143

Listing 4.1: The filter method for the Python object DWTArray (excerpt
from auxil.auxil1.py).

1 def f i l t e r (self):

2 # single application of filter bank

3 i f self .num_iter == self.max_iter:

4 return 0

5 # get upper left quadrant

6 m = self.lines //2**self.num_iter

7 n = self.samples //2**self .num_iter

8 f0 = self.data [:m, :n]

9 # temporary arrays

10 f1 = np.zeros((m//2, n))

11 g1 = np.zeros((m//2, n))

12 ff1 = np.zeros((m//2, n//2))

13 fg1 = np.zeros((m//2, n//2))

14 gf1 = np.zeros((m//2, n//2))

15 gg1 = np.zeros((m//2, n//2))

16 # filter columns and downsample

17 ds = np.asarray (range(m//2))*2+1

18 for i in range(n):

19 temp = np.convolve (f0[:, i]. ravel(),\

20 self .H, ’same ’)

21 f1[:, i] = temp[ds]

22 temp = np.convolve (f0[:, i]. ravel(),\

23 self.G, ’same ’)

24 g1[:, i] = temp[ds]

25 # filter rows and downsample

26 ds = np.asarray (range(n//2))*2+1

27 for i in range(m//2):

28 temp=np.convolve(f1[i, :], self.H, ’same ’)

29 ff1[i, :] = temp[ds]

30 temp=np.convolve(f1[i, :], self.G, ’same ’)

31 fg1[i, :] = temp[ds]

32 temp=np.convolve(g1[i, :], self.H, ’same ’)

33 gf1[i, :] = temp[ds]

34 temp=np.convolve(g1[i, :], self.G, ’same ’)

35 gg1[i, :]=temp[ds]

36 f0[:m//2, :n//2] = ff1

37 f0[:m//2, n//2:] = fg1

38 f0[m//2:, :n//2] = gf1

39 f0[m//2:, n//2:] = gg1

40 self .data [:m, :n] = f0

41 self .num_iter = self.num_iter +1

144 Filters, Kernels, and Fields

0 200 400 600 800

0

200

400

600

800

(a)

0 200 400 600 800

0

200

400

600

800

(b)

0 200 400 600 800

0

200

400

600

800

(c)

0 100 200 300 400

0

100

200

300

400

(d)

FIGURE 4.11

Application of the filter bank of Figure 4.10 to an image band. (a) The original
1000×1000 image. When padded out to 1024×1024 (1024 = 210), it is a two-
dimensional function f(x, y) in V10 ⊗ V10. (b) Single application of the filter
bank. The result of low-pass filtering the rows and columns is in the upper
left-hand quadrant, i.e., the projection of f onto V9 ⊗ V9. The other three
quadrants represent the high-pass projections onto the orthogonal subspaces
V ⊥
9 ⊗ V9 (upper right), V9 ⊗ V ⊥

9 (lower left), and V ⊥
9 ⊗ V ⊥

9 (lower right). (c)
The result of a second application of the filter bank. (d) Logarithm of the
wavelet coefficients in V ⊥

9 ⊗ V9.

144 Filters, Kernels, and Fields

0 200 400 600 800

0

200

400

600

800

(a)

0 200 400 600 800

0

200

400

600

800

(b)

0 200 400 600 800

0

200

400

600

800

(c)

0 100 200 300 400

0

100

200

300

400

(d)

FIGURE 4.11

Application of the filter bank of Figure 4.10 to an image band. (a) The original
1000×1000 image. When padded out to 1024×1024 (1024 = 210), it is a two-
dimensional function f(x, y) in V10 ⊗ V10. (b) Single application of the filter
bank. The result of low-pass filtering the rows and columns is in the upper
left-hand quadrant, i.e., the projection of f onto V9 ⊗ V9. The other three
quadrants represent the high-pass projections onto the orthogonal subspaces
V ⊥
9 ⊗ V9 (upper right), V9 ⊗ V ⊥

9 (lower left), and V ⊥
9 ⊗ V ⊥

9 (lower right). (c)
The result of a second application of the filter bank. (d) Logarithm of the
wavelet coefficients in V ⊥

9 ⊗ V9.

Kernel methods 145

filter again

dwtarr. f i l t e r ()

data2 = dwtarr.data

plot

f, ax = plt.subplots (2,2, figsize =(8,8))

ax[0 ,0]. imshow(data0 ,cmap=cm.gray)

ax[0 ,0]. set_title (’(a)’)

ax[0,1]. imshow(data1 ,cmap=cm.gray)

ax[0 ,1]. set_title (’(b)’)

ax[1,0]. imshow(data2 ,cmap=cm.gray)

ax[1 ,0]. set_title (’(c)’)

ax[1,1]. imshow(np.log(quad1 -np.min(quad1)+1e-6),

cmap =cm.gray)

ax[1 ,1]. set_title (’(d)’)

The images generated are shown in Figure 4.11. Thus DWTArray() produces
pyramid representations of image bands, which occupy the same amount of
storage as the original image array.

The discrete wavelet transformation will be made use of in Chapter 5 for
image sharpening and in Chapter 8 for unsupervised classification.

4.4 Kernel methods

In Section 2.6.4, it was shown that regularized linear regression (ridge re-
gression) possesses a dual formulation in which observation vectors x(ν),
ν = 1 . . .m, only enter in the form of inner products x(ν)⊤x(ν′). A similar
dual representation was found in Section 3.3.4 for the principal components
transformation. In both cases, the symmetric, positive semi-definite Gram
matrix

XX⊤, X = data matrix =






x(1)⊤

...
x(m)⊤






played a central role. It turns out that many linear methods in pattern recog-
nition have dual representations, ones which can be exploited to extend well-
established linear theories to treat non-linear data. One speaks in this context
of kernel methods or kernelization. An excellent reference for kernel methods
is Shawe-Taylor and Cristianini (2004). In the following, we outline the ba-
sic ideas and then illustrate them with a nonlinear, or kernelized, version of
principal components analysis.

146 Filters, Kernels, and Fields

4.4.1 Valid kernels

Suppose that φ(g) is some nonlinear function which maps the original N -
dimensional Euclidean input space of the observation vectors g (image pixels)
to some non-linear, usually higher-dimensional, inner product space H (see
Definition3.1),

φ : IRN �→ H. (4.21)

The mapping takes a data matrix G into a new data matrix Φ given by

Φ =






φ
�
g(1)

�⊤

...
φ
�
g(m)

�⊤




 . (4.22)

This matrix has dimension m × p, where p ≥ N is the (possibly infinite)
dimension of the nonlinear feature space H.

DEFINITION 4.1 A valid kernel is a function κ that, for all g, g′ ∈ IRN ,
satisfies

κ(g, g′) = φ(g)⊤φ(g′), (4.23)

where φ is given by Equation (4.21). For a set of observations g(ν), ν =
1 . . .m, the m×m matrix K with elements κ(g(ν), g(ν′)) is called the kernel
matrix.

Note that with Equation (4.22), we can write the kernel matrix equivalently
in the form

K = ΦΦ⊤. (4.24)

In Section 2.6.4, we saw that the Gram matrix is symmetric and posi-
tive semi-definite. This is also the case for kernel matrices since, for any m-
component vector x,

x⊤Kx =
�

ν,ν′

xνxν′Kνν′ =
�

ν,ν′

xνxν′φ⊤
ν φν′

= (
�

ν

xνφν)
⊤(

�

ν′

xν′φν′) =
�
�
�

ν

xνφν

�
�
2 ≥ 0.

Positive semi-definiteness of the kernel matrix is in fact a necessary and suffi-
cient condition for any symmetric function κ(g, g′) to be a valid kernel in the
sense of Definition 4.1. This is stated in the following theorem (Shawe-Taylor
and Cristianini, 2004):

THEOREM 4.2

Let k(g, g′) be a symmetric function on the space of observations, that is,
k(g, g′) = k(g′, g). Let {g(ν) | ν = 1 . . .m} be any finite subset of the input
space IRN and define the matrix K with elements

(K)νν′ = k(g(ν), g(ν′)), ν, ν′ = 1 . . .m.

146 Filters, Kernels, and Fields

4.4.1 Valid kernels

Suppose that φ(g) is some nonlinear function which maps the original N -
dimensional Euclidean input space of the observation vectors g (image pixels)
to some non-linear, usually higher-dimensional, inner product space H (see
Definition3.1),

φ : IRN �→ H. (4.21)

The mapping takes a data matrix G into a new data matrix Φ given by

Φ =






φ
�
g(1)

�⊤

...
φ
�
g(m)

�⊤




 . (4.22)

This matrix has dimension m × p, where p ≥ N is the (possibly infinite)
dimension of the nonlinear feature space H.

DEFINITION 4.1 A valid kernel is a function κ that, for all g, g′ ∈ IRN ,
satisfies

κ(g, g′) = φ(g)⊤φ(g′), (4.23)

where φ is given by Equation (4.21). For a set of observations g(ν), ν =
1 . . .m, the m×m matrix K with elements κ(g(ν), g(ν′)) is called the kernel
matrix.

Note that with Equation (4.22), we can write the kernel matrix equivalently
in the form

K = ΦΦ⊤. (4.24)

In Section 2.6.4, we saw that the Gram matrix is symmetric and posi-
tive semi-definite. This is also the case for kernel matrices since, for any m-
component vector x,

x⊤Kx =
�

ν,ν′

xνxν′Kνν′ =
�

ν,ν′

xνxν′φ⊤
ν φν′

= (
�

ν

xνφν)
⊤(

�

ν′

xν′φν′) =
�
�
�

ν

xνφν

�
�
2 ≥ 0.

Positive semi-definiteness of the kernel matrix is in fact a necessary and suffi-
cient condition for any symmetric function κ(g, g′) to be a valid kernel in the
sense of Definition 4.1. This is stated in the following theorem (Shawe-Taylor
and Cristianini, 2004):

THEOREM 4.2

Let k(g, g′) be a symmetric function on the space of observations, that is,
k(g, g′) = k(g′, g). Let {g(ν) | ν = 1 . . .m} be any finite subset of the input
space IRN and define the matrix K with elements

(K)νν′ = k(g(ν), g(ν′)), ν, ν′ = 1 . . .m.

Kernel methods 147

Listing 4.2: Calculating a Gaussian (or linear) kernel matrix (excerpt from
the package auxil.auxil1.py).

1 def kernelMatrix (X, Y=None , gam=None , k=0):

2 i f Y i s None:

3 Y = X

4 i f k == 0:

5 X = np.mat(X)

6 Y = np.mat(Y)

7 return (X*(Y.T), 0)

8 e l se:

9 m = X[:, 0].size

10 n = Y[:, 0].size

11 onesm = np.mat(np.ones (m))

12 onesn = np.mat(np.ones (n))

13 # d = X^2

14 d = np.mat(np.sum(X*X, axis =1)).T*onesn

15 # d = X^2 + Y^2

16 d = d + onesm.T*np.mat(np.sum(Y*Y, axis =1))

17 # d = X^2 + Y^2 - 2XY

18 d = d - 2*np.mat(X)*np.mat(Y).T

19 i f gam i s None :

20 sigma = np.sum(np.sqrt(abs(d)))/(m**2-m)

21 gam = 1/(2*(n*sigma)**2)

22 return (np.exp(-gam*d), gam)

Then k(g, g′) is a valid kernel if and only if K is positive semi-definite.

The motivation for using valid kernels is that it allows us to apply known
linear methods to nonlinear data simply by replacing the inner products in the
dual formulation by an appropriate non-linear, valid kernel. One implication
of Theorem 4.2 is that one can obtain valid kernels without even specifying the
non-linear mapping φ at all. In fact, it is possible to build up whole families
of valid kernels in which the associated mappings are defined implicitly and
are otherwise unknown. An important example, one which we will use later
to illustrate kernel methods, is the Gaussian kernel given by

κrbf(g, g
′) = exp(−γ�g − g′�2). (4.25)

This is an instance of a homogeneous kernel, also called radial basis kernel,
one which depends only on the Euclidean distance between the observations.
It is equivalent to the inner product of two infinite-dimensional feature vector
mappings φ(g) (Exercise 7). Listing 4.2 shows a Python function to calculate
either a Gaussian or a linear kernel matrix. The parameter γ defaults to
1/2(nσ)2, where σ is equal to the mean distance between the observations
in input space, i.e., the average over all test observations of �g(ν) − g(ν′)�,
ν �= ν′ and n is an adjustable scaling factor.

148 Filters, Kernels, and Fields

If we wish to make use of kernels which, like the Gaussian kernel, imply
non-linear mappings φ(g) to which we have no direct access, then clearly we
must work exclusively with inner products

κ(g, g′) = φ(g)⊤φ(g′).

Apart from dual formulations which only involve these inner products, it turns
out that many other properties of the mapped observations φ(g) can also be
expressed purely in terms of the elements κ(g, g′) of the kernel matrix. Thus
the norm or length of the mapping of g in the nonlinear feature space H is

�φ(g)� =
�

φ(g)⊤φ(g) =
�

κ(g, g). (4.26)

The squared distance between any two points in H is given by

�φ(g)− φ(g′)�2 = (φ(g)− φ(g′))⊤(φ(g)− φ(g′))

= φ(g)⊤φ(g) + φ(g′)⊤φ(g′)− 2φ(g)⊤φ(g′)

= κ(g, g) + κ(g′, g′)− 2κ(g, g′).

(4.27)

The 1 × p row vector φ̄
⊤

of column means of the mapped data matrix Φ,
Equation (4.22), can be written in matrix form as, see Equation (2.56),

φ̄
⊤
= 1⊤

mΦ/m, (4.28)

where 1m is a column vector of m ones. The norm of the mean vector φ̄ is
thus

�φ̄� =

�

φ̄
⊤
φ̄ =

1

m

�

1⊤
mΦΦ⊤1m =

1

m

�

1⊤
mK1m.

We are even able to determine the elements of the kernel matrix K̃ which
corresponds to a column centered data matrix Φ̃ (see Section 2.3.1). The rows
of Φ̃ are

φ̃(g(ν)) = (φ(g(ν)) − φ̄)⊤ = φ(g(ν))⊤ − φ̄
⊤
, ν = 1 . . .m. (4.29)

With Equation (4.28), the m× p matrix of m repeated column means of Φ is
given by








φ̄
⊤

φ̄⊤
...

φ̄
⊤








= 1mmΦ/m,

where 1mm is an m×m matrix of ones, so that Equation (4.29) can be written
in matrix form:

Φ̃ = Φ− 1mmΦ/m. (4.30)

148 Filters, Kernels, and Fields

If we wish to make use of kernels which, like the Gaussian kernel, imply
non-linear mappings φ(g) to which we have no direct access, then clearly we
must work exclusively with inner products

κ(g, g′) = φ(g)⊤φ(g′).

Apart from dual formulations which only involve these inner products, it turns
out that many other properties of the mapped observations φ(g) can also be
expressed purely in terms of the elements κ(g, g′) of the kernel matrix. Thus
the norm or length of the mapping of g in the nonlinear feature space H is

�φ(g)� =
�

φ(g)⊤φ(g) =
�

κ(g, g). (4.26)

The squared distance between any two points in H is given by

�φ(g)− φ(g′)�2 = (φ(g)− φ(g′))⊤(φ(g)− φ(g′))

= φ(g)⊤φ(g) + φ(g′)⊤φ(g′)− 2φ(g)⊤φ(g′)

= κ(g, g) + κ(g′, g′)− 2κ(g, g′).

(4.27)

The 1 × p row vector φ̄
⊤

of column means of the mapped data matrix Φ,
Equation (4.22), can be written in matrix form as, see Equation (2.56),

φ̄
⊤
= 1⊤

mΦ/m, (4.28)

where 1m is a column vector of m ones. The norm of the mean vector φ̄ is
thus

�φ̄� =

�

φ̄
⊤
φ̄ =

1

m

�

1⊤
mΦΦ⊤1m =

1

m

�

1⊤
mK1m.

We are even able to determine the elements of the kernel matrix K̃ which
corresponds to a column centered data matrix Φ̃ (see Section 2.3.1). The rows
of Φ̃ are

φ̃(g(ν)) = (φ(g(ν)) − φ̄)⊤ = φ(g(ν))⊤ − φ̄
⊤
, ν = 1 . . .m. (4.29)

With Equation (4.28), the m× p matrix of m repeated column means of Φ is
given by








φ̄
⊤

φ̄⊤
...

φ̄
⊤








= 1mmΦ/m,

where 1mm is an m×m matrix of ones, so that Equation (4.29) can be written
in matrix form:

Φ̃ = Φ− 1mmΦ/m. (4.30)

Kernel methods 149

Therefore,

K̃ = Φ̃Φ̃
⊤
= (Φ− 1mmΦ/m)(Φ− 1mmΦ/m)⊤

= ΦΦ⊤ −ΦΦ⊤1mm/m− 1mmΦΦ⊤/m− 1mmΦΦ⊤1mm/m2

= K−K1mm/m− 1mmK/m+ 1mmK1mm/m2.
(4.31)

Examining this equation component-wise we see that, to center the kernel
matrix, we subtract from each element (K)ij the mean of the ith row and the
mean of the jth column and add to that the mean of the entire matrix. The
following Python function, taken from the module auxil.auxil1.py, takes a
kernel matrix K as input and returns the column-centered kernel matrix K̃:

def center(K):

m = K[:,0]. size

Imm = np.mat(np.ones ((m,m)))

return K - (Imm*K + K*Imm - np.sum(K)/m)/m

4.4.2 Kernel PCA

In Section 3.3.4, it was shown that, in the dual formulation of the principal
components transformation, the projection Pi[g] of an observation g along a
principal axis wi can be expressed as

Pi[g] = w⊤
i g =

m∑

ν=1

(αi)ν g(ν)⊤g, i = 1 . . .N. (4.32)

In this equation, the dual vectors αi are determined by the eigenvectors vi

and eigenvalues λi of the Gram matrix GG⊤ according to

αi = λ
−1/2
i vi, i = 1 . . .m. (4.33)

Kernelization of principal components analysis simply involves replacing the
Gram matrix GG⊤ by the (centered) kernel matrix K̃, Equation (4.31), and
the inner products g(ν)⊤g in Equation (4.32) by the corresponding kernel
function. The projection along the ith principal axes in the nonlinear feature
space H (the ith non-linear principal component) is then

Pi[φ(g)] =

m∑

ν=1

(αi)νκ(g(ν), g), i = 1 . . .m, (4.34)

where the dual vectors αi are still given by Equation (4.33), but vi and λi,
i = 1 . . .m, are the eigenvectors and eigenvalues of the kernel matrix K̃. The
variance of the projections is given by (see Chapter 3, Exercise 15)

var(Pi[φ(g)]) =
λi

m− 1
, i = 1 . . .m.

150 Filters, Kernels, and Fields

Schölkopf et al. (1998) were the first to introduce kernel PCA and Shawe-
Taylor and Cristianini (2004) analyze the method in detail. Canty and Nieslsen
(2012) discuss it in the context of linear and kernel change detection
methods.

In the analysis of remote sensing imagery, the number of observations is
in general very large (order 106 − 108), so that diagonalization of the kernel
matrix is only feasible if the image is sampled. The sampled pixel vectors
g(ν), ν = 1 . . .m, are then referred to as training data and the calculation
of the sampled kernel matrix and its centering/diagonalization constitute the
training phase. A realistic upper limit on m would appear to be about 2000.
Diagonalization of a 2000×2000 symmetric matrix on, e.g., a PC workstation
with Python/NumPy will generally not require page swapping and takes the
order of minutes, with Python/TensorFlow and GPU hardware considerably
faster. However, this is a very small sample (� 10−3). Kwon and Nasrabadi
(2005) suggest extracting the most representative samples with a clustering

FIGURE 4.12

Applying kernel PCA on an ASTER image.

150 Filters, Kernels, and Fields

Schölkopf et al. (1998) were the first to introduce kernel PCA and Shawe-
Taylor and Cristianini (2004) analyze the method in detail. Canty and Nieslsen
(2012) discuss it in the context of linear and kernel change detection
methods.

In the analysis of remote sensing imagery, the number of observations is
in general very large (order 106 − 108), so that diagonalization of the kernel
matrix is only feasible if the image is sampled. The sampled pixel vectors
g(ν), ν = 1 . . .m, are then referred to as training data and the calculation
of the sampled kernel matrix and its centering/diagonalization constitute the
training phase. A realistic upper limit on m would appear to be about 2000.
Diagonalization of a 2000×2000 symmetric matrix on, e.g., a PC workstation
with Python/NumPy will generally not require page swapping and takes the
order of minutes, with Python/TensorFlow and GPU hardware considerably
faster. However, this is a very small sample (� 10−3). Kwon and Nasrabadi
(2005) suggest extracting the most representative samples with a clustering

FIGURE 4.12

Applying kernel PCA on an ASTER image.

Kernel methods 151

0 200 400 600 800

0

200

400

600

800

AST_20070501_kpca.tif: equalization: (1, 2, 3): [0, 0, 1000, 1000]

FIGURE 4.13

RGB composite of the first 3 kernel principal components for an Aster image.

algorithm such as K-means (see Chapter 8). The cluster mean vectors serve
as the training data and may just number a few hundred.

After diagonalization, the generalization phase involves the projection of
each image pixel vector according to Equation (4.34). This means, for every
pixel g, recalculation of the kernels κ(g(ν), g) for ν = 1 . . .m. This is not the
case for linear PCA, where we don’t require the training data to project new
observations.∗ For an image with n pixels, there are, therefore, m× n kernels
involved, generally much too large an array to be held in memory, so that it
is advisable to read in and project the image pixels row-by-row.

∗For this reason, kernel PCA is said to be memory-based.

152 Filters, Kernels, and Fields

See Appendix C for documentation of the Python script kpca.py for per-
forming kernel PCA on multispectral imagery using the Gaussian kernel,
Equation (4.25). Figure 4.12 shows the Jupyter notebook output cell for
kernel PCA performed on an ASTER image using K-means clustering for
sampling:

run scripts /kpca -s 0 imagery/AST_20070501 .tif

The option -s 0 defines the desired number of random samples to be zero,
which triggers as default the K-means algorithm with 100 clusters. An RGB
composite of the first three kernel principal components is shown in Figure
4.13. In Chapter 8, we will look at a kernelized version of the K-means algo-
rithm itself and Chapter 9 will illustrate the use of kernel PCA for change
detection with (simulated) nonlinear data.

4.5 Gibbs–Markov random fields

Random fields are frequently invoked to describe prior expectations in a Bayes-
ian approach to image analysis (Winkler, 1995; Li, 2001). The following brief
introduction will serve to make their use more plausible in the unsupervised
land cover classification context that we will meet in Chapter 8. The devel-
opment adheres closely to Li (2001), but in a notation specific to that used
later in the treatment of image classification.

Image classification is a problem of labeling: Given an observation, that is,
a pixel intensity vector, we ask: “Which class label should be assigned to it?”
If the observations are assumed to have no spatial context, then the labeling
will consist of partitioning the pixels into K disjoint subsets according to
some decision criterion, K being the number of land cover categories present.
If spatial context within the image is also to be taken into account, the labeling
will take place on what is referred to as a regular lattice.

A regular lattice representing an image with c columns and r rows is the
discrete set of sites

I = {(i, j) | 0 ≤ i ≤ c− 1, 0 ≤ j ≤ r − 1}.

By re-indexing, we can write this in a more convenient, linear form

I = {i | 1 ≤ i ≤ n},

where n = rc is the number of pixels. The interrelationship between the sites
is governed by a neighborhood system

N = {Ni | i ∈ I},

152 Filters, Kernels, and Fields

See Appendix C for documentation of the Python script kpca.py for per-
forming kernel PCA on multispectral imagery using the Gaussian kernel,
Equation (4.25). Figure 4.12 shows the Jupyter notebook output cell for
kernel PCA performed on an ASTER image using K-means clustering for
sampling:

run scripts /kpca -s 0 imagery/AST_20070501 .tif

The option -s 0 defines the desired number of random samples to be zero,
which triggers as default the K-means algorithm with 100 clusters. An RGB
composite of the first three kernel principal components is shown in Figure
4.13. In Chapter 8, we will look at a kernelized version of the K-means algo-
rithm itself and Chapter 9 will illustrate the use of kernel PCA for change
detection with (simulated) nonlinear data.

4.5 Gibbs–Markov random fields

Random fields are frequently invoked to describe prior expectations in a Bayes-
ian approach to image analysis (Winkler, 1995; Li, 2001). The following brief
introduction will serve to make their use more plausible in the unsupervised
land cover classification context that we will meet in Chapter 8. The devel-
opment adheres closely to Li (2001), but in a notation specific to that used
later in the treatment of image classification.

Image classification is a problem of labeling: Given an observation, that is,
a pixel intensity vector, we ask: “Which class label should be assigned to it?”
If the observations are assumed to have no spatial context, then the labeling
will consist of partitioning the pixels into K disjoint subsets according to
some decision criterion, K being the number of land cover categories present.
If spatial context within the image is also to be taken into account, the labeling
will take place on what is referred to as a regular lattice.

A regular lattice representing an image with c columns and r rows is the
discrete set of sites

I = {(i, j) | 0 ≤ i ≤ c− 1, 0 ≤ j ≤ r − 1}.

By re-indexing, we can write this in a more convenient, linear form

I = {i | 1 ≤ i ≤ n},

where n = rc is the number of pixels. The interrelationship between the sites
is governed by a neighborhood system

N = {Ni | i ∈ I},

Gibbs–Markov random fields 153

4 8

4

4

4

✰ ✰

Pixel i Pixel i✰ ✰

4-neighborhood 8-neighborhood

8

8 8

88

8

8

FIGURE 4.14

Pixel neighborhoods Ni.

(a) (b)

FIGURE 4.15

(a) Cliques for a 4-neighborhood. (a) and (b) Cliques for an 8-neighborhood.

where Ni is the set of pixels neighboring site i. Two frequently used neigh-
borhood systems are shown in Figure 4.14.

The pair (I,N) may be thought of as constituting an undirected graph
in which the pixels are nodes and the neighborhood system determines the
edges between the nodes. Thus any two neighboring pixels are represented
by two nodes connected by an edge. A clique is a single node or a subset
of nodes which are all directly connected to one another in the graph by
edges, i.e., they are mutual Neighbors. Figure 4.15 shows the possible cliques
for the neighborhoods of Figure 4.14. (Note that one also distinguishes their
orientation.) We will denote by the symbol C the set of all cliques in I .

Next, let us introduce a set of class labels

K = {k | 1 ≤ k ≤ K},

K being the number of possible classes present in the image. Assigning a class
label to a site on the basis of measurement is a random experiment, so we
associate with the ith site a discrete random variable Li representing its label.

154 Filters, Kernels, and Fields

The set L of all such random variables

L = {L1 . . . Ln}
is called a random field on I. The possible realizations of Li are labels ℓi ∈ K.
A specific realization for the entire lattice, for example a classified image or
thematic map, is a configuration ℓ, given by

ℓ = {ℓ1 . . . ℓn}, ℓi ∈ K,

and the space of all configurations is the Cartesian product set

L =

n times
︷ ︸︸ ︷

K ⊗K . . .⊗K .

Thus there are Kn possible configurations. For each site i, the probability
that the site has label ℓi is

Pr(Li = ℓi) = Pr(ℓi),

and the joint probability for configuration ℓ is

Pr(L1 = ℓ1, L2 = ℓ2 . . . Ln = ℓn) = Pr(L = ℓ) = Pr(ℓ).

DEFINITION 4.2 The random field L is said to be a Markov random
field (MRF) on I with respect to neighborhood system N if and only if

Pr(ℓ) > 0 for all ℓ ∈ L, (4.35)

which is referred to as the positivity condition, and

Pr(ℓi | ℓ1 . . . ℓi−1, ℓi+1 . . . ℓn) = Pr(ℓi | ℓj , j ∈ Ni), (4.36)

called the Markovianity condition.

The Markovianity condition in the above definition simply says that a label
assignment can be influenced only by neighboring pixels.

DEFINITION 4.3 The random field L constitutes a Gibbs random field
(GRF) on I with respect to neighborhood system N if and only if it obeys a
Gibbs distribution. A Gibbs distribution has density function

p(ℓ) =
1

Z
exp(−βU(ℓ)), (4.37)

where β is a constant and Z is the normalization factor

Z =
∑

ℓ∈L
exp(−βU(ℓ)), (4.38)

154 Filters, Kernels, and Fields

The set L of all such random variables

L = {L1 . . . Ln}
is called a random field on I. The possible realizations of Li are labels ℓi ∈ K.
A specific realization for the entire lattice, for example a classified image or
thematic map, is a configuration ℓ, given by

ℓ = {ℓ1 . . . ℓn}, ℓi ∈ K,

and the space of all configurations is the Cartesian product set

L =

n times
︷ ︸︸ ︷

K ⊗K . . .⊗K .

Thus there are Kn possible configurations. For each site i, the probability
that the site has label ℓi is

Pr(Li = ℓi) = Pr(ℓi),

and the joint probability for configuration ℓ is

Pr(L1 = ℓ1, L2 = ℓ2 . . . Ln = ℓn) = Pr(L = ℓ) = Pr(ℓ).

DEFINITION 4.2 The random field L is said to be a Markov random
field (MRF) on I with respect to neighborhood system N if and only if

Pr(ℓ) > 0 for all ℓ ∈ L, (4.35)

which is referred to as the positivity condition, and

Pr(ℓi | ℓ1 . . . ℓi−1, ℓi+1 . . . ℓn) = Pr(ℓi | ℓj , j ∈ Ni), (4.36)

called the Markovianity condition.

The Markovianity condition in the above definition simply says that a label
assignment can be influenced only by neighboring pixels.

DEFINITION 4.3 The random field L constitutes a Gibbs random field
(GRF) on I with respect to neighborhood system N if and only if it obeys a
Gibbs distribution. A Gibbs distribution has density function

p(ℓ) =
1

Z
exp(−βU(ℓ)), (4.37)

where β is a constant and Z is the normalization factor

Z =
∑

ℓ∈L
exp(−βU(ℓ)), (4.38)

Gibbs–Markov random fields 155

and where the energy function U(ℓ) is represented as a sum of contributing
terms for each clique

U(ℓ) =
∑

c∈C
Vc(ℓ). (4.39)

Vc(ℓ) is called a clique potential for clique c in configuration ℓ. If clique po-
tentials are independent of the location of the clique within the lattice, then
the GRF is said to be homogeneous. If Vc is independent of the orientation of
c, then the GRF is isotropic.

According to this definition, configurations in a GRF with low clique poten-
tials are more probable than those with high clique potentials. The parameter
β is an “inverse temperature.” For small β (high temperature), all configura-
tions become equally probable, irrespective of their associated energy.

A MRF is characterized by its local property (Markovianity) and a GRF
by its global property (Gibbs distribution). It turns out that the two are
equivalent:

THEOREM 4.3

(Hammersley–Clifford Theorem) A random field L is an MRF on I with re-
spect to N if and only if L is a GRF on I with respect to N .

Proof: The proof of the “if” part of the theorem, that a random field is an
MRF if it is a GRF, is straightforward.∗ Write the conditional probability on
the left-hand side of Equation (4.36) as

Pr(ℓi | ℓ1 . . . ℓi−1, ℓi+1 . . . ℓn) = Pr(ℓi | ℓI−{i}).

Here I−{i} is the set if all sites except the ith one. According to the definition
of conditional probability, Equation (2.59),

Pr(ℓi | ℓI−{i}) =
Pr(ℓi, ℓI−{i})

Pr(ℓI−{i})
.

Equivalently,

Pr(ℓi | ℓI−{i}) =
Pr(ℓ)

∑

ℓi∈K Pr(ℓ′)
,

where ℓ′ = {ℓ1 . . . ℓi−1, ℓ
′
i, ℓi+1 . . . ℓn} is any configuration which agrees with ℓ

at all sites except possibly i. With Equations (4.37) and (4.39),

Pr(ℓi | ℓI−{i}) =
exp(−∑

c∈C Vc(ℓ))
∑

ℓi∈K exp(−∑

c∈C Vc(ℓ′))
.

∗The “only if” part is more difficult, see Li (2001).

156 Filters, Kernels, and Fields

Now divide the set of cliques C into two sets, namely A, consisting of those
cliques which contain site i, and B, consisting of the rest. Then

Pr(ℓi | ℓI−{i}) =
[exp(−∑

c∈A Vc(ℓ))][exp(−
∑

c∈B Vc(ℓ))]
∑

ℓi∈K[exp(−
∑

c∈A Vc(ℓ′))][exp(−
∑

c∈B Vc(ℓ′))]
.

But for all cliques c ∈ B, Vc(ℓ) = Vc(ℓ
′) and the second factors in numerator

and denominator cancel. Thus

Pr(ℓi | ℓI−{i}) =
exp(−∑

c∈A Vc(ℓ))
∑

ℓi∈K exp(−∑

c∈A Vc(ℓ′))
.

This shows that the probability for ℓi is conditional only on the potentials of
the cliques containing site i; in other words, that the random field is an MRF.

The above theorem allows one to express the joint probability for a config-
uration ℓ of image labels in terms of the local clique potentials Vc(ℓ). We shall
encounter an example in Chapter 8 in connection with unsupervised image
classification.

4.6 Exercises

1. Give an explicit expression for the convolution of the array (g(0) . . . g(5))
with the array (h(0), h(1), h(2)) as it would be calculated with the
Python function numpy.convolve().

2. Modify the script on page 130 to convolve a two-dimensional array with
the filter of Equation (4.7), both in the spatial and frequency domains.

3. Modify the gaussfilter() function in the auxil.auxil1.py module
to implement the Butterworth filter

h(k, ℓ) =
1

1 + (d/d0)2n
, (4.40)

where d0 is a width parameter and n = 1, 2

4. Demonstrate Equation (4.13).

5. (Press et al., 2002) Consider a row of c = 8 pixels represented by the
row vector

f = (f0, f1 . . . f7).

156 Filters, Kernels, and Fields

Now divide the set of cliques C into two sets, namely A, consisting of those
cliques which contain site i, and B, consisting of the rest. Then

Pr(ℓi | ℓI−{i}) =
[exp(−∑

c∈A Vc(ℓ))][exp(−
∑

c∈B Vc(ℓ))]
∑

ℓi∈K[exp(−
∑

c∈A Vc(ℓ′))][exp(−
∑

c∈B Vc(ℓ′))]
.

But for all cliques c ∈ B, Vc(ℓ) = Vc(ℓ
′) and the second factors in numerator

and denominator cancel. Thus

Pr(ℓi | ℓI−{i}) =
exp(−∑

c∈A Vc(ℓ))
∑

ℓi∈K exp(−∑

c∈A Vc(ℓ′))
.

This shows that the probability for ℓi is conditional only on the potentials of
the cliques containing site i; in other words, that the random field is an MRF.

The above theorem allows one to express the joint probability for a config-
uration ℓ of image labels in terms of the local clique potentials Vc(ℓ). We shall
encounter an example in Chapter 8 in connection with unsupervised image
classification.

4.6 Exercises

1. Give an explicit expression for the convolution of the array (g(0) . . . g(5))
with the array (h(0), h(1), h(2)) as it would be calculated with the
Python function numpy.convolve().

2. Modify the script on page 130 to convolve a two-dimensional array with
the filter of Equation (4.7), both in the spatial and frequency domains.

3. Modify the gaussfilter() function in the auxil.auxil1.py module
to implement the Butterworth filter

h(k, ℓ) =
1

1 + (d/d0)2n
, (4.40)

where d0 is a width parameter and n = 1, 2

4. Demonstrate Equation (4.13).

5. (Press et al., 2002) Consider a row of c = 8 pixels represented by the
row vector

f = (f0, f1 . . . f7).

Exercises 157

Assuming that f is periodic (repeats itself), the application of low-
and high-pass filter Equations (4.9) and (4.13) can be accomplished by
multiplication of the column vector f⊤ with the matrix

W =














h0 h1 h2 h3 0 0 0 0
h3 −h2 h1 −h0 0 0 0 0
0 0 h0 h1 h2 h3 0 0
0 0 h3 −h2 h1 −h0 0 0
0 0 0 0 h0 h1 h2 h3

0 0 0 0 h3 −h2 h1 −h0

h2 h3 0 0 0 0 h0 h1

h1 −h0 0 0 0 0 h3 −h2














.

(a) Prove that W is an orthonormal matrix (its inverse is equal to its
transpose).

(b) In the transformed vector Wf⊤, the components of f1 = Hf and
d1 = Gf are interleaved. They can be sorted to give the vector (f1,d1).
When the matrix

W 1 =






h0 h1 h2 h3

h3 −h2 h1 −h0

h2 h3 h0 h1

h1 −h0 h3 −h2






is then applied to the smoothed vector (f1)⊤ and the result again sorted,
we obtain the complete discrete wavelet transformation of f , namely
(f2,d2,d1). Moreover, by applying the inverse transformation to a unit
vector, the D4 wavelet itself can be generated. Write a Python routine
to plot the D4 wavelet by performing the inverse transformation on the
vector (0, 0, 0, 1, 0 . . .0)

� �� �

1024

.

6. Most filtering operations with the Fourier transform have their wavelet
counterparts. Write a Python script to perform high-pass filtering with
the discrete wavelet transformation. See Appendix C and the Python
class DWTArray in the auxil.auxil1 module to understand how code
works, then proceed as follows:

• Perform a single wavelet transform with the DWTArray object method
filter.

• Zero the upper left quadrant in the transformed image with a null
array using the method put quadrant.

• Then invert the transformation with the method invert().

• Display the result with dispms.py.

7. Show that the Gaussian kernel, Equation (4.25), is equivalent to the
inner product of infinite-dimensional mappings φ(g).

158 Filters, Kernels, and Fields

8. Modify the program in Listing 4.2 to additionally calculate the kernel
matrix for the polynomial kernel function

κpoly(gi, gj) = (γg⊤
i gj + r)d. (4.41)

The parameter r is called the bias, d the degree of the kernel function.

9. Shawe-Taylor and Cristianini (2004) prove (in their Proposition 5.2)
that the centering operation minimizes the average eigenvalue of the
kernel matrix. Write a Python script to do the following:

(a) Generate m random N -dimensional observation vectors and, with
routine in Listing 4.2, calculate the m×m Gaussian kernel matrix.

(b) Determine its eigenvalues in order to confirm that the kernel matrix
is positive semi-definite.

(c) Center it (see the code following Equation (4.31)).

(d) Re-determine the eigenvalues and verify that their average value
has decreased.

(e) Do the same using the polynomial kernel matrix from the preceding
exercise.

10. A kernelized version of the dual formulation for the MNF transformation
(see Chapter 3, Exercise 16) leads to a generalized eigenvalue problem
having the form

Ax = λBx, (4.42)

where A and B are symmetric but not full rank. Let the symmetric
m×m matrix B have rank r < m, eigenvalues λ1 . . . λm, and eigenvec-
tors u1 . . .um. Show that Equation (4.42) can be re-formulated as an
ordinary symmetric eigenvalue problem by writing B as a product of
matrix square roots B = B1/2B1/2. The square root is defined as

B1/2 = PΛ1/2P⊤,

where P = (u1 . . .ur) and Λ = Diag(λ1 . . . λr).

11. Does a 24-neighborhood (the 5× 5 array centered at a location i) have
more clique types than are shown in Figure 4.15?

158 Filters, Kernels, and Fields

8. Modify the program in Listing 4.2 to additionally calculate the kernel
matrix for the polynomial kernel function

κpoly(gi, gj) = (γg⊤
i gj + r)d. (4.41)

The parameter r is called the bias, d the degree of the kernel function.

9. Shawe-Taylor and Cristianini (2004) prove (in their Proposition 5.2)
that the centering operation minimizes the average eigenvalue of the
kernel matrix. Write a Python script to do the following:

(a) Generate m random N -dimensional observation vectors and, with
routine in Listing 4.2, calculate the m×m Gaussian kernel matrix.

(b) Determine its eigenvalues in order to confirm that the kernel matrix
is positive semi-definite.

(c) Center it (see the code following Equation (4.31)).

(d) Re-determine the eigenvalues and verify that their average value
has decreased.

(e) Do the same using the polynomial kernel matrix from the preceding
exercise.

10. A kernelized version of the dual formulation for the MNF transformation
(see Chapter 3, Exercise 16) leads to a generalized eigenvalue problem
having the form

Ax = λBx, (4.42)

where A and B are symmetric but not full rank. Let the symmetric
m×m matrix B have rank r < m, eigenvalues λ1 . . . λm, and eigenvec-
tors u1 . . .um. Show that Equation (4.42) can be re-formulated as an
ordinary symmetric eigenvalue problem by writing B as a product of
matrix square roots B = B1/2B1/2. The square root is defined as

B1/2 = PΛ1/2P⊤,

where P = (u1 . . .ur) and Λ = Diag(λ1 . . . λr).

11. Does a 24-neighborhood (the 5× 5 array centered at a location i) have
more clique types than are shown in Figure 4.15?

5

Image Enhancement and Correction

In preparation for the treatment of supervised/unsupervised classification and
change detection, the subjects of the last four chapters of this book, the present
chapter focuses on preprocessing methods. These fall into the two general
categories of image enhancement (Sections 5.1 through 5.4) and geometric
correction (Sections 5.5 and 5.6). Discussion mainly focuses on the processing
of optical/infrared image data. However, Section 5.4 introduces polarimetric
SAR imagery and treats the problem of speckle removal.

5.1 Lookup tables and histogram functions

Gray-level enhancements of an image are easily accomplished by means of
lookup tables. For byte-encoded data, for example, the pixel intensities g(i, j)
are used to index into the array

LUT [k], k = 0 . . . 255,

the entries of which also lie between 0 and 255. These entries can be chosen
to implement simple histogram processing, such as linear stretching, satura-
tion, equalization, etc. The pixel values g(i, j) are replaced, for r rows and c
columns, by

f(i, j) = LUT [g(i, j)], 0 ≤ i ≤ r − 1, 0 ≤ j ≤ c− 1. (5.1)

In deriving the appropriate transformations it is convenient to think of the
normalized histogram of pixel intensities g as a probability density pg(g) of

Listing 5.1: Histogram equalization (from the auxil.auxil1.py module.)

1 def histeqstr (x):

2 x = bytestr (x)

3 # histogram equalization stretch

4 hist ,bin_edges = np.histogram (x ,256 ,(0 ,256))

5 cdf = hist .cumsum ()

6 lut = 255* cdf/ f l oat (cdf[-1])

7 return np.interp(x,bin_edges [:-1], lut)

DOI: 10.1201/9781003503286-5 159

https://doi.org/10.1201/9781003503286-5

160 Image Enhancement and Correction

a continuous random variable G, and the lookup table itself as a continuous
transformation function, i.e.,

f(g) = LUT (g),

where both g and f are restricted to the interval [0, 1]. We will illustrate the
technique for the case of histogram equalization. First of all, we claim that the
function

f(g) = LUT (g) =

∫ g

0

pg(t)dt (5.2)

corresponds to histogram equalization in the sense that a random variable F =
LUT (G) has uniform probability density. To see this, note that the function
LUT in Equation (5.2) satisfies the monotonicity condition of Theorem 2.1.
Therefore, with Equation (2.13), the PDF for F is

pf(f) = pg(g)

∣
∣
∣
∣

dg

df

∣
∣
∣
∣
.

Differentiating Equation (5.2),

df

dg
= pg(g),

dg

df
=

1

pg(g)

and, since all probabilities are positive on the interval [0,1],

pf (f) = pg(g)

∣
∣
∣
∣

1

pg(g)

∣
∣
∣
∣
= 1,

so F indeed has a uniform density. Histogram equalization can be approxi-
mated for byte-encoded data by first replacing pg(g) by the normalized his-
togram

pg(gk) =
nk

n
, k = 0 . . . 255, n =

255∑

j=0

nj ,

where nk is the number of pixels with gray value gk. Approximating the
integral in Equation (5.2) by a summation and normalizing to the interval
[0,255] this leads to the lookup table

LUT (gk) = 255 ·
k∑

j=0

pg(gk) = 255 ·
k∑

j=0

nj

n
, k = 0 . . . 255. (5.3)

The result is rounded down to the nearest integer. Because of the quantization,
the resulting histogram will in general not be perfectly uniform, however the
desired effect of spreading the intensities to span the full range of gray-scale
values will be achieved.

The closely related procedure of histogram matching, which is the transfor-
mation of an image histogram to match the histogram of another image or

160 Image Enhancement and Correction

a continuous random variable G, and the lookup table itself as a continuous
transformation function, i.e.,

f(g) = LUT (g),

where both g and f are restricted to the interval [0, 1]. We will illustrate the
technique for the case of histogram equalization. First of all, we claim that the
function

f(g) = LUT (g) =

∫ g

0

pg(t)dt (5.2)

corresponds to histogram equalization in the sense that a random variable F =
LUT (G) has uniform probability density. To see this, note that the function
LUT in Equation (5.2) satisfies the monotonicity condition of Theorem 2.1.
Therefore, with Equation (2.13), the PDF for F is

pf(f) = pg(g)

∣
∣
∣
∣

dg

df

∣
∣
∣
∣
.

Differentiating Equation (5.2),

df

dg
= pg(g),

dg

df
=

1

pg(g)

and, since all probabilities are positive on the interval [0,1],

pf (f) = pg(g)

∣
∣
∣
∣

1

pg(g)

∣
∣
∣
∣
= 1,

so F indeed has a uniform density. Histogram equalization can be approxi-
mated for byte-encoded data by first replacing pg(g) by the normalized his-
togram

pg(gk) =
nk

n
, k = 0 . . . 255, n =

255∑

j=0

nj ,

where nk is the number of pixels with gray value gk. Approximating the
integral in Equation (5.2) by a summation and normalizing to the interval
[0,255] this leads to the lookup table

LUT (gk) = 255 ·
k∑

j=0

pg(gk) = 255 ·
k∑

j=0

nj

n
, k = 0 . . . 255. (5.3)

The result is rounded down to the nearest integer. Because of the quantization,
the resulting histogram will in general not be perfectly uniform, however the
desired effect of spreading the intensities to span the full range of gray-scale
values will be achieved.

The closely related procedure of histogram matching, which is the transfor-
mation of an image histogram to match the histogram of another image or

High-pass spatial filtering and feature extraction 161

some specified function, can be similarly derived using the probability density
approximation; see Gonzalez and Woods (2017) for a detailed discussion.

Listing 5.1 shows a straightforward Python implementation of histogram
equalization stretching. It makes efficient use of the numpy.interp() func-
tion to interpolate each intensity in the input array x between the histogram
bin edges bin edges[:-1] (just the sequence [0, 1 . . .255]) and the normalized
lookup table values lut, Equation (5.3). An example is given in the accom-
panying Jupyter notebook for Chapter 5.

5.2 High-pass spatial filtering and feature extraction

In Chapter 4, Section 4.2, we introduced filtering in the spatial domain, giv-
ing a simple example of a low-pass filter; see Equation (4.7). We shall now

0 100 200 300 400 500

0

100

200

300

400

500

FIGURE 5.1

Power spectrum image of the Sobel
filter h1 of Equation (5.5). Low spa-
tial frequencies are at the center of
the image.

examine high-pass filtering for edge
and contour detection, techniques
that are used to implement low-level
feature matching for, e.g., image co-
registration. We will also see how
to access the highly optimized algo-
rithms of the Open Source Computer
Vision Library OpenCV from the
Python interpreter and look at simi-
lar functionality on the GEE Python
API. Edge detection is also used
in conjunction with feature extrac-
tion for scene analysis and for im-
age segmentation, one of the subjects
treated in Chapter 8. Localized im-
age features and/or segments can of-
ten be conveniently characterized by
their geometric moments. A short de-
scription of geometric moments to-
gether with a Python script to cal-
culate them will also be presented in
this section.

5.2.1 Sobel filter

We begin by introducing the gradient operator in two dimensions

∇ =
∂

∂x
= i

∂

∂x1
+ j

∂

∂x2
, (5.4)

162 Image Enhancement and Correction

0 50 100 150

0

25

50

75

100

125

150

175

FIGURE 5.2

Sobel edge detection on a spatial subset of the 3N
band of the Jülich ASTER image (Figure 1.1).

where i and j are unit
vectors in the image
plane in the horizontal
and vertical directions,
respectively. In a two-
dimensional image rep-
resented by the con-
tinuous scalar function
g(x1, x2) = g(x), ∇g(x)
is a vector in the di-
rection of the maximum
rate of change of gray-
scale intensity.

Of course, the inten-
sity values are actually
discrete, so the partial
derivatives must be ap-
proximated. For exam-
ple, we can use the Sobel
operators:

∂g(x)

∂x1

�
�
�
x=(i,j)

≈ [g(i− 1, j − 1) + 2g(i− 1, j) + g(i− 1, j + 1)]

− [g(i+ 1, j − 1) + 2g(i+ 1, j) + g(i+ 1, j + 1)] =: ∇1(x)

∂g(x)

∂x2

�
�
�
x=(i,j)

≈ [g(i− 1, j − 1) + 2g(i, j − 1) + g(i+ 1, j − 1)]

− [g(i− 1, j + 1) + 2g(i, j + 1) + g(i+ 1, j + 1)] =: ∇2(x),

which are equivalent to the two-dimensional spatial filters

h1 =





1 0 −1
2 0 −2
1 0 −1



 and h2 =





1 2 1
0 0 0
−1 −2 −1



, (5.5)

respectively; see Equation (4.6). The magnitude of the gradient at pixel x =
(i, j) is

�∇g(i, j))� =
�

∇1(x)2 +∇2(x)2.

Edge detection can be achieved by calculating the filtered image

f(i, j) = �∇(g(i, j)�

and setting an appropriate threshold. The Sobel filters, Equations (5.5), in-
volve differences, a characteristic of high-pass filters. They have the property

162 Image Enhancement and Correction

0 50 100 150

0

25

50

75

100

125

150

175

FIGURE 5.2

Sobel edge detection on a spatial subset of the 3N
band of the Jülich ASTER image (Figure 1.1).

where i and j are unit
vectors in the image
plane in the horizontal
and vertical directions,
respectively. In a two-
dimensional image rep-
resented by the con-
tinuous scalar function
g(x1, x2) = g(x), ∇g(x)
is a vector in the di-
rection of the maximum
rate of change of gray-
scale intensity.

Of course, the inten-
sity values are actually
discrete, so the partial
derivatives must be ap-
proximated. For exam-
ple, we can use the Sobel
operators:

∂g(x)

∂x1

�
�
�
x=(i,j)

≈ [g(i− 1, j − 1) + 2g(i− 1, j) + g(i− 1, j + 1)]

− [g(i+ 1, j − 1) + 2g(i+ 1, j) + g(i+ 1, j + 1)] =: ∇1(x)

∂g(x)

∂x2

�
�
�
x=(i,j)

≈ [g(i− 1, j − 1) + 2g(i, j − 1) + g(i+ 1, j − 1)]

− [g(i− 1, j + 1) + 2g(i, j + 1) + g(i+ 1, j + 1)] =: ∇2(x),

which are equivalent to the two-dimensional spatial filters

h1 =





1 0 −1
2 0 −2
1 0 −1



 and h2 =





1 2 1
0 0 0
−1 −2 −1



, (5.5)

respectively; see Equation (4.6). The magnitude of the gradient at pixel x =
(i, j) is

�∇g(i, j))� =
�

∇1(x)2 +∇2(x)2.

Edge detection can be achieved by calculating the filtered image

f(i, j) = �∇(g(i, j)�

and setting an appropriate threshold. The Sobel filters, Equations (5.5), in-
volve differences, a characteristic of high-pass filters. They have the property

High-pass spatial filtering and feature extraction 163

of returning near-zero values when traversing regions of constant intensity,
and positive or negative values in regions of changing intensity. The following
code computes the Fourier power spectrum of h1; see Figure 5.1.

import numpy as np

from numpy import fft

import matplotlib .pyplot as plt

from matplotlib import cm

import auxil.auxil1 as auxil

create filter

g = np.zeros((512, 512),dtype= f l oat)

g[:3,:3] = np.array([[1,0,-1], [2,0,-2],[1,0,-1]])

shift Fourier transform to center

a = np.reshape (range(512**2) ,(512 ,512))

i = a % 512

j = a // 512

g = (-1)**(i+j)*g

compute power spectrum and display in a linear stretch

p = np.abs(fft.fft2(g))**2

plt.imshow(auxil.linstr(p), cmap=cm.jet)

The Fourier spectrum of h2 is the same, but rotated by 90 degrees.
The Sobel filter is available in the SciPy package. Here we apply it to a

spatial subset of the 3N spectral band from the ASTER image; see Figure
5.2:

from osgeo import gdal

from osgeo.gdalconst import GA_ReadOnly

from scipy import ndimage

gdal.AllRegister ()

infile = ’imagery/AST_20070501 .tif’

inDataset = gdal.Open(infile ,GA_ReadOnly)

cols = inDataset .RasterXSize

rows = inDataset .RasterYSize

band = inDataset .GetRasterBand (3)

image = band .ReadAsArray (0,0,cols ,rows).astype(f l oat)

edges0 = ndimage.sobel(image ,axis =0)

edges1 = ndimage.sobel(image ,axis =1)

combine and perform 2% saturated linear stretch

edges = auxil.lin2pcstr (np.abs(edges0+edges1))

plt.imshow(edges [200:400 ,200:400] , cmap=cm.gray)

Note that the edge widths vary considerably, depending upon the contrast
and abruptness (strength) of the edge.

164 Image Enhancement and Correction

5.2.2 Laplacian-of-Gaussian filter

0 100 200 300 400 500

0

100

200

300

400

500

FIGURE 5.3

Power spectrum image of the
Laplacian filter, Equation (5.6).
Low spatial frequencies are at the
center of the image.

The magnitude of the gradient reaches
a maximum at an edge in a gray-scale
image. The second derivative, on the
other hand, is zero at that maximum and
has opposite signs immediately on either
side. This offers the possibility to deter-
mine edge positions to the accuracy of
one pixel by using second derivative fil-
ters. Thin edges, as we will see later, are
useful in automatic determination of in-
variant features for image registration.
The second derivatives of the image

intensities can be calculated with the
Laplacian operator,

∇2 = ∇⊤∇ =
∂2

∂x2
1

+
∂2

∂x2
2

,

see Equation 5.4. The Laplacian ∇2g(x)
is an isotropic scalar function which is
zero whenever the gradient magnitude is

maximum. Like the gradient operator, the Laplacian operator can also be
approximated by a spatial filter, for example,

h =





0 1 0
1 −4 1
0 1 0



 . (5.6)

Its power spectrum is depicted in Figure 5.3. This filter has the desired prop-
erty of returning zero in regions of constant intensity and in regions of con-
stantly varying intensity (e.g., ramps), but non-zero at their onset or ter-
mination. Laplacian filters tend to be very sensitive to image noise. Often a
low-pass Gaussian filter is first used to smooth the image before the Laplacian
filter is applied. This is equivalent to calculating the Laplacian of the Gaus-
sian itself and then using the result to derive a high-pass filter. Recall from
Chapter 2 that the normalized Gauss function in two dimensions is given by

1

2πσ2
exp

�

− 1

2σ2
(x2

1 + x2
2)

�

,

where the parameter σ determines its extent. Taking the second partial deriva-
tives gives the Laplacian-of-Gaussian (LoG) filter

1

2πσ6
(x2

1 + x2
2 − 2σ2) exp

�

− 1

2σ2
(x2

1 + x2
2)

�

. (5.7)

164 Image Enhancement and Correction

5.2.2 Laplacian-of-Gaussian filter

0 100 200 300 400 500

0

100

200

300

400

500

FIGURE 5.3

Power spectrum image of the
Laplacian filter, Equation (5.6).
Low spatial frequencies are at the
center of the image.

The magnitude of the gradient reaches
a maximum at an edge in a gray-scale
image. The second derivative, on the
other hand, is zero at that maximum and
has opposite signs immediately on either
side. This offers the possibility to deter-
mine edge positions to the accuracy of
one pixel by using second derivative fil-
ters. Thin edges, as we will see later, are
useful in automatic determination of in-
variant features for image registration.
The second derivatives of the image

intensities can be calculated with the
Laplacian operator,

∇2 = ∇⊤∇ =
∂2

∂x2
1

+
∂2

∂x2
2

,

see Equation 5.4. The Laplacian ∇2g(x)
is an isotropic scalar function which is
zero whenever the gradient magnitude is

maximum. Like the gradient operator, the Laplacian operator can also be
approximated by a spatial filter, for example,

h =





0 1 0
1 −4 1
0 1 0



 . (5.6)

Its power spectrum is depicted in Figure 5.3. This filter has the desired prop-
erty of returning zero in regions of constant intensity and in regions of con-
stantly varying intensity (e.g., ramps), but non-zero at their onset or ter-
mination. Laplacian filters tend to be very sensitive to image noise. Often a
low-pass Gaussian filter is first used to smooth the image before the Laplacian
filter is applied. This is equivalent to calculating the Laplacian of the Gaus-
sian itself and then using the result to derive a high-pass filter. Recall from
Chapter 2 that the normalized Gauss function in two dimensions is given by

1

2πσ2
exp

�

− 1

2σ2
(x2

1 + x2
2)

�

,

where the parameter σ determines its extent. Taking the second partial deriva-
tives gives the Laplacian-of-Gaussian (LoG) filter

1

2πσ6
(x2

1 + x2
2 − 2σ2) exp

�

− 1

2σ2
(x2

1 + x2
2)

�

. (5.7)

High-pass spatial filtering and feature extraction 165

The script below illustrates the use of a LoG filter (stored as a 16×16 array
in the variable filt; see the Jupyter notebook) with determination of sign
change to generate thin edges or contours from a gray-scale image.

pad the ASTER image

impad = np.zeros((rows +16, cols +16))

impad[:rows ,: cols] = image

pad the filter as well

filtpad = impad*0.0

filtpad [:16 ,:16] = filt

filter in frequency domain

im = np.real(fft.ifft2(fft.fft2 (impad)*fft.fft2 (filtpad)))

get zero -crossings

idx = np.where((im*np.roll (im ,1,axis =0)<0) | \

(im*np.roll(im ,1,axis =1) <0))

get edge strengths

edges0 = ndimage.sobel(im ,axis =0)

edges1 = ndimage.sobel(im ,axis =1)

edges = auxil.lin2pcstr (np.abs(edges0+edges1))

assign edge strengths at zero -crossings

im1 = 0.0* im

im1[idx] = edges[idx]

plt.imshow(im1 [200:400 ,200:400] , cmap =’gray ’)

�

2

4

6

8

0�

02

04

�

2

4

6

8

0�

02

04

−�.�05

−�.�0�

−�.��5

�.���

FIGURE 5.4

Laplacian-of-Gaussian filter on a 16 × 16
grid, with σ = 2.

The filtering is carried out,
after appropriate padding, in
the frequency domain. The
zero crossings in the horizon-
tal and vertical directions are
determined from the products
of the image with a copy of
itself shifted by one pixel to
the right and upward, respec-
tively. Sign changes correspond
to negative values in the prod-
uct arrays and these define the
contours. The contour pixel in-
tensities are set equal to the
magnitude of the local gradi-
ent as determined by a Sobel
filter. This allows the applica-

tion of subsequent thresholding to identify the more significant contours. The
surface plot of the two-dimensional LoG filter is shown in Figure 5.4; the fil-
tered image is displayed in Figure 5.5. Comparing with Figure 5.2, one sees
that the contours are thinner. The “spaghetti” effect is characteristic.

166 Image Enhancement and Correction

5.2.3 OpenCV and GEE algorithms

The Open Source Computer Vision Library OpenCV, although primarily in-
tended for real time vision applications, is a treasure chest of useful imaging
processing routines, all of which are easily accessible from Python. Here is a
quote from the website opencv.org:

0 50 100 150

0

25

50

75

100

125

150

175

FIGURE 5.5

Image contours from a spatial subset of the 3N
band of the Jülich ASTER image (Figure 1.1)
calculated from the Laplacian of Gaussian filter.

OpenCV is released un-
der a BSD license and
hence it’s free for both
academic and commer-
cial use. It has C++,
C, Python and Java
interfaces and supports
Windows, Linux, Mac
OS, iOS and Android.
OpenCV was designed
for computational effi-
ciency and with a strong
focus on real-time appli-
cations.

In the following, we
will demonstrate the use
of OpenCV for remote
sensing imagery analy-
sis with two well-known
feature detection algo-
rithms, and in the re-
mainder of the text, we
will continue to make
free use of the library
for many of our Python

scripts. There are also built-in functions on the Google Earth Engine platform
for server-side feature extraction, and we will examine one of them briefly as
well.

5.2.3.1 Corner detection

In a gray-scale image, the local (scalar) variogram in a neighborhood of the
pixel position x can be estimated as

γ(h) =
〈
(g(x)− g(x+ h))2

〉
, (5.8)

where �·� signifies the average over the pixel’s neighborhood; see Equation
(3.68). A corner, or in general some interesting feature such as a localized
bright or dark spot, will be characterized by a large value for γ(h) in all

https://opencv.org

166 Image Enhancement and Correction

5.2.3 OpenCV and GEE algorithms

The Open Source Computer Vision Library OpenCV, although primarily in-
tended for real time vision applications, is a treasure chest of useful imaging
processing routines, all of which are easily accessible from Python. Here is a
quote from the website opencv.org:

0 50 100 150

0

25

50

75

100

125

150

175

FIGURE 5.5

Image contours from a spatial subset of the 3N
band of the Jülich ASTER image (Figure 1.1)
calculated from the Laplacian of Gaussian filter.

OpenCV is released un-
der a BSD license and
hence it’s free for both
academic and commer-
cial use. It has C++,
C, Python and Java
interfaces and supports
Windows, Linux, Mac
OS, iOS and Android.
OpenCV was designed
for computational effi-
ciency and with a strong
focus on real-time appli-
cations.

In the following, we
will demonstrate the use
of OpenCV for remote
sensing imagery analy-
sis with two well-known
feature detection algo-
rithms, and in the re-
mainder of the text, we
will continue to make
free use of the library
for many of our Python

scripts. There are also built-in functions on the Google Earth Engine platform
for server-side feature extraction, and we will examine one of them briefly as
well.

5.2.3.1 Corner detection

In a gray-scale image, the local (scalar) variogram in a neighborhood of the
pixel position x can be estimated as

γ(h) =
〈
(g(x)− g(x+ h))2

〉
, (5.8)

where �·� signifies the average over the pixel’s neighborhood; see Equation
(3.68). A corner, or in general some interesting feature such as a localized
bright or dark spot, will be characterized by a large value for γ(h) in all

High-pass spatial filtering and feature extraction 167

directions of the displacement vector h. An edge, on the other hand, would
exhibit a large variation only in the directions nearly orthogonal to itself, and
featureless regions would have small variations in all directions. Following
Harris and Stephens (1988), we first of all write down the first-order Taylor
series approximation to g(x+ h) in Equation (5.8):

g(x+ h) ≈ g(x) + h⊤ ∂g(x)

∂x
= g(x) + h⊤∇g(x);

see Equation (1.55). With this, the variogram γ(h) can be approximately
written as

γ(h) ≈
��

h⊤∇g(x)
�2

�

,

or, expanding the quadratic term,

γ(h) ≈ h⊤ �
∇g(x)∇g(x)⊤

�
h

= h⊤
�



�
∂g(x)
∂x1

�2
∂g(x)
∂x1

∂g(x)
∂x2

∂g(x)
∂x1

∂g(x)
∂x2

�
∂g(x)
∂x2

�2





�

h

≈ h⊤
�

�∇1(x)
2� �∇1(x)∇2(x)�

�∇1(x)∇2(x)� �∇2(x)
2�

�

h = h⊤Ah,

(5.9)

where ∇i(x), i = 1, 2, are the Sobel gradient operators introduced in Section
5.2.1. The matrix A in Equation (5.9) is symmetric and also positive definite
for sufficiently large neighborhoods. In its principal axis coordinate system,
therefore, we can write Equation (5.9) as

γ(h) ≈ h⊤
�
λ1 0
0 λ2

�

h = λ1h
2
1 + λ2h

2
2,

where λ1 and λ2 are the real positive eigenvalues of A. If the variogram γ(h)
is to be large for all directions h, then clearly both eigenvalues must be large.
The OpenCV filter function cornerMinEigenVal() calculates the minimum
eigenvalue of A for a square neighborhood of each pixel in a scene, returning
the result as a floating point image. This image can then be thresholded to
distinguish significant corners or other features.

5.2.3.2 Canny edge detector

The Canny edge detector (Canny, 1986),∗ which is similar to the corner de-
tection algorithm, is based upon a gradient filter such as the Sobel filter.
First a Gaussian smoothing filter is applied to suppress noise, followed by the
gradient filter, whereby both the magnitude of the gradient

�∇g(i, j))� =
�

∇1(x)2 +∇2(x)2

∗See also http://en.wikipedia.org/wiki/Canny edge detector.

http://en.wikipedia.org/wiki/Canny_edge_detector

168 Image Enhancement and Correction

Listing 5.2: Corner and Canny edge detection with OpenCV.

1 #!/usr/bin/env python3

2 # Name: ex5_1.py

3 import numpy as np

4 import os, sys , getopt

5 from osgeo import gdal

6 from osgeo.gdalconst import GA_ReadOnly ,GDT_Float32

7 import cv2 as cv

8

9 def main ():

10 options ,args = getopt.getopt(sys.argv [1:],’b:a:’)

11 b = 1

12 algorithm = 1

13 for option , value in options:

14 i f option == ’-b’:

15 b = eval(value)

16 e l i f option == ’-a’:

17 algorithm = eval(value)

18 gdal. AllRegister ()

19 infile = args [0]

20 path = os.path.dirname(infile)

21 basename = os.path .basename (infile)

22 root , ext = os.path .splitext(basename)

23 inDataset = gdal.Open(infile ,GA_ReadOnly)

24 cols = inDataset .RasterXSize

25 rows = inDataset .RasterYSize

26 rasterBand = inDataset .GetRasterBand (b)

27 band = rasterBand .ReadAsArray (0,0,cols ,rows) \

28 .astype(np.uint8)

29 i f algorithm ==1:

30 # corner detection , window size 7x7

31 result = cv.cornerMinEigenVal (band , 7)

32 outfile = path+’/’+root +’_corner ’+ext

33 e l se:

34 # edge detection , window size 7x7

35 result = cv.Canny(band ,50 ,150)

36 outfile = path+’/’+root +’_canny’+ext

37 # write to disk

38 driver = inDataset .GetDriver ()

39 outDataset = driver.Create(outfile ,

40 cols ,rows ,1,GDT_Float32)

41 outBand = outDataset .GetRasterBand (1)

42 outBand.WriteArray (result ,0,0)

43 outBand.FlushCache ()

44 outDataset = None; inDataset = None

45 print(’result�written�to�%s’%outfile)

46 i f __name__ == ’__main__ ’:

47 main ()

168 Image Enhancement and Correction

Listing 5.2: Corner and Canny edge detection with OpenCV.

1 #!/usr/bin/env python3

2 # Name: ex5_1.py

3 import numpy as np

4 import os, sys , getopt

5 from osgeo import gdal

6 from osgeo.gdalconst import GA_ReadOnly ,GDT_Float32

7 import cv2 as cv

8

9 def main ():

10 options ,args = getopt.getopt(sys.argv [1:],’b:a:’)

11 b = 1

12 algorithm = 1

13 for option , value in options:

14 i f option == ’-b’:

15 b = eval(value)

16 e l i f option == ’-a’:

17 algorithm = eval(value)

18 gdal. AllRegister ()

19 infile = args [0]

20 path = os.path.dirname(infile)

21 basename = os.path .basename (infile)

22 root , ext = os.path .splitext(basename)

23 inDataset = gdal.Open(infile ,GA_ReadOnly)

24 cols = inDataset .RasterXSize

25 rows = inDataset .RasterYSize

26 rasterBand = inDataset .GetRasterBand (b)

27 band = rasterBand .ReadAsArray (0,0,cols ,rows) \

28 .astype(np.uint8)

29 i f algorithm ==1:

30 # corner detection , window size 7x7

31 result = cv.cornerMinEigenVal (band , 7)

32 outfile = path+’/’+root +’_corner ’+ext

33 e l se:

34 # edge detection , window size 7x7

35 result = cv.Canny(band ,50 ,150)

36 outfile = path+’/’+root +’_canny’+ext

37 # write to disk

38 driver = inDataset .GetDriver ()

39 outDataset = driver.Create(outfile ,

40 cols ,rows ,1,GDT_Float32)

41 outBand = outDataset .GetRasterBand (1)

42 outBand .WriteArray (result ,0,0)

43 outBand .FlushCache ()

44 outDataset = None; inDataset = None

45 print(’result�written�to�%s’%outfile)

46 i f __name__ == ’__main__ ’:

47 main ()

High-pass spatial filtering and feature extraction 169

as well as its direction

θ = arctan

(∇2(x)

∇1(x)

)

are calculated. From here on we quote the excellent Wikipedia article:

Given estimates of the image gradients, a search is then carried
out to determine if the gradient magnitude assumes a local max-
imum in the gradient direction. ... From this stage, referred to as
non-maximum suppression, a set of edge points, in the form of
a binary image, is obtained. These are sometimes referred to as
“thin edges.”

Large intensity gradients are more likely to correspond to edges
than small intensity gradients. It is in most cases impossible to
specify a threshold at which a given intensity gradient switches
from corresponding to an edge into not doing so. Therefore Canny
uses thresholding with hysteresis.∗

Thresholding with hysteresis requires two thresholds high and
low. Making the assumption that important edges should be along
continuous curves in the image allows us to follow a faint section of
a given line and to discard a few noisy pixels that do not constitute
a line but have produced large gradients. Therefore we begin by
applying a high threshold. This marks out the edges we can be
fairly sure are genuine. Starting from these, using the directional
information derived earlier, edges can be traced through the image.
While tracing an edge, we apply the lower threshold, allowing us
to trace faint sections of edges as long as we find a starting point.

Once this process is complete we have a binary image where
each pixel is marked as either an edge pixel or a non-edge pixel.
From complementary output from the edge tracing step, the binary
edge map obtained in this way can also be treated as a set of edge
curves.

A simple stand-alone script demonstrating corner and Canny edge detec-
tion is shown in Listing 5.2. For corner detection, the chosen image band is
processed with cornerMinEigenVal() using a 7×7 window, line 31. The lower
and upper hysteresis thresholds for the Canny edge detector are 50 and 150,
respectively, line 35. An example is shown in Figure 5.6, which was created in
the Jupyter notebook with the commands

%run scripts/ex5_1 -b 3 -a 1 imagery/AST_20070501 .tif

%run scripts/ex5_1 -b 3 -a 2 imagery/AST_20070501 .tif

%run scripts/dispms -f imagery /AST_20070501_corner .tif \

-e 3 \

-d [200 ,200 ,200 ,200] \

∗In Section 5.6, we will mention a similar hysteresis approach for contour detection.

170 Image Enhancement and Correction

0 25 50 75 100 125 150 175

0

25

50

75

100

125

150

175

AST_20070501_corner.tif: linear2pc: [1, 1, 1]: [200, 200, 200, 200]

0 25 50 75 100 125 150 175

0

25

50

75

100

125

150

175

AST_20070501_canny.tif: linear: [1, 1, 1]: [200, 200, 200, 200]

FIGURE 5.6

Corners and edges detected from the same spatial subset of the 3N band of
the ASTER image as Figure 5.5. Left: the minimum eigenvalue intensities in
a linear 2% histogram stretch. Right: the Canny edges.

-F imagery/AST_20070501_canny .tif -E 2 \

-D [200 ,200 ,200 ,200]

In the first two lines, the spectral band is selected with the -b option and the
algorithm with the -a option (1=corner, 2=Canny).

5.2.3.3 Canny edge detection on the GEE

The GEE has a Canny edge detector, too, and the following script applies it
this time to a full scene LANDSAT 7 ETM+ acquisition:

import ee

ee.Initialize ()

im = ee.Image(

’LANDSAT/LE07/C02/T1_RT_TOA /LE07_197025_20010626 ’) \

.select(’B4’)

edges = ee.Algorithms .CannyEdgeDetector (im ,0.2)

gdexporttask = ee.batch.Export.image.toAsset(edges ,

description =’assetExportTask ’,

assetId=’projects /ee-mortcanty /assets/CRC5/canny’,

scale=30,

maxPixels =1e9)

After determining the edge image from the VNIR band B4, it is exported to
GEE assets. The GEE version only allows a single lower threshold. This was
set to 0.2 since the image is TOA reflectance and intensities are in the interval
[0, 1]. Figure 5.7 is a screen shot from the GEE code editor displaying part of
the edge image superimposed onto the background satellite map.

170 Image Enhancement and Correction

0 25 50 75 100 125 150 175

0

25

50

75

100

125

150

175

AST_20070501_corner.tif: linear2pc: [1, 1, 1]: [200, 200, 200, 200]

0 25 50 75 100 125 150 175

0

25

50

75

100

125

150

175

AST_20070501_canny.tif: linear: [1, 1, 1]: [200, 200, 200, 200]

FIGURE 5.6

Corners and edges detected from the same spatial subset of the 3N band of
the ASTER image as Figure 5.5. Left: the minimum eigenvalue intensities in
a linear 2% histogram stretch. Right: the Canny edges.

-F imagery/AST_20070501_canny .tif -E 2 \

-D [200 ,200 ,200 ,200]

In the first two lines, the spectral band is selected with the -b option and the
algorithm with the -a option (1=corner, 2=Canny).

5.2.3.3 Canny edge detection on the GEE

The GEE has a Canny edge detector, too, and the following script applies it
this time to a full scene LANDSAT 7 ETM+ acquisition:

import ee

ee.Initialize ()

im = ee.Image(

’LANDSAT/LE07/C02/T1_RT_TOA /LE07_197025_20010626 ’) \

.select(’B4’)

edges = ee.Algorithms .CannyEdgeDetector (im ,0.2)

gdexporttask = ee.batch.Export.image.toAsset(edges ,

description =’assetExportTask ’,

assetId=’projects /ee-mortcanty /assets/CRC5/canny’,

scale=30,

maxPixels =1e9)

After determining the edge image from the VNIR band B4, it is exported to
GEE assets. The GEE version only allows a single lower threshold. This was
set to 0.2 since the image is TOA reflectance and intensities are in the interval
[0, 1]. Figure 5.7 is a screen shot from the GEE code editor displaying part of
the edge image superimposed onto the background satellite map.

High-pass spatial filtering and feature extraction 171

FIGURE 5.7

Edges from band 4 of a LANDSAT 7 ETM+ image with the GEE Canny edge
detector. Map data (c)2023 Google.

5.2.4 Invariant moments

Moments and functions of moments are employed extensively in image clas-
sification, target identification and image scene analysis (Prokop and Reeves,
1992). A feature such as, for instance, a closed contour extracted from the
image in Figure 5.5 can be described in terms of its geometric moments. Let
S denote the set of pixels belonging to the feature. The (discrete) geometric
moment of order p, q of the feature is defined by (see, e.g., Haberächer (1995);
Gonzalez and Woods (2017))

mpq =
∑

i,j∈S

g(i, j)ipjq, p, q = 0, 1, 2 (5.10)

Thus m00 is the total intensity of the feature or, in a binary representation in
which g(i, j) = 1 if (i, j) ∈ S and g(i, j) = 0; otherwise, m00 is the number of
pixels. The center of gravity (x̄1, x̄2) of the feature is

x̄1 =
m10

m00
, x̄2 =

m01

m00
. (5.11)

172 Image Enhancement and Correction

The translation-invariant centralized moments µpq are obtained by shifting
the origin to the center of gravity,

µpq =
∑

i,j∈S

g(i− x̄1, j − x̄2)(i− x̄1)
p(j − x̄2)

q (5.12)

and the normalized centralized moments ηpq by the following normalization;
see Exercise 5,

ηpq =
1

µ
(p+q)/2+1
00

µpq. (5.13)

The normalized centralized moments are, apart from effects of digital quan-
tization, invariant under both translations and scale changes. For example, in
a binary representation the moment η20 is

η20 =
1

µ2
00

µ20 =
1

n2

∑

i,j∈S

(i − x̄1)
2 =

1

n

∑

i∈S

(i − x̄1)
2,

where n = |S|, the cardinality of S. This is just the variance of the feature in
the x1 direction.

Finally, we can define Hu moments, which are functions of the normalized
centralized moments of orders p + q ≤ 3 and which are invariant under ro-
tations; see Hu (1962) or Gonzalez and Woods (2017). There are seven such
moments in all, the first four of which are given by

h1 = η20 + η02

h2 = (η20 − η02)
2 + 4η211

h3 = (η30 − 3η12)
2 + (η03 − 3η21)

2

h4 = (η30 + η12)
2 + (η03 + η21)

2.

(5.14)

To illustrate their rotational invariance, consider a rotation of the coordinate
axes through the angle θ with origin at the center of gravity of a feature. A
point (i, j) transforms according to

(
i′

j′

)

=

(
cos θ sin θ
− sin θ cos θ

)(
i
j

)

= A

(
i
j

)

.

Then, again in a binary image, the first invariant moment in the rotated
coordinate system is

h1 =
1

n2

∑

i′,j′∈S

(i′
2
+ j′

2
) =

1

n2

∑

i′,j′∈S

(i′, j′)

(
i′

j′

)

=
1

n2

∑

i,j∈S

(i, j)A⊤A

(
i
j

)

=
1

n2

∑

i,j∈S

(i2 + j2),

since A⊤A = I.

172 Image Enhancement and Correction

The translation-invariant centralized moments µpq are obtained by shifting
the origin to the center of gravity,

µpq =
∑

i,j∈S

g(i− x̄1, j − x̄2)(i− x̄1)
p(j − x̄2)

q (5.12)

and the normalized centralized moments ηpq by the following normalization;
see Exercise 5,

ηpq =
1

µ
(p+q)/2+1
00

µpq. (5.13)

The normalized centralized moments are, apart from effects of digital quan-
tization, invariant under both translations and scale changes. For example, in
a binary representation the moment η20 is

η20 =
1

µ2
00

µ20 =
1

n2

∑

i,j∈S

(i − x̄1)
2 =

1

n

∑

i∈S

(i − x̄1)
2,

where n = |S|, the cardinality of S. This is just the variance of the feature in
the x1 direction.

Finally, we can define Hu moments, which are functions of the normalized
centralized moments of orders p + q ≤ 3 and which are invariant under ro-
tations; see Hu (1962) or Gonzalez and Woods (2017). There are seven such
moments in all, the first four of which are given by

h1 = η20 + η02

h2 = (η20 − η02)
2 + 4η211

h3 = (η30 − 3η12)
2 + (η03 − 3η21)

2

h4 = (η30 + η12)
2 + (η03 + η21)

2.

(5.14)

To illustrate their rotational invariance, consider a rotation of the coordinate
axes through the angle θ with origin at the center of gravity of a feature. A
point (i, j) transforms according to

(
i′

j′

)

=

(
cos θ sin θ
− sin θ cos θ

)(
i
j

)

= A

(
i
j

)

.

Then, again in a binary image, the first invariant moment in the rotated
coordinate system is

h1 =
1

n2

∑

i′,j′∈S

(i′
2
+ j′

2
) =

1

n2

∑

i′,j′∈S

(i′, j′)

(
i′

j′

)

=
1

n2

∑

i,j∈S

(i, j)A⊤A

(
i
j

)

=
1

n2

∑

i,j∈S

(i2 + j2),

since A⊤A = I.

High-pass spatial filtering and feature extraction 173

0 50 100 150

0

25

50

75

100

125

150

175

FIGURE 5.8

An “aircraft” feature translated, scaled
and rotated.

The Hu moments are strictly in-
variant only in the limit of con-
tinuous shapes. The discrete na-
ture of image features introduces
errors which become especially se-
vere for higher-order moments.
Liao and Pawlak (1996) give cor-
rection formulae for the geomet-
ric moments, Equation (5.10),
which reduce the error. In or-
der to demonstrate the invari-
ance, the following code generates
the features shown in Figure 5.8
and then calls cv.moments() fol-
lowed by cv.HuMoments() from
the OpenCV package in order to
calculate the logarithms of the in-
variant moments; see the explana-
tion of these two functions below.

Only the first four moments are printed.

from scipy.ndimage import rotate

Airplanes

A = np.array([[0,0,0,0,0,1,0,0,0,0,0],

[0,0,0,0,1,1,1,0,0,0,0],

[0,0,0,0,1,1,1,0,0,0,0],

[0,0,0,1,1,1,1,1,0,0,0],

[0,0,1,1,0,1,0,1,1,0,0],

[0,1,1,0,0,1,0,0,1,1,0],

[1,0,0,0,0,1,0,0,0,0,1],

[0,0,0,0,0,1,0,0,0,0,0],

[0,0,0,0,1,1,1,0,0,0,0],

[0,0,0,0,0,1,0,0,0,0,0]])

im = np.zeros((200 ,200))

im [50:60 ,30:41] = A

im1 = im*0

im1 [75:125 ,50:105] = auxil.rebin(A,(50 ,55))

im2 = rotate(im1 ,45)

plt.imshow(im + im1 + im2 [:200 ,:200])

import cv2 as cv

hu = cv.HuMoments (cv.moments(im)). ravel()

hu1 = cv. HuMoments (cv.moments(im1)). ravel()

hu2 = cv. HuMoments (cv.moments(im2)). ravel()

print(hu [:4])

print(hu1 [:4])

print(hu2 [:4])

174 Image Enhancement and Correction

[3.3262e-01 2.9152e-04 2.1044e-03 1.5381e -03]

[3.3796e-01 2.9152e-04 2.1044e-03 1.5381e -03]

[3.3794e-01 2.8995e-04 2.1018e-03 1.5369e -03]

As a less trivial example, the Python script ex5 2.py shown in Listing 5.3
extracts the “significant contours” from an image band, here band 1 of the
ASTER image,

run scripts /ex5_2 -b 1 imagery /AST_20070501 .tif ,

calculates their invariant moments and plots histograms of the moment log-
arithms, making extensive use of OpenCV functions. The findContours()

function in line 26 extracts contours from the binary image returned from the
Canny edge detector, line 25. The cd.CHAIN APPROX NONE flag means that the
returned contours will not be compressed, and the flag cv.RETR LIST means
that the contour hierarchy (which contour is enclosed in which other contour)
is ignored. The seven Hu moments of the individual contours are calculated
and stored in an array (lines 32–36). This occurs in two steps: First the trans-
lational and scale invariants are determined with moments(), line 35, then
these are passed to HuMoments(), line 36. For very simple contour shapes the
higher moments will be zero. This condition is checked for in line 39 prior to
taking logarithms and plotting the histogram for the first three Hu moments.

FIGURE 5.9

Histograms of the logarithms of the first three Hu moments of the image
contours.

174 Image Enhancement and Correction

[3.3262e-01 2.9152e-04 2.1044e-03 1.5381e -03]

[3.3796e-01 2.9152e-04 2.1044e-03 1.5381e -03]

[3.3794e-01 2.8995e-04 2.1018e-03 1.5369e -03]

As a less trivial example, the Python script ex5 2.py shown in Listing 5.3
extracts the “significant contours” from an image band, here band 1 of the
ASTER image,

run scripts /ex5_2 -b 1 imagery /AST_20070501 .tif ,

calculates their invariant moments and plots histograms of the moment log-
arithms, making extensive use of OpenCV functions. The findContours()

function in line 26 extracts contours from the binary image returned from the
Canny edge detector, line 25. The cd.CHAIN APPROX NONE flag means that the
returned contours will not be compressed, and the flag cv.RETR LIST means
that the contour hierarchy (which contour is enclosed in which other contour)
is ignored. The seven Hu moments of the individual contours are calculated
and stored in an array (lines 32–36). This occurs in two steps: First the trans-
lational and scale invariants are determined with moments(), line 35, then
these are passed to HuMoments(), line 36. For very simple contour shapes the
higher moments will be zero. This condition is checked for in line 39 prior to
taking logarithms and plotting the histogram for the first three Hu moments.

FIGURE 5.9

Histograms of the logarithms of the first three Hu moments of the image
contours.

High-pass spatial filtering and feature extraction 175

Listing 5.3: Hu invariant moments of image contours.

1 #!/usr/bin/env python3

2 #Name: ex5_2.py

3 import sys , getopt

4 import numpy as np

5 from osgeo import gdal

6 from osgeo.gdalconst import GA_ReadOnly

7 import cv2 as cv

8 import matplotlib .pyplot as plt

9 def main ():

10 options ,args = getopt.getopt(sys.argv [1:],’b:’)

11 b = 1

12 for option , value in options:

13 i f option == ’-b’:

14 b = eval(value)

15 gdal. AllRegister ()

16 infile = args [0]

17 # read band of an MS image

18 inDataset = gdal.Open(infile ,GA_ReadOnly)

19 cols = inDataset .RasterXSize

20 rows = inDataset .RasterYSize

21 rasterBand = inDataset .GetRasterBand (b)

22 band = np.uint8(rasterBand

23 .ReadAsArray (0,0,cols ,rows))

24 # find significant contours

25 edges = cv.Canny(band , 20, 80)

26 contours ,hierarchy = cv.findContours (edges ,\

27 cv.RETR_LIST ,cv.CHAIN_APPROX_NONE)

28 # determine Hu moments

29 num_contours = len(hierarchy [0])

30 hus = np.zeros((num_contours ,7), dtype=np.float32)

31 arr = np.zeros((rows , cols), dtype=np.uint8)

32 for i in range(num_contours):

33 arr = arr*0

34 cv.drawContours (arr , contours , i, 1)

35 m = cv.moments(arr)

36 hus[i,:] = cv.HuMoments (m). ravel()

37 # plot histogram of logs of the first Hu moments

38 for i in range(3):

39 idx = np.where(hus[:,i]>0)

40 hist ,e=np.histogram (np.log(hus[idx ,i]) ,50)

41 plt.plot(e[1:],hist ,label=’Hu� moment�%i’%(i+1))

42 plt.legend (); plt.xlabel(’log(μ)’); plt.show ()

43 i f __name__ == ’__main__ ’:

44 main ()

176 Image Enhancement and Correction

See the OpenCV documentation for a more detailed explanation of the func-
tions used and their parameters. The histograms generated by the script are
depicted in Figure 5.9. The spikes in the three histograms correspond to sim-
ple line segments, i.e., with large first moment and small higher moments.
Hu moment spectra such as those shown in Figure 5.9 may be used, e.g., to
identify matching contours for image-image registration and we shall return
to them briefly in Section 5.6.2.

The geometric moments are projections of pixel intensities onto the mono-
mials fpq(i, j) = ipjq. The continuous equivalents fpq(x) = xp

1x
q
2 are not

orthogonal, i.e.,

∫

fpq(x)fp′q′(x)dx �= 0, p, q �= p′q′,

so that geometric moments and their invariant derivatives carry redundant in-
formation. Alternative moment systems can be defined in terms of orthogonal
Legendre or Zernike polynomials, which are particularly relevant for image
reconstruction; see Teague (1980).

5.3 Panchromatic sharpening

The change detection and classification algorithms that we will meet in the
next chapters exploit both the spatial and the spectral information provided
by remote sensing imagery. Many common satellite platforms (e.g.,

✻

✲
�

�
�

�
�

✧
✧✧

�
�

�

✧
✧✧

Red

Green

Blue

Black

Gray

White

�✠

FIGURE 5.10

The RGB color cube.

176 Image Enhancement and Correction

See the OpenCV documentation for a more detailed explanation of the func-
tions used and their parameters. The histograms generated by the script are
depicted in Figure 5.9. The spikes in the three histograms correspond to sim-
ple line segments, i.e., with large first moment and small higher moments.
Hu moment spectra such as those shown in Figure 5.9 may be used, e.g., to
identify matching contours for image-image registration and we shall return
to them briefly in Section 5.6.2.

The geometric moments are projections of pixel intensities onto the mono-
mials fpq(i, j) = ipjq. The continuous equivalents fpq(x) = xp

1x
q
2 are not

orthogonal, i.e.,

∫

fpq(x)fp′q′(x)dx �= 0, p, q �= p′q′,

so that geometric moments and their invariant derivatives carry redundant in-
formation. Alternative moment systems can be defined in terms of orthogonal
Legendre or Zernike polynomials, which are particularly relevant for image
reconstruction; see Teague (1980).

5.3 Panchromatic sharpening

The change detection and classification algorithms that we will meet in the
next chapters exploit both the spatial and the spectral information provided
by remote sensing imagery. Many common satellite platforms (e.g.,

✻

✲
�

�
�

�
��✠

✧
✧✧

�
�

�

✧
✧✧

Red

Green

Blue

Black

Gray

White

FIGURE 5.10

The RGB color cube.

Panchromatic sharpening 177

LANDSAT 8 OLI, SPOT, IKONOS, QuickBird, GeoEye) supply co-registered
panchromatic images with considerably higher ground resolution than that of
the multispectral bands. However, without additional processing, application
of spectral change detection or classification methods is restricted in the first
instance to the poorer spatial resolution of the multispectral data.

Forward PCA

Normalization

Reverse PCA

✎
✍

✎
✍

✎
✍

☞
✌

✠

❅
❅
❅
❅

❄

❄

First PC

Other PCs

Pan

MS (upsampled)

Sharpened MS

❄

❄

☞
✌

☞
✌

❅❘

FIGURE 5.11

Panchromatic fusion with the princi-
pal components transformation.

Conventional image fusion tech-
niques, such as the well-known
HSV-transformation discussed be-
low, can be used to sharpen the
spectral components. However. the
effect of mixing in the panchromatic
image is often to “dilute” signifi-
cantly the spectral information and,
for instance in the case of clas-
sification, to reduce class separa-
bility in the multidimensional fea-
ture space. Another disadvantage of
the HSV transformation is that one
is restricted to using three of the
available spectral channels. In the
following, after outlining the HSV
method, we consider a number of al-
ternative (and better) fusion tech-
niques. See Aanaes et al. (2008) for
an excellent discussion of the issues
involved in image fusion and Amro
et al. (2011) for a review and com-
parison.

5.3.1 HSV fusion

In computers with 24-bit graphics
(referred to as “true color” on Win-
dows systems), three bands of a

multispectral image can be displayed with 8 bits for each of the additive
primary colors red, green, and blue. There are 224 ≈ 16 million colors possi-
ble. The monitor displays the bands as an RGB color composite image which,
depending on the choice of spectral bands and histogram functions, may or
may not appear to be natural; see for instance Figure 1.1. The color of a
given pixel in the image can be represented as a vector or point in a Cartesian
coordinate system (the RGB color cube) as illustrated in Figure 5.10.

An alternative color representation is in terms of hue, saturation and value
(HSV). Value (sometimes called intensity) can be thought of as the distance
along an axis equidistant from the three orthogonal primary color axes in
the RGB representation (the main diagonal of the RGB cube shown as the

178 Image Enhancement and Correction

dashed line in Figure 5.10). Since all points on the axis have equal R, G,
and B values, they appear as shades of gray. Hue refers to the actual color
and is defined as an angle on a plane perpendicular to the value axis as
measured from a reference line pointing in the direction the red vertex of the
RGB cube. Saturation is the “amount” of color present and is represented by
the radius of a circle described in the hue plane. A commonly used method
for fusion of three low-resolution multispectral bands with a higher-resolution
panchromatic image is to resample the former to the panchromatic resolution,
transform it from RGB to HSV coordinates, replace the V component with
the gray-scale panchromatic image, eventually after performing some kind of
histogram matching or normalization of the two, and then to transform back
to RGB space.

This procedure is referred to as HSV panchromatic image sharpening and
is very easy to illustrate on the Earth Engine. The following is adapted from
the GEE JavaScript documentation:

import ee

ee.Initialize ()

Load a Landsat 8 top -of -atmosphere reflectance image.

image = \

ee.Image(’LANDSAT/LC08 /C02/T1_TOA/LC08_044034_20140318 ’)

Convert the RGB bands to the HSV color space.

hsv = image.select ([’B4’, ’B3’, ’B2’]). rgbToHsv ()

Swap in the panchromatic band and convert back to RGB.

sharpened = ee.Image.cat([

hsv.select(’hue’), hsv.select(’saturation ’),

image.select(’B8’)]). hsvToRgb ()

To make a before/after comparison, one only needs to export the sharpened
image to Assets and then overlay it with the original scene; see the accompa-
nying notebook.

5.3.2 Brovey fusion

In Brovey or color normalized fusion (Vrabel, 1996), each resampled multi-
spectral pixel is multiplied by the ratio of the corresponding panchromatic
pixel intensity to the sum of all of the multispectral intensities. The corrected
pixel intensities ḡk(i, j) in the kth fused multispectral channel are given by

ḡk(i, j) = gk(i, j) ·
gp(i, j)

∑

k′ gk′(i, j)
, (5.15)

where gk(i, j) is the (resampled) pixel intensity in the kth spectral band and
gp(i, j) is the corresponding pixel intensity in the panchromatic image. This
technique assumes that the spectral range spanned by the panchromatic image
is essentially the same as that covered by the multispectral bands. This is
seldom the case. Moreover, to avoid bias, the intensities used should be the
radiances at the satellite sensors, implying use of the sensors’ calibration.

178 Image Enhancement and Correction

dashed line in Figure 5.10). Since all points on the axis have equal R, G,
and B values, they appear as shades of gray. Hue refers to the actual color
and is defined as an angle on a plane perpendicular to the value axis as
measured from a reference line pointing in the direction the red vertex of the
RGB cube. Saturation is the “amount” of color present and is represented by
the radius of a circle described in the hue plane. A commonly used method
for fusion of three low-resolution multispectral bands with a higher-resolution
panchromatic image is to resample the former to the panchromatic resolution,
transform it from RGB to HSV coordinates, replace the V component with
the gray-scale panchromatic image, eventually after performing some kind of
histogram matching or normalization of the two, and then to transform back
to RGB space.

This procedure is referred to as HSV panchromatic image sharpening and
is very easy to illustrate on the Earth Engine. The following is adapted from
the GEE JavaScript documentation:

import ee

ee.Initialize ()

Load a Landsat 8 top -of -atmosphere reflectance image.

image = \

ee.Image(’LANDSAT/LC08 /C02/T1_TOA/LC08_044034_20140318 ’)

Convert the RGB bands to the HSV color space.

hsv = image.select ([’B4’, ’B3’, ’B2’]). rgbToHsv ()

Swap in the panchromatic band and convert back to RGB.

sharpened = ee.Image.cat([

hsv.select(’hue’), hsv.select(’saturation ’),

image.select(’B8’)]). hsvToRgb ()

To make a before/after comparison, one only needs to export the sharpened
image to Assets and then overlay it with the original scene; see the accompa-
nying notebook.

5.3.2 Brovey fusion

In Brovey or color normalized fusion (Vrabel, 1996), each resampled multi-
spectral pixel is multiplied by the ratio of the corresponding panchromatic
pixel intensity to the sum of all of the multispectral intensities. The corrected
pixel intensities ḡk(i, j) in the kth fused multispectral channel are given by

ḡk(i, j) = gk(i, j) ·
gp(i, j)

∑

k′ gk′(i, j)
, (5.15)

where gk(i, j) is the (resampled) pixel intensity in the kth spectral band and
gp(i, j) is the corresponding pixel intensity in the panchromatic image. This
technique assumes that the spectral range spanned by the panchromatic image
is essentially the same as that covered by the multispectral bands. This is
seldom the case. Moreover, to avoid bias, the intensities used should be the
radiances at the satellite sensors, implying use of the sensors’ calibration.

Panchromatic sharpening 179

0 100 200 300 400 500 600 700 800

0

100

200

300

400

500

600

700

800

pickering_ms_pan_dwt: linear2pc: (4, 3, 2): [0, 0, 800, 800]

0 25 50 75 100 125 150 175

0

25

50

75

100

125

150

175

pickering_ms: linear2pc: (4, 3, 2): [0, 0, 800, 800]

FIGURE 5.12

Panchromatic sharpening of an IKONOS (c©DigitalGlobe) multispectral im-
age with the DWT filter bank. Left: panchromatically sharpened multispec-
tral band of an image over a nuclear power reactor complex in Canada. Right:
original band up sampled by a factor of 4.

5.3.3 PCA fusion

Panchromatic sharpening using principal components analysis (Welch and
Ahlers, 1987) is similar to the HSV method. After the PCA transformation,
the first principal component is replaced by the panchromatic image, again
after some kind of normalization, and the transformation is inverted; see Fig-
ure 5.11. Image sharpening using HSV, Brovey, PCA and the closely related
Gram–Schmidt transformation are available in most commercial image pro-
cessing environments such as ENVI (Harris Geospatial Solutions) or Geomat-
ica (PCI Geomatics).

5.3.4 DWT fusion

The discrete wavelet transform of a two-dimensional image was shown in
Chapter 4 to be equivalent to an iterative application of the high-low-pass
filter bank of Figure 4.10; see also Figure 4.11. The DWT filter bank can be
used in an elegant way (Ranchin and Wald, 2000) to achieve panchromatic
sharpening when the panchromatic and multispectral spatial resolutions differ
by exactly a factor of 2n for integer n. This is often the case, for example, in
SPOT, LANDSAT 7 ETM+, LANDSAT 8 OLI, IKONOS, QuickBird, Geo-
Eye, and ASTER imagery.

A DWT fusion procedure for IKONOS imagery for instance, in which the
resolutions of panchromatic and the four multispectral bands differ exactly
by a factor of 4, is as follows:

180 Image Enhancement and Correction

a) The panchromatic image, represented by fn(i, j), is filtered twice to give a
degraded image fn−2(i, j) plus wavelet coefficients at two scales (see Figures
4.10 and 4.11).
b) Both the low-pass filtered portion of the panchromatic image as well as the
four multispectral bands are filtered once again (the low-pass portions of all
five bands now have 8 m pixel resolutions in the case of IKONOS data).
c) The high-frequency components Cz

n−3, z = H,V,D, are sampled to estimate
radiometric normalization coefficients az and bz for each multispectral band:

az = σ̂z
ms/σ̂

z
pan

bz = m̂z
ms − azm̂z

pan,
(5.16)

where m̂z and σ̂z denote estimated mean and standard deviation, respectively.
d) These coefficients are then used to normalize the wavelet coefficients for
the panchromatic image to those of each multispectral band at the n− 2 and
n− 1 scales; see Exercise 7:

Cz
k(i, j) → azCz

k(i, j) + bz, z = H,V,D, k = n− 2, n− 1. (5.17)

e) Finally, the degraded portion of the panchromatic image fn−2(i, j) is re-
placed with each of the four original multispectral bands in turn and the filter
bank is inverted.

We thus obtain “what would be seen if the multispectral sensors had the
resolution of the panchromatic sensor” (Ranchin and Wald, 2000). A Python
script for panchromatic sharpening with the DWT is documented in Appendix
C. Figure 5.12 shows an example of DWT pan-sharpening of IKONOS im-
agery, obtained in the Jupyter notebook for Chapter 5 with

run scripts/dwt -r 4 -b 4 -d [50 ,100 ,200 ,200] \

imagery/IKON_ms imagery/ IKON_pan

=========================

DWT Pansharpening

=========================

Sun Feb 25 14:44:30 2018

MS f i l e : imagery /pickering_ms

PAN f i l e : imagery /pickering_pan

Wavelet correlations :

Band 1: 0.820 0.639 0.402

Band 2: 0.819 0.659 0.429

Band 3: 0.790 0.615 0.400

Band 4: 0.720 0.570 0.394

Result written to imagery/IKON_ms_pan_dwt

run scripts /dispms -f imagery /IKON_ms_pan_dwt \

-p [4,3,2] -e 3 \

-F imagery/IKON_ms -D [50 ,100 ,200 ,200] \

-P [4,3,2] -E 3

The achieved improvement more apparent in the notebook.

180 Image Enhancement and Correction

a) The panchromatic image, represented by fn(i, j), is filtered twice to give a
degraded image fn−2(i, j) plus wavelet coefficients at two scales (see Figures
4.10 and 4.11).
b) Both the low-pass filtered portion of the panchromatic image as well as the
four multispectral bands are filtered once again (the low-pass portions of all
five bands now have 8 m pixel resolutions in the case of IKONOS data).
c) The high-frequency components Cz

n−3, z = H,V,D, are sampled to estimate
radiometric normalization coefficients az and bz for each multispectral band:

az = σ̂z
ms/σ̂

z
pan

bz = m̂z
ms − azm̂z

pan,
(5.16)

where m̂z and σ̂z denote estimated mean and standard deviation, respectively.
d) These coefficients are then used to normalize the wavelet coefficients for
the panchromatic image to those of each multispectral band at the n− 2 and
n− 1 scales; see Exercise 7:

Cz
k(i, j) → azCz

k(i, j) + bz, z = H,V,D, k = n− 2, n− 1. (5.17)

e) Finally, the degraded portion of the panchromatic image fn−2(i, j) is re-
placed with each of the four original multispectral bands in turn and the filter
bank is inverted.

We thus obtain “what would be seen if the multispectral sensors had the
resolution of the panchromatic sensor” (Ranchin and Wald, 2000). A Python
script for panchromatic sharpening with the DWT is documented in Appendix
C. Figure 5.12 shows an example of DWT pan-sharpening of IKONOS im-
agery, obtained in the Jupyter notebook for Chapter 5 with

run scripts/dwt -r 4 -b 4 -d [50 ,100 ,200 ,200] \

imagery/IKON_ms imagery/ IKON_pan

=========================

DWT Pansharpening

=========================

Sun Feb 25 14:44:30 2018

MS f i l e : imagery /pickering_ms

PAN f i l e : imagery /pickering_pan

Wavelet correlations :

Band 1: 0.820 0.639 0.402

Band 2: 0.819 0.659 0.429

Band 3: 0.790 0.615 0.400

Band 4: 0.720 0.570 0.394

Result written to imagery/IKON_ms_pan_dwt

run scripts /dispms -f imagery /IKON_ms_pan_dwt \

-p [4,3,2] -e 3 \

-F imagery/IKON_ms -D [50 ,100 ,200 ,200] \

-P [4,3,2] -E 3

The achieved improvement more apparent in the notebook.

Panchromatic sharpening 181

5.3.5 À trous fusion

The spectral fidelity of the pan-sharpened images obtained with the discrete
wavelet transform is excellent, as will be shown below. However, the DWT is
not shift invariant (Bradley, 2003), which means that small spatial displace-
ments in the input array can cause major variations in the wavelet coefficients
at their various scales. This has no effect on perfect reconstruction if one sim-
ply inverts the transformation. However, a small misalignment can occur when
the multispectral bands are “injected” into the panchromatic image pyramid
as described in the preceding section. This sometimes leads to spatial arti-
facts (blurring, shadowing, staircase effect) in the sharpened product (Yocky,
1996). These effects are visible in Figure 5.12 upon close inspection, again
especially within the Jupyter notebook.

As an alternative to the DWT, the à trous wavelet transform (ATWT)
has been proposed for image sharpening (Aiazzi et al., 2002). The ATWT is
a multi resolution decomposition defined formally by a low-pass filter H =
{h(0), h(1), . . .} and a high-pass filter G = δ−H , where δ denotes an all-pass
filter. The high-frequency part is then just the difference between the original
image and the low-pass filtered image. Not surprisingly, this transformation
does not allow perfect reconstruction if the output is down sampled. Therefore
down sampling is not performed at all. Rather, at the kth iteration of the low-
pass filter, 2k−1 zeroes are inserted between the elements of H . This means
that every other pixel is interpolated (averaged) on the first iteration:

H = {h(0), 0, h(1), 0, . . .},

while on the second iteration

H = {h(0), 0, 0, h(1), 0, 0, . . .},

etc. (hence, the name à trous = with holes). The low-pass filter is usually
chosen to be symmetric (unlike the Daubechies wavelet filters for example).
A good choice turns out to be the cubic B-spline filter (Núnez et al., 1999),
H = {1/16, 1/4, 3/8, 1/4, 1/16}; see Exercise 9 in Chapter 3.

Figure 5.13 outlines the scheme implemented in the Python script atwt.py
for ATWT panchromatic sharpening documented in Appendix C, assuming a
difference in spatial resolution of a factor of two: The MS band is resampled to
match the dimensions of the high-resolution band. The à trous transformation
is applied to both bands (columns and rows are filtered with the up sampled
cubic spline filter, with the difference from the original image determining the
high-pass result). The high-frequency component of the panchromatic image
is normalized to that of the MS image in a similar way as for DWT sharpening,
Equations (5.16) and (5.17). Then, the smoothed panchromatic component is
replaced by the filtered MS image and the transformation inverted.

The transformation is highly redundant and requires considerably more
computer storage to implement. However, when used for image sharpening, it

182 Image Enhancement and Correction

✲

✲

✲

✲

✻

+

G

G

↑H

↑H

✻

insert
✲

✻

❄
normalize

MS

Pan MS

✍✌
✎☞
↑

✲

(sharpened)

FIGURE 5.13

À trous image sharpening scheme for a multispectral to panchromatic resolu-
tion ratio of two. The symbol ↑H denotes the up sampled low-pass filter.

is much less sensitive to misalignment between the multispectral and panchro-
matic images. A comparison with the DWT method is made in Figure 5.14.
Again, the differences are more clearly seen in the accompanying Jupyter
notebook.

5.3.6 A quality index

Several quantitative measures have been suggested for determining the degree
to which the spectral properties of the multispectral bands have been degraded
in the pan-sharpening process (Tsai, 1982). Wang and Bovik (2002) suggest
a particularly simple and intuitive measure of spectral fidelity between two
image bands with pixel intensities represented by f and g:

Q =
σfg

σfσg
· 2f̄ḡ

f̄2 + ḡ2
· 2σfσg

σ2
f + σ2

g

=
4σfg f̄ ḡ

(̄f2 + ḡ2)(σ2
f + σ2

g)
, (5.18)

where f̄ (ḡ) and σ2
f (σ2

g) are mean, and variance of band f (g) and σfg is
the covariance of the two bands. The first factor in Equation (5.18) is seen to
be the correlation coefficient between the two images, with values in [−1, 1];
the second factor compares their average brightness, with values in [0, 1]; and

182 Image Enhancement and Correction

✲

✲

✲

✲

✻

+

G

G

↑H

↑H

✻

insert
✲

✻

❄
normalize

MS

Pan MS

✍✌
✎☞
↑

✲

(sharpened)

FIGURE 5.13

À trous image sharpening scheme for a multispectral to panchromatic resolu-
tion ratio of two. The symbol ↑H denotes the up sampled low-pass filter.

is much less sensitive to misalignment between the multispectral and panchro-
matic images. A comparison with the DWT method is made in Figure 5.14.
Again, the differences are more clearly seen in the accompanying Jupyter
notebook.

5.3.6 A quality index

Several quantitative measures have been suggested for determining the degree
to which the spectral properties of the multispectral bands have been degraded
in the pan-sharpening process (Tsai, 1982). Wang and Bovik (2002) suggest
a particularly simple and intuitive measure of spectral fidelity between two
image bands with pixel intensities represented by f and g:

Q =
σfg

σfσg
· 2f̄ḡ

f̄2 + ḡ2
· 2σfσg

σ2
f + σ2

g

=
4σfg f̄ ḡ

(̄f2 + ḡ2)(σ2
f + σ2

g)
, (5.18)

where f̄ (ḡ) and σ2
f (σ2

g) are mean, and variance of band f (g) and σfg is
the covariance of the two bands. The first factor in Equation (5.18) is seen to
be the correlation coefficient between the two images, with values in [−1, 1];
the second factor compares their average brightness, with values in [0, 1]; and

Panchromatic sharpening 183

0 100 200 300 400 500 600 700 800

0

100

200

300

400

500

600

700

800

IKON_ms_pan_dwt: linear2pc: (4, 3, 2): [0, 0, 800, 800]

0 100 200 300 400 500 600 700 800

0

100

200

300

400

500

600

700

800

IKON_ms_pan_atwt: linear2pc: (4, 3, 2): [0, 0, 800, 800]

FIGURE 5.14

As Figure 5.12, except that the right-hand side now shows panchromatic
sharpening with the à trous wavelet transform.

the third factor compares their contrasts, also in [0, 1]. Thus, perfect spectral
correspondence would give a value Q = 1.∗

TABLE 5.1

Quality indices for five panchromatic sharpening
methods.

MS Band HSV PCA G-S DWT ATWT
1 0.376 0.986 0.949 0.977 0.921
2 0.228 0.977 0.929 0.977 0.923
3 0.325 0.964 0.897 0.980 0.931
4 – 0.899 0.905 0.971 0.911

Mean 0.309 0.957 0.920 0.976 0.921

Since image quality is normally not spatially invariant, it is usual to compute
Qj in M sliding windows and then average over all of the windows:

Q =
1

M

M∑

j=1

Qj.

Table 5.1 gives the results for the HSV, PCA, Gram–Schmidt, DWT, and
ATWT fusion methods for the image in Figures 5.12 and 5.14. The discrete

∗It should be remarked that this index is “marginal” in the sense that the original and
sharpened images are compared band-wise. A more stringent approach would be to test
simultaneously for equal mean vectors and covariance matrices; see Anderson (2003).

184 Image Enhancement and Correction

wavelet transform performs best. The calculations were done with an EN-
VI/IDL script; see Canty (2014).

5.4 Radiometric correction of polarimetric SAR imagery

The most striking characteristic of SAR images, when compared to their
visual/infrared counterparts, is the disconcerting “speckle” effect which makes
visual interpretation very difficult. For the single-look data of Figure 1.2, for
example, the effect is extreme. Speckle gives the appearance of random noise,
but it is actually a deterministic consequence of the coherent nature of the
radar signal. Although disadvantageous in some contexts, coherence effects
in the amplitudes of the received radar signal constitute the basis of SAR
interferometry and its many applications.

In our later treatment of classification and change detection, we will, how-
ever, be concerned primarily with SAR intensity (as opposed to amplitude)
images, where speckle is indeed a nuisance. Further processing is necessary
before the data can be used for the exacting tasks of thematic mapping or
change detection. In this section we first examine the statistical properties
of speckle in raw (single-look) polarimetric SAR images. We then consider
the effect of averaging, or so-called multi-looking, and introduce the covari-
ance matrix form for multilook polarimetric imagery. Finally, we describe two
adaptive filtering procedures to further reduce speckle in the data.

5.4.1 Speckle statistics

Goodman (1984) gives a definitive treatment of the statistical distributions
of the noise-like speckle patterns in coherent and partially coherent radiation
reflected from rough surfaces. We consider speckle statistics here in the context
of the measured radiation amplitude and intensity in a SAR image.

For single polarization transmission and reception, e.g., horizontal-horizontal
(hh), the back scattered amplitude signal is, from Equation (1.3),

Eb
h = shhE

i
h. (5.19)

The effect of the scattering amplitude shh is to introduce a change in am-
plitude and phase of the incident signal Ei

h, which is characteristic of the
(bio)physical properties of the reflecting area. The area involved is determined
by the ground resolution. For example, for TerraSAR-X in so-called spotlight
acquisition mode, the pixel size may be as small as 1 m2. The wavelength of
the transmitted 9.65-GHz X-band signal is, on the other hand, only 31 mm.
Therefore, even when the properties of the reflecting surface are uniform, ran-
dom irregularities on the wavelength scale within the imaged pixel will act like

184 Image Enhancement and Correction

wavelet transform performs best. The calculations were done with an EN-
VI/IDL script; see Canty (2014).

5.4 Radiometric correction of polarimetric SAR imagery

The most striking characteristic of SAR images, when compared to their
visual/infrared counterparts, is the disconcerting “speckle” effect which makes
visual interpretation very difficult. For the single-look data of Figure 1.2, for
example, the effect is extreme. Speckle gives the appearance of random noise,
but it is actually a deterministic consequence of the coherent nature of the
radar signal. Although disadvantageous in some contexts, coherence effects
in the amplitudes of the received radar signal constitute the basis of SAR
interferometry and its many applications.

In our later treatment of classification and change detection, we will, how-
ever, be concerned primarily with SAR intensity (as opposed to amplitude)
images, where speckle is indeed a nuisance. Further processing is necessary
before the data can be used for the exacting tasks of thematic mapping or
change detection. In this section we first examine the statistical properties
of speckle in raw (single-look) polarimetric SAR images. We then consider
the effect of averaging, or so-called multi-looking, and introduce the covari-
ance matrix form for multilook polarimetric imagery. Finally, we describe two
adaptive filtering procedures to further reduce speckle in the data.

5.4.1 Speckle statistics

Goodman (1984) gives a definitive treatment of the statistical distributions
of the noise-like speckle patterns in coherent and partially coherent radiation
reflected from rough surfaces. We consider speckle statistics here in the context
of the measured radiation amplitude and intensity in a SAR image.

For single polarization transmission and reception, e.g., horizontal-horizontal
(hh), the back scattered amplitude signal is, from Equation (1.3),

Eb
h = shhE

i
h. (5.19)

The effect of the scattering amplitude shh is to introduce a change in am-
plitude and phase of the incident signal Ei

h, which is characteristic of the
(bio)physical properties of the reflecting area. The area involved is determined
by the ground resolution. For example, for TerraSAR-X in so-called spotlight
acquisition mode, the pixel size may be as small as 1 m2. The wavelength of
the transmitted 9.65-GHz X-band signal is, on the other hand, only 31 mm.
Therefore, even when the properties of the reflecting surface are uniform, ran-
dom irregularities on the wavelength scale within the imaged pixel will act like

Radiometric correction of polarimetric SAR imagery 185

a large number of incremental scatterers, leading to a random superposition
of small scattering amplitudes. These in turn combine coherently to form the
back scattered signal and are responsible for speckle. A simple model for this
effect is to write Equation (5.19) in the form

Eb
h =

E√
n

n∑

k=1

eiφk . (5.20)

Here we assume that the only effect of the incremental scatterers is to intro-
duce local random phase shifts φk, k = 1 . . . n, in an overall scattered signal
amplitude E.

We demonstrate now that the amplitude Eb
h has the complex normal dis-

tribution of Equation (2.50). To begin with, note that the phase shifts may
be considered to be uniformly distributed on the interval [−π, π], so that we
have

|Eb
h|2 =

|E|2
n

∑

k

∑

ℓ

ei(φk−φℓ) =
|E|2
n

∑

k

ei(φk−φk) = |E|2.

If we neglect the phase∗ of E, which is a characteristic of the entire pixel area,
then we can express the real and imaginary parts of Equation (5.20) in the
form

Re(Eb
h) =

E√
n

∑

k

cosφk =
E√
n
X

Im(Eb
h) =

E√
n

∑

k

sinφk =
E√
n
Y,

where X =
∑

k cosφk and Y =
∑

k sinφk. Now the intensity of the back
scattered signal can be written

|Eb
h|2 = [Re(Eb

h)]
2 + [Im(Eb

h)]
2 = E2 1

n
(X2 + Y 2). (5.21)

We can think of X and Y as random variables. Since the sines and cosines
contributing to X and Y are distributed symmetrically about zero, the means
vanish: �X� = �Y � = 0. Furthermore,

var(X) = �X2� − �X�2

=
∑

k

∑

ℓ

�cosφk cosφℓ�

=
∑

k

�cos2 φk� =
n∑

k=1

�1
2
(cos 2φk + 1)� = n

2
,

with the same result for var(Y). Moreover, X and Y are uncorrelated:

cov(X,Y) = �XY � − �X��Y �
=

∑

k

∑

ℓ

�cosφk sinφℓ� = 0.

∗Or simply set it equal to zero.

186 Image Enhancement and Correction

Both X and Y are superpositions of a large number of identically distributed
random variates (cosφk and sinφk) and so the above results, together with
the Central Limit Theorem 2.3, imply that X and Y are independently and
normally distributed with zero mean and variance σ2 = n/2. The joint prob-
ability density of X and Y is therefore

p(x, y) =
1

2π(n/2)
exp

(

− 1

2(n/2)
(x2 + y2)

)

.

With z = x+ iy, this can be written in the form

p(z) =
1

πn
exp

(

−z∗
(
1

n

)

z

)

. (5.22)

Comparison with Equation (2.50) shows that the complex random variable
Z = X + iY , and hence the back scattered amplitude

Eb
h =

E√
n
(X + iY) =

E√
n
Z,

has a complex normal distribution as claimed.
As mentioned, the amplitude signals are interesting, e.g., for interferomet-

ric measurements, but what about the squared amplitude |Eb
h|2, the quantity

actually measured in the SAR intensity images which will concern us in clas-
sification and change detection applications? According to Theorem 2.6, the
sum U of the squares of the standardized random variables X and Y ,

U =
X2

n/2
+

Y 2

n/2
=

2

n
(X2 + Y 2),

is chi-square distributed with 2 degrees of freedom, that is, with Equation
(2.38),

p(u) = pχ2;2(u) =
1

2
e−u/2.

But this is also just the exponential probability density, Equation (2.37), with
parameter β = 1/2. With Equation (5.21), the back scattered signal intensity
is then

|Eb
h|2 = E2U/2. (5.23)

A measurement of the radar cross section |shh|2 derived from the emitted and
received polarized signal intensities (see Equation (1.3)) will of course have
the same exponential distribution. In other words, if the random variable G
represents the measured intensity and x = |shh|2 is the underlying signal, then

G ∼ xU/2.

A simple application of Theorem 2.1 (Exercise 9(a)) now shows that G has
an exponential probability density with β = x,

p(g) =
1

x
e−g/x.

186 Image Enhancement and Correction

Both X and Y are superpositions of a large number of identically distributed
random variates (cosφk and sinφk) and so the above results, together with
the Central Limit Theorem 2.3, imply that X and Y are independently and
normally distributed with zero mean and variance σ2 = n/2. The joint prob-
ability density of X and Y is therefore

p(x, y) =
1

2π(n/2)
exp

(

− 1

2(n/2)
(x2 + y2)

)

.

With z = x+ iy, this can be written in the form

p(z) =
1

πn
exp

(

−z∗
(
1

n

)

z

)

. (5.22)

Comparison with Equation (2.50) shows that the complex random variable
Z = X + iY , and hence the back scattered amplitude

Eb
h =

E√
n
(X + iY) =

E√
n
Z,

has a complex normal distribution as claimed.
As mentioned, the amplitude signals are interesting, e.g., for interferomet-

ric measurements, but what about the squared amplitude |Eb
h|2, the quantity

actually measured in the SAR intensity images which will concern us in clas-
sification and change detection applications? According to Theorem 2.6, the
sum U of the squares of the standardized random variables X and Y ,

U =
X2

n/2
+

Y 2

n/2
=

2

n
(X2 + Y 2),

is chi-square distributed with 2 degrees of freedom, that is, with Equation
(2.38),

p(u) = pχ2;2(u) =
1

2
e−u/2.

But this is also just the exponential probability density, Equation (2.37), with
parameter β = 1/2. With Equation (5.21), the back scattered signal intensity
is then

|Eb
h|2 = E2U/2. (5.23)

A measurement of the radar cross section |shh|2 derived from the emitted and
received polarized signal intensities (see Equation (1.3)) will of course have
the same exponential distribution. In other words, if the random variable G
represents the measured intensity and x = |shh|2 is the underlying signal, then

G ∼ xU/2.

A simple application of Theorem 2.1 (Exercise 9(a)) now shows that G has
an exponential probability density with β = x,

p(g) =
1

x
e−g/x.

Radiometric correction of polarimetric SAR imagery 187

Since var(G) = �G� = x, we can alternatively write

p(g) =
1

�G�e
−g/�G�. (5.24)

Thus, speckle behaves as an exponentially distributed “noise” with mean and
variance equal to the underlying signal strength.

5.4.2 Multilook data

Multilook processing essentially corresponds to the averaging of neighborhood
pixels, with the objective of reducing speckle and compressing the data. In
practice, the averaging is often not performed in the spatial domain, but
rather in the frequency domain during range/azimuth compression of the
received signal.∗ The speckle reduction can be understood as follows. We
showed above that a random variable G representing measurement of a phys-
ical quantity like |shh|2 will have an exponential distribution with parameter
β = �G�. If these measurements are summed over m looks to give

∑m
i=1 Gi,

then according to Theorem 2.5 the sums will be gamma distributed with
β = �G� and α = m, provided that the Gi are independent. The mean of the
gamma distribution is αβ = m�G� and its variance is αβ2 = m�G�2. Let us
represent the look-averaged image by the random variable G,

G =
1

m

m∑

i=1

Gi. (5.25)

Then

�G� = 1

m
·m�G� = �G�

and

var(G) = var

(

1

m

m∑

i=1

Gi

)

=
1

m2
·m�G�2 =

�G�2
m

=
�G�2
m

.

Hence, we see that the variance of the look-averaged image decreases inversely
as the number of looks.

In real SAR imagery, the neighborhood pixel intensities contributing to
the look average will be correlated to some extent. This is accounted for by
defining an equivalent number of looks (ENL) whose definition is motivated
by the above equation, that is, by solving it for m:

ENL = m =
�G�2
var(G)

. (5.26)

∗Look averaging takes place at the cost of spatial resolution. See Richards (2009), Ap-
pendix D, for an excellent explanation of SAR image formation.

188 Image Enhancement and Correction

The ENL can be determined from Equation 5.26 by estimating �G�2 and
var(G) in homogeneous regions of an image, where the contribution of speckle
to image statistics may be expected to dominate and is equivalent to the
number of independent measurements averaged per pixel. For polarimetric
data, one can simply average the values for each band, but see Exercise 10
and also Anfinsen et al. (2009a), who describe multivariate ENL estimators
especially tuned to polarimetric SAR imagery. A Python script enlml.py for
one of their methods is documented in Appendix C and an example of its
use follows below. Now let’s examine the case of multivariate polarimetric
measurements in more detail.

The per-pixel polarimetric information in the full scattering matrix S of
Equation (1.3), under the assumption of reciprocity (shv = svh), can be ex-
pressed as a three-component complex vector

s =





shh√
2shv
svv



 , (5.27)

where the
√
2 ensures that the total intensity (received signal power) is con-

sistent. The total intensity is referred to as the span,

span = s†s = |shh|2 + 2|shv|2 + |svv|2, (5.28)

and the corresponding gray-scale image as the span image.
Another representation of the polarimetric signal is the complex covariance

matrix c, obtained by taking the complex outer product of s, Equation 5.27,
with itself:

c = ss† =





|shh|2
√
2 shhs

∗
hv shhs

∗
vv√

2 shvs
∗
hh 2|shv|2

√
2 shvs

∗
vv

svvs
∗
hh

√
2 svvs

∗
hv |svv|2



 . (5.29)

The diagonal elements of c are real numbers, with span = tr(c), and the off-
diagonal elements are complex. The covariance matrix representation contains
all of the information in the polarized signal. It can also be averaged over the
number of looks to give

c̄ =
1

m

m�

ν=1

s(ν)s(ν)† = �ss†�

=





�|shh|2�
√
2�shhs∗hv� �shhs∗vv�√

2�shvs∗hh� �2|shv|2�
√
2�shvs∗vv�

�svvs∗hh�
√
2�svvs∗hv� �|svv|2�



 .

(5.30)

Rewriting the first equation above,

mc̄ =

m�

ν=1

s(ν)s(ν)†. (5.31)

188 Image Enhancement and Correction

The ENL can be determined from Equation 5.26 by estimating �G�2 and
var(G) in homogeneous regions of an image, where the contribution of speckle
to image statistics may be expected to dominate and is equivalent to the
number of independent measurements averaged per pixel. For polarimetric
data, one can simply average the values for each band, but see Exercise 10
and also Anfinsen et al. (2009a), who describe multivariate ENL estimators
especially tuned to polarimetric SAR imagery. A Python script enlml.py for
one of their methods is documented in Appendix C and an example of its
use follows below. Now let’s examine the case of multivariate polarimetric
measurements in more detail.

The per-pixel polarimetric information in the full scattering matrix S of
Equation (1.3), under the assumption of reciprocity (shv = svh), can be ex-
pressed as a three-component complex vector

s =





shh√
2shv
svv



 , (5.27)

where the
√
2 ensures that the total intensity (received signal power) is con-

sistent. The total intensity is referred to as the span,

span = s†s = |shh|2 + 2|shv|2 + |svv|2, (5.28)

and the corresponding gray-scale image as the span image.
Another representation of the polarimetric signal is the complex covariance

matrix c, obtained by taking the complex outer product of s, Equation 5.27,
with itself:

c = ss† =





|shh|2
√
2 shhs

∗
hv shhs

∗
vv√

2 shvs
∗
hh 2|shv|2

√
2 shvs

∗
vv

svvs
∗
hh

√
2 svvs

∗
hv |svv|2



 . (5.29)

The diagonal elements of c are real numbers, with span = tr(c), and the off-
diagonal elements are complex. The covariance matrix representation contains
all of the information in the polarized signal. It can also be averaged over the
number of looks to give

c̄ =
1

m

m�

ν=1

s(ν)s(ν)† = �ss†�

=





�|shh|2�
√
2�shhs∗hv� �shhs∗vv�√

2�shvs∗hh� �2|shv|2�
√
2�shvs∗vv�

�svvs∗hh�
√
2�svvs∗hv� �|svv|2�



 .

(5.30)

Rewriting the first equation above,

mc̄ =

m�

ν=1

s(ν)s(ν)†. (5.31)

Radiometric correction of polarimetric SAR imagery 189

This is seen to be a realization of a complex sample matrix like Equation
(2.61). According to Theorem 2.11, mc̄ will have a complex Wishart distri-
bution with 3 × 3 covariance matrix c and m degrees of freedom, provided
that the vectors s(ν) are independent and drawn from a complex multivariate
normal distribution. This is ideally the case, as we saw in the one-dimensional
situation, Equation (5.22); see also Oliver and Quegan (2004), Chapter 11.
However, as already mentioned, the s(ν) will generally be correlated. In order
to account for this, the complex Wishart distribution is often parametrized
with ENL (rather than m) degrees of freedom. The complex Wishart distribu-
tion ofmc̄ will be exploited in Chapters 7 and 9 in the contexts of polarimetric
SAR classification and change detection.

An equivalent and often preferred representation is in terms of the Pauli
decomposition,

k =
1√
2





shh + svv
shh − svv

2shv



 =





k1
k2
k3





with the corresponding look-averaged polarimetric matrix form

t̄ = �kk†� =





�|k1|2� �k1k∗2� �k1k∗3�
�k2k∗1� �|k2|2� �k2k∗3�
�k3k∗1� �k3k∗2� �|k3|∗�



 .

This is sometimes preferred because the corresponding reflected intensities can
be (roughly) interpreted as single bounce (|shh+svv|2), e.g., from agricultural
fields or grasslands, double bounce (|shh−svv|2) from buildings and man-made
structures and volume scattering (|shv|2) from forest canopies.

The RADARSAT-2 image used in the following demonstrations consists of
9 bands, namely the three diagonal elements and the real and complex parts
of the 3 elements above the diagonal in Equation (5.30.)∗ It is in the Pauli
representation, so the matrix elements are interpreted accordingly. The image
is shown in Figure 5.15, as generated in the Jupyter notebook with

run scripts /dispms -f imagery /RS2_20090829 .tif \

-p [6,9,1]

The ENL for this image can be estimated with the aforementioned multi-
variate method (Anfinsen et al., 2009a) which is implemented in the Python
script enlml.py; see Appendix C. We choose here a spatial subset at center
right in Figure 5.15 covering a forested area where the speckle statistics are
well-developed:

run scripts/enlml -d [500 ,400 ,300 ,300] \

imagery/RS2_20090829 .tif

∗Because the RADARSAT-2 image is rather large, the corresponding examples in the
accompanying Jupyter notebook for this Chapter make use of a smaller, dual pol Sentinel-1
image over the Frankfurt Airport.

190 Image Enhancement and Correction

0 200 400 600 800 1000

0

200

400

600

800

1000

RS2_20090829.tif: logarithmic: (6, 9, 1): [0, 0, 1000, 1000]

FIGURE 5.15

RGB color composite of a quad polarimetric RADARSAT-2 image acquired
over an area southwest of Bonn, Germany on August 29, 2009, in the Pauli
representation RGB = (|shh − svv|2, |shv|2, |shh + svv|2). RADARSAT-2 Data
and Products c�MacDonald, Dettwiler, and Associates Ltd. (2009–2101) – All
Rights Reserved. RADARSAT is an official trademark of the Canadian Space
Agency.

The output cell is shown in Figure 5.16. Figure 5.17 shows the ENL image
obtained by sliding a 7 × 7 window across the subset and determining the
value within the window. The ENL is taken to coincide with the mode (the
most common value) of the histogram of the ENL image and is located at
12.5 in Figure 5.16.

The scattering vectors given in Equation (5.27) correspond to so-called
full, or quad polarimetric SAR. Satellite-based SAR sensors often operate in

190 Image Enhancement and Correction

0 200 400 600 800 1000

0

200

400

600

800

1000

RS2_20090829.tif: logarithmic: (6, 9, 1): [0, 0, 1000, 1000]

FIGURE 5.15

RGB color composite of a quad polarimetric RADARSAT-2 image acquired
over an area southwest of Bonn, Germany on August 29, 2009, in the Pauli
representation RGB = (|shh − svv|2, |shv|2, |shh + svv|2). RADARSAT-2 Data
and Products c�MacDonald, Dettwiler, and Associates Ltd. (2009–2101) – All
Rights Reserved. RADARSAT is an official trademark of the Canadian Space
Agency.

The output cell is shown in Figure 5.16. Figure 5.17 shows the ENL image
obtained by sliding a 7 × 7 window across the subset and determining the
value within the window. The ENL is taken to coincide with the mode (the
most common value) of the histogram of the ENL image and is located at
12.5 in Figure 5.16.

The scattering vectors given in Equation (5.27) correspond to so-called
full, or quad polarimetric SAR. Satellite-based SAR sensors often operate in

Radiometric correction of polarimetric SAR imagery 191

FIGURE 5.16

Determining the ENL from a spatial subset of the image in Figure 5.15 with
the Python script enlml.py.

0 50 100 150 200 250

0

50

100

150

200

250

20090829_enl.tif: linear: [1, 1, 1]: [0, 0, 300, 300]

0 50 100 150 200 250

0

50

100

150

200

250

20090829.tif: logarithmic: [1, 1, 1]: [0, 0, 300, 300]

FIGURE 5.17

Left: ENL values determined in a 7× 7 sliding window from a spatial subset
of the polarimetric SAR image in Figure 5.15. Right: the first band of the
original image showing the same subset.

192 Image Enhancement and Correction

reduced polarization modes, emitting only one polarization and receiving two
(dual polarization) or one (single polarization). The look-averaged covariance
matrices are reduced in dimension correspondingly: for dual polarization and
horizontal transmission,

c̄ =

(
�|shh|2� �shhs∗hv�
�shvs∗hh� �|shv|2�

)

, (5.32)

and, for single polarization and horizontal transmission, simply the intensity
image

�G� = �|shh|2�. (5.33)

In the former case, the observations mc̄ are complex Wishart distributed
(Equation (2.62)) with N = 2, in the latter case they are gamma distributed.

5.4.3 Speckle filtering

Let us represent an m look-averaged SAR scalar intensity image by the ran-
dom variable G (dropping for convenience the overbar) with mean �G� = x,
where x is again the underlying signal. The variance falls off inversely with
m, so var(G) = x2/m. Since G is gamma-distributed, its parameters α and β
satisfy

αβ = x, αβ2 = x2/m,

from which follows α = m and β = x/m. The density function of G for given
value of x is therefore (see Equation (2.33))

p(g | x) = 1

(x/m)mΓ(m)
gm−1e−gm/x. (5.34)

Let G = xV . Then, again applying Theorem 2.1 (Exercise 9(b)), it follows
that V has the density

p(v) =
mm

Γ(m)
vm−1e−vm. (5.35)

Therefore, in terms of the observed pixel intensities g (realizations of G), we
can write

g = xv, (5.36)

where v is a realization of a gamma-distributed random variable V with den-
sity given by Equation (5.35), and with mean 1 and variance 1/m.

Because of this special multiplicative noise nature of speckle, conventional
smoothing filters of the kind we met in Chapter 4 are not particularly suitable
as an aid to SAR image interpretation. Moreover, since we will be especially
concerned with polarimetric applications, a filtering algorithm which not only
treats the statistical properties of the pixels correctly but also preserves the
polarization properties is to be preferred. In the following, we will explain in
some detail two speckle filters which try to meet these requirements, and also
provide Python scripts which implement them.

192 Image Enhancement and Correction

reduced polarization modes, emitting only one polarization and receiving two
(dual polarization) or one (single polarization). The look-averaged covariance
matrices are reduced in dimension correspondingly: for dual polarization and
horizontal transmission,

c̄ =

(
�|shh|2� �shhs∗hv�
�shvs∗hh� �|shv|2�

)

, (5.32)

and, for single polarization and horizontal transmission, simply the intensity
image

�G� = �|shh|2�. (5.33)

In the former case, the observations mc̄ are complex Wishart distributed
(Equation (2.62)) with N = 2, in the latter case they are gamma distributed.

5.4.3 Speckle filtering

Let us represent an m look-averaged SAR scalar intensity image by the ran-
dom variable G (dropping for convenience the overbar) with mean �G� = x,
where x is again the underlying signal. The variance falls off inversely with
m, so var(G) = x2/m. Since G is gamma-distributed, its parameters α and β
satisfy

αβ = x, αβ2 = x2/m,

from which follows α = m and β = x/m. The density function of G for given
value of x is therefore (see Equation (2.33))

p(g | x) = 1

(x/m)mΓ(m)
gm−1e−gm/x. (5.34)

Let G = xV . Then, again applying Theorem 2.1 (Exercise 9(b)), it follows
that V has the density

p(v) =
mm

Γ(m)
vm−1e−vm. (5.35)

Therefore, in terms of the observed pixel intensities g (realizations of G), we
can write

g = xv, (5.36)

where v is a realization of a gamma-distributed random variable V with den-
sity given by Equation (5.35), and with mean 1 and variance 1/m.

Because of this special multiplicative noise nature of speckle, conventional
smoothing filters of the kind we met in Chapter 4 are not particularly suitable
as an aid to SAR image interpretation. Moreover, since we will be especially
concerned with polarimetric applications, a filtering algorithm which not only
treats the statistical properties of the pixels correctly but also preserves the
polarization properties is to be preferred. In the following, we will explain in
some detail two speckle filters which try to meet these requirements, and also
provide Python scripts which implement them.

Radiometric correction of polarimetric SAR imagery 193

5.4.3.1 Minimum mean square error (MMSE) filter

Lee et al. (1999) proposed an adaptive SAR speckle filter which is performed
in two steps:

1. Using the span image only, Equation (5.28), filter weights are computed
across the image for local windows of size n×n, where, typically, n = 7.
The filter used is an adaptive one which takes into account the local
speckle statistics. It is derived below.

2. The filter weights are then applied uniformly and separately to the ele-
ments of the look-averaged covariance matrix, Equation (5.30). By en-
suring that all elements of the covariance matrix are filtered by the same
amount, the polarimetric properties are preserved.

The speckle filter in step 1 calculates a filtered pixel intensity estimate x̂ of
the signal x at the window center assuming to the linear relation

x̂ = aḡ + bg, (5.37)

where ḡ is the mean of the (locally) observed pixel intensities in the window.
The local mean ḡ serves an initial estimate of the signal in the absence of
speckle noise. This estimate is adaptively corrected in Equation (5.37) by
choice of the parameters a and b and by the observed pixel intensity g to
estimate the actual signal x at the window center. The filter parameters are
chosen so as to minimize the mean square error

E = �(x̂ − x)2� = �(aḡ + bg − x)2�,

where � · � refers to mean value within the local window. Thus

ḡ = �g� ≈ �x�.

To obtain the parameters, we set the partial derivatives of E equal to zero:

∂E

∂a
= �2ḡ(aḡ + bg − x)� = 0

∂E

∂b
= �2g(aḡ + bg − x)� = 0.

(5.38)

The first of Equations (5.38) is equivalent to

aḡ + bḡ − ḡ = 0,

which implies
a = 1− b. (5.39)

Substituting this into the second of Equations (5.38) to eliminate a, we obtain

�g(x− ḡ)�+ �b(ḡ − g)g� = 0. (5.40)

194 Image Enhancement and Correction

0 50 100 150 200 250 300 350

0

50

100

150

200

250

300

350

20090829_mmse.tif: logarithmic: (6, 9, 1): [200, 200, 400, 400]

0 50 100 150 200 250 300 350

0

50

100

150

200

250

300

350

20090829.tif: logarithmic: (6, 9, 1): [200, 200, 400, 400]

FIGURE 5.18

Left: MMSE filter of the RASARSAT-2 quad polarimetric image of Figure
5.15. Right: the original image.

From Equation (5.36), the first term on the left-hand side can be written

�g(x− ḡ)� = �xv(x − ḡ)� = �v��x(x − ḡ)�,

assuming that speckle noise v and signal intensity x are statistically indepen-
dent. But �v� = 1 and therefore

�g(x − ḡ)� = �x(x − ḡ)�.

Since �ḡ(x− ḡ)� = ḡ�(x− ḡ)� = 0, this can be rewritten in the form

�g(x− ḡ)� = �x(x− ḡ)− ḡ(x − ḡ)� = �(x − ḡ)2�
= �(x− x̄)2� = var(x).

In a similar way, we can write the second term in Equation (5.40) as

�b(ḡ − g)g� = −b�(g − ḡ)2� = −b var(g)

and we get

b =
var(x)

var(g)
. (5.41)

Combining Equations (5.37), (5.39), and (5.41), we obtain finally the adaptive
filter

x̂ = ḡ +
var(x)

var(g)
(g − ḡ). (5.42)

In regions of the image where the signal variance var(x) is small compared
to the overall variance (homogeneous regions), i.e., x̂ ≈ ḡ, the pixels intensity

194 Image Enhancement and Correction

0 50 100 150 200 250 300 350

0

50

100

150

200

250

300

350

20090829_mmse.tif: logarithmic: (6, 9, 1): [200, 200, 400, 400]

0 50 100 150 200 250 300 350

0

50

100

150

200

250

300

350

20090829.tif: logarithmic: (6, 9, 1): [200, 200, 400, 400]

FIGURE 5.18

Left: MMSE filter of the RASARSAT-2 quad polarimetric image of Figure
5.15. Right: the original image.

From Equation (5.36), the first term on the left-hand side can be written

�g(x− ḡ)� = �xv(x − ḡ)� = �v��x(x − ḡ)�,

assuming that speckle noise v and signal intensity x are statistically indepen-
dent. But �v� = 1 and therefore

�g(x − ḡ)� = �x(x − ḡ)�.

Since �ḡ(x− ḡ)� = ḡ�(x− ḡ)� = 0, this can be rewritten in the form

�g(x− ḡ)� = �x(x− ḡ)− ḡ(x − ḡ)� = �(x − ḡ)2�
= �(x− x̄)2� = var(x).

In a similar way, we can write the second term in Equation (5.40) as

�b(ḡ − g)g� = −b�(g − ḡ)2� = −b var(g)

and we get

b =
var(x)

var(g)
. (5.41)

Combining Equations (5.37), (5.39), and (5.41), we obtain finally the adaptive
filter

x̂ = ḡ +
var(x)

var(g)
(g − ḡ). (5.42)

In regions of the image where the signal variance var(x) is small compared
to the overall variance (homogeneous regions), i.e., x̂ ≈ ḡ, the pixels intensity

Radiometric correction of polarimetric SAR imagery 195

is replaced by the window average. On the other hand, when the true signal
intensity is varying strongly, var(x) ≈ var(g), then x̂ ≈ g and no filtering takes
place at all.

While the overall variance within the window var(g) in Equation (5.42) can
be determined at once, the signal variance var(x) is not directly available.
However, we can again exploit the statistical independence of x and v and
write, with Equation (5.36),

�g2� = �x2��v2�.

Equivalently,

var(g) + �g�2 = (var(x) + �x�2)(var(v) + �v�2).

Solving for var(x) and using �x� = �g� = ḡ, var(v) = 1/m, and �v� = 1, we
obtain

var(x) =
var(g)− 1

m ḡ2

1 + 1
m

. (5.43)

Appendix C documents the Python script mmse filter.py that imple-
ments the MMSE adaptive filter for polarimetric SAR imagery and which
includes a directionally sensitive averaging window; see Lee et al. (1999). Fig-
ure 5.18 shows an example of its application to quad polarimetric, multilook
RADARSAT-2 data:

run scripts /mmse_filter imagery/RS2_20090829 .tif 12.5

=========================

MMSE_FILTER

=========================

Mon Mar 5 09:54:26 2018

infile: imagery /RS2_20090829 .tif

number of looks: 12.5

Determining filter weights from span image

row:

50 100 ... 950 done

Filtering covariance matrix elements

band : 1

band : 2

...

band : 9

result written to: imagery /RS2_20090829_mmse .tif

elapsed time : 464.533332109

run scripts /dispms -f imagery /RS2_20090829_mmse .tif \

-p [6,9,1] -d [200 ,200 ,400 ,400] -F imagery/ \

RS2_20090829 .tif -P [6,9,1] -D [200 ,200 ,400 ,400]

Note that the last input parameter in the first command of the above listing
is the ENL, which we already determined to be 12.5. The high degree of

196 Image Enhancement and Correction

0 50 100 150 200 250 300 350

0

50

100

150

200

250

300

350

20090829_mmse.tif: logarithmic: (6, 9, 1): [200, 200, 400, 400]

0 50 100 150 200 250 300 350

0

50

100

150

200

250

300

350

20090829_gamma.tif: logarithmic: (6, 9, 1): [200, 200, 400, 400]

FIGURE 5.19

As Figure 5.18 but with the gamma MAP filter on the right-hand side.

variability of the filter over the SAR image means that the global ENL which
results from the initial multilook processing will no longer be valid in the
de-speckled image (Anfinsen et al., 2009b).

5.4.3.2 Gamma MAP filter

Oliver and Quegan (2004) discuss iterative versions of the MMSE filter and
also other de-speckling algorithms that take into account explicit statistical
models for the signal x. The simplest of these, referred to as gamma maximum
a posteriori (gammaMAP) de-speckling, may be derived from Bayes’ Theorem
(Theorem 2.14). The a posteriori conditional probability for x, given intensity
measurement g is (see Equation (2.70)),

Pr(x | g) = p(g | x)Pr(x)
p(g)

, (5.44)

where p(g | x) is given by Equation (5.34), Pr(x) is the prior probability for
x and p(g) is the total probability density for g. This formulation allows us
to include prior knowledge of the signal statistics (or texture) if available. An
empirical statistical model for x is suggested by measurements of back scatter
from ocean waves (Oliver and Quegan, 2004), namely

Pr(x) ∼
(
α

µ

)α
xα−1

Γ(α)
e−αx/µ. (5.45)

This is just the gamma probability density with β = µ/α, and hence with
mean αβ = µ and variance

var(x) = αβ2 = µ2/α. (5.46)

196 Image Enhancement and Correction

0 50 100 150 200 250 300 350

0

50

100

150

200

250

300

350

20090829_mmse.tif: logarithmic: (6, 9, 1): [200, 200, 400, 400]

0 50 100 150 200 250 300 350

0

50

100

150

200

250

300

350

20090829_gamma.tif: logarithmic: (6, 9, 1): [200, 200, 400, 400]

FIGURE 5.19

As Figure 5.18 but with the gamma MAP filter on the right-hand side.

variability of the filter over the SAR image means that the global ENL which
results from the initial multilook processing will no longer be valid in the
de-speckled image (Anfinsen et al., 2009b).

5.4.3.2 Gamma MAP filter

Oliver and Quegan (2004) discuss iterative versions of the MMSE filter and
also other de-speckling algorithms that take into account explicit statistical
models for the signal x. The simplest of these, referred to as gamma maximum
a posteriori (gammaMAP) de-speckling, may be derived from Bayes’ Theorem
(Theorem 2.14). The a posteriori conditional probability for x, given intensity
measurement g is (see Equation (2.70)),

Pr(x | g) = p(g | x)Pr(x)
p(g)

, (5.44)

where p(g | x) is given by Equation (5.34), Pr(x) is the prior probability for
x and p(g) is the total probability density for g. This formulation allows us
to include prior knowledge of the signal statistics (or texture) if available. An
empirical statistical model for x is suggested by measurements of back scatter
from ocean waves (Oliver and Quegan, 2004), namely

Pr(x) ∼
(
α

µ

)α
xα−1

Γ(α)
e−αx/µ. (5.45)

This is just the gamma probability density with β = µ/α, and hence with
mean αβ = µ and variance

var(x) = αβ2 = µ2/α. (5.46)

Radiometric correction of polarimetric SAR imagery 197

The parameters µ and α can be estimated as follows. By passing an n × n
window over the image, we can obtain ḡ = �g� and var(g). Then the estimates
are

µ̂ = ḡ, (5.47)

and, with Equations (5.43) and (5.46),

α̂ =
µ̂2

var(x)
=

ḡ2

var(x)
=

1 + 1/m

var(g)/ḡ2 − 1/m
. (5.48)

Now, combining Equations (5.34), (5.44), and (5.45)∗, the posterior probabil-
ity for x given measurement g is

Pr(x | g) ∼ 1

(x/m)mΓ(m)
gm−1e−gm/x

(
α

µ

)α
xα−1

Γ(α)
e−αx/µ =: L (5.49)

Taking the logarithm,

logL = m logm−m log x+ (m− 1) log g − log Γ(m)−mg/x

+ α logα− α logµ+ (α − 1) logx− log Γ(α) − αx/µ.

We get the maximum a posteriori (MAP) value for x given the observed pixel
intensity g by maximizing logL with respect to x:

d

dx
logL = −m/x+mg/x2 + (α− 1)/x− α/µ = 0.

This leads to a quadratic equation for the most probable signal intensity x,

α

µ
x2 + (m+ 1− α)x −mg = 0, (5.50)

where the parameters µ and α are estimated locally with Equations (5.47)
and (5.48). Note, from Equation (5.48), that in homogeneous regions where
m ≈ ḡ2/var(g), α̂ → ∞. In that case, from Equation (5.50), x ≈ µ̂ = ḡ, as in
the MMSE algorithm.†

The gamma MAP filter is not appropriate to the complex off-diagonal ma-
trix elements in Equation (5.30) as their a priori statistics are not well under-
stood. Appendix C provides documentation for the Python routine
gamma filter.py for gamma MAP filtering of the diagonal terms. Figure
5.19 shows an example:

∗And neglecting the total probability p(g), which doesn’t depend on x.
†If the signal intensity x is integrated out of Equation (5.49), one obtains the probability

density function p(g) for the measured intensity in the presence of both speckle and texture,
namely the so-called K-distribution; see Oliver and Quegan (2004), Chapter 5.

198 Image Enhancement and Correction

run scripts /gamma_filter imagery/RS2_20090829 .tif 12.5

=========================

GAMMA MAP FILTER

=========================

Mon Mar 5 10:19:01 2018

infile: imagery /RS2_20090829 .tif

equivalent number of looks: 12.500000

Attempting parallel computation ...

available engines: [0, 1]

filtering 3 diagonal matrix element bands ...

result written to: imagery /RS2_20090829_gamma .tif

elapsed time : 287.622186899

run scripts /dispms -f imagery /RS2_20090829_mmse .tif \

-p [6,9,1] -d [200 ,200 ,400 ,400] \

-F imagery/ RS2_20090829_gamma .tif \

-P [2,3,1] -D [200 ,200 ,400 ,400]

As the output hints, the gamma filter.py script can take advantage of the
parallel processing power of the Jupyter notebook to run several so-called
IPython engines in parallel. In this case, since the computer used had only
two cores available, only two engines were started. See Appendix C for details.
Comparison of the images in Figure 5.19 indicates that the gamma MAP filter
is somewhat more successful in preserving details than the MMSE filter.

5.4.3.3 Temporal filtering

The MMSE and gamma MAP filters are of course spatial filters. If a sequence
of SAR images is conveniently available over a time period in which relevant
changes are considered to be negligible, one can simply average them in or-
der to reduce the effect of speckle. As we saw in the discussion of multilook
averaging, we expect the variance of the temporally averaged image also to
decrease in inverse proportion to the number of images in the sequence.

A sequence of Sentinel-1 SAR images can easily be obtained via the GEE
and used to illustrate temporal speckle filtering. Below we choose a region
near Jülich, Germany, and as a time interval, the month of May, 2017:

import ee, math

ee.Initialize ()

convert from decibels to linear scale

def linearize (current):

return current.multiply (

ee.Image.constant(math .log (10.0)/10.0)). exp()

collect a time series

rect = ee.Geometry .Rectangle ([6.31 ,50.83 ,6.58 ,50.95]);

collection = ee.ImageCollection (’COPERNICUS /S1_GRD’)\

198 Image Enhancement and Correction

run scripts /gamma_filter imagery/RS2_20090829 .tif 12.5

=========================

GAMMA MAP FILTER

=========================

Mon Mar 5 10:19:01 2018

infile: imagery /RS2_20090829 .tif

equivalent number of looks: 12.500000

Attempting parallel computation ...

available engines: [0, 1]

filtering 3 diagonal matrix element bands ...

result written to: imagery /RS2_20090829_gamma .tif

elapsed time : 287.622186899

run scripts /dispms -f imagery /RS2_20090829_mmse .tif \

-p [6,9,1] -d [200 ,200 ,400 ,400] \

-F imagery/ RS2_20090829_gamma .tif \

-P [2,3,1] -D [200 ,200 ,400 ,400]

As the output hints, the gamma filter.py script can take advantage of the
parallel processing power of the Jupyter notebook to run several so-called
IPython engines in parallel. In this case, since the computer used had only
two cores available, only two engines were started. See Appendix C for details.
Comparison of the images in Figure 5.19 indicates that the gamma MAP filter
is somewhat more successful in preserving details than the MMSE filter.

5.4.3.3 Temporal filtering

The MMSE and gamma MAP filters are of course spatial filters. If a sequence
of SAR images is conveniently available over a time period in which relevant
changes are considered to be negligible, one can simply average them in or-
der to reduce the effect of speckle. As we saw in the discussion of multilook
averaging, we expect the variance of the temporally averaged image also to
decrease in inverse proportion to the number of images in the sequence.

A sequence of Sentinel-1 SAR images can easily be obtained via the GEE
and used to illustrate temporal speckle filtering. Below we choose a region
near Jülich, Germany, and as a time interval, the month of May, 2017:

import ee, math

ee.Initialize ()

convert from decibels to linear scale

def linearize (current):

return current.multiply (

ee.Image.constant(math.log (10.0)/10.0)). exp()

collect a time series

rect = ee.Geometry .Rectangle ([6.31 ,50.83 ,6.58 ,50.95]);

collection = ee.ImageCollection (’COPERNICUS /S1_GRD’)\

Radiometric correction of polarimetric SAR imagery 199

0 100 200 300 400 500 600

0

100

200

300

400

500

600

temporalfiltered.tif: logarithmic: (1, 1, 1): [800, 400, 600, 600]

0 100 200 300 400 500 600

0

100

200

300

400

500

600

temporalfiltered.tif: logarithmic: (2, 2, 2): [800, 400, 600, 600]

FIGURE 5.20

Illustrating temporal filtering. Left: Subset of the first band (VV) of the first
image in a collection of 11 Sentinel-1 intensity images. Right: The mean of
the 11 bands.

.filterBounds (rect)\

.filterDate (ee.Date(’2017-05-01 ’),ee.Date(’2017-06-01 ’))\

. f i l t e r (ee.Filter.eq(’resolution_meters ’, 10)) \

. f i l t e r (ee.Filter.eq(’orbitProperties_pass ’,

’ASCENDING ’))\

.map(linearize)

series length

count = collection .toList (100). length()

print(’series�length:�%i’%count.getInfo ())

temporally filtered image band

filtered = collection .mean (). select (0). clip (rect)

unfiltered image band for comparison

unfiltered = ee.Image(collection .first()). select (0)\

.clip (rect)

export to Google Drive

outimage = ee.Image.cat(unfiltered ,filtered)

gdexport = ee.batch.Export.image.toDrive(outimage ,

description =’driveExportTask ’,

folder = ’EarthEngineImages ’,

fileNamePrefix =’temporalfiltered ’,scale=10)

gdexport.start()

The exported result can be downloaded from Google Drive and then uploaded
to the imagery directory for display in the Jupyter notebook with dispms.py;
see Figure 5.20. Of course features which change over the time interval chosen
for filtering are lost or falsified in the final result. This can be corrected with
a sequential change detection procedure as we will see in Chapter 9.

200 Image Enhancement and Correction

5.5 Topographic correction

Satellite images are two-dimensional representations of the three-dimensional
Earth surface. The inclusion of the third dimension—the elevation—is re-
quired for terrain modeling and accurate geo-referencing.

5.5.1 Rotation, scaling, and translation

Transformations of spatial coordinates in three dimensions, which involve only
rotations, scaling and translations, can be conveniently represented by a 4×4
transformation matrix A,

v∗ = Av, (5.51)

where v is the column vector containing the original coordinates

v = (X,Y, Z, 1)⊤

and v∗ contains the transformed coordinates

v∗ = (X∗, Y ∗, Z∗, 1)⊤.

For example, the translation

X∗ = X +X0

Y ∗ = Y + Y0

Z∗ = Z + Z0

corresponds to the transformation matrix

T =






1 0 0 X0

0 1 0 Y0

0 0 1 Z0

0 0 0 1




 ,

a uniform scaling by 50% to

S =






1/2 0 0 0
0 1/2 0 0
0 0 1/2 0
0 0 0 1




 ,

and a simple rotation θ about the Z-axis to

Rθ =






cos θ − sin θ 0 0
sin θ cos θ 0 0
0 0 1 0
0 0 0 1




 ,

200 Image Enhancement and Correction

5.5 Topographic correction

Satellite images are two-dimensional representations of the three-dimensional
Earth surface. The inclusion of the third dimension—the elevation—is re-
quired for terrain modeling and accurate geo-referencing.

5.5.1 Rotation, scaling, and translation

Transformations of spatial coordinates in three dimensions, which involve only
rotations, scaling and translations, can be conveniently represented by a 4×4
transformation matrix A,

v∗ = Av, (5.51)

where v is the column vector containing the original coordinates

v = (X,Y, Z, 1)⊤

and v∗ contains the transformed coordinates

v∗ = (X∗, Y ∗, Z∗, 1)⊤.

For example, the translation

X∗ = X +X0

Y ∗ = Y + Y0

Z∗ = Z + Z0

corresponds to the transformation matrix

T =






1 0 0 X0

0 1 0 Y0

0 0 1 Z0

0 0 0 1




 ,

a uniform scaling by 50% to

S =






1/2 0 0 0
0 1/2 0 0
0 0 1/2 0
0 0 0 1




 ,

and a simple rotation θ about the Z-axis to

Rθ =






cos θ − sin θ 0 0
sin θ cos θ 0 0
0 0 1 0
0 0 0 1




 ,

Topographic correction 201

etc. The combined rotation, scaling, translation (RST) transformation is in
this case

v∗ = (RθST)v = Av.

A is also referred to as a similarity transformation and is a special case of the
more general affine transformation,

A =






a1 a2 a3 X0

a4 a5 a6 Y0

a7 a8 a9 Z0

0 0 0 1




 =

�
a X

0⊤ 1

�

, (5.52)

where the 3× 3 matrix a is non singular. The two-dimensional counterpart of
the similarity transformation will be met in Sections 5.6.1 and 5.6.3 when we
discuss image–image registration.

5.5.2 Imaging transformations

An imaging (or perspective) transformation projects 3D points onto a plane.
It is used to describe the formation of a camera image and, unlike the RST
transformation, is nonlinear since it involves division by coordinate values.

In Figure 5.21, a camera coordinate system (x, y, x) is shown, aligned with
a world coordinate system (X,Y, Z) describing the terrain to be imaged. The
camera focal length is λ. From simple geometry (similar triangles), we obtain
expressions for the image plane coordinates in terms of the world coordinates:

x =
λX

λ− Z

y =
λY

λ− Z
.

(5.53)

Solving for the X and Y world coordinates:

X =
x

λ
(λ− Z)

Y =
y

λ
(λ− Z).

(5.54)

Thus, in order to extract the geographical coordinates (X,Y) of a point on the
Earth’s surface from its image coordinates (x, y), we require knowledge of the
elevation Z. Correcting for the elevation in this way constitutes the process
of orthorectification, resulting in an image without perspective distortion —
every point appears as if viewed from directly above.

5.5.3 Camera models and RFM approximations

Equations (5.54) are very simple because they assume that the world and im-
age coordinates coincide. But in order to apply them, one has first to trans-
form the world coordinate system to the satellite coordinate system. This can
be done in a straightforward way with the rotation and translation trans-
formations introduced above. However, it requires accurate knowledge of the

202 Image Enhancement and Correction

✲

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

✻

♣�

�

�

y,Y

x,X

(X,Y, Z)

z, Z
λ

(x, y)

image plane

lens center

�✒

FIGURE 5.21

Basic imaging process. Camera coordinates are (x,y,z) and coincide with world
coordinates (X,Y,Z). The focal length is λ.

altitude, orientation and detailed properties of the satellite imaging system at
the time of the image acquisition (or, more precisely, during the acquisition,
since the latter is never instantaneous). The resulting nonlinear equations that
relate image and world coordinates, referred to as the co-linearity equations,
constitute the camera model for that particular image.

Direct use of a camera model for image processing is complicated as it re-
quires extremely exact, sometimes proprietary information about the sensor
system and its orbit. An alternative exists if the image provider also supplies a
so-called rational function model (RFM) with the imagery. The RFM approxi-
mates the camera model for each acquisition in terms of ratios of polynomials;
see, e.g., Tao and Hu (2001). The RFMs have the form

r′ = f(X ′, Y ′, Z ′) =
a(X ′, Y ′, Z ′)
b(X ′, Y ′, Z ′)

c′ = g(X ′, Y ′, Z ′) =
c(X ′, Y ′, Z ′)
d(X ′, Y ′, Z ′)

,

(5.55)

where c′ and r′ are the column and row (x,y) coordinates in the image plane

202 Image Enhancement and Correction

✲

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��✒

✻

♣�

�

�

y,Y

x,X

(X,Y, Z)

z, Z
λ

(x, y)

image plane

lens center

FIGURE 5.21

Basic imaging process. Camera coordinates are (x,y,z) and coincide with world
coordinates (X,Y,Z). The focal length is λ.

altitude, orientation and detailed properties of the satellite imaging system at
the time of the image acquisition (or, more precisely, during the acquisition,
since the latter is never instantaneous). The resulting nonlinear equations that
relate image and world coordinates, referred to as the co-linearity equations,
constitute the camera model for that particular image.

Direct use of a camera model for image processing is complicated as it re-
quires extremely exact, sometimes proprietary information about the sensor
system and its orbit. An alternative exists if the image provider also supplies a
so-called rational function model (RFM) with the imagery. The RFM approxi-
mates the camera model for each acquisition in terms of ratios of polynomials;
see, e.g., Tao and Hu (2001). The RFMs have the form

r′ = f(X ′, Y ′, Z ′) =
a(X ′, Y ′, Z ′)
b(X ′, Y ′, Z ′)

c′ = g(X ′, Y ′, Z ′) =
c(X ′, Y ′, Z ′)
d(X ′, Y ′, Z ′)

,

(5.55)

where c′ and r′ are the column and row (x,y) coordinates in the image plane

Topographic correction 203

relative to an origin (c0, r0) and scaled by a factor cs resp. rs, i.e.,

c′ =
c− c0
cs

, r′ =
r − r0
rs

.

Similarly X ′, Y ′, and Z ′ are relative, scaled world coordinates:

X ′ =
X −X0

Xs
, Y ′ =

Y − Y0

Ys
, Z ′ =

Z − Z0

Zs
.

The polynomials a, b, c, and d in Equation (5.55) are typically to third order
in the world coordinates, for example,

a(X,Y, Z) =

a0 + a1X + a2Y + a3Z + a4XY + a5XZ + a6Y Z + a7X
2 + a8Y

2 + a9Z
2

+ a10XY Z + a11X
3 + a12XY 2 + a13XZ2 + a14X

2Y + a15Y
3 + a16Y Z2

+ a17X
2Z + a18Y

2Z + a19Z
3.

The advantage of using ratios of polynomials is that they are less subject to
interpolation error than simple polynomials.

For a given acquisition, the provider will fit an RFM to its camera model
with a least squares fitting procedure using a two- and three-dimensional grid
of points covering the image resp. world spaces. The RFM is capable of rep-
resenting the camera model extremely well and can be used as a replacement
for it. Both Space Imaging Corp. and DigitalGlobe Inc., for example, provide
RFMs with their so-called “ortho-ready” high-resolution imagery (IKONOS,
QuickBird, WorldView-1 platforms).

To illustrate a simple use of RFM data, consider a vertical structure in
a high-resolution image, such as a chimney or building facade. Suppose we
determine the image coordinates of the bottom and top of the structure to be
(rb, cb) and (rt, ct), respectively. Then, from Equations (5.55),

r′b = f(X ′, Y ′, Z ′
b)

c′b = g(X ′, Y ′, Z ′
b)

r′t = f(X ′, Y ′, Z ′
t)

c′t = g(X ′, Y ′, Z ′
t),

(5.56)

since the (X ′, Y ′) coordinates must be the same. This would appear to consti-
tute a set of four equations in four unknowns X ′, Y ′, Z ′

b, and Z ′
t, however the

solution is unstable because of the close similarity of Z ′
t to Z ′

b. Nevertheless,
the object height Z ′

t − Z ′
b can be obtained by the following procedure:

1. Get (rb, cb) and (rt, ct) from the image and convert to scaled values
(r′b, c

′
b) and (r′t, c

′
t).

204 Image Enhancement and Correction

2. Solve the first two of Equations (5.56), for instance, with Newton’s meth-
od (Press et al., 2002), for X ′ and Y ′ with Z ′

b set equal to the average
elevation in the scene, i.e., Z0/Zs, if no digital elevation model (DEM)
is available, otherwise to the true, properly scaled elevation.

3. For a range of Z ′
t values increasing from Z ′

b to some maximum value
well exceeding the expected height, calculate (r′t, c

′
t) from the last two of

Equations (5.56). Choose for Z ′
t the value which gives closest agreement

to the (rt, ct) values read in.

Quite generally, the RFM can be used as an alternative for providing end
users with the necessary information to perform their own photogrammetric
processing.

5.5.4 Stereo imaging and digital elevation models

The missing elevation information Z in Equations (5.53) or (5.54) can be ob-
tained with stereoscopic imaging techniques. Figure 5.22 depicts two cameras
viewing the same world point w from two positions. The separation B of the
lens centers is the baseline. The objective is to find the coordinates of the point
w if its image points have coordinates (x1, y1) and (x2, y2). We assume that
the cameras are identical and that their image coordinate systems are per-
fectly aligned, differing only in the location of their origins. The Z coordinate
of w is the same for both coordinate systems.

In Figure 5.22, the coordinate system of the first camera is shown as coin-
ciding with the world coordinate system. Therefore, from Equation (5.54),

X1 =
x1

λ
(λ− Z).

Alternatively, if the second camera is brought to the origin of the world coor-
dinate system,

X2 =
x2

λ
(λ− Z).

But, from the figure,
X2 = X1 +B,

where B is the baseline. We have from the above three equations:

Z = λ− λB

x2 − x1
. (5.57)

Thus if the displacement of the image coordinates of the point w, namely
x2 − x1, can be determined, then the Z coordinate can be calculated. The
task is then to find two corresponding points in different images of the same
scene. This is usually accomplished by spatial cross-correlation techniques and
is closely related to the problem of image–image registration discussed later
in this chapter.

204 Image Enhancement and Correction

2. Solve the first two of Equations (5.56), for instance, with Newton’s meth-
od (Press et al., 2002), for X ′ and Y ′ with Z ′

b set equal to the average
elevation in the scene, i.e., Z0/Zs, if no digital elevation model (DEM)
is available, otherwise to the true, properly scaled elevation.

3. For a range of Z ′
t values increasing from Z ′

b to some maximum value
well exceeding the expected height, calculate (r′t, c

′
t) from the last two of

Equations (5.56). Choose for Z ′
t the value which gives closest agreement

to the (rt, ct) values read in.

Quite generally, the RFM can be used as an alternative for providing end
users with the necessary information to perform their own photogrammetric
processing.

5.5.4 Stereo imaging and digital elevation models

The missing elevation information Z in Equations (5.53) or (5.54) can be ob-
tained with stereoscopic imaging techniques. Figure 5.22 depicts two cameras
viewing the same world point w from two positions. The separation B of the
lens centers is the baseline. The objective is to find the coordinates of the point
w if its image points have coordinates (x1, y1) and (x2, y2). We assume that
the cameras are identical and that their image coordinate systems are per-
fectly aligned, differing only in the location of their origins. The Z coordinate
of w is the same for both coordinate systems.

In Figure 5.22, the coordinate system of the first camera is shown as coin-
ciding with the world coordinate system. Therefore, from Equation (5.54),

X1 =
x1

λ
(λ− Z).

Alternatively, if the second camera is brought to the origin of the world coor-
dinate system,

X2 =
x2

λ
(λ− Z).

But, from the figure,
X2 = X1 +B,

where B is the baseline. We have from the above three equations:

Z = λ− λB

x2 − x1
. (5.57)

Thus if the displacement of the image coordinates of the point w, namely
x2 − x1, can be determined, then the Z coordinate can be calculated. The
task is then to find two corresponding points in different images of the same
scene. This is usually accomplished by spatial cross-correlation techniques and
is closely related to the problem of image–image registration discussed later
in this chapter.

Topographic correction 205

✲

✲❄

✻

�

�

�

B

image 1

image 2

λ

λ

(x1, y1)

(x2, y2)

Z

w(X1, Y1, Z)

✻

X

FIGURE 5.22

The stereo imaging process. The coordinates of the point w are relative to a
world coordinate system coinciding with the upper camera.

Because the stereo images must be correlated, best results are obtained if
they are acquired within a very short time of each other, preferably “along
track” if a single platform is used; see Figure 5.23. This figure shows the
orientation and imaging geometry of the VNIR 3N and 3B cameras on the
ASTER platform for acquiring a stereo full scene. The satellite travels at a
speed of 6.7 km/sec at a height of 705 km. A 60 × 60 km2 full scene is scanned
in 9 seconds. Then, 55 seconds later, the same scene is scanned by the back-
looking camera, corresponding to a baseline of B = 370 km. The along-track
geometry means that the epipolar lines (Solem, 2012) of the stereo pair are
parallel, i.e., the displacements due to viewing angle are only along a common
direction in the imaging planes of the two cameras, in this case the y axis.
Therefore, the spatial cross-correlation algorithm used to match points can be
one-dimensional. If carried out on a pixel-for-pixel basis, one obtains a DEM
having approximately the same resolution as that of the stereo imagery.

206 Image Enhancement and Correction

55 9 0 sec

430 370 60 0 km

❄

✻

h

e

p

✛ ✲
B

6.7 km/sec Orbit

Ground

begin 3Ncomplete 3B

✛✲
stereo scene

64

3N camera 3B camera
✣②

27.6o

(705 km)

✛

FIGURE 5.23

ASTER along-track stereo acquisition geometry, adapted from Lang and
Welch (1999). Parallax p can be related to elevation e by similar triangles:
e/p = (h− e)/B ≈ h/B.

As an example, Figures 5.24 and 5.25 show an ASTER along-track stereo
pair. The images are 600 × 600 pixels. A python script was used calculate a
very rudimentary DEM: For each pixel in the nadir image a 15× 15 window
is moved along a 15 × 51 window (called the epipolar segment) in the back-
looking image centered at the corresponding position, allowing for a maximum
disparity of ±18 pixels. The point of maximum cross-correlation determines
the parallax or disparity p. This is related to the elevation e of the pixel by

e = p · h
B

× 15m,

where h is the height of the sensor and B is the baseline; see Figure 5.23. The
script is as follows:

from osgeo import gdal

from osgeo.gdalconst import GDT_Float32

206 Image Enhancement and Correction

55 9 0 sec

430 370 60 0 km

❄

✻

h

e

p

✛ ✲
B

6.7 km/sec Orbit

Ground

begin 3Ncomplete 3B

✛✲
stereo scene

64

3N camera 3B camera
✣②

27.6o

(705 km)

✛

FIGURE 5.23

ASTER along-track stereo acquisition geometry, adapted from Lang and
Welch (1999). Parallax p can be related to elevation e by similar triangles:
e/p = (h− e)/B ≈ h/B.

As an example, Figures 5.24 and 5.25 show an ASTER along-track stereo
pair. The images are 600 × 600 pixels. A python script was used calculate a
very rudimentary DEM: For each pixel in the nadir image a 15× 15 window
is moved along a 15 × 51 window (called the epipolar segment) in the back-
looking image centered at the corresponding position, allowing for a maximum
disparity of ±18 pixels. The point of maximum cross-correlation determines
the parallax or disparity p. This is related to the elevation e of the pixel by

e = p · h
B

× 15m,

where h is the height of the sensor and B is the baseline; see Figure 5.23. The
script is as follows:

from osgeo import gdal

from osgeo.gdalconst import GDT_Float32

Topographic correction 207

0 100 200 300 400 500

0

100

200

300

400

500

AST_3N: linear2pc: [1, 1, 1]: [0, 0, 600, 600]

FIGURE 5.24

ASTER 3N band (nadir camera) over a hilly region in North Korea.

0 100 200 300 400 500

0

100

200

300

400

500

AST_3B: linear2pc: [1, 1, 1]: [0, 0, 600, 600]

FIGURE 5.25

ASTER 3B band (back-looking camera) registered to Figure 5.24 by a first-
order polynomial transformation (see Section 5.6.3).

208 Image Enhancement and Correction

0 100 200 300 400 500

0

100

200

300

400

500

fig5_26: equalization: (1, 1, 1): [0, 0, 600, 600]

FIGURE 5.26

A rudimentary digital elevation model (DEM) from the ASTER stereo pair
of Figures 5.24 and 5.25.

0 100 200 300 400 500

0

100

200

300

400

500

AST_DEM: equalization: [1, 1, 1]: [0, 0, 600, 600]

FIGURE 5.27

DEM generated with the commercial product AsterDTM (Sulsoft, 2003).

208 Image Enhancement and Correction

0 100 200 300 400 500

0

100

200

300

400

500

fig5_26: equalization: (1, 1, 1): [0, 0, 600, 600]

FIGURE 5.26

A rudimentary digital elevation model (DEM) from the ASTER stereo pair
of Figures 5.24 and 5.25.

0 100 200 300 400 500

0

100

200

300

400

500

AST_DEM: equalization: [1, 1, 1]: [0, 0, 600, 600]

FIGURE 5.27

DEM generated with the commercial product AsterDTM (Sulsoft, 2003).

Topographic correction 209

import matplotlib .pyplot as plt

import numpy as np

from scipy.signal import correlate , correlation_lags

gdal .AllRegister ()

grab the ASTER nadir and back -looking images

inDataset1 = gdal .Open(’imagery/AST_3N ’)

cols = inDataset1 .RasterXSize

rows = inDataset1 .RasterYSize

image1 = np.array(inDataset1 .GetRasterBand (1) \

.ReadAsArray (0,0,cols ,rows), dtype= f l oat)

inDataset2 = gdal .Open(’imagery/AST_3B ’)

image2 = np.array(inDataset2 .GetRasterBand (1) \

.ReadAsArray (0,0,cols ,rows), dtype= f l oat)

ASTER stereo geometry

height = 705.0 #km

base = 370.0 #km

res = 15.0 #m

the parallax DEM

p = np.zeros([cols , rows], dtype = f l oat) - 20

for i in range(25, rows -25):

for j in range(7, cols -7):

im1 = image1[i-7:i+7, j-7:j+7]

im2 = image2[i-25: i+25, j-7:j+7]

center the image patches

im1 = (im1 - np.mean(im1))

im2 = (im2 - np.mean(im2))

2-dimensional cross -correlation

corr = correlate (im1 , im2 , mode=’valid’)

lag of maximum correlation index along y-axis

lags = correlation_lags (im1.shape[0],

im2.shape[0], mode =’valid’)

max_index = np.unravel_index (np.argmax(corr),

corr.shape)

yoff = lags[max_index [0]]

i f (yoff < -20) or (yoff > -5):

p[i,j] = p[i,j-1]

e l se:

p[i,j] = yoff

dem = p*res *(height/base)

Figure 5.26 shows the result. Clearly there are problems due to correlation
errors; however, the relative elevations are approximately correct when com-
pared to the DEM determined with the ENVI commercial add-on AsterDTM

(Sulsoft, 2003); see Figure 5.27. This more sophisticated approach uses image
pyramids to accumulate disparities at increasing scales (Quam, 1987).

In generating a DEM in this way, either the complete camera model or
an RFM can be referred to, but usually neither is sufficient for determining
absolute elevations. Most often, additional ground reference points within the

210 Image Enhancement and Correction

image with known elevations are also required for absolute calibration. Ortho
rectification of the image is carried out on the basis of the DEM and consists
of referring the (X,Y, Z) coordinates of each pixel to the (X,Y) coordinates
of a given map projection.

5.5.5 Slope and aspect

a b c

d e f

g h i

FIGURE 5.28

Pixel elevations in an 8-neigh-
borhood. The letters represent
elevations in meters.

Topographic modeling, or terrain analy-
sis, involves the processing of elevation
data provided by a DEM. Specifically,
we consider here the generation of slope
images, which give the steepness of the
terrain at each pixel, and aspect images,
which give the direction relative to north
of a vector normal to the landscape at
each pixel.
A 3×3 pixel window can be used to de-

termine both slope and aspect as follows;
see Figure 5.28. Define

∆x1 = c− a ∆y1 = a− g

∆x2 = f − d ∆y2 = b− h

∆x3 = i− g ∆y3 = c− i

and
∆x = (∆x1 +∆x2 +∆x3)/3

∆y = (∆y1 +∆y2 +∆y3)/3.

Then the slope angle in radians at the central pixel position is given by (Ex-
ercise 11)

θp = tan−1

(√

(∆x)2 + (∆y)2

2 ·GSD

)

, (5.58)

whereas the aspect in radians measured clockwise from north is

φo = tan−1

(
∆x

∆y

)

. (5.59)

The GDAL utilities (Appendix C) include routines for slope/aspect determi-
nation from a DEM:

!gdaldem slope imagery/AST_DEM imagery/ASTslope .tif

0...10...20...30...40... ...90...100 - done.

!gdaldem aspect imagery/AST_DEM imagery/ASTaspect .tif

0...10...20...30...40... ...90...100 - done.

run scripts /dispms -f imagery /ASTslope .tif \

-F imagery/ASTaspect .tif

210 Image Enhancement and Correction

image with known elevations are also required for absolute calibration. Ortho
rectification of the image is carried out on the basis of the DEM and consists
of referring the (X,Y, Z) coordinates of each pixel to the (X,Y) coordinates
of a given map projection.

5.5.5 Slope and aspect

a b c

d e f

g h i

FIGURE 5.28

Pixel elevations in an 8-neigh-
borhood. The letters represent
elevations in meters.

Topographic modeling, or terrain analy-
sis, involves the processing of elevation
data provided by a DEM. Specifically,
we consider here the generation of slope
images, which give the steepness of the
terrain at each pixel, and aspect images,
which give the direction relative to north
of a vector normal to the landscape at
each pixel.
A 3×3 pixel window can be used to de-

termine both slope and aspect as follows;
see Figure 5.28. Define

∆x1 = c− a ∆y1 = a− g

∆x2 = f − d ∆y2 = b− h

∆x3 = i− g ∆y3 = c− i

and
∆x = (∆x1 +∆x2 +∆x3)/3

∆y = (∆y1 +∆y2 +∆y3)/3.

Then the slope angle in radians at the central pixel position is given by (Ex-
ercise 11)

θp = tan−1

(√

(∆x)2 + (∆y)2

2 ·GSD

)

, (5.58)

whereas the aspect in radians measured clockwise from north is

φo = tan−1

(
∆x

∆y

)

. (5.59)

The GDAL utilities (Appendix C) include routines for slope/aspect determi-
nation from a DEM:

!gdaldem slope imagery/AST_DEM imagery/ASTslope .tif

0...10...20...30...40... ...90...100 - done.

!gdaldem aspect imagery/AST_DEM imagery/ASTaspect .tif

0...10...20...30...40... ...90...100 - done.

run scripts /dispms -f imagery /ASTslope .tif \

-F imagery/ASTaspect .tif

Topographic correction 211

0 100 200 300 400 500 600

0

100

200

300

400

500

600

asterslope.tif: logarithmic: [1, 1, 1]: [0, 0, 600, 600]

0 100 200 300 400 500 600

0

100

200

300

400

500

600

asteraspect.tif: logarithmic: [1, 1, 1]: [0, 0, 600, 600]

FIGURE 5.29

Slope (left) and aspect (right) images calculated with the DEM of Figure 5.27.

The slope and aspect images are shown in Figure 5.29.

5.5.6 Illumination correction

Topographic modeling can be used to correct images for the effects of local
solar illumination. The local illumination depends not only upon the sun’s
position (elevation and azimuth) but also upon the slope and aspect of the
terrain being illuminated. Figure 5.30 shows the angles involved. The quantity
to be determined is the local solar incidence angle γi, which determines the
local irradiance. From trigonometry, we can calculate the relation

cos γi = cos θp cos θz + sin θp sin θz cos(φa − φo). (5.60)

Image classification and change detection algorithms, the subject of the
next chapters, will achieve better results if variable image properties extrinsic
to the actual surface reflectance are first removed. For a Lambertian surface,
the reflected radiance LH from a horizontal surface toward a sensor (ignoring
all atmospheric effects) is given by Equation (1.1), which we write in the
simplified form

LH = E · cos θz · R. (5.61)

For a surface in rough terrain, the reflected radiance LT is similarly

LT = E · cos γi ·R, (5.62)

thus giving the standard cosine correction relating the observed radiance LT

to that which would have been observed had the terrain been flat, namely

LH = LT
cos θz
cos γi

. (5.63)

212 Image Enhancement and Correction

The Lambertian assumption is in general a poor approximation, the actual
reflectance being governed by a bidirectional reflectance distribution function
(BRDF), which describes the dependence of reflectance on both illumination
and viewing angles as well as on wavelength (Beisl, 2001). Particularly for the
large range of incident angles involved with rough terrain, the cosine correction
will over- or underestimate the extremes and lead to unwanted artifacts in the
corrected imagery.

An example of an approach which takes better account of BRDF effects
is the semi empirical cosine correction (C-correction) method suggested by
Teillet et al. (1982). We replace Equations (5.61) and (5.62) by

LH = m · cos θz + b, LT = m · cos γi + b.

The parametersm and b can be estimated from a linear regression of observed
radiance LT vs. cos γi for a particular image band. The regression should
be carried out separately for different land cover categories in order to take
into account the variation of BRDF effects with land cover. Then, instead of
Equation (5.63), one uses

LH = LT

(
cos θz + b/m

cos γi + b/m

)

(5.64)

as a correction formula.

■

✲

▼

✖✕
✗✔✚✚

✕②

�✾

❃⑥ ✼
②

③
✴

θz

γi

θp

90o

φa

φo

Normal to terrain

North✌
✛

FIGURE 5.30

Angles involved in computation of local solar incidence (adapted from Riano
et al. (2003)): θz = solar zenith angle, φa = solar azimuth, θp = slope, φo =
aspect, γi = local solar incidence angle.

212 Image Enhancement and Correction

The Lambertian assumption is in general a poor approximation, the actual
reflectance being governed by a bidirectional reflectance distribution function
(BRDF), which describes the dependence of reflectance on both illumination
and viewing angles as well as on wavelength (Beisl, 2001). Particularly for the
large range of incident angles involved with rough terrain, the cosine correction
will over- or underestimate the extremes and lead to unwanted artifacts in the
corrected imagery.

An example of an approach which takes better account of BRDF effects
is the semi empirical cosine correction (C-correction) method suggested by
Teillet et al. (1982). We replace Equations (5.61) and (5.62) by

LH = m · cos θz + b, LT = m · cos γi + b.

The parametersm and b can be estimated from a linear regression of observed
radiance LT vs. cos γi for a particular image band. The regression should
be carried out separately for different land cover categories in order to take
into account the variation of BRDF effects with land cover. Then, instead of
Equation (5.63), one uses

LH = LT

(
cos θz + b/m

cos γi + b/m

)

(5.64)

as a correction formula.

■

✲

▼

✖✕
✗✔✚✚

✕②

�✾

❃⑥ ✼
②

③
✴

θz

γi

θp

90o

φa

φo

Normal to terrain

North✌
✛

FIGURE 5.30

Angles involved in computation of local solar incidence (adapted from Riano
et al. (2003)): θz = solar zenith angle, φa = solar azimuth, θp = slope, φo =
aspect, γi = local solar incidence angle.

Topographic correction 213

0 200 400 600 800 1000 1200 1400 1600

0

200

400

600

800

1000

1200

1400

1600

LS19840717.tif: linear2pc: (4, 5, 6): [100, 500, 1600, 1600]

0 200 400 600 800 1000 1200 1400 1600

0

200

400

600

800

1000

1200

1400

1600

SRTM.tif: linear2pc: (4, 5, 6): [100, 500, 1600, 1600]

FIGURE 5.31

Left: RGB composite of bands 4, 5, and 7 of a LANDSAT 5 TM image over
Vancouver Island acquired 17 July, 1984. Right: STRM (Shuttle Radar To-
pography Mission) digital elevation data for the same region, 30 m resolution,
acquired February 2000.

A Python script c corr.py for illumination correction with the C-correction
approximation, including land cover masking, is given in Appendix C. As an
example of the procedure, consider the LANDSAT 5 TM image along with
the associated DEM shown in Figure 5.31. The data were accessed from the
GEE database with the commands

rect = ee.Geometry \

.Rectangle ([-124.705 ,48.414 , -123.799 ,49.026])

image = ee.Image(

’LANDSAT/LT05/C01/T1/LT05_048026_19840717 ’) \

.select(’B1’,’B2’,’B3’,’B4’,’B5’,’B7’) \

.clip(rect)

dem = ee.Image(’USGS /SRTMGL1_003 ’). clip (rect)

and downloaded to the imagery directory for further processing in the Jupyter
notebook.

The LANDSAT image was subjected to a principal components transfor-
mation and then classified with the expectation maximization (EM) clustering
algorithm coded in the script em.py:∗

∗We have to anticipate here. See Chapter 8 for a discussion of unsupervised classification
in general and the EM algorithm in particular.

214 Image Enhancement and Correction

0 200 400 600 800 1000 1200 1400 1600

0

200

400

600

800

1000

1200

1400

1600

LS19840717_pca_em.tif: linear: [1, 1, 1]: [0, 0, 1600, 1600]

FIGURE 5.32

Unsupervised classification of the image of Figure 5.31. The three classes
correspond to water (blue), forest canopy (green), and cut forest (brown).

perform PCA

run scripts/pca -d [100 ,500 ,1600 ,1600] \

imagery/LS19840717 .tif

PCs written to: myimagery /LS19840717_pca .tif

classify on first 3 PCs only , assume 3 clusters

run scripts /em -p [1,2,3] -K 3 \

imagery/LS19840717_pca .tif

classified image: myimagery /LS19840717_pca_em .tif

The clustered image with three surface categories is shown in Figure 5.32.
Finally, the C-correction code was invoked on the original LANDSAT scene
and associated DEM, with the -c flag pointing to the class image and with
the solar azimuth and elevation angles, 132.9 and 54.9 degrees, respectively,
taken from the scene’s metadata:

run scripts/c_corr -d [100 ,500 ,1600 ,1600] \

-c imagery/LS19840717_pca_em .tif \

132.9 54.9 imagery/LS19840717 .tif imagery/SRTM.tif

214 Image Enhancement and Correction

0 200 400 600 800 1000 1200 1400 1600

0

200

400

600

800

1000

1200

1400

1600

LS19840717_pca_em.tif: linear: [1, 1, 1]: [0, 0, 1600, 1600]

FIGURE 5.32

Unsupervised classification of the image of Figure 5.31. The three classes
correspond to water (blue), forest canopy (green), and cut forest (brown).

perform PCA

run scripts/pca -d [100 ,500 ,1600 ,1600] \

imagery/LS19840717 .tif

PCs written to: myimagery /LS19840717_pca .tif

classify on first 3 PCs only , assume 3 clusters

run scripts /em -p [1,2,3] -K 3 \

imagery/LS19840717_pca .tif

classified image: myimagery /LS19840717_pca_em .tif

The clustered image with three surface categories is shown in Figure 5.32.
Finally, the C-correction code was invoked on the original LANDSAT scene
and associated DEM, with the -c flag pointing to the class image and with
the solar azimuth and elevation angles, 132.9 and 54.9 degrees, respectively,
taken from the scene’s metadata:

run scripts/c_corr -d [100 ,500 ,1600 ,1600] \

-c imagery/LS19840717_pca_em .tif \

132.9 54.9 imagery/LS19840717 .tif imagery/SRTM.tif

Topographic correction 215

0 200 400 600 800 1000 1200 1400 1600

0

200

400

600

800

1000

1200

1400

1600

cosgamma: equalization: [1, 1, 1]: [0, 0, 1600, 1600]

FIGURE 5.33

Cosine of the local solar incidence angle cos γi for the image of Figure 5.31.

0 200 400 600 800 1000

0

200

400

600

800

1000

LS19840717.tif: logarithmic: (4, 4, 4): [100, 500, 1000, 1000]

0 200 400 600 800 1000

0

200

400

600

800

1000

LS19840717_corr.tif: logarithmic: (4, 4, 4): [0, 0, 1000, 1000]

FIGURE 5.34

Left: spatial subset of band 4 for the image of Figure 5.31 in a logarithmic
stretch. Right: with C-correction.

216 Image Enhancement and Correction

Band : 1 Class: 1 Pixels: 317119 Correlation : 0.035653

Band : 1 Class: 2 Pixels: 1637855 Correlation : 0.400593

---correcting band 1, class 2

Band : 1 Class: 3 Pixels: 605026 Correlation : 0.150770

Band : 2 Class: 1 Pixels: 317119 Correlation : 0.016266

Band : 2 Class: 2 Pixels: 1637855 Correlation : 0.490472

---correcting band 2, class 2

Band : 2 Class: 3 Pixels: 605026 Correlation : 0.259226

---correcting band 2, class 3

...

...

Band : 6 Class: 1 Pixels: 317119 Correlation : -0.013994

Band : 6 Class: 2 Pixels: 1637855 Correlation : 0.367915

---correcting band 6, class 2

Band : 6 Class: 3 Pixels: 605026 Correlation : 0.187557

c-corrected image written to: \

imagery/LS19840717_corr .tif

As can be inferred from the above output, for each image band only those
pixels in a class with a sufficiently high correlation (> 0.2) between intensity
and cos γi are corrected. The others are left as is. The cos γi image is shown
in Figure 5.33. The original and C-corrected images are compared in Figure
5.34. Quite generally, hillsides sloped away from the sun are brighter after
correction.

5.6 Image–image registration

Image registration, either to another image or to a map, is a fundamental
task in remote sensing data processing. It is required for georeferencing, stereo
imaging, accurate change detection, and indeed for any kind of multi temporal
image analysis. A tedious task associated with manual co registration in the
past has been the setting of tie-points or, as they are often called, ground
control points (GCPs), since in general it was necessary to resort to manual
entry. Fortunately, there now exist many reliable automatic or semi-automatic
procedures for locating tie-points, Tondewad and Dale (2020) give a good
overview. In general, registration procedures can be divided roughly into four
classes (Reddy and Chatterji, 1996):

1. Algorithms that use pixel intensity values directly, such as correlation
methods or methods that maximize mutual information

2. Frequency- or wavelet-domain methods that use, e.g., the fast Fourier
transform

216 Image Enhancement and Correction

Band : 1 Class: 1 Pixels: 317119 Correlation : 0.035653

Band : 1 Class: 2 Pixels: 1637855 Correlation : 0.400593

---correcting band 1, class 2

Band : 1 Class: 3 Pixels: 605026 Correlation : 0.150770

Band : 2 Class: 1 Pixels: 317119 Correlation : 0.016266

Band : 2 Class: 2 Pixels: 1637855 Correlation : 0.490472

---correcting band 2, class 2

Band : 2 Class: 3 Pixels: 605026 Correlation : 0.259226

---correcting band 2, class 3

...

...

Band : 6 Class: 1 Pixels: 317119 Correlation : -0.013994

Band : 6 Class: 2 Pixels: 1637855 Correlation : 0.367915

---correcting band 6, class 2

Band : 6 Class: 3 Pixels: 605026 Correlation : 0.187557

c-corrected image written to: \

imagery/LS19840717_corr .tif

As can be inferred from the above output, for each image band only those
pixels in a class with a sufficiently high correlation (> 0.2) between intensity
and cos γi are corrected. The others are left as is. The cos γi image is shown
in Figure 5.33. The original and C-corrected images are compared in Figure
5.34. Quite generally, hillsides sloped away from the sun are brighter after
correction.

5.6 Image–image registration

Image registration, either to another image or to a map, is a fundamental
task in remote sensing data processing. It is required for georeferencing, stereo
imaging, accurate change detection, and indeed for any kind of multi temporal
image analysis. A tedious task associated with manual co registration in the
past has been the setting of tie-points or, as they are often called, ground
control points (GCPs), since in general it was necessary to resort to manual
entry. Fortunately, there now exist many reliable automatic or semi-automatic
procedures for locating tie-points, Tondewad and Dale (2020) give a good
overview. In general, registration procedures can be divided roughly into four
classes (Reddy and Chatterji, 1996):

1. Algorithms that use pixel intensity values directly, such as correlation
methods or methods that maximize mutual information

2. Frequency- or wavelet-domain methods that use, e.g., the fast Fourier
transform

Image–image registration 217

3. Feature-based methods that use low-level features such as shapes, edges,
or corners to derive tie-points

4. Algorithms that use high-level features and the relations between them
(object-based methods)

We will consider here examples of frequency-domain and feature-based al-
gorithms which illustrate some of the principles involved.

5.6.1 Frequency domain registration

Consider two c × c gray-scale images g1(i, j) and g2(i, j), where g2 is offset
relative to g1 by an integer number of pixels:

g2(i, j) = g1(i
′, j′) = g1(i− i0, j − j0).

Taking the Fourier transform we have,

ĝ2(k, ℓ) =
1

c2

∑

ij

g1(i− i0, j − j0)e
−i2π(ik+jℓ)/c,

or with a change of indices to i′j′,

ĝ2(k, ℓ) =
1

c2

∑

i′j′

g1(i
′, j′)e−i2π(i′k+j′ℓ)/ce−i2π(i0k+j0ℓ)/c

= ĝ1(k, ℓ)e
−i2π(i0k+j0ℓ)/c.

This is the Fourier translation property that we met in Chapter 3; see Equation
(3.11). Therefore, we can write

ĝ2(k, ℓ)ĝ
∗
1(k, ℓ) = |ĝ1(k, ℓ))|2e−i2π(i0k+j0ℓ)/c,

where ĝ∗1 is the complex conjugate of ĝ1, and hence

ĝ2(k, ℓ)ĝ
∗
1(k, ℓ)

|ĝ1(k, ℓ)|2
= e−i2π(i0k+j0ℓ)/c. (5.65)

The inverse transform of the right-hand side of Equation (5.65) exhibits a
delta function (spike) at the coordinates (i0, j0). Thus if two otherwise iden-
tical (or closely similar) images are offset by an integer number of pixels, the
offset can be found by taking their Fourier transforms, computing the ratio on
the left-hand side of Equation (5.65) (the so-called cross-power spectrum), and
then taking the inverse transform of the result. The position of the maximum
value in the inverse transform gives the offset values of i0 and j0. Here is an
illustration:

218 Image Enhancement and Correction

0

5

10

15

20

25

30

35

40

0

5

10

15

20

25

30

35

40

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

FIGURE 5.35

Phase correlation of two identical images shifted relative to one another by
10 pixels.

from osgeo import gdal

from osgeo.gdalconst import GA_ReadOnly

import numpy as np

from numpy import fft

import matplotlib .pyplot as plt

from mpl_toolkits .mplot3d import Axes3D

grab an image band

gdal.AllRegister ()

inDataset = gdal.Open(’imagery/AST_20070501 ’)

cols = inDataset .RasterXSize

rows = inDataset .RasterYSize

band = inDataset .GetRasterBand (3) \

.ReadAsArray (0,0,cols ,rows)

calculate and invert cross -power spectrum

g1 = band [10:522 ,10:522]

g2 = band [0:512 ,0:512]

f1 = fft.fft2 (g1)

f2 = fft.fft2 (g2)

g = fft.ifft2(f2*np.conj(f1)/np.absolute (f1)**2)

218 Image Enhancement and Correction

0

5

10

15

20

25

30

35

40

0

5

10

15

20

25

30

35

40

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

FIGURE 5.35

Phase correlation of two identical images shifted relative to one another by
10 pixels.

from osgeo import gdal

from osgeo.gdalconst import GA_ReadOnly

import numpy as np

from numpy import fft

import matplotlib .pyplot as plt

from mpl_toolkits .mplot3d import Axes3D

grab an image band

gdal.AllRegister ()

inDataset = gdal.Open(’imagery/AST_20070501 ’)

cols = inDataset .RasterXSize

rows = inDataset .RasterYSize

band = inDataset .GetRasterBand (3) \

.ReadAsArray (0,0,cols ,rows)

calculate and invert cross -power spectrum

g1 = band [10:522 ,10:522]

g2 = band [0:512 ,0:512]

f1 = fft.fft2 (g1)

f2 = fft.fft2 (g2)

g = fft.ifft2(f2*np.conj(f1)/np.absolute (f1)**2)

Image–image registration 219

FIGURE 5.36

Frequency domain registration of quad polarimetric SAR imagery, RGB
composites (|shh|2, |shv|2, |svv|2), logarithmic intensity values in a linear 2%
stretch. Left: TerraSAR-X, right: RADARSAT-2.

plot

fig = plt.figure ()

ax = fig.gca(projection =’3d’)

x, y = np.meshgrid (range(40),range(40))

ax.plot_surface (x, y, np.real(g[0:40 ,0:40]))

The result is shown in Figure 5.35. Subpixel registration is also possible with
a refinement of the above method (Shekarforoush et al., 1995).

Images which differ not only by an offset but also by a rigid rotation and/or
change of scale can be registered similarly (Reddy and Chatterji, 1996). Both
ENVI/IDL (Xie et al., 2003) and Python scripts are available which calculate
RST or similarity transformations in the frequency domain. The Python func-
tion similarity() included in the auxil.auxil1.py module estimates the
similarity transformation parameters between two gray-scale images in the
frequency domain. It is a slight modification of code provided by C. Gohlke.∗

Two Python modules, registerms.py and registersar.py in the auxil

package for registration of optical/infrared and polarimetric SAR images, re-
spectively, make use of similarity() and are described in Appendix C. An
example is shown in Figure 5.36 in which a RADARSAT-2 quad polarimetric
image is registered to a TerraSAR-X quad polarimetric image. The latter was
first re-sampled to the 15 m ground resolution of the RADARSAT-2 image.

∗Laboratory for Fluorescence Dynamics.

220 Image Enhancement and Correction

5.6.2 Feature matching

Various techniques for automatic determination of tie-points based on low-
level features have been suggested in the literature. Especially for scale and
rotation invariant image matching of different views the Scale-Invariant Fea-
ture Transform (SIFT) (Lowe, 2004) is one of the best known methods. Here
we outline a contour matching procedure proposed by Li et al. (1995). It
functions especially well in bi-temporal remote sensing imagery in which veg-
etation changes do not dominate, and can of course be augmented by other
automatic feature matching methods or by manual selection. The required
steps are shown in Figure 5.37 and are described below.

The first step involves the application of a Laplacian-of-Gaussian filter to
both images in the manner discussed in Section 5.2.2. After determining the
contours by examining zero-crossings of the LoG-filtered image, the contour
strengths are encoded in the pixel intensities. Strengths are taken to be pro-
portional to the magnitude of the gradient at the zero-crossing determined by
a Sobel filter as illustrated in Figure 5.2.

In the next step, all closed contours with strengths above some given thresh-
old are determined by tracing the contours. Pixels which have been visited
during tracing are set to zero so that they will not be visited again. A typical
result is shown in Figure 5.38.

For subsequent matching purposes, all significant closed contours found in
the preceding step are chain encoded. Any curve or contour can be represented
by an integer sequence {a1, a2 . . . ai . . .}, ai ∈ {0, 1, 2, 3, 4, 5, 6, 7}, depending
on the relative position of the current pixel with respect to the previous pixel
in the curve. A shift to the east is coded as 0, to the north-east as 1 and so on.
This simple code has the drawback that some contours produce wraparound.
For example, the line in the direction −22.5o has the chain code {707070 . . .}.
Li et al. (1995) suggest the smoothing operation:

{a1a2 . . . an} → {b1b2 . . . bn},

LoG

Zero Crossing

Edge Strength

Contour

Finder

Chain Code

Hu moments

Contour

Matching

Consistency

Check
Warping

✲

✲

✲

✲

✲

✲

❄❄

✛✛✛

Image 1

Image 2

Image 2
(registered)

FIGURE 5.37

Image–image registration with contour matching.

220 Image Enhancement and Correction

5.6.2 Feature matching

Various techniques for automatic determination of tie-points based on low-
level features have been suggested in the literature. Especially for scale and
rotation invariant image matching of different views the Scale-Invariant Fea-
ture Transform (SIFT) (Lowe, 2004) is one of the best known methods. Here
we outline a contour matching procedure proposed by Li et al. (1995). It
functions especially well in bi-temporal remote sensing imagery in which veg-
etation changes do not dominate, and can of course be augmented by other
automatic feature matching methods or by manual selection. The required
steps are shown in Figure 5.37 and are described below.

The first step involves the application of a Laplacian-of-Gaussian filter to
both images in the manner discussed in Section 5.2.2. After determining the
contours by examining zero-crossings of the LoG-filtered image, the contour
strengths are encoded in the pixel intensities. Strengths are taken to be pro-
portional to the magnitude of the gradient at the zero-crossing determined by
a Sobel filter as illustrated in Figure 5.2.

In the next step, all closed contours with strengths above some given thresh-
old are determined by tracing the contours. Pixels which have been visited
during tracing are set to zero so that they will not be visited again. A typical
result is shown in Figure 5.38.

For subsequent matching purposes, all significant closed contours found in
the preceding step are chain encoded. Any curve or contour can be represented
by an integer sequence {a1, a2 . . . ai . . .}, ai ∈ {0, 1, 2, 3, 4, 5, 6, 7}, depending
on the relative position of the current pixel with respect to the previous pixel
in the curve. A shift to the east is coded as 0, to the north-east as 1 and so on.
This simple code has the drawback that some contours produce wraparound.
For example, the line in the direction −22.5o has the chain code {707070 . . .}.
Li et al. (1995) suggest the smoothing operation:

{a1a2 . . . an} → {b1b2 . . . bn},

LoG

Zero Crossing

Edge Strength

Contour

Finder

Chain Code

Hu moments

Contour

Matching

Consistency

Check
Warping

✲

✲

✲

✲

✲

✲

❄❄

✛✛✛

Image 1

Image 2

Image 2
(registered)

FIGURE 5.37

Image–image registration with contour matching.

Image–image registration 221

FIGURE 5.38

Closed contours derived from the 3N band of an ASTER image over Nevada
acquired in July 2003.

where b1 = a1 and bi = qi. The integer qi satisfies (qi − ai) mod 8 = 0 and
|qi − bi−1| → min, i = 2, 3 . . . n.∗ They also suggest applying the smoothing
filter {0.1, 0.2, 0.4, 0.2, 0.1} to the result. After both processing steps, two chain
codes can be easily compared by “sliding” one over the other and determining
their maximum correlation. The closed contours are further characterized by
determining their first four Hu moments h1 . . . h4, Equations (5.14).

∗This is rather cryptic, so here is an example: For the wraparound sequence {707070 . . .},
we have a1 = b1 = 7 and a2 = 0. Therefore, we must choose q2 = 8, since this satisfies
(q2 − a2) mod 8 = 0 and |q2 − b1| = 1. (For the alternatives q2 = 0, 16, 24 . . . the difference
|q2 − b1| is larger.) Continuing the same argument leads to the new sequence {787878 . . .}
with no wraparound.

222 Image Enhancement and Correction

FIGURE 5.39

85 tie-points obtained by matching the contours of Figure 5.38 with those
obtained from a similar image acquired in June 2001. The RMS error is 0.77
pixel for first-order polynomial warping; see text.

Each significant contour in one image is first matched with contours in the
second image according to their invariant moments. This is done by setting a
threshold on the allowed differences, for instance, one standard deviation. If
one or more matches are found, the best candidate for a tie-point is then cho-
sen to be that matched contour in the second image for which the chain code
correlation with the contour in the first image is maximum. If the maximum
correlation is less than some threshold, e.g., 0.9, then the match is rejected.
The tie-point coordinates are taken to be the centers of gravity (x̄1, x̄2) of the
matched contour pairs; see Equations (5.11).

222 Image Enhancement and Correction

FIGURE 5.39

85 tie-points obtained by matching the contours of Figure 5.38 with those
obtained from a similar image acquired in June 2001. The RMS error is 0.77
pixel for first-order polynomial warping; see text.

Each significant contour in one image is first matched with contours in the
second image according to their invariant moments. This is done by setting a
threshold on the allowed differences, for instance, one standard deviation. If
one or more matches are found, the best candidate for a tie-point is then cho-
sen to be that matched contour in the second image for which the chain code
correlation with the contour in the first image is maximum. If the maximum
correlation is less than some threshold, e.g., 0.9, then the match is rejected.
The tie-point coordinates are taken to be the centers of gravity (x̄1, x̄2) of the
matched contour pairs; see Equations (5.11).

Image–image registration 223

The contour matching procedure invariably generates some false tie-points,
so a further processing step is required. In Li et al. (1995), use is made of
the fact that distances are preserved under a rigid transformation. Let A1A2

represent the distance between two points A1 and A2 in an image. For two
sets of m matched contour centers {Ai | i = 1 . . .m} and {Bi | i = 1 . . .m} in
image 1 and 2, the ratios

AiAj/BiBj , i = 1 . . .m, j = i+ 1 . . .m,

are calculated. These should form a cluster, so that indices associated with
ratios scattered away from the cluster center can be rejected as false matches.

An example is shown in Figure 5.39, determined with an ENVI/IDL exten-
sion written by the author and available on GitHub; see Canty (2014).

5.6.3 Re-sampling with ground control points

Having determined a valid set of tie-points, transformation parameters which
map the target image to the base image may be estimated.

If uniform scaling s, rotation θ and shift (x0, y0) of the target image are suf-
ficient for registering it to the base image, then the two-dimensional equivalent
of the RST transformation discussed in Section 5.5.1 can be applied:

A =





s cos θ −s sin θ x0

s sin θ s cos θ y0
0 0 1



 =





a −b x0

b a y0
0 0 1



 , (5.66)

where a2 + b2 = s2(cos2 θ + sin2 θ) = s2. The base image points (u, v) and
target image points (x, y) are related by





u
v
1



 =





a −b x0

b a y0
0 0 1









x
y
1



 .

Equivalently,
�
u
v

�

=

�
a −b
b a

��
x
y

�

+

�
x0

y0

�

,

which can easily be rewritten as

�
u
v

�

=

�
x −y 1 0
y x 0 1

�






a
b
x0

y0




 .

224 Image Enhancement and Correction

Listing 5.4: Image–image registration with the similarity transform.

1 #!/usr/bin/env python3

2 #Name: ex5_3.py

3 import sys

4 import numpy as np

5 def parse_gcp (gcpfile):

6 with open(gcpfile) as f:

7 pts = []

8 for i in range(6):

9 line =f.readline ()

10 while line :

11 pts.append(l i s t (map(eval ,line.split ())))

12 line = f.readline ()

13 f.close()

14 pts = np.array(pts)

15 return (pts[:,:2], pts [: ,2:])

16 def main ():

17 infile = sys.argv [1] # gcps

18 i f infile:

19 pts1 ,pts2 = parse_gcp (infile)

20 e l se:

21 return

22 n = len(pts1)

23 y = pts1.ravel()

24 A = np.zeros((2*n,4))

25 for i in range(n):

26 A[2*i,:] = [pts2 [i,0],-pts2[i,1],1,0]

27 A[2*i+1,:] = [pts2[i,1], pts2[i,0],0,1]

28 result = np.linalg.lstsq(A,y,rcond=-1)

29 a,b,x0,y0 = result[0]

30 RMS = np.sqrt (result [1]/ n)[0]

31 print (’RST�transformation :’)

32 print (np.array ([[a,-b,x0],[b,a,y0] ,[0,0,1]]))

33 print (’RMS:�%f’%RMS)

34

35 i f __name__ == ’__main__ ’:

36 main ()

Thus, for n tie-points, we obtain a multiple linear regression problem of the
form given in Section 2.6.3, Equation (2.97), namely,













u1

v1
u2

v2
...
un

vn













=













x1 −y1 1 0
y1 x1 0 1
x2 −y2 1 0
y2 x2 0 1
...

...
...

...
xn −yn 1 0
yn xn 0 1


















a
b
x0

y0




 ,

224 Image Enhancement and Correction

Listing 5.4: Image–image registration with the similarity transform.

1 #!/usr/bin/env python3

2 #Name: ex5_3.py

3 import sys

4 import numpy as np

5 def parse_gcp (gcpfile):

6 with open(gcpfile) as f:

7 pts = []

8 for i in range(6):

9 line =f.readline ()

10 while line :

11 pts.append(l i s t (map(eval ,line.split ())))

12 line = f.readline ()

13 f.close()

14 pts = np.array(pts)

15 return (pts[:,:2], pts [: ,2:])

16 def main ():

17 infile = sys.argv [1] # gcps

18 i f infile:

19 pts1 ,pts2 = parse_gcp (infile)

20 e l se:

21 return

22 n = len(pts1)

23 y = pts1.ravel()

24 A = np.zeros((2*n,4))

25 for i in range(n):

26 A[2*i,:] = [pts2 [i,0],-pts2[i,1],1,0]

27 A[2*i+1,:] = [pts2[i,1], pts2[i,0],0,1]

28 result = np.linalg.lstsq(A,y,rcond=-1)

29 a,b,x0,y0 = result[0]

30 RMS = np.sqrt (result [1]/ n)[0]

31 print (’RST�transformation :’)

32 print (np.array ([[a,-b,x0],[b,a,y0] ,[0,0,1]]))

33 print (’RMS:�%f’%RMS)

34

35 i f __name__ == ’__main__ ’:

36 main ()

Thus, for n tie-points, we obtain a multiple linear regression problem of the
form given in Section 2.6.3, Equation (2.97), namely,













u1

v1
u2

v2
...
un

vn













=













x1 −y1 1 0
y1 x1 0 1
x2 −y2 1 0
y2 x2 0 1
...

...
...

...
xn −yn 1 0
yn xn 0 1


















a
b
x0

y0




 ,

Image–image registration 225

from which the similarity transformation relating the target to the base image
may be obtained.

To illustrate the procedure, the Python script shown in Listing 5.4 reads a
tie-point file in ENVI format, and outputs the RST transformation matrix,
Equation (5.66). For example, using a tie-point file for two LANDSAT 5 TM
images over the Nevada Nuclear Test Site; see Figure 5.39:

run scripts /ex5_3 imagery /gcps.pts

RST transformation :

[[9.99972110 e-01 -2.02991329e-03 2.10315125 e+02]

[2.02991329 e -03 9.99972110 e-01 -1.84336787e+02]

[0.00000000 e+00 0.00000000 e+00 1.00000000 e+00]]

RMS: 0.504769

Apart from the shifts x0 and y0, the transformation is very close to the identity
matrix, since the two images were already geo-referenced. The RMS (square
root of the average of the squared residuals) is 0.5 pixels.

If the similarity transformation is not sufficient, then a polynomial map
may be used: For instance, a second-order polynomial transformation of the
target to the base image is given by

u = a0 + a1x+ a2y + a3xy + a4x
2 + a5y

2

v = b0 + b1x+ b2y + b3xy + b4x
2 + b5y

2.

Since there are 12 unknown coefficients, at least six tie-point pairs are needed
to determine the map (each pair generates two equations). If more than six
pairs are available, the coefficients can again be found by least squares fitting.
Similar considerations apply for lower- or higher-order polynomial maps.

Having determined the transformation coefficients, the target image can be
registered to the base by re-sampling. Nearest-neighbor re-sampling simply
chooses the pixel in the target image that has its transformed center nearest
coordinates (i, j) in the warped image and transfers it to that location. This is
often the preferred technique for classification or change detection, since the
registered image consists of the original pixel intensities, simply rearranged in
position to give a correct image geometry. Other commonly used re-sampling
methods are bilinear interpolation and cubic convolution interpolation, see,
e.g., Jensen (2005) for a good explanation. These methods interpolate, and
therefore mix, the spectral intensities of neighboring pixels.

226 Image Enhancement and Correction

5.7 Exercises

1. Design a lookup table for byte-encoded data to perform 2% linear satu-
ration (2% of the dark and bright pixels saturate to 0 and 255, respec-
tively).

2. The de-correlation stretch generates a more color-intensive RGB com-
posite image of highly correlated spectral bands than is obtained by
simple linear stretching of the individual bands (Richards, 2012). Write
a routine to implement it:

(a) Do a principal components transformation of three selected image
bands.

(b) Then do a linear histogram stretch of the principal components.

(c) Finally, invert the transformation and store the result to disk.

3. The Roberts operator or Roberts filter approximates intensity gradients
in the diagonal directions:

∇1(i, j) = [g(i, j)− g(i+ 1, j + 1)]

∇2(i, j) = [g(i+ 1, j)− g(i, j + 1)]

Modify the Sobel filter script in Section 5.2.1 to calculate its power
spectrum.

4. An edge detector due to Smith and Brady (1997) called SUSAN (Small-
est Univalue Segment Assimilating Nucleus) employs a circular mask,
typically approximated by 37 pixels, i.e.,

000

00000

0000000

0000000

0000000

00000

000

Let r be any pixel under the mask, g(r) its intensity and let r0 be the
central pixel. Define the function

c(r, r0) =

{
1 if |g(r) − g(r0)| ≤ t
0 if |g(r) − g(r0)| > t,

226 Image Enhancement and Correction

5.7 Exercises

1. Design a lookup table for byte-encoded data to perform 2% linear satu-
ration (2% of the dark and bright pixels saturate to 0 and 255, respec-
tively).

2. The de-correlation stretch generates a more color-intensive RGB com-
posite image of highly correlated spectral bands than is obtained by
simple linear stretching of the individual bands (Richards, 2012). Write
a routine to implement it:

(a) Do a principal components transformation of three selected image
bands.

(b) Then do a linear histogram stretch of the principal components.

(c) Finally, invert the transformation and store the result to disk.

3. The Roberts operator or Roberts filter approximates intensity gradients
in the diagonal directions:

∇1(i, j) = [g(i, j)− g(i+ 1, j + 1)]

∇2(i, j) = [g(i+ 1, j)− g(i, j + 1)]

Modify the Sobel filter script in Section 5.2.1 to calculate its power
spectrum.

4. An edge detector due to Smith and Brady (1997) called SUSAN (Small-
est Univalue Segment Assimilating Nucleus) employs a circular mask,
typically approximated by 37 pixels, i.e.,

000

00000

0000000

0000000

0000000

00000

000

Let r be any pixel under the mask, g(r) its intensity and let r0 be the
central pixel. Define the function

c(r, r0) =

{
1 if |g(r) − g(r0)| ≤ t
0 if |g(r) − g(r0)| > t,

Exercises 227

where t is a threshold. Associate with r0 the sum

n(r0) =
∑

r

c(r, r0).

If the mask covers a region of sufficiently low contrast, n(r0) = nmax =
37. As the mask moves toward an intensity “edge” having any orienta-
tion in an image, the quantity n(r0) will decrease, reaching a minimum
as the center crosses the edge. Accordingly, an edge strength can be
defined as

E(r0) =
{
g(r0)− n(r0) if n(r0) < h
0 otherwise.

The parameter h is chosen (from experience) as 0.75 ∗ nmax.

(a) A convenient way to calculate c(r, r0) is to use the continuous ap-
proximation

c(r, r0) = e−(g(r)−g(r0))/t)
6

. (5.67)

Write a Python script to plot this function for g(r0) = 127 and for
g(r) = 0 . . . 255.

(b) Write a Python program to implement the SUSAN edge detector
for arbitrary gray-scale images. Hint: Create a lookup table to evaluate
the expression (5.67):

LUT = np.array (256

for i in range(256):

LUT[i] = np.exp(-(i/t)**6)

5. One can approximate the centralized moments of a feature, Equation
(5.12), by the integral

µpq =

∫ ∫

(x− xx)
p(y − yc)

qf(x, y)dxdy,

where the integration is over the whole image and where f(x, y) = 1 if
the point (x, y) lies on the feature and f(x, y) = 0 otherwise. Use this
approximation to prove that the normalized centralized moments ηpq
given in Equation (5.13) are invariant under scaling transformations of
the form (

x′
1

x′
2

)

=

(
α 0
0 α

)(
x1

x2

)

.

6. Wavelet noise reduction (Gonzalez and Woods, 2017).

(a) Apply the discrete wavelet transformation to reduce the noise in a
multispectral image by making use of the DWTArray() object class; see
Listing 4.1, to perform the following steps:

• Select a multispectral image and determine the number of columns,
rows, and spectral bands.

228 Image Enhancement and Correction

• Create a band sequential (BSQ) array of the same dimensions for
output.

• For each band do the following:

– Read the band into a new DWTarray object instance.

– Filter once.

– For each of the three quadrants containing the detail wavelet
coefficients:

∗ extract the coefficients with the method get quadrant(),

∗ determine their mean and standard deviation,

∗ zero all coefficients with absolute value relative to the mean
smaller than three standard deviations,

∗ inject them back into the transformed image with the method
put quadrant().

– Expand back.

– Store the modified band in the output array.

– Destroy the object instance.

• Save the resulting array to disk.

Note: The coefficients are extracted as one-dimensional arrays. When
injecting them back, they must be reformed to two-dimensional arrays.
Use <instance>.samples and <instance>.lines to access these val-
ues.

(b) Test your program with a noisy 3-band image, for example, the
last three components of the MNF transformation of a LANDSAT 7
TM+ image. Use the example program in Listing 3.4 to determine the
noise covariance matrix before and after carrying through the above
procedure.

7. Show that the means and standard deviations of the re-normalized pan-
chromatic wavelet coefficients Cz

k in Equation (5.17) are equal to those
of the multispectral bands.

8. Write a Python script to perform additive à trous fusion (see Núnez
et al. (1999)).

9. Show, with the help of Theorem 2.1, that

(a) if the random variable U has density (1/2)e−u/2, then G = xU/2
has density e−g/x/x, and

(b) if the random variable G has density

1

(x/m)mΓ(m)
gm−1e−gm/x

228 Image Enhancement and Correction

• Create a band sequential (BSQ) array of the same dimensions for
output.

• For each band do the following:

– Read the band into a new DWTarray object instance.

– Filter once.

– For each of the three quadrants containing the detail wavelet
coefficients:

∗ extract the coefficients with the method get quadrant(),

∗ determine their mean and standard deviation,

∗ zero all coefficients with absolute value relative to the mean
smaller than three standard deviations,

∗ inject them back into the transformed image with the method
put quadrant().

– Expand back.

– Store the modified band in the output array.

– Destroy the object instance.

• Save the resulting array to disk.

Note: The coefficients are extracted as one-dimensional arrays. When
injecting them back, they must be reformed to two-dimensional arrays.
Use <instance>.samples and <instance>.lines to access these val-
ues.

(b) Test your program with a noisy 3-band image, for example, the
last three components of the MNF transformation of a LANDSAT 7
TM+ image. Use the example program in Listing 3.4 to determine the
noise covariance matrix before and after carrying through the above
procedure.

7. Show that the means and standard deviations of the re-normalized pan-
chromatic wavelet coefficients Cz

k in Equation (5.17) are equal to those
of the multispectral bands.

8. Write a Python script to perform additive à trous fusion (see Núnez
et al. (1999)).

9. Show, with the help of Theorem 2.1, that

(a) if the random variable U has density (1/2)e−u/2, then G = xU/2
has density e−g/x/x, and

(b) if the random variable G has density

1

(x/m)mΓ(m)
gm−1e−gm/x

Exercises 229

and if G = xV , then V has density

mm

Γ(m)
vm−1e−vm.

10. Anfinsen et al. (2009b) suggest the following estimator, among others,
for the ENL of a multilook polarimetric SAR image which takes into
account the full sample covariance matrix:

ENL =
tr(�c̄��c̄�)

�tr(c̄)2� − tr(�c̄�)2 ,

where c̄ is the look-averaged complex covariance matrix given by Equa-
tion (5.30), and � · � indicates local average over a homogeneous region.

(a) Show that this expression reduces to Equation (5.28) for the single
polarization case.

(b) Write a Python script to calculate it.

(c) (K. Conradsen (2013) private communication) Consider N -dimen-
sional, complex-valued observations z(ν) = x(ν) + iy(ν), ν = 1 . . .m,
and organize them into real and imaginary parts in the m × N data
matrices

X =






x(1)⊤

...
x(m)⊤




 , Y =






y(1)⊤

...
y(m)⊤




 . (5.68)

If the real and imaginary components x(ν)1 . . . x(ν)N , y(ν)1 . . . y(ν)N ,
ν = 1 . . .m, are all standard normally distributed and independent,
then

w =
1

2

�
X⊤X +Y⊤Y − i(X⊤Y −Y⊤X)

�
(5.69)

are realizations of a complex Wishart distributed random matrix W ∼
WC(I, N,m). Thus we may generate a complex Wishart distributed
sample by generating 2Nm standardized Gaussian random samples, or-
ganizing them into the two data matrices, Equation (5.68), and then
computing w as in Equation (5.69). Use this recipe to simulate a 500×
500-pixel, quad polarimetric (N = 3) SAR image in covariance matrix
format and verify the correctness of the script of part (b) above. Alterna-
tively, if you wish to skip part (b), verify the script enlml.py (Appendix
C) with the simulated image.

11. From the definition of the gradient, Equation (5.4) shows that the terrain
slope angle θp can be approximated from a DEM by Equation (5.58).

http://taylorandfrancis.com

6

Supervised Classification Part 1

Land cover classification of remote sensing imagery is an undertaking which
falls into the general category of pattern recognition. Pattern recognition prob-
lems, in turn, are usually approached by developing appropriate machine
learning algorithms. Broadly speaking, machine learning involves tasks for
which there is no known direct, analytic method to compute a desired output
from a set of inputs. The strategy adopted is for the computer to “learn” from
a set of representative examples. In the case of supervised classification, the
exercise can often be seen as one of modeling probability distributions. On
the basis of representative data for, say, K land cover classes presumed to
be present in a scene, the a posteriori probabilities for class k conditional on
observation g, Pr(k | g) , k = 1 . . .K, are “learned” or approximated. This is
usually called the training phase of the classification procedure. Then these
probabilities are used to classify all of the pixels in the image, a step referred
to as the generalization or prediction phase.

In the present chapter, we will consider three representative models for
supervised classification which involve this sort of probability density estima-
tion: a parametric model (the Bayes maximum likelihood classifier), a non-
parametric model (Gaussian kernel classification), and a semi parametric or
mixture model (the feed-forward neural network or FFN). In the case of the
neural network, the back propagation training algorithm is by far the most
commonly used. We make some considerable effort to explain it in detail and,
in Appendix B, to develop more sophisticated and efficient analytical methods
based on scaled conjugate gradient and the Kalman filter. All of these, how-
ever, will be seen to become unwieldy for so-called deep learning or multiple
hidden layer neural network architectures. Fortunately, we can take advan-
tage of the auto differentiation capability of modern deep learning libraries,
in this instance TensorFlow, in order to work conveniently with multilayer
FFN classifiers.

The Chapter concludes with a detailed explanation of the support vector
machine (SVM) classifier. SVMs are also non-parametric in the sense that
they make direct use of a subset of the labeled training data (the support
vectors) to effect a partitioning of the feature space, however, unlike the afore-
mentioned classifiers, without reference to the statistical distributions of the
training data: the classes are discriminated on the basis of their most ex-
treme members. The topics of accuracy assessment and model comparison
will be treated in Chapter 7. There we also look at polarimetric SAR image

DOI: 10.1201/9781003503286-6 231

https://doi.org/10.1201/9781003503286-6

232 Supervised Classification Part 1

FIGURE 6.1

RGB color composite (1000× 1000 pixels, linear 2% saturation stretch) of the
first three principal components 1(red), 2(green), and 3(blue) of the nine non
thermal bands of an ASTER scene acquired over the towns of Jülich (to the
northwest) and Düren (southeast), Germany, on May 1, 2007.

classification, ensembles of classifiers as well as object classification with con-
volutional neural networks.

To illustrate the various algorithms developed here and in the following
chapters on image classification, we will work with the ASTER scene shown
in Figure 6.1 (see also Figure 1.1). In the ASTER dataset, the six SWIR
bands have been sharpened to the 15-m ground resolution of the three VNIR
bands with the à trous wavelet fusion method of Section 5.3.5 and a principal
components analysis of the stacked nine-band image has been performed. The
classification examples in the present chapter will be carried out with subsets
of the principal components of the ASTER image.

232 Supervised Classification Part 1

FIGURE 6.1

RGB color composite (1000×1000 pixels, linear 2% saturation stretch) of the
first three principal components 1(red), 2(green), and 3(blue) of the nine non
thermal bands of an ASTER scene acquired over the towns of Jülich (to the
northwest) and Düren (southeast), Germany, on May 1, 2007.

classification, ensembles of classifiers as well as object classification with con-
volutional neural networks.

To illustrate the various algorithms developed here and in the following
chapters on image classification, we will work with the ASTER scene shown
in Figure 6.1 (see also Figure 1.1). In the ASTER dataset, the six SWIR
bands have been sharpened to the 15-m ground resolution of the three VNIR
bands with the à trous wavelet fusion method of Section 5.3.5 and a principal
components analysis of the stacked nine-band image has been performed. The
classification examples in the present chapter will be carried out with subsets
of the principal components of the ASTER image.

Maximizing the a posteriori probability 233

6.1 Maximizing the a posteriori probability

The basis for most of the classifiers that we consider in this chapter is a
decision rule based on the a posteriori probabilities Pr(k | g), so this rule will
be our starting point.

Let us begin by defining a loss function L(k, g) which measures the cost of
associating the observation g with the class k. Let λkj be the loss incurred
if g in fact belongs to class k, and is classified as belonging to class j. It can
reasonably be assumed that

λkj

{
= 0 if k = j
> 0 otherwise,

k, j = 1 . . .K, (6.1)

that is, correct classifications do not incur losses while misclassifications do.
The loss function can then be expressed as a sum over the individual losses,
weighted according to their probabilities of occurrence, Pr(j | g),

L(k, g) =
K∑

j=1

λkjPr(j | g). (6.2)

Without further specifying λkj , a loss-minimizing decision rule for classifica-
tion may be defined (ignoring the possibility of ties) as

g is in class k provided L(k, g) ≤ L(j, g) for all j = 1 . . .K. (6.3)

So far we have been quite general. Now suppose the losses are independent
of the kind of misclassification that occurs (for instance, the classification of
a “forest” pixel into the class “meadow” is just as costly as classifying it as
“urban area,” etc.). Then we can write

λkj = 1− δkj , (6.4)

where δkj = 1 for k = j and 0 otherwise. Thus any given misclassification
(j �= k) has unit cost, and a correct classification (j = k) costs nothing, as
before. We then obtain from Equation (6.2)

L(k, g) =

K∑

j=1

Pr(j | g)− Pr(k | g) = 1− Pr(k | g), k = 1 . . .K, (6.5)

and with (6.3) the following decision rule:

g is in class k provided Pr(k | g) ≥ Pr(j | g) for all j = 1 . . .K; (6.6)

in other words, assign each new observation to the class with the highest
a posteriori probability As indicated in the introduction, our main task will
therefore be to determine the posterior probabilities Pr(k | g).

234 Supervised Classification Part 1

6.2 Training data and separability

The choice of training data is arguably the most difficult and critical part of
the supervised classification process. The standard procedure is to select areas
within a scene which are representative of each class of interest. The areas are
referred to as training areas or regions of interest (ROIs), from which the
training observations are selected. Some fraction of the representative data
may be retained for later accuracy assessment. These comprise the so-called
test data and are withheld from the training phase in order not to bias the
subsequent evaluation. We will refer to the set of labeled training data as
training pairs or training examples and write it in the form

T = {g(ν), ℓ(ν)}, ν = 1 . . .m, (6.7)

where m is the number of observations and

ℓ(ν) ∈ K = {1 . . .K} (6.8)

is the class label of observation g(ν).
Ground reference data used in the following discussions were collected on

the same day as the acquisition of the ASTER image in Figure 6.1. Figure 6.2
shows photographs for four of the ten land cover categories used for classifi-
cation. The others were water, suburban settlements, urban areas/industrial
parks, herbivorous forest, coniferous forest, and open cast mining. In all, 30 re-
gions of interest were identified in the scene as representative of the 10 classes,
involving 7173 pixels. They are shown in Figure 6.3. Of these, 2/3 sampled
uniformly across the ROIs were used for training and the remainder reserved
for testing, i.e., estimating the generalization error on new observations.

The degree of separability of the training observations will give some indi-
cation of the prospects for success of the classification procedure and can help
in deciding how the data should be processed prior to classification. A very
commonly used separability measure may be derived by considering the Bayes
error. Suppose that there are just two classes involved, K = {1, 2}. If we apply
the decision rule, Equation (6.6), for some pixel intensity vector g, we must
assign the class as that having maximum a posteriori probability. Therefore,
the probability r(g) of incorrectly classifying the pixel is given by

r(g) = min[Pr(1 | g),Pr(2 | g)].
The Bayes error ǫ is defined to be the average value of r(g), which we can
calculate as the integral of r(g) times the probability density p(g), taken over
all of the observations g:

ǫ =

∫

r(g)p(g)dg =

∫

min[Pr(1 | g),Pr(2 | g)]p(g)dg

=

∫

min[p(g | 1)Pr(1), p(g | 2)Pr(2)]dg.
(6.9)

234 Supervised Classification Part 1

6.2 Training data and separability

The choice of training data is arguably the most difficult and critical part of
the supervised classification process. The standard procedure is to select areas
within a scene which are representative of each class of interest. The areas are
referred to as training areas or regions of interest (ROIs), from which the
training observations are selected. Some fraction of the representative data
may be retained for later accuracy assessment. These comprise the so-called
test data and are withheld from the training phase in order not to bias the
subsequent evaluation. We will refer to the set of labeled training data as
training pairs or training examples and write it in the form

T = {g(ν), ℓ(ν)}, ν = 1 . . .m, (6.7)

where m is the number of observations and

ℓ(ν) ∈ K = {1 . . .K} (6.8)

is the class label of observation g(ν).
Ground reference data used in the following discussions were collected on

the same day as the acquisition of the ASTER image in Figure 6.1. Figure 6.2
shows photographs for four of the ten land cover categories used for classifi-
cation. The others were water, suburban settlements, urban areas/industrial
parks, herbivorous forest, coniferous forest, and open cast mining. In all, 30 re-
gions of interest were identified in the scene as representative of the 10 classes,
involving 7173 pixels. They are shown in Figure 6.3. Of these, 2/3 sampled
uniformly across the ROIs were used for training and the remainder reserved
for testing, i.e., estimating the generalization error on new observations.

The degree of separability of the training observations will give some indi-
cation of the prospects for success of the classification procedure and can help
in deciding how the data should be processed prior to classification. A very
commonly used separability measure may be derived by considering the Bayes
error. Suppose that there are just two classes involved, K = {1, 2}. If we apply
the decision rule, Equation (6.6), for some pixel intensity vector g, we must
assign the class as that having maximum a posteriori probability. Therefore,
the probability r(g) of incorrectly classifying the pixel is given by

r(g) = min[Pr(1 | g),Pr(2 | g)].
The Bayes error ǫ is defined to be the average value of r(g), which we can
calculate as the integral of r(g) times the probability density p(g), taken over
all of the observations g:

ǫ =

∫

r(g)p(g)dg =

∫

min[Pr(1 | g),Pr(2 | g)]p(g)dg

=

∫

min[p(g | 1)Pr(1), p(g | 2)Pr(2)]dg.
(6.9)

Training data and separability 235

FIGURE 6.2

Ground reference data for four land cover categories, photographed on May
1st, 2007. Top left: cereal grain, top right: grassland, bottom left: rapeseed,
bottom right: sugar beets.

Bayes’ Theorem, Equation (2.70), was invoked in the last equality. The Bayes
error may be used as a measure of the separability of the two classes: the
smaller the error, the better the separability.

Calculating the Bayes error is in general difficult, but we can at least get an
approximate upper bound on it as follows (Fukunaga, 1990). First note that,
for any a, b ≥ 0,

min[a, b] ≤ asb1−s, 0 ≤ s ≤ 1.

For example, if a < b, then the inequality can be written

a ≤ a

(
b

a

)1−s

,

which is clearly true. Applying this inequality to Equation (6.9), we get the
Chernoff bound ǫu on the Bayes error,

ǫ ≤ ǫu = Pr(1)sPr(2)1−s

∫

p(g | 1)sp(g | 2)1−sdg. (6.10)

236 Supervised Classification Part 1

FIGURE 6.3

ROIs for supervised classification. The insert shows the training observations
projected onto the plane of the first two principal axes.

The least upper bound is then determined by minimizing ǫu with respect
to s. If p(g | 1) and p(g | 2) are multivariate normal distributions with equal
covariance matrices Σ1 = Σ2, then it can be shown that the minimum in fact
occurs at s = 1/2. Approximating the minimum as s = 1/2 also for the case
where Σ1 �= Σ2 leads to the (somewhat less tight) Bhattacharyya bound ǫB,

ǫ ≤ ǫB =
√

Pr(1)Pr(2)

∫
√

p(g | 1)p(g | 2) dg. (6.11)

This integral can be evaluated explicitly (Exercise 1). The result is

ǫB =
√

Pr(1)Pr(2) e−B,

236 Supervised Classification Part 1

FIGURE 6.3

ROIs for supervised classification. The insert shows the training observations
projected onto the plane of the first two principal axes.

The least upper bound is then determined by minimizing ǫu with respect
to s. If p(g | 1) and p(g | 2) are multivariate normal distributions with equal
covariance matrices Σ1 = Σ2, then it can be shown that the minimum in fact
occurs at s = 1/2. Approximating the minimum as s = 1/2 also for the case
where Σ1 �= Σ2 leads to the (somewhat less tight) Bhattacharyya bound ǫB,

ǫ ≤ ǫB =
√

Pr(1)Pr(2)

∫
√

p(g | 1)p(g | 2) dg. (6.11)

This integral can be evaluated explicitly (Exercise 1). The result is

ǫB =
√

Pr(1)Pr(2) e−B,

Training data and separability 237

where B is the Bhattacharyya distance, given by

B =
1

8
(µ2 − µ1)

⊤
[
Σ1 +Σ2

2

]−1

(µ2 − µ1) +
1

2
log

(

|Σ1 +Σ2| /2
√

|Σ1||Σ2|

)

. (6.12)

Large values of B imply small upper limits on the Bayes error and hence good
separability. The first term in B is a squared average Mahalanobis distance
(see Section 6.3) and expresses the class separability due to the dissimilarity
of the class means.∗ The second term measures the difference between the
covariance matrices of the two classes. It vanishes when Σ1 = Σ2.

The Bhattacharyya distance as a measure of separability has the disad-
vantage that it continues to grow even after the classes have become so well
separated that any classification procedure could distinguish them perfectly.
The Jeffries–Matusita (J-M) distance measures separability of two classes on
a more convenient scale [0− 2] in terms of B:

J = 2(1− e−B). (6.13)

As B continues to grow, the measure saturates at the value 2. The factor 2
comes from the fact that the Jeffries–Matusita distance can be derived inde-
pendently as the average distance between two density functions; see Richards
(2012) and Exercise 1.

We can calculate the J-M distance easily with the GEE Python API. After
uploading the ASTER principal component image and the training area shape
files to the code editor in the form of the (shared) FeatureCollection train,
we access them with

import ee

ee.Initialize ()

first 4 principal components of ASTER image

image = ee.Image(’projects /.../CRC5/AST_20070501_pca ’) \

.select (0,1,2,3)

training data

table = ee.FeatureCollection (’projects /.../CRC5/train’)

trainData = image.sampleRegions (table ,[’CLASS_ID ’])

print(trainData .size (). getInfo ())

7173

The following function calculates the J-M separation for two classes:

def jmsep(class1 , class2 , image , table):

Jeffries -Matusita separability

table1 = table. f i l t e r (

ee.Filter.eq(’CLASS_ID ’, str (class1 -1)))

m1 = image.reduceRegion (ee.Reducer.mean (), table1)\

.toArray ()

s1 = image.toArray () \

∗This term is proportional to the maximum value of the Fisher linear discriminant, as
can be seen by substituting Equation (3.82) into Equation (3.81); see Exercise 13, Chapter 3.

238 Supervised Classification Part 1

.reduceRegion (ee.Reducer.covariance (), table1)\

.toArray ()

table2 = table. f i l t e r (

ee.Filter.eq(’CLASS_ID ’, str (class2 -1)))

m2 = image.reduceRegion (ee.Reducer.mean (), table2)\

.toArray ()

s2 = image.toArray () \

.reduceRegion (ee.Reducer.covariance (),table2 ,15)\

.toArray ()

m12 = m1.subtract (m2)

m12 = ee.Array([m12.toList ()]) # makes 2D matrix

s12i = s1.add(s2). divide (2). matrixInverse ()

first term in Bhattacharyya distance

B1 = m12.matrixMultiply (

s12i.matrixMultiply (m12. matrixTranspose ())) \

.divide (8)

ds1 = s1.matrixDeterminant ()

ds2 = s2.matrixDeterminant ()

ds12 = s1.add(s2). matrixDeterminant ()

second term

B2 = ds12 .divide (2). divide(ds1.multiply (ds2). sqrt ())\

.log(). divide (2)

B = ee.Number(B1.add(B2). project ([0]). toList ().get (0))

J-M separability

return ee.Number (1). subtract (ee.Number (1) \

.divide(B.exp ())). multiply (2)

For example, for the classes “grain” and “grassland” (classes 7 and 8)

print jmsep(7,8, image ,table). getInfo ()

1.79160515129

Some more examples are shown in Table 6.1.

TABLE 6.1

The lowest 10 paired class separabilities for the first
four principal components of the ASTER scene.

Class 1 Class 2 J-M Distance
Grain Grassland 1.79
Settlement Industry 1.82
Grassland Herbivorous 1.88
Settlement Herbivorous 1.96
Settlement Grassland 1.98
Industry Coniferous 1.99
Coniferous Herbivorous 1.99
Sugar beet Mining 1.99
Grain Herbivorous 2.00
Industry Herbivorous 2.00

238 Supervised Classification Part 1

.reduceRegion (ee.Reducer.covariance (), table1)\

.toArray ()

table2 = table. f i l t e r (

ee.Filter.eq(’CLASS_ID ’, str (class2 -1)))

m2 = image.reduceRegion (ee.Reducer.mean (), table2)\

.toArray ()

s2 = image.toArray () \

.reduceRegion (ee.Reducer.covariance (),table2 ,15)\

.toArray ()

m12 = m1.subtract (m2)

m12 = ee.Array([m12.toList ()]) # makes 2D matrix

s12i = s1.add(s2). divide (2). matrixInverse ()

first term in Bhattacharyya distance

B1 = m12.matrixMultiply (

s12i .matrixMultiply (m12. matrixTranspose ())) \

.divide (8)

ds1 = s1.matrixDeterminant ()

ds2 = s2.matrixDeterminant ()

ds12 = s1.add(s2). matrixDeterminant ()

second term

B2 = ds12 .divide (2). divide(ds1.multiply (ds2). sqrt ())\

.log(). divide (2)

B = ee.Number(B1.add(B2). project ([0]). toList ().get (0))

J-M separability

return ee.Number (1). subtract (ee.Number (1) \

.divide(B.exp ())). multiply (2)

For example, for the classes “grain” and “grassland” (classes 7 and 8)

print jmsep(7,8, image ,table). getInfo ()

1.79160515129

Some more examples are shown in Table 6.1.

TABLE 6.1

The lowest 10 paired class separabilities for the first
four principal components of the ASTER scene.

Class 1 Class 2 J-M Distance
Grain Grassland 1.79
Settlement Industry 1.82
Grassland Herbivorous 1.88
Settlement Herbivorous 1.96
Settlement Grassland 1.98
Industry Coniferous 1.99
Coniferous Herbivorous 1.99
Sugar beet Mining 1.99
Grain Herbivorous 2.00
Industry Herbivorous 2.00

Bayes maximum-likelihood classification 239

6.3 Bayes maximum-likelihood classification

Consider once again Bayes’ Theorem, expressed in the form of Equation (2.70),

Pr(k | g) = p(g | k)Pr(k)
p(g)

, (6.14)

where Pr(k), k = 1 . . .K, are prior probabilities, p(g | k) is a class-specific
probability density function, and where p(g) is given by

p(g) =
K∑

j=1

p(g | j)Pr(j).

Since p(g) is independent of k, we can write the decision rule, Equation (6.6),
as

g is in class k provided p(g | k)Pr(k) ≥ p(g | j)Pr(j) for all j = 1 . . .K.
(6.15)

Now suppose that the observations from class k are sampled from a multi-
variate normal distribution. Then the density functions are given by

p(g | k) = 1

(2π)N/2|Σk|1/2
exp

(

−1

2
(g − µk)

⊤Σ−1
k (g − µk)

)

. (6.16)

Taking the logarithm of Equation (6.16) gives

log
(
p(g | k)

)
= −N

2
log(2π)− 1

2
log |Σk| −

1

2
(g − µk)

⊤Σ−1
k (g − µk).

The first term may be ignored, as it too is independent of k. Together with
Equation (6.15) and the definition of the discriminant function

dk(g) = log(Pr(k))− 1

2
log |Σk| −

1

2
(g − µk)

⊤Σ−1
k (g − µk), (6.17)

we obtain the Gaussian Bayes maximum-likelihood classifier:

g is in class k provided dk(g) ≥ dj(g) for all j = 1 . . .K. (6.18)

There may be no information about the prior class probabilities Pr(k), in
which case they can be set equal and ignored in the classification. Then the
factor 1/2 in Equation (6.17) can be dropped as well and the discriminant
becomes

dk(g) = − log |Σk| − (g − µk)
⊤Σ−1

k (g − µk). (6.19)

240 Supervised Classification Part 1

The second term in Equation (6.19) is the square of the Mahalanobis distance

√

(g − µk)
⊤Σ−1

k (g − µk).

The contours of constant multivariate probability density in Equation (6.16)
are hyper-ellipsoids of constant Mahalanobis distance to the mean µk.

The moments µk and Σk, which appear in the discriminant functions, may
be estimated from the training data using the maximum-likelihood parameter
estimates (see Section 2.4, Equations (2.74) and (2.75))

µ̂k =
1

mk

∑

{ν|ℓ(ν)=k}
g(ν)

Σ̂k =
1

mk

∑

{ν|ℓ(ν)=k}
(g(ν)− µk)(g(ν)− µk)

⊤,
(6.20)

where mk is the number of training pixels with class label k.
Having estimated the parameters from the training data, the generalization

phase consists simply of applying the rule (6.18) to all of the pixels in the
image. Because of the small number of parameters to be estimated, maximum
likelihood classification is extremely fast. Its weakness lies in the restrictive-
ness of the assumption that all observations are drawn from multivariate nor-
mal probability distributions.∗ Computational efficiency eventually achieved
at the cost of generality is a characteristic of parametric classification models,
to which category the maximum-likelihood classifier belongs (Bishop, 1995).

Note that applying the rule of Equation (6.18) will place any observation
into one of the K classes no matter how small its maximum discriminant
function turns out to be. If it is thought that some classes may have been
overlooked, or if no training data were available for one or two known classes,
then it might be reasonable to assume that observations with small maximum
discriminant functions belong to one of these inaccessible classes. Then they
should perhaps not be classified at all. If this is desired, it may be achieved
simply by setting a threshold on the maximum discriminant dk(g), marking
the observations lying below the threshold as “unclassified.”

6.3.1 Naive Bayes on the GEE

The naive Bayes classifier, one of several supervised classification algorithms
available on the GEE, essentially assumes that there are no correlations be-
tween the training features, i.e., that the class-specific covariance matrices Σk

are diagonal. Since in our pre-processing of the ASTER image we carry out

∗This can be mitigated somewhat by making use of Gaussian mixtures, which we will
meet in Chapter 8 in the context of unsupervised classification.

240 Supervised Classification Part 1

The second term in Equation (6.19) is the square of the Mahalanobis distance

√

(g − µk)
⊤Σ−1

k (g − µk).

The contours of constant multivariate probability density in Equation (6.16)
are hyper-ellipsoids of constant Mahalanobis distance to the mean µk.

The moments µk and Σk, which appear in the discriminant functions, may
be estimated from the training data using the maximum-likelihood parameter
estimates (see Section 2.4, Equations (2.74) and (2.75))

µ̂k =
1

mk

∑

{ν|ℓ(ν)=k}
g(ν)

Σ̂k =
1

mk

∑

{ν|ℓ(ν)=k}
(g(ν)− µk)(g(ν)− µk)

⊤,
(6.20)

where mk is the number of training pixels with class label k.
Having estimated the parameters from the training data, the generalization

phase consists simply of applying the rule (6.18) to all of the pixels in the
image. Because of the small number of parameters to be estimated, maximum
likelihood classification is extremely fast. Its weakness lies in the restrictive-
ness of the assumption that all observations are drawn from multivariate nor-
mal probability distributions.∗ Computational efficiency eventually achieved
at the cost of generality is a characteristic of parametric classification models,
to which category the maximum-likelihood classifier belongs (Bishop, 1995).

Note that applying the rule of Equation (6.18) will place any observation
into one of the K classes no matter how small its maximum discriminant
function turns out to be. If it is thought that some classes may have been
overlooked, or if no training data were available for one or two known classes,
then it might be reasonable to assume that observations with small maximum
discriminant functions belong to one of these inaccessible classes. Then they
should perhaps not be classified at all. If this is desired, it may be achieved
simply by setting a threshold on the maximum discriminant dk(g), marking
the observations lying below the threshold as “unclassified.”

6.3.1 Naive Bayes on the GEE

The naive Bayes classifier, one of several supervised classification algorithms
available on the GEE, essentially assumes that there are no correlations be-
tween the training features, i.e., that the class-specific covariance matrices Σk

are diagonal. Since in our pre-processing of the ASTER image we carry out

∗This can be mitigated somewhat by making use of Gaussian mixtures, which we will
meet in Chapter 8 in the context of unsupervised classification.

Bayes maximum-likelihood classification 241

FIGURE 6.4

Naive Bayes classification of the first 4 principal components of the image in
Figure 6.1.

a principal components transformation, this would seem to be not an unrea-
sonable assumption. However the transformation diagonalizes the global co-
variance matrix of the image, not the covariance matrices of the class-specific
observations. Nevertheless, let’s continue with the training data of Section 6.2
and classify with naive Bayes on the GEE:

import geemap

rename the class ids from strings to integers

trainData = image.sampleRegions (table ,[’CLASS_ID ’]) \

.remap([’0’,’1’,’2’,’3’,’4’,’5’,’6’,’7’,’8’,’9’],

[0,1,2,3,4,5,6,7,8,9], ’CLASS_ID ’)

train a naive Bayes classifier

classifier = ee.Classifier .smileNaiveBayes ()

trained = classifier \

.train(trainData ,’CLASS_ID ’,image.bandNames ())

classify the image and display

classified = image.classify (trained)

map = geemap.Map()

map.centerObject (classified , 12)

map.addLayer (classified .byte (), {’min’: 0.0, ’max’: 10.0,

’palette’: [’FF0000’,’#00 FF00 ’,’#0000FF’]},’Naive�Bayes’)

map

The output cell is shown as an RGB color image in Figure 6.4. The actual
pixel grayscale values are the assigned class position in the array

[’WATER’, ’RAPESEED ’, ’SUGARBEET ’, ’SUBURBAN ’,

’INDUSTRIAL ’, ’CONIFEROUS ’, ’GRAIN’, ’GRASSLAND ’,

’HERBIVOROUS ’, ’OPENCAST ’]

242 Supervised Classification Part 1

see Figure 6.5 below. Close inspection of the output in the accompanying
Jupyter notebook reveals many obvious classification errors, especially in the
opencast mines.

6.3.2 Scripts for supervised classification

The utility script readshp.py in the auxil package (Appendix C) extracts
pixel data from shape files covering the training regions chosen for supervised
classification. There, the labeled observations are stored in data matrix format
in the m × N array variable Gs and the corresponding labels in the m × K
array variable Ls. Here, m is the number of training or test observations, N
is their dimensionality and K is the number of classes. The individual labels
are in fact K-element arrays with zeroes everywhere except at the position
of the class. This is referred to as one-hot encoding. For example, if there
are 5 classes, class 2 corresponds to the label array [0, 1, 0, 0, 0], adopting the
convention that classes are numbered from 1 rather than 0. One-hot-coding
will turn out to be convenient when we come to consider neural network
classifiers.

All of the Python code for local (as opposed to GEE) supervised classifica-
tion is bundled for convenience into the module auxil.supervisedclass.py.
We begin with the code for the maximum likelihood method, as shown in List-
ing 6.1. The train method, starting from line 11, estimates the mean vectors
and covariance matrices for each of the training classes. In classify (line 30)
the new observations are classified with the discriminant of Equation (6.19),
lines 38 to 41, whereby the Mahalanobis distance (g − µk)

⊤Σ−1
k (g − µk) is

efficiently determined by Numpy’s array processing.
For further post-processing of classification results we shall later make use

of the posterior class membership probabilities Pr(k | g). However in this case,
since the maximum-likelihood code does not calculate class probabilities, None
is returned as a place-holder, line 43.

The front-end routine classify.py, documented in Appendix C, reads
the image and training data, creates an instance of a classifier (in this case
Maxlike) and then generates both a thematic map and test results file.

With regard to test observations in general, one approach to carrying out
an unbiased assessment of the accuracy of supervised classification methods
is to reserve a number of “ground truth” training regions containing areas
of labeled data not used during the training phase. These are then classi-
fied in the evaluation phase. We will prefer a somewhat different philosophy,
arguing that, if other representative training areas are indeed available for
evaluation, then they should also be used to train the classifier. For evalua-
tion purposes, some portion of the pixels in all of the training areas can be
held back, but such test data should be selected from the pool of available
labeled observations. This point of view assumes that all training/test areas
are equally representative of their respective classes, but if that were not the
case, then there would be no justification to use them at all. Accordingly, the

242 Supervised Classification Part 1

see Figure 6.5 below. Close inspection of the output in the accompanying
Jupyter notebook reveals many obvious classification errors, especially in the
opencast mines.

6.3.2 Scripts for supervised classification

The utility script readshp.py in the auxil package (Appendix C) extracts
pixel data from shape files covering the training regions chosen for supervised
classification. There, the labeled observations are stored in data matrix format
in the m × N array variable Gs and the corresponding labels in the m × K
array variable Ls. Here, m is the number of training or test observations, N
is their dimensionality and K is the number of classes. The individual labels
are in fact K-element arrays with zeroes everywhere except at the position
of the class. This is referred to as one-hot encoding. For example, if there
are 5 classes, class 2 corresponds to the label array [0, 1, 0, 0, 0], adopting the
convention that classes are numbered from 1 rather than 0. One-hot-coding
will turn out to be convenient when we come to consider neural network
classifiers.

All of the Python code for local (as opposed to GEE) supervised classifica-
tion is bundled for convenience into the module auxil.supervisedclass.py.
We begin with the code for the maximum likelihood method, as shown in List-
ing 6.1. The train method, starting from line 11, estimates the mean vectors
and covariance matrices for each of the training classes. In classify (line 30)
the new observations are classified with the discriminant of Equation (6.19),
lines 38 to 41, whereby the Mahalanobis distance (g − µk)

⊤Σ−1
k (g − µk) is

efficiently determined by Numpy’s array processing.
For further post-processing of classification results we shall later make use

of the posterior class membership probabilities Pr(k | g). However in this case,
since the maximum-likelihood code does not calculate class probabilities, None
is returned as a place-holder, line 43.

The front-end routine classify.py, documented in Appendix C, reads
the image and training data, creates an instance of a classifier (in this case
Maxlike) and then generates both a thematic map and test results file.

With regard to test observations in general, one approach to carrying out
an unbiased assessment of the accuracy of supervised classification methods
is to reserve a number of “ground truth” training regions containing areas
of labeled data not used during the training phase. These are then classi-
fied in the evaluation phase. We will prefer a somewhat different philosophy,
arguing that, if other representative training areas are indeed available for
evaluation, then they should also be used to train the classifier. For evalua-
tion purposes, some portion of the pixels in all of the training areas can be
held back, but such test data should be selected from the pool of available
labeled observations. This point of view assumes that all training/test areas
are equally representative of their respective classes, but if that were not the
case, then there would be no justification to use them at all. Accordingly, the

Bayes maximum-likelihood classification 243

Listing 6.1: Maximum-likelihood classifier (excerpt from the Python module
auxil.supervisedclass.py).

1 c lass Maxlike(object):

2 ’’’Maximum Likelihood Classifier ’’’

3 def __init__ (self , gs , ls):

4 N = gs.shape [1]

5 self._K = ls.shape[1]

6 self._Gs = gs

7 self._ls = np.argmax(ls, 1)

8 self ._sigma = np.zeros((self._K , N, N))

9 self ._sigma_i = np.zeros((self._K, N, N))

10 self ._mu = np.zeros((self ._K , N))

11 def train(self):

12 try:

13 for k in range(self ._K):

14 idx = np.where(self ._ls == k)[0]

15 # observations in class k

16 gs_k = self ._Gs[idx]

17 # estimated mean for class k

18 self ._mu[k] = np.mean (gs_k , axis =0)

19 # centered observations

20 gs_k = (gs_k - self._mu[k])

21 # estimated covariance matrix

22 self._sigma[k] = \

23 np.cov(gs_k , rowvar=False)

24 self._sigma_i [k] = \

25 np.linalg.inv(self._sigma[k])

26 return True

27 except Exception as e:

28 print(’Error:�%s’ % e)

29 return None

30 def classify (self , gs):

31 try:

32 d = np.zeros((self._K, gs.shape[0]))

33 for k in range(self ._K):

34 # centered observations

35 gs = (gs - self._mu[k])

36 # discriminant array

37 sig_i = self ._sigma_i[k]

38 d[k] = -(np.dot(gs , sig_i)*gs) \

39 .sum(axis =1)

40 d[k] -= np.log(np.linalg \

41 .det(self._sigma[k]))

42 classes = np.argmax(d, axis =0)

43 return (classes , None)

44 except Exception as e:

45 print(’Error:�%s’ % e)

244 Supervised Classification Part 1

training observations returned by readshp.py to the front-end classify.py

are partitioned randomly into training and test datasets in the ratio 2:1. Test
classification results are saved to a file in a format consistent with that used
by Bayes Maximum-Likelihood and all of the other the classification routines
to be described in the remainder of this chapter. Accuracy evaluation using
the test results will be discussed in Chapter 7, as well as a more efficient
cross-validation train/test procedure.

To demonstrate, we invoke the script classify.py for the ASTER image
and associated training shape files, setting the band position -p flag to the
first five principal components and the algorithm -a flag to 1 in order to select
the Bayes Maximum Likelihood classifier:

run scripts /classify -p [1,2,3,4,5] -a 1 \

imagery/ AST_20070501_pca .tif imagery/train.shp

reading training data ...

training on 4774 pixel vectors ...

0 200 400 600 800

0

200

400

600

800

AST_20070501_pca_class.tif: linear: [1, 1, 1]: [0, 0, 1000, 1000]

WATER

RAPESEED

SUGARBEET

SUBURBAN

INDUSTRIAL

CONIFEROUS

GRAIN

GRASSLAND

HERBIFEROUS

OPENCAST

FIGURE 6.5

Bayes maximum-likelihood supervised classification of the first four principal
components of the image in Figure 6.1.

244 Supervised Classification Part 1

training observations returned by readshp.py to the front-end classify.py

are partitioned randomly into training and test datasets in the ratio 2:1. Test
classification results are saved to a file in a format consistent with that used
by Bayes Maximum-Likelihood and all of the other the classification routines
to be described in the remainder of this chapter. Accuracy evaluation using
the test results will be discussed in Chapter 7, as well as a more efficient
cross-validation train/test procedure.

To demonstrate, we invoke the script classify.py for the ASTER image
and associated training shape files, setting the band position -p flag to the
first five principal components and the algorithm -a flag to 1 in order to select
the Bayes Maximum Likelihood classifier:

run scripts /classify -p [1,2,3,4,5] -a 1 \

imagery/ AST_20070501_pca .tif imagery/train.shp

reading training data ...

training on 4774 pixel vectors ...

0 200 400 600 800

0

200

400

600

800

AST_20070501_pca_class.tif: linear: [1, 1, 1]: [0, 0, 1000, 1000]

WATER

RAPESEED

SUGARBEET

SUBURBAN

INDUSTRIAL

CONIFEROUS

GRAIN

GRASSLAND

HERBIFEROUS

OPENCAST

FIGURE 6.5

Bayes maximum-likelihood supervised classification of the first four principal
components of the image in Figure 6.1.

Gaussian kernel classification 245

classes: [’WASSER [BL ’, ’RAPS [YELL ’, ... ’TAGEBAU [W’]

elapsed time 0.00220489501953

classifying ...

elapsed time 3.31426310539

thematic map written to :.../ AST_20070501_pca_class.tif

test results written to:.../ AST_20070501_pca_MaxLike.tst

Note that both training and prediction times are very short, a characteristic,
as already mentioned, of parametric models. The classified image is shown in
Figure 6.5. Qualitative comparison with Figure 6.4 indicates a considerably
poorer result than for Naive Bayes. The Naive Bayes classifier, by assuming
conditional independence of the image band intensities, allows the parameters
to be estimated separately for each feature. Although clearly an approxima-
tion, this is more scalable and robust to small sample sizes. The complete
Bayes classifier requires estimating the full N -dimensional distribution, which
can be challenging with limited training data as is here the case.

6.4 Gaussian kernel classification

Non-parametric classification models estimate the class-specific probability
densities p(g | k), as in the preceding section, from a set of training data.
However, unlike the maximum likelihood classifier, no strong prior assump-
tions about the nature of the densities are made. In the Parzen window ap-
proach to non-parametric classification (Duda et al., 2001), each training ob-
servation g(ν), ν = 1 . . .m, is used as the center of a local kernel function.
The probability density for class k at a point g is taken to be the average of
the kernel functions for the training data in that class, evaluated at g. For
example, using a Gaussian kernel, the probability density for the kth class is
estimated as

p(g | k) ≈ 1

mk

∑

{ν|ℓ(ν)=k}

1√
2πσ

exp

(

−�g − g(ν)�2
2σ2

)

. (6.21)

The quantity σ is a smoothing parameter, which has been chosen in this case
to be class-independent. Since the Gaussian functions are normalized, we have

∫ ∞

−∞
p(g | k)dg =

1

mk

∑

{ν|ℓ(ν)=k}
1 = 1,

as required of a probability density. Under fairly general conditions, the right-
hand side of Equation (6.21) can be shown to converge to p(g | k) as the
number of training observations tends to infinity. If as before we set the prior

246 Supervised Classification Part 1

Listing 6.2: Gaussian kernel classification (excerpt from the Python module
auxil.supervisedclass.py).

1 c lass Gausskernel (object):

2 ’’’Gauss Kernel Classifier ’’’

3 def __init__ (self ,Gs,ls):

4 self._K = ls.shape[1]

5 self._Gs = Gs

6 self._N = Gs.shape[1]

7 self._ls = np.argmax(ls ,1)

8 self._m = Gs.shape[0]

9 def output(self ,sigma ,Hs,symm=True):

10 pvs = np.zeros((Hs.shape[0], self._K))

11 kappa = auxil1.kernelMatrix (

12 Hs,self ._Gs ,gam =0.5/(sigma**2),

13 k=1)[0]

14 i f symm :

15 kappa[range(self ._m),range(self ._m)] = 0

16 for j in range(self ._K):

17 kpa = np.copy(kappa)

18 idx = np.where(self ._ls!=j)[0]

19 nj = self._m - idx.size

20 kpa[:,idx] = 0

21 pvs[:,j] = np.sum(kpa ,1). ravel ()/nj

22 s = np.transpose (np.tile(np.sum(pvs ,1),

23 (self._K ,1)))

24 return pvs/s

25 def theta(self ,sigma):

26 pvs = self.output(sigma ,self ._Gs ,True)

27 labels = np.argmax(pvs ,1)

28 idx = np.where(labels != self._ls)[0]

29 n = idx.size

30 error = f l oat (n)/(self ._m)

31 print (’sigma:�%f��error:�%f’%(sigma ,error))

32 return error

33

34 def train(self):

35 result = minimize_scalar (

36 self .theta ,bracket =(0.001 ,0.1 ,1.0) , tol =0.001)

37 i f result.success:

38 self._sigma_min = result.x

39 return True

40 e l se:

41 print (result.message)

42 return None

246 Supervised Classification Part 1

Listing 6.2: Gaussian kernel classification (excerpt from the Python module
auxil.supervisedclass.py).

1 c lass Gausskernel (object):

2 ’’’Gauss Kernel Classifier ’’’

3 def __init__ (self ,Gs,ls):

4 self._K = ls.shape[1]

5 self._Gs = Gs

6 self._N = Gs.shape[1]

7 self._ls = np.argmax(ls ,1)

8 self._m = Gs.shape[0]

9 def output(self ,sigma ,Hs,symm=True):

10 pvs = np.zeros((Hs.shape[0], self._K))

11 kappa = auxil1.kernelMatrix (

12 Hs,self ._Gs ,gam =0.5/(sigma**2),

13 k=1)[0]

14 i f symm:

15 kappa[range(self ._m),range(self ._m)] = 0

16 for j in range(self._K):

17 kpa = np.copy(kappa)

18 idx = np.where(self ._ls!=j)[0]

19 nj = self._m - idx.size

20 kpa[:,idx] = 0

21 pvs[:,j] = np.sum(kpa ,1). ravel ()/nj

22 s = np.transpose (np.tile(np.sum(pvs ,1),

23 (self._K ,1)))

24 return pvs/s

25 def theta(self ,sigma):

26 pvs = self.output(sigma ,self ._Gs ,True)

27 labels = np.argmax(pvs ,1)

28 idx = np.where(labels != self._ls)[0]

29 n = idx.size

30 error = f l oat (n)/(self ._m)

31 print (’sigma:�%f��error:�%f’%(sigma ,error))

32 return error

33

34 def train(self):

35 result = minimize_scalar (

36 self .theta ,bracket =(0.001 ,0.1 ,1.0) , tol =0.001)

37 i f result.success:

38 self._sigma_min = result.x

39 return True

40 e l se:

41 print (result.message)

42 return None

Gaussian kernel classification 247

probabilities in the decision rule, Equation (6.6), equal to one another, then
an observation g will be assigned to class k when

p(g | k) ≥ p(g | j), j = 1 . . .K.

Training the Gaussian kernel classifier involves searching for an optimal
value of the smoothing parameter σ. Too large a value will wash out the class
dependency, and too small a value will lead to poor generalization on new data.
Training can be effected very conveniently by minimizing the misclassification
rate with respect to σ. When presenting an observation vector g(ν) to the
classifier during the training phase, the contribution to the probability density
at the point g(ν) from class k is, from Equation (6.21) and apart from a
constant factor, given by

p(g(ν) | k) = 1

mk

∑

{ν′|ℓ(ν′)=k}
exp

(

−�g(ν)− g(ν′)�2
2σ2

)

=
1

mk

∑

{ν′|ℓ(ν′)=k}
(K)νν′ ,

(6.22)

where K is an m×m Gaussian kernel matrix, see Equation (4.25). It is advis-
able to delete the contribution of g(ν) itself to the sum in the above equation
in order to avoid biasing the classification in favor of the training observation’s
own label, a bias which would otherwise arise due to the appearance of a zero
in the exponent and a dominating contribution to p(g(ν) | k); see Masters
(1995). This amounts to zeroing the diagonal of K before performing the sum
in Equation (6.22).

The Python object class for Gaussian kernel classification is in Listing 6.2.
The instance method output(sigma,Hs,symm) calculates the arrays of class
probability densities for all pixel vectors in the data matrix Hs using the cur-
rent value of the smoothing parameter sigma. The property self. Gs contains
the training pixels, also in data matrix format. Their labels are stored in the
m-dimensional array self. ls. In the training phase, the keyword symm is set
to True, indicating that Hs and self. Gs are in fact identical. The diagonal
of the symmetric kernel matrix kappa is set to zero (line 15). The sums in
Equation (6.22) are calculated in the for-loop in lines 16 to 21. The seemingly
redundant normalization of the probability vectors pvs, line 24, is necessary
because, due to the fact that Equation (6.22) is a discrete approximation
to the posterior probabilities, the vector components don’t sum exactly to
one.

The minimization of the misclassification rate with respect to σ takes place
using Brent’s parabolic interpolation method in the Scipy function minimize-

scalar(), line 35. The class function theta(sigma), passed to this mini-
mization routine, calculates the misclassification rate with a call to output

(sigma,self. Gs,True). After training, classification of the entire image pro-
ceeds with repeated calls to output(sigma,Hs,False) where sigma is fixed

248 Supervised Classification Part 1

0 200 400 600 800

0

200

400

600

800

AST_20070501_pca_class.tif: linear: [1, 1, 1]: [0, 0, 1000, 1000]

WATER

RAPESEED

SUGARBEET

SUBURBAN

INDUSTRIAL

CONIFEROUS

GRAIN

GRASSLAND

HERBIFEROUS

OPENCAST

FIGURE 6.6

Gaussian kernel supervised classification of the first five principal components
of the image in Figure 6.1.

to its optimum value self. sigma min and where Hs is a batch of image
pixel vectors in data matrix format. As with the maximum-likelihood classi-
fier, the labeled observations are split into training and test pixels with the
latter held back for later accuracy evaluation. To run the algorithm, we set
the flag -a to 2 and also the -P flag to request output of the class probability
image:

run scripts /classify -p [1,2,3,4,5] -a 2 -P \

imageryAST_20070501_pca.tif imagery/train.shp

Training with Gausskernel

reading training data ...

training on 4774 pixel vectors ...

classes: [’WASSER [BL ’, ... ’LAUBWALD [’, ’TAGEBAU [W’]

sigma: 0.001000 error: 0.232928

sigma: 0.100000 error: 0.076246

...

sigma: 0.024095 error: 0.039589

248 Supervised Classification Part 1

0 200 400 600 800

0

200

400

600

800

AST_20070501_pca_class.tif: linear: [1, 1, 1]: [0, 0, 1000, 1000]

WATER

RAPESEED

SUGARBEET

SUBURBAN

INDUSTRIAL

CONIFEROUS

GRAIN

GRASSLAND

HERBIFEROUS

OPENCAST

FIGURE 6.6

Gaussian kernel supervised classification of the first five principal components
of the image in Figure 6.1.

to its optimum value self. sigma min and where Hs is a batch of image
pixel vectors in data matrix format. As with the maximum-likelihood classi-
fier, the labeled observations are split into training and test pixels with the
latter held back for later accuracy evaluation. To run the algorithm, we set
the flag -a to 2 and also the -P flag to request output of the class probability
image:

run scripts /classify -p [1,2,3,4,5] -a 2 -P \

imageryAST_20070501_pca.tif imagery/train.shp

Training with Gausskernel

reading training data ...

training on 4774 pixel vectors ...

classes: [’WASSER [BL ’, ... ’LAUBWALD [’, ’TAGEBAU [W’]

sigma: 0.001000 error: 0.232928

sigma: 0.100000 error: 0.076246

...

sigma: 0.024095 error: 0.039589

Gaussian kernel classification 249

0 200 400 600 800

0

200

400

600

800

AST_20070501_pca_classprobs.tif: linear255: (3, 2, 1): [0, 0, 1000, 1000]

FIGURE 6.7

Gaussian kernel probabilities image for water (blue, class 1) , rapeseed (green,
class 2), and sugar beet (red, class 3).

sigma: 0.024136 error: 0.039799

sigma: 0.024071 error: 0.039589

elapsed time 36.6559169292

classifying ...

row: 0

row: 100

...

row: 900

elapsed time 361.4562931060791

class probabilities written to:

imagery/ AST_20070501_pca_classprobs.tif

250 Supervised Classification Part 1

thematic map written to:

imagery/ AST_20070501_pca_class.tif

test results written to:

imagery/ AST_20070501_pca_Gausskernel.tst

The result is shown in Figure 6.6, where we see a considerable qualitative
improvement over both the Naive and complete Bayes maximum-likelihood
classifiers. An example of the probabilities image output from the algorithm
is given in Figure 6.7. The Gaussian kernel classifier, like most other non-
parametric methods, suffers from the drawback of requiring that all training
data points be used in the generalization phase (a so-called memory-based
classifier). Evaluation is very slow if the number of training points is large,
which, on the other hand, should be the case if a reasonable approximation to
the class-specific densities is to be achieved. The object class Gausskernel is in
fact unacceptably slow for training datasets exceeding a few thousand pixels.
Moreover, the number of training samples needed for a good approximation
of the class probability densities grows exponentially with the dimensionality
N of the data—the so-called curse of dimensionality (Bellman, 1961). Quite
generally, the complexity of the calculation is determined by the amount of
training data, not by the difficulty of the classification problem itself—an
undesirable state of affairs.

6.5 Neural networks

Neural networks belong to the category of semi parametric models for proba-
bility density estimation, a category which lies somewhere between the para-
metric and non-parametric extremes (Bishop, 1995). They make no strong
assumptions about the form of the probability distributions and can be ad-
justed flexibly to the complexity of the system that they are being used to
model. They therefore provide an attractive compromise.

To motivate their use for classification, let us consider two classes k = 1
and k = 2 for two-dimensional observations g = (g1, g2)

⊤. We can write the
maximum likelihood decision rule, Equation (6.18) with Equation (6.17), in
terms of a new discriminant function

I(g) = d1(g)− d2(g)

and say that

g is class

{
1 if I(g) ≥ 0
2 if I(g) < 0.

The discriminant I(g) is a rather complicated quadratic function of g. The
simplest discriminant that could conceivably decide between the two classes

250 Supervised Classification Part 1

thematic map written to:

imagery/ AST_20070501_pca_class.tif

test results written to:

imagery/ AST_20070501_pca_Gausskernel.tst

The result is shown in Figure 6.6, where we see a considerable qualitative
improvement over both the Naive and complete Bayes maximum-likelihood
classifiers. An example of the probabilities image output from the algorithm
is given in Figure 6.7. The Gaussian kernel classifier, like most other non-
parametric methods, suffers from the drawback of requiring that all training
data points be used in the generalization phase (a so-called memory-based
classifier). Evaluation is very slow if the number of training points is large,
which, on the other hand, should be the case if a reasonable approximation to
the class-specific densities is to be achieved. The object class Gausskernel is in
fact unacceptably slow for training datasets exceeding a few thousand pixels.
Moreover, the number of training samples needed for a good approximation
of the class probability densities grows exponentially with the dimensionality
N of the data—the so-called curse of dimensionality (Bellman, 1961). Quite
generally, the complexity of the calculation is determined by the amount of
training data, not by the difficulty of the classification problem itself—an
undesirable state of affairs.

6.5 Neural networks

Neural networks belong to the category of semi parametric models for proba-
bility density estimation, a category which lies somewhere between the para-
metric and non-parametric extremes (Bishop, 1995). They make no strong
assumptions about the form of the probability distributions and can be ad-
justed flexibly to the complexity of the system that they are being used to
model. They therefore provide an attractive compromise.

To motivate their use for classification, let us consider two classes k = 1
and k = 2 for two-dimensional observations g = (g1, g2)

⊤. We can write the
maximum likelihood decision rule, Equation (6.18) with Equation (6.17), in
terms of a new discriminant function

I(g) = d1(g)− d2(g)

and say that

g is class

{
1 if I(g) ≥ 0
2 if I(g) < 0.

The discriminant I(g) is a rather complicated quadratic function of g. The
simplest discriminant that could conceivably decide between the two classes

Neural networks 251

✉ ✉✉
❡

✉ ✉
✉
❡❡

❡
❡

❡
❡

❡
❡

✉

❡ ❡

✉

✉✉
I(g) = 0

−w0

w2

w1

w2

✻

✲

g2

g1

✮

✕
w

FIGURE 6.8

A linear discriminant for two classes. The vector w = (w1, w2)
⊤ is normal to

the separating line in the direction of class k = 1, shown as black dots.

is a linear function of the form∗

I(g) = w0 + w1g1 + w2g2, (6.23)

where w0, w1 and w2 are parameters. The decision boundary occurs for I(g) =
0, i.e., for

g2 = −w1

w2
g1 −

w0

w2
,

as depicted in Figure 6.8
Extending discussion now to N -dimensional observations, we can work with

the discriminant

I(g) = w0 + w1g1 + . . .+ wNgN = w⊤g + w0. (6.24)

In this higher dimensional feature space, the decision boundary I(g) = 0
generalizes to an oriented hyperplane. Equation (6.24) can be represented
schematically as an artificial neuron or perceptron, as shown Figure 6.9, along
with some additional jargon. Thus the “input signals” g1 . . . gN are multiplied
with “synaptic weights” w1 . . . wN and the results are summed in a “neuron”
to produce the “output signal” I(g). The w0 term is treated by introduc-
ing a “bias” input of unity, which is multiplied by w0 and included in the
summation.

∗A linear decision boundary will arise in a maximum-likelihood classifier if the covari-
ance matrices for the two classes are identical, see Exercise 2.

252 Supervised Classification Part 1

In keeping with the biological analogy, the output I(g) may be modified by
a so-called sigmoid (= S-shaped) “activation function,” for example by the
logistic function

f(g) =
1

1 + e−I(g)
,

which is often used for example to model population growth under limited
resources.

✒✑
✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

1

i

N

...

...

⑦�
✿
❃

✲

✲

✲

✲

01

g1

gi

gN

I(g)

w0
w1

wi

wN

+ ✲

✓✏

FIGURE 6.9

An artificial neuron representing
Equation (6.24). The first input is
always unity and is called the bias.

I(g) is then referred to as the ac-
tivation of the neuron inducing the
output signal f(g). This modification
of the discriminant has the advan-
tage that the output signal saturates
at values zero or one for large nega-
tive or positive inputs, respectively.∗

However, Bishop (1995) suggests that
there is also a good statistical justi-
fication for using it. Suppose the two
classes are normally distributed with
Σ1 = Σ2 = I. Then

p(g | k) = 1

2π
exp(

−�g − µk�2
2

),

for k = 1, 2, and we have with Bayes’
Theorem,

Pr(1 | g) = p(g | 1)Pr(1)
p(g | 1)Pr(1) + p(g | 2)Pr(2)

=
1

1 + p(g | 2)Pr(2)/(p(g | 1)Pr(1))

=
1

1 + exp(− 1
2 [�g − µ2�2 − �g − µ1�2])(Pr(2)/Pr(1))

.

With the substitution
e−a = Pr(2)/Pr(1)

we get

Pr(1 | g) = 1

1 + exp(− 1
2 [�g − µ2�2 − �g − µ1�2]− a)

=
1

1 + exp(−w⊤g − w0)

=
1

1 + e−I(g)
= f(g).

∗For so-called deep learning neural networks, this can sometimes be a disadvantage and
alternatives such as the regularized linear unit (ReLU) are preferred. Moreover, synaptic
weight initialization becomes critical; see Géron (2023) and Section 6.5.4.

252 Supervised Classification Part 1

In keeping with the biological analogy, the output I(g) may be modified by
a so-called sigmoid (= S-shaped) “activation function,” for example by the
logistic function

f(g) =
1

1 + e−I(g)
,

which is often used for example to model population growth under limited
resources.

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

1

i

N

...

...

⑦�
✿
❃

✲

✲

✲

✲

01

g1

gi

gN

I(g)

w0
w1

wi

wN

+ ✲

FIGURE 6.9

An artificial neuron representing
Equation (6.24). The first input is
always unity and is called the bias.

I(g) is then referred to as the ac-
tivation of the neuron inducing the
output signal f(g). This modification
of the discriminant has the advan-
tage that the output signal saturates
at values zero or one for large nega-
tive or positive inputs, respectively.∗

However, Bishop (1995) suggests that
there is also a good statistical justi-
fication for using it. Suppose the two
classes are normally distributed with
Σ1 = Σ2 = I. Then

p(g | k) = 1

2π
exp(

−�g − µk�2
2

),

for k = 1, 2, and we have with Bayes’
Theorem,

Pr(1 | g) = p(g | 1)Pr(1)
p(g | 1)Pr(1) + p(g | 2)Pr(2)

=
1

1 + p(g | 2)Pr(2)/(p(g | 1)Pr(1))

=
1

1 + exp(− 1
2 [�g − µ2�2 − �g − µ1�2])(Pr(2)/Pr(1))

.

With the substitution
e−a = Pr(2)/Pr(1)

we get

Pr(1 | g) = 1

1 + exp(− 1
2 [�g − µ2�2 − �g − µ1�2]− a)

=
1

1 + exp(−w⊤g − w0)

=
1

1 + e−I(g)
= f(g).

∗For so-called deep learning neural networks, this can sometimes be a disadvantage and
alternatives such as the regularized linear unit (ReLU) are preferred. Moreover, synaptic
weight initialization becomes critical; see Géron (2023) and Section 6.5.4.

Neural networks 253

In the second equality above, we have made the additional substitutions

w = µ1 − µ2

w0 = −1

2
�µ1�2 +

1

2
�µ2�2 + a.

Thus we expect that the output signal f(g) of the neuron will not only discrim-
inate between the two classes, but also that it will approximate the posterior
class membership probability Pr(1 | g).

✖✕

✖✕
✗✔

✖✕
✗✔

✖✕
✗✔

✗✔

✖✕
✗✔

1

i

N

j
...

...

⑦�
✿
❃

✲

✲

✲

✲

01

g1

gi

gN

nj(g)

✖✕
✗✔

✗✔

1

K

✯

✇

✒

�

✣

✲

...

...

n1(g)

nK(g)

✲

✲

✲

✲✖✕
FIGURE 6.10

A single-layer neural network.

The extension of linear discriminants from two to K classes is straightfor-
ward, and leads to the single-layer neural network of Figure 6.10. There are K
neurons (the circles on the right), each of which calculates its own discriminant

nj(g) = f(Ij(g)), j = 1 . . .K.

The observation g is assigned to the class whose neuron produces the maxi-
mum output signal, i.e.,

k = argmax
j

nj(g).

Each neuron is associated with a synaptic weight vector wj , which we from
now on will understand to include the bias weight w0. Thus, for the jth neuron,

wj = (w0j , w1j . . . wNj)
⊤,

and, for the whole network,

W = (w1,w2 . . .wK) =







w01 w02 · · · w0K

w11 w12 · · · w1K
...

...
. . .

...
wN1 wN2 · · · wNK







, (6.25)

which we shall call the synaptic weight matrix for the neuron layer.

254 Supervised Classification Part 1

✖✕
✗✔

✖✕
✗✔

✖✕
✗✔

✖✕
✗✔

✖✕
✗✔

1

i

N

j
...

...

⑦�
✿
❃

✲

✲

✲

✲

01

g1(ν)

gi(ν)

gN (ν)

✖✕
✗✔✖✕

✖✕
✗✔

1

L

✯

✇

✒

�

✣

✲

...

...

✲

✖✕
✗✔
k

✖✕
✗✔

✖✕
✗✔

1

K

...

...

❯

✇

�
✲

❘

❯

❃

✲

❘

✣

❃

✲

0

m1(ν)

mk(ν)

mK(ν)

W h W o✲
1

n1

nj

nL

✲

✲

✲

Hidden layer Output layer

✗✔

FIGURE 6.11

A two-layer feed-forward neural network with L hidden neurons for classi-
fication of N -dimensional data into K classes. The argument ν identifies a
training example.

6.5.1 The neural network classifier

Single-layer networks turn out to be rather limited in the kind of classifi-
cation tasks that they can handle. In fact, only so-called linearly separable
problems, in which classes of training observations can be separated by hy-
perplanes, are fully solvable; see Exercise 3. On the other hand, networks with
just one additional layer of processing neurons can approximate any given
decision boundary arbitrarily closely (Bishop, 1995; Müller et al., 2001) pro-
vided that the first, or hidden, layer outputs are nonlinear. The input data are
transformed by the hidden layer into a higher dimensional function space in
which the problem becomes linearly separable. This is also the strategy used
for designing support vector machines (Belousov et al., 2002), as we will see
later.

Accordingly, we shall develop a classifier based on the two-layer, feed-
forward architecture∗ shown in Figure 6.11. For the νth training pixel, the

∗The adjective feed-forward merely serves to differentiate this network structure from
other networks having feedback connections.

254 Supervised Classification Part 1

✖✕
✗✔

✖✕
✗✔

✖✕
✗✔

✖✕
✗✔

✖✕
✗✔

1

i

N

j
...

...

⑦�
✿
❃

✲

✲

✲

✲

01

g1(ν)

gi(ν)

gN (ν)

✖✕
✗✔✖✕
✗✔

✖✕
✗✔

1

L

✯

✇

✒

�

✣

✲

...

...

✲

✖✕
✗✔
k

✖✕
✗✔

✖✕
✗✔

1

K

...

...

❯

✇

�
✲

❘

❯

❃

✲

❘

✣

❃

✲

0

m1(ν)

mk(ν)

mK(ν)

W h W o✲
1

n1

nj

nL

✲

✲

✲

Hidden layer Output layer

FIGURE 6.11

A two-layer feed-forward neural network with L hidden neurons for classi-
fication of N -dimensional data into K classes. The argument ν identifies a
training example.

6.5.1 The neural network classifier

Single-layer networks turn out to be rather limited in the kind of classifi-
cation tasks that they can handle. In fact, only so-called linearly separable
problems, in which classes of training observations can be separated by hy-
perplanes, are fully solvable; see Exercise 3. On the other hand, networks with
just one additional layer of processing neurons can approximate any given
decision boundary arbitrarily closely (Bishop, 1995; Müller et al., 2001) pro-
vided that the first, or hidden, layer outputs are nonlinear. The input data are
transformed by the hidden layer into a higher dimensional function space in
which the problem becomes linearly separable. This is also the strategy used
for designing support vector machines (Belousov et al., 2002), as we will see
later.

Accordingly, we shall develop a classifier based on the two-layer, feed-
forward architecture∗ shown in Figure 6.11. For the νth training pixel, the

∗The adjective feed-forward merely serves to differentiate this network structure from
other networks having feedback connections.

Neural networks 255

input to the network is the (N + 1)-component (biased) observation vector

g(ν) = (1, g1(ν) . . . gN (ν))⊤.

This input is distributed simultaneously to all of the L neurons in the hidden
layer of neurons. These in turn determine an (L + 1)-component vector of
intermediate outputs (adding in the bias input for the next layer)

n(ν) = (1, n1(ν) . . . nL(ν))
⊤

in which nj(ν) is shorthand for

f(Ihj (g(ν))), j = 1 . . . L.

In this expression, the activation Ihj of the hidden neurons is given by

Ihj (g(ν)) = wh⊤
j g(ν),

where the vector wh
j is the weight vector for the jth neuron in the hidden

layer,
wh

j = (wh
0j , w

h
1j . . . w

h
Nj)

⊤.

In terms of a hidden weight matrix W h having the form of Equation (6.25),
namely

W h = (wh
1 ,w

h
2 . . .w

h
L),

we can write all of this more compactly in vector notation as

n(ν) =

(
1

f(W h⊤g(ν))

)

. (6.26)

Here we just have to interpret the logistic function of a vector v, namely f(v),
as a vector of logistic functions of the components of v.

The vector n(ν) is then fed in the same manner to the output layer with
its associated output weight matrix

W o = (wo
1,w

o
2 . . .w

o
K),

and the output signal m(ν) is calculated, as in Equation (6.26), as

m(ν) = f(W o⊤n(ν)). (6.27)

However, this last equation is not quite satisfactory. According to our pre-
vious considerations, we would like to interpret the network outputs as class
membership probabilities. That means that we must ensure that

0 ≤ mk(ν) ≤ 1, k = 1 . . .K,

256 Supervised Classification Part 1

Listing 6.3: A feed-forward neural network class (excerpt from the Python
module auxil.supervisedclass.py).

1 c lass Ffn(object):

2 ’’’Base Class for Neural Net Classifiers ’’’

3 def __init__ (self ,Gs,ls,Ls ,epochs ,validate):

4 # setup the network architecture

5 self._L = Ls[0]

6 self._m,self._N = Gs.shape

7 self._K = ls.shape[1]

8 self ._epochs = epochs

9 # biased input as column vectors

10 Gs = np.mat(Gs).T

11 self ._Gs = np.vstack((np.ones(self ._m),Gs))

12 # biased output vector from hidden layer

13 self ._n = np.mat(np.zeros(self._L+1))

14 # labels as column vectors

15 self ._ls = np.mat(ls).T

16 i f validate:

17 # split into train and validate sets

18 self ._m = self._m//2

19 self ._Gsv = self._Gs[:,self._m:]

20 self ._Gs = self._Gs[:,: self._m]

21 self ._lsv = self._ls[:,self._m:]

22 self ._ls = self._ls[:,: self._m]

23 e l se:

24 self ._Gsv = self._Gs

25 self ._lsv = self._ls

26 # weight matrices

27 self ._Wh=np.mat(np.random. \

28 random((self._N+1,self._L))) -0.5

29 self ._Wo=np.mat(np.random. \

30 random((self._L+1,self._K))) -0.5

31

32 def forwardpass (self ,G):

33 # forward pass through the network

34 expnt = self._Wh.T*G

35 self ._n = np.vstack ((np.ones (1) ,1.0/ \

36 (1+np.exp(-expnt))))

37 # softmax activation

38 I = self ._Wo.T*self._n

39 A = np.exp(I-max(I))

40 return A/np.sum(A)

256 Supervised Classification Part 1

Listing 6.3: A feed-forward neural network class (excerpt from the Python
module auxil.supervisedclass.py).

1 c lass Ffn(object):

2 ’’’Base Class for Neural Net Classifiers ’’’

3 def __init__ (self ,Gs,ls,Ls ,epochs ,validate):

4 # setup the network architecture

5 self._L = Ls[0]

6 self._m,self._N = Gs.shape

7 self._K = ls.shape[1]

8 self ._epochs = epochs

9 # biased input as column vectors

10 Gs = np.mat(Gs).T

11 self ._Gs = np.vstack((np.ones(self ._m),Gs))

12 # biased output vector from hidden layer

13 self ._n = np.mat(np.zeros(self._L+1))

14 # labels as column vectors

15 self ._ls = np.mat(ls).T

16 i f validate:

17 # split into train and validate sets

18 self ._m = self._m//2

19 self ._Gsv = self._Gs[:,self._m:]

20 self ._Gs = self._Gs[:,: self._m]

21 self ._lsv = self._ls[:,self._m:]

22 self ._ls = self._ls[:,: self._m]

23 e l se:

24 self ._Gsv = self._Gs

25 self ._lsv = self._ls

26 # weight matrices

27 self ._Wh=np.mat(np.random. \

28 random((self._N+1,self._L))) -0.5

29 self ._Wo=np.mat(np.random. \

30 random((self._L+1,self._K))) -0.5

31

32 def forwardpass (self ,G):

33 # forward pass through the network

34 expnt = self._Wh.T*G

35 self ._n = np.vstack ((np.ones (1) ,1.0/ \

36 (1+np.exp(-expnt))))

37 # softmax activation

38 I = self ._Wo.T*self._n

39 A = np.exp(I-max(I))

40 return A/np.sum(A)

Neural networks 257

and, furthermore, that
K∑

k=1

mk(ν) = 1.

The logistic function f satisfies the first condition, but there is no reason why
the second condition should be met. It can be enforced, however, by using a
modified logistic activation function for the output neurons, called softmax
(Bridle, 1990). The softmax function is defined as

mk(ν) =
eI

o
k(n(ν))

eI
o
1
(n(ν)) + eI

o
2
(n(ν)) + . . .+ eI

o
K(n(ν))

, (6.28)

where
Iok(n(ν)) = wo⊤

k n(ν), k = 1 . . .K, (6.29)

and clearly guarantees that the output signals sum to unity.
The Equations (6.26), (6.28), and (6.29) now provide a complete mathe-

matical representation of the neural network classifier shown in Figure 6.10.
It turns out to be a very useful classifier indeed. To quote Bishop (1995):

... [two-layer, feed-forward] networks can approximate arbitrarily
well any functional continuous mapping from one finite dimen-
sional space to another, provided the number [L] of hidden units
is sufficiently large. ... An important corollary of this result is, that
in the context of a classification problem, networks with sigmoidal
non-linearities and two layers of weights can approximate any de-
cision boundary to arbitrary accuracy. ... More generally, the ca-
pability of such networks to approximate general smooth functions
allows them to model posterior probabilities of class membership.

The Python object class Ffn, an excerpt of which is given in Listing 6.3,
mirrors the network architecture of Figure 6.10. It will form the basis for the
implementation of the back propagation training algorithm developed below
and also for the more efficient training algorithms described in Appendix B.

6.5.2 Cost functions

We have not yet considered the correct choice of synaptic weights, that is, how
to go about training the neural network classifier. As mentioned in Section
6.3.2, the training data are most conveniently represented as the set of labeled
pairs

T = {(g(ν), ℓ(ν)) | ν = 1 . . .m},
where the label

ℓ(ν) = (0 . . . 0, 1, 0 . . .0)⊤

is a K-dimensional column vector of zeroes, except with the “1” at the kth
position to indicate that g(ν) belongs to class k.

258 Supervised Classification Part 1

Under certain assumptions about the distribution of the training data, the
quadratic cost function

E(W h,W o) =
1

2

m∑

ν=1

�ℓ(ν)−m(ν)�2 (6.30)

can be justified as a training criterion for feed-forward networks (Exercise 4).
The network weights W h and W o must be adjusted so as to minimize E.
This minimization will clearly tend to make the network produce the output
signal

m = (1, 0 . . . 0 . . . 0)⊤

whenever it is presented with a training observation g(ν) from class k = 1,
and similarly for the other classes.

This, of course, is what we wish it to do. However, a more appropriate cost
function for classification problems can be obtained with a probabilistic argu-
ment, the maximum-likelihood criterion: Choose the synaptic weights so as to
maximize the probability of observing the training data. The joint probability
for observing the training example (g(ν), ℓ(ν)) is

Pr(g(ν), ℓ(ν)) = Pr(ℓ(ν) | g(ν))Pr(g(ν)), (6.31)

where we have used Equation (2.63). The neural network, as was argued,
approximates the posterior class membership probability Pr(ℓ(ν) | g(ν)). In
fact, this probability can be expressed directly in terms of the network output
signal in the form

Pr(ℓ(ν) | g(ν)) =
K∏

k=1

[mk(g(ν))]
ℓk(ν). (6.32)

In order to see this, consider the case ℓ = (1, 0 . . . 0)⊤. Then, according to
Equation (6.32),

Pr((1, 0 . . . 0)⊤ | g) = m1(g)
1 ·m2(g)

0 · · ·mK(g)0 = m1(g),

which is the probability that g is in class 1, as desired. Now, substituting
Equation (6.32) into Equation (6.31), we therefore wish to maximize

Pr(g(ν), ℓ(ν)) =
K∏

k=1

[mk(g(ν))]
ℓk(ν)Pr(g(ν)).

Taking logarithms, dropping terms which are independent of the synaptic
weights, summing over all of the training data and changing the sign, we see
that this is equivalent to minimizing the categorical cross-entropy cost function

E(W h,W o) = −
m∑

ν=1

K∑

k=1

ℓk(ν) log[mk(g(ν))] (6.33)

with respect to the synaptic weight parameters; compare with Equation (2.113).

258 Supervised Classification Part 1

Under certain assumptions about the distribution of the training data, the
quadratic cost function

E(W h,W o) =
1

2

m∑

ν=1

�ℓ(ν)−m(ν)�2 (6.30)

can be justified as a training criterion for feed-forward networks (Exercise 4).
The network weights W h and W o must be adjusted so as to minimize E.
This minimization will clearly tend to make the network produce the output
signal

m = (1, 0 . . . 0 . . . 0)⊤

whenever it is presented with a training observation g(ν) from class k = 1,
and similarly for the other classes.

This, of course, is what we wish it to do. However, a more appropriate cost
function for classification problems can be obtained with a probabilistic argu-
ment, the maximum-likelihood criterion: Choose the synaptic weights so as to
maximize the probability of observing the training data. The joint probability
for observing the training example (g(ν), ℓ(ν)) is

Pr(g(ν), ℓ(ν)) = Pr(ℓ(ν) | g(ν))Pr(g(ν)), (6.31)

where we have used Equation (2.63). The neural network, as was argued,
approximates the posterior class membership probability Pr(ℓ(ν) | g(ν)). In
fact, this probability can be expressed directly in terms of the network output
signal in the form

Pr(ℓ(ν) | g(ν)) =
K∏

k=1

[mk(g(ν))]
ℓk(ν). (6.32)

In order to see this, consider the case ℓ = (1, 0 . . . 0)⊤. Then, according to
Equation (6.32),

Pr((1, 0 . . . 0)⊤ | g) = m1(g)
1 ·m2(g)

0 · · ·mK(g)0 = m1(g),

which is the probability that g is in class 1, as desired. Now, substituting
Equation (6.32) into Equation (6.31), we therefore wish to maximize

Pr(g(ν), ℓ(ν)) =
K∏

k=1

[mk(g(ν))]
ℓk(ν)Pr(g(ν)).

Taking logarithms, dropping terms which are independent of the synaptic
weights, summing over all of the training data and changing the sign, we see
that this is equivalent to minimizing the categorical cross-entropy cost function

E(W h,W o) = −
m∑

ν=1

K∑

k=1

ℓk(ν) log[mk(g(ν))] (6.33)

with respect to the synaptic weight parameters; compare with Equation (2.113).

Neural networks 259

6.5.3 Back propagation

A minimum of the cost function, Equation (6.33), can be found with various
search algorithms, whereby back propagation is certainly the most well-known
and extensively used method. Modern neural network libraries like Tensor-
Flow/Keras or PyTorch implement back propagation very efficiently with so-
called automatic differentiation, as well as by taking advantage of parallel
architectures where available, e.g., GPUs. When integrating these libraries
into an application, they tend to have a bit of a “black box” feel to them. For
this reason it may be worthwhile to work through the mathematics of gra-
dient descent back propagation with a single hidden layer in detail. In doing
so, we will also make reference to scaled conjugate gradient and Kalman filter
training as efficient alternatives to gradient descent methods, but reserve their
derivation to an Appendix.∗ In the next section, we’ll turn our attention to
automatic methods with TensorFlow and Keras.

Our starting point is the so-called local version of the cross entropy, Equa-
tion (6.33):

E(W h,W o, ν) = −
K∑

k=1

ℓk(ν) log[mk(g(ν))], ν = 1 . . .m.

This is just the cost function for a single training example. If we manage to
make it smaller at each step of the calculation and cycle, either sequentially or
randomly, through the available training pairs, then we are obviously minimiz-
ing the overall cost function as well. With the abbreviationmk(ν) = mk(g(ν)),
the local cost function can be written a little more compactly as

E(ν) = −
K∑

k=1

ℓk(ν) log[mk(ν)].

Here the dependence of the cost function on the synaptic weights is also
implicit. More compactly still, it can be represented in vector form as an
inner product:

E(ν) = −ℓ(ν)⊤ log[m(ν)]. (6.34)

Our problem then is to minimize Equation (6.34) with respect to the synap-
tic weights, which are the (N + 1) × L elements of the matrix W h and the
(L+ 1)×K elements of W o. Let us consider the following algorithm:

Algorithm (Stochastic gradient descent (SGD) or back propagation)

1. Initialize the synaptic weights with, e.g., normally distributed random
numbers and set ν equal to a random integer in the interval [1,m].

∗Python scripts for supervised classification with a feed-forward neural network trained
with any of these analytical algorithms are provided with the software.

260 Supervised Classification Part 1

2. Choose training pair (g(ν), ℓ(ν)) and determine the output response
m(ν) of the network.

3. For k = 1 . . .K and j = 0 . . . L, replace wo
jk with wo

jk − η ∂E(ν)
∂wo

jk
.

4. For j = 1 . . . L and i = 0 . . .N , replace wh
ij with wh

ij − η ∂E(ν)

∂wh
ij

.

5. If
∑

ν E(ν) ceases to change significantly, stop, otherwise set ν equal to
a new random integer in [1,m] and go to step 2.

The algorithm jumps randomly through the training data, reducing the lo-
cal cost function at each step. The reduction is accomplished by changing
each synaptic weight w by an amount proportional to the negative slope
−∂E(ν)/∂w of the local cost function with respect to that weight parame-
ter, stopping when the overall cost function, Equation (6.33), can no longer
be reduced. The constant of proportionality η is referred to as the learning
rate for the network. This algorithm only makes use of the first derivatives of
the cost function with respect to the synaptic weight parameters and belongs
to the class of gradient descent methods.

To implement the algorithm, the partial derivatives of E(ν) with respect
to the synaptic weights are required. Let us begin with the output neurons,
which generate the softmax output signals

mk(ν) =
eI

o
k(ν)

eI
o
1
(ν) + eI

o
2
(ν) + . . .+ eI

o
K(ν)

, (6.35)

where
Iok(ν) = wo⊤

k n(ν).

We wish to determine (step 3 of the back propagation algorithm)

∂E(ν)

∂wo
jk

, j = 0 . . . L, k = 1 . . .K.

Recalling the rules for vector differentiation in Chapter 1 and applying the
chain rule we get

∂E(ν)

∂wo
k

=
∂E(ν)

∂Iok(ν)

∂Iok(ν)

∂wo
k

= −δok(ν)n(ν), k = 1 . . .K, (6.36)

where we have introduced the quantity δok(ν) given by

δok(ν) = − ∂E(ν)

∂Iok(ν)
. (6.37)

This is the negative rate of change of the local cost function with respect to
the activation of the kth output neuron.

260 Supervised Classification Part 1

2. Choose training pair (g(ν), ℓ(ν)) and determine the output response
m(ν) of the network.

3. For k = 1 . . .K and j = 0 . . . L, replace wo
jk with wo

jk − η ∂E(ν)
∂wo

jk
.

4. For j = 1 . . . L and i = 0 . . .N , replace wh
ij with wh

ij − η ∂E(ν)

∂wh
ij

.

5. If
∑

ν E(ν) ceases to change significantly, stop, otherwise set ν equal to
a new random integer in [1,m] and go to step 2.

The algorithm jumps randomly through the training data, reducing the lo-
cal cost function at each step. The reduction is accomplished by changing
each synaptic weight w by an amount proportional to the negative slope
−∂E(ν)/∂w of the local cost function with respect to that weight parame-
ter, stopping when the overall cost function, Equation (6.33), can no longer
be reduced. The constant of proportionality η is referred to as the learning
rate for the network. This algorithm only makes use of the first derivatives of
the cost function with respect to the synaptic weight parameters and belongs
to the class of gradient descent methods.

To implement the algorithm, the partial derivatives of E(ν) with respect
to the synaptic weights are required. Let us begin with the output neurons,
which generate the softmax output signals

mk(ν) =
eI

o
k(ν)

eI
o
1
(ν) + eI

o
2
(ν) + . . .+ eI

o
K(ν)

, (6.35)

where
Iok(ν) = wo⊤

k n(ν).

We wish to determine (step 3 of the back propagation algorithm)

∂E(ν)

∂wo
jk

, j = 0 . . . L, k = 1 . . .K.

Recalling the rules for vector differentiation in Chapter 1 and applying the
chain rule we get

∂E(ν)

∂wo
k

=
∂E(ν)

∂Iok(ν)

∂Iok(ν)

∂wo
k

= −δok(ν)n(ν), k = 1 . . .K, (6.36)

where we have introduced the quantity δok(ν) given by

δok(ν) = − ∂E(ν)

∂Iok(ν)
. (6.37)

This is the negative rate of change of the local cost function with respect to
the activation of the kth output neuron.

Neural networks 261

Again, applying the chain rule and using Equations (6.34) and (6.35),

−δok(ν) =
∂E(ν)

∂Iok(ν)
=

K∑

k′=1

∂E(ν)

∂mk′(ν)

∂mk′(ν)

∂Iok(ν)

=

K∑

k′=1

− ℓk′(ν)

mk′(ν)

(

eI
o
k(ν)δkk′

∑K
k′′=1 e

Io
k′′ (ν)

− eI
o
k′(ν)eI

o
k(ν)

(
∑K

k′′=1 e
Io
k′′ (ν))2

)

.

Here, δkk′ is given by

δkk′ =
{
0 if k �= k′

1 if k = k′.

Continuing, making use of Equation (6.35),

−δok(ν) =

K∑

k′=1

− ℓk′(ν)

mk′(ν)
mk(ν)(δkk′ −mk′(ν))

= −ℓk(ν) +mk(ν)

K∑

k′=1

ℓk′(ν).

But this last sum over the K components of the label ℓ(ν) is just unity, and
therefore we have

−δok(ν) = −ℓk(ν) +mk(ν), k = 1 . . .K,

which may be written as the K-component vector

δo(ν) = ℓ(ν) −m(ν). (6.38)

From Equation (6.36), we can therefore express the third step in the back
propagation algorithm in the form of the matrix equation (see Exercise 6)

W o(ν + 1) = W o(ν) + η n(ν)δo(ν)⊤. (6.39)

Here W o(ν+1) indicates the synaptic weight matrix after the update for νth
training pair. Note that the second term on the right-hand side of Equation
(6.39) is an outer product, yielding a matrix of dimension (L+1)×K and so
matching the dimension of W o(ν).

For the hidden weights, step 4 of the algorithm, we proceed similarly:

∂E(ν)

∂wh
j

=
∂E(ν)

∂Ihj (ν)

∂Ihj (ν)

∂wh
j

= −δhj (ν)g(ν), j = 1 . . . L, (6.40)

where δhj (ν) is the negative rate of change of the local cost function with
respect to the activation of the jth hidden neuron:

δhj (ν) = − ∂E(ν)

∂Ihj (ν)
.

262 Supervised Classification Part 1

Applying the chain rule again:

−δhj (ν) =

K∑

k=1

∂E(ν)

∂I0k(ν)

∂Iok(ν)

∂Ihj (ν)
= −

K∑

k=1

δok(ν)
∂Iok (ν)

∂Ihj (ν)

= −
K∑

k=1

δok(ν)
∂wo⊤

k n(ν)

∂Ihj (ν)
= −

K∑

k=1

δok(ν)w
o⊤
k

∂n(ν)

∂Ihj (ν)
.

In the last partial derivative, since Ihj (ν) = wh⊤
j g(ν), only the output of the

jth hidden neuron is a function of Ihj (ν). Therefore,

δhj (ν) =

K∑

k=1

δok(ν)w
o
jk

∂nj(ν)

∂Ihj (ν)
. (6.41)

Recall that the hidden units in our simple network use the logistic activation
function

nj(I
h
j) = f(Ihj) =

1

1 + e−Ih
j

.

This function has the derivative:

∂nj(x)

∂x
= nj(x)(1 − nj(x)).

Therefore, we can write Equation (6.41) as

δhj (ν) =

K∑

k=1

δok(ν)w
o
jknj(ν)(1 − nj(ν)), j = 1 . . . L,

or more compactly as the matrix equation

(
0

δh(ν)

)

= n(ν) · (1− n(ν)) ·
(
W oδo(ν)

)
. (6.42)

The dot is intended to denote simple component-by-component (so-called
Hadamard) multiplication. The equation must be written in this rather awk-
ward way because the expression on the right-hand side has L+1 components.
This also makes the fact that 1 − n0(ν) = 0 explicit. Equation (6.42) is the
origin of the term “back propagation,” since it propagates the negative rate
of change of the cost function with respect to the output activations δo(ν)
backwards through the network to determine the negative rate of change with
respect to the hidden activations δh(ν).

Finally, with Equation (6.40), we obtain the update rule for step 4 of the
back propagation algorithm:

W h(ν + 1) = W h(ν) + η g(ν)δh(ν)⊤. (6.43)

262 Supervised Classification Part 1

Applying the chain rule again:

−δhj (ν) =

K∑

k=1

∂E(ν)

∂I0k(ν)

∂Iok(ν)

∂Ihj (ν)
= −

K∑

k=1

δok(ν)
∂Iok (ν)

∂Ihj (ν)

= −
K∑

k=1

δok(ν)
∂wo⊤

k n(ν)

∂Ihj (ν)
= −

K∑

k=1

δok(ν)w
o⊤
k

∂n(ν)

∂Ihj (ν)
.

In the last partial derivative, since Ihj (ν) = wh⊤
j g(ν), only the output of the

jth hidden neuron is a function of Ihj (ν). Therefore,

δhj (ν) =

K∑

k=1

δok(ν)w
o
jk

∂nj(ν)

∂Ihj (ν)
. (6.41)

Recall that the hidden units in our simple network use the logistic activation
function

nj(I
h
j) = f(Ihj) =

1

1 + e−Ih
j

.

This function has the derivative:

∂nj(x)

∂x
= nj(x)(1 − nj(x)).

Therefore, we can write Equation (6.41) as

δhj (ν) =

K∑

k=1

δok(ν)w
o
jknj(ν)(1 − nj(ν)), j = 1 . . . L,

or more compactly as the matrix equation

(
0

δh(ν)

)

= n(ν) · (1− n(ν)) ·
(
W oδo(ν)

)
. (6.42)

The dot is intended to denote simple component-by-component (so-called
Hadamard) multiplication. The equation must be written in this rather awk-
ward way because the expression on the right-hand side has L+1 components.
This also makes the fact that 1 − n0(ν) = 0 explicit. Equation (6.42) is the
origin of the term “back propagation,” since it propagates the negative rate
of change of the cost function with respect to the output activations δo(ν)
backwards through the network to determine the negative rate of change with
respect to the hidden activations δh(ν).

Finally, with Equation (6.40), we obtain the update rule for step 4 of the
back propagation algorithm:

W h(ν + 1) = W h(ν) + η g(ν)δh(ν)⊤. (6.43)

Neural networks 263

Listing 6.4: A class for a feed-forward neural network trained with back prop-
agation (excerpt from the Python module auxil.supervisedclass.py).

1 c lass Ffnbp(Ffn):

2 ’’’Ordinary Backpropagation Neural Net Classifier ’’’

3 def __init__(self ,Gs,ls,Ls ,epochs =100,valid=False):

4 Ffn.__init__ (self ,Gs,ls ,Ls,epochs ,valid)

5

6 def train(self):

7 eta = 0.01

8 alpha = 0.9

9 maxitr = self ._epochs*self._m

10 inc_o1 = 0.0

11 inc_h1 = 0.0

12 epoch = 0

13 cost = []

14 costv = []

15 itr = 0

16 try:

17 while itr <maxitr:

18 # select train example pair at random

19 nu = np.random.randint (0, self._m)

20 x = self ._Gs[:,nu]

21 ell = self._ls[:,nu]

22 # send it through the network

23 m = self.forwardpass (x)

24 # determine the deltas

25 d_o = ell - m

26 d_h = np.multiply (np.multiply (self._n ,\

27 (1-self._n)),(self ._Wo*d_o))[1::]

28 # update synaptic weights

29 inc_o = eta*(self ._n*d_o.T)

30 inc_h = eta*(x*d_h.T)

31 self._Wo += inc_o + alpha*inc_o1

32 self._Wh += inc_h + alpha*inc_h1

33 inc_o1 = inc_o

34 inc_h1 = inc_h

35 # record cost function

36 i f itr % self ._m == 0:

37 cost .append(self .cost ())

38 costv.append(self .costv())

39 epoch += 1

40 itr += 1

41 except Exception as e:

42 print (’Error:�%s’%e)

43 return None

44 return (np.array(cost),np.array(costv))

264 Supervised Classification Part 1

The choice of an appropriate learning rate η is problematic: small values
imply slow convergence and large values produce oscillation. Some improve-
ment can be achieved with an additional, purely heuristic parameter called
momentum, which maintains a portion of the preceding weight increments in
the current iteration. Equation (6.39) is replaced with

W o(ν + 1) = W o(ν) + ∆o(ν) + α∆o(ν − 1), (6.44)

where ∆o(ν) = η n(ν)δo⊤(ν) and α is the momentum parameter. A similar
expression replaces Equation (6.43). In Exercise 8 the reader is asked to show
that, in extended regions of constant gradient in the cost function ∆o(ν +
1) = ∆o(ν) the momentum will increase the rate of convergence by the factor
1/(1− α). Typical choices for the back propagation parameters are η = 0.01
and α = 0.9.

Listing 6.4 shows part of the object class Ffnbp(Ffn) extending the class
Ffn(object) of Listing 6.3 to implement the SGD back propagation algo-
rithm. It lists the code for the method train(), which closely parallels the
equations developed above. Figure 6.12 shows the local cross entropy cost func-
tion for training with gradient descent for 1000 epochs, that is, 1000 passes
through the complete training set or 1000×4774 ≈ 5×106 training examples.

The disadvantage of our gradient descent back propagation implementation

FIGURE 6.12

Local cross entropy as a function of training epoch for gradient descent back
propagation.

264 Supervised Classification Part 1

The choice of an appropriate learning rate η is problematic: small values
imply slow convergence and large values produce oscillation. Some improve-
ment can be achieved with an additional, purely heuristic parameter called
momentum, which maintains a portion of the preceding weight increments in
the current iteration. Equation (6.39) is replaced with

W o(ν + 1) = W o(ν) + ∆o(ν) + α∆o(ν − 1), (6.44)

where ∆o(ν) = η n(ν)δo⊤(ν) and α is the momentum parameter. A similar
expression replaces Equation (6.43). In Exercise 8 the reader is asked to show
that, in extended regions of constant gradient in the cost function ∆o(ν +
1) = ∆o(ν) the momentum will increase the rate of convergence by the factor
1/(1− α). Typical choices for the back propagation parameters are η = 0.01
and α = 0.9.

Listing 6.4 shows part of the object class Ffnbp(Ffn) extending the class
Ffn(object) of Listing 6.3 to implement the SGD back propagation algo-
rithm. It lists the code for the method train(), which closely parallels the
equations developed above. Figure 6.12 shows the local cross entropy cost func-
tion for training with gradient descent for 1000 epochs, that is, 1000 passes
through the complete training set or 1000×4774 ≈ 5×106 training examples.

The disadvantage of our gradient descent back propagation implementation

FIGURE 6.12

Local cross entropy as a function of training epoch for gradient descent back
propagation.

Neural networks 265

(minimizing the local cost function Equation (6.34)) relative to the much more
efficient scaled conjugate gradient training algorithm described in Appendix
B can be seen in a direct comparison. First with the flag -a set to 3 for
gradient descent back propagation, -e 1000 for 1000 epochs and -L [10] for
one hidden layer of 10 neurons:

Training with NNet(Backprop)

reading training data ...

training on 4798 pixel vectors ...

classes: [’WASSER�[BL’, ... ’TAGEBAU�[W’]

elapsed time 491.03439497947693

classifying ...

row: 0

row: 100

row: 200

...

Whereas with scaled conjugate gradient (-a 4):

Training with NNet(Congrad)

reading training data ...

training on 4798 pixel vectors ...

classes: [’WASSER�[BL’, ... ’TAGEBAU�[W’]

elapsed time 5.62642502784729

classifying ...

row: 0

row: 100

row: 200

...

we achieve an improvement in training time by a factor of about 90. The differ-
ence is partly due to the efficiency of the scaled conjugate gradient algorithm
itself and also because the algorithm minimizes the global cost function Equa-
tion (6.33), rather than the local version we have preferred for demonstration
purposes up until now.∗ The speed-up for Kalman filter training is about a
factor of 15, due to its extremely fast convergence (less than 10 epochs, see
Appendix B and the accompanying Jupyter notebook).

6.5.4 Deep learning networks

The astounding renaissance of interest in artificial intelligence that we are
presently (anno 2025) experiencing is due to the—sometimes spectacular—
success of so-called deep learning neural networks (DNNs) when applied to
very large data sets. In essence one works with networks of varying archi-
tectures, all characterized by having many hidden layers and correspondingly

∗The TensorFlow/Keras implementation of gradient descent discussed in the next Sec-
tion also minimize a global cost function.

266 Supervised Classification Part 1

very many free parameters. Training times, which a decade ago would have
been prohibitive, are now becoming acceptable due to modern parallel com-
puting techniques such as GPU processing (CUDA) and dedicated and opti-
mized software like TensorFlow or PyTorch. The remote sensing community
has also “joined the bandwagon” so to speak, with a plethora of deep learn-
ing applications, both real and envisaged; see Zhu et al. (2017) for an early
overview and Section 7.6 in Chapter 7. On the same note, the GEE develop-
ment team is gradually interfacing DNN functionality with the GEE API.∗

In Chapter 7, we will look at object classification of remote sensing im-
agery with convolutional neural networks. But in this Chapter, in our rela-
tively modest domain of pixel-based image classification, the deep learning
paradigm amounts to increasing the number of neurons and/or hidden lay-
ers in the feed forward network of Figure 6.10 in the hope that it can better
learn the underlying probability distributions. As may be evident from the
mathematics of Section 6.5.3, analytic expressions for propagating the rate of
change of the output neuron weights backward to two or more hidden lay-
ers would become quite complicated, the more so if we were to use either
of the more sophisticated training methods of Appendix B. The TensorFlow
platform overcomes this complication by exposing a very clean framework for
array propagation† taking advantage of the numerical technique of automatic
differentiation; see Rall (1981) and Géron (2023), Appendix D. This greatly
simplifies and accelerates the computations necessary for network training.
Moreover, the requirement for a well-behaved activation function can be re-
laxed in favor of more efficient activations which are not everywhere differen-
tiable. Keras is a deep learning API written in Python and capable of running
on top of TensorFlow or PyTorch and we will use it here for a very elegant
representation of a FFN with any number of hidden layers.

A feed forward neural network classifier with L dense hidden layers is
scripted in the object class Dnn keras(), Listing 6.5. We’ve taken advantage
of the high-level class tf.keras.Sequential() for multilayer feed forward
networks. The code, apart from the activation function chosen for the hidden
layers, namely ReLU or rectified linear units, is self-explanatory. As for RelU,
to cite Géron (2023):

The ReLU(z) function is continuous but unfortunately not dif-
ferentiable at z = 0 (the slope changes abruptly, which can make
gradient descent bounce around), and its derivative is 0 for z < 0.
In practice, however, it works very well and has the advantage of
being fast to compute, so it has become the default.

∗See https://developers.google.com/earth-engine/guides/machine-learning for a more
up-to-date overview, including interfacing the GEE with large scale machine learning models
hosted on Vertex AI.

†The “tensors” in TensorFlow and PyTorch are just multidimensional arrays. The
deeper mathematical/physical significance of the term tensor, for instance as a coordinate
system independent quantity, plays no role.

https://developers.google.com/earth-engine/guides/machine-learning

266 Supervised Classification Part 1

very many free parameters. Training times, which a decade ago would have
been prohibitive, are now becoming acceptable due to modern parallel com-
puting techniques such as GPU processing (CUDA) and dedicated and opti-
mized software like TensorFlow or PyTorch. The remote sensing community
has also “joined the bandwagon” so to speak, with a plethora of deep learn-
ing applications, both real and envisaged; see Zhu et al. (2017) for an early
overview and Section 7.6 in Chapter 7. On the same note, the GEE develop-
ment team is gradually interfacing DNN functionality with the GEE API.∗

In Chapter 7, we will look at object classification of remote sensing im-
agery with convolutional neural networks. But in this Chapter, in our rela-
tively modest domain of pixel-based image classification, the deep learning
paradigm amounts to increasing the number of neurons and/or hidden lay-
ers in the feed forward network of Figure 6.10 in the hope that it can better
learn the underlying probability distributions. As may be evident from the
mathematics of Section 6.5.3, analytic expressions for propagating the rate of
change of the output neuron weights backward to two or more hidden lay-
ers would become quite complicated, the more so if we were to use either
of the more sophisticated training methods of Appendix B. The TensorFlow
platform overcomes this complication by exposing a very clean framework for
array propagation† taking advantage of the numerical technique of automatic
differentiation; see Rall (1981) and Géron (2023), Appendix D. This greatly
simplifies and accelerates the computations necessary for network training.
Moreover, the requirement for a well-behaved activation function can be re-
laxed in favor of more efficient activations which are not everywhere differen-
tiable. Keras is a deep learning API written in Python and capable of running
on top of TensorFlow or PyTorch and we will use it here for a very elegant
representation of a FFN with any number of hidden layers.

A feed forward neural network classifier with L dense hidden layers is
scripted in the object class Dnn keras(), Listing 6.5. We’ve taken advantage
of the high-level class tf.keras.Sequential() for multilayer feed forward
networks. The code, apart from the activation function chosen for the hidden
layers, namely ReLU or rectified linear units, is self-explanatory. As for RelU,
to cite Géron (2023):

The ReLU(z) function is continuous but unfortunately not dif-
ferentiable at z = 0 (the slope changes abruptly, which can make
gradient descent bounce around), and its derivative is 0 for z < 0.
In practice, however, it works very well and has the advantage of
being fast to compute, so it has become the default.

∗See https://developers.google.com/earth-engine/guides/machine-learning for a more
up-to-date overview, including interfacing the GEE with large scale machine learning models
hosted on Vertex AI.

†The “tensors” in TensorFlow and PyTorch are just multidimensional arrays. The
deeper mathematical/physical significance of the term tensor, for instance as a coordinate
system independent quantity, plays no role.

Neural networks 267

Listing 6.5: A class for a deep learning neural network (excerpt from the
Python module supervisedclass.py).

1 c lass Dnn_keras (object):

2 ’’’TensorFlow (Keras) Dnn classifier ,’’’

3 def __init__(self ,Gs,ls,Ls ,epochs =100):

4 # setup the network architecture

5 self._Gs = Gs

6 n_classes = ls.shape[1]

7 self ._labels = ls

8 self ._epochs = epochs

9 self ._dnn = tf.keras.Sequential ()

10 # hidden layers

11 for L in Ls:

12 self._dnn \

13 .add(layers.Dense(L, ’relu ’))

14 # output layer

15 self ._dnn \

16 .add(layers.Dense(n_classes , ’softmax ’))

17 # initialize

18 self ._dnn.compile(

19 optimizer =tf.keras. optimizers .SGD (0.01),

20 loss =’categorical_crossentropy’)

21

22 def train(self):

23 try:

24 self._dnn .fit(self ._Gs ,self._labels ,

25 epochs=self._epochs ,verbose =0)

26 return True

27 except Exception as e:

28 print (’Error:�%s’%e)

29 return None

30

31 def classify(self ,Gs):

32 # predict new data

33 Ms = self._dnn .predict(Gs)

34 cls = np.argmax(Ms ,1)+1

35 return (cls ,Ms)

We will now instantiate the Dnn keras() class to a three hidden layer FFN
and train it on our ASTER image, at the considerable risk of over-fitting; see
the next Section. The flag -a 6 below selects the DNN classifier:

run scripts /classify -p [1,2,3,4,5] -a 6 -e 1000 \

-L [10,10,10] imagery/AST_20070501_pca .tif\

imagery/train.shp

Training with Dnn(tensorflow)

268 Supervised Classification Part 1

reading training data ...

training on 4798 pixel vectors ...

classes: [’WASSER [BL ’, ... , ’TAGEBAU [W’]

elapsed time 191.424

classifying ...

...

elapsed time 19.486

thematic map written to:

imagery/ AST_20070501_pca_class.tif

Since there are now three hidden layers, the training time is over 30 times that
for the scaled conjugate gradient algorithm. The efficiency would be greatly
improved by having parallel computing hardware installed, e.g., GPU proces-
sors that TensorFlow can take advantage of. Whether of not the classification
accuracy has benefited from the increased depth of the network will be dis-
cussed in the next Chapter.

6.5.5 Over fitting and generalization

A fundamental and much-discussed dilemma in the application of neural net-
works (and other learning algorithms) is that of over fitting. Reduced to its
essentials, the question is: “How many hidden neurons are enough?” The num-
ber of neurons in the output layer of the network in Figure 6.11 is determined
by the number of training classes. The number in the hidden layer is fully un-
determined. If “too few” hidden neurons are chosen (and thus too few synaptic
weights), there is danger that the classification will be suboptimal: there will
be an insufficient number of adjustable parameters to resolve the class struc-
ture of the training data. If, on the other hand, “too many” hidden neurons
are selected, and if the training data have a large noise variance, there will
be a danger that the network will fit the data all too well, including their
detailed random structure. Such detailed structure is a characteristic of the
particular training sample chosen and not of the underlying class distributions
that the network is supposed to learn. It is here that one speaks of over fitting.
In either case, the capability of the network to generalize to unknown inputs
will be impaired. One can find excellent discussions of this subject in Hertz
et al. (1991), Chapter 6, and in Bishop (1995), Chapter 9, where regulariza-
tion techniques are introduced to penalize over fitting. Alternatively, growth
and pruning algorithms can be applied in which the network architecture is
optimized during the training procedure. A popular growth algorithm is the
cascade correlation neural network of Fahlman and LeBiere (1990).

We shall restrict ourselves here to a solution which presupposes an over-
dimensioned network, that is, one with too many hidden weights, as well as
the availability of a second dataset, which is usually referred to as the vali-
dation dataset. An option in the Python script classify.py documented in
Appendix C allows the training data to be split in two, so that half the data
are reserved for validation purposes. (If test data were held back, the training

268 Supervised Classification Part 1

reading training data ...

training on 4798 pixel vectors ...

classes: [’WASSER [BL ’, ... , ’TAGEBAU [W’]

elapsed time 191.424

classifying ...

...

elapsed time 19.486

thematic map written to:

imagery/ AST_20070501_pca_class.tif

Since there are now three hidden layers, the training time is over 30 times that
for the scaled conjugate gradient algorithm. The efficiency would be greatly
improved by having parallel computing hardware installed, e.g., GPU proces-
sors that TensorFlow can take advantage of. Whether of not the classification
accuracy has benefited from the increased depth of the network will be dis-
cussed in the next Chapter.

6.5.5 Over fitting and generalization

A fundamental and much-discussed dilemma in the application of neural net-
works (and other learning algorithms) is that of over fitting. Reduced to its
essentials, the question is: “How many hidden neurons are enough?” The num-
ber of neurons in the output layer of the network in Figure 6.11 is determined
by the number of training classes. The number in the hidden layer is fully un-
determined. If “too few” hidden neurons are chosen (and thus too few synaptic
weights), there is danger that the classification will be suboptimal: there will
be an insufficient number of adjustable parameters to resolve the class struc-
ture of the training data. If, on the other hand, “too many” hidden neurons
are selected, and if the training data have a large noise variance, there will
be a danger that the network will fit the data all too well, including their
detailed random structure. Such detailed structure is a characteristic of the
particular training sample chosen and not of the underlying class distributions
that the network is supposed to learn. It is here that one speaks of over fitting.
In either case, the capability of the network to generalize to unknown inputs
will be impaired. One can find excellent discussions of this subject in Hertz
et al. (1991), Chapter 6, and in Bishop (1995), Chapter 9, where regulariza-
tion techniques are introduced to penalize over fitting. Alternatively, growth
and pruning algorithms can be applied in which the network architecture is
optimized during the training procedure. A popular growth algorithm is the
cascade correlation neural network of Fahlman and LeBiere (1990).

We shall restrict ourselves here to a solution which presupposes an over-
dimensioned network, that is, one with too many hidden weights, as well as
the availability of a second dataset, which is usually referred to as the vali-
dation dataset. An option in the Python script classify.py documented in
Appendix C allows the training data to be split in two, so that half the data
are reserved for validation purposes. (If test data were held back, the training

Neural networks 269

0 2000 4000 6000 8000 10000

Epoch

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

Log(Cross entropy)

FIGURE 6.13

Training (blue) and validation (red) cost functions for 20 hidden neurons and
10,000 epochs.

dataset is then one third of its original size.) Both halves are still represen-
tative of the class distributions and are statistically independent. During the
training phase, which is carried out only with the training data, cost functions
calculated both with the training data as well as with the validation data are
displayed. Over fitting is indicated by a continued decrease in the training cost
function accompanied by a gradual increase or stagnation in the validation
cost function. Figure 6.13 shows a fairly typical example, for 20 hidden neu-
rons and 10,000 epochs (training time 6 minutes with the scaled conjugate
gradient algorithm). The gradual saturation and increase in the validation
cost function beginning at around 3000 epochs, together with the continued
slow decrease in the training cost, is indicative of over fitting: the network is
learning the detailed structure of the training data without improving, or at
the cost of, its ability to generalize. The algorithm should thus be stopped
when the upper curve ceases to decrease (so-called early stopping).

In Chapter 7, we shall see how to compare the generalization capability of
neural networks with that of the maximum likelihood and Gaussian kernel
classifiers which we developed previously as well as with the support vec-
tor machine (the topic of the next section) and the random forest classifiers
(Chapter 7).

270 Supervised Classification Part 1

6.6 Support vector machines

Let us return to the simple linear discriminant function I(g) for a two-class
problem given by Equation (6.24), with the convention that the weight vector
does not include the bias term, i.e.,

I(g) = w⊤g(ν) + w0,

where
w = (w1 . . . wN)⊤

and where the training observations are

g(ν) = (g1(ν) . . . gN(ν))⊤,

with corresponding (this time scalar) labels

ℓ(ν) ∈ {0, 1}, ν = 1 . . .m.

A quadratic cost function for training this discriminant on two classes would
then be

E(w) =
1

2

m∑

ν=1

(w⊤g(ν) + w0 − ℓ(ν))2. (6.45)

This expression is essentially the same as Equation (6.30), when it is written
for the case of a single neuron. Training the neuron of Figure 6.9 to discrim-
inate the two classes means finding the weight parameters which minimize
the above cost function. This can be done, for example, by using a gradient
descent method, or more efficiently with the perceptron algorithm as explained
in Exercise 3(c). We shall consider in the following an alternative to such a
cost function approach. The method we describe is reminiscent of the Gaus-
sian kernel method of Section 6.4 in that the training observations are also
used at the classification phase, but as we shall see, not all of them.

6.6.1 Linearly separable classes

It is convenient first of all to relabel the training observations as ℓ(ν) ∈
{−1, 1}, rather than ℓ(ν) ∈ {0, 1}. With this convention, the product

ℓ(ν)(w⊤g(ν) + w0), ν = 1 . . .m,

is called margin of the νth training pair (g(ν), ℓ(ν)) relative to the hyperplane

I(g) = w⊤g + w0 = 0.

270 Supervised Classification Part 1

6.6 Support vector machines

Let us return to the simple linear discriminant function I(g) for a two-class
problem given by Equation (6.24), with the convention that the weight vector
does not include the bias term, i.e.,

I(g) = w⊤g(ν) + w0,

where
w = (w1 . . . wN)⊤

and where the training observations are

g(ν) = (g1(ν) . . . gN(ν))⊤,

with corresponding (this time scalar) labels

ℓ(ν) ∈ {0, 1}, ν = 1 . . .m.

A quadratic cost function for training this discriminant on two classes would
then be

E(w) =
1

2

m∑

ν=1

(w⊤g(ν) + w0 − ℓ(ν))2. (6.45)

This expression is essentially the same as Equation (6.30), when it is written
for the case of a single neuron. Training the neuron of Figure 6.9 to discrim-
inate the two classes means finding the weight parameters which minimize
the above cost function. This can be done, for example, by using a gradient
descent method, or more efficiently with the perceptron algorithm as explained
in Exercise 3(c). We shall consider in the following an alternative to such a
cost function approach. The method we describe is reminiscent of the Gaus-
sian kernel method of Section 6.4 in that the training observations are also
used at the classification phase, but as we shall see, not all of them.

6.6.1 Linearly separable classes

It is convenient first of all to relabel the training observations as ℓ(ν) ∈
{−1, 1}, rather than ℓ(ν) ∈ {0, 1}. With this convention, the product

ℓ(ν)(w⊤g(ν) + w0), ν = 1 . . .m,

is called margin of the νth training pair (g(ν), ℓ(ν)) relative to the hyperplane

I(g) = w⊤g + w0 = 0.

Support vector machines 271

✲

✻

✯

✿

gν

g

dν

w⊤g + w0 = 0

✒w

g1

g2

FIGURE 6.14

Distance d to the separating hyperplane.

The perpendicular distance dν of a point g(ν) to the hyperplane is, see Figure
6.14, given by

dν =
1

�w� (w
⊤g(ν) + w0). (6.46)

That is, from the figure,
dν = �g(ν)− g�,

and, since w is perpendicular to the hyperplane,

w⊤(g(ν)− g) = �w��g(ν)− g� = �w�dν .

But the left-hand side of the above equation is just

w⊤(g(ν)− g) = w⊤g(ν) −w⊤g = w⊤g(ν) + w0,

from which Equation (6.46) follows. The distance dν is understood to be
positive for points above the hyperplane and negative for points below. The
quantity

γν = ℓ(ν)dν =
1

�w� ℓ(ν)(w
⊤g(ν) + w0) (6.47)

is called the geometric margin for the observation. Observations lying on the
hyperplane have zero geometric margins, incorrectly classified observations
have negative geometric margins, and correctly classified observations have
positive geometric margins.

272 Supervised Classification Part 1

✻

✲

�
�

��❞
❞❞

❞
�

�
�

w

g1

g2

✮

❂
☛

support vectors�✒

FIGURE 6.15

A maximal margin hyperplane for linearly separable training data and its
support vectors (see text).

The geometric margin of a hyperplane (relative to a given training set), is
defined as the smallest (geometric) margin over the observations in that set,
and the maximal margin hyperplane is the hyperplane which maximizes the
smallest margin, i.e., the hyperplane with parameters w, w0 given by

argmax
w,w0

(
1

�w� min
ν

(
ℓ(ν)(w⊤g(ν) + w0)

)
)

. (6.48)

If the training data are linearly separable, then the resulting smallest mar-
gin will be positive since all observations are correctly classified. A maximal
margin hyperplane is illustrated in Figure 6.15.

6.6.1.1 Primal formulation

The maxmin problem (6.48) can be reformulated as follows (Cristianini and
Shawe-Taylor, 2000; Bishop, 2006). If we transform the parameters according
to

w → κw, w0 → κw0

for some constant κ, then the distance dν will remain unchanged, as is clear
from Equation (6.46). Now let us choose κ such that

ℓ(ν)(w⊤g(ν′) + w0) = 1 (6.49)

for whichever training observation g(ν′) happens to be closest to the hyper-
plane. This implies that the following constraints are met:

ℓ(ν)I(g(ν)) = ℓ(ν)(w⊤g(ν) + w0) ≥ 1, ν = 1 . . .m, (6.50)

272 Supervised Classification Part 1

✻

✲

�
�

��❞
❞❞

❞
�

�
��✒

w

g1

g2

✮

❂
☛

support vectors

FIGURE 6.15

A maximal margin hyperplane for linearly separable training data and its
support vectors (see text).

The geometric margin of a hyperplane (relative to a given training set), is
defined as the smallest (geometric) margin over the observations in that set,
and the maximal margin hyperplane is the hyperplane which maximizes the
smallest margin, i.e., the hyperplane with parameters w, w0 given by

argmax
w,w0

(
1

�w� min
ν

(
ℓ(ν)(w⊤g(ν) + w0)

)
)

. (6.48)

If the training data are linearly separable, then the resulting smallest mar-
gin will be positive since all observations are correctly classified. A maximal
margin hyperplane is illustrated in Figure 6.15.

6.6.1.1 Primal formulation

The maxmin problem (6.48) can be reformulated as follows (Cristianini and
Shawe-Taylor, 2000; Bishop, 2006). If we transform the parameters according
to

w → κw, w0 → κw0

for some constant κ, then the distance dν will remain unchanged, as is clear
from Equation (6.46). Now let us choose κ such that

ℓ(ν)(w⊤g(ν′) + w0) = 1 (6.49)

for whichever training observation g(ν′) happens to be closest to the hyper-
plane. This implies that the following constraints are met:

ℓ(ν)I(g(ν)) = ℓ(ν)(w⊤g(ν) + w0) ≥ 1, ν = 1 . . .m, (6.50)

Support vector machines 273

and the geometric margin of the hyperplane (the smallest geometric margin
over the observations) is, with Equation (6.47), simply �w�−1. For observa-
tions for which equality holds in Equation (6.50), the constraints are called
active, otherwise inactive. Clearly, for any choice of w, w0, there will always
be at least one active constraint. So the problem expressed in Equation (6.48)
is equivalent to maximizing �w�−1 or, expressed more conveniently, to solving

argmin
w

1

2
�w�2 (6.51)

subject to the constraints of Equation (6.50). These constraints define the fea-
sible region for the minimization problem. Taken together, Equations (6.50)
and (6.51) constitute the primal formulation of the original maxmin prob-
lem, Equation (6.48). The bias parameter w0 is determined implicitly by the
constraints, as we will see later.

6.6.1.2 Dual formulation

To solve Equation (6.51), we will apply the Lagrangian formalism for inequal-
ity constraints, a generalization of the method which we have used extensively
up till now and first introduced in Section 1.6. Bishop (2006), Appendix E and
Cristianini and Shawe-Taylor (2000), Chapter 5, provide good discussions. We
introduce a Lagrange multiplier αν for each of the inequality constraints, to
obtain in the Lagrange function

L(w, w0,α) =
1

2
�w�2 −

m∑

ν=1

αν

(
ℓ(ν)(w⊤g(ν) + w0)− 1

)
, (6.52)

where α = (α1 . . . αm)⊤ ≥ 0. Minimization over w and w0 requires that the
respective derivatives be set equal to zero:

∂L

∂w
= w −

∑

ν

ℓ(ν)ανg(ν) = 0, (6.53)

∂L

∂w0
=

∑

ν

ℓ(ν)αν = 0. (6.54)

Therefore, from Equation (6.53),

w =
∑

ν

ℓ(ν)ανg(ν).

Substituting this back into Equation (6.52) and using Equation (6.54) gives

L(w, w0,α) =
1

2

∑

νν′

ℓ(ν)ℓ(ν′)αναν′(g(ν)⊤g(ν′))

−
∑

νν′

ℓ(ν)ℓ(ν′)αναν′(g(ν)⊤g(ν′)) +
∑

ν

αν

=
∑

ν

αν − 1

2

∑

νν′

ℓ(ν)ℓ(ν′)αναν′(g(ν)⊤g(ν′)),

(6.55)

274 Supervised Classification Part 1

in which w and w0 no longer appear. We thus obtain the dual formulation of
the minimization problem, Equations (6.50) and (6.51), namely maximize

L̃(α) =
∑

ν

αν − 1

2

∑

νν′

ℓ(ν)ℓ(ν′)αναν′(g(ν)⊤g(ν′)) (6.56)

with respect to the dual variables α = (α1 . . . αm)⊤ subject to the constraints

α ≥ 0,
∑

ν

ℓ(ν)αν = 0. (6.57)

We must maximize because, according to duality theory, L̃(α) is a lower limit
for L(w, w0,α) and, for our problem,

max
α

L̃(α) = min
w,w0

L(w, w0,α),

see, e.g., Cristianini and Shawe-Taylor (2000), Chapter 5. We shall see how
to do this in the sequel; however, let us for now suppose that we have found
the solution α∗ which maximizes L̃(α). Then

w∗ =
∑

ν

ℓ(ν)α∗
νg(ν)

determines the maximal margin hyperplane and it has geometric margin
�w∗�−1. In order to classify a new observation g, we simply evaluate the
sign of

I∗(g) = w∗⊤g + w∗
0 =

∑

ν

ℓ(ν)α∗
ν(g(ν)

⊤g) + w∗
0 , (6.58)

that is, we ascertain on which side of the hyperplane the observation lies. (We
still need an expression for w∗

0 . This is described below.) Note that both the
training phase, i.e., the solution of the dual problem Equations (6.56) and
(6.57), as well as the generalization phase, Equation (6.58), involve only inner
products of the observations g.

6.6.1.3 Quadratic programming and support vectors

The optimization problem represented by Equations (6.56) and (6.57) is a
quadratic programming problem, the objective function L̃(α) being quadratic
in the dual variables αv. According to the Karush–Kuhn–Tucker (KKT) con-
ditions for quadratic programs,∗ in addition to the constraints of Equations
(6.57), the complementarity condition

αν

(
ℓ(ν)I(g(ν)) − 1

)
= 0, ν = 1 . . .m, (6.59)

∗See again Cristianini and Shawe-Taylor (2000), Chapter 5.

274 Supervised Classification Part 1

in which w and w0 no longer appear. We thus obtain the dual formulation of
the minimization problem, Equations (6.50) and (6.51), namely maximize

L̃(α) =
∑

ν

αν − 1

2

∑

νν′

ℓ(ν)ℓ(ν′)αναν′(g(ν)⊤g(ν′)) (6.56)

with respect to the dual variables α = (α1 . . . αm)⊤ subject to the constraints

α ≥ 0,
∑

ν

ℓ(ν)αν = 0. (6.57)

We must maximize because, according to duality theory, L̃(α) is a lower limit
for L(w, w0,α) and, for our problem,

max
α

L̃(α) = min
w,w0

L(w, w0,α),

see, e.g., Cristianini and Shawe-Taylor (2000), Chapter 5. We shall see how
to do this in the sequel; however, let us for now suppose that we have found
the solution α∗ which maximizes L̃(α). Then

w∗ =
∑

ν

ℓ(ν)α∗
νg(ν)

determines the maximal margin hyperplane and it has geometric margin
�w∗�−1. In order to classify a new observation g, we simply evaluate the
sign of

I∗(g) = w∗⊤g + w∗
0 =

∑

ν

ℓ(ν)α∗
ν(g(ν)

⊤g) + w∗
0 , (6.58)

that is, we ascertain on which side of the hyperplane the observation lies. (We
still need an expression for w∗

0 . This is described below.) Note that both the
training phase, i.e., the solution of the dual problem Equations (6.56) and
(6.57), as well as the generalization phase, Equation (6.58), involve only inner
products of the observations g.

6.6.1.3 Quadratic programming and support vectors

The optimization problem represented by Equations (6.56) and (6.57) is a
quadratic programming problem, the objective function L̃(α) being quadratic
in the dual variables αv. According to the Karush–Kuhn–Tucker (KKT) con-
ditions for quadratic programs,∗ in addition to the constraints of Equations
(6.57), the complementarity condition

αν

(
ℓ(ν)I(g(ν)) − 1

)
= 0, ν = 1 . . .m, (6.59)

∗See again Cristianini and Shawe-Taylor (2000), Chapter 5.

Support vector machines 275

must be satisfied. Taken together, Equations (6.50), (6.57), and (6.59) are nec-
essary and sufficient conditions for a solution α = α∗. The complementarity
condition says that each of the constraints in Equation (6.50) is either active,
that is, ℓ(ν)I(g(ν)) = 1, or it is inactive, ℓ(ν)I(g(ν)) > 1, in which case, from
Equation (6.59), αν = 0.

When classifying a new observation with Equation (6.58), either the train-
ing observation g(ν) satisfies ℓ(ν)I∗(g(ν)) = 1, which is to say it has minimum
margin (Equation (6.49)), or αν = 0 by virtue of the complementarity con-
dition, meaning that it plays no role in the classification. The labeled train-
ing observations with minimum margin are called support vectors (see Figure
6.15). After solution of the quadratic programming problem, they are the only
observations which can contribute to the classification of new data.

Let us call SV the set of support vectors. Then from the complementarity
condition Equation (6.59) we have, for ν ∈ SV ,

ℓ(ν)

(
∑

ν′∈SV

ℓ(ν′)α∗
ν′(g(ν′)⊤g(ν)) + w∗

0

)

= 1. (6.60)

We can therefore write

�w∗�2 = w∗⊤w∗ =
∑

ν,ν′

ℓ(ν)ℓ(ν′)αναν′(g(ν)⊤g(ν′))

=
∑

ν∈SV

α∗
ν

(

ℓ(ν)
∑

ν′∈SV

ℓ(ν′)α∗
ν′(g(ν)⊤g(ν′))

)

,

and, from Equation (6.60),

�w∗�2 =
∑

ν∈SV

α∗
ν(1− ℓ(ν)w∗

0) =
∑

ν∈SV

α∗
ν , (6.61)

where in the second equality we have made use of the second constraint in
Equation (6.57). Thus the geometric margin of the maximal hyperplane is
given in terms of the dual variables by

�w∗�−1 =

(
∑

ν∈SV

α∗
ν

)−1/2

. (6.62)

Equation (6.60) can be used to determine w∗
0 once the quadratic program

has been solved, simply by choosing an arbitrary ν ∈ SV . Bishop (2006)
suggests a numerically more stable procedure: Multiply Equation (6.60) by
ℓ(ν) and make use of the fact that ℓ(ν)2 = 1. Then take the average of the
equations for all support vectors and solve for w∗

0 to get

w∗
0 =

1

|SV |
∑

ν∈SV

(

ℓ(ν)−
∑

ν′∈SV

αν′ℓ(ν′)(g(ν)⊤g(ν′))

)

. (6.63)

276 Supervised Classification Part 1

I(g) = −1 I(g) = 0 I(g) = 1

❡
❡❡

ξν = 0
ξν = 0

ξν < 1

ξν > 1
ξν > 1

❡
❡

✉

✉

✉ ✉

FIGURE 6.16

Slack variables. Observations with values less than 1 are correctly classified.

6.6.2 Overlapping classes

With the SVM formalism introduced so far, one can solve two-class classifica-
tion problems which are linearly separable. Using kernel substitution, which
will be treated shortly, nonlinearly separable problems can also be solved. In
general, though, one is faced with labeled training data that overlap consid-
erably, so that their complete separation would imply gross over fitting.

To overcome this problem, we introduce so-called slack variables ξν associ-
ated with each training vector, such that

ξν =
{ |ℓ(ν)− I(g(ν))| if g(ν) is on the wrong side of the margin boundary
0 otherwise.

The situation is illustrated in Figure 6.16. The constraints of Equation (6.50)
now become

ℓ(ν)I(g(ν)) ≥ 1− ξν , ν = 1 . . .m, (6.64)

and are often referred to as soft margin constraints.
Our objective is again to maximize the margin, but to penalize points with

large values of ξ. We therefore modify the objective function of Equation
(6.51) by introducing a regularization term:

C
m∑

ν=1

ξν +
1

2
�w�2. (6.65)

The parameter C determines the degree of penalization. When minimizing
this objective function, in addition to the above inequality constraints, we
require that

ξν ≥ 0, ν = 1 . . .m.

276 Supervised Classification Part 1

I(g) = −1 I(g) = 0 I(g) = 1

❡
❡❡

ξν = 0
ξν = 0

ξν < 1

ξν > 1
ξν > 1

❡
❡

✉

✉

✉ ✉

FIGURE 6.16

Slack variables. Observations with values less than 1 are correctly classified.

6.6.2 Overlapping classes

With the SVM formalism introduced so far, one can solve two-class classifica-
tion problems which are linearly separable. Using kernel substitution, which
will be treated shortly, nonlinearly separable problems can also be solved. In
general, though, one is faced with labeled training data that overlap consid-
erably, so that their complete separation would imply gross over fitting.

To overcome this problem, we introduce so-called slack variables ξν associ-
ated with each training vector, such that

ξν =
{ |ℓ(ν)− I(g(ν))| if g(ν) is on the wrong side of the margin boundary
0 otherwise.

The situation is illustrated in Figure 6.16. The constraints of Equation (6.50)
now become

ℓ(ν)I(g(ν)) ≥ 1− ξν , ν = 1 . . .m, (6.64)

and are often referred to as soft margin constraints.
Our objective is again to maximize the margin, but to penalize points with

large values of ξ. We therefore modify the objective function of Equation
(6.51) by introducing a regularization term:

C
m∑

ν=1

ξν +
1

2
�w�2. (6.65)

The parameter C determines the degree of penalization. When minimizing
this objective function, in addition to the above inequality constraints, we
require that

ξν ≥ 0, ν = 1 . . .m.

Support vector machines 277

The Lagrange function is now given by

L(w, w0,α) =
1

2
�w�2+C

m∑

ν=1

ξν−
∑

ν

αν(ℓ(ν)(w
⊤g(ν)+w0)−1+ξν)−

m∑

ν=1

µνξν ,

(6.66)
where µν ≥ 0, ν = 1 . . .m, are additional Lagrange multipliers. Setting the
derivatives of the Lagrange function with respect to w, w0 and ξν equal to
zero, we get

w =

m∑

ν=1

ανℓ(ν)g(ν) (6.67)

m∑

ν=1

ανℓ(ν) = 0 (6.68)

αν = C − µν , (6.69)

which leads to the dual form

L̃(α) =
∑

ν

αν − 1

2

∑

νν′

ℓ(ν)ℓ(ν′)αναν′(g(ν)⊤g(ν′)). (6.70)

This is the same as for the separable case, Equation (6.56), except that the
constraints are slightly different. From Equation (6.69), αν ≤ C, so that

0 ≤ αν ≤ C, ν = 1 . . .m. (6.71)

Furthermore, the complementarity conditions now read

αν

(
ℓ(ν)I(g(ν))− 1 + ξν

)
= 0

µνξν = 0, ν = 1 . . .m.
(6.72)

Equations (6.64), (6.68), (6.71), and (6.72) are again necessary and sufficient
conditions for a solution α = α∗.

As before, when classifying new data with Equation (6.58), only the support
vectors, i.e., the training observations for which αν > 0, will play a role. If
αν > 0, there are now two possibilities to be distinguished:

• 0 ≤ αν < C. Then we must have µν > 0 (Equation (6.69)), implying
from the second condition in Equation (6.72) that ξν = 0. The training
vector thus lies exactly on the margin and corresponds to the support
vector for the separable case.

• αν = C. The training vector lies inside the margin and is correctly
classified (ξ ≤ 1) or incorrectly classified (ξ > 1).

We can once again use Equation (6.63) to determine w∗
0 after solving the

quadratic program for w∗, except that the set SV must be restricted to those
observations for which 0 < αν < C, i.e., to the support vectors lying on the
margin.

278 Supervised Classification Part 1

6.6.3 Solution with sequential minimal optimization

To train the classifier, we must maximize Equation (6.70) subject to the
boundary conditions given by Equations (6.68) and (6.71), which define the
feasible region for the problem. We outline here a popular method for doing
this called sequential minimal optimization (SMO); see Cristianini and Shawe-
Taylor (2000). In this algorithm, pairs of Lagrange multipliers (αν , αν′) are
chosen and varied so as to increase the objective function while still satisfying
the constraints. (At least 2 multipliers must be considered in order to guaran-
tee fulfillment of the equality constraint, Equation (6.68)). The SMO method
has the advantage that the maximum can be found analytically at each step,
thus leading to fast computation.

Algorithm (Sequential minimal optimization)

1. Set αold
ν = 0, ν = 1 . . .m (clearly αold is in the feasible region).

2. Choose a pair of Lagrange multipliers, calling them without loss of gen-
erality α1 and α2. Let all of the other multipliers be fixed.

3. Maximize L̃(α) with respect to α1 and α2.

4. If the complementarity conditions are satisfied (within some tolerance)
stop, else go to step 2.

In in step 2, heuristic rules must be used to choose appropriate pairs. Step
3 can be carried out analytically by maximizing the quadratic function

L̃(α1, α2) = α1 + α2 −
1

2

(
g(1)⊤g(1)

)
α2
1 −

1

2

(
g(2)⊤g(2)

)
α2
2 − ℓ1ℓ2α1α2

− ℓ1α1v1 − ℓ2α2v2 +Const,

where

vi =

n∑

ν=3

ℓ(ν)αold
ν

(
g(ν)⊤g(i)

)
, i = 1, 2.

The maximization is carried out in the feasible region for α1, α2. The equality
constraint, Equation (6.68), requires

ℓ1α1 + ℓ2α2 = ℓ1α
old
1 + ℓ2α

old
2 ,

or equivalently
α2 = −ℓ1ℓ2α1 + γ,

where γ = ℓ1ℓ2α
old
1 + αold

2 , so that (α1, α2) lies on a line with slope ±1,
depending on the value of ℓ1ℓ2. The inequality constraint, Equation (6.71),
defines the endpoints of the line segment that need to be considered, namely
(α1 = 0, α2 = max(0, γ)) and (α1 = C,α2 = min(C,−ℓ1ℓ2C + γ)). Regarding
step 4, the complementarity conditions are as follows; see Equations (6.72):

278 Supervised Classification Part 1

6.6.3 Solution with sequential minimal optimization

To train the classifier, we must maximize Equation (6.70) subject to the
boundary conditions given by Equations (6.68) and (6.71), which define the
feasible region for the problem. We outline here a popular method for doing
this called sequential minimal optimization (SMO); see Cristianini and Shawe-
Taylor (2000). In this algorithm, pairs of Lagrange multipliers (αν , αν′) are
chosen and varied so as to increase the objective function while still satisfying
the constraints. (At least 2 multipliers must be considered in order to guaran-
tee fulfillment of the equality constraint, Equation (6.68)). The SMO method
has the advantage that the maximum can be found analytically at each step,
thus leading to fast computation.

Algorithm (Sequential minimal optimization)

1. Set αold
ν = 0, ν = 1 . . .m (clearly αold is in the feasible region).

2. Choose a pair of Lagrange multipliers, calling them without loss of gen-
erality α1 and α2. Let all of the other multipliers be fixed.

3. Maximize L̃(α) with respect to α1 and α2.

4. If the complementarity conditions are satisfied (within some tolerance)
stop, else go to step 2.

In in step 2, heuristic rules must be used to choose appropriate pairs. Step
3 can be carried out analytically by maximizing the quadratic function

L̃(α1, α2) = α1 + α2 −
1

2

(
g(1)⊤g(1)

)
α2
1 −

1

2

(
g(2)⊤g(2)

)
α2
2 − ℓ1ℓ2α1α2

− ℓ1α1v1 − ℓ2α2v2 +Const,

where

vi =

n∑

ν=3

ℓ(ν)αold
ν

(
g(ν)⊤g(i)

)
, i = 1, 2.

The maximization is carried out in the feasible region for α1, α2. The equality
constraint, Equation (6.68), requires

ℓ1α1 + ℓ2α2 = ℓ1α
old
1 + ℓ2α

old
2 ,

or equivalently
α2 = −ℓ1ℓ2α1 + γ,

where γ = ℓ1ℓ2α
old
1 + αold

2 , so that (α1, α2) lies on a line with slope ±1,
depending on the value of ℓ1ℓ2. The inequality constraint, Equation (6.71),
defines the endpoints of the line segment that need to be considered, namely
(α1 = 0, α2 = max(0, γ)) and (α1 = C,α2 = min(C,−ℓ1ℓ2C + γ)). Regarding
step 4, the complementarity conditions are as follows; see Equations (6.72):

Support vector machines 279

For all ν,
if αν = 0, then ℓ(ν)I(g(ν)) − 1 ≥ 0

if αν > 0, then ℓ(ν)I(g(ν)) − 1 = 0

if αν = C, then ℓ(ν)I(g(ν))− 1 ≤ 0.

6.6.4 Multiclass SVMs

A distinct advantage of the SVM for remote sensing image classification over
neural networks is the unambiguity of the solution. Since one maximizes a
quadratic function, the maximum is global and will always be found. There
is no possibility of becoming trapped in a local optimum. However, SVM
classifiers have two disadvantages. They are designed for two-class problems
and their outputs, unlike feed-forward neural networks, do not model posterior
class membership probabilities in a natural way.

A common way to overcome the two-class restriction is to determine all
possible two-class results and then use a voting scheme to decide on the class
label (Wu et al., 2004). That is, for K classes, we train K(K − 1)/2 SVM’s
on each of the possible pairs (i, j) ∈ K ⊗K. For a new observation g and the
SVM for (i, j), let

µij(g) = Pr(ℓ = i | ℓ = i or j, g) =
Pr(ℓ = i | g)

Pr(ℓ = i or j | g) . (6.73)

The last equality follows from the definition of conditional probability, Equa-
tion (2.63), since the joint probability (given g) for i or j and i is just the
probability for i. Now suppose that rij is some rough estimator for µij , per-
haps simply rij = 1 if µij > 0.5 and 0 otherwise. The voting rule is then

k = argmax
i





K�

j �=i

[[rij > rji]]



 , (6.74)

where [[· · ·]] is the indicator function

[[x]] =
�
1 if x is true
0 if x is false.

With regard to the second restriction, a very simple estimate of the posterior
class membership probability is the ratio of the number of votes to the total
number of classifications,

Pr(k | g) ≈ 2

K(K − 1)

K�

j �=i

[[rkj > rjk]]. (6.75)

280 Supervised Classification Part 1

If rij is a more realistic estimate, we can proceed as follows (Price et al.,
1995):

�

j �=i

Pr(ℓ = i or j | g) =
�

j �=i

(Pr(ℓ = i | g) + Pr(ℓ = j | g))

= (K − 1)Pr(ℓ = i | g) +
�

j �=i

Pr(ℓ = j | g)

= (K − 2)Pr(ℓ = i | g) +
�

j

Pr(ℓ = j | g)

= (K − 2)Pr(ℓ = i | g) + 1.

(6.76)

Combining this with Equation (6.73) gives, see Exercise 9,

Pr(ℓ = i | g) = 1
�

j �=i µ
−1
ij − (K − 2)

(6.77)

or, substituting the estimate rij , we estimate the posterior class membership
probabilities as

Pr(k | g) ≈ 1
�

j �=k r
−1
kj − (K − 2)

. (6.78)

Because of the substitution, the probabilities will not sum exactly to one, and
must be normalized.

6.6.5 Kernel substitution

Of course the reason why we have replaced the relatively simple optimization
problem, Equation (6.51), with the more involved dual formulation is due
to the fact that the labeled training observations only enter into the dual
formulation in the form of scalar products g(ν)⊤g(ν′). This allows us once
again to use the elegant method of kernelization introduced in Chapter 4.
Then we can apply support vector machines to situations in which the classes
are not linearly separable.

To give a simple example (Müller et al., 2001), consider the classification
problem illustrated in Figure 6.17. While the classes are clearly separable, they
cannot be separated with a hyperplane. Now introduce the transformation

φ : IR2 �→ IR3,

such that

φ(g) =





g21√
2g1g2
g22



 .

In this new feature space, the observations are transformed as shown in Figure
6.18, and can be separated by a two-dimensional hyperplane. We can thus

280 Supervised Classification Part 1

If rij is a more realistic estimate, we can proceed as follows (Price et al.,
1995):

�

j �=i

Pr(ℓ = i or j | g) =
�

j �=i

(Pr(ℓ = i | g) + Pr(ℓ = j | g))

= (K − 1)Pr(ℓ = i | g) +
�

j �=i

Pr(ℓ = j | g)

= (K − 2)Pr(ℓ = i | g) +
�

j

Pr(ℓ = j | g)

= (K − 2)Pr(ℓ = i | g) + 1.

(6.76)

Combining this with Equation (6.73) gives, see Exercise 9,

Pr(ℓ = i | g) = 1
�

j �=i µ
−1
ij − (K − 2)

(6.77)

or, substituting the estimate rij , we estimate the posterior class membership
probabilities as

Pr(k | g) ≈ 1
�

j �=k r
−1
kj − (K − 2)

. (6.78)

Because of the substitution, the probabilities will not sum exactly to one, and
must be normalized.

6.6.5 Kernel substitution

Of course the reason why we have replaced the relatively simple optimization
problem, Equation (6.51), with the more involved dual formulation is due
to the fact that the labeled training observations only enter into the dual
formulation in the form of scalar products g(ν)⊤g(ν′). This allows us once
again to use the elegant method of kernelization introduced in Chapter 4.
Then we can apply support vector machines to situations in which the classes
are not linearly separable.

To give a simple example (Müller et al., 2001), consider the classification
problem illustrated in Figure 6.17. While the classes are clearly separable, they
cannot be separated with a hyperplane. Now introduce the transformation

φ : IR2 �→ IR3,

such that

φ(g) =





g21√
2g1g2
g22



 .

In this new feature space, the observations are transformed as shown in Figure
6.18, and can be separated by a two-dimensional hyperplane. We can thus

Support vector machines 281

�

�

�

�

�

�

�

�

�

�

�

�

❝

�

�

�
�

�

�

�

�

� �

❝❝
❝❝

❝❝

❝
❝❝

�
�

�❝ ❝
❝

�

�
�

� �

�

�

g1

g2 ✻

✲

FIGURE 6.17

Two classes which are not linearly separable in the two-dimensional space of
observations.

�
�

�
�

� ��
��
�

�
�

❝

�
�

�� ��
�� �

�
❝❝

❝❝
❝❝

❝
❝❝

� �
�

❝ ❝
❝

�
�

� �
�

� �

✻

❂ φ2

✲

φ3

φ1

FIGURE 6.18

The classes of Figure 6.17 become linearly separable in a three-dimensional,
nonlinear feature space.

282 Supervised Classification Part 1

Listing 6.6: A class for a support vector machine (excerpt from the Python
module supervisedclass.py).

1 c lass Svm(object):

2 ’’’Suppot Vector Machine Classifier ’’’

3 def __init__(self , Gs , ls, gamma=0.1, C=10):

4 self._Gs = Gs

5 self._ls = np.argmax(ls , axis =1)

6 self._clf = SVC(gamma=gamma , C=C,

7 kernel=’rbf’, probability =True)

8

9 def train(self):

10 try:

11 self._clf .fit(self ._Gs , self._ls)

12 return True

13 except Exception as e:

14 print(’Error:�%s’ % e)

15 return None

16

17 def classify(self , Gs):

18 classes = self ._clf.predict (Gs) + 1

19 probs = self ._clf. predict_proba (Gs)

20 return (classes , probs)

apply the support vector formalism unchanged, simply replacing g⊤
v gv′ by

φ(g(ν))⊤φ(g(ν′)). In this case, the kernel function is given by

k(g(ν), g(ν′)) = (g21 ,
√
2g1g2, g

2
2)ν





g21√
2g1g2
g22





ν′

= (g(ν)⊤g(ν′))2,

called the quadratic kernel.
A wrapper for the sklearn.svm.SVC class is shown in Listing 6.6. It im-

plements a kernel support vector machine with gamma equal to 0.1 and reg-
ularization parameter C equal to 10. The kernels available in the SLC library
are:

klin(gi, gj) = g⊤
i gj

kpoly(gi, gj) = (γg⊤
i gj + r)d

krbf(gi, gj) = exp(−γ�gi − gj�2)
ksig(gi, gj) = tanh(γg⊤

i gj + r).

The most commonly chosen kernel is the Gaussian kernel (krbf) and this is
the one used in supervisedclass.py, line 7. The parameter γ essentially
determines the training/generalization trade-off, with large values leading to
over fitting (Shawe-Taylor and Cristianini, 2004). Whereas both the maxi-
mum likelihood and Gaussian kernel training procedures have essentially no

282 Supervised Classification Part 1

Listing 6.6: A class for a support vector machine (excerpt from the Python
module supervisedclass.py).

1 c lass Svm(object):

2 ’’’Suppot Vector Machine Classifier ’’’

3 def __init__(self , Gs, ls, gamma=0.1, C=10):

4 self._Gs = Gs

5 self._ls = np.argmax(ls , axis =1)

6 self._clf = SVC(gamma=gamma , C=C,

7 kernel=’rbf’, probability =True)

8

9 def train(self):

10 try:

11 self._clf .fit(self ._Gs , self._ls)

12 return True

13 except Exception as e:

14 print(’Error:�%s’ % e)

15 return None

16

17 def classify(self , Gs):

18 classes = self ._clf.predict (Gs) + 1

19 probs = self ._clf. predict_proba (Gs)

20 return (classes , probs)

apply the support vector formalism unchanged, simply replacing g⊤
v gv′ by

φ(g(ν))⊤φ(g(ν′)). In this case, the kernel function is given by

k(g(ν), g(ν′)) = (g21 ,
√
2g1g2, g

2
2)ν





g21√
2g1g2
g22





ν′

= (g(ν)⊤g(ν′))2,

called the quadratic kernel.
A wrapper for the sklearn.svm.SVC class is shown in Listing 6.6. It im-

plements a kernel support vector machine with gamma equal to 0.1 and reg-
ularization parameter C equal to 10. The kernels available in the SLC library
are:

klin(gi, gj) = g⊤
i gj

kpoly(gi, gj) = (γg⊤
i gj + r)d

krbf(gi, gj) = exp(−γ�gi − gj�2)
ksig(gi, gj) = tanh(γg⊤

i gj + r).

The most commonly chosen kernel is the Gaussian kernel (krbf) and this is
the one used in supervisedclass.py, line 7. The parameter γ essentially
determines the training/generalization trade-off, with large values leading to
over fitting (Shawe-Taylor and Cristianini, 2004). Whereas both the maxi-
mum likelihood and Gaussian kernel training procedures have essentially no

Support vector machines 283

0 200 400 600 800

0

200

400

600

800

AST_20070501_pca_class.tif: linear: [1, 1, 1]: [0, 0, 1000, 1000]

WATER

RAPESEED

SUGARBEET

SUBURBAN

INDUSTRIAL

CONIFEROUS

GRAIN

GRASSLAND

HERBIFEROUS

OPENCAST

FIGURE 6.19

Classification with the kernel support vector machine classifier.

FIGURE 6.20

SVM classification on the GEE API.

284 Supervised Classification Part 1

externally adjustable parameters,∗ this is not the case for support vector ma-
chines. First, one must decide upon a kernel, and then choose associated kernel
parameters as well as the soft margin penalization constant C. (The usual ini-
tial choice for the gamma parameter is the reciprocal of the number of features.)
The classified ASTER image is shown in Figure 6.19. Again, test results are
saved to a file in a format consistent with that used by the other classification
routines described earlier; see Appendix C.

To conclude, we’ll also train a SVM with the GEE API:

train a SVM classifier

import geemap

classifier = ee.Classifier .libsvm(kernelType =’RBF’

,gamma=0.1, cost =10)

trainData = image.sampleRegions (table ,[’CLASS_ID ’]) \

.remap([’0’,’1’,’2’,’3’,’4’,’5’,’6’,’7’,’8’,’9’],

[0,1,2,3,4,5,6,7,8,9], ’CLASS_ID ’)

trained = classifier .\

train(trainData ,’CLASS_ID ’,image.bandNames ())

classify the image and display

classified = image.classify (trained)

map = geemap.Map()

map.centerObject (classified , 12)

map.addLayer (classified .byte (), {’min’: 0.0, ’max’: 10.0,

’palette ’: [’FF0000’,’#00 FF00 ’,’#0000FF’]}, ’SVM’)

map

see Figure 6.20. The keyword cost corresponds to the soft margin parameter
C in Listing 6.6. The parameters C and gamma are the same as for the sklearn
program.†

6.7 Exercises

1. (a) Perform the integration in Equation (6.11) for the one-dimensional
case:

p(g | k) = 1√
2πσk

exp

(

− 1

2σ2
k

(g − µk)
2

)

, k = 1, 2. (6.79)

(Hint: Use the definite integral
∫∞
−∞ exp(ag− bg2)dg =

√
π
b exp(a

2/4b).)
(b) The Jeffries–Matusita distance between two probability densities

∗Basic neural network training with back propagation has three (learn rate, momentum,
and the number of hidden neurons).

†This is merely for illustration: the class colors are arbitrary.

284 Supervised Classification Part 1

externally adjustable parameters,∗ this is not the case for support vector ma-
chines. First, one must decide upon a kernel, and then choose associated kernel
parameters as well as the soft margin penalization constant C. (The usual ini-
tial choice for the gamma parameter is the reciprocal of the number of features.)
The classified ASTER image is shown in Figure 6.19. Again, test results are
saved to a file in a format consistent with that used by the other classification
routines described earlier; see Appendix C.

To conclude, we’ll also train a SVM with the GEE API:

train a SVM classifier

import geemap

classifier = ee.Classifier .libsvm(kernelType =’RBF’

,gamma=0.1,cost =10)

trainData = image.sampleRegions (table ,[’CLASS_ID ’]) \

.remap([’0’,’1’,’2’,’3’,’4’,’5’,’6’,’7’,’8’,’9’],

[0,1,2,3,4,5,6,7,8,9], ’CLASS_ID ’)

trained = classifier .\

train(trainData ,’CLASS_ID ’,image.bandNames ())

classify the image and display

classified = image.classify (trained)

map = geemap.Map()

map.centerObject (classified , 12)

map.addLayer (classified .byte (), {’min’: 0.0, ’max’: 10.0,

’palette ’: [’FF0000’,’#00 FF00 ’,’#0000FF’]}, ’SVM’)

map

see Figure 6.20. The keyword cost corresponds to the soft margin parameter
C in Listing 6.6. The parameters C and gamma are the same as for the sklearn
program.†

6.7 Exercises

1. (a) Perform the integration in Equation (6.11) for the one-dimensional
case:

p(g | k) = 1√
2πσk

exp

(

− 1

2σ2
k

(g − µk)
2

)

, k = 1, 2. (6.79)

(Hint: Use the definite integral
∫∞
−∞ exp(ag− bg2)dg =

√
π
b exp(a

2/4b).)
(b) The Jeffries–Matusita distance between two probability densities

∗Basic neural network training with back propagation has three (learn rate, momentum,
and the number of hidden neurons).

†This is merely for illustration: the class colors are arbitrary.

Exercises 285

p(g | 1) and p(g | 2) is defined as

J =

∫ ∞

−∞

(

p(g | 1)1/2 − p(g | 2)1/2
)2

dg.

Show that this is equivalent to the definition in Equation (6.13).

(c) A measure of the separability of p(g | 1) and p(g | 2) can be written
in terms of the Kullback–Leibler divergence, see Equation (2.117), as
follows (Richards, 2012):

d12 = KL (p(g | 1), p(g | 2)) + KL (p(g | 2), p(g | 1)) .

Explain why this is a satisfactory separability measure.

(d) Show that, for the one-dimensional distributions of Equation (6.79),

d12 =
1

2

(
1

σ2
1

− 1

σ2
2

)

(σ2
1 − σ2

2) +
1

2

(
1

σ2
1

+
1

σ2
2

)

(µ1 − µ2)
2.

2. (Ripley, 1996) Assuming that all K land cover classes have identical
covariance matrices Σk = Σ:

(a) Show that the discriminant in Equation (6.17) can be replaced by
the linear discriminant

dk(g) = log(Pr(k))− µ⊤
k Σ

−1g +
1

2
µ⊤

k Σ
−1µk.

(b) Suppose that there are just two classes k = 1 and k = 2. Show that
the maximum likelihood classifier will choose k = 1 if

h = (µ1 − µ2)
⊤Σ−1

(

g − µ1 + µ2

2

)

> log

(
Pr(2)

Pr(1)

)

.

(c) The quantity d =
√

(µ1 − µ2)
⊤Σ−1(µ1 − µ2) is the Mahalanobis

distance between the class means. Demonstrate that, if g belongs to class
1, then h is the realization of a normally distributed random variable H1

with mean d2/2 and variance d2. What is the corresponding distribution
if g belongs to class 2?

(d) Prove from the above considerations that the probability of misclas-
sification is given by

Pr(1)·Φ
(

−1

2
d+

1

d
log

(
Pr(2)

Pr(1)

))

+Pr(2)·Φ
(

−1

2
d− 1

d
log

(
Pr(2)

Pr(1)

))

,

where Φ is the standard normal distribution function.

(e) What is the minimum possible probability of misclassification?

286 Supervised Classification Part 1

3. (Linear separability) With reference to Figures 6.8 and 6.9:

(a) Show that the vector w is perpendicular to the hyperplane

I(g) = w⊤g + w0 = 0.

(b) Suppose that there are just three training observations or points
gi, i = 1, 2, 3, in a two-dimensional feature space and that these do
not lie on a straight line. Since there are only two possible classes, the
three points can be labeled in 23 = 8 possible ways. Each possibility
is obviously linearly separable. That is to say, one can find an oriented
hyperplane which will correctly classify the three points, i.e., all class 1
points (if any) lie on one side and all class 2 points (if any) lie on the other
side, with the vector w pointing to the class 1 side. The three points are
said to be shattered by the set of hyperplanes. The maximum number of
points that can be shattered is called the Vapnik–Chervonenskis (VC)
dimension of the hyperplane classifier. What is the VC dimension in this
case?

(c) A training set is linearly separable if a hyperplane can be found for
which the smallest margin is positive. The following perceptron algorithm
is guaranteed to find such a hyperplane, that is, to train the neuron of
Figure 6.9 to classify any linearly separable training set of n observations
(Cristianini and Shawe-Taylor, 2000):

i. Set w = 0, b = 0, and R = maxν �g(ν)�.
ii. Set m = 0.

iii. For i = 1 to n do: if γν ≤ 0, then setw = w+ℓ(ν)g(ν), b = b+ℓ(ν)R2

and m = 1.

iv. If m = 1 go to ii, else stop.

The algorithm stops with a separating hyperplane w⊤g + b = 0. Im-
plement this algorithm in Python and test it with linearly separable
training data, see, e.g., Exercise 13 in Chapter 3 and Figure 3.13.

4. (Bishop, 1995) Neural networks can also be used to approximate contin-
uous vector functions h(g) of their inputs g. Suppose that, for a given
observation g(ν), the corresponding training value ℓ(ν) is not known
exactly, but that its components ℓk(ν) are normally and independently
distributed about the (unknown) functions hk(g(ν)), i.e.,

p(ℓk(ν) | g(ν)) =
1√
2πσ

exp

(

− (hk(g(ν))− ℓk(ν))
2

2σ2

)

, k = 1 . . .K.

(6.80)
Show that the appropriate cost function to train the synaptic weights so
as to best approximate h with the network outputs m is the quadratic

286 Supervised Classification Part 1

3. (Linear separability) With reference to Figures 6.8 and 6.9:

(a) Show that the vector w is perpendicular to the hyperplane

I(g) = w⊤g + w0 = 0.

(b) Suppose that there are just three training observations or points
gi, i = 1, 2, 3, in a two-dimensional feature space and that these do
not lie on a straight line. Since there are only two possible classes, the
three points can be labeled in 23 = 8 possible ways. Each possibility
is obviously linearly separable. That is to say, one can find an oriented
hyperplane which will correctly classify the three points, i.e., all class 1
points (if any) lie on one side and all class 2 points (if any) lie on the other
side, with the vector w pointing to the class 1 side. The three points are
said to be shattered by the set of hyperplanes. The maximum number of
points that can be shattered is called the Vapnik–Chervonenskis (VC)
dimension of the hyperplane classifier. What is the VC dimension in this
case?

(c) A training set is linearly separable if a hyperplane can be found for
which the smallest margin is positive. The following perceptron algorithm
is guaranteed to find such a hyperplane, that is, to train the neuron of
Figure 6.9 to classify any linearly separable training set of n observations
(Cristianini and Shawe-Taylor, 2000):

i. Set w = 0, b = 0, and R = maxν �g(ν)�.
ii. Set m = 0.

iii. For i = 1 to n do: if γν ≤ 0, then setw = w+ℓ(ν)g(ν), b = b+ℓ(ν)R2

and m = 1.

iv. If m = 1 go to ii, else stop.

The algorithm stops with a separating hyperplane w⊤g + b = 0. Im-
plement this algorithm in Python and test it with linearly separable
training data, see, e.g., Exercise 13 in Chapter 3 and Figure 3.13.

4. (Bishop, 1995) Neural networks can also be used to approximate contin-
uous vector functions h(g) of their inputs g. Suppose that, for a given
observation g(ν), the corresponding training value ℓ(ν) is not known
exactly, but that its components ℓk(ν) are normally and independently
distributed about the (unknown) functions hk(g(ν)), i.e.,

p(ℓk(ν) | g(ν)) =
1√
2πσ

exp

(

− (hk(g(ν))− ℓk(ν))
2

2σ2

)

, k = 1 . . .K.

(6.80)
Show that the appropriate cost function to train the synaptic weights so
as to best approximate h with the network outputs m is the quadratic

Exercises 287

✍✌
✎☞

✍✌
✎☞
✍✌

✍✌
✎☞
✍✌
✎☞

✍✌
✎☞

✎☞

✲

✲

✲

❫�
✸

✲
③

❫

✸

� ✲

✲

1

g1(ν)

g2(ν)

1

g1(ν)

g2(ν)

✎☞

✍✌
FIGURE 6.21

Principal components analysis with a neural network.

cost function, Equation (6.30). Hint: The probability density for a par-
ticular training pair (g(ν), ℓ(ν)) can be written as (see Equation (2.65))

p(g(ν), ℓ(ν)) = p(ℓ(ν) | g(ν))p(g(ν)).

The likelihood function for n training examples chosen independently
from the same distribution is, accordingly,

n∏

ν=1

p(ℓ(ν) | g(ν))p(g(ν)).

Argue that maximizing this likelihood with respect to the synaptic
weights is equivalent to minimizing the cost function

E = −
n∑

ν=1

log p(ℓ(ν) | g(ν))

and then show that, with Equation (6.80), this reduces to Equation
(6.30).

5. As an example of continuous function approximation, the neural network
of Figure 6.11 can be used to perform principal components analysis on
sequential data. The method applied involves so-called self-supervised
classification, or auto encoding. The idea is illustrated in Figure 6.21
for two-dimensional observations. The training data are presented to
a network with a single hidden neuron. The output is constrained to
be identical to the input (self-supervision). Since the output from the
hidden layer is one-dimensional, the constraint requires that as much
information as possible about the input signal be coded by the hidden
neuron. This is the case if the data are projected along the first principal
axis. As more and more data are presented, the synaptic weight vector

288 Supervised Classification Part 1

(wh
1 , w

h
2) will therefore point more and more in the direction of that axis.

Use the Python class Ffnbp() defined in the supervisedclass.pymod-
ule to implement the network in Figure 6.21 in and test it with simulated
data. (According to the previous exercise, the cross-entropy cost func-
tion used in Ffnbp() is not fully appropriate, but suffices nevertheless.)

6. Demonstrate Equation (6.39).

7. (Network symmetries) The hyperbolic tangent is defined as

tanh(x) =
ex − e−x

ex + e−x
.

(a) Show that the logistic function f(x) = 1/(1+ e−x) can be expressed
in the form

f(x) =
1

2
tanh

(x

2

)

+
1

2
.

(b) Noting that tanh(x) is an odd function, i.e., tanh(x) = − tanh(−x),
argue that, for the feed-forward network of Figure 6.11, there are (at
least) 2L identical local minima in the cost function of Equation (6.33).

8. When using a momentum parameter α to train a feed-forward network,
the synaptic weights are updated according to

w(ν + 1) = w(ν) + ∆(ν) + α∆(ν − 1).

Show that, if ∆(ν) = ∆, independently of ν, then as ν → ∞, the update
rule tends to

w(ν + 1) = w(ν) +
1

α− 1
∆.

9. Show that Equation (6.77) follows from Equations (6.73) and (6.76).

288 Supervised Classification Part 1

(wh
1 , w

h
2) will therefore point more and more in the direction of that axis.

Use the Python class Ffnbp() defined in the supervisedclass.pymod-
ule to implement the network in Figure 6.21 in and test it with simulated
data. (According to the previous exercise, the cross-entropy cost func-
tion used in Ffnbp() is not fully appropriate, but suffices nevertheless.)

6. Demonstrate Equation (6.39).

7. (Network symmetries) The hyperbolic tangent is defined as

tanh(x) =
ex − e−x

ex + e−x
.

(a) Show that the logistic function f(x) = 1/(1+ e−x) can be expressed
in the form

f(x) =
1

2
tanh

(x

2

)

+
1

2
.

(b) Noting that tanh(x) is an odd function, i.e., tanh(x) = − tanh(−x),
argue that, for the feed-forward network of Figure 6.11, there are (at
least) 2L identical local minima in the cost function of Equation (6.33).

8. When using a momentum parameter α to train a feed-forward network,
the synaptic weights are updated according to

w(ν + 1) = w(ν) + ∆(ν) + α∆(ν − 1).

Show that, if ∆(ν) = ∆, independently of ν, then as ν → ∞, the update
rule tends to

w(ν + 1) = w(ν) +
1

α− 1
∆.

9. Show that Equation (6.77) follows from Equations (6.73) and (6.76).

7

Supervised Classification Part 2

Continuing in the present Chapter on the subject of supervised classification,
we will begin with a discussion of post classification processing methods to
improve results on the basis of contextual information, after which we turn our
attention to statistical procedures for evaluating classification accuracy and
for making quantitative comparisons between different classifiers. As examples
of ensembles of classifiers, we then examine the adaptive boosting technique,
applying it in particular to improve the generalization accuracy of neural
networks, and discuss as well the random forest classifier, an ensemble of
binary decision trees. The remainder of the Chapter examines more specialized
forms of supervised image classification, namely as applied to polarimetric
SAR imagery, to data with hyper-spectral resolution, and to intermediate and
high resolution multispectral imagery using convolutional neural networks,
introducing the concepts of transfer learning and semantic segmentation.

7.1 Postprocessing

Intermediate resolution remote sensing satellite platforms used for land cov-
er/land use classification, e.g., LANDSAT, SPOT, RapidEye, Sentinel-2, or
ASTER, have ground sample distances (GSDs), ranging between a few to a
few tens of meters. These are typically smaller than the landscape objects be-
ing classified (agricultural fields, forests, urban areas, etc.). The imagery that
they generate is therefore characterized by a high degree of spatial correlation.
In Chapter 8 we will see examples of how spatial or contextual information
might be incorporated into unsupervised classification. The supervised clas-
sification case is somewhat different, since reference is always being made to
a—generally quite small—subset of labeled training data. Two approaches can
be distinguished for inclusion of contextual information into supervised clas-
sification: moving window (or filtering) methods and segmentation (or region
growing) methods. Both approaches can be applied either during classification
or as a post processing step. We will restrict ourselves here to post classifica-
tion filtering, in particular mentioning briefly the majority filtering function
offered in the standard image processing environments, and then discussing in
some detail a modification of a probabilistic technique described in Richards

DOI: 10.1201/9781003503286-7 289

https://doi.org/10.1201/9781003503286-7

290 Supervised Classification Part 2

(2012). For an overview (and an example of), the use of segmentation for
contextual classification, see Stuckens et al. (2000) and references therein.

7.1.1 Majority filtering

Majority postclassification filtering employs a moving window, with each cen-
tral pixel assigned to the majority class of the pixels within the window.
This clearly will have the effect of reducing the “salt-and-pepper” appearance
typical of the thematic maps generated by pixel-oriented classifiers, and, to
quote Stuckens et al. (2000), “it also results in larger classification units that
might adhere more to the human perception of land cover.” Majority filtering
merely examines the labels of neighborhood pixels. The classifiers we have
discussed in the last chapter generate, in addition to class labels, class mem-
bership probability vectors for each observation. Therefore, neighboring pixels
offer considerably more information than that exploited in majority filtering,
information which can also be included in the relabeling process.

7.1.2 Probabilistic label relaxation

Recalling Figure 4.14, the 4-neighborhood Ni of an image pixel with intensity
vector gi consists of the pixels above, below, to the left, and to the right of
the pixel. The a posteriori class membership probabilities of the central pixel,
as approximated by one of the classifiers of Chapter 6, are given by

Pr(k | gi), k = 1 . . .K, where

K∑

k=1

Pr(k | gi) = 1,

which, for notational convenience, we represent in the following as the K-
component column vector P i having components

Pi(k) = Pr(k | gi), k = 1 . . .K. (7.1)

According to the standard decision rule, Equation (6.6), the maximum com-
ponent of P i determines the class membership of the ith pixel.

In analogy to majority filtering, we might expect that a possible misclassifi-
cation of the pixel can be corrected by examining the membership probabilities
in its neighborhood. If that is so, the neighboring pixels will have in some way
to modify P i such that its maximum component is more likely to correspond
to the true class. We now describe a purely heuristic but nevertheless intu-
itively satisfying procedure to do just that, the so-called probabilistic label
relaxation (PLR) method (Richards, 2012).

Let us postulate a multiplicative neighborhood function Qi(k) for the ith
pixel which corrects Pi(k) in the above sense, that is,

P ′
i (k) = Pi(k)

Qi(k)
∑

j Pi(j)Qi(j)
, k = 1 . . .K. (7.2)

290 Supervised Classification Part 2

(2012). For an overview (and an example of), the use of segmentation for
contextual classification, see Stuckens et al. (2000) and references therein.

7.1.1 Majority filtering

Majority postclassification filtering employs a moving window, with each cen-
tral pixel assigned to the majority class of the pixels within the window.
This clearly will have the effect of reducing the “salt-and-pepper” appearance
typical of the thematic maps generated by pixel-oriented classifiers, and, to
quote Stuckens et al. (2000), “it also results in larger classification units that
might adhere more to the human perception of land cover.” Majority filtering
merely examines the labels of neighborhood pixels. The classifiers we have
discussed in the last chapter generate, in addition to class labels, class mem-
bership probability vectors for each observation. Therefore, neighboring pixels
offer considerably more information than that exploited in majority filtering,
information which can also be included in the relabeling process.

7.1.2 Probabilistic label relaxation

Recalling Figure 4.14, the 4-neighborhood Ni of an image pixel with intensity
vector gi consists of the pixels above, below, to the left, and to the right of
the pixel. The a posteriori class membership probabilities of the central pixel,
as approximated by one of the classifiers of Chapter 6, are given by

Pr(k | gi), k = 1 . . .K, where

K∑

k=1

Pr(k | gi) = 1,

which, for notational convenience, we represent in the following as the K-
component column vector P i having components

Pi(k) = Pr(k | gi), k = 1 . . .K. (7.1)

According to the standard decision rule, Equation (6.6), the maximum com-
ponent of P i determines the class membership of the ith pixel.

In analogy to majority filtering, we might expect that a possible misclassifi-
cation of the pixel can be corrected by examining the membership probabilities
in its neighborhood. If that is so, the neighboring pixels will have in some way
to modify P i such that its maximum component is more likely to correspond
to the true class. We now describe a purely heuristic but nevertheless intu-
itively satisfying procedure to do just that, the so-called probabilistic label
relaxation (PLR) method (Richards, 2012).

Let us postulate a multiplicative neighborhood function Qi(k) for the ith
pixel which corrects Pi(k) in the above sense, that is,

P ′
i (k) = Pi(k)

Qi(k)
∑

j Pi(j)Qi(j)
, k = 1 . . .K. (7.2)

Postprocessing 291

The denominator ensures that the corrected values sum to unity and so still
constitute a probability vector. In an obvious vector notation, we can write

P ′
i = P i ·

Qi

P⊤
i Qi

, (7.3)

where the dot signifies ordinary component-by-component multiplication.
The vector Qi must somehow reflect the contextual information of the

neighborhood. In order to define it, a compatibility measure

Pij(k | m), j ∈ Ni

is introduced, namely, the conditional probability that pixel i has class label
k, given that a neighboring pixel j ∈ Ni belongs to class m. A “small piece of
evidence” (Richards, 2012) that i should be classified to k would then be

Pij(k | m)Pj(m), j ∈ Ni.

This is the conditional probability that pixel i is in class k if neighboring pixel
j is in class m multiplied by the probability that pixel j actually is in class m.
We obtain the component Qi(k) of the neighborhood function by summing
over all pieces of evidence and then averaging over the neighborhood:

Qi(k) =
1

4

∑

j∈Ni

K∑

m=1

Pij(k | m)Pj(m)

=

K∑

m=1

PiNi (k | m)PNi(m).

(7.4)

Here PNi(m) is an average over all four neighborhood pixels:

PNi(m) =
1

4

∑

j∈Ni

Pj(m),

and PiNi (k | m) also corresponds to the average compatibility of pixel i with
its entire neighborhood. We can write Equation (7.4) in matrix notation in
the form

Qi = P iNiPNi

and Equation (7.3) finally as

P ′
i = P i ·

P iNiPNi

P⊤
i P iNiPNi

. (7.5)

For supervised classification, the matrix of average compatibilities P iNi is
not a priori available. However, it may easily be estimated directly from the
initially classified image by assuming that it is independent of pixel location.

292 Supervised Classification Part 2

0 50 100 150 200 250

0

50

100

150

200

250

AST_20070501_pca_class.tif: linear: [1, 1, 1]: [400, 400, 300, 300]

0 50 100 150 200 250

0

50

100

150

200

250

AST_20070501_pca_classprobs_plr.tif: linear: [1, 1, 1]: [400, 400, 300, 300]

FIGURE 7.1

An example of post classification processing. Left: original classification of a
portion of the ASTER image of Figure 6.1 with a neural network. Right: after
three iterations of PLR.

First, a random central pixel i is chosen and its class label ℓi = k determined.
Then, again randomly, a pixel j ∈ Ni is chosen and its class label ℓj = m
is also determined. Thereupon the matrix element PiNi (k | m) (which was
initialized to 0) is incremented by 1. This is repeated many times, and finally
the rows of the matrix are normalized. All of which constitutes the first step
of the following algorithm:

Algorithm (Probabilistic Label Relaxation)

1. Carry out a supervised classification and determine the K × K
compatibility matrix P iNi .

2. For each pixel i, determine the average neighborhood vector PNi

and replace P i with P ′
i as in Equation (7.5). Reclassify pixel i

according to ℓi = argmaxk P
′
i (k).

3. If only a few reclassifications took place, stop; otherwise go to
step 2.

The stopping condition in the algorithm is obviously rather vague. Ex-
perience shows that the best results are obtained after 3 to 4 iterations; see
Richards (2012). Too many iterations lead to a widening of the effective neigh-
borhood of a pixel to such an extent that fully irrelevant spatial information
falsifies the final product.

A Python script for probabilistic label relaxation is documented in Ap-
pendix C. Figure 7.1 shows a neural network classification result before and
after PLR:

292 Supervised Classification Part 2

0 50 100 150 200 250

0

50

100

150

200

250

AST_20070501_pca_class.tif: linear: [1, 1, 1]: [400, 400, 300, 300]

0 50 100 150 200 250

0

50

100

150

200

250

AST_20070501_pca_classprobs_plr.tif: linear: [1, 1, 1]: [400, 400, 300, 300]

FIGURE 7.1

An example of post classification processing. Left: original classification of a
portion of the ASTER image of Figure 6.1 with a neural network. Right: after
three iterations of PLR.

First, a random central pixel i is chosen and its class label ℓi = k determined.
Then, again randomly, a pixel j ∈ Ni is chosen and its class label ℓj = m
is also determined. Thereupon the matrix element PiNi (k | m) (which was
initialized to 0) is incremented by 1. This is repeated many times, and finally
the rows of the matrix are normalized. All of which constitutes the first step
of the following algorithm:

Algorithm (Probabilistic Label Relaxation)

1. Carry out a supervised classification and determine the K × K
compatibility matrix P iNi .

2. For each pixel i, determine the average neighborhood vector PNi

and replace P i with P ′
i as in Equation (7.5). Reclassify pixel i

according to ℓi = argmaxk P
′
i (k).

3. If only a few reclassifications took place, stop; otherwise go to
step 2.

The stopping condition in the algorithm is obviously rather vague. Ex-
perience shows that the best results are obtained after 3 to 4 iterations; see
Richards (2012). Too many iterations lead to a widening of the effective neigh-
borhood of a pixel to such an extent that fully irrelevant spatial information
falsifies the final product.

A Python script for probabilistic label relaxation is documented in Ap-
pendix C. Figure 7.1 shows a neural network classification result before and
after PLR:

Evaluation and comparison of classification accuracy 293

run scripts/plr imagery/AST_20070501_pca_classprobs.tif

=====================

PLR

=====================

infile: imagery /AST_20070501_pca_classprobs.tif

iterations : 3

estimating compatibility matrix ...

label relaxation ...

iteration 1

iteration 2

iteration 3

result written to:

imagery/ AST_20070501_pca_classprobs_plr.tif

elapsed time : 99.3968970776

--done ------------------------

The spatial coherence of the classes is improved. The PLR method can also be
applied to any unsupervised classification algorithm that generates posterior
class membership probabilities. An example is the Gaussian mixture clustering
algorithm that will be met in Chapter 8.

7.2 Evaluation and comparison of classification accuracy

Assuming that sufficient labeled data are available for some to be set aside
for test purposes, test data can be used to make an unbiased estimate of the
misclassification rate of a trained classifier, i.e., the fraction of new data that
will be incorrectly classified. This quantity provides a reasonable yardstick
not only for evaluating the overall accuracy of supervised classifiers, but also
for comparison of alternatives, for example, to compare the performance of a
neural network with a maximum-likelihood classifier on the same set of data.

7.2.1 Accuracy assessment

The classification of a single test datum is a random experiment, the possible
outcomes of which constitute the sample space {Ā, A}, where Ā = misclas-
sified, A = correctly classified. Let us define a real-valued function X on this
set, i.e., a random variable

X(Ā) = 1, X(A) = 0, (7.6)

with mass function

Pr(X = 1) = θ, Pr(X = 0) = 1− θ.

294 Supervised Classification Part 2

600 650 700 750 800 850 900 950 1000

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

FIGURE 7.2

The binomial distribution for n = 2000 and θ = 0.4 closely approximates a
normal distribution.

The mean value of X is then

�X� = 1θ + 0(1− θ) = θ (7.7)

and its variance is (see Equation (2.13))

var(X) = �X2� − �X�2 = 12θ + 02(1− θ)− θ2 = θ(1 − θ). (7.8)

For the classification of n test data, which are represented by the i.i.d. sample
X1 . . . Xn, the random variable

Y = X1 +X2 + . . . Xn

corresponds to the total number of misclassifications. The random variable
describing the misclassification rate is therefore Y/n having mean value

� 1
n
Y � = 1

n
(�X1�+ . . .+ �Xn�) =

1

n
· nθ = θ. (7.9)

From the independence of the Xi, i = 1 . . . n, the variance of Y is given by

var(Y) = var(X1) + . . .+ var(Xn) = nθ(1− θ), (7.10)

so the variance of the misclassification rate is

σ2 = var

(
Y

n

)

=
1

n2
var(Y) =

θ(1− θ)

n
. (7.11)

294 Supervised Classification Part 2

600 650 700 750 800 850 900 950 1000

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

FIGURE 7.2

The binomial distribution for n = 2000 and θ = 0.4 closely approximates a
normal distribution.

The mean value of X is then

�X� = 1θ + 0(1− θ) = θ (7.7)

and its variance is (see Equation (2.13))

var(X) = �X2� − �X�2 = 12θ + 02(1− θ)− θ2 = θ(1 − θ). (7.8)

For the classification of n test data, which are represented by the i.i.d. sample
X1 . . . Xn, the random variable

Y = X1 +X2 + . . . Xn

corresponds to the total number of misclassifications. The random variable
describing the misclassification rate is therefore Y/n having mean value

� 1
n
Y � = 1

n
(�X1�+ . . .+ �Xn�) =

1

n
· nθ = θ. (7.9)

From the independence of the Xi, i = 1 . . . n, the variance of Y is given by

var(Y) = var(X1) + . . .+ var(Xn) = nθ(1− θ), (7.10)

so the variance of the misclassification rate is

σ2 = var

(
Y

n

)

=
1

n2
var(Y) =

θ(1− θ)

n
. (7.11)

Evaluation and comparison of classification accuracy 295

For y observed misclassifications, we estimate θ as θ̂ = y/n. Then the
estimated variance is given by

σ̂2 =
θ̂(1− θ̂)

n
=

y
n

�
1− y

n

�

n
=

y(n− y)

n3
,

and the estimated standard deviation by

σ̂ =

�

y(n− y)

n3
. (7.12)

As was pointed out in Section 2.1.1, Y is (n, θ)-binomially distributed. How-
ever, for a sufficiently large number n of test data, the binomial distribution
is well approximated by the normal distribution. This is illustrated by the
following Python code snippet, which generates the mass function for the
binomial distribution, Equation (2.3) for n = 2000. The result is shown in
Figure 7.2.

import numpy as np

from scipy.stats import binom

import matplotlib .pyplot as plt

theta = 0.4

n = 2000

x = np.arange(600, 1000)

pmf = probability mass function

plt.plot(x, binom.pmf(x, n, theta))

Mean and standard deviation are thus generally sufficient to characterize
the distribution of misclassification rates completely. To obtain an interval
estimation for θ, recalling the discussion in Section 2.2.2, we make use of
the fact that the random variable (Y/n− θ)/σ is approximately standard
normally distributed. Then

Pr

�

−s <
Y/n− θ

σ
≤ s

�

= 2Φ(s)− 1, (7.13)

so that the random interval (Y/n−sσ, Y/n+sσ) covers the unknown misclas-
sification rate θ with probability 2Φ(s)−1. However, note that from Equation
(7.11), σ is itself a function of θ. It is easy to show (Exercise 1) that, for
1− α = 0.95 = 2Φ(s)− 1 (which gives s = 1.96 from the normal distribution
table), a 95% confidence interval for θ is




y + 1.92− 1.96 ·

�

0.96 + y(n−y)
n

3.84 + n
,
y + 1.92 + 1.96 ·

�

0.96 + y(n−y)
n

3.84 + n



 .

(7.14)
This interval should be routinely stated for any supervised classification of
land use/land cover.

296 Supervised Classification Part 2

Detailed test results for supervised classification are usually presented in
the form of a contingency table, or confusion matrix, which for K classes is
defined as

C =







c11 c12 · · · c1K
c21 c22 · · · c2K
...

...
. . .

...
cK1 cK2 · · · cKK







. (7.15)

The matrix element cij is the number of test pixels with class label j which
are classified as i. Note that the estimated misclassification rate is

θ̂ =
y

n
=

n−�K
i=1 cii
n

=
n− tr(C)

n

and only takes into account the diagonal elements of the confusion matrix.
The so-calledKappa-coefficient, on the other hand, makes use of all the matrix
elements. It corrects the classification rate for the possibility of chance correct
classifications and is defined as follows (Cohen, 1960):

κ =
Pr(correct classification)− Pr(chance classification)

1− Pr(chance classification)
.

An expression for κ can be obtained in terms of the row and column sums in
the matrix C, which we write as

ci� =

K�

j=1

cij and c
�i =

K�

j=1

cji,

respectively. For n randomly labeled test pixels, the proportion of entries in
the ith row is ci�/n and in the ith column c

�i/n. The probability of a chance
correct classification (chance coincidence of row and column index) is therefore
approximately given by the sum over i of the product of these two proportions:

K�

i=1

ci� c�i
n2

.

Hence, an estimate for the Kappa coefficient is

κ̂ =

�

i cii/n−�

i ci�c�i/n
2

1−�

i ci�c�i/n
2

. (7.16)

Again, the Kappa coefficient alone tells us little about the quality of the
classifier. We require its uncertainty. This can be calculated in the large sample
limit n → ∞ to be (Bishop et al., 1975)

σ̂2
κ =

1

n

�

θ1(1 − θ1)

(1− θ2)2
+

2(1− θ1)(2θ1θ2 − θ3)

(1− θ2)3
+

(1 − θ1)
2(θ4 − 4θ22)

(1 − θ2)4

�

, (7.17)

296 Supervised Classification Part 2

Detailed test results for supervised classification are usually presented in
the form of a contingency table, or confusion matrix, which for K classes is
defined as

C =







c11 c12 · · · c1K
c21 c22 · · · c2K
...

...
. . .

...
cK1 cK2 · · · cKK







. (7.15)

The matrix element cij is the number of test pixels with class label j which
are classified as i. Note that the estimated misclassification rate is

θ̂ =
y

n
=

n−�K
i=1 cii
n

=
n− tr(C)

n

and only takes into account the diagonal elements of the confusion matrix.
The so-calledKappa-coefficient, on the other hand, makes use of all the matrix
elements. It corrects the classification rate for the possibility of chance correct
classifications and is defined as follows (Cohen, 1960):

κ =
Pr(correct classification)− Pr(chance classification)

1− Pr(chance classification)
.

An expression for κ can be obtained in terms of the row and column sums in
the matrix C, which we write as

ci� =

K�

j=1

cij and c
�i =

K�

j=1

cji,

respectively. For n randomly labeled test pixels, the proportion of entries in
the ith row is ci�/n and in the ith column c

�i/n. The probability of a chance
correct classification (chance coincidence of row and column index) is therefore
approximately given by the sum over i of the product of these two proportions:

K�

i=1

ci� c�i
n2

.

Hence, an estimate for the Kappa coefficient is

κ̂ =

�

i cii/n−�

i ci�c�i/n
2

1−�

i ci�c�i/n
2

. (7.16)

Again, the Kappa coefficient alone tells us little about the quality of the
classifier. We require its uncertainty. This can be calculated in the large sample
limit n → ∞ to be (Bishop et al., 1975)

σ̂2
κ =

1

n

�

θ1(1 − θ1)

(1− θ2)2
+

2(1− θ1)(2θ1θ2 − θ3)

(1− θ2)3
+

(1 − θ1)
2(θ4 − 4θ22)

(1 − θ2)4

�

, (7.17)

Evaluation and comparison of classification accuracy 297

where

θ1 =
1

n

K∑

i=1

cii, θ2 =
1

n2

K∑

i=1

ci�c�i, θ3 =
1

n2

K∑

i=1

cii(ci� + c
�i),

θ4 =
1

n3

K∑

i,j=1

cij(cj� + c
�i)

2.

The Python script ct.py (Appendix C) prints out misclassification rate

θ̂, standard deviation σ̂, the confidence interval of Equation (7.14), Kappa
coefficient κ̂, standard deviation σ̂κ and a contingency table C from the test
result files generated by any of the classifiers described in Chapter 6. Here is
a sample output for one of the FFN classifiers:

1 run scripts /ct imagery/AST_20070501_pca_NNet (Congrad).tst

2

3 =========================

4 classification statistics

5 =========================

6 NNet(Congrad)test results for imagery/AST_20070501_pca .tif

7 Tue Apr 16 17:57:57 2024

8 Classification image: imagery/AST_20070501_pca_class.tif

9 Class probabilities image:

10 imagery/AST_20070501_pca_classprobs.tif

11

12 Misclassification rate: 0.088832

13 Standard deviation : 0.005851

14 Conf. interval (95 percent): [0.078021 , 0.100978]

15 Kappa coefficient : 0.899539

16 Standard deviation : 0.006611

17 Contingency Table

18 [[155. 0. 0. ... 155. 1.]

19 [0. 167. 0. ... 167. 1.]

20 [0. 0. 244. ... 244. 1.]

21 [0. 0. 0. ... 313. 0.92]

22 [0. 1. 0. ... 224. 0.96]

23 [0. 0. 0. ... 125. 1.]

24 [0. 0. 0. ... 431. 0.935]

25 [0. 0. 0. ... 174. 0.833]

26 [0. 0. 0. ... 360. 0.972]

27 [0. 0. 0. ... 171. 0.994]

28 [155. 168. 244. ... 2364. 0.]

29 [1. 0.994 1. ... 0. 0.]]

The matrixC, Equation (7.15), is in the upper left 10×10 block in the table.
Row 11 (line 28 in the above listing) gives the column sums c

�i and column
11 (second last) gives the row sums ci�. Row 12 (line 29) contains the ratios
cii/c�i, i = 1 . . . 10, which are referred to as the producer accuracies. Column 12

298 Supervised Classification Part 2

contains the user accuracies cii/ci�, i = 1 . . . 10. The producer accuracy is the
probability that an observation with label i will be classified as such. The user
accuracy is the probability that the true class of an observation is i given that
the classifier has labeled it as i. The rate of correct classification, which is more
commonly quoted in the literature, is of course one minus the misclassification
rate. A detailed discussion of confusion matrices for assessment of classification
accuracy is provided in Congalton and Green (1999).

7.2.2 Accuracy assessment on the GEE

Not surprisingly, the Google Earth Engine API includes similar functions for
assessing the generalization capability of trained classifiers. To illustrate, we
return to the support vector machine from Chapter 6. We’ll again choose the
ASTER PCA image of Figure 6.1 and the associated training regions, both
of which which were previously uploaded to the GEE code editor:

import ee

ee.Initialize ()

first 4 principal components of ASTER image

image = ee.Image(’projects /�.../ CRC5 /T_20070501_pca ’) \

.select(0,1,2,3)

The following code samples the image for the training observations and splits
them into train and test subsets in the ratio two to one:

sample the image with the polygons to a feature

collection , rename the class id columns from strings

to integers , add a column of random numbers in [0,1]

trainTestData = image.sampleRegions (collection =table ,

properties =[’CLASS_ID ’],

scale=15) \

.remap(l i s t (map(str ,range(10))) , l i s t (range(10)),

’CLASS_ID ’) \

.randomColumn (’rand ’,seed =12345)

filter on the random column to split into training and

test feature collections in the ration of 2:1

trainData = trainTestData . f i l t e r (ee.Filter.lt(’rand ’ ,0.67))

testData= trainTestData . f i l t e r (ee.Filter.gte(’rand ’ ,0.67))

print(’train�pixels:�%i’%trainData .size (). getInfo ())

print(’test �pixels:��%i’%testData.size (). getInfo ())

train pixels: 4801

test pixels: 2372

Then the train and test steps are carried out with the SVM classifier:

train a (default) SVM classifier on training data

classifier = ee.Classifier .libsvm ()

trained = classifier .train(trainData ,’CLASS_ID ’,

image.bandNames ())

298 Supervised Classification Part 2

contains the user accuracies cii/ci�, i = 1 . . . 10. The producer accuracy is the
probability that an observation with label i will be classified as such. The user
accuracy is the probability that the true class of an observation is i given that
the classifier has labeled it as i. The rate of correct classification, which is more
commonly quoted in the literature, is of course one minus the misclassification
rate. A detailed discussion of confusion matrices for assessment of classification
accuracy is provided in Congalton and Green (1999).

7.2.2 Accuracy assessment on the GEE

Not surprisingly, the Google Earth Engine API includes similar functions for
assessing the generalization capability of trained classifiers. To illustrate, we
return to the support vector machine from Chapter 6. We’ll again choose the
ASTER PCA image of Figure 6.1 and the associated training regions, both
of which which were previously uploaded to the GEE code editor:

import ee

ee.Initialize ()

first 4 principal components of ASTER image

image = ee.Image(’projects /�.../ CRC5 /T_20070501_pca ’) \

.select(0,1,2,3)

The following code samples the image for the training observations and splits
them into train and test subsets in the ratio two to one:

sample the image with the polygons to a feature

collection , rename the class id columns from strings

to integers , add a column of random numbers in [0,1]

trainTestData = image.sampleRegions (collection =table ,

properties =[’CLASS_ID ’],

scale=15) \

.remap(l i s t (map(str ,range(10))) , l i s t (range(10)),

’CLASS_ID ’) \

.randomColumn (’rand ’,seed =12345)

filter on the random column to split into training and

test feature collections in the ration of 2:1

trainData = trainTestData . f i l t e r (ee.Filter.lt(’rand ’ ,0.67))

testData= trainTestData . f i l t e r (ee.Filter.gte(’rand ’ ,0.67))

print(’train�pixels:�%i’%trainData .size (). getInfo ())

print(’test �pixels:��%i’%testData.size (). getInfo ())

train pixels: 4801

test pixels: 2372

Then the train and test steps are carried out with the SVM classifier:

train a (default) SVM classifier on training data

classifier = ee.Classifier .libsvm ()

trained = classifier .train(trainData ,’CLASS_ID ’,

image.bandNames ())

Evaluation and comparison of classification accuracy 299

test the trained classifier with the test data

tested = testData .classify (trained , ’classification ’)

Finally, we generate a Confusion Matrix() instance and use it to evaluate
classification accuracy and kappa value:

generate a confusion matrix with the

classified test data

cm = tested.errorMatrix (’CLASS_ID ’,’classification ’)

and from it determine the accuracy and kappa

print(’accuracy :�%f’%cm. accuracy (). getInfo ())

print(’kappa:����%f’%cm.kappa(). getInfo ())

accuracy: 0.946880

kappa: 0.939896

7.2.3 Cross-validation on parallel architectures

Representative ground reference data at or sufficiently near the time of image
acquisition are generally difficult and/or expensive to come by; see Section
6.2. In this regard, the simple 2:1 train:test split used above is rather wasteful
of the available labeled training pixels. Moreover, the variability due to the
training data is not taken properly into account, since the data are sampled
just once from their underlying distributions. In the case of neural networks,
we have also so far ignored the variability of the training procedure itself
with respect to the random initialization of the synaptic weights. Different
initializations may lead to different local minima in the cost function and cor-
respondingly different misclassification rates. Only if these aspects are consid-
ered to be negligible should the simple procedures discussed above be applied.
Including them properly may constitute a very computationally intensive task
(Ripley, 1996).

An alternative approach, one which at least makes more efficient use of
the training data, is to apply n-fold cross-validation: A small fraction (one
nth of the labeled pixels) is held back for testing, and the remaining data
are used to train the classifier. This is repeated n times for n complementary
test data subsets and then the results, e.g., misclassification rates, are aver-
aged. In this way a larger fraction of the labeled data, namely (n − 1)/n, is
used for training. Moreover, all of the data are used for both training/test-
ing and each observation is used for testing exactly once. For neural network
classifiers, the effect of synaptic weight initialization is also reflected in the
variance of the test results. The drawback here, of course, is the necessity
to repeat the train/test procedure n times rather than carrying it through
only once. This is a problem especially for classifiers like neural networks or
support vector machines with computationally expensive training algorithms.
The cross-validation steps can, however, be performed in parallel given appro-
priate computer resources. Fortunately these are now generally available, not

300 Supervised Classification Part 2

only in the form of multicore processors, GPU hardware, etc., but also cloud
computing services.

We shall illustrate n-fold cross-validation using the IPython ipyparallel

package to run parallel IPython engines on the available cores of the host CPU
(http://ipyparallel.readthedocs, which implements parallel processing,
is shown in Listing 7.1. Before running this script within a Jupyter notebook
the IPython parallel engines can be started by entering the command

ipcluster start -n <i> --daemonize

Here <i> is the number of engines desired, normally the number of available
CPU cores/threads and typically 2, 4, or 8, and the option daemonize pushes
them to the background so that you can proceed to the next cell. Lines 4
through 8 in the script construct a list called traintest consisting of ten in-
put tuples which will be passed to the function crossvalidate() (defined in
lines 22–42). Each tuple corresponds to a different train/test split of the avail-
able training pairs (Gs, ls) in the ratio of nine to one. In line 11 a client is
created that acts as a proxy to the IPython engines. Then a so-called view v =

c[:] into the array of available engines is defined, encompassing, in this case,
all of the engines. Next, in line 14, the view’s map sync() method is invoked
to distribute the train/test tuples to parallel versions of crossvalidate()
running on the available engines. Each version returns the misclassification
rate determined with the chosen classifier’s test() method (line 40). These
are collected into a list and returned to the variable result when all pro-
cesses have completed. Finally, in lines 19 and 20, the mean and standard
deviation are calculated from the 10 train/test combinations and printed. For
example, with an four-core, eight thread CPU (no GPU) and eight IPython
engines training a deep neural network with two hidden layers over 1000
epochs:

run scripts /crossvalidate -p [1,2,3,4,5] -a 6 -L [10 ,10]

-e 1000 imagery /AST_20070501_pca .tif imagery/train.shp

10-fold cross validation , algorithm : Dnn(Tensorflow)

reading training data ...

7162 training pixel vectors were read in

attempting parallel calculation ...

available engines [0, 1, 2, 3, 4, 5, 6, 7]

execution time: 877.8633694648743

misclassification rate: 0.044403

standard deviation : 0.005660

Whereas running the same test without a cluster increases the computation
time on the same hardware by about a factor of three:

10-fold cross validation , algorithm : Dnn(Tensorflow)

reading training data ...

7162 training pixel vectors were read in

attempting parallel calculation ...

failed , running sequentially ...

http://ipyparallel.readthedocs

300 Supervised Classification Part 2

only in the form of multicore processors, GPU hardware, etc., but also cloud
computing services.

We shall illustrate n-fold cross-validation using the IPython ipyparallel

package to run parallel IPython engines on the available cores of the host CPU
(http://ipyparallel.readthedocs, which implements parallel processing,
is shown in Listing 7.1. Before running this script within a Jupyter notebook
the IPython parallel engines can be started by entering the command

ipcluster start -n <i> --daemonize

Here <i> is the number of engines desired, normally the number of available
CPU cores/threads and typically 2, 4, or 8, and the option daemonize pushes
them to the background so that you can proceed to the next cell. Lines 4
through 8 in the script construct a list called traintest consisting of ten in-
put tuples which will be passed to the function crossvalidate() (defined in
lines 22–42). Each tuple corresponds to a different train/test split of the avail-
able training pairs (Gs, ls) in the ratio of nine to one. In line 11 a client is
created that acts as a proxy to the IPython engines. Then a so-called view v =

c[:] into the array of available engines is defined, encompassing, in this case,
all of the engines. Next, in line 14, the view’s map sync() method is invoked
to distribute the train/test tuples to parallel versions of crossvalidate()
running on the available engines. Each version returns the misclassification
rate determined with the chosen classifier’s test() method (line 40). These
are collected into a list and returned to the variable result when all pro-
cesses have completed. Finally, in lines 19 and 20, the mean and standard
deviation are calculated from the 10 train/test combinations and printed. For
example, with an four-core, eight thread CPU (no GPU) and eight IPython
engines training a deep neural network with two hidden layers over 1000
epochs:

run scripts /crossvalidate -p [1,2,3,4,5] -a 6 -L [10 ,10]

-e 1000 imagery /AST_20070501_pca .tif imagery/train.shp

10-fold cross validation , algorithm : Dnn(Tensorflow)

reading training data ...

7162 training pixel vectors were read in

attempting parallel calculation ...

available engines [0, 1, 2, 3, 4, 5, 6, 7]

execution time: 877.8633694648743

misclassification rate: 0.044403

standard deviation : 0.005660

Whereas running the same test without a cluster increases the computation
time on the same hardware by about a factor of three:

10-fold cross validation , algorithm : Dnn(Tensorflow)

reading training data ...

7162 training pixel vectors were read in

attempting parallel calculation ...

failed , running sequentially ...

Evaluation and comparison of classification accuracy 301

Listing 7.1: Cross-validation with IPython engines (excerpt from the script
crossvalidate.py).

1 # cross -validation

2 start = time.time ()

3 traintest = []

4 for i in range(10):

5 sl = s l i c e (i*m//10 ,(i+1)*m//10)

6 traintest .append(

7 (np.delete(Gs ,sl ,0),np.delete(ls,sl ,0), \

8 Gs[sl ,:], ls[sl ,:],L,epochs ,trainalg))

9 try:

10 print(’attempting �parallel�calculation �...’)

11 c = Client()

12 print(’available �engines�%s’% str (c.ids))

13 v = c[:]

14 result = v.map_sync (crossvalidate ,traintest)

15 except Exception as e:

16 print(’%s�\nfailed ,�running�sequentially �...’%e)

17 result = l i s t (map(crossvalidate ,traintest))

18 print(’execution �time :�%s’ % str (time .time ()-start))

19 print(’misclassification �rate:�%f’ %np.mean(result))

20 print(’standard�deviation :�����%f’ %np.std(result))

21

22 def crossvalidate (s l i c e):

23 Gstrn ,lstrn ,Gstst ,lstst ,L,epochs ,trainalg = s l i c e

24 import auxil.supervisedclass as sc

25 i f trainalg == 1:

26 classifier = sc.Maxlike (Gstrn ,lstrn)

27 e l i f trainalg == 2:

28 classifier = sc.Gausskernel (Gstrn ,lstrn)

29 e l i f trainalg == 3:

30 classifier = sc.Ffnbp(Gstrn ,lstrn ,L,epochs)

31 e l i f trainalg == 4:

32 classifier = sc.Ffncg(Gstrn ,lstrn ,L,epochs)

33 e l i f trainalg == 5:

34 classifier = sc.Ffnekf(Gstrn ,lstrn ,L,epochs)

35 e l i f trainalg == 6:

36 classifier = sc.Dnn_keras (Gstrn ,lstrn ,L,epochs)

37 e l i f trainalg == 7:

38 classifier = sc.Svm(Gstrn ,lstrn)

39 i f classifier .train() i s not None :

40 return classifier .test (Gstst ,lstst)

41 e l se:

42 return None

302 Supervised Classification Part 2

execution time: 2511.2689793109894

misclassification rate: 0.045377

standard deviation : 0.007194

7.2.4 Model comparison

A good value for a misclassification rate is θ ≈ 0.05. In order to claim that two
rates produced by two different classifiers differ from one another significantly,
a rule of thumb is that they should lie at least two standard deviations apart.
A commonly used heuristic (van Niel et al., 2005) is to choose a minimum
of n ≈ 30 · N · K training samples in all, where, as always, N is the data
dimensionality and K is the number of classes. For the ASTER PCA image
classification examples using N = 4 principal components and K = 10 classes,
this gives n ≈ 30 · 4 · 10 = 1200. If one third are to be reserved for testing,
the number should be increased to 1200 · 3/2 = 1800. But suppose we wish to
claim, for instance, that misclassification rates 0.05 and 0.06 are significantly
different. Then, according to our thumb rule, their standard deviations should
be no greater than 0.005. From Equation (7.11), this means 0.05(1−0.05)/n ≈
0.0052, or n ≈ 2000 observations are needed for testing alone. Since we are
dealing with pixel data, this number of test observations (assuming sufficient
training areas are available) is still realistic.

In order to decide whether classifier A is better than classifier B in a more
precise manner, a hypothesis test must be formulated. The individual mis-
classifications YA and YB are, as we have seen, approximately normally dis-
tributed. If they were also independent, then the test statistic

S =
YA − YB

√

var(YA) + var(YB)

would be standard normally distributed under the null hypothesis θA = θB.
In fact, the independence of the misclassification rates is not given, since they
are determined with the same set of test data.

There exist computationally expensive alternatives. The buzzwords here
are cross-validation, as discussed in the preceding section, and bootstrapping;
see Weiss and Kulikowski (1991), Chapter 2, for an excellent introduction. As
an example, suppose that a series of p trials is carried out. In the ith trial,
the training data are split randomly into training and test sets in the ratio
2:1 as before. Both classifiers are then trained and tested on these sets to
give misclassifications represented by the random variables Y i

A and Y i
B. If the

differences Yi = Y i
A−Y i

B, i = 1 . . . p, are independent and normally distributed,
then a Student-t statistic can be constructed to test the null hypothesis that
the mean numbers of misclassifications are equal:

T =
Ȳ

√

S/p
,

302 Supervised Classification Part 2

execution time: 2511.2689793109894

misclassification rate: 0.045377

standard deviation : 0.007194

7.2.4 Model comparison

A good value for a misclassification rate is θ ≈ 0.05. In order to claim that two
rates produced by two different classifiers differ from one another significantly,
a rule of thumb is that they should lie at least two standard deviations apart.
A commonly used heuristic (van Niel et al., 2005) is to choose a minimum
of n ≈ 30 · N · K training samples in all, where, as always, N is the data
dimensionality and K is the number of classes. For the ASTER PCA image
classification examples using N = 4 principal components and K = 10 classes,
this gives n ≈ 30 · 4 · 10 = 1200. If one third are to be reserved for testing,
the number should be increased to 1200 · 3/2 = 1800. But suppose we wish to
claim, for instance, that misclassification rates 0.05 and 0.06 are significantly
different. Then, according to our thumb rule, their standard deviations should
be no greater than 0.005. From Equation (7.11), this means 0.05(1−0.05)/n ≈
0.0052, or n ≈ 2000 observations are needed for testing alone. Since we are
dealing with pixel data, this number of test observations (assuming sufficient
training areas are available) is still realistic.

In order to decide whether classifier A is better than classifier B in a more
precise manner, a hypothesis test must be formulated. The individual mis-
classifications YA and YB are, as we have seen, approximately normally dis-
tributed. If they were also independent, then the test statistic

S =
YA − YB

√

var(YA) + var(YB)

would be standard normally distributed under the null hypothesis θA = θB.
In fact, the independence of the misclassification rates is not given, since they
are determined with the same set of test data.

There exist computationally expensive alternatives. The buzzwords here
are cross-validation, as discussed in the preceding section, and bootstrapping;
see Weiss and Kulikowski (1991), Chapter 2, for an excellent introduction. As
an example, suppose that a series of p trials is carried out. In the ith trial,
the training data are split randomly into training and test sets in the ratio
2:1 as before. Both classifiers are then trained and tested on these sets to
give misclassifications represented by the random variables Y i

A and Y i
B. If the

differences Yi = Y i
A−Y i

B, i = 1 . . . p, are independent and normally distributed,
then a Student-t statistic can be constructed to test the null hypothesis that
the mean numbers of misclassifications are equal:

T =
Ȳ

√

S/p
,

Evaluation and comparison of classification accuracy 303

where

Ȳ =
1

p

p
∑

i=1

Yi, S =
1

p− 1

p
∑

i=1

(Yi − Ȳ)2.

The statistic T is Student-t distributed with p − 1 degrees of freedom; see
Equation (2.80).

There are some objections to this approach, the most obvious again being
the need to repeat the training/test cycle many times (typically p ≈ 30).
Moreover, as Dietterich (1998) points out in a comparative investigation of
several such test procedures, Yi is not normally distributed since Y i

A and
Y i
B are not independent. He considers a nonparametric hypothesis test which

avoids these problems and which we shall adopt here; see also Ripley (1996).
After training of the two classifiers which are to be compared, the following

events for classification of the test data can be distinguished:

ĀB, AB̄, ĀB̄, and AB.

The event ĀB is test observation is misclassified by A and correctly classified
by B, while AB̄ is the event test observation is correctly classified by A and
misclassified by B and so on. As before, we define random variables:

XĀB, XAB̄, XĀB̄ and XAB

where

XĀB(ĀB) = 1, XĀB(AB̄) = XĀB(ĀB̄) = XĀB(AB) = 0,

with mass function

Pr(XĀB = 1) = θĀB, Pr(XĀB = 0) = 1− θĀB.

Corresponding definitions are made for XAB̄, XĀB̄ and XAB.
Now, in comparing the two classifiers, we are interested in the events ĀB

and AB̄. If the number of the former is significantly smaller than the number
of the latter, then A is better than B and vice versa. Events ĀB̄ in which both
methods perform poorly are excluded.

For n test observations, the random variables

YĀB = XĀB1
+ . . . XĀBn

and

YAB̄ = XAB̄1
+ . . . XAB̄n

are the frequencies of the respective events. We then have

�YĀB� = nθĀB, var(YĀB) = nθĀB(1− θĀB)

�YAB̄� = nθAB̄, var(YAB̄) = nθAB̄(1− θAB̄).

We expect that θĀB ≪ 1, that is, var(YĀB) ≈ nθĀB = �YĀB�. The same holds
for YAB̄ . It follows that the random variables

YĀB − �YĀB�
√

�YĀB�
and

YAB̄ − �YAB̄�
√

�YAB̄�
are approximately standard normally distributed.

304 Supervised Classification Part 2

Under the null hypothesis (equivalence of the two classifiers), the expecta-
tion values of YĀB and YAB̄ satisfy

�YĀB� = �YAB̄� =: �Y �.

We form the McNemar test statistic

S =
(YĀB − �Y �)2

�Y � +
(YAB̄ − �Y �)2

�Y � , (7.18)

which is chi-square distributed with one degree of freedom; see Section 2.1.5
and, e.g., Siegel (1965). Let yĀB and yAB̄ be the number of events actually
measured. Then the mean �Y � is estimated as

ˆ�Y � = yĀB + yAB̄

2

and a realization of the test statistic S is therefore

s =
(yĀB − yĀB+yAB̄

2)2

yĀB+yAB̄

2

+
(yAB̄ − yĀB+yAB̄

2)2

yĀB+yAB̄

2

.

With a little algebra, this expression can be simplified to

s =
(yĀB − yAB̄)

2

yĀB + yAB̄

. (7.19)

A correction is usually made to Equation (7.19), writing it in the form

s =
(|yĀB − yAB̄| − 1)2

yĀB + yAB̄

, (7.20)

which takes into approximate account the fact that the statistic is discrete,
while the chi-square distribution is continuous. From the percentiles of the
chi-square distribution, the critical region for rejection of the null hypothesis
of equal misclassification rates at the 5% significance level is s ≥ 3.841. The
Python script mcnemar.py (Appendix C) compares two classifiers on the basis
of their test result files, printing out yĀB , yAB̄, s and the P -value 1−Pχ2;1(s).
Here is an example comparing the SVM and a neural network classifiers for
the ASTER scene: The neural network with two hidden layers was trained for
500 epochs:

%run scripts/mcnemar \

imagery/AST_20070501_pca_SVM .tst \

imagery/AST_20070501_pca_Dnn (tensorflow). tst

=========================

McNemar test

=========================

304 Supervised Classification Part 2

Under the null hypothesis (equivalence of the two classifiers), the expecta-
tion values of YĀB and YAB̄ satisfy

�YĀB� = �YAB̄� =: �Y �.

We form the McNemar test statistic

S =
(YĀB − �Y �)2

�Y � +
(YAB̄ − �Y �)2

�Y � , (7.18)

which is chi-square distributed with one degree of freedom; see Section 2.1.5
and, e.g., Siegel (1965). Let yĀB and yAB̄ be the number of events actually
measured. Then the mean �Y � is estimated as

ˆ�Y � = yĀB + yAB̄

2

and a realization of the test statistic S is therefore

s =
(yĀB − yĀB+yAB̄

2)2

yĀB+yAB̄

2

+
(yAB̄ − yĀB+yAB̄

2)2

yĀB+yAB̄

2

.

With a little algebra, this expression can be simplified to

s =
(yĀB − yAB̄)

2

yĀB + yAB̄

. (7.19)

A correction is usually made to Equation (7.19), writing it in the form

s =
(|yĀB − yAB̄| − 1)2

yĀB + yAB̄

, (7.20)

which takes into approximate account the fact that the statistic is discrete,
while the chi-square distribution is continuous. From the percentiles of the
chi-square distribution, the critical region for rejection of the null hypothesis
of equal misclassification rates at the 5% significance level is s ≥ 3.841. The
Python script mcnemar.py (Appendix C) compares two classifiers on the basis
of their test result files, printing out yĀB , yAB̄, s and the P -value 1−Pχ2;1(s).
Here is an example comparing the SVM and a neural network classifiers for
the ASTER scene: The neural network with two hidden layers was trained for
500 epochs:

%run scripts/mcnemar \

imagery/AST_20070501_pca_SVM .tst \

imagery/AST_20070501_pca_Dnn (tensorflow). tst

=========================

McNemar test

=========================

Ensembles 305

first classifier :

SVMtest results for imagery/AST_20070501_pca .tif

Sun Apr 21 17:54:10 2024

Classification image: imagery/ AST_20070501_pca_class.tif

Class probabilities image: None

second classifier :

Dnn(tensorflow)test results for imagery/AST_20070501_

pca.tif

Sun Apr 21 17:52:31 2024

Classification image: imagery/AST_20070501_pca_class.tif

Class probabilities image: None

test observations : 2364

classes: 10

first classifier : 98

second classifier : 86

McNemar statistic : 0.782609

P-value: 0.376344

In this case, although the neural network seems “better,” the null hypothesis
cannot be rejected at the 5% significance level, whereas comparing the Gauss
kernel classifier with the neural network, we conclude that the Gauss kernel
is indeed better at 5% significance:

run scripts /mcnemar \

imagery/AST_20070501_pca_Gausskernel.tst \

imagery/AST_20070501_pca_Dnn (tensorflow). tst

...

test observations : 2364

classes: 10

first classifier : 54

second classifier : 91

McNemar statistic : 9.441379

P-value: 0.002121

7.3 Ensembles

Further enhancement of classifier accuracy is sometimes possible by combin-
ing several classifiers into an ensemble or committee and then applying some
kind of voting scheme to generalize to new data. An excellent introduction
to ensemble-based systems is given by Polikar (2006). The basic idea is to
generate several classifiers and pool them in such a way as to improve on the

306 Supervised Classification Part 2

performance of any single one. This implies that the pooled classifiers make
errors on different observations, implying further that each classifier be as
unique as possible, particularly with respect to misclassified instances (Po-
likar, 2006). One way of achieving this uniqueness is to use different training
sets for each classifier, for example, by re-sampling the training data with
replacement, a procedure referred to as “bootstrap aggregation” or bagging
(Breiman, 1996); see Section 7.3.2 below and Exercise 2.

Representative of ensemble methods, we consider first a powerful technique
called adaptive boosting or AdaBoost for short (Freund and Shapire, 1996),
and then an example of a random forest classifier.

7.3.1 Adaptive boosting

Adaboost involves training a sequence of classifiers, placing increasing em-
phasis on hard-to-classify data, and then combining the sequence so as to
reduce the overall training error. AdaBoost was originally suggested for com-
bining binary classifiers, i.e., for two-class problems. However, Freund and
Shapire (1997) proposed two multiclass extensions, the more commonly used
of which is AdaBoost.M1. In the following, we shall apply AdaBoost.M1 to an
ensemble of neural network classifiers. For other examples of adaptive boost-
ing of neural networks, see Schwenk and Bengio (2000) and Murphey et al.
(2001).

In order to motivate the adaptive boosting idea, consider the training of
the feed-forward neural network classifier of Chapter 6 when there are just
two classes to choose between. Making use of stochastic training, we train the
network by minimizing the local cost function, Equation (6.34), on randomly
selected labeled examples. To begin with the training data are sampled uni-
formly, as is done, for example, in the back propagation training algorithm
of Listing 6.4. We can represent such a sampling scheme with the uniform,
discrete probability distribution

p1(ν) = 1/m, ν = 1 . . .m,

over the m training examples. Let U1 be the set of incorrectly classified exam-
ples after completion of the training procedure. Then the classification error
is given by

ǫ1 =
∑

ν∈U1

p1(ν).

Let us now find a new sampling distribution p2(ν) such that the trained classi-
fier would achieve an error of 50% if trained with respect to that distribution.
In other words, it would perform as well as uninformed random guessing. The
intention is, through the new distribution, to achieve a new classifier–training
set combination which is as different as possible from the one just used. We
obtain the new distribution p2(ν) by reducing the probability for correctly
classified examples by a factor β1 < 1 so that the accuracy obtained is 1/2,

306 Supervised Classification Part 2

performance of any single one. This implies that the pooled classifiers make
errors on different observations, implying further that each classifier be as
unique as possible, particularly with respect to misclassified instances (Po-
likar, 2006). One way of achieving this uniqueness is to use different training
sets for each classifier, for example, by re-sampling the training data with
replacement, a procedure referred to as “bootstrap aggregation” or bagging
(Breiman, 1996); see Section 7.3.2 below and Exercise 2.

Representative of ensemble methods, we consider first a powerful technique
called adaptive boosting or AdaBoost for short (Freund and Shapire, 1996),
and then an example of a random forest classifier.

7.3.1 Adaptive boosting

Adaboost involves training a sequence of classifiers, placing increasing em-
phasis on hard-to-classify data, and then combining the sequence so as to
reduce the overall training error. AdaBoost was originally suggested for com-
bining binary classifiers, i.e., for two-class problems. However, Freund and
Shapire (1997) proposed two multiclass extensions, the more commonly used
of which is AdaBoost.M1. In the following, we shall apply AdaBoost.M1 to an
ensemble of neural network classifiers. For other examples of adaptive boost-
ing of neural networks, see Schwenk and Bengio (2000) and Murphey et al.
(2001).

In order to motivate the adaptive boosting idea, consider the training of
the feed-forward neural network classifier of Chapter 6 when there are just
two classes to choose between. Making use of stochastic training, we train the
network by minimizing the local cost function, Equation (6.34), on randomly
selected labeled examples. To begin with the training data are sampled uni-
formly, as is done, for example, in the back propagation training algorithm
of Listing 6.4. We can represent such a sampling scheme with the uniform,
discrete probability distribution

p1(ν) = 1/m, ν = 1 . . .m,

over the m training examples. Let U1 be the set of incorrectly classified exam-
ples after completion of the training procedure. Then the classification error
is given by

ǫ1 =
∑

ν∈U1

p1(ν).

Let us now find a new sampling distribution p2(ν) such that the trained classi-
fier would achieve an error of 50% if trained with respect to that distribution.
In other words, it would perform as well as uninformed random guessing. The
intention is, through the new distribution, to achieve a new classifier–training
set combination which is as different as possible from the one just used. We
obtain the new distribution p2(ν) by reducing the probability for correctly
classified examples by a factor β1 < 1 so that the accuracy obtained is 1/2,

Ensembles 307

that is,

1

2
=

∑

ν∈U1

p2(ν) =
∑

ν /∈U1

p2(ν) =
1

Z

∑

ν /∈U1

β1p1(ν) =
1

Z
β1(1− ǫ1). (7.21)

The denominator Z is a normalization which ensures that
∑

ν p2(ν) = 1 so
that p2(ν) is indeed a probability distribution,

Z =
∑

ν∈U1

p1(ν) + β1

∑

ν /∈U1

p1(ν) = ǫ1 + β1(1− ǫ1). (7.22)

Combining Equations (7.21) and (7.22) gives

β1 =
ǫ1

1− ǫ1
. (7.23)

If we now train the network with respect to p2(ν), we will get (it is to be
hoped) a different set U2 of incorrectly classified training examples and, cor-
respondingly, a different classification error

ǫ2 =
∑

ν∈U2

p2(ν).

This leads to a new reduction factor β2 and the procedure is repeated. The
sequence must, of course, terminate at i classifiers when ǫi+1 > 1/2, as then
the incorrectly classified examples can no longer be emphasized since βi+1 > 1.

At the generalization phase, the “importance” of each classifier is set to
some function of βi, the smaller βi, the more important the classifier. As we
shall see below, an appropriate weight is log(1/βi). Thus, if Ck is the set of
networks which classify feature vector g as k, then that class receives the
“vote”

Vk =
∑

i∈Ck

log(1/βi), k = 1, 2,

after which g is assigned to the class with the maximum vote.
To place things on a more precise footing, we will define the hypothesis

generated by the neural network classifier for input observation g(ν) as

h(g(ν)) = h(ν) = argmax
k

(mk(g(ν)), ν = 1 . . .m. (7.24)

This is just the index of the output neuron whose signal is largest. For a two-
class problem, h(ν) ∈ {1, 2}. Suppose that k(ν) is the label of observation
g(ν). Following Freund and Shapire (1997), define the indicator

[[h(ν) �= k(ν)]] =
{
1 if the hypothesis h(ν) is incorrect
0 if it is correct.

(7.25)

With this notation, we can give an exact formulation of the adaptive boosting
algorithm for a sequence of neural networks applied to two-class problems.

308 Supervised Classification Part 2

Then we can prove a theorem on the upper bound of the overall training error
for that sequence. Here, first of all, is the algorithm:

Algorithm (AdaBoost)

1. Define an initial uniform probability distribution p1(ν) = 1/m, ν =
1 . . .m, and the number Nc of classifiers in the sequence. Define initial
weights w1(ν) = p1(ν), ν = 1 . . .m.

2. For i = 1 . . .Nc do the following:

(a) Set pi(ν) = wi(ν)/
∑m

ν′=1 wi(ν
′), ν = 1 . . .m.

(b) Train a network with the sampling distribution pi(ν) to get back
the hypotheses hi(ν), ν = 1 . . .m.

(c) Calculate the error ǫi =
∑m

ν=1 pi(ν)[[hi(ν) �= k(ν)]].

(d) Set βi = ǫi/(1− ǫi).

(e) Determine a new weights wi+1 according to

wi+1(ν) = wi(ν)β
1−[[hi(ν) �=k(ν)]]
i , ν = 1 . . .m.

3. Given an unlabeled observation g, obtain the total vote received by each
class,

Vk =
∑

{i|hi(g)=k}
log(1/βi), k = 1, 2,

and assign g to the class with maximum vote.

The training error in the AdaBoost algorithm is the fraction of training
examples that will be incorrectly classified when put into the voting proce-
dure in step 3 above. We have the following theorem (the proof is given in
Appendix A):

THEOREM 7.1

The training error ǫ for the algorithm AdaBoost is bounded above according to

ǫ ≤ 2Nc

Nc∏

i=1

√

ǫi(1− ǫi). (7.26)

This theorem tells us that, provided each classifier in the sequence can return
an error ǫi < 1/2, the training error will approach zero exponentially. It can
be shown (Freund and Shapire, 1997) that the result is also valid for the multi
class case K > 2. The boosting algorithm is then referred to as AdaBoost.M1.

A Python script adaboost.py for boosting neural networks trained with the
fast Kalman filter algorithm of Appendix B is documented in Appendix C. An

308 Supervised Classification Part 2

Then we can prove a theorem on the upper bound of the overall training error
for that sequence. Here, first of all, is the algorithm:

Algorithm (AdaBoost)

1. Define an initial uniform probability distribution p1(ν) = 1/m, ν =
1 . . .m, and the number Nc of classifiers in the sequence. Define initial
weights w1(ν) = p1(ν), ν = 1 . . .m.

2. For i = 1 . . .Nc do the following:

(a) Set pi(ν) = wi(ν)/
∑m

ν′=1 wi(ν
′), ν = 1 . . .m.

(b) Train a network with the sampling distribution pi(ν) to get back
the hypotheses hi(ν), ν = 1 . . .m.

(c) Calculate the error ǫi =
∑m

ν=1 pi(ν)[[hi(ν) �= k(ν)]].

(d) Set βi = ǫi/(1− ǫi).

(e) Determine a new weights wi+1 according to

wi+1(ν) = wi(ν)β
1−[[hi(ν) �=k(ν)]]
i , ν = 1 . . .m.

3. Given an unlabeled observation g, obtain the total vote received by each
class,

Vk =
∑

{i|hi(g)=k}
log(1/βi), k = 1, 2,

and assign g to the class with maximum vote.

The training error in the AdaBoost algorithm is the fraction of training
examples that will be incorrectly classified when put into the voting proce-
dure in step 3 above. We have the following theorem (the proof is given in
Appendix A):

THEOREM 7.1

The training error ǫ for the algorithm AdaBoost is bounded above according to

ǫ ≤ 2Nc

Nc∏

i=1

√

ǫi(1− ǫi). (7.26)

This theorem tells us that, provided each classifier in the sequence can return
an error ǫi < 1/2, the training error will approach zero exponentially. It can
be shown (Freund and Shapire, 1997) that the result is also valid for the multi
class case K > 2. The boosting algorithm is then referred to as AdaBoost.M1.

A Python script adaboost.py for boosting neural networks trained with the
fast Kalman filter algorithm of Appendix B is documented in Appendix C. An

Ensembles 309

Listing 7.2: Adaptive boosting of a neural network (excerpt from the script
adaboost.py).

1 errtrn = []

2 errtst = []

3 # initial probability distribution

4 p = np.ones(mtrn)/ mtrn

5 # loop through the network instance

6 start = time.time ()

7 instance = 1

8 while instance <instances :

9 trial = 1

10 while trial < 6:

11 print(’running�instance:�%i��trial:�%i’ \

12 %(instance ,trial))

13 # instantiate a ffn and train it

14 ffn = Ffnekfab (Xstrn ,Lstrn ,p,L,epochs)

15 ffn.train()

16 # determine beta

17 labels ,_ = ffn.classify(Xstrn)

18 labels -= 1

19 idxi = np.where(labels != labels_train)[0]

20 idxc = np.where(labels == labels_train)[0]

21 epsilon = np.sum(p[idxi])

22 beta = epsilon /(1- epsilon)

23 i f beta < 1.0:

24 # continue

25 ffns .append(ffn)

26 alphas.append(np.log (1.0/ beta))

27 # update distribution

28 p[idxc] = p[idxc]* beta

29 p = p/np.sum(p)

30 # train error

31 labels ,_=seq_class (ffns ,Xstrn ,alphas ,K)

32 tmp=np.where(labels != labels_train ,1,0)

33 errtrn.append(np.sum(tmp)/ f l oat (mtrn))

34 # test error

35 labels ,_=seq_class (ffns ,Xstst ,alphas ,K)

36 tmp = np.where(labels != labels_test ,1,0)

37 errtst.append(np.sum(tmp)/ f l oat (mtst))

38 print(’train�error:�%f�test �error:�%f’\

39 %(errtrn[-1],errtst [-1]))

40 # this instance is done

41 trial = 6

42 instance += 1

43 e l se:

44 trial += 1

310 Supervised Classification Part 2

ENVI/IDL version is given in Canty (2014). In the Python script, an excerpt
from which is shown in Listing 7.2, a sequence of neural networks, i = 1, 2, . . .,
is trained on samples chosen with respect to distributions p1(ν), p2(ν) . . ., the
sequence terminating at i′ when ǫi′+1 ≥ 1/2 or when a maximum sequence
length is reached. In order to take into account the fact that a network may
become trapped in a local minimum of the cost function, training is restarted
with a new random synaptic weight configuration if the current training er-
ror ǫi exceeds 1/2. The maximum number of restarts for a given network is
five, after which the boosting terminates. The classifiers in the sequence are
implemented in the object-oriented framework introduced in Chapter 6 as
instances of a neural network object class. In summary, the algorithm is as
follows:

Algorithm (Adaptive boosting of a sequence of neural network classifiers)

1. Set p1(ν) = 1/m, ν = 1 . . .m, where m is the number of observations
in the set of labeled training data. Choose maximum sequence length
Nmax. Set i = 1.

2. Set r = 0.

3. Create a new neural network instance FFN(i) with random synaptic
weights. Train FFN(i) with sampling distribution pi(ν). Let Ui be the
set of incorrectly classified training observations after completion of the
training procedure.

4. Calculate ǫi =
∑

ν∈Ui
pi(ν). If ǫi < 1/2, then continue, else if r < 5,

then set r = r + 1, destroy the instance FFN(i), and go to 3, else stop.

5. Set βi = ǫi/(1− ǫi) and update the distribution:

pi+1(ν) =
pi(ν)

Zi
×
{
βi if ν /∈ Ui

1 otherwise
, ν = 1 . . .m,

where Zi =
∑

ν∈Ui
pi(ν) + βi

∑

ν /∈Ui
pi(ν).

6. Set i = i+ 1. If i > Nmax, then stop, else go to 2.

During the training phase, the program prints the training and generaliza-
tion errors of the boosted sequence:

run scripts /adaboost -p [1,2,3,4,5] -L [10] \

-n 75 imagery/AST_20070501_pca .tif imagery/train.shp

Training with ADABOOST .M1 and 5 epochs per ffn

reading training data ...

running instance : 1 trial: 1

train error: 0.034181 test error: 0.033841

running instance : 2 trial: 1

310 Supervised Classification Part 2

ENVI/IDL version is given in Canty (2014). In the Python script, an excerpt
from which is shown in Listing 7.2, a sequence of neural networks, i = 1, 2, . . .,
is trained on samples chosen with respect to distributions p1(ν), p2(ν) . . ., the
sequence terminating at i′ when ǫi′+1 ≥ 1/2 or when a maximum sequence
length is reached. In order to take into account the fact that a network may
become trapped in a local minimum of the cost function, training is restarted
with a new random synaptic weight configuration if the current training er-
ror ǫi exceeds 1/2. The maximum number of restarts for a given network is
five, after which the boosting terminates. The classifiers in the sequence are
implemented in the object-oriented framework introduced in Chapter 6 as
instances of a neural network object class. In summary, the algorithm is as
follows:

Algorithm (Adaptive boosting of a sequence of neural network classifiers)

1. Set p1(ν) = 1/m, ν = 1 . . .m, where m is the number of observations
in the set of labeled training data. Choose maximum sequence length
Nmax. Set i = 1.

2. Set r = 0.

3. Create a new neural network instance FFN(i) with random synaptic
weights. Train FFN(i) with sampling distribution pi(ν). Let Ui be the
set of incorrectly classified training observations after completion of the
training procedure.

4. Calculate ǫi =
∑

ν∈Ui
pi(ν). If ǫi < 1/2, then continue, else if r < 5,

then set r = r + 1, destroy the instance FFN(i), and go to 3, else stop.

5. Set βi = ǫi/(1− ǫi) and update the distribution:

pi+1(ν) =
pi(ν)

Zi
×
{
βi if ν /∈ Ui

1 otherwise
, ν = 1 . . .m,

where Zi =
∑

ν∈Ui
pi(ν) + βi

∑

ν /∈Ui
pi(ν).

6. Set i = i+ 1. If i > Nmax, then stop, else go to 2.

During the training phase, the program prints the training and generaliza-
tion errors of the boosted sequence:

run scripts /adaboost -p [1,2,3,4,5] -L [10] \

-n 75 imagery/AST_20070501_pca .tif imagery/train.shp

Training with ADABOOST .M1 and 5 epochs per ffn

reading training data ...

running instance : 1 trial: 1

train error: 0.034181 test error: 0.033841

running instance : 2 trial: 1

Ensembles 311

FIGURE 7.3

Adaptive boost training of an ensemble of neural networks.

train error: 0.031263 test error: 0.031303

running instance : 3 trial: 1

train error: 0.031055 test error: 0.029611

running instance : 4 trial: 1

train error: 0.030221 test error: 0.030034

running instance : 5 trial: 1

train error: 0.030221 test error: 0.030880

...

...

running instance : 43 trial: 1

running instance : 43 trial: 2

train error: 0.027303 test error: 0.029611

running instance : 44 trial: 1

train error: 0.027303 test error: 0.029611

running instance : 45 trial: 1

running instance : 45 trial: 2

train error: 0.027303 test error: 0.029188

running instance : 46 trial: 1

train error: 0.027095 test error: 0.029611

running instance : 47 trial: 1

train error: 0.027095 test error: 0.029611

running instance : 48 trial: 1

312 Supervised Classification Part 2

running instance : 48 trial: 2

running instance : 48 trial: 3

train error: 0.026886 test error: 0.029188

running instance : 49 trial: 1

train error: 0.026469 test error: 0.030034

elapsed time 1235.8035917282104

An example is shown in Figure 7.3 for the training/test datasets of the ASTER
scene. Again five principal components were used for training, achieving a
classification error on the test data of about 0.029. For a detailed comparison
with other classifiers, see Canty (2009).

7.3.2 Binary decision trees and random forests

Classification and regression with decision trees, binary or otherwise, is a
wide field; an introduction can be found in Géron (2023). In this text, we are
dealing specifically with multispectral satellite imagery, and so we’ll continue
to use use the notation chosen thus far for classification algorithms. Training is
carried out with respect to a set of representative multispectral pixel intensity
vectors g and their respective class labels ℓ. With reference to the simple
decision tree of Figure 7.4, the root node Tn, n = 1, consists of the training
dataset

T1 = {g(ν), ℓ(ν)}, ν = 1 . . .m1, (7.27)

where m1 is the number of training observations, g(ν) is the νth observation
vector, and

ℓ(ν) ∈ K = {1 . . .K} (7.28)

is its class label, here simply an integer. Training consists of growing the binary
tree from the root node. The initial objective is to split T1 into two subsets
T L
2 and T R

2 according to a prescription which compares one (and only one)
component of g to a threshold:

T L
2 (φ) = {(g, ℓ) | gi ≤ t1}

T R
2 (φ) = T1 \ T L

2 (φ).
(7.29)

Here φ denotes the the candidate split φ = (i, t1), i.e., the choice of the ith
component of the observation vectors g(ν) and a corresponding threshold t1.
The proportion of observations of class ℓ in the dataset T1 is given by

p1ℓ =
1

m1

∑

ℓ′∈T1

δℓ′ℓ. (7.30)

312 Supervised Classification Part 2

running instance : 48 trial: 2

running instance : 48 trial: 3

train error: 0.026886 test error: 0.029188

running instance : 49 trial: 1

train error: 0.026469 test error: 0.030034

elapsed time 1235.8035917282104

An example is shown in Figure 7.3 for the training/test datasets of the ASTER
scene. Again five principal components were used for training, achieving a
classification error on the test data of about 0.029. For a detailed comparison
with other classifiers, see Canty (2009).

7.3.2 Binary decision trees and random forests

Classification and regression with decision trees, binary or otherwise, is a
wide field; an introduction can be found in Géron (2023). In this text, we are
dealing specifically with multispectral satellite imagery, and so we’ll continue
to use use the notation chosen thus far for classification algorithms. Training is
carried out with respect to a set of representative multispectral pixel intensity
vectors g and their respective class labels ℓ. With reference to the simple
decision tree of Figure 7.4, the root node Tn, n = 1, consists of the training
dataset

T1 = {g(ν), ℓ(ν)}, ν = 1 . . .m1, (7.27)

where m1 is the number of training observations, g(ν) is the νth observation
vector, and

ℓ(ν) ∈ K = {1 . . .K} (7.28)

is its class label, here simply an integer. Training consists of growing the binary
tree from the root node. The initial objective is to split T1 into two subsets
T L
2 and T R

2 according to a prescription which compares one (and only one)
component of g to a threshold:

T L
2 (φ) = {(g, ℓ) | gi ≤ t1}

T R
2 (φ) = T1 \ T L

2 (φ).
(7.29)

Here φ denotes the the candidate split φ = (i, t1), i.e., the choice of the ith
component of the observation vectors g(ν) and a corresponding threshold t1.
The proportion of observations of class ℓ in the dataset T1 is given by

p1ℓ =
1

m1

∑

ℓ′∈T1

δℓ′ℓ. (7.30)

Ensembles 313

FIGURE 7.4

A binary decision tree with a root node, one internal node and three leaf
nodes.

where δℓ′ℓ is the Kroneker delta. A commonly used criterion for choosing φ is
the so-called Gini impurity∗ which, for the root node T1, is given by

G(T1) =
K∑

ℓ=1

p1ℓ(1− p1ℓ). (7.31)

If T1 were to consist of one class only then, trivially, the impurity is G(T1) = 0.
This is of course not the case. In order to find the best branching from the root
node, we determine the average impurity of the left- and right-hand subsets
weighted according to the number of observations mL

1 and mR
1 in each subset

Ĝ(T1, φ) =
mL

1

m1
G(T L

2 (φ)) +
mR

1

m1
G(T R

2 (φ)), (7.32)

∗After the Italian statistician Corrado Gini (1884–1965).

314 Supervised Classification Part 2

and seek that split φ which minimizes it.∗ This determines the optimal compo-
nent gi of the observation vector and the threshold t1 to which it is compared
in Equation 7.29. As indicated in Figure 7.4 the procedure is recursed (in
the Figure only on the subset T R

2), continuing until a stopping criterion is
reached such as maximum tree depth or minimum subset population. Each
leaf or terminal node of the tree is then labeled by the class with the max-
imum number of observations in that node. This algorithm is referred to as
CART (Classification and Regression Tree).

In the prediction phase, unlabeled observations g are passed through the
tree and classified according to the leaf node they reach. In a more or less
balanced tree, the prediction time is very fast even for large training sets. See
Géron (2023) for a more detailed discussion of the hyper parameters (regu-
larization) used to control tree growth and avoid over fitting.

The definitive introduction of random forests into the arsenal of supervised
classifiers was made in a paper by Leo Breiman in 2001, in which he describes
a method for building an ensemble or ‘forest” of uncorrelated decision tree
classifiers trained using the above CART procedure. In its most general form,
a random forest is

DEFINITION 7.1 (Breiman, 2001) ... a classifier consisting of a collec-
tion of tree-structured classifiers h(g,Φj), j = 1, . . . , where the Φj are inde-
pendent identically distributed random vectors and each tree casts a unit vote
for the most popular class at input g.

For the jth tree, a random vector Φj is generated, independently of the past
random vectors Φ1 . . .Φj−1 but with the same distribution. A tree is grown
using the training set and Φj , resulting in a classifier h(g,Φj) for input vector
g. While the predictions of a single tree are highly sensitive to noise in its
training set, the average of many uncorrelated trees is not, thus reducing the
variance.

To be specific, we can choose the binary decision tree just described as
classifier and apply bagging to the ensemble. That is, train each classifier in
the forest with a randomly chosen resampling with replacement vector Φj and
then choose the most frequent prediction in the ensemble as the class of the
input observation g (plurality vote). The algorithm is very suited to parallel
computing, since each tree can be trained independently of the others in the
ensemble. The same goes for the prediction phase.

As was the case for the support vector machine classifier of Chapter 6, con-
venient Python classes for decision trees and bagging are available in sklearn,
namely sklearn.tree.DecisionTreeClassifier()and sklearn.ensemble.

BaggingClassifier(). Listing 7.3 is a wrapper class RF() for random forest

∗For each feature, the data points are sorted based on the feature values and splits
between each pair of consecutive values are evaluated.

314 Supervised Classification Part 2

and seek that split φ which minimizes it.∗ This determines the optimal compo-
nent gi of the observation vector and the threshold t1 to which it is compared
in Equation 7.29. As indicated in Figure 7.4 the procedure is recursed (in
the Figure only on the subset T R

2), continuing until a stopping criterion is
reached such as maximum tree depth or minimum subset population. Each
leaf or terminal node of the tree is then labeled by the class with the max-
imum number of observations in that node. This algorithm is referred to as
CART (Classification and Regression Tree).

In the prediction phase, unlabeled observations g are passed through the
tree and classified according to the leaf node they reach. In a more or less
balanced tree, the prediction time is very fast even for large training sets. See
Géron (2023) for a more detailed discussion of the hyper parameters (regu-
larization) used to control tree growth and avoid over fitting.

The definitive introduction of random forests into the arsenal of supervised
classifiers was made in a paper by Leo Breiman in 2001, in which he describes
a method for building an ensemble or ‘forest” of uncorrelated decision tree
classifiers trained using the above CART procedure. In its most general form,
a random forest is

DEFINITION 7.1 (Breiman, 2001) ... a classifier consisting of a collec-
tion of tree-structured classifiers h(g,Φj), j = 1, . . . , where the Φj are inde-
pendent identically distributed random vectors and each tree casts a unit vote
for the most popular class at input g.

For the jth tree, a random vector Φj is generated, independently of the past
random vectors Φ1 . . .Φj−1 but with the same distribution. A tree is grown
using the training set and Φj , resulting in a classifier h(g,Φj) for input vector
g. While the predictions of a single tree are highly sensitive to noise in its
training set, the average of many uncorrelated trees is not, thus reducing the
variance.

To be specific, we can choose the binary decision tree just described as
classifier and apply bagging to the ensemble. That is, train each classifier in
the forest with a randomly chosen resampling with replacement vector Φj and
then choose the most frequent prediction in the ensemble as the class of the
input observation g (plurality vote). The algorithm is very suited to parallel
computing, since each tree can be trained independently of the others in the
ensemble. The same goes for the prediction phase.

As was the case for the support vector machine classifier of Chapter 6, con-
venient Python classes for decision trees and bagging are available in sklearn,
namely sklearn.tree.DecisionTreeClassifier()and sklearn.ensemble.

BaggingClassifier(). Listing 7.3 is a wrapper class RF() for random forest

∗For each feature, the data points are sorted based on the feature values and splits
between each pair of consecutive values are evaluated.

Ensembles 315

Listing 7.3: A class for random forest classification (excerpt from the Python
module supervisedclass.py).

1 c lass RF(object):

2 ’’’Random Forest Classifier ’’’

3 def __init__(self , Gs , ls, mnl=50, nest =500):

4 self._Gs = Gs

5 self._ls = np.argmax(ls , axis =1)

6 self ._clf = BaggingClassifier (

7 DecisionTreeClassifier(max_leaf_nodes =mnl),

8 n_estimators =nest , n_jobs=-1)

9

10 def train(self):

11 try:

12 self._clf .fit(self ._Gs , self._ls)

13 return True

14 except Exception as e:

15 print(’Error:�%s’ % e)

16 return None

17

18 def classify(self , Gs):

19 classes = self ._clf.predict (Gs) + 1

20 probs = self ._clf. predict_proba (Gs)

21 return (classes , probs)

supervised classification, which is as usual called from the script classify.py
to apply it to multispectral images.

There is a plethora of regularization parameters in both the decision tree as
well as the bagging classifiers∗; however, for illustration it is sufficient to accept
most of the defaults (but see the Exercise 3). The random forest algorithm is
selected with the command line parameter -a 8:

run scripts /classify -p [1,2,3,4,5] -a 8 \

imagery/ AST_20070501_pca .tif imagery/train.shp

Training with RF

reading training data ...

...

thematic map written to: imagery /AST_20070501_pca_class.

tif

test results written to: imagery/AST_20070501_pca_RF .tst

done

After which we can compare the test results, for instance, with the Gauss
kernel method of Chapter 6:

∗https://scikit-learn.org/stable/modules/classes.html#module-sklearn.ensemble

https://scikit-learn.org/stable/modules/classes.html#module-sklearn.ensemble

316 Supervised Classification Part 2

%run scripts/mcnemar \

imagery/AST_20070501_pca_Gausskernel.tst \

imagery/AST_20070501_pca_RF .tst

=========================

McNemar test

=========================

first classifier :

Gausskerneltest results for imagery/ AST_20070501_pca .tif

Sun Apr 21 18:02:04 2024

Classification image: imagery/AST_20070501_pca_class.tif

Class probabilities image: None

second classifier :

RFtest results for imagery/AST_20070501_pca .tif

Mon Apr 22 17:15:55 2024

Classification image: imagery/AST_20070501_pca_class.tif

Class probabilities image: None

test observations : 2364

classes: 10

first classifier : 65

second classifier : 84

McNemar statistic : 2.422819

P-value: 0.119580

So at the 5% significance level it cannot be claimed that the Gauss kernel
classifier performs better than the random forest with the chosen hyper pa-
rameters.

7.4 Classification of polarimetric SAR imagery

We saw in Chapter 6, Section 6.3, how to derive a Bayes maximum-likelihood
classifier for normally distributed optical/infrared pixels. In the case of the
fully polarimetric m-look SAR data discussed in Chapter 5, the image obser-
vations are expressed in complex covariance matrix form

c̄ =
1

m
x,

where

x =
m∑

ν=1

s(ν)s(ν)†, s = (shh,
√
2shv, svv)

T .

316 Supervised Classification Part 2

%run scripts/mcnemar \

imagery/AST_20070501_pca_Gausskernel.tst \

imagery/AST_20070501_pca_RF .tst

=========================

McNemar test

=========================

first classifier :

Gausskerneltest results for imagery/ AST_20070501_pca .tif

Sun Apr 21 18:02:04 2024

Classification image: imagery/AST_20070501_pca_class.tif

Class probabilities image: None

second classifier :

RFtest results for imagery/AST_20070501_pca .tif

Mon Apr 22 17:15:55 2024

Classification image: imagery/AST_20070501_pca_class.tif

Class probabilities image: None

test observations : 2364

classes: 10

first classifier : 65

second classifier : 84

McNemar statistic : 2.422819

P-value: 0.119580

So at the 5% significance level it cannot be claimed that the Gauss kernel
classifier performs better than the random forest with the chosen hyper pa-
rameters.

7.4 Classification of polarimetric SAR imagery

We saw in Chapter 6, Section 6.3, how to derive a Bayes maximum-likelihood
classifier for normally distributed optical/infrared pixels. In the case of the
fully polarimetric m-look SAR data discussed in Chapter 5, the image obser-
vations are expressed in complex covariance matrix form

c̄ =
1

m
x,

where

x =
m∑

ν=1

s(ν)s(ν)†, s = (shh,
√
2shv, svv)

T .

Classification of polarimetric SAR imagery 317

The corresponding random matrix X, as was pointed out, will follow a com-
plex Wishart distribution, Equation (2.62),

pWc(x) =
|x|(m−N) exp(−tr(Σ−1x))

πN(N−1)/2|Σ|m ∏N
i=1 Γ(m+ 1− i)

, (7.33)

where N is the dimension of the covariance matrix: N = 3 for quad, N = 2
for dual and N = 1 for single polarimetric SAR images.∗ Following exactly
the same argument as in Chapter 6 (see also Exercise 4 and Lee et al. (1994)),
we can derive a maximum-likelihood discriminant function for observations c̄,
namely,

dk(c̄) = log(Pr(k))−m
(
log |Σk|+ tr(Σ−1

k c̄)
)
. (7.34)

In the training phase, the class-specific complex covariance matrices Σk, k =
1 . . .K, are estimated using pixels within selected training areas of the SAR
image.

TABLE 7.1

Kappa values for SAR classification.

Polarization Filter Kappa Sigma
Dual None 0.468 0.006
Dual MMSE 0.558 0.006
Quad None 0.619 0.005
Quad MMSE 0.666 0.005

From Equation (7.34), it is evident that the prior class membership proba-
bilities, Pr(k), will play a smaller role in the classification when the number
of looks is large. In fact, if we set all prior probabilities equal, then the dis-
criminant is simply

dk(c̄) = − log |Σk| − tr(Σ−1
k c̄), (7.35)

independent of the number of looks m. This independence holds provided that
m is a global parameter for the entire image, which for look-averaged imagery
is the case. However, if an adaptive filter, such as the MMSE filter of Chapter
5, is applied prior to classification, then m may vary somewhat from one land
cover class to the next.

An example (calculated with an ENVI/IDL script; see Canty (2014)) is
shown in Figure 7.5, where a quad polarimetric SAR image obtained with
the EMISAR airborne sensor (Conradsen et al., 2003) is classified with and
without prior adaptive filtering using the MMSE filter of Chapter 5.

∗For N = 1, Equation (7.33) reduces to the gamma distribution.

318 Supervised Classification Part 2

FIGURE 7.5

Maximum-likelihood classification of an EMISAR L-band quad polarimetric
SAR image acquired over a test agricultural area in Denmark, left: without
prior adaptive filtering, right: with prior adaptive filtering. The land use cate-
gories are: winter wheat (red), rye (green), water (blue), spring barley (yellow),
oats (cyan), beets (magenta), peas (purple), coniferous forest (coral).

Qualitatively, the classification is seen to be improved by prior filtering. This
is confirmed quantitatively in Table 7.1, which lists the Kappa coefficients cal-
culated with the ct.py script described in Section 7.2.1. The table also shows
reduced Kappa values for dual polarimetry,∗ confirming that classification
accuracy improves significantly with the number of polarimetric channels.

7.5 Hyperspectral image analysis

Hyperspectral—as opposed to multispectral—images combine both high or
moderate spatial resolution with high spectral resolution. Typical remote
sensing imaging spectrometers generate in excess of two hundred spectral
channels. Figure 7.6 shows part of a so-called image cube for the Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS) sensor taken over a region
of the California coast. Figure 7.7 displays the spectrum of a single pixel in
the image. Sensors of this kind produce much more complex data and provide

∗In which case the observations are 2× 2 matrices; see Equation (5.32).

318 Supervised Classification Part 2

FIGURE 7.5

Maximum-likelihood classification of an EMISAR L-band quad polarimetric
SAR image acquired over a test agricultural area in Denmark, left: without
prior adaptive filtering, right: with prior adaptive filtering. The land use cate-
gories are: winter wheat (red), rye (green), water (blue), spring barley (yellow),
oats (cyan), beets (magenta), peas (purple), coniferous forest (coral).

Qualitatively, the classification is seen to be improved by prior filtering. This
is confirmed quantitatively in Table 7.1, which lists the Kappa coefficients cal-
culated with the ct.py script described in Section 7.2.1. The table also shows
reduced Kappa values for dual polarimetry,∗ confirming that classification
accuracy improves significantly with the number of polarimetric channels.

7.5 Hyperspectral image analysis

Hyperspectral—as opposed to multispectral—images combine both high or
moderate spatial resolution with high spectral resolution. Typical remote
sensing imaging spectrometers generate in excess of two hundred spectral
channels. Figure 7.6 shows part of a so-called image cube for the Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS) sensor taken over a region
of the California coast. Figure 7.7 displays the spectrum of a single pixel in
the image. Sensors of this kind produce much more complex data and provide

∗In which case the observations are 2× 2 matrices; see Equation (5.32).

Hyperspectral image analysis 319

correspondingly much more information about the reflecting surfaces exam-
ined than their multispectral counterparts.

The classification methods discussed in Chapter 6 and in the present chapter
must in general be modified considerably in order to cope with the volume of
data provided in a hyperspectral image. For example, the covariance matrix
of an AVIRIS scene has dimension 224× 224, so that the modeling of image
or class probability distributions is much more difficult. Here one speaks of
“ill-posed” classification problems, meaning that the available training data
may be insufficient to estimate the model parameters adequately, and some
sort of dimensionality reduction is needed (Richards, 2012). We will restrict
discussion in the following to the concept of spectral unmixing, a method
often used in lieu of “conventional” classification, and one of the most common
techniques for hyperspectral image analysis.

7.5.1 Spectral mixture modeling

In multispectral image classification the fact that, at the scale of observa-
tion, a pixel often contains a mixture of land cover categories is generally
treated as a second-order effect and more or less ignored. When working with
hyperspectral imaging spectrometers, it is possible to treat the problem of
the “mixed pixel” quantitatively. While one can still speak of classification
of land surfaces, the training data now consist of external spectral libraries
or, in some instances, reference spectra derived from within the images them-
selves. Comparison with external spectral libraries requires detailed attention
to atmospheric correction. The end product is not the discrete labeling of the
pixels that we have become familiar with, but consists rather of image planes
or maps showing, at each pixel location, the proportion of surface material
contributing to the observed reflectance.

The basic premise of mixture modeling is that, within a given scene, the
surface is dominated by a small number of common materials that have char-
acteristic spectral properties. These are referred to as the end-members and it
is assumed that the spectral variability captured by the remote sensing system
can be modeled by mixtures of end-members.

Suppose that there are K end-members and N spectral bands. Denote the
spectrum of the ith end-member by the column vector

mi = (mi
1,m

i
2 . . .m

i
N)⊤

and the matrix of end-member spectra M by

M = (m1 . . .mK) =






m1
1 . . . mK

1
...

. . .
...

m1
N . . . mK

N




 ,

with one column for each end-member. For hyperspectral imagery we always
have K ≪ N , unlike the situation for multispectral data where K ≈ N .

320 Supervised Classification Part 2

FIGURE 7.6

AVIRIS hyperspectral image cube over the Santa Monica Mountains acquired
on April 7, 1997 at a GSD of 20 m.

0 50 100 150 200

0

500

1000

1500

2000

FIGURE 7.7

AVIRIS spectrum at one pixel location in Figure 7.6. There are 224 spectral
bands covering the 0.4–1.5 µm wavelength interval.

320 Supervised Classification Part 2

FIGURE 7.6

AVIRIS hyperspectral image cube over the Santa Monica Mountains acquired
on April 7, 1997 at a GSD of 20 m.

0 50 100 150 200

0

500

1000

1500

2000

FIGURE 7.7

AVIRIS spectrum at one pixel location in Figure 7.6. There are 224 spectral
bands covering the 0.4–1.5 µm wavelength interval.

Hyperspectral image analysis 321

The measured spectrum, represented by random vector G, may be modeled
as a linear combination of end-members plus a residual term R which is
understood to be the variation in G not explained by the mixture model:

G = α1m
1 + . . .+ αKmK +R = Mα+R. (7.36)

The vector α = (α1 . . . αK)⊤ contains non-negative mixing coefficients which
are to be determined. Let us assume that the residual R is a normally dis-
tributed, zero mean random vector with covariance matrix

ΣR =







σ2
1 0 . . . 0
0 σ2

2 . . . 0
...

...
. . .

...
0 0 . . . σ2

N







.

The standardized residual is Σ
−1/2
R R (why?) and the square of the standard-

ized residual is
(Σ

−1/2
R R)⊤(Σ−1/2

R R) = R⊤Σ−1
R R. (7.37)

The mixing coefficients αmay then be determined by minimizing this quantity
with respect to the αi under the condition that they sum to unity,

K�

i=1

αi = 1, (7.38)

and are all non-negative,

αi ≥ 0, i = 1 . . .K. (7.39)

Ignoring the requirement of Equation (7.39) for the time being, a Lagrange
function for minimization of Equation (7.37) under the constraint of Equation
(7.38) is

L = R⊤Σ−1
R R+ 2λ(

K�

i=1

αi − 1)

= (G −Mα)⊤Σ−1
R (G −Mα) + 2λ(

K�

i=1

αi − 1),

the last equality following from Equation (7.36). Solving the set of equations

∂L

∂α
= 0,

∂L

∂λ
= 0,

and replacing G by its realization g, we obtain the estimates for the mixing
coefficients (Exercise 5)

α̂ = (M⊤Σ−1
R M)−1(M⊤Σ−1

R g − λ1K)

α̂
⊤1K = 1,

(7.40)

322 Supervised Classification Part 2

where 1K is a column vector of K ones. The first equation determines the
mixing coefficients in terms of known quantities and λ. The second equation
can be used to eliminate λ. Neglecting the constraint in Equation (7.39) is
common practice. It can, however, be dealt with using appropriate numerical
methods (Nielsen, 2001).

7.5.2 Unconstrained linear unmixing

If we work, for example, with MNF-transformed data (see Section 3.4), then
we can assume that ΣR = I.∗ If furthermore we ignore both of the constraints
on α, Equations (7.38) and (7.39), which amounts to the assumption that the
end-member spectra M are capable of explaining the observations completely
apart from random noise, then Equation (7.40) reduces to the ordinary least
squares estimate for α,

α̂ = [(M⊤M)−1M⊤]g. (7.41)

The expression in square brackets is the pseudo inverse of the matrix M

and the covariance matrix for α is σ2(M⊤M)−1, as is explained in Section
2.6.3. More sophisticated approaches, which are applicable when not all of the
end-members are known, are discussed in the Exercises.

7.5.3 Intrinsic end-members and pixel purity

When a spectral library for all of the K end-members in M is available, the
mixture coefficients can be calculated directly using the above methods. The
primary product of the spectral mixture analysis consists of fraction images
which show the spatial distribution and abundance of the end-member com-
ponents in the scene. If such external data are unavailable, there are various
strategies for determining end-members from the hyperspectral image itself.

For example, as a first step one can reduce the dimensionality of the data.
This may be accomplished with the minimum noise fraction transformation
described in Section 3.4.2:

run scripts/mnf.py imagery /97 _radianz_registriert_voll

------------MNF ---------------

Mon Apr 29 11:57:23 2024

Input imagery /97 _radianz_registriert_voll

Signal to noise ratios:

[8.176397 5.2275453 4.3195086 2.9181838 2.5331788

2.2690113

∗This is at least the case for the MNF transformation of Section 3.4.1. If the PCA/MNF
algorithm is used, Section 3.4.2, then the components of R must first be divided by the
corresponding eigenvalues of the transformation.

322 Supervised Classification Part 2

where 1K is a column vector of K ones. The first equation determines the
mixing coefficients in terms of known quantities and λ. The second equation
can be used to eliminate λ. Neglecting the constraint in Equation (7.39) is
common practice. It can, however, be dealt with using appropriate numerical
methods (Nielsen, 2001).

7.5.2 Unconstrained linear unmixing

If we work, for example, with MNF-transformed data (see Section 3.4), then
we can assume that ΣR = I.∗ If furthermore we ignore both of the constraints
on α, Equations (7.38) and (7.39), which amounts to the assumption that the
end-member spectra M are capable of explaining the observations completely
apart from random noise, then Equation (7.40) reduces to the ordinary least
squares estimate for α,

α̂ = [(M⊤M)−1M⊤]g. (7.41)

The expression in square brackets is the pseudo inverse of the matrix M

and the covariance matrix for α is σ2(M⊤M)−1, as is explained in Section
2.6.3. More sophisticated approaches, which are applicable when not all of the
end-members are known, are discussed in the Exercises.

7.5.3 Intrinsic end-members and pixel purity

When a spectral library for all of the K end-members in M is available, the
mixture coefficients can be calculated directly using the above methods. The
primary product of the spectral mixture analysis consists of fraction images
which show the spatial distribution and abundance of the end-member com-
ponents in the scene. If such external data are unavailable, there are various
strategies for determining end-members from the hyperspectral image itself.

For example, as a first step one can reduce the dimensionality of the data.
This may be accomplished with the minimum noise fraction transformation
described in Section 3.4.2:

run scripts/mnf.py imagery /97 _radianz_registriert_voll

------------MNF ---------------

Mon Apr 29 11:57:23 2024

Input imagery /97 _radianz_registriert_voll

Signal to noise ratios:

[8.176397 5.2275453 4.3195086 2.9181838 2.5331788

2.2690113

∗This is at least the case for the MNF transformation of Section 3.4.1. If the PCA/MNF
algorithm is used, Section 3.4.2, then the components of R must first be divided by the
corresponding eigenvalues of the transformation.

Hyperspectral image analysis 323

0 50 100 150 200

Spectral Band

0

1

2

3

4

5

S
i
g
n
a
l

t
o

n
o
i
s
e

myimagery/97_radianz_registriert_voll

FIGURE 7.8

The signal to noise ratios for the MNF transformation of the image in Fig-
ure 7.6.

2.195611 2.0360427 1.7489603 1.7093334 1.6091063

1.5357301

1.3793161 1.2976725 1.2197104 1.1656473 1.109391

1.0812812

...

...

MNFs written to: imagery /97 _radianz_registriert_voll_mnf

elapsed time : 7.130625486373901

By examining the signal-to-noise ratios of the transformation and retaining
only the components with values exceeding some threshold, the number of
dimensions can be reduced substantially; see Figure 7.8.

The so-called pixel purity index (PPI) may then be used to find the most
spectrally pure, or extreme, pixels in the reduced feature space. The most
spectrally pure pixels typically correspond to end-members. These pixels must
be on the corners, edges or faces of the data cloud. The PPI is computed by
repeatedly projecting n-dimensional scatter plots onto a random unit vector.
The extreme pixels in each projection are noted and the number of times each
pixel is marked as extreme is recorded. A threshold value is used to define how
many pixels are marked as extreme at the ends of the projected vector. This
value should be 2 to 3 times the variance in the data, which is 1 when using
the MNF-transformed bands. A minimum of about 5000 iterations is usually
required to produce useful results.

324 Supervised Classification Part 2

When the iterations are completed, a PPI image is created in which the
intensity of each pixel corresponds to the number of times that pixel was
recorded as extreme. Bright pixels are generally end-members. The
end-members, projected back onto image coordinates, also hint at locations
and sites that could be visited for ground truth measurements, should that
be feasible. This sort of “data-driven” analysis has both advantages and dis-
advantages. To quote Mustard and Sunshine (1999):

This method is repeatable and has distinct advantages for objec-
tive analysis of a data set to assess the general dimensionality and
to define end-members. The primary disadvantage of this method
is that it is fundamentally a statistical approach dependent on the
specific spectral variance of the scene and its components. Thus
the resulting end-members are mathematical constructs and may
not be physically realistic.

7.5.4 Anomaly detection: The RX algorithm

The highly resolved spectral information provided by hyperspectral imagery
has led to its frequent use in so-called target detection, the discovery of small-
scale features of interest, most often of military or law enforcement relevance.
Target detection typically involves two steps (Kwon and Nasrabadi, 2005):
First, localized spectral anomalies are pinpointed by an unsupervised filtering
procedure. Second, the significance of each identified anomaly, i.e., whether
or not it is a target, is ascertained. The latter step usually involves compari-
son with known spectral signatures. In the following we outline a well-known
procedure for carrying out the first step, the RX anomaly detector proposed
by Reed and Yu (1990). It has been extensively used in the context of tar-
get detection and is equally applicable to multispectral imagery. Theiler and
Matsekh (2009) discuss the algorithm in the context of anomalous change
detection.

By referring to the likelihood ratio test introduced in Section 2.5, a deriva-
tion of the RX algorithm is straightforward. Consider a local neighborhood,
e.g., a rectangular window within a multi- or hyperspectral image, and dis-
tinguish the central pixel as a possible anomaly. Let g(ν), ν = 1 . . .m, denote
the observed pixel vectors in the background neighborhood and g(m+1) the
central pixel. We construct the following null and alternative hypotheses:

H0 : g(ν) ∼ N (µb,Σb), ν = 1 . . .m+ 1,

H1 : g(ν) ∼ N (µb,Σb), ν = 1 . . .m, g(m+ 1) ∼ N (µ,Σb).
(7.42)

Thus the null, or no-anomaly, hypothesis is that all of the observations in the
window are uniformly sampled from a multivariate normal distribution with
mean µb and covariance matrix Σb. The alternative hypothesis states that the
central pixel is characterized by the same covariance matrix but by a different

324 Supervised Classification Part 2

When the iterations are completed, a PPI image is created in which the
intensity of each pixel corresponds to the number of times that pixel was
recorded as extreme. Bright pixels are generally end-members. The
end-members, projected back onto image coordinates, also hint at locations
and sites that could be visited for ground truth measurements, should that
be feasible. This sort of “data-driven” analysis has both advantages and dis-
advantages. To quote Mustard and Sunshine (1999):

This method is repeatable and has distinct advantages for objec-
tive analysis of a data set to assess the general dimensionality and
to define end-members. The primary disadvantage of this method
is that it is fundamentally a statistical approach dependent on the
specific spectral variance of the scene and its components. Thus
the resulting end-members are mathematical constructs and may
not be physically realistic.

7.5.4 Anomaly detection: The RX algorithm

The highly resolved spectral information provided by hyperspectral imagery
has led to its frequent use in so-called target detection, the discovery of small-
scale features of interest, most often of military or law enforcement relevance.
Target detection typically involves two steps (Kwon and Nasrabadi, 2005):
First, localized spectral anomalies are pinpointed by an unsupervised filtering
procedure. Second, the significance of each identified anomaly, i.e., whether
or not it is a target, is ascertained. The latter step usually involves compari-
son with known spectral signatures. In the following we outline a well-known
procedure for carrying out the first step, the RX anomaly detector proposed
by Reed and Yu (1990). It has been extensively used in the context of tar-
get detection and is equally applicable to multispectral imagery. Theiler and
Matsekh (2009) discuss the algorithm in the context of anomalous change
detection.

By referring to the likelihood ratio test introduced in Section 2.5, a deriva-
tion of the RX algorithm is straightforward. Consider a local neighborhood,
e.g., a rectangular window within a multi- or hyperspectral image, and dis-
tinguish the central pixel as a possible anomaly. Let g(ν), ν = 1 . . .m, denote
the observed pixel vectors in the background neighborhood and g(m+1) the
central pixel. We construct the following null and alternative hypotheses:

H0 : g(ν) ∼ N (µb,Σb), ν = 1 . . .m+ 1,

H1 : g(ν) ∼ N (µb,Σb), ν = 1 . . .m, g(m+ 1) ∼ N (µ,Σb).
(7.42)

Thus the null, or no-anomaly, hypothesis is that all of the observations in the
window are uniformly sampled from a multivariate normal distribution with
mean µb and covariance matrix Σb. The alternative hypothesis states that the
central pixel is characterized by the same covariance matrix but by a different

Hyperspectral image analysis 325

Listing 7.4: Anomaly detection (excerpt from the script rx.py).

1 gdal .AllRegister ()

2 infile = args [0]

3 path = os.path .dirname(infile)

4 basename = os.path.basename (infile)

5 root , ext = os.path.splitext (basename)

6 outfile = path+’/’+root+’_rx’+ext

7 print(’------------�RX�---------------’)

8 print(time.asctime ())

9 print(’Input�%s’%infile)

10 start = time.time ()

11 # input image , convert to ENVI format

12 inDataset = gdal.Open(infile ,GA_ReadOnly)

13 cols = inDataset .RasterXSize

14 rows = inDataset .RasterYSize

15 projection = inDataset .GetProjection ()

16 geotransform = inDataset .GetGeoTransform ()

17 driver = gdal.GetDriverByName (’ENVI ’)

18 enviDataset = driver.CreateCopy (’imagery/entmp’,

19 inDataset)

20 inDataset = None

21 enviDataset = None

22 # RX- algorithm

23 img = envi.open(’imagery/entmp.hdr’)

24 arr = img.load ()

25 rx = RX(background =calc_stats (arr))

26 res = rx(arr)

27 # output

28 driver = gdal.GetDriverByName (’GTiff’)

29 outDataset = driver.Create(outfile ,cols ,rows ,1,\

30 GDT_Float32)

31 i f geotransform i s not None :

32 outDataset . SetGeoTransform (geotransform)

33 i f projection i s not None :

34 outDataset .SetProjection (projection)

35 outBand = outDataset .GetRasterBand (1)

36 outBand.WriteArray (np.asarray(res ,np.float32),0,0)

37 outBand.FlushCache ()

mean vector µ. In the notation of Definition 2.7, the maximized likelihoods
are given by

max
θ∈ω0

L(θ) =

m+1∏

ν=1

exp

(

−1

2
(g(ν)− µ̂b)

⊤Σ̂
−1

b (g(ν)− µ̂b)

)

326 Supervised Classification Part 2

and by

max
θ∈ω

L(θ) =

m∏

ν=1

exp

(

−1

2
(g(ν)− µ̂b)

⊤Σ̂
−1

b (g(ν) − µ̂b)

)

· exp
(

−1

2
(g(m+ 1)− µ̂)⊤Σ̂

−1

b (g(m+ 1)− µ̂)

)

,

where µ̂b and Σ̂b are the maximum-likelihood estimates of the mean and
covariance matrix of the background. But µ̂ = g(m + 1) (there is only one
observation), so the last exponential factor in the above equation is unity.
Therefore, the likelihood ratio test has the critical region

Q =
maxθ∈ω0

L(θ)

maxθ∈ω L(θ)
= exp

(

−1

2
(g(m+ 1)− µ̂b)

⊤Σ̂
−1

b (g(m+ 1)− µ̂b)

)

≤ k.

Thus we reject the null hypothesis (that no anomaly is present) for central
observation g = g(m+ 1) when the squared Mahalanobis distance

d = (g − µ̂b)
⊤Σ̂

−1

b (g − µ̂b) (7.43)

exceeds some threshold. This distance serves as the RX anomaly detector. In
practice, quite good results can be obtained with a global, rather than local,
estimate of the background statistical parameters µ̂b and Σ̂b.

A simple Python implementation using the Spy package∗ and allowing only
for global background statistics is shown in Listing 7.4; see also Appendix C.
In lines 12–19, the image filename is entered and the image copied to ENVI
standard format in order to be read into a Spy ImageFile object. This occurs
in lines 23 and 24. In line 25, the RX anomaly detector is invoked to set the
global background statistics, and the result (the image of squared Mahalanobis
distances) is returned in line 26. An example is shown in Figure 7.9 at the
end of this section.

7.5.5 Anomaly detection: The kernel RX algorithm

An improvement in anomaly detection might be expected if possible nonlin-
earities in the data are included in the model. A kernelized variant of the RX
algorithm was suggested by Kwon and Nasrabadi (2005). To quote from their
introduction:

The conventional RX distance measure does not take into ac-
count the higher order relationships between the spectral bands
at different wavelengths. The nonlinear relationships between dif-
ferent spectral bands within the target or clutter spectral signa-
ture need to be exploited in order to better distinguish between

∗http://www.spectralpython.net/index.html.

http://www.spectralpython.net/index.html

326 Supervised Classification Part 2

and by

max
θ∈ω

L(θ) =

m∏

ν=1

exp

(

−1

2
(g(ν)− µ̂b)

⊤Σ̂
−1

b (g(ν) − µ̂b)

)

· exp
(

−1

2
(g(m+ 1)− µ̂)⊤Σ̂

−1

b (g(m+ 1)− µ̂)

)

,

where µ̂b and Σ̂b are the maximum-likelihood estimates of the mean and
covariance matrix of the background. But µ̂ = g(m + 1) (there is only one
observation), so the last exponential factor in the above equation is unity.
Therefore, the likelihood ratio test has the critical region

Q =
maxθ∈ω0

L(θ)

maxθ∈ω L(θ)
= exp

(

−1

2
(g(m+ 1)− µ̂b)

⊤Σ̂
−1

b (g(m+ 1)− µ̂b)

)

≤ k.

Thus we reject the null hypothesis (that no anomaly is present) for central
observation g = g(m+ 1) when the squared Mahalanobis distance

d = (g − µ̂b)
⊤Σ̂

−1

b (g − µ̂b) (7.43)

exceeds some threshold. This distance serves as the RX anomaly detector. In
practice, quite good results can be obtained with a global, rather than local,
estimate of the background statistical parameters µ̂b and Σ̂b.

A simple Python implementation using the Spy package∗ and allowing only
for global background statistics is shown in Listing 7.4; see also Appendix C.
In lines 12–19, the image filename is entered and the image copied to ENVI
standard format in order to be read into a Spy ImageFile object. This occurs
in lines 23 and 24. In line 25, the RX anomaly detector is invoked to set the
global background statistics, and the result (the image of squared Mahalanobis
distances) is returned in line 26. An example is shown in Figure 7.9 at the
end of this section.

7.5.5 Anomaly detection: The kernel RX algorithm

An improvement in anomaly detection might be expected if possible nonlin-
earities in the data are included in the model. A kernelized variant of the RX
algorithm was suggested by Kwon and Nasrabadi (2005). To quote from their
introduction:

The conventional RX distance measure does not take into ac-
count the higher order relationships between the spectral bands
at different wavelengths. The nonlinear relationships between dif-
ferent spectral bands within the target or clutter spectral signa-
ture need to be exploited in order to better distinguish between

∗http://www.spectralpython.net/index.html.

Hyperspectral image analysis 327

the two hypotheses. Furthermore the Gaussian assumption in the
RX-algorithm for the distributions [under] the two hypotheses H0

and H1 in general is not valid.

Their derivation of the kernel RX algorithm is reproduced in the following,
merely adapting it to our notation.

To begin with, we write the mapping of the terms in Equation (7.43) from
the linear input space to a nonlinear feature space in the form

g → φ(g) ≡ φ

µ̂b → (µ̂φ)b ≡ µφ

Σ̂b → (Σ̂φ)b ≡ Σφ.

The definitions on the right serve to simplify the notation. The centered data
matrix of m observations in the feature space is, see Equation (4.30),

Φ̃ =






φ̃(1)⊤

...
φ̃(m)⊤




 ,

where

φ̃(ν) = φ(ν)− µφ, ν = 1 . . .m, µφ =
1

m

m�

ν=1

φ(ν), (7.44)

and the m×m centered kernel matrix for the m observations is

K̃ = Φ̃Φ̃
⊤
,

which can be calculated with Equation (4.31). The Mahalanobis distance mea-
sure, Equation (7.43), expressed in the nonlinear feature space, is given by

dφ(g) = (φ− µφ)
⊤Σ−1

φ (φ− µφ), (7.45)

and we wish to express it purely in terms of kernel functions. Let’s begin with
the covariance matrix Σφ. It is given by the outer product

Σφ =
1

m

m�

ν=1

(φ(ν)− µφ)(φ(ν)− µφ)
⊤ =

1

m
Φ̃

⊤
Φ̃. (7.46)

Let wi
φ, i = 1 . . . r, be its first r eigenvectors in order of decreasing eigenvalue,

and define
W φ = (w1

φ, . . .w
r
φ).

In general, we must assume that the eigenvalues of Σφ beyond the rth one are
effectively zero. Then the eigendecomposition of Σφ is given by, see Equation
(1.49),

Σφ = W φΛW φ
⊤,

328 Supervised Classification Part 2

where Λ is a diagonal matrix of the first r eigenvalues of Σφ. We replace Σ−1
φ

in Equation (7.45) by the pseudo inverse, Equation (1.50),

Σ+
φ = W φΛ

−1W φ
⊤. (7.47)

Recall that Equation (3.49) in Chapter 3 expressed the eigenvectors wi of
the covariance matrix in terms of the dual vectors αi, which are eigenvectors
of the centered Gram matrix. In the nonlinear space, we do the same, writing
Equation (3.49) in the form (see also Equation (1.13))

wi
φ =

m∑

ν=1

(αi)νφ̃(ν) = (φ̃(1), . . . φ̃(m))αi = Φ̃
⊤
αi, i = 1 . . . r, (7.48)

where the αi are now eigenvectors of the centered kernel matrix, that is,

K̃αi = λiαi.

Now let us write Equation (7.48) in matrix form,

W φ = Φ̃
⊤
α, (7.49)

where
α = (α1, . . .αr).

Substituting Equation (7.49) into Equation (7.47), we obtain

Σ+
φ = Φ̃

⊤
αΛ−1α⊤Φ̃

and accordingly, with Equation (7.45), the distance measure

dφ(g) = (φ− µφ)
⊤Φ̃

⊤
αΛ−1α⊤Φ̃(φ− µφ). (7.50)

The eigenvalues of Σφ, which appear along the diagonal of Λ, are in fact the

same as those of the centered kernel matrix K̃ except for a factor 1/m. That is,

Σφwi = ΣφΦ̃
⊤
αi =

1

m
Φ̃

⊤
Φ̃Φ̃

⊤
α1 =

1

m
Φ̃

⊤
K̃α1 =

1

m
Φ̃

⊤
λiα1 =

λi

m
wi.

Hence, the eigen-decomposition of K̃ is

K̃ = mαΛα⊤

and its pseudo inverse is

K̃
+
=

1

m
αΛ−1α⊤. (7.51)

We can therefore write the nonlinear anomaly detector, Equation (7.50), in
the form

dφ(g) = m(φ− µφ)
⊤Φ̃

⊤
K̃

+
Φ̃(φ− µφ).

328 Supervised Classification Part 2

where Λ is a diagonal matrix of the first r eigenvalues of Σφ. We replace Σ−1
φ

in Equation (7.45) by the pseudo inverse, Equation (1.50),

Σ+
φ = W φΛ

−1W φ
⊤. (7.47)

Recall that Equation (3.49) in Chapter 3 expressed the eigenvectors wi of
the covariance matrix in terms of the dual vectors αi, which are eigenvectors
of the centered Gram matrix. In the nonlinear space, we do the same, writing
Equation (3.49) in the form (see also Equation (1.13))

wi
φ =

m∑

ν=1

(αi)νφ̃(ν) = (φ̃(1), . . . φ̃(m))αi = Φ̃
⊤
αi, i = 1 . . . r, (7.48)

where the αi are now eigenvectors of the centered kernel matrix, that is,

K̃αi = λiαi.

Now let us write Equation (7.48) in matrix form,

W φ = Φ̃
⊤
α, (7.49)

where
α = (α1, . . .αr).

Substituting Equation (7.49) into Equation (7.47), we obtain

Σ+
φ = Φ̃

⊤
αΛ−1α⊤Φ̃

and accordingly, with Equation (7.45), the distance measure

dφ(g) = (φ− µφ)
⊤Φ̃

⊤
αΛ−1α⊤Φ̃(φ− µφ). (7.50)

The eigenvalues of Σφ, which appear along the diagonal of Λ, are in fact the

same as those of the centered kernel matrix K̃ except for a factor 1/m. That is,

Σφwi = ΣφΦ̃
⊤
αi =

1

m
Φ̃

⊤
Φ̃Φ̃

⊤
α1 =

1

m
Φ̃

⊤
K̃α1 =

1

m
Φ̃

⊤
λiα1 =

λi

m
wi.

Hence, the eigen-decomposition of K̃ is

K̃ = mαΛα⊤

and its pseudo inverse is

K̃
+
=

1

m
αΛ−1α⊤. (7.51)

We can therefore write the nonlinear anomaly detector, Equation (7.50), in
the form

dφ(g) = m(φ− µφ)
⊤Φ̃

⊤
K̃

+
Φ̃(φ− µφ).

Hyperspectral image analysis 329

The factor m is irrelevant and can be dropped. To complete the kernelization
of this expression, consider the inner product

φ⊤Φ̃
⊤
= φ⊤(φ̃(1) . . . φ̃(m)

)

= φ⊤((φ(1) . . .φ(m))− µφ

)

=
(
(φ⊤φ(1)) . . . (φ⊤φ(m))

)
− 1

m

m∑

ν=1

(φ⊤φ(ν)),

or, in terms of the symmetric kernel function k(g, g′) = φ(g)⊤φ(g′),

φ⊤Φ̃
⊤
=

(
k(g(1), g) . . . k(g(m), g)

)
− 1

m

m∑

ν=1

k(g(ν), g) =: Kg.

In a similar way (Exercise 7), one can show that

µ⊤
φ Φ̃

⊤
=

1

m

m∑

ν=1

(
k(g(ν), g(1)) . . . k(g(ν), g(m))

)
− 1

m2

m∑

ν,ν′=1

k(g(ν), g(ν′))

=: Kµ.
(7.52)

The first term inKµ is the row vector of the column averages of the uncentered
kernel matrix, and the second term is the overall average of the uncentered
kernel matrix elements. Combining, we have finally

dφ(g) = (Kg −Kµ)K̃
+
(Kg −Kµ)

⊤ (7.53)

as our kerneled RX anomaly detector.
An excerpt from the Python script krx.py for kernel RX (Appendix C) is

shown in Listing 7.5. After the usual preliminaries, sample observation vec-
tors are placed in the array G (line 10) and the kernel matrix and its centered
version are determined in lines 16 and 17. In order to determine the number
r of non-zero eigenvalues, the centered kernel matrix is diagonalized and its
eigenvectors and eigenvalues sorted in decreasing order in lines 20–23. Then r
is determined as the number of eigenvalues exceeding the machine tolerance,
lines 24 and 25. The pseudoinverse of the centered kernel matrix, Equation
(7.51), is calculated in line 28. The row vector Kµ (Python/Numpy array Ku),
which depends only on the kernel matrix, is first determined, lines 31 and 32.
Then, in the for loop, the anomaly image (squared Mahalanobis distances,
Equation (7.53)) is calculated row by row. Figure 7.9 shows an example com-
paring the RX and kernel RX detectors. Qualitatively, the kernelized method
performs better.

330 Supervised Classification Part 2

Listing 7.5: Kernelized anomaly detection (excerpt from the script krx.py).

1 # image data matrix

2 GG = np.zeros((rows *cols ,bands))

3 for b in range(bands):

4 band = inDataset .GetRasterBand (b+1)

5 GG[:,b] = band .ReadAsArray (0,0,cols ,rows)\

6 .astype(f l oat). ravel()

7 inDataset = None

8 # random training data matrix

9 idx = np.random.randint(0,rows*cols ,size=m)

10 G = GG[idx ,:]

11 # KRX -algorithm

12 print(’------------�KRX�---------------’)

13 print(time.asctime ())

14 print(’Input�%s’%infile)

15 start = time.time ()

16 K,gma=auxil.kernelMatrix (G, k=1)

17 Kc = auxil.center(K)

18 print(’GMA:�%f’%gma)

19 # pseudoinvert centered kernel matrix

20 lam , alpha = np.linalg.eigh(Kc)

21 idx = range(m)[:: -1]

22 lam = lam[idx]

23 alpha = alpha[:,idx]

24 tol = max(lam)*m*np.finfo(f l oat).eps

25 r = np.where(lam >tol)[0].shape[0]

26 alpha = alpha[:,:r]

27 lam = lam [:r]

28 Kci = alpha*np.diag (1./ lam)* alpha.T

29 # row -by-row anomaly image

30 res = np.zeros((rows ,cols))

31 Ku = np.sum(K,0)/ m - np.sum(K)/m**2

32 Ku = np.mat(np.ones(cols)).T*Ku

33 for i in range(rows):

34 i f i % 100 == 0:

35 print(’row:�%i’%i)

36 GGi = GG[i*cols :(i+1)* cols ,:]

37 Kg,_=auxil.kernelMatrix (GGi ,G,gam=gma ,k=1)

38 a = np.sum(Kg ,1)

39 a = a*np.mat(np.ones(m))

40 Kg = Kg - a/m

41 Kgu = Kg - Ku

42 d = np.sum(np.multiply (Kgu ,Kgu*Kci),1)

43 res[i ,:] = d.ravel()

330 Supervised Classification Part 2

Listing 7.5: Kernelized anomaly detection (excerpt from the script krx.py).

1 # image data matrix

2 GG = np.zeros((rows *cols ,bands))

3 for b in range(bands):

4 band = inDataset .GetRasterBand (b+1)

5 GG[:,b] = band .ReadAsArray (0,0,cols ,rows)\

6 .astype(f l oat). ravel()

7 inDataset = None

8 # random training data matrix

9 idx = np.random.randint(0,rows*cols ,size=m)

10 G = GG[idx ,:]

11 # KRX -algorithm

12 print(’------------�KRX�---------------’)

13 print(time.asctime ())

14 print(’Input�%s’%infile)

15 start = time.time ()

16 K,gma=auxil.kernelMatrix (G, k=1)

17 Kc = auxil.center(K)

18 print(’GMA:�%f’%gma)

19 # pseudoinvert centered kernel matrix

20 lam , alpha = np.linalg.eigh(Kc)

21 idx = range(m)[:: -1]

22 lam = lam[idx]

23 alpha = alpha[:,idx]

24 tol = max(lam)*m*np.finfo(f l oat).eps

25 r = np.where(lam >tol)[0].shape[0]

26 alpha = alpha[:,:r]

27 lam = lam [:r]

28 Kci = alpha*np.diag (1./ lam)* alpha.T

29 # row -by-row anomaly image

30 res = np.zeros((rows ,cols))

31 Ku = np.sum(K,0)/ m - np.sum(K)/m**2

32 Ku = np.mat(np.ones(cols)).T*Ku

33 for i in range(rows):

34 i f i % 100 == 0:

35 print(’row:�%i’%i)

36 GGi = GG[i*cols :(i+1)* cols ,:]

37 Kg,_=auxil.kernelMatrix (GGi ,G,gam=gma ,k=1)

38 a = np.sum(Kg ,1)

39 a = a*np.mat(np.ones(m))

40 Kg = Kg - a/m

41 Kgu = Kg - Ku

42 d = np.sum(np.multiply (Kgu ,Kgu*Kci),1)

43 res[i ,:] = d.ravel()

Convolutional neural networks 331

0 50 100 150 200

0

50

100

150

200

AST_20070501_pca_rx.tif: linear: [1, 1, 1]: [600, 600, 250, 250]

0 50 100 150 200

0

50

100

150

200

AST_20070501_pca_krx.tif: linear: [1, 1, 1]: [600, 600, 250, 250]

FIGURE 7.9

Anomaly detection: Left, spatial subset of the RX anomaly image calculated
from all 9 bands of the ASTER image of Figure 6.1 using the script in List-
ing 7.4. Right, kernel RX anomaly image calculated with the script krx.py,
Listing 7.5.

7.6 Convolutional neural networks

In Section 7.1 at the beginning of the present chapter, we pointed out that
intermediate and high-resolution remote sensing imagery is characterized by
a considerable degree of spatial correlation, and then we examined ways to
include this information into the post processing of pixel-wise supervised clas-
sification approaches. A fairly obvious alternative approach is to attempt to
identify characteristic landscape features directly from the observed multi-
spectral data, and this, in the context of image analysis, is what convolutional
neural networks (CNNs) are designed to do. CNNs consist of multiple layers
that automatically and adaptively learn spatial hierarchies of features from
input images. These layers perform convolutions, ReLU activations, pooling,
and are often followed by the fully connected layers we are already familiar
with. The convolutional layers apply filters to the input images to create fea-
ture maps that highlight specific features. Activation layers introduce nonlin-
earity, allowing the network to learn complex patterns. Pooling layers reduce
the dimensionality of the data, simplifying the information without losing im-
portant features. Finally, fully connected layers aggregate the learned features
to make predictions or classifications.

332 Supervised Classification Part 2

FIGURE 7.10

A convolutional neural network for handwritten digit recognition. The in-
puts are 28× 28 pixel monochromatic images. (Reproduced with permission:
https://krutpatel.medium.com/).

An illustration of this approach is given in Figure 7.10 showing a very typical
CNN architecture for classification of the MNIST (LeCun, 2010) database of
handwritten digits. As explained above, and evident from the Figure, two
of the essential building blocks of the CNN are the convolutional layer and
the pooling layer, and these behave in a fundamentally different way than
the fully connected neuron layers we’ve seen so far. There are plenty of good
explanations of CNNs in the literature and on the web, an excellent and
thorough one can be found in Chapter 14 of Géron (2023). For our purposes, a
walk through the structure of Figure 7.10 with the help of the Keras sequential
model will be sufficient to cover the basics.

import tensorflow .keras as keras

The first convolutional layer in the Figure 7.10 consists of 32 image maps,
arrays of 28 × 28 neurons. Each neuron has a kernel or receptive field of
3 × 3 pixels in the input image (which here has only one color channel). In
Keras:

model = keras.Sequential ()

model.add(keras.layers.Conv2D(filters =32,

kernel_size =3,

padding=’same ’,

activation =’relu ’,

input_shape =(28 ,28 ,1)))

All of the neurons in a given feature map share the same(!) set of weight
parameters or filter, in this case of size 3×3×1+1 for the receptive field plus
bias. This drastically reduces the number of model parameters when compared

https://krutpatel.medium.com

332 Supervised Classification Part 2

FIGURE 7.10

A convolutional neural network for handwritten digit recognition. The in-
puts are 28× 28 pixel monochromatic images. (Reproduced with permission:
https://krutpatel.medium.com/).

An illustration of this approach is given in Figure 7.10 showing a very typical
CNN architecture for classification of the MNIST (LeCun, 2010) database of
handwritten digits. As explained above, and evident from the Figure, two
of the essential building blocks of the CNN are the convolutional layer and
the pooling layer, and these behave in a fundamentally different way than
the fully connected neuron layers we’ve seen so far. There are plenty of good
explanations of CNNs in the literature and on the web, an excellent and
thorough one can be found in Chapter 14 of Géron (2023). For our purposes, a
walk through the structure of Figure 7.10 with the help of the Keras sequential
model will be sufficient to cover the basics.

import tensorflow .keras as keras

The first convolutional layer in the Figure 7.10 consists of 32 image maps,
arrays of 28 × 28 neurons. Each neuron has a kernel or receptive field of
3 × 3 pixels in the input image (which here has only one color channel). In
Keras:

model = keras.Sequential ()

model.add(keras.layers.Conv2D(filters =32,

kernel_size =3,

padding=’same ’,

activation =’relu ’,

input_shape =(28 ,28 ,1)))

All of the neurons in a given feature map share the same(!) set of weight
parameters or filter, in this case of size 3×3×1+1 for the receptive field plus
bias. This drastically reduces the number of model parameters when compared

Convolutional neural networks 333

to a fully connected network. Moreover, they all share in this example the
same nonlinear ReLU output activation. The stride shown in the Figure 7.10
indicates the shift in receptive field seen by neighboring neurons and is here,
by implication, one, since the feature maps have the same dimensions as the
input array. The padding strategy chosen means that we needn’t worry about
edge effects.

Next comes a pooling layer with the same number of feature maps as the
preceding convolutional layer. Here the receptive neuron field is 2×2, and the
stride is 2 resulting in 32 pooled image maps of dimension 14×14. The inputs
to the pooling layer neurons have no weights, the neurons merely serve to
subsample the convolution outputs. Max pooling, used here, simply takes the
maximum input from the receptive field as the neuron output passed along to
the next layer. In the syntax of the Keras sequential model:

model.add(keras.layers.MaxPooling2D (pool_size =2))

The following convolutional layer is programmed to have 64 feature maps of
size 14× 14 (stride=1) and again a receptive field of size 3× 3:

model.add(keras.layers.Conv2D(filters =64,

kernel_size =3,

padding=’same ’,

activation =’relu ’))

This implies that each feature map in the second convolutional layer has a
filter of 3× 3× 32+1 adjustable weights, or 64× (3× 3× 32+ 1) = 18, 496 in
all. During training, when all intermediate values in the network are required
for back propagation, CNN memory requirements can thus still be quite large.

The next pooling layer reduces the size to 7×7×64, after which the outputs
are flattened to a linear 3136 array:

model.add(keras.layers.MaxPooling2D (pool_size =2))

model.add(keras.layers.Flatten ())

which in turn serves as input to a standard two-layer fully connected network
with one output for each of the training characters, the digits 0 through 9:

model.add(keras.layers.Dense(128, activation =’relu ’))

model.add(keras.layers.Dense(10, activation =’softmax ’))

and we’re done.
A drawback of applying a CNN like the one just described to remote

sensing imagery is the necessity for very large amounts of labeled training
data together with very high-dimensional networks and correspondingly many
adjustable parameters. Parallel processing is therefore generally a prerequi-
site for reasonable training times.∗ In the following, we will examine two

∗The reader with access to Google Drive and Colab can experiment with the above
development in a GPU runtime and also follow the rest of this Section from the links given
in the accompanying Jupyter Notebook.

334 Supervised Classification Part 2

approaches to remote sensing image segmentation with convolutional net-
works: so-called transfer learning, i.e., specialization of networks pretrained
in another domain, and fully convolutional networks which learn and regener-
ate two-dimensional landscape features directly.

7.6.1 Transfer learning

Suppose we have trained the network of Figure 7.10 to recognize hand-written
digits, but want to change the domain to images of fashion articles (shoes,
sweaters, handbags and the like). Rather than starting from scratch, we might
freeze the weights of the two convolutional layers and re-train only the final,
flattened feed-forward part of the network on the new domain. The idea here
is to try to take advantage the CNN’s learned ability to recognize low level
image structures and then to re-classify those structures with the FFN to the
categories of interest. This, if successful, will reduce costs in computation time
and memory.

Our domain is of course not fashion but satellite imagery. We will now
demonstrate transfer learning with a EuroSAT image dataset∗ consisting of
27,000 labeled and geo-referenced Sentinel-2 image patches.

import tensorflow_datasets as tfds

(test_set , valid_set , train_set), info =

tfds .load (’eurosat/rgb’,

split = [’train [:10%]’, ’train [10%:25] ’, ’train [25%:]’],

as_supervised =True ,

with_info =True)

The code above downloads the RGB version of the data (consisting of Sentinel-
2 bands b2, b3, b4 only) and splits them into test, validate and train sets in
the ratio 10%:15%:75%. Examining the info attribute of the dataset, we see
that the image patches are of size 64×64×3 and that there are 10 class labels
in all,

info .features

FeaturesDict ({

’filename ’: Text (shape=(), dtype=string),

’image’: Image(shape =(64, 64, 3), dtype=uint8),

’label’: ClassLabel (shape=(), dtype=int64 ,

num_classes =10),

})

info .features [’label’]. names

[’AnnualCrop ’,

’Forest’,

∗https://www.tensorflow.org/datasets/catalog/eurosat

https://www.tensorflow.org/datasets/catalog/eurosat

334 Supervised Classification Part 2

approaches to remote sensing image segmentation with convolutional net-
works: so-called transfer learning, i.e., specialization of networks pretrained
in another domain, and fully convolutional networks which learn and regener-
ate two-dimensional landscape features directly.

7.6.1 Transfer learning

Suppose we have trained the network of Figure 7.10 to recognize hand-written
digits, but want to change the domain to images of fashion articles (shoes,
sweaters, handbags and the like). Rather than starting from scratch, we might
freeze the weights of the two convolutional layers and re-train only the final,
flattened feed-forward part of the network on the new domain. The idea here
is to try to take advantage the CNN’s learned ability to recognize low level
image structures and then to re-classify those structures with the FFN to the
categories of interest. This, if successful, will reduce costs in computation time
and memory.

Our domain is of course not fashion but satellite imagery. We will now
demonstrate transfer learning with a EuroSAT image dataset∗ consisting of
27,000 labeled and geo-referenced Sentinel-2 image patches.

import tensorflow_datasets as tfds

(test_set , valid_set , train_set), info =

tfds.load (’eurosat/rgb’,

split = [’train [:10%]’, ’train [10%:25] ’, ’train [25%:]’],

as_supervised =True ,

with_info =True)

The code above downloads the RGB version of the data (consisting of Sentinel-
2 bands b2, b3, b4 only) and splits them into test, validate and train sets in
the ratio 10%:15%:75%. Examining the info attribute of the dataset, we see
that the image patches are of size 64×64×3 and that there are 10 class labels
in all,

info .features

FeaturesDict ({

’filename ’: Text (shape=(), dtype=string),

’image’: Image(shape =(64, 64, 3), dtype=uint8),

’label’: ClassLabel (shape=(), dtype=int64 ,

num_classes =10),

})

info .features [’label’]. names

[’AnnualCrop ’,

’Forest’,

∗https://www.tensorflow.org/datasets/catalog/eurosat

Convolutional neural networks 335

FIGURE 7.11

Training patches from the EuroSAT image dataset.

’HerbaceousVegetation ’,

’Highway’,

’Industrial ’,

’Pasture’,

’PermanentCrop ’,

’Residential ’,

’River’,

’SeaLake’]

A few random training patches can be viewed with

fig=tfds .show_examples (train_set , info , rows =3, cols =4)

and are shown in Figure 7.11.
Now for the base model. We choose the Xception application (Chollet,

2017) available from the TensorFlow website.∗ This is a so-called depth wise
separable convolutional architecture and is explained in detail in the reference.
Like our toy example, the final, or top, layer consists of a fully connected FFN
with provisions for freezing the preceding CNN parameters.

∗https://www.tensorflow.org/api docs/python/tf/keras/applications/Xception

https://www.tensorflow.org/api_docs/python/tf/keras/applications/Xception

336 Supervised Classification Part 2

download Xception (base) model without top layer

base_model = keras.applications .xception .

Xception(weights=’imagenet ’,include_top =False ,

input_shape =(224 ,224 ,3))

add a pooling layer with input from the base model

(averages over all output feature maps of the base

model)

avg=keras.layers.GlobalAveragePooling2D()

(base_model .output)

add an output softmax layer with 10 neurons

and softmax activation

output = keras.layers.Dense(10, activation =’softmax ’)

(avg)

define the model

model=keras.Model(inputs=base_model .input ,

outputs=output)

The following points should be noted regarding the preceding listing:

• We built our toy network with the Keras sequential API but here we’ve
used the more flexible functional API.

• The weights of the downloaded base model were determined with the
IMAGENET dataset (https://image-net.org/).

• The original top layer is not included in the download but is replaced
by a pooling layer averaging over the CNN outputs.

• A new top layer is added, a single array of 10 neurons fully connected
to the preceding pooling layer with softmax activation matching the 10
land use classes of the EuroSAT training dataset.

The Xception model requires an input of 224× 224 patches, so some prepro-
cessing of the EuroSAT Sentinel-2 imagery is needed:

def preprocess (image ,label):

resized_image = tf.image.resize(image , [224 ,224])

final_image = keras.applications .xception . \

preprocess_input (resized_image)

return final_image , label

batch_size = 32

Randomly shuffle the elements of the training dataset.

train_set = train_set .shuffle (1000)

map the preprocessing function over the three datasets

https://image-net.org

336 Supervised Classification Part 2

download Xception (base) model without top layer

base_model = keras.applications .xception .

Xception(weights=’imagenet ’,include_top =False ,

input_shape =(224 ,224 ,3))

add a pooling layer with input from the base model

(averages over all output feature maps of the base

model)

avg=keras.layers.GlobalAveragePooling2D()

(base_model .output)

add an output softmax layer with 10 neurons

and softmax activation

output = keras.layers.Dense(10, activation =’softmax ’)

(avg)

define the model

model=keras.Model(inputs=base_model .input ,

outputs=output)

The following points should be noted regarding the preceding listing:

• We built our toy network with the Keras sequential API but here we’ve
used the more flexible functional API.

• The weights of the downloaded base model were determined with the
IMAGENET dataset (https://image-net.org/).

• The original top layer is not included in the download but is replaced
by a pooling layer averaging over the CNN outputs.

• A new top layer is added, a single array of 10 neurons fully connected
to the preceding pooling layer with softmax activation matching the 10
land use classes of the EuroSAT training dataset.

The Xception model requires an input of 224× 224 patches, so some prepro-
cessing of the EuroSAT Sentinel-2 imagery is needed:

def preprocess (image ,label):

resized_image = tf.image.resize(image , [224 ,224])

final_image = keras.applications .xception . \

preprocess_input (resized_image)

return final_image , label

batch_size = 32

Randomly shuffle the elements of the training dataset.

train_set = train_set .shuffle (1000)

map the preprocessing function over the three datasets

Convolutional neural networks 337

FIGURE 7.12

Land cover class predictions for a Sentinel-2 acquisition from May 8, 2018
north of Aachen, Germany with a 64×64 window moving in 8-pixel increments
horizontally and vertically. Dark gray: residential, blue-white: industrial.

train_set = train_set .map(preprocess). batch(batch_size).

\ prefetch (1)

valid_set = valid_set .map(preprocess). batch(batch_size).

\ prefetch (1)

test_set = test_set.map(preprocess).batch(batch_size).

\ prefetch (1)

For a GPU runtime, the prefetch method above makes the CPU prepare
the next batch while the GPU is processing the current one. The next step is
to define an optimization method, a loss function, and compile the model:

scaled gradient descent optimizer

optimizer = keras.optimizers .SGD(learning_rate =0.2,

momentum =0.9)

cross entropy loss (for no one -hot labels encoding)

loss = "sparse_categorical_crossentropy"

338 Supervised Classification Part 2

only display accuracy= overall correct/total examples

metrics = [’accuracy ’]

model.compile(loss =loss ,optimizer =optimizer ,

metrics=metrics)

Now train the model, top layer weights only (and with a GPU runtime!):

history = model.fit(train_set , epochs=10,

validation_data =valid_set)

Epoch 1/10 ... accuracy: 0.8631 val_accuracy : 0.9064

Epoch 2/10 ... accuracy: 0.9133 val_accuracy : 0.9212

Epoch 3/10 ... accuracy: 0.9252 val_accuracy : 0.9244

...

Epoch 10/10 ... accuracy: 0.9513 val_accuracy : 0.9348

FIGURE 7.13

Land cover class predictions for a Sentinel-2 acquisition from May 8, 2018
north of Aachen, Germany with a 64×64 window moving in 8-pixel increments
horizontally and vertically. Blue-white: highway.

338 Supervised Classification Part 2

only display accuracy= overall correct/total examples

metrics = [’accuracy ’]

model.compile(loss =loss ,optimizer =optimizer ,

metrics=metrics)

Now train the model, top layer weights only (and with a GPU runtime!):

history = model.fit(train_set , epochs=10,

validation_data =valid_set)

Epoch 1/10 ... accuracy: 0.8631 val_accuracy : 0.9064

Epoch 2/10 ... accuracy: 0.9133 val_accuracy : 0.9212

Epoch 3/10 ... accuracy: 0.9252 val_accuracy : 0.9244

...

Epoch 10/10 ... accuracy: 0.9513 val_accuracy : 0.9348

FIGURE 7.13

Land cover class predictions for a Sentinel-2 acquisition from May 8, 2018
north of Aachen, Germany with a 64×64 window moving in 8-pixel increments
horizontally and vertically. Blue-white: highway.

Convolutional neural networks 339

Finally, fine tune the entire model with all of its weights but only for 5 epochs:

for layer in base_model .layers:

layer.trainable = True

not sufficient to make the layers trainable ,

we must also recompile

optimizer = keras.optimizers .SGD(learning_rate =0.01 ,

momentum =0.9)

model.compile(loss ="sparse_categorical_crossentropy",

optimizer =optimizer , metrics =[’accuracy ’])

history = model.fit(train_set ,epochs=5,

validation_data =valid_set)

Epoch 1/5 ... accuracy: 0.9430 val_accuracy : 0.9748

Epoch 2/5 ... accuracy: 0.9817 val_accuracy : 0.9822

Epoch 3/5 ... accuracy: 0.9902 val_accuracy : 0.9746

Epoch 4/5 ... accuracy: 0.9931 val_accuracy : 0.9758

Epoch 5/5 ... accuracy: 0.9946 val_accuracy : 0.9785

Testing the final result, we appear to have have achieved a 97.6% accuracy!

model.evaluate (test_set)

85/85 - 12s 142ms/step loss: 0.0852 accuracy : 0.9759

It remains to save the model, giving it the keras extension:

model.save(’/content/drive /.../eurosat_model .keras’)

The python script S2cnnclassify.py (included in the software) predicts
ground cover classes from the trained model when presented with the RGB
bands of a Sentinel-2 image. To mitigate the coarse resolution caused by the
64 × 64 image patches, the script moves a 64 × 64 window in smaller incre-
ments across the input image. Examples are shown in Figures 7.12 and 7.13
for an acquisition over a heavily populated area north of Aachen, Germany.
Industrial parks on the peripheries of larger towns and villages are clearly
defined (Figure 7.12).

The highway classification (Figure 7.13) is somewhat less convincing due
to the 64× 64 moving window. An Autobahn or other major road will often
overlap considerably with neighboring agricultural or other target land cover
classes.

340 Supervised Classification Part 2

7.6.2 Semantic segmentation

FIGURE 7.14

The UNet model.

So-called fully convolutional neural networks
(FCNs) are commonly used for semantic image
segmentation, by which is meant the assignment
of every pixel in an image to one of two or more
categories. Here we examine a popular FCN ar-
chitecture, called UNet, to perform a specific se-
mantic segmentation task, namely urban building
recognition. The UNet convolutional neural net-
work architecture is a highly effective model pri-
marily used for semantic segmentation tasks in the
field of medical imaging. It is often represented in
the form of the letter “U” which gives it its name.
In our case, we are concerned with the identifica-
tion, within an arbitrarily complex remote sens-
ing image, of houses, schools, commercial edifices,
etc. Sirko et al. (2021) give a recent application
of the UNet architecture for large-scale semantic
classification of building footprints over the en-
tire African continent. We’ll program a “vanilla”
UNet FCN based on the architecture described in
de Jong et al. (2019). It consists of an encoder
and decoder section with lateral connections be-
tween the two, see Figure 7.14. (Rotated through
90 degrees, and with a little good will, one can
see the U-form.) The encoder section is a series
of 5 pairs of Keras Conv2D convolutional layers,
with successively doubling numbers of filters (64,
128, ...), connected by MaxPooling2D layers which
successively halve the image dimensions (512, 256,
...). The decoder section reverses the process with
the help of up sampling Conv2DTranspose layers,
ultimately reconstructing the input image signal
at the network output. The input to each up sam-
pling layer consists of the output from the preced-
ing layer, merged (concatenated) with the output
of the corresponding Conv2d layer from the en-
coding section (the four cross connections in Fig-
ure 7.14). The idea is to restore higher resolution
details lost during the image compression (encod-
ing) phase while decoding takes place. The model
takes as input a four channel RGB+NIR image
in np.uint8 format and outputs a 1-channel im-
age in np.float32 format. The output of the last

340 Supervised Classification Part 2

7.6.2 Semantic segmentation

FIGURE 7.14

The UNet model.

So-called fully convolutional neural networks
(FCNs) are commonly used for semantic image
segmentation, by which is meant the assignment
of every pixel in an image to one of two or more
categories. Here we examine a popular FCN ar-
chitecture, called UNet, to perform a specific se-
mantic segmentation task, namely urban building
recognition. The UNet convolutional neural net-
work architecture is a highly effective model pri-
marily used for semantic segmentation tasks in the
field of medical imaging. It is often represented in
the form of the letter “U” which gives it its name.
In our case, we are concerned with the identifica-
tion, within an arbitrarily complex remote sens-
ing image, of houses, schools, commercial edifices,
etc. Sirko et al. (2021) give a recent application
of the UNet architecture for large-scale semantic
classification of building footprints over the en-
tire African continent. We’ll program a “vanilla”
UNet FCN based on the architecture described in
de Jong et al. (2019). It consists of an encoder
and decoder section with lateral connections be-
tween the two, see Figure 7.14. (Rotated through
90 degrees, and with a little good will, one can
see the U-form.) The encoder section is a series
of 5 pairs of Keras Conv2D convolutional layers,
with successively doubling numbers of filters (64,
128, ...), connected by MaxPooling2D layers which
successively halve the image dimensions (512, 256,
...). The decoder section reverses the process with
the help of up sampling Conv2DTranspose layers,
ultimately reconstructing the input image signal
at the network output. The input to each up sam-
pling layer consists of the output from the preced-
ing layer, merged (concatenated) with the output
of the corresponding Conv2d layer from the en-
coding section (the four cross connections in Fig-
ure 7.14). The idea is to restore higher resolution
details lost during the image compression (encod-
ing) phase while decoding takes place. The model
takes as input a four channel RGB+NIR image
in np.uint8 format and outputs a 1-channel im-
age in np.float32 format. The output of the last

Convolutional neural networks 341

Conv2D layer is passed through a sigmoid activation function. This means that
the pixel intensity can be interpreted as class membership probability, i.e., the
probability of belonging to a building footprint.

Since the convolutional layers are all identical except for the number of
filters, and since each is followed by a batch normalization layer, it improves
readability to use some shortcut functions. These can be conveniently pro-
grammed with the tensorflow.keras sequential API:

shortcuts

def conv2d(filters):

return keras.models.Sequential ([

keras.layers.Conv2D(filters ,3,padding = "same "),

keras.layers.BatchNormalization (),

keras.layers.Activation (’relu ’)])

def conv2dtranspose (filters):

return keras.models.Sequential ([

keras.layers.Conv2DTranspose (filters , 3,

strides = 2,padding = "same "),

keras.layers.BatchNormalization (),

keras.layers.Activation (’relu ’)])

all MaxPooling layers have identical parameters

def maxpooling2d ():

return keras.layers.MaxPooling2D (pool_size = 2,

strides = 2,padding = "same ")

Here then is the full model, now written in the Keras functional API:

def unet_model (num_channels =4, image_size =512):

inputs=keras.layers.Input(shape=(image_size ,

image_size , num_channels))

rescaled = keras.layers.Rescaling (1./255)(inputs)

encoder

conv11=conv2d (64)(rescaled)

conv12=conv2d (64)(conv11)

max_pool1 =maxpooling2d ()(conv12)

conv21=conv2d (128)(max_pool1)

conv22=conv2d (128)(conv21)

max_pool2 =maxpooling2d ()(conv22)

conv31=conv2d (256)(max_pool2)

conv32=conv2d (256)(conv31)

max_pool3 =maxpooling2d ()(conv32)

conv41=conv2d (512)(max_pool3)

conv42=conv2d (512)(conv41)

max_pool4 =maxpooling2d ()(conv42)

conv51=conv2d (1024)(max_pool4)

conv52=conv2d (1024)(conv51)

decoder

uconv51=conv2dtranspose (512)(conv52)

merge_dec5 =keras.layers.concatenate ([conv42 ,uconv51],

axis =3)

342 Supervised Classification Part 2

conv_dec_41 =conv2d (512)(merge_dec5)

conv_dec_42 =conv2d (512)(conv_dec_41)

uconv41=conv2dtranspose (256)(conv_dec_42)

merge_dec4 =keras.layers.concatenate ([conv32 ,uconv41],

axis =3)

conv_dec_31 =conv2d (256)(merge_dec4)

conv_dec_32 =conv2d (256)(conv_dec_31)

uconv31=conv2dtranspose (128)(conv_dec_32)

merge_dec3 =keras.layers.concatenate ([conv22 ,uconv31],

axis =3)

conv_dec_21 =conv2d (128)(merge_dec3)

conv_dec_22 =conv2d (128)(conv_dec_21)

uconv21=conv2dtranspose (64)(conv_dec_22)

merge_dec2 =keras.layers.concatenate ([conv12 ,uconv21],

axis =3)

conv_dec_11 =conv2d (64)(merge_dec2)

conv_dec_12 =conv2d (64)(conv_dec_11)

output

conv_dec_12 =conv2d (8)(conv_dec_12)

output=keras.layers.Conv2D(1, 1,

activation =’sigmoid ’)(conv_dec_12)

return keras.Model(inputs=inputs ,outputs = output)

To train our model, we will make use of the dataset for the Inria Aerial
Imaging Labeling Benchmark, published in 2016. The dataset consists of
30cm spatial resolution RGB images and their corresponding semantic labels
over built up regions in Europe and USA. To quote from the Inria download
site:

[The images] cover dissimilar urban settlements, ranging from densely
populated areas (e.g., San Francisco’s financial district) to alpine
towns (e.g., Lienz in Austrian Tyrol).

A presentation of the most successful semantic classifiers determined in
the early part of the benchmark competition is given in Huang et al. (2018).
However, we haven’t made use of the Inria RGB images themselves, preferring
rather to upload only the semantic labels to Google Earth Engine and then
use them to generate 1-m resolution four-band (RGB+NIR) training image
patches from the NAIP imagery in the GEE high-resolution image archive
earthengine/datasets/catalog/USDA NAIP DOQQ.

The high resolution USDA NAIP images in the GEE archive are confined to
the continental USA. There are 180 image/label pairs in all in the Inria com-
petition dataset 72 of which are over two USA cities, the others are European
scenes and therefore not relevant in the present case. There are an additional
three American cities (108 images) in the reserved evaluation dataset and
these were also included in the training dataset.

With the generated NAIP image patches, together with the Inria labels
we can train the UNet semantic classifier and then apply it to any region

342 Supervised Classification Part 2

conv_dec_41 =conv2d (512)(merge_dec5)

conv_dec_42 =conv2d (512)(conv_dec_41)

uconv41=conv2dtranspose (256)(conv_dec_42)

merge_dec4 =keras.layers.concatenate ([conv32 ,uconv41],

axis =3)

conv_dec_31 =conv2d (256)(merge_dec4)

conv_dec_32 =conv2d (256)(conv_dec_31)

uconv31=conv2dtranspose (128)(conv_dec_32)

merge_dec3 =keras.layers.concatenate ([conv22 ,uconv31],

axis =3)

conv_dec_21 =conv2d (128)(merge_dec3)

conv_dec_22 =conv2d (128)(conv_dec_21)

uconv21=conv2dtranspose (64)(conv_dec_22)

merge_dec2 =keras.layers.concatenate ([conv12 ,uconv21],

axis =3)

conv_dec_11 =conv2d (64)(merge_dec2)

conv_dec_12 =conv2d (64)(conv_dec_11)

output

conv_dec_12 =conv2d (8)(conv_dec_12)

output=keras.layers.Conv2D(1, 1,

activation =’sigmoid ’)(conv_dec_12)

return keras.Model(inputs=inputs ,outputs = output)

To train our model, we will make use of the dataset for the Inria Aerial
Imaging Labeling Benchmark, published in 2016. The dataset consists of
30cm spatial resolution RGB images and their corresponding semantic labels
over built up regions in Europe and USA. To quote from the Inria download
site:

[The images] cover dissimilar urban settlements, ranging from densely
populated areas (e.g., San Francisco’s financial district) to alpine
towns (e.g., Lienz in Austrian Tyrol).

A presentation of the most successful semantic classifiers determined in
the early part of the benchmark competition is given in Huang et al. (2018).
However, we haven’t made use of the Inria RGB images themselves, preferring
rather to upload only the semantic labels to Google Earth Engine and then
use them to generate 1-m resolution four-band (RGB+NIR) training image
patches from the NAIP imagery in the GEE high-resolution image archive
earthengine/datasets/catalog/USDA NAIP DOQQ.

The high resolution USDA NAIP images in the GEE archive are confined to
the continental USA. There are 180 image/label pairs in all in the Inria com-
petition dataset 72 of which are over two USA cities, the others are European
scenes and therefore not relevant in the present case. There are an additional
three American cities (108 images) in the reserved evaluation dataset and
these were also included in the training dataset.

With the generated NAIP image patches, together with the Inria labels
we can train the UNet semantic classifier and then apply it to any region

Convolutional neural networks 343

FIGURE 7.15

Two NAIP images and their corresponding Inria labels.

covered by the NAIP Program, i.e., anywhere within the continental USA.
Since the GEE environment makes no provision for a TensorFlow/GPU run-
time, the corresponding label images were uploaded to GEE assets, and then
the matching NAIP images (and the labels) were exported to Google Drive
in GeoTIFF format at a scale of 1m. The label uploading was done image-
for-image from the GEE asset menu. Taking advantage of the fact that the
NAIP imagery is acquired repeatedly over several years, training examples
were generated from images acquired at different times. Figure 7.15 shows
two examples of image—semantic label pairs.

Figure 7.16 is a plot of the train and validation accuracy achieved for a
training run of 36 epochs on Colab using a GPU runtime, and Figure 7.17
compares a test image with its Inria label and the model prediction. The Colab

344 Supervised Classification Part 2

FIGURE 7.16

Training and validation accuracies achieved with the UNet model.

notebook accompanying this chapter walks the reader through the complete
training procedure and includes an interactive widget interface to perform
segmentation with the trained model anywhere in the USA. Figure 7.18 is an
example.

FIGURE 7.17

Comparison of ground truth and prediction for an image-label pair from the
test dataset.

344 Supervised Classification Part 2

FIGURE 7.16

Training and validation accuracies achieved with the UNet model.

notebook accompanying this chapter walks the reader through the complete
training procedure and includes an interactive widget interface to perform
segmentation with the trained model anywhere in the USA. Figure 7.18 is an
example.

FIGURE 7.17

Comparison of ground truth and prediction for an image-label pair from the
test dataset.

Convolutional neural networks 345

FIGURE 7.18

Classified buildings in Lawrence Livermore National Laboratory, California
and an adjacent Livermore suburb.

From Figure 7.16, we’ve achieved an accuracy of around 94%. This is con-
firmed by evaluating the test dataset:

model.evaluate (test_dataset)

135/135 [==] - 83s 386 ms/step - loss: 0.1769

- binary_accuracy : 0.9420

The main comparison metric used in the Inria benchmark competition is
intersection over union (IoU), referring to the sets of labeled and classified
pixels. A value of one implies perfect reproduction of the label image, a value
zero means no correspondence whatsoever. The cell below calculates the mean
IoU for all of the test image/label pairs (they are pipelined in batches of 4).

IoU

t = 0.4

i = 0

sumIoU = 0

for test_example , test_label in test_dataset :

for j in range(4):

label = np.reshape (test_label [j], (512, 512))

346 Supervised Classification Part 2

example = np.reshape(test_example [j],

(1, 512, 512, 4))

pred = model.predict(example)

pred = np.reshape(np.where(pred > t, 1 ,0),

(512, 512))

I = label*pred

U = label + pred - I

sU = np.sum(U)

i f sU > 0: # buildings in subscene ?

sumIoU += np.sum(I)/sU

i += 1

sumIoU/i

0.6701648623879097

This result exceeds the best results obtained in the initial benchmarking
of the Inria dataset using a multilayer perceptron (MLP) architecture (IoU
≈ 0.60)∗. The initial winners of the competition achieved IoUs of the order
0.7 with variations of the UNet model that we are using here, although later
submissions reported as much as 0.8. All of the competition exercises were
performed at 30cm spatial resolution, whereas we are training at 1m resolution
so that a direct comparison may be misleading. In addition, unlike the original
Inria competition image/label dataset, the NAIP train and test images are not
temporally very well-defined and coincide in time only approximately with the
Inria labels.

7.7 Exercises

1. Derive the confidence limits on the misclassification rate θ given by
Equation (7.14).

2. In bootstrap aggregation or bagging (Breiman, 1996; Polikar, 2006) an
ensemble of classifiers is derived from a single classifier by training it re-
peatedly on bootstrapped replicas of the training dataset, i.e., on random
samples drawn from the training set with replacement. In each replica,
some training examples may appear more than once, and some may be
missing altogether. A simple majority voting scheme is then used to
classify new data with the ensemble. Breiman (1996) shows that im-
proved classification accuracy is to be expected over that obtained by
the original classifier/training dataset, especially for relatively unstable
classifiers. Unstable classifiers are ones whose decision boundaries tend

∗https://inria.hal.science/hal-01468452/document

https://inria.hal.science/hal-01468452/document

346 Supervised Classification Part 2

example = np.reshape(test_example [j],

(1, 512, 512, 4))

pred = model.predict(example)

pred = np.reshape(np.where(pred > t, 1 ,0),

(512, 512))

I = label*pred

U = label + pred - I

sU = np.sum(U)

i f sU > 0: # buildings in subscene ?

sumIoU += np.sum(I)/sU

i += 1

sumIoU/i

0.6701648623879097

This result exceeds the best results obtained in the initial benchmarking
of the Inria dataset using a multilayer perceptron (MLP) architecture (IoU
≈ 0.60)∗. The initial winners of the competition achieved IoUs of the order
0.7 with variations of the UNet model that we are using here, although later
submissions reported as much as 0.8. All of the competition exercises were
performed at 30cm spatial resolution, whereas we are training at 1m resolution
so that a direct comparison may be misleading. In addition, unlike the original
Inria competition image/label dataset, the NAIP train and test images are not
temporally very well-defined and coincide in time only approximately with the
Inria labels.

7.7 Exercises

1. Derive the confidence limits on the misclassification rate θ given by
Equation (7.14).

2. In bootstrap aggregation or bagging (Breiman, 1996; Polikar, 2006) an
ensemble of classifiers is derived from a single classifier by training it re-
peatedly on bootstrapped replicas of the training dataset, i.e., on random
samples drawn from the training set with replacement. In each replica,
some training examples may appear more than once, and some may be
missing altogether. A simple majority voting scheme is then used to
classify new data with the ensemble. Breiman (1996) shows that im-
proved classification accuracy is to be expected over that obtained by
the original classifier/training dataset, especially for relatively unstable
classifiers. Unstable classifiers are ones whose decision boundaries tend

∗https://inria.hal.science/hal-01468452/document

Exercises 347

to be sensitive to small perturbations of the training data, and neural
networks belong to this category.

Write a Python script to implement bagging using the Python object
class for Kalman filter training Ffnekf described in Appendix B.3 as
the neural network classifier. Use the program adaboost.py (Appendix
C) as a reference. Your implementation should do the following:

• Get the image to be classified, the training data, the number P of
classifiers in the ensemble, and the size n < m of the bootstrapped
replicas, where m is the size of the training set.

• Create P instances of the neural network object class and train
each of them on a different bootstrapped sample.

• Classify the entire image by constructing a c × P array of class
labels for each row of the image using the P trained classifiers,
where c is the number of pixels in each row. Then pass the array to
a function majorityVote() which implements the voting scheme,
and iterate over all of the rows of the image.

• Write the classified image to disk.

3. The random forest classifier is initialized as shown in Listing 7.3. There
the DecisionTreeClassifier()object, a binary tree classifier, is wrapp-
ed in a BaggingClassifier() object to form the random forest. Only
the maximum number of leaf nodes in each binary tree (default 50) and
the number of estimators, or trees in the forest (default 500), can be
specified in this implementation.∗ Experiment with these two parame-
ters to try to improve the classification accuracy of the random forest
classification result obtained in Section 7.3.2. This involves modifying
the default parameters in the script classify.py:

e l i f trainalg == 8:

classifier = sc.RF(Xstrn , Lstrn , 50, 500)

4. Derive the discriminant Equation (7.34) from the complex Wishart dis-
tribution, Equation (7.33).

5. Demonstrate that the mixing coefficients of Equation (7.40) minimize
the standardized residual, Equation (7.37), under constraint Equation
(7.38).

6. In searching for a single spectral signature of interest d, we can write
Equation (7.36) in the form

G = dαd +Uβ +R, (7.54)

∗In fact there are 13 different parameters in the sklearn.tree.DecisionTree

Classifier() that can be chosen by the user!

348 Supervised Classification Part 2

where U is the N × (K − 1) matrix of unwanted (or perhaps unknown)
spectra and β is the vector of their mixing coefficients. The terms partial
unmixing or matched filtering are often used to characterize methods to
eliminate or reduce the effect of U .

(a)Orthogonal subspace projection (OSP) (Harsanyi and Chang, 1994).
Show that the matrix

P = I −U(U⊤U)−1U⊤, (7.55)

where I is the N × N identity matrix, “projects out” the unwanted
components. (Hilger and Nielsen (2000) give an example of the use of this
transformation for the suppression of cloud cover from a multispectral
image.)

(b) Write a Python function osp(G,U) which takes a data matrix G

and the matrix of undesired spectra U as input and returns the OSP
projection PG⊤.

(c) Constrained energy minimization (CEM) (Harsanyi, 1993; Nielsen,
2001). OSP still requires knowledge of all of the end-member spectra. In
fact, Settle (1996) shows that it is fully equivalent to linear unmixing. If
the spectra U are unknown, CEM reduces the influence of the undesired
spectra by finding a projection direction w for which

w⊤d = 1

while at the same time minimizing the “mean of the output energy”
�(w⊤G)2�. Assuming that the mean of the projection w⊤G is approxi-
mately zero, show that the desired projection direction is

w =
Σ−1

R d

d⊤Σ−1
R d

. (7.56)

(d) Spectral angle mapping (SAM) (Kruse et al., 1993). In order to es-
tablish a measure of closeness to a desired spectrum, one can compare
the angle θ between the desired spectrum d and each pixel vector g.
Show that this is equivalent to CEM with a diagonal covariance matrix
ΣR = σ2I, i.e., to CEM without any allowance for covariance between
the spectral bands.

7. Derive Equation (7.52).

8. To cite the Earth Engine Data Catalogue:

The National Agriculture Imagery Program (NAIP) acquires
aerial imagery during the agricultural growing seasons in the
continental U.S. NAIP projects are contracted each year based
upon available funding and the imagery acquisition cycle. Be-
ginning in 2003, NAIP was acquired on a 5-year cycle. 2008
was a transition year, and a three-year cycle began in 2009.

348 Supervised Classification Part 2

where U is the N × (K − 1) matrix of unwanted (or perhaps unknown)
spectra and β is the vector of their mixing coefficients. The terms partial
unmixing or matched filtering are often used to characterize methods to
eliminate or reduce the effect of U .

(a)Orthogonal subspace projection (OSP) (Harsanyi and Chang, 1994).
Show that the matrix

P = I −U(U⊤U)−1U⊤, (7.55)

where I is the N × N identity matrix, “projects out” the unwanted
components. (Hilger and Nielsen (2000) give an example of the use of this
transformation for the suppression of cloud cover from a multispectral
image.)

(b) Write a Python function osp(G,U) which takes a data matrix G

and the matrix of undesired spectra U as input and returns the OSP
projection PG⊤.

(c) Constrained energy minimization (CEM) (Harsanyi, 1993; Nielsen,
2001). OSP still requires knowledge of all of the end-member spectra. In
fact, Settle (1996) shows that it is fully equivalent to linear unmixing. If
the spectra U are unknown, CEM reduces the influence of the undesired
spectra by finding a projection direction w for which

w⊤d = 1

while at the same time minimizing the “mean of the output energy”
�(w⊤G)2�. Assuming that the mean of the projection w⊤G is approxi-
mately zero, show that the desired projection direction is

w =
Σ−1

R d

d⊤Σ−1
R d

. (7.56)

(d) Spectral angle mapping (SAM) (Kruse et al., 1993). In order to es-
tablish a measure of closeness to a desired spectrum, one can compare
the angle θ between the desired spectrum d and each pixel vector g.
Show that this is equivalent to CEM with a diagonal covariance matrix
ΣR = σ2I, i.e., to CEM without any allowance for covariance between
the spectral bands.

7. Derive Equation (7.52).

8. To cite the Earth Engine Data Catalogue:

The National Agriculture Imagery Program (NAIP) acquires
aerial imagery during the agricultural growing seasons in the
continental U.S. NAIP projects are contracted each year based
upon available funding and the imagery acquisition cycle. Be-
ginning in 2003, NAIP was acquired on a 5-year cycle. 2008
was a transition year, and a three-year cycle began in 2009.

Exercises 349

Overall dataset availability is at the time of writing from June, 2002
to December, 2022. With the help of the Colab notebook for semantic
segmentation accompanying Section 7.6.2, examine the possibilities of
following suburban housing availability over time.

http://taylorandfrancis.com

8

Unsupervised Classification

Supervised classification of remote sensing imagery, the subject of the previous
two chapters, involves the use of a training dataset consisting of labeled pixels
representative of each land cover category of interest in an image. We saw
how to use these data to generalize to a complete labeling, or thematic map,
for an entire scene. The choice of training areas which adequately represent
the spectral characteristics of each category is very important for supervised
classification, as the quality of the training set has a profound effect on the
validity of the result. Finding and verifying training areas can be laborious,
since the analyst must select representative pixels for each of the classes by
visual examination of the image and by information extraction from additional
sources such as ground reference data (ground truth), aerial photos, or existing
maps.

Unlike supervised classification, unsupervised classification, or clustering as
it is often called, requires no reference information at all. Instead, the attempt
is made to find an underlying class structure automatically by organizing the
data into groups sharing similar (e.g., spectrally homogeneous) characteristics.
Often, one only needs to specify beforehand the number K of classes present.
Unsupervised classification plays an especially important role when very little
a priori information about the data is available. A primary objective of using
clustering algorithms for multispectral remote sensing data is to obtain useful
information for the selection of training regions in a subsequent supervised
classification.

We can view the basic problem of unsupervised classification at the in-
dividual pixel level as the partitioning of a set of samples (the image pixel
intensity vectors g(ν), ν = 1 . . .m) into K disjoint subsets, called classes or
clusters. The members of each class are to be in some sense more similar to
one another than to the members of the other classes. If one wishes to take
the spatial context of the image into account, then the problem also becomes
one of labeling a regular lattice. Here the random field concept introduced in
Chapter 4 can be used to advantage.

Clearly a criterion is needed which will determine the quality of any given
partitioning, along with a means to determine the partitioning which opti-
mizes it. The sum of squares cost function will provide us with a sufficient
basis to justify some of the most popular algorithms for clustering of mul-
tispectral imagery, so we begin with its derivation. For a broad overview
of clustering techniques for multispectral images, see Tran et al. (2005).

DOI: 10.1201/9781003503286-8 351

https://doi.org/10.1201/9781003503286-8

352 Unsupervised Classification

Segmentation and clustering methods for SAR imagery are reviewed in Oliver
and Quegan (2004).

8.1 Simple cost functions

Let the (N -dimensional) observations that are to be partitioned by a clustering
algorithm comprise the set

{g(ν) | ν = 1 . . .m},

which we can conveniently represent as the m×N data matrix

G =






g(1)⊤

...
g(m)⊤




 .

A given partitioning may be written in the form

C = [C1, . . . Ck, . . . CK],

where Ck is the set of indices

Ck = { ν | g(ν) is in class k}.

Our strategy will be to maximize the posterior probability Pr(C | G) for
observing the partitioning C given the data G. From Bayes’ Theorem we can
write

Pr(C | G) = p(G | C)Pr(C)

p(G)
. (8.1)

Pr(C) is the prior probability for C. The quantity p(G | C) is the probability
density function for the observations when the partitioning is C, also referred
to as the likelihood of the partitioning C given the data G, while p(G) is a
normalization independent of C.

Following Fraley (1996) we first of all make the strong assumption that
the observations are chosen independently from K multivariate normally dis-
tributed populations corresponding, for instance, to the K land cover cate-
gories present in a satellite image. Under this assumption, the g(ν) are real-
izations of random vectors

Gk ∼ N(µk,Σk), k = 1 . . .K,

with multivariate normal probability densities, which we denote p(g | k).
The likelihood is the product of the individual probability densities given the

352 Unsupervised Classification

Segmentation and clustering methods for SAR imagery are reviewed in Oliver
and Quegan (2004).

8.1 Simple cost functions

Let the (N -dimensional) observations that are to be partitioned by a clustering
algorithm comprise the set

{g(ν) | ν = 1 . . .m},

which we can conveniently represent as the m×N data matrix

G =






g(1)⊤

...
g(m)⊤




 .

A given partitioning may be written in the form

C = [C1, . . . Ck, . . . CK],

where Ck is the set of indices

Ck = { ν | g(ν) is in class k}.

Our strategy will be to maximize the posterior probability Pr(C | G) for
observing the partitioning C given the data G. From Bayes’ Theorem we can
write

Pr(C | G) = p(G | C)Pr(C)

p(G)
. (8.1)

Pr(C) is the prior probability for C. The quantity p(G | C) is the probability
density function for the observations when the partitioning is C, also referred
to as the likelihood of the partitioning C given the data G, while p(G) is a
normalization independent of C.

Following Fraley (1996) we first of all make the strong assumption that
the observations are chosen independently from K multivariate normally dis-
tributed populations corresponding, for instance, to the K land cover cate-
gories present in a satellite image. Under this assumption, the g(ν) are real-
izations of random vectors

Gk ∼ N(µk,Σk), k = 1 . . .K,

with multivariate normal probability densities, which we denote p(g | k).
The likelihood is the product of the individual probability densities given the

Simple cost functions 353

partitioning, i.e.,

L(C) = p(G | C) =

K∏

k=1

∏

ν∈Ck

p(g(ν) | k)

=

K∏

k=1

∏

ν∈Ck

(2π)−N/2|Σk|−1/2 exp

(

−1

2
(g(ν)− µk)

⊤Σ−1
k (g(ν)− µk)

)

.

Forming the product in this way is justified by the independence of the ob-
servations. Taking the logarithm gives the log-likelihood

L(C) =

K∑

k=1

∑

ν∈Ck

(

−N

2
log(2π)− 1

2
log |Σk|−

1

2
(g(ν)−µk)

⊤Σ−1
k (g(ν)−µk)

)

.

(8.2)
Maximizing the log-likelihood is obviously equivalent to maximizing the like-
lihood. From Equation (8.1), we can then write

log Pr(C | G) = L(C) + log Pr(C) − log p(G). (8.3)

Since the last term is independent of C, maximizing Pr(C | G) with respect
to C is equivalent to maximizing L(C) + log Pr(C). If the even stronger as-
sumption is now made that all K classes exhibit identical covariance matrices
given by

Σk = σ2I, k = 1 . . .K, (8.4)

where I is the identity matrix, then L(C) is maximized when the last sum in
Equation (8.2), namely the expression

K∑

k=1

∑

ν∈Ck

(g(ν) − µk)
⊤(

1

2σ2
I)(g(ν)− µk) =

K∑

k=1

∑

ν∈Ck

�g(ν)− µk�2
2σ2

,

is minimized. Finally, with Equation (8.3), Pr(C | G) itself is maximized by
minimizing the cost function

E(C) =

K∑

k=1

∑

ν∈Ck

�g(ν)− µk�2
2σ2

− log Pr(C). (8.5)

Now let us introduce a “hard” class dependency in the form of a matrix U

with elements
ukν =

{
1 if ν ∈ Ck

0 otherwise.
(8.6)

These matrix elements are required to satisfy the conditions

K∑

k=1

ukν = 1, ν = 1 . . .m, (8.7)

354 Unsupervised Classification

meaning that each pixel g(ν), ν = 1 . . .m, belongs to precisely one class, and

m∑

ν=1

ukν = mk > 0, k = 1 . . .K, (8.8)

meaning that no class Ck is empty. The sum in Equation (8.8) is the number
mk of pixels in the kth class. Maximum-likelihood estimates for the mean of
the kth cluster can then be written in the form

µ̂k =
1

mk

∑

ν∈Ck

g(ν) =

∑m
ν=1 ukνg(ν)
∑m

ν=1 ukν
, k = 1 . . .K, (8.9)

and for the covariance matrix as

Σ̂k =

∑m
ν=1 ukν(g(ν)− µ̂k)(g(ν)− µ̂k)

⊤
∑m

ν=1 ukν
, k = 1 . . .K; (8.10)

see Section 2.4, Equations (2.74) and (2.75). The cost function, Equation (8.5),
can also be expressed in terms of the class dependencies ukν as

E(C) =
K∑

k=1

m∑

ν=1

ukν
�g(ν) − µ̂k�2

2σ2
− log Pr(C). (8.11)

The parameter σ2 can be thought of as the average within-cluster or image
noise variance. If we have no prior information on the class structure, we can
simply say that all partitionings C are a priori equally likely. Then the last
term in Equation (8.11) is independent of C and, dropping it and the multi-
plicative constant 1/2σ2, we get the sum of squares cost function

E(C) =

K∑

k=1

m∑

ν=1

ukν�g(ν)− µ̂k�2. (8.12)

8.2 Algorithms that minimize the simple cost functions

The problem to find the partitioning which minimizes the cost functions,
Equation (8.11) or Equation (8.12), is unfortunately impossible to solve. The
number of conceivable partitions, while obviously finite, is in any real situation
astronomical. For example, for m = 1000 pixels and just K = 2 possible
classes, there are 21000−1 − 1 ≈ 10300 possibilities (Duda and Hart, 1973).
Direct enumeration is therefore not feasible. The line of attack most frequently
taken is to start with some initial clustering and its associated cost function
and then attempt to minimize the latter iteratively. This will always find a

354 Unsupervised Classification

meaning that each pixel g(ν), ν = 1 . . .m, belongs to precisely one class, and

m∑

ν=1

ukν = mk > 0, k = 1 . . .K, (8.8)

meaning that no class Ck is empty. The sum in Equation (8.8) is the number
mk of pixels in the kth class. Maximum-likelihood estimates for the mean of
the kth cluster can then be written in the form

µ̂k =
1

mk

∑

ν∈Ck

g(ν) =

∑m
ν=1 ukνg(ν)
∑m

ν=1 ukν
, k = 1 . . .K, (8.9)

and for the covariance matrix as

Σ̂k =

∑m
ν=1 ukν(g(ν)− µ̂k)(g(ν)− µ̂k)

⊤
∑m

ν=1 ukν
, k = 1 . . .K; (8.10)

see Section 2.4, Equations (2.74) and (2.75). The cost function, Equation (8.5),
can also be expressed in terms of the class dependencies ukν as

E(C) =
K∑

k=1

m∑

ν=1

ukν
�g(ν) − µ̂k�2

2σ2
− log Pr(C). (8.11)

The parameter σ2 can be thought of as the average within-cluster or image
noise variance. If we have no prior information on the class structure, we can
simply say that all partitionings C are a priori equally likely. Then the last
term in Equation (8.11) is independent of C and, dropping it and the multi-
plicative constant 1/2σ2, we get the sum of squares cost function

E(C) =

K∑

k=1

m∑

ν=1

ukν�g(ν)− µ̂k�2. (8.12)

8.2 Algorithms that minimize the simple cost functions

The problem to find the partitioning which minimizes the cost functions,
Equation (8.11) or Equation (8.12), is unfortunately impossible to solve. The
number of conceivable partitions, while obviously finite, is in any real situation
astronomical. For example, for m = 1000 pixels and just K = 2 possible
classes, there are 21000−1 − 1 ≈ 10300 possibilities (Duda and Hart, 1973).
Direct enumeration is therefore not feasible. The line of attack most frequently
taken is to start with some initial clustering and its associated cost function
and then attempt to minimize the latter iteratively. This will always find a

Algorithms that minimize the simple cost functions 355

local minimum, but there is no guarantee that a global minimum for the cost
function will be reached and one can never know if the best solution has been
found. Nevertheless, the approach is used because the computational burden
is acceptable.

We shall follow the iterative approach in this section, beginning with the
well-known K-means algorithm (including a kernelized version), followed by
consideration of a variant due to Palubinskas (1998) which uses the cost func-
tion of Equation (8.11) and for which the number of clusters is determined
automatically. Then we discuss a common example of bottom-up or agglom-
erative hierarchical clustering and conclude with a “fuzzy” version of the K-
means algorithm.

8.2.1 K-means clustering

The K-means clustering algorithm (sometimes referred to as basic ISODATA
(Duda and Hart, 1973) or migrating means (Richards, 2012)) is based on the
sum of squares cost function, Equation (8.12). After some random initializa-
tion of the cluster centers µ̂k and setting the class dependency matrix U = 0,
the distance measure corresponding to a minimization of Equation (8.12),
namely

d(g(ν), k) = �g(ν) − µ̂k�2, (8.13)

is used to cluster the pixel vectors. Specifically, set ukν = 1, where

k = argmin
k

d(g(ν), k) (8.14)

for ν = 1 . . .m. Then Equation (8.9) is invoked to recalculate the cluster
centers. This procedure is iterated until the class labels cease to change. A
popular extension, referred to as ISODATA (Iterative Self-Organizing Data
Analysis), involves splitting and merging of the clusters in repeated passes,
albeit at the cost of setting additional parameters.

8.2.1.1 K-means with Scipy

The Scipy Python package includes a ready-made K-means function which can
be used directly for clustering multispectral images, as illustrated in Listing
8.1. After reading in the chosen spatial/spectral image subsets, the K-means
algorithm is called in line 30, returning the cluster centers and distortions
(sums of the squared differences between the observations and the correspond-
ing centroid), in this case in an anonymous variable since they are not used.
The image observations are then labeled with the vq() function (line 31, this
function also returns the distortions) and written to disk. Here we run the al-
gorithm on the first four principal components of the ASTER image of Figure
6.1 with 8 clusters (default) and display the result:

run scripts /kmeans -p [1,2,3,4] \

imagery/ AST_20070501_pca .tif

356 Unsupervised Classification

Listing 8.1: K-means clustering (excerpt from the script kmeans.py).

1 inDataset = gdal .Open (infile ,GA_ReadOnly)

2 cols = inDataset . RasterXSize

3 rows = inDataset . RasterYSize

4 bands = inDataset .RasterCount

5 i f dims :

6 x0,y0,cols ,rows = dims

7 e l se:

8 x0 = 0

9 y0 = 0

10 i f pos i s not None :

11 bands = len(pos)

12 e l se:

13 pos = range(1,bands+1)

14 path = os.path.dirname(infile)

15 basename = os.path .basename (infile)

16 root , ext = os.path .splitext(basename)

17 outfile = path+’/’+root+’_kmeans’+ext

18 print(’------------�k-means�------------’)

19 print(time.asctime ())

20 print(’Input�%s’%infile)

21 print(’Number�of�clusters �%i’%K)

22 start = time.time ()

23 G = np.zeros((rows *cols ,bands))

24 k = 0

25 for b in pos:

26 band = inDataset .GetRasterBand (b)

27 G[:,k] = band.ReadAsArray (x0,y0 ,cols ,rows)\

28 .astype(f l oat). ravel()

29 k += 1

30 centers , _ = kmeans(G,K)

31 labels , _ = vq(G,centers)

32 driver = gdal.GetDriverByName (’GTiff’)

33 outDataset = driver.Create(outfile ,

34 cols ,rows ,1,GDT_Byte)

35 outBand = outDataset .GetRasterBand (1)

36 outBand.WriteArray (np.reshape(labels+1,

37 (rows ,cols)),0,0)

38 outBand.FlushCache ()

39 outDataset = None

40 inDataset = None

------------ k-means ------------

Wed Jun 12 11:30:43 2024

Input imagery/AST_20070501_pca .tif

Number of clusters 8

356 Unsupervised Classification

Listing 8.1: K-means clustering (excerpt from the script kmeans.py).

1 inDataset = gdal .Open (infile ,GA_ReadOnly)

2 cols = inDataset . RasterXSize

3 rows = inDataset . RasterYSize

4 bands = inDataset .RasterCount

5 i f dims :

6 x0,y0,cols ,rows = dims

7 e l se:

8 x0 = 0

9 y0 = 0

10 i f pos i s not None :

11 bands = len(pos)

12 e l se:

13 pos = range(1,bands+1)

14 path = os.path.dirname(infile)

15 basename = os.path .basename (infile)

16 root , ext = os.path .splitext(basename)

17 outfile = path+’/’+root+’_kmeans’+ext

18 print(’------------�k-means�------------’)

19 print(time.asctime ())

20 print(’Input�%s’%infile)

21 print(’Number�of�clusters �%i’%K)

22 start = time.time ()

23 G = np.zeros((rows *cols ,bands))

24 k = 0

25 for b in pos:

26 band = inDataset .GetRasterBand (b)

27 G[:,k] = band.ReadAsArray (x0,y0 ,cols ,rows)\

28 .astype(f l oat). ravel()

29 k += 1

30 centers , _ = kmeans(G,K)

31 labels , _ = vq(G,centers)

32 driver = gdal.GetDriverByName (’GTiff’)

33 outDataset = driver.Create(outfile ,

34 cols ,rows ,1,GDT_Byte)

35 outBand = outDataset .GetRasterBand (1)

36 outBand .WriteArray (np.reshape(labels+1,

37 (rows ,cols)),0,0)

38 outBand .FlushCache ()

39 outDataset = None

40 inDataset = None

------------ k-means ------------

Wed Jun 12 11:30:43 2024

Input imagery/AST_20070501_pca .tif

Number of clusters 8

Algorithms that minimize the simple cost functions 357

0 200 400 600 800

0

200

400

600

800

AST_20070501_pca_kmeans.tif: linear: [1, 1, 1]: [0, 0, 1000, 1000]

0

1

2

3

4

5

6

7

FIGURE 8.1

Unsupervised K-means classification of a spectral subset of the image of Figure
6.1 with 8 clusters.

Kmeans result written to: imagery/ AST_20070501_pca_

kmeans.tif

elapsed time : 25.16997218132019

%run scripts/dispms -f imagery /AST_20070501_pca_

%kmeans.tif -c

The classified image is shown in Figure 8.1.

8.2.1.2 K-means with GEE

The Google Earth Engine API offers several clustering algorithms, including
K-means:

import ee

ee.Initialize ()

358 Unsupervised Classification

image = ee.Image(’projects /.../AST_20070501_pca ’)\

.select(0,1,2,3)

region = image.geometry ()

training = image.sample(region=region ,scale=15,

numPixels =100000)

clusterer = ee.Clusterer .wekaKMeans (8)

trained = clusterer .train(training)

clustered = image.cluster(trained)

The result can be displayed in the Jupyter notebook accompanying this chap-
ter.

8.2.2 Kernel K-means clustering

To kernelize the K-means algorithm (Shawe-Taylor and Cristianini, 2004), one
requires the dual formulation for Equation (8.13). With Equation (8.8), the
matrix

M = [Diag(U1m)]−1,

where 1m is an m-component vector of ones, can be seen to be a K × K
diagonal matrix with inverse class populations along the diagonal,

M =







1/m1 0 . . . 0
0 1/m2 . . . 0
...

...
. . .

...
0 0 . . . 1/mK







.

Therefore, from the rule for matrix multiplication, Equation (1.14), we can
express the class means given by Equation (8.9) as the columns of the N ×K
matrix

(µ̂1, µ̂2 . . . µ̂K) = G⊤U⊤M .

We then obtain the dual formulation of Equation (8.13) as

d(g(ν), k) = �g(ν)�2 − 2g(ν)⊤µ̂k + �µ̂k�2

= �g(ν)�2 − 2g(ν)⊤[G⊤U⊤M]
�k + [MUGG⊤U⊤M]kk

= �g(ν)�2 − 2[
�
g(ν)⊤G⊤�U⊤M]k + [MUGG⊤U⊤M]kk .

(8.15)
In the second line above, []

�k denotes the kth column. In the last line the ob-
servations appear only as inner products: g(ν)⊤g(ν) (first term), in the Gram
matrix GG⊤ (last term) and in g(ν)⊤G⊤ (second term). This last expression
is just the νth row of the Gram matrix, i.e.,

g(ν)⊤G⊤ = [GG⊤]ν�.

For kernel K-means, where we work in an (implicit) nonlinear feature space
φ(g), we substitute GG⊤ → K to get

d
�
φ(g(ν)), k

�
= [K]νν − 2[Kν�U

⊤M]k + [MUKU⊤M]kk, (8.16)

358 Unsupervised Classification

image = ee.Image(’projects /.../AST_20070501_pca ’)\

.select(0,1,2,3)

region = image.geometry ()

training = image.sample(region=region ,scale=15,

numPixels =100000)

clusterer = ee.Clusterer .wekaKMeans (8)

trained = clusterer .train(training)

clustered = image.cluster(trained)

The result can be displayed in the Jupyter notebook accompanying this chap-
ter.

8.2.2 Kernel K-means clustering

To kernelize the K-means algorithm (Shawe-Taylor and Cristianini, 2004), one
requires the dual formulation for Equation (8.13). With Equation (8.8), the
matrix

M = [Diag(U1m)]−1,

where 1m is an m-component vector of ones, can be seen to be a K × K
diagonal matrix with inverse class populations along the diagonal,

M =







1/m1 0 . . . 0
0 1/m2 . . . 0
...

...
. . .

...
0 0 . . . 1/mK







.

Therefore, from the rule for matrix multiplication, Equation (1.14), we can
express the class means given by Equation (8.9) as the columns of the N ×K
matrix

(µ̂1, µ̂2 . . . µ̂K) = G⊤U⊤M .

We then obtain the dual formulation of Equation (8.13) as

d(g(ν), k) = �g(ν)�2 − 2g(ν)⊤µ̂k + �µ̂k�2

= �g(ν)�2 − 2g(ν)⊤[G⊤U⊤M]
�k + [MUGG⊤U⊤M]kk

= �g(ν)�2 − 2[
�
g(ν)⊤G⊤�U⊤M]k + [MUGG⊤U⊤M]kk .

(8.15)
In the second line above, []

�k denotes the kth column. In the last line the ob-
servations appear only as inner products: g(ν)⊤g(ν) (first term), in the Gram
matrix GG⊤ (last term) and in g(ν)⊤G⊤ (second term). This last expression
is just the νth row of the Gram matrix, i.e.,

g(ν)⊤G⊤ = [GG⊤]ν�.

For kernel K-means, where we work in an (implicit) nonlinear feature space
φ(g), we substitute GG⊤ → K to get

d
�
φ(g(ν)), k

�
= [K]νν − 2[Kν�U

⊤M]k + [MUKU⊤M]kk, (8.16)

Algorithms that minimize the simple cost functions 359

Listing 8.2: Kernel K-means clustering (excerpt from the script kkmeans.py).

1 # iteration

2 change = True

3 itr = 0

4 onesm = np.mat(np.ones(m,dtype= f l oat))

5 while change and (itr < 100):

6 change = False

7 U = np.zeros((K,m))

8 for i in range(m):

9 U[labels[i],i] = 1

10 M = np.diag (1.0/(np.sum(U,axis =1)+1.0))

11 MU = np.mat(np.dot(M,U))

12 Z = (onesm.T)* np.diag(MU*KK*(MU.T))-2*KK*(MU.T)

13 Z = np.array(Z)

14 labels1 = (np.argmin(Z,axis =1) % K). ravel()

15 i f np.sum(labels1 != labels):

16 change = True

17 labels = labels1

18 itr += 1

19 print(’iterations :�%i’%itr)

where K is the kernel matrix and Kν� is its νth row. Since the first term in
Equation (8.16) doesn’t depend on the class index k, the clustering rule for
kernel K-means is to assign observation g(ν) to class k, where

k = argmin
k

(

[MUKU⊤M]kk − 2[Kν�U
⊤M]k

)

. (8.17)

A Python script for kernel K-means clustering is documented in Appendix
C. As in the case of kernel PCA (Chapter 4), memory restrictions require that
one work with only a relatively small training sample of m pixel vectors. A
portion of the Python code is shown in Listing 8.2.

The variable Z in line 12 is a K×m array of current values of the expression
on the right-hand side of Equation (8.17), with one row for each of the training
observations and one column for each class label. In line 14, the class labels
corresponding to the minimum distance to the mean are extracted into the
variable labels1. This avoids an expensive FOR-loop over the training data.
The iteration terminates when the class labels cease to change.

After convergence, unsupervised classification of the remaining pixels can
again be achieved with Equation (8.17), merely replacing the row vector
Kν� by (

κ(g, g(1)), κ(g, g(2)) . . . κ(g, g(m))
)
,

where g is a pixel to be classified. The processing of the entire image thus
requires evaluation of the kernel for every image pixel with every training
pixel. Therefore, it is best to classify the image row by row, as was the case

360 Unsupervised Classification

0 200 400 600 800

0

200

400

600

800

AST_20070501_pca_kkmeans.tif: linear: [1, 1, 1]: [0, 0, 1000, 1000]

0

1

2

3

4

5

6

7

FIGURE 8.2

Unsupervised kernel K-means classification of a spectral subset of the image
of Figure 6.1 with eight clusters.

for kernel PCA and kernel RX. Figure 8.2 shows an unsupervised classification
of the image of Figure 6.1 with kernel K-means clustering:

run scripts /kkmeans -p [1,2,3,4] -n 1 -k 8 \

imagery/ AST_20070501_pca .tif

=========================

kernel k-means

=========================

infile: imagery/AST_20070501_pca .tif

samples: 1000

clusters: 8

kernel matrix ...

gamma: 0.000249

iterations : 22

360 Unsupervised Classification

0 200 400 600 800

0

200

400

600

800

AST_20070501_pca_kkmeans.tif: linear: [1, 1, 1]: [0, 0, 1000, 1000]

0

1

2

3

4

5

6

7

FIGURE 8.2

Unsupervised kernel K-means classification of a spectral subset of the image
of Figure 6.1 with eight clusters.

for kernel PCA and kernel RX. Figure 8.2 shows an unsupervised classification
of the image of Figure 6.1 with kernel K-means clustering:

run scripts /kkmeans -p [1,2,3,4] -n 1 -k 8 \

imagery/ AST_20070501_pca .tif

=========================

kernel k-means

=========================

infile: imagery/AST_20070501_pca .tif

samples: 1000

clusters: 8

kernel matrix ...

gamma: 0.000249

iterations : 22

Algorithms that minimize the simple cost functions 361

classifying ...

result written to: imagery /AST_20070501_pca_kkmeans.tif

elapsed time : 3.812978744506836

8.2.3 Extended K-means clustering

Starting this time from the cost function Equation (8.11), denote by pk =
Pr(Ck) the prior probability for cluster Ck. The entropy H associated with
this prior distribution is given by

H = −
K∑

k=1

pk log pk, (8.18)

see Equation (2.113). It was shown in Section 2.7 that distributions with high
entropy are those for which the pk are all similar. So in this case, high entropy
corresponds to the pixels being distributed evenly over all available clusters,
whereas low entropy means that most of the data are concentrated in very few
clusters. Following Palubinskas (1998), we choose a prior distribution Pr(C)
in the cost function of Equation (8.11) for which few clusters (low entropy)
are more probable than many clusters (high entropy), namely

Pr(C) = A exp(−αEH) = A exp
(
αE

K∑

k=1

pk log pk
)
,

where A and αE are parameters. The cost function can then be written in the
form

E(C) =

K∑

k=1

m∑

ν=1

ukν
�g(ν) − µ̂k�2

2σ2
− αE

K∑

k=1

pk log pk, (8.19)

dropping the logA term, which is independent of the clustering. With

pk =
mk

m
=

1

m

m∑

ν=1

ukν , (8.20)

Equation (8.19) is equivalent to the cost function

E(C) =
K∑

k=1

m∑

ν=1

ukν

[�g(ν)− µ̂k�2
2σ2

− αE

m
log pk

]

. (8.21)

An estimate for the parameter αE in Equation (8.21) may be obtained as
follows (Palubinskas, 1998). With the approximation

m∑

ν=1

ukν�g(ν) − µ̂k�2 ≈ mkσ
2 = mpkσ

2,

362 Unsupervised Classification

we can write Equation (8.21) as

E(C) ≈
K∑

k=1

[mpk
2

− αEpk log pk

]

.

Equating the likelihood and prior terms in this expression to give E(C) = 0
and taking pk ≈ 1/K̃, where K̃ is some a priori expected number of clusters,
then gives

αE ≈ − m

2 log(1/K̃)
. (8.22)

The parameter σ2 in Equation (8.21) (the within-cluster variance) can be
estimated from the data, see below.

The extended K-means (EKM) algorithm is then as follows. First an initial
configuration U with a very large number of clusters K is chosen (for single-
band data this might conveniently be the K ≤ 256 gray values that an image
with 8-bit quantization can possibly have) and initial values

µ̂k =
1

mk

m∑

ν=1

ukνg(ν), pk =
mk

m
, k = 1 . . .K, (8.23)

are determined. Then the data are re-clustered according to the distance mea-
sure which minimizes Equation (8.21):

k = argmin
k

(�g(ν)− µ̂k�2
2σ2

− αE

m
log pk

)

, ν = 1 . . .m. (8.24)

The prior term tends to put more observations into fewer clusters. Any cluster
for which, in the course of the iteration, mk equals zero (or is less than some
threshold) is simply dropped from the calculation so that the final number
of clusters is determined by the data. The condition that no class be empty,
Equation (8.8), is thus relaxed. The explicit choice of the number of clusters
K is replaced by the necessity of choosing a value for the “meta-parameter”
αE (or K̃ if Equation (8.22) is used). This has the advantage that one can
use a single parameter for a wide variety of images and let the algorithm itself
decide on the actual value of K in any given instance. Iteration of Equations
(8.23) and (8.24) continues until the cluster labels cease to change.

An implementation of the extended K-means algorithm in Python for gray-
scale, or one-band, images is shown in Listing 8.3. The variance σ2 is estimated
(naively, see Exercise 5) by calculating the variance of the difference of the
image with a copy of itself shifted by one pixel, program line 5. An a priori
number of classes K̃ determines the meta-parameter αE , line 6. The initial
number K of clusters is chosen as the number of nonempty bins in the 256-bin
histogram of the linearly stretched image, while the initial cluster means mk

and prior probabilities pk are the corresponding bin numbers, respectively,
the bin contents divided by the number of pixels, lines 7 to 11. The iteration

362 Unsupervised Classification

we can write Equation (8.21) as

E(C) ≈
K∑

k=1

[mpk
2

− αEpk log pk

]

.

Equating the likelihood and prior terms in this expression to give E(C) = 0
and taking pk ≈ 1/K̃, where K̃ is some a priori expected number of clusters,
then gives

αE ≈ − m

2 log(1/K̃)
. (8.22)

The parameter σ2 in Equation (8.21) (the within-cluster variance) can be
estimated from the data, see below.

The extended K-means (EKM) algorithm is then as follows. First an initial
configuration U with a very large number of clusters K is chosen (for single-
band data this might conveniently be the K ≤ 256 gray values that an image
with 8-bit quantization can possibly have) and initial values

µ̂k =
1

mk

m∑

ν=1

ukνg(ν), pk =
mk

m
, k = 1 . . .K, (8.23)

are determined. Then the data are re-clustered according to the distance mea-
sure which minimizes Equation (8.21):

k = argmin
k

(�g(ν)− µ̂k�2
2σ2

− αE

m
log pk

)

, ν = 1 . . .m. (8.24)

The prior term tends to put more observations into fewer clusters. Any cluster
for which, in the course of the iteration, mk equals zero (or is less than some
threshold) is simply dropped from the calculation so that the final number
of clusters is determined by the data. The condition that no class be empty,
Equation (8.8), is thus relaxed. The explicit choice of the number of clusters
K is replaced by the necessity of choosing a value for the “meta-parameter”
αE (or K̃ if Equation (8.22) is used). This has the advantage that one can
use a single parameter for a wide variety of images and let the algorithm itself
decide on the actual value of K in any given instance. Iteration of Equations
(8.23) and (8.24) continues until the cluster labels cease to change.

An implementation of the extended K-means algorithm in Python for gray-
scale, or one-band, images is shown in Listing 8.3. The variance σ2 is estimated
(naively, see Exercise 5) by calculating the variance of the difference of the
image with a copy of itself shifted by one pixel, program line 5. An a priori
number of classes K̃ determines the meta-parameter αE , line 6. The initial
number K of clusters is chosen as the number of nonempty bins in the 256-bin
histogram of the linearly stretched image, while the initial cluster means mk

and prior probabilities pk are the corresponding bin numbers, respectively,
the bin contents divided by the number of pixels, lines 7 to 11. The iteration

Algorithms that minimize the simple cost functions 363

Listing 8.3: Extended K-means clustering (excerpt from the script
ekmeans.py).

1 m = rows *cols

2 band = inDataset . GetRasterBand (b)

3 G =band.ReadAsArray (x0 ,y0,cols ,rows)

4 labels = np.zeros(m)

5 sigma2 = np.std(G - np.roll(G,(0 ,1)))**2

6 alphaE = -1/(2*np.log (1.0/K))

7 hist , _ = np.histogram (G,bins = 256)

8 indices = np.where(hist >0)[0]

9 K = indices .size

10 means = np.array(range(256))[indices]

11 priors = hist[indices]/ f l oat (m)

12 delta = 100.0

13 itr = 0

14 G = G.ravel()

15 while (delta >1.0) and (itr <100):

16 print(’Clusters:�%i�delta:�%f’%(K,delta))

17 indices = np.where(priors >0.01)[0]

18 K = indices.size

19 ds = np.zeros ((K,m))

20 means = means[indices]

21 priors = priors[indices]

22 means1 = means

23 priors1 = priors

24 means = means *0.0

25 priors = priors *0.0

26 for j in range(K):

27 ds[j,:] = (G-means1[j])**2/(2* sigma2) \

28 - alphaE*np.log(priors1[j])

29 min_ds = np.min(ds ,axis =0)

30 for j in range(K):

31 indices = np.where(ds[j,:] == min_ds)[0]

32 i f indices.size >0:

33 mj = indices.size

34 priors[j] = mj/ f l oat (m)

35 means[j] = np.sum(G[indices])/mj

36 labels[indices] = j

37 delta = np.max(np.abs(means -means1))

38 itr += 1

of Equations (8.23) and (8.24) is carried out in the while loop, lines 15 to 38.
Clusters with prior probabilities less than 0.01 are discarded in line 17. The
variable indices in line 31 locates the pixels, if any, which belong to cluster
j for j = 1 . . .K. For convenience, the termination condition is that there be
no significant change in the cluster means, line 37.

364 Unsupervised Classification

0 200 400 600 800 1000

0

200

400

600

800

1000

AST_20070501_pca_ekmeans.tif: linear: [1, 1, 1]: [0, 0, 1000, 1000]

0

1

2

3

4

5

FIGURE 8.3

Unsupervised extended K-means classification of the first principal component
of the image of Figure 6.1.

We run the algorithm here on the first principal component of the ASTER
scene:

run scripts /ekmeans -b 1 imagery/AST_20070501_pca .tif

------- extended k-means ---------

Sun Aug 26 16:42:58 2018

Input: imagery/AST_20070501_pca .tif

Band : 1

Meta -clusters : 8

Clusters: 256 delta: 100.000000

Clusters: 20 delta: 27.591092

Clusters: 7 delta: 7.004228

Clusters: 7 delta: 6.956754

Clusters: 7 delta: 4.108909

364 Unsupervised Classification

0 200 400 600 800 1000

0

200

400

600

800

1000

AST_20070501_pca_ekmeans.tif: linear: [1, 1, 1]: [0, 0, 1000, 1000]

0

1

2

3

4

5

FIGURE 8.3

Unsupervised extended K-means classification of the first principal component
of the image of Figure 6.1.

We run the algorithm here on the first principal component of the ASTER
scene:

run scripts /ekmeans -b 1 imagery/AST_20070501_pca .tif

------- extended k-means ---------

Sun Aug 26 16:42:58 2018

Input: imagery/AST_20070501_pca .tif

Band : 1

Meta -clusters : 8

Clusters: 256 delta: 100.000000

Clusters: 20 delta: 27.591092

Clusters: 7 delta: 7.004228

Clusters: 7 delta: 6.956754

Clusters: 7 delta: 4.108909

Algorithms that minimize the simple cost functions 365

Clusters: 7 delta: 2.233817

Clusters: 6 delta: 1.584403

Clusters: 6 delta: 1.412826

Clusters: 6 delta: 1.281860

Clusters: 6 delta: 1.132235

Extended K-means result written to:

imagery/AST_20070501_pca_ekmeans.tif

elapsed time : 0.746820926666

In this case, the algorithm prefers six clusters; see Figure 8.3.

8.2.4 Agglomerative hierarchical clustering

The unsupervised classification algorithm that we consider next is, as for
ordinary K-means clustering, based on the cost function of Equation (8.12).
Let us first write it in a more convenient form:

E(C) =

K∑

k=1

Ek, (8.25)

where Ek is given by

Ek =
∑

ν∈Ck

�g(ν) − µ̂k�2. (8.26)

The algorithm is initialized by assigning each observation to its own class. At
this stage, the cost function is zero, since Cν = {ν} and g(ν) = µ̂ν . Every
agglomeration of clusters to form a smaller number will increase E(C). We
therefore seek a prescription for choosing two clusters for combination that
increases E(C) by the smallest amount possible (Duda and Hart, 1973).

Suppose that, at some stage of the algorithm, clusters k with mk members
and j with mj members are merged, where k < j, and the new cluster is
labeled k. Then the mean of the merged cluster is the weighted average of the
original cluster means,

µ̂k → mkµ̂k +mjµ̂j

mk +mj
= µ̄.

Thus, after the agglomeration, Ek increases to

Ek =
∑

ν∈Ck∪Cj

�g(ν)− µ̄�2

and Ej disappears. The net change in E(C) is therefore, after some algebra
(Exercise 7),

∆(k, j) =
∑

ν∈Ck∪Cj

�g(ν) − µ̄�2 −
∑

ν∈Ck

�g(ν) − µ̂k�2 −
∑

ν∈Cj

�g(ν)− µ̂j�2

=
mkmj

mk +mj
· �µ̂k − µ̄j�2.

(8.27)

366 Unsupervised Classification

10

1

10

2

10

3

Custers

10

0

10

1

10

2

10

3

10

4

Merge cost

FIGURE 8.4

Agglomerative hierarchical clustering of the first four principal components of
the ASTER scene, Figure 6.1.

The minimum increase in E(C) is achieved by combining those two clusters
k and j which minimize the above expression. Given two alternative candi-
date cluster pairs with similar combined memberships mk + mj and whose
means have similar separations �µ̂k − µ̂j�, this prescription obviously favors
combining that pair having the larger discrepancy between mk and mj . Thus
similar-sized clusters are preserved and smaller clusters are absorbed by larger
ones.

Let �k, j� represent the cluster formed by combination of the clusters k
and j. Then the increase in cost incurred by combining this cluster with some
other cluster r can be determined from Equation (8.27) as (Fraley, 1996)

∆(�k, j�, r) = (mk +mr)∆(k, r) + (mj +mr)∆(j, r) −mr∆(k, j)

mk +mj +mr
. (8.28)

To see this, note that with Equation (8.27), the right-hand side of Equation
(8.28) is, apart from the factor 1/(mk +mj +mr), equivalent to

mkmr�µ̂k − µ̂r�2 +mjmr�µ̂j − µ̂r�2 −
mrmkmj

mk +mj
�µ̂k − µ̂j�2

and the left-hand side similarly is equivalent to

mr(mk +mj)

∥
∥
∥
∥

mkµ̂k +mjµ̂j

mk +mj
− µ̂r

∥
∥
∥
∥

2

.

366 Unsupervised Classification

10

1

10

2

10

3

Custers

10

0

10

1

10

2

10

3

10

4

Merge cost

FIGURE 8.4

Agglomerative hierarchical clustering of the first four principal components of
the ASTER scene, Figure 6.1.

The minimum increase in E(C) is achieved by combining those two clusters
k and j which minimize the above expression. Given two alternative candi-
date cluster pairs with similar combined memberships mk + mj and whose
means have similar separations �µ̂k − µ̂j�, this prescription obviously favors
combining that pair having the larger discrepancy between mk and mj . Thus
similar-sized clusters are preserved and smaller clusters are absorbed by larger
ones.

Let �k, j� represent the cluster formed by combination of the clusters k
and j. Then the increase in cost incurred by combining this cluster with some
other cluster r can be determined from Equation (8.27) as (Fraley, 1996)

∆(�k, j�, r) = (mk +mr)∆(k, r) + (mj +mr)∆(j, r) −mr∆(k, j)

mk +mj +mr
. (8.28)

To see this, note that with Equation (8.27), the right-hand side of Equation
(8.28) is, apart from the factor 1/(mk +mj +mr), equivalent to

mkmr�µ̂k − µ̂r�2 +mjmr�µ̂j − µ̂r�2 −
mrmkmj

mk +mj
�µ̂k − µ̂j�2

and the left-hand side similarly is equivalent to

mr(mk +mj)

∥
∥
∥
∥

mkµ̂k +mjµ̂j

mk +mj
− µ̂r

∥
∥
∥
∥

2

.

Algorithms that minimize the simple cost functions 367

The identity can be established by comparing coefficients of the vector prod-
ucts. For example, the coefficient of �µ̂k�2 is mrm

2
k/(mk+mj) on both sides.

Once the quantities ∆(k, j) have been initialized from Equation (8.27), that
is,

∆(k, j) =
1

2
�g(k)− g(j)�2

for all possible combinations of observations, k = 2 . . .m, j = 1 . . . k − 1, the
recursive Equation (8.28) can be used to calculate the cost function efficiently
for any further merging without reference to the original data. The algorithm
terminates when the desired number of clusters has been reached or continues
until a single cluster has been formed. Assuming that the data consist of
K̃ compact and well-separated clusters, the slope of E(C) vs. the number of
clusters K should decrease (become more negative) for K ≤ K̃. This provides,
at least in principle, a means to decide on the optimal number of clusters.∗ A
Python script hcl.py for agglomerative hierarchic clustering is documented
in Appendix C. It subsamples the image before beginning the merge process.
Figure 8.4 shows the output cell with a log-log plot of the merge cost as a
function of the number of clusters for a sample size of 2000 pixels:

run scripts/hcl -p [1,2,3,4] -k 8 -s 2000 \

imagery/ AST_20070501_pca .tif

Wed Oct 10 11:59:07 2018

Input: imagery/AST_20070501_pca .tif

Clusters: 8

Samples: 2000

classifying ...

result written to: imagery /AST_20070501_pca_hcl .tif

elapsed time : 29.1420390606

Note the increase in slope below about 10 clusters.

8.2.5 Fuzzy K-means clustering

Introducing the parameter q > 1, we can write the cluster means and the sum
of squares cost function equivalently as (Dunn, 1973)

µ̂k =

∑m
i=ν u

q
kνg(ν)

∑m
ν=1 u

q
kν

, k = 1 . . .K, (8.29)

E(C) =
m∑

ν=1

K∑

k=1

uq
kν�g(ν)− µ̂k�2. (8.30)

∗For multispectral imagery, however, well-separated clusters seldom occur.

368 Unsupervised Classification

Since ukν ∈ {0, 1}, these equations are identical to Equations (8.9) and (8.12).
The transition from “hard” to “fuzzy” clustering is effected by label relaxation,
that is, by replacing the class memberships by continuous variables

0 ≤ ukν ≤ 1, k = 1 . . . K, ν = 1 . . .m, (8.31)

but retaining the requirements in Equations (8.7) and (8.8). The parameter q
now has an effect and determines the “degree of fuzziness.” It is often chosen
as q = 2. The matrix U is referred to as a fuzzy class membership matrix.
The classification problem is to find that value ofU which minimizes Equation
(8.30). Minimization can be achieved by finding values for the ukν which solve
the minimization problems

Eν =

K∑

k=1

uq
kν�g(ν) − µ̂k�2 → min, ν = 1 . . .m,

under the constraints imposed by Equation (8.7). Accordingly, we define a
Lagrange function which takes the constraints into account, i.e.,

Lν = Eν − λ

(
K∑

k=1

ukν − 1

)

,

and solve the unconstrained problem Lν → min by setting the derivative
with respect to ukν equal to zero,

∂Lν

∂ukν
= q(ukν)

q−1�gν − µ̂k�2 − λ = 0, k = 1 . . .K.

This gives an expression for fuzzy memberships in terms of λ,

ukν =

(
λ

q

)1/(q−1) (
1

�gν − µ̂k�2
)1/(q−1)

. (8.32)

The Lagrange multiplier λ, in turn, is determined by the constraint

1 =

K∑

k=1

ukν =

(
λ

q

)1/(q−1) K∑

k=1

(
1

�g(ν)− µ̂k�2
)1/(q−1)

.

If we solve for λ and substitute it into Equation (8.32), we obtain

ukν =

(
1

�g(ν)−µ̂k�2

)1/(q−1)

∑K
k′=1

(
1

�g(ν)−µ̂k′�2

)1/(q−1)
, k = 1 . . .K, ν = 1 . . .m. (8.33)

The fuzzy K-means (FKM) algorithm consists of a simple iteration of Equa-
tions (8.29) and (8.33). The iteration terminates when the cluster centers µ̂k,

368 Unsupervised Classification

Since ukν ∈ {0, 1}, these equations are identical to Equations (8.9) and (8.12).
The transition from “hard” to “fuzzy” clustering is effected by label relaxation,
that is, by replacing the class memberships by continuous variables

0 ≤ ukν ≤ 1, k = 1 . . . K, ν = 1 . . .m, (8.31)

but retaining the requirements in Equations (8.7) and (8.8). The parameter q
now has an effect and determines the “degree of fuzziness.” It is often chosen
as q = 2. The matrix U is referred to as a fuzzy class membership matrix.
The classification problem is to find that value ofU which minimizes Equation
(8.30). Minimization can be achieved by finding values for the ukν which solve
the minimization problems

Eν =

K∑

k=1

uq
kν�g(ν) − µ̂k�2 → min, ν = 1 . . .m,

under the constraints imposed by Equation (8.7). Accordingly, we define a
Lagrange function which takes the constraints into account, i.e.,

Lν = Eν − λ

(
K∑

k=1

ukν − 1

)

,

and solve the unconstrained problem Lν → min by setting the derivative
with respect to ukν equal to zero,

∂Lν

∂ukν
= q(ukν)

q−1�gν − µ̂k�2 − λ = 0, k = 1 . . .K.

This gives an expression for fuzzy memberships in terms of λ,

ukν =

(
λ

q

)1/(q−1) (
1

�gν − µ̂k�2
)1/(q−1)

. (8.32)

The Lagrange multiplier λ, in turn, is determined by the constraint

1 =

K∑

k=1

ukν =

(
λ

q

)1/(q−1) K∑

k=1

(
1

�g(ν)− µ̂k�2
)1/(q−1)

.

If we solve for λ and substitute it into Equation (8.32), we obtain

ukν =

(
1

�g(ν)−µ̂k�2

)1/(q−1)

∑K
k′=1

(
1

�g(ν)−µ̂k′�2

)1/(q−1)
, k = 1 . . .K, ν = 1 . . .m. (8.33)

The fuzzy K-means (FKM) algorithm consists of a simple iteration of Equa-
tions (8.29) and (8.33). The iteration terminates when the cluster centers µ̂k,

Gaussian mixture clustering 369

or alternatively the matrix elements ukν , cease to change significantly. After
convergence, each pixel vector is labeled with the index of the class with the
highest membership probability,

ℓν = argmax
k

ukν , ν = 1 . . .m.

This algorithm should give similar results to the K-means algorithm, Section
8.2.1. However, because every pixel “belongs” to some extent to all of the
classes, one expects the algorithm to be less likely to become trapped in a
local minimum of the cost function.

We might interpret the fuzzy memberships as “reflecting the relative pro-
portions of each category within the spatially and spectrally integrated multi-
spectral vector of the pixel” (Schowengerdt, 2006). This interpretation will be
more plausible when, in the next section, we replace the fuzzy memberships
ukν by posterior class membership probabilities. In this spirit, we will dispense
with a Python implementation of FKM and proceed directly to a Gaussian
mixture model.

8.3 Gaussian mixture clustering

The unsupervised classification algorithms of the preceding section are based
on the cost functions of Equation (8.11) or Equation (8.12). These favor the
formation of clusters having similar extent, so-called Voronoi partitions, due
to the assumption made in Equation (8.4). The use of multivariate Gaus-
sian probability densities to model the classes allows for ellipsoidal clusters of
arbitrary extent and is considerably more flexible. Rather than deriving an
algorithm from first principles (see Exercise 9), we can obtain one directly
from the FKM algorithm. We merely replace Equation (8.33) for the class
memberships ukν by the posterior probability Pr(k | g(ν)) for class k given
the observation g(ν) (Gath and Geva, 1989):

ukν → Pr(k | g(ν)).

Then, using Bayes’ Theorem, we can write

ukν ∝ p(g(ν) | k)Pr(k),

where p(g(ν) | k) will be chosen to be a multivariate normal density function.

Its estimated mean µ̂k and covariance matrix Σ̂k are given by Equations (8.9)
and (8.10), respectively. Thus, apart from a normalization factor, we have

ukν = p(g(ν) | k)Pr(k)

=
1

√

|Σ̂k|
exp

[

−1

2
(g(ν)− µ̂k)

⊤Σ̂
−1

k (g(ν)− µ̂k)

]

pk.
(8.34)

370 Unsupervised Classification

In the above expression, the prior probability Pr(k) is replaced by

pk =
mk

m
=

1

m

m∑

ν=1

ukν . (8.35)

The algorithm consists of an iteration of Equations (8.9), (8.10), (8.34), and
(8.35) with the same termination condition as for the fuzzy K-means algo-
rithm. After each iteration, the columns of U are normalized according to
Equation (8.7).

Unlike the FKM classifier, the memberships ukν are now functions of the
directionally sensitive Mahalanobis distance

d =

√

(g(ν)− µ̂k)
⊤Σ̂

−1

k (g(ν)− µ̂k) .

Because of the exponential dependence of the memberships on d2 in Equation
(8.34), the computation is very sensitive to initialization conditions and can
even become unstable. To avoid this problem, one can first obtain initial
values for U by preceding the calculation with the fuzzy K-means algorithm
(see Gath and Geva (1989), who referred to their algorithm as fuzzy maximum
likelihood expectation (FMLE) clustering). Explicitly, then, the algorithm is
as follows:

Algorithm (FMLE clustering)

1. Determine starting values for the initial memberships ukν , e.g., by
randomization or FKM.

2. Determine the cluster centers µ̂k with Equation (8.9), the covari-

ance matrices Σ̂k with Equation (8.10), and the priors pk with
Equation (8.35).

3. Calculate with Equation (8.34) the new class membership proba-
bilities ukν . Normalize the columns of U .

4. If U has not changed significantly, stop, else go to 2.

8.3.1 Expectation maximization

Since the above algorithm has nothing to do with the simple cost functions of
Section 8.1, we might ask why it should converge at all. The FMLE algorithm
is in fact exactly equivalent to the application of the Expectation Maximiza-
tion (EM) algorithm (Redner and Walker, 1984) to a Gaussian mixture model
of the clustering problem. In that formulation, the probability density p(g)
for observing a value g in a given clustering configuration is modeled as a su-
perposition of class-specific, multivariate normal probability density functions
p(g | k) with mixing coefficients pk:

p(g) =

K∑

k=1

p(g | k)pk. (8.36)

370 Unsupervised Classification

In the above expression, the prior probability Pr(k) is replaced by

pk =
mk

m
=

1

m

m∑

ν=1

ukν . (8.35)

The algorithm consists of an iteration of Equations (8.9), (8.10), (8.34), and
(8.35) with the same termination condition as for the fuzzy K-means algo-
rithm. After each iteration, the columns of U are normalized according to
Equation (8.7).

Unlike the FKM classifier, the memberships ukν are now functions of the
directionally sensitive Mahalanobis distance

d =

√

(g(ν)− µ̂k)
⊤Σ̂

−1

k (g(ν)− µ̂k) .

Because of the exponential dependence of the memberships on d2 in Equation
(8.34), the computation is very sensitive to initialization conditions and can
even become unstable. To avoid this problem, one can first obtain initial
values for U by preceding the calculation with the fuzzy K-means algorithm
(see Gath and Geva (1989), who referred to their algorithm as fuzzy maximum
likelihood expectation (FMLE) clustering). Explicitly, then, the algorithm is
as follows:

Algorithm (FMLE clustering)

1. Determine starting values for the initial memberships ukν , e.g., by
randomization or FKM.

2. Determine the cluster centers µ̂k with Equation (8.9), the covari-

ance matrices Σ̂k with Equation (8.10), and the priors pk with
Equation (8.35).

3. Calculate with Equation (8.34) the new class membership proba-
bilities ukν . Normalize the columns of U .

4. If U has not changed significantly, stop, else go to 2.

8.3.1 Expectation maximization

Since the above algorithm has nothing to do with the simple cost functions of
Section 8.1, we might ask why it should converge at all. The FMLE algorithm
is in fact exactly equivalent to the application of the Expectation Maximiza-
tion (EM) algorithm (Redner and Walker, 1984) to a Gaussian mixture model
of the clustering problem. In that formulation, the probability density p(g)
for observing a value g in a given clustering configuration is modeled as a su-
perposition of class-specific, multivariate normal probability density functions
p(g | k) with mixing coefficients pk:

p(g) =

K∑

k=1

p(g | k)pk. (8.36)

Gaussian mixture clustering 371

This expression has the same form as Equation (2.69), with the mixing coeffi-
cients pk playing the role of the prior probabilities. To obtain the parameters
of the model, the likelihood

m∏

ν=1

p(g(ν)) =

m∏

ν=1

[
K∑

k=1

p(g(ν) | k)pk
]

(8.37)

is maximized. The maximization takes place in alternating expectation and
maximization steps. In step 3 of the FMLE algorithm, the class membership
probabilities ukν = p(k | g(ν)) are computed. This corresponds to the expec-
tation step of the EM algorithm in which the terms p(g | k)pk of the mixture
model are recalculated. In step 2 of the FMLE algorithm, the parameters for
p(g | k), namely µ̂k and Σ̂k, and the mixture coefficients pk are estimated for
k = 1 . . .K. This corresponds to the EM maximization step; see also Exer-
cise 9.

The likelihood must in fact increase on each iteration and therefore the
algorithm will indeed converge to a (local) maximum in the likelihood. To
demonstrate this, we follow Bishop (2006) and write Equation (8.37) in the
more general form

p(G | θ) =
m∏

ν=1

[
K∑

k=1

p(g(ν) | θk)pk
]

, (8.38)

where G is the observed dataset, θk represents the parameters µk,Σk of the
kth Gaussian distribution and θ is the set of all parameters of the model,
θ = {µk,Σk, pk | k = 1 . . .K}.

Now suppose that the class labels were known. That is, in the notation of
Chapter 6, suppose we were given

ℓ = {ℓ1 . . . ℓm}, ℓν = (0, . . . 1, . . . 0)⊤,

where, if observation ν is in class k, (ℓν)k = ℓνk = 1 and the other components
are 0. Then it would only be necessary to maximize the likelihood function

p(G, ℓ | θ) =
m∏

ν=1

[
K∑

k=1

ℓνkp(g(ν) | θk)pk
]

=

m∏

ν=1

K∏

k=1

p(g(ν) | θk)ℓνkpℓνk

k ,

(8.39)
which is straightforward, since it can be done separately for each class. Thus,
taking the logarithm of Equation (8.39), we get the log-likelihood

log p(G, ℓ | θ) =
∑

ν

∑

k

log [p(g(ν) | θk)pk] ℓνk =
∑

k

∑

ν∈Ck

log [p(g(ν) | θk)pk] .

However, the variables ℓ are unknown; they are referred to as latent variables
(Bishop, 2006). Let us postulate an unknown mass function q(ℓ) for the latent

372 Unsupervised Classification

variables. Then the likelihood function p(G | θ), Equation (8.38), can be
expressed as an average of p(G, ℓ | θ) over q(ℓ),

p(G | θ) =
∑

ℓ

p(G | ℓ, θ)q(ℓ) =
∑

ℓ

p(G, ℓ | θ). (8.40)

The second equality above follows from the definition of conditional prob-
ability, Equation (2.65). The log-likelihood may now be separated into two
terms,

log p(G | θ) = L(q, θ) + KL(q, p), (8.41)

where

L(q, θ) =
∑

ℓ

q(ℓ) log

(
p(G, ℓ | θ)

q(ℓ)

)

(8.42)

and

KL(q, p) = −
∑

ℓ

q(ℓ) log

(
p(ℓ | G, θ)

q(ℓ)

)

. (8.43)

This decomposition can be seen immediately by writing

p(G, ℓ | θ) = p(ℓ | G, θ)p(G | θ),

which again follows from the definition of conditional probability, and expand-
ing Equation (8.42):

L(q, θ) =
∑

ℓ

q(ℓ)[log p(ℓ | G, θ) + log p(G | θ)− log q(ℓ)]

= −KL(q, p) +
∑

ℓ

q(ℓ) log p(G | θ) = −KL(q, p) + log p(G | θ).

This is just Equation (8.41).
From Section 2.7.1 we recognize KL(q, p) as the Kullback–Leibler divergence

between q(ℓ) and the posterior density p(ℓ | G, θ). Since KL(q, p) ≥ 0, with
equality only when the two densities are equal, it follows that

log p(G | θ) ≥ L(q, θ),

that is, L(q, θ) is a lower bound for log p(G | θ). The EM procedure is then as
follows:

• E-step: Let the current best set of parameters be θ′. The lower bound
on the log-likelihood is maximized by estimating q(ℓ) as p(ℓ | G, θ′),
causing the KL(q, p) term to vanish and not affecting the log-likelihood
since the likelihood does not depend on q(ℓ); see Equation (8.40). At
this stage log p(G | θ′) = L(q, θ′).

372 Unsupervised Classification

variables. Then the likelihood function p(G | θ), Equation (8.38), can be
expressed as an average of p(G, ℓ | θ) over q(ℓ),

p(G | θ) =
∑

ℓ

p(G | ℓ, θ)q(ℓ) =
∑

ℓ

p(G, ℓ | θ). (8.40)

The second equality above follows from the definition of conditional prob-
ability, Equation (2.65). The log-likelihood may now be separated into two
terms,

log p(G | θ) = L(q, θ) + KL(q, p), (8.41)

where

L(q, θ) =
∑

ℓ

q(ℓ) log

(
p(G, ℓ | θ)

q(ℓ)

)

(8.42)

and

KL(q, p) = −
∑

ℓ

q(ℓ) log

(
p(ℓ | G, θ)

q(ℓ)

)

. (8.43)

This decomposition can be seen immediately by writing

p(G, ℓ | θ) = p(ℓ | G, θ)p(G | θ),

which again follows from the definition of conditional probability, and expand-
ing Equation (8.42):

L(q, θ) =
∑

ℓ

q(ℓ)[log p(ℓ | G, θ) + log p(G | θ)− log q(ℓ)]

= −KL(q, p) +
∑

ℓ

q(ℓ) log p(G | θ) = −KL(q, p) + log p(G | θ).

This is just Equation (8.41).
From Section 2.7.1 we recognize KL(q, p) as the Kullback–Leibler divergence

between q(ℓ) and the posterior density p(ℓ | G, θ). Since KL(q, p) ≥ 0, with
equality only when the two densities are equal, it follows that

log p(G | θ) ≥ L(q, θ),

that is, L(q, θ) is a lower bound for log p(G | θ). The EM procedure is then as
follows:

• E-step: Let the current best set of parameters be θ′. The lower bound
on the log-likelihood is maximized by estimating q(ℓ) as p(ℓ | G, θ′),
causing the KL(q, p) term to vanish and not affecting the log-likelihood
since the likelihood does not depend on q(ℓ); see Equation (8.40). At
this stage log p(G | θ′) = L(q, θ′).

Gaussian mixture clustering 373

• M-step: Now q(ℓ) is held fixed and p(G, ℓ | θ) is maximized wrt θ
(which, as we saw above, is straightforward), giving a new set of pa-
rameters θ′′, and causing the lower bound L(q, θ′′) again to increase
(unless it is already at a maximum). This will necessarily cause the
log-likelihood to increase, since q(ℓ) is not the same as p(ℓ | G, θ′′) and
therefore the Kullback–Leibler divergence will be positive. Now the E-
step can be repeated. Iteration of the two steps will therefore always
cause the log-likelihood to increase until a maximum is reached.

At any stage of the iteration of the FMLE algorithm, the current estimate
for the log-likelihood for the dataset can be shown to be given by (Bishop,
1995)

m∑

ν=1

log p(g(ν)) =

K∑

k=1

m∑

ν=1

[ukν]
o log ukν . (8.44)

Here [ukν]
o is the “old” value of the posterior class membership probability,

i.e., the value determined on the previous step.

8.3.2 Simulated annealing

Notwithstanding the initialization procedure, the FMLE (or EM) algorithm,
like all iterative methods, may be trapped in a local optimum. A remedial
scheme is to apply a technique called simulated annealing. The membership
probabilities in the early iterations are given a strong random component
and only gradually are the calculated class values allowed to influence the
estimation of the class means and covariance matrices. The rate of reduction
of randomness may be determined by a temperature parameter T , e.g.,

ukν → ukν(1− r1/T) (8.45)

on each iteration, where r ∈ [0, 1] is a uniformly distributed random number
and where T is initialized to some maximum value T0 (Hilger, 2001). The
temperature T is reduced at each iteration by a factor c < 1 according to
T → cT . As T approaches zero, ukiν will be determined more and more by
the probability distribution parameters in Equation (8.34) alone.

8.3.3 Partition density

Since the sum of squares cost function E(C) in Equation (8.12) is no longer
relevant, we choose with Gath and Geva (1989) the partition density as a
possible criterion for selecting the best number of clusters. To obtain it, first
of all define the fuzzy hyper-volume as

FHV =

K∑

k=1

√

|Σ̂k|. (8.46)

374 Unsupervised Classification

Listing 8.4: Gaussian mixture clustering (excerpt from the script em.py).

1 dU = 1.0

2 itr = 0

3 T = T0

4 print (’running�EM�on�%i�pixel�vectors ’%m)

5 while ((dU > 0.001) or (itr < 10)) and (itr < 500):

6 Uold = U+0.0

7 ms = np.sum(U,axis =1)

8 # prior probabilities

9 Ps = np.asarray(ms/m). ravel()

10 # cluster means

11 Ms = np.asarray ((np.mat(U)*np.mat(G)).T)

12 # loop over the cluster index

13 for k in range(K):

14 Ms[:,k] = Ms[:,k]/ms[k]

15 W = np.tile(Ms[:,k]. ravel(),(m ,1))

16 Ds = G - W

17 # covariance matrix

18 for i in range(N):

19 W[:,i] = np.sqrt (U[k,:]) \

20 .ravel()*Ds[:,i]. ravel()

21 C = np.mat(W).T*np.mat(W)/ms[k]

22 Cs[k ,:,:] = C

23 sqrtdetC = np.sqrt (np.linalg.det(C))

24 Cinv = np.linalg.inv(C)

25 qf = np.asarray (np.sum(np. multiply(Ds \

26 ,np.mat(Ds)* Cinv),1)). ravel()

27 # class hypervolume and partition density

28 fhv[k] = sqrtdetC

29 idx = np.where(qf < 1.0)

30 pdens[k] = np.sum(U[k,idx])/ fhv[k]

31 # new memberships

32 U[k,unfrozen] = np.exp(-qf[unfrozen]/2.0)\

33 *(Ps[k]/ sqrtdetC)

34 # random membership for annealing

35 i f T > 0.0:

36 Ur = 1.0 - np.random\

37 .random(len(unfrozen))**(1.0/ T)

38 U[k,unfrozen] = U[k,unfrozen]*Ur

This expression is proportional to the volume in feature space occupied by
the ellipsoidal clusters generated by the algorithm. For instance, for a two-
dimensional cluster with a normal (elliptical) probability density we have, in
its principal axis coordinate system,

√

|Σ̂| =
√
∣
∣
∣
∣

σ2
1 0
0 σ2

2

∣
∣
∣
∣
= σ1σ2 ≈ area (volume) of the ellipse.

374 Unsupervised Classification

Listing 8.4: Gaussian mixture clustering (excerpt from the script em.py).

1 dU = 1.0

2 itr = 0

3 T = T0

4 print (’running�EM�on�%i�pixel�vectors ’%m)

5 while ((dU > 0.001) or (itr < 10)) and (itr < 500):

6 Uold = U+0.0

7 ms = np.sum(U,axis =1)

8 # prior probabilities

9 Ps = np.asarray(ms/m). ravel()

10 # cluster means

11 Ms = np.asarray ((np.mat(U)*np.mat(G)).T)

12 # loop over the cluster index

13 for k in range(K):

14 Ms[:,k] = Ms[:,k]/ms[k]

15 W = np.tile(Ms[:,k]. ravel(),(m ,1))

16 Ds = G - W

17 # covariance matrix

18 for i in range(N):

19 W[:,i] = np.sqrt (U[k,:]) \

20 .ravel()*Ds[:,i]. ravel()

21 C = np.mat(W).T*np.mat(W)/ms[k]

22 Cs[k ,:,:] = C

23 sqrtdetC = np.sqrt (np.linalg.det(C))

24 Cinv = np.linalg.inv(C)

25 qf = np.asarray (np.sum(np.multiply(Ds \

26 ,np.mat(Ds)* Cinv),1)). ravel()

27 # class hypervolume and partition density

28 fhv[k] = sqrtdetC

29 idx = np.where(qf < 1.0)

30 pdens[k] = np.sum(U[k,idx])/ fhv[k]

31 # new memberships

32 U[k,unfrozen] = np.exp(-qf[unfrozen]/2.0)\

33 *(Ps[k]/ sqrtdetC)

34 # random membership for annealing

35 i f T > 0.0:

36 Ur = 1.0 - np.random\

37 .random(len(unfrozen))**(1.0/ T)

38 U[k,unfrozen] = U[k,unfrozen]*Ur

This expression is proportional to the volume in feature space occupied by
the ellipsoidal clusters generated by the algorithm. For instance, for a two-
dimensional cluster with a normal (elliptical) probability density we have, in
its principal axis coordinate system,

√

|Σ̂| =
√
∣
∣
∣
∣

σ2
1 0
0 σ2

2

∣
∣
∣
∣
= σ1σ2 ≈ area (volume) of the ellipse.

Including spatial information 375

Next, let s be the sum of all membership probabilities for observations which
lie within unit Mahalanobis distance of a cluster center:

s =
∑

ν∈N

K∑

k=1

uνk, N = {ν | (g(ν)− µ̂k)
⊤Σ̂

−1

k (g(ν)− µ̂k) < 1}.

Then the partition density is defined as

PD = s/FHV. (8.47)

Assuming that the data consist of K̃ well-separated clusters of approximately
multivariate normally distributed pixels, the partition density should exhibit
a maximum at K = K̃.

8.3.4 Implementation notes

A Python script em.py for FMLE (or EM) clustering, is documented in Ap-
pendix C. The need for continual re-estimation of Σk is computationally
expensive, so the algorithm is not suited for clustering large and/or high-
dimensional datasets. The necessity to invert the covariance matrices can also
occasionally lead to instability. Listing 8.4 shows an excerpt from the script. In
the listing, N is the dimension of the observations, K is the number of classes,
and U is the class membership matrix. By means of the index array variable
unfrozen, the observations partaking in the clustering process can be addi-
tionally specified. In program line 32, only the membership probabilities ujν

for “unfrozen” observations are recalculated, while the remaining observations
are “frozen” to their current values; see, e.g., Bruzzone and Prieto (2000). This
will be made use of in Section 8.4.1 below. Since the cluster memberships are
multivariate probability densities, the script optionally generates a probability
image; see Chapters 6 and 7. This image can be post-processed, for example,
with the probabilistic label relaxation filter discussed in Section 7.1.2. We
will postpone giving an example of EM clustering until we have discussed the
inclusion of spatial information into the algorithm.

8.4 Including spatial information

All of the clustering algorithms described so far make use exclusively of the
spectral properties of the individual observations (pixel vectors). Spatial rela-
tionships within an image, such as scale, coherent regions or textures, are not
taken into account. In the following, we look at two refinements which deal
with spatial context. They will be illustrated in connection with Gaussian
mixture classification but could equally well be applied to other clustering
approaches.

376 Unsupervised Classification

Listing 8.5: Multiresolution clustering (excerpt from the script em.py).

1 # cluster at minimum scale

2 try:

3 U,Ms ,Cs ,Ps,pdens = em(G,U,T0,beta ,rows ,cols)

4 except:

5 print(’em�failed’)

6 return

7 # sort clusters wrt partition density

8 idx = np.argsort(pdens)

9 idx = idx [::-1]

10 U = U[idx ,:]

11 # clustering at increasing scales

12 for i in range(max_scale -min_scale):

13 # expand U and renormalize

14 U = np.reshape(U,(K,rows ,cols))

15 rows = rows *2

16 cols = cols *2

17 U = nd.zoom (U,(1 ,2 ,2))

18 U = np.reshape(U,(K,rows*cols))

19 idx = np.where(U <0.0)

20 U[idx] = 0.0

21 den = np.sum(U,axis =0)

22 for j in range(K):

23 U[j ,:] = U[j ,:]/ den

24 # expand the image

25 for i in range(bands):

26 DWTbands[i].invert()

27 G = [DWTbands[i]. get_quadrant (

28 0, f l oat =True).ravel()

29 for i in range(bands)]

30 G = np.transpose (np.array(G))

31 # cluster

32 unfrozen = np.where(np.max(U,axis =0) < 0.90)

33 try:

34 U,Ms,Cs ,Ps,pdens=em(G,U,0.0,beta ,rows ,cols ,

35 unfrozen =unfrozen)

36 except:

37 print(’em�failed’)

38 return

8.4.1 Multiresolution clustering

Prior to performing Gaussian mixture clustering with the EM algorithm,
an image pyramid for the chosen scene may be created using, for example,

376 Unsupervised Classification

Listing 8.5: Multiresolution clustering (excerpt from the script em.py).

1 # cluster at minimum scale

2 try:

3 U,Ms ,Cs ,Ps,pdens = em(G,U,T0,beta ,rows ,cols)

4 except:

5 print(’em�failed’)

6 return

7 # sort clusters wrt partition density

8 idx = np.argsort(pdens)

9 idx = idx [::-1]

10 U = U[idx ,:]

11 # clustering at increasing scales

12 for i in range(max_scale -min_scale):

13 # expand U and renormalize

14 U = np.reshape(U,(K,rows ,cols))

15 rows = rows *2

16 cols = cols *2

17 U = nd.zoom (U,(1 ,2 ,2))

18 U = np.reshape(U,(K,rows*cols))

19 idx = np.where(U <0.0)

20 U[idx] = 0.0

21 den = np.sum(U,axis =0)

22 for j in range(K):

23 U[j ,:] = U[j ,:]/ den

24 # expand the image

25 for i in range(bands):

26 DWTbands[i].invert()

27 G = [DWTbands[i]. get_quadrant (

28 0, f l oat =True).ravel()

29 for i in range(bands)]

30 G = np.transpose (np.array(G))

31 # cluster

32 unfrozen = np.where(np.max(U,axis =0) < 0.90)

33 try:

34 U,Ms,Cs ,Ps,pdens=em(G,U,0.0,beta ,rows ,cols ,

35 unfrozen =unfrozen)

36 except:

37 print(’em�failed’)

38 return

8.4.1 Multiresolution clustering

Prior to performing Gaussian mixture clustering with the EM algorithm,
an image pyramid for the chosen scene may be created using, for example,

Including spatial information 377

the discrete wavelet transform (DWT) filter bank described in Chapter 4.
Clustering will then begin at the coarsest resolution and proceed to finer res-
olutions, with the membership probabilities passed on to each successive scale
(Hilger, 2001). In our implementation, the membership probabilities from pre-
ceding scales which, after up-sampling to the next scale, exceed some threshold
(e.g., 0.9) are frozen in the manner discussed in Section 8.3.4. The depth of
the pyramid can be chosen by the user.

The relevant program code is shown in Listing 8.5. The variable DWTbands
is a list of DWTArray objects, one for each image band, see Section 4.3.2.
The initial clustering carried out at the lowest resolution (the call to the
procedure em() in line 3) is gradually refined in the for-loop beginning at
line 12, whereby pixel vectors determined to have sufficiently high membership
probabilities (≥ 0.9, line 32) at the lower resolutions are not reclassified. In
line 8, the clusters are sorted according to decreasing partition density.∗ Apart
from improving the rate of convergence of the calculation, scaling has the
intended effect that the “spatial awareness” extracted at coarse resolution is
passed up to the finer scales.

Listing 8.6: Spatial clustering (excerpt from the script em.py).

1 # spatial membership

2 i f beta > 0:

3 # normalize class probabilities

4 a = np.sum(U,axis =0)

5 idx = np.where(a == 0)[0]

6 a[idx] = 1.0

7 for k in range(K):

8 U[k,:] = U[k ,:]/ a

9 for k in range(K):

10 U_N = 1.0 - nd.convolve (

11 np.reshape(U[k,:],(rows ,cols)),Nb)

12 V[k,:] = np.exp(-beta *U_N).ravel()

13 # combine spectral /spatial

14 U[:, unfrozen] = U[:, unfrozen]*V[:,unfrozen]

8.4.2 Spatial clustering

As described in Chapter 4, class labels for multispectral images can be repre-
sented by realizations of a Markov random field, for which the label of a given
pixel may be influenced only by the class labels of other pixels in its immedi-
ate neighborhood. According to Gibbs–Markov equivalence, Theorem 4.3, the

∗This will be particularly useful in Chapter 9 when the algorithm is used to cluster
multispectral change images, since the no-change pixels usually form the most dense cluster.

378 Unsupervised Classification

probability density for any complete labeling ℓ of the image is given by

p(ℓ) =
1

Z
exp(−βU(ℓ)), (8.48)

where Z is a normalization and the energy function U(ℓ) is given by a sum
over clique potentials,

U(ℓ) =
∑

c∈C
Vc(ℓ), (8.49)

relative to a neighborhood system N . If we restrict discussion to 4-neighbor-
hoods, the only possible cliques are singletons and pairs of vertically or hori-
zontally adjacent pixels, see Figure 4.15(a). If, furthermore, the potential for
singleton cliques is set to zero and the random field is isotropic (independent
of clique orientation), then we can write Equation (8.49) in the form

U(ℓ) =
∑

ν∈I

∑

ν′∈Nν

V2(ℓν , ℓν′), (8.50)

where I is the complete image lattice, Nν is the neighborhood of pixel ν and
V2(ℓν , ℓν′) is the clique potential for two neighboring sites. Let us now choose

V2(ℓν , ℓν′) =
1

4
(1− uℓνν′), (8.51)

where uℓνν′ is an element of the cluster membership probability matrix U .
This says that, when the probability uℓνν′ is large that neighboring site ν′

has the same label ℓν as site ν, then the clique potential is small and the
configuration is favored. Combining Equations (8.50) and (8.51),

U(ℓ) =
∑

ν∈I

1

4

(

4−
∑

ν′∈Nν

uℓνν′

)

=
∑

ν∈I
(1− uℓνNν). (8.52)

Here uℓνNν is the averaged membership probability for ℓν within the neigh-
borhood,

uℓνNν =
1

4

∑

ν′∈Nν

uℓνν′ . (8.53)

Substituting Equation (8.52) into Equation (8.48), we obtain

p(ℓ) =
1

Z

∏

ν∈I
exp(−β(1− uℓνNν)). (8.54)

Equation (8.54) is reminiscent of the likelihood functions that we have been
using for pixel-based clustering and suggests the following heuristic ansatz
(Hilger, 2001): Along with the spectral class membership probabilities ukν that
characterize the FMLE algorithm and which are given by Equation (8.34),
introduce a spatial class membership probability vkν ,

vkν ∝ exp(−β(1− ukNν)). (8.55)

378 Unsupervised Classification

probability density for any complete labeling ℓ of the image is given by

p(ℓ) =
1

Z
exp(−βU(ℓ)), (8.48)

where Z is a normalization and the energy function U(ℓ) is given by a sum
over clique potentials,

U(ℓ) =
∑

c∈C
Vc(ℓ), (8.49)

relative to a neighborhood system N . If we restrict discussion to 4-neighbor-
hoods, the only possible cliques are singletons and pairs of vertically or hori-
zontally adjacent pixels, see Figure 4.15(a). If, furthermore, the potential for
singleton cliques is set to zero and the random field is isotropic (independent
of clique orientation), then we can write Equation (8.49) in the form

U(ℓ) =
∑

ν∈I

∑

ν′∈Nν

V2(ℓν , ℓν′), (8.50)

where I is the complete image lattice, Nν is the neighborhood of pixel ν and
V2(ℓν , ℓν′) is the clique potential for two neighboring sites. Let us now choose

V2(ℓν , ℓν′) =
1

4
(1− uℓνν′), (8.51)

where uℓνν′ is an element of the cluster membership probability matrix U .
This says that, when the probability uℓνν′ is large that neighboring site ν′

has the same label ℓν as site ν, then the clique potential is small and the
configuration is favored. Combining Equations (8.50) and (8.51),

U(ℓ) =
∑

ν∈I

1

4

(

4−
∑

ν′∈Nν

uℓνν′

)

=
∑

ν∈I
(1− uℓνNν). (8.52)

Here uℓνNν is the averaged membership probability for ℓν within the neigh-
borhood,

uℓνNν =
1

4

∑

ν′∈Nν

uℓνν′ . (8.53)

Substituting Equation (8.52) into Equation (8.48), we obtain

p(ℓ) =
1

Z

∏

ν∈I
exp(−β(1− uℓνNν)). (8.54)

Equation (8.54) is reminiscent of the likelihood functions that we have been
using for pixel-based clustering and suggests the following heuristic ansatz
(Hilger, 2001): Along with the spectral class membership probabilities ukν that
characterize the FMLE algorithm and which are given by Equation (8.34),
introduce a spatial class membership probability vkν ,

vkν ∝ exp(−β(1− ukNν)). (8.55)

Including spatial information 379

0 200 400 600 800

0

200

400

600

800

AST_20070501_pca_em.tif: linear: [1, 1, 1]: [0, 0, 1000, 1000]

0

1

2

3

4

5

6

7

FIGURE 8.5

Gaussian mixture clustering of the first four principal components of the
ASTER scene of Figure 6.1, eight clusters.

A combined spectral-spatial class membership probability for the νth observa-
tion is then determined by replacing ukν with

ukνvkν
∑K

k′=1 uk′νvk′ν

, (8.56)

apart from which the algorithm proceeds as before. Note that, from Equa-
tions (8.34) and (8.55), the combined membership probability above is now
proportional to

1
√

|Σ̂k|
· mk

m
· exp

(
− 1

2
(g(ν) − µ̂k)

⊤C−1
k (g(ν) − µ̂k)− β(1 − ukNν)

)
.

This way of folding spatial information with the spectral similarity measure
(here the Mahalanobis distance) is referred to in Tran et al. (2005) as the
addition form.

380 Unsupervised Classification

The quantity ukNν appearing in Equation (8.55) can be determined for an
entire image simply by convolving the two-dimensional kernel

0 1
4 0

1
4 0 1

4
0 1

4 0

with the array U , after reforming the latter to the correct image dimensions;
see Listing 8.6. (The kernel is stored in the variable Nb.)

Figure 8.5 shows an example, again using the ASTER image. The classifi-
cation was determined with an image pyramid of depth 2 (i.e., three levels),
annealing temperature T0 = 0.5 and with β = 0.5; see the accompanying
Jupyter notebook.

8.5 A benchmark

If we include fuzzy K-means, we now have introduced no less than six pixel-
oriented clustering methods. So which one should we use? The degree of suc-
cess of unsupervised image classification is notoriously difficult to quantify;
see, e.g., Duda and Canty (2002). This is because there is, by definition, no
prior information with regard to what one might expect to be a “reasonable”
result. Ultimately, judgment is qualitative, almost a question of aesthetics.

Nevertheless, in order to compare the algorithms we have looked at so far
more objectively, we will generate a “toy” benchmark image with the code:

from osgeo.gdalconst import GDT_Float32

image = np.zeros((800 ,800 ,3))

b = 2.0

image [99:699 ,299:499 ,:] = b

image [299:499 ,99:699 ,:] = b

image [299:499 ,299:499 ,:] = 2*b

n1 = np.random.randn (800 ,800)

n2 = np.random.randn (800 ,800)

n3 = np.random.randn (800 ,800)

image[:,:,0] += n1

image[:,:,1] += n2+n1

image[:,:,2] += n3+n1/2+ n2/2

driver = gdal .GetDriverByName (’GTiff’)

outDataset = driver.Create(’imagery/toy.tif’,

800,800,3, GDT_Float32)

for k in range(3):

outBand = outDataset .GetRasterBand (k+1)

outBand.WriteArray (image[:,:,k],0,0)

outBand.FlushCache ()

outDataset = None

380 Unsupervised Classification

The quantity ukNν appearing in Equation (8.55) can be determined for an
entire image simply by convolving the two-dimensional kernel

0 1
4 0

1
4 0 1

4
0 1

4 0

with the array U , after reforming the latter to the correct image dimensions;
see Listing 8.6. (The kernel is stored in the variable Nb.)

Figure 8.5 shows an example, again using the ASTER image. The classifi-
cation was determined with an image pyramid of depth 2 (i.e., three levels),
annealing temperature T0 = 0.5 and with β = 0.5; see the accompanying
Jupyter notebook.

8.5 A benchmark

If we include fuzzy K-means, we now have introduced no less than six pixel-
oriented clustering methods. So which one should we use? The degree of suc-
cess of unsupervised image classification is notoriously difficult to quantify;
see, e.g., Duda and Canty (2002). This is because there is, by definition, no
prior information with regard to what one might expect to be a “reasonable”
result. Ultimately, judgment is qualitative, almost a question of aesthetics.

Nevertheless, in order to compare the algorithms we have looked at so far
more objectively, we will generate a “toy” benchmark image with the code:

from osgeo.gdalconst import GDT_Float32

image = np.zeros((800 ,800 ,3))

b = 2.0

image [99:699 ,299:499 ,:] = b

image [299:499 ,99:699 ,:] = b

image [299:499 ,299:499 ,:] = 2*b

n1 = np.random.randn (800 ,800)

n2 = np.random.randn (800 ,800)

n3 = np.random.randn (800 ,800)

image[:,:,0] += n1

image[:,:,1] += n2+n1

image[:,:,2] += n3+n1/2+ n2/2

driver = gdal .GetDriverByName (’GTiff’)

outDataset = driver.Create(’imagery/toy.tif’,

800,800,3, GDT_Float32)

for k in range(3):

outBand = outDataset .GetRasterBand (k+1)

outBand.WriteArray (image[:,:,k],0,0)

outBand.FlushCache ()

outDataset = None

A benchmark 381

FIGURE 8.6

Unsupervised classification of a toy image. Row-wise, left to right, top to
bottom: The toy image, K-means, kernel K-means, extended K-means (on first
principal component), fuzzy K-means, agglomerative hierarchical, Gaussian
mixture with depth 0 and β = 1.0, Gaussian mixture with depth 2 and β = 0.0,
Gaussian mixture with depth 2 and β = 1.0.

The image is shown in the upper left-hand corner of Figure 8.6. It consists
of three “spectral bands” and three classes, namely the dark background, the
four points of the cross and the cross center. The cluster sizes differ consider-
ably (approximately in the ratio 12:4:1) with a large overlap, and the bands
are strongly correlated. The program in Listing 3.4 estimates the image noise
covariance matrix:

run scripts /ex3_2 imagery /toy.tif

Noise covariance , f i l e imagery/toy.tif

382 Unsupervised Classification

[[1.00600974 1.00667639 0.50545603]

[1.00667639 2.00463715 1.00493322]

[0.50545603 1.00493322 1.50670931]]

Some results are shown in Figure 8.6. Neither the K-means variants nor the
Gaussian mixture algorithm without scaling identify all three classes. Agglom-
erative hierarchical clustering succeeds reasonably well. The “best” classifica-
tion is obtained with the Gaussian mixture model when both multiresolution
and spatial clustering are employed. The success of Gaussian mixture classifi-
cation is not particularly surprising since the toy image classes are multivariate
normally distributed. However, if the other methods exhibit inferior perfor-
mance on normal distributions, then they might be expected to be similarly
inferior when presented with real, non-Gaussian data.

8.6 The Kohonen self-organizing map

The Kohonen self-organizing map (SOM), a simple example of which is sketch-
ed in Figure 8.7, belongs to a class of neural networks which are trained by

✖✕
✗✔

✖✕
✗✔

✖✕
✗✔

✖✕
✗✔

✖✕
✗✔

✖✕
✗✔

✖✕
✗✔

✖✕
✗✔

✖✕
✗✔

✖✕
✗✔

✖✕
✗✔

✖✕
✗✔

✖✕
✗✔

✖✕
✗✔

✖✕
✗✔

✖✕
✗✔

✖✕
✗✔

✖✕
✗✔

❖ ✍ ✒ ✸■ ❑ ✻

✻ ✻
g1 g2

4

✣
w

1 2 3

k

16

k∗

FIGURE 8.7

The Kohonen self-organizing map in two dimensions with a two-dimensional
input. The inputs are connected to all 16 neurons (only the first four connec-
tions are shown).

382 Unsupervised Classification

[[1.00600974 1.00667639 0.50545603]

[1.00667639 2.00463715 1.00493322]

[0.50545603 1.00493322 1.50670931]]

Some results are shown in Figure 8.6. Neither the K-means variants nor the
Gaussian mixture algorithm without scaling identify all three classes. Agglom-
erative hierarchical clustering succeeds reasonably well. The “best” classifica-
tion is obtained with the Gaussian mixture model when both multiresolution
and spatial clustering are employed. The success of Gaussian mixture classifi-
cation is not particularly surprising since the toy image classes are multivariate
normally distributed. However, if the other methods exhibit inferior perfor-
mance on normal distributions, then they might be expected to be similarly
inferior when presented with real, non-Gaussian data.

8.6 The Kohonen self-organizing map

The Kohonen self-organizing map (SOM), a simple example of which is sketch-
ed in Figure 8.7, belongs to a class of neural networks which are trained by

✖✕
✗✔

✖✕
✗✔

✖✕
✗✔

✖✕
✗✔

✖✕
✗✔

✖✕
✗✔

✖✕
✗✔

✖✕
✗✔

✖✕
✗✔

✖✕
✗✔

✖✕
✗✔

✖✕
✗✔

✖✕
✗✔

✖✕
✗✔

✖✕
✗✔

✖✕
✗✔

✖✕
✗✔

✖✕
✗✔

❖ ✍ ✒ ✸■ ❑ ✻

✻ ✻
g1 g2

4

✣
w

1 2 3

k

16

k∗

FIGURE 8.7

The Kohonen self-organizing map in two dimensions with a two-dimensional
input. The inputs are connected to all 16 neurons (only the first four connec-
tions are shown).

The Kohonen self-organizing map 383

competitive learning (Hertz et al., 1991; Kohonen, 1989). It is very useful as
a visualization tool for exploring the class structure of multispectral imagery.
The layer of neurons shown in the figure can have any geometry, but usually
a one-, two-, or three-dimensional array is chosen. The input signal is the
observation vector g = (g1, g2 . . . gN)⊤, where, in the figure, N = 2. Each
input to a neuron is associated with a synaptic weight so that, for K neurons,
the synaptic weights can be represented as an (N ×K) matrix

w =







w11 w12 · · · w1K

w21 w22 · · · w2K
...

...
...

...
wN1 wN2 · · · wNK







. (8.57)

✼

✘✘✘✘✘✘✘✘✘✘✘

❇
❇
❇❇◆

wk∗(ν)

g(ν)

❃

wk∗(ν + 1)

✘✿

FIGURE 8.8

Movement of a synaptic weight vec-
tor in the direction of a training vec-
tor.

The components of the vector
wk = (w1k, w2k . . . wNk)

⊤ are the
synaptic weights of the kth neuron.
The set of observations {g(ν) | ν =
1 . . .m}, where m > K, comprise the
training data for the network. The
synaptic weight vectors are to be ad-
justed so as to reflect in some way the
class structure of the training data in
an N -dimensional feature space.
The training procedure is as fol-

lows. First of all, the neurons’ weights
are initialized from a random subset
of K training observations, setting

wk = g(k), k = 1 . . .K.

Then, when a new training vector
g(ν) is presented to the input of the
network, the neuron whose weight
vector wk lies nearest to g(ν) is des-

ignated to be the “winner.” Distances are given by �g(ν)−wk�. Suppose that
the winner’s index is k∗. Its weight vector is then shifted a small amount in
the direction of the training vector:

wk∗(ν + 1) = wk∗(ν) + η(g(ν)−wk∗(ν)), (8.58)

where wk∗(ν + 1) is the weight vector after presentation of the νth training
vector; see Figure 8.8. The parameter η is called the learning rate of the
network. The intention is to repeat this learning procedure until the synaptic
weight vectors reflect the class structure of the training data, thereby achieving
what is often referred to as a vector quantization of the feature space (Hertz
et al., 1991). In order for this method to converge, it is necessary to allow the

384 Unsupervised Classification

learning rate to decrease gradually during the training process. A convenient
function for this is

η(ν) = ηmax

(
ηmin

ηmax

)ν/m

.

However, the SOM algorithm goes a step further and attempts to map the
topology of the feature space onto the network as well. This is achieved by
defining a neighborhood function for the winner neuron on the network of
neurons. Usually a Gaussian of the form

N (k∗, k) = exp(−d2(k∗, k)/2σ2)

is chosen, where d2(k∗, k) is the square of the distance between neurons k∗

and k in the network array. For example, for a two-dimensional array of n×n
neurons d2(k∗, k) can by calculated in integer arithmetic as

d2(k∗, k) =[(k∗ − 1) mod n− (k − 1) mod n]2

+ [(k∗ − 1)/n− (k − 1)/n]2.
(8.59)

During the learning phase, not only the weight vectors of the winner neuron,
but also those of the neurons in its neighborhood, are moved in the direc-
tion of the training vectors by an amount proportional to the value of the
neighborhood function:

wk(ν + 1) = wk(ν) + η(ν)N (k∗, k)(g(ν)−wk(ν)), k = 1 . . .K. (8.60)

Finally, the extent of the neighborhood is allowed to shrink steadily as well:

σ(ν) = σmax

(
σmin

σmax

)ν/m

.

Typically, σmax ≈ n/2 and σmin ≈ 1/2. The neighborhood is initially the
entire network, but toward the end of training it becomes very localized.

For clustering of multispectral satellite imagery a cubic network geometry is
useful (Groß and Seibert, 1993). After training on some representative sample
of pixel vectors, the entire image is classified by associating each pixel vector
with the neuron having the closest synaptic weight vector. Then the pixel is
colored by mapping the position of that neuron in the cube to coordinates in
RGB color space. Thus, the N -dimensional feature space is “projected” onto
the three-dimensional RGB color cube and pixels that are close together in
feature space are given similar colors. A Python script for the Kohonen self-
organizing map is documented in Appendix C. Running it on all nine bands
of the Jülich ASTER image:

run scripts /som -c 6 imagery/AST_20070501 .tif

-------- SOM ------------

384 Unsupervised Classification

learning rate to decrease gradually during the training process. A convenient
function for this is

η(ν) = ηmax

(
ηmin

ηmax

)ν/m

.

However, the SOM algorithm goes a step further and attempts to map the
topology of the feature space onto the network as well. This is achieved by
defining a neighborhood function for the winner neuron on the network of
neurons. Usually a Gaussian of the form

N (k∗, k) = exp(−d2(k∗, k)/2σ2)

is chosen, where d2(k∗, k) is the square of the distance between neurons k∗

and k in the network array. For example, for a two-dimensional array of n×n
neurons d2(k∗, k) can by calculated in integer arithmetic as

d2(k∗, k) =[(k∗ − 1) mod n− (k − 1) mod n]2

+ [(k∗ − 1)/n− (k − 1)/n]2.
(8.59)

During the learning phase, not only the weight vectors of the winner neuron,
but also those of the neurons in its neighborhood, are moved in the direc-
tion of the training vectors by an amount proportional to the value of the
neighborhood function:

wk(ν + 1) = wk(ν) + η(ν)N (k∗, k)(g(ν)−wk(ν)), k = 1 . . .K. (8.60)

Finally, the extent of the neighborhood is allowed to shrink steadily as well:

σ(ν) = σmax

(
σmin

σmax

)ν/m

.

Typically, σmax ≈ n/2 and σmin ≈ 1/2. The neighborhood is initially the
entire network, but toward the end of training it becomes very localized.

For clustering of multispectral satellite imagery a cubic network geometry is
useful (Groß and Seibert, 1993). After training on some representative sample
of pixel vectors, the entire image is classified by associating each pixel vector
with the neuron having the closest synaptic weight vector. Then the pixel is
colored by mapping the position of that neuron in the cube to coordinates in
RGB color space. Thus, the N -dimensional feature space is “projected” onto
the three-dimensional RGB color cube and pixels that are close together in
feature space are given similar colors. A Python script for the Kohonen self-
organizing map is documented in Appendix C. Running it on all nine bands
of the Jülich ASTER image:

run scripts /som -c 6 imagery/AST_20070501 .tif

-------- SOM ------------

The Kohonen self-organizing map 385

0 200 400 600 800

0

200

400

600

800

AST_20070501_som.tif: equalization: (1, 2, 3): [0, 0, 1000, 1000]

FIGURE 8.9

Kohonen self-organizing map of the nine VNIR and sharpened SWIR spec-
tral bands of the ASTER scene of Figure 1.1. The network is a cube having
dimensions 6× 6× 6.

Sun Jun 16 15:16:59 2024

Input imagery/AST_20070501 .tif

Color cube dimension 6

training ...

elapsed time : 8.092823266983032

clustering ...

elapsed time : 15.008501052856445

SOM written to: imagery/AST_20070501_som .tif

gives the Kohonen SOM shown in Figure 8.9.

386 Unsupervised Classification

8.7 Image segmentation and the mean shift

The term image segmentation refers, in its broadest sense, to the process of
partitioning a digital image into multiple regions. Certainly all of the un-
supervised classification algorithms that we have considered in the present
Chapter fall within this category. However, here we will use the term in a
more restrictive way, namely as referring to the partitioning of pixels not only
by spectral similarity (essentially what has been discussed so far) but also
by spatial proximity. This approach to segmentation plays a major role in
low-level computer vision and in autonomous image processing in general.
Popular methods include the use of edge detectors, watershed segmentation,
region growing algorithms and morphology; see Gonzalez and Woods (2017),
Chapter 10, for a good overview.

Segmentation also offers the possibility of a refinement of clustering on the
basis of characteristics of the individual segments not necessarily related to
pixel intensities, such as shape, compactness, proximity to other segments, etc.
One speaks generally of object-based classification. We conclude this Chapter
with the description of an especially popular, nonparametric algorithm called
the mean shift (Fukunaga and Hostetler, 1975; Comaniciu and Meer, 2002).

The mean shift algorithm is non-parametric in the sense that no assump-
tions are made regarding the probability density of the observations being
clustered. The mean shift partitions pixels in an N -dimensional multispectral
feature space by associating each pixel with a local maximum in the esti-
mated probability density, called a mode. For each pixel, the associated mode
is determined by defining a (hyper-)sphere of radius rspectral centered at the
pixel and calculating the mean of the pixels that lie within the sphere. Then
the sphere’s center is shifted to that mean. This continues until convergence,
i.e., until the mean shift is less than some threshold. At each iteration, the
sphere moves to a region of higher probability density until a stationary mode
is reached. The pixel is assigned that mode.

It will be apparent from the above that mean shift clustering per se will not
lead to image segmentation in the restricted sense that we are discussing here.
However, simply by extending the feature space to include the spatial posi-
tion of the pixels, an elegant segmentation algorithm emerges. We only need
distinguish, additionally to rspectral, a spatial radius rspatial for determining
the mean shift. After an appropriate normalization of the spectral and spatial
distances, for example, by re-scaling the pixel intensities according to

g(ν) → g(ν)
rspatial
rspectral

, ν = 1 . . .m,

the mean shift procedure is carried out in the concatenated,N+2-dimensional,
spectral-spatial feature space using a hyper-sphere of radius r = rspatial.

386 Unsupervised Classification

8.7 Image segmentation and the mean shift

The term image segmentation refers, in its broadest sense, to the process of
partitioning a digital image into multiple regions. Certainly all of the un-
supervised classification algorithms that we have considered in the present
Chapter fall within this category. However, here we will use the term in a
more restrictive way, namely as referring to the partitioning of pixels not only
by spectral similarity (essentially what has been discussed so far) but also
by spatial proximity. This approach to segmentation plays a major role in
low-level computer vision and in autonomous image processing in general.
Popular methods include the use of edge detectors, watershed segmentation,
region growing algorithms and morphology; see Gonzalez and Woods (2017),
Chapter 10, for a good overview.

Segmentation also offers the possibility of a refinement of clustering on the
basis of characteristics of the individual segments not necessarily related to
pixel intensities, such as shape, compactness, proximity to other segments, etc.
One speaks generally of object-based classification. We conclude this Chapter
with the description of an especially popular, nonparametric algorithm called
the mean shift (Fukunaga and Hostetler, 1975; Comaniciu and Meer, 2002).

The mean shift algorithm is non-parametric in the sense that no assump-
tions are made regarding the probability density of the observations being
clustered. The mean shift partitions pixels in an N -dimensional multispectral
feature space by associating each pixel with a local maximum in the esti-
mated probability density, called a mode. For each pixel, the associated mode
is determined by defining a (hyper-)sphere of radius rspectral centered at the
pixel and calculating the mean of the pixels that lie within the sphere. Then
the sphere’s center is shifted to that mean. This continues until convergence,
i.e., until the mean shift is less than some threshold. At each iteration, the
sphere moves to a region of higher probability density until a stationary mode
is reached. The pixel is assigned that mode.

It will be apparent from the above that mean shift clustering per se will not
lead to image segmentation in the restricted sense that we are discussing here.
However, simply by extending the feature space to include the spatial posi-
tion of the pixels, an elegant segmentation algorithm emerges. We only need
distinguish, additionally to rspectral, a spatial radius rspatial for determining
the mean shift. After an appropriate normalization of the spectral and spatial
distances, for example, by re-scaling the pixel intensities according to

g(ν) → g(ν)
rspatial
rspectral

, ν = 1 . . .m,

the mean shift procedure is carried out in the concatenated,N+2-dimensional,
spectral-spatial feature space using a hyper-sphere of radius r = rspatial.

Image segmentation and the mean shift 387

0 25 50 75 100 125 150 175

0

25

50

75

100

125

150

175

AST_20070501_pca_meanshift.tif: equalization: (1, 2, 3): [0, 100, 200, 200]

0 25 50 75 100 125 150 175

0

25

50

75

100

125

150

175

AST_20070501_pca.tif: equalization: (1, 2, 3): [300, 550, 200, 200]

FIGURE 8.10

Left: mean shift segmentation of the first four principal components (byte-
stretched) of the ASTER scene of Figure 6.1 (spatial subset of the RGB com-
posite of the first three bands of the segmented image). Right: RGB composite
of the first three principal components.

Specifically, let yν =

(
g(ν)
xν

)

, ν = 1 . . .m, represent the image pixels in

the combined feature space, let zν , ν = 1 . . .m, denote the mean shift filtered
pixels after the segmentation has concluded, and define S(w) as the set of
pixels within a radius r of a point w (cardinality |S(w)|). Then the algorithm
is as follows:

Algorithm (Mean shift segmentation)

For each ν = 1 . . .m, do the following:

1. Set k = 1 and wk = yν .

2. Repeat:
wk+1 = 1

|S(wk)|
∑

yν∈S(wk)
yν

k = k + 1

until convergence to w =

(
f

x

)

.

3. Assign zν =

(
f

xν

)

.

The last step assigns the filtered spectral component f (the spectral mode)
to the original pixel location xν . Segmentation simply involves identifying all
pixels with the same mode as a segment.

A direct implementation of this algorithm for multi-spectral image segmen-
tation would be prohibitively slow, since mean shifts are to be computed for

388 Unsupervised Classification

all of the pixels. In the Python script meanshift.py (Appendix C), two ap-
proximations are employed to speed things up. First, all pixels within radius
r of convergence point w are assumed also to converge to that mode and
are excluded from further processing. Second, all pixels lying sufficiently close
(within a distance r/3) to the path traversed from the initial vector yν to
the mode w are similarly assigned to that mode and excluded from the cal-
culation. Additionally, a user-defined minimum segment size can be specified.
Segments with smaller extent than this minimum are assigned to the near-
est segment in the combined spatial/spectral feature space. An example of
the mean shift is shown in Figure 8.10. It was calculated with rspatial = 30,
rspectral = 15 and a minimum segment size of 10 pixels:

run scripts/meanshift -p [1,2,3,4] -d [300 ,450 ,400 ,400] \

-s 30 -r 15 -m 10 imagery /AST_20070501_pca .tif

=========================

mean shift

=========================

infile: imagery/AST_20070501_pca .tif

filtering pixels ...

result written to: imagery /AST_20070501_pca_meanshift.tif

elapsed time : 149.2563214302063

8.8 Exercises

1. (a) Show that the sum of squares cost function, Equation (8.12), can be
expressed equivalently as

E(C) =
1

2

K∑

k=1

s̄k, (8.61)

where s̄k is the average squared distance between points in the kth
cluster,

s̄k =
1

mk

m∑

i=1

m∑

i′=1

ukiuki′�gi − gi′�2. (8.62)

(b) Recall that, in the notation of Section 8.2.2,

G⊤U⊤M = (µ̂1 . . . µ̂k).

It follows that (G⊤U⊤M)U is an N × m matrix whose νth column
is the mean vector associated with the νth observation. Use this to

388 Unsupervised Classification

all of the pixels. In the Python script meanshift.py (Appendix C), two ap-
proximations are employed to speed things up. First, all pixels within radius
r of convergence point w are assumed also to converge to that mode and
are excluded from further processing. Second, all pixels lying sufficiently close
(within a distance r/3) to the path traversed from the initial vector yν to
the mode w are similarly assigned to that mode and excluded from the cal-
culation. Additionally, a user-defined minimum segment size can be specified.
Segments with smaller extent than this minimum are assigned to the near-
est segment in the combined spatial/spectral feature space. An example of
the mean shift is shown in Figure 8.10. It was calculated with rspatial = 30,
rspectral = 15 and a minimum segment size of 10 pixels:

run scripts/meanshift -p [1,2,3,4] -d [300 ,450 ,400 ,400] \

-s 30 -r 15 -m 10 imagery /AST_20070501_pca .tif

=========================

mean shift

=========================

infile: imagery/AST_20070501_pca .tif

filtering pixels ...

result written to: imagery /AST_20070501_pca_meanshift.tif

elapsed time : 149.2563214302063

8.8 Exercises

1. (a) Show that the sum of squares cost function, Equation (8.12), can be
expressed equivalently as

E(C) =
1

2

K∑

k=1

s̄k, (8.61)

where s̄k is the average squared distance between points in the kth
cluster,

s̄k =
1

mk

m∑

i=1

m∑

i′=1

ukiuki′�gi − gi′�2. (8.62)

(b) Recall that, in the notation of Section 8.2.2,

G⊤U⊤M = (µ̂1 . . . µ̂k).

It follows that (G⊤U⊤M)U is an N × m matrix whose νth column
is the mean vector associated with the νth observation. Use this to

Exercises 389

demonstrate that the sum of squares cost function can also be written
in the form

E(C) = tr
(
GG⊤)− tr

(
U⊤MUGG⊤). (8.63)

2. (a) The Python script kkmeans.py makes use of the Gaussian kernel
only. Modify it to include the option of using polynomial kernels; see
Chapter 4, Exercise 8.

(b) The code

from osgeo.gdalconst import GDT_Float32

import numpy as np

import gdal

image = np.zeros ((400 ,400 ,2))

n = np.random.randn(400 ,400)

n1 = 8*np.random.rand (400 ,400)-4

image[:,:,0] = n1+8

image[:,:,1] = n1 **2+0.3* np.random.randn (400 ,400)+8

image[:200,: ,0] = np.random.randn (200 ,400)/2+8

image[:200,: ,1] = np.random.randn(200 ,400)+14

driver = gdal .GetDriverByName (’GTIFF’)

outDataset = driver.Create(’imagery/toy.tif’,\

400,400,3, GDT_Float32)

for k in range(2):

outBand= outDataset .GetRasterBand (k+1)

outBand.WriteArray (image[:,:,k],0,0)

outBand.FlushCache ()

outDataset = None

(see the accompanying Jupyter notebook) generates a two-band toy im-
age with the two not linearly separable clusters shown in Figure 8.11.
Experiment with the kernel K-means script to achieve a good clustering
of the image. Compare your result with the Python K-means implemen-
tation in Listing 8.1.

3. Kernel K-means clustering is closely related to spectral clustering (see,
e.g., Dhillon et al. (2005)). Let K be an m×m Gaussian kernel matrix.
Define the diagonal degree matrix

D = Diag(d1 . . . dm),

where di =
∑m

j=1(K)ij , and the symmetric Laplacian matrix

L = D − K. (8.64)

Minimization of the kernelized version of the sum of squares cost func-
tion, namely

E(C) = tr
(
K
)
− tr

(
U⊤MUK

)
,

390 Unsupervised Classification

4 5 6 7 8 9 10 11 12

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

FIGURE 8.11

Two clusters which are not linearly separable.

see Equation (8.63), can be shown to be equivalent to ordinary (lin-
ear) clustering of the m training observations in the space of the first
K eigenvectors of L corresponding to the K smallest eigenvalues (von
Luxburg, 2006; Shawe-Taylor and Cristianini, 2004).

(a) Show that L is positive semi-definite and that its smallest eigenvalue
is zero with corresponding eigenvector 1m.

(b) Write a Python function spectral cluster(G,K) to implement the
following algorithm: (The input observations g(ν), ν = 1 . . .m, are
passed to the function in the form of a data matrix G along with K, the
number of clusters.)

Algorithm (Unnormalized spectral clustering)

1. Determine the Laplacian matrix L as given by Equation (8.64).

2. Compute the m × K matrix V = (v1 . . .vK), the columns of
which are the eigenvectors of L corresponding to the K small-
est eigenvalues. Let y(ν) be theK-component vector consisting
of the νth row of V , ν = 1 . . .m.

3. Partition the vectors y(ν) with the K-means algorithm into
clusters C1 . . . CK .

4. Output the cluster labels for g(ν) as those for y(ν).

390 Unsupervised Classification

4 5 6 7 8 9 10 11 12

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

FIGURE 8.11

Two clusters which are not linearly separable.

see Equation (8.63), can be shown to be equivalent to ordinary (lin-
ear) clustering of the m training observations in the space of the first
K eigenvectors of L corresponding to the K smallest eigenvalues (von
Luxburg, 2006; Shawe-Taylor and Cristianini, 2004).

(a) Show that L is positive semi-definite and that its smallest eigenvalue
is zero with corresponding eigenvector 1m.

(b) Write a Python function spectral cluster(G,K) to implement the
following algorithm: (The input observations g(ν), ν = 1 . . .m, are
passed to the function in the form of a data matrix G along with K, the
number of clusters.)

Algorithm (Unnormalized spectral clustering)

1. Determine the Laplacian matrix L as given by Equation (8.64).

2. Compute the m × K matrix V = (v1 . . .vK), the columns of
which are the eigenvectors of L corresponding to the K small-
est eigenvalues. Let y(ν) be theK-component vector consisting
of the νth row of V , ν = 1 . . .m.

3. Partition the vectors y(ν) with the K-means algorithm into
clusters C1 . . . CK .

4. Output the cluster labels for g(ν) as those for y(ν).

Exercises 391

(c) Thinking of G in the algorithm as a training dataset sampled from
a multispectral image suggest how the clustering result might be gener-
alized to the whole image.

4. Write a Python routine to give a first-order estimate of the entropy
of an image spectral band.∗ Use the definition in Equation (8.18) and
interpret pi as the probability that a pixel in the image has intensity i,
i = 0 . . . 255. (Hint: Some intensities may have zero probabilities. The
logarithm of zero is undefined, but the product p · log p → 0 as p → 0.)

5. Modify the program in Listing 8.3 (EKM algorithm) to give a more
robust estimation of the variance σ2 by masking out edge pixels with a
thresholded Sobel filter; see Section 5.2.1.

6. Using the modified program from Exercise 5 as a starting point, write
a script to perform extended K-means clustering on image data with
more than one spectral band. Hint: You might consider running the
agglomerative hierarchic clustering algorithm with K ≈ 200 to reduce
the dimensionality and then apply the EKM algorithm to the result.

7. Derive the expression in Equation (8.27) for the net change in the sum
of squares cost function when clusters k and j are merged.

8. Recall the definition of fuzzy hyper-volume in Section 8.3.3, namely

FHV =
K∑

k=1

√

|Σ̂k|,

where Σ̂k is the estimated covariance matrix for the kth cluster, Equa-
tion (8.10). This quantity might itself be used as a cost function, since
it measures the compactness of the clusters corresponding to some par-
titioning C. Suppose that the observations g(ν) are re-scaled by some
arbitrary non-singular transformation matrix T , i.e., g′(ν) = Tg(ν).
Show that any algorithm which achieves partitioning C on the basis
of the original observations g(ν) by minimizing FHV will produce the
same partitioning with the transformed observations g′(ν).

9. (EM algorithm) Consider a set of one-dimensional observations {g(ν) |
ν = 1 . . .m} which are to be clustered into K classes according to a
Gaussian mixture model of the form

p(g) =

K∑

k=1

p(g | k)Pr(k),

∗First order means that one assumes that all pixel intensities are statistically indepen-
dent.

392 Unsupervised Classification

where the Pr(k) are weighting factors,
∑K

k=1 Pr(k) = 1, and

p(g | k) = 1√
2πσk

exp

(

− (g − µk)
2

2σ2
k

)

.

The log-likelihood for the observations is

L = log

m∏

ν=1

p(g(ν)) =

m∑

ν=1

log

(
K∑

k=1

p(g(ν) | k)Pr(k)
)

.

(a) Show, with the help of Bayes’ Theorem, that this expression is max-
imized by the following values for the model parameters µk, σk and
Pr(k):

µk =

∑

ν Pr(k | g(ν))g(ν)
∑

ν Pr(k | g(ν))

σ2
k =

∑

ν Pr(k | g(ν))(g(ν) − µk)
2

∑

ν Pr(k | g(ν))

Pr(k) =
1

m

∑

ν

Pr(k | g(ν)).

(b) The EM algorithm consists of iterating these three equations (in the
order given), together with

Pr(k | g(ν)) ∝ p(g(ν) | k) Pr(k),
∑

k

Pr(k | g(ν)) = 1,

until convergence. Explain why this is identical to the FMLE algorithm
for one-dimensional data.

10. Give an integer arithmetic expression for d2(k∗, k) for a cubic geometry
self-organizing map.

11. The traveling salesperson problem (TSP) is to find the shortest closed
route between n points on a map (cities) which visits each point ex-
actly once. Program an approximate solution to the TSP using a one-
dimensional self-organizing map in the form of a closed loop.

12. (a) The mean shift segmentation algorithm of Section 8.7 is said to be
“edge-preserving.” Explain why this is so.

(b) A uniform kernel was used for simplicity to determine the mean
shift, the hyper-sphere S in the algorithm, which we can represent as

S(w − yν) =
{
1 for �w − yν� ≤ r
0 otherwise

.

We could alternatively have used the radial basis (Gaussian) kernel

k(w − yν) = exp

(

−�w − yν�2
2r2

)

.

392 Unsupervised Classification

where the Pr(k) are weighting factors,
∑K

k=1 Pr(k) = 1, and

p(g | k) = 1√
2πσk

exp

(

− (g − µk)
2

2σ2
k

)

.

The log-likelihood for the observations is

L = log

m∏

ν=1

p(g(ν)) =

m∑

ν=1

log

(
K∑

k=1

p(g(ν) | k)Pr(k)
)

.

(a) Show, with the help of Bayes’ Theorem, that this expression is max-
imized by the following values for the model parameters µk, σk and
Pr(k):

µk =

∑

ν Pr(k | g(ν))g(ν)
∑

ν Pr(k | g(ν))

σ2
k =

∑

ν Pr(k | g(ν))(g(ν) − µk)
2

∑

ν Pr(k | g(ν))

Pr(k) =
1

m

∑

ν

Pr(k | g(ν)).

(b) The EM algorithm consists of iterating these three equations (in the
order given), together with

Pr(k | g(ν)) ∝ p(g(ν) | k) Pr(k),
∑

k

Pr(k | g(ν)) = 1,

until convergence. Explain why this is identical to the FMLE algorithm
for one-dimensional data.

10. Give an integer arithmetic expression for d2(k∗, k) for a cubic geometry
self-organizing map.

11. The traveling salesperson problem (TSP) is to find the shortest closed
route between n points on a map (cities) which visits each point ex-
actly once. Program an approximate solution to the TSP using a one-
dimensional self-organizing map in the form of a closed loop.

12. (a) The mean shift segmentation algorithm of Section 8.7 is said to be
“edge-preserving.” Explain why this is so.

(b) A uniform kernel was used for simplicity to determine the mean
shift, the hyper-sphere S in the algorithm, which we can represent as

S(w − yν) =
{
1 for �w − yν� ≤ r
0 otherwise

.

We could alternatively have used the radial basis (Gaussian) kernel

k(w − yν) = exp

(

−�w − yν�2
2r2

)

.

Exercises 393

The density estimate at the point w is (see Section 6.4)

p(w) =
1

m(2πr2)(N+2)/2

m∑

ν=1

exp

(

−�w − yν�2
2r2

)

and the estimated gradient at w, i.e., the direction of maximum change
in p(w), is

∂p(w)

∂w
.

Show that the mean shift is always in the direction of the gradient. (This
demonstrates that the mean shift algorithm will find the modes of the
distribution without actually estimating its density, and can be shown
to be a general result (Comaniciu and Meer, 2002).)

(c) The OpenCV Python package exports the function PyrMeanShiftFilter-

ing(), which performs mean shift filtering of RGB color images. An im-
age pyramid is first created and the filtering procedure is run on the
smallest (top) layer first. After that, the results are propagated to the
larger layer and the iterations are run again only on those pixels where
the layer colors differ by more than sr from the lower-resolution layer
of the pyramid. In the code snippet:

import cv2 as cv

src = cv. fromarray (src)

dst = cv. CreateMat (rows , cols , cv.CV_8UC3)

cv. PyrMeanShiftFiltering (src , sp, sr, dst , maxLevel)

the variables are:
src: the source 8-bit, 3-channel image in a numpy array
sp: the spatial window radius
sr: the color window radius.
dst: the destination image, same format and same size as the source.
maxLevel: the maximum pyramid level, beginning at 0.

Write a Python script to perform mean shift segmentation of a three-
band multispectral image with a two-level pyramid (maxLevel=1).

http://taylorandfrancis.com

9

Change Detection

To quote a well-known, if now rather dated, review article on change detection
(Singh, 1989),

The basic premise in using remote sensing data for change de-
tection is that changes in land cover must result in changes in
radiance values ... [which] must be large with respect to radiance
changes from other factors.

When comparing multispectral images of a given scene taken at different
times, it is therefore desirable to correct the pixel intensities as much as
possible for uninteresting differences such as those due to solar illumination,
atmospheric conditions, viewing angle, terrain effects or sensor calibration. In
the case of SAR imagery, solar illumination or cloud cover plays no role, but
other considerations are similarly important. If comparison is on a pixel-by-
pixel basis, then the images must also be co-registered to high accuracy in
order to avoid spurious signals resulting from misaligned pixels. Some of the

0 200 400 600 800

0

200

400

600

800

LT5_19980329_sub.tif: equalization: (4, 5, 7): [0, 0, 1000, 1000]

0 200 400 600 800

0

200

400

600

800

LT5_19980516_sub.tif: equalization: (4, 5, 7): [0, 0, 1000, 1000]

FIGURE 9.1

LANDSAT 5 TM TOA images (RGB composite of bands 4,5, and 7, histogram
equalization) over a water reservoir in Hindustan, India; left image acquired
on March 29, 1998, right image on May 16, 1998.

DOI: 10.1201/9781003503286-9 395

https://doi.org/10.1201/9781003503286-9

396 Change Detection

required preprocessing steps were discussed in Chapter 5. Two co-registered
satellite images are shown in Figure 9.1.

After having performed the necessary preprocessing, it is common to ex-
amine various functions of the spectral bands involved (differences, ratios or
linear combinations) which in some way bring the change information con-
tained within them to the fore. The shallow flooding at the western edge of
the reservoir in Figure 9.1 is evident at a glance. However, other changes have
occurred between the two acquisition times and require more image processing
to be clearly distinguished. In the present chapter, we will mention some com-
monly used techniques for enhancing “change signals” in bi-temporal satellite
images. Then we will focus our particular attention on the multivariate al-
teration detection (MAD) algorithm (Nielsen et al., 1998; Nielsen, 2007) for
visible/infrared imagery and on a change statistic for polarimetric SAR data
based on the complex Wishart distribution (Conradsen et al., 2003, 2016). The
chapter concludes with an “inverse” application of change detection, in which
unchanged pixels are used for automatic relative radiometric normalization
of multi-temporal imagery (Canty and Nielsen, 2008). For reviews of change
detection in a general context, see Radke et al. (2005), Coppin et al. (2004)
and, more recently with focus on deep learning methods, Parelius (2023).

9.1 Naive methods

A simple way to detect changes in two suitably corrected and co-registered
multispectral images, represented by N -dimensional random vectors F and
G, is simply to subtract them from each other component by component and
then examine the N difference images

Di = Fi −Gi, i = 1 . . .N. (9.1)

Small intensity differences indicate no change, large positive or negative values
indicate change, and decision thresholds can be set to define significance. The
thresholds are usually expressed in terms of standard deviations from the mean
difference value, which is taken to correspond to no change. If the detected
signals are uncorrelated, the variances of the difference images are simply

var(Di) = var(Gi) + var(Fi), i = 1 . . .N,

or about twice as noisy as the individual image bands. When the significant
difference signatures in the spectral channels are then combined so as to try to
characterize the kinds of changes that have taken place, one speaks of spectral
change vector analysis (Jensen, 2005).

396 Change Detection

required preprocessing steps were discussed in Chapter 5. Two co-registered
satellite images are shown in Figure 9.1.

After having performed the necessary preprocessing, it is common to ex-
amine various functions of the spectral bands involved (differences, ratios or
linear combinations) which in some way bring the change information con-
tained within them to the fore. The shallow flooding at the western edge of
the reservoir in Figure 9.1 is evident at a glance. However, other changes have
occurred between the two acquisition times and require more image processing
to be clearly distinguished. In the present chapter, we will mention some com-
monly used techniques for enhancing “change signals” in bi-temporal satellite
images. Then we will focus our particular attention on the multivariate al-
teration detection (MAD) algorithm (Nielsen et al., 1998; Nielsen, 2007) for
visible/infrared imagery and on a change statistic for polarimetric SAR data
based on the complex Wishart distribution (Conradsen et al., 2003, 2016). The
chapter concludes with an “inverse” application of change detection, in which
unchanged pixels are used for automatic relative radiometric normalization
of multi-temporal imagery (Canty and Nielsen, 2008). For reviews of change
detection in a general context, see Radke et al. (2005), Coppin et al. (2004)
and, more recently with focus on deep learning methods, Parelius (2023).

9.1 Naive methods

A simple way to detect changes in two suitably corrected and co-registered
multispectral images, represented by N -dimensional random vectors F and
G, is simply to subtract them from each other component by component and
then examine the N difference images

Di = Fi −Gi, i = 1 . . .N. (9.1)

Small intensity differences indicate no change, large positive or negative values
indicate change, and decision thresholds can be set to define significance. The
thresholds are usually expressed in terms of standard deviations from the mean
difference value, which is taken to correspond to no change. If the detected
signals are uncorrelated, the variances of the difference images are simply

var(Di) = var(Gi) + var(Fi), i = 1 . . .N,

or about twice as noisy as the individual image bands. When the significant
difference signatures in the spectral channels are then combined so as to try to
characterize the kinds of changes that have taken place, one speaks of spectral
change vector analysis (Jensen, 2005).

Naive methods 397

FIGURE 9.2

NDVI difference image for the bi-temporal scene in Figure 9.1.

Alternatively, ratios of intensities

Fk

Gk
, k = 1 . . .N (9.2)

are sometimes formed between successive images. Ratios near unity corre-
spond to no change, while small and large values indicate change. A disad-
vantage of this method when applied to visible/infrared data is that ratios of
random variables are not normally distributed even if the random variables
themselves are, so that symmetric threshold values defined in terms of stan-
dard deviations are not valid. More formally, for data with additive errors
like visible/infrared image pixels, the best statistic for deciding a no-change
hypothesis involves a linear combination of observations, not a ratio.

For SAR imagery, the situation is fundamentally different. From Equation
(5.26), the variance of the difference of two uncorrelated m-look intensity
images is

var(G− F) =
�G�2 + �F �2

m
.

398 Change Detection

Simple thresholding of the difference image will yield larger errors for a given
change in a bright area (large mean intensity) than in a darker area (small
mean intensity). Indeed, it turns out that image ratios are a much better
choice for detection of changes in multi-look SAR intensity images. This will
be illustrated in Section 9.6.1 in the present chapter. Oliver and Quegan (2004)
give a thorough discussion in Chapter 12 of their book.

More complicated algebraic combinations, such as differences in vegetation
indices (NDVI) or tasseled cap transforms, are also in use. Manipulations of
this kind can be performed conveniently on the GEE servers using some of
the many mathematical image operations exposed in the API. For example,
with the images of Figure 9.1:

import ee

import IPython.display as disp

ee.Initialize ()

im1 = ee.Image(’projects /.../ assets/CRC5 /LT5_19980329_

sub’)

im2 = ee.Image(’projects /.../ assets/CRC5 /LT5_19980516_

sub’)

ndvi1 = im1.normalizedDifference ([’b4’, ’b3’])

ndvi2 = im2.normalizedDifference ([’b4’, ’b3’])

url = ndvi1.subtract (ndvi2) \

.getThumbURL ({’min’:-0.3, ’max’:0.3})

disp .Image(url=url)

The notebook output cell is in Figure 9.2.
If two co-registered satellite images have been classified to yield thematic

maps using, for instance, one of the algorithms introduced in Chapter 6, then
the class labels can be compared to determine land cover changes. This method
is however questionable because, if classification is carried out at the pixel level
(as opposed to using segments or objects), then classification errors (typically
> 5%) may corrupt or even dominate the true change signal, depending on
the strength of the latter.

9.2 Principal components analysis (PCA)

In a scatter plot of pixel intensities in band i of two co-registered multi-
spectral images F and G acquired at different times, each point is a realiza-
tion of the random vector (Fi, Gi)

⊤. Since unchanged pixels will be highly
correlated over time, they will lie in a narrow, elongated cluster along the
principal axis, whereas changed pixels will be scattered some distance away
from it; see Figure 9.3. The second principal component, which measures

398 Change Detection

Simple thresholding of the difference image will yield larger errors for a given
change in a bright area (large mean intensity) than in a darker area (small
mean intensity). Indeed, it turns out that image ratios are a much better
choice for detection of changes in multi-look SAR intensity images. This will
be illustrated in Section 9.6.1 in the present chapter. Oliver and Quegan (2004)
give a thorough discussion in Chapter 12 of their book.

More complicated algebraic combinations, such as differences in vegetation
indices (NDVI) or tasseled cap transforms, are also in use. Manipulations of
this kind can be performed conveniently on the GEE servers using some of
the many mathematical image operations exposed in the API. For example,
with the images of Figure 9.1:

import ee

import IPython.display as disp

ee.Initialize ()

im1 = ee.Image(’projects /.../assets/CRC5 /LT5_19980329_

sub’)

im2 = ee.Image(’projects /.../assets/CRC5 /LT5_19980516_

sub’)

ndvi1 = im1.normalizedDifference ([’b4’, ’b3’])

ndvi2 = im2.normalizedDifference ([’b4’, ’b3’])

url = ndvi1.subtract (ndvi2) \

.getThumbURL ({’min’:-0.3, ’max’:0.3})

disp .Image(url=url)

The notebook output cell is in Figure 9.2.
If two co-registered satellite images have been classified to yield thematic

maps using, for instance, one of the algorithms introduced in Chapter 6, then
the class labels can be compared to determine land cover changes. This method
is however questionable because, if classification is carried out at the pixel level
(as opposed to using segments or objects), then classification errors (typically
> 5%) may corrupt or even dominate the true change signal, depending on
the strength of the latter.

9.2 Principal components analysis (PCA)

In a scatter plot of pixel intensities in band i of two co-registered multi-
spectral images F and G acquired at different times, each point is a realiza-
tion of the random vector (Fi, Gi)

⊤. Since unchanged pixels will be highly
correlated over time, they will lie in a narrow, elongated cluster along the
principal axis, whereas changed pixels will be scattered some distance away
from it; see Figure 9.3. The second principal component, which measures

Principal components analysis (PCA) 399

0.05 0.10 0.15 0.20 0.25 0.30 0.35

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

FIGURE 9.3

Scatter plot of spectral bands 4 of the bi-temporal images in Figure 9.1.

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

−1.0

−0.5

0.0

0.5

1.0

FIGURE 9.4

Iterated PCA. The solid line is the initial principal axis, the dashed lines
correspond to five subsequent iterations.

400 Change Detection

FIGURE 9.5

The change probability for the bi-temporal image in Figure 9.1 after five
iterations of principal components analysis.

intensities at right angles to the first principal axis, will therefore quantify the
degree of change associated with a given pixel and may even serve as a change
image.

9.2.1 Iterated PCA

Since the principal axes are determined by diagonalization of the covariance
matrix for all of the pixels, the no-change axis may be poorly defined. To
overcome this problem, the principal components can be calculated iteratively
using weights for each pixel determined by the degree of change obtained from
the preceding iteration.

400 Change Detection

FIGURE 9.5

The change probability for the bi-temporal image in Figure 9.1 after five
iterations of principal components analysis.

intensities at right angles to the first principal axis, will therefore quantify the
degree of change associated with a given pixel and may even serve as a change
image.

9.2.1 Iterated PCA

Since the principal axes are determined by diagonalization of the covariance
matrix for all of the pixels, the no-change axis may be poorly defined. To
overcome this problem, the principal components can be calculated iteratively
using weights for each pixel determined by the degree of change obtained from
the preceding iteration.

Principal components analysis (PCA) 401

Listing 9.1 shows part of a Python routine for performing change detection
with iterated PCA. After an initial principal components transformation, the
EM routine of Section 8.3 is used to cluster the second principal component
into two classes. The probability array U[0,:] of membership of the pixels
to the central cluster is then roughly their probability of no change. The

Listing 9.1: Iterated principal components analysis for change detection (ex-
cerpt from the script ex9 1.py).

1 # centered data matrix

2 G = np.zeros((rows*cols ,2))

3 G[:,0] = G1-np.mean (G1)

4 G[:,1] = G2-np.mean (G2)

5 # initial PCA

6 cpm = auxil.Cpm (2)

7 cpm.update(G)

8 eivs ,w = np.linalg.eigh (cpm.covariance ())

9 eivs = eivs [::-1]

10 w = w[:,::-1]

11 pcs = G*w

12 plt.plot ([-1,1],[- np.abs(w[0 ,1]/w[0,0]),

13 np.abs(w[0 ,1]/w[0 ,0])])

14 # iterated PCA

15 itr = 0

16 while itr <5:

17 sigma = np.sqrt(eivs [1])

18 U = np.random.rand(2,rows*cols)

19 # cluster the second PC

20 unfrozen =np.where(np.abs(pcs[:,1]) >= sigma)[0]

21 frozen=np.where(np.abs(pcs[:,1]) < sigma)[0]

22 U[0,frozen] = 1.0

23 U[1,frozen] = 0.0

24 for j in range(2):

25 U[j ,:]= U[j,:]/ np.sum(U,0)

26 U=em.em(G,U,0,0,rows ,cols ,unfrozen =unfrozen)[0]

27 # re -sample the weighted covariance matrix

28 cpm.update(G,U[0,:])

29 cov = cpm.covariance ()

30 eivs ,w = np.linalg.eigh(cov)

31 eivs = eivs [::-1]

32 w = w[:,::-1]

33 # weighted PCs

34 pcs = G*w

35 # plot the first principal axis

36 plt.plot ([-1,1],[- np.abs(w[0 ,1]/w[0,0]),

37 np.abs(w[0 ,1]/w[0,0])], dashes =[4,4])

38 itr += 1

402 Change Detection

complement array U[1,:] contains the change probabilities. The probabilities
of no change for observations having second principal component within one
standard deviation of the first principal axis are “frozen” to the value 1 in
order to accelerate convergence. Using the no-change probabilities as weights,
the covariance matrix is recalculated and the PCA repeated. This procedure
is iterated five times in the example script. Results are shown in Figures 9.4
and 9.5. In Figure 9.5, the quantity U[1,:] is displayed rather than the second
principal component, as it better highlights the changes. The method can be
generalized to treat all multispectral bands together (Wiemker, 1997).

FIGURE 9.6

Two traffic scenes taken 0.7 seconds apart.

9.2.2 Kernel PCA

For highly nonlinear data, change detection based on linear transformations
such as PCA will be expected to give inferior results. As an illustration
(Nielsen and Canty, 2008), consider the bi-temporal scene in Figure 9.6. These
images were recorded with the airborne DLR 3K-camera system from the
German Aerospace Center (DLR) (Kurz et al., 2007), a system consisting of
three off-the-shelf cameras arranged on a mount with one camera looking in
the nadir direction and two cameras tilted approximately 35o across track.
The 1000× 1000 pixel sub-images shown in the figure were acquired 0.7 sec-
onds apart over a busy motorway near Munich, Germany. The images were
registered to one another with sub pixel accuracy. The only physical changes
on the ground are due to the motion of the vehicles.

Figure 9.7 shows the second principal component for ordinary PCA (left)
and kernel PCA (right) for a two-band bi-temporal image consisting of the
first band of each of the two traffic scenes. Kernel PCA was discussed in

402 Change Detection

complement array U[1,:] contains the change probabilities. The probabilities
of no change for observations having second principal component within one
standard deviation of the first principal axis are “frozen” to the value 1 in
order to accelerate convergence. Using the no-change probabilities as weights,
the covariance matrix is recalculated and the PCA repeated. This procedure
is iterated five times in the example script. Results are shown in Figures 9.4
and 9.5. In Figure 9.5, the quantity U[1,:] is displayed rather than the second
principal component, as it better highlights the changes. The method can be
generalized to treat all multispectral bands together (Wiemker, 1997).

FIGURE 9.6

Two traffic scenes taken 0.7 seconds apart.

9.2.2 Kernel PCA

For highly nonlinear data, change detection based on linear transformations
such as PCA will be expected to give inferior results. As an illustration
(Nielsen and Canty, 2008), consider the bi-temporal scene in Figure 9.6. These
images were recorded with the airborne DLR 3K-camera system from the
German Aerospace Center (DLR) (Kurz et al., 2007), a system consisting of
three off-the-shelf cameras arranged on a mount with one camera looking in
the nadir direction and two cameras tilted approximately 35o across track.
The 1000× 1000 pixel sub-images shown in the figure were acquired 0.7 sec-
onds apart over a busy motorway near Munich, Germany. The images were
registered to one another with sub pixel accuracy. The only physical changes
on the ground are due to the motion of the vehicles.

Figure 9.7 shows the second principal component for ordinary PCA (left)
and kernel PCA (right) for a two-band bi-temporal image consisting of the
first band of each of the two traffic scenes. Kernel PCA was discussed in

Principal components analysis (PCA) 403

0 200 400 600 800 1000

0

200

400

600

800

1000

traffic_bitemp_pca.tif: linear: (2, 2, 2): [0, 0, 1000, 1000]

0 200 400 600 800 1000

0

200

400

600

800

1000

traffic_bitemp_kpca.tif: linear: (2, 2, 2): [0, 0, 1000, 1000]

FIGURE 9.7

Change detection with principal components analysis, linear data. Left: second
principal component for ordinary PCA, right: for kernel PCA.

0 200 400 600 800 1000

0

200

400

600

800

1000

traffic_bitemp_nonlin_pca.tif: linear: (2, 2, 2): [0, 0, 1000, 1000]

0 200 400 600 800 1000

0

200

400

600

800

1000

traffic_bitemp_nonlin_kpca.tif: linear: (5, 5, 5): [0, 0, 1000, 1000]

FIGURE 9.8

Change detection with principal components analysis, nonlinear data. Left:
second principal component for ordinary PCA, right: fifth principal compo-
nent for kernel PCA.

404 Change Detection

Chapter 4. The change sensitivities are seen to be about the same, signaling
changes as bright and dark pixels, with no-change indicated as middle gray.
In Figure 9.8 the data were artificially “non-linearized” by squaring the in-
tensities in the second band, while leaving those of the first band unchanged.
For the ordinary PCA case there are now bright and dark pixels falsely sig-
naling change, whereas with kernel PCA, the fifth kernel principal component
indicates the true changes more correctly.

9.3 Multivariate alteration detection

Let us continue to consider two N -band optical/infrared images of the same
scene acquired at different times, between which ground reflectance changes
have occurred at some locations but not everywhere. We now make a linear
combination of the intensities for all N bands in the first image, represented
by the random vector G1, thus creating a scalar image characterized by the
random variable

U = a⊤G1.

The vector of coefficients a is as yet unspecified. We do the same for the
second image, represented by G2, forming the linear combination

V = b⊤G2,

and then look at the scalar difference image U−V . Change information is now
contained in a single image. One has, of course, to choose the coefficients a

and b in some suitable way. In Nielsen et al. (1998) it is suggested that they be
determined by applying standard canonical correlation analysis (CCA), first
described by Hotelling (1936), to the two sets of random variables represented
by vectors G1 and G2. The resulting linear combinations are then, as we shall
see, ordered by similarity (correlation) rather than, as in the original images,
by wavelength. This provides a more natural framework in which to look
for change. Forming linear combinations has an additional advantage that,
due to the Central Limit Theorem (Theorem 2.4), the quantities involved are
increasingly well described by the normal distribution.

To anticipate somewhat, in performing CCA on a bi-temporal image, one
maximizes the correlation ρ between the random variables U and V given by
(see Equation (2.21))

ρ =
cov(U, V)

√

var(U)
√

var(V)
. (9.3)

Arbitrary multiples of U and V would clearly have the same correlation, so a
constraint must be chosen. A convenient one is

var(U) = var(V) = 1. (9.4)

404 Change Detection

Chapter 4. The change sensitivities are seen to be about the same, signaling
changes as bright and dark pixels, with no-change indicated as middle gray.
In Figure 9.8 the data were artificially “non-linearized” by squaring the in-
tensities in the second band, while leaving those of the first band unchanged.
For the ordinary PCA case there are now bright and dark pixels falsely sig-
naling change, whereas with kernel PCA, the fifth kernel principal component
indicates the true changes more correctly.

9.3 Multivariate alteration detection

Let us continue to consider two N -band optical/infrared images of the same
scene acquired at different times, between which ground reflectance changes
have occurred at some locations but not everywhere. We now make a linear
combination of the intensities for all N bands in the first image, represented
by the random vector G1, thus creating a scalar image characterized by the
random variable

U = a⊤G1.

The vector of coefficients a is as yet unspecified. We do the same for the
second image, represented by G2, forming the linear combination

V = b⊤G2,

and then look at the scalar difference image U−V . Change information is now
contained in a single image. One has, of course, to choose the coefficients a

and b in some suitable way. In Nielsen et al. (1998) it is suggested that they be
determined by applying standard canonical correlation analysis (CCA), first
described by Hotelling (1936), to the two sets of random variables represented
by vectors G1 and G2. The resulting linear combinations are then, as we shall
see, ordered by similarity (correlation) rather than, as in the original images,
by wavelength. This provides a more natural framework in which to look
for change. Forming linear combinations has an additional advantage that,
due to the Central Limit Theorem (Theorem 2.4), the quantities involved are
increasingly well described by the normal distribution.

To anticipate somewhat, in performing CCA on a bi-temporal image, one
maximizes the correlation ρ between the random variables U and V given by
(see Equation (2.21))

ρ =
cov(U, V)

√

var(U)
√

var(V)
. (9.3)

Arbitrary multiples of U and V would clearly have the same correlation, so a
constraint must be chosen. A convenient one is

var(U) = var(V) = 1. (9.4)

Multivariate alteration detection 405

Note that, under this constraint, the variance of the difference image is

var(U − V) = var(U) + var(V)− 2cov(U, V) = 2(1− ρ). (9.5)

Therefore, the vectors a and b which maximize the correlation, Equation (9.3),
under the constraints of Equation (9.4) will in fact minimize the variance of
the difference image.

The philosophy of making the images as similar as possible before taking
their difference is followed in a number of so-called anomalous change detec-
tion approaches, including the chronochrome method of Schaum and Stocker
(1997). See Theiler and Matsekh (2009) for a unifying overview.

9.3.1 Canonical correlation analysis (CCA)

Canonical correlation analysis thus entails a linear transformation of each set
of image bands (G11 . . .G1N) and (G21 . . . G2N) such that, rather than being
ordered according to wavelength, the transformed components are ordered
according to their mutual correlation; see especially Anderson (2003).

The bi-temporal, multispectral image may be represented by the combined

random vector

(
G1

G2

)

. This random vector has a 2N×2N covariance matrix

which can be written in block form:

Σ =

(
Σ11 Σ12

Σ⊤
12 Σ22

)

.

Assuming that the means have been subtracted from the image data, Σ11 =
�G1G

⊤
1 � is the covariance matrix of the first image, Σ22 = �G2G

⊤
2 � that of

the second image, and Σ12 = �G1G
⊤
2 � is the matrix of covariances between

the two. We then have, for the transformed variables U and V ,

var(U) = a⊤Σ11a, var(V) = b⊤Σ22b, cov(U, V) = a⊤Σ12b.

CCA now consists of maximizing the covariance a⊤Σ12b under constraints
a⊤Σ11a = 1 and b⊤Σ22b = 1. If, following the usual procedure, we introduce
the Lagrange multipliers ν/2 and µ/2 for each of the two constraints, then
the problem becomes one of maximizing the unconstrained Lagrange function

L = a⊤Σ12b−
ν

2
(a⊤Σ11a− 1)− µ

2
(b⊤Σ22b− 1).

Setting derivatives with respect to a and b equal to zero gives

∂L

∂a
= Σ12b− νΣ11a = 0

∂L

∂b
= Σ⊤

12a− µΣ22b = 0.

(9.6)

406 Change Detection

Multiplying the first of the above equations from the left with the vector a⊤,
the second with b⊤, and using the constraints leads immediately to

ν = µ = a⊤Σ12b = ρ.

Therefore, we can write Equations (9.6) in the form

Σ12b− ρΣ11a = 0

Σ⊤
12a− ρΣ22b = 0.

(9.7)

Next, multiply the first of Equations (9.7) by ρ and the second from the left
by Σ−1

22 . This gives
ρΣ12b = ρ2Σ11a (9.8)

and
Σ−1

22 Σ
⊤
12a = ρb. (9.9)

Finally, combining Equations (9.8) and (9.9), we obtain the following equation
for the transformation coefficient a,

Σ12Σ
−1
22 Σ

⊤
12a = ρ2Σ11a. (9.10)

A similar argument (Exercise 1) leads to the corresponding equation for b,
namely

Σ⊤
12Σ

−1
11 Σ12b = ρ2Σ22b. (9.11)

Equations (9.10) and (9.11) are generalized eigenvalue problems similar
to those that we already met for the minimum noise fraction (MNF) and
maximum autocorrelation factor (MAF) transformations of Chapter 3; see
Equations (3.55) and (3.72). Note, however, that they are coupled via the
eigenvalue ρ2. The desired projections U = a⊤G1 are given by the eigenvectors
a1 . . .aN of Equation (9.10) corresponding to eigenvalues ρ21 ≥ ρ22 ≥ . . . ≥ ρ2N .

Similarly, the desired projections V = b⊤G2 are given by the eigenvectors
b1 . . .bN of Equation (9.11) corresponding to the same eigenvalues.

Solution of the eigenvalue problems generates new multispectral images
U = (U1 . . . UN)⊤ and V = (V1 . . . VN)⊤, the components of which are called
the canonical variates (CVs). The CVs are ordered by similarity (correlation)
rather than, as in the original images, by wavelength. The canonical correla-
tions ρi = corr(Ui, Vi), i = 1 . . .N , are the square roots of the eigenvalues of
the coupled eigenvalue problem. The pair (U1, V1) is maximally correlated, the
pair (U2, V2) is maximally correlated subject to being orthogonal to (uncorre-
lated with) both U1 and V1 (see below), and so on. Taking paired differences
then generates a sequence of transformed difference images

Mi = Ui − Vi, i = 1 . . .N, (9.12)

406 Change Detection

Multiplying the first of the above equations from the left with the vector a⊤,
the second with b⊤, and using the constraints leads immediately to

ν = µ = a⊤Σ12b = ρ.

Therefore, we can write Equations (9.6) in the form

Σ12b− ρΣ11a = 0

Σ⊤
12a− ρΣ22b = 0.

(9.7)

Next, multiply the first of Equations (9.7) by ρ and the second from the left
by Σ−1

22 . This gives
ρΣ12b = ρ2Σ11a (9.8)

and
Σ−1

22 Σ
⊤
12a = ρb. (9.9)

Finally, combining Equations (9.8) and (9.9), we obtain the following equation
for the transformation coefficient a,

Σ12Σ
−1
22 Σ

⊤
12a = ρ2Σ11a. (9.10)

A similar argument (Exercise 1) leads to the corresponding equation for b,
namely

Σ⊤
12Σ

−1
11 Σ12b = ρ2Σ22b. (9.11)

Equations (9.10) and (9.11) are generalized eigenvalue problems similar
to those that we already met for the minimum noise fraction (MNF) and
maximum autocorrelation factor (MAF) transformations of Chapter 3; see
Equations (3.55) and (3.72). Note, however, that they are coupled via the
eigenvalue ρ2. The desired projections U = a⊤G1 are given by the eigenvectors
a1 . . .aN of Equation (9.10) corresponding to eigenvalues ρ21 ≥ ρ22 ≥ . . . ≥ ρ2N .

Similarly, the desired projections V = b⊤G2 are given by the eigenvectors
b1 . . .bN of Equation (9.11) corresponding to the same eigenvalues.

Solution of the eigenvalue problems generates new multispectral images
U = (U1 . . . UN)⊤ and V = (V1 . . . VN)⊤, the components of which are called
the canonical variates (CVs). The CVs are ordered by similarity (correlation)
rather than, as in the original images, by wavelength. The canonical correla-
tions ρi = corr(Ui, Vi), i = 1 . . .N , are the square roots of the eigenvalues of
the coupled eigenvalue problem. The pair (U1, V1) is maximally correlated, the
pair (U2, V2) is maximally correlated subject to being orthogonal to (uncorre-
lated with) both U1 and V1 (see below), and so on. Taking paired differences
then generates a sequence of transformed difference images

Mi = Ui − Vi, i = 1 . . .N, (9.12)

Multivariate alteration detection 407

0 200 400 600 800

0

200

400

600

800

MAD(LT5_19980329_sub-LT5_19980516_sub ... : linear2pc: (1, 2, 3): [0, 0, 1000, 1000]

FIGURE 9.9

iMAD change map using the six non-thermal bands of the bi-temporal scene
of Figure 9.1. The MAD variates are thresholded at significance level 0.0001
(see Section 9.3.3) and MAD variates 1, 2, and 3 are displayed in an RGB 2%
saturated linear stretch. Bright and dark colored pixels signify change, green
background no change.

referred to as the multivariate alteration detection (MAD) variates (Nielsen
et al., 1998).∗ Since we are dealing with change detection, we want the pairs of
canonical variates Ui and Vi to be positively correlated, just like the original
image bands. This is easily achieved by appropriate choice of the relative signs
of the eigenvector pairs ai, bi so as to ensure that a⊤

i Σ12bi > 0, i = 1 . . .N .

∗Nielsen et al. (1998) originally numbered the MAD variates in reverse order, least
correlated canonical variates first.

408 Change Detection

A Python script iMad.py for multivariate alteration detection is docu-
mented in Appendix C. An example is shown in Figure 9.9, obtained with
the commands:

Run the iMAD transformation

%run scripts/iMad -i 50 -n imagery/LT5_19980329_sub .tif \

imagery/LT5_19980516_sub .tif

Set a significance level and calculate change map

%run scripts/iMadmap -m \

imagery/MAD(LT5_19980329_sub -LT5_19980516_sub). tif 0.0001

This code actually runs the iteratively re-weighted MAD method which will
be explained shortly.

9.3.2 Orthogonality properties

Equations (9.10) and (9.11) are of the form

Σ1a = ρ2Σa, (9.13)

where bothΣ1 andΣ are symmetric andΣ is positive definite. Equation (9.13)
can be solved in the same way as for the MNF transformation in Chapter 3.
We repeat the procedure here for convenience. First, write Equation (9.13) in
the form

Σ1a = ρ2LL⊤a,

where Σ has been replaced by its Cholesky decomposition LL⊤. The matrix
L is positive definite, lower triangular. Equivalently,

L−1Σ1(L
⊤)−1L⊤a = ρ2L⊤a

or, with d = L⊤a and the commutativity of inverse and transpose,

[L−1Σ1(L
−1)⊤]d = ρ2d,

a standard eigenvalue problem for the symmetric matrix L−1Σ1(L
−1)⊤. Let

its eigenvectors be di. Since they are orthogonal and normalized, we have

δij = d⊤
i dj = a⊤

i LL⊤aj = a⊤
i Σaj . (9.14)

From Equation (9.14), taking Σ = Σ11 and then Σ = Σ22, it follows that

cov(Ui, Uj) = a⊤
i Σ11aj = δij

cov(Vi, Vj) = b⊤i Σ22bj = δij .
(9.15)

Furthermore, according to Equation (9.9),

bi =
1

ρi
Σ−1

22 Σ21ai.

408 Change Detection

A Python script iMad.py for multivariate alteration detection is docu-
mented in Appendix C. An example is shown in Figure 9.9, obtained with
the commands:

Run the iMAD transformation

%run scripts/iMad -i 50 -n imagery/LT5_19980329_sub .tif \

imagery/LT5_19980516_sub .tif

Set a significance level and calculate change map

%run scripts/iMadmap -m \

imagery/MAD(LT5_19980329_sub -LT5_19980516_sub). tif 0.0001

This code actually runs the iteratively re-weighted MAD method which will
be explained shortly.

9.3.2 Orthogonality properties

Equations (9.10) and (9.11) are of the form

Σ1a = ρ2Σa, (9.13)

where bothΣ1 andΣ are symmetric andΣ is positive definite. Equation (9.13)
can be solved in the same way as for the MNF transformation in Chapter 3.
We repeat the procedure here for convenience. First, write Equation (9.13) in
the form

Σ1a = ρ2LL⊤a,

where Σ has been replaced by its Cholesky decomposition LL⊤. The matrix
L is positive definite, lower triangular. Equivalently,

L−1Σ1(L
⊤)−1L⊤a = ρ2L⊤a

or, with d = L⊤a and the commutativity of inverse and transpose,

[L−1Σ1(L
−1)⊤]d = ρ2d,

a standard eigenvalue problem for the symmetric matrix L−1Σ1(L
−1)⊤. Let

its eigenvectors be di. Since they are orthogonal and normalized, we have

δij = d⊤
i dj = a⊤

i LL⊤aj = a⊤
i Σaj . (9.14)

From Equation (9.14), taking Σ = Σ11 and then Σ = Σ22, it follows that

cov(Ui, Uj) = a⊤
i Σ11aj = δij

cov(Vi, Vj) = b⊤i Σ22bj = δij .
(9.15)

Furthermore, according to Equation (9.9),

bi =
1

ρi
Σ−1

22 Σ21ai.

Multivariate alteration detection 409

Therefore, we have, with Equation (9.10),

cov(Ui, Vj) = a⊤
i Σ12bj = a⊤

i

1

ρj
Σ12Σ

−1
22 Σ21aj = ρj a⊤

i Σ11aj = ρj δij .

(9.16)
Thus we see that the canonical variates are all mutually uncorrelated except
for the pairs (Ui, Vi), and these are ordered by decreasing correlation. The
MAD variates themselves are consequently also mutually uncorrelated, their
covariances being given by

cov(Mi,Mj) = cov(Ui − Vi, Uj − Vj) = 0, i �= j = 1 . . . N, (9.17)

and their variances by

σ2
Mi

= var(Ui − Vi) = 2(1− ρi), i = 1 . . .N. (9.18)

The first MAD variate has minimum variance in its pixel intensities. The
second MAD variate has minimum spread subject to the condition that its
pixel intensities are statistically uncorrelated with those in the first variate;
the third has minimum spread subject to being uncorrelated with the first
two, and so on. Depending on the type of change present, any of the compo-
nents may exhibit significant change information. Interesting small-scale an-
thropogenic changes, for instance, will generally be unrelated to dominating
seasonal vegetation changes or stochastic image noise, so it is quite common
that such changes will be concentrated in lower-order MAD variates. In fact,
one of the nicest aspects of the method is that it sorts different categories of
change into different, uncorrelated image components.

9.3.3 Iteratively re-weighted MAD

Let us now imagine two images of the same scene, acquired at different times
under similar conditions, but for which no ground reflectance changes have
occurred whatsoever. Then the only differences between them will be due to
random effects like instrument noise and atmospheric fluctuation. In such a
case we would expect that the histogram of any difference component that we
generate will be very nearly Gaussian. In particular, the MAD variates, be-
ing uncorrelated, should follow a multivariate, zero mean normal distribution
with diagonal covariance matrix. Change observations would deviate more
or less strongly from such a distribution. Just as for the iterated principal
components method of Section 9.2.1, we might therefore expect an improve-
ment in the sensitivity of the MAD transformation if we can establish an
increasingly better background of no change against which to detect change
(Nielsen, 2007). This can again be done in an iteration scheme in which,
when calculating the means and covariance matrices for the next iteration

410 Change Detection

FIGURE 9.10

The canonical correlations ρi, i = 1 . . . 6, under 12 iterations of the MAD
transformation of the bi-temporal image of Figure 9.1.

of the MAD transformation, observations are weighted in some appropriate
fashion.∗

One way to determine the weights is to perform an unsupervised classifica-
tion of the MAD variates using, for example, the Gaussian mixture algorithm
of Chapter 8 with K a priori clusters, one for no change and K−1 clusters for
different categories of change. The pixel class membership probabilities for no
change could then provide the weights for iteration. This method, being unsu-
pervised, will not distinguish which clusters correspond to change and which
to no change, but the no-change cluster can be identified by its compactness,
e.g., by its partition density; see Section 8.3.3. This strategy has, however,
the disadvantage that a computationally expensive clustering procedure must
be repeated for every iteration. Moreover, one has to make a more or less
arbitrary decision as to how many no-change clusters are present and tolerate
the unpredictability of clustering results generally.

∗This was in fact the main motivation for allowing for weights in the provisional means
algorithm described in Chapter 2.

410 Change Detection

FIGURE 9.10

The canonical correlations ρi, i = 1 . . . 6, under 12 iterations of the MAD
transformation of the bi-temporal image of Figure 9.1.

of the MAD transformation, observations are weighted in some appropriate
fashion.∗

One way to determine the weights is to perform an unsupervised classifica-
tion of the MAD variates using, for example, the Gaussian mixture algorithm
of Chapter 8 with K a priori clusters, one for no change and K−1 clusters for
different categories of change. The pixel class membership probabilities for no
change could then provide the weights for iteration. This method, being unsu-
pervised, will not distinguish which clusters correspond to change and which
to no change, but the no-change cluster can be identified by its compactness,
e.g., by its partition density; see Section 8.3.3. This strategy has, however,
the disadvantage that a computationally expensive clustering procedure must
be repeated for every iteration. Moreover, one has to make a more or less
arbitrary decision as to how many no-change clusters are present and tolerate
the unpredictability of clustering results generally.

∗This was in fact the main motivation for allowing for weights in the provisional means
algorithm described in Chapter 2.

Multivariate alteration detection 411

An alternative scheme is to continue to examine the MAD variates directly.
Let the random variable Z represent the sum of the squares of the standardized
MAD variates,

Z =

N∑

i=1

(
Mi

σMi

)2

,

where σMi is given by Equation (9.18). Then, since the no-change observations
are expected to be normally distributed and uncorrelated, the realizations of
Z corresponding to no-change observations should be chi-square distributed
with N degrees of freedom (Theorem 2.6). In fact, Z can be interpreted as a
likelihood ratio test statistic for change. Assuming

M = (M1, . . .MN)⊤ ∼ N (µ,Σ),

where Σ is known and diagonal, consider the hypothesis test
H0 : µ = 0 no change
H1 : µ �= 0 change.

Since we make for each pixel exactly one observation M , the maximum-
likelihood estimate of the mean is simply µ̂ = M . With Definition 2.7, the
likelihood ratio test statistic is therefore

Q =
L(µ = 0)

L(µ̂ = M)
=

exp(− 1
2M

⊤Σ−1M)

exp(− 1
2 (M −M)⊤Σ−1(M −M))

= exp(−1

2
M⊤Σ−1M),

from which we derive the chi-square distributed test statistic

Z = −2 lnQ = M⊤Σ−1M =

N∑

i=1

M2
i

σ2
Mi

. (9.19)

The P -value for an observation z of the statistic, i.e., the probability that a
sample z drawn from the chi-square distribution could be that large or larger,
is therefore

P = 1− Pχ2;N (z). (9.20)

Small P -values signal change, so after each iteration the P -value itself can be
used to weight each pixel before re-sampling to determine the means and co-
variance matrices for the next iteration, thus gradually reducing the influence
of the change observations on the MAD transformation. Iteration continues
until some stopping criterion is met, such as lack of significant change in the
canonical correlations ρi, i = 1 . . .N . Nielsen (2007) refers to this procedure
as the iteratively re-weighted MAD (IR-MAD or iMAD) algorithm.

The Python script iMad.py documented in Appendix C iterates the MAD
transformation in this way. The iterated canonical correlations for the reser-
voir scene, Figure 9.1, are shown in Figure 9.10 and a corresponding change
map in Figure 9.9.

412 Change Detection

9.3.4 Scale invariance

An additional advantage of the MAD procedure stems from the fact that the
calculations involved are invariant under linear and affine transformations of
the original image intensities. This implies insensitivity to linear differences
in atmospheric conditions or sensor calibrations at the two acquisition times.
Scale invariance also offers the possibility of using the MAD transformation
to perform relative radiometric normalization of multitemporal imagery in a
fully automatic way, as will be explained in Section 9.7 below.

We can illustrate the invariance as follows. Suppose the second image G2

is transformed according to some linear transformation

H = TG2,

where T is a constant nonsingular matrix.∗ The relevant covariance matrices
for the coupled generalized eigenvalue problems, Equations (9.10) and (9.11),
are then

Σ1h = �G1H
⊤� = Σ12T

⊤

Σ11 unchanged

Σhh = �HH⊤� = TΣ22T
⊤.

The coupled eigenvalue problems now read

Σ12T
⊤(TΣ22T

⊤)−1TΣ⊤
12a = ρ2Σ11a

TΣ⊤
12Σ

−1
11 Σ12T

⊤c = ρ2TΣ22T
⊤c,

where c is the desired projection for the transformed image H. These equa-
tions are easily seen to be equivalent to

Σ12Σ
−1
22 Σ

⊤
12a = ρ2Σ11a

Σ⊤
12Σ

−1
11 Σ12(T

⊤c) = ρ2Σ22(T
⊤c),

which are identical to Equations (9.10) and (9.11) with b replaced by T⊤c.
Therefore, the MAD components in the transformed situation are, as before,

a⊤
i G1 − c⊤i H = a⊤

i G1 − c⊤i TG2 = a⊤
i G1 − (T⊤ci)

⊤G2 = a⊤
i G1 − b⊤i G2.

9.3.5 Regularization

To avoid possible near singularity problems in the solution of Equations (9.10)
and (9.11), it is sometimes useful to introduce some form of regularization
into the MAD algorithm (Nielsen, 2007). This may in particular be necessary
when the number of spectral bands N is large, as is the case for change

∗A translation H = G2 +C, where C is a constant vector, will clearly make no differ-
ence, since the data matrices are always centered prior to the transformation.

412 Change Detection

9.3.4 Scale invariance

An additional advantage of the MAD procedure stems from the fact that the
calculations involved are invariant under linear and affine transformations of
the original image intensities. This implies insensitivity to linear differences
in atmospheric conditions or sensor calibrations at the two acquisition times.
Scale invariance also offers the possibility of using the MAD transformation
to perform relative radiometric normalization of multitemporal imagery in a
fully automatic way, as will be explained in Section 9.7 below.

We can illustrate the invariance as follows. Suppose the second image G2

is transformed according to some linear transformation

H = TG2,

where T is a constant nonsingular matrix.∗ The relevant covariance matrices
for the coupled generalized eigenvalue problems, Equations (9.10) and (9.11),
are then

Σ1h = �G1H
⊤� = Σ12T

⊤

Σ11 unchanged

Σhh = �HH⊤� = TΣ22T
⊤.

The coupled eigenvalue problems now read

Σ12T
⊤(TΣ22T

⊤)−1TΣ⊤
12a = ρ2Σ11a

TΣ⊤
12Σ

−1
11 Σ12T

⊤c = ρ2TΣ22T
⊤c,

where c is the desired projection for the transformed image H. These equa-
tions are easily seen to be equivalent to

Σ12Σ
−1
22 Σ

⊤
12a = ρ2Σ11a

Σ⊤
12Σ

−1
11 Σ12(T

⊤c) = ρ2Σ22(T
⊤c),

which are identical to Equations (9.10) and (9.11) with b replaced by T⊤c.
Therefore, the MAD components in the transformed situation are, as before,

a⊤
i G1 − c⊤i H = a⊤

i G1 − c⊤i TG2 = a⊤
i G1 − (T⊤ci)

⊤G2 = a⊤
i G1 − b⊤i G2.

9.3.5 Regularization

To avoid possible near singularity problems in the solution of Equations (9.10)
and (9.11), it is sometimes useful to introduce some form of regularization
into the MAD algorithm (Nielsen, 2007). This may in particular be necessary
when the number of spectral bands N is large, as is the case for change

∗A translation H = G2 +C, where C is a constant vector, will clearly make no differ-
ence, since the data matrices are always centered prior to the transformation.

Multivariate alteration detection 413

Listing 9.2: Canonical correlation and regularization (excerpt from the Python
script iMad.py).

1 # weighted covariance matrices and means

2 S = cpm.covariance ()

3 means = cpm.means()

4 # reset prov means object

5 cpm.__init__ (2* bands)

6 s11 = S[0:bands ,0: bands]

7 s11 = (1-lam)*s11 + lam*np.identity (bands)

8 s22 = S[bands:,bands:]

9 s22 = (1-lam)*s22 + lam*np.identity (bands)

10 s12 = S[0:bands ,bands:]

11 s21 = S[bands:,0: bands]

12 c1 = s12*linalg.inv(s22)*s21

13 b1 = s11

14 c2 = s21*linalg.inv(s11)*s12

15 b2 = s22

16 # solution of generalized eigenproblems

17 i f bands >1:

18 mu2a ,A = auxil.geneiv(c1,b1)

19 mu2b ,B = auxil.geneiv(c2,b2)

20 # sort a

21 idx = np.argsort(mu2a)

22 A = (A[:,idx])[:,:: -1]

23 # sort b

24 idx = np.argsort(mu2b)

25 B = (B[:,idx])[:,:: -1]

26 mu2 = (mu2b [idx])[:: -1]

27 e l se:

28 mu2 = c1/b1

29 A = 1/np.sqrt(b1)

30 B = 1/np.sqrt(b2)

31 # canonical correlations

32 mu = np.sqrt(mu2)

33 a2 = np.diag(A.T*A)

34 b2 = np.diag(B.T*B)

35 sigma = np.sqrt((2- lam*(a2+b2))/(1 - lam)-2* mu)

36 rho=mu*(1- lam)/np.sqrt ((1-lam*a2)*(1-lam*b2))

detection involving hyper-spectral imagery. The concept of regularization by
means of length penalization was met in Section 2.6.4. Here we allow for length
penalization of the eigenvectors a and b in CCA by replacing the constraint
(9.4) by

(1− λ)var(U) + λ�a�2 = (1− λ)var(V) + λ�b�2 = 1, (9.21)

414 Change Detection

where var(U) = a⊤Σ11a, var(V) = b⊤Σ22b and λ is a regularization param-
eter. To maximize the covariance cov(U, V) = a⊤Σ12b under this constraint,
we now maximize the unconstrained Lagrange function

L = a⊤Σ12b−
ν

2
((1−λ)a⊤Σ11a+λ�a�2−1)− µ

2
((1−λ)b⊤Σ22b+λ�b�2−1).

Setting the derivatives equal to zero, we obtain

∂L

∂a
= Σ12b− ν(1− λ)Σ11a− νλa = 0

∂L

∂b
= Σ⊤

12a− µ(1− λ)Σ22b− µλb = 0.

(9.22)

Multiplying the first equation above from the left with a⊤ gives

a⊤Σ12b− ν((1 − λ)a⊤Σ11a+ λ�a�2) = 0

and, from (9.21), ν = a⊤Σ12b. Similarly, multiplying the second equation
from the left with b⊤, we have µ = b⊤Σ⊤

12a = ν. Equation (9.22) can now be
written as the single generalized eigenvalue problem (I is the N ×N identity
matrix)

(
0 Σ12

Σ21 0

)(
a

b

)

= µ

(
(1− λ)Σ11 + λI 0

0 (1− λ)Σ22 + λI

)(
a

b

)

.

(9.23)
Note that this equation is equivalent to Equations (9.7) for λ = 0. Note also
that the eigenvalue µ is the covariance of U and V and not the correlation.
Thus, with Equation (9.21),

σ2
MAD = var(U) + var(V)− 2cov(U, V) =

2− λ(�a�2 + �b�2)
1− λ

− 2µ (9.24)

and the correlation is

ρ =
µ

√

var(U)var(V)
=

µ(1 − λ)
√

(1− λ�a�2)(1 − λ�b�2)
, (9.25)

which reduces to ρ = µ only when λ = 0. Regularization is included as an
option in the Python iMAD script.

Canonical correlation with regularization is illustrated in the Python script
excerpt of Listing 9.2. After collecting image statistics with the weighted pro-
visional means method (Section 2.3.2), the covariance matrix and mean vector
of the bi-temporal image are extracted from the cpm class instance in lines 2
and 3. The (regularized) covariance matrices required for CCA are then con-
structed (lines 6 to 11) and the generalized eigenvalue problems, Equations
(9.10) and (9.11), are solved in lines 18 and 19, or for single band images,
in lines 28 to 30. Then, in lines 35 and 36, the MAD standard deviations
and canonical correlations are determined as given, respectively, by Equations
(9.24) and (9.25).

414 Change Detection

where var(U) = a⊤Σ11a, var(V) = b⊤Σ22b and λ is a regularization param-
eter. To maximize the covariance cov(U, V) = a⊤Σ12b under this constraint,
we now maximize the unconstrained Lagrange function

L = a⊤Σ12b−
ν

2
((1−λ)a⊤Σ11a+λ�a�2−1)− µ

2
((1−λ)b⊤Σ22b+λ�b�2−1).

Setting the derivatives equal to zero, we obtain

∂L

∂a
= Σ12b− ν(1− λ)Σ11a− νλa = 0

∂L

∂b
= Σ⊤

12a− µ(1− λ)Σ22b− µλb = 0.

(9.22)

Multiplying the first equation above from the left with a⊤ gives

a⊤Σ12b− ν((1 − λ)a⊤Σ11a+ λ�a�2) = 0

and, from (9.21), ν = a⊤Σ12b. Similarly, multiplying the second equation
from the left with b⊤, we have µ = b⊤Σ⊤

12a = ν. Equation (9.22) can now be
written as the single generalized eigenvalue problem (I is the N ×N identity
matrix)

(
0 Σ12

Σ21 0

)(
a

b

)

= µ

(
(1− λ)Σ11 + λI 0

0 (1− λ)Σ22 + λI

)(
a

b

)

.

(9.23)
Note that this equation is equivalent to Equations (9.7) for λ = 0. Note also
that the eigenvalue µ is the covariance of U and V and not the correlation.
Thus, with Equation (9.21),

σ2
MAD = var(U) + var(V)− 2cov(U, V) =

2− λ(�a�2 + �b�2)
1− λ

− 2µ (9.24)

and the correlation is

ρ =
µ

√

var(U)var(V)
=

µ(1 − λ)
√

(1− λ�a�2)(1 − λ�b�2)
, (9.25)

which reduces to ρ = µ only when λ = 0. Regularization is included as an
option in the Python iMAD script.

Canonical correlation with regularization is illustrated in the Python script
excerpt of Listing 9.2. After collecting image statistics with the weighted pro-
visional means method (Section 2.3.2), the covariance matrix and mean vector
of the bi-temporal image are extracted from the cpm class instance in lines 2
and 3. The (regularized) covariance matrices required for CCA are then con-
structed (lines 6 to 11) and the generalized eigenvalue problems, Equations
(9.10) and (9.11), are solved in lines 18 and 19, or for single band images,
in lines 28 to 30. Then, in lines 35 and 36, the MAD standard deviations
and canonical correlations are determined as given, respectively, by Equations
(9.24) and (9.25).

Multivariate alteration detection 415

9.3.6 Postprocessing

The MAD transformation can be augmented by subsequent application of
the MAF transformation in order to improve the spatial coherence of the
MAD variates (Nielsen et al., 1998). (When image noise is estimated as the
difference between intensities of neighboring pixels, the MAF transformation
is equivalent to the MNF transformation, as was discussed in Chapter 3.)
MAD components post processed in this way are referred to as MAD/MAF.

9.3.7 Unsupervised change classification

Figure 9.11 below shows a bi-temporal LANDSAT scene acquired in early and
late summer over the same region as Figure 6.1. Figure 9.12 provides a rather
nice visualization of significant changes that have taken place between the two
acquisitions. The gray/green (featureless) regions correspond to built-up ar-
eas and to forest canopy, neither of which have changed significantly between
acquisitions. The significant changes, indicated by the various brightly colored
areas, are quite heterogeneous and not easy to interpret, but from their form
many are clearly associated with cultivated fields, others with activity in two
open face coal mines. We might now go a step further (Canty and Nielsen,
2006) and attempt to cluster the change and no-change pixels in multidimen-
sional MAD or MAD/MAF feature space, using, for instance, the Gaussian
mixture algorithm discussed in Chapter 8. Since the no-change cluster will
tend to be very dominant, it is to be expected that this will only be sensible
for situations in which a good deal of change has taken place and some a priori

0 200 400 600 800

0

200

400

600

800

LE7_20010626.tif: linear2pc: (4, 5, 6): [0, 0, 1000, 1000]

0 200 400 600 800

0

200

400

600

800

LE7_20010829.tif: linear2pc: (4, 5, 6): [0, 0, 1000, 1000]

FIGURE 9.11

LANDSAT 7 ETM images acquired over Jülich, Germany, on June 26, 2001
and August 29, 2001. RGB color composites of bands 4, 5, and 6 in a linear
2% stretch.

416 Change Detection

0 200 400 600 800

0

200

400

600

800

MAD(LE7_20010626-LE7_20010829)_cmap.tif: equalization: (1, 2, 3): [0, 0, 1000, 1000]

FIGURE 9.12

RGB composite of iMAD components 1, 2, and 3 for the bi-temporal scene of
Figure 9.11. The MAD variates are thresholded at significance level 0.0001.

information about the number of change categories exists. In the present case,
the main crops in the scene are sugar beets, corn and cereal grain. The former
two are still maturing in August, the time of the second acquisition, whereas
the grain fields have been harvested. So we might postulate two main classes
of change: maturing crops and harvested crops. Allowing for a no-change class
and a “catch-all” class for other kinds of change, we can therefore attempt to
classify the iMAD image by assuming four classes in all:

run scripts /em -K 4 \

imagery/MAD(LE7_20010626 -LE7_20010829)

416 Change Detection

0 200 400 600 800

0

200

400

600

800

MAD(LE7_20010626-LE7_20010829)_cmap.tif: equalization: (1, 2, 3): [0, 0, 1000, 1000]

FIGURE 9.12

RGB composite of iMAD components 1, 2, and 3 for the bi-temporal scene of
Figure 9.11. The MAD variates are thresholded at significance level 0.0001.

information about the number of change categories exists. In the present case,
the main crops in the scene are sugar beets, corn and cereal grain. The former
two are still maturing in August, the time of the second acquisition, whereas
the grain fields have been harvested. So we might postulate two main classes
of change: maturing crops and harvested crops. Allowing for a no-change class
and a “catch-all” class for other kinds of change, we can therefore attempt to
classify the iMAD image by assuming four classes in all:

run scripts /em -K 4 \

imagery/MAD(LE7_20010626 -LE7_20010829)

Multivariate alteration detection 417

EM clustering

infile: imagery/MAD(LE7_20010626 -LE7_20010829)

clusters: 4

T0: 0.500000

beta : 0.500000

scale: 2

running EM on 62500 pixel vectors

em iteration 0: dU: 0.836431 loglike: -97996.679848

em iteration 10: dU: 0.959525 loglike: -13378.398171

em iteration 20: dU: 1.000000 loglike: -11130.729298

em iteration 30: dU: 0.999997 loglike: -11338.581835

em iteration 40: dU: 0.411141 loglike: -9477.856172

em iteration 50: dU: 0.021389 loglike: -9393.008548

em iteration 60: dU: 0.003319 loglike: -9395.696867

running EM on 250000 pixel vectors

em iteration 0: dU: 1.000000 loglike: -316164.037620

em iteration 10: dU: 0.000946 loglike: -45944.946901

running EM on 1000000 pixel vectors

em iteration 0: dU: 1.000000 loglike: -935050.848265

em iteration 10: dU: 0.000749 loglike: -191617.238590

...

classified image written to: imagery/MAD(LE7_20010626

-LE7_20010829)_em

elapsed time : 29.9761760235

0 25 50 75 100 125 150 175

0

25

50

75

100

125

150

175

MAD(LE7_20010626-LE7_20010829)_em.tif: linear: [1, 1, 1]: [400, 0, 200, 200]

0 25 50 75 100 125 150 175

0

25

50

75

100

125

150

175

LE7_20010829: equalization: (4, 4, 4): [400, 0, 200, 200]

FIGURE 9.13

Left: Gaussian mixture clusters for a spatial subset of the iMAD image of
Figure 9.9 assuming 4 clusters in all. Right: the fourth band of the image
acquired on August 29, 2001.

418 Change Detection

A spatial subset of the clustered iMAD image is shown on the left of Fig-
ure 9.13 and compared with the band 4 of the second (August) acquisition
on the right. The black pixels are no-change observations. The yellow pixels
correspond to low reflectance in band 4 (near infrared) and therefore may be
fairly confidently associated with harvested grain.

9.3.8 iMAD on the Google Earth Engine

The iteratively re-weighted MAD algorithm is programmed against the GEE
Python API in the function

imad (current ,prev)

which can be imported from the Python module auxil.eeMad.py:

from auxil.eeMad import imad

see Appendix C. In order to implement the algorithm, the function imad()

is iterated over a list of integers of length equal to the maximum number of
iMAD iterations:

inputlist = ee.List.sequence (1,maxitr)

...

result = ee.Dictionary (inputlist .iterate(imad ,first))

During the iteration, the elements of inputlist constitute the current ar-
gument in imad(current, prev), and the prev argument, initialized in the
above statement to first, is an ee.Dictionary containing the bi-temporal
image bands to be processed, the accumulated canonical correlations for each
iteration, the current iMAD image, the current chi-square image, as well as a
flag to signal when the iteration should stop. For example, here is a wrapper
function to access two multispectral images from the GEE data archive and
run the iMAD algorithm, returning the final MAD variates:

def iMad (cid ,poly ,sd1 ,ed1 ,sd2 ,ed2 ,bns ,maxitr):

collection = ee.ImageCollection (cid) \

.filterBounds (poly) \

.filterDate (ee.Date (sd1), ee.Date(ed1)) \

.sort(’system:time_start ’,False)

image1 = ee.Image(collection .first ()). select(bns)

collection = ee.ImageCollection (cid) \

.filterBounds (poly) \

.filterDate (ee.Date(sd2), ee.Date(ed2)) \

.sort (’system:time_start ’,False)

image2 = ee.Image(collection .first ()). select(bns)

image2 = image2.register (image1 ,60)

inputlist = ee.List. sequence (1, maxitr)

first = ee.Dictionary ({’done ’:ee.Number(0),

’image’:image1. addBands(image2). clip(poly),

’allrhos’: [ee.List.sequence (1, len(bns))],

418 Change Detection

A spatial subset of the clustered iMAD image is shown on the left of Fig-
ure 9.13 and compared with the band 4 of the second (August) acquisition
on the right. The black pixels are no-change observations. The yellow pixels
correspond to low reflectance in band 4 (near infrared) and therefore may be
fairly confidently associated with harvested grain.

9.3.8 iMAD on the Google Earth Engine

The iteratively re-weighted MAD algorithm is programmed against the GEE
Python API in the function

imad (current ,prev)

which can be imported from the Python module auxil.eeMad.py:

from auxil.eeMad import imad

see Appendix C. In order to implement the algorithm, the function imad()

is iterated over a list of integers of length equal to the maximum number of
iMAD iterations:

inputlist = ee.List.sequence (1,maxitr)

...

result = ee.Dictionary (inputlist .iterate(imad ,first))

During the iteration, the elements of inputlist constitute the current ar-
gument in imad(current, prev), and the prev argument, initialized in the
above statement to first, is an ee.Dictionary containing the bi-temporal
image bands to be processed, the accumulated canonical correlations for each
iteration, the current iMAD image, the current chi-square image, as well as a
flag to signal when the iteration should stop. For example, here is a wrapper
function to access two multispectral images from the GEE data archive and
run the iMAD algorithm, returning the final MAD variates:

def iMad (cid ,poly ,sd1 ,ed1 ,sd2 ,ed2 ,bns ,maxitr):

collection = ee.ImageCollection (cid) \

.filterBounds (poly) \

.filterDate (ee.Date (sd1), ee.Date(ed1)) \

.sort(’system:time_start ’,False)

image1 = ee.Image(collection .first ()). select(bns)

collection = ee.ImageCollection (cid) \

.filterBounds (poly) \

.filterDate (ee.Date(sd2), ee.Date(ed2)) \

.sort (’system:time_start ’,False)

image2 = ee.Image(collection .first ()). select(bns)

image2 = image2.register (image1 ,60)

inputlist = ee.List. sequence (1, maxitr)

first = ee.Dictionary ({’done ’:ee.Number(0),

’image’:image1. addBands(image2). clip(poly),

’allrhos’: [ee.List.sequence (1, len(bns))],

Multivariate alteration detection 419

FIGURE 9.14

The first iMAD variate for a subset of the bi-temporal image of Figure 9.11
as calculated using the GEE Python API. Map data (c) OpenStreetMap.

’chi2 ’:ee.Image.constant (0),

’MAD’:ee.Image.constant (0)})

madnames = [’MAD’+ str (i+1) for i in range(len(bns))]

run the algorithm

result = ee.Dictionary (inputlist .iterate(imad ,first))

MAD = ee.Image(result.get(’MAD’)). rename(madnames)

return MAD

Here, poly is an ee.Geometry.Polygon containing the region of interest.
Thus, to process the June and August LANDSAT 7 ETM images of Figure
9.11 we execute the notebook cell

collectionid = ’LANDSAT/LE07/C01/T1_RT_TOA ’

bandNames = [’B1’,’B2’,’B3’,’B4’,’B5’,’B7’]

startDate1 = ’2001-06-25 ’

endDate1 = ’2001-06-27 ’

startDate2 = ’2001-08-28 ’

endDate2 = ’2001-08-30 ’

maxitr = 50

MAD = iMad(collectionid ,poly ,startDate1 ,

endDate1 ,startDate2 ,endDate2 ,

bandNames ,maxitr)

420 Change Detection

In the accompanying notebook, the polygon is selected from an interactive
map. The code is not actually executed on the GEE servers until we try to
display the result on the map or request export to assets, e.g.,

m.add_layer (

TileLayer (url=GetTileLayerUrl (

MAD.select(’MAD1 ’). visualize (min=-3, max=3))))

A “slippy map” display of the first iMAD variate in the accompanying Jupyter
notebook is shown Figure 9.14. For a detailed, three-part tutorial on using the
iMAD transformation on the Google Earth Engine, see

https:// developers .google.com/earth -engine/tutorials

/community /imad -tutorial -pt1

9.4 Change detection with polarimetric SAR imagery

Polarimetric SAR image pixels were represented in Chapter 5 in the form of
look-averaged complex covariance matrices (Equation (5.30) or (5.32)). As-
suming that the measured scattering amplitudes, which for full quad polar-
ization are given by

s =





shh√
2shv
svv



 , (9.26)

are indeed zero-mean, complex multivariate normally distributed, then we
expect that the multilook covariance matrix observations,

c̄ =
1

m

m�

ν=1

s(ν)s(ν)† = �ss†�,

being at least approximately complex Wishart distributed, will provide a good
characterization of the image statistics. Conradsen et al. (2003) developed
a per-pixel likelihood ratio test for changes between two image acquisitions
which is based on the complex Wishart distribution and, later, generalized
the method to multitemporal image sequences (Conradsen et al., 2016). In the
following, their change detection algorithm will be explained and, as usual,
programmed in Python.

9.4.1 Scalar imagery: the gamma distribution

We will adopt the approach taken in the appendices of Conradsen et al. (2003,
2016) and begin with the easier case of scalar intensity images or single po-
larimetry, then proceed in Section 9.4.2 to the multivariate situation which is
applicable to dual and quad polarimetric data.

https://developers.google.com/earth-engine/tutorials/community/imad-tutorial-pt1
https://developers.google.com/earth-engine/tutorials/community/imad-tutorial-pt1

420 Change Detection

In the accompanying notebook, the polygon is selected from an interactive
map. The code is not actually executed on the GEE servers until we try to
display the result on the map or request export to assets, e.g.,

m.add_layer (

TileLayer (url=GetTileLayerUrl (

MAD.select(’MAD1 ’). visualize (min=-3, max=3))))

A “slippy map” display of the first iMAD variate in the accompanying Jupyter
notebook is shown Figure 9.14. For a detailed, three-part tutorial on using the
iMAD transformation on the Google Earth Engine, see

https:// developers .google.com/earth -engine/tutorials

/community /imad -tutorial -pt1

9.4 Change detection with polarimetric SAR imagery

Polarimetric SAR image pixels were represented in Chapter 5 in the form of
look-averaged complex covariance matrices (Equation (5.30) or (5.32)). As-
suming that the measured scattering amplitudes, which for full quad polar-
ization are given by

s =





shh√
2shv
svv



 , (9.26)

are indeed zero-mean, complex multivariate normally distributed, then we
expect that the multilook covariance matrix observations,

c̄ =
1

m

m�

ν=1

s(ν)s(ν)† = �ss†�,

being at least approximately complex Wishart distributed, will provide a good
characterization of the image statistics. Conradsen et al. (2003) developed
a per-pixel likelihood ratio test for changes between two image acquisitions
which is based on the complex Wishart distribution and, later, generalized
the method to multitemporal image sequences (Conradsen et al., 2016). In the
following, their change detection algorithm will be explained and, as usual,
programmed in Python.

9.4.1 Scalar imagery: the gamma distribution

We will adopt the approach taken in the appendices of Conradsen et al. (2003,
2016) and begin with the easier case of scalar intensity images or single po-
larimetry, then proceed in Section 9.4.2 to the multivariate situation which is
applicable to dual and quad polarimetric data.

Change detection with polarimetric SAR imagery 421

9.4.1.1 Bi-temporal data

Following the notation used to introduce speckle filtering in Section 5.4.3, we
represent the pixels in an m look-averaged, single polarimetric SAR intensity
image acquired at some initial time by the random variable G1, with mean
�G1� = x1. Here, x1 is understood to be the look-averaged underlying signal,
e.g., �|shh|2�. The density function for G1, conditional on the value of x1, is,
with Equation (5.34), the gamma density

p(g1 | x1) =
1

(x1/m)mΓ(m)
gm−1
1 e−g1m/x1 . (9.27)

For a second image G2, acquired at a later time, with m looks and �G2� = x2,
we have

p(g2 | x2) =
1

(x2/m)mΓ(m)
gm−1
2 e−g2m/x2 . (9.28)

We now set up a likelihood ratio test as described in Definition 2.7. Under the
null hypothesis H0 that the pixels are unchanged, x1 = x2 = x, the likelihood
for x is

L0(x) = p(g1 | x)p(g2 | x) = 1

(x/m)2mΓ(m)2
gm−1
1 gm−1

2 e−(g1+g2)m/x, (9.29)

and under the alternative hypothesis H1, x1 �= x2, the likelihood for x1 and
x2 is

L1(x1, x2) = p(g1 | x1)p(g2 | x2)

=
1

(x1/m)m(x2/m)mΓ(m)2
gm−1
1 gm−1

2 e−(g1m/x1+g2m/x2).
(9.30)

By taking derivatives of the log-likelihoods, it is easy to show (Exercise 5(a))
that the likelihood L0(x) is maximized by

x̂ =
g1 + g2

2

and that L1(x1, x2) is maximized by

x̂1 = g1, x̂2 = g2.

Then, according to Equation (2.77) and some simple algebra, the likelihood
ratio test has the critical region

L0(x̂)

L1(x̂1, x̂2)
=

(g1/m)m(g2/m)n
(
g1+g2
2m

)2m = 22m
gm1 gm2

(g1 + g2)2m
≤ t. (9.31)

Equivalently,
(

g1g2
(g1 + g2)2

)m

≤ t

22m

422 Change Detection

FIGURE 9.15

Ratio of the VV bands of two Sentinel S1 images acquired over a region of
(approximate) no-change, compared with a plot of the F-distribution for 2m
and 2m degrees of freedom with m=5.

or
g1g2

(g1 + g2)2
≤ t̃,

where t̃ depends on t. Inverting both sides of the above inequality and sim-
plifying, we obtain

g1
g2

+
g2
g1

≥ 1

t̃
− 2.

It follows that the critical region has the form

g1
g2

≤ c1 or
g1
g2

≥ c2,

where the decision thresholds c1 and c2 depend on t̃.
The test statistic is thus the random variable G1/G2 corresponding to the

ratio of SAR pixel intensities. It tests for a significant increase in intensity
between times t1 and t2, or for a significant decrease. We still require its dis-
tribution. Both G1 and G2 have gamma distributions of the form (Equations
(9.27) or (9.28))

p(g | x) = 1

(x/m)mΓ(m)
gm−1e−gm/x.

422 Change Detection

FIGURE 9.15

Ratio of the VV bands of two Sentinel S1 images acquired over a region of
(approximate) no-change, compared with a plot of the F-distribution for 2m
and 2m degrees of freedom with m=5.

or
g1g2

(g1 + g2)2
≤ t̃,

where t̃ depends on t. Inverting both sides of the above inequality and sim-
plifying, we obtain

g1
g2

+
g2
g1

≥ 1

t̃
− 2.

It follows that the critical region has the form

g1
g2

≤ c1 or
g1
g2

≥ c2,

where the decision thresholds c1 and c2 depend on t̃.
The test statistic is thus the random variable G1/G2 corresponding to the

ratio of SAR pixel intensities. It tests for a significant increase in intensity
between times t1 and t2, or for a significant decrease. We still require its dis-
tribution. Both G1 and G2 have gamma distributions of the form (Equations
(9.27) or (9.28))

p(g | x) = 1

(x/m)mΓ(m)
gm−1e−gm/x.

Change detection with polarimetric SAR imagery 423

Making the change of variable z = 2gm/x, or, inverting, g(z) = xz/2m, we
have for the random variable Z, from Theorem 2.1,

p(z | x) = p(g(z) | x)
∣
∣
∣
∣

dg

dz

∣
∣
∣
∣
=

1

(x/m)mΓ(m)

(xz

2m

)m−1

e−z/2

∣
∣
∣
∣

dg

dz

∣
∣
∣
∣
.

With |dg/dz| = x/2m we obtain

p(z | x) = 1

2mΓ(m)
zm−1e−z/2.

Comparison with Equation (2.38) shows that Z, and hence, the random vari-
ables 2G1m/x1 and 2G2m/x2, are chi-square distributed with 2m degrees of
freedom. Under the null hypothesis, we have x1 = x2, so that the test statis-
tic G1/G2 is a ratio of two chi-square distributed random variables. Our test
statistic is therefore F -distributed with 2m and 2m degrees of freedom; see
Equation (2.83). The percentiles of the F -distribution can therefore be used
to set change/no-change decision thresholds to any desired degree of signifi-
cance. Figure 9.15 shows a specific example for two successive 5-look Sentinel
S1 image acquisitions downloaded from the Google Earth Engine.

9.4.1.2 Multi-temporal data

Suppose we have a series of k SAR scalar intensity images and would like to
know where and when changes have taken place. A first reaction might be to
simply apply the bi-temporal method we developed above to each of the k−1
time intervals. The difficulty with this approach is the rate of false positives. If
the bi-temporal tests are statistically independent, then the probability of not
getting a false positive over a series of length k is the product of not getting
one in each of the k − 1 intervals, i.e., (1 − α)k−1 and the overall first kind
error probability αT is its complement:

αT = 1− (1− α)k−1.

For example, for k = 26, even with a small value of α = 0.01 this gives a
very large false positive rate of 22.2%. Actually things are a bit worse. The
bi-temporal tests are manifestly not independent because consecutive tests
have one image in common. The best one can say in this situation is

αT ≤ (k − 1)α,

or αT ≤ 25% for k = 26 and α = 0.01. If we wish to set a false positive rate
of at most, say, 1% for the entire series, then each bi-temporal test must have
a significance level of α = 0.0004 and a correspondingly large false negative
rate β. In other words many significant changes may be missed.

To avoid this, we will proceed as follows: Consider the situation in which
there are k observations gi, i = 1 . . . k, each parameterized by its mean value

424 Change Detection

xi, and we wish to test the null hypothesis that there is no change in the first
j observations of the series,

H0j : x1 = x2 = . . . = xj = x

against the alternative hypothesis

H1j : x1 = x2 = . . . = xj−1 = x, xj �= x,

i.e., that the first change occurred after the (j − 1)th observation. Then the
likelihood function under H0j is

L0 =
1

(x/m)mjΓ(m)j

(j
∏

i=1

gm−1
i

)

exp
(
− (m/x)

j
∑

i=1

gi
)
, (9.32)

with the maximum-likelihood estimate of x given by (see Exercise 5(b))

x̂ =
1

j

j
∑

i=1

gi.

For the alternative H1j ,

L1 =
1

∏j−1
i=1 (xi/m)m(xj/m)mΓ(m)j

(j
∏

i=1

gm−1
i

)

exp
(
−m

j
∑

i=1

(gi/xi)
)
, (9.33)

with maximum-likelihood estimators

x̂i =
1

j − 1

j−1
∑

i=1

gi, i = 1 . . . j − 1, x̂j = gj.

The likelihood ratio test is therefore (the exponential terms cancel exactly;
see Exercise 6)

L̂0

L̂1

=
(g1 + . . .+ gj−1)

m(j−1)(gj/m)m(m(j − 1))−m(j−1)

(g1 + . . .+ gj)(jm)−mj

=
jm

(j − 1)(j−1)m

(g1 + . . .+ gj−1)
m(j−1)gmj

(g1 + . . .+ gj)mj
.

Accordingly, we define the following test statistic:

Rj =
jjm

(j − 1)m(j−1)

(G1 + . . .+Gj−1)
m(j−1)Gm

j

(G1 + . . .+Gj)mj
, j = 2 . . . k. (9.34)

If we wish to test the null or no-change hypothesis

H0 : x1 = x2 = . . . = xk

424 Change Detection

xi, and we wish to test the null hypothesis that there is no change in the first
j observations of the series,

H0j : x1 = x2 = . . . = xj = x

against the alternative hypothesis

H1j : x1 = x2 = . . . = xj−1 = x, xj �= x,

i.e., that the first change occurred after the (j − 1)th observation. Then the
likelihood function under H0j is

L0 =
1

(x/m)mjΓ(m)j

(j
∏

i=1

gm−1
i

)

exp
(
− (m/x)

j
∑

i=1

gi
)
, (9.32)

with the maximum-likelihood estimate of x given by (see Exercise 5(b))

x̂ =
1

j

j
∑

i=1

gi.

For the alternative H1j ,

L1 =
1

∏j−1
i=1 (xi/m)m(xj/m)mΓ(m)j

(j
∏

i=1

gm−1
i

)

exp
(
−m

j
∑

i=1

(gi/xi)
)
, (9.33)

with maximum-likelihood estimators

x̂i =
1

j − 1

j−1
∑

i=1

gi, i = 1 . . . j − 1, x̂j = gj.

The likelihood ratio test is therefore (the exponential terms cancel exactly;
see Exercise 6)

L̂0

L̂1

=
(g1 + . . .+ gj−1)

m(j−1)(gj/m)m(m(j − 1))−m(j−1)

(g1 + . . .+ gj)(jm)−mj

=
jm

(j − 1)(j−1)m

(g1 + . . .+ gj−1)
m(j−1)gmj

(g1 + . . .+ gj)mj
.

Accordingly, we define the following test statistic:

Rj =
jjm

(j − 1)m(j−1)

(G1 + . . .+Gj−1)
m(j−1)Gm

j

(G1 + . . .+Gj)mj
, j = 2 . . . k. (9.34)

If we wish to test the null or no-change hypothesis

H0 : x1 = x2 = . . . = xk

Change detection with polarimetric SAR imagery 425

against all alternatives, that is, that one or any number of changes have oc-
curred, then the likelihood ratio test statistic is

Qk = kmk

∏k
i=1 G

m
i

(
∑k

j=1 Gj)km
, (9.35)

which is referred to as an omnibus test. The reader is asked to prove this in
Exercise 7 and, furthermore, to show that

Qk =

k∏

j=2

Rj . (9.36)

Our sequential change analysis strategy for a time series of k observations
will then be first to test Qk and, if the null hypothesis is not rejected, to stop.
Under the alternative, i.e., that at least one change has occurred, we then test
R2, i.e., x1 = x2 against x1 �= x2. If the null hypothesis H02 is not rejected,
then we proceed to test x1 = x2 = x3 against x1 = x2 �= x3 using the statistic
R3, and so on. If and when a null hypothesis is rejected, we note the interval
in which the change occurred and re-start the procedure from there. This is
referred to this as the sequential omnibus test procedure.

Note that the test statistics Rj are independent of one another under the
successive null hypotheses. This can be seen by writing Equation (9.34) in the
form

Rj =
jm

(j − 1)m(j−1)
U

m(j−1)
j (1− Uj)

m, j = 2 . . . k,

where
Uj = Sj−1/Sj , with Sj = G1 + . . .+Gj .

According to Theorem 2.7, the random variables Sj and Uj are independent.
Hence, Uj and Sj+Gj+1 and so Uj and Uj+1 = Sj/Sj+1 are also independent.
It follows that Rj and Rj+1 are indeed independent and that Qk in Equation
(9.36) is factored into a product of independent test statistics.

The decision at each time point can be formulated, as in the bi-temporal
case in Section 9.4.1.1, as a two-sided test on an F -distributed random vari-
able; see Conradsen et al. (2016). However, we will proceed directly to the
more general multivariate case.

9.4.2 Polarimetric imagery: the complex Wishart
distribution

In the multivariate situation, where we deal with complex vector observations
like Equation (9.26), we represent an observation in anm look-averaged polari-
metric image by the random matrix X with a complex Wishart distribution
and with realization

x =

m∑

ν=1

s(ν)s(ν)† = mc̄,

426 Change Detection

where c̄ is given in the last equality of Equation (5.30). In the polarimetric
matrix image, the components of the matrix c̄ constitute the image pixel
bands.∗

9.4.2.1 Bi-temporal data

We need the following result (Goodman, 1963): If

X =
m∑

ν=1

Z(ν)Z(ν)†, Z(ν) ∼ NC(0,Σ), ν = 1 . . .m,

is complex Wishart distributed with covariance matrix Σ and m degrees of
freedom, then the maximum-likelihood estimate for Σ is

Σ̂ =
1

m

m∑

ν=1

z(ν)z(ν)† =
1

m
x. (9.37)

This closely parallels the real random vector case; see, e.g., Equation (2.75).

We conclude that c̄ = Σ̂, that is, c̄ is the maximum-likelihood estimate of the
parameter Σ.

The density function for the N × N random matrix X is the complex
Wishart distribution given by Theorem 2.11, Equation (2.62). To simplify the
notation a little, let us define

ΓN (m) = πN(N−1)/2
N∏

i=1

Γ(m+ 1− i).

Then, for two m-look quad polarimetric covariance images X1 and X2, the
multivariate densities are

p(x1 | m,Σ1) =
|x1|m−N exp(−tr(Σ−1

1 x1))

|Σ1|mΓN (m)

p(x2 | m,Σ2) =
|x2|m−N exp(−tr(Σ−1

2 x2))

|Σ2|mΓN (m)
.

We now define the null (or no-change) simple hypothesis

H0 : Σ1 = Σ2 = Σ,

against the alternative composite hypothesis

H1 : Σ1 �= Σ2.

∗Note that x is now an observation, not a parameter.

426 Change Detection

where c̄ is given in the last equality of Equation (5.30). In the polarimetric
matrix image, the components of the matrix c̄ constitute the image pixel
bands.∗

9.4.2.1 Bi-temporal data

We need the following result (Goodman, 1963): If

X =
m∑

ν=1

Z(ν)Z(ν)†, Z(ν) ∼ NC(0,Σ), ν = 1 . . .m,

is complex Wishart distributed with covariance matrix Σ and m degrees of
freedom, then the maximum-likelihood estimate for Σ is

Σ̂ =
1

m

m∑

ν=1

z(ν)z(ν)† =
1

m
x. (9.37)

This closely parallels the real random vector case; see, e.g., Equation (2.75).

We conclude that c̄ = Σ̂, that is, c̄ is the maximum-likelihood estimate of the
parameter Σ.

The density function for the N × N random matrix X is the complex
Wishart distribution given by Theorem 2.11, Equation (2.62). To simplify the
notation a little, let us define

ΓN (m) = πN(N−1)/2
N∏

i=1

Γ(m+ 1− i).

Then, for two m-look quad polarimetric covariance images X1 and X2, the
multivariate densities are

p(x1 | m,Σ1) =
|x1|m−N exp(−tr(Σ−1

1 x1))

|Σ1|mΓN (m)

p(x2 | m,Σ2) =
|x2|m−N exp(−tr(Σ−1

2 x2))

|Σ2|mΓN (m)
.

We now define the null (or no-change) simple hypothesis

H0 : Σ1 = Σ2 = Σ,

against the alternative composite hypothesis

H1 : Σ1 �= Σ2.

∗Note that x is now an observation, not a parameter.

Change detection with polarimetric SAR imagery 427

Under H0, the likelihood for Σ is given by

L0(Σ) = p(x1 | m,Σ)p(x2 | m,Σ)

=
|x1|m−N |x2|m−N exp(−tr(Σ−1(x1 + x2)))

|Σ|2mΓN (m)2
.

According to Theorem 2.12, X1 + X2 is complex Wishart distributed with
2m degrees of freedom and therefore, with Equation (9.37), the maximum-
likelihood estimate of Σ is

Σ̂ =
1

2m
(x1 + x2).

Hence, the maximum likelihood under the null hypothesis is

L0(Σ̂) =
|x1|m−N |x2|m−N exp(−2m · tr(I))
(

1
2m

)N ·2m |x1 + x2|2mΓN (m)2
,

where I is the N×N identity matrix and tr(I) = N . (Note that |ax| = aN |x|
for constant a and a N × N matrix x.) Under H1 we obtain, similarly, the
maximum likelihood for Σ1 and Σ2 as

L1(Σ̂1, Σ̂2) =
|x1|m−N |x2|m−N exp(−2m · tr(I))
(

1
m

)Nm (
1
m

)Nm |x1|m|x2|mΓN (m)2
. (9.38)

Then, again according to Equation (2.77), the likelihood ratio test has the
critical region

Q =
L0(Σ̂)

L1(Σ̂1, Σ̂2)
= 22Nm |x1|m|x2|m

|x1 + x2|2m
≤ t. (9.39)

For a large number of looks m, we can apply Theorem 2.15 to obtain the
following asymptotic distribution for the test statistic: As m → ∞, the quan-
tity

−2 logQ = −2m(2N log 2 + log |x1|+ log |x2| − 2 log |x1 + x2|)

is a realization of a chi-square random variable with N2 degrees of freedom:

Pr(−2 logQ ≤ z) ≃ Pχ2 ;N2(z). (9.40)

This follows from the fact that the number of parameters required to specify
a N ×N complex covariance matrix is N2: N for the real diagonal elements
and N(N − 1) for the complex elements above the diagonal.∗ Thus, in the
notation of Theorem 2.15, the parameter space ω for (Σ1,Σ2) has dimension
q = 2N2, and the subspace ω0 for the simple null hypothesis has dimension
r = N2, so q − r = N2.

∗The elements below the diagonal are their complex conjugates.

428 Change Detection

9.4.2.2 Multi-temporal data

The situation for time series of polarimetric SAR images exactly parallels
that for scalar observations. Assuming as before that the number of looks m is
the same for all k images in the series, the complex Wishart distributions of the
(N ×N)-dimensional observations x = mc̄ are completely determined by the
parameters Σi, i = 1 . . . k, and the test statistic for

H0j : Σ1 = Σ2 = . . . = Σj = Σ

against
H1j : Σ1 = Σ2 = . . . = Σj−1 �= Σj

is given by

Rj =
jjmN

(j − 1)(j−1)mN

|X1 + . . .+Xj−1|m(j−1)|Xj |m
|X1 + . . .+Xj |jm

. (9.41)

Taking minus twice the logarithm of Rj in Equation (9.41), we have

Zj = −2 logRj = m
(

N(j log j − (j − 1) log(j − 1))

+ (j − 1) log
∣
∣

j−1
∑

i=1

Xi

∣
∣+ log

∣
∣Xj

∣
∣− j log |

j
∑

i=1

Xi|
)

.
(9.42)

For both quad (N = 3) and dual (N = 2) polarimetric matrices, the parameter
space ω of (Σ,Σj) has dimension q = 2 ×N2, and the subspace ω0 of Σ for
the null hypothesis has dimension r = N2, so as for the bi-temporal case,
q− r = N2. Thus, from Theorem 2.15, the approximate distribution function
of Zj is chi-square with N2 degrees of freedom

Pr(−2 logRj ≤ z) ≃ Pχ2;N2(z) (9.43)

and the P -value for an observation zj of Zj is approximately

1− Pχ2;N2(zj).

In practice, m may be rather small for typical look-averaged polarimetric
SAR images. Conradsen et al. (2016) give a better (and more complicated)
approximation to the distribution of the test statistic based on large sample
distribution theory (Box, 1949). For finite m and an N×N covariance matrix:

Pr(−2ρj logRj ≤ z) ≃ Pχ2 ;N2(z) + ω2j

[
Pχ2;N2+4(z)− Pχ2;N2(z)

]
, (9.44)

where

ρj = 1− 2N2 − 1

6Nm
·
(

1 +
1

j(j − 1)

)

428 Change Detection

9.4.2.2 Multi-temporal data

The situation for time series of polarimetric SAR images exactly parallels
that for scalar observations. Assuming as before that the number of looks m is
the same for all k images in the series, the complex Wishart distributions of the
(N ×N)-dimensional observations x = mc̄ are completely determined by the
parameters Σi, i = 1 . . . k, and the test statistic for

H0j : Σ1 = Σ2 = . . . = Σj = Σ

against
H1j : Σ1 = Σ2 = . . . = Σj−1 �= Σj

is given by

Rj =
jjmN

(j − 1)(j−1)mN

|X1 + . . .+Xj−1|m(j−1)|Xj |m
|X1 + . . .+Xj |jm

. (9.41)

Taking minus twice the logarithm of Rj in Equation (9.41), we have

Zj = −2 logRj = m
(

N(j log j − (j − 1) log(j − 1))

+ (j − 1) log
∣
∣

j−1
∑

i=1

Xi

∣
∣+ log

∣
∣Xj

∣
∣− j log |

j
∑

i=1

Xi|
)

.
(9.42)

For both quad (N = 3) and dual (N = 2) polarimetric matrices, the parameter
space ω of (Σ,Σj) has dimension q = 2 ×N2, and the subspace ω0 of Σ for
the null hypothesis has dimension r = N2, so as for the bi-temporal case,
q− r = N2. Thus, from Theorem 2.15, the approximate distribution function
of Zj is chi-square with N2 degrees of freedom

Pr(−2 logRj ≤ z) ≃ Pχ2;N2(z) (9.43)

and the P -value for an observation zj of Zj is approximately

1− Pχ2;N2(zj).

In practice, m may be rather small for typical look-averaged polarimetric
SAR images. Conradsen et al. (2016) give a better (and more complicated)
approximation to the distribution of the test statistic based on large sample
distribution theory (Box, 1949). For finite m and an N×N covariance matrix:

Pr(−2ρj logRj ≤ z) ≃ Pχ2 ;N2(z) + ω2j

[
Pχ2;N2+4(z)− Pχ2;N2(z)

]
, (9.44)

where

ρj = 1− 2N2 − 1

6Nm
·
(

1 +
1

j(j − 1)

)

Change detection with polarimetric SAR imagery 429

ω2j = −N2

4
·
(

1− 1

ρj

)2

+
N2(N2 − 1)

24m2ρ2j
·
(

1 +
2j − 1

j2(j − 1)2

)

.

Correspondingly, the P -values are

Pj = 1− Pr(−2ρj logRj ≤ z). (9.45)

The quantities ρj → 1 and ω2j → 0 as m → ∞, so that Equation (9.44)
converges to Equation (9.43) for large m.

As before, the Rj are independent under the null hypotheses and

k∏

j=2

Rj = Qk = kkmN

∏k
i=1 |Xi|m

|∑k
i=1 Xi|km

, (9.46)

where Qk is the omnibus test statistic for Σ1 = Σ2 = . . . = Σk against all
alternatives. The sequential change analysis strategy for a time series of k
observations of dual or quad polarimetric images is then the same as for the
scalar situation: First test the statistic Qk given by Equation (9.46) using the
analogous approximate distribution to Equation (9.44), namely

Pr(−2ρ logQk ≤ z) ≃ Pχ2;(k−1)N2(z)

+ ω2

[
Pχ2;(k−1)N2+4(z)− Pχ2;(k−1)N2(z)

] (9.47)

with

ρ = 1− 2N2 − 1

6N(k − 1)
·
(

k

m
− 1

mk

)

ω2 = −N2(k − 1)

4
·
(

1− 1

ρ

)2

+
N2(N2 − 1)

24m2ρ2
·
(

k − 1

k2

)

and with P -value
Pk = 1− Pr(−2ρ logQk ≤ z). (9.48)

If the null hypothesis is not rejected, stop. Under the alternative, test R2

(Equation (9.41) with j = 2), i.e., Σ1 = Σ2 against Σ1 �= Σ2. If the null
hypothesis H02 is not rejected, then proceed to test Σ1 = Σ2 = Σ3 against
Σ1 = Σ2 �= Σ3 using the statistic R3, and so on. When a null hypothesis
is rejected, record the interval in which the change occurred and re-start the
procedure from there.

Finally, note that all of the results of Subsection 9.4.1 are a special case
of the multivariate situation described here and can be recovered by setting
N → 1, Σi → xi, |Xi| → Gi, and xi → gi .

9.4.2.3 The Loewner order

Now we have a method to determine both where and when significant changes
occur in polarimetric radar time series, but what about the direction of
change? For example a sudden, significant and spatially coherent decrease

430 Change Detection

in reflectance might signal widespread flooding, or perhaps deforestation. It
turns out that, for observations of the polarimetric matrix, the idea of di-
rection is ambiguous. Consider the simplest case in which only the diagonal
elements of the m-look dual polarization matrix are measured, for instance

x = mc̄ = m

(
�|svv|2� 0

0 �|svh|2�

)

.

There may be a decrease in one component and an increase in the other.
Since any difference of successive observations xi − xi−1 is likewise diagonal,
its diagonal elements are also its eigenvalues. If the difference is positive defi-
nite (both eigenvalues positive), both components have increased, if negative
definite then both have decreased. So we can associate positive or negative,
definiteness with change direction, but are forced to leave indefinite differ-
ence matrices undefined. This partial ordering characterization of change is
known as the Loewner order and it was suggested by Nielsen et al. (2020)
to apply it to dual and full polarization matrix time series in general: for
complex, symmetric (Hermitian) observation matrices xi, the eigenvalues of
the differences xi − xi−1 partially characterize the direction of changes and
so, in the event of significant change at time i, we determine the positive or
negative definiteness (or indefiniteness) of the difference between consecutive
covariance matrix pixels. Moreover, instead of subtracting the value xi−1 for
the preceding image, we can subtract the average over all preceding values
for which no new change has been signaled. This can conveniently be done
recursively with the provisional means algorithm of Chapter 2.

9.4.2.4 An improved temporal speckle filter

The running average image needed for the Loewner order determination de-
scribed above is in fact an adaptive temporal speckle filter (ATSF) on the
last image in the sequence (Canty et al., 2020). After all bi-temporal changes
have been characterized, pixels which have not exhibited significant change
over the full sequence have been maximally averaged, and changed pixels have
been averaged over the period following the most recent change. In order to
reduce the speckle for regions of very recent change, all averages for which
the number of contributing pixels is below some threshold may be replaced
by the output of a spatial filter, such as one of those described in Chapter 5,
applied to the original image. An example, taken from Canty et al. (2020),
is shown in Figure 9.16. Note that the moving excavators/back fillers in the
filtered image are at the same positions as in the original unfiltered image.

9.4.3 Python software

The Python script sar seqQ.py documented in Appendix C implements the
sequential omnibus change detection procedure outlined above for both scalar
intensity and polarimetric matrix imagery. In practice, it is convenient to

430 Change Detection

in reflectance might signal widespread flooding, or perhaps deforestation. It
turns out that, for observations of the polarimetric matrix, the idea of di-
rection is ambiguous. Consider the simplest case in which only the diagonal
elements of the m-look dual polarization matrix are measured, for instance

x = mc̄ = m

(
�|svv|2� 0

0 �|svh|2�

)

.

There may be a decrease in one component and an increase in the other.
Since any difference of successive observations xi − xi−1 is likewise diagonal,
its diagonal elements are also its eigenvalues. If the difference is positive defi-
nite (both eigenvalues positive), both components have increased, if negative
definite then both have decreased. So we can associate positive or negative,
definiteness with change direction, but are forced to leave indefinite differ-
ence matrices undefined. This partial ordering characterization of change is
known as the Loewner order and it was suggested by Nielsen et al. (2020)
to apply it to dual and full polarization matrix time series in general: for
complex, symmetric (Hermitian) observation matrices xi, the eigenvalues of
the differences xi − xi−1 partially characterize the direction of changes and
so, in the event of significant change at time i, we determine the positive or
negative definiteness (or indefiniteness) of the difference between consecutive
covariance matrix pixels. Moreover, instead of subtracting the value xi−1 for
the preceding image, we can subtract the average over all preceding values
for which no new change has been signaled. This can conveniently be done
recursively with the provisional means algorithm of Chapter 2.

9.4.2.4 An improved temporal speckle filter

The running average image needed for the Loewner order determination de-
scribed above is in fact an adaptive temporal speckle filter (ATSF) on the
last image in the sequence (Canty et al., 2020). After all bi-temporal changes
have been characterized, pixels which have not exhibited significant change
over the full sequence have been maximally averaged, and changed pixels have
been averaged over the period following the most recent change. In order to
reduce the speckle for regions of very recent change, all averages for which
the number of contributing pixels is below some threshold may be replaced
by the output of a spatial filter, such as one of those described in Chapter 5,
applied to the original image. An example, taken from Canty et al. (2020),
is shown in Figure 9.16. Note that the moving excavators/back fillers in the
filtered image are at the same positions as in the original unfiltered image.

9.4.3 Python software

The Python script sar seqQ.py documented in Appendix C implements the
sequential omnibus change detection procedure outlined above for both scalar
intensity and polarimetric matrix imagery. In practice, it is convenient to

Change detection with polarimetric SAR imagery 431

FIGURE 9.16

Left: RGB composite (R = |Svv|2, G = |Svv|2, B = |Svvh|2) of a polarimetric
Sentinel-1 SAR image acquired 27 Sept 2018 over the Hambach open-cast
coal mine near Jülich, Germany. The bright features in the mine pit are very
large mobile excavators and back fillers. Right: The adaptive temporal speckle
filter (ATSF) determined from a time series of 29 images terminating with the
September 27 image.

pre-calculate all of the possible tests in advance, for k observations, namely

Rℓ
j , ℓ = 1 . . . k − 1, j = ℓ+ 1 . . . k,

where ℓ indexes the first image of each subsequence, and then to determine
Qk from their product. The P -values are stored in a (k, k, n) array, where n
is the number of pixels. The array is kept in a memory-mapped file in order
to save memory. Then, in a second pass over the array, the changes at a
given significance level are recorded: Qk is tested, and if the null hypothesis is
rejected, R2 is tested, i.e., Σ1 = Σ2 against Σ1 �= Σ2. If the null hypothesis
H02 is not rejected, then the calculation proceeds to test Σ1 = Σ2 = Σ3

against Σ1 = Σ2 �= Σ3 using the statistic R3, and so on. Whenever a null
hypothesis is rejected, the interval in which the change occurred is noted and
the procedure restarted from there. In this way, the script keeps track of when
and how many changes occur per image pixel. Results are saved in byte format
in five image files:

- cmap.tif: period of the most recent change (1 band)
- smap.tif: period of the first change (1 band)
- fmap.tif: total number (or frequency) of changes (1 band)
- bmap.tif: Loewner order of the changes in each interval (k − 1 bands)
- atsf.tif: ATSF image (1, 2, 3, 4, or 9 bands)

The first pass, that is the calculation of the P -values, can optionally be run in
parallel on two or more IPython engines if multiple CPU cores are available;

432 Change Detection

see Appendix C. The code for the second pass over the P -values array is shown
in Listing 9.3. Note that, in lines 17—18, the Omnibus test on the P -values
of Equation (9.47) always determines whether or not a sequential change is
indexed.

The Loewner order is determined in a final pass over the P -values: For a
given pixel, the average covariance matrix of the no-change observations up
to but not including the time of a significant change is accumulated with the
method of provisional means (Section 2.3.2). This average is subtracted from
the covariance matrix immediately following the signaled change and the posi-
tive/negative definiteness (or indefiniteness) of the difference is ascertained. A
particularly efficient method involving matrix pivots (Nielsen, 2020) is applied
which avoids determining, in the case of full (2 × 2) and (3 × 3) covariance
matrices, the eigenvalues of the complex matrix differences.

The bash script run sar seq.sh can be used to create a list of input file
names and submit it to sar seq.py. Here, for example, we run the program
on a directory containing 8 Sentinel-1 dual polarimetric images acquired over
the Camargue in the south of France (Muro et al., 2016); see Figure 9.17. The

Listing 9.3: Determining change maps from a P -values array (excerpt from
the Python script sar seqQ.py).

1 def change_maps (pvarray ,significance):

2 import numpy as np

3 k = pvarray .shape [0]

4 n = pvarray .shape [2]

5 # map of most recent change occurrences

6 cmap = np.zeros(n,dtype=np.byte)

7 # map of first change occurrence

8 smap = np.zeros(n,dtype=np.byte)

9 # change frequency map

10 fmap = np.zeros(n,dtype=np.byte)

11 # bitemporal change maps

12 bmap = np.zeros((n,k-1), dtype=np.byte)

13 for ell in range(k -1):

14 pvQ = pvarray[ell ,k-1,:]

15 for j in range(ell ,k-1):

16 pv = pvarray[ell ,j,:]

17 idx = np.where((pv <= significance)&

18 (pvQ <= significance)&(cmap ==ell))

19 fmap [idx] += 1

20 cmap [idx] = j+1

21 bmap [idx ,j] = 1

22 i f ell==0:

23 smap [idx] = j+1

24 return (cmap ,smap ,fmap ,bmap)

432 Change Detection

see Appendix C. The code for the second pass over the P -values array is shown
in Listing 9.3. Note that, in lines 17—18, the Omnibus test on the P -values
of Equation (9.47) always determines whether or not a sequential change is
indexed.

The Loewner order is determined in a final pass over the P -values: For a
given pixel, the average covariance matrix of the no-change observations up
to but not including the time of a significant change is accumulated with the
method of provisional means (Section 2.3.2). This average is subtracted from
the covariance matrix immediately following the signaled change and the posi-
tive/negative definiteness (or indefiniteness) of the difference is ascertained. A
particularly efficient method involving matrix pivots (Nielsen, 2020) is applied
which avoids determining, in the case of full (2 × 2) and (3 × 3) covariance
matrices, the eigenvalues of the complex matrix differences.

The bash script run sar seq.sh can be used to create a list of input file
names and submit it to sar seq.py. Here, for example, we run the program
on a directory containing 8 Sentinel-1 dual polarimetric images acquired over
the Camargue in the south of France (Muro et al., 2016); see Figure 9.17. The

Listing 9.3: Determining change maps from a P -values array (excerpt from
the Python script sar seqQ.py).

1 def change_maps (pvarray ,significance):

2 import numpy as np

3 k = pvarray .shape [0]

4 n = pvarray .shape [2]

5 # map of most recent change occurrences

6 cmap = np.zeros(n,dtype=np.byte)

7 # map of first change occurrence

8 smap = np.zeros(n,dtype=np.byte)

9 # change frequency map

10 fmap = np.zeros(n,dtype=np.byte)

11 # bitemporal change maps

12 bmap = np.zeros((n,k-1), dtype=np.byte)

13 for ell in range(k -1):

14 pvQ = pvarray[ell ,k-1,:]

15 for j in range(ell ,k -1):

16 pv = pvarray[ell ,j,:]

17 idx = np.where((pv <= significance)&

18 (pvQ <= significance)&(cmap ==ell))

19 fmap [idx] += 1

20 cmap [idx] = j+1

21 bmap [idx ,j] = 1

22 i f ell==0:

23 smap [idx] = j+1

24 return (cmap ,smap ,fmap ,bmap)

Change detection with polarimetric SAR imagery 433

0 50 100 150 200 250 300 350

0

50

100

150

200

250

300

350

S1A_IW_SLC__1SDV_20141108T054351_2014 ... : logarithmic: (4, 1, 1): [600, 200, 400, 400]

FIGURE 9.17

RGB composite of bands (|svh|2, |svv|2, |svv|2) of a Sentinel-1 image acquired
over the Camargue on November 8, 2014.

ENL is 12, and the significance level is set to 0.01%:

start parallel engines in background

!ipcluster start -n 4 --daemonize

!scripts/run_sar_seqQ .sh S1A imagery/ 12 0.0001

===

Multi -temporal SAR Change Detection

===

Sat Sep 14 15:07:12 2024

First (reference) filename : imagery/S1Atif

434 Change Detection

0 50 100 150 200 250 300 350

0

50

100

150

200

250

300

350

sarseqQ_cmap.tif: linear: [1, 1, 1]: [600, 200, 400, 400]

0

1

2

3

4

5

6

7

FIGURE 9.18

Change map for the image of Figure 9.17 for a series of 8 Sentinel-1 dual
polarimetric images acquired between November, 2014 and October, 2015.
The time of the most recent change is color coded, black: no change, brown:
last change in interval 7.

number of images: 8

equivalent number of looks: 12.000000

significance level: 0.000100

Dual polarizaton

pre -calculating Rj and p-values ...

attempting parallel calculation ...

available engines [0, 1, 2, 3]

ell = 1 2 3 4 5 6 7

elapsed time for p-value calculation : 7.820582389831543

last change map written to: .../ imagery /sarseqQ_cmap .tif

frequency map written to: .../ imagery/sarseqQ_fmap .tif

bi-temporal map written to: .../ imagery/sarseqQ_bmap .tif

434 Change Detection

0 50 100 150 200 250 300 350

0

50

100

150

200

250

300

350

sarseqQ_cmap.tif: linear: [1, 1, 1]: [600, 200, 400, 400]

0

1

2

3

4

5

6

7

FIGURE 9.18

Change map for the image of Figure 9.17 for a series of 8 Sentinel-1 dual
polarimetric images acquired between November, 2014 and October, 2015.
The time of the most recent change is color coded, black: no change, brown:
last change in interval 7.

number of images: 8

equivalent number of looks: 12.000000

significance level: 0.000100

Dual polarizaton

pre -calculating Rj and p-values ...

attempting parallel calculation ...

available engines [0, 1, 2, 3]

ell = 1 2 3 4 5 6 7

elapsed time for p-value calculation : 7.820582389831543

last change map written to: .../ imagery/sarseqQ_cmap .tif

frequency map written to: .../ imagery/sarseqQ_fmap .tif

bi-temporal map written to: .../ imagery/sarseqQ_bmap .tif

Change detection with polarimetric SAR imagery 435

0 50 100 150 200 250 300 350

0

50

100

150

200

250

300

350

sarseq_fmap.tif: linear: [1, 1, 1]: [200, 200, 400, 400]

0 50 100 150 200 250 300 350

0

50

100

150

200

250

300

350

RS2_20090525.tif: logarithmic: (6, 9, 1): [200, 200, 400, 400]

FIGURE 9.19

Left: Number (or frequency) of changes in a time series of 12 RADARSAT-2
quad polarimetric images acquired from May, 2009 to October, 2010 over an
area southwest of Bonn, Germany. Right: Pauli decomposition display of the
first image in the sequence: R = |shh − svv|2, G = |shv|2, B = |shh + svv|2.
Coniferous forest areas appear green and exhibit no changes. The number of
changes is color coded, black: no change through brown: 11 changes.

first change map written to: .../ imagery /sarseqQ_smap .tif

atsf written to: .../ imagery/sarseqQ_atsf .tif

A color-coded map of the time of the most recent change is shown in Fig-
ure 9.18. Another example is given in Figure 9.19 for a time series of quad
polarimetric RADARSAT-2 images; see also the accompanying Jupyter note-
book. This time the change map on the left shows the frequency of changes
(total number) over the full time period. The “hot spot” near the center
(same color coding as in Figure 9.18) corresponds to continual movement of
the dredging arms in a flooded sand quarry. Other changes are due to agri-
cultural activity; the forested areas show no significant changes.

9.4.4 SAR change detection on the Google Earth Engine

The GEE platform offers a convenient, free and near-real-time source of se-
quential SAR data for time series analysis. It archives Sentinel-1a and Sentinel-
1b SAR images as soon as they are made available by the European Space
Agency.∗ As discussed in Chapter 1, the dual polarimetric Sentinel-1 sensor
transmits in only one polarization and receives in two, thus measuring only

∗Sentinel-1b is no longer functioning but is now being replaced by Sentinel-1c, success-
fully launched on December 5, 2024.

436 Change Detection

the bands svv and svh or shh and shv. In particular, the GEE archived data
of which we make use here are acquired in interferometric wide swath (IW)
mode and processed to the ground range detected (GRD) product. The spa-
tial resolution is (range by azimuth) 20 m by 22 m and the pixel spacing is
10 m. The IW data are multilooked, the number of looks m is 5 by 1 and
the equivalent number of looks is 4.4. Only intensity data are available on the
archive, so that the polarimetric covariance matrix representation is diagonal.
Moreover, for land surface acquisitions, the vertical emission mode is generally
used. Therefore, the look averaged polarimetric matrices are of the form

c̄ =

(
�|svv|2� 0

0 �|svh|2�

)

.

The matrix mc̄ is not complex Wishart distributed, but it is can be shown
that the test statistics Qk and Rj discussed above are still approximately
valid. For example, in the bi-temporal case, we have observations

g =

(
g1 0
0 g2

)

, h =

(
h1 0
0 h2

)

where g1, g2, h1, h2 are gamma distributed with equal m and means x1, x2, y1
and y2. Assuming independence of g1 and g2 and of h1 and h2,

∗ under the
null hypothesis x1 = y1 = x and x2 = y2 = y the likelihood is

L0(x, y) = p(g1 | x)p(g2 | y)p(h1 | x)p(h2 | y)

=
m4m

(x)2m(y)2mΓ(m)4
gm−1
1 hm−1

1 gm−1
2 hm−1

2 e−(g1+h1)m/x−(g2+h2)m/y.

The maximum-likelihood estimates are

x̂ = (g1 + h1)/2, ŷ = (g2 + h2)/2

so that

L̂0(x̂, ŷ) =
24mm4m

(g1 + h1)2m(g2 + h2)2mΓ(m)4
(g1h1g2h2)

m−1e−4m.

The likelihood for the alternative hypothesis is

L1(x1, x2, y1, y2) =

m4m

(x1x2y1y2)mΓ(m)4
· (g1g2h1h2)

m−1e−m(g1/x1+g2/x2+h1/y1+h2/y2)

∗There is some empirical justification that this assumption does not seriously affect the
validity of the hypothesis tests with GEE Sentinel-1 data. (Nielsen et al., 2017) investigate
histograms of the −2 logRj values in no-change regions and find good agreement with the
expected chi square distributions.

436 Change Detection

the bands svv and svh or shh and shv. In particular, the GEE archived data
of which we make use here are acquired in interferometric wide swath (IW)
mode and processed to the ground range detected (GRD) product. The spa-
tial resolution is (range by azimuth) 20 m by 22 m and the pixel spacing is
10 m. The IW data are multilooked, the number of looks m is 5 by 1 and
the equivalent number of looks is 4.4. Only intensity data are available on the
archive, so that the polarimetric covariance matrix representation is diagonal.
Moreover, for land surface acquisitions, the vertical emission mode is generally
used. Therefore, the look averaged polarimetric matrices are of the form

c̄ =

(
�|svv|2� 0

0 �|svh|2�

)

.

The matrix mc̄ is not complex Wishart distributed, but it is can be shown
that the test statistics Qk and Rj discussed above are still approximately
valid. For example, in the bi-temporal case, we have observations

g =

(
g1 0
0 g2

)

, h =

(
h1 0
0 h2

)

where g1, g2, h1, h2 are gamma distributed with equal m and means x1, x2, y1
and y2. Assuming independence of g1 and g2 and of h1 and h2,

∗ under the
null hypothesis x1 = y1 = x and x2 = y2 = y the likelihood is

L0(x, y) = p(g1 | x)p(g2 | y)p(h1 | x)p(h2 | y)

=
m4m

(x)2m(y)2mΓ(m)4
gm−1
1 hm−1

1 gm−1
2 hm−1

2 e−(g1+h1)m/x−(g2+h2)m/y.

The maximum-likelihood estimates are

x̂ = (g1 + h1)/2, ŷ = (g2 + h2)/2

so that

L̂0(x̂, ŷ) =
24mm4m

(g1 + h1)2m(g2 + h2)2mΓ(m)4
(g1h1g2h2)

m−1e−4m.

The likelihood for the alternative hypothesis is

L1(x1, x2, y1, y2) =

m4m

(x1x2y1y2)mΓ(m)4
· (g1g2h1h2)

m−1e−m(g1/x1+g2/x2+h1/y1+h2/y2)

∗There is some empirical justification that this assumption does not seriously affect the
validity of the hypothesis tests with GEE Sentinel-1 data. (Nielsen et al., 2017) investigate
histograms of the −2 logRj values in no-change regions and find good agreement with the
expected chi square distributions.

Change detection with polarimetric SAR imagery 437

and therefore with x̂1 = g1, x̂2 = g2, ŷ1 = h1, ŷ2 = h2,

L̂1(x̂1, x̂2, ŷ1, ŷ2) =
m4m

g1g2h1h2
e−4m.

The likelihood ratio test is then

L̂0(x̂, ŷ)

L̂1(x̂1, x̂2, ŷ1, ŷ2)
= 24m

(g1g2h1h2)
m

(g1 + h1)2m(g2 + h2)2m
= 24m

|g|m|h|m
|g + h|2m < k.

This is the same as Equation (9.39) with N = 2. Since the (diagonal) covari-
ance matrices h and g have only two degrees of freedom, the statistic −2 logQ
is approximately distributed according to

Pr(−2 logQ ≤ z) ≃ Pχ2 ;2(z). (9.49)

The same argument applies to −2 logRj in the multi-temporal case, see Canty
et al. (2020) for details.

Again, for a relatively small number of looks, the approximation may not
be good. The improved approximations of Equations (9.44) through (9.48)
only apply to the full covariance matrices. However, Conradsen et al. (2024)
generalize them to include all block diagonal cases, including the simple 2× 2
diagonal polarization matrices we are dealing with here. They obtain, for the
sequential tests, the parameters

ρj = 1− 1

6m
·
(

1 +
1

j(j − 1)

)

ω2j = −1

2
·
(

1− 1

ρj

)2

and, for the omnibus test,

ρ = 1− 1

6(k − 1)
·
(

k

m
− 1

mk

)

ω2 = − (k − 1)

2
·
(

1− 1

ρ

)2

.

In the software accompanying this text, the sequential omnibus change de-
tection algorithm is programmed against the GEE Python API in the module
auxil.eesearseq.py, see Appendix C. Additionally, the module auxil.appli
cation provides a convenient Jupyter Notebook widget interface which con-
siderably simplifies the process of choosing geographic regions of interest and
time intervals:

import ee

ee.Initialize ()

from auxil.application import run

run()

438 Change Detection

FIGURE 9.20

Jupyter widget interface to the sequential omnibus SAR change detection
algorithm for processing Sentinel-1 time series on the GEE.

This generates a widget cell such as that shown in Figure 9.20.
Figure 9.21 gives an example of change detection in a series of Sentinel-

1 images calculated from the widget interface of Figure 9.20. The change
maps can be exported directly to the user’s assets directory and then further
processed in the GEE code editor (details in Appendix C).

As a further example, Figure 9.22 shows at the top changes accumulated
during the 3-month Russian siege at the Asovstal Works in Ukraine. The red
pixels indicate statistically significant increases in both the reflected VV and
VH polarization channels (referred to here as positive definite changes), the
cyan pixels (negative definite changes) correspond to significant decreases in
VV and VH reflectance, and the yellow pixels (indefinite) to an increase in
one channel and a decrease in the other. The bottom image plots the fraction
of changed pixels at each two-week time interval that occurred for the period
January, 2021 through August, 2023. The duration of the siege is well-defined.

438 Change Detection

FIGURE 9.20

Jupyter widget interface to the sequential omnibus SAR change detection
algorithm for processing Sentinel-1 time series on the GEE.

This generates a widget cell such as that shown in Figure 9.20.
Figure 9.21 gives an example of change detection in a series of Sentinel-

1 images calculated from the widget interface of Figure 9.20. The change
maps can be exported directly to the user’s assets directory and then further
processed in the GEE code editor (details in Appendix C).

As a further example, Figure 9.22 shows at the top changes accumulated
during the 3-month Russian siege at the Asovstal Works in Ukraine. The red
pixels indicate statistically significant increases in both the reflected VV and
VH polarization channels (referred to here as positive definite changes), the
cyan pixels (negative definite changes) correspond to significant decreases in
VV and VH reflectance, and the yellow pixels (indefinite) to an increase in
one channel and a decrease in the other. The bottom image plots the fraction
of changed pixels at each two-week time interval that occurred for the period
January, 2021 through August, 2023. The duration of the siege is well-defined.

Change detection with polarimetric SAR imagery 439

FIGURE 9.21

Change frequency map (blue: few changes, yellow/red: many changes) over
the Frankfurt airport for a series of 31 Sentinel-1 images acquired between
January and December, 2023. The “hot spots” occur at the aircraft parking
positions and boarding gates. Change frequencies less than 5 are masked.
Background: Esri World Imagery.

Also due to the Russian invasion of Ukraine, the Zaporizhzhia Nuclear
Power Plant on the Dnieper river became the center of an ongoing nuclear
safety crisis, described by Ukraine as an act of nuclear terrorism by Russia.
The plant, which is the largest of its kind in Europe, has seen destruction of
its infrastructure via shelling, damage to its power lines, amounting to what
Ukrainian authorities call the largest situation of its kind in history. On 6 June
2023, the Kakhovka Dam was breached causing the depletion of the plant’s
main water source, the Kakhovka Reservoir, see Figure 9.23, which became
too low to use within a few days. The red pixels in the Figure 9.23 signal the
characteristic positive definite changes associated with the disappearance of
the reservoir water.

See Canty et al. (2019) for additional examples as well as for a discussion
of advantages and drawbacks of running the algorithm on the GEE platform.

440 Change Detection

FIGURE 9.22

Top image: changes accumulated during the 3-month Russian siege at the
Asovstal Works in Mariupol, Ukraine. Bottom image: the fraction of changed
pixels at each (approx. two-week) time interval that occurred for the period
January, 2021 through August, 2023.

440 Change Detection

FIGURE 9.22

Top image: changes accumulated during the 3-month Russian siege at the
Asovstal Works in Mariupol, Ukraine. Bottom image: the fraction of changed
pixels at each (approx. two-week) time interval that occurred for the period
January, 2021 through August, 2023.

Radiometric normalization of visual/infra-red images 441

FIGURE 9.23

About 150 km upstream from the Kakhovka dam, the Kakhovka reservoir
depletion first shows up clearly as positive definite (red) changes in the period
June 8 to June 20, i.e., beginning two days after the dam breach. Note that
in this image the Zaporizhzhia reactor cooling pond (near the image center)
is unchanged and the Dnieper shows an arm still connecting to it.

9.5 Radiometric normalization of visual/infra-red images

Ground reflectance determination from satellite imagery requires, among other
things, an atmospheric correction algorithm and the associated atmospheric
properties at the time of image acquisition. For many historical satellite scenes,
such data are not available and even for planned acquisitions they may be dif-
ficult to obtain. A relative normalization based on the radiometric information
intrinsic to the images themselves is an alternative whenever absolute surface
reflectances are not required.

In performing relative radiometric normalization, one usually makes the
assumption that the relationship between the at-sensor radiances recorded
at two different times from regions of constant reflectance can be approxi-
mated by linear functions. The critical aspect is the determination of suitable
time-invariant features upon which to base the normalization (Schott et al.,
1988; Yang and Lo, 2000; Du et al., 2002). We begin by illustrating this with
the simple technique of scatter plot matching for red/near-infrared spectral
bands. Then we go on to demonstrate how to take advantage of the linear in-
variance of the MAD transformation to perform fully automatic radiometric
normalization across the visual/infrared spectrum.

442 Change Detection

9.5.1 Scatter plot matching

Maas and Rajan (2010) describe a method for radiometric normalization of
the RED and NIR bands of multi-temporal LANDSAT TM and ETM+ images
which exploits the characteristic shape of NIR vs. RED scatter plots (bands 4
and 3, respectively). The so-called bare soil line (BSL) and full canopy point
(FCP) derived from the scatter plots of target and reference images are used
as invariant features to re-scale the RED and NIR bands of the target to
match those of the reference. The procedure works for other platforms too,
for instance, with bands 2 and 3 of the ASTER VNIR sensor as illustrated
in Figure 9.24. The reference and target scenes in the figure were acquired
in different years (July 2001 and September 2005) and with different sensor
gains.

With reference to Figure 9.25, one can derive the following linear transfor-
mation, which relates a point (x, y) in the target scatter plot to its transform
(x̃, ỹ) in the reference scatter plot (Exercise 10):

x̃ = XR + (x−XT)
LR

LT

aT
aR

ỹ = YR − (YT − y)
LR

LT
.

(9.50)

The reference and target features can be extracted from the scatter plots by
constructing a histogram of the intensity ratios NIR/RED and using the first
percentile for the bare soil line and the 99.9th percentile for the full canopy
point; see Canty (2014) for an IDL implementation.

9.5.2 Automatic radiometric normalization

As we have seen in Section 9.3.4, the MAD transformation is invariant un-
der arbitrary linear transformations of the pixel intensities for the images
involved. Thus, if one uses MAD for change detection applications, preprocess-
ing by linear radiometric normalization is superfluous. However, radiometric
normalization of imagery is important for many other applications, such as
mosaicking, tracking vegetation indices over time, comparison of supervised
and unsupervised land cover classifications, etc. Furthermore, if some other,
noninvariant change detection procedure is preferred, it must generally be pre-
ceded by radiometric normalization. Taking advantage of invariance, one can
apply the MAD transformation to select the no-change pixels in un-normalized
bi-temporal images, and then use them for relative radiometric normaliza-
tion. The procedure is simple, fast, and completely automatic and compares
very favorably with normalization using hand-selected, time-invariant features
(Canty et al., 2004; Schroeder et al., 2006; Canty and Nielsen, 2008). See also
Philpot and Ansty (2013) for a physical interpretation of the invariant features
detected by the MAD algorithm.

442 Change Detection

9.5.1 Scatter plot matching

Maas and Rajan (2010) describe a method for radiometric normalization of
the RED and NIR bands of multi-temporal LANDSAT TM and ETM+ images
which exploits the characteristic shape of NIR vs. RED scatter plots (bands 4
and 3, respectively). The so-called bare soil line (BSL) and full canopy point
(FCP) derived from the scatter plots of target and reference images are used
as invariant features to re-scale the RED and NIR bands of the target to
match those of the reference. The procedure works for other platforms too,
for instance, with bands 2 and 3 of the ASTER VNIR sensor as illustrated
in Figure 9.24. The reference and target scenes in the figure were acquired
in different years (July 2001 and September 2005) and with different sensor
gains.

With reference to Figure 9.25, one can derive the following linear transfor-
mation, which relates a point (x, y) in the target scatter plot to its transform
(x̃, ỹ) in the reference scatter plot (Exercise 10):

x̃ = XR + (x−XT)
LR

LT

aT
aR

ỹ = YR − (YT − y)
LR

LT
.

(9.50)

The reference and target features can be extracted from the scatter plots by
constructing a histogram of the intensity ratios NIR/RED and using the first
percentile for the bare soil line and the 99.9th percentile for the full canopy
point; see Canty (2014) for an IDL implementation.

9.5.2 Automatic radiometric normalization

As we have seen in Section 9.3.4, the MAD transformation is invariant un-
der arbitrary linear transformations of the pixel intensities for the images
involved. Thus, if one uses MAD for change detection applications, preprocess-
ing by linear radiometric normalization is superfluous. However, radiometric
normalization of imagery is important for many other applications, such as
mosaicking, tracking vegetation indices over time, comparison of supervised
and unsupervised land cover classifications, etc. Furthermore, if some other,
noninvariant change detection procedure is preferred, it must generally be pre-
ceded by radiometric normalization. Taking advantage of invariance, one can
apply the MAD transformation to select the no-change pixels in un-normalized
bi-temporal images, and then use them for relative radiometric normaliza-
tion. The procedure is simple, fast, and completely automatic and compares
very favorably with normalization using hand-selected, time-invariant features
(Canty et al., 2004; Schroeder et al., 2006; Canty and Nielsen, 2008). See also
Philpot and Ansty (2013) for a physical interpretation of the invariant features
detected by the MAD algorithm.

Radiometric normalization of visual/infra-red images 443

FIGURE 9.24

Scatter plot matching of two ASTER images over a region near Isfahan, Iran.
Top row: RGB composite of the July 2001 reference image (bands 2,3,2 in a
0-255 byte linear stretch) along with the NIR vs. RED scatter plot showing
the full canopy point (cross) and the bare soil line. Middle row: the September
2005 target image. Bottom row: the normalized target.

444 Change Detection

✻ ✻

✲ ✲

YR

XR

� �
FCP

FCP

YT

XT

y

x

NIR

RED

NIR

RED

BSL

❄

✻

LR

LT

bR bT

aR

Reference Target

❄

✻ BSL

x̃

ỹ aT

FIGURE 9.25

Principle of scatter plot matching. The coordinates of the full canopy point
for reference and target are (XR, YR) and (XT , YT), respectively, and the
respective slopes and intercepts of the bare soil line are aR, bR and aT , bT .

0 200 400 600 800 1000

0

200

400

600

800

1000

AST_20010409: linear255: (1, 2, 3): [0, 0, 1000, 1000]

0 200 400 600 800 1000

0

200

400

600

800

1000

AST_20050911: linear255: (1, 2, 3): [0, 0, 1000, 1000]

FIGURE 9.26

RGB composite ASTER images (VNIR bands 1,2 and 3) over an agricultural
area near Isfahan in Iran. The image shown on the left was acquired on April
9, 2001, that on the right on September 11, 2005. No image enhancement is
applied to the digital numbers.

A Python script radcal.py for automatic radiometric normalization is doc-
umented in Appendix C. The program reads the output from a previous iMAD
transformation which has been performed on overlapping portions of the

444 Change Detection

✻ ✻

✲ ✲

YR

XR

� �
FCP

FCP

YT

XT

y

x

NIR

RED

NIR

RED

BSL

❄

✻

LR

LT

bR bT

aR

Reference Target

❄

✻ BSL

x̃

ỹ aT

FIGURE 9.25

Principle of scatter plot matching. The coordinates of the full canopy point
for reference and target are (XR, YR) and (XT , YT), respectively, and the
respective slopes and intercepts of the bare soil line are aR, bR and aT , bT .

0 200 400 600 800 1000

0

200

400

600

800

1000

AST_20010409: linear255: (1, 2, 3): [0, 0, 1000, 1000]

0 200 400 600 800 1000

0

200

400

600

800

1000

AST_20050911: linear255: (1, 2, 3): [0, 0, 1000, 1000]

FIGURE 9.26

RGB composite ASTER images (VNIR bands 1,2 and 3) over an agricultural
area near Isfahan in Iran. The image shown on the left was acquired on April
9, 2001, that on the right on September 11, 2005. No image enhancement is
applied to the digital numbers.

A Python script radcal.py for automatic radiometric normalization is doc-
umented in Appendix C. The program reads the output from a previous iMAD
transformation which has been performed on overlapping portions of the

Radiometric normalization of visual/infra-red images 445

0 50 100 150

Target

50

100

150

200

250

R
e
f
e
r
e
n
c
e

Band 1

0 50 100 150

Target

50

100

150

200

Band 2

0 50 100

Target

25

50

75

100

125

150

175

Band 3

FIGURE 9.27

Jupyter notebook output cell from the script radcal.py.

0 200 400 600 800 1000

0

200

400

600

800

1000

AST_20010409: linear255: (1, 2, 3): [0, 0, 1000, 1000]

0 200 400 600 800 1000

0

200

400

600

800

1000

AST_20050911_norm: linear255: (1, 2, 3): [0, 0, 1000, 1000]

FIGURE 9.28

As Figure 9.26 after radiometric normalization.

images to be normalized. Then Equations (9.19) and (9.20) are used to select
pixels with a high P -value in order to ensure as little contamination with
change observations as possible, typically ≥ 0.95. By regressing the reference
image onto the target image at the no-change locations, slope and intercept
parameters are obtained with which to perform the linear normalization. The
preferred regression method is in this case orthogonal linear regression; see Ap-
pendix A, as both variables involved have similar uncertainties. Figure 9.26
shows ASTER VNIR images taken over the same area of Iran, near Isfahan.
The September, 2005 image (target) is to be normalized to the April, 2001
scene (reference). The reference image has substantial cloud cover; however,
this will play no role in the determination of the invariant pixels as the iMAD
iteration procedure will eliminate cloud pixels completely:

446 Change Detection

run scripts /iMad -p [1,2,3] imagery/AST_20010409 \

imagery/ AST_20050911

------------IRMAD -------------

Mon Oct 15 14:05:08 2018

first scene: imagery/AST_20010409

second scene: imagery/AST_20050911

rho: [0.99867231 0.98997623 0.90816593]

result written to: imagery/MAD(AST_20010409 -AST_20050911)

elapsed time : 29.2923579216

run scripts /radcal -p [1,2,3] \

imagery/MAD(AST_20010409 -AST_20050911)

Mon Oct 15 14:10:08 2018

reference : imagery/AST_20010409

target : imagery/AST_20050911

P-value threshold : 0.95

no-change pixels for training : 301, for testing: 151

band slope intercept correlation P(t-test) P(F-test)

1 1.362209 25.738943 0.996609 0.793053 0.454460

2 1.361127 22.251960 0.996928 0.845095 0.476366

3 1.240756 9.984808 0.996258 0.862584 0.443266

result written to: imagery/AST_20050911_norm

elapsed time : 0.485175132751

The regression lines in the output cell from the radcal.py script are shown
in Figure 9.27 and the images after normalization in Figure 9.28. In order
to evaluate the normalization procedure the program holds back one third of
the no-change pixels for testing purposes, 151 in this case. These are used
to calculate means and variances before and after normalization and also
to perform statistical hypothesis tests for equal means and variances of the
invariant pixels in the reference and normalized target images. These tests
were discussed in Section 2.5. As can be seen from the above output, the P -
values for the t-test for equal means and for the F -test for equal variances
indicate that the hypotheses of equality cannot be rejected for any of the
spectral bands.

For more examples and an interactive tutorial on the use of the MAD
transformation for radiometric normalization, see

https://developers.google.com/earth-engine/tutorials/

community/imad-tutorial-pt3

https://developers.google.com/earth-engine/tutorials/community/imad-tutorial-pt3
https://developers.google.com/earth-engine/tutorials/community/imad-tutorial-pt3

446 Change Detection

run scripts /iMad -p [1,2,3] imagery/AST_20010409 \

imagery/ AST_20050911

------------IRMAD -------------

Mon Oct 15 14:05:08 2018

first scene: imagery/AST_20010409

second scene: imagery/AST_20050911

rho: [0.99867231 0.98997623 0.90816593]

result written to: imagery/MAD(AST_20010409 -AST_20050911)

elapsed time : 29.2923579216

run scripts /radcal -p [1,2,3] \

imagery/MAD(AST_20010409 -AST_20050911)

Mon Oct 15 14:10:08 2018

reference : imagery/AST_20010409

target : imagery/AST_20050911

P-value threshold : 0.95

no-change pixels for training : 301, for testing: 151

band slope intercept correlation P(t-test) P(F-test)

1 1.362209 25.738943 0.996609 0.793053 0.454460

2 1.361127 22.251960 0.996928 0.845095 0.476366

3 1.240756 9.984808 0.996258 0.862584 0.443266

result written to: imagery/AST_20050911_norm

elapsed time : 0.485175132751

The regression lines in the output cell from the radcal.py script are shown
in Figure 9.27 and the images after normalization in Figure 9.28. In order
to evaluate the normalization procedure the program holds back one third of
the no-change pixels for testing purposes, 151 in this case. These are used
to calculate means and variances before and after normalization and also
to perform statistical hypothesis tests for equal means and variances of the
invariant pixels in the reference and normalized target images. These tests
were discussed in Section 2.5. As can be seen from the above output, the P -
values for the t-test for equal means and for the F -test for equal variances
indicate that the hypotheses of equality cannot be rejected for any of the
spectral bands.

For more examples and an interactive tutorial on the use of the MAD
transformation for radiometric normalization, see

https://developers.google.com/earth-engine/tutorials/

community/imad-tutorial-pt3

Exercises 447

9.6 Exercises

1. Demonstrate the validity of Equation (9.11) for the MAD transformation
vector b.

2. The requirement that the correlations of the canonical variates be pos-
itive, namely

a⊤
i Σ12bi > 0, i = 1 . . .N,

does not completely remove the ambiguity in the signs of the transforma-
tion vectors ai and bi, since if we invert both their signs simultaneously,
the condition is still met. The ambiguity can be resolved by requiring
that the sum of the correlations of the first image (represented here
by G) with each of the canonical variates Uj = a⊤

i G, j = 1 . . .N , be
positive:

N�

ν=1

corr(Gi, Uj) > 0, j = 1 . . .N. (9.51)

This condition is implemented in the Python script imad.py.

(a) Show that the matrix of correlations

C =







corr(G1, U1) corr(G1, U2) · · · corr(G1, UN)
corr(G2, U1) corr(G2, U2) · · · corr(G2, UN)

...
...

. . .
...

corr(GN , U1) corr(GN , U2) · · · corr(GN , UN)







is given by
C = DΣ11A,

where A = (a1,a2 . . .aN), Σ11 is the covariance matrix for G and

D =










1√
var(G1)

0 · · · 0

0 1√
var(G2)

· · · 0

...
...

. . .
...

0 0 · · · 1√
var(GN)










.

(b) Let sj =
�

i Cij , j = 1 . . .N , be the column sums of the correlation
matrix. Show that Equation (9.51) is fulfilled by replacing A by AS,
where

S =








s1
|s1| 0 · · · 0

0 s2
|s2| · · · 0

...
...

. . .
...

0 0 · · · sN
|sN |








.

448 Change Detection

3. Consider the following experiment: The Python script iMad.py is used
to generate MAD variates from two co-registered multispectral images.
Then a principal components transformation of one of the images is
performed and the MAD transformation is repeated. Will the MAD
variates have changed? Why or why not?

4. The following code simulates no-change pixels by copying a spatial sub-
set of one image to another, and adding some Gaussian noise.

import numpy as np

from osgeo import gdal

from osgeo.gdalconst import GA_ReadOnly , GDT_Float32

im1 = ’imagery/AST_20010409 ’

im2 = ’imagery/AST_20050911 ’

im2_toy = ’imagery/AST_20050911_toy ’

dim = 400

gdal .AllRegister ()

inDataset1 = gdal.Open(im1 ,GA_ReadOnly)

inDataset2 = gdal.Open(im2 ,GA_ReadOnly)

cols = inDataset1 .RasterXSize

rows = inDataset1 .RasterYSize

bands = inDataset1 .RasterCount

G1 = np.zeros ((rows ,cols ,bands))

G2 = np.zeros ((rows ,cols ,bands))

for k in range(bands):

band = inDataset1 .GetRasterBand (k+1)

G1[:,:,k] = band.ReadAsArray (0,0,cols ,rows)

band = inDataset2 .GetRasterBand (k+1)

G2[:,:,k] = band.ReadAsArray (0,0,cols ,rows)

G2[:dim ,:dim ,:] = G1[:dim ,:dim ,:] + \

0.1* np.random.randn(dim ,dim ,bands)

driver = inDataset1 .GetDriver ()

outDataset = driver \

.Create(im2_toy ,cols ,rows ,bands ,GDT_Float32)

for k in range(bands):

outBand = outDataset .GetRasterBand (k+1)

outBand.WriteArray (G2[:,:,k],0,0)

outBand.FlushCache ()

Ideally, the iteratively re-weighted MAD scheme should identify these
pixels unambiguously. Experiment with with different subset sizes to
see the extent to which this is the case, using both the iMad.py and
radcal.py scripts.

5. (a) Show that the likelihood functions, Equations (9.29) and (9.30), are
maximized by x̂ = (g1 + g2)/2 and by x1 = g1, x2 = g2, respectively.

(b) Prove that x̂ = (1/j)
∑

j gj maximizes the likelihood function L0

given by Equation (9.32). Hint: Maximize ln(L0) with respect to x.

448 Change Detection

3. Consider the following experiment: The Python script iMad.py is used
to generate MAD variates from two co-registered multispectral images.
Then a principal components transformation of one of the images is
performed and the MAD transformation is repeated. Will the MAD
variates have changed? Why or why not?

4. The following code simulates no-change pixels by copying a spatial sub-
set of one image to another, and adding some Gaussian noise.

import numpy as np

from osgeo import gdal

from osgeo.gdalconst import GA_ReadOnly , GDT_Float32

im1 = ’imagery/AST_20010409 ’

im2 = ’imagery/AST_20050911 ’

im2_toy = ’imagery/AST_20050911_toy ’

dim = 400

gdal .AllRegister ()

inDataset1 = gdal .Open(im1 , GA_ReadOnly)

inDataset2 = gdal .Open(im2 , GA_ReadOnly)

cols = inDataset1 .RasterXSize

rows = inDataset1 .RasterYSize

bands = inDataset1 .RasterCount

G1 = np.zeros ((rows ,cols ,bands))

G2 = np.zeros ((rows ,cols ,bands))

for k in range(bands):

band = inDataset1 .GetRasterBand (k+1)

G1[:,:,k] = band.ReadAsArray (0,0,cols ,rows)

band = inDataset2 .GetRasterBand (k+1)

G2[:,:,k] = band.ReadAsArray (0,0,cols ,rows)

G2[:dim ,:dim ,:] = G1[:dim ,:dim ,:] + \

0.1* np.random.randn(dim ,dim ,bands)

driver = inDataset1 .GetDriver ()

outDataset = driver \

.Create(im2_toy ,cols ,rows ,bands ,GDT_Float32)

for k in range(bands):

outBand = outDataset .GetRasterBand (k+1)

outBand.WriteArray (G2[:,:,k],0,0)

outBand.FlushCache ()

Ideally, the iteratively re-weighted MAD scheme should identify these
pixels unambiguously. Experiment with with different subset sizes to
see the extent to which this is the case, using both the iMad.py and
radcal.py scripts.

5. (a) Show that the likelihood functions, Equations (9.29) and (9.30), are
maximized by x̂ = (g1 + g2)/2 and by x1 = g1, x2 = g2, respectively.

(b) Prove that x̂ = (1/j)
∑

j gj maximizes the likelihood function L0

given by Equation (9.32). Hint: Maximize ln(L0) with respect to x.

Exercises 449

6. Show that the exponential terms in Equations (9.32) and (9.33) are
identical under the maximum-likelihood estimates for x and xi, i =
1 . . . j.

7. (a) Derive the omnibus test statistic, Equation (9.35), for all alterna-
tives to the no-change hypothesis. Hint: The likelihood function for k
independent gamma distributed observations under the alternative hy-
pothesis is

L1(x1 . . . xk) =
k∏

i=1

p(gi | xi) =
(
∏

gi)
m−1e−

∑
gim/xi

(
∏

xi/m)mΓ(m)k
.

With maximum likelihood estimates x̂i = gi, i = 1 . . . k, write down the
expression for the maximum likelihood L1(x̂1 . . . x̂k). Under H0 with
x1 = . . . = xk = x the likelihood is

L0(x) =
(
∏

gi)
m−1e−(m/x)

∑
gi

(x/m)kmΓ(m)k
.

Now determine the maximum likelihood under the null hypothesis by
setting x̂ = (1/k)

∑
gi. Finally confirm the likelihood ratio statistic

Equation (9.35) from L1(x̂1 . . . x̂k)/L0(x̂).

(b) Prove that this test statistic can be expressed as a product of the Rj

statistics given by Equation (9.35).Hint:You can prove this by induction
by noting that R2 = Q2 and, by direct calculation, R2R3 = Q2R3 = Q3.
Then show that Qj−1Rj = Qj .

8. Write down the critical region Equation (9.39) for the dual polarimetric
case. What is the asymptotic distribution of the test statistic?

9. The omnibus change detection algorithm can be used as a simple SAR
image edge detector simply by comparing an image with a copy of itself
shifted by one row and one column and then computing the change map.
Modify the Python script sar seq.py to implement edge detection.

10. Derive Equations (9.50) from the geometry of Figure 9.25.

http://taylorandfrancis.com

A

Mathematical Tools

A.1 Cholesky decomposition

Cholesky decomposition is used in some of the routines in this book to solve
generalized eigenvalue problems associated with the maximum autocorrelation
factor (MAF) and maximum noise fraction (MNF) transformations as well as
with canonical correlation analysis. We sketch its justification in the following.

THEOREM A.1

If the p × p matrix A is symmetric positive definite and if the p × q matrix
B, where q ≤ p, has rank q, then B⊤AB is positive definite and symmetric.

Proof. Choose any q-dimensional vector y �= 0 and let x = By. We can write
this as

x = y1b1 + . . .+ yqbq,

where bi is the ith column of B. Since B has rank q, we conclude that x �= 0
as well, for otherwise the column vectors would be linearly dependent. But

y⊤(B⊤AB)y = (By)⊤A(By) = x⊤Ax > 0,

since A is positive definite. So B⊤AB is positive definite (and clearly sym-
metric).

A square matrix A is diagonal if aij = 0 for i �= j. It is lower triangular if
aij = 0 for i < j and upper triangular if aij = 0 for i > j. The product of two
lower(upper) triangular matrices is lower(upper) triangular. The inverse of a
lower(upper) triangular matrix is lower(upper) triangular. If A is diagonal
and positive definite, then all of its diagonal elements are positive. Otherwise
if, say, aii ≤ 0 then, for x = (0 . . . , 1, . . . 0)⊤ with the 1 at the ith position,

x⊤Ax ≤ 0

contradicting the fact that A is positive definite. Now we state without proof
Theorem A.2.

DOI: 10.1201/9781003503286-A 451

https://doi.org/10.1201/9781003503286-A

452 Mathematical Tools

THEOREM A.2

If A is nonsingular, then there exists a nonsingular lower triangular matrix
F such that FA is non singular upper triangular.

The proof is straightforward, but somewhat lengthy; see e.g., Anderson (2003),
Appendix A.

It follows directly that, ifA is symmetric and positive definite, there exists a
lower triangular matrix F such that FAF⊤ is diagonal and positive definite.
That is, from Theorem A.2, FA is upper triangular and non singular. But
then, since F⊤ is upper triangular, FAF⊤ is also upper triangular. But it is
clearly also symmetric, so it must be diagonal. Finally, since F is non singular
it has full rank, so that FAF⊤ is also positive definite by Theorem A.1.

One can now go one step further and claim that, if A is positive definite,
then there exists a lower triangular matrix G such that GAG⊤ = I. To show
this, choose an F such that FAF⊤ = D is diagonal and positive definite. Let
D′ be the diagonal matrix whose diagonal elements are the positive square
roots of the diagonal elements of D. Choose G = D′−1

F . Then GAG⊤ = I.

THEOREM A.3

(Cholesky Decomposition) If A is symmetric and positive definite, there exists
a lower triangular matrix L such that A = LL⊤.

Proof. Since there exists a lower triangular matrix G such that GAG⊤ = I,
we must have

A = G−1(G⊤)−1 = G−1(G−1)⊤ = LL⊤,

where L = G−1 is lower triangular.

Cholesky decomposition on a positive definite symmetric matrix is anal-
ogous to finding the square root of a positive real number. The Python-
Scipy function scipy.linalg.cholesky(A,lower=True) performs Cholesky
decomposition of a matrix A returning L. For example:

import numpy as np

import scipy.linalg as linalg

A = np.array([[2,1],[1 ,3]])

L = np.mat(linalg.cholesky (A,lower=True))

print L*L.T

[[2. 1.]

[1. 3.]]

452 Mathematical Tools

THEOREM A.2

If A is nonsingular, then there exists a nonsingular lower triangular matrix
F such that FA is non singular upper triangular.

The proof is straightforward, but somewhat lengthy; see e.g., Anderson (2003),
Appendix A.

It follows directly that, ifA is symmetric and positive definite, there exists a
lower triangular matrix F such that FAF⊤ is diagonal and positive definite.
That is, from Theorem A.2, FA is upper triangular and non singular. But
then, since F⊤ is upper triangular, FAF⊤ is also upper triangular. But it is
clearly also symmetric, so it must be diagonal. Finally, since F is non singular
it has full rank, so that FAF⊤ is also positive definite by Theorem A.1.

One can now go one step further and claim that, if A is positive definite,
then there exists a lower triangular matrix G such that GAG⊤ = I. To show
this, choose an F such that FAF⊤ = D is diagonal and positive definite. Let
D′ be the diagonal matrix whose diagonal elements are the positive square
roots of the diagonal elements of D. Choose G = D′−1

F . Then GAG⊤ = I.

THEOREM A.3

(Cholesky Decomposition) If A is symmetric and positive definite, there exists
a lower triangular matrix L such that A = LL⊤.

Proof. Since there exists a lower triangular matrix G such that GAG⊤ = I,
we must have

A = G−1(G⊤)−1 = G−1(G−1)⊤ = LL⊤,

where L = G−1 is lower triangular.

Cholesky decomposition on a positive definite symmetric matrix is anal-
ogous to finding the square root of a positive real number. The Python-
Scipy function scipy.linalg.cholesky(A,lower=True) performs Cholesky
decomposition of a matrix A returning L. For example:

import numpy as np

import scipy.linalg as linalg

A = np.array([[2 ,1],[1 ,3]])

L = np.mat(linalg.cholesky (A,lower=True))

print L*L.T

[[2. 1.]

[1. 3.]]

Vector and inner product spaces 453

A.2 Vector and inner product spaces

The real column vectors of dimension N , which were introduced in Chapter 1
to represent multispectral pixel intensities, provide the standard example of
the more general concept of a vector space.

DEFINITION A.1 A set S is a (real) vector space if the operations
addition and scalar multiplication are defined on S so that, for x,y ∈ S and
α, β ∈ IR,

x+ y ∈ S

αx ∈ S

1x = x

0x = 0

x+ 0 = x

α(x+ y) = αx+ αy

(α+ β)x = αx+ βy.

The elements of S are called vectors.

Another example of a vector space satisfying the above definition is the set
of continuous functions f(x) on the real interval [a, b], which is encountered
in Chapter 3 in connection with the discrete wavelet transform. Unlike the
column vectors of Chapter 1, the elements of this vector space have infinite
dimension. Both vector spaces are inner product spaces according to Defini-
tion A.2.

DEFINITION A.2 A vector space S is an inner product space if there
is a function mapping two elements x,y ∈ S to a real number �x,y� such that

�x,y� = �y,x�
�x,x� ≥ 0

�x,x� = 0 if and onl if x = 0.

In the case of the real column vectors, the inner product is defined by Equa-
tion (1.8), i.e., �x,y� = x⊤y. For the vector space of continuous functions, we
define

�f, g� =
∫ b

a

f(x)g(x)dx.

454 Mathematical Tools

DEFINITION A.3 Two elements x and y of an inner product space S
are said to be orthogonal if �x,y� = 0. The set of elements xi, i = 1 . . . n is
orthonormal if �xi,xj� = δij.

A finite set S of linearly independent vectors (see Definition 1.2) constitutes
a basis for the vector space V comprising all vectors that can be expressed as
a linear combination of the vectors in S. The number of vectors in the basis is
called the dimension of V . An orthogonal basis for a finite-dimensional inner
product space can always be constructed by the Gram–Schmidt orthogonal-
ization procedure (Press et al., 2002; Shawe-Taylor and Cristianini, 2004). If
vi, i = 1 . . .N , is an orthogonal basis for V , then for any x ∈ V ,

x =

N∑

i=1

�x,vi�
�vi,vi�

vi.

Let W be a subset of vector space V . Then it will have an orthogonal basis
{w1,w2 . . .wK}. For any x ∈ V , the projection y of x onto the subspace W
is given by

y =
K∑

i=1

�x,wi�
�wi,wi�

wi,

so that y ∈ W . We define the orthogonal complement W⊥ of W as the set

W⊥ = {x ∈ V | �x,y� = 0 for all y ∈ W}.

It is then easy to show that the residual vector y⊥ = x − y is in W⊥, i.e.,
that �y⊥,y� = 0 for all y ∈ W . Thus we can always write x as

x = y + y⊥,

where y ∈ W and y⊥ ∈ W⊥.

THEOREM A.4

(Orthogonal Decomposition Theorem) If W is a finite-dimensional subspace
of an inner product space V , then any x ∈ V can be written uniquely as
x = y + y⊥, where y ∈ W and y⊥ ∈ W⊥.

A.3 Complex numbers, vectors, and matrices

A complex number is an expression of the form z = a + ib, where i2 = −1.
The real part of z is a and the imaginary part is b. The number z can be

454 Mathematical Tools

DEFINITION A.3 Two elements x and y of an inner product space S
are said to be orthogonal if �x,y� = 0. The set of elements xi, i = 1 . . . n is
orthonormal if �xi,xj� = δij.

A finite set S of linearly independent vectors (see Definition 1.2) constitutes
a basis for the vector space V comprising all vectors that can be expressed as
a linear combination of the vectors in S. The number of vectors in the basis is
called the dimension of V . An orthogonal basis for a finite-dimensional inner
product space can always be constructed by the Gram–Schmidt orthogonal-
ization procedure (Press et al., 2002; Shawe-Taylor and Cristianini, 2004). If
vi, i = 1 . . .N , is an orthogonal basis for V , then for any x ∈ V ,

x =

N∑

i=1

�x,vi�
�vi,vi�

vi.

Let W be a subset of vector space V . Then it will have an orthogonal basis
{w1,w2 . . .wK}. For any x ∈ V , the projection y of x onto the subspace W
is given by

y =
K∑

i=1

�x,wi�
�wi,wi�

wi,

so that y ∈ W . We define the orthogonal complement W⊥ of W as the set

W⊥ = {x ∈ V | �x,y� = 0 for all y ∈ W}.

It is then easy to show that the residual vector y⊥ = x − y is in W⊥, i.e.,
that �y⊥,y� = 0 for all y ∈ W . Thus we can always write x as

x = y + y⊥,

where y ∈ W and y⊥ ∈ W⊥.

THEOREM A.4

(Orthogonal Decomposition Theorem) If W is a finite-dimensional subspace
of an inner product space V , then any x ∈ V can be written uniquely as
x = y + y⊥, where y ∈ W and y⊥ ∈ W⊥.

A.3 Complex numbers, vectors, and matrices

A complex number is an expression of the form z = a + ib, where i2 = −1.
The real part of z is a and the imaginary part is b. The number z can be

Complex numbers, vectors, and matrices 455

represented as a point or vector in the complex plane with the real part along
the x-axis and the imaginary part along the y-axis. Complex number addition
then corresponds to addition of two-dimensional vectors:

(a1 + ib1) + (a2 + ib2) = (a1 + a2) + i(b1 + b2).

Multiplication is also straightforward, e.g.,

(a1 + ib1)(a2 + ib2) = a1a2 − b1b2 + i(a1b2 − a2b1).

The complex conjugate of z is z∗ = a− ib. Thus

z∗z = (a− ib)(a+ ib) = a2 + b2 = |z|2,
where |z| =

√
a2 + b2 is the magnitude of the complex number z. If θ is the

angle that z makes with the real axis, then

z = a+ ib = |z| cos(θ) + i|z| sin(θ).
From the well-known Euler’s Theorem, we can write this as

z = |z|eiθ.

A complex vector is a vector of complex numbers,

z =





a1 + ib1
...

aN + ibN



 .

Complex matrices similarly are matrices with complex elements. The opera-
tions of vector and matrix addition, multiplication, and scalar multiplication
carry over straightforwardly from real vector spaces. The operation of trans-
position is replaced by the conjugate transpose

A† = (A∗)⊤.

For example, the inner product of two complex vectors x and y is

x†y = (x∗
1 . . . x

∗
N)






y1
...
yN




 = x∗

1y1 + . . . x∗
NyN

and the length or Euclidean norm of x is

�x� =
√
x†x =

�

|x1|2 + . . .+ |xN |2.
The complex analog of a symmetric real matrix is the Hermitian matrix, with
the property

A† = A.

A Hermitian matrix A is positive definite if x†Ax > 0 for all nonzero com-
plex vectors x. Like positive definite symmetric matrices, positive definite
Hermitian matrices have real, positive eigenvalues. The matrix A is said to
be unitary if A† = A−1.

456 Mathematical Tools

A.4 Least squares procedures

In this section, ordinary linear regression is extended to a recursive proce-
dure for sequential data. This forms the basis of one of the neural network
training algorithms derived in Appendix B. In addition, the orthogonal lin-
ear regression procedure used in Chapter 9 for radiometric normalization is
explained.

A.4.1 Recursive linear regression

Consider the statistical model given by Equation (2.95), now in a slightly
different notation:

Y (j) =

N�

i=0

wjxi(j) +R(j), j = 1 . . . ν. (A.1)

This model relates the independent variables x(j) = (1, x1(j) . . . xN (j))⊤ to a
measured quantity Y (j) via the parameters w = (w0, w1 . . . wN)⊤. The index
ν is now intended to represent the number of measurements that have been
made so far. The random variables R(j) represent the measurement uncer-
tainty in the realizations y(j) of Y (j). We assume that they are uncorrelated
and normally distributed with zero mean and unit variance (σ2 = 1), whereas
the values x(j) are exact. We wish to determine the best values for parameters
w. Equation (A.1) can be written in the terms of a data matrix X ν as

Y ν = X νw +Rν , (A.2)

where

X ν =






x(1)⊤

...
x(ν)⊤




 ,

Y ν = (Y (1) . . . Y (ν))⊤ and Rν = (R(1) . . . R(ν))⊤. As was shown in Chapter
2, the best solution in the least squares sense for the parameter vector w is
given by

w(ν) = [(X⊤
ν X ν)

−1X⊤
ν]yν = Σ(ν)X⊤

ν yν , (A.3)

where the expression in square brackets is the pseudo inverse of X ν and where
Σ(ν) is an estimate of the covariance matrix of w,

Σ(ν) = (X⊤
ν X ν)

−1. (A.4)

456 Mathematical Tools

A.4 Least squares procedures

In this section, ordinary linear regression is extended to a recursive proce-
dure for sequential data. This forms the basis of one of the neural network
training algorithms derived in Appendix B. In addition, the orthogonal lin-
ear regression procedure used in Chapter 9 for radiometric normalization is
explained.

A.4.1 Recursive linear regression

Consider the statistical model given by Equation (2.95), now in a slightly
different notation:

Y (j) =

N�

i=0

wjxi(j) +R(j), j = 1 . . . ν. (A.1)

This model relates the independent variables x(j) = (1, x1(j) . . . xN (j))⊤ to a
measured quantity Y (j) via the parameters w = (w0, w1 . . . wN)⊤. The index
ν is now intended to represent the number of measurements that have been
made so far. The random variables R(j) represent the measurement uncer-
tainty in the realizations y(j) of Y (j). We assume that they are uncorrelated
and normally distributed with zero mean and unit variance (σ2 = 1), whereas
the values x(j) are exact. We wish to determine the best values for parameters
w. Equation (A.1) can be written in the terms of a data matrix X ν as

Y ν = X νw +Rν , (A.2)

where

X ν =






x(1)⊤

...
x(ν)⊤




 ,

Y ν = (Y (1) . . . Y (ν))⊤ and Rν = (R(1) . . . R(ν))⊤. As was shown in Chapter
2, the best solution in the least squares sense for the parameter vector w is
given by

w(ν) = [(X⊤
ν X ν)

−1X⊤
ν]yν = Σ(ν)X⊤

ν yν , (A.3)

where the expression in square brackets is the pseudo inverse of X ν and where
Σ(ν) is an estimate of the covariance matrix of w,

Σ(ν) = (X⊤
ν X ν)

−1. (A.4)

Least squares procedures 457

Suppose a new observation (x(ν +1), y(ν +1)) becomes available. Now we
must solve the least squares problem

(
Y ν

Y (ν + 1)

)

=

(
X ν

x(ν + 1)⊤

)

w +Rν+1. (A.5)

With Equation (A.3), the solution is

w(ν + 1) = Σ(ν + 1)

(
X ν

x(ν + 1)⊤

)⊤ (
yν

y(ν + 1)

)

. (A.6)

Inverting Equation (A.4) with ν → ν + 1, we obtain a recursive formula for
the new covariance matrix Σ(ν + 1):

Σ(ν + 1)−1 =

(
X ν

x(ν + 1)⊤

)⊤ (
X ν

x(ν + 1)⊤

)

= X⊤
ν X ν + x(ν + 1)x(ν + 1)⊤

or
Σ(ν + 1)−1 = Σ(ν)−1 + x(ν + 1)x(ν + 1)⊤. (A.7)

To obtain a similar recursive formula for w(ν+1) we multiply Equation (A.6)
out, giving

w(ν + 1) = Σ(ν + 1)(X⊤
ν yν + x(ν + 1)y(ν + 1)),

and replace yν with X νw(ν) to obtain

w(ν + 1) = Σ(ν + 1)
(

X⊤
ν X νw(ν) + x(ν + 1)y(ν + 1)

)

.

Using Equations (A.4) and (A.7),

w(ν + 1) = Σ(ν + 1)
(

Σ(ν)−1w(ν) + x(ν + 1)y(ν + 1)
)

= Σ(ν + 1)
[

Σ(ν + 1)−1w(ν)− x(ν + 1)x(ν + 1)⊤w(ν) + x(ν + 1)y(ν + 1)
]

.

This simplifies to

w(ν + 1) = w(ν) +K(ν + 1)
[

y(ν + 1)− x(ν + 1)⊤w(ν)
]

, (A.8)

where the Kalman gain K(ν + 1) is given by

K(ν + 1) = Σ(ν + 1)x(ν + 1). (A.9)

Equations (A.7–A.9) define a so-called Kalman filter for the least squares
problem of Equation (A.1). For observations

x(ν + 1) and y(ν + 1)

458 Mathematical Tools

the system response x(ν + 1)⊤w(ν) is calculated and compared in Equation
(A.8) with the measurement y(ν+1). Then the innovation, that is to say the
difference between the measurement and system response, is multiplied by
the Kalman gain K(ν +1) determined by Equations (A.9) and (A.7) and the
old estimate w(ν) for the parameter vector w is corrected to the new value
w(ν + 1).

Relation (A.7) is inconvenient as it calculates the inverse of the covariance
matrix Σ(ν + 1), whereas we require the noninverted form in order to deter-
mine the Kalman gain in Equation (A.9). However, equations (A.7) and (A.9)
can be reformed as follows:

Σ(ν + 1) =
[

I −K(ν + 1)x(ν + 1)⊤
]

Σ(ν)

K(ν + 1) = Σ(ν)x(ν + 1)
[

x(ν + 1)⊤Σ(ν)x(ν + 1) + 1
]−1

.
(A.10)

To see this, first of all note that the second equation above is a consequence
of the first equation and Equation (A.9). Therefore, it suffices to show that
the first equation is indeed the inverse of Equation (A.7):

Σ(ν + 1)Σ(ν + 1)−1 =
[

I −K(ν + 1)x(ν + 1)⊤
]

Σ(ν)Σ(ν + 1)−1

= I −K(ν + 1)x(ν + 1)⊤ +
[

I −K(ν + 1)x(ν + 1)⊤
]

Σ(ν)x(ν + 1)x(ν + 1)⊤

= I −K(ν + 1)x(ν + 1)⊤ +Σ(ν)x(ν + 1)x(ν + 1)⊤

−K(ν + 1)x(ν + 1)⊤Σ(ν)x(ν + 1)x(ν + 1)⊤.

The second equality above follows from Equation (A.7). But from the second
of Equations (A.10), we have

K(ν + 1)x(ν + 1)⊤Σ(ν)x(ν + 1) = Σ(ν)x(ν + 1)−K(ν + 1)

and therefore

Σ(ν + 1)Σ(ν + 1)−1 = I −K(ν + 1)x(ν + 1)⊤ +Σ(ν)x(ν + 1)x(ν + 1)⊤

− (Σ(ν)x(ν + 1)−K(ν + 1))x(ν + 1)⊤ = I

as required.

A.4.2 Orthogonal linear regression

In the model for ordinary linear regression described in Chapter 2, the inde-
pendent variable x is assumed to be error-free. If we are regressing one spectral
band against another, for example, then this is manifestly not the case. If we
impose the model

Y (ν)−R(ν) = a+ b(X(ν)− S(ν)), i = 1 . . .m, (A.11)

458 Mathematical Tools

the system response x(ν + 1)⊤w(ν) is calculated and compared in Equation
(A.8) with the measurement y(ν+1). Then the innovation, that is to say the
difference between the measurement and system response, is multiplied by
the Kalman gain K(ν +1) determined by Equations (A.9) and (A.7) and the
old estimate w(ν) for the parameter vector w is corrected to the new value
w(ν + 1).

Relation (A.7) is inconvenient as it calculates the inverse of the covariance
matrix Σ(ν + 1), whereas we require the noninverted form in order to deter-
mine the Kalman gain in Equation (A.9). However, equations (A.7) and (A.9)
can be reformed as follows:

Σ(ν + 1) =
[

I −K(ν + 1)x(ν + 1)⊤
]

Σ(ν)

K(ν + 1) = Σ(ν)x(ν + 1)
[

x(ν + 1)⊤Σ(ν)x(ν + 1) + 1
]−1

.
(A.10)

To see this, first of all note that the second equation above is a consequence
of the first equation and Equation (A.9). Therefore, it suffices to show that
the first equation is indeed the inverse of Equation (A.7):

Σ(ν + 1)Σ(ν + 1)−1 =
[

I −K(ν + 1)x(ν + 1)⊤
]

Σ(ν)Σ(ν + 1)−1

= I −K(ν + 1)x(ν + 1)⊤ +
[

I −K(ν + 1)x(ν + 1)⊤
]

Σ(ν)x(ν + 1)x(ν + 1)⊤

= I −K(ν + 1)x(ν + 1)⊤ +Σ(ν)x(ν + 1)x(ν + 1)⊤

−K(ν + 1)x(ν + 1)⊤Σ(ν)x(ν + 1)x(ν + 1)⊤.

The second equality above follows from Equation (A.7). But from the second
of Equations (A.10), we have

K(ν + 1)x(ν + 1)⊤Σ(ν)x(ν + 1) = Σ(ν)x(ν + 1)−K(ν + 1)

and therefore

Σ(ν + 1)Σ(ν + 1)−1 = I −K(ν + 1)x(ν + 1)⊤ +Σ(ν)x(ν + 1)x(ν + 1)⊤

− (Σ(ν)x(ν + 1)−K(ν + 1))x(ν + 1)⊤ = I

as required.

A.4.2 Orthogonal linear regression

In the model for ordinary linear regression described in Chapter 2, the inde-
pendent variable x is assumed to be error-free. If we are regressing one spectral
band against another, for example, then this is manifestly not the case. If we
impose the model

Y (ν)−R(ν) = a+ b(X(ν)− S(ν)), i = 1 . . .m, (A.11)

Least squares procedures 459

with R(ν) and S(ν) being uncorrelated, normally distributed random variables
with mean zero and equal variances σ2, then we might consider the analog of
Equation (2.45) as a starting point:

z(a, b) =

m∑

ν=1

(y(ν) − a− bx(ν))2

σ2 + b2σ2
. (A.12)

Finding the minimum of Equation (A.12) with respect to a and b is now
more difficult because of the nonlinear dependence on b. Let us begin with
the derivative with respect to a:

∂z(a, b)

∂a
= 0 = − 2

σ2(1 + b2)

∑

ν

(y(ν)− a− bx(ν))

which leads to the estimate
â = ȳ − bx̄. (A.13)

Differentiating with respect to b, we obtain

0 =
2b

1 + b2

∑

ν

(y(ν) − a− bx(ν))2 + 2
∑

ν

(y(ν)− a− bx(ν))x(ν),

which simplifies to
∑

ν

(y(ν) − a− bx(ν))[b(y(ν) − a) + x(ν)] = 0.

Now substitute â for a using Equation (A.13). This gives

∑

ν

[y(ν)− ȳ − b(x(ν) − x̄)][b(y(ν) − ȳ + bx̄) + x(ν)] = 0.

This equation is in fact only quadratic in b, since the cubic term is

−b3x̄
∑

ν

(x(ν) − x̄) = 0.

The quadratic term is, with the definition of sxy given in Equation (2.90),

b2
∑

ν

(
(y(ν)− ȳ)x̄− (x(ν) − x̄)(y(ν)− ȳ)− (x(ν) − x̄)x̄

)
= −mb2sxy.

The linear term is, defining

syy =
1

m

m∑

ν=1

(y(ν) − ȳ)2,

given by

b
∑

ν

(y(ν)− ȳ)2 − (x(ν) − x̄)x(ν) = mb(syy − sxx),

460 Mathematical Tools

Listing A.1: Excerpt from the module auxil.auxil1.py.

1 def orthoregress (x,y):

2 Xm = np.mean(x)

3 Ym = np.mean(y)

4 s = np.cov(x,y)

5 R = s[0,1]/ math .sqrt(s[1,1]*s[0,0])

6 lam ,vs = np.linalg.eig(s)

7 idx = np.argsort(lam)

8 vs = vs[:, idx] # increasing order , so

9 b = vs[1,1]/vs[0,1] # first pc is second column

10 return [b,Ym-b*Xm,R]

because of the equality
∑

ν(x(ν)−x̄)x(ν) =
∑

ν(x(ν)−x̄)(x(ν)−x̄). Similarly,
the constant term is

∑

ν

(y(ν)− ȳ)x(ν) =
∑

ν

(y(ν)− ȳ)(x(ν) − x̄) = msxy.

Thus b is a solution of the quadratic equation

b2sxy + b(sxx − syy)− sxy = 0.

The solution (for positive slope) is

b̂ =
(syy − sxx) +

√

(syy − sxx)2 + 4s2xy

2sxy
. (A.14)

According to Patefield (1977) and Bilbo (1989), the variances in the regres-
sion parameters are given by

σ2
a =

σ2b̂(1 + b̂2)

msxy

(

x̄2(1 + τ̂) +
sxy

b̂

)

σ2
b =

σ2b̂(1 + b̂2)

msxy
(1 + τ̂)

(A.15)

with

τ̂ =
σ2b̂

(1 + b̂2)sxy
. (A.16)

If σ2 is not known a priori, it can be estimated by (Kendall and Stuart, 1979)

σ̂2 =
m

(m− 2)(1 + b̂2)
(syy − 2b̂sxy + b̂2sxx). (A.17)

460 Mathematical Tools

Listing A.1: Excerpt from the module auxil.auxil1.py.

1 def orthoregress (x,y):

2 Xm = np.mean(x)

3 Ym = np.mean(y)

4 s = np.cov(x,y)

5 R = s[0,1]/ math .sqrt(s[1,1]*s[0,0])

6 lam ,vs = np.linalg.eig(s)

7 idx = np.argsort(lam)

8 vs = vs[:, idx] # increasing order , so

9 b = vs[1,1]/vs[0,1] # first pc is second column

10 return [b,Ym-b*Xm,R]

because of the equality
∑

ν(x(ν)−x̄)x(ν) =
∑

ν(x(ν)−x̄)(x(ν)−x̄). Similarly,
the constant term is

∑

ν

(y(ν)− ȳ)x(ν) =
∑

ν

(y(ν)− ȳ)(x(ν) − x̄) = msxy.

Thus b is a solution of the quadratic equation

b2sxy + b(sxx − syy)− sxy = 0.

The solution (for positive slope) is

b̂ =
(syy − sxx) +

√

(syy − sxx)2 + 4s2xy

2sxy
. (A.14)

According to Patefield (1977) and Bilbo (1989), the variances in the regres-
sion parameters are given by

σ2
a =

σ2b̂(1 + b̂2)

msxy

(

x̄2(1 + τ̂) +
sxy

b̂

)

σ2
b =

σ2b̂(1 + b̂2)

msxy
(1 + τ̂)

(A.15)

with

τ̂ =
σ2b̂

(1 + b̂2)sxy
. (A.16)

If σ2 is not known a priori, it can be estimated by (Kendall and Stuart, 1979)

σ̂2 =
m

(m− 2)(1 + b̂2)
(syy − 2b̂sxy + b̂2sxx). (A.17)

Proof of Theorem 7.1 461

It is easy to see that the estimate b̂, Equation (A.14), can be calculated
as the slope of the first principal component vector u = (u1, u2)

⊤ of the
covariance matrix

s =

(
sxx sxy
syx syy

)

,

that is,
b̂ = u2/u1.

Thus orthogonal linear regression on one independent variable is equivalent
to principal components analysis. This is the basis for the Python procedure
orthoregress() in the module auxil.auxil1.py shown in Listing A.1, which
performs orthogonal regression on the input arrays x and y. The routine is
used in some of the code documented in Appendix C.

A.5 Proof of Theorem 7.1

We need the following inequality:

αr ≤ 1− (1 − α)r, (A.18)

which holds for any α ≥ 0 and r ∈ [0, 1]. To see this, note that αr is convex,
that is, its second derivative is

d2

dr2
(αr) = αr log(α)2 ≥ 0,

so we have the situation shown in Figure A.1.

Proof: (Freund and Shapire, 1997) Applying inequality (A.18) to step (e) in
the AdaBoost algorithm (Section 7.3), we obtain

m∑

ν=1

wi+1(ν) =

m∑

ν=1

wi(ν)β
1−[[hi(ν) �=k(ν)]]
i

≤
m∑

ν=1

wi(ν)[1 − (1− βi)(1 − [[hi(ν) �= k(ν)]])]

=

m∑

ν=1

wi(ν)− (1− βi)

[
m∑

ν=1

wi(ν)(1 − [[hi(ν) �= k(ν)]])

]

.

From steps (a) and (c) in the algorithm, we can write

m∑

ν=1

wi(ν)[[hi(ν) �= k(ν)]] =

m∑

ν=1

m∑

ν′=1

wi(ν
′)pi(ν)[[hi(ν) �= k(ν)]] =

m∑

ν′=1

wi(ν
′)ǫi.

462 Mathematical Tools

Combining the last two equations then gives

m�

ν=1

wi+1(ν) ≤
m�

ν=1

wi(ν)[1 − (1− βi)(1− ǫi)]. (A.19)

If we apply this inequality successively for i = 1 . . .Nc, it follows that

m�

ν=1

wNc+1(ν) ≤
m�

ν=1

w1(ν)

m�

i=1

[1− (1− βi)(1− ǫi)]

=

m�

i=1

[1− (1− βi)(1 − ǫi)],

(A.20)

since, in the algorithm, the initial weights sum to unity.
The final voting procedure in step (3) will make an error on training example

ν if �

{i|hi(ν) �=k(ν)}
log(1/βi) ≥

�

{i|hi(ν)=k(ν)}
log(1/βi).

Adding
�

{i|hi(ν) �=k(ν)} log(1/βi) to both sides,

2




�

{i|hi(ν) �=k(ν)}
log(1/βi)



 ≥
m�

i=1

log(1/βi),

✻

✲

αr

r

α > 1

α = 1

α < 1

1− (1− α)r

❥

❲

10

1

FIGURE A.1

Illustrating inequality (A.18).

462 Mathematical Tools

Combining the last two equations then gives

m�

ν=1

wi+1(ν) ≤
m�

ν=1

wi(ν)[1 − (1− βi)(1− ǫi)]. (A.19)

If we apply this inequality successively for i = 1 . . .Nc, it follows that

m�

ν=1

wNc+1(ν) ≤
m�

ν=1

w1(ν)

m�

i=1

[1− (1− βi)(1− ǫi)]

=

m�

i=1

[1− (1− βi)(1 − ǫi)],

(A.20)

since, in the algorithm, the initial weights sum to unity.
The final voting procedure in step (3) will make an error on training example

ν if �

{i|hi(ν) �=k(ν)}
log(1/βi) ≥

�

{i|hi(ν)=k(ν)}
log(1/βi).

Adding
�

{i|hi(ν) �=k(ν)} log(1/βi) to both sides,

2




�

{i|hi(ν) �=k(ν)}
log(1/βi)



 ≥
m�

i=1

log(1/βi),

✻

✲

αr

r

α > 1

α = 1

α < 1

1− (1− α)r

❥

❲

10

1

FIGURE A.1

Illustrating inequality (A.18).

Proof of Theorem 7.1 463

or equivalently

−2




�

{i|hi(ν) �=k(ν)}
log(βi)



 ≥ −
m�

i=1

log(βi),

which we can write in the form

− log




�

{i|hi(ν) �=k(ν)}
βi



 ≥ −1

2
log

�
Nc�

i=1

βi

�

or, since the logarithm is a monotonic increasing function of its argument,
equivalently as

Nc�

i=1

β
[[hi(ν) �=k(ν)]]
i ≥

�
Nc�

i=1

βi

�−1/2

. (A.21)

From step (e), we have further

wNc+1 = w1(ν)

Nc�

i=1

β
1−[[hi(ν) �=k(ν)]]
i . (A.22)

Now let U be the set of incorrectly classified training examples for the sequence
of Nc classifiers. Then

m�

ν=1

wNc+1(ν) ≥
�

ν∈U

wNc+1(ν)

=
�

ν∈U

w1(ν)

Nc�

i=1

β
1−[[hi(ν) �=k(ν)]]
i from (A.22)

=
�

ν∈U

w1(ν)

Nc�

i=1

βi

Nc�

i=1

β
−[[hi(ν) �=k(ν)]]
i

≥
�

ν∈U

w1(ν)

�
Nc�

i=1

βi

�1/2

from (A.21).

But
�

ν∈U w1(ν) = ǫ and, combining this last inequality with Inequality
(A.20), we have

ǫ

�
Nc�

i=1

βi

�1/2

≤
m�

ν=1

wNc+1(ν) ≤
m�

i=1

[1− (1− βi)(1− ǫi)]

or, solving for ǫ,

ǫ ≤
Nc�

i=1

�
1− (1 − βi)(1 − ǫi)√

βi

�

. (A.23)

464 Mathematical Tools

Since each of the Nc factors is positive, the upper bound will be minimized
when

d

dβi

(
1− (1− βi)(1 − ǫi)√

βi

)

= 0, i = 1 . . .Nc,

with solution
βi =

ǫi
1− ǫi

.

Substituting this back into Equation (A.23) gives the upper bound Equation
(7.26) and the proof is complete.

464 Mathematical Tools

Since each of the Nc factors is positive, the upper bound will be minimized
when

d

dβi

(
1− (1− βi)(1 − ǫi)√

βi

)

= 0, i = 1 . . .Nc,

with solution
βi =

ǫi
1− ǫi

.

Substituting this back into Equation (A.23) gives the upper bound Equation
(7.26) and the proof is complete.

B

Neural Network Training Algorithms

The gradient descent back-propagation algorithm introduced in Chapter 6 is
notoriously slow to converge. In this appendix, we will develop two additional
training algorithms for the two-layer, feed-forward neural network of Figure
6.11. The first of these, the scaled conjugate gradient, makes use of the second
derivatives of the cost function with respect to the synaptic weights, i.e., of
the Hessian matrix. The second, the extended Kalman filter method, takes
advantage of the statistical properties of the weight parameters themselves.
Both techniques are considerably more efficient than back-propagation.

B.1 The Hessian matrix

We begin with a detailed discussion of the Hessian matrix and how to calculate
it efficiently. The Hessian matrixH for a neural network training cost function
E(w) is given by

(H)ij =
∂2E(w)

∂wi∂wj
; (B.1)

see Equation (1.56). It is the (symmetric) matrix of second-order partial
derivatives of the cost function with respect to the synaptic weights, the latter
being thought of as a single column vector

w =













wh
1
...

wh
L

wo
1
...

wo
K













of length nw = L(N + 1) +K(L + 1) for the network architecture of Figure
6.11. Since H is symmetric, it is positive definite if and only if its eigenvalues
are positive; see Section 1.4. Thus a good way to check if one is at or near
a local minimum in the cost function is to examine the eigenvalues of the
Hessian matrix.

DOI: 10.1201/9781003503286-B 465

https://doi.org/10.1201/9781003503286-B

466 Neural Network Training Algorithms

The scaled conjugate gradient algorithm makes explicit use of the Hessian
matrix for more efficient convergence to a minimum in the cost function. The
disadvantage of using H is that it is difficult to compute. For example, for a
typical classification problem with (N = 3) - dimensional input data, L = 8
hidden neurons and K = 12 land use categories, there are

(
L(N + 1) +K(L+ 1)

)(
L(N + 1) +K(L+ 1) + 1

)
/2 = 9870

matrix elements to determine at each iteration (allowing for symmetry). We
develop, in the following, an efficient method (Bishop, 1995) not to calcu-
late H directly, but rather the product v⊤H for any vector v having nw

components.

B.1.1 The R-operator

Let us begin by summarizing some results from Chapter 6 for the two-layer,
feed-forward network, changing the notation slightly to simplify what follows:

g′ = (g′1 . . . g
′
N)⊤ input observation vector

g =

(
1
g′

)

biased input observation

ℓ = (0 . . . 1 . . . 0)⊤ class label

Ih = W h⊤g activation vector for the hidden layer

n′
j = f(Ihj), j = 1 . . . L output signal vector from the hidden layer

n =

(
1
n′

)

biased output signal vector

Io = W o⊤n activation vector for the output layer

mk(I
o), k = 1 . . .K softmax output signal from kth output neuron.

(B.2)
The corresponding activation functions are, for the hidden neurons,

f(Ihj) =
1

1 + e−Ih
j

, j = 1 . . . L, (B.3)

and for the output neurons,

mk(I
o) =

eI
o
k

∑K
k′=1 e

Io
k′

, k = 1 . . .K. (B.4)

The first derivatives of the local cross-entropy cost function, Equation (6.34),
with respect to the output and hidden weights, Equations (6.36) and (6.40),
can be written concisely as

∂E

∂W o = −nδo⊤

∂E

∂W h
= −gδh⊤,

(B.5)

466 Neural Network Training Algorithms

The scaled conjugate gradient algorithm makes explicit use of the Hessian
matrix for more efficient convergence to a minimum in the cost function. The
disadvantage of using H is that it is difficult to compute. For example, for a
typical classification problem with (N = 3) - dimensional input data, L = 8
hidden neurons and K = 12 land use categories, there are

(
L(N + 1) +K(L+ 1)

)(
L(N + 1) +K(L+ 1) + 1

)
/2 = 9870

matrix elements to determine at each iteration (allowing for symmetry). We
develop, in the following, an efficient method (Bishop, 1995) not to calcu-
late H directly, but rather the product v⊤H for any vector v having nw

components.

B.1.1 The R-operator

Let us begin by summarizing some results from Chapter 6 for the two-layer,
feed-forward network, changing the notation slightly to simplify what follows:

g′ = (g′1 . . . g
′
N)⊤ input observation vector

g =

(
1
g′

)

biased input observation

ℓ = (0 . . . 1 . . . 0)⊤ class label

Ih = W h⊤g activation vector for the hidden layer

n′
j = f(Ihj), j = 1 . . . L output signal vector from the hidden layer

n =

(
1
n′

)

biased output signal vector

Io = W o⊤n activation vector for the output layer

mk(I
o), k = 1 . . .K softmax output signal from kth output neuron.

(B.2)
The corresponding activation functions are, for the hidden neurons,

f(Ihj) =
1

1 + e−Ih
j

, j = 1 . . . L, (B.3)

and for the output neurons,

mk(I
o) =

eI
o
k

∑K
k′=1 e

Io
k′

, k = 1 . . .K. (B.4)

The first derivatives of the local cross-entropy cost function, Equation (6.34),
with respect to the output and hidden weights, Equations (6.36) and (6.40),
can be written concisely as

∂E

∂W o = −nδo⊤

∂E

∂W h
= −gδh⊤,

(B.5)

The Hessian matrix 467

where, see Equations (6.38) and (6.42),

δo = ℓ−m (B.6)

and (
0
δh

)

= n · (1− n) ·W oδo. (B.7)

(The dot denotes component-by-component multiplication.) Following Bishop
(1995), we introduce the R-operator according to the definition

Rv{x} := v⊤ ∂

∂w
x, v⊤ = (v1 . . . vnw).

We have

Rv{w} = v⊤ ∂

∂w
w =

∑

j

vj
∂w

∂wj
= v.

Note that we are now taking derivatives of vectors. This shouldn’t confuse us.
For example, the above result in two dimensions is

Rv{w} = v1
∂

∂w1
(w1i+ w2j) + v2

∂

∂w2
(w1i+ w2j) = v1i+ v2j = v.

We adopt the convention that the result of applying the R-operator has the
same structure as the argument to which it is applied. Thus, for example,

Rv{W h} = V h,

where V h, like W h, is an (N +1)×L matrix consisting of the first (N +1)L
components of the nw-dimensional vector v. Implicitly we set the last nw −
(N + 1)L components of v equal to zero.

Next we derive an expression for v⊤H in terms of the R-operator.

(v⊤H)j =

nw∑

i=1

viHij =

nw∑

i=1

vi
∂2E

∂wi∂wj
=

nw∑

i=1

vi
∂

∂wi

(
∂E

∂wj

)

or

(v⊤H)j = v⊤ ∂

∂w

(
∂E

∂wj

)

= Rv

{
∂E

∂wj

}

, j = 1 . . . nw.

Since v⊤H is a row vector, this can be written

v⊤H = Rv

{
∂E

∂w⊤

}

∼=
(

Rv

{
∂E

∂W h

}

, Rv

{
∂E

∂W o

})

. (B.8)

Note the reorganization of the structure in the argument of Rv, namely w⊤ →
(W h,W o). This is merely for convenience of evaluation. Once the expressions
on the right have been evaluated, the result must be “flattened” back to a row
vector. Note also that Equation (B.8) is understood to involve the local cost

468 Neural Network Training Algorithms

function. In order to complete the calculation, we must sum over all training
pairs; see Equation (6.33).

Applying Rv to Equations (B.5),

Rv

{
∂E

∂W o

}

= −nRv{δo⊤} −Rv{n}δo⊤

Rv

{
∂E

∂W h

}

= −gRv{δh⊤},
(B.9)

so that, in order to evaluate Equation (B.8), we need expressions for

Rv{n}, Rv{δo⊤} and Rv{δh⊤}.
This is somewhat tedious, but well worth the effort.

B.1.1.1 Determination of Rv{n}
From Equation (B.2), we can write

Rv{n} =

(
0

Rv{n′}

)

, (B.10)

and from the chain rule,

Rv{n′} = n′ · (1 − n′) ·Rv{Ih}, (B.11)

where, by differentiation of Ih, we evaluate

Rv{Ih} = V h⊤g. (B.12)

Note that, according to our convention, V h⊤ must be interpreted as an L ×
(N + 1)-dimensional matrix, since the argument Ih is a vector of length L
and the result must have the same structure.

B.1.1.2 Determination of Rv{δo}
With Equations (B.2) and Equation (B.6) we get

Rv{δo} = −Rv{m} = −v⊤ ∂m

∂w
= −v⊤ ∂m

∂Io · ∂I
o

∂w
= −∂m

∂Io ·Rv{Io},

But from Equation (B.4), it is easy to see that

∂m

∂Io = m · (1−m)

and therefore
Rv{δo} = −m · (1−m) · Rv{Io}. (B.13)

Similarly, with the expression for Io in Equations (B.2), we get

Rv{Io} = W o⊤Rv{n}+ V o⊤n, (B.14)

where Rv{n} is given by Equations (B.10) to (B.12).

The Hessian matrix 469

B.1.1.3 Determination of Rv{δh}
We begin by writing Equation (B.7) in the form

(
0
δh

)

=

(
0

f ′(Ih)

)

·W oδo,

where
f ′(Ih) = (f ′(Ih1) . . . f

′(IhL))
⊤

and where the prime on f denotes differentiation with respect to its argument,
f ′(x) = df(x)/dx. Operating with Rv{·} and applying the chain rule, we
obtain
(

0
Rv{δh}

)

=

(
0

f ′′(Ih)

)

·
(

0
Rv{Ih}

)

·W oδo +

(
0

f ′(Ih)

)

· V oδo

+

(
0

f ′(Ih)

)

·W oRv{δo}.
(B.15)

Finally, substitute the derivatives of the logistic function

f ′(Ih) = n′(1− n′)

f ′′(Ih) = n′(1− n′)(1− 2n′)

into Equation (B.15) to obtain
(

0
Rv{δh}

)

= n·(1−n)·
[

(1−2n)·
(

0
Rv{Ih}

)

·W oδo+V oδo+W oRv{δo}
]

,

(B.16)
in which all of the terms on the right have now been determined. As already
mentioned, we have done everything so far in terms of the local cost function.
The final step in the calculation involves summing over all of the training
examples. This concludes the evaluation of Equation (B.8).

B.1.2 Calculating the Hessian

To calculate the Hessian matrix for the neural network, we evaluate Equation
(B.8) successively for the vectors

v⊤1 = (1, 0, 0 . . .0) . . . v⊤nw
= (0, 0, 0 . . .1)

and build up H row for row:

H =






v⊤1H
...

v⊤nw
H




 .

The excerpt from the Python module auxil.supervisedclass.py shown
in Listing B.1 implements a vectorized version of the above determination of
v H⊤ (method rop()) and H (method hessian()).

470 Neural Network Training Algorithms

Listing B.1: Calculation of the R-operator (excerpt from the module auxil.-
supervisedclass.py).

1 def hessian(self):

2 # Hessian of cross entropy wrt synaptic weights

3 nw = self._L*(self ._N+1)+ self._K*(self ._L+1)

4 v = np.eye(nw,dtype=np. f l oat)

5 H = np.zeros((nw,nw))

6 for i in range(nw):

7 H[i ,:] = self.rop(v[i,:])

8 return H

9

10 def rop(self ,V):

11 # reshape V to dimensions of Wh and Wo, transpose

12 VhT = np.reshape(V[:(self._N+1)* self._L],

13 (self ._N+1, self._L)).T

14 Vo = np.mat(np.reshape(V[self._L*(self._N +1)::],

15 (self ._L+1, self._K)))

16 VoT = Vo.T

17 # transpose the output weights

18 Wo = self._Wo

19 WoT = Wo.T

20 # forward pass

21 M,n = self.vforwardpass (self._Gs)

22 # evaluation of v^T.H

23 Z = np.zeros(self._m)

24 D_o = self._ls - M #d^o

25 RIh = VhT*self._Gs #Rv{I^h}

26 tmp = np.vstack ((Z,RIh))

27 RN = n.A*(1-n.A)*tmp.A #Rv{n}

28 RIo = WoT*RN + VoT*n #Rv{I^o}

29 Rd_o = -np.mat(M*(1-M)*RIo.A) #Rv{d^o}

30 Rd_h = n.A*(1-n.A)*((1-2*n.A)*tmp.A

31 *(Wo*D_o).A + (Vo*D_o).A + (Wo*Rd_o).A)

32 Rd_h = np.mat(Rd_h [1:: ,:]) #Rv{d^h}

33 REo = -(n*Rd_o.T-RN*D_o.T). ravel() #Rv{dE/dWo}

34 REh = -(self._Gs*Rd_h.T). ravel() #Rv{dE/dWh}

35 return np.hstack((REo ,REh)) #v^T.H

B.2 Scaled conjugate gradient training

The back-propagation algorithm of Chapter 6 attempts to minimize the cost
function locally, that is, weight updates are made immediately after presen-
tation of a single training pair to the network. We will now consider a global
approach aimed at minimization of the full cost function, Equation (6.33),

470 Neural Network Training Algorithms

Listing B.1: Calculation of the R-operator (excerpt from the module auxil.-
supervisedclass.py).

1 def hessian(self):

2 # Hessian of cross entropy wrt synaptic weights

3 nw = self._L*(self ._N+1)+ self._K*(self ._L+1)

4 v = np.eye(nw,dtype=np. f l oat)

5 H = np.zeros((nw,nw))

6 for i in range(nw):

7 H[i ,:] = self.rop(v[i,:])

8 return H

9

10 def rop(self ,V):

11 # reshape V to dimensions of Wh and Wo, transpose

12 VhT = np.reshape(V[:(self._N+1)* self._L],

13 (self ._N+1, self._L)).T

14 Vo = np.mat(np.reshape(V[self._L*(self._N +1)::],

15 (self ._L+1, self._K)))

16 VoT = Vo.T

17 # transpose the output weights

18 Wo = self._Wo

19 WoT = Wo.T

20 # forward pass

21 M,n = self.vforwardpass (self._Gs)

22 # evaluation of v^T.H

23 Z = np.zeros(self._m)

24 D_o = self._ls - M #d^o

25 RIh = VhT*self._Gs #Rv{I^h}

26 tmp = np.vstack ((Z,RIh))

27 RN = n.A*(1-n.A)*tmp.A #Rv{n}

28 RIo = WoT*RN + VoT*n #Rv{I^o}

29 Rd_o = -np.mat(M*(1-M)*RIo.A) #Rv{d^o}

30 Rd_h = n.A*(1-n.A)*((1-2*n.A)*tmp.A

31 *(Wo*D_o).A + (Vo*D_o).A + (Wo*Rd_o).A)

32 Rd_h = np.mat(Rd_h [1:: ,:]) #Rv{d^h}

33 REo = -(n*Rd_o.T-RN*D_o.T). ravel() #Rv{dE/dWo}

34 REh = -(self._Gs*Rd_h.T). ravel() #Rv{dE/dWh}

35 return np.hstack((REo ,REh)) #v^T.H

B.2 Scaled conjugate gradient training

The back-propagation algorithm of Chapter 6 attempts to minimize the cost
function locally, that is, weight updates are made immediately after presen-
tation of a single training pair to the network. We will now consider a global
approach aimed at minimization of the full cost function, Equation (6.33),

Scaled conjugate gradient training 471

which we denote in the following by E(w). The symbol w is, as before, the
nw-component vector of synaptic weights.

Let the gradient of the cost function at the point w be g(w) (not to be
confused with the observation vector g), i.e.,

g(w) =
∂

∂w
E(w).

The Hessian matrix

(H)ij =
∂2E(w)

∂wi∂wj
i, j = 1 . . . nw

can then be expressed conveniently as the outer product

H =
∂

∂w
g(w)⊤. (B.17)

B.2.1 Conjugate directions

The search for a minimum in the cost function can be visualized as tracing
out a series of points in the space of synaptic weight parameters,

w1,w2 . . .wk−1,wk,wk+1 . . . ,

where the point wk is determined by minimizing E(w) along some search di-
rection dk−1 which originated at the preceding point wk−1. This is illustrated
in Figure B.1 and corresponds to the vector equation

wk = wk−1 + αk−1d
k−1. (B.18)

Here dk−1 is a unit vector along the chosen search direction and the scalar
αk−1 minimizes the cost function along that direction:

αk−1 = argmin
α

E
(
wk−1 + αdk−1

)
.

If, starting from wk, we now wish to take the next minimizing step in the
weight space, it is not efficient simply to choose, as in back-propagation, the
direction of the local gradient g(wk) at the new starting point wk. Since
the cost function has been minimized along the direction dk−1 at the point
wk−1 + αk−1d

k−1, its gradient along that direction is zero,

g(wk)⊤dk−1 = 0, (B.19)

as indicated in Figure B.1. Since the algorithm has just succeeded in reducing
the gradient of the cost function along dk−1 to zero, we prefer to choose the
new search direction dk so that the component of the gradient along the old

472 Neural Network Training Algorithms

✣ ✯✲

❄

❅
❅
❅

wk−1

dk−1

wk

g(wk)

αk−1

dk ?

❅❘

FIGURE B.1

Search directions in weight space.

search direction remains as small as possible. Otherwise, we are undoing what
we have just accomplished. Therefore, we choose dk according to the condition

g
(
wk + αdk

)⊤
dk−1 = 0. (B.20)

But to first order in α we have, with Equation (B.17),

g
(
wk + αdk

)⊤
= g(wk)⊤ + αdk⊤ ∂

∂w
g(wk)⊤ = g(wk)⊤ + αdk⊤H

and Equation (B.20) is, together with Equation (B.19), equivalent to

dk⊤Hdk−1 = 0. (B.21)

Directions which satisfy Equation (B.21) are referred to as conjugate direc-
tions.

B.2.2 Minimizing a quadratic function

Although the neural network cost function is not quadratic in the synaptic
weights, within a sufficiently small region of weight space it can be approxi-
mated as a quadratic function. We describe in the following an efficient pro-
cedure to find the global minimum of a quadratic function of w having the
general form (see Equation (1.55))

E(w) = E0 + b⊤w +
1

2
w⊤Hw, (B.22)

472 Neural Network Training Algorithms

✣ ✯✲

❄

❅
❅
❅
❅❘wk−1

dk−1

wk

g(wk)

αk−1

dk ?

FIGURE B.1

Search directions in weight space.

search direction remains as small as possible. Otherwise, we are undoing what
we have just accomplished. Therefore, we choose dk according to the condition

g
(
wk + αdk

)⊤
dk−1 = 0. (B.20)

But to first order in α we have, with Equation (B.17),

g
(
wk + αdk

)⊤
= g(wk)⊤ + αdk⊤ ∂

∂w
g(wk)⊤ = g(wk)⊤ + αdk⊤H

and Equation (B.20) is, together with Equation (B.19), equivalent to

dk⊤Hdk−1 = 0. (B.21)

Directions which satisfy Equation (B.21) are referred to as conjugate direc-
tions.

B.2.2 Minimizing a quadratic function

Although the neural network cost function is not quadratic in the synaptic
weights, within a sufficiently small region of weight space it can be approxi-
mated as a quadratic function. We describe in the following an efficient pro-
cedure to find the global minimum of a quadratic function of w having the
general form (see Equation (1.55))

E(w) = E0 + b⊤w +
1

2
w⊤Hw, (B.22)

Scaled conjugate gradient training 473

where b and H are constant and the matrix H is positive definite. This will
form the basis of the neural network training algorithm presented in the next
subsection.

The local gradient of E(w) at the point w is given by

g(w) =
∂

∂w
E(w) = b+Hw,

and it vanishes at the global minimum w∗,

b+Hw∗ = 0. (B.23)

Now let {dk | k = 1 . . . nw} be a set of nw conjugate directions satisfying
Equation (B.21),∗

dk⊤Hdℓ = 0 for k �= ℓ, k, ℓ = 1 . . . nw. (B.24)

The search directions dk are in fact linearly independent. In order to demon-
strate this, let us assume the contrary, that is, that there exists an index k
and constants αk′ , k′ �= k, not all of which are zero, such that

dk =

nw∑

k′=1

k′ �=k

αk′dk′

.

Substituting this into Equation (B.24), we have at once

αk′dk′⊤
Hdk′

= 0 for k′ �= k

and, since H is positive definite,

αk′ = 0 for k′ �= k.

The assumption leads to a contradiction, hence the dk are indeed linearly in-
dependent. The conjugate directions thus constitute a (non orthogonal) vector
basis for the entire weight space.

In the search for the global minimum, suppose we begin at an arbitrary
point w1 and express the vector w∗ −w1 spanning the distance to the global
minimum as a linear combination of the basis vectors dk:

w∗ −w1 =

nw∑

k=1

αkd
k. (B.25)

Further, define

wk = w1 +
k−1∑

ℓ=1

αℓd
ℓ (B.26)

∗It can be shown that such a set always exists; see, e.g., Bishop (1995).

474 Neural Network Training Algorithms

and split Equation (B.25) up into nw steps

wk+1 = wk + αkd
k, k = 1 . . . nw. (B.27)

At the kth step, the search starts at the point wk and proceeds a distance
αk along the conjugate direction dk. After nw such steps, the global minimum
w∗ is reached, since from Equations (B.25) to (B.27) it follows that

w∗ = w1 +

nw∑

k=1

αkd
k = w2 +

nw∑

k=2

αkd
k = . . . = wnw + αnwd

nw = wnw+1.

We get the necessary step sizes αk from Equation (B.25) by multiplying from

the left with dℓ⊤H ,

dℓ⊤Hw∗ − dℓ⊤Hw1 =

nw∑

k=1

αkd
ℓ⊤Hdk.

From Equations (B.23) and (B.24) we can write this as

−dℓ⊤(b+Hw1) = αℓd
ℓ⊤Hdℓ,

so that an explicit formula for the step sizes is given by

αℓ = −dℓ⊤(b+Hw1)

dℓ⊤Hdℓ
, ℓ = 1 . . . nw.

But with Equations (B.24) and (B.26),

dk⊤Hwk = dk⊤Hw1 + 0,

and therefore, replacing index k by ℓ,

dℓ⊤Hwℓ = dℓ⊤Hw1.

The step lengths are thus

αℓ = −dℓ⊤(b+Hwℓ)

dℓ⊤Hdℓ
, ℓ = 1 . . . nw.

Finally, using the notation gℓ = g(wℓ) = b+Hwℓ and substituting ℓ → k,

αk = − dk⊤gk

dk⊤Hdk
, k = 1 . . . nw. (B.28)

For want of a better alternative, we can choose the first search direction
along the negative local gradient

d1 = −g1 = − ∂

∂w
E(w1).

474 Neural Network Training Algorithms

and split Equation (B.25) up into nw steps

wk+1 = wk + αkd
k, k = 1 . . . nw. (B.27)

At the kth step, the search starts at the point wk and proceeds a distance
αk along the conjugate direction dk. After nw such steps, the global minimum
w∗ is reached, since from Equations (B.25) to (B.27) it follows that

w∗ = w1 +

nw∑

k=1

αkd
k = w2 +

nw∑

k=2

αkd
k = . . . = wnw + αnwd

nw = wnw+1.

We get the necessary step sizes αk from Equation (B.25) by multiplying from

the left with dℓ⊤H ,

dℓ⊤Hw∗ − dℓ⊤Hw1 =

nw∑

k=1

αkd
ℓ⊤Hdk.

From Equations (B.23) and (B.24) we can write this as

−dℓ⊤(b+Hw1) = αℓd
ℓ⊤Hdℓ,

so that an explicit formula for the step sizes is given by

αℓ = −dℓ⊤(b+Hw1)

dℓ⊤Hdℓ
, ℓ = 1 . . . nw.

But with Equations (B.24) and (B.26),

dk⊤Hwk = dk⊤Hw1 + 0,

and therefore, replacing index k by ℓ,

dℓ⊤Hwℓ = dℓ⊤Hw1.

The step lengths are thus

αℓ = −dℓ⊤(b+Hwℓ)

dℓ⊤Hdℓ
, ℓ = 1 . . . nw.

Finally, using the notation gℓ = g(wℓ) = b+Hwℓ and substituting ℓ → k,

αk = − dk⊤gk

dk⊤Hdk
, k = 1 . . . nw. (B.28)

For want of a better alternative, we can choose the first search direction
along the negative local gradient

d1 = −g1 = − ∂

∂w
E(w1).

Scaled conjugate gradient training 475

(Note that d1 is not a unit vector.) We move, according to Equation (B.28),
a distance

α1 =
d1⊤d1

d1⊤Hd1

along this direction to the point w2, at which the local gradient g2 is orthog-
onal to d1. We then choose the new conjugate search direction d2 as a linear
combination of the two:

d2 = −g2 + β1d
1

or, at the kth step,
dk+1 = −gk+1 + βkd

k. (B.29)

We get the coefficient βk from Equations (B.29) and (B.21) by multiplication

on the left with dk⊤H :

0 = −dk⊤Hgk+1 + βkd
k⊤Hdk,

from which follows

βk =
gk+1⊤Hdk

dk⊤Hdk
. (B.30)

Equations (B.27 to B.30) constitute a recipe with which, starting at an arbi-
trary point w1 in weight space, the global minimum of the quadratic function,
Equation (B.22), is found in precisely nw steps.

B.2.3 The algorithm

Returning now to the non quadratic neural net cost function E(w), we will
apply the above method to minimize it. We must take two things into consid-
eration.

First of all, the Hessian matrix H is neither constant nor everywhere pos-
itive definite. When H is not positive definite, it can happen that Equation
(B.28) leads to a step along the wrong direction—the denominator might turn
out to be negative. Therefore, we replace Equation (B.28) with∗

αk = − dk⊤gk

dk⊤Hdk + λk�dk�2
, k = 1 . . . nw. (B.31)

The constant λk is supposed to ensure that the denominator in Equation
(B.31) is always positive. It is initialized for k = 1 with a small numerical
value. If, at the kth iteration, it is determined that

δk := dk⊤Hdk + λk�dk�2 < 0,

∗This corresponds to the substitution H → H + λkI, where I is the identity matrix.

476 Neural Network Training Algorithms

then λk is replaced by the larger value λ̄k given by

λ̄k = 2

(

λk − δk

�dk�2

)

. (B.32)

This ensures that the denominator in Equation (B.31) becomes positive again.
Note that this increase in λk has the effect of decreasing the step size αk, as
is apparent from Equation (B.31).

Second, we must take into account any deviation of the cost function from
its local quadratic approximation. Such deviations are to be expected for large
step sizes αk. As a measure of the quadricity of E(w) along the chosen step
length, we can use the ratio

∆k = −2
(
E(wk)− E(wk + αkd

k)
)

αkd
k⊤gk

. (B.33)

This quantity is precisely 1 for a strictly quadratic function like Equation
(B.22). Therefore we can use the following heuristic: For the k+1st iteration

if ∆k > 3/4, λk+1 := λk/2

if ∆k < 1/4, λk+1 := 4λk

else, λk+1 := λk.

In other words, if the local quadratic approximation looks good according
to criterion of Equation (B.33), then the step size can be increased (λk+1 is
reduced relative to λk). If this is not the case, then the step size is decreased
(λk+1 is made larger).

All of which leads us, at last, to the following algorithm (Moeller, 1993):

Algorithm (Scaled Conjugate Gradient)

1. Initialize the synaptic weights w with random numbers, set k = 0,
λ = 0.001 and d = −g = −∂E(w)/∂w.

2. Set δ = d⊤Hd+λ�d�2. If δ < 0, set λ = 2(λ−δ/�d�2) and δ = −d⊤Hd.
Save the current cost function E1 = E(w).

3. Determine the step size α = −d⊤g/δ and new synaptic weights w =
w + αd.

4. Calculate the quadricity ∆ = −(E1 − E(w))/(αd⊤g). If ∆ < 1/4,
restore the old weights: w = w − αd, set λ = 4λ, d = −g and go to 2.

5. Set k = k + 1. If ∆ > 3/4, set λ = λ/2.

6. Determine the new local gradient g = ∂E(w)/∂w and the new search di-
rection d = −g+βd, whereby, if k mod nw �= 0 then β = g⊤Hd/(d⊤Hd)
else β = 0.

476 Neural Network Training Algorithms

then λk is replaced by the larger value λ̄k given by

λ̄k = 2

(

λk − δk

�dk�2

)

. (B.32)

This ensures that the denominator in Equation (B.31) becomes positive again.
Note that this increase in λk has the effect of decreasing the step size αk, as
is apparent from Equation (B.31).

Second, we must take into account any deviation of the cost function from
its local quadratic approximation. Such deviations are to be expected for large
step sizes αk. As a measure of the quadricity of E(w) along the chosen step
length, we can use the ratio

∆k = −2
(
E(wk)− E(wk + αkd

k)
)

αkd
k⊤gk

. (B.33)

This quantity is precisely 1 for a strictly quadratic function like Equation
(B.22). Therefore we can use the following heuristic: For the k+1st iteration

if ∆k > 3/4, λk+1 := λk/2

if ∆k < 1/4, λk+1 := 4λk

else, λk+1 := λk.

In other words, if the local quadratic approximation looks good according
to criterion of Equation (B.33), then the step size can be increased (λk+1 is
reduced relative to λk). If this is not the case, then the step size is decreased
(λk+1 is made larger).

All of which leads us, at last, to the following algorithm (Moeller, 1993):

Algorithm (Scaled Conjugate Gradient)

1. Initialize the synaptic weights w with random numbers, set k = 0,
λ = 0.001 and d = −g = −∂E(w)/∂w.

2. Set δ = d⊤Hd+λ�d�2. If δ < 0, set λ = 2(λ−δ/�d�2) and δ = −d⊤Hd.
Save the current cost function E1 = E(w).

3. Determine the step size α = −d⊤g/δ and new synaptic weights w =
w + αd.

4. Calculate the quadricity ∆ = −(E1 − E(w))/(αd⊤g). If ∆ < 1/4,
restore the old weights: w = w − αd, set λ = 4λ, d = −g and go to 2.

5. Set k = k + 1. If ∆ > 3/4, set λ = λ/2.

6. Determine the new local gradient g = ∂E(w)/∂w and the new search di-
rection d = −g+βd, whereby, if k mod nw �= 0 then β = g⊤Hd/(d⊤Hd)
else β = 0.

Scaled conjugate gradient training 477

Listing B.2: Scaled conjugate gradient training (excerpt from the module
auxil.supervisedclass.py).

1 def train(self):

2 try:

3 cost = []

4 costv = []

5 w = np.concatenate ((self._Wh.A.ravel(),

6 self ._Wo.A.ravel ()))

7 nw = len(w)

8 g = self .gradient ()

9 d = -g

10 k = 0

11 lam = 0.001

12 while k < self._epochs:

13 d2=np.sum(d*d) # d^2

14 dTHd =np.sum(self .rop(d).A*d)# d^T.H.d

15 delta = dTHd + lam*d2

16 i f delta < 0:

17 lam = 2*(lam -delta/d2)

18 delta = -dTHd

19 E1 = self.cost () # E(w)

20 dTg = np.sum(d*g) # d^T.g

21 alpha = -dTg/delta

22 dw = alpha*d

23 w += dw

24 self ._Wh = np.mat(np.reshape(

25 w[0: self ._L*(self._N+1)],

26 (self._N+1,self._L)))

27 self ._Wo = np.mat(np.reshape(

28 w[self._L*(self._N+1)::] ,

29 (self._L+1,self._K)))

30 E2 = self.cost () # E(w+dw)

31 Ddelta = -2*(E1-E2)/(alpha*dTg)

7. If E(w) is small enough, stop, else go to 2.

A few remarks on this algorithm:

1. The integer k counts the total number of iterations. Whenever k mod
nw = 0, then exactly nw weight updates have been carried out and the
minimum of a truly quadratic function would have been reached. This is
taken as a good stage at which to restart the search along the negative
local gradient −g rather than continuing along the current conjugate
direction d. One expects that approximation errors will gradually cor-
rupt the determination of the conjugate directions and the “fresh start”
is intended to counter this.

478 Neural Network Training Algorithms

Listing B.3: Scaled conjugate gradient training (continued).

1 i f Ddelta < 0.25:

2 w -= dw # undo

3 self._Wh = np.mat(np.reshape(

4 w[0: self._L*(self._N+1)],

5 (self ._N+1,self._L)))

6 self._Wo = np.mat(np.reshape(

7 w[self ._L*(self._N+1)::],

8 (self ._L+1,self._K)))

9 lam *= 4.0 # decrease step

10 i f lam > 1e20: # step too small

11 k = self._epochs # give up

12 e l se: # else

13 d = -g # restart

14 e l se:

15 k += 1

16 cost.append(E1)

17 costv.append(self.costv())

18 i f Ddelta > 0.75:

19 lam /= 2.0

20 g = self.gradient ()

21 i f k % nw == 0:

22 beta = 0.0

23 e l se:

24 beta = np.sum(

25 self .rop(g).A*d)/dTHd

26 d = beta*d - g

27 return (cost ,costv)

28 except Exception as e:

29 print (’Error:�%s’%e)

30 return None

2. Whenever the quadricity condition is not filled, i.e., whenever ∆ <
1/4, the last weight update is canceled and the search again restarted
along −g.

3. Since the Hessian only occurs in the forms d⊤H , and g⊤H , these quan-
tities can be determined efficiently with the R-operator method.

Listings B.2 and B.3 show the training method in the Python module
auxil.supervisedclass.py which implements the scaled conjugate gradi-
ent algorithm.

478 Neural Network Training Algorithms

Listing B.3: Scaled conjugate gradient training (continued).

1 i f Ddelta < 0.25:

2 w -= dw # undo

3 self._Wh = np.mat(np.reshape(

4 w[0: self._L*(self._N+1)],

5 (self ._N+1,self._L)))

6 self._Wo = np.mat(np.reshape(

7 w[self ._L*(self._N+1)::],

8 (self ._L+1,self._K)))

9 lam *= 4.0 # decrease step

10 i f lam > 1e20: # step too small

11 k = self._epochs # give up

12 e l se: # else

13 d = -g # restart

14 e l se:

15 k += 1

16 cost.append(E1)

17 costv.append(self.costv())

18 i f Ddelta > 0.75:

19 lam /= 2.0

20 g = self.gradient ()

21 i f k % nw == 0:

22 beta = 0.0

23 e l se:

24 beta = np.sum(

25 self .rop(g).A*d)/dTHd

26 d = beta*d - g

27 return (cost ,costv)

28 except Exception as e:

29 print (’Error:�%s’%e)

30 return None

2. Whenever the quadricity condition is not filled, i.e., whenever ∆ <
1/4, the last weight update is canceled and the search again restarted
along −g.

3. Since the Hessian only occurs in the forms d⊤H , and g⊤H , these quan-
tities can be determined efficiently with the R-operator method.

Listings B.2 and B.3 show the training method in the Python module
auxil.supervisedclass.py which implements the scaled conjugate gradi-
ent algorithm.

Extended Kalman filter training 479

B.3 Extended Kalman filter training

In this section the recursive linear regression method described in Appendix
A will be applied to train the feed-forward neural network of Figure 6.10.
The appropriate cost function in this case is the quadratic function, Equation
(6.30), or more specifically, its local version

E(ν) =
1

2
�ℓ(ν)−m(ν)�2; (B.34)

however, our algorithm will also minimize the cross-entropy cost function, as
will be mentioned later.

✖✕
✗✔

✖✕
✗✔

✖✕
✗✔

✗✔

✖✕
✗✔

1

j

L

k
...

...

⑦�
✿
❃

✲

0

mk(ν)

wo
k

1

n1(ν)

nj(ν)

nL(ν)✖✕

FIGURE B.2

An isolated output neuron.

We begin with consideration of the
training process of an isolated neu-
ron. Figure B.2 depicts an output
neuron in the network during pre-
sentation of the νth training pair
(g(ν), ℓ(ν)). The neuron receives its
input from the hidden layer (input
vector n(ν)) and generates the soft-
max output signal

mk(ν) =
ew

o⊤
k (ν)n(ν)

∑K
k′=1 e

wo⊤
k′ (ν)n(ν)

,

for k = 1 . . .K , which is compared to
the desired output ℓk(ν). It is easy to
show that differentiation of mk with
respect to wo

k yields

∂

∂wo
k

mk(ν) = mk(ν)(1 −mk(ν))n(ν) (B.35)

and with respect to n,

∂

∂n
mk(ν) = mk(ν)(1 −mk(ν))w

o
k(ν). (B.36)

B.3.1 Linearization

We shall drop, for the time being, the indices on wo
k, mk, and ℓk, writing them

simply as w, m and ℓ. The weight vectors for the other K− 1 output neurons
are considered to be frozen, so that m can be thought of as being a function
of w only:

m(ν) = m(w(ν)⊤n(ν)).

480 Neural Network Training Algorithms

The weight vector w(ν) is an approximation to the desired synaptic weight
vector for our isolated output neuron, one which has been achieved so far in the
training process, after presentation of the first ν labeled training observations.
A linear approximation to m(ν + 1) can be obtained by expanding in a first-
order Taylor series about the point w(ν),

m(ν + 1) ≈ m(w(ν)⊤n(ν + 1)) +

(
∂

∂w
m(w(ν)⊤n(ν + 1))

)⊤
(w −w(ν)).

From Equation (B.35), we then have

m(ν +1) ≈ m̂(ν +1)+ m̂(ν +1)(1− m̂(ν +1))n(ν +1)⊤(w−w(ν)), (B.37)

where m̂(ν + 1) is given by

m̂(ν + 1) = m(w(ν)⊤n(ν + 1)).

The caret indicates that the signal is calculated from the next (i.e., the ν+1st)
training input, but using the current (i.e., the νth) weights. With the definition
of the linearized input

a(ν) = m̂(ν)(1 − m̂(ν))n(ν)⊤, (B.38)

we can write Equation (B.37) in the form

m(ν + 1) ≈ a(ν + 1)w + [m̂(ν + 1)− aν + 1)w(ν)].

The term in square brackets is — to first order — the error that arises from
the fact that the neuron’s output signal is not simply linear in w. If we neglect
it altogether, then we get the linearized neuron output signal

m(ν + 1) = a(ν + 1)w.

Note that a has been defined in Equation (B.38) as a row vector. In order
to calculate the synaptic weight vector w, we can now apply the theory of
recursive linear regression developed in Appendix A. We simply identify the
parameter vectorw with the synaptic weight vector, y with the desired output
ℓ and observation x(ν + 1)T with a(ν + 1). We then have the least squares
problem

(
ℓν

ℓ(ν + 1)

)

=

(
Aν

a(ν + 1)

)

w +Rν+1;

see Equation (A.5). The Kalman filter equations for the recursive solution of
this problem are unchanged:

Σ(ν + 1) =
[
I −K(ν + 1)a(ν + 1)

]
Σ(ν)

K(ν + 1) = Σ(ν)a(ν + 1)⊤
[
a(ν + 1)Σ(ν)a(ν + 1)⊤ + 1

]−1
,

(B.39)

480 Neural Network Training Algorithms

The weight vector w(ν) is an approximation to the desired synaptic weight
vector for our isolated output neuron, one which has been achieved so far in the
training process, after presentation of the first ν labeled training observations.
A linear approximation to m(ν + 1) can be obtained by expanding in a first-
order Taylor series about the point w(ν),

m(ν + 1) ≈ m(w(ν)⊤n(ν + 1)) +

(
∂

∂w
m(w(ν)⊤n(ν + 1))

)⊤
(w −w(ν)).

From Equation (B.35), we then have

m(ν +1) ≈ m̂(ν +1)+ m̂(ν +1)(1− m̂(ν +1))n(ν +1)⊤(w−w(ν)), (B.37)

where m̂(ν + 1) is given by

m̂(ν + 1) = m(w(ν)⊤n(ν + 1)).

The caret indicates that the signal is calculated from the next (i.e., the ν+1st)
training input, but using the current (i.e., the νth) weights. With the definition
of the linearized input

a(ν) = m̂(ν)(1 − m̂(ν))n(ν)⊤, (B.38)

we can write Equation (B.37) in the form

m(ν + 1) ≈ a(ν + 1)w + [m̂(ν + 1)− aν + 1)w(ν)].

The term in square brackets is — to first order — the error that arises from
the fact that the neuron’s output signal is not simply linear in w. If we neglect
it altogether, then we get the linearized neuron output signal

m(ν + 1) = a(ν + 1)w.

Note that a has been defined in Equation (B.38) as a row vector. In order
to calculate the synaptic weight vector w, we can now apply the theory of
recursive linear regression developed in Appendix A. We simply identify the
parameter vectorw with the synaptic weight vector, y with the desired output
ℓ and observation x(ν + 1)T with a(ν + 1). We then have the least squares
problem

(
ℓν

ℓ(ν + 1)

)

=

(
Aν

a(ν + 1)

)

w +Rν+1;

see Equation (A.5). The Kalman filter equations for the recursive solution of
this problem are unchanged:

Σ(ν + 1) =
[
I −K(ν + 1)a(ν + 1)

]
Σ(ν)

K(ν + 1) = Σ(ν)a(ν + 1)⊤
[
a(ν + 1)Σ(ν)a(ν + 1)⊤ + 1

]−1
,

(B.39)

Extended Kalman filter training 481

✖✕
✗✔
B.38 ✖✕

✗✔
✖✕
✗✔ ✖✕

✗✔
❄

✲ ✑
✑
✑

❃
✻

❄

❄

B.39 B.40

B.38

n(ν + 1) ℓ(ν + 1)

n(ν + 2)

w(ν)

Σ(ν)

a(ν + 1) K(ν + 1)
w(ν + 1)

a(ν + 2)

Σ(ν + 1)

✲

✑✸

FIGURE B.3

Determination of the synaptic weights for an isolated neuron with the Kalman
filter.

while the recursive expression for the parameter vector, Equation (A.8), can
be improved somewhat by replacing the linear approximation to the neuron
output a(ν+1)w(ν) by the actual output for the ν+1st training observation,
namely m̂(ν + 1), so we have

w(ν + 1) = w(ν) +K(ν + 1)
[
ℓ(ν + 1)− m̂(ν + 1)

]
. (B.40)

B.3.2 The algorithm

The recursive calculation of w is depicted in Figure B.3. The input is the
current weight vectorw(ν), its covariance matrixΣν , and the output vector of
the hidden layer n(ν+1) obtained by propagating the next input observation
g(ν+1) through the network. After determining the linearized input a(ν+1)
from Equation (B.38), the Kalman gain Kν+1 and the new covariance matrix
Σν+1 are calculated with Equation (B.39). Finally, the weights are updated
according to Equation (B.40) to give w(ν+1) and the procedure is repeated.

To make our notation explicit for the output neurons, we substitute

ℓ(ν) → ℓk(ν)

w(ν) → wo
k(ν)

m̂(ν + 1) → mk

(
wo⊤

k (ν)n(ν + 1)
)

a(ν + 1) → ao
k(ν + 1) = m̂k(ν + 1)(1 − m̂k(ν + 1))n(ν + 1)⊤

K(ν) → Ko
k(ν)

Σ(ν) → Σo
k(ν),

for k = 1 . . .K. Then Equation (B.40) becomes

wo
k(ν+1) = wo

k(ν)+Ko
k(ν+1)

[
ℓk(ν+1)−m̂k(ν+1)

]
, k = 1 . . .K. (B.41)

482 Neural Network Training Algorithms

Recalling that we wish to minimize the local quadratic cost function, Equation
(B.34), note that the expression in square brackets in Equation (B.41) is in
fact the negative derivative of E(ν) with respect to the output signal of the
neuron, i.e.,

ℓk(ν + 1)−mk(ν + 1) = − ∂E(ν + 1)

∂mk(ν + 1)
,

so that Equation (B.41) can be expressed in the form

wo
k(ν + 1) = wo

k(ν) −Ko
k(ν + 1)

[
∂E(ν + 1)

∂mk(ν + 1)

]

m̂k(ν+1)

. (B.42)

With this observation, we can turn consideration to the hidden neurons, mak-
ing the substitutions

w(ν) → wh
j (ν)

m̂(ν + 1) → n̂j(ν + 1) = f
(
wh⊤

j (ν)g(ν + 1)
)

a(ν + 1) → ah
j (ν + 1) = n̂j(ν + 1)(1− n̂j(ν + 1))g(ν + 1)⊤

K(ν) → Kh
j (ν)

Σ(ν) → Σh
j (ν),

for j = 1 . . . L. Then, analogously to Equation (B.42), the update equation
for the weight vector of the jth hidden neuron is

wh
j (ν + 1) = wh

j (ν)−Kh
j (ν + 1)

[
∂E(ν + 1)

∂nj(ν + 1)

]

n̂j(ν+1)

. (B.43)

To obtain the partial derivative in Equation (B.43), we differentiate the cost
function, Equation (B.34), applying the chain rule:

∂E(ν + 1)

∂nj(ν + 1)
= −

K∑

k=1

(ℓk(ν + 1)−mk(ν + 1))
∂mk(ν + 1)

∂nj(ν + 1)
.

From Equation (B.36), noting that (wo
k)j = W o

jk, we have

∂mk(ν + 1)

∂nj(ν + 1)
= mk(ν + 1)(1−mk(ν + 1))W o

jk(ν + 1).

Combining the last two equations,

∂E(ν + 1)

∂nj(ν + 1)
= −

K∑

k=1

(ℓk(ν+1)−mk(ν+1))mk(ν+1)(1−mk(ν+1))W o
jk(ν+1),

which we can write more compactly as

∂E(ν + 1)

∂nj(ν + 1)
= −W o

j�(ν + 1)βo(ν + 1), (B.44)

482 Neural Network Training Algorithms

Recalling that we wish to minimize the local quadratic cost function, Equation
(B.34), note that the expression in square brackets in Equation (B.41) is in
fact the negative derivative of E(ν) with respect to the output signal of the
neuron, i.e.,

ℓk(ν + 1)−mk(ν + 1) = − ∂E(ν + 1)

∂mk(ν + 1)
,

so that Equation (B.41) can be expressed in the form

wo
k(ν + 1) = wo

k(ν) −Ko
k(ν + 1)

[
∂E(ν + 1)

∂mk(ν + 1)

]

m̂k(ν+1)

. (B.42)

With this observation, we can turn consideration to the hidden neurons, mak-
ing the substitutions

w(ν) → wh
j (ν)

m̂(ν + 1) → n̂j(ν + 1) = f
(
wh⊤

j (ν)g(ν + 1)
)

a(ν + 1) → ah
j (ν + 1) = n̂j(ν + 1)(1− n̂j(ν + 1))g(ν + 1)⊤

K(ν) → Kh
j (ν)

Σ(ν) → Σh
j (ν),

for j = 1 . . . L. Then, analogously to Equation (B.42), the update equation
for the weight vector of the jth hidden neuron is

wh
j (ν + 1) = wh

j (ν)−Kh
j (ν + 1)

[
∂E(ν + 1)

∂nj(ν + 1)

]

n̂j(ν+1)

. (B.43)

To obtain the partial derivative in Equation (B.43), we differentiate the cost
function, Equation (B.34), applying the chain rule:

∂E(ν + 1)

∂nj(ν + 1)
= −

K∑

k=1

(ℓk(ν + 1)−mk(ν + 1))
∂mk(ν + 1)

∂nj(ν + 1)
.

From Equation (B.36), noting that (wo
k)j = W o

jk, we have

∂mk(ν + 1)

∂nj(ν + 1)
= mk(ν + 1)(1−mk(ν + 1))W o

jk(ν + 1).

Combining the last two equations,

∂E(ν + 1)

∂nj(ν + 1)
= −

K∑

k=1

(ℓk(ν+1)−mk(ν+1))mk(ν+1)(1−mk(ν+1))W o
jk(ν+1),

which we can write more compactly as

∂E(ν + 1)

∂nj(ν + 1)
= −W o

j�(ν + 1)βo(ν + 1), (B.44)

Extended Kalman filter training 483

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Epoch

5

6

7

8

9

10

Log(Cross entropy)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Epoch

5

6

7

8

9

10

Log(Cross entropy)

FIGURE B.4

Comparison of cost function minimization. Left: training with back-
propagation, right: with the extended Kalman filter.

where W o
j� is the jth row (!) of the output-layer weight matrix, and where

βo(ν + 1) = (ℓ(ν + 1)−m(ν + 1)) ·m(ν + 1) · (1−m(ν + 1)).

The correct update relation for the weights of the jth hidden neuron is there-
fore

wh
j (ν + 1) = wh

j (ν) +Kh
j (ν + 1)

[
W o

j�(ν + 1)βo(ν + 1)
]
. (B.45)

Apart from initialization of the covariance matricesΣh
j (0),Σ

o
k(0), the Kalman

training procedure has no adjustable parameters whatsoever. The initial co-
variance matrices are simply taken to be proportional to the corresponding
identity matrices:

Σh
j (0) = ZIh, Σo

k(0) = ZIo, Z ≫ 1, j = 1 . . . L, k = 1 . . .K,

where Ih is the (N +1)× (N+1) and Io the (L+1)× (L+1) identity matrix.
We choose Z = 100 and obtain the following algorithm:

Algorithm (Kalman Filter Training)

1. Set ν = 0, Σh
j (0) = 100Ih, j = 1 . . . L, Σo

k(0) = 100Io, k = 1 . . .K and

initialize the synaptic weight matrices W h(0) and W o(0) with random
numbers.

2. Choose a training pair (g(ν + 1), ℓ(ν + 1)) and determine the hidden
layer output vector

n̂(ν + 1) =

(
1

f
(

W h(ν)⊤g(ν + 1)
)
)

,

484 Neural Network Training Algorithms

and with it the quantities

ah
j (ν + 1) = n̂j(ν + 1)(1− n̂j(ν + 1))g(ν + 1)

⊤
, j = 1 . . . L,

m̂k(ν + 1) = mk

(
wo⊤

k (ν)n̂(ν + 1)
)

ao
k(ν + 1) = m̂k(ν + 1)(1− m̂k(ν + 1))n̂(ν + 1)

⊤
, k = 1 . . .K

and

βo(ν + 1) = (ℓ(ν + 1)− m̂(ν + 1)) · m̂(ν + 1) · (1− m̂(ν + 1)).

3. Determine the Kalman gains for all of the neurons according to

Ko
k(ν + 1) = Σo

k(ν)a
o
k(ν + 1)

⊤[
ao
k(ν + 1)Σo

k(ν)a
o
k(ν + 1)

⊤
+ 1

]−1
,

k = 1 . . .K

Kh
j (ν + 1) = Σh

j (ν)a
h
j (ν + 1)

⊤[
ah
j (ν + 1)Σh

j (ν)a
h
j (ν + 1)

⊤
+ 1

]−1
,

j = 1 . . . L

4. Update the synaptic weight matrices:

wo
k(ν + 1) = wo

k(ν) +Ko
k(ν + 1)[ℓk(ν + 1)− m̂k(ν + 1)], k = 1 . . .K

wh
j (ν + 1) = wh

j (ν) +Kh
j (ν + 1)

[
W o

j�(ν + 1)βo(ν + 1)
]
, j = 1 . . . L.

5. Determine the new covariance matrices:

Σo
k(ν + 1) =

[
Io −Ko

k(ν + 1)ao
k(ν + 1)

]
Σo

k(ν), k = 1 . . .K

Σh
j (ν + 1) =

[
Ih −Kh

j (ν + 1)ah
j (ν + 1)

]
Σh

j (ν), j = 1 . . . L.

6. If the overall cost function, Equation (6.30), is sufficiently small, stop,
else set ν = ν + 1 and go to 2.

This method was originally suggested by Shah and Palmieri (1990), who
called it the multiple extended Kalman algorithm (MEKA),∗ and explained in
detail by Hayken (1994). Its Python implementation is in the class Ffnekf

which may be imported from the Python module auxil.supervisedclass.py;
see Appendix C. The cost functions for back-propagation and extended Kalman
filter training are compared in Figure B.4. Although both methods use stochas-
tic training, the Kalman filter is considerably more efficient.

∗Multiple, because the algorithm is applied to multiple neurons, the adjective extended

characterizes Kalman filter methods that linearize nonlinear models by using a first-order
Taylor expansion.

484 Neural Network Training Algorithms

and with it the quantities

ah
j (ν + 1) = n̂j(ν + 1)(1− n̂j(ν + 1))g(ν + 1)

⊤
, j = 1 . . . L,

m̂k(ν + 1) = mk

(
wo⊤

k (ν)n̂(ν + 1)
)

ao
k(ν + 1) = m̂k(ν + 1)(1− m̂k(ν + 1))n̂(ν + 1)

⊤
, k = 1 . . .K

and

βo(ν + 1) = (ℓ(ν + 1)− m̂(ν + 1)) · m̂(ν + 1) · (1− m̂(ν + 1)).

3. Determine the Kalman gains for all of the neurons according to

Ko
k(ν + 1) = Σo

k(ν)a
o
k(ν + 1)

⊤[
ao
k(ν + 1)Σo

k(ν)a
o
k(ν + 1)

⊤
+ 1

]−1
,

k = 1 . . .K

Kh
j (ν + 1) = Σh

j (ν)a
h
j (ν + 1)

⊤[
ah
j (ν + 1)Σh

j (ν)a
h
j (ν + 1)

⊤
+ 1

]−1
,

j = 1 . . . L

4. Update the synaptic weight matrices:

wo
k(ν + 1) = wo

k(ν) +Ko
k(ν + 1)[ℓk(ν + 1)− m̂k(ν + 1)], k = 1 . . .K

wh
j (ν + 1) = wh

j (ν) +Kh
j (ν + 1)

[
W o

j�(ν + 1)βo(ν + 1)
]
, j = 1 . . . L.

5. Determine the new covariance matrices:

Σo
k(ν + 1) =

[
Io −Ko

k(ν + 1)ao
k(ν + 1)

]
Σo

k(ν), k = 1 . . .K

Σh
j (ν + 1) =

[
Ih −Kh

j (ν + 1)ah
j (ν + 1)

]
Σh

j (ν), j = 1 . . . L.

6. If the overall cost function, Equation (6.30), is sufficiently small, stop,
else set ν = ν + 1 and go to 2.

This method was originally suggested by Shah and Palmieri (1990), who
called it the multiple extended Kalman algorithm (MEKA),∗ and explained in
detail by Hayken (1994). Its Python implementation is in the class Ffnekf

which may be imported from the Python module auxil.supervisedclass.py;
see Appendix C. The cost functions for back-propagation and extended Kalman
filter training are compared in Figure B.4. Although both methods use stochas-
tic training, the Kalman filter is considerably more efficient.

∗Multiple, because the algorithm is applied to multiple neurons, the adjective extended

characterizes Kalman filter methods that linearize nonlinear models by using a first-order
Taylor expansion.

C

Software

This appendix provides installation instructions for the software accompany-
ing the book. It also gives a link to the documentation of all scripts used to
illustrate the various algorithms and methods discussed in the text as well as
to the solutions to the exercises.

C.1 Installation

By far the easiest way to use the software is to run it in a Docker container on
your host operating system. For this, all you need is the Docker runtime which
is freely available. It can be easily installed on Linux, Mac, and Windows, see

https://docs.docker.com

Once you have Docker installed, pull and run the container with

docker run -d -p 8888:8888

-v <path-to-crc5imagery>:/home/imagery/ --name=crc5

mort/crc5docker

This maps the host directory crc5imagery to the container directory

/home/imagery/

and runs the container in detached mode under the name crc5. The imagery
directory is needed to run the scripts on the image files discussed in the text.
Instructions to access the compressed crc5imagery directory can be found in
the README on the GitHub repository

https://github.com/mortcanty/CRC5Docker

Point your browser to http://localhost:8888 to see the JupyterLab home
page. Open a notebook to begin work. Stop with

docker stop crc5

Re-start with

DOI: 10.1201/9781003503286-C 485

https://docs.docker.com
https://github.com/mortcanty/CRC5Docker
https://doi.org/10.1201/9781003503286-C

486 Software

docker start crc5

For LLM enthusiasts an experimental RAG (retrieval augmented genera-
tion) version of the Docker container can be pulled and run with

docker run -d -p 8888:8888 -p 7860:7860

-v <path-to-crc5imagery>:/home/imagery/ --name=crc5_rag

mort/crc5docker_rag

which includes an additional JupyterLab notebook to query the textbook’s
content informally. Since the LLM is running locally the response time is very
slow (minutes).

C.2 Command line utilities

Here we mention some useful command line utilities available in the Docker
container. They can be run from the Jupyter notebook interface by open-
ing a local terminal, or in the case of the gdal utilities which don’t request
additional input from stdin, directly from an input cell by prepending the
command with a “!”.

C.2.1 gdal

A set of utilities is automatically installed together with GDAL, the geospatial
data abstraction library. See

https://gdal.org/programs/index.html

for a full list and documentation. From an input cell enter:

!<utility name> [OPTIONS] <inputs>

Example: Read and display image statistics on an LANDSAT 7 ETM+ image.
Force computation if no statistics are stored in the image.

!gdalinfo -stats imagery/LE7_20010626

C.2.2 earthengine

The Google Earth Engine Command Line Interface allows various manipula-
tions of, and provides information about Earth Engine assets and tasks.
Example: Add authentication information to your Docker container. Open a
local terminal from the notebook home page and enter:

!earthengine authenticate

https://gdal.org/programs/index.html

486 Software

docker start crc5

For LLM enthusiasts an experimental RAG (retrieval augmented genera-
tion) version of the Docker container can be pulled and run with

docker run -d -p 8888:8888 -p 7860:7860

-v <path-to-crc5imagery>:/home/imagery/ --name=crc5_rag

mort/crc5docker_rag

which includes an additional JupyterLab notebook to query the textbook’s
content informally. Since the LLM is running locally the response time is very
slow (minutes).

C.2 Command line utilities

Here we mention some useful command line utilities available in the Docker
container. They can be run from the Jupyter notebook interface by open-
ing a local terminal, or in the case of the gdal utilities which don’t request
additional input from stdin, directly from an input cell by prepending the
command with a “!”.

C.2.1 gdal

A set of utilities is automatically installed together with GDAL, the geospatial
data abstraction library. See

https://gdal.org/programs/index.html

for a full list and documentation. From an input cell enter:

!<utility name> [OPTIONS] <inputs>

Example: Read and display image statistics on an LANDSAT 7 ETM+ image.
Force computation if no statistics are stored in the image.

!gdalinfo -stats imagery/LE7_20010626

C.2.2 earthengine

The Google Earth Engine Command Line Interface allows various manipula-
tions of, and provides information about Earth Engine assets and tasks.
Example: Add authentication information to your Docker container. Open a
local terminal from the notebook home page and enter:

!earthengine authenticate

Source code and documentation 487

and follow the instructions. More usually you will authenticate and initialize
from within the Jupyter notebook Python environment:

import ee

ee.Authenticate()

ee.Initialize()

C.2.3 ipcluster

Start/stop a parallel processing cluster, see

https://github.com/ipython/ipyparallel

Example: Start four IPython engines in a Jupyter notebook cell and detach
them from the Jupyter kernel in order to run other cells. Open a notebook
cell and enter:

!ipcluster start -n 4 --daemonize

C.3 Source code and documentation

For those who wish to program the examples given in the exercises, or modi-
fy/improve the more extensive scripts accompanying the text, the source code
is available at

https://github.com/mortcanty/CRC5Docker

and includes the Dockerfile to build a local version of the Docker image. This
repo also provides detailed documentation for the individual scripts contained
in the /home/scripts directory and some of the utilities in the /home/auxil
directory:

https://github.com/mortcanty/CRC5Docker/python_scripts.pdf

The scripts are all command line oriented and are documented in the context
of the Jupyter notebook interface.

If you want to avoid using a Docker container altogether, you can clone the
entire GitHub repository and create a Python virtual environment, calling it
venvcrc5. Use the Dockerfile as a guide to installing the necessary utilities.

https://github.com/ipython/ipyparallel
https://github.com/mortcanty/CRC5Docker
https://github.com/mortcanty/CRC5Docker/python_scripts.pdf

488 Software

C.4 Solutions manual

Solutions to selected exercises following each chapter are also available in pdf
format on the repo:

https://github.com/mortcanty/CRC5Docker/solutions.pdf

https://github.com/mortcanty/CRC5Docker/solutions.pdf

488 Software

C.4 Solutions manual

Solutions to selected exercises following each chapter are also available in pdf
format on the repo:

https://github.com/mortcanty/CRC5Docker/solutions.pdf

Mathematical Notation

X random variable
x realization of X , observation
X random (column) vector
x realization of X (vector observation)
X data design matrix for X
G, g,G, g,G as above, designating pixel gray-values
κ valid kernel function
K kernel matrix with elements κ(x,x′)
x⊤ transposed form of the vector x (row vector)
�x� length or (2-)norm of x
x⊤y inner product of two vectors (scalar)
x · y Hadamard (component-by-component) product
xy⊤ outer product of two vectors (matrix)
C random matrix
c realization of C
x⊤Cy quadratic form (scalar)
|C| determinant of C
tr(C) trace of C
I identity matrix
0 column vector of zeroes
1 column vector of ones
Λ Diag(λ1 . . . λN) (diagonal matrix of eigenvalues)
∂f(x)
∂x partial derivative of f(x) with respect to vector x

f(x)|x=x∗ f(x) evaluated at x = x∗

i
√
−1

|z| absolute value of real or complex number z
z∗ complex conjugate of complex number z

Z† Hermitian conjugate of complex vector or matrix Z

Ω sample space in probability theory
Pr(A | B) probability of event A conditional on event B
P (x) distribution function for random variable X
P (x) joint distribution function for random vector X
p(x) probability density function for X
p(x) joint probability density function for X
P the P -value
�X�, µ mean (or expected) value

489

490 Mathematical Notation

var(X), σ2 variance
�X�, µ mean vector
Σ variance–covariance matrix

µ̂, Σ̂ maximum likelihood estimates of µ, Σ
Φ(x) standard normal probability distribution function
φ(x) standard normal probability density function
pχ2;n(x) chi-square density function with n degrees of freedom
pt;n(x) Student-t density function with n degrees of freedom
pf ;m,n(x) F -density function with m and n degrees of freedom
pW(x,m) Wishart distribution with m degrees of freedom
pWC (x,m) complex Wishart distribution with m degrees of freedom
(x̂(0), x̂(1) . . .) discrete Fourier transform of array (x(0), x(1) . . .)
x ∗ y discrete convolution of vectors x and y

�φ, ψ� inner product
∫
φ(x)ψ(x)dx of functions φ and ψ

Ni neighborhood of ith pixel
{x | f(x)} set of elements x that satisfy condition f(x)
K set of class labels {1 . . .K}
ℓ vector representation of a class label
u ∈ U u is an element of the set U
U ⊗ V Cartesian product set
V ⊂ U V is a (proper) subset of the set U
argmaxx f(x) the set of x which maximizes f(x)
f : A �→ B the function f which maps the set A to the set B
IR set of real numbers
Z set of integers
=: equal by definition

end of a proof

490 Mathematical Notation

var(X), σ2 variance
�X�, µ mean vector
Σ variance–covariance matrix

µ̂, Σ̂ maximum likelihood estimates of µ, Σ
Φ(x) standard normal probability distribution function
φ(x) standard normal probability density function
pχ2;n(x) chi-square density function with n degrees of freedom
pt;n(x) Student-t density function with n degrees of freedom
pf ;m,n(x) F -density function with m and n degrees of freedom
pW(x,m) Wishart distribution with m degrees of freedom
pWC (x,m) complex Wishart distribution with m degrees of freedom
(x̂(0), x̂(1) . . .) discrete Fourier transform of array (x(0), x(1) . . .)
x ∗ y discrete convolution of vectors x and y

�φ, ψ� inner product
∫
φ(x)ψ(x)dx of functions φ and ψ

Ni neighborhood of ith pixel
{x | f(x)} set of elements x that satisfy condition f(x)
K set of class labels {1 . . .K}
ℓ vector representation of a class label
u ∈ U u is an element of the set U
U ⊗ V Cartesian product set
V ⊂ U V is a (proper) subset of the set U
argmaxx f(x) the set of x which maximizes f(x)
f : A �→ B the function f which maps the set A to the set B
IR set of real numbers
Z set of integers
=: equal by definition

end of a proof

References

Aanaes, H., Sveinsson, J. R., Nielsen, A. A., Bovith, T., and Benediktsson,
A. (2008). Model based satellite image fusion. IEEE Transactions on Geo-
science and Remote Sensing, 46(5):1336–1346.

Aboufadel, E. and Schlicker, S. (1999). Discovering Wavelets. J. Wiley and
Sons.

Abrams, M., Hook, S., and Ramachandran, B. (1999). ASTER user hand-
book. Technical report, Jet Propulsion Laboratory and California Institute
of Technology.

Aiazzi, B., Alparone, L., Baronti, S., and Garzelli, A. (2002). Context-driven
fusion of high spatial and spectral resolution images based on oversampled
multiresolution analysis. IEEE Transactions on Geoscience and Remote
Sensing, 40(10):2300–2312.

Amro, I., Mateos, J., Vega, M., et al. (2011). A survey of classical methods and
new trends in pansharpening of multispectral images. EURASIP Journal
on Advances in Signal Processing, 79. https://doi.org/10.1186/1687-6180-
2011-79.

Anderson, T. W. (2003). An Introduction to Multivariate Statistical Analysis.
Wiley Series in Probability and Statistics, third edition.

Anfinsen, S., Doulgeris, A., and Eltoft, T. (2009a). Estimation of the equiv-
alent number of looks in polarimetric synthetic aperture radar imagery.
IEEE Transactions on Geoscience and Remote Sensing, 47(11):3795–3809.

Anfinsen, S., Eltoft, T., and Doulgeris, A. (2009b). A relaxed Wishart model
for polarimetric SAR data. In Proc. PolinSAR, 4th International Work-
shop on Science and Applications of SAR Polarimetry and Polarimetric
Interferometry, Frascati, Italy.

Beisl, U. (2001). Correction of Bidirectional Effects in Imaging Spectrometer
Data. Remote Sensing Laboratories, Remote Sensing Series 37, Department
of Geography, University of Zurich.

Bellman, R. (1961). Adaptive Control Procesess, A Guided Tour. Princeton
University Press.

491

https://doi.org/10.1186/1687-6180-2011-79
https://doi.org/10.1186/1687-6180-2011-79

492 References

Belousov, A. I., Verzakov, S. A., and von Frese, J. (2002). A flexible classi-
fication approach with optimal generalization performance: Support vector
machines. Chemometrics and Intelligent Laboratory Systems, 64:15–25.

Bilbo, C. M. (1989). Statistisk analyse af relationer mellem alternative anti-
stoftracere. Master’s thesis, Informatics and Mathematical Modeling, Tech-
nical University of Denmark, Lyngby. In Danish.

Bishop, C. M. (1995). Neural Networks for Pattern Recognition. Oxford
University Press.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.

Bishop, Y. M. M., Feinberg, E. E., and Holland, P. W. (1975). Discrete
Multivariate Analysis, Theory and Practice. Cambridge Press.

Box, G. E. P. (1949). A general distribution theory for a class of likelihood
criteria. Biometrika, 36:317–346.

Bradley, A. P. (2003). Shift-invariance in the discrete wavelet transform. In
Sun, C., Talbot, H., Ourselin, S., and Adriaansen, T., editors, Proc. VIIth
Digital Image Computing: Techniques and Applications, pages 29–38.

Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2):123–140.

Breiman, L. (2001). Xception: Deep learning with depthwise sep-
arable convolutions. Computer Vision and Pattern Recognition.
https://doi.org/10.48550/arXiv.1610.02357.

Bridle, J. S. (1990). Probabilistic interpretation of feedforward classification
outputs, with relationships to statistical pattern recognition. In Soulié,
F. F. and Hérault, J., editors, Neurocomputing: Algorithms, Architectures
and Applications, pages 227–236. Springer.

Bruzzone, L. and Prieto, D. F. (2000). Automatic analysis of the difference
image for unsupervised change detection. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 11(4):1171–1182.

Canny, J. (1986). A computational approach to edge detection. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 8(6):679–699.

Canty, M. J. (2009). Boosting a fast neural network for supervised land cover
classification. Computers and Geosciences, 35:1280–1295.

Canty, M. J. (2014). CRCENVI: ENVI/IDL scripts for Image
Analysis, Classification and Change Detection in Remote Sensing.
https://mortcanty.github.io/CRCENVI/.

Canty, M. J. and Nielsen, A. A. (2006). Visualization and unsuper-
vised classification of changes in multispectral satellite imagery. In-
ternational Journal of Remote Sensing, 27(18):3961–3975. Internet
http://www.imm.dtu.dk/pubdb/p.php?3389.

https://doi.org/10.48550/arXiv.1610.02357
https://mortcanty.github.io/CRCENVI/
http://www.imm.dtu.dk/pubdb/p.php?3389

492 References

Belousov, A. I., Verzakov, S. A., and von Frese, J. (2002). A flexible classi-
fication approach with optimal generalization performance: Support vector
machines. Chemometrics and Intelligent Laboratory Systems, 64:15–25.

Bilbo, C. M. (1989). Statistisk analyse af relationer mellem alternative anti-
stoftracere. Master’s thesis, Informatics and Mathematical Modeling, Tech-
nical University of Denmark, Lyngby. In Danish.

Bishop, C. M. (1995). Neural Networks for Pattern Recognition. Oxford
University Press.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.

Bishop, Y. M. M., Feinberg, E. E., and Holland, P. W. (1975). Discrete
Multivariate Analysis, Theory and Practice. Cambridge Press.

Box, G. E. P. (1949). A general distribution theory for a class of likelihood
criteria. Biometrika, 36:317–346.

Bradley, A. P. (2003). Shift-invariance in the discrete wavelet transform. In
Sun, C., Talbot, H., Ourselin, S., and Adriaansen, T., editors, Proc. VIIth
Digital Image Computing: Techniques and Applications, pages 29–38.

Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2):123–140.

Breiman, L. (2001). Xception: Deep learning with depthwise sep-
arable convolutions. Computer Vision and Pattern Recognition.
https://doi.org/10.48550/arXiv.1610.02357.

Bridle, J. S. (1990). Probabilistic interpretation of feedforward classification
outputs, with relationships to statistical pattern recognition. In Soulié,
F. F. and Hérault, J., editors, Neurocomputing: Algorithms, Architectures
and Applications, pages 227–236. Springer.

Bruzzone, L. and Prieto, D. F. (2000). Automatic analysis of the difference
image for unsupervised change detection. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 11(4):1171–1182.

Canny, J. (1986). A computational approach to edge detection. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 8(6):679–699.

Canty, M. J. (2009). Boosting a fast neural network for supervised land cover
classification. Computers and Geosciences, 35:1280–1295.

Canty, M. J. (2014). CRCENVI: ENVI/IDL scripts for Image
Analysis, Classification and Change Detection in Remote Sensing.
https://mortcanty.github.io/CRCENVI/.

Canty, M. J. and Nielsen, A. A. (2006). Visualization and unsuper-
vised classification of changes in multispectral satellite imagery. In-
ternational Journal of Remote Sensing, 27(18):3961–3975. Internet
http://www.imm.dtu.dk/pubdb/p.php?3389.

References 493

Canty, M. J. and Nielsen, A. A. (2008). Automatic radiometric normalization
of multitemporal satellite imagery with the iteratively re-weighted MAD
transformation. Remote Sensing of Environment, 112(3):1025–1036. Inter-
net http://www.imm.dtu.dk/pubdb/p.php?5362.

Canty, M. J., Nielsen, A. A., Conradsen, K., and Skriver, H. (2019). Statis-
tical analysis of changes in Sentinel-1 time series on Google Earth Engine.
Remote Sensing, 12(1):46.

Canty, M. J., Nielsen, A. A., and Schmidt, M. (2004). Auto-
matic radiometric normalization of multitemporal satellite im-
agery. Remote Sensing of Environment, 91(3-4):441–451. Internet
http://www.imm.dtu.dk/pubdb/p.php?2815.

Canty, M. J., Nielsen, A. A., Skriver, H., and Conradsen, K. (2020). Wishart-
based adaptive temporal filtering of polarimetric sar imagery. Remote Sens-
ing, 12(15):2454.

Canty, M. J. and Nieslsen, A. A. (2012). Linear and kernel methods for
multivariate change detection. Computers and Geosciences, 38:107–114.

Chollet, F. (2017). Random forests. Machine Learning, 45:5–321.

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational
and Psychological Measurement, 20:37–46.

Comaniciu, D. and Meer, P. (2002). Mean shift: A robust approach toward
feature space analysis. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 24(5):603–619.

Congalton, R. G. and Green, K. (1999). Assessing the Accuracy of Remotely
Sensed Data: Principles and Practices. Lewis Publishers.

Conradsen, K., Nielsen, A. A., Schou, J., and Skriver, H. (2003). A
test statistic in the complex Wishart distribution and its applica-
tion to change detection in polarimetric SAR data. IEEE Trans-
actions on Geoscience and Remote Sensing, 41(1):3–19. Internet
http://www2.imm.dtu.dk/pubdb/views/publication details.php?id=1219.

Conradsen, K., Nielsen, A. A., and Skriver, H. (2016). Determining the points
of change in time series of polarimetric SAR data. IEEE Transactions on
Geoscience and Remote Sensing, 54(5):3007–3024.

Conradsen, K., Nielsen, A. A., and Skriver, H. (2024). Omnibus change de-
tection in block diagonal covariance matrix polsar data illustrated with
simulated and sentinel-1 data. IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, 17:16359–16376.

Coppin, P., Jonckheere, I., Nackaerts, K., and Muys, B. (2004). Digital change
detection methods in ecosystem monitoring: A review. International Jour-
nal of Remote Sensing, 25(9):1565–1596.

http://www.imm.dtu.dk/pubdb/p.php?5362
http://www.imm.dtu.dk/pubdb/p.php?2815
http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=1219

494 References

Cristianini, N. and Shawe-Taylor, J. (2000). Support Vector Machines and
Other Kernel-based Learning Methods. Cambridge University Press.

Daubechies, I. (1988). Orthonormal bases of compactly supported wavelets.
Communications on Pure and Applied Mathematics, 41:909–996.

Dhillon, I., Guan, Y., and Kulis, B. (2005). A unified view of kernel K-means,
spectral clustering and graph partitioning. Technical report UTCS TR-04-
25, University of Texas at Austin.

Dietterich, T. G. (1998). Approximate statistical tests for comparing super-
vised classification learning algorithms. Neural Computation, 10(7):1895–
1923.

Du, Y., Teillet, P. M., and Cihlar, J. (2002). Radiometric normalization of
multitemporal high-resolution images with quality control for land cover
change detection. Remote Sensing of Environment, 82:123–134.

Duda, R. O. and Hart, P. E. (1973). Pattern Classification and Scene Analysis.
J. Wiley and Sons.

Duda, R. O., Hart, P. E., and Stork, D. G. (2001). Pattern Classification.
Wiley Interscience, second edition.

Duda, T. and Canty, M. J. (2002). Unsupervised classification of satellite im-
agery: Choosing a good algorithm. International Journal of Remote Sens-
ing, 23(11):2193–2212.

Dunn, J. C. (1973). A fuzzy relative of the isodata process and its use in
detecting compact well-separated clusters. Journal of Cybernetics, PAM1-
1:32–57.

Fahlman, S. E. and LeBiere, C. (1990). The cascade correlation learning
architecture. In Touertzky, D. S., editor, Advances in Neural Information
Processing Systems 2, pages 524–532. Morgan Kaufmann.

Fanning, D. W. (2000). IDL Programming Techniques. Fanning Software
Consulting.

Fraley, C. (1996). Algorithms for model-based Gaussian hierarchical cluster-
ing. Technical report 311, Department of Statistics, University of Washing-
ton, Seattle.

Freund, J. E. (1992). Mathematical Statistics. Prentice-Hall, fifth edition.

Freund, Y. and Shapire, R. E. (1996). Experiments with a new boosting
algorithm. In Proceedings. Thirteenth International Conference on Machine
Learning, pages 148–156. Morgan Kaufmann.

Freund, Y. and Shapire, R. E. (1997). A decision-theoretic generalization of
on-line learning and an application to boosting. Journal of Computer and
System Sciences, 55:119–139.

494 References

Cristianini, N. and Shawe-Taylor, J. (2000). Support Vector Machines and
Other Kernel-based Learning Methods. Cambridge University Press.

Daubechies, I. (1988). Orthonormal bases of compactly supported wavelets.
Communications on Pure and Applied Mathematics, 41:909–996.

Dhillon, I., Guan, Y., and Kulis, B. (2005). A unified view of kernel K-means,
spectral clustering and graph partitioning. Technical report UTCS TR-04-
25, University of Texas at Austin.

Dietterich, T. G. (1998). Approximate statistical tests for comparing super-
vised classification learning algorithms. Neural Computation, 10(7):1895–
1923.

Du, Y., Teillet, P. M., and Cihlar, J. (2002). Radiometric normalization of
multitemporal high-resolution images with quality control for land cover
change detection. Remote Sensing of Environment, 82:123–134.

Duda, R. O. and Hart, P. E. (1973). Pattern Classification and Scene Analysis.
J. Wiley and Sons.

Duda, R. O., Hart, P. E., and Stork, D. G. (2001). Pattern Classification.
Wiley Interscience, second edition.

Duda, T. and Canty, M. J. (2002). Unsupervised classification of satellite im-
agery: Choosing a good algorithm. International Journal of Remote Sens-
ing, 23(11):2193–2212.

Dunn, J. C. (1973). A fuzzy relative of the isodata process and its use in
detecting compact well-separated clusters. Journal of Cybernetics, PAM1-
1:32–57.

Fahlman, S. E. and LeBiere, C. (1990). The cascade correlation learning
architecture. In Touertzky, D. S., editor, Advances in Neural Information
Processing Systems 2, pages 524–532. Morgan Kaufmann.

Fanning, D. W. (2000). IDL Programming Techniques. Fanning Software
Consulting.

Fraley, C. (1996). Algorithms for model-based Gaussian hierarchical cluster-
ing. Technical report 311, Department of Statistics, University of Washing-
ton, Seattle.

Freund, J. E. (1992). Mathematical Statistics. Prentice-Hall, fifth edition.

Freund, Y. and Shapire, R. E. (1996). Experiments with a new boosting
algorithm. In Proceedings. Thirteenth International Conference on Machine
Learning, pages 148–156. Morgan Kaufmann.

Freund, Y. and Shapire, R. E. (1997). A decision-theoretic generalization of
on-line learning and an application to boosting. Journal of Computer and
System Sciences, 55:119–139.

References 495

Fukunaga, K. (1990). Introduction to Statistical Pattern Recognition. Aca-
demic Press, second edition.

Fukunaga, K. and Hostetler, L. D. (1975). The estimation of the gradient of
a density function, with applications to pattern recognition. IEEE Trans-
actions on Information Theory, IT-21:32–40.

Galloy, M. (2011). Modern IDL, A Guide to IDL Programming. M. Galloy.
Internet http://michaelgalloy.com/.

Gath, I. and Geva, A. B. (1989). Unsupervised optimal fuzzy clustering.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 3(3):
773–781.

Géron, A. (2017). Hands-On Machine Learning with Scikit-Learn and Ten-
sorFlow, Second Edition. O’Reilly.

Géron, A. (2023). Hands-On Machine Learning with Scikit-Learn and Ten-
sorFlow, Third Edition. O’Reilly.

Gonzalez, R. C. and Woods, R. E. (2017). Digital Image Processing. Pearson
India.

Goodman, J. W. (1984). Statistical properties of laser speckle patterns. In
Dainty, J. C., editor, Laser Speckle and Related Phenomena, pages 9–75.
Springer.

Goodman, N. R. (1963). Statistical analysis based on a certain multivariate
complex Gaussian distribution (An Introduction). Annals of Mathematical
Statistics, 34:152–177.

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Tau, D.,
and Moore, R. (2017). Google Earth Engine: Planetary-scale
geospatial analysis for everyone. Remote Sensing of Environment.
https://doi.org/10.1016/j.rse.2017.06.031.

Green, A. A., Berman, M., Switzer, P., and Craig, M. D. (1988). A trans-
formation for ordering multispectral data in terms of image quality with
implications for noise removal. IEEE Transactions on Geoscience and Re-
mote Sensing, 26(1):65–74.

Groß, M. H. and Seibert, F. (1993). Visualization of multidimensional image
data sets using a neural network. The Visual Computer, 10:145–159.

Gumley, L. E. (2002). Practical IDL Programming. Morgan Kaufmann.

Haberächer, P. (1995). Praxis der Digitalen Bildverarbeitungen und Muster-
erkennung. Carl Hanser Verlag.

Harris, C. and Stephens, M. (1988). A combined corner and edge detector.
In Proceedings of the Fourth Alvey Vision Conference, pages 147–151.

http://michaelgalloy.com/
https://doi.org/10.1016/j.rse.2017.06.031

496 References

Harsanyi, J. C. (1993). Detection and Classification of Subpixel Spectral Signa-
tures in Hyperspectral Image Sequences. Ph.D. Thesis, University of Mary-
land, 116 pp.

Harsanyi, J. C. and Chang, C.-I. (1994). Hyperspectral image classification
and dimensionality reduction: An orthogonal subspace projection approach.
IEEE Transactions on Geoscience and Remote Sensing, 32(4):779–785.

Hayken, S. (1994). Neural Networks, a Comprehensive Foundation. Macmil-
lan.

Hertz, J., Krogh, A., and Palmer, R. G. (1991). Introduction to the Theory of
Neural Computation. Addison-Wesley.

Hilger, K. B. (2001). Exploratory Analysis of Multivariate Data. Ph.D. Thesis,
IMM-PHD-2001-89, Technical University of Denmark.

Hilger, K. B. and Nielsen, A. A. (2000). Targeting input data for change
detection studies by suppression of undesired spectra. In Proceedings of
a Seminar on Remote Sensing and Image Analysis Techniques for Revi-
sion of Topographic Databases, KMS, The National Survey and Cadastre,
Copenhagen, Denmark, February 2000.

Hotelling, H. (1936). Relations between two sets of variates. Biometrika,
28:321–377.

Hu, M. K. (1962). Visual pattern recognition by moment invariants. IEEE
Transactions on Information Theory, IT-8:179–187.

Huang, B., Lu, K., N, A., Khalel, A., Tarabalka, Y., Malof, J., Boulch, A.,
LeSaux, B., and Collins, L. (2018). Large-scale semantic classification: out-
come of the first year of Inria aerial image labeling benchmark. In IGARSS
2018 - IEEE International Geoscience and Remote Sensing Symposiumm,
Jul 2018, Valencia, Spain. pp.1-4.

Jensen, J. R. (2005). Introductory Digital Image Analysis: A Remote Sensing
Perspective. Prentice Hall.

Jensen, J. R. (2018). Introductory Digital Image Analysis: A Remote Sensing
Perspective, 4th Edition. Pearson India.

Kendall, M. and Stuart, A. (1979). The Advanced Theory of Statistics, vol-
ume 2. Charles Griffen & Company Limited, fourth edition.

Kohonen, T. (1989). Self-Organization and Associative Memory. Springer.

Kraskov, A., Stoegbauer, H., and Grassberger, P. (2004). Estimating mutual
information. Physical Review E, 69(066138):1–16.

Kruse, F. A., Lefkoff, A. B., Boardman, J. B., Heidebrecht, K. B., Shapiro,
A. T., Barloon, P. J., and Goetz, A. F. H. (1993). The spectral image

496 References

Harsanyi, J. C. (1993). Detection and Classification of Subpixel Spectral Signa-
tures in Hyperspectral Image Sequences. Ph.D. Thesis, University of Mary-
land, 116 pp.

Harsanyi, J. C. and Chang, C.-I. (1994). Hyperspectral image classification
and dimensionality reduction: An orthogonal subspace projection approach.
IEEE Transactions on Geoscience and Remote Sensing, 32(4):779–785.

Hayken, S. (1994). Neural Networks, a Comprehensive Foundation. Macmil-
lan.

Hertz, J., Krogh, A., and Palmer, R. G. (1991). Introduction to the Theory of
Neural Computation. Addison-Wesley.

Hilger, K. B. (2001). Exploratory Analysis of Multivariate Data. Ph.D. Thesis,
IMM-PHD-2001-89, Technical University of Denmark.

Hilger, K. B. and Nielsen, A. A. (2000). Targeting input data for change
detection studies by suppression of undesired spectra. In Proceedings of
a Seminar on Remote Sensing and Image Analysis Techniques for Revi-
sion of Topographic Databases, KMS, The National Survey and Cadastre,
Copenhagen, Denmark, February 2000.

Hotelling, H. (1936). Relations between two sets of variates. Biometrika,
28:321–377.

Hu, M. K. (1962). Visual pattern recognition by moment invariants. IEEE
Transactions on Information Theory, IT-8:179–187.

Huang, B., Lu, K., N, A., Khalel, A., Tarabalka, Y., Malof, J., Boulch, A.,
LeSaux, B., and Collins, L. (2018). Large-scale semantic classification: out-
come of the first year of Inria aerial image labeling benchmark. In IGARSS
2018 - IEEE International Geoscience and Remote Sensing Symposiumm,
Jul 2018, Valencia, Spain. pp.1-4.

Jensen, J. R. (2005). Introductory Digital Image Analysis: A Remote Sensing
Perspective. Prentice Hall.

Jensen, J. R. (2018). Introductory Digital Image Analysis: A Remote Sensing
Perspective, 4th Edition. Pearson India.

Kendall, M. and Stuart, A. (1979). The Advanced Theory of Statistics, vol-
ume 2. Charles Griffen & Company Limited, fourth edition.

Kohonen, T. (1989). Self-Organization and Associative Memory. Springer.

Kraskov, A., Stoegbauer, H., and Grassberger, P. (2004). Estimating mutual
information. Physical Review E, 69(066138):1–16.

Kruse, F. A., Lefkoff, A. B., Boardman, J. B., Heidebrecht, K. B., Shapiro,
A. T., Barloon, P. J., and Goetz, A. F. H. (1993). The spectral image

References 497

processing system (SIPS), interactive visualization and analysis of imaging
spectrometer data. Remote Sensing of Environment, 44:145–163.

Kurz, F., Charmette, B., Suri, S., Rosenbaum, D., Spangler, M., Leonhardt,
A., Bachleitner, M., Stätter, R., and Reinartz, P. (2007). Automatic traffic
monitoring with an airborne wide-angle digital camera system for estima-
tion of travel times. In Stilla, U., Mayer, H., Rottensteiner, F., Heipke,
C., and Hinz, S., editors, Photogrammetric Image Analysis. International
Archives of the Photogrammetry, Remote Sensing and Spatial Information
Service PIA07, Munich, Germany.

Kwon, H. and Nasrabadi, N. M. (2005). Kernel RX-algorithm: A linear
anomaly detector for hyperspectral imagery. IEEE Transactions on Geo-
science and Remote Sensing, 43(2):388–397.

Lang, H. R. and Welch, R. (1999). Algorithm theoretical basis document for
ASTER digital elevation models. Technical report, Jet Propulsion Labora-
tory and University of Georgia.

Langtangen, H. P. (2009). Python Scripting for Computational Science.
Springer.

LeCun, Yann and Cortes, Corinna and Burges, C. J. (2010). MNIST hand-
written digit database. ATT Labs [Online], 2.

Lee, J.-S., Grunes, M. R., and de Grandi, G. (1999). Polarimetric SAR speckle
filtering and its implication for classification. IEEE Transactions on Geo-
science and Remote Sensing, 37(5):2363–2373.

Lee, J.-S., Grunes, M. R., and Kwok, R. (1994). Classification of multi-look
polarimetric SAR imagery based on complex Wishart distribution. Inter-
national Journal of Remote Sensing, 15(11):2299–2311.

Li, H., Manjunath, B. S., and Mitra, S. K. (1995). A contour-based approach
to multisensor image registration. IEEE Transactions on Image Processing,
4(3):320–334.

Li, S. Z. (2001). Markov Random Field Modeling in Image Analysis. Computer
Science Workbench. Springer, second edition.

Liao, X. and Pawlak, M. (1996). On image analysis by moments. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 18(3):254–266.

Lowe, D. G. (2004). Distinctive image features from scale-invariant
keypoints. International Journal of Computer Vision, 60:91–110.
https://doi.org/10.1023/B:VISI.0000029664.99615.94.

https://doi.org/10.1023/B:VISI.0000029664.99615.94

498 References

Maas, S. J. and Rajan, N. (2010). Normalizing and converting image DC data
using scatter plot matching. Remote Sensing, 2(7):1644–1661.

Mallat, S. G. (1989). A theory for multiresolution signal decomposition: The
wavelet representation. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 11(7):674–693.

Mardia, K. V., Kent, J. T., and Bibby, J. M. (1979). Multivariate Analysis.
Academic Press.

Masters, T. (1995). Advanced Algorithms for Neural Networks, A C++
Sourcebook. J. Wiley and Sons.

Mather, P. and Koch, M. (2010). Computer Processing of Remotely-Sensed
Images: An Introduction. Wiley, fourth edition.

Milman, A. S. (1999). Mathematical Principles of Remote Sensing. Sleeping
Bear Press.

Moeller, M. F. (1993). A scaled conjugate gradient algorithm for fast super-
vised learning. Neural Networks, 6:525–533.

Müller, K.-R., Mika, S., Rätsch, G., Tsuda, K., and Schölkopf, B. (2001). An
introduction to kernel-based learning algorithms. IEEE Transactions on
Neural Networks, 12(2):181–202.

Muro, J., Canty, M. J., K.Conradsen, Huettich, C., Nielsen, A. A., Skriver,
H., Strauch, A., Thonfeld, F., and Menz, G. (2016). Short-term change de-
tection in wetlands using Sentinel-1 time series. Remote Sensing, 8(10):795
Open access DOI:10.3390/rs8100795.

Murphey, Y. L., Chen, Z., and Guo, H. (2001). Neural learning using Ad-
aBoost. In Proceedings. IJCNN apos;01. International Joint Conference on
Neural Networks, volume 2, pages 1037–1042.

Mustard, J. F. and Sunshine, J. M. (1999). Spectral analysis for Earth science:
Investigations using remote sensing data. In Rencz, A., editor, Manual of
Remote Sensing, pages 251–307. J. Wiley and Sons, second edition.

Nielsen, A. A. (2001). Spectral mixture analysis: Linear and semi-parametric
full and iterated partial unmixing in multi- and hyperspectral data. Journal
of Mathematical Imaging and Vision, 15:17–37.

Nielsen, A. A. (2007). The regularized iteratively reweighted MAD
method for change detection in multi- and hyperspectral data.
IEEE Transactions on Image Processing, 16(2):463–478. Internet
http://www.imm.dtu.dk/pubdb/p.php?4695.

Nielsen, A. A. (2020). Fast matrix based computation of eigenvalues and the
loewner order in polsar data. IEEE Geoscience and Remote Sensing Letters,
17(10):1727–1731.

http://www.imm.dtu.dk/pubdb/p.php?4695
https://doi.org/10.3390/rs8100795

498 References

Maas, S. J. and Rajan, N. (2010). Normalizing and converting image DC data
using scatter plot matching. Remote Sensing, 2(7):1644–1661.

Mallat, S. G. (1989). A theory for multiresolution signal decomposition: The
wavelet representation. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 11(7):674–693.

Mardia, K. V., Kent, J. T., and Bibby, J. M. (1979). Multivariate Analysis.
Academic Press.

Masters, T. (1995). Advanced Algorithms for Neural Networks, A C++
Sourcebook. J. Wiley and Sons.

Mather, P. and Koch, M. (2010). Computer Processing of Remotely-Sensed
Images: An Introduction. Wiley, fourth edition.

Milman, A. S. (1999). Mathematical Principles of Remote Sensing. Sleeping
Bear Press.

Moeller, M. F. (1993). A scaled conjugate gradient algorithm for fast super-
vised learning. Neural Networks, 6:525–533.

Müller, K.-R., Mika, S., Rätsch, G., Tsuda, K., and Schölkopf, B. (2001). An
introduction to kernel-based learning algorithms. IEEE Transactions on
Neural Networks, 12(2):181–202.

Muro, J., Canty, M. J., K.Conradsen, Huettich, C., Nielsen, A. A., Skriver,
H., Strauch, A., Thonfeld, F., and Menz, G. (2016). Short-term change de-
tection in wetlands using Sentinel-1 time series. Remote Sensing, 8(10):795
Open access DOI:10.3390/rs8100795.

Murphey, Y. L., Chen, Z., and Guo, H. (2001). Neural learning using Ad-
aBoost. In Proceedings. IJCNN apos;01. International Joint Conference on
Neural Networks, volume 2, pages 1037–1042.

Mustard, J. F. and Sunshine, J. M. (1999). Spectral analysis for Earth science:
Investigations using remote sensing data. In Rencz, A., editor, Manual of
Remote Sensing, pages 251–307. J. Wiley and Sons, second edition.

Nielsen, A. A. (2001). Spectral mixture analysis: Linear and semi-parametric
full and iterated partial unmixing in multi- and hyperspectral data. Journal
of Mathematical Imaging and Vision, 15:17–37.

Nielsen, A. A. (2007). The regularized iteratively reweighted MAD
method for change detection in multi- and hyperspectral data.
IEEE Transactions on Image Processing, 16(2):463–478. Internet
http://www.imm.dtu.dk/pubdb/p.php?4695.

Nielsen, A. A. (2020). Fast matrix based computation of eigenvalues and the
loewner order in polsar data. IEEE Geoscience and Remote Sensing Letters,
17(10):1727–1731.

References 499

Nielsen, A. A. and Canty, M. J. (2008). Kernel principal component analysis
for change detections. In SPIE Europe Remote Sensing Conference, Cardiff,
Great Britain, 15-18 September, volume 7109.

Nielsen, A. A., Canty, M. J., Skriver, H., and Conradsen, K. (2017). Change
detection in multi-temporal dual polarization Sentinel-1 data. In Proceed-
ings of the IEEE International Geoscience and Remote Sensing Symposium,
IGARSS, Fort Worth Texas, pages 3901–3904.

Nielsen, A. A., Conradsen, K., and Simpson, J. J. (1998). Multi-
variate alteration detection (MAD) and MAF post-processing in mul-
tispectral, bitemporal image data: New approaches to change detec-
tion studies. Remote Sensing of Environment, 64:1–19. Internet
http://www.imm.dtu.dk/pubdb/p.php?1220.

Nielsen, A. A., Skriver, H., and Conradsen, K. (2020). The loewner order and
direction of detected change in sentinel-1 and radarsat-2 data. IEEE Geo-
science and Remote Sensing Letters (Early Access June 2019), 17(2):242–
246. http://doi.org/10.1109/LGRS.2019.2918636.

Núnez, J., Otazu, X., Fors, O., Prades, A., Palà, V., and Arbiol, R. (1999).
Multiresolution-based image fusion with additive wavelet decomposition.
IEEE Transactions on Geoscience and Remote Sensing, 37(3):1204–1211.

Oliver, C. and Quegan, S. (2004). Understanding Synthetic Aperture Radar
Images. SciTech.

Palubinskas, G. (1998). K-means clustering algorithm using the entropy. In
SPIE European Symposium on Remote Sensing, Conference on Image and
Signal Processing for Remote Sensing, September, Barcelona, volume 3500,
pages 63–71.

Parelius, E. J. (2023). A review of deep-learning methods for change detection
in multispectral remote sensing images. Remote Sensing, 15(8).

Patefield, W. M. (1977). On the information matrix in the linear functional
problem. Journal of the Royal Statistical Society, Series C, 26:69–70.

Philpot, W. and Ansty, T. (2013). Analytical description of pseudoinvari-
ant features. IEEE Transactions on Geoscience and Remote Sensing,
51(4):2016–2021.

Pitz, W. and Miller, D. (2010). The TerraSAR-X satellite. IEEE Transactions
on Geoscience and Remote Sensing, 48(2):615–622.

Polikar, R. (2006). Ensemble-based systems in decision making. IEEE Circuits
and Systems Magazine, Third Quarter 2006.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (2002).
Numerical Recipes in C++. Cambridge University Press, second edition.

http://www.imm.dtu.dk/pubdb/p.php?1220
http://doi.org/10.1109/LGRS.2019.2918636

500 References

Price, D., Knerr, S., Personnaz, L., and Dreyfus, G. (1995). Pairwise neu-
ral network classifiers with probabilistic outputs. In Fischler, M. A. and
Firschein, O., editors, Neural Information Processing Systems, pages 1109–
1116. MIT Press.

Prokop, R. J. and Reeves, A. P. (1992). A survey of moment-based techniques
for unoccluded object representation and recognition. Graphical Models and
Image Processing, 54(5):438–460.

Quam, L. H. (1987). Hierarchical warp stereo. In Fischler, M. A. and Firschein,
O., editors, Readings in Computer Vision, pages 80–86. Morgan Kaufmann.

Radke, R. J., Andra, S., Al-Kofahi, O., and Roysam, B. (2005). Image change
detection algorithms: A systematic survey. IEEE Transactions on Image
Processing, 14(4):294–307.

Rall, L. B. (1981). Automatic differentiation: Techniques and applications.
Lecture Notes in Computer Science, Springer, 120.

Ranchin, T. and Wald, L. (2000). Fusion of high spatial and spectral resolu-
tion images: The ARSIS concept and its implementation. Photogrammetric
Engineering and Remote Sensing, 66(1):49–61.

Reddy, B. S. and Chatterji, B. N. (1996). An FFT-based technique for trans-
lation, rotation and scale-invariant image registration. IEEE Transactions
on Image Processing, 5(8):1266–1271.

Redner, R. A. and Walker, H. F. (1984). Mixture densities, maximum likeli-
hood and the EM algorithm. SIAM Review, 26(2):195–239.

Reed, I. S. and Yu, X. (1990). Adaptive multiple band CFAR detection of an
optical pattern with unknown spectral distribution. IEEE Transactions on
Acoustics, Speech, and Signal Processing, 38(10):1760–1770.

Riano, D., Chuvieco, E., Salas, J., and Aguado, I. (2003). Assessment of differ-
ent topographic corrections in LANDSAT-TM data for mapping vegetation
types. IEEE Transactions on Geoscience and Remote Sensing, 41(5):1056–
1061.

Richards, J. A. (2009). Remote Sensing with Imaging Radar. Springer.

Richards, J. A. (2012). Remote Sensing Digital Image Analysis: An Introduc-
tion. Springer.

Ripley, B. D. (1996). Pattern Recognition and Neural Networks. Cambridge
University Press.

Schaum, A. and Stocker, A. (1997). Spectrally selective target detection. In
Proceedings of the International Symposium on Spectral Sensing Research.

500 References

Price, D., Knerr, S., Personnaz, L., and Dreyfus, G. (1995). Pairwise neu-
ral network classifiers with probabilistic outputs. In Fischler, M. A. and
Firschein, O., editors, Neural Information Processing Systems, pages 1109–
1116. MIT Press.

Prokop, R. J. and Reeves, A. P. (1992). A survey of moment-based techniques
for unoccluded object representation and recognition. Graphical Models and
Image Processing, 54(5):438–460.

Quam, L. H. (1987). Hierarchical warp stereo. In Fischler, M. A. and Firschein,
O., editors, Readings in Computer Vision, pages 80–86. Morgan Kaufmann.

Radke, R. J., Andra, S., Al-Kofahi, O., and Roysam, B. (2005). Image change
detection algorithms: A systematic survey. IEEE Transactions on Image
Processing, 14(4):294–307.

Rall, L. B. (1981). Automatic differentiation: Techniques and applications.
Lecture Notes in Computer Science, Springer, 120.

Ranchin, T. and Wald, L. (2000). Fusion of high spatial and spectral resolu-
tion images: The ARSIS concept and its implementation. Photogrammetric
Engineering and Remote Sensing, 66(1):49–61.

Reddy, B. S. and Chatterji, B. N. (1996). An FFT-based technique for trans-
lation, rotation and scale-invariant image registration. IEEE Transactions
on Image Processing, 5(8):1266–1271.

Redner, R. A. and Walker, H. F. (1984). Mixture densities, maximum likeli-
hood and the EM algorithm. SIAM Review, 26(2):195–239.

Reed, I. S. and Yu, X. (1990). Adaptive multiple band CFAR detection of an
optical pattern with unknown spectral distribution. IEEE Transactions on
Acoustics, Speech, and Signal Processing, 38(10):1760–1770.

Riano, D., Chuvieco, E., Salas, J., and Aguado, I. (2003). Assessment of differ-
ent topographic corrections in LANDSAT-TM data for mapping vegetation
types. IEEE Transactions on Geoscience and Remote Sensing, 41(5):1056–
1061.

Richards, J. A. (2009). Remote Sensing with Imaging Radar. Springer.

Richards, J. A. (2012). Remote Sensing Digital Image Analysis: An Introduc-
tion. Springer.

Ripley, B. D. (1996). Pattern Recognition and Neural Networks. Cambridge
University Press.

Schaum, A. and Stocker, A. (1997). Spectrally selective target detection. In
Proceedings of the International Symposium on Spectral Sensing Research.

References 501

Schölkopf, B., Smola, A., and Müller, K.-R. (1998). Nonlinear component
analysis as a kernel eigenvalue problem. Neural Computation, 10(5):1299–
1319.

Schott, J. R., Salvaggio, C., and Volchok, W. J. (1988). Radiometric scene
normalization using pseudo-invariant features. Remote Sensing of Environ-
ment, 26:1–16.

Schowengerdt, R. A. (1997). Remote Sensing, Models and Methods for Image
Processing. Academic Press.

Schowengerdt, R. A. (2006). Remote Sensing, Models and Methods for Image
Processing. Academic Press, second edition.

Schroeder, T. A., Cohen, W. B., Song, C., Canty, M. J., and Zhiqiang, Y.
(2006). Radiometric calibration of Landsat data for characterization of
early successional forest patterns in western Oregon. Remote Sensing of
Environment, 103(1):16–26.

Schwenk, H. and Bengio, Y. (2000). Boosting neural networks. Neural Com-
putation, 12(8):1869–1887.

Settle, J. J. (1996). On the relation between spectral unmixing and sub-
space projection. IEEE Transactions on Geoscience and Remote Sensing,
34(4):1045–1046.

Shah, S. and Palmieri, F. (1990). MEKA: A fast, local algorithm for train-
ing feed forward neural networks. Proceedings of the International Joint
Conference on Neural Networks, San Diego, I(3):41–46.

Shawe-Taylor, J. and Cristianini, N. (2004). Kernel Methods for Pattern Anal-
ysis. Cambridge University Press.

Shekarforoush, H., Berthod, M., and Zerubia, J. (1995). Subpixel image reg-
istration by estimating the polyphase decomposition of the cross power
spectrum. Technical report 2707, Institut National de Recherche en Infor-
matique et en Automatique (INRIA).

Siegel, S. S. (1965). Nonparametric Statistics for the Behavioral Sciences.
McGraw-Hill.

Singh, A. (1989). Digital change detection techniques using remotely-sensed
data. International Journal of Remote Sensing, 10(6):989–1002.

Sirko, W., Kashubin, S., Ritter, M., Annkah, A., Bouchareb, Y., Dauphin, Y.,
Keysers, D., Neumann, M., Cisse, M., and Quinn, J. (2021). Continental-
scale building detection from high resolution satellite imagery. Computer
Vision and Pattern Recognition. https://arxiv.org/abs/2107.12283v2.

Smith, S. M. and Brady, J. M. (1997). SUSAN: A new approach to low level
image processing. International Journal of Computer Vision, 23(1):45–78.

https://arxiv.org/abs/2107.12283v2

502 References

Solem, J. E. (2012). Programming Computer Vision with Python. O’Reilly.

Strang, G. (1989). Wavelets and dilation equations: A brief introduction.
SIAM Review, 31(4):614–627.

Strang, G. and Nguyen, T. (1997). Wavelets and Filter Banks. Wellesley-
Cambridge Press, second edition.

Stuckens, J., Coppin, P. R., and Bauer, M. E. (2000). Integrating contextual
information with per-pixel classification for improved land cover classifica-
tion. Remote Sensing of Environment, 71(2):82–96.

Sulsoft (2003). AsterDTM 2.0 installation and user’s guide. Technical report,
SulSoft Ltd, Porto Alegre, Brazil.

Tao, C. V. and Hu, Y. (2001). A comprehensive study of the rational function
model for photogrammetric processing. Photogrammetric Engineering and
Remote Sensing, 67(12):1347–1357.

Teague, M. (1980). Image analysis by the general theory of moments. Journal
of the Optical Society of America, 70(8):920–930.

Teillet, P. M., Guindon, B., and Goodenough, D. G. (1982). On the slope-
aspect correction of multispectral scanner data. Canadian Journal of Re-
mote Sensing, 8(2):84–106.

Theiler, U. and Matsekh, A. M. (2009). Total least squares for anomalous
change detection. Technical report LA-UR-10-01285, Los Alamos National
Laboratory.

Tondewad, P. S. and Dale, M. P. (2020). Remote sensing image registra-
tion methodology: Review and discussion. Procedia Computer Science,
171:2390–2399. https://doi.org/10.1016/j.procs.2020.04.259.

Tran, T. N., Wehrens, R., and Buydens, L. M. C. (2005). Clustering multispec-
tral images: A tutorial. Chemometrics and Intelligent Laboratory Systems,
77:3–17.

Tsai, V. J. D. (1982). Evaluation of multiresolution image fusion algorithms.
In Proceedings of the International Symposium on Remote Sensing of Arid
and Semi-Arid Lands, Cairo, Egypt, pages 599–616.

van Niel, T. G., McVicar, T. R., and Datt, B. (2005). On the relationship be-
tween training sample size and data dimensionality: Monte Carlo analysis of
broadband multi-temporal classification. Remote Sensing of Environment,
98(4):468–480.

von Luxburg, U. (2006). A tutorial on spectral clustering. Technical report
TR-149, Max-Planck-Institut für biologische Kybernetik.

https://doi.org/10.1016/j.procs.2020.04.259

502 References

Solem, J. E. (2012). Programming Computer Vision with Python. O’Reilly.

Strang, G. (1989). Wavelets and dilation equations: A brief introduction.
SIAM Review, 31(4):614–627.

Strang, G. and Nguyen, T. (1997). Wavelets and Filter Banks. Wellesley-
Cambridge Press, second edition.

Stuckens, J., Coppin, P. R., and Bauer, M. E. (2000). Integrating contextual
information with per-pixel classification for improved land cover classifica-
tion. Remote Sensing of Environment, 71(2):82–96.

Sulsoft (2003). AsterDTM 2.0 installation and user’s guide. Technical report,
SulSoft Ltd, Porto Alegre, Brazil.

Tao, C. V. and Hu, Y. (2001). A comprehensive study of the rational function
model for photogrammetric processing. Photogrammetric Engineering and
Remote Sensing, 67(12):1347–1357.

Teague, M. (1980). Image analysis by the general theory of moments. Journal
of the Optical Society of America, 70(8):920–930.

Teillet, P. M., Guindon, B., and Goodenough, D. G. (1982). On the slope-
aspect correction of multispectral scanner data. Canadian Journal of Re-
mote Sensing, 8(2):84–106.

Theiler, U. and Matsekh, A. M. (2009). Total least squares for anomalous
change detection. Technical report LA-UR-10-01285, Los Alamos National
Laboratory.

Tondewad, P. S. and Dale, M. P. (2020). Remote sensing image registra-
tion methodology: Review and discussion. Procedia Computer Science,
171:2390–2399. https://doi.org/10.1016/j.procs.2020.04.259.

Tran, T. N., Wehrens, R., and Buydens, L. M. C. (2005). Clustering multispec-
tral images: A tutorial. Chemometrics and Intelligent Laboratory Systems,
77:3–17.

Tsai, V. J. D. (1982). Evaluation of multiresolution image fusion algorithms.
In Proceedings of the International Symposium on Remote Sensing of Arid
and Semi-Arid Lands, Cairo, Egypt, pages 599–616.

van Niel, T. G., McVicar, T. R., and Datt, B. (2005). On the relationship be-
tween training sample size and data dimensionality: Monte Carlo analysis of
broadband multi-temporal classification. Remote Sensing of Environment,
98(4):468–480.

von Luxburg, U. (2006). A tutorial on spectral clustering. Technical report
TR-149, Max-Planck-Institut für biologische Kybernetik.

References 503

Vrabel, J. (1996). Multispectral imagery band sharpening study. Photogram-
metric Engineering and Remote Sensing, 62(9):1075–1083.

Wang, Z. and Bovik, A. C. (2002). A universal image quality index. IEEE
Signal Processing Letters, 9(3):81–84.

Weiss, S. M. and Kulikowski, C. A. (1991). Computer Systems That Learn.
Morgan Kaufmann.

Welch, R. and Ahlers, W. (1987). Merging multiresolution SPOT HRV and
LANDSAT TM data. Photogrammetric Engineering and Remote Sensing,
53(3):301–303.

Westra, E. (2013). Python Geospatial Development (2nd edition). Packt Pub-
lishing.

Wiemker, R. (1997). An iterative spectral-spatial Bayesian labeling approach
for unsupervised robust change detection on remotely sensed multispectral
imagery. In Proceedings of the 7th International Conference on Computer
Analysis of Images and Patterns, volume LCNS 1296, pages 263–370.

Winkler, G. (1995). Image Analysis, Random Fields and Dynamic Monte
Carlo Methods. Applications of Mathematics. Springer.

Wu, T.-F., Lin, C.-J., and Weng, R. C. (2004). Probability estimates for
multi-class classification by pairwise coupling. Journal of Machine Learning
Research, 5:975–1005.

Xie, H., Hicks, N., Keller, G. R., Huang, H., and Kreinovich, V. (2003). An
ENVI/IDL implementation of the FFT-based algorithm for automatic im-
age registration. Computers and Geosciences, 29:1045–1055.

Yang, X. and Lo, C. P. (2000). Relative radiometric normalization perfor-
mance for change detection from multi-date satellite images. Photogram-
metric Engineering and Remote Sensing, 66(8):967–980.

Yocky, D. A. (1996). Artifacts in wavelet image merging. Optical Engineering,
35(7):2094–2101.

Zhu, X. X., Tuia, D., Mou, L., Xia, G.-S., Zhang, L., Xu, F., and Fraundorfer,
F. (2017). Deep learning in remote sensing. IEEE Geoscience and Remote
Sensing Magazine, December:8–36.

http://taylorandfrancis.com

Index

a posteriori probability, 58, 231

a priori probability, 58

à trous wavelet transform, 181

accuracy assessment, 293, 298, 317

adaptive boosting (AdaBoost),
306

adaptive temporal speckle filter
(ATSF), 430

additive noise, 112

affine transformation, 201

agglomerative hierarchical
clustering, 365

algorithm

AdaBoost, 308, 461

AdaBoost.M1, 310

agglomerative hierarchical
clustering (HCL), 366

back propagation, 259

Expectation Maximization,
370

extended K-means (EKM),
362

extended Kalman filter, 481,
483

fuzzy K-means (FKM), 368

fuzzy maximum likelihood
estimation (FMLE), 370

ISODATA, 355

iteratively re-weighted MAD,
409

K-means, 355

kernel RX, 327

mean shift segmentation, 387

memory-based, 151

perceptron, 270, 286

probabilistic label relaxation
(PLR), 292

pyramid, 139
RX, 324
scaled conjugate gradient,

476
self-organizing map (SOM),

383
sequential minimal

optimization (SMO), 278
stochastic gradient descent

(SGD), 259
unnormalized spectral

clustering, 390
aliasing, 85
along track stereo images, 205
alternative hypothesis, 60
anomalous change detection, 405
anomaly detection, 324
artificial neuron, 251
aspect (topographic), 210
ASTER, 1
AsterDTM, 209
at-sensor radiance, 4
automatic differentiation, 266
AVIRIS platform, 318

back propagation, 231
bagging, 306, 346
Bayes error, 234
Bayes’ Theorem, 58, 196, 352, 369
beta function, 43
Bhattacharyya bound, 236
Bhattacharyya distance, 237
bias input, 251

505

506 Index

bidirectional reflectance
distribution function
(BRDF), 212

BIL interleave format, 5
bilinear interpolation, 225
binary decision trees, 312
binomial coefficient, 33
BIP interleave format, 5
bootstrapping, 302
Brent’s method, 247
BSQ interleave format, 5
Butterworth filter, 156

C-correction, 212
camera model, 202
Canny edge detector, 167
canonical correlation analysis

(CCA), 405
canonical correlations, 406
canonical variates, 406
CART, 314
CART algorithm, 314
cascade algorithm, 98
cascade correlation, 268
centering

of kernel matrix, 148
Central Limit Theorem, 40
chain codes, 220
change detection

anomalous, 324
decision thresholds, 396
iterated PCA, 400
kernel PCA, 402
multivariate alteration

detection (MAD), 404
NDVI differences, 398
post processing, 415
post-classification

comparison, 398
preprocessing, 396
ratios, 397
sequential omnibus, 425, 428,

430
unsupervised classification,

415

characteristic equation, 17
Chernoff bound, 235
chi-square distribution, 42, 304
Cholesky decomposition, 114, 408,

451
class labels, 242
classification, 58

supervised, 60, 231
unsupervised, 60, 351

clique potential, 155, 378
cliques, 153, 378
clustering, 351
coefficient of determination, 68
compact support, 96
compatibility measure, 291
competitive learning, 382
complex matrix, 455
complex numbers, 8, 454
complex vector, 455
conditional probability, 57
confidence interval, 48
confusion matrix, 296
conjugate directions, 471
constrained energy minimization,

348
constrained max(min)imization,

24
contingency table, 296
contour matching, 221
convex function, 81
convolution, 127

in two dimensions, 131
kernel, 128
padding, 128
wraparound error, 129

Convolution Theorem, 128
convolutional neural network

(CNN), 331
pooling layer, 333
receptive field, 332

corner detection, 166
correlation, 38
correlation matrix, 39

unbiased estimate, 52
cosine correction, 211

506 Index

bidirectional reflectance
distribution function
(BRDF), 212

BIL interleave format, 5
bilinear interpolation, 225
binary decision trees, 312
binomial coefficient, 33
BIP interleave format, 5
bootstrapping, 302
Brent’s method, 247
BSQ interleave format, 5
Butterworth filter, 156

C-correction, 212
camera model, 202
Canny edge detector, 167
canonical correlation analysis

(CCA), 405
canonical correlations, 406
canonical variates, 406
CART, 314
CART algorithm, 314
cascade algorithm, 98
cascade correlation, 268
centering

of kernel matrix, 148
Central Limit Theorem, 40
chain codes, 220
change detection

anomalous, 324
decision thresholds, 396
iterated PCA, 400
kernel PCA, 402
multivariate alteration

detection (MAD), 404
NDVI differences, 398
post processing, 415
post-classification

comparison, 398
preprocessing, 396
ratios, 397
sequential omnibus, 425, 428,

430
unsupervised classification,

415

characteristic equation, 17
Chernoff bound, 235
chi-square distribution, 42, 304
Cholesky decomposition, 114, 408,

451
class labels, 242
classification, 58

supervised, 60, 231
unsupervised, 60, 351

clique potential, 155, 378
cliques, 153, 378
clustering, 351
coefficient of determination, 68
compact support, 96
compatibility measure, 291
competitive learning, 382
complex matrix, 455
complex numbers, 8, 454
complex vector, 455
conditional probability, 57
confidence interval, 48
confusion matrix, 296
conjugate directions, 471
constrained energy minimization,

348
constrained max(min)imization,

24
contingency table, 296
contour matching, 221
convex function, 81
convolution, 127

in two dimensions, 131
kernel, 128
padding, 128
wraparound error, 129

Convolution Theorem, 128
convolutional neural network

(CNN), 331
pooling layer, 333
receptive field, 332

corner detection, 166
correlation, 38
correlation matrix, 39

unbiased estimate, 52
cosine correction, 211

Index 507

covariance, 38
covariance matrix, 15, 28, 38

weighted, 54
cross entropy cost function, 258

local, 259
cross-power spectrum, 217
cross-validation, 244, 299, 302
cubic convolution, 225
curse of dimensionality, 250

data matrix, 16, 52
column centered, 52

Daubechies D4 wavelet
refinement coefficients, 102
scaling function, 100
self similarity, 103

de-correlation stretch, 226
decimation, 138
deep learning neural network

(DNN), 265
delta function, 86
digital elevation model (DEM),

204
digital numbers, 4
dilation equation, 97
discrete wavelet transform, 88,

227
as a 1D filter bank, 136
as a 2D filter bank, 141
for image fusion, 179
for multi-resolution

clustering, 376
discriminant function, 239, 250
disparity, 206
down sampling, 138
dual parameters, 73
dual polarimetric SAR, 9
dual vectors, 112
duality, 72, 110

early stopping, 269
eigendecomposition, 20
eigenvalue problem, 17
eigenvalues, 17
eigenvectors, 17

end-members, 319
intrinsic, 322

ensembles of classifiers, 305
entropy, 73, 361

conditional, 75
differential, 75

ENVI standard image format, 7
epipolar segment, 206
epoch, 264
equivalent number of looks

(ENL), 187
estimation, 188, 189

Euler’s Theorem, 455
EuroSAT image dataset, 334
Expectation Maximization (EM)

algorithm, 213, 370, 401,
418

expected value, 35
exponential distribution, 42
extended K-means, 361
extended Kalman filter training,

479

F-distribution, 64, 422
factor analysis, 109
far field approximation, 8
fast wavelet transform, 139
feasible region, 273
feature space, 11, 323, 383
feed forward neural network

(FFN), 231
single layer, 253
two layer, 254

filters
cubic B-spline, 181
high-pass, 134, 161
in the frequency domain, 134
Laplacian of Gaussian (LoG),

164, 220
low-pass, 132
Roberts, 226
Sobel, 162, 220

finite impulse response (FIR)
filter, 128

first kind error probability, 61

508 Index

Fischer’s linear discriminant, 125
Fourier transform

continuous, 84
discrete, 84
discrete inverse, 86
fast (FFT), 86
translation property, 86
two dimensional, 86

fully convolutional neural network
(FCN), 340

fuzzy hyper-volume, 373
fuzzy K-means (FKM), 367
fuzzy maximum likelihood

estimation (FMLE), 370

gamma distribution, 41
gamma function, 41

incomplete, 42
Gaussian kernel classification, 245
Gaussian mixture model, 370
generalization, 231, 268
generalized eigenvalue problem,

113
geometric margin

of a hyperplane, 272
of an observation, 271

geometric moments, 171
invariant, 172

Geospatial Data Abstraction
Library (GDAL), 7

binaries, 486
utilities, 210

GeoTIFF image format, 6
Gibbs distribution, 154
Gibbs–Markov random field, 152,

154, 377
homogeneous, 155
isotropic, 155

Gini impurity, 313
goodness of fit, 67
Google Earth Engine (GEE), 70,

213, 237, 398
accuracy assessment, 298
HSV panchromatic

sharpening, 178

iteratively re-weighted MAD,
418

K-means clustering, 357
naive Bayes classifier, 241
Principal components

analysis, 105
Python API, 9
SAR change detection, 435
SVM classifier, 284
temporal filtering, 198

gradient descent, 260
Gram matrix, 73, 328
Gram–Schmidt orthogonalization,

454
ground control points, 216
ground sample distance (GSD), 1,

83
ground truth, 242, 351

Haar wavelet
mother wavelet, 91
refinement coefficients, 97
scaling function, 89
standard basis, 90
wavelet basis, 92

Hadamard product, 262
Hammersley–Clifford Theorem,

155
HDF-EOS image format, 6
Hessian matrix, 24, 74, 465

calculation, 469
hidden layer, 255
hidden neurons, 268
histogram equalization, 160
histogram matching, 159
Hu moments, 172, 221
hyperspectral images, 318
hypothesis

composite, 60
simple, 60

hypothesis test, 60, 302
critical region, 61
for change, 410
non-parametric, 303

hysteresis, 169

508 Index

Fischer’s linear discriminant, 125
Fourier transform

continuous, 84
discrete, 84
discrete inverse, 86
fast (FFT), 86
translation property, 86
two dimensional, 86

fully convolutional neural network
(FCN), 340

fuzzy hyper-volume, 373
fuzzy K-means (FKM), 367
fuzzy maximum likelihood

estimation (FMLE), 370

gamma distribution, 41
gamma function, 41

incomplete, 42
Gaussian kernel classification, 245
Gaussian mixture model, 370
generalization, 231, 268
generalized eigenvalue problem,

113
geometric margin

of a hyperplane, 272
of an observation, 271

geometric moments, 171
invariant, 172

Geospatial Data Abstraction
Library (GDAL), 7

binaries, 486
utilities, 210

GeoTIFF image format, 6
Gibbs distribution, 154
Gibbs–Markov random field, 152,

154, 377
homogeneous, 155
isotropic, 155

Gini impurity, 313
goodness of fit, 67
Google Earth Engine (GEE), 70,

213, 237, 398
accuracy assessment, 298
HSV panchromatic

sharpening, 178

iteratively re-weighted MAD,
418

K-means clustering, 357
naive Bayes classifier, 241
Principal components

analysis, 105
Python API, 9
SAR change detection, 435
SVM classifier, 284
temporal filtering, 198

gradient descent, 260
Gram matrix, 73, 328
Gram–Schmidt orthogonalization,

454
ground control points, 216
ground sample distance (GSD), 1,

83
ground truth, 242, 351

Haar wavelet
mother wavelet, 91
refinement coefficients, 97
scaling function, 89
standard basis, 90
wavelet basis, 92

Hadamard product, 262
Hammersley–Clifford Theorem,

155
HDF-EOS image format, 6
Hessian matrix, 24, 74, 465

calculation, 469
hidden layer, 255
hidden neurons, 268
histogram equalization, 160
histogram matching, 159
Hu moments, 172, 221
hyperspectral images, 318
hypothesis

composite, 60
simple, 60

hypothesis test, 60, 302
critical region, 61
for change, 410
non-parametric, 303

hysteresis, 169

Index 509

illumination correction, 211
image compression, 93
image cube, 318
image fusion

à trous, 181, 228, 232
Brovey, 178
DWT, 179
Gram–Schmidt, 179
HSV, 177
PCA, 179

image pyramid, 376
IMAGENET, 336
indicator function, 279, 307
information, 73

mutual, 76, 216
inner product space, 88, 453

orthonormal, 453
input space, 11
Inria Aerial Imaging Labels, 342
intersection over union (IoU), 345
interval estimation

for misclassification rate, 295
interval estimator, 49
IPython

parallel computing, 198

Jacobian, 38
JavaScript Object Notation

(JSON), 106
Jeffries–Matusita (J-M) distance,

237, 284
Jensen’s inequality, 81
joint density function, 36
joint distribution function, 36
Jupyter notebook, 8

widgets, 438

K-means, 151, 355
Kalman filter, 457
Kalman gain, 457
kappa coefficient, 296, 317

uncertainty, 296
Karush–Kuhn–Tucker (KKT)

conditions, 274
Keras, 266

functional model, 336
sequential model, 332

kernel function, 73
Gaussian, 147
homogeneous, 147
polynomial, 158
quadratic, 282
RBF, 147
valid, 146

kernel K-means, 358
kernel methods, 145
kernel PCA, 149
kernel substitution, 280
Kohonen self-organizing map

(SOM), 382
Kullback–Leibler divergence, 76,

285, 372

Lagrange function, 25, 74, 103,
273, 368, 412

Lagrange multiplier, 25
Lambertian surface, 4, 211
latent variables, 371
learning rate, 260, 383
Lets Make a Deal, 79
likelihood function, 59
likelihood ratio test, 62, 326, 421,

423, 427
linear algebra, 11
linear regression, 65

orthogonal, 65, 442, 458
recursive, 456, 480
sequential, 65

linear separability, 270, 285
Loewner order, 429
log-likelihood, 59, 353
logistic activation function, 252

as vector, 255
lookup table, 159
loss function, 233

machine learning, 231
MAD variates, 406
Mahalanobis distance, 237, 285,

326, 370

510 Index

kernelized, 327
majority filtering, 290
Maps Mercator projection, 10
margin, 270
marginal density, 36
marginal density function, 36
Markov random field (MRF), 154
Markovianity condition, 154
mass function, 33, 293
matched filter, 347
matrix, 12

associativity, 13
determinant, 13
diagonalization, 18
Hermitian, 29, 455
identity, 14
ill-conditioned, 20
inverse, 14
lower(upper) triangular, 451
multiplication, 12
orthonormal, 14
positive definite, 15
singular, 15
square, 13
symmetric, 15
trace, 15
transposition, 13

maximal margin hyperplane, 272
maximum a posteriori classifier,

233
maximum autocorrelation factor

(MAF), 118, 415
maximum likelihood, 47
maximum likelihood classification,

239
maximum likelihood estimate, 59
McNemar statistic, 304
mean, 35
mean shift, 386
memory-based classifier, 250
minimum noise fraction (MNF),

112, 322
calculation with PCA, 115
eigenvalues, 116

misclassification rate, 293

mixed pixels, 319
MNIST, 332
moments of a distribution, 35
momentum, 264
mother wavelet, 99
multi resolution analysis, 96, 136
multi-looking, 184, 187
multi-resolution clustering, 376
multiple extended Kalman

algorithm (MEKA), 484
multiple linear regression, 68

uncertainty, 70
multivariate normal density, 50
multivariate variogram, 117

naive Bayes classifier, 240
nearest neighbor resampling, 225
neighborhood function, 290, 384
neighborhoods, 152, 290
neural network, 250, 382
Neyman–Pearson Lemma, 61
noise estimation, 120
noise reduction, 227
non-parametric classification

models, 245
normal equation, 69
null hypothesis, 60
Nyquist critical frequency, 84

omnibus test, 425
one-hot encoding, 242
OpenCV, 166
oriented hyperplane, 251
Orthogonal Decomposition

Theorem, 91, 454
orthogonal moments, 176
orthogonal subspace projection,

347
orthorectification, 2, 201
outer product, 13
over fitting, 268

P-value, 61, 411
panchromatic sharpening, 176
parallax, 206

510 Index

kernelized, 327
majority filtering, 290
Maps Mercator projection, 10
margin, 270
marginal density, 36
marginal density function, 36
Markov random field (MRF), 154
Markovianity condition, 154
mass function, 33, 293
matched filter, 347
matrix, 12

associativity, 13
determinant, 13
diagonalization, 18
Hermitian, 29, 455
identity, 14
ill-conditioned, 20
inverse, 14
lower(upper) triangular, 451
multiplication, 12
orthonormal, 14
positive definite, 15
singular, 15
square, 13
symmetric, 15
trace, 15
transposition, 13

maximal margin hyperplane, 272
maximum a posteriori classifier,

233
maximum autocorrelation factor

(MAF), 118, 415
maximum likelihood, 47
maximum likelihood classification,

239
maximum likelihood estimate, 59
McNemar statistic, 304
mean, 35
mean shift, 386
memory-based classifier, 250
minimum noise fraction (MNF),

112, 322
calculation with PCA, 115
eigenvalues, 116

misclassification rate, 293

mixed pixels, 319
MNIST, 332
moments of a distribution, 35
momentum, 264
mother wavelet, 99
multi resolution analysis, 96, 136
multi-looking, 184, 187
multi-resolution clustering, 376
multiple extended Kalman

algorithm (MEKA), 484
multiple linear regression, 68

uncertainty, 70
multivariate normal density, 50
multivariate variogram, 117

naive Bayes classifier, 240
nearest neighbor resampling, 225
neighborhood function, 290, 384
neighborhoods, 152, 290
neural network, 250, 382
Neyman–Pearson Lemma, 61
noise estimation, 120
noise reduction, 227
non-parametric classification

models, 245
normal equation, 69
null hypothesis, 60
Nyquist critical frequency, 84

omnibus test, 425
one-hot encoding, 242
OpenCV, 166
oriented hyperplane, 251
Orthogonal Decomposition

Theorem, 91, 454
orthogonal moments, 176
orthogonal subspace projection,

347
orthorectification, 2, 201
outer product, 13
over fitting, 268

P-value, 61, 411
panchromatic sharpening, 176
parallax, 206

Index 511

parallel computing, 265, 300
IPython engines, 300

parametric classification models,
240

Parseval’s formula, 97
partial unmixing, 347
partition density, 375
Parzen window, 245
path-oriented, 2
pattern recognition, 231
Pauli decomposition, 189
PCIDSK image format, 6
perceptron, 251
perspective transformation, 201
pixel purity index, 323
point estimator, 48
polarimetric SAR, 184

change detection, 420
classification, 316
covariance representation,

188
polarization, 3
post processing, 289
power spectrum, 86
principal axes, 103
principal components analysis

(PCA), 28, 103, 398, 460
dual solution, 110
image compression, 107
image reconstruction, 107
primal solution, 110
self-supervised, 287

probabilistic label relaxation
(PLR), 290

probability density
exponential, 186

probability density function, 33
probability distribution, 32

beta, 43
binomial, 33, 295
chi-square, 411, 427
complex Wishart, 317, 425
exponential, 34
gamma, 422
Gaussian, 39

normal, 39
standard normal, 39

producer accuracy, 297
provisional means, 53
pseudo inverse

of data matrix, 69, 456
of end-member matrix, 322
of symmetric singular matrix,

21
pyramid representation, 145
PyTorch, 21, 266

quad polarimetric SAR, 8
quadratic cost function, 258, 287
quadratic form, 16
quadratic programming, 274
quadricity, 476

R-operator, 466
radar cross section, 8
radar ranging, 130
RADARSAT-2, 189, 435
radiometric normalization, 441

scatter plot matching, 442
with MAD transformation,

442
random forest, 312, 314, 347
random variable, 31

complex Gaussian, 50
continuous, 33
discrete, 32, 35
i.i.d., 47

random vector, 36
complex Gaussian, 51

rational function model (RFM),
202

Rayleigh quotient, 118
reciprocity, 9, 188
rectified linear unit (ReLU), 266,

331
refinement coefficients, 97
reflectance, 4, 441
regions of interest (ROIs), 234
regular lattice, 152, 351
regularization, 72, 412

512 Index

resampling, 223
residual error, 66, 319
RGB cube, 177, 384
ridge regression, 72

dual solution, 73
primal solution, 72

row major indexing, 5
RST transformation, 200

sample function, 46
vector, 51

sample mean, 40, 46
sample space, 31
sample variance, 46
Sampling Theorem, 85
scale invariance, 412
scaled conjugate gradient, 265,

470
second kind error probability, 61
second order stationarity, 117
semantic segmentation, 340
semi parametric models, 250
Sentinel-1, 9, 432, 435
separability, 234
shape files, 244
shattering, 286
shift invariance, 181
sigmoid activation function, 252
similarity transformation, 201
simulated annealing, 373

temperature, 373
singular value decomposition

(SVD), 19
slack variables, 276
slippy map display, 106, 420
slope (topographic), 210
soft margin constraints, 276
softmax activation function, 257,

260
software installation, 485
solar azimuth, 211
solar elevation, 211
solar incidence angle, 211
span image, 188
sparse matrix, 95

spatial autocorrelation, 118
spatial clustering, 377
spatial transformations, 83
speckle filtering, 192

gamma MAP filter, 196
MMSE filter, 193, 317
temporal filter, 198

speckle statistics, 184
spectral angle mapping, 348
spectral change vector analysis,

396
spectral decomposition, 20
spectral libraries, 319
spectral transformations, 83
spectral unmixing, 319

unconstrained, 322
stationary point, 23
statistical independence, 37, 50
statistical significance, 61
stereo imaging, 1, 204
Student-t distribution, 63
Student-t statistic, 303
sum of squares cost function, 351,

354
support vector machine (SVM),

231, 270
for two classes, 270
multi class, 279

support vectors, 275
SUSAN edge detector, 226
SWIR spectral bands, 1
synaptic weight matrix, 253, 383
synthesis filter bank, 141
synthetic aperture radar (SAR),

2, 8
dual polarimetric, 190
quad polarimetric, 190
speckle, 184

Taylor series, 23, 480
TensorFlow, 21, 69, 231, 265, 266
tensors, 21
TerraSAR-X, 1
test data, 234, 242
test procedure, 61

512 Index

resampling, 223
residual error, 66, 319
RGB cube, 177, 384
ridge regression, 72

dual solution, 73
primal solution, 72

row major indexing, 5
RST transformation, 200

sample function, 46
vector, 51

sample mean, 40, 46
sample space, 31
sample variance, 46
Sampling Theorem, 85
scale invariance, 412
scaled conjugate gradient, 265,

470
second kind error probability, 61
second order stationarity, 117
semantic segmentation, 340
semi parametric models, 250
Sentinel-1, 9, 432, 435
separability, 234
shape files, 244
shattering, 286
shift invariance, 181
sigmoid activation function, 252
similarity transformation, 201
simulated annealing, 373

temperature, 373
singular value decomposition

(SVD), 19
slack variables, 276
slippy map display, 106, 420
slope (topographic), 210
soft margin constraints, 276
softmax activation function, 257,

260
software installation, 485
solar azimuth, 211
solar elevation, 211
solar incidence angle, 211
span image, 188
sparse matrix, 95

spatial autocorrelation, 118
spatial clustering, 377
spatial transformations, 83
speckle filtering, 192

gamma MAP filter, 196
MMSE filter, 193, 317
temporal filter, 198

speckle statistics, 184
spectral angle mapping, 348
spectral change vector analysis,

396
spectral decomposition, 20
spectral libraries, 319
spectral transformations, 83
spectral unmixing, 319

unconstrained, 322
stationary point, 23
statistical independence, 37, 50
statistical significance, 61
stereo imaging, 1, 204
Student-t distribution, 63
Student-t statistic, 303
sum of squares cost function, 351,

354
support vector machine (SVM),

231, 270
for two classes, 270
multi class, 279

support vectors, 275
SUSAN edge detector, 226
SWIR spectral bands, 1
synaptic weight matrix, 253, 383
synthesis filter bank, 141
synthetic aperture radar (SAR),

2, 8
dual polarimetric, 190
quad polarimetric, 190
speckle, 184

Taylor series, 23, 480
TensorFlow, 21, 69, 231, 265, 266
tensors, 21
TerraSAR-X, 1
test data, 234, 242
test procedure, 61

Index 513

test statistic, 61
asymptotic distribution, 65

Theorem of Total Probability, 57
TIR spectral bands, 1
training data, 234, 302, 351
transfer learning, 334

unbiased estimator, 46, 51
undirected graph, 153
UNet architecture, 340
Universal Transverse Mercator

(UTM), 2
up sampling, 140
USDA NAIP imagery, 342
user accuracy, 298

validation data, 268
Vapnik–Chervonenskis (VC)

dimension, 286
variance, 35

vector, 10
differentiation, 22
inner product, 11
length, 11
linear dependence, 17
norm, 11

vector quantization, 383
vector space, 17, 453

basis, 454
VNIR spectral bands, 1
Voronoi partition, 369

Wang Bovik quality index, 182
warping, 223
wavelet coefficients, 92
whitening, 115
Wishart distribution, 55

complex, 56, 189, 229

Xception, 335

	Cover
	Half Title
	Title Page
	Copyright Page
	Contents
	Preface to the First Edition
	Preface to the Second Edition
	Preface to the Third Edition
	Preface to the Fourth Edition
	Preface to the Fifth Edition
	Author Biography
	1. Images, Arrays, and Matrices
	1.1. Multispectral satellite images
	1.2. Synthetic aperture radar images
	1.3. Linear algebra of vectors and matrices
	1.3.1. Elementary properties
	1.3.2. Square matrices
	1.3.3. Singular matrices
	1.3.4. Symmetric, positive definite matrices
	1.3.5. Linear dependence and vector spaces
	1.3.6. Eigenvalues and eigenvectors
	1.3.7. Singular value decomposition
	1.3.8. Tensors

	1.4. Finding minima and maxima
	1.5. Exercises

	2. Image Statistics
	2.1. Random variables
	2.1.1. Discrete random variables
	2.1.2. Continuous random variables
	2.1.3. Random vectors
	2.1.4. The normal distribution
	2.1.5. The gamma distribution and its derivatives

	2.2. Parameter estimation
	2.2.1. Random samples
	2.2.2. Sample distributions and interval estimators

	2.3. Multivariate distributions
	2.3.1. Vector sample functions and the data matrix
	2.3.2. Provisional means
	2.3.3. Real and complex multivariate sample distributions

	2.4. Bayes’ Theorem, likelihood, and classification
	2.5. Hypothesis testing
	2.6. Ordinary linear regression
	2.6.1. One independent variable
	2.6.2. Coefficient of determination (R2)
	2.6.3. More than one independent variable
	2.6.4. Regularization, duality, and the Gram matrix

	2.7. Entropy and information
	2.7.1. Kullback–Leibler divergence
	2.7.2. Mutual information

	2.8. Exercises

	3. Transformations
	3.1. The discrete Fourier transform
	3.2. The discrete wavelet transform
	3.2.1. Haar wavelets
	3.2.2. Image compression
	3.2.3. Multiresolution analysis

	3.3. Principal components
	3.3.1. Principal components on the GEE
	3.3.2. Image compression and reconstruction
	3.3.3. Primal solution
	3.3.4. Dual solution

	3.4. Minimum noise fraction
	3.4.1. Additive noise
	3.4.2. Minimum noise fraction via PCA

	3.5. Spatial correlation
	3.5.1. Maximum autocorrelation factor
	3.5.2. Noise estimation

	3.6. Exercises

	4. Filters, Kernels, and Fields
	4.1. The convolution theorem
	4.2. Linear filters
	4.3. Wavelets and filter banks
	4.3.1. One-dimensional arrays
	4.3.2. Two-dimensional arrays

	4.4. Kernel methods
	4.4.1. Valid kernels
	4.4.2. Kernel PCA

	4.5. Gibbs–Markov random fields
	4.6. Exercises

	5. Image Enhancement and Correction
	5.1. Lookup tables and histogram functions
	5.2. High-pass spatial filtering and feature extraction
	5.2.1. Sobel filter
	5.2.2. Laplacian-of-Gaussian filter
	5.2.3. OpenCV and GEE algorithms
	5.2.4. Invariant moments

	5.3. Panchromatic sharpening
	5.3.1. HSV fusion
	5.3.2. Brovey fusion
	5.3.3. PCA fusion
	5.3.4. DWT fusion
	5.3.5. A trous fusion
	5.3.6. A quality index

	5.4. Radiometric correction of polarimetric SAR imagery
	5.4.1. Speckle statistics
	5.4.2. Multilook data
	5.4.3. Speckle filtering

	5.5. Topographic correction
	5.5.1. Rotation, scaling, and translation
	5.5.2. Imaging transformations
	5.5.3. Camera models and RFM approximations
	5.5.4. Stereo imaging and digital elevation models
	5.5.5. Slope and aspect
	5.5.6. Illumination correction

	5.6. Image–image registration
	5.6.1. Frequency domain registration
	5.6.2. Feature matching
	5.6.3. Re-sampling with ground control points

	5.7. Exercises

	6. Supervised Classification Part 1
	6.1. Maximizing the a posteriori probability
	6.2. Training data and separability
	6.3. Bayes maximum-likelihood classification
	6.3.1. Naive Bayes on the GEE
	6.3.2. Scripts for supervised classification

	6.4. Gaussian kernel classification
	6.5. Neural networks
	6.5.1. The neural network classifier
	6.5.2. Cost functions
	6.5.3. Back propagation
	6.5.4. Deep learning networks
	6.5.5. Over fitting and generalization

	6.6. Support vector machines
	6.6.1. Linearly separable classes
	6.6.2. Overlapping classes
	6.6.3. Solution with sequential minimal optimization
	6.6.4. Multiclass SVMs
	6.6.5. Kernel substitution

	6.7. Exercises

	7. Supervised Classification Part 2
	7.1. Postprocessing
	7.1.1. Majority filtering
	7.1.2. Probabilistic label relaxation

	7.2. Evaluation and comparison of classification accuracy
	7.2.1. Accuracy assessment
	7.2.2. Accuracy assessment on the GEE
	7.2.3. Cross-validation on parallel architectures
	7.2.4. Model comparison

	7.3. Ensembles
	7.3.1. Adaptive boosting
	7.3.2. Binary decision trees and random forests

	7.4. Classification of polarimetric SAR imagery
	7.5. Hyperspectral image analysis
	7.5.1. Spectral mixture modeling
	7.5.2. Unconstrained linear unmixing
	7.5.3. Intrinsic end-members and pixel purity
	7.5.4. Anomaly detection: The RX algorithm
	7.5.5. Anomaly detection: The kernel RX algorithm

	7.6. Convolutional neural networks
	7.6.1. Transfer learning
	7.6.2. Semantic segmentation

	7.7. Exercises

	8. Unsupervised Classification
	8.1. Simple cost functions
	8.2. Algorithms that minimize the simple cost functions
	8.2.1. K-means clustering
	8.2.2. Kernel K-means clustering
	8.2.3. Extended K-means clustering
	8.2.4. Agglomerative hierarchical clustering
	8.2.5. Fuzzy K-means clustering

	8.3. Gaussian mixture clustering
	8.3.1. Expectation maximization
	8.3.2. Simulated annealing
	8.3.3. Partition density
	8.3.4. Implementation notes

	8.4. Including spatial information
	8.4.1. Multiresolution clustering
	8.4.2. Spatial clustering

	8.5. A benchmark
	8.6. The Kohonen self-organizing map
	8.7. Image segmentation and the mean shift
	8.8. Exercises

	9. Change Detection
	9.1. Naive methods
	9.2. Principal components analysis (PCA)
	9.2.1. Iterated PCA
	9.2.2. Kernel PCA

	9.3. Multivariate alteration detection
	9.3.1. Canonical correlation analysis (CCA)
	9.3.2. Orthogonality properties
	9.3.3. Iteratively re-weighted MAD
	9.3.4. Scale invariance
	9.3.5. Regularization
	9.3.6. Postprocessing
	9.3.7. Unsupervised change classification
	9.3.8. iMAD on the Google Earth Engine

	9.4. Change detection with polarimetric SAR imagery
	9.4.1. Scalar imagery: the gamma distribution
	9.4.2. Polarimetric imagery: the complex Wishart distribution
	9.4.3. Python software
	9.4.4. SAR change detection on the Google Earth Engine

	9.5. Radiometric normalization of visual/infra-red images
	9.5.1. Scatter plot matching
	9.5.2. Automatic radiometric normalization

	9.6. Exercises

	A. Mathematical Tools
	A.1. Cholesky decomposition
	A.2. Vector and inner product spaces
	A.3. Complex numbers, vectors, and matrices
	A.4. Least squares procedures
	A.4.1. Recursive linear regression
	A.4.2. Orthogonal linear regression

	A.5. Proof of Theorem 7.1

	B. Neural Network Training Algorithms
	B.1. The Hessian matrix
	B.1.1. The R-operator
	B.1.2. Calculating the Hessian

	B.2. Scaled conjugate gradient training
	B.2.1. Conjugate directions
	B.2.2. Minimizing a quadratic function
	B.2.3. The algorithm

	B.3. Extended Kalman filter training
	B.3.1. Linearization
	B.3.2. The algorithm

	C. Software
	C.1. Installation
	C.2. Command line utilities
	C.2.1. gdal
	C.2.2. earthengine
	C.2.3. ipcluster

	C.3. Source code and documentation
	C.4. Solutions manual

	Mathematical Notation
	References
	Index

