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Preface

This text deals with physical or geometric entities, known
as tensors, which can be thought of as a generalization of
vectors. Tensors are central in Engineering and Physics
because they provide the framework for formulating and
solving problems in areas such as Mechanics (inertia
tensor, stress tensor, elasticity tensor, etc.),
Electrodynamics (electrical conductivity and electrical
resistivity tensors, electromagnetic tensor, magnetic
susceptibility tensor, etc.), or General Relativity (stress
energy tensor, curvature tensor, etc.). Thus tensors are
part of most Engineering and Physics curricula.

The Goal of This Text

Our aim is to provide a bridge between Linear Algebra and
Multilinear Algebra, thus introducing tensors with just
elementary knowledge of Linear Algebra. In particular, we
focus on finite-dimensional vector spaces. After this
exposure, the interested reader might want to seek other
texts, such as those by Dodson [5], Jeevanjee [8],
Landsberg [9], or Simmonds [11], for a solid understanding
of the mathematical nature of tensors.

What Type of Text This Is

This text fits in style between a textbook and lecture notes.
We hope that it will serve as an introduction or as a road
map, providing just enough material to satisfy basic needs
for the practical use of tensors, or to serve as a jumping
board for more substantial endeavors, in Mathematics, or
Engineering, or Physics.

How This Text Came to Be

This text originated as lecture notes for the course
Multilinear Algebra, which the three of us taught at ETH



Zurich between 2008 and 2021 for the Bachelor’s degree
program in Material Sciences. Having started out as a
seminar, this course was shaped by Özlem Imamoğlu
(whose career started out with a Bachelor in Electrical
Engineering) in 2008 to consist of one two-hour lecture a
week for 14 weeks, complemented by a one-hour weekly
exercise class. The target students previously had had only
a one-semester course of Linear Algebra, which had not
emphasized change of coordinates’ formulas. This led to a
first chapter, where we give a review of Linear Algebra,
with an eye toward tensors. Over the years, the three of us,
sharing our materials and benefiting from the input from
students and assistants, developed the contents until we
arrived at the present version.

Whom This Text Is Meant For

As in the original course, the target audience remains a
Science or Engineering college student with a typical one-
semester course in Linear Algebra. The goal remains to
provide foundations for a solid handling of the
mathematical side of tensors.

Background Expected for This Text

The main prerequisite for the first four chapters is a
standard one-semester first-year course in Linear Algebra,
for example at the level of the books by Axler [2], Bretscher
[3], or Strang [13]. That should include knowledge of
eigenvalues and eigenvectors. We use the Spectral
Theorem (Theorem 4.​9), but do not expect it to have been
covered earlier.

Some familiarity with Physics is required for the last
chapter handling physical tensors. At ETH Zurich, where
this text originated, the first year of a Bachelor’s program
covers the foundations of Physics and Mathematical
Analysis. Since we only address Mechanics, probably a
shorter, one-semester Physics course should do. However,



those are only examples and the mathematical grasp of
tensors can be achieved already with the first four
chapters.

Regarding the Contents

In Chap. 1, we give a brief general introduction to this
text.
In Chap. 2, we collect and recall definitions and key facts
from Linear Algebra that play a significant role in
Multilinear Algebra.
In Chap. 3, we delve into linear, bilinear, and multilinear
maps, introducing the notion of dual space.
In Chap. 4, we address inner products and how the
presence of an inner product provides identifications
concealing the distinction between covariance and
contravariance.
In Chap. 5, we discuss general tensors, their different
types, possible symmetries, and tensor product.
In Chap. 6, we bridge toward concrete applications from
Mechanics.

Throughout, we pay particular attention to covariance vs.
contravariance issues.

The exposition is complemented with exercises, to help
gain comfort with the material. We provide solutions at the
end, though of course these should be avoided as much as
possible for better learning results.
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1. Introduction

Ana Cannas da Silva1   , Özlem Imamoğlu1 and Alessandra Iozzi1
Department of Mathematics, ETH Zurich, Zurich, Switzerland

 
Just like the main protagonists in Linear Algebra are vectors and
linear maps, the main protagonists in Multilinear Algebra are tensors

and multilinear maps. Tensors describe linear relations among objects
in space. As in the case of vectors, the quantitative description of
tensors, i.e., their description in terms of numbers, changes when we
change the frame of reference, which is mostly just the basis as in
Linear Algebra. Generalizing the case of vectors, tensors are
represented—once a basis is chosen—by multidimensional arrays of

numbers (Figs. 1.1, 1.2, and 1.3).

Fig. 1.1 Representation of a tensor of order 1, Tj

Fig. 1.2 Representation of a tensor of order 2, Tij

https://doi.org/10.1007/978-3-031-94136-8_1


Fig. 1.3 Representation of a tensor of order 3, Tijk

In the notation, the indices can be upper or lower. For tensors of
order at least 2, some indices can be upper and some lower. The
numbers in the arrays are called components of the tensor and give
the representation of the tensor with respect to a given basis.

Two natural questions arise:
– Why do we need tensors?
– What are the important features of tensors?
Why Do We Need Tensors?

Scalars are not enough to describe directions, for which we need to
resort to vectors. At the same time, vectors might not be enough, in
that they lack the ability to “modify” vectors.

Example 1.1 We denote by B the magnetic flux density measured in
V ⋅ s / m2 and by H the magnetizing intensity measured in A / m (the
physical units here are: Volt V, second s, meter m, Ampere A, Henry
H). They are related by the formula

where μ is the scalar permeability of the medium in H / m. In free
space, μ = μ0 = 4π × 10−7 H / m is a scalar, so that the flux density
and the magnetization are vectors that differ only by their magnitude.

Some materials, however, have properties that make these terms
differ both in magnitude and direction. In such materials the scalar
permeability is replaced by the tensor permeabilityμ and

Being vectors, B and H are tensors of order 1, and μ is a tensor of
order 2. We will see that they are of different type, and in fact the

order ofH“cancels out” with part of the order ofμto give a tensor of

order 1. □

B = μH ,

B = μ ⋅ H .



What Are the Important Features of Tensors?

Physical laws do not change with different coordinate systems, hence
tensors describing them must satisfy some invariance properties.
While tensors remain intrinsically invariant with respect to changes of
bases, their components will vary according to two fundamental
modes: covariance and contravariance, depending on whether the
components change in a way parallel to the change of basis or in an
opposite way.1 We will introduce covariance and contravariance in
Chap. 3 and see specific physical instances in Chap. 6.

Here are a couple of examples regarding a familiar tensor from
Linear Algebra, namely a vector. We review the effect of a change of
basis, showing that a vector is a contravariant tensor of first order.
We use freely notions and properties that will be recalled in Chap. 2.

Example 1.2 Let B = {b1, b2, b3} and B̃ = {b̃1, b̃2, b̃3} be two basis of
a vector space V . A vector v ∈ V  can be written as

or

where v1, v2, v3 (resp. ṽ1, ṽ2, ṽ3) are the coordinates of v with respect
to the basis B (resp. B̃). The reason for distinguishing lower and
upper indices will become apparent already in Chap. 2.

We use the following notation:

(1.1)

and we are interested in finding the relation between the coordinates
of v in the two bases.

The vectors b̃j, j = 1, 2, 3, in the basis B̃ can be written as a linear
combination of vectors in B as follows:

for some Li
j ∈ R. We consider the matrix of the change of basis from

B to B̃,

v = v1b1 + v2b2 + v3b3 ,

v = ṽ1b̃1 + ṽ2b̃2 + ṽ3b̃3 ,

[v]B = and [v]
B̃

= ,

v1

v2

v3

ṽ1

ṽ2

ṽ3

b̃j = L1
j b1 + L2

j b2 + L3
j b3 ,



whose jth-column consists of the coordinates of the vectors b̃j with
respect to the basis B. The equalities

can simply be written as
(1.2)

One can check this symbolic equation using the rules of matrix
multiplication. Analogously, writing basis vectors in a row and vector
coordinates in a column, we can write

(1.3)

as well as

(1.4)

where we used Eq. (1.2) in the last equality. Comparing the
expression of v in Eqs. (1.3) and (1.4), we conclude that

or, equivalently,

We say that the components of a vector v are contravariant because
they change by L−1 when the basis changes by L; see Sect. 2.​3.​2. A
vector v is hence a contravariant 1-tensor or tensor of order(1, 0). □

L := L
BB̃

=

L1
1 L1

2 L1
3

L2
1 L2

2 L2
3

L3
1 L3

2 L3
3

b̃1 = L1
1b1 + L2

1b2 + L3
1b3

b̃2 = L1
2b1 + L2

2b2 + L3
2b3

b̃3 = L1
3b1 + L2

3b2 + L3
3b3

( ) = ( )L .b̃1 b̃2 b̃3 b1 b2 b3

v = v1b1 + v2b2 + v3b3 = ( )b1 b2 b3

v1

v2

v3

v = ṽ1b̃1 + ṽ2b̃2 + ṽ3b̃3 = ( ) = ( )L ,b̃1 b̃2 b̃3

ṽ1

ṽ2

ṽ3

b1 b2 b3

ṽ1

ṽ2

ṽ3

L =

ṽ1

ṽ2

ṽ3

v1

v2

v3

= L−1 .

ṽ1

ṽ2

ṽ3

v1

v2

v3



Example 1.3 (A Numerical Example) Let

(1.5)

be the standard basis or R3 and let

be another basis of R3. The vector2v = has coordinates

Since we have that

the matrix of the change of coordinates from E  to B̃ is

Then we can check that

or, equivalently, that

E = {e1, e2, e3} = , ,
1
0

0

0
1

0

0
0

1

B̃ = {b̃1, b̃2, b̃3} = , ,

1

2
3

4

5
6

7

8
0

1
1

1

[v]
E

= and [v]
B̃

= .
1
1

1

− 1
3

1
3

0

,

b̃1 = 1 ⋅ e1 + 2 ⋅ e2 + 3 ⋅ e3

b̃2 = 4 ⋅ e1 + 5 ⋅ e2 + 6 ⋅ e3

b̃3 = 7 ⋅ e1 + 8 ⋅ e2 + 0 ⋅ e3

L = .

1 4 7

2 5 8
3 6 0

= L−1

− 1
3

1
3

0

1

1
1

L = .

− 1
3

1
3

0

1

1

1



1

2

□

Footnotes
The Latin prefix co means “joint” or “together”, whereas the Latin prefix contra means

“contrary” or “against”.

 
For a general basis B, the notation [ ⋅ ]

B
 indicates the “operation” of taking the vector v

and looking at its coordinates in the basis B. However, in order to “write down explicitly” a
vector (that is three real numbers that we write in column), one needs to give coordinates and
the coordinates are usually given with respect to the standard basis. In this case, there is the
slightly confusing fact that

 
v = has [v]

E
= .

v1

⋮
vn

v1

⋮
vn
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2. Review of Linear Algebra

Ana Cannas da Silva1   , Özlem Imamoğlu1 and Alessandra Iozzi1
Department of Mathematics, ETH Zurich, Zurich, Switzerland

 
This chapter collects and recalls definitions and key facts learned in Linear
Algebra, from vector spaces to linear transformations, which will play a
significant role in Multilinear Algebra. Along the way, we fix some
notations and standards for this text. We introduce the Einstein
convention, which we will subsequently mostly follow.

2.1 Vector Spaces

A vector space (or linear space) is a set of objects where addition and
scaling are defined in a way that satisfies natural requirements for such
operations, namely the properties listed in the definition below.

2.1.1 Vectors and Scalars

In this text, we will only consider real vector spaces, that is vector spaces
over R, where the scaling is by real numbers.

Definition 2.1 A vector spaceV  (over R) is a set V  equipped with two
operations:

vector addition:V × V → V , (v,w) ↦ v + w, and
multiplication by a scalar:R × V → V , (α, v) ↦ αv ,

satisfying the following properties:
(1) (associativity) (u + v) + w = u + (v + w) for every u, v,w ∈ V ;  
(2) (commutativity) u + v = v + u for every u, v ∈ V ;  
(3) (existence of the zero vector) There exists 0 ∈ V  such that v + 0 = v

for every v ∈ V ;  
(4) (existence of additive inverse) For every v ∈ V , there exists wv ∈ V

such that v + wv = 0. The vector wv is denoted by −v.  

https://doi.org/10.1007/978-3-031-94136-8_2


(5) α(βv) = (αβ)v for every α,β ∈ R and every v ∈ R;  
(6) 1v = v for every v ∈ V ;  
(7) α(u + v) = αu + αv for all α ∈ R and u, v ∈ V ;  
(8) (α + β)v = αv + βv for all α,β ∈ R and v ∈ V .  
An element of the vector space is called a vector and, mostly in the context
of vector spaces, a real number is called a scalar.

Example 2.2 (Prototypical Example of a Vector Space) The Euclidean
spaceRn, n = 1, 2, 3, …, is a vector space with componentwise addition
and multiplication by scalars. Vectors in Rn are denoted by

with x1, … ,xn ∈ R. Addition component-by-component translates
geometrically to the parallelogram law for vector addition, well-known in
R2 and R3. □

Examples 2.3 (Other Examples of Vector Spaces) The operations of
vector addition and scalar multiplication are inferred from the context.
(1) The set of real polynomials of degree ≤ n is a vector space, denoted

by

with the usual (degreewise) sum of polynomials and scalar
multiplication.

 

(2) The set of real matrices of size m × n,

with componentwise addition and scalar multiplication.

 

(3) The space {f : W → R} of all real-valued functions on a vector space
W. Addition of functions f : W → R and g : W → R, and their
multiplication by a scalar α ∈ R are defined pointwise:
(f + g)(w) := f(w) + g(w) and (αf)(w) := α(f(w)) for each w ∈ W .

 

v = ,
⎡⎢⎣x1

⋮

xn

⎤⎥⎦V = Pn(R) := {anxn + an−1x
n−1 + … + a1x + a0 : aj ∈ R}

V = Mm×n(R) := : aij ∈ R

⎧⎪⎨⎪⎩⎡⎢⎣a11 … a1n

⋮ ⋮

am1 … amn

⎤⎥⎦ ⎫⎪⎬⎪⎭



(4) The space of solutions of a homogeneous linear (ordinary or partial)
differential equation.  

(5) The cartesian product

of two real vector spaces V  and W, endowed with factorwise
addition and scalar multiplication.

 

□

Examples 2.4 (Non-examples of Vector Spaces) The operations below
are the standard ones of vectors in the plane R2.
(1) The upper half-plane V := {(x, y) ∣ y ≥ 0} is not a vector space. The

sum of two vectors in V  is still a vector in V , however, if v ∈ V  has a
positive second component and α is a negative real number, then
αv ∉ V .

 

(2) The union of the two odd quadrants, V := {(x, y) ∣ xy ≥ 0} is not a
vector space. The product of any vector in V  with a scalar α ∈ R is
still a vector in V , however, the sum of two vectors in V  is not always
a vector in V .

 

(3) The graph of the real function f(x) = 2x + 3 is not a vector space. In
particular, it does not contain any zero vector.  

□

Exercise 2.5 Are the following vector spaces?
(1)

The set V  of all vectors in R3 perpendicular to the vector .
 

(2) The set of invertible 2 × 2 matrices, that is  

(3) The set of polynomials of degree exactly n, that is  
(4) The set V  of 2 × 4 matrices with last column zero, that is  

V × W := {(v,w) : v ∈ V ,w ∈ W}

⎡⎢⎣1

2

3

⎤⎥⎦V := {[ ] : ad − bc ≠ 0} .
a b

c d

V := {a0x
n + a1x

n−1 + ⋯ + an−1x + an : aj ∈ R, an ≠ 0} .

V := {[ ] : a, b, c, d, e, f ∈ R} .
a b c 0
d e f 0



(5) The set of solutions f : R → R of the equation f′ = 5, that is  

Definition 2.6 A function T : V → W  between real vector spaces V  and
W is a linear transformation if it satisfies the property

for all α,β ∈ R and all v,w ∈ V .

Examples 2.7 (Linear Transformations)

(1) An m × n matrix,

defines a linear transformation T : Rn → R
m by multiplication,

T (v) := Av.

 

(2) Differentiation from the set Pn(R) of real polynomials of degree ≤ n
to the set Pn−1(R) of real polynomials of degree ≤ n−1 is a linear
transformation, taking a polynomial p(x) to its derivative p′(x).

 

(3) Transposition from the set Mm×n(R) of real m × n matrices to the set
Mn×m(R) of real n × m matrices is a linear transformation,  

□

Exercise 2.8 Are the following linear transformations?
(1) The function T : Pn(R) → R evaluating a polynomial p(x) of degree at

most n at the point x = 1, i.e., T (p(x)) := p(1).  
(2) The function T : R → R defined by the formula T (x) := 2x + 3.  
(3) The function T : Mn×n(R) → Mn×n(R) taking a square n × n matrix A

to its square power, T (A) := A2.  

Exercise 2.9 Show that the set of all linear transformations T : R2 → R3

forms a vector space.

V := {f : R → R : f(x) = 5x + C, C ∈ R} .

T (αv + βw) = αT (v) + βT (w) ,

A = ,
⎡⎢⎣a11 … a1n

⋮ ⋮

am1 … amn

⎤⎥⎦



2.1.2 Subspaces

Naturally, once we have a vector space V , we single out its subsets that
are vector spaces themselves.

Definition 2.10 A subset W of a vector space V  that is itself a vector
space is a subspace.

By reviewing the properties in the definition of vector space, we see that a
subset W ⊆ V  is a subspace exactly when the following conditions are
verified:
(1) The 0 element is in W;  
(2) W is closed under addition, that is v + w ∈ W  for every v,w ∈ W ;  
(3) W is closed under multiplication by scalars, that is αv ∈ W  for every

α ∈ R and every v ∈ W .  
Condition (1) actually follows from (2) and (3) under the assumption

that W ≠ ∅ (which is always satisfied for a vector space). Yet it is often an
easy way to check that a subset is not a subspace.

Recall that a linear combination of vectors v1, … , vn ∈ V  is a vector
of the form α1v1 + … + αnvn for α1, … ,αn ∈ R. With this notion, the
above three conditions for a subset W ⊆ V  to be a subspace are equivalent
to the following ones:
(1)’ W is non-empty;  
(2)’ W is closed under linear combinations, that is αv + βw ∈ W  for all

α,β ∈ R and all v,w ∈ W .  
Examples 2.11 (Subspaces)

(1) The set W of 2 × 4 matrices with last column zero is a subspace of the
vector space V  of all 2 × 4 matrices.  

(2) The line W = {(x, 2x) ∣ x ∈ R} is a subspace of the vector space
V = R

2.  
(3) The space of all differentiable real-valued functions of one real

variable is a subspace of the vector space of all real-valued functions
of one real variable.

 

□



Exercise 2.12 Are the following subspaces?
(1) The subset of all n × n real symmetric matrices in the vector space

V = Mn×n(R). Recall that a matrix A is symmetric if tA = A.  
(2) The subset of all real-valued functions of one real variable with value

0 at x = 1 in the vector space of all real-valued functions of one real
variable.

 
(3) The subset of all real-valued functions of one real variable with value

1 at x = 0 in the vector space of all real-valued functions of one real
variable.

 

Definition 2.13 If T : V → W  is a linear transformation between real
vector spaces V  and W, then:

the kernel (or null space) of T is the set kerT := {v ∈ V : T (v) = 0};
the image (or range) of T is the set im T := {T (v) : v ∈ V }.

Exercise 2.14 Show that, for a linear transformation T : V → W , the
kernel kerT  is a subspace of V  and the image im T  is a subspace of W.

2.2 Bases

The key to study and to compute in vector spaces is the concept of a basis,
which in turn relies on the fundamental notions of linear

independence/dependence and of span.

2.2.1 Definition of Basis

Definition 2.15 The vectors b1, … , bn ∈ V  are linearly independent if
α1b1 + … + αnbn = 0 implies that α1 = … = αn = 0. In other words, if the
only linear combination of these vectors that yields the zero vector is the
trivial one. We then also say that the vector set {b1, … , bn} is linearly

independent.

Example 2.16 The vectors

are linearly independent in R3. Indeed, we have

, ,
⎡⎢⎣1

0

0

⎤⎥⎦ ⎡⎢⎣0

1

0

⎤⎥⎦ ⎡⎢⎣0

0

1

⎤⎥⎦



□

Example 2.17 The vectors

are linearly independent in R3, since we have

The dots are filled in using Gauss-Jordan elimination, as in Example 2.14.
□

Example 2.18 The vectors

are linearly dependent in R3, i.e., not linearly independent. In fact,

so

and b1, b2, b3 are not linearly independent. For instance, we say that
b1 = 2b2 − b3 is a non-trivial linear relation between the vectors b1, b2 and
b3. □

Definition 2.19 The vectors b1, … , bn ∈ V spanV , if every vector v ∈ V
can be written as a linear combination v = α1b1 + … + αnbn, for some
α1, … ,αn ∈ R. We then say that the vector set {b1, … , bn}spansV  and
write V = span {b1, … , bn}.

α1 + α2 + α3 = 0 ⇔ = ⇔ α1 = α2 = α3 = 0 .
⎡⎢⎣1

0

0

⎤⎥⎦ ⎡⎢⎣0
1

0

⎤⎥⎦ ⎡⎢⎣0
0

1

⎤⎥⎦ ⎡⎢⎣α1

α2

α3

⎤⎥⎦ ⎡⎢⎣0
0

0

⎤⎥⎦b1 = , b2 = , b3 =
⎡⎢⎣1

2

3

⎤⎥⎦ ⎡⎢⎣4

5

6

⎤⎥⎦ ⎡⎢⎣7

8

0

⎤⎥⎦α1b1 + α2b2 + α3b3 = 0 ⇔

⇔ … ⇔ α1 = α2 = α3 = 0 .

⎧⎪⎨⎪⎩ α1 + 4α2 + 7α3 = 0
2α1 + 5α2 + 8α3 = 0

3α1 + 6α2 = 0

b1 = , b2 = , b3 =
⎡⎢⎣1

2
3

⎤⎥⎦ ⎡⎢⎣4

5
6

⎤⎥⎦ ⎡⎢⎣7

8
9

⎤⎥⎦α1b1 + α2b2 + α3b3 = 0 ⇔

⇔ … ⇔ {

⎧⎪⎨⎪⎩ α1 + 4α2 + 7α3 = 0

2α1 + 5α2 + 8α3 = 0

3α1 + 6α2 + 9α3 = 0
α1 = α3

α2 = −2α3 ,

b1−2b2 + b3 = 0



Examples 2.20

(1)
The vectors , ,  span R3.

 

(2)
The vectors , , ,  also span R3.

 

(3)
The vectors ,  span the xy-coordinate plane (i.e., the

subspace given by the equation z = 0) in R3.

 

□

Exercise 2.21 Show that the set of all linear combinations of given
vectors b1, … , bn ∈ V  is a subspace of V . We denote this subspace by
span {b1, … , bn}.

Definition 2.22 The vectors b1, … , bn ∈ V  form a basis of V , if:
(1) they are linearly independent and 
(2) they spanV .  
Remark 2.23 We then denote a basis as an set B := {b1, … , bn}.
However it is essential to know that, despite the set notation, the order of
the vectors in a basis matters for the computations.

Example 2.24 The vectors

form a basis of R3. This is called the standard basis of R3 and denoted
E := {e1, e2, e3}. For Rn, the standard basisE := {e1, … , en} is defined
similarly. □

Example 2.25 The vectors in Example 2.7 span R3, while the vectors in
Example 2.8 do not span R3. To see this, we recall the following facts
about bases. □

2.2.2 Facts About Bases

⎡⎢⎣1
0

0

⎤⎥⎦ ⎡⎢⎣0
1

0

⎤⎥⎦ ⎡⎢⎣0
0

1

⎤⎥⎦⎡⎢⎣1

0

0

⎤⎥⎦ ⎡⎢⎣0

1

0

⎤⎥⎦ ⎡⎢⎣0

0

1

⎤⎥⎦ ⎡⎢⎣1

1

1

⎤⎥⎦⎡⎢⎣1

0
0

⎤⎥⎦ ⎡⎢⎣0

1
0

⎤⎥⎦e1 := , e2 := , e3 :=
⎡⎢⎣1

0

0

⎤⎥⎦ ⎡⎢⎣0
1

0

⎤⎥⎦ ⎡⎢⎣0
0

1

⎤⎥⎦



Let V  be a vector space with a finite basis. Then we have:
(1) All bases of V  have the same number of elements. This number is

called the dimension of V  and denoted dim V .  
(2) If B = {b1, … , bn} is a basis of V , there is a unique way of writing

any v ∈ V  as a linear combination

of elements in B. The numbers v1, … , vn are the coordinates of v
with respect to the basis B and we denote by

the coordinate vector of v with respect to B.

 

(3) If we know that dim V = n, then:
(a) More than n vectors in V  must be linearly dependent;  
(b) Fewer than n vectors in V  cannot span V ;  
(c) Any n linearly independent vectors span V ;  
(d) Any n vectors that span V  must be linearly independent;  
(e) If k vectors span V , then k ≥ n and some subset of those k

vectors must be a basis of V ;  
(f) If a set of m vectors is linearly independent, then m ≤ n and we

can always complete that set to form a basis of V .  

 

From Chap. 3 onwards, our vector spaces are all finite-dimensional,
hence here we concentrate on finite spanning sets and finite bases. Infinite
bases and, correspondingly, infinite-dimensional vector spaces would bring
us to the realm of Functional Analysis.

Example 2.26 The vectors b1, b2, b3 in Example 2.7 form a basis of R3

since they are linearly independent and they are exactly as many as the
dimension of R3. □

v = v1b1 + … vnbn

[v]B =
⎛⎜⎝v1

⋮

vn

⎞⎟⎠



Example 2.27 (Gauss–Jordan Elimination) We are going to compute

here the coordinates of v = with respect to the basis B := {b1, b2, b3}

from Example 2.7. The seeked coordinates [v]
B

= must satisfy the

equation

so to find them we have to solve the following system of linear equations:

For that purpose, we may equivalently reduce the following augmented
matrix

to echelon form, using the Gauss–Jordan elimination method. We are going
to perform both calculations in parallel, which will also point out that they
are indeed seemingly different incarnations of the same method.

By multiplying the first equation/row by 2 (resp. 3) and subtracting it
from the second (resp. third) equation/row we obtain

By multiplying the second equation/row by −
1
3

 and by adding to the

first (resp. third) equation/row the second equation/row multiplied by 4
3

(resp. −2) we obtain

⎡⎢⎣1
1

1

⎤⎥⎦ ⎛⎜⎝v1

⋮
vn

⎞⎟⎠v1 + v2 + v3 = ,
⎡⎢⎣1

2
3

⎤⎥⎦ ⎡⎢⎣4

5
6

⎤⎥⎦ ⎡⎢⎣7

8
0

⎤⎥⎦ ⎡⎢⎣1

1
1

⎤⎥⎦



The last equation/row shows that v3 = 0, hence by backward
substitution we obtain the solution

□

Example 2.28 When V = R
n and B = E  is the standard basis, the

coordinate vector v ∈ R
n coincides with the vector itself! In this very

special case, we have [v]
E

= v. □

Exercise 2.29 Let

(1) Show that B is a basis of R3.  
(2) Determine the coordinate vector, [v]B, of

with respect to B.

 

(3) Determine the vector w ∈ R3 that has coordinate vector 

Exercise 2.30 Let V  be the vector space consisting of all 2 × 2 matrices
with zero trace, namely

B = , , .
⎧⎪⎨⎪⎩⎡⎢⎣1

0

0

⎤⎥⎦ ⎡⎢⎣1
1

0

⎤⎥⎦ ⎡⎢⎣1
1

1

⎤⎥⎦⎫⎪⎬⎪⎭v =
⎡⎢⎣0

1

π

⎤⎥⎦[w]B = .
⎛⎜⎝1

2
3

⎞⎟⎠V := {[ ] : a, b, c, d ∈ R and a + d = 0} .
a b

c d



(1) Show that

is a basis of V .

 

(2) Show that

is another basis of V .

 

(3) Compute the coordinates of

with respect to B and with respect to B̃.

 

2.3 The Einstein Convention

2.3.1 A Convenient Summation Convention

We start by setting a notation that will turn out to be useful later on. Recall
that if B = {b1, b2, b3} is a basis of a vector space V , any vector v ∈ V  can
be written as

(2.1)
for appropriate v1, v2, v3 ∈ R.

Notation From now on, expressions like the one in Eq. 2.1 will be written
as

(2.2)

That is, from now on when an index appears twice – once as a subscript

and once as a superscript – in a term, we know that it means that there is a
summation over all possible values of that index. The summation symbol
will not be displayed.

On the other hand, indices that are not repeated in expressions like
aijx

kyj are free indices not subject to summation.

v = [ ]
2 1
7 −2

v = v1b1 + v2b2 + v3b3



Examples 2.31 For indices ranging over {1, 2, 3}, i.e., n = 3:
(1) The expression aijxiyk means

and could be called Rk
j  (meaning that Rk

j  and aijxiyk both depend
on the indices j and k).

 

(2) Likewise,  
(3) Further  

(4) An expression like

makes sense. Here the indices i, j, k are free (i.e., free to range in
{1, 2, … ,n}) and ℓ is a summation index.

 

(5) On the other hand an expression like

does not make sense because the expression on the left has only
two free indices, i and k, while j and ℓ are summation indices and
neither of them can appear on the right hand side.

 

Notation

Since  denotes a sum, we choose to denote the indices of the generic
term of a sum with capital letters. For example, we write vIbI  and the
above expressions could have been written as
(1)  
(2)  



(3)  

□

Exercise 2.32 Let

be matrices, where the upper indices are the row indices and the lower
indices are the column indices. Moreover, let

be column vectors. How are the coordinates of the following expressions
written using the Einstein convention?
(1) AB  
(2) By  
(3) yTBT  
(4) xyTBT 
2.3.2 Change of Basis

Let B and B̃ be two bases of a vector space V  and let

(2.3)

be the matrix of the change of basis from the “old” basis B to a “new”
basis B̃. Recall that the entries of the j-th column of L are the coordinates
of the new basis vector b̃j with respect to the old basis B.

Mnemonic: Upper indices go up to down, i.e., they are row indices.
  Lower indices go left to right, i.e., they are column indices.

With the Einstein convention we can write

A = (Ai
j) ∈ R

ℓ×m and B = (Bi
j) ∈ R

m×n

x = (xi) ∈ Rℓ and y = (yi) ∈ Rn

L := L
BB̃

=
⎡⎢⎣L1

1 … L1
n

⋮ ⋮

Ln
1 … Ln

n

⎤⎥⎦



(2.4)

or, equivalently,

where we use some convenient formal notation: The multiplication is to be
performed with the usual rules for vectors and matrices, though, in this
case, the entries of the row vectors ( ) and ( ) are not
real numbers but vectors themselves.

Exercise 2.33 Let A , B and C  be three bases of a vector space V , let
LAB be the matrix of the change of basis from A  to B, let LBC  be the
matrix of the change of basis from B to C , and let LAC  be the matrix of
the change of basis from A  to C . Show that then we have

If Λ = L−1 denotes the matrix of the change of basis from B̃ to B, then,
using the same formal notation as above, we have

Equivalently, this can be written in compact form using the Einstein
notation as

Remark 2.34 Mathematically, the set of all matrices of change of basis
for a vector space V  equipped with matrix multiplication forms a group,
called the general linear group of V . Key here is the relation
LAC = LABLBC  from Exercise 2.33 and the relation LBA = L−1

AB
.

The corresponding relations for the vector coordinates are

and these can be written with the Einstein convention respectively as

(2.5)

or, in matrix notation,

b̃1 … b̃n b1 … bn

LAC = LABLBC .



The coordinate vectors change in a way opposite to the basis change.
Hence, we say that the coordinate vectors are contravariant, because
they change by L−1 when the basis changes by L.

Example 2.35 We consider the following two bases of R2

(2.6)

and we look for the matrix of the change of basis. Namely, we look for a
matrix L such that

that is

There are two alternative ways of finding L:
(1) With matrix inversion: Recall that

(2.7)

where D =det [ ] is the determinant (see also Sect. 2.4.2).

Thus

 

(2) With Gauss-Jordan elimination:  

□

2.3.3 The Kronecker Delta Symbol

[v]
B

= L
BB̃

[v]
B̃

and [v]
B̃

= (L
BB̃

)−1[v]
B

= L
BB̃

[v]
B

.

( ) = ( )L ,b̃1 b̃2 b1 b2

[ ] = [ ]L .
3 −1
1 −1

1 2
0 1

[ ]
−1

= 1
D
[ ] ,

a b

c d

d −b

−c a
a b

c d

L = [ ]
−1

[ ] = [ ][ ] = [ ] .
1 2

0 1

3 −1

1 −1

1 −2

0 1

3 −1

1 −1

1 1

1 −1



Notation The Kronecker delta symbolδij is defined as

(2.8)

Similarly, we define δij and δij.

Examples 2.36 If L is a matrix, the (i, j)-entry of L is the coefficient in
the i-th row and j-th column, and is denoted by Li

j.

(1) The n × nidentity matrix

has (i, j)-entry equal to δij.

 

(2) Let L and M be two square matrices. The (i, j)-th entry of the product

equals the dot product
1 of the i-th row of M and j-th column of L,

or, using the Einstein convention,

Notice that, since in general ML ≠ LM, it follows that

However, in the special case where M = Λ = L−1, we have
ΛL = LΛ = I and here we can write

 

□

δij := {
1 if i = j

0 if i ≠ j .

I =
⎡⎢⎣1 … 0

⋮ ⋱ ⋮

0 … 1

⎤⎥⎦( ) ⋅ = M i
1L

1
j + ⋯ + M i

nL
n
j ,M i

1 … M i
n

⎛⎜⎝L1
j

⋮
Ln
j

⎞⎟⎠M i
kL

k
j .

M i
kL

k
j ≠ Li

kM
k
j = M k

j L
i
k .

Λi
kL

k
j = δij = Li

kΛk
j .



Remark 2.37 Using the Kronecker delta symbol, we can check that the
notations in Eqs. 2.5 are all consistent. In fact, we should have

(2.9)
and indeed, by Eqs. 2.5, we have

where the equality Λi
jL

k
i = δkj  amounts to Λ = L−1.

Two words of warning:

The two expressions vjbj and vkbk are identical, as the indices j and k are
dummy indices, that is, can be replaced by other symbols throughout,
without changing the meaning of the expression (as long as the symbols
do not collide with other symbols already used in the expression).
When multiplying two different expressions in Einstein notation, we
should be careful to distinguish by different letters different summation
indices. For example, if ṽi = Λi

jv
j and b̃i = L

j
ibj, in order to perform the

multiplication ṽib̃i we have to make sure to replace one of the dummy
indices in the two expressions. So, for example, we can write b̃i = Lk

i bk,
so that ṽib̃i = Λi

jv
jLk

i bk.

Exercise 2.38 This is a continuation of Exercise 2.32. Use the Kronecker
delta symbol to write the coordinates of ATx according to the Einstein
convention.

2.4 Linear Transformations

2.4.1 Linear Transformations as (1, 1)-Tensors

Recall that a linear transformation from V  to itself, T : V → V , is a
function (or map or transformation) that satisfies the property

for all α,β ∈ R and all v,w ∈ V . Once we choose a basis B = {b1, … bn} of
V , the transformation T is represented by a matrix A, called the matrix of

the linear transformation with respect to that basis. The columns of A
are the coordinate vectors of T (b1), … ,T (bn) with respect to B. Then that
matrix A gives the effect of T on coordinate vectors as follows: If T (v) is
the value of the transformation T on the vector v, with respect to a basis B
we have that

(2.10)
If B̃ is another basis, we have also

(2.11)

vibi = v = ṽib̃i ,

ṽib̃i = (Λi
jv

j)(Lk
i bk) = (Λi

jL
k
i)v

jbk = δkjv
jbk = vjbj ,

T (αv + βw) = αT (v) + βT (w) ,

[v]B ↦ [T (v)]B = A[v]B .

[v]
B̃

↦ [T (v)]
B̃

= Ã[v]
B̃

,



where now Ã is the matrix of the transformation T with respect to the basis
B̃.

We want to find now the relation between A and Ã. Let L := L
BB̃

 be
the matrix of the change of basis from B to B̃. Then, for any v ∈ V ,

(2.12)
In particular the above equation holds for the vector T (v), that is

(2.13)
Then we have

for every vectorv ∈ V . If follows that ÃL−1 = L−1A or, equivalently,
(2.14)

which, in Einstein notation, reads

We say that the linear transformationTis atensor of type(1, 1).2

Example 2.39 Let V = R2 and let B and B̃ be the bases in Example
2.18. The matrices corresponding to the change of coordinates are

where in the last equality we used the formula for the inverse of a matrix
in (2.7).

Let T : R2 → R2 be the linear transformation that in the basis B takes
the form

Then according to Eq. 2.14 the matrix Ã of the linear transformation T
with respect to the basis B̃ is

□

[v]
B̃

= L−1[v]
B

.

[T (v)]
B̃

= L−1[T (v)]B .

ÃL−1[v]B
(2.12)

= Ã[v]
B̃

(2.11)
= [T (v)]

B̃

(2.13)
= L−1[T (v)]B

(2.10)
= L−1A[v]B

Ã = L−1AL ,

Ãi
j = Λi

kA
k
mL

m
j .

L := L
BB̃

= [ ] and L−1 = 1
−2 [ ] = [ ] ,

1 1
1 −1

−1 −1
−1 1

1
2

1
2

1
2 − 1

2

A = [ ] .
1 3
2 4

Ã = L−1AL = [ ] [ ] [ ] = [ ] .
1
2

1
2

1
2 − 1

2

1 3
2 4

1 1
1 −1

5 −2
−1 0



Example 2.40 We now look for the standard matrix of a linear
transformation T, that is, the matrix M that represents T with respect to
the standard basis of R2, which we denote by

We want to apply again Eq. 2.14 and, hence, we first need to find the
matrix S := LEB of the change of basis from E  to B. Recall that the
columns of S are the coordinates of bj with respect to the basis E , that is

According to Eq. 2.14, we have

from which, using again Eq. 2.7, we obtain

□

Example 2.41 Let V := P2(R) be the vector space of polynomials of
degree ≤ 2, and let T : P2(R) → P2(R) be the linear transformation given
by differentiating a polynomial and then multiplying the derivative by x,

so that T (a + bx + cx2) = x(b + 2cx) = bx + 2cx2. Let

be two bases of P2(R). Since

and

then

S = [ ] .
1 2
0 1

A = S−1MS ,

M = SAS−1 = [ ] [ ] [ ] = [ ] [ ] = [ ] .
1 2

0 1

1 3

2 4

1 −2

0 1

1 2

0 1

1 1

2 0

5 1

2 0

T (p(x)) := xp′(x) ,

B := {1,x,x2} and B̃ := {x,x−1,x2−1}

T (1) = 0 = 0 ⋅ 1 + 0 ⋅ x + 0 ⋅ x2

T (x) = x = 0 ⋅ 1 + 1 ⋅ x + 0 ⋅ x2

T (x2) = 2x2 = 0 ⋅ 1 + 0 ⋅ x + 2 ⋅ x2

T (x) = x = 1 ⋅ x + 0 ⋅ (x−1) + 0 ⋅ (x2−1)

T (x−1) = x = 1 ⋅ x + 0 ⋅ (x−1) + 0 ⋅ (x2−1)

T (x2−1) = 2x2 = 2 ⋅ x−2 ⋅ (x−1) + 2 ⋅ (x2−1) ,



One can check that indeed AL = LÃ or, equivalently Ã = L−1AL, where

is the matrix of the change of basis. □

Geometric features often point out a basis particularly well-suited to tackle
a given problem. That observation, combined with the transformation law
in Eq. 2.14, yields a good strategy for finding the matrix of a linear
transformation with respect to a certain basis, as the following example
illustrates. This viewpoint will be systematized in Sect. 2.4.3.

Example 2.42 Let T : R3 → R
3 be the orthogonal projection onto the

plane P of equation

This means that the transformation T is characterized by the fact that
– it does not change vectors in the plane P, and  
– it sends vectors perpendicular to P to the zero vector in P. 
We want to find the standard matrix for T. As suggested above, we
compute the matrix of T with respect to a basis B of R3 well adapted to
the problem, then use Eq. 2.14 after having found the matrix LEB of the
change of basis.

To this purpose, we choose two linearly independent vectors in the
plane P and a third vector perpendicular to P. For instance, we set

where the coordinates of b1 and b2 satisfy the equation of the plane, while
the coordinates of b3 are the coefficients of the equation describing P. Let
E  be the standard basis of R3.

Since

the matrix of T with respect to B is simply

andA =
⎡⎢⎣0 0 0

0 1 0

0 0 2

⎤⎥⎦ Ã = .
⎡⎢⎣1 1 2

0 0 −2

0 0 2

⎤⎥⎦L =
⎡⎢⎣0 −1 −1

1 1 0
0 0 1

⎤⎥⎦2x + y − z = 0 .

T (b1) = b1, T (b2) = b2 and T (b3) = 0 ,



(2.15)

where we recall that the j-th column is the coordinate vector [T (bj)]
B

 of
the vector T (bj) with respect to the basis B.

The matrix of the change of basis from E  to B is

hence, by Gauss–Jordan elimination,

Therefore

□

2.4.2 Conjugate Matrices

The above calculations can be summarized by the commutativity of the
following diagram. Here, the vertical arrows correspond to the operation
of change of basis from B to B̃ (recall that the coordinate vectors are
contravariant tensors, that is, they transform as [v]

B̃
= L−1[v]

B
) and the

horizontal arrows correspond to the operation of applying the
transformation T with respect to the two different basis:

Saying that the diagram is commutative is saying that if one starts from
the upper left hand corner, reaching the lower right hand corner following
either one of the two paths (i.e., either first to the right via A then down via
L−1, or first down via L−1 and then right via Ã) has exactly the same
effect. In other words, changing coordinates first then applying the

A = ,
⎡⎢⎣1 0 0

0 1 0

0 0 0

⎤⎥⎦L = ,
⎡⎢⎣1 0 2

0 1 1
2 1 −1

⎤⎥⎦L−1 = .
⎡⎢⎣ 1

3 − 1
3

1
3

− 1
3

5
6

1
6

1
3

1
6 − 1

6

⎤⎥⎦M = LAL−1 = ⋯ = .
⎡⎢⎣ 1

3 − 1
3

1
3

− 1
3

5
6

1
6

1
3

1
6

5
6

⎤⎥⎦



transformation T yields exactly the same affect as applying first the
transformation T and then the change of coordinates, that is,
L−1A = ÃL−1 or, equivalently,

In this case we say that A and Ã are conjugate matrices. This means that A
and Ã represent the same transformation with respect to different bases.

Definition 2.43 We say that two matrices A and Ã are conjugate if
there exists an invertible matrix L such that Ã = L−1AL.

Example 2.44 The three matrices from Examples 2.21 and 2.22

are all conjugate. Indeed, we have

where L and S may be found in those examples and where R := SL. □

We now review some facts about conjugate matrices. Recall that the
characteristic polynomial of a square matrix A is the polynomial

Let us assume that A and Ã are conjugate matrices, that is Ã = L−1AL for
some invertible matrix L. Then

(2.16)

which means that any two conjugate matrices have the same characteristic
polynomial.

Recall that the eigenvalues of a matrix A are the roots of its
characteristic polynomial and we here usually allow complex roots. Then,
by the Fundamental Theorem of Algebra, each n × n matrix has n (real or
complex) eigenvalues counted with multiplicities as polynomial roots.
Recall also the definitions of determinant and trace of a square matrix. By
analysing the characteristic polynomial, we see that
(1) the determinant of a matrix is equal to the product of its eigenvalues

(multiplied with multiplicities), and  
(2) the trace of a matrix is equal to the sum of its eigenvalues (added

with multiplicities).  

Ã = L−1AL .

A = [ ] M = [ ] and Ã = [ ]
1 3
2 4

5 1
2 0

5 −2
−1 0

Ã = L−1AL , A = S−1MS and Ã = R−1MR ,

pA(λ) :=det (A − λI) .



From the computation in (2.16), it follows that, if the matrices A and Ã
are conjugate, then:

A and Ã have the same size;
the eigenvalues of A (as well as their multiplicities) are the same as
those of Ã;
det A =det Ã;
trA = trÃ;
A is invertible if and only if Ã is invertible.

Example 2.45 The matrices A = [ ] and A′ = [ ] are not

conjugate. In fact, A is invertible, as det A = −2 ≠ 0, while det A′ = 0, so
that A′ is not invertible. □

Example 2.46 In Example 2.24, we showed that the matrices

are conjugate. From this fact, we see most easily that det M = 0 and
trM = 2. □

2.4.3 Eigenbases

The possibility of choosing different bases is very important and often
simplifies the calculations. Example 2.24 is such an example, where we
choose an appropriate basis according to the specific problem. Other
times, a basis can be chosen according to the symmetries and, completely
at the opposite side, sometime there is just not a basis that is a preferred
one. In the context of a linear transformation T : V → V , a basis that is
particularly convenient, when it exists, is an eigenbasis for that linear
transformation.

Recall that an eigenvector of a linear transformation T : V → V  is a
vector v ≠ 0 such that T (v) is a multiple of v, say T (v) = λv and, in that
case, the scaling number λ is called an eigenvalue of T. An eigenbasis is
a basis of V  consisting of eigenvectors of a linear transformation
T : V → V .

The point of having an eigenbasis is that, with respect to this
eigenbasis, the linear transformation is representable by a diagonal matrix,
D. Hence, any other matrix representative of that linear transformation
will be actually conjugate to a diagonal matrix D. Recall that diagonal

1 3

2 4

1 2

2 4

A = and M =
⎡⎢⎣1 0 0

0 1 0
0 0 0

⎤⎥⎦ ⎡⎢⎣ 1
3 − 1

3
1
3

− 1
3

5
6

1
6

1
3

1
6

5
6

⎤⎥⎦



matrices are extremely friendly for computations, so the possibility of
producing eigenbases accounts for a main application of eigenvectors.

A linear transformation T : V → V  for which an eigenbasis exists is
then called diagonalizable.3

Given a linear transformation T : V → V , in order to find an eigenbasis
(assuming it exists) of T, we first represent T by some matrix A with
respect to some chosen basis of V , and then perform the following steps:
(1) We find the eigenvalues by determining the roots of the characteristic

polynomial of A (often allowing complex roots).  
(2) For each eigenvalue λ, we find the corresponding eigenvectors by

looking for the non-zero vectors in its eigenspace

When considering complex eigenvalues, the eigenspaces are
determined as subspaces of the complex vector spaceCn. However, in
this text, we concentrate on real cases.

 

(3) We determine whether there exists an eigenbasis.  
We will illustrate this in the following examples.

Example 2.47 Let T : R2 → R
2 be the linear transformation given by the

matrix A = [ ]with respect to the standard basis of R2.

(1) The eigenvalues are the roots of the characteristic polynomial pλ(A).
Since

hence λ = ±5 are the eigenvalues of A.

 

(2) If λ is an eigenvalue of A, the eigenspace corresponding to λ is given
by Eλ = ker(A − λI). Note that

With our choice of A and with the resulting eigenvalues, we have

 

Eλ := ker(A − λI) .

3 −4

−4 −3

pA(λ) =det (A − λI) =det [ ]

= (3 − λ)(−3 − λ)−16 = λ2−25 = (λ−5)(λ + 5) ,

3 − λ −4

−4 −3 − λ

v ∈ Eλ ⇔ Av = λv .

E5 = ker(A−5I) = ker[ ] = span[ ]

E−5 = ker(A + 5I) = ker[ ] = span[ ] .

−2 −4

−4 −8

2

−1
8 −4

−4 2

1

2



1. The following is an eigenbasis for this linear transformation:

and

so that Ã = [ ] (Fig. 2.1).

Fig. 2.1 Eigenbasis b̃1, b̃2 for the transformation T in Example 2.28

Notice that the eigenspace E5 consists of vectors on the line
x + 2y = 0 and these vectors get scaled by the transformation T by a
factor of 5. On the other hand, the eigenspace E−5 consists of vectors
perpendicular to the line x + 2y = 0 and these vectors get flipped by
the transformation T and then also scaled by a factor of 5. Hence T is
just the reflection across the line x + 2y = 0 followed by
multiplication by 5.

 

□

Example 2.48 Now let T : R2 → R
2 be the linear transformation given

by the matrix A = [ ]with respect to the standard basis of R2.

(1) The eigenvalues are the roots of the characteristic polynomial:

hence λ = −1 and λ = 5 are the eigenvalues of A.

 

B̃ = {b̃1 = [ ], b̃2 = [ ]}
2

−1

1

2

T (b̃1) = 5b̃1 = 5 ⋅ b̃1 + 0 ⋅ b̃2

T (b̃2) = −5b̃2 = 0 ⋅ b̃1−5 ⋅ b̃2 ,
5 0

0 −5

1 2

4 3

pA(λ) =det (A − λI) =det [ ]

= (1 − λ)(3 − λ)−2 ⋅ 4 = λ2−4λ−5 = (λ + 1)(λ−5) ,

1 − λ 2
4 3 − λ



(2) If λ is an eigenvalue of A, the eigenspace corresponding to λ is given
by Eλ = ker(A − λI). In this case we have  

(3) The following is an eigenbasis for this linear transformation:

We have T (b̃1) = −b̃1 and T (b̃2) = 5b̃2, hence Ã = [ ].

 

□

Example 2.49 Now let T : R2 → R
2 be the linear transformation given

by the matrix A = [ ]with respect to the standard basis of R2.

(1) The eigenvalues are the roots of the characteristic polynomial:

hence λ = 2 is the only eigenvalue of A.

 

(2) The eigenspace corresponding to λ = 2 is  

(3) Since we cannot find two linearly independent eigenvectors (in order
to form a basis of R2), we conclude that in this case there is no

eigenbasis for this linear transformation.
 

□

Summarizing, in Examples 2.21 and 2.22, we looked at how the matrix of a
transformation changes with respect to two different bases that we were
given. In Example 2.24, we looked for a particular basis appropriate to the
transformation at hand. In Example 2.28, we looked for an eigenbasis with
respect to the given transformation. Example 2.24 in this respect fits into

E−1 = ker(A + I) = ker[ ] = span[ ]

E5 = ker(A−5I) = ker[ ] = span[ ] .

2 2

4 4

1

−1
−4 2

4 −2

1

2

B̃ = {b̃1 = [ ], b̃2 = [ ]} .
1

−1

1

2
−1 0
0 5

5 −3

3 −1

pA(λ) =det (A − λI) =det [ ]

= (5 − λ)(−1 − λ) + 9 = λ2−4λ + 4 = (λ−2)2 ,

5 − λ −3

3 −1 − λ

E2 = ker(A−2I) = ker[ ] = span[ ] .
3 −3
3 −3

1
1



1

2

3

the same framework as Example 2.28, but the orthogonal projection has a
zero eigenvalue (see the matrix in (2.15)). Example 2.29 illustrates how
eigenvectors, in general, need not be orthogonal. In Example 2.30 we see
that sometimes an eigenbasis does not exist.

Exercise 2.50 Let B = {1,x,x2,x3} be the standard basis of the vector
space V := P≤3(R) of real polynomials of degree at most 3. Moreover, let
α : V → V  be the function α(p(x)) := (x−1)p′(x), where p′(x) := dp

dx (x) is

the derivative. And let B̃ = {1,x−1, (x−1)2, (x−1)3}.

(1) Show that α is a linear transformation.  
(2) Show that B̃ is an eigenbasis of V  for the linear transformation α.  
(3) What is the matrix M̃ representing α with respect to B̃?  
(4) Let β : V → R be the linear transformation f(x) ↦ f(1). Determine

the matrices A and Ã of the linear transformation β with respect to
the bases B and B̃, respectively.

 

(5) Write the matrix of the change of basis L
BB̃

 from the (old) basis B to

the (new) basis B̃ and write its inverse L
B̃B

.
 

(6) Check that AL
BB̃

= Ã.  

Footnotes
The definition of dot product is recalled in Example 3.​17.

 
See Sect. 5.​2 for an explanation of the terminology.

 
In general, when an eigenbasis does not exist, it is still possible to find a basis, with respect to

which the linear transformation is as simple as possible, i.e., as close as possible to being diagonal.
A Jordan canonical form provides such a best matrix representative of T : V → V  and is
necessarily conjugate to the first matrix representative A. In this text, we will not address these
more general canonical forms.
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This chapter introduces linear, bilinear and multilinear forms. We explore their
definitions, properties, and examples, emphasizing their character as natural
generalizations of linear functions and scalar products. These forms allow the seamless
transition to covariant tensors.

3.1 Linear Forms

3.1.1 Definition and Examples

Linear forms on a vector space V  are defined as linear real-valued functions on V . We will
see that linear forms behave very much like vectors, only that they are elements not of V ,
but of a different, yet related, vector space. Whereas we represent regular vectors from V 
by column vectors once a basis is fixed, we will represent linear forms on V  by row
vectors. Then the value of a linear form on a specific vector is simply given by the matrix
product with the row vector (linear form) on the left and the column vector (actual vector)
on the right.

Definition 3.1 Let V  be a vector space. A linear form on V  is a map α : V → R such
that for every a, b ∈ R and for every v,w ∈ V

Alternative terminologies for “linear form” are tensor of type(0, 1), 1-form, linear

functional and covector.

Exercise 3.2 If V = R
3, which of the following are linear forms?

(1) α(x, y, z) := xy + z;  
(2) α(x, y, z) := x + y + z + 1; 
(3) α(x, y, z) := πx − 7

2 z.  
Exercise 3.3 If V  is the infinite dimensional vector space of continuous functions
f : R → R, which of the following are linear forms?
(1) α(f) := f(7) − f(0);  
(2) α(f) := ∫ 33

0 exf(x)dx; 
(3) α(f) := ef(4).  

α(av + bw) = aα(v) + bα(w) .

https://doi.org/10.1007/978-3-031-94136-8_3


Example 3.4 [Coordinate forms] This is a very important example of linear form. Let
B = {b1, … , bn} be a basis of V  and let v = vibi ∈ V  be a generic vector. Define
βi : V → R by

(3.1)

that is βi will extract the i-th coordinate of a vector with respect to the basis B. The linear
form βi is called coordinate form. Notice that

(3.2)
since the i-th coordinate of the basis vector bj with respect to the basis B is equal to 1 if
i = j and 0 otherwise. □

Example 3.5 Let V = R3 and let E  be its standard basis. The three coordinate forms are
defined by

□

Example 3.6 Let V = R
2 and let B := {[ ]

b1

, [ ]

b2

}. We want to describe the

elements of B∗ := {β1,β2}, in other words we want to find

for a generic vector v ∈ V .
To this purpose we need to find [v]

B
. Recall that if E  denotes the standard basis of R2

and L := LEB the matrix of the change of coordinate from E  to B, then

Since

and hence

then

Thus, according to the definition in Eq. (3.1), we deduce that

□

3.1.2 Dual Space and Dual Basis

To any vector space V , there corresponds the set of all linear forms on V . This set has
itself a natural structure of a vector space.

βi(bj) = δij ,

β1 := x , β2 := y , β3 := z .
⎡⎢⎣xyz⎤⎥⎦ ⎡⎢⎣xyz⎤⎥⎦ ⎡⎢⎣xyz⎤⎥⎦1

1


1

−1


β1(v) and β2(v)

[v]B = L−1[v]E = L−1( ) .
v1

v2

L = [ ]
1 1
1 −1

L−1 = 1
2 [ ] ,

1 1
1 −1

[v]
B

= ( ) .
1
2 (v1 + v2)
1
2 (v1 − v2)

β1(v) = 1
2 (v1 + v2) and β2(v) = 1

2 (v1 − v2) .



Definition 3.7 The dual (or dual space) of a vector space V  is

equipped with the natural addition and scalar multiplication.

Exercise 3.8 Check that V ∗ is a vector space whose null vector is the linear form
identically equal to zero.

Remark 3.9 Just like any function, two linear forms on V  are equal if and only if their
values are the same when applied to each vector in V . However, because of the defining
properties of linear forms, to determine whether two linear forms are equal, it is enough

to check that they are equal on each element of a basis ofV . In order to check this, let
α,α′ ∈ V ∗, let B = {b1, … , bn} be a basis of V  and suppose that we know that

for all 1 ≤ j ≤ n. We now verify that this implies that α and α′ are the same when applied
to each vector v ∈ V . Let v = vjbj be the representation of v with respect to the basis B.
Then we have

□

Proposition 3.10 LetB = {b1, … , bn}be a basis of V  andβ1, … ,βn
the corresponding

coordinate forms. ThenB
∗ := {β1, … ,βn}is a basis ofV ∗

. As a consequence

Proof According to Definition 2.​22, we need to check that the linear forms in B∗

(1) are linearly independent and 
(2) span V ∗.  

(1) We need to check that the only linear combination of β1, … ,βn that yields the zero
linear form is the trivial linear combination. Let ciβi = 0 be a linear combination of the βi.
Then for every basis vector bj, with j = 1, … ,n,

thus showing the linear independence.
(2) To check that B∗ spans V  we need to verify that any α ∈ V ∗ is a linear combination

of β1, … ,βn, that is, that we can find αi ∈ R such that
(3.3)

To find such αi we apply both sides of Eq. (3.3) to the j-th basis vector bi, and we obtain
(3.4)

which identifies the coefficients in Eq. (3.3).
By hypothesis α is a linear form and, since V ∗ is a vector space, also α(bi)βi is a linear

form. Moreover, we have just verified that these two linear form coincide on the basis
vectors. By Remark 3.4 the two linear forms are the same and, hence, we have written α
as a linear combination of the coordinate forms. This completes the proof that the
coordinate forms form a basis of the dual. □

The basis B∗ of V ∗ is called the basis ofV ∗
dual toB. We emphasize that the

components (or coordinates) of a linear form α with respect to B∗ are exactly the values
of α on the elements of B, as we found in the above proof:

V ∗ := {all linear forms α : V → R} ,

α(bj) = α′(bj)

α(v) = α(vjbj) = vjα(bj) = vjα′(bj) = α′(vjbj) = α′(v) .

dim V =dim V ∗ .

0 = (ciβi)(bj) = ci(βi(bj)) = ciδ
i
j = cj ,

α = αiβ
i .

α(bj) = αiβ
i(bj) = αiδ

i
j = αj ,



We build with these the coordinate-vector of α as a row-vector:

Example 3.11 Let V = P2(R) be the vector space of polynomials of degree ≤ 2, let
α : V → R be the linear form given by

(3.5)
and let B be the basis {1,x,x2} of V . In this example, we want to:
(1) find the components of α with respect to B∗; 
(2) describe the basis B∗ = {β1,β2,β3};  

(1) Since

then
(3.6)

(2) The generic element p(x) ∈ P2(R) written as combination of basis elements 1,x and
x2 is

Hence B∗ = {β1,β2,β3}, is given by

(3.7)

□

Remark 3.12 Note that we have to be careful when referring to a “dual basis” of V ∗, as
for every basis B of V  there is going to be a basis B∗ of V ∗ dual to the basis B. In the
next section we are going to see how a dual basis transforms with a change of basis.

3.1.3 Covariance of Linear Forms

We want to examine how a linear form α : V → R behaves with respect to a change a
basis in V . To this purpose, let

be two bases of V  and let

be the corresponding dual bases. Let

be the coordinate vectors of α with respect to B∗ and B̃∗, that is

Let L := L
BB̃

 be the matrix of the change of basis satisfying Eq. (2.​4)

[α]B∗ := ( ) .α1 … αn

α(p) := p(2) − p′(2)

α1 = α(b1) = α(1) = 1−0 = 1

α2 = α(b2) = α(x) = 2−1 = 1

α3 = α(b3) = α(x2) = 4−4 = 0 ,

[α]
B∗ = ( ) .1 1 0

p(x) = a + bx + cx2 .

β1(a + bx + cx2) = a

β2(a + bx + cx2) = b

β3(a + bx + cx2) = c .

B = {b1, … , bn} and B̃ := {b̃1, … , b̃n}

B
∗ := {β1, … ,βn} and B̃

∗ := {β̃1, … , β̃n}

[α]
B∗ = ( ) and [α]

B̃∗ = ( )α1 … αn α̃1 … α̃n

α(bi) = αi and α(b̃i) = α̃i .

b̃j = Li
jbi .



Then we have
(3.8)

so that

(3.9)

Exercise 3.13 Verify that Eq. (3.9) is equivalent to saying that
(3.10)

Note that we have exchanged the order of αi and Li
j in the last equality of Eq. (3.8) to

respect the order in which the matrix multiplication in Eq. (3.10) has to be performed.
This was possible because both αi and Li

j are real numbers.

We say that a linear form α is covariant because its components change by L when the
basis changes by L. A linear form α is hence a covariant tensor or a tensor of type(0, 1)
.

Example 3.14 We continue with Example 3.6. We consider the bases as in Example 2.​
41, that is

and the linear form α : V → R as in Eq. (3.5). We will:
(1) find the components of α with respect to B∗;  
(2) describe the basis B∗ = {β1,β2,β3};  
(3) find the components of α with respect to B̃∗;  
(4) describe the basis B̃∗ = {β̃1, β̃2, β̃3};  
(5) find the matrix of change of basis L := L

BB̃
 and compute Λ = L−1; 

(6) check the covariance of α;  
(7) check the contravariance of B∗.  

(1) This is done in Eq. (3.6).
(2) This is done in Eq. (3.7).
(3) We proceed as in Eq. (3.6). Namely,

so that

(4) Since β̃i(v) = ṽi, to proceed as in Eq. (3.7) we first need to write the generic
polynomial p(x) = a + bx + cx2 as a linear combination of elements in B̃, namely we need
to find ã, b̃ and c̃ such that

α̃j = α(b̃j) = α(Li
jbi) = Li

jα(bi) = Li
jαi = αiL

i
j ,

[α]
B̃∗ = [α]

B∗L .

B := {1,x,x2} and B̃ := {x,x−1,x2−1}

α̃1 = α(b̃1) = α(x) = 2−1 = 1

α̃2 = α(b̃2) = α(x−1) = 1−1 = 0

α̃3 = α(b̃3) = α(x2−1) = 3−4 = −1 ,

[α]
B̃∗ = ( ) .1 0 −1

p(x) = a + bx + cx2 = ãx + b̃(x−1) + c̃(x2−1) .



By multiplying and collecting the terms, we obtain that

Hence

so that it follows that

(5) The matrix of the change of basis is given by

since for example b̃3 can be written as a linear combination with respect to B as
b̃3 = x2−1 = −1b1 + 0b2 + 1b3, and these coordinates −1, 0, 1 build the third column of L.

To compute Λ = L−1 we can use the Gauss–Jordan elimination process

Therefore, we have

(6) The linear form α is indeed covariant, since

(7) The dual basis B∗ is contravariant, since

as it can be verified by evaluating both sides on an arbitrary vector p(x) = a + bx + cx2:

□

3.1.4 Contravariance of Dual Bases

that is

⎧⎪⎨⎪⎩ −b̃ − c̃ = a

ã + b̃ = b

c̃ = c

⎧⎪⎨⎪⎩ ã = a + b + c

b̃ = −a − c

c̃ = c .

p(x) = a + bx + cx2 = (a + b + c)x + (−a − c)(x−1) + c(x2−1) ,

β̃1(p(x)) = a + b + c

β̃2(p(x)) = −a − c

β̃3(p(x)) = c ,

L := L
BB̃

= ,
⎡⎢⎣0 −1 −1

1 1 0

0 0 1

⎤⎥⎦↭ … ↭

⎡⎢⎣0 −1 −1 1 0 0

1 1 0 0 1 0
0 0 1 0 0 1

⎤⎥⎦ ⎡⎢⎣1 0 0 1 1 1

0 1 0 −1 0 −1
0 0 1 0 0 1

⎤⎥⎦Λ = .
⎡⎢⎣ 1 1 1

−1 0 −1

0 0 1

⎤⎥⎦( )L = ( ) = ( ) = ( ) .α1 α2 α3 1 1 0
⎡⎢⎣0 −1 −1

1 1 0

0 0 1

⎤⎥⎦ 1 0 −1 α̃1 α̃2 α̃3

= Λ ,

⎛⎜⎝β̃1

β̃2

β̃3

⎞⎟⎠ ⎛⎜⎝β1

β2

β3

⎞⎟⎠Λ = = = .
⎛⎜⎝β1(p)

β2(p)

β3(p)

⎞⎟⎠ ⎡⎢⎣ 1 1 1
−1 0 −1

0 0 1

⎤⎥⎦⎛⎜⎝a

b

c

⎞⎟⎠ ⎛⎜⎝a + b + c

−a − c

c

⎞⎟⎠ ⎛⎜⎝β̃1(p)

β̃2(p)

β̃3(p)

⎞⎟⎠



In fact, statement (7) in Example 3.6 holds in general, namely:

Proposition 3.15 Dual bases arecontravariant.

Proof We will check that when bases B and B̃ are related by

the corresponding dual bases B∗ and B̃∗ of V ∗ are related by

(3.11)

It is enough to check that the Λj
iβ

i are dual to the b̃j. But since ΛL = I, we have

□

Table 3.1 contains a summary of the properties that bases and dual bases, coordinate
vectors and components of linear forms satisfy with respect to a change of basis. Table 3.2
summarizes the characteristics of covariance and contravariance.

Table 3.1 Duality

Table 3.2 Covariance vs. contravariance

b̃j = Li
jbi

(Λk
ℓβ

ℓ)(b̃j) = (Λk
ℓβ

ℓ)(Li
jbi) = Λk

ℓL
i
jβ

ℓ(bi) = Λk
ℓL

i
jδ

ℓ
i = Λk

iL
i
j = δkj = βj(b̃j) .



3.2 Bilinear Forms

3.2.1 Definition and Examples

Definition 3.16 A bilinear form on V  is a function φ : V × V → R that is linear in each
variable, that is

for every λ,μ ∈ R and for every u, v,w ∈ V .

Examples 3.17 Let V = Rn.
(1) If v,w ∈ Rn, the dot product (or scalar product) defined as

(see also Exercise 4.​2).

 

(2) Let n = 3. Choose a vector u ∈ R
3 and for any two vectors v,w ∈ R

3, denote by v × w
their cross product. The scalar triple product

1

(3.12)

is a bilinear form in v and w, where  denotes the matrix with rows u, v and w.

The quantity φu(v,w) calculates the signed volume of the parallelepiped spanned by
u, v,w: the sign of φu(v,w) depends on the orientation of the triple u, v,w.

Since the cross product is defined only in R3, in contrast with the scalar product,
the scalar triple product cannot be defined in Rn with n ≠ 3 (though there is a
formula for an n dimensional parallelediped involving some “generalization” of it).

 

□

Exercise 3.18 Verify the equality in Eq. (3.12) using the Laplace expansion formula for
the determinant of a 3 × 3 matrix with respect to the first line. Recall that this reads

Examples 3.19 Let V = P2(R).
(1) Let p, q ∈ P2(R). The function φ(p, q) := p(π)q(33) is a bilinear form. 
(2) Likewise,

is a bilinear form.

 

□

φ(u,λv + μw) = λφ(u, v) + μφ(u,w)

φ(λv + μw,u) = λφ(v,u) + μφ(w,u) ,

φ(v,w) = v ⋅ w = vjwjδij ,

φu(v,w) := u ⋅ (v × w) =det
⎡⎢⎣uvw⎤⎥⎦⎡⎢⎣uvw⎤⎥⎦det = u1 det [ ] − u2 det [ ] + u3 det [ ]

⎡⎢⎣u1 u2 u3

v1 v2 v3

w1 w2 w3

⎤⎥⎦ v2 v3

w2 w3

v1 v3

w1 w3

v1 v2

w1 w2

φ(p, q) := p′(0)q(4)−5p′(3)q′′( 1
2 )



Exercise 3.20 Are the following functions bilinear forms?
(1)

V = R2 and φ(u, v) :=det [ ];  
(2) V = P2(R) and φ(p, q) := ∫ 1

0 p(x)q(x)dx;  
(3) V = M2×2(R), the space of real 2 × 2 matrices, and φ(L,M) := L1

1trM, where L1
1 it

the (1,1)-entry of L and trM is the trace of M;  
(4) V = R

3 and φ(v,w) := v × w;  
(5) V = R2 and φ(v,w) is the area of the parallelogram spanned by v and w.  
(6) V = Mn×n(R), the space of real n × n matrices with n > 1, and

φ(L,M) := trL det M, where trL is the trace of L and det M is the determinant of
M.

 

Remark 3.21 We need to be careful about the following possible confusion. A bilinear
form on V  is a function on V × V  that is linear in each variable separately. But V × V  is
also a vector space and one might wonder whether a bilinear form on V  is also a linear
form on the vector space V × V . But this is not the case. For example, consider the case
in which V = R, so that V × V = R

2 and let φ : R × R → R be a function:
(1) If φ(x, y) := 2x − y, then φ is not a bilinear form onR, but is a linear form on

(x, y) ∈ R2;  
(2) If φ(x, y) := 2xy, then φ is a bilinear form onR (hence linear in x ∈ R and linear in

y ∈ R), but it is not a linear form on R2, as it is not linear in (x, y) ∈ R
2.  

So a bilinear form is not a form that it is “twice as linear” as a linear form, but a form that
is defined on the product of twice the vector space. □

Exercise 3.22 Verify the above assertions in Remark 3.12 to make sure the distinction is
clear.

3.2.2 Tensor Product of Two Linear Forms on V 

Let α,β ∈ V ∗ be two linear forms, α,β : V → R, and define φ : V × V → R, by

Then φ is bilinear, is called the tensor product of the linear forms α and β and is
denoted by

Notes 3.23 In general α ⊗ β ≠ β ⊗ α, as there could be vectors v and w such that
α(v)β(w) ≠ β(v)α(w).

Example 3.24 Let V = P2(R), let α(p) = p(2) − p′(2) and β(p) = ∫ 4
3 p(x)dx be two

linear forms. Then

u

v

φ(v,w) := α(v)β(w) .

φ = α ⊗ β .



is a bilinear form. □

Remark 3.25 The bilinear form φ : R × R → R defined by the formula φ(x, y) := 2xy is
the tensor product of two linear forms on R, for instance, φ(x, y) = (α ⊗ α)(x, y) where
α : R → R is the linear form given by α(x) := √2x.

On the other hand, not every bilinear form is simply the tensor product of two linear
forms. As we will see below, the first such examples are found for bilinear forms on vector
spaces of dimension at least 2. □

3.2.3 A Basis for Bilinear Forms

Let

Exercise 3.26 Check that Bil(V × V , R) is a vector space with the zero element equal to
the bilinear form identically equal to zero.

Hint: It is enough to check that if φ,ψ ∈ Bil(V × V , R), and λ,μ ∈ R, then
λφ + μψ ∈ Bil(V × V , R). Why? Recall Example 2.​3(3) in Sect. 2.​1.​1 and Exercise 3 in
Sect. 3.1.2.

Assuming Exercise 8, we are going to find a basis of Bil(V × V , R) and determine its
dimension. Let B = {b1, … , bn} be a basis of V  and let B∗ = {β1, … ,βn} be the dual
basis of V ∗ (that is βi(bj) = δij).

Proposition 3.27 The bilinear formsβi ⊗ βj, i, j = 1, … ,nform a basisofBil(V × V , R).
As a consequence,dim Bil(V × V , R) = n2.

Notation We denote

and call this vector space the tensor product of V ∗ and V ∗. A justification for this
notation will appear in Sect. 5.​4.​2.

Remark 3.28 Just as it is for linear forms, to verify that two bilinear forms on V  are the
same it is enough to verify that they are the same on every pair of elements of a basis of
V . So let φ,ψ be two bilinear forms, let B = {b1, … , bn} be a basis of V , and assume that

for all 1 ≤ i, j, ≤ n. Let v = vibi,w = wjbj ∈ V  be arbitrary vectors. We now verify that
φ(v,w) = ψ(v,w). Because of the linearity in each variable, we have

□

Proof of Proposition3.16 The proof will be similar to the one of Proposition 3.5 for
linear forms. We first check that the set of bilinear forms {βi ⊗ βj, i, j = 1, … ,n}
consists of linearly independent vectors, then that it spans Bil(V × V , R).

(α ⊗ β)(p, q) = (p(2) − p′(2))∫
4

3

q(x)dx

Bil(V × V , R) := {all bilinear forms φ : V × V → R} .

φ(bi, bj) = ψ(bi, bj)

φ(v,w) = φ(vibi,w
jbj) = viwjφ(bi, bj) = viwjψ(bi, bj)

= ψ(vibi,wjbj) = ψ(v,w) .



For the linear independence we need to check that the only linear combination of the
βi ⊗ βj that gives the zero bilinear form is the trivial linear combination. Let
cijβ

i ⊗ βj = 0 be a linear combination of the βi ⊗ βj. Then for all pairs of basis vectors
(bk, bℓ), with k, ℓ = 1, … ,n, we have

thus showing the linear independence.
To check that span{βi ⊗ βj, i, j = 1, … ,n} = Bil(V × V , R), we need to check that if

φ ∈ Bil(V × V , R), there exists Bij ∈ R such that

Because of Eq. (3.2) in Sect. 3.1.1, we obtain

for every pair (bk, bℓ) ∈ V × V . Hence, we set Bkℓ := φ(bk, bℓ). Now both φ and
φ(bk, bℓ)βi ⊗ βj are bilinear forms and they coincide on B × B. Because of the above
Remark 3.17, the two bilinear forms coincide. □

Example 3.29 We continue with the study of the scalar triple product

that was defined in Example 3.10 for a fixed given vector u = . We now want to find

the components Bij of φu with respect to the standard basis of R3.
Recall the cross product in R3 is defined on the elements of the standard basis by

that is

Since u ⋅ ek = uk, then

Thus

which can be written as a matrix

0 = cijβ
i ⊗ βj(bk, bℓ) = cijδ

i
kδ

j

ℓ = ckℓ ,

φ = Bijβ
i ⊗ βj .

φ(bk, bℓ) = Bijβ
i(bk)βj(bℓ) = Bijδ

i
kδ

j

ℓ = Bkℓ ,

φu : R3 × R3 → R,

⎡⎢⎣u1

u2

u3

⎤⎥⎦ei × ej :=
⎧⎪⎨⎪⎩0 if i = j

ek if (i, j, k) is a cyclic permutation of (1, 2, 3)

−ek if (i, j, k) is a non-cyclic permutation of (1, 2, 3) ,

[origin = c]90cyclic and [origin = c]90non − cyclic

⎧⎪⎨⎪⎩e1 × e2 = e3

e2 × e3 = e1

e3 × e1 = e2

⎧⎪⎨⎪⎩e2 × e1 = −e3

e3 × e2 = −e1

e1 × e3 = −e2

Bij = φu(ei, ej) = u ⋅ (ei × ej)

=
⎧⎪⎨⎪⎩0 if i = j

uk if (i, j, k) is a cyclic permutation of (1, 2, 3)

−uk if (i, j, k) is a non-cyclic permutation of (1, 2, 3)

B12 = u3 = −B21

B31 = u2 = −B13

B23 = u1 = −B32

B11 = B22 = B33 = 0 (that is, the diagonal components are zero) ,



The components Bij of B are the components of this bilinear form with respect to the
basis βi ⊗ βj (i, j = 1, … ,n), where βi(ek) = δik. Hence, we can write

□

3.2.4 Covariance of Bilinear Forms

We have seen that, once we choose a basis B = {b1, … , bn} of V , we automatically
have a basis B∗ = {β1, … ,βn} of V ∗ and a basis {βi ⊗ βj, i, j = 1, … ,n} of V ∗ ⊗ V ∗.
This implies, that any bilinear form φ : V × V → R can be represented by its components

(3.13)

in the sense that

Moreover, these components can be arranged in a matrix2

called the matrix of the bilinear formφ with respect to the chosen basis B. The natural
question of course is: how does the matrix B change when we choose a different basis of
V ?

So, let us choose a different basis B̃ := {b̃1, … , b̃n} and corresponding bases
B̃

∗ = {β̃1, … , β̃n} of V ∗ and {β̃i ⊗ β̃j, i, j = 1, … ,n} of V ∗ ⊗ V ∗, with respect to which
φ will be represented by a matrix B̃, whose entries are B̃ij = φ(b̃i, b̃j).

To see the relation between B and B̃, due to the change of basis from B to B̃, we start
with the matrix of the change of basis L := L

BB̃
, according to which

(3.14)
Then

where the first and the last equality follow from Eq. (3.13), the second from Eq. (3.14)
(after having renamed the dummy indices to avoid conflicts) and the remaining one from
the bilinearity of σ. We conclude that

Exercise 3.30 Show that the formula of the transformation of the component of a
bilinear form in terms of the matrices of the change of coordinates is

(3.15)

where tL denotes the transpose of the matrix L.

B = .
⎡⎢⎣ 0 u3 −u2

−u3 0 u1

u2 −u1 0

⎤⎥⎦φu = Bijβ
i ⊗ βj = u1(β

2 ⊗ β3 − β3 ⊗ β2)

+u2(β
3 ⊗ β1 − β1 ⊗ β3) + u3(β

1 ⊗ β2 − β2 ⊗ β1) .

B :=
⎡⎢⎣B11 … B1n

⋮ ⋮

Bn1 … Bnn

⎤⎥⎦b̃j = Li
jbi .

B̃ij = φ(b̃i, b̃j) = φ(Lk
i bk,Lℓ

jbℓ) = Lk
iL

ℓ
jφ(bk, bℓ) = Lk

iL
ℓ
jBkℓ ,



We hence say that a bilinear form φ is a covariant 2-tensor or a tensor of type(0, 2).

3.3 Multilinear Forms

3.3.1 Definition, Basis and Covariance

We saw in Sect. 3.1.3 that linear forms are covariant 1-tensors—or tensors of type (0, 1)—
and in Sect. 3.2.4 that bilinear forms are covariant 2-tensors—or tensors of type (0, 2).

Analogously to what was done until now, one can define trilinear forms on V , that is
functions T : V × V × V → R that are linear with respect to each of the three arguments.
The space of trilinear forms on V  is denoted

has basis

and, hence, has dimension n3. The tensor product ⊗ is defined as above.
Since the components of a trilinear form T : V × V × V → R satisfy the following

transformation with respect to a change of basis

a trilinear form is a covariant 3-tensor or a tensor of type(0, 3).
Of course, there is nothing special about k = 1, 2 or 3:

Definition 3.31 A k-linear form or multilinear form of orderk on V  is a function
f : V × ⋯ × V → R from k-copies of V  into R, that is linear in each of its arguments.

A k-linear form is a covariantk-tensor (or a covariant tensor of orderk or a tensor of

type(0, k)). The vectors space of k-linear forms on V , denoted

has basis

and, hence, dim (V ∗ ⊗ ⋯ ⊗ V ∗) = nk .

3.3.2 Examples of Multilinear Forms

V ∗ ⊗ V ∗ ⊗ V ∗ ,

{βj ⊗ βj ⊗ βk, i, j, k = 1, … ,n}

T̃ijk = Lℓ
iL

p
jL

q
kTℓpq ,

V ∗ ⊗ ⋯ ⊗ V ∗

k factors

,


βi1 ⊗ βi2 ⊗ ⋯ ⊗ βik , i1, … , ik = 1, … ,n



Example 3.32 We once more address the scalar triple product, discussed in Examples
3.10 and 3.18. This time we want to find the components Bij of φu with respect to the
(non-standard) basis

The matrix of the change of coordinates from the standard basis to B̃ is

so that

It is easy to check that B̃ is antisymmetric just like B is, and to check that the
components of B̃ are correct by using the formula for φ:

□

Example 3.33 If, in the definition of the scalar triple product, instead of fixing a vector
a ∈ R, we let the vector vary, we have a function φ : R3 × R3 × R3 → R, defined by

One can verify that such function is trilinear, that is linear in each of the three variables
separately.

The components Tijk of this trilinear form are simply given by the sign of the
corresponding permutation:

B̃ := {
b̃1

,

b̃2

,

b̃3

} .
⎡⎢⎣0

1

0

⎤⎥⎦

⎡⎢⎣1
0

1

⎤⎥⎦

⎡⎢⎣0
0

1

⎤⎥⎦

L = ,
⎡⎢⎣0 1 0

1 0 0

0 1 1

⎤⎥⎦B̃ =

tL B L

=

tL BL

= .

⎡⎢⎣0 1 0

1 0 1
0 0 1

⎤⎥⎦

⎡⎢⎣ 0 u3 −u2

−u3 0 u1

u2 −u1 0

⎤⎥⎦

⎡⎢⎣0 1 0

1 0 0
0 1 1

⎤⎥⎦

⎡⎢⎣0 1 0

1 0 1
0 0 1

⎤⎥⎦

⎡⎢⎣ u3 −u2 −u2

0 u1 − u3 u1

−u1 u2 0

⎤⎥⎦

⎡⎢⎣ 0 u1 − u3 u1

u3 − u1 0 −u2

−u1 u2 0

⎤⎥⎦B̃12 = φ(b̃1, b̃2) = u ⋅ (e2 × (e1 + e3)) = u1 − u3

B̃13 = φ(b̃1, b̃3) = u ⋅ ((e2) × e3) = u1

B̃23 = φ(b̃2, b̃3) = u ⋅ ((e1 + e3) × e3) = −u2

B̃11 = φ(b̃1, b1) = u ⋅ (e2 × e2) = 0

B̃22 = φ(b̃2, b2) = u ⋅ ((e1 + e3) × (e1 + e3)) = 0

B̃33 = φ(b̃3, b3) = u ⋅ (e3 × e3) = 0

φ(u, v,w) := u ⋅ (v × w) =det .
⎡⎢⎣uvw⎤⎥⎦



where the sign of the permutation is given by

□

Example 3.34 In general, the determinant defines an n-linear form in Rn by

where we compute the determinant of the square matrix with rows (equivalently,
columns) given by the n vectors. Multilinearity is a fundamental property of the
determinant.

In this case, the components of this multilinear form are also given by the permutation
signs:

where

A permutation of (1, 2, … ,n) is called an even permutation, if it is obtained from
(1, 2, … ,n) by an even number of two-element swaps; otherwise it is called an odd

permutation. □

3.3.3 Tensor Product of Multilinear Forms

Let

be, respectively, a k-linear and an ℓ-linear form. Then the tensor product of T and U is
the function

defined by

This is a (k + ℓ)-linear form. Equivalently, this is saying that the tensor product of a tensor
of type (0, k) and a tensor of type (0, ℓ) is a tensor of type (0, k + ℓ). Later we will see how
this product extends to more general tensors.

Footnotes

φ = sign(i, j, k)βi ⊗ βj ⊗ βk = β1 ⊗ β2 ⊗ β3 − β1 ⊗ β3 ⊗ β2 + β3 ⊗ β1 ⊗ β2

−β3 ⊗ β2 ⊗ β1 + β2 ⊗ β3 ⊗ β1 − β2 ⊗ β1 ⊗ β3 ,

sign(i, j, k) :=

⎧⎪⎨⎪⎩+1 if (i, j, k) = (1, 2, 3), (2, 3, 1) or (3, 1, 2)
(even permutationsof(1, 2, 3))

−1 if (i, j, k) = (1, 3, 2), (2, 1, 3) or (3, 2, 1)
(odd permutationsof(1, 2, 3))

0 otherwise.

φ : R
n × … × R

n

n factors

→ R , φ(v1, … , vn) :=det ,


⎡⎢⎣v1

⋮

vn

⎤⎥⎦φ = sign(i1, … , in)βi1 ⊗ … ⊗ βin ,

sign(i1, … , in) :=
⎧⎪⎨⎪⎩+1 if (i1, … , in) is an even permutation of (1, … ,n)

−1 if (i1, … , in) is an odd permutation of (1, … ,n)

0 otherwise.

T : V × ⋯ × V

k times

→ R and U : V × ⋯ × V

ℓ times

→ R
 

T ⊗ U : V × ⋯ × V

k+ℓ times

→ R


T ⊗ U(v1, … , vk+ℓ) := T (v1, … , vk)U(vk+1, … , vk+ℓ).



1

2

Recall that the determinant of a 3 × 3 matrix is given by

where

and the corresponding signs flip each time two elements get swapped:

An even permutation is a permutation σ with sign(σ) = 1; an odd permutation is a permutation σ with
sign(σ) = −1.

 
Contrary to the matrix that gives the change of coordinates between two basis of the vector space, here we have only

lower indices. This is not by chance and reflects the type of tensor a bilinear form is.

 

det = a11a22a33 − a11a23a32 + a12a23a31

− a12a21a33 + a13a21a32 − a13a22a31

= ∑
σ∈S3

sign(σ)a1σ(1)a2σ(2)a3σ(3) ,

⎡⎢⎣a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤⎥⎦σ = (σ(1),σ(2),σ(3)) ∈ S3 := {permutations of 3 elements}
= {(1, 2, 3), (1, 3, 2), (2, 3, 1), (2, 1, 3), (3, 1, 2), (3, 2, 1)} ,

sign(1, 2, 3) = 1 , sign(1, 3, 2) = −1 , sign(3, 1, 2) = 1 ,
sign(3, 2, 1) = −1 , sign(2, 3, 1) = 1 , sign(2, 1, 3) = −1 .
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4. Inner Products
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This chapter introduces inner products as a special case of bilinear forms. It
discusses the representation of an inner product via a symmetric positive
definite matrix, the notion of reciprocal basis, and how the presence of an
inner product blurs covariance and contravariance.

4.1 Definitions and First Properties

Inner products add an important structure to a vector space, as for example
they allow to compute the length of a vector and they provide a canonical
identification between the vector space V  and its dual V ∗.

4.1.1 Inner Products and Their Related Notions

Definition 4.1 An inner productg : V × V → R on a real vector space V 
is a bilinear form on V  that is
(1) symmetric, that is g(v,w) = g(w, v) for all v,w ∈ V  and  
(2) positive definite, that is g(v, v) ≥ 0 for all v ∈ V , and g(v) = 0 if and

only if v = 0.  
Exercise 4.2 Let V = R3. Verify that the dot product φ(v,w) := v ⋅ w,
defined as

where v =  and w =  is an inner product. This is called the

standard inner product.

Exercise 4.3 Determine whether the following bilinear forms
φ : Rn × Rn → R are inner products, by verifying whether they are
symmetric and positive definite (the formulas are throughout defined for all

v ⋅ w = viwjδij ,

⎡⎢⎣v1

v2

v3

⎤⎥⎦ ⎡⎢⎣w1

w2

w3

⎤⎥⎦

https://doi.org/10.1007/978-3-031-94136-8_4


v,w ∈ R
n):

(1) φ(v,w) := −v ⋅ w;  
(2) φ(v,w) := v ⋅ w + 2v1w2; 
(3) φ(v,w) := v1w1;  
(4) φ(v,w) := v ⋅ w−2v1w1;  
(5) φ(v,w) := v ⋅ w + 2v1w1; 
(6) φ(v,w) := v ⋅ 3w.  
Exercise 4.4 Let V := P2(R) be the vector space of polynomials of degree

≤ 2. Determine whether the following bilinear forms are inner products,
by verifying whether they are symmetric and positive definite:
(1) φ(p, q) := ∫ 1

0 p(x)q(x)dx;  
(2) φ(p, q) := ∫ 1

0 p′(x)q′(x)dx;  
(3) φ(p, q) := ∫

π

3 exp(x)q(x)dx;  
(4) φ(p, q) := p(1)q(1) + p(2)q(2);  
(5) φ(p, q) := p(1)q(1) + p(2)q(2) + p(3)q(3). 
(6) φ(p, q) := p(1)q(2) + p(2)q(3) + p(3)q(1). 
Definition 4.5 Let g : V × V → R be an inner product on V .
(1) The norm (or magnitude or length), ∥ v ∥ of a vector v ∈ V  is

defined as  

(2) A vector v ∈ V  is unit vector if ∥ v ∥= 1;  
(3) Two vectors v,w ∈ V  are orthogonal (that is, perpendicular denoted

v ⊥ w), if g(v,w) = 0;  
(4) Two vectors v,w ∈ V  are orthonormal if they are orthogonal and

∥ v ∥=∥ w ∥= 1;  

∥ v ∥:= √g(v, v) .



(5) A basis B of V  is an orthonormal basis if b1, … , bn are pairwise
orthonormal vectors, that is

(4.1)

for all i, j = 1 … ,n. The condition for i = j implies that an
orthonormal basis consists of unit vectors, while the one for i ≠ j
implies that it consists of pairwise orthogonal vectors.

 

Example 4.6

(1) Let V = Rn and g the standard inner product. The standard basis
B = {e1, … , en} is an orthonormal basis with respect to the standard
inner product.

 

(2) Let V = P2(R) and let g(p, q) := ∫ 1
−1 p(x)q(x)dx. Check that the basis

where

is an orthonormal basis with respect to the inner product g. Up to
scaling, p1, p2, p3 are the first three Legendre polynomials.

 

□

An inner product g on a vector space V  induces a metric
1 on V , where the

distance between vectors v,w ∈ V  is given by

4.1.2 Symmetric Matrices and Quadratic Forms

Recall that a matrix S ∈ Mn×n(R) is symmetric if S = tS, that is if

Moreover, if S is symmetric, then
(1) S is positive definite if tvSv > 0 for all v ∈ R

n ∖ {0};  
(2) S is negative definite if tvSv < 0 for all v ∈ R

n ∖ {0};  
(3) S is positive semidefinite if tvSv ≥ 0 for all v ∈ R

n;  

g(bi, bj) = δij := {
1 if i = j

0 if i ≠ j ,

B = {p1, p2, p3} ,

p1(x) := 1
√2

, p2(x) := √ 3
2 x, p3(x) := √ 5

8 (3x2−1) ,

d(v,w) :=∥ v − w ∥ .

S = .

⎡⎢⎣ ∗ a b ...
a ∗ c ...
b c ∗ ...
... ... ∗

⎤⎥⎦



(4) S is negative semidefinite if tvSv ≤ 0 for all v ∈ R
n;  

(5) S is indefinite if tvSv takes both positive and negative values for
different v ∈ R

n.  
Definition 4.7 A quadratic formQ : R

n → R is a homogeneous quadratic
polynomial in n variables:

To any symmetric matrix S corresponds a quadratic formQS : Rn → R

defined by

(4.2)

Note that Q is not linear in v.
Let S be a symmetric matrix and QS be the corresponding quadratic

form. The notion of positive definiteness, etc. for S translates into
corresponding properties for QS, namely:
(1) Q is positive definite if Q(v) > 0 for all v ∈ Rn ∖ {0};  
(2) Q is negative definite if Q(v) < 0 for all v ∈ Rn ∖ {0};  
(3) Q is positive semidefinite if Q(v) ≥ 0 for all v ∈ Rn;  
(4) Q is negative semidefinite if Q(v) ≤ 0 for all v ∈ Rn;  
(5) Q is indefinite if Q(v) takes both positive and negative values. 
Example 4.8 We consider R2 with the standard basis E  and the quadratic

form2Q(v) := v1v1 − v2v2, where v = [ ]. The symmetric matrix

corresponding to Q is S := [ ]. If v = [ ], then Q(v) = 1 > 0, if

v = [ ], then Q(v) = −1 < 0, but any vector for which v1 = v2 has the

property that Q(v) = 0. □

Q(x1, … ,xn) = Qijx
ixj , where Qij ∈ R .

QS(v) = tvSv = [ ]S

matrix notation

= vivjSij

Einstein notation

.v1 … vn
⎡⎢⎣v1

⋮
vn

⎤⎥⎦



v1

v2

1 0
0 −1

v1

0
0

v2



To find out the type of a symmetric matrix S (or, equivalently of a quadratic
form QS) it is enough to look at the eigenvalues of S, namely:
(1) S and QS are positive definite when all eigenvalues of S are positive:  
(2) S and QS are negative definite when all eigenvalues of S are negative;  
(3) S and QS are positive semidefinite when all eigenvalues of S are non-

negative;  
(4) S and QS are negative semidefinite when all eigenvalues of S are non-

positive;  
(5) S and QS are indefinite when S has both positive and negative

eigenvalues.  
The reason this makes sense is the same reason for which we need to

restrict our attention to symmetric matrices and lies in the celebrated
Spectral Theorem from Linear Algebra (see, for instance, [13, §5.5]):

Theorem 4.9 (Spectral Theorem) Anyn × nsymmetric matrix S has the

following properties:

(a) it has only real eigenvalues;  
(b) it is diagonalizable ;  
(c) it admits an orthonormal eigenbasis , that is, a basis{b1, … , bn}ofR

n

such that thebjare orthonormal and are eigenvectors of S.
 

4.1.3 Inner Products vs. Symmetric Positive Definite

Matrices

Let B = {b1, … , bn} be a basis of V  and g an inner product. The
components ofgwith respect toB are

(4.3)
Let G be the matrix with entries gij

(4.4)

We claim that G is symmetric and positive definite. In fact:
(1) Since g is symmetric, then for 1 ≤ i, j ≤ n,

(4.5) 

gij := g(bi, bj) .

G = .
⎡⎢⎣g11 … g1n

⋮ ⋱ ⋮
gn1 … gnn

⎤⎥⎦gij = g(bi, bj) = g(bj, bi) = gji ⇒ G is a symmetric matrix;



(2) Since g is positive definite, then G is positive definite as a symmetric
matrix. In fact, let v = vibi,w = wjbj ∈ V  be two vectors. Then, using
the bilinearity of g, the definition in Eq. (4.3) and Einstein notation, we
have:

or, in matrix notation,

 

Conversely, if S is a symmetric positive definite matrix and
B = {b1, … , bn} is a basis of V , then the assignment

defines a map that is seen to be bilinear, symmetric and positive definite,
hence an inner product.

4.1.4 Orthonormal Bases

Suppose that there is a basis B = {b1, … , bn} of V  consisting of
orthonormal vectors with respect to an inner product g, so that

cf. Definition 2(5) and Eq. (4.3). In other words, the symmetric matrix
corresponding to the inner product g in the basis consisting of orthonormal
vectors is the identity matrix. Moreover, we have

so that, in the case v = w, we get

We thus deduce that:

Fact 4.10 Any inner product g can be expressed in the standard form

as long as [v]
B

=  and [w]
B

=  are the coordinates of v and w

with respect to an orthonormal basis B for g.

g(v,w) = g(vibi,w
jbj) = viwjg(bi, bj)

gij

= viwjgij


g(v,w) = t[v]BG[w]B = [ ]G .v1 … vn
⎡⎢⎣w1

⋮
wn

⎤⎥⎦V × V → R , (v,w) ↦ t[v]
B
S[w]

B

gij = δij ;

g(v,w) = viwjgij = viwjδij = v1w1 + ⋯ + vnwn ,

∥ v ∥2= g(v, v) = vivjδij = v1v1 + ⋯ + vnvn .

g(v,w) = viwjδij = v1w1 + ⋯ + vnwn ,

⎛⎜⎝v1

⋮
vn

⎞⎟⎠ ⎛⎜⎝w1

⋮
wn

⎞⎟⎠



Example 4.11 Let g be an inner product of R3 with respect to which

is an orthonormal basis. We want to express g with respect to the standard
basis of R3,

The matrices of the change of basis are

Since g is a bilinear form, we saw in Eq. (3.​15) that its matrices with
respect to the bases B and E  are related by the formula

Since the basis B̃ is orthonormal with respect to g, the associated matrix
G̃ is the identity matrix, so that

(4.6)

It follows that, with respect to the standard basis, g is given by

(4.7)

□

Exercise 4.12 Verify the formula (4.7) for the inner product g w.r.t. the
basis B̃ by applying the change of basis matrix directly to the coordinate
vectors [v]

E
, [w]

E
.

B̃ := {
b̃1

,

b̃2

,

b̃3

}⎡⎢⎣1
0
0

⎤⎥⎦

⎡⎢⎣1
1
0

⎤⎥⎦

⎡⎢⎣1
1
1

⎤⎥⎦

E := {
e1

,

e2

,

e3

} .
⎡⎢⎣1

0
0

⎤⎥⎦

⎡⎢⎣0
1
0

⎤⎥⎦

⎡⎢⎣0
0
1

⎤⎥⎦

L := L
E B̃

= and Λ = L−1 = .
⎡⎢⎣1 1 1

0 1 1
0 0 1

⎤⎥⎦ ⎡⎢⎣1 −1 0
0 1 −1
0 0 1

⎤⎥⎦G̃ = tLGL .

G = tΛG̃Λ = tΛΛ

= = .
⎡⎢⎣ 1 0 0

−1 1 0
0 −1 1

⎤⎥⎦⎡⎢⎣1 −1 0
0 1 −1
0 0 1

⎤⎥⎦ ⎡⎢⎣ 1 −1 0
−1 2 −1
0 −1 2

⎤⎥⎦g(v,w) = ( )

= v1w1 − v1w2 − v2w1 + 2v2w2 − v2w3 − v3w2 + 2v3w3 .

v1 v2 v3
⎡⎢⎣ 1 −1 0

−1 2 −1
0 −1 2

⎤⎥⎦⎛⎜⎝w1

w2

w3

⎞⎟⎠



Remark 4.13 Norms and the value of the inner product of vectors depend
only on the choice of g, not on the choice of basis; different coordinate
expressions yield the same result:

Example 4.14 We verify the assertion of the previous remark with the
inner product in Example 4.5. Let v,w ∈ R3 such that

and

Then with respect to the basis B̃ we have that

and also with respect to the basis E

□

Exercise 4.15 Verify that ∥ v ∥= √3 and ∥ w ∥= √11, when computed
with respect to either basis.

Let B = {b1, … , bn} be an orthonormal basis and let v = vibi be a vector in
V .

Then the coordinates vi of the vector v with respect to this orthonormal

basis can be obtained by computing the inner product of v with the basis
vectors:

This is particularly nice, so that we have to make sure that we remember
how to construct an orthonormal basis from a given arbitrary basis.

Recall The Gram-Schmidt orthogonalization process is a recursive
process that allows us to obtain an orthonormal basis starting from an
arbitrary one. Let B = {b1, … , bn} be an arbitrary basis, let g : V × V → R

be an inner product and ∥ ⋅ ∥ the corresponding norm.
We start by recalling that the orthogonal projection, denoted projbkv,

of a vector v ∈ V  onto the line spanned by a non-zero vector bk is defined as

g(v,w) = t[v]
B
G[v]

B
= t[v]

B̃
G̃[v]

B̃
.

[v]E = = and [v]
B̃

= = L−1 =
⎛⎜⎝v1

v2

v3

⎞⎟⎠ ⎛⎜⎝3
2
1

⎞⎟⎠ ⎛⎜⎝ṽ1

ṽ2

ṽ3

⎞⎟⎠ ⎛⎜⎝v1

v2

v3

⎞⎟⎠ ⎛⎜⎝1
1
1

⎞⎟⎠[w]
E

= = and [w]
B̃

= = L−1 = .
⎛⎜⎝w1

w2

w3

⎞⎟⎠ ⎛⎜⎝1
2
3

⎞⎟⎠ ⎛⎜⎝w̃1

w̃2

w̃3

⎞⎟⎠ ⎛⎜⎝w1

w2

w3

⎞⎟⎠ ⎛⎜⎝−1
−1
3

⎞⎟⎠g(v,w) = 1 ⋅ (−1) + 1 ⋅ (−1) + 1 ⋅ 3 = 1 ,

g(v,w) = 3 ⋅ 1−3 ⋅ 2−2 ⋅ 1 + 2 ⋅ 2 ⋅ 2−2 ⋅ 3−1 ⋅ 2 + 2 ⋅ 1 ⋅ 3 = 1 .

g(v, bj) = g(vibi, bj) = vig(bi, bj) = viδij = vj .



(4.8)

The vector projbkv is clearly parallel (i.e., proportional) to bk and the
following exercise shows that the complement v − projbkv is indeed
orthogonal to bk (Fig. 4.1). Therefore, with respect to the line spanned by bk
, we have the decomposition

Fig. 4.1 Orthogonal projection of vector v onto line spanned by unit vector bk

Exercise 4.16
With projbkv defined as in (4.8), check that we have

where the orthogonality is meant with respect to the inner product g.
Given the basis B = {b1, … , bn} of V , we will find an orthonormal basis.

We start by defining

Next, observe that g(b2,u1)u1 is the projection of the vector b2 in the
direction of u1. It follows that

is a vector orthogonal to u1, but not necessarily of unit norm. Hence we set

Likewise, g(b3,u1)u1 + g(b3,u2)u2 is the projection of b3 on the plane
generated by u1 and u2, so that the difference

is orthogonal both to u1 and to u2. Set

proj
b
k

v :=
g(v, bk)
g(bk, bk)

bk .

v = projbkv

parallel

+ v − projbkv

orthogonal

.
 

(v − proj
b
k

v) ⊥ bk ,

u1 :=
1

∥ b1 ∥
b1 .

b⊥
2 := b2 − g(b2,u1)u1

u2 :=
1

∥ b⊥
2 ∥

b⊥
2 .

b⊥
3 := b3 − g(b3,u1)u1 − g(b3,u2)u2

u3 :=
1

∥ b⊥
3 ∥

b⊥
3 .



Continuing this way until we have exhausted all elements of the basis B, we
obtain an orthonormal basis {u1, … ,un} (Fig. 4.2).

Fig. 4.2 Gram-Schmidt process on three vectors

Example 4.17 Let V  be the subspace of R4 spanned by

(One can check that b1, b2, b3 are linearly independent and hence form a
basis of V .) We look for an orthonormal basis of V  with respect to the
standard inner product ⟨ ⋅ , ⋅ ⟩. Since

we find

Moreover,

b1 = b2 = b3 = .

⎡⎢⎣ 1
1

−1
−1

⎤⎥⎦ ⎡⎢⎣2
2
0
0

⎤⎥⎦ ⎡⎢⎣1
1
1
0

⎤⎥⎦∥ b1 ∥= (12 + 12 + (−1)2 + (−1)2)
1/2

= 2 ,

u1 := 1
2 b1 = 1

2 .

⎡⎢⎣ 1
1

−1
−1

⎤⎥⎦



so that we find

Finally,

imply that

so that we have

□

4.2 Reciprocal Basis

4.2.1 Definition and Examples

Let g : V × V → R be an inner product and B = {b1, … , bn} any basis of V .

Definition 4.18 The reciprocal basis of V  with respect to the inner
product g and the given B is the basis of V , denoted by

that satisfies

(4.9)

⟨b2,u1⟩ = 1
2 (1 + 1) = 2

⇒ b⊥
2 := b2 − ⟨b2,u1⟩u1 = with ∥ b⊥

2 ∥= 2 ,

⎡⎢⎣1
1
1
1

⎤⎥⎦u2 := 1
2 b

⊥
2 = 1

2 .

⎡⎢⎣1
1
1
1

⎤⎥⎦⟨b3,u1⟩ = 1
2 (1 + 1−1) = 1

2 and ⟨b3,u2⟩ = 1
2 (1 + 1 + 1) = 3

2

b⊥
3 := b3 − ⟨b3,u1⟩u1 − ⟨b3,u2⟩u2 = with ∥ b⊥

3 ∥= √2
2 ,

⎡⎢⎣ 0
0
1
2

− 1
2

⎤⎥⎦u3 := √2
2 b⊥

3 = √2
2 .

⎡⎢⎣ 0
0
1

−1

⎤⎥⎦B
g = {b1, … , bn}



Note that, while it is certainly possible to define a set of n =dim V  vectors
satisfying Eq. (4.9), we need to justify the fact that we call it a basis. This
will be done in Claim 4.11.

Remark 4.19 In general, B g ≠ B and in fact, because of Definition 2(5),

Example 4.20 Let g be the inner product defined in (4.7) in Example 4.5
and let E  the standard basis of R3. We want to find the reciprocal basis E g,
that is we want to find E g := {e1, e2, e3} such that

If G is the matrix of the inner product given in (4.6), using the matrix
notation and considering ej as a row vector and ei as a column vector for
i, j = 1, 2, 3, we have

Letting i and j vary from 1 to 3, we obtain

from which we conclude that

Therefore,

(4.10)

Observe that in order to compute G−1 we used the Gauss–Jordan
elimination method

B = B
g ⇔ B is an orthonormal basis.

g(ei, ej) = δij .

[ ]G = δij .–– tei ––
⎡⎢⎣ ∣
ej

∣

⎤⎥⎦ = ,
⎡⎢⎣–– te1 ––

–– te2 ––

–– te3 ––

⎤⎥⎦⎡⎢⎣ 1 −1 0
−1 2 −1
0 −1 2

⎤⎥⎦⎡⎢⎣ ∣ ∣ ∣
e1 e2 e3

∣ ∣ ∣

⎤⎥⎦ ⎡⎢⎣1 0 0
0 1 0
0 0 1

⎤⎥⎦e1 = , e2 = , e3 = .
⎡⎢⎣3

2
1

⎤⎥⎦ ⎡⎢⎣2
2
1

⎤⎥⎦ ⎡⎢⎣1
1
1

⎤⎥⎦



□

Exercise 4.21 Again in the situation of Examples 4.5 and 4.10, let g be an
inner product on R3, let E = {e1, e2, e3} be the standard basis and let

be an orthonormal basis with respect to g.
(1) Compute [b̃1]

B̃
, [b̃2]

B̃
 and [b̃3]

B̃
.  

(2) Compute the matrix G
B̃

 associated to g with respect to the basis B̃,
and the matrix GE  associated to g with respect to the basis E .

 
(3) We denote by E g = {e1, e2, e3} and B̃ g = {b̃1, b̃2, b̃3} the reciprocal

bases respectively of E  and B̃. By Remark 4.6,

are independent of the choice of the basis. It follows that:
(a) δij = g(b̃i, b̃j) = [tb̃i]

B̃
G

B̃
[b̃j]B̃; 

(b) δij = g(b̃i, b̃j) = [tb̃i]
E
GE [b̃j]E ;  

(c) δij = g(ei, ej) = [tei]
B̃
G

B̃
[ej]B̃; 

(d) δij = g(ei, ej) = [tei]
E
GE [ej]E .  

Using (1), (2) and the appropriate formula among (a), (b), (c) and
(d), compute [b̃i]

B̃
, [b̃i]

E
, [ei]

E
 and [ei]

B̃
. For some of these, one will

probably want to apply the same technique as in Example 4.10.

 

4.2.2 Properties of Reciprocal Bases

↭

↭ ↭ .

⎡⎢⎣ 1 −1 0 1 0 0
−1 2 −1 0 1 0
0 −1 2 0 0 1

⎤⎥⎦ ⎡⎢⎣1 −1 0 1 0 0
0 1 −1 1 1 0
0 −1 2 0 0 1

⎤⎥⎦⎡⎢⎣1 0 −1 2 1 0
0 1 −1 1 1 0
0 0 1 1 1 1

⎤⎥⎦ ⎡⎢⎣1 0 0 3 2 1
0 1 0 2 2 1
0 0 1 1 1 1

⎤⎥⎦B̃ := {
b̃1

,

b̃2

,

b̃3

}⎡⎢⎣1
0
0

⎤⎥⎦

⎡⎢⎣1
1
0

⎤⎥⎦

⎡⎢⎣1
1
1

⎤⎥⎦

g(b̃i, b̃j) = δij and g(ei, ej) = δij



claim 4.22 Given a vector space V  with a basis B and an inner product
g : V × V → R, a reciprocal basis exists and is unique.

As we pointed out right after the definition of reciprocal basis, what this
claim really says is that there is a set of vectors {b1, … , bn} in V  that satisfy
Eq. (4.9), that form a basis and that this basis is unique.

Proof Let B = {b1, … , bn} be the given basis. Any other basis {b1, … , bn}
is related to B by the relation

(4.11)
for some invertible matrix M. We want to show that there exists a unique

matrix M such that, when Eq. (4.11) is plugged into g(bi, bj), we have
(4.12)

From Eqs. (4.11) and (4.12) we obtain

which, in matrix notation, becomes

where G is the matrix of g with respect to B whose entries are gij as in
(4.4). Since G is invertible because it is positive definite, then M = G−1

exists and is unique. □

Remark 4.23 Note that in the course of the proof we have found that,
since M = LBB g , then

We denote with gij the entries of M = G−1. From the above discussion, it
follows that with this notation

(4.13)

as well as

(4.14)

or3

(4.15)

(note that G−1 has to be multiplied on the right). This is consistent with the
findings in Sect. 2.​3.​2. We can now compute g(bi, bj)

bi = M ijbj

g(bi, bj) = δij .

δij = g(bi, bj) = g(M ikbk, bj) = M ikg(bk, bj) = M ikgkj ,

I = MG ,



where we used in the second equality the bilinearity of g. Thus, generalizing
Eq. (4.1), we have

(4.16)

Exercise 4.24 In the setting of Exercise 7, verify Eq. (4.15) in the
particular cases of E  and E g and of B̃ and B̃ g, that is verify that
(1) ( ) = ( )G−1

E
, and 

(2) ( ) = ( )G−1
B̃

.  
Recall that, in Eq. (4.15), because of the way this equation was obtained, G
is the matrix of g with respect to the basis B.

Given that we just proved that reciprocal bases are unique, we can talk
about the reciprocal basis (of a fixed vector space V  associated to a basis
and an inner product).

claim 4.25 The reciprocal basis is contravariant.

Proof Let B and B̃ be two bases of V  and L := L
BB̃

 be the corresponding
matrix of the change of basis, with Λ = L−1. Recall that this means that

We have to check that, if B g = {b1, … , bn} is a reciprocal basis for B,
then the basis {b̃1, … , b̃n} defined by

(4.17)
is a reciprocal basis for B̃. Then the assertion will be proven, since
{b̃1, … , b̃n} is contravariant by construction.

To check that {b̃1, … , b̃n} is the reciprocal basis for B̃, we need to check
that, with the choice of b̃i as in Eq. (4.17), the property of the reciprocal
basis given in Eq. (4.9) is verified, namely that

Indeed, we have

g(bi, bj)
(4.14)

= g(gikbk, gjℓbℓ) = gikgjℓg(bk, bℓ)

= gikgjℓgkℓ
(4.5)
= gikgjℓgℓk

(4.13)
= gikδ

j
k

= gij ,

e1 e2 e3 e1 e2 e3

b̃1 b̃2 b̃3 b̃1 b̃2 b̃3

b̃i = L
j
ibj .

b̃i = Λi
kb

k

g(b̃i, b̃j) = δij .

g(b̃i, b̃j)
(4.17)

= g(Λi
kb

k,Lℓ
jbℓ) = Λi

kL
ℓ
jg(bk, bℓ)

(4.9)
= Λi

kL
ℓ
jδ

k
ℓ = Λi

kL
k
j = δij ,



where the second equality comes from the bilinearity of g, and the last
equality from the fact that Λ = L−1. □

Suppose now that V  is a vector space with a basis B and that B g is the
reciprocal basis of V  with respect to B and to a fixed inner product
g : V × V → R. Then there are two ways of writing a vector v ∈ V , namely

Recall that the (ordinary) coordinates of v with respect to B are
contravariant (see Example 1.​2).

claim 4.26 Vector coordinates with respect to the reciprocal basis are
covariant.

Proof This will follow from the fact that the reciprocal basis is
contravariant and the idea of the proof is the same as in Claim 4.13.

Namely, let B, B̃ be two bases of V , L := L
BB̃

 the matrix of the change
of basis and Λ = L−1. Let B g and B̃ g be the corresponding reciprocal bases
and v = vjb

j a vector with respect to B g.
It is enough to check that the numbers

are the coordinates of v with respect to B̃ g, because in fact these
coordinates are covariant by definition. But in fact, using this and Eq.
(4.17), we obtain

□

Definition 4.27 The coordinates vi of a vector v ∈ V  with respect to the
reciprocal basis B g are called the covariant coordinates of v.

Because of this covariant character, we represent the vector assembling the
covariant coordinates as a row vector:

4.2.3 Change of Basis from a Basis B to Its Reciprocal Basis

B
g

We want to look now at the direct relationship between the covariant and
the contravariant coordinates of a vector v. From the alternative
expressions

v = vibi

with respect to B

= vjb
j

with respect to B g

.
 

ṽi := L
j
ivj

ṽib̃
i = (Lj

ivj)(Λi
kb

k) = L
j
iΛ

i
k

δ
j
k

vjb
k = vjb

j = v


[v]B g = ( ) .v1 … vn



we obtain

and hence, by comparing the coefficients of bj,

(4.18)

Likewise, from

follows that (Table 4.1)

(4.19)

Table 4.1 Covariance and contravariance of vector coordinates

vibi

with respect to B

= v = vjb
j

with respect to B g

,
 

(vigij)bj = vi(gijbj) = vibi = v = vjb
j = (vjgji)bi

vibi = v = vjb
j = vj(gjibi) = (vjgji)bi ,



Example 4.28 Let E = {e1, e2, e3} be the standard basis of R3 and let

be the matrix of g with respect to E . In Eq. (4.10) of Example 4.10, we saw
that

is the reciprocal basis of E . We find the covariant coordinates of v =

with respect to E g using Eq. (4.18), namely

The following computation double checks this result:

□

Example 4.29 Let V := P≤1(R) be the vector space of polynomials of
degree ≤ 1 (that is, “linear” polynomials of the form a + bx). Let
g : V × V → R be defined by

and let B := {1,x} be a basis of V . Determine:
(1) the matrix G;  
(2) the matrix G−1;  
(3) the reciprocal basis B g;  

G =
⎡⎢⎣ 1 −1 0

−1 2 −1
0 −1 2

⎤⎥⎦E
g = {b1 = , b2 = , b3 = }⎡⎢⎣3

2
1

⎤⎥⎦ ⎡⎢⎣2
2
1

⎤⎥⎦ ⎡⎢⎣1
1
1

⎤⎥⎦ ⎡⎢⎣4
5
6

⎤⎥⎦t[v]
E g = G[v]

E
= = .

⎡⎢⎣ 1 −1 0
−1 2 −1
0 −1 2

⎤⎥⎦⎛⎜⎝4
5
6

⎞⎟⎠ ⎛⎜⎝−1
0
7

⎞⎟⎠vib
i = (−1) + 0 + 7 = = v .

⎡⎢⎣3
2
1

⎤⎥⎦ ⎡⎢⎣2
2
1

⎤⎥⎦ ⎡⎢⎣1
1
1

⎤⎥⎦ ⎡⎢⎣4
5
6

⎤⎥⎦g(p, q) :=∫
1

0

p(x)q(x)dx ,



(4) the contravariant coordinates of p(x) = 6x (that is the coordinates of
p(x) with respect to B);  

(5) the covariant coordinates of p(x) = 6x (that is the coordinates of p(x)
with respect to B g).  

(1) The matrix G has entries gij = g(bi, bi), that is

so that

(2) Since det G = 1 ⋅ 1
3 − 1

2 ⋅ 1
2 = 1

12 , then by using the formula for the
inverse given in Eq. (2.​7), we get

(3) Using Eq. (4.15), we obtain that

so that B g = {4−6x, −6 + 12x}.
(4) p(x) = 6x = 0 ⋅ 1 + 6 ⋅ x, so that p(x) has contravariant coordinates

[p(x)]
B

= ( ).

(5) From Eq. (4.18) it follows that if v = p(x), then

We can check this result:

□

g11 = g(b1, b1) =∫
1

0
(b1)2

dx =∫
1

0
dx = 1

g12 = g(b1, b2) =∫
1

0
b1b2dx =∫

1

0
x = 1

2

g21 = g(b2, b1) =∫
1

0
b2b1dx = 1

2

g22 = g(b2, b2) =∫
1

0
(b2)2

dx =∫
1

0
x2dx = 1

3 ,

G = ( ) .
1 1

2
1
2

1
3

G−1 = ( ).
4 −6

−6 12

( ) = ( )G−1 = ( )( ) = ( ) ,b1 b2 1 x 1 x
4 −6

−6 12
4−6x −6 + 12x

0
6

( ) = G( ) = ( )( ) = ( ) .
v1

v2

v1

v2

1 1
2

1
2

1
3

0
6

3
2

v1b
1 + v2b

2 = 3 ⋅ (4−6x) + 2 ⋅ (−6 + 12x) = 6x .



4.2.4 Isomorphisms Between a Vector Space and Its Dual

We saw already in Proposition 3.​10, that if V  is a vector space and V ∗ is its
dual, then dim V =dim V ∗. In particular, this means that V  and V ∗ can be
identified, once we choose a basis B of V  and a basis B∗ of V ∗. In fact, the
basis B∗ of V ∗ is given once we choose the basis B of V , as the dual basis
of V ∗ with respect to B. Then there is the following correspondence:

exactly when v and α have the same coordinates, respectively with respect
to B and B∗. However, this correspondence depends on the choice of the
basis B and hence not canonical.

The above correspondence is an isomorphism. Recall that an
isomorphism between vectors spaces V  and W is an invertible linear
transformation, T : V → W . This is often used as identification of
equivalence between vector spaces, denoted ≅.

When V  is endowed with an inner product, then there is a canonical

identification of V  with V ∗ that is, an identification that does not depend
on the basis B of V . In fact, let g : V × V → R be an inner product and let
v ∈ V . Then

is a linear form and hence we have the following canonical identification
given by the metric

(4.20)

Note that the isomorphism sends the zero vector to the linear form
identically equal to zero, since g(v, ⋅) ≡ 0 if and only if v = 0 by positive
definiteness of g.

So far, we have two bases of the vector space V , namely the basis B and
the reciprocal basis B g and we have also the dual basis of the dual vector
space V ∗. It turns out that, under the isomorphism (4.20), the reciprocal
basis of V  and the dual basis of V ∗ correspond to each other. This follows
from the fact that, under the isomorphism (4.20), an element of the
reciprocal basis bi corresponds to the linear form g(bi, ⋅)

and the linear form g(bi, ⋅) : V → R has the property that

We conclude that

We have thus shown that:

v ∈ V ↭ α ∈ V ∗ ,

g(v, ⋅) : V → R

w ↦ g(v,w)

V ↔ V ∗

v ↔ v∗ := g(v, ⋅) .

bi ↔ g(bi, ⋅)

g(bi, bj) = δij .

g(bi, ⋅) ≡ βi .



Under the canonical identification between V  and V ∗ the reciprocal
basis of V  corresponds to the dual basis of V ∗.

4.2.5 Geometric Interpretation

Let g : V × V → R be an inner product and B = {b1, … , bn} a basis of V 
with reciprocal basis B g. Let v = vib

i ∈ V  be a vector written in terms of its
covariant coordinates (that is, the coordinates with respect to the reciprocal
basis). Then

so that the formula in (4.8) becomes

If we assume that the elements of the basis B = {b1, … , bn} are unit
vectors, then this further simplifies to give

(4.21)

This equation shows the following:

Fact 4.30 The covariant coordinates of v give the orthogonal projection of
v onto b1, … , bn.

Likewise, the following holds basically by definition:

g(v, bk) = g(vibi, bk) = vig(bi, bk)

δik

= vk ,


proj
b
k

v =
vk

g(bk, bk)
bk .

proj
b
k

v = vkbk .



Fact 4.31 The contravariant coordinates of v give the “parallel” projection
of v onto b1, … , bn (Fig. 4.3).

Fig. 4.3 Coordinates v1, v2 and covariant coordinates v1, v2 of vector v relative to basis B = {b1, b2}

4.3 Relevance of Covariance and Contravariance

Why do we need or care for covariant and contravariant components?

4.3.1 Physical Relevance

Consider the following physical problem: Calculate the work performed by a
force F on a particle to move the particle by a small displacement dx, in the
Euclidean plane. The work performed should be independent of the choice
of the coordinate system (i.e. choice of basis) used, that is, invariant. For
the work to remain independent of choice of basis we will see that, if the
components of the displacement change contravariantly, then the
components of the force should change covariantly.

To see this let B = {b1, b2} be a basis of the Euclidean plane. Suppose
the force F = (F1,F2) is exerted on a particle that moves with a
displacement dx = (dx1, dx2). Then the work done is given by

Suppose we are given another coordinate system B̃ := {b̃1, b̃2} and let
F = (F̃1, F̃2) and dx = (dx̃1, dx̃2). Then

Now assume that the coordinates of dx change contravariantly;

dW = F1dx
1 + F2dx

2 .

dW = F̃1dx̃
1 + F̃2dx̃

2.



or, equivalently,

where Λ = L−1 and L = (Li
j) is the change of basis matrix from B to B̃.

Since the work performed is independent of basis chosen, we also have

This gives that

Hence the coordinates of F transform covariantly; F̃i = L
j
iFj. Using

matrices this can be written as (F̃1, F̃2) = (F1,F2)L.

4.3.2 Starting Point

We start with the physical premise that physical scalar entities such as work
(cf. Sect. 4.3.1) should be independent of choices of bases. Moreover, we
declare displacement to be a vector, that is, a contravariant 1-tensor. Then
it follows that position, velocity and acceleration are also contravariant 1-
tensors; see the following exercise.

Exercise 4.32 Let T be a time-dependent vector. Verify that its time
derivative, dT

dt
 is also a vector. A similar result holds for tensors of other

types.

The fact that, in a conservative force field, the force is the negative gradient
of the potential energy function and the following exercise corroborate the
covariance of force.

Exercise 4.33 Verify that the gradient of a real function on a vector space
V  is a covariant 1-tensor.

Therefore, in this text we set that:
position or displacement, hence velocity and acceleration, are inherently
contravariant objects;
a gradient of a real function, hence a force, is inherently a covariant
object.
On the other hand, Newton’s second law states that force is the time rate

of change of momentum:

dx̃i = Λi
jdx

j ,

dxi = Li
jdx̃

j ,

dW = F1dx
1 + F2dx

2

= F1(L1
1dx̃

1 + L1
2dx̃

2) + F2(L2
1dx̃

1 + L2
2dx̃

2)

= (F1L
1
1 + F2L

2
1)dx̃1 + (F1L

1
2 + F2L

2
2)dx̃2

dW = F̃1dx̃
1 + F̃2dx̃

2 .

F̃1 = F1L
1
1 + F2L

2
1 and F̃2 = F1L

1
2 + F2L

2
2 .



The momentump is defined in terms of the Lagrangian function L governing
the mechanics. The components of p in a certain given frame are the partial
derivatives of L with respect to the components of the velocity. The velocity
being a vector (hence contravariant), the momentum becomes a covector
(hence covariant), fitting with the covariance of the force.

However, the momentum is often taken to be mass times velocity v. That
turns out to be an important special case that occurs for constant mass and
for a certain choice of the Lagrangian function L, namely L = T − V , where
T := m|v|2

2  is the kinetic energy, V  is the potential energy and does not
depend on velocity. Notice that, in this case, there is an inner product
involved, in particular to measure the square length of v, and we work with
orthonormal bases, hence the distinction between covariance and
contravariance vanishes, as explained in Sect. 4.3.3.

The postulate that the laws of Physics are the same in all inertial frames

of reference translates into the balance of equations regarding covariance
and contravariance. This corresponds to a practical strategy for verifying
the type of a tensor as illustrated in Sect. 4.3.1 and in the next exercise.

Exercise 4.34

(1) Let Tij, i, j = 1, … ,n, be the components of a (0, 2)-tensor T and ui,
i = 1, … ,n, the components of a (1, 0)-tensors u with respect to a
basis B of an n-dimensional vector space. Show that then the numbers

are the components of a (0, 1)-tensor v w.r.t. the basis B.

 

(2) Now assume that, for each basis B of an n-dimensional vector space,
we have numbers Tij, i, j = 1, … ,n. We would like to find out,
whether these numbers are the components of a (0, 2)-tensor T.
Suppose we know, that, for each choice of a (1, 0)-tensor u with
components ui with respect to B, the numbers

are the components of a (0, 1)-tensor v. Show that then the Tij are
in fact the components of a (0, 2)-tensor.

Hint: It boils down to checking whether these numbers satisfy the
relation T̃ij = L

ℓ1
i L

ℓ2
j Tℓ1ℓ2  with respect to a change of basis L from B to

B̃.

 

In Physics, there is some leeway regarding the covariant or contravariant
character when either some inner product is used (as addressed in Sect.
4.3.3), or the definition of the object is adjusted to the circumstances and

F = dp
dt

.

vj := Tiju
i, j = 1, … ,n,

vj := Tiju
i, j = 1, … ,n,



1

2

changes character in this way (this could be the case of the different stress
tensors in classical physics, continuum mechanics, electromagnetism and
relativity). The above list may thus be seen as the convention of this text,
justified by the considerations in Sect. 4.3.1.

4.3.3 Distinction Vanishes when Restricting to Orthonormal

Bases

In the presence of an inner product g : V × V → Rand if we restrict
ourselves to orthonormal bases, the distinction between covariance and
contravariance vanishes! In fact, it all becomes a matter of transposition:
writing vectors as columns or as rows.

Why is that?
First, as we saw, the reciprocal of an orthonormal basis is equal to itself,

so covariant and contravariant coordinates are equal in this special case.
Moreover, when we change from one orthonormal basis to another by a

change of basis matrix L, the inverse change is given simply by the
transpose of L. Here is a proof.

Let B = {b1, … , bn} and B̃ = {b̃1, … , b̃n} be two orthonormal bases of
V  and let L := L

BB̃
 be the corresponding matrix of the change of basis.

This means, as always, that

Since B and B̃ are orthonormal, we have g(bi, bj) = δij = g(b̃i, b̃j).
Therefore, we have

showing that LtL = I, that is, L−1 = tL. Such a matrix L is called an
orthogonal matrix.

We conclude that, in this special case, we see no distinction between
covariant and contravariant behaviour, it is simply a matter of transposition.
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Footnotes
An inner product induces a norm and a norm induces a metric on a vector space. However, the

converses do not hold.

 
Here, we avoid the usual notation for squares, because of the possible confusion with upper

indices.

b̃i = L
j
ibj .

δij = g(b̃i, b̃j) = g(Lk
i bk,Lℓ

jbℓ) = Lk
iL

ℓ
jg(bk, bℓ) = Lk

iL
ℓ
jδkℓ = Lk

iL
k
j ,

http://www.emis.de/MATH-item?0463.15001


3
 

Note that the following, like previously remarked, is a purely symbolic expression that has the only
advantage of encoding the n expressions in Eq. (4.14) for i = 1, … ,n.

 



(1)

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Cannas da Silva et al., Tensors for Scientists, Compact Textbooks in Mathematics
https://doi.org/10.1007/978-3-031-94136-8_5

5. Tensors

Ana Cannas da Silva1   , Özlem Imamoğlu1 and Alessandra Iozzi1
Department of Mathematics, ETH Zurich, Zurich, Switzerland

 
In this chapter, we address general tensors as a unifying tool for
representing multilinear quantities across science. Moreover, we
define tensor product in general and discuss some algebraic features
of this product.

5.1 Towards General Tensors

Let V  be a vector space. Up to now, we saw several objects related to
V , which we called tensors. We summarize them in Table 5.1. From
these, we infer the definition of a tensor of type (0, q) for all q ∈ N,
but we cannot say the same for a tensor of type (p, 0) for all p ∈ N,
even less of general type (p, q). The next discussion will lead us to
tensors of type (p, 0), and in the meantime we will discuss an
important isomorphism.

Table 5.1 Covariance and contravariance of aforementioned tensors

5.1.1 Canonical Isomorphism Between V  and (V ∗)∗

We saw in Sect. 4.​2.​4 that any vector space is isomorphic to its dual,
though in general the isomorphism is not canonical, that is, it
depends on the choice of a basis. We also saw that, if there is an
inner product on V , then there is a canonical isomorphism. The point

https://doi.org/10.1007/978-3-031-94136-8_5


of this section is to show that, even without an inner product, there is
always a canonical isomorphism between V  and its bidual(V ∗)∗, that
is the dual of its dual.

To see this, let us observe first of all that
(5.1)

In fact, for any vector space W, we saw in Proposition 3.​10 that
dim W =dim W ∗. If we apply this equality both to W = V  and to
W = V ∗, we obtain

from which Eq. (5.1) follows immediately. We deduce (following Sect.
4.​2.​4) that V  and (V ∗)∗ are isomorphic, and we only have to see that
there is a canonical isomorphism.

To this end, observe that a vector v ∈ V  gives rise to a linear form
on V ∗ defined by

Then we can define a linear map as follows:

(5.2)

Since, for any linear map T : V → W  between vector spaces, we have
the dimension formula (known as the Rank-Nullity Theorem in Linear

Algebra):

it will be enough to show that kerΨ = {0}. In fact, in this case, we
have

and, since dim V =dim (V ∗)∗, we can conclude that the subspace
im (Ψ) must equal the whole space (V ∗)∗. Hence, Ψ is an
isomorphism. Notice that we have not chosen a basis to define the
isomorphism Ψ.

To see that kerΨ = {0}, observe that this kernel consists of all
vectors v ∈ V  such that α(v) = 0 for all α ∈ V ∗. We want to see that
the only vector v ∈ V  for which this happens is the zero vector. In
fact, if v ∈ V  is non-zero and B = {b1, … , bn} is any basis of V , then
we can write v = vibi, where at least one coordinate, say vj, is not
zero. In that case, if B∗ = {β1, … ,βn} is the dual basis, we have

dim V =dim (V ∗)∗ .

dim V =dim V ∗ and dim V ∗ =dim (V ∗)∗ ,

ψv : V ∗ → R

α ↦ α(v) .

Ψ : V → (V ∗)∗

v ↦ ψv .

dim V =dim im (T ) + dim ker(T ) ,

dim V =dim im (Ψ) ,



βj(v) = vj ≠ 0, thus we have found an element in V ∗ not vanishing
on this v. We record this fact as follows:

Fact 5.1 Let V  be a vector space and V ∗ its dual. The dual (V ∗)∗ of
V ∗ is canonically isomorphic to V . The canonical isomorphism
Ψ : V → (V ∗)∗ takes v ∈ V  to the linear form on the dual
ψv : V ∗ → R, ψv(α) := α(v).

5.1.2 (2, 0)-Tensors

Recall that the dual of a vector space V  is the vector space

Taking now the dual of the vector space V ∗, we obtain

Using the canonical isomorphism Ψ : V → (V ∗)∗ and the fact that
coordinate vectors are contravariant, we conclude that

So, changing the vector space from V  to its dual V ∗ seems to have
had the effect of converting covariant tensors of type  into
contravariant ones of type .

We are going to apply the above principle to convert covariant
tensors of type  into contravariant ones of type . Recall that

and consider now

Anticipating the contravariant character of such bilinear maps (to be
proven in Sect. 5.1.4), we advance the following definition:

Definition 5.2 A tensor of type(2, 0) is a bilinear form on V ∗, that
is, a bilinear function σ : V ∗ × V ∗ → R.

Then we have

and we denote this set Bil(V ∗ × V ∗,R).

Exercise 5.3 Check that Bil(V ∗ × V ∗,R) is a vector space. Just like
in the case of Bil(V × V ,R) (cf. Exercise 3.​26), it is enough to show
that the zero function is in Bil(V ∗ × V ∗,R) and that if

(V ∗)∗ := {linear forms ψ : V ∗ → R} .



σ, τ ∈ Bil(V ∗ × V ∗,R) and c, d ∈ R, then the linear combination
cσ + dτ is also in Bil(V ∗ × V ∗,R).

5.1.3 Tensor Product of Two Linear Forms on V ∗

If v,w ∈ V  are two vectors (i.e., are two (1, 0)-tensors), we define

by

for any two linear forms α,β ∈ V ∗. Then σv,w is indeed bilinear, i.e.,
linear in each variable, α and β, so is indeed a (2, 0)-tensor. We
denote

and call this the tensor product of v and w.

Notes 5.4 In general, we have

as there can be linear forms α,β such that α(v)β(w) ≠ α(w)β(v).

Similar to what we saw in Sect. 3.​2.​3, we find a basis for the space of
(2, 0)-tensors by considering the (2, 0)-tensors defined by bi ⊗ bj,
where B = {b1, … , bn} is a basis of V .

Proposition 5.5 The elementsbi ⊗ bj, i, j = 1, … ,nform a basis of

Bil(V ∗ × V ∗,R). Thusdim Bil(V ∗ × V ∗,R) = n2.

The proof of this proposition is analogous to the one of Proposition 3.​
27 and we will not write it here. However, we state the crucial
remark for the proof, analogous to Remark 3.​28.

Remark 5.6 As for linear forms and bilinear forms on V , in order to
verify that two bilinear forms on V ∗ are the same, it is enough to
verify that they are the same on every pair of elements of a basis of
V ∗. In fact, let σ, τ be two bilinear forms on V ∗, let {γ 1, … , γn} be a
basis of V ∗ and let us assume that

for all 1 ≤ i, j, ≤ n. Let α = αiγ
i and β = βjγ

j be arbitrary elements
of V ∗. We now verify that σ(α,β) = τ(α,β). Because of the linearity

σv,w : V ∗ × V ∗ → R

σv,w(α,β) := α(v)β(w) ,

σ(γ i, γ j) = τ(γ i, γ j)



in each variable, we have

□

5.1.4 Contravariance of (2, 0)-Tensors

Let σ : V ∗ × V ∗ → R be a bilinear form on V ∗, that is, a (2, 0)-
tensor. We want to verify that it behaves as we expect with respect to
a change of basis. After choosing a basis B = {b1, … , bn} of V , we
have the dual basis B∗ = {β1, … ,βn} of V ∗ and the basis
{bi ⊗ bj : i, j = 1, … ,n} of the space of (2, 0)-tensors.

The (2, 0)-tensor σ is represented by its components

in the sense that

and the components S ij can be arranged into a matrix1

called the matrix of the(2, 0)-tensorσ with respect to the chosen
basis of V .

We look now at how the components of a (2, 0)-tensor change with
a change of basis. Let B = {b1, … , bn} and B̃ = {b̃1, … , b̃n} be two
basis of V  and let B∗ := {β1, … ,βn} and B̃∗ := {β̃1, … , β̃n} be the
corresponding dual bases of V ∗. Let σ : V ∗ × V ∗ → R be a (2, 0)-
tensor with components

with respect to B∗ and B̃∗, respectively. Let L := L
BB̃

 be the matrix
of the change of basis from B to B̃, and let Λ := L−1. Then, as seen
in Eqs. (2.​4) and (3.​11), we have that

σ(α,β) = σ(αiγ
i,βjγ

j) = αiβjσ(γ i, γ j) = αiβjτ(γ i, γ j)

= τ(αiγ
i,βjγ

j) = τ(α,β) .

S =

S 11 … S 1n

⋮ ⋱ ⋮

Sn1 … Snn

S ij = σ(βi,βj) and S̃ ij = σ(β̃i, β̃j)

b̃j = Li
jbi and β̃i = Λi

jβ
j .



It follows that

where the first and the last equalities follow from the definition of S̃ ij

and of S kℓ, respectively, the second from the change of basis and the
third from the bilinearity of σ. We conclude that

(5.3)

Hence, the bilinear form σ is a contravariant 2-tensor.

Exercise 5.7 Verify that, in terms of matrices Eq. (5.3) translates
into

Compare with Eq. (3.​15).

5.2 Tensors of Type (p, q)
In general, a (p, q)-tensor (with p, q = 0, 1, 2, …) is defined to be a
real-valued function of p covectors and of q vectors, which is linear in
each of its arguments:

Definition 5.8 A tensor of type(p, q) or (p, q)-tensor is a
multilinear form (or (p + q)-linear function)

By convention, a tensor of type (0, 0) is a real number, a.k.a. scalar (a
constant function of no arguments).

The order of a tensor is the number of arguments that it takes: a
tensor of type (p, q) has, thus, order p + q.2

If all the arguments of a tensor are vectors, i.e. p = 0, the tensor is
said to be (purely) covariant. If the arguments are all linear forms,
i.e. q = 0, the tensor is said to be (purely) contravariant. Otherwise,
a (p, q)-tensor is of mixed character, p being its order of
contravariance and q its order of covariance. Purely covariant
tensors are what we earlier called multilinear forms. Purely
contravariant tensors are sometimes called polyadics.3

S̃ ij = σ(β̃i, β̃j) = σ(Λi
kβ

k, Λj
ℓβ

ℓ) = Λi
kΛj

ℓσ(βk,βℓ) = Λi
kΛj

ℓS
kℓ ,

T : V ∗ × …V ∗

p

× V × ⋯ × V

q

→ R .



Table 5.2 gives an overview of how the earlier examples of tensors
fit in the above general definition.

Table 5.2 Aforementioned tensors viewed within general definition

Let T be a (p, q)-tensor, B = {b1, … , bn} a basis of V  and
B∗ = {β1, … ,βn} the corresponding dual basis of V ∗. The
components of T with respect to these bases are

If, moreover, B̃ = {b̃1, … , b̃n} is another basis, B̃∗ = {β̃1, … , β̃n}
the corresponding dual basis of V ∗ and L := L

BB̃
 the matrix of the

change of basis with inverse Λ := L−1, then the components of T with
respect to these new bases are

The above formula displays the p-fold contravariant character and
the q-fold covariant character of T.

The set of all tensors of type (p, q) on a vector space V  with the
natural operations of addition and scalar multiplication on tensors is
itself a vector space denoted by

The zero tensor is the tensor all of whose components vanish, and
two tensors are equal exactly when all their components are equal



(with respect to any given basis).

Exercise 5.9 Let V := R
2. Let T be the tensor of type (3, 0) given

with respect to the standard basis {ε1, ε2} of V ∗ by

(1) Compute T (( ), ( ), ( )).  
(2) Determine the components of T with respect to the basis

(and the corresponding dual basis B∗).

 

5.3 Symmetric and Antisymmetric Tensors

We consider now (purely) covariantq-tensors on the vector space V ,
i.e., real-valued functions of the form

which are linear in each of its q arguments. Similar notions hold for
(purely) contravariant tensors.

Definition 5.10 A (0, q)-tensor T is (totally) symmetric, if the
result T (v1, … , vq) is independent of the order of the arguments, for
all v1, … , vq ∈ V .

A (0, q)-tensor T is called (totally) antisymmetric or
skewsymmetric, if the result T (v1, … , vq) changes sign every time
we swap two of its arguments, for all v1, … , vq ∈ V .

For the special case of a covariant 2-tensor, that is, of a bilinear form
T : V × V → R, we say that T is symmetric if

and that T is antisymmetric if

Inner products are examples of symmetric (0, 2)-tensors.

T (εi, εj, εk) := {
i + i, when k = 1
i − j, when k = 2.

−1 2 3 2 1 1

B := {[ ], [ ]}1
−1

1
0

T : V × ⋯ × V

q

→ R

T (v1, v2) = T (v2, v1) , for all v1, v2 ∈ V ,

T (v1, v2) = −T (v2, v1) , for all v1, v2 ∈ V .



Exercise 5.11 Check that the set of all symmetric covariant k-
tensors, denoted S kV ∗, is a real subspace of the space of all
covariant k-tensors, T 0

k (V ).
Similarly, the set of all antisymmetric covariant k-tensors, denoted

∧kV ∗, is a real subspace of T 0
k

(V ).

Exercise 5.12 We consider the spaces of the previous exercise with
k = 2. Let n be the dimension of the vector space V . Show that

Hint: Show that, if β1, … ,βn form a basis of V ∗, then

is a basis of S 2V ∗ and

is a basis of ∧2V ∗. Then count the number of elements in these
bases.

5.4 Tensor Product

We saw already in Sects. 3.​2.​3 and 3.​3.​3 the tensor product of two
multilinear forms. Since multilinear forms are covariant tensors, we
said that this corresponds to the tensor product of two covariant
tensors. We can now define the tensor product of two tensors in
general. This will further lead us to the tensor product of vector
spaces.

5.4.1 Tensor Product of Tensors

dim S 2V ∗ = n(n+1)
2 and dim

2

∧V ∗ = n(n−1)
2 .

{ 1
2 (β

i ⊗ βj + βj ⊗ βi) ∣ i ≥ j}

{ 1
2 (β

i ⊗ βj − βj ⊗ βi) ∣ i > j}



Definition 5.13 Let

be a (p, q)-tensor and

a (k, ℓ) tensor. The tensor productT ⊗ U  of T and U is the
(p + k, q + ℓ)-tensor

defined by

Although both T ⊗ U  and U ⊗ T  are tensors of the same type, in
general we have

So we say that the tensor product is not commutative. On the other
hand, the tensor product is associative, since we always have

Analogously to how we proceeded in the case of (0, 2)-tensors, we
compute the dimension of the vector space T p

q (V ). Let
B = {b1, … , bn} be a basis of V  and B∗ := {β1, … ,βn} the
corresponding dual basis of V ∗. Just like we saw in Proposition 5.3 in
the case of (0, 2)-tensors, we form a basis of T p

q (V ) by collecting all
elements of the form

where the indices i1, … , ip and j1, … , jq take all values between 1
and n. Since there are npnq = np+q elements in the above basis
(corresponding to all possible choices of bik  and βjℓ), we deduce that

If T is a (p, q)-tensor with components

T : V ∗ × ⋯ × V ∗

p

× V × ⋯ × V

q

→ R

U : V ∗ × ⋯ × V ∗

k

× V × ⋯ × V

ℓ

→ R

T ⊗ U : V ∗ × ⋯ × V ∗

p+k

× V × ⋯ × V

q+ℓ

→ R

T ⊗ U ≠ U ⊗ T .

(S ⊗ T ) ⊗ U = S ⊗ (U ⊗ T ) .

bi1 ⊗ bi2 ⊗ ⋯ ⊗ bip ⊗ βj1 ⊗ βj2 ⊗ ⋯ ⊗ βjq



then we have, with a (p + q)-fold application of the Einstein
convention, that

A simple tensor (also called a tensor of rank 1 or pure tensor

or decomposable tensor or elementary tensor) of type (p, q) is a
tensor T that can be written as a tensor product of the form

where a, b, … ∈ V  and α,β, … ∈ V ∗. The rank of a tensorT is then
the minimum number of simple tensors that sum to T.4 By
convention, the zero tensor has rank 0 and a non-zero tensor of order
zero, i.e., a non-zero scalar, has rank 1. A non-zero tensor of order 1
always has rank 1. Already among tensors of order 2 (and when
dim V ≥ 2) there are tensors of rank greater than 1. Example 6
provides such an instance.

5.4.2 Tensor Product for Vector Spaces

To complement the previous exposition and justify the notation
V ∗ ⊗ V ∗ for the vector space of all bilinear forms on V  (cf. Sect. 3.​2.​
3), we aim in this section to give an idea of what the tensor product

for finite-dimensional vector spaces should mean and of how the
tensor product for vector spaces relates to the tensor product for

tensors.
Let V  and W be two vector spaces with dim V = n and

dim W = m. Choose {b1, … , bn} a basis of V  and {a1, … , am} a
basis of W.

Definition 5.14 The tensor product of V  and W is the (n ⋅ m)-
dimensional vector space V ⊗ W  with basis

Elements of V ⊗ W  are naturally referred to as tensors. They can be
seen as bilinear maps V ∗ × W ∗ → R, without depending on the
choice of bases: By the above definition, tensors are linear
combinations of the bi ⊗ aj. By viewing bi ∈ V  as a linear map (cf.
Table 5.2)

T
i1,…,ip
j1,…,jq := T (βi1 , … ,βip , bj1 , … , bjq) ,

T = T
i1,…,ip
j1,…,jq

bi1 ⊗ bi2 ⊗ ⋯ ⊗ bip ⊗ βj1 ⊗ βj2 ⊗ ⋯ ⊗ βjq .

T = a ⊗ b ⊗ …

p

⊗ α ⊗ β ⊗ …

q

{bi ⊗ aj : 1 ≤ i ≤ n, 1 ≤ j ≤ m} .



and similarly for aj ∈ W  as

we regard the symbol bi ⊗ aj as a bilinear map

The tensor product V ⊗ W  is endowed with a bilinear map from
the cartesian product V × W

defined as follows. If

then Ψ(v,w) =: v ⊗ w is the element of V ⊗ W  with coordinates viwj

with respect to the basis {bi ⊗ aj : 1 ≤ i ≤ n, 1 ≤ j ≤ m}, so that
the following holds:

Notice that the ranges for the indices are different:
1 ≤ i ≤ n, 1 ≤ j ≤ m. The numbers viwj may be viewed as obtained
by the outer product of the coordinate vectors of v and w yielding an
n × m matrix:

An element of V ⊗ W  that is in the image of the map Ψ, that is, an
element of V ⊗ W  that can be written as v ⊗ w for some v ∈ V  and
w ∈ W  is called a simple tensor (or tensor of rank 1 or pure

tensor or decomposable tensor or elementary tensor). Yet keep
in mind, that the map Ψ is usually by far not surjective. In particular,
one can show that, if v1, v2 ∈ V  are linearly independent and
w1,w2 ∈ W  are also linearly independent, then the sum
v1 ⊗ w1 + v2 ⊗ w2 is not a pure tensor. Checking the first instance of
this phenomenon is left as the next exercise. The proof in general
goes along somewhat similar lines, but gets sophisticated.5

Exercise 5.15 Check that if both V  and W are 2-dimensional with
respective bases {b1, b2} and {a1, a2}, then b1 ⊗ a1 + b2 ⊗ a2 is not a
pure tensor.

bi : V ∗ → R , β ↦ β(bi) ,

aj : W ∗ → R , α ↦ α(aj) ,

V ∗ × W ∗ → R , (β,α) ↦ β(bi)α(aj) .

Ψ : V × W → V ⊗ W

v = vibi ∈ V and w = wjaj ∈ W ,

v ⊗ w = (vibi) ⊗ (wjaj) = (viwj)bi ⊗ aj .

[v]
B

t[w]
A

= (w1 … wm) = .

v1

⋮
vn

v1w1 … v1wm

⋮ ⋮

vnw1 … vnwm



The following proposition gives some useful identifications.

Proposition 5.16 Let V  and W be vector spaces withdim V = nand

dim W = mand let

Then

Proof Here is the idea behind this chain of canonical isomorphisms.
Let f ∈ Bil(V × W ,R), that is, f : V × W → R is a bilinear function,
in particular it takes two vectors, v ∈ V  and w ∈ W , as input and
gives a real number f(v,w) ∈ R as output. If, however, we only feed f
one vector v ∈ V  as input, then there is a remaining spot waiting for
a vector w ∈ W  to produce a real number. Since f is linear in V  and
in W, the map f(v, ⋅) : W → R is a linear form, so f(v, ⋅) ∈ W ∗,
hence f gives us an element in Lin(V ,W ∗). There is then a linear map

where

Conversely, any T ∈ Lin(V ,W ∗) can be identified with a bilinear map
fT ∈ Bil(V × W ,R) defined by

Since fTf
= f and TfT = T , we have proven the first isomorphism in

the proposition.
Analogously, if the input is only a vector w ∈ W , then

f(⋅ ,w) : V → R is a linear map and we now see that
f ∈ Bil(V × W ,R) defines a linear map Uf ∈ Lin(W ,V ∗). The same
reasoning as in the previous paragraph provides the canonical
isomorphism Bil(V × W ,R) ≅Lin(W ,V ∗).

Observe now that, because of our definition of V ∗ ⊗ W ∗, we have

Lin(V ,W ∗) := {linear maps V → W ∗} .

Bil(V × W ,R) ≅Lin(V ,W ∗)

≅Lin(W ,V ∗)
≅V ∗ ⊗ W ∗

≅(V ⊗ W)∗

= Lin(V ⊗ W ,R) .

Bil(V × W ,R) → Lin(V ,W ∗)

f ↦ Tf ,

Tf(v)(w) := f(v,w) .

fT (v,w) := T (v)(w) .

Bil(V × W ,R) ≅V ∗ ⊗ W ∗ ,



since these spaces both have basis

where {b1, … , bn} is a basis of V  with corresponding dual basis
{β1, … ,βn} of V ∗, and {a1, … , an} is a basis of W with
corresponding dual basis {α1, … ,αn} of W ∗.

Finally, an element Dijβ
i ⊗ αj ∈ V ∗ ⊗ W ∗ may be viewed as a

linear map V ⊗ W → R, that is as an element of (V ⊗ W)∗ by

□

Because of the identification Bil(V × W ,R) ≅Lin(V ⊗ W ,R), we can
say that

There is no reason to restrict oneself to the tensor product of only
two factors. One can equally define the tensor product V1 ⊗ ⋯ ⊗ Vk,
and obtain a vector space of dimension dim V1 × ⋯ × dim Vk. Note
that we do not need to use brackets, since the tensor product is
associative: (V1 ⊗ V2) ⊗ V3 = V1 ⊗ (V2 ⊗ V3).

We have

since both spaces have the same basis. An element T of T p
q (V ) was

first regarded according to Definition 2 as a multilinear map

Now, with respect to bases B = {b1, … , bn} of V  and
B∗ = {β1, … ,βn} of V ∗, the components of T are

hence we may view T as

{βi ⊗ αj : 1 ≤ i ≤ n, 1 ≤ j ≤ m} ,

V ⊗ W → R

C kℓbk ⊗ aℓ ↦ DijC
kℓβi(bk)

δik

αj(aℓ)

δ
j
ℓ

= DijC
kℓ .

T p
q (V ) = V ⊗ ⋯ ⊗ V

p

⊗ V ∗ ⊗ ⋯ ⊗ V ∗

q

,

T : V ∗ × …V ∗

p

× V × ⋯ × V

q

→ R .

T
i1,…,ip
j1,…,jq := T (βi1 , … ,βip , bj1 , … , bjq) ,



1

2

3

4

5

In particular, the pth tensor power of a vector space is

Therefore, we may write

and

Footnotes
Once again, contrary to the change of basis matrix L, here we have only upper indices.

This reflects the contravariance of the underlying tensor, σ.

 
The order of a tensor is sometimes also called rank. However, rank of a tensor is often

reserved for another notion closer to the notion of rank of a matrix and related to
decomposability of tensors (see Sects. 5.4.1 and 5.4.2).

 
Whereas Latin roots are used for covariant tensors, like in bilinear form, Greek roots are

used for contravariant tensors, like in dyadic, as established by Gibbs in late nineteen
century.

 
This notion of rank of a tensor extends the notion of rank of a matrix, as can be seen by

considering tensors of order two and their corresponding matrices of components.

 
The Segre embedding from Algebraic Geometry provides the framework for understanding

this properly.

 

T
i1,…,ip
j1,…,jq bi1 ⊗ … ⊗ bip ⊗ βj1 ⊗ … ⊗ βjq ∈ V ⊗ ⋯ ⊗ V

p

⊗ V ∗ ⊗ ⋯ ⊗ V ∗

q

.

V ⊗p := V ⊗ ⋯ ⊗ V

p

= T
p

0 (V ) .
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Mathematically-speaking, a tensor is a real-valued function of some number of
vectors and some number of covectors (a.k.a. linear forms), which is linear in each
of its arguments. On the other hand, tensors are most useful in connection with
concrete physical applications.

In this chapter, we borrow notions and computations from Physics and Calculus
to discuss important classical tensors. We assume familiarity with concepts from
Physics, for instance at the level of [14] or [15] and from Calculus, for instance at
the level of [6] or [12].

6.1 Inertia Tensor

6.1.1 Physical Preliminaries

We consider a rigid body M fixed at a point O and rotating about an axis through O
with angular velocityω. Denoting the time variable t and an angle variable θ
around the axis of rotation, the angular velocity will be viewed as a vector1 with
magnitude

with direction given by the axis of rotation and with orientation given by the
right-hand rule. The position vector of a point P in the body M relative to the
origin O is

while the linear velocity of that point P is

The linear velocity v has, hence, magnitude

where α is the angle between ω and x, and has direction tangent at P to the circle
of radius r perpendicular to the axis of rotation (Fig. 6.1).

∥ ω ∥= ∥
dθ

dt
∥ ,

x := →OP

v := ω × x .

∥ v ∥= ∥ ω ∥

∥ dθ
dt ∥

∥ x ∥sin α

=:r

,

https://doi.org/10.1007/978-3-031-94136-8_6


Fig. 6.1 Computing the kinetic energy of a rigid body rotating about an axis
The kinetic energy of an infinitesimal region dM of M around P is

where ∥ v ∥2= v ⋅ v is the square of the norm of the linear velocity and dm is the
mass of dM. The total kinetic energy of M is

Actually, depending on the type of rigid body, we might take here a sum instead of
integral, or some other type of integral (line integral, surface integral, etc) such as:
(1) If M is a solid in 3-dimensional space, then

where the norm squared ∥ ω × x
P

∥2 and the density ρP  are functions of the
point P with coordinates (x1,x2,x3).

 

(2) If M is a flat sheet, then

where the integrand only depends on two cartesian coordinates.

 

(3) If M is a (curvy) surface in 3-dimensional space, then

where dσ is the infinitesimal element of the surface for a surface integral.

 

dE =
1

2
∥ v ∥2 dm ,

E =
1

2
∫

M

∥ v ∥2 dm =
1

2
∫

M

∥ ω × x ∥2 dm .

E = 1
2 ∭

M
∥ ω × x

P
∥2 ρ

P
dx1dx2dx3 ,

E = 1
2 ∬M

∥ ω × x
P

∥2 ρ
P
dx1dx2 ,

E = 1
2 ∬M

∥ ω × x
P

∥2 ρ
P
dσ ,



(4) If M is a wire in 3-dimensional space, then

where ds is the infinitesimal element of length for a line integral.

 

(5) If M is a finite set of N point masses mi with rigid relative positions, then  

We will keep writing our formulas for the first case (with a volume integral); these
should be adjusted for situations of the other types.

In any case, we need to work out the quantity

for vectors ω and x in 3-dimensional space.
To this purpose, we use the Lagrange identity,2 according to which

(6.1)

Applying the identity (6.1) with a = c = ω and b = d = x, we obtain

Let now B = {e1, e2, e3} be an orthonormal3 basis of R3, so that

Then

so that

Therefore, the total kinetic energy is

and it depends only on ω1,ω2,ω3 (since we have integrated over the x1,x2,x3).

6.1.2 Moments of Inertia

Definition 6.1 The inertia tensor is the covariant 2-tensor whose components
with respect to an orthonormal basis B are

E = 1
2 ∫M

∥ ω × x
P

∥2 ρ
P
ds ,

E = 1
2 ∑

N

i=1
∥ ω × xi ∥2 mi .

∥ ω × x ∥2

(a × b) ⋅ (c × d) =det [ ] .
a ⋅ c a ⋅ d

b ⋅ c b ⋅ d

∥ ω × x ∥2= (ω × x) ⋅ (ω × x) =det [ ] =∥ ω ∥2∥ x ∥2 − ∥ ω ⋅ x ∥2 .
ω ⋅ ω ω ⋅ x

x ⋅ ω x ⋅ x

ω = ωiei and x = xiei .

∥ ω ∥2 = ω ⋅ ω = δijω
iωj = ω1ω1 + ω2ω2 + ω3ω3

∥ x ∥2 = x ⋅ x = δkℓx
kxℓ = x1x1 + x2x2 + x3x3

ω ⋅ x = δikω
ixk = ω1x1 + ω2x2 + ω3x3

∥ ω × x ∥2 =∥ ω ∥2∥ x ∥2 − ∥ ω ⋅ x ∥2

= (δijωiωj)(δkℓx
kxℓ) − (δikωixk)(δjlωjxℓ)

= (δijδkℓ − δikδjℓ)ωiωjxkxℓ .



Then the kinetic energy of the rotating rigid body is

which in matrix notation amounts to

Remark 6.2 If, instead of an orthonormal basis, we had used any basis of R3, we
would have gotten

where gij are the components of the metric tensor. This formula also makes
apparent the covariance and the symmetry of I inherited from the metric: Iij = Iji
for all i and j.

We will see that the inertia tensor is a convenient way to encode all moments of
inertia of an object in one quantity and we return now to the case of an orthonormal
basis. The first component of the inertia tensor is

If k = ℓ = 1, then δ11δ11 − δ11δ11 = 0, so that the non-vanishing terms have
k = ℓ ≠ 1. In this way, one can check that

E =
1

2
ω ⋅ Iω =

1

2
t
ωIω .

Iij = (gijgkℓ − gikgjℓ)∭
M

xkxℓdm .



so that with respect to an orthonormal basis B, the inertia tensor is represented by
the symmetric matrix

The diagonal components I11, I22, I33 are the moments of inertia of the rigid
body M with respect to the coordinate axes Ox1,Ox2,Ox3, respectively. The off-
diagonal components I12, I23, I31 are the polar moments of inertia or the
products of inertia of the rigid body M.

I11 =∭
M

(x2x2 + x3x3) dm

I22 =∭
M

(x1x1 + x3x3) dm

I33 =∭
M

(x1x1 + x2x2) dm

I23 = I32 = −∭
M

x2x3 dm

I31 = I13 = −∭
M

x1x3 dm

I12 = I21 = −∭
M

x1x2 dm ,

I = .

I11 I12 I13

I21 I22 I23

I31 I32 I33



Example 6.3 We want to find the inertia tensor of a homogeneous rectangular
plate with sides a and b and total mass m, assuming that the rotation preserves the
center of mass O. We choose a coordinate system (corresponding to an orthonormal
basis) with origin at the center of mass O, with x-axis parallel to the side of length a,
y-axis parallel to the side of length b, z-axis perpendicular to the plate (Fig. 6.2),
and adjust our previous formulas to double integrals. Since the plate is assumed to
be homogeneous, it has a constant mass density equal to

Then

Similarly,

and

turns out to be just the sum of I11 and I22.

Fig. 6.2 Rectangular plate from Example 6.2

Furthermore,

ρ =
total mass

area
=

m

ab
.

I11

Ixx

= ∫
a
2

− a
2

∫
b
2

− b
2

(y2 + z2

=0

) ρ

m
ab

dy dx

= m
ab
a∫

b
2

− b
2

y2 dy

= m
b
[ y3

3 ]
b
2

− b
2

= m
12 b2 .

I22

Iyy

= m
12 a2 ,

I33

Izz

= ∫
a
2

− a
2

∫
b
2

− b
2

(x2 + y2)ρ dy dx = m
12 (a2 + b2)

I23 = I32 = −∫
a
2

− a
2

∫
b
2

− b
2

y z

=0

ρ dy dx = 0 ,



and, similarly, I31 = I13 = 0. Finally, we have

We conclude that the inertia tensor is given by the matrix

□

Exercise 6.4 Compute the inertia tensor of the same plate, but now with center of
rotation O coinciding with a vertex of the rectangular plate.

6.1.3 Moment of Inertia About any Axis

We compute the moment of inertia of the body M about an axis through the point O
and defined by the unit vector u (Fig. 6.3).

Fig. 6.3 Computing the moment of inertia of a rigid body about an axis

The moment of inertia of an infinitesimal region of M around P with respect to
the axis defined by u is

where the last equality follows from the fact that ∥ u × x ∥=∥ u ∥ ∥ x ∥sin α = r,
since u is a unit vector. Hence, the total moment of inertia of M with respect to
the axis given by u is

m

12
.

b2 0 0

0 a2 0

0 0 a2 + b2



This is very similar to the total kinetic energyE: just replace ω by u and omit the
factor 1

2 . By the earlier computations, we conclude that

where Iij is the inertia tensor. This formula shows that the total moment of inertia

of the rigid body M with respect to an arbitrary axis passing through the point O is

determined only by the inertia tensor of the rigid body.

Example 6.5 For the rectangular plate in Example 6.2, we now want to compute
the moment of inertia with respect to the diagonal of the plate (Fig. 6.4).

Fig. 6.4 Rectangular plate from Example 6.3

We choose the unit vector u = 1
√a2+b2

(ae1 + be2) (the other possibility is the
negative of this vector, yielding the same result), so that

and use the matrix for I found in Example 6.2. The moment of inertia is

□

Exercise 6.6 Double-check the above result for the moment of inertia of the
rectangular plate in Example 6.2 with respect to the diagonal of the plate, now by
using the inertia tensor computed in Exercise 1 (with center of rotation O in a
vertex belonging also to that diagonal).

Iu :=∭
M

∥ u × x ∥2 dm ≥ 0 .

Iu = Iiju
iuj ,

u1 = a

√a2+b2
, u2 = b

√a2+b2
, u3 = 0

Iu = Iiju
iuj

= ( )

= m
6

a2b2

a2+b2 .

a

√a2+b2

b

√a2+b2
0

m
12 b

2 0 0

0 m
12 a

2 0

0 0 m
12 (a2 + b2)

a

√a2+b2

b

√a2+b2

0



Exercise 6.7 Compute the moment of inertia of the rectangular plate in Example
6.2 with respect to:
(1) an axis perpendicular to the plate and passing through its center of mass, and 
(2) an axis perpendicular to the plate and passing through one vertex.  
6.1.4 Angular Momentum

Let M be a body rotating with angular velocity ω about an axis through the point O.
Let x = →OP  be the position vector of a point P and v = ω × x the linear velocity of P
(Fig. 6.5).

Fig. 6.5 Computing the angular momentum of a rigid body, M, rotating about an axis

Then the angular momentum of an infinitesimal region of M around P is

so that the total angular momentum
4 of M is

We need to work out x × (ω × x) for vectors x and ω in 3-dimensional space. We
apply the following identity5 for the triple vector product:

(6.2)
Let B = {e1, e2, e3} be an orthonormal basis of R3. Then, replacing the following
equalities

(6.3)
(6.4)
(6.5)
(6.6)

into the identity (6.2), we obtain

dL = (x × v) dm ,

L =∭
M

(x × (ω × x)) dm .

x × (ω × x) = (x ⋅ x)ω − (ω ⋅ x)x .

ω = ωiei = δijω
jei

x = xiei = δi
k
xkei

x ⋅ x = δkℓx
kxℓ

ω ⋅ x = δjℓω
jxℓ



Therefore, the total angular momentum is

where the components Li are

The above expression for Li can be written in terms of the inertia tensor Iij as

which corresponds to the matrix form L = Iω. We see that the angular momentum
L is proportional (or parallel) to the angular velocity ω only when ω is an
eigenvector of the inertia tensor I.

Example 6.8 Suppose the rectangular plate in the previous examples is rotating
about an axis through the center of mass O with angular velocity

We want to compute its angular momentum.
The inertia tensor is given by the matrix Iij found in Example 6.2:

The total angular momentum has components given by

so that

□

6.1.5 Principal Moments of Inertia

Observe that the inertia tensor of a rigid body M is symmetric and recall the
Spectral Theorem (Theorem 4.​9). Then we know that an orthonormal eigenbasis
{ẽ1, ẽ2, ẽ3} exists for the inertia tensor. Let I1, I2, I3 be the corresponding
eigenvalues. The matrix representing the inertia tensor with respect to this
eigenbasis is

x × (ω × x) = (δkℓx
kxℓ

(6.5)

)δijω
jei

(6.3)

− (δjℓω
jxℓ

(6.6)

)δikx
kei

(6.4)

= (δijδkℓ − δikδjℓ)ω
jxkxℓei .

L = Liei ,

Li = δikIkjω
j ,

ω = e1 + 2e2 + 3e3 , or = .

ω1

ω2

ω3

1

2

3

.

m
12 b

2 0 0

0 m
12 a

2 0

0 0 m
12 (a2 + b2)

= = ,

L1

L2

L3

m
12 b

2 0 0

0 m
12 a

2 0

0 0 m
12 (a2 + b2)

1

2

3

m
12 b

2

m
6 a2

m
4 (a2 + b2)

L =
m

12
b2e1 +

m

6
a2e2 +

m

4
(a2 + b2)e3 .



The orthonormal eigenbasis gives a preferred coordinate system in which to
formulate a problem pertaining to rotation of this body. The axes of the
eigenvectors are called the principal axes of inertia of the rigid body M. The
eigenvalues Ii are called the principal moments of inertia.

For instance, if a homogeneous body is symmetric with respect to the xy-plane,
then the polar moments of inertia I23 = I32 and I13 = I31 vanish, thus the z-axis is
necessarily a principal axis (because of the block-form of I).

The principal moments of inertia are the moments of inertia with respect to the
principal axes of inertia, hence they are non-negative

A rigid body is called
(1) an asymmetric top if I1 ≠ I2 ≠ I3 ≠ I1;  
(2) a symmetric top if exactly two eigenvalues are equal, say I1 = I2 ≠ I3: any

axis passing through the plane determined by ẽ1 and ẽ2 is then a principal axis
of inertia;

 

(3) a spherical top if I1 = I2 = I3: any axis passing through O is a principal axis
of inertia.  

With respect to the eigenbasis {ẽ1, ẽ2, ẽ3} the kinetic energy is

where ω = ω̃iẽi, with ω̃i the components of the angular velocity with respect to the
basis {ẽ1, ẽ2, ẽ3}. In particular, we see that the kinetic energy can be conserved,
even if the angular velocity ω changes, as long as the above combination of squares
is preserved. This is related to the phenomenon of precession.

The surface determined by the equation (with respect to the coordinates x, y, z)
(6.7)

is called the ellipsoid of inertia. The symmetry axes of the ellipsoid coincide with
the principal axes of inertia. Note that for a spherical top, the ellipsoid of inertia is
actually a sphere.

The ellipsoid of inertia gives the moment of inertia with respect to any axis as
follows: Consider an axis given by the unit vector u and let p = cu be a vector of
intersection of the axis with the ellipsoid of inertia, where c is (±) the distance to O
of the intersection of the axis with the ellipsoid of inertia. The moment of inertia
with respect to this axis is (Fig. 6.6)

.

I1 0 0

0 I2 0

0 0 I3

I1, I2, I3 ≥ 0 .

E =
1

2
(I1ω̃

1
ω̃

1 + I2ω̃
2
ω̃

2 + I3ω̃
3
ω̃

3) ,

I1x
2 + I2y

2 + I3z
2 = 1



Fig. 6.6 Ellipsoid of inertia

where the last equality follows from the fact that, since p is on the ellipsoid, then
Iiju

iuj = 1 by Eq. 6.7.

Example 6.9 The principal axes of inertia for the rectangular plate in Example 6.2
are the axes parallel to the sides and the axis perpendicular to the plate. The
corresponding principal moments of inertia are

If a = b, that is, if the rectangle is a square, we have a symmetric top. □

Exercise 6.10 The following systems are regarded as rigid, i.e., as systems where
the distances between particles remain constant, and where the origin is at the
center of mass. For each system, choose an orthonormal basis and determine the
inertia tensor and the ellipsoid of inertia, giving in each case the principal axes of
inertia and the principal moments of inertia.
(1) A molecule consisting of n atoms with masses mi, i = 1, … ,n, all along a

straight line L with relative distance ℓij between atom i and atom j.  
(2) A molecule made up of three atoms, which lie in the vertices of an isosceles

triangle ABC with basis length BC = a and height h. The atoms in positions B
und C have mass m1, the atom in position A has mass m2.

 

(3) A molecule composed of four atoms, all with the same mass m, lying in the
vertices of a regular tetrahedron with edges of length a.  

Exercise 6.11 Let K be a homogeneous rigid body of mass m and shaped like a
parallelepiped with orthogonal sides a, b, c. The body K rotates around one of its
diagonals (going necessarily through its center of mass) with angular velocity ω.
(1) Find the principal axes and principal moments of inertia of K. 
(2) Find the equation of its ellipsoid of inertia.  
(3) Find the kinetic energy of K.  
(4) Find the angular momentum of K.  

I = Iiju
iuj =

1

c2
Iijp

ipj =
1

c2
,

I11 =
m

12
b2 , I22 =

m

12
a2 and I33 =

m

12
(a2 + b2) .



6.2 Stress Tensor

6.2.1 Physical Preliminaries

Let us consider a rigid body M acted upon by external forces but in static

equilibrium, and let us consider an infinitesimal region dM around a point P. There
are two types of external forces:
(1) The body forces, that is forces whose magnitude is proportional to the

volume/mass of the region. For instance, gravity, attractive force or the
centrifugal force.

 

(2) The surface forces, that is forces exerted on the surface of the element by the
material surrounding it. These are forces whose magnitude is proportional to
the area of the region in consideration.

 

The surface force per unit area is called the stress. We will concentrate on
homogeneous stress, that is stress that does not depend on the location of the
element in the body, but depends only on the orientation of the surface given by its
tangent plane. Moreover, we assume that the body in consideration is in static

equilibrium.

Remark 6.12 It was the concept of stress in mechanics that originally led to the
invention of tensors, also etymologically. The English word stress relates to tension,
leading to the choice of tensor or, in French, tenseur.

Choose an orthonormal basis {e1, e2, e3} and the plane Π1 through P parallel to the
e2e3 coordinate plane. The vector e1 is normal to this plane. Let ΔA1 be the area of
the slice of the infinitesimal region around P cut by the plane and let ΔF  be the
force acting on that slice. In this orthonormal set-up (cf. Sect. 4.​3.​3), we write ΔF
as a vector in terms of its components

and, since the stress is the surface force per unit area, we define

Similarly, we can consider planes parallel to the other coordinate planes and define
(Fig. 6.7)

Fig. 6.7 Planes through the point P and parallel to the coordinate planes, for the computation of the stress
tensor

ΔF = ΔF 1e1 + ΔF 2ee + ΔF 3e3

σ1j := lim
ΔA1→0

ΔF j

ΔA1
, for j = 1, 2, 3 .



It turns out that the resulting nine numbers σij are the components of a
contravariant 2-tensor called the stress tensor. As we are restricting to
orthonormal bases, the type of this tensor gets blurred; cf. Sect. 4.​3.​3. The stress
tensor encodes the mechanical stresses on an object.

We now compute the stress across other slices through P, that is, across other
planes with other normal vectors. Let Π be a plane passing through P, n a unit
vector through P perpendicular to the plane Π, Δs = Π ∩ dM the area of a small
element of the plane Π containing P and ΔF  the force acting on that element (Fig.
6.8).

Fig. 6.8 Computing the stress tensor across a planar slice through the point P

claim 6.13 The stress at P across the surface perpendicular to n is

It follows from the claim that the stress σ is a vector-valued function that depends
linearly on the normal n to the surface element.

Proof Consider the tetrahedron OA1A2A3 bound by the triangular slice on the
plane Π having area Δs and three triangles on planes parallel to the coordinate
planes (Fig. 6.9)

Fig. 6.9 Tetrahedron for the proof of Claim 6.7

Consider all external forces acting on this tetrahedron, which we regard as a
volume element of the rigid body:
(1) Body forces amounting to f ⋅ Δv, where f is the force per unit of volume and

Δv is the volume of the tetrahedron. We actually do not know these forces, but
we will see later that these are not relevant.

 

σ(n) := lim
Δs→0

ΔF

Δs
= σij(n ⋅ ei)ej .



(2) Surface forces amounting to the sum of the forces on each of the four sides of
the tetrahedron.  

We want to assess each of the four surface contributions due to the surface forces.
If Δs is the area of the slice on the plane Π, the contribution of that slice is, by
definition of stress equal to

If Δs1 is the area of the slice on the plane with normal −e1, the contribution of that
slice is

and, similarly, the contributions of the other two slices are

Note that the minus sign comes from the fact that we use everywhere outside
pointing normals (Fig. 6.10).

Fig. 6.10 The four faces of the tetrahedron OA1A2A3 and their corresponding outward-pointing unit normal
vectors

So the total surface force is

Since there is static equilibrium, the sum of all (body and surface) forces must be
zero

The term fΔv can be neglected when Δs is small, as it contains terms of higher
order (in fact, Δv → 0 faster than Δs → 0). We conclude that

It remains to relate Δs to Δs1, Δs2, Δs3. The side with area Δsi is the orthogonal
projection of the side with area Δs onto the plane with normal ei. The scaling factor
for the area under projection is cos αi, where αi is the convex angle between the
plane normal vectors (Fig. 6.11)

σ(n)Δs .

−σ1jejΔs1 ,

−σ2jejΔs2 and − σ3jejΔs3 .

σ(n)Δs − σ1jejΔs1 − σ2jejΔs2 − σ3jejΔs3 .

fΔv + σ(n)Δs − σijejΔsi = 0 .

σ(n)Δs = σijejΔsi .



Fig. 6.11 The convex angle between vectors ei and n

Therefore,

or, equivalently,

Note that, in the above formula, the quantities n ⋅ ei are the coordinates of n with
respect to the orthonormal basis {e1, e2, e3}, namely

□

Remark 6.14 For homogeneous stress, the stress tensor σij does not depend on
the point P. However, when we flip the orientation of the normal to the plane, the
stress tensor changes sign. In other words, if σ(n) is the stress across a surface
with normal n, then

The stress considers orientation as if the forces on each side of the surface have to
balance each other in static equilibrium (Fig. 6.12).

Fig. 6.12 Stress changes sign under orientation flipping of the normal to the plane

□

6.2.2 Principal Stresses

The following claim is also known as the Boltzmann Axiom.

claim 6.15 The stress tensor is a symmetric tensor, that is σij = σji.

Δsi

Δs
=cos αi =cos αi ∥ n ∥ ∥ ei ∥= n ⋅ ei .

σ(n)Δs = σijej(n ⋅ ei)Δs

σ(n) = σij(n ⋅ ei)ej .

n = (n ⋅ e1)e1 + (n ⋅ e2)e2 + (n ⋅ e3)e3 = n1e1 + n2e2 + n3e3 .

σ(−n) = −σ(n) .



Proof Consider an infinitesimal cube of side Δℓ surrounding P and with faces
parallel to the coordinate planes (Fig. 6.13).

Fig. 6.13 Cube with faces parallel to the coordinate planes for the proof of Claim 6.9

The force acting on each of the six faces of the cube are:

σ1jΔA1ej and −σ1jΔA1ej, respectively for the front and the back faces, ABB′A′
and DCC′D′;
σ2jΔA2ej and −σ2jΔA2ej, respectively for the right and the left faces BCC′B′
and ADD′A′;
σ3jΔA3ej and −σ3jΔA3ej, respectively for the top and the bottom faces ABCD

and A′B′C′D′,

where ΔA1 = ΔA2 = ΔA3 = Δs = (Δℓ)2 is the common face area. We compute
now the torqueτ, assuming the forces are applied at the center of each face, whose
distance to the center point P is 1

2 Δℓ. Recall that the torque (or moment of force)
is the tendency of a force to twist or rotate an object. It is given by the cross
product of the distance vector and the force vector.

Since the equilibrium is static, then τ = 0, so that σij = σji. □

We can hence write

where the diagonal entries σ11,σ22 and σ33 are the normal components, that is the
components of the forces perpendicular to the coordinate planes and the remaining
entries σ12,σ13 and σ23 are the shear components, that is the components of the
forces parallel to the coordinate planes.

Since the stress tensor is symmetric, again by the Spectral Theorem (Theorem 4.​
9), it can be orthogonally diagonalized. That is, with respect to an orthonormal
eigenbasis, it is given by

τ = Δℓ
2 e1 × σ1jΔs ej + (− Δℓ

2 e1)× (−σ1jΔs ej)

+ Δℓ
2 e2 × σ2jΔs ej + (− Δℓ

2 e2)× (−σ2jΔs ej)

+ Δℓ
2 e2 × σ3jΔs ej + (− Δℓ

2 e3)× (−σ3jΔs ej)

= ΔℓΔs (ei × σijej)

= ΔℓΔs((σ23 − σ32)e1 + (σ31 − σ13)e2 + (σ12 − σ21)e3) .

σ = ,

σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33



where now σ1,σ2 and σ3 are the principal stresses, that is the eigenvalues ofσ.
The eigenspaces of σ are the principal directions and the shear components
disappear for the principal planes, i.e., the planes orthogonal to the principal
directions.

6.2.3 Special Forms of the Stress Tensor

We consider the stress tensor with respect to an orthonormal eigenbasis or another
special basis, so that the corresponding matrix has a simpler form. We use the
following terminology:

Uniaxial stress for a stress tensor given by

Example 6.16 This is the stress tensor in a long vertical rod loaded by hanging a
weight on the end. □

Plane stress or biaxial stress for a stress tensor given by

Example 6.17 This is the stress tensor in a plate on which forces are applied
parallel to the plate (Fig. 6.14).

Fig. 6.14 Forces originating plane stress

□

Pure shear for a stress tensor given by

(6.8)

This is special case of the biaxial stress, in the case where σ1 = −σ2. The first
matrix in (6.8) represents the stress tensor written with respect to an eigenbasis,
whereas the second matrix represents the stress tensor written with respect to an

,

σ1 0 0

0 σ2 0

0 0 σ3

σ 0 0

0 0 0

0 0 0

σ1 0 0

0 σ2 0

0 0 0

or .

−σ 0 0

0 σ 0

0 0 0

0 σ 0

σ 0 0

0 0 0



orthonormal basis obtained by rotating an eigenbasis by 45∘ about the third axis.
The relation between the two matrix representations is given by

where L is the matrix of the change of coordinates (Fig. 6.15).

Fig. 6.15 Forces originating pure shear
Shear deformation for a stress tensor given by

(with respect to some orthonormal basis).

Example 6.18 The stress tensor

represents a shear deformation. In fact, one can check that

□

Hydrostatic pressure with stress tensor given by

where p ≠ 0 is the pressure. Here all eigenvalues are equal to −p.

Example 6.19 Pressure of a fluid on a bubble. □

=

tL L

0 σ 0

σ 0 0

0 0 0

√2
2

√2
2 0

− √2
2

√2
2 0

0 0 1

−σ 0 0

0 σ 0

0 0 0

√2
2 − √2

2 0

√2
2

√2
2 0

0 0 1

0 σ12 σ13

σ12 0 σ23

σ13 σ23 0

2 −4 0

−4 0 4

0 4 −2

tL L

=

√2
2 0 √2

2

0 1 0

− √2
2 0 √2

2

2 −4 0
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0 4 −2

√2
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2

0 1 0
√2
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2
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,
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6.2.4 Stress Invariants

Let A be a 3 × 3 matrix with entries aij. The characteristic polynomialpA(λ) of A is
invariant under conjugation (see Sect. 2.​4.​2), so its coefficients remain unchanged.

Applying this to the stress tensor σ = A, we obtain some stress invariants,
namely:

That means, that the above quantities I1, I2 and I3 are invariant when we change
the orthonormal basis. Indeed, by contravariance, when we change basis via a
matrix L, the matrix of the stress tensor changes from σ to σ̃ = tΛσΛ, where
Λ = L−1. But since we are restricting to orthonormal bases, we have that the
change of basis matrix is orthogonal, i.e., Λ = tL, so this is in fact a conjugation:
σ̃ = LσL−1.

Exercise 6.20 Let E := {e1, e2, e3} be an orthonormal basis of R3 (with the
standard inner product). Let σ be a stress tensor given with respect to the basis E
by

(1) Find the principal stresses σ1,σ2,σ3 of σ.  
(2) Find the principal directions of σ.  
(3) Find an orthonormal basis B := {b1, b2, b3} of R3, with respect to which σ is

given by a diagonal matrix.  
(4) Find the three stress invariants I1, I2 and I3 of σ.  
6.2.5 Decomposition of the Stress Tensor

Any stress tensor σ can be expressed as the sum of two other stress tensors:
The hydrostatic stress tensor

I1 := trσ = σ11 + σ22 + σ33

I2 := σ12σ12 + σ23σ23 + σ13σ13 − σ11σ22 − σ22σ33 − σ33σ11

I3 := det σ .

σ = [σij] := .

0 0 6

0 1 0

6 0 5



where π := trσ / 3 = (σ11 + σ22 + σ33) / 3. This relates to volume change.
The deviatoric stress tensor

This relates to shape change.
The hydrostatic pressurep is generally defined as the negative one third of the

first stress invariant I1 = trσ, i.e., p = −π.
Clearly, we have

and, hence, any stress tensor is a sum of a deviatoric stress and a hydrostatic
pressure.

Moreover, a shear deformation (see Sect. 6.2.3) is traceless, hence a deviatoric
stress.

Actually, the converse is also true:

Fact 6.21 Any deviatoric stress, i.e., any traceless stress, may be represented with
respect to some orthonormal basis as a shear deformation, i.e., as a stress tensor of
the form

This important fact follows from the Spectral Theorem (Theorem 4.​9).
We conclude that, any stress tensor can be decomposed as the sum of a

hydrostatic pressure and a shear deformation.

Exercise 6.22 Let E := {e1, e2, e3} be an orthonormal basis of R3 (with the
standard inner product). We consider a stress tensor σ given by the following
matrix with respect to the basis E :

(1) Write the above matrix representation of the stress tensor σ as a sum of a
deviatoric stress σS (that is, σS is traceless) and a hydrostatic pressure σP

(that is, σP  is a multiple of the identity matrix).
 

(2) Find an orthonormal basis D := {v1, v2, v3} of R3, with respect to which the
above deviatoric stress σS is given by a diagonal matrix, D.  

πδij = ,

π 0 0

0 π 0

0 0 π

sij := σij − πδij = .

σ11 − π σ12 σ13

σ12 σ22 − π σ23

σ13 σ23 σ33 − π

σij = sij + πδij

.

0 σ̃12 σ̃13

σ̃12 0 σ̃23

σ̃13 σ̃23 0

σ = [σij] := .

−2 0 3

0 2 0

3 0 2



(3) Find an orthonormal basis B := {b1, b2, b3} of R3, with respect to which the
above deviatoric stress σS is given by a matrix A with vanishing diagonal
elements:

for some x, y, z ∈ R.
Hint: The matrix A must have the same eigenvalues as σS, since they are

conjugate matrices. Hence, each σS and A can be diagonalised to the same

diagonal matrix D. Moreover, this can be achieved by choosing appropriate
orthonormal bases in each case, since these matrices are symmetric.

 

6.3 Strain Tensor

6.3.1 Physical Preliminaries

Consider a slight deformation of a body, where we compare the relative positions of
two particles, P and P1, before and after the deformation:

We have

where Δx is the old relative position of P and P1, Δx̃ is their new relative position
and Δu is the displacement difference, which hence measures the deformation (Fig.
6.16).

Fig. 6.16 Comparison of relative positions of two particles before and after a slight deformation

Assume that we have a small homogeneous deformation, that is

in other words, f is a small linear function independent of the point P. If we write
the components of Δu and Δx with respect to an orthonormal basis {e1, e2, e3}, the

A =

0 x y

x 0 z

y z 0

Δx̃ = Δx + Δu ,

Δu = f(Δx) ,



function f will be represented by a matrix with entries that we denote by fij,

The matrix (fij) can be written as a sum of a symmetric and an antisymmetric
matrix as follows:

where

is a symmetric matrix and is called the strain tensor or deformation tensor and

is an antisymmetric matrix called the rotation tensor. We will next try to
understand where these names come from.

Remark 6.23 First we verify that a (small) antisymmetric 3 × 3 matrix represents
a (small) rotation in 3-dimensional space.

Fact 6.16
Let V  be a vector space with orthonormal basis B = {e1, e2, e3}, and let

ω = . The matrix Rω of the linear map V → V  defined by v ↦ ω × v with

respect to the basis B is

Indeed, we have

Note that the matrix Rω = (ωij) :=  corresponds to the cross

product with the vector ω = . □

6.3.2 The Antisymmetric Case: Rotation

Suppose that the matrix (fij) was already antisymmetric, so that

Δui = fijΔxj .

fij = εij + ωij ,

εij =
1

2
(fij + fji)

ωij =
1

2
(fij − fji)

a

b

c

Rω = .

0 −c b

c 0 −a

−b a 0

ω × v = × =det

= = .

a

b

c

x

y

z

e1 e2 e3

a b c

x y z

bz − cy

cx − az

ay − bx

0 −c b

c 0 −a

−b a 0

x

y

z
0 ω12 −ω31

−ω12 0 ω23

ω31 −ω23 0
−ω23

−ω31

−ω12



Note that

By the Fact 6.16, if ω = , then

and the equation
(6.9)

is equivalent to

so that

When ω is small, this represents an infinitesimal rotation of an angle ∥ ω ∥ about the
axis Oω (Fig. 6.17).

Fig. 6.17 Infinitesimal rotation about the axis Oω
In fact, since ω × Δx is orthogonal to the plane determined by ω and by Δx, it is

tangent to the circle with center along the axis Oω and radius r determined by Δx.
Moreover,

and hence, since the length of an arc of a circle of radius r corresponding to an
angle θ is rθ, infinitesimally this represents a rotation by an angle ∥ ω ∥.

6.3.3 The Symmetric Case: Strain

The opposite extreme case is when the matrix fij was already symmetric, so that

We will see that it is εij that encodes the changes in the distances: in fact,

ωij = fij and εij = 0 .

ωii =
1

2
(fii − fii) = 0.

−ω23

−ω31

−ω12

RωΔx = ω × Δx

Δui = fijΔxj

Δu = ω × Δx ,

Δx̃ = Δx + Δu = Δx + ω × Δx .

∥ Δu ∥=∥ ω × Δx ∥=∥ ω ∥ ∥ Δx ∥sin α

r

,

εij = fij and ωij = 0 .



(6.10)

where in the last step we neglected the term ∥ Δu ∥2 since it is small compared to
Δu when Δu → 0 and used Eq. 6.9.

Remark 6.25 Even when fij is not purely symmetric, only the symmetric part εij
is relevant for the distortion of the distances. In fact, since ωij is antisymmetric, the
term 2ωijΔxiΔxj = 0, so that

□

Recall that a metric tensor (or inner product) encodes the distances among points.
It follows that a deformation changes the metric tensor. Let us denote by g the
metric before the deformation and by g̃ the metric after the deformation. By
definition, we have

(6.11)
and

(6.12)
For infinitesimal deformations (that is, if Δu ≃ 0), Eq. 6.11 becomes

This, together with Eqs. 6.10 and 6.12, leads to

and hence

that is, εij measures the change in the metric.
By definition, the strain tensor εij is symmetric

where the terms on the diagonal (in green) determine the elongation or the
contraction of the body along the coordinate directions e1, e2, e3, and the terms
above the diagonal (in orange) are the shear components of the strain tensor; that
is εij is the movement of a line element parallel to Oej towards Oei. Since it is a
symmetric tensor, it can be orthogonally diagonalized (cf. Theorem 4.​9), so we can
find an orthonormal basis with respect to which E  is given by

The eigenvalues of E  are the principal coefficients of the deformation and the
eigenspaces are the principal directions of the deformation.

∥ Δx̃ ∥2 = Δx̃ ⋅ Δx̃ = (Δx + Δu) ⋅ (Δx + Δu)

= Δx ⋅ Δx + 2Δx ⋅ Δu + Δu ⋅ Δu

≃∥ Δx ∥2 +2εijΔxiΔxj ,

∥ Δx̃ ∥2≃∥ Δx ∥2 +2fijΔxiΔxj =∥ Δx ∥2 +2εijΔxiΔxj .

∥ Δx̃ ∥2
def
= g̃(Δx̃, Δx̃) = g̃ijΔx̃iΔx̃j = g̃ij(Δxi + Δui)(Δxj + Δuj)

∥ Δx ∥2def
= g(Δx, Δx) = gijΔxiΔxj .

∥ Δx̃ ∥2≃ g̃ijΔxiΔxj .

g̃ijΔxiΔxj ≃ gijΔxiΔxj + 2εijΔxiΔxj

εij ≃
1

2
(g̃ij − gij) ,



6.3.4 Special Forms of the Strain Tensor

We use the following terminology:
(1) Shear deformation when E  is traceless,  
(2) Uniform compression when the principal coefficients of E  are equal, 

Exercise 6.26 Show that any strain tensor can be written as the sum of a uniform
compression and a shear deformation. Hint: See Sect. 6.2.5.

6.4 Elasticity Tensor

The stress tensor represents an external exertion on the material, while the strain
tensor represents the material reaction to that exertion. In crystallography these
are called field tensors because they represent imposed conditions, opposed to
matter tensors, that represents material properties.

Hooke’s law says that, for small deformations, stress is related to strain by a
matter tensor called elasticity tensor or stiffness tensorE:

while the tensor relating strain to stress is the compliance tensorS:

The elasticity tensor has order 4, and hence in 3-dimensional space it has 34 = 81
components. Luckily, symmetry reduces the number of independent components for
E ijkℓ.
(1) Minor Symmetries

The symmetry of the stress tensor

implies that

it follows that for each k, ℓ fixed there are only 6 independent components
E ijkℓ

Having taken this in consideration, the number of independent components
decreases to 6 × 32 at the most. Moreover, the symmetry also of the strain
tensor

 

trE = ε11 + ε22 + ε33 = 0 .

.

k 0 0

0 k 0

0 0 k

σij = E ijkℓεkl ,

εkℓ = Sijkℓσ
ij .

σij = σji

E 11kℓ E 12kℓ E 13kℓ

E 12kℓ E 22kℓ E 23kℓ

E 13kℓ E 23kℓ E 33kℓ .

εkℓ = εℓk



implies that

This means that for each i, j fixed there are also only 6 independent
components E ijkℓ, so that E ijkℓ has at most 62 = 36 independent components.

(2) Major Symmetries

Since (under appropriate conditions) partial derivatives commute, if follows
from the existence of a strain energy density functional U satisfying

that

that means the matrix with rows labelled by (i, j) and columns labelled by
(k, ℓ) is symmetric. Since, according to the previous minor symmetries, there
are only 6 entries (i, j) for a fixed (k, ℓ), E ijkℓ can be written in a 6 × 6 matrix
with rows labelled by (i, j) and columns labelled by (k, ℓ)

so that E ijkℓ has in fact only 6 + 5 + 4 + 3 + 2 + 1 = 21 components.

 

6.5 Conductivity Tensor

Consider a homogeneous continuous crystal. Its properties can be divided into two
classes:

Properties that do not depend on a direction, and are hence described by scalars.
Examples are density and heat capacity.
Properties that depend on a direction, and are hence described by tensors.
Examples are elasticity, electrical conductivity and heat conductivity. We say
that a crystal is anisotropic when it has such actual tensorial properties.

6.5.1 Electrical Conductivity

Let E be the electric field and J the electrical current density. At each point of
the crystal:
(1) E gives the electric force (in V/m, i.e., volt per meter) that would be exerted

on a positive test charge (of 1 coulomb) placed at the point;  
(2) J (in A/m2 where A denotes the ampere unit) gives the direction the charge

carriers move and the rate of electric current across an infinitesimal surface
perpendicular to that direction.

 

∂ 2U

∂εij∂εkℓ
= E ijkℓ

E ijkℓ = Ekℓij ,

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗

∗ ∗

∗



The electrical current density J is a function of the electric field E,

Consider a small increment ΔJ in J caused by a small increment ΔE in E, and write
these increments in terms of their components with respect to a chosen
orthonormal basis {e1, e2, e3}.

By Calculus, the increments are related by

If the quantities ΔE j are small, we can assume that

(6.13)

If we assume that ∂f i

∂E j  is independent of the point of the crystal,

(in Ω−1/m−1 where Ω = V A−1 is the ohm unit of resistance) we obtain the relation

or simply

where κ if the electrical conductivity tensor, sometimes denoted σ or γ. This is a
(1, 1)-tensor and may depend6 on the initial value of E, that is the electrical
conductivity may be different for small and large electric forces. If initially E = 0
and κ0 is the corresponding electrical conductivity tensor, we obtain the relation

that is called the generalized Ohm law. This is always under the assumption that
ΔE and ΔJ are small and that the relation is linear.

The electrical resistivity tensor (in Ω m) is the inverse of κ:

that is, it is the (1, 1)-tensor such that

The electrical conductivity measures the material’s ability to conduct an electrical
current, while the electrical resistivity quantifies the ability of the material to
oppose the flow of the electrical current.

For an isotropic crystal, all directions are equivalent and these tensors are
spherical, meaning

(6.14)

where k is a scalar, called the electrical conductivity of the crystal. Equation
6.14 can also be written as

J = f(E) .

ΔJ = ΔJ iei and ΔE = ΔE iei .

ΔJ i =
∂f i

∂E j
ΔE j + higher order terms in (ΔE j)

2
, (ΔE j)

3
, …

ΔJ i =
∂f i

∂E j
ΔE j

∂f i

∂E j
= κi

j ∈ R

ΔJ i = κi
jΔE j

ΔJ = κ ΔE ,

J = κ0 E

ρ := κ−1 ,

ρ
j
iκ

ℓ
j = δℓ

i .

κ
j
i = kδ

j
i and ρ

j
i =

1

k
δ
j
i ,



In general, κj
i  is neither symmetric nor antisymmetric (and actually symmetry does

not even make sense for a (1, 1) tensor unless a metric is fixed, since it does require
a canonical identification of V  with V ∗).

6.5.2 Heat Conductivity

Let T be the temperature and H the heat flux vector. For a homogeneous crystal,
with constant H and for a constant gradient of T, the Fourier Heat Conduction Law

asserts that
(6.15)

At each point of the crystal:
(1) gradT  points in the direction of the highest ascent of the temperature and

measures the rate of increase of T in that direction. The minus sign in Eq. 6.15
comes from the fact that the heat flows in the direction of decreasing
temperature. Recall that the gradient of a real function is a covariant 1-tensor
(Exercise 4.​33).

 

(2) H measures the amount of heat passing per unit area perpendicular to its
direction per unit time.  

Here, K is the heat conductivity tensor or thermal conductivity tensor. In
terms of components with respect to a chosen orthonormal basis, we have

The heat conductivity tensor is a contravariant 2-tensor and experiments show
that it is symmetric and hence can be orthogonally diagonalized. With respect to an
orthonormal eigenbasis, K is represented by

where the eigenvalues of K are called the principal coefficients of heat
conductivity. The eigenspaces of K are called the principal directions. The fact
that heat flows always in the direction of decreasing temperature shows that the
eigenvalues are positive

so, in particular, K is invertible. The heat resistivity tensor is the inverse of the
heat conductivity tensor:

and hence is also symmetric.
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Footnotes
Warning: The angular velocity is actually only what physicists call a pseudovector because it does not follow

the usual contravariance of a vector in case of orientation flip. Luckily, this issue does not affect the inertia
tensor, since the sign flip cancels out thanks to squaring.

 
The Lagrange identity can be patiently proven in coordinates.

 
We could use any basis of R3. Then, instead of the δij, the formulas would have involved the components of

the metric tensor gij. However, computations with orthonormal bases are simpler; in particular, the inverse of
an orthonormal basis change L is simply tL. Moreover, the inertia tensor is symmetric, hence admits an
orthonormal eigenbasis.

 
Just like the angular velocity, the angular momentum is not an honest vector, but only a pseudovector, since

there is an issue with orientation. In this subsection, we should thus assume that we work with an oriented

orthonormal basis {e1, e2, e3} of R3, so that e1 × e2 = e3 (and not −e3). This amounts to assuming that the
change of basis matrix L from the standard basis has det L = 1 (and not −1).

 
To prove this vector equality use coordinates, consider only the case in which ω is a standard basis vector and

then use the linearity in ω.

 
Typically, if the dependence between E and J is linear for any value, and not only for small ones, the tensor κ

will not depend on the initial value of E.
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Chapter2

Exercise 2.5 (1) yes; (2) no; (3) no; (4) yes; (5) no.

Exercise 2.8 (1) yes; (2) no; (3) no.

Exercise 2.9 Addition of linear transformations T1 : R2 → R3 and T2 : R2 → R3,
and their multiplication by a scalar α ∈ R are defined pointwise:

We check the required properties in Definition 2.​1:
(1) and (2) follow pointwise from associativity and commutativity of sum of
vectors in R3.
(3) is verified by the zero transformation, which sends all vectors in R2 to the
zero vector of R3.
The additive inverse of a transformation T : R2 → R

3 is the transformation −T ,
which sends a vector v to the negative of T (v), thus yielding (4).
(5)–(8) also follow pointwise from the corresponding properties of vectors in R3.

Exercise 2.12 (1) yes; (2) yes; (3) no.

Exercise 2.14 We first check the conditions for the kernel:
(1)’ kerT  is non-empty because it always contains at least the zero vector of V ,

since any linear transformation satisfies T (0) = 0;  
(2)’ kerT  is closed under linear combinations, since, if v1, v2 ∈ kerT , i.e.,

T (v1) = T (v2) = 0, and α,β ∈ R, then by linearity of T we have that

showing that αv1 + βv2 ∈ kerT .

 

Now we check the conditions for the image:
(1)’ im T  is non-empty because it always contains at least the zero vector of W,

which is the image of the zero vector of V ;  
(2)’ im T  is closed under linear combinations, since, if w1,w2 ∈ im T , i.e., there

exist v1, v2 ∈ V  such that T (v1) = w1 and T (v2) = w2, and α,β ∈ R, then by
linearity of T we have that

 

(T1 + T2)(v) := T1(v) + T2(v) and (αT1)(v) := α(T1(v)) for each v ∈ R
2 .

T (αv1 + βv2) = αT (v1) + βT (v2) = 0 + 0 = 0 ,

https://doi.org/10.1007/978-3-031-94136-8_7


showing that αw1 + βw2 ∈ im T .

Exercise 2.21 Let
W = span {b1, … , bn} = {α1b1 + α2b2 + ⋯αnbn : α1, …αn ∈ R} denote the set of
all linear combinations of the vectors b1, b2 … bn ∈ V . To show that W is a subspace
of V  we need to show that 0 ∈ W  and W is closed under linear combinations.
(1) 0 ∈ W : Since 0 = 0 b1 + 0 b2 + ⋯ 0 bn, we indeed have that 0 ∈ W  and W is

non-empty.  
(2) W is closed under linear combinations:

Let u,w ∈ W  and γ, δ ∈ R. Then u = α1b1 + α2b2 + ⋯αnbn for some
α1, …αn ∈ R and w = β1b1 + β2b2 + ⋯βnbn for some β1, …βn ∈ R. Then
γu + δw = (γα1 + δβ1)b1 + ⋯ (γαn + δβn)bn, being a linear combination of
the vectors b1, b2, … bn, is again in W.

 

Exercise 2.29

(1) Since these are 3 vectors in R3 and dim R
3 = 3, it is enough to show that

these vectors are linearly independent. This amounts to showing that the only
solution of the equation

is the trivial solution (given by μ1 = μ2 = μ3 = 0), which can be verified
with Gauss-Jordan elimination, for instance.

 

(2) The coordinate vector,

is the solution of the equation

Using Gauss-Jordan elimination, we find

 

(3) By definition of coordinate vector, the vector w is  

T (αv1 + βv2) = αT (v1) + βT (v2) = αw1 + βw2 ,

μ1 + μ2 + μ3 = i.e. =
1
0
0

1
1
0

1
1
1

0
0
0

1 1 1
0 1 1
0 0 1

μ1

μ2

μ3

0
0
0

[v]
B

= ,
μ1

μ2

μ3

μ1 + μ2 + μ3 = v i.e. =
1
0
0

1
1
0

1
1
1

1 1 1
0 1 1
0 0 1

μ1

μ2

μ3

0
1
π

[v]
B

= ,
−1

1 − π

π



Exercise 30

(1) The vectors in B span V , since any element of V  is of the form

Moreover, the vectors in B are linearly independent since

if and only if

that is, if and only if a = b = c = 0.

 

(2) We know that dim V = 3, as B is a basis of V  and has three elements. Since
B̃ also has three elements, it is enough to check either that it spans V  or that
it consists of linearly independent vectors. We will check this last condition.
Indeed,

that is,

 

(3) Since

we have

To compute the coordinates of v with respect to B̃ we need to find
a, b, c ∈ R such that

 

w = + 2 + 3 = .
1
0
0

1
1
0

1
1
1

6
5
3

[ ] = a[ ] + b[ ] + c[ ] .
a b

c −a

1 0
0 −1

0 1
0 0

0 0
1 0

a[ ] + b[ ] + c[ ] = [ ]
1 0
0 −1

0 1
0 0

0 0
1 0

0 0
0 0

[ ] = [ ],
a b

c −a

0 0
0 0

⇔
a = 0

b + c = 0
c − b = 0

a = 0
b = 0
c = 0.

[ ] = 2[ ] + 1[ ] + 7[ ] ,
2 1
7 −2

1 0
0 −1

0 1
0 0

0 0
1 0

[v]
B

= .
2
1
7

[ ] = a[ ] + b[ ] + c[ ] .
2 1
7 −2

1 0
0 −1

0 −1
1 0

0 1
1 0



Solving the corresponding system of linear equations as above yields

Exercise 2.32

(1) Let C := AB ∈ R
ℓ×n. By definition, we have  

(2) The column vector By ∈ Rm×1 has coordinates  

(3) The row vector yT ∈ R1×n has coordinates (yT )i = yi. The transpose of B has
entries (BT )kj = B

j

k
, where 1 ≤ j ≤ m and 1 ≤ k ≤ n. Then we have

Alternatively, we may note that yTBT = (By)T  and conclude that

These two expressions for yTBT  are equivalent.

 

(4) We have xyTBT ∈ Rℓ×m, where x ∈ Rℓ×1 has coordinates xi and yTBT ∈ R1×m

has coordinates (yTBT )j = B
j

k
yk. Therefore, we have

 

Exercise 2.33 Let A = {a1, a2, … , an}, B = {b1, b2, … , bn} and
C = {c1, c2, ⋯ , cn} be three bases of a vector space V . Let LAB = (Li

j) be the
matrix of the change of basis from A  to B, then bj = Li

jai. Similary if LBC = (M i
j )

is the matrix of the change of basis from B to C , then ck = M
j
k
bj. Putting these

together gives

On the other hand, as LAC = (N i
j ) is the change of basis matrix from A  to C ,

we also have that ck = N i
kai. Since any vector is a unique linear combination of the

basis vectors {a1, a2 … , an}, we must have that

But this is exactly the matrix product LABLBC = LAC  written in the Einstein
notation.

[v]
B̃

= .
2
3
4

C i
k = Ai

1B
1
k + Ai

2B
2
k + ⋯ + Ai

mB
m
k =∑

m

J=1
Ai

JB
J
k = Ai

jB
j
k.

(By)i = Bi
1y

1 + ⋯ + Bi
ny

n =∑
n

J=1
Bi

Jy
J = Bi

jy
j.

(yTBT )j =∑
n

K=1
(yT )K(BT )Kj = (yT )k(BT )kj = ykB

j
k
.

(yTBT )i = ((By)T )i = (By)i = Bi
jy

j.

(xyTBT )ij = xiB
j
k
yk.

ck = M
j
k
bj = M

j
k
Li
jai.

M
j
kL

i
j = N i

k.



Exercise 2.38 We have that (AT )ij = A
j
i , where 1 ≤ i ≤ ℓ and 1 ≤ j ≤ m. Then

(ATx)
i

= (AT )
i

jx
j = ∑m

J=1 A
J
i x

J . In the last expression, both J-indices are upper. In
order to follow the Einstein convention, we use the Kronecker symbol, δjk. By
definition, we have δjk = 1 for j = k und δjk = 0 otherwise. Therefore, we have

Exercise 2.50

(1) The function α is indeed well-defined, since the derivative of a polynomial p of
degree at most 3 is a polynomial of degree at most 2, hence the product
(x−1)p′(x) is a polynomial of degree at most 3. Since differentiation is a linear
transformation, we have that, for all p, q ∈ V  and λ ∈ R,

Therefore, α is a linear transformation.

 

(2) For each k ∈ {1, 2, 3}, we have that

hence, (x−1)k is an eigenvector with eigenvalue k. Moreover, we have that
α(1) = 0, showing that the constant polynomial 1 is an eigenvector with
eigenvalue 0. Since they are eigenvectors with different eigenvalues, the
elements of B̃ are linearly independent. Since there are four of them, they
must form a basis of the four-dimensional vector space V , hence B̃ is an
eigenbasis with respect to α.

 

(3) This is the diagonal matrix with the eigenvalues of α along the diagonal, in the
order corresponding to that of the eigenvectors in the basis B̃:  

(4) It is understood that we work with the standard basis E = {1} of R. The
matrix of the linear transformation β with respect to the basis B, resp. B̃, of
V  (and the basis E = {1} of R) is obtained by computing the images of the
basis elements:

From this we obtain the requested matrices, resp.:

 

(5) We write the (new) basis elements from B̃ in terms of the (old) basis elements
from B:  

(ATx)
i

= (AT )
i

jx
j =∑

m

J=1
AJ

i x
J =∑

m

J=1
∑

m

K=1
AJ

i δJKx
K = A

j
iδjkx

k.

α(p + λq) = (x−1)(p + λq)′ = (x−1)(p′ + λq′)
= (x−1)p′ + λ(x−1)q′ = α(p) + λα(q).

α((x−1)k) = (x−1) ⋅ k(x−1)k−1 = k(x−1)k,

M̃ = .

0 0 0 0
0 1 0 0
0 0 2 0
0 0 0 3

β(1) = 1, β(xn) = 1, β((x−1)n) = 0 .

A = [ ] and Ã = [ ] .1 1 1 1 1 0 0 0



By reading off the coefficients on the right-hand sides, and writing them
columnwise, we obtain the first change of basis matrix:

The reverse change of basis matrix may be obtained by inverting the above
L
BB̃

 or again by the above procedure:

yields that

(6) Indeed, we have that  
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Exercise 3.2 (1) no; (2) no; (3) yes.

Exercise 3.3 (1) yes; (2) yes; (3) no.

Exercise 3.8 We show that V ∗ is a subspace of the vector space of all real-valued
functions on V  (cf. Example 2.​3(3) in Sect. 2.​1.​1), by checking the three conditions:
(1) The 0-function 0 associating the number zero to each vector in V  is linear

because 0 + 0 = 0 and k0 = 0 for every k ∈ R, so 0 ∈ V ∗;  
(2) V ∗ is closed under addition since, if α : V → R and β : V → R are linear, then

α + β : V → R defined by (α + β)(v) = α(v) + β(v) is also linear (in v ∈ V );  

1 = 1,
x−1 = −1 + x,

(x−1)2 = 1−2x + x2,

(x−1)3 = −1 + 3x−3x2 + x3.

L
BB̃

= .

1 −1 1 −1
0 1 −2 3
0 0 1 −3
0 0 0 1

1 = 1
x = 1 + (x−1)

x2 = (1 + x−1)2 = 1 + 2(x−1) + (x−1)2

x3 = (1 + x−1)3 = 1 + 3(x−1) + 3(x−1)2 + (x−1)3,

L
B̃B

= L−1
BB̃

= .

1 1 1 1
0 1 2 3
0 0 1 3
0 0 0 1

AL
BB̃

= [ ] = [ ] = Ã .1 1 1 1

1 −1 1 −1
0 1 −2 3
0 0 1 −3
0 0 0 1

1 0 0 0



(3) V ∗ is closed under multiplication by scalars since, if α : V → R is linear and
k ∈ R, then kα : V → R defined by (kα)(v) = k(α(v)) is also linear.  

Exercise 3.13 In fact:

Exercise 3.18 By the Laplace expansion formula, we have

Exercise 3.20 (1) yes; (2) yes; (3) yes; (4) no, because v × w is not a real number;
(5) no, because it fails linearity (the area of the parallelogram spanned by v and w
is the same as that of the parallelogram spanned by −v and w); (6) no, because
because it fails linearity in the second argument (the determinant of a matrix with
n > 1 is not linear in that matrix).

Exercise 3.30

(1) Indeed, φ(x, y) := 2x − y is not linear in x (nor linear in y):

Yet, φ is linear in R2:

 

(2) Indeed, φ(x, y) := 2xy is linear in x:  

[][α]B∗L = ( )

= ( )

= ( )
= [α]

B̃∗

α1 … αn

L1
1 … L1

n

⋮ ⋮
Ln

1 … Ln
n

αiL
i
1 … αiL

i
n

α̃1 … α̃n

det = det

= u1(v2w3 − v3w2) + u2(v3w1 − v1w3) + u3(v1w2 − v2w1)

= ⋅ = u ⋅ (v × w) .

u

v

w

u1 u2 u3

v1 v2 v3

w1 w2 w3

u1

u2

u3

v2w3 − v3w2

v3w1 − v1w3

v1w2 − v2w1

φ(ax + bz, y) = 2(ax + bz) − y

≠ a(2x − y) + b(2z − y)
= aφ(x, y) + bφ(z, y) .

φ(a(x, y) + a′(x′, y′)) = φ(ax + a′x′, ay + a′y′)
= 2(ax + a′x′) − (ay + a′y′)
= a(2x − y) + a′(2x′ − y′)
= aφ(x, y) + a′φ(x′, y′).



and, similarly, it is linear in y, hence a bilinear form on R. On the other
hand, φ is not linear in (x, y) ∈ R

2:

Exercise 3.26 Since Bil(V × V ,R) is a subset of the vector space
{f : V × V → R} of all real-valued functions on the vector space V × V , it is
enough to check that it is a subspace of {f : V × V → R} Therefore, it is enough to
check the two conditions:
(1) The zero function associating the number zero to each element from V × V  is

trivially bilinear, hence it is in Bil(V × V ,R).  
(2) The subset Bil(V × V ,R) is closed under linear combinations. Assuming that

φ,ψ ∈ Bil(V × V ,R), and λ,μ ∈ R, we check that λφ + μψ is bilinear. The
linearity in the first entry amounts to:

The linearity in the second entry is analogous.

 

Exercise 3.30 We have that
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φ(ax + bz, y) = 2(ax + bz)y
= a(2xy) + b(2zy) = aφ(x, y) + bφ(z, y),

φ(a(x, y) + a′(x′, y′)) = φ(ax + a′x′, ay + a′y′)
= 2(ax + a′x′)(ay + a′y′)
≠ a(2xy) + a′(2x′y′)

= aφ(x, y) + a′φ(x′, y′).

(λφ + μψ)(ax + bz, y) = λφ(ax + bz, y) + μψ(ax + bz, y)
= aλφ(x, y) + bλφ(z, y) + aμψ(x, y) + bμψ(z, y)
= a(λφ(x, y) + μψ(x, y)) + b(λφ(z, y) + μψ(z, y)
= a(λφ + μψ)(x, y) + b(λφ + μψ)(z, y)

tLBL =

=

=

= B̃ .

L1
1 … Ln

1

⋮ ⋮

L1
n … Ln

n

B11 … B1n

⋮ ⋮
Bn1 … Bnn

L1
1 … L1

n

⋮ ⋮
Ln

1 … Ln
n

L1
1 … Ln

1

⋮ ⋮

L1
n … Ln

n

B1iL
i
1 … B1iL

i
n

⋮ ⋮

BniL
i
1 … BniL

i
n

Lk
1BkiL

i
1 … Lk

1BkiL
i
n

⋮ ⋮

Lk
nBkiL

i
1 … Lk

nBkiL
i
n



Exercise 4.2 We first check that φ(v,w) := v ⋅ w is a bilinear form on R3:

and similarly for the linearity in the second entry. Now, we check that φ is
symmetric

Finally, we check positive definiteness:

because it is a sum of squares, and vanishes if and only if all these squares vanish,
that is, when v = 0.

Exercise 4.3

(1) No, as φ is negative definite, that is φ(v, v) < 0 if v ∈ V , v ≠ 0. 
(2) No, as φ is not symmetric.  
(3) No, as φ is not positive definite.  
(4) No, as φ is not positive definite.  
(5) Yes.  
(6) Yes.  
Exercise 4.4

(1) Yes, in fact:
(a) ∫ 1

0 p(x)q(x)dx = ∫ 1
0 q(x)p(x)dx because p(x)q(x) = q(x)p(x);  

(b) ∫ 1
0 (p(x))2

dx ≥ 0 for all p ∈ P2(R) because (p(x))2 ≥ 0, and
∫ 1

0 (p(x))2
dx = 0 only when p(x) = 0 for all x ∈ [0, 1], that is only if p ≡ 0.

 

 

(2) No, since ∫ 1
0 (p′(x))2

dx = 0 implies that p′(x) = 0 for all x ∈ [0, 1], but such p
is not necessarily the zero polynomial.

 
(3) Yes.  
(4) No. Is there p ∈ P2(R), p ≠ 0 such that (p(1))2 + (p(2))2 = 0?  
(5) Yes. Is there a non-zero polynomial of degree 2 with 3 distinct zeros?  
(6) No, since this is not symmetric.  

φ(av + bz,w) = (av + bz) ⋅ w = (avi + bzi)wjδij

= a(viwjδij) + b(ziwjδij) = a(v ⋅ w) + b(z ⋅ w)

= aφ(v,w) + bφ(z,w)

v ⋅ w = viwjδij = wivjδij = w ⋅ v .

v ⋅ v = vivjδij = (v1)(v1) + (v2)(v2) + (v3)(v3) is always non-negative



Exercise 4.12 We write

We know that g with respect to the basis B̃ has the standard form g(v,w) = ṽiw̃i

and we want to verify the formula (4.​7) using the matrix of the change of
coordinates L−1 = Λ. If

then we have that

and

It follows that

Exercise 4.15 With respect to B̃, we have

and with respect to E

Exercise 4.16 Saying that the orthogonality is meant with respect to g, means
that we have to show that g(v − projbkv, bk) = 0. In fact,

Exercise 4.21

(1) The coordinate vectors of basis vectors with respect to that same basis are
simply standard vectors, in this case:  

[v]
B̃

= and [w]
B̃

= .
ṽ1

ṽ2

ṽ3

w̃1

w̃2

w̃3

[v]
B

= and [w]
B

=

v1

v2

v3

w1

w2

w3

= Λ =

ṽ1

ṽ2

ṽ3

v1

v2

v3

v1 − v2

v2 − v3

v3

= Λ =
w̃1

w̃2

w̃3

w1

w2

w3

w1 − w2

w2 − w3

w3

g(v,w) = ṽiw̃i = (v1 − v2)(w1 − w2) + (v2 − v3)(w2 − w3) + v3w3

= v1w1 − v1w2 − v2w1 + 2v2w2 − v2w3 − w3v2 + 2v3w3 .

∥ v ∥ = (12 + 12 + 12)1/2 = √3

∥ w ∥ = ((−1)2 + (−1)2 + 32)
1/2

= √11

∥ v ∥ = (3 ⋅ 3−3 ⋅ 2−2 ⋅ 3 + 2 ⋅ 2 ⋅ 2−2 ⋅ 1−1 ⋅ 2 + 2 ⋅ 1 ⋅ 1)1/2 = √3

∥ w ∥ = (1 ⋅ 1−1 ⋅ 2−2 ⋅ 1 + 2 ⋅ 2 ⋅ 2−2 ⋅ 3−3 ⋅ 2 + 2 ⋅ 3 ⋅ 3)1/2 = √11 .



[b̃1]
B̃

= , [b̃2]
B̃

=  and [b̃3]
B̃

= .

(2)
As in Example 4.​11, we have G

B̃
= I and GE = .

 

(3) In parts (a) and (b), note that, for an orthonormal basis B̃, we have B̃ g = B̃.
In parts (c) and (d), we use the computations in Example 4.​20 and the fact
that [v]

E
= L

E B̃
[v]

B̃
.

(a)
[b̃1]

B̃
= [b̃1]

B̃
= , [b̃2]

B̃
= [b̃2]

B̃
=  and [b̃3]

B̃
= [b̃3]

B̃
= .

 

(b)
[b̃1]

E
= [b̃1]

E
= , [b̃2]

E
= [b̃2]

E
=  and [b̃3]

E
= [b̃3]

E
= .

 

(c)
[e1]

B̃
= , [e2]

B̃
=  and [e3]

B̃
= .

 

(d)
[e1]

E
= , [e2]

E
=  and [e3]

E
= .

 

 

Exercise 4.24

(1) The assertion in the case of the bases E  and E g follows from  

(2) Since b̃j = b̃j, we have G−1
B̃

= L
B̃ gB̃

= I and Eq. (4.​15) is immediately verified. 
Exercise 4.32 We have that

where T i(t), respectively T̃ j(t), are the components of T at time t with respect to a
basis B, respectively B̃, and Li

j are the components of the change of basis from B

to B̃. By differentiating the above equation with respect to time t, we obtain a
similar equation for the components of dT

dt
, namely

1
0
0

0
1
0

0
0
1

1 −1 0
−1 2 −1
0 −1 2

1
0
0

0
1
0

0
0
1

1
0
0

1
1
0

1
1
1

1
1
1

0
1
1

0
0
1

3
2
1

2
2
1

1
1
1

G−1
E

= (LE gE )−1 = = .

∣ ∣ ∣

e1 e2 e3

∣ ∣ ∣

3 2 1
2 2 1
1 1 1

T i(t) = Li
jT̃

j(t),



hence dT
dt

 has the same transformation character as T.
A similar reasoning applies to arbitrary tensors.

Exercise 4.33 In order to discuss the partial derivatives, we express f : V → R as
a function of the corresponding coordinate-variables with respect to two bases, B
and B̃, of V :

and

Since xi = Li
jx̃

j where L is the change of basis from B to B̃, the partial derivatives
satisfy

We used the chain rule in the step before the last. The above transformation
behaviour is that of a tensor of type (0, 1). We conclude that the gradient is a
covector, i.e., a covariant 1-tensor.

Exercise 4.34 Let B and B̃ be two bases, with change of basis matrix L = Λ−1.
We write T̃ , ũ und ṽ for the numbers or components with respect to the basis B̃.
For the basis B, we write these without tilde.
(1) We have that  

dT i

dt
= Li

j
dT̃ j

dt
,

f(x) = f(xibi) = fB(x1, … ,xn)

f(x) = f(x̃ib̃i) = f
B̃

(x̃1, … , x̃n)

ṽj := T̃ijũ
i = L

ℓ1
i L

ℓ2
j Tℓ1ℓ2Λ

i
k1
uk1 as T is a (0, 2) and u a (1, 0)-tensor

= L
ℓ1
i Λi

k1
L

ℓ2
j Tℓ1ℓ2u

k1 since multiplication is commutative

= δ
ℓ1
k1
L

ℓ2
j Tℓ1ℓ2u

k1 since L is the inverse of Λ

= L
ℓ2
j Tℓ1ℓ2u

ℓ1 by definition of δ

= Lℓ2
j vℓ2 , showing, that v is a (0, 1)-tensor.



(2) For arbitrary ui, we have

As ũi was arbitrary, we must indeed have
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Exercise 5.3 Since Bil(V ∗ × V ∗,R) is a subset of the vector space
{f : V ∗ × V ∗ → R} of all real-valued functions on the vector space V ∗ × V ∗, it is
enough to check that it is a subspace of {f : V ∗ × V ∗ → R} Therefore, it is enough
to check the two conditions:
(1) The zero function associating the number zero to each element from V ∗ × V ∗

is trivially bilinear, hence it is in Bil(V ∗ × V ∗,R).  
(2) The subset Bil(V ∗ × V ∗,R) is closed under linear combinations. Assuming

that σ, τ ∈ Bil(V ∗ × V ∗,R), and c, d ∈ R, we check that cσ + dτ is bilinear.
The linearity in the first entry amounts to:

The linearity in the second entry is analogous.

 

Exercise 5.7 Let A and B be square matrices of the same size. If A has (i, j)-entry
Ai

j (where i labels the row and j the column) and B has (i, j)-entry Bi
j, then by the

definition of matrix product the matrix C := AB has (i, j)-entry

and the transpose of A has (i, j)-entry Aj
i , so CtA has (i, j)-entry

and ABtA has (i, j)-entry

T̃ijũ
i =: ṽj = L

ℓ2
j vℓ2 since v is a (0, 1)-tensor

= L
ℓ2
j Tℓ1ℓ2u

ℓ1 by definition of v

= L
ℓ2
j Tℓ1ℓ2δ

ℓ1
k u

k by definition of δ

= L
ℓ2
j Tℓ1ℓ2L

ℓ1
i Λi

ku
k since L is the inverse of Λ

= L
ℓ1
i L

ℓ2
j Tℓ1ℓ2ũ

i since u is a (1, 0)-tensor.

T̃ij = L
ℓ1
i L

ℓ2
j Tℓ1ℓ2 .

(cσ + dτ)(aα + bβ, γ) = cσ(aα + bβ, γ) + dτ(aα + bβ, γ)
= acσ(α, γ) + bcσ(β, γ) + adτ(α, γ)

+bdτ(β, γ)
= a(cσ(α, γ) + dτ(α, γ))

+b(cσ(β, γ) + dτ(β, γ))
= a(cσ + dτ)(α, γ) + b(cσ + dτ)(β, γ).

Ai
kB

k
j

C i
ℓA

j
ℓ



We obtain Eq. (5.​3) by replacing A by Λ and Bk
ℓ  by S kℓ.

Exercise 5.9 We set T i,j,k := T (εi, εj, εk). Then we have that

(1) The value of T on an arbitray triple

is defined by

where we have used the Einstein convention and 1 ≤ i, j, k ≤ 2. Hence, we
have

 

(2) We apply the transformation formula from Sect. 5.​2. The change of basis
matrix from the standard basis to B is

with inverse

We denote by T̃ ℓ,m,n the (ℓ,m,n)-component of T with respect to B, where
1 ≤ ℓ,m,n ≤ 2. Then we have

where Λu
v  denotes the component of Λ in row u and in column v. The

computations yield

 

Ai
kB

k
ℓA

j
ℓ .

T i,j,1 = i + j and T i,j,2 = i − j.

([ ], [ ], [ ]) ∈ (V ∗)3
α1 α2 β1 β2 γ1 γ2

T ([ ], [ ], [ ]) = αiβjγkT
i,j,k,α1 α2 β1 β2 γ1 γ2

L := LEB = [ ]
1 1

−1 0

Λ := L−1 = [ ]
0 −1
1 1

T̃ ℓ,m,n = Λℓ
iΛ

m
j Λn

kT
i,j,k,

T̃ 1,1,1 = 0, T̃ 2,1,1 = −1,

T̃ 1,1,2 = 4, T̃ 2,1,2 = −6,

T̃ 1,2,1 = 1, T̃ 2,2,1 = 0,

T̃ 1,2,2 = −8, T̃ 2,2,2 = 12.



Exercise 5.11 There are two conditions to check (cf. Sect. 2.​1.​2):
(1) The zero covariant k-tensor (associating the number zero to each k-tuple of

vectors from V ) is trivially symmetric, hence it is in S kV ∗.  
(2) The subset S kV ∗ is closed under linear combinations. Assuming that T and U

are symmetric covariant k-tensors, and c, d ∈ R, we check that cT + dU  is
symmetric, that is, independent of the order of the k arguments from V . This
follows from the fact that the value of cT + dU  on vectors v1, … , vk ∈ V  is the
corresponding linear combination of the values T (v1, … , vk) and U(v1, … , vk)
, which by assumption do not depend on the order of the vectors.

 

The argument is similar for the set of all antisymmetric covariant k-tensors, ∧kV ∗.

Exercise 5.12 Let β1, … ,βn form a basis of V ∗ dual to a basis v1, … , vn of V .
Each tensor 1

2 (β
i ⊗ βj + βj ⊗ βi) is symmetric by construction. In order to show

that the tensors

form a basis of S 2V ∗, we check that (cf. Definition 2.​22):
(1) they are linearly independent and 
(2) they spanV .  

Suppose we have a linear combination (with coefficients αij ∈ R) yielding zero:

Evaluating this at a pair of basis vectors vk, vℓ we get 1
2 αkℓ = 0 when k > ℓ and we

get αkk = 0 when k = ℓ, hence we conclude that it must be the trivial combination
with all coefficients zero. This shows (1).

Now we show that any element T ∈ S 2V ∗ is a linear combination of the above
elements. We define the numbers

We can conclude the following tensor equality

from the fact that the difference of these two tensors vanishes on each pair of basis
vectors vk, vℓ, hence (2) holds.

To obtain the dimension formula, we simply count the number of elements in the
basis set

The index i can take all values 1, … ,n. For each chosen i, the index j can take
values 1, … , i, which is a number i of values, so we get the count

1
2 (β

i ⊗ βj + βj ⊗ βi) with i ≥ j

∑
i≥j

αij
1
2 (β

i ⊗ βj + βj ⊗ βi) = 0 .

αij = {
2T (vi, vj) if i > j

T (vi, vi) if i = j.

T =∑
i≥j

αij
1
2 (β

i ⊗ βj + βj ⊗ βi)

{ 1
2 (β

i ⊗ βj + βj ⊗ βi) ∣ i ≥ j} .



denoted (n2 ) in combinatorics.
The argument is similar for the case of ∧2V ∗.

Exercise 5.15 The coordinates of b1 ⊗ a1 + b2 ⊗ a2 with respect to the basis
bi ⊗ aj are δij. So the task amounts to showing that there is no solution to the
equation

where the vi and wj are the coordinates of arbitrary vectors v ∈ V  and w ∈ W
w.r.t. the given bases. Indeed, the system

has no solution, since the first two equations force that w2 be zero, yet this is
impossible for the last equation.
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Exercise 6.4 We choose a coordinate system with origin at the vertex O, with x-
axis along the side of length a, y-axis along the side of length b and z-axis
perpendicular to the plate. We already know that the mass density is constant equal
to ρ = m

ab . Then

Similarly,

and

is again just the sum of I11 and I22.
Furthermore,

∑
n

i=1
i = n(n+1)

2

( )(w1 w2) = ( )
v1

v2

1 0
0 1

v1w1 = 1

v1w2 = 0

v2w1 = 0

v2w2 = 1



and, similarly, I31 = I13 = 0. Finally, we have

We conclude that the inertia tensor is given by the matrix

Exercise 6.6 We again choose the unit vector

defining the axis of rotation, but now use the inertia tensor computed in Exercise 6.​
4,

thus obtaining

necessarily the same result as in Example 6.​5.

Exercise 6.7

(1) We use the inertia tensor calculated in Example 6.​3, where the origin of the
coordinate system is at the center of mass, and choose u = e3. The moment of
inertia is then

 

I21 = I21 = −∫
a

0

∫
b

0

xy ρ dy dx = −
m

ab
[
x2

2
]
a

0
[
y2

2
]
b

0
= −

mab

4
.

m
12 .

4b2 −3ab 0

−3ab 4a2 0

0 0 4(a2 + b2)

u = = 1
√a2+b2

a

√a2+b2

b

√a2+b2

0

a

b

0

m
12 ,

4b2 −3ab 0

−3ab 4a2 0

0 0 4(a2 + b2)

Iu = Iiju
iuj

= m
12(a2+b2) ( )

= m
6

a2b2

a2+b2 ,

a b 0
4b2 −3ab 0

−3ab 4a2 0

0 0 4(a2 + b2)

a

b

0

Iu = Iiju
iuj

= m
12 ( )

= I33 = m
12 (a2 + b2) .

0 0 1

b2 0 0

0 a2 0

0 0 a2 + b2

0
0
1



(2) We use the inertia tensor calculated in Exercise 6.​4, where the origin of the
coordinate system is at a vertex of the plate, and choose u = e3. The moment
of inertia is then

 

Exercise 6.10

(1) We choose the vector e3 along the line L and complete it to an orthonormal
basis for the vector space with origin at the center of mass. Since all atoms lie
on the e3-axis, they have x1

r = x2
r = 0, where the xi

r denote the coordinates of
particle r with respect to the basis above. Then we have:

hence, the inertia tensor is

The principal axes of inertia are the axis along L, corresponding to the
principal moment 0, and the axes perpendicular to L, corresponding to the
principal moment of inertia I. It remains to determine I. Denoting the total
mass by m := ∑n

r=1 mr, by the choice of origin the coordinates satisfy

therefore,

We conclude that

 

Iu = Iiju
iuj

= m
12 ( )

= I33 = m
3 (a2 + b2) .

0 0 1
4b2 −3ab 0

−3ab 4a2 0

0 0 4(a2 + b2)

0
0
1

I11 =∑
n

r=1
x3
rx

3
rmr = I22 =: I and I33 = 0 = Iij, for i ≠ j,

(Iij) = I .
1 0 0
0 1 0
0 0 0

x3
r = 1

m
∑

n

s=1
(x3

r − x3
s)ms,



The ellipsoid of inertia has equation

(2) Let e1 be parallel to AB and e3 perpendicular to the triangle. We complete the
orthonormal basis with e2 along the triangle’s height. Let xi

A
,xi

B,xi
C  be the

coordinate vectors of atoms A,B,C with respect to the basis above. These
vectors satisfy:

Moreover, since x3
A

= x3
B = x3

C = 0, we have:

The principal moments of inertia are I11, I22 and I33, and the coordinate
axes are the corresponding principal axes of inertia. The ellipsoid of inertia
has equation

 

(3) The tetrahedron consists of an equilateral triangle (a special case of the
previous part) together with an extra point xD. We choose the basis as above,
so parts of the computation may be imported from the previous part with
height h = a

2
√3. The new coordinates are then slightly vertically shifted:

 

I = 1
2m ∑r≠s

ℓ2
rsmrms .

I(x1x1 + x2x2) = 1 .

(xi
B

) = − 1
2m1+m2

(xi
C

) = − 1
2m1+m2

= 1
2m1+m2

(xi
A) = − 1

2m1+m2
= 1

2m1+m2

am1 + a
2 m2

hm2

0

a

0
0

am1 + a
2 m2

hm2

0

am1 + a
2 m2

−hm2

0
a
2

h

0

am1 + a
2 m2

hm2

0

0
2m1h

0



A computation as in the previous part yields

We have then a spherical top wih all principal moments of inertia equal to
ma2 and for which any axis (through the origin) is a principal axis of inertia.
The equation of the ellipsoid of inertia is

Exercise 6.11 We choose a positively oriented orthonormal basis along the sides
of the parallelepiped. Then we compute:

(1) Since the matrix (Iij) is diagonal, the corresponding principal moments of
inertia are its diagonal entries I11, I22, I33 and the corresponding principal
axes of inertia are the coordinate axes (parallel to the sides of the
parallelepiped).

 

(2) The equation of the ellipsoid of inertia is  
(3) The kinetic energy of K is  
(4) The (covariant) coordinates of the angular momentum of K are  

Exercise 6.20

(1) The principal stresses are the eigenvalues of σ, that is, the roots of the
corresponding characteristic polynomial:  

(xi
B) = a

2 , (xi
C

) = a
2 ,

(xi
A

) = a
2 , (xi

D
) = a

2 .

−1

− 1
√3

− 1
√6

1

− 1
√3

− 1
√6

0
2

√3

− 1
√6

0
0

√3
√2

Iij = ma2δij .

ma2(x1x1 + x2x2 + x3x3) = 1 .

I11 = m
abc
∫

a
2

− a
2

∫
b
2

− b
2

∫
c
2

− c
2

x2x2 + x3x3dx1dx2dx3 = m(b2+c2)
12

I22 = m(a2+c2)
12

I33 = m(a2+b2)
12

Iij = 0, when i ≠ j .

m((b2 + c2)x1x1 + (a2 + c2)x2x2 + (a2 + b2)x3x3) = 12 .

E = 1
2 Iijω

iωj .

Li = Iijw
j .



The quadratic factor λ2−5λ−36 has the roots

Therefore, the principal stresses of σ are (up to reordering)

(2) The principal directions are defined by corresponding eigenvectors v1, v2, v3,
which we obtain by finding non-trivial solutions of

or, equivalently,

We choose

to span the principal directions.

 

(3) The basis B will be an orthonormal eigenbasis of σ and the corresponding
diagonal matrix will have the corresponding eigenvalues of σ along the
diagonal. We simply normalize the above eigenvectors, since they are already
orthogonal (because they correspond to different eigenvalues):

 

pσ(λ) =det (σ − λId) =det

= −λ(1 − λ)(5 − λ)−36(1 − λ) = (1 − λ)(λ2−5λ−36).

−λ 0 6
0 1 − λ 0
6 0 5 − λ

5±√25+4⋅36
2 = 5±√169

2 = 5±13
2 = 9 or −4.

σ1 := −4, σ2 := 1 and σ3 := 9.

(σ + 4 Id)v1 = 0
(σ − Id)v2 = 0

(σ−9 Id)v3 = 0,

v1 = 0

v2 = 0

v3 = 0.

4 0 6
0 5 0
6 0 9

−1 0 6
0 0 0
6 0 4

−9 0 6
0 −8 0
6 0 −4

v1 = , v2 = , and v3 =
3
0

−2

0
1
0

2
0
3

b1 = v1
||v1|| == 1

√13
,

3
0

−2



With respect to the basis B = {b1, b2, b3}, the matrix representation of σ is

(4) The stress invariants I1, I2 and I3 can be obtained from the principal stresses
(or eigenvalues) of σ by:

Alternatively, we may take the coefficients of the characteristic polynomial
pσ(λ) and adjust the sign.

 

Exercise 6.22

(1) The given stress tensor has trace

We hence define

 

(2) The diagonal matrix D will have the eigenvalues of σS along the diagonal and
the seeked orthonormal basis is an orthonormal eigenbasis of σS. We, thus,
first determine the eigenvalues of σS:

This factorization of the characteristic polynomial shows that the
eigenvalues of σS are λ1 = −5, λ2 = 0 and λ3 = 5. Next, we determine
corresponding orthonormal eigenvectors v1, v2, v3 of σS (with respect to the
basis E ):

 

b2 = v2
||v2|| = and b3 = v3

||v3|| = 1
√13

.
0
1
0

2
0
3

= .
σ1 0 0

0 σ2 0

0 0 σ3

−4 0 0
0 1 0
0 0 9

I1 = trσ = σ1 + σ2 + σ3 = −4 + 1 + 9 = 6

I2 = −σ1σ2 − σ2σ3 − σ3σ1 = −(−4 + 9−36) = 31

I3 =det (σ) = σ1σ2σ3 = −4 ⋅ 1 ⋅ 9 = −36

tr(σ) = σ11 + σ22 + σ33 = −2 + 2 + 6 = 6.

σS = σ − 1
3 tr(σ)Id = − =

and σP = 1
3 tr(σ)Id = .

−2 0 3
0 2 0
3 0 6

2 0 0
0 2 0
0 0 2

−4 0 3
0 0 0
3 0 4

2 0 0
0 2 0
0 0 2

pσS
(λ) =det (σS − λId)

=det = −λ⋅ det [ ]

= −λ(λ2−16−9) = −λ(λ−5)(λ + 5).

−4 − λ 0 3
0 −λ 0
3 0 4 − λ

−4 − λ 3
3 4 − λ



We choose x = 1 to obtain concrete vectors, which we normalize to define

The three vectors above form an orthonormal eigenbasis, D, for the
deviatoric stress σS. The change of basis matrix, L, from E  to D has columns
given by the components of the above [v1]

E
, [v2]

E
, [v3]

E
. With respect to the

basis D, the matrix representation of the deviatoric stress becomes diagonal:

(3) When symmetric matrices have the same eigenvalues, we can diagonalize each
of them to the same diagonal matrix (containing the eigenvalues along the
diagonal) via orthogonal changes of basis relying on their eigenvectors. In part
(2), we obtained this diagonalization for the matrix of σS with respect to E .
Now we seek a matrix of the form

having the same eigenvalues as σS. The characteristic polynomial of such A,

must then have the zeros −5, 0, 5, that is

For instance, the triple x = z = 0 and y = 5 satisfies the above conditions.
We thus choose the matrix

 

E−5 = ker(σS + 5Id) = ker = : x ∈ R

E0 = ker(σS) = ker = : x ∈ R

E5 = ker(σS−5Id) = ker = : x ∈ R .

1 0 3
0 5 0
3 0 9

3x
0

−x

−4 0 3
0 0 0
3 0 4

0
x

0
−9 0 3
0 −5 0
3 0 −1

x

0
3x

[v1]E = 1
√10

, [v2]E = and [v3]E = 1
√10

.
3
0

−1

0
1
0

1
0
3

A =
0 x y

x 0 z

y z 0

pA(λ) =det (A − λId) = = −λ3 + 2xyz + (x2 + y2 + z2)λ,
−λ x y

x −λ z

y z −λ

⇔ {

0 + 2xyz + 0 = 0

125 + 2xyz−5(x2 + y2 + z2) = 0

−125 + 2xyz + 5(x2 + y2 + z2) = 0

xyz = 0

x2 + y2 + z2 = 25



Next, we determine corresponding orthonormal eigenvectors w1,w2,w3 of A
(with respect to the basis E ):

We choose x = 1 to obtain concrete vectors and normalize them to define

The three vectors above form an orthonormal eigenbasis, D′, for A. Just as
in part (2), we obtain the diagonalization:

Putting the two equations (for [σS]D  and for [A]D′) together, we obtain

from which we find

So, the change of basis matrix is

and the desired basis B is formed by vectors with

Reality check: We compute [σS]
B

 directly

A = .
0 0 5
0 0 0
5 0 0

ker(A + 5Id) = ker = : x ∈ R

ker(A) = ker = : x ∈ R

ker(A−5Id) = ker = : x ∈ R .

5 0 5
0 5 0
5 0 5

x

0
−x

0 0 5
0 0 0
5 0 0

0
x

0
−5 0 5
0 −5 0
5 0 −5

x

0
x

[w1]
E

= 1
√2

, [w2]
E

= and [w3]
E

= 1
√2

.
1
0

−1

0
1
0

1
0
1

L−1σSL = D = M −1AM

A = ML−1σSLM
−1.

LEB = LM −1 = =

3
√10

0 1
√10

0 1 0
−1

√10
0 3

√10

1
√2

0 −1
√2

0 1 0
1

√2
0 1

√2

2
√5

0 −1
√5

0 1 0
1

√5
0 2

√5

[b1]
E

= 1
√5

, [b2]
E

= and [b3]
E

= 1
√5

.
2
0
1

0
1
0

−1
0
2



Exercise 6.26 We follow Sect. 6.​2.​5. Just like stress, the strain tensor is
symmetric

Let k := trε / 3 = (ε11 + ε22 + ε33) / 3 and define the uniform compression

as well as the traceless difference

so that, we have

By Fact 6.​21, the above traceless difference sijmay be represented with respect to
some orthonormal basis as a shear deformation, i.e., as a strain tensor of the form

[σS]B = L−1
EB

[σS]ELEB = tLEB[σS]ELEB

=

= = .

2
√5

0 1
√5

0 1 0

− 1
√5

0 2
√5

−4 0 3
0 0 0
3 0 4

2
√5

0 − 1
√5

0 1 0
1

√5
0 2

√5

−√5 0 2√5
0 0 0

2√5 0 √5

2
√5

0 − 1
√5

0 1 0
1

√5
0 2

√5

0 0 5
0 0 0
5 0 0

E = .
ε11 ε12 ε13

ε12 ε22 ε23

ε13 ε23 ε33

k 0 0
0 k 0
0 0 k

sij := εij − kδij = ,
ε11 − k ε12 ε13

ε12 ε22 − k ε23

ε13 ε23 ε33 − k

εij = sij + kδij.

.

0 ε̃12 ε̃13

ε̃12 0 ε̃23

ε̃13 ε̃23 0
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