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Preface 

We are delighted to present Splitting Optimization: Theory, Methodology, and Appli-
cations, a comprehensive volume dedicated to the forefront of research in split-
ting methods within the field of optimization. As optimization problems become 
increasingly complex and high-dimensional across various scientific and engineering 
disciplines, the need for efficient and scalable algorithms is more critical than ever. 
Splitting optimization has emerged as a powerful paradigm, offering robust theoret-
ical frameworks and practical algorithms for decomposing and solving large-scale 
optimization problems. 

This book brings together a collection of pioneering research papers authored by 
leading experts and scholars. Each contribution explores innovative aspects of split-
ting optimization, encompassing theoretical advancements, methodological devel-
opments, and a diverse array of applications. Our aim is to provide readers with a 
deep and cohesive understanding of the current state of splitting optimization, as 
well as to inspire future research and innovations in this dynamic field. 

Splitting methods have gained significant attention due to their ability to handle 
complex optimization problems by breaking them down into simpler subproblems. 
This decomposition not only facilitates parallel and distributed computing but also 
allows for the exploitation of problem structures, leading to more efficient algo-
rithms. The versatility of splitting methods makes them applicable to a wide range 
of problems, including those in machine learning, signal processing, image analysis, 
and game theory. 

“A Trust-Region-Based Splitting Method for Optimization Problems with Linear 
Constraints” with authors Leyu Hu, Yannan Chen, Xingju Cai, and Deren Han is 
presented in Chap. 1. This chapter addresses a fundamental challenge in augmented 
Lagrangian-based splitting methods: the selection of penalty parameters. Fixed 
parameters can lead to slow convergence or inadequate progress in either the primal 
or dual variables. The authors introduce a novel trust-region-based approach that 
adaptively adjusts the trust-region radius during iterations. This method smartly 
balances the trade-off between primal and dual advancements, ensuring robust global 
convergence under mild conditions. An O(1 convergence rate is achieved in an

v
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ergodic sense. Numerical experiments on medical image recovery and logistic regres-
sion problems demonstrate the efficiency and potential of the proposed method, 
highlighting its applicability in real-world scenarios. 

The following chapter contains “Forward-Reflected-Backward Method 
with Extrapolation and Linesearch for Monotone Inclusion Problems” with 
authors Tanxing Wang, Heng Zhang, and Xingju Cai. Monotone inclusion problems 
are central to various applications in optimization and variational analysis. The 
authors present an enhanced forward-reflected-backward algorithm that incorpo-
rates a new extrapolation direction and a novel line-search procedure using locally 
Lipschitz constants. Unlike existing methods that rely on global Lipschitz constants, 
this approach allows for larger step sizes, improving convergence speed and compu-
tational efficiency. Weak convergence is established under standard assumptions. 
Extensive numerical experiments on the lasso problem and 1-regularized logistic 
regression illustrate the method’s superiority over classical algorithms, making it a 
valuable tool for solving large-scale optimization problems. 

“Fast Adaptive ADMM with Gaussian Back Substitution for Multiple Block 
Linear Constrained Separable Problems” with the author Xiangfeng Wang is 
presented in the following chapter. The Alternating Direction Method of Multipliers 
(ADMM) is a popular algorithm for solving separable optimization problems with 
linear constraints. This chapter introduces the Fast Adaptive ADMM with Gaussian 
Back Substitution (ADMM-G-V), an innovative framework designed for multiple-
block settings. By integrating an adaptive penalty parameter that dynamically adjusts 
during the iterative process and utilizing Gaussian back substitution, the proposed 
method enhances both convergence properties and computational efficiency. Theo-
retical analyses establish global convergence and optimal convergence rates in both 
ergodic and non-ergodic senses. Numerical experiments on consensus problems over 
networked agents and distributed logistic regression tasks showcase the algorithm’s 
effectiveness, underscoring its potential in distributed optimization and large-scale 
machine learning applications. 

Chapter 4 contains Inertial “Inertial Alternating Direction Method of Multipliers 
with Logarithmic-Quadratic Proximal Regularization” with the author Zhongming 
Wu. Acceleration techniques are crucial for improving the performance of iterative 
optimization algorithms. This chapter explores the inertial proximal point method 
applied to the ADMM and symmetric ADMM with logarithmic-quadratic proximal 
(LQP) regularization. By incorporating inertial terms and appropriate step sizes, 
the proposed methods accelerate convergence while leveraging the separable struc-
ture of the problem. The utilization of LQP regularization transforms constrained 
subproblems into more manageable unconstrained ones during iterations. Under mild 
conditions, global convergence is rigorously established, enriching the theoretical 
understanding of inertial methods in the context of splitting optimization. 

“A Class of Augmented-Lagrangian-Type Algorithms for Solving Generalized 
Nash Equilibrium Problems” with authors Xiaoxi Jia, Shiwei Wang, and Lingling 
Xu is presented in the following chapter. Generalized Nash Equilibrium Prob-
lems (GNEPs) with shared constraints present significant analytical and computa-
tional challenges. The authors propose a class of regularized augmented Lagrangian
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methods that penalize shared linear constraints within each player’s augmented 
Lagrangian function, transforming the original GNEP into a convex Nash Equi-
librium subproblem (NEP). Under strong monotonicity and Lipschitz continuity 
assumptions of the pseudo-gradient, Fejér monotonicity of iterative points is proved 
with respect to the solution set. By adding a correction step, the authors relax the 
cocoercivity requirement of the pseudo-gradient, broadening the applicability of 
their method. Numerical examples validate the effectiveness of the proposed algo-
rithms, demonstrating their potential in economic modeling and resource allocation 
problems. 

The chapters in this volume collectively advance the field of splitting optimiza-
tion through:—Adaptive Strategies: Introducing adaptive mechanisms for param-
eter selection, such as trust-region adjustments and adaptive penalty parame-
ters, to enhance convergence and stability without relying on fixed or global 
constants.—Acceleration Techniques: Employing inertial terms, extrapolation direc-
tions, and line-search procedures to accelerate the convergence of iterative methods, 
making them more practical for large-scale and real-time applications.—Theoret-
ical Advancements: Providing rigorous convergence analyses under less restrictive 
assumptions, thereby strengthening the theoretical foundations and broadening the 
applicability of splitting methods.—Diverse Applications: Showcasing the versatility 
of splitting optimization through practical applications in medical imaging, logistic 
regression, consensus networks, and game theory, highlighting the impact of these 
methods across different domains. 

Splitting Optimization: Theory, Methodology, and Applications represents a 
significant milestone in the ongoing evolution of optimization research. As the 
demand for efficient and scalable algorithms continues to grow, splitting methods 
will undoubtedly play an increasingly vital role. By presenting these innovative 
contributions, we hope to foster a deeper understanding of splitting optimization and 
stimulate further advancements in both theoretical and practical realms. We believe 
that the insights and methodologies presented in this book will not only enrich the 
knowledge of readers but also inspire new ideas and collaborations. The challenges 
addressed and solutions proposed here reflect the dynamic nature of optimization, 
and we are confident that this volume will serve as a valuable foundation for future 
exploration and innovation. 

We extend our sincere gratitude to all the contributing authors for their outstanding 
work and dedication. Their commitment to excellence has made this volume possible. 
We also thank the reviewers for their insightful comments and suggestions, which 
have greatly enhanced the quality of the chapters. Finally, we express our appreciation 
to the broader optimization community for their ongoing support and engagement. 

Shanghai, China 
Nanjing, China 
Beijing, China 

Xiangfeng Wang 
Xingju Cai 
Deren Han
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Chapter 1 
A Trust-Region-Based Splitting Method 
for Optimization Problems with Linear 
Constraints 

Leyu Hu, Yannan Chen, Xingju Cai, and Deren Han 

Abstract The augmented Lagrangian-based splitting methods have found more and 
more applications in scientific and engineering computation, such as compressive 
sensing, covariance selection, image processing, and transportation research. One 
of the basic difficulties in such algorithms is the selection of the parameter in the 
augmented Lagrangian function; a larger one may make the primal progress too 
small, while a smaller one may slow down the dual progress. To overcome this 
difficulty, in this paper, we propose to solve the splitting subproblems in a trust region 
manner, and the radius can be adjusted smartly. Under the same mild conditions as 
those for classical augmented Lagrangian-based splitting methods, we prove the 
global convergence of the proposed algorithm. Moreover, the .O(1 convergence 
rate is also analyzed in an ergodic sense. We present some preliminary numerical 
experiments on medical image recovery and logistic regression, which show that the 
trust region-based splitting method is efficient and promising. 

Keywords Trust region · Splitting method · Separable convex optimization ·
Convergence rate 

L. Hu 
LMIB, School of Mathematical Sciences, Beihang University, Beijing, China 
e-mail: huleyu@buaa.edu.cn 

Y. Chen 
School of Mathematical Sciences, South China Normal University, Guangzhou, China 
e-mail: ynchen@scnu.edu.cn 

X. Cai 
School of Mathematical Sciences, Ministry of Education Key Laboratory of NSLSCS, Nanjing 
Normal University, Nanjing, China 
e-mail: caixingju@njnu.edu.cn 

D. Han (B) 
LMIB, School of Mathematical Sciences, Beihang University, Beijing, China 
e-mail: handr@buaa.edu.cn 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 
X. Wang et al. (eds.), Splitting Optimization, ICIAM2023 Springer Series 2, 
https://doi.org/10.1007/978-981-96-8574-5_1 

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-8574-5_1&domain=pdf
mailto:huleyu@buaa.edu.cn
mailto:ynchen@scnu.edu.cn
mailto:caixingju@njnu.edu.cn
mailto:handr@buaa.edu.cn
https://doi.org/10.1007/978-981-96-8574-5_1
https://doi.org/10.1007/978-981-96-8574-5_1
https://doi.org/10.1007/978-981-96-8574-5_1
https://doi.org/10.1007/978-981-96-8574-5_1
https://doi.org/10.1007/978-981-96-8574-5_1
https://doi.org/10.1007/978-981-96-8574-5_1
https://doi.org/10.1007/978-981-96-8574-5_1
https://doi.org/10.1007/978-981-96-8574-5_1
https://doi.org/10.1007/978-981-96-8574-5_1
https://doi.org/10.1007/978-981-96-8574-5_1
https://doi.org/10.1007/978-981-96-8574-5_1


2 L. Hu et al.

1.1 Introduction 

We consider the following separable convex optimization problem with linear 
constraints: 

.

⎧
⎪⎨

⎪⎩

min f (x) + g(y)

s.t. Ax + By = c,

x ∈ R
n, y ∈ R

m,

(1.1) 

where .A ∈ R
×n and .B ∈ R

×m are two fixed matrices, the vector .c ∈ R , and . f
and. g are convex and smooth functions with Lipschitz continuous Hessian matrices. 
Hence, the solution set of (1.1) is convex, and we assume it is nonempty. 

Numerous applications from science and engineering fall into the well-structured 
model (1.1). For example, the sparse solution recovery problem in compressive sens-
ing (basis pursuit) [ 4, 25]; the matrix completion problem with or without noise [ 3]; 
the nonnegative tensor factorization [ 2]; the constrained total-variation image restora-
tion and reconstruction problems [ 18]; the estimation of the higher-order generalized 
diffusion tensor in nuclear magnetic resonance imaging of medical engineering [ 5]; 
the . 1-norm penalized log-likelihood covariance selection models [ 28]; the route 
based traffic assignment problems in transportation [ 14]; etc. Boyd et al. [ 1] show  
that several problems from statistical and machine learning can be modeled naturally 
as the separable convex optimization problem (1.1). 

One of the efficient numerical algorithms for solving (1.1) is the classical aug-
mented Lagrangian function method [ 19, 21]. At iteration . k with an estimator of 
multiplier .λk ∈ R , it minimizes variables . x and . y simultaneously to get the next 
iterate 

.(xk+1, yk+1) := argminx,y LH (x, y, λk), (1.2) 

and then update the multiplier 

.λk+1 := λk − H(Axk+1 + Byk+1 − c). (1.3) 

Here, the augmented Lagrangian function is defined as 

. LH (x, y, λ) := f (x) + g(y) − λ (Ax + By − c) + 1

2
Ax + By − c 2

H

for (x, y, λ) ∈ R
n×m× , (1.4) 

and .H ∈ R
× is a penalized symmetric positive definite matrix. In many classical 

literatures, the matrix.H is a scalar matrix.H = β I , where. β is a positive scalar and 
. I is the identity matrix. 

To exploit the inherent separable structure, the alternating direction method of 
multiplier (ADMM) [ 10, 12] minimizes the variables . x and . y separately. Given 
current iterates .yk and . λk , it generates the next iterate via the following three steps 
successively:
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.

⎧
⎪⎨

⎪⎩

xk+1 := argminx∈RnLH (x, yk, λk),

yk+1 := argminy∈RmLH (xk+1, y, λk),

λk+1 := λk − H(Axk+1 + Byk+1 − c).

(1.5) 

That is to say, the large optimization problem (1.2) is divided into two small optimiza-
tion problems in (1.5). The global convergence of ADMM is extensively studied by 
many researchers including Gabay [ 9], Tseng [ 22], and Eckstein and Bertsekas [ 7]. 
Recently, He and Yuan [ 17] show that ADMM admits the .O(1 convergence rate 
in an ergodic sense. 

Both in (1.2) and (1.5), the matrix .H plays an important role by penalizing the 
violation of the linear constraint. Although theoretically the algorithms converge for 
any positive definite matrix . H , the numerical performance varies significantly for 
different choices. Generally, a larger one may lead to larger progress for the dual 
variable (it can be viewed as the stepsize for the dual variable. λ), while it may cause 
smaller progress for the primal variables, and vice versa. Hence, how to choose a 
reasonable one is a difficult task. He et al. [ 15] propose to add proximal point terms 
to the subproblems, 

.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

xk+1 = argminx∈RnLH (x, yk, λk) + 1

2
x − xk 2

Rk
,

yk+1 = argminy∈RmLH (xk+1, y, λk) + 1

2
y − yk 2

Sk ,

λk+1 = λk − H(Axk+1 + Byk+1 − c),

(1.6) 

where .{Rk} and .{Sk} are symmetric positive definite matrices. So the resulting sub-
problems in (1.6) are strongly convex. Alternatively, Xu [ 24] and Yuan [ 27] prefer to  
use fixed matrices. R and. S in the proximal point terms. It is worthwhile to note that a 
special choice of matrices. R and. S reduces to the split Bregman method [ 13], which 
is powerful for problems arising from compressive sensing and image denoising. 

In this paper, we propose to solve the subproblems in a trust region framework, 
since the trust region method [ 6] is robust and efficient in nonlinear programming. 
Different from the soft regularization, trust region methods impose an explicit trust 
region constraint to force the new iterate being in a neighborhood of the current 
iterate. Formally, we represent the trust region-based splitting method as follows: 

. 

⎧
⎪⎨

⎪⎩

xk+1 = argminx∈Rn LH (x, yk, λk |xk, yk, λk) x − xk k ,

yk+1 = argminy∈Rm LH (xk+1, y, λk |xk+1, yk, λk) y − yk k ,

λk+1 = λk − H(Axk+1 + Byk+1 − c),

where. k and. k are trust region radii for .x-subproblem and.y-subproblem, respec-
tively, and.LH is the quadratic approximation of the augmented Lagrangian function, 
which is defined as
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.LH (x, y, λ|xk, yk, λk) (1.7) 

= f (xk ) + ∇  f (xk ) (x − xk ) + 
1 

2 
(x − xk ) ∇2 f (xk )(x − xk ) 

+ g(yk ) + ∇g(yk ) (y − yk ) + 
1 

2 
(y − yk ) ∇2 g(yk )(y − yk ) 

− λk (Ax + By  − c) + 
1 

2 
Ax + By  − c 2 H , 

where .∇2 f (xk) and .∇2g(yk) are the Hessian-like matrices of . f and . g at .xk and . yk

respectively obtained by certain mechanism such as BFGS. Theoretically, finding a 
solution to an optimization problem in a trust region is equivalent to solve a quadratic 
proximal regularized optimization problem with a suitable regularization parameter. 
However, for the regularization-based method, the selection of the regularization 
parameter in each iteration is a challenging problem. It is noteworthy that in a trust 
region framework, we do not need to directly choose the regularization parameter. 
This is because the concept of the trust region is geometric and more intuitive. 
According to nonlinear programming [ 6, 19, 21], dozens of algorithms and codes 
have been established to solve the trust region subproblem fast and accurately. 

The proposed trust region-based splitting method is built in a prediction and 
correction framework. In the prediction step, we solve the .x-subproblem and .y-
subproblem in an explicit trust region constraint and construct an efficient descent 
direction. In the correction step, a suitable step length is customized for the descent 
direction to accelerate the convergence of the proposed algorithm. Combining these 
two steps, we show that the sequence of iterates generated by the trust region-based 
splitting method is globally convergent to the optimal solution set. Moreover, an 
. -approximate optimal solution of the equivalent variational inequality is obtained 
within the.O(1 number of iterations in the worst case. Numerical experiments on 
the constrained.TV-. 2 image deblurring and denoising problem and the. 1 regularized 
logistic regression problem are performed. The results indicate that the novel trust 
region-based splitting method is efficient and promising. Significantly, in the image 
processing example, the involved trust region subproblem is solved efficiently and 
accurately when the classical fast Fourier transformation is explored. 

The outline of this paper is as follows. In Sect. 1.2, we give some useful notations 
and the variational characterization of the separable convex optimization with linear 
constraints. The prediction and correction steps of the trust region-based splitting 
method are described in Sect. 1.3. The global convergence of the proposed algorithm 
is given in Sect. 1.4.1. And in Sect. 1.4.2, the.O(1 convergence rate is analyzed in 
an ergodic sense. Numerical validation on some real problems is reported in Sect. 1.5. 
Finally, we complete the paper by drawing some conclusions in Sect. 1.6.
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1.2 Variational Characterization 

In this section, we give some notations and preliminary results that are useful in the 
rest of this paper. Let.λ ∈ R be a multiplier corresponding to the equality constraint 
.Ax + By − c = 0 in (1.1). We define 

. u := x
y

, w := u
λ

, then w ∈ := R
n×m× .

The presentation of the new splitting method is in the framework of variational 
inequalities. Now, we give the variational characterization of the separable convex 
optimization (1.1). 

The Lagrangian function of the original optimization problem (1.1) is  

.L(x, y, λ) := f (x) + g(y) − λ (Ax + By − c), (1.8) 

where .(x, y, λ) ∈ . Suppose .(x∗, y∗, λ∗) ∈ is a primal-dual solution of the con-
vex optimization (1.1). Then, it must be a saddle point of the Lagrangian function, 
i.e., 

. L(x∗, y∗, λ) ≤ L(x∗, y∗, λ∗) ≤ L(x, y, λ∗).

From the viewpoint of variational inequalities, .(x∗, y∗, λ∗) ∈ is a saddle point of 
the Lagrangian function (1.8) if and only if it satisfies 

.

⎧
⎪⎨

⎪⎩

(x − x∗) (∇ f (x) − A λ∗) ≥ 0,

(y − y∗) (∇g(y) − B λ∗) ≥ 0,

(λ − λ∗) (Ax∗ + By∗ − c) ≥ 0,

∀ (x, y, λ) ∈ (1.9) 

For convenience, we define a mapping . F : 

. F(w) :=
⎛

⎝
∇ f (x) − A λ

∇g(y) − B λ

Ax + By − c

⎞

⎠ =
⎛

⎝
0 0 −A
0 0 −B
A B 0

⎞

⎠ w +
⎛

⎝
∇ f (x)
∇g(y)

0

⎞

⎠ +
⎛

⎝
0
0
c

⎞

⎠ .

(1.10) 

Obviously, the linear mapping. F is a monotone operator since the coefficient matrix 
is skew-symmetric and the convexity of . f and . g. Then, the variational inequality 
(VI) (1.9) has a compact form: find .w∗ ∈ such that 

.(w − w∗) F(w∗) ≥ 0, ∀ w ∈ (1.11) 

Since we suppose the solution set of the convex optimization (1.1) is nonempty, the 
solution set . ∗ of the VI (1.11), which is convex, is also nonempty. We remark that 
the VI (1.11) plays a critical role in the following analysis.
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1.3 The Trust-Region-Based Splitting Method 

The trust region method is a powerful and robust method in nonlinear program-
ming [ 6, 19, 21]. At each iteration, the trust region method finds the solution of a 
subproblem in a special neighborhood of the current iterate, which is called a trust 
region. In the process of iteration, the size of the trust region could be enlarged or 
contracted according to some rules. 

Our trust region-based splitting method for solving the separable optimization 
problem (1.1) contains two steps: prediction and correction. We now describe the 
prediction step in detail. 

1.3.1 The Prediction Step 

Algorithm 1 (Prediction Step) In iteration . k, .(xk, yk, λk) is given. we perform 
the following three steps successively. 

.
xk := argminx∈Rn LH (x, yk, λk |xk, yk, λk)

s.t. x − xk k,
(1.12) 

.
yk := argminy∈Rm LH (xk, y, λk |xk, yk, λk)

s.t. y − yk k,
(1.13) 

and 
.λk := λk − H(Axk + Byk − c). (1.14) 

The quadratic approximation of the augmented Lagrangian function .LH is defined 
in (1.7). The optimal condition for the trust region subproblem (1.12) in the variable 
. x . For the convenience of the following discussion, we rewrite (1.12) as follows, by  
removing the irrelevant terms and rearranging the terms: 

. 

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min
x∈Rn

∇ f (xk) (x − xk) + 1

2
(x − xk) ∇2 f (xk)(x − xk)

+ 1

2
Ax + Byk − c − H−1λk 2

H

s.t. x − xk k .

According to nonlinear programming, the first-order necessary condition for the 
trust region subproblem (1.12. ) is
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. 0 ∈ ∇ f (xk) + ∇2 f (xk)(x − xk) + A H(Ax + Byk − c − H−1λk) + N (xk k )
(x)

where.N (xk k )(x) is the normal cone at. x of the trust region constraint. x − xk

k at .xk was 

. N (xk k )(x) := v ∈ R
n v = δ(x − xk), x − xk k,

0, x − xk k,
, δ ≥ 0 .

Then we have the KKT conditions of (1.12. ) as,  for . xk − xk k, δk ≥ 0, 

. 
∇ f (xk) + ∇2 f (xk)(xk − xk) + A H(Axk + Byk − c − H−1λk) + δk(xk − xk) = 0,

∇g(yk) + ∇2 g(yk)(yk − yk) + B H(Axk + Byk − c − H−1λk) + γk(yk − yk) = 0.

(1.15) 

where .δk here is the optimal Lagrange multiplier for the trust region constraint. 
Through this, we could get the optimal.δk when we solve the trust region subproblem 
(1.12): 

. δk = f (xk) + ∇2 f (xk)(xk − xk) + A H(Axk + Byk − c − H−1λk)

xk − xk
,

when .xk xk . And we define .δk = 0 when .xk = xk . For convenience, we denote 

.
∇k

xL := ∇ f (xk) + A H(Axk + Byk − c − H−1λk),

∇k
yL := ∇g(yk) + BT H(Axk + Byk − c − H−1λk).

(1.16) 

Then we have 

.δk = ∇k
xL + ∇2 f (xk) + A H A (xk − xk)

xk − xk
, (1.17) 

and same for the trust region subproblem (1.13) in the variable . y as 

.γk = ∇k
yL + ∇2 g(yk) + B HB (yk − yk)

yk − yk
. (1.18) 

Similarly to (1.15), we could get the KKT conditions of the trust region 
subproblem (1.13) as,  for . y − yk k, γk ≥ 0. 

Combining (1.15) and substituting (1.14), we get the following equations: 

. 

⎧
⎪⎨

⎪⎩

∇ f (xk) + ∇2 f (xk)(xk − xk) − A λk + δk(x
k − xk) − H A B(yk − yk) = 0,

∇g(yk) + ∇2 g(yk)(yk − yk) − B λk + γk(y
k − yk) = 0,

(Axk + Byk − c) + H−1(λk − λk) = 0.
(1.19)
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Note that by the mean value theorem for integrals, we have for some . ζ k
x = xk +

θ k
x (x

k − xk), .ζ k
y = yk + θ k

y (y
k − yk), where .θ k

x , θ
k
y ∈ (0, 1), 

.
∇ f (xk) − ∇ f (xk) = ∇2 f (ζ k

x )(xk − xk),

∇g(yk) − ∇g(yk) = ∇2 g(ζ k
y )(y

k − yk),
(1.20) 

Denote 

.

Rk
x := ∇2 f (xk) − ∇2 f (ζ k

x ), if xk xk,

0, if xk = xk,

Rk
y := ∇2 g(yk) − ∇2 g(ζ k

y ), if yk yk,

0, if yk = yk,

(1.21) 

.Mk :=
⎛

⎝
δk In + Rk

x
B H B + γk Im + Rk

y

H−1

⎞

⎠ , (1.22) 

and 

.N :=
⎛

⎝
0 −A HB

−B HB
0

⎞

⎠ . (1.23) 

Then, the equations (1.19) can be rewritten as 

.F(wk) + (Mk + N )(wk − wk) = 0. (1.24) 

Lemma 1.1 Suppose .wk is generated by Algorithm 1 from an iterate .wk . And  
suppose .Mk 0, then, 

.

(w∗ − wk) Mk(w
k − wk) wk − wk 2

Mk
+ (λk − λk)B(yk − yk)

≥1

2
wk − wk 2

Mk

(1.25) 

where matrices .Mk is defined in (1.22). 

Proof Since .w∗ ∈ ∗ and the mapping .F (1.10) is monotone, we have 

.(wk − w∗) F(wk) ≥ (wk − w∗) F(w∗) = 0. (1.26) 

Thus, we have 

.(w∗ − wk) Mk(w
k − wk)

wk − wk 2
Mk

+ (w∗ − wk) Mk(w
k − wk)



1 A Trust-Region-Based Splitting Method for Optimization … 9

(1.24) 
wk − wk 2 

Mk 
+ (wk − w∗) F(wk ) + (wk − w∗) N (wk − wk ) 

(1.26) 
wk − wk 2 

Mk 
+ (wk − w∗) N (wk − wk ). 

According to the definition (1.22) of . N , we have  

. (wk − w∗) N (wk − wk) = xk − x∗
yk − y∗

−A
−B

HB(yk − yk)

= −(Axk + Byk − Ax∗ − By∗) HB(yk − yk)

= −H(Axk + Byk − c) B(yk − yk)
(1.14)= (λk − λk)B(yk − yk)

≥ −1

2
λk − λk 2

H−1 − 1

2
B(yk − yk) 2

H

≥ −1

2
wk − wk 2

Mk
.

Here, .Ax∗ + By∗ = c is used in the second equality. And we prove the inequality 
(1.25). 

Remark 1.1 Note that if .Mk is positive semi-definite, then we could use .Mk to 
construct a merit function to characterize the decline after the prediction step, which 
is 

.

wk − w∗ 2
Mk

wk − w∗ 2
Mk

wk − w∗ 2
Mk

wk − wk + wk − w∗ 2
Mk

= 2(w∗ − wk) Mk(w
k − wk) wk − wk 2

Mk
≥ 0.

(1.27) 

1.3.2 Prediction Step with Trust Region Radii Update 

Lemma 1.1 shows that the prediction step is a descent direction of the merit function 
. w − w∗ 2

Mk
. But we need to ensure . (w∗ − wk) Mk(w

k − wk) wk − wk 2
Mk

>

0 to guarantee the descent property, and we need.Mk 0 to ensure the norm is valid. 
By definition, 

. wk − wk 2
Mk

xk − xk 2
δk In+Rk

x
yk − yk 2

γk Im+Rk
y+B HB Axk + Byk − c 2

H .

To ensure . wk − wk 2
Mk

> 0, it suffices to demonstrate under the following condi-
tions: 

(i) Either .xk = xk or .δk In + Rk
x is positive definite; 

(ii) Either .yk = yk or .γk Im + Rk
y + B HB is positive definite;
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(iii) Either .Axk + Byk − c = 0 or .H is positive definite; 
(iv) Either .xk xk , .yk yk , or .Axk + Byk − c 0. 

Since .H is positive definite, the condition (iii) is always satisfied. We first study 
when the matrix .δk In + Rk

x and .γk Im + Rk
y + B HB are positive definite. 

Assumption 1.1 The Hessian matrix.∇2 f (x) and.∇2g(y) are Lipschitz continuous, 
which means there exist positive constants .L f and .Lg such that 

. 
2 f (x) − ∇2 f (y) L f x − y , 2 g(x) − ∇2 g(y) Lg x − y .

(1.28) 

Assumption 1.2 The BFGS-like matrix.∇2 f (xk) and.∇2g(yk) are close to the Hes-
sian matrix .∇2 f (x) and .∇2g(y), respectively. Specifically, there exists a positive 
constant . ε such that 

. ∇2 f (xk) − ∇2 f (xk) ε, ∇2 g(yk) − ∇2 g(yk) ε. (1.29) 

Note that, by (1.20), and Lipschitz continuity of the Hessian matrix, and the error 
bound of the BFGS-like matrix, we have 

. 
Rk
x

2 f (ζ k
x ) − ∇2 f (xk) L f ζ k

x − xk ε ≤ L f xk − xk ε,

Rk
y

2 g(ζ k
y ) − ∇2 g(yk) Lg ζ k

y − yk ε ≤ Lg yk − yk ε.

(1.30) 

Now we can see if .δk and .γk are large enough, we could have the positive defi-
niteness. And this can always be satisfied as long as the trust region radii . k and. k

are small enough. We can see this through (1.16). By using the triangle inequality 
and induced norm, we have 

.

δk ≥ ∇k
xL − ∇2 f (xk) + A H A (xk − xk)

xk − xk

≥ ∇k
xL − ∇2 f (xk) + A H A (xk − xk)

xk − xk

≥ ∇k
xL

xk − xk
− ∇2 f (xk) + A H A

≥ ∇k
xL
k

− ∇2 f (xk) + A H A ,

(1.31) 

where the last inequality is due to the trust region constraint . xk − xk k . This  
lower bound of .δk is not tight, but it gives us an approximate lower bound before we 
solve the trust region subproblem (1.12). Similarly, we also have a lower bound of 
. γk , combine the two lower bounds, we have
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.

k
xL k ∇2 f (xk) + A H A δk,

k
yL k ∇2 g(yk) + B HB γk .

(1.32) 

So, it suffices to have 

. δk
k
xL k ∇2 f (xk) + A H A L f xk − xk ε > 0,

to ensure .δk In + Rk
x is positive definite. And since then .δk > 0, the constraint is 

active,. xk − xk k . We can then solve the above inequality to get the necessary 
condition of . k . When 

. k ≤
( ∇2 f (xk) + A H A ε)2 + 4L f

k
xL ( ∇2 f (xk) + A H A ε)

2L f
, (1.33) 

.δk In + Rk
x is positive definite. 

Note that, when .
k
xL approaches to zero, the valid range of . k vanishes. And 

also note that,. k
xL 0means the subproblem (1.12) attains its minimum at. xk . So  

we could set a tolerance.TOLx to determine whether the subproblem (1.12) is solved  
to optimality. When . k

xL TOLx , we set  .xk = xk and solve other subproblems 
or update . λ. And  if . k

xL, . k
yL, and . Axk + Byk − c are all small enough, then 

we find the saddle point of the Lagrangian function, and we stop the algorithm. 
Following this logic, we could have Algorithm 2 below. 

Algorithm 2 (Prediction Step with Trust Region Radii Update) 

1. Set .1 < η1 < η2, tolerance .TOLx ,TOLy,TOLλ > 0. Calculate estimated 
Hessians .∇2 f (xk) and .∇2g(yk) by a BFGS-like scheme satisfying (1.29) 
and calculate .∇k

xL and .∇k
yL by (1.16); 

2. If . k
xL TOLx , then set .xk = xk , . k+1 = k ; otherwise, obtain .xk and 

update the trust region radii . k+1 through Step . 2 ; 
3. If . k

yL TOLy , then set .yk = yk , . k+1 = k ; otherwise, obtain .yk and 
update the trust region radii . k+1 through Step . 3 ; 

4. If .uk = uk and . Axk + Byk − c TOLλ, then stop; 

For the .x-subproblem, if . k
xL > TOLx , we update . k+1 as follows:
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Step . 2 (.x-subproblem). Set .t = 0, and . k,0 := k . 

(a) For given . k,t , complete a prediction step of the .x-subproblem (1.12) to  
get .xk,t and evaluate .δk,t by (1.17); 

(b) If 
.δk,t ≥ L f xk,t − xk ε := rk,tx , (1.34) 

then go to step (c), otherwise set . k,t+1 xk,t − xk /4, .t := t + 1 and 
then go back to step (a); 

(c) Set .xk = xk,t , and 

. k+1 =

⎧
⎪⎨

⎪⎩

max k,t , 1.5 xk,t − xk , δk,t ∈ [η2rk,tx ,+∞),

k,t , δk,t ∈ [η1rk,tx , η2r
k,t
x ],

max 0.5 k,t , 0.75 xk,t − xk , δk,t ∈ [rk,tx , η1r
k,t
x ].
(1.35) 

Similarly, for the .y-subproblem, if . k
yL > TOLy , we update . k+1 as follows: 

Step . 3 (.y-subproblem). Set .t = 0, and . k,0 := k . 

(a) For given. k,t , complete a prediction step of the.y-subproblem (1.13) to get 
.yk,t and evaluate .γk,t by (1.18); 

(b) If 
.γk,t ≥ Lg yk,t − yk ε := rk,ty , (1.36) 

then go to step (c), otherwise set . k,t+1 yk,t − yk /4, .t := t + 1 and 
then go back to step (a); 

(c) Set .yk = yk,t , and 

. k+1 =

⎧
⎪⎪⎨

⎪⎪⎩

max k,t , 1.5 yk,t − yk , γk,t ∈ [η2rk,ty ,+∞),

k,t , γk,t ∈ [η1rk,ty , η2r
k,t
y ],

max 0.5 k,t , 0.75 yk,t − yk , γk,t ∈ [rk,ty , η1r
k,t
y ].
(1.37) 

Following the analysis above, we the lemma below to illustrate how we get. wk −
wk 2

Mk
> 0 and .Mk 0. 

Lemma 1.2 Suppose .wk is generated by Algorithm 2, which means for the .x-
subproblem, either . k

xL TOLx or (1.34) holds; for the .y-subproblem, either 
.

k
yL TOLy or (1.36) holds. Then one of the following conditions holds:
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(1) . k
xL TOLx , . k

yL TOLy, and . Axk + Byk − c TOLλ; 
(2) We have 

. wk − wk 2
Mk

> 0, Mk 0. (1.38) 

Proof If. k
xL TOLx and.

k
yL TOLy , then we have.xk = xk and.yk = yk . 

Then by the definition of . wk − wk 2
Mk
, we have  . wk − wk 2

Mk
λ − λk 2

H−1 =
Axk + Byk − c 2. 
Thus, either . Axk + Byk − c TOLλ which means statement (1) holds or 

. wk − wk 2
Mk

≥ TOL2
λ > 0. Since .xk = xk and .yk = yk , we have  .ζ k

x = xk so that 
.Rk

x = Rk
y = 0, which means .Mk 0. 

If . k
xL > TOLx then 

. wk − wk 2
Mk

xk − xk 2
Mk

≥ (δk Rk
x ) xk − xk 2.

By (1.30) and (1.34), we have. wk − wk 2
Mk

> 0 and. δk In − Rk
x 0. Similarly, if 

.
k
yL > TOLy , we also have  . wk − wk 2

Mk
> 0 and . γk Im − Rk

y 0. Combine 
the above analysis, we have the statement (2) holds. 

Remark 1.2 When the condition (1) in Lemma 1.2 hold, we have .xk = xk , 
and .yk = yk . Thus the condition is equivalent to . F(wk) TOL with . TOL =
TOL2

x + TOL2
y + TOL2

λ. This means the algorithm stops when the optimality 
condition (1.11) is satisfied with tolerance .TOL. 

Next, we will show that given the tolerance, . Mk has an upper bound globally. 
We could prove it by giving an upper bound of both .δk and . γk . And this could be 
done by showing the lower bound of the trust region radii . k and . k . Note that we 
could get an upper bound of.δk by the same way as we get the lower bound in (1.31): 

. δk ≤ ∇k
xL

xk − xk
+ ∇2 f (xk) + A H A .

If . xk − xk k , which means the trust region constraint is inactive, we 
have .δk = 0, so that .δk ≤ ∇k

xL k + ∇2 f (xk) + A H A ≥ 0. And when 
. xk − xk k , this upper bound is also valid. Thus we have 

.
δk

k
xL k ∇2 f (xk) + A H A ,

γk
k
yL k ∇2 g(yk) + B HB .

(1.39) 

By Assumption 1.1, if the iteration points are bounded, we would have a uniform 
upper bound of the Hessian matrix.∇2 f (xk),.∇2g(yk), and the gradients.∇k

xL,.∇k
yL. 

Then we could have a uniform upper bound of .δk and .γk in the following lemma.



14 L. Hu et al.

Lemma 1.3 Suppose .wk is generated by the prediction step with trust region radii 
update above from an iterate .wk . Assume . ∇2 f (xk) f , and . ∇2g(yk) g, 
then we have 

.

k min := 0.5 · 1
4

· f + ε)2 + 4L f TOLx − f + ε)

2L f
,

k min := 0.5 · 1
4

· g + ε)2 + 4LgTOLy − g + ε)

2Lg
.

(1.40) 

And further assume . k
xL max

x , . k
yL max

y , then there exists a constant 
.κ1 > 0 such that for all .k ≥ 0, we have 

. Mk κ1. (1.41) 

Proof According to (1.32), before we conduct a prediction step, in order to ensure 
(1.34) holds, it is sufficient to let . k satisfy 

. L f xk − xk ε = L f k + ε k
xL k ∇2 f (xk) + A H A δk .

So, as long as . k satisfies 

. k ≥
( ∇2 f (xk) + A H A ε)2 + 4L f

k
xL ( ∇2 f (xk) + A H A ε)

2L f
,

Since . ∇2 f (xk) f , and . k only shrink when we update the trust region radii, 
which means . k

xL > TOLx , we have for  all .k ≥ 0, 

. k min = 0.5 · 1
4

· f + ε)2 + 4L f TOLx − f + ε)

2L f
.

The other inequality for . k is similar. 
Having the uniform lower bound of the trust region radii, the uniform upper bound 

of the Hessian matrix .∇2 f (xk), .∇2g(yk), and the gradients .∇k
xL, .∇k

yL, we could 
obtain a uniform upper bound of .δk and .γk through (1.39) as  

.
δk ≤ ∇max

x min + f + ε A H A ,

γk ≤ ∇max
y min + g + ε B HB .

(1.42) 

Thus there exists .κ1 > 0 such that for all .k ≥ 0, we have  (1.41). 

Remark 1.3 The .x-subproblem and .y-subproblem are solved by trust region sub-
problems. The reason we use trust region subproblems is usually that the actual 
subproblems are hard to solve exactly. If one of the subproblems is easy to solve 
or even has a closed-form solution, we could use the exact solution to update the
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corresponding variable. In this case, we see the variable to be solved exactly as 
.y-subproblem. Since the.y-subproblem is solved exactly, we have.Rk

y = 0 and.γk = 0. 
Then we always have the .y-part of .Mk is .B HB 0. 

As a result, this version of the Algorithm still satisfies all the Lemmas above. 
Specifically, (1.25), (1.38), and (1.41) still hold for this version of Algorithm 2 with 
Step . 3 . 

Step .. 3 (exact .y-subproblem). Obtain . y by solving the exact .y-subproblem: 

.yk = argminy∈RmLH (xk, y, λk), (1.43) 

1.3.3 The Correction Step 

Through Remark 1.1 and Lemma 1.2, we know that the direction achieved by the 
prediction step is a descent direction of the merit function . w − w∗ 2

Mk
. However, 

.Mk is not a constant matrix, so we need a correction step to handle this issue. 
Let.W be a symmetric positive definite matrix and.w∗ ∈ ∗. Then,. w − w∗ 2

W−1

could be viewed as a measurement for the iterate .w being an optimal solution. 
Next, we show that .WMk(w

k − wk) is a descent direction of the merit function 
. w − w∗ 2

W−1 at an iterate .wk . 
Before we proceed, it is worth noting that.WMk(w

k − wk) is calculable although 
.Mk is unknown. Specifically, we have 

. 

Mk(w
k − wk)

=
⎛

⎝
δk In + Rk

x (xk − xk)
B HB + γk Im + Rk

y (yk − yk)
Axk + Byk − c

⎞

⎠

=
⎛

⎝
δk(xk − xk) + ∇2 f (xk)(xk − xk) − ∇ f (xk) + ∇ f (xk)

γk(yk − yk) + ∇2 g(yk) + B HB (yk − yk) − ∇g(yk) + ∇g(yk)
Axk + Byk − c

⎞

⎠ .

(1.44) 

So .WMk(w
k − wk) is a well-defined descent direction. We also have terms like 

. wk − wk 2
Mk

be calculable. Next, we equip the descent direction with a suitable 
step length. 

For convenience, we define 

.ϕ(wk, wk) wk − wk 2
Mk

+ (λk − λk) B(yk − yk). (1.45) 

To obtain the maximal decrease of the merit function . w − w∗ 2
W−1 , we define
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. wk+1(α) := wk + αWMk(w
k − wk)

and the maximal following difference 

. wk − w∗ 2
W−1 wk+1(α) − w∗ 2

W−1

wk − w∗ 2
W−1 wk − w∗ + αWMk(w

k − wk) 2
W−1

= −2α(wk − w∗) Mk(w
k − wk) − α2 WMk(w

k − wk) 2
W−1

≥ 2αϕ(wk, wk) − α2 Mk(w
k − wk) 2

W

=:

It is worthwhile to note that the quadratic function . attains its maximum at 

.αk = ϕ(wk, wk)

Mk(wk − wk) 2
W

, (1.46) 

Since . wk − w∗ 2 wk+1(α) − w∗ 2 ≥ , we choose a larger step size .ραk , 
where .ρ = [1, 2). The resulting correction step is drawn as follows. 

Algorithm 3 (Correction step) Obtain a prediction step .wk by Algorithm 2. 
Compute a step size .αk by (1.46) and generate the new iterate: 

.wk+1 := wk + ραkWMk(w
k − wk). (1.47) 

From this correction step, we show the decrease of the merit function . w −
w∗ 2

W−1 in the next lemma. 

Lemma 1.4 Suppose .wk and .wk+1 are generated by Algorithms 2 and 3, respec-
tively. Suppose Lemma 1.2 (2) holds. Then, 

. wk+1 − w∗ 2
W−1 wk − w∗ 2

W−1 − 2 − ρ

ρ
wk+1 − wk 2

W−1 . (1.48) 

Proof By Lemma 1.2 (2), we have Lemma 1.1. By Lemma 1.1, (1.45), the definition 
(1.46) of .αk and the update rule (1.47) for .wk+1, we have  

. wk+1 − w∗ 2
W−1 wk − w∗ 2

W−1

(1.47)
wk − w∗ + ραkWMk(w

k − wk) 2
W−1 wk − w∗ 2

W−1

= ρ2α2
k WMk(w

k − wk) 2
W−1 + 2ραk(w

k − w∗) Mk(w
k − wk)

(1.25),(1.45)≤ ρ2α2
k Mk(w

k − wk) 2
W − 2ραkϕ(wk, wk)

(1.46)= − (2 − ρ)ρα2
k Mk(w

k − wk) 2
W
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= −(2 − ρ)ρα2 
k WMk(w

k − wk ) 2 W −1 

(1.47)= −  (2 − ρ)ρ−1 wk+1 − wk 2 
W −1 . 

1.4 Convergence Analysis 

To prove the global convergence of the trust region-based splitting method, we need 
an additional assumption. 

According to (1.41), there exists a positive constant . κ such that 

. WMk κ1 W κ, ∀ k. (1.49) 

Along with Lemma 1.1, the step size.αk defined in (1.46) is obviously bounded away 
from zero: 

.αk = ϕ wk, wk

Mk wk − wk 2
W

≥
1
2 wk − wk 2

Mk

wk − wk 2
Mk WMk

≥ 1

2κ
∀k. (1.50) 

1.4.1 Global Convergence 

Now, we present the main convergence result. 

Theorem 1.1 Given an arbitrary initial iterate .w0 and let sequences .{wk+1} be 
generated by Algorithm 3. Then, either we have Lemma 1.2 (1) holds some . k or 

• . limk→∞ wk+1 − wk
W−1 = 0.

• . limk→∞ Mk(w
k − wk) 0.

• Any accumulation point of .{wk} is a solution of VI (1.11). 
• .{wk} converges to a solution of VI (1.11). 

Proof Once the initial iterate.w0 is given, according to Lemma 1.2, either (1) holds or 
(2) holds for every. k. If (1) holds for some. k, then the theorem is proved. Otherwise, 
we have (2) holds for every . k, then by Lemma 1.4, the sequence of merit function 
.. wk − w∗ 2

W−1} is decrease. So .{wk} is bounded above and . wk+1 − wk
W−1 must 

be vanish as .k → ∞. 
By the update rule (1.47) of  .wk+1 and the low bound (1.50) of the step size . αk , 

we get the second assertion. 
Since the merit function .. wk − w∗ 2

W−1} is decreasing, .{wk} is bounded, so 
Lemma 1.3 holds. Thus we have (1.41) and then the lower bound (1.50) of  . αk . 
Combining with Lemma 1.1, (1.47), and the definitions (1.22) of matrices .Mk and 
. N , we have
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. 

Mk wk − wk 2

W
= αk · ϕ wk, wk

≥ 1

2κ
· 1
2

wk − wk 2

Mk

≥ 1

4κ
B yk − yk

2

H .

Since. Mk(w
k − wk) W → 0 as.k → ∞, we get. B(yk − yk) H → 0. So. N (wk −

wk) 0. Recalling the important inequality (1.24), we obtain 

. F(wk) (Mk + N ) wk − wk 0.

So, the third assertion is also valid. 
Since .{wk} is bounded, it has at least one accumulation point, which is also an 

accumulation point of .{wk}; hence solution point of VI (1.11). The inequality (1.48) 
implies that .{wk} has just one accumulation point, and the last assertion follows 
immediately. 

1.4.2 Convergence Rate 

In this section, we show that the proposed trust region-based splitting method enjoys 
the .O(1 convergence rate in an ergodic sense. 

Theorem 1.2 ([Theorem 2.1 in [17]) The optimal solution set . ∗ of the VI (1.11) 
is convex and can be characterized as 

.
∗ =

w∈
w ∈ | (w − w) F(w) ≥ 0 . (1.51) 

According to this theorem, we say that .wt is an . -approximate optimal solution 
if it satisfies 

.(w − wt ) F(w) ≥ − ∀w ∈ (1.52) 

where . is a small positive number. To obtain an . e-approximate optimal solution, 
we reveal that the worst-case iterative number . t satisfies .t = O(1 . 

Next, we introduce a new vector 

.wk =
⎛

⎝
xk

yk

λk

⎞

⎠ :=
⎛

⎝
xk

yk

λk − H(Axk + Byk − c)

⎞

⎠ , (1.53) 

and a new matrix
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.Mk :=
⎛

⎝
δk In + Rk

x
B H B + γk Im + Rk

y

−B H−1

⎞

⎠ , (1.54) 

that will be used in this section. By some calculation, we obtain the following Lemma. 

Lemma 1.5 According to the new notations (1.53) and (1.54), the prediction step 
produces .wk ∈ satisfying 

.(w − wk) [F(wk) + Mk(w
k − wk)] ≥ 0, ∀w ∈ (1.55) 

Moreover, the following equalities hold 

.Mk(w
k − wk) = Mk(w

k − wk), (1.56) 

and 
.ϕ(wk, wk) = (wk − wk) Mk (wk − wk). (1.57) 

Proof Based on the new vector .wk , (1.19) could be rewritten as 

. 

⎧
⎪⎨

⎪⎩

∇ f (xk) + ∇2 f (xk)(xk − xk) − A λk + δk(x
k − xk) = 0,

∇g(yk) + ∇2 g(yk)(yk − yk) − B λk + (B HB + γk Im)(yk − yk) = 0,

(Axk + Byk − c) − B(yk − yk) + H−1(λk − λk) = 0.

In a compact form, the above VI equals to (1.55). 
Since .H−1(λk − λk) = −(Axk + Byk − c) = H−1(λk − λk) − B(yk − yk), the  

equation (1.56) hold. 
From the definition of.ϕ(wk, wk) in (1.45), the equality (1.56) and the definitions 

(1.22) and (1.54) of matrices .Mk and .Mk , we have  

. ϕ(wk, wk) wk − wk 2
Mk

+ (λk − λk) B(yk − yk)

= (wk − wk) Mk(w
k − wk) + (λk − λk) B(yk − yk)

= (wk − wk) Mk(w
k − wk)

= (wk − wk) Mk(w
k − wk)

= (wk − wk) Mk(w
k − wk).

The proof is complete. 

Lemma 1.6 Suppose the sequence .{wk} is generated by the trust region-based 
splitting method. Then, we get 

.(w − wk) F(w) ≥ (wk − w) M(wk − wk), (1.58)
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Proof Since the mapping .F (1.10) is monotone, we have 

. (w − wk) F(w) − (w − wk) F(wk) ≥ 0.

From the VI (1.55) in Lemma 1.5, we get 

. (w − wk) F(wk) ≥ (wk − w) Mk(w
k − wk)

Adding the above two inequalities, we obtain the validation of this lemma. 

Lemma 1.7 Suppose the sequences.{wk} and.{wk+1} are generated by the prediction 
and correction steps, respectively. Then, we have 

.(wk − w) W−1(wk+1 − wk) ≥ 1

2
w − wk+1 2

W−1 w − wk 2
W−1 , (1.59) 

Proof By some calculation, we have 

. (wk − w) W−1(wk+1 − wk)

= 1

2
w − wk+1 2

W−1 w − wk 2
W−1 + 1

2
wk − wk 2

W−1 wk+1 − wk 2
W−1 .

Hence, the rest of the proof is to show that the second term is nonnegative. By the 
update rule (1.47) of  .wk+1, the definition (1.46) of  . αk , and Lemma 1.5, we get the 
following equality. 

. 

wk+1 − wk W−1 wk − wk = ραkWMk wk − wk W−1 wk − wk

= −ραk wk − wk Mk wk − wk

= −ραkϕ wk, wk

= −ρα2
k Mk wk − wk 2

W

= −ρ−1 wk+1 − wk 2

W−1 .

So, the second term is 

. wk+1 − wk 2
W−1 wk − wk 2

W−1

wk+1 − wk 2
W−1 + 2(wk+1 − wk) W−1(wk − wk)

wk+1 − wk 2
W−1 − 2ρ−1 wk+1 − wk 2

W−1

= ρ − 2

ρ
wk+1 − wk 2

W−1 ≥ 0.

Therefore, this lemma is proved. 

Finally, we give the main theorem.
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Theorem 1.3 For any positive integer . t , we define 

.wt =
t
k=0 αkw

k

t
k=0 αk

. (1.60) 

Then, .wt ∈ and 

.(wt − w) F(w) ≤ κ

ρ(t + 1)
w − w0 2

W−1 , (1.61) 

which means that the proposed trust region-based splitting method enjoys the. O(1
convergence rate in an ergodic sense. 

Proof Since .wt is a convex combination of iterates .{w0, w1, . . . , wt } and the set . 
is convex, we get .wt ∈ . 

From Lemmas 1.5, 1.6 and 1.7, we get for all .w ∈ , 

.. ραk (w − wk) F(w) ≥ (wk − w) ραkMk(w
k − wk)

= (wk − w) W−1(wk+1 − wk)

≥ 1

2
w − wk+1 2

W−1 w − wk 2
W−1

Then, we sum over the above inequalities for.k = 0, 1, . . . , t and divide.ρ
t
k=0 αk , 

. w −
t
k=0 αkw

k

t
k=0 αk

F(w) ≥ 1

2ρ t
k=0 αk

w − wt+1 2
W−1 w − w0 2

W−1

≥ − 1

2ρ t
k=0 αk

w − w0 2
W−1 .

Furthermore, we note that .αk ≥ 1
2κ by (1.50), so we have .2 t

k=0 αk ≥ 1
κ
(t + 1). 

Hence, we conclude that 

. (w − wt ) F(w) ≥ − κ

ρ(t + 1)
w − w0 2

W−1 , ∀w ∈

The proof is complete. 

Therefore, for any given initial iterate .w0 ∈ and any nonempty compact set 
.D ∈ , we denote ..d := max w − w0

W−1 | w ∈ D}. Then, for any small positive 
number . , after  

. t = κd2

iterations, the trust region-based splitting method produces a point .wt (1.60) such 
that



22 L. Hu et al.

. sup
w∈D

(wt − w) F(w) ≤ −1.

In this viewpoint, we approve that the trust region-based splitting method enjoys the 
.O(1 convergence rate in an ergodic sense. 

1.5 Numerical Experiments 

In this section, we apply the proposed trust region-based splitting method to image 
recovery problems and logistic regression problems, and compare it with some 
existing splitting methods. 

1.5.1 Constrained .TV-. 2 Image Recovery Problems 

The image recovery problem is a sort of inverse problem in image analysis. Our 
interest is in finding the true image . z from its degraded observation . z0. The degra-
dation comes from two facts. The first one is blur which is created by an improper 
lens adjustment or a movement. The other one is random noise . b that is assumed to 
be Gaussian, white, and additive. The linear model of the degradation process is 

. z0 = z + b,

where .z0, z, b ∈ R
n , . ∈ R

n×n is a linear blur map and . n is the number of pixels. 
Next, we give the definition of the total variation (TV) of a two-dimensional (2D) 

image [ 20]. For a given image. z, its discrete derivative .∇z in horizontal and vertical 
directions are denoted by .∂1z and .∂2z, respectively. Then, 

.∇z := ∂1z
∂2z

∈ R
2n. (1.62) 

When the circular boundary conditions are assumed, these two partial derivatives 
could be efficiently computed using the 2D discrete Fourier transformation . F : 

. ∂1z = F −1D1F z, and ∂2z = F −1D2F z,

where .D1, D2 ∈ C
n×n are two diagonal matrices. Moreover, the blur map is also 

diagonalized as . = F −1KF , where .K ∈ C
n×n is the blur kernel. Then, the TV of 

. z is defined as: 

. z 1 :=
n

i=1

[∂1z]2i + [∂2z]2i ∈ R
n. (1.63)
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In this experiment, we consider the constrained.TV-. 2 model for image recovery 
which is studied in [ 18]: 

.
min z 1

s.t. z − z0
2 ≤ σ,

(1.64) 

where . σ denotes a noise level which is known in advance. To apply the proposed 
trust region-based splitting algorithm, we introduce two auxiliary variables .s = ∇z, 
.t = z − z0 and an indicator function of a ball . t t 2 ≤ σ }

. π (t) = 0 if t 2 ≤ σ,

+∞ otherwise.

Then, the constrained .TV-. 2 model (1.64) is equivalent to 

. 

⎧
⎪⎨

⎪⎩

min s 1 + π (t)

s.t. ∇z − s = 0, s ∈ R
2n,

z − t = z0, t ∈ R
n .

Let 

. x = z, y = s
t

, λ = μ

ν
∈ R

2n × R
n,

f (x) = 0, g(y) s 1 + π (t),

A = ∇
, B = −I2n 0

0 −In
, c = 0

z0
, H = ξ I2n 0

0 ηIn
.

The augmented Lagrangian function is represented as follows: 

. L(ξ,η)(s, t, z, μ, ν) s 1 + π (t) − μ (∇z − s) − ν z − t − z0)

+ ξ

2
z − s 2 + η

2
z − t − z0

2.

whereafter, we give the initial image .z0 = z0, initial auxiliary variables .s = 0 and 
.t = 0, initial multiplier.μ0 = 0 and.ν0 = 0 and begin the following loops with.k ← 0. 

• Update the variable .x = z in a trust region . z − zk k . 

.zk = argminz −(μk) ∇z − (νk) z + ξ

2
z − sk 2 + η

2
z − t k − z0

2

s.t. z − zk k

= argminz
ξ

2
z − sk − ξ−1μk 2 + η

2
z − t k − z0 − η−1νk 2

s.t. z − zk k .
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Let .d := z − zk . Then we turn to minimize . d

.

⎧
⎨

⎩

argmind
ξ

2
d + ∇zk − sk − ξ−1μk 2 + η

2
d + zk − tk − z0 − η−1νk 2

s.t. d k .

(1.65) 

When the 2D discrete Fourier transformation is employed, we define . d :=
F d. Then, the trust region constraint . d k is equivalent to . d

√
n k . 

Furthermore, let 

. 
p
q

:= ∇zk − sk − ξ−1μk, and r := zk − t k − z0 − η−1νk,

where .p, q, r ∈ R
n . And we define .p := F (p), .q := F (q), .r := F (r). Then, 

solving the optimization problem (1.65) is equivalent to minimizing . d

.

⎧
⎨

⎩

argmind
ξ

2
D1d + p 2 D2d + q 2 + η

2
Hd + r 2

s.t. d
√
n k .

(1.66) 

This trust region subproblem, whose Hessian is diagonal, could be solved by a 
dozen of classical algorithm, and the corresponding multiplier .δk is estimated 
simultaneously. Here, we prefer to use a nearly exact solver which is introduced 
in the famous book [ 19, Algorithm 4.4]. 
After the solution of the trust region subproblem (1.66) is obtained, we compute 

. zk = zk + F −1d.

• Update .y = (s, t). Since variables . s and . t are not coupled. we could update them 
separately. For the simplicity of the computation, we set the trust region radius. k

of this subproblem is large enough. So, the trust region constraints for variables . s
and . t are inactive and the corresponding multiplier .γk = 0. 
First, we consider the variable . s. 

. sk = argmins s 1 + (μk) s + ξ

2
zk − s 2

= argmins s 1 + ξ

2
s − (∇zk − ξ−1μk) 2 . (1.67) 

According to the definition (1.63) of TV, the above optimization problem is separa-
ble. Recalling that the auxiliary variable .s(= ∇z) ∈ R

2n and the special structure 
(1.62) of .∇z, we correspondingly rewrite 

.s =: s1
s2

and ∇zk − ξ−1μk =: υ1

υ2
,
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where .s1, s2, υ1, υ2 ∈ R
n . Let  

. ši := [s1]i
[s2]i ∈ R

2 and υ̌ i := [υ1]i
[υ2]i ∈ R

2.

Then, the separable optimization problem (1.67) is equivalent to the following 
small problems: 

. argminši si
ξ

2
si − υ̌ i 2 , for i = 1, . . . , n.

The closed-form solution of this 2D optimization is given by the 2D shrinkage 
formula [ 23]: 

. ši = max υ i 1

ξ
, 0

υ̌ i

υ i
, for i = 1, . . . , n,

where .0 · (0/0) = 0 is followed. So .sk is obtained cheaply. 
Second, we turn to the variable . t . 

. t k = argmint π (t) + (νk) t + η

2
zk − t − z0

2

= argmint π (t) + η

2
t − zk − z0 − η−1νk) 2

= P zk − z0 − η−1νk),

where .P (·) is the projective operator onto the ball . : 

. P (a) =

⎧
⎪⎨

⎪⎩

a if a 2 ≤ σ,√
σ

a
a otherwise.

• Update the multiplier .λ = (μ, ν). 

. μk = μk − ξ(∇zk − sk),

νk = νk − zk − t k − z0).

• The correction step is straightforward. 

Then, we apply the novel trust region-based splitting method (TRSP) to a T1-
weighted magnetic resonance image. Figure 1.1a, which is the true image, shows a 
horizontal slice of a human brain and Fig. 1.1b illustrates its gradient map 

. [∂1z]2i + [∂2z]2i
i=1,2,...,n

.
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Fig. 1.1 A T1-weighted magnetic resonance image on a horizontal slice of a human brain. The 
true image (a) and its gradient map (b). The blurry and noisy image (c) and its gradient map (d) 

A blurry and noisy image and its gradient are shown in Fig. 1.1c and d. Obviously, 
the degraded image has thick and blurry edges. The TV-based model is an efficient 
way to impose sharp edges. 

Here, we compare the novel TRSP with the basic ADMM (bADM) and the descent 
ADMM (dADM) [ 26]. In the first .50 iterations of TRSP, we allow parameters . ξ and 
. η in the penalty matrix adjust adaptively [ 8, 16]. All these algorithms start from the 
same initial points, and stop when the relative improvement of the objective TV of 
the restored image is small enough: 

. 
zk zk−1

zk
≤ 10−5.

To measure the quality of restored images, we employ the scalar measurement 
named the signal-to-noise ratio (SNR): 

. SNR = 10 log10
z∗ − z∗ 2

z∗ − z 2
,

where .z∗ is the true image and .z∗ is its mean intensity value. We draw the SNRs 
versus iterations for bADM, dADM, and TRSP in Fig. 1.2. While the SNR of images 
obtained by bADM and dADM are respectively.26.5 and.27.2, TRSP returns an image 
with largest SNR.= 27.5 which means that a higher quality image is reconstructed. 
We illustrate restored images and corresponding gradient maps in Fig. 1.3. However, 
all the restored images have little difference in visualization. 

Finally, we turn to compare the convergence rate of bADM, dADM, and TRSP. 
The detailed results on the number of iterations and CPU times are shown in Table 1.1. 
Compared with the basic ADM, the proposed TRSP saves about .59% iterations and 
.44%CPU times. These results indicate that the trust region-based splitting algorithm 
is efficient and promising.
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Fig. 1.2 Comparison of SNRs for bADM, dADM and TRSP 

Fig. 1.3 Restored images and their gradient maps
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Table 1.1 Iterations and CPU times (second) for the image recovery problem 

bADM dADM TRSP 

Iterations 2352 1351 969 

CPU times 44.7 31.8 24.9 

1.5.2 . 1 Regularized Logistic Regression 

The image recovery problem has a quadratic objective function, which lacks analysis 
between TRSP, linearized ADMM (lADM), and majorized ADMM (mADM). In 
this section, we consider a . 1 regularized logistic regression problem for binary 
classification in [ 1, p. 92, (11.1)]. The problem is 

. min
w∈Rn ,v∈R

m

i=1

log 1 + exp(−bi (a
T
i w + v)) + μ w 1, (1.68) 

with the training set consists of .m pairs .(ai , bi ), where .ai ∈ R
n is the feature vector 

and .bi ∈ {−1, 1} is the label. The parameter . μ is the regularization parameter. 
We generated a problem instance with.m = 2000 training examples and. n = 200

features. Each feature vector. ai has a random number of nonzero features which were 
drawn from a standard normal distribution. The number of nonzero features was 
generated by a Poisson distribution with mean .40, and the positions of the nonzero 
features were chosen uniformly at random. We pick a random vector.w∗ and a random 
scalar .v∗ to be the true solution. .w∗ ∈ R

n was generated to have approximately . 40
nonzero entries each row, and .v∗ was sampled from a standard normal distribution. 
The number of nonzero entries in .w∗ was generated by a binomial distribution with 
probability .0.2 with a uniformly random position. The labels .bi were generated by 

. bi = sign(aT
i w∗ + v∗ + i ),

where . i is a random variable drawn from.N(0, 0.1). 
As in [ 1, p. 92, (11.1)], we set .μ = 0.1μmax, where .μmax is obtained by . μmax =

AT b ∞, where 

. bi = θpos, if bi = 1,
θneg, if bi = −1,

where .θpos and .θneg are the fraction of positive and negative labels, respectively. 
We fit the . 1 regularized logistic regression model (1.68) into a global consensus 

problem as 

.

min
xi , z

m

i=1

li (xi ) + μ z 1,

s.t. xi = z, i = 1, 2, . . . ,m,

(1.69)
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where .xi = (vi , w
T
i )T , .z = (v,wT )T , .v, vi ∈ R, .w,wi ∈ R

n , . li (xi ) = log(1 +
exp(−bi (aT

i wi + vi ))). 
Let 

. 

x =

⎛

⎜
⎜
⎜
⎝

x1
x2
...

xm

⎞

⎟
⎟
⎟
⎠

, y = z, λ =

⎛

⎜
⎜
⎜
⎝

λ1

λ2
...

λm

⎞

⎟
⎟
⎟
⎠

,

f (x) = m
i=1 li (xi ), g(y) = μ y 1,

A = Imn, B =

⎛

⎜
⎜
⎜
⎝

−In
−In

...

−In

⎞

⎟
⎟
⎟
⎠

∈ R
mn×n, c = 0, H = ξ Imn,

For TRSP, we give initial points .x0 = 0, .y0 = 0, .λ0 = 0 and begin the following 
loops. Before the iteration, we set proper .TOLx , .TOLy and .TOLλ, and give a guess 
of .L f and approximate error of Hessian matrix . ε. 

• Update the variable . x in a trust region . x − xk k , due to the separability of 
the objective function, we could update .xi separately. 

. xki = argmin xi−xki k,i

ξ

2
xi − yk − ξ−1λk

i
2 + lki (xi ) .

where.lki (xi ) is the quadratic approximation of.li (xi ) at. xki . According to Sect. 1.3.1, 
we have the subproblem is equivalent to (1.15). Then we could solve the 
subproblem by 

.xki = (∇2li (xi ) + (ξ + δk,i )In)
−1(∇li (xi ) + ξ(xki − yk − ξ−1λk

i )). (1.70) 

This inverse matrix could be computed under an L-BFGS framework, such as 
in [ 11]. If. li (xi ) + ξ(xki − yk − ξ−1λk

i ) TOLx , we skip the subproblem and 
set .xki = xki . Otherwise, we need to ensure .δk,i ≥ L f xki − xki ε to get . xki . 
Here we let.δk ≤ δk,i for all. i such that.xki = xki . After we get. x

k , we update.δk in a 
similar way in Algorithm 2, Step. 2 . For given boundaries .1 < η1 < η2, we recall 
the notation .rkx,i = L f xk − xk ε and update .δk by 

. δk+1,i =
⎧
⎨

⎩

0.5max(δk,i , (1 + η1)rkx,i ), δk,i ∈ [η2rkx,i ,+∞),

δk,i , δk,i ∈ [η1rkx,i , η2rkx,i ),
.5δk,i , δk,i ∈ [rkx,i , η1rkx,i ).

• Update the variable . y in an exact solution as the soft-thresholding operator 

.yk = shrinkage
μξ/m

1

m

m

i=1

xki + ξ−1λk .
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Solve the .y-subproblem exactly is valid in the TRSP scheme as discussed in 
Remark 1.3. 

• Update the multiplier . λ by 

. λk = λk − ξ(xk − Byk).

Here we compare the TRSP with the basic ADMM, with the subproblem solved 
by the L-BFGS method. All the algorithms start from the same initial points, .x = 0, 
.y = 0, .λ = 0. Through Fig. 1.4a, we observe the convergence rate of the resid-
ual norm, which is the residual of the consensus constraint, defined as . rknorm :=

i = 1m xki − zk 2, for the three algorithms. The TRSP method demonstrates a 
significantly faster convergence compared to both the basic ADMM and Majorized 
iPADMM (MADMM), with the residual norm decreasing more rapidly and smoothly. 
Figure 1.4b shows the dual residual norm, defined as .sknorm zk − zk−1

2. The  
TRSP method again exhibits superior performance, converging faster and achieving 
lower dual residual norms compared to the basic ADMM and MADMM. Figure 1.4c 
presents the comparison of the objective values among the methods. We calculate 

Fig. 1.4 Comparison among TRSP, basic ADMM and majorized iPADMM for . 1 regularized 
logistic regression
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the objective value of the.k-th iteration and true solution with. x∗
i = z∗ = (v∗, w∗T )T

as 

. objvalk =
m

i=1

li (x
k
i ) + μ zk 1, objvaltrue =

m

i=1

li (x
k
i ) + μ zk 1

and compare .objvalk − objvaltrue for all methods. The TRSP method consistently 
achieves lower objective values faster than both the basic ADMM and MADMM. 
Lastly, Fig. 1.4d illustrates the training accuracy for all methods. The training accu-
racy is defined as the percentage of correctly classified training examples, and is 
calculated as 

. accktrain = 1

2m
bkpred − b 1,

where .bkpred = sign (1 + exp(−aT
i wk − vk))−1 − 0.5 . All algorithms achieve an 

accuracy over 90%. 
In summary, the numerical experiments clearly demonstrate that TRSP outper-

forms both the basic ADMM and Majorized iPADMM (MADMM) in terms of 
convergence rate, dual residual norm reduction, objective value optimization, and 
training accuracy. The use of L-BFGS for solving subproblems in TRSP contributes 
to its enhanced performance. 

1.6 Conclusion 

In this paper, we propose to solve the subproblems of a splitting method in an explicit 
trust region constraint. As a result, we established an efficient trust region-based 
splitting method for solving a class of separable convex optimization and variational 
inequalities. We analyzed the global convergence of the new algorithm under some 
mild assumptions. Moreover, we proved that the new algorithm enjoys the . O(1
convergence rate in an ergodic sense. Numerical experiments showed that the novel 
trust region-based splitting method is competitive with many existing algorithms for 
image recovery and logistic regression problems. 
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Chapter 2 
Forward-Reflected-Backward Method 
with Extrapolation and Linesearch 
for Monotone Inclusion Problems 

Tanxing Wang, Heng Zhang, and Xingju Cai 

Abstract The extrapolation technique has been widely used to accelerate the 
forward-reflected-backward method for monotone inclusion problems. This paper 
considers a new forward-reflected-backward method with extrapolation (.FRBe), 
which adapts a new extrapolation direction different from the existing acceleration 
method and uses the latest extrapolation point for the Lipschitz operator. Further, to 
improve the numerical performance, we propose the linesearch procedure based on 
the .FRBe by using only the locally Lipschitz constant. Compared to existing meth-
ods, our proposed methods not only cover some classical methods, but can also offer 
a larger stepsize that does not depend on the global Lipschitz constant. We establish 
the weak convergence of the proposed methods under mild and standard assump-
tions. In addition, we conduct some numerical experiments on the lasso problem and 
the . 1 regularized logistic regression problem to demonstrate the advantage of the 
proposed methods. 

Keywords Forward-reflected-backward method · Monotone inclusion ·
Extrapolation · Linesearch · Weak convergence 

2.1 Introduction 

In this paper, we propose two methods for finding a zero in the sum of two monotone 
operators in a real Hilbert space. H . Specifically, we consider the monotone inclusion 
problem: 

.find x ∈ H such that 0 ∈ (A + B)x, (2.1) 
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where .A : H ⇒ H and .B : H → H are two (maximally) monotone operators with 
. B (locally) Lipschitz continuous such that.(A + B)−1(0) = ∅. The monotone inclu-
sion problem (2.1) has drawn much attention because it provides a broad unifying 
framework for variational inequalities, convex minimization problems, split fea-
sibility problems and equilibrium problems, and has been applied to solve various 
real-world problems from machine learning, signal processing and image restoration, 
see [ 1, 2, 5, 10, 13, 27, 32]. 

A popular model, which can be formulated under the monotone inclusion, is the 
following optimization problem of the sum of two functions: 

. min
x∈H

f (x) + g(x), (2.2) 

where . f : H → (−∞,∞] is proper, closed, convex, and .g : H → R is convex 
with (locally) Lipschitz continuous gradient denoted as .∇g. The solutions to this 
minimization problem are precisely the points .x ∈ H which satisfy the first-order 
optimality condition: 

. 0 ∈ ∂ f (x) + ∇g(x),

where .∂ f is the subdifferential of . f . In this case, the optimization problem is 
equivalent to the monotone inclusion problem (2.1) with .A = ∂ f and .B = ∇g. 

In recent years, there is a growing interest in the design and analysis of splitting 
algorithms for solving the monotone inclusion problem (2.1). In 1979, Passty [ 24] 
and Lions et al. [ 16] proposed the following forward-backward (FB) method, which 
combines one forward evaluation of .B and one backward evaluation of .A in each 
iteration. More precisely, the method generates a sequence .{xk}k∈N according to 

. xk+1 = JλA(x
k − λBxk),

where .λ ∈ (0, 2/L), .L is the Lipschitz continuity modulus of .B and . JλA = (I +
λA)−1. Under the assumption that the operator .B : H → H is .1/L-cocoercive, the 
authors proved that each bounded sequence generated by FB converges weakly to a 
solution. 

It is worthing that coercivity of an operator is a stronger property than Lipschitz 
continuity and hence can be difficult to satisfy for a general monotone inclusion 
problem. In 2000, Tseng [ 33] proposed a modification of the forward-backward 
method to relax the coercivity assumption, which is known as Tseng’s method or the 
forward-backward-forward (FBF) method. It only requires the Lipschitzness of. B at 
the expense of an additional forward evaluation. Applied to (2.1), Tseng’s method 
generates sequences .{xk}k∈N according to 

.
yk = JλA(xk − λBxk),
xk+1 = yk − λByk + λBxk,
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where .λ ∈ (0, 1/L) and converges weakly to a solution. 
Under the same assumptions as Tseng’s method [ 33], Malitsky and Tam [ 18] 

proposed the forward-reflected-backward (FRB) method for solving (2.1), which 
requires only one forward evaluation per iteration instead of two. The corresponding 
update scheme reads as 

. xk+1 = JλA(x
k − λBxk − λ(Bxk − Bxk−1)),

and converges weakly if .B is .L-Lipschitz and the stepsize is chosen to satisfy 
.λ < 1/2L . 

As FB, FBF, and FRB are the first-order splitting algorithms, acceleration tech-
niques are of great practical interest to improve the performance of these algorithms. 
One simple and efficient strategy is to incorporate the inertial technique, which 
was first introduced by Polyak [ 25] in 1964. Recently, there are increasing inter-
ests in studying inertial type algorithms, such as inertial forward-backward splitting 
methods for separable optimization problems under the nonconvex setting [ 20] and 
strongly convex setting [19], inertial versions of the Douglas-Rachford operator split-
ting method [ 4], inertial forward-backward-forward method [ 3] based on Tseng’s 
approach [ 33] and general inertial proximal point method for the mixed variational 
inequality problem [ 9]. Specially, motivated by the idea of the heavy-ball method 
[ 25], Malitsky and Tam [ 18] proposed an inertial forward-reflected-backward split-
ting algorithm (iFRB) for solving problem (2.1). The corresponding update scheme 
reads as 

.
yk = xk + α(xk − xk−1),

xk+1 = JλA(yk − λBxk − λ(Bxk − Bxk−1)),
(2.3) 

where .α ∈ [0, 1/3), .0 < λL < (1 − 3α)/2. It is worth noting that the iteration 
scheme (2.3) does not use the latest extrapolation point.yk for the calculation of oper-
ator . B. In view of this, in this paper, we propose a new forward-reflected-backward 
method with extrapolation (.FRBe) for solving the monotone inclusion problem (2.1). 
Further, taking into account that the global Lipschitz constant is not easily obtained 
and it can often lead to overconservative stepsize, we propose a forward-reflected-
backward method with extrapolation and linesearch (.FRBel). Under mild and stan-
dard assumptions, we establish the weak convergence of the sequences generated 
by the proposed methods. Numerical experiments on the lasso problem and the . 1
regularized logistic regression problem to demonstrate the advantage of the proposed 
methods. 

The rest of this paper is organized as follows. In Sect. 2.2, we recall some defi-
nitions and results for further analysis. In Sect. 2.3, we introduce .FRBe and . FRBel

and investigate their convergence. Some numerical results are reported in Sect. 2.4. 
Finally, we draw some conclusions in Sect. 2.5.
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2.2 Preliminaries 

In this section, we summarize some necessary notations and results for further anal-
ysis. 

Let .H be a real Hilbert space with the inner product . , and the induced norm 
. , and use . 1 to denote the . 1 norm. Let .{xk}k∈N be a sequence in . H . We  
write .xk x to stand for the weak convergence of the sequence .{xk}k∈N to . x ∈ H
as .k → +∞. Let  .A : H ⇒ H be a set-valued operator. The graph of .A : H ⇒ H , 
denoted by gph(. A) is defined by 

. gph(A) := {(x, u) ∈ H ×H | § ∈ H, ∈ A§}.

Let us review some basic definitions and concepts. 

Definition 2.1 ([ 2]) We say that the operator . A is 

(i) monotone if 

. x − y, u − v 0, ∀ (x, u), (y, v) ∈ gph(A);

(ii) maximal monotone if it is monotone and gph(. A). ⊃ gph(. B) where. B is any other 
monotone operator. 

Remark 2.1 An important property of a maximal monotone operator . A : H ⇒ H
is that, if a pair .(x, u) ∈ H ×H and . x − y, u − v 0 for all .(y, v) ∈ gph(A), 
then .u ∈ A(x). 

For a given maximal monotone operator . A, the resolvent 

.JλA(x) = (I + λA)−1(x), (2.4) 

for.x ∈ H and.λ > 0 is a single-valued mapping, where. I is the identity operator on 
. H . Furthermore, . JλA(x) − JλA(y) x − y for all .x, y ∈ H . A single-valued 
operator .B : H → H is .L-Lipschitz continuous if there exists .L > 0 such that 

. Bx − By L x − y , ∀ x, y ∈ H,

and . B is .β-cocoercive if there exists .β > 0 such that 

. Bx − By, x − y β Bx − By 2, ∀ x, y ∈ H .

Let .C(x, δ) denote the open ball in .H with centra . x and radius .δ > 0. Recall that 
.B : H → H is called locally Lipschitz provided for each.x ∈ H , there exists. δx > 0
such that the restriction of . B to .C(x, δx ) is Lipschitz. The following result gives the 
maximal monotonicity of the sum of two monotone operators.
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Lemma 2.1 ([ 23]) Suppose .A : H ⇒ H is a maximal monotone operator and 
.B : H → H is a Lipschitz continuous and monotone operator. Then .A + B is a 
maximal monotone operator. 

We use the following identities in our convergence analysis. 

Lemma 2.2 ([ 2, 14]) For any vectors.a, b, c and.d .∈ H , the following identity holds 

. a − b, c − d
1

2
( a − d 2 a − c 2) + 1

2
( b − c 2 b − d 2).

Lemma 2.3 ([ 2]) For any vectors . x and .y .∈ H , .α ∈ R, then 

. αx + (1 − α)y 2= α x 2+(1 − α) y 2−α(1 − α) x − y 2.

The lemma below is quite well known and plays an important role in proving 
weak convergence of sequences in a Hilbert space. 

Lemma 2.4 ([ 21]) Let.K be a nonempty subset of a Hilbert space.H and let. {xk}k∈N
be bounded sequence in . H . Assume the following two conditions are satisfied: 

(i) .limk→∞ x − xk exists for each .x ∈ K; 
(ii) every weak cluster point of .{xk}k∈N belongs to . K. 

Then .{xk}k∈N is weakly converges to a point in . K. 

Lemma 2.5 ([ 2]) Let .A : H ⇒ H be maximally monotone and let .x ∈ H . Set 

. (∀ λ ∈ R++) xλ = JλAx .

Then ..xλ → PdomA(x) as .λ ↓ 0, and exactly one of the following holds: 

(i) .zerA 0 and .xλ → PzerA as .λ ↑ +∞; 
(ii) .zerA = 0 and .||xλ|| → ∞ as .λ ↑ +∞. 

2.3 Algorithms and Convergence Analysis 

In this section, we first introduce a forward-reflected-backward method with extrapo-
lation (.FRBe) for solving the monotone inclusion problem (2.1), described in Algo-
rithm 1 in Sect. 2.3.1 This method adapts a new extrapolation direction different 
from the existing acceleration method [ 5, 7, 8, 11, 12, 22, 29– 31] and uses the 
latest extrapolation point for operator . B. Then, we establish the convergence results 
of .FRBe in Sect. 2.3.2 Furthermore, we incorporate a linesearch procedure into the 
.FRBe method, named forward-reflected-backward method with extrapolation and 
linesearch (.FRBel) in Sect. 2.3.3 To this end, we make some necessary assumptions 
on problem (2.1) below, which will be used throughout this section.
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Assumption 2.1 (i) .A : H ⇒ H is a set-valued maximal monotone operator; 
(ii) .B : H → H is a single-valued monotone operator and L-Lipschitz continuous; 
(iii) The solution set .(A + B)−1(0) of inclusion problem (2.1) is nonempty. 

Note that points.(i), (i i), and.(i i i) in Assumption 2.1 are the common assumptions 
for monotone inclusion problem, which are consistent with the forward-backward-
forward method in [ 33], the forward-reflected-backward method in [ 18] and the 
double inertial forward-backward-forward method in [ 34]. 

2.3.1 Proposed .FRBe for Solving Inclusion Problem 

Motivated by the idea of forward-reflected-backward method in [ 18] and the inertial 
algorithms in [ 5, 7, 8, 11, 12, 22, 29– 31], we propose a forward-reflected-backward 
method with extrapolation, denoted as.FRBe, in Algorithm 1. Compared with existing 
algorithms, our algorithm provides more flexibility in choosing parameters, which 
would potentially enhance the algorithm’s performance. 

Algorithm 1 Forward-reflected-backward method with extrapolation . (FRBe)

1: Choose.λ0 > 0,. 0 which are close to 0, .α ∈ [0, 1). Set. x0 = y−1 ∈ H .

2: For.k = 0, 1 · · · , compute 

. 
yk = xk + α(xk − yk−1),

xk+1 = Jλk A(yk − λk Byk − λk−1(Bxk − Byk−1)), (2.5)

where the stepsize sequence.{λk}k∈N is nondecreasing and satisfies 

. λ0 λk
1 − α −

L(α2 + 2α + 2)
. (2.6)

Remark 2.2 .FRBe can reduce to some classical algorithms when the operators and 
the parameters take specific values, such as proximal point algorithm [ 28], Popov’s 
method [ 26], projected reflected gradient method [ 17], forward-reflected-backward 
method [ 18], and so on. For simplicity, we only consider the fixed stepsize case, i.e., 
there exists.λ ∈ (0, (1 − α)/L(α2 + 2α + 2)) such that.λk = λ for all. k. In this case, 
.FRBe can be expressed compactly as 

.
yk = xk + α(xk − yk−1),

xk+1 = JλA(yk − λByk − λ(Bxk − Byk−1)).
(2.7) 

(i) If .α = 0, .FRBe reduce to the forward-reflected-backward method [ 18], that is, 

.xk+1 = JλA(x
k − λBxk − λ(Bxk − Bxk−1)).
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(ii) If .α = 0 and .B = 0, then .FRBe simplifies to the proximal point algo-
rithm [ 14, 28]. That is, 

. xk+1 = JλA(x
k).

(iii) If .α = 0, .A = NC is the normal cone to a set . C , and .B is an affine operator, 
then .FRBe can be expressed as 

. xk+1 = PC(xk − λB(2xk − xk−1)),

which coincides with the projected reflected gradient method [ 17] for VIs. 
(iv) If .α = 0 and .A = NH = 0, then .FRBe method (2.7) becomes 

.xk+1 = xk − 2λBxk + λBxk−1. (2.8) 

It is worth noting that the iteration scheme (2.8) can be expressed as the two-step 
recursion 

. 
yk+1 = yk − λBxk,
xk+1 = yk+1 − λBxk .

This is exactly Popov’s algorithm [ 26] for unconstrained VIs. Furthermore, 
in the GANs literature, (2.8) is also known to be equivalent to the optimistic 
gradient method. For details, see the discussion in [ 15]. 

2.3.2 Convergence Analysis of . FRBe

In this section, we investigate the weak convergence of the proposed .FRBe with the 
help of Assumption 2.1. To this aim, we consider the metric function 

. Ek := 1

1 + α
x − yk 2+2λk−1 x − xk, Bxk − Byk−1

+ λk−1L(α2 + α + 1) xk − yk−1 2, (2.9) 

where .x ∈ (A + B)−1(0), i.e., the element of the solution set. In the following, we 
show that the sequence .{Ek}k∈N is monotonically nonincreasing. 

Lemma 2.6 Suppose that Assumption 2.1 holds. Let .{xk}k∈N be the sequence gen-
erated by Algorithm 1. Then, the sequence .{Ek}k∈N is monotonically nonincreasing. 
In particular, for any .k 0, it holds that 

.Ek+1 Ek − C xk+1 − yk 2, (2.10) 

where .C = (1 − α) − λk L(α2 + 2α + 2) > 0.
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Proof Using the definition of the resolvent in (2.4) and the .xk+1 in (2.5), we obtain 

.xk+1 − yk + λk By
k + λk−1(Bx

k − Byk−1) ∈ −λk Ax
k+1. (2.11) 

By the monotonicity of . A, we have  

. x − xk+1, λk Ax − λk Ax
k+1 0. (2.12) 

Pick .x ∈ (A + B)−1(0), then 

. − λk Bx ∈ λk Ax . (2.13) 

Plugging (2.11) and (2.13) into (2.12), we have 

. x − xk+1, xk+1 − yk + λk By
k + λk−1(Bx

k − Byk−1) − λk Bx 0.

Rearranging the above inequality gives 

. 0 2 x − xk+1, xk+1 − yk 2λk x − xk+1, Byk − Bx

+ 2λk−1 x − xk+1, Bxk − Byk−1

x − yk 2 x − xk+1 2 xk+1 − yk 2

+ 2λk x − xk+1, Byk − Bxk+1 2λk x − xk+1, Bxk+1 − Bx

+ 2λk−1 x − xk, Bxk − Byk−1 2λk−1 xk − xk+1, Bxk − Byk−1

x − yk 2 x − xk+1 2 xk+1 − yk 2

+ 2λk x − xk+1, Byk − Bxk+1 2λk−1 x − xk, Bxk − Byk−1

+ λk−1L xk+1 − xk 2 + λk−1L xk − yk−1 2, (2.14) 

where the equality follows from Lemma 2.2 and the second inequality holds by using 
the monotonicity of . B, the Lipschitz continuity of . B, and the Cauchy inequality 
.2ab a2 + b2 with .a xk − xk+1 and .b xk − yk−1 . 
Therefore, we have 

. x − xk+1 2 + 2λk x − xk+1, Bxk+1 − Byk xk+1 − yk 2

x − yk 2 + 2λk−1 x − xk, Bxk − Byk−1 λk−1L xk+1 − xk 2

+ λk−1L xk − yk−1 2. (2.15) 

From (2.5), we obtain 

.xk+1 = 1

1 + α
yk+1 + α

1 + α
yk, (2.16)
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.yk+1 − yk = (1 + α)(xk+1 − yk), (2.17) 

.yk − xk = α(xk − yk−1). (2.18) 

Thus, it follows from (2.16), (2.17), (2.18) and Lemma 2.3, we have  

. x − xk+1 2

= x − 1

1 + α
yk+1 + α

1 + α
yk

2

= 1

1 + α
(x − yk+1) + α

1 + α
(x − yk)

2

= 1

1 + α
x − yk+1 2 + α

1 + α
x − yk

2 − α

(1 + α)2
yk+1 − yk

2

= 1

1 + α
x − yk+1 2 + α

1 + α
x − yk

2 − α xk+1 − yk
2
, (2.19) 

and 

. xk+1 − xk 2

xk+1 − yk + yk − xk 2 xk+1 − yk + α(xk − yk−1) 2

xk+1 − yk 2 + α2 xk − yk−1 2 + 2α xk+1 − yk, xk − yk−1

(1 + α) xk+1 − yk 2 + (α2 + α) xk − yk−1 2, (2.20) 

where the last inequality follows from Cauchy-Schwarz and Young inequalities. 
Substituting (2.19) and (2.20) into (2.15), we get 

. 
1

1 + α
x − yk+1 2 + 2λk x − xk+1, Bxk+1 − Byk (1 − α) xk+1 − yk 2

1

1 + α
x − yk 2 + 2λk−1 x − xk, Bxk − Byk−1 λk−1L xk − yk−1 2

+ λk−1L xk+1 − xk 2

1

1 + α
x − yk 2 + 2λk−1 x − xk, Bxk − Byk−1 λk−1L xk − yk−1 2

+ λk−1L(1 + α) xk+1 − yk 2 + λk−1L(α2 + α) xk − yk−1 2. (2.21) 

Combining the definition of .{Ek}k∈N in (2.9) and (2.21), we obtain 

.Ek+1

Ek − ((1 − α) − λk L(α2 + α + 1) − λk−1L(α + 1)) xk+1 − yk 2

Ek − ((1 − α) − λk L(α2 + 2α + 2)) xk+1 − yk 2

=Ek − C xk+1 − yk 2,
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where the second inequality holds follows from the stepsize sequence .{λk}k∈N is 
nondecreasing. Therefore, we get assertion (2.10). In addition, it follows from (2.6) 
that 

. C = (1 − α) − λk L(α2 + 2α + 2) > 0.

Therefore, the sequence .{Ek}k∈N is monotonically nonincreasing. 

Theorem 2.1 The sequence .{xk}k∈N generated by Algorithm 1 converges weakly to 
a point in .(A + B)−1 (0) when Assumption 2.1 is satisfied. 

Proof We first show that sequence .{Ek}k∈N is bounded. It follows from (2.10) that 

.

Ek+1 Ek − C xk+1 − yk 2

Ek . . . E0 = 1

1 + α
x − y0

2
< +∞.

(2.22) 

Therefore, the sequence.{Ek}k∈N has an upper bound. And we will next prove that it 
has a lower bound. Indeed, we can find that 

. 2λk x − xk+1, Bxk+1 − Byk

− 2λk L x − xk+1 xk+1 − yk

− λk L( x − xk+1 2 xk+1 − yk 2)

= − λk L
1

1 + α
x − yk+1 2 + α

1 + α
x − yk

2 + (1 − α) xk+1 − yk
2

= − λk L
1

1 + α
x − yk+1 2 + α

1 + α
x − yk+1 + yk+1 − yk 2

− λk L(1 − α) xk+1 − yk 2

− λk L
1

1 + α
x − yk+1 2 + 3α

1 + α
x − yk+1 2 + 3α

2(1 + α)
yk+1 − yk 2

− λk L(1 − α) xk+1 − yk 2

= − λk L
1

1 + α
x − yk+1 2 + 3α

1 + α
x − yk+1 2

− λk L
3α(1 + α)

2
xk+1 − yk 2 + (1 − α) xk+1 − yk 2

= − λk L
1 + 3α

1 + α
x − yk+1 2 − λk L

3α2

2
+ α

2
+ 1 xk+1 − yk 2, (2.23) 

where the first inequality follows from the Cauchy-Schwarz inequality and the Lip-
schitz continuity of . B, the second inequality follows from the Young inequality, 
the third inequality follows from the Cauchy-Schwarz inequality.ab β

2 a
2 + 1

2β b
2, 

.β > 0 with.a x − yk+1 ,.b yk+1 − yk and.β = 2, and the first equality and
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the third equality follows from (2.19) and (2.17), respectively. 
We then obtain from (2.6) and (2.23) that 

. Ek+1

= 1

1 + α
x − yk+1 2 + 2λk x − xk+1, Bxk+1 − Byk

+ λk L(α2 + α + 1) xk+1 − yk 2

1

1 + α
− λk L

1 + 3α

1 + α
x − yk+1 2 − λk L

α(α − 1)

2
xk+1 − yk 2 0,

(2.24) 

we know that the sequence .{Ek}k∈N is lower bounded. So we can get .{Ek}k∈N is 
bounded. Then, summing up (2.10) from.k = 0, · · · , N , it yields 

. 

N

k=0

C xk+1 − yk 2
N

k=0

(Ek − Ek+1) = E0 − EN+1 E0 < +∞,

Therefore, we can deduce that 

. lim
k→+∞ xk+1 − yk 0. (2.25) 

One can then obtain from (2.22) and (2.24) that .{yk}k∈N is bounded. Similarly, by 
the definition of .xk+1 in (2.16), we have that .{xk}k∈N is also bounded. Then. {xk}k∈N
has a weakly convergent subsequence.{xk j } j∈N such that.{xk j } j∈N converges weakly 
to .x∞ ∈ H . 

Multiplying both sides by .−1/λk and adding .Bxk+1 to both sides in (2.11) and 
choosing .k = k j − 1, we have  

. − 1

λk j−1
(xk j − yk j−1) + Bxk j − Byk j−1 − λk j−2

λk j−1
(Bxk j−1 − Byk j−2) ∈ (A + B)xk j .

(2.26) 
Since .limk→+∞ xk+1 − yk 0 and .B is Lipschitz continuous, we have . Bxk j −
Byk j−1 → 0, as  . j → +∞. By Lemma 2.1, we have that .A + B is maximal mono-
tone. Therefore, the graph of .A + B is demiclosed. From (2.6), we obtain . {λk}k∈N
is bounded and far away from zero. Further, passing to the limit in (2.26), we have 
.0 ∈ (A + B)x∞. To show that .{xk}k∈N is weakly convergent, first note that, by the 
boundedness of .{Ek}k∈N and (2.10), we deduce the existence of the limit 

. lim
k→+∞

1

1 + α
x − yk+1 2 + 2λk x − xk+1, Bxk+1 − Byk

+ λk(α
2 + α + 1) xk+1 − yk 2.
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Further, it follows from (2.5), we know 

. lim
k→+∞

1

1 + α
x − xk+1 2 + α2

1 + α
xk+1 − yk 2

− 2α

1 + α
x − xk+1, xk+1 − yk 2λk x − xk+1, Bxk+1 − Byk

+ λk(α
2 + α + 1) xk+1 − yk 2

exists. Let 

. Fk = −2λk x − xk+1, Bxk+1 − Byk λk(α
2 + α + 1) xk+1 − yk 2,

and 

. Gk = α2

1 + α
xk+1 − yk 2 − 2α

1 + α
x − xk+1, Bxk+1 − Byk .

Since .Bxk+1 − Byk→ 0, as  .k → +∞, .xk+1 − yk → 0, as  .k → +∞ and . {xk}k∈N
and.{λk}k∈N are bounded, we have that .Fk → 0, .k → +∞ and.Gk → 0, .k → +∞. 
Then 

. 
1

1 + α
x − xk+1 2 = Ek − Gk + Fk .

Since.limk→+∞ Ek exists and.
1

1+α
> 0, we then have that.limk→+∞ x − xk exists. 

By Lemma 2.4, we conclude that .{xk}k∈N converges weakly to a point in . (A +
B)−1(0). The proof is complete. 

Theorem 2.1 has an immediate result when the steps of the sequence.{λk}k∈N are 
constant, and we obtain the following corollary. 

Corollary 2.1 Let .A : H ⇒ H be maximally monotone, let .B : H → H be 
monotone and .L-Lipschitz and suppose that .(A + B)−1(0) = ∅. Choose . λ ∈
0, 1−α

(α2+α+2)L . Givens .x0, y−1 ∈ H , the sequence .{xk}k∈N generated by 

. 
yk = xk + α(xk − yk−1),

xk+1 = JλA(yk − λByk − λ(Bxk − Byk−1)).

Then .{xk}k∈N converges weakly to a point contained in .(A + B)−1(0). 

2.3.3 Forward-Reflected-Backward Method 
with Extrapolation and Linesearch 

The algorithm presented in Sect. 2.3.1 requires information about the single-valued 
operator’s Lipschitz constant in order to choose an appropriate stepsize. But for many
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practical problems, this requirement is difficult to meet. On the one hand, obtaining 
the global Lipschitz constant of a single-valued operator requires a significant cost 
in many cases and leading to poor numerical performance. On the other hand, we 
can only obtain a locally Lipschitz constant in practical problems. In view of these, 
we propose a forward-reflected-backward method with a linesearch procedure based 
on .FRBe (.FRBel), which converges whenever the single-valued operator is locally 
Lipschitz. 

Algorithm 2 Forward-reflected-backward method with extrapolation and linesearch 
. (FRBel)

1: Choose.x0 = y−1 ∈ H , .λ0, λ−1 > 0,.δ ∈ 0, 2(1−α)

α2+2α+2
, .α ∈ [0, 1), .σ ∈ (0, 1), .ρ ∈ {1, σ−1}. 

2: For.k = 0, 1 · · · , compute 

. 
yk = xk + α(xk − yk−1),

xk+1 = Jλk A(yk − λk Byk − λk−1(Bxk − Byk−1)),

where.λk = ρλk−1σ
i , with. i being the smallest nonnegative integer satisfying 

. λk ||Bxk+1 − Byk || δ

2
||xk+1 − yk ||. (2.27)

Remark 2.3 As discussed at the beginning of this section,.FRBel combines an iner-
tial step with a linesearch step and a resolvent step. It is worth noting that it is not 
necessary to estimate the Lipschitz constant of the Lipschitz continuous monotone 
operator . B in our proposed Algorithm 2. 

The following lemma shows that the linesearch procedure described in Algorithm 
2 is well-defined when operator . B is locally Lipschitz continuous. 

Lemma 2.7 Suppose that operator.B : H → H is locally.Lipschit z. Then the line-
search criterion (2.27) is well defined, which means that it will be satisfied after a 
finite number of iterations. 

Proof Let .xk+1(λ) := JλA(yk − λByk − λk−1(Bxk − Byk−1)). According to the 
Lemma 2.5, we obtain that ..JλA(xk+1(0)) → PdomA(x

k+1(0)) when .λ ↓ 0. Since 
operator .A is maximal monotone, we know that .JλA is nonexpansive. Therefore, 
we have 

. xk+1(λ) − PdomA(x
k+1(0))

xk+1(λ) − JλA(x
k+1(0)) JλA(x

k+1(0)) − PdomA(x
k+1(0))

λByk JλA(x
k+1(0)) − PdomA(x

k+1(0)) .

By taking the limit as .λ ↓ 0, 

.xk+1(λ) → PdomA(x
k+1(0)).
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Assuming that linesearch finds .λ at the . kth iteration failed, then for all . λ =
ρλk−1σ

i , i = 0, 1 . . ., it implies 

. ρλk−1σ
i Bxk+1(λ) − Byk >

δ

2
xk+1(λ) − yk .

Since operator. B is locally Lipschitz, there exists.L > 0 when. i is large enough. And 
we have 

. ρλk−1σ
i Bxk+1(λ) − Byk >

δ

2
xk+1(λ) − yk

δ

2L
Bxk+1(λ) − Byk .

Therefore, it implies 

. ρλk−1σ
i >

δ

2L
.

Since.σ i → 0 as.i → ∞, this inequality gives a contradiction, which completes the 
proof. 

The next Lemma 2.8 is a direct extension of Lemma 2.6. 

Lemma 2.8 Let .{xk}k∈N be the sequence generated by Algorithm 2. Then, the 
sequence .{Ek}k∈N is monotonically nonincreasing. In particular, for any .k 0, it  
holds that 

. Ek+1 Ek − C xk+1 − yk 2,

where .C = (1 − α) − δ
2 (α

2 + 2α + 2) > 0. 

Proof The proof is similar to Lemma 2.6. We use inequality (2.27), which is well-
defined due to Lemma 2.7, instead of the Lipschitzness of .B to get the inequalities 
(2.14) and (2.23). 

Theorem 2.2 Let .H be finite dimensional, .A : H ⇒ H be maximally monotone, 
and .B : H → H be monotone and locally Lipschitz continuous, and suppose that 
.(A + B)−1(0) is nonempty. Then the sequence .{xk}k∈N generated by Algorithm 2 
converges to a point contained in .(A + B)−1(0). 

Proof It is similar to Theorem 2.1 but using Lemma 2.8 instead of Lemma 2.6, and 
(2.27) instead of the Lipschitzness of . B. We take .λk L = δ/2 for all .k ∈ N in (2.22) 
and (2.24), so we can deduce.{yk}k∈N is bounded. Since (2.16) and (2.25), we know 
that .{xk}k∈N is bounded and . xk+1 − yk 0. As a locally Lipschitz operator on 
a finite-dimensional space, .B is Lipschitz on bounded sets. Thus, since .{xk}k∈N is 
bounded, there exists a constant .L > 0 such that 

. Bxk+1 − Byk L xk+1 − yk . (2.28) 

Combining (2.27) and (2.28), we see that .{λk}k∈N is bounded away from zero. The 
remainder of the proof is similar to Theorem 2.1.
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2.4 Numerical Experiment 

In this section, to demonstrate the effectiveness of the proposed .FRBe and .FRBel, 
we apply them to solve the lasso problem and the . 1 regularized logistic regression 
problem. All experiments are performed in MATLAB R2021a on a PC with Intel 
Core i7-13700H and 16.0 GB of RAM. 

2.4.1 Lasso Problem 

In this subsection, we consider the lasso problem: 

. min
x∈Rn

F(x) := 1

2
Dx − b 2+μ x 1, (2.29) 

where.D ∈ Rm×n , .b ∈ Rm and.μ > 0. We observe that (2.29) is in the form of (2.2) 

with. f (x) = μ x 1 and.g(x) = 1

2
Dx − b 2. Therefore, the minimization problem 

(2.29) is equivalent to the following monotone inclusion problem 

. find x ∈ Rn such that 0 ∈ (A + B)x,

where .A = ∂(μ x 1) and .B = DT(Dx − b). 
It is clear that. g has a Lipschitz continuous gradient and. f + g has compact lower 

level sets. Thus, Assumption 2.1 is satisfied for (2.29), we can apply Algorithms 
1 and 2 to solve (2.29). In addition, it is not hard to show that .∇g has a Lipschitz 
continuity modulus of.λmax(DTD). In view of this, in the experiment below, we take 
.L = λmax(DTD) for iFRB and .FRBe. 

Now we perform numerical experiments to study the performance of .FRBe and 
.FRBel. We choose .μ = 1 and .μ = 3 in (2.29), initialize all algorithms at the origin, 
and use the duality gap of the primal problem (2.29) and its dual problem to terminate 
the algorithms as in [ 35]. Specifically, we define 

. uk = min 1,
μ

DTh(Axk) ∞
∇h(Axk),

and terminate the algorithms when the duality gap is small, i.e., 

. 
|g(xk) + f (xk) − dls(uk)|
max{ f (xk) + g(xk), 1} ≤ 10−6,

where .g(x) = h(Ax) = 1

2
Ax − b 2, and .dls(u) is the optimal value of dual 

problem.
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Table 2.1 Numerical comparisons of different algorithms for solving the lasso problem. In this 
paper, we use the notation.(m, n) to denote the corresponding choices of.m and. n (.μ = 1) 

.(100, 200) .(200, 1000) .(400, 2000) . (600, 3000)

Iter Time Iter Time Iter Time Iter Time 

iFRB 1900 0.058 11924 0.677 19513 2.148 28368 8.285 

.FRBe 1210 0.036 7579 0.620 12401 1.967 18028 7.475 

.FRBl 399 0.017 1762 0.138 3040 0.429 4572 1.578 

.FRBel 341 0.013 1390 0.120 2325 0.375 3389 1.521 

Table 2.2 Numerical comparisons of different algorithms for solving the lasso problem. In this 
paper, we use the notation.(m, n) to denote the corresponding choices of.m and. n (.μ = 3) 

.(100, 200) .(200, 1000) .(400, 2000) . (600, 3000)

Iter Time Iter Time Iter Time Iter Time 

.iFRB 1122 0.028 4800 0.313 7343 0.897 10272 3.100 

.FRBe 715 0.025 3053 0.297 4668 0.839 6530 2.987 

.FRBl 204 0.011 661 0.052 1463 0.159 1470 0.542 

.FRBel 183 0.009 573 0.045 1172 0.151 1175 0.507 

The problems used in our experiments are generated as follows. For each .m and 
. n, we generate an .m × n matrix .D with i.i.d. standard Gaussian entries. We then 
choose a support set .T of size . s uniformly at random, and generate an .s-sparse 
vector . x̂ supported on .T with i.i.d. standard Gaussian entries. The vector . b is then 
generated as .b = Dx̂ + 0.01ẽ, where . ẽ has standard i.i.d. Gaussian entries. 

To illustrate the effectiveness of .FRBe and .FRBel, we compare them with iFRB 
[ 18] and .FRBl [ 18]. In the experiment, we choose the values of stepsize and inertial 
parameter to achieve the optimal performance for each algorithm. As outlined in 
[ 18], we specify the parameters as follows:.α = 0.2,.λ = 0.99 × 1

5L for.iFRB;.α = 0, 
.δ = 0.99, .σ = 0.7, .ρ = σ−1, and the stepsize sequence .{λk}k∈N satisfy (2.27) with 
.yk = xk for .FRBl. As for  .FRBe and .FRBel, we choose: .α = 0.2, . λ = 0.99 × 2

13L

for .FRBe; .α = 0.3, .δ = 0.99 × 2(1 − α)

α2 + 2α + 2
, .σ = 0.7, .ρ = σ−1 and the stepsize 

sequence .{λk}k∈N satisfy (2.27) for .FRBel. 
The computational results with .μ = 1 and .μ = 3 averaged over 50 instances 

for a range of choices of .m and . n are presented in Tables 2.1 and 2.2. From these 
two tables, we can see that .FRBe outperforms the .iFRB, and .FRBel outperforms 
the .FRBl in terms of the number of iterations and CPU time for all scenarios. To 
further observe the convergence of the tested algorithms, we plot the evolutions of 
.F(xk) − F with respect to the iteration numbers for each algorithm in Figs. 2.1 and 
2.2, where .F represents the minimum of the objective function values obtained by 
all tested algorithms. The results show that the.FRBe converges faster than the.iFRB,
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Fig. 2.1 Evolutions of .F(xk) − F with respect to the number of iterations for solving the lasso 
problem with. μ = 1

and the .FRBel converges faster than the .FRBl, demonstrating the advantage of the 
.FRBe and .FRBel. 

2.4.2 . 1 Regularized Logistic Regression Problem 

In this subsection, we consider the . 1 regularized logistic regression problem, 

. min
x∈Rn , x0∈R

F(x) :=
m

i=1

log(1 + e−bi (aTi x+x0)) + γ x 1, (2.30) 

where .ai ∈ Rn , .bi ∈ {−1, 1}, .i = 1, · · · ,m, with .bi not all the same, .m < n, and 
.γ > 0 is the regularization parameter. So we can apply our methods for solving 
the problem (2.2) in case . f (x̃) = γ x 1, .g(x̃) = m

i=1 log(1 + e−bi (Px̃)i ), where 
.x := (x, x0) ∈ Rn+1, and. P is the matrix whose. i th row is given by.(aTi 1). Moreover, 
one can show that .∇g is Lipschitz continuous with modulus 0.25.λmax(PTP) [ 35]. 
Thus, in our experiments below we take .L = 0.25λmax(PTP).
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Fig. 2.2 Evolutions of .F(xk) − F with respect to the number of iterations for solving the lasso 
problem with. μ = 3

As that in [ 35], Assumption 2.1 is satisfied for (2.30). Thus, Algorithm 1 and 
Algorithm 2 are applicable. In the experiments below, we choose .γ = 1 and . γ = 3
in (2.30). We initialize all algorithms at the origin, and terminate the algorithms as 
in [ 35]. 

We consider random instances for our experiments. For each. m and. n, we generate 
an.m × n matrix. Awith i.i.d. standard Gaussian entries, where. A is the matrix whose 
. i th row is .aTi . We then choose a support set .T of size . s uniformly at random and 
generate an .s-sparse vector . x̂ supported on .T with i.i.d. standard Gaussian entries. 
The vector . b is then generated as .b = sign(Ax̂ + ce), where . c is chosen uniformly 
at random from.[0, 1]. 

We now perform numerical experiments to verify the efficiency of .FRBe and 
.FRBel. In the experiment, we choose the values of stepsize and inertial parameter to 
achieve the optimal performance for each algorithm. As outlined in [ 18], we specify 
the parameters as follows:.α = 0.2,.λ = 0.99 × 1

5L for.iFRB;.α = 0,.δ = 0.99, . σ =
0.8, .ρ = 1 and the stepsize sequence .{λk}k∈N satisfy (2.27) with .yk = xk for .FRBl. 
As for .FRBe and .FRBel, we choose: .α = 0.2, .λ = 0.99 × 2

13L for .FRBe; .α = 0.3, 

.δ = 0.99 × 2(1 − α)

α2 + 2α + 2
,.σ = 0.8,.ρ = 1 and the stepsize sequence.{λk}k∈N satisfy 

(2.27) for .FRBel.
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Table 2.3 Numerical comparisons of different algorithms for solving the logistic regression prob-
lem. In this paper, we use the notation .(m, n) to denote the corresponding choices of .m and . n
(.γ = 1) 

.(200, 400) .(400, 1000) .(600, 2000) . (1000, 3000)

Iter Time Iter Time Iter Time Iter Time 

.iFRB 21861 12.108 67358 257.697 119334 1097.831 166041 3727.979 

.FRBe 13890 7.616 42803 163.784 75829 670.698 105511 2353.380 

.FRBl 650 0.696 1253 10.355 1545 30.246 1918 99.612 

.FRBel 478 0.496 914 7.923 1126 23.103 1204 61.330 

Table 2.4 Numerical comparisons of different algorithms for solving the logistic regression prob-
lem. In this paper, we use the notation .(m, n) to denote the corresponding choices of .m and . n
(.γ = 3) 

.(200, 400) .(400, 1000) .(600, 2000) . (1000, 3000)

Iter Time Iter Time Iter Time Iter Time 

.iFRB 6178 3.348 13008 50.094 26691 243.296 37269 863.537 

.FRBe 3928 2.160 8269 33.829 16963 157.555 23683 564.829 

.FRBl 378 0.409 541 4.786 845 16.440 1032 53.490 

.FRBel 319 0.342 412 3.599 668 13.675 791 41.608 

The computational results averaged over 50 instances for a range of choices of . m
and. n are presented in Tables 2.3 and 2.4. From these two tables, we can see that. FRBe

outperforms the .iFRB, and .FRBel outperforms the .FRBl in terms of the number of 
iterations and CPU time for all scenarios. The results show that the .FRBe converges 
faster than the .iFRB, and the .FRBel converges faster than the .FRBl, demonstrating 
the advantage of the .FRBe and .FRBel. 

2.5 Conclusion 

In this paper, we propose two forward-reflected-backward type methods, named 
.FRBe and .FRBel, for monotone inclusion problems. The proposed methods not 
only unify some well-known operator splitting methods based on the inertial and 
linesearch techniques, but can also leads to improved numerical performance. We 
establish the weak convergence of the proposed methods under mild and standard 
assumptions. Further, we apply.FRBe and.FRBel to solve the lasso problem and the. 1
regularized logistic regression problem. The numerical results on these two impor-
tant problems verify the efficiency of our proposed methods. In the future, we shall 
investigate how to combine the relaxation technique and two different extrapolation 
steps in order to have better performance.
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Chapter 3 
Fast Adaptive ADMM with Gaussian 
Back Substitution for Multiple Block 
Linear Constrained Separable Problems 

Xiangfeng Wang 

Abstract This work presents a novel algorithmic framework, called Fast Adap-
tive Alternating Direction Method of Multipliers with Gaussian Back Substitution 
(ADMM-G-V), tailored for solving multiple block linear constrained separable prob-
lems. The proposed method extends the classical multi-block ADMM by incorporat-
ing an adaptive penalty parameter, which is dynamically adjusted during the iterative 
process to enhance convergence properties and computational efficiency. A compre-
hensive theoretical analysis is provided by establishing the global convergence and 
worst-case convergence rate of the algorithm in both ergodic and non-ergodic senses. 
We demonstrate the effectiveness of our method through numerical experiments on 
consensus problems over networked agents and distributed logistic regression tasks. 

Keywords ADMM · Self-adaptive · Gaussian back substitution · Multiple-block 

3.1 Introduction and Motivation 

In this paper, we consider a general structured multiple block minimization model, 
i.e., 

. min{xi∈Ei }

m

i=1

θi (xi )
m

i=1

Ai (xi ) = b , (3.1) 

where each.θi : Ei → R is a convex real-valued function, each.Ai : Ei → R denotes 
a linear operator with .b ∈ R be a given vector. Throughout, the solution set .X of 
(3.1) is assumed to be nonempty. This general formulation (3.1) includes the pop-
ular two-block problem as a special case, which has proved to be a reasonable and 
effective model in plenty of applications [ 1]. The motivation for considering this 
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Table 3.1 . A, . B, . C, . C and.D for RASL and TILT:. I denotes the identity transform;. J , .Ji , . i , . M
and. τ are all given matrix or vector;. ◦ denotes a given linear operation 

Model .A .B .C(C) .C . D

RASL .I .I .− n
i=1 Ji i

T
i ) . . M ◦ τ

TILT .I .I .−J . . M ◦ τ

particular, more general structured problem (3.1) is that for many interesting appli-
cations, the goal (objective) and environment (constraint) become more complicated, 
especially as more and more application-driven distinctive structures or information 
are introduced to guarantee better performance. In the following, we propose some 
practical applications to draw forth our work. 

Motivation applications (Low-rank or sparse structure-based image processing 
problems): The low-rank structure is popularly used to model the invariant property 
or great relevance between images, while the sparse structure is a byproduct of 
modeling uncorrelated information. A general formulation can be summarized as 

. min
L ,S

L + γ S 1 (3.2) 

s.t. A(L) + B(S) + C(C) = D, 

where the matrix .L ∈ R
m×n denotes the low-rank part, the matrix .S ∈ R

m×n repre-
sents the sparse part, while. usually additional parameters driven by the application 
task. Concretely, we evoke two popular models, e.g., robust alignment by sparse 
and low-rank decomposition (RASL) [ 2] and transform invariant low-rank textures 
(TILT) [ 3]. In order to solve these two models, some subproblem has to be efficiently 
calculated, which can be included into (3.2) as in Table  3.1. 

The unified formulation (3.2) can be contained in the general model (3.1); as 
a result, the requirement of efficiently computing impels us to design a structured 
algorithm framework for (3.1). For algorithmic-design purposes, we may need to 
consider using these two functions individually as well because they usually have 
different properties/structures. Define the augmented Lagrange function of (3.1) for  
the case .m = 2 be 

.Lβ (x1, x2, λ) = θ1(x1) + θ2(x2) − λT (A1x1 + A2x2 − b) + β

2
A1x1 + A2x2 − b 2 , (3.3) 

with .λ ∈ R
m denotes the Lagrange multiplier and.β > 0 the penalty parameter. The 

alternating direction method of multipliers (ADMM) was first proposed by Glowinski 
and Marrocco in [ 4] for solving specific nonlinear elliptic equations, and its iterative 
scheme for (3.1) reads as 

.xk+1 = argmin Lβ x, yk, λk x ∈ X ; (3.4a) 

.yk+1 = argmin Lβ xk+1, y, λk y ∈ Y ; (3.4b)
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.λk+1 = λk − β Axk+1 + Byk+1 − b . (3.4c) 

Recently, ADMM has found many applications arising in different areas such as 
image processing, statistical learning, computer vision, and wireless communication 
network. We refer to [ 1, 5, 6] for some review papers of ADMM. The convergence 
of ADMM has been well analyzed in some earlier references such as [ 7, 8]. For the 
convergence rate, according to the known explanation in [ 7, 9] that the ADMM is 
a special case of the proximal point algorithm (PPA) in [ 10] and the convergence 
results of PPA in [ 11], it is easy to perceive that the ADMM scheme (3.4), without 
further assumptions such as the strong convexity or special structure assumptions on 
one or both the functions in the objective, some restrictions on the penalty parameter 
. β, or some error bounds or metric subregularity assumptions on the solution set, is 
sublinear. In [ 12, 13], the authors established the sublinear convergence rate for the 
ADMM scheme (3.4), in sense of both the egrodic and non-ergodic worst-case. O 1

n
natures respectively measured by the iteration complexity where . n is the iteration 
counter. 

The classical ADMM (3.4) has been comparatively thoroughly analyzed and 
understood. In this paper, we mainly focus on the multiple-block case, which also 
has popular applications in image processing, machine learning, etc. In order to 
take advantage of each . θi ’s properties individually, a natural idea for solving the 
general case of (3.1) with .m ≥ 3 is to extend the classical ADMM scheme (3.4) 
straightforwardly—yielding the following scheme for iteration . k+. 1: 

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

xk+1
1 = argmin Lβ x1, xk2 , . . . , x

k
m, λk x1 ∈ X1 ,

· · ·
xk+1
i = argmin Lβ xk+1

1 , . . . , xk+1
i−1 , xi , xki+1, . . . , x

k
m, λk xi ∈ Xi ,

· · ·
xk+1
m =argmin Lβ xk+1

1 , . . . , xk+1
m−1, xm, λk xm ∈ Xm ,

λk+1 = λk − β
m

i=1
Ai x

k+1
i − b ,

(3.5) 

with the introduction of the augmented Lagrangian function as follows 

. Lβ (x1, . . . , xm, λ) =
m

i=1

θi (xi ) − λT
m

i=1

Ai xi − b + β

2

m

i=1

Ai xi − b

2

.

(3.6) 

Just as the original ADMM scheme (3.4), the iterative scheme (3.5) can be easily 
derived by decomposing the augmented Lagrangian function of (3.1) in the Gauss-
Seidel fashion. In (3.5), the variables . xi ’s are minimized in alternating order, and 
the decomposed subproblems are much easier than the original problem (3.1) since 
only one function .θi is involved in its .xi -subproblem. Then, the step of updating 
the Lagrange multiplier coordinates all these solutions to local small subproblems 
to find a solution to a global large problem. Note that the direct extension of the
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ADMM scheme (3.5) reduces to the augmented Lagrangian method (ALM) [ 14] and 
the standard ADMM scheme when .m = 1 and .m = 2 in (3.1), respectively. 

The convergence of the scheme (3.5), however, had perplexed authors for a long 
time. On one hand, the scheme (3.5) empirically works well for some applications, 
see [ 2, 15]. On the other hand, in the literature, its convergence could be shown 
only under some further assumptions. For example, in [ 16– 18], the convergence of 
(3.5) was shown under some additional strongly convex conditions, and the penalty 
parameter . β should be chosen judiciously within a certain interval. Moreover, when 
each function .θi in (3.1) is of particular structure and the update of .λk+1 in (3.5) is  
required to adopt a new step size rather than . β, i.e., 

.λk+1 = λk − τβ

m

i=1

Ai x
k+1
i − b , (3.7) 

where.τ > 0 is sufficiently small to fulfill certain error bound conditions, the resulting 
scheme was proved to be convergent in [ 19], together with some linear convergent 
results. In fact, the scheme (3.5) but with the new update of. λ in (3.7) can be regarded 
as an implementation of the dual ascent method to the dual of (3.1) with a shrunk 
step size. A counterexample was given in [ 20] showing that the scheme (3.5) is  
not necessarily convergent without further assumptions, and a sufficient condition 
ensuring the convergence of (3.5) was given therein. 

In general, it is not easy to verify whether the step size . τ in (3.7) is small enough 
to satisfy the desired error bound. Thus it should be stick to the direct extension 
of ADMM (3.5) where the step size for updating . λ is taken as the same as the 
penalty parameter (thus it is not necessarily very small) and the function. θi ’s in (3.5) 
are only assumed to be generic nonsmooth convex functions, and study in which 
way the convergence of (3.5) can be derived. In [ 21], the authors have shown that 
the resulting sequence is convergent if the output of (3.5) is further corrected by 
a Gaussian back substitution procedure. The numerical efficiency of the Gaussian 
back substitution procedure, together with its superiority to some other relevant work 
based on (3.5), has been illustrated numerically in [ 15, 22]. The detailed algorithm 
framework of ADMM with Gaussian back substitution (ADMM-G) is presented as 
follows, in which the direct extension of ADMM (3.5) can be considered as the first 
prediction step: 

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̃ k1 = argmin Lβ x1, xk2 , . . . , x
k
m, λk x1 ∈ X1 ,

· · ·
x̃ ki = argmin Lβ x̃ k1 , . . . , x̃

k
i−1, xi , x

k
i+1, . . . , x

k
m, λk xi ∈ Xi ,

· · ·
x̃ km =argmin Lβ x̃ k1 , . . . , x̃

k
m−1, xm, λk xm ∈ Xm ,

λ̃k = λk − β
m

i=1
Ai x̃ki − b ,

(3.8a)
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.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λk+1 = λk + α λ̃k − λk ,

xk+1
m = xkm + α x̃ km − xkm ,

· · ·
xk+1
i = xki + α x̃ ki − xki −

m

j=i+1
AT
i Ai

−1
AT
i A j xk+1

j − xkj ,

· · ·
xk+1
1 = x̃ k1 ,

(3.8b) 

where we need to assume that all .Ai s have full column rank. The above Gaussian 
back substitution procedure (3.8) still requires to compute the inverses of . AT

i Ai

for .i = 2, . . . ,m − 1, which could be computationally expensive for generic .Ai ’s 
arising in some image processing applications. The computing procedure of ADMM-
G can be graphically explained through the following Fig. 3.1. If we choose .α = 1, 
it is obvious that the direct extension of ADMM with Gaussian back substitution 
can reduce to the classical original ADMM (3.4a)–(3.4c) for  (3.1) with .m = 2. In  
classical ADMM and ADMM-G, the penalty parameter. β can be an arbitrary positive 
scalar to theoretically guarantee the convergence. This is a nice property, and it 
provides flexibility in choosing different values when the ADMM is implemented 
for various specific applications. Meanwhile, it is well known that the efficiency 
of ADMM highly depends on the appropriate choice of the penalty parameter, and 
the efficiency can vary dramatically with different values of the penalty parameter 
for the same problem. Moreover, choosing a good value of the penalty parameter is 
application-sensitive; a value working well for one application might be completely 
ineffective for another one. Indeed, so far, this is no general theory for how to choose 
the “optimal” value of . β for the ADMM-type scheme (3.4) or (3.8). This concern 
forces practitioners to tune the penalty parameter a priori for the specific application 
under discussion when the ADMM-type scheme (3.4) or (3.8) is implemented. There 
is a large volume of literature mentioning this issue. 

On the other hand, the penalty parameter. β can be adjusted dynamically subject to 
certain rules and it results in the ADMM-type methods with variable penalty param-
eter. The prior searching for an appropriate value of . β can thus be avoided. Indeed, 
the convergence of ADMM with variable penalty parameter can be theoretically 
carried over if the rules are meticulously chosen; see, e.g., [ 21, 23– 25], for some 
relatively earlier literature for the convergence analysis. Some important properties 
for establishing the convergence of ADMM with variable penalty parameter can be 

Fig. 3.1 Computing procedure of ADMM-G
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found in [ 24]. Empirically, it is arguable to say which one is preferred: tuning the 
ADMM-type scheme a prior to find a suitable choice of . β or iteratively adjusting 
the parameters in the iterative process. We believe there is no conclusive assertion in 
this regard, and both methodologies are equally important from either the mathemat-
ical or empirical perspective. Depending on different computation loads in different 
phases, each of the strategies can find supportive applications in the very large set 
of literature. Recently, [ 26] extends the self-adaptive penalty parameter scheme to 
the consensus problem, which is in a special form of (3.1). Another adaptive penalty 
scheme is proposed in [ 27], which also can be included in the framework of [ 21]. 
[ 27] introduces an adaptive relaxed ADMM, which is a popular practical variant 
of ADMM, and proves the convergence result for the adaptive penalty parameter 
case. In applications, the rule initiated in [ 21] for adjusting the penalty parame-
ter has been well verified in many applications such as machine learning [ 28, 29], 
computer vision [ 30], computer graphics [ 31], smart grid [ 32], geophysical image 
processing [ 33, 34] and elucidated in [ 1]. 

Nevertheless, until now, there is no result about adaptive ADMM-G (3.8) with 
variable penalty parameters in which the penalty parameters are iteratively adjusted. 
In this paper, we will propose an adaptive ADMM-G algorithm framework, while 
further establishing the global convergence and worst-case convergence rate of the 
ADMM with variable penalty parameters in both the ergodic and non-ergodic senses. 
Before presenting the algorithm framework, we mention that we have to compute 
all inverses of .AT

i Ai (.i = 1, . . . ,m − 1) in ADMM-G, which maybe heavy com-
putational complexity. In this paper, we introduce a new variable .u(w) which will 
help modify ADMM-G to avoid calculating the inverses, and some concrete related 
definitions are as follows 

.x =

⎛
⎜⎜⎜⎝

x1
x2
...

xm

⎞
⎟⎟⎟⎠ , w =

⎛
⎜⎜⎜⎜⎜⎝

x1
x2
...

xm
λ

⎞
⎟⎟⎟⎟⎟⎠ , u =

⎛
⎜⎜⎜⎝

x2
...

xm
λ

⎞
⎟⎟⎟⎠ , (3.9a) 

.v(w) =

⎛
⎜⎜⎜⎜⎜⎝

v(w)1
v(w)2

...

v(w)m
v(w)m+1

⎞
⎟⎟⎟⎟⎟⎠ :=

⎛
⎜⎜⎜⎜⎜⎝

A1x1
A2x2

...

Amxm
λ

⎞
⎟⎟⎟⎟⎟⎠ , u(w) :=

⎛
⎜⎜⎜⎝

A2x2
...

Amxm
λ

⎞
⎟⎟⎟⎠ , (3.9b) 

and we further rewrite the augmented Lagrangian function (3.6) into the following 
equivalent reformulation, e.g.,
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. Lβ (x1, . . . , xm , λ) =
m

i=1

θi (xi ) − λ T
m

i=1

Ai xi − b + β

2

m

i=1

Ai xi − b

2

=
m

i=1

θi (xi ) − v (w)m+1
T

m

i=1

v (w)i − b + β

2

m

i=1

v (w)i − b

2

.

We re-record the above equation when only focusing on .xi as 

.L̂β v (w)1 , . . . , v (w)i−1 , xi , v (w)i+1 , . . . , v (w)m , v (w)m+1 (3.10) 

=θi (xi ) − v (w)m+1 
T 

⎛ 

⎝Ai xi + 
m 

j=1, j i 

v (w) j − b 

⎞ 

⎠ + 
β 
2 

Ai xi + 
m 

j=1, j i 

v (w) j − b 

2 

. 

As a result, each subproblem with respect to .xi is determined only by 

. v (w)−i := v (w)[1,i−1] , v (w)[i+1,m+1]
= v (w)1 , . . . , v (w)i−1 , v (w)i+1 , . . . , v (w)m , v (w)m+1 ,

which means in iteration . k+. 1 of (3.8), we have 

. x̃ ki = argmin Lβ x̃ k1 , . . . , x̃
k
i−1, xi , x

k
i+1, . . . , x

k
m, λk xi ∈ Xi

= arg min
xi∈Xi

⎧⎨
⎩θi (xi ) + β

2
Ai xi +

i−1

j=1

v(w̃k) j +
m

j=i+1

v(wk) j − b − λk

β

2⎫⎬
⎭

= arg min
xi∈Xi

L̂β v(w̃k)1, . . . , v(w̃k)i−1, xi , v(wk)i+1, . . . , v(wk)m, v(wk)m+1 .

(3.11) 

Thus, the recursion of ADMM-G with adaptive variable penalty parameter (ADMM-
spsGspsV) for the structured convex optimization (3.1) can be written as follows in 
Algorithm 1. We give some further explanations of Algorithm 1 (ADMMspsGspsV) 
as follows: 

• The matrix .Mk in each iteration is defined as 

.Mk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I −I 0 · · · · · · 0

0 I −I
. . .

. . .
...

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . . −I 0

0 · · · · · · 0 I 0
−βk I · · · · · · −βk I I

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ R
(m )×(m );
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Algorithm 1 ADMM-G with adaptive variable penalty parameters (ADMM-G-V) 

1: Require.u w0 ∈ R × · · · × R

m

, .β0 > 0,.α ∈ (0, 1); 

2: Calculate a new adaptive variable penalty parameter.βk ; 
3: while not converged do 

4: For given.u wk , .w̃k := x̃ k1 , . . . , x̃
k
m , λ̃k are calculated according to (3.8a), e.g., 

. 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̃ k1 = argmin L̂βk x1, v wk
2 , . . . , v wk

m , v wk
m+1 x1 ∈ X1 ,

.

.

.

x̃ ki = argmin L̂βk v w̃k
1 , . . . , v w̃k

i−1 , xi , v wk
i+1 , . . . , v wk

m , v wk
m+1 xi ∈ Xi ,

.

.

.

x̃ km = argmin L̂βk v w̃k
1 , . . . , v w̃k

m , v wk
m+1 xi ∈ Xi ,

λ̃k = λk − βk A1 x̃ k1 +
m

i=2
Ai xki − b ; (3.12)

5: Generate the new iterate.uk+1 and.xk+1
1 by correcting.w̃k in the backward order, e.g., 

. u(wk+1) = u(wk) − αMk u(wk) − u(w̃k) ; (3.13) 

6: end while=0 

• Two sequences are iteratively computed in ADMM-G, e.g., . w̃k and . u wk . 
. u wk denotes the truly iterative sequence with . w̃k being an intermediate 
iterative sequence. As a result, we will consider the theoretical results on both 
sequences. 

The computing procedure of ADMM-G can be graphically explained through the 
following Fig. 3.2. 

This algorithm framework, ADMM-G-V, obviously includes ADMM-G if the 
penalty parameter is set to be a constant . β. In the following, we will consider this 
new algorithm in a general prediction-contraction framework form. We would like 
to mention that for succinctness, we skip the rapidly increasing references appearing 
in the literature for discussing sharper convergence rate results of the ADMM-type 
methods from various perspectives under stronger assumptions. Instead, we stick 

Fig. 3.2 Computing procedure of ADMM-G
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to the most general model setting in (3.1) and the iterative scheme in Algorithm 1; 
and only discuss the global convergence and sublinear convergence rate. The results 
in this plain context can immediately boost further analysis for deriving sharper 
convergence rates under various stronger assumptions for the ADMM with variable 
penalty parameters. 

The rest of the paper is organized as follows. In Sect. 3.2, we will first propose 
some preliminaries and notations. Discussions about the adaptive variable penalty 
parameter.βk will be given in Sect. 3.3. A prediction-correction reformulation frame-
work will be given in Sect. 3.4. In Sect. 3.5, we will prove the global convergence 
result and will establish the convergence rate analysis in both ergodic and non-ergodic 
sense. Section 3.6 contains some numerical experiments to prove the efficiency of 
variable penalty parameters and the well-established theoretical results. Conclusions 
are presented in Sect. 3.7. 

3.2 Preliminaries and Notations 

In this section, we summarize some preliminaries that will be used later in our 
analysis. Recall we have defined. λ as the Lagrange multiplier of the linear constraints 
in (3.1). Then, the Lagrangian function of this problem is 

. L (x1, . . . , xm, λ) =
m

i=1

θi (xi ) − λ T
m

i=1

Ai xi − b ,

which is defined on .W = X1 × · · · × Xm × R . Let  . x∗
1 , . . . , x

∗
m, λ∗ ∈ W be an 

saddle point of the Lagrangian function, then as discussed in [ 35] that finding a 
saddle point of .L (x1, . . . , xm, λ) is equivalent to finding a vector 

. w∗ =

⎛
⎜⎜⎜⎜⎜⎝

x∗
1
x∗
2
.
.
.

x∗
m

λ∗

⎞
⎟⎟⎟⎟⎟⎠ such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ1(x1) − θ1(x∗
1 ) + x1 − x∗

1
T −AT

1λ∗ ≥ 0,∀x1 ∈ X1,

θ2(x2) − θ2(x∗
2 ) + x2 − x∗

2
T −AT

2λ∗ ≥ 0,∀x2 ∈ X2,

.

.

.

θm(xm) − θm(x∗
m) + xm − x∗

m
T −AT

mλ∗ ≥ 0,∀xm ∈ Xm ,

(λ − λ∗)T
m

i=1
Ai x∗

i − b ≥ 0,∀λ ∈ R .

(3.14) 

More compactly, the inequalities in (3.14) can be equivalently rewritten as the 
following variational inequality (VI), e.g., 

. VI (W, F, θ) : w∗ ∈ W, θ(x) − θ(x∗) + w − w∗ T
F w∗ ≥ 0, ∀ w ∈ W,

(3.15a) 
where
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.θ(x) =
m

i=1

θi (xi ), F(w) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−AT
1λ−AT
2λ

...

−AT
mλ

m

i=1
Ai xi − b

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (3.15b) 

Note that the operator .F(w) defined in (3.15b) is monotone because it is affine with 
a skew-symmetric matrix. Let .W∗ be the solution set of VI(.W, F, θ ). Since the 
solution set of (3.1) is assumed to be nonempty, so that.W∗ is also nonempty. In the 
convergence rate analysis, we shall use a characterization of the solution set .W∗ of 
VI (3.15a). We present it as the following theorem, and its proof can be found in [ 36, 
Theorem 2.3.5] or [ 12, Theorem 2.1]. 

Theorem 3.1 The solution set of VI.(W, F, θ) is convex and it can be characterized 
as 

.W∗ =
w∈W

w̃ ∈ W : θ(x) − θ(x̃) + (w − w̃)
T F (w) ≥ 0 . (3.16) 

In the following, we summarize some notations which will be used in later anal-
ysis. These notations will make the presentation of our theoretical analysis in later 
sections more compact. Also, these notations are based on previous work [ 35, 37], 
and you can find more details in these references. Define.V = X2 × · · · × Xm × R , 
and accordingly we also use the notation 

. V∗ = x∗
2 , . . . , x

∗
m, λ∗ (x∗

1 , x
∗
2 , . . . , x

∗
m, λ∗) ∈ W∗ .

Further define a matrix sequence .. Hk = βk I ∈ R
× and a new variable sequence 

.{uk} based on the variable .w and the matrix .Hk , e.g., 

.uk(w) =

⎛
⎜⎜⎜⎝

uk(x2)
...

uk(xm)

uk(λ)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

√
Hk A2x2

...√
Hk Amxm√
Hk

−1
λ

⎞
⎟⎟⎟⎠ ∈ R

m , (3.17) 

from which the notation .uk(wk) = uk(xk2 ), . . . , uk(x
k
m), uk(λk) is also clear. For 

some concrete applications of (3.1) such as those in [ 22, 37], the matrices. A2, · · · Am

are all identity matrices. For these cases,.uk(w) reduces to. v if all.βk equal to. 1. With 
these notations, the scheme (1) can be summarized as generating the new iteration 
.uk wk+1 with the input.uk wk . Further based on some notations in [ 35], we define
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.Ak = diag Hk A2, Hk A3, . . . , Hk Am, Hk
−1

I ∈ R
m ×

m

i=2
ni+

, (3.18) 

which indicates that.uk(w) = Ak z. Then, we introduce several matrices in block-wise 
form as follows: 

. Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

I 0 · · · · · · 0

I I
. . .

. . .
.
.
.

.

.

.
. . .

. . .
. . .

.

.

.

I · · · I I 0
−I −I · · · −I I

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∈ R
m ×m , M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

I −I 0 0 0

0 I
. . .

. . .
.
.
.

.

.

.
. . .

. . . −I 0
0 · · · 0 I 0

−I −I · · · −I I

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∈ R
m ×m ,

(3.19) 
which will be used in the substitution procedures to be proposed. Note that .Q and 
.M are all well-structured block lower triangular matrices, and for (3.1) with.m = 2, 
we have 

. Q = M = I 0
−I I

∈ R
2 ×2 .

3.3 Adaptive Variable Penalty Parameter . βk

In this section, we will discuss the adaptive updating scheme of the important penalty 
parameter . βk . The main concern is not only to efficiently accelerate our algorithm 
framework, but also to guarantee better theoretical results, which include global 
convergence and iteration complexity for general convex problems. At the beginning, 
we present the following generic property that the sequence .{βk} needs to satisfy, 
and our theoretical analysis is based on the following property. 

Summable Bounded Property: there exists another non-negative sequence 
.{ηk} such that .{βk, ηk} satisfies 

.
1

1 + ηk
βk ≤ βk+1 ≤ (1 + ηk)βk,

+∞

k=0

ηk < +∞. (3.20) 

This summable bounded property indicates that although the penalty parameter . βk

can be dynamically adjusted, each pair .βk and.βk+1 should be “close.” They have at 
most .1 + ηk times the gap. 

Motivated by [ 21], in which residual balancing scheme is applied to adaptively 
tune the parameter sequence .{βk}, we define the primal and dual “residuals” with 
respect to iterations .u wk−1 and .u wk as follows 

.pk := A u wk − u wk−1 ,
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dk := 
m 

i=1 

Ai x
k 
i − b, 

where .A := diag (A2, · · · , Am) ∈ R
(m−1 × m

i=2 ni . According to the convergence 
results in the following sections, we guarantee that both of these two residuals 
approach zero as the iterates become more accurate. We observe that increasing . βk

strengthens the penalty term, yielding larger primal residual but smaller dual residual; 
conversely, decreasing .βk leads to smaller primal residual but larger dual residual. 
Both residuals must be small enough at convergence, it makes sense to “balance” 
them, i.e., tune .βk to keep both residuals of similar magnitude, i.e., . pk dk . 

Given a constant .μ ∈ (0, 1) and a non-negative sequence .{ηk} that satisfies 

.

+∞

k=0

ηk < +∞, (3.21) 

we consider the following three strategies, where .t ∈ N+: 

1. .{βk} is monotonically nondecreasing: 

.βk+1 = βk (1 + ηk) , if pk < μ dk ,

βk, otherwise,
(3.22) 

with .ηk = 0 if .(k mod t) 0; 
2. .{βk} is monotonically nonincreasing: 

.βk+1 =
βk

1+ηk
, if dk < μ pk ,

βk, otherwise,
(3.23) 

with .ηk = 0 if .(k mod t) 0; 
3. .{βk} is self-adaptive: 

.βk+1 =
⎧⎨
⎩

βk (1 + ηk) , if pk < μ dk ,
βk

1+ηk
, if dk < μ pk ,

βk, otherwise,
(3.24) 

with .ηk = 0 if .(k mod t) 0. 

All the above three cases indicate that we will adjust . β every . t iterations if possible 
and we always have 

. βk+1 = βk (1 + ηk) , or βk+1 = βk

1 + ηk
, or βk+1 = βk,

which demonstrates that these strategies all guarantee the summable bounded 
property, i.e., (3.20). Furthermore, under condition (3.21), we can obtain that
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. 

∞

i=1

(1 + ηk) < +∞.

Hence, the sequence.{βk} is both upper bounded and bounded below away from zero; 
that is, we have 

. inf
k

{βk} > 0, sup
k

{βk} < +∞.

3.4 Prediction-Correction Reformulation Framework 

In this section, we reformulate the proposed Algorithm 1 as a prediction-correction 
framework; some lemmas are proved accordingly. Note that this prediction-
correction framework is simply a theoretical revisit to the scheme (3.8) that is more 
convenient for the coming convergence analysis; it is not necessary to obey this 
framework for implementing the scheme (3.12). In the following, we propose a key 
lemma of this paper, which immediately enables us to reformulate the Algorithm 1 
with adaptive variable penalty parameters as a prediction-correction framework. 

Lemma 3.1 Let .uk+1 and .w̃k are generated by Algorithm 1 with given . uk, together 
with .uk(wk) = Ak zk and .uk(w̃k) = Ak z̃k . Then we have 

1. Prediction step: for all . w ∈ W

.θ(x) − θ(x̃ k) + w − w̃k
T
F(w̃k) ≥ uk(w) − uk(w̃

k)
T Q uk(w

k) − uk(w̃
k) ; (3.25) 

2. Correction-step: relationship between .uk(wk+1) and .uk(w̃k) with . α ∈ (0, 1)

.uk(w
k+1) = uk(w

k) − αM uk(w
k) − uk(w̃

k) ; (3.26) 

3. Based on matrices . Q and .M in (3.19), we define matrix .H and . G

.H = QM−1 ∈ R
m ×m , G = QT + Q − MTHM ∈ R

m ×m , (3.27) 

where matrix .H is symmetric and positive definite, while matrix .G is also 
symmetric but positive semi-definite. 

Proof The prediction-step (3.25) can be obtained through the same inference as [ 35, 
Theorem 3.3] except that .uk(w) is based on the adaptive penalty parameter . βk . So  
that we ignore the detailed proof here, please check [ 35, Theorem 3.3] for more 
details. 

As for the correction-step, it can be directly obtained by using the notations 
.uk(wk), .uk(w̃k), .uk(wk+1) and . N . Also, the positive semi-definiteness of .H and . G
can be obtained through some basic matrix calculations. Almost the same technique 
has been used in [ 12, 35, 37].
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Moreover, based on the above Lemma 3.1 and more structure-driven properties of 
the above-defined notations, we prove two contraction-type convergence properties. 

Lemma 3.2 Let .uk+1 and .w̃k are generated by Algorithm 1 with given . uk, together 
with .uk(wk) = Ak zk and .uk(w̃k) = Ak z̃k . Then we have 

1. Basic-contraction-function: for all . w ∈ W

. θ(x) − θ(x̃ k) + w − w̃k
T
F w̃k

≥ 1

2α
uk(w) − uk(w

k+1)
2

H
− uk(w) − uk(w

k)
2

H
+ 1 − α

2α2 uk(w
k) − uk(w

k+1)
2

H
;

(3.28) 

2. Strictly-contraction-function: for all . w∗ ∈ W∗

. uk(w
k+1) − uk(w

∗)
2

H
≤ uk(w

k) − uk(w
∗)

2

H
− 1 − α

α
uk(w

k) − uk(w
k+1)

2

H
.

(3.29) 

Proof For the first basic-contraction-function, recall (3.25) and the definition of. H , 
we have for all . w ∈ W

. θ(x) − θ(x̃ k) + w − w̃k
T
F w̃k ≥ 1

α
uk(w) − uk(w̃

k)
T H uk(w

k) − uk(w
k+1) .

Further applying the identity 

. (a − b)T H (c − d) = 1

2
a − d 2

H − a − c 2
H + 1

2
c − b 2

H − d − b 2
H ,

to the right-hand side of the above inequality with 

. a = uk(w), b = uk(w̃
k), c = uk(w

k), d = uk(w
k+1),

we thus obtain 

. uk(w) − uk(w̃
k)

T H uk(w
k) − uk(w

k+1)

= 1

2α
uk(w) − uk(w

k+1)
2

H − uk(w) − uk(w
k)

2

H

+ 1

2α
uk(w

k) − uk(w̃
k)

2

H − uk(w
k+1) − uk(w̃

k)
2

H .
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As for the last term, we can prove that 

. uk(w
k) − uk(w̃

k)
2

H
− uk(w

k+1) − uk(w̃
k)

2

H

= uk(w
k) − uk(w̃

k)
2

H
− uk(w

k) − uk(w̃
k) − uk(w

k) − uk(w
k+1)

2

H
(3.2)= uk(w

k) − uk(w̃
k)

2

H
− uk(w

k) − uk(w̃
k) − αM uk(w

k) − uk(w̃
k)

2

H

= 2α uk(w
k) − uk(w̃

k)
T HM uk(w

k) − uk(w̃
k) − α2 uk(w

k) − uk(w̃
k)

2

MTHM

= α uk(w
k) − uk(w̃

k)
T QT + Q − MTHM uk(w

k) − uk(w̃
k)

+ α (1 − α) uk(w
k) − uk(w̃

k)
T MTHM uk(w

k) − uk(w̃
k)

(3.2)= α uk(w
k) − uk(w̃

k)
2

G
+ 1 − α

α
uk(w

k) − uk(w
k+1)

2

H

≥ 1 − α

α
uk(w

k) − uk(w
k+1)

2

H
, (3.30) 

with.α ∈ (0, 1) and further the assertion of the first part in this theorem is proved. In 
the following, recall (3.28) and set .w = w∗, we get 

. uk(w
k) − uk(w

∗) 2

H − uk(w
k+1) − uk(w

∗) 2

H

≥ 1 − α

α
uk(w

k) − uk(w
k+1)

2

H + 2α θ(x̃ k) − θ(x∗) + w̃k − w∗ T
F w̃k

≥ 1 − α

α
uk(w

k) − uk(w
k+1)

2

H + 2α θ(x̃ k) − θ(x∗) + w̃k − w∗ T
F w∗

≥ 1 − α

α
uk(w

k) − uk(w
k+1)

2

H ,

where the second last inequality is based on the monotonicity of .F(w) and the last 
inequality is obtained by using the optimality of.w∗. Thus, the assertion (3.29) follows 
directly. 

3.5 Theoretical Analysis 

In this section, we will establish the theoretical results for ADMM-G-V, which 
includes the global convergence and the worst case .O 1

k convergence rate in both 
ergodic and non-ergodic senses.
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3.5.1 Global Convergence 

The proved lemmas are adequate for establishing the global convergence of the pro-
posed ADMM-G-V algorithm, and the analytic framework is standard in the context 
of contractive-type methods. Before presenting the main theorem, we introduce the 
variable . u, which has no .Hk after comparing with .uk(w). Actually, . uk is the 
sequence that we should pay more attention to, which is iteratively computed in 
ADMM-G-V. 

Theorem 3.2 Let . u wk and . w̃k be the sequence generated by the proposed 
ADMM-G-V. Then, we have 

1. . u wk − u wk+1
H

k→∞−→ 0,
m

i=1
Ai x̃ki − b

2

k→∞−→ 0; 1

2. .θ(x̃ k) − θ(x∗) k→∞−→ 0 for any given .x∗ ∈ X∗. . where . Ak = diag
(A2, A3, . . . , Am, I ). 

Proof Recall the strictly-contraction-function property, e.g., for all .w∗ ∈ W∗ we 
have 

. uk(w
k+1) − uk(w

∗)
2

H
≤ uk(w

k) − uk(w
∗)

2

H
− 1 − α

α
uk(w

k) − uk(w
k+1)

2

H
.

Mention again the step-size property (3.20), we have 

. uk(w) − uk(w
k)

2

H ≤ (1 + ηk−1) · uk−1(w) − uk−1(w
k)

2

H .

By applying this property in the above contractive property with .w = w∗, we can 
obtain 

. 
1

γ k+1
1

uk+1(w
k+1) − uk+1(w

∗)
2

H
≤ 1 + ηk

γ k+1
1

uk(w
k+1) − uk (w

∗)
2

H

≤ 1

γ k
1

uk(w
k) − uk (w

∗)
2

H
− 1 − α

αγ k
1

uk(w
k) − uk (w

k+1)
2

H
,

where 

.γ t−1
k =

t−1

j=k

(1 + η j ), γ t−1
t = 1.

1. u wk − u wk+1
H has no relationship with the adaptive .βk , and is only determined by the 

iterative sequence. u wk . 
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Summing the above inequality from.k = 1 to .k = t , we have  

. 
1

γ t+1
1

ut+1(w
t+1) − ut+1(w

∗) 2

H

≤ 1

γ 1
1

u1(w
1) − u1(w

∗) 2

H −
t

k=1

1 − α

αγ k
1

uk(w
k) − uk(w

k+1)
2

H

≤ 1

γ 1
1

u1(w
1) − u1(w

∗) 2

H −
t

k=1

1 − α

αCp
uk(w

k) − uk(w
k+1)

2

H . (3.31) 

As a result, we obtain that for all iterations . k

. 

t

k=1

(1 − α)min βk ,
1
βk

αCp
u wk − u wk+1

2

H
≤

t

k=1

1 − α

αCp
uk(w

k) − uk(w
k+1)

2

H

≤ 1

γ 1
1

u1(w
1) − u1(w

∗) 2
H < ∞. (3.32) 

Further more with the unified boundedness of the sequence ..
(1−α)min βk ,

1
βk

αCp
k

, we  

can guarantee that 

. u wk − u wk+1 2

H
k→∞−→ 0. (3.33) 

As follows, we have . λk − λk+1 k→∞−→ 0, which indicates 

.. 

m

i=1

Ai x̃
k
i − b

2

k→∞−→ 0.

Recall the optimality condition with respect to .x̃ ki and .x∗
i respectively, we have 

. 
θi (xi ) − θi (x̃i ) + xi − x̃ ki

T −AT
i λ̃

k + βAT
i

i
j=2 A

T
j x̃ kj − xkj ≥ 0,

θi (xi ) − θi x∗
i + xi − x∗

i
T −AT

i λ
∗ ≥ 0.

Then by subscribing .x∗
i and .x̃ ki into the above two inequalities respectively, we can 

obtain 

. x̃ ki − x∗
i

T
AT
i λ∗ ≤ θi x̃ ki − θi x∗

i

≤ x̃ ki − x∗
i

T
AT
i λ̃k + x∗

i − x̃ ki
T

⎡
⎣βk A

T
i

⎛
⎝ i

j=2

A j x̃kj − xkj

⎞
⎠
⎤
⎦ .

(3.34)
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Summing the above inequality from.i = 1 to .i = m, we can further obtain 

. 
1

βk

m

i=1

Ai x̃
k
i − b

T

λ∗ ≤ θ x̃ k − θ x∗

≤ 1

βk

m

i=1

Ai x̃
k
i − b

T

λ̃k +
m

i=1

⎧⎨
⎩ x∗

i − x̃ ki
T

⎡
⎣βk A

T
i

⎛
⎝ i

j=2

A j x̃kj − xkj

⎞
⎠
⎤
⎦
⎫⎬
⎭

= 1

βk

m

i=1

Ai x̃
k
i − b

T

λ̃k + βk u w∗ − u w̃k T L u w̃k − u wk ,

(3.35) 

where matrix . L is defined as 

. L =

⎛
⎜⎜⎜⎜⎜⎜⎝

I 0 · · · · · · 0
I I

. . .
. . .

...
...

. . .
. . .

. . .
...

I · · · · · · I 0
0 · · · · · · · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

We know that 

.. 

m

i=1

Ai x̃
k
i − b

2

k→∞−→ 0, u w̃k − u wk k→∞−→ 0,

together the boundedness of sequence .u wk , .u w̃k and .u (w∗) (strictly-
contraction-function property), we can conclude that both sides of (3.35) converge 
to . 0. As a result, we guarantee that 

. θ(x̃ k) − θ(x∗) k→∞−→ 0, ∀x∗ ∈ X∗.

This finishes the proof of this theorem. 

Besides the global convergence of ADMM-G-V, the convergence rate is also 
another focus of attention. In the following two subsections, we will establish the 
worst-case iteration complexity in both the ergodic sense and the non-ergodic sense.
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3.5.2 Convergence Rate in the Ergodic Sense 

In Theorem 3.1, we can prove the equivalence of the following two conditions (see 
[ 36, Theorem 2.3.5] or [ 12, Theorem 2.1]), e.g., for all . w ∈ W

. w̃ ∈ W, θ(x) − θ(x̃) + (w − w̃)TF(w̃) ≥ 0,

which is equivalent to 

. θ(x) − θ(x̃) + (w − w̃)TF(w) ≥ 0.

We use the late one to define the approximate solution of VI. Namely, for given 
. 0, .w̃ ∈ W is called an . -approximate solution of VI .(W, F, θ), if it satisfies 
for all .. w ∈ W(w̃) := w ∈ W w − w̃ ≤ 1

. θ(x) − θ(x̃) + (w − w̃)
T F(w) ≥ −

We need to show that for given . 0, after some iterations, it can offer a .w̃ ∈ W, 
such that 

.w̃ ∈ W, sup
w∈W(w̃)

θ(ũ) − θ(u) + (w̃ − w)
T F (w) ≤ (3.36) 

Lemma 3.2 is the base for the convergence rate proof. Using the monotonicity of . F , 
we have 

. w − w̃k T
F (w) ≥ w − w̃k T

F w̃k .

Substituting it in (3.28), we obtain for all . w ∈ W

. θ(x) − θ(x̃ k) + w − w̃k
T
F (w) + 1

2α
uk(w) − uk(w

k)
2

H ≥ 1

2α
uk(w) − uk(w

k+1)
2

H .

(3.37) 

Lemma 3.3 Let.{wk} be the sequence generated by Algorithm-G-V for the problem 
(3.1) and .w̃k is obtained in the .k+1-th iteration, together with .uk(wk) = Akv

k and 
.uk(w̃k) = Ak ṽ

k . Then, we have 

.

t

k=0

γ t−1
k θ(x̃ k ) −

t

k=0

γ t−1
k θ(x) +

t

k=0

γ t−1
k w̃k −

t

k=0

γ t−1
k w

T

F (w) ≤ γ t−1
0

2α
u0(w) − u0(w

0)
2
H , (3.38) 

where 

.γ t−1
k =

t−1

j=k

(1 + η j ), γ t−1
t = 1. (3.39)
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Proof First, it holds that .w̃k ∈ W for all .k ≥ 0 and for all . w ∈ W

. θ(x) − θ(x̃ k) + w − w̃k
T
F (w) + 1

2α
uk(w) − uk(w

k)
2

H
≥ 1

2α
uk(w) − uk(w

k+1)
2

H
.

According to (3.20), we have 

. uk(w) − uk(w
k)

2

H ≤ (1 + ηk−1) · uk−1(w) − uk−1(w
k)

2

H , (3.40) 

consequently, it follows that for all . w ∈ W

. θ(x̃ k) − θ(x) + w̃k − w
T
F (w) + 1

2α
uk(w) − uk(w

k+1)
2

H

≤ 1

2α
uk(w) − uk(w

k)
2

H ≤ 1

2α
(1 + ηk−1) uk−1(w) − uk−1(w

k)
2

H . (3.41) 

Therefore, we have the following sequential inequalities 

. 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ(x̃0) − θ(x) + w̃0 − w
T
F (w) + 1

2α u0(w) − u0(w1)
2
H ≤ 1

2α u0(w) − u0(w0)
2
H ,

θ(x̃1) − θ(x) + w̃1 − w
T
F (w) + 1

2α u1(w) − u1(w2)
2
H ≤ 1

2α (1 + η0) u0(w) − u0(w1)
2
H ,

.

.

.
.
.
.

θ(x̃ k ) − θ(x) + w̃k − w
T
F (w) + 1

2α uk (w) − uk (wk+1)
2
H ≤ 1

2α (1 + ηk−1) uk−1(w) − uk−1(w
k )

2
H ,

.

.

.
.
.
.

θ(x̃ t ) − θ(x) + w̃t − w
T
F (w) + 1

2α ut (w) − ut (wt+1)
2
H ≤ 1

2α (1 + ηt−1) ut−1(w) − ut−1(w
t )

2
H .

For the (. k+. 1)-th inequality, we multiply it by a desirable factor.γ t−1
k =

t−1

j=k
1 + η j , 

we can get 

. 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ t−1
0 θ(x̃0) − θ(x) + w̃0 − w

T
F (w) + 1

2α u0(w) − u0(w1)
2
H ≤ 1

2α γ t−1
0 u0(w) − u0(w0)

2
H ,

γ t−1
1 θ(x̃1) − θ(x) + w̃1 − w

T
F (w) + 1

2α u1(w) − u1(w2)
2
H ≤ 1

2α (1 + η0)γ
t−1
1 u0(w) − u0(w1)

2
H ,

.

.

.

γ t−1
k θ(x̃ k ) − θ(x) + w̃k − w

T
F (w) + 1

2α uk (w) − uk (wk+1)
2
H ≤ 1

2α (1 + ηk−1) γ t−1
k uk−1(w) − uk−1(w

k )
2
H ,

.

.

.

γ t−1
t θ(x̃ t ) − θ(x) + w̃t − w

T
F (w) + 1

2α ut (w) − ut (wt+1)
2
H ≤ 1

2α (1 + ηt−1) γ t−1
t ut−1(w) − ut−1(w

t )
2
H .

Using the notations in (3.39), the above inequalities can be rewritten as
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. 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ t−1
0 θ(x̃0) − θ(x) + w̃0 − w

T
F (w) + γ t−1

0
2α u0(w) − u0(w1)

2
H ≤ γ t−1

0
2α u0(w) − u0(w0)

2
H ,

γ t−1
1 θ(x̃1) − θ(x) + w̃1 − w

T
F (w) + γ t−1

1
2α u1(w) − u1(w2)

2
H ≤ γ t−1

0
2α u0(w) − u0(w1)

2
H ,

.

.

.
.
.
.

γ t−1
k θ(x̃ k ) − θ(x) + w̃k − w

T
F (w) + γ t−1

k
2α uk (w) − uk (wk+1)

2
H ≤ γ t−1

k−1
2α uk−1(w) − uk−1(w

k )
2
H ,

.

.

.
.
.
.

γ t−1
t θ(x̃ t ) − θ(x) + w̃t − w

T
F (w) + γ t−1

t
2α ut (w) − ut (wt+1)

2
H ≤ γ t−1

t−1
2α ut−1(w) − ut−1(w

t )
2
H .

Adding all the above inequalities together, we get (3.38) and the lemma is 
proved. 

Theorem 3.3 Let .{wk} be the sequence generated by Algorithm-G-V for the prob-
lem (3.1) and .w̃k is obtained in the .k + 1-th iteration, together with . uk(wk) = Akv

k

and .uk(w̃k) = Ak ṽ
k . Then, for any integer number .t > 0, we have for all . w ∈ W

.θ(x̃t ) − θ(x) + (w̃t − w)
T F (w) ≤ γ t−1

0

2αϒt
u0(w) − u0(w

1)
2

H , (3.42) 

where 

.w̃t = 1

ϒt

t

k=0

γ t−1
k w̃k, ϒt =

t

k=0

γ t−1
k , (3.43) 

and .γ t−1
k is defined in (3.39). 

Proof Use the notation of .w̃t , (3.38) can be written as for all . w ∈ W

. 
1

ϒt

t

k=0

γ t−1
k θ(x̃ k) − θ(x) + (w̃t − w)

T F (w) ≤ γ t−1
0

2αϒt
u0(w) − u0(w

1)
2

H .

(3.44) 
Since .θ(u) is convex and 

. x̃t = 1

ϒt

t

k=0

γ t−1
k x̃ k,

we have that 

. θ(x̃t ) ≤ 1

ϒt

t

k=0

γ t−1
k θ(x̃ k).

Substituting it in (3.44), the assertion of this theorem follows directly. 

Further since 

.γ t−1
0 =

t−1

j=0

(1 + η j ) ≤ Cp and ϒt =
t

k=0

γ t−1
k ≥ t + 1,
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and it follows from (3.42) that for all . w ∈ W

. θ(x̃t ) − θ(u) + (w̃t − w)
T F (w) ≤ Cp

2α(t + 1)
u0(w) − u0(w

1)
2

H ∼ O 1

t
.

3.5.3 Convergence Rate in a Non-ergodic Sense 

At the beginning, we first discuss that the quantity . uk(wk) − uk(wk+1)
2
H can 

be used to measure the accuracy of the iterate .w̃k to a solution point of 
.V I (W, F, θ). More specifically, since .H is positive definite, we conclude that 
.uk(wk) − uk(wk+1) = 0 and .uk(wk) − uk(w̃k) = 0 if . uk(wk) − uk(wk+1)

2
H = 0. 

In other words, recall (3.25), we can obtain the following variational inequality 
characterization 

. w̃k ∈ W, θ(x) − θ(x̃ k) + w − w̃k T
F w̃k ≥ 0, ∀w ∈ W,

which indicates.w̃k is a solution of.V I (W, F, θ). Therefore,. uk(wk) − uk(wk+1)
2
H

can be considered as an error measurement after . k iterates of the ADMM-G-V 
scheme, and it is reasonable to seek an upper bound of . uk(wk) − uk(wk+1)

2
H

in term of the quantity of.O 1
k for the purpose of investigating the convergence rate 

of ADMM-G-V. Based on this fact, we have the following theorem. 

Theorem 3.4 Let .{wk} be the sequence generated by Algorithm-G-V for the prob-
lem (3.1) and .w̃k is obtained in the . k+.1-th iteration, together with . uk(wk) = Akv

k

and .uk(w̃k) = Ak ṽ
k . Then, for any integer number .t > 0, we have for all . w ∈ W

. min
1≤k≤t

u(wk) − u(wk+1)
2

H ≤ αC2
pβ0

(1 − α)γ 1
1 · t u1(w

1) − u1(w
∗) 2

H ∼ O 1

t
.

(3.45) 

Proof Recall the strictly-contraction-function property in Lemma 3.2, for any. w∗ ∈
W∗

. uk(w
k+1) − uk(w

∗)
2

H ≤ uk(w
k) − uk(w

∗)
2

H − 1 − α

α
uk(w

k) − uk(w
k+1)

2

H .

Mention again the step-size property (3.40) 

. uk(w) − uk(w
k)

2

H ≤ (1 + ηk−1) · uk−1(w) − uk−1(w
k)

2

H .
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By applying this property in the above contractive property with .w = w∗, we can 
obtain 

. 
1

γ k+1
1

uk+1(w
k+1) − uk+1(w

∗)
2

H
≤ 1 + ηk

γ k+1
1

uk (w
k+1) − uk (w

∗)
2

H

≤ 1

γ k
1

uk (w
k ) − uk (w

∗)
2

H
− 1 − α

αγ k
1

uk (w
k ) − uk (w

k+1)
2

H
.

Summing the above inequality from.k = 1 to .k = t , we have  

. 
1

γ t+1
1

ut+1(w
t+1) − ut+1(w

∗) 2
H ≤ 1

γ 1
1

u1(w
1) − u1(w

∗) 2
H −

t

k=1

1 − α

αγ k
1

uk (w
k ) − uk (w

k+1)
2

H

≤ 1

γ 1
1

u1(w
1) − u1(w

∗) 2
H −

t

k=1

1 − α

αCp
uk (w

k ) − uk (w
k+1)

2

H
,

further we have 

. t · min
1 − α

αC2
pβ0

u(wk) − u(wk+1)
2

H

≤ t · min

⎧⎨
⎩

(1 − α)min βk,
1
βk

αCp
u(wk) − u(wk+1)

2

H

⎫⎬
⎭

≤ t · min
1 − α

αCp
uk(w

k) − uk(w
k+1)

2

H

≤
t

k=1

1 − α

αCp
uk(w

k) − uk(w
k+1)

2

H

≤ 1

γ 1
1

u1(w
1) − u1(w

∗) 2

H ,

which directly supports the above assertion (3.45). 

3.6 Numerical Experiments 

We consider the consensus problem over a network .N as follows 

.minx∈Rn f (x) :=
m

i=1

fi (x). (3.46) 

This multi-agent system with .m agents and the set of agents is denoted by . V =
{1, · · · ,m}. The agents communicate with each other via this undirected and con-
nected graph topology .G = (V,E) where . E is the edge set with .E ⊂ V × V. Each
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agent . i has a local objective function . fi (x). The agents coordinate with each other 
to minimize the global objective function . f (x) defined above. In order to apply 
our proposed algorithm framework ADMM-G-V, we first equivalently reformulate 
(3.46) into the following linear constrained separable problem, i.e., 

..minxi∈Rn

m

i=1

fi (xi ), (3.47) 

s.t. xi = x j , (i, j ) ∈ E, i < j. 

In this reformulation, each edge is considered only once; as a result, the . i < j
constraint is additionally added. 

3.6.1 Undirected and Connected Graph . G

Equation (3.47) can be considered as an .m-blocks separable problem which is a 
special case of the general problem (3.1). However, if we take into consideration the 
network structure, (3.47) could be formulated as a multiple block separable problem 
with fewer blocks. By taking the following three specific graph examples in Fig. 3.3, 
we obtain the following observations: 

1. Tree: When the network structure is a tree graph as in Fig. 3.3a, we can separate 
the nodes into two groups, e.g., .V1 = {1, 4, 5, 6, 7} and .V2 = {2, 3, 8, 9} as in 
Fig. 3.3d. It is obvious that the nodes in .V1 and .V2 only have a relationship 
with the nodes in another group, not with the nodes in their own group. In other 
words, problem (3.47) can be formulated into a two-block separable problem, not 
a multiple block problem. 

2. Bipartite Graph: When the network structure is a bipartite graph as in Fig. 3.3b, 
we can separate the nodes into two groups, e.g., .V1 = {1, 2, 3, 4, 5} and . V2 =
{6, 7, 8, 9} as in Fig. 3.3e. It is obvious that the nodes in .V1 and .V2 only have 
a relationship with the nodes in another group, not with the nodes in their own 
group. In other words, problem (3.47) can also be formulated into a two-block 
separable problem, not a multiple block problem; 

3. General Graph: When the network structure is a general graph as in Fig. 3.3c 
with . 6 nodes, we can separate the nodes into three groups, e.g., .V1 = {1, 6}, 
.V2 = {2, 3} and .V3 = {4, 5} as in 3.3f. It is obvious that the nodes in .V1, .V2, 
and.V3 only have relationships with the nodes in other groups, not with the nodes 
in their own group. In other words, problem (3.47) can be formulated into a three-
block separable problem while .{x1, x6}, .{x2, x3} and .{x4, x5} are considered as 
three variable blocks. 

All these examples show that with proper rearrangement (3.47) can be considered 
as a multiple block problem with much less block number than the node number in 
the constraint graph. G. The greedy algorithm can be used to determine the groups in
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Fig. 3.3 Undirected and connected graph examples. G

. G by considering this problem as the graph coloring problem [ 38]. We assume that 
the nodes .V in graph . G can be separated into .mr groups, i.e., .. V1, . . . ,Vmr , as a  
result problem (3.47) can be further reformulated as 

. min
xi∈Rn

mr

i=1

⎧⎨
⎩

j∈Vi

f j (x j )

⎫⎬
⎭ , s.t.

mr

i=1

⎧⎨
⎩

j∈Vi

A j x j

⎫⎬
⎭ = 0, (3.48) 

where .A j ∈ R
mn×n and
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. A j =
⎡
⎢⎣

A1 j
...

Amj

⎤
⎥⎦ , A j ∈ R

n×n

and 

. A j =
⎧⎨
⎩

−In×n if j) ∈ E j,
In×n if j) ∈ E j,
On×n otherwise,

∀ 1 ≤ ≤ n, 1 ≤ j ≤ n.

3.6.2 Distributed Logistic Regression 

Logistic regression (LR) is a popular classification method that has been widely intro-
duced to lots of machine learning applications, including computer vision, natural 
language processing and etc. The distributed Logistic regression problem consid-
ered in this paper implies that the datasets are separated in different nodes; however, 
we need to learn the overall LR parameter in order to guarantee a complete model. 

Given. m distributed datasets..{(Ai,bi)}mi=1, where.Ai = aji
Ni

j=1
denotes the data sam-

ples distributed in node . i with .aji ∈ R
n and .bi = bji

Ni

j=1
denotes the label set with 

.bji ∈ {+1,−1}. We have the following formulation of each . fi , i.e., 

. fi (xi ) = 1

Ni

Ni

j=1

log 1 + exp −bji xTi a
j
i ,

where .xi ∈ R
n denotes the parameter with respect to the .i-th dataset. 

3.6.3 Datasets, Network Structure and Computing 
Environment 

We apply the model (3.47) on two real datasets. The first is the RCV1 dataset, which 
is used for text binary classification research [ 39]. The other dataset is the large-
scale URL dataset, which is used for identifying suspicious URLs [ 40]. The detailed 
sample number and feature dimension are stated in the following Table 3.2. We notice 
that both the sample number and feature dimension are huge for the URL dataset, 
but because of the limitation of processing capacity in each node, we only randomly 
choose 160,000 data samples for this numerical experiment. 

After establishing the graph . G, we will separate the datasets into the nodes in . G.
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Table 3.2 Description of real datasetsDatasets 

Dataset RCV1 URL 

#Examples 20000 2.4M 

#Features 47236 3.2M 

Label ratio +1: -1 1:1 1:2 

The connected network . G is randomly generated with .m = 100 nodes and con-
nectivity ratio .r = 0.2. Both datasets are randomly and uniformly separated into . m
nodes, i.g., .Ni = 200 and .Ni = 24, 000 for each dataset, respectively. By applying 
the greedy algorithm, we can dye the generated graph with . κ colors (without loss 
of generality, we assume .κ > 2). Further, we can consider the guaranteed problem 
(3.47) as a  .κ-block linear constrained separable problem (.κ = 17 for our gener-
ated problem). Our algorithm framework will be employed to solve this distributed 
Logistic regression problem on the generated network . E. 

All the numerical experiments were implemented on a Laptop with Intel(R) 
Core(TM) i5-6300U CPU@ 2.40GHz 2.50GHz and 8.00 GB Memory. All the 
codes were written in Matlab2016a. We compare with two other algorithms: direct 
extension of multiple block ADMM (D-ADMM) and Algorithm 1 with constant . β
(Constant-beta). All the three . β adjustment schemes (3.22), (3.23), (3.24) will the 
compared, which all start from .β = 1. The stopping criteria for all the algorithms 
are set to be 

. max pk 2 , dk 2 ≤ 10−6,

while the iteration number (“Iter. #”), objective function value (“Objective”), the 
constraint violation value. dk 2 (“Constraint”) and the computation time (“Time(s)”) 
will be presented in the following tables. 

3.6.4 Numerical Performance 

In the above Table 3.3, generally Algorithm 1 with self-adaptive. β schemes perform 
better than multiple block ADMM with Gaussian back substitution technique, even 
better the direct extension of multiple block ADMM. In Table 3.4, we compare 
Algorithm 1 for . β schemes (3.22) (3.23) and (3.24) with respect to different . t . We  
can find that although for some cases (like (3.22) with .t = 2 and (3.23) with .t = 2), 
a less self-adaptive frequency can guarantee faster convergence. However, overall 
the self-adaptive. β scheme is not computationally consuming for our experiment, so 
that performing the self-adaptive scheme in each iteration (.t = 1) will accelerate the 
algorithm framework.
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Table 3.3 Numerical comparison of D-ADMM and Algorithm 1 for different. β scheme 
Dataset Algorithm .βk Iter. # Objective Constraint Time(s) 

RCV1 D-ADMM 10 721 230.0599 9.76e-07 551.15 

1 337 230.0599 9.71e-07 283.14 

0.1 2000 229.8048 2.46e-06 1565.57 

Algorithm 1 10 811 230.0602 9.35e-07 606.42 

1 382 230.0600 9.37e-07 327.93 

0.1 1839 230.0600 9.76e-07 1695.98 

(3.22) 223 230.0600 9.29e-07 236.93 

(3.23) 331 230.0600 9.46e-07 276.69 

(3.24) 136 230.0600 9.82e-07 153.21 

URL D-ADMM 10 889 478.4982 9.78e-07 1122.43 

1 529 478.4974 9.65e-07 632.14 

0.1 2000 477.9725 1.95e-05 2756.87 

Algorithm 1 10 1188 478.4980 9.33e-07 1671.57 

1 654 478.4978 9.45e-07 776.42 

0.1 1976 478.4878 9.69e-07 3097.53 

(3.22) 373 478.4978 9.65e-07 527.82 

(3.23) 362 478.4978 9.57e-07 496.45 

(3.24) 228 478.4978 9.54e-07 332.39 

Table 3.4 Numerical comparison of Algorithm 1 for . β schemes (3.22), (3.23) and  (3.24) with 
respect to different. t

Dataset Algorithm .βk .t Iter. # Objective Constraint Time(s) 

RCV1 Algorithm 1 (3.22) 1 223 230.0600 9.29e-07 236.93 

2 246 230.0600 9.67e-07 224.38 

5 313 230.0600 9.31e-07 245.29 

(3.23) 1 331 230.0600 9.46e-07 276.69 

2 347 230.0600 9.49e-07 280.16 

5 362 230.0600 9.37e-07 311.84 

(3.24) 1 136 230.0600 9.82e-07 153.21 

2 175 230.0600 9.75e-07 176.87 

5 224 230.0600 9.81e-07 226.25 

URL Algorithm 1 (3.22) 1 373 478.4978 9.65e-07 527.82 

2 423 478.4978 9.57e-07 578.57 

5 469 478.4978 9.69e-07 620.67 

(3.23) 1 362 478.4978 9.57e-07 496.45 

2 396 478.4978 9.29e-07 503.54 

5 423 478.4978 9.42e-07 559.58 

(3.24) 1 228 478.4978 9.54e-07 332.39 

2 247 478.4978 9.46e-07 329.63 

5 284 478.4978 9.39e-07 393.54
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3.7 Conclusion and Future Work 

In this paper, we propose a theoretical analysis of the alternating direction method of 
multipliers with a Gaussian back substitution step for the variable penalty parameters 
case. Both non-ergodic and ergodic worst-case convergence rates are established. 
Specifically, classical two-block ADMM with variable penalty parameters can be 
included in the framework. A better penalty parameter tuning mechanism should be 
further analyzed and considered. 
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Chapter 4 
Inertial Alternating Direction 
Method of Multipliers 
with Logarithmic-Quadratic Proximal 
Regularization 

Zhongming Wu 

Abstract It has been demonstrated that the alternating direction method of multi-
pliers (ADMM) with logarithmic-quadratic proximal (LQP) regularization is effi-
cient in solving a specific class of separable convex optimization problems. This 
method capitalizes on the individual separable properties and transforms the con-
strained subproblems into more manageable unconstrained subproblems during the 
iterative process. In this paper, we investigate the application of the inertial proximal 
point method and focus on studying the inertial ADMM and symmetric ADMM with 
LQP regularization for solving constrained separable convex optimization problems. 
These approaches employ ADMM or symmetric ADMM on extrapolated points with 
appropriate step sizes to accelerate the convergence rate. Under some mild conditions, 
we establish the global convergence of the proposed methods. 

Keywords Alternating direction method of multipliers · Logarithmicquadratic 
proximal regularization · Inertial · Convergence analysis 

4.1 Introduction 

In this paper, we consider the following separable constrained optimization problem 

. min θ1(x) + θ2(y) | Ax + By = b, x ∈ R
n
+, y ∈ R

p
+ , (4.1) 

where.θ1 : Rn+ → R and.θ2 : Rp
+ → R are closed convex functions, . A ∈ R

m×n, B ∈
R

m×p and .b ∈ R
m . The solution set of (4.1) is assumed to be nonempty throughout 

our discussions in this paper. The augmented Lagrangian function of the problem 
(4.1) is defined by 
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.Lβ(x, y, λ) = θ1(x) + θ2(y) − λ (Ax + By − b) + β

2
Ax + By − b 2, (4.2) 

where.λ ∈ R
m is the Lagrange multiplier associated with the linear constraint in (4.1) 

and.β > 0 is a penalty parameter. Problem (4.1) captures many applications in various 
fields such as financial portfolio optimization [ 34] and traffic management [ 40, 47]. 

The alternating direction method of multipliers (ADMM), originally proposed 
in [ 22, 23], is widely recognized for its efficient solution to (4.1). This method 
leverages the individual properties of .θ1 and. θ2. For a comprehensive understanding 
of ADMM’s theoretical analysis and diverse applications, we refer readers to [ 11, 13, 
20, 26, 29, 30, 46] and the relevant references therein. In this paper, we introduce a 
cyclically equivalent form of ADMM, with further details on this cyclic equivalence 
provided in [ 12, 14]. The iterative scheme of ADMM in “.x → λ → y” order for 
(4.1) can be read as 

.

⎧
⎨

⎩

xk+1 = argmin{Lβ(x, yk, λk) | x ∈ R
n+},

λk+1 = λk − β(Axk+1 + Byk − b),
yk+1 = argmin{Lβ(xk+1, y, λk+1) | y ∈ R

p
+}.

(4.3) 

Another influential and important method for solving problem (4.1) is the  
Peaceman-Rachford splitting (PRS) method, initially proposed in [ 37, 41]. When 
applying the PRS method to the dual of the considered problem, we obtain another 
alternating method, known as symmetric ADMM [ 18, 24, 28, 33, 49, 50]. The 
iterative scheme of symmetric ADMM for solving (4.1) can be read as follows: 

.

⎧
⎪⎪⎨

⎪⎪⎩

xk+1 = argmin{Lβ(x, yk, λk) | x ∈ R
n+},

λk+1/2 = λk − β(Axk+1 + Byk − b),
yk+1 = argmin{Lβ(xk+1, y, λk+1/2) | y ∈ R

p
+},

λk+1 = λk+1/2 − β(Axk+1 + Byk+1 − b).

(4.4) 

The symmetric ADMM (4.4) differs from ADMM due to the additional Lagrange 
multiplier update step, as analyzed in [ 22]. It has been observed that the symmetric 
ADMM converges faster than ADMM if it does converge [ 21, 27]. However, sym-
metric ADMM (4.4) may fail to converge without further assumptions. To address this 
limitation, He et al. [ 27] introduced an underdetermined relaxation factor. γ ∈ (0, 1)
to both Lagrange multiplier updating steps of (4.4). The parameter .γ ∈ (0, 1) plays 
a crucial role in ensuring the strict contractiveness of the generated sequence. Under 
this condition, they established convergence results and demonstrated the same 
sublinear convergence rate as that of ADMM [ 29]. 

For the generic convex objective function in (4.1), the constrained subproblems in 
(4.3) and (4.4) typically require iterative and approximate solutions. However, due 
to the specific nature of the constraints in these (symmetric) ADMM subproblems, 
several studies [ 6– 8, 36, 38, 47, 51] propose appropriate regularization of the objec-
tive functions to strictly confine the solutions within the interiors of.Rn+ and.R

p
+. This  

regularization allows the constrained subproblems in (4.3) and (4.4) to be converted 
into unconstrained subproblems. An excellent choice for such regularization is the
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logarithmic-quadratic proximal (LQP) regularization, initially proposed in [ 6], and 
extensively studied in various articles such as [ 4, 5, 51]. The iterative scheme of 
ADMM with LQP regularization is as follows: 

.

⎧
⎨

⎩

xk+1 = argmin{Lβ(x, yk, λk) + rd(x, xk) | x ∈ R
n+},

λk+1 = λk − β(Axk+1 + Byk − b),
yk+1 = argmin{Lβ(xk+1, y, λk+1) + sd(y, yk) | y ∈ R

p
+},

(4.5) 

and the iterative scheme of symmetric ADMM with LQP regularization is 

.

⎧
⎪⎪⎨

⎪⎪⎩

xk+1 = argmin{Lβ(x, yk, λk) + rd(x, xk) | x ∈ R
n+},

λk+1/2 = λk − β(Axk+1 + Byk − b),
yk+1 = argmin{Lβ(xk+1, y, λk+1/2) + sd(y, yk) | y ∈ R

p
+},

λk+1 = λk+1/2 − β(Axk+1 + Byk+1 − b),

(4.6) 

where .d(·, ·) is the LQP function defined by 

. d(z , z) :=
⎧
⎨

⎩

N

j=1

1
2 z j − z j

2 + μ z2j log
z j
z j

+ z j z j − z2j , if z ∈ R
N++;

+∞, otherwise,
(4.7) 

for any .z ∈ R
N++, . r and . s are two positive scalars. Indeed, the LQP regularization 

terms .rd(x, xk) and .sd(y, yk) inherently constrain .xk+1 and .yk+1 to belong to . R
n1++

and.R
n2++, respectively, rendering the constraints.x ∈ R

n1+ and.y ∈ R
n2+ inactive. Con-

sequently, only two unconstrained minimization subproblems are involved in (4.5). 
The convergence and the rate of convergence of these two methods have been widely 
discussed in the literature [ 15, 35, 36, 44]. 

Proximal point algorithm (PPA) [ 43, 52] is a closely related method with the 
existing splitting methods such as ADMM and Douglas-Rachford splitting method 
[ 19], which is to minimize a differentiable function.ψ : Rn → R, it can be interpreted 
as an implicit one-step discretization method for the ordinary differential equation 
.w + ∇ψ(w) = 0, where.w : R → R

n is differentiable,.w denotes its derivative and 
.∇ψ denotes the gradient of . ψ . To accelerate the convergence speed of the PPA, one 
can adopt the multi-step methods, which 

.wk+1 = (I + σ∇ψ)−1(wk + α(wk − wk−1)), (4.8) 

where.σ = h2/(1 + τh),.α = 1/(1 + τh) and. I represents the identity operator. Note 
that the iterative scheme (4.8) can be regarded as applying the PPA to the extrapolated 
point.wk + α(wk − wk−1), which is usually the so-called inertial PPA [ 1, 16]. Indeed, 
this inertial technique can be traced back to [42], and recently there has been extensive 
work in studying inertial-type algorithms, including the inertial forward-backward 
splitting method [ 2, 10, 39, 48], inertial Douglas-Rachford splitting method [ 9], and 
so forth. 

Inspired by the inertial PPA aforementioned, Chen et al. [14] introduced an inertial 
proximal ADMM to enhance the convergence speed of ADMM (4.3). This approach
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can be seen as applying ADMM (4.3) to an extrapolated point with an appropriate step 
size. Subsequently, the inertial ADMM has been further investigated in [ 3], where 
the authors proposed an inertial proximal ADMM with an appropriate adjustment 
of the viscosity and proximal parameters. The fast convergence properties, as well 
as the convergence of the iterates to saddle points of the Lagrangian function, can 
be guaranteed. Recently, the inertial acceleration techniques have been extended to 
handle nonconvex optimization problems with linear constraints [ 17, 31, 32, 45]. 
However, the resulting method still requires iterative and approximate solutions for 
the constrained subproblems. 

In this paper, we apply the inertial technique to ADMM and symmetric ADMM 
with LQP regularization for solving the linearly constrained separable convex opti-
mization problem (4.1). These proposed methods not only enforce the solutions of 
the constrained subproblems in (4.3) and (4.4) to remain strictly within the interiors 
of .Rn+ and .Rp

+, facilitating their conversion into easier unconstrained subproblems, 
but also accelerate the convergence speed of the iterative schemes (4.5) and (4.6) 
through extrapolation-based steps. Under mild assumptions, we establish the global 
convergence of the proposed methods. 

The remainder of this paper is organized as follows. Section 4.2 provides a sum-
mary of relevant preliminary results and introduces the definition of LQP regulariza-
tion. In Sects. 4.3 and 4.4, we present the inertial ADMM and symmetric ADMM with 
LQP regularization, respectively, and analyze their convergence properties. Finally, 
Sect. 4.5 concludes this paper. 

4.2 Preliminaries 

We first summarize some useful preliminaries known in the literature and present 
some simple conclusions for further analysis. 

4.2.1 The Logarithmic-Quadratic Proximal Regularization 

In this subsection, we give some basic knowledge about the LQP regularization. 
More details are also provided in [ 6]. Let us define 

. ϕ(c) :=
1
2 (c − 1)2 + μ(c − log c − 1), if c > 0;
+∞, otherwise,

where .μ ∈ (0, 1) is a given constant. Associated with . ϕ, we define 

. (z, z ) := (z1ϕ (z1/z1), . . . , zNϕ (zN/zN )) , ∀z, z ∈ R
N
++,

where
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. ϕ (z j/z j ) = z j/z j − 1 + μ(1 − z j/z j ), j = 1, 2, . . . , N .

For any .z , z ∈ R
N++, we have .d(z , z) z − z 2/2 and .d(z , z) = 0 if and only if 

.z = z. Moreover, the function .d(·, ·) defined in (4.7) can be rewritten as 

. d(z , z) =
N

j=1

z2jϕ(z j/z j ), ∀z , z ∈ R
N
++,

and then we have 

. (z, z ) = ∇z d(z , z) = (z − z) + μ[z − Z2(z )−1],

where .Z := diag(z1, z2, . . . , zN ) ∈ R
N×N , (z )−1 ∈ R

N is a vector whose . j-th 
element is .1/z j . 

We now summarize an important lemma, proven in [ 36], which will be useful for 
the convergence analysis in subsequent sections. 

Lemma 4.1 Let .P := diag(p1, p2, . . . , pN ) ∈ R
N×N be a positive definite diag-

onal matrix, .q(z) ∈ R
N be a monotone mapping of . z with respect to .RN+ , and 

.ϑ : RN → R. Let .μ ∈ (0, 1) be a constant. For given .z̄, z ∈ R
N++, we define . Z̄ :=

diag(z̄1, z̄2, . . . , z̄N ), .z−1 := (1/z1, . . . , 1/zN ) and 

. (z̄, z) := (z − z̄) + μ(z̄ − Z̄2z−1).

Then, the variational inequality 

. ϑ(z ) − ϑ(z) + (z − z) [q(z) + P (z̄, z)] ≥ 0, ∀z ∈ R
N
+ ,

has the unique positive solution . z. Besides, for this positive solution .z ∈ R
N++ and 

any .z ∈ R
N+ , we have 

.ϑ(z ) − ϑ(z) + (z − z) q(z) ≥ (1 + μ)(z̄ − z) P(z − z) − μ z − z 2
P . (4.9) 

4.2.2 Variational Reformulation 

In this subsection, we use a variational inequality (VI) reformulation of the model 
(4.1) and a characterization of its solution set. Let the Lagrangian function of (4.1) 
be 

. L(x, y, λ) = θ1(x) + θ2(y) − λ (Ax + By − b),

where .x ∈ R
n+, y ∈ R

p
+ and .λ ∈ R

m be the Lagrange multiplier. Then finding a 
saddle point of .L(x, y, λ) is to find .(x∗, y∗, λ∗) ∈ R

n+ × R
p
+ × R

m such that
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. L(x∗, y∗, λ) ≤ L(x∗, y∗, λ∗) ≤ L(x, y, λ∗), ∀x∗ ∈ R
n
+, y∗ ∈ R

p
+, λ∗ ∈ R

m .

Therefore, solving (4.1) is equivalent to finding. w∗ = (x∗, y∗, λ∗) ∈ := R
n+ ×

R
p
+ × R

m such that 

.VI F, θ) : θ(u) − θ(u∗) + (w − w∗) F(w∗) ≥ 0, ∀w ∈ (4.10) 

where 

. θ(u) = θ1(x) + θ2(y), u = x
y

, w =
⎛

⎝
x
y
λ

⎞

⎠ and F(w) =
⎛

⎝
−A λ

−B λ

Ax + By − b

⎞

⎠ .

(4.11) 

Since the mapping.F(w) defined in (4.11) is affine with a skew-symmetric matrix, 
it is monotone. We denote by.

∗ the solution set of .VI F, θ), and suppose that it 
is nonempty. 

4.2.3 Some Notations 

For notational simplicity, we first define two matrices which will simplify our further 
analysis in the following sections. Specifically, let 

.G :=
⎛

⎝
(1 + μ)R 0 0

0 βB B + (1 + μ)S −B
0 −B 1

β
Im

⎞

⎠ , N :=
⎛

⎝
μR 0 0
0 μS 0
0 0 0

⎞

⎠ , (4.12) 

and 

.M :=
⎛

⎝
(1 + μ)R 0 0

0 γ+ρ−γρ

γ+ρ
βB B + (1 + μ)S − γ

γ+ρ
B

0 − γ

γ+ρ
B 1

(γ+ρ)β
Im

⎞

⎠ , (4.13) 

where .R := r In , .S := s Ip and .γ, ρ are two positive constants. Indeed, it is not 
difficult to verify that the matrices . G, . N , and .M are positive symmetric definite 
when .r, s > 0 and .γ, ρ ∈ (0, 1). 

4.3 Inertial ADMM with LQP Regularization 

In this section, we first introduce the inertial ADMM with LQP regularization as 
a solution approach for problem (4.1). We then analyze its convergence using a 
variational inequality framework.
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4.3.1 Inertial ADMM with LQP Regularization 

We now present the inertial ADMM with LQP regularization. The method first extrap-
olates the current point in the direction of the last movement and then applies the 
ADMM with LQP regularization to the extrapolated point. Below, we summarize 
the overall algorithm framework. 

Algorithm 1 Inertial ADMM with LQP regularization 
Initialization: Choose the constants.r, s > 0 and.β > 0, and a sequence of nonnegative parameters 
.{αk}∞k=0. Let.(x

−1, y−1, λ−1) := (x0, y0, λ0) ∈ R
n++ × R

p
++ × R

m . 
for .k = 0, 1, 2, . . . do 
Step 1. Update 

. w̃k = wk + αk(w
k − wk−1), (4.14)

ensuring that.w̃k ∈ R
n++ × R

p
++ × R

m . 
Step 2. Update the new iterate.wk+1 by 

. 

⎧
⎨

⎩

xk+1 = argmin{Lβ(x, ỹk , λ̃k) + rd(x, x̃ k) | x ∈ R
n+},

λk+1 = λ̃k − β(Axk+1 + B ỹk − b),
yk+1 = argmin{Lβ(xk+1, y, λk+1) + sd(y, ỹk) | y ∈ R

p
+}.

(4.15)

end 
Return: .wk+1. 

Remark 4.1 Note that Lemma 4.1 guarantees the existence of a unique solu-
tion, denoted as .xk+1 ∈ R

n++ for subproblem (4.15), and .yk+1 ∈ R
p
++ for subprob-

lem (4.15). Additionally, the condition .w̃k ∈ R
n++ × R

p
++ × R

m can be satisfied by 

choosing..αk = max 0,mini
wk−1

i −wk
i

wk
i

. Moreover, the effectiveness of LQP regu-

larization has been showcased in [ 47] for a traffic management problem, and the ben-
efits of the inertial technique have been extensively confirmed in various real-world 
applications, as seen in, for instance, [ 9, 10, 14]. Hence, we exclude the numerical 
experiments in this paper. 

We now introduce the following assumption for the sequence of parameters 
.{αk}∞k=0. 

Assumption 4.1 Suppose that the sequence of parameters .{αk}∞k=0 is chosen such 
that 

(i) for all .k ≥ 0, .0 ≤ αk ≤ α for some .α ∈ [0, 1), 
(ii) the sequence .{wk}∞k=0 generated by (4.15) satisfies 

.

∞

k=0

αk wk − wk−1 2
G < ∞. (4.16)
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Note that in order to ensure Assumption 4.1, we can choose .{αk}∞k=0 adaptively 
based on the historical iterative information in practice such that (4.16) holds. Alter-
natively, it is simultaneously satisfied if .{αk}∞k=0 satisfies some further conditions; 
see, e.g., [ 1, Prop. 2.1]. 

4.3.2 Convergence Analysis 

Below, we start our convergence analysis by proving some properties for the sequence 
.{wk} according to the first-order optimality condition. 

Lemma 4.2 Let the sequence .{wk} be generated by the iterative scheme of the 
inertial ADMM with LQP regularization given in Algorithm 1, and .G be defined in 
(4.12). Then, for any .w ∈ , we have .wk+1 ∈ and 

.θ(u) − θ(uk+1) + (w − wk+1) [F(wk+1) + G(wk+1 − w̃k) wk+1 − w̃k 2
N ≥ 0. (4.17) 

Proof From the first-order optimality condition of the .x-subproblem in (4.15), we 
have .xk+1 ∈ R

n+, and for any .x ∈ R
n+, it holds that 

. 
θ1(x) − θ1(x

k+1) + (x − xk+1)

{−A [λ̃k − β(Axk+1 + B ỹk − b)] + r (x̃ k, xk+1)} ≥ 0.

Applying Lemma 4.1 to above inequality with.P = R, .z̄ = x̃ k , .z = xk+1, .z = x , 
.ϑ = θ1 and 

. q(z) = −A [λ̃k − β(Axk+1 + B ỹk − b)]

in (4.9), then for any .x ∈ R
n+, we have .xk+1 ∈ R

n++ and 

. 
θ1(x) − θ1(x

k+1) + (x − xk+1) (−A λk+1)

≥ (1 + μ)(x − xk+1)R(x̃ k − xk+1) − μ xk+1 − x̃ k 2
R .

Rearranging the inequality, we have 

.
θ1(x) − θ1(x

k+1) + (x − xk+1) [−A λk+1 + (1 + μ)R(xk+1 − x̃ k)]
+ μ xk+1 − x̃ k 2

R ≥ 0.
(4.18) 

Similarly, for the.y-subproblem (4.15), we have.yk+1 ∈ R
p
++, and for any.y ∈ R

p
+, 

it holds that 

. 

θ2(y) − θ2(y
k+1) + (y − yk+1) { − B [λk+1 − β(Axk+1 + Byk+1 − b)]

+ (1 + μ)S(yk+1 − ỹk)} + μ yk+1 − ỹk 2
S ≥ 0.
(4.19)
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Moreover, it follows from (4.15) that 

.β(Axk+1 + Byk+1 − b) = λ̃k − λk+1 + βB(yk+1 − ỹk) = 0, (4.20) 

then the inequality (4.19) can be rewritten as 

. 

θ2(y) − θ2(y
k+1) + (y − yk+1) − B λk+1 + [βB B + (1 + μ)S](yk+1 − ỹk)

− B (λk+1 − λ̃k) + μ yk+1 − ỹk 2
S ≥ 0.

(4.21) 

Combining (4.18), (4.20) and (4.21), and using the notations in (4.11) and (4.12), 
we obtain the assertion (4.17) immediately. This completes the proof. 

Theorem 4.1 Suppose that .{αk}∞k=0 satisfies Assumption 4.1. Let the sequence 
.{wk}∞k=0 be generated by the inertial ADMM with LQP regularization given in 
Algorithm 1. Then, it holds that 

(i) for any .w∗ ∈ ∗, . lim
k→∞ wk − w∗

G exists, 

(ii) . ∞
k=0 wk+1 − w̃k 2

G < ∞. 

Proof (i) Setting .w = w∗ in (4.17) and .w = wk+1 in (4.10), adding these two 
inequalities and using the monotonicity of . F , we obtain 

.(wk+1 − w∗) G(wk+1 − w̃k) wk+1 − w̃k 2
N ≤ 0. (4.22) 

It follows from (4.14) that 

. (wk+1 − w∗) G(wk+1 − w̃k) = (wk+1 − w∗) G[wk+1 − wk − αk(w
k − wk−1)].

(4.23) 
Define .ϕk = 1

2 wk − w∗ 2
G , then we have 

. (wk+1 − w∗) G(wk+1 − wk) = ϕk+1 − ϕk + 1

2
wk+1 − wk 2

G,

and 

.

(wk+1 − w∗) G(wk − wk−1)

= ϕk − ϕk−1 + 1

2
wk − wk−1 2

G + (wk+1 − wk) G(wk − wk−1).
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Together with (4.22) and (4.23), we have 

. 

ϕk+1 − ϕk − αk(ϕk − ϕk−1) ≤ − 1

2
wk+1 − wk − αk(w

k − wk−1) 2
G

+ 1

2
(αk + α2

k ) wk − wk−1 2
G wk+1 − w̃k 2

N .

It follows from (4.14) and .
1
2 (αk + α2

k ) ≤ αk for any .αk ∈ [0, 1) that 

.

ϕk+1 − ϕk − αk(ϕk − ϕk−1)

≤ −1

2
wk+1 − w̃k 2

G + αk wk − wk−1 2
G wk+1 − w̃k 2

N

≤ αk wk − wk−1 2
G,

(4.24) 

where the second inequality follows from .G 2N since .μ ∈ (0, 1), .G and .N are 
defined in (4.12). 

Define .νk := ϕk − ϕk−1 and δk := αk wk − wk−1 2
G . Then, the inequality (4.24) 

implies that .νk+1 ≤ αkνk + δk ≤ α[νk]+ + δk , where .[t]+ = max{t, 0} for .t ∈ R. 
Also, we have 

. [νk+1]+ ≤ α[νk]+ + δk ≤ · · · ≤ αk+1[ν0]+ +
k

j=0

α jδk− j .

Note that.w0 = w−1, which implies that.ν0 = [ν0]+ = 0,.δ0 = 0. Thus, it follows  
from the above inequalities and Assumption 4.1 (ii) that 

.

∞

k=0

[νk+1]+ ≤ 1

1 − α

∞

k=1

δk < ∞. (4.25) 

Let .σk := ϕk − k
j=1[ν j ]+. Then, it follows from (4.25) and .ϕk ≥ 0 that .σk is 

bounded from below. Besides, we have 

. 

σk+1 = ϕk+1 − [νk+1]+ −
k

j=1

[ν j ]+

≤ ϕk+1 − νk+1 −
k

j=1

[ν j ]+ ≤ ϕk −
k

j=1

[ν j ]+ = σk,

thus .σk is nonincreasing. Consequently, .{σk}∞k=0 converges as .k → ∞, and the limit 

. lim
k→∞ ϕk = lim

k→∞ σk +
k

j=1

[ν j ]+ = lim
k→∞ σk +

∞

k=1

[νk]+
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exists. This completes the proof of assertion (i). 
(ii) Applying the identity 

. a 2
G b 2

G a − b 2
G + 2b G(a − b),

and setting 
. a := w∗ − w̃k, b := w∗ − wk+1,

we have 

. (wk+1 − w∗) G(wk+1 − w̃k) = 1

2
wk+1 − w̃k 2

G + 1

2
wk+1 − w∗ 2

G wk − w∗ 2
G .

Together with (4.22), we obtain 

. wk − w∗ 2
G wk+1 − w∗ 2

G wk+1 − w̃k 2
G − 2 wk+1 − w̃k 2

N .

Recalling the definition of. G and.N in (4.12) and.μ ∈ (0, 1), there exists a positive 
constant .0 < c ≤ 1−μ

1+μ
< 1 such that .G − 2N cG. Then, the above inequality can 

be written as 

. wk − w∗ 2
G wk+1 − w∗ 2

G ≥ c wk+1 − w̃k 2
G . (4.26) 

Since 

. (wk − w∗) G(wk − wk−1) = 1

2
wk − w∗ 2

G − 1

2
wk−1 − w∗ 2

G + 1

2
wk − wk−1 2

G .

(4.27) 

Combining (4.26), (4.27) and (4.14), we obtain 

. 

wk+1 − w̃k 2
G

≤ 1

c
wk − w∗ 2

G wk+1 − w∗ 2
G + αkνk + (αk + α2

k ) wk − wk−1 2
G

≤ 1

c
wk − w∗ 2

G wk+1 − w∗ 2
G + α[νk]+ + 2αk wk − wk−1 2

G .

By taking sum over . k, we obtain 

. 

∞

k=1

wk+1 − w̃k 2
G ≤ 1

c
ϕ1 +

∞

k=1

[ανk]+ + 2δk .

Together with (4.25) and Assumption 4.1 (ii), we obtain. 
∞
k=0 wk+1 − w̃k 2

G <

∞ immediately.
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The following lemma presents the feasibility and convergence of the objective 
function value for the inertial ADMM with LQP regularization, and the proof can 
refer to [ 14, Theorem 4.3]. Here, we omit the details. 

Lemma 4.3 Suppose that.{αk}∞k=0 satisfies Assumption 4.1. Let the sequence. {wk}∞k=0
be generated by the inertial ADMM with LQP regularization given in Algorithm 1. 
Then, we have 

(i) .
∞

k=0
Axk + Byk − b 2 < ∞, and hence . lim

k→∞ Axk + Byk − b 0. 

(ii) The objective function value . f (xk) + g(yk) converges to the optimal value of 
(4.1) as .k → ∞. 

Note that the results presented in Theorem 4.1 does not ensure the convergence 
of .{wk}∞k=0. In the following theorem, we present the convergence analysis for the 
sequence .{wk}∞k=0 generated by inertial ADMM with LQP regularization scheme 
(4.15). 

Theorem 4.2 Suppose that .{αk}∞k=0 satisfies Assumption 4.1. Let the sequence 
.{wk}∞k=0 be generated by the inertial ADMM with LQP regularization given in 
Algorithm 1. Then, .{wk}∞k=0 converges to a point .w

∗ ∈ ∗ as .k → ∞. 

Proof It follows from Theorem 4.1 that . lim
k→∞ wk − w∗

G exists for any .w∗ ∈ ∗, 

thus the sequence .{Gwk}∞k=0 is bounded. By the definition of .G in (4.12), we have 
that the sequences .{Rxk}∞k=0, .{Syk}∞k=0 and .{Byk − λk

β
}∞k=0 are bounded, and thus 

.{xk}∞k=0, .{yk}∞k=0 are bounded by the definition of .R and . S, respectively. Besides, 
the assertion of Lemma 4.3 (i) implies that .{Axk + λk

β
}∞k=0 is bounded. On the other 

hand, setting .x = x∗ in (4.18), we obtain 

. 
θ1(x

∗) − θ1(x
k+1) + (x∗ − xk+1) [−A λk+1 + (1 + μ)R(xk+1 − x̃ k)]

+ μ xk+1 − x̃ k 2
R ≥ 0.

Since .w∗ = (x∗, y∗, λ∗) ∈ ∗, thus setting .x = xk+1, .y = y∗ and .λ = λ∗ in 
(4.10), we have 

. θ1(x
k+1) − θ1(x

∗) + (xk+1 − x∗) (−A λ∗) ≥ 0.

Adding the above two inequalities, it holds that 

. A(xk+1 − x∗), λk+1 − λ∗ xk+1 − x∗, (1 + μ)R(xk+1 − x̃k) μ xk+1 − x̃k 2
R .

From the above inequality, we have 

. A(xk − x∗), λk − λ∗ 1 + μ

2
xk − x∗ 2

R xk − x̃k−1 2
R − μ xk − x̃k−1 2

R .
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By the boundedness of .{Rxk}∞k=0 and the assertion in Theorem 4.1 (ii), we know 
that . A(xk − x∗), λk − λ∗ is bounded from below for .k ≥ 1. Then, according to 

. 

A(xk − x∗ 2 (λk − λ∗)/β 2 (Axk + λk/β) − (Ax∗ + λ∗/β) 2

− 2

β
A(xk − x∗), λk − λ∗ .

It holds that.{Axk}∞k=0 and.{λk}∞k=0 are bounded. Therefore, the sequence. {wk}∞k=0
is bounded and at least has a limit point. Let .w∗ be any limit point of .{wk}∞k=0 and 
thus there exists a sequence .wk j → w∗ as . j → ∞. First, we have .w∗ ∈ since 
. is closed. Furthermore, taking limits over .k = k j → ∞ in (4.17) and note that 
.G(wk j − w̃k j−1) → 0, we have  

. θ(w) − θ(w∗) w − w∗, F(w∗) 0.

Since we can choose .w ∈ vary arbitrarily, thus .w∗ ∈ ∗. Next, it is routine to 
prove the uniqueness of the limit points of .{wk}∞k=0 based on the results presented in 
[ 1, Lemma 2.1] and [ 14, Theorem 4.7]. Therefore, the sequence .{wk}∞k=0 converges 
to a point .w∗ ∈ ∗ as .k → ∞. 

Remark 4.2 Note that the convergence result does not need any assumptions for the 
matrices . A and. B; the result also holds when.A = 0 or/and.B = 0 in problem (4.1). 
Compared with the algorithm presented in [ 14], the inertial ADMM with LQP reg-
ularization not only can force the subproblems in (4.15) converted to unconstrained, 
but also needs less assumptions for deriving the convergence results. 

4.4 Inertial Symmetric ADMM with LQP Regularization 

In this section, we propose the inertial symmetric ADMM with LQP regularization 
for solving the problem (4.1), and analyze its convergence in a similar way as that 
in Sect. 4.3. 

4.4.1 Inertial Symmetric ADMM with LQP Regularization 

We now present the inertial symmetric ADMM with LQP regularization, which dif-
fers from Algorithm 1 with the additional Lagrange multiplier updating step. Besides, 
we add two contractive factors to the dual step sizes to guarantee the convergence as 
that in [ 27, 36]. More details can be found in the following algorithm framework.
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Algorithm 2 Inertial symmetric ADMM with LQP regularization 
Initialization: Choose the constants .r, s > 0, .γ, ρ ∈ (0, 1) and .β > 0, and a sequence of 
nonnegative parameters.{αk}∞k=0. Let.(x

−1, y−1, λ−1) := (x0, y0, λ0) ∈ R
n++ × R

p
++ × R

m . 
for .k = 0, 1, 2, . . . do 
Step 1. Update 

. w̃k = wk + αk(w
k − wk−1), (4.28)

ensuring that.w̃k ∈ R
n++ × R

p
++ × R

m . 
Step 2. Update the new iterate.wk+1 by 

. 

⎧
⎪⎪⎨

⎪⎪⎩

xk+1 = argmin{Lβ(x, ỹk , λ̃k) + rd(x, x̃ k) | x ∈ R
n+},

λk+1/2 = λ̃k − γβ(Axk+1 + B ỹk − b),
yk+1 = argmin{Lβ(xk+1, y, λk+1/2) + sd(y, ỹk) | y ∈ R

p
+},

λk+1 = λk+1/2 − ρβ(Axk+1 + Byk+1 − b).

(4.29)

end 
return .wk+1. 

Remark 4.3 Note that there exists a unique solution .xk+1 ∈ R
n++ and . yk+1 ∈ R

p
++

in subproblems (4.28) and (4.29) respectively as that in Algorithm 1. Besides, the 
Assumption 4.1 also should be satisfied for Algorithm 2. In addition, when choosing 
.αk = 0, the algorithm reduces to the method studied in [ 36]. Note that Algorithm 2 
cannot include Algorithm 1 as a special case, since the step sizes of the Lagrange 
multiplier update are constrained to .(0, 1). This implies that we need to conduct a 
separate convergence analysis for both algorithms. 

4.4.2 Convergence Analysis 

Similar to Lemma 4.2 and [ 25, Lemma 3.1], we give the following lemma which is 
mainly based on the first-order optimality conditions of (4.28) and (4.29). 

Lemma 4.4 Let the sequence .{wk} be generated by the iterative scheme of the 
inertial symmetric ADMM with LQP regularization given in Algorithm 2, .N and 
.M are defined in (4.12) and (4.13), respectively. Then, for any .w ∈ , we have 
.wk+1 ∈ and 

. 

θ(u) − θ(uk+1) + (w − wk+1) [F(wk+1) + M(wk+1 − w̃k) wk+1 − w̃k 2
N

≥ (wk+1 − w)

⎛

⎝
A
B
0

⎞

⎠ [(1 − γ )β(ỹk − yk+1) + (1 − γ − ρ)βrk+1],

(4.30) 

where .rk+1 := Axk+1 + Byk+1 − b.
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Proof From the first-order optimality condition of (4.29), and applying the Lemma 
4.1, we have .xk+1 ∈ R

n++, and for any .x ∈ R
n+, it holds that 

. 

θ1(x) − θ1(x
k+1) + (x − xk+1) − A λ̃k + βA rk+1 + βA B(ỹk − yk+1)

+ (1 + μ)R(xk+1 − x̃ k) + μ xk+1 − x̃ k 2
R ≥ 0.

(4.31) 

Similarly, from (4.29), for any .y ∈ R
p
+, we have .yk+1 ∈ R

p
++ and 

.

θ2(y) − θ2(y
k+1) + (y − yk+1) − B λk+1/2 + βB rk+1

+ (1 + μ)S(yk+1 − ỹk) + μ yk+1 − ỹk 2
S ≥ 0.

(4.32) 

It follows from (4.29) that 

. λk+1/2 = λk+1 + ρβrk+1

and 
.λ̃k = λk+1 + (γ + ρ)βrk+1 + γβB(ỹk − yk+1). (4.33) 

Substituting the above equalities into (4.31) and (4.32), we have 

. 

θ1(x) − θ1(x
k+1) + (x − xk+1) − A λk+1 + (1 − γ − ρ)βA rk+1

+ (1 − γ )βA B(ỹk − yk+1) + (1 + μ)R(xk+1 − x̃k) + μ xk+1 − x̃k 2
R ≥ 0.

(4.34) 

and 

. 

θ2(y) − θ2(y
k+1) + (y − yk+1) − B λk+1 + (1 − ρ)βB rk+1

+ (1 + μ)S(yk+1 − ỹk) + μ yk+1 − ỹk 2
S ≥ 0.

(4.35) 

On the other hand, it follows from (4.33) that 

.rk+1 − γ

γ + ρ
B(yk+1 − ỹk) + 1

(γ + ρ)β
(λk+1 − λ̃k) = 0. (4.36) 

Combining (4.34), (4.35) and (4.36), the assertion (4.30) is obtained immediately. 

Theorem 4.3 Suppose that .{αk}∞k=0 satisfies Assumption 4.1. Let the sequence 
.{wk}∞k=0 be generated by the inertial symmetric ADMM with LQP regularization 
given in Algorithm 2. Then, we have
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(i) for any .w∗ ∈ ∗, . lim
k→∞ wk − w∗

M exists, 

(ii) . ∞
k=0 wk+1 − w̃k 2

M < ∞. 

Proof (i) Setting .w = w∗ in (4.30) and .w = wk+1 in (4.10), adding these two 
inequalities, using the monotonicity of. F and the fact.Ax∗ + By∗ − b = 0, we obtain 

. 

(wk+1 − w∗) M(wk+1 − w̃k)

≤ −(1 − γ )β(rk+1) (ỹk − yk+1) − (1 − γ − ρ)β rk+1 2 wk+1 − w̃k 2
N .

(4.37) 

Let 

. H := 1

γ + ρ

(γ + ρ − γρ)βB B −γ B
−γ B 1

β
Im

and C := Ip 0
γβB (γ + ρ)β Im

.

(4.38) 

Then, it is easy to verify that .H is positive semidefinite if .0 ≤ γ ≤ 1 and .ρ > 0, 
and 

.C HC := 1

γ + ρ

(1 − γ )βB B 0
0 (γ + ρ)β Im

. (4.39) 

Let .v := (y, λ), together with (4.33) and (4.38), we have 

.ṽk − vk+1 = ỹk − yk+1

λ̃k − λk+1 = C
ỹk − yk+1

rk+1 . (4.40) 

With (4.39) and (4.40), we obtain 

. vk − vk+1 2
H = (1 − γ )β B(ỹk − yk+1) 2 + (γ + ρ)β rk+1 2. (4.41) 

Applying the inequality .2a b a 2 b 2, we have  

.

− (1 − γ )β(rk+1) (ỹk − yk+1) − (1 − γ − ρ)β rk+1 2

≤ γ + 2ρ − 1

2
β rk+1 2 + 1 − γ

2
β B(ỹk − yk+1) 2.

(4.42) 

Combining (4.41), (4.42) and .γ ∈ [0, 1), we conclude 

. − (1 − γ )β(rk+1) (ỹk − yk+1) − (1 − γ − ρ)β rk+1 2 ≤ 1

2
vk+1 − ṽk

H .

It follows from (4.37) that 

.(wk+1 − w∗) M(wk+1 − w̃k) ≤ 1

2
wk+1 − w̃k 2

H+2N , (4.43) 

where
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. H := 0 0
0 H

.

Then, we can derive the assertion (i) similar to the proof of Theorem 4.1 (i) and 
omit it here. 

(ii) Applying the identity 

. a G b G a − b G + 2b G(a − b),

and setting 
. a := w∗ − w̃k, b := w∗ − wk+1,

we have 

. 

(wk+1 − w∗) M(wk+1 − w̃k) = 1

2
wk+1 − w̃k 2

M

+ 1

2
wk+1 − w∗ 2

M wk − w∗ 2
M .

Together with (4.37), we obtain 

. wk − w∗ 2
M wk+1 − w∗ 2

M

wk+1 − w̃k 2
M + 2(1 − γ )β(rk+1) B(ỹk − yk+1)

+ 2(1 − γ − ρ)β rk+1 2 − 2 wk+1 − w̃k 2
N

= (1 − μ) wk+1 − w̃k 2
N + (1 − γ )β B(ỹk − yk+1) 2

+ 2(1 − γ )β(rk+1) B(ỹk − yk+1) + (2 − γ − ρ)β rk+1 2

= (1 − μ) wk+1 − w̃k 2
N + (ṽk − vk+1) C−T KC(ṽk − vk+1), (4.44) 

the last equality follows from (4.40), where 

. K := (1 − γ )βB B (1 − γ )βB
(1 − γ )βB (2 − γ − ρ)β Im

,

and. C is defined in (4.38). It is easy to verify that.K is positive definite if . 0 ≤ γ < 1
and .0 < ρ < 1. Moreover, by some simple calculations, we have 

. K cC HC

when taking ..c̃ := 1−√
1−γ+ρ(1−ρ)

γ+ρ
∈ (0, 1). On the other hand, if .0 < c̄ ≤ 1−μ

1+μ
< 1, 

we have.(1 − μ)R c(1 + μ)R and.(1 − μ)S c(1 + μ)S. Therefore, taking. η =
min{c̃, c̄}, by the definition of .M in (4.13), and together with (4.44), we have 

. wk − w∗ 2
M wk+1 − w∗ 2

M ≥ η wk+1 − w̃k 2
M .
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Then, it is easy to obtain the assertion (ii) similar to the proof of Theorem 4.1 (ii). 
This completes the proof. 

Similar to Lemma 4.3, we first obtain the results of the feasibility and the conver-
gence of the objective function value for the inertial symmetric ADMM with LQP 
regularization. 

Lemma 4.5 Suppose that.{αk}∞k=0 satisfies Assumption 4.1. Let the sequence. {wk}∞k=0
be generated by the inertial symmetric ADMM with LQP regularization given in 
Algorithm 2. Then, we have 

(i) .
∞

k=0
Axk + Byk − b 2 < ∞, and hence . lim

k→∞ Axk + Byk − b 0. 

(ii) The objective function value . f (xk) + g(yk) converges to the optimal value of 
(4.1) as .k → ∞. 

The following theorem presents the convergence analysis for the sequence. {wk}∞k=0
generated by inertial symmetric ADMM with LQP regularization scheme (4.29). 

Theorem 4.4 Suppose that .{αk}∞k=0 satisfies Assumption 4.1. Let the sequence 
.{wk}∞k=0 be generated by the inertial symmetric ADMM with LQP regularization 
given in Algorithm 2. Then, .{wk}∞k=0 converges to a point .w

∗ ∈ ∗ as .k → ∞. 

Proof We prove it in a similar way as that in Theorem 4.2. It follows from Theorem 
4.3 that . lim

k→∞ wk − w∗
M exists for any .w∗ ∈ ∗, thus the sequence .{Mwk}∞k=0 is 

bounded. By the definition of .M in (4.13), we have that the sequences .{Rxk}∞k=0, 
.{Syk}∞k=0 and .{γ Byk − λk

β
}∞k=0 are bounded, and thus .{xk}∞k=0, .{yk}∞k=0 are bounded 

by the definition of .R and . S, respectively. Besides, the assertion of Lemma 4.5 (i) 
implies that.{γ Axk + λk

β
}∞k=0 is bounded. On the other hand, setting.x = x∗ in (4.34), 

we obtain 

. 

θ1(x
∗) − θ1(x

k+1) + (x∗ − xk+1) − A λk+1 + (1 − γ − ρ)βA rk+1

+ (1 − γ )βA B(ỹk − yk+1) + (1 + μ)R(xk+1 − x̃k) + μ xk+1 − x̃k 2
R ≥ 0.

Since .w∗ = (x∗, y∗, λ∗) ∈ ∗, thus setting .x = xk+1, .y = y∗ and .λ = λ∗ in 
(4.10), we have 

. θ1(x
k+1) − θ1(x

∗) + (xk+1 − x∗) (−A λ∗) ≥ 0.

Adding the above two inequalities, and let .k := k − 1, it holds that 

.

A(xk − x∗), λk − λ∗ + (γ + ρ − 1)βrk + (1 − γ )βB(yk − ỹk−1)

xk − x∗, (1 + μ)R(xk − x̃ k−1) μ xk − x̃ k−1 2
R

≥ −1 + μ

2
xk − x∗ 2

R xk − x̃ k−1 2
R − μ xk − x̃ k−1 2

R .
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By the boundedness of .{Rxk}∞k=0 and the assertion in Theorem 4.3 (ii), we know 
that 

. A(xk − x∗), λk − λ∗ + (γ + ρ − 1)βA rk + (1 − γ )βA B(yk − ỹk−1)

is bounded from below for .k ≥ 1. On the other hand, we have 

. γ A(xk − x∗) 2 (λk − λ∗)/β + (γ + ρ − 1)βA rk + (1 − γ )βA B(yk − ỹk−1) 2

≤ 2 (γ Axk + λk/β) − (γ Ax∗ + λ∗/β) 2

+ 2 (γ + ρ − 1)βrk + (1 − γ )βB(yk − ỹk−1) 2

− 2γ

β
A(xk − x∗), λk − λ∗ + (γ + ρ − 1)β2rk + (1 − γ )β2B(yk − ỹk−1) . (4.45) 

It follows from Theorem 4.3 (ii) that .limk→∞ vk − ṽk−1 2
H = 0, and it also 

have.limk→∞ rk = 0 follows from Lemma 4.5 (i), thus it holds that . limk→∞ B(yk −
ỹk−1) = 0, and 

. lim
k→∞ 2 (γ + ρ − 1)βrk + (1 − γ )βB(yk − ỹk−1) 2 = 0.

Together with the boundedness of .{γ Axk + λk

β
}∞k=0 and (4.45), it holds that 

.{Axk}∞k=0 and .{λk}∞k=0 are bounded. Therefore, the sequence .{wk}∞k=0 is bounded 
and at least has a limit point. Let .w∗ be any limit point of .{wk}∞k=0 and thus exists a 
sequence .wk j → w∗ as . j → ∞. First, we have  .w∗ ∈ since . is closed. Further-
more, taking limits over.k = k j → ∞ in (4.17) and note that.M(wk j − w̃k j−1) → 0, 
we have 

. θ(w) − θ(w∗) w − w∗, F(w∗) 0.

Since we can choose .w ∈ vary arbitrarily, thus .w∗ ∈ ∗. Next, it is routine to 
prove the uniqueness of the limit points of .{wk}∞k=0 based on the results presented in 
[ 1, Lemma 2.1] and [ 14, Theorem 4.7]. Therefore, the sequence .{wk}∞k=0 converges 
to a point .w∗ ∈ ∗ as .k → ∞. 

4.5 Conclusion 

We revisited the alternating direction method of multipliers (ADMM) with 
logarithmic- quadratic proximal (LQP) regularization, which can be utilized to solve 
a class of convex optimization problems with linear constraints. By incorporating the 
inertial extrapolation step, we proposed an inertial ADMM and an inertial symmet-
ric ADMM with LQP regularization, respectively. Additionally, the convergence of 
the proposed methods was established under the framework of variational inequality.
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Chapter 5 
A Class of Augmented-Lagrangian-Type 
Algorithms for Solving Generalized Nash 
Equilibrium Problems 

Xiaoxi Jia, Shiwei Wang, and Lingling Xu 

Abstract In this paper, we study the solution of convex generalized Nash equilib-
rium problems (GNEP) with shared linear constraints, and propose a class of reg-
ularized augmented Lagrangian methods. The idea is to penalize the shared linear 
constraints into the augmented Lagrangian function of each player, so as to con-
struct a convex Nash equilibrium subproblem (NEP). Under the strong monotonicity 
and Lipschitz continuity assumptions of pseudo-gradient, we prove the Fejér mono-
tonicity of iterative points with respect to the set of solutions. Under the cocoercivity 
assumption of pseudo-gradient, the iterative scheme of the algorithm is equivalent 
to the forward-backward splitting algorithm for solving the zero of an operator. If 
one more correction step is added, the cocoercivity hypothesis of pseudo-gradient 
can be weakened to the Lipschitz continuity hypothesis. Some numerical examples 
are given to verify the effectiveness of the algorithm. 

Keywords Generalized Nash equilibrium problem · Augmented Lagrangian 
method · Forward-backward splitting · Convergence analysis 

5.1 Introduction 

We consider the GNEP of .N players with common linear equality constraints, and 
the optimization problem of each player is as follows 

X. Jia 
Department of Mathematics and Computer Science, Saarland University, Saarbrcken, Germany 
e-mail: xiaoxijia@math.uni-sb.de 

S. Wang 
School of Mathematical Sciences, Ministry of Education Key Laboratory for NSLSCS, Nanjing 
Normal University, Nanjing, China 

L. Xu (B) 
School of Mathematical Sciences, Ministry of Education Key Laboratory for NSLSCS, Nanjing 
Normal University, Nanjing, China 
e-mail: xulingling@njnu.edu.cn 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 
X. Wang et al. (eds.), Splitting Optimization, ICIAM2023 Springer Series 2, 
https://doi.org/10.1007/978-981-96-8574-5_5

109

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-8574-5_5&domain=pdf
mailto:xiaoxijia@math.uni-sb.de
mailto:xulingling@njnu.edu.cn
https://doi.org/10.1007/978-981-96-8574-5_5
https://doi.org/10.1007/978-981-96-8574-5_5
https://doi.org/10.1007/978-981-96-8574-5_5
https://doi.org/10.1007/978-981-96-8574-5_5
https://doi.org/10.1007/978-981-96-8574-5_5
https://doi.org/10.1007/978-981-96-8574-5_5
https://doi.org/10.1007/978-981-96-8574-5_5
https://doi.org/10.1007/978-981-96-8574-5_5
https://doi.org/10.1007/978-981-96-8574-5_5
https://doi.org/10.1007/978-981-96-8574-5_5
https://doi.org/10.1007/978-981-96-8574-5_5


110 X. Jia et al.

. min
xν∈Xν

θν(xν, x−ν) s.t.
N

ν=1

Aνxν = b. (5.1) 

More generally, common linear inequality constraints are also considered 

. min
xν∈Xν

θν(xν, x−ν) s.t.
N

ν=1

Aνxν ≤ b, (5.2) 

where.xν ∈ R
nν denotes the decision set vector of player. v,.ν = 1, 2, . . . , N ,. N

ν=1 nν

= n. Write.x := (xν, x−ν), where.x−ν represents all decision vectors except. xν . This  
notation is used to emphasize the role of the sub-vector block.xν . Therefore, we have 
.x = (xν, x−ν) = (x1, x2, . . . , xN ), .(yν, x−ν) = (x1, . . . , xν−1, yν, xν+1, . . . , xN ). 
.Xν ⊆ R

nν is a non-empty closed convex set. .θν : R
n1 × · · · × R

nN → R is a con-
tinuous differentiable function. For the fixed .x−ν , .θν(·, x−ν) is convex. . Aν ∈ R

m×nν

and .b ∈ R
m are constraint matrix and constraint vector, respectively. 

For convenience, we introduce notation 

. 
X := X1 × . . . × XN ⊆ R

n, x := (x1, x2, . . . , xN ) ∈ R
n,

A := (A1, A2, . . . , AN ) ∈ R
m×n, F := {x ∈ X | Ax = b}.

The general GNEP is expressed as (5.3). 

. min
xν∈Xν

θν(xν, x−ν) s.t. xν ∈ Xν(x−ν), (5.3) 

where .Xν represents the feasible set mapping of the .ν-th player. After the other 
players’ strategies .x−ν are given, the .ν-th player’s feasible strategy set can be 
obtained through .Xν . Generally, the solution of GNEP is to find a strategy vector 
.x∗ = (x∗

1 , . . . , x∗
N ), such that for any .ν = 1, . . . , N , we have  

. θν(x∗) ≤ θν(xν, x∗
−ν) ∀xν ∈ Xν(x∗

−ν).

As early as 1955, Nikaido and Isoda [ 1] proposed the NI function to reformulate 
the general GNEP in a constrained quasi-optimization problem, where the objective 
function can be regarded as an evaluation function constructed from the NI function. 
Here, “quasi-optimization” means that the problem is not a standard optimization 
problem because the set of constraints is closely related to the decision variables. In 
1974, Bensoussan [ 2] transformed convex GNEP into a quasi-variational inequality 
problem (QVI for short). Correspondingly, it is also obtained that the convex NEP 
can be equivalent to a certain variational inequality (VI for short) problem. But the 
solution for QVI is also very difficult. Rosen [ 3] considered the jointly convex case in 
1965. At this time, the constraint expressions of each player are characterized as the 
same non-positive convex function. The idea still needs to minimize the evaluation 
function, so the solution to this problem is still quite difficult. Under the assumption
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of joint convexity, a solution of QVI, which is the so-called variational equilibrium 
or regular equilibrium, is the definite solution of GNEP. In addition to the algorithms 
for solving the GNEP problem, research on the existence, uniqueness, stability, and 
KKT-type conditions of its solutions is also being followed up. For details, please 
refer to the two review papers in 2010 and 2014 [ 4, 5]. 

The algorithms of convex GNEP include augmented Lagrangian methods (ALM), 
penalty function methods, Newton methods, split methods, etc. In GNEP, when some 
players have common constraints, inherent singularities arise when solving GNEP, 
see [ 6] for details, which causes much difficulty in designing proper second-order 
methods where Hessian or Hessian approximation is necessary, such as Newton-type 
methods [ 6, 7]. This difficulty inspired us to start looking for algorithms with at least 
good information about differentiation. Penalty function algorithms are one of them. 
The first penalty function algorithm for GNEP was proposed by Fukushima [ 8], and 
the literature [ 9, 10] also proposed similar penalty algorithms. But these algorithms 
have a common defect. Their subproblems are non-smooth NEP, so it is difficult to 
solve numerically. However, this disadvantage can be overcome by introducing the 
multiplier, that is, applying the ALM-type methods. 

The ALM methods (or multiplier penalty function methods) are the classic meth-
ods for solving constrained optimization problems. This type of method is often 
applied to GNEP. For details, please refer to the review literature [ 4, 5]. The sub-
problems of ALM-type methods are generally highly smooth and therefore easier to 
solve. Pang and Fukushima [ 11] used ALM-type methods to solve quasi-variational 
inequality (QVI) problems, and GNEP is a special class of QVI problems. [ 12] pro-
posed an improved ALM algorithm for QVI. Kanzow in [ 13] also proposed an ALM 
algorithm directly for GNEP. 

The splitting-type approach can be applied to NEP with relative ease. For 
example, applying the Gauss-Seidel-type algorithms to NEP, i.e., for participants 
.ν = 1, 2, . . . , N , do  

. xk+1
ν = argmin

xν∈Xν

θν(xk+1
1 , . . . , xk+1

ν−1, xν, xk
ν−1, . . . , xk

N ).

But its generalization on GNEP becomes more complicated because the feasi-
ble set of each participant in GNEP is influenced by the decision variables of the 
remaining participants. The literature [ 14] applied this type of splitting method to a 
class of potential game problems and obtained the corresponding convergence anal-
ysis, where the inner semi-continuity of feasible set-valued maps is required, which, 
however, is usually not easy to verify. The so-called ADMM is also proposed in the 
literature [ 15, 16] where the (multiplier) penalty term was employed to get rid of the 
assumption of inner semi-continuity.
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The ADMM method is a well-known algorithm for large-scale optimization prob-
lems with block structures. It is efficient for the problems with two-block struc-
tures, but for problems with three or more blocks, the classical iterative schemes 
should be properly corrected or more restricted assumptions should be addicted. 
For details, please refer to the literature [ 17– 25]. Recently, Kanzow et al. proposed 
Jacobi-ADMM-type methods [ 26] and Gauss-Seidel-ADMM-type methods [ 27] for  
GNEP with common linear constraints in an infinite-dimensional space, referring to 
ADMM-type algorithms for solving classical optimization problems. 

The Jacobi-ADMM method minimizes the augmented Lagrangian function of the 
linearized objective function for each participant with an additional regularization 
term, and then solves it in parallel. Its algorithm is shown in Algorithm 1. Börgens and 
Kanzow [ 26] prove that its iterative format (5.4), (5.5) is equivalent to a forward-
backward splitting algorithm for solving the zero point of an operator. And the 
convergence of iterative schemes (5.4) and (5.5) can be obtained by the related 
theory of operator splitting. 

Algorithm 1 Regularized linearized Jacobi-type ADMM method 
1: Choose a starting point.(x0, λ0) ∈ X × R

m , parameters.β, γ > 0. 
2: If a suitable termination criterion is satisfied: STOP. 
3: For.ν = 1, 2, 3, . . . , N , compute 

. 

xk+1
ν := argmin

xν∈Xν

∇xν θν(xk), xν − xk
ν λk , Aν xν

+ β

2
Aν xν +

i ν

Ai xk
i − b 2 + γ xν − xk

ν
2 .

(5.4)

4: Compute 

. λk+1 := λk + β

N

ν=1

Aν xk+1
ν − b . (5.5)

5: Set.k := k + 1, and go to Step 1. 

The Gauss-Seidel-ADMM-type method is shown in Algorithm 2. Different from 
Algorithms 1 and 2 only adds a regular term to the augmented Lagrangian function, 
and then solves the subproblems one by one in sequence. Under strong assumptions 
(such as strong monotonicity of pseudo-gradients, etc.), Fejér monotonicity of iterates 
can be obtained.
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Algorithm 2 Regularized Gauss-Seidel-type ADMM method 
1: Choose a starting point.(x0, λ0) ∈ X × R

m , parameters.β, γ > 0. 
2: If a suitable termination criterion is satisfied: STOP. 
3: For.ν = 1, 2, 3, . . . , N , compute 

. 

xk+1
ν := argmin

xν∈Xν

θν(xk+1
1 , . . . , xk+1

ν−1, xν , xk
ν+1, . . . , xk

N )

λk , Aν xν

γ

2
xν − xk

ν

2

+ β

2
Aν xν +

ν−1

i=1

Ai xk+1
i +

N

i=ν+1

Ai xk
i − b

2
.

(5.6)

4: Compute 

. λk+1 = λk + β

N

ν=1

Aν xk+1
ν − b . (5.7)

5: Set.k := k + 1, and go to Step 1. 

Based on these two ADMM-type methods, we propose the corresponding aug-
mented Lagrangian method in this paper. The difference is that we do not solve the 
subproblems with a block-by-block strategy like the two ADMM-type algorithms, 
but solve a convex NEP. The connection between the proposed algorithms and opera-
tor splitting methods is discussed. We prove the convergence of the algorithms under 
mild assumptions. 

This paper contains four sections. The first section describes the GNEP with a lin-
ear equality constraint and introduces several existing related algorithms. In Sect. 5.2 
we recall some basic knowledge and notation. In the third section, several types of 
augmented Lagrangian-type algorithms are proposed, namely, the regularized lin-
earized augmented Lagrangian algorithm, the regularized augmented Lagrangian 
algorithm, and the corrected regularized linearized augmented Lagrangian algorithm, 
where a correction step is added to the regularized linearized augmented Lagrangian 
algorithm. Under the mild assumptions, their Fejér monotonicity of the iterative 
point sequence is obtained. Section 5.4 carries out the numerical experiments. Seven 
numerical examples of GNEP are solved by several augmented Lagrangian-type 
algorithms. 

5.2 Preliminaries 

In this section, some basic definitions and notations are listed first. Then, a reformu-
lation of the GNEP is given, which aims to find the zero point of the corresponding 
operator. Finally, the splitting algorithm is briefly introduced for tracking the zero 
point.
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5.2.1 Basic Definitions 

Let.Rn be a real. n dimensional vector space,. , is the inner product defined on.R
n , 

i.e. . x, y xT y. Define . x
√

xT x . Given a symmetric positive definite matrix 
. Q, we define the inner product induced by .Q as 

. x, y Q x, Qy xT Qy.

The norm induced by the inner product is denoted as. x Q = xT Qx . When the 
sign of the norm has no subscript, it still defaults to .2-norm. 

For the theoretical proof, we need to recall some knowledge of operator theory. 
Let .H be a Hilbert space. For the set-valued operator .T : H → 2H , its domain is 
defined as.dom T := {x ∈ H | T (x) = ∅}. The graph of the operator. T is defined as 
.grap T := {(x, u) ∈ H × H | u ∈ T (x)}. Its zero point set is defined as . zer T :=
{x ∈ H | 0 ∈ T (x)}. 

An operator . T is called monotonic if it satisfies 

. u − v, x − y 0 ∀(x, u), (y, v) ∈ grap T .

On the basis of monotonicity, we give the definition of a maximal monotone 
operator. 

Definition 5.1 Let the operator .A : H → 2H be a monotone operator. .A is called 
a maximal monotone operator if there is no monotone operator .B : H → 2H that 
satisfies .grap A grap B. That is, for all .(x, u) ∈ H × H , we have  

.(x, u) ∈ grap A x − y, u − v 0 ∀(y, v) ∈ grap A. (5.8) 

The set-valued operator . T is called strongly monotonic, if there exists a constant 
.ρ > 0, such that 

. u − v, x − y ρ x − y 2 ∀(x, u), (y, v) ∈ grap T .

The subdifferential of a convex function . f : H → (−∞,∞] at a point .x0 is 
defined as 

. ∂ f (x0) := {g ∈ H | f (x) − f (x0) g, x − x0 ,∀x ∈ H}.

It is easy to know that the subdifferential operator of a closed, convex function is 
a maximal monotone operator. 

The single-valued operator .T : H → H is called .α-cocoercive, if for .α > 0, we  
have 

. T (x) − T (y), x − y α T (x) − T (y) 2 ∀x, y ∈ H .
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By the Cauchy-Schwarz inequality, it is easy to prove that the.α-cocoercive opera-
tor is also.1/α-Lipschitz continuous. And it is easy to prove that an operator satisfying 
.ρ-strong monotonicity and.L-Lipschitz continuity is .ρ/L2-cocoercive. On the other 
hand, cocoercivity cannot infer strong monotonicity. In the GNEP for inequality 
constraints proposed later, after the introduction of new variables, the gradient of the 
objective function will no longer maintain strong monotonicity, but the cocoercivity 
can be retained. 

Given a set .X ⊆ H , its normal cone is defined as 

. NX(x) := {s ∈ H s, y − x 0,∀y ∈ X} if x ∈ X,

∅ if x /∈ X.

Now we introduce an important concept about iterative sequences. 

Definition 5.2 (Fejér monotonicity) Let . C be a non-empty subset of . H , .{xk}k∈N is 
the point sequence in . H , we call that .{xk}k∈N is Fejér monotone about the set . C , if  

. xk+1 − x xk − x k ∈ N, x ∈ C.

There is an important result about Fejér monotone sequences. See the proof in [28]. 

Lemma 5.1 Let .{xk}k∈N be the sequence in . H , and . C is a non-empty subset of . H . 
If .{xk}k∈N is Fejér monotone about the set . C, and each cluster point of the sequence 
is in the set . C, then .{xk}k∈N converges to a certain point in . C. 

Some common basic inequalities, such as the Cauchy-Schwarz inequality and the 
following Young inequality, will also be used in the theoretical analysis. 

Lemma 5.2 (Young’s inequality) For all .a, b ∈ R, .ε > 0, we have . |a · b| ≤ ε
2a2 +

1
2ε b2. 

5.2.2 Reformulation of GNEP 

In this subsection, we will reformulate the GNEP (5.1) considered in this paper as 
the problem of finding the zeros of a maximal monotone operator. For this purpose, 
two special types of solutions to GNEP (5.1) need to be considered. 

First, two classes of convexity assumptions about general GNEP are introduced. 
For the general GNEP (5.3), the constraint .Xν(x−ν) = {xν ∈ Xν | gν(xν, x−ν) ≤ 0}, 
then GNEP (5.3) can be reformulated as 

. min
xν∈Xν

θν(xν, x−ν) s.t. gν(xν, x−ν) ≤ 0, (5.9) 

where .gν : H → R
mν is the constraint function of the .ν-th player, and the objective 

function is continuously differentiable. The problem is said to satisfy the player
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convexity, if for fixed .x−ν , .θν(·, x−ν) is convex, and the feasible set .Xν(x−ν) is also 
convex. Under the framework of linear equality or inequality constraints in this paper, 
the player convexity is obviously satisfied. 

Joint convexity means that the GNEP is first of all player convex, and there is a 
closed convex set .F ⊆ H , such that .Xν(x−ν) = {xν ∈ Xν | (xν, x−ν) ∈ F }. Under 
the framework of the problem in this paper, joint convexity is obviously satisfied. 
Some properties of joint convex GNEP are given below. 

Let us now define the pseudo-gradient of GNEP (or NEP), which represents the 
re-aggregation of the gradient of each player’s objective function with respect to its 
own decision variable, i.e., 

. P̂(x) =
⎛

⎜⎝
∇x1θ1(x)

...

∇xN θN (x)

⎞

⎟⎠ .

For the jointly convex GNEP, we define a corresponding variational inequality 
(VI) problem, that is, to find .x∗ ∈ F , such that 

. x − x∗, P̂(x∗) 0 ∀x ∈ F .

Let us write this variational inequality problem as .VI(F , P̂). According to the 
literature [ 4], for joint convex GNEP, the solution of this VI is also the solution 
of GNEP. The solution of GNEP corresponding to this VI is called the variational 
equilibrium or normalized equilibrium. 

Lemma 5.3 ([ 26]) . x∗ is the variational equilibrium of joint convex GNEP, which is 
equivalent to .0 ∈ P̂(x∗) + NF (x∗). 

In this manuscript, we consider the constraints as .F = {x ∈ X | Ax = b}, that is, 
a linear constraints .Ax = b and an abstract constraint .x ∈ X. For this purpose, the 
concept of variational KKT point is introduced. 

Definition 5.3 (Variational KKT point) The point .(x∗, λ∗) ∈ R
n × R

m is called a 
variational KKT point (or a variational KKT pair) of GNEP (5.1), if it satisfies the 
KKT-type condition 

.0 ∈ P̂(x∗) + AT λ∗ + NX(x∗) Ax∗ − b = 0. (5.10) 

From this definition, it can be intuitively seen that the variational KKT point can 
be regarded as the KKT point in the case where the multipliers of each player are 
the same. Regarding the relationship between the variational KKT point and the 
variational equilibrium, the following results are obtained. 

Proposition 5.1 If .(x∗, λ∗) is the variational KKT point of GNEP (5.1), then . x∗ is 
also the variational equilibrium for GNEP.
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Note that the converse of Proposition 5.1 does not hold, which can be achieved 
under the regularity conditions [ 26]. 

The above results tell us that a variational KKT point is the variational equilibrium, 
and a variational equilibrium is the solution of GNEP. Therefore, a solution of the 
variational KKT point is a candidate for obtaining the solution of GNEP. 

Now we write the variational KKT condition in a compact form. Let 

. W := X1 × · · · × XN × R
m, w := (x1, . . . , xN , λ).

The pseudo-gradient is consequently expanded and regarded as a function of . w, 
denoted as 

. P(w) := P̂(x)

0
.

Define operator .G : R
n × R

m → R
n × R

m as 

.G(w) :=

⎛

⎜⎜⎜⎝

AT
1 λ
...

AT
N λ

b − N
ν=1 Aνxν

⎞

⎟⎟⎟⎠ . (5.11) 

and 

. G0 :=

⎛

⎜⎜⎜⎝

0 · · · 0 AT
1

...
...

...

0 · · · 0 AT
N−A1 · · · −AN 0

⎞

⎟⎟⎟⎠ , b0 :=

⎛

⎜⎜⎜⎝

0
...

0
b

⎞

⎟⎟⎟⎠ .

Therefore, we have.G(w) = G0w + b0. Since.G0 is an antisymmetric matrix, so 
we have 

. Gx, x 0 ∀x ∈ R
n.

With the above notation, the variational KKT condition can also be expressed in 
a compact form, see the following lemma. 

Lemma 5.4 ([ 26]) The point .w∗ = (x∗, λ∗) ∈ R
n × R

m is a variational KKT point 
of GNEP (5.1) if and only if .w∗ ∈ W∗, where . .W∗ = {w ∈ R

n × R
m | 0 ∈ P(w) +

G(w) + NW(w)}. 
Define a set-valued operator 

.T (w) := P(w) + G(w) + NW(w). (5.12) 

Its domain is obviously the non-empty set.W, and its zero point is the variational 
KKT point of GNEP (5.1).
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We next prove the maximal monotonicity of the operator . T . This conclusion 
can be proved by proving that each part of the operator .T is maximally monotone, 
and each part satisfies the condition of the addition operation, maintaining maximal 
monotonicity. Please see the following lemmas, which are generally from [ 28, 29]. 

Lemma 5.5 Let the single-valued operator .A : H → H be continuous and mono-
tone, then . A is a maximal monotone operator. 

We then illustrate that the operator .G defined in (5.11) is maximally monotone. 

Lemma 5.6 Let .W ⊂ H be a non-empty closed convex set, .A : W → H is a con-
tinuous monotone operator, then the operators .NW(·) and .A + NW(·) are both 
maximally monotone. 

Lemma 5.7 Let .A, B : H → 2H be two maximal monotone operators, if any of the 
following conditions hold: 

1. .dom B = H , 
2. .dom A ∩ intdom B = ∅, 

Then .A + B is also a maximal monotone operator. 

The maximal monotonicity of the operator .P also needs to be explained below. 
Since. P is a single-valued mapping, from Lemma 5.5, it is only necessary to assume 
that it is a monotone operator. 

Proposition 5.2 Suppose operator.P : R
n × R

m → R
n × R

m is monotone, then the 
set-valued operator . T is maximally monotone. 

Till now, we have already obtained that operator . T is maximally monotone pro-
vided that .P is monotone. In the finite-dimensional Euclidean space, the maximal 
monotonicity of the operator. T can lead to the closedness of its image. However, this 
conclusion is not true in infinite dimensions, and the strong or weak convergence of 
the sequence needs to be taken into account. Under the condition of infinite dimen-
sion, the strong-weak sequential closedness of the operator .T can be derived. See 
the following lemma, and its proof, see [ 28]. 

Lemma 5.8 Let.A : H → 2H be a maximal monotone operator, and.{(xk , uk)}k∈N is 
a bounded sequence in. gra A, for.(x, u) ∈ H × H , if any of the following conditions 
are true: 

1. .xk → x, .uk u, 
2. .xk x, .uk → u, 

then we have .(x, u) ∈ gra A.
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5.2.3 Splitting-Type Methods 

This section introduces some basics about the forward-backward splitting algo-
rithm. We first recall the classic forward-backward splitting algorithm, which is 
employed for solving the zeros of the set-valued operator .T : H → 2H , where 
.T can be expressed as .A + B, with .A : H → 2H , operator .B : H → H . Let  
.xk+1 := (I + β A)−1(I − βB)xk . This iteration can also be divided into two steps, 
denoted as.yk := xk − βBxk , .xk+1 := (I + β A)−1yk . The explicit calculation of. yk

is called the forward step, and the solution of.xk+1 is called the backward step, which 
is the so-called forward-backward splitting algorithm. 

Under appropriate conditions, the forward-backward splitting algorithm can 
converge to the zero point of the operator . T . 

Lemma 5.9 ([ 29]) (Forward-backward splitting) Let .T : H → 2H be a set-valued 
map with at least one zero. .T := A + B, where the mapping .A : H → 2H is max-
imally monotone, the mapping .B : H → H is single-valued and .α-cocoercive. Let 
.x0 ∈ H , and generate the sequence .{xk}k∈N as follows 

. 
yk = (I − ck B)(xk),

xk+1 = Jck A(yk),

where the parameter . ck satisfies the existence of .M > m > 0, such that 

. 0 < m ≤ ck ≤ M < 2α ∀k.

Then the sequence .{xk}k∈N converges to a zero of . T . 

Another class of split-type algorithms is proposed by Tseng in [ 28], a simpli-
fied version is that .xk+1 = [(I − βB)(I + β A)−1(I − βB) + βB]xk . Respectively 
denote .yk := xk − βBxk , .zk = (I + β A)−1yk , then .xk+1 := zk + β(Bxk − Bzk). 
This algorithm is also known as the forward-backward-forward algorithm. 

Under some mild conditions, the algorithm can converge to the zero of the operator 
. T . 

Lemma 5.10 ([ 28]) Let . D be a non-empty subset of . H , . f, g are appropriate convex 
lower semicontinuous functions on . H , .dom∂ f ⊂ D, . g is .G-differentiable on . D, 
.argmin ( f + g) = ∅, and .∇g is .1/α-Lipschitz continuous on .dom∂ f .(α > 0). Let 
.x0 ∈ H, β ∈ (0, α), and generate the sequence .{xk}k∈N as follows 

.

⎧
⎨

⎩

yk = xk − β∇g(xk),

zk = Proxβ f (yk),

xk+1 = zk + β(∇g(xk) − ∇g(zk)).

(5.13) 

Then the sequence .{xk}k∈N converges to a zero of . T .
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5.2.4 Assumptions 

This subsection introduces four assumptions, which are the basic assumptions that 
need to be satisfied throughout the paper, as well as the strong monotonicity assump-
tion, the cocoercivity assumption, and the Lipschitz continuity assumption of the 
pseudo-gradients. They will be used successively in the following convergence 
proofs. 

Assumption 5.1 For all .ν = 1, . . . , N , Aν ∈ R
m×nν , b ∈ R

m, assuming . θν(·, x−ν)

is convex and continuously differentiable, and its gradient is continuous about . x =
(x1, . . . , xN ), the pseudo-gradient . P̂ is monotone with respect to .x = (x1, . . . , xN ). 
Let . X be a non-empty closed convex set, and the feasible set . F = {x ∈ X | Ax = b}
is non-empty. 

Assumption 5.2 Suppose the pseudo-gradient . P̂ is .ρ-strongly monotone at the 
solution point . x∗, that is, for .ρ > 0, we have 

. P̂(x) − P̂(x∗), x − x∗ ρ x − x∗ 2 ∀x ∈ R
n. (5.14) 

Assumption 5.3 Suppose the pseudo-gradient. P̂ is.α-cocoercive , that is, for.α > 0, 
we have 

. P̂(x) − P̂(y), x − y α P̂(x) − P̂(y) 2 ∀x, y ∈ R
n . (5.15) 

Assumption 5.4 For all .ν = 1, . . . , N, assuming gradient .∇xν
θν is .Lν-Lipschitz 

continuous. That is, for .Lν > 0, ν = 1, . . . , N, we have 

. xν
θν(x) − ∇xν

θν(y) Lν x − y x, y ∈ R
n. (5.16) 

Strong monotonicity and Assumption 5.4 are employed in [ 27] for Algorithm 2. 
Strong monotonicity, Assumptions 5.3, and 5.4 are employed for Algorithm 1 in 
[ 26], respectively. Note that the assumption of strong monotonicity in [ 26, 27] has 
been weakened in this paper, i.e., which only needs to be satisfied at the solution 
point. 

5.3 Augmented Lagrangian-Type Algorithms 

In this section, several types of augmented Lagrangian-type algorithms for solv-
ing convex generalized Nash equilibrium problems with separable linearly com-
mon equality constraints are presented, which are called regularized linearized 
augmented Lagrangian algorithm (RLALM), regularized augmented Lagrangian 
algorithm (RALM), and corrected regularized linearization augmented Lagrangian 
algorithm (CRLALM), respectively. 

Under the assumptions of basic convexity, strong monotonicity, cocoercivity, 
and Lipschitz continuity of pseudo-gradients, several convergence proofs are given
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respectively. Specifically, under the assumption of basic convexity, strong mono-
tonicity and Lipschitz continuity of pseudo-gradients, the Fejér monotonicity of the 
iterative sequence of RLALM can be proved. Similarly, we can prove the Fejér mono-
tonicity of the iterative sequence of RALM only with the basic convexity assumption. 
Under the coercivity condition, it can be proved that RLALM is equivalent to the 
forward-backward splitting algorithm, thus proving the convergence. In addition, if 
an additional correction step is added to RLALM, which is CRLALM, then only the 
basic convexity assumption and Lipschitz continuity assumption of the gradient (or 
pseudo-gradient) can be used for convergence. In addition, if an additional correction 
step is added to RLALM, which is CRLALM, then only the basic convexity assump-
tion and Lipschitz continuity assumption of the gradient (or pseudo-gradient) can be 
used for convergence. At the end of this section, we take a closer look at GNEP with 
inequality constraints will also be given. The idea is to convert inequality constraints 
into equality constraints and then use the algorithms proposed in this section. 

For each player, we define the regularized linearized (partial) augmented 
Lagrangian function as 

.

Lν(x, xk, λk) := ∇xν
θν(xk)T (xν − xk

ν ) + (λk)T
N

ν=1

Aνxν − b

+ β

2

N

ν=1

Aνxν − b 2 + γ

2
xν − xk

ν
2,

(5.17) 

where . β is penalty parameter, and . γ is the regularization parameter. Note that each 
player will have their own augmented Lagrangian function, and each function is 
still related to the decision variables of all participants, but no longer has constraints 
besides their own abstract constraints. In this way, the subproblems of the algo-
rithm will become a convex Nash equilibrium problem (NEP) with convex abstract 
constraints. 

5.3.1 Regularized Linearized Augmented Lagrangian 
Algorithm 

The first augmented Lagrangian algorithm proposed in this paper is shown in Algo-
rithm 3, where subproblems (5.18) should be solved at each iteration, we then update 
the multiplier, where the parameters . γ and . β are fixed.
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Algorithm 3 Regularized linearized augmented Lagrangian algorithm 
1: Choose a starting point.(x0, λ0) ∈ X × R

m , parameters.β, γ > 0. 
2: If a suitable termination criterion is satisfied: STOP. 
3: Calculate the solution.xk+1 of the following NEP problem 

. min
xν∈Xν

Lν(x, xk , λk), ν = 1, 2, 3, . . . , N . (5.18)

4: Compute 

. λk+1 = λk + β

N

ν=1

Aν xk+1
ν − b . (5.19)

5: Set.k := k + 1, and go to Step 1. 

Note that the subproblems of this algorithm are a convex NEP problem. According 
to [ 4], the solution of the NEP is equivalent to the solution of the variational inequality 
.VI(X, Pk

L ), where .Pk
L is defined as 

. Pk
L (x) :=

⎛

⎜⎝
∇x1 L1(x, xk, λk)

...

∇xN L N (x, xk, λk)

⎞

⎟⎠ .

Then the subproblem is equivalent to find .xk+1 ∈ X, such that 

. x − xk+1, Pk
L (xk+1) 0 ∀x ∈ X. (5.20) 

The optimality condition of the variational inequality .VI(X, Pk
L ) is 

.

0 ∈
⎛

⎜⎝
∇x1θ1(xk)

...

∇xN θN (xk)

⎞

⎟⎠ +
⎛

⎜⎝
AT
1 λk

...

AT
N λk

⎞

⎟⎠ + β

⎛

⎜⎝
AT
1 (

N
ν=1 Aνxk+1

ν − b)
...

AT
N (

N
ν=1 Aνxk+1

ν − b)

⎞

⎟⎠

+ γ

⎛

⎜⎝
xk+1
1 − xk

1
...

xk+1
N − xk

N

⎞

⎟⎠ +
⎛

⎜⎝
NX1(xk+1

1 )
...

NXN (xk+1
N )

⎞

⎟⎠ .

(5.21) 

The third term in (5.21) reflects the essential difference between the algorithm and 
the Jacobi-type ADMM algorithm in Algorithm 1 and the Gauss-Seidel-ADMM-type 
algorithm in Algorithm 2. First, review the optimality conditions for the subproblems 
of Algorithms 1 and 2. The optimality conditions for the subproblems of the Jacobi-
type ADMM in Algorithm 1 are given below.
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. 

0 ∈
⎛

⎜⎝
∇x1θ1(xk)

...

∇xN θN (xk)

⎞

⎟⎠ +
⎛

⎜⎝
AT
1 λk

...

AT
N λk

⎞

⎟⎠ + β

⎛

⎜⎝
AT
1 (A1xk+1

1 + μ 1 Aμxk
μ − b)

...

AT
N (AN xk+1

N + μ N Aμxk
μ − b)

⎞

⎟⎠

+ γ

⎛

⎜⎝
xk+1
1 − xk

1
...

xk+1
N − xk

N

⎞

⎟⎠ +
⎛

⎜⎝
NX1(xk+1

1 )
...

NXN (xk+1
N )

⎞

⎟⎠ .

(5.22) 

The difference between (5.22) and (5.21) is the third term; the third term of (5.21) 
is more concise. 

The optimality conditions for the subproblems of the Gauss-Seidel-type ADMM 
in Algorithm 2 are given below. 

.

0 ∈

⎛

⎜⎜⎜⎜⎜⎜⎝

∇x1θ1(xk+1
1 , xk

>1)
...

∇xν
θν(xk+1≤ν , xk+1

>ν )
...

∇xN θN (xk+1)

⎞

⎟⎟⎟⎟⎟⎟⎠
+

⎛

⎜⎜⎜⎜⎜⎜⎝

AT
1 λk

...

AT
ν λk

...

AT
N λk

⎞

⎟⎟⎟⎟⎟⎟⎠

+β

⎛

⎜⎜⎜⎜⎜⎜⎝

AT
1 (A1xk+1

1 + μ>1 Aμxk+1
μ − b)

...

AT
ν ( μ≤ν Aμxk+1

μ + μ>ν Aμxk+1
μ − b)

...

AT
N (

N
μ=1 Aμxk+1

μ )

⎞

⎟⎟⎟⎟⎟⎟⎠

+γ

⎛

⎜⎜⎜⎜⎜⎜⎝

xk+1
1 − xk

1
...

xk+1
ν − xk

ν

...

xk+1
N − xk

N

⎞

⎟⎟⎟⎟⎟⎟⎠
+

⎛

⎜⎜⎜⎜⎜⎜⎝

NX1(xk+1
1 )

...

NXν
(xk+1

ν )
...

NXN (xk+1
N )

⎞

⎟⎟⎟⎟⎟⎟⎠
.

(5.23) 

In the (5.23), .x≤ν represents all decision variable blocks whose subscripts do not 
exceed. ν, and other similar symbols have similar meanings. The difference between 
(5.23) and (5.21) lies in the first term and the third term. Due to the characteristics of 
serial calculation of subproblems of the Gauss-Seidel-type ADMM algorithm, the 
form of its optimality condition is more complicated. 

Since the subproblem of Algorithm 3 is to solve a NEP as a whole, the third term 
in the (5.21) only appears in the iteration point .xk+1 of the .(k + 1)-th step, which is 
well symmetry. And combining with (5.19), the second term and the third term on 
the right-hand side of the above formula can be directly combined, so that the above 
optimality is simplified.
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. 0 ∈
⎛

⎜⎝
∇x1θ1(xk)

...

∇xN θN (xk)

⎞

⎟⎠ +
⎛

⎜⎝
AT
1 λk+1

...

AT
N λk+1

⎞

⎟⎠ + γ

⎛

⎜⎝
xk+1
1 − xk

1
...

xk+1
N − xk

N

⎞

⎟⎠ +
⎛

⎜⎝
NX1(xk+1

1 )
...

NXN (xk+1
N )

⎞

⎟⎠ . (5.24) 

Note that (5.19) can also be transformed into a form consistent with the above. 
Use square brackets .[·] to group the terms of (5.19), which becomes 

.0 = [0] + b −
N

ν=1

Aνxk+1
ν + 1

β
(λk+1 − λk) + [0], (5.25) 

and considering.NRm (λk+1) = 0, replacing the last term on the right-hand side of the 
above equation, the optimality condition can be extended to 

.

0 ∈

⎛

⎜⎜⎜⎝

∇x1θ1(xk)
...

∇xN θN (xk)

0

⎞

⎟⎟⎟⎠ +

⎛

⎜⎜⎜⎝

AT
1 λk+1

...

AT
N λk+1

b − N
ν=1 Aνxk+1

ν

⎞

⎟⎟⎟⎠

+

⎛

⎜⎜⎜⎝

γ (xk+1
1 − xk

1 )
...

γ (xk+1
N − xk

N )
1
β
(λk+1 − λk)

⎞

⎟⎟⎟⎠ +

⎛

⎜⎜⎜⎝

NX1(xk+1
1 )

...

NXN (xk+1
N )

NRm (λk+1)

⎞

⎟⎟⎟⎠ .

(5.26) 

The matrix .Q ∈ R
(n+m)×(n+m) is introduced as follows. 

. Q =

⎛

⎜⎜⎜⎝

γ In1

. . .

γ InN
1
β

Im

⎞

⎟⎟⎟⎠ = γ In
1
β

Im
. (5.27) 

Hence, (5.26) can be reformulated by 

. 0 ∈ P(wk) + Gwk+1 + Q(wk+1 − wk) + NW(wk+1). (5.28) 

Based on this formula and different assumptions, two types of proofs are given 
below. That is to prove the Fejér monotonicity of the iterative point or prove that 
(5.28) is equivalent to finding the zero of the operator . T using a forward-backward 
splitting algorithm. 

Under Assumptions 5.1, 5.2, and 5.4, we will prove the Fejér monotonicity of the 
iterative sequence of Algorithm 3 , and then use Lemma 5.1 to prove the convergence 
of Algorithm 3. Now introduce the notation
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.
k+1, wk) = Q(wk+1 − wk) + P(wk) − P(wk+1). (5.29) 

By (5.12), .T (w) := P(w) + G(w) + NW(w). Optimality condition (5.28) can 
be rewritten as 

. 0 ∈ T (wk+1) + k+1, wk). (5.30) 

Lemma 5.11 Let .w∗ = (x∗, λ∗) be the variational KKT point of GNEP (5.1), 
the pseudo-gradient .P̂(x) is the .ρ-strongly monotone operator, then for any . w =
(x, λ) ∈ X × R

m, we have 

. P(w) + Gw,w − w∗ ρ x − x∗ 2. (5.31) 

Proof According to the characterization of the variational KKT point by Lemma 
5.4, we have  

. P(w∗) + Gw∗, w − w∗ 0 ∀w = (x, λ) ∈ X × R
m . (5.32) 

When the pseudo-gradient.P̂(x) is strong monotone, combined with the properties 
(5.2.2) of . G, we have  

. P(w) + Gw − (P(w∗) + Gw∗), w − w∗ ρ x − x∗ 2. (5.33) 

Adding (5.32) and (5.33) results in (5.31). 

According to the definition of normal cone (5.2.1), the optimality condition can 
be rewritten in an equality form, see the following lemma. 

Lemma 5.12 The iterative steps (5.18) and (5.19), i.e. (5.26), is equivalent to find 
.wk+1 = (xk+1

1 , . . . , xk+1
N , λk+1), such that 

.

P(wk+1) + Gwk+1 + Q(wk+1 − wk), w − wk+1

+
N

ν=1

xν
θν(xk) − ∇xν

θν(xk+1), xν − xk+1
ν 0 ∀w ∈ W.

(5.34) 

Based on the above results, the convergence analysis of Algorithm 3 can be given. 

Theorem 5.1 Assume that GNEP (5.1) has variational KKT points. Assumptions 
5.1, 5.2, and 5.4 hold. Parameters .γ > εL > 0, β > 0, then the iterative point . wk+1

generated by Algorithm 3 converges to the variational KKT point . (x∗
1 , . . . , x∗

N , λ∗)
of (5.1). 

Proof Since the parameters .γ > 0, β > 0, it can be seen that the matrix .Q is a 
symmetric positive definite matrix. 

Using Lemma 5.11, we have  

. P(wk+1) + Gwk+1, wk+1 − w∗ ρ xk+1 − x∗ 2. (5.35)
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Taking .w = w∗ into (5.34), using Cauchy-Schwarz inequality and Young’s 
inequality (Lemma 5.2), for parameters .ε, ρsatisfying .ε > 1

2ρ (consequently . 2ρ −
1
ε

> 0), we have 

. 0 P(wk+1) + Gwk+1 + Q(wk+1 − wk), w∗ − wk+1

+
N

ν=1

xν
θν(xk) − ∇xν

θν(xk+1), x∗
ν − xk+1

ν

wk+1 − wk, w∗ − wk+1
Q − ρ xk+1 − x∗ 2

+
N

ν=1

xν
θν(xk) − ∇xν

θν(xk+1), x∗
ν − xk+1

ν

wk+1 − wk, w∗ − wk+1
Q − ρ xk+1 − x∗ 2

+
N

ν=1

xν
θν(xk) − ∇xν

θν(xk+1) x∗
ν − xk+1

ν

wk+1 − wk, w∗ − wk+1
Q − ρ xk+1 − x∗ 2

+
N

ν=1

ε

2
xν

θν(xk) − ∇xν
θν(xk+1) 2 + 1

2ε
x∗

ν − xk+1
ν

2

wk+1 − wk, w∗ − wk+1
Q − ρ xk+1 − x∗ 2

+
N

ν=1

ε

2
L2

ν xk − xk+1 2 + 1

2ε
x∗

ν − xk+1
ν

2

wk+1 − wk, wk+1 − w∗
Q − (ρ − 1

2ε
) xk+1 − x∗ 2

+ ε

2
L xk − xk+1 2.

From the identity .2 w, v w 2 v 2 w − v 2, we have  

. 

0 ≤1

2
wk − w∗

Q − 1

2
wk+1 − wk

Q − 1

2
wk+1 − w∗

Q

− ρ − 1

2ε
xk+1 − x∗ 2 + ε

2
L xk − xk+1 2.

After arranging the above equation, we can get
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. 

wk+1 − w∗ 2
Q wk − w∗ 2

Q wk+1 − wk 2
Q

− 2ρ − 1

ε
xk+1 − x∗ 2 + εL xk − xk+1 2

wk − w∗ 2
Q − γ xk+1 − xk 2 − 1

β
λk+1 − λk 2

− 2ρ − 1

ε
xk+1 − x∗ 2 + εL xk − xk+1 2

wk − w∗ 2
Q − (γ − εL) xk+1 − xk 2 − 1

β
λk+1 − λk 2

− 2ρ − 1

ε
xk+1 − x∗ 2.

(5.36) 

Note that in the above steps, when using Young’s inequality. On the other hand, 
after selecting the parameter. ε, the regular term parameter. γ can be sufficiently large, 
so that .γ > εL , then we have .γ − εL > 0. In this way, the Fejér monotonicity of 
the iterative point sequence with respect to the variational KKT point set is obtained. 
Thus, the sequence.{wk+1} is bounded, so it has cluster points. Below, we will prove 
that the cluster point of the sequence is a variational KKT point. 

Let .{wk+1}I be the subsequence convergent to the cluster point .w̄ with .I ⊂ N, 
denote as .wk+1 →I w̄. Since .X1, . . . ,XN are closed convex sets, so . W = X1 ×
. . . × XN × R

m is also closed convex set. So .w̄ ∈ W. 
Let.ρ̂ = 2ρ − 1

ε
> 0, γ̂ = γ − εL > 0, then Fejér monotonicity can be rewritten 

as 

. γ̂ xk+1 − xk 2 + 1

β
λk+1 − λk 2 + ρ̂ xk+1 − x∗ 2 wk − w∗ 2

Q wk+1 − w∗ 2
Q .

(5.37) 

In (5.37), summation of .k = 0, 1, . . . , t yields that 

.

t

k=0

(γ̂ xk+1 − xk 2 + 1

β
λk+1 − λk 2 + ρ̂ xk+1 − x∗ 2)

≤
t

k=0

( wk − w∗ 2
Q wk+1 − w∗ 2

Q)

w0 − w∗ 2
Q wt+1 − w∗ 2

Q

w0 − w∗ 2
Q .

(5.38) 

Let .t → ∞ in the above formula, we can get 

. xk+1 − xk 0, λk+1 − λk 0, xk+1 − x∗ 0. (5.39) 

So we have
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. wk+1 − wk 0, xk+1 → x∗. (5.40) 

Combining .wk+1 →I w̄, we get .wk →I w̄. Then by Assumption 5.4, i.e., the 
Lipschitz continuity of .∇xν

θν , we have  

. xν
θν(xk) − ∇xν

θν(xk+1) Lν xk − xk+1 0. (5.41) 

That is 
. P(xk) − P(xk+1) 0, k → ∞. (5.42) 

So 

. k+1, wk) Q wk − wk+1 P(xk) − P(xk+1) 0, k → ∞. (5.43) 

So there is . k+1, wk) →I 0. (5.30) can be rewritten as . − k+1, wk) ∈
T (wk+1). Using the Lemma 5.8, and .

k+1, wk) →I 0, wk+1 →I w̄, we get . 0 ∈
T (w̄). So it is proved that .w̄ is a variational KKT point. By Lemma 5.1, it is known  
that the iterative sequence .{wk+1} converges to a certain variational KKT point. 

So far, we have proved the convergence of RLALM under the strong monotonic-
ity and Lipschitz continuity assumptions of pseudo-gradients. Next, we consider 
“weakening” the assumptions. Note that “weakening” here is not strictly speaking, 
since the strong monotonicity assumption of pseudo-gradients is only satisfied at 
the solution points. Below we will illustrate that Algorithm 3 is equivalent to the 
forward-backward splitting algorithm based on (5.28) under Assumptions 5.1 and 
5.3, the convergence analysis will be implied. 

Let 

. Q := βQ = βγ In

Im
. (5.44) 

The parameter .β > 0, so  .Q is also a positive definite matrix. Then the inner 
product . , Q̄ and its induced norm . Q can be defined. Convergence is proved 
under this norm later in this subsection. In finite-dimensional Euclidean space, by 
the equivalence of any two norms, the corresponding convergence of different norms 
is also equivalent. 

Rewrite (5.28) with . Q: 

. 

0 ∈ P(wk) + Gwk+1 + Q(wk+1 − wk) + NW(wk+1)

= 1

β
Qwk − P(wk) ∈ Gwk+1 + 1

β
Qwk+1 + NW(wk+1)

= (I − βQ
−1

P)(wk) ∈ (I + βQ
−1

(G + NW))(wk+1).

Let.T = P + G + NW = T1 + T2, where.T1 = P, T2 = G + NW. By Assump-
tion 5.1, Lemmas 5.5, and 5.7, we know that .T1, T2 are both maximally monotonic. 
And denote
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. A := Q
−1

T2 = Q
−1

(G + NW), B := Q
−1

T1 = Q
−1

P.

So 
. A + B = Q

−1
(T1 + T2) = Q

−1
T . (5.45) 

Since.Q
−1

is positive definite, it is an invertible matrix. So the zero of the operator 

.Q
−1

T is the same as the zero of . T . That is, the zero point of .A + B is equivalent 
to the zero point of . T . Below we will prove that Algorithm 3 is equivalent to the 

forward-backward splitting algorithm that finds the zero point of .Q
−1

T = A + B. 

Although.T1, T2 are maximal monotone operators, but. A = Q
−1

T2, B = Q
−1

T1

is not necessarily a maximal monotone operator. After defining the induced norm 
. Q , it can be proved that.A, B are maximally monotone under the induced norm. 

Lemma 5.13 Let .Q ∈ R
n be a positive definite matrix, the operator . T : R

n → 2R
n

is a maximal monotone operator about the norm . , then the operator .Q · T is a 
maximal monotone operator about the norm . Q−1

Proof According to the definition of the maximal monotone operator in view of (5.8), 
for the operator .Q · T , and the point .(x, u) ∈ R

n × R
n proves this equivalence. 

On the one hand, if.u ∈ Q Ax , that is,.Q−1u ∈ Ax , for.∀v ∈ Q Ay, i.e..Q−1v ∈ Ay, 
using the maximal monotonicity of . A, we have  

. x − y, Q−1u − Q−1v 0,

That is 
. x − y, u − v Q−1 ≥ 0.

Conversely, for all .v ∈ Q Ay, we have  

. x − y, u − v Q−1 ≥ 0,

Then for all .v ∈ Ay, there is .Qv ∈ Q Ay, and 

. x − y, Q−1u − v x − y, u − Qv Q−1 ≥ 0.

From the maximal monotonicity of . A, we can get .Q−1u ∈ Ax and hence . u ∈
Q Ax . The proof is complete. 

According to Lemma 5.13, the following conclusions can be drawn. 

Proposition 5.3 Let Assumption 5.1 hold, parameters.β > 0, γ > 0, then under the 

norm. Q, the operators.A = Q
−1

T2, B = Q
−1

T1 are both maximally monotonic. 

Based on the above notation, (5.28) can be further rewritten as 

.(I − βB)(wk) ∈ (I + β A)(wk+1),



130 X. Jia et al.

where the operator. A is maximally monotonic, then its resolution. Jβ A = (I + β A)−1

is a single-valued mapping. In addition, the operator .T1 = P is obviously a single-

valued mapping, so .B = Q
−1

T1 is also a single-valued mapping. Then the above 
formula is equivalent to 

. wk+1 = (I + β A)−1(I − βB)(wk).

This gives the iterative form of the forward-backward splitting algorithm for 
finding the zeros of .A + B. 

To prove the convergence, we also need to consider the cocoercivity of the operator 
. B. Under Assumption 5.3, i.e.,.P̂ is .α-cocoercive, obviously.P is also.α-cocoercive. 

The following results give the effect of the composite matrix.Q
−1

on the cocoercivity. 

Lemma 5.14 ([ 26])Let the operator.P : R
n → 2R

n
be.α-cocoercive about the inner 

product . , , . Q is a symmetric positive definite matrix of order . n, then the operator 
.Q−1P is .α/ Q−1 -cocoercive about the inner product . , Q. 

The inverse of the matrix .Q can be directly obtained: 

. Q
−1 =

1
βγ

In

Im
.

The eigenvalues of .Q
−1

are .1/βγ and . 1, so  

. 

Q
−1

max
1

βγ
, 1 ,

1

Q
−1 = min {βγ, 1} .

We want the operator .B = Q
−1

P to be .α-cocoercive. From the definition of 
cocoercivity, it can be seen that the operator of .δ-cocoercive (.δ > α) is also  .α-

cocoercive. So just let .1/ Q
−1

1, i.e. .βγ ≥ 1, then we get the .α-cocoercivity of 
the operator . B. 

Therefore, applying the convergence Theorem 5.9 of the forward-backward 
splitting algorithm, the following result can be obtained. 

Theorem 5.2 Assume that GNEP (5.1) has variational KKT points, and that 
Assumptions 5.1 and 5.3 hold. Parameters .γ > 0, .β > 0, and satisfy . βγ ≥ 1, β ∈
(0, 2α). Then the iteration point .wk+1 generated by Algorithm 3 converges to the 
variational KKT point .(x∗

1 , . . . , x∗
N , λ∗) of the problem under inner product . , Q̄

and its induced norm .. Q.
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5.3.2 Regularized Augmented Lagrangian Algorithm 

This subsection will propose the second augmented Lagrangian-type algorithm. Con-
sidering that the augmented Lagrangian function is not linearized in the subproblem 
(5.18), then in addition to Assumption 5.1, the convergence can be proved with-
out any additional conditions. That is, using the following augmented Lagrangian 
function 

. 

L̄ν(x, xk, λk) =θν(x) + (λk)T
N

ν=1

Aνxν − b

+ β

2

N

ν=1

Aνxν − b 2 + γ

2
xν − xk

ν
2.

The algorithm is modified to the following Algorithm.4. 

Algorithm 4 Regularized augmented Lagrangian algorithm 
1: Choose a starting point.(x0, λ0) ∈ X × R

m , parameters.β, γ > 0. 
2: If a suitable termination criterion is satisfied: STOP. 
3: Calculate the solution.xk+1 of the following NEP problem 

. min
xν∈Xν

L̄ν(x, xk , λk), ν = 1, 2, 3, . . . , N . (5.46)

4: Compute 

. λk+1 = λk + β

N

ν=1

Aν xk+1
ν − b .

5: Set.k := k + 1, and go to Step 1. 

The optimality condition of (5.46) can be rewritten as 

. 0 ∈ P(wk+1) + Gwk+1 + Q(wk+1 − wk) + NW(wk+1).

Redefine the residual notation.
k+1, wk) = Q(wk+1 − wk). Then the optimal-

ity condition is still rewritten as .0 ∈ T (wk+1) + k+1, wk). Its form is simpler, 
and convergence can be easily proved by a similar method. 

Similar to Lemma 5.11, we have the following result. 

Lemma 5.15 Let .w∗ = (x∗, λ∗) be the variational KKT point of GNEP (5.1), if 
Assumption 5.1 is established, then for any .w = (x, λ) ∈ X × R

m, we have 

. P(w) + Gw,w − w∗ 0. (5.47)
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Proof According to the characterization of the variational KKT point by Lemma 
5.4, we have  

. P(w∗) + Gw∗, w − w∗ 0. (5.48) 

When Assumption 5.1 is satisfied, by the monotonicity of .P̂(x) and the property 
(5.2.2) of . G, we get 

. P(w) + Gw − (P(w∗) + Gw∗), w − w∗ 0. (5.49) 

Adding (5.48) and (5.49) together yields (5.47). 

Due to the changes made in this lemma and the lack of linearization, compared 
with the proof of the convergence theorem under the strong monotonic assumption, 
there will be no more two differences about. P and strong monotonic parameter terms 
in the process. Then we have 

. 
0 Q(wk+1 − wk), w∗ − wk+1

wk+1 − w∗ 2
Q wk − w∗ 2

Q wk+1 − wk 2
Q .

That is, the Fejér monotonicity of the variational KKT point set with a simpler 
form. The following proofs are basically the same. So the convergence theorem of 
Algorithm 4 can be obtained. 

Theorem 5.3 Assume that GNEP (5.1) has variational KKT points, and that 
Assumption 5.1 holds, parameters .γ > 0, β > 0. Then the iterative point .wk+1 gen-
erated by Algorithm 4 converges to the variational KKT point .(x∗

1 , . . . , x∗
N , λ∗) of 

(5.1). 

For ALM without linearization in Algorithm 4, the corresponding convergence is 
easier to prove; however, the solution of algorithmic subproblems tends to be more 
complicated. The solution method of the subproblems is still similar to the inner 
iterative solution method, but each inner iteration will recall the pseudo-gradient 
function once, which will increase a lot of computation. But for small-scale problems, 
its numerical performance is often better. 

5.3.3 Corrected Regularized Linearized Augmented 
Lagrangian Algorithm 

This section will focus on the corrected regularized linearized augmented Lagrangian 
algorithm, which requires weaker assumptions to guarantee the corresponding con-
vergence results. Referring to Tseng’s algorithm (Lemma 5.10), which is a forward-
backward splitting algorithm, where a correction step is added at each iteration. In 
this case, the cocoercivity assumption about operator .B can be weakened into the
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Lipschitz continuity assumption. Inspired by this, the corresponding correction step 
is added to Algorithms 3, and 5 is obtained. 

Algorithm 5 Corrected regularized linearized augmented Lagrangian algorithm 
1: Choose a starting point.(x0, λ0) ∈ X × R

m , parameters.β, γ > 0. 
2: If a suitable termination criterion is satisfied: STOP. 
3: Calculate the solution.yk of the following NEP problem 

. min
xν∈Xν

Lν(x, xk , λk), ν = 1, 2, 3, . . . , N . (5.50)

4: Compute 

. λk+1 = λk + β

N

ν=1

Aν yk
ν − b . (5.51)

5: Compute 

. xk+1 = yk + 1

γ
P̂(xk) − P̂(yk) . (5.52)

6: Set.k := k + 1, and go to Step 1. 

A correction step (5.52) has been added to Algorithm 5, which can be calculated 
explicitly. This section will give the equivalence of Algorithm 5 and Tseng’s splitting 
algorithm under Assumptions 5.1 and 5.4 to prove the convergence. Denote 

. vk+1 := yk

λk+1 .

The correction step (5.52) should be 

. wk+1 = vk+1 + β B(wk) − B(vk+1) = vk+1 + β Q̄−1P(wk) − Q̄−1P(vk+1) .

Then the update of the decision variable . x should be 

. xk+1 = yk + β · 1

βγ
(P(xk) − P(yk) = yk + 1

γ
(P(xk) − P(yk)).

This is the correction step in Algorithm 5. 

Next, we discuss the Lipschitz continuity of the operator .B = P
−1

T1 = P
−1

P . 
Based on Assumption 5.4, for all .ν = 1, . . . , N , gradient .∇xν

θν is .Lν-Lipschitz 
continuous. Then for the operator. P , for.∀w = (x, λ), v = (y, μ) ∈ R

n+m , we have
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. 

P(w) − P(v)

⎛

⎜⎜⎜⎝

∇x1θ1(x) − ∇x1θ1(y)
...

∇xN θN (x) − ∇xN θN (y)

0

⎞

⎟⎟⎟⎠

=
N

ν=1

xν
θν(x) − ∇xν

θν(y)

≤
N

ν=1

Lν x − y
N

ν=1

Lν w − v .

Denote.L = N
ν=1 Lν , we know that. P is.L-Lipschitz continuous. Obviously, we 

know that the operator.B = Q
−1

P is also. Q
−1

L-Lipschitz continuous. So we just 

require . Q
−1

1, i.e. .βγ ≥ 1 to get the .L-Lipschitz continuity of the operator . B. 
Therefore, using Lemma 5.10 of Tseng’s splitting algorithm, the following results 

can be obtained. 

Theorem 5.4 Suppose GNEP (5.1) has variational KKT points, and Assumptions 
5.1 and 5.4 hold. Denote.L = N

ν=1 Lν , parameters.γ > 0,.β > 0, and satisfy. βγ ≥
1, .β ∈ (0, L). Then the iteration point .wk+1 generated by Algorithm 5 converges to 
the variational KKT point .(x∗

1 , . . . , x∗
N , λ∗) of the problem (5.1). 

5.3.4 Treatment of Inequality Constraints 

So far, we have considered algorithms for convex GNEP with common linear equality 
constraints. Now generalize the previous results to linear inequality constraints. By 
introducing new variables, the inequality constraints are transformed into equality 
constraints, and the constraints of the new variables are incorporated into the abstract 
constraints. This allows the use of algorithms for equality constraints. 

Börgens and Kanzow [26] give two transformation methods to convert GNEP (5.2) 
to linear equality-constrained GNEP. One is to introduce a new decision variable . sν

for each player, that is, for .ν = 1, . . . , N , solve  

. min
xν∈Xν
sν∈Rm−

θν(xν, x−ν) s.t.
N

ν=1

Aνxν − b −
N

ν=1

sν = 0. (5.53) 

Or we just introduce a new decision variable . s for the last player, i.e., for . ν =
1, . . . , N − 1, solve  

. min
xν∈Xν

θν(xν, x−ν) s.t.
N

ν=1

Aνxν − b − s = 0. (5.54a)
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And for the .N -th player, solve 

. min
xN ∈XN

s∈Rm−

θN (xN , x−N ) s.t.
N

ν=1

Aνxν − b − s = 0. (5.54b) 

Regarding the relationship between their solutions and the solution of the original 
problem, we have the following results. 

Proposition 5.4 ([ 26]) The following statements are equivalent: 

1. .x∗ = (x∗
1 , . . . , x∗

N ) is the solution of GNEP (5.2). 
2. For some .s∗

ν ∈ R
m−, ν = 1, . . . , N , (x∗

1 , s∗
1 , . . . , x∗

N , s∗
N ) is the solution of GNEP 

(5.53). 
3. For some .s∗ ∈ R

m−, (x∗
1 , . . . , x∗

N , s∗) is the solution of GNEP (5.54). 

Regarding the relationship between their variational KKT points and the varia-
tional KKT points of the original problem, we have the following results. 

Proposition 5.5 ([ 26]) The following statements are equivalent: 

1. .(x∗, λ∗) = (x∗
1 , . . . , x∗

N ) is the variational KKT point of GNEP (5.2). 
2. For some .s∗

ν ∈ R
m−, ν = 1, . . . , N , ((x∗

1 , s∗
1 , . . . , x∗

N , s∗
N ), λ∗) is the variational 

KKT point of GNEP (5.53). 
3. For some.s∗ ∈ R

m−, ((x∗
1 , . . . , x ast

N , s∗), λ∗) is the variational KKT point of GNEP 
(5.54). 

Note that after employing new variables, the gradient of the objective function 
with respect to the new decision variables no longer maintains strong monotonicity, 
but its cocoercivity can still be maintained. In addition, regarding the solution of 
the subproblems at each iteration, the idea of this paper is to solve the old and new 
decision variables separately. 

5.4 Numerical Experiment 

In this section, some numerical examples will be given to verify the effectiveness of 
the proposed algorithms. 

5.4.1 Numerical Examples 

Example 5.1 The first example was proposed by Facchinei and Fischer [ 6] and 
tested by Facchinei and Kanzow [ 9] and Han et al. [ 30]. There are two players in this 
question, each player . ν controls a decision variable .xν ∈ R. The objective function 
and constraints of each player are as follows
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. 

min
x1

(x1 − 1)2

s.t. x1 + x2 ≤ 1,

and 

. 
min

x2
(x2 − 1

2
)2

s.t. x1 + x2 ≤ 1.

The generalized Nash equilibrium point set of this example is . {(s, 1 − s) | s ∈
[ 12 , 1]}, and the unique variational equilibrium point is .( 34 ,

1
4 ). 

Example 5.2 The second example, taken from [ 6, 9], also consists of two players. 
The first player controls a two-dimensional decision variable . x1 = (x11, x12)T =:
(y1, y2)T ∈ R

2, another participant controls a one-dimensional decision variable 
.x2 =: y3 ∈ R. The objective functions of the two participants are 

. θ1(x) = y21 + y1y2 + y22 + (y1 + y2)y3 − 25y1 − 38y2,

and 
. θ2(x) = y23 + (y1 + y2)y3 − 25y3.

They all have non-negative constraints .y1, y2, y3 ≥ 0, and common linear 
constraints 

. 
y1 + 2y2 − y3 ≤ 14,

3y1 + 2y2 + y3 ≤ 30.

The generalized Nash equilibrium point set of this example is . {(s, 11 − s, 8 −
s) | s ∈ [0, 2]}, and the only variational equilibrium point is .(0, 11, 8). 

Example 5.3 The third example is a modified version [ 26] of the duopoly model 
introduced by Krawczyk and Uryasev [ 31]. Two players. ν control a decision variable 
. xν ∈ R, representing their production of a given product. The objective function 
representing their profit is given by 

. θν(x) = xν(ρ(x1 + x2) + λ − d), ν = 1, 2.

The productive capacity of each participant is limited by individual constraints 
. xν ∈ [0, 10]. Furthermore, both participants have a common resource limit constraint 
.x1 + x2 ≤ r . Here we choose parameters .d = 20, λ = 4, ρ = 1, r = 9. 

Example 5.4 The fourth example is from Harker [ 32]. There are two players in this 
problem, player . ν controls a decision variable .xν ∈ R. The objective functions and 
constraints of each player are as follows
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Table 5.1 Parameters of a river basin pollution model 

Player.ν .c1ν .c2ν .eν .uν1 . uν2

1 0.10 0.01 0.50 6.5 4.583 

2 0.12 0.05 0.25 5.0 6.250 

3 0.15 0.01 0.75 5.5 3.750 

. 

min
x1

(x1)
2 + 8

3
x1x2 − 34x1

s.t. 0 ≤ x1 ≤ 10,

x1 + x2 ≤ 15,

and 

. 

min
x2

(x2)
2 + 5

4
x1x2 − 24.25x1

s.t. 0 ≤ x2 ≤ 10,

x1 + x2 ≤ 15.

The generalized Nash equilibrium point set for this example is. {(5, 9)} ∪ {(s, 15 −
s) | s ∈ [9, 10]}. The variational equilibrium is .(5, 9). 

Example 5.5 This example is a river basin pollution model introduced by Krawczyk 
and Uryasev [ 31] and tested by Han [ 30] et al. There are three players in this problem, 
player . ν controls a decision variable .xν ∈ R. The objective function is given by 

. θν(x) = xν(c1ν + c2νxν − d1 + d2(x1 + x2 + x3)), ν = 1, 2, 3.

And there are common linear constraints 

. 
u11e1 u21e2 u31e3
u12e1 u22e2 u32e3

⎛

⎝
x1
x2
x3

⎞

⎠ ≤ K1

K2
.

The parameters .c1ν, c2ν, eν, uν1, uν2 are shown in Table 5.1, and setting the 
parameters .K1 = K2 = 100, d1 = 3, d2 = 0.01. An approximate solution for this 
example is .(21.1448, 16.0279, 2.7260). 

Example 5.6 This example is the oligopoly model described in the literature [ 33], 
which was tested by Facchinei and Kanzow [ 9]. The problem has .N players, each 
player has a decision variable .xν ∈ R, and the objective function is as follows 

. θν(x) = fν(xν) − 50001/ηxν(x1 + x2 + . . . + xN )−1/η, ν = 1, 2, . . . , N ,

where
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Table 5.2 Oligopoly model parameters 

Player.ν .1 .2 .3 .4 . 5

.cν 10 8 6 4 2 

.Kν 5 5 5 5 5 

.δν 1.2 1.1 1.0 0.9 0.8 

. fν(xν) = cνxν + δν

1 + δν

K −1/δν

ν (xν)
1+δν
δν , ν = 1, 2, . . . , N .

All of them have non-negative constraints.xν ≥ 0, ν = 1, 2, . . . , N , and common 
linear constraints 

. x1 + x2 + . . . + xN ≤ P.

Take the parameters .N = 5, η = 1.1, P = 75. The remaining parameters 
.cν, Kν, δν are shown in Table 5.2. An approximate solution for this example is 

. (10.4038, 13.0359, 15.4074, 17.3815, 18.7713).

Example 5.7 A final example is the electricity market model. It is presented in [ 11] 
and further studied in [ 34]. The problem has 2 players, each with a power plant on 2 
of the 3 regions, which can be defined on the nodes of the graph (this is a simplified 
model of the literature [ 11]). First denote 

. 

S1 = 40 − 40

500
(x1 + x4 + x7 + x10),

S2 = 35 − 35

400
(x2 + x5 + x8 + x11),

S3 = 32 − 32

600
(x3 + x6 + x9 + x12).

The objective functions of the two players are as follows 

. θ1(x) = (15 − S1)(x1 + x4) + (15 − S2)(x2 + x5) + (15 − S3)(x3 + x6),

. θ2(x) = (15 − S1)(x7 + x10) + (15 − S2)(x8 + x11) + (15 − S3)(x9 + x12).

They all have non-negative constraints .xν ≥ 0, ν = 1, 2, . . . , 12, and common 
linear constraints 

.

x1 + x2 + x3 ≤ 100,

x4 + x5 + x6 ≤ 50,

x7 + x8 + x9 ≤ 100,

x10 + x11 + x12 ≤ 50,
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. Sj − Si ≤ 0, ∀i, j = 1, 2, 3, i j.

After testing, an approximate solution for this example is 

. 
(43.5364, 28.1381, 28.3255, 26.8698, 11.4714, 11.6588,

43.5364, 28.1381, 28.3255, 26.8698, 11.4714, 11.6588).

5.4.2 Numerical Results 

We test all examples in Example 5.6 using the regularized linearized aug-
mented Lagrangian algorithm in Algorithm 3 (RLALM), the regularized augmented 
Lagrangian algorithm in Algorithm 4 (RALM), the corrected regularized linear aug-
mented Lagrangian algorithm in 5 (CRLALM), the Jacobi-type ADMM method in 
Algorithm 1 (JADMM), and the Gauss-Seidel-type ADMM method in Algorithm 2 
(GADMM). 

The subproblems for each algorithm are solved by the self-adjusting ratio pro-
jected gradient method. The termination condition of the inner loop is that the dif-
ference of the iterates . xk − xk−1 is less than .10−8. The termination condition of 
the outer iteration is taken as 

. 
P(xk) + AT λk 10−6,

min(λk, b − Axk) 10−6.

Regarding the adjustment of parameters, JADMM adopts the same parameter 
settings in [ 26] on the one hand, that is, for the .α-cocoercive operator . P , taking 
.β = {α, 0.2}, γ = 1/β2 M . On the other hand, this paper will manually adjust 
its parameters, denoted JADMMa, to further obtain better results. For GADMM, we 
take the adaptive strategy of the parameter . γ in [ 27]. The residual of the iterates is 

. rk :=
N

ν=1

xν
θν(xk) + AT

ν λk + vk
ν

2
N

ν=1

Aνxk
ν − b 2,

where .vk
ν ∈ NXν

(xk). This residual characterizes how well the iterate satisfies the 
variational KKT condition. Börgens and Kanzow [ 27] proposed that the condition 
that .γ is sufficiently large is not a necessary condition for convergence, so they 
proposed an adaptive method to update . γ when the following three conditions are 
satisfied at the same time: 

1. . γ is less than the given upper bound. 
2. Residuals do not fall sufficiently: .rk+1 > ε rk , where parameter .ε ∈ (0, 1). 
3. . γ has not been updated in the previous . κ steps, where . κ is a given constant.
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Table 5.3 Numerical results of RLALM with different ways of introducing new variables 

Example RLALM RLALM2 

Iter. Time Iter. Time 

3.1 14 5.4 14 4.9 

3.2 22 34.1 22 26.8 

3.3 8 3.8 8 2.7 

3.4 92 80.8 92 62.4 

3.5 23 77.9 31 90.7 

3.6 23 44.5 23 48.9 

3.7 46 124.6 46 105.0 

Table 5.4 Numerical results of several ALM-type algorithms 

Example RLALM RALM CRLALM 

Iter. Time Iter. Time Iter. Time 

4.1 14 5.4 6 4.1 47 15.2 

4.2 22 34.1 9 36.0 93 98.8 

4.3 8 3.8 7 3.0 29 11.7 

4.4 92 80.8 5 11.5 326 88.8 

4.5 23 77.9 10 66.8 97 92.4 

4.6 23 47.5 7 29.5 346 149.8 

4.7 46 124.6 13 131.1 114 194.8 

. γ can be updated by accumulation or multiplication, in other words,. γ k+1 := γ k + τ

or .γ k+1 := τ · γ k . Here, we use the accumulation principle to update . γ . 
First, we test and compare the two ways of converting inequality constraints into 

equality constraints. 
In Table 5.3, the column RLALM represents the transformation of inequality con-

straints into equality constraints by introducing .N block new variables, then using 
the regularized linearized augmented Lagrangian algorithm for equality constraints 
proposed in this paper to solve the problem. The column RLALM2 indicates that 
only one new variable is introduced, and then the regularized linearized augmented 
Lagrangian algorithm is used to solve it. It can be seen that the numerical perfor-
mance of the two is relatively close in terms of the number of iterations and time. All 
the following algorithms will uniformly adopt the method of introducing N blocks 
of new variables (Table 5.4). 

Several augmented Lagrangian-type algorithms proposed in this paper are com-
pared. It can be found from Algorithm 5.4 that for RALM, generally when the regular 
parameter . γ is relatively small, the performance is better. Compared with RLALM, 
the number of iterations of RLALM is significantly smaller, and the iteration time 
of some examples is also significantly shorter. The parameters of CRLALM have to
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Table 5.5 Numerical results for JADMM and RLALM 

Example JADMM JADMMa RLALM 

Iter. Time Iter. Time Iter. Time 

4.1 53 21.3 22 8.5 14 5.4 

4.2 87 99.1 34 31.0 22 34.1 

4.3 112 39.6 23 9.5 8 3.8 

4.4 536 171.0 202 81.6 92 80.8 

4.5 4511 13868.4 361 499.7 23 101.5 

4.6 – – 156 175.0 23 61.0 

4.7 788 874.4 190 261.9 46 124.6 

Table 5.6 Numerical results for GADMM and RLALM 

Example GADMM LGADMM RLALM 

Iter. Time Iter. Time Iter. Time 

4.1 22 10.5 35 18.8 14 5.4 

4.2 36 32.5 366 512.3 22 34.1 

4.3 36 29.5 197 93.7 8 3.8 

4.4 100 72.0 364 191.2 92 80.8 

4.5 500 772.9 711 990.2 23 101.5 

4.6 60 86.9 187 221.8 23 61.0 

4.7 91 428.5 160 580.6 46 124.6 

be re-adjusted to have better results. Its numerical performance is obviously inferior 
to that of RLALM. 

Next, we examine the comparison between JADMM in [ 26] and RLALM in this 
paper (Table 5.5). 

It can be seen from Algorithm 5.5 that the iteration of JADMM using the orig-
inal parameter settings in [ 26] is too many, and JADMMa with manual parameter 
adjustment can greatly speed up the convergence. And RLALM is also significantly 
faster than the tuned JADMM. Note that since Example 5.6 is difficult to track the 
cocoercivity parameters of the pseudo-gradient, the numerical results of JADMM 
are not given. 

Finally, we will examine the numerical performance comparison between the 
Gauss-Seidel-type ADMM method of the literature [ 27] and the RLALM (Table 
5.6). 

Both GADMM and LGADMM in Algorithm 5.6 use the adaptive strategy in the 
literature [ 27] to adjust the parameters . γ . LGADMM represents the linearization of 
the objective function part of the GADMM algorithm. We examine the effect of this 
operation on numerical performance. The parameter requirements of LGADMM are 
different from those of GADMM, and it needs a larger initial . γ and growth span
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than GADMM in order to have better convergence performance. But its numerical 
performance is not as good as GADMM. In addition, the numerical performance of 
RLALM is obviously better than that of GADMM. 

5.5 Conclusions 

In this paper, we propose several augmented Lagrange-type algorithms for solving 
generalized Nash equilibrium problems with linear common equality or inequality 
constraints. Under different assumptions, there were different technical methods for 
convergence, i.e., the Fejér monotonicity of the corresponding iterative sequences or 
the equivalence with forward-backward splitting theoretically. In the future, we may 
consider adapting the parameters to give full play to the efficiency of the algorithms. 

Acknowledgements This work was supported by National Natural Science Foundation of China 
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