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Introduction 

Inequalities that estimate the deviation of a value of a function at some point from its 
mean value using some characteristics of the function, are sometimes called Ostrowski-
type inequalities. The first result of this kind was obtained by Ostrowski in 1938 and such 
inequalities were heavily studied since then. Ostrowski-type inequalities can be viewed as 
a partial case of the problem to find the deviation between operators, or as a simplest form 
of the problem of optimization of cubature formulae. At the same time, it appears that 
such inequalities are often a key step in solutions of other important extremal problems 
in approximation theory, including the problems of optimization of cubature formulae, 
the Stechkin problem about approximation of unbounded operators by bounded ones, 
inequalities for derivatives of Landau–Kolmogorov type and of Nagy type, and others. 

In Chap. 1 we discuss a general approach to some extremal problems of approxima-
tion theory, which in particular allows us to obtain many Ostrowski-type inequalities for 
various classes of functions. We show how Ostrowski-type inequalities can be applied 
to obtain sharp inequalities for derivatives and related problems. Using Ostrowski-type 
inequalities as a primary tool, we obtain solutions for problems of optimization of 
cubature formulae. 

It is well known that the problem to find a sharp constant in a Kolmogorov type 
inequality for functions defined on the real axis, is equivalent to the extremal Kolmogorov 
problem to find the exact upper bound of the norm of an intermediate derivative of a func-
tion on the class of functions with restrictions on the norms of the function and its higher 
derivative. Despite a large number of works devoted to Kolmogorov-type inequalities, 
sharp constants for derivatives of arbitrary order are known only in a few cases. There-
fore, the modification of the Kolmogorov problem considered by Boyanov and Naidyonov 
is interesting. In this modification, the norm of the intermediate derivative on the entire 
line is substituted by its norm on an arbitrary finite segment. 

In Chap. 2, the Boyanov-Naidyonov problem is solved on classes of functions with a 
given comparison function for norms of the positive and negative parts of the intermediate 
derivative of the function. In particular, this problem is solved on the Sobolev classes and
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vi Introduction

on the spaces of trigonometric polynomials and polynomial splines. In addition, a solution 
to an analogue of the Erdos problem is obtained; we characterize a polynomial (spline) 
with a given uniform norm that has maximal possible total length of the arcs of the graph 
of its positive (negative) part on a given segment. 

Remez-type inequalities play an important role in approximation theory. This topic 
was initiated in the work of Remez in 1936, in which he found a sharp constant in an 
inequality of this type for algebraic polynomials. At the end of the 20th century, a new 
surge of works on this topic was observed. The efforts of many mathematicians aimed 
at finding the sharp constant in the Remez-type inequality for trigonometric polynomials. 
Only in 2019 this problem was solved in the work of Tikhonov and Yuditski. 

In the author’s works, Remez-type inequalities were extended to wider classes of func-
tions. In Chap. 3, sharp Remez-type inequalities for functions with a given comparison 
function are obtained in various metrics. As a result, such type of inequalities were proved 
for functions from the Sobolev classes, for trigonometric polynomials and polynomial 
splines with a given ratio of norms of their positive and negative parts. 

In Chap. 4, we focus on the development of a variational approach for simultaneous 
contrast enhancement of color images and their denoising. With that in mind we propose 
a new variational model in Sobolev-Orlicz spaces with non-standard growth conditions 
of the objective functional and discuss its applications to the simultaneous fusion and 
denoising of each spectral channel for an input color images. The characteristic feature of 
the proposed model is the fact that we deal with a constrained minimization problem with 
a special objective functional that lives in variable Sobolev-Orlicz spaces. This functional 
contains a spatially variable exponent characterizing the growth conditions and it can be 
seen as a replacement for the standard 1-norm in TV regularization. We show that the 
proposed model allows to synthesize at a high level of accuracy noise- and blur-free color 
images, which were captured in extremely low light conditions. 

The main purpose of Chap. 5 is to describe a robust approach for the simultaneous 
fusion and denoising of non-smooth multispectral images defined on grids with different 
resolution using for that a special extremal problem with nonstandard growth of the energy 
functional. In fact, we use the L1-norm of the noise in the minimization function and a 
special form of anisotropic diffusion tensor for the regularization term. Following this 
approach, we increase the noise robustness of the proposed model albeit it makes such 
variational problem completely non-smooth, non-convex, and, hence, significantly more 
difficult from a minimization point of view. The principle characteristic feature of the 
proposed model is that we consider the energy functional with nonstandard growth for 
each spectral channel separately. The second point that should be emphasized is the fact 
that we do not predefine the variable exponents a priori using for that the original noisy 
images, but instead we associate these characteristics with each feasible solution.
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1On Ostrowski-Type Inequalities and Their 
Applications 

Abstract 

Inequalities that estimate the deviation of a value of a function at some point from its 
mean value using some characteristics of the function, are sometimes called Ostrowski-
type inequalities. The first result of this kind was obtained by Ostrowski in 1938 and such 
inequalities were heavily studied since then. Ostrowski-type inequalities can be viewed as 
a partial case of the problem to find the deviation between operators, or as a simplest form 
of the problem of optimization of cubature formulae. At the same time, it appears that 
such inequalities are often a key step in solutions of other important extremal problems 
in approximation theory, including the problems of optimization of cubature formulae, 
the Stechkin problem about approximation of unbounded operators by bounded ones, 
inequalities for derivatives of Landau–Kolmogorov type and of Nagy type, and others. 
In this chapter we discuss a general approach to some extremal problems of approxima-
tion theory, which in particular allows us to obtain many Ostrowski-type inequalities for 
various classes of functions. We show how Ostrowski-type inequalities can be applied 
to obtain sharp inequalities for derivatives and related problems. Using Ostrowski-type 
inequalities as a primary tool, we obtain solutions for problems of optimization of cuba-
ture formulae. 

1.1 Introduction 

Let two operators. and. I defined on a set.A of functions. f be given, and. hmeasure distance 
in the range of the operators . and . I . The quantity 

.U I ;A) := sup
f ∈A

h f , I f ) (1.1) 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025 
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2 1 On Ostrowski-Type Inequalities and Their Applications

defines the deviation between operators. and. I on the set. A. The problem to find such devia-
tion occurs in many questions of approximation theory and numerical analysis. For example, 
if .A is a set of continuous functions . f : T → R, . f = T f (s)ds, . I f = n

k=1 ck f (xk)
(.ck ∈ R, .xk ∈ T , .k = 1, . . . , n) and  . h is the usual metric in . R, then  (1.1) gives the worst-
case error of the cubature formula . I on the class . A; if  . f is the identity operator, . h is 
some metric, and . I is the operator of the best approximation by elements from a set . B i.e., 
.I f = argming∈B h( f , g), then quantity (1.1) becomes the best approximation of the set . A
by the set . B in metric . h that is given by the formula .sup f ∈A infg∈B h( f , g), provided the 
minimum in the definition of . I exists for each . f ∈ A. 

In 1938 Ostrowski [ 66] proved the following theorem. 

Theorem 1.1 Let . f : [−1, 1] → R be a differentiable function and let for all .t ∈ (−1, 1), 
.| f (t)| ≤ 1. Then for all .x ∈ [−1, 1] the following inequality holds 

.
1

2

1

−1
f (t)dt − f (x) ≤ 1

2

1

−1
|t − x |dt = 1 + x2

2
. (1.2) 

The inequality is sharp in the sense that for each fixed .x ∈ [−1, 1], the upper bound . 1+x2
2

cannot be reduced. 

Inequalities that estimate the deviation of a value of a function at some point from its 
mean value using some characteristics of the function, are sometimes called Ostrowski-type 
inequalities. Such inequalities were intensively studied, see for example [ 40, 41, 63]. 

Observe that this theorem can be rewritten as 

. sup
supt∈(−1,1) | f (t)|≤1

1

2

1

−1
f (t)dt − f (x) = 1 + x2

2
,

and hence this kind of inequalities are in fact a partial case of the problem to find the deviation 
between operators. 

At the same time, it appears that such inequalities are often a key step in solutions of other 
important extremal problems in approximation theory, including the problems of optimal 
recovery of operators and functionals (in particular, the problems of optimization of cubature 
formulae) and the questions of inequalities for derivatives. 

Let.X and. Y be linear spaces equipped with a seminorm. X and a norm. Y respec-
tively. A linear operator .A : X → Y is called bounded if 

. A A X→Y := sup
x X≤1

Ax Y < ∞.

Otherwise, the operator. A is called unbounded. By.L(X , Y )we denote the space of all linear 
bounded operators .S : X → Y .
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Quantity (1.1) was stated using an abstract notion of a distance. It will be discussed in 
such a general form in Sects. 1.2.1 and 1.2.2, but more often is considered in metric or 
normed spaces. If . I : X → Y and .A ⊂ X , then quantity (1.1) becomes 

. U I ;A) := sup x − I x Y : x ∈ A}.

The Stechkin problem of approximation of a generally speaking unbounded operator . A
by linear bounded operators on .A is stated as follows. For a given number .N > 0 find the 
quantity 

.EN (A,A) := inf {U (A, S;A) : S ∈ L(X , Y ), S N } , (1.3) 

and an operator. S on which the infimum is attained, if such an operator exists. The statement 
of this problem, first important results, and solutions to this problem for differential operators 
of small orders were presented in [ 71]. For a survey of further results on this problem see [ 5]. 

Inequalities of the form 

. f (k)
Lq (G) ≤ K f μ

L p(G) f (r) λ
Ls (G),

where .0 < k < r , .1 ≤ q, p, s ≤ ∞, .μ = 1 − λ, .λ = k−1/q+1/p
r−1/s+1/p , and  .G is some domain 

of definition are called Kolmogorov-type (or Landau–Kolmogorov-type) inequalities in the 
multiplicative form. The first results of this kind were obtained by Hardy and Littlewood [ 47] 
in 1912. The first sharp (i.e., with the smallest possible constant) inequalities for derivatives 
were obtained by Landau [ 61] and Hadamard [ 46]. In these articles for functions defined on 
.R or .R+ inequalities that estimate the uniform norm of the derivative of a function via its 
uniform norm and the uniform norm of its second derivative were obtained. Kolmogorov [ 54] 
proved sharp inequalities for all natural . r and. k in the case.G = R, .q = p = s = ∞. Many  
results in this topic for univariate functions can be found in [ 27]. The multivariate situation 
is substantially harder to study and only results for classes of low smoothness are known. 
In Sect. 1.3 we discuss inequalities for derivatives mainly for multivariate functions. 

Quantity (1.1) also appears in problems of optimal recovery of operators and functionals. 
Let a metric space .(X , hX ), sets  . Y and . W , and mappings . : W → X and .I : W → Y be 
given. An arbitrary function . : Y → X is called a method of recovery of the mapping . 
on the class .W using the information given by the mapping . I . The error of recovery of the 
operator . on the class .W by the method . using the information given by the mapping . I
is defined by the formula 

. E W , I X) = U ◦ I ;W ) = sup
w∈W

hX I (w))).

The quantity 
.E W , I , X) = inf E W , I X) (1.4) 

is called the optimal error of recovery of the operator. on the class. W , using the information 
given by the operator . I . The problem of optimal recovery is to find quantity (1.4) and a
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method.
∗ (if it exists), on which the infimum on the right-hand side of (1.4) is attained. If 

. I is some class of informational operators, then it is interesting to find the quantity 

. E W ,I, X) = inf
I∈I

E W , I , X)

and an optimal information operator (if it exists), or a sequence of asymptotically optimal 
operators, if an optimal operator does not exists, or it is hard to find one. 

In Sect. 1.4 we consider problems of optimization of cubature formulae i.e., problems of 
optimal recovery of the integral operator . = T w(x)dx for some classes of functions 
. w. It is well known that under rather mild conditions on the classes of functions, there exist 
linear methods among the optimal methods of recovery. If the informational operator. I gives 
the values of a function at. n points.x1, . . . , xn ∈ T , then the  error of recovery  (1.4) becomes 

. inf
ck

sup
w∈W T

w(s)ds −
n

k=1

ckw(xk) .

Observe that for .n = 1 the problem of optimization of the cubature formula essentially 
becomes a problem to find a sharp Ostrowski-type inequality. Thus Ostrowski-type inequal-
ities might be also viewed as a partial case of the problem of optimal recovery. On the other 
hand, for classes of functions of low smoothness, it is sometimes possible to obtain a solution 
to the problem of optimal cubature formulae for arbitrary . n, from the corresponding sharp 
Ostrowski-type inequality. Some applications of this kind will be given in Sect. 1.4. 

This chapter is organized as follows. In Sect. 1.2 we discuss a general approach that allows 
to compute quantity (1.1), and using this approach deduce many Ostrowski-type inequalities 
for various classes of functions. In Sect. 1.3 we show how Ostrowski-type inequalities can 
be applied to obtain sharp inequalities for derivatives and related problems. Finally, in 
Sect. 1.4 we apply some Ostrowski-type inequalities to problems of optimization of cubature 
formulae. 

1.2 Ostrowski-Type Inequalities 

1.2.1 Abstract Distance Spaces 

1.2.1.1 Notations and Definitions 
The results of this section are contained in [ 15]. The notion of a distance (in particular, a 
metric) plays an important role in many branches of mathematics. Definitions of numeric-
valued distances or metrics and a detailed discussion of these notions can be found e.g., in 
monograph [ 52]. We refer to [ 12, 13, 48, 77] for metrics that take value in more general sets. 
We consider a rather general definition for this notion. 

A set  .M with a reflexive, antisymmetric and transitive relation .≤ is called partially 
ordered.
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Let .X be an arbitrary set and .M be a partially ordered set that has a smallest element, 
which we denote by. θ (i.e., .θ ≤ m for any.m ∈ M). A function.hX : X × X → M is called 
an .M-distance in . X , if for arbitrary . x, y ∈ X

1. . hX (x, x) = θ,

2. .hX (x, y) = hX (y, x). 

The pair .(X , hX ) will be called an .M-distance space. 
In [ 12, 13] the notion of .M-distance was introduced for the case when .M is a partially 

ordered monoid. 
Let two.M-distance spaces.(X , hX ) and.(Y , hY ) be given. The class.H(X , Y ) of mappings 

. f : X → Y that satisfy the Lipschitz condition can be defined in a standard way: 

. H(X , Y ) = { f : X → Y : hY ( f (x1), f (x2)) ≤ hX (x1, x2) ∀x1, x2 ∈ X}.

In this section, speaking of a partially ordered set . M , we assume that some .M-distance 
.hM is defined in . M . 

We say that an .M-distance .hX in .X agrees with an .M-distance .hM in . M , if  

.hM (hX (x, x1), hX (x, x2)) ≤ hX (x1, x2) ∀ x, x1, x2 ∈ X . (1.5) 

Note that inequality (1.5) holds (and is equivalent to the triangle inequality) if . M = R+
with the usual metric, and .(X , hX ) is a pseudo metric space (for a definition of a pseudo 
metric and a pseudo metric space see, for example [ 51, Chapter 4]). That is why we introduce 
the following definition. 

An .M-distance .hX on a set .X will be called an .M-pseudo metric, if it agrees with 
.M-distance .hM i.e., inequality (1.5) holds. In this case the pair .(X , hX ) will be called an 
.M-pseudo metric space. 

In Lemma 1.2 we will give a general sufficient condition that an .M-metric . h (see the 
definition prior to Lemma 1.2) agrees with .hM . 

We need the following lemma. 

Lemma 1.1 Let .T , X , Y be .M-distance spaces. Then 

1. If . f ∈ H(T , X) and .g ∈ H(X , Y ), then .g ◦ f ∈ H(T , Y ). 
2. If . f ∈ H(T , X) and .hX is an .M-pseudo metric, then .hX ( f (·), f (t)) ∈ H(T , M) for 

any fixed .t ∈ T . In particular, if .T = X, then .hT (·, t) ∈ H(T , M). 

Proof The first statement of the lemma is obvious. 
If . f ∈ H(T , X) and .hX is an .M-pseudo metric, then for arbitrary .t1, t2 ∈ T , 

.hM (hX [ f (t1), f (t)], hX [ f (t2), f (t)]) (1.5)≤ hX ( f (t1), f (t2))
f ∈H(T ,X)≤ hT (t1, t2).
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Therefore .hX ( f (·), f (t)) ∈ H(T , M). If  .T = X and . f (τ ) = τ, τ ∈ T , we obtain that 
.hT (·, t) ∈ H(T , M). 

1.2.1.2 Classes of Operators and an Ostrowski-Type Inequality 
For an.M-distance space. X , an operator .λ : H(X , M) → M will be called monotone, if for 
arbitrary . u, v ∈ H(X , M)

. (∀x ∈ X u(x) ≤ v(x)) =⇒ (λ(u) ≤ λ(v)).

Let.T , Y be.M-distance spaces, X be an.M-pseudo metric space, and.t ∈ T be fixed. We 
say that an operator. : H(T , X) → Y and a monotone operator.λ : H(T , M) → M agree, 
if . ∀ f ∈ H(T , X)

.hY f (· f (t)) ≤ λ(hX ( f (·), f (t))). (1.6) 

Here and below . f (t) means the value of the operator . on the constant function 
.τ f (t), .τ ∈ T (the same notation will be used for other operators whose arguments are 
functions). 

Theorem 1.2 Let .(T , hT ) and .(X , hX ) be .M-pseudo metric spaces, .(Y , hY ) be an .M-
distance space, and .t ∈ T be fixed. Assume that an operator . : H(T , X) → Y and a 
monotone operator .λ : H(T , M) → M agree. Then for arbitrary function . f ∈ H(T , X)

the following Ostrowski-type inequality holds: 

.hY f (· f (t)) ≤ λ(hT (·, t)). (1.7) 

If 
.λ(θ) = θ, (1.8) 

and there exists an operator .φX : H(T , M) → H(T , X) and .φY ∈ H(M, Y ) with the fol-
lowing property 

.hY (φY (m), φY (θ)) = m, if m = λ(hT (·, t)), (1.9) 

such that the diagram 

. 

H(T , X) Y

H(T , M) Mλ

φX φY

is commutative i.e., 
. ◦ φX = φY ◦ λ, (1.10) 

then inequality (1.7) is sharp and becomes equality on the function 

. ft (·) = φX (hT (·, t)). (1.11)
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Proof Let. f ∈ H(T , X). Since.(T , hT ) and.(X , hX ) are.M-pseudo metric spaces, we have 
due to Lemma 1.1 that .hX ( f (·), f (t)) ∈ H(T , M) and .hT (·, t) ∈ H(T , M). So both of 
these functions belong to the domain of . λ. 

Since the operators. and. λ agree, and the operator. λ is monotone, for each. f ∈ H(T , X)

one has 
. hY f (· f (t)) ≤ λ(hX ( f (·), f (t))) ≤ λ(hT (·, t)),

and inequality (1.7) is proved. 
The function from (1.11) belongs to the class .H(T , X), since  .hT (·, t) ∈ H(T , M) and 

.φX : H(T , M) → H(T , X). Using condition (1.10), one has 

. hY ft (· ft (t)) = hY X (hT (·, t X (hT (t, t))))

. = hY ◦ φX )(hT (·, t ◦ φX )(hT (t, t)))

. 
(1.10)= hY ((φY ◦ λ)(hT (·, t)), (φY ◦ λ)(θ))

. = hY (φY (λ(hT (·, t))), φY (λ(θ)))
(1.9),(1.8)= λ(hT (·, t)).

The theorem is proved. 

Note that classes of operators that satisfy the properties analogous to properties (1.6), (1.9) 
and (1.10) were considered in [ 20]. In order to explain the nature of these properties we give 
the following example. Condition (1.6) is a relaxed version of the following condition: 

. hY f g) ≤ λ(hX ( f (·), g(·)))

for all. f , g. If.M = R+,.X = Y is a Banach space,. f = 1
−1 f (t)dt is the Bochner integral 

of . f , and . λ is the Lebesgue integral on .[−1, 1], then this condition becomes 

. 

1

−1
f (t)dt −

1

−1
g(t)dt ≤

1

−1
f (t) − g(t) dt .

Moreover, if . α is an integrable real-valued function and .x ∈ X , then 

. 

1

−1
α(t) · xdt =

1

−1
α(t)dt · x

i.e., condition (1.10) is satisfied with .φX and .φY being multiplication by a fixed element 
.x ∈ X . If the element . x is such that . x 1, then the operator .φX preserves the Lipschitz 
property, and condition (1.9) holds for arbitrary .m ∈ R+. The function .hT (·, t) = | · −t | is 
extremal in inequality (1.2) for the real-valued functions from.H([−1, 1],R). Therefore for 
any . x such that . x 1 the function . ft (·) = | · −t | · x is extremal in the Ostrowski-type 
inequality for Banach space-valued functions. 

In the majority results that we know (see e.g. [ 3, 4, 14, 20]) for extremal problems on 
classes of non-numeric-valued functions . f : T → X , extremal functions are built based on
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the real-valued extremal function for the extremal problem on the corresponding class of 
real-valued functions . f : T → R: if . fe : T → R is an extremal function in the real-valued 
case, then the function . fe · x : T → X usually becomes an extremal function in the non-
numeric-valued situation for some specially chosen element.x ∈ X . This corresponds to the 
described above approach in the case, when .φX and .φY are operators of multiplication by 
some elements. 

More generally, if for the operators .λ : H(T , M) → M and . = λ, fixed  .t ∈ T and 
. f ∈ H(T , M) inequality (1.6) holds, then 

. hM (λ f (·), λ f (t)) ≤ λ(hT (·, t)).

If in addition, property (1.9) holds with.Y = M and.φY being the identity function, then the 
latter inequality become equality on the function .hT ( f (·, t)). Function (1.11) is obtained 
from this function as a result of applying to it the operator .φX : H(T , M) → H(T , X). 

Recall that an operator.φ : H(T , M) → X can be considered as an operator. φ : M → X
(if .m ∈ M , then .φ(m) := φ( f ), where . f (·) ≡ m on . T ). 

Corollary 1.1 Assume that operators . and .φX and .φY = φX satisfy the conditions of 
Theorem 1.2 with .X = Y . Let also there exist an operator .P ∈ H(X , X) such that 

1. . f = ◦ P) f = (P ◦ f ∀ f ∈ H(T , X); 
2. . f (t) = ◦ P) f (t) = P f (t) ∀t ∈ T ∀ f ∈ H(T , X); 
3. For any . t ∈ T

.hX ((P ◦ φX )(m), (P ◦ φX )(θ)) = m, if m = λ(hT (·, t)). (1.12) 

Then for arbitrary .t ∈ T the following sharp inequality holds: 

.hX f (·), P f (t)) ≤ λ(hT (·, t)). (1.13) 

The inequality becomes equality for the function 

. f̃t (·) = (P ◦ φX )(hX (·, t)).

If .P = Id (the identity operator) satisfies the above conditions, then inequality (1.13) has 
the form 

. hX f (·), f (t)) ≤ λ(hT (·, t)).
and becomes equality for function (1.11).
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Proof It is easy to check that operators . and .φX = P ◦ φ and .φY = φX instead of . φX

and.φY satisfy the conditions of Theorem 1.2 with.X = Y . Therefore for. hX f (· f (t))
we obtain 

. hX f (· f (t)) ≤ λ(hT (·, t)).
Due to the properties of . P

. hX f (·), P f (t)) = hX f (· f (t)) ≤ λ(hT (·, t)),

and the inequality (1.13) is proved. 
For the function . f̃t (·) = (P ◦ φX )(hX (·, t)) we have 

. hX f̃t (· f̃t (t)) = hX ◦ (P ◦ φX ))(hT (·, t ◦ (P ◦ φX ))(hT (t, t)))

. 
(1.10)= hX (((P ◦ φX ) ◦ λ)(hT (·, t)), ((P ◦ φX ) ◦ λ)(θ))

. = hX ((P ◦ φX )(λ(hT (·, t)), (P ◦ φX )(λ(θ)))
(1.12)= λ(hT (·, t)).

Therefore inequality (1.13) becomes equality for the function . f̃t (·). 
The last statement of the Corollary is obvious. 

The case when . is the integral operator and .P is the convexifying operator for multi-
valued (see e.g. [ 43]), .L-space-valued (see e.g. [ 20, 75]), or quasilinear-space-valued func-
tions (see e.g. [ 7]), is an important example of the operators that satisfy the conditions of 
Corollary 1.1. The case, when. is the integral operator, and. P is the identity operator occurs 
in the case of real-valued functions and functions with values in Banach spaces. Thus in the 
case .M = R+ many known Ostrowski-type inequalities for real-valued, multi-valued and 
fuzzy-valued functions, as well as for functions with values in Banach spaces (in particu-
lar, random processes) and in .L-spaces follow from Theorem 1.2 and Corollary 1.1 with 
appropriately chosen spaces .T , X and . Y and operators . P, φX and .φY . 

The only result that we know, where related questions were considered for .M R+, is  
article [ 59]. 

1.2.1.3 Classes .Hω(T, X) and Ostrowski-Type Inequalities 
Let.hM be an.M-distance in a set. M . A function.ω : M → M is called a modulus of continuity, 
if it satisfies the following properties: 

1. .ω(θ) = θ ; 
2. . ω is non-decreasing i.e., .ω(m1) ≤ ω(m2), whenever .m1 ≤ m2; 
3. . ω is semi-additive in the following sense: for all . m1,m2 ∈ M

.hM (ω(m1), ω(m2)) ≤ ω(hM (m1,m2)).
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In the case of.M = R+ a modulus of continuity as an independent notion was introduced 
by Nikolsky [ 65]. 

Let a modulus of continuity . ω and two .M-distance spaces .(T , hT ), .(X , hX ) be given. 
We consider the classes 

. Hω(T , X) = { f : T → X : hX ( f (t1), f (t2)) ≤ ω(hT (t1, t2)) ∀t1, t2 ∈ X}.

Classes .Hω(T , X) play an important role in approximation theory. Many papers are 
devoted to solutions of different extremal problems for these classes. Some results for real-
valued functions can be found e.g., in [ 33, 55, 73]. Some results regarding extremal problems 
for classes.Hω(T , X) of functions with non-numeric values can be found in [ 14, 16, 20, 21, 
42, 58]. 

Observe that the class.H(T , X) is a partial case of the class.Hω(T , X) in the case, when 
.ω = Id, where .Id : M → M is the identity mapping. On the other hand, as it is easy to see, 
the function .hω

T : T × T → M, given by the formula 

. hω
T (t1, t2) = ω(hT (t1, t2))

is a new.M-distance in. T , which becomes a.M-pseudo metric, if.hT is an.M-pseudo metric. 
Consideration of the classes .Hω(T , X) with different . ω and fixed distance .hT in . T allows 
to appreciate the properties of the functions . f : T → X in a more detailed manner. This 
makes the classes .Hω(T , X) important for approximation theory. 

If in Theorem 1.2 the .M-pseudo metric in .T is understood as .hω
T , then we obtain the 

following 

Corollary 1.2 For arbitrary modulus of continuity. ω and arbitrary function. f ∈ Hω(T , X)

the following inequality holds: 

. hY f (· f (t)) ≤ λ(ω(hT (·, t))),

which is sharp under the corresponding conditions and becomes equality on the function 

. fω,t (·) = φX (ω(hT (·, t))).

1.2.1.4 On Agreement of .M-Distances 
A partially ordered set.M with a smallest element. θ will be called a partially ordered monoid, 
if an associative binary operation .+ is defined in .M and the following properties hold: 

1. For all .m ∈ M , . θ + m = m = m + θ.

2. If .m, n ∈ M are such that .m ≤ n, then .m + p ≤ n + p for all .p ∈ M .
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An element. s in a partially ordered set.M is called a supremum of two elements.m, n ∈ M , 
if the following two conditions are satisfied 

1. .s ≥ m and .s ≥ n; 
2. If .u ≥ m and .u ≥ n, then .u ≥ s. 

If a supremum of .m, n ∈ M exists, then it is unique and we denote it by .sup{m, n}. 
A mapping .hX : X × X → M is called an .M-metric, if the following conditions hold: 

1. For all .x, y ∈ X , .x = y if and only if .hX (x, y) = θ ; 
2. For all .x, y ∈ X , .hX (x, y) = hX (y, x); 
3. For all .x, y, z ∈ X , .hX (x, y) ≤ hX (x, z) + hX (z, y). 

Next we give a sufficient condition on an.M-metric.hM in a partially ordered monoid. M
to agree with an arbitrary .M-metric .hX on a set . X . Before doing so, we note that generally 
speaking .M-metric .hX need not agree with .hM . For example, if .M = R+, .hX is a metric 
such that .0 < hX (α, β) < 1 for some .α, β ∈ X , and  .hM is the discrete metric on .R+ (i.e., 
.hM (a, b) = 0, if.a = b and.hM (a, b) = 1 for all.a b), then inequality (1.5) does not hold 
for .x = x1 = α and .x2 = β. Moreover, an .M-metric .hM does not necessarily agree with 
itself. Consider for example .M = R+, and let 

. hM (a, b) =

⎧
⎪⎪⎨

⎪⎪⎩

0, a = b = 0,
3
4 , exactly one of a, b is 0,

min 1, ln a
b , a 0 and b 0.

It is easy to verify that it is actually a metric on .M (the fact that this function satisfies the 
property.hM (ra, rb) = hM (a, b) for all .a, b ≥ 0 and.r > 0 allows to reduce the number of 
different cases to consider during verification of the triangle inequality). Since.ln 2 < 3

4 , for  
.x = x1 = 1, .x2 = 2 inequality (1.5) with .hX substituted by .hM does not hold. 

Lemma 1.2 Let .M be a partially ordered monoid and assume there is a function . e : M ×
M → M such that for all .x, y, z ∈ M the following properties hold: 

. 

x ≤ y ⇐⇒ e(x, y) = θ;
e(x, θ) ≤ x;

e(x, y) ≤ e(x, z) + e(z, y);
e(z + x, z + y) ≤ e(x, y).

If for arbitrary .x, y ∈ M the supremum .sup{x, y} exists, then 

. hM (x, y) = sup{e(x, y), e(y, x)}

is an .M-metric. Moreover, arbitrary .M-metric . h agrees with .hM.
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For example, if.M = R+, the function.e(x, y) = max{x − y, 0},.x, y ∈ R+, satisfies the 
conditions of Lemma 1.2. In this case .hM (x, y) = |x − y|. 

Proof We prove that .hM is an .M-metric first. If .x ∈ M , then  

. hM (x, x) = sup{e(x, x), e(x, x)} = sup{θ, θ} = θ.

Moreover, if.hM (x, y) = θ , then.e(x, y) = e(y, x) = θ , hence.x ≤ y and.y ≤ x , thus.x = y. 
Since .sup{a, b} = sup{b, a} for all .a, b ∈ M , we obtain that .hM (x, y) = hM (y, x) for all 
.x, y ∈ M . Finally, for all .x, y, z ∈ X , 

. hM (x, y) = sup{e(x, y), e(y, x)} ≤ sup{e(x, z) + e(z, y), e(y, z) + e(z, x)}
≤ sup{e(x, z), e(z, x)} + sup{e(z, y), e(y, z)} = hM (x, z) + hM (z, y).

Let .x ≤ y and .z ∈ M . Then .e(x, y) = θ , and  

. e(y, z) = e(x, y) + e(y, z) ≥ e(x, z)

i.e., the function . e is non-decreasing in its first variable. 
Finally, if . h is an .M-metric on a set . T , then for arbitrary .t, t1, t2 ∈ T , 

. 

hM (h(t, t1), h(t, t2)) = sup{e[h(t, t1), h(t, t2)], e[h(t, t2), h(t, t1)]}
≤ sup{e[h(t, t2) + h(t2, t1), h(t, t2)], e[h(t, t1) + h(t1, t2), h(t, t1)]}
≤ sup{e[h(t2, t1), θ ], e[h(t1, t2), θ ]} = e(h(t1, t2), θ) ≤ h(t1, t2).

The idea to use an order-defining function. e (with properties similar to the ones stated in 
the lemma) as a tool to define partially ordered metric spaces was introduced in [ 11]. 

1.2.2 Some Notes About Estimates for the Deviation Between Operators 

We start with some remarks that apply to an arbitrary partially ordered set. 
A sequence.{xn} ⊂ N will be called extremal for a set .N in a partially ordered space. M , 

if .y ∈ M and .y ≥ xn for all .n ∈ N implies that .y ≥ x for all .x ∈ N . 
Note that if.sup N exists and belongs to. N , then the constant sequence.{sup N } is extremal 

for the set . N . 
The following observation holds. 

Lemma 1.3 Let a set . A, a partially ordered set . M, and two functions . : A → M be 
given. Assume the following properties hold. 

(a) For all . f ∈ A one has . φ( f ) ≤ f ).
(b) There exists a subset .B ⊂ A such that .φ( f ) = f ) for each . f ∈ B. 
(c) For some sequence .{ fn} ⊂ B the sequence .{ fn)} is extremal for the set . A).
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Then the sequence .{φ( fn)} is extremal for the set .φ(A). If there exists .sup A), then 
.supφ(A) exists and the following equality holds 

. supφ(A) = sup A). (1.14) 

Proof Let .{ fn} ⊂ B be as in property (c). Assume that .m ∈ M is such that .m ≥ φ( fn) for 
all .n ∈ N. Since  .{ fn} ⊂ B, we obtain that .m ≥ fn) for all .n ∈ N, due to condition (b). 
Hence .m ≥ x) ≥ φ(x) for all .x ∈ A, due to conditions (c) and (a), which implies the 
first statement of the lemma. 

Suppose that .s := sup A) exists. Then due to condition (a) for any . f ∈ A one has 
.s ≥ φ( f ). Moreover, if .u ∈ M is such that .u ≥ φ( f ) for any. f ∈ A, then for the sequence 
.{ fn} from condition (c), due to condition (b) we obtain .u ≥ φ( fn) = fn) for all .n ∈ N. 
Therefore.u ≥ f ) for any. f ∈ A, and hence by the definition of supremum,.u = s. This 
implies (1.14). The lemma is proved. 

It appears that in many known situations, the solution of the problem to find quantity (1.1) 
uses the scheme of Lemma 1.3. We restate it in Lemma 1.4 in slightly different notations, 
which are closer to the ones used below. The motivation for these notations is as follows. 
Information about many classes of functions.A is given in terms of the value.λ f , . f ∈ A, of  
some operator . λ. For example, the Sobolev classes .Wr

q (a, b), .r ∈ N, .q ∈ [1, ∞], . (a, b) ⊂
R, are determined by the condition . f (r)

Lq (a,b) ≤ 1 on the function .λ f = f (r). More 
examples will be considered below. 

For two sets . A and . B, by .BA we denote the set of all functions . f : A → B. 

Lemma 1.4 Let.M be a partially ordered set,.S, T , X , Y , Z be some sets and. hY : Y × Y →
M be some function. Assume also .A ⊂ XT , . I : A → Y , .λ : A → Z S, and . ϕ : λ(A) →
M be such that the following properties hold. 

(a) For all . f ∈ A one has 
.hY f , I f ) ≤ ϕ ◦ λ( f ). (1.15) 

(b) There exists a subset .B ⊂ A such that inequality (1.15) becomes equality for each 
. f ∈ B. 

(c) For some sequence .{ fn} ⊂ B the sequence .{ϕ ◦ λ( fn)} is extremal for the set .ϕ ◦ λ(A). 

Then the sequence .{hY fn, I fn)} is extremal for the set . {hY f , I f ) : f ∈ A}.

Proof It is enough to apply Lemma 1.3 to .φ( f ) = hY f , I f ), and . = ϕ ◦ λ. 

The statement of Lemma 1.4 can be rephrased as follows. Under the conditions of 
Lemma 1.4 the inequality
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.hY f , I f ) ≤ supϕ ◦ λ(A) (1.16) 

holds for all . f ∈ A, provided the supremum on the right-hand side of the inequality exists. 
Inequalities (1.15) and (1.16) are  sharp.  

There are two key steps in the application of Lemma 1.4: the first one is to obtain 
inequality (1.15) that becomes equality for an enough wide family of functions; the second 
one is to solve extremal problem 

. ϕ(g) → sup over g ∈ λ(A).

Each of these steps can be non-trivial, but in some known in the literature results both 
of them are either trivial, or already known. In particular we show that many results on 
the Ostrowski type inequalities in fact can be obtained using standard arguments as an 
application of Lemma 1.4. For example, a majority of results from survey [ 41] in fact follow 
from Theorem 1.5 with .n = 1 and .n = 2. 

1.2.3 Classes of Smooth Functions Defined on a Segment 

The results of this section are mainly from [ 59]. 

1.2.3.1 Auxiliary Results 
Using the following technical lemmas, we give several applications of Lemma 1.4. For a 
given integrable on .[a, b] function .w and .x ∈ [a, b] set 

.rx (s) = rx (w; s) = − s
a w(t)dt, s ≤ x,

b
s w(t)dt, s ≥ x; (1.17) 

Lemma 1.5 Let . f , w : [a, b] → R be absolutely continuous functions, .w be positive on 
.[a, b] and .p : [a, b] → R be an integrable on .[a, b] function. Then for each . x ∈ [a, b]

. 

b

a
p(t) f (t)dt −

b

a
p(t)w(t)dt

f (x)

w(x)
=

b

a
rx (pw; s)Df (s)ds,

where .Df = 1
w
f . 

Proof 

.

b

a
p(t) f (t)dt −

b

a
p(t)w(t)dt

f (x)

w(x)

=
b

a
p(t)w(t)

f (t)

w(t)
− f (x)

w(x)
dt
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= 
x 

a 
p(t)w(t) 

f (t) 
w(t) 

− 
f (x) 
w(x) 

dt  + 
b 

x 
p(t)w(t) 

f (t) 
w(t) 

− 
f (x) 
w(x) 

dt  

= −  
x 

a 
p(t)w(t) 

x 

t 
D f  (s)dsdt  + 

b 

x 
p(t)w(t) 

t 

x 
D f  (s)dsdt  

= 
x 

a 
D f  (s) − 

s 

a 
p(t)w(t)dt  ds  + 

b 

x 
D f  (s) 

b 

s 
p(t)w(t)dt  ds  

= 
b 

a 
rx (s)Df  (s)ds, 

as required. 

Assume that.n ∈ N positive on.[a, b] functions.w1, . . . , wn such that.w
(n−k)
k is absolutely 

continuous, .k = 1, . . . , n, are given. Consider differential operators 

.D0 f = f , Dk f = 1

wk
Dk−1 f , k = 1, . . . , n. (1.18) 

Such type of operators were studied in [ 50, Chapter 6]. Starting with an integrable function 
.p : [a, b] → R and a point.x ∈ [a, b], we define a sequence of functions.rkx : [a, b] → R by 
the formula 

.r0x = p, and rkx = rx (wkr
k−1
x ), k = 1, . . . , n, (1.19) 

where the function .rx is defined by (1.17). The following representation holds. 

Lemma 1.6 

. 

b

a
p(t) f (t)dt −

n−1

k=0

b

a
rkx (t)wk+1(t)dt

Dk f (x)

wk+1(x)
=

b

a
rnx (t)Dn f (t)dt .

Proof We proceed by induction on. n. The case.n = 1 immediately follows from Lemma 1.5. 
Assume the lemma is true for .n = s. Then 

. 

b

a
p(t) f (t)dt −

s

k=0

b

a
rkx (t)wk+1(t)dt

Dk f (x)

wk+1(x)

=
b

a
rsx (t)Ds f (t)dt −

b

a
rsx (t)ws+1(t)dt

Ds f (x)

ws+1(x)
.

Applying Lemma 1.5 with .p = rsx and .w = ws+1, we obtain the required. 

In the case, when.wk ≡ 1 for all .k = 1, . . . , n, the previous lemma can be rewritten in a 
more explicit way.
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Lemma 1.7 If.n ∈ N,. f has.n − 1 derivatives on.[a, b] and. f (n−1) is absolutely continuous 
on .[a, b], then 

. 

b

a
p(t) f (t)dt −

n−1

k=0

1

k!
b

a
p(t)(t − x)kdt f (k)(x)

=
b

a
rnx (t) f (n)(t)dt . (1.20) 

Moreover, for all .k = 1, . . . , n, 

.

b

a
rkx (t)dt = 1

k!
b

a
p(t)(t − x)kdt . (1.21) 

Proof First of all note that the left-hand side of (1.20) becomes zero, if . f is a polynomial 

of degree less than . n; this easily follows from the expansion . f (t) = n−1
k=0

f (k)(x)
k! (t − x)k

for polynomials of degree less than . n. 
Next by induction on . n we simultaneously prove that equalities (1.20) and (1.21) hold.  

For .n = 1 equality (1.20) follows from Lemma 1.5. Since the left-hand side of (1.20) with 
.n = 2 is zero for . f (t) = t , using (1.20) for .n = 1, we obtain 

. 0 =
b

a
p(t)tdt −

b

a
p(t)dt x −

b

a
p(t)(t − x)dt

=
b

a
r1x (t)dt −

b

a
p(t)(t − x)dt

and equality (1.21) for .k = 1 follows. 
Assume that equalities (1.20) and (1.21) hold for some .n = s ∈ N. Since the left-hand 

side of (1.20) with .n = s + 2 is zero for the function . f (t) = t s+1

(s+1)! , we obtain, using the 
inductive assumptions for .n = s, 

.0 =
b

a
p(t)

t s+1

(s + 1)!dt −
s+1

k=0

1

k!
b

a
p(t)(t − x)kdt

xs−k+1

(s − k + 1)!

=
b

a
p(t)

t s+1

(s + 1)!dt −
s−1

k=0

1

k!
b

a
p(t)(t − x)kdt

xs−k+1

(s − k + 1)!

− 1

s!
b

a
p(t)(t − x)sdt x − 1

(s + 1)!
b

a
p(t)(t − x)s+1dt

=
b

a
rsx (t) · tdt −

b

a
rsx (t)dt x − 1

(s + 1)!
b

a
p(t)(t − x)s+1dt

=
b

a
rs+1
x (t)dt − 1

(s + 1)!
b

a
p(t)(t − x)s+1dt,
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which proves (1.21) for .k = s + 1. Finally, 

. 

b

a
p(t) f (t)dt −

s

k=0

1

k!
b

a
p(t)(t − x)kdt f (k)(x)

=
b

a
p(t) f (t)dt −

s−1

k=0

1

k!
b

a
p(t)(t − x)kdt f (k)(x)

− 1

s!
b

a
p(t)(t − x)sdt f (s)(x)

=
b

a
rsx (t) f

(s)(t)dt −
b

a
rsx (t)dt f (s)(x) =

b

a
rs+1
x (t) f (s+1)(t)dt .

1.2.3.2 Ostrowski-Type Inequality for the Classes . Wn
q [a, b]

For.n ∈ N and.1 ≤ q ≤ ∞denote by.Wn
q [a, b] the class of continuous functions. f : [a, b] →

R such that . f (n−1) is absolutely continuous on .[a, b], and . f (n)
Lq [a,b] ≤ 1. 

Note that class .Wn
q [a, b] contains all polynomials of degree less than . n. If  .x ∈ [a, b] is 

fixed, . p is an integrable on .[a, b] functions and 

. sup
f ∈Wn

q [a,b]

b

a
p(t) f (t)dt −

n−1

k=0

ck f
(k)(x) < ∞ (1.22) 

for some numbers .c0, . . . , cn−1, then the value of the expression under the supremum must 
be zero for all polynomials of degree less than. n. Setting. f to be. t 1, t t − x, . . . , t
(t − x)n−1, we get  

. ck = 1

k!
b

a
p(t)(t − x)kdt, k = 0, 1, . . . , n − 1.

This means that (1.22) can hold only for the above choice of the coefficients . ck , . k =
0, . . . , n − 1. At the same time, for these values of the coefficients, the supremum is indeed 
finite and is found in the following theorem. 

Theorem 1.3 Let .n ∈ N, .1 ≤ q ≤ ∞, .x ∈ [a, b] and an integrable on .[a, b] function . p be 
given. Then 

. sup
f ∈Wn

q [a,b]

b

a
p(t) f (t)dt −

n−1

k=0

1

k!
b

a
p(t)(t − x)kdt f (k)(x)

= sup
g Lq [a,b]≤1

b

a
rnx (t)g(t)dt rnx Lq [a,b], (1.23) 

where .1/q + 1/q = 1 and .rnx is defined in (1.19) with .wk ≡ 1, .k = 1, . . . , n.
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Proof The right equality in (1.23) is true due to the Hölder inequality. To obtain the left 
one, it is sufficient to apply Lemma 1.4 with.S = T = [a, b], .X = Y = Z = M = R, . A =
B = Wn

q [a, b], . f = b
a p(t) f (t)dt , 

. I f =
n−1

k=0

1

k!
b

a
p(t)(t − x)kdt f (k)(x),

.λ f = f (n) and .ϕg = b
a rnx (t)g(t)dt . Inequality (1.15) becomes equality due to 

Lemma 1.7. 

Related results with .p(t) ≡ 1 can be found in [ 2, 45]. 
Note that inequality (1.23) can be stated for all .x ∈ [a, b] at once as follows. Assume 

that .S = T = [a, b], .X = Z = R, .A = B = Wn
q [a, b], .λ f = f (n). Let .Y = M be the set 

of measurable essentially bounded on .[a, b] functions with pointwise addition and partial 
order; 

. hY ( f , g) = s → | f (s) − g(s)|, s ∈ [a, b],
. f = x b

a p(t) f (t)dt be the constant function, 

. I f = x
n−1

k=0

1

k!
b

a
p(t)(t − x)kdt f (k)(x), x ∈ [a, b],

and .ϕg = x b
a rnx (t)g(t)dt . Applying Lemma 1.4 we obtain sharp inequality (1.23); 

the fact that .supϕ(λ(A)) is well defined is contained in [ 76, Chapter IV, § 1]. 

1.2.3.3 Ostrowski-Type Inequality for the Classes . WnHω[a, b]
Recall that a continuous non-decreasing subadditive function .ω : [0, ∞) → [0, ∞) that 
vanishes at zero is called a modulus of continuity. For .n ∈ N denote by .WnHω[a, b] the 
class of continuous on .[a, b] functions . f such that . f (n) ∈ Hω[a, b], that is for all .h > 0, 

. | f (n)(x) − f (n)(y)| ≤ ω(h), whenever |x − y| ≤ h.

Using the same arguments as in the proof of Theorem 1.3, we obtain 

. sup
f ∈WnHω[a,b]

b

a
p(t) f (t)dt −

n−1

k=0

1

k!
b

a
p(t)(t − x)kdt f (k)(x)

= sup
g∈Hω[a,b]

b

a
rnx (t)g(t)dt .
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Since the class.Hω[a, b] contains all constants, the right-hand side of the latter equality can 
be finite only in the case 

.

b

a
rnx (t)dt = 0. (1.24) 

Assume that . p is non-negative on.[a, b] and.
b
a p(t)dt > 0. Due  to (1.21), condition (1.24) 

does not hold for any even . n. On the other hand, for each odd . n there exist .x ∈ [a, b] such 
that condition (1.24) holds (and such. x is unique provided. p is positive almost everywhere). 

Theorem 1.4 Let .n ∈ N be odd, . ω be a modulus of continuity, . p be an integrable positive 
almost everywhere on .[a, b] function, and .x ∈ [a, b] be such that condition (1.24) holds. 
Then 

. sup
f ∈WnHω[a,b]

b

a
p(t) f (t)dt −

n−1

k=0

1

k!
b

a
p(t)(t − x)kdt f (k)(x)

= sup
g∈Hω[a,b]

b

a
rnx (t)g(t)dt ≤

x

a
|rnx (t)|ω(ρ(t) − t)dt, (1.25) 

where .ρ : [a, x] → [x, b] is uniquely determined by the condition 

. 

t

a
rnx (s)ds =

ρ(t)

a
rnx (s)ds.

If . ω is concave, then the inequality in (1.25) becomes equality. 

Proof The equality in (1.25) can be proved using the arguments from the proof of Theo-
rem 1.3. Since. n is odd, from the definition of the function.rnx we obtain that.r

n
x is non-positive 

on.[a, x] and non-negative on.[x, b]. Taking into account equality (1.24), we may apply the 
Korneichuk–Stechkin lemma, see e.g. [ 55, § 7.1], which gives the inequality in (1.25). 
Moreover, it becomes equality in the case of a concave modulus of continuity . ω. 

1.2.3.4 Ostrowski-Type Inequality for Classes Defined by a General 
Differential Operator 

Let operators .Dk , .k = 1, . . . , n be defined by (1.18). Denote by .Dn
q , .q ∈ [1, ∞], the space 

of continuous functions . f : [a, b] → R such that . Dn f Lq [a,b] ≤ 1. Using Lemma 1.4 
together with Lemma 1.6, we obtain the following result. 

Theorem 1.5 Let .n ∈ N, .1 ≤ q ≤ ∞, .x ∈ [a, b] and an integrable on .[a, b] function . p be 
given. Then
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. sup
f ∈Dn

q [a,b]

b

a
p(t) f (t)dt −

n−1

k=0

b

a
rkx (t)wk+1(t)dt

Dk f (x)

wk+1(x)

= sup
g Lq [a,b]≤1

b

a
rnx (t)g(t)dt rnx Lq [a,b],

where .1/q + 1/q = 1, .rnx is defined in (1.19), and the operators .Dk, .k = 1, . . . , n, are  
defined in (1.18). 

1.2.4 Some Auxiliary Results 

In this section we give some definitions and auxiliary results which will be used in Ostrowski-
type and Kolmogorov-type inequalities later. These results are mainly from [ 29]. 

For.x, y ∈ R
d denote by.(x, y) the dot product of. x and. y. Let.K ⊂ R

d be an open convex 
symmetric with respect to the origin. θ bounded set with.θ ∈ int K . Denote by.K the family 
of all such sets . K . For  .K ∈ K and .x ∈ R

d denote by .|x |K the norm of . x generated by the 
set . K , i.e., 

. |x |K := inf{λ > 0 : x ∈ λK }.
If .K is the unit ball in .R

d
p i.e., 

. K = (x1, . . . , xd) ∈ R
d :

d
k=1 |xk |p ≤ 1, p ∈ [1, ∞)

maxk=1,...,d |xk | ≤ 1, p = ∞
then we write .| · |p instead of .|x |K . 

A set .C ⊂ R
d is called a cone, if .x ∈ C =⇒ λx ∈ C for all .λ > 0. By. C we denote the 

set of all open convex cones in .R
d . 

For .R > 0, .BR denotes the Euclidean ball with center at the origin . θ of .Rd . By  . Sd−1

we denote the unit Euclidean sphere in .R
d with the center . θ . Let a set .C ∈ C be given, and 

. : C → R be a non-negative homogeneous of degree . 0 (i.e., . x) = x) for all . λ > 0
and .x ∈ C) integrable on .C ∩ Sd−1 with respect to the spherical measure function. This 
function . will be referred to as a non-negative characteristic. 

For a set .K ∈ K, denote by .K ◦ its polar set (see e.g. [ 68, Section 14]), 

. K ◦ = y ∈ R
d : sup

x∈K
(x, y) ≤ 1 .

It is well known that 
. |z|K ◦ = sup{(x, z) : |x |K ≤ 1}.

In particular for all .x, y ∈ R
d (see e.g., [ 68, Sect. 15]), .(x, y) ≤ |x |K · |y|K ◦ . From the 

definition of the set .K ◦ it also follows that .|y|K ◦ = 1 =⇒ supx∈K (x, y) = 1.
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A .d − 1 dimensional hyperplane . α is called a supporting hyperplane for a convex set 
. K , if .K is contained in one of the two closed half-spaces generated by. α, and.α ∩ ∂K = ∅. 
A supporting hyperplane . α of a convex set .K is called a tangent hyperplane at .x ∈ ∂K , if  
.x ∈ α and there is only one supporting hyperplane of the set .K that contains . x . 

Lemma 1.8 Let .K ∈ K, . α be a supporting hyperplane of . K, . δ be the distance between . α
and the origin . θ , and . n be the unit (i.e., .|n|2 = 1) external normal of . α. Then .|n|K ◦ = δ. In  
particular, this equality holds if .K is a polytope and . α contains a face . γ of . K. 

Proof By definition, .K lies on one side of the hyperplane . α, hence 

. |n|K ◦ = sup{(x, n) : |x |K ≤ 1} ≤ δ.

On the other hand, if .y ∈ α ∩ ∂K , and  .{ym} ⊂ K is a sequence of points converging to . y, 
then .|ym |K → 1 and .(ym, n) → δ as .m → ∞. 

The following consequence of the coarea (see e.g. [ 44, Theorem 3.2.12]) formula will 
be needed. This result is essentially contained in [ 28]. 

Lemma 1.9 Let.C ∈ C,.K ∈ K be a polytope,. γ be a face of.K ∩ C that does not contain the 
origin . θ and . δ be the distance between . θ and the plane that contains . γ . For . (a, b) ⊂ (0, ∞)

set . := λ∈(a,b) λγ . For all integrable . g : → R

. g(x)dx = δ
b

a
ρd−1

γ

g(ρy)dydρ.

Proof Let. n be the unit external normal of the face. γ . Consider the function.u(x) = 1
δ
(n, x). 

Then.|∇u(x)|2 = 1
δ
for all .x ∈ R

d , .γ ⊂ {x ∈ R
d : u(x) = 1}, and using the coarea formula 

we obtain 

. g(x)dx = δ g(x)|∇u(x)|2dx = δ
b

a ρ·γ
g(y)dydρ

= δ
b

a
ρd−1

γ

g(ρz)dzdρ.

Observe that the set . γ is contained in a .d − 1-dimensional hyperplane and we can inte-
grate over the .d − 1-dimensional Lebesgue measure (and write .dz) instead of the .d − 1-
dimensional Hausdorff measure .Hd−1. 

If .K ∈ K, then .| · |K is a finite convex homogeneous function on .R
d . According to [  68, 

Theorem 25.5] the set .D ⊂ R
d of points where.| · |K is differentiable is dense in .R

d and its 
complement has Lebesgue measure zero. Due to homogeneity of .| · |K , .Rd \ D is a cone
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in .Rd , and hence the set .∂K \ D has zero .d − 1-dimensional Hausdorff measure .Hd−1. 
At each point .x ∈ ∂K ∩ D the function .| · |K is differentiable, and hence .K has a tangent 
hyperplane (with a normal .∇|x |K ). Thus .Hd−1-almost everywhere on .∂K we can define a 
function. n that maps a point. x to the external unit normal of the tangent hyperplane of.K at. x . 

For a convex function . f by .∂ f (x) we denote the subgradient of . f at . x i.e., the set 
of all vectors .x∗ ∈ R

d such that . f (z) ≥ f (x) + (x∗, z − x) for all . z from the domain of 
definition of. f (see e.g., [ 68, Sect. 23]). If.K ∈ K is a polytope, and. x belongs to the interior 
of a face . γ of . K , then the subgradient .∂|x |K is a singleton that contains an orthogonal to 
. γ vector; if .x ∈ ∂K is not in the interior of a face, then .∂|x |K contains vectors orthogonal 
to all supporting planes of .K at . x , in particular it contains vectors orthogonal to each of the 
adjacent to . x faces of . K . 

Let . be a non-negative characteristic defined on a cone .C ∈ C. From the homogeneity 
of . it follows that for each .K ∈ K, . is integrable on the set .K ∩ C with respect to 
.d − 1-dimensional Hausdorff measure .Hd−1. 

For .K ∈ K, .C ∈ C and a non-negative characteristic . set 

. K ,C) :=
C∩∂K

|n(t)|K ◦ t)Hn−1(dt),

where . n is the unit external normal of . K . We need the following lemma. 

Lemma 1.10 Let.K ∈ K,.C ∈ C, and a non-negative characteristic. be given. Let. {Ki } ⊂
K, be a sequence of polytopes that converges to .K in the Hausdorff metric. Then as . i → ∞

. Ki ,C) → K ,C).

Proof The functions.| · |Ki converge to.| · |K uniformly on.Sd−1, and due to positive homo-
geneity of the support functions, pointwisely on .Rd . For each .ξ ∈ Sd−1, let  .xi (ξ), .i ∈ N, 
and .x(ξ) be the points where the ray .{λξ : λ > 0} intersects .∂Ki and .∂K respectively. Let 
.ε > 0 be fixed. For each .ξ ∈ Sd−1 such that .| · |K is differentiable at .x(ξ), applying [ 68, 
Theorem 24.5] to the sequence.{xi (ξ)}, we can find.N = N (ξ) such that for all.i > N one has 

. ∂|xi (ξ)|Ki ⊂ ∂|x(ξ)|K + Bε = ∇|x(ξ)|K + Bε.

Hence if . γ is a face of .Ki that contains .xi (ξ) and .nγ ∈ ∂|xi (ξ)|Ki is its normal, then 

.|nγ − ∇|x(ξ)|K |2 ≤ ε. (1.26) 

By [ 68, Theorem 24.7] the set .G := x∈∂K ∂|x |K is closed. Moreover, since the function 
.| · |K is positively homogeneous, it does not have extrema on .∂K , and hence .0 /∈ G. Thus 
.G is separated from zero and due to (1.26) for almost all .ξ ∈ Sd−1 one has 

. |ni (xi (ξ))|K ◦
i

→ |n(x(ξ))|K ◦ as i → ∞.
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Moreover, since .|ni (xi (ξ))|K ◦
i
is the distance from the origin to a hyperplane that contains 

one of the faces of .Ki , there exists .A > 0 such that 

. |ni (xi (ξ))|K ◦
i

· |xi (ξ)|d−1
2 < A

for all .ξ ∈ Sd−1 and .i ∈ N. The functions .ξ → |ni (xi (ξ))|K ◦
i
|xi (ξ)|d−1

2 , .ξ ∈ Sd−1, 

are majorated by an integrable on .C ∩ Sd−1 function .ξ A and converge almost 
everywhere to the function .|n(x(ξ))|K ◦ |x(ξ)|d−1

2 . Thus as .i → ∞, 

. 

C∩∂Ki

|ni (s)|K ◦
i

s)Hn−1(ds) =
C∩Sd−1

|ni (xi (ξ))|K ◦
i
|xi (ξ)|d−1

2 dξ

→
C∩Sd−1

|n(x(ξ))|K ◦ |x(ξ)|d−1
2 dξ =

C∩∂K
|n(t)|K ◦ t)Hn−1(dt),

as desired. 

For .0 ≤ a < b ≤ +∞ and .p ∈ [1, ∞], denote by .Lp(a, b) the space of all measurable 
functions .w : (a, b) → R+ with finite norm 

. w Lp(a,b) =
⎧
⎨

⎩

b
a td−1w p(t)dt

1/p
, p < ∞,

ess supt∈(a,b) t
d−1w(t), p = ∞.

(1.27) 

For .(a, b) ⊂ (0, ∞) and .K ∈ K we set 

. K (a, b) :=
λ∈(a,b)

λ · ∂K .

The following lemma is a key tool to prove the Ostrowski-type inequality for the class 
.Hω

K (K ∩ C) defined in Sect. 1.2.5 (see Theorem 1.6 below), which in turn is a key step in 
the proof of a sharp Kolmogorov-type inequality formulated in Theorem 1.13. 

Lemma 1.11 Let .K ∈ K, .C ∈ C, .(a, b) ⊂ (0, ∞), .w ∈ L1(a, b) and . be a non-negative 
characteristics. Then 

. 

C∩K (a,b)
w(|t |K t)dt = K ,C) w L1(a,b).

Proof Assume that .K is a polytope first. Let . γ , . , . δ and . n be as in Lemma 1.9. Using  
Lemmas 1.8 and 1.9 we obtain
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. w(|t |K t)dt = δ
b

a
ρd−1

γ

w(|ρs|K s)dsdρ

w L1(a,b)
γ

|n|K ◦ s)ds.

Summing all such equalitites, we obtain the required equality. 
Let .K ∈ K be an arbitrary set now, and let .{Ki } ⊂ K be a sequence of polytopes that 

converges to .K in the Hausdorff metric. 
For each.ξ ∈ Sd−1 set.r(ξ) = sup{λ > 0 : λξ ∈ K } and analogously set. ri (ξ) = sup{λ >

0 : λξ ∈ Ki }. Switching to the spherical coordinates, and using homogeneity of. , we obtain 

. 

C∩K (a,b)
w(|t |K t)dt −

C∩Ki (a,b)
w(|t |Ki t)dt =

C∩Sd−1

br(ξ)

ar(ξ)

ρd−1w
ρ

r(ξ)
dρdξ −

C∩Sd−1

bri (ξ)

ari (ξ)

ρd−1w
ρ

ri (ξ)
dρdξ

=
C∩Sd−1

b

a
rd(ξ) − rdi (ξ) ρd−1w(ρ)dρdξ → 0 as i → ∞,

since . ri uniformly on .C ∩ Sd−1 converges to . r and hence the internal integral tends to . 0 as 
.i → ∞ uniformly on .C ∩ Sd−1. Using Lemma 1.10 and already proved case of the lemma 
for polytopes, we obtain as . i → ∞

. 

C∩K (a,b)
w(|t |K t)dt =

C∩Ki (a,b)
w(|t |Ki t)dt + o(1) =

= Ki ,C) w L1(a,b) + o(1) = K ,C) w L1(a,b) + o(1).

This finishes the proof of the lemma for arbitrary .K ∈ K. 

The following lemma is a key tool to prove Theorem 1.7. Note that the techniques of 
its proof was gradually refined in several works. The case .d = 1 is contained e.g., in [ 64, 
Theorem 4.1]. The case .K = B1 is contained in [ 31]; note that in this case, a switch to the 
polar coordinate system and back can be (and was) used instead of the arguments related 
to the coarea formula (see formula (1.31) below). In [ 22] the techniques was extended 
to the case .K = (−1, 1)d , which has the property that .∇| · |K is piecewise-constant and 
has constant Euclidean length .Hd−1-almost everywhere on .∂K . In [  22] this technique was 
extended to polytopial sets. K , for which.∂K (up to a set of.Hd−1 zero measure) can be split 
into a finite number of subsets with constant Euclidean length of.∇| · |K (but the length may 
differ on different pieces). Finally, the following lemma was proved in [ 29]. 

Lemma 1.12 Let .K ∈ K, .C ∈ C, .h > 0, . be a non-negative characteristics and non-
negative measurable functions . f : C ∩ K (0, h) → R, .w : (0, h) → R be such that .w ∈
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L1(u, h) for all .u ∈ (0, h), and the integral . C∩K (0,h)
gw(|t |K ) f (t t)dt exist, where 

.gw : (0, h) → R, gw(u) = 1

ud−1

h

u
w(ρ)ρd−1dρ. (1.28) 

Then 

. 

1

0 C∩K (0,h)

w(|s|K )|s|K f (ρs s)dsdρ =
C∩K (0,h)

gw(|t |K ) f (t t)dt .

Proof Since .| · |K is a convex function on .R
d , by [  68, Theorem 24.7] it is Lipschitz on the 

unit ball .B1. Since in addition .| · |K is positively homogeneous, .| · |K is Lipschitz on the 
whole space.R

d (with the same Lipschitz constant). Thus by the Rademacher theorem, it is 
differentiable almost everywhere. Again by positively homogeneity of .| · |K we obtain that 
.∇|λx |K = ∇|x |K for all .λ > 0. 

Let .R > 0 be such that .K ⊂ BR . For arbitrary .θ x ∈ R
d such that .∇|x |K exists, set 

.v = x
|x |2 . Then 

.|∇|x |K |2 ≥ (∇|x |K , v) = lim
s→0

|x + s · v|K − |x |K
s

≥ 1

R
. (1.29) 

On the other hand, according to [ 68, Theorem 24.7] applied to the function.| · |K and.S = ∂K , 
we obtain that there exists.r > 0 such that at each point.x ∈ ∂K where.| · |K is differentiable 
(and hence for each .x ∈ R

d , where .| · |K is differentiable), one has 

.|∇|x |K |2 ≤ 1

r
. (1.30) 

Let .A ⊂ C be an open cone. From (1.29) and (1.30) it follows that the numbers .RA and 
.rA such that 

. 
1

RA
= inf

x
|∇|x |K |2, 1

rA
= sup

x
|∇|x |K |2

are finite and positive, where the supremum and the infimum are taken over points . x ∈
A ∩ ∂K , where .| · |K is differentiable. 

Applying the coarea formula, changing the order of integration, and then again the coarea 
formula, we obtain 

.

1

0 A∩K (0,h)

w(|y|K )|y|K f (t y y)dydt

≤ RA

1

0 A∩K (0,h)

w(|y|K )|y|K f (t y y)|∇|y|K |2dydt

= RA

1

0

h

0 A∩ρ∂K
w(|x |K )|x |K f (t x x)Hd−1(dx)dρdt
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= RA 

1 

0 

h 

0 A∩∂ K 
ρd−1w(|ρx |K )|ρx |K f (tρx x)Hd−1(dx)dρdt  

= RA 
A∩∂ K 

x) 
h 

0 

1 

0 
ρd w(ρ) f (tρx)dtdρ Hd−1(dx) 

= RA 
A∩∂ K 

x) 
h 

0 

ρ 

0 
ρd−1w(ρ) f (sx)dsdρ Hd−1(dx) 

= RA 
A∩∂ K 

x) 
h 

0 
f (sx) 

h 

s 
ρd−1w(ρ)dρds  Hd−1(dx) 

= RA 
A∩∂ K 

x) 
h 

0 
sd−1 f (sx)gw(s)ds  Hd−1(dx) 

= RA 

h 

0 A∩∂ K 
sd−1 f (sx)gw(|sx |K sx)Hd−1(dx)ds  

= RA 
A∩K (0,h) 

f (y)gw(|y|K y)|∇|y|K |2dy  

≤ 
RA 

rA A∩K (0,h) 
f (y)gw(|y|K y)dy. (1.31) 

This estimate in particular implies that the integral on the left-hand side of (1.31) exists. 
Applying the same arguments, but using an estimate from below for .|∇|y|K |2 in the first 
inequality, and from above for .|∇|y|K |2 in the second inequality in (1.31), one can obtain 
the inequality 

. 

1

0 A∩K (0,h)

w(|y|K )|y|K f (t y y)dydt

≥ rA
RA A∩K (0,h)

f (y)gw(|y|K y)dy. (1.32) 

Next we fix an arbitrary.ε > 0. Since.| · |K is differentiable almost everywhere in.R
d , we  

can find an open cone .Aε ⊂ R
d such that .meas Aε ∩ K < ε and .| · |K is differentiable on 

.∂K \ Aε. Using (1.30) and (1.29) together with (1.31) we obtain that 

.

1

0 C∩K (0,h)∩Aε

w(|y|K )|y|K f (t y y)dydt = o(1), ε → 0. (1.33) 

For the chosen . ε and each .x ∈ ∂K by [ 68, Corollary 24.5.1] we find .δ(x) > 0 such that 

. ∂|z|K ⊂ ∂|x |K + Bε ∀z : |z − x |2 < δ(x).

Thus [ 68, Theorem 25.1] implies that for all . x ∈ ∂K \ Aε

.|∇|x |K − ∇|z|K |2 ≤ ε ∀z ∈ (K \ Aε) ∩ (x + Bδ(x)). (1.34)
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The family of open balls with center . x and radius .δ(x), .x ∈ ∂K \ Aε is an open cover of 
the compact set .∂K \ Aε, and hence it has a finite subcover. Let it be determined by points 
.x1, . . . , xm , .m ∈ N. Let .Ai be the interior of the cone generated by the set . ∂K ∩ (xi +
Bδ(xi )) \ Aε, .i = 1, . . . ,m, and set .A1 = A1, .Ai+1 = Ai+1 \ ∪i

j=1A j , .i = 1, . . . ,m − 1. 
From the construction it follows that the sets .C ∩ K ∩ Ai , .i = 1, . . . ,m and . C ∩ K ∩ Aε

up to a set of zero measure form a partition of the set .C ∩ K , and from (1.29) and (1.34) it  
follows that 

. 1 ≤ RAi

rAi

< 1 + α(ε), i = 1, . . . ,m,

where.α = o(1) as.ε → 0. Thus from (1.31), (1.32) applied to each of the sets.K ∩ Ai ∩ C , 
.i = 1, . . . ,m, and (1.33) we obtain that as .ε → 0, 

. 

1

0 C∩K (0,h)

w(|y|K )|y|K f (t y y)dydt

= (1 + o(1))
C∩K (0,h)

f (y)gw(|y|K y)dy + o(1),

which implies the required. 

Lemma 1.13 Let .K ∈ K and .y ∈ R
d , .y 0 be such that .| · |K is differentiable at . K. Then 

.(y, ∇|y|K ) = |y|K and 
.|∇|y|K |K ◦ = 1. (1.35) 

Proof We prove (1.35) first. According to [ 68, Theorem 14.5], the function.|y|K is equal to 
the support function of .K ◦. Hence all subgradient vectors of .| · |K belong to .∂K ◦ in virtue 
of [ 68, Corollary 23.5.3]. Thus .|∇|y|K |K ◦ = 1, since  .∇|y|K is the unique subgradient of 
.| · |K at . y (see [ 68, Theorem 25.1]). 

The hyperplane orthogonal to.∇|y|K that contains. y is a supporting hyperplane of. |y|K ·
K , and hence (the first equality holds due to (1.35)) 

. 1 = sup
x∈K

(x, ∇|y|K ) = 1

|y|K sup
x∈|y|K ·K

(x, ∇|y|K ) = 1

|y|K (y, ∇|y|K ).

Lemma 1.14 Let .K ∈ K and . g be an integrable on .(0, 1) function. For the function 

. f : K → R, f (y) =
|y|K

0
g(u)du, y ∈ K

almost everywhere (more precisely, at all points .y ∈ K, where .∇|y|K exists) 

.∇ f (y) = g(|y|K ) · ∇|y|K and |∇ f (y)|K ◦ = |g(|y|K )|. (1.36)
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Proof Let.e j be the. j-th element of the usual basis in.R
d ,. j = 1, . . . , d. Assume that. y ∈ K

is such that .∇|y|K exists. Consider a function .F(η) = |y+ηe j |K
0 g(u)du of real variable . η. 

Then 

. 
∂ f

∂x j
(y) = F (0) = g(|y|K ) · |y + ηe j |K η=0 = g(|y|K )(∇|y|K , e j )

and the first equality in (1.36) follows. The second equality now follows from (1.35). 

1.2.5 Classes of Functions with Given Majorant of Modulus of Continuity 

For arbitrary .h > 0, .K ∈ K and .C ∈ C, we consider the following quantity 

. S( f ; h) = S(h) =
hK∩C

w(|t |K )( f (t) − f t)dt,

where . f (θ) := limx→θ f (x), we assume the existence of this limit, and further conditions 
on the function. f and weights. w and. will be specified later. This quantity on the one hand 
is related to Ostrowski type inequalities, and on the other hand is intimately connected to 
fractional derivatives. 

Let .ω be a modulus of continuity i.e., .ω : [0, ∞) → [0, ∞) is a continuous non-
decreasing semi-additive function such that.ω(0) = 0. For.K ∈ K and.C ⊂ R

d we consider 
the space .Hω

K (C) of functions . f : C → R such that the quantity 

. f Hω
K (C) := sup

x,y∈C,x y

| f (x) − f (y)|
ω(|x − y|K )

is finite. It is easy to see that all functions from.Hω
K (C) are continuous. 

The following theorem is contained in [ 29]; the case when .C = R
d , and  .K is the unit 

Euclidean ball and .w(t) = t−(d+α), .α ∈ (0, 1), was known earlier, see [ 24]. 

Theorem 1.6 Assume that a set .K ∈ K, a cone .C ∈ C, a weight function . w, a modulus of 
continuity . ω, and a non-negative characteristic . are given. If .w · ω ∈ L1(0, h) for some 
.h > 0, then 

. sup
f Hω

K (hK∩C)≤1
S( f ; h) = K ,C) w · ω L1(0,h).

The supremum is attained on functions 

. f (t) = ±ω(|t |K ) + A, A ∈ R. (1.37) 

Proof For each . f such that . f Hω
K (hK∩C) ≤ 1, using Lemma 1.11 we obtain
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. hK∩C
w(|t |K )( f (t) − f t)dt ≤

hK∩C
w(|t |K )ω(|t |K t)dt

= K ,C) w · ω L1(0,h).

Moreover, the inequality becomes equality for the functions defined in (1.37). 
It is now enough to show that for functions (1.37), . f Hω

K (hK∩C) ≤ 1 (in fact equality 
holds). It is sufficient to show this for the function . f (t) = ω(|t |K ). For arbitrary . t, s ∈
hK ∩ C , using semi-additivity and monotonicity of . ω we obtain 

. | f (t) − f (s)| = |ω(|t |K ) − ω(|s|K )| ≤ ω(||t |K − |s|K |) ≤ ω(|t − s|K ),

as desired. 

1.2.6 Classes of Functions with a Restriction on Their Gradient 

For .p ∈ [1, ∞] and an open set  .Q ⊂ R
d , we consider the Sobolev class .W 1,p(Q) that 

consists of all functions . f ∈ L p(Q) such that all their partial derivatives (understood in 
the distributional sense) belong to .L p(Q) (see e.g. [ 62, Section 6.7]). We also consider the 

classes .W 1,p
loc (Q) of functions that belong to .W 1,p(T ) for each compact set .T ⊂ Q. 

We need the following lemma, which follows from the results in [ 62, Chapter 6.9]. 

Lemma 1.15 Suppose .Q ⊂ R
d is an open convex set, . f ∈ W 1,1

loc (Q) and .x, y ∈ Q. Then 

. f (y) − f (x) =
1

0
(y − x, ∇ f [(1 − t)x + t y]) dt .

For a cone .C ∈ C, a non-negative characteristic . : C → R, and an open set . Q ⊂ C
that contains . θ in its closure, by .L∞,p(Q) we denote the class of continuous at . θ functions 

. f ∈ L∞(Q) such that for all.i = 1, . . . , d,.
1
p · fxi ∈ L p(Q). Due to equivalence of finite-

dimensional norms, for each .K ∈ K and . f ∈ L∞,p(Q) one has .
1
p · |∇ f |K ◦ ∈ L p(Q). It  

is easy to see that .L∞,p(Q) ⊂ W 1,1
loc (Q), and hence Lemma 1.15 holds for all functions 

. f ∈ L∞,p(Q), provided .Q is convex. 
For .h > 0 and .p ∈ [1, ∞] denote by .Wp(0, h) the space of all non-negative func-

tions .w : (0, h) → R such that .w ∈ L1(u, h) for all .u ∈ (0, h) and the function .gw defined 
in (1.28) belongs to.Lp(0, h). If a non-zero weight. w belongs to.Wp (0, h), then the integral 

.
h
0 u(d−1)(1−p)dt converges, which happens only for .p > d. 
Observe that for a convex bounded set . Q, an embedding of the class .W 1,p(Q) into the 

space of bounded continuous on .Q functions holds, see [ 1, Chapter 4]. Hence in the case 
. ≡ 1, the class .L∞,p(Q) consists of continuous functions.
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Theorem 1.7 Let.p ∈ (d, ∞],.C ∈ C,.K ∈ K,. : C → Rbe a non-negative characteristic, 
.h > 0 and . f ∈ L∞,p(hK ∩ C). For  each .w ∈ Wp (0, h) one has 

. 

hK∩C
w(|y|K )[ f (y) − f (θ)] y)dy

≤ ( K ,C))
1
p gw Lp (0,h)

1
p · |∇ f |K ◦ L p(hK∩C). (1.38) 

The inequality is sharp. It becomes equality for the functions .a · f + b, where .a, b ∈ R and 

. f (y) =
|y|K

0
gp −1
w (u)du, y ∈ hK ∩ C . (1.39) 

Proof We begin with the case.p ∈ (d, ∞). Using Lemmas 1.15, 1.12, the Hölder inequality, 
and Lemma 1.11, we obtain 

. 

hK∩C
w(|y|K )[ f (y) − f (θ)] y)dy

=
hK∩C

w(|y|K y)
1

0
(y, ∇ f (t y))dtdy ≤

hK∩C

1

0
w(|y|K )|y|K |∇ f (t y)|K ◦ y)dtdy =

hK∩C
|∇ f (y)|K ◦gw(|y|K y)dy

1
p · |∇ f |K ◦ L p(hK∩C)

hK∩C
gp
w (|y|K y)dy

1
p

= ( K ,C))
1
p gw Lp (0,h)

1
p · |∇ f |K ◦ L p(hK∩C). (1.40) 

By the definition, the function . f defined in (1.39) is continuous. The fact that it belongs to 
the class .L∞,p(hK ∩ C), follows from equality 

.(p − 1)p = p (1.41) 

and Lemmas 1.11 and 1.14. Next we prove that both inequalities in (1.40) turn into equality 
for the function . f defined in (1.39). Using Lemmas 1.14 and 1.13 we obtain 

. (y, ∇ f (t y)) = (y, gp −1
w (|t y|K ) · ∇|y|K ) = |∇ f (t y)|K ◦ · |y|K ,

and the first inequality indeed becomes an equality. Using (1.41) together with Lemma 1.14 

we obtain.|∇ f (y)|pK ◦ = gp
w (|y|K ), and hence the second inequality in (1.40) also becomes 

an equality for . f . 
In the case.p = ∞, . f (y) = |y|K , and the fact that chain (1.40) holds and all inequalities 

in it become equalities can be checked directly, under the agreement that. 0 ≡ 1. Moreover, 
it is easy to see that . f ∈ L∞,∞(hK ∩ C) in this case too.
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Observe that this theorem solves the extremal problem to find the quantity 

. sup
f |K◦ L p (hK∩C)≤1 hK∩C

w(|y|K )[ f (y) − f (θ)] y)dy ,

which under an assumption of integrability of.w(| · |K ) on.hK ∩ C is the deviation between 
the operators . f := hK∩C w(|y|K ) f (y)dy and.I f := hK∩C (·) f (θ)), where . χ is the 
characteristic function. Moreover, the proof of Theorem 1.7 follows the approach outlined in 
Lemma 1.4; the key step of the proof is a piece of inequality (1.40) that estimates from above 
the left-hand side of (1.40) by the quantity . hK∩C |∇ f (y)|K ◦gw(|y|K y)dy, which is a 
functional of .λ f := |∇ f (y)|K ◦ and becomes equality for a large enough set of functions 
. f ∈ L∞,p(hK ∩ C). 

1.2.7 Classes of Functions with Bounded Norms of Their Laplacian 

Let . = ∂2

∂x21
+ . . . + ∂2

∂x2d
be the Laplace operator, where the derivatives are understood in 

the distributional sense. For an open set.Q ⊂ R
d by.L∞,p(Q).1 ≤ p ≤ ∞we denote the set 

of functions . f ∈ L∞(Q) such that . f ∈ L p(Q). The results of this section are contained 
in [ 30, 32]. 

1.2.7.1 Construction of Extremal Functions 
We consider the function 

.Gh : (0, ∞) → R,Gh(t) =
⎧
⎨

⎩

1
σd−1(d−2)

1
td−2 − 1

hd−2 + , d ≥ 3,

1
2π ln h

t + , d = 2,
(1.42) 

here .a+ := max{a, 0} and .σd−1 is the area of the unit sphere .Sd−1 in .Rd . The function 
.Gh(| · |2) it the Green function for the ball .Bh from.R

d . For .α > 0 set 

.Fh(t) =
h
t Gρ(t) dρ

ρα+1 , t ∈ (0, h],
0, t > h.

(1.43) 

If.p > d/2, then.Gh(|y|2) ∈ L p (Rd),.p = p/(p − 1). If in addition,.0 < α < 2 − d/p, 
then .Fh(|y|2) ∈ L p (Rd). Since  .(p − 1)p = p , we obtain that for all .c ∈ R, the function 
.y → |Fh(|y|2) − c · Gh(|y|2)|p −1 belongs to .L p(R

d), and hence is integrable on .Bh . 
For each .h > 0 we set 

. h(ρ) = Fh(ρ) − ch · Gh(ρ), ρ ∈ (0, h], (1.44)
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with the number .c = ch chosen from the condition 

.

Bh
ψh(|y|2)dy = 0, (1.45) 

where 

. ψh(ρ) = −| h(ρ)|p −1sgn h(ρ), ρ ∈ (0, h],
0, ρ > h.

We set 

. ϕh,2(ρ) =
⎧
⎨

⎩

1
2

ρ

0 − h
ρ

h
t ud−1ψh(u) du dt

td−1 , ρ ∈ [0, h]
1
2

h
0

h
t ud−1ψh(u) du dt

td−1 , ρ > h,

let .ψh(y) = ψh(|y|2) and 
.ϕh,2(y) = ϕh,2(|y|2), y ∈ R

d . (1.46) 

We note that in the case.p = ∞ the function.ϕh,2 can be written explicitly and can be viewed 
as a multidimensional analogue of the Euler perfect spline of the second order, see [ 32]. 

Lemma 1.16 If.p > d/2 and.0 < α < 2 − d/p, then.ϕh,2 ∈ L∞,p(R
d), it is a continuously 

differentiable function with piecewise-continuous second derivatives and 

. h,2(y) = −ψh(y). (1.47) 

Moreover, . maxy∈Rd ϕh,2(y) = −miny∈Rd ϕh,2(y).

Proof First of all we prove that the function.ϕh,2 is well-defined on.[0, h] i.e., the integrals 
in its definition converge. Using (1.45), we obtain 

. 

σd−1

h

t
ud−1ψh(u)du =

Sd−1
dξ

h

t
ud−1ψh(|uξ |2)du

=
Bh\Bt

ψh(|y|2)dy = −
Bt

ψh(|y|2)dy.

Hence 

. 

σd−1

ρ

0

dt

td−1

h

t
ud−1ψh(u)du =

ρ

0

dt

td−1
Bt

ψh(|y|2)dy

≤
ρ

0

1

td−1
Bt

ψh(|y|2) p
dy

1
p · (meas Bt )

1
p dt

≤ (meas B1)
1
p ψh(| · |2) L p(Bh) ·

ρ

0
t

d
p

−(d−1)
dt < ∞,

since .
d
p − (d − 1) > −1 ⇐⇒ p > d

2 .
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Taking into account that the Laplace transform for radial functions becomes 

. = ϕ (ρ) + d − 1

ρ
ϕ (ρ),

it is now easy to verify equality (1.47). 
Statement about smoothness of .ϕh,2 and the last equality in the lemma follow from the 

definition of the function .ϕh,2. 

1.2.7.2 Ostrowski-Type Inequality 
For .x ∈ R

d and .h > 0 we consider the following quantity 

. f (x, h) = 1

σd−1 Sd−1
f (x + hy)dy, (1.48) 

which is the average value of . f over the sphere of radius . h with center at . θ . It is well  
known (see e.g. [ 38, Section 4.3]) that for a continuously differentiable function . f that has 
piecewise-continuous second derivatives one has 

. f (x) = f (x, h) +
Bh

Gh(|y|2)(− f (x ± y)) dy. (1.49) 

For any . f ∈ L∞,p(R
d) and arbitrary infinitely differentiable function . ϕ with a compact 

support one has 

. 

Rd
ϕ(x) f (x) dx =

Rd
f (x) ϕ(x, h) +

Bh
Gh(|y|2)(− x ∓ y)) dy dx =

. =
Rd

ϕ(x) f (x, h) +
Bh

Gh(|y|2)(− f (x ± y)) dy dx .

Hence for a function . f ∈ L∞,p(R
d) and almost all .x ∈ R

d equality (1.49) holds. 
For .h > 0, .x ∈ R

d and a function . f such that . f ∈ L∞,p(x + Bh) we set 

. Sh( f ; x) =
Bh

2 f (x) − f (x + t) − f (x − t)

|t |d+α
2

dt − 2chσd−1( f (x) − f (x, h)).

Theorem 1.8 Let .d/2 < p < ∞ and .0 < α < 2 − d/p, or  .p = ∞ and .0 < α < 2. For  
arbitrary .h > 0, function . f ∈ y∈Rd L∞,p(y + Bh) and almost all . x ∈ R

d

. |Sh( f ; x)| ≤ 2σd−1 h(| · |) L p (Bh) f L p(x+Bh)

= 2σd−1h
2−α− d

p 1(| · |) L p (B1) f L p(x+Bh), (1.50)



34 1 On Ostrowski-Type Inequalities and Their Applications

where the function . h is defined in (1.44). The inequality is sharp. It becomes equality for 
the function . f = ϕh,2(· + x). 

Proof For simplicity of notations we assume that.x = θ and equality (1.49) holds for.x = θ . 
Then 

. 

Sh( f ; θ) =
Bh

2 f (θ) − f (t) − f (−t)

|t |d+α
2

dt − 2chσd−1( f (θ) − f (θ, h))

=
Sd−1

dξ
h

0
sd−1 2 f (θ) − f (sξ) − f (−sξ)

sd+α
ds − 2chσd−1( f (θ) − f (θ, h))

= 2
Sd−1

dξ
h

0

f (θ) − f (sξ)

s1+α
ds − 2chσd−1( f (θ) − f (θ, h))

= 2σd−1

h

0

f (θ) − f (θ, s)

s1+α
ds − 2chσd−1( f (θ) − f (θ, h))

= 2σd−1

h

0
−

Bs
Gs(|y|2 f (y)dy

ds

s1+α
+ ch

Bh
Gh(|y|2 f (y)dy

= −2σd−1
Bh

f (y h(|y|)dy,

since switching to the polar coordinates and changing the order of integrals, we obtain 

. 

h

0 Bs
Gs(|y|2 f (y)dy

ds

s1+α
=

h

0 Sd−1

s

0
ρd−1Gs f (ρξ)dρdξ

ds

s1+α

=
Sd−1

h

0

h

ρ

Gs(ρ)
ds

s1+α
ρd−1 f (ρξ)dρdξ

=
Sd−1

h

0
Fh(ρ)ρd−1 f (ρξ)dρdξ =

Bh
Fh(|y| f (y)dy.

Applying the Hölder inequality we obtain the inequality in (1.50). Moreover, from (1.47) 
it follows that the inequality in (1.50) becomes equality for function (1.46), and hence is 
sharp. 

It is easy to see that for the functions .Gh and .Fh defined in (1.42) and (1.43), one has 

.Gh(ρ) = h2−dG1(ρ/h) and Fh(ρ) = h2−α−d F1(ρ/h). (1.51) 

Moreover, from (1.51) it follows that for all.h > 0 one has.ch = h−αc1.Direct computations 
now show that the equality in (1.50) holds.
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1.2.8 Classes of Random Processes 

Let .{ F , P} be a probability space. For a random variable . η, defined on the probability 
space .{ F , P}, set . η ∞ := ess supw∈ |η(w)|. 

For .a > 0 denote by .R(a) the space of all random variables . η on the space . { F , P}
such that .η(w) ∈ [0, a] for all .w ∈ . 

In this section .ω denotes a concave modulus of continuity and for brevity we denote 
by .Hω(a) the class of functions .x : [0, a] → R such that .|x(s) − x(t)| ≤ ω(|t − s|) for all 
.t, s ∈ [0, a]. 

For a fixed .τ ∈ R(a) denote by .Hω
τ (a) the set of all measurable random processes . ξt , 

.t ∈ [0, a], defined on the probability space .{ F , P}, and such that for all . η ∈ R(a)

.E|ξτ − ξθ | ≤ ω( τ − θ ∞). (1.52) 

Set .Hω(a) := τ∈R(a) Hω
τ (a), so that .Hω(a) is the class of measurable processes such 

that inequality (1.52) holds for all .τ, θ ∈ R(a). 
In the case, when.a = 1, we write.Hω,.Hω,.Hω

τ and. R instead of.Hω(1),.Hω(1),. Hω
τ (1)

and .R(1) respectively. 
The following theorem gives an Ostrowski type inequality for random processes of the 

class .Hω(a), see  [  58]. 

Theorem 1.9 Let .a > 0 and .τ ∈ R(a) be given. Set .t∗ := τ(·) − a
2 ∞ . Then 

. sup
ξ∈Hω(a)

E
a

0
ξt dt − a · ξτ =

a
2−t∗

0
ω(s)ds +

a
2+t∗

0
ω(s)ds. (1.53) 

We prove the theorem in the case .a = 1, the general case can be proved similarly. The 
proof of the theorem is given in the following paragraphs. 

1.2.8.1 Some Remarks About the Proof of Theorem 1.9 
It is enough to prove (1.53) for the case of a simple random variable. τ . The general case can 
be obtained using approximation of . τ by simple random variables. 

Let . 1 n ∈ F be pairwise disjoint sets with positive measures such that 
.P n

k=1 k = 1, and .τ (w) = τk for .w ∈ k , .k = 1, . . . , n. 
For a fixed .k ∈ {1, . . . , n} set 

. τ ∗(w) := τ (w), w ∈ \ k,

1 − τ (w), w ∈ k .

Since together with arbitrary .ξ ∈ Hω
τ (or .ξ ∈ Hω), the process . ξ∗

t , .t ∈ [0, 1],
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. ξ∗
t (w) := ξt (w), w ∈ \ k,

ξ1−t (w), w ∈ k

belongs to .Hω
τ∗ (to .Hω respectively), and for almost all . w ∈

. 

1

0
ξt dt − ξτ =

1

0
ξ∗
t dt − ξ∗

τ∗ ,

one has 

. sup
ξ∈Hω

τ

E
1

0
ξt dt − ξτ = sup

ξ∈Hω
τ∗
E

1

0
ξt dt − ξτ∗

and 

. sup
ξ∈Hω

E
1

0
ξt dt − ξτ = sup

ξ∈Hω

E
1

0
ξt dt − ξτ∗ .

Hence without loss of generality we may assume that 

.0 ≤ τk ≤ 1

2
, k = 1, . . . , n. (1.54) 

Moreover, we can also assume that 

.τ1 ≤ . . . ≤ τn . (1.55) 

Under the assumptions above, we have .t∗ = 1
2 − τ1 and the right hand side of (1.53) 

becomes 

.

τ1

0
ω(s)ds +

1−τ1

0
ω(s)ds. (1.56) 

1.2.8.2 Estimate From Above 
Lemma 1.17 Let the assumptions of Theorem 1.9 and (1.54), (1.55) hold. The inequality 

.E
1

0
ξt dt − ξτ ≤

1
2−t∗

0
ω(s)ds +

1
2+t∗

0
ω(s)ds (1.57) 

holds for all .ξ ∈ Hω
τ , in particular for all .ξ ∈ Hω. 

Proof For all .ξ ∈ Hω
τ one has 

.E
1

0
ξt dt − ξτ =

n

k=1 k

1

0
(ξt − ξτk )dt P(dw)

≤
n

k=1 k

1

0
ξt − ξτk dt P(dw) =

n

k=1

1

0 k

ξt − ξτk P(dw)dt
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= 
n 

k=1 

τk−τ1 

0 k 

ξt − ξτk P(dw)dt  + 
τk 

τk−τ1 k 

ξt − ξτk P(dw)dt  

+ 
τk+1−τn 

τk k 

ξt − ξτk P(dw)dt  + 
1 

τk+1−τn k 

ξt − ξτk P(dw)dt  

= 
n 

k=1 

τk−τ1 

0 k 

ξt − ξτk P(dw)dt  + 
1 

τk+1−τn k 

ξt − ξτk P(dw)dt  

+ 
τ1 

0 

n 

k=1 k 

ξτk−s − ξτk P(dw)ds  + 
1−τn 

0 

n 

k=1 k 

ξτk+s − ξτk P(dw)dt (1.58) 

Setting .θs(w) := τ (w) − s, we obtain that . θs − τ ∞ = s, .s ∈ [0, τ1], and hence 

. 

τ1

0

n

k=1 k

ξτk−s − ξτk P(dw)ds =
τ1

0
E|ξθs − ξτ |ds ≤

τ1

0
ω(s)ds.

Analogously 

. 

1−τn

0

n

k=1 k

ξτk+s − ξτk P(dw)dt ≤
1−τn

0
ω(s)ds.

Now set 

. θs(w) := τk + s, s ∈ [1 − τn, 1 − τk],
τk + (1 − τ1 − τk − s), s ∈ (1 − τk, 1 − τ1],

.w ∈ k , .k = 1, . . . , n. Since.τ1 + τk ≤ 1, .k = 1, . . . , n, .|θs − τ | ≤ s for almost all . w ∈
and .s ∈ [1 − τn, 1 − τ1]. Hence 

. 

n

k=1

τk−τ1

0 k

ξt − ξτk P(dw)dt +
1

τk+1−τn k

ξt − ξτk P(dw)dt

=
n

k=1

1−τ1

1−τk k

ξ1−τ1−s − ξτk P(dw)ds +
1−τk

1−τn k

ξτk+s − ξτk P(dw)ds

=
1−τ1

1−τn

n

k=1
k

|ξθs − ξτk |P(dw)ds =
1−τ1

1−τn

E|ξθs − ξτ |ds ≤
1−τ1

1−τn

ω(s)ds. (1.59) 

Finally, inequalities (1.58)–(1.59), together with observation (1.56), give inequality (1.57). 
The lemma is proved. 

1.2.8.3 A Random Process Generated by a Function 
The following lemma gives a way to generate random processes from the class .Hω, given  
a function .x ∈ Hω.
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Lemma 1.18 Let.x ∈ Hω and.F ∈ F ,.P(F) > 0, be given. Then the process.ξt = ξt (x, F), 
.t ∈ [0, 1], 

. ξt (w) :=
1

P(F)
x(t), w ∈ F,

0, w ∈ \ F

belongs to .Hω and 
.Eξt = x(t). (1.60) 

Proof In order to prove that .ξt ∈ Hω, it is enough to show that the inequality 

. E ξθ1 − ξθ2 ≤ ω ( θ1 − θ2 ∞)

holds for arbitrary two simple random variables .θ1 and . θ2. 
Assume that the pairwise disjoint measurable sets .Fi ⊂ F with positive measures are 

such that .θk(w) = θki ∈ [0, 1], .w ∈ Fi , .i = 1, . . . , n, .k = 1, 2, and  .P n
i=1 Fi = P(F). 

Taking into account that . ω is a non-decreasing concave function, one has 

. E ξθ1 − ξθ2 =
n

i=1

P(Fi )

P(F)
x(θ1i ) − x(θ2i ) ≤

n

i=1

P(Fi )

P(F)
ω θ1i − θ2i

≤ ω

n

i=1

P(Fi )

P(F)
θ1i − θ2i ≤ ω max

i=1,...,n
θ1i − θ2i ≤ ω ( θ1 − θ2 ∞) .

Equality (1.60) follows from the definition of the process. 

1.2.8.4 Estimate From Below 
Let the assumptions (1.54) and (1.55) hold. Consider the process .ξ∗

t ∈ Hω, built according 
to Lemma 1.18 with .F = 1 and .x(·) := ω(| · −τ1|) ∈ Hω. Then 

. E
1

0
ξ∗
t dt − ξ∗

τ = E
1

0
ξ∗
t dt =

1

0
Eξ∗

t dt =
1

0
ω(|t − τ1|)dt

=
τ1

0
ω(t)dt +

1−τ1

0
ω(t)dt,

which together with (1.56) gives the estimate 

. sup
ξ∈Hω

E
1

0
ξt dt − ξτ ≥

1
2−t∗

0
ω(s)ds +

1
2+t∗

0
ω(s)ds.
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1.2.9 Sets and Functions of Bounded Variation 

1.2.9.1 Univariate Functions of Bounded Variation 
In [ 39] the following Ostrowki-type inequality for univariate functions of bounded variation 
was proved. 

Theorem 1.10 For a function . f with bounded on .[0, 1] variation and arbitrary . x ∈ [0, 1]
the following inequality holds. 

.

1

0
f (t)dt − f (x) ≤ max{x, 1 − x}

1

0

f . (1.61) 

It is sharp in the sense that for each fixed . x the number .max{x, 1 − x} can not be decreased. 

In order to give motivation for the definitions considered below and to outline the main 
idea of the proof of Theorems 1.11 and 1.12 below, we give a different then in [ 39] proof in 
the case of continuous functions of bounded variation. 

Proof Let. f : [0, 1] → R be a continuous function of bounded variation. Denote by. n( f , y)
the number of solutions of the equation 

. f (t) = y, t ∈ [0, 1], y ∈ R (1.62) 

(we set.n( f , y) = 0, if equation  (1.62) has no solutions, and.n( f , y) = +∞, if the equation 
has infinite set of solutions). By the Banach indicatrix theorem, the function. n is measurable 
and 

. 

1

0

f =
R

n( f , y)dy.

Both sides of inequality (1.61) do not change if . f is substituted by . f + β, .β ∈ R, thus 
we can assume that. f (x) = 0. For.a ∈ R set.{ f ≥ a} = {t ∈ [0, 1] : f (t) ≥ a}. It is easy to 
see that for all .a > 0 (. μ denotes the Lebesgue measure) 

. μ{ f ≥ a} ≤

⎧
⎪⎪⎨

⎪⎪⎩

0, n( f , a) = 0,

max{x, 1 − x}, n( f , a) = 1,

1, n( f , a) ≥ 2,

and hence.μ{ f ≥ a} ≤ max{x, 1 − x} · n( f , a) for all.a > 0. Integrating this inequality we 
obtain
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. 

1

0
f (t)dt ≤

∞

0
μ{ f ≥ a}da ≤

∞

0
max{x, 1 − x} · n( f , a)da

≤ max{x, 1 − x}
1

0

f ,

as desired. 

Observe that if . f is an arbitrary function, then the family of level sets that contain 
an extremum is at most countable. Thus the value .n( f , y) can be defined as the number 
of connected components of the set of solutions of the equation . f (t) = y (instead of the 
number of solutions). 

1.2.9.2 Multidimensional Sets and Multivariate Functions of Bounded 
Variation 

Many ways to extend the notion of a function of bounded variation from the case of univariate 
to the case of multivariate functions are known, see e.g., [ 37] for a survey of different 
approaches for functions of two variables. We propose a new way for such a generalization. 
The approach is based on the Kronrod–Vitushkin variations (which, in turn, are based on 
the Banach indicatrix theorem). Unlike the Kronrod–Vitushkin variations, the proposed 
definition satisfies the following two properties: the variation of a function does not change 
after multiplication of its argument by a non-zero constant; the variation of a radial function 
is twice as big as the variation of the generating univariate function (see Lemma 1.19 for a 
precise statement). 

For a set .F ⊂ R
d we denote by .F its closure; .Bd denotes the unit Euclidean ball in .R

d . 
By .Pd−1 we denote the .d − 1 dimensional real projective space i.e., the set of all lines in 
.R

d that contain . θ . The measure of a set .A ⊂ P
d−1 is by definition equal to the spherical 

measure of the set . l∈A l ∩ Sd−1. 
For each.r ∈ P

d−1 by.
d−1(r)we denote the hyperplane that contains. θ and is orthogonal 

to the line . r ; . d−1(r) is considered as a .d − 1-dimensional space with .d − 1-dimensional 
Lebesgue measure and Euclidean metric. For each .β ∈ d−1(r) by .l(r , β) we denote the 
line that contains. β and is parallel to. r . By.μk ,.k ∈ N, we denote the.k-dimensional Lebesgue 
measure in .R

k ; by . μ we denote the measure on the projective space .P
d−1. 

Denote by .N (F) the number of connected components of the set .F ⊂ R
d ; . 0 for empty 

set, and .+∞ if the set of connected components is infinite. Variation of a compact set .F in 
direction .r ∈ P

d−1 is by definition 

. v(F, r) := ess sup
β∈ d−1(r)

N (F ∩ l(r , β)) .

For a compact set .F ⊂ R
d and a number .p ∈ [1, ∞] set
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. vp(F) :=
⎧
⎨

⎩

1
μPd−1 Pd−1 v p(F, r)dr

1
p
, p ∈ [1, ∞),

ess supr∈Pd−1 v(F, r), p = ∞.

If .d = 1 then for all .p ∈ [1, ∞] we set .vp(F) = N (F). 
Let a set .E ⊂ R

d and a function . f : E → R be given. For .t ∈ R the set 

. L( f ; t) := {x ∈ E : f (x) = t}

is called a level set of the function . f . 
The variation of a continuous function is defined as follows. Let.E ⊂ R

d , . f : E → R be 
a continuous on a compact subset .F ⊂ E function, and .p ∈ [1, ∞]. Set  

. vp( f ; F) :=
∞

−∞
vp(F ∩ L( f ; t))dt .

If .F = E , then we write.vp( f ) instead of .vp( f ; E). In [  56] it was shown that the functions 
under the integral signs in the definitions of the variations are measurable. 

The following property of the variation will be needed, more properties were considered 
in [ 56]. 

Lemma 1.19 Let .ϕ : [0, 1] → R be a continuous function and .d ∈ N. Let  . fϕ : Bd → R, 
. fϕ(x) = ϕ(|x |). Then for all . p ∈ [1, ∞]

. vp( fϕ; Bd) = 2 ·
1

0

ϕ.

Proof In the case.d = 1 the property follows from the Banach indicatrix theorem, so we can 
assume that.d ≥ 2. Let arbitrary.t ϕ(0) be fixed. For arbitrary.r ∈ P

d−1 and. β ∈ d−1(r)
the number.N (L( fϕ; t) ∩ l(r , β)) can be obtained by the following procedure: consider the 
line .r = l(r , θ) and mark points of the set .L( fϕ; t) ∩ l(r , θ); cut the interval . (−|β|, |β|)
from the line and stick the points .−|β| and .|β| together; the number of components of 
marked points on the obtained ”cut” line is equal to .N (L( fϕ; t) ∩ l(r , β)). This shows that 
for arbitrary . β

.N (L( fϕ; t) ∩ l(r , β)) ≤ N (L( fϕ; t) ∩ l(r , θ)). (1.63) 

From the choice of . t it follows that 

.θ /∈ L( fϕ; t) (1.64) 

and hence there exists .ε > 0 such that .B(ε) ∩ L( fϕ; t) = ∅. This implies that the set 
.L( fϕ; t) ∩ l(r , θ) does not contain points . x with .|x | < ε and hence for all .β such that 
.|β| < ε (1.63) becomes equality. This implies that .v(L( fϕ; t), r) = N (L( fϕ; t) ∩ l(r , θ)).
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From (1.64) it follows that .N (L( fϕ; t) ∩ l(r , θ)) = 2 · N (L(ϕ; t)). Equality . vp( fϕ; B) =
2 · 1

0 ϕ follows from the Banach indicatrix theorem now. 

1.2.9.3 Ostrowski-Type Inequalities 
The following result is the main tool to prove Ostrowski type inequalities for functions and 
sets of bounded variation below. 

Lemma 1.20 Let .d ∈ N and two sets .F,W ⊂ Bd be given. Assume that the following 
properties hold: 

1. .F is measurable and .θ /∈ F; 
2. .W is closed and .θ /∈ W and 
3. If .x ∈ F and .y ∈ Bd \ F, then .xy ∩ W = ∅. 

Then for all . p ∈ [1, ∞]
.μd F ≤ μd Bd

2
vp(W ). (1.65) 

The inequality is sharp in the sense that for arbitrary .ε > 0 there exist sets .F and .W that 
satisfy the conditions above and such that 

. μd F >
μd Bd

2
− ε vp(W ).

If (1.65) becomes equality, then .μd F = 0. 

We will prove Lemma 1.20 in the next subsections. Here we state two consequences of 
this theorem, which can be considered as Ostrowski type inequalities. We state them in the 
cases, when the domain of definition is the unit ball .Bd , see  [  56]. Results for more general 
domains were obtained in [ 57]. 

Theorem 1.11 Let .d ∈ N and a continuous function . f : Bd → R be given. Then for all 
. p ∈ [1, ∞]

. 
1

μd Bd
Bd

f (x)dx − f (θ) ≤ vp( f )

2
.

The inequality is sharp. It becomes equality only in the case when . f is constant. 

Proof From the definition of the variation it follows that .vp( f + β) = vp( f ) for arbitrary 
.β ∈ R, hence we can assume that . f (θ) = 0 and it is sufficient to prove that 

.

Bd
f (x)dx ≤ μd Bd

2
vp( f ). (1.66)
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Set . := {(x, t) ∈ Bd × [0, ∞) : f (x) ≥ t}. Then 

.

Bd
f (x)dx ≤ μd+1 =

t≥0
μd ∩ R

d+1
t )dt, (1.67) 

where.Rd+1
t = {(x, t) : x ∈ R

d}. For each.t > 0 consider the sets.F := ∩ R
d+1
t and. W :=

f ) ∩ R
d+1
t , where  

. f ) := {(x, t) ∈ R
d+1 : x ∈ E, f (x) = t}.

Both. F and.W are closed sets that do not contain. θ , since. f (θ) = 0. If.x ∈ F and.y ∈ Bd \ F , 
then . f (x) ≥ t and . f (y) < t and hence the segment .xy contains a point . z with . f (z) = t , 
i. e. .xy ∩ W = ∅. This means that all conditions of Lemma 1.20 are satisfied and hence 

. μd ∩ R
d+1
t ) = μd(F) ≤ μd Bd

2
vp(W ) = μd Bd

2
vp(L( f ; t))

with equality possible only in the case when.μd F = 0. Taking into account (1.67) we obtain 

. μd+1 ≤ μd Bd

2 t≥0
vp(L( f ; t))dt ≤ μd Bd

2 t∈R
vp(L( f ; t))dt = μd Bd

2
vp( f )

and inequality (1.66) is proved; moreover due to continuity of . f we obtain that equality 
in (1.66) can hold only if . f ≡ 0. 

For all .ε > 0 consider the function .ϕε : [0, 1] → R, .ϕε(t) = 1 for .t ≥ ε, .ϕε(0) = 0 and 
.ϕε is linear on .[0, ε]. Due to Lemma 1.19 for the radial function . fε(x) : Bd → R, . fε(x) =
ϕε(|x |), and arbitrary .p ∈ [1, ∞] .vp( fε) = 2; moreover . Bd fε(x)dx → μd Bd as .ε → 0. 
This proves the sharpness of the stated inequality. 

Theorem 1.12 Let .d ∈ N and a closed set  .F ⊂ Bd be given. If .θ /∈ F, then for all . p ∈
[1, ∞]

. μd F ≤ μd Bd

2
vp(F).

The inequality is sharp. If equality holds, then .μd F = 0. 

Proof It is enough to apply Lemma 1.20 with .W = F ; all three conditions of Lemma 1.20 
are satisfied. 

For arbitrary.ε > 0 consider a set.Fε := {x ∈ Bd : |x | ≥ ε}. For all.p ∈ [1, ∞]. vp(Fε) =
2; .μd Fε → μd Bd as .ε → 0. This proves that the stated inequality is sharp. 

The proof of Theorem 1.11 again uses the scheme from Lemma 1.4. Indeed, let .T be 
the unit ball .Bd , .X = Y = M = R, .S = [0, ∞), .A be the space of continuous functions 
. f : Bd → R with bounded variation .vp( f ) ≤ 1, .p ∈ [1, ∞], . Z be the family of all closed
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subsets of .Bd . For each .s ∈ S set 

. λ f (s) = {x ∈ Bd : s ≤ | f (x) − f (θ)|} ∈ Z .

For the operators . f = Bd f (x)dx , .I f = μd Bd · f (θ) and . ϕ(λ f ) = ∞
0 μ (λ f (s)) ds,

one has 

. 

Bd
f (x)dx − μBd f (θ) ≤

Bd
| f (x) − f (θ)|dx = ϕ(λ f ),

so inequality (1.15) holds for all . f ∈ A. It turns into equality for all functions 

. f ∈ B := f ∈ A : f (x) ≥ f (θ) for all x ∈ Bd .

Theorem 1.12 states that .sup f ∈A ϕ(λ f ) = μBd

2 and there is an extremal sequence of func-
tions from the set . B. Hence Lemma 1.4 implies the statement of Theorem 1.11. 

1.2.9.4 Auxiliary Results 
Lemma 1.21 Let .d ∈ N, .d ≥ 2, .ε > 0, .x ∈ R

d , .r ∈ P
d−1 and a measurable set . F ⊂

Bd(x, ε) be given. For arbitrary .A ∈ (0, 1) there exists .α = α(A) ∈ (0, 1) that does not 
depend on . ε, . x and . r such that 

. μd−1{β ∈ d−1(r) : F ∩ l(r , β) = ∅} > A · μd−1Bd−1(ε)

whenever .μd F > α · μd Bd(ε). 

Proof The fact that . α does not depend on . ε follows from the observation, that 

. 
μd F

μd Bd(ε)
= μd 1

ε
F

μd Bd

and 

. 
μd−1{β ∈ d−1(r) : F ∩ l(r , β) = ∅}

μd−1Bd−1(ε)

= μd−1{β ∈ d−1(r) : 1
ε
F ∩ l(r , β) = ∅}

μd−1Bd−1 . (1.68) 

The fact that . α is independent of . x and . r is obvious. The existence of . α follows from the 
equality 

.μd F =
d−1(r)∩Bd (y,ε)

μ1(l(r , β) ∩ F)μd−1(dβ), (1.69) 

where .y ∈ d−1(r) is such, that the line .l(r , y) contains . x , and equality 

.μd−1 d−1(r) ∩ Bd(y, ε)) = μd−1Bd−1.
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Lemma 1.22 Let .p ∈ [1, ∞), .A > 0 and .B ∈ [0, A] be given. Then 

. 
1

A
B + 2p(A − B) ≥ 2 − B

A

p

.

Proof It is sufficient to prove that the function.ϕ(x) = 2p + (1 − 2p)x − (2 − x)p is non-
negative on .[0, 1]. Since  .ϕ(0) = ϕ(1) = 0, the function .ϕ has at least one zero on .(0, 1). 
The function.ϕ (x) = p(2 − x)p−1 + 1 − 2p is decreasing on.[0, 1], hence has at most one 
zero on.(0, 1). This implies that .ϕ (0) > 0 and hence the function. ϕ is increasing on. [0, x∗]
and is decreasing on .[x∗, 1], where  .x∗ is zero of .ϕ on .(0, 1); hence . ϕ is non-negative on 
.[0, 1]. 

Denote by .F̃ the set of all points .x ∈ F such that .limδ→+0
μd (F∩Bd (x,δ))

μd Bd (δ)
= 1. Then 

.F̃ ∩ Sd−1 = ∅ and by Lebesgue density theorem 

.μd F̃ = μd F . (1.70) 

Lemma 1.23 Assume that conditions of Lemma 1.20 hold. If .r ∈ P
d−1 is such that 

.v(W , r) = 0, then for arbitrary .β ∈ d−1 either .F̃ ⊃ intBd ∩ l(r , β), or .F̃ ∩ l(r , β) = ∅. 

Proof Assume that for some .β ∈ d−1(r) there exist .x ∈ F̃ ∩ l(r , β) and . y ∈ (intBd ∩
l(r , β)) \ F̃ . From the definition of. F̃ it follows that there exist.a > 0 and a sequence. ρn → 0
as .n → ∞ such that .μd(Bd(y, ρn) \ F) ≥ a · μd Bd(ρn) for all .n ∈ N. From  (1.69) (with 
.F substituted by .Bd(y, ρn) \ F) it follows that there exists .A > 0 such that 

.μd−1
1(ρn) > A · μd−1Bd−1(ρn) (1.71) 

for all .n ∈ N, where  

. 1(ρn) = {β ∈ d−1(r) : (Bd(y, ρn) \ F) ∩ l(r , β) = ∅}.

Since .x ∈ F̃ , there exists .δ > 0 such that for all .ρ < δ . μd(Bd(x, ρ) ∩ F) ≥ α(1 − A) ·
μd Bd(ρ) (the number .α(1 − A) is defined in Lemma 1.21). Lemma 1.21 implies that 

.μd−1
2(ρ) > (1 − A) · μd−1Bd−1(ρ) (1.72) 

for all .ρ ≤ δ, where  

. 2(ρ) = {β ∈ d−1(r) : Bd(x, ρ) ∩ F ∩ l(r , β) = ∅}.

Choose . n so big, that .ρn < δ. Then 

.μd−1
1(ρn) + μd−1

2(ρn) > μd−1Bd−1(ρn) (1.73)
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due to (1.71) and (1.72). Moreover, since .x, y ∈ l(r , β), we receive that 

. 1(ρn 2(ρn) ⊂ d−1(r) ∩ Bd(β, ρn) (1.74) 

and 
.μd−1 d−1(r) ∩ Bd(β, ρn)) = μd−1(Bd−1(ρn)). (1.75) 

Set . = 1(ρn) ∩ 2(ρn). Then due to (1.73), (1.74) and (1.75) .μd−1 0. But each 
line .l(r , β), .β ∈ , contains a point from .W due to Condition 3 of Lemma 1.20 and the 
definitions of the sets . 1(ρn) and . 2(ρn); this contradicts to assumption .v(W , r) = 0 of 
the lemma. 

Lemma 1.24 Assume that conditions of Lemma 1.20 hold. Let .R ⊂ P
d−1 be such that 

.v(W , r) = 0 for all .r ∈ R. If  .R contains . d lines that are not contained in any .d − 1-
dimensional hyperplane, then .μd(F) = 0. 

Proof Due to (1.70) it is enough to prove that .F̃ = ∅. Let .r1, . . . , rd be the lines from 
the statement of the lemma and let .ρ1, . . . , ρd be unit vectors parallel to these lines. Set 

.P := d
k=1 tkρk : tk ∈ (−1, 1), k = 1, . . . , d , then .P is an open in .R

d set. 

Consider arbitrary.x ∈ intBd . Choose.ε > 0 such that.x + εP ⊂ Bd . Then for all points 
. y from the segment .θx , .Py := y + εP ⊂ Bd . . y∈θx Py is an open cover of a compact set 
.θx , hence it contains a finite subcover.P1, P2, . . . , Pm ,.m ∈ N. From Lemma 1.23 it follows 
that for each .s = 1, . . . ,m either .Ps ⊂ F̃ , or  

.Ps ∩ F̃ = ∅. (1.76) 

Since .θ /∈ F̃ we obtain that (1.76) holds for each .s = 1, . . . ,m and hence .x /∈ F̃ . 

1.2.9.5 Proof of Lemma 1.20 
Proof If.v(W , r) ≥ 2 for almost all.r ∈ P

d−1, then.vp(W ) ≥ 2 and inequality (1.65) holds. 
It is strict because Condition 1 of Lemma 1.20 holds. If there is a set .R ⊂ P

d−1 of posi-
tive measure such that .v(W , r) = 0 for all .r ∈ R, then .μd F = 0 due to Lemma 1.24 and 
inequality (1.65) holds. 

Assume there exists .R ⊂ P
d−1, .μR > 0, such that .v(W , r) = 1 for all .r ∈ R and 

.v(W , r) ≥ 2 for almost all .r ∈ P
d−1 \ R. Then 

.vp(W ) ≥ 2 − μR

μSd−1 . (1.77) 

Really, if .p = ∞, then .v∞(W ) ≥ 2 in the case .μR < μPd−1 and .v∞(W ) = 1 in the case 
.μR = μPd−1 = μSd−1. In both cases (1.77) holds. In the case .p ∈ [1, ∞)
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. vp(W ) ≥ 1

μSd−1 μR + 2p · (μSd−1 − μR)

1
p ≥ 2 − μR

μSd−1

due to Lemma 1.22. 
Conditions 1 and 2 of the lemma imply that there exists.ε > 0 such that . Bd(ε) ∩ W = ∅

and .Bd(ε) ∩ F = ∅. Set . := r∈R(r ∩ Bd). Below we prove that 

.μd ∩ F) <
μd

2
. (1.78) 

In order to prove (1.78) it is enough to show that 

.μd ∩ F̃) <
μd

2
(1.79) 

due to (1.70). Consider arbitrary .r ∈ R. Then all points of the intersection .r ∩ F̃ are from 
one side of .r ∩ Bd(ε). This fact can be proved using arguments similar to the proof of 
Lemma 1.23. Denote by . χ the characteristic function of the set . ∩ F̃ . Then .χ(x) = 0 for 
all .|x | < ε and .χ(x) + χ(−x) ≤ 1 for all .x ∈ . This implies (1.79). 

Finally, having (1.78), we can write 

. μd F ≤ μd(F ∩ + μd(Bd \ d Bd − 1

2
μd

= μd Bd − 1

2
· μd Bd

μSd−1μR = μd Bd

2
2 − μR

μSd−1 .

The latter together with (1.77) proves (1.65). 
The same example as in Theorem 1.12 shows that inequality (1.65) is sharp. 

1.3 Inequalities for Derivatives 

1.3.1 Hypersingular Integral Operator 

Inequalities for derivatives is an important topic in approximation theory. It has a rich more 
than century-long history and is still actively researched. We refer to [ 27] for many results 
related to the Kolmogorov-type inequalities for univariate functions and the derivatives of 
integer orders. Kolmogorov-type inequalities for multivariate functions for derivatives of 
both integer and fractional orders were also heavily studied. A survey on Kolmogorov-type 
inequalities for fractional derivatives for functions of one and many variables is contained 
in [ 64, Chapter 2]. In this section we focus on Kolmogorov-type and Nagy-type inequalities 
that use Ostrowski-type inequalities in their proofs. 

In this section we follow the notations from Sects. 1.2.4, 1.2.5 and 1.2.6.
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For a set .K ∈ K, cone .C ∈ C and a non-negative characteristic . we consider the fol-
lowing integral operator 

.DK f (x) :=
C

w(|t |K )( f (x + t) − f (x t)dt, x ∈ C, (1.80) 

where .w : (0, ∞) → R is some non-negative weight; precise definitions for the classes of 
function where .DK is defined and conditions on the functions .w and . will be given 
later. Note that in the case when .K is the Euclidean unit ball in .Rd , . ≡ 1, .C = R

d and 
.w(t) = t−(d+α), .0 < α < 1, we obtain the Riesz derivative .Dα of order . α, see  [  69, §26.7]. 

In [ 23] the univariate case .d = 1 with .C = (0, ∞), .w(t) = t−(1+α), .α ∈ (0, 1), . ≡
1, .K = (−1, 1) was considered. In this case operator .DK becomes the Marchaud (see 
e.g. [ 69, §5.4]) fractional derivative, and a sharp Kolmogorov-type inequality that estimates 
. DK f L∞(R) via . f L∞(R) and . f Hω(R) was obtained. In the same situation, a sharp 
inequality that estimates . DK f L∞(R+) via . f L∞(R+) and . f Ls (R+), .1 < s < ∞, 
.0 < α < 1 − 1

s , is contained in [ 64, §2.4]. 
In the case when.C = R

d ,.K = B1, and.w(t) = t−(d+α), a sharp inequality that estimates 
. DK f L∞(Rd ) via. f L∞(Rd ) and. f Hω(Rd ), where the modulus of continuity. ω is such 

that . 1
0

ω(t)
t1+α dt converges, was obtained in [ 24]. 

In the case when .C = R
d , .K = B1, and  .w(t) = t−(d+α), a sharp inequality that esti-

mates . DK f L∞(Rd ) via . f L∞(Rd ) and .
1
s · ∇ f |2 Ls (Rd ), .s > d, .0 < α < 1 − d

s is 
contained in [ 67]. The corresponding result for . ≡ 1 was obtained earlier in [ 31]. 

Finally, the case when . ≡ 1 and the cone .C is generated by a finite set of points was 
considered in [ 28]. Below we follow [ 29], where the results from [ 28] were further refined 
in several directions: first of all, . was allowed to be non-unit, and the cone . C—to be an 
arbitrary convex cone; moreover, the additional conditions imposed in [ 28] on the weight. w
for the case, when .K is not a polytope (by a polytope we mean the convex hull of a finite 
number of points) was removed. The results of [ 24] were also generalized by allowing. C to 
be an arbitrary convex cone, .K to be a unit ball of an arbitrary norm in.R

d , and weight. w to 
belong to a rather large set of functions. 

Below on the classes.Hω
K (C) ∩ L∞(C) and.L∞,p(C) (see Sects. 1.2.5 and 1.2.6) together 

with hypersingular operator (1.80) we also consider the operator 

.DK ,h f (x) :=
C\hK

w(|t |K )( f (x + t) − f (x t)dt, h > 0. (1.81) 

Lemma 1.25 For any function .w ∈ L1(h, ∞) the operator .DK ,h : L∞(C) → L∞(C) is 
bounded and 

. DK ,h 2 · K ,C) w L1(h,∞).

The supremum in the definition of the norm of operator .DK ,h is attained on the function
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. f (x) = ω(|x |K ) − 1
2ω(h), |x |K ≤ h,

1
2ω(h), |x |K > h,

(1.82) 

which is continuous and belongs to .Hω
K (C) ∩ L∞(C), and on 

. f (x) =
|x |K
0 gp −1

w (u)du − 1
2

h
0 gp −1

w (u)du, |x |K ≤ h,

1
2

h
0 gp −1

w (u)du, |x |K > h,
(1.83) 

provided additionally .w ∈ Wp (0, h), .p ∈ (d, ∞]. Under this additional assumption on . w, 
function (1.83) is continuous and belongs to .L∞,p(C). 

Proof Using Lemma 1.11 for each . f 0 and .x ∈ C , we obtain  

. 
1

2 f L∞(C)

·
C\hK

w(|t |K )( f (x + t) − f (x t)dt ≤
C\hK

w(|t |K t)dt

w L1(h,∞) · K ,C).

This implies 
. DK ,h 2 w L1(h,∞) · K ,C).

The fact that function (1.82) belongs to .Hω
K (C) can be proved similarly to the proof 

that function (1.37) belongs to .Hω
K (hK ∩ C). For arbitrary .K ∈ K and the function . f

defined in (1.82), the function .DK ,h f is continuous at . θ , since for arbitrary .x ∈ C , due 
to Lemma 1.11 

. DK ,h f (x) − DK ,h f (θ)

=
C\hK

w(|t |K )( f (x + t) − f (x) − f (t) + f t)dt

≤
C\hK

w(|t |K )(| f (x + t) − f (t)| + | f (x) − f (θ))| t)dt

≤ 2ω(|x |K )
C\hK

w(|t |K t)dt → 0 as x → θ.

For the function . f defined in (1.82), we have . f L∞(C) = 1
2ω(h) and 

. DK ,h
2

ω(h)
DK ,h f (θ) = 2

ω(h) C\hK
w(|t |K )( f (t) − f t)dt

= 2
C\hK

w(|t |K t)dt = 2 w L1(h,∞) · K ,C),

which proves the statement of the lemma for function (1.82).
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Observe that function (1.83) is continuous on .C and constant outside a compact set. 
Thus it is uniformly continuous, and hence the same arguments as for function (1.82) imply  
continuity of .DK ,h f at . θ for function (1.83). Hence 

. DK ,h f L∞(C) ≥ DK ,h f (θ) =
C\hK

w(|t |K )( f (t) − f t)dt

=2 f L∞(C)
C\hK

w(|t |K t)dt = 2 f L∞(C) w L1(h,∞) · K ,C),

which implies the desired. 

1.3.2 Kolmogorov-Type Inequalities for Classes . Hω
K (C)

The following theorem is contained in [ 29]; in the partial case when .C = R
d , . w(t) =

t−(d+α), .α ∈ (0, 1), and .K is the unit Euclidean ball it is contained in [ 24]. 

Theorem 1.13 Let a set .K ∈ K, a cone .C ∈ C, and a homogeneous characteristic . be 
given. Then for a modulus of continuity . ω and a weight . w such that for some .h > 0, . w · ω ∈
L1(0, h) and .w ∈ L1(h, ∞) the inequality 

. DK f L∞(C) ≤ K ,C) · 2 f L∞(C) w L1(h,∞)

f Hω
K (C) w · ω L1(0,h) (1.84) 

holds for each function. f ∈ Hω
K (C) ∩ L∞(C) and is sharp. The inequality becomes equality 

on function (1.82). 

Proof For arbitrary .x ∈ C using Theorem 1.6 we obtain the following estimate 

. (DK f − DK ,h )(x) ≤
hK∩C

w(|t |K )| f (x + t) − f (x)| t)dt

f Hω
K (x+hK∩C) · K ,C) w L1(0,h) f Hω

K (C) · K ,C) w L1(0,h).

Using the triangle inequality 

. DK f L∞(C) (DK − DK ,h ) f L∞(C) DK ,h f L∞(C),

and applying the obtained estimate together with Lemma 1.25, we obtain inequality (1.84). 
For all .x ∈ C and .t ∈ hK ∩ C , on the one hand 

.| f (x + t) − f (x) − f (t) + f (θ)| ≤ | f (x + t) − f (x)| + | f (t) − f (θ)| ≤ 2ω(|t |K ),
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and on the other hand 

. | f (x + t) − f (x) − f (t) + f (θ)| ≤ | f (x + t) − f (t)| + | f (x) − f (θ)| ≤ 2ω(|x |K ).

For a fixed.x ∈ C set.ωx (δ) := 2min{ω(δ), ω(|x |K )}, .δ ≥ 0. Using Lemma 1.11 we obtain 
as . x → θ

. (DK − DK ,h ) f (x) − (DK − DK ,h ) f (θ)

≤
hK∩C

w(|t |K ) | f (x + t) − f (x) − f (t) + f (θ)| t)dt

≤
hK∩C

w(|t |K )ωx (|t |K t)dt = K ,C) w · ωx L1(0,h) → 0.

Thus .(DK − DK ,h ) f is continuous at . θ . In the proof of Lemma 1.25 it was shown that 

.DK ,h f is continuous at . θ . Thus .DK f is continuous at . θ . 
The function. f defined in (1.82) is extremal in Lemma 1.25 and its restriction to. hK ∩ C

is extremal in Theorem 1.6, hence 

. DK f L∞(C) ≥|DK f (θ)| = DK f (θ) = (DK − DK ,h ) f (θ) + DK ,h f (θ)

= K ,C) · 2 f L∞(C) w L1(h,∞) f Hω
K (C) w · ω L1(0,h) ,

which finishes the proof of the theorem. 

1.3.3 Kolmogorov-Type Inequalities for Classes . L∞, p(C)

This theorem is contained in [ 29]. Partial cases of the following theorem are contained in 
[ 22, 31, 67]. 

Theorem 1.14 Let .p ∈ (d, ∞], .C ∈ C, .K ∈ K, . : C → R be a non-negative character-
istic, and . f ∈ L∞,p(C). For  each .h > 0 and .w ∈ Wp (0, h) ∩ L1(h, ∞) one has 

. DK f L∞(C) ≤ 2 · K ,C) w L1(h,∞) f L∞(C)

+ ( K ,C))
1
p gw Lp (0,h)

1
p · |∇ f |K ◦ L p(C). (1.85) 

The inequality is sharp. It becomes equality on the functions .a · f , where .a ∈ R and . f is 
defined in (1.83). 

Proof The proof of inequality (1.85) and the fact that for function (1.83), .DK f (θ) is 
equal to the right-hand side of (1.85), can be done using the same arguments as in the proof 
of Theorem 1.13, because function (1.83) is extremal in Lemma 1.25 and its restriction
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to .hK ∩ C is extremal in Theorem 1.7. In the proof of Lemma 1.25 it was shown that 
for function (1.83), .DK ,h f is continuous at . θ , thus to finish the proof of the theorem, it 

is sufficient to prove that .(DK − DK ,h ) f is also continuous at . θ . For a fixed .x ∈ R
d , 

applying Theorem 1.6 we obtain 

. |(DK − DK ,h ) f (x) − (DK − DK ,h ) f (θ)|
=

hK∩C
w(|t |K )([ f (x + t) − f (t)] − [ f (x) − f (θ)] t)dt

≤ ( K ,C))
1
p gw Lp (0,h)

1
p (·) · |∇ f (x + ·) − ∇ f (·)|K ◦ L p(hK∩C). (1.86) 

Due to Lemma 1.11, . ∈ L1(hK ∩ C); due to (1.41), Lemmas 1.11 and 1.14, . |∇ f |K ◦ ∈
L p(hK ∩ C) and .

1
p |∇ f |K ◦ ∈ L p(hK ∩ C). Moreover, 

. 

hK∩C hK∩C
y)|∇ f (x + y)|pK ◦dydx

=
hK∩C

y)
hK∩C

|∇ f (x + y)|pK ◦dxdy

=
hK∩C

y) f |K ◦ p
L p(y+hK∩C)dy L1(hK∩C) f K ◦ p

L p(hK∩C),

where the last inequality is true, since .∇ f is zero outside .hK ∩ C . This implies that 

.
1
p (·)|∇ f (· + x)|K ◦ ∈ L p(hK ∩ C) for almost all .x ∈ hK ∩ C , and hence the right-hand 

side of (1.86) is finite for almost all . x . 
For arbitrary .ε > 0 and any compact set .T ⊂ (hK ∩ C) \ Bε such that .| · |K is differen-

tiable on . T , the function .∇ f is uniformly continuous on . T due to Lemma 1.14, continuity 
of the function .gw on sets separated from. 0 and continuity of the gradient .∇| · |K (see [ 68, 
Theorem 25.5]). Thus the quantity.|∇ f (x + ·) − ∇ f (·)|K ◦ can be made arbitrarily small on 
the set.Tε := {y ∈ T : y + Bε ⊂ T } by choosing. x close enough to. θ . Moreover, by absolute 

continuity of the integral the quantity.
1
p (·) · |∇ f (x + ·) − ∇ f (·)|K ◦ L p(hK∩C\Tε) can be 

made arbitrary small by appropriate choices of .T and . ε. This implies that the right-hand 
side of (1.86) tends to . 0 as .x → θ , which implies continuity of .(DK − DK ,h ) f at . θ . 

1.3.4 Kolmogorov-Type Inequalities for Classes . L∞, p(R
d)

For .0 < α < 2, we consider the following integral operator 

.(Dα f )(x) :=
Rd

2 f (x) − f (x − t) − f (x + t)

|t |d+α
2

dt . (1.87)
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Up to a normalization factor,.Dα is the Riesz derivative of the order. α, see e.g., [ 69, Sect. 25]. 
Note that the Riesz derivative can be considered as a functional power.(− α/2 of the Laplace 
operator. 

1.3.4.1 Bounded Operator . Dα
h

Together with operator (1.87) we consider the operator .Dα
h f (x) : L∞(Rd) → L∞(Rd), 

. Dα
h f (x) =

Rd\Bh
2 f (x) − f (x − t) − f (x + t)

|t |d+α
2

dt + 2chσd−1( f (x) − f (x, h)),

(1.88) 
where .ch is chosen from condition (1.45), and . f (x, h) is defined in (1.48). 

The next lemma shows that this operator is bounded and computes its norm. 

Lemma 1.26 Let .h > 0, .p > d/2 and .0 < α < 2 − d/p, or .p = ∞ and .0 < α < 2. Then 

. Dα
h 4σd−1h

−α 1

α
+ c1 .

The supremum in the definition of the norm of the operator .Dα
h is attained on the func-

tion .ϕh,2. 

Proof For any function . f ∈ L∞(Rd) and . h > 0

. Dα
h f L∞(Rd ) =

Rd\Bh
2 f (·) − f (· + t) − f (· − t)

|t |d+α
dt

+2chσd−1 f (·) − f (·, h) L∞(Rd )
≤

≤ 4 f L∞(Rd )
Rd\Bh

dt

|t |d+α
+ chσd−1 = 4 f L∞(Rd )σd−1

h−α

α
+ ch

= 4 f L∞(Rd )σd−1h
−α 1

α
+ c1 .

This implies 

. Dα
h 4σd−1h

−α 1

α
+ c1 . (1.89) 

Recall that the function .ϕh,2 defined in (1.46) is continuous and hence .Dα
h ϕh,2 is also 

continuous. Thus for each .h > 0 one has 

. Dα
h ϕh,2 L∞(Rd ) ≥ |Dα

h ϕh,2(0)|
=

Rd\Bh
2ϕh,2(0) − 2ϕh,2(y)

|y|d+α
dy + 2chσd−1(ϕh,2(0) − ϕh,2(0)) =
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= 4 ϕh,2 L∞(Rd ) 
Rd\Bh 

dy  

|y|d+α + chσd−1 

= 4 ϕh,2 L∞(Rd )σd−1h
−α 1 

α 
+ c1 , 

hence, 

. Dα
h 4σd−1h

−α 1

α
+ c1 . (1.90) 

Now the statement of the lemma follows from inequalities (1.89) and (1.90). 

1.3.4.2 Kolmogorov-Type Inequalities 
Theorem 1.15 Let .d/2 < p < ∞, .0 < α < 2 − d/p or .p = ∞ and .0 < α < 2. Then for  
an arbitrary function . f ∈ L∞,p(R

d) and each .h > 0 one has 

. Dα f L∞(Rd ) ≤ 2σd−1h
2−α− d

p 1(| · |) L p (B1)
f L p(Rd )

+ 4σd−1h
−α 1

α
+ c1 f L∞(Rd ). (1.91) 

Inequality (1.91) becomes equality for the function .ϕh,2. 

Proof Using Lemma 1.26 and Theorem 1.8 and the triangle inequality 

. Dα f L∞(Rd ) Dα f − Dα
h f L∞(Rd ) Dα

h f L∞(Rd ),

we obtain inequality (1.91) for all .h > 0 and . f ∈ L∞,p(R
d). It becomes equality for the 

function .ϕh,2, since it is extremal both in Lemma 1.26 and Theorem 1.8, and is constant 
outside .Bh , which implies the equality 

. h,2 L p(Rd ) h,2 L p(Bh).

Using standard arguments (e.g., by minimizing the right-hand side of (1.91) with respect 
to. h) and homogeneity of the functions involved in the obtained Kolmogorov-type inequality, 
one can obtain a Kolmogorov-type inequality in the multiplicative form. The constant may 
be written in terms of .α, p, d, c1 and . 1(| · |) L p (B1)

, or in terms of the function .ϕ1,2. We  

formulate the theorem using the latter approach. 

Theorem 1.16 Let .d/2 < p < ∞ and .0 < α < 2 − d/p or .p = ∞ and .0 < α < 2. Then 
for all functions . f ∈ L∞,p(R

d) one has 

. Dα f L∞(Rd ) ≤ Dαϕ1,2 L∞(Rd )

ϕ1,2

2−α−d/p
2−d/p

L∞(Rd )

f
2−α−d/p
2−d/p

L∞(Rd )
f

α
2−d/p

L p(Rd )
.
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The inequality is sharp and becomes equality for the functions . f (t) = aϕh,2(t), .h > 0, 
.a ∈ R. 

1.3.5 Nagy-Type Inequalities 

In 1941 for all admissible parameters .p, q, s, Nagy [  74] proved sharp inequalities of the 
following type 

. x Lq (R) ≤ K x α
L p(R) x 1−α

Ls (R)
.

In the periodic case inequalities of Nagy type are contained in [ 25, 26, 53]. The results of 
Sects. 1.3.5, 1.3.6, and  1.3.7 are contained in [ 17– 19]. 

1.3.5.1 Notations 
A tripe  .(X , ρ, μ), where  .(X , ρ) is a metric space with a Borel measure . μ will be called a 
metric space with measure. We assume that.X is a commutative monoid (i.e., an associative 
and commutative binary operation .+ is defined on . X , and there exists an element . θ ∈ X
such that .x + θ = θ + x = x for all .x ∈ X ) such that for each measurable set .Q ⊂ X and 
each .x ∈ X one has 

. μ(x + Q) = μ(Q).

Suppose that for all .x, y ∈ X , 

. ρ(x + y, x) ≤ ρ(y, θ).

Everywhere below .Bh = Bh(θ) is an open ball of radius .h > 0 with center . θ ; we suppose 
that .0 < μ(Bh) < ∞ and .Bh = {θ} for all .h > 0. 

For.p ∈ [1, ∞) by.L p(X)we denote the space of measurable functions. f : Q → R such 
that the function .| f |p is integrable on .X with the corresponding norm; .L∞(X) denotes the 
space of measurable essentially bounded on .X functions. By .L loc(X) we denote the space 
of all functions. f : X → R that are integrable on each open ball of . X . In the space. L loc(X)

we introduce a family of seminorms 

. f h= sup
x∈X x+Bh

f (u)μ(du) , h > 0,

and a seminorm 
. f sup

h>0
f h .

By.L h (X) (.L (X)) we denote the family of functions. f ∈ L loc(X)with a finite seminorm 
. h (resp. . ). It is clear that the space .L1(X) is contained in each of these sets. 

By .Cb(X) we denote the space of continuous functions . f : X → R that have a finite 
norm
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. f Cb(X) = sup
x∈X

| f (x)|;

by .B(X) we denote the space of bounded functions . f : X → R with a norm 

. f B(X) = sup
x∈X

| f (x)|. (1.92) 

In this section we assume that the measure. μ is such that each continuous function belongs 
to .L loc(X). 

Let. ω be a modulus of continuity. Recall that by.Hω(X)we denote the space of functions 
. f : X → R such that 

. f Hω(X) := sup
x,y∈X ,x y

| f (x) − f (y)|
ω(ρ(x, y))

< ∞.

We also consider the case, when.X is some open convex cone. C in the space.R
d , .d ≥ 1, 

the metric . ρ is determined by a set .K i.e., .ρ(x, y) = |x − y|K , and.μ = m is the Lebesgue 
measure in the space .Rd (see Sect. 1.2.4 for the definitions of the norms .| · |K and .| · |K ◦ ). 
In this case we write .(C, K ,m) instead of .(X , ρ, μ), .Bh = hK ∩ C , and the introduced 
seminorms . h and . become 

. f h= sup
x∈C hK∩C

f (x + u)du , h > 0, and f sup
h>0

f h .

1.3.5.2 Averaging Operator 
For each .h > 0 we define an operator .Sh : L h (X) → B(X) by the following rule: 

.Sh f (x) = 1

μBh Bh
f (x + u)μ(du). (1.93) 

It is clear that this operator is bounded and 

. Sh L h (X)→B(X) = 1

μ(Bh)
. (1.94) 

In the case, when .(X , ρ, μ) = (C, K ,m), due to absolute continuity of the Lebesgue inte-
gral, the image .Sh f of each locally integrable function . f , is continuous (and hence mea-
surable) bounded function. Thus in this case we can count that the operator .Sh acts into the 
space .L∞(C). 

For .h > 0 define a function .gh : (0, h) → R, 

. gh(u) = 1

d · μ(K ∩ C)

1

ud−1 − u

hd
.

Using Lemma 1.11 we obtain that for all .p ∈ (d, ∞]
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. gh (| · |K ) L p (hK∩C) = (d · μ(K ∩ C))
1
p gh Lp (0,h) ,

where, as in (1.27) for .1 ≤ p < ∞, 

. w Lp(0,h) =
h

0
td−1w p(t)dt

1/p

.

Thus the next lemma is a partial case of Theorem 1.7. 

Lemma 1.27 Let .p ∈ (d, ∞], .h > 0 and . f ∈ W 1,p(hK ∩ C). Then 

. | f (θ) − Sh f (θ)| ≤ gh (| · |K ) L p (hK∩C) f |K ◦ L p(hK∩C).

The inequality is sharp. It becomes equality for the functions.α · f + β, where.α, β ∈ R and 

. f (y) =
|y|K

0
gp −1
h (u)du, y ∈ hK ∩ C .

Note that the quantity . gh(| · |K ) L p (hK∩C) can be expressed via the Euler beta func-
tion . B. 

Lemma 1.28 For .p ∈ (d, ∞] one has 

. gh(| · |K ) L p (hK∩C) = (d · μ(K ∩ C))1/p gh Lp (0,h) = Aμ
− 1

p (K ∩ C)h1−
d
p ,

where 

.A = A(d, p) = d−1B
1
p 1 − (d − 1)p

d
, p + 1 . (1.95) 

In particular, for .p = ∞, 

. gh(| · |K ) L1(hK∩C) = d · h
d + 1

.

Proof The first equality follows from 1.11. The second one can be obtained via direct 
calculations. The last equality follows from (1.95) and properties of the function . B. 

1.3.5.3 Nagy-Type Inequalities in the Spaces . W1, p(C)

Theorem 1.17 If .h > 0, .p ∈ (d, ∞] and . f ∈ W 1,p(C) ∩ L h (C), then . f ∈ L∞(C) and 
the following inequality holds: 

. f L∞(C) f − Sh f L∞(C) Sh L h (C)→L∞(C) f h

≤ gh(| · |K ) L p (hK∩C) f |K ◦ L p(C) + μ−1(K ∩ C)h−d f h . (1.96) 

Inequality (1.96) is sharp. It becomes equality on the functions
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.α · ( fe,h + β), where α > 0, β ≥ −1

2
fe,h(0), (1.97) 

. fe,h(y) =
h
|y|K g p −1

h (u)du, y ∈ hK ∩ C,

0, y ∈ C \ hK .
(1.98) 

For each function . f ∈ W 1,p(C) ∩ L (C) the following multiplicative inequality holds 

. f L∞(C) ≤ a(d, p)μ− α
d (K ∩ C) f 1−α f |K ◦ α

L p(C), (1.99) 

where 

.α = pd

p + (p − 1)d
, a(d, p) = (p − d)A(d, p)

pd

α pd

p − d
+ 1 , (1.100) 

and .A(d, p) is defined in (1.95). Inequality (1.99) is sharp, it becomes equality on each of 
the functions . fe,h, .h > 0. 

Taking into account Lemma 1.28, inequality (1.96) can be rewritten in the form 

. f L∞(C) ≤ A(d, p)μ− 1
p (K ∩ C)h1−

d
p f |K ◦ L p(C) + μ−1(K ∩ C)h−d f h,

where.A(d, p) is defined in (1.95). From the statement about sharpness of inequality (1.99) 
it follows that it can also be rewritten as follows: 

. f L∞(C) ≤ fe,1 L∞(C)

fe,1 1−α fe,1|K ◦ α
L p(C)

f 1−α f |K ◦ α
L p(C).

Proof For each .x ∈ C one has 

. | f (x)| ≤ f (x) − 1

μ(hK ∩ C) hK∩C
f (x + y)dy

+ 1

μ(hK ∩ C) hK∩C
f (x + y)dy . (1.101) 

Using Lemma 1.27 for the function .F(y) = f (x + y), .y ∈ hK ∩ C, x ∈ C , and  
Lemma 1.28, one obtains 

. f (x) − 1

μ(hK ∩ C) hK∩C
f (x + y)dy

= 1

μ(hK ∩ C) hK∩C
(F(θ) − F(y))dy

≤ (d · μ(K ∩ C))
1
p gh Lp (0,h) F |K ◦ L p(hK∩C)
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= Aμ
− 1 p (K ∩ C)h1−

d 
p f |K ◦ L p(x+hK  ∩C) 

≤ Aμ
− 1 p (K ∩ C)h1−

d 
p f |K ◦ L p(C). (1.102) 

Hence 
. f − Sh f L∞(C) ≤ Aμ

− 1
p (K ∩ C)h1−

d
p f |K ◦ L p(C). (1.103) 

It is easy to see that 
. Sh L h (C)→L∞(C) ≤ μ−1(K ∩ C)h−d . (1.104) 

From inequalities (1.103) and (1.104) together with Lemma 1.28, inequality (1.96) follows. 
Next we prove its sharpness. Since the function .gh is non-negative, 

.|x |K ≤ |y|K =⇒ fe,h(x) ≥ fe,h(y). (1.105) 

Moreover, the function . fe,h is continuous. Hence . fe,h L∞(C) = f (θ) and, moreover, 
inequality (1.101) becomes equality for .x = θ and the function . fe,h . Moreover, due to 
Lemma 1.27, the first inequality in (1.102) for.x = θ becomes equality for the function. fe,h . 
Notice that the function . fe,h vanishes outside the set .hK ∩ C , and hence 

. fe,h |K ◦ L p(hK∩C) fe,h |K ◦ L p(C),

thus the second inequality in (1.102) also becomes equality. Finally, taking into account 
(1.105), we obtain . fe,h h= hK∩C fe,h(y)dy, which finishes the proof of sharpness of 
inequality (1.96). 

From (1.96) it follows that for all . f ∈ W 1,p(C) ∩ L (C) and .h > 0 one has 

. f L∞(C) ≤ A(d, p)μ− 1
p (K ∩ C)h1−

d
p f |K ◦ L p(C) + μ−1(K ∩ C)h−d f .

(1.106) 
Moreover, for each .h > 0, . fe,h h fe,h , and hence inequality (1.106) is sharp and 
becomes equality for the function . fe,h . If  .β satisfies the inequalities from (1.97), then 
after the substitution of. fe,h by. fe,h + β both side of inequality (1.106) change by. β, hence 
remain equal. Finally, the equality remain true if the extremal function is multiplied by a 
positive constant. Thus inequality (1.106) becomes equality on each of the functions (1.97). 

Minimizing the right-hand side of (1.106) with respect to . h i.e., choosing 

. h =
⎛

⎝ pdμ
− 1

p (K ∩ C) f

(p − d)A(d, p) f |K ◦ L p(C)

⎞

⎠

p
p +d

,

one obtains inequality (1.99). 
Next we prove sharpness of inequality (1.99). Set .q = 1

α
and .q = 1

1−α
. For each . h > 0

consider the numbers 

.u = q A(d, p)μ− 1
p (K ∩ C)h1−

d
p f |K ◦ L p(C)

1
q
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and 

. v = q μ−1(K ∩ C)h−d f
1
q

.

Using inequality (1.99), Young’s inequality and straightforward computations, we obtain 

. f L∞(C) ≤ a(d, p)μ− α
d (K ∩ C) f 1−α f |K ◦ α

L p(C) = uv ≤ uq

q
+ vq

q

= A(d, p)μ− 1
p (K ∩ C)h1−

d
p f |K ◦ L p(C) + μ−1(K ∩ C)h−d f .

Since inequality (1.106) becomes equality for the function . fe,h , we obtain that inequal-
ity (1.99) also becomes equality on the function . fe,h , and hence is sharp. 

Corollary 1.3 If .h > 0, .p > d and . f ∈ W 1,p(C) ∩ L1(C), then . f ∈ L∞(C) and the fol-
lowing inequalities hold: 

. f L∞(C) ≤ gh(| · |K ) L p (hK∩C) f |K ◦ L p(C) + μ−1(K ∩ C)h−d f L1(C),

. f L∞(C) ≤ a(d, p)μ− α
d (K ∩ C) f 1−α

L1(C) f |K ◦ α
L p(C),

where . α and .a(d, p) are defined in (1.100). Both inequalities are sharp. The additive one 
becomes equality on the function . fe,h, the multiplicative one—on each of the functions . fe,h, 
.h > 0. 

Proof Since.L1(C) ⊂ L (C) ⊂ L h (C),. f h f f L1(C) for each of the functions 
. f ∈ L1(C), and. fe,h L1(C) fe,h h fe,h for each.h > 0, the statement of the corollary 
follows from Theorem 1.17. 

1.3.6 Kolmogorov-Type Inequalities for Charges 

By .N(X) we denote the family of charges . ν defined on the family of all . μ–measurable 
subsets of .X and that are absolutely continuous with respect to the measure. μ, see e.g., [ 34, 
Chap. 5]. By the Radon–Nikodym theorem, for a charge.ν ∈ N(X) there exists an integrable 
function . f : X → R such that for arbitrary measurable set . Q ⊂ X

.ν(Q) =
Q

f (x)μ(dx). (1.107) 

This function. f is called the Radon–Nikodym derivative of the charge. ν with respect to the 
measure . μ and will be denoted by .Dμν. The family .N(X) is a linear space with respect to 
the standard addition and multiplication by a real number. Define a family of seminorms 
. h, h > 0} as follows: 

. ν h ν(· + Bh) B(X),
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where the norm. B(X) was defined in (1.92), and let . ν suph>0 ν h . It is clear that if 
a charge . ν and a function . f are related via (1.107), then 

. ν h f h, h > 0, and ν f .

For .h > 0 by .N h (X) (.N (X)) we denote the set of charges .ν ∈ N(X) with a finite 
seminorm. h (resp. . ). 

In the case, when .(X , ρ, μ) = (C, K ,m), we obtain 

. ν h= sup
x∈C

|ν(x + hK )|,

and, moreover, the function .x ν(x + hK ) is continuous. 

Theorem 1.18 If .h > 0 and the charge .ν ∈ N h (C) is such that .Dμν ∈ W 1,p(C), then 

. Dμν L∞(C) ≤ Dμν − Shν L∞(C)
Sh N h (C)→L∞(C) ν h

≤ Aμ
− 1

p (K ∩ C)h1−
d
p Dμν|K ◦ L p(C) + μ−1(K ∩ C)h−d ν h, (1.108) 

where .A(d, p) is defined in (1.95), and 

. Shν(x) = ν(x + hK ∩ C)

hdμ(K ∩ C)
.

Inequality (1.108) is sharp. It becomes equality on the charge .νe,h that is determined by 
the equality .Dμνe,h = fe,h, where the function . fe,h is defined in (1.98). If the charge . ν ∈
N (C) is such that .Dμν ∈ W 1,p(C), then the following multiplicative inequality holds 

. Dμν L∞(C) ≤ a(d, p)μ− α
d (K ∩ C) ν 1−α Dμν|K ◦ α

L p(C), (1.109) 

where . α and .a(d, p) are defined in (1.100). Inequality (1.109) is sharp. It becomes equality 
for each charge . ν such that .Dμν = fe,h, .h > 0. 

Proof It is enough to apply Theorem 1.17 to the function. f = Dμν and to take into account 
that .Shν = Sh f . 

1.3.7 Inequalities for a Mixed Derivative of a Function 

1.3.7.1 Assumptions and Notations 
In this section .(X , ρ, μ) = (C, K ,m), .C = R

d
m,+ := R

m+ × R
d−m, 0 ≤ m ≤ d , 

.K = (−1, 1)d so that .|x |K = |x |∞ = maxi=1,...,d |xi |. Then  . Bh = hK ∩ C = (0, h)m ×
(−h, h)d−m and .μ(hK ∩ C) = 2d−mhd .
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Let .I = (1, . . . , 1) ∈ R
d . For a locally integrable function . f : X → R set 

.∂I f = ∂d f

∂x1 . . . ∂xd
, (1.110) 

where the derivatives are understood in the distributional sense. 
Let .{ei }di=1 be the standard basis in .R

d and for . h > 0

. 
+
i,h f (x) := f (x + hei ) − f (x), and i,h f (x) := f (x + hei ) − f (x − hei ).

According to the Fubini theorem for almost all .x ∈ R
d
m,+ one has 

.

x+hK∩C
∂I f (u)du = +

1,h ◦ . . . ◦ +
m,h ◦ m+1,h ◦ . . . ◦ d,h) f (x). (1.111) 

Define an operator .Sh,m : L∞(C) → L∞(C), setting 

. Sh,m f (x) = 1

2d−mhd
+
1,h ◦ . . . ◦ +

m,h ◦ m+1,h ◦ . . . ◦ d,h f (x).

It is easy to see that 
. Sh,m L∞(C)→L∞(C) = 2mh−d , (1.112) 

and for arbitrary function . f ∈ L∞(Rd
m,+) such that .∂I f ∈ W 1,p(Rd

m,+), one has 

. Sh,m f (x) = 1

μ(hK ∩ C) x+hK∩C
∂I f (u)du

= 1

μ(hK ∩ C) hK∩C
∂I f (x + u)du = Sh∂I f (x), (1.113) 

where the operator .Sh is defined in (1.93). 

1.3.7.2 Classes . W1, p(Rd
m,+)

Theorem 1.19 For .h > 0 and a function . f ∈ L∞(Rd
m,+) such that .∂I f ∈ W 1,p(Rd

m,+), 
one has 

. ∂I f L∞(Rd
m,+) ≤ ∂I f − Sh,m f L∞(Rd

m,+)
Sh,m f L∞(Rd

m,+)

≤ A(d, p)h1−
d
p 2

m−d
p ∂I f |K ◦ L p(R

d
m,+) + 2mh−d f L∞(Rd

m,+), (1.114) 

where .A(d, p) is defined in (1.95). The inequality (1.114) can be rewritten in the multiplica-
tive form: 

. ∂I f L∞(Rd
m,+) ≤ a(d, p)2

α m
d − d

p f 1−α

L∞(Rd
m,+)

∂I f |K ◦ α

L p(R
d
m,+)

, (1.115)
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where . α and .a(d, p) are defined in (1.100). For  .m = 0 and .m = 1 inequalities (1.114) 
and (1.115) are sharp. 

Proof Taking into account .μ(K ∩ C) = 2d−m , (1.103), (1.112) and (1.113), one obtains 

. ∂I f L∞(C) ∂I f − Sh,m f L∞(C) Sh,m L∞(C)→L∞(C) f L∞(C)

∂I f − Sh∂I f L∞(C) + 2mh−d f L∞(C)

≤ A(d, p) · μ
− 1

p (K ∩ C)h1−
d
p ∂I f |K ◦ L p(C) + 2mh−d f L∞(C)

= A(d, p) · 2m−d
p h1−

d
p ∂I f |K ◦ L p(C) + 2mh−d f L∞(C)

and inequality (1.114) is proved. Using inequality (1.99) for the function .∂I f as well as 
equality (1.111), one has 

. ∂I f L∞(C) ≤ a(d, p)μ− α
d (K ∩ C) ∂I f

1−α ∂I f |K ◦ α
L p(C)

≤ a(d, p)μ− α
d (K ∩ C) 2d f L∞(C)

1−α

∂I f |K ◦ α
L p(C)

= a(d, p)2
(m−d)α

d +d(1−α) f 1−α
L∞(C) ∂I f |K ◦ α

L p(C)

= a(d, p)2
α m

d − d
p f 1−α

L∞(C) ∂I f |K ◦ α
L p(C),

and inequality (1.115) is proved. 
Next we prove sharpness of inequalities (1.114) and (1.115) for  .m = 0. Consider the 

function 

. Fe,h(x) =
x1

0
. . .

xd

0
fe,h(u)du,

where the function . fe,h is defined in (1.98). For this function one has .∂IFe,h = fe,h , 
.|∇∂IFe,h(·)|K ◦ = |∇ fe,h(·)|K ◦ and due to symmetry considerations 

.2d Fe,h L∞(C) = 2d
(0,h)d

fe,h(u)du =
(−h,h)d

fe,h(u)du fe,h h fe,h . (1.116) 

Since inequalities (1.96) and (1.99) become equalities on the function . fe,h , then taking 
into account (1.116), we obtain sharpness of inequalities (1.114) and (1.115) for .m = 0. 

Finally, we prove sharpness of inequalities (1.114) and (1.115) in the case .m = 1. In  
this case .hK ∩ C = (0, h) × (−h, h)d−1 and .μ(K ∩ C) = 2d−1. There exists a number 
.a ∈ (0, h) such that 

.

(0,a)×(−h,h)d−1
fe,h(u)du =

(a,h)×(−h,h)d−1
fe,h(u)du. (1.117) 

Consider the function
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. Ge,h(x) =
x1

a

x2

0
. . .

xd

0
fe,h(u)du.

For it one has .∂IGe,h = fe,h , .|∇∂IGe,h(·)|K ◦ = |∇ fe,h(·)|K ◦ . 
The hyperplanes.x1 = a and.x j = 0,. j = 2, . . . , d, split the set.(0, h) × (−h, h)d−1 into 

.2d boxes. 1 2d ; moreover, due to the symmetry of the plot of the function. fe,h with 
respect to the coordinate hyperplanes and due to equality (1.117), we obtain 

. 

i

fe,h(u)du = 1

2d (0,h)×(−h,h)d−1
fe,h(u)du, i = 1, . . . , 2d ,

hence 

. Ge,h L∞(C) = 1

2d (0,h)×(−h,h)d−1
fe,h(u)du = 1

2d
fe,h h= 1

2d
fe,h .

Due to this equality and the fact that inequalities (1.96) and (1.99) become equalities for the 
function . fe,h , we obtain sharpness of inequalities (1.114) and (1.115) for .m = 1. 

1.3.8 Approximation of Unbounded Operators by Bounded Ones 
and Related Problems 

1.3.8.1 General Facts 
Let. X and. Y be linear spaces equipped with a seminorm. X and a norm. Y respectively. 
By.L(X , Y )we denote the space of all linear bounded operators.S : X → Y . Let. A : X → Y
be an operator (not necessarily linear) with a domain .DA ⊂ X . Let also .M ⊂ DA be some 
class of elements. The problem to find the modulus of continuity of the operator .A on the 
class .M i.e., the function 

. = A,M; δ) := sup Ax Y : x ∈ M, x X ≤ δ}, δ ≥ 0, (1.118) 

is an abstract version of the problem about the Landau-Kolmogorov type inequalities. 
In Introduction we formulated a series of related problems. Here we formulate some 

general results on the connection of these problems. The Stechkin problem is intimately 
connected to Landau-Kolmogorov type inequalities. The following theorem describes this 
connection, see [ 71]. 

Theorem 1.20 For any .x ∈ M ⊂ X and arbitrary .S ∈ L(X , Y ) the following inequality 
holds 

. Ax Ax − Sx S x U (A, S;M) S x , (1.119) 

and, therefore for all .x ∈ M and .N > 0, 

. Ax EN (A,M) + N x .
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If in addition there exist .S ∈ L(X , Y ) and .x ∈ M such that both inequalities in (1.119) turn 
into equalities, then 

. x ) Ax and E
S

(A,M) = U (A, S;M) Ax S x .

Thus the element . x is extremal for problem (1.118), and the operator .S is optimal for 
problem (1.3). 

Remark 1.1 In Stechkin’s article [ 71] it is assumed that .X and .Y are Banach spaces. 
However, as it is easy to see, completeness, and even presence of a norm in .X is not 
necessary. It is sufficient to have a seminorm in. X . Completeness of. Y is also not necessary. 

Let .M ⊂ D(A) and .S ∈ L(X , Y ). For .δ ≥ 0 the value 

. Uδ(A, S,M) := sup Ax − Sη Y : x ∈ M, η ∈ X , x − η X ≤ δ},

if called the deviation of the operator .S ∈ L(X , Y ) from the operator .A on the class .M, 
where elements are known with error . δ. The problem of optimal recovery of the operator . A
by linear operators on such class .M consists of finding the quantity 

. Eδ(A,M) := inf
S∈L(X ,Y )

Uδ(A, S,M)

and an operator . S, on which the infimum on the right-hand side is attained, if it exists. 
The connection of this problem with the Landau-Kolmogorov-type inequalities and the 

Stechkin problem is given by the following theorem, see e.g. [ 5, Theorem 2.1]. 

Theorem 1.21 If .M is a convex centrally-symmetric set and . A is a homogeneous operator, 
then for all . δ > 0

. A,M; δ) ≤ Eδ(A,M) ≤ inf
N>0

{EN (A,M) + Nδ}.

If in addition there exist an element .x ∈ M and an operator . S such that both inequalities 
in (1.119) become equalities, then 

. E x (A,M) = A,M x ) Ax .

1.3.8.2 Extremal Problems for Hypersingular Integral Operators 
In Sect. 1.3.1 we studied a hypersingular integral operator .DK defined in (1.80) and  a  
truncated operator .DK ,h defined in (1.81).
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Theorem 1.22 Let a set .K ∈ K, a cone .C ∈ C, and a homogeneous characteristic . be 
given. Assume also that a modulus of continuity .ω and a weight  .w are such that for all 
.h > 0, .w · ω ∈ L1(0, h) and .w ∈ L1(h, ∞). If  

. N ∈
⎧
⎨

⎩

(0, ∞), DK is unbounded,

0, DK , otherwise,

and .hN is such that . w L1(hN ,∞) = N
2 K ,C)

, then 

.EN (DK ,M) = K ,C) w · ω L1(0,hN ), (1.120) 

where .M = { f ∈ Hω
K (C) ∩ L∞(C) f Hω

K (C) ≤ 1}. The extremal operator is .DK ,hN
. 

Proof From the choice of.hN and Lemma 1.25, we have. DK ,hN
N . Moreover, from the 

proof of Theorem 1.13 is follows that the condition of Theorem 1.20 are satisfied, and hence 
.EN (DK ,M) = U (DK , DK ,hN

;M). Now equality (1.120) follows from Theorem 1.6. 

Analogously using Theorems 1.7 and 1.14 we obtain the following result. 

Theorem 1.23 Let .p ∈ (d, ∞], .C ∈ C, .K ∈ K, . : C → R be a non-negative character-
istic, and a weight .w be such that for each .h > 0 and .w ∈ Wp (0, h) ∩ L1(h, ∞). For  . N
and .hN as in Theorem 1.22, 

. EN (DK ,N) = ( K ,C))
1
p gw Lp (0,hN ) ,

where .N = { f ∈ L∞,p(C)
1
p · |∇ f |K ◦ L p(C) ≤ 1}. The extremal operator is .DK ,hN

. 

1.3.8.3 Extremal Problems on Classes of Charges 
Theorem 1.24 For .p ∈ (d, ∞] set .X = W 1,p(C) ∩ L (C), let  .M be the family of func-
tions . f ∈ X such that . f |K ◦ L p(C) ≤ 1, and .J : X → L∞(C) be the embedding opera-
tor. For all .δ > 0 the following equalities hold: 

.Eδ(J ,M) = J ,M; δ) = a(d, p)

μ
α
d (K ∩ C)

δ1−α, (1.121) 

where . α and .a(d, p) are defined in (1.100). For all .N > 0, 

.EN (Dμ,M) = A(d, p)μ− 1
d (K ∩ C)N

1
p − 1

d , (1.122) 

where the quantity .A(d, p) is defined in (1.95).
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Proof First of all note that if inequality (1.99) turns into equality for some function. f , then  
it becomes equality for the function .c · f , .c ∈ R, and hence from sharpness of (1.99) if  
follows that the second equality in (1.121) holds. 

From sharpness of (1.38) and Theorem 1.20 it follows that for all.h > 0,. E Sh (J ,M) =
gh(| · |K ) L p (hK∩C). Using equality (1.94) and Lemma 1.28 we obtain (1.122). Finally, 

the first equality in (1.121) follows from Theorem 1.21. 

The following two theorems can be obtained from Theorems 1.18 and 1.19 using the 
same arguments. 

Theorem 1.25 Denote by .M the family of charges .ν ∈ N (C) such that 

. Dμν|K ◦ L p(C) ≤ 1.

For all .δ > 0 the following equalities hold: 

. Eδ(Dμ,M) = Dμ,M; δ) = a(d, p)

μ
α
d (K ∩ C)

δ1−α,

where . α and .a(d, p) are defined in (1.100). For all .N > 0, 

. EN (Dμ,M) = A(d, p)μ− 1
d (K ∩ C)N

1
p − 1

d ,

where .A(d, p) is defined in (1.95). 

Recall that the differential operator .∂I f was defined in (1.110). 

Theorem 1.26 Let .p > d and .m = 0 or .m = 1. Denote by .M the family of functions . f ∈
L∞(Rd

m,+) such that . ∂I f |1 L p(R
d
m,+) ≤ 1. For all .δ > 0 the following equalities hold. 

. Eδ(∂I,M) = (∂I,M; δ) = a(d, p)2
α m

d − d
p δ1−α,

where . α and .a(d, p) are defined in (1.100). For all . N > 0

. EN (∂I,M) = A(d, p) · 2m
d − d

p N
1
p − 1

d .

where .A(d, p) is defined in (1.95).
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1.4 Optimization of Cubature Formulae 

1.4.1 Optimization of Cubature Formulae on Multivariate Sobolev 
Classes 

The results of this section in the case .K = (−1, 1)d were obtained in [ 22]. In the case of 
arbitrary .K ∈ K they are new. 

1.4.1.1 Statement of the Problem and Extremal Functions 
Let .Q be a bounded open set, .p > d and .K ∈ K be given. We consider the problem of 
optimal recovery for the integral . Q f (x)dx using the values of the function 

. f ∈ WK
p (Q) := f ∈ W 1,p(Q) f |K ◦ L p(Q) ≤ 1

at .n ∈ N points .x1, . . . , xn ∈ Q. Any function . : Rn → R is called a method of recovery. 
For given points .x1, . . . , xn ∈ Q, the error of recovery of the integral using information 
. f (x1), . . . , f (xn) by the method . is defined by the following equality 

. e(WK
p (Q x1, . . . , xn) := sup

f ∈WK
p (Q) Q

f (x)dx − f (x1), . . . , f (xn)) .

The problem of the optimal recovery of the integral is to find the best error of recovery 

.En(W
K
p (Q)) := inf

x1,...,xn∈Q
inf: Rn→R

e(WK
p (Q x1, . . . , xn), (1.123) 

the best method of recovery, and the best position of the information points.x1, . . . , xn (i.e., 
such method . : Rn → R and points .x1, . . . , xn ∈ Q, for which the infima in (1.123) are  
attained, if they exist). 

Note, that it is sufficient to consider only linear methods of recovery in (1.123). The 
existence of an optimal linear method of recovery is well known in many situations. See for 
example [ 70]. We will not prove it here. 

Let .x1, . . . , xn ∈ Q and.h > 0. The function. f , defined by (1.39), is well defined on the 
boundary.∂K and is constant there; hence we can continuously extend the function. f to all 
of .Rd by setting . f (y) equal to the value of . f on the boundary of .K for all .y /∈ K . For all 
.y ∈ R

d , we set  
. fh(x1, . . . , xn; y) := min

k=1,...,n
f (y − xk).

It is easy to see that . fh(x1, . . . , xn; y) ∈ W 1,p(Q) for all .p ∈ (d, ∞].
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1.4.1.2 Simple Domains 
Let.K ∈ K and.n ∈ N. A set.Q ⊂ R

d is called.n-simple, if there exist points. x1, . . . , xn ∈ Q
such that for 

.h := meas Q

n · meas K

1
d

(1.124) 

the sets 
. Ck := {x ∈ R

d : |x − xk |K < h}, k = 1, . . . , n,

are pairwise disjoint and .meas Q \ n
k=1 Ck = 0. Such set  .Q will also be called 

.(x1, . . . , xn)-simple. 

Lemma 1.29 Let .n ∈ N, points .x1, . . . , xn ∈ R
d and a .(x1, . . . , xn)-simple domain .Q be 

given. If . h is defined by (1.124), then for arbitrary points . x1, . . . , xn ∈ Q

.

Q
fh(x1, . . . , xn; y)dy ≥

Q
fh(x̄1, . . . , x̄n; y)dy ≥ 0 (1.125) 

and for all . p ∈ (d, ∞]

. fh(x1, . . . , xn)|K ◦ L p(Q) fh(x̄1, . . . , x̄n)|K ◦ L p(Q). (1.126) 

Proof First, we prove inequality (1.125). For all .λ ≥ 0 and arbitrary .x1, . . . , xn ∈ Q, we  
consider the set 

. S(x1, . . . , xn; λ) := {y ∈ Q : fh(x1, . . . , xn; y) ≤ λ}.

Definition of the function. fh(x1, . . . , xn; y) implies that the set.S(x1, . . . , xn; λ) is the inter-
section of.Q with the union of. n sets.Ck(xk, λ) := xk + μ(λ)K , where. μ is a non-decreasing 
function of . λ. Moreover, if .λ0 := inf{λ ≥ 0 : meas S(x̄1, . . . , x̄n; λ) = meas Q}, then the 
sets .Ck(xk, λ) that define the set .S(x̄1, . . . , x̄n; λ) are pairwise disjoint for all .λ < λ0 and 
.S(x̄1, . . . , x̄n; λ) = Q for .λ ≥ λ0. This implies that for all .λ ≥ 0, 

. meas S(x̄1, . . . , x̄n; λ) ≥ meas S(x1, . . . , xn; λ)

and, hence, 

. meas {y ∈ Q : fh(x1, . . . , xn; y) > λ} ≥ meas {y ∈ Q : fh(x̄1, . . . , x̄n; y) > λ}.

The latter inequality implies the first inequality in (1.125) (see [  72, §1.1]). The second 
inequality in (1.125) follows from the definition of the functions . fh(x1, . . . , xn). 

Next, we prove inequality (1.126). For .k = 1, . . . , n, we set  

.Ak := {x ∈ Q : |x − xk |K < |x − xs |K , ∀s k} .
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From the definition of the function . fh(x1, . . . , xn), it follows that 

. fh(x1, . . . , xn; x) = fe(x − xk)

on .Bk := {x ∈ Ak : |x − xk |K < h}, .k = 1, . . . , n, and  

.|∇ fh(x1, . . . , xn; x)|K ◦ = 0 (1.127) 

almost everywhere on the set .Q \ n
k=1 Bk . For all .k = 1, . . . , n, 

. fh(x1, . . . , xn; ·)|K ◦ L p(Bk ) fe(· − xk)|K ◦ L p(Bk )

fe(·)|K ◦ L p(hK ) fe(· − x̄k)|K ◦ L p(xk+hK )

fh(x̄1, . . . , x̄n; ·)|K ◦ L p(xk+hK ).

The latter together with (1.127) implies inequality (1.126). The lemma is proved. 

1.4.1.3 Optimal Recovery of the Integral 
Applying Theorem 1.7 to . ≡ 1, .C = R

d , .w ≡ 1 we can find a constant .c(d, p) such that 
inequality 

. 

hK
| f (x) − f (θ)|dx ≤ c(d, p) · h1+ d

p f |K ◦ L p(hK )

is sharp on .WK
p (hK ) (cf. with Lemma 1.28). The following theorem generalizes [ 22, The-

orem 4], where the case .K = (−1, 1)d was considered. 

Theorem 1.27 Let .K ∈ K, .n ∈ N, and an .n-simple domain .Q ⊂ R
d be given. For . p ∈

(d; ∞]
. En WK

p (Q) = c(d, p)

n
1
d

meas Q

meas K

1
d + 1

p
.

If.Q is.(x1, . . . , xn)-simple, then the optimal information set is.{xk}nk=1, and the best recovery 
method is 

. 
∗( f (x1), . . . , f (xn)) = meas Q

n

n

k=1

f (xk).

Proof Let . h be defined in (1.124). For arbitrary . f ∈ WK
p (Q), 

.

Q
f (x)dx − meas Q

n

n

j=1

f (x j ) ≤
n

j=1 hK+x j

| f (x) − f (x j )|dx

≤ c(d, p) · h1+ d
p

n

j=1

f |K ◦ L p(hK+x j )
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≤ c(d, p) · h 1+ d 
p n 

1 
p f |K ◦ L p(Q) ≤ 

c(d, p) 

n 
1 
d 

meas Q 

meas K 

1 
d + 1 

p 
. 

For arbitrary .x1, . . . , xn , using Lemma 1.29, 

. sup
f ∈WK

p (Q) Q
f (x)dx −

n

k=1

ck f (xk) ≥ sup
f ∈WK

p (Q),

f (xk )=0, k=1,...,n

Q
f (x)dx

≥ 1

fh(x1, . . . , xn)|K ◦ L p(Q) Q
fh(x1, . . . , xn; x)dx

≥ 1

fh(x̄1, . . . , x̄n)|K ◦ L p(Q) Q
fh(x̄1, . . . , x̄n; x)dx = c(d, p)

n
1
d

meas Q

meas K

1
d + 1

p
.

Finally, taking into account the existence of the optimal linear method of recov-
ery and arbitrariness of .x1, . . . , xn ∈ Q and .c1, . . . , cn ∈ R, we obtain the estimate for 

.En WK
p (Q) from below, which completes the proof of the theorem. 

Theorem 1.27 gives an optimal cubature formula for simple domains. It can be used to 
obtain asymptotically optimal cubature formulae for more complicated domains, see e.g. 
[ 22, 28, 60]. Asymptotically optimal cubature formulae for various classes of multivariate 
functions can be found in [ 8– 10, 35, 36]. 

1.4.2 Optimization of Cubature Formulae on Classes of Random 
Processes 

We consider the problem of optimal recovery of the integral 

. Int ξt :=
1

0
ξt dt

on the class of random processes .Hω, given the information operator 

. J (ξt ) = (ξτ1 , . . . , ξτn ),

where .n ∈ N, .τk = τ + tk , .τ ∈ R, and  .t = (t1, t2, . . . , tn), where the numbers . 0 = t1 <

. . . < tn are such that .τ + tn ≤ 1 almost everywhere. The error of recovery is measured in 
the space . R with metric .(ζ, η) E|ζ − η|. Everywhere below we write .E(τ, t) instead of 
.E(Int,Hω, J ,R) (see (1.4) in Introduction). For .t ≥ 0 set 

. I (t) :=
t

0
ω(s)ds.

The following theorem is contained in [ 58].
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Theorem 1.28 Let.n ∈ N,.τ ∈ Rand the numbers.0 = t1 < . . . < tn be such that. τ + tn ≤ 1
almost everywhere. Set .τk := τ + tk , .k = 1, . . . , n, and .t∗ := τ − 1−tn

2 ∞. Then 

.E(τ, t) = 2
n−1

k=1

I
tk+1 − tk

2
+ I

1 − tn
2

− t∗ + I
1 − tn
2

+ t∗ . (1.128) 

The optimal recovery method is .U = n
k=1 c

∗
k ξτk , where .c

∗
1 = τ + t2−t1

2 , .c∗
k = tk+1−tk−1

2 , 
.k = 2, . . . , n − 1 and .c∗

n = 1 − τ − tn+tn−1
2 . 

In [ 42], the problem of integral optimal recovery was considered in the case when . τ is 
a constant on an analogue of the class .Hω. The proof of this theorem will follow from the 
results of subsequent paragraphs. 

1.4.2.1 Auxiliary Result 
Lemma 1.30 Let .a > 0, .τ ∈ R(a) and .b > 0 be such that .τ + b ≤ a almost everywhere. 
For a process .ξ ∈ Hω(a) set 

. ζt (w) := ξt (w) − ξτ (w), 0 ≤ t ≤ τ(w),

ξt+b(w) − ξτ+b(w), τ (w) < t ≤ a − b.

Then .ζ ∈ Hω
τ (a − b) and .ζτ ≡ 0. 

Proof Equality .ζτ ≡ 0 follows from the definition of the process . ζ . For a random variable 
.θ ∈ R(a − b) set 

. θ̃ (w) = θ(w), θ(w) ≤ τ (w)

θ(w) + b, θ(w) > τ(w)
and τ̃ (w) = τ(w), θ(w) ≤ τ(w)

τ(w) + b, θ(w) > τ(w).

. Then
. E|ζθ − ζτ | = E|ζθ | = E|ξθ̃ − ξτ̃ | ≤ ω( θ̃ − τ̃ ∞) = ω( θ − τ ∞).

Hence .ζ ∈ Hω
τ (a − b) and the lemma is proved. 

1.4.2.2 Estimate from Above 
In this paragraph we prove that 

.E(τ, t) ≤ 2
n−1

k=1

I
tk+1 − tk

2
+ I

1 − tn
2

− t∗ + I
1 − tn
2

+ t∗ . (1.129)
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Set .α0 := 0, .αk := τ + tk+tk+1
2 , .k = 1, . . . , n − 1, and  .αn = 1. Then .c∗

k = αk − αk−1, 
.k = 1, . . . , n. Hence 

. E(τ, t) ≤ sup
ξ∈Hω

E
1

0
ξt dt −

n

k=1

c∗
k ξτk = sup

ξ∈Hω

E
n

k=1

αk

αk−1

ξt − ξτk dt

≤ sup
ξ∈Hω

E
α1

0
ξt − ξτ1 dt +

1

αn−1

ξt − ξτn dt

+ sup
ξ∈Hω

n−1

k=2

E
αk

αk−1

ξt − ξτk dt . (1.130) 

Let .ξ ∈ Hω and .k ∈ {2, . . . , n − 1}. Then 

. E
αk

αk−1

ξt − ξτk dt = E
τ+ tk+tk+1

2

τ+ tk−1+tk
2

ξt − ξτk dt

= E
τk+ tk+1−tk

2

τk+ tk−1−tk
2

ξt − ξτk dt = E

tk+1−tk
2

tk−1−tk
2

ξτk+t − ξτk dt

=
tk+1−tk

2

tk−1−tk
2

E ξτk+t − ξτk dt ≤
tk+1−tk

2

tk−1−tk
2

ω(|t |)dt

=
tk−tk−1

2

0
ω(t)dt +

tk+1−tk
2

0
ω(t)dt . (1.131) 

For arbitrary .ξ ∈ Hω, 

. E
α1

0
ξt − ξτ1 dt +

1

αn−1

ξt − ξτn dt ≤ E
τ+ t2

2

τ

ξt − ξτ1 dt

+ E
τ

0
ξt − ξτ1 dt +

1

τ+tn
ξt − ξτn dt + E

τ+tn

τ+ tn+tn−1
2

ξt − ξτn dt

≤ E
τ

0
ξt − ξτ1 dt +

1

τ+tn
ξt − ξτn dt +

t2−t1
2

0
E ξτ1+t − ξτ1 dt

+
tn−tn−1

2

0
E ξτn−t − ξτn dt ≤ E

τ

0
ξt − ξτ1 dt +

1

τ+tn
ξt − ξτn dt

+
t2−t1

2

0
ω(t)dt +

tn−tn−1
2

0
ω(t)dt . (1.132) 

Due to Lemmas 1.30 and 1.17,
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. E
τ

0
ξt − ξτ1 dt +

1

τ+tn
ξt − ξτn dt ≤ sup

ζ∈Hω
τ (1−tn),
ζτ ≡0

E
1−tn

0
ζt dt

≤
1−tn
2 −t∗

0
ω(s)ds +

1−tn
2 +t∗

0
ω(s)ds

The latter inequality, together with inequalities (1.130), (1.131) and (1.132) give the  
estimate from above (1.129). 

1.4.2.3 Estimate from Below 
Below we prove that 

.E(τ, t) ≥ 2
n−1

k=1

I
tk+1 − tk

2
+ I

1 − tn
2

− t∗ + I
1 − tn
2

+ t∗ . (1.133) 

It is enough to prove this inequality for the case of simple random variable . τ such that 
assumptions (1.54) and (1.55) hold. 

For each .ϕ : Rn → R, taking into account that the class .Hω is centrally symmetric, one 
has 

. sup
ξ∈Hω

E
1

0
ξt dt − ϕ(ξτ1 , . . . , ξτn ) ≥ sup

ξ∈Hω, ξτk≡0,
k=1,...,n

E
1

0
ξt dt − ϕ(0)

= sup
ξ∈Hω, ξτk≡0,

k=1,...,n

max E
1

0
ξt dt − ϕ(0) ,E

1

0
(−ξt )dt − ϕ(0)

≥ 1

2
sup

ξ∈Hω, ξτk≡0,
k=1,...,n

E
1

0
ξt dt − ϕ(0) + E

1

0
ξt dt + ϕ(0)

≥ sup
ξ∈Hω, ξτk≡0,

k=1,...,n

E
1

0
ξt dt = sup

ξ∈Hω, ξτk≡0,
k=1,...,n

E
1

0
ξt dt,

hence 

.E(τ, t) ≥ sup
ξ∈Hω, ξτk≡0,

k=1,...,n

1

0
Eξt dt . (1.134) 

Set.s0 := 0,.sk := τ1 + tk+tk+1
2 ,.k = 1, . . . , n − 1 and.sn := 1. Using Lemma 1.18, define  

a random process .ξ∗
t := ξt 1, x), where  

.x(t) := ω(|t − (τ1 + tk)|), t ∈ [sk−1, sk), k = 1, . . . , n. (1.135) 

From the equivalent definition
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. x(t) = min
k=1,...,n

ω(|t − (τ1 + tk)|), t ∈ [0, 1],

if follows that .x(t) ∈ Hω, hence .ξ∗
t ∈ Hω. Moreover, since .x(τ1 + tk) = 0, .k = 1, . . . , n, 

one has .ξ∗
τk

≡ 0, .k = 1, . . . , n, and hence, due to (1.134), 

. E(τ, t) ≥
1

0
Eξ∗

t dt =
1

0
x(t)dt .

Evaluating the right hand side of the latter inequality, using representation (1.135) and the 
fact that .t∗ = 1−tn

2 − τ1, we obtain the right hand side of (1.133). 

1.4.2.4 Measurement Times Optimization 
We consider the problem of optimization of the information set .{τ1, . . . , τn}, in order  to  
minimize the error of recovery. We consider the random process. ξt as some physical quantity 
and the random variables .ξτk to be the measurements of this quantity at (possibly random) 
times . τk , .k = 1, . . . , n. 

It appears that if the error of recovery is measured by the error for the “worst” function, 
then the possibility to choose time for measurements randomly does not give benefits com-
pared to the case, when the measurements are done at some fixed, non-random times. More 
precisely, the following statement holds. 

Corollary 1.4 Under the assumptions of Theorem 1.28, 

. inf
τ1,...,τn

E(τ, t) = 2nI
1

2n
.

The optimal measurement times are given by .τk = 2k−1
2n , .k = 1, . . . , n. 

Proof Recall that .I (t) = t
0 ω(s)ds. Since  . ω is non-decreasing, .I (·) is a convex function. 

Then for arbitrary .α1, . . . α2n > 0 one has 

. 

2n

s=1

I (αs) ≥ 2nI
1

2n

2n

s=1

αs

and the statement of the corollary follows from (1.128). 

Let now the measurements be done by such a device that the first measurement is triggered 
by some random event (which occurs at the random time . τ1) and each of the rest . n − 1
measurements are done at time.τk = τ1 + tk i.e., in. tk time units after the first measurement, 
.k = 2, . . . , n. The following statement optimizes the choice of the numbers.t2, . . . , tn , given  
the information about . τ1.
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Theorem 1.29 Let the assumptions of Theorem 1.28 hold and 

. m := ess inf
w∈ τ (w), M := ess sup

w∈
τ(w).

If 
.(2n − 1)m + M ≥ 1, (1.136) 

then 

. inf
t2,...,tn

E(τ, t) = (2n − 1)I
1 − M

2n − 1
+ I (M)

and the infimum is attained for .tk = 2(k−1)(1−M)
2n−1 , .k = 2, . . . , n. 

If 
.(2n − 1)M + m ≤ 1, (1.137) 

then 

. inf
t2,...,tn

E(τ, t) = (2n − 1)I
1 − m

2n − 1
+ I (m)

and the infimum is attained for .tk = 2(k−1)(1−m)
2n−1 , .k = 2, . . . , n. Otherwise, 

. inf
t2,...,tn

E(τ, t) = (2n − 2)I
1 − m − M

2n − 2
+ I (m) + I (M)

and the infimum is attained for .tk = (k−1)(1−m−M)
n−1 , .k = 2, . . . , n. 

The proof of this statement will be given in subsequent paragraphs. 

1.4.2.5 Auxiliary Results 
Recall that a vector .a ∈ R

d majorizes a vector .b ∈ R
d (denoted by .a b), iff . k

i=1 a[i] ≥
k
i=1 b[i], .k = 1, . . . , d − 1, and  . d

i=1 ai = d
i=1 bi , where  .a[i] and .b[i] denote the .i-th 

biggest coordinates of the vectors . a and . b respectively. 
Karamata’s inequality [ 49] states that for every convex function. f and vectors. x, y ∈ R

d

such that .x y, one has 

. 

d

k=1

f (xk) ≥
d

k=1

f (yk).

We need the following lemma. 

Lemma 1.31 Let .x, y ∈ R
d be such that .x y and .a ∈ R. Then 

.(x1, . . . , xd , a) (y1, . . . , yd , a). (1.138)
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Proof It is well known, see for example [ 6, Theorem 2.1] that .x y if and only if there 

exists a double stochastic matrix . A such that .y = Ax . Then the matrix .B = A 0
0 1

is also 

double stochastic and .
y
a

= B
x
a

, hence (1.138) holds. The lemma is proved. 

A vector .s = (s1, . . . , sn) ∈ R
n with .sk ≥ 0, .k = 1, . . . , n − 1, .sn ≥ M , . n

k=1 sk = 1
will be called admissible. 

For an admissible vector .s = (s1, . . . , sn), set  

. sM := s1
2

,
s1
2

,
s2
2

,
s2
2

, . . . ,
sn−1

2
,
sn−1

2
, sn − M, M

and 
. sm := s1

2
,
s1
2

,
s2
2

,
s2
2

, . . . ,
sn−1

2
,
sn−1

2
, sn − m,m .

The following lemmas will be used during the proof of Theorem 1.29. 

Lemma 1.32 Let inequality (1.136) hold and .s ∈ R
n be admissible. Set 

. L :=

⎛

⎜
⎜
⎝
1 − M

2n − 1
, . . . ,

1 − M

2n − 1

2n−1

, M

⎞

⎟
⎟
⎠ .

Then .sM L. Moreover, if 
.sn ≥ M + m, (1.139) 

then .sm L. 

Proof Note that for arbitrary.(α1, . . . , αd) ∈ R
d ,.α := 1

d
d
k=1 αk , one has. (α1, . . . , αd)

(α, α, . . . , α) ∈ R
d . Hence, due to Lemma 1.31, for arbitrary admissible vector . s, .sM L . 

If (1.139) holds, then .(sn − m,m) (sn − M, M), hence, due to Lemma 1.31, . sm

sM L . The lemma is proved. 

Lemma 1.33 Let inequality (1.137) hold and .s ∈ R
n be admissible. Set 

.L :=

⎛

⎜
⎜
⎝

1 − m

2n − 1
, . . . ,

1 − m

2n − 1

2n−1

,m

⎞

⎟
⎟
⎠ .
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Then .sm L. If  
.sn ≤ M + m, (1.140) 

then .sM L. 

The proof is similar to the proof of Lemma 1.32. 

Lemma 1.34 Let neither of inequalities (1.136) and (1.137) hold and.s ∈ R
n be admissible. 

Set 

. L :=

⎛

⎜
⎜
⎝
1 − m − M

2n − 2
, . . . ,

1 − m − M

2n − 2

2n−2

,m, M

⎞

⎟
⎟
⎠ .

If inequality (1.139) holds, then .sm L. If inequality (1.140) holds, then .sM L. 

Proof From the conditions of the lemma it follows that .m < 1−M−m
2n−2 < M . Let inequal-

ity (1.139) hold. Then 

. 
s1
2

,
s1
2

,
s2
2

,
s2
2

, . . . ,
sn−1

2
,
sn−1

2
, sn − m

⎛

⎜
⎜
⎝

1 − sn
2n − 2

, . . . ,
1 − sn
2n − 2

2n−1

, sn − m

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝
1 − m − M

2n − 2
, . . . ,

1 − m − M

2n − 2

2n−2

, M

⎞

⎟
⎟
⎠ ,

where the first majorization follows from Lemma 1.31 and the second one follows from the 
inequalities.sn − m ≥ M > 1−M−m

2n−2 . The inequality.sm L now follows from Lemma 1.31. 
The second statement of the lemma follows from similar arguments, using the inequalities 

.sn − M ≤ m < 1−M−m
2n−2 . The lemma is proved. 

1.4.2.6 Proof of Theorem 1.29 
Proof The vector with coordinates.sk := tk+1 − tk ,.k = 1, . . . , n − 1,.sn := 1 − tn is admis-
sible. Obviously, the numbers . tk , .k = 1, . . . , n, are uniquely determined by an admissible 
vector .s ∈ R

n . 
Note that if (1.139) holds, then . τ − sn

2 ∞ = sn
2 − m and hence, due to Theorem 1.28, 

.E(τ, t) = 2
n−1

k=1

I
sk
2

+ I (m) + I (sn − m) .
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In the case, when (1.140), . τ − sn
2 ∞ = M − sn

2 and hence, due to Theorem 1.28, 

. E(τ, t) = 2
n−1

k=1

I
sk
2

+ I (M) + I (sn − M) .

The estimates from below for the value of .E(τ, t) follow from Lemmas 1.32, 1.33 and 1.34 
and Karamata’s inequality. Thus it is sufficient to show that the estimates from below are 
attained. 

Let inequality (1.136) hold. Then . 1−M
2n−1 ≤ m and hence for the set .s∗

k = 2(1−M)
2n−1 , . k =

1, . . . , n − 1 and .s∗
n = M + 1−M

2n−1 , inequality (1.140) holds, thus 

. E(τ, t∗) = (2n − 1)I
1 − M

2n − 1
+ I (M),

where the vector .t∗ is determined by the numbers . s∗
k , .k = 1, . . . , n. 

Let inequality (1.137) hold. Then . 1−m
2n−1 ≥ M and hence for the set .s∗

k = 2(1−m)
2n−1 , . k =

1, . . . , n − 1 and .s∗
n = m + 1−m

2n−1 , inequality (1.139) holds, thus 

. E(τ, t∗) = (2n − 1)I
1 − m

2n − 1
+ I (m).

Finally, let neither of inequalities (1.136) and (1.137) hold. Then for the set .s∗
k = (1−m−M)

n−1 , 
.k = 1, . . . , n − 1 and . s∗

n = m + M

. E(τ, t∗) = (2n − 2)I
1 − m − M

2(n − 1)
+ I (m) + I (M).

The theorem is proved. 
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2The Bojanov–Naidenov Problem for Differentiable 
Functions and the Erdös Problem for Polynomials 
and Splines 

Abstract 

It is well known that the problem to find a sharp constant in a Kolmogorov-type inequality 
for functions defined on the real axis, is equivalent to the extremal Kolmogorov problem 
to find the exact upper bound of the norm of an intermediate derivative of a function 
on the class of functions with restrictions on the norms of the function and its higher 
derivative. Despite a large number of works devoted to Kolmogorov-type inequalities, 
sharp constants for derivatives of arbitrary order are known only in a few cases. Therefore, 
the modification of the Kolmogorov problem considered by Boyanov and Naidyonov is 
interesting. In this modification, the norm of the intermediate derivative on the entire line 
is substituted by its norm on an arbitrary finite segment. In this chapter, the Boyanov-
Naidyonov problem is solved on classes of functions with a given comparison function for 
norms of the positive and negative parts of the intermediate derivative of the function. In 
particular, this problem is solved on the Sobolev classes and on the spaces of trigonometric 
polynomials and polynomial splines. In addition, a solution to an analogue of the Erdös 
problem is obtained; we characterize a polynomial (spline) with a given uniform norm 
that has maximal possible total length of the arcs of the graph of its positive (negative) 
part on a given segment. 

2.1 Introduction 

Let .G = R or .G = [α, β]. Consider the spaces .L p(G), .0 < p ≤ ∞, of all Lebesgue-
measurable functions such that . x L p(G) < ∞, where 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025 
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. x L p(G) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

G
|x (t)|p dt

1/p

, if 0 < p < ∞;

ess sup
t∈G

|x (t)| , if p = ∞.

For .r ∈ N and .p, s ∈ (0, ∞], by  .Lr
p,s we denote the space of all functions . x ∈ L p(R)

with locally absolutely continuous derivatives up to the.(r − 1)-th order inclusively and such 
that .x (r) ∈ Ls(R). We write . x p instead of . x L p(R) and .Lr∞ instead of .Lr∞,∞. 

It is known (see e.g., [ 3, p. 47]) that the problem to determine the sharp constant. C in the 
Kolmogorov–Nagy-type inequality 

. x (k)
q ≤ C x α

p x (r)
1−α

s
(2.1) 

on the class .Lr
p,s , where  .α = r−k+1/q−1/s

r+1/p−1/s , .q, p, s ≥ 1, and the parameters .r ∈ N and . k ∈
N0 := N ∪ {0}, .k < r satisfy the condition .α ≤ (r − k)/r , is equivalent to the extremal 
problem 

. x (k)
q → sup (2.2) 

on the class of functions .x ∈ Lr
p,s with the following restrictions: 

. x (r)
s ≤ Ar , x p ≤ A0, (2.3) 

where .A0 and .Ar are given positive numbers. 
There are numerous works devoted to this class of problems (for a detailed bibliography, 

see [ 1, 3, 16]). Note that the question of coincidence of the sharp constants in inequalities of 
type (2.1) for periodic functions and the same inequalities for non-periodic functions on the 
axis was investigated in [ 2]. Despite a large number of works devoted to inequalities of the 
form (2.1), a sharp constant. C in this inequality is known for all .r ∈ N and all.k < r only in 
a few cases. For this reason it is of interest to analyze the Bojanov–Naidenov modification 
of problem (2.2) with restrictions (2.3) proposed in [ 4]. 

We say that . f ∈ L1∞ is a comparison function for .x ∈ L1∞, if . x± ∞ f± ∞ and the 
equality .x(ξ) = f (η), ξ, η ∈ R, yields the inequality 

. |x (ξ)| ≤ | f (η)|,

provided that the indicated derivatives exist. 
We say that an odd.2ω-periodic function.ϕ ∈ L1∞ is an.S-function, if it has the following 

properties: 

1. . ϕ is even with respect to .ω/2; 
2. .|ϕ| is concave on .[0, ω]; 
3. .|ϕ| is strictly monotone on .[0, ω/2].



2.1 Introduction 87

For .k = 0, 1, 2, . . . and an .S-function .ϕ ∈ Lk+1∞ , by  .Skϕ we denote the class of functions 
.x ∈ Lk+1∞ such that .ϕ(i) is a comparison function for .x (i), .i = 0, 1, . . . , k. As examples of 
the classes .Skϕ , we can mention the Sobolev classes 

. {x ∈ Lr∞ x (r) ∞ ≤ Ar , x ∞ ≤ A0},

bounded subsets of the spaces .Tn (of trigonometric polynomials of degree .≤ n), and the 
spaces .Sn,r (of splines of order . r with defect . 1 and nodes at the points .lπ/n, l ∈ Z). 

For an arbitrary segment.[α, β] ⊂ R, in [  4], Bojanov and Naidenov solved the following 
problem 

. 

β

α

|x (k)(t)|)dt → sup, k = 1, 2, . . .

on the class.Skϕ , where. is a continuously differentiable function on.[0, ∞) such that. t)/t
is non-decreasing and. 0) = 0. As a result, they solved the Erdös problem to characterize 
a trigonometric polynomial with fixed uniform norm whose graph has the maximal length 
on a given segment .[α, β] ⊂ R, see  [  5]. For continuous splines on the axis, this problem 
was solved in [ 10]. 

By .W we denote the class of continuous, nonnegative, and convex functions . defined 
on .[0, ∞) and such that . 0) = 0. For .p > 0, we set  [  17] 

.L(x)p := sup

⎧
⎨

⎩

b

a
|x (t)|p dt

1
p

: a, b ∈ R, |x(t)| > 0, t ∈ (a, b)

⎫
⎬

⎭
. (2.4) 

Note that .L(x)∞ x ∞ and .L(x )1 ≤ 2 x ∞. 
In [ 6– 8] the Bojanov–Naidenov problem was also solved for.k = 0, namely the extremal 

problem 

. 

β

α

|x(t)|p)dt → sup ∈ W , p > 0,

was solved on the class of functions.S0ϕ satisfying the condition.L(x)p ≤ L(ϕ)p. As a result, 
we obtained a solution of the problem 

. 

β

α

|x (k)(t)|)dt → sup ∈ W , k = 1, 2, . . .

on the classes of functions .x ∈ Skϕ . 
The Bojanov–Naidenov problem and the Kolmogorov–Nagy-type inequalities for func-

tions with asymmetric restrictions imposed on the higher derivative were studied in [ 9, 12]. 
Among other works devoted to related problems, we can mention [ 11, 13].
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In this chapter, we solve the problem (see Theorem 2.1) 

.

b

a

x p
±(t))dt → sup ∈ W , p > 0, (2.5) 

on the class of pairs .(x, I ) of functions .x ∈ S0ϕ and segments .I = [a, b] such that . L(x)p ≤
L(ϕ)p and the following condition is satisfied: 

.μ supp[a,b]x± ≤ μ, μ > 0. (2.6) 

In addition, we also solve (Theorem 2.2) the problem 

.

b

a

x (k)
± (t))dt → sup ∈ W , k = 1, 2, . . . (2.7) 

on the class of pairs .(x, I ) of functions .x ∈ Skϕ and segments .I = [a, b] for which the 
following condition is satisfied: 

.μ supp[a,b]x
(k)
± ≤ μ, μ > 0, (2.8) 

where 
. supp[a,b]x := {t ∈ [a, b] : |x(t)| > 0}.

In particular, problems (2.5) and (2.7) with restrictions (2.6) and (2.8) are solved, respec-
tively, on the classes 

. 
r
p(A0, Ar ) := {x ∈ Lr∞ x (r) ∞ ≤ Ar , L(x)p ≤ A0}

(Theorem 2.2) and on bounded subsets of the spaces .Tn and .Sn,r (Theorems 2.4 and 2.5). 
In addition, we obtain a solution (Theorem 2.6) of an analogue of the Erdös problem of 

characterization of a pair .(x, I ) formed by a polynomial .T ∈ Tn with given uniform norm 
and a segment. I whose support measure.μ suppI T± is bounded by a given number and is 
such that the total length of arcs of the graph of positive (negative) part of the polynomial. T±
is maximal on the segment . I . A similar problem is solved by the same theorem for splines 
from the set 

. S̃n,r := {s(· + τ ) : s ∈ Sn,r , τ ∈ R}.
The main results of this chapter are contained in [ 14].



2.2 Auxiliary Statements 89

2.2 Auxiliary Statements 

Note that if a function.x ∈ S0ϕ satisfies the condition.L(x)p < ∞with some.p > 0,. |x(t)| >

0 for .t ∈ (a, b), and moreover, .a = −∞ or .b = +∞, then .x(t) → 0, as  .t → −∞ or . t →
+∞. In this case, we assume that .x(−∞) = 0 or .x(+∞) = 0. 

For a summable function . x on the segment .[a, b], by .r(x, t) we denote the permutation 
of the function .|x | (see, e.g., [ 15, Sect. 1.3]). Moreover, we set .r(x, t) = 0 for .t > b − a. 

Lemma 2.1 Suppose that . ϕ is a function with period .2ω, .p > 0, . ∈ W, and a function 
.x ∈ S0ϕ satisfies 

.L(x)p ≤ L(ϕ)p, (2.9) 

where the quantity .L(x)p is given by equality (2.4). 
If a (finite or infinite) interval .(a±, b±) ⊂ R and a segment .[A±, B±] ⊂ R are such that 

.x(a±) = x(b±) = 0, x±(t) > 0, t ∈ (a±, b±), (2.10) 

and 
.ϕ(A±) = ϕ(B±) = 0, ϕ±(t) > 0, t ∈ (A±, B±), (2.11) 

then, for any .ξ > 0 and any function . ∈ W, the following inequalities are true 

.

a±+ξ

a±

x p
±(t) dt ≤

A±+ξ

A±

ϕ
p
±(t) dt (2.12) 

and 

.

b±

b±−ξ

x p
±(t) dt ≤

B±

B±−ξ

ϕ
p
±(t) dt, (2.13) 

where .x± is the restriction of .x± to .(a±, b±) and .ϕ± is the restriction of .ϕ± to .[A±, B±]. 
Moreover, outside the corresponding intervals, the functions .x± and .ϕ± are set to be equal 
to zero. 

In addition, if 
.b± − a± ≤ B± − A±, (2.14) 

then for any segment .[α±, β±] ⊂ [A±, B±] such that 

.β± − α± = b± − a±, (2.15) 

the following inequality is true: 

.

b±

a±

x p
±(t) dt ≤

β±

α±

ϕ
p
±(t) dt ∈ W . (2.16)
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Proof We fix a function . x and segments .(a±, b±) and .[A±, B±] satisfying the conditions 
of the lemma. We now establish inequality (2.12); inequality (2.13) can be proved similarly. 

We first establish the inequality 

.

ξ

0
r p(x±, t)dt ≤

ξ

0
r p(ϕ±, t)dt, ξ > 0. (2.17) 

To do this, we first show that the difference 

. δ±(t) := r(x±, t) − r(ϕ±, t)

changes its sign (from minus to plus) on .[0, ∞) at most once. To prove this, we note that 

.δ±(0) x± ∞ ϕ ∞ ≤ 0 (2.18) 

because .x ∈ S0ϕ . In view of this inequality and relations (2.10) and (2.11), for any . z± ∈
[0, x± L∞[a±,b±]), there exist points 

. t±i ∈ [a±, b±], i = 1, . . . ,m,m ≥ 2, y±
j ∈ [A±, B±], j = 1, 2,

such that 
.z± = x±(t±i ) = ϕ±(y±

j ). (2.19) 

In view of the inclusion .x ∈ S0ϕ , the following inequality 

.|x±(t±i )| ≤ |ϕ±(y±
j )|. (2.20) 

holds for points .t±i and .y±
j satisfying relation (2.19). Thus if the points .θ±

1 , θ±
2 > 0 are 

chosen such that 
. z± = r(x±, θ±

1 ) = r(ϕ±, θ±
2 ),

then, by the theorem on the derivative of permutation (see, e.g., [ 15, Proposition 1.3.2]), in 
view of inequality (2.20), we get 

. |r (x±, θ±
1 )| =

m

i=1

|x±(t±i )|−1
−1

≤
⎡

⎣
2

j=1

|ϕ±(y±
j )|−1

⎤

⎦

−1

= |r (ϕ±, θ±
2 )|.

By virtue of (2.18), this implies that the difference .δ±(t) := r(x±, t) − r(ϕ±, t) changes 
its sign (from minus to plus) on.[0, ∞) at most once. The same is also true for the difference 

. δ±
p (t) := r p(x±, t) − r p(ϕ±, t).

Consider an integral 

.I±
p (ξ) :=

ξ

0

δ±
p (t)dt, ξ ≥ 0.
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It is clear that.I±
p (0) = 0 and, in view of condition (2.9), for.ξ ≥ max{b± − a±, B± − A±}, 

we ge 
. I±
p (ξ) ≤ L(x±)p − L (ϕ±)p ≤ 0.

Moreover, the derivative .(I±
p ) (t) = δ±

p (t) changes its sign (from minus to plus) at most 
once. Thus, 

. I±
p (ξ) ≤ 0

for all .ξ ≥ 0. Inequality (2.17) is true. By the Hardy–Littlewood–Polya theorem (see, e.g., 
[ 15, Theorem 1.3.11]), this inequality implies that 

.

b±

a±

x p
±(t) dt ≤

B±

A±

ϕ
p
±(t) dt ∈ W . (2.21) 

We now establish inequality (2.12). Passing to the shifts of the functions. x and. ϕ, we can 
assume that 

.a± = A± = 0. (2.22) 

In view of the inclusion .x ∈ S0ϕ , the difference .
±(t) := x±(t) − ϕ±(t) changes its sign 

(from minus to plus) on.[0, ∞) at most once. Since the functions. f (t) = t p and. ∈ W are 
monotonically increasing, the same is also true for the difference 

. 
±(t) := x p

±(t) − ϕ
p
±(t) .

We set 

. I±(ξ) :=
ξ

0

±(t)dt, ξ ≥ 0.

It is clear that.I±(0) = 0. Further, using inequality (2.21) and assumption (2.22), we obtain 

. I±(ξ) ≤
b±

a±

x p
±(t) dt −

B±

A±

ϕ
p
±(t) dt ≤ 0

for.ξ ≥ max{b± − a±, B± − A±}. In addition, the derivative.(I±) (t) = ±(t) changes its 
sign (from minus to plus) on .[0, ∞) at most once. Thus, 

. I±(ξ) ≤ 0 for all ξ ≥ 0.

In view of assumption (2.22), this is equivalent to inequality (2.12). 
It remains to establish inequality (2.16) under conditions (2.14) and (2.15). Assume that 

the last two conditions are satisfied. Thus, passing, if necessary, to a shift of the function. x , 
we can assume that
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.a± = α±, b± = β±. (2.23) 

Hence, using the inclusion .x ∈ S0ϕ and condition (2.10), we arrive at the inequality 

. x±(t) ≤ ϕ±(t), t ∈ [a±, b±].

In view of assumption (2.23), this directly yields inequality (2.16). 

In the proof of Lemma 2.1, we have established inequality (2.21). Thus, the following 
corollary is true: 

Corollary 2.1 Under the conditions of Lemma 2.1, for any function . ∈ W, the inequality 

.

b±

a±

x p
±(t) dt ≤

B±

A±

ϕ
p
±(t) dt =

2ω

0

ϕ
p
±(t) dt (2.24) 

is true. 

Lemma 2.2 Suppose that . ϕ is an .S-function with period .2ω, .p > 0, . ∈ W, .[a, b] ⊂ R. 
If the function .x ∈ S0ϕ satisfies the condition 

.L(x)p ≤ L(ϕ)p, (2.25) 

where the quantity .L(x)p is given by equality (2.4), and one of the requirements 

.δ± := μ supp[a,b]x± ≤ ω, (2.26) 

then, for any function . ∈ W, the following inequality is true: 

.

b

a

x p
±(t) dt ≤

m±+ ±

m±− ±
ϕ
p
±(t) dt . (2.27) 

Here, .m± are points of local maximum of the functions .ϕ± and the numbers . ± > 0 are 
such that 

.ϕ(m± − ±) = ϕ(m± + ±), (2.28) 

and, moreover, 
.2 ± = δ±. (2.29) 

Proof We fix a function.x ∈ S0ϕ and a segment.[a, b] satisfying the conditions of Lemma 2.1. 
Inequality (2.27) is established for.x+; for.x−, the proof is similar. Suppose that the segment 
.[a, b] satisfies the corresponding requirement (2.26). Assume that
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.x+(a) > 0, x+(b) > 0 (2.30) 

[if at least one of these inequalities is not true, then the proof of inequality (2.27) is simplified]. 
Assume that the function . x does not have zeros on .(a, b). Since  .L(x)p < ∞ by condi-

tion (2.25), there exists a (finite or infinite) interval .(c, d) such that .(a, b) ⊂ (c, d) and, in 
addition, 

. x+(c) = x+(d) = 0, x+(t) > 0, t ∈ (c, d).

By.x+ we denote the restriction of .x+ to (c, d). Moreover, by .ϕ+ we denote the restriction 
of .ϕ+ to .[0, 2ω]. Applying inequality(2.24) to the interval .(c, d), we arrive at the estimate 

. 

d

c

x p
+(t) dt ≤

2ω

0

ϕ
p
+(t) dt,

which can be rewritten in the form 

.

d−c

0

r p(x+, t) dt ≤
2ω

0

r p(ϕ+, t) dt . (2.31) 

As in the proof of Lemma 2.1, we can show that the difference 

. δ (t) := r p(x+, t) − r p(ϕ+, t)

changes its sign (from minus to plus) on .[0, ∞) at most once. In view of this fact and 
inequality (2.31), we get the following inequality: 

. 

ξ

0

r p(x+, t) dt ≤
ξ

0

r p(ϕ+, t) dt, ξ > 0.

It is clear that this inequality also holds if .x+ is the restriction of .x+ to .(a, b). For the same 
restriction .x+ we conclude that 

. 

b

a
(x p

+(t) dt =
b−a

0
r p(x+, t) dt ≤

b−a

0
r p(ϕ+, t) dt

=
m++ +

m+− +
ϕ
p
+(t) dt,

where .m+ is a point of local maximum of the spline .ϕ+ and . + > 0 satisfies condi-
tions (2.28) and (2.29). Moreover, .δ+ = b − a. Thus, in the case where . x does not have 
zeros on .(a, b), inequality (2.27) is true.
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We now assume that . x has zeros on .(a, b). We set  

. a := inf{t ∈ (a, b) : x+(t) = 0}, b := sup{t ∈ (a, b) : x+(t) = 0}.

In view of (2.30), the support .supp[a,b]x+ has the form 

.supp[a,b]x+ = (a, a ) ∪ (b , b) ∪
k

(ak, bk), (2.32) 

where .(ak, bk) ⊂ (a , b ). Moreover, 

. x(ak) = x(bk) = 0, x+(t) > 0, t ∈ (ak, bk)

(the set of these intervals.(ak, bk) can be empty). In view of relation (2.26), assumption (2.30), 
and the definitions of the numbers .a and . b , we obtain 

.δ+ = (a − a) + (b − b ) +
k

(bk − ak) ≤ ω. (2.33) 

Let .A+ and .B+ be two neighboring zeros of the function . ϕ and, moreover, .ϕ+(t) > 0 for 
.t ∈ (A+, B+). In view of  (2.25), we have.L(x)p < ∞. Hence, there exist (finite or infinite) 
intervals .(α , a ) and .(b , β ) such that 

. x+(α ) = x+(a ) = 0, x+(t) > 0, t ∈ (α , a )

and 
. x+(b ) = x+(β ) = 0, x+(t) > 0, t ∈ (b , β ).

Applying inequalities (2.12) and (2.13) to the intervals.(α , a ) and.(b , β ) and the segment 
.[A+, B+], we find  

.

b

b

x p
+(t) dt ≤

A++ξ

A+

ϕ
p
+(t) dt, ξ = b − b , (2.34) 

and 

.

a

a

x p
+(t) dt ≤

B+

B+−η

ϕ
p
+(t) dt, η = a − a. (2.35) 

In view of (2.33),.x+ in inequality (2.12) can be replaced by.x+, whereas.ϕ+ can be replaced 
by .ϕ+. By virtue of (2.33), there exist mutually disjoint intervals .(αk, βk) such that 

. (αk, βk) ⊂ (A+ + ξ, B+ − η) and βk − αk = bk − ak .

According to relation (2.16), for these intervals, the following inequality is true:
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.

bk

ak

x p
+(t) dt ≤

βk

αk

ϕ
p
+(t) dt . (2.36) 

Using estimates (2.34) to (2.36) and relation (2.32), we get 

. 

b

a

x p
+(t) dt =

a

a

x p
+(t) dt +

b

b

x p
+(t) dt +

k

bk

ak

x p
+(t) dt

≤
A++ξ

A+

ϕ
p
+(t) dt +

B+

B+−η

ϕ
p
+(t) dt +

k

βk

αk

ϕ
p
+(t) dt .

Since .βk − αk = bk − ak , in view of  (2.33), we can write 

. ξ + η +
k

(βk − αk) = δ+.

Thus, the sum of integrals on the right-hand side of the obtained estimate does not exceed 

. 

δ+

0

r ϕ
p
+ , t dt =

m++ +

m+− +
ϕ
p
+(t) dt,

where .m+ is the point of local maximum of the function .ϕ++ and  . + > 0 satisfies rela-
tions (2.28) and (2.29). Inequality (2.27) is proved. 

Corollary 2.2 Under the conditions of Lemma 2.2 and in the case where one of the assump-
tions .μ supp[a,b]x± ≤ ω is true, the corresponding inequality 

.

b

a

x p
±(t) dt ≤

2ω

0

ϕ
p
±(t) dt (2.37) 

holds. 

2.3 The Bojanov–Naidenov Problem for the Classes of Functions 
with a Given Comparison Function 

Let .p, ω > 0 and . ϕ be an .S-function with period .2ω. We set  

.Lϕ(p, ω) := x ∈ S0ϕ : L(x)p ≤ L (ϕ)p , (2.38)



96 2 The Bojanov–Naidenov Problem for Differentiable Functions…

where the quantity .L(x)p is given by equality (2.4). We fix a number .μ > 0 and introduce 
a class .L±

ϕ (p, ω, μ) of pairs .(x, I ) of functions . x and segments .I = [a, b] by the formula 

.L±
ϕ (p, ω, μ) := (x, I ) : x ∈ Lϕ(p, ω), μ suppI x± ≤ μ . (2.39) 

We rewrite the number . μ in the form 

.μ = n · ω + 2 n ∈ N ∪ {0} ∈ [0, ω/2). (2.40) 

Note that if the numbers .τ± ∈ R and the segment .[A, B] are such that 

.B − A = 2n · ω + 2 (2.41) 

.ϕ±(A + + τ±) = ϕ±(B − + τ±) = ϕ ∞ , (2.42) 

then . ϕ(· + τ±), [A, B] ∈ L±
ϕ (p, ω, μ).

Theorem 2.1 Suppose that .p, ω, μ > 0, and .ϕ is an .S-function with period .2ω. Then, for 
any function . ∈ W, 

. sup

⎧
⎨

⎩

b

a

x p
±(t) dt : (x, [a, b]) ∈ L±

ϕ (p, ω, μ)

⎫
⎬

⎭
=

B

A

ϕ
p
±(t + τ±) dt,

where the sets .L±
ϕ (p, ω, μ), the numbers .τ±, and the segment .[A, B] are given by rela-

tions (2.38) to (2.42). 

Proof We fix an arbitrary pair.(x, I ) ∈ L±
ϕ (p, ω, μ) formed by a function. x and a segment 

.I = [a, b]. We prove the theorem for .x+; for  .x− the proof is similar. To do this, we first 
establish the inequality 

.I :=
b

a

x p
+(t) dt ≤

B

A

ϕ
p
+(t + τ+) dt := I(μ). (2.43) 

We first consider the case where .supp[a, b]x+ = μ. Since  .μ satisfies relation (2.40), the 
segment .[a, b] can be rewritten in the form 

. [a, b] =
n

k=1

[αk, βk] ∪ [α, β].

Moreover, the intervals .(αk, βk) and .(α, β) are mutually disjoint and 

.μ(supp[αk ,βk ]x+) = ω , μ(supp[α,β]x+) = 2
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Hence, 

. 

b

a

x p
+(t) dt =

n

k=1

βk

αk

x p
+(t) dt +

β

α

x p
+(t) dt .

To estimate the integrals on the right-hand side of this equality, we apply inequalities (2.37) 
and (2.27) and  

. 

b

a

x p
+(t) dt ≤ n

2ω

0

ϕ
p
+(t) dt +

m++

m+−
ϕ
p
+(t) dt

=
B

A

ϕ
p
+(t + τ+) dt,

where .m+ is the point of local maximum of the function .ϕ+, and the last equality in this 
sequence of relations follows from (2.41). Thus, inequality (2.43) is established in the case 
where .supp[a, b]x+ = μ. 

Now let .μ1 := supp[a, b]x+ < μ. 
Note that the number .μ can be uniquely represented in the form (2.40). Hence, the 

segment .[A, B] and the number .τ+ are uniquely (up to a shift) determined by this number. 
Therefore, the integral .I(μ) on the right-hand side of (2.43) is uniquely determined by the 
number . μ. Moreover, it is clear that .I(μ) does not decrease as a function of . μ. Hence, 
repeating the reasoning used in the previous case, we obtain the following estimate for the 
integral . I on the left-hand side of (2.43): 

. I ≤ I(μ1) ≤ I (μ).

Thus, the proof of inequality (2.43) is completed. 
Note that, for the pair . ϕ(· + τ±), [A, B] ∈ L±

ϕ (p, ω, μ) formed by a function . x(·) =
ϕ(· + τ+) and a segment .[A, B] given by relations (2.40)–(2.42), inequality (2.43) turns 
into equality. 

Let .k ∈ N, and let .ϕ be an .S-function with period .2ω such that .ϕ ∈ Lk+1∞ . Thus, .ϕ(i) is 
a comparison function for .x (i), .i = 0, 1, . . . , k. Therefore, 

.L(x (k))1 ≤ 2 x (k−1) ∞ ≤ 2 ϕ(k−1) ∞ = L(ϕ(k))1. (2.44) 

Hence, .x (k) ∈ Sϕ(k) (1, ω). We fix a number .μ > 0 and introduce a class of pairs .(x, I ) of 
functions . x and segments .I = [a, b] by the formula 

.S±
ϕ, k(ω, μ) := (x, I ) : x ∈ Skϕ, μ suppI x

(k)
± ≤ μ . (2.45)
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Using these definitions and relation (2.44), we arrive at the implication 

.(x, I ) ∈ S±
ϕ, k(ω, μ) =⇒ (x (k), I ) ∈ L±

ϕ(k) (1, ω, μ), (2.46) 

where the sets .L±
ϕ (p, ω, μ) are determined in (2.39). 

We represent the number . μ in the form 

.μ = n · ω + 2 n ∈ N ∪ {0} ∈ (0, ω/2). (2.47) 

Further, we choose the numbers .τ±
k ∈ R and the segment .[A, B] such that 

.B − A = 2n · ω + 2 (2.48) 

.ϕ
(k)
± (A + + τ±

k ) = ϕ
(k)
± (B − + τ±

k ) = ϕ(k)

∞ . (2.49) 

Then . ϕ(· + τ±), [A, B] ∈ S±
ϕ, k(ω, μ).

Theorem 2.2 Suppose that .k ∈ N, .ω, μ > 0, and . ϕ is an .S-function with period .2ω such 
that .ϕ ∈ Lk+1∞ . Then, for any function . ∈ W, 

. sup

⎧
⎨

⎩

b

a

x (k)
± (t) dt : (x, I ) ∈ S±

ϕ, k(ω, μ)

⎫
⎬

⎭
=

B

A

ϕ
(k)
± (t + τ±

k ) dt,

where the set .S±
ϕ, k(ω, μ), the numbers .τ±

k , and the segment .[A, B] are given by rela-
tions (2.45) to (2.49). 

Proof In view of implication (2.46), if.(x, I ) ∈ S±
ϕ, k(ω, μ), then.(x (k), I ) ∈ L±

ϕ(k) (1, ω, μ), 

where the set .L±
ϕ (p, ω, μ) is given by (2.39). Thus, applying Theorem 2.1 to the class 

.L±
ϕ(k) (1, ω, μ), we arrive at the assertion of Theorem 2.2. 

Setting . t) = tq/p in (2.1) and. t) = tq in Theorem 2.2, we get the following corol-
lary. 

Corollary 2.3 Let .k ∈ N, .p, ω, μ > 0, . ϕ be an .S-function with period .2ω, and suppose 
. ∈ W. Then for any . q ≥ p

. sup

⎧
⎨

⎩

b

a

xq±(t)dt : (x, I ) ∈ L±
ϕ (p, ω, μ)

⎫
⎬

⎭
=

B

A

ϕ
q
±(t + τ±)dt,

where the sets .L±
ϕ (p, ω, μ), the numbers .τ±, and the segment .[A, B] are given by rela-

tions (2.38) to (2.42).
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In addition, if .k ∈ N, .μ > 0, and .ϕ ∈ Lk+1∞ , then, for any .q ≥ 1, 

. sup

⎧
⎨

⎩

b

a

x (k)
± (t)

q
dt : (x, I ) ∈ S±

ϕ, k(ω, μ)

⎫
⎬

⎭
=

B

A

ϕ
(k)
± (t + τ±

k )
q
dt,

where the sets .S±
ϕ, k(ω, μ), the numbers .τ±

k , and the segment .[A, B] are given by rela-
tions (2.45) to (2.49). 

2.4 The Bojanov–Naidenov Problem for Sobolev Classes 

By.ϕr (t),.r ∈ N, we denote a shift of the.r -th.2π -periodic integral with zero mean value over 
a period of the function .ϕ0 (t) = sgn sin t . This quantity satisfies the condition .ϕr (0) = 0. 
For .λ > 0, we set .ϕλ,r (t) := λ−rϕr (λt). 

Let .Ar , A0, .p > 0. We choose .λ > 0 such that 

.A0 = Ar L(ϕλ,r )p , (2.50) 

where the quantity .L(x)p is given by equality (2.4), and set 

.ϕ(t) := Arϕλ,r (t). (2.51) 

It is clear that. ϕ is an.S-function with period.2π/λ; moreover,. ϕ(r) ∞ = Ar ,.L(ϕ)p = A0. 
Consider the class of functions 

.
r
p(A0, Ar ) := {x ∈ Lr∞ x (r) ∞ ≤ Ar , L(x)p ≤ A0}. (2.52) 

Lemma 2.3 ([ 8]) Suppose that .r ∈ N, .A0, Ar , .p > 0. Then, for any . k = 0, 1, . . . , r − 1

. 
r
p(A0, Ar ) ⊂ Skϕ ,

where the function. ϕ is defined by equality (2.51) and the number. λ is given by equality (2.50). 

Let .r ∈ N, .k = 0, 1, . . . , r − 1; .μ > 0. Consider the set of pairs .(x, I ) of functions . x
and segments .I = [α, β] given by the formula 

.
r ,k
p (A0, Ar )± := {(x, I ) : x ∈ r

p(A0, Ar ) , μ suppI x
(k)
± ≤ μ}. (2.53) 

We represent the number . μ in the form 

.μ = n · π

λ
+ 2 n ∈ N ∪ {0} ∈ (0, π/(2λ)). (2.54)
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Further, we choose numbers .τ± ∈ R and a segment .[A, B] such that 

.B − A = 2n · π

λ
+ 2 (2.55) 

. ϕλ,r−k ± (A + + τ±) = ϕλ,r−k ± (B − + τ±
k ) = ϕλ,r−k ∞ . (2.56) 

Thus, . ϕλ,r (· + τ±), [A, B] ∈ r ,k
p (A0, Ar )±.

Theorems 2.1 and 2.2 and Lemma 2.3 imply the following statement. 

Theorem 2.3 Suppose that .r ∈ N, .A0, Ar , .p > 0, . ∈ W. Then 

. sup

⎧
⎨

⎩

β

α

x p
±(t))dt : (x, [α, β]) ∈ r ,0

p (A0, Ar )±

⎫
⎬

⎭

=
B

A

Arϕλ,r
p
± (t + τ±))dt .

At the same time, if .k ∈ N, .k < r , then 

. sup

⎧
⎨

⎩

β

α

x (k)
± (t))dt : (x, [α, β]) ∈ r ,k

p (A0, Ar )±

⎫
⎬

⎭

=
B

A

Ar ϕλ,r−k ± (t + τ±))dt,

where the classes . r ,k
p (A0, Ar )±, the numbers . λ, .τ±, and the segment .[A, B] are given 

by (2.52) to (2.56). 

Setting . t) = tq/p, .q ≥ p, in the first relation of Theorem 2.3 and . t) = tq , . q ≥
1, in the second relation, we obtain, as in Corollary 2.3, sharp estimates for the norms 
. x (k)

± Lq [α,β], .k = 0, 1, . . . , r − 1, in the classes . r ,k
p (A0, Ar )±. 

2.5 The Bojanov–Naidenov Problem for Trigonometric Polynomials 

By.Tn we denote the space of trigonometric polynomials of degree at most. n. For.A0, p > 0, 
we se 

. Tn(A0, p) := {T ∈ Tn : L(T )p ≤ A0L(sin n(·))p},
where the quantity .L(x)p is given by equality (2.4).
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Lemma 2.4 ([ 8]) Suppose that .n ∈ N, .A0, p > 0. Then for any .k = 0, 1, . . ., 

. Tn(A0, p) ⊂ Skϕ,

where .ϕ(t) = A0 sin nt. 

Let.k ∈ N ∪ {0} and.μ > 0. We introduce a set of pairs.(T , I ) formed by polynomials. T
and the segment .I = [α, β] by the formula 

.T±
n,k(A0, p, μ) := {(T , I ) : T ∈ Tn(A0, p) , μ suppI T

(k)
± ≤ μ}. (2.57) 

The number . μ is represented in the form 

.μ = m · π

n
+ 2 m ∈ N ∪ {0} ∈ (0, π/(2n)). (2.58) 

Further, we choose the numbers .τ± ∈ R and the segment .[A, B] such that 

.B − A = 2m · π

n
+ 2 (2.59) 

. sin n A + + τ±
± = sin n B − + τ±

± = 1. (2.60) 

By Theorems 2.1 and 2.2 and Lemma 2.4, we obtain the following statement. 

Theorem 2.4 Suppose that .A0, .p, μ > 0, . ∈ W. Then 

. sup

⎧
⎨

⎩

β

α

T p
± (t))dt : (T , [α, β]) ∈ T±

n,0(A0, p, μ)

⎫
⎬

⎭

=
B

A

A0 sin n t + τ± p
± dt

and, for any .k ∈ N, 

. sup

⎧
⎨

⎩

β

α

T (k)
± (t))dt : (T , [α, β]) ∈ T±

n,k(A0, p, μ)

⎫
⎬

⎭

=
B

A

nk A0 sin n t + τ±
± dt,

where the classes .T±
n,k(A0, p, μ), the numbers .τ±, and  the segment  .[A, B] are given by 

(2.57) to (2.60).
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2.6 The Bojanov–Naidenov Problem for Splines 

By.Sn,r we denote the space of.2π -periodic polynomial splines of order. r with defect 1 and 
nodes at the points .kπ/n, k ∈ Z. For .A0, p > 0, we set  

. Sn,r (A0, p) := {s(· + τ ) : s ∈ Sn,r , L(s)p ≤ A0L(ϕn,r )p, τ ∈ R},

where the quantity .L(x)p is given by equality (2.4). 
Lemma 2.5 ([ 8]) Suppose that .r , n ∈ N and .A0, p > 0. Then for any .k = 0, 1, . . . , r − 1, 

. Sn,r (A0, p) ⊂ Skϕ,

where .ϕ(t) = A0ϕn,r (t). 

Let.r , n ∈ N, .k = 0, 1, . . . , r − 1, .μ > 0. We consider the set of pairs .(s, I ) of splines. s
and segments .I = [α, β] given by the formula 

.Skn,r (A0, p, μ)± := {(s, I ) : s ∈ Sn,r (A0, p) , μ suppI s
(k)
± ≤ μ}. (2.61) 

We rewrite the number . μ in the form 

.μ = m · π

n
+ 2 m ∈ N ∪ {0} ∈ (0, π/(2n)). (2.62) 

Further, we choose the numbers .τ± and the segment .[A, B] such that 

.B − A = 2m · π

n
+ 2 (2.63) 

. ϕn,r−k ± A + + τ± = ϕn,r−k ± B − + τ± ϕn,r−k ∞. (2.64) 

Using Theorems 2.1 and 2.2 and Lemma 2.5, we obtain the following statement. 

Theorem 2.5 Suppose that .r , n ∈ N, .A0, p, μ > 0 and . ∈ W. Then 

. sup

⎧
⎨

⎩

β

α

s p±(t))dt : (s, [α, β]) ∈ S0n,r (A0, p, μ)±

⎫
⎬

⎭

=
B

A

A0ϕn,r )
p
±(t + τ±))dt,

and for any .k = 1, 2, . . . , r − 1
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. sup

⎧
⎨

⎩

β

α

s(k)
± (t))dt : s ∈ Skn,r (A0, p, μ)±

⎫
⎬

⎭
=

β

α

A0(ϕn,r−k)±(t + τ±)|)dt,

where the classes .Skn,r (A0, p, μ)±, the numbers .τ±, and the segment .[A, B] are given 
by (2.61) to (2.64). 

2.7 The Erdös Problem for Spaces of Trigonometric Polynomials 
and Splines 

In [ 4], Bojanov and Naidenov solved the Erdös problem [ 5] of characterization of a trigono-
metric polynomial .T ∈ Tn with fixed uniform norm whose graph has the maximal length 
on a given segment .[α, β] ⊂ R. 

In the next theorem, we solve a similar problem of characterization of a pair.(T , I ) formed 
by a polynomial .T ∈ Tn with given uniform norm and a segment . I whose support measure 
.μ suppI T± is bounded by a given number, and is such that the total length of arcs of the 
graph of positive (negative) part of the polynomial . T on the segment . I is maximal. In this 
theorem, the same problem is solved for splines from the set 

. S̃n,r := {s(· + τ ) : s ∈ Sn,r , τ ∈ R}.

It is known that the length of an arc .l[a, b] of the graph of a function .x ∈ L1[a, b] is 
given by the formula .l[a, b] = b

a 1 + x (t)2dt . 
It is clear that, for the function . 0(t) = √

1 + t2, the inclusion . 0 ∈ W is true. Setting 
. = 0, .k = 1, .p = ∞ in Theorems 2.4 and 2.5, we obtain the following assertion: 

Theorem 2.6 Suppose that .n ∈ N, .M, μ > 0 and . μ has the form 

. μ = m · π

n
+ 2 m ∈ N ∪ {0} ∈ (0, π/(2n)).

Among all pairs .(x, I ) of polynomials .x ∈ Tn with given uniform norm .M and segments 
. I from the family 

. S := {I ⊂ R : μ suppI x± ≤ μ},
the maximal total length of arcs of the graph of positive (negative) part .x± on the segment 
. I has the polynomial .x(t) = M sin n(t + τ±) on the segment .[A, B] such that 

.B − A = 2m · π

n
+ 2 (2.65) 

. sin n A + + τ±
± = sin n B − + τ±

± = 1.

Among all pairs .(x, I ) of shifts of the splines .x ∈ S̃n,r with given uniform norm .M and 
segments I of the family. S, the maximal total length of arcs of the graph of positive (negative)



104 2 The Bojanov–Naidenov Problem for Differentiable Functions…

part .x± on the segment . I is observed for the shift of the spline . x(t) = M
ϕn,r ∞ ϕn,r (t + τ±)

on the segment .[A, B] such that equality (2.65) is true and, in addition, 

. ϕn,r−1 ± A + + τ± = ϕn,r−1 ± B − + τ± ϕn,r−1 ∞.
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3Remez-Type Inequalities 

Abstract 

Remez-type inequalities play an important role in approximation theory. This topic was 
initiated in the work of Remez in 1936, in which he found a sharp constant in an inequality 
of this type for algebraic polynomials. At the end of the 20th century, a new surge of 
works on this topic was observed. The efforts of many mathematicians aimed at finding 
the sharp constant in the Remez-type inequality for trigonometric polynomials. Only in 
2019 this problem was solved in the work of Tikhonov and Yuditski. In the author’s works, 
Remez-type inequalities were extended to wider classes of functions. In this chapter, sharp 
Remez-type inequalities for functions with a given comparison function are obtained in 
various metrics. As a result, such type of inequalities were proved for functions from the 
Sobolev classes, for trigonometric polynomials and polynomial splines with a given ratio 
of norms of their positive and negative parts. 

3.1 Introduction 

By.Id we denote a circle realized in the form of a segment .[0, d] whose ends are identified. 
For the sake of brevity, we write . x p instead of . x L p(I2π ). 

For .r ∈ N, .G = R or .G = Id , by .Lr∞(G) we denote the set of all functions . x ∈ L∞(G)

with locally absolutely continuous derivatives up to the .(r − 1)-th order satisfying the con-
dition .x (r) ∈ L∞(G). 

By .ϕr (t) we denote the shift of the .r -th .2π -periodic integral of the function . ϕ0 (t) =
sgn sin t with zero mean value over the period such that .ϕr (0) = 0. For  .λ > 0, we set  
. ϕλ,r (t) := λ−rϕr (λt).

The following theorem was proved in [ 1]: 
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Theorem A. Suppose that .r ∈ N and .q > p > 0. Then for any function .x ∈ Lr∞(I2π ) that 
has zeroes, the following sharp on class .Lr∞(I2π ) inequality holds. 

. x q ≤ sup
c∈[0,Kr ]

ϕr + c q

ϕr + c α
p

x α
p x (r) 1−α∞ , (3.1) 

where .α = r+1/q
r+1/p , .Kr ϕr ∞ is the Favard constant. 

In the proof of inequality (3.1) in [  1] it was established that if for a given function 
.x ∈ Lr∞(I2π ) that has zeroes, the number .c ∈ [−Kr , Kr ] is chosen to guarantee that the 
condition 

. 
x+ p

x− p
= (ϕr + c)+ p

(ϕr + c)− p

is satisfied, then the inequality 

. x± q ≤ (ϕr + c)± q

(ϕr + c)± α
p

x± α
p x (r) 1−α∞ (3.2) 

is true. 
An analog of inequality (3.1) in which  the  .Lq -norm of a periodic function is estimated 

via its local .L p-norm was established in [ 8]. Sufficient conditions under which the least 
upper bound in inequality (3.1) is attained for .c = 0 were established in [ 10]. 

In this chapter we generalize inequalities (3.1) and  (3.2) to the classes of functions with 
given comparison function. Moreover, these generalizations contain the “Remez effect”, We 
now present necessary definitions. 

Let us remind that a function. f ∈ L1∞(R) is called a comparison function for a function 
.x ∈ L1∞(R), if there exists .c ∈ R such that 

. min
t∈R f (t) + c ≤ x(t) ≤ max

t∈R f (t) + c, t ∈ R,

and the equality .x(ξ) = f (η) + c, where  .ξ, η ∈ R, yields the inequality . |x (ξ)| ≤ | f (η)|
provided that the indicated derivatives exist. An odd .2ω-periodic function .ϕ ∈ L1∞(I2ω) is 
called an .S-function if it has the following properties: . ϕ is even with respect to .ω/2, .|ϕ| is 
convex upward on.[0, ω] and strictly monotone on.[0, ω/2]. For a.2ω-periodic.S-function. ϕ, 
by.Sϕ(ω)we denote the class of functions.x ∈ L1∞(Id) for which. ϕ is a comparison function. 
Note that the classes .Sϕ(ω) were considered in [ 3, 9]. 

An important role in the approximation theory is played by the Remez-type inequalities 

. T L∞(I2π ) ≤ C(n, β) T L∞(I2π \B) (3.3) 

on the class .Tn , where . B is an arbitrary Lebesgue-measurable set .B ⊂ I2π , .μB ≤ β. 
The foundations of this direction were laid by Remez [ 20] who determined the sharp 

constant .C(n, β) in an inequality of the form (3.3) for algebraic polynomials. In inequal-
ity (3.3) for trigonometric polynomials, two-sided estimates for the sharp constants.C(n, β)
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were established in a series of works. Moreover, the asymptotic behaviors of the constants 
.C(n, β) as .β → 2π [ 7] and  as  .β → 0 [ 19] are known. For the bibliography in this field, 
see [ 4, 6, 7, 19]. In [ 19], the inequality 

. T L∞(I2π ) ≤ 1 + 2 tan2
nβ

4m
T L∞(I2π\B) (3.4) 

was proved for any polynomial .T ∈ Tn with the minimal period .2π/m and any Lebesgue-
measurable set .B ⊂ I2π , .μB ≤ β, where .β ∈ (0, 2πm/n). The equality in (3.4) is attained 
for the polynomial 

. T (t) = cos nx + 1

2
(1 − cosβ/2).

Recently, a sharp constant for the Remez-type inequality (3.3) for trigonometric polyno-
mials has been found in [ 22]. 

In [ 11], the result obtained in [ 22] was generalized to the classes.Sϕ(ω). As a consequence, 
an analog of inequality (3.4) for polynomial splines and functions from the classes . Lr∞(Id)
was obtained. In [ 5, 12– 14, 16] some sharp Remez-type inequalities of different metrics and 
Kolmogorov–Remez-type inequalities were proved for the classes .Sϕ(ω) and, in particular, 
for the differentiable periodic functions, trigonometric polynomials, and splines. 

In the present chapter, we prove sharp Remez-type inequalities of different metrics for the 
functions .x ∈ Sϕ(ω) with given ratio of the .L p-norms of their positive and negative parts. 
As a consequence, we prove these inequalities for functions from the classes .Lr∞(I2π ), 
trigonometric polynomials, and polynomial splines with given ratio of the .L p-norms of 
their positive and negative parts. 

The main results of this chapter are published in [ 15]. 

3.2 Classes . Sϕ(ω)

Theorem 3.1 Suppose that .q, p > 0, .q ≥ p, . ϕ is an .S-function with period .2ω, and . β ∈
[0, 2ω). If for a.d-periodic function.x ∈ Sϕ(ω)with zeroes there exists. c ∈ x ϕ ∞, ϕ ∞]
satisfying the condition 

. x± L p(Id ) (ϕ + c)± L p(I2ω), (3.5) 

then for any Lebesgue-measurable set .B ⊂ Id , .μB ≤ β, the following inequality is true: 

. x Lq (Id ) ≤ ϕ + c Lq (I2ω)

ϕ + c L p(I2ω\By(β))

x L p(Id\B), (3.6) 

where 
. By := {t ∈ [0, 2ω] : |ϕ(t) + c| > y},

and, moreover, .y = y(β) is chosen such that .μBy(β) = β.
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For any fixed .c ϕ ∞, ϕ ∞], inequality (3.6) is sharp on the class of functions 
.x ∈ Sϕ(ω)with zeroes satisfying condition (3.5). Equality in (3.6) is attained for the function 
.x(t) = ϕ(t) + c and the set .B = By(β). 

We prove Theorem 3.1 by a series of lemmas, which are also used in the proofs of other 
theorems. We set 

. E0(x)∞ := inf
a∈R x − a ∞.

Lemma 3.1 Under the conditions of Theorem 3.1, 

. x± ∞ (ϕ + c)± ∞, (3.7) 

and, in addition, 
.d ≥ 2ω. (3.8) 

Proof We fix a function .x ∈ Sϕ(ω) and a number .c ϕ ∞, ϕ ∞] satisfying the con-
ditions of Theorem 3.1. Assume that inequality (3.7) is not true for the function . x . Since  
. ϕ is the comparison function for the function . x , we have  .E0(x)∞ ≤ E0(ϕ)∞. Hence, the 
assumption made above means that exactly one inequality (3.7) is not true. Thus, let 

. x+ ∞ (ϕ + c)+ ∞, x− ∞ > (ϕ + c)− ∞.

Then there exists .a > 0 such that 

. (x + a)+ ∞ (ϕ + c)+ ∞, (x + a)− ∞ (ϕ + c)− ∞. (3.9) 

It is clear that .x + a ∈ Sϕ(ω). By.m we denote the point of minimum of the function. ϕ + c
and assume that .t1(t2) is the left (right) zero of this function nearest to . m. In view of the  
second relation in (3.9), there exists a shift .x(· + τ) of the function . x such that 

. x(m + τ ) + a = ϕ(m) + c.

In addition, since .ϕ + c is the comparison function for the function . x , we get  

. x(t + τ ) + a ≤ ϕ(t) + c < 0, t ∈ (t1, t2).

In view of .a > 0, this yields the estimate 

. x− L p(Id ) > (x + a)− L p(Id ) (ϕ + c)− L p(I2ω),

which contradicts to condition (3.5). Thus inequality (3.7) is proved. Relation (3.8) directly 
follows from (3.5) and (3.7) in view of the inclusion .x ∈ Sϕ(ω).
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For . f ∈ L1[a, b], by  .r( f , t), .t ∈ [0, b − a], we denote the permutation of the function 
.| f | (see, e.g., [ 18, §1.3]) and set .r( f , t) = 0 for .t > b − a. 

Lemma 3.2 Under the conditions of Theorem 3.1 

.

ξ

0

r p(x̄±, t)dt ≤
ξ

0

r p(ϕ̄±, t)dt, ξ > 0, (3.10) 

where . x̄ is the restriction of . x to .Id and . ϕ̄ is the restriction of .ϕ + c to .I2ω. In particular 

. x± Lq (Id ) (ϕ + c)± Lq (I2ω). (3.11) 

Proof To prove (3.10), we note that, in view of (3.7), for any.y± ∈ [0, x± ∞), there exist 
points 

. t±i ∈ Id , i = 1, 2, ...,m,m ≥ 2, y±
j ∈ I2ω, j = 1, 2,

such that 
. y± = x̄±(t±i ) = ϕ̄±(y±

j ).

Since .ϕ + c is a comparison function for . x , we obtain 

. |x̄±(t±i )| ≤ |ϕ̄±(y±
j )|.

We now show that if the points .θ±
1 ∈ [0, d] and .θ±

2 ∈ [0, 2ω] satisfy the condition 

. y± = r(x̄±, θ±
1 ) = r(ϕ̄±, θ±

2 ),

then 
. |r (x̄±, θ±

1 )| ≤ |r (ϕ̄±, θ±
2 )|.

Indeed, this directly follows from the theorem on the derivative of permutation (see, e.g., [ 18, 
Proposition 1.3.2]). According to this theorem, we get 

. |r (x̄±, θ±
1 )| =

m

i=1

|x̄±(ti )|−1
−1

≤
⎡
⎣ 2

j=1

|ϕ̄±(y±
j )|−1

⎤
⎦

−1

= |r (ϕ̄±, θ±
2 )|.

Using the relation 
. r(x̄±, 0) x± ∞ ϕ± ∞ = r(ϕ̄±, 0),

which follows from (3.7), and the fact that the .L∞-norm is preserved by permutations, we 
conclude that the difference 

.
±(t) := r(x̄±, t) − r(ϕ̄±, t)
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changes sign on .[0, ∞) at most once (from minus to plus). The same is also true for the 
difference 

. 
±
p (t) := r p(x̄±, t) − r p(ϕ̄±, t).

We set 

. I±(ξ) :=
ξ

0

±
p (t)dt .

Hence.I±(0) = 0. Since permutations preserve the.L p-norm, in view of (3.5) and (3.8), we 
get 

. I (d) x± L p(Id ) ϕ± L p(I2ω) = 0.

Moreover,.I±(ξ) = ±
p (ξ) changes sign (from minus to plus) at most once. Thus,.I (ξ) ≤ 0, 

.ξ > 0, which is equivalent to (3.10). In view of the Hardy–Littlewood–Polya theorem (see 
e.g., [ 18, Theorem 1.3.1]), inequality (3.10) yields inequality (3.11). 

Lemma 3.3 Under the conditions of Theorem 3.1 

. x L p(Id\B) ϕ + c L p(I2ω\By(β)). (3.12) 

Proof As above, let . x̄ be the restriction of . x to .Id and let . ϕ̄ be the restriction of .ϕ + c to 
.I2ω. For any measurable set.B ⊂ Id , .μB ≤ β, we have, in view of the well-known property 

.

B

|x(t)|pdt ≤
β

0

r p(x̄, t)dt . (3.13) 

Further, since permutations preserve the .L p-norm, we get 

. x p
L p(Id\B) =

Id

|x(t)|pdt −
B

|x(t)|pdt ≥
d

0

r p(x̄, t)dt −
β

0

r p(x̄, t)dt .

Using (3.5) and the inequality 

. 

ξ

0

r p(x̄, t)dt ≤
ξ

0

r p(ϕ̄, t)dt, ξ > 0,

which follows from (3.10) according to Proposition 1.3.6 in [ 18], we obtain 

. x p
L p(Id\B) ≥

2ω

0

r p(ϕ̄, t)dt −
β

0

r p(ϕ̄, t)dt =
2ω

β

r p(ϕ̄, t)dt =
I2ω\By(β)

|ϕ(t)|pdt .
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This yields (3.12). 

Finally, we return to the proof of Theorem 3.1. 

Proof We fix a .d-periodic function.x ∈ Sϕ(ω) that has zeroes and satisfies conditions (3.5) 
with some .c ϕ ∞, ϕ ∞]. By Lemmas 3.2 and 3.3, this function admits esti-
mates (3.11) and (3.12), which directly imply inequality (3.6). It is clear that this inequality 
is sharp. 

3.3 Classes . Lr∞(I2π)

Recall that the symbol .ϕr (t), .r ∈ N, denotes a shift of the .r -th .2π -periodic integral with 
zero mean value over the period of the function .ϕ0 (t) = sgn sin t satisfying the condition 
.ϕr (0) = 0. It is clear that the spline.ϕλ,r (t) := λ−rϕr (λt), λ > 0 is an.S-function with period 
.2π/λ. 

For .r ∈ N, .p > 0 and . f p ∈ [0, ∞], we consider  a class  

. f pL
r∞(I2π ) := x ∈ Lr∞(I2π ) : x+ p

x− p
= f p .

It is clear that, for given . p and . f p, there exists a unique number .c ∈ [−Kr , Kr ] for which 

.ϕr + c ∈ f pL
r∞(I2π ). (3.14) 

Theorem 3.2 Suppose that .r ∈ N, .p, q > 0, .q ≥ p, . f p ∈ [0, ∞], .β ∈ [0, 2π). For any 
function.x ∈ f pLr∞(I2π )with zeroes, and any measurable set.B ⊂ I2π such that.μB ≤ β/λ, 
where . λ is chosen from the condition 

. x p ϕλ,r + λ−r c L p(I2π/λ) x (r) ∞, (3.15) 

and the number c satisfies condition (3.14), the following inequality is true: 

. x q ≤ ϕr + c q

ϕr + c α
L p(I2π\By(β))

x α
L p(I2π\B) x (r) 1−α∞ , (3.16) 

where 

. α = r + 1/q

r + 1/p
, By := {t ∈ I2π : |ϕr (t) + c| > y},

and, in addition, .y = y(β) is chosen such that .μBy(β) = β. 
Inequality (3.16) is sharp in the class of all pairs .(x, B) formed by a function . x ∈

f pLr∞(I2π ) that has zeroes, and a measurable set .B ⊂ I2π for which .μB ≤ β/λ, where .λ
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satisfies condition (3.15). The equality in (3.16) is attained for the pair .(x, By(β)), where 
.x(t) = ϕr (t) + c. 

Proof We fix a function .x ∈ f pLr∞(I2π ) satisfying the conditions of the theorem. Since 
inequality (3.16) is homogeneous, we can assume that 

. x (r) ∞ = 1. (3.17) 

Thus, in view of (3.14), (3.15) and the definition of the class . f pLr∞(I2π ), we get  

. x± p (ϕλ,r + λ−r c)± L p(I2π/λ). (3.18) 

For functions .x ∈ f pLr∞(I2π ) satisfying this condition, inequality (3.2) holds 

. x± q ≤ (ϕr + c)± q

(ϕr + c)± α
p

x± α
p x (r) 1−α∞ .

Using this inequality, relations (3.17) and (3.18), and the following obvious equality 

. (ϕλ,r + λ−r c)± L p(I2π/λ) = λ−(r+1/p) (ϕr + c)± p, p > 0,

we arrive at the estimate 

. x± q (ϕλ,r + λ−r c)± Lq (I2π/λ). (3.19) 

In particular, in view of (3.17) and (3.19) (.q = ∞), the function . x satisfies the conditions 
of the Kolmogorov comparison theorem [ 17]. 

According to this theorem, the spline .ϕ(t) = ϕλ,r (t) is a comparison function for the 
function. x i.e.,.x ∈ Sϕ(π

λ
). Hence, in view of (3.18), the function. x satisfies all conditions of 

Theorem 3.1. By virtue of this theorem, for.q ≥ p and an arbitrary measurable set.B ⊂ I2π , 
.μB ≤ β/λ, the inequality 

. x q ≤ ϕλ,r + λ−r c Lq (I2π/λ)

ϕλ,r + λ−r c
L p I2π/λ\ By (β)

λ

x L p(I2π\B)

is true. It follows from the last inequality (for .q = p) and conditions (3.15) and (3.17) that 

. x L p(I2π\B) ϕλ,r + λ−r c
L p I2π/λ\ By(β)

λ

.

Combining the obtained lower estimate with inequality (3.19), in view of the obvious relation 

. ϕλ,r + λ−r c
L p I2π/λ\ By(β)

λ

= λ−(r+1/p) ϕr + c L p(I2π\By(β))



3.3 Classes Lr∞(I2π ) 113

and the definition .α = r+1/q
r+1/p , we obtain 

. 
x q

x α
L p(I2π\B)

≤ ϕλ,r + λ−r c Lq (I2π/λ)

ϕλ,r + λ−r c α

L p I2π/λ\ By(β)
λ

= ϕr + c q

ϕr + c α
L p(I2π\By(β))

.

By virtue of (3.17), this estimate yields (3.16). Thus, it is clear that inequality (3.16) is sharp. 

Corollary 3.1 Suppose that.r ∈ N,.p, q > 0,.q ≥ p,.α = r+1/q
r+1/p ,.β ∈ [0, 2π), and the num-

ber .c̄ ∈ [0, Kr ] realizes the upper bound 

. sup
c∈[0,Kr ]

ϕr + c q

ϕr + c α
L p(I2π\Bc

y(β)
)

,

where .Bc
y := {t ∈ I2π : |ϕr (t) + c| > y}, and, moreover, .y = y(β) such that .μBc

y(β) = β. 
Then for any function.x ∈ Lr∞(I2π )with zeroes and an arbitrary measurable set.B ⊂ I2π , 

.μB ≤ β/λ, where . λ is chosen to guarantee that 

. x p ϕλ,r + λ−r c L p(I2π/λ) x (r) ∞, (3.20) 

and . c satisfies the condition 

. x+ p x− −1
p (ϕr + c)+ p (ϕr + c)− −1

p ,

the following inequality is true: 

. x q ≤ ϕr + c̄ q

ϕr + c̄ α

L p(I2π\Bc̄
y(β)

)

x α
L p(I2π\B) x (r) 1−α∞ . (3.21) 

Inequality (3.21) is sharp on the class of all pairs .(x, B) formed by a function . x ∈ Lr∞(I2π )

with zeroes and a measurable set .B ⊂ I2π such that .μB ≤ β/λ, where . λ satisfies condi-
tion (3.20). Equality in (3.21) is attained for the pair .(x, Bc̄

y(β)), where .x(t) = ϕr (t) + c̄. 

We note that: 

1. For .β = 0, Theorem 3.2 and Corollary 3.1 were proved in [ 1]. 
2. For functions .x ∈ Lr∞(I2π ) satisfying the condition . x+ p x− p, the constant in 

inequality (3.16) is equal to zero. 
3. For functions of constant sign.x ∈ Lr∞(I2π ) with zeroes, inequality (3.16) turns into the 

inequality for the best one-sided approximations by the constant 

.E±
0 (x)Ls (G) := inf

c∈R x − c Ls (G) : ∀t ∈ G, ±(x(t) − c)± ≥ 0}, (3.22)
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i.e., the norms. x q and. x L p(I2π\B) in inequality (3.16) for these functions are replaced 
by.E±

0 (x)q and.E±
0 (x)L p(I2π\B) respectively. Moreover, the constant . c in this inequality 

is replaced by the Favard constant .Kr . 

3.4 Classes of Trigonometric Polynomials 

Recall that .Tn is the space of trigonometric polynomials of degree at most . n. For  .p > 0, 
. f p ∈ [0, ∞], we set  

. f pTn := T ∈ Tn : T+ p

T− p
= f p .

Theorem 3.3 Suppose that .n,m ∈ N, .p, q > 0, .q ≥ p, . f p ∈ [0, ∞]. If a trigonometric 
polynomial .T ∈ f pTn with the minimal period .2π/m has zeroes, then for any measurable 
set .B ⊂ I2π , .μB ≤ m

n β, .β ∈ [0, 2π), the following inequality is true: 

. T q ≤ n

m

1
p − 1

q sin(·) + c q

sin(·) + c L p(I2π\By(β))

T L p(I2π\B), (3.23) 

where the number .c ∈ [−1, 1] satisfies the condition 

. sin(·) + c ∈ f pTn, (3.24) 

.By := {t ∈ I2π : | sin t + c| > y}, and .y = y(β) is such that .μBy(β) = β. 
Inequality (3.23) is sharp in the following sense: 

. sup
(n,m)∈Nn,m

sup
(T ,B)∈Pm

n

T q

(n/m)1/p−1/q T L p(I2π\B)

= sin(·) + c q

sin(·) + c L p(I2π\By(β))

, (3.25) 

where .Nn,m is the set of pairs .(n,m) of natural numbers such that .m ≤ n and .Pm
n is the 

set of pairs  .(T , B) formed by a polynomial .T ∈ f pTn with zeroes and the minimal period 
.2π/m, and a measurable set .B ⊂ I2π , .μB ≤ m

n β. 

Proof We fix a polynomial.T ∈ f pTn satisfying the conditions of Theorem 3.3. For the sake 
of brevity, we set .ϕ(t) := sin nt , .ψ(t) := ϕ(t) + c, .t ∈ R. In view of the homogeneity of 
inequality (3.23), we can assume that 

. T L p(I2π/m ) ψ L p(I2π/n). (3.26)
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In view of condition (3.24) and the definition of the class . f pTn , this yields the equality 

. T± L p(I2π/m ) ψ± L p(I2π/n). (3.27) 

We now show that 
. T± ∞ ψ± ∞. (3.28) 

Indeed, assume the contrary i.e., that there exists .γ ∈ (0, 1) such that 

. γ T± ∞ ψ± ∞.

Moreover, one of these inequalities turns into equality. Thus let 

. γ T+ ∞ ψ+ ∞, γ T− ∞ ψ− ∞.

Then the polynomial. ψ is a comparison function for the polynomial.γ T (see the proof of [ 2, 
Theorem 8.1.1]). Let. m be a point of minimum of the function. ψ and let.t1(t2) be the nearest 
(to . m) from the left (resp. right) zero of this function. Passing, if necessary, to the shift of 
the polynomial .γ T , we can assume that 

. γ T− ∞ = −γ T (m).

Since .ψ is a comparison function for the polynomial .γ T , we get  

. γ T (t) ≤ ψ(t) < 0, t ∈ (t1, t2).

This yields the estimate 

. T− L p(2π/m) > γ T− L p(2π/m) ψ− L p(2π/n),

which contradicts to (3.27). Thus inequality (3.28) is proved.  
This inequality and the proof of [ 2, Theorem 8.1.1] imply that .ϕ(t) = sin nt is a com-

parison function for the polynomial .T (t) i.e., .T ∈ Sϕ(π
n ). Hence, in view of (3.26), the 

polynomial . T satisfies all conditions of Theorem 3.1 and, therefore, also the conditions of 
Lemmas 3.1, 3.2 and 3.3. 

Next we establish the inequality 

. T q ≤ m

n

1/q
sin(·) + c q . (3.29) 

By virtue of inequality (3.11), we obtain 

. T Lq (I2π/m ) ϕ + c Lq (I2π/n).

This immediately yields (3.29), because the polynomial. T is.2π/m-periodic and the function 
. ϕ is .2π/n-periodic.
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We now prove the inequality 

. T L p(I2π\B ) ≥ m

n

1/p
sin(·) + c L p(I2π\By(β)

) (3.30) 

for any measurable set .B ⊂ I2π , .μB ≤ m
n β. 

Let. T̄ be the restriction of the polynomial. T to.I2π/m and let. ϕ̄ be the restriction of. ϕ + c
to.I2π/n . Using inequality (3.13), in view of the fact that permutation preserves the.L p-norm, 
we get 

. T p
L p(I2π\B ) =

2π

0

|T (t)|pdt −
B

|T (t)|pdt ≥
2π

0

r p(T , t)dt −
m
n β

0

r p(T , t)dt

= m

⎡
⎣

2π/m

0

r p(T̄ , t)dt −
β/n

0

r p(T̄ , t)dt

⎤
⎦ .

Thus, by virtue of  (3.26) and the inequality 

. 

ξ

0

r p(T̄ , t)dt ≤
ξ

0

r p(ϕ̄, t)dt, ξ > 0,

which follows from (3.10), according to [ 18, Proposition 1.3.6], we arrive at the following 
lower estimate: 

. T p
L p(I2π\B ) ≥ m

⎡
⎣

2π/n

0

r p(ϕ̄, t)dt −
β/n

0

r p(ϕ̄, t)dt

⎤
⎦ = m

2π/n

β/n

r p(ϕ̄, t)dt

= m

n

2π

β

r p(ϕ + c, t)dt = m

n
I2π\By(n)

|ϕ(t) + c|pdt

= m

n
sin(·) + c p

L p(I2π\By(β )) ,

where .By(n) := {t ∈ I2π : | sin nt + c| > y}, and  .y = y(β) is such that .μBy(n) = β. The  
obtained estimate yields inequality (3.30). Combining (3.29) and  (3.30), we arrive at inequal-
ity (3.23). It is clear that (3.23) is sharp in the sense of (3.25). 

Corollary 3.2 Suppose that .n,m ∈ N, .q, p > 0, .q ≥ p, .β ∈ [0, 2π), and the number . c̄ ∈
[0, 1] realizes the upper bound 

. sup
c∈[0,1]

sin(·) + c q

sin(·) + c L p(I2π\Bc
y(β)

)

,
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where .Bc
y := {t ∈ I2π : | sin t + c| > y} and .y = y(β) is such that .μBc

y(β) = β. Then for 
any trigonometric polynomial .T ∈ Tn with zeroes and the minimal period .2π/m and any 
measurable set .B ⊂ I2π , .μB ≤ m

n β, the following inequality is true: 

. T q ≤ n

m

1
p − 1

q sin(·) + c̄ q

sin(·) + c̄ L p(I2π\Bc̄
y(β)

)

T L p(I2π\B). (3.31) 

Inequality (3.31) is sharp in the following sense: 

. sup
(n,m)∈Nn,m

sup
(T ,B)∈Qm

n

T q

(n/m)1/p−1/q T L p(I2π\B)

= sin(·) + c̄ q

sin(·) + c̄ L p(I2π\Bc̄
y(β)

)

,

where .Nn,m is the set of pairs .(n,m) of natural numbers such that .m ≤ n and .Qm
n is the set 

of pairs .(T , B) formed by a polynomial .T ∈ Tn with zeroes and the minimal period .2π/m, 
and a measurable set .B ⊂ I2π , .μB ≤ m

n β. 

We note that: 

1. For .β = 0 and .m = 1, Theorem 3.3 and Corollary 3.2 were proved in [ 1]. 
2. For polynomials .T ∈ Tn satisfying the condition . T+ p T− p, the constant . c in 

inequality (3.23) is equal to zero. 
3. For sign-preserving polynomials.T ∈ Tn that have zeroes, inequality (3.23) turns into the 

equality for the best one-sided approximations by a constant [see (3.22)] i.e., the norms 
. T q and. T L p(I2π\B) in inequality(3.23) for these polynomials should be replaced by 
.E±

0 (T )q and .E±
0 (T )L p(I2π\B)) respectively. Moreover, the constant . c in this inequality 

is equal to . 1. 

3.5 Classes of Splines 

Recall that .Sn,r is a space of .2π -periodic splines of order . r with defect 1 and nodes at the 
points .kπ/n, k ∈ Z. For .p > 0, . f p ∈ [0, ∞], we set  

. f p Sn,r := s ∈ Sn,r : s+ p

s− p
= f p .

Theorem 3.4 Suppose that .n,m ∈ N .p, q > 0, .q ≥ p, . f p ∈ [0, ∞]. 
If a spline .s ∈ f p Sn,r with the minimal period .2π/m has zeroes, then for any measurable 

set .B ⊂ I2π , .μB ≤ m
n β, .β ∈ [0, 2π), the following inequality is true: 

. s q ≤ n

m

1
p − 1

q ϕr + c q

ϕr + c L p(I2π\By(β))

s L p(I2π\B), (3.32)
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where .c ∈ [−Kr , Kr ] satisfies the condition 

.ϕn,r + n−r c ∈ f p Sn,r , (3.33) 

.By := {t ∈ I2π : |ϕr (t) + c| > y}, and .y = y(β) is such that .μBy(β) = β. 
Inequality (3.32) is sharp in the following sense: 

. sup
(n,m)∈Nn,m

sup
(s,B)∈Smn

s q

(n/m)1/p−1/q s L p(I2π\B)

= ϕr + c q

ϕr + c L p(I2π\By(β))

, (3.34) 

where .Nn,m is the set of pairs .(n,m) of natural numbers such that .m ≤ n, and .Smn is the 
set of pairs .(s, B) formed by a spline .s ∈ f p Sn,r with zeroes and the minimal period .2π/m, 
and a measurable set .B ⊂ I2π , .μB ≤ m

n β. 

Proof We fix a spline .s ∈ f p Sn,r satisfying the conditions of Theorem 3.4. For the sake of 
brevity, we set .ϕ(t) := ϕn,r (t), .ψ(t) := ϕn,r (t) + n−r c, .t ∈ R. In view of the homogeneity 
of inequality (3.32), we can assume that 

. s L p(I2π/m ) ψ L p(I2π/n). (3.35) 

Thus, in view of (3.33) and the definition of the class . f p Sn,r , we arrive at the equality 

. s± L p(I2π/m ) ψ± L p(I2π/n). (3.36) 

Next we show that 
. s± ∞ ψ± ∞. (3.37) 

Assume the contrary i.e., that there exists .γ ∈ (0, 1) such that . γ s± ∞ ψ± ∞ and, in 
addition, that one of these inequalities turns into the equality; e.g., that 

. γ s+ ∞ ψ+ ∞, γ s− ∞ ψ− ∞.

Then 
. E0(γ s)∞ ≤ E0(ψ)∞ ϕn,r ∞

and, by virtue of the Tikhomirov inequality [ 21] 

. s(r)

∞ ≤ E0(s)∞
ϕn,r ∞

,

where .E0(x)∞ is the best uniform approximation of the function . x by constants, we arrive 
at the inequality 

. γ s(r)

∞ ≤ 1.
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Thus, the spline.γ s satisfies the conditions of the Kolmogorov comparison theorem [ 17]. 
By this theorem, the spline. ϕ is a comparison function for the spline .γ s. Let .m be the point 
of minimum of the function .ψ and let .t1(t2) be the left (resp. right) nearest (to . m) zero of 
this function. Passing, if necessary, to a shift of the spline .γ s, we can assume that 

. γ s− ∞ = −γ s(m).

Since the spline .ψ is a comparison function for the spline .γ s, we get  

. γ s(t) ≤ ψ(t) < 0, t ∈ (t1, t2).

This yields the estimate 

. s− L p(2π/m) > γ s− L p(2π/m) ψ− L p(2π/n),

which contradicts (3.36). Thus, inequality (3.37) is proved. Using inequality (3.37), we 
obtain 

. E0(s)∞ ≤ E0(ψ)∞ ϕn,r ∞.

Applying the Tikhomirov inequality, we obtain 

. s(r)

∞ ≤ E0(s)∞
ϕn,r ∞

≤ 1.

Therefore, the spline. s satisfies the conditions of the Kolmogorov comparison theorem [ 17]. 
According to this theorem, the spline . ϕ is a comparison function for the spline . s. Hence, 
.s ∈ Sϕ(π

n ) and, in view of (3.36), the spline . s satisfies the conditions of Theorem 3.1 and, 
therefore, also the conditions of Lemmas 3.1, 3.2 and 3.3. 

We prove the inequality 

. s q ≤ n−r m

n

1/q
ϕ + c q . (3.38) 

Indeed, by virtue of inequality (3.11), we get 

. s Lq (I2π/m ) ϕn,r + n−r c Lq (I2π/n).

This directly yields (3.38) because the spline . s is .2π/m-periodic and the spline .ϕn,r is 
.2π/n-periodic. 

We now prove the inequality 

. s Lq (I2π\B ) ≥ n−r m

n

1/p
ϕr + c Lq (I2π\By(β)

) (3.39) 

for any measurable set .B ⊂ I2π , .μB ≤ m
n β. Let . s̄ be the restriction of the spline . s to . I2π/m

and let .ψ̄ be the restriction of the spline .ψ to .I2π/n . As in the proof of Theorem 3.3, using
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inequality (3.13) and taking into account the fact that permutations preserve the .L p-norm, 
we obtain 

. s p
L p(I2π\B ) ≥ m

⎡
⎣

2π/m

0

r p(s̄, t)dt −
β/n

0

r p(s̄, t)dt

⎤
⎦ .

Further, using (3.35) and the inequality 

. 

ξ

0

r p(s̄, t)dt ≤
ξ

0

r p(ψ̄, t)dt, ξ > 0,

which follows from (3.10) according to [ 18, Proposition 1.3.6], as in the proof of Theo-
rem 3.3, we obtain the following lower bound 

. s p
L p(I2π\B ) ≥ m

⎡
⎣

2π/n

0

r p(ψ̄, t)dt −
β/n

0

r p(ψ̄, t)dt

⎤
⎦ = m

2π/n

β/n

r p(ψ̄, t)dt

= m

n

2π

β

r p(ψ, t)dt = m

n
n−rp

I2π\By(β)(n)

|ϕr (nt) + c|pdt

= n−rp m

n
(ϕr + c) p

L p(I2π\By(β)))
,

where.By(β)(n) := {t ∈ I2π : |ϕr (nt) + c| > y}, and.y = y(β) is such that.μBy(β)(n) = β. 
The obtained lower bound is equivalent to (3.39). Inequality (3.32) directly follows 

from (3.38) and (3.39). It is clear that inequality (3.32) is sharp in the sense of (3.34). 

Corollary 3.3 Suppose that .n,m ∈ N, .m ≤ n, .q, p > 0, .q ≥ p, .β ∈ [0, 2π), and the num-
ber .c̄ ∈ [0, Kr ] realizes the upper bound 

. sup
c∈[0,Kr ]

ϕr + c q

ϕr + c L p(I2π\Bc
y(β)

)

,

where .Bc
y := {t ∈ I2π : |ϕr (t) + c| > y}, and .y = y(β) is such that .μBc

y(β) = β. Then for 
any spline .s ∈ Sn,r with zeroes and the minimal period .2π/m, and an arbitrary measurable 
set .B ⊂ I2π , .μB ≤ m

n β, the following inequality is true: 

. s q ≤ n

m

1
p − 1

q ϕr + c̄ q

ϕr + c̄ L p(I2π\Bc̄
y(β)

)

s L p(I2π\B). (3.40) 

Inequality (3.40) is sharp in the following sense: 

. sup
(n,m)∈Nn,m

sup
(s,B)∈ m

n

s q

(n/m)1/p−1/q s L p(I2π\B)

= ϕr + c̄ q

ϕr + c̄ L p(I2π\By(β))

,
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where .Nn,m is the set of pairs .(n,m) of natural numbers such that .m ≤ n, and .
m
n is the set 

of pairs .(s, B) formed by a spline .s ∈ Sn,r with zeroes and the minimal period .2π/m, and 
a measurable set .B ⊂ I2π , .μB ≤ m

n β. 

We note that: 

1. For .β = 0 and .m = 1, Theorem 3.4 and Corollary 3.3 were obtained in [ 1]. 
2. For splines .s ∈ Sn,r satisfying the condition . s+ p s− p, the constant . c in inequal-

ity (3.32) is equal to zero. 
3. For splines of constant sign.s ∈ Sn,r with zeroes, inequality (3.32) turns into the inequality 

for the best one-sided approximations by a constant i.e., the norms. s q and. s L p(I2π\B)

in inequality (3.32) for these splines should be replaced by .E±
0 (s)q and. E±

0 (s)L p(I2π\B)

respectively. Moreover, the constant. c in this inequality is equal to the Favard constant.Kr . 
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4Restoration of the Noise Corrupted Optical Images 
with Their Simultaneous Contrast Enhancement 

Abstract 

In this chapter, we focus on the development of a variational approach for simultaneous 
contrast enhancement of color images and their denoising. With that in mind we propose 
a new variational model in Sobolev-Orlicz spaces with non-standard growth conditions 
of the objective functional and discuss its applications to the simultaneous fusion and 
denoising of each spectral channel for an input color images. The characteristic feature of 
the proposed model is the fact that we deal with a constrained minimization problem with 
a special objective functional that lives in variable Sobolev-Orlicz spaces. This functional 
contains a spatially variable exponent characterizing the growth conditions and it can be 
seen as a replacement for the standard 1-norm in TV regularization. We show that the 
proposed model allows to synthesize at a high level of accuracy noise- and blur-free color 
images, which were captured in extremely low light conditions. 

A very promising approach to image quality enhancement is to reduce the influence from 
the noise and improve the perceptibility of objects in the scene by increasing the brightness 
difference between objects and their background. In recent years, many contrast enhance-
ment techniques have been proposed for digital images. Some approaches allow to improve 
image contrast just in low light conditions [ 39, 44]. Other methods, called sharpening, focus 
on enforcing strong contours in order to remove the obtained blur, e.g., by Gaussian convo-
lution [ 38]. However, this kind of enhancement concerns only strong image contours while 
the contrast enhancement attempts to modify gray level of objects not only in the contours 
neighborhood. In recent years, many different techniques have been proposed for recon-
struction of noise-affected digital images and their contrast enhancement. We refer to [ 40], 
where the authors focus on the problem of contrast enhancement of natural images captured 
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with a digital camera, and give a sufficiently complete overview of the existing methods 
with detailed analysis of all pros and cons. 

In this chapter, we mainly focus on the development of a variational approach for simul-
taneous contrast enhancement of color images and their denoising. With that in mind we 
propose a new variational model in Sobolev-Orlicz spaces with non-standard growth condi-
tions of the objective functional and discuss its applications to the simultaneous fusion and 
denoising of each spectral channel for an input color images. In contrast to [ 26], we don’t 
provided the color image restoration using saturation-value Total Variation, but instead we 
are working just with the RGB-representation of color images. However, as follows from 
the results of numerical simulations, the proposed approach does not strongly modify the 
histogram of the original image. This enables the model to preserve the global lighting 
sensation and to show that the hue of the main objects does not drastically change with 
the illumination. One of the most important advantages of this approach is the fact that the 
proposed model allows to synthesize at a high level of accuracy noise- and blur-free color 
images, that were captured in extremely low light conditions. This situation is typical for 
the most of remote sensing problems. Indeed, the real-life satellite images frequently suffer 
from different types of noise, blur, and other atmosphere artifacts that can affect the radiation 
recovered by the sensors. As a result, such images lose their efficiency for the crop field 
monitoring problems and their utilization can lead to erroneous results and inferences. 

The characteristic feature of the proposed model is that we deal with a constrained min-
imization problem with a special objective functional that lives in variable Sobolev-Orlicz 
spaces. This functional contains a spatially variable exponent characterizing the growth con-
ditions and it can be seen as a replacement for the .1-norm in TV regularization. Moreover, 
the variable exponent, which is associated with non-standard growth, is unknown a priori 
and it depends on a particular function that belongs to the domain of objective functional. 

The idea of using a spatially varying exponent in a TV-like regularization method for 
image denoising dates back as early as 1997 [ 7] and it has been put into practice in 2006 
[ 11]. Both papers as well as some subsequent articles try to tackle variants of the problem 

.J (u) = D(u) + λ |∇u(x)|p(∇u(x)) dx −→ inf, (4.1) 

where the exponent depends directly on the image . u, e.g., 

.p(∇u) = 1 + a2

a2 + |∇Gσ ∗ u|2 . (4.2) 

Here,.(Gσ ∗ v) (x)determines the convolution of function. vwith the.2-dimensional Gaussian 
filter kernel .Gσ . 

It has been demonstrated that this model possesses some favorable properties, partic-
ularly when edge preservation and effective noise suppression are primary goals in image 
reconstruction. Furthermore, this model has been introduced specifically to address the issue 
of staircasing [ 42], which refers to the regularizer’s inclination towards piecewise constant
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functions. The appearance of the staircasing effect is a notable drawback of the classical TV 
model. However, the non-convex model (4.1) did not gain significant attention for a long 
period due to its high numerical complexity and the absence of a rigorous mathematical 
substantiation of its consistency. Only particular solutions to this problem have been derived 
for a smoothed version of the integrand, using a weak notion of solution (see, for instance, 
[ 45]). 

A recently developed alternative variant is the TV-like method [ 35] (see also [  1, 12]), 
which computes the variable exponent . p in an offline step and keeps it as a fixed parameter 
in the final optimization problem This approach allows the exponent to vary based on spatial 
location, enabling users to locally select whether to preserve edges or smooth intensity vari-
ations. However, there are only two natural types of imaging problems where this approach 
can be applied: 

• single-channel imaging where first the exponent is computed from the given data and 
then is applied as prior in the subsequent minimization problem; 

• dual-channel imaging where the secondary channel provides the exponent map that is 
used for regularization of the primary channel. 

Thus, this circumstance imposes significant limitations from practical point of view, espe-
cially in the case of multi-spectral satellite noisy images, where different channels can differ 
drastically. 

Our main purpose in this chapter is to describe a robust approach for the simultaneous 
contrast enhancement and denoising of non-smooth multispectral images using an energy 
functional with nonstandard growth following the recent results that were obtained in coop-
eration with C.D’Apice, R. Manzo, and A. Parisi (see [ 21]). In particular, we apply a special 
form of anisotropic diffusion tensor for the regularization term and a term which is inspired 
by the variational model of Bertalmio et al. [ 5]. Following this approach, we aim to increase 
the perceptibility of objects in the scene and the noise robustness of the proposed model 
albeit it makes such variational problem completely non-smooth, non-convex, and, hence, 
significantly more difficult from a minimization point of view. 

We consider a variational problem for the energy functional with nonstandard growth 
.p(x), where the principle edge information for the contrast enhancement is mainly accumu-
lated. Namely, for the simultaneous denoising and contrast enhancement of color images, 
we propose to solve the following constrained minimization problems 

.Ji ( f
0
i ) = inf

v∈ i
Ji (v), i = 1, 2, 3 (4.3) 

for each spectral channel of an input image separately, where the objective functional is 
non-convex and it takes the form 

.Ji (v) = |Rη∇v(x)|p(|∇v|) dx + Qi (v). (4.4)
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Here,.Qi (v) stands for the fidelity term and its specific form is described in details in Sect. 4.2 
together with the operator.Rη. The principle point that should be emphasized is the fact that 
we do not predefine the exponent.p(x) a priori using for that the original image, but instead 
we associate this characteristic with the current state of their spectral channels. In fact, we 
take it as follows 

.p(∇u) = 1 + a2

a2 + |∇u|2 . (4.5) 

So, in contrast to the well-know approach, coming from the pioneering papers [ 2, 10], the 
principle difference of the models (4.5) and (4.2) is that we do not apply in (4.5) any spatial 
regularization of gradient .∇u. Because of this, the model (4.3)–(4.4) becomes an ill-posed 
problem from the mathematical point of view and can produce many unexpected phenomena. 
In particular, to our best knowledge we have no results of existence and consistency of 
the optimization problem (4.3)–(4.4). To overcome this problem, we could apply some 
regularization of the variable exponent .p(x) in the form like (4.2). 

However, it is well-known that optimization problem (4.3)–(4.4) with the spatially reg-
ularized gradient has several serious practical and theoretical difficulties. The first one is 
that the spatial regularization of gradient in the form (4.2) leads to the loss of accuracy in 
the case when the signal is noisy, with white noise (see, for instance, [ 10]). Then the noise 
introduces very large, in theory unbounded, oscillations of the gradient .∇u. As a result, the 
conditional smoothing introduced by the model will not help, since all these noise edges 
will be kept. 

The second drawback of the model with the regularized gradient is the fact that the 
space-invariant Gaussian smoothing inside the divergent term tends to push the edges in . u
away from their original locations. We refer to [ 41] where this issue is studied in details. 
This effect, known as edge dislocation, can be detrimental especially in the context of the 
boundary detection problem and its application to the remote sensing and monitoring. So, 
our prime interest in this chapter is to study the optimization problem (4.3)–(4.4) without 
the space-invariant Gaussian smoothing of the variable exponent .p(x). 

4.1 Preliminaries 

Let us recall some useful notations. For vectors .ξ ∈ R
2 and .η ∈ R

2, .(ξ, η) = ξ tη denotes 
the standard vector inner product in.R

2, where. 
t stands for the transpose operator. The norm 

.|ξ | is the Euclidean norm given by .|ξ | = √
(ξ, ξ). Let . ⊂ R

2 be a bounded open set with 
a Lipschitz boundary. and nonzero Lebesgue measure. For any subset.E ⊂ we denote 
by .|E | its .2-dimensional Lebesgue measure .L2(E). Let .E denote the closure of . E , and. ∂E
stands for its boundary.
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4.1.1 Functional Spaces 

For convenience of the reader, we collect here the basic facts on functional spaces that will 
be used in the sequel. Let .X denote a real Banach space with norm . X , and let .X be 

its dual. Let . ·, · X ;X be the duality form on .X × X . By  . and .
∗

we denote the weak 
and weak. ∗ convergence in normed spaces, respectively. For given .1 ≤ p ≤ +∞, the space 
.L p ;R2) is defined by 

. L p ;R2) = f : → R
2 f L p ;R2) < +∞ ,

where. f L p ;R2) = | f (x)|p dx 1/p for.1 ≤ p < +∞. The inner product of two func-
tions . f and . g in .L p ;R2) with .p ∈ [1, ∞) is given by 

. ( f , g)L p ;R2) = ( f (x), g(x)) dx =
2

k=1

fk(x)gk(x) dx .

We denote by.C∞
c (R2) a locally convex space of all infinitely differentiable functions with 

compact support in .R
2. We recall here some functional spaces that will be used throughout 

this paper. We define the Banach space.H1 as the closure of.C∞
c (R2) with respect to the 

norm 

. y H1 = y2 + |∇ y|2 dx
1/2

.

We denote by . H1 the dual space of .H1 . Hereinafter, .W 1,1 stands for the 
Banach space of all functions .u ∈ L1 with respect to the norm 

. u W 1,1 u L1 u L1 2 .

Given a real Banach space. X , we will denote by.C([0, T ]; X) the space of all continuous 
functions from.[0, T ] into. X . We recall that a function.u : [0, T ] → X is said to be Lebesgue 
measurable if there exists a sequence.{uk}k∈N of step functions (i.e., .uk = nk

j=1 a
k
jχAk

j
for 

a finite number .nk of Borel subsets .Ak
j ⊂ [0, T ] and with .akj ∈ X ) converging to . u almost 

everywhere with respect to the Lebesgue measure in .[0, T ]. 
Then for.1 ≤ p < ∞,.L p(0, T ; X) is the space of all measurable functions. u : [0, T ] →

X such that 

. u L p(0,T ;X) =
T

0
u(t) p

X dt

1
p

< ∞,

while .L∞(0, T ; X) is the space of measurable functions such that 

. u L∞(0,T ;X) = ess sup
t∈[0,T ]

u(t) X < ∞.

A full presentation of this topic can be found in [ 23].
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Let us recall that, for .1 ≤ p ≤ ∞, .L p(0, T ; X) is a Banach space. Moreover, if . X
is separable and .1 ≤ p < ∞, then the dual space of .L p(0, T ; X) can be identified with 
.L p (0, T ; X ). 

4.1.2 Basic Facts on the Lebesgue and Sobolev Spaces with Variable 
Exponents 

Let .p : → [p−, p+] ⊂ (1, +∞), with .p± = const, be a given measurable function. 
Denote by .L p(·) the set of all measurable functions . f (x) on . such that . | f (x)|p(x)
dx < ∞. Then.L p(·) is a reflexive separable Banach space with respect to the Luxemburg 
norm 

. f L p(·) = inf λ > 0 : f (x)

λ

p(x)

dx ≤ 1 .

Moreover, in this case the set.C∞
0 is dense in.L p(·) . The relation between the modular 

. | f (x)|p(x) dx and the norm follows from the definition 

. min f p−
L p(·) , f p+

L p(·)

≤ | f (x)|p(x) dx ≤ max f p−
L p(·) , f p+

L p(·) .

If.p(·) = const > 1 then these inequalities transform into equalities. The following estimates 
are also well-known (see, for instance, [ 24, 46]): if . f ∈ L p(·) then 

. f L p− ≤ (1 + | |)1/p−
f L p(·) , (4.6) 

. f L p(·) ≤ (1 + | |)1/(p+) f L p+ , (4.7) 

. (p+) = p+

p+ − 1
, ∀ f ∈ L p+

f p−
L p(·) − 1 ≤ | f (x)|p(x) dx f p+

L p(·) + 1, ∀ f ∈ L p(·) (4.8) 

The next result can be viewed as an analogous of the Hölder inequality in Lebesgue 
spaces with variable exponents: If . f ∈ L p(·) and .g ∈ L p (·) with 

.p(x) ∈ [p−, p+] ⊂ (1, +∞), p (x) = p(x)

p(x) − 1
,
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then . f g ∈ L1 and 

. ( f , g) dx ≤ 1

p− + 1

(p )−
f L p(·) g L p (·)

≤ 2 f L p(·) g L p (·) . (4.9) 

Let.p1(·) and.p2(·) be measurable on. functions such that. pi (x) ∈ [p−
i , p+

i ] ⊂ (1, +∞)

a.e. in. . In case.p1(x) ≥ p2(x) a.e. in. , the inclusion.L p1(·) ⊂ L p2(·) is continuous 
and 

. u L p2(·) ≤ C u L p1(·) , ∀ u ∈ L p1(·) (4.10) 

with a constant .C = C(| |, p±
1 , p±

2 ). 
The variable Sobolev space .W 1,p(·) is defined as the set of functions 

. W 1,p(·) := u ∈ W 1,1 ∩ L p(·) : |∇u(x)|p(x) ∈ L1

equipped with the norm 

. u W 1,p(·) u L p(·) u L p(·) ;RN ). (4.11) 

Unlike classical Sobolev spaces, smooth functions are not necessarily dense in .W 1,p(·) . 
Therefore, we define .H1,p(·) as the closure of the set .C∞( in .W 1,p(·) -norm. 

Let .Clog( be the set of functions continuous on . with the logarithmic modulus of 
continuity, i.e. 

. |p(x1) − p(x2)| ≤ ω(|x1 − x2|),
where .ω ≥ 0 satisfies the condition: .lim supτ→0+ ω(τ) log

1

τ
= C < +∞, .C = const. It  

is well-known that for .p ∈ Clog( the set .C∞( is dense in .W 1,p(·) and the space 
.W 1,p(·) coincides with the closure of.C∞( with respect to the norm (4.11), i.e. in this 
case.W 1,p(·) = H1,p(·) . In particular, if there exists.δ ∈ (0, 1] such that.p ∈ C0,δ( , 
then the set .C∞( is dense in .W 1,p(·) . Indeed, since 

. lim
t→0

|t |δ log( 1

|t | ) = 0 with δ ∈ (0, 1],

it follows from the Hölder continuity of .p(·) that 

. |p(x) − p(y)| ≤ C |x − y|δ ≤ ω(|x − y|) sup
x,y∈

|x − y|δ log(|x − y|−1)

≤ C ω(|x − y|), ∀ x, y ∈

with .ω(t) = C/ log(|t |−1).
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Let .p(·), q(·) ∈ C( be such that .p(x) ∈ [p−, p+] ⊂ (1, 2] and .q(x) <
2p(x)
2−p(x) in . . 

Then the embedding.W 1,p(·) ⊂ Lq(·) is continuous and compact. Moreover, accord-
ing to (4.10), we have a continuous embedding .W 1,p(·) ⊂ W 1,p−

. 
For a more detailed presentation of the theory of these spaces, we refer to the mono-

graph [ 24]. 

4.1.3 On the Dual Sobolev Space . H−1

Let .H1
0 be the standard Sobolev space, i.e. .H1

0 is the closure of .C1
0 with respect 

to the norm 

. u H1
0

= |∇u(x)|2 dx
1
2

.

It is well-known that for any.u∗ ∈ H−1 there can be found a vector-function. g = [g1, g2]
in .L2 ;R2) such that 

. u∗, u H−1 ;H1
0

= (g, ∇u)R2 dx = g1
∂u

∂x1
+ g2

∂u

∂x2
dx .

Therefore, it is clear now that 

. u∗
H−1 ≤ g21(x) + g22(x) dx . (4.12) 

On the other hand, due to the Lax-Milgram Theorem, the Dirichlet boundary value problem 

. − y = u∗ in y = 0 on (4.13) 

has a unique solution .y = (− −1u∗ ∈ H1
0 for each .u∗ ∈ H−1 . Moreover, in view 

of the energy equality 

. (∇ y, ∇ y)R2 dx y 2
L2 ;R2)

y 2
H1
0

= u∗, y H−1 ;H1
0

, (4.14) 

which holds true for the weak solution of Dirichlet problems (4.13), we can deduce the 
following a priori estimate for the weak solution of Dirichlet problem (4.13) 

. y H1
0

(− −1u∗
H1
0

(− −1u∗
L2 ;R2) u∗

H−1 .

Combining this result with (4.12), we get
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. (− −1u∗
L2 ;R2) u∗

H−1 ≤ g21(x) + g22(x) dx

by (4.14)= |∇ y|2
R2 dx y L2 ;R2)

y H1
0

(− −1u∗
L2 ;R2).

Hence, the norm in .H−1 can be defined as follows 

. u∗
H−1 (− −1u∗

L2 ;R2). (4.15) 

4.1.4 Level Sets, Directional Gradients, and Texture Indexes 

Let .u : → R be a given function. Then for each .λ ∈ R we can define the upper level set 
of . u as follows 

. Zλ(u) = {u ≥ λ} := {x ∈ : u(x) ≥ λ} .

In order to describe this set, we assume that .u ∈ W 1,1 . It was proven in [ 3] that if 
.u ∈ W 1,1 then its upper level sets .Zλ(u) are sets of finite perimeter. So, the boundaries 
of level sets can be described by a countable family of Jordan curves with finite length, i.e., 
by continuous maps from the circle into the plane.R2 without crossing points. As a result, at 
almost all points of almost all level sets of.u ∈ W 1,1 we may define a unit normal vector 
.θ(x). This vector field formally satisfies the following relations 

. (θ, ∇u) = |∇u| and |θ | ≤ 1 a.e. in

In the sequel, we will refer to . θ as the vector field of unit normals to the topographic map 
of a function . u. 

If .θ ∈ L∞
R
2) is a vector field of unit normals to the topographic map of some 

function .u(·), then for any function .v ∈ W 1,1 we can define the so-called directional 
gradient of . v following the rule (see [ 8, 9]) 

.Rη∇v := ∇v − η2 (θ, ∇v) θ, (4.16) 

where.η ∈ (0, 1) is a given threshold. Since, for each function.v ∈ W 1,1 , the expression 
.Rη∇v can be reduced to .(1 − η2)∇v in those places of . where .∇v is collinear to the unit 
normal . θ , and  to .∇v if .∇v is orthogonal to . θ , we have the following estimate 

. (1 − η2)|∇v| ≤ |Rη∇v| ≤ |∇v| in

In what follows, with each function .u ∈ W 1,1 , we associate the so-called texture 
index .p(|∇u|) using the rule (see [ 18, 20, 22] for comparison)
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.p(s) = 1 + δ + a2(1 − δ)

a2 + s2
, ∀ s ∈ [0, +∞), (4.17) 

where .0 < δ 1 is a given threshold. It is clear now that 

. p(|∇u|) ∈ [p−, p+] ⊂ (1, 2] a. e. in with p− = 1 + δ and p+ = 2

for each .u ∈ W 1,1 . 

4.2 Statement of the Problem 

In this section we present a novel variational problem for the denoising and contrast enhance-
ment of non-smooth RGB images which can be viewed as an improved version of the 
variational model that has been recently proposed in [ 17]. 

Let . f = [ f1, f2, f3]t ∈ L2 ;R3) be an original color image. Let . θ = θ( fi ) =
[θ1, θ2]t ∈ L∞

R
2) be a vector field of unit normals to the topographic map of the 

spectral channel . fi , 

. |θ(x)| ≤ 1 and (θ(x), ∇ fi (x)) = |∇ fi (x)| a.e. in

In fact, this vector field can be defined by the rule.θ(x) = ∇U (t,x)
|∇U (t,x)| with.t > 0 small enough, 

where .U (t, x) is a solution of the following initial-boundary value problem 

.
∂U

∂t
= div

∇U

|∇U | + κ
, t ∈ (0, +∞), x ∈ (4.18) 

.U (0, x) = fi (x), x ∈ (4.19) 

.
∂U (t, x)

∂ν
= 0, t ∈ (0, +∞), x ∈ (4.20) 

with a relaxed version of the .1D-Laplace operator in the principle part of (4.18). Here, 
.κ > 0 is a sufficiently small positive value. 

Let .η ∈ (0, 1) be a given threshold. We define the linear operator .Rη : R2 → R
2 as 

follows 
.Rη∇v := ∇v − η2 (θ, ∇v) θ, ∀ v ∈ W 1,1 (4.21) 

Since .Rη∇v reduces to .(1 − η2)∇v in those regions where the gradient .∇v is co-linear to 
. θ , and  to  .∇v, where  .∇v is orthogonal to . θ , this operator does not enforce gradients in the 
direction . θ . 

Remark 4.1 In the sequel, in order to reduce the number of parameters in the proposed 
model, we will set .δ = κ in (4.18) and (4.17), and .η = 1 − κ in (4.16). 

We also introduce the following set
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. i =
⎧⎨
⎩I ∈ H1,p(|∇ I |) ∩ L∞

γi,0 ≤ I (x) ≤ γi,1 a.e. in
γi,0 = infx∈ fi (x),
γi,1 = supx∈ fi (x),

⎫⎬
⎭

where .p(·) is given by (4.17), and .H1,p(|∇ I |) is the variable Sobolev space that can be 
defined as follows 

.H1,p(|∇ I |) := cl
W1,p(|∇ I |) C∞

0 (R2). (4.22) 

Further, for a given gray-scale image .I ∈ L2 , we define its average local contrast 
measure .D(I ) as follows (for comparison, we refer to [ 40]) 

. D(I ) = W (x, y) κ2 + |I (x) − I (y)|2 dxdy,

where .κ > 0 is the same parameter as in (4.18), and .W ∈ L2 × is a symmetric non-
negative kernel such that 

. W (x, y) dx = 1, ∀ y ∈
A typical example of this function is the Gaussian kernel, 

. W (x, y) = 1√
2πσ

exp −|x − y|2
2σ 2 , σ > 0.

As a result, the proposed variational approach for the contrast enhancement and denoising 
of color images can be stated as follows: 

For each spectral channel . fi , .(i = 1, 2, 3), of a given image. f = [ f1, f2, f3]t ∈ L2 ;R3), 
we generate a new one . f 0i ∈ L2 as a solution of the following constrained minimization 
problem 

.Ji ( f
0
i ) = inf

v∈ i
Ji (v), (4.23) 

where 

. Ji (v) = |Rη∇v(x)|p(|∇v|) dx + μ

2
v − fi

2
H−1

+ λ

4
D(v) − cD( fi )

2
. (4.24) 

Here, .λ > 0 and .μ ∈ (0, 1) are tuning parameters. The parameter . λ manages the trade-off 

between the fidelity term .μ2 v − fi
2
H−1 and the contrast term .λ4 D(v) − cD( fi )

2. As  

for the multiplier.c > 0, we always suppose that.c > 1 and it provides a control of the contrast 
level expected for the result. 

Before proceeding further, we provide some qualitative analysis of the variational problem 
(4.23)–(4.24). To begin with, we notice that, for each feasible solution.v ∈ , the following 
two-sides estimate
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.p+ = 2 ≥ p(|∇v|) > 1 + δ =: p−, for a.a. x ∈ (4.25) 

holds true with .0 < δ 1. Moreover, since .η ∈ (0, 1) and .η 0, we see that 

.(1 − η2)|∇v| ≤ |Rη∇v| ≤ |∇v| in (4.26) 

. |Rη∇v(x)|p(|∇v|) dx ≥ (1 − η2)p(|∇v|)|∇v(x)|p(|∇v|) dx

≥ (1 − η2)2 |∇v(x)|p(|∇v|) dx, (4.27) 

∀ v ∈ W 1, p(|∇v|) 

As a result, .∀ v ∈ i , we have  

. v p−
W 1,p(|∇v|) = v L p(|∇v|) v L p(|∇v|) ;R2)

p−

≤ C v p−
L p(|∇v|) v p−

L p(|∇v|) ;R2)

by (4.8)≤ C |v(x)|p(|∇v|) dx + |∇v(x)|p(|∇v|) dx + 2

≤ C | |γ 2
i,1 + |∇v(x)|p(|∇v|) dx + 2

by (4.27)≤ C | |γ 2
i,1 + 2 + 1

(1 − η2)2
|Rη∇v(x)|p(|∇v|) dx

≤ C | |γ 2
i,1 + 2 + 1

(1 − η2)2
Ji (v) . (4.28) 

Thus, the first term in the cost functional (4.24) can be considered as a regularizing term. 
As for the second term in (4.24), we make use of the following observation. 

Remark 4.2 The model (4.24) is aimed not only to the contrast enhancement, but also to 
remove the additive noise in the so-called structured images, i.e. in images where the portion 
of high oscillatory edges is rather significant. In mostly cases the satellite images with crop 
fields typically contain many high oscillatory edges (boundaries of the crop locations). 
Moreover, “the portion of noise” in such images can be different from channel to channel. 
Because of this an important question is to separate pure noise from high oscillatory edges 
in each spectral channel. To handle this problem, Y. Meyer [ 37] suggested to replace the 
standard .L2-fidelity term .μ2 v − fi 2

L2 , which is a typical component in the standard 
denoising models, by a weaker norm. As a plausible option of such weakening, Lieu and 
Vese [ 36] (see also Schönlieb [ 43]) have proposed to involve .H−1 -norm instead of 
. L2 . Thus, from this point of view it is plausible to interpret the second term in (4.24) 
as a fidelity term.
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Before we move on to the existence issues, we make use of the following result concerning 
the lower semicontinuity property of the modular. | f (x)|p(x) dx with respect to the weak 
convergence in.L pk (·) . The proof of this assertion has been mainly inspired by the elegant 
proof of Lemma 1 in [ 13] (see also [  47, Lemma 13.3] for comparison). 

Proposition 4.3 Let .{pk}k∈N ⊂ [p−, p+] be a given sequence such that 

.pk(x) → p(x) almost everywhere in as k → ∞. (4.29) 

Let . vk ∈ W 1,pk (·)
k∈N be a sequence such that 

.∇vk ∇v weakly in L1 ;R2), (4.30) 

. |∇vk(·)|pk (·)
L1

≤ C (4.31) 

for some positive constant C not depending on k, 

and let .Rη : R2 → R
2 be the operator defined in (4.21) with some .θ ∈ L∞

R
2). Then 

.∇v ∈ L p(·) ;R2) and 

. lim inf
k→∞ |Rη∇vk(x)|pk (x) dx ≥ |Rη∇v(x)|p(x) dx . (4.32) 

Proof By Young’s inequality we have for .ξ, ζ ∈ R
2 and .1 < p < ∞, 

.(ξ, ζ ) ≤ |ξ ||ζ | ≤ |ξ |p + |ζ |p
p pp /p

,
1

p
+ 1

p
= 1. (4.33) 

If now. ζ is a function in.L∞ ;R2) and we make.p = pk in (4.33) and use the assumption 
.p− ≤ pk(x) ≤ p+ for all .k ∈ N, then we derive 

. (Rη∇vk, ζ ) − |ζ |pk (x)
pk(x)pk(x)

pk (x)/pk (x)
dx ≤ |Rη∇vk |pk (x) dx . (4.34) 

Using (4.21) and assumptions (4.29) and (4.30), we can pass to the limit in (4.34) as.k → ∞. 
As a result, we have 

. (Rη∇v, ζ ) − |ζ |p (x)

p (x)p(x)p (x)/p(x)
dx

≤ lim inf
k→∞ |Rη∇vk |pk (x) dx := L. (4.35) 

Then we consider the following function:
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. ζ := Rη∇v

|Rη∇v| p(x)|Rη∇v|
1

p (x)−1
n , with |Rη∇v|n := max |Rη∇v|, n , n > 0.

Inserting this function . ζ into (4.35), we get 

. |Rη∇v|p(x)|Rη∇v|
1

p (x)−1
n − |Rη∇v|

p (x)
p (x)−1
n

p(x)

p (x)
dx ≤ L.

This implies 

. |Rη∇v|
1

p (x)−1
+1

n dx ≤ L.

Since .
1

p (x)−1 + 1 = p(x), it follows that 

. |Rη∇v|p(x)n dx ≤ L. (4.36) 

To conclude the proof, it remains to notice that the announced inequality (4.32) follows by 
letting.n → ∞ in (4.36). As for the inclusion.∇v ∈ L p(·) ;R2) it is a direct consequence 
of assumption (4.31) and estimate (4.26). 

Before proceeding to the existence issues, in the next section we provide a formal analysis 
of the optimality system for the problem (4.23)–(4.24). 

4.3 Optimality Conditions 

Let . f 0i ∈ i , with .i = 1, 2, 3, be a point of local minimum in the problem (4.23)–(4.24), 
i.e., there exists a positive value .τ > 0 such that 

.Ji ( f
0
i ) − Ji (v) ≤ 0, ∀ v ∈ s.t. v − f 0i W 1,p− < τ. (4.37) 

For simplicity, we assume that the two-side inequality 

. γi,1 < f 0i (x) < γi,2

holds true almost everywhere in . . Then condition (4.37) can be rewritten as follows: for 
any smooth function .ϕ ∈ C∞( , the inequality 

. Ji ( f
0
i ) − Ji ( f

0
i + σϕ) ≤ 0 for σ small enough

holds true. Hence, the scalar function
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. ψ(σ) := Ji ( f
0
i + σϕ) = |Rη ∇ f 0i (x) + σ∇ϕ(x) |p(|∇ f 0i +σ∇ϕ|) dx

+ μ

2
f 0i + σϕ − fi

2
H−1 + λ

4
D( f 0i + σϕ) − cD( fi )

2

has a minimum at .σ = 0. 
Thus, to characterize the given feasible solution. f 0i ∈ i to optimization problem (4.23)– 

(4.24), we make use of the Ferma’s Theorem. To do so, we show that the objective functional 
.Ji (v) is Gâteaux differentiable at .v = f 0i , that is, there exists a linear bounded functional 

. DG Ji ( f
0
i ) ∈ H1,p[∇ f 0i ] = L H1,p[∇ f 0i ]

R

such that 

. Ji f 0i + σh = Ji f 0i + σDG Ji ( f
0
i )[h] + ri (h, σ ),

∀ h ∈ H1,p[∇ f 0i ]

where .|ri (h, σ )| = o(|σ |) as .σ → 0. Then the condition .0 ∈ Argminψ(σ) can be inter-
preted as 

. DG Ji ( f
0
i )[ϕ] = 0, ∀ ϕ ∈ C∞(

Keeping in mind the fact that the set of feasible solutions . i to the problem (4.23)– 
(4.24) has an empty topological interior, we begin with the following auxiliary results, 
where.F (u)[h] stands for the directional derivative of a functional .F : X → R at the point 
.u ∈ X along a vector .h ∈ X , i.e., 

. F (u)[h] = lim
σ→0

F(u + σh) − F(u)

σ
.

Proposition 4.4 Let . f ∈ L2 be a given distribution and let 

. F1(u) = 1

2
u − f 2

H−1 , ∀ u ∈ L2

Then 
. F1(u)[h] = (− −1(u − f ), h L2 , ∀ h ∈ L2

Proof The announced result immediately follows from the definition of the directional 
derivative and the following chain of transformations 

.F1(u + σh) − F1(u)
by (4.15)= 1

2
(− −1(u + σh − f ) L2 ;R2)

− 1

2
(− −1(u − f ) L2 ;R2)
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= σ ∇(− −1(u − f ), ∇(− −1h L2 ;R2) + σ 2 
1 

2 
(− −1h 2 L2 ;R2) 

= −σ div ∇(− −1(u − f ) (− −1h dx  + σ 2 
1 

2 
h 2 H−1 

= σ (− − −1(u − f )(− −1h dx  + σ 2 
1 

2 
h 2 H−1 

= σ (− −1(u − f ), h L2 + o(σ ), ∀ u ∈ L2 

Proposition 4.5 Let .p : → [p−, p+] ⊂ (1, 2], with .p± = const, be a given exponent 
and let 

. F2(u) = |∇u(x)|p(x) dx, ∀ u ∈ W 1,p(·)

Then, for each .u ∈ W 1,p(·) , we have 

.F2(u)[h] = p(x) |∇u(x)|p(x)−2∇u(x), ∇v(x) dx, (4.38) 

∀ h ∈ W 1, p(·) 

Proof Let .u, h ∈ W 1,p(·) be given functions. We notice that 

. 
|∇u + σ∇h|p − |∇u|p

σ
→ p |∇u|p−2∇u, ∇h

as .σ → 0 almost everywhere in . . Furthermore, by convexity, 

. |ξ |p − |η|p ≤ 2p |ξ |p−1 + |η|p−1 |ξ − η|,

we have 

. 
1

σ
|∇u(x) + σ∇h(x)|p(x) − |∇u(x)|p(x)

≤ 2p(x) |∇u(x) + σ∇h(x)|p(x)−1 + |∇u(x)|p(x)−1 |∇h(x)|
≤ const |∇u(x)|p(x)−1 + |∇h(x)|p(x)−1 |∇h(x)|. (4.39) 

Taking into account that 

. |∇u(x)|p(x)−1|∇v(x)| dx ≤ 2 u(x)|p(x)−1
L p (·) h(x) L p(·)

≤ 2 u(x)|p(x)−1
L p (·) h(x) L p(·) R2),

and 

. |∇h(x)|p(x) dx by (4.8)
h 2

L p(·) R2)
+ 1,
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we see that the right hand side of inequality (4.39) is an .L1 -function. Therefore, 

. lim
σ→0

F2(u + σh) − F2(u)

σ
= lim

σ→0

|∇u(x) + σ∇h(x)|p − |∇u(x)|p
σ

dx

= p(x) |∇u(x)|p(x)−2∇u(x), ∇h(x) dx

by the Lebesgue dominated convergence theorem. From this the representation (4.38) fol-
lows. 

Proposition 4.6 Let .p : → [p−, p+] ⊂ (1, 2], with .p± = const, be a given exponent 
and let 

. F2(u) = |Rη∇u(x)|p(x) dx, ∀ u ∈ W 1,p(·)

where the linear operator .Rη : R2 → R
2 is defined by the rule (4.21). Then, for each . u ∈

W 1,p(·) , we have 

. F2(u)[h] = p(x) |Rη∇u(x)|p(x)−2Rη∇u(x), ∇h(x) dx

− η2 p(x) |Rη∇u(x)|p(x)−2Rη∇u(x), θ(x) (θ(x), ∇h(x)) dx,

∀ h ∈ W 1,p(·) (4.40) 

Proof The representation (4.40) immediately follows from definition of the directional 
derivative and from Proposition 4.5. 

Proposition 4.7 Let .u ∈ i be a given feasible solution, let 

. p[∇u] := 1 + δ + a2(1 − δ)

a2 + |∇u|2 ,

and let the functional .F3 : W 1,1+δ → R be defined as follows, 

. F3(u) = |Rη∇v(x)|p[∇u] dx, ∀ u ∈ W 1,1+δ

where .v ∈ W 1,p[∇u] is a given function. Then, for each element .v ∈ W 1,p[∇u] and 
for all .h ∈ W 1,1+δ , we have 

.F3(u)[h] = − |Rη∇v(x)|p[∇u] × 2a2(1 − δ) log |Rη∇v(x)|
a2 + |∇u|2 2 (∇u, ∇h) dx . (4.41)
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Proof The representation (4.41) immediately follows from definition of the directional 
derivative. 

Proposition 4.8 Let .u ∈ be a feasible solution, and let 

. F4(u) = λ

4
[D(u) − cD( fi )]

2 ,

where . fi ∈ L2 is a given spectral channel, .c = const > 1, and  

. D(u) = W (x, y) κ2 + |u(x) − u(y)|2 dxdy.

Then the directional derivative of .F4 : L2 → R at the given point . u along a vector 
.h ∈ L2 takes the form 

. F4(u)[h] = λ D(u) − cD(I f )

×
⎛
⎝ W (x, y)

u(x) − u(y)

κ2 + |u(x) − u(y)|2
dy

⎞
⎠ h(x) dx . (4.42) 

Proof The representation (4.42) immediately follows from definition of the directional 
derivative and the following chain of transformations 

. D(u + σh) − D(u)

= W (x, y) κ2 + |u(x) − u(y) + σ(h(x) − h(y))|2

− κ2 + |u(x) − u(y)|2 dxdy

= W (x, y) |u(x) − u(y) + σ(h(x) − h(y))|2 − |u(x) − u(y)|2

× 1√
κ2+|u(x)−u(y)+σ(h(x)−h(y))|2+

√
κ2+|u(x)−u(y)|2 dxdy

= σ [W (x, y) + W (y, x)] u(x)−u(y)√
κ2+|u(x)−u(y)|2 dy h(x) dy

+o(σ 2).

We are now able to show that the objective functional .Ji (v) is Gâteaux differentiable at 
.v = f 0i . With that in mind, we utilize the representation (4.24). As a result, we see that
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. Ji ( f
0
i )[ϕ] = p(|∇ f 0i |) |Rη∇ f 0i (x)|p(|∇ f 0i |)−2Rη∇ f 0i (x), ∇ϕ(x) dx

− η2 p(|∇ f 0i |) |Rη∇ f 0i (x)|p(|∇ f 0i |)−2Rη∇ f 0i (x), θ(x) (θ(x), ∇ϕ(x)) dx

− |Rη∇ f 0i (x)|p(|∇ f 0i |) 2a
2(1 − δ) log |Rη∇ f 0i (x)|

a2 + |∇ f 0i (x))|2 2 ∇ f 0i , ∇ϕ dx

+ λ D( f 0i ) − cD( fi )

×
⎛
⎝ W (x, y)

f 0i (x) − f 0i (y)

κ2 + f 0i (x) − f 0i (y)
2
dy

⎞
⎠ ϕ(x) dx

+ (− −1( f 0i − fi ) ϕ(x) dx = 0, ∀ ϕ ∈ C∞( (4.43) 

Thus, .Ji ( f
0
i ) : C∞( → R is a linear functional. 

Let us show that each term in (4.43) can be extended by continuity to the entire Sobolev 
space.H1,p(|∇ f 0i |) . To this end, it is enough to establish the existence of a constant. M > 0
such that 

. Ji ( f
0
i )[ϕ] ≤ M ϕ

W 1,p(|∇ f 0i |) , ∀ ϕ ∈ C∞( (4.44) 

Indeed, rewriting (4.43) in the  form  

. Ji ( f
0
i )[ϕ] = S1 + S2 + S3 + S4 + S5,

where the one-to-one correspondence to (4.43) is preserved, we see that 

. |S1 p L∞ |Rη∇ f 0i |p(|∇ f 0i |)−2Rη∇ f 0i , ∇ϕ dx

by (4.9)≤ 2p+ Rη∇ f 0i |p(|∇ f 0i |)−2Rη∇ f 0i L p (|∇ f 0i |) ;R2)
ϕ

L p(|∇ I0 |) ;R2)

by (4.8)≤ 2p+ 1 + |Rη∇ f 0i |p(|∇ f 0i |) dx
1/(p )−

ϕ
W 1,p(|∇ f 0i |) ,

where .p+ = 2, .(p )− = p+/(p+ − 1) = 2, and  

. |Rη∇ f 0i |p(|∇ f 0i |) dx
by (4.8)≤ 1 f 0i

p+

L p(|∇ f 0i |) ;R2)

≤ 1 f 0i
2

W 1,p(|∇ f 0i |) < +∞

by the assumption . f 0i ∈ i . Thus, there exists a constant .M1 > 0 such that 

.|S1| ≤ M1 ϕ
W 1,p(|∇ f 0i |) . (4.45)
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Arguing in a similar manner, it can be shown that a constant .M2 > 0 exists such that 

. |S2| ≤ M2 ϕ
W 1,p(|∇ f 0i |) .

As for the third term in (4.43), we notice that 

. |∇ f 0i |2 | log |∇ f 0i | |
a2 + |∇ f 0i |2 2 ≤ | log |∇ f 0i | |

a2 + |∇ f 0i |2 < +∞ as |∇ f 0i | → ∞

by the L’Hôpital’s rule. Using similar arguments, we see that 

. |∇ f 0i |2 | log |∇ f 0i | |
a2 + |∇ f 0i |2 2 ≤ 1

a4
|∇ f 0i |2| log |∇ f 0i | | < +∞ as |∇ f 0i | → 0.

Thus, we can deduce the existence a constant .M2 > 0 such that 

. |S2| ≤ 2a2(1 − δ) |Rη∇ f 0i |2 | log |Rη∇ f 0i | |
a2 + |∇ f 0i |2 2

L∞

× |Rη∇ f 0i |p(|∇ f 0i |)−2Rη∇ f 0i , ∇ϕ dx

≤ M3 ϕ
W 1,p(|∇ f 0i |) . (4.46) 

It remains to notice that in view of the obvious inclusions 

. W (·, y) f 0i (·) − f 0i (y)

κ2 + f 0i (·) − f 0i (y)
2
dy ∈ L2

(− −1( f 0i − fi ) ∈ L2

the existence of constants .M3 and .M4 such that 

.|S j | ≤ Mj ϕ L2 ≤ Mj ϕ
W 1,p(|∇ f 0i |) , j = 4, 5, (4.47) 

immediately follows from (4.43) and the Cauchy inequality. 
Utilizing the estimates (4.45), (4.46), and (4.47), we finally arrive at the inequality (4.44) 

with .M = max{M1, M2, M3, M4, M5}. Thus, the mapping .ϕ Ji ( f
0
i )[ϕ] can be defined 

for all .ϕ ∈ H1,p(|∇ f 0i |) using the density of .C∞( in .H1,p(|∇ f 0i |) (see (4.22)) and 
the standard rule 

. DG Ji ( f
0
i )[ϕ] = lim

k→∞ DG Ji ( f
0
i )[ϕk],

where .{ϕk}k∈N ⊂ C∞
c (R2) and .ϕk → ϕ strongly in .H1,p(|∇ f 0i |) . Hence, the objective 

functional .Ji (v) is Gâteaux differentiable at .v = f 0i , and
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. DG Ji ( f
0
i )[h] = J ( f 0i )[h], ∀ h ∈ H1,p(|∇ f 0i |)

In order to get the final relations for optimality conditions, it remains to observe that 
identity (4.43) implies the following equalities in the sense of distributions 

. − div p(x)|Rη∇ f 0i |p(|∇ f 0i |)−2Rη∇ f 0i

+η2 div p(x) |Rη∇ f 0i |p(|∇ f 0i |)−2Rη∇ f 0i , θ θ

+2a2(1 − δ) div |Rη∇ f 0i |p(|∇ f 0i |) log |Rη∇ f 0i |
a2 + |∇ f 0i |2 2∇ f 0i

+λ D( f 0i ) − cD( fi ) W (x, y)
f 0i (x) − f 0i (y)

κ2 + f 0i (x) − f 0i (y)
2
dy

+μ(− −1( f 0i − fi ) = 0, in (4.48) 

. |∇ f 0i |p(|∇ f 0i |)−2∇ f 0i , ν = 0 on (4.49) 

where . ν denotes the unit outward normal to the boundary . . 

4.4 Existence Issues and Regularization of the Original 
Optimization Problem 

The main question we are going to discuss in this section is to find out whether the problem 
(4.23)–(4.24) admits at least one solution. With that in mind, we make use of the so-called 
indirect approach [ 16, 28] (for comparison, we refer to the recent publication [ 19]). The 
main idea of this approach is to show that the original minimization problem (4.23)–(4.24) 
can be efficiently approximated by a special family of optimization problems of a similar 
structure but with the spatial regularization of the exponent .p(|∇u|) in the form 

.pε(|∇u|) = 1 + δ + a2(1 − δ)

a2 + |(∇Kε ∗ u)(x)|2 , (4.50) 

where .(∇Kε ∗ u) stands for the Steklov smoothing operator. 
Let .K : R2 → R be a positive compactly supported function such that 

. K ∈ C∞
0 (R2),

R2
K (x) dx = 1, and K (x) = K (−x), ∀ x ∈ R

2.

For any.ε > 0, we set.Kε(x) = ε−2K x
ε
. Then the following properties of the convolution 

.uε(x) := (Kε ∗ u)(x) = Kε(x − y)u(y) dy, ∀ u ∈ L1
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are well-known [ 25]: 

(i) .uε ∈ C∞ for all .ε > 0; 
(ii) .uε(x) → u(x) almost everywhere in . ; 
(iii) If .u ∈ L p with .1 ≤ p < ∞, then .uε → u in .L p . 

We introduce the following family of approximating problems to the problem (4.23)– 
(4.24): 

.Ji,ε( f
0
i,ε) = inf

v∈ i,ε
Ji,ε(v), i = 1, 2, 3, (4.51) 

where . ε is a small parameter which varies within a strictly decreasing sequence of positive 
numbers converging to . 0, 

. Ji,ε(v) = |Rη∇v(x)|pε(|∇v|) dx + μ

2
v − fi

2
H−1 + λ

4
[D(v) − cD( fi )]

2 ,

. i,ε =

⎧⎪⎪⎨
⎪⎪⎩
I (x)

I ∈ H1,pε(|∇ I |) ∩ L∞
γi,0 ≤ I (x) ≤ γi,1 a.e. in

γi,0 = infx∈ fi (x),
γi,1 = supx∈ fi (x),

⎫⎪⎪⎬
⎪⎪⎭

(4.52) 

and .pε(|∇v|) is defined in (4.50). 
Before proceeding further, we make use of a few technical results. 

Lemma 4.9 [17, Lemma 1] Let .{vk}k∈N ⊂ L∞ be a sequence of measurable functions 
such that .vk(x) → v(x) weakly-. ∗ in .L∞ for some .v ∈ L∞ . Let  

. pk = 1 + δ + a2(1 − δ)

a2 + |(∇Kε ∗ vk)(x)|2 k∈N

be the corresponding sequence of exponents. Then 

. pk,ε → pε = 1 + δ + a2(1 − δ)

a2 + |(∇Kε ∗ u)|2 uni f ormly in as k → ∞,

1 + δ + a2(1 − δ)

a2 Kε
2
C1( − supk∈N vk 2

L1

≤ pk,ε(x) ≤ 2, ∀ k ∈ N,

where 

. Kε C1( − = max
z=x−y

x∈ y∈
|Kε(z)| + |∇Kε(z)| .
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Lemma 4.10 [40, Proposition B.2] The mapping .v λ
4 [D(v) − cD( fi )]2 is continuous 

from .L2 endowed with thee strong topology to . R with pointwise convergence. 

Proposition 4.11 [17] Let . pk,ε k∈N be a sequence of exponents that satisfies all precon-
ditions of Lemma 4.9. If a bounded sequence 

. fk ∈ L pk,ε(·)
k∈N

converges weakly in .L1+δ to . f , then . f ∈ L pε(·) , . fk f in variable .L pk,ε(·) . 

We are now in a position to prove the existence of minimizers for the proposed approxi-
mating problem (4.51)–(4.52). 

Theorem 4.12 Let . be an open bounded and connected sub-domain of .R2 with a Lips-
chitz boundary. Let . fi ∈ L2 be a given spectral channel of an image arguably contam-
inated by additive Gaussian noise with zero mean. Then, for each .ε > 0, the minimization 
problem (4.51)–(4.52) admits at least one solution . f 0i,ε in .W 1,p− ∩ L∞ such that 

.I 0i,ε ∈ H1,p[∇ f 0i,ε] . 

Proof To begin with, let us notice that, for each.ε > 0, the indicated minimization problem 
is consistent, i.e. .Ji,ε(u) < +∞ for any .u ∈ i,ε. Since  . i,ε = ∅ and . 0 ≤ Ji,ε(v) < +∞
for all .v ∈ i,ε, it follows that there exists a non-negative value .ζε ≥ 0 such that . ζε =
inf

v∈ i,ε
Ji,ε(v). Let . vε

k k∈N be a minimizing sequence for (4.51)–(4.52), i.e. 

. vε
k k∈N ⊂ i,ε and lim

k→∞ Ji,ε vε
k = ζε.

Without lost of generality, we can suppose that .Ji,ε vε
k ≤ ζε + 1 for all .k ∈ N. From this 

and estimate (4.28), we deduce 

. vε
k

p−

W 1,pε(|∇vεk |) ≤ C | |γ 2
i,1 + 2 + ζε + 1

(1 − η2)2
, ∀ k ∈ N, (4.53) 

vε 
k L∞ ≤ γi ,1, ∀ k ∈ N. 

Hence, in view of (4.6) and (4.25), the sequence. vε
k k∈N is bounded in.W 1,p−

. Therefore, 
there exist a subsequence of. vε

k k∈N, still denoted by the same index, and a vector function 

. f 0i,ε ∈ W 1,p−
such that 

.vε
k → f 0i,ε strongly in Lq for all q ∈ [1, (p−)∗) as k → ∞, (4.54) 

.vε
k

∗
f 0i,ε weakly- ∗ in L∞ as k → ∞, (4.55) 

.vε
k f 0i,ε weakly in W 1,p−

as k → ∞, (4.56)
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where, by Sobolev embedding theorem, 

. (p−)∗ = 2p−

2 − p− = 2 + 2δ

1 − δ
> 2.

In view of this and the smoothness of the kernel .Kε, we see that the operator 

. L p− ;R2) v pε(|∇v|) ∈ C(

is compact (see Lemma 4.9). So, (4.55)–(4.56) imply that 

. pε(|∇vε
k |) → pε(|∇ f 0i,ε|) in C(

Passing then to a subsequence if necessary, we have (see Propositions 4.3 and 4.11): 

.vε
k(x) → f 0i,ε(x) a.e. in (4.57) 

vε 
k f 0 i,ε weakly in variableL 

pε(|∇vε 
k |) 

∇vε 
k ∇ f 0 i ,ε weakly in variable L 

pε(|∇vε 
k |) ; R2). 

Hence, . f 0i,ε ∈ W 1,pε(|∇ f 0i,ε |) . 
Further we notice that, for each .k ∈ N, .γi,0 ≤ vε

k(x) ≤ γi,1 a.a. in . . Then it follows 
from (4.57) that the limit function . f 0i,ε(x) is also subjected to the same restriction. Thus, 

. f 0i,ε ∈ W 1,pε(|∇ f 0i,ε |) ∩ L∞ is a feasible solution to minimization problem (4.51)– 
(4.52). 

It remains to show that . f 0i,ε is a minimizer of this problem. Indeed, taking into account 
the properties (4.53), (4.56) and the fact that .θ ∈ L∞

R
2), we see that the sequence 

. Rη∇vε
k := ∇vε

k − η2 θ, ∇vε
k θ ∈ L pε(|∇vε

k |) ;R2)
k∈N

is bounded in variable space .L pε(|∇vε
k |) ;R2) and weakly convergent to .|Rη∇ f 0i,ε| in 

.L p− ;R2). Hence, by Proposition 4.3, the following lower semicontinuous property 

. lim inf
k→∞ |Rη∇vε

k(x)|pε(|∇vε
k |) dx ≥ |Rη∇ f 0i,ε(x)|pε(|∇ f 0i,ε |) dx

holds true. Combining this relation with the following ones 

. lim
k→∞ vε

k − fi
2
H−1 = f 0i,ε − fi

2
H−1 ,

lim
k→∞ D(vε

k) − cD( fi )
2 = D( f 0i,ε) − cD( fi )

2
,

which are direct consequence of Lemma 4.10 and compactness of the embedding. L2 ⊂
H−1 , we finally obtain
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. ζε = inf
v∈ i,ε

Ji,ε(v) = lim
k→∞ Ji,ε vε

k = lim inf
k→∞ Ji,ε vε

k

≥ |Rη∇ f 0i,ε(x)|pε(|∇ f 0i,ε |) dx + μ

2
f 0i,ε − fi

2
H−1

+ λ

4
D( f 0i,ε) − cD( fi )

2 = Ji,ε( f
0
i,ε).

Thus, . f 0i,ε is a minimizer to the problem (4.51)–(4.52). 

Taking this existence result into account, we pass to the study of approximation properties 
of the problems (4.51)–(4.52). Namely, the main question we are going to discuss further is 
whether we can establish the convergence of minima of (4.51)–(4.52) to minima of (4.23)– 
(4.24) as . ε tends to zero. In other words, our aim is to show that some optimal solutions to 
(4.23)–(4.24) can be approximated by the solutions of (4.51)–(4.52). To this end, we make 
use of some results of the variational convergence of minimization problems [ 29– 31, 33, 
34] and begin with some auxiliaries (see also [ 14, 15, 32] for other aspects of this concept). 

Lemma 4.13 Let.{εk}k∈N be a sequence of positive numbers converging to zero as .k → ∞. 
Let 

. {vk}k∈N and pk := 1 + δ + a2(1 − δ)

a2 + (∇Kεk ∗ vk)
2

k∈N
be sequences such that 

.vk ∈ i,εk , ∀ k ∈ N, (4.58) 

.vk(x) → v(x) a.e. in (4.59) 

.vk → v strongly in L2 (4.60) 

.∇vk ∇v weakly in L p− ;R2), (4.61) 

. |∇vk(·)|pk (·)
L1

≤ C (4.62) 

. for some positive constant Cnot depending on k,

pk(x) → p(x) := 1 + δ + a2(1 − δ)

a2 + |∇v|2 a.e. in (4.63) 

Then 
.v ∈ i and Ji (v) ≤ lim inf

k→∞ Ji,εk (vk), ∀ i = 1, 2, 3. (4.64) 

Proof The following relations 

. lim
k→∞ vk − fi

2
H−1 = v − fi

2
H−1 , (4.65) 

. lim
k→∞ [D(vk) − cD( fi )]

2 = [D(v) − cD( fi )]
2 (4.66)
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are a direct consequence of Lemma 4.10, compactness of the embedding.L2 ⊂ H−1 , 
and condition (4.60). We also notice that, in view of representation 

. Rη∇vk := ∇vk − η2 (θ, ∇vk) θ, ∀ k ∈ N,

Proposition 4.3 and the initial assumptions (4.61)–(4.63) lead to the conclusion: 

. ∇v ∈ L p(·) ;R2), lim inf
k→∞ |Rη∇vk(x)|pk (x) dx ≥ |Rη∇v(x)|p(x) dx .

As a result, combining the last inequality with (4.65)–(4.66), we arrive at the announced 
relation (4.64). 2. 

It remains to show that . v is a feasible solution to the problem (4.23)–(4.24), i.e., .v ∈ i . 
To this end, we take into account the inclusion .∇v ∈ L p(·) ; ;R2) established above and 
the fact that .vk ∈ i,εk for each .k ∈ N. Then it follows from (4.59) that . γi,0 ≤ v(x) ≤ γi,1

almost everywhere in . , and, therefore, .v ∈ i . 

Lemma 4.14 For each feasible solution.v ∈ i to the original problem (4.23)–(4.24), there  
can be found a sequence .{vε}ε→0 such that 

.vε ∈ i,ε, ∀ ε ∈ (0, ε0) with ε0 > 0sufficiently small, (4.67) 

.ve(x) → v(x) a.e. in asε → 0, (4.68) 

.vε → v strongly in L2 (4.69) 

.∇vε → ∇v strongly in L p− ;R2), (4.70) 

. |∇vε(·)|pε(·)
L1

≤ C (4.71) 

. for some positive constant C not depending on ε,

pε(x) := 1 + δ + a2(1 − δ)

a2 + |(∇Kε ∗ vε)|2
→ (4.72) 

. → p(x) := 1 + δ + a2(1 − δ)

a2 + |∇v|2 a.e. in

Ji (v) ≥ lim sup
ε→0

Ji,ε(vε). (4.73) 

Proof Let . v be an arbitrary feasible solution to the problem (4.23)–(4.24). We define the 
sequence .{vε}ε→0 as a smooth mollification of . v with the kernel .Kε, i.e., 

. vε(x) := (Kε ∗ v)(x) = Kε(x − y)v(y) dy, ∀ x ∈

Then properties (4.68)–(4.70) are direct consequence of the Steklov smoothing procedure 
(see (i)–(iii)). Moreover, in view of (4.68) and the fact that .γi,0 ≤ v(x) ≤ γi,1 a.e. in . , we  
can suppose that the same restriction for .vε
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.γi,0 ≤ vε(x) ≤ γi,1 a.e. in (4.74) 

holds true with .ε > 0 small enough. 
Since .vε → v strongly in .W 1,p−

, we can suppose (without loss of generality) that 
.∇vε(x) → ∇v(x) almost everywhere in . . As a result, this implies the pointwise conver-
gence (4.72). Hence, 

. |Rη∇vε(x)|pε(x) → |Rη∇v(x)|p(x) a.e. in

From this and the fact that .|Rη∇v(x)|p(x) ∈ L1 , we deduce: 

.|Rη∇vε|pε(·) → |Rη∇v|p(·) strongly in L1 (4.75) 

Thus,. |Rη∇vε(·)|pε(·)
L1 ≤ C for some positive constant. C not depending on. ε. Hence, 

in view of estimates (4.26), we get: .∇vε ∈ L pε(·) ; ;R2) for . ε small enough. From this 
and (4.74), the assertion (4.67) follows. Moreover, the following equality 

. lim
ε→0

|Rη∇vε|pε(·) dx = |Rη∇v|p(·) dx (4.76) 

immediately follows from (4.75). 
It remains to observe that 

. lim
k→∞ vk − fi

2
H−1 = v − fi

2
H−1 , (4.77) 

. lim
k→∞ [D(vk) − cD( fi )]

2 = [D(v) − cD( fi )]
2 , (4.78) 

by Lemma 4.10 and compactness of the embedding .L2 ⊂ H−1 . As a result, we 
conclude from (4.76), (4.77), and (4.78) that, in fact, instead of the announced inequality 
(4.73), we have .Ji (v) = limε→0 Ji,ε(vε). The proof is complete. 

We are now in a position to prove the main result of this section. 

Theorem 4.15 Assume that original minimization problem (4.23)–(4.24) has a non-empty 

set of minimizers. Let . f 0i,ε ∈ i,ε
ε>0

be a sequence of solutions to the corresponding 

minimization problems (4.51)–(4.52). Let  

. 

⎧⎪⎨
⎪⎩pε := 1 + δ + a2(1 − δ)

a2 + (∇Kε ∗ f 0i,ε)
2

⎫⎪⎬
⎪⎭

ε>0

be the sequence of associated exponents. Assume that the sequence .{pε}ε>0 is compact with 
respect to the pointwise convergence in . . Then there exists an element . f 0i ∈ such that, 
up to a subsequence,
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. f 0i,ε(x) → f 0i (x) a.e. in as ε → 0, (4.79) 

. f 0i,ε → f 0i strongly in L2 (4.80) 

.∇ f 0i,ε ∇ f 0i weakly in L p− ;R2), (4.81) 

. |∇ f 0i,ε(·)|pε(·)
L1

≤ C (4.82) 

. for some positive constant C not depending on ε,

inf
v∈ i,ε

Ji (v) = Ji ( f
0
i ) = lim

ε→0
Ji,ε( f

0
i,ε) = lim

ε→0
inf

v∈ i,ε
Ji,ε(vε). (4.83) 

Proof First, we observe that a given sequence of minimizers for approximating problems 
(4.51)–(4.52) is compact with respect to the convergence (4.79)–(4.81). Indeed, for an arbi-
trary test function .ϕ ∈ C∞

c (R2), we have:  

. ϕ ∈ H1,pε(·) ∀ ε > 0.

Let’s assume that this function satisfies the pointwise constraints .γi,0 ≤ ϕ(x) ≤ γi,1 in . . 
Then, .ϕ ∈ i,ε for all .ε > 0, and, therefore, we can suppose that 

. Ji,ε( f
0
i,ε) = inf

v∈ i,ε
Ji,ε(vε) ≤ Ji,ε(ϕ) ≤ sup

ε>0
Ji,ε(ϕ) ≤ C < +∞ ∀ ε > 0.

Hence, 

. sup
ε>0

|Rη∇ f 0i,ε(·)|pε(·) dx ≤ C and sup
ε>0

f 0i,ε L2 ≤ |γi,1. (4.84) 

Combining this issue with estimates (4.26), we see that . f 0i,ε ∈ i,ε
ε>0

is a bounded 

sequence in .W 1,p−
. Hence, there exist a subsequence 

. f 0i,k ∈ i,εk k∈N of . f 0i,ε ∈ i,ε
ε>0

, and a function . f 0i ∈ W 1,p−
such that 

. f 0i,k → f 0i strongly in Lq f or all q ∈ [1, (p−)∗),

f 0i,k f 0i weakly in W 1,p−
as k → ∞, (4.85) 

where, by Sobolev embedding theorem, 

. (p−)∗ = 2p−

2 − p− = 2 + 2δ

1 − δ
> 2 + δ.

From this, the conditions (4.79)–(4.81) follow, whereas (4.82) is a consequence of (4.26) 
and the boundedness property (4.84). 

Thus, we may suppose that for the subsequence . f 0i,k ∈ εk k∈N all preconditions of 

Lemma 4.13 are fulfilled. Therefore, property (4.64) leads us to the conclusion that. f 0i ∈ i

and
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. lim inf
k→∞ inf

v∈ i,ek

Ji,εk (v) = lim inf
k→∞ Ji,εk ( f

0
i,k) ≥ Ji ( f

0
i )

≥ inf
v∈ i

Ji (v) = Ji ( f
∗
i ), (4.86) 

where . f ∗
i ∈ is a minimizer for (4.23)–(4.24). 

Then Lemma 4.14 implies the existence of a sequence. f ∗
i,ε ∈ i,ε

ε>0
such that. f ∗

i,ε →
f ∗
i as .ε → 0 in the sense of relations (4.68)–(4.72), and 

. Ji ( f
∗
i ) ≥ lim sup

ε→0
Ji,ε( f

∗
i,ε).

Utilizing this fact, we have 

. inf
v∈ i

Ji (v) = Ji ( f
∗
i ) ≥ lim sup

ε→0
Ji,ε( f

∗
i,ε) ≥ lim sup

ε→0
inf

v∈ i,ε
Ji,ε(v)

≥ lim sup
k→∞

inf
v ∈ i,εk

Ji,εk (v) = lim sup
k→∞

Ji,εk ( f
0
i,k). (4.87) 

From this and (4.86) we deduce that 

. lim inf
k→∞ Ji,εk ( f

0
i,k) ≥ lim sup

k→∞
Ji,εk ( f

0
i,k).

Hence, we can combine (4.86) and (4.87) to get  

.Ji ( f
0
i ) = Ji ( f

∗
i ) = inf

v∈ i
Ji (v) = lim

k →∞ inf
v ∈ i,εk

Ji,εk (v). (4.88) 

Using these relations and the fact that the problem (4.23)–(4.24) is solvable, we may 

suppose that. f ∗
i = f 0i . Since equality (4.88) holds for all subsequences of. f 0i,ε

ε>0
, which  

are convergent in the sense of relations (4.79)–(4.81), it follows that these limits coincide and, 

therefore, . f 0i is the limit of the whole sequence . f 0i,ε
ε>0

. Then, using the same argument 

for the sequence of minimizers as we did it for the subsequence . f 0i,εk k∈N

, we finally 

obtain 

. lim inf
ε →0

inf
v∈ i,ε

Ji,ε(v) = lim inf
ε →0

Ji,ε( f
0
i,ε) ≥ Ji ( f

0
i ) = inf

v∈ i
Ji (v)

≥ lim sup
ε→0

Ji,ε( f
∗
i,ε) ≥ lim sup

ε→0
inf

v∈ i,ε
Ji,ε(v)

= lim sup
ε →0

Ji,ε( f
0
i,ε),

and this concludes the proof. 

Remark 4.16 It is worth focusing on a few principal issues related to Theorem 4.15. The  
first one is that, in practice, the assumption concerning solvability of the original optimization
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problem is not so restricted and, in principle, it can be omitted. Indeed, any digital color 
image. f = [ f1, f2, f3]t is originally defined on some grid. G. So, each of its spectral channel 

. fi
G
can be associated with some real-valued matrix. Hence, we can always suppose that 

the exponent .p(|∇ fi |)
G
is the restriction on the same grid of some Lipschitz-continuous 

function.p(·) : → R. Then arguing as in the proof of Theorem 4.12, the solvability of the 
problem (4.23)–(4.24) can be easily established. 

The second point, that should be emphasized here, is the assumption about compactness 
property of the sequence of associated exponents 

. 

⎧⎪⎨
⎪⎩pε := 1 + δ + a2(1 − δ)

a2 + (∇Kε ∗ f 0i,ε)
2

⎫⎪⎬
⎪⎭

ε>0

with respect to the pointwise convergence in . . Since this property is crucial in Theo-
rem 4.15, we propose to consider it as an easy realized in practice criterion for the verifica-

tion whether the approximating sequence . f 0i,ε ∈ i,ε
ε>0

leads to some optimal solution 

of the original problem. 

4.5 Numerical Results 

To illustrate the implementation of the proposed model (4.23)–(4.23) to the simultaneous 
denoising and contrast enhancement of color images, we make use of the optimality con-
ditions in the form of (4.49). In other words, we have dropped the two-side constraints 
.γi,0 ≤ v(x) ≤ γi,1 from the sets . i , and instead we control the fulfilment of this two-side 
constraint at each step of the numerical approximations (Figs. 4.1 and 4.2). 

Since, in practical implementations, it is reasonable to define the solution of the problem 
(4.23)–(4.23) using a “gradient descent” strategy, we can start with some initial image 
. f = [ f1, f2, f3]t ∈ L2 ;R3) and pass to the following system of three initial-boundary 
value problems for quasi-linear parabolic equations with Nuemann boundary conditions 

.
∂ f 0i
∂t

= div p(x)|Rη∇ f 0i |p(|∇ f 0i |)−2Rη∇ f 0i

− η2 div p(x) |Rη∇ f 0i |p(|∇ f 0i |)−2Rη∇ f 0i , θ θ

− 2a2(1 − δ) div |Rη∇ f 0i |p(|∇ f 0i |) log |Rη∇ f 0i |
a2 + |∇ f 0i |2 2∇ f 0i

− λ D( f 0i ) − cD( fi ) W (x, y)
f 0i (x) − f 0i (y)

κ2 + f 0i (x) − f 0i (y)
2
dy
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Fig. 4.1 Original image (left) and its smoothed version without contrasting (.μ = 0) (right) 

− μ(− −1( f 0 i − fi ) = 0, in (0, T ) × (4.89) 

. |∇ f 0i |p(|∇ f 0i |)−2∇ f 0i , ν = 0 on (0, T ) × (4.90) 

. f 0i (0, ·) = fi (·), i = 1, 2, 3, in (4.91) 

For numerical simulations, we set: .δ = κ in (4.18) and (4.17), and .η = 1 − κ in (4.16), 
.κ = 0.001,.λ = 0.1, and.μ = 2. As for the noise estimator.a > 0 in (4.17), we use the choice 
of Black et al. [ 6], i.e. 

. a = 1.4826√
2

MAD(∇ fi ),

where .MAD denotes the median absolute deviation of the corresponding spectral channel 
. fi of original image . f = [ f1, f2, f3]t that can be computed as 

.MAD(∇ fi ) = median |∇ fi | − median (|∇ fi |)
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Fig. 4.2 Variants of contrast enhancement with the corresponding histograms (from the left to the 
right): .c = 2 and.window = 5, .c = 2 and. window = 7

and .median (|∇ fi |) represents the median over the band . fi to the gradient amplitude 
(Fig. 4.5). 

To guarantee the stability of the proposed algorithm, we make use of the following 
condition 

. 2
1

κ
+ λ + μ t < 1.

There are numerous approaches to solve quasi-linear partial differential equations (see 
the references [ 4, 27] for various techniques). Since we are dealing with pixels in image 
processing, finite differences approaches and an explicit scheme of the forward Euler method 
are arguably the best options. The number of iterations for each spectral channel can be 
defined experimentally. We used .103-iterations. As for the size of the kernel .W (x, y) used 
for . D, this size manages the scale of the contrast enhancement. In our experiments we used 
it equals to .3, 5, 7, 15, albeit it can be related to the size of the input image.
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The most expensive computation is the one of .D and.∇D embedded in the computation 
of the right-hand side of the system (4.89). For acceleration of these computation, we can 
refer to [ 40], where the efficient Bernstein polynomials approximation has been proposed. 

As follows from the result of numerical simulations (see Fig. 4.3, 4.4, 4.5, 4.6, 4.7, 4.8 
and 4.9), parameters. c,. μ,. λ, and the size of.window for the kernel.W (x, y) are crucial for the 
contrast enhancement and these parameters have to be tuned in dependence on the desired 
result. In particular, we observe that at a large scale (.window) and low contrast level . c, the  
proposed model is able to produce an image with more details, but with the same lighting 
sensation as the original one. In order to show how the choice of the parameters . c, . μ, . λ, 
and .window affect the results of contrast enhancement, we supplied all images in Fig. 4.1, 
4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8 and 4.9 by the histograms of their luma components which 
represent the perceptual brightness of the color images .I : → R

3. To this end we used 
the following representation for the luma.YI (x) = αR IR(x) + αG IG(x) + αB IB(x) with 

. αR = 0.299, αG = 0.587, αB = 0.114.

Fig. 4.3 Variants of contrast enhancement with the corresponding histograms (from the left to the 
right): .c = 10 and.window = 5, .c = 10 and.window = 7
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Fig. 4.4 Variants of contrast enhancement with the corresponding histograms (from the left to the 
right): original image, restored image with.c = 20 and. window = 15

Here,.IR ,.IG , and.IN stand for the intensities of a given image in R,G and B spectral channels, 
respectively.
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Fig. 4.5 Variants of contrast enhancement with the corresponding histograms (from the left to the 
right): original and restored with.c = 10 and.window = 7
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Fig. 4.6 Variants of contrast enhancement with the corresponding histograms (from the left to the 
right): original image, restored image with.c = 10 and.window = 5
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Fig.4.7 Influence of the contrast enhancement scale on the result (from the left to the right): original, 
.c = 10 and.window = 5, .c = 20 and.window = 5
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Fig. 4.8 Variants of contrast enhancement with the corresponding histograms (from the left to the 
right): original image, restored image with.c = 10 and. window = 5

In particular, as follows from the obtained histograms, the proposed variational model is 
sufficiently sensitive to the choice of the weight coefficient . c, whereas the size of . window
for the kernel.W (x, y) affects the contrast enhancement in rather mild manner (see Figs. 4.2 
and 4.3).
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Fig. 4.9 Variants of contrast enhancement with the corresponding histograms (from the left to the 
right): original image, restored image with.c = 10 and. window = 5

4.6 Conclusions 

We introduced a variational model with nonstandard growth condition for the restoration 
and contrast enhancement of multi-band images. We show that increasing the average local 
contrast measure improves the perceived contrast of the image. We have obtained sufficient 
conditions for the convergence of the minimization algorithm. The contrast scale and level in 
our model are adjustable, so that the proposed approach can be considered as fully adaptive.
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Our enhancement method for color images works directly on the RGB images without any 
pre- and/or post-processing. The automatic adaptation of the parameters to the content of 
the considered image could be a future direction of research. 
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5Variational Approach to Simultaneous Fusion 
and Denoising of the Color Images with Different 
Spatial Resolution 

Abstract 

The main purpose of in this chapter is to describe a robust approach for the simultaneous 
fusion and denoising of non-smooth multispectral images defined on grids with different 
resolution using for that a special extremal problem with nonstandard growth of the 
energy functional. In fact, we use the .L1-norm of the noise in the minimization function 
and a special form of anisotropic diffusion tensor for the regularization term. Following 
this approach, we increase the noise robustness of the proposed model albeit it makes 
such variational problem completely non-smooth, non-convex, and, hence, significantly 
more difficult from a minimization point of view. The principle characteristic feature of 
the proposed model is that we consider the energy functional with nonstandard growth 
for each spectral channel separately. The second point that should be emphasized is the 
fact that we do not predefine the variable exponents a priori using for that the original 
noisy images, but instead we associate these characteristics with each feasible solution. 

The synthesis of several source images of the same scene into a single image that would 
contain much more visual information (see, for instance, [ 6, 8, 39]) is an important issue 
appearing in various fields such as remote sensing, medical diagnosis, defect inspection, and 
military surveillance. Since the observed source images are inevitably corrupted by noise, 
they can be blurred, and arguably, are geometrically. A very promising approach to image 
quality enhancement is to fuse several sources with different degradations together in order 
to extract as much useful information as possible. 

A significant part of the existing fusion methods (the so-called pixel-level methods) is 
based on the estimation of the value for each point in the fused image through some feature 
selection rule [ 27]. In particular, several methods have been developed such as spatial domain 
fusion methods [ 38], transform domain fusion methods [ 34], variational methods based on 
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fusing the gradient information [ 45], or their combinations [ 35]. In [ 30], the authors proposed 
a new variational model by fusing the first- and second-order gradient information from the 
source images. However, this approach has originally been aimed at the fusion of images 
without visible noise corruptions. 

Regarding the fusion methods of the noisy source images, apparently, [ 40] was one of the 
first paper dedicated to this problem. The authors proposed a weighted variational method 
based on the total variation (TV) regularization and with some regularization parameter in 
the objective functional that trades off the fit to the noisy source images and the smoothness 
from TV. So, the TV regularization term was added to the proposed model to reduce the 
influence from the noise. 

Another approach has been introduced in [ 33], where the authors considered fractional-
order derivatives as regularization in the variational model for image fusion and denoising. 
Their goal is to obtain a fused image of high quality, preserving sharp edges while main-
taining smoothness in homogeneous regions, even when the source images are corrupted 
by noise. To achieve this, the authors of [ 33] aim to match the fractional-order gradient of 
the fused image with a target fractional-order gradient, using either .L2-norm or .L1-norm. 
However, selecting the appropriate target fractional-order gradient is a challenging task, and 
the practical implementation of this approach becomes complicated as a result. 

Recent papers [ 18, 19, 32] also deserve mention, where the authors address the contrast 
enhancement, multimodal image fusion, and denoising problem using different techniques, 
such as a Retinex-based variational model, a Siamese convolutional neural network, and 
quaternion-based dictionary learning with saturation-value Total Variation regularization. 

In this chapter we consider a constrained minimization problem with a special objective 
functional. The main feature of this functional is the fact that it contains a spatially variable 
exponent characterizing the growth conditions of the objective functional and it can be seen 
as a replacement for the .1-norm in TV regularization. The idea of using a spatially varying 
exponent in a TV-like regularization method for image denoising dates back as early as 1997 
[ 5] and put into practice in 2006 [ 9]. Both papers as well as some subsequent articles try to 
tackle variants of the problem 

.J (u) = D(u) + λ |∇u(x)|p(∇u(x)) dx −→ inf, (5.1) 

where the exponent depends directly on the image, e.g., 

. p(∇u) = 1 + a2

a2 + |∇Gσ ∗ u|2 .

Here,.(Gσ ∗ v) (x)determines the convolution of function. vwith the.2-dimensional Gaussian 
filter kernel . Gσ

.Gσ (x) = 1
√
2πσ

2 exp −|x |2
2σ 2 , x ∈ R

2, σ > 0 is a fixed parameter, (5.2)
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. (∇Gσ ∗ u) (x) =
R2

∇Gσ (x − y)u(y) dy, ∀ x ∈ (5.3) 

. u is zero-extension of . u outside . , .|ξ | stands for the Euclidean norm of .ξ ∈ R
2 given by 

the rule .|ξ | = √
(ξ, ξ), 

It has been demonstrated that this model possesses some favorable properties, particu-
larly when edge preservation and effective noise suppression are primary goals in image 
reconstruction. 

Furthermore, this model has been introduces specifically to address the issue of staircasing 
[ 36], which refers to the regularizer’s inclination towards piecewise constant functions. 
The appearance of the staircasing effect is a notable drawback of the classical TV model. 
However, the non-convex model (5.1) did not gain significant attention for a long period due 
to its high numerical complexity and the absence of a rigorous mathematical substantiation 
of its consistency. Only partial solutions to this problem have been derived for a smoothed 
version of the integrand, using a weak notion of solution (see, for instance, [ 41]). 

A recently developed alternative variant is the TV-like method [ 26], which computes 
the variable exponent .p in an offline step and keeps it as a fixed parameter in the final 
optimization problem This approach allows the exponent to vary based on spatial location, 
enabling users to locally select whether to preserve edges or smooth intensity variations. 
However, there are only two natural types of imaging problems where this approach can be 
applied: 

• single-channel imaging where first the exponent is computed from the given data and 
then is applied as prior in the subsequent minimization problem; 

• dual-channel imaging where the secondary channel provides the exponent map that is 
used for regularization of the primary channel. 

Thus, this circumstance imposes significant limitations from practical point of view, espe-
cially in the case of multi-spectral satellite noisy images, where different channels can differ 
drastically (for instance, red and infrared channels). 

The main purpose of this chapter is to describe a robust approach for the simultaneous 
fusion and denoising of non-smooth multispectral images defined on grids with different 
resolution using for that the energy functional with nonstandard growth. In fact, we use the 
.L1-norm of the noise in the minimization function and a special form of anisotropic diffusion 
tensor for the regularization term. By following this approach, we aim to increase the noise 
robustness of the proposed model albeit it makes such variational problem completely non-
smooth, non-convex, and, hence, significantly more difficult from a minimization point of 
view. The key results of this chapter has been obtained in cooperation with C. D’Apice, R. 
Manzo, and C. Pipino (see [ 15]). 

The principle characteristic feature of the proposed model is that we consider the energy 
functional with nonstandard growth for each spectral channel separately. Moreover, the edge 
information for fusion of two images with different resolution is mainly accumulated in the
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variable exponents .p1(x), p2(x), . . . , pm(x). The second point that should be emphasized 
is the fact that we do not predefine the variable exponents .pi (x) a priori using for that 
the original noisy images, but instead we associate these characteristics with each feasible 
solution. 

5.1 Preliminaries 

Let . ⊂ R
2 be a bounded connected open set with a sufficiently smooth boundary . and 

nonzero Lebesgue measure. In majority cases . can be interpreted as a rectangle domain. 
Let .G H and .GL be two sample grids on . such that .G H = G H ∩ and .G H = G H ∩ , 
where 

. G H = (xi , y j )
x1 = xH , xi = x1 + H ,x (i − 1), i = 1, . . . , Nx ,

y1 = yH , y j = y1 + H ,y( j − 1), j = 1, . . . , Ny,
,

GL = (xi , y j )
x1 = xL , xi = x1 + L,x (i − 1), i = 1, . . . , Mx ,

y1 = yL , y j = y1 + L,y( j − 1), j = 1, . . . , My,
,

with some fixed points .(xH , yH ) and .(xL , yL). Hereinafter, it is assumed that . Nx >> Mx

and .Ny >> My . 
Let .S : G H → R

m and .M : GL → R
m , .m ≥ 1, be a couple of multispectral images, 

containing the same scene albeit they are defined on grids with different resolution. The 
principle point is that the image with low resolution .M : GL → R

m contains some extra 
objects which are invisible or absent in the image .S : G H → R

m . It is assumed that: 

(i) Each of the given images.S : G H → R
m and.M : GL → R

m can be corrupted by some 
additive Gaussian noise with zero mean. 

(ii) All spectral channels of the image.M = [M1, M2, . . . , Mm] have similar spectral char-
acteristics to the corresponding channels of the image .S = [S1, S2, . . . , Sm], respec-
tively; 

(iii) The images .M : GL → R
m and .S : G H → R

m are rigidly co-registered. This means 
that the image. M , after arguably some affine transformation and the image. S after the 
resampling to the grid with low resolution.GL , could be successfully matched with the 
exception of the zone where there are new objects. 
In practice, the co-registration procedure is usually applied not to the original images 
directly, but rather to their spectral energies .YM : GL → R and.YS : G H → R, where  
the last ones should be previously resampled to the grid of the low resolution.GL . Here, 

. YM (z) := α1M1(z) + α2M2(z) + · · · + αm Mm(z), ∀ z = (x, y) ∈ GL ,

YS(z) := α1S1(z) + α2S2(z) + · · · + αm Sm(z), ∀ z = (x, y) ∈ G H

with appropriate weight coefficients . αi , .i = 1, . . . , m.
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Our main purpose is to present a robust approach for the simultaneous denoising and 
fusion of non-smooth multi-spectral images defined on grids with different resolution. With 
that in mind, we use a special form of anisotropic diffusion tensor for the regularization 
term and the .L1-norms for the fidelity terms. Namely, we deal with the following family of 
optimization problems: 

. Ji (v) = |∇v(x)|F(v(x)) dx + λ |∇v(x) − ∇Si (x)| dx

+ μ |TSv(x) − Si (x)| dx

+ 1 − μ

2
TM [(Gσ ∗ v) (·) − Mi (·)]2 −→ inf, (5.4) 

subject to the constraints 

.v ∈ W 1,F(v(·)) 1 ≤ γi,0 ≤ v(x) ≤ γi,1 a.e. in (5.5) 

where.i = 1, . . . , m,.Si ∈ L1 and.Mi ∈ L1 are a particular spectral channel of the ori 
ginal noisy images .S = [S1, S2, . . . , Sm]T ∈ L1 ;Rm) and . M = [M1, M2, . . . , Mm]T ∈
L1 ;Rm), respectively, .λ > 0 and .μ ∈ (0, 1) are the tuning parameters, . W 1,F(v(·))
stands for the so-called Sobolev-Orlicz space associated with a feasible solution . v, . TS ∈
L(L1 and .TM ∈ L(L1

R) are bounded linear operators with unbounded inverse, 

. F(v(x)) = 1 + g (|(∇Gσ ∗ v) (x)|) in

and.g : [0, ∞) → (0, ∞) is a continuous monotone decreasing function such that. g(0) = 1
and .g(t) > 0 for all .t > 0 with . lim

t→+∞ g(t) = 0. 

In particular, if we set .p(x) := 1 + g (|(∇Gσ ∗ v) (x)|), where the edge-stopping func-
tion .g(s) is taken in the form of the Cauchy law 

. g(t) = 1

1 + (t/a)2
with an appropriate a > 0,

it implies that.p(x) ≈ 1 in places in. where edges or discontinuities are present in the image 
.v(x), and .p(x) ≈ 2 in places where .v(x) is smooth or contains homogeneous features. 

We define the parameters .γi,0, .γi,1, and the operator .TM ∈ L(L1
R), as follows: 

.γi,0 = min
(x,y)∈G H

Si (x, y), γi,1 = max
(x,y)∈G H

Si (x, y), TM =
(xi ,y j )∈SL

δ(xi ,y j ), (5.6) 

where .δ(xi ,y j ) is the Dirac’s delta at the point .(xi , y j ) of the sample grid .GL . 
It is worth to emphasize that, in contrast to the quadratic data-fitting term in the well-

known model, introduced by Rudin et al. [ 37], we take the fidelity terms in .L1-norm just 
in order to increase the noise robustness of the model (5.4) albeit it makes such variational
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problem completely non-smooth and, hence, significantly more difficult from a minimization 
point of view. 

Thus, the problem of simultaneous fusion and denoising of multi-spectral images 
with different spatial resolution consists in generation of a new multi-spectral image 

.I 0 = I 01 , I 02 ,
. . . , I 0m

t : G H → R
m , which would be well defined on the entire grid .G H , 

such that 
.Ji (I 0i ) = inf

v∈ i
Ji (v), ∀ i = 1, . . . , m, (5.7) 

where 
. i = u ∈ W 1,F(v(·)) : 1 ≤ γi,0 ≤ u(x) ≤ γi,1 a.e. in (5.8) 

stands for the set of feasible solutions to the minimization problem (5.4). 
So, the main characteristic feature of the model (5.4) is the energy functional with non-

standard growth where the main information for the simultaneous fusion and denoising of 
images. S and.M is accumulated in the variable exponents .[F(v1(x)), . . . ,F(vm(x))]. How-
ever, in contrast to [ 1, 9, 10, 29], we do not predefine the variable exponents .p(x) a priori 
using for that the original noisy images . S or/and . M , but instead we associate this charac-
teristic with each feasible solution. As a result, we admit that each feasible solution to this 
problem lives in the corresponding “individual” functional space. Formally it means that we 

look for the true image .I 0 = I 01 , I 02 ,
. . . , I 0m

t such that 

. I 0 ∈ W 1,F(I 01 (·)) × W 1,F(I 02 (·)) × · · · × W 1,F(I 0m (·))

As follows from the definition of Sobolev-Orlicz space .W 1,F(I 0i (·)) , its regular-
ity is completely determined by the exponent .F(I 0i (·)) which depends on .i-th spectral 
channel of the true image .I 0 and, hence, is unknown a priori. Moreover, the exponents 
. F(I 01 (·)),F(I 02 (·)), . . . ,F(I 0m(·)) may significantly differ from channel to channel. In 
particular, some pixels, which are the local minimum points in the red channel, become 
local maximum points in near-infrared channel and wise versa. Moreover, the different 
feasible solutions .v u to the above problem live in different functional spaces: we have 
.v ∈ W 1,F(v(·)) whereas.u ∈ W 1,F(u(·)) . As a consequence, any minimizing sequence 
to this problem is, in fact, a sequence living in the scale of variable spaces. As a result, the 
notions such as convergence concept, compactness, density and others should be specified 
for the case of variable Sobolev-Orlicz spaces. 

Thus, in spite of the fact that in the literature there are many approaches to the study 
of variational problems in abstract functional spaces, the above mentioned circumstances 
make the problem (5.4) rather challenging (see [ 7, 9, 10, 12, 13, 21] for recent studies in 
this field).
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5.2 Existence Result 

Our main intention in this section is to show that constrained minimization problem (5.4)– 
(5.5) is consistent and admits at least one solution. Because of the specific form of the energy 
functional.Ji (v), the structure and main topological properties of the set of feasible solution 
to minimization problem (5.4)–(5.5) are challenging issues. So, the study of these issues is 
the main subject of this section (we can refer to [ 5, 7, 9, 14, 16] for some specific details 
that can appear in this case). 

We begin with the following key assumptions: 

(A1) The true intensities .I 0i of all spectral channels for the retrieved image . I 0 =
I 01 , . . . , I 0m

t
are subjected to the constraints .γi,0 ≤ I 0i (x) ≤ γi,1 a.e. in . , where  

the thresholds .γi,0 and .γi,1 are defined in (5.6). 
(A2) There exist a couple of vector value functions.S ∈ W 1,1 ;Rm) and. M ∈ C( ;Rm)

such that the grids.G H and.GL are the sets of Lebesgue point of. S and. M , respectively, 
and 

.S G H
= S, M GL

= M . (5.9) 

Remark 5.1 Let us mention that in the case of digital images, the only accessible informa-
tion is a sampled and quantized version of.I : → R

m , i.e.,.I (xi , y j ), where. (xi , y j ) ∈
is a set of discrete points and for each spectral channel .k = 1, . . . , m, .Ik(xi , y j ) belongs in 
fact to a discrete set of values, .0, 1, . . . , 255 in the mostly cases. Due to the Shannon’s the-
ory, it is plausible to assume that.Ik is recoverable at any point.(x, y) ∈ from the samples 
.Ik(xi , y j ). So, in view of assumption (A2), we may assume that the images . S and .M are 
known in a continuous domain . and, therefore, the objective functional (5.4) should be 
interpreted as follows 

. Ji (v) = |∇v(x)|F(v(x)) dx + λ |∇v(x) − ∇Si (x)| dx

+ μ |TSv(x) − Si (x)| dx + 1 − μ

2
TM |(Gσ ∗ v) (·) − Mi (·)|2 .

However, in practice, such reconstruction is not a trivial problem. 

We say that a function.I 0 = I 01 , . . . , I 0m
t : → R

m is the result of simultaneous fusion 
and denoising of the noise contaminated images .S : G H → R

m and .M : GL → R
m if for 

given regularization parameters .λ > 0, .μ ∈ (0, 1), and a given linear blur operator . TS ∈
L(L1 , each spectral component .I 0i is the solution of the corresponding constrained 
minimization problem (5.7)–(5.8), i.e., for each .i = 1, . . . , m, 

.I 0i ∈ i and Ji I 0i = inf
v∈ i

Ji (v) .
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Hereinafter, we associate with each spectral channel .vi of an arbitrary image . v =
[v1, v2, . . . , vm]t : → R

m the so-called texture index .pi : → R following the rule 

.pi (x) := F(vi (x)) = 1 + g (|(∇Gσ ∗ vi ) (x)|) , ∀ x ∈ ∀ i = 1, . . . , m, (5.10) 

where .g:[0, ∞) → (0, ∞) is the edge-stopping function that we take in the form of the 
Cauchy law.g(t) = 1

1+(t/a)2
. 

As follows from representation (5.10) and smoothness of the Gaussian filter kernel .Gσ , 
we have the following estimates 

. |(∇Gσ ∗ v) (x)| ≤ |∇Gσ (x − y)||v(y)| dy

Gσ C1( − v L1 Gσ C1( − | |γ1,i , ∀ x ∈

F(v(x)) = 1 + a2

a2 + (|(∇Gσ ∗ v) (x)|)2

≥ 1 + a2

a2 Gσ
2
C1( − v 2

L1

≥ 1 + δ, ∀ x ∈

F(v(x)) ≤ 2 in

where 

.δ = a2

a2 Gσ
2
C1( − | |2 max

1≤i≤m
γ 2
1,i

1, (5.11) 

. Gσ C1( − = max
z=x−y

x∈ y∈
|Gσ (z)| + |∇Gσ (z)| e−1

2πσ 2 1 + 1

σ 2 diam . (5.12) 

Hence, 
. α ≤ F(v(x)) ≤ β in , where α := 1 + δ and β := 2.

The following results play a crucial role in the sequel (for the proof, we refer to [ 14]). 

Lemma 5.2 Let .{vk}k∈N ⊂ L∞ be a sequence of measurable non-negative functions 
such that .γi,0 ≤ vk(x) ≤ γi,1 a.e. in . and .vk(x) → v(x) weakly-. ∗ in .L∞ for some 
.v ∈ L∞ , and each element of this sequence is extended by zero outside of . . Let  
.{pk = 1 + g (|(∇Gσ ∗ vk)|)}k∈N be the corresponding sequence of texture indices. Then 

. pk(·) → p(·) = 1 + g (|(∇Gσ ∗ v) (·)|) uniformly in as k → ∞,

α := 1 + δ ≤ pk(x) ≤ β := 2, ∀ x ∈ ∀ k ∈ N. (5.13)
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Proposition 5.3 Let.{pk = 1 + g (|(∇Gσ ∗ vk)|)}k∈N be a sequence of texture indices such 
that 

. pk(·) → p(·) = 1 + g (|(∇Gσ ∗ v) (·)|) uniformly in as k → ∞
and conditions (5.13) hold true. If a bounded sequence . fk ∈ L pk (·)

k∈N converges 
weakly in .L1+δ to . f , then . f ∈ L p(·) , . fk f in variable .L pk (·) , and 

. lim inf
k→∞ | fk(x)|pk (x) dx ≥ | f (x)|p(x) dx . (5.14) 

Following, in some technical aspects,recent studies [ 12– 14, 21], we can give the following 
existence result. 

Theorem 5.4 For each .i = 1, . . . , m and given .μ ∈ (0, 1), .λ > 0, .S ∈ L1 ;Rm), . M :
GL → R

m, and .TS ∈ L(L1 , the minimization problem (5.7)–(5.8) admits at least one 
solution .I 0i ∈ i . 

Proof Since. i = ∅ and.0 ≤ Ji (v) < +∞ for all .v ∈ i , it follows that there exists a non-
negative value.ζ ≥ 0 such that.ζ = inf

v∈ i
Ji (v). Let.{vk}k∈N ⊂ i be a minimizing sequence 

to the problem (5.7)–(5.8), i.e. 

. vk ∈ i , ∀ k ∈ N, and lim
k→∞ Ji (vk) = ζ.

So, without loss of generality, we can suppose that .Ji (vk) ≤ ζ + 1 for all .k ∈ N. 
Utilizing the fact that.vk ∈ i , .∀ k ∈ N and, therefore,.vk(x) ≤ γ1,i for almost all.x ∈ , 

we see that 
. vk L1 ≤ γ1,i | |, ∀ k ∈ N.

Then setting .pk(x) = 1 + g (|(∇Gσ ∗ vk) (x)|) in . and arguing as in the proof of 
Lemma 5.2, it can be shown that .pk ∈ C0,1( and 

. α := 1 + δ ≤ pk(x) ≤ β := 2, ∀ x ∈ ∀ k ∈ N, (5.15) 

where . δ is defined by the rule (5.11). From this, we deduce that 

. |vk(x)|α dx ≤ γ α
1,i dx ≤ γ α

1,i | |, ∀ k ∈ N,

|∇vk(x)|pk (x) dx ≤ ζ + 1, ∀ k ∈ N, (5.16) 

with .α = 1 + δ. 
Taking this fact into account, we infer from (5.16), (5.15), and (5.5) that 

. vk W 1,α = |vk(x)|α + |∇vk(x)|α dx
1/α
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≤ (1 + |  |)1/α |vk (x)|pk (x) + |∇vk (x)|pk (x) dx + 2 
1/α 

by (5.16) ≤ (1 + |  |)1/α γ 2 1,i | | +  ζ + 3 1/α 

uniformly with respect to .k ∈ N. Therefore, there exist a subsequence of .{vk}k∈N, still 
denoted by the same index, and a function .I 0i ∈ W 1,α such that 

. vk → I 0i strongly in Lq f or all q ∈ [1, α∗),
vk I 0i weakly in W 1,α as k → ∞, (5.17) 

where, by Sobolev embedding theorem, .α∗ = 2α
2−α

= 2+2δ
1−δ

> 2 + δ. 
Moreover, passing to a subsequence if necessary, we have (see Proposition 5.3 and 

Lemma 5.2): 

. vk(x) → I 0i (x) a.e. in (5.18) 

vk I 0 i weakly in L
pk (·) 

∇vk ∇ I 0 i weakly in L
pk (·) ; RN ), 

pk (·) → p0 i (·) = 1 + g ∇Gσ ∗ I 0 i (·) uniformly in as k → ∞, 

where .I 0i ∈ W 1,p0(·) . 
Since .γ0,i ≤ vk(x) ≤ γ1,i a.a. in . for all .k ∈ N, it follows  from (5.18) that the limit 

function .I 0i is also subjected to the same restriction. Thus, .I 0i is a feasible solution to 
minimization problem (5.7)–(5.8). 

Let us show that.I 0i is a minimizer of this problem. With that in mind we note that due to 
the obvious inequality 

. |TS (vk(x)) − Si (x)| ≤ TS L(L1 γ1,i + |Si (x)| ,

we have: the sequence. TS (vk(x)) − Si (x) k∈N is bounded in.L1 , equi-integrable in. , 
and because of (5.18), it strongly converges in .L1 to .TS I 0i − Si . Hence, 

. lim inf
k→∞ |TS (vk(x)) − Si (x)| dx = TS I 0i (x) − Si (x) dx . (5.19) 

In view of the piecewise convergence (5.18), we have a similar relation for the last term 
in (5.4) 

. lim inf
k→∞ TM |(Gσ ∗ vk) (·) − Mi (·)|2 = TM | Gσ ∗ I 0i (·) − Mi (·)|2 .

It remains to notice that due to the properties (5.16), (5.17), the sequence 
. |∇vk | ∈ L pk (·)

k∈N is bounded and weakly convergent to .|∇ I 0i | in .Lα . Hence, by 
Proposition 5.3, the following lower semicontinuous properties
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. lim inf
k→∞ |∇vk(x)|pk (x) dx ≥ |∇ I 0i (x)|p0i (x) dx, (5.20) 

. lim inf
k→∞ |∇vk(x) − ∇Si (x)| dx ≥ |∇ I 0i (x) − ∇Si (x)| dx (5.21) 

hold true. 
As a result, utilizing relations (5.19)–(5.21), we finally obtain 

. ζ = inf
v∈ i

Ji (v) = lim
k→∞ Ji (vk) = lim inf

k→∞ Ji (vk) ≥ Ji (I 0i ).

Thus, .I 0i is a minimizer to the problem (5.7)–(5.8), whereas its uniqueness remains an 
open question. 

5.3 On Relaxation of the Minimization Problem (5.7)–(5.8) 

It is clear that because of the specific choice of the exponent 

. F(v(x)) = 1 + g (|(∇Gσ ∗ v) (x)|) in

constrained minimization problem (5.7)–(5.8) is not trivial in its practical implementation. 
Moreover, in this case the objective functional .Ji (v) is not convex. Even if we represent the 
minimization problem (5.7)–(5.8) in the form 

.Find (I 0i , p0i ) ∈ i such that Fi I 0i , p0i = inf
(v,p)∈ i

Fi (v, p) , (5.22) 

where 

. Fi (v, p) = |∇v(x)|p(x) dx + λ |∇v(x) − ∇Si (x)| dx

+ μ |TSv(x) − Si (x)| dx

+ 1 − μ

2
TM |(Gσ ∗ v) (·) − Mi (·)|2 , (5.23) 

. i = (u, p) ∈ W 1,F(v(·)) × C0,1( |
1 ≤ γi,0 ≤ u(x) ≤ γi,1 a.e. in

p(x) = 1 + g (|(∇Gσ ∗ u) (x)|) in
(5.24) 

the main difficulty in its study comes from the state constraints 

.p(x) = 1 + g (|(∇Gσ ∗ v) (x)|)
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with the non-convex right-hand side. This motivates us to pass to some relaxation scheme 
of variational problem (5.22)–(5.24). It will be shown in the sequel that using this approach, 
the non-convexity can be negligible in practice and that reliable solutions can be computed 
using a variety of different optimization algorithms. 

As the main step of this procedure we propose to consider the function . p(·) := F(v(·))
as a fictitious control subjected to some special constraints and interpret the fulfillment of 
equality .F(v(x)) = 1 + g (|(∇Gσ ∗ v) (x)|) with some accuracy in . . To do so,  we notice  
that if .v ∈ i is a feasible solution to the problem (5.7)–(5.8) then .F(v(·)) is subjected to 
the two-side inequality (5.15) with .δ ∈ (0, 1) given by (5.11). Keeping this in mind and 
following in some aspects the standard penalty method [ 42, Chapter 2] (see also [ 22– 25, 
28]), we consider the following family of approximating problems: 

. Minimize Ji,ε(v, p) = |∇v(x)|p(x) dx + λ |∇v(x) − ∇Si (x)| dx

+ μ |TSv(x) − Si (x)| dx + 1 − μ

2
TM |(Gσ ∗ v) (·) − Mi (·)|2

+ 1

ε
|p(x) − 1 − g (|(∇Gσ ∗ v) (x)|)|2 dx (5.25) 

subject to the constraints .(v, p) ∈ i,ε, where  

. i,ε = (v, p)
v ∈ W 1,α p ∈ Sad , Ji,ε(v, p) < +∞,

0 ≤ γi,0 ≤ v(x) ≤ γi,1 a.e. in
(5.26) 

.Sad = h ∈ C
|h(x) − h(y)| ≤ C |x − y|, ∀ x, y ∈

1 < α ≤ h(·) ≤ β in
(5.27) 

Here, .α = 1 + δ, .δ > 0 is given by (5.11), .β = 2, and  

.C := 2 Gσ C1( − γ 2
1,i | |CG

a2 (5.28) 

with a positive constant .CG coming from the inequality 

. |∇Gσ (x − z) − ∇Gσ (y − z)| dz ≤ CG |x − y|, ∀ x, y ∈

To justify the choice (5.28) for the constant. C , we make use of the following observation. 
If we assume for a moment that .p(x) = 1 + g (|(∇Gσ ∗ v)|) for some .v ∈ i , then the  
following chain of estimates holds true 

.|p(x) − p(y)| ≤ a2 |(∇Gσ ∗ v) (x)|2 − |(∇Gσ ∗ v) (y)|2
a2 + |(∇Gσ ∗ v) (x)|2 a2 + |(∇Gσ ∗ v) (y)|2

≤ 2 Gσ C1( − v L1

a2 |(∇Gσ ∗ v) (x)| − |(∇Gσ ∗ v) (y)|
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≤ 
2 Gσ C1( − γ 2 1 | | 

a2 |∇Gσ (x − z) − ∇Gσ (y − z)| dz, 

∀ x, y ∈ with γ1 v L∞ ≤ γi ,1. 

Then taking into account the smoothness of the function.∇Gσ (·), we deduce: there exists a 
positive constant .CG > 0 independent of . k such that 

. |p(x) − p(y)| ≤ 2 Gσ C1( − γ 2
1,i | |CG

a2 |x − y|, ∀ x, y ∈

Hereinafter, we assume that the parameter . ε varies within a strictly decreasing sequence 
of positive real numbers which converges to . 0. So, when we write .ε > 0, we consider only 
the elements of this sequence. 

Definition 5.5 We say that a pair .(v, p) is quasi-feasible to minimization problem (5.22)– 
(5.24) if  .(v, p) ∈ i,ε for some .ε > 0 small enough. We also say that . (u0

i,ε, p0i,ε) ∈
W 1,p0ε (·) × C0,1( is a quasi-optimal solution to the problem (5.22)–(5.24) if  

. (u0
i,ε, p0i,ε) ∈ i,ε and Ji,ε(u

0
i,ε, p0i,ε) = inf

(v,p)∈ i,ε
Ji,ε(v, p).

Remark 5.6 It is clear that condition.p ∈ Sad together with the fact that.Sad is a compact 
subset in .C( implies: every cluster point of a sequence .{pk}k∈N ⊂ Sad with respect to 
the uniform topology is a regular exponent, i.e. it is an exponent satisfying the log-Hölder 
continuity condition [ 44]. In this case the set .C∞

0 (R2) is dense in .W 1,p(·) [ 11] and this 
fact plays a crucial role in the study of minimization problem (5.25). 

The principle point in the statement of approximated problem (5.25) is the fact that we 
pass from the state constrained optimization problem (5.22) with the variable exponent 
.p(x) = F(v(x)) strongly depending on the function of interest. v to its approximation where 
we eliminate the equality constraint .p(x) = F(v(x)) for the state .v(x) and the exponent 
.p(x) and allow such pairs run freely in their respective sets of feasibility. 

We begin with the following existence result. 

Theorem 5.7 For each .i = 1, . . . , M, every positive value .ε > 0, and given .μ > 0, .λ > 0, 
.Si , Mi ∈ L1 , and .TS ∈ L(L1 , the minimization problem (5.25) has at least one 
solution. 

Proof Since the set. i,ε is nonempty, we can assert the existence of a minimizing sequence 
.{(uk, pk)}k∈N ⊂ i,ε. Then arguing as in the proof of Theorem 5.4, we deduce the bound-
edness of the sequence .{uk}k∈N in .W 1,pk (·) and, hence, the existence of a subsequence,
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still denoted in the same way, such that.uk u0
ε in.W 1,α and in variable.W 1,pk (·) . As  

for the sequence .{pk}k∈N, we see that 

. {pk(·)} ⊂ S = h ∈ C0,1 |h(x) − h(y)| ≤ C |x − y|, ∀ x, y, ∈
1 < α ≤ h(·) ≤ β in

and.maxx∈ |pk(x)| ≤ β. Since each element of the sequence.{pk}k∈N has the same modulus 
of continuity, it follows that this sequence is uniformly bounded and equi-continuous. Hence, 
by Arzelà–Ascoli Theorem the sequence .{pk}k∈N is relatively compact with respect to the 
norm topology of .C( . Since the set .S is closed with respect to the uniform convergence, 
it follows that 

. pk(·) → p0ε (·) uniformly in as k → ∞ and, therefore, p0ε ∈ Sad .

Thus, we can suppose that for a given minimizing sequence there exists a subsequence of 
.{(uk, pk)}k∈N in .W 1,pk (·) × C0,1 , still denoted in the same way, and a pair . u0

ε, p0ε
such that .pk → p0ε in .C( , .uk u0

ε in .W 1,α and in variable .W 1,pk (·) . Then, by 
the Sobolev embedding theorem, we deduce that .uk → u0

ε strongly in .Lq for all . q ∈
[1, 2α

2−α
), and, therefore, we can suppose that .uk(x) → u0

ε(x) almost everywhere in . as 
.k → ∞. As a result, we have 

. γ0,i ≤ u0
ε(x) ≤ γ1,i and α ≤ p0ε (x) ≤ β a.a. in

lim
k→∞ |TS(uk(x)) − Si (x)| dx = |Ti (u

0
ε(x)) − Si (x)| dx,

lim
k→∞ TM |(Gσ ∗ uk) (·) − Mi (·)|2 = TM | Gσ ∗ u0

ε (·) − Mi (·)|2 ,

lim inf
k→∞ |∇uk(x)|pk (x) dx

by (5.14)≥ |∇u0
ε(x)|p0ε (x) dx .

Thus, . u0
ε, p0ε ∈ i,ε. It remains to notice that 

. pk − 1 − g (|(∇Gσ ∗ uk) (x)|) 2 → p0ε − 1 − g ∇Gσ ∗ u0
ε (x)

2

in .C( , and the Lebesgue dominated convergence theorem implies 

. lim
k→∞ pk − 1 − g (|(∇Gσ ∗ uk) (x)|) 2

dx

= p0ε − 1 − g ∇Gσ ∗ u0
ε (x)

2
dx .

Utilizing the above mentioned properties, we finally obtain 

. Ji,ε(u
0
ε, p0ε ) ≤ lim inf

k→∞ Ji,ε(uk, pk) = inf
(v,p)∈ i

Ji,ε(v, p).

Thus, . u0
ε, p0ε ∈ i,ε is an optimal pair to the problem (5.25).



5.3 On Relaxation of the Minimization Problem (5.7)–(5.8) 179

Taking this existence result into account, we pass to the study of approximation properties 
of the problems (5.25). Namely, we establish the convergence of minima of (5.25) to minima 
of (5.22)–(5.24) as . ε tends to zero. In other words, we show that some optimal solutions to 
(5.22)–(5.24) can be approximated by the quasi-optimal solutions of this problem. 

Theorem 5.8 Let . (u0
ε, p0ε ) ∈ i,ε ε>0 be a sequence of minimizers to the problem (5.25). 

Then there exists a subsequence of . (u0
ε, p0ε ) ε>0, still denoted by the same index . ε, such 

that 

.p0ε → p0 in C( as ε → 0, (5.29) 

.u0
ε u0 in W 1,α as ε → 0, (5.30) 

.u0
ε u0 in W 1,p0ε (·) u0 ∈ W 1,p0(·) (5.31) 

.p0(x) = 1 + g ∇Gσ ∗ u0 (x) in (5.32) 

. Ji (u
0) = inf

v∈ i
Ji (v)

= lim
ε→0

inf
(u,p)∈ i,ε

Ji,ε(v, p) = lim
ε→0

Ji,ε(u
0
ε, p0ε ), (5.33) 

and .u0 ∈ i . 

Proof Let .u∗ ∈ i be an arbitrary feasible solution to the original problem (5.7)–(5.8). 
We set.p∗ = F(u∗(·)) in. . Then.u∗ ∈ W 1,α ,.p∗ ∈ Sad ,.Ji,ε(u∗, p∗) = Ji (u∗) < +∞, 
and, as a consequence, .(u∗, p∗) ∈ i,ε for each .ε > 0. 

Since .Ji,ε(u0
ε, p0ε ) ≤ Ji,ε(u∗, p∗) = Ji (u∗) =: C∗, it follows from (5.25) that 

. sup
ε>0

|∇u0
ε(x)|p0ε (x) dx ≤ C∗, (5.34) 

. p0ε (x) − 1 − g ∇Gσ ∗ u0
ε (x)

2
dx ≤ εC∗, ∀ ε > 0. (5.35) 

Since. p0ε ∈ C0,1( is a bounded sequence in.C( with the same modulus of continuity, 
it follows, by Arzelà–Ascoli Theorem, that this sequence is relatively compact with respect 
to the norm topology of.C( . Without loss of generality, we can suppose that there exists a 
function.p0 ∈ C( such that assertion (5.29) is valid. Moreover, as follows from definition 
of the set .Sad , the limit function .p0 is subjected to the pointwise constraints 

. α := 1 + δ ≤ p0(x) ≤ β := 2, ∀ x ∈

Arguing in a similar manner, we can infer from (5.34) and the two-side inequality 

.0 ≤ γ0,i ≤ u0
ε(x) ≤ γ1,i a.a. in ∀ ε > 0 (5.36)
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that the sequence. u0
ε is relatively compact with respect to the weak topology of.W 1,α . 

Indeed, taking into account (5.36) and observing that 

. sup
ε>0

|u0
ε(x)|p0ε (x) dx

by (5.36)≤ +∞,

we see that .u0
ε ∈ W 1,p0ε (·) for all .ε > 0 and the sequence . u0

ε is bounded in variable 

space.W 1,p0ε (·) . Hence, this sequence is bounded in.W 1,α . Therefore, in view of com-
pleteness of.W 1,α , there exists a function.u0 ∈ W 1,α such that, up to a subsequence, 
property (5.30) holds true. As a result, Proposition 5.3 and Sobolev embedding theorem lead 
us to the conclusion: 

. u0
ε u0 in W 1,p0ε (·) u0 ∈ W 1,p0(·)

u0
ε → u0 strongly in Lq for all q ∈ [1, α∗), (5.37) 

where .α∗ = 2α
2−α

. So, we can suppose that .u0
ε(x) → u0(x) a.e. in . . Then passing to the 

limit in (5.36) as.ε → 0, we see that the limit function.u0 is also subjected to the point-wise 
constraints 

.0 ≤ γ0,i ≤ u0(x) ≤ γ1,i a.a. in (5.38) 

Moreover, utilizing the estimate (5.35) and properties (5.29)–(5.30), we get 

. lim
ε→0

p0ε (x) − 1 − g ∇Gσ ∗ u0
ε (x)

2
dx

= p0(x) − 1 − g ∇Gσ ∗ u0 (x)
2

dx = 0.

Hence, .p0(x) = 1 + g ∇Gσ ∗ u0 (x) in . . Thus, .u0 ∈ W 1,F(u0(·)) . Combining 
this fact with (5.38), we see that the limit function .u0 is a feasible solution to minimization 
problem (5.7)–(5.8). 

Let us show that this function is optimal to the problem (5.7)–(5.8). Since 

. lim
ε→0

|TS(u0
ε(x)) − Si (x)| dx

by (5.37)= |TS(u0(x)) − Si (x)| dx,

lim
ε→0

TM | Gσ ∗ u0
ε (·) − Mi (·)|2 by (5.37)= TM | Gσ ∗ u0 (·) − Mi (·)|2 ,

it follows from Proposition 5.3 that 

. lim inf
ε→0

Ji,ε(u
0
ε, p0ε ) ≥ Ji (u

0). (5.39) 

Then, assuming the converse—namely, there is a function.u ∈ i such that.Ji (u) < Ji (u0), 
we get:
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. (u, p) ∈ i,ε ∀ ε > 0 with p := F(u(·)),
Ji (u) ≡ Ji,ε(u, p) ≥ inf

(v,p)∈ i,ε
Ji,ε(v, p) = Ji,ε(u

0
ε, p0ε ).

Hence, 

.Ji (u) ≥ lim sup
ε→0

Ji,ε(u
0
ε, p0ε ) ≥ lim inf

ε→0
Ji,ε(u

0
ε, p0ε )

by (5.39)≥ Ji (u
0), (5.40) 

and we come into contradiction with the initial assumptions. Thus, .u0 is a solution of the 
original problem (5.7)–(5.8). In order to establish the equality (5.33), it is enough, instead 
of .(u, p), to take .(u0, p0) in (5.40). 

Since Theorem 5.8 does not give an answer whether the entire set of solutions to the 
problem (5.7)–(5.8) can be attained in such a way, the following result sheds some light on 
this matter. 

Corollary 5.9 Let .u0 ∈ i be a minimizer to optimization problem (5.7)–(5.8) such that 
there is a closed neighborhood .U(u0) of . u0 in the norm topology of .Lα satisfying 

. Ji (u
0) < Ji (v) ∀ v ∈ i ∩ U(u0).

Then there exists a sequence of local minima . (u0
ε, p0ε ) ε>0 of problems (5.25) such that 

. (u0
ε, p0ε ) → (u0,F(u0(·))) in the sense of Theorem 5.8.

Proof By the strict local optimality of . u0, we have that it is the unique solution of the 
problem 

. min
v∈ i ,v∈U(u0)

Ji (v). (5.41) 

For every .ε > 0 let us consider the following optimization problems 

. min
(v,p)∈ i,ε,v∈U(u0)

Ji,ε(v, p). (5.42) 

Since the set. (v, p) ∈ i,ε, v ∈ U(u0) is nonempty, it follows that the problem (5.42) has  
at least one solution.(u0

ε, p0ε ) for every.ε > 0. Now, arguing as in the proof of Theorem 5.8, 
we deduce that .(u0

ε, p0ε ) → (ũ0, p̃0) in the sense of convergences (5.29)–(5.33), and .ũ0 is 
a solution of (5.41). Since .u0 is the unique solution of (5.41), we infer that .u0 = ũ0 and, 
therefore,.(u0

ε, p0ε ) → (u0,F(u0(·))) in the sense of Theorem 5.8. This implies the existence 
of .ε0 > 0 such that .u0

ε belongs to the interior of .U(u0) for every .ε ≤ ε0. Consequently, 
.(u0

ε, p0ε ) is a local minimum of (5.25) for every .ε ≤ ε0. This concludes the proof.
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5.4 Proximal Alternating Minimization Algorithm and Its 
Modification 

In this section we discuss an algorithm that will attempt to numerically compute the solutions 
to the state constrained minimization problem (5.22)–(5.24). As follows from Theorem 5.8, 
some optimal solutions to (5.22)–(5.24) can be obtained as cluster points of the quasi-optimal 
solutions to this problem. From practical point of view, it means that we can focus on the 
mathematical model of approximating problem (5.25)–(5.26), with .ε > 0 small enough, 
which models the solution that we are after. For a concise presentation, we cast problem 
(5.25)–(5.26) in the form 

.(v∗, p∗) ∈ Argmin
(v,p)∈ i,ε

Ji,ε(v, p). (5.43) 

Since the objective functional .Ji,ε(v, p) is neither convex in the joint variables .(v, p) nor 
bi-convex (i.e., convex in each of the variables . v and . p), an abstract algorithm for finding 
solution of (5.43) is the proximal alternating minimization algorithm [ 2]. Given the initial 
pair .(v0, p0) ∈ i ⊂ i,ε, where  

. v0(x) = Mi (x) and p0(x) = 1 + g (|(∇Gσ ∗ v0) (x)|) in

and the step sizes .τ u
k , τ

q
k > 0, the next iterations can be computed by the update scheme 

.(vk, pk) −→ (vk+1, pk) −→ (vk+1, pk+1), (5.44) 

.vk+1 ∈ Argmin
u∈W 1,α

γi,0≤u(x)≤γi,1

1

2τ u
k

u − vk
2
L2 + Ji,ε(u, pk) , (5.45) 

.pk+1 ∈ Argmin
q∈Sad

1

2τ q
k

q − pk
2
L2 + Ji,ε(vk+1, q) . (5.46) 

It is well known that under reasonably mild conditions on the regularity of .Ji,ε (which are 
obviously satisfied in our case, see [ 2] for the details), the proximal alternating minimization 
algorithm monotonously decreases the objective functional and its iterates converge to a 
critical point of .Ji,ε. However, as it was mentioned in [ 2], very few general results ensure 
that the sequence .{(vk, pk)}k∈N converges to a global minimizer of (5.22)–(5.24), even for 
strictly convex functions. Meanwhile, exploiting the fact that minimization problem (5.46) 
with . ε small enough admits a unique minimizer .pk+1 at each step of iteration, we see that 

.pk+1(x) = 1 + g (|(∇Gσ ∗ vk+1) (x)|) in (5.47) 

In fact, it means that due to the equality (5.47), we can alleviate this approach. Indeed, in 
view of the representation (5.47), we can specify the above mentioned iteration procedure 
as follows
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. (vk, pk) −→ (vk+1, pk+1), (5.48) 

.vk+1 ∈ Argmin
u∈W 1,α

γi,0≤u(x)≤γi,1

1

2τ u
k

u − vk
2
L2 + Ji,ε(u, pk) , (5.49) 

.pk+1(x) = 1 + g (|(∇Gσ ∗ vk+1) (x)|) in (5.50) 

provided the parameter.ε > 0 is chosen small enough. However, as follows from the structure 
of the penalized objective functional .Ji,ε, we still deal with a non-convex optimization 
problem in (5.49). 

In view of this, the main idea, we are going to push forward in this section, is to represent 
the iteration procedure (5.48)–(5.50) as follows 

.(vk, pk) −→ (vk+1, pk+1), (5.51) 

.vk+1 ∈ Argmin
u∈Bi,pk (·)

1

2τ u
k

u − vk
2
L2 + Fi (u, pk) , (5.52) 

.pk+1(x) = 1 + g (|(∇Gσ ∗ vk+1) (x)|) in (5.53) 

where the cost functional .Fi is defined in (5.23) and  

. Bi,p(·) = v ∈ W 1,p(·) : 1≤γi,0 ≤ v(x) ≤ γi,1 a.e. in .

The main benefit of this modification is to pass to convex optimization problems at each 
step of iteration. Then arguing as in the proof of Theorem 5.4 and using convexity arguments, 
it can be shown that, for each .pk(·) ∈ Sad , there exists a unique element . vk+1 ∈ Bi,pk (·)
such that .vk+1 = Argmin

u∈Bi,pk (·)

1
2τ u

k
u − vk

2
L2 + Fi (u, pk) . This fact reflects the principle 

difference between optimization problems (5.52) and (5.22), where the problem (5.52) can be 
viewed as a minimization of the growth energy functional (5.23) with “the frozen exponent” 
.pk(x). Thus, the sequence .{vk}k∈N can be defined in a unique way. Moreover, the iteration 
procedure (5.48)–(5.50) possesses the following property. 

Proposition 5.10 For any sequences of stepsizes . τ u
k k∈N, . τ

q
k k∈N such that . τ u

k , τ
q
k ∈

(r−, +∞) for all .k ∈ N with some positive . r−, the numerical sequence . {Fi (vk, pk)}k∈N
does not increase and the estimates 

. Fi (vk+1, pk+1) + 1

2τ q
k

pk+1 − pk
2
L2 + 1

2τ u
k

vk+1 − vk
2
L2

≤ Fi (vk, pk), ∀ k ∈ N, (5.54) 

.

∞

k=1

vk − vk−1
2
L2 pk − pk−1

2
L2 < +∞ (5.55) 

hold true.
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Proof To begin with, we notice that the equality (5.53) can be rewritten in an equivalent 
form as follows 

.pk+1 ∈ Argmin
q∈Sad

1

2τ q
k

q − pk
2
L2 + Fi (vk+1, q) (5.56) 

provided the stepsizes .τ q
k is greater than a fixed positive parameter which can be chosen 

arbitrarily large. In this case the algorithm (5.48)–(5.50) is very close to a coordinate descent 
method. Then 

. Fi (vk+1, pk) + 1

2τ u
k

vk+1 − vk
2
L2

by (5.52)≤ Fi (vk, pk),

Fi (vk+1, pk+1) + 1

2τ q
k

pk+1 − pk
2
L2

by (5.56)≤ Fi (vk+1, pk).

Hence, an elementary induction 

. Fi (vk+1, pk+1) + 1

2τ q
k

pk+1 − pk
2
L2 + 1

2τ u
k

vk+1 − vk
2
L2

≤ Fi (vk+1, pk) + 1

2τ u
k

vk+1 − vk
2
L2 ≤ Fi (vk, pk), ∀ k ∈ N

ensures that estimate (5.54) is valid. 
As for estimate (5.55), it is enough to observe that .Fi (v, p) ≥ 0 for all feasible pairs 

.(v, p). Hence, (5.55) immediately follows from (5.54). As a consequence, we have, 

. lim
k→∞ vk − vk−1 L2 = lim

k→∞ pk − pk−1 L2 = 0.

We say that a function .ui is a weak solution to the original problem (5.7)–(5.8) if  

.

ui = Argmin
v∈Bpi

Fi (v, pi (·)), ui ∈ Bi,pi (·),

pi (x) = 1 + g (|(∇Gσ ∗ ui ) (x)|) , ∀ x ∈
(5.57) 

Remark 5.11 The relation between a weak solution and a solution to the problem (5.7)– 
(5.8) is rather intricate. Since the uniqueness of solutions to (5.7)–(5.8) is a questionable 
option, it follows that, in principle, these definitions can describe the different functions in 
. i . As immediately follows from (5.57), a weak solution is a merely feasible one to the 
original problem. However, if the problem (5.22) admits a unique solution .(u0

i , p0i ) ∈ i , 
then (5.57) implies that the function .u0

i can be considered as a weak solution. 

Before proceeding further, we note that, for given .i = 1, . . . , m, the sequence of expo-
nents .{pk}k∈N is compact with respect to the strong topology of .C( . Our next goal is to



5.4 Proximal Alternating Minimization Algorithm and Its Modification 185

establish the existence of a weak solution to the original problem (5.7)–(5.8) and show  that  
it can be attained by the iterative algorithm (5.51)–(5.53). To do so, we begin with some 
technical results. 

Lemma 5.12 For each .i = 1, . . . , m and given .μ ∈ (0, 1), .λ > 0, .S ∈ L1 ;Rm), . M :
GL → R

m, and .TS ∈ L(L1 , the sequence of minimizers . vk ∈ W 1,pk (·)
k∈N of 

(5.52) is compact with respect to the weak topology of .W 1,α . 

Proof Let us show that the sequence of minimizers .{vk}k∈N of (5.52) is bounded in the 
following sense 

. lim sup
k→∞

|vk(x)|pk (x) dx < +∞.

Let .u ∈ C1( be an arbitrary function such that .γ0,i ≤ u(x) ≤ γ1,i in . . Since  

. Fi (vk, pk) ≤ Fi (u, pk) + 1

2τ u
k−1

u − vk−1
2
L2 , ∀ k = 1, 2, . . .

and 

. |∇u(x)|pk (x) dx ≤ 1 u C1(

pk (x)

dx

≤ | | 1 u C1(

2
,

|∇u(x) − ∇Si (x)| dx ≤ u C1( + |∇Si (x)| dx

≤ | u C1( Si W 1,1 ,

|TSu(x) − Si (x)| dx ≤ TS L(L1 γ1,i + |Si (x)| dx

≤ | TS L(L1 γ1,i Si L1 ,

TM |(Gσ ∗ u(·)) − Mi (·)|2 ≤ Gσ ∗ u C( Mi C(

2

≤
⎛
⎜⎝ 1

√
2πσ

2 u C( Mi C(

⎞
⎟⎠

2

,

u − vk−1
2
L2 ≤ 4γ 2

1,i | |,

it follows that 

. sup
k∈N

Fi (vk, pk) ≤ sup
k∈N

Fi (u, pk) + 1

2τ u
k−1

u − vk−1
2
L2 ≤ C

with some appropriate constant .C > 0.
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From this and definition of the set .Bi,pk (·), we deduce  

. |vk(x)|α dx ≤ γ α
1,i | |, ∀ k ∈ N,

|∇vk(x)|pk (x) dx ≤ C, ∀ k ∈ N.

Since (see [ 11, 17, 43] for the details) 

. f α
L p(·) − 1 ≤ | f (x)|p(x) dx f β

L p(·) + 1, ∀ f ∈ L p(·) (5.58) 

it follows that the sequence .{vk}k∈N is bounded in .W 1,α . So, its weak compactness is a 
direct consequence of the reflexivity of .W 1,α . 

We notice that boundedness of the sequence .{vk}k∈N in .W 1,α and compactness of 

the embedding .W 1,α → Lq for .q ∈ 1, 2α
2−α

imply the existence of an element 

.u∗ ∈ W 1,α such that, up to a subsequence, 

. vk(x) → u∗(x) a.e. in (5.59) 

. vk → u∗ in Lq and ∇vk ∇u∗ in Lα ;R2). (5.60) 

Then using (5.59) and passing to the limit in two-side inequality .γ0,i ≤ vk(x) ≤ γ1,i , we  
obtain 

. γ0,i ≤ u∗(x) ≤ γ1,i f or a.a. x ∈
Utilizing this fact together with the pointwise convergence (5.59), by the Lebesgue domi-
nated convergence theorem, we have 

. lim
k→∞ pk(x) = lim

k→∞F(vk(x)) = 1 + a2

a2 + lim
k→∞ (∇Gσ ∗ vk) (x)

2

= 1 + a2

a2 + ∇Gσ ∗ lim
k→∞ vk (x)

2
= F(u∗(x)), ∀ x ∈ (5.61) 

Since, by Arzelà–Ascoli theorem, the set . pk = 1 + g (∇Gσ ∗ vk) (x) k∈N is compact 
with respect to the norm topology of .C( , it follows  from (5.61) (see also the proof of 
Lemma 5.2) that 

.pk → p∗ = F(u∗(x)) strongly in C( as k → ∞, and p∗ ∈ Sad . (5.62) 

Then properties (5.59)–(5.62) and Proposition 5.3 imply: 

.u∗ ∈ Bi,p∗(·) = u ∈ W 1,p∗(·) : 1 ≤ γi,0 ≤ u(x) ≤ γi,1 a.e. in .
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Thus, the iterative procedure (5.48)–(5.50) has a cluster point . (u∗, p∗) ∈ Bi,p∗(·) × Sad

with respect to the convergence (5.59)–(5.60), (5.62). 
We are now in a position to state the main result of this section. 

Theorem 5.13 Let .μ ∈ (0, 1), .λ > 0, .S ∈ L1 ;Rm), .M : GL → R
m, and . TS ∈ L

(L1 be given data. Let . τ u
k k∈N be a monotonically increasing sequence of posi-

tive stepsizes such that .τ u
k → ∞ as .k → ∞. Then, for each .i = 1, . . . , m, the sequence 

.{(vk, pk)}k∈N, coming from the iteration procedure (5.48)–(5.50), possesses the following 
asymptotic properties: 

.vk(x) → ui (x) a.e. in (5.63) 

.vk → ui in Lq ∀ q ∈ 1,
2α

2 − α
, ∇vk ∇ui in Lα ;R2), (5.64) 

.pk → pi = F(ui ) strongly in C( as k → ∞, (5.65) 

where . ui is a weak solution to the problem (5.7)–(5.8), that is, 

. ui ∈ Bi,pi (·), ui = Argmin
v∈Bi,pi (·)

Fi (v, pi ),

and, in addition, the following variational property holds true 

.Fi (vk, pk) ≥ Fi (vk+1, pk+1), ∀ k ∈ N, (5.66) 

. lim
k→∞ Fi (vk, pk(·)) = lim

k→∞ inf
v∈Bi,pk (·)

Fi (v, pk)

= inf
v∈Bi,pi (·)

Fi (v, pi (·)) = Ji (ui ). (5.67) 

Proof “Lemma 5.12, the sequence.{(vk, pk)}k∈N is compact with respect to the convergence 
(5.63)–(5.65). Let.(ui , pi ) be its cluster point. In order to show that the function.ui is a weak 
solution to the problem (5.7)–(5.8), we assume the converse—namely, there is another 
function .z ∈ Bi,pi (·) such that 

.Fi (z, pi ) = inf
v∈Bi,pi (·)

Fi (v, pi ) < Fi (ui , pi ) ≡ Ji (ui ). (5.68) 

Using the procedure of the standard direct smoothing, we set 

. uε(x) = 1

ε2 R2
K

x − s

ε
z(s) ds,

where.ε > 0 is a small parameter,.K is a positive compactly supported smooth function with 
properties



188 5 Variational Approach to Simultaneous Fusion and Denoising…

. K ∈ C∞
0 (R2),

R2
K (x) dx = 1, and K (x) = K (−x),

and . z is zero extension of . z outside of . . 
Since .z ∈ W 1,p(·) and .p(x) ≥ α = 1 + δ in . , it follows that .z ∈ W 1,α . Then 

. uε ∈ C∞
0 (R2) for each ε > 0,

uε → z in Lα ∇uε → ∇z in Lα ;R2) (5.69) 

by the classical properties of smoothing operators. From this we deduce that 

.uε(x) → z(x) a.e. in (5.70) 

Moreover, taking into account the estimates 

. uε(x) =
R2

K (y) z(x − εy) dy ≤ γ1,i
R2

K (y) dy = γ1,i ,

uε(x) ≥
y∈ε−1(x−

K (y) z(x − εy) dy ≥ γ0,i
y∈ε−1(x−

K (y) dy ≥ γ0,i ,

we see that each element .uε is subjected to the pointwise constraints 

. γ0,i ≤ uε(x) ≤ γ1,i a.e. in ∀ ε > 0.

Since, for each.ε > 0,.uε ∈ W 1,pk (·) for all.k ∈ N, it follows that.uε ∈ Bi,pk (·), i.e., each 
element of the sequence .{uε}ε>0 is a feasible solution to all approximating problems 

. inf
v∈Bi,pk (·)

1

2τ u
k

v − vk
2
L2 + Fi (v, pk) , k ∈ N. (5.71) 

Hence, 

. Fi (vk+1, pk) + 1

2τ u
k

vk+1 − vk
2
L2

by (5.52)≤ Fi (uε, pk) + 1

2τ u
k

uε − vk
2
L2 ,

Fi (vk+1, pk+1) + 1

2τ q
k

pk+1 − pk
2
L2

by (5.56)≤ Fi (vk+1, pk)

for all .ε > 0 and .k = 0, 1, . . .. From this we deduce that 

. Fi (vk+1, pk+1) ≤ Fi (uε, pk)

+ 1

2τ u
k

uε − vk
2
L2 , ∀ ε > 0, ∀ k = 0, 1, . . . (5.72) 

Further, we notice that 
. lim inf

k→∞ Fi (vk, pk) ≥ Fi (ui , pi ) (5.73)
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by Proposition 5.3 and Fatou’s lemma. Since 

. |∇uε(x)|pk (x) → |∇uε(x)|pi (x) uniformly in as k → ∞,

it follows from the Lebesgue dominated convergence theorem that the objective functional 
.Fi (uε, ·) is continuous with respect to the norm convergence in .C( , i.e. 

. lim
k→∞ Fi (uε, pk) = Fi (uε, pi ), ∀ε > 0. (5.74) 

As a result, passing to the limit in (5.72) and utilizing properties (5.73)–(5.74), we obtain 

. lim
k→∞

1

2τ u
k

uε − vk
2
L2 = 1

2 lim
k→∞ τ u

k
uε − ui

2
L2 = 0.

Therefore, 

. Fi (ui , pi ) ≤ Fi (uε, pi ) = |∇uε(x)|pi (x) dx

+ λ |∇uε(x) − ∇Si (x)| dx + μ |TSuε(x) − Si (x)| dx

+ 1 − μ

2
TM |(Gσ ∗ uε) (·) − Mi (·)|2 , ∀ ε > 0. (5.75) 

Taking into account the pointwise convergence (see (5.70) and property (5.69)) 

. |∇uε(x)|pi (x) → |∇z(x)|pi (x), a.e. in

|TSuε(x) − Si (x)| → |TSz(x) − Si (x)|, a.e. in

|∇uε(x) − ∇Si (x)| dx → |∇z(x) − ∇Si (x)| dx,

(Gσ ∗ uε) (x) − Mi (x) → (Gσ ∗ z) (x) − Mi (x), in

as .ε → 0, and the fact that, for . ε small enough, 

. |∇uε|pi (·) ≤ (1 + |∇z|)pi (·) ∈ L1

TSuε(·) − Si (·) ≤ TS (1 + |z(·)|) + |Si (·)| ∈ L1

we can pass to the limit in (5.75) as.ε → 0 by the Lebesgue dominated convergence theorem. 
This yields 

. Fi (ui , pi (·)) ≤ lim
ε→0

Fi (uε, pi (·)) = Fi (z, pi (·)).

Combining this inequality with (5.75) and (5.68), we finally get 

.Fi (z, pi ) = inf
v∈Bi,pi (·)

Fi (v, pi ) < Fi (ui , pi ) ≤ Fi (z, pi ),
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that leads us into conflict with the initial assumption. Thus, 

.Ji (ui ) = Fi (ui , pi (·)) = inf
v∈Bi,pi (·)

Fi (v, pi (·)) (5.76) 

and, therefore, .ui is a weak solution to the original problem (5.7)–(5.8). As for the varia-
tional property (5.67) and property (5.66), they immediately follow from (5.76), (5.74), and 
Proposition 5.10. 

5.5 Optimality Conditions 

To characterize the solution .u0,p(·) ∈ Bi,p(·) of the approximating optimization problem 
. infv∈Bi,p(·) Fi (v, p(·)) , we check whether the objective functional . Ji (v, p)

. Fi (v, p) = |∇v(x)|p(x) dx + λ |∇v(x) − ∇Si (x)| dx

+ μ |TSv(x) − Si (x)| dx

+ 1 − μ

2
TM |(Gσ ∗ v) (·) − Mi (·)|2 (5.77) 

is Gâteaux differentiable with respect to . v. Namely, let us show that 

. lim
t→0

Fi (u0,p(·) + tv, p) − Fi (u0,p(·), p)

t

= p(x) |∇u0,p(·)(x)|p(x)−2∇u0,p(·)(x), ∇v(x) dx

+ λ
∇u0,p(·)(x) − ∇Si (x), ∇v

|∇u0,p(·)(x) − ∇Si (x)| dx + μ
TS u0,p(·)

|TS u0,p(·) − Si |
TS(v) dx

+ (1 − μ)TM Gσ ∗ u0,p(·) − Mi Gσ ∗ v , ∀ v ∈ W 1,p(·) (5.78) 

To this end, we note that 

. 
|∇u0,p(·)(x) + t∇v(x)|p(x) − |∇u0,p(·)(x)|p(x)

p(x)t

→ |∇u0,p(·)(x)|p(x)−2∇u0,p(·)(x), ∇v(x)

as .t → 0 almost everywhere in . . Indeed, by convexity, 

. |ξ |p − |η|p ≤ 2p |ξ |p − 1 + |η|p−1 |ξ − η|,

it follows that
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. 
1

p(x)t
|∇u0,p(·)(x) + t∇v(x)|p(x) − |∇u0,p(·)(x)|p(x)

≤ 2 u0,p(·)(x) + t∇v(x) p(x)−1 u0,p(·)(x) p(x)−1 v(x)

≤ const |∇u0,p(·)(x)|p(x)−1 + |∇v(x)|p(x)−1 |∇v(x)|. (5.79) 

Taking into account that 

. |∇u0,p(·)(x)|p(x)−1|∇v(x)| dx

≤ 2 u0,p(·)(x)|p(x)−1
L p (·) v(x) L p(·)

≤ 2 u0,p(·)(x)|p(x)−1
L p (·) R2)

v(x) L p(·) R2),

and . |∇v(x)|p(x) dx
by (5.58) 

v 2 
L p(·) R2) + 1, we see that the right hand side of 

inequality (5.79) is an .L1 -function. Therefore, 

. 
|∇u0,p(·)(x) + t∇v(x)|p(x) − |∇u0,p(·)(x)|p(x)

t
dx

→ p(x) |∇u0,p(·)(x)|p(x)−2∇u0,p(·)(x), ∇v(x) dx as t → 0

by the Lebesgue dominated convergence theorem. 
Utilizing similar arguments to the rest of terms in (5.77), we deduce that the representation 

(5.78) for the Gâteaux differential of .Fi (·, p(·)) at the point .u0,p(·) ∈ Bi,p(·) is valid. 
Thus, in order to derive some optimality conditions for the minimizing element . vk+1 ∈

Bi,pk (·) to the problem (5.71), we note that .Bi,pk (·) is a nonempty convex subset of 
.W 1,pk (·) and the objective functional 

. 
1

2τ u
k

vk
2
L2 + Fi (·, pk) : Bi,pk (·) → R

is strictly convex. Hence, the well known classical result (see [ 31, Theorem 1.1.3]) and 
representation (5.78) lead us to the following conclusion. 

Theorem 5.14 Let .pk(·) ∈ S be an exponent given by the iterative rule (5.53). Let . i ∈
{1, . . . , m} be the number of a fixed spectral channel. Then the unique minimizer . vk+1 ∈
Bi,pk (·) to the approximating problem (5.71) is characterized by 

. pk(x)|∇vk+1(x)|pk (x)−2∇vk+1(x), ∇v(x) − ∇vk+1(x) dx

+ λ
∇vk+1(x) − ∇Si (x), ∇v − ∇vk+1(x)

|∇vk+1(x) − ∇Si (x)| dx
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+ μ 
TS (vk+1) 

|TS (vk+1) − Si |
TS(v − vk+1) dx 

+ (1 − μ)TM (Gσ ∗ vk+1) − Mi Gσ ∗ (v − vk+1) 

+ 
1 

τ u 
k 

(vk+1 − vk , v − vk+1)L2 ≥ 0, ∀ v ∈ Bi ,pk (·). (5.80) 

5.6 Numerical Scheme and Settings 

In order to illustrate the proposed algorithm for the simultaneous fusion and denoising of 
color images with different spacial resolution, we conduct the numerical simulations setting 
.TS = I d for each spectral channels .i = R, G, B and extending the set of feasible solutions 
.Bi,pk (·) to the form .Bi,pk (·) = W 1,pk (·) . In other words, we have dropped the two-side 
constraints .γi,0 ≤ u(x) ≤ γi,1 from the sets .Bi,pk (·), and instead we control the fulfilment 
of this two-side constraints at each step of the numerical approximations. We also use the 
.L1-norm for the fidelity terms. As a result, it allows us to rewrite the variational problem 
(5.80) in the form of the following boundary value problem 

. − div pk |∇vk+1|pk (·)−2∇vk+1

= λ div
∇vk+1 − ∇Si

|∇vk+1 − ∇Si |
− μT ∗

S
TS (vk+1)

|TS (vk+1) − Si |
− (1 − μ)

(xi ,y j )∈SL

δ(xi ,y j ) (Gσ ∗ vk+1) − Mi

− 1

τ u
k

(vk+1 − vk) , in (5.81) 

.
∂vk+1

∂n
= 0 on (5.82) 

with .pk(·) defined in (5.53), and .k = 1, 2, . . .. 
Since, in practical implementations, it is reasonable to define the solution of the problem 

(5.81)–(5.82) using a “gradient descent” strategy, we can start with some initial image. u∗
k+1

and pass to the following initial-boundary value problem for quasi-linear parabolic equation 
with Nuemann boundary conditions 

.
∂vk+1

∂t
= div pk |∇vk+1|pk (·)−2∇vk+1 + λ div

∇vk+1 − ∇Si

|∇vk+1 − ∇Si |
− μT ∗

S
TS (vk+1)

|TS (vk+1) − Si |
− (1 − μ)

(xi ,y j )∈SL

δ(xi ,y j ) (Gσ ∗ vk+1) − Mi
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− 
1 

τ u 
k 

(vk+1 − vk ) , in (0, T ) × (5.83) 

.
∂vk+1

∂n
= 0 on (0, T ) × (5.84) 

.vk+1(0, ·) = u∗
k+1(·), k = 0, 1, . . . , v0(0, ·) = Si (·), in (5.85) 

There are numerous approaches to solve quasi-linear partial differential equations (see 
the references [ 3, 20] for various techniques). Since we are dealing with pixels in image 
processing, finite differences approaches and an explicit scheme of the forward Euler method 
are arguably the best options. Let . t be a time step size. Then setting 

. t = n t, n = 0, 1, 2, . . . , x = l (1 ≤ l ≤ Nx ), y = j (1 ≤ j ≤ Ny),

where.(x, y) stands for image pixel and.Nx × Ny is the original image size at the grid .G H , 
we define the following discrete notations 

. 
x±vn

l j = ± vn
l±1, j − vn

l j
y
±vn

l j = ± vn
l, j±1 − vn

l j ,

m(a, b) = minmod (a, b) = sgn a+sgn b
2 min (|a|, |b|) ,

where.vn
l, j denotes the approximation of.vk+1(n t, l, j). Then the numerical approximation 

of the principle components of the boundary value problem (5.83)–(5.85) takes the form 

. 
∂vk+1

∂t

n

l, j
≈ vn+1

l, j −vn
l, j

t ,

div pk |∇vk+1|pk (·)−2∇vk+1
n
l, j ≈ x− Pn

l, j + y
− Qn

l, j ,

Pn
l, j = pn

l, j

ε2+ x+vn
l, j

2+ m y
+vn

l, j
y
−vn

l, j

2
2−pn

l, j

x+vn
l, j ,

Qn
l, j = pn

l, j

ε2+ y
+vn

l, j

2+ m x+vn
l, j

x−vn
l, j

2
2−pn

l, j

y
+vn

l, j ,

. div ∇vk+1−∇Si

|∇vk+1−∇Si |
n

l, j
≈ x− Rn

l, j + y
− W n

l, j ,

Rn
l, j =

x+vn
l, j − x+(Si )

n
l, j

ε2+ x+vn
l, j − x+(Si )

n
l, j

2+A2
1

,

W n
l, j =

y
+vn

l, j − y
+(Si )

n
l, j

ε2+ y
+vn

l, j − y
+(Si )

n
l, j

2+B2
1

,
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A1 = m y 
+vn 

l, j − y 
+(Si )

n 
l, j 

y 
−vn 

l, j − y 
−(Si )

n 
l, j , 

B1 = m x+vn 
l, j − x+(Si )

n 
l, j 

x−vn 
l, j − x−(Si )

n 
l, j , 

where 

. pn
l, j = 1 + a2

a2+[(|(∇Gσ ∗vk )(x)|)2]n
l, j

,

(|(∇Gσ ∗ vk) (x)|)n
l, j = 5

k1=−5
5
k2=−5 Gσ (k1, k2)vn

l−k1, j−k2
.

As a result, utilizing the formulas given above and associating each step .k = 1, 2, . . . of 
the iterative procedure (5.51)–(5.53) with the corresponding time step.n t in the numerical 
approximation of the parabolic problem (5.83)–(5.85), we arrive at the following numerical 
scheme associated with the initial boundary problem (5.83)–(5.85): 

. vn+1
l, j = vn

l, j + x− Pn
l, j t + y

− Qn
l, j t

+ x− Rn
l, j t + y

− W n
l, j t

+ μ
vn

l, j

ε2 + vn
l, j

2 + (S)n
l, j

2

+ (1 − μ)
vn

l, j − Ml, j if (l, j) ∈ SL ,

0 otherwise
(5.86) 

∀l = 1, . . . ,  Nx , ∀ j = 1, . . . ,  Ny, ∀ n = 0, 1, . . .  

with the initial conditions 

. v0l, j = Si l, j , ∀l = 1, . . . , Nx , ∀ j = 1, . . . , Ny

and boundary conditions 

.vn
0, j = vn

1, j , vn
Nx , j = vn

Nx −1, j , vn
l,0 = vn

l,1, vn
l,Ny

= vn
l,Ny−1, (5.87) 

∀l = 1, . . . ,  Nx , ∀ j = 1, . . . ,  Ny . 

To conclude this section, we note that the step size. t should be small enough in order to 
guarantee the stability of the numerical scheme (5.86)–(5.87). As for the stopping condition 

. vn+1
l, j ≈ vn

l, j for all land j

it can be formalized as follows 

. max
1≤l≤Nx

max
1≤ j≤Ny

vn+1
l, j − vn

l, j ≤ ε.
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5.7 Numerical Results 

For numerical simulations in this section, we set: .σ = 0.5, .ε = 0.001, .τ u
k = 100 ∗ k, . λ =

0.01, .μ = 0.1. As for the noise estimator .a > 0, we use the choice of Black et al. [ 4], i.e. 

. a = 1.4826√
2

M AD(∇Si ),

where .M AD denotes the median absolute deviation of the corresponding spectral channel 
.Si : G H → R of original image .S : G H → R

m that can bee computed as 

. M AD(∇Si ) = median ∇Si − median ∇Si

and.median ∇Si represents the median over the band.Si : G H → R to the gradient ampli-
tude. To guarantee the stability of the proposed algorithm, we make use of the following 
condition 

. 2
1

ε
+ λ t < 1,

where . ε comes from the approximation formulae for .Pn
l, j and .Qn

l, j , and we set .ε = 0.001. 

In order to illustrate the proposed approach we have used three images . SI : G I
H → R

3

(Dog),.SI I : G I I
H → R

1 (Barbara), and.SI I I : G I I I
H → R

3 (Christmas Tree) with the resolu-
tions in pixels.G I

H = 342 × 458,.G I I
H = 512 × 512, and.G I I I

H = 1200 × 800, respectively. 
Each of these images has been previously corrupted by the additive zero-mean Gaussian 
white noise with variance .0.01 (see Figs. 5.1, 5.2 and 5.3). 

As for the images of the same scenes with low resolution and with some extra objects, 
we have considered two collections. The first one is defined on the grids .G I

L = 114 × 152, 

Fig. 5.1 Noisy image 
.SI : G I

H → R
3 (Dog) defined 

on the grid.G I
H = 342 × 458
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Fig. 5.2 Noisy image.SI I : G I I
H → R

1 (Barbara) defined on the grid. G I I
H = 512 × 512

.G I I
L = 170 × 170, and.G I I I

L = 400 × 266, respectively, and the second one has the resolu-
tion .G I

L = 68 × 91, .G I I
L = 102 × 102, and .G I I I

L = 240 × 160, respectively (see Figs. 5.4 
and 5.5). 

Then following the proximal alternating minimization algorithm described in Sect. 5.4, 
we realize the fusion procedure of given images with simultaneous denoising procedure. 
Obtained results are depicted in Figs. 5.6, 5.7 and 5.8. 

It is worth to emphasize that the proposed algorithm is rather sensitive to the choice of 
parameter. μ (see Fig. 5.9 for illustration). As for the running time of processing, it takes for 
the Matlab-realization about .30, . 95, and .280 s for the images depicted in Figs. 5.6, 5.7 and 
5.8, respectively.
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Fig. 5.3 Noisy image.SI I I : G I I I
H → R

3 (Christmas Tree) defined on the grid.G I I I
H = 1200 × 800
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Fig. 5.4 Images with extra objects and which are defined on the grids with low resolution (. G I
L =

114 × 152, .G I I
L = 170 × 170, and.G I I I

L = 400 × 266), respectively 

Fig. 5.5 Images with extra objects and which are defined on the grids with low resolution (. G I
L =

68 × 91, .G I I
L = 102 × 102, and.G I I I

L = 240 × 160), respectively
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Fig.5.6 Result of Simultaneous Fusion and Denoising of.SI : G I
H → R

3 with. M I : (114 × 152) →
R
3 (left) and.SI : G I

H → R
3 with.M I : (68 × 91) → R

3 (right) 

Fig. 5.7 Result of Simultaneous Fusion and Denoising of .SI I : G I I
H → R

3 with . M I I : (170 ×
170) → R

3 (up) and.SI I : G I I
H → R

3 with.M I I : (102 × 102) → R
3 (bottom) 

The next portion of numerical simulations shows that the proposed technique can be 
successfully applied to the well-known spatial increasing resolution problem of MODIS-
like multi-spectral satellite images via their fusion with the Lansat-like imagery at higher 
resolution. As input data we have used a MODIS (the Moderate Resolution Imaging Spectro-
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Fig. 5.8 Result of Simultaneous Fusion and Denoising of .SI I I : G I I I
H → R

3 with . M I I I : (400 ×
266) → R

3 (left) and.SI I I : G I I I
H → R

3 with.M I I I : (240 × 160) → R
3 (right) 

radiometer) image of some region with resolution .350m/pi xel (see Fig. 5.10). This region 
represents a typical agricultural area with medium sides fields of various shapes. 

We also have the image of the same territory with resolution.25m/pi xel that was delivered 
from Landsat satellite at higher resolution. Figure 5.11 shows the RGB spectral channels of 
this image. 

Figure 5.12 displays the result of image fusion corresponding to the data given by 
Figs. 5.10 and 5.11. In order to validate the obtained result for satellite images, we have 
provided the following calculations. 
• Closednees of the means .ρ2 = |Mean I − Mean L| = 0; 
• Closedness of the variances .ρ3 = 100 |Var I−Var L|

Var L ≈ 6%; 
• ERGAS metric 

. E RG AS = 100
h

l

1

3

3

k=1

RMSE(k)

μ0(k)

2

= 2.24,

where.h/l is the ratio between the size of the high spatial resolution image pixel and the 
size of the pixel in the MODIS-like image.
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Fig. 5.9 Data Fusion of .SI I I : G I I I
H → R

3 with .M I I I : (400 × 266) → R
3 with a semi-

transparency effect (.μ = 0.8 left) and.μ = 0.4 (right) 

Fig. 5.10 The MODIS image 
with resolution.350m/pixel
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Fig. 5.11 The Landsat image with resolution. 25m/pixel

It is worth to notice that in view of the suggestions of Prof. L. Wald, if the ERGAS value 
is less than . 3, the spectral quality of an image is satisfactory.
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Fig. 5.12 The retrieved image at high resolution .25m/pixel as a result of simultaneous fusion and 
denoising of the MODIS and Landsat images 
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