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Preface

This text deals with physical or geometric entities, known
as tensors, which can be thought of as a generalization of
vectors. Tensors are central in Engineering and Physics
because they provide the framework for formulating and
solving problems in areas such as Mechanics (inertia
tensor, stress tensor, elasticity tensor, etc.),
Electrodynamics (electrical conductivity and electrical
resistivity tensors, electromagnetic tensor, magnetic
susceptibility tensor, etc.), or General Relativity (stress
energy tensor, curvature tensor, etc.). Thus tensors are
part of most Engineering and Physics curricula.

The Goal of This Text

Our aim is to provide a bridge between Linear Algebra and
Multilinear Algebra, thus introducing tensors with just
elementary knowledge of Linear Algebra. In particular, we
focus on finite-dimensional vector spaces. After this
exposure, the interested reader might want to seek other
texts, such as those by Dodson [5], Jeevanjee [8],
Landsberg [9], or Simmonds [11], for a solid understanding
of the mathematical nature of tensors.

What Type of Text This Is

This text fits in style between a textbook and lecture notes.
We hope that it will serve as an introduction or as a road
map, providing just enough material to satisfy basic needs
for the practical use of tensors, or to serve as a jumping
board for more substantial endeavors, in Mathematics, or
Engineering, or Physics.

How This Text Came to Be
This text originated as lecture notes for the course
Multilinear Algebra, which the three of us taught at ETH



Zurich between 2008 and 2021 for the Bachelor’s degree
program in Material Sciences. Having started out as a
seminar, this course was shaped by Ozlem Imamoglu
(whose career started out with a Bachelor in Electrical
Engineering) in 2008 to consist of one two-hour lecture a
week for 14 weeks, complemented by a one-hour weekly
exercise class. The target students previously had had only
a one-semester course of Linear Algebra, which had not
emphasized change of coordinates’ formulas. This led to a
first chapter, where we give a review of Linear Algebra,
with an eye toward tensors. Over the years, the three of us,
sharing our materials and benefiting from the input from
students and assistants, developed the contents until we
arrived at the present version.

Whom This Text Is Meant For

As in the original course, the target audience remains a
Science or Engineering college student with a typical one-
semester course in Linear Algebra. The goal remains to
provide foundations for a solid handling of the
mathematical side of tensors.

Background Expected for This Text

The main prerequisite for the first four chapters is a
standard one-semester first-year course in Linear Algebra,
for example at the level of the books by Axler [2], Bretscher
[3], or Strang [13]. That should include knowledge of
eigenvalues and eigenvectors. We use the Spectral
Theorem (Theorem 4.9), but do not expect it to have been
covered earlier.

Some familiarity with Physics is required for the last
chapter handling physical tensors. At ETH Zurich, where
this text originated, the first year of a Bachelor’s program
covers the foundations of Physics and Mathematical
Analysis. Since we only address Mechanics, probably a
shorter, one-semester Physics course should do. However,



those are only examples and the mathematical grasp of
tensors can be achieved already with the first four
chapters.

Regarding the Contents

« In Chap. 1, we give a brief general introduction to this
text.

« In Chap. 2, we collect and recall definitions and key facts
from Linear Algebra that play a significant role in
Multilinear Algebra.

« In Chap. 3, we delve into linear, bilinear, and multilinear
maps, introducing the notion of dual space.

« In Chap. 4, we address inner products and how the
presence of an inner product provides identifications
concealing the distinction between covariance and
contravariance.

« In Chap. 5, we discuss general tensors, their different
types, possible symmetries, and tensor product.

« In Chap. 6, we bridge toward concrete applications from
Mechanics.

Throughout, we pay particular attention to covariance vs.
contravariance issues.

The exposition is complemented with exercises, to help
gain comfort with the material. We provide solutions at the
end, though of course these should be avoided as much as
possible for better learning results.
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P,(R) polynomials of degree n and real coefficients
M,,«»(R) real matrices of size m X n
& standard basis of R3
vl coordinates of the vector v in the standard basis
basis of a vector space
, coordinates of the vector v in the basis #
v —
—~ change of basis from % to #
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13 rrp ;
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5 Kronecker delta symbol
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’Ulbj Z?:l U]bj
V x W the Cartesian product of the vector spaces V and
W
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v X w the cross product of the vectors vand w

u- (v x w) the triple scalar product of the vectors u, v and
w

pa the characteristic polynomial of the matrix A
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| v || norm of the vector v
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proj,,v



orthogonal projection of the vector v in the direction of w

&9 reciprocal basis of a vector space with the standard
basis & with respect to an inner product g

Y reciprocal basis of a vector space with basis % with
respect to an inner product g

G the matrix associated to the inner product g with
respect to a basis %

Bil(V x V,R) the vector space of all bilinear forms
VxV =R

Lin(V,W) linear maps V — W
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a ® B the tensor product of two linear forms « and S
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" (p, q)-tensor T with respect to the basis
bi,...,b,} on V and to the dual basis {8',...,5"}on V*
? Y
Il (V) the vector space of all (p, g)-tensors on V
ZO(V) the real vector space of all covariant k-tensors
k

SkV* real vector space of all covariant symmetric k-
tensors

AFV*  the set of all antisymmetric covariant k-tensor

T®U the (p—+ k,q+ £)-tensor obtained as tensor product
of the (p, g)-tensor T and the (k, £)-tensor U

V@p



Ve -V =39"V)
E Kkinetic energy

I,; component of the inertia tensor with respect to an
orthonormal basis

I, component of the inertia tensor with respect to an axis
determined by the vector u

L total angular momentum

B magnetic fluid density

H magnetic intensity

p  scalar permeability
tensor permeability

p momentum



Contents
1 Introduction

2 Review of Linear Algebra

2.1 Vector Spaces
2.1.1 Vectors and Scalars
2.1.2 Subspaces

2.2 Bases
2.2.1 Definition of Basis
2.2.2 Facts About Bases

2.3 The Einstein Convention
2.3.1 A Convenient Summation Convention
2.3.2 Change of Basis
2.3.3 The Kronecker Delta Symbol

2.4 Linear Transformations
2.4.1 Linear Transformations as (1, 1)-Tensors
2.4.2 Conjugate Matrices
2.4.3 Eigenbases

3 Multilinear Forms
3.1 Linear Forms
3.1.1 Definition and Examples
3.1.2 Dual Space and Dual Basis
3.1.3 Covariance of Linear Forms

3.1.4 Contravariance of Dual Bases



3.2 Bilinear Forms
3.2.1 Definition and Examples
3.2.2 Tensor Product of Two Linear Forms on V
3.2.3 A Basis for Bilinear Forms
3.2.4 Covariance of Bilinear Forms
3.3 Multilinear Forms
3.3.1 Definition, Basis and Covariance
3.3.2 Examples of Multilinear Forms

3.3.3 Tensor Product of Multilinear Forms

4 Inner Products
4.1 Definitions and First Properties
4.1.1 Inner Products and Their Related Notions
4.1.2 Symmetric Matrices and Quadratic Forms

4.1.3 Inner Products vs. Symmetric Positive
Definite Matrices

4.1.4 Orthonormal Bases
4.2 Reciprocal Basis
4.2.1 Definition and Examples
4.2.2 Properties of Reciprocal Bases

4.2.3 Change of Basis from a Basis % to Its
Reciprocal Basis %7

4.2.4 Isomorphisms Between a Vector Space and
Its Dual

4.2.5 Geometric Interpretation

4.3 Relevance of Covariance and Contravariance



4.3.1 Physical Relevance
4.3.2 Starting Point
4.3.3 Distinction Vanishes when Restricting_to
Orthonormal Bases
5 Tensors

5.1 Towards General Tensors
5.1.1 Canonical Isomorphism Between V _and
(V)
5.1.2 (2,0)-Iensors
5.1.3 Tensor Product of Two Linear Forms on V'*
5.1.4 Contravariance of (2,0)-Tensors

5.2 Tensors of Type (p, q)

5.3 Symmetric and Antisymmetric Tensors

5.4 Tensor Product
5.4.1 Tensor Product of Tensors

5.4.2 Tensor Product for Vector Spaces

6 Some Physical Tensors
6.1 Inertia Tensor
6.1.1 Physical Preliminaries
6.1.2 Moments of Inertia
6.1.3 Moment of Inertia About any Axis
6.1.4 Angular Momentum
6.1.5 Principal Moments of Inertia

6.2 Stress Tensor



6.2.1 Physical Preliminaries

6.2.2 Principal Stresses

6.2.3 Special Forms of the Stress Tensor

6.2.4 Stress Invariants

6.2.5 Decomposition of the Stress Tensor
6.3 Strain Tensor

6.3.1 Physical Preliminaries

6.3.2 The Antisymmetric Case: Rotation

6.3.3 The Symmetric Case: Strain

6.3.4 Special Forms of the Strain Tensor
6.4 Flasticity Tensor
6.5 Conductivity Tensor

6.5.1 Flectrical Conductivity

6.5.2 Heat Conductivity

7 Solutions to Exercises

Bibliography

Index



List of Tables
Table 3.1 Duality

Table 3.2 Covariance vs. contravariance

Table 4.1 Covariance and contravariance of vector
coordinates

Table 5.1 Covariance and contravariance of aforementioned
tensors

Table 5.2 Aforementioned tensors viewed within general
definition



© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Cannas da Silva et al., Tensors for Scientists, Compact Textbooks in Mathematics
https://doi.org/10.1007/978-3-031-94136-8 1

1. Introduction

Ana Cannas da Silval =, Ozlem Imamoglu! and Alessandra Iozzit

(1) Department of Mathematics, ETH Zurich, Zurich, Switzerland

Just like the main protagonists in Linear Algebra are vectors and
linear maps, the main protagonists in Multilinear Algebra are tensors
and multilinear maps. Tensors describe linear relations among objects
in space. As in the case of vectors, the quantitative description of
tensors, i.e., their description in terms of numbers, changes when we
change the frame of reference, which is mostly just the basis as in
Linear Algebra. Generalizing the case of vectors, tensors are
represented—once a basis is chosen—by multidimensional arrays of
numbers (Figs. 1.1, 1.2, and 1.3).

Ty svasss T,

,I*'n, 1 e T;m

Fig. 1.2 Representation of a tensor of order 2, T};
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Fig. 1.3 Representation of a tensor of order 3, Tijk

In the notation, the indices can be upper or lower. For tensors of
order at least 2, some indices can be upper and some lower. The
numbers in the arrays are called components of the tensor and give
the representation of the tensor with respect to a given basis.

Two natural questions arise:

- Why do we need tensors?
- What are the important features of tensors?

Why Do We Need Tensors?

Scalars are not enough to describe directions, for which we need to
resort to vectors. At the same time, vectors might not be enough, in
that they lack the ability to “modify” vectors.

Example 1.1 We denote by B the magnetic flux density measured in
V -s / m? and by H the magnetizing intensity measured in A / m (the
physical units here are: Volt V, second s, meter m, Ampere A, Henry
H). They are related by the formula

B=uH,
where p is the scalar permeability of the medium in H / m. In free
space, = po =4r x 107" H / m is a scalar, so that the flux density
and the magnetization are vectors that differ only by their magnitude.
Some materials, however, have properties that make these terms
differ both in magnitude and direction. In such materials the scalar
permeability is replaced by the tensor permeabilityp and

B=p -H.
Being vectors, B and H are tensors of order 1, and g is a tensor of
order 2. We will see that they are of different type, and in fact the
order ofH"”cancels out” with part of the order ofuto give a tensor of
order 1.



What Are the Important Features of Tensors?

Physical laws do not change with different coordinate systems, hence
tensors describing them must satisfy some invariance properties.
While tensors remain intrinsically invariant with respect to changes of
bases, their components will vary according to two fundamental
modes: covariance and contravariance, depending on whether the
components change in a way parallel to the change of basis or in an
opposite way. We will introduce covariance and contravariance in
Chap. 3 and see specific physical instances in Chap. 6.

Here are a couple of examples regarding a familiar tensor from
Linear Algebra, namely a vector. We review the effect of a change of
basis, showing that a vector is a contravariant tensor of first order.
We use freely notions and properties that will be recalled in Chap. 2.

Example 1.2 Let & = {b;, by, b3} and & = {b1, by, b3} be two basis of
a vector space V. A vector v € V can be written as

v = v'by + v2by + v3bs ,
or

V= ’51b1 + ’5262 + f)3b3 y

where v!, v?, v3 (resp. 171, 172, #%) are the coordinates of v with respect

to the basis & (resp. @/) The reason for distinguishing lower and
upper indices will become apparent already in Chap. 2.

We use the following notation:
1

v v
[v]g = v? and  [v]z= ¥ (1.1)
v3 o3

and we are interested in finding the relation between the coordinates
of v in the two bases.

The vectors l;j, 7 =1,2,3, in the basis 2 can be written as a linear
combination of vectors in 4 as follows:

b; = Liby + L2by + L3bs ,
for some L; € R. We consider the matrix of the change of basis from

Bto B,



1 71 71
L; L; Lj
— _ 2 12 T2
L:=1L BT = L{ L; L3
3 13 713

Ly L; L ~
whose jth-column consists of the coordinates of the vectors b; with
respect to the basis 4. The equalities

by = Liby + L2by + L3bs
by = Llby + L2by + Lbs
53 = L:l,)bl + Lgbz + Lgbg
can simply be written as
One can check this symbolic equation using the rules of matrix

multiplication. Analogously, writing basis vectors in a row and vector

coordinates in a column, we can write
1

v
v = ’Ulbl + ’U2b2 + ’U3b3 = (b1 by b3) v? (1.3)
’U3
as well as
ot o'
V= ’5151 -+ ’5252 + ’17353 = (51 I~)2 53) 2 = (bl by b3)L 2 ,(1.4)
03 03

where we used Eq. (1.2) in the last equality. Comparing the
expression of vin Eqgs. (1.3) and (1.4), we conclude that

Ok vt
L 3 = 9?2
73 v3
or, equivalently,
ol vl
,52 — L—l ’U2
o3 v3

We say that the components of a vector v are contravariant because
they change by L~! when the basis changes by L; see Sect. 2.3.2. A
vector v is hence a contravariant 1-tensor or tensor of order(1,0). [



Example 1.3 (A Numerical Example) Let

1 0 0
éa: {61,62,63} = 0 3 ]. 3 0 (15)
0 0 1
be the standard basis or R3 and let
7
B ={b1,ba,bs}= 2,5, 8
3 6 0
1
be another basis of R3. The vector2v = 1 has coordinates
1
_1
3
V] = and  [v]z= 1
1 0

Since we have that
51 =1l-e1+2-e2+3-e3
52 :4'61+5'62+6-63 ’

63 =7-e1+8-e3+0-e3
the matrix of the change of coordinates from & to B is

1 4 7
L= 2 5 8
3 6 0
Then we can check that

1

1 I |
3 =L
0
or, equivalently, that
1



[l

Footnotes

1 The Latin prefix co means “joint” or “together”, whereas the Latin prefix contra means
“contrary” or “against”.

2 For a general basis 43, the notation | - | » indicates the “operation” of taking the vector v
and looking at its coordinates in the basis . However, in order to “write down explicitly” a
vector (that is three real numbers that we write in column), one needs to give coordinates and
the coordinates are usually given with respect to the standard basis. In this case, there is the
slightly confusing fact that
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2. Review of Linear Algebra

Ana Cannas da Silval “’, Ozlem Imamoglu! and Alessandra Iozzit
(1) Department of Mathematics, ETH Zurich, Zurich, Switzerland

This chapter collects and recalls definitions and key facts learned in Linear
Algebra, from vector spaces to linear transformations, which will play a
significant role in Multilinear Algebra. Along the way, we fix some
notations and standards for this text. We introduce the Einstein
convention, which we will subsequently mostly follow.

2.1 Vector Spaces

A vector space (or linear space) is a set of objects where addition and
scaling are defined in a way that satisfies natural requirements for such
operations, namely the properties listed in the definition below.

2.1.1 Vectors and Scalars

In this text, we will only consider real vector spaces, that is vector spaces
over R, where the scaling is by real numbers.

Definition 2.1 A vector spaceV (over R) is a set V equipped with two
operations:

. vector addition:V x V =V, (v,w) — v+ w, and
. multiplication by a scalar:R x V. =V, (a,v) — av,

satisfying the following properties:
(1) (associativity) (u + v) + w = u + (v + w) for every u,v,w € V;

(2) (commutativity) © + v = v + u for every u,v € V;

(3) (existence of the zero vector) There exists 0 € V such thatv+0 = v
for every v € V;

(4) (existence of additive inverse) For every v € V, there exists w, € V
such that v + w, = 0. The vector w, is denoted by —v.


https://doi.org/10.1007/978-3-031-94136-8_2

(5) a(Bfv) = (aB)v for every a, B € R and every v € R;
(6) lv=wvforeveryv e V;

(7) a(u+v) =au+avforalla € Rand u,v € V;

B) (a+B)v=av+ Pvforalla,f € Randv e V.

An element of the vector space is called a vector and, mostly in the context
of vector spaces, a real number is called a scalar.

Example 2.2 (Prototypical Example of a Vector Space) The Euclidean
spaceR", n =1,2,3,..., is a vector space with componentwise addition
and multiplication by scalars. Vectors in R" are denoted by

T1
v = ,
Ln
with z1,...,z, € R. Addition component-by-component translates

geometrically to the parallelogram law for vector addition, well-known in

R? and R3. O

Examples 2.3 (Other Examples of Vector Spaces) The operations of

vector addition and scalar multiplication are inferred from the context.

(1) The set of real polynomials of degree < n is a vector space, denoted
by

V = P,(R) := {anz" + an12" ' +... + a1z + ao : a; € R}
with the usual (degreewise) sum of polynomials and scalar
multiplication.

(2) The set of real matrices of size m X n,

a1 ... Qip
V=MpunR):=q | : Pt asER

a/m]_ o o o a/mn
with componentwise addition and scalar multiplication.

(3) The space {f : W — R} of all real-valued functions on a vector space
W. Addition of functions f: W — R and g : W — R, and their
multiplication by a scalar a € R are defined pointwise:

(f+ 9)(w) := f(w) + g(w) and (af)(w) := a(f(w)) for each w € W.



(4) The space of solutions of a homogeneous linear (ordinary or partial)
differential equation.

(5) The cartesian product

VxW:={(v,w): veV,we W}
of two real vector spaces V and W, endowed with factorwise
addition and scalar multiplication.

[

Examples 2.4 (Non-examples of Vector Spaces) The operations below
are the standard ones of vectors in the plane R2.

(1) The upper half-plane V := {(z,y) | y > 0} is not a vector space. The
sum of two vectors in V is still a vector in V, however, if v € V has a

positive second component and « is a negative real number, then
av & V.

(2) The union of the two odd quadrants, V := {(z,y) | zy > 0} is not a
vector space. The product of any vector in V with a scalar a € R is
still a vector in V, however, the sum of two vectors in V is not always
avectorin V.

(3) The graph of the real function f(z) = 2z + 3 is not a vector space. In
particular, it does not contain any zero vector.

[
Exercise 2.5 Are the following vector spaces?
(1) 1
The set V of all vectors in R3 perpendicular to the vector |2].
3

(2) The set of invertible 2 x 2 matrices, that is

()

(3) The set of polynomials of degree exactly n, that is
Vi={apz" +a1z" '+ - +ap 1z +a,: a; € R,a, #0}.

(4) The set V of 2 x 4 matrices with last column zero, that is

a b c 0
= : b,c,d R .
V { [d e f 0] a’? 7C’ 7e7f e }



(5) The set of solutions f : R — R of the equation f/ = 5, that is
Vi={f:R—=>R: f(z) =bz+C, C eR}.

Definition 2.6 A function T : V — W between real vector spaces V and
W is a linear transformation if it satisfies the property

T(av + pw) = aT'(v) + BT (w) ,
foralla,f € Rand allv,w € V.

Examples 2.7 (Linear Transformations)
(1) An m X n matrix,

ailp] ... Qin
A= )

Aml --- Qmn
defines a linear transformation 7" : R® — R™ by multiplication,
T(v) := Av.

(2) Differentiation from the set P,(R) of real polynomials of degree < n
to the set P,,_1(R) of real polynomials of degree < n—1 is a linear
transformation, taking a polynomial p(z) to its derivative p/(z).

(3) Transposition from the set M, ,(R) of real m x n matrices to the set
M, «m(R) of real n X m matrices is a linear transformation,

ail- ami

O]

Exercise 2.8 Are the following linear transformations?
(1) The function T": P,(R) — R evaluating a polynomial p(z) of degree at
most n at the point z = 1, i.e., T'(p(z)) := p(1).

(2) The function T : R — R defined by the formula T'(z) := 2z + 3.

(3) The function T : M,,.,(R) — M, «,(R) taking a square n X n matrix A
to its square power, T(A) := A2

Exercise 2.9 Show that the set of all linear transformations 7" : R2 — R3
forms a vector space.



2.1.2 Subspaces

Naturally, once we have a vector space V, we single out its subsets that
are vector spaces themselves.

Definition 2.10 A subset W of a vector space V that is itself a vector
space is a subspace.

By reviewing the properties in the definition of vector space, we see that a
subset W C V is a subspace exactly when the following conditions are
verified:

(1) The 0 element is in W;
(2) W is closed under addition, that is v + w € W for every v,w € W;

(3) Wis closed under multiplication by scalars, that is av € W for every
a € Randeveryve W.

Condition (1) actually follows from (2) and (3) under the assumption
that W # (0 (which is always satisfied for a vector space). Yet it is often an
easy way to check that a subset is not a subspace.

Recall that a linear combination of vectors vq,...,v, € V is a vector
of the form ayv; + ... + a,v,, for ay,...,a, € R. With this notion, the
above three conditions for a subset W C V to be a subspace are equivalent
to the following ones:

(1)" W is non-empty;

(2)’ W is closed under linear combinations, that is av + fw € W for all
a,f €Randallv,w e W.

Examples 2.11 (Subspaces)
(1) The set W of 2 x 4 matrices with last column zero is a subspace of the
vector space V of all 2 X 4 matrices.

(2) The line W = {(z, 2z) | z € R} is a subspace of the vector space
V =R

(3) The space of all differentiable real-valued functions of one real
variable is a subspace of the vector space of all real-valued functions
of one real variable.



Exercise 2.12 Are the following subspaces?
(1) The subset of all n x n real symmetric matrices in the vector space
V = M,..»(R). Recall that a matrix A is symmetric if *A = A.

(2) The subset of all real-valued functions of one real variable with value
0 at = 1 in the vector space of all real-valued functions of one real
variable.

(3) The subset of all real-valued functions of one real variable with value
1 at x = 0 in the vector space of all real-valued functions of one real
variable.

Definition 2.13 If7 : V — W is a linear transformation between real
vector spaces V and W, then:

. the kernel (or null space) of T is the set kerT := {v € V : T(v) = 0};
. the image (or range) of T is the set im T := {T'(v) : v € V'}.

Exercise 2.14 Show that, for a linear transformation T : V' — W, the
kernel kerT is a subspace of V and the image im 7T is a subspace of W.

2.2 Bases

The key to study and to compute in vector spaces is the concept of a basis,
which in turn relies on the fundamental notions of linear
independence/dependence and of span.

2.2.1 Definition of Basis

Definition 2.15 The vectors by,...,b, € V are linearly independent if
aiby + ...+ apb, = 0 implies that a1 = ... = a, = 0. In other words, if the
only linear combination of these vectors that yields the zero vector is the
trivial one. We then also say that the vector set {b1,...,b,} is linearly
independent.

Example 2.16 The vectors

1 0 0
of, 1], 0
0 0 1

are linearly independent in R3. Indeed, we have



1 0 0 a1 0

a; [0 +ay |1 +a3 [0] =0& |ag|l = |0] S a;=a3=a3=0.
0 0 1 Qas 0
1
Example 2.17 The vectors
1 4 7
by = |2], by = | 5], bs = |8
3 6 0

are linearly independent in R3, since we have
a1 + 4o + Tag =0
a1by + asby +asbs =0 < 21 + bag + 8az =0
3a1 + 6as =0

... ar=as=a3=0.
The dots are filled in using Gauss-Jordan elimination, as in Example 2.14.
[

Example 2.18 The vectors

1 4 7
b1 = |2], b2 = |5], bs = |8
3 6 9

are linearly dependent in R3, i.e., not linearly independent. In fact,
a1+ 4as +Taz3 =0
a1b; + agbs + asbs =0 < 2001 + Do + 83 =0
3a1 + 6as +9a3 =0

a1 = O3
a9 :—2@3,

SO

b1—2by + b3 =0
and by, b, b3 are not linearly independent. For instance, we say that
by = 2by — bs is a non-trivial linear relation between the vectors by, by and
bg. ]

Definition 2.19 The vectors by,...,b, € VspanV, if every vectorv € V
can be written as a linear combination v = a1b; + ... + a,b,, for some
ai,...,a, € R. We then say that the vector set {by,...,b,}spansV and
write V = span {b1,...,bn}.



Examples 2.20

(1) 1 0 0
The vectors 0], |1]|, |0]| span R3.
0] 0] |1}
(2) 17 [0] [O] 1
The vectors (0], (1], [0]|, [1] also span R3.
0] 0] |1} 1
(3) (1] [0
The vectors [0]|, |1| span the xy-coordinate plane (i.e., the
0 0

subspace givén_by the equation z = 0) in R3.
1

Exercise 2.21 Show that the set of all linear combinations of given
vectors by1,...,b, € V is a subspace of V. We denote this subspace by

span {by,...,b,}.

Definition 2.22 The vectors by,...,b, € V form a basis of V, if:
(1) they are linearly independent and

(2) they spanV'.

Remark 2.23 We then denote a basis as an set % := {by,...,b,}.
However it is essential to know that, despite the set notation, the order of
the vectors in a basis matters for the computations.

Example 2.24 The vectors

1 0 0
e;:= |0], ey = |1], ez := |0
0 0 1

form a basis of R3. This is called the standard basis of R? and denoted
& := {e1,ea,es}. For R, the standard basisé& := {ey, ..., ey} is defined
similarly. [

Example 2.25 The vectors in Example 2.7 span R3, while the vectors in

Example 2.8 do not span R3. To see this, we recall the following facts
about bases. []

2.2.2 Facts About Bases



Let V be a vector space with a finite basis. Then we have:

(1) All bases of V have the same number of elements. This number is
called the dimension of V and denoted dim V.

(2) If # = {by,...,b,} is a basis of V, there is a unique way of writing
any v € V as a linear combination

v=1uvlb +...0",
of elements in . The numbers v, ..., v" are the coordinates of v
with respect to the basis & and we denote by

v g =

,UTL

the coordinate vector of v with respect to #4.

(3) If we know that dim V' = n, then:

(a) More than n vectors in V must be linearly dependent;
(b) Fewer than n vectors in V cannot span V;

(c) Any n linearly independent vectors span V;

(d) Any n vectors that span V must be linearly independent;

(e) If k vectors span V, then k > n and some subset of those k
vectors must be a basis of V;

() If a set of m vectors is linearly independent, then m < n and we
can always complete that set to form a basis of V.

From Chap. 3 onwards, our vector spaces are all finite-dimensional,
hence here we concentrate on finite spanning sets and finite bases. Infinite
bases and, correspondingly, infinite-dimensional vector spaces would bring
us to the realm of Functional Analysis.

Example 2.26 The vectors by, by, b3 in Example 2.7 form a basis of R3
since they are linearly independent and they are exactly as many as the
dimension of R3. O



Example 2.27 (Gauss-Jordan Elimination) We are going to compute

1
here the coordinates of v = |1 | with respect to the basis & := {by, by, b3}
1
ol
from Example 2.7. The seeked coordinates [v], = | : |must satisfy the
o
equation
1 4 7 1
v 2] + 2|5 +03|8] = |1,
3 6 0 1

so to find them we have to solve the following system of linear equations:

vt + T =1
20l + 507 + 807 =1

3v! + 602 = 1.
For that purpose, we may equivalently reduce the following augmented

matrix
1471
25 8|1
360[1

to echelon form, using the Gauss-Jordan elimination method. We are going
to perform both calculations in parallel, which will also point out that they
are indeed seemingly different incarnations of the same method.

By multiplying the first equation/row by 2 (resp. 3) and subtracting it
from the second (resp. third) equation/row we obtain

| 2 3

v+ 4dvt+T7v7 =1 l'l 4 7 | ‘l
0-3 —6|—1].

0—-6-21|-2

— 3 =60 =—1 s
—6v? =21 =2
1
By multiplying the second equation/row by —3 and by adding to the

first (resp. third) equation/row the second equation/row multiplied by %
(resp. —2) we obtain



3__ 1
v VTS [101%1
v’ 420 = s o124 |.
93 =0 00 -9/ 0

The last equation/row shows that v3 = 0, hence by backward
substitution we obtain the solution

. (100%1
v =1 s o1o/ L |.

: 3
B3 —0 L001 OJ

Lo|—

O]

Example 2.28 When V = R" and & = & is the standard basis, the
coordinate vector v € R" coincides with the vector itself! In this very
special case, we have [v], = v. O

Exercise 2.29 Let

1
B = 0], |1{,
0 0 1

(1) Show that 4 is a basis of R3.

(2) Determine the coordinate vector, [v] 4, of
0
v= |1
e
with respect to &A.
(3) Determine the vector w € R3 that has coordinate vector
1

Exercise 2.30 Let V be the vector space consisting of all 2 X 2 matrices
with zero trace, namely

b
V::{[a d] : a,b,c,dERanda+d:0}.
C



(1) Show that

si={ s 5] ool [

b 1 b ol b 3

is a basis of V.

(2) Show that

= {0 51 ) ol

e \-—_ P ‘\_‘ P

[;1 53 b3

is another basis of V.

(3) Compute the coordinates of

=

with respect to & and with respect to B.

2.3 The Einstein Convention

2.3.1 A Convenient Summation Convention
We start by setting a notation that will turn out to be useful later on. Recall
that if & = {by, by, b3} is a basis of a vector space V, any vector v € V can
be written as

v = v'b1 +v?by + v°b3 (2.1)
for appropriate v!,v?,v3 € R.

Notation From now on, expressions like the one in Eq. 2.1 will be written

as
v = v b FbrE by = v/b;. (2.2)

That is, from now on when an index appears twice - once as a subscript
and once as a superscript - in a term, we know that it means that there is a
summation over all possible values of that index. The summation symbol
will not be displayed.

On the other hand, indices that are not repeated in expressions like

aijxkyj are free indices not subject to summation.



Examples 2.31 For indices ranging over {1,2,3}, i.e., n = 3:
(1) The expression aijxiyk means
a;;x'y* = a1 jx'y* + arjx%y* + az;x3yF,
and could be called R? (meaning that R;? and aijaciyk both depend
on the indices j and k).
(2) Likewise,

a;jx*y) = a;1x*yt + apx*y? 4+ apxky’ = @k,

(3) Further
a,-jx"yf = allxlyl —|—a12x1y2 +ax'y’

+ azpczyl + a22x2y2 + c123J62y3

+ a3’y fanx®y? fanx’y’ = P

(4) An expression like
ol ol i
A'B],c* =: D/

makes sense. Here the indices i, j, k are free (i.e., free to range in
{1,2,...,n}) and £ is a summation index.

(5) On the other hand an expression like

does not make sense because the expression on the left has only
two free indices, i and k, while j and ¢ are summation indices and
neither of them can appear on the right hand side.

Notation
Since v'b; denotes a sum, we choose to denote the indices of the generic

term of a sum with capital letters. For example, we write v'b; and the
above expressions could have been written as

(1) 3
ik 1K 1.k 2.k 3k
aijxty 22011)5 YU =ajxy +axty +asix’y,

I=1

(2) 3
kyj K J k1 k.2 k.3
aijx*y =3 arx®y’ = anx*y' + apxty? + aixty’

J=1



3) L
aijx'y! =) % ax'y’ =

J=11=1
=anx'y' +apx'y® + aix'y’
+ a21x*y! + apx?y? + apx’y?
+ a31X3yl + a32x3y2 + a33x3y3 .

O

Exercise 2.32 Let

A= (A;) c Réxm and B = (B;) c Rmxn
be matrices, where the upper indices are the row indices and the lower
indices are the column indices. Moreover, let

z = (z') € R and y=(y') € R"
be column vectors. How are the coordinates of the following expressions
written using the Einstein convention?

(1) AB
(2) By
(3) yT'BT

(4) 2y’ BT

2.3.2 Change of Basis
Let % and % be two bases of a vector space V and let
Ll ... L}
L=L_~=1": (2.3)

BB .
LY ... Ly
be the matrix of the change of basis from the “old” basis & to a “new”
basis #. Recall that the entries of the j-th column of L are the coordinates

of the new basis vector Bj with respect to the old basis 4.

Mnemonic: | Upper indices go up to down, i.e., they are row indices.

Lower indices go left to right, i.e., they are column indices.

With the Einstein convention we can write



bj =L'b; | (2.4)

or, equivalently,

(by ... by) = (b1 ...by) L],

where we use some convenient formal notation: The multiplication is to be
performed with the usual rules for vectors and matrices, though, in this

case, the entries of the row vectors (5, ... b,) and (b; ... b,) are not
real numbers but vectors themselves.

Exercise 2.33 Let &/, 4 and ¥ be three bases of a vector space V, let
L ;2 be the matrix of the change of basis from &7 to 4, let L g% be the
matrix of the change of basis from £ to %, and let L ¢ be the matrix of
the change of basis from & to ¥. Show that then we have

Lyy = LyaL z¢.

If A = L1 denotes the matrix of the change of basis from B to %, then,
using the same formal notation as above, we have

(b1 ... by) = (by ... by) A|.

Equivalently, this can be written in compact form using the Einstein
notation as

Remark 2.34 Mathematically, the set of all matrices of change of basis
for a vector space V equipped with matrix multiplication forms a group,
called the general linear group of V. Key here is the relation

Lyv = LygL gy from Exercise 2.33 and the relation Lgy = L;%.

The corresponding relations for the vector coordinates are

vl EZ L (' 9! Al ... ALl (!
v | =Li...... Lifl i and | & [=]A%...... A
v ... e\ " AT ... AR ] "

and these can be written with the Einstein convention respectively as

vl = L_"]-ﬁf' and [0’ = A';L’j . (2.9)

or, in matrix notation,



-1
V] 5 = L%@{v]@; and [v]@;: (L%,g) [v] 4 = L%@{v]% .
The coordinate vectors change in a way opposite to the basis change.
Hence, we say that the coordinate vectors are contravariant, because

they change by L~! when the basis changes by L.

Example 2.35 We consider the following two bases of R?

1)1 bg (2.6)

&N
I

1
—_ D

]
(I
—_— —
L1
[ —

and we look for the matrix of the change of basis. Namely, we look for a
matrix L such that

(51 52) - (bl b2)L )

i

There are two alternative ways of finding L:

that is

(1) With matrix inversion: Recall that

a b]7! d —b
= L (2.7)
[c d] b [—c a ] ’
[a b
where D =det is the determinant (see also Sect. 2.4.2).
c

Thus

P L I e B s e AN L
o1 1 -1 [0 1]|1 -1 |1 —-1]°
(2) With Gauss-Jordan elimination:
12]3 -1 o
011 —1 ' 011 —1
]
2.3.3 The Kronecker Delta Symbol



Notation The Kronecker delta symbol&é- is defined as

. 1 ifi=j
0% = 2.8
J {O ifi£7j. (2-8)
Similarly, we define §;; and §%.

Examples 2.36 If L is a matrix, the (4, j)-entry of L is the coefficient in
the i-th row and j-th column, and is denoted by L;..

(1) The n X nidentity matrix

I =

has (i, j)-entry equal to 5;

(2) Let L and M be two square matrices. The (4, j)-th entry of the product

1 1

M ... M, L}.LL.L}
ML=|M ...... M;

M. Mr] Ly L. Ly

equals the dot product! of the i-th row of M and j-th column of L,

z
(i MY .| 2 | =ML+ -+ MILY,
Lj
or, using the Einstein convention,
ML .

Notice that, since in general ML # LM, it follows that
- ke ki
M,zLj =+ L}ch = M; L .
However, in the special case where M = A = L~!, we have
AL = LA = I and here we can write

iTk _ 851 __ TiAk
ALLY = 8t = LAY



Remark 2.37 Using the Kronecker delta symbol, we can check that the
notations in Eqgs. 2.5 are all consistent. In fact, we should have

’Uibi =v= 17ZBZ , (2.9)
and indeed, by Eqgs. 2.5, we have
5ib; = (Adw?) (Lby) = (ASLE) by = Sbvib, = vib; |
where the equality A;.Lf’ = 5;? amounts to A = L.
Two words of warning:

« The two expressions vl b; and vkbk are identical, as the indices j and k are

dummy indices, that is, can be replaced by other symbols throughout,
without changing the meaning of the expression (as long as the symbols
do not collide with other symbols already used in the expression).

« When multiplying two different expressions in Einstein notation, we
should be careful to distinguish by different letters different summation

indices. For example, if &* = Aé.vj and b; = Lg b;, in order to perform the
multiplication fDiEi we have to make sure to replace one of the dummy
indices in the two expressions. So, for example, we can write I;Z = Lfbk,
so that 9'b; = Aé.ijfbk.

Exercise 2.38 This is a continuation of Exercise 2.32. Use the Kronecker

delta symbol to write the coordinates of ATz according to the Einstein
convention.

2.4 Linear Transformations
2.4.1 Linear Transformations as (1, 1)-Tensors
Recall that a linear transformation from V to itself, T: V — V, isa
function (or map or transformation) that satisfies the property

T(ow + Bw) = oT(v) + BT(w) ,
for all a, 8 € R and all v,w € V. Once we choose a basis & = {b1,...b,} of
V, the transformation T is represented by a matrix A, called the matrix of
the linear transformation with respect to that basis. The columns of A
are the coordinate vectors of T'(by), ..., T(b,) with respect to 4. Then that
matrix A gives the effect of T on coordinate vectors as follows: If T'(v) is

the value of the transformation T on the vector v, with respect to a basis %
we have that

N v = [T(v)lg = Alvg - (2.10)
If £ is another basis, we have also
W= [TW)z= Az, (2.11)



where now A4 is the matrix of the transformation T with respect to the basis

—_—

AB.

We want to find now the relation between A and A. Let L := L BT be

the matrix of the change of basis from £ to . Then, for anyv eV,

W] 5 =L '[v] - (2.12)
In particular the above equation holds for the vector T'(v), that is
[T(v)] =L '[T(v)]g - (2.13)

Then we have

~ (2.12) (2.11) (213) (210)
AL vl = APz = [T()lg = L [TW)lg = L Alg
for every vectorv € V. If follows that AL ' =L 'Aor, equivalently,
A=L1AL, (2.14)
which, in Einstein notation, reads
A= A AN LT
We say that the linear transformationTis atensor of type(1, 1).Z

Example 2.39 Let V = R? and let £ and % be the bases in Example
2.18. The matrices corresponding to the change of coordinates are

1 1 1 —1 L1
e _ -1 _ 1 . 2 2
L—L%g— [1 _1] and L —_—2[_1 1] — [1 _1]7
2 2

where in the last equality we used the formula for the inverse of a matrix
in (2.7).
Let T : R?2 — R? be the linear transformation that in the basis 4% takes

the form
1 3
A= .

Then according to Eq. 2.14 the matrix A of the linear transformation T
with respect to the basis & is

A=L1AL =

o= N
| D=
o=
—_ 1
| e
N =
= W
1
r——1
—_
-
—
—_ 1
|
| —
| en
—
|
< [\
[E——



Example 2.40 We now look for the standard matrix of a linear
transformation T, that is, the matrix M that represents T with respect to
the standard basis of R2, which we denote by

ol

el e)

We want to apply again Eq. 2.14 and, hence, we first need to find the
matrix S := Leg of the change of basis from & to #. Recall that the
columns of S are the coordinates of b; with respect to the basis &, that is

=[]

According to Eq. 2.14, we have

A=S"1MS,
from which, using again Eq. 2.7, we obtain

wesws (IR0 B0 B

Example 2.41 Let V := P»(R) be the vector space of polynomials of
degree < 2, and let T' : P,(R) — P5(R) be the linear transformation given
by differentiating a polynomial and then multiplying the derivative by x,

T(p(z)) := zp!(z) ,
so that T'(a + bz + cx?) = x(b + 2cx) = bz + 2cx?. Let

B :={1,z,z°} and B = {z,z—1,z>—1}
be two bases of P»(R). Since
T(1) =0=0-1+0-z+0-z>
T(z) =z=0-1+1-2+0-z?
T(z?) =222=0-1+0-242- 22

O]

and
T(z) =z=1-24+0-(z—1)+0- (z2-1)
T(z—1) =z=1-2+0-(z—1)+0- (z*—

T(z?-1) =222=2-2-2-(z—1)+2- (22-1),
then



0 00O 11 2
A=10 10 and A=10 0 —2
0 0 2 0 0 2
One can check that indeed AL = LA or, equivalently A =L 'AL, where
0 -1 -1
L=(1 1 0
0 0 1

is the matrix of the change of basis. ]

Geometric features often point out a basis particularly well-suited to tackle
a given problem. That observation, combined with the transformation law
in Eq. 2.14, yields a good strategy for finding the matrix of a linear
transformation with respect to a certain basis, as the following example
illustrates. This viewpoint will be systematized in Sect. 2.4.3.

Example 2.42 Let T : R?® — R? be the orthogonal projection onto the
plane & of equation

2c+y—2=0.
This means that the transformation T is characterized by the fact that

- it does not change vectors in the plane &, and

- it sends vectors perpendicular to & to the zero vector in Z.

We want to find the standard matrix for T. As suggested above, we
compute the matrix of T with respect to a basis # of R?® well adapted to
the problem, then use Eq. 2.14 after having found the matrix Ls# of the
change of basis.

To this purpose, we choose two linearly independent vectors in the
plane & and a third vector perpendicular to &. For instance, we set

| 0 2
B = { O, 1],] 1 } .
2 | —1
T b
where the coordinates of b; and by satisfy the equation of the plane, while

the coordinates of bs are the coefficients of the equation describing &2. Let

& be the standard basis of R3.
Since

T(bl) = bl, T(bg) = b2 and T(bg) =0 y
the matrix of T with respect to & is simply



1

A=10

0 0

where we recall that the j-th column is the coordinate vector [T'(b;)] , of

the vector T'(b;) with respect to the basis 4.
The matrix of the change of basis from & to &4 is

0
0l , (2.15)
0

1 0 2
L=(01 1],
2 1 —1
hence, by Gauss-Jordan elimination,
r _1 1
3 3 3
-1 _ 1 5 1
L7=1-3 % %
1 1 1
3 6 6
Therefore
1 _1 1
3 3 3
_ -1 _ _ 1 5 1
M=LAL ' =...= -3 T %
1 1 5
3 6 6
]

2.4.2 Conjugate Matrices

The above calculations can be summarized by the commutativity of the
following diagram. Here, the vertical arrows correspond to the operation
of change of basis from & to B (recall that the coordinate vectors are
contravariant tensors, that is, they transform as [v] - = L™'[v] 5) and the

horizontal arrows correspond to the operation of applying the
transformation T with respect to the two different basis:

A
vl —— [T (v)]B

vlg —— [TW)]g.
A

Saying that the diagram is commutative is saying that if one starts from
the upper left hand corner, reaching the lower right hand corner following
either one of the two paths (i.e., either first to the right via A then down via

L1, or first down via L' and then right via A) has exactly the same
effect. In other words, changing coordinates first then applying the



transformation T yields exactly the same affect as applying first the
transformation T and then the change of coordinates, that is,

L'A = AL or, equivalently,

A=L1AL.
In this case we say that A and A are conjugate matrices. This means that A
and A represent the same transformation with respect to different bases.

Definition 2.43 We say that two matrices A and A are conjugate if
there exists an invertible matrix L such that A = L 1 AL.

Example 2.44 The three matrices from Examples 2.21 and 2.22

1 3 5 1 ~ 5 —2
A= M = A=
[2 4] [2 0] and [—1 0 ]
are all conjugate. Indeed, we have

A=L"1AL, A=S'MS and A=R MR,
where L and S may be found in those examples and where R := SL. ]

We now review some facts about conjugate matrices. Recall that the
characteristic polynomial of a square matrix A is the polynomial

pa(N) :=det (A — \I) .

Let us assume that A and A are conjugate matrices, that is A= L AL for
some invertible matrix L. Then

pi(L) =det(A —AT) = det(L 'AL — AL'IL)
= det(L™ (A — AI)L) (2.16)
= (detZ™") det(A — A1) (et = pa(h),
which means that any two conjugate matrices have the same characteristic
polynomial.

Recall that the eigenvalues of a matrix A are the roots of its
characteristic polynomial and we here usually allow complex roots. Then,
by the Fundamental Theorem of Algebra, each n X n matrix has n (real or
complex) eigenvalues counted with multiplicities as polynomial roots.
Recall also the definitions of determinant and trace of a square matrix. By
analysing the characteristic polynomial, we see that

(1) the determinant of a matrix is equal to the product of its eigenvalues
(multiplied with multiplicities), and

(2) the trace of a matrix is equal to the sum of its eigenvalues (added
with multiplicities).



From the computation in (2.16), it follows that, if the matrices A and A
are conjugate, then:

- A and A have the same size;

. the eigenvalues of A (as well as their multiplicities) are the same as
those of A;

. det A =det A4;

. trA = trA;

« A is invertible if and only if A is invertible.

1 3 1 2
Example 2.45 The matrices A = [2 4] and A/ = [2 4] are not

conjugate. In fact, A is invertible, as det A = —2 # 0, while det A7 =0, so
that A/ is not invertible. ]

Example 2.46 In Example 2.24, we showed that the matrices

10 0 3 3 3

_ _ 1 5 1
A— 010 and M = -3 6 G
0 0O 1 1 5

3 6

are conjugate. From this fact, we see most easily that det M = 0 and
trM = 2.

2.4.3 Eigenbases

The possibility of choosing different bases is very important and often
simplifies the calculations. Example 2.24 is such an example, where we
choose an appropriate basis according to the specific problem. Other
times, a basis can be chosen according to the symmetries and, completely
at the opposite side, sometime there is just not a basis that is a preferred
one. In the context of a linear transformation 7' : V — V, a basis that is
particularly convenient, when it exists, is an eigenbasis for that linear
transformation.

Recall that an eigenvector of a linear transformation 7' : V — Vis a
vector v # 0 such that T'(v) is a multiple of v, say T'(v) = Av and, in that
case, the scaling number ) is called an eigenvalue of T. An eigenbasis is
a basis of V consisting of eigenvectors of a linear transformation
T:V —>V.

The point of having an eigenbasis is that, with respect to this
eigenbasis, the linear transformation is representable by a diagonal matrix,
D. Hence, any other matrix representative of that linear transformation
will be actually conjugate to a diagonal matrix D. Recall that diagonal



matrices are extremely friendly for computations, so the possibility of
producing eigenbases accounts for a main application of eigenvectors.

A linear transformation 7' : V' — V for which an eigenbasis exists is
then called diagonalizable.?

Given a linear transformation 7' : V' — V, in order to find an eigenbasis
(assuming it exists) of T, we first represent T by some matrix A with
respect to some chosen basis of V, and then perform the following steps:

(1) We find the eigenvalues by determining the roots of the characteristic
polynomial of A (often allowing complex roots).

(2) For each eigenvalue A, we find the corresponding eigenvectors by
looking for the non-zero vectors in its eigenspace

E) :=ker(A—XAI).
When considering complex eigenvalues, the eigenspaces are
determined as subspaces of the complex vector spaceC"™. However, in
this text, we concentrate on real cases.

(3) We determine whether there exists an eigenbasis.

We will illustrate this in the following examples.

Example 2.47 Let T : R? — R? be the linear transformation given by the

3
matrix A = [ 3] with respect to the standard basis of R2.

(1) The eigenvalues are the roots of the characteristic polynomial py(A).
Since

3—A —4
A) =det (A — M) =det
pa) —det (4 a0 et [* 0
=B—-X)(-3—-X)—16 = A2-25 = (A\-5)(A +5),
hence A = %5 are the eigenvalues of A.

(2) If Ais an eigenvalue of A, the eigenspace corresponding to A is given
by E) = ker(A — A\I). Note that

veEE, & Av=M.
With our choice of A and with the resulting eigenvalues, we have

By =ker(A-5I)=ker| © | = ?
5 = ker(A—b5I) = er| , _g|=span| .

E.s —ker(A+50) —ker| >, | = !
5 =ker(A+5I)= er| , | =spanj,|.



O]

Example 2.48 Now let T : R? — R? be the linear transformation given

The following is an eigenbasis for this linear transformation:

a={n=") 5=}

and
T(by) =5b;=5-b;+0-by
T(Ez) :—552:0-51—5'52,
. 5 0
that A = Fig. 2.1).
so tha [0 _5] (Fig )

x+2y=0

Fig. 2.1 Eigenbasis l~)1, 52 for the transformation T in Example 2.28

Notice that the eigenspace E5 consists of vectors on the line
x + 2y = 0 and these vectors get scaled by the transformation T by a
factor of 5. On the other hand, the eigenspace E_g consists of vectors
perpendicular to the line z 4+ 2y = 0 and these vectors get flipped by
the transformation T and then also scaled by a factor of 5. Hence T is

just the reflection across the line z 4+ 2y = 0 followed by
multiplication by 5.

1 2
by the matrix A = !4 3] with respect to the standard basis of R2.

(1) The eigenvalues are the roots of the characteristic polynomial:

pa(A) =det (A — \I) =det [1 - 2 ]

4 3-A

=(1-XN)B—-X)-2-4=X-42-5=(A+1)(A-5),

hence A = —1 and A\ = 5 are the eigenvalues of A.



(2) If Ais an eigenvalue of A, the eigenspace corresponding to A is given
by E) = ker(A — AI). In this case we have

[2 2 1
E_1 =ker(A+1)=ker 4 4] = span {_1]

[—4 2 1
E; =ker(A—5I) = ker A _2] = span [2] :

(3) The following is an eigenbasis for this linear transformation:

- fu- (- [}

- - - ~ - -1 0
We have T'(b;) = —b; and T'(by) = 5by, hence A = [ 0 5].

O]

Example 2.49 Now let T : R? — R? be the linear transformation given

)
by the matrix A = [3 ]with respect to the standard basis of R2.

(1) The eigenvalues are the roots of the characteristic polynomial:
5—A -3
A) =det (A — AI) =det
pah) —det (4= 2D —det 7 0 7|

= (5-AN(-1-X)+9=2—4\+4=(1-2)%,
hence A = 2 is the only eigenvalue of A.

(2) The eigenspace corresponding to A = 2 is

— 1
E; =ker(A—2I) = ker [2 _g] = span [1] :

(3) Since we cannot find two linearly independent eigenvectors (in order
to form a basis of R?), we conclude that in this case there is no
eigenbasis for this linear transformation.

[

Summarizing, in Examples 2.21 and 2.22, we looked at how the matrix of a
transformation changes with respect to two different bases that we were
given. In Example 2.24, we looked for a particular basis appropriate to the
transformation at hand. In Example 2.28, we looked for an eigenbasis with
respect to the given transformation. Example 2.24 in this respect fits into



the same framework as Example 2.28, but the orthogonal projection has a
zero eigenvalue (see the matrix in (2.15)). Example 2.29 illustrates how
eigenvectors, in general, need not be orthogonal. In Example 2.30 we see
that sometimes an eigenbasis does not exist.

Exercise 2.50 Let # = {1, T, 2, :z:3} be the standard basis of the vector
space V := P-3(R) of real polynomials of degree at most 3. Moreover, let

a : V — V be the function a(p(z)) := (x—1)p/(z), where p/(z) := j—g(w) is
the derivative. And let 2 = {1, z—1, (z—1)7, (93—1)3}.

(1) Show that « is a linear transformation.

(2) Show that # is an eigenbasis of V for the linear transformation a.

(3) What is the matrix M representing o with respect to B

(4) Let 8:V — R be the linear transformation f(z) — f(1). Determine
the matrices A and 4 of the linear transformation B with respect to
the bases & and 4, respectively.

(5) Write the matrix of the change of basis L 2T from the (old) basis & to

the (new) basis % and write its inverse L G

(6) Check that AL%@/ — A.

Footnotes

1 The definition of dot product is recalled in Example 3.17.
2 See Sect. 5.2 for an explanation of the terminology.

3 In general, when an eigenbasis does not exist, it is still possible to find a basis, with respect to
which the linear transformation is as simple as possible, i.e., as close as possible to being diagonal.
A Jordan canonical form provides such a best matrix representative of T': V' — V and is
necessarily conjugate to the first matrix representative A. In this text, we will not address these
more general canonical forms.
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This chapter introduces linear, bilinear and multilinear forms. We explore their
definitions, properties, and examples, emphasizing their character as natural
generalizations of linear functions and scalar products. These forms allow the seamless
transition to covariant tensors.

3.1 Linear Forms

3.1.1 Definition and Examples

Linear forms on a vector space V are defined as linear real-valued functions on V. We will
see that linear forms behave very much like vectors, only that they are elements not of V,
but of a different, yet related, vector space. Whereas we represent regular vectors from V
by column vectors once a basis is fixed, we will represent linear forms on V by row
vectors. Then the value of a linear form on a specific vector is simply given by the matrix
product with the row vector (linear form) on the left and the column vector (actual vector)
on the right.

Definition 3.1 Let V be a vector space. A linear form on V isa map a : V — R such
that for every a,b € R and for every v,w € V'

a(av + bw) = aa(v) + ba(w) .

Alternative terminologies for “linear form” are tensor of type(0,1), 1-form, linear
functional and covector.

Exercise 3.2 If V = R3, which of the following are linear forms?
1) a(z,y,z) :=zy+ 2

(2) Oz((L‘,y,Z) :::z:-l—y—i—z—l—l,-

3) a(z,y,2) =71z — 2.

Exercise 3.3 If V is the infinite dimensional vector space of continuous functions
f : R — R, which of the following are linear forms?

(1) a(f) :== f(7) — £(0);

(2) a(f) = f033 ef"f(w)dm;
3) a(f) := /M.
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Example 3.4 [Coordinate forms] This is a very important example of linear form. Let

% = {by,...,b,} be abasis of V and let v = v'b; € V be a generic vector. Define
BV = Rby

Blv) =",

(3.1)

that is ﬁi will extract the i-th coordinate of a vector with respect to the basis #. The linear

form f is called coordinate form. Notice that
B'(bs) = &5

(3.2)

since the i-th coordinate of the basis vector b; with respect to the basis 4 is equal to 1 if

1 = j and 0 otherwise. ]

Example 3.5 Let V = R3 and let & be its standard basis. The three coordinate forms are

defined by
T T
Blly| ==, Bly|l:=y, Bly|:==2.
z z z
O

1 1
1] -1

Example 3.6 Let V = R? and let # := { [ } , [ } } We want to describe the

~—— ——
b1 ba

elements of #* := {B', 4%}, in other words we want to find

B'(v)  and B*(v)

for a generic vector v € V.

To this purpose we need to find [v] 4. Recall that if & denotes the standard basis of R?

and L := L4 the matrix of the change of coordinate from & to 44, then

=2 =27 ()

v
Since

1 1

L —

1 -1

and hence
1 1
L'=3
e

then

B (v! +2?)
da=(3070)-

Thus, according to the definition in Eq. (3.1), we deduce that
Biv) = 10! +0?) and  B2(0) = 1! —0?).

= |

O
3.1.2 Dual Space and Dual Basis

To any vector space V, there corresponds the set of all linear forms on V. This set has

itself a natural structure of a vector space.



Definition 3.7 The dual (or dual space) of a vector space V is

V* :={all linear forms a : V — R} ,
equipped with the natural addition and scalar multiplication.

Exercise 3.8 Check that V* is a vector space whose null vector is the linear form
identically equal to zero.

Remark 3.9 Just like any function, two linear forms on V' are equal if and only if their
values are the same when applied to each vector in V. However, because of the defining
properties of linear forms, to determine whether two linear forms are equal, it is enough
to check that they are equal on each element of a basis ofV. In order to check this, let
a,al € V*, let = {b1,...,b,} be a basis of V and suppose that we know that

a(b;) = ar(b;)
for all 1 < 57 < n. We now verify that this implies that o and o/ are the same when applied
to each vectorv € V. Let v = vjbj be the representation of v with respect to the basis 4.
Then we have

a(v) = a(vib;) = via(b;) = val(bj) = al(vib;) = al(v) .

O
Proposition 3.10 Let% = {by,...,b,}be a basis of V andf!,. .., B"the corresponding
coordinate forms. Then®* := {8, ..., 8" }is a basis ofV*. As a consequence

dim V =dim V* .

Proof According to Definition 2.22, we need to check that the linear forms in %*

(1) are linearly independent and

(2) span V'*.

(1) We need to check that the only linear combination of 8,. .., 8" that yields the zero

linear form is the trivial linear combination. Let ¢;3* = 0 be a linear combination of the /3.
Then for every basis vector b;, with j =1,...,n,

0= (c:B')(b;) = ci(B(by)) = cid = ¢;
thus showing the linear independence.
(2) To check that #* spans V we need to verify that any o € V'* is a linear combination

of B, ..., 8", that is, that we can find o; € R such that

a=owof . (3.3)
To find such a; we apply both sides of Eq. (3.3) to the j-th basis vector b;, and we obtain
a(b;) = a;f' (b)) = a;d; = aj (3.4)

which identifies the coefficients in Eq. (3.3).

By hypothesis a is a linear form and, since V* is a vector space, also a(b;)F" is a linear
form. Moreover, we have just verified that these two linear form coincide on the basis
vectors. By Remark 3.4 the two linear forms are the same and, hence, we have written «
as a linear combination of the coordinate forms. This completes the proof that the
coordinate forms form a basis of the dual. O

The basis #* of V* is called the basis ofV *dual to%. We emphasize that the
components (or coordinates) of a linear form « with respect to #* are exactly the values
of a on the elements of %, as we found in the above proof:



Bi(v) =" |,

We build with these the coordinate-vector of v as a row-vector:
[ g = (01 ... an).

Example 3.11 Let V = P»(R) be the vector space of polynomials of degree < 2, let
a : V — R be the linear form given by

a(p) :=p(2) — p/(2) (3.5)
and let % be the basis {1, z,z?} of V. In this example, we want to:

(1) find the components of a with respect to #*;

(2) describe the basis Z* = {8, 82, 8*};

(1) Since
a; =ab)=a(l)=1-0=1
ay =a(by) =a(z)=2-1=1
as; =a(bs) =a(z?)=4-4=0,
then
0] 5 =(1 1 0). (3.6)

(2) The generic element p(z) € P»(R) written as combination of basis elements 1,z and
2 .
z° is

p(z) = a+ bz +cz’.
Hence #* = {3, 3%, 83}, is given by
Bl(a+bxr+cx?) =a
B%*(a+bx+cx?) =0b (3.7)

B(a+bx+cx?) =c.
(]

Remark 3.12 Note that we have to be careful when referring to a “dual basis” of V¥, as
for every basis & of V there is going to be a basis #* of V* dual to the basis 4. In the
next section we are going to see how a dual basis transforms with a change of basis.

3.1.3 Covariance of Linear Forms
We want to examine how a linear form « : V — R behaves with respect to a change a
basis in V. To this purpose, let

B ={b1,...,b,} and B:={b1,...,bn}
be two bases of V and let

B ={p,...,8"} and B :={p',...,5"}
be the corresponding dual bases. Let

g =(1 ... a,) and [o|g = (a1 ... &)

be the coordinate vectors of & with respect to B* and %#*, that is

alb))=0a; and ab)=a;.
Let L := ngéi? be the matrix of the change of basis satisfying Eq. (2.4)

bj = Lib; .



Then we have

a; = a(by) = a(Ljhi) = Lja(b:) = Lio: = asLj (3.8)

so that

(ij = Ol,'L.i]- . (3.9

Exercise 3.13 Verify that Eq. (3.9) is equivalent to saying that
[z =ldgL. (3.10)
Note that we have exchanged the order of a; and L;- in the last equality of Eq. (3.8) to

respect the order in which the matrix multiplication in Eq. (3.10) has to be performed.
This was possible because both «; and L; are real numbers.

We say that a linear form « is covariant because its components change by L when the
basis changes by L. A linear form « is hence a covariant tensor or a tensor of type(0, 1)

Example 3.14 We continue with Example 3.6. We consider the bases as in Example 2.
41, that is

B = {1,z,z*} and B = {x,z—1,2°—1}
and the linear form o : V — R as in Eq. (3.5). We will:

(1) find the components of o with respect to £*;
(2) describe the basis Z* = {8, 82, 8*};

(3) find the components of a with respect to Z*;

(4) describe the basis Z* = {8, 3%, B%);

(5) find the matrix of change of basis L := L ,~and compute A=L"1;
(6) check the covariance of a;

(7) check the contravariance of %*.

(1) This is done in Eq. (3.6).
(2) This is done in Eq. (3.7).
(3) We proceed as in Eq. (3.6). Namely,

so that
a7 =1 0 —1).
(4) Since ﬂl(v) = 7', to proceed as in Eq. (3.7) we first need to write the generic
polynomial p(z) = a + bz + cz? as a linear combination of elements in B, namely we need

to find d, b and ¢ such that
p(z) = a +bx + cx® = ax + b(z—1) + &(z*—1) .



By multiplying and collecting the terms, we obtain that
c=a a=at+b+c

~b—
+b=50 that is = —a—c
=c

m N
oy O

c.
Hence

p(z)=a+bzr+cx’=(a+b+c)z+ (—a—c)(z—1) +c(z?-1),
so that it follows that

ﬂl(p(m)) =a+btc
B (p(z)) =-a-c
B (p(z)) =e,
(5) The matrix of the change of basis is given by
0 -1 -1
L:=L,>=11 1 0],
0 0 1

since for example bs can be written as a linear combination with respect to & as

by = 2—1 = —1by + 0by + 1b3, and these coordinates —1, 0, 1 build the third column of L.
To compute A = L~! we can use the Gauss-Jordan elimination process

0 -1 -1 100 100 1 1 1
1 1 0 010 L e 010 —-10 —1
0O 0 1 001 001 0 0 1
Therefore, we have
1 1 1
A=([-1 0 -1
0 0 1
(6) The linear form « is indeed covariant, since
0 —1 —1
(a7 a3 a3)L=(1 1 0)|1 1 0|=(1 0 -1)=(a; ay as).
[0 0 1
(7) The dual basis #* is contravariant, since
(7 g
#l-ale],
B g’
as it can be verified by evaluating both sides on an arbitrary vector p(z) = a + bz + cx?:
B(p) 1 1 17 /a a+b+ec B (p)
AR |=|-10 -1{{b]|=]| —a—c | =|B%p)
ﬂ3(p) 0 0 1 c c 53(19)

O

3.1.4 Contravariance of Dual Bases



In fact, statement (7) in Example 3.6 holds in general, namely:

Proposition 3.15 Dual bases arecontravariant.

Proof We will check that when bases % and B are related by
b; = L'b;

the corresponding dual bases #* and %" of V* are related by

Bl =ng . (3.11)

It is enough to check that the Afﬁi are dual to the l;j. But since AL = I, we have
(AFB) (b)) = (AFB')(Libi) = AFLiB (bi) = AfL3S; = AFL = 6% = §(by) .
U

Table 3.1 contains a summary of the properties that bases and dual bases, coordinate
vectors and components of linear forms satisfy with respect to a change of basis. Table 3.2
summarizes the characteristics of covariance and contravariance.

Table 3.1 Duality

V real vector space V* = {linear forms o : V — R}
withdimV =n dual vector space to V
B={by,...,b,} B*= (B, ..., 8"
basis of V dual basis of V* w.r.t. B
B:=1{bi,...,bn} B*={B'..... B} _
another basis of V dual basis of V* w.r.t. B*
L := Lgp =matrix of the change A = L' =matrix of the change
of basis from B to B of basis from B to B
Then we have l;j = L;bi or Then we have i = Aijﬂj or
Al Bl
(br .. Ba) = (b1 ... ba) L D=t
B" B"
covariance of a basis contravariance of the dual basis
If v is any vectorin V, If « is any linear form in V*,
then v = v'b; = 7'b;, where then o :ajﬂf :EjBf,where
b= Aijvj ie,[vlg= L~ [v]g or Wy = L_’}ai ie., [a]g = [a]lg+L or
! v!
=] (&1...&,,)=(a1...ozn)L
" v
contravariance of the coordinate vectors covariance of linear forms components
— vectors are (1, 0)-tensors — linear forms are (0, 1)-tensors
Table 3.2 Covariance vs. contravariance
Covariance Contravariance
of a tensor of a tensor
denoted by Lower indices Upper indices
Coordinate-vectors are indicated as Row vectors Column vectors
The tensor transforms w.r.t. a change of L on the right L~" on the left

basis from B to B by multiplication with
(For later use) A tensor of type (p, ¢) has Covariant order ¢ Contravariant order p



3.2 Bilinear Forms

3.2.1 Definition and Examples
Definition 3.16 A bilinear form on V is a function ¢ : V x V' — R that is linear in each
variable, that is
e(u, v+ pw) = Ap(u,v) + pp(u, w)
e(Av+ pw,u) = Ap(v,u) + pp(w,u) ,
for every A\, u € R and for every u,v,w € V.

Examples 3.17 Let V = R".
(1) If v,w € R"™, the dot product (or scalar product) defined as

ev,w)=v-w= vjwjéij ,
(see also Exercise 4.2).

(2) Let n = 3. Choose a vector v € R? and for any two vectors v, w € R3, denote by v x w
their cross product. The scalar triple product!
U

'(v,w) :=u-(vxw)=det v (3.12)
w
U
is a bilinear form in v and w, where | v | denotes the matrix with rows u, v and w.

w
The quantity ¢*(v, w) calculates the signed volume of the parallelepiped spanned by
u, v, w: the sign of ¢, (v, w) depends on the orientation of the triple u, v, w.

Since the cross product is defined only in R?, in contrast with the scalar product,
the scalar triple product cannot be defined in R™ with n # 3 (though there is a
formula for an n dimensional parallelediped involving some “generalization” of it).

O

Exercise 3.18 Verify the equality in Eq. (3.12) using the Laplace expansion formula for
the determinant of a 3 X 3 matrix with respect to the first line. Recall that this reads

1,2 .3
wowo v2 v vt v vl 02
det |v! 2 3| = wuldet [ ) 3} — u? det [ ) 3} + u3 det [ . 2}
Lo 3 w? w w! w w! w
w! w? w

Examples 3.19 Let V = P,(R).
(1) Let p,q € P5(R). The function ¢(p, q) := p(m)q(33) is a bilinear form.
(2) Likewise,

©(p, q) := p/(0)q(4)—5p/(3)q! ()
is a bilinear form.



Exercise 3.20 Are the following functions bilinear forms?

1
M V =R? and ¢(u,v) :=det [u]
v

(2) V = Py(R) and ¢(p, 9) := [, p(z)q(z)dz;

(3) V = M>,2(R), the space of real 2 X 2 matrices, and (L, M) := LitrM, where L1 it
the (1,1)-entry of L and trM is the trace of M;

(4) V =R3 and p(v,w) := v X w;
(5) V =R? and ¢(v, w) is the area of the parallelogram spanned by v and w.

(6) V = M,«,(R), the space of real n x n matrices with n > 1, and
©(L, M) :=trL det M, where trL is the trace of L and det M is the determinant of
M.

Remark 3.21 We need to be careful about the following possible confusion. A bilinear
form on V is a function on V' x V that is linear in each variable separately. But V' x V is
also a vector space and one might wonder whether a bilinear form on V is also a linear

form on the vector space V x V. But this is not the case. For example, consider the case

in which V =R, sothat V x V = R? and let ¢ : R x R — R be a function:
(1) If p(z,y) := 2z — y, then ¢ is not a bilinear form onR, but is a linear form on
(CB, y) € Rz;

(2) If p(x,y) := 2zy, then @ is a bilinear form onR (hence linear in z € R and linear in
y € R), but it is not a linear form on R?, as it is not linear in (z,y) € R2.

So a bilinear form is not a form that it is “twice as linear” as a linear form, but a form that
is defined on the product of twice the vector space. [

Exercise 3.22 Verify the above assertions in Remark 3.12 to make sure the distinction is
clear.

3.2.2 Tensor Product of Two Linear Forms on V
Let a, 8 € V* be two linear forms, a, 8 : V — R, and define ¢ : V x V — R, by

(v, w) := a(v)B(w) .
Then ¢ is bilinear, is called the tensor product of the linear forms o and S and is
denoted by

p=a®p.

Notes 3.23 In general a ® 5 # B ® a, as there could be vectors v and w such that

a(v)B(w) # B(v)a(w).

Example 3.24 Let V = P5(R), let a(p) = p(2) — p/(2) and B(p) = f34 p(z)dx be two
linear forms. Then



(a® B)(p,q) = (p(2) —p(2)) q(z)dz

is a bilinear form. O

Remark 3.25 The bilinear form ¢ : R x R — R defined by the formula ¢(z,y) := 2zy is
the tensor product of two linear forms on R, for instance, ¢(z,y) = (o ® a)(z,y) where
a: R — Ris the linear form given by a(z) := V2.

On the other hand, not every bilinear form is simply the tensor product of two linear
forms. As we will see below, the first such examples are found for bilinear forms on vector
spaces of dimension at least 2. []

3.2.3 A Basis for Bilinear Forms
Let

Bil(V x V,R) := {all bilinear forms ¢ : V x V — R} .

Exercise 3.26 Check that Bil(V x V,R) is a vector space with the zero element equal to
the bilinear form identically equal to zero.

Hint: It is enough to check that if ¢, 1 € Bil(V x V,R), and A\, u € R, then
Ap + uy € Bil(V x V,R). Why? Recall Example 2.3(3) in Sect. 2.1.1 and Exercise 3 in
Sect. 3.1.2.

Assuming Exercise 8, we are going to find a basis of Bil(V x V,R) and determine its
dimension. Let # = {b1,...,b,} be a basis of V and let Z* = {3, ..., 3"} be the dual
basis of V* (that is 8'(b;) = d7).

Proposition 3.27 The bilinear formsf' ® 7, i,j = 1,...,nform a basisofBil(V x V,R).
As a consequence,dim Bil(V x V,R) = n?.

Notation We denote

\Bn(v < V.R)y=V*® V*

and call this vector space the tensor product of V* and V *. A justification for this
notation will appear in Sect. 5.4.2.

Remark 3.28 Just as it is for linear forms, to verify that two bilinear forms on V are the
same it is enough to verify that they are the same on every pair of elements of a basis of
V. So let ¢, ¥ be two bilinear forms, let & = {by,...,b,} be a basis of V, and assume that

forall 1 <4,j, < n.Letv=v'b;,w = wlb; € V be arbitrary vectors. We now verify that
(v, w) = (v, w). Because of the linearity in each variable, we have
QO(’U, w) = So(vibia wjbj) = inj(p(bia bj) = viwjd}(bi) b])

= P(v'bi, w'b;) = (v, w) .
(]

Proof of Proposition3.16 The proof will be similar to the one of Proposition 3.5 for
linear forms. We first check that the set of bilinear forms {8' ® f7, i,j=1,...,n}
consists of linearly independent vectors, then that it spans Bil(V x V,R).



For the linear independence we need to check that the only linear combination of the
B' ® B’ that gives the zero bilinear form is the trivial linear combination. Let
cijﬂi ® B’ = 0 be a linear combination of the §° ® /. Then for all pairs of basis vectors
(bg, by), with k,£ =1,...,n, we have

0 = ¢;;B' ® B (b, be) = €04, = cie

thus showing the linear independence.

To check that span{' ® 47, i,5=1,...,n} = Bil(V x V,R), we need to check that if
¢ € Bil(V x V,R), there exists B;; € R such that

=B ep .

Because of Eq. (3.2) in Sect. 3.1.1, we obtain

¢(br, by) = By (by,) (be) = Bij040) = Byy
for every pair (bg, b¢) € V x V. Hence, we set By := ¢(bg, be). Now both ¢ and

@(br,br)B' ® B are bilinear forms and they coincide on % x %. Because of the above
Remark 3.17, the two bilinear forms coincide. []

Example 3.29 We continue with the study of the scalar triple product
PR3 x R3 — R,

that was defined in Example 3.10 for a fixed given vector u = |42 |. We now want to find

uS

the components B;; of " with respect to the standard basis of R3.
Recall the cross product in R? is defined on the elements of the standard basis by

0 ifi=j
e; X € 1= € if (4, 4, k) is a cyclic permutation of (1,2, 3)
—eg if (4, j, k) is a non-cyclic permutation of (1,2,3) ,
that is
e1 X ey =e3 ey X e = —es
[origin = c]90cyclicq ex X e3 = e and [origin = c]90non — cyclicq e3 X ea = —ey
€3 X €1 = €9 €1 X ez = —e2

Since u - e;, = u¥, then

Bij = pu(ei,e;) =u- (e xej)

0 if § = j
=k if (4, 4, k) is a cyclic permutation of (1,2, 3)
—uF if (4, 4, k) is a non-cyclic permutation of (1,2, 3)

Thus
By, =u®=—By
B3; =u’= —Bi3
By; =u' = —Bj,

Bii = By = B33 =0 (that is, the diagonal components are zero) ,
which can be written as a matrix



B=|—-u? 0 !
uwr —ul 0
The components B;; of B are the components of this bilinear form with respect to the
basis 8'® 87 (i,j = 1,...,n), where (3'(ex) = &%. Hence, we can write

" =By ®p = uw(fPeB -5 e
+uy (BB - B @ B%) +us(B @B - b .
[

3.2.4 Covariance of Bilinear Forms

We have seen that, once we choose a basis & = {b1,...,b,} of V, we automatically
have a basis * = {#%,...,8"} of V* and a basis {#* ® #, i,j=1,...,n} of V* @ V*.
This implies, that any bilinear form ¢ : V X V' — R can be represented by its components

‘Bij :<P(/9i-,b1')‘s (3.13)

in the sense that

o =B ®p |

Moreover, these components can be arranged in a matrix?
Bi1 ... B

B :=

| Bn1 ... Bpn

called the matrix of the bilinear formyp with respect to the chosen basis . The natural
question of course is: how does the matrix B change when we choose a different basis of
v?

So, let us choose a different basis B = {51, cen En} and corresponding bases
B ={p',...,B"Yof V*and {B' ® #, i,j=1,...,n} of V* ® V*, with respect to which
¢ will be represented by a matrix B, whose entries are B;; = o(b;, b;).

To see the relation between B and B, due to the change of basis from & to ;%7 we start

with the matrix of the change of basis L := L ,; according to which

b; = L;bi . (3.14)
Then
Byj = p(bi, b)) = o(LEby, Liby) = LELYp(by, by) = LELByy
where the first and the last equality follow from Eq. (3.13), the second from Eq. (3.14)

(after having renamed the dummy indices to avoid conflicts) and the remaining one from
the bilinearity of 0. We conclude that

Bij = LEL By, |.

Exercise 3.30 Show that the formula of the transformation of the component of a
bilinear form in terms of the matrices of the change of coordinates is

[B="LbL]| (3.15)

where *L denotes the transpose of the matrix L.



We hence say that a bilinear form ¢ is a covariant 2-tensor or a tensor of type(0, 2).

3.3 Multilinear Forms

3.3.1 Definition, Basis and Covariance

We saw in Sect. 3.1.3 that linear forms are covariant 1-tensors—or tensors of type (0,1)—

and in Sect. 3.2.4 that bilinear forms are covariant 2-tensors—or tensors of type (0, 2).
Analogously to what was done until now, one can define trilinear forms on V, that is

functions T': V x V x V — R that are linear with respect to each of the three arguments.

The space of trilinear forms on V is denoted

VieVieV*,

has basis

{/3]®ﬁ]®5k> i7j7k: 17"‘7”}
and, hence, has dimension n3. The tensor product ® is defined as above.
Since the components of a trilinear form 7" : V x V x V — R satisfy the following
transformation with respect to a change of basis

Tijr = L5 LiTepq
a trilinear form is a covariant 3-tensor or a tensor of type(0, 3).
Of course, there is nothing special about £k = 1,2 or 3:

Definition 3.31 A k-linear form or multilinear form of orderk on V is a function
f:V x..-xV — R from k-copies of V into R, that is linear in each of its arguments.

A k-linear form is a covariantk-tensor (or a covariant tensor of orderk or a tensor of
type(0, k)). The vectors space of k-linear forms on V, denoted

V*®@---V™*,

—_— ———

k factors
has basis

Brep2®---@B%, i...,ik=1,...,n
and, hence, dim (V*® ---® V*) = nk .

3.3.2 Examples of Multilinear Forms



Example 3.32 We once more address the scalar triple product, discussed in Examples
3.10 and 3.18. This time we want to find the components B;; of ¢" with respect to the

(non-standard) basis
0 1 0
B = { 1{, (0f, [O } .

0 1 1

S~ Y= >~~~

51 bz 53
The matrix of the change of coordinates from the standard basis to B is

010
L=11 0 0],
011
so that
0 100 w —wr][010
B=1]101|]|-w® 0 w']||100
0 0 1] | w2 —w! 0 011
_/—’- N———
tL B L
0 1 0] [ u® —u?  —u? 0 wl — w3 wu!
=11 01 0 w'—w® w' | =|u-u! 0 —u?
_0 0 1_ —ul u? 0 —ul u? 0
_,_/_
tL BL

It is easy to check that Bis antisymmetric just like B is, and to check that the
components of B are correct by using the formula for ¢:

Biy = (b1,by) =u-(e3 x (€1 +e3)) = ul —u?
Biz = (b1, b3 1

(b1,b3) = u- ((e2) X e3) = u
By = 90(52,53) =u-((e1+e3) x e3) = —u
By = @(bi,b1) =u-(es x e3) =0
By = ¢(ba,by) = u- ((e1 +e3) x (e1 +e3)) =0
Bsz = @(b3,b3) =u - (e3 x e3) =0

O

Example 3.33 If, in the definition of the scalar triple product, instead of fixing a vector
a € R, we let the vector vary, we have a function ¢ : R3 x R3 x R? — R, defined by

u
o(u,v,w) :==u- (vxw)=det |v

w
One can verify that such function is trilinear, that is linear in each of the three variables
separately.

The components T;;; of this trilinear form are simply given by the sign of the
corresponding permutation:



gozmgn(z,g,k)ﬁ’@)ﬁ]@ﬂk — ,31®52®53_51®ﬁ3®52+53®ﬂ1®ﬂ2
el +lef s -5 of e,
where the sign of the permutation is given by
(+1 i (4,5,k) = (1,2,3),(2,3,1) or (3,1,2)
(even permutationsof (1 2,3)
sign(s,j, k) = ¢ —1 if (4,4,k) = (1,3,2),(2,1,3) or (3,2,1)
(odd permutationsof(1, 2, 3))

L0 otherwise.
|

Example 3.34 In general, the determinant defines an n-linear form in R" by

V1
p:R"x...xR" >R, o(vi,...,vp) :=det | : |,
—_— —————
n factors Up,

where we compute the determinant of the square matrix with rows (equivalently,
columns) given by the n vectors. Multilinearity is a fundamental property of the
determinant.

In this case, the components of this multilinear form are also given by the permutation
signs:

@ = sign(iy,...,i,)" ®...® B,

where
+1 if (¢1,...,1n) is an even permutation of (1,...,n)
sign(iq,...,0,) = ¢ —1 if (i1,...,1y) is an odd permutation of (1,...,n)
0 otherwise.
A permutation of (1,2,...,n) is called an even permutation, if it is obtained from
(1,2,...,n) by an even number of two-element swaps; otherwise it is called an odd

permutation. J

3.3.3 Tensor Product of Multilinear Forms

Let
T:Vx.---xV-o>R and U:Vx---xV—=R
~—_——— | S —
k times £ times

be, respectively, a k-linear and an /-linear form. Then the tensor product of T and U is
the function
TQU:Vx---xV =R

~— ——
k+/ times

defined by

TRU(vi,...,vke) :=T(v1,...,06)U(Vks1,- .. Vre).
This is a (k + £)-linear form. Equivalently, this is saying that the tensor product of a tensor
of type (0, k) and a tensor of type (0, ¢) is a tensor of type (0, k + £). Later we will see how
this product extends to more general tensors.

Footnotes



1 Recall that the determinant of a 3 X 3 matrix is given by
ail a2 ais
det [as az ax| = anazass — ajjaxsaz + ajpasas;
asy a3z asg
— Q12021033 + @13Q21G32 — G13A22031

= § :0653Sign(ﬂ)010(1)020(2)%0(3)a

o= (0(1),0(2),0(3)) € S3 := {permutations of 3 elements}
= {(1,2,3),(1,3,2),(2,3,1),(2,1,3),(3,1,2),(3,2,1)},
and the corresponding signs flip each time two elements get swapped:
sign(1,2,3) =1, sign(1,3,2)=—-1, sign(3,1,2)=1,
sign(3,2,1) = -1, sign(2,3,1) =1, sign(2,1,3) = —1.
. A(n ;even i)ermutation is a permutation ¢ with sign(c) = 1; an odd permutation is a permutation o with
gn(o) = —1.

where

2 Contrary to the matrix that gives the change of coordinates between two basis of the vector space, here we have only
lower indices. This is not by chance and reflects the type of tensor a bilinear form is.



© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Cannas da Silva et al., Tensors for Scientists, Compact Textbooks in Mathematics
https://doi.org/10.1007/978-3-031-94136-8_4

4. Inner Products
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This chapter introduces inner products as a special case of bilinear forms. It
discusses the representation of an inner product via a symmetric positive
definite matrix, the notion of reciprocal basis, and how the presence of an
inner product blurs covariance and contravariance.

4.1 Definitions and First Properties

Inner products add an important structure to a vector space, as for example
they allow to compute the length of a vector and they provide a canonical
identification between the vector space V and its dual V'*.

4.1.1 Inner Products and Their Related Notions
Definition 4.1 An inner productg: V X V — R on a real vector space V
is a bilinear form on V that is

(1) symmetric, that is g(v, w) = g(w,v) for all v,w € V and
(2) positive definite, that is g(v,v) > 0 for all v € V, and g(v) = 0 if and
only if v = 0.

Exercise 4.2 Let V = R3. Verify that the dot product (v, w) := v - w,
defined as

vew =v'w;;,
vl wt
where v = [v?| and w = |w?| is an inner product. This is called the
v3 w?

standard inner product.

Exercise 4.3 Determine whether the following bilinear forms
¢ : R™ x R™ — R are inner products, by verifying whether they are
symmetric and positive definite (the formulas are throughout defined for all
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1) p(v,w) := —v-w;

2) p(v,w) :=v-w+ 2v'w?;
(3) (v, w) := v'w!;

4 p(v,w) = v-w—2v'w!;
5) p(v,w) :=v-w+ 2v'w!;
(6) p(v,w) :=v-3w

Exercise 4.4 Let V := P5(R) be the vector space of polynomials of degree
< 2. Determine whether the following bilinear forms are inner products,
by verifying whether they are symmetric and positive definite:

@ p(p,q) := [} p(z)q(z)dz;

@ o(p,q) = [y pr()q/(x)dz

3 p(p,q) = [5 e"p(z)q(z)dz;

@) ¢o(p,q) :=p(1)q(1) + p(2)q(2);

) ¢(p,q) :=p(1)q(1) + p(2)a(2) + p(3)a(3)-
©) ¢(p,q) :=p(1)q(2) + p(2)a(3) + p(3)a(1).

Definition 4.5 Letg:V X V — R be an inner product on V.

(1) The norm (or magnitude or length), || v || of a vector v € V' is

defined as
[0 l:= 1/ g(v,v) .
(2) A vector v € V is unit vector if || v ||= 1;

(3) Two vectors v, w € V are orthogonal (that is, perpendicular denoted
v L w), if g(v,w) =0;

(4) Two vectors v, w € V are orthonormal if they are orthogonal and
v l|=[lw =1



(5) A basis £ of V is an orthonormal basis if b, ..., b, are pairwise
orthonormal vectors, that is

1 ifi=7
g(bi, bj) = dy; : {0 it (4.1)
foralli,57 =1...,n. The condition for ¢ = j implies that an
orthonormal basis consists of unit vectors, while the one for i # j
implies that it consists of pairwise orthogonal vectors.
Example 4.6
(1) Let V = R™ and g the standard inner product. The standard basis
% = {ei1,...,en} is an orthonormal basis with respect to the standard

inner product.

(2) Let V = Py(R) and let g(p, q) := f_ll p(x)q(x)dz. Check that the basis

B = {p17p27p3} ’
where

pi(z) := %, pa(z) == \/gw p3(z) := \/%(33;2—1) ,

is an orthonormal basis with respect to the inner product g. Up to
scaling, p1, p2, p3 are the first three Legendre polynomials.

O

An inner product g on a vector space V induces a metric! on V, where the
distance between vectors v,w € V is given by
dv,w) :=||v—w] .
4.1.2 Symmetric Matrices and Quadratic Forms
Recall that a matrix S € M., (R) is symmetric if S =*S, that is if

E a b e ]

a * c

5= b c *
*_

Moreover, if S is symmetri(_:, then
(1) S is positive definite if *vSv > 0 for all v € R™ \ {0};

(2) S is negative definite if *vSv < 0 for all v € R™\ {0};

(3) S is positive semidefinite if *vSv > 0 for all v € R";



(4) S is negative semidefinite if *vSv < 0 for all v € R";

(5) S is indefinite if *vSv takes both positive and negative values for
different v € R".

Definition 4.7 A quadratic form( : R” — R is a homogeneous quadratic
polynomial in n variables:

Q(z!,...,z") = Qiz'x’ where Qi; € R.

To any symmetric matrix S corresponds a quadratic formQ s : R” — R

defined by
1

(Y
Qs(v) ="vSv=[v' ... v"|S|:| = VIS,
—_— 4.2)
o™ Einstein notation

matrix notation
Note that Q is not linear in v.
Let S be a symmetric matrix and )¢ be the corresponding quadratic
form. The notion of positive definiteness, etc. for S translates into
corresponding properties for (g, namely:

(1) Q is positive definite if Q(v) > 0 for all v € R™\ {0};
(2) Q is negative definite if Q(v) < 0 for all v € R™ \ {0};
(3) Q is positive semidefinite if Q(v) > 0 for all v € R";

(4) Q is negative semidefinite if Q(v) < 0 for all v € R";

(5) Q is indefinite if Q(v) takes both positive and negative values.

Example 4.8 We consider R? with the standard basis & and the quadratic

1
v : .
form2Q(v) := vlv! — v?v?, where v = [ 2] . The symmetric matrix
v

0 1
].va: [%],thenQ(v):1>0,if

1
corresponding to Q is S := [O 1

0
v = [ 2] , then Q(v) = —1 < 0, but any vector for which v! = v? has the
v

property that Q(v) = 0. O



To find out the type of a symmetric matrix S (or, equivalently of a quadratic
form @) it is enough to look at the eigenvalues of S, namely:

(1) S and Qg are positive definite when all eigenvalues of S are positive:
(2) S and Qg are negative definite when all eigenvalues of S are negative;

(3) S and Qg are positive semidefinite when all eigenvalues of S are non-
negative;

(4) S and Qg are negative semidefinite when all eigenvalues of S are non-
positive;

(5) S and Qg are indefinite when S has both positive and negative
eigenvalues.

The reason this makes sense is the same reason for which we need to
restrict our attention to symmetric matrices and lies in the celebrated
Spectral Theorem from Linear Algebra (see, for instance, [13, §5.5]):

Theorem 4.9 (Spectral Theorem) Anyn X nsymmetric matrix S has the
following properties:

(a) it has only real eigenvalues;
(b) it is diagonalizable ;

(c) it admits an orthonormal eigenbasis , that is, a basis{by, ..., b, }ofR"
such that thebjare orthonormal and are eigenvectors of S.

4.1.3 Inner Products vs. Symmetric Positive Definite
Matrices

Let = {by,...,b,} be a basis of V and g an inner product. The
components ofgwith respect to%# are

gij = g(bi, bj) . (4.3)
Let G be the matrix with entries g;;
gir ... Jin
gn1 --- ZGnn

We claim that G is symmetric and positive definite. In fact:

(1) Since g is symmetric, then for 1 <1i,5 < n,
gij = 9(bi,b;) = g(bj,bi)) =9;i = G is a symmetric matrix; (4.5)



(2) Since g is positive definite, then G is positive definite as a symmetric
matrix. In fact, let v = v*b;, w = w’b; € V be two vectors. Then, using
the bilinearity of g, the definition in Eq. (4.3) and Einstein notation, we
have:

g(v,w) = g(v'b;, w’b;) = v'w!g(b;, b;) = v'w’gy;
——
9ij
or, in matrix notation,

_t

g(v,w) = “[o]5Glul 5 = [o! ... "G

,wn

Conversely, if S is a symmetric positive definite matrix and
#B = {b1,...,b,} is a basis of V, then the assignment

VxV =R, (v,w) = *[v] ZS[w] 4
defines a map that is seen to be bilinear, symmetric and positive definite,
hence an inner product.

4.1.4 Orthonormal Bases
Suppose that there is a basis & = {b1,...,b,} of V consisting of
orthonormal vectors with respect to an inner product g, so that
gij = 0ij ;
cf. Definition 2(5) and Eq. (4.3). In other words, the symmetric matrix

corresponding to the inner product g in the basis consisting of orthonormal
vectors is the identity matrix. Moreover, we have

g(v,w) = v'wlgy = v'wéy; = viwt + - Fu"w"
so that, in the case v = w, we get
| v [|2= g(v,v) = v'0i;; = viol + -+ V™" .
We thus deduce that:
Fact 4.10 Any inner product g can be expressed in the standard form

g(v,w) = v'wid;; = viw' + - + V"W,
/vl\ /wl\

as long as [v] 4 = and (w], = are the coordinates of v and w

o) )

with respect to an orthonormal basis & for g.




Example 4.11 Let g be an inner product of R3 with respect to which

1 1 1
B = { ol, 1], |1 }
0 0 1
N N N~
by by b3
is an orthonormal basis. We want to express g with respect to the standard

basis of R3,
1 0 0
é”::{ 0|, |1f, [0 }
0 0 1
—— —— ——
e1 €2 €3
The matrices of the change of basis are
1 11 1 -1 0
- _ _ 71 _
L._Lé;,g_ 011 and A=L =0 1 -1
0 01 0 0 1

Since g is a bilinear form, we saw in Eq. (3.15) that its matrices with
respect to the bases 4 and & are related by the formula
G="LGL .
Since the basis & is orthonormal with respect to g, the associated matrix

G is the identity matrix, so that
G = *AGA =TFAA

1 0 Ooff1 -1 O 1 -1 0 (4.6)
= (-1 1 offo 1 —-1|=1]-1 2 -1
0 -1 1110 0 1 0o -1 2
It follows that, with respect to the standard basis, g is given by
1 -1 0 w!
v,w) = (v V¥ V¥)|-1 2 -1 2
o,w) =@ v o) w wn

O -1 2 wd
= vlw! — vlw? — V2wl + 20%2w? — V2w — Vv3w? + 203w .

O

Exercise 4.12 Verify the formula (4.7) for the inner product g w.r.t. the

basis # by applying the change of basis matrix directly to the coordinate
vectors [v] g, [w] .



Remark 4.13 Norms and the value of the inner product of vectors depend
only on the choice of g, not on the choice of basis; different coordinate
expressions yield the same result:

9(v,w) = "[v] 5Glv] 4 = t[v]@é[v]ﬁ'

Example 4.14 We verify the assertion of the previous remark with the
inner product in Example 4.5. Let v, w € R3 such that

v 3 v v 1
= || =12 and [v]g= || = Lt »|=|1
v3 1 73 v3 1
and
w! 1 w* w! -1
wle=|w?| =|2 and [w]z=|@?|=L"|w?|=|-1
w3 3 W w? 3

Then with respect to the basis % we have that
gv,w)=1-(-1)+1-(-1)+1-3=1,
and also with respect to the basis &
g(v,w)=3-1-3-2-2-1+2-2-2-2-3-1-2+2-1-3=1.
]

Exercise 4.15 Verify that || v ||= v/3 and || w ||= v/11, when computed
with respect to either basis.

Let 8 = {b1,...,b,} be an orthonormal basis and let v = v'b; be a vector in
V.

Then the coordinates v* of the vector v with respect to this orthonormal
basis can be obtained by computing the inner product of v with the basis
vectors:

g(v,b5) = g(v'bi, bj) = v'g(bi, bj) = v'6i; = v’ .
This is particularly nice, so that we have to make sure that we remember
how to construct an orthonormal basis from a given arbitrary basis.

Recall The Gram-Schmidt orthogonalization process is a recursive
process that allows us to obtain an orthonormal basis starting from an
arbitrary one. Let # = {by,...,b,} be an arbitrary basis, let g: V x V — R
be an inner product and || - || the corresponding norm.

We start by recalling that the orthogonal projection, denoted proj,, v,
of a vector v € V onto the line spanned by a non-zero vector by, is defined as



prOj’U .— g(’U,bk) bk
b "~ g(bg,br) (4.8)

The vector proj,, v is clearly parallel (i.e., proportional) to bx and the
following exercise shows that the complement v — proj, v is indeed

orthogonal to b;, (Fig. 4.1). Therefore, with respect to the line spanned by b,
, we have the decomposition

v = Proj, v + v — proj, v .
N—— ~—_———

parallel orthogonal
v :
|
y 0
b proj, v

Fig. 4.1 Orthogonal projection of vector v onto line spanned by unit vector by,

Exercise 4.16
With proj b,V defined as in (4.8), check that we have

(v — projv) L by,
b
k
where the orthogonality is meant with respect to the inner product g.
Given the basis & = {by,...,b,} of V, we will find an orthonormal basis.
We start by defining

1
Ul = b1 .
| b1 |
Next, observe that g(b2, ul)ul is the projection of the vector by in the

direction of u;. It follows that

bé‘ = b2 — g(bz,ul)ul
is a vector orthogonal to w1, but not necessarily of unit norm. Hence we set

I
’U,2 = 9 -
Al
Likewise, g(b3, u1)u; + g(b3, us)us is the projection of b3 on the plane
generated by u; and wus, so that the difference

by = bz — g(b3,u1)ur — g(bs, uz)us
is orthogonal both to u; and to us. Set

— 1 1
- ;.
o3|l

Usg



Continuing this way until we have exhausted all elements of the basis %, we
obtain an orthonormal basis {ui,...,u,} (Fig. 4.2).

b bs

> b]_ Uy

Start Step 1

(%
Us
Uy

Step 2 Step 3

Fig. 4.2 Gram-Schmidt process on three vectors

Example 4.17 Let V be the subspace of R* spanned by

2 1
b1 = ! by = 2 by = !
—1 0 1

—1

(One can check that bl,?)g, 53 are lineglr-ly indepeﬁd-ent and hence form a
basis of V.) We look for an orthonormal basis of V with respect to the
standard inner product ( - , - ). Since

1/2

by ll= (12412 + (-1 + (-1)") " =2,
we find
-
1
Uy ‘= %bl = % 1
| —1]

Moreover,



(b2,u1) = 3(1+1) =2
1
1 1 . N
= b2 := by — (bg,u1>u1 = 1 with H b2 ||: 2,
_1_
so that we find

o
1

wi=doi =4 ]
_1_

Finally,

(b3, u1) = %(1 +1-1) = % and (b3, u2) = %(1 +141)= %
imply that

0
N 0 ) 1 V2
b3 = b3 — <b3,’u,1>u1 - <b3,U2>U2 = 1 with H b3 ”: 2
2
_ 1
| 2
so that we have
F 0]
vz, _ vzl
us = Tb3 = 9 1
__1_

O

4.2 Reciprocal Basis
4.2.1 Definition and Examples
Letg:V x V — R be an inner product and & = {bi,...,b,} any basis of V.

Definition 4.18 The reciprocal basis of V with respect to the inner
product g and the given 4 is the basis of V, denoted by

B9 = {b',...,b"}
that satisfies

g(b' bj) =8| (4.9)




Note that, while it is certainly possible to define a set of n =dim V vectors
satisfying Eq. (4.9), we need to justify the fact that we call it a basis. This
will be done in Claim 4.11.

Remark 4.19 In general, #Y9 # 9 and in fact, because of Definition 2(5),
B = B & A is an orthonormal basis.

Example 4.20 Let g be the inner product defined in (4.7) in Example 4.5
and let & the standard basis of R3. We want to find the reciprocal basis &9,
that is we want to find &7 := {e', €2, €3} such that

g(ei,ej) = (5; .
If G is the matrix of the inner product given in (4.6), using the matrix

notation and considering e’ as a row vector and e; as a column vector for
1,7 =1,2,3, we have

[— tei —]G ej :5Z
|

Letting i and j vary from 1 to 3, we obtain

— tel — 1 -1 0 '\ | ] 1 00
— %2 —||-1 2 —1fles ez e3| =|0 1 0],
— ted 0O -1 2 _\ | \ 0 01
from which we conclude that
_tel C 17T 1077
— T3 A 0 -1 2
T 11321 321
=|e1 ey e3 |:221i|=|:221i|.
TR 111
Therefore,
3 2 1
el = 12|, e2=1|2], &=|[1]. (4.10)
1 1 1

Observe that in order to compute G~! we used the Gauss-Jordan
elimination method



1 -1 0 100 1 -1 0 100
-1 2 -1010 es 10 1 -1 110
0 -1 2 00 1 0 -1 2 00 1
10 -1 21 0] 100 3 21
101 -1 110 w010221]
00 1 11 1 001111

O

Exercise 4.21 Again in the situation of Examples 4.5 and 4.10, let g be an
inner product on R3, let & = {ey, es, €3} be the standard basis and let

17 17 1
@’::{0,1,1}
ol [o] |1

N N N~
b, by bs

be an orthonormal basis with respect to g.

(1) compute [b1] 7 [b2] 5 and [bs] -

(2) Compute the matrix G 7 associated to g with respect to the basis 55/
and the matrix GG ¢ associated to g with respect to the basis &.

(3) We denote by &9 = {e!,e?,e3} and &9 = {b',5%,b°} the reciprocal
bases respectively of & and %. By Remark 4.6,

g(i)i, B]) = 5;- and g(e',ej) = 52
are independent of the choice of the basis. It follows that:

@ §i = g(8,b;) = 5] 5G 51b;] 5
[tl;i]éoGg[i’j]g"
'] 3G Flesl 7

[te'] ;G ele;]

®) 5 = o(b 5,

(
(c) 5;- = g(e', e;
(

(d) 53. =g

)
e’ e;)

Using (1), (2) and the appropriate formula among (a), (b), (c) and
(d), compute [b'] ] 5, [€!] ¢ and '] - For some of these, one will
probably want to apply the same technique as in Example 4.10.

4.2.2 Properties of Reciprocal Bases



claim 4.22 Given a vector space V with a basis & and an inner product
g:V xV — R, areciprocal basis exists and is unique.

As we pointed out right after the definition of reciprocal basis, what this
claim really says is that there is a set of vectors {bl, ...,b"} in V that satisfy
Eq. (4.9), that form a basis and that this basis is unique.

Proof Let % = {bi,...,b,} be the given basis. Any other basis {b*,...,b"}
is related to & by the relation
b' = MYb; (4.11)

for some invertible matrix M. We want to show that there exists a unique
matrix M such that, when Eq. (4.11) is plugged into g(b’,b;), we have

g(b',b;) = &5 . (4.12)
From Eqgs. (4.11) and (4.12) we obtain

8% = g(b',b;) = g(M ™ by, b;) = M *g(br, b;) = M"gy; ,
which, in matrix notation, becomes
I=MG,

where G is the matrix of g with respect to % whose entries are g;; as in

(4.4). Since G is invertible because it is positive definite, then M = G~!
exists and is unique. ]

Remark 4.23 Note that in the course of the proof we have found that,
since M = L 4,, then

-1
G = (Lpp:) = Lpss |-

We denote with gij the entries of M = G~!. From the above discussion, it
follows that with this notation

g g =6 (4.13)
as well as
b =g"b; |, (4.14)
or3
(B! ... 0")y = (by ...b,) G| (4.15)

(note that G ~! has to be multiplied on the right): This is consistent with the
findings in Sect. 2.3.2. We can now compute g(b*, )



c o (414 . . L
g(b',09) =" g(g™*by, g’*bs) = g* g7 g(by, be)
o (45) . . (413) . g
= g*glgr = g*g’gu = g™6], = g7,
where we used in the second equality the bilinearity of g. Thus, generalizing
Eq. (4.1), we have

g/ =g b (4.16)

Exercise 4.24 In the setting of Exercise 7, verify Eq. (4.15) in the
particular cases of & and &Y and of & and %Y, that is verify that

(D) (e e e)=(e1 ex e3)G,', and
(@) (B by bs) = (b1 bo 53)G%-

Recall that, in Eq. (4.15), because of the way this equation was obtained, G
is the matrix of g with respect to the basis £.

Given that we just proved that reciprocal bases are unique, we can talk
about the reciprocal basis (of a fixed vector space V associated to a basis
and an inner product).

claim 4.25 The reciprocal basis is contravariant.

Proof Let % and 2 be two bases of V and L := L ,z be the corresponding
matrix of the change of basis, with A = L~!. Recall that this means that
b; = Lib; .
We have to check that, if 9 = {b',...,b"} is a reciprocal basis for %,
then the basis {b',...,b"} defined by

b' = AZbk (4.17)
is a reciprocal basis for 2. Then the assertion will be proven, since
{51, cee B"} is contravariant by construction.
To check that {I;l, cee l;”} is the reciprocal basis for %, we need to check

that, with the choice of b’ as in Eq. (4.17), the property of the reciprocal
basis given in Eq. (4.9) is verified, namely that

9(5i76j) - 5; .
Indeed, we have
- . (417

. . (49) | |
g(b,b;) = g(ALb*, Libs) = ALL'g(b" b)) = ALL%SE = ALLE =6t



where the second equality comes from the bilinearity of g, and the last
equality from the fact that A = L~ !. O

Suppose now that V is a vector space with a basis 4 and that #Y is the
reciprocal basis of V with respect to &% and to a fixed inner product
g:V xV — R. Then there are two ways of writing a vector v € V, namely

V= ’Uzbi — /Ujb'j
—— ——
with respect to #  with respect to 9

Recall that the (ordinary) coordinates of v with respect to 4 are
contravariant (see Example 1.2).

claim 4.26 Vector coordinates with respect to the reciprocal basis are
covariant.

Proof This will follow from the fact that the reciprocal basis is
contravariant and the idea of the proof is the same as in Claim 4.13.

Namely, let 4, % be two bases of V, L := L g7 the matrix of the change

of basis and_A — L!. Let B9 and %? be the corresponding reciprocal bases
and v = v;b’ a vector with respect to %9.
It is enough to check that the numbers

’i)i = Lgvj
are the coordinates of v with respect to gg’ because in fact these

coordinates are covariant by definition. But in fact, using this and Eq.
(4.17), we obtain

’5251 = (Lg’l)])(A;{:bk) = LiA;{:’U]bk = ’Ujbj =
N——
5%
O

Definition 4.27 The coordinates v; of a vector v € V with respect to the
reciprocal basis ZY are called the covariant coordinates of v.

Because of this covariant character, we represent the vector assembling the
covariant coordinates as a row vector:

Vg =(v1 ... vn).

4.2.3 Change of Basis from a Basis 4 to Its Reciprocal Basis
%9

We want to look now at the direct relationship between the covariant and
the contravariant coordinates of a vector v. From the alternative
expressions



with respect to #

we obtain

N
vib)
~——

with respect to %9

(Uigij)bj = Ui(gijbj) = v'b; =v = Ujbj = (ngji)bi
and hence, by comparing the coefficients of b/,

v =v'gij

Likewise, from

v'h; = v = Ujbj = Uj(gjibz') = (’Ujgﬁ)bz‘ )

follows that (Table 4.1)

. 1|
v =vjg

or |vlgs = G[vlg |,

or IU]g:G_ltIU]gu

Table 4.1 Covariance and contravariance of vector coordinates

bases are related by

A vector v has now two sets of
coordinates

The matrices of g are

These matrices are inverse of
each other, that is,

The basis and the reciprocal
basis satisfy

Covariant and contravariant
coordinates are related by

B=1{bi,...
basis
i

v=1v'b;
contravariant
coordinates

gij = 8(bi, b))
b = gijb’

vl = giiy;

g(b',bj) =6

" :
g grj =8}

B8 ={b',....b")
reciprocal basis

v = v,-bf

covariant

coordinates

g/ =g b))
i Gl

b' = g"h;

v; = gijv’

(4.18)

(4.19)



Example 4.28 Let & = {e1, e2, e3} be the standard basis of R? and let

1 -1 0
G=|-1 2 -1
0 -1 2
be the matrix of g with respect to &. In Eq. (4.10) of Example 4.10, we saw
that
3 2 1
5’9:{191: 20,6 = [2],°= |1 }
1 1 1
4
is the reciprocal basis of &. We find the covariant coordinates of v = |5
6
with respect to &9 using Eq. (4.18), namely
1 -1 0 4 -1
0o -1 2 6 7
The following computation double checks this result:
3 2 1 4
vib' = (1) 2| +0|2| +7|1| = |5] =w.
1 1 1 6

O

Example 4.29 Let V := P-;(R) be the vector space of polynomials of
degree < 1 (that is, “linear” polynomials of the form a + bzx). Let
g:V xV — R be defined by

9(p,q) = p(z)q(z)dz ,

0
and let # := {1, z} be a basis of V. Determine:
(1) the matrix G;

(2) the matrix G~ 1;

(3) the reciprocal basis %Y;



(4) the contravariant coordinates of p(z) = 6 (that is the coordinates of
p(x) with respect to %);

(5) the covariant coordinates of p(z) = 6z (that is the coordinates of p(x)
with respect to £9).

(1) The matrix G has entries g;; = g(b;, b;), that is

1 1
gi1 :g(blgbl):L (b1)2d:3:f; dr =1

gi12 =9(bl,bz) = L/;
1

g21 = g(b2,b1) = f; babidx = %
/.

922 = g(ba, by) =
so that

(2) Sincedet G =1-%3 — 5 -5 =
inverse given in Eq. (2.7), we get

4 —6
Gl= .
(—6 12)

(3) Using Eq. (4.15), we obtain that

b )= (1 26 =(1 :13)(4 6

-6 12
so that 9 = {4—6z, —6 + 12z}.
(4) p(x) =6x =0-1+ 6 -z, so that p(x) has contravariant coordinates

0

po)s = (o)

(5) From Eq. (4.18) it follows that if v = p(x), then

v\ _ & oty (1 AW (3
vy w‘g% 6) \2/°
We can check this result:
v1b' + vab® =3 - (4—62) +2- (—6+ 12z) = 62 .

then by using the formula for the

) = (4—6x —6+ 122),

O



4.2.4 Isomorphisms Between a Vector Space and Its Dual
We saw already in Proposition 3.10, that if V is a vector space and V' * is its
dual, then dim V =dim V *. In particular, this means that V and V* can be
identified, once we choose a basis & of V and a basis #* of V*. In fact, the
basis #* of V* is given once we choose the basis & of V, as the dual basis
of V* with respect to #. Then there is the following correspondence:

veEVemwacV®,
exactly when v and a have the same coordinates, respectively with respect
to £ and #*. However, this correspondence depends on the choice of the
basis 4 and hence not canonical.

The above correspondence is an isomorphism. Recall that an
isomorphism between vectors spaces V and W is an invertible linear
transformation, T': V — W. This is often used as identification of
equivalence between vector spaces, denoted =.

When V is endowed with an inner product, then there is a canonical
identification of V with V'* that is, an identification that does not depend
on the basis # of V. In fact, let g: V x V — R be an inner product and let
v € V. Then

g(v, ): V. — R

w — g(v,w)
is a linear form and hence we have the following canonical identification

given by the metric
V & V>

v < vti=g(v, 4.
Note that the isomorphism sends the zero vector to the linear form
identically equal to zero, since g(v, -) = 0 if and only if v = 0 by positive
definiteness of g.

So far, we have two bases of the vector space V, namely the basis & and
the reciprocal basis %49 and we have also the dual basis of the dual vector
space V *. It turns out that, under the isomorphism (4.20), the reciprocal
basis of V and the dual basis of VV'* correspond to each other. This follows
from the fact that, under the isomorphism (4.20), an element of the

reciprocal basis b’ corresponds to the linear form g(b*, -)

. b g(bia )
and the linear form g(b*, -) : V' — R has the property that

g(bi7bj) = 63 .

(4.20)

We conclude that

We have thus shown that:



Under the canonical identification between V and V* the reciprocal
basis of V corresponds to the dual basis of V'*.

4.2.5 Geometric Interpretation
Let g: V x V — R be an inner product and # = {b,...,b,} a basis of V
with reciprocal basis #9. Let v = v;b* € V be a vector written in terms of its

covariant coordinates (that is, the coordinates with respect to the reciprocal
basis). Then

g(v,bg) = g(v;b*,by) = vig(b', by) = vy,
N———
&
so that the formula in (4.8) becomes

bi .

. g
pz)o"w  g(br, br)
If we assume that the elements of the basis # = {by, ..., by} are unit
vectors, then this further simplifies to give
le')Oj’U = viby . 4.21)
This equation shows the follfowing:

Fact 4.30 The covariant coordinates of v give the orthogonal projection of
vonto by,...,b,.

Likewise, the following holds basically by definition:



Fact 4.31 The contravariant coordinates of v give the “parallel” projection
of vonto by,...,b, (Fig. 4.3).

Fig. 4.3 Coordinates v, v? and covariant coordinates vy, vy of vector v relative to basis & = {b1,bs}

4.3 Relevance of Covariance and Contravariance
Why do we need or care for covariant and contravariant components?

4.3.1 Physical Relevance
Consider the following physical problem: Calculate the work performed by a
force F on a particle to move the particle by a small displacement dx, in the
Euclidean plane. The work performed should be independent of the choice
of the coordinate system (i.e. choice of basis) used, that is, invariant. For
the work to remain independent of choice of basis we will see that, if the
components of the displacement change contravariantly, then the
components of the force should change covariantly.

To see this let 8 = {b1, b2} be a basis of the Euclidean plane. Suppose
the force F' = (F1, F3) is exerted on a particle that moves with a

displacement dz = (dz!, dz?). Then the work done is given by
dW = F1d:131 + F2d,’L'2 .
Suppose we are given another coordinate system B = {51, 52} and let
F = (F1, F,) and dz = (d&", dZ?). Then

dW = Fdz' + Fypdz?.
Now assume that the coordinates of dx change contravariantly;



dz = Aidai
or, equivalently,
doi = Lida! ,
where A = L~! and L = (L) is the change of basis matrix from % to %.

dW = Fida' + Fyda?
= Fy(LYd3" + L1d3?) + Fo(L2d3" + L2d3?)

= (FlLi + FQL%)dfl —+ (FlL% =+ Fng)df2
Since the work performed is independent of basis chosen, we also have

dW = Fydz' + Fydz® .
This gives that
Fi=FLl+ KL} and F=FL+FRL.
Hence the coordinates of F transform covariantly; F; = L!F;. Using
matrices this can be written as (Fl, F2) = (F1, Fy)L.

4.3.2 Starting Point

We start with the physical premise that physical scalar entities such as work
(cf. Sect. 4.3.1) should be independent of choices of bases. Moreover, we
declare displacement to be a vector, that is, a contravariant 1-tensor. Then
it follows that position, velocity and acceleration are also contravariant 1-
tensors; see the following exercise.

Exercise 4.32 Let T be a time-dependent vector. Verify that its time

derivative, 4L is also a vector. A similar result holds for tensors of other

s dt
types.

The fact that, in a conservative force field, the force is the negative gradient
of the potential energy function and the following exercise corroborate the
covariance of force.

Exercise 4.33 Verify that the gradient of a real function on a vector space
V is a covariant 1-tensor.

Therefore, in this text we set that:

« position or displacement, hence velocity and acceleration, are inherently
contravariant objects;

 a gradient of a real function, hence a force, is inherently a covariant
object.

On the other hand, Newton’s second law states that force is the time rate
of change of momentum:



F=%

The momentump is defined in terms of the Lagrangian function L governing
the mechanics. The components of p in a certain given frame are the partial
derivatives of L with respect to the components of the velocity. The velocity
being a vector (hence contravariant), the momentum becomes a covector
(hence covariant), fitting with the covariance of the force.

However, the momentum is often taken to be mass times velocity v. That
turns out to be an important special case that occurs for constant mass and

for a certain choice of the Lagrangian function L, namely L =T — V, where

T := %”‘2 is the kinetic energy, V is the potential energy and does not
depend on velocity. Notice that, in this case, there is an inner product
involved, in particular to measure the square length of v, and we work with
orthonormal bases, hence the distinction between covariance and
contravariance vanishes, as explained in Sect. 4.3.3.

The postulate that the laws of Physics are the same in all inertial frames
of reference translates into the balance of equations regarding covariance
and contravariance. This corresponds to a practical strategy for verifying
the type of a tensor as illustrated in Sect. 4.3.1 and in the next exercise.

Exercise 4.34

(1) Let Tyj, 4,5 = 1,...,n, be the components of a (0, 2)-tensor T and u’,
i =1,...,n, the components of a (1,0)-tensors u with respect to a
basis £ of an n-dimensional vector space. Show that then the numbers

Vj = Tijui, j: 1,...,n,
are the components of a (0, 1)-tensor v w.r.t. the basis £.

(2) Now assume that, for each basis & of an n-dimensional vector space,
we have numbers T3, 4,7 = 1,...,n. We would like to find out,
whether these numbers are the components of a (0, 2)-tensor T.
Suppose we know, that, for each choice of a (1, 0)-tensor u with

components u’ with respect to %, the numbers

Vj = Tijuz, j: 1,...,n,
are the components of a (0, 1)-tensor v. Show that then the Tj; are
in fact the components of a (0, 2)-tensor.
Hint: It boils down to checking whether these numbers satisfy the

relation Tj; = LflL?TM2 with respect to a change of basis L from % to

—_—~

B.

In Physics, there is some leeway regarding the covariant or contravariant
character when either some inner product is used (as addressed in Sect.
4.3.3), or the definition of the object is adjusted to the circumstances and




changes character in this way (this could be the case of the different stress
tensors in classical physics, continuum mechanics, electromagnetism and
relativity). The above list may thus be seen as the convention of this text,
justified by the considerations in Sect. 4.3.1.

4.3.3 Distinction Vanishes when Restricting to Orthonormal
Bases
In the presence of an inner product g : V x V — Rand if we restrict
ourselves to orthonormal bases, the distinction between covariance and
contravariance vanishes! In fact, it all becomes a matter of transposition:
writing vectors as columns or as rows.

Why is that?

First, as we saw, the reciprocal of an orthonormal basis is equal to itself,
so covariant and contravariant coordinates are equal in this special case.

Moreover, when we change from one orthonormal basis to another by a
change of basis matrix L, the inverse change is given simply by the
transpose of L. Here is a proof.

Let B = {b1,...,by} and B = {b1,...,b,} be two orthonormal bases of
V and let L := L , be the corresponding matrix of the change of basis.
This means, as always, that

b; = Llb; .

Since % and 2 are orthonormal, we have g(b;, b;) = &;; = g(bs, b;).
Therefore, we have
showing that L*L = I, that is, L~ = *L. Such a matrix L is called an
orthogonal matrix.

We conclude that, in this special case, we see no distinction between
covariant and contravariant behaviour, it is simply a matter of transposition.
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Footnotes

1 An inner product induces a norm and a norm induces a metric on a vector space. However, the
converses do not hold.

2 Here, we avoid the usual notation for squares, because of the possible confusion with upper
indices.
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3 Note that the following, like previously remarked, is a purely symbolic expression that has the only
advantage of encoding the n expressions in Eq. (4.14) fort =1,...,n.
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In this chapter, we address general tensors as a unifying tool for
representing multilinear quantities across science. Moreover, we
define tensor product in general and discuss some algebraic features
of this product.

5.1 Towards General Tensors

Let V be a vector space. Up to now, we saw several objects related to
V', which we called tensors. We summarize them in Table 5.1. From
these, we infer the definition of a tensor of type (0, q) for all ¢ € N,
but we cannot say the same for a tensor of type (p,0) forall p € N,
even less of general type (p, q). The next discussion will lead us to
tensors of type (p,0), and in the meantime we will discuss an
important isomorphism.

Table 5.1 Covariance and contravariance of aforementioned tensors

Tensor Components Behavior under a change of basis Type

inV v Contravariant tensor (1,0)

Linear form V — R a; Covariant tensor (0, 1)

Linear transformation V — V Aj; Tensor of mixed character: (L, 1)
contravariant and covariant

Bilinear form V x V — R Bij Covariant 2-tensor 0, 2)

k-linear form V x --- x V = R F; Covariant k-tensor (0, k)

1020k

5.1.1 Canonical Isomorphism Between V and (V*)"

We saw in Sect. 4.2.4 that any vector space is isomorphic to its dual,
though in general the isomorphism is not canonical, that is, it
depends on the choice of a basis. We also saw that, if there is an
inner product on V, then there is a canonical isomorphism. The point


https://doi.org/10.1007/978-3-031-94136-8_5

of this section is to show that, even without an inner product, there is
always a canonical isomorphism between V and its bidual(V*)", that
is the dual of its dual.

To see this, let us observe first of all that

dim V =dim (V*)" . (5.1)

In fact, for any vector space W, we saw in Proposition 3.10 that
dim W =dim W*. If we apply this equality both to W = V and to
W =V*, we obtain

dim V =dim V* and dim V* =dim (V*)",

from which Eq. (5.1) follows immediately. We deduce (following Sect.
4.2.4) that V and (V*)* are isomorphic, and we only have to see that
there is a canonical isomorphism.

To this end, observe that a vector v € V gives rise to a linear form
on V* defined by

Yy : VY — R
a +—av).
Then we can define a linear map as follows:
TV — (V¥
v 1y
Since, for any linear map 71" : V — W between vector spaces, we have

the dimension formula (known as the Rank-Nullity Theorem in Linear
Algebra):

(5.2)

dim V =dim im (T') + dim ker(7T) ,
it will be enough to show that ker¥ = {0}. In fact, in this case, we
have

dim V =dim im (¥) ,

and, since dim V =dim (V*)*, we can conclude that the subspace
im (¥) must equal the whole space (V*)*. Hence, ¥ is an
isomorphism. Notice that we have not chosen a basis to define the
isomorphism W.

To see that ker¥ = {0}, observe that this kernel consists of all
vectors v € V such that a(v) = 0 for all « € V'*. We want to see that
the only vector v € V for which this happens is the zero vector. In
fact, if v € V is non-zero and & = {b1,...,b,} is any basis of V, then
we can write v = v'b;, where at least one coordinate, say v/, is not
zero. In that case, if Z* = {f1, ..., Bn} is the dual basis, we have



Bj(v) = v/ # 0, thus we have found an element in V* not vanishing
on this v. We record this fact as follows:

Fact 5.1 LetV be a vector space and V * its dual. The dual (V*)* of
V' * is canonically isomorphic to V. The canonical isomorphism

U:V — (V*)" takes v € V to the linear form on the dual

Yy : V= R, ¢Yy(a) := av).

5.1.2 (2,0)-Tensors

Recall that the dual of a vector space V is the vector space
V* .= {linear forms « : V — R} = {(0, 1)-tensors}.
Taking now the dual of the vector space V'*, we obtain

(V*)* := {linear forms ¢ : V* — R} .
Using the canonical isomorphism ¥ : V' — (V*)* and the fact that
coordinate vectors are contravariant, we conclude that
{linear forms ¥ : V* — R} = (V*)* = V = {(1, 0)-tensors} .

So, changing the vector space from V to its dual V' * seems to have
had the effect of converting covariant tensors of type (0, 1) into
contravariant ones of type (1, 0).

We are going to apply the above principle to convert covariant
tensors of type (0. 2) into contravariant ones of type (2, 0). Recall that

{(0, 2)-tensors} ={bilinear maps ¢ : V x V — R}

and consider now

{bilinear maps & : V* x V* — R}.
Anticipating the contravariant character of such bilinear maps (to be
proven in Sect. 5.1.4), we advance the following definition:

Definition 5.2 A tensor of type(2,0) is a bilinear form on V'*, that
is, a bilinear function o : V* x V* — R.

Then we have
{(2, 0)-tensors} = {bilinear maps o : V* x V* — R}
and we denote this set Bil(V* x V* /R).

Exercise 5.3 Check that Bil(V* x V* /R) is a vector space. Just like
in the case of Bil(V x V,R) (cf. Exercise 3.26), it is enough to show
that the zero function is in Bil(V* x V* /R) and that if



o,7 € Bil(V* x V*,R) and ¢,d € R, then the linear combination
co + dr is also in Bil(V* x V* R).

5.1.3 Tensor Product of Two Linear Forms on V*
If v,w € V are two vectors (i.e., are two (1, 0)-tensors), we define
Opw : VX V* =R
by
ovw(a, B) = a(v)B(w) ,
for any two linear forms «, 8 € V*. Then o0, is indeed bilinear, i.e.,

linear in each variable, a and S, so is indeed a (2, 0)-tensor. We
denote

Opw = V@ W

and call this the tensor product of v and w.

Notes 5.4 In general, we have

VW FWRQU|,

as there can be linear forms a, 8 such that a(v)8(w) # a(w)B(v).

Similar to what we saw in Sect. 3.2.3, we find a basis for the space of
(2, 0)-tensors by considering the (2, 0)-tensors defined by b; ® b;,
where & = {by,...,b,} is a basis of V.

Proposition 5.5 The elementsb; ® b;, ©,j = 1,...,nform a basis of
Bil(V* x V*,R). Thusdim Bil(V* x V* R) = n2,

The proof of this proposition is analogous to the one of Proposition 3.
27 and we will not write it here. However, we state the crucial
remark for the proof, analogous to Remark 3.28.

Remark 5.6 As for linear forms and bilinear forms on V, in order to
verify that two bilinear forms on V' * are the same, it is enough to
verify that they are the same on every pair of elements of a basis of
V*. In fact, let o, 7 be two bilinear forms on V*, let {y!,...,7"} be a
basis of V* and let us assume that

o(v',v?) =7(v' )
foralll <4,j,<n.Leta = a;v" and 8 = B;7’ be arbitrary elements
of V*. We now verify that o(«, 8) = 7(c, ). Because of the linearity



in each variable, we have
o(e, B) = o(ay’, Bi7) = aiBio(v',77) = aiBir(v', 7))

— T(ai7i7 /ijyj) — T(a7 B) .
[]

5.1.4 Contravariance of (2,0)-Tensors

Let o : V* x V* — R be a bilinear form on V¥, that is, a (2, 0)-
tensor. We want to verify that it behaves as we expect with respect to
a change of basis. After choosing a basis & = {b1,...,b,} of V, we
have the dual basis * = {8!,..., 8"} of V* and the basis
{bi®b;: i,7=1,...,n} of the space of (2, 0)-tensors.

The (2, 0)-tensor o is represented by its components

SU =a(B, 1),

in the sense that

o=S"b®@bj|,

and the components S* can be arranged into a matrix!
St §in
S = _
sl .. §nn
called the matrix of the(2,0)-tensoros with respect to the chosen

basis of V.
We look now at how the components of a (2, 0)-tensor change with

a change of basis. Let = {b1,...,b,} and B = {51, ey En} be two

basis of V and let * := {B1,...,8"} and B = {B',...,8"} be the
corresponding dual bases of V*. Let o : V* x V* — R be a (2, 0)-
tensor with components

§9 =08, H) and §=o(F,F)
with respect to #* and #*, respectively. Let L := L a7 be the matrix

of the change of basis from £ to %, and let A := L~ 1. Then, as seen
in Egs. (2.4) and (3.11), we have that

bj=L'b; and B =Ap.



It follows that
89 = o(F, B) = o(ALB", A}B") = AiAjo(BY, B°) = AjAS™
where the first and the last equalities follow from the definition of S*

and of S*, respectively, the second from the change of basis and the
third from the bilinearity of 0. We conclude that

ST = ALATSH. (5.3)

Hence, the bilinear form o is a contravariant 2-tensor.

Exercise 5.7 Verify that, in terms of matrices Eq. (5.3) translates
into

S=ASTA|.

Compare with Eq. (3.15).

5.2 Tensors of Type (p,q)

In general, a (p, q)-tensor (with p,q = 0,1,2,...) is defined to be a
real-valued function of p covectors and of g vectors, which is linear in
each of its arguments:

Definition 5.8 A tensor of type(p, q) or (p, g)-tensor is a
multilinear form (or (p + ¢)-linear function)

T:V'x..V*xVx---xV=3R.

p q
By convention, a tensor of type (0, 0) is a real number, a.k.a. scalar (a

constant function of no arguments).

The order of a tensor is the number of arguments that it takes: a
tensor of type (p, q) has, thus, order p + q.2

If all the arguments of a tensor are vectors, i.e. p = 0, the tensor is
said to be (purely) covariant. If the arguments are all linear forms,
i.e. ¢ = 0, the tensor is said to be (purely) contravariant. Otherwise,
a (p, q)-tensor is of mixed character, p being its order of
contravariance and q its order of covariance. Purely covariant
tensors are what we earlier called multilinear forms. Purely
contravariant tensors are sometimes called polyadics.>



Table 5.2 gives an overview of how the earlier examples of tensors
fit in the above general definition.

Table 5.2 Aforementioned tensors viewed within general definition

Earlier tensor Viewed as multilinear function Type
*
R
vev e (1,0)
B — Bv)
Linear form o € V* v R 0, 1)
w— a(w)
*
Linear transformation F : V — V L (1, 1)
(B, w) —> B(F(w))
R
Bilinear form ¢ € Bil(V x V, R) VXV — (0, 2)

(v, w) — ¢(v,w)
Vx---xV —R

k-linear form ¢ on V (0, k)
(vl,...,vk)|—> (p(vl,...,vk)

Bilinear form on V* V¥*x V¥ — R 2.0)

o € Bil(V* x V*, R) (@, B) > o(a, B) ’

Let T be a (p, q)-tensor, & = {by,...,b,} a basis of V and
B* = {p,...,B"} the corresponding dual basis of V*. The
components of T with respect to these bases are

L =T BT by b)) |

If, moreover, % = {51, ey I;n} is another basis, * = {EI, e ,B"}
the corresponding dual basis of V* and L := L 27 the matrix of the

change of basis with inverse A := L1, then the components of T with
respect to these new bases are

..... i i i ¢ ¢ ki,...k
Tt o A At et
. (] p J1 ‘]f/ f,].....(.,q

The above formula displays the p-fold contravariant character and
the g-fold covariant character of T.

The set of all tensors of type (p, q) on a vector space V with the
natural operations of addition and scalar multiplication on tensors is
itself a vector space denoted by

7:,”(\/) = {all (p, g)-tensors on V}|.

The zero tensor is the tensor all of whose components vanish, and
two tensors are equal exactly when all their components are equal



(with respect to any given basis).

Exercise 5.9 Let V :=R? Let T be the tensor of type (3,0) given
with respect to the standard basis {e!,&%} of V* by

o 1+ 1, hen k=1
T(et, e, e") = { v

1 — 7, when k = 2.
(1) Compute T'((—1 2),(3 2),(1 1)).

(2) Determine the components of T with respect to the basis

7={] )|}

(and the corresponding dual basis £*).

5.3 Symmetric and Antisymmetric Tensors

We consider now (purely) covariantg-tensors on the vector space V,
i.e., real-valued functions of the form

T:Vx---xV =R

q
which are linear in each of its g arguments. Similar notions hold for

(purely) contravariant tensors.

Definition 5.10 A (0, g)-tensor T is (totally) symmetric, if the
result T'(vy, ..., v,) is independent of the order of the arguments, for
allvl,...,vq cV.

A (0, g)-tensor T is called (totally) antisymmetric or
skewsymmetric, if the result T'(vy, ..., v,) changes sign every time
we swap two of its arguments, for all vq,...,v, € V.

For the special case of a covariant 2-tensor, that is, of a bilinear form
T:V xV — R, we say that T is symmetric if

T(v1,v2) = T(va,v1) , for all vi,v2 €V,
and that T is antisymmetric if
T(vy,v9) = —T'(vg,v1) , for all vi,v € V.

Inner products are examples of symmetric (0, 2)-tensors.



Exercise 5.11 Check that the set of all symmetric covariant k-
tensors, denoted S¥V*, is a real subspace of the space of all
covariant k-tensors, Z,°(V).

Similarly, the set of all antisymmetric covariant k-tensors, denoted
AFV'*, is a real subspace of Z2(V).

Exercise 5.12 We consider the spaces of the previous exercise with
k = 2. Let n be the dimension of the vector space V. Show that

2
dim S?V* = —n(n;l) and dim /\V* = n(nz_l) .

Hint: Show that, if 5!, ..., " form a basis of V*, then
z(Be+5ep)|i>j}

is a basis of S2V* and

{:(Bep - ep)|i>j}
is a basis of A2V *. Then count the number of elements in these
bases.

5.4 Tensor Product

We saw already in Sects. 3.2.3 and 3.3.3 the tensor product of two
multilinear forms. Since multilinear forms are covariant tensors, we
said that this corresponds to the tensor product of two covariant
tensors. We can now define the tensor product of two tensors in
general. This will further lead us to the tensor product of vector
spaces.

5.4.1 Tensor Product of Tensors



Definition 5.13 Let
T: V% - xV*xXVx:--+xV-=2R

P q
be a (p, g)-tensor and

U: V% . xV*"xXVx--+xV-—=>R

k ¢
a (k,£) tensor. The tensor product? ® U of T and U is the

(p + k,q + £)-tensor
TQU :V*Xx -+ xXV*xXVx-.---xV-=>R

p+k q+{
defined by

Although both T'® U and U ® T' are tensors of the same type, in
general we have

TQU#URT .
So we say that the tensor product is not commutative. On the other
hand, the tensor product is associative, since we always have

(SRTYRU =S UKT).
Analogously to how we proceeded in the case of (0, 2)-tensors, we
compute the dimension of the vector space gqp (V). Let
% = {bi,...,b,} be a basis of V and #* := {#!,..., 5"} the
corresponding dual basis of V' *. Just like we saw in Proposition 5.3 in
the case of (0, 2)-tensors, we form a basis of 7,/ (V') by collecting all
elements of the form

b;, ®b;, - ®b; P RLPR--- QP
where the indices i1,...,1, and j1, ..., J, take all values between 1
and n. Since there are n?n? = n?*9 elements in the above basis
(corresponding to all possible choices of b;, and B9y, we deduce that

dim'ﬁ/)(\/) — pPTa |,

If T is a (p, q)-tensor with components



TZI’”.’?p = T(/Bila ceey Bip? bjl’ Tt qu) ’

1, - .,]q
then we have, with a (p + ¢)-fold application of the Einstein
convention, that
T — Tj%f,,'.'.'.’,;: by @b, @+ ® bip R RB2ER---Q BIa,
A simple tensor (also called a tensor of rank 1 or pure tensor
or decomposable tensor or elementary tensor) of type (p, q) is a
tensor T that can be written as a tensor product of the form

T=a®b®..aR®L®...

p q
where a,b,... € Vand a, 8,... € V*. The rank of a tensorT is then
the minimum number of simple tensors that sum to T.# By
convention, the zero tensor has rank 0 and a non-zero tensor of order
zero, i.e., a non-zero scalar, has rank 1. A non-zero tensor of order 1
always has rank 1. Already among tensors of order 2 (and when
dim V > 2) there are tensors of rank greater than 1. Example 6
provides such an instance.

5.4.2 Tensor Product for Vector Spaces
To complement the previous exposition and justify the notation
V* ® V* for the vector space of all bilinear forms on V (cf. Sect. 3.2.
3), we aim in this section to give an idea of what the tensor product
for finite-dimensional vector spaces should mean and of how the
tensor product for vector spaces relates to the tensor product for
tensors.

Let V and W be two vector spaces with dim V = n and
dim W = m. Choose {by,...,b,} a basis of V and {a1,...,a,,} a
basis of W.

Definition 5.14 The tensor product of V and W is the (n - m)-
dimensional vector space V ® W with basis

{bi®a;j: 1<i<n, 1<j<m}.

Elements of V' ® W are naturally referred to as tensors. They can be
seen as bilinear maps V* x W* — R, without depending on the
choice of bases: By the above definition, tensors are linear
combinations of the b; ® a;. By viewing b; € V' as a linear map (cf.
Table 5.2)



bi:V*—>R, ﬂHB(bZ),
and similarly for a; € W as

aj : W* =R, a— afa;) ,
we regard the symbol b; ® a; as a bilinear map
VEIXW* =R, (,B,OA) = IB(bz)a(a’J) :

The tensor product V ® W is endowed with a bilinear map from
the cartesian product V x W

U :.VxW — VW
defined as follows. If

v=0v'b, €V and w=wla;eW,
then ¥ (v, w) =: v ® w is the element of V ® W with coordinates v'w’
with respect to the basis {bi ®a;: 1<i1<n, 1<3< m}, so that
the following holds:

v w = (vh;) @ (wia;) = (viw)b; ®a; .
Notice that the ranges for the indices are different:
1 <i<mn, 1< j<m.The numbers v'w’ may be viewed as obtained
by the outer product of the coordinate vectors of v and w yielding an
n X m matrix:

(e vhwl L ™
An element of V' ® W that is in the image of the map ¥, that is, an

element of V' ® W that can be written as v ® w for some v € V and

w € W is called a simple tensor (or tensor of rank 1 or pure

tensor or decomposable tensor or elementary tensor). Yet keep

in mind, that the map W is usually by far not surjective. In particular,

one can show that, if v{, vy € V are linearly independent and

w1, wy € W are also linearly independent, then the sum

v1 ® wy + v9 ® we is not a pure tensor. Checking the first instance of

this phenomenon is left as the next exercise. The proof in general

goes along somewhat similar lines, but gets sophisticated.®

Exercise 5.15 Check that if both V and W are 2-dimensional with
respective bases {b1,b2} and {a1, a2}, then b1 ® a1 + b2 ® a2 is not a
pure tensor.



The following proposition gives some useful identifications.

Proposition 5.16 Let V and W be vector spaces withdim V = nand
dim W = mand let

Lin(V, W) := {linear maps V — W*} .
Then
Bil(V x W,R) = Lin(V,W*)
>~ Lin(W, V™)
=~ (VW)
= Lin(V @ W,R) .

Proof Here is the idea behind this chain of canonical isomorphisms.
Let f € Bil(V x W,R), that is, f : V x W — R is a bilinear function,
in particular it takes two vectors, v € V and w € W, as input and
gives a real number f(v,w) € R as output. If, however, we only feed f
one vector v € V as input, then there is a remaining spot waiting for
a vector w € W to produce a real number. Since fis linear in V and
in W, the map f(v, -) : W — R is a linear form, so f(v, ) € W*,
hence f gives us an element in Lin(V, W*). There is then a linear map

Bil(V x W,R) — Lin(V,W*)

f > Tf ,
where

Tt(v)(w) == f(v,w) .
Conversely, any T' € Lin(V, W*) can be identified with a bilinear map
fr € Bil(V x W,R) defined by
fr(v,w) := T(v)(w) .
Since fr, = f and Ty, = T, we have proven the first isomorphism in
the proposition.
Analogously, if the input is only a vector w € W, then
f(- ,w) : V — Ris a linear map and we now see that
f € Bil(V x W, R) defines a linear map Uy € Lin(W,V*). The same
reasoning as in the previous paragraph provides the canonical
isomorphism Bil(V x W,R) = Lin(W,V*).
Observe now that, because of our definition of V* ® W*, we have

Bil(V x W,R) = V* @ W*,



since these spaces both have basis

{Bi®aj: 1<i<n,1<j<m},

where {b1,...,b,} is a basis of V with corresponding dual basis
{8Y,...,B8"} of V*, and {a4,...,a,} is a basis of W with
corresponding dual basis {al,...,a"} of W*.

Finally, an element D;;8' ® o/ € V* @ W* may be viewed as a
linear map V ® W — R, that is as an element of (V ® W)* by

Vew — R
Ckébk. X ay — DZJCMB’(bk)aJ(ag) = DZ]C’CE .
5 &
0

Because of the identification Bil(V x W, R) = Lin(V ® W,R), we can
say that

the tensor product linearizes what was bilinear (or multilinear) |.

There is no reason to restrict oneself to the tensor product of only
two factors. One can equally define the tensor product V1 ® - - - ® V,
and obtain a vector space of dimension dim V; X --- x dim V. Note
that we do not need to use brackets, since the tensor product is
associative: (V1 @ V2) @ Vs =V1 ® (V2 ® V3).

We have

IIV)=V® - VeV'e --eV*,

p q

since both spaces have the same basis. An element T of 7" (V) was
first regarded according to Definition 2 as a multilinear map

T:V%..V*XVx---xV—>R.

p q
Now, with respect to bases # = {b1,...,b,} of V and

B* ={B,...,B"} of V*, the components of T are
T;ll,’:::jj = T(,Bil, ceey ﬁip, bjy--s qu) ,
hence we may view T as



T ©..8b, 081 .08 Ve VeV @ V",

Jlye ooy

p q
In particular, the pth tensor power of a vector space is

Ver=Vg---@V=9V).

p
Therefore, we may write

Bi(VEx VER) =V V=V |Bil(VxVR=V®V= (V)

and

7;/)(‘/) — V®p ® (V*)®a‘

Footnotes

1 Once again, contrary to the change of basis matrix L, here we have only upper indices.
This reflects the contravariance of the underlying tensor, o.

2 The order of a tensor is sometimes also called rank. However, rank of a tensor is often
reserved for another notion closer to the notion of rank of a matrix and related to
decomposability of tensors (see Sects. 5.4.1 and 5.4.2).

3 Whereas Latin roots are used for covariant tensors, like in bilinear form, Greek roots are
used for contravariant tensors, like in dyadic, as established by Gibbs in late nineteen
century.

4 This notion of rank of a tensor extends the notion of rank of a matrix, as can be seen by
considering tensors of order two and their corresponding matrices of components.

5 The Segre embedding from Algebraic Geometry provides the framework for understanding
this properly.
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Mathematically-speaking, a tensor is a real-valued function of some number of
vectors and some number of covectors (a.k.a. linear forms), which is linear in each
of its arguments. On the other hand, tensors are most useful in connection with
concrete physical applications.

In this chapter, we borrow notions and computations from Physics and Calculus
to discuss important classical tensors. We assume familiarity with concepts from
Physics, for instance at the level of [14] or [15] and from Calculus, for instance at
the level of [6] or [12].

6.1 Inertia Tensor
6.1.1 Physical Preliminaries
We consider a rigid body M fixed at a point O and rotating about an axis through O
with angular velocityw. Denoting the time variable t and an angle variable 0
around the axis of rotation, the angular velocity will be viewed as a vector!: with
magnitude
do
lw =151
with direction given by the axis of rotation and with orientation given by the

right-hand rule. The position vector of a point P in the body M relative to the
origin O is

x := OP
while the linear velocity of that point P is

Vi=EwXX.

The linear velocity v has, hence, magnitude

v = [l wll x [lsin o,

[Fal =

where « is the angle between w and x, and has direction tangent at P to the circle
of radius r perpendicular to the axis of rotation (Fig. 6.1).
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Fig. 6.1 Computing the kinetic energy of a rigid body rotating about an axis
The kinetic energy of an infinitesimal region dM of M around P is

1
dE =2 | v |[* dm,

where || v ||2= v - v is the square of the norm of the linear velocity and dm is the
mass of dM. The total kinetic energy of M is

1 1
= [ IviFan=

| wxx||?dm .
2

M M
Actually, depending on the type of rigid body, we might take here a sum instead of

integral, or some other type of integral (line integral, surface integral, etc) such as:

(1) If M is a solid in 3-dimensional space, then

E= %fffM | wxx, ||?p, de'dz?dz?

where the norm squared || w X x, ||? and the density p, are functions of the
point P with coordinates (z!, 22, z3).

(2) If M is a flat sheet, then
E=%ffM | wxx, |? p, de'da? ,
where the integrand only depends on two cartesian coordinates.
(3) If M is a (curvy) surface in 3-dimensional space, then

EzéfanwxxPn?ppda,

where do is the infinitesimal element of the surface for a surface integral.



(4) If M is a wire in 3-dimensional space, then

1
Ez;fM | wxx,|?p,ds,
where ds is the infinitesimal element of length for a line integral.

(5) If M is a finite set of N point masses m; with rigid relative positions, then

N
E=1 E i:1||w><xi||2 m; .

We will keep writing our formulas for the first case (with a volume integral); these
should be adjusted for situations of the other types.
In any case, we need to work out the quantity

lw > x|
for vectors w and x in 3-dimensional space.
To this purpose, we use the Lagrange identity,? according to which
a-c a-d
(a x b) - (c xd) =det .
b.c b-d
Applying the identity (6.1) with a = ¢ = w and b = d = x, we obtain

(6.1)

W-'w WwW+*X

X' w XX
Let now % = {ey, €3, €3} be an orthonormal® basis of R3, so that

o x x [P= (@ x %) - (w x x) =det [ ]=|\w|\2uxu2—uw-x||2 .

w=w'e;, and x==<2=€e.

Then
|w? =w-:w={wuw =ww!+ww? + wdw’
| x|? =x-x=0dpzkFzt = 2l + 2222 + 232>
w-x =izl = wle! + wlz? + wizd
so that

Jwxx|? =|wl|?x|*—||w-x|?
= (§;jwiw?) (Speztat) — (Sipw'a®) (8 ywizt)

= (52]5“ - 5ik5jg)wiwjkae .
Therefore, the total kinetic energy is

1 Co .
E = —(8ij0ke — 8irdj)o' ! //f Kxldm
2 ‘ ‘ M

2

and it depends only on w', w?, w? (since we have integrated over the z', 22, 2°).

6.1.2 Moments of Inertia
Definition 6.1 The inertia tensor is the covariant 2-tensor whose components
with respect to an orthonormal basis 4 are



lij = (6ijdke — 0ikdj¢) //f xKxtdm |.
M

Then the kinetic energy of the rotating rigid body is
1

E = E],-ja)"wj
which in matrix notation amounts to
1 1
E=-—w-Jlw=-"wlw.
2 2

Remark 6.2 If, instead of an orthonormal basis, we had used any basis of R?, we
would have gotten

Iij = (gijgre — gixgje) Fztdm .

where g;; are the components of the metric tensor. This formula also makes
apparent the covariance and the symmetry of I inherited from the metric: I;; = Ij;
for all i and j.

We will see that the inertia tensor is a convenient way to encode all moments of
inertia of an object in one quantity and we return now to the case of an orthonormal
basis. The first component of the inertia tensor is

I = Onidee —Sude) [ [y x*xtdm .
—— N —

=0 =0
unless unless
k=t k=0=
If k=/=1, then 611611 — 911911 = 0, so that the non-vanishing terms have
k = ¢ # 1. In this way, one can check that



I ff (z2z% + 2323) dm
Iss fffmm—i—a:x)dm
Iss :fff(a:m+mm)dm
In3 = I3y =—fffx2x3 dm
M
I3 =13 =—fffw1x3dm
M
Iy = In Z—fffxlmzdm,
M

so that with respect to an orthonormal basis %, the inertia tensor is represented by
the symmetric matrix
Iy Iy Ing
I= Iy I Iy
I31 Iy Isg
The diagonal components 111, Is9, I35 are the moments of inertia of the rigid
body M with respect to the coordinate axes Oz, Oxy, Ox3, respectively. The off-

diagonal components [, I53, I3; are the polar moments of inertia or the
products of inertia of the rigid body M.



Example 6.3 We want to find the inertia tensor of a homogeneous rectangular
plate with sides a and b and total mass m, assuming that the rotation preserves the
center of mass O. We choose a coordinate system (corresponding to an orthonormal
basis) with origin at the center of mass O, with x-axis parallel to the side of length a,
y-axis parallel to the side of length b, z-axis perpendicular to the plate (Fig. 6.2),
and adjust our previous formulas to double integrals. Since the plate is assumed to
be homogeneous, it has a constant mass density equal to

total mass m

p e pu— .
area ab
Then
5 3
I, = _ifk(y + 22) p dydx
L 2 2 0 ”
b
2
= %aszf dy
2
m y3 % m 1.2
0 [?}_2 120
2
Similarly,
Iy = % a?,
Iyy
and

Iy = ffbm +y?)p dy de = T2 (a® + b?)
-4 J -3

turns out to be JU.St the sum of 117 and Iss.

621—)
b

0O €

Fig. 6.2 Rectangular plate from Example 6.2

Furthermore,

Iy = I35 = — yzpdydz=0,



and, similarly, I3; = I;3 = 0. Finally, we have

a b
a b 2 2
by =hi=—[2 [Z xypdyde =~ (f x‘”) (f ) ydy)

because the integral of an odd function
on a symmetric interval is 0

We conclude that the inertia tensor is given by the matrix

b2 0 0
™ 0 a2 0
12

0 0 a®+0b2

]

Exercise 6.4 Compute the inertia tensor of the same plate, but now with center of
rotation O coinciding with a vertex of the rectangular plate.

6.1.3 Moment of Inertia About any Axis

We compute the moment of inertia of the body M about an axis through the point O
and defined by the unit vector u (Fig. 6.3).

Fig. 6.3 Computing the moment of inertia of a rigid body about an axis

The moment of inertia of an infinitesimal region of M around P with respect to
the axis defined by u is

dl = r? dm = |lu xx|*dm,
S——— S——

r is the distance  infinitesimal
from P to the axis mass

where the last equality follows from the fact that || u x z ||=|| u || || z ||sin a = 7,

since u is a unit vector. Hence, the total moment of inertia of M with respect to
the axis given by u is



I, := |uxx||* dn > 0.

M
This is very similar to the total kinetic energyE: just replace w by u and omit the

factor % By the earlier computations, we conclude that
where I;; is the inertia tensor. This formula shows that the total moment of inertia

of the rigid body M with respect to an arbitrary axis passing through the point O is
determined only by the inertia tensor of the rigid body.

Example 6.5 For the rectangular plate in Example 6.2, we now want to compute
the moment of inertia with respect to the diagonal of the plate (Fig. 6.4).

Fig. 6.4 Rectangular plate from Example 6.3

. 1 c1e7e .
We choose the unit vector u = Ty (a61 + b62) (the other possibility is the
negative of this vector, yielding the same result), so that

1 a 2 _ _ b ud =0

u = u- =

and use the matrix for I found in Example 6.2. The moment of inertia is

Iu = Iijuiuj
%bz 0 0 a®+b?
. a b m 2 b
- (x/a?—+b? Va1 i 0) 0 1pa 0 ViR
0 0 %(a2+b2) 0
m _a’b?
6 a2+b%

O

Exercise 6.6 Double-check the above result for the moment of inertia of the
rectangular plate in Example 6.2 with respect to the diagonal of the plate, now by
using the inertia tensor computed in Exercise 1 (with center of rotation O in a
vertex belonging also to that diagonal).



Exercise 6.7 Compute the moment of inertia of the rectangular plate in Example
6.2 with respect to:

(1) an axis perpendicular to the plate and passing through its center of mass, and

(2) an axis perpendicular to the plate and passing through one vertex.

6.1.4 Angular Momentum
Let M be a body rotating with angular velocity w about an axis through the point O.

Letx = O? be the position vector of a point P and v = w X x the linear velocity of P
(Fig. 6.5).

Fig. 6.5 Computing the angular momentum of a rigid body, M, rotating about an axis

Then the angular momentum of an infinitesimal region of M around P is

dL = (x x v) dm ,
so that the total angular momentum? of M is

b [J[ e wxxpim.

We need to work out x X (w X x) for vectors x and w in 3-dimensional space. We
apply the following identity for the triple vector product:
x X (wxx)=(xX)w— (w:x)x. (6.2)
Let # = {e1, e2, e3} be an orthonormal basis of R3. Then, replacing the following
equalities

w=uwle;, = J;wjei (6.3)
x = z'e; = &ixPe; (6.4)
XX = Oppxhat (6.5)
w-x = §jwizt (6.6)

into the identity (6.2), we obtain



X X (WX x) = (5kgkaé)5§-wjei — (§j0wiz")di zke; = (8561 — 880 wizkale; .

(6.5) (6.3) (6.6) (6.4)
Therefore, the total angular momentum is
L =L,

where the components L’ are

L= (5"]-5/\»4,4 — 8180w f// xExtdm |
M

The above expression for L’ can be written in terms of the inertia tensor I;; as

L' = 6% Iw!
which corresponds to the matrix form L = [w. We see that the angular momentum
L is proportional (or parallel) to the angular velocity w only when w is an
eigenvector of the inertia tensor I.

Example 6.8 Suppose the rectangular plate in the previous examples is rotating
about an axis through the center of mass O with angular velocity

w 1
w=-e;+ 2e2+3e3, or w2 o= 2
w3 3

We want to compute its angular momentum.
The inertia tensor is given by the matrix Ii]- found in Example 6.2:
m 1.2
ﬁb 0 0
2
0 15 Q 0
0 0 2(a®+0b?)
The total angular momentum has components given by

I %bQ 0 0 1 %bz
L = 0 3Ha? 0 2 = 2 a? :
L 0 0 f®+0?) 3 2 (a® +b?)
so that
m m m
L = Eb261 -+ Ea2€2 -+ Z(a? + b2)€3 .
O

6.1.5 Principal Moments of Inertia

Observe that the inertia tensor of a rigid body M is symmetric and recall the
Spectral Theorem (Theorem 4.9). Then we know that an orthonormal eigenbasis
{€é1, é2, €3} exists for the inertia tensor. Let I, I2, I3 be the corresponding
eigenvalues. The matrix representing the inertia tensor with respect to this
eigenbasis is



I, 0 0O
0 I, O

0 0 Is

The orthonormal eigenbasis gives a preferred coordinate system in which to
formulate a problem pertaining to rotation of this body. The axes of the
eigenvectors are called the principal axes of inertia of the rigid body M. The
eigenvalues I; are called the principal moments of inertia.

For instance, if a homogeneous body is symmetric with respect to the xy-plane,
then the polar moments of inertia Io3 = I32 and I35 = I3; vanish, thus the z-axis is
necessarily a principal axis (because of the block-form of I).

The principal moments of inertia are the moments of inertia with respect to the
principal axes of inertia, hence they are non-negative

I, I, I3 > 0.
A rigid body is called

(1) an asymmetric top if I1 # Iy # I3 # Iy;

(2) a symmetric top if exactly two eigenvalues are equal, say I; = Iy # I3: any
axis passing through the plane determined by €; and és is then a principal axis
of inertia;

(3) a spherical top if I; = Iy = I3: any axis passing through O is a principal axis
of inertia.

With respect to the eigenbasis {é1, €2, €3} the kinetic energy is

1
E= 2 (18'e' + L@’ + ,e'a)

where w = @'€;, with @' the components of the angular velocity with respect to the
basis {€1, €2, €3}. In particular, we see that the kinetic energy can be conserved,
even if the angular velocity w changes, as long as the above combination of squares
is preserved. This is related to the phenomenon of precession.

The surface determined by the equation (with respect to the coordinates z, y, 2)

Lz? + Ly + 1322 =1 (6.7)
is called the ellipsoid of inertia. The symmetry axes of the ellipsoid coincide with
the principal axes of inertia. Note that for a spherical top, the ellipsoid of inertia is
actually a sphere.

The ellipsoid of inertia gives the moment of inertia with respect to any axis as
follows: Consider an axis given by the unit vector u and let p = cu be a vector of
intersection of the axis with the ellipsoid of inertia, where c is (&) the distance to O
of the intersection of the axis with the ellipsoid of inertia. The moment of inertia
with respect to this axis is (Fig. 6.6)



Fig. 6.6 Ellipsoid of inertia

o o 1

I = Iij’U,Z’U,] = g ijplpj = g ,
where the last equality follows from the fact that, since p is on the ellipsoid, then
Liju'v) = 1 by Eq. 6.7.

Example 6.9 The principal axes of inertia for the rectangular plate in Example 6.2
are the axes parallel to the sides and the axis perpendicular to the plate. The
corresponding principal moments of inertia are
m m m
I = —b? Ino = —a®> and I33 = —(a® + b?).
=150 2= 75 B =15 (a” + b°)
If a = b, that is, if the rectangle is a square, we have a symmetric top. [J

Exercise 6.10 The following systems are regarded as rigid, i.e., as systems where
the distances between particles remain constant, and where the origin is at the
center of mass. For each system, choose an orthonormal basis and determine the
inertia tensor and the ellipsoid of inertia, giving in each case the principal axes of
inertia and the principal moments of inertia.

(1) A molecule consisting of n atoms with masses m;, ¢ = 1,...,n, all along a
straight line L with relative distance ¢;; between atom i and atom j.

(2) A molecule made up of three atoms, which lie in the vertices of an isosceles
triangle ABC with basis length BC' = a and height h. The atoms in positions B
und C have mass m1, the atom in position A has mass ma.

(3) A molecule composed of four atoms, all with the same mass m, lying in the
vertices of a regular tetrahedron with edges of length a.

Exercise 6.11 Let K be a homogeneous rigid body of mass m and shaped like a
parallelepiped with orthogonal sides a, b, c. The body K rotates around one of its
diagonals (going necessarily through its center of mass) with angular velocity w.

(1) Find the principal axes and principal moments of inertia of K.
(2) Find the equation of its ellipsoid of inertia.
(3) Find the kinetic energy of K.

(4) Find the angular momentum of K.



6.2 Stress Tensor

6.2.1 Physical Preliminaries

Let us consider a rigid body M acted upon by external forces but in static
equilibrium, and let us consider an infinitesimal region dM around a point P. There
are two types of external forces:

(1) The body forces, that is forces whose magnitude is proportional to the
volume/mass of the region. For instance, gravity, attractive force or the
centrifugal force.

(2) The surface forces, that is forces exerted on the surface of the element by the
material surrounding it. These are forces whose magnitude is proportional to
the area of the region in consideration.

The surface force per unit area is called the stress. We will concentrate on
homogeneous stress, that is stress that does not depend on the location of the
element in the body, but depends only on the orientation of the surface given by its
tangent plane. Moreover, we assume that the body in consideration is in static
equilibrium.

Remark 6.12 It was the concept of stress in mechanics that originally led to the
invention of tensors, also etymologically. The English word stress relates to tension,
leading to the choice of tensor or, in French, tenseur.

Choose an orthonormal basis {ej, €5, €3} and the plane II; through P parallel to the
eses coordinate plane. The vector e; is normal to this plane. Let AA; be the area of
the slice of the infinitesimal region around P cut by the plane and let AF be the
force acting on that slice. In this orthonormal set-up (cf. Sect. 4.3.3), we write AF
as a vector in terms of its components

AF = AF'e; + AF?e, + AF%e;
and, since the stress is the surface force per unit area, we define
. AFI
.= lim
d Ad1—0 AA; ]
Similarly, we can consider planes parallel to the other coordinate planes and define
(Fig. 6.7)

for j=1,2,3.

P €2

-

H]_ H? H3

Fig. 6.7 Planes through the point P and parallel to the coordinate planes, for the computation of the stress
tensor

v

. . AFJ
o' = lim
AA; =0 AA;




It turns out that the resulting nine numbers ¢* are the components of a
contravariant 2-tensor called the stress tensor. As we are restricting to
orthonormal bases, the type of this tensor gets blurred; cf. Sect. 4.3.3. The stress
tensor encodes the mechanical stresses on an object.

We now compute the stress across other slices through P, that is, across other
planes with other normal vectors. Let II be a plane passing through P, n a unit
vector through P perpendicular to the plane II, As = II N dM the area of a small
element of the plane II containing P and AF the force acting on that element (Fig.
6.8).

Fig. 6.8 Computing the stress tensor across a planar slice through the point P

claim 6.13 The stress at P across the surface perpendicular to n is

AF p
on):=lim — =oc“(n-e;)e; .
(n) As—0 As ( i)e;
It follows from the claim that the stress o is a vector-valued function that depends
linearly on the normal n to the surface element.

Proof Consider the tetrahedron OA; A5 A3 bound by the triangular slice on the
plane IT having area As and three triangles on planes parallel to the coordinate
planes (Fig. 6.9)

€1 Al
Fig. 6.9 Tetrahedron for the proof of Claim 6.7
Consider all external forces acting on this tetrahedron, which we regard as a

volume element of the rigid body:

(1) Body forces amounting to f - Av, where fis the force per unit of volume and
Aw is the volume of the tetrahedron. We actually do not know these forces, but
we will see later that these are not relevant.



(2) Surface forces amounting to the sum of the forces on each of the four sides of
the tetrahedron.

We want to assess each of the four surface contributions due to the surface forces.
If As is the area of the slice on the plane II, the contribution of that slice is, by
definition of stress equal to
o(n)As .
If As; is the area of the slice on the plane with normal —e;, the contribution of that
slice is
—aljejAsl ,

and, similarly, the contributions of the other two slices are

—o%ejAss and — o%ej s .

Note that the minus sign comes from the fact that we use everywhere outside

pointing normals (Fig. 6.10).

Fig. 6.10 The four faces of the tetrahedron OA; A, A3 and their corresponding outward-pointing unit normal
vectors

So the total surface force is

o(n)As — oVejAs; — 0¥e;Asy — o¥ejAs; .
Since there is static equilibrium, the sum of all (body and surface) forces must be
Zero

fAv+ o(n)As — oejAs; =0 .
The term fAw can be neglected when As is small, as it contains terms of higher
order (in fact, Av — 0 faster than As — 0). We conclude that

o(n)As = og"e;As; .
It remains to relate As to As;, Asy, Asz. The side with area As; is the orthogonal
projection of the side with area As onto the plane with normal e;. The scaling factor
for the area under projection is cos «a;, where «; is the convex angle between the
plane normal vectors (Fig. 6.11)



(05

~

€

Fig. 6.11 The convex angle between vectors e; and n
Asi
As

=cos aj =cos a; ||n| ||ei|[=n-e;.
Therefore,

oc(n)As = oe;(n-e;)As
or, equivalently,

o(n) = (n-e)e; .
Note that, in the above formula, the quantities n - e; are the coordinates of n with
respect to the orthonormal basis {ej, €2, e3}, namely

n=(n-e)e + (n-ey)ey + (n-e3)es = nle; +nley +nles.
(Il

Remark 6.14 For homogeneous stress, the stress tensor o/ does not depend on
the point P. However, when we flip the orientation of the normal to the plane, the
stress tensor changes sign. In other words, if o(n) is the stress across a surface
with normal n, then

o(—n) = —o(n) .
The stress considers orientation as if the forces on each side of the surface have to
balance each other in static equilibrium (Fig. 6.12).

n

T

Fig. 6.12 Stress changes sign under orientation flipping of the normal to the plane

O

6.2.2 Principal Stresses
The following claim is also known as the Boltzmann Axiom.

claim 6.15 The stress tensor is a symmetric tensor, that is ol = glt,



Proof Consider an infinitesimal cube of side A/ surrounding P and with faces
parallel to the coordinate planes (Fig. 6.13).

o D, c’

AI

€9 D/L ______ Loso C

A B
€1

Fig. 6.13 Cube with faces parallel to the coordinate planes for the proof of Claim 6.9

The force acting on each of the six faces of the cube are:

. ol AAie; and —ol AAej, respectively for the front and the back faces, ABB/A/
and DCC'Dr;

. 02AAse;j and —o% A Ayej, respectively for the right and the left faces BCC'B/
and ADD1Ar;

. 039 AAze;j and —0* A Asej, respectively for the top and the bottom faces ABCD
and A1B/C'IDi,

where AA; = AAs = AAs = As = (Aﬁ)2 is the common face area. We compute
now the torquer, assuming the forces are applied at the center of each face, whose
distance to the center point P is %AK. Recall that the torque (or moment of force)

is the tendency of a force to twist or rotate an object. It is given by the cross
product of the distance vector and the force vector.

7= fleyxoAse;+ (—5ter) x (—oYAs ;)

—|—%62 X o2 As e;+ (—%eg) X (—a2jAs e;)
+8Ley x 0¥ As ej + (—%63) x (—a% As e;)
= AlAs (e; x oiley)

= ALAs((0% — 0%)ey + (03 — 013)ey + (012 — 0)es) .
Since the equilibrium is static, then 7 = 0, so that o = ¢7*. O

We can hence write

0.11 0.12 0.13

o= o2 g2 B

0.13 0_23 0_33

where the diagonal entries ¢!, 0?2 and 033 are the normal components, that is the
components of the forces perpendicular to the coordinate planes and the remaining
entries 02, '3 and ¢? are the shear components, that is the components of the
forces parallel to the coordinate planes.

Since the stress tensor is symmetric, again by the Spectral Theorem (Theorem 4.
9), it can be orthogonally diagonalized. That is, with respect to an orthonormal
eigenbasis, it is given by

11



ot 0 0

0 o2 0 |,

0 0 od
where now o', 02 and o2 are the principal stresses, that is the eigenvalues ofo.
The eigenspaces of o are the principal directions and the shear components

disappear for the principal planes, i.e., the planes orthogonal to the principal
directions.

1

6.2.3 Special Forms of the Stress Tensor

We consider the stress tensor with respect to an orthonormal eigenbasis or another
special basis, so that the corresponding matrix has a simpler form. We use the
following terminology:

. Uniaxial stress for a stress tensor given by
c 00
0 0O
0 0O

Example 6.16 This is the stress tensor in a long vertical rod loaded by hanging a
weight on the end. (O

. Plane stress or biaxial stress for a stress tensor given by

ol 0 0
0 o2 0
0O 0 O

Example 6.17 This is the stress tensor in a plate on which forces are applied
parallel to the plate (Fig. 6.14).

7

A
~

/

Fig. 6.14 Forces originating plane stress

]
- Pure shear for a stress tensor given by
—o 0 0 0 00
0 o O or c 0 0 . (6.8)
0 00 0 0O
This is special case of the biaxial stress, in the case where o' = —g?. The first

matrix in (6.8) represents the stress tensor written with respect to an eigenbasis,
whereas the second matrix represents the stress tensor written with respect to an



orthonormal basis obtained by rotating an eigenbasis by 45° about the third axis.
The relation between the two matrix representations is given by

000 V22,00 2 -2

o 00 = _v2 V2 0 o0 2 V2 |
2 2 2 2

000 o o1 0 00 o9 o 1
tL

L
where L is the matrix of the change of coordinates (Fig. 6.15).

T

— —

I}

Fig. 6.15 Forces originating pure shear

. Shear deformation for a stress tensor given by

0 0.12 13

o
0.12 0 0.23

0.13 0.23 0
(with respect to some orthonormal basis).

Example 6.18 The stress tensor

2 —4 0
-4 0 4
0 4 -2
represents a shear deformation. In fact, one can check that
29 2 9 4 0 2o -2 0 0 -2
0o 1.0 -4 0 4 01 0 = 0 0 4V/2
V2 V2 0 4 -2 V2 V2 _ 9
-5 0 5 2o 2 4/2 0
t], L
O

- Hydrostatic pressure with stress tensor given by

-p 0 O

0O —p O

0 0 -—p

)
where p # 0 is the pressure. Here all eigenvalues are equal to —p.

Example 6.19 Pressure of a fluid on a bubble. [J



6.2.4 Stress Invariants

Let A be a 3 x 3 matrix with entries a”/. The characteristic polynomialp 4(\) of A is
invariant under conjugation (see Sect. 2.4.2), so its coefficients remain unchanged.

all — alz a13
pa() =det(A —al) =det| ' a2 —xr a*
al a? @ —

=1 FwaAr’
— (a”azz + a“a’n + azza33 — alzazl — az’ga}z — al}a’“) A+detA.

quadratic (\ZXDI'ChhiOn
in the entries of A
Applying this to the stress tensor o = A, we obtain some stress invariants,
namely:

I, ;= tro =o' + 0% + 0%
I = ol2012 | o252 4 513,18 _ 11092 (2283 33,11
I3:= deto.

That means, that the above quantities I, I and I3 are invariant when we change
the orthonormal basis. Indeed, by contravariance, when we change basis via a
matrix L, the matrix of the stress tensor changes from ¢ to & = *AcA, where

A = L. But since we are restricting to orthonormal bases, we have that the
change of Pasis matrix is orthogonal, i.e., A = *L, so this is in fact a conjugation:
6 =LoL .

Exercise 6.20 lLet & := {el, es, 63} be an orthonormal basis of R3 (with the

standard inner product). Let o be a stress tensor given with respect to the basis &
by

o= [oV]:=

S O O
o = O
ot O O

(1) Find the principal stresses ¢!, 2, 0% of ¢.

(2) Find the principal directions of o.
(3) Find an orthonormal basis % := {b1, ba, b3} of R3, with respect to which ¢ is
given by a diagonal matrix.

(4) Find the three stress invariants Iy, I and I3 of o.

6.2.5 Decomposition of the Stress Tensor
Any stress tensor o can be expressed as the sum of two other stress tensors:

- The hydrostatic stress tensor



= 0 0
™= 0 7 0 ,
0 0 =«

where 7 := tro / 3 = (0! + 0?2 + 033) / 3. This relates to volume change.
- The deviatoric stress tensor

ol L n 12 o3
s 1= g¥ — Y = o2 o2 -7 o
o3 oB  gB_

This relates to shape change.

The hydrostatic pressurep is generally defined as the negative one third of the
first stress invariant I; = tro, i.e., p = —.

Clearly, we have

o = s + 7§

and, hence, any stress tensor is a sum of a deviatoric stress and a hydrostatic
pressure.

Moreover, a shear deformation (see Sect. 6.2.3) is traceless, hence a deviatoric
stress.

Actually, the converse is also true:

Fact 6.21 Any deviatoric stress, i.e., any traceless stress, may be represented with
respect to some orthonormal basis as a shear deformation, i.e., as a stress tensor of
the form

0 512 513

512 0 523
&13 523 0
This important fact follows from the Spectral Theorem (Theorem 4.9).

We conclude that, any stress tensor can be decomposed as the sum of a
hydrostatic pressure and a shear deformation.

Exercise 6.22 Let & := {ey, es, e3} be an orthonormal basis of R? (with the
standard inner product). We consider a stress tensor o given by the following
matrix with respect to the basis &”:

-2 0 3
oc=1[0":= 0 2 0
3 0 2

(1) Write the above matrix representation of the stress tensor o as a sum of a
deviatoric stress og (that is, og is traceless) and a hydrostatic pressure op
(that is, op is a multiple of the identity matrix).

(2) Find an orthonormal basis 2 := {v1,v2,v3} of R3, with respect to which the
above deviatoric stress og is given by a diagonal matrix, D.



(3) Find an orthonormal basis % := {b1, b2, b3} of R3, with respect to which the
above deviatoric stress og is given by a matrix A with vanishing diagonal
elements:

Ty
A= 2 0 z
0

for some x,y, z € R.

Hint: The matrix A must have the same eigenvalues as og, since they are
conjugate matrices. Hence, each og and A can be diagonalised to the same
diagonal matrix D. Moreover, this can be achieved by choosing appropriate
orthonormal bases in each case, since these matrices are symmetric.

6.3 Strain Tensor

6.3.1 Physical Preliminaries
Consider a slight deformation of a body, where we compare the relative positions of
two particles, P and P;, before and after the deformation:

We have

AZ = Ax + Au ,
where Az is the old relative position of P and P;, AZ is their new relative position
and Auw is the displacement difference, which hence measures the deformation (Fig.
6.16).

displacement of P

P displacement of P P

Fig. 6.16 Comparison of relative positions of two particles before and after a slight deformation

Assume that we have a small homogeneous deformation, that is

in other words, fis a small linear function independent of the point P. If we write
the components of Au and Az with respect to an orthonormal basis {ej, €5, €3}, the



function f will be represented by a matrix with entries that we denote by f;;,
Aui = fijA.’Ej .
The matrix ( fij) can be written as a sum of a symmetric and an antisymmetric
matrix as follows:
fij = €ij + wij
where
1
Eij = E(fij + fji)
is a symmetric matrix and is called the strain tensor or deformation tensor and
1
wij = E(fij — fii)

is an antisymmetric matrix called the rotation tensor. We will next try to
understand where these names come from.

Remark 6.23 First we verify that a (small) antisymmetric 3 X 3 matrix represents
a (small) rotation in 3-dimensional space.

Fact 6.16
Let V be a vector space with orthonormal basis & = {el, e, 63}, and let
a
w= b .The matrix R, of the linear map V — V defined by v — w X v with
c
respect to the basis & is
0 —c b
R,= ¢ 0 -—a
b a 0
Indeed, we have
a x €1 €2 €3
wxXxv= b x y =det a b c
c z T Yy z
bz —cy 0 —c b x
= cc—az = ¢ 0 —a
ay — bx —-b a 0 z
0 w2 —w3)
Note that the matrix R, = (w;j) := —wiz 0 wo3  corresponds to the cross
w31 —wes 0
—Was3
product with the vectorw = —w31 . O
—Wi2

6.3.2 The Antisymmetric Case: Rotation
Suppose that the matrix ( fij) was already antisymmetric, so that



Wij = fij and €ij = 0.

Note that
1
Wij = E(fu — fi) =0
—w23
By the Fact 6.16, if w = —w3; ,then
—Wi2

R, Az =w x Az
and the equation
is equivalent to

Au=wx Az,
so that

AT = Az +Au= Az +wx Azx.
When w is small, this represents an infinitesimal rotation of an angle || w || about the
axis Ow (Fig. 6.17).

Fig. 6.17 Infinitesimal rotation about the axis Ow

In fact, since w x Az is orthogonal to the plane determined by w and by Az, it is
tangent to the circle with center along the axis Ow and radius r determined by Azx.
Moreover,

I Au [[=[lwx Az [|=| w || | Az |[sin a,

,
and hence, since the length of an arc of a circle of radius r corresponding to an
angle 0 is 76, infinitesimally this represents a rotation by an angle || w ||.

6.3.3 The Symmetric Case: Strain
The opposite extreme case is when the matrix f;; was already symmetric, so that

€ij = f” and Wi = 0.
We will see that it is €;; that encodes the changes in the distances: in fact,



| A% ||> = A% - AT = (Az + Au) - (Az + Au)
= Az Az +2Az - Au+ Au - Au (6.10)
~| Az || +2¢;;Az' Az |

where in the last step we neglected the term || Au ||? since it is small compared to
Au when Au — 0 and used Eq. 6.9.

Remark 6.25 Even when f;; is not purely symmetric, only the symmetric part ¢;;
is relevant for the distortion of the distances. In fact, since w;; is antisymmetric, the
term 2w;;Az' Az’ = 0, so that

~ 1120 2 A AT 2 A AT
1, 7 *
| AT ||"~| Az ||° +2f;;Az' Az’ =|| Az || +2¢;;Az" Az
(I

Recall that a metric tensor (or inner product) encodes the distances among points.
It follows that a deformation changes the metric tensor. Let us denote by g the
metric before the deformation and by g the metric after the deformation. By
definition, we have

ef . . . . . .
| AZ |;2dz 3(AZ, AF) = §uAT AT = §ij(Az’ 4+ Au’)(Az? + Aud) (6.11)
and

ef . .
| Az 122 g(Az, Az) = g Aa Az . (6.12)

For infinitesimal deformations (that is, if Au ~ 0), Eq. 6.11 becomes
| A% ||?~ gi;Az' Az’ .
This, together with Egs. 6.10 and 6.12, leads to
and hence

[P
eij = 5 (9ij — 9i3) »
that is, €;; measures the change in the metric.
By definition, the strain tensor ¢;; is symmetric

€11
E=|enen :
€13 €23 €33
where the terms on the diagonal (in green) determine the elongation or the
contraction of the body along the coordinate directions e, e2, €3, and the terms
above the diagonal (in orange) are the shear components of the strain tensor; that
is €4; is the movement of a line element parallel to Oe; towards Oe;. Since it is a
symmetric tensor, it can be orthogonally diagonalized (cf. Theorem 4.9), so we can
find an orthonormal basis with respect to which & is given by
€] 00
0e 0],
0 0 ¢

The eigenvalues of & are the principal coefficients of the deformation and the
eigenspaces are the principal directions of the deformation.



6.3.4 Special Forms of the Strain Tensor
We use the following terminology:
(1) Shear deformation when & is traceless,

tr& = €11 +e22+€33=0.

(2) Uniform compression when the principal coefficients of & are equal,
E 0O
0 k£ O
0 0 k

Exercise 6.26 Show that any strain tensor can be written as the sum of a uniform
compression and a shear deformation. Hint: See Sect. 6.2.5.

6.4 Elasticity Tensor
The stress tensor represents an external exertion on the material, while the strain
tensor represents the material reaction to that exertion. In crystallography these
are called field tensors because they represent imposed conditions, opposed to
matter tensors, that represents material properties.

Hooke’s law says that, for small deformations, stress is related to strain by a
matter tensor called elasticity tensor or stiffness tensorkE:

ol = gkl ’
while the tensor relating strain to stress is the compliance tensorS:

ere = Sijreo™ .
The elasticity tensor has order 4, and hence in 3-dimensional space it has 3% = 81
components. Luckily, symmetry reduces the number of independent components for
Ez’jké.

(1) Minor Symmetries
The symmetry of the stress tensor

ol — i
implies that
EkE — pJike for each k, ¢;
it follows that for each k, £ fixed there are only 6 independent components
Eijkl
F 11kt E12k£ ElSkZ
Ele‘Z E22k€ E23k€
ElBkZ E23kf E33k€ .

Having taken this in consideration, the number of independent components
decreases to 6 x 32 at the most. Moreover, the symmetry also of the strain
tensor

€kt = €tk



implies that
EUk = Fi for each i, j .
This means that for each 7, 7 fixed there are also only 6 independent
components E7*, so that E%/* has at most 62 = 36 independent components.
(2) Major Symmetries
Since (under appropriate conditions) partial derivatives commute, if follows
from the existence of a strain energy density functional U satisfying

62U — E’ijf
882']'86]%
that
Eijké — Ekéij ,
that means the matrix with rows labelled by (%, j) and columns labelled by
(k,£) is symmetric. Since, according to the previous minor symmetries, there

are only 6 entries (7, j) for a fixed (k, £), E*/* can be written in a 6 x 6 matrix
with rows labelled by (i, ) and columns labelled by (&, £)

* * * * * *
* * * * *

* * * *

* * *

* *

*
so that E¥* has in fact only 6 +5 + 4 + 3 + 2 + 1 = 21 components.

6.5 Conductivity Tensor

Consider a homogeneous continuous crystal. Its properties can be divided into two
classes:

- Properties that do not depend on a direction, and are hence described by scalars.
Examples are density and heat capacity.

- Properties that depend on a direction, and are hence described by tensors.
Examples are elasticity, electrical conductivity and heat conductivity. We say
that a crystal is anisotropic when it has such actual tensorial properties.

6.5.1 Electrical Conductivity

Let E be the electric field and J the electrical current density. At each point of
the crystal:

(1) E gives the electric force (in V/m, i.e., volt per meter) that would be exerted
on a positive test charge (of 1 coulomb) placed at the point;

(2) J (in A/m? where A denotes the ampere unit) gives the direction the charge
carriers move and the rate of electric current across an infinitesimal surface
perpendicular to that direction.



The electrical current density J is a function of the electric field E,

J = f(E) .
Consider a small increment AJ in J caused by a small increment AF in E, and write
these increments in terms of their components with respect to a chosen
orthonormal basis {e1, s, e3}.

AJ = AJ'e; and AE = AE'e; .
By Calculus, the increments are related by

. Ofi . . .
AJ' = 31]; AE’ + higher order terms in (AE”)2, (AEJ)g, e
If the quantities AE’ are small, we can assume that
. 9fi 4
, oEJ
If we assume that ggj is independent of the point of the crystal,
of' i
omi "<k
(in Q7 1/m~! where Q = V A~! is the ohm unit of resistance) we obtain the relation
AJ' = K AE?
or simply
AJ =k AFE,

where & if the electrical conductivity tensor, sometimes denoted o or . This is a
(1, 1)-tensor and may depend® on the initial value of E, that is the electrical
conductivity may be different for small and large electric forces. If initially £ = 0
and k° is the corresponding electrical conductivity tensor, we obtain the relation

J=k"E
that is called the generalized Ohm law. This is always under the assumption that
AFE and AJ are small and that the relation is linear.
The electrical resistivity tensor (in {2 m) is the inverse of k:

pr=r"
T Y
that is, it is the (1, 1)-tensor such that

pj /-gz. = 5€
1) 1"
The electrical conductivity measures the material’s ability to conduct an electrical
current, while the electrical resistivity quantifies the ability of the material to
oppose the flow of the electrical current.

For an isotropic crystal, all directions are equivalent and these tensors are
spherical, meaning

k] =k§  and  p] = %63 : (6.14)

where k is a scalar, called the electrical conductivity of the crystal. Equation

6.14 can also be written as



k00 + 0 0
0 k0 and 0 + 0
0 0 k 00%

In general, /sg is neither symmetric nor antisymmetric (and actually symmetry does
not even make sense for a (1, 1) tensor unless a metric is fixed, since it does require
a canonical identification of V with V'*).

6.5.2 Heat Conductivity

Let T be the temperature and H the heat flux vector. For a homogeneous crystal,
with constant H and for a constant gradient of T, the Fourier Heat Conduction Law
asserts that
H = —KgradT . (6.15)
At each point of the crystal:

(1) gradT points in the direction of the highest ascent of the temperature and
measures the rate of increase of T in that direction. The minus sign in Eq. 6.15
comes from the fact that the heat flows in the direction of decreasing
temperature. Recall that the gradient of a real function is a covariant 1-tensor
(Exercise 4.33).

(2) H measures the amount of heat passing per unit area perpendicular to its
direction per unit time.

Here, K is the heat conductivity tensor or thermal conductivity tensor. In
terms of components with respect to a chosen orthonormal basis, we have

H'=—K"(gradT); .
The heat conductivity tensor is a contravariant 2-tensor and experiments show

that it is symmetric and hence can be orthogonally diagonalized. With respect to an
orthonormal eigenbasis, K is represented by

K, 0 0
0 Ky 0
0 0 K;

where the eigenvalues of K are called the principal coefficients of heat
conductivity. The eigenspaces of K are called the principal directions. The fact
that heat flows always in the direction of decreasing temperature shows that the
eigenvalues are positive

K, >0,
so, in particular, K is invertible. The heat resistivity tensor is the inverse of the
heat conductivity tensor:
ri=K1,
and hence is also symmetric.
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Footnotes
1 Warning: The angular velocity is actually only what physicists call a pseudovector because it does not follow

the usual contravariance of a vector in case of orientation flip. Luckily, this issue does not affect the inertia
tensor, since the sign flip cancels out thanks to squaring.

2 The Lagrange identity can be patiently proven in coordinates.

3 We could use any basis of R3. Then, instead of the d;;, the formulas would have involved the components of
the metric tensor g;;. However, computations with orthonormal bases are simpler; in particular, the inverse of
an orthonormal basis change L is simply *L. Moreover, the inertia tensor is symmetric, hence admits an
orthonormal eigenbasis.

4 Just like the angular velocity, the angular momentum is not an honest vector, but only a pseudovector, since
there is an issue with orientation. In this subsection, we should thus assume that we work with an oriented
orthonormal basis {el, es, 63} of R3, so that e; x ey = e3 (and not —e3). This amounts to assuming that the
change of basis matrix L from the standard basis has det L = 1 (and not —1).

5 To prove this vector equality use coordinates, consider only the case in which w is a standard basis vector and
then use the linearity in w.

6 Typically, if the dependence between E and ] is linear for any value, and not only for small ones, the tensor x
will not depend on the initial value of E.
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Chapter2
Exercise 2.5 (1) yes; (2) no; (3) no; (4) yes; (5) no.
Exercise 2.8 (1) yes; (2) no; (3) no.

Exercise 2.9 Addition of linear transformations T} : R? — R3 and T, : R? — R3,
and their multiplication by a scalar a € R are defined pointwise:

(T1 + T)(v) :==Ti(v) + To(v) and (aT1)(v) := a(T1(v)) foreachvc R?.
We check the required properties in Definition 2.1:
(1) and (2) follow pointwise from associativity and commutativity of sum of

vectors in R3.
(3) is verified by the zero transformation, which sends all vectors in R? to the

zero vector of R3,

The additive inverse of a transformation 7" : R? — R3 is the transformation —7T,
which sends a vector v to the negative of T'(v), thus yielding (4).

(5)-(8) also follow pointwise from the corresponding properties of vectors in R3.

Exercise 2.12 (1) yes; (2) yes; (3) no.

Exercise 2.14 We first check the conditions for the kernel:
(1)’ kerT is non-empty because it always contains at least the zero vector of V,
since any linear transformation satisfies 7'(0) = 0;

(2)" kerT is closed under linear combinations, since, if vy, vy € kerT, i.e.,
T(v1) = T(v2) =0, and o, B € R, then by linearity of T we have that

T(awvy + Bvy) = aT(v) + BT (v2) =0+0=0,
showing that av; + Bvy € kerT.

Now we check the conditions for the image:

(1)’ im 7T is non-empty because it always contains at least the zero vector of W,
which is the image of the zero vector of V;

(2)’ im 7T is closed under linear combinations, since, if wy,ws € im T, i.e., there
exist v1,v2 € V such that T'(v1) = w; and T'(v2) = ws, and a, B € R, then by
linearity of T we have that


https://doi.org/10.1007/978-3-031-94136-8_7

T(avy + Bvz) = aT'(v1) + BT (v2) = aw; + Bws ,
showing that aw; + fwy € im T.

Exercise 2.21 Let

W =span {b1,...,bp} = {a1b1 + a2bs + - - - apby, : ai,...a, € R} denote the set of
all linear combinations of the vectors by,bs...b, € V. To show that W is a subspace
of V we need to show that 0 € W and W is closed under linear combinations.

(1) 0 W:Since0=0b; +0 by +---0 by, we indeed have that 0 € W and W is
non-empty.

(2) Wis closed under linear combinations:

Let u,w € W and v,d € R. Then u = a1b; + a2b2 + - - - anby, for some
ai,...an € Rand w = B1b1 + Ba2b2 + - - - Brby, for some By, ... 0, € R. Then
yu + dw = (yay + 6B81)by + - - - (Yo, + 68,)by, being a linear combination of
the vectors by, by, ...b,, is again in W.

Exercise 2.29

(1) Since these are 3 vectors in R? and dim R® = 3, it is enough to show that
these vectors are linearly independent. This amounts to showing that the only
solution of the equation

1 1 1 0 111 w 0
0 0 1 0 0 01 s 0
is the trivial solution (given by p; = pu2 = pus3 = 0), which can be verified

with Gauss-Jordan elimination, for instance.

(2) The coordinate vector,

H1
[U]ggz H2
M3
is the solution of the equation

1 1 1 111 w 0
M1 0 + Ua 1 + us 1 =v i.e. 011 Ml = 1
0 0 1 0 01 pus T

Using Gauss-Jordan elimination, we find

—1

Wg= 1-7 ,
T

(3) By definition of coordinate vector, the vector w is



1 1 1 6
w= 0 +21 +3 1 = 5
0 0 1 3

Exercise 30
(1) The vectors in 4 span V, since any element of V is of the form

o ol =elo ]2l ol el o]

Moreover, the vectors in & are linearly independent since
1 0 b 01 n 00 00
a C =
0 -1 00 10 00

if and only if
a b (00
¢c —al |0 0]

that is, if and only ifa = b =c = 0.

(2) We know that dim V = 3, as &4 is a basis of V and has three elements. Since

2 also has three elements, it is enough to check either that it spans V or that
it consists of linearly independent vectors. We will check this last condition.

Indeed,
4 1 0 4 b 0—1 Y 01 _ 00 — a c¢c—>b
0—1 1 0 1ol (00 b+c¢ —a
100
oo’
that is,
a = a =0
b+c =0 & b =
c—b = c 0
(3) Since
2 1 1 0 01 00
=2 1 7 ,
L =2l Sl ol o)
we have
2
[U]%: 1
7

To compute the coordinates of v with respect to % we need to find
a,b,c € R such that

el Sl ol el o)



Solving the corresponding system of linear equations as above yields

Exercise 2.32
(1) Let C := AB € R**". By definition, we have

Ci=A'B} +AiB2+...+ AL BT = E ,_ ALB] = AiB].

(2) The column vector By € R™*! has coordinates

n
(By)' = Biy' 4 --- + Biy" = . By’ =By
(3) The row vector y© € R*™ has coordinates (y©); = y. The transpose of B has
entries (BT)? = Bi, where 1 < j <m and 1 < k < n. Then we have

n
K k ;
(y"'BY); = E : o WD (BT = ")(BT); = y*B;.
Alternatively, we may note that y” BT = (By)” and conclude that
T ; i
(yTBT)i = ((By)"); = (By)' = Bjyj'
These two expressions for y? BT are equivalent.

(4) We have 2y BT € R*™, where z € R has coordinates 2’ and y" BT € R1*™
has coordinates (y" B"); = B;y*. Therefore, we have

(a:yTBT);. = z'Bly*.

Exercise 2.33 Let & = {aj,a9,...,a,}, & ={b1,bs,...,b,} and
¢ = {c1,c2,- - ,cn} be three bases of a vector space V. Let Lyg = (L) be the
matrix of the change of basis from & to &, then b; = L’a;. Similary if L gy = (M)
is the matrix of the change of basis from £ to ¥, then ¢, = M ,g b;. Putting these
together gives
cx = Mjb; = M{Lia,.
On the other hand, as L y¢ = (N ]Z) is the change of basis matrix from & to €,

we also have that ¢, = N ,iai. Since any vector is a unique linear combination of the
basis vectors {ay,as...,a,}, we must have that

j . _ .
M;L; = Ny.
But this is exactly the matrix product L y#L ¢ = L 4« written in the Einstein
notation.



Exercise 2.38 We have that (AT); = Ai where 1 <i</{and 1 < j<m. Then

(ATa:)i = (AT);»a:j = Y7, A/z7. In the last expression, both J-indices are upper. In
order to follow the Einstein convention, we use the Kronecker symbol, ;. By
definition, we have ;; = 1 for j = k und d;; = 0 otherwise. Therefore, we have

(AT2) = (ATl = ), Alad = g leg o Alb e = Alsyat.

Exercise 2.50
(1) The function « is indeed well-defined, since the derivative of a polynomial p of
degree at most 3 is a polynomial of degree at most 2, hence the product
(x—1)p/(x) is a polynomial of degree at most 3. Since differentiation is a linear
transformation, we have that, for all p,q € V and A € R,
a(p+2Ag) = (z-1)(p+Ag)! = (z—1)(p/ + Aq/)
= (z—1)p/ + AMz—1)g' = a(p) + Aa(q).
Therefore, o is a linear transformation.
(2) For each k € {1, 2,3}, we have that

a((z-1)") = (z-1) - k(z—1)" ! = k(z—1)",
hence, (x—l)k is an eigenvector with eigenvalue k. Moreover, we have that

a(1) = 0, showing that the constant polynomial 1 is an eigenvector with
eigenvalue 0. Since they are eigenvectors with different eigenvalues, the

elements of % are linearly independent. Since there are four of them, they
must form a basis of the four-dimensional vector space V, hence & is an
eigenbasis with respect to a.

(3) This is the diagonal matrix with the eigenvalues of a along the diagonal, in the
order corresponding to that of the eigenvectors in the basis 4:

0 00O

—

M =

o o O
S N O
w o O

1
0
0

(4) It is understood that we work with the standard basis & = {1} of R. The

matrix of the linear transformation 8 with respect to the basis %, resp. :%7/ of
V (and the basis & = {1} of R) is obtained by computing the images of the
basis elements:

s =1,  B")=1,  B((z-1)")=0.
From this we obtain the requested matrices, resp.:

~

A=1 11 1] and A=[1 0 0 0].

(®) we write the (new) basis elements from 2 in terms of the (old) basis elements
from 4.



1 =1,

z—1 =—-1+=x,
(z—1)® =1-2z+ 22,
(z—1)° = —1+3z—322 + 2%,

By reading off the coefficients on the right-hand sides, and writing them
columnwise, we obtain the first change of basis matrix:

1 -1 1 -1
; 01 -23

#% 0 0 1 -3~
0 0 0 1

The reverse change of basis matrix may be obtained by inverting the above
L _~ or again by the above procedure:

BB
1 =1
z =1+ (z-1)
22 =(1+a2-1)*=1+2(x—1)+ (z—1)

¥ =1 +2-1)>=1+3(x—1)+3(z—1)°+ (z—1)°,
yields that

1111
I g 01 2 3.
BA BE 0013
0001
(6) Indeed, we have that
1 -1 1 -1
AL == 1 1 1]8 ; _12 _33 =100 0=4.
0 0 0 1

Chapter3
Exercise 3.2 (1) no; (2) no; (3) yes.
Exercise 3.3 (1) yes; (2) yes; (3) no.

Exercise 3.8 We show that V* is a subspace of the vector space of all real-valued
functions on V' (cf. Example 2.3(3) in Sect. 2.1.1), by checking the three conditions:

(1) The O-function 0 associating the number zero to each vector in V is linear
because 0 + 0 =0and k0 =0 forevery k € R,so0 € V'*;

(2) V*is closed under addition since, if « : V — R and 8: V — R are linear, then
a+ B:V — R defined by (a + 8)(v) = a(v) + B(v) is also linear (in v € V);



(3) V*is closed under multiplication by scalars since, if a : V — R is linear and
k € R, then ka : V — R defined by (ka)(v) = k(a(v)) is also linear.

Exercise 3.13 In fact:

Ll ... L}
Jlo]g L= (01 ... an)
Lr ... L»
~ (ke aild)
= (a1 0in)
= [dgz

Exercise 3.18 By the Laplace expansion formula, we have

wl w? oWl
det v = det ol 22 3
w w1 w2 w3
= ! (U2w3 — v3w2) + u? (v3w1 —vlw ) +u ( Lw? — v2w1)
ul v2w® — v3w?
= u? - Vw —vwd =u-(vxw).
u? viw? — viw!

Exercise 3.20 (1) yes; (2) yes; (3) yes; (4) no, because v X w is not a real number;
(5) no, because it fails linearity (the area of the parallelogram spanned by v and w
is the same as that of the parallelogram spanned by —v and w); (6) no, because
because it fails linearity in the second argument (the determinant of a matrix with
n > 1 is not linear in that matrix).

Exercise 3.30
(1) Indeed, <p(:v, y) := 2z — y is not linear in x (nor linear in y):
v(ax + bz,y) = 2(azx + bz) —
# a(2z —y) +b(2z — y)

= ap(z,y) + bo(2,y) -
Yet, ¢ is linear in R:

o(a(z,y) +al(z,yr) = ¢(az + alz!,ay + ary!)
2(az + alz!) — (ay + aryl)
a(2z —y) + a2z — yl)
ap(z,y) + arp(zt, yr).

(2) Indeed, ¢(z,y) := 2zy is linear in x:



p(ax + bz,y) = 2(azx + b2)y

= a(2zy) + b(22y) = ap(z,y) +be(2 y),
and, similarly, it is linear in y, hence a bilinear form on R. On the other
hand, ¢ is not linear in (z,y) € R?:
o(a(z,y) + al(zt,y)) = ¢(az + alz!,ay + atyl)
= 2(az + atz!)(ay + alyl)
# a(2zy) + a/(2zryr)
= ap(z,y) + arp(zl, yl).
Exercise 3.26 Since Bil(V x V,R) is a subset of the vector space
{f:V xV — R} of all real-valued functions on the vector space V x V, it is

enough to check that it is a subspace of {f : V' x V' — R} Therefore, it is enough to
check the two conditions:

(1) The zero function associating the number zero to each element from V x V is
trivially bilinear, hence it is in Bil(V x V,R).

(2) The subset Bil(V x V,R) is closed under linear combinations. Assuming that
@, € Bil(V x V,R), and A\, u € R, we check that Ap + p is bilinear. The
linearity in the first entry amounts to:

(Ap + pp)(azx + bz, y) = Ap(az + bz, y) + pp(az + bz, y)
= adp(z,y) + bo(z,y) + ap(z, y) + buap(z, )
= a(Ap(z,y) + pp(z,y)) + b(Ae(2, ) + p(z,y)

= a(Ap + pp)(z, y) + b(Ap + wh) (2, y)
The linearity in the second entry is analogous.

Exercise 3.30 We have that

L} ... LY By ... By, L} ... L.
‘LBL= ; ; ; ; ;

L} ... L By ... By, L} ... L"

L} ... L ByLi ... ByLj

L ... L B,L' ... ByL}

L¥By L ... LYByLY

LEByLi ... LEBLY

= B.

Chapter4d



Exercise 4.2 We first check that ¢(v,w) := v - w is a bilinear form on R3:
¢(av + bz, w) = (av +bz) - w = (av’ + bz")wd;;
a(v'w’d;;) + b(z'w?d;;) = a(v - w) + b(z - w)

= a<p(v, w) + b(p(za w)
and similarly for the linearity in the second entry. Now, we check that ¢ is
symmetric

vew = v'wld; = wvld; =wev.
Finally, we check positive definiteness:

vev =08, = (v')(v') + (v?)(v?) + (v*)(v?) is always non-negative
because it is a sum of squares, and vanishes if and only if all these squares vanish,
that is, when v = 0.

Exercise 4.3
(1) No, as ¢ is negative definite, that is ¢(v,v) < 0ifv € V, v # 0.

(2) No, as ¢ is not symmetric.

(3) No, as ¢ is not positive definite.
(4) No, as ¢ is not positive definite.
(5) Yes.

(6) Yes.

Exercise 4.4
(1) Yes, in fact:

@ [ p(z)g(z)dz = [y q(z)p(z)dz because p(z)q(z) = q(z)p(z);
(b) fo )2dz > 0 for all p € Py(R) because (p(z))® > 0, and
fo )2dz = 0 only when p(z) = 0 for all = € [0,1], that is only if p = 0.

(2) No, since fol (p/(z))*de = 0 implies that pr(z) = 0 for all z € [0,1], but such p
is not necessarily the zero polynomial.

(3) Yes.

(4) No. Is there p € Py(R), p # 0 such that (p(l))2 + (p(2))2 =0?

(5) Yes. Is there a non-zero polynomial of degree 2 with 3 distinct zeros?

(6) No, since this is not symmetric.



Exercise 4.12 We write

ot W'
v 7= o and [w]z= @
~3 ,&73

We know that g with respect to the basis 2 has the standard form g(v,w) = o'
and we want to verify the formula (4.7) using the matrix of the change of
coordinates L™ = A. If

v w
v g = o2 and [w]y, = w?
v3 w?
then we have that
ol vl vl — o2
72 =A ¥ = v¥-—2d
73 3 03
and
@' w! w! — w?
W =N w? = w?-uwd
ik w? w3

It follows that
g(v, w) — i — (,Ul o v2)(w1 . ,wz) ( 3)(w2 ) v3w3

= vlw! — vlw? — 2wt + 20%2w? — V2w — w3v? + 203w?

Exercise 4.15 With respect to :%7 we have
lv| =@2+12+12)* =3
1/2
Jwll =((-1)2+ (-1 +3)"" = i1

and with respect to &
|v] =(3-3-3-2-2-3+2.2.2-2-1-1-2+2-1-1)"*=/3
|w| =(1-1-1-2-2-142-2.2-2.3-3-2+2-3-3)Y2 = V11.

Exercise 4.16 Saying that the orthogonality is meant with respect to g, means
that we have to show that g(v — proj, v, b;) = 0. In fact,

gv— projbk v, br) = g(v — ;((bv];l;i)) br,by) = g(v, by) — g(v bi) M

Exercise 4.21
(1) The coordinate vectors of basis vectors with respect to that same basis are
simply standard vectors, in this case:



1 0
[81]'@“: 0 , [bg]@*: 1 and [bg]@“: 0
0 1
(2) 1 -1 0
Asin Example 4.11, we have Gz=lTand Go = -1 2 -1 .

0 -1 2

) In parts (a) and (b), note that, for an orthonormal basis :@7 we have B9 = :@7
In parts (c) and (d), we use the computations in Example 4.20 and the fact

that [v] , = L&% v]ég.

(@) 1 0
0 1
(b) 1
ble=[ilg= 0 ,[B’ls=[bo]s= 1 and[b’],=[bs]s= 1
0 0
(©) 1 0
[61]97: 1, [62]:%7: 1 and [63]§§: 0
1 1 1
(d) 3 2 1
ellg= 2 ,[’]lo= 2 and[e’ly= 1
1 1

Exercise 4.24
(1) The assertion in the case of the bases & and &9 follows from

| 3 21
G;al = (ngg)_l = el 2 e = 2 21
| | 111
(2) Since b’ = Ej, we have G’;A; = ng@«: I and Eq. (4.15) is immediately verified.

Exercise 4.32 We have that

| B Ti(t) = L;Tj(t),
where T"(t), respectively T (t), are the components of T at time t with respect to a
basis 4, respectively :%7 and L; are the components of the change of basis from %

to A. By differentiating the above equation with respect to time t, we obtain a

similar equation for the components of %, namely



drt Lt dT’
dt — Hjidt o
hence (fi—if has the same transformation character as T.

A similar reasoning applies to arbitrary tensors.

Exercise 4.33 In order to discuss the partial derivatives, we express f: V — R as
a function of the corresponding coordinate-variables with respect to two bases, %

and @7 of V:
flz) = f(z'bi) = fa(z',...,z")
and
flz) = f(@b) = f53...,3")
Since z* = L;@’j where L is the change of basis from 4 to A, the partial derivatives
satisfy
af B

~1 ~7
— = —JpX ,..., X
v~ o /B )
0
= ﬁfg(xl, co X
(’ “
J | ~k n~k
= ({9,{:1 /‘b(L/\,X PN L/{X )
d /‘ ( l II) 0 Ll ~/
= —frx",...,0 X . M
™ B ; 9 i
=L;
L

Foxt”

We used the chain rule in the step before the last. The above transformation
behaviour is that of a tensor of type (0, 1). We conclude that the gradient is a
covector, i.e., a covariant 1-tensor.

Exercise 4.34 Let % and % be two bases, with change of basis matrix L = A 7.

We write T, i und © for the numbers or components with respect to the basis B.
For the basis %4, we write these without tilde.

(1) We have that
v, =Tl = LflLﬁzTgle};lukl as T isa (0,2) and u a (1,0)-tensor
= LfIAzlL?Tgl@ukl since multiplication is commutative
= 5211 L§2Tglg2uk1 since L is the inverse of A
= LTy e,ub by definition of &

= Lﬁzv@, showing, that v is a (0, 1)-tensor.



(2) For arbitrary u?, we have

T;u' =:9; = L?vgz since v is a (0, 1)-tensor
= L?Tglgz’u,el by definition of v

= L?Ty4,0u* by definition of §

= L§2T4132L51A2uk since L is the inverse of A

= LflL?Tglgzﬁi since u is a (1, 0)-tensor.
As " was arbitrary, we must indeed have

7. rhirt
Ty = LOLYTy,, .
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Exercise 5.3 Since Bil(V* x V* R) is a subset of the vector space

{f:V* x V* — R} of all real-valued functions on the vector space V* x V*, it is
enough to check that it is a subspace of {f : V* x V* — R} Therefore, it is enough
to check the two conditions:

(1) The zero function associating the number zero to each element from V* x V'*
is trivially bilinear, hence it is in Bil(V* x V* /R).

(2) The subset Bil(V* x V* R) is closed under linear combinations. Assuming
that o, 7 € Bil(V* x V*,R), and ¢,d € R, we check that co + dr is bilinear.
The linearity in the first entry amounts to:

(co + dr)(ac + bB,y) = co(aa + bB,7y) + dr(aa + bB, )
= aco(a,”y) + bea(B,7) + adr(a,7)
+bdr(B,7)
= a(co(a,7) + dr(0, 7))
+b(ca(B,7) + dr(6,7))

= a(co + dr)(a,7y) + b(co + dr)(8,7).
The linearity in the second entry is analogous.

Exercise 5.7 Let A and B be square matrices of the same size. If A has (¢, )-entry
A; (where i labels the row and j the column) and B has (¢, j)-entry B’, then by the

definition of matrix product the matrix C' := AB has (i, j)-entry
i gk
A5
and the transpose of A has (i, j)-entry A], so C*4 has (i, j)-entry
i A
Cpay
and AB"A has (i, j)-entry



i Rk AJ
A, B A, .
We obtain Eq. (5.3) by replacing A by A and Bif by Sk
Exercise 5.9 We set T"/* := T(¢?, &%, £¥). Then we have that
T4 =4+ jand TH? =4 — j.
(1) The value of T on an arbitray triple

' ‘ (lar ao),[B1 Boliln1 7)) € (V¥)°
is defined by

T(lar as),[B1 Bol, (11 72)) = By HF,
where we have used the Einstein convention and 1 < 7, 7,k < 2. Hence, we
have

T(-12].[32].[1 1) =i pin T v i T20 ) oy T2

a1 pipl 2 daipoye T2 faapoy 752

1.1
~

-0
2,12 222
+axBiynT erzﬁz)/zT__ﬂ
-0
=-3.246-3—-2-3—-2-(-1)+4-4+6-1
= 30.

(2) We apply the transformation formula from Sect. 5.2. The change of basis
matrix from the standard basis to & is

1 1
LZ:Léag,g: 1 0

A:=L"1= 0 -1
1 1

We denote by T4™" the (£, m,n)-component of T with respect to %, where
1 </{4,m,n < 2. Then we have
~Z1 El f— E .7 ‘5k
Temn = AZ.A;.”AZT” ,
where A denotes the component of A in row u and in column v. The
computations yield

with inverse

1’?1,1,1 =0, 1’?2,1,1 = -1,
771,1,2 792,12 _

T2 =4, T?? = —6,
771,2,1 _ 792,2,1 __

ThA =1, T?* =0,
Th*? = -8, T*** =12,



Exercise 5.11 There are two conditions to check (cf. Sect. 2.1.2):

(1) The zero covariant k-tensor (associating the number zero to each k-tuple of
vectors from V) is trivially symmetric, hence it is in S*V*.

(2) The subset S*¥V* is closed under linear combinations. Assuming that T and U
are symmetric covariant k-tensors, and ¢, d € R, we check that ¢T' + dU is
symmetric, that is, independent of the order of the k arguments from V. This
follows from the fact that the value of ¢I' + dU on vectors vy,...,v; € V is the
corresponding linear combination of the values T'(v1,...,vx) and U(v1, ..., vk)
, which by assumption do not depend on the order of the vectors.

The argument is similar for the set of all antisymmetric covariant k-tensors, A¥V *.

Exercise 5.12 Let !,..., " form a basis of V* dual to a basis vy,...,v, of V.
Each tensor % (BZ QB+ ® ﬁ’) is symmetric by construction. In order to show
that the tensors

3 (B ® B+ 4/ @ B) with i > j
form a basis of S2V*, we check that (cf. Definition 2.22):
(1) they are linearly independent and

(2) they spanV'.

Suppose we have a linear combination (with coefficients a;; € R) yielding zero:

Do Ferres) 0.
Evaluating this at a pair of basis vectors v, v, we get %ake = 0 when k > £ and we
get air = 0 when k = £, hence we conclude that it must be the trivial combination
with all coefficients zero. This shows (1).
Now we show that any element 7' € S2V * is a linear combination of the above
elements. We define the numbers

2T(’Ui, ’Uj) ifi>j
Qi = .o - .
T(v;,v;) if i =j.
We can conclude the following tensor equality

T = § ivi Oéij% (51 &® ﬁj + 5j X ,BZ)

from the fact that the difference of these two tensors vanishes on each pair of basis
vectors vg, vy, hence (2) holds.

To obtain the dimension formula, we simply count the number of elements in the
basis set

{z(BFeF+H®F)|i>]}.

The index i can take all values 1,...,n. For each chosen i, the index j can take
values 1,...,1, which is a number i of values, so we get the count



denoted (g) in combinatorics.
The argument is similar for the case of A2V *.

Exercise 5.1_5 The coordinates of by ® a1 + by ® as with respect to the basis
b; ® a; are 6*. So the task amounts to showing that there is no solution to the

equation
vl 10
1,2y _
()= (o 1)

where the v and w’ are the coordinates of arbitrary vectors v € V and w € W
w.r.t. the given bases. Indeed, the system

viw! =1
viw? =0
V2wl =0
v2w? =1

has no solution, since the first two equations force that w? be zero, yet this is
impossible for the last equation.
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Exercise 6.4 We choose a coordinate system with origin at the vertex O, with x-
axis along the side of length a, y-axis along the side of length b and z-axis
perpendicular to the plate. We already know that the mass density is constant equal
to p = . Then

b
111 —/ (y2+ 32) p dydx
0 0

S — S e~

Iy =0 .

b
m
= —ua / 2
ab 0

m \'3 b m
=— |- = — .
b|13], 3

e
U
-

Similarly,

and

—

b
133 :/ (x> + )‘2)/) dydx = %(uz + b?%)
0 0 -

is again just the sum of I1; and Iss.
Furthermore,



a rb
JoJo ¥ 2
=0

and, similarly, Is; = I13 = 0. Finally, we have

a b

7 7 du d m [22]°] > b mab
= = — €T r=——1— —_— = — .

Iy =1l =- pdydx =0,

0
We conclude that the inertia tensor is given by the matrix

46>  —3ab 0
7 —3ab 4a? 0
0 0 4(a®+1b?)

Exercise 6.6 We again choose the unit vector

Vot a

_ b _ 1
Y= Taw Vo U
0 0

defining the axis of rotation, but now use the inertia tensor computed in Exercise 6.

4,
42 —3ab 0

15 —3ab 42 0 ,

0 0 4(a®+b?)
thus obtaining

Iu: Iijuiuj
4>  —3ab 0 a
= 12(a++b2)(a b 0) —3ab 40,2 0 b
0 0 4(a*+0d*) 0
m _a?b?
= 6 ar

necessarily the same result as in Example 6.5.

Exercise 6.7

(1) We use the inertia tensor calculated in Example 6.3, where the origin of the
coordinate system is at the center of mass, and choose u = e3. The moment of
inertia is then

I, = ILju'u’
b2 0 0 0
= £0 01 0 a* 0 0
0 0 a2+0* 1
= Iy = 2(a*+b%).



(2) We use the inertia tensor calculated in Exercise 6.4, where the origin of the
coordinate system is at a vertex of the plate, and choose u = e3. The moment
of inertia is then

I, = L'
4> —3ab 0 0
= 50 0 1) —3ab 4a? 0 0
0 0 4(a®+0*) 1
= Iz3 = G (a® +0%).

Exercise 6.10

(1) We choose the vector e3 along the line L and complete it to an orthonormal
basis for the vector space with origin at the center of mass. Since all atoms lie
on the e3-axis, they have z! = z2 = 0, where the z¢ denote the coordinates of
particle r with respect to the basis above. Then we have:

_[11 = E wia}%mr = I22 =:1 and .[33 =0= Iij7 for ¢ # j,

hence, the inertia tensor is
1 00
(Iij)=I 010
00O
The principal axes of inertia are the axis along L, corresponding to the
principal moment 0, and the axes perpendicular to L, corresponding to the
principal moment of inertia I. It remains to determine I. Denoting the total
mass by m := Zle m,, by the choice of origin the coordinates satisfy

n

3 _ 1 3 3
Tr ="m s=1 (xr - xS)mS’
therefore,
n l n
1 = Z XCXIm, = 3 Z (xf _ \f) (xf - x,) mymgiy
r=1 r.s.=1 S— ———’

We conclude that



—_ 1 2
I= - g #sﬂmmrms.

The ellipsoid of inertia has equation
I(zlz! + z222) =1.
(2) Let e; be parallel to AB and e3 perpendicular to the triangle. We complete the

orthonormal basis with e, along the triangle’s height. Let ', %, 2%, be the

coordinate vectors of atoms A, B, C' with respect to the basis above. These
vectors satisfy:

am1 + 5ma

7 _ 1
0
a a
a ami + 5 Mma ami + 5 ma
iy — _ 1 _ 1 .
(xC’) = 0 2mi+my th T 2mytms th
0 0 0
0 ami + §ms 0
7 _ . 1 _ 1
(%) = h S hms = St 2mi1h
0 0 0
Moreover, since xi = x% = m?(’J = 0, we have:
_ 2.2 2.2 2.2 _ 2/7111713/13
I = XpXphl] + XpXpmy + XX my = SIS
Iy = ] 1] 1 _ mla:
22 = XpXph| + Xp XM + XX 02 = 5

S 2.2 | 2 .2
33 = Xpxpmy + XpXpm| + XpXpmy + xXoxem|
1 2.2 =7 I
Fx x my +xyxymo = Iy + I
I3 =13 =0, since we always multiply with terms with \3 =0

1.2 1.2 1.2
I = (xpxp +xpxp)my +x x3my =0

-0

The principal moments of inertia are I11, 122 and I33, and the coordinate
axes are the corresponding principal axes of inertia. The ellipsoid of inertia
has equation

21711]7{1/72 11 3.3 mlu2 2.2 3.3
ETTTET (,x X+ x7x )+ - (,\ X° 4 x’x ) =1.

e e

I I

(3) The tetrahedron consists of an equilateral triangle (a special case of the
previous part) together with an extra point £ p. We choose the basis as above,
so parts of the computation may be imported from the previous part with

height h = %\/5 The new coordinates are then slightly vertically shifted:



—1 1
1 a _L 1 a _L
(:EB) — 2 V3 o (xc) =9 V3 s
1 1
Ve V6
0 0
) 2z ] a
@) =% 5 (@) =4 O
_ 1 V3
VG V2

A computation as in the previous part yields
Iij = ma25ij .
We have then a spherical top wih all principal moments of inertia equal to
ma? and for which any axis (through the origin) is a principal axis of inertia.
The equation of the ellipsoid of inertia is

ma? (zclacl + z2x? + x3$3) =1.

Exercise 6.11 We choose a positively oriented orthonormal basis along the sides
of the parallelepiped. Then we compute:

a b c
5 p3 (3
b2 2
Iy =2 f . f 2222 + 2323dz drlds® = T l;c)
s _

_b c
2 2

m(a®+c?)
I22 = 12

m(a?+b?)
I3z = 12

I,; =0, wheni+#j.

(1) Since the matrix (Iij) is diagonal, the corresponding principal moments of
inertia are its diagonal entries I 1, Is9, I33 and the corresponding principal
axes of inertia are the coordinate axes (parallel to the sides of the

parallelepiped).
(2) The equation of the ellipsoid of inertia is
m((b? + c?)zlz! + (a® + c?)z2z? + (a® + b?)z323) = 12.
(3) The kinetic energy of K is
E= % jwtw?
(4) The (covariant) coordinates of the angular momentum of K are

LZ' = Iijwj .

Exercise 6.20
(1) The principal stresses are the eigenvalues of o, that is, the roots of the

corresponding characteristic polynomial:



-2 0 6
ps(A) =det (c—Ald)=det 0 1-—-X O
6 0 5—2A
=-A1-=X)(5-X)=36(1—-X)=(1—-A)(A\2-51-36).
The quadratic factor A2—5A—36 has the roots

5EV25+436 _ 5EVI69 _ 5+13 _ g o 4
2 - 2 2 = :
Therefore, the principal stresses of o are (up to reordering)
ol == —4, 02:=1 and o°:=
(2) The principal directions are defined by corresponding eigenvectors vq, vs, v3,
which we obtain by finding non-trivial solutions of

(o 4+ 41d)v; =0

(0 —Id)vy =0
(c—91Id)vs = 0,
or, equivalently,
4 0 6
0 50 vi=0
6 0 9
-1 0 6
0 0 0 v2=0
6 0 4
-9 0 6
0 -8 0 w3=0.
6 0 -4
We choose
3 0 2
vi= 0 ,vo= 1 ,anduwvs=
-2 0 3

to span the principal directions.

(3) The basis £ will be an orthonormal eigenbasis of o and the corresponding
diagonal matrix will have the corresponding eigenvalues of o along the
diagonal. We simply normalize the above eigenvectors, since they are already
orthogonal (because they correspond to different eigenvalues):




0 2

_ vy __ — v _ _1
bo= Ty = 1 and bs=pr=T5 0
0 3
With respect to the basis & = {by, bs, b3}, the matrix representation of o is
ol 0 0 -4 00
0 o2 0 = 0 1 0.
0 0 o° 0 09

(4) The stress invariants I1, I3 and I3 can be obtained from the principal stresses
(or eigenvalues) of o by:

I, =tre=0'+0?+0*=-44+1+9=6
I, =—c'o? - 0203 — %! = —(—4+9-36) = 31

I3 =det (0) =oc'o?0®=-4-1-9=-36
Alternatively, we may take the coefficients of the characteristic polynomial
ps(A) and adjust the sign.

Exercise 6.22
(1) The given stress tensor has trace
tr(o) =o' + 02 + 03 =-2+24+6=6.
We hence define

-2 0 3 2 00 —4 0 3
os =oc—str(o)ld= 0 20 — 020 = 0 00
3 06 00 2 3 0 4
2 00
and op = +tr(o)ld= 0 2 0 .
00 2

(2) The diagonal matrix D will have the eigenvalues of og along the diagonal and
the seeked orthonormal basis is an orthonormal eigenbasis of og. We, thus,
first determine the eigenvalues of og:

Pog(A) =det (o5 — AId)

—4—-X 0 3
—4 — )\ 3
=det 0 - 0 = — - det
3 4 — )\
3 0 4—)\

= —A(A2=16—9) = —A(A=5)(A + 5).

This factorization of the characteristic polynomial shows that the
eigenvalues of og are A\; = —5, Ay = 0 and A3 = 5. Next, we determine
corresponding orthonormal eigenvectors vy, v, v3 of o0g (with respect to the
basis &):



(3)

1 0 3 3z
E ; =ker(cg+5ld)=ker 0 5 0 = 0 zeR
3009 —x
-4 0 3 0
Ey =ker(og)=ker 0 0 0 = =z :z€R
3 0 4 0
-9 0 3 x
E; =ker(cs—5Id)=ker 0 -5 0 = 0 :zeR
3 0 -1 3z
We choose x = 1 to obtain concrete vectors, which we normalize to define
3 0 1
['ul]éa:ﬁ 0 , [ve= 1 and [vg]éa:% 0 .
-1 0 3

The three vectors above form an orthonormal eigenbasis, Z, for the
deviatoric stress og. The change of basis matrix, L, from & to 2 has columns
given by the components of the above [v1], [v2] ¢, [v3] 0. With respect to the
basis Z, the matrix representation of the deviatoric stress becomes diagonal:

{f()f-l —403 {f()f-l ~500
p=] 010 |looo|] o1 0 |=]|000]

—1
\/_)\/_ 304 L\/_O\/_ O‘OS

—- YT — - Y -
L=t ffs I3 D

When symmetric matrices have the same eigenvalues, we can diagonalize each

of them to the same diagonal matrix (containing the eigenvalues along the

diagonal) via orthogonal changes of basis relying on their eigenvectors. In part

(2), we obtained this diagonalization for the matrix of og with respect to &.

Now we seek a matrix of the form

A=

S n

x
0
z
e

=

characteristic polynomial of such A,
Az
pa(A) =det (A—Ad)= =z —A
y z —A
must then have the zeros —5, 0, 5, that is
0+ 22zyz4+0=0
125 4+ 2zyz—5(z2 + 4>+ 2%) =0 & {

—125 + 2zyz 4+ 5(z2 + 2 +22) =0
For instance, the triple £ = z = 0 and y = 5 satisfies the above conditions.
We thus choose the matrix

0
T
Y
having the same eigenvalues as og. Th
Y
z

= A% F2zyz + (22 + 9% + 2,

zyz =0
22 +y?+22=25



0 0 5
A= 00 0 .
5 00
Next, we determine corresponding orthonormal eigenvectors wi, w2, w3 of A
(with respect to the basis &):
5 0 5 T
ker(A+5Id) =ker 0 5 0 = 0 xeR
5 0 5 —
0 05 0
ker(A)=ker 0 0 0 = =z :z€R
5 00 0
-5 0 b T
ker(A—-5Id)=ker 0 -5 0 = 0 :zeR
5 0 -5 x
We choose x = 1 to obtain concrete vectors and normalize them to define
1 0 1
[wi]e = % 0 , [wae= 1 and [ws],= % 0.
-1 0 1

The three vectors above form an orthonormal eigenbasis, 2!/, for A. Just as
in part (2), we obtain the diagonalization:

IVIOT 005 jiﬂﬁw ~500
p=]010/|looo|lo10]|=]|000].
| | —1 |
fof S0l [Fo g 005

— e’
M 1V[ A M D

Putting the two equations (for [o5] 4 and for [A],,) together, we obtain
LtlosL=D=M"1AM

from which we find

A=ML‘'esLM™ "
So, the change of basis matrix is

S0 L 1 o = 2 g =L
V10 Vi 2 V2 V5 V5
Lez=LM'= 0 1 0 0O 1 0 = 0 0
=1 o 2 1 g L 1 0 2
V10 Vo 2 V2 V5 V5
and the desired basis &4 is formed by vectors with
2 0 -1
[b1], = % 0, [be= 1 and [bs],= % 0
1 0 2

Reality check: We compute [og| 4 directly



l0s]lg = LgglosleLes = Leglos)sLen

2 g L 2 g __L
NG Vs —403 °F V5
= 0 1 0 000 0 1 0
_1 9 2 L 2
=02 304 Lo Z
— 2 1
—v5 02/ 7 0 -5 005
= 0 0 0 01 0 =000.
= 1 2
25 0 v = 0 % 500

Exercise 6.26 We follow Sect. 6.2.5. Just like stress, the strain tensor is
symmetric

€11 €12 €13
&= €12 €32 €23

€13 €23 €33
Let k :=tre / 3 = (¢! + £2% + ¢33) / 3 and define the uniform compression

k 0O
0 K O
0 0 k
as well as the traceless difference
g c12 13
s = gl — g% = g2 2k 28
13 £23 3Bk

so that, we have

e = s + k6Y.
By Fact 6.21, the above traceless difference s“’may be represented with respect to
some orthonormal basis as a shear deformation, i.e., as a strain tensor of the form

0 512 513
512 0 523

513 523 0
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