Master the Key Concepts of €SS for
Modern Web Development

Second Edition

Joe Attardi

Apress’




Modern CSS

Master the Key Concepts of CSS
for Modern Web Development

Second Edition

Joe Attardi

Apress-



Modern CSS: Master the Key Concepts of CSS for Modern Web Development,
Second Edition

Joe Attardi
Billerica, MA, USA

ISBN-13 (pbk): 979-8-8688-1726-7 ISBN-13 (electronic): 979-8-8688-1727-4
https://doi.org/10.1007/979-8-8688-1727-4

Copyright © 2025 by Joe Attardi

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Anandadeep Roy
Editorial Assistant: Jessica Vakkili

Cover designed by eStudioCalamar
The cover image is from Pixabay.com

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 New York Plaza,
New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or
visit www.springeronline.com. Apress Media, LLC is a Delaware LLC and the sole member (owner) is
Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub. For more detailed information, please visit https://www.apress.com/gp/services/
source-code.

If disposing of this product, please recycle the paper


https://doi.org/10.1007/979-8-8688-1727-4

To Liz and Benjamin



Table of Contents

About the AUROF ........cccccmimiimrine s ————— XV
About the Technical ReVIEWET .......ccusssssnsssassssassssnsssassssassssnsssansssansssassssnsssansssanssas xvii
AcKNOWIEdgMENTS .....cuuiiiissmnmmmmsssnnnmmsssssnnmmsssssnnsessssnnnsssssssnnsessssnnnssssssnnnnsssssnnnnssssnnns Xix
L1 T LT (] Xxi
Chapter 1: Introduction to CSS .......cccccmmmmmmmmmmmmmmsssssnmmssss .- 1
ANAtomMY O @ CSS RUIE .....evvereereesirsere et sere s ses e s e se s e s e s e sae e e saesae s e e s saesaenesnenaesaes 1
RUIE SYNTAX......ceierrirreierieresesesseressessssesesseseesassessessesss e ssesaesasssssessesaesssssssessesesssssessesaessesensesaens 1
Property CONTIICES ......cveerereererrerereressessesesee s e rse s sa s e s e ssesas e s e s sae e s e ssesaesasssssesaesaessssensesaens 2
0011111 1 3 3
AL-RUIBS ...t 3

HOW CSS IS USB......ceeeeereecrireerese e s sennnnene 4
INHNE STYIES ..o s a e sa e s s e e e s ae s e e e e saesae e e e e e nnesaenannns 4
INternal STYIESNEETS.....coce e r e e 4
EXternal STYIESNEETS. ......cce vttt n e e 5
BrOWSEE SUPPOIT ... .ottt e e e bbb e e R e e e 6
WED RESOUITES ......ceeeueeeerererresese e s e e s e s s e e e s e e e e e sre e e e nnesae e e e nnnnneas 6
CANIUSE.COMN....c.vieiereeerree s s r e se e e R e e e s ae e nRe e e n e e 7

MIDN WED DOCS ......cveereruerreeeesessessesesessessesesessessessesesssssessesessessssssssssssssssesssssssssnesssssensanssnees 7

How CSS WOIKS in the BIOWSEF .......cceceirieriirinersisessssessssesssss s ssssesssssssssssesssssssssssssssssssssesssssnees 7
The Document Object Model (DOM)........ccoueermrenmnenmnrisesrssessseses s s ssssssassssases 7

The CSS Object Model (CSSOM) ......ccoviirinerinerrrenesese s sr s s sesse e sessass 9

L 2 Tc] 100 (o] G ST SSSSSR 10
Layout and PaiNt..........cccccriiennennninersse e s ss s ses s e s e s s 11

£ 11114 7R 11



TABLE OF CONTENTS

Chapter 2: CSS Rules and Selectors .........cccvuunsemmmmssssnnsssssssssssnsssssnssssssssssssssssnsnssss 13
BaSIC SEIECION TYPES ..c.veueerueirreerie e rir sttt s et b e e e b e s e s et ae et e et 13
The UnNIvVersal SEIECION...........covrrierercrrrereeese s 13
EIEMENT SEIBCTIONS ... s 14
DIR[0 £ 3O 14
(T T (0] TR 15
ATFIDULE SEIECIONS......civeeecccrere e 15
ComPOUNG SEIBCIOIS.....cceiircir e e e e 16
Multiple Independent SEIECIOIS ... e 17
Selector COMDINALOIS........cuicerierirese e r e n s 17
Descendant CombinNator ..o —————— 17
Child COMDINATON.......ccevierierrerer e 18
Subsequent Sibling COMDINALOY ..........ccoviirnirrr 18
Next Sibling COMDINALOL........ccccviirernerrresrr e e 19
Using Multiple COmMDINALOTS ........ccoveerreierrnsesereseree e 19
PSEUAO-CIASSES......cuceriiiririire 20
INtEraction STALE ... ——————— 20
DOCUMENT STIUCTUIE ... s 21
Negating @ SEIECION .......ccev i 22
The :has PSEUAO-CIASS .........ccviirmriniriii e 22
ThE :iS PSBUAO-CIASS .......cueueeerirrisiisi s 24
PSEUAO-CIBMENIS ... s 25
3T 0o (]SO R 26
SPECIfiCity RANKINGS ......coveerirecercccr sttt 27
Calculating SPECIICITY .....ccoveeerererere st e e se s e 28
The Escape Hatch: limportant ... 29
NEStiNG CSS RUIES .....ccveireriresir st s e s s 30
BT 111 T PSSR 32



TABLE OF CONTENTS

Chapter 3: BasiC CSS CONCEPLS ..ccvveeerrrssssmmnsmssssnnnsmssssssssessssnsssssssssnnssssssnsnssssssnnnsssss 33
T30 2 0001 oo S 33
3 10) T4 T OO 36
ASPECE RALIO .....ceueiieiccrcre st e 38
Block and Inling EIBMENTS.........ccco e 39
3] (0T S T T 1T 39
INNE EIBMENTS ..o e ne e 40
INlNE-BIOCK EIBMENIS.......coviceercereerecrer e 44
CSS UNILS c.vuereerrsesessesessesesrssesessssessess s e e sssse s e ssssesessssessssessssesenssssssssessenssessssssssnsssensssnssssnsenens 45
TRE PX UNIL ... e e e e e s 46
THE €M UNIE ... s ne e nannn s 46
THE FEM UNIT....eeec e ne e nnn e 47
Viewport Units: VW @nd V...t ssssessesnes 47
THE % UNE ... s e s nrnnn e 48
L0471 SR 48

NO UNIES ..eveerisesesrese s e s e e e s s s se s sas e s sse e sss e nassssensssensssensnns 48
FUNCLIONS ...ttt 48
THE CaIC FUNCLION .....cecvieceeccire st nne e 48
The min and Max FUNCHIONS ... s se e 49
0] 0] £ 50
T =0 0] 0] R 50
2153 ] ] £ TR 50

Ly T IR 0] R 52
TrANSPArENL......ce e ae e s 52
L 00 (0T 1 R 52
OVEITIOW ...t 55
Handling OVEITIOW ......coccverieieriere s sere e a e s s sr e sa e s e s e e s nne e 57
CSS VANIADIES ......vcecccrirrcise iR 60
USING VATADIES .....coveererie et r e e e s e e s n e e 60
Using Variables with the calc FUNCLION...........cccvvennininr e 62
11T 1117 OSSR 63

vii



TABLE OF CONTENTS

Chapter 4: BasiC Styling ........ccccvmsssmmnmmmsssnnnmmssssssnnmsssssnssesssssssssssssssssessssssnssssssnnnsssss 65
Property VAIUES .......coeii s sr e s e e e b e e 65
GIODAI KEYWOIAS........coeeueeriecririe et s et se e e se s e a e s et p e e et 65
Shorthand and MUIEIPIE VAIUES.......c.cccerererrierre st sss e sens 65

2 T0] €0 -] R 68
Setting the Border COlOr ... s 68
Setting the Border Width ... 68
Setting the Border SIYIE ... 68
Setting All Properties with the Shorthand ..., 69
Specifying Border COllAPSE ..o 69
Setting a Border Radius for Rounded COMMErs..........cccurinnnnieniennssnsesese s sessesessssessessesees 70
2103 Q] T2 10 0T S 74
(070 T SO S TS SPSRSTTSTPRTT 80
o L0 a0 = =T 4111 U 84
USING display: NONE .. s 84
Using visibility: hidden ... 84
Setting 0pacity 10 0 . ————— 85
L0 T 85
11T 1117 SRS 88
Chapter 5: Backgrounds and Gradients........cccccmmusmmmssnsmsssssssssssssssssssssssssssssssssanss 89
S0lid BaCKGround COIOFS........ccoveeererereescrenererseseseesesesesessesesessesesesessesesssssessssesssssssesssssssessenens 89
BacKground IMAQES .......ccovererenmrreserrsesessesessssesessesssssse s sessssessssssssssssssssssssssssssssssssssssssssnssssnns 90
Applying a Background Image with the background-image Property........cccovrvirnserencnnns 90
Repeating a Background with the background-repeat Property........c.ccevvevviniriennsenienen, 91
Moving the Background Image with the background-position Property ..........cccceeevvvniernenn. 94
Customizing the Size with the background-size Property........c.ccocovrenerenernsesessesesesesensesenns 96
The background-Clip PrOPEILY.......cccovereresernsesesesese s s e e ssssssessesessssessssesesssssssenens 100
Using the Shorthand background Property ........c.ccccverrnsnnnessssesssssesesesssesesesessssessnns 102
Customizing Scroll Behavior with the background-attachment Property.........c.c.ccocvveierenne. 103
Background Gradients .........c.ouceevenerenernsessnenesese s sss s ss s ss s s sesssss e sessssenns 103
LinEar Gradients ........ccvveerrneneresesrsse s sr s s 103

viii



TABLE OF CONTENTS

Radial Gradients ..........cccorriinnnisesinsssss s s 109
(00 T TeaC T =T 116
Combining BaCKGrOUNGS ........cccoceererrmeeseseressssessesesessssesesssesesss s ssssssssssssssssssssssssssssssssssesssssnsaes 120
£ 10T 1117 T 121
Chapter 6: Text Styling ......ccccccmmmisenmmmmnssnnmmmmsssnmmmssssnmsssss s ———————— 123
BasiC TEX SIYIING .....ccvrieereiriresire st 123
FONE-FAMIIY ... ———————————— 123
FONE SIZE....ececececceir et r e e e r e nr s 124
LR 0] 1] PSSRSO 125
FONTWEIGNL.......ccoieirccere e e nr s 126
FONE STYIR ..ottt e 126
Underlining with text-decoration ... 127
Other TEXE EffECTS ... 130
Transforming t0 UPPEICASE ......cceverereririirierere s sesessessesessessessesssses e ssessesssessessesssssssessesnes 130
I = g 0 (o o S 131
FONEVANIANT ... 131
L3 20 S 132
TEXEINUENL......cee e ————— 132

L LT 0 Lo S 133
TrUNCALING TEXE ... e e e r e e s 135
Horizontal AlIgNMENT ..o s s 136
Vertical AIGNMENT ..o e e e 137
USING WED FONTS ... 141
Registering a Font with the @font-face RUIE ...........covevriecrrcrnccrecr e 142
Declaring Different Web FONt STYlEsS........ccovevrrcrnc st 142
AWord of Caution 0n Web FONLS ..o 143
TEXE SNAUOW........cceeecereereec e e e s e e nae e s e e e e e e nnene s 143
Applying @ Gradient t0 TEXL ......cveervrerereserese s nrens 144
L1134 R 145

ix



TABLE OF CONTENTS

Chapter 7: Layout and PosSitioning.......ccuccmmrmmsmnmnmmssssnsnmssssssssssssssssssssssssssssssssnnns 147
1o o 1 T OSSOSO RPRS SN 147
12T 01 OSSOSO 150

Centering an Element with margin: auto ... 152
Margin COMAPSE........ccviererrrirer e s s p e e 153
PoSItioNiNg EIBMENLS .........cccrrrerirererese s s se s s sesss s 156
Static POSILIONING.......ccccovrererrrerre e 156
Relative POSItIONING........ccovvererisrresersse s s s nennis 156
AbSOIULE POSItIONING.....ccceiereecerreerenesesese s srs s e nnenens 159
FiXed POSItIONING ....coveeeereecrrnesesesesese s s s s e e s se s e ssssenenns 164
Sticky POSITIONING ....ccvveeireerncsinese s 165
Z-index and Stacking CONTEXLS ......ccvvrernserrnesesese e sr e sr s 165
StACKING CONTEXES....ccviueirrricerinessne s sr e sp e r s 168
FIOAES ..ot 173
[T T a0 LR 176
Width and HEIgNT ..o e s 177
INEriNSIC VS. EXIMNSIC SiZ€.....ccvvieiiccrerirssssesi s 178
The min-content and max-content KEYWOrdS .........cccucvvenininsnneninsensen s sessessesssessessesns 178
Using MUItiPIE COIUMNS .......covieeiiecrcccrir e e s se e e 180
£ 1T T TS 181

Chapter 8: TranSfOrms ........cccurrrcmmssssssssssmmmmmmmsssssssssssnnseesssssssssssssnsssessssssssnnnnnnnnnss 183
THe X-, Y=, QN0 Z-XES ....veeerereereerereree e sessesssessessesssessesaessssssessssasssssssssaessssssssaessessssssesaesaenaes 183
oS ] 0T+ (11 OSSN 184
ROTALE........ccer e ———————————— 184

ROTALION AXIS.....cererririicese s p e 185
310210 (0 o3 O 185
Rotating Around the Z-aXiS .......ccevrevrrerrerernnensesesssessesesesessessessessssessessesssssssessesssssssessesses 186
Rotating Around the X-aXiS.......c.cceeerrrrieriennnnsesesnsessese s sessesessessssessessesssssssessesssssssessesses 187
Rotating Around the Y-aXiS ......ccccerrerrreriererennensesessnsessesessesessessessessssessessesssssssessesssssssessesses 189
Rotating in Three DIMENSIONS........cccvvrierevinrirere s s s sss e ssesaessssesaesnes 190



TABLE OF CONTENTS

TrANSIALE ... ——————————— 191
Translating Along the Z-aXiS ......ccucvvrirreririnirre e s s sae s s 192
Translating in an Arbitrary Direction with translate3d..........ccccecvvrrinininnincninrnenene, 194
Translating with the translate CSS PropPerty........cccvvrrerrrersersesessssessessessessssessessesssssssessesees 195

RS0 2T 196
Scaling with the scale CSS PrOPEITY ........ccocveiererernierirc s se s se e e e seens 198

£ (- 199

Applying Multiple TransSformMS ..o s e nne s 200

Putting It All Together: Making @ CUDE ........cccccerrinmrnsennesene s sessesenns 204

£ 11134 ORI 211

Chapter 9: Transitions and AniMations........ccuennmnmmsssss———————— 21 3

LT[0 213
Transition TIMe UNILS ......ccoviiiiirninr s 216
Animating an Element’s Initial State with @starting-style ..., 216
EQSiNg FUNCLIONS .......ccoceeieririn e a e s s a e s 217

ANIMALIONS ... s e s se e e R e e e e se e e e nRe e nrens 221
Basic ANimation PrOPErties ......c.ccccvvririeriennsinsese s s srs e e snes 224
Delaying the Start of the ANIMation............cccorrcrrcrr s 224
The Animation Fill MOGE ..o e 225
Running an Animation Multiple TIMES ........cccvrinnnnn s s sss s snes 226
Running an Animation Backward ...........cccoovvrvrinnnninc s s sessesnes 227
Pausing and Resuming an Animation ............cccvirvinnnininnnsnse s sesseenes 227
Applying Multiple ANIMALIONS ..o s 227
Applying Multiple Animations That Change the Same Property ...........ccoovvevenererernenencnenens 229

Performance IMpliCationS ... 230
0] 1< N 0T3S 230
Giving a Hint As to What Properties Will Be Animated.........c.coccoveernecnnnenenescrneeseseeneenes 231
Avoiding Simultaneous ANIMALIONS .........cccecereererrerere e snenens 232
Considering ACCESSIDIIITY.........covoereeerrererere e 232

SCroll-Driven ANIMALIONS .......ccoveeernrernesere s s ses e s 234

11T 111 1T o OSSOSO 235



TABLE OF CONTENTS

Chapter 10: FIEXDOX ....uieeurersssnnsmsssssnsnssssssnnsssssssnnssssssnnssssssssnnsssssssnnssssssnnnsssssnnnnnss 237
2 F2 TSy T 0] =T ] 3O 237
Creating a FIEX CONTAINET ........cccccveerrerire sttt sae s 237
D= 0] 237
AAXIS et eese e e R e A e e e e e Re e R e e e e Re e nRe e nRe e e e e e nRennas 238

A BasiC FIEXDOX LAYOUL ..........coeeeecrerceree e 239
Adding Space Between HEMS.........ccccovererenernsesrsese s s sessssessssessnnes 240
SiziNg Of FIEX HEBMS......ceiiceeircctr s 241
Wrapping FIEX EBMS ....c.civevieiirere e s s se s sb e s sae e e s sae s e e e s nne s 244
Growing Flex [tems to Fill Available SPACE .......c.ccvrerererreriererensenseressssessesessessssessessessessssessesses 245
Shrinking Flex Items to Fit the Available Space..........ccccccvrvvrcrccrnccr e 249
Setting the Initial Size of @ FIEX HEM ......ccociivrcr e 250
Alignment and SPACING.......cccoervrernrerereserese s sr e re e nr s 251
The WHEING MOTE ......covveereeree s srs e s e nsnnens 251
Controlling Spacing on the Main AXiS.........c.ccvrurerrrerrsenernsesessesessse s sessssessssesseses 251
Controlling Alignment 0N the CroSS AXIS........cuourrreseresernsmssssssessssessssssssssssssssessssssssssssssnnes 253
Controlling Spacing in the CroSS AXiS.......cuouuruserrssesesesersssmssssssessssesssssssssssssssssssssssssssssssenes 254
Overriding Container SELHNGS ........ccccvverererrnsrrresre s nrens 257
Changing the Flex Rem OFder ... s 258
Accessibility CoNSIAErations..........cucvvererisernsesrnesssese s sessessssesens 260
FIEXDOX LAYOUL USE CASES.....covverereriertrerersessssesessesssssssessessessssessessesssssssessessessssessessssssssssessens 260
L8 L0 T (I O=T 1) Ty o O 260

A Flexbox-Based Page LayOUL..........ccvvererinninnie s s s s s s e s s sessssnessesae s 261

£ 11134 7R 264
Chapter 11: CSS Grid ...ccccsrrsssnnnnrsssssnnnmssssssssesssssnssssssssnssssssssnnnssssssnnssssssnnnssssssnnnnss 265
2 F2 TSy T 0] =] ] 3O 265
(610 00y 1T ST 265
(60 I 1 (-] TSP 265
6o I TSP 266

xii



TABLE OF CONTENTS

(60 I T O 266

L6 0 7T 267
Explicit and IMPIICIE GridS ......vovievererrerrere s sere s s sesse s s sse s se s s ssese s saesaesessessesnes 267
THE T UNL.ce e e 267
Defining @ Grid LAYOUL.........ccoureereccc ettt e 268
€10 S 1 4o T 271
Grid Sizing FUNCHONS ......ccceeerccereersese s s 273
The repeat FUNCLION.........c.cciriinsr e e s e 273
The MINMAX FUNCLION ........ceoeree s e nnenens 274
Sizing With @UIO-Till ..o s 277
Sizing With @UIO-fit........coverrrrcrrre s 279
GIid POSITIONING......ccvivierrierisesine e e np e 281
Specifying the Row and COIUMN.........ccoouceiieniiinernerrne e 281
Spanning Multiple ROWS 0r COIUMNS........ccoviitrinernesenesesese s sesesenns 283
NAMEd GFit LINES ...ccceveerreerinesesesesese s s sr e se s e s e sssss s s nenss 285
NAMEA GFit ArBAS......c.ccerreerirerrresesese s e e sr e e na e 287
Lo 7Y 0 T 1 R 289
0L LT 1 OO 289
0 (=1 11O 290
JUSHITY-CONTENT ... e s e s e e 292
10 o0 1] 11| RS 294
Overriding for Individual Grid [HEMS.........coivirvriererrrere e sae s 297
LT 1o o R 297
£ 1T 1117 OO 300
Chapter 12: Responsive DeSign .......ccccusmrrssnsmsssnsmsssnsssssnsesssnsesssnsssssnnssssnnssssnnssssas 303
The VIeWPOrt METa Tag.......ccvreererenerrecrrnsesesese s e s s sse e sse e e s sensenens 303
MEdia QUETIES .....cereeerreerre s e s e p e e e n s 304
LT[0 00T L0 P 305
RANGE SYNTAX.....ccvirerrererresernesesese s e s s e s sr s s s e nns e nennis 305
BreaKPOINTS ... cveeeeeeeerreseriee st e np e 305
Responsive Layouts With FIBXDOX .........ccccveerererrenreniennnensesesesessessessessssessessessessssessessesssssssessens 310



TABLE OF CONTENTS

Responsive Layouts With CSS Grid .........ccvverrererrerreriersssnsessesessssessesessssessessesssssssessessesssssssessens 314
USING QUEO-TIL.....ce e 314
Changing the Grid Layout with a Media QUErY ........cccuvcrnvrninnsr e 315

FIUId TYPOGrapRy ..o s e p e e s p e nne 317
Limiting the Font Size with the clamp FUNCtion...........cccovvvrecrrcvncc e 319

Making Images RESPONSIVE .........cccoerueecrreererererese s s sesse e s 320

Complete Example: Responsive Page Layout ... sessesnes 322

CONtAINET SiZ€ QUEKIES.....cceerrrerereserinesese s s sr e nr e 331
Container QUErY UNITS.......couceierererisesnesssese s s ss s srsse s s s sesssssssssensass 335

BT 1] 1134 R 336

Chapter 13: Wrap UP...cuuseeeeesmmmmmmmmmmmsssssssssmmsssssssssssssssssssssssssssssssssssssssssssnnnnnnssssnss 337

Limiting the Scope of CSS Rules With @SCOPE.......c.ccvvierverrerenessereressssessesessssessessessessssesessens 337

Reading an Element’s AHrDULES.........ccvcvninncncre s 339

SCIOll SNAPPING ..cveitiiriirirer e s e e e e e e R e nnn 339
Configuring Scroll Snap on the Container ..........coooeorerrrcnrrer s 339
Configuring Scroll Snap on Children...........cocoverreeerere s 340

Checking for Feature Support with @SUPPOMS.......c.cccvvvirinnrnc . 341

Applying Visual Effects with the filter Property.........ccoecvnvvnesnissns s 342

Mixing Colors With COIOr-MIX .......ccecerivirrriererrsrrere s s a e nnens 344

ULIlItY-FirSt CSS.....ccviiieeererieessssssss s s sssssssssssnees 346

FINAIWOIS ...t ne e 347

1T - 349

Xiv



About the Author

Joe Attardi is a software engineer from the Boston area,
specializing in front-end development. He has over 20
years of experience working with web technologies such as
JavaScript, TypeScript, HTML, and CSS. He has built rich
front-end experiences for companies such as Dell, Constant
Contact, and Salesforce. He is the author of Using Gatsby
and Netlify CMS (Apress, 2020) and Web API Cookbook
(O'Reilly, 2024). You can find him on X at @JoeAttardi.




About the Technical Reviewer

Kevin Wilson is a seasoned computer industry professional with over 20 years of
experience and a master’s degree in computer science software engineering. His
expertise covers computer programming, software development, IT support, computer
networks, cybersecurity, web development, graphic design, digital photography, film
production, and visual effects. As writer and director at Elluminet Press Ltd, he has
authored numerous best-selling technology books and video training courses on topics
including Microsoft Office, Windows, Mac, computer hardware, Python programming,
and web development, used by learners worldwide. He is also an experienced lecturer
and IT trainer, as well as a consultant and reviewer for various technical publications.
Known for his clear, visual, step-by-step teaching style, Kevin excels at making complex
subjects accessible to students, professionals, and everyday users alike.

Xvii



Acknowledgments

First and foremost, thanks to my wonderful wife, Liz, for always supporting and believing
in me (and dealing with my loud typing!). And my son, Benjamin, for giving me much
needed breaks from writing for playtime.

Thanks to all my friends and family for always supporting and encouraging my
interest in computers and technology.

Many thanks to the team at Apress, particularly Anandadeep Roy and Krishnan
Sathyamurthy, for working with me on the second edition of Modern CSS.

I appreciate the technical feedback from Kevin Wilson.

And finally, my thanks to Louise Corrigan, who brought me on board with Apress for
the first edition back in 2020.

Xix



Introduction

In this second edition of Modern CSS, we will again take a tour of modern CSS. Whether
you’re brand new to CSS or you have some experience and need a refresher, or if you
want to catch up on the newest CSS techniques, this book will have something for you.

This book will not teach you color theory or good design techniques. The intent of
this book is to give you a strong foundation with the various CSS technologies.

The second edition has been updated throughout to add additional content about
newer CSS features, make some clarifications, and fix some mistakes. Here’s what
we'll cover:

In Chapter 1, we'll start at the very beginning and talk about what CSS is, how it
works, and how stylesheets are structured. We'll look at the DOM, the CSSOM, and the
render tree.

In Chapter 2, we will cover CSS selectors. These are critical to understand. Selectors
determine what CSS styles are applied to what elements. We'll also explore the concept
of specificity.

Once we've laid the groundwork, we’ll start to talk about CSS concepts in Chapter 3
like the box model, units, colors, and overflow. We'll also look at CSS custom properties,
better known as variables.

We'll finally start applying styles in Chapter 4, where we’ll look at borders, box
shadows, and opacity. We will see several ways to hide an element on the page.

In Chapter 5, we'll learn all about backgrounds and gradients (which are a type of
background image).

Chapter 6 deals with the important topic of styling text. We'll learn about text styles
and layout, as well as how to use web fonts.

We'll see how to lay out and position elements in Chapter 7. This covers the different
positions such as static, relative, absolute, fixed, and sticky. Also, in this chapter, we’ll
see the topic of stacking contexts and Z-index, which often trip up even experienced
developers (including the author!).

In Chapter 8, we'll cover CSS transforms. This allows you to apply transformations
such as rotation, scale, and skew to elements.

xxi



INTRODUCTION

Transforms can be combined with transitions, which is one topic of Chapter 9, to
create all kinds of interesting effects. Transitions can be applied to transforms or a slew
of other CSS properties. Chapter 9 also covers animations, which takes the concepts of
transitions to the next level.

Chapter 10 is dedicated to the flexible box layout, or flexbox, which is a powerful
one-dimensional layout tool that has excellent browser support. With flexbox, we can
finally easily center a div!

Chapter 11 is all about CSS Grid, the latest and greatest layout CSS tool. We'll also
take a look at the newer CSS Subgrid feature.

In Chapter 12, we'll explore the topic of responsive design. While it’s not an
exhaustive guide - entire books have been written on the subject - it lays a good
foundation, covering topics such as media queries, container queries, and fluid
typography.

Finally, Chapter 13 will cover some miscellaneous CSS topics that didn't fit
elsewhere in the book.

xxii



CHAPTER 1

Introduction to CSS

CSS, or Cascading Style Sheets, is a language for applying styling and layout to HTML
documents. You can use it for everything from changing text color to creating complex
grid layouts to performing animated transitions and everything in between.

The interesting part of CSS is the “Cascading” part. Because more than one style rule
can apply to a given HTML element, there needs to be some way to determine which rule
should apply in the event of a conflict. The styles “cascade” from less specific to more
specific selectors (a concept called specificity), and the most specific rule wins. If two
rules have the same specificity, then whichever rule comes last in the stylesheet wins.

Anatomy of a CSS Rule

A CSS stylesheet consists of rules. CSS rules target HTML elements by using selectors
that describe the elements that should be styled. As you'll see later, elements can be

selected in many ways.

Rule Syntax

A CSS rule consists of a selector followed by a collection of CSS properties, contained
inside curly braces. The properties consist of a name and value, separated by a colon,
and are separated from each other with semicolons. A property may have a single value
or a collection of multiple values, depending on the property.

The properties in a rule are applied to every element in the document that matches
the selector. Figure 1-1 shows an example of a CSS rule.

© Joe Attardi 2025
J. Attardi, Modern CSS, https://doi.org/10.1007/979-8-8688-1727-4_1


https://doi.org/10.1007/979-8-8688-1727-4_1#DOI

CHAPTER 1  INTRODUCTION TO CSS

.header {
background-color: red;
border: 1px solid blue;

l erovory 1 Vaue

Figure 1-1. The structure of a CSS rule

This rule targets any element with the class header (more on classes later). Any
element with this class will have a red background and a 1-pixel, solid, blue border. In
this example, background-color and border are CSS properties.

Here, the background color is specified as red, but as you'll see later, there are many
ways to represent colors in CSS. The border width is specified using the px unit, which
corresponds to pixels. There are many other units including em, rem, and %. We’ll cover
some of the different CSS units in Chapter 3.

Property Conflicts

If the same property is used more than once in a rule, the last style in the rule is applied.
In Listing 1-1, the element with the class header will have a blue background. The
second background-color property overrides the first.

Listing 1-1. A CSS rule with conflicting properties

.header {
background-color: red;
background-color: blue;

}

Similarly, if there are conflicting styles across multiple rules, the conflicting styles in
the last rule are applied.



CHAPTER 1  INTRODUCTION TO CSS

Listing 1-2. CSS rules with conflicting properties

.header {
background-color: red;

}

.header {
background-color: blue;

}

In Listing 1-2, the element with the class header will again have a blue background
because the last rule in the stylesheet has a background-color of blue.

Comments

CSS can also contain comments, inside and outside of rules. Listing 1-3 shows some
examples of CSS comments.

Listing 1-3. A CSS stylesheet with comments
/* This is a comment outside of a rule */

.header {
/* This is a comment inside of a rule */
background-color: red;

}

At-Rules

An at-rule is a special CSS rule that acts as a directive controlling the behavior of CSS. It’s
called an at-rule because it starts with the “at” symbol (@). Here are some examples of
at-rules:

e @import: Includes the contents of another stylesheet.

e (@media: Defines a media query. Chapter 11 will cover media queries
in more detail, but we’ll see a few before then.



CHAPTER 1  INTRODUCTION TO CSS

o @keyframes: Defines a set of keyframes for a CSS animation. Chapter 9
will cover animations.

e @supports: Conditionally apply CSS rules based on the browser
support of a given CSS feature.

How CSS Is Used

There are several ways to use CSS in an HTML document. They all have the same result:
a stylesheet that is applied to elements in the document.

Inline Styles

HTML elements support the style attribute, where CSS properties can be specified as
inline styles. An inline style does not contain selectors or curly braces - it is a collection
of CSS properties to be applied to that element only. Listing 1-4 has an example of an
inline style.

Listing 1-4. An element with an inline style

<div style="background-color: red;">
Hello world!
</div>

The element in Listing 1-4 will have a red background. If there are conflicts in
the rules that apply to an element from CSS stylesheets, the inline style always takes
precedence. For example, if there was a CSS rule somewhere that made all div elements
have a blue background, this element’s inline style would override that and give it a red
background.

Internal Stylesheets

CSS rules can also be specified inside a stylesheet within the HTML document itself. This
is done by adding CSS rules inside of a style element. Style elements are typically added
to the document’s head element and are full stylesheets with selectors and rules.



CHAPTER 1  INTRODUCTION TO CSS

Listing 1-5. A style element inside an HTML document

<!DOCTYPE html>
<html>
<head>
<style>
div {
background-color: red;
}
</style>
</head>
<body>
<div>Hello world!</div>
</body>
</html>

In the document from Listing 1-5, all div elements will have a red background.

External Stylesheets

Lastly, CSS rules can also be listed in a stylesheet file with a . css extension. This
stylesheet is then referenced in the head of the HTML document using a 1ink element.
In the following example, all div elements in the document will have a red background.
The HTML document in Listing 1-6 includes the CSS file from Listing 1-7.

Listing 1-6. An HTML document referencing an external stylesheet

<!DOCTYPE html>
<html>
<head>
<link rel="stylesheet" href="/path/to/file.css">
</head>
<body>
<div>Hello world!</div>
</body>
</html>



CHAPTER 1  INTRODUCTION TO CSS

Listing 1-7. A simple external CSS file

div {
background-color: red;

}

Browser Support

The CSS features discussed in this book are well supported in modern browsers: recent
versions of Chrome, Firefox, Edge, and Safari. Older browsers, such as Internet Explorer,
are not covered. Some features may not be fully supported yet in all browsers at the time
of publication.

Some features are supported with vendor-specific prefixes, but this is rare with
modern browsers. For example, consider the backdrop-filter property. In some
WebKit-based browsers, this is only supported with the -webkit- prefix, as shown in
Listing 1-8.

Listing 1-8. Using vendor prefixes inside a CSS rule

.blur-bg {
/* Standard property */
backdrop-filter: blur(10px);

/* Property with a vendor prefix */
-webkit-backdrop-filter: blur(10px);

}

More recent browser versions tend to use experimental feature flags rather than
requiring vendor prefixes in the CSS itself. These are special configuration flags that
are exposed in an advanced configuration interface, or through special command-line
arguments, where experimental features can be turned on or off.

Web Resources

There are many resources and references that are useful when developing CSS. Here are
a few of the most popular.



CHAPTER 1  INTRODUCTION TO CSS

CanlUse.com

The website CanlUse.com (https://caniuse.com) is a great resource for finding out
what browsers support a given feature. This site maintains a database of up-to-date
browser support information for different CSS features. Figure 1-2 shows a screenshot of
an example query.

CSS at-rule: @keyframes B S L
Global 97.36%

unprefixed: 97.32%

[OUTLEIFLENE Usage relative  Date relative Filtered m &

uc
. Chrome , Browser

o Bim el ot oo Bk D Satowes ouiad R o bl 0 o e
1015

I s IEW (2

IEEEDY REZE TN K i) I

o [ o [ [ [ v o [ o [ o | s [ oo [ as | o | 2 | 4o | sosa | 51

Ex

Figure 1-2. Screenshot of CanlUse.com

MDN Web Docs

Another useful resource is MDN Web Docs (https://developer.mozilla.org), which
has a complete reference to HTML, CSS, JavaScript, and more. It has, among other
information, an exhaustive reference of all CSS properties.

How CSS Works in the Browser

Now let’s look at how the browser renders a page with CSS.

The Document Object Model (DOM)

The Document Object Model, or DOV, is a data structure in the browser. It is a tree of
objects that represent the elements in the document and their structure and hierarchy.
This tree is composed of DOM nodes. The DOM is created by reading the HTML markup,
tokenizing it, parsing it, and finally creating the object hierarchy.

Consider the HTML document shown in Listing 1-9.


https://caniuse.com
https://developer.mozilla.org

CHAPTER 1  INTRODUCTION TO CSS

Listing 1-9. A simple HTML document

<html>
<body>
<h1>Hello World</h1>
<div>
<h2>Subtitle</h2>
<p>Hello world!</p>
</div>
</body>
</html>

The corresponding DOM tree is shown in Figure 1-3.

html
A

body
hl div
~—
\ 2 /% f#\
Hello
h2
World P
~~— ~—
—— ———
Subtitle fello
world!
- )

Figure 1-3. The DOM tree corresponding to the HTML document



CHAPTER 1  INTRODUCTION TO CSS

The CSS Object Model (CSSOM)

Like the DOM, there is also a CSS Object Model, or CSSOM. This is another tree
structure that represents the hierarchy of styles in the document. While they are both
tree structures, the CSSOM is a separate structure from the DOM.

Listing 1-10 contains a CSS stylesheet meant to be applied to the HTML document in
Listing 1-9.

Listing 1-10. A CSS stylesheet

body {
font-size: 16px;

}

h1 {
font-size: 1.5rem;
color: orangered;

}
div {
padding: irem;
}
div h2 {

font-size: 1.2rem;
color: blue;

}

div p {
font-size: 0.9rem;
color: gray;

}

The browser parses the CSS, which blocks the rendering of the page, and creates the
CSSOM. Figure 1-4 shows the structure of the CSSOM tree.



CHAPTER 1  INTRODUCTION TO CSS

body

font-size: 1l6px;

|
v v
hl

font-size: 1.5rem;

div
padding: lrem;

|
v v

color: orangered;

font-size: 1.2rem; font-size: 0.9rem;
color: blue; color: gray;

Figure 1-4. The CSSOM tree

The Render Tree

Once the DOM and CSSOM are complete, they are combined to form the render tree.

The render tree contains all the information the browser needs to render the page. To do

this, the browser calculates which CSS rules apply to which elements in the DOM.
Figure 1-5 shows the render tree resulting from combining the DOM and

CSSOM trees.

10



CHAPTER 1  INTRODUCTION TO CSS

padding: lrem;

\ 4

A
Hello
World h2 p

font-size: 1.2rem; font-size: 0.9rem;

font-size: 1.5rem;
color: orangered;
A

color: blue; color: gray;

Y Y
. Hello
Subtitle world!

Figure 1-5. The combined render tree

Layout and Paint

Once the browser has created the render tree, it can begin laying out the elements on the
page. This stage of the process looks at styles such as width, height, position, margin, and
padding, to determine each element's size and location on the page. At the layout stage,
however, nothing is shown on screen yet.

Once layout is complete, the browser can begin painting by applying styles such as
color and font to determine the actual pixels to draw on the screen.

Summary

e CSS stylesheets are made up of rules, selectors, properties,
and values.

e Atrules are special directives that start with an @ character.

e When there is a conflict, the last style defined wins.

11



CHAPTER 1

12

INTRODUCTION TO CSS
CSS can be added with inline styles, a style element within an

HTML document, or an external CSS file.

Some experimental CSS properties may need vendor prefixes or

feature flags.

The browser builds a tree structure of the DOM and CSSOM, then
combines them to form the render tree.



CHAPTER 2

CSS Rules and Selectors

A selector determines which element(s) a CSS rule applies to. There are several ways an
element can be targeted with a selector, which we will cover in this chapter.

CSS selectors can match multiple elements on the page. That is, a single CSS rule can
apply to multiple elements. An element or class selector can select multiple elements
that have that element or class name.

Similarly, a single HTML element can be affected by multiple CSS rules. An element
will have the properties from all applicable CSS rules applied to it. Sometimes, multiple
CSS rules might have conflicting properties. This is where the concept of specificity
comes in, which we will also cover in this chapter.

Basic Selector Types

The basic types of selectors are
e Universal
o Element
« ID
e Class

o Attribute

The Universal Selector

The universal selector, specified simply as an asterisk (*), matches all elements. This
can be specified as a single selector, to select all elements in the document, or with
combinators (discussed below). Listing 2-1 shows an example usage of the universal
selector.

13
© Joe Attardi 2025

J. Attardi, Modern CSS, https://doi.org/10.1007/979-8-8688-1727-4_2


https://doi.org/10.1007/979-8-8688-1727-4_2#DOI

CHAPTER 2  CSS RULES AND SELECTORS

Listing 2-1. Removing all margins with the universal selector

*A
margin: 0;

}

The CSS rule in Listing 2-1 will apply a margin of 0 to all elements in the document.

Element Selectors

An element selector targets an HTML element by its element, or tag, name. The syntax
of the selector is the name of the element. Listing 2-2 shows an example of an element
selector.

Listing 2-2. Applying a margin to all p elements
p{

margin: 25px;

}

The CSS rule in Listing 2-2 will apply a margin of 25px to all p elements in the
document.

ID Selectors

An HTML element can have an id attribute. As a rule, there should only be one element
with a given id. If there are multiple elements with the same id, most browsers will
match the rule with all elements having that id. However, this should be avoided as it
violates the HTML specification.

An ID selector is specified with the # character followed by the id value, as shown in
Listing 2-3.

Listing 2-3. Applying padding to the element with an id of header

#theader {
padding: 25px;
}

14



CHAPTER 2  CSS RULES AND SELECTORS

The element with an id attribute whose value is header receives 25px of padding. If
there are other elements also having an id of header, they also receive 25px of padding
(in most browsers). Again, this should be avoided. If you need to apply a style to more
than one element, you can use class selectors instead of ID selectors.

Class Selectors

An HTML element can also have a class attribute. A class can be used to mark all
elements of a related type.

While only a single element is intended to be targeted by an ID selector, any number
of HTML elements can have the same class attribute. Similarly, a single HTML element
can have any number of classes applied to it. Multiple classes are separated by a space in
the value of the element’s class attribute.

A class selector will match every element in the document with the given class.

Class selectors are specified with a dot, followed by the name of the class, as shown in
Listing 2-4.

Listing 2-4. Applying a color to all elements with the class nav-1ink

.nav-link {
color: darkcyan;

}

The rule in Listing 2-4 will match every element in the document with a class of nav-
link and give it a color of darkcyan.

Attribute Selectors

HTML elements can also be selected by their attribute values or by the presence of an
attribute. The attribute is specified inside square brackets, and the attribute selector can
take several forms:

[name]
Selects all elements that have the given attribute, regardless of its value.

[name="value"]
Selects all elements that have the given attribute, whose value is the exact string value.

15



CHAPTER 2  CSS RULES AND SELECTORS

[name~="value"]

Selects all elements that have the given attribute, whose value contains the string value
separated by whitespace. Listing 2-5 contains two HTML elements with slightly different
title attributes.

Listing 2-5. Example HTML elements

<div title="Hello World">Hello World</div>
<div title="HelloWorld">HelloWorld</div>

If you wrote a CSS rule with the selector [title~="World"], the first element would
match but not the second. This is because in the second element, the word “World” in
the title attribute is not surrounded by whitespace.

[name*="value"]

Selects all elements that have the given attribute, whose value contains the substring
value. If we wrote another CSS rule, this time with the selector [title*="World"], it
would match both elements from Listing 2-5.

[name*="value"]
Selects all elements that have the given attribute, whose value begins with value.

[name$="value"]
Selects all elements that have the given attribute, whose value ends with value.

Compound Selectors

Any of the above selectors (except for the universal selector) can be used alone or
in combination with other selectors to make the selector more specific. This is best
illustrated with some examples:

div.my-class
Matches all div elements with a class of my-class.

span.class-one.class-two
Matches all span elements with a class of both class-one and class-two.

16



CHAPTER 2  CSS RULES AND SELECTORS

a.nav-link[href*="example.com"]
Matches all a elements with a class of nav-1ink that have an href attribute containing
the string example.com.

Multiple Independent Selectors

A CSS rule can have multiple selectors separated by a comma. The rule will be applied to
any element that is matched by any one of the given selectors:

.class-one, .class-two
Matches all elements with a class of class-one as well as all elements with a class of
class-two.

Selector Combinators

Combinators are used to make more specific selectors. Combinators work alongside the
basic selectors discussed previously. For a given rule, multiple basic selectors can be
used, joined by a combinator.

Descendant Combinator

The descendant combinator matches an element that is a descendant of the element
on the left-hand side. Descendant means that the element exists somewhere within the
child hierarchy - it does not have to be a direct child.

The descendant combinator is specified with a space character, as shown in
Listing 2-6.

Listing 2-6. An example of the descendant combinator

.header div {
color: green;

}

17



CHAPTER 2  CSS RULES AND SELECTORS

This selector matches all div elements that are direct or indirect descendants of any
element with the class header. If these div elements contain additional div elements as
children, those child div elements will also be matched by the selector.

Child Combinator

The child combinator matches an element that is a direct child of the element on the left-
hand side. It is specified with a > character, as shown in Listing 2-7.

Listing 2-7. An example of the child combinator

.header > div {
color: green;

}

This selector matches all div elements that are direct children of an element with the
class header. If those div elements contain additional div elements as children, those
div elements will not be matched by the selector (because they are descendants, not
direct children).

Subsequent Sibling Combinator

The subsequent sibling combinator matches an element that is a sibling, but not
necessarily an immediate sibling, of the element on the left-hand side. It is specified
with a ~ character. It only matches siblings going forward and does not match previous
siblings. Consider the example in Listing 2-8.

Listing 2-8. Example HTML elements

<div>
<div class="intro"></div>
<div class="article1"></div>
<div class="article2"></div>
<div class="summary"></div>
</div>

Listing 2-9 has an example of using the subsequent sibling combinator.

18



CHAPTER 2  CSS RULES AND SELECTORS

Listing 2-9. The subsequent sibling combinator

.article1l ~ div {
background: skyblue;

}

When applied to the HTML in Listing 2-8, this selector would match the div
elements with the classes article2 and summary because these are subsequent siblings.
It would not match the previous sibling, the div with the class intro.

Next Sibling Combinator

The next sibling combinator, specified with a + character, matches an element’s
immediate next sibling only.

Listing 2-10 has an example of applying the next sibling combinator to the HTML in
Listing 2-8.

Listing 2-10. The next sibling combinator

.article1 + div {
background: skyblue;

}

When applied to the HTML in Listing 2-8, only the article2 element would be
matched because it is the next immediate sibling of the articlel element.

Using Multiple Combinators

Just like basic selectors, combinators can be used together to form even more specific
selectors. For example, consider the HTML from Listing 2-11.

Listing 2-11. Example HTML for multiple combinators

<div>
<header>
<div>Title</div>
<button>Button</button>
</header>
</div>
19



CHAPTER 2  CSS RULES AND SELECTORS

Listing 2-12 uses multiple combinators to form a more complex selector.

Listing 2-12. A selector with multiple combinators

header > div + button {
background: gray;

}

This selector matches the button element inside the header. This works by first
selecting the header’s immediate child, the div, then selecting that element’s next
sibling, the button.

Pseudo-classes

A pseudo-class allows you to select elements based on some special state of the element,
in addition to all the selectors discussed previously. Pseudo-classes start with a colon (:)
character and can be used alone or combined with other selectors.

Some pseudo-classes let you select elements based on interaction state (such as
:focus or :hover), while others let you select elements based on their position in the
document (such as : first-child).

Pseudo-classes can be used on their own (e.g., :hover) or can be anchored to
another element (e.g., button:hover, .my-button:hover).

There are many pseudo-classes (you can find a complete list at https://developer.
mozilla.org/en-US/docs/Web/CSS/Pseudo-classes), but here are some commonly
used ones.

Interaction State

These pseudo-classes are based on some user interaction state:

tactive
Matches an element that is currently being activated. For buttons and links, this usually
means the mouse button has been pressed, but not yet released.

:checked
Matches a radio button, checkbox, or option inside a select element that is checked or
selected.

20


https://developer.mozilla.org/en-US/docs/Web/CSS/Pseudo-classes
https://developer.mozilla.org/en-US/docs/Web/CSS/Pseudo-classes

CHAPTER 2  CSS RULES AND SELECTORS

sfocus
Matches an element that currently has the input focus. This is typically used for buttons,
links, and text fields.

sfocus-within
Similar to :focus but also matches an element that has a descendant element that is
currently focused.

shover
Matches an element that the mouse cursor is currently hovering over. This is typically
used for buttons and links but can be applied to any type of element.

svalid, :invalid

Used with form elements using the HTML validation API. :valid matches an element
which is currently valid according to validation rules, and :invalid matches an element
which is not currently valid.

svisited
Matches a link whose URL has already been visited by the user. To protect a user’s

privacy, the browser limits what styling can be applied to an element matched by this
pseudo-class.

Document Structure

These pseudo-classes are based on an element’s position in the document:

sfirst-child, :last-child
Matches an element that is the first or last child of its parent. Consider the example
unordered list in Listing 2-13.

Listing 2-13. A simple unordered list

<ul class="my-list">
<li>Item one</1i>
<li>Item two</1li>
</ul>

21



CHAPTER 2  CSS RULES AND SELECTORS

The selector .my-1list > 1li:first-child will match the firstlist item only, and the
selector .my-1ist > li:last-child will match the last list item only.

snth-child(n)

This pseudo-class takes an argument. It matches an element that is the nth child of its
parent. The index of the children starts at 1. Referring to Listing 2-13, you could also
select the first item with the selector .my-1ist > 1li:nth-child(1) or the second item
with the selector .my-1ist > li:nth-child(2).

The :nth-child pseudo-class can also select children at a given interval. For
example, in a longer list, you could select every other list item with the selector .my-1list
> 1li:nth-child(2n). Oryou could select every fourth item with the selector .my-1ist >
li:nth-child(4n).

You can even select even or odd numbered children with the pseudo-classes :nth-
child(even) or :nth-child(odd).

:nth-of-type(n)

Similar to :nth-child, except that it only considers children of the same type. For
example, the selector div:nth-of-type(2) matches any div element that is the second
div element among any group of children.

sroot

Matches the root element of the document. This is usually the html element. This
selector can be useful for several reasons, one of which is that it can be used to declare
global variables (we will discuss CSS variables in Chapter 3).

Negating a Selector

A selector can also include the :not () pseudo-class. :not accepts a selector as its
argument and will match any element for which the selector does not match. For
example, the selector div:not(.fancy) will match any div that does not have the
fancy class.

The :has Pseudo-class

Up to now, we've discussed selectors that let you select subsequent/next sibling or
descendant/child elements, but until recently there wasn’t a way to select a parent or
previous sibling element. With the :has pseudo-class, this is now possible.

22



CHAPTER 2  CSS RULES AND SELECTORS

:has takes an argument which is one or more relative selectors, which typically start
with a combinator. The selector matches if the relative selector matches, starting at the
element anchored to the pseudo-class. For an example, consider the HTML shown in
Listing 2-14.

Listing 2-14. Some example HTML markup

<div class="card">
Card 1
</div>

<div class="card">
<img src="https://placehold.co/400">
Card 2

</div>

Suppose you want to give each card a border, and you want cards that contain an
image to have some extra padding. You can use the :has pseudo-class to accomplish
this, as shown in Listing 2-15.

Listing 2-15. CSS using the :has pseudo-class

.card {
border: 1px solid gray;
padding: 4px;

}

.card:has(> img) {
padding: 8px;
}

Both cards will get a gray border. Card 1 gets 4px of padding due to the first CSS rule.
The :has pseudo-class on the second rule’s selector matches the card that contains the
image as its direct child and applies 8px of padding.

You can also use :has to select a previous sibling element. Listing 2-16 shows part of
a form. It has a required input field preceded by a label element.

23



CHAPTER 2  CSS RULES AND SELECTORS

Listing 2-16. Required form field with a label

<div>

<label for="name">Name:</label>

<input id="name" type="text" required />
</div>

Suppose you want to apply a red border to the field when it’s invalid, and you also
want to make the label appear red. You can use :has to select the label preceding the
invalid input field, as shown in Listing 2-17.

Listing 2-17. Form validation CSS using the :has pseudo-class

:invalid {
border: 1px solid red;

}

label:has(+ :invalid) {
color: red;

}

The first selector gives the invalid input field a red border. The second selector finds
the label whose next sibling is the invalid input field and makes the color red. Once the
input’s value becomes valid, this rule no longer applies, and the red color is removed.

The :is Pseudo-class

The :1is pseudo-class takes a comma-separated list of selectors as its argument and
matches any element that matches one of the specified selectors. This can make a rule
that has multiple nested selectors a little more concise. Listing 2-18 shows an example of
simplifying multiple nested selectors with the :is pseudo-class.

Listing 2-18. The :1is pseudo-class

/* Without the :is pseudo-class */
nav ul 1i a, nav ol 1i a {
text-decoration: none;

}

24



CHAPTER 2  CSS RULES AND SELECTORS

/* Using the :is pseudo-class */
nav :is(ul, ol) 1i a {
text-decoration: none;

}

Pseudo-elements

A pseudo-element lets you select parts of the HTML document that don’t have a
corresponding DOM element to select. Sometimes, this can be part of a matched
element, and other times it can be separate content without a DOM element. Pseudo-
elements are specified with a double colon (: :) followed by the pseudo-element name.
We haven'’t discussed the differences between block and inline elements yet, but
when we do, keep in mind that some pseudo-elements only apply to block elements.

ssfirst-line
Matches the first line of a block element.

s:first-letter
Matches just the first letter of the first line of a block element.

::before, ::after
Two special pseudo-elements are : :before and : :after. These pseudo-elements don’t
select part of the element; rather, they create a new element as either the first child or
the last child of the matched element, respectively. These pseudo-elements are typically
used to decorate or add effects to an element.

Suppose you want to add an indicator next to all external links on your website. You
can tag these external links using a class, such as external-1link. You can specify an
external link as shown in Listing 2-19.

Listing 2-19. An external link

<a class="external-1link"
href="https://google.com">
Google
<Ja>

25



CHAPTER 2  CSS RULES AND SELECTORS

Then you can add the indicator with the CSS rule in Listing 2-20. The content
property defines what the text content of the pseudo-element should be.

Listing 2-20. Adding the external link indicator

.external-link::after {
content: ' (external)';
color: green;

}
Figure 2-1 shows the rendered HTML.
Google (external)

Figure 2-1. The rendered link with an ::after pseudo-element

The : :after pseudo-element added the content (external) and made it green.
Sometimes, you may want to use a : :before or : :after pseudo-element for decorative
purposes. In this case, you must still provide a value for the content property, or
else the element will not be displayed. For decorative elements, this can be set to an
empty string.

Specificity

An HTML element can have multiple CSS rules applied to it by matching different
selectors. What happens if two or more of the rules applied to an element contain the
same CSS property? How are such conflicts resolved? Consider the HTML in Listing 2-21,
a simple div with a class.

Listing 2-21. Sample HTML markup

<div class="profile">My Profile</div>

Now, suppose you have the CSS in Listing 2-22 applied to this HTML.

26



CHAPTER 2  CSS RULES AND SELECTORS

Listing 2-22. Conflicting CSS rules

.profile {
background-color: green;

}

div {
background-color: red;
color: white;

}

We have a conflict. The HTML element matches both selectors - it is indeed a div
element, and it also has the profile class. Each rule specifies a different value for the
background-color property. When the page is rendered, which background color will
this div element have? Figure 2-2 shows the output of this code.

My Profile

Figure 2-2. The rendered output of the conflicting CSS

The class selector rule’s background color was applied. This is because the class
selector rule has a higher specificity. When there is a conflict of CSS properties across
multiple rules, the rule with the most specific selector will be chosen. According to the
rules of CSS, a class selector is more specific than an element selector.

Note that while the element has the background color from the class selector rule,
it also has the color from the element selector rule. Specificity rules only matter for
conflicting properties across multiple rules. Other properties in these multiple rules will
still be applied.

Specificity Rankings

The specificity rankings of CSS rules are as follows, from most specific to least specific:
1. ID selectors
2. Class selectors, attribute selectors, and pseudo-classes

3. Element selectors and pseudo-elements

27



CHAPTER 2  CSS RULES AND SELECTORS

Neither the universal selector nor combinators factor into specificity. You can make
a rule more specific by combining multiple rules with a combinator, but the combinator
itself does not have a value when specificity is calculated.

Calculating Specificity

There is a general algorithm for calculating a CSS rule's specificity based on the types of
selectors it contains. Imagine three boxes, one for each type of style rule in the list above.
Initially, each box has a zero in it, as shown in Figure 2-3.

Class
Pseudo-class Element
ID Attribute Pseudo-element
Higher Lower
specificity specificity

Figure 2-3. Specificity calculator

For each ID in the selector, add 1 to the value in the first box. For each class, pseudo-
class, or attribute in the selector, add 1 to the second box. Finally, for each element or
pseudo-element in the selector, add 1 to the value in the last box.

To compare two selectors and find the higher specificity, compare the values of the
three boxes between each selector. The calculation works by finding the first box, moving
from left to right, with differing values. Once you find differing values, the selector with
the higher value for that box has a higher specificity.

If all boxes have the same value, then the selectors are considered to have equal
specificity. This is best illustrated with an example. Consider the following two selectors:

o #menu .item
e .navbar .link
To find which has the higher specificity, let’s break them down into the three boxes

as shown in Figure 2-3. This breakdown is shown in Figure 2-4.

28



CHAPTER 2  CSS RULES AND SELECTORS

#menu .item

171110

.navbar .link

0/ 20

Figure 2-4. Breaking down the selectors to compare specificity

The selector #menu .itemhas one ID selector and one class selector, so its values are
1-1-0. The other selector, .navbar .link, only has two class selectors, so its values are
0-2-0. Here, the first selector wins because it has a higher value for the first box.

If an element has inline styles in a style attribute, the inline styles will take
precedence over properties from a CSS rule, regardless of its specificity, unless a
property has the ! important keyword after it.

The Escape Hatch: ! important

Any CSS property can have the keyword ! important after it inside of a rule. This keyword
will cause that property to always win in a conflict, even if the rule that contains it has
lower specificity than another conflicting rule. An example of this is shown in Listing 2-23.

Listing 2-23. Using the limportant keyword

#menu .item {
color: red;

}

.navbar .link {
color: blue !important;

}

29



CHAPTER 2  CSS RULES AND SELECTORS

Even though the first selector is more specific, if both selectors match the same
element, the color will be blue. It will win the conflict because of the ! important.
limportant will even override an element’s inline styles.

This is generally considered a bad practice. It can make CSS issues harder to debug
and can make your style sheets less maintainable. In most cases, it’s better to determine
the specificity of the rules you are trying to apply and use a more specific selector on the
rule that you want to apply.

Nesting CSS Rules

CSS rules can be nested inside other rules. In the past, this was possible only by using

a preprocessor such as Sass or LESS, but modern browsers now support nesting rules.
Nesting rules can improve readability and reduce repetitive selectors. For an example of
this, see Listing 2-24, which shows the HTML for a card component.

Listing 2-24. A simple card component

<div class="card">

<h2 class="card-title">My Card</h2>

<p>This is my card's content.</p>

<button class="card-button">Learn More</button>
</div>

Listing 2-25 has some CSS rules to apply to this card component, first without using
nested rules.

Listing 2-25. Styling the card component

.card {
background: #cccccc;

}

.card .card-title {
color: red;

}

30



CHAPTER 2  CSS RULES AND SELECTORS

.card .card-button {
background: #aaaaaa;

}

.card .card-button:hover {
background: #eeeeee;

}

The CSS in Listing 2-25 adds some background and text color styling and changes
the background color of the button on hover. Let’s take these CSS rules and convert them

to an equivalent set of nested rules, shown in Listing 2-26.

Listing 2-26. Styling the card with nested rules

.card {
background: #cccccec;

.card-title {
color: red;

}

.card-button {
background: #aaaaaa;

&:hover {
background: #eeeeee;

}
}
}

When a rule is nested inside another rule, that selector is treated as a child of the
parent selector. For example, the card-title class selector will match an element with
this class that is a child of card. Notice the & symbol before the :hover pseudo-class,
though. This is the nesting selector and is used to join the :hover pseudo-class to the
.card-button class, instead of selecting a child.

31



CHAPTER 2

CSS RULES AND SELECTORS

Summary

32

The most used selector types are element, ID, class, and attribute
selectors.

Combinators can be used to create more specific selectors.
Multiple selectors can match the same element.

Pseudo-classes and pseudo-elements give you finer control over
what elements are selected.

Contflicts are resolved by using the rule with a higher specificity.
For better readability, CSS rules can be nested inside other rules.

Specificity can be overridden by using ! important, but this is not
recommended.



CHAPTER 3

Basic CSS Concepts

Now that we've looked in detail at how to select elements, let's start to explore how to
style them. The next step is to look at some of the basic concepts in CSS.

The Box Model

Every element in CSS is treated like a rectangular box. This is known as the box model.
The box is made up of four parts. Starting from the outside and moving toward the
center, these are

e Margin: Outer spacing between this element’s border and its
surrounding elements. It’s specified with the margin property.

e Border: An outline around the element. Borders can have a thickness,
style, and color. It’s specified with several properties: border-style,
border-width, border-color, and the shorthand border property.

e Padding: Inner spacing between the border and the content,
specified with the padding property.
o Content: Main area where the element’s content goes. This is

controlled with the width and height properties.

Figure 3-1 shows the different parts of the CSS box model.

33
© Joe Attardi 2025

J. Attardi, Modern CSS, https://doi.org/10.1007/979-8-8688-1727-4_3


https://doi.org/10.1007/979-8-8688-1727-4_3#DOI

CHAPTER 3  BASIC CSS CONCEPTS

____________________________________________________________________________________

Figure 3-1. The CSS box model

By default, most elements have no padding, border, or margin. However, there are
some exceptions, like button or ul elements. Browsers have a built-in stylesheet that
apply padding, margin, and other default styles to certain HTML elements.

Listing 3-1 shows two div elements with some color to differentiate them, but no

other styling is applied.

Border
Padding

Listing 3-1. Two simple div elements

<style>
#divl {
background-color: #fca5as;

}

#div2 {
background-color: #86efac;

}
</style>

<div id="div1">Hello world!</div>
<div id="div2">Hello world!</div>

34



CHAPTER 3  BASIC CSS CONCEPTS

Figure 3-2 shows the result of rendering these two elements.

Hello world!
Hello world!

Figure 3-2. The rendered result

Notice how the elements run up against one another and generally look cramped. By
adding padding, border, and margin to these elements, you can make it easier to read.
Listing 3-2 adds these properties.

Listing 3-2. Applying padding, border, and margin

<style>
#divl {
background-color: #fca5as5;

}

#div2 {
background-color: #86efac;

}

#diva, #div2 {
padding: 1rem;
margin: 1rem;
border: 1px solid #000000;

}
</style>

<div id="div1">Hello world!</div>
<div id="div2">Hello world!</div>

Figure 3-3 shows the elements with their new styling.

35



CHAPTER 3  BASIC CSS CONCEPTS

Figure 3-3. The same two elements with padding, border, and margin applied

The elements now have inner and outer spacing, giving them improved readability.
They are not as close together with the new styles.

Box Sizing

An element’s size is specified with the width and height properties. How exactly this is
interpreted, however, depends on the value of the box-sizing property. This property
supports two values: content-box and border-box.

Box Sizing with content-box

This is the default. With content-box, the width and height properties are treated as
the width and height of the content area of the box only. The actual dimensions of the
element’s box are the sum of its width and height (the content box), the padding on each
side, and the border width on each side.

For an example of this, see the rule in Listing 3-3.

Listing 3-3. A simple CSS rule using box-sizing: content-box

.box {
width: 100px;
height: 100px;
padding: 10px;
border: 5px solid red;
box-sizing: content-box;

36



CHAPTER 3  BASIC CSS CONCEPTS

The content area of the box has a width and height of 100 pixels. The padding (10
pixels on each side) and the border (5 pixels on each side) are added to the element’s
size, resulting in a total size of 130 pixels (100px + 10px + 10pX + 5px + 5px = 130px). This
is visualized in Figure 3-4.

S5px—=> 10px 100px 10px <«5px

130px

Figure 3-4. The full rendered size of the element using box-sizing: content-box

Box Sizing with border-box

With border-box, the values of the width and height properties are treated as the size of
the content box plus the padding and border width. Consider the example box in
Listing 3-4, which uses border-box.

Listing 3-4. A box using box-sizing: border-box

.box {
width: 100px;
height: 100px;
padding: 10px;
border: 5px solid red;
box-sizing: border-box;

37



CHAPTER 3  BASIC CSS CONCEPTS

This box has a total width and height of 100 pixels. To compensate for the extra
30 pixels taken up by the padding and border, the content box shrinks to 70 pixels, as
visualized in Figure 3-5.

5px—> 10px 70px 10px <«5px

100px

Figure 3-5. The full rendered size of the element using box-sizing: border-box

Aspect Ratio

Sometimes, you might not want a specific width and height for an element, but rather
a particular ratio between the width and height. This is known as the aspect ratio and is
controlled with the aspect-ratio property.
For example, suppose you want an element to always have an aspect ratio of 16:9
(a common aspect ratio for widescreen devices). To accomplish this, you can specify
aspect-ratio: 16 / 9.The element’s width, height, or both must be set to auto to let
the browser automatically calculate the proper dimensions to meet the needed aspect
ratio. If you don’t specify auto for either of these properties, the aspect-ratio is ignored.
Figure 3-6 shows examples of element sizes using three common aspect-ratio
values with a height of 200px.

38



CHAPTER 3  BASIC CSS CONCEPTS

aspect-ratio: 1 / 1; aspect-ratio: 4 / 3; aspect-ratio: 16 / 9;

Figure 3-6. Aspect ratio examples of 1:1, 4:3, and 16:9

Block and Inline Elements

There are two types of HTML elements: block and inline (there’s also a third type,
inline-block, which combines aspects of both). Both block and inline elements follow
the box model but are different in some important ways.

Some HTML elements default to being block elements, such as a div element.
Others default to inline, such as a span element. These are just defaults; any element
can be changed by setting its display property to block, inline, or inline-block. The
following sections explain the differences between block and inline elements.

Block Elements

Block elements are laid out vertically and take up the full width of their containing
element, unless an explicit width is set with the width property. A block element’s height,
by default, is just enough to fit its content. This height can also explicitly be set with the
height property.

The example in Listing 3-5 contains some div elements, which are block elements.

Listing 3-5. Some styled div elements

<style>
.container {
width: 350px;
}

.box1 {
background-color: skyblue;

}
39



CHAPTER 3  BASIC CSS CONCEPTS

.box2 {
background-color: lime;

}
</style>

<div class="container">
<div class="box1">Hello</div>
<div class="box2">World</div>
</div>

The rendered result is shown in Figure 3-7.

Hello

Figure 3-7. The div elements rendered as block elements

The outer container element has an explicit width of 350px set, so it is 350 pixels
wide. The inner elements have no explicit widths set, so they take up the full width of
the container element. They also have no explicit height, so they only take up enough
vertical space as needed to fit the text content.

Inline Elements

Unlike block elements, inline elements are rendered inside the normal flow of text. They
only take up enough width and height as necessary to contain their content. Setting the
width or height properties of an inline element has no effect. Listing 3-6 has an example
of an inline element.

Listing 3-6. An inline span element

<style>
.greeting {
background: skyblue;

}
</style>

<span class="greeting">Hello world!</span> I am demonstrating an inline
element.

40



CHAPTER 3  BASIC CSS CONCEPTS

Figure 3-8 shows the rendered result.

Hello world! I am demonstrating an inline element.

Figure 3-8. The styled inline element

The span is an inline element, so its width and height are only enough to fit its
content. It does not appear on its own line. If you try to set a different width, as is shown
in Listing 3-7, it has no effect.

Listing 3-7. Attempting to set a width on an inline element

<style>
.greeting {
background: skyblue;
width: 500px;
}
</style>

<span class="greeting">Hello world!</span> I am demonstrating an inline
element.

As Figure 3-9 shows, the width is unchanged.

Hello world! I am demonstrating an inline element.

Figure 3-9. The rendered result, showing no change in the element’s width

Padding and Margin with Inline Elements

There are some other differences, with respect to padding and margin, between block
and inline elements. If you add horizontal padding to an inline element, it behaves as
expected. Listing 3-8 has an example that illustrates this.

Listing 3-8. Horizontal padding on an inline element

<style>
.greeting {
background-color: skyblue;
padding-left: 50px;

41



CHAPTER 3  BASIC CSS CONCEPTS

padding-right: 50px;
}
</style>

<span class="greeting">Hello world!</span> I am demonstrating an inline
element.

The result is shown in Figure 3-10.

Hello world! I am demonstrating an inline element.

Figure 3-10. Adding horizontal padding to an inline element

As expected, the element’s width increases to accommodate the padding, and the
surrounding content is pushed away to make room. However, an inline element behaves
differently when setting vertical padding. Listing 3-9 has an inline element with vertical
padding. It’s surrounded by a narrow container element so that the text content wraps, to
better illustrate what happens with the vertical padding.

Listing 3-9. An inline element with vertical padding

<style>
.container {
width: 250px;
}

.greeting {
background: skyblue;
padding-top: 50px;
padding-bottom: 50px;
}
</style>

<div class="container">
<span class="greeting">Hello world!</span> I am demonstrating an inline
element.

</div>

42



CHAPTER 3  BASIC CSS CONCEPTS

The result, shown in Figure 3-11, may surprise you.

Hello world! I am demonstrating an
inline element.

Figure 3-11. The odd behavior of vertical padding on an inline element

The vertical padding was applied to the element, but no extra vertical space was
made to accommodate this padding. The background color of the greeting element
bleeds into the adjacent content.

Inline elements behave similarly when it comes to margins. The horizontal margins
are applied, but the vertical margins are not. Listing 3-10 applies horizontal and vertical
margin to an inline element, and Figure 3-12 shows the result.

Listing 3-10. Applying margin to an inline element

<style>
.container {
width: 250px;
}

.greeting {
background: skyblue;
margin: 50px;

}

</style>

<div class="container">
<span class="greeting">Hello world!</span> I am demonstrating an inline
element.

</div>

43



CHAPTER 3  BASIC CSS CONCEPTS

Hello world! [ am
demonstrating an inline element.

Figure 3-12. The inline element with margin applied

Space is added to the left and right of the element for the horizontal margin, but the

vertical margin has no effect.

Inline-Block Elements

An inline-block element is a combination of inline and block. The element flows with
the text like an inline element, but the width and height properties are respected, as are
vertical padding and margin. Listing 3-11 demonstrates an inline-block element with

width, height, padding, and margin.

Listing 3-11. An inline-block element

<style>
.container {
width: 350px;
margin-top: 200px;

}

.greeting {
display: inline-block;
background: skyblue;
margin: 50px;
padding: 50px;
width: 100px;
height: 100px;

}

</style>

<div class="container">
<div>Greeting</div>
<span class="greeting">Hello world!</span> I am demonstrating an inline
element.

</div>

44



CHAPTER 3  BASIC CSS CONCEPTS

The result is shown in Figure 3-13.

Greeting

Iam

demonstrating an inline element.
Figure 3-13. The rendered result of the inline-block element

The element is rendered with the flow of text like an inline element, but it has proper
width, height, padding, and margin like a block element. Extra space is made to account
for the padding instead of the element bleeding into the surrounding content like an
inline element would.

CSS Units

Many CSS properties represent a size or distance. Just as there are different
measurement units in the physical world (such as feet or meters), CSS has different units
to specify these sizes and distances (such as px or rem).

45



CHAPTER 3  BASIC CSS CONCEPTS

The px Unit

You've already seen the px unit in several examples. In the past, you could have said
that px corresponds to physical pixels on the screen. However, in the modern age of
ultra-high-resolution displays, this is no longer exactly accurate. A CSS pixel doesn’t
necessarily have a one-to-one correspondence to a physical device pixel. On a very
high-resolution 4K display, a physical pixel would be so tiny that it would be hard to see
with the naked eye. If CSS used physical device pixels, then a 1px border would barely be
visible.

Instead, a so-called logical pixel corresponds to a certain number of physical device
pixels. A 1px border looks roughly equivalent on a 4K display as it does on a lower-
resolution display, but it uses more physical device pixels.

The em Unit

The em unit is a relative unit. It is relative to the element’s font size. Listing 3-12 shows a
rule using the em unit for padding.

Listing 3-12. Using the em unit

.header {
font-size: 24px;
padding: 0.5em;

}

The header element has a font size of 24px. The padding is specified as 0.5em, or half
of the element’s font size. Therefore, this element has 12px of padding applied, half the
font size of 24px.

Listing 3-13 shows another example of using the em unit.

Listing 3-13. Using the em unit with nested elements

.header {
font-size: 24px;
padding: 0.5em;

}

46



CHAPTER 3  BASIC CSS CONCEPTS

.header 1i {
font-size: 0.75em;

}

.header 1i a {
font-size: 0.5em;

}

Because font size is inherited, the 1i elements inside the header also start out with
a font size of 24px. Then in the 11 element’s CSS rule, the font size is 0.75em. This is
relative to the element’s current font size of 24px, so the actual font size of the 1i element
would be 24px * 0.75 = 18px. Finally, the a elements inside the 1i elements have a font
size of 0. 5em, which is relative to the 11 element’s font size of 18px, so its font size would
be 18px * 0.5 = 9px.

Due to this cascading effect, sometimes using em units for nested elements can cause
unintended effects to properties such as font size, padding, and margin.

The rem Unit

The rem unit is also a relative unit. It’s short for “root em” and is relative to the page’s
base font size. For example, if the base font size is 16px (remember that this usually
doesn’t correspond to physical device pixels), a size of 1rem is equal to 16px. If you used
asize of 1.5rem, the size would be 16px * 1.5 = 24px.

rem units are a good choice, especially for layout properties, since the size of 1rem
remains constant throughout the document (unlike the em unit). If the browser is
zoomed, everything resizes nicely because it’s all proportional to the base font size.
Because rem units are proportional to the base font size, there is no cascading effect like
there is with em units.

Viewport Units: vw and vh

The viewport is the area of the page that is currently visible in your web browser. CSS
also has units that are relative to the viewport size: vw (viewport width) and vh (viewport
height). Each of these units represents 1% of the viewport size in that direction, that is,
1vw is 1% of the viewport width and 1vh is 1% of the viewport height. For example, if the
viewport was 1920 pixels wide, a width of 50vw would be 960 pixels.

47



CHAPTER 3  BASIC CSS CONCEPTS

If the viewport is resized, then any elements using vw or vh units will have their sizes
adjusted accordingly. Because vw and vh are relative to the viewport size, they are a good
choice when using responsive design techniques.

The % Unit

The % unit is relative to the size of another value. What exactly this is relative to depends
on the CSS property. For example, for the font-size property, the % unit is defined as

a percentage of the parent element’s font size. However, for the padding property, % is
defined as a percentage of the element’s width.

Other Units

We have seen some of the most common CSS units, but there are others as well. There
are absolute units such as cm (centimeters), mm (millimeters), in (inches), and pt
(points). These units are sometimes used for print stylesheets but are not often seen in
screen stylesheets.

No Units

Some property values take no units at all, but rather just a number. For example, the
opacity property expects a number between 0 and 1. Another example of this is some
flexbox properties such as flex-grow and flex-shrink, which expect integer numbers
without units.

Functions

CSS includes some helpful built-in functions. These functions are used with the values of
some CSS properties.

The calc Function

The calc function combines the different units we covered in the previous section to
calculate an exact amount. It can be used anywhere a value is expected. The real power
of the calc function is that you can have mixed units in the calculation.

48



CHAPTER 3  BASIC CSS CONCEPTS

For example, suppose you want the height of an element to be 10 pixels short of
1.5rem. This can easily be accomplished with the calc function: calc(1.5rem - 10px).
This can be easier than doing the size calculations yourself to specify an exact pixel
value. An example of this is shown in Listing 3-14.

Listing 3-14. Using the calc function

.hero {
height: calc(1.5rem - 10px);

}

Another very useful feature of the calc function is that it also works with CSS custom
properties or variables. We will look at variables later in this chapter, but Listing 3-15 has
an example.

Listing 3-15. Using CSS custom properties with the calc function

:root {
--spacing: 0.5rem

}

.container {
padding: calc(var(--spacing) * 2);

}

In the above example, we establish a standard unit of spacing for the document as
a variable and can reference that later in the call to the calc function. You might also
notice the var function, which, as we will see later, is used to reference variables.

The min and max Functions

The min and max functions take a comma-separated list of other values and returns either
the smallest (with min) or largest (with max) of them.

Suppose you want to make an element take up 50% of the viewport width, but you
don’t want it to exceed 350 pixels. Listing 3-16 shows how that can be done with the min
function.

49



CHAPTER 3  BASIC CSS CONCEPTS
Listing 3-16. Using the min function to limit an element’s width

.content {
width: min(50vw, 350px);

}

The element’s width grows with the viewport width, but once the viewport exceeds
700 pixels, the 350px value becomes the minimum, and that is used. You can use the min
function to enforce a maximum value, and the max function to enforce a minimum value.

There are several other useful CSS functions, which later chapters will cover in the
relevant sections.

Colors

One of the most common styles applied with CSS is color. This can include background
color, text color, border color, and more. There are many different possible colors, and
they can be expressed in multiple ways.

Named Colors

CSS has many predefined color values. They range from basics like red and green to
other shades like tomato, orangered, and rebeccapurple. A full list of these colors can
be found at https://developer.mozilla.org/en-US/docs/Web/CSS/named-color.

RGB Colors

One common way to define a color is by using the values of its red, green, and blue
components (RGB). Any color can be expressed as a combination of RGB values. Each
value of red, green, and blue is expressed as a number between 0 and 255.

RGB colors can be specified in several ways. The first is by using a hexadecimal
value. The red, green, and blue values are each converted to two hexadecimal digits.
These digits are used in RGB order, preceded by a pound sign (#). The hex values can be
specified with uppercase or lowercase letters. Table 3-1 shows a few examples of RGB
hex notation.

50


https://developer.mozilla.org/en-US/docs/Web/CSS/named-color

CHAPTER 3  BASIC CSS CONCEPTS

Table 3-1. Example colors and their hex values

Color Hex Code
Black #000000
White #FFFFFF
Red #FF0000
Green #00FF00
Blue #0000FF

If each pair of hex digits in the color is the same, you can use a shorthand hex
syntax. You can substitute a single digit for each pair of digits. For example, #00FF00
becomes #0FO0.

The other way to specify an RGB color is by using the rgb function. Instead of
hex digits, the red, green, and blue components of the color are specified as base-10
numbers between 0 and 255, or a percentage between 0% and 100%. Table 3-2 shows the
usage of the rgb function.

Table 3-2. Example colors using the rgb function

Color RGB Notation

Black rgb(o, 0, 0)

White rgb(255, 255, 255)
Red rgb(255, 0, 0)
Green rgb(0, 255, 0)
Blue rgb(0, 0, 255)

Specifying an Alpha Value

RGB colors can also specify an alpha value, which determines the opacity of the color.
The alpha is a value between 0 (fully transparent) and 1 (fully opaque), or a percentage
between 0% and 100%. To specify an alpha value, the rgba function is used. For example,
for pure red with 50% opacity, the color would be defined as rgha(255, 0, 0, 0.5).

51



CHAPTER 3  BASIC CSS CONCEPTS

The alpha value can also be specified when using hex color codes. Convert the
desired alpha value to hexadecimal and append it onto the end of an RGB hex string. In
this case, pure red with 50% opacity would be #FF000080.

HSL Colors

A color can also be expressed as a combination of its hue, saturation, and lightness
values. Hue is specified as a degree of an angle on the color wheel (from 0 to 360
degrees). 0 degrees is red, 120 degrees is green, and 240 degrees is blue.
Saturation is a percentage value of how much color is applied. 0% saturation is
a shade of gray, and 100% saturation is the full color from the color wheel. Finally,
lightness is also a percentage value. 0% lightness is pure black, and 100% is pure white.
An HSL color is specified using the hs1 function. The color with a hue of 120 degrees,
a saturation of 50%, and a lightness of 50% would be specified as hs1(120, 50%, 50%).
Like RGB colors, HSL colors can also have an alpha value, specified using the hsla
function. As described earlier, the alpha value can be a number between 0 and 1, or a
percentage between 0% and 100%. For the color in the previous example to have 75%
opacity, it would be specified as hsla(120, 50%, 50%, 0.75).

Transparent

Anywhere a color is expected, the transparent keyword can be used. This applies
no color.

Newer Color Syntax

The usage of the rgb/rgba and hs1/hsla functions as described above has been the
standard for a long time. There is a newer, alternative syntax for these functions that are
slightly different.

With this new syntax, you omit the commas between the RGB or HSL numbers. They
become separated by spaces, and if you want to specify an alpha value, it’s separated
from the three color values with a forward slash character (/). If you're using an alpha
value, you still can use the rgb or hsl function. The rgba and hsla functions aren’t
needed with this new syntax.

52



CHAPTER 3  BASIC CSS CONCEPTS
Table 3-3 shows some comparisons between the old and new syntax.

Table 3-3. Comparison of old and new color syntax

0Old Syntax Equivalent New Syntax
rgb(o, 0, 0) rgb(0 0 0)
rgba(255, 0, 0, 0.5) rgb(255 0 0 / 0.5)
hs1(120, 50%, 50%) hs1(120 50% 50%)

hsla(120, 50%, 50%, 0.75)  hs1(120 50% 50% / 0.75)

Caution This newer color syntax is not supported in some older browsers.

Color Schemes

Many modern websites have a dark mode, which uses light text on a dark background.
You might choose to implement this with a toggle button, but you can also automatically
determine if the user has enabled dark mode in their operating system settings (where
supported).

You can do this by using the prefers-color-scheme media query. We haven’t
covered media queries yet, but they use a special at-rule, @media, and specify a query
about the device’s configuration, capabilities, or screen size. The media query contains
CSS rules that are only applied when the media query matches.

We'll explore media queries in more detail when we cover responsive design
techniques in Chapter 12, but Listing 3-17 has an example of using the prefers-color-
scheme media query to automatically apply dark mode styling.

Listing 3-17. Using prefers-color-scheme to apply dark mode automatically

.header {
background: white;
color: black;

}

53



CHAPTER 3  BASIC CSS CONCEPTS

@media (prefers-color-scheme: dark) {
.header {
background: black;
color: white;

}
}

By default, the header has a white background and black text. If the user has enabled
dark mode in their operating system settings, the media query matches and applies the
rule it contains. This sets the header’s background to black and text color to white.

When using dark mode, you'll also want to specify the color-scheme: dark
property. Without this, some Ul elements such as scroll bars are still rendered in a light
color. You should apply this property to the root element, ensuring that all elements on
the page are rendered with a dark color scheme. This is shown in Listing 3-18.

Listing 3-18. Using a dark color scheme

@media (prefers-color-scheme: dark) {
:root {
color-scheme: dark;
}
}

As an alternative to using the media query, you can also use the light-dark
function. To use this function, you first need to set color-scheme to the special value
light dark. Once this is set, you can use 1light-dark wherever a color is expected. The
first argument is the color to use for a light color scheme, and the second is the color to
use for a dark color scheme.

Listing 3-19 shows the example from Listing 3-18, adapted to use the 1ight-dark
function.

Listing 3-19. Using the light-dark function

:root {
/* This is required for the light-dark function to work */
color-scheme: light dark;

}

54



CHAPTER 3  BASIC CSS CONCEPTS

.header {
background: light-dark(white, black);
color: light-dark(black, white);

}

As before, the background and text colors change depending on the operating
system’s color scheme setting.

Overflow

As discussed earlier, every HTML element is a rectangular box. Normally, the size of an
element expands to fit its content, as shown in some earlier examples. However, what
happens when an explicit height is set, and the content does not fit inside the element's
dimensions? This is a condition known as overflow. Listing 3-20 contains an example
showing text overflowing its container.

Listing 3-20. Demonstrating overflow of an element’s content

<style>
.container {
background-color: skyblue;
height: 2rem;
width: 10rem;

}
</style>

<div class="container">
This is some really long text that will overflow the container.
</div>

The overflow can be seen in Figure 3-14.

This is some really long
text that will overflow
the container.

Figure 3-14. Text overflowing its container

55



CHAPTER 3  BASIC CSS CONCEPTS

The text content is too long to fit in a 2rem by 10rem container, so it overflows the
container element. Note that the content only overflows vertically. This is because
the default behavior is to wrap the text to the next line when it doesn’t fit on one line.
This ensures it doesn’t overflow horizontally, but because an explicit height is set, the
container does not grow to fit its content.

If you insert a fixed width element inside the container, as shown in Listing 3-21,
then the content overflows both horizontally and vertically.

Listing 3-21. Adding a fixed width element inside the container

<style>
.container {
background-color: skyblue;
height: 2rem;
width: 10rem;

}

.container .banner {
background: #999999;
width: 15rem;

}
</style>

<div class="container">

<div class="banner">This is a banner</div>

This is some really long text that will overflow the container.
</div>

As Figure 3-15 shows, there is now horizontal and vertical overflow. The banner
element has an explicit width set, larger than its container’s width, so it overflows
horizontally. The long text content overflows vertically as it did before.

56



CHAPTER 3  BASIC CSS CONCEPTS

This 1s some really long
text that will overflow
the container.

Figure 3-15. Horizontal and vertical overflow

Handling Overflow

You have some control over how overflow is handled with the overflow property. This
property handles both horizontal and vertical overflow together. They can also be
handled independently with the overflow-x and overflow-y properties. The default
value is visible, which results in the behavior from the previous examples. There are a
few other options available for handling overflow.

Using overflow: hidden

When the overflow property is set to hidden, the overflowing content is simply not
displayed. It’s clipped by the bounds of the containing element. Listing 3-22 shows an
example of using overflow: hidden.

Listing 3-22. Hiding overflowing content with overflow: hidden

<style>
.container {
background-color: skyblue;
height: 2rem;
width: 10rem;
overflow: hidden;

}

57



CHAPTER 3  BASIC CSS CONCEPTS

.container .banner {
background: #999999;
width: 15rem;

}

</style>

<div class="container">

<div class="banner">This is a banner</div>

This is some really long text that will overflow the container.
</div>

As Figure 3-16 shows, the overflowing content is clipped by the bounds of the
container element. The portion that overflows is not visible.

This 18 some reallv long

Figure 3-16. The overflowing content is clipped with overflow: hidden.

Using overflow: scroll and overflow: auto

When overflow is set to scroll, the overflowing content is initially not visible. However,
scrollbars are provided so that the user can scroll the containing element to view the
overflowing content. The scrollbars are always provided, even if the content does not
overflow. See Listing 3-23 for an example of using overflow: scroll.

Listing 3-23. Using overflow: scroll

<style>
.container {
background-color: skyblue;
height: 5rem;
width: 10rem;
overflow: auto;

}

58



CHAPTER 3  BASIC CSS CONCEPTS

.container .banner {
background: #999999;
width: 15rem;

}

</style>

<div class="container">

<div class="banner">This is a banner</div>

This is some really long text that will overflow the container.
</div>

Figure 3-17 shows the rendered content with scrollbars.

Figure 3-17. Showing scrollbars with overflow: scroll

If the content does not overflow its container, overflow: scroll still renders scrollbars,
as shown in Figure 3-18.

Figure 3-18. Empty scrollbars are still rendered

If you want to avoid these empty scrollbars when the content isn’t overflowing, you
can use overflow: auto. This works the same as overflow: scroll, except scrollbars
are only shown if they are needed.

59



CHAPTER 3  BASIC CSS CONCEPTS

CSS Variables

Variables are a common feature in all programming languages. A variable is a way to
store a piece of data, under a descriptive name, and that value can be referenced later by
the variable name.

There are many useful reasons to use CSS variables (officially known as CSS custom
properties). Suppose you're designing a website for your company. Your brand color,
#3FA2D9, is used in many places throughout the site’s CSS. If, later, the site’s brand color
changes, you’ll now have to change every instance of the brand color where you used
#3FA2D9.

Instead, you can define a brand-color variable, and reference that variable
everywhere you need the brand color. Later, if you need to change the brand color, you
need only change the brand-color variable, and it is updated everywhere it’s referenced.

Using Variables

Variables are declared with two dashes followed by the variable name. Later, to reference
a variable’s value, you pass the variable name to the var function.

A variable can be declared on any element. Variables are then inherited by
descendant elements. Variables are often declared on the document’s root element, so
that they are inherited by the entire document, using the special : root selector.

Listing 3-24 shows how you can use a brand-color variable.

Listing 3-24. Using a CSS variable

<style>
:root {
--brand-color: #3FA2D9;

}

.site-header {
background: var(--brand-color);

}
</style>

<header class="site-header">
Site Header

</header>

60



CHAPTER 3  BASIC CSS CONCEPTS

The header’s background color uses the value of the brand-color variable, #3FA2D9.
The var function also takes an optional second argument, which is a fallback value to
use in case the referenced variable name isn’t defined, as demonstrated in Listing 3-25.

Listing 3-25. Using a fallback value for a CSS variable

.site-header {
background: var(--brand-color, blue);

}

If the brand-color variable isn’t defined, the background is set to blue. Variables can
also reference other variables, as shown in Listing 3-26.

Listing 3-26. Referencing variables from other variables

<style>
:root {

--primary-border-color: red;

--primary-border-style: solid,

--primary-border-width: 3px;

--primary-border:
var (--primary-border-width)
var (--primary-border-style)
var (--primary-border-color);

}

.container {
border: var(--primary-border);
width: 10rem;

}
</style>

<div class="container">Hello World!</div>

The primary-border variable incorporates the other three variables, and that
variable is referenced in the container’s style, which applies a 3px solid red border, as
shown in Figure 3-19.

61



CHAPTER 3  BASIC CSS CONCEPTS

ello World!

Figure 3-19. The result showing a border calculated from multiple CSS variables

Using Variables with the calc Function

You can even reference variables when using the calc function. Consider the example
in Listing 3-27. There is a container with six rows. Suppose you want the container to be
tall enough to show three visible rows, and the rest should overflow and be accessed by

scrolling.

Listing 3-27. Using variables for layout

<style>

:root {
--row-height: 1.5rem;
--visible-rows: 3;

}

.container {
border: 1px solid red;
height: calc(var(--row-height) * var(--visible-rows));
overflow: auto;
width: 10rem;

}

.row {
line-height: var(--row-height);
}
</style>

<div class="container">
<div class="row">Row one</div>
<div class="row">Row two</div>
<div class="row">Row three</div>
<div class="row">Row four</div>

62



CHAPTER 3  BASIC CSS CONCEPTS

<div class="row">Row five</div>
<div class="row">Row six</div>
</div>

The result is shown in Figure 3-20. The first three rows are visible, and the rest are
accessible with the scrollbar.

Row one
Row two
Row three

Figure 3-20. Three visible rows

This example sets two variables: an explicit row height of 1.5rem and a visible row
count of 3. The container height should exactly equal three rows, so in the container we
use calc to multiply the row-height variable by the visible-rows variable, which yields
the correct height.

The rest of the rows overflow the container. Since we’re using overflow: auto, a
scrollbar is shown to access the overflowing rows.

Summary

o All elements are represented by a box with a content area, padding,
border, and margin.

e There are three main types of elements: block, inline, and
inline-block.

o There are many different units for CSS values:
o pxrefers to logical pixels.

+ emisrelative to the element’s font size.

63



CHAPTER 3

64

BASIC CSS CONCEPTS

e remisrelative to the document’s base font size.
¢ vwand vh are relative to the viewport size.

The calc function is used to compute CSS values from multiple other
values, potentially with different units.

Colors can be defined in several ways:

o Named colors: red, blue, orangered

o Hexadecimal RGB or RGBA: #FF0000 or #FF000080

e The rgb function: rgb(255, 0, 0) orrgh(255 0 0)

e Thehsl function: hs1(90, 50%, 25%) or hs1(90 50% 25%)

You can use the prefers-color-scheme media query to detect the
operating system’s dark mode setting.

If an element’s content can’t fit inside of it, the content overflows.

Overflow handling can be changed with the overflow, overflow-x,
and overflow-y properties.

A variable is declared with two leading slashes: --var-name.
A variable is referenced with the var function: var (--var-name).

Variables are inherited by descendant elements.



CHAPTER 4

Basic Styling

By now, you have a solid grasp of the main underlying concepts of CSS. Now it's time to
dive in and start learning some CSS properties and styling techniques. We'll start with
the basics in this chapter.

Property Values

Before we start exploring specific CSS properties, here are a few notes on certain
property values.

Global Keywords

Most CSS properties support several global keywords in their values, each with a special
meaning. These include

e initial: Uses the initial value set by the browser’s built-in stylesheet.
e inherit: Takes the value used by the element’s parent.

o unset: If the property naturally inherits from its parent, such as font-
size, itis set to the inherited value. Otherwise, it is set to the initial
value from the browser’s stylesheet.

Shorthand and Multiple Values

You've seen how many CSS properties, such as border-width, padding, and margin, can
take a single value. These are known as shorthand properties. For these properties, the
single value given is used for the top, bottom, left, and right.

Each shorthand property has four equivalent properties for each side of the element.
For example, for the padding shorthand element, there are also padding-top, padding-
bottom, padding-left, and padding-right properties.

65
© Joe Attardi 2025

J. Attardi, Modern CSS, https://doi.org/10.1007/979-8-8688-1727-4_4


https://doi.org/10.1007/979-8-8688-1727-4_4#DOI

CHAPTER 4  BASIC STYLING

If you want to specify different values for different sides of the element, you can still
use the shorthand property - just give it multiple values.

If one value is given, as we've seen, it applies to all four sides of the element.
Listing 4-1 shows an example of this using the border-width property.

Listing 4-1. Using a single value for the border-width property

<style>
.container {
border-color: red;
border-style: solid;
border-width: 1px;
}
</style>

<div class="container">Hello world!</div>

Figure 4-1 shows that all four borders have the same width.

Hello world!

Figure 4-1. All four borders have the same width.

If two values are specified, the first applies to the top and bottom, and the second
applies to the left and right. An example of this is seen in Listing 4-2.

Listing 4-2. Two values for the border-width property

<style>
.container {
border-color: red;
border-style: solid;
border-width: 1px 5px;
}
</style>

<div class="container">Hello world!</div>

Figure 4-2 shows the different border widths. Note the different border widths in
Figure 4-2 on the top and bottom compared to the left and right.

66



CHAPTER 4  BASIC STYLING

IHello world! I

Figure 4-2. The rendered result showing the different border widths

If three values are specified, the first applies to the top, the second applies to the left
and right, and the third applies to the bottom. Listing 4-3 has an example of this.

Listing 4-3. Three values for the border-width property

<style>
.container {
border-color: red;
border-style: solid;
border-width: 1px 5px 10px;

}
</style>

<div class="container">Hello world!</div>

Figure 4-3 shows the resulting border widths.

IEello world! I

Figure 4-3. The rendered result showing the three different border widths

Finally, if four values are specified as shown in Listing 4-4, they are applied in
clockwise order, starting at the top.

Listing 4-4. Four values for the border-width property

<style>
.container {
border-color: red;
border-style: solid;
border-width: 1px 5px 10px 20px;
}
</style>

<div class="container">Hello world!</div>

67



CHAPTER 4  BASIC STYLING

Figure 4-4 shows the border widths applied in a clockwise direction.

.Eello world! I

Figure 4-4. The borders are applied clockwise, starting with the top

Borders

For most elements, there is no border by default. CSS defines several properties for
styling borders.

Setting the Border Color

The color of the border is set with the border-color property.

Setting the Border Width

The border-width property determines how thick the border is. The value of border-
width can be a value like 3px. There are also some predefined values: thin, medium, and
thick, as shown in Figure 4-5.

thin medium thick

Figure 4-5. Predefined border width values

Setting the Border Style

The border-style property determines the visual appearance of the border. In addition
to none (the default), there are several available border styles, as shown in Figure 4-6.

68



CHAPTER 4  BASIC STYLING

°
°

solid ° dotted ol dashed | double
°
°

Figure 4-6. Border styles

Setting All Properties with the Shorthand

The three above properties can be combined into a single property with the border
shorthand property, as shown in Listing 4-5. The values should be specified in the order
<width> <style> <color>.

Listing 4-5. The border shorthand property

.container {
border: 5px solid red;

}

The code in Listing 4-6 sets a border-width of 5px, a border-style of solid, and a
border-color of red.

Specifying Border Collapse

The border-collapse property only applies to table elements. It controls how borders
are preserved or collapsed between adjoining table cells. The default value is separate.
With this default behavior, a table's borders are not combined. Consider the table in
Figure 4-7, where each cell has a different colored border.

69



CHAPTER 4  BASIC STYLING

Figure 4-7. Borders are not collapsed

Notice that each cell’s border is seen in its entirety - the borders do not collapse.
Figure 4-8 shows the result if we set border-collapse to collapse. Any cell borders
adjacent to another border have been collapsed into a single border.

Figure 4-8. Borders are now collapsed

Setting a Border Radius for Rounded Corners

By default, elements have 90-degree rectangular corners. That isn't always the most
aesthetically pleasing design, though. To address this, CSS has the border-radius
property. This property gives the element rounded corners. The corners can be circular
or elliptical. A simple example is shown in Listing 4-6.

Listing 4-6. Setting a border radius

<style>
.rounded-corners {
background-color: red;
border-radius: 10px;
height: 5rem;
width: Srem;
}
</style>

<div class="rounded-corners"></div>

70



CHAPTER 4  BASIC STYLING

This creates rounded corners with a radius of 10px, as shown in Figure 4-9.

Figure 4-9. A box with rounded corners

What does it mean for the corner to have a radius of 10px? Imagine a circle drawn
over each corner. That circle’s radius is 10px. This visualization is shown in Figure 4-10.

Figure 4-10. Border radius visualized

The border-radius can be elliptical as well as circular. Each of the two radii of the
ellipse is specified, separated by a slash, as shown in Listing 4-7.

Listing 4-7. Using an elliptical border-radius

<style>
.rounded-corners {
background-color: red;
border-radius: 20px / 10px;

71



CHAPTER 4  BASIC STYLING

height: Srem;
width: 5rem;

}
</style>

<div class="rounded-corners"></div>

Figure 4-11 shows the resulting corners.

Figure 4-11. A box with an elliptical border radius

Similarly to the circular radius, the elliptical radius effect is applied with an ellipse
in each corner. The horizontal radius is given first, followed by the vertical. This is
visualized in Figure 4-12.

Figure 4-12. Visualizing the elliptical border radius

72



CHAPTER 4  BASIC STYLING

You can also specify a different border-radius for each corner, creating some
interesting shapes. Note that when you specify border-radius in this way, an elliptical
border-radius does not have a slash separating the horizontal and vertical radii. An
example of this is shown in Listing 4-8.

Listing 4-8. Specifying different border radius properties

<style>
.rounded-corners {
background-color: red;
border-bottom-right-radius: 10px 20px;
border-bottom-left-radius: 5px;
border-top-left-radius: 20px 10px;
border-top-right-radius: 50%;
height: 5rem;
width: Srem;
}
</style>

<div class="rounded-corners"></div>

The resulting shape is shown in Figure 4-13.

Figure 4-13. A shape using different border-radius values for each corner

73



CHAPTER 4  BASIC STYLING

Box Shadows

Elements can also have a box shadow. As the name implies, this is a shadow applied to
the element’s box, appearing just outside the border area. The shadow follows the shape
of the box. If there are rounded corners applied with border-radius, the box shadow also
has the rounded corners.

The box shadow is controlled by the box-shadow property. A box shadow has a color,
and its dimensions can be specified with up to four values, which are

o Xoffset
o Y offset
e Blur radius: How far out the shadow is blurred

e Spread radius: How far the shadow extends beyond the element’s
dimensions

The box shadow is the same size as the element, and when the X and Y offsets are
zero, it appears directly behind the element. In this case, the shadow won'’t be visible
without a blur or spread radius.

At a minimum, the X and Y offsets must be given. By default, the blur and spread
radius are zero. Listing 4-9 has a straightforward example of a box shadow.

Listing 4-9. A simple box shadow

<style>
.shadow {
box-shadow: 5px 5px black;
background: #CCCCCC;
width: 10rem;
height: 5rem;
}
</style>

<div class="shadow"></div>

This applies a box shadow offset by 5 pixels in the horizontal and vertical directions
and with no blur or spread radius. The result is shown in Figure 4-14.

74



CHAPTER 4

Figure 4-14. A simple offset box shadow

In Listing 4-10, we apply a blur radius to this shadow of 10 pixels.

Listing 4-10. Adding a blur radius

<style>
.shadow {
box-shadow: 5px 5px 10px black;
background: #CCCCCC;
width: 10rem;
height: 5rem;
}
</style>

<div class="shadow"></div>

This gives the box shadow a blurred look, as shown in Figure 4-15.

Figure 4-15. A shadow with a blur effect

BASIC STYLING

75



CHAPTER 4  BASIC STYLING

Finally, we can add a spread radius, as we have done in Listing 4-11.

Listing 4-11. Adding a spread radius

<style>
.shadow {
box-shadow: 5px 5px 10px 5px black;
background: #CCCCCC;
width: 10rem;
height: 5rem;
}
</style>

<div class="shadow"></div>

The results are shown in Figure 4-16.

Figure 4-16. The rendered shadow with a spread radius added

If the X and Y offsets are set to zero, the shadow spreads and blurs evenly in all
directions. Listing 4-12 demonstrates how to do this.

Listing 4-12. Setting the offsets to zero

<style>
.shadow {
box-shadow: 0 0 10px 5px black;
background: #CCCCCC;

76



CHAPTER 4  BASIC STYLING

width: 10rem;
height: 5rem;

}
</style>

<div class="shadow"></div>

The even shadow is shown in Figure 4-17.

Figure 4-17. An evenly distributed box shadow

Box shadows can also be inside the element instead of behind it. To do this, add the
inset keyword to the box-shadow value. An inset box shadow starts at the element’s
border and is drawn inward. Listing 4-13 has an example of an inset box shadow.

Listing 4-13. An inset box shadow

<style>
.shadow {
box-shadow: 0 0 25px black inset;
background: #CCCCCC;
width: 10rem;
height: 5rem;
border: 5px solid red;

}
</style>

<div class="shadow"></div>

77



CHAPTER 4  BASIC STYLING

Figure 4-18 shows how this inset box shadow is rendered. Notice how it starts inside
the red border area.

Figure 4-18. The rendered inset box shadow

You can also apply multiple box shadows to a single element. The box-shadow
property accepts multiple box shadow definitions, separated by a comma, as shown in
Listing 4-14.

Listing 4-14. Applying multiple box shadows

<style>
.shadow {
box-shadow: 0 0 15px 5px black, 0 0 5px 5px red;
background: #CCCCCC;
width: 10rem;
height: Srem;

}
</style>

<div class="shadow"></div>

This applies a black box shadow and a red one, as shown in Figure 4-19.

78



CHAPTER 4  BASIC STYLING

Figure 4-19. Multiple box shadows on a single element

Finally, you can also apply an outer box shadow and an inset one together to create
an inner and outer shadow. An example of this is shown in Listing 4-15.

Listing 4-15. Applying outer and inset shadows

<style>
.shadow {
box-shadow: 0 0 10px 0 black, 0 0 25px red inset;
background: #CCCCCC;
width: 10rem;
height: 5rem;
}
</style>

<div class="shadow"></div>

The result is shown in Figure 4-20.

79



CHAPTER 4  BASIC STYLING

Figure 4-20. A red inner shadow with a black outer shadow

Opacity

By default, most elements start out with a transparent background. When a background
color or image is assigned, that element becomes opaque. You cannot see through the
element to what's behind it. Borders and text are also opaque.

You can change this behavior with the opacity property. Opacity applies to the
entire element - background, border, text, images, and any other content within that
element or its children.

The opacity property takes a number between 0 and 1 or a percentage from 0% to
100%. This sets the level of transparency of the element. An opacity of 0.5, or 50%, is half
transparent.

Consider the example in Listing 4-16, an outer div element with another div inside
of it. Note the different background colors and how the inner element is fully opaque -
that is, it covers the background of the outer element.

Listing 4-16. One element inside another

<style>
.outer {
background: red;
height: 10rem;
width: 10rem;

}

80



CHAPTER 4  BASIC STYLING

.inner {
background: blue;
color: white;
height: 8rem;
width: 8rem;

}
</style>

<div class="outer">
<div class="inner">
</div>

</div>

Figure 4-21 shows the rendered result.

Figure 4-21. The two elements, fully opaque

Let’s add some text to the inner element and make it partially transparent by setting
its opacity property to 0.5. This is done in Listing 4-17.

81



CHAPTER 4  BASIC STYLING
Listing 4-17. Making the inner element partially transparent

<style>
.outer {
background: red;
height: 10rem;
width: 10rem;

}

.inner {
background: blue;
color: white;
height: 8rem;
width: 8rem;
opacity: 0.5;

}

</style>

<div class="outer">
<div class="inner">Inner Element</div>
</div>

Figure 4-22 shows the result of this change. Since the inner element is 50%
transparent, its blue background mixes with the outer element’s red background, and it
becomes purple. Notice that the text is partially transparent as well.

82



CHAPTER 4  BASIC STYLING

Inner Element

Figure 4-22. The demo elements, with opacity applied to the inner element

Setting the opacity to 0.2 makes the inner box even more transparent, and barely
visible, as shown in Figure 4-23.

Figure 4-23. Decreasing the opacity

83



CHAPTER 4  BASIC STYLING

Hiding Elements

You sometimes want to have an element in the page that is visually hidden, maybe
temporarily. There are a few ways you can hide an element using CSS.

Using display: none

We've already seen how the display property can make an element either inline,
block, or inline-block. When you set the display property to none, the element is
hidden and removed from the flow of the document as if it was never there. It does,
however, remain in the DOM. Other elements move to fill in the space.

Consider the three boxes shown in Figure 4-24.

Figure 4-24. An example layout containing three boxes

If you set the green middle element’s display property to none, it is removed from
the document flow, and the other blocks move closer together to fill the empty space, as

Figure 4-25. The middle element hidden with display: none

shown in Figure 4-25.

Using visibility: hidden

Another way to hide an element is by setting its visibility property to hidden. This
hides the element like display: none, but it behaves differently. With visibility:
hidden, the flow of the document is not affected. The other elements do not move to fill
the empty space left by the hidden element. To make a hidden element reappear, set its
visibility property to visible.

84



CHAPTER 4  BASIC STYLING

Consider the example from Figure 4-23. If you change the middle box to use
visibility: hidden, it disappears, but an empty space remains, as shown in Figure 4-26.

Figure 4-26. The empty space left by visibility: hidden

Setting opacity to 0

You can also hide an element by setting its opacity property to 0. This has the same
visual effect as visibility: hidden. The element is hidden from view, but the layout is
unchanged.

One reason to use opacity: Oinstead of visibility: hidden is thatyou can use a CSS
transition to gradually show and hide the element. With visibility: hidden, the element
appears or disappears immediately. We'll talk more about CSS transitions in Chapter 9.

Outline

Elements can also have an outline, which is outside of their border. This is done using
the outline property. To illustrate this concept, Listing 4-18 creates an element with a
border and an outline.

Listing 4-18. Applying an outline

<style>
.box {
width: 128px;
height: 64px;
border: 5px solid red;
outline: 5px solid blue;

}
</style>

<div class="box"></div>

85



CHAPTER 4  BASIC STYLING

The result is shown in Figure 4-27.

Figure 4-27. The rendered outline

The blue outline appears immediately outside of the red border and is flush up
against the border. You can add space between the border and the outline with the
outline-offset property, as shown in Listing 4-19.

Listing 4-19. Applying an outline offset

<style>
.box {
width: 128px;
height: 64px;
border: 5px solid red;
outline: 5px solid blue;
outline-offset: 8px;

}
</style>

<div class="box"></div>

As Figure 4-28 shows, there is now an 8-pixel offset between the border and the
outline.

86



CHAPTER 4  BASIC STYLING

Figure 4-28. The box with an outline offset

One key difference between border and outline is that outline does not affect
the document’s layout. An element’s outline can overlap with adjacent elements.
Listing 4-20 shows such an example.

Listing 4-20. Two adjacent elements, one with an outline

<style>

.box {
width: 128px;
height: 64px;

}
.box1 {
border: 5px solid red;
outline: 5px solid blue;
outline-offset: 8px;
}
.box2 {
border: 5px solid green;
}
</style>
<div>

<div class="box box1"></div>
<div class="box box2"></div>
</div>

87



CHAPTER 4  BASIC STYLING

When these elements are rendered, the outline from the red box overlaps the green
box, as shown in Figure 4-29.

Figure 4-29. The outline can overlap adjacent elements

By default, most elements do not have an outline. The main exception to this rule is
form input fields. They have an outline when the element has focus. You can override
this behavior by setting the outline property to none. However, this is not recommended
as it can create accessibility issues if there is no visual way to tell that an element
has focus.

Summary

e Aborder has a style, width, and color.
¢ Rounded corners can be created with the border-radius property.

e Anelement can be given an inner and/or outer box shadow with the
box-shadow property.

o Theopacity property determines the transparency of an element.

o Anelement can be hidden by using display: none, visibility:
hidden, or opacity: o.

e An element can have an outline, which appears outside of its border.

88



CHAPTER 5

Backgrounds and
Gradients

Most HTML elements can have a background. Backgrounds can be images, solid colors,
or even gradients. Multiple background effects can be combined.

Solid Background Colors

The simplest type of background is a solid color. Solid background colors are applied
using the background-color property. This accepts any valid CSS color expression, as
shown in Listing 5-1.

Listing 5-1. A solid background color

<style>
.red-background {
background-color: #FA7587;

}
</style>

<div class="red-background">Hello world!</div>

As expected, this applies a red background to the element, as shown in Figure 5-1.

Hello world!

Figure 5-1. The element with a red background

89
© Joe Attardi 2025

J. Attardi, Modern CSS, https://doi.org/10.1007/979-8-8688-1727-4_5


https://doi.org/10.1007/979-8-8688-1727-4_5#DOI

CHAPTER5 BACKGROUNDS AND GRADIENTS

Background Images

Images can also be used as an element’s background. There are several properties that
control the background image.

Applying a Background Image with the
background-image Property

One or more background images can be applied using the background-image property.
This accepts one or more image URLSs. If multiple URLs are specified, the background
images are stacked on top of each other, with the first image on top.

A background image’s URL is specified with the url function. It takes one argument,
which is a string that can be an absolute or relative URL. Here are a few examples:

o Absolute URL: url('https://placecats.com/neo/300/200")
o Relative URL: url('/header.png")

Listing 5-2 shows an example of using the background-image function.

Listing 5-2. Using a background image

<style>
.cat {
background-image: url('./cat.jpg');
height: 200px;
width: 300px;
}
</style>

<div class="cat"></div>

90


https://placecats.com/neo/300/200

CHAPTER5 BACKGROUNDS AND GRADIENTS

Figure 5-2 shows the element with the background image.

Figure 5-2. The element with a background image

Repeating a Background with the
background-repeat Property

If an element is larger than its background image, by default the image will be repeated
to fill the element. Listing 5-3 creates an element with a tiled background image.

Listing 5-3. Using a background image on a larger element

<style>
.cat {
background-image: url("'./small-cat.jpg');
height: 200px;
width: 300px;
}
</style>

<div class="cat"></div>

91



CHAPTER5 BACKGROUNDS AND GRADIENTS

Figure 5-3 shows the repeated background image (the default behavior).

Figure 5-3. The background repeating itself

This behavior can be changed with the background-repeat property. Repeating
can be disabled by setting it to no-repeat. If the background isn't repeated to cover the
entire element, the background color, if any, will show through. This is demonstrated in
Listing 5-4.

Listing 5-4. Disabling background repeat

<style>
.cat {
background-image: url('./small-cat.jpg');
background-color: #999999;
background-repeat: no-repeat;
height: 200px;
width: 300px;
}
</style>

<div class="cat"></div>

92



CHAPTER S5 BACKGROUNDS AND GRADIENTS

The result is shown in Figure 5-4.

Figure 5-4. The background is not repeated

The background image can be repeated just horizontally or just vertically by
specifying a background-repeat of repeat-x or repeat-y. Listing 5-5 shows an example
of repeating the background vertically only.

Listing 5-5. Repeating the background vertically

<style>
.cat {
background-image: url('./small-cat.jpg');
background-color: #999999;
background-repeat: repeat-y;
height: 200px;
width: 300px;
}
</style>

<div class="cat"></div>

93



CHAPTER5 BACKGROUNDS AND GRADIENTS

Figure 5-5 shows the result.

Figure 5-5. The vertically repeated background image

Moving the Background Image with the
background-position Property

The position of the background image can be changed with the background-position
property. Listing 5-6 shows an example of using background-position to place the
background image in the center of the element.

Listing 5-6. Using the background-position property

<style>
.cat {
background-image: url('./small-cat.jpg');
background-color: #999999;
background-repeat: no-repeat;
background-position: center;
height: 200px;
width: 300px;
}
</style>

<div class="cat"></div>

94



CHAPTER S5 BACKGROUNDS AND GRADIENTS

Figure 5-6 shows the centered background image.

Figure 5-6. The background image is centered in the element

A single value can be given such as top, bottom, left, right, or center, alength
such as 50px, or a percentage. Two values can also be given. In this case, the first value
is the position along the X-axis, and the second is the position along the Y-axis. This is
demonstrated in Listing 5-7.

Listing 5-7. Specifying two values for background-position

<style>
.cat {
background-image: url('./small-cat.jpg');
background-color: #999999;
background-repeat: no-repeat;
background-position: 50px center;
height: 200px;
width: 300px;
}
</style>

<div class="cat"></div>

95



CHAPTER5 BACKGROUNDS AND GRADIENTS

The result is shown in Figure 5-7.

Figure 5-7. The background image in the specified position

Customizing the Size with the background-size Property

By default, the background image will keep its original size. This may not always be ideal
and can be changed with the background-size property. In the following examples, we
want to use the image from Figure 5-8 as a background image.

Figure 5-8. Photo by Kalen Emsley on Unsplash

96



CHAPTER5 BACKGROUNDS AND GRADIENTS

First, we'll set a height and background image on the element in Listing 5-8.

Listing 5-8. Adding the background image

<style>
.mountains {
background-image: url('./mountains.jpg');
height: 300px;
}
</style>

<div class="mountains"></div>

Figure 5-9 shows the result. By default, we're seeing the top-left portion of the image.

Figure 5-9. The top-left portion of the background is applied

The background-size property affects the size of the background image in its
container. Here, we’ll use the special value cover. This will resize the background image
to make sure that the full image covers the element. If the aspect ratio of the image
doesn’t match that of the element, the image will be cropped.

In Listing 5-9, we’ll apply this property to the background image to see the effect.

Listing 5-9. Applying a background-size of cover

<style>
.mountains {
background-image: url('./mountains.jpg');
background-size: cover;
height: 300px;
}
</style>

<div class="mountains"></div>

97



CHAPTER5 BACKGROUNDS AND GRADIENTS

The image is scaled so that it fits fully within the element. The element isn’t tall
enough to have the same aspect ratio, though, so the image is still cropped, as shown in
Figure 5-10.

Figure 5-10. The full width of the image is now contained within the element

This looks better, but we still aren’t seeing the main subject of the image - the
mountains. Using a little trial and error, we can use the background-position property
here to move the image, so that we get the portion of the image that we want as the
background. This is done in Listing 5-10.

Listing 5-10. Adjusting the background position

<style>
.mountains {
background-image: url("'./mountains.jpg');
background-size: cover;
background-position: 0 30%;
height: 300px;
}
</style>

<div class="mountains"></div>

As Figure 5-11 shows, now the mountains are visible in the element’s background.

Figure 5-11. The adjusted background position

98



CHAPTER5 BACKGROUNDS AND GRADIENTS

As mentioned earlier, background-size: cover will scale the background image but
retain the aspect ratio. This is why you can’t see all of the image. If you resize the window
so the element becomes narrower, closer to the original image’s aspect ratio, you'll see
more of the image. This is shown in Figure 5-12.

Figure 5-12. The image in a different aspect ratio

Another value for the background-size property is contain. This resizes the image
so it fits within the element. With the default background-repeat behavior, this causes
the background image to be repeated, as shown in Figure 5-13.

Figure 5-13. The background image fits and is repeated

You can also give background-size a specific pixel value. This will cause the image
to look “squished” if the aspect ratio is not preserved. Listing 5-11 shows an example of
setting a specific size for the background-size property.

99



CHAPTER5 BACKGROUNDS AND GRADIENTS

Listing 5-11. Using a specific background size

<style>
.mountains {
background-image: url("'./mountains.jpg');
background-size: 100px 200px;
height: 300px;
}
</style>

<div class="mountains"></div>

The aspect ratio is not preserved here, so the image looks “squished” and is tiled
repeatedly, as shown in Figure 5-14.

Figure 5-14. The background image has a custom size

The background-clip Property

The background-clip property is best explained with an example. Let’s return to the
background image from Figure 5-11, where the background looks nice, and add some
padding and a border. We'll do this in Listing 5-12.

Listing 5-12. Adding padding and border to the element

<style>
.mountains {
background-image: url('./mountains.jpg');
background-size: cover;
background-position: 0 30%;
height: 300px;

100



CHAPTER5 BACKGROUNDS AND GRADIENTS

border: 10px dashed red;
padding: 32px;
}
</style>

<div class="mountains"></div>

If you look closely at the element, you'll notice that the background image extends
into the border area, and it is shown behind the border, as Figure 5-15 shows.

Figure 5-15. The background extends underneath the border

If this isn’t what you want, you can change this behavior with the background-clip
property. The default value, border-box, results in the behavior shown in Figure 5-15.

If you specify a value of padding-box, then the background image is clipped around
the border area. This is shown in Figure 5-16.

Figure 5-16. The background does not extend underneath the border

Finally, you can also specify a value of content-box. When you use this value, the
background image is also clipped by the padding area and is only shown inside the
element’s content area, as shown in Figure 5-17.

101



CHAPTER5 BACKGROUNDS AND GRADIENTS

Figure 5-17. The background image is only shown in the content area

Using the Shorthand background Property

You can use the background property, a shorthand property, to set several of these
properties in a single value. A background color can also be included. Listing 5-13 shows
an example of using the background property.

Listing 5-13. Using the shorthand background property

<style>
.mountains {
background: url('./mountains.jpg') 0 30% / cover;
height: 300px;
}
</style>

<div class="mountains"></div>

This sets the background image URL, applies a background-position of 0 30% and a
background-size of cover. The resulting element is shown in Figure 5-18.

Figure 5-18. Multiple background properties applied to the element

102



CHAPTER5 BACKGROUNDS AND GRADIENTS

Customizing Scroll Behavior with the
background-attachment Property

By default, if an element contains scrollable content, the background image does not
scroll with the content. It remains static as you scroll. However, it does scroll with the
viewport. You can change this behavior with the background-attachment property.

If this is set to fixed, the background remains fixed relative to the viewport as well,
so even as you scroll the whole page, the background remains static.

You can also set background-attachment to local. When this is set, the background
image scrolls both with the viewport and with the element itself.

Background Gradients

In addition to solid colors and images, CSS also supports creating gradient backgrounds.
There are three main types of gradients supported by modern browsers:

e Linear gradients go along a straight line. They can go left to right, top
to bottom, or at any arbitrary angle.

e Radial gradients start at a central point and radiate outward.
o Conic gradients rotate the gradient around a central point.

There is not a CSS property for gradients. Instead, they are treated as background
images. Gradients are specified with the linear-gradient, radial-gradient, and
conic-gradient functions within the value for the background-image property.

Linear Gradients

A linear gradient gradually transitions between colors along a straight line. A gradient
can have multiple “stops” or color transition points. Listing 5-14 shows a simple example
of a linear gradient.

Listing 5-14. A simple linear gradient

<style>
.gradient {
background-image: linear-gradient(red, blue);

103



CHAPTER5 BACKGROUNDS AND GRADIENTS

height: 150px;
width: 300px;

}
</style>

<div class="gradient"></div>

The resulting gradient is shown in Figure 5-19.

Figure 5-19. The rendered gradient

Adding Color Stops

You can add another color stop to a linear gradient by adding another color in the list, as
shown in Listing 5-15.

Listing 5-15. A gradient with three color stops

<style>
.gradient {
background-image: linear-gradient(red, blue, green);
height: 150px;
width: 300px;
}
</style>

<div class="gradient"></div>

The gradient now has a transition to green, as shown in Figure 5-20.

104



CHAPTER5 BACKGROUNDS AND GRADIENTS

Figure 5-20. The rendered three-stop gradient

Using Transparency

You can use transparency in a gradient by specifying the color value transparent as
gradient color stops, as shown in Listing 5-16.

Listing 5-16. Using transparency in a gradient

<style>
.gradient {
background-image: linear-gradient(transparent, blue, transparent);
height: 150px;
width: 300px;
}
</style>

<div class="gradient"></div>

Figure 5-21 shows the transparent gradient on a white background.

Figure 5-21. The gradient with transparent color stops

105



CHAPTER5 BACKGROUNDS AND GRADIENTS

Changing the Gradient Direction

So far, all the gradients we’ve seen have been in the default direction - top to bottom. To
change the direction of the gradient, add the argument to <direction> at the beginning
of the linear-gradient function. This specifies the direction of the gradient. Listing 5-17
shows how we can have a gradient going from left to right.

Listing 5-17. A horizontal gradient

<style>
.gradient {
background-image: linear-gradient(
to right,
red,
blue
);
height: 150px;
width: 300px;
}
</style>

<div class="gradient"></div>

Figure 5-22 shows the horizontal gradient, starting from red on the left and moving to
the right to blue.

Figure 5-22. The rendered horizontal gradient

You can also specify an arbitrary angle for the linear gradient. Listing 5-18 shows an
angle of 45 degrees to create a diagonal gradient.

106



CHAPTER 5
Listing 5-18. Specifying an angle for the gradient

<style>
.gradient {
background-image: linear-gradient(
45deg,
red,
blue
);
height: 150px;
width: 300px;
}
</style>

<div class="gradient"></div>

BACKGROUNDS AND GRADIENTS

This results in a linear gradient that starts at the bottom-left corner and moves in a

straight line at a 45-degree angle, as shown in Figure 5-23.

Figure 5-23. A 45-degree gradient

Customizing Color Stops

So far, the linear gradients we've seen have an equal distribution of colors. The color

stops are spaced equally across the gradient. You can change the position along the

gradient where the color stops are by specifying a percentage after the color. Listing 5-19

shows such a gradient.

107



CHAPTER5 BACKGROUNDS AND GRADIENTS

Listing 5-19. Customizing gradient stops

<style>
.gradient {
background-image: linear-gradient(
to right,
red 0%,
blue 25%
);
height: 150px;
width: 300px;
}
</style>

<div class="gradient"></div>

Figure 5-24 shows the resulting gradient. Notice how the gradient starts with a solid
red color, then gradually transitions to blue at the 25% mark.

Figure 5-24. The gradient with customized color stops

Two adjacent stops with the same color create a region of solid color. Listing 5-20 has

an example of creating stops like this.

Listing 5-20. A gradient with two adjacent stops of the same color

<style>
.gradient {
background-image: linear-gradient(
to right,
red 0%,

108



CHAPTER5 BACKGROUNDS AND GRADIENTS

green 25%,
green 75%,
blue 100%

);

height: 150px;

width: 300px;

}
</style>

<div class="gradient"></div>

Figure 5-25 shows the result. Note that between 25% and 75% along the gradient, the
color is solid green.

Figure 5-25. A gradient with a solid region in the middle

Similarly, if the first stop is after 0% or the last stop is before 100%, the remaining
space before or after is also a solid color.

In addition to percentages, color stops can be specified with any valid length value in
pX, em, rem, or other units.

Radial Gradients

A radial gradient starts at a central point and radiates outward. Listing 5-21 has an
example of a simple radial gradient.

109



CHAPTER5 BACKGROUNDS AND GRADIENTS
Listing 5-21. Aradial gradient

<style>
.gradient {
background-image: radial-gradient(red, blue);
height: 150px;
width: 300px;
}
</style>

<div class="gradient"></div>

Figure 5-26 shows the radial gradient. By default, the gradient’s origin point is the
center of the element.

Figure 5-26. A basic radial gradient

Customizing the Shape and Position

The shape of a radial gradient can be an ellipse (the default) or a circle. You can define
the gradient shape by specifying the name of the shape (ellipse or circle) and a
position such as top, right, left, center, or specific percentages or values. The shape
is defined as <shape> at <position>.The position can be omitted, in which case it
defaults to the center of the image.

Listing 5-22 has an example of using a circle as the gradient shape.

110



CHAPTER5 BACKGROUNDS AND GRADIENTS

Listing 5-22. Specifying a circle for the radial gradient shape

<style>
.gradient {
background-image: radial-gradient(
circle,
red,
blue
);
height: 150px;
width: 300px;
}
</style>

<div class="gradient"></div>

The circular gradient is shown in Figure 5-27.

Figure 5-27. The circular gradient

You can move the circle to the left by specifying a position of 25%, as shown in

Listing 5-23. The percentage represents the distance from the left side of the element.

Listing 5-23. Specifying the position of the gradient shape

<style>
.gradient {
background-image: radial-gradient(
circle at 25%,
red,
blue

111



CHAPTER5 BACKGROUNDS AND GRADIENTS

);
height: 150px;
width: 300px;

}
</style>

<div class="gradient"></div>

Figure 5-28 shows the new gradient position, 25% from the left side of the element.

Figure 5-28. The circle gradient at 25% from the left

You can also specify two values for the position, in which case the first value is for the
vertical position, and the second value is for the horizontal position. Listing 5-24 places
the circular gradient at the top-left corner of the element.

Listing 5-24. Specifying two values for the gradient position

<style>
.gradient {
background-image: radial-gradient(
circle at top left,
red,
blue
);
height: 150px;
width: 300px;
}
</style>

<div class="gradient"></div>

112



CHAPTER5 BACKGROUNDS AND GRADIENTS

Figure 5-29 shows the result.

Figure 5-29. The circular gradient in the top-left corner

Customizing the Size

The size of the gradient can be further influenced by providing modifiers to the shape
that define where the gradient should end. The options that can be set are

e closest-side: The gradient ends at the side closest to the center of
the gradient. For a wide rectangle, this would be the top or bottom.

o farthest-side: The gradient ends at the side farthest from the center
of the gradient. For a wide rectangle, this would be the left or right.

e closest-corner: The gradient ends at the closest corner to its center.

o farthest-corner: The gradient ends at the farthest corner from its
center. This is the default.

Listing 5-25 shows an example of using the closest-corner modifier to make the
gradient stop once it reaches the closest corner.

Listing 5-25. Using the closest-corner modifier

<style>
.gradient {
background-image: radial-gradient(
circle closest-corner at 80% top,
red,
blue

)5

113



CHAPTER5 BACKGROUNDS AND GRADIENTS

height: 150px;
width: 300px;
}
</style>

<div class="gradient"></div>

Figure 5-30 shows the result. The gradient’s center is along the top of the element,
80% of the way across. It begins radiating outward and stops once it hits the closest
corner, which here is the top-right corner.

Figure 5-30. The gradient using the closest-corner modifier

Customizing Color Stops

Like linear gradients, radial gradients can also have multiple color stops. Listing 5-26
shows a radial gradient with three stops.

Listing 5-26. A radial gradient with multiple stops

<style>
.gradient {
background-image: radial-gradient(
red,
blue,
green 75%

)5

114



CHAPTER5 BACKGROUNDS AND GRADIENTS

height: 150px;
width: 300px;

}
</style>

<div class="gradient"></div>

Figure 5-31 shows the gradient with red, blue, and green stops.

Figure 5-31. The rendered gradient

Multiple Gradients

You can even combine multiple radial gradients applied to an element if you use a
transparent color as one of the stops, as demonstrated in Listing 5-27.

Listing 5-27. Multiple gradients

<style>
.gradient {

background-image: radial-gradient(
ellipse at 25%,
red,
transparent

)

radial-gradient(
ellipse at 75%,
blue,
transparent

);

115



CHAPTER5 BACKGROUNDS AND GRADIENTS

height: 150px;
width: 300px;

}
</style>

<div class="gradient"></div>

The result is two gradients, as shown in Figure 5-32.

Figure 5-32. The two gradients

Conic Gradients

While radial gradients start at a central point and radiate outward, conic gradients form
a circle around a point. By default, this is the center of the element. Listing 5-28 shows a
simple example of a conic gradient.

Listing 5-28. A conic gradient

<style>
.gradient {
background-image: conic-gradient(
red, orange, blue, green
);
height: 150px;
width: 300px;
}
</style>

<div class="gradient"></div>

116



CHAPTER5 BACKGROUNDS AND GRADIENTS

Figure 5-33 shows the conic gradient. It starts at a 0-degree angle and rotates around
the center point through the four color stops.

Figure 5-33. A basic conic gradient

Customizing the Angle

By default, the gradient starts at the 0-degree position. You can specify a different starting
angle in the conic-gradient definition, as shown in Listing 5-29.

Listing 5-29. Specifying a different starting angle

<style>
.gradient {
background-image: conic-gradient(
from 90deg,
red, orange, blue, green
)s
height: 150px;
width: 300px;
}
</style>

<div class="gradient"></div>

117



CHAPTER5 BACKGROUNDS AND GRADIENTS

As Figure 5-34 shows, the gradient now starts at the 90-degree position.

»

Figure 5-34. The conic gradient starting at the 90-degree position

Customizing Color Stops

The default behavior is to evenly transition between all the color stops. You can
customize this behavior by specifying angles at which you want color stops to be placed.
Listing 5-30 customizes the angles of the color stops so that they are all close together.

Listing 5-30. Customizing conic gradient stops

<style>
.gradient {
background-image: conic-gradient(
red 90deg,
orange 100deg,
blue 120deg,
green 130deg
);
height: 150px;
width: 300px;
}
</style>

<div class="gradient"></div>

118



CHAPTER5 BACKGROUNDS AND GRADIENTS

Figure 5-35 shows the resulting conic gradient. Note that since the last stop occurs at
130 degrees, instead of 360 degrees, the rest of the gradient is solid green.

Figure 5-35. The customized conic gradient

You can also specify start and end angles for each stop to make hard color
transitions, as shown in Listing 5-31.

Listing 5-31. Specifying start and end angles for each stop

<style>
.gradient {
background-image: conic-gradient(
red 90deg 100deg,
orange 100deg 120deg,
blue 120deg 130deg,
green 130deg
)s
height: 150px;
width: 300px;
}
</style>

<div class="gradient"></div>

119



CHAPTER5 BACKGROUNDS AND GRADIENTS

The gradient stops are hard transitions instead of gradual ones, as Figure 5-36 shows.

Figure 5-36. Using hard color stops

Combining Backgrounds

Gradients and background images can be combined to achieve light and shadow effects.
Listing 5-32 has an example of applying a lighting effect with a gradient that goes from
white to transparent.

Listing 5-32. Combining background images and gradients

<style>
.mountains {
background-image: radial-gradient(
ellipse at top left,
white 25%,
transparent
)
url("./mountains.jpg');
background-size: cover;
height: 300px;
}
</style>

<div class="mountains"></div>

120



CHAPTER S5 BACKGROUNDS AND GRADIENTS

The result is a white light effect over the mountain image, as shown in Figure 5-37.

Figure 5-37. The gradient combined with a background image

Similarly, a shadow effect could be achieved by using a dark color such as gray or
black instead of white.

Summary

e Anelement’s background can be a solid color, an image, a gradient,
or a combination of the three.

o The display of a background image can be customized with the
background-repeat, background-position, background-size,
background-clip, and background-attachment properties.

o Gradients can be linear, radial, or conic.

121



CHAPTER 6

Text Styling

Text styling is one of the most common applications of CSS.

Basic Text Styling

In this section, we’ll explore a few CSS properties that control basic text styling.

font-family

The font-family property sets the font to use for the element's text. This font is
inherited by descendant elements.

font-family can be specified as a single value - the name of the font to use. More
commonly, a comma-separated list of fonts is given. The browser will try each font,
starting with the first, until a match is found.

Generally, the list starts specific and gets more general. The last font family in the
list is typically a generic one like monospace or sans-serif, where the browser will use a
fallback font that approximates the desired appearance. Font names containing spaces
should be enclosed in quotes, as shown in Listing 6-1.

Listing 6-1. Specifying multiple font names

.hello {
font-family:
Georgia,
'Times New Roman',
serif;

123
© Joe Attardi 2025

J. Attardi, Modern CSS, https://doi.org/10.1007/979-8-8688-1727-4_6


https://doi.org/10.1007/979-8-8688-1727-4_6#DOI

CHAPTER6  TEXT STYLING

In this example, the browser will try Georgia first. If Georgia is unavailable, it will try
Times New Roman. Lastly, if that is not available, it will fall back to a built-in generic serif
font. Custom web fonts can also be used. We will discuss that a little later.

Font Size

An element inherits its parent's font size by default. This behavior can be overridden by
using the font-size property, which sets the font size for the element. Recall that the
document has a base font size - usually 16px.

The value of font-size not only controls the size of the text, but it also determines
base sizing for anything specified in em or other relative units. The em unit is not just for
text. Borders, padding, and even width and height can all be specified in em units.

In addition, there are several predefined font-size values, ranging from xx-small to
xxx-large. A relative font size can also be specified, with a value of smaller or larger. A
font-size can also be specified as a percentage of its parent's size.

As mentioned in Chapter 3, a font-size specified in em units has a compounding
effect if its children also use em units. Listing 6-2 shows an example of this effect.

Listing 6-2. Using em units on the parent and child

<style>
.parent {
font-size: 1.5em;

}

.child {
font-size: 1.5em;

}
</style>

<div class="parent">
I'm the parent
<div class="child">
I'm the child
</div>
</div>

124



CHAPTER6  TEXT STYLING

Figure 6-1 shows the resulting text.

I'm the parent

I'm the child

Figure 6-1. The parent and child have different font sizes

Note that while the parent and child elements both have a font-size of 1.5em, the
child's text is larger. This is the compounding effect. The parent's font size is 1.5em, or 1.5
times its parent's font size, which is the root element's font size of 16px. This comes out
to 24px.

The child element's font size is also 1.5em, 1.5 times of its parent, which we just
calculated to be 24px. 24px * 1.5 = 36px.

If you used rem units for the parent and child, they would have the same font size
because rem is relative to the root element's font size.

Text Color

The color property controls the element's text color (and text decorations such as
underlines). It also sets the current color. This is a special value called currentColor that
resolves to the text color, which can be referenced from other properties. currentColor
is also the default border color if one is not specified. Listing 6-3 has an example of color
and currentColor in action.

Listing 6-3. The color property and currentColor value

<style>
div {
border: 3px solid currentColor;
}
.one {
color: red;
}

125



CHAPTER6  TEXT STYLING

.two {
color: blue;

}
</style>

<div class="one">0One</div>
<div class="two">Two</div>

The result is shown in Figure 6-2.

One

WO

Figure 6-2. The two elements with different colors

We give one element a color of red and the other a color of blue. This sets the
currentColor value of each element. Then, we also have a rule that selects both div
elements and uses the currentColor as the border color. The red div gets a red border,
and the blue div gets a blue border.

Font Weight

The font-weight property defines how bold the text appears. This can be a simple value
like normal or bold. It can also take numeric values: 100, 200, 300, 400, 500, 600, 700, 800,
and 900. The higher the number, the bolder the font is.
The normal value is equivalent to a weight of 400, and the bold value is equivalent to
a weight of 700. Depending on the font used, not all weights may be available.
font-weight can also be specified as the values lighter or bolder. These values are
relative to the weight of the element's parent.

Font Style

The font-style property can be used to make text italic. It has three supported values:
normal, italic, and oblique. Italic and oblique are similar, but slightly different. Italic
is typically an angled font face, sometimes with a completely different design than the
normal version. On the other hand, oblique is typically just the normal version but
slanted.

126



CHAPTER6  TEXT STYLING

Not all fonts include both an italic and oblique version. If this is the case, then the

italic and oblique styles look the same.

Underlining with text-decoration

The text-decoration property can be used to add decorative lines to text. These can be
underlines, strikethrough lines, and even wavy or dotted lines. The basic usage of text-
decoration takes a simple value - none, underline, or line-through - as shown in
Listing 6-4.

Listing 6-4. Demonstrating the basic usage of the text-decoration property

<style>
.underline {
text-decoration: underline;

}

.strikethrough {
text-decoration: line-through;

}

.none {
text-decoration: none;

}
</style>

<div class="underline">Underlined text</div>
<div class="strikethrough">Strikethrough text</div>
<div class="none">No text decoration</div>

The resulting text style is shown in Figure 6-3.

127



CHAPTER6  TEXT STYLING

Underlined text

Strikethroteh-text

No text decoration

Figure 6-3. The basic text decoration types

The text-decoration property can also take a color and a style. The available styles
are solid, double, dotted, dashed, and wavy. These styles are shown in Listing 6-5.

Listing 6-5. Advanced text decoration styles

<style>
.solid {
text-decoration: underline solid blue;
}
.double {
text-decoration: underline double green;
}
.dotted {
text-decoration: underline dotted;
}
.dashed {
text-decoration: underline dashed purple;
}
.wavy {
text-decoration: underline wavy red;
}
</style>

128



<div
<div
<div
<div
<div

CHAPTER 6

class="solid">Solid blue underline</div>
class="double">Double green underline</div>
class="dotted">Dotted black underline</div>
class="dashed">Dashed purple underline</div>
class="wavy">Wavy red underline</div>

These text decoration styles are shown in Figure 6-4.

Solid blue underline
Double green underline
Dotted black underline

Dashed purple underline
Wavy red underline

Figure 6-4. The rendered advanced text decoration styles

TEXT STYLING

Some elements, such as links, have an underline by default. This can be removed by

setting text-decoration to none.

You can also adjust the position of the text decoration by using the text-underline-

offset property. This takes any valid CSS size expression and is shown in Listing 6-6.

Listing 6-6. Using the text-underline-offset property

<styl

}

e>

underline {
text-decoration: underline;
text-underline-offset: 0.5em;

</style>

<div

class="underline">Underlined text</div>

129



CHAPTER6  TEXT STYLING

The underline is moved down by 0. 5em, as shown in Figure 6-5.

Underlined text

Figure 6-5. The underline is moved by the text-underline-offset property.

Other Text Effects
Transforming to Uppercase

The text-transform property can be used to transform the text to all uppercase or to
capitalize just the first letter of every word. This property is shown in Listing 6-7.

Listing 6-7. Example usage of the text-transform property

<style>
.uppercase {
text-transform: uppercase;

}

.capitalize {
text-transform: capitalize;

}
</style>

<div class="uppercase">hello world</div>
<div class="capitalize">hello world</div>

The resulting text transformations are shown in Figure 6-6. Using text-transform:
uppercase turns every letter to uppercase, whereas text-transform: capitalize only
turns the first letter of each word to uppercase.

130



CHAPTER6  TEXT STYLING

HELLO WORLD
Hello World

Figure 6-6. The resulting text transformations

The text-transform property also supports some other values, such as none (which
doesn’t change any of the letters) or lowercase (which makes everything lowercase).

Letter Spacing

The letter-spacing property is used to adjust the space between adjacent letters in a
word. The specified value is not the spacing itself, but rather the amount of spacing to
add to the normal spacing between the letters. Any valid CSS size value can be used,
along with the keyword normal.

Listing 6-8 shows an example of using the letter-spacing property.

Listing 6-8. Using the letter-spacing property

<style>
.hello {
letter-spacing: 8px;
}
</style>

<div class="hello">Hello world!</div>

This adds 8 pixels of extra spacing between characters, as shown in Figure 6-7.

Hello world!

Figure 6-7. The text with extra letter spacing

Font Variant

The font-variant property can be set to small-caps for an interesting effect. All
lowercase letters are transformed into smaller-sized capital letters. Listing 6-9 shows the
usage of this property.

131



CHAPTER6  TEXT STYLING
Listing 6-9. Using the font-variant property

<style>
.hello {
font-variant: small-caps;

}
</style>

<div class="hello">Hello world!</div>

The lowercase letters are turned into small, capitalized letters, as shown in
Figure 6-8.

HELLO WORLD!

Figure 6-8. The text with the small caps variant applied

Text Layout

In addition to styling, there are also several useful properties that affect the text layout.

Text Indent

The text-indent property is used to specify an indent on the first line of text in a block
element. Listing 6-10 shows how this property is used.

Listing 6-10. Using the text-indent property

<style>
.my-text {
border: 1px solid red;
text-indent: 50px;
width: 10rem;

}
</style>

132



CHAPTER6  TEXT STYLING

<div class="my-text">
Here is a brief paragraph that has
enough content to wrap a few lines.
</div>

Figure 6-9 shows the indented text.

Here 1s a brief
paragraph that has
enough content to wrap
a few lines.

Figure 6-9. The indent of 50 pixels applied to the first line of the text

Whitespace

The white-space property is used to specify how whitespace is handled inside an
element that contains text. The default value is normal. With this value, sequential
whitespace characters are collapsed. If the text content exceeds the width of its
container, it will be wrapped to the next line.

You may have seen this behavior before when you have multiple consecutive spaces
in your HTML, or line breaks, and they are ignored by the browser. This is demonstrated
in Listing 6-11.

Listing 6-11. An example with extra whitespace

<style>
.my-text {
border: 1px solid red;
width: 10rem;
}
</style>

133



CHAPTER6  TEXT STYLING

<div class="my-text">
Here is some text
with
whitespace.
</div>

The whitespace behavior is shown in Figure 6-10.

Here 1s some text with
whitespace.

Figure 6-10. The whitespace is ignored

The extra spaces and line breaks are ignored, and the text only breaks to the next line
when it automatically wraps.

We can make the browser respect the whitespace by setting white-space to pre, as
shown in Listing 6-12.

Listing 6-12. Settingwhite-spaceto pre

<style>
.my-text {
border: 1px solid red;
width: 10rem;
white-space: pre;
}
</style>

<div class="my-text">
Here is some text
with
whitespace.
</div>

As Figure 6-11 shows, the whitespace is now preserved in the rendered text.

134



CHAPTER6  TEXT STYLING

Here i1s some text
with
whitespace.

Figure 6-11. The whitespace is preserved

Notice how the whitespace is preserved in the rendered output now. You might also
notice that there is an extra blank line at the top of the element. This represents the first
line break after the opening div tag.

When white-space is set to pre, lines of text are not automatically wrapped. Some
other accepted values for the white-space property are

e normal: The default behavior. Whitespace is collapsed, and text is
automatically wrapped as needed.

e nowrap: Same as normal, except that lines of text do not wrap.
e pre-wrap: Same as pre, except that lines of text are also wrapped.

e pre-line: Same as pre-wrap, except that consecutive whitespace
characters are collapsed. Line breaks are still preserved.

Truncating Text

Your design may require that text fit within its container without overflowing or
wrapping. This can easily be accomplished by using the white-space, overflow, and
text-overflow properties together.

First, white-space is set to nowrap. This ensures the text does not wrap but will
instead cause the text to overflow the container. By setting overflow to hidden, you
can hide the overflowing content. However, the text is abruptly cut off at the end of the
container.

Finally, you can set text-overflowto ellipsis to truncate the text and add an
ellipsis at the end. An example of this truncation technique is shown in Listing 6-13.

135



CHAPTER6  TEXT STYLING

Listing 6-13. Truncating text

<style>
.my-text {
border: 1px solid red;
overflow: hidden;
text-overflow: ellipsis;
white-space: nowrap;
width: 10rem;

}
</style>

<div class="my-text">
Here is a really
really long string.
</div>

The truncated text is shown in Figure 6-12.

Here 1s a really really ...

Figure 6-12. The overflowing text is truncated with an ellipsis

One thing to note with this technique is that it requires the width to be set.
Otherwise, the text may not be truncated.

Horizontal Alignment

Horizontal alignment is controlled by the text-align property. This only has an effect
on block elements with a width greater than that of their content. This property is
demonstrated in Listing 6-14.

Listing 6-14. Controlling the text alignment

<style>
.hello {
width: 20rem;

136



CHAPTER6  TEXT STYLING

border: 1px solid red;
margin: 8px;

}

.center {
text-align: center;

}

Jdeft {
text-align: left;
}

.right {
text-align: right;
}
</style>

<div class="hello center">Hello world!</div>
<div class="hello left">Hello world!</div>
<div class="hello right">Hello world!</div>

The effect on alignment is shown in Figure 6-13.

Hello world!

Hello world!

Hello world!

Figure 6-13. Various text alignment options

text-align doesn’t just affect text. It sets the horizontal alignment of any inline
element inside the containing element on which text-align is set.

Vertical Alignment

If a block element's height is taller than its content, by default the text will be aligned to
the top of the container, as shown in Listing 6-15.

137



CHAPTER6  TEXT STYLING

Listing 6-15. The default vertical alignment behavior

<style>
.hello {
height: 2em;
width: 10em;
border: 1px solid red;
}
</style>

<div class="hello">Hello world!</div>

The default behavior is shown in Figure 6-14.

Hello world!

Figure 6-14. The text defaults to top vertical alignment

You might think the vertical-align property would help here, but setting
vertical-align: center hasno effect. This is because the vertical-align property
only applies to inline elements, and a div is a block element.

This can be solved in a few ways, but one way is to use the 1ine-height property.
You can set the 1ine-height equal to the element’s height, as shown in Listing 6-16.

Listing 6-16. Vertically centering text using the line-height property

<style>
.hello {
height: 2em;
line-height: 2em;
width: 10em;
border: 1px solid red;

}
</style>

<div class="hello">Hello world!</div>

138



CHAPTER6  TEXT STYLING

As Figure 6-15 shows, this centers the text vertically.

Hello world!

Figure 6-15. The text is vertically centered

How does the vertical-align property work, then? It controls how inline elements
are aligned vertically with each other. Listing 6-17 has two span elements side by side
with different heights inside a container element.

Listing 6-17. Vertically aligning two span elements

<style>
.container {
border: 2px dashed blue;
width: 20rem;
text-align: center;

}

.hello {
border: 2px solid red;
font-size: 2rem;

}

.world {
border: 2px solid red;
font-size: 4rem;

}
</style>

<div class="container">
<span class="hello">Hello</span>
<span class="world">World!</span>
</div>

139



CHAPTER6  TEXT STYLING

Figure 6-16 shows the vertical alignment of the two span elements.

 eng World!

_________________ -l

Figure 6-16. The rendered aligned elements

In Figure 6-16, you can see that the elements are aligned along their baselines. A
baseline is an invisible line along which most letters sit. If we set vertical-alignto
middle on both elements, they become vertically aligned with each other. This is shown
in Listing 6-18.

Listing 6-18. Setting vertical-aligntomiddle

<style>
.container {
border: 2px dashed blue;
width: 20rem;
text-align: center;

}

.hello {
border: 2px solid red;
font-size: 2rem;
vertical-align: middle;

}

.world {
border: 2px solid red;
font-size: 4rem;
vertical-align: middle;

}
</style>

140



CHAPTER6  TEXT STYLING

<div class="container">
<span class="hello">Hello</span>
<span class="world">World!</span>
</div>

As Figure 6-17 shows, the elements are now vertically aligned in the middle.

o World!

_________________ -l

Figure 6-17. The elements are now vertically aligned.

Using Web Fonts

If you don't want to use the web safe fonts (and who wants to see another website in Arial
or Times New Roman?), you are in luck. Web fonts allow the CSS to link to a font file that
the browser can download.

By using a web font, you can have a much more consistent look - plus, there are
many beautiful web fonts out there that will enhance the look of your site or app.

There are several different supported web font formats:

e Web Open Font Format version 1 or 2 (WOFF/WOFF2)
e Embedded Open Type (EOT)

e TrueType Font (TTF)

e Scalable Vector Graphics (SVG)

Modern browsers support WOFF and WOFF2. The other font formats are for support
with older browsers. A web font is typically packaged in several different formats, all of
which can be referenced in the CSS.

141



CHAPTER6  TEXT STYLING

Registering a Font with the @font-face Rule

A web font is registered using the @font-face at-rule. A @font-face rule declares a new
font. The desired name of the font is given with the font-family property, and one or
more source URLs are given with the src property. Each source URL is followed by a
format declaration which tells the browser which font format to expect for that file.
Once you have declared the font in a @font-face rule, you can then use the name
you gave it in any font-family property in a CSS rule.
The example in Listing 6-19 will load the SomeWebFont font in WOFF2 and WOFF
formats and set it as the font for the whole document. You should still provide a list
of fallback fonts in case the font is not supported by the user's browser or could not
be loaded.

Listing 6-19. Using a web font

@font-face {
font-family: "SomeWebFont";
src: url("/some-font.woff2") format("woff2"),
url("/some-font.woff") format("woff");

}

body {
font-family: SomeWebFont, Arial, sans-serif;

}

Declaring Different Web Font Styles

Usually, a given web font file is only a single weight or style version of the font. This
means there is one font file for the normal version and another for the bold version.

They both must be registered in a separate @font-face rule under the same font-
family. The font weight and style are specified via the font-weight and font-style
properties. This is shown in Listing 6-20.

Listing 6-20. Defining two weights of a web font

@font-face {
font-family: "SomeWebFont";
src: url("/some-font.woff2") format("woff2");

142



CHAPTER6  TEXT STYLING

font-weight: 400;
}

@font-face {
font-family: "SomeWebFont";
src: url("/some-font-bold.woff2") format("woff2");
font-weight: 700;

}

A Word of Caution on Web Fonts

Web fonts are great, but don't go overboard. The more fonts that are loaded, the longer
the page takes to load, and the worse the flash of unstyled text can be. You should make
sure to use only the web fonts that you absolutely need.

Text Shadow

The text-shadow property allows you to add shadows to text. It works similarly to the
box-shadow property from Chapter 4. A text shadow has X and Y offsets, an optional blur
radius, and a color. Unlike box-shadow, text-shadow does not have a spread radius.

Here are some examples of text shadows. Listing 6-21 uses a shadow with an offset
but no blur.

Listing 6-21. A text shadow example

<style>
.container {
font-size: 2rem;
font-family: Arial, sans-serif;
text-shadow: 2px 2px Opx red;

}
</style>

<div class="container">Hello World!</div>

The resulting text shadow is shown in Figure 6-18.

143



CHAPTER6  TEXT STYLING

Hello World!

Figure 6-18. A simple text shadow

Listing 6-22 has another example of a text shadow, this time with no offset and a
blur radius.

Listing 6-22. A second text shadow example

<style>
.container {
font-size: 2rem;
font-family: Arial, sans-serif;
text-shadow: Opx Opx 5px red;

}
</style>

<div class="container">Hello World!</div>

The shadow, with its blur, can be seen in Figure 6-19.

Hello World!

Figure 6-19. A text shadow with a blur effect

Applying a Gradient to Text

It’s also possible to apply a gradient effect to text. However, as of February 2025, this
is only supported in WebKit-based browsers and requires a prefixed property name
(-webkit-text-fill-color).

144



CHAPTER6  TEXT STYLING

To apply this effect, you apply a gradient background to the element, as was
demonstrated in Chapter 5. Then you can use the background-clip and -webkit-text-
fill-color properties to apply the background gradient to the text. This is shown in
Listing 6-23.

Listing 6-23. A text gradient effect

<style>
.gradient {
background: linear-gradient(red, blue);
background-clip: text;
-webkit-text-fill-color: transparent;

}
</style>

<div class="gradient">Text Gradient</div>

If you do this in a WebKit-based browser (Chrome, Safari, Edge), you'll see a gradient
applied to the text as shown in Figure 6-20.

Text Gradient

Figure 6-20. The rendered text gradient, as shown in Chrome

Summary

e You can use various CSS properties to control the font size, color,
weight, and style.

e The text-decoration property can add underlines and
strikethroughs.

o There are other text effect properties such as text-transform,
letter-spacing, and font-variant.

o Thewhite-space property controls how the browser renders
whitespace. Whitespace can be ignored or respected.

145



CHAPTER6  TEXT STYLING

146

The vertical-align property controls how inline elements are
vertically aligned with each other.

Fonts can be downloaded by the browser and used with the @font-
face rule.

Text shadows can be applied with the text-shadow property.

WebKit browsers can apply a text gradient by combining a
background gradient with the background-clip and -webkit-text-
fill-color properties.



CHAPTER 7

Layout and Positioning

So far, we've looked a lot at how to style with CSS. Let’s switch gears now and look at how
to lay out and position elements. We'll start by looking at padding and margin, which
were briefly discussed as part of the CSS box model in Chapter 3.

Padding

The padding is the space between an element’s content and its border, specified with
the padding property. By default, most elements have no padding. An element’s padding
value is not inherited by its children. Listing 7-1 shows an element with no explicit
padding applied.

Listing 7-1. An element with no padding

<style>
.container {
background: skyblue;

}
</style>

<div class="container">
Hello world!
</div>

As Figure 7-1 shows, there is no space between the content and the outer edge of the

element.

Hello world!
Figure 7-1. The default style does not apply any padding

147
© Joe Attardi 2025

J. Attardi, Modern CSS, https://doi.org/10.1007/979-8-8688-1727-4_7


https://doi.org/10.1007/979-8-8688-1727-4_7#DOI

CHAPTER 7  LAYOUT AND POSITIONING

Padding can be specified with any size unit or with a percentage. Listing 7-2 shows
an example of adding padding to an element.

Listing 7-2. Adding padding to an element

<style>
.container {
background: skyblue;
padding: 1rem;
}
</style>

<div class="container">
Hello world!
</div>

As Figure 7-2 shows, there is now 1rem of padding around the element’s content area.

Hello world!

Figure 7-2. The element with padding

When padding is specified as a percentage, the value used is the given percentage of
the containing block’s width. Listing 7-3 has a simple example of this.

Listing 7-3. Setting a percentage value for padding

<style>
.container {
border: 1px solid red;
width: 200px;

}

.inner {
padding: 25%;
}
</style>

148



CHAPTER 7  LAYOUT AND POSITIONING

<div class="container">
<div class="inner">Hello world!</div>
</div>

The resulting element is shown in Figure 7-3.

Hello world!

Figure 7-3. The rendered result

If you examine the inner element with the browser’s developer tools, you'll see that
the padding is 50px, or 25% of the container’s width of 200px, as shown in Figure 7-4.

div.inner 200x118.5

Color W#000000
Font 16px Times
Padding 50px

Figure 7-4. The dimensions of the inner element, shown in the Chrome
developer tools

Unlike margin, which we’ll look at next, padding on adjacent elements does not
collapse. The full padding amounts of each element are preserved. Consider the
example shown in Listing 7-4.

Listing 7-4. Two adjacent elements with padding

<style>
.inner1 {
background: skyblue;
padding: 50px;
}

149



CHAPTER 7  LAYOUT AND POSITIONING

.inner2 {
background: lightgreen;
padding: 50px;
}
</style>

<div>
<div class="inner1">Inner 1</div>
<div class="inner2">Inner 2</div>
</div>

As Figure 7-5 shows, each element’s padding of 50 pixels is preserved in all
directions.

Figure 7-5. Padding does not collapse

Margin

An element’s margin is the space between its border and other adjacent or containing
elements. The value of the margin property can be a size value, a percentage, or the
keyword auto.

By default, most elements have no margin. An example of this is shown in Listing 7-5.

150



CHAPTER 7

Listing 7-5. Elements with no margin

<style>
.container {
border: 5px solid skyblue;
width: 10rem;

}

.inner {
border: 5px solid lightgreen;

}
</style>

<div class="container">
<div class="inner">Hello world!</div>
</div>

LAYOUT AND POSITIONING

As Figure 7-6 shows, there is no space between the blue and green borders. This is

because, by default, the elements have no margin.

Hello world!

Figure 7-6. The borders are adjacent, with no margin between them

Listing 7-6 adds margin to the inner element.

Listing 7-6. Element with margin

<style>
.container {
border: 5px solid skyblue;
width: 10rem;

}

.inner {
border: 5px solid lightgreen;
margin: irem;
}
</style>

151



CHAPTER 7  LAYOUT AND POSITIONING

<div class="container">
<div class="inner">Hello world!</div>
</div>

Now there is a space of 1rem between the inner element’s border and the outer
element, due to margin, as shown in Figure 7-7.

Hello world!

Figure 7-7. Adding margin to the inner element

Like with padding, using a percentage for the margin will set the margin to the given
percentage of the containing block’s width.

Centering an Element with margin: auto

The margin property also accepts the keyword auto as a valid value. When the horizontal
(left and right) margin is set to auto in a block or inline-block element, the element is
centered horizontally within its containing element.

The element takes the specified width, and the margin is automatically distributed
evenly on the left and right. An example of this centering technique is shown in
Listing 7-7.

Listing 7-7. Centering horizontally with margin: auto

<style>
.container {
background: skyblue;
width: 20rem;

}

.inner {
background: pink;
margin: auto;

152



CHAPTER 7  LAYOUT AND POSITIONING

width: 10rem;

}
</style>

<div class="container">
<div class="inner">
Hello world!
</div>
</div>

As Figure 7-8 shows, the inner element is centered horizontally due to the margin
of auto.

Hello world!

Figure 7-8. The inner element is centered horizontally

Usingmargin: auto works for horizontal centering, but it will not work for vertical
centering. However, as we'll see later, there are several other ways to vertically center a
block element.

Margin Collapse

When two elements with a vertical margin meet vertically, the two margins are collapsed
into a single margin. The size of the collapsed margin depends on the size of the
adjacent margins. If they are the same size, then the collapsed margin is the same size
as the common margin. If they are different sizes, the collapsed margin takes the size
of the larger margin. Margin collapse between adjacent elements applies to vertical
margins only.

Margin collapse is demonstrated in Listing 7-8.

Listing 7-8. Demonstration of margin collapse

<style>
.element1 {
background: skyblue;
margin-bottom: 1rem;

153



CHAPTER 7  LAYOUT AND POSITIONING

.element2 {
background: lightgreen;
margin-top: 1rem;
}
</style>

<div>
<div class="element1">Element 1</div>
<div class="element2">Element 2</div>
</div>

The collapsed margin is shown in Figure 7-9. The top element has 1rem of bottom
margin, and the bottom element has 1rem of top margin. But the space between the two
is only 1rem, because the margins have collapsed.

Element 1

Element 2

Figure 7-9. The elements with the adjacent margins collapsed

Another situation where the vertical margins collapse is when there is no border,
padding, or other content between a parent element and its child, as shown in
Listing 7-9.

Listing 7-9. Margin collapse between a parent and child element

<style>
.container {
background: skyblue;
margin: 1rem;

}
.inner {
background: lightgreen;
margin: 1rem;
}
</style>

154



CHAPTER 7  LAYOUT AND POSITIONING

<div class="container">
<div class="inner">Inner</div>
</div>

The result is shown in Figure 7-10.

Figure 7-10. The child element’s margin is collapsed

Because there is nothing separating the outer element from its content, the margin of
the inner element is collapsed. In Listing 7-10, we add a border to the container element.

Listing 7-10. Adding a border to the outer element

<style>
.container {
background: skyblue;
border: 1px solid red;
margin: 1rem;

}
.inner {
background: lightgreen;
margin: 1rem;
}
</style>

<div class="container">
<div class="inner">Inner</div>
</div>

As Figure 7-11 shows, due to this border, the child element’s margin no longer
collapses and is shown between the inner and outer element.

Figure 7-11. The child element’s margin is now visible

155



CHAPTER 7  LAYOUT AND POSITIONING

Positioning Elements

The CSS position property determines how an element is positioned within the
document. The top, right, bottom, and left properties are used with the position
property to determine an element’s final position. By default, elements use static
positioning.

If an element’s position property is set to any value other than static, itis
considered a positioned element. This has important implications about the positioning
of descendant elements.

Static Positioning

A statically positioned element is laid out in the normal flow of the document. If no value
is given for the position property, or if it is set to static, the element will be statically
positioned. When an element uses static positioning, the top, right, bottom, and left
properties have no effect.

Relative Positioning

An element uses relative positioning if the position property is set to relative. The
element is laid out in the normal flow of the document, as with static positioning, but is
then moved according to the values of the top, right, bottom, and left properties.

When an element is moved from its default position using relative positioning, it
doesn’t affect the position of other elements in the document. To illustrate this, first
consider the example in Listing 7-11 which defines three boxes.

Listing 7-11. An example layout containing three boxes

<style>
.block {
background-color: red;
height: 64px;
width: 64px;
margin: 8px;

}

156



CHAPTER 7  LAYOUT AND POSITIONING

.green {
background-color: green;

}

.blue {
background-color: blue;

}
</style>

<div class="block"></div>
<div class="block blue"></div>
<div class="block green"></div>

Figure 7-12 shows the rendered layout.

Figure 7-12. The example layout

The three boxes all use static positioning, so they appear at their default position
within the normal document flow. Listing 7-12 changes the blue box to use relative
positioning.

157



CHAPTER 7  LAYOUT AND POSITIONING
Listing 7-12. Applying position: relative

<style>
.block {
background-color: red;
height: 64px;
width: 64px;
margin: 8px;

}

.green {
background-color: green;

}

.blue {
background-color: blue;
position: relative;

top: 32px;
left: 32px;
}
</style>

<div class="block"></div>
<div class="block blue"></div>
<div class="block green"></div>

The result is shown in Figure 7-13. The blue box has moved, but the other boxes
remain in their original positions. As a result, the blue box partially overlaps the

green box.

158



CHAPTER 7  LAYOUT AND POSITIONING

Figure 7-13. The blue box is offset from its original position

When a vertical or horizontal offset is given, the element is moved in the opposite
direction. That is, top moves the element down, left moves the element to the right,
right moves the element to the left, and bottom moves the element up.

What happens if you specify conflicting offsets? For example, an element can't be 10
pixels below its top position and 10 pixels above its bottom position and have the correct
size. Generally, if both top and bottom are specified, the top value is used, and the
bottomvalue is ignored. Similarly, if both left and right are specified, left wins if the
text direction is left to right, and right wins if the text direction is right to left.

The top, right, bottom, and left properties can also have negative values. For
example, specifying a top of -32px will move the element up by 32 pixels.

Absolute Positioning

An absolutely positioned element can also have top, right, bottom, and left offsets
that affect its position. However, the layout is affected differently than with relative
positioning.

To absolutely position an element, set its position to absolute. Absolute positioning
removes the element from the normal document flow, and the element “floats” above
the rest of the document. Unlike with relative positioning, the position of the other
elements will be adjusted as if the absolutely positioned element is not there.

159



CHAPTER 7  LAYOUT AND POSITIONING

Consider the three-box layout from the previous example. Let’s apply position:
absolute to the middle blue box, as shown in Listing 7-13.

Listing 7-13. Applying position: absolute

<style>
.block {
background-color: red;
height: 64px;
width: 64px;
margin: 8px;

}

.green {
background-color: green;

}

.blue {
background-color: blue;
position: absolute;

top: 32px;
left: 32px;
}
</style>

<div class="block"></div>
<div class="block blue"></div>
<div class="block green"></div>

Figure 7-14 shows the result. As before, the blue box is moved, but in this case the
gap between the red and green boxes is gone.

160



CHAPTER 7  LAYOUT AND POSITIONING

Figure 7-14. The “hole” in the layout from the blue box is gone when position:
absolute is applied

There is also a difference in the interpretation of the top, right, bottom, and left
offsets. While a relatively positioned element's offsets are relative to the element's
original position in the document, an absolute positioned element's offsets are relative
to the closest ancestor positioned element.

This is not necessarily the element's direct parent. An element is considered
positioned if it has a position property set to something other than static. Listing 7-14
has an example layout that will have absolute positioning applied to it.

Listing 7-14. A layout with three boxes, one inside the next

<style>
.outer {
background-color: red;
height: 120px;
width: 120px;

}

.inner {
background-color: blue;
height: 80px;
width: 80px;

}

161



CHAPTER 7  LAYOUT AND POSITIONING

.core {
background-color: green;
height: 40px;
width: 40px;
}
</style>

<div class="outer">
<div class="inner">
<div class="core"></div>
</div>
</div>

This layout is shown in Figure 7-15.

Figure 7-15. The example layout before absolute positioning is applied

These elements are all statically positioned. Suppose we want to move the green box
all the way to the right edge of the outer red box. Let’s try setting its position to absolute
and its right offset to 0. This is done in Listing 7-15.

Listing 7-15. Applying position: absolute

<style>
.outer {
background-color: red;
height: 120px;
width: 120px;

}

162



CHAPTER 7

.inner {
background-color: blue;
height: 80px;
width: 80px;

}

.core {
background-color: green;
height: 40px;
width: 40px;
position: absolute;
right: 0;

}

</style>

<div class="outer">
<div class="inner">
<div class="core"></div>
</div>
</div>

The result, shown in Figure 7-16, may not be what you expect.

LAYOUT AND POSITIONING

Figure 7-16. The rendered result, showing the green box at the extreme right of the

document

The green box is now all the way to the right side of the document. This is because

none of the green box’s ancestor elements are positioned. When this happens, the

element is positioned relative to the initial containing block. This is the document’s root

element.

163



CHAPTER 7  LAYOUT AND POSITIONING

To fix this, we can add position: relative to the outer red box. Once we do this,
the green box now remains positioned inside the outer red box, as shown in Figure 7-17.

Figure 7-17. The green box has changed position

Now the green box is absolutely positioned, relative to the outer red box. This is
because the red box is the closest positioned ancestor. If we were to add position:
relative to the blue box, the green box would be positioned relative to that box instead
because it becomes the closest positioned ancestor, as shown in Figure 7-18.

Figure 7-18. The green box has a new closest positioned ancestor - the blue box

Fixed Positioning

Like absolute positioning, fixed positioning removes the element from the document’s
flow. It is applied by setting the position property to fixed. Its position is determined by
setting the top, right, bottom, and left properties.

164



CHAPTER 7  LAYOUT AND POSITIONING

The difference is that for a fixed positioned element, these offsets are always relative
to the viewport instead of a positioned ancestor element. This means that even if the
page is scrolled, a fixed element will remain in the same position. This is useful, for
example, for a fixed header or navigation bar.

A block element with a position of static or relative will, by default, take up
the full width of its container. However, if an element is given a position of absolute
or fixed, this will no longer be the case. It will only be as wide as it needs to be to fit its
content. This can usually be solved by addingwidth: 100% to the element if the full-
width behavior is still desired.

Sticky Positioning

Setting an element’s position property to sticky acts as a combination of relative and
fixed positioning. The element acts as a relatively positioned element, scrolling with the
document. When the element reaches a specified point, it turns into a fixed element.
This point is specified via a top, right, bottom, or left value.

Z-index and Stacking Contexts

When elements have a position of relative, fixed, absolute, or sticky, they can
partially cover other elements. This may not always behave the way you want. For
example, suppose you have a page with a fixed header. You want to show a semi-
transparent overlay to cover the whole page. The code for this is in Listing 7-16.

Listing 7-16. An example of a z-index issue

<style>

.header {
background-color: red;
color: white;
height: irem;
left: 0;
padding: 1rem;
position: fixed;

165



CHAPTER 7  LAYOUT AND POSITIONING

top: 0;
width: 100%;
}

.body {
margin-top: 3.5rem;

}

.overlay {
background-color: rgba(o, 0, 0, 0.5);
height: 100%;

left: o;
position: absolute;
top: 0;
width: 100%;
}
</style>

<div class="overlay"></div>
<div class="container">

<header class="header">Header</header>

<div class="body">Some other page content</div>
</div>

The result is shown in Figure 7-19. The overlay covers the body of the page, but not
the header.

Header

Figure 7-19. The header is above the overlay

166



CHAPTER 7  LAYOUT AND POSITIONING

This can be solved by giving the overlay a z-index value. The z-index property
determines the stacking order of elements along the z-axis; it determines which element
is on top of which. The z-index property is a relative measure that can take any numeric
value. Items with a higher z-index will appear above those with a lower one.

In Listing 7-17, we'll give the overlay a z-index of 1.

Listing 7-17. Adding a z-index

<style>

.header {
background-color: red;
color: white;
height: irem;
left: 0;
padding: 1irem;
position: fixed;
top: 0;
width: 100%;

}

.body {
margin-top: 3.5rem;

}

.overlay {
background-color: rgba(o, 0, 0, 0.5);
height: 100%;
left: 0;
position: absolute;
top: 0;
width: 100%;
z-index: 1;

}

</style>

167



CHAPTER 7  LAYOUT AND POSITIONING

<div class="overlay"></div>
<div class="container">

<header class="header">Header</header>

<div class="body">Some other page content</div>
</div>

As Figure 7-20 shows, now the overlay appears above the header.

Figure 7-20. The overlay now covers all of the content

Stacking Contexts

As it turns out, z-index doesn’t control an element’s z-axis ordering globally within the
entire document. It only controls the z-index relative to other elements within a group
called a stacking context.

By default, there is one stacking context, formed by the root of the document (the
html element). Within the document, there are rules for certain other elements that will
create a new stacking context:

o Elements that have a position other than static and a z-index
other than auto

o Elements with an opacity less than 1

o Elements that are children of a flex or grid layout and a z-index other
than auto

168



CHAPTER 7  LAYOUT AND POSITIONING

There are other elements that create a new stacking context, but these are the most
common ones. If an element doesn’t have a z-index value, there are certain stacking
rules that are applied within a given stacking context. The z-index ordering, from
bottom to top, is

e The background and borders of the element that creates the
stacking context

o Descendant elements of the element that creates the stacking context
that have a position of static

e Descendant elements of the element that creates the stacking context
that have a position value other than static

These rules, combined with explicitly set z-index values, determine the final
stacking order of elements within a stacking context. Let’s walk through a series of
examples that illustrate z-index and stacking contexts. Consider the layout implemented
in Listing 7-18.

Listing 7-18. A stacking context example

<style>
.container-1 {
background-color: red;
width: 10rem;
height: 10rem;
position: relative;
z-index: 100;

}

.container-2 {
background-color: blue;
width: 10rem;
height: 10rem;
position: relative;
z-index: 100;

169



CHAPTER 7  LAYOUT AND POSITIONING

.inner-1 {
background-color: green;
width: Srem;
height: Srem;
position: relative;
top: 7.5rem;

}

.inner-2 {
background-color: orange;
width: Srem;
height: Srem;
position: relative;
top: -2.5rem;

}

</style>

<div class="container-1">
<div class="inner-1"></div>

</div>

<div class="container-2">
<div class="inner-2"></div>

</div>

The resulting layout is shown in Figure 7-21.

170



CHAPTER 7  LAYOUT AND POSITIONING

Figure 7-21. The rendered layout

Note that the two container elements both have their position properties set
to relative and their z-index properties set to 100. This means that each of these
elements creates a new stacking context.

The two inner boxes - the green one and the orange one - have been positioned so
that they are on top of each other. The orange box is on top. The green one isn’t visible
because it’s underneath the orange one. Figure 7-22 shows a conceptual side cross-
section view of the elements (dotted lines indicate stacking contexts).

171



CHAPTER 7  LAYOUT AND POSITIONING

Figure 7-22. A cross-section view

Suppose we want the green box to be on top of the orange one. You might try
adjusting the green box’s z-index to be 200, which is higher than all the other elements.
However, the result is unchanged, and we’ll see the same result as shown in Figure 7-21.

There is one difference, though. The cross-section has changed slightly, as shown in
Figure 7-23.

Figure 7-23. The changed cross-section

172



CHAPTER 7  LAYOUT AND POSITIONING

By setting the z-index property on the relatively positioned green box, we've created
a new stacking context rooted at the green box. Even if you changed the z-index of the
green box to something lower than the other elements, like 50, it would still appear
above the red box because it’s in a higher stacking context.

Stacking context and z-index issues can be difficult to debug. Understanding how
stacking contexts work, and how new ones are formed, is critical to solving these bugs

when they come up.

Floats

You can use the float property to move an element to the left or right side, with text and
other inline content flowing around it. Listing 7-19 shows a simple example of floating an

element to the right.

Listing 7-19. Floating an element to the right

<style>
.container {
width: 10rem;

}

.floating {
background-color: red;
float: right;
height: 3rem;
width: 3rem;

}

</style>

<div class="container">
<div class="floating"></div>
Lorem ipsum dolor sit amet, consectetur
adipiscing elit. Donec nec sapien
dolor. Nunc condimentum sem nec
commodo sollicitudin.

</div>

173



CHAPTER 7  LAYOUT AND POSITIONING

The result is shown in Figure 7-24. The red box floats to the right, and the text flows
around it.

Lorem ipsum
dolor sit amet,
consectetur
adipiscing elit. Donec
nec sapien dolor. Nunc
condimentum sem nec
commodo sollicitudin.

Figure 7-24. The floated red box and the text content that flows around it

You can set the float property to left or right, or if you need to take text direction
into account (left-to-right vs. right-to-left languages), you can use the logical inline-
start or inline-end values.

When the float property is applied to an element, it is removed from the flow of the
document. It then "floats" to the left or right, stopping when it reaches the edge of the
containing element or another floated element. In the previous example, the red box
moved to the right edge of the container. Listing 7-20 has another float example, this
time using two floated elements.

Listing 7-20. Two floating elements

<style>
.container {
width: 10rem;

}

.floating,

.floating-2 {
float: right;
height: 3rem;
width: 3rem;

}

174



CHAPTER 7  LAYOUT AND POSITIONING

.floating {
background-color: red;

}

.floating-2 {
background-color: blue;

}
</style>

<div class="container">
<div class="floating"></div>
<div class="floating-2"></div>
Lorem ipsum dolor sit amet, consectetur
adipiscing elit. Donec nec sapien
dolor. Nunc condimentum sem nec
commodo sollicitudin.

</div>

The result, two floating boxes, is shown in Figure 7-25.

Lorem
ipsum
dolor sit
amet, consectetur
adipiscing elit. Donec
nec sapien dolor. Nunc
condimentum sem nec
commodo sollicitudin.

Figure 7-25. The two floating boxes

First, the red box is floated right, to the edge of the container. Next, the blue box is
also floated right, stopping when it reaches the edge of the floated red box.

175



CHAPTER 7  LAYOUT AND POSITIONING

Clearing Floats

The clear property can be used on an element to indicate that it can't be alongside a
floated element in a given direction. The clear property can be none (the default), left,
right, both, inline-start, or inline-end.

If an element is cleared in a given direction, and there is a floated element there,
the element will be moved so that it is below the floated element. Consider Listing 7-21,
where there is a floated element on each side. We then use clear: right on the content.

Listing 7-21. Clearing floats

<style>
.container {
width: 10rem;

}

.floating {
background-color: red;
float: right;
height: 3rem;
width: 3rem;

}

.floating-2 {
background-color: blue;
float: left;
height: Srem;
width: 3rem;

}
.content {
clear: right;
}
</style>

<div class="container">
<div class="floating"></div>
<div class="floating-2"></div>

176



CHAPTER 7  LAYOUT AND POSITIONING

<div class="content">
Lorem ipsum dolor sit amet, consectetur
adipiscing elit. Donec nec sapien
dolor. Nunc condimentum sem nec
commodo sollicitudin.
</div>
</div>

The result is shown in Figure 7-26.

orem ipsum
dolor sit amet,
consectetur adipiscing
elit. Donec nec sapien
dolor. Nunc
condimentum sem nec
commodo sollicitudin.

Figure 7-26. The floating elements and cleared content

The content has been moved to below the right-floated red box because we specified
clear: right. The content is not cleared to the left, so the blue box is still allowed to
float there, and the text wraps around it.

Width and Height

Most of the time, when specifying an element’s width and height, you'll probably use
a unit like px, em, or rem. However, there are some additional special values that can be
applied to width and height.

177



CHAPTER 7  LAYOUT AND POSITIONING

Intrinsic vs. Extrinsic Size

When you specify a specific width or height like 250px or 5rem, you're setting an extrinsic
size. The extrinsic size does not take the element’s content into account. Rather, it uses
the explicitly specified values.

An element’s intrinsic size is the size an element would normally take up, given its
content. While extrinsic sizes can be specified for block elements, inline elements only
use their intrinsic size.

The min-content and max-content Keywords

Instead of a specific value, you can set an element’s height or width using the min-
content or max-content keywords.

When you use min-content, the element is set to the smallest possible size it can
be without the content overflowing. For an element’s width, this generally means the
element’s width will be limited to the width of the longest word (assuming normal word
wrapping behavior is used). Listing 7-22 shows an example of using min-content.

Listing 7-22. Setting the width tomin-content

<style>
.text {
width: min-content;
background: skyblue;

}
</style>

<div class="text">
Hello world, how are
you doing today?
</div>

The result is shown in Figure 7-27.

178



CHAPTER 7  LAYOUT AND POSITIONING

Hello
world,
how
are
you
doing
today?

Figure 7-27. The element sized with awidth ofmin-content
The element is only as wide as is necessary to render the text inside it without the
text overflowing the container.

When you use max-content, the element is set to the largest possible size it can be so
that the text doesn’t wrap. This is shown in Listing 7-23.

Listing 7-23. Setting the width to max-content

<style>
Jtext {
width: max-content;
background: skyblue;
}
</style>

<div class="text">
Hello world, how are
you doing today?
</div>

The result is shown in Figure 7-28.

Hello world, how are you doing today?

Figure 7-28. The element sized with awidth ofmax-content

Now the element is wide enough to fit the full sentence, so that the text content
doesn’t wrap.

179



CHAPTER 7  LAYOUT AND POSITIONING

Using Multiple Columns

You can split an element’s content to flow into multiple columns with the columns
property. Listing 7-24 has an example of this.

Listing 7-24. Using the columns property

<style>
.content {
columns: 2;
width: 32rem;
}
</style>

<div class="content">
Hello, this is some long content.
It will be split up into multiple columns
because we specified the columns property
with a value of 2.

</div>

The resulting column layout is shown in Figure 7-29.

Hello, this is some long content. It because we specified the columns
will be split up into multiple columns  property with a value of 2.

Figure 7-29. The text split up over two columns

Instead of a number of columns, you can also specify the desired column width, and
the number of columns will be calculated automatically, as shown in Listing 7-25.

Listing 7-25. Specifying a column width

<style>
.content {
columns: 10rem;
width: 32rem;
}
</style>

180



CHAPTER 7  LAYOUT AND POSITIONING

<div class="content">
Hello, this is some long content.
It will be split up into multiple columns
because we specified the columns property
with a value of 2.

</div>

The text will be split into three 10rem columns, as shown in Figure 7-30.

Hello, this is some long  columns because we property with a value of
content. It will be split specified the columns 2
up into multiple

Figure 7-30. The three-column layout

Summary

e Padding is the spacing between an element’s content and its border.

e Margin is the spacing between an element’s border and other
elements.

e Anelementis said to be positioned if it has a position property set to
something other than static.

« Elements can have a position of static, relative, absolute, fixed,
or sticky.

o Statically positioned elements flow normally.

o Relatively positioned elements are positioned relative to their
normal position in the document.

o Absolutely positioned elements are positioned relative to their
nearest positioned ancestor and are removed from the normal
document flow.

o Fixed positioned elements remain fixed with respect to the
viewport.

e Sticky positioned elements are a hybrid between relative and
fixed positioning.
181



CHAPTER 7  LAYOUT AND POSITIONING

182

The z-index property controls the vertical stacking order of an
element within a given stacking context.

The float property allows an element to be floated to the left or right
sides of its container, and other inline content flows around it.

The min-content keyword sizes an element to its smallest possible

size without overflowing.

The max-content keyword sizes an element to its largest possible size
without wrapping.

The columns property lets you break up the flow of a container into
multiple columns. A column count or column width can be specified.



CHAPTER 8

Transforms

CSS provides a set of transformations that can be applied to an element’s appearance.
For example, an element can be rotated in 2D or 3D space, scaled, skewed, or translated
(moved from its original position). Transforms can be used to create all kinds of
interesting effects on their own and become more powerful when combined with
transitions and animations, which we will cover in Chapter 9.

Transforms can be applied in two ways. You can use the transform property,
specifying one or more transform functions, separated by a space. Each transform also
has its own CSS property that you can use.

For example, if you want to rotate an element by 45 degrees, you can use
the transform property (transform: rotate(45deg)) or the rotate property
(rotate: 45deg).

The following sections will cover the most common types of transforms you can

apply to an element.

The X-, Y-, and Z-axes

Many transforms can be performed along one or more axes. The coordinate system is as
follows:

e X-axis: Goes from left to right across the screen
e Y-axis: Goes from top to bottom vertically along the screen
e Z-axis: 3D axis, goes from the “surface” of the page out toward you.

These three axes are visualized in Figure 8-1.

183
© Joe Attardi 2025

J. Attardi, Modern CSS, https://doi.org/10.1007/979-8-8688-1727-4_8


https://doi.org/10.1007/979-8-8688-1727-4_8#DOI

CHAPTER 8 TRANSFORMS

A

Z-axis

X-axis

Figure 8-1. The three axes of the coordinate system

Perspective

Let’s start by discussing the perspective transform. This is necessary when using certain
types of 3D transforms. It defines how “far away” the object will appear from the user, as
if the screen has depth. The lower the number, the closer the object will appear. Used by
itself, perspective has no visible effect. But when combined with certain transforms, it
can greatly affect the final result.

Rotate

The rotate transform rotates an element around a given axis. It takes the angle to
rotate by as an argument. The angle can be whole or fractional and is given in one of
several units:

o deg: Degrees. A full circle is 360deg.
o grad: Gradians. A full circle is 400grad.

o rad: Radians. A full circle is approximately 2z radians, or
approximately 6.28rad.

e turn: Number of turns. A full circle is 1turn.

184



CHAPTER 8  TRANSFORMS

A positive angle rotates the element clockwise, and a negative angle rotates it
counterclockwise. Note that an element can be rotated by more than one full circle.

Rotation Axis

The rotation axis defines which direction the element is rotated in. The element is
rotated around the specified axis.

Rotation Origin

A rotation also has an origin. This is the point around which the element is rotated. By
default, this is the center of the element, as shown in Figure 8-2.

e
=/

Figure 8-2. The default rotation origin, the center of the element

However, you can specify a different origin with the transform-origin property.
This will change the rotation point, as shown in Figure 8-3. Here, the element will be
rotated around its top-left corner.

185



CHAPTER 8 TRANSFORMS

Figure 8-3. A different rotation origin

The transform-origin property is specified as one, two, or three values. These
values correspond to the X, Y, and Z offsets to use for the origin point. These can be size
values such as 10px or 25% or one of the keywords left, center, right, top, or bottom.

Rotating Around the Z-axis

By default, when using the rotate transform, the element is rotated around the Z-axis. If
you want to be more explicit, you can also use the rotateZ transform. Listing 8-1 shows
an example of a Z-axis rotation.

Listing 8-1. Rotating around the Z-axis

<style>
.rotate {
width: 100px;
height: 100px;
background: skyblue;
transform: rotate(45deg);
margin: 50px;
}
</style>

<div class="rotate"></div>

The element is rotated around the Z-axis by 45 degrees, as shown in Figure 8-4.

186



CHAPTER 8  TRANSFORMS

Figure 8-4. The rotated element

You can also rotate an element by using the rotate CSS property directly, instead of
the transform function. This is shown in Listing 8-2.

Listing 8-2. Using the rotate property

<style>
.rotate {
width: 100px;
height: 100px;
background: skyblue;
rotate: 45deg;
margin: 50px;
}
</style>

<div class="rotate"></div>

Rotating Around the X-axis

The rotateX transform rotates an element around the horizontal X-axis. Used on its
own, the 3D effect isn’t noticeable, as demonstrated in Listing 8-3.

187



CHAPTER 8 TRANSFORMS

Listing 8-3. Rotating around the X-axis

<style>
.rotate {
width: 100px;
height: 100px;
background: skyblue;
transform: rotateX(45deg);
margin: 50px;
}
</style>

<div class="rotate">Rotate me!</div>

The element is rotated around the X-axis, but it still appears as a flat rectangle, as
shown in Figure 8-5. The text appears distorted.

Rotate me!

Figure 8-5. No rotation effect is observed

To get the 3D rotation effect we want, we need to use the perspective transform to
activate the 3D space. Here, we'll use a perspective of 200px, but you can experiment
with the perspective value to fine-tune the appearance of the rotation transform.

Listing 8-4 adds the necessary perspective.

Listing 8-4. Adding perspective to the rotateX transform

<style>
.rotate {
width: 100px;
height: 100px;
background: skyblue;
transform: perspective(200px) rotateX(45deg);

188



CHAPTER 8  TRANSFORMS

margin: 50px;
}
</style>

<div class="rotate">Rotate me!</div>
Now you can see the 3D transform effect, as shown in Figure 8-6.

Rotate me!

Figure 8-6. The rotation with perspective

Rotating Around the Y-axis

You can rotate an element around the Y-axis with the rotateY transform. An example
of this is given in Listing 8-5. The example also adds 200px of perspective as we did in
Listing 8-4.

Listing 8-5. Rotating around the Y-axis

<style>
.rotate {
width: 100px;
height: 100px;
background: skyblue;
transform: perspective(200px) rotateY(45deg);
margin: 50px;
}
</style>

<div class="rotate">Rotate me!</div>

The element is rotated around the Y-axis, as shown in Figure 8-7.

189



CHAPTER 8 TRANSFORMS

ROtate me!

Figure 8-7. The rotated element

Rotating in Three Dimensions

The rotate3d transform rotates an element around an arbitrary axis in 3D space. This is
done by defining a direction vector in the 3D coordinate system. The vector is defined by
specifying the component of the vector in each direction (X, Y, and Z) as the coordinate
value. The element is then rotated around that vector by the given angle.

Listing 8-6 uses the rotate3d transform to rotate the element in the X and Y
directions.

Listing 8-6. Using the rotate3d transform

<style>
.rotate {
width: 100px;
height: 100px;
background: skyblue;
transform: perspective(200px) rotate3d(1, 1, 0, 45deg);
margin: 50px;
}
</style>

<div class="rotate">Rotate me!</div>

The resulting transformed element is shown in Figure 8-8.

190



CHAPTER 8  TRANSFORMS

R()tate Mey

Figure 8-8. The element rotated in the X and Y directions

Translate

The next type of transform we'll look at is translation. Translating an element means
moving it from its original position.

The translate transform moves an element in 2D space. It takes one or two
arguments, corresponding to the distance along the X-axis and Y-axis, respectively.
The flow of the document is not affected by translating an element; a blank space is left
where the element’s original position was.

Listing 8-7 shows an example of moving an element with the translate transform.

Listing 8-7. Translating an element

<style>
div {
width: 5rem;
height: 5rem;
display: inline-block;
}

.one {
background: orangered;

}

.two {
background: rebeccapurple;
transform: translate(2rem, 2rem);

}

191



CHAPTER 8 TRANSFORMS

.three {
background: skyblue;

}
</style>

<div class="one"></div>
<div class="two"></div>
<div class="three"></div>

This example renders three boxes, and the purple box in the middle is moved by
2remin the X and Y directions, as shown in Figure 8-9.

Figure 8-9. The translated element

The purple box in Figure 8-9 was translated 2rem to the left and 2rem down, but its
original position leaves a “hole” in the layout. The red and blue boxes do not change
their position to compensate for the translated element.

If you only want to translate in one direction, you can use the translateX or
translateY transforms. The effect is the same as when using the translate function.
That is:

o translateX(irem) is equivalent to translate(1rem, 0).

o translateY(1rem) is equivalent to translate(o, 1rem).

Translating Along the Z-axis

The translateZ transform moves an element along the Z-axis. It has the effect of moving
the element closer or farther away from the user’s perspective. It only has a visible effect
when used with the perspective transform.

192



Listing 8-8 shows an example of translating along the Z-axis.

Listing 8-8. Translating along the Z-axis

<style>
div {
width: 5rem;
height: Srem;
display: inline-block;
}

.one {
background: orangered;

}

.two {
background: rebeccapurple;
transform: perspective(200px) translateZ(2rem);

}

.three {
background: skyblue;

}
</style>

<div class="one"></div>
<div class="two"></div>
<div class="three"></div>

The result is shown in Figure 8-10.

Figure 8-10. The element translated along the Z-axis

CHAPTER 8

TRANSFORMS

193



CHAPTER 8 TRANSFORMS

As Figure 8-10 shows, the purple box has the appearance of being moved closer to
the user.

Translating in an Arbitrary Direction with translate3d

Like rotate3d, translate3d allows you to specify a vector in 3D space. The element
is then translated along that vector. The three arguments define the X, Y, and Z
components of the vector. An example of this is shown in Listing 8-9.

Listing 8-9. Translating with the translate3d transform

<style>
div {
width: Srem;
height: Srem;
display: inline-block;
}

.one {
background: orangered;

}

.two {
background: rebeccapurple;
transform: perspective(200px) translate3d(irem, 2rem, 3rem);

}

.three {
background: skyblue;

}
</style>

<div class="one"></div>
<div class="two"></div>
<div class="three"></div>

The resulting transform is shown in Figure 8-11.

194



CHAPTER 8 TRANSFORMS

Figure 8-11. The translated element

Translating with the translate CSS Property

Instead of using the transform property with the translate function, you can also
translate an element with the top-level translate CSS property. Listing 8-10 shows an
example of this.

Listing 8-10. Translating with the translate property

<style>
div {
width: 5rem;
height: 5rem;
display: inline-block;
}

.one {
background: orangered;

}

.two {
background: rebeccapurple;
translate: 2rem 2rem;

}

195



CHAPTER 8 TRANSFORMS

.three {
background: skyblue;

}
</style>

<div class="one"></div>
<div class="two"></div>
<div class="three"></div>

The result is the same as when using the transform property, as Figure 8-12 shows.

Figure 8-12. The translated element

Scale

The scale transform alters the size of an element, scaling its contents as it grows or
shrinks. The scale transform function takes a scaling factor, which is a multiple of the
element’s original size. A scaling factor of 1 is the original size, 2 is twice the original size,
and 0.5 is half the original size.

The scale transform can take one or two arguments. If one argument is given, it
applies the given scaling factor in both the X and Y directions. If two arguments are
given, the first argument is the X scaling factor, and the second argument is the Y scaling
factor. Listing 8-11 shows two example usages of the scale transform.

Listing 8-11. Scaling elements

<style>
.scale-1 {
transform: scale(2);

196



CHAPTER 8  TRANSFORMS

background: skyblue;
width: 150px;
margin: 100px;

}

.scale-2 {
transform: scale(0.5, 3);
background: orangered;
width: 150px;
margin: 50px;
}
</style>

<div class="scale-1">scale(2)</div>
<div class="scale-2">scale(0.5, 3)</div>

The extra margin is needed to prevent the scaled element from extending past the
edge of the screen. The resulting scaled elements are shown in Figure 8-13.

scale(2)

Figure 8-13. The scaled elements

Notice that since the orange box is scaled differently in the X and Y directions, the
text appears distorted. Since the blue box is scaled uniformly, there is no text distortion.

By default, the scaling functions perform the transform starting at the center of the
element. This can be changed by giving a value for the transform-origin property. Also,
note that scaling an element will not cause its container to grow to fit the new size. The
flow of the document is not affected. This behavior is shown in Figure 8-14.

197



CHAPTER 8 TRANSFORMS

No Seale || ul || ]
“ Sudle

No scale Scale with origin at center ~ Scale with origin at top

Figure 8-14. The different scale behavior depending on the transform-origin

Scaling with the scale CSS Property

Like with other transforms, there is also a top-level scale CSS property that you can use.
The value can be one or two scaling factors. If only one value is given, it is used in both
the X and Y direction. If two values are given, the first value is the X scale factor, and the
second is the Y scale factor. Listing 8-12 shows an example of scaling an element using
this property.

Listing 8-12. Scaling with the scale property

<style>
.scale {
width: 200px;
background: skyblue;
scale: 2 4;
margin: 100px;
}
</style>

<div class="scale">Scale</div>

The scaled element is shown in Figure 8-15.

Scale

Figure 8-15. The scaled element

198



CHAPTER 8  TRANSFORMS

Skew

The skew transform distorts an element by a given angle in the X and Y directions. Like
the rotate transform, the angle can be given in one of several different units such as deg
or rad. Listing 8-13 shows an example of skewing an element.

Listing 8-13. An example of the skew transform

<style>
.skew {
background: skyblue;
transform: skew(45deg, 20deg);
width: 10rem;
font-size: 2rem;
text-align: center;
margin: 5rem;
}
</style>

<div class="skew">Hello world!</div>

The skewed element is shown in Figure 8-16.

Figure 8-16. The skewed element

If you want to skew an element in one direction only, you can use the skewX and
skewY transform functions.

199



CHAPTER 8 TRANSFORMS

Applying Multiple Transforms

The transform property can have more than one transform function, separated by
spaces. Listing 8-14 shows an example of applying both a translate and scale transform.

Listing 8-14. Applying multiple transforms

<style>
div {
width: Srem;
height: Srem;
display: inline-block;
}

.one {
background: orangered;

}

.two {
background: rebeccapurple;
transform: translate(2rem, 2rem) scale(1.5);

}

.three {
background: skyblue;

}
</style>

<div class="one"></div>
<div class="two"></div>
<div class="three"></div>

Figure 8-17 shows the element with both transforms applied. The purple box is
translated down and to the right and is also scaled by a factor of 1.5.

200



CHAPTER 8 TRANSFORMS

Figure 8-17. The translated and scaled element

Things get a little tricky when rotation and translation are involved, though. This is
when the order of the transforms really matters. When you rotate an element, its X/Y
coordinate system rotates with it, as Figure 8-18 shows.

Y y N
//' \\
7 /e \\
F BN
/ e
b
\

Figure 8-18. The coordinate system rotates with the element

This means that the final position of the element is different depending on whether
you rotate before or after you translate. Listing 8-15 shows the difference.

Listing 8-15. Rotating and translating

<style>
.container {
border: 1px solid black;
width: 100px;
height: 100px;
margin: 100px;

201



CHAPTER 8 TRANSFORMS

.transform-1 {
background: skyblue;
transform: translateX(50px) rotate(45deg);
width: 100px;
height: 100px;

}

.transform-2 {
background: skyblue;
transform: rotate(45deg) translateX(50px);
width: 100px;
height: 100px;
}
</style>

<div class="container">
<div class="transform-1"></div>
</div>

<div class="container">
<div class="transform-2"></div>
</div>

If you compare the elements’ positions in Figure 8-19, you'll notice that they end up
in slightly different places due to the different order of the transforms.

202



CHAPTER 8  TRANSFORMS

Figure 8-19. The transformed elements

You can even specify multiple transforms of the same type. Listing 8-16 translates,

rotates, then translates again.

Listing 8-16. Using multiple transforms of the same type

<style>
.container {
border: 1px solid black;
width: 100px;
height: 100px;
margin: 100px;

}

.transform {
background: skyblue;
transform: translateX(50px) rotate(45deg) translateX(100px);
width: 100px;
height: 100px;

203



CHAPTER 8 TRANSFORMS

}
</style>

<div class="container"»
<div class="transform"></div>
</div>

Figure 8-20 shows the blue box’s final position. We move it 100 pixels along the
X-axis, then rotate it by 45 degrees. When we rotate the box, its coordinate system also
rotates. When we apply the second translateX transform, the box moves along its
rotated X-axis.

Figure 8-20. Applying three transforms to the element

Putting It All Together: Making a Cube

Let’s apply what we learned about CSS transforms to make a cube shape. There is a
container element for the cube, the cube itself, and one element for each of the six faces
of the cube. Listing 8-17 has the initial markup and CSS.

Listing 8-17. The initial cube code

<style>
.container {
width: 10rem;
height: 10rem;
perspective: 500px;
margin: S5rem;

}

204



CHAPTER 8  TRANSFORMS

.cube {
position: relative;
width: 10rem;
height: 10rem;
transform-style: preserve-3d;
transform: rotate3d(1, 1, 0, 45deg);

}

.face {

width: 10rem;

height: 10rem;
background: skyblue;
border: 2px solid black;
position: absolute;
opacity: 0.5;
text-align: center;

}
</style>

<div class="container">
<div class="cube">
<div class="face top">Top</div>
<div class="face bottom">Bottom</div>
<div class="face left">Left</div>
<div class="face right">Right</div>
<div class="face front">Front</div>
<div class="face back">Back</div>
</div>
</div>

Listing 8-17 introduces a new property: transform-style. By default, an element’s
children are flattened to be on the same plane. This means they are “squashed” down to
2D space. We want to make a 3D cube, so that won’t work here. Setting transform-style
to preserve-3d will allow the cube’s child elements to exist in 3D space.

We're also applying a 3D rotation to give us a better look at the cube’s structure. The
faces are made partially transparent, so we can see through to the other faces to better
visualize the cube.

205



CHAPTER 8 TRANSFORMS

Figure 8-21 shows the result so far. All the cube’s faces are lying flat, stacked on top of
one another, since they are absolutely positioned. What we need to do is rotate each face,
in 3D space, so that they are facing the correct way. Then we need to move them out
from the center to form the cube.

Bacy

Figure 8-21. The cube faces all stacked on top of each other

Now we need to rotate the faces to their proper orientations. The front doesn’t
need to be rotated, since it’s already facing forward. We need to make the following
transforms:

¢ Rotate the back around the Y-axis by 180 degrees

e Rotate the left around the Y-axis by -90 degrees

Rotate the right around the Y-axis by 90 degrees
¢ Rotate the top around the X-axis by 90 degrees
e Rotate the bottom around the X-axis by -90 degrees

Listing 8-18 applies these transforms to the cube code.

Listing 8-18. Rotating the cube faces

<style>
.container {
width: 10rem;
height: 10rem;

206



CHAPTER 8  TRANSFORMS

perspective: 500px;
margin: Srem;

}

.cube {
position: relative;
width: 10rem;
height: 10rem;
transform-style: preserve-3d;
transform: rotate3d(1, 1, 0, 45deg);

}

.face {
width: 10rem;
height: 10rem;
background: skyblue;
border: 2px solid black;
position: absolute;
opacity: 0.5;
text-align: center;

}
.back {

transform: rotateY(180deg);
}
Jdeft {

transform: rotateY(-90deg);
}
.right {

transform: rotateY(90deg);
}
.top {

transform: rotateX(9odeg);
}

207



CHAPTER 8 TRANSFORMS

.bottom {
transform: rotateX(-90deg);

}
</style>

<div class="container">
<div class="cube">
<div class="face top">Top</div>
<div class="face bottom">Bottom</div>
<div class="face left">Left</div>
<div class="face right">Right</div>
<div class="face front">Front</div>
<div class="face back">Back</div>
</div>
</div>

Figure 8-22 shows the rotated cube faces.

Figure 8-22. The rotated cube faces

208



CHAPTER 8  TRANSFORMS

Now all the faces are rotated properly, but they are still at the center of the cube.
Since the cube’s size is 10rem, and the faces are in the middle, each face must be moved

out by 5rem in the proper direction:
e The front and back along the Z-axis
o The left and right along the X-axis
e The top and bottom along the Y-axis

Since the axes will change position after rotating, we need to do the translate first.
Otherwise, the faces would end up the wrong position. Listing 8-19 has the final cube code.

Listing 8-19. Moving the faces out

<style>
.container {
width: 10rem;
height: 10rem;
perspective: 500pXx;
margin: 5rem;

}

.cube {
position: relative;
width: 10rem;
height: 10rem;
transform-style: preserve-3d;
transform: rotate3d(1, 1, 0, 45deg);

}

.face {
width: 10rem;
height: 10rem;
background: skyblue;
border: 2px solid black;
position: absolute;
opacity: 0.5;
text-align: center;

209



CHAPTER 8 TRANSFORMS

front {
transform: translateZ(5rem);

}

.back {
transform:

}

Jdeft {
transform:

}

.right {
transform:

}

.top {
transform:

}

.bottom {
transform:

}
</style>

translateZ(-5rem) rotateY(180deg);

translateX(-5rem) rotateY(-90deg);

translateX(5rem) rotateY(90deg);

translateY(-5rem) rotateX(90deg);

translateY(5rem) rotateX(-90deg);

<div class="container"»
<div class="cube">

<div
<div
<div
<div
<div
<div
</div>
</div>

This completes the cube, which is shown in Figure 8-23.

210

class="face
class="face
class="face
class="face
class="face
class="face

top">Top</div>
bottom">Bottom</div>
left">Left</div>
right">Right</div>
front">Front</div>
back">Back</div>



CHAPTER 8  TRANSFORMS

Figure 8-23. The completed cube

You can combine CSS transforms to create all kinds of 2D and 3D shapes.

Summary

e Elements can be transformed along the X-, Y-, and Z-axes.
o The perspective transform is necessary to see some 3D transforms.

o The transform-origin property specifies from what point within the
element that a given transformation is applied.

« An element can be rotated with the rotate transform function or the
rotate property.

e Anelement can be moved from its original position with the
translate transform function or the transform property.

211



CHAPTER 8 TRANSFORMS

¢ An element can be resized with the scale transform function or the
scale property.

¢ An element can be skewed with the skew transform function or the
skew property.

e Multiple transforms can be applied to an element. When dealing with
rotation, the order of the transform functions matters.

212



CHAPTER 9

Transitions
and Animations

CSS transforms are useful on their own, but they are even more powerful when
combined with transitions and animations.

Transitions

A CSS transition is a way of animating an element from one state to another. During the
lifetime of a page, an element’s style can change. For example, the user could hover over
an element, triggering the :hover pseudo-class, which applies some different styling.

Or maybe a class is added to or removed from an element with JavaScript. In both
cases, any style changes are applied immediately. Let’s take the example of a hover state.
Consider the styles for a button shown in Listing 9-1.

Listing 9-1. Some button styles

<style>
button.fancy-button {
background: blue;

}

button.fancy-button:hover {
background: red;
transform: scale(1.1);

}
</style>

<button class="fancy-button">Fancy Button</button>

213
© Joe Attardi 2025

J. Attardi, Modern CSS, https://doi.org/10.1007/979-8-8688-1727-4_9


https://doi.org/10.1007/979-8-8688-1727-4_9#DOI

CHAPTER9  TRANSITIONS AND ANIMATIONS

When the user hovers over this button with their mouse, two things will happen.
The background color will immediately change from blue to red, and the button will
immediately transform to a scale factor of 1.1. You can improve this experience by using
a CSS transition to animate the style change. Listing 9-2 shows how to add a transition
with the transition property.

Listing 9-2. Adding a transition

<style>
button.fancy-button {
background: blue;
transition: 500ms;

}

button.fancy-button:hover {
background: red;
transform: scale(1.1);

}
</style>

<button class="fancy-button">Fancy Button</button>

With the transition applied, the behavior will be different. Instead of immediately
snapping to the new background color and size, the element will undergo an animated
transition to the new color and scale over a period of 500 milliseconds. The styles are
animated from the base style to the hover style.

The color will gradually change from blue to shades of purple and to the final color
of red. At the same time, the size will animate from scale(1) to scale(1.1), making the
element grow in size over the course of the 500-millisecond transition.

You can apply more than one transition to an element. For example, suppose you
want the background color to transition first, and then only after the color change is
complete, then transition the scale transform.

The styles can be transitioned independently. Listing 9-2 only specified a transition
duration, not a transition property, so all available properties were transitioned
together - the color and scale.

214



CHAPTER9  TRANSITIONS AND ANIMATIONS

To separate these transitions, each option given to the transition property can
include the name of a property to transition, as well as its duration. Another number can
be added to define a delay, so that the scale transform doesn’t start transitioning until
the background color transition is complete.

Listing 9-3 has an example of a multi-step transition. We want the following two

transition stages:
¢ Transition the color over 500 milliseconds

¢ Transform the scale transform over 500 milliseconds, with a
500-millisecond delay

Listing 9-3. A multi-stage transition

<style>
button.fancy-button {
background: blue;
transition: background-color 500ms,
transform 500ms 500ms;

}

button.fancy-button:hover {
background: red;
transform: scale(1.1);

}
</style>

<button class="fancy-button">Fancy Button</button>

When specifying a transition in this way, the first value is the name of the property to
transition, the second property is the duration, and the third property is the delay. Now,
when you hover over the fancy button, the color transitions from blue to red, while the
scale remains unchanged.

Once the color has transitioned after 500 milliseconds, then the scale transition
begins, which lasts another 500 milliseconds. In total, the full transition takes 1 second.

The transition property is a shorthand property that combines several transition-
related properties together. Listing 9-4 defines the same transitions as in Listing 9-3, but

it uses separate transition properties.

215



CHAPTER9  TRANSITIONS AND ANIMATIONS

Listing 9-4. Using the separate transition properties

<style>
button.fancy-button {
background: blue;
transition-property: background-color, transform;
transition-duration: 500ms, 500ms;
transition-delay: Oms, 500ms;

}

button.fancy-button:hover {
background: red;
transform: scale(1.1);

}
</style>

<button class="fancy-button">Fancy Button</button>

Transition Time Units

The timing for transitions (and animations, as we’ll see in the next section) can be
specified in either seconds (s) or milliseconds (ms). Fractional values can be used; that is,
500 milliseconds can be specified as 500ms or 0.5s.

Animating an Element’s Initial State with
@starting-style

So far, we've seen how to transition an element’s styles between two states, defined in
two separate CSS rules. You can also animate an element’s initial appearance on the
page with the @starting-style at-rule.

Consider the fancy button from the previous examples. Let’s suppose you want the
button to fade in to the page. You can add an opacity transition to the button and set its
starting opacity to 0. Listing 9-5 shows this.

216



CHAPTER 9  TRANSITIONS AND ANIMATIONS
Listing 9-5. Transitioning with @starting-style

<style>
button.fancy-button {
background: blue;
opacity: 1;
transition: opacity 500ms;

@starting-style {
opacity: 0;
}

}
</style>

<button class="fancy-button">Fancy Button</button>

When the page first loads, the button is invisible because its opacity is set to 0 in the
@starting-style block. The element itself has an opacity of 1 and an opacity transition.
Once the starting style is applied, the 500ms transition immediately runs.

@starting-style is a newer CSS feature, and at the time of writing, it’s well
supported in the latest versions of modern browsers. If you need to target older browsers,
this technique may not work.

Easing Functions

It’s hard to notice with a short duration of 500 milliseconds, but the transitions from
Listings 9-4 and 9-5 don’t happen at a linear rate. That is, they start out slow, speed up in
the middle, then slow down again at the end. You can see this more clearly if you change
the transition duration to a longer value like five seconds.

This is the default transition timing function, which is called ease. This function
specifies the rate at which the animated transition is applied. There are other built-
in timing functions as well. Formally, these are specified as easing functions. These
functions are visualized by plotting a graph, with the time on the X-axis and the
transition progress on the Y-axis.

217



CHAPTER9  TRANSITIONS AND ANIMATIONS

These functions are usually given as Cubic Bezier curves. A Cubic Bezier curve is
created by specifying four points on a graph. The points are plotted, and a curve is
drawn. A good way to think of how the curve is drawn is like this: Think of a straight line
drawn between the first and last points. Then, the second and third points "bend" the
line up and down toward them to make a curve.

In a Cubic Bezier curve for a CSS easing function, the first point is always (0, 0) and
represents the start state of the animation or transition. The last point is always (1, 1) and
represents the end state. The X-coordinate of the two middle points must be between 0
and 1, or else it is not considered a valid easing function and will be ignored.

Since the first and last points of the curve are always (0, 0) and (1, 1), we only need to
specify the X and Y coordinates of the two middle points that "bend" the curve:

transition-timing-function:
cubic-bezier(.17, .67, .9, .6);

This cubic-bezier function yields the curve shown in Figure 9-1.

08
06
04

02

0 0.2 04 0.6 08 1

Figure 9-1. The plotted Bezier curve

There are several built-in easing functions which you can specify by name instead
of having to use a cubic-bezier function expression. These functions are shown in
Table 9-1 with Figures 9-2 through 9-4.

218



CHAPTER9  TRANSITIONS AND ANIMATIONS

Table 9-1. Built-in easing functions

Function Equivalent cubic-bezier Values  Graph
linear 0.0,0.0,1.0,1.0

ease 0.25,0.1,0.25,1.0

ease-in 0.42,0.0,1.0,1.0

ease-out 0.0,0.0,0.58,1.0

(continued)

219



CHAPTER9  TRANSITIONS AND ANIMATIONS

Table 9-1. (continued)

Function Equivalent cubic-bezier Values  Graph

ease-in-out 0.42,0.0,0.58,1.0

The animation progress (the Y-axis) can also bend above 1 or below 0 to create a
“bouncing” effect for some properties. For example, the easing function cubic-
bezier(0.680, -0.550, 0.265, 1.550) results in the graph shown in Figure 9-2.

Figure 9-2. An easing function with a “bouncing” effect

Notice how the high and low points cause the curve to bend above 1 and below 0.
This means, for the earlier example, that the scale transform would drop below 1 (the
initial value) and go above 1.1 (the end value).

It can be difficult to craft these functions by hand, so there are several great resources
online to help you design custom ones:

e Ceaser by Matthew Lein

https://matthewlein.com/tools/ceaser

220


https://matthewlein.com/tools/ceaser

CHAPTER9  TRANSITIONS AND ANIMATIONS

e cubic-bezier.com by Lea Verou
https://cubic-bezier.com

Easing functions can also be specified as step functions. A step function divides the
transition into equally sized steps in a given direction. Instead of a smooth transition like
with a Bezier curve, they jump from step to step, skipping the intermediate states.

These are specified as steps(step-count, direction).step-count is a number
indicating the number of these steps, and direction is one of the following values:

e jump-start, start: The change in state happens at the beginning
of each step, beginning with the start of the transition. Because the
first "jump” happens immediately, the initial state of the transition is
effectively lost.

e jump-end, end: The change in state happens at the end of each step,
ending with the end of the transition. With this value, the end state of
the transition is lost.

e jump-none: With this value, the start and end state of the transition
are both preserved. The first step is the initial state, and the last step
is the end state.

e jump-both: With this value, the start and end state of the transition
are both lost.

CSS transitions can be a powerful tool to add better interactivity to a website or app.
However, they are limited in transitioning from one initial state to one final state. With
CSS animations, which we'll look at next, we can have an arbitrary number of states to
create even more interesting effects.

Animations

While transitions provide an animated transition from a start state to an end state, CSS
animations can animate between any arbitrary number of states.

Like transitions, animations are specified by the properties that change. Instead of
being specified in a property like transition, they are specified in special at-rules:
@keyframes. The @keyframes rule defines the various CSS properties to be applied at
given steps during the animation, and the browser will automatically animate between
these states.

221


http://cubic-bezier.com
https://cubic-bezier.com

CHAPTER9  TRANSITIONS AND ANIMATIONS

A @keyframes rule is given an identifier and contains two or more blocks of CSS
properties. Each block is labeled with a percentage representing a fraction of the total
animation duration. In the example from Listing 9-6, the element’s background color
will change from red to blue to green.

Listing 9-6. A basic CSS animation

@keyframes colors {

0% {

background: red;
}
50% {

background: blue;
}
100% {

background: green;
}

}

Here, we are defining a @keyframes rule named colors. The initial state of an
element using this animation will have a background color of red. At the halfway point of
the animation, it will have a color of blue. Finally, at the end state, it will have a color of
green. Like with transitions, the browser will automatically calculate all the intermediate
colors for the animation.

0% can be replaced with the keyword from, and 100% can be replaced with the
keyword to, but this is optional and has the same meaning.

Once an animation is defined in a @keyframes rule, we must apply it to an element.
The name of the @keyframes rule is referenced in the animation property of a CSS rule
matching the element to be animated. Listing 9-7 shows an example of applying the
animation from Listing 9-6 to an element.

222



CHAPTER 9

Listing 9-7. Applying the animation to an element

<style>
@keyframes colors {
0% {
background: red;
}
50% {
background: blue;
}
100% {
background: green;
}
}

.animated-box {
animation: colors 2s;
width: 10rem;
height: 10rem;

}
</style>

<div class="animated-box"></div>

TRANSITIONS AND ANIMATIONS

The animation property can take many forms, as it is a shorthand for several other

animation-related properties. Here are some example usages of the animation property:

e animation: colors 2s ease-in-out 4s both;
¢ Thisis shorthand for
= animation-name: colors;

= animation-duration: 2s;

= animation-timing-function: ease-in-out;

= animation-delay: 4s;

= animation-fill-mode: both;

223



CHAPTER9  TRANSITIONS AND ANIMATIONS

e animation: colors 2s linear infinite;

e This is shorthand for:

animation-name: colors;

animation-duration: 2s;

animation-timing-function: linear;

animation-iteration-count: infinite;

Basic Animation Properties

The most commonly used animation properties include

e animation-name: The name of the animation to use. There must be a
matching @keyframes rule.

e animation-duration: The total duration of the animation. This can
be specified in seconds (s) or milliseconds (ms).

e animation-timing-function: The easing function to use for the
animation. See the previous section on easing functions for examples
of these functions.

Delaying the Start of the Animation

By default, an animation will start immediately. The animation-delay property will
delay the start of the animation by the given time. Like animation-duration, this can be
specified in seconds or milliseconds.

You can also give a negative value for animation-delay. If you do this, the animation
will start immediately at the given point of elapsed time. For example, if an animation
has a duration of 1s, and the delay is -500ms, the animation will start immediately at the
500-millisecond mark.

224



CHAPTER9  TRANSITIONS AND ANIMATIONS

The Animation Fill Mode

If you try the example in Listing 9-7, you might be surprised by the behavior. The
element indeed animates, starting from red and going through blue into green over two
seconds, but then the element seems to disappear. It’s still there, but its background
color has changed back to the default setting of transparent.

Once an animation finishes, any styles changed during the animation will by
default revert back to the styles applied before the animation. In this case, we don’t
give a background color for the element outside of the animation, so it reverts back to
transparent.

If we had modified the CSS rule so it also had a background of yellow, the animation
would play and then the element would turn yellow.

This behavior also applies if the animation has a delay. If the colors animation
has a delay, then the element will start out yellow until the animation runs. After the
animation completes, it will go back to yellow.

You can change this behavior with the animation-fill-mode property. It defines
how properties from the animation are applied to the element before the animation
starts, after the animation ends, or both. Before we go over the different values of this
property, consider the example in Listing 9-8.

Listing 9-8. An example animation with a delay

<style>
@keyframes color {
from {
background: red;

}

to {
background: blue;
}
}

.animate {
background: yellow;
animation: color 2s;
animation-delay: 2s;

225



CHAPTER9  TRANSITIONS AND ANIMATIONS

width: 10rem;
height: 10rem;

}
</style>

<div class="animate"></div>

We have a box with a yellow background. It animates its background color starting
from red and transitioning to blue. The animation lasts two seconds, and there is a two-
second delay before it starts. Let’s explore the different values of animation-fill-mode
and what effect they would have on this animation.

If we set it to none, the element is yellow for two seconds. It then immediately
switches to red, and over the next two seconds, it transitions to blue. After the animation
completes, the background color immediately switches back to yellow. With none, the
animation styles are only applied for the duration of the animation. This is the default
behavior if no fill mode is specified.

If we set it to forwards, the element again starts out yellow and stays that way for two
seconds. It immediately switches to red, and over the next two seconds, it transitions to
blue. After the animation completes, the background color remains blue. With forwards,
the styles from the last keyframe of the animation remain applied to the element after
the animation ends.

If we set it to backwards, the element starts out red, which it remains for the next two
seconds. Then the animation runs as expected, transitioning to blue. Once the animation
is done, the background color immediately switches back to yellow. With backwards, the
styles from the first keyframe are applied during the animation delay period.

Finally, if we want the behavior of both forwards and backwards, we can set it to
both. The element starts out red, stays that way for two seconds, then transitions to blue.
Once the animation finishes, the element remains blue. With both, the styles from the
first keyframe are applied during the delay, and the styles from the last keyframe are
applied after the animation finishes.

Running an Animation Multiple Times

By default, an animation runs only once. You can run the animation more than once by
using the animation-iteration-count property. This can be set to a number specifying
how many iterations, or you can have it loop forever by specifying the keyword infinite.

226



CHAPTER9  TRANSITIONS AND ANIMATIONS

The iteration count doesn’t have to be an integer value. For example, you can specify
an animation-iteration-count of 0.5 and the animation will play once, but only to its
halfway point.

Running an Animation Backward

You can control which direction an animation plays in by using the animation-
direction property. This can be normal (the default), which plays the animation
forward, or reverse, which plays the animation backward.

You can also use the values alternate (runs the animation forward first, then
backward) or alternate-reverse (runs the animation backward first, then forward).

Pausing and Resuming an Animation

You can control whether or not the animation is currently playing by setting the
animation-play-state property. This could be manipulated with JavaScript to pause
and resume an animation, for example. Accepted values are running and paused.

When the animation is changed from running to paused, and later changed back to
running, the animation will continue from where it left off - it won’t start over from the
beginning.

Applying Multiple Animations

You can apply more than one animation to an element. The animation shorthand
property, as well as all the other animation properties, supports a comma-separated list
of multiple animations. The example in Listing 9-9 applies color and rotation animations
independently.

Listing 9-9. Applying multiple animations to an element

<style>
@keyframes color {
from {
background-color: red;

}

227



CHAPTER9  TRANSITIONS AND ANIMATIONS

to {
background-color: blue;
}
}
@keyframes spin {
from {
transform: rotate(0);
}
to {
transform: rotate(360deg);
}
}
.animate {

width: 10rem;
height: 10rem;
animation: color 5s alternate infinite,
spin 1s linear infinite;
}
</style>

<div class="animate"></div>

This element’s color will cycle infinitely between blue and red every five seconds
while also spinning at a rate of one rotation per second at the same time, as shown in

Figure 9-3.

Figure 9-3. The multiple animations being applied

228



CHAPTER9  TRANSITIONS AND ANIMATIONS

Applying Multiple Animations That Change

the Same Property

If you have more than one animation that works on the same CSS property, by
default you won'’t see both animations - just the last one you applied. Listing 9-10

attempts to apply both a translate and rotate animation using multiple keyframe
animations.

Listing 9-10. Attempting to animate multiple transforms

<style>
@keyframes move {
from {
transform: translate(0);
}
to {
transform: translate(200px);
}
}
@keyframes spin {
from {
transform: rotate(odeg);
}
to {
transform: rotate(360deg);
}
}

.animated-box {
animation: move 5s, spin 5s;
animation-fill-mode: both;
background: skyblue;

229



CHAPTER9  TRANSITIONS AND ANIMATIONS

width: 150px;
height: 150px;
}
</style>

<div class="animated-box"></div>

If you try this example, though, you'll see that the element rotates but does not
translate. This is because the spin animation “cancels out” the transform property from
the move animation.

We can fix this by using the animation-composition property, which tells the browser
how to handle multiple animations that change the same property. The default value of
this property is replace, which causes the behavior we're seeing with Listing 9-10.

If you instead set animation-composition to add, you'll see the two transforms are
combined. The element translates and rotates as expected.

Performance Implications

Transitions and animations are powerful. But with great power comes great
responsibility. Overusing them, or using them for certain expensive properties, can
result in poor performance of your page.

Property Types

There are a few different ways we can categorize CSS properties. There are properties for
layout, paint, and composite operations.

Layout Properties

Layout properties are properties that affect how an element and its surrounding content
are laid out on the page. This category includes properties like width, height, padding,
and margin. These are generally the most expensive to animate.

If you animate the margin of an element, for every frame of the animation, the size
taken up by the element changes. This will affect the layout of surrounding elements.
When those elements' layouts are adjusted, that could trigger even more elements to
recalculate their layout. This chain reaction is known as layout thrashing and can be very
costly for performance.

230



CHAPTER9  TRANSITIONS AND ANIMATIONS

Paint Properties

Paint properties affect how an element is painted on the screen, such as color or
background-image. These properties don't affect layout, so they aren't as expensive
as layout properties. However, if overused, they can still cause performance issues,
particularly on mobile devices.

Composite Properties

Composite properties are properties such as transform and opacity. These properties
don't affect layout and are much cheaper than the other property types. Additionally, the
device’s Graphics Processing Unit (GPU) can also assist with these animations, which
takes a load off the CPU and makes the animations smoother.

Giving a Hint As to What Properties Will Be Animated

If you're having animation performance problems, as a last resort you can try the
will-change property. Setting this on an element gives a hint to the browser that the
specified properties will be changing due to an animation or transition. Listing 9-11 has
an example of using this property.

Listing 9-11. Example usage of the will-change property

.my-element {
will-change: transform, opacity;

}

This proves a hint that the transform and opacity properties will be changing, so the
browser can take that into account when optimizing for the animation.

As mentioned, this is a last resort and should be used sparingly. The browser already
does a good job optimizing layout, paint, and composite operations to help keep your
animations and transitions smooth. Overusing will-change, or using it prematurely, can
interfere with that optimization and could actually make performance worse.

231



CHAPTER9  TRANSITIONS AND ANIMATIONS

Avoiding Simultaneous Animations

Try to limit the number of animations running simultaneously. Even efficient animations
can cause performance issues when combined with several others at once, particularly
if one or more of them already have performance issues, such as animating a layout
property.

When you do perform multiple animations at once, it can be useful to test each in
isolation to get an idea of which ones will contribute to the most performance problems.

Considering Accessibility

Some users may have vestibular or seizure disorders that can be triggered by rapidly
moving or flashing elements in your pages. You should be mindful of this when
designing your animations. Most modern operating systems allow users to disable, or
reduce, animations to help alleviate this. Figure 9-4 shows this option in the macOS
accessibility settings (“Reduce motion”).

[ NON ) < Display
Q Invert colors
zj General Invert colors mode

® Accessibility Redles ol «©

@ Appearance

. Prefer non-blinking cursor
j Apple Intelligence &...

3 Control Center Dim flashing lights
Video content that depicts repeated flashing or strobing lights will be
Desktop & Dock automatically dimmed.

Figure 9-4. The accessibility options in macOS

By default, even if a user has disabled animations or reduced motion, your CSS
animations and transitions will still run. You can, and should, detect this setting by using
the prefers-reduced-motion media query and adjusting or disabling your animations
accordingly. We'll get more into media queries in Chapter 12, but here’s how to use
them. Consider Listing 9-12, which has a basic animated loading spinner.

232



CHAPTER9  TRANSITIONS AND ANIMATIONS

Caution If you are sensitive to fast motion or animation, | recommend that you
don’t run the code for Listing 9-12 as it is a fast animation that could be triggering.

Listing 9-12. A spinning element

<style>
@keyframes spin {
from {
transform: rotate(odeg);
}
to {
transform: rotate(360deg);
}
}

.loader {
width: 10rem;
height: 10rem;
background: skyblue;
animation: spin 500ms linear infinite;
}
</style>

<div class="loader"></div>

This results in a square that spins very quickly, making one full rotation every 500ms.
This could trigger seizures or other issues, as it moves very fast. We can conditionally
disable the animation by using the prefers-reduced-motion media query, as shown in
Listing 9-13.

Listing 9-13. Using the prefers-reduced-motion media query

@media (prefers-reduced-motion: reduce) {
.loader {
animation: none;

233



CHAPTER9  TRANSITIONS AND ANIMATIONS

When this code runs on a device where the user has reduced motion, the box will
not be animated. The prefers-reduced-motion media query has two supported values:
reduce and no-preference.

Note that you don’t necessarily have to disable the animation altogether. For users
that prefer reduced motion, you could use a more subtle animation, like a slow fade
animation, that will be less triggering.

Scroll-Driven Animations

Traditional animations are managed by the document timeline. This is a timeline based
on elapsed time since the page loaded. Time starts at zero and moves forward in a linear
fashion, and animations play as this time passes (though, depending on the easing
function, the animation itself may not be linear).

There’s another type of timeline that can be used for an animation: the scroll progress
timeline. This timeline changes as you scroll up and down. While scrolling down, the
animation runs normally. If you scroll back up, the animation runs in reverse.

The animation timeline is specified with the animation-timeline property.

Listing 9-14 has an example of a scroll-driven animation. It’s a progress bar animation
that grows and shrinks as the page scrolls up and down.

Listing 9-14. Creating a scroll-driven animation

@keyframes progress {

from {

transform: scaleX(0);
}
to {

transform: scaleX(1);
}

}

.progress-bar {
animation: progress linear;
animation-timeline: scroll();
background: blue;
position: fixed;

234



CHAPTER9  TRANSITIONS AND ANIMATIONS

top: 0;

left: o;

width: 100%;

height: 5px;
transform-origin: left;

The interesting part here is the use of the animation-timeline property. It uses the
scroll function which, by default, uses the root element as the scroll container. The
result is a blue progress bar fixed to the top of the page. It uses the scaleX transform with
the origin at the left edge to have the effect of a growing progress bar animation.

At the time of writing, the animation-timeline property is not yet fully supported in
all major browsers. As of May 2025, only Chrome and Edge support this property. More
browsers will support this feature in the future.

Summary

e A transition is used to animate an element between two states, while
an animation can have any number of states.

e An easing function determines the timing of the animation progress.
e Transitions and animations have a duration and an optional delay.

e Animations have the animation-fill-mode property, which
determines how styles are applied before and after the animation is
performed.

o Tryto avoid animating layout properties, as these can negatively
affect performance.

o Usethe prefers-reduced-motion media query to improve the
accessibility of your animations.

¢ Ananimation has a timeline. By default, it’s the document timeline
which follows the elapsed time since the page was loaded.

¢ You can also use a scroll timeline to create scroll-driven animations
that change as the user scrolls.

235



CHAPTER 10

Flexbox

The flexible box layout model, more commonly known as flexbox, is a powerful tool for
building layouts with CSS. It’s not quite as powerful as CSS Grid, which we’ll look at in
Chapter 11, but it can solve many layout problems.

Flexbox is a one-dimensional layout that can position elements either horizontally or
vertically. An element using flexbox as its layout is referred to as a flex container, and the
elements inside it are flex items.

Basic Concepts

Let’s go over the basic concepts to understand and use flexbox layouts.

Creating a Flex Container

To create a flex container, set an element’s display property to flex. This makes the
element a block element with a flexbox layout. If you need the behavior of an inline
element, but still want to use flexbox, you can set display to inline-flex.

Direction

A flex container has a direction, defined by the flex-direction property. The meaning
of this property depends on whether the system is using a left-to-right (LTR) language or
a right-to-left (RTL) language. The explanation of flex direction values here assumes an
LTR language; for an RTL language, they are reversed.

The flex-direction property supports these four values:

o row: Flex items are laid out horizontally, from left to right. This is the
default behavior if flex-direction is not specified.

e row-reverse: Flex items are laid out horizontally, from right to left.

237
© Joe Attardi 2025

J. Attardi, Modern CSS, https://doi.org/10.1007/979-8-8688-1727-4_10


https://doi.org/10.1007/979-8-8688-1727-4_10#DOI

CHAPTER 10  FLEXBOX

e column: Flex items are laid out vertically, from top to bottom.

e column-reverse: Flex items are laid out vertically, from
bottom to top.

These flex-direction values are visualized in Figure 10-1.

row column column-reverse

A
1 2 3 1 3

row-reverse 2 2

3 2 1 3 1
Y

Figure 10-1. The different values for the flex-direction property

Axis

Related to the direction is the concept of the axis. A flex container has two axes: the
main axis, which runs along the direction specified in flex-direction, and the cross
axis, which runs perpendicular to it. Figure 10-2 shows the main and cross axes for both
horizontal (row) and vertical (column) flex layouts.

238



Main axis

Figure 10-2. The main axis and cross axis

A Basic Flexbox Layout

SIXe $S010)

CHAPTER 10

N
sIXe urep

3

<--»

Cross axis

FLEXBOX

Let’s create our first flexbox layout. Listing 10-1 lays out some elements in a horizontal

flex container.

Listing 10-1. A basic flexbox layout

<style>
.container {
background: #e2e8f0;
display: flex;
flex-direction: row;

}

Jitem {
padding: 16px;
background: #bfdbfe;
border: 1px solid black;

}
</style>

239



CHAPTER 10  FLEXBOX

<div class="container">
<div class="item">1</div>
<div class="item">2</div>
<div class="item">3</div>
</div>

The resulting layout is shown in Figure 10-3.

Figure 10-3. The rendered flexbox layout

Adding Space Between Items

The flex items are arranged horizontally, with no space between them. You can add
space between flex items by using the gap property. Listing 10-2 adapts the previous
flexbox layout and adds a gap.

Listing 10-2. A flexbox layout with a gap

<style>

.container {
background: #e2e8f0;
display: flex;
flex-direction: row;
gap: 16px;

}

Jitem {
padding: 16px;
background: #bfdbfe;
border: 1px solid black;

}
</style>

240



<div class="container">
<div class="item">1</div>
<div class="item">2</div>
<div class="item">3</div>
</div>

As Figure 10-4 shows, there is now 16 pixels of spacing between the flex items.

Figure 10-4. The rendered layout with a gap between elements

Sizing of Flex Items

CHAPTER 10

FLEXBOX

What happens if the flex items don't fit into the flex container? Listing 10-3 has a flexbox

layout with a constrained width and items that, given their widths, shouldn’t be able to

fit inside of it.

Listing 10-3. Aflex container that isn’t wide enough to fit its items

<style>
.container {
display: flex;
background: #e2e8f0;
width: 500px;
gap: 16px;
padding: 16px;

border: 1px solid #000000

}

.item {
width: 300px;
text-align: center;
padding: 16px;

241



CHAPTER 10  FLEXBOX

background: #bfdbfe;
border: 1px solid #000000;

}
</style>

<div class="container">
<div class="item">1</div>
<div class="item">2</div>
<div class="item">3</div>
</div>

Figure 10-5 shows the resulting layout.

Figure 10-5. The rendered layout

The container has a width of 500 pixels and contains three items, each with a width
of 300 pixels. Yet, the items fit neatly inside the container and don’t overflow it. If you
were to inspect these elements with the browser’s developer tools, you'd see that they
have an actual width of 156 pixels.

This shrinking behavior is a feature of flexbox. Items will shrink to fit within the
container if possible. This is controlled by the flex-shrink property, which we’ll look at
later in this chapter.

Sometimes, even with flex-shrink, elements can’t be made small enough to fit
within the container. When this happens, the items will shrink as much as possible and
then will overflow the container. Listing 10-4 has an example of this.

Listing 10-4. Items that can’t shrink enough to fit inside the flex container

<style>
.container {
display: flex;
background: #e2e8f0;
width: 100px;

242




gap: 16px;
padding: 16px;
border: 1px solid #000000;

}

Jitem {
width: 300px;
text-align: center;
padding: 16px;
background: #bfdbfe;
border: 1px solid #000000;

}
</style>

<div class="container">
<div class="item">Item 1</div>
<div class="item">Item 2</div>
<div class="item">Item 3</div>
</div>

Figure 10-6 shows the result.

CHAPTER 10

Item Item

Item

Figure 10-6. Flex items overflowing the container

The flex items have shrunk as much as they can be, and then they overflow the

container due to its constrained width of 100 pixels.

FLEXBOX

243



CHAPTER 10  FLEXBOX

Wrapping Flex Items

One solution to the problem in Figure 10-6 is to allow flex items to wrap over multiple
lines. This increases the container’s height but prevents items from overflowing.
Listing 10-5 shows how we can use the flex-wrap property to do this.

Listing 10-5. Wrapping a layout with flex-wrap

<style>

.container {
display: flex;
flex-wrap: wrap;
background: #e2e8f0;
width: 100px;
gap: 16px;
padding: 16px;
border: 1px solid #000000;

}

Jitem {
width: 300px;
text-align: center;
padding: 16px;
background: #bfdbfe;
border: 1px solid #000000;

}
</style>

<div class="container">
<div class="item">Item 1</div>
<div class="item">Item 2</div>
<div class="item">Item 3</div>
</div>

This causes the items to wrap across multiple lines, as Figure 10-7 shows.

244



Item 1

Item 2

Item 3

Figure 10-7. The wrapped flex items

CHAPTER 10

Growing Flex Items to Fill Available Space

By default, if the flex items are not large enough to fill the container, there will be empty

space after the flex items. Consider the layout in Listing 10-6.

Listing 10-6. Empty space in the container

<style>

.container {
background: #e2e8f0;
display: flex;
flex-direction: row;
gap: 16px;
width: 400px;
padding: 16px;
border: 1px solid black;

}

Jitem {
padding: 16px;
background: #bfdbfe;
border: 1px solid black;

}
</style>

FLEXBOX

245



CHAPTER 10  FLEXBOX

<div class="container">
<div class="item">1</div>
<div class="item">2</div>
<div class="item">3</div>
</div>

As Figure 10-8 shows, there is empty space left over in the container.

Figure 10-8. Empty space in the flex layout

This behavior can be changed using the flex-grow property, which allows flex items
to grow to fill available space. This property is set on the flex items rather than the flex
container. By default, flex-grow is 0, which means the items don’t grow at all.

A flex-grow value is a number that specifies the item’s growth relative to the other
items. If flex-grow is set to the same value for all items, they’ll all grow equally to fit the
container, like Listing 10-7 shows.

Listing 10-7. Adding an equal flex-grow property

<style>

.container {
background: #e2e8f0;
display: flex;
flex-direction: row;
gap: 16px;
width: 400px;
padding: 16px;
border: 1px solid black;

246



CHAPTER 10  FLEXBOX

Jitem {
padding: 16px;
background: #bfdbfe;
border: 1px solid black;
text-align: center;
flex-grow: 1;

}

</style>

<div class="container">
<div class="item">1</div>
<div class="item">2</div>
<div class="item">3</div>
</div>

As Figure 10-9 shows, the items all grow equally to fit the container.

Figure 10-9. The flex items grow to fit the container

You can customize this behavior by specifying different flex-grow values for
different flex items. Suppose we want item 2 to grow twice as much as items 1 and 3. We
can specify different relative flex-grow values, and they will be sized accordingly, as

Listing 10-8 shows.

Listing 10-8. Specifying different flex-grow values

<style>
.container {
background: #e2e8f0;
display: flex;
flex-direction: row;
gap: 16px;

247



CHAPTER 10  FLEXBOX

width: 500px;
padding: 16px;
border: 1px solid black;

}

Jitem {
width: 100px;
padding: 16px 0;
background: #bfdbfe;
border: 1px solid black;
text-align: center;
flex-grow: 1;

}

Jitem2 {
flex-grow: 2;
}
</style>

<div class="container">
<div class="item item1">1</div>
<div class="item item2">2</div>
<div class="item item3">3</div>
</div>

Figure 10-10 shows the resulting layout.

Figure 10-10. The layout with flex-qgrow values applied

Item 2 has twice the flex-grow as items 1 and 3. This doesn’t mean that item 2 is
twice as wide as the others, but rather that the amount it grows by is twice that of the
others. Items 1 and 3 grow by about 42 pixels, while item 2 grows by about 84 pixels. The
exact amount may vary slightly due to sub-pixel rendering of the items.

248



CHAPTER 10  FLEXBOX

Shrinking Flex Items to Fit the Available Space

We saw earlier that if the flex items exceed the size of the container, the browser will try
to shrink them to fit. By default, it will try to shrink all elements evenly. You can change
this behavior with the flex-shrink property.

Just as flex-grow controls the relative amount by which a flex item grows, flex-
shrink controls the relative amount by which a flex item shrinks. By default, flex-
shrink is 1, which is why the items shrink evenly. Listing 10-9 has three flex items that
are too big to fit the container. The middle item has a flex-shrink of 2.

Listing 10-9. Specifying a flex-shrink of 2

<style>

.container {
background: #e2e8f0;
display: flex;
flex-direction: row;
gap: 16px;
width: 500px;
padding: 16px;
border: 1px solid black;

}

Jitem {
width: 400px;
padding: 16px 0;
background: #bfdbfe;
border: 1px solid black;
text-align: center;

}

Jdtem2 {
flex-shrink: 2;

}
</style>

249



CHAPTER 10  FLEXBOX

<div class="container">
<div class="item item1">1</div>
<div class="item item2">2</div>
<div class="item item3">3</div>
</div>

The container is 500 pixels wide, and each item is 400 pixels wide, so they must
shrink to fit inside the container. Item 2 has a flex-shrink of 2, which means it will
shrink twice as much as the other items. Figure 10-11 shows the resulting flex items.

Figure 10-11. The middle item shrinks much more than the others

The total width taken up by all three items would be 1,200 pixels. The items must
shrink to fit the 500-pixel container. Items 1 and 3 are shrunk by approximately 183
pixels, and item 2 is shrunk by approximately 367 pixels, which is about twice that of the
others. Again, this is not exact due to sub-pixel rendering.

Setting the Initial Size of a Flex Item

The flex-basis property sets the initial size of a flex item along the main axis before
the flex-grow and flex-shrink factors are applied. The meaning of flex-basis depends
on the flex-direction of the container. For horizontal (row) flex containers, flex-basis
will be the item’s width. For vertical (column) containers, flex-basis will be the
item’s height.

If both height/width and flex-basis are set for an element in a flex layout, the
flex-basis has higher precedence and will be used over the height/width value.

250



CHAPTER 10  FLEXBOX

Alighment and Spacing

So far, we've seen how to size the flex items in a flexbox layout. In this section, we'll look
at alignment (what happens when all the items are not the same size in the cross axis)
and spacing (how leftover space is distributed).

The Writing Mode

Some of the values for these properties depend on the writing mode. The writing mode is
defined by the writing-mode property. This property determines the way block elements
are laid out and how inline elements flow inside them.

Furthermore, the way the writing mode behaves depends on the user's language.

In some languages, text flows from left to right (LTR); in others, it flows from right to
left (RTL).

The default value is horizontal-tb. For LTR languages, elements flow from left to
right; for RTL languages, elements flow from right to left. Block elements and lines of text
flow from top to bottom.

Other values include vertical-rl and vertical-1r. For these values, elements flow
vertically from top to bottom (for LTR languages) or bottom to top (for RTL languages).
With vertical-rl, block elements and lines of text flow from right to left (for LTR
languages) or left to right (for RTL languages). Finally, with vertical-1r, block elements
and lines of text flow from left to right (for LTR languages) or right to left (for RTL
languages).

Controlling Spacing on the Main Axis

If the container is wider than its items, the justify-content property determines how
the remaining space is distributed. This property is set on the flex container and has
several accepted values, each with different behavior:

o flex-start: Lays out all the items next to each other at the beginning
of the main axis. This is shown in Figure 10-12.

251



CHAPTER 10  FLEXBOX

Figure 10-12. The items arranged at the beginning of the main axis

o flex-end: Lays out all the items next to each other at the end of the

main axis. This is shown in Figure 10-13.

Figure 10-13. The items arranged at the end of the main axis

o center: Lays out all the items next to each other centered along the
main axis. This is shown in Figure 10-14.

Figure 10-14. The items centered along the main axis

o space-between: Maximizes the space between the items. The first
item is flush with the start of the main axis, the last item is flush with
the end of the main axis, and the other items are distributed evenly.

This is shown in Figure 10-15.

Figure 10-15. Space is maximized between flex items

252




CHAPTER 10  FLEXBOX

o space-around: Like space-between, except there is also space at the
beginning and end of the main axis. The space at the beginning and
end of the main axis is half that of the other spaces. This is shown in
Figure 10-16.

Figure 10-16. Half spacing at the beginning and end of the main axis

o space-evenly: Like space-around, except the space is even on all
sides of all items. This is shown in Figure 10-17.

Figure 10-17. All spacing is even

Controlling Alignment on the Cross Axis

Also set on the container, the align-items property controls how flex items are aligned
along the cross axis.

o flex-start: Items are aligned to the start of the cross axis. This is
shown in Figure 10-18.

Figure 10-18. Items are aligned to the start of the cross axis

253



CHAPTER 10  FLEXBOX

o flex-end: Items are aligned to the end of the cross axis. This is shown
in Figure 10-19.

Figure 10-19. Items are aligned to the end of the cross axis

o center:Items are aligned to the center of the cross axis. This is shown
in Figure 10-20.

Figure 10-20. Items are aligned to the center of the cross axis

e baseline: Items are aligned along the baseline of their text content.
This is shown in Figure 10-21.

Figure 10-21. Items aligned along the text baseline

Controlling Spacing in the Cross Axis

When there are multiple rows (or columns in a column flexbox layout), and there is extra
space in the cross axis, align-content specifies how this space is distributed.

254



CHAPTER 10

o flex-start: Aligns the rows at the beginning of the cross axis. This is
shown in Figure 10-22.

Figure 10-22. Rows aligned at the beginning of the cross axis

o flex-end: Aligns the rows at the end of the cross axis. This is shown
in Figure 10-23.

Figure 10-23. Rows aligned at the end of the cross axis

o center: Aligns the rows in the center of the cross axis. This is shown
in Figure 10-24.

Figure 10-24. Rows aligned in the center of the cross axis

FLEXBOX

255



CHAPTER 10  FLEXBOX

o space-between: Maximizes the spacing between rows. This is shown
in Figure 10-25.

Figure 10-25. Maximum space between the rows

e space-around: Even spacing between the rows, with half space at the
beginning and end of the cross axis. This is shown in Figure 10-26.

Figure 10-26. Even spacing with half space at the beginning and end

e space-evenly: Equal spacing around and between the rows. This is
shown in Figure 10-27.

Figure 10-27. Even spacing around and between

256



CHAPTER 10  FLEXBOX

Overriding Container Settings

By default, properties like align-items or justify-content apply to all flex items in
the layout. However, you can override the behavior for a specific flex item by giving it
the align-self or justify-self properties. Listing 10-10 has an example of using the
align-self property.

Listing 10-10. Using the align-self property

<style>

.container {
background: #e2e8f0;
display: flex;
align-items: center;
justify-content: center;
gap: 8px;
width: 200px;
height: 100px;
padding: 8px;

}

Jitem {
padding: 16px;
text-align: center;
background: #bfdbfe;
border: 1px solid black;

}

Litem2 {
align-self: flex-start;

}
</style>

<div class="container">
<div class="item">1</div>
<div class="item item2">2</div>
<div class="item">3</div>
</div>

257



CHAPTER 10  FLEXBOX

Figure 10-28 shows the resulting layout. Items 1 and 3 use the align-items value of
center, butitem2’s align-self property overrides this, and it is aligned to the start of
the cross axis.

Figure 10-28. An element with align-self set to center

Changing the Flex Item Order

By default, flex items are laid out according to two factors:
e The order they occur in the HTML
e The value of the flex-direction property

This ordering can be changed by using the order property on flex items. This
property, when set on a flex item, defines the order in which the item appears.
Listing 10-11 shows how you can use the order property to change the order in which

flex items appear.

Listing 10-11. Using the order property to change the order of flex items

<style>
.container {
background: #e2e8f0;
display: flex;
align-items: center;
justify-content: center;
gap: 16px;

258



CHAPTER 10  FLEXBOX

width: 200px;
padding: 16px;
}

Jitem {
padding: 16px;
text-align: center;
background: #bfdbfe;
border: 1px solid black;

}

Jitem2 {
order: 3;

}
</style>

<div class="container">
<div class="item">1</div>
<div class="item item2">2</div>
<div class="item">3</div>
</div>

Figure 10-29 shows the resulting layout. While the items appear in the HTML in the
order 1-2-3, because item 2 has its order property set to 3, the actual rendered order
is 1-3-2.

Figure 10-29. The reordered items

Multiple flex items can have the same value for the order property. If more than
one item has the same value, those items will be laid out in the order they appear in the
source HTML.

259



CHAPTER 10  FLEXBOX

Accessibility Considerations

The order property only affects the displayed order on screen. It does not affect the order
of the elements in other contexts. A screen reader, for example, will read the elements in
their source order, not the displayed order.

This makes the display of the items “out of sync” from how they are displayed on
screen, which could be confusing. For this reason, the order property is best used
sparingly.

Flexbox Layout Use Cases

We've looked at the flexbox layout properties and behavior in detail. Now, let’s look at a

few real-world use cases for flexbox layouts.

Absolute Centering

With flexbox, the problem of absolute (horizontal and vertical) centering is easily solved
by setting both align-items and justify-content to center. Listing 10-12 shows how
this can be used to center content within an element.

Listing 10-12. Absolute centering with flexbox

<style>
.container {
background: skyblue;
display: flex;
align-items: center;
justify-content: center;
width: 200px;
height: 100px;
}
</style>

<div class="container">
<div>Centered text</div>
</div>

260



CHAPTER 10  FLEXBOX

This centers the content both horizontally and vertically, as Figure 10-30 shows.

Centered text

Figure 10-30. Absolute centering of text within a flex container

A Flexbox-Based Page Layout

Nesting flexbox layouts allows you to create all kinds of layouts. Listing 10-13 is an
example of creating a full-page layout using nested flexbox layouts.

Listing 10-13. A full-page layout with flexbox

<style>
body {
margin: 0;

}

.container {
display: flex;
flex-direction: column;
height: 100vh;
box-sizing: border-box;

}

.header {
background: #94a3b8;
padding: 1rem;

}

.main {
display: flex;
flex-direction: row;
flex-grow: 1;

}

261



CHAPTER 10  FLEXBOX

.sidebar {
background: #bfdbfe;
padding: 1rem;

}

.content {
flex-grow: 1;
background: #ffffff;
padding: 1rem;

}

.sidebar-2 {
background: #bfdbfe;
padding: 1rem;

}

.footer {
background: #94a3b8;
padding: 1rem;
}
</style>

<div class="container">
<header class="header">Header</header>
<main class="main">
<div class="sidebar">Sidebar</div>
<div class="content">Content</div>
<div class="sidebar-2">Sidebar 2</div>
</main>
<footer class="footer">Footer</footer>
</div>

This code results in the layout shown in Figure 10-31.

262



CHAPTER 10  FLEXBOX

Sidebar  Content Sidebar 2

Figure 10-31. The full-page flexbox layout

The root container defines a column flexbox layout. It contains a header, amain
element which contains the other content, and a footer. The main element gets a flex-
grow of 1. This means that while the header and footer use just enough space for their
content, the main element will grow to fill the remaining space.

Then, the main element has a row flexbox layout. The two sidebars on either end just
use their natural width, and the content area in the middle again uses a flex-grow of 1 to
fill horizontally.

We could have even deeper nesting. For example, the header could contain a row
flexbox layout with navigation links, or the sidebar could contain a column flexbox layout.

263



CHAPTER 10  FLEXBOX
Summary

e Aflexboxlayout is made up of a flex container and its child flex items.

o Aflexboxlayout is one-dimensional; it’s either a single row or a
single column.

e Anelement becomes a flex container by setting its display property to
flex or inline-flex.

o Ifflexitems are too large to fit their container, the browser will try to
shrink them to fit. This shrinking behavior can be changed with the
flex-shrink property.

« Flexitems can be set to grow to fill available space using the flex-
grow property.

e The alignment and distribution of space are controlled by setting the
align-items and justify-content properties.

o Multiple flexbox layouts can be nested.

o Flexbox can be used to absolutely center an element inside its
container.

264



CHAPTER 11

CSS Grid

In Chapter 10, we looked at flexbox layouts in depth and have seen how powerful they
can be. Still, there are limitations. Flexbox is a one-dimensional layout where items are
arranged horizontally or vertically in rows or columns.

CSS Grid allows you to create two-dimensional grid-based layouts with rows and
columns. It’s supported in all modern browsers.

Basic Concepts

Let’s start with the basic concepts of CSS Grid layouts.

Grid Container

The grid container is the outer element that contains the grid layout. All its direct
children are grid items. To make an element a grid container, set its display property to
gridor inline-grid. The difference is an element with display: grid will be a block
element, while an element with display: inline-grid will be an inline element.

Grid Item

All immediate children of the grid container are grid items. Beyond the immediate
children, descendant elements are not grid items. No special CSS properties need to

be applied to make an item a grid item. The child elements automatically become grid
items, and by default they are laid out in the order that they appear in the HTML markup.

265
© Joe Attardi 2025

J. Attardi, Modern CSS, https://doi.org/10.1007/979-8-8688-1727-4_11


https://doi.org/10.1007/979-8-8688-1727-4_11#DOI

CHAPTER 11 CSS GRID

Grid Lines

Grid lines divide the rows and columns of the grid. The grid lines are numbered starting
with 1, as Figure 11-1 shows.

1 3 4
1 rommmmme e e
2t

——————————— - { N

3 I N N T
Figure 11-1. Grid lines

Grid Tracks

The tracks of the grid are the rows and columns between the grid lines. The tracks are
what contain the grid items. Like with grid lines, the numbering of tracks starts at 1. In
Figure 11-2, row track 1 is highlighted.

Figure 11-2. Grid tracks
266



CHAPTER 11 CSS GRID

Grid Areas

A grid area is the space enclosed by any four grid lines. It can contain a single cell or
multiple cells. Figure 11-3 shows a highlighted grid area that takes up four cells.

Figure 11-3. A grid area

Explicit and Implicit Grids

When grid rows and columns are explicitly defined with CSS properties such as grid-
template-rows and grid-template-columns, this is known as the explicit grid.

If more items are added than are accounted for in the explicit grid, the grid layout
creates additional rows and/or columns to fit these extra items. This is the implicit grid.

The fr Unit

Grid sizes can be specified with any of the units we've looked at so far - px, em, rem, even
percentages. CSS Grid introduces a new unit, the fr unit. This unit refers to a fraction of
the free space within the grid. For example, if there are four columns each at a width of
1f1, then each column will take up 25% of the total width of the grid.

If a grid has two columns, one 1fr and one 2fr, the second column will take up twice
as much of the free space as the first column.

267



CHAPTER 11 CSS GRID

Defining a Grid Layout

To define the rows and columns of an explicit grid, use the grid-template-rows and
grid-template-columns properties. These are used to specify the heights of the rows
and the widths of the columns, respectively. In other words, they are used to specify the
size of the grid tracks.

Like flexbox, CSS Grid layouts support the gap property which defines the spacing
between grid items. You can use the gap property to set the same spacing between rows
and columns, or you can use the individual row-gap and column-gap properties to use
different gap sizes between rows and columns.

Listing 11-1 defines a basic grid layout.

Listing 11-1. A basic grid

<style>

.container {
display: grid;
grid-template-columns: 1fr 1ifr;
grid-template-rows: 1fr 1ifr;
gap: 8px;
width: 300px;
border: 1px solid #000000;
padding: 8px;

}

Jitem {
background: #cccccec;
text-align: center;
padding: 8px;
}
</style>

<div class="container">
<div class="item">1</div>
<div class="item">2</div>
<div class="item">3</div>
<div class="item">4</div>

</div>

268



CHAPTER 11 CSS GRID

Figure 11-4 shows the resulting grid layout.

Figure 11-4. The rendered grid

We have defined an explicit grid with two 1fr column tracks and two 1fr row
tracks. As you can see, you don’t need to specify a row or column for the grid items - by
default, the grid container places its items in order, starting at the first column of the
first row.

Because each grid row and column is defined as 1fr, the rows and columns are all
equally sized.

Right now, we have two rows and two columns, a total of four grid items. What
happens if we add more grid items to the container? How does this affect the grid layout?
Let’s do this in Listing 11-2.

Listing 11-2. Adding two more grid items

<style>
.container {

display: grid;
grid-template-columns: 1fr 1fr;
grid-template-rows: 1fr 1ifr;
gap: 8px;
width: 300px;
border: 1px solid #000000;
padding: 8px;

269



CHAPTER 11 CSS GRID

Jitem {
background: #cccccc;
text-align: center;
padding: 8px;
}
</style>

<div class="container">
<div class="item">1</div>
<div class="item">2</div>
<div class="item">3</div>
<div class="item">4</div>
<div class="item">5</div>
<div class="item">6</div>

</div>

The updated grid is shown in Figure 11-5.

1 2
3 -4
5 6

Figure 11-5. The updated grid

Items 5 and 6 are added to the grid. The grid now has three rows, even though
grid-template-rows only defines two rows. Items 5 and 6 make up the implicit grid.
The implicit grid layout continues the layout that was set by the explicit grid. Since two

columns were defined, items 5 and 6 are in a new row across these existing columns.

270



CHAPTER 11 CSS GRID
Grid Sizing
Each row in the previous grid layout is the same height, since they are all set to 1fr. If we

set the second row to 2fr, it will take up twice as much space as the others. Listing 11-3
demonstrates this.

Listing 11-3. Adjusting the grid sizing

<style>
.container {

display: grid;
grid-template-columns: 1fr 1ifr;
grid-template-rows: 1fr 2fr 1fr;
gap: 8px;
width: 300px;
border: 1px solid #000000;
padding: 8px;

}
Jitem {
background: #cccccec;
text-align: center;
padding: 8px;
}
</style>

<div class="container">
<div class="item">1</div>
<div class="item">2</div>
<div class="item">3</div>
<div class="item">4</div>
<div class="item">5</div>
<div class="item">6</div>

</div>

Figure 11-6 shows the updated layout.

271



CHAPTER 11 CSS GRID

1 2
3 -4
5 6

Figure 11-6. The updated grid with larger second row

You can mix the fr unit with other units, too. Listing 11-4 shows a grid that uses

mixed units.

Listing 11-4. Mixing units

<style>

.container {
display: grid;
grid-template-columns: 100px 1fr 3rem;
grid-template-rows: 1fr 1fr;
gap: 8px;
width: 400px;
border: 1px solid #000000;
padding: 8px;

}

Jitem {
background: #cccccec;
text-align: center;
padding: 8px;
}
</style>

272



CHAPTER 11  CSS GRID
<div class="container">
<div class="item">1</div>
<div class="item">2</div>
<div class="item">3</div>
<div class="item">4</div>
<div class="item">5</div>
<div class="item">6</div>
</div>
Figure 11-7 shows the resulting layout.
1 3
4 6

Figure 11-7. A grid using different units for its columns

Grid Sizing Functions

CSS is full of useful functions, and CSS Grid is no exception. Here are a few functions that

can help you when defining your grid rows or columns.

The repeat Function

Sometimes, defining grid sizes can be repetitive, as seen in Listing 11-5.

Listing 11-5. A repetitive grid definition

.container {

display: grid;

grid-template-columns: 1fr i1fr ifr ifr;
grid-template-rows: 5rem Srem;

}

273



CHAPTER 11 CSS GRID

In the grid-template-columns and grid-template-rows properties, we are
repeating values multiple times. For cases like this, we can use the repeat function
instead, as Listing 11-6 shows.

Listing 11-6. Using the repeat function

.container {
display: grid;
grid-template-columns: repeat(4, 1fr);
grid-template-rows: repeat(2, 5rem);

}

The minmax Function

If you use a fixed size for a row or column, and the cell’s content does not fit within the
cell, the content will overflow. This is demonstrated in Listing 11-7.

Listing 11-7. A grid with overflowing cell content

<style>
.container {
display: grid;
grid-template-columns: repeat(4, 1fr);
grid-template-rows: repeat(2, 2rem);
gap: 8px;
padding: 8px;
width: 400px;
background: #eeeeee;

}

Jitem {
background: #cccccc;
text-align: center;

}
</style>

274



CHAPTER 11 CSS GRID

<div class="container">

<div
<div
<div
<div
<div
<div
<div
<div
</div>

class="item">1</div>
class="item">2</div>
class="item">3</div>
class="item">4</div>
class="item">A really long value to see what happens</div>
class="item">6</div>
class="item">7</div>
class="item">8</div>

Figure 11-8 shows the result. The content in cell 5 doesn't fit within a 2rem height, so

it overflows.

1 2 3 4
A really long 6 7 8
value to see
what happens

Figure 11-8. Overflowing cell content

To fix this, you can use the minmax function. The function takes two arguments, the

minimum size and the maximum size. Listing 11-8 has an example of this.

Listing 11-8. The minmax function

<style>

.container {
display: grid;
grid-template-columns: repeat(4, 1fr);
grid-template-rows: repeat(2, minmax(2rem, min-content));
gap: 8px;
padding: 8px;

275



CHAPTER 11 CSS GRID

width: 400px;
background: #eeeeee;

}

Jitem {

background: #cccccc;
text-align: center;

}

</style>

<div class="container">

<div
<div
<div
<div
<div
<div
<div
<div
</div>

class="item">1</div>
class="item">2</div>
class="item">3</div>
class="item">4</div>
class="item">A really long value to see what happens</div>
class="item">6</div>
class="item">7</div>
class="item">8</div>

Figure 11-9 shows the new grid.

1 2 3 4
A really long 6 7 8
value to see
what happens

Figure 11-9. The overflow is fixed

The rows now have a minimum height of 2rem, but because we also specity a

maximum of min-content, the row can grow to fit the content if necessary. This fixes the

overflow issue from Figure 11-8.

276



CHAPTER 11 CSS GRID

Sizing with auto-fill

Sometimes, you might not want to specify an exact number of rows or columns in a grid.
You might want to fit as many columns as will fit into the container’s width. For this, you
can use the repeat function with the auto-fill keyword, as Listing 11-9 shows.

Listing 11-9. Using the auto-fill keyword

<style>
.container {
display: grid;
grid-template-columns: repeat(auto-fill, S5rem);
gap: 8px;
padding: 8px;
background: #eeeeee;

}

Jitem {
background: #cccccc;
text-align: center;
padding: 8px;
}
</style>

<div class="container">
<div class="item">1</div>
<div class="item">2</div>
<div class="item">3</div>
<div class="item">4</div>
<div class="item">5</div>
<div class="item">6</div>
<div class="item">7</div>

</div>

If the viewport is wide enough, all seven grid items will appear in a single row, as
Figure 11-10 shows. The columns are 5rem in size. New columns are added for each item
that fits in the row.

277



CHAPTER 11 CSS GRID

Figure 11-10. The grid in a wide viewport

However, if you resize the window so that it’s no longer wide enough to fit all
seven grid items, the grid uses as many columns as will fit in the available space. The
remaining grid items wrap to subsequent rows. Figure 11-11 shows the multi-row grid.

Figure 11-11. The grid items automatically wrap with auto-fill

auto-fill can also be combined with the minmax function. Note the gap in
Figure 11-11 after the last column. This is part of the grid container, but there is no
column there. In Listing 11-10, we add the minmax function to the column sizing.

Listing 11-10. Adding the minmax function

<style>
.container {
display: grid;
grid-template-columns: repeat(auto-fill, minmax(5rem, 1fr));
gap: 8px;
padding: 8px;
background: #eeeeee;

}

Jitem {
background: #cccccec;
text-align: center;
padding: 8px;
}
</style>

278



<div class="container">

<div
<div
<div
<div
<div
<div
<div
</div>

class="item">1</div>
class="item">2</div>
class="item">3</div>
class="item">4</div>
class="item">5¢</div>
class="item">6</div>
class="item">7</div>

CHAPTER 11

CSS GRID

Adding the minmax function, with a 1fr maximum, allows the columns to grow equally

to use the extra space. This way, there is no gap of wasted space, as Figure 11-12 shows.

Figure 11-12. The grid using auto-f{ill and minmax

Sizing with auto-fit

The auto-fit keyword behaves differently than auto-fill. With auto-fit, grid items
are sized to fit within the available space without adding more columns. Let’s compare

two grid layouts. First, Listing 11-11 has another example of using auto-fill when there is

extra horizontal space available.

Listing 11-11. A grid with auto-fill

<style>

.container {

display: grid;
grid-template-columns: repeat(auto-fill, minmax(5rem, 1fr));
gap: 8px;

padding: 8px;
background: #eeeeee;

279



CHAPTER 11 CSS GRID

Jitem {
background: #cccccc;
text-align: center;
padding: 8px;
}
</style>

<div class="container">
<div class="item">1</div>
<div class="item">2</div>
<div class="item">3</div>
<div class="item">4</div>
<div class="item">5</div>
<div class="item">6</div>
<div class="item">7</div>

</div>

As Figure 11-13 shows, there is extra space after the seven grid cells. The browser
creates extra empty cells at the end of the grid row, which accounts for the extra space.

Figure 11-13. The grid with the auto-f{ill keyword
Listing 11-12 shows the same layout but uses auto-fit instead of auto-fill.

Listing 11-12. Using the auto-fit keyword

<style>
.container {
display: grid;
grid-template-columns: repeat(auto-fit, minmax(5rem, 1fr));
gap: 8px;
padding: 8px;
background: #eeeeee;

280



CHAPTER 11 CSS GRID

Jitem {
background: #cccccec;
text-align: center;
padding: 8px;
}
</style>

<div class="container">
<div class="item">1</div>
<div class="item">2</div>
<div class="item">3</div>
<div class="item">4</div>
<div class="item">5</div>
<div class="item">6</div>
<div class="item">7</div>

</div>

Figure 11-14 shows the resulting grid layout. With auto-fit, the seven columns grow
to fill the available space.

Figure 11-14. The updated grid layout using auto-fit

Grid Positioning

By default, the grid items are placed automatically, filling each column, then each row.
There are options that can be used to customize the positioning of grid items.

Specifying the Row and Column

You can override the default grid positioning and specify specific grid row and column
indices for grid items using the grid-row and grid-column properties. Row and column
numbers start at 1. Listing 11-13 shows an example of a grid with one of the grid items
positioned manually using grid-row and grid-column.

281



CHAPTER 11 CSS GRID

Listing 11-13. Specifying the row and column for one item

<style>
.container {
display: grid;
grid-template-columns: repeat(3, 1fr);
background: #eeeeee;
padding: 8px;

gap: 8px;
width: 300px;
}
Jitem {

background: #cccccec;
text-align: center;
padding: 8px;

}

Jitem1 {
grid-row: 2;
grid-column: 2;
background: skyblue;

}
</style>

<div class="container">

<div class="item item1">1</div>

<div class="item">2</div>

<div class="item">3</div>

<div class="item">4</div>

<div class="item">5</div>

<div class="item">6</div>
</div>

Figure 11-15 shows the resulting grid.

282



CHAPTER 11 CSS GRID

Figure 11-15. The rendered grid

Grid item 1 has its row and column set to 2, and it’s positioned accordingly in the
grid. The rest of the grid items are placed automatically around this item.

Spanning Multiple Rows or Columns

Grid items can also span across multiple rows or columns. This is controlled by the
grid-row-start, grid-row-end, grid-column-start, and grid-column-end properties.
These properties reference the grid line numbers, not cell numbers. In Listing 11-14, the
blue grid item spans across two rows and two columns.

Listing 11-14. Spanning multiple grid cells

<style>
.container {
display: grid;
grid-template-columns: repeat(3, 1fr);
background: #eeeeee;
padding: 8px;

gap: 8px;
width: 300px;
}
Jitem {

background: #cccccc;
text-align: center;
padding: 8px;

}

283



CHAPTER 11 CSS GRID

Jitem1 {
grid-row-start: 1;
grid-row-end: 3;

grid-column-start: 1;
grid-column-end: 3;
background: skyblue;

}
</style>
<div class="container">
<div class="item item1">1</div>
<div class="item">2</div>
<div class="item">3</div>
<div class="item">4</div>
<div class="item">5</div>
<div class="item">6</div>
</div>

Figure 11-16 shows the resulting grid behavior.

Figure 11-16. Grid item 1 spans two rows and two columns

Grid item 1 starts at column line 1 and ends at column line 3, making it span two

columns. Similarly, it starts at row line 1 and ends at row line 3, making it span two rows.

The grid-row or grid-column properties can also be used as a shorthand for these

properties. The expected format is the starting grid line, a slash, and the ending line.

Listing 11-15 applies the same behavior as Listing 11-14, using the shorthand syntax.

284



CHAPTER 11 CSS GRID

Listing 11-15. Using the shorthand properties

Jitem1 {
grid-row: 1 / 3;
grid-column: 1 / 3;
background: skyblue;
}

Instead of specifying an ending row or column line number, we can also use the span
keyword. This specifies that the item spans that number of rows or columns, starting
at the specified start index. Listing 11-16 shows the equivalent syntax using the span
keyword.

Listing 11-16. Using the span keyword

Jitem1 {
grid-row: 1 / span 2;
grid-column: 1 / span 2;
background: skyblue;

}

Named Grid Lines

Grid lines can be referenced by their numerical index, as we have already seen. But we
can also assign names to the grid lines and reference those names instead. The grid
lines are named within a grid-template-rows or grid-template-columns expression,
in between the grid track definitions. The grid line names are placed inside square
brackets.

These grid line names can then be referenced from the grid-row and grid-column
properties. Listing 11-17 defines a basic page layout defined using named grid lines.

Listing 11-17. Using named grid lines

<style>
.container {
display: grid;
gap: 5px;
width: 500px;

285



CHAPTER 11 CSS GRID

grid-template-rows:
[header-start] 2rem
[content-start] 10rem
[footer-start] 2rem
[footer-end];

grid-template-columns:
[sidebar-start] Srem
[content-start] 1fr
[content-end];

}

.container > div {
background: lightgray;
}

.header {
grid-row: header-start / content-start;
grid-column: sidebar-start / content-end;

}

.footer {
grid-column: sidebar-start / content-end;

}
</style>

<div class="container">
<div class="item header">Header</div>
<div class="item sidebar">Sidebar</div>
<div class="item content">Content</div>
<div class="item footer">Footer</div>
</div>

Figure 11-17 shows the resulting layout.

286



CHAPTER 11 CSS GRID

Header

Sidebar Content

Footer

Figure 11-17. Basic layout defined with named grid lines

Named Grid Areas

In addition to named grid lines, you can also define named grid areas. This allows us to
place grid items in the desired areas without having to specify start and end lines. The
areas are defined with the grid-template-areas property. If two adjacent areas have the
same name, then an item placed in that area will span those areas.

Note that grid-template-areas does not define the size of the grid tracks, it just
defines the arrangement of the regions. To set row and column sizing, you can use
grid-template-rows and grid-template-columns as before. To place a grid item in a
particular named grid area, you can use the grid-area property and specify the desired
area name.

Listing 11-18 defines the same layout as the one from Listing 11-17 but using named
grid areas instead of named grid lines.

Listing 11-18. Building a layout with named grid areas

<style>
.container {
display: grid;
grid-template-rows: 2rem 10rem 2rem;
grid-template-columns: 5rem 1fr;

287



CHAPTER 11 CSS GRID

grid-template-areas:
"header header"
"sidebar content"
"footer footer";

gap: 5px;

width: 500px;
}
.header {

grid-area: header;
}
.footer {

grid-area: footer;
}
.sidebar {

grid-area: sidebar;
}
.content {

grid-area: content;
}

.container > div {
background: lightgray;

}
</style>

<div class="container">
<div class="item header">Header</div>
<div class="item sidebar">Sidebar</div>
<div class="item content">Content</div>
<div class="item footer">Footer</div>
</div>

As Figure 11-18 shows, the resulting layout is the same.

288



CHAPTER 11 CSS GRID

Header

Sidebar Content

Footer

Figure 11-18. The layout with named grid areas

Grid Alignment

Just like with flexbox, CSS Grid gives you total control over the alignment of items when
they don't fill their container. There are several properties that control this alignment.

justify-items

The justify-items property defines how grid items are aligned along the row axis when
there is extra space left inside a grid cell. This property is defined on the container and
applies to all the items within that container. Supported values include

o stretch: Stretches the item content along the row axis to fill the grid
cells. This is the default and is shown in Figure 11-19.

Figure 11-19. The items stretched to fill the grid cells

289



CHAPTER 11 CSS GRID

o start: Items are aligned with the starting edge of the cells along the
row axis. This is shown in Figure 11-20.

Figure 11-20. The items aligned at the start of the cells

e end: Items are aligned with the ending edge of the cells along the row
axis. This is shown in Figure 11-21.

Figure 11-21. The items aligned at the end of the cells

o center: Items are centered along the row axis in their cells. This is
shown in Figure 11-22.

Figure 11-22. The items aligned at the center of the cells

align-items

The align-items property defines how grid items are aligned in the opposite direction,
along the column axis. Like justify-items, this property is set on the container. The
supported values are

290



CHAPTER 11 CSS GRID

o stretch: Items are stretched along the column axis to fill the entire
height of the cells. This is the default and is shown in Figure 11-23.

Figure 11-23. The items stretched to fill the grid cells

e start: Items are aligned at the top edge of the cells. This is shown in
Figure 11-24.

Figure 11-24. The items aligned at the top edge of the grid cells

e end: Items are aligned at the bottom edge of the cells. This is shown in
Figure 11-25.

291



CHAPTER 11 CSS GRID

Figure 11-25. The items aligned at the bottom edge of the grid cells

e center: Items are aligned at the center of the cells. This is shown in
Figure 11-26.

Figure 11-26. The items aligned at the center of the grid cells

justify-content

If the grid rows and/or columns aren't sized with relative/flexible units like fr, we could
end up with empty space in the grid container. If this happens, the justify-content
property defines where within the grid container the grid items will be aligned along the
row axis. It supports several values:

o start: Aligns the grid at the start of the row axis. This is shown in
Figure 11-27.

292



CHAPTER 11 CSS GRID

Figure 11-27. The grid aligned at the start of the row axis

e end: Aligns the grid at the end of the row axis. This is shown in
Figure 11-28.

Figure 11-28. The grid aligned at the end of the row axis

o center: Aligns the grid at the center of the row axis. This is shown in
Figure 11-29.

Figure 11-29. The grid aligned at the center of the row axis

e space-around: Adds even spacing between columns, with half-sized
spaces at the start and end. This is shown in Figure 11-30.

Figure 11-30. Spacing between the columns

293



CHAPTER 11 CSS GRID

o space-evenly: Adds even spacing between columns, with full-sized
spaces at the start and end. This is shown in Figure 11-31.

Figure 11-31. Even spacing between and around the columns

e space-between: Places the first column flush with the start of the
container, the last column flush with the end of the container, and
adds even spacing between the other columns. This is shown in
Figure 11-32.

Figure 11-32. Maximized spacing between the columns

align-content

align-content islike justify-content, only it determines how the grid rows are
aligned along the column axis instead of columns along the row axis. The supported

values include

o start: Aligns the grid rows at the start of the column axis. This is
shown in Figure 11-33.

294



CHAPTER 11 CSS GRID

Figure 11-33. Rows aligned at the start of the column axis

o end: Aligns the grid rows at the end of the column axis. This is shown

in Figure 11-34.

Figure 11-34. Rows aligned at the end of the column axis

o center: Aligns the grid rows at the center of the column axis. This is
shown in Figure 11-35.

Figure 11-35. Rows aligned at the center of the column axis
295



CHAPTER 11 CSS GRID

o space-around: Adds even spacing between rows, with half spacing at
the start and end. This is shown in Figure 11-36.

Figure 11-36. Spacing between and around the rows

o space-evenly: Adds even spacing between rows, with full-sized
spaces at the start and end. This is shown in Figure 11-37.

Figure 11-37. Even spacing between and around the rows

e space-between: Places the first row flush with the top of the
container, the last row flush with the bottom of the container, and
adds even spacing in between the other rows. This is shown in
Figure 11-38.

296



CHAPTER 11 CSS GRID

Figure 11-38. Spacing between the rows

Overriding for Individual Grid Iltems

The justify-items and align-items properties of the grid container define the
alignment of the grid items along the row and column axis, respectively. These
alignments can be overridden for an individual grid item by setting the justify-self
and align-self properties, respectively.

CSS Subgrid

You can nest CSS Grid layouts inside other CSS Grid layouts. Sometimes, for more
complex nested grid layouts, you might find that items from the child layouts don’t line
up nicely. Listing 11-19 shows a grid layout that contains two cards. Each card also uses a
grid layout.

Listing 11-19. A grid-based card layout

<style>
.grid {
display: grid;
grid-template-columns: repeat(2, 1fr);
gap: 1rem;

}

297



CHAPTER 11 CSS GRID

.card {
display: grid;
grid-template-rows: auto 1fr;
padding: 1rem;
background: #eee;

}
</style>

<div class="grid">
<div class="card">
<h2>Short Title</h2>
<p>Short description.</p>
</div>
<div class="card">
<h2>Longer Title That Wraps</h2>
<p>
Much longer description that takes more lines to explain everything
properly.
</p>
</div>
</div>

Figure 11-39 shows the resulting card layout.

Short Title Longer Title That
Wraps
Short description.

Much longer description that
takes more lines to explain
everything properly.

Figure 11-39. A grid-based card layout that uses nested grids

298



CHAPTER 11 CSS GRID

Notice that the descriptions don’t line up. The second card, with the wrapped title,
bumps the description down further, and it’s not aligned with the first card’s description.
We can solve this by using subgrids. Listing 11-20 implements this change.

Listing 11-20. Fixing the layout with subgrids

<style>
.grid {
display: grid;
grid-template-columns: repeat(2, 1fr);
grid-template-rows: auto auto;
gap: irem;

}

.card {
display: grid;
grid-template-rows: subgrid;
grid-row: span 2;
background: #eee;
padding: 1rem;

}

</style>

<div class="grid">
<div class="card">
<h2>Short Title</h2>
<p>Short description.</p>
</div>
<div class="card">
<h2>Longer Title That Wraps</h2>
<p>
Much longer description that takes more lines to explain everything
properly.
</p>
</div>
</div>

299



CHAPTER 11 CSS GRID

As Figure 11-40 shows, the descriptions now line up properly.

Short Title Longer Title That
Wraps

Short description. Much longer description that
takes more lines to explain
everything properly.

Figure 11-40. The card layout using subgrids

These layouts are similar but have an important difference. In the first layout, from
Listing 11-19, the parent grid has a single row. Then, the child grid in each card defines
two rows: one for the title and one for the description. This causes a layout problem
because the two nested card grids are totally independent of each other and have no way
of lining up under a common layout.

In the second layout, from Listing 11-20, the two-row layout has been moved to the
parent grid. Each card has a grid-row: span 2 so that it takes up the full two rows of the
parent grid.

Finally, the child grid layouts specify the grid-template-rows property using the
special value subgrid. This makes the child layouts inherit the track sizes from the
parent layout. Because they have common track sizes, the contents align perfectly.

Subgrid can be used with rows or columns. The key idea is that the child grid layouts
inherit the row or column sizing from the parent layouts, and this makes it possible to
ensure consistent alignment across components.

Summary

e Anelement can be made a grid container by setting its display
property to grid or inline-grid.

e A grid container’s immediate children become grid items.

e Agrid haslines, tracks, and areas.

300



CHAPTER 11

The explicit grid is made up of the rows and columns defined by the
grid-template-rows and grid-template-columns properties.

The implicit grid contains any elements placed after all explicit grid
areas are filled.

The fr unit uses a fraction of the available free space.
A grid item can span multiple rows and/or columns.

Grid lines and areas can have names. These names can then be
referenced when placing grid items.

The justify-items, align-items, justify-content, and align-
content properties define how extra space is handled in grids.

An individual grid item can override its alignment with the justify-
self and align-self properties.

Subgrids are used with nested grid layouts. They make the child grid
inherit the track sizing of its parent grid.

CSS GRID

301



CHAPTER 12

Responsive Design

Responsive design is a technique for designing page layouts so that they are usable on
devices with a variety of different screen sizes. Media queries and container queries are
some of the main tools used for responsive design, as are flexbox and CSS Grid.

A layout that looks good on a large desktop display might not look so good on an
iPhone. Media queries allow you to apply different CSS rules, or even entire stylesheets,
depending on the size of the viewport. Additionally, container queries let you apply
different styles based on the size of an element’s container.

Media queries have other uses, too. For example, you can apply a different set of
styles for when a page is printed than when it is displayed on a screen by using the
print medium.

The viewport Meta Tag

For a site to look better on mobile devices, you need to add the viewport meta tag to
your HTML, inside the head element:

<meta
name="viewport"
content="width=device-width, initial-scale=1.0">

This tells the browser how to set the page's dimensions and zoom level. The typical
value used for width is device-width; however, this could also be set to an explicit
pixel width.

303
© Joe Attardi 2025

J. Attardi, Modern CSS, https://doi.org/10.1007/979-8-8688-1727-4_12


https://doi.org/10.1007/979-8-8688-1727-4_12#DOI

CHAPTER 12  RESPONSIVE DESIGN

Media Queries

A media query is defined as an at-rule, @media. It specifies a medium, such as all,
print, screen, or speech, and a condition. You can omit the medium, in which case it
defaults to all.

After the declaration, the media query has a block containing nested CSS rules. If
the media query’s condition is met, the CSS rules inside that block are applied to the
document. If it is not met, the CSS rules are ignored.

Listing 12-1 has an example of a CSS rule, with a media query that overrides its style.

Listing 12-1. An example of a media query

h1 {
color: blue;

}

@media screen and (max-width: 400px) {
h1 {
color: red;

When the browser window has a width above 400 pixels, h1 elements will be blue.
Below 400 pixels, they will be red. Media queries are constantly being evaluated and
styles conditionally applied - they aren’t only calculated when the page first loads.

When the window is wide, the h1 elements will be blue. If you resize the window to
a width of below 400 pixels, they will turn red. Widen it back above 400 pixels, and they
will turn blue again.

With responsive design, the min-width and max-width rules are commonly used, as
they are good indicators of viewport size. However, there are other media query rules
available. For example, you can use the rule orientation: landscape to apply styles
only when the user’s device is in the landscape orientation.

Some queries are based on physical attributes of the device, such as width or
orientation, but others are based on settings the user has configured in their operating
system. One example of this is prefers-reduced-motion, which we discussed briefly in
Chapter 9. Another example of a preference-based query is prefers-color-scheme. This
can be used to detect if the user has configured their device for dark mode.

304



CHAPTER 12  RESPONSIVE DESIGN

Logical Operators

Media queries also support multiple rules, with logical operators such as and, or, and
not. For example:

@media screen
and (min-width: 600px)
and (orientation: landscape)

Media queries can also be used to conditionally load an entire stylesheet. For
example, you may want to apply an entirely different stylesheet if the page is being
printed, as Listing 12-2 demonstrates.

Listing 12-2. Conditionally loading stylesheets

<link rel="stylesheet" href="style.css" media="screen" />
<link rel="stylesheet" href="print.css" media="print" />

Range Syntax

You may want a media query to apply when a value falls within a certain range. For
example, you might want to apply styles when the viewport width is between 100 and
300 pixels. You can accomplish this by using the range syntax:

@media (100px <= width <= 300px)

Breakpoints

A breakpoint is the threshold at which a page’s layout will change due to the viewport
size with a media query. Defining your breakpoints is not an exact science. There are
many different devices in use today, all with different screen sizes. For this reason, it’s
better to set breakpoints based on the content rather than targeting specific devices with
media queries.

Instead, experiment with different viewport sizes, and find the points at which your
layout and design start looking cramped. This will help you determine where to set your
breakpoints.

Figure 12-1 shows an example layout, with a viewport width of 1,000 pixels.

305



CHAPTER 12  RESPONSIVE DESIGN

Today's Top Headlines

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam justo orci, efficitur et volutpat et, molestie ut quam. Mauris
eros diam, auctor sed vulputate et, varius ut arcu. Nullam egestas felis at blandit facilisis. In feugiat purus nec tristique
interdum. Pellentesque non neque eget nibh hendrerit faucibus. Sed et sagittis odio. In tempor auctor lacus, eget fringilla
mauris suscipit ut. Nulla convallis a est at hendrerit.

Figure 12-1. An example layout

If we start to shrink the viewport, the heading text wraps to two lines starting around
a width of 800 pixels, as Figure 12-2 shows.

Today's Top
Headlines

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam justo orci, efficitur et volutpat et,
molestie ut quam. Mauris eros diam, auctor sed vulputate et, varius ut arcu. Nullam egestas felis
at blandit facilisis. In feugiat purus nec tristique interdum. Pellentesque non neque eget nibh
hendrerit faucibus. Sed et sagittis odio. In tempor auctor lacus, eget fringilla mauris suscipit ut.
Nulla convallis a est at hendrerit.

Figure 12-2. The heading text wrapped

The headline takes up a lot of vertical space now, so this might be a good place for
a breakpoint. We can make the font smaller when the viewport is 800 pixels or less by
adding the media query shown in Listing 12-3.

306



CHAPTER 12  RESPONSIVE DESIGN

Listing 12-3. Applying a media query to make the heading font smaller

h1 {
font-size: 5rem;

}

@media (max-width: 8o0px) {
h1 {
font-size: 3rem;
}
}

Now when we view this layout with a viewport width of less than 800 pixels, the
heading font is smaller. It takes up less vertical space, since it doesn’t wrap. Figure 12-3
shows the updated layout.

Today's Top Headlines

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam justo orci, efficitur et volutpat
et, molestie ut quam. Mauris eros diam, auctor sed vulputate et, varius ut arcu. Nullam egestas
felis at blandit facilisis. In feugiat purus nec tristique interdum. Pellentesque non neque eget
nibh hendrerit faucibus. Sed et sagittis odio. In tempor auctor lacus, eget fringilla mauris
suscipit ut. Nulla convallis a est at hendrerit.

Figure 12-3. The heading text is smaller at this viewport size

This will result in more content being visible on devices with a smaller viewport. If
we make the width even smaller, we'll find that the heading wraps again at around 500
pixels, as Figure 12-4 shows.

307



CHAPTER 12  RESPONSIVE DESIGN

Today's Top
Headlines

Lorem ipsum dolor sit amet, consectetur adipiscing elit.
Nullam justo orci, efficitur et volutpat et, molestie ut
quam. Mauris eros diam, auctor sed vulputate et, varius

Figure 12-4. The heading is wrapping again

We can specify another breakpoint to again prevent the heading from wrapping. The
new set of media queries is shown in Listing 12-4.

Listing 12-4. Adding another media query

h1 {
font-size: S5rem;

}
@media (max-width: 800px) {
h1 {
font-size: 3rem;
}
}

308



CHAPTER 12  RESPONSIVE DESIGN

@media (max-width: 500px) {
h1 {
font-size: 2rem;

}
}

Figure 12-5 shows the updated layout, with the smaller heading font size.

Today's Top Headlines

Lorem ipsum dolor sit amet, consectetur adipiscing elit.
Nullam justo orci, efficitur et volutpat et, molestie ut
quam. Mauris eros diam, auctor sed vulputate et, varius ut

Figure 12-5. The heading text gets even smaller at this viewport size

At this viewport size, the image looks large compared to the headline size. We can
also make the image a little smaller at this breakpoint, inside the same media query, as
shown in Listing 12-5.

Listing 12-5. Adjusting the image size

@media (max-width: 500px) {
h1 {
font-size: 2rem;

}

309



CHAPTER 12  RESPONSIVE DESIGN

img {
width: 200px;
}
}

With this change applied to the 500-pixel breakpoint, the image looks better sized
relative to the rest of the content, as Figure 12-6 shows.

Today's Top Headlines

Lorem ipsum dolor sit amet, consectetur
adipiscing elit. Nullam justo orci, efficitur et
volutpat et, molestie ut quam. Mauris eros
diam, auctor sed vulputate et, varius ut arcu.
Nullam egestas felis at blandit facilisis. In
feugiat purus nec tristique interdum.

Figure 12-6. The layout with a smaller image

Responsive Layouts with Flexbox

Some responsive layouts can be achieved without even using media queries. For
example, we can use the flex-wrap property on a flex container to automatically wrap
elements to the next line if the viewport is too narrow, to prevent the need for horizontal
scrolling.

Listing 12-6 has an example layout that looks good on a wide viewport, but not so
good on a narrow one.

310



CHAPTER 12  RESPONSIVE DESIGN

Listing 12-6. An example layout

<style>

.container {
display: flex;
gap: 8px;
padding: 8px;

background: #cccccc;

justify-content: center;

}

Jitem {

text-align: center;

background: #eeeeee;

padding: 8px;

}

</style>

<div class="container">
<div class="item">Flex
<div class="item">Flex
<div class="item">Flex
<div class="item">Flex
<div class="item">Flex
<div class="item">Flex

</div>

Item 1</div>
Item 2</div>
Item 3</div>
Ttem 4</div>
Item 5¢</div>
Item 6</div>

With a wide viewport, this layout looks good, as Figure 12-7 shows.

Flex Item 1

Flex Item 2

FlexItem3 FlexItem4 FlexItem5 Flex Item 6

Figure 12-7. The rendered layout with a wide viewport

With a narrower width, the layout looks a little cramped and the text inside is

wrapped, as Figure 12-8 shows.

311



CHAPTER 12  RESPONSIVE DESIGN

Flex Flex Flex Flex Flex Flex
Item Item Item Item Item Item

1 2 3 4 5

Figure 12-8. The layout with a narrow viewport

Let’s go even narrower, shown in Figure 12-9. The items can’t shrink any further, and

they overflow the flex container.

x Flex Flex Flex Flex
m Item Item Item Item
2 3 4 D

Figure 12-9. The flex items overflowing the container

It

We can make this layout responsive by setting the flex-wrap property to wrap on the

container. Listing 12-7 has the updated layout code.

Listing 12-7. Making the flex layout responsive

<style>
.container {

display: flex;
flex-wrap: wrap;
gap: 8px;
padding: 8px;
background: #cccccc;
justify-content: center;

}

Jitem {
text-align: center;
background: teeeeee;

312



CHAPTER 12  RESPONSIVE DESIGN

padding: 8px;
}
</style>

<div class="container">
<div class="item">Flex Item 1</div>
<div class="item">Flex Item 2</div>
<div class="item">Flex Item 3</div>
<div class="item">Flex Item 4</div>
<div class="item">Flex Item 5</div>
<div class="item">Flex Item 6</div>

</div>

Figure 12-10 shows this new layout with a narrow viewport.

FlexItem 1 FlexItem?2 Flex Item 3

Flex Item4 FlexItem5 Flex Item 6

Figure 12-10. The wrapped layout

This is much better. The items are more readable. If we reduce the viewport width
even further, the layout will change to accommodate the new size, as Figure 12-11 shows.

Flex Item 1  Flex Item 2
Flex Item 3  Flex Item 4

Flex Item 5 Flex Item 6

Figure 12-11. The layout wrapping changes to fit the narrow viewport

313



CHAPTER 12  RESPONSIVE DESIGN

Responsive Layouts with CSS Grid

Grid layouts can also be made responsive. There are a few different ways you can do this.

Using auto-fit

In Chapter 11, we saw the auto-fit keyword for grid column sizing. Listing 12-8 shows
how this can be used to make the layout more responsive.

Listing 12-8. A responsive grid layout with auto-fit

<style>
.container {
display: grid;
grid-template-columns: repeat(auto-fit, minmax(150px, 1fr));
gap: 8px;
padding: 8px;
background: #cccccec;

}

Jitem {
background: #eeeeee;
text-align: center;
padding: 8px;
}
</style>

<div class="container">
<div class="item">Grid Item 1</div>
<div class="item">Grid Item 2</div>
<div class="item">Grid Item 3</div>
<div class="item">Grid Item 4</div>
<div class="item">Grid Item 5</div>
<div class="item">Grid Item 6</div>

</div>

314



CHAPTER 12  RESPONSIVE DESIGN

With a viewport width of 600 pixels, the grid is rendered with two rows and three
columns, as Figure 12-12 shows.

Grid Item 1 Grid Item 2 Grid Item 3

Grid Item 4 Grid Item 5 Grid Item 6

Figure 12-12. A 2x3 grid layout

If we resize the viewport down to 400 pixels, the grid columns are automatically
adapted so that the items fit, as Figure 12-13 shows.

Grid Item 1 Grid Item 2
Grid Item 3 Grid Item 4
Grid Item 5 Grid Item 6

Figure 12-13. The resized grid layout

Changing the Grid Layout with a Media Query

If you want more control over how the layout adapts to different viewport widths, you
can use a media query. An example of this is shown in Listing 12-9.

Listing 12-9. A responsive grid layout

<style>
.container {
display: grid;
grid-template-columns: repeat(3, 1fr);
background: #cccccc;
gap: 8px;
padding: 8px;

315



CHAPTER 12  RESPONSIVE DESIGN

Jitem {
padding: 8px;
text-align: center;
background: #eeeeee;

}

@media (max-width: 350px) {
.container {
grid-template-columns: 1fr;
}

}
</style>

<div class="container">
<div class="item">Grid Item 1</div>
<div class="item">Grid Item 2</div>
<div class="item">Grid Item 3</div>
<div class="item">Grid Item 4</div>
<div class="item">Grid Item 5</div>
<div class="item">Grid Item 6</div>

</div>

Figure 12-14 shows the layout with a 600-pixel viewport. There are two rows and

three columns.

Grid Item 1 Grid Item 2 Grid Item 3

Grid Item 4 Grid Item 5 Grid Item 6

Figure 12-14. The two-row grid layout

If we resize the viewport to below 350 pixels, the new grid-template-columns
from the media query takes effect, changing the grid layout to have a single column, as
Figure 12-15 shows.

316



CHAPTER 12  RESPONSIVE DESIGN

Grid Item 1
Grid Item 2
Grid Item 3
Grid Item 4
Grid Item 5

Grid Item 6

Figure 12-15. The single-column grid layout

Fluid Typography

Earlier, we saw how to leverage media queries to adjust the font size as the viewport
size changes. With fluid typography, it's possible to automatically scale the font size to
viewport size without having to use media queries.

In Chapter 3, we discussed the vw unit, which is equal to 1% of the viewport width.
We can use vw to specify a font size as a proportion of the viewport width. Suppose that
you want your header text to have a size of 48 pixels when the viewport is 1,000 pixels
wide. 48 is 4.8% of 1,000, so you can use a font size of 4. 8vw. Figure 12-16 shows what
that might look like.

317



CHAPTER 12  RESPONSIVE DESIGN

Today's Top Headlines

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam justo orci, efficitur et volutpat et, molestie ut quam. Mauris
eros diam, auctor sed vulputate et, varius ut arcu. Nullam egestas felis at blandit facilisis. In feugiat purus nec tristique
interdum. Pellentesque non neque eget nibh hendrerit faucibus. Sed et sagittis odio. In tempor auctor lacus, eget fringilla
mauris suscipit ut. Nulla convallis a est at hendrerit.

Figure 12-16. The layout with a 1,000-pixel width

There’s a slight problem with this approach. If the viewport becomes very wide, the
font size of the heading scales accordingly to a very large size. For example, at a viewport
size of 2,000 pixels, the font size becomes 96px. Notice the very large font in Figure 12-17
compared to the body text size.

Today's Top Headlines

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam justo orci, efficitur et volu
Pellentesque non neque eget nibh hendrerit faucibus. Sed et sagitis odio. In tempor auctor |

m, auctor sed vulputate et, varius ut arcu. Nullam egestas felis at blandit facilisis. In feugiat purus nec tristique interdum
ulla convallis a est at hendrerit.

Figure 12-17. A very large font size

On the other hand, if the viewport becomes very narrow, the heading’s font size
becomes much smaller - almost as small as the body text. Figure 12-18 shows this layout
with a viewport width of 480 pixels.

318



CHAPTER 12  RESPONSIVE DESIGN

Today's Top Headlines

Lorem ipsum dolor sit amet, consectetur adipiscing elit.
Nullam justo orci, efficitur et volutpat et, molestie ut
quam. Mauris eros diam, auctor sed vulputate et, varius
ut arcu. Nullam egestas felis at blandit facilisis. In
feugiat purus nec tristique interdum. Pellentesque non
neque eget nibh hendrerit faucibus. Sed et sagittis odio.
In tempor auctor lacus, eget fringilla mauris suscipit ut.
Nulla convallis a est at hendrerit.

Figure 12-18. The heading font becomes very small.

Limiting the Font Size with the clamp Function

We can limit how large or small the header font gets using the clamp function. This
function takes three arguments:

¢ The minimum size
o The preferred size
¢ The maximum size

We can keep the font size of 4.8vw as the preferred size and establish a lower and
upper bound. With a lower bound of 48px and an upper bound of 64px, we can set the
font size as shown in Listing 12-10.

Listing 12-10. Using the clamp function

h1 {
font-size: clamp(48px, 4.8vw, 64px);
}

319



CHAPTER 12  RESPONSIVE DESIGN

Now the font size adjusts automatically with the viewport width as before but will
never be smaller than 48 pixels or larger than 64 pixels.

Making Images Responsive

Earlier, we used a media query to change the size of an image if the viewport was
narrower than a certain threshold. This works but is not very flexible. There is another
technique that we can use that allows images to scale with the viewport width without
using media queries.

Figure 12-19 shows the layout from the previous section, using an image that is 800

pixels wide.

Today's Top Headlines

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam justo orci, efficitur et volutpat et, molestie ut
quam. Mauris eros diam, auctor sed vulputate et, varius ut arcu. Nullam egestas felis at blandit facilisis. In feugiat
purus nec tristique interdum. Pellentesque non neque eget nibh hendrerit faucibus. Sed et sagittis odio. In tempor
auctor lacus, eget fringilla mauris suscipit ut. Nulla convallis a est at hendrerit.

Figure 12-19. The layout with a large image

If the viewport is resized below 800 pixels wide, the image is cut off and requires
horizontal scrolling to view the rest of it, as Figure 12-20 shows.

320



CHAPTER 12  RESPONSIVE DESIGN

Today's Top
Headlines

Lorem ipsum dolor sit amet, consectetur
adipiscing elit. Nullam justo orci, efficitur et
volutpat et, molestie ut quam. Mauris eros diam,
auctor sed vulputate et, varius ut arcu. Nullam
egestas felis at blandit facilisis. In feugiat purus
nec tristique interdum. Pellentesque non neque
eget nibh hendrerit faucibus. Sed et sagittis odio.
In tempor auctor lacus, eget fringilla mauris
suscipit ut. Nulla convallis a est at hendrerit.

Figure 12-20. The image is cut off with a narrow viewport

To fix this, you can change the image sizing behavior so that the image resizes along
with the viewport with two CSS changes, shown in Listing 12-11.
Listing 12-11. Making the image responsive

img {
max-width: 100%;
height: auto;

This sizes the image so that it takes up the full width of its container. The height:
auto makes sure that the image retains its aspect ratio.

With this change, the image is resized along with the viewport and is fully visible
even at a narrow width, as Figure 12-21 shows.

321



CHAPTER 12  RESPONSIVE DESIGN

Today's Top
Headlines

Lorem ipsum dolor sit amet,
consectetur adipiscing elit. Nullam
justo orci, efficitur et volutpat et,
molestie ut quam. Mauris eros diam,
auctor sed vulputate et, varius ut arcu.
Nullam egestas felis at blandit
facilisis. In feugiat purus nec tristique
interdum. Pellentesque non neque

Figure 12-21. The image now resizes with the viewport

Complete Example: Responsive Page Layout

In this section, we’ll take a full-page layout and improve its responsiveness for small
screen sizes. Listing 12-12 has the initial page layout.

Listing 12-12. The initial page layout

body {
margin: 0;

}

.container {
display: flex;
flex-direction: column;
height: 100vh;

}

322



CHAPTER 12  RESPONSIVE DESIGN

.header {
background: #64748b;
color: #ffffff;
padding: 16px;

}

.main {
display: flex;
flex-direction: row;
flex-grow: 1;

}

.content {
background: #fafaf9;
padding: 1rem;
flex-grow: 1;

}

.sidebar {
display: flex;
flex-direction: column;
gap: 16px;
background: #cbds5el;
padding: 16px;

}

.sidebar a {
padding: 8px 16px;
background: #94a3b8;
color: #000000;
text-decoration: none;

}

.sidebar2 {
background: #cbdse1;
padding: 16px;

}

323



CHAPTER 12  RESPONSIVE DESIGN

.footer {
background: #334155;
color: #ffffff;
padding: 16px;
}
</style>

<div class="container">
<header class="header">Header</header>
<main class="main">
<nav class="sidebar">
<a href="/home" >Home</a>
<a href="/about">About</a>
<a href="/photos">Photos</a>
</nav>
<div class="content">Hello world!</div>
<div class="sidebar2">Sidebar 2</div>
</main>
<footer class="footer">Footer</footer>
</div>

Figure 12-22 shows the initial rendered layout.

324



CHAPTER 12  RESPONSIVE DESIGN

n Hello world! Sidebar 2

Footer

Figure 12-22. The initial page layout

This looks good on a wide desktop layout, but how does this look on a mobile
device? If we decrease the viewport width to 402 pixels (the number of logical pixels in
the iPhone 16 Pro), everything’s still visible, but the layout is very narrow. Figure 12-23
shows the mobile layout.

325



CHAPTER 12  RESPONSIVE DESIGN

- | .
Hm Hello world! Sidebar 2

Photos

Figure 12-23. The mobile view of this layout

This is very cramped. There’s not much room for the main or sidebar content. This
isn’t ideal for a mobile device viewing our layout. We can improve this by adding a media
query and making a few layout changes.

You can experiment a bit to find a good breakpoint for the media query, but to
make sure the content area never gets too narrow, let’s set the breakpoint at 500 pixels.
Figure 12-24 shows the layout at a width of 500 pixels.

326



CHAPTER 12  RESPONSIVE DESIGN

Hello world! Sidebar 2

Figure 12-24. The layout at the 500-pixel breakpoint

Below this threshold, we’ll change the main element to have a flex-direction of
column. This will stack the three regions vertically, allowing them each to take up the full
screen width. Listing 12-13 shows the media query and its associated CSS rule.

Listing 12-13. Adding a media query for the narrow viewport

@media screen and (max-width: 500px) {
.main {
flex-direction: column;
}
}

Now the content takes up the full width and is no longer constrained horizontally.
The new layout takes effect at 500 pixels or less. Figure 12-25 shows the new layout.

327



CHAPTER 12  RESPONSIVE DESIGN

Hello world!

Sidebar 2

Figure 12-25. The adjusted layout at its breakpoint of 500 pixels

This is good, but it could be better. The navigation is taking up a lot of vertical space
now. Listing 12-14 adds another rule inside the 500-pixel media query to change the
navigation links to be horizontal.

Listing 12-14. Adapting the navigation to the narrow view

@media screen and (max-width: 500px) {
.main {
flex-direction: column;

}

.sidebar {
flex-direction: row;
justify-content: center;
}
}

328



CHAPTER 12  RESPONSIVE DESIGN

Figure 12-26 shows the updated layout.

Hello world!

Sidebar 2

Figure 12-26. The navigation links laid out horizontally

This responsive layout looks a lot better with a viewport width of 500 pixels. There
is still a minor issue with the layout, though. Let’s add a few more navigation items and
reduce the width to 400 pixels. Figure 12-27 shows the result.

329



CHAPTER 12  RESPONSIVE DESIGN

Hello world!

Sidebar 2

Figure 12-27. Adding navigation links and narrowing the viewport

With the reduced width and additional navigation items, the navigation now
overflows the viewport. We can fix this by adding flex-wrap: wrap to the navigation
container, as Listing 12-15 shows.

Listing 12-15. Improving the responsiveness of the navigation items

@media screen and (max-width: 500px) {
.main {
flex-direction: column;

}

.sidebar {
flex-direction: row;
justify-content: center;
flex-wrap: wrap;
}
}

330



CHAPTER 12  RESPONSIVE DESIGN

As Figure 12-28 shows, the navigation items no longer overflow the viewport.
Allowing the container to wrap lets us fit all the navigation items in the available width.

Home About Photos Blog

Resources

Hello world!

Sidebar 2

Figure 12-28. The navigation items now wrap

Container Size Queries

Media queries are a versatile tool for creating responsive layouts, but they have a
limitation. They can only adapt the layout based on the viewport width. Container size
queries let you adapt an element’s layout based on the size of its container element.

Listing 12-16 has a two-column layout, showing some metadata about a user. The left
column is only 100 pixels wide, and the metadata content wraps and overflows.

Listing 12-16. A two-column metadata layout

<style>
.container {
display: grid;
grid-template-columns: 100px 1fr;

331



CHAPTER 12  RESPONSIVE DESIGN

gap: 8px;
padding: 8px;

}

.container > div {
background: #eeeeee;
display: flex;
flex-direction: column;
gap: 8px;
padding: 8px;

}

.metadata {
display: flex;
gap: 8px;

}

</style>

<div class="container">
<div>
<div class="metadata">
<strong>Username:</strong>
<div>jdoe</div>
</div>
<div class="metadata">
<strong>Name:</strong>
<div>John Doe</div>
</div>
</div>
<div>
<div class="metadata">
<strong>Last login:</strong>
<div>May 20, 2025</div>
</div>
<div class="metadata">
<strong>Bio:</strong>

332



CHAPTER 12  RESPONSIVE DESIGN

<div>
I am a member of the IT team. I provide
support to desktop users and maintain our cloud servers.
</div>
</div>
</div>
</div>

You can see the resulting layout, with its wrapping and overflowing content, in
Figure 12-29.

Username: jdc Last login: May 20, 2025

Name: John Bio: I am a member of the IT team. I provide support to desktop
Doe users and maintain our cloud servers.

Figure 12-29. The rendered layout

The left column will be narrow regardless of the viewport size, so a media query
won't help here. We can use a container query to adapt the flex layout of metadata items
so that they use a flex-direction of column when the container is narrow.

To use a container query, an element’s container must be declared to be a query
container element. Otherwise, the container query has no effect. This is done with the
container-type property. By defaul, this is set to normal, which means it will not work
with container size queries.

To use a container size query based on the container’s width, we can set container-
type to inline-size. This means to use the size of the element along the inline axis (the
width). With our layout, we want to apply this property to each grid item (the immediate
div child elements under the grid container). Listing 12-17 adds the container-type
property to this CSS rule.

Listing 12-17. Setting a container type

.container > div {
background: #eeeeee;
display: flex;
flex-direction: column;

333



CHAPTER 12  RESPONSIVE DESIGN

gap: 8px;
padding: 8px;
container-type: inline-size;

}

Now that we’ve set a container type, we can add a container size query in
Listing 12-18.

Listing 12-18. Adding a container query to adapt the metadata layout

@container (max-width: 300px) {
.metadata {
flex-direction: column;
}
}

Figure 12-30 shows the updated layout. Now, when a metadata elementisin a
container that’s narrower than 300 pixels, we set flex-direction to column so the
metadata labels and values are stacked vertically.

Username: Last login: May 20, 2025

jdoe Bio: I am a member of the IT team. I provide support to desktop

users and maintain our cloud servers.
Name:

John Doe
Figure 12-30. The layout adapted with a container size query

A container query works on the closest ancestor element with container-type
set. If you want more fine-grained control over the container, you can create a named
containment context. Let’s adapt the previous layout to use a named containment
context.

Listing 12-19 assigns a name with the container-name property.

Listing 12-19. Creating a named containment context

.container > div {
background: #eeeeee;
display: flex;

334



CHAPTER 12  RESPONSIVE DESIGN

flex-direction: column;

gap: 8px;

padding: 8px;

container-type: inline-size;
container-name: metadataContainer;

Next, we add the context name to the container size query in Listing 12-20.

Listing 12-20. Using the named containment context

@container metadataContainer (max-width: 300px) {
.metadata {
flex-direction: column;

}
}

This yields the same result as shown in Figure 12-30. In this case, though, the
container query will only take effect for an ancestor element with a container-name of
metadataContainer.

Container Query Units

Like the vw and vh units, which are proportional to the viewport size, you can use
container query units that are proportional to the query container size. These
units include

e cqw: 1% of the container’s width
e cgh: 1% of the container’s height

Instead of width and height, you can use container query units based on logical
properties. For a horizontal writing mode, these correspond to width and height,
respectively:

e cqi: 1% of the container’s inline size

e cqgb: 1% of the container’s block size

335



CHAPTER 12  RESPONSIVE DESIGN

Summary

336

Media queries let you conditionally apply styles based on, among
other things, the size of the viewport.

A breakpoint is a particular width at which your layout changes to be
more responsive.

A flexbox layout can be made more responsive by setting flex-wrap
to wrap.

A grid layout can be made more responsive by using auto-fit.
Text can be sized based on the viewport size with the vw and vh units.

Text size can be limited with an upper and lower bound using the
clamp function.

An image can be made more responsive by setting max-width to 100%
and height to auto.

Container size queries let you conditionally apply styles based on the
size of an ancestor container element.



CHAPTER 13

Wrap Up

Before we end our exploration of modern CSS, let’s talk about a few miscellaneous CSS

features that are worth your attention.

Limiting the Scope of CSS Rules with @scope

CSS selectors match elements across the entire document. This means you need unique
class names or very specific selectors to limit the scope of your style rules. The @scope
at-rule lets you narrow the scope of your CSS selectors.

You can specify a selector for the scope, and any rules contained inside the @scope
rule will only apply to elements that are descendants of matching elements. Listing 13-1
has an example of using @scope to style elements with the same class in different ways.

Listing 13-1. Using the @scope rule

<style>
.container {
display: flex;
gap: 8px;
margin: 8px;

}

.box {
width: 64px;
height: 64px;
background: blue;

337
© Joe Attardi 2025

J. Attardi, Modern CSS, https://doi.org/10.1007/979-8-8688-1727-4_13


https://doi.org/10.1007/979-8-8688-1727-4_13#DOI

CHAPTER 13 WRAP UP

@scope (.red-boxes) {
.box {
background: red;

}
</style>

<div class="container">
<div class="box"></div>
<div class="box"></div>
</div>

<div class="container red-boxes">
<div class="box"></div>
<div class="box"></div>
</div>

Figure 13-1 shows the result.

Figure 13-1. An example of using scoped styles

All four boxes are styled by the first .box rule, which sets the width and height and
color. There’s also a @scope rule that applies a different . box rule that only applies to
descendants of elements matching the .red-boxes selector.

Note This rule may not be supported in all browsers at the time you’re
reading this.

338



CHAPTER 13 WRAP UP

Reading an Element’s Attributes

The CSS attr function lets you read an element’s attributes from a CSS rule. This
attribute can then be used as part of a CSS property. Listing 13-2 shows how you can use
this function to style a elements to include the full URL they link to.

Listing 13-2. Using the attr function

<style>
a::after {
Content: n (II attr(hre{) ")"

}
</style>

<a href="https://google.com">Google</a>
The result is shown in Figure 13-2.
Google (https://google.com)
Figure 13-2. The styled link

We're using the : :after pseudo-element to add the value of the link’s href attribute
in parentheses after the link text.

Scroll Snapping

When you add scrolling to a container element by setting overflow to auto, the content
scrolls smoothly by default. You can change the scrolling behavior so that it “snaps” to
child elements inside the scroll container.

If you scroll partially to a child element and stop scrolling, the scrolling viewport will
snap to the configured position.

Configuring Scroll Snap on the Container

Scroll snapping can be enabled in a few different ways on the container element with the
scroll-snap-type property. You can snap in the X and/or Y directions, with one of two
policies. This can be set to be mandatory, which means the content will always snap. It
can also be proximity, which means the browser can decide whether to snap.

339



CHAPTER 13 WRAP UP

These two values are passed to the scroll-snap-type property, separated by a space.
See Listing 13-3 for an example.

Configuring Scroll Snap on Children

The second part of enabling scroll snap is setting the alignment point when the scroll
position snaps with the scroll-snap-align property. This can be set to center,
start, or end.

Listing 13-3 has a full example of scroll snapping.

Listing 13-3. Applying scroll snap behavior

<style>
.container {
display: flex;
gap: 8px;
width: 110px;
overflow: auto;
scroll-snap-type: x mandatory;

}

.box {
background: #cccccc;
text-align: center;
padding: 50px;
scroll-snap-align: start;

}
</style>

<div class="container">
<div class="box">1</div>
<div class="box">2</div>
<div class="box">3</div>
</div>

340



CHAPTER 13 WRAP UP

Checking for Feature Support with @supports

You can apply CSS rules conditionally based on the browser’s support for certain
features. For example, Listing 13-4 shows how you can use @supports to check if the
browser supports CSS Grid.

Listing 13-4. Checking for support with the @supports rule

<style>
@supports (display: grid) {
.container {
display: grid;
grid-template-columns: 1fr 1fr;

}
}
</style>
<div class="container">
<div>1</div>
<div>2</div>
</div>

The styles inside the @supports rule will only be applied if the browser supports
display: grid.If the feature is not supported, all the rules inside the block will be
ignored.

You can also use @supports to provide fallback styles for when the browser does not
support a given feature by using the not keyword. Listing 13-5 shows an example of using
flexbox as a fallback if CSS Grid isn’t supported.

Listing 13-5. Providing fallback styles

<style>
@supports (display: grid) {
.container {
display: grid;
grid-template-columns: 1fr 1fr;
}
}

341



CHAPTER 13 WRAP UP

@supports (not (display: grid)) {
.container {
display: flex;
gap: 8px;
}

}
</style>

<div class="container">
<div>1</div>
<div>2</div>

</div>

Applying Visual Effects with the filter Property

The filter property lets you apply visual effects to elements. You can apply a blur effect
or modify the colors of an element, depending on the value of this property. The values
of this property are function calls. Consider the image shown in Figure 13-3.

Figure 13-3. The unfiltered image

You can apply a blur effect by setting the filter property to blur (10px), producing
the result shown in Figure 13-4.

342



CHAPTER 13 WRAP UP

Figure 13-4. The blurred image

You can use a filter of grayscale(100%) to turn the image fully grayscale, as shown in
Figure 13-5.

Figure 13-5. The grayscale image

There are several other filters you can apply, such as brightness, contrast, invert,
and more.

343



CHAPTER 13 WRAP UP

Mixing Colors with color-mix

CSS allows you to combine two colors, mixing them at a certain ratio. This lets you create
colors derived from other colors. Listing 13-6 has an example of mixing red and blue in
the HSL color space.

Listing 13-6. Mixing two HSL colors

<style>
.box {
width: 100px;
height: 100px;
background: color-mix(in hsl, red 50%, blue 50%);

}
</style>

<div class="box"></div>

Figure 13-6 shows the resulting color.

Figure 13-6. The mixed color

You can mix a color with white to make a lighter shade or with black to make a darker
shade. Listing 13-7 shows how to lighten and darken a color using this technique.

Listing 13-7. Creating different shades of a base color

<style>
.container {
display: flex;
gap: 8px;
}

344



CHAPTER 13 WRAP UP

.box {
width: 100px;
height: 100px;
}

.base {
background: red;

}

.lighter {
background: color-mix(in hsl, red 50%, white 50%);

}

.darker {
background: color-mix(in hsl, red 50%, black 50%);

}
</style>

<div class="container">
<div class="box lighter"></div>
<div class="box base"></div>
<div class="box darker"></div>
</div>

Figure 13-7 shows the resulting colors.

Figure 13-7. The different shades of red

You can also use color-mix with CSS variables. In Listing 13-8, we define a variable
for the button color and use color-mix to create a lightened version of that color for
when the button is hovered.

345



CHAPTER 13 WRAP UP

Listing 13-8. Using CSS variables with color-mix

<style>
:root {
--button-background: hs1(201 96 32);
}

button {
padding: 8px 16px;
border: none;
color: white;
background: var(--button-background);

}

button:hover {
background:
color-mix(in hsl, var(--button-background) 100%, white 25%);

}
</style>

<button>Hover me!</button>

Utility-First CSS

Utility-first CSS frameworks are continuing to gain popularity. These frameworks are

a very different way of thinking about CSS. Instead of writing your own CSS rules that

apply styles to elements, there are predefined “utility” classes that apply different types

of styling. Generally, there is one class name per CSS property and value combination.
Tailwind CSS is the most popular and widely used utility-first CSS framework.

Listing 13-9 shows an example of a simple “card” component using Tailwind CSS classes.

Listing 13-9. A card component with Tailwind CSS

<div class="rounded border border-slate-300 bg-slate-100 p-4 shadow">
<h2 class="text-x1">Card Title</h2>
<p>Card body</p>

</div>

346



CHAPTER 13 WRAP UP

This results in the card component shown in Figure 13-8.

Card Title
Card body

Figure 13-8. The card component using Tailwind styles

Each class name applies a separate piece of styling. For example:

p-4 applies padding.

bg-slate-100 applies a background color.
shadow applies a box shadow.

rounded applies a border radius.

border border-slate-300 applies a solid, colored border.

Final Words

As you have seen, there have been many new and exciting developments in the world
of CSS since the first edition of this book. There are many more on the way that will give

you, the web developer, more power and control over styling your websites and apps.
I hope this book has helped you to chart your journey into further exploration of CSS.

347



Index

A background-position
property, 94-96
background-repeat property, 91-94
background-size property, 96-100
content area, 102
custom size, 100
element, 91
multiple properties, 102
red, element, 89
solid color, 89
Block elements, 39, 40
Borders, 33, 151
collapse, 69, 70
color, 68
radius, rounded corners, 70-73
shorthand property, 69

Absolute positioning, 159-164
Alpha value, 51
Animations
applying elements, 222
backward, 227
delaying, 224
fill mode, 225, 226
@keyframes rule, 221, 222
multiple, 227, 228
multiple with same property, 229, 230
pausing and resuming, 227
properties, 224
scroll-driven, 234, 235
simultaneous, 232
usages, 223

Aspect ratio, 38, 39, 97, 99 style, 68, 69
) width, 66-68
Attribute selectors, 15, 16
Box model
aspect ratio, 38
B defined, 33
Backgrounds elements, 35, 36
combination, 120, 121 parts, 33, 34
gradients, 103-120 properties, 35
images rendered result, 35
adjusted position, 98 sizing
shorthand background border-box, 37, 38
property, 102 content-box, 36, 37
background-attachment Box shadows
property, 103 blur effect, 75
background-clip property, 100, 101 blur radius, 75
background-image property, 90 even distribution, 77

349
© Joe Attardi 2025

J. Attardi, Modern CSS, https://doi.org/10.1007/979-8-8688-1727-4


https://doi.org/10.1007/979-8-8688-1727-4#DOI

INDEX

Box shadows (cont.)
example, 74
inset, 77-79
multiple, 78, 79
offset, 74-76
outer, 79, 80
spread radius, 76
values, 74

Breakpoints
adjusting image size, 309
defined, 305
heading text wraps, 306-308
layout, 305, 306
media query, 306, 308
smaller image, 310

styled link, 339
subgrid, 297-300
@supports, 341
units

absolute, 48

em, 46, 47

% unit, 48

px, 46

rem, 47

viewport, 47, 48
usage, 4-6

utility-first frameworks, 346, 347

variables, 60-63
vendor prefixes, 6
web resources, 6, 7

updated layout, 307, 309

Cascading style sheets (CSS)

anatomy
at-rules, 3
comments, 3
property conflicts, 2, 3
rule syntax, 1, 2
attr function, 339
browser support, 6
card component, 346, 347

mixing colors with color-mix, 344

custom properties, 60
element’s attributes, 339
grid, 265

layout and paint, 11

mixing colors with color-mix, 345, 346

no units, 48
@scope rule, 337, 338
structure, 2

350

Circular gradient, 111-113
Class selectors, 15
Closest-corner modifier, 113, 114
Colors
borders, 68
color-mix, 344-346
hex values, 50, 51
HSL, 52, 344
mixed, 344
named, 50
RGB, 50-52
schemes, 53-55
shades, 344, 345
solid background, 89
syntax, 52, 53
transitions, 214, 215
transparent, 52
Combinators
child, 18
descendant, 17
multiple, 19, 20
next sibling, 19



subsequent sibling, 18, 19
Compounding effect, 125
Compound selectors, 16
Conic gradients, 117

angle, 117, 118

color stops, 118-120

customized, 119

example, 116

90-degree position, 118
Container size queries

container-type property, 333

layout, 334

metadata, 331, 332, 334

named containment

context, 334, 335

rendered layout, 333

units, 335

width, 333
Content, 33
CSS object model (CSSOM), 9, 10
currentColor value, 125

D

Document object model (DOM), 7, 8
Document timeline, 234

E

Easing functions
bouncing effect, 220
built-in functions, 218, 219
cubic Bezier curve, 218
defined, 217
resources, 220
step function, 221
values, 221

Element selector, 14

INDEX

Explicit grid, 267, 269
External links, 25
External stylesheets, 5

F

Fallback styles, 341
Fixed positioning, 164, 165
Flex container
axis, 238, 239
creation, 237
defined, 237
direction, 237, 238
Flexible box layout (flexbox) model
container, 237
defined, 237
items, 240
layout, 239, 240
responsive layouts, 310-313
use cases
absolute centering, 260, 261
page layout, 261-263
Flex items
adding space, 240, 241
alignment and spacing
align-self property, 257, 258
cross axis, 253-256
main axis, 251-253
overriding container settings, 257, 258
writing mode, 251
container, 247
empty space, 245, 246
flex-basis property, 250
flex-grow property, 246
flex-grow values, 247, 248
flex-grow property, 247
flex-grow values, 248

351



INDEX

Flex items (cont.)
order

accessibility considerations, 260

factors, 258
order property, 258
reordered, 259
overflowing container, 243
shrinking, 249, 250
sizing, 241-243
wrapping, 244, 245
Floating
boxes, 175
clearing, 176, 177
elements, 174
example, 173
red box and text content, 174
Fluid typography
clamp function, 319, 320
defined, 317
heading’s font size, 318, 319
layout, 317, 318
very large font size, 318
Functions
calc, 48, 49
min and max, 49, 50

G

Global keywords, 65
Gradient
conic, 116-120
linear, 103-109
radial, 109-116
text effect, 144, 145
types, 103
Graphics processing unit (GPU), 231
Grid layouts

352

auto-fit keyword, 314, 315
cards, 297, 298

defined, 268

gap property, 268

media query, 315, 316
resized, 315

result, 269

updated, 270

Grids

alignment
align-content, 294-296
align-items, 290-292
justify-content, 292-294
justify-items, 289, 290
overridden, 297

areas, 267

container, 265

explicit and implicit, 267

fr unit, 267

item, 265, 269, 270

layout, 268

lines, 266

mixed units, 272, 273

positioning
multiple rows/columns, 283, 285
named grid areas, 287-289
named grid lines, 285-287
row and column, 281-283
shorthand syntax, 284
span keyword, 285

sizing, 271-273

sizing functions
auto-fill, 277-279
auto-fit, 279-281
minmax function, 274-276, 278
repeat function, 273, 274

tracks, 266



H

Hiding elements
display: none, 84
setting opacity to, 85
visibility: hidden, 84, 85

,J,K
ID selectors, 14, 15
Implicit grid, 267, 270
Inline-block element, 44, 45, 152
Inline elements
example, 40
margins, 43, 44
padding
horizontal, 41, 42
vertical, 42, 43
rendered result, 41
span, 41
styled, 41
width, 41
Inline styles, 4
Internal stylesheets, 4, 5
Intrinsic vs. extrinsic size, 178

L

Layout thrashing, 230
Light-dark function, 54
Linear gradients
adding color stops, 104, 105
customizing color stops, 107-109
direction, 106, 107
example, 103
45-degree, 107
horizontal, 106
rendered, 104
solid region, 109

INDEX

transitions, 103
transparency, 105
Line-height property, 138

Link element, 5

Margin, 33
auto keyword, 152, 153
borders, 151
centering technique, 152
collapse, 153-155
defined, 150
example, 150
inline elements, 43, 44
inner element, 151-153
outer element, 152
max-content keyword, 178, 179
Media query
defined, 304
example, 304
grid layout, 315, 316
heading font smaller, 306
logical operators, 305
min-width and max-width rules, 304
narrow viewport, 327
physical attributes, 304
pixels, 304
prefers-color-scheme, 53, 304
prefers-reduced-motion, 232, 233, 304
range syntax, 305
min-content keyword, 178, 179
Multiple columns, 180, 181
Multiple independent selectors, 17

N

Nesting CSS rules, 30, 31

353



INDEX

O

Offsets
blue box, 158, 159
box shadow, 74-76
outline, 86

Opacity, 80-83

Outline, 85-88

Overflow
defined, 55
element’s content, 55
fixed width element, 56
hidden property, 57, 58
horizontal and vertical, 56, 57
scroll and auto, 58, 59
text container, 55

P,Q
Padding, 33
adjacent elements, 149
default style, 147
defined, 147
element’s content, 148
element with no explicit, 147
inline elements, 41-43, 149
percentage value, 148
rendered result, 149
Performance implications
accessibility, 232-234
avoiding simultaneous animations, 232
property types
composite, 231
layout, 230
paint, 231
will-change property, 231
Positioning elements
absolute, 159-164

354

defined, 156

fixed, 164, 165

relative, 156-159

static, 156

sticky, 165
Property values

global keywords, 65

shorthand and multiple values, 65-68
Pseudo-classes

defined, 20

document structure, 21, 22

:has, 22-24

interaction state, 20, 21

:is, 24, 25

:not() negating selector, 22
Pseudo-elements, 25, 26

R

Radial gradients, 110
color stops, 114, 115
example, 109
multiple, 115, 116
shape and position, 110-113
size, 113,114
Relative positioning, 156-159
Relative selectors, 23
Render tree, 10, 11
Responsive design
breakpoints, 305-310
container size queries, 303, 331-335
defined, 303
images, 320-322
layouts
adjusted 500 pixels, 327, 328
flexbox, 310-313
grid, 314-316
initial page, 322-325



media query, 327
mobile view, 325, 326
navigation, 328-331
500-pixel breakpoint, 326, 327
media query, 304, 305
viewport meta tag, 303
Responsive design techniques, 53
Rotation
axis, 185
origin, 185, 186
three dimensions, 190, 191
units, 184
X-axis, 187, 189
Y-axis, 189
Z-axis, 186, 187

S

Saturation, 52
Scroll-driven animations, 234, 235
Scroll progress timeline, 234
Scroll snapping
configuring children, 340
configuring container, 339
Selectors
combinators, 17-20
defined, 13
types, 13-16
Shorthand properties, 65
Specificity
breaking down selectors, 29
calculation, 28, 29
class selector rule, 27
conflicting CSS rules, 26
HTML markup, 26
scape hatch, important, 29, 30
rankings, 27, 28
rendered output, 27

INDEX

Spinning element, 232
Stacking contexts, 168-173
Static positioning, 156, 157
Sticky positioning, 165

T

Text-decoration
styles, 128, 129
text-underline-offset property, 129, 130
types, 128
usage, 127
Text effects
font variant, 131, 132
letter spacing, 131
transformations, uppercase, 130, 131
Text layout
horizontal alignment, 136, 137
indent, 132, 133
truncation, 135, 136
vertical alignment, 137-141
whitespace, 133-135
Text shadow, 143, 144
Text styling
color, 125, 126
em units, 124
font size, 124, 125
font style, 126
font weight, 126
font-family, 123, 124
text-decoration, 127-130
Three-column layout, 181
Transformations
concept, 183
coordinate system, 201
cube, 204-211
multiple, 200-204
perspective, 184

355



INDEX

Transformations (cont.)

rotate, 184-190

scale, 196-198, 201

skew, 199

translate, 191-196, 201
X-, Y-and Z-axes, 183, 184

Transitions

adding, 214

button styles, 213

color, 214, 215

defined, 213

easing functions, 217-221
multi-stage, 215

separate properties, 215
@starting-style, 216, 217
time units, 216

Translation

U

Ultra-high-resolution displays, 46

arguments, 191
element, 191, 192, 195, 196
position, 192

translate CSS property, 195, 196

Z-axis, 192-194

Universal selector, 13

\'

Variables

brand-color, 60
calc function, 62, 63

356

defined, 60
descendant elements, 60
fallback value, 61
primary-border, 61
reference, 61
result, 62
visible rows, 63

Visual effects, filter property
blur effect, 342, 343
grayscale image, 343
unfiltered image, 342

W XY

Web fonts
caution, 143
@font-face rule, 142
formats, 141
styles, 142
weights, 142

WebKit-based

browser, 145

Web resources
CanlUse.com, 7
MDN Web Docs, 7

Writing mode, 251

Z

Z-index
issue, 165, 166, 173
ordering, 169
overlay, 166-168



	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introduction to CSS
	Anatomy of a CSS Rule
	Rule Syntax
	Property Conflicts
	Comments
	At-Rules

	How CSS Is Used
	Inline Styles
	Internal Stylesheets
	External Stylesheets

	Browser Support
	Web Resources
	CanIUse.com
	MDN Web Docs

	How CSS Works in the Browser
	The Document Object Model (DOM)
	The CSS Object Model (CSSOM)
	The Render Tree
	Layout and Paint

	Summary

	Chapter 2: CSS Rules and Selectors
	Basic Selector Types
	The Universal Selector
	Element Selectors
	ID Selectors
	Class Selectors
	Attribute Selectors

	Compound Selectors
	Multiple Independent Selectors
	Selector Combinators
	Descendant Combinator
	Child Combinator
	Subsequent Sibling Combinator
	Next Sibling Combinator
	Using Multiple Combinators

	Pseudo-classes
	Interaction State
	Document Structure
	Negating a Selector
	The:has Pseudo-class
	The:is Pseudo-class

	Pseudo-elements
	Specificity
	Specificity Rankings
	Calculating Specificity
	The Escape Hatch: !important

	Nesting CSS Rules
	Summary

	Chapter 3: Basic CSS Concepts
	The Box Model
	Box Sizing
	Box Sizing with content-box
	Box Sizing with border-box

	Aspect Ratio

	Block and Inline Elements
	Block Elements
	Inline Elements
	Padding and Margin with Inline Elements

	Inline-Block Elements

	CSS Units
	The px Unit
	The em Unit
	The rem Unit
	Viewport Units: vw and vh
	The % Unit
	Other Units
	No Units

	Functions
	The calc Function
	The min and max Functions

	Colors
	Named Colors
	RGB Colors
	Specifying an Alpha Value

	HSL Colors
	Transparent
	Newer Color Syntax
	Color Schemes

	Overflow
	Handling Overflow
	Using overflow: hidden
	Using overflow: scroll and overflow: auto


	CSS Variables
	Using Variables
	Using Variables with the calc Function

	Summary

	Chapter 4: Basic Styling
	Property Values
	Global Keywords
	Shorthand and Multiple Values

	Borders
	Setting the Border Color
	Setting the Border Width
	Setting the Border Style
	Setting All Properties with the Shorthand
	Specifying Border Collapse
	Setting a Border Radius for Rounded Corners

	Box Shadows
	Opacity
	Hiding Elements
	Using display: none
	Using visibility: hidden
	Setting opacity to 0

	Outline
	Summary

	Chapter 5: Backgrounds and Gradients
	Solid Background Colors
	Background Images
	Applying a Background Image with the background-image Property
	Repeating a Background with the background-repeat Property
	Moving the Background Image with the background-position Property
	Customizing the Size with the background-size Property
	The background-clip Property
	Using the Shorthand background Property
	Customizing Scroll Behavior with the background-attachment Property

	Background Gradients
	Linear Gradients
	Adding Color Stops
	Using Transparency
	Changing the Gradient Direction
	Customizing Color Stops

	Radial Gradients
	Customizing the Shape and Position
	Customizing the Size
	Customizing Color Stops
	Multiple Gradients

	Conic Gradients
	Customizing the Angle
	Customizing Color Stops


	Combining Backgrounds
	Summary

	Chapter 6: Text Styling
	Basic Text Styling
	font-family
	Font Size
	Text Color
	Font Weight
	Font Style
	Underlining with text-decoration

	Other Text Effects
	Transforming to Uppercase
	Letter Spacing
	Font Variant

	Text Layout
	Text Indent
	Whitespace
	Truncating Text
	Horizontal Alignment
	Vertical Alignment

	Using Web Fonts
	Registering a Font with the @font-face Rule
	Declaring Different Web Font Styles
	A Word of Caution on Web Fonts

	Text Shadow
	Applying a Gradient to Text
	Summary

	Chapter 7: Layout and Positioning
	Padding
	Margin
	Centering an Element with margin: auto
	Margin Collapse

	Positioning Elements
	Static Positioning
	Relative Positioning
	Absolute Positioning
	Fixed Positioning
	Sticky Positioning

	Z-index and Stacking Contexts
	Stacking Contexts

	Floats
	Clearing Floats

	Width and Height
	Intrinsic vs. Extrinsic Size
	The min-content and max-content Keywords

	Using Multiple Columns
	Summary

	Chapter 8: Transforms
	The X-, Y-, and Z-axes
	Perspective
	Rotate
	Rotation Axis
	Rotation Origin
	Rotating Around the Z-axis
	Rotating Around the X-axis
	Rotating Around the Y-axis
	Rotating in Three Dimensions

	Translate
	Translating Along the Z-axis
	Translating in an Arbitrary Direction with translate3d
	Translating with the translate CSS Property

	Scale
	Scaling with the scale CSS Property

	Skew
	Applying Multiple Transforms
	Putting It All Together: Making a Cube
	Summary

	Chapter 9: Transitions and Animations
	Transitions
	Transition Time Units
	Animating an Element’s Initial State with  @starting-style
	Easing Functions

	Animations
	Basic Animation Properties
	Delaying the Start of the Animation
	The Animation Fill Mode
	Running an Animation Multiple Times
	Running an Animation Backward
	Pausing and Resuming an Animation
	Applying Multiple Animations
	Applying Multiple Animations That Change the Same Property

	Performance Implications
	Property Types
	Layout Properties
	Paint Properties
	Composite Properties

	Giving a Hint As to What Properties Will Be Animated
	Avoiding Simultaneous Animations
	Considering Accessibility

	Scroll-Driven Animations
	Summary

	Chapter 10: Flexbox
	Basic Concepts
	Creating a Flex Container
	Direction
	Axis

	A Basic Flexbox Layout
	Adding Space Between Items
	Sizing of Flex Items
	Wrapping Flex Items
	Growing Flex Items to Fill Available Space
	Shrinking Flex Items to Fit the Available Space
	Setting the Initial Size of a Flex Item
	Alignment and Spacing
	The Writing Mode
	Controlling Spacing on the Main Axis
	Controlling Alignment on the Cross Axis
	Controlling Spacing in the Cross Axis
	Overriding Container Settings

	Changing the Flex Item Order
	Accessibility Considerations

	Flexbox Layout Use Cases
	Absolute Centering
	A Flexbox-Based Page Layout

	Summary

	Chapter 11: CSS Grid
	Basic Concepts
	Grid Container
	Grid Item
	Grid Lines
	Grid Tracks
	Grid Areas
	Explicit and Implicit Grids
	The fr Unit

	Defining a Grid Layout
	Grid Sizing
	Grid Sizing Functions
	The repeat Function
	The minmax Function
	Sizing with auto-fill
	Sizing with auto-fit

	Grid Positioning
	Specifying the Row and Column
	Spanning Multiple Rows or Columns
	Named Grid Lines
	Named Grid Areas

	Grid Alignment
	justify-items
	align-items
	justify-content
	align-content
	Overriding for Individual Grid Items

	CSS Subgrid
	Summary

	Chapter 12: Responsive Design
	The viewport Meta Tag
	Media Queries
	Logical Operators
	Range Syntax

	Breakpoints
	Responsive Layouts with Flexbox
	Responsive Layouts with CSS Grid
	Using auto-fit
	Changing the Grid Layout with a Media Query

	Fluid Typography
	Limiting the Font Size with the clamp Function

	Making Images Responsive
	Complete Example: Responsive Page Layout
	Container Size Queries
	Container Query Units

	Summary

	Chapter 13: Wrap Up
	Limiting the Scope of CSS Rules with @scope
	Reading an Element’s Attributes
	Scroll Snapping
	Configuring Scroll Snap on the Container
	Configuring Scroll Snap on Children

	Checking for Feature Support with @supports
	Applying Visual Effects with the filter Property
	Mixing Colors with color-mix
	Utility-First CSS
	Final Words

	Index

