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Introduction

So, you’'re holding a statistics book. In my humble (and
absolutely biased) opinion, it’s not just another statistics
book. It’s also not just another R book. I say this for two
reasons.

First, many statistics books teach you the concepts but
don’t give you an easy way to apply them. That often
leads to a lack of understanding. Because R is ready-
made for statistics, it’s a tool for applying (and learning)
statistics concepts.

Second, let’s look at it from the opposite direction:
Before I tell you about one of R’s features, I give you the
statistical foundation it’s based on. That way, you
understand that feature when you use it — and you use it
more effectively.

I didn’t want to write a book that only covers the details
of R and introduces some clever coding techniques.
Some of that is necessary, of course, in any book that
shows you how to use a software tool like R. My goal was
to go way beyond that.

Neither did I want to write a statistics “cookbook” —
when-faced-with-problem-category-#152-use-statistical-
procedure-#346. My goal was to go way beyond that,
too.

Bottom line: This book isn’t just about statistics or just
about R — it’s firmly at the intersection of the two. In the
proper context, R can be a useful tool for teaching and
learning statistics, and I've tried to supply the proper
context.

About This Book



Although the field of statistics proceeds in a logical way,
I've organized this book so that you can open it up in any
chapter and start reading. The idea is for you to find the
information you’re looking for in a hurry and use it
immediately — whether it’s a statistical concept or an R-
related one.

On the other hand, reading from cover to cover is okay if
you're so inclined. If you’'re a statistics newbie and you
have to use R to analyze data, I recommend that you
begin at the beginning.

Similarity with This Other
For Dummies Book

You might be aware that I've written another book:
Statistical Analysis with Excel For Dummies (Wiley). This
is not a shameless plug for that book. (I do that
elsewhere.)

I'm just letting you know that the sections in this book
that explain statistical concepts are much like the
corresponding sections in the other book. I use (mostly)
the same examples and, in many cases, the same words.
I've developed that material during decades of teaching
statistics and found it to be quite effective. (Reviewers
seem to like it, too.) Also, if you happen to have read the
other book and you're transitioning to R, the common
material might just help you make the switch.

And, you know: If it ain’t broke... .

What You Can Safely Skip

Any reference book throws a lot of information at you,
and this one is no exception. I intended for it all to be



useful, but I didn’t aim it all at the same level. So if
you're not deeply into the subject matter, you can avoid
paragraphs marked with the Technical Stuff icon.

As you read, you'll run into sidebars. They provide
information that elaborates on a topic, but they’'re not
part of the main path. If you’re in a hurry, you can
breeze past them.

Foolish Assumptions

I'm assuming this much about you:

» You know how to work with Windows or the Mac.
| don’t describe the details of pointing, clicking,
selecting, and other actions.

» You’re able to install R and RStudio (I show you
how in Chapter 2) and follow along with the
examples. | use the Windows version of RStudio, but
you should have no problem if you’'re working on a
Mac.




How This Book Is
Organized

I've organized this book into five parts and two
appendixes, which you can find on this book’s companion
website at www.dummies.com/go/statisticalanalysiswithrfd.
(The website also includes a copy of all the sample code I
use in this book in a downloadable format.)

Part 1: Getting Started with
Statistical Analysis with R

In Part 1, I provide a general introduction to statistics
and to R. I discuss important statistical concepts and
describe useful R techniques. If it’s been a long time
since your last course in statistics or if you’ve never even
had a statistics course, start with Part 1. If you have
never worked with R, definitely start with Part 1.

Part 2: Describing Data

Part of working with statistics is to summarize data in
meaningful ways. In Part 2, you find out how to do that.
Most people know about averages and how to compute
them. But that’s not the whole story. In Part 2, I tell you
about additional statistics that fill in the gaps, and I show
you how to use R to work with those statistics. I also
introduce R graphics in this part.

Part 3: Drawing Conclusions from
Data

Part 3 addresses the fundamental aim of statistical
analysis: to go beyond the data and help you make
decisions. Usually, the data are measurements of a
sample taken from a large population. The goal is to use
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these data to figure out what’s going on in the
population.

This opens a wide range of questions: What does an
average mean? What does the difference between two
averages mean? Are two things associated? These are
only a few of the questions I address in Part 3, and 1
discuss the R functions that help you answer them.

Part 4: Working with Probability

Probability is the basis for statistical analysis and
decision-making. In Part 4, I tell you all about it. I show
you how to apply probability, particularly in the area of
modeling. New in this edition is a chapter on a statistical
technique called logistic regression that marries a
method from Part 3 with probability. R provides a rich
set of capabilities that deal with probability, and here’s
where you find them.

Part 5: The Part of Tens

Part 5 has two chapters. In the first, I give Excel users
ten tips for moving to R. In the second, I cover ten
valuable R-related resources you can find online.

Appendix A (Online): More on
Probability

This online appendix continues what I start in Part 4. The
material is a bit on the esoteric side, so I've stashed it in
an appendix.

Online Appendix B (Online): Non-

Parametric Statistics

Non-parametric statistics are based on concepts that
differ somewhat from most of the rest of this book. In
this appendix, you learn these concepts and see how to
use R to apply them.



Icons Used in This Book

Icons appear all over For Dummies books, and this one is
no exception. Each one is a little picture in the margin
that lets you know something special about the
paragraph it sits next to.

ne  This icon points out a hint or a shortcut that can
help you in your work (and perhaps make you a finer,
kinder, and more insightful human being).

rememeer 1 NIS One points out timeless wisdom to take with
you on your continuing quest for statistics
knowledge.

warnine Pay attention to the information accompanied by
this icon. It’s a reminder to avoid something that
might gum up the works for you.

‘&5&‘

"see - As I mention in the earlier section “What You Can
Safely Skip,” this icon indicates material you can
blow past if it’s just too technical. (I've kept this to a
minimum.)

Where to Go from Here



You can start reading this book anywhere, but here are a
couple of hints. Want to learn the foundations of
statistics? Turn the page. Introduce yourself to R? That’s
Chapter 2. Want to start with graphics? Hit Chapter 3.
For anything else, find it in the table of contents or the
index and go for it.

In addition to what you're reading right now, this
product comes with a free access-anywhere Cheat Sheet
that presents a selected list of R functions and describes
what they do. To get this Cheat Sheet, visit
www.dummies.com and type Statistical Analysis with R For
Dummies Cheat Sheet in the search box.



http://www.dummies.com/

Part 1

Getting Started with
Statistical Analysis with R




IN THIS PART ...

Find out about R’s statistical capabilities

Explore how to work with populations and samples
Test your hypotheses

Understand errors in decision-making

Determine independent and dependent variables



Chapter 1

Data, Statistics, and
Decisions
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IN THIS CHAPTER
» Introducing statistical concepts

» Generalizing from samples to populations
» Getting into probability

» Testing hypotheses

» Two types of error

Statistics? That’s all about crunching numbers into
arcane-looking formulas, right? Not really. Statistics,
first and foremost, is about decision-making. Some
number-crunching is involved, of course, but the primary
goal is to use numbers to make decisions. Statisticians
look at data and wonder what the numbers are saying.
What kinds of trends are in the data? What kinds of
predictions are possible? What conclusions can you
make?

To make sense of data and answer these questions,
statisticians have developed a wide variety of analytical
tools.

About the number-crunching part: If you had to do it via
pencil-and-paper (or with the aid of a pocket calculator),
you’'d soon grow discouraged with the amount of
computation involved and the errors that might creep in.
Software like R helps you crunch the data and compute



the numbers. As a bonus, R can also help you
comprehend statistical concepts.

Developed specifically for statistical analysis, R is a
computer language that implements many of the
analytical tools statisticians have developed for decision-
making. I wrote this book to show you how to use these
tools in your work.

The Statistical (and
Related) Notions You Just
Have to Know

The analytical tools that R provides are based on
statistical concepts I help you explore in the remainder
of this chapter. As you’ll see, these concepts are based
on common Ssense.

Samples and populations

If you watch TV on election night, you know that one
exciting occurrence that takes place before the main
event is the prediction of the outcome immediately after
the polls close (and before all the votes are counted).
How is it that pundits almost always get it right?

The idea is to talk to a sample of voters right after they
vote. If they’re truthful about how they marked their
ballots, and if the sample is representative of the
population of voters, analysts can use the sample data to
draw conclusions about the population.

That, in a nutshell, is what statistics is all about — using
the data from samples to draw conclusions about
populations.



Here’s another example. Imagine that your job is to find
the average height of 10-year-old children in the United
States. Because you probably wouldn’t have the time or
the resources to measure every child, you’d measure the
heights of a representative sample. Then you’'d average
those heights and use that average as the estimate of the
population average.

Estimating the population average is one kind of
inference that statisticians make from sample data. I
discuss inference in more detail in the upcoming section
“Inferential Statistics: Testing Hypotheses.”

rememeer HlETE’S Some important terminology: Properties of
a population (like the population average) are called
parameters, and properties of a sample (like the
sample average) are called statistics. If your only
concern is the sample properties (like the heights of
the children in your sample), the statistics you
calculate are descriptive. If you're concerned about
estimating the population properties, your statistics
are inferential.

rememeer NOW fOr an important convention about notation:
Statisticians use Greek letters (11, o, p) to stand for
parameters, and English letters (¥, s, r) to stand for
statistics. Figure 1-1 summarizes the relationship
between populations and samples, and between
parameters and statistics.




Parameters

Population

Select Make
o Inferences
individuals

about

Statistics

FIGURE 1-1: The relationship between populations, samples, parameters, and
statistics.

Variables: Dependent and

independent

A variable is something that can take on more than one
value — like your age, the value of the dollar against
other currencies, or the number of games your favorite
sports team wins. Something that can have only one
value is a constant. Scientists tell us that the speed of
light is a constant, and we use the constant o to
calculate the area of a circle.

Statisticians work with independent variables and
dependent variables. In any study or experiment, you'll
find both kinds. Statisticians assess the relationship
between them.

Imagine a computerized training method designed to
increase a person’s IQ. How would a researcher find out
whether this method does what it’s supposed to do?
First, that person would randomly assign a sample of
people to one of two groups. One group would receive
the training method, and the other would complete
another kind of computer-based activity — like reading



text on a website. Before and after each group completes
its activities, the researcher measures each person’s 1Q.

What happens next? I discuss that topic in the upcoming
section “Inferential Statistics: Testing Hypotheses.”

For now, understand that the independent variable here
is Type of Activity. The two possible values of this
variable are IQ Training and Reading Text. The
dependent variable is the change in IQ from Before to
After.

rememeer A dependent variable is what a researcher
measures. In an experiment, an independent variable
is what a researcher manipulates. In other contexts,
a researcher can’t manipulate an independent
variable. Instead, they note naturally occurring
values of the independent variable and how they
affect a dependent variable.

rememeer [N general, the objective is to find out whether
changes in an independent variable are associated
with changes in a dependent variable.

rememeer 1N the examples that appear throughout this book,
I show you how to use R to calculate characteristics
of groups of scores, or to compare groups of scores.
Whenever I show you a group of scores, I'm talking
about the values of a dependent variable.

Types of data



When you do statistical work, you can run into four kinds
of data. And when you work with a variable, the way you
work with it depends on what kind of data it is. The first
kind is nominal data. If a set of numbers happens to be
nominal data, the numbers are labels — their values
don’t signify anything. On a sports team, the jersey
numbers are nominal. They just identify the players.

The next kind is ordinal data. In this data type, the
numbers are more than just labels. As the name ordinal
might tell you, the order of the numbers is important. If I
ask you to rank ten foods from the one you like best (1)
to the one you like least (10), we’d have a set of ordinal
data.

But the difference between your third-favorite food and
your fourth-favorite food might not be the same as the
difference between your ninth-favorite and your tenth-
favorite. So this type of data lacks equal intervals and
equal differences.

Interval data gives us equal differences. The Fahrenheit
scale of temperature is a good example. The difference

between 30° and 40° is the same as the difference
between 90° and 100°. So each degree is an interval.

People are sometimes surprised to find out that on the
Fahrenheit scale, a temperature of 80° is not twice as hot
as 40°. For ratio statements (“twice as much as,” “half as
much as”) to make sense, zero has to mean the complete
absence of the thing you’re measuring. A temperature of
0° F doesn’t mean the complete absence of heat — it’s
just an arbitrary point on the Fahrenheit scale. (The
same holds true for Celsius.)

The fourth kind of data, ratio, provides a meaningful zero
point. On the Kelvin scale of temperature, zero means
“absolute zero,” where all molecular motion (the basis of



heat) stops. So 200° Kelvin is twice as hot as 100° Kelvin.
Another example is length. Eight inches is twice as long
as 4 inches. Zero inches means “a complete absence of
length.”

rememeer AN independent variable or a dependent variable
can be either nominal, ordinal, interval, or ratio. The
analytical tools you use depend on the type of data
you work with.

A little probability

When statisticians make decisions, they use probability
to express their confidence about those decisions. They
can never be absolutely certain about what they decide.
They can only tell you how probable their conclusions
are.

What do I mean by probability? Mathematicians and
philosophers might give you complex definitions. In my
experience, however, the best way to understand
probability is in terms of examples.

Here’s a simple example: If you toss a coin, what’s the
probability that it turns up heads? If the coin is fair, you
might figure that you have a 50-50 chance of heads and a
50-50 chance of tails. And you’d be right. In terms of the
kinds of numbers associated with probability, that’'s Y.

Think about rolling a fair die (one member of a pair of
dice). What’s the probability that you roll a 4? Well, a die
has six faces and one of them is 4, so that’s Y. Still
another example: Select 1 card at random from a
standard deck of 52 cards. What'’s the probability that
it’s a diamond? A deck of cards has four suits, so that’s
Ya.



These examples tell you that if you want to know the
probability that an event occurs, count how many ways
that event can happen and divide by the total number of
events that can happen. In the first two examples (heads,
4), the event you're interested in happens in only one
way. For the coin, you divide 1 by 2. For the die, you
divide 1 by 6. In the third example (diamond), the event
can happen in 1 of 13 ways (ace through king), so you
divide 13 by 52 (to get %a).

Now for a slightly more complicated example. Toss a
coin and roll a die at the same time. What’s the
probability of tails and a 4? Think about all the possible
events that can happen when you toss a coin and roll a
die at the same time. You could have tails and 1 through
6, or heads and 1 through 6. That adds up to 12
possibilities. The tails-and-4 combination can happen
only one way. So the probability is /..

In general, the formula for the probability that a
particular event occurs is

Number of ways the event can occur
Total number of possible events

At the beginning of this section, I say that statisticians
express their confidence about their conclusions in terms
of probability, which is why I brought all this up in the
first place. This line of thinking leads to conditional
probability — the probability that an event occurs given
that some other event occurs. Suppose that I roll a die,
look at it (so that you don’t see it), and tell you that I
rolled an odd number. What'’s the probability that I've
rolled a 5? Ordinarily, the probability of a 5 is ¥, but “I
rolled an odd number” narrows it down. That piece of
information eliminates the three even numbers (2, 4, 6)
as possibilities. Only the three odd numbers (1, 3, 5) are
possible, so the probability is ¥A.

Pr(event) =



What’s the big deal about conditional probability? What
role does it play in statistical analysis? Read on.

Inferential Statistics:
Testing Hypotheses

Before any statistician begins a study, they draw up a
tentative explanation — a hypothesis that tells why the
data might come out a certain way. After gathering all
the data, the statistician has to decide whether to reject
the hypothesis.

That decision is the answer to a conditional probability
question — what’s the probability of obtaining the data,
given that this hypothesis is correct? Statisticians have
tools that calculate the probability. If the probability
turns out to be low, the statistician rejects the
hypothesis.

Back to coin-tossing for an example: Imagine that you're
interested in whether a particular coin is fair — whether
it has an equal chance of heads or tails on any toss. Let’s
start with “The coin is fair” as the hypothesis.

To test the hypothesis, you’d toss the coin a number of
times — let’s say 100. These 100 tosses are the sample
data. If the coin is fair (as per the hypothesis), you’d
expect 50 heads and 50 tails.

If it’s 99 heads and 1 tail, you’d surely reject the fair-coin
hypothesis: The conditional probability of 99 heads and 1
tail given a fair coin is very low. Of course, the coin could
still be fair, and you could, quite by chance, get a 99-1
split, right? Sure. You never really know. You have to
gather the sample data (the 100-toss results) and then
decide. Your decision might be right, or it might not.



Juries make these types of decisions. In the United
States, the starting hypothesis is that the defendant is
not guilty (“innocent until proven guilty”). Think of the
evidence as data. Jury members consider the evidence
and answer a conditional probability question: What'’s
the probability of the evidence, given that the defendant
is not guilty? Their answer determines the verdict.

Null and alternative hypotheses

Think again about that coin-tossing study I just
mentioned. The sample data are the results from the 100
tosses. I said that we can start with the hypothesis that
the coin is fair. This starting point is called the null
hypothesis. The statistical notation for the null
hypothesis is H,. According to this hypothesis, any

heads-tails split in the data is consistent with a fair coin.
Think of it as the idea that nothing in the sample data is
out of the ordinary.

An alternative hypothesis is possible — that the coin isn’t
a fair one and it’s loaded to produce an unequal number
of heads and tails. This hypothesis says that any heads-
tails split is consistent with an unfair coin. This
alternative hypothesis is called, believe it or not, the
alternative hypothesis. The statistical notation for the
alternative hypothesis is H;.

Now toss the coin 100 times and note the number of
heads and tails. If the results are something like 90
heads and 10 tails, it’s a good idea to reject Hy. If the

results are around 50 heads and 50 tails, don’t reject Hy,.

Similar ideas apply to the IQ example I gave earlier. One
sample receives the computer-based IQ training method,
and the other participates in a different computer-based
activity — like reading text on a website. Before and



after each group completes its activities, the researcher
measures each person’s IQ. The null hypothesis, H, is
that one group’s improvement isn’t different from the
other. If the improvements are greater with the IQ
training than with the other activity — so much greater
that it’s unlikely that the two aren’t different from one
another — reject H,. If they’re not, don’t reject Hy,.

rememser NOtice that I did not say “accept Hy.” The way the
logic works, you never accept a hypothesis. You
either reject Hy or don’t reject Hy. In a jury trial, the
verdict is either “guilty” (reject the null hypothesis of
“not guilty”) or “not guilty” (don’t reject Hy).
“Innocent” (acceptance of the null hypothesis) is not
a possible verdict.

Notice also that in the coin-tossing example, I said
“around 50 heads and 50 tails.” What does around
mean? Also, I said that if it’s 90-10, reject H,. What

about 85-15?7 80-20? 70-30? Exactly how much different
from 50-50 does the split have to be for you to reject H,?

In the IQ training example, how much greater does the
IQ improvement have to be to reject H,?

I won’t answer these questions now. Statisticians have
formulated decision rules for situations like this, and I'll
help you explore those rules throughout the book.

Two types of error
Whenever you evaluate data and decide to reject H, or to
not reject Hy, you can never be absolutely sure. You

never really know the “true” state of the world. In the
coin-tossing example, that means you can’t be certain



whether the coin is fair. All you can do is make a decision
based on the sample data. If you want to know for sure
about the coin, you have to have the data for the entire
population of tosses — which means you have to keep
tossing the coin until the end of time.

Because you're never certain about your decisions, you
can make an error either way you decide. As I mention
earlier, the coin could be fair, and you just happen to get
99 heads in 100 tosses. That’s not likely, and that’s why
you reject H, if that happens. It’s also possible that the
coin is biased, yet you just happen to toss 50 heads in
100 tosses. Again, that’s not likely and you don’t reject
H, in that case.

Although those errors aren’t likely, they’'re possible.
They lurk in every study that involves inferential
statistics. Statisticians have named them Type I errors
and Type II errors.

If you reject H, and you shouldn’t, that’s a Type I error.

In the coin example, that’s rejecting the hypothesis that
the coin is fair when in reality it’s a fair coin.

If you don’t reject Hy and you should have, that’s a Type

II error. It happens when you don’t reject the hypothesis
that the coin is fair and in reality it’s biased.

How do you know whether you've made either type of
error? You don’t — at least not right after you make the
decision to reject or not reject H,. (If it’s possible to
know, you wouldn’t make the error in the first place!) All
you can do is gather more data and see whether the
additional data is consistent with your decision.

If you think of H, as a tendency to maintain the status

quo and not interpret anything as being out of the
ordinary (no matter how it looks), a Type II error means



you’'ve missed out on something big. In fact, some iconic
mistakes are Type II errors.

Here’s what I mean. On New Year’s Day in 1962, a rock
group consisting of three guitarists and a drummer
auditioned in the London studio of a major recording
company. Legend has it that the recording executives
didn’t like what they heard, didn’t like what they saw,
and believed that guitar groups were on their way out.
Although the musicians played their hearts out, the
group failed the audition.

Who was that group? The Beatles!
And that’s a Type II error.



Chapter 2

R: What It Does and How It
Does It

00000000000000000000000000000000000000000000000000000000000000000000000000000

IN THIS CHAPTER
» Getting R and RStudio
» Working with RStudio
» Learning R functions

» Learning R structures

» Working with packages
» Forming R formulas

» Reading and writing files

R is a computer language — it’s a tool for doing the
computation and number-crunching that set the stage for
statistical analysis and decision-making. An important
aspect of statistical analysis is to present the results in a
comprehensible way. For this reason, graphics is a major
component of R.

Ross Thaka and Robert Gentleman developed R in the
1990s at the University of Auckland, New Zealand.
Supported by the Foundation for Statistical Computing,
R is one of the most popular computer languages.

RStudio is an open-source integrated development
environment (IDE) for creating and running R code. It’s
available in versions for Windows, Mac, and Linux.
Although you don’t need an IDE in order to work with R,
RStudio makes life much easier.



Downloading R and
RStudio

To download both R and RStudio, visit
https://posit.co/download/rstudio-desktop. This page is on
the website of Posit, the company that provides RStudio.
Helpfully, this page gives you links to install R as well as

RStudio — and, yes, you do have to install R first. For
both installations, be sure to follow the appropriate
instructions for your type of computer.

After the RStudio installation is finished, click the
RStudio icon to open the window shown in Figure 2-1.
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copyright {C) 2034 The r Fousdacien for Stavisvics] Cesputing
Platfors: wBE_Ed-wld=mingnil/ wi

A is free software and coses with ABSOLUTELY M0 WARRANTY .
¥ou are welcome to redistribute 1t under certain conditions.
Type "licenie ()" o "Vicence()' for datribution details,
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FIGURE 2-1: RStudio, immediately after you install it and click on its icon.



https://posit.co/download/rstudio-desktop/

ne  I'm working in Windows 11 with R version 4.4.2
and RStudio 2024.09.1 Build 394. By the time you
read this chapter, newer versions of R and RStudio
might be available.

rememeer EVETy version of R is associated with an enigmatic
phrase. For version 4.4.2, as Figure 2-1 shows, it’s
“Pile of Leaves.” For an earlier version, it was “Great
Pumpkin.” It turns out that the origin of all these
phrases is the Peanuts comic strip.

The large Console pane on the left runs R code. One way
to run R code is to type it directly into the Console pane
and then press Enter (or press Return on a Mac). I show
you another way in a moment. This pane also has a
Terminal tab (which provides a command-line interface)
and a tab labeled Background Jobs.

The other two panes provide helpful information as you
work with R. The upper right pane has tabs labeled
Environment, History, Connections, and Tutorial. The
Environment tab keeps track of the things you create
(which R calls objects) as you work with R. The History
tab tracks R code that you enter.

ne  Get used to the word object. Everything in R is an
object.

The Connections tab shows connections to local or
remote databases. The Tutorial tab, as its name



suggests, runs tutorials for RStudio. These tutorials
depend on additional items you have to install.

The Files, Plots, Packages, Help, Viewer, and
Presentation tabs are in the pane in the lower right. The
Files tab shows files you create. The Plots tab holds
graphs you create from your data. The Packages tab
shows add-ons (called packages) you downloaded as part
of the R installation. Bear in mind that downloaded
doesn’t mean “ready to use.” To use a package’s
capabilities, one more step is necessary and — believe
me — you’ll want to use packages.

Figure 2-2 shows the Packages tab. The packages are in
either the User library (which you can see in the figure)

or the System library (which you have to scroll down to).
I discuss packages later in this chapter.



Files Plots Packages Help Viewer Presentation = ]
Ol install | @ update
MName Description Version
User Library
abind Combine Multidimensional Arrays 1.4-8
ada The R Package Ada for Stochastic Boosting 2.0-5
additivityTests Additivity Tests in the Two Way Anova with Single  1.1-4.2
Sub-Class Numbers
amap Another Multidimensional Analysis Package 0.8-20
arules Mining Association Rules and Fregquent ltemsets  1.7-8
arulesViz Visualizing Association Rules and Frequent 1.53
ltemsets
askpass Password Entry Utilities for R, Git, and S5H 1.2.1
backports Reimplementations of Functions Introduced 1.5.0
Since R-3.0.0
basebdenc Tools for base64 encoding 0.1-3
BH Boost C++ Header Files 1.84.0-0
biclust BiCluster Algorithms 2.0.3.1
bit Classes and Methods for Fast Memory-Efficient 4.5.0
Boolean Selections
bit64 A 53 Class for Vectors of 64bit Integers 4.5.2
bitops Bitwise Operations 1.0-9
blob A Simple 53 Class for Representing Vectors of 1.24
Binary Data ('ELOBS’)
broom Convert Statistical Objects into Tidy Tibbles 1.0.7 .

FIGURE 2-2: The RStudio Packages tab.

The Help tab, shown in Figure 2-3, provides links to a
wealth of information about R and RStudio. (Check out
the Posit Cheat Sheets.) The Viewer tab displays local
web content. The Presentation tab shows HTML slides.



Files Plots Packages Help Viewer Presentation oy

o
Home ~ Find in Top
R R Resources @ Rstudio
Learning R Online Posit Support
CRAN Task Views Posit Community Forum for the

RStudio 1DI
Fosit Cheat Sheets
RStudio Packages

R on StackOverflow

Getting Help with R

Posit Products

Manuals

An Introduction to R The R Language Definition
Writing R Extensions R Installation and Administration
R Data Import/Export R Internals

Reference

Packages Search Engine & Keywords

Miscellaneous Material

FIGURE 2-3: The RStudio Help tab.

ne  To tap into the full power of RStudio as an IDE,
click the icon in the upper right corner of the
Console pane. That changes the appearance of
RStudio so that it looks like Figure 2-4.

The top of the Console pane relocates to the lower left.
The new pane in the upper left corner is the Scripts
pane. You type and edit code in the Scripts pane and
press Ctrl+Enter (or Control+Return on a Mac) and then
the code executes in the Console pane.




ne  In the Scripts pane, you can also choose Code =
Run Selected Line(s), but that’s the 19th item on the
drop-down menu.
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FIGURE 2-4: RStudio, after you click the icon in the upper right corner of the
Console pane.

A Session with R

Before you start working, choose File = Save As from
the main menu and then save your first session as My
First R Session. This relabels the tab in the Scripts
pane with the name of the file and adds the .R extension.
This also causes the filename (along with the .R
extension) to appear on the Files tab.




The working directory

What exactly does R save, and where does R save it?
What R saves is called the workspace, which is the
environment you're working in. R saves the workspace in
the working directory. To get the path to your working
directory, type getwd() after the right-pointing
arrowhead in the Console pane and press Enter (or
Return on a Mac), and then R returns the path.

rememeer 1 Ne Tight-pointing arrowhead at the beginning of
the line is just a prompt for you. It serves no other
purpose.

My working directory looks like this:

> getwd()
[1] "C:/Users/jschm/OneDrive/Documents"

Note which way the slashes are slanted. They’'re opposite
to what you typically see in Windows file paths. This is
because R uses \ as an escape character, meaning that
whatever follows the \ means something different from
what it usually means. For example, \t in R means “Tab
key.

ne  You can also write a Windows file path in R as

C:\\Users\\<User Name>\\Documents

If you like, you can change the working directory:

> setwd(<file path>)

Another way to change the working directory is to
choose Session = Set Working Directory = Choose
Directory from the main menu.



So let's get started, already

And now for some R! In the Scripts pane, type x <-
c(3,4,5) and then press Ctrl+Enter (or Control+Return
on a Mac; Command+Return works, too).

That puts the following line into the Console pane:

> X <- ¢(3,4,5)

As I mention in an earlier Tip, the right-pointing
arrowhead (the greater-than sign) is a prompt that R
supplies in the Console pane. You don’t see it in the
Scripts pane.

What did R just do? The arrow sign says that x gets
assigned whatever is to the right of the arrow sign. So
the arrow sign is R's assignment operator.

To the right of the arrow sign, the ¢ stands for
concatenate, a fancy way of saying, “Take whatever
items are in the parentheses and put them together.” So
the set of numbers 3, 4, 5 is now assigned to x.

rememeer R Tefers to a set of numbers like this as a vector. (1
tell you more about this topic in the later “R
Structures” section.)

You can read that line of R code as “x gets the vector 3,
4,5.”

Type x into the Scripts pane and press Ctrl+Enter (or
Control+Return), and here’s what you see in the Console
pane:

> X
[1] 345

The 1 in square brackets is the label for the first value in
the line of output. Here, you have only one value, of



course. What happens when R outputs many values over
many lines? Each line gets a bracketed numeric label,
and the number corresponds to the first value in the line.
For example, if the output consists of 21 values and the
18th value is the first one on the second line, the second
line begins with [18].

Creating the vector x causes the Environment tab to look
like Figure 2-5.

Environment History Connections Tutorial

s

o ™ Import Dataset ~ = 9 142MiB ~ | § List - =
R » '} Global Environment =
Values

X num [1:3] 3 4 §

FIGURE 2-5: The RStudio Environment tab, after creating the vector x.

ne  Another way to see the objects in the environment
is to type

> 1s()

Now you can work with x. First, add all numbers in the
vector. Typing

sum(x)



in the Scripts pane (remember to follow with
Ctrl+Enter/Control+Return) executes the following line
in the Console pane:

> sum(x)
[1] 12

How about the average of the numbers in the vector x?
That's

mean (x)

in the Scripts pane, which (when followed by
Ctrl+Enter/Control+Return) executes to

> mean(Xx)
[1] 4

in the Console pane.

ne  As you type in the Scripts pane or in the Console
pane, you’ll notice that helpful information pops up.
As you gain experience with RStudio, you'll learn
how to use that information.

As I show you in Chapter 5, variance is a measure of how
much a set of numbers differs from their mean. What
exactly is variance, and how do you calculate it? I'll leave
that topic for Chapter 5. For now, here’s how you use R
to calculate variance:

> var(x)
[1] 1

In each case, you type a command, R evaluates it, and
then R displays the result.

Figure 2-6 shows what RStudio looks like after
evaluating all these commands.



To end a session, choose File = Quit Session from the
main menu or press Ctrl+Q/Control+Q. As Figure 2-7
shows, a dialog box opens and asks what you want to
save from the session. Saving the selections enables you
to reopen the session where you left off the next time you
open RStudio (although the Console pane doesn’t save
your work).

Pretty helpful, this RStudio.

rememeer MOVINng forward, most of the time I don’t say,
“Type this R code into the Scripts pane and press
Ctrl+Enter/Control+Return” whenever I take you
through an example. I just show you the code and its
output, as in the var() example.

rememeer AlSO, Sometimes I show code with the > prompt,
and sometimes without. Generally, I show the prompt
when I want you to see R code and its results. I don't
show the prompt when I just want you to see R code
that I create in the Scripts pane.
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FIGURE 2-6: RStudio, after creating and working with a vector.

Quit R Session

The following 2 files have unsaved changes:

7| @@ Workspace image (.RData)
~/.RData

v @" My First R Session.R
~/My First R Session.R

Don't Save Save Selected Cancel




FIGURE 2-7: The Quit R Session dialog box.

Missing data

In the statistical analysis examples I provide, I typically
deal with best-case scenarios in which the datasets are in
good shape and have all the data they’'re supposed to
have.

In the real world, however, things don’t always go so
smoothly. Oftentimes, you encounter datasets that have
values missing for one reason or another. R denotes a
missing value as NA (for Not Available).

For example, here’s some data (from a much larger
dataset) on the luggage capacity, in cubic feet, of nine
vehicles:

capacity <- c(14,13,14,13,16,NA,NA,20,NA)

Three of the vehicles are vans, and the term luggage
capacity doesn’t apply to them — hence, the three
instances of NA. Here's what happens when you try to find
the average of this group:

> mean(capacity)
[1] NA

To find the mean, you have to remove the NAs before you
calculate:

> mean(capacity, na.rm=TRUE)
[1] 15

So the rmin na.rm means “remove,” and =TRUE means “get
it done.”

ne  Just in case you ever have to check a set of scores
for missing data, the is,na() function does that for
you:



> is.na(capacity)
[1] FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE

R Functions

In the preceding section, I use c(), sum(), mean(), and
var(). These are examples of functions built into R. Each
one consists of a function name immediately followed by
parentheses. Inside the parentheses are the arguments.
In this context, argument doesn't mean “disagreement,”
“confrontation,” or anything like that. It’s just the math
term for whatever a function operates on.

rememeer EVEN if a function takes no arguments, you still
include the parentheses.

The four R functions I've shown you are pretty simple in
terms of their arguments and their output. As you work
with R, however, you encounter functions that take more
than one argument.

R provides a couple of ways for you to deal with multi-
argument functions. One way is to list the arguments in
the order in which they appear in the function’s
definition. R calls this positional matching.

Here’s what I mean. The function substr() takes three
arguments. The first is a string of characters like
"abcdefg", which R refers to as a character vector. The
second argument is a start position within the string (1 is
the first position, 2 is the second position, and so on).
The third is a stop position within the string (a number
greater than or equal to the start position). In fact, if you
type substr into the Scripts pane, you see a helpful pop-
up message that looks like this:



substr(x, start, stop)
Extract or replace substrings in a character vector

where x stands for the character vector.

This function returns the substring, which consists of the
characters between the start and stop positions.

Here's an example:

> substr("abcdefg",2,4)
[1] ubcdu

What happens if you swap the 2 and the 4 around?

> substr("abcdefg",4,2)

(1] "
This result is completely understandable: No substring
can start at the fourth position and stop at the second
position.

But if you name the arguments, it doesn’t matter how
you order them:

> substr("abcdefg",stop=4,start=2)
[1] ubcdu

Even this works:

> substr(stop=4, start=2,"abcdefg")

[1] “bed”
So, when you use a function, you can place its arguments
out of order, if you name them. R calls this keyword
matching, which comes in handy when you use an R
function that has many arguments. If you can’t
remember their order, just use their names, and the
function works.

ne  If you ever need help with a particular function —
substr(), for example — type ?substr and watch



helpful information appear on the Help tab.

User-Defined Functions

Strictly speaking, this isn’t a book on R programming.
For completeness, though, I thought I'd at least let you
know that you can create your own functions in R and
show you the fundamentals of creating one.

The form of an R function is

myfunction <- function(argumentl, argument2, .. ){statements
return(object)

}

Here’s a simple function for computing the sum of the
squares of three numbers:

sumofsquares <- function(x,y,z){
sumsq <- sum(c(x"2,y"2,z°2))
return(sumsq)

}
Type that snippet into the Scripts pane and highlight it.
Then press Ctrl+Enter/Control+Return. The following
snippet appears in the Console pane:

sumofsquares <- function(x,y,z ){
sumsq <- sum(c(x"2,y"2,z°2))

>
+
+ return(sumsq)
+

}

Each plus sign is a continuation prompt — it just
indicates that a line continues from the preceding line.

And here’s how to use the function:

> sumofsquares(3,4,5)
[1] 50

Comments



A comment is a way of annotating code. Begin a
comment with the # symbol, which of course is an
octothorpe. (What's that you say? “Hashtag”? Surely you
jest.) This symbol tells R to ignore everything to the right
of it.

Comments are helpful for someone who has to read code
you’'ve written. For example:

sumofsquares <- function(x,y,z){ # list the arguments
sumsq <- sum(c(x"2,y"2,z"2)) # perform the operations
return(sumsq) # return the value

}

Just a heads-up: I don’t add comments to lines of code in
this book. Instead, I provide detailed descriptions. In a
book like this one, I feel that’s the most effective way to
get the message across.

ne  As you might imagine, writing R functions can
encompass way more than I've laid out here. To
learn more, check out R For Dummies, by Andrie de
Vries and Joris Meys (Wiley).

R Structures

I mention in the “R Functions” section, earlier in this
chapter, that an R function can have many arguments.
It’s also the case that an R function can have many
outputs. To understand the possible outputs (and inputs,
too), you must understand the structures that R works
with.

Vectors

The vector is R’s fundamental structure, and I show it to
you in earlier examples. It’s an array of data elements of



the same type. The data elements in a vector are called
components. To create a vector, use the function c(), as I
did in the earlier example:

> x <- c(3,4,5)

Here, of course, the components are numbers.

In a character vector, the components are quoted text
strings ("Moe", "Larry", "Curly"):

> stooges <- c("Moe","Larry", "Curly")

e —
%7
TECHMICAL

sure - Strictly speaking, in the substr() example, "abcdefg"
is a character vector with one element.

It's also possible to have a logical vector, whose elements
are TRUE and FALSE, or the abbreviations T and F:

>z <- c(T,F, T,F,T,T)

To refer to a specific component of a vector, follow the
vector name with a bracketed number:

> stooges[2]
[1] "Larry"

Numerical vectors

In addition to c(), R provides seq() and rep() for shortcut
numerical vector creation.

Suppose you want to create a vector of numbers from 10
to 30 but you don't feel like typing all those numbers.
Here’s how to do it:

>y <- seq(10,30)

>y

[1] 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
[18] 27 28 29 30



rememeer ON MY Screen, and probably on yours too, all the
elements in y appear on one line. The printed page,
however, isn’t as wide as the Console pane.
Accordingly, I separated the output into two lines. I
do that throughout this book, where necessary.

ne R has a special syntax for a numerical vector
whose elements increase by 1:

>y <- 10:30
>y
[1] 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
[18] 27 28 29 30
If you want the elements to increase in steps of 2, use seq

like this:

> w <- seq(l10,30,2)
> W
[1] 10 12 14 16 18 20 22 24 26 28 30

You might want to create a vector of repeating values. If
so, rep() is the function to use:

> trifecta <- c(6,8,2)

> repeated trifecta <- rep(trifecta,4)

> repeated trifecta

[11 6 826826826382
Another way to use rep() is to supply a vector as the
second argument. Remember from the earlier example
that x is the vector (3,4,5). What happens if you supply x

as the second argument for rep()?
> repeated trifecta <- rep(trifecta,x)

> repeated trifecta
[11 666888822222



The first element repeats three times; the second
element, four times; and the third element, five times.

Matrices

A matrix is a 2-dimensional array of data elements of the

same type. In statistics, matrices are useful as tables that
hold data. (Advanced statistics has other applications for

matrices, but that's beyond the scope of this book.)

You can have a matrix of numbers:

5 3055 80
10 35 60 85
15 40 65 90
20 45 70 95
25 50 75 100

or a matrix of character strings:

HMoeH HLarry" HCurly" MShemp"

“Groucho” “Harpo” “Chico” “Zeppo”

MAceH “King” “Ql,leen" “JaCk"

The numbers constitute a 5 (rows) X 4 (columns) matrix;
the character strings matrix is 3 X 4.

To create the 5 X 4 numerical matrix, first you create the
vector of numbers from 5 to 100 in steps of 5:

> num_matrix <- seq(5,100,5)

Then you use the dim() function to turn the vector into a
2-dimensional matrix:

> dim(num _matrix) <-c(5,4)
> num_matrix

(.11 [,2] [,3] [,4]

[1,] 5 30 55 80

[2,] 10 35 60 85



(3,1
(4,1
[5,1]

15 40 65 90
20 45 70 95
25 50 75 100

Note how R displays the bracketed row numbers along
the side, and the bracketed column numbers along the

top.

Transposing a matrix switches the rows around with the
columns. In R, the t() function takes care of that:

> t(num_matrix)

[,1]
[1,]
[2,1]
[3,1
[4,]

[,2] [,31 [.,4] [,5]
510 15 20 25

30 35 40 45 50

55 60 65 70 75

80 85 90 95 100

The function matrix() provides another way to create
matrices:

> num matrix <- matrix(seq(5,100,5),nrow=5)
> num_matrix

[,1]
[1,]
[2,]
(3,1
(4,1
[5,1

[,2] [,3] [,4]
5 30 55 80

10 35 60 85

15 40 65 90
20 45 70 95
25 50 75 100

If you add the argument byrow=T, R fills the matrix by

rows,

like this:

> num matrix <- matrix(seq(5,100,5),nrow=5,byrow=T)
> num_matrix

[,1]
[1,]
[2,]
(3,1
(4,1
[5,1

[,2] [,3] [,4]
5 10 15 20

25 30 35 40
45 50 55 60
65 70 75 80
85 90 95 100

How do you refer to a particular matrix component? You
type the matrix name and then, in brackets, the row
number, a comma, and the column number:



> num _matrix[5,4]
[1] 100

Factors

In Chapter 1, I describe four types of data: nominal,
ordinal, interval, and ratio. In nominal data, numbers are
just labels and their magnitude has no significance.

Suppose that you're taking a survey of people’s eye
color. As you record a person’s eye color, you record a
number: 1 = amber, 2 = blue, 3 = brown, 4 = gray, 5 =
green, and 6 = hazel. One way to think of this process is
that eye color is a factor, and each color is a level of that
factor. So, in this case, the factor eye-color has six levels.

rememser Factor is R’s term for a nominal variable (also
known as categorical variable).

Now imagine that you've used the numeric code to
tabulate the eye colors of 14 people and then turned
those codes into a vector:

> eye color <- c¢(2,2,4,1,5,5,5,6,1,3,6,3,1,4)
Next, you use the factor() function to turn eye color into a
factor:

> feye color <- factor(eye color)

Finally, you assign the levels of the factor:

> levels(feye color) <- c("amber","blue", "brown",b"gray","green", "hazel")

Now, if you examine the eye color data in terms of the
factor levels, it looks like this:

> feye color

[1] blue blue gray amber green green green hazel amber
[10] brown hazel brown amber gray

Levels: amber blue brown gray green hazel



Lists

In R, a list is a collection of objects that aren't
necessarily of the same type. Suppose that in addition to
the eye color of each person in the example in the
preceding section, you collect an empathy score based
on a personality test. The scale runs from 0 (least
empathy) to 100 (most empathy). Here’s the vector for
these people’s empathy data:

> empathy score <- c(15,21,45,32,61,74,53,92,83,22,67,55,42,44)

You want to combine the eye color vector in coded form,
the eye color vector in factor form, and the empathy
score vector into one collection named eyes and empathy.
You use the list() function for this task:

> eyes _and empathy <- list(eyes code=eye color, eyes=feye color,
empathy=empathy score)

Note that you name each argument (eyes code, eyes, and

empathy). This causes R to use those names as the names
of the list components.

Here's what the list looks like:

> eyes_and_empathy

$eyes code

[1122415556136314

$eyes

[1] blue blue gray amber green green green hazel amber
[10] brown hazel brown amber gray

Levels: amber blue brown gray green hazel

$empathy

[1] 15 21 45 32 61 74 53 92 83 22 67 55 42 44

As you can see, R uses the dollar sign ($) to indicate each
component of the list. So, if you want to refer to a list

component, you type the name of the list, the dollar sign,
and the component-name:

> eyes and empathy$empathy
[1] 15 21 45 32 61 74 53 92 83 22 67 55 42 44



How about zeroing in on a particular score, like the
fourth one? I think you can see where this is headed:

> eyes and empathy$empathy[4]
[1] 32

Lists and statistics

Lists are important because numerous statistical
functions return lists of objects. One statistical function
is t.test(). In Chapter 10, I explain this test and the
theory behind it. For now, just concentrate on its output.

I use this test to see whether the mean of the empathy
scores differs from an arbitrary number — 30, for
example. Here's the test:

> t.result <- t.test(eyes and empathy$empathy, mu = 30)

Let’s examine the output:

> t.result
One Sample t-test

data: eyes and empathy$empathy
t = 3.2549, df = 13, p-value = 0.006269
alternative hypothesis: +true mean is not equal to 30
95 percent confidence interval:
36.86936 63.98778
sample estimates:
mean of x
50.42857

Without getting into the details, understand that this
output, t.result, is a list. To show this, you use $ to focus
on some of the components:

> t.result$data.name
[1] "eyes and empathy$empathy"
> t.result$p.value
[1] 0.006269396
> t.result$statistic
t
3.254853



Data frames

A list is a good way to collect data. A data frame is even
better. Why? When you think of data for a group of
individuals — like the 14 people in the example in the
earlier section — you typically think in terms of columns
that represent the data variables (like eyes code, eyes, and
empathy) and rows that represent the individuals. And
that's a data frame. If the terms dataset or data matrix
come to mind, you've pretty much got it.

The function data.frame() works with the existing vectors
to get the job done:

> e <- data.frame(eye color,feye color,empathy score)

> e

eye color feye color empathy score
1 2 blue 15
2 2 blue 21
3 4 gray 45
4 1 amber 32
5 5 green 61
6 5 green 74
7 5 green 53
8 6 hazel 92
9 1 amber 83
10 3 brown 22
11 6 hazel 67
12 3 brown 55
13 1 amber 42
14 4 gray 44

Want the empathy score for the seventh person? That'’s

> e[7,3]
[1] 53

How about all the information for the seventh person:
> el7,]

eye color feye color empathy score
7 5 green 53

Extracting data from a data frame



Suppose you want to do a quick check on the average
empathy scores for people with blue eyes versus people
with green eyes versus people with hazel eyes.

The first task is to extract the empathy scores for each
eye color and create vectors:

> e.blue <- e$empathy score[e$feye color=="blue"]
> e.green <- e$empathy score[e$feye color=="green"]
> e.hazel <- e$empathy score[e$feye color=="hazel"]

Note the double equal-sign (==) in brackets. This is a

logical operator. Think of it as “if e$feye_color is equal to
‘blue.””

rememeer 1 NE double equal-sign (a==b) distinguishes the
logical operator (“if a equals b”) from the assignment
operator (a=b; “set a equal to b”).

Next, you create a vector of the averages:

> e.averages <- c(mean(e.blue),mean(e.green),mean(e.hazel))

Then you use length() to create a vector of the number of
scores in each eye color group:

> e.amounts <- c(length(e.blue), length(e.green),
length(e.hazel))

And then you create a vector of the colors:

> colors <- c("blue","green","hazel")

Now you create a 3-column data frame with color in one
column, the corresponding average empathy in the next
column, and the number of scores in each eye color
group in the last column:

> e.averages.frame <- data.frame(color=colors,
average=e.averages, n=e.amounts)



As was the case with lists, naming the arguments assigns
the argument names to the data frame components (the
vectors, which appear onscreen as columns).

And here's what it all looks like:

> e.averages.frame
color average
1 blue 18.00000
2 green 62.66667
3 hazel 79.50000

N W N S

Packages

A package is a collection of functions and data that
augments R. If you’'re an aspiring data scientist and
you’'re looking for data to work with, you’ll find data
frames galore in R packages. If you're looking for a
specialized statistical function that’s not in the basic R
installation, you can probably find it in a package.

R stores packages in a directory called the library. How
do you get a package into the library? Click the Packages
tab in the Files, Plots, Packages, and Help pane (refer to
Figure 2-2). In the upcoming example, I use the well-
known MASS package, which contains over 150 data
frames from a variety of fields.

If you want to see what’s in the MASS package, find
MASS on the Packages tab. (It’s in the System Library
section of this tab.) Clicking on MASS (not on the check
box next to it) opens a page on the Help tab, which
appears in Figure 2-8.

Scrolling down shows the names of the data frames and
functions. Clicking on the name of a data frame opens up
a page of information about it.

Back on the Packages tab, you select the check box next
to MASS to install the package. That causes this line to



appear in the Console window:

> library("MASS", 1lib.loc="C:/Program Files/R/R-4.4.2/library")

And the MASS package is installed.

One of the data frames in MASS is named anorexia. It

contains weight data for 72 young female anorexia

patients. Each patient completed one of three types of

therapy: "cont" (control),"cBT" (Cognitive Behavioral
treatment) and "FT" (family treatment).

Files Plots Packages Help \Viewer Presentation p—
o

R: Support Functions and Datasets for Venables and Ripley's MASS -

Support Functions and Datasets for

Venables and Ripley's MASS R

N N

Documentation for package ‘MASS' version 7.3-
61

« DESCRIPTION file.
« Package NEWS.

Help Pages
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- A -

FIGURE 2-8: The Help tab, showing information about the MASS package.




For a look at the first six rows of any data frame, use the
head () function:

> head(anorexia)
Treat Prewt Postwt

1 Cont 80.7 80.2
2 Cont 89.4 80.1
3 Cont 91.8 86.4
4 Cont 74.0 86.3
5 Cont 78.1 76.1
6 Cont 88.3 78.1

The data frame provides the pre-therapy weight (Prewt)
and post-therapy weight (Postwt) for each patient. What
about the weight change? Can R calculate that for each
patient? Of course!

> anorexia$Postwt-anorexia$Prewt

[1] -06.5 -9.3 -5.4 12.3 -2.0 -10.2 -12.2 11.6 -7.1
[10] 6.2 -0.2 -9.2 8.3 3.3 11.3 0.0 -1.0 -10.6
[19] -4.6 -6.7 2.8 0.3 1.8 3.7 15.9 -10.2 1.7
[28] 0.7 -0.1 -0.7 -3.5 14.9 3.5 17.1 -7.6 1.6
[37] 11.7 6.1 1.1 -4.0 20.9 -9.1 2.1 -1.4 1.4
[46] -0.3 -3.7 -0.8 2.4 12.6 1.9 3.9 0.1 15.4
[55] -0.7 11.4 11.6 5.5 9.4 13.6 -2.9 -0.1 7.4
[64] 21.5 -5.3 -3.8 13.4 13.1 9.0 3.9 5.7 10.7

Hmmm. Remember that t-test I showed you earlier in
this chapter? I use it here to see whether the pre-
therapy/post-therapy weight change is different from 0.
You would hope that, on average, the change is positive.
Here's the t-test:

> t.test(anorexia$Postwt-anorexia$Prewt, mu=0)
One Sample t-test

data: anorexia$Postwt - anorexia$Prewt
t = 2.9376, df = 71, p-value = 0.004458
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:

0.8878354 4.6399424
sample estimates:
mean of x

2.763889



The t-test output shows that the average weight change
was positive (2.763889 1bs.). The high value of t (2.9376),
along with the low value of p (0.004458), indicates that
this change is statistically significant. (What does that
mean?) If I tell you any more, I'll be getting ahead of
myself. (See Chapter 10 for the details.)

Here’s something else: I said that each patient
completed one of three types of therapy. Was one
therapy more effective than the others? Or were they
about the same? Now I'd really be getting ahead of
myself! (That explanation is in Chapter 12, but see the
section “R Formulas,” a little later in this chapter.)

More Packages

The R community is extremely active. Its members create
and contribute useful new packages all the time to
CRAN, the Comprehensive R Archive Network. So it’s
not the case that every R package is on the RStudio
Packages tab.

When you find out about a new package that you think
might be helpful, it’s easy to install it into your library. I
illustrate by installing ggplot2, a useful package that
extends R’s graphics capabilities.

One way to install it is via the Packages tab (refer to
Figure 2-2). Click on the Install icon in the upper left
corner of the tab. This opens the Install Packages dialog
box, shown in Figure 2-9.



Install Packages

Install from: ?) Configuring Repositories
| Repository (CRAN) v

Packages (separate multiple with space or comma):

ggplot2

Install to Library:
| C:/Users/jschm/AppData/Local/R/win-library/4.4 [Default] v

v|Install dependencies

Install Cancel

FIGURE 2-9: The Install Packages dialog box.

ne  Another way to open the Install Packages dialog
box is to choose Install Packages from the Tools
menu on the menu bar at the top of RStudio.

In the Packages field, I've typed ggplot2. Click Install,
and the following line appears in the Console pane:

> install.packages("ggplot2")

It’s difficult to see this line, however, because lots of
other things happen immediately in the Console pane
and in the onscreen status bars. When all that has
finished, ggplot2 is on the Packages tab. The final step is
to select the check box next to ggplot2 in order to put it
in the library. Then you can use the package. Figure 2-10



shows the Packages tab with ggplot2 and the selected
check box.

Selecting the check box puts the following line in the
Console pane:

> library(ggplot2)

ne  Another way to start the installation process is to
type

> install.packages("ggplot2")
directly into the Console pane.



Files Plots Packages Help Viewer Presentation — [
Ol install @ update

Mame Description Version

foreach Provides Foreach Looping Construct 1.5.2 “

Formula Extended Model Formulas 1.2-5

fpc Flexible Procedures for Clustering 2.2-13

fs Cross-Platform File System Operations Based on 1.6.5
libuw'

future Unified Parallel and Distributed Processing in R 1.34.0
for Everyone

future.apply Apply Function to Elements in Parallel using 1113
Futures

gargle Utilities for Working with Google APls 15.2

gclus Clustering Graphics 13.2

generics Commeon 53 Generics not Provided by Base R 01.3
Methods Related to Model Fitting

ggdendro Create Dendrograms and Tree Diagrams Using 0.2.0
‘ggplot2’

ggforce Accelerating ‘ggplot2’ 04.2

ggplot? Create Elegant Data Visualisations Using the 3.5.1
Grammar of Graphics

ggraph An Implementation of Grammar of Graphics for 2.2.1
Graphs and Metworks

ggrepel Automatically Position Mon-Overlapping Text 0.9.6
Labels with ‘ggplot2’

ggthemes Extra Themes, Scales and Geoms for 'ggplot2’ 51.0

FIGURE 2-10: The Packages tab, after installing ggplot2 and putting it in the
library.

R Formulas

In Chapter 1, I discuss independent variables and
dependent variables. I point out that, in an experiment,
an independent variable is what a researcher
manipulates, and a dependent variable is what a
researcher measures. In the earlier anorexia example,
Treat (type of therapy) is the independent variable, and
Postwt-Prewt (post-therapy weight minus pre-therapy
weight) is the dependent variable. In practical terms,




manipulate means that the researcher randomly
assigned each anorexia patient to one of the three
therapies.

In other kinds of studies, the researcher can't manipulate
an independent variable. Instead, they note naturally
occurring values of the independent variable and assess
their effects on a dependent variable. In the earlier
example of eye color and empathy, eye color is the
independent variable, and empathy score is the
dependent variable.

The R formula incorporates these concepts and is the
basis of many of R’s statistical functions and graphing
functions. This is the basic structure of an R formula:

function(dependent var ~ independent var, data=data frame)

Read the tilde operator (~) as “is dependent on.”

The anorexia data frame provides an example. To analyze
the difference in the effectiveness of the three therapies
for anorexia, I would use a technique called analysis of
variance. (Here I go, getting ahead of myself!) The R
function for this is named aov (), and here's how to use it:

> aov(Postwt-Prewt ~ Treat, data=anorexia)

But this is just the beginning of the analysis. Chapter 12
has all the details, as well as the statistical thinking
behind it.

Reading and Writing

Before I close out this chapter on R’s capabilities, I have
to let you know how to import data from other formats as
well as how to export data to those formats.

The general form of an R function for reading a file is



> read.<format>("File Name", argl, arg2, ..)
The general form of an R function for writing data to a
file is

> write.<format>(dataframe, "File Name", argl, arg2, ..)

In this section, I cover spreadsheets, CSV (comma-
separated values) files, and text files. The <format> is
either x1sx, csv, or table. The arguments after "File Name"
are optional arguments that vary for the different
formats.

Spreadsheets

The information in this section will be important to you if
you've read my timeless classic, Statistical Analysis with
Excel For Dummies (Wiley). (Okay, so that was a
shameless plug for my timeless classic.) If you have data
on spreadsheets that you want to analyze with R, pay
close attention.

The first order of business is to download the x1sx
package and put it in the library. Check out the section
“More Packages,” earlier in this chapter, for more on
how to do this.

On my drive C, I have a spreadsheet called Scores in a
folder called Spreadsheets. It's on Sheetl of the worksheet.
It holds math quiz scores and science quiz scores for ten
students.

To read that spreadsheet into R, the code is

> scores_frame <- read.xlsx("C:/Spreadsheets/Scores.xlsx",
sheetName="Sheetl")

Here’s that data frame:

> scores_frame

Student Math Score Science Score
1 1 85 90
2 2 91 87



3 3 78 75
4 4 88 78
5 5 93 99
6 6 82 89
7 7 67 71
8 8 79 84
9 9 89 88
10 10 98 97

As is the case with any data frame, if you want the math
score for the fourth student, it’s just

> scores_frame$Math Score[4]

[1] 88
The x1sx package enables writing to a spreadsheet, too.
So, if you want your Excel-centric friends to look at the
anorexia data frame, here's what you do:

> write.xlsx(anorexia,"C:/Spreadsheets/anorexia.xlsx")

This line puts the data frame into a spreadsheet in the
indicated folder on drive C.

CSV files

The functions for reading and writing .csv files and text
files are in the R installation, so no additional packages
are necessary. A .csv file looks just like a spreadsheet
when you open it in Excel. In fact, I created a .csv file for
the Scores spreadsheet by saving the spreadsheet as a
.csv file in the folder csvFiles on drive C. (To see all the
commas, you have to open it in a text editor, like
Notepad++.)

Here's how to read that CSV file into R:

> read.csv("C:/CSVFiles/Scores.csv")
Student Math_Score Science Score
Student Math Score Science Score

1 1 85 90
2 2 91 87
3 3 78 75
4 4 88 78
5 5 93 99



6 6 82 89
7 7 67 71
8 8 79 84
9 9 89 88
10 10 98 97

To write the anorexia data frame to a .csv file,

> write.csv(anorexia,"C:/CSVFiles/anorexia.csv")

Text files

If you have some data stored in text files, R can import
them into data frames. The read.table() function gets it
done. I stored the Scores data as a text file in a directory
called TextFiles. Here's how R turns it into a data frame:

> read.table("C:/TextFiles/ScoresText.txt", header=TRUE)
Student Math Score Science Score

1 1 85 90
2 2 91 87
3 3 78 75
4 4 88 78
5 5 93 99
6 6 82 89
7 7 67 71
8 8 79 84
9 9 89 88
10 10 98 97

The second argument (header=TRUE) lets R know that the
first row of the file contains column headers.

You use write.table() to write the anorexia data frame to a
text file:

> write.table(anorexia, "C:/TextFiles/anorexia.txt", quote = FALSE, sep =
"\t")
This puts the file anorexia.txt in the TextFiles folder on
drive C. The second argument (quote = FALSE) ensures
that no quotes appear, and the third argument (sep =
"\t") makes the file tab-delimited.



Figure 2-11 shows how the text file looks in Notepad.
Full disclosure: In the first line of the text file, you have
to press the Tab key once to position the headers
correctly.
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FIGURE 2-11: The anorexia data frame as a tab-delimited text file.

B

rememeer 1IN €ach of these examples, you use the full file
path for each file. That’s not necessary if the files are
in the working directory. If, for example, you put the
Scores spreadsheet in the working directory, here’s
all you have to do to read it into R:

> read.xlsx("Scores.xlsx","Sheetl")



Part 2
Describing Data




IN THIS PART ...

Summarize and describe data

Work with R graphics

Determine central tendency and variability
Work with standard scores

Understand and visualize normal distributions



Chapter 3
Getting Graphic
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IN THIS CHAPTER
» Using graphs to find patterns

» Learning base R graphics
» Graduating to ggplot2

Data visualization is an important part of statistics. A
good graph enables you to spot trends and relationships
you might otherwise miss if you look only at numbers.
Graphics are valuable for another reason: They help you
present your ideas to groups.

This is especially important in the field of data science.
Organizations rely on data scientists to make sense of
huge amounts of data so that decision-makers can
formulate strategy. Graphics enable data scientists to
explain patterns in the data to managers and to
nontechnical personnel.

Finding Patterns

Data often resides in long, complex tables. Often, you
have to visualize only a portion of the table to find a
pattern or a trend. A good example is the Cars93 data
frame, which resides in the MASS package. (In Chapter
2, I show you how to put this package into your R
library.) This data frame holds data on 27 variables for
93 car models that were available in 1993.



Figure 3-1 shows what appears in the Console pane after
you enter

> head(Cars93)

Manufacturer Model Type Min.Price Price Max.Price MPG.city
1 Acura Integra small 12.9 15.9 18.8 25
2 Acura Legend Midsize 29.2 33.9 38.7 18
3 Audi 90 Compact 25.9 29.1 32.3 20
4 Audi 100 Midsize 30.8 37.7 44.6 19
5 BMW 53571 Midsize 23.7 30.0 36.2 22
6 Buick Century Midsize 14.2 15.7 17.3 22
MPG. highway AirBags DriveTrain Cylinders Enginesize
1 31 None Front 4 1.8
2 25 Driver & Passenger Front 6 3.2
3 26 Driver only Front B 2.8
4 26 Driver & Passenger Front 3] 2.8
5 30 Driver only Rear 4 3.5
6 31 Driver only Front 4 2.2
Horsepower RPM Rev.per.mile Man.trans.avail Fuel.tank.capacity
1 140 6300 2890 Yes 13.2
Z 200 5500 2335 Yes 18.0
3 172 5500 2280 Yes 16.9
4 172 5500 2535 Yes 21.1
5 208 5700 2545 Yes 21.1
G 110 5200 2565 No 16.4
Passengers Length wheelbase Width Turn.circle Rear.seat.room
1 5 177 102 68 37 26.5
2 5 195 115 7l 38 30.0
3 5 180 102 67 37 28.0
4 B 193 106 70 37 31.0
5 4 186 109 69 39 27.0
6 6 189 105 69 41 28.0
Luggage.room Weight Origin Make
1 11 2705 non-USA Acura Integra
2 15 3560 non-UsSA Acura Legend
3 14 3375 non-uUsA Audi 90
4 17 3405 non-uUsA Audi 100
5 13 3640 non-Usa BMW 5351
6 16 2880 USA Buick Century

FIGURE 3-1: The first six rows of the cars93 data frame.

Graphing a distribution
One pattern that might be of interest is the distribution
of the prices of all the cars listed in the Cars93 data



frame. If you had to examine the entire data frame to
determine this, it would be a tedious task. A graph,
however, provides the information immediately. Figure
3-2, a histogram, shows what I mean.

The histogram is appropriate when the variable on the x-
axis is an interval variable or a ratio variable (see
Chapter 1). With these types of variables, the numbers
have meaning.

In Chapter 1, I distinguish between independent
variables and dependent variables. Here, Price is the
independent variable, and Frequency is the dependent
variable. In most (but not all) graphs, the independent
variable is on the x-axis, and the dependent variable is on
the y-axis.

Prices of 93 Models of 1993 Cars
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FIGURE 3-2: Histogram of prices of cars in the cars93 data frame.




Bar-hopping

For nominal variables (again, see Chapter 1), numbers
are just labels. In fact, the levels of a nominal variable
(also called a factor — see Chapter 2) can be names.
Case in point: Another possible point of interest is the
frequencies of the different types of cars (sporty,
midsize, van, and so on) in the data frame. So, "Type" is a
nominal variable. If you looked at every entry in the data
frame and created a table of these frequencies, it would
look like Table 3-1.

TABLE 3-1 Types and Frequencies of Cars in
the Cars93 Data Frame

Type Frequency

Compact 16
Large 11
Midsize 22
Small 21
Sporty 14
Van 9

The table shows some trends — more midsize and small
car models than large cars and vans. Compact cars and
sporty cars are in the middle.

Figure 3-3 shows this information in graphical form. This
type of graph is a bar graph. The spaces between the
bars emphasize that Type, on the x-axis, is a nominal
variable.
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FIGURE 3-3: Table 3-1 as a bar graph.

Although Table 3-1 is pretty straightforward, I think we'd
agree that an audience would prefer to see the picture.
As I'm fond of saying, eyes that glaze over when looking
at numbers often shine brighter when looking at
pictures.

Slicing the pie

The pie graph is another type of picture that shows the
same data in a slightly different way. Each frequency
appears as a slice of a pie. Figure 3-4 shows what I
mean. In a pie graph, the area of the slice represents the
frequency.



Large

Van

Small

Sporty

FIGURE 3-4: Table 3-1 as a pie graph.

PIE GRAPH GUIDELINES

Pardon me if you've heard this one before. It's a cute anecdote that serves
as a rule of thumb for pie graphs.

The late, great Yogi Berra often made loveable misstatements that became
part of the popular culture. He once reputedly walked into a pizzeria and
ordered a whole pizza.

“Should | cut that into four slices or eight?” asked the waitress.
“Better make it four,” said Yogi. “I’'m not hungry enough to eat eight.”

The takeaway: If a factor has a lot of levels, resulting in a pie graph with a lot
of slices, it's probably information overload. The message would come
across better in a bar graph.

(Did that Yogi incident really happen? It's not clear. Summarizing a lifetime of
sayings attributed to him, Mr. Berra said: “Half the lies they tell about me
aren’t true.”)




The plot of scatter

Another potential pattern of interest is the relationship
between miles per gallon (MPG) for city driving and
horsepower. This type of graph is a scatterplot. Figure 3-
5 shows the scatterplot for these two variables.

MPG City vs Horsepower
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Horsepower

FIGURE 3-5: MPG in city driving and horsepower for the data in cars93.

Each small circle represents one of the 93 cars. A circle’s
position along the x-axis (its x-coordinate) is its
horsepower, and its position along the y-axis (its y-
coordinate) is its MPG for city driving.

A quick look at the shape of the scatterplot suggests a
relationship: As horsepower increases, MPG-city seems
to decrease. (Statisticians would say “MPG-city
decreases with horsepower.”) Is it possible to use
statistics to analyze this relationship and perhaps make
predictions? Absolutely! (See Chapter 14.)




Of boxes and whiskers

What about the relationship between horsepower and
the number of cylinders in a car’s engine? You would
expect horsepower to increase with cylinders, and Figure
3-6 shows that this is indeed the case. Invented by the
famed statistician John Tukey, this type of graph is called
a boxplot, and it’s a nice, quick way to visualize data.
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FIGURE 3-6: Boxplot of horsepower versus number of cylinders in the cars93
data frame.

Each box represents a group of numbers. The leftmost
box, for example, represents the horsepower of cars with
three cylinders. The black solid line inside the box is the
median — the horsepower-value that falls between the
lower half of the numbers and the upper half. The lower
and upper edges of the box are called hinges. The lower
hinge is the lower quartile, the number below which 25
percent of the numbers fall. The upper hinge is the upper
quartile, the number that exceeds 75 percent of the



numbers. (I discuss medians in Chapter 4 and
percentiles in Chapter 6.)

The elements sticking out of the hinges are called
whiskers (so you sometimes see this type of graph
referred to as a box-and-whiskers plot). The whiskers
include data values outside the hinges. The upper
whisker boundary is either the maximum value or the
upper hinge plus 1.5 times the length of the box,
whichever is smaller. The lower whisker boundary is
either the minimum value or the lower hinge minus 1.5
times the length of the box, whichever is larger. Data
points outside the whiskers are outliers. The boxplot
shows that the data for four cylinders and for six
cylinders have outliers.

Note that the graph shows only a solid line for “rotary,”
an engine type that occurs just once in the data.

Base R Graphics

The capability to create graphs like the ones I show you
in earlier sections comes with your R installation, which
makes these graphs part of base R graphics. I start with
that. Then in the next section, I show you the
immeasurably useful ggplot2 package.

In base R, the general format for creating graphics is

graphics function(data, argl, arg2, ..)

ne  After you create a graph in RStudio, click Zoom on
the RStudio Plots tab to open the graph in a larger
window. The graph is clearer in the Zoom window
than it is on the Plots tab.



Histograms

Time to take another look at that cars93 data frame I
introduce in the “Finding Patterns” section, earlier in
this chapter. To create a histogram of the distribution of
prices in that data frame, you'd enter

> hist(Cars93$Price)

which produces Figure 3-7.
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FIGURE 3-7: Initial histogram of the distribution of prices in cars93.

You'll note that this isn’t quite as spiffy-looking as Figure
3-2. How do you spruce it up? By adding arguments.

One often-used argument in base R graphics changes the
label of the x-axis from R’s default into something more

meaningful. It’s called xlab. For the x-axis in Figure 3-2, I
added



xlab= "Price (x $1,000)"

to the arguments. You can use ylab to change the y-axis
label, but I left that alone here.

I wanted the x-axis to extend from a lower limit of O to an
upper limit of 70, and that's the province of the
argument xlim. Because this argument works with a
vector, I added

x1lim = c(0,70)

I also wanted a different title, and for that I used main:

main = "Prices of 93 Models of 1993 Cars"

To produce the histogram in Figure 3-2, the whole
megillah is

> hist(Cars93$Price, xlab="Price (x $1,000)", xlim = c(0,70),

main = "Prices of 93 Models of 1993 Cars")

ne  When creating a histogram, R figures out the best
number of columns for a nice-looking appearance.
Here, R decided that 12 is a pretty good number. You
can vary the number of columns by adding an
argument called breaks and setting its value. R
doesn't always give you the value you set. Instead, it
provides something close to that value and tries to
maintain a nice-looking appearance. Add this
argument and set its value (breaks = 4, for example),
and you’ll see what I mean.

Adding graph features

An important aspect of base R graphics is the ability to
add features to a graph after you create it. To show you
what I mean, I have to start with a slightly different type
of graph.



Density

Another way of showing histogram information is to
think of the data as probabilities rather than frequencies.
So, instead of the frequency of a particular price range,
you graph the probability that a car selected from the
data is in that price range. To do this, you add

probability = True
to the arguments. Now the R code looks like this:

> hist(Cars93$Price, xlab="Price (x $1,000)", xlim = c(0,70),
main = "Prices of 93 Models of 1993
Cars",probability
= TRUE)
The result appears in Figure 3-8. The y-axis measures
density — a concept related to probability, which I

discuss in Chapter 8. The graph is called a density plot.
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FIGURE 3-8: Density plot of the distribution of prices in Cars93.



Density

The point of all this is what you do next. After you create
the graph, you can use an additional function called
lines() to add a line to the density plot:

> lines(density(Cars93$Price))

The graph now looks like Figure 3-9.

Prices of 93 Models of 1993 Cars

0.06

0.054 /
AN

0.04-

0.03 1

0.02 4

N

0.01 - \

nluu - _.—-"'+_-_L'--____

0 10 2 30 40 50 60 70
Price (x $1,000)

FIGURE 3-9: Density plot with an added line.

So, in base R graphics, you can create a graph and then
start adding to it after you see what the initial graph
looks like. It's something like painting a picture of a lake
and then adding mountains and trees as you see fit.

Bar plots

Back in the “Finding Patterns” section, earlier in this
chapter, I show you a bar graph illustrating the types
and frequencies of cars. I also show you Table 3-1. As it




turns out, you have to make this kind of table before you
can use barplot() to create the bar graph.

To put Table 3-1 together, the R code is (appropriately
enough)

> table(Cars93$Type)
Compact Large Midsize Small Sporty Van
16 11 22 21 14 9

For the bar graph, then, it’s

> barplot(table(Cars93$Type))

which creates the graph in Figure 3-10.
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FIGURE 3-10: The initial bar plot of table (cars93 $Type).

Again, it's not as jazzy as the final product shown earlier,
in Figure 3-3. Additional arguments do the trick. To put O
through 25 on the y-axis, you use ylim, which, like xlim,
works with a vector:

ylim = c(0,25)



For the x-axis label and y-axis label, you use

xlab
ylab

IITypeII
"Frequency"

To draw a solid axis, you work with axis.1ty. Think of this
as “axis linetype,” which you set to solid by typing

axis.lty = "solid"

The values dashed and dotted for axis.lty result in different
looks for the x-axis.

Finally, you use space to increase the spacing between
bars:

space = .25

Here's the entire function for producing the graph in
Figure 3-3:
> barplot(table(Cars93$Type),ylim=c(0,25), xlab="Type",

ylab="Frequency", axis.lty = "solid",
space = .25)

Pie graphs
This type of graph couldn’t be more straightforward. The
line

> pie(table(Cars93$Type))

takes you right to Figure 3-4.
Scatterplots

To visualize the relationship between horsepower and
MPG for city driving (as shown in Figure 3-5), you use
the plot() function:

> plot(Cars93$Horsepower, Cars93$MPG.city,
xlab="Horsepower",ylab="MPG City",
main ="MPG City vs
Horsepower")



As you can see, I added the arguments for labeling the
axes and for adding the title.

Another way to do this is to use the formula notation I
show you in Chapter 2. So, if you want the R code to
show that MPG-city depends on horsepower, you type

> plot(Cars93$MPG.city ~ Cars93$Horsepower,
xlab="Horsepower",ylab="MPG City",
main ="MPG City vs
Horsepower")

to produce the same scatterplot.

rememeer 1 e tilde operator (~) means “depends on.”

A plot twist

R enables you to change the symbol that depicts the
points in the graph. Figure 3-5 shows that the default
symbol is an empty circle. To change the symbol, which
is called the plotting character, set the argument pch. R
has a set of built-in numerical values (0-25) for pch that
correspond to a set of symbols. The values 0-15
correspond to unfilled shapes, and 16-25 are filled.

The default value is 1. To change the plotting character

to squares, set pch to 0. For triangles, it's 2, and for filled

circles, it’s 16:

> plot(Cars93$Horsepower,Cars93$MPG.city, xlab="Horsepower",
ylab="MPG City", main = "MPG City vs
Horsepower",pch=16)



MPG City
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FIGURE 3-11: MPG City versus Horsepower with filled-in circles (pch = 16).

Figure 3-11 shows the plot with the filled circles.

You can also set the argument col to change the color
from “black” to “blue” or to a variety of other colors
(which wouldn't show up well on the black-and-white
page you're looking at).

You’'re not limited to the built-in numerical values for pch.
Here, for example, is an interesting touch: To help find
patterns in the data, you can draw each point in the plot
as the number of cylinders in the corresponding car
rather than as a symbol.

To do that, you have to be careful about how you set pch.
You can't just assign Cars93$.Cylinders as the value. You
have to make sure that what you pass to pch is a
character (like “3”, “4” or “8”) rather than a number
(like 3, 4, or 8). Another complication is that the data
contains “rotary” as one value for Cylinders. To force the



Cylinders-value to be a character, you apply
as.character() to Cars93$Cylinders:

pch = as.character(Cars93$Cylinders)

and the plot() function is

> plot(Cars93$Horsepower,Cars93$MPG.city, xlab="Horsepower",
ylab="MPG City", main = "MPG City vs
Horsepower", pch
= as.character(Cars93$Cylinders))

The result is the scatterplot in Figure 3-12. Interestingly,

”_J7

as.character() passes “rotary” as “r”.
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FIGURE 3-12: MPG City versus Horsepower with points plotted as number of
cylinders.

In line with your intuitions about cars, this plot clearly
shows that lower numbers of cylinders associate with
lower horsepower and higher gas mileage and that
higher numbers of cylinders associate with higher



horsepower and lower gas mileage. You can also quickly
see where the rotary engine fits into all this (low gas
mileage, high horsepower).

Scatterplot matrix

Base R provides a nice way of visualizing relationships
among more than two variables. If you add price into the
mix and you want to show all the pairwise relationships
among MPG-city, price, and horsepower, you'd need
multiple scatterplots. R can plot them all together in a
matrix, as Figure 3-13 shows.
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FIGURE 3-13: Multiple scatterplots for the relationships among MPG-city, price,
and horsepower.

The names of the variables are in the cells of the main
diagonal. Each off-diagonal cell shows the scatterplot for
its row variable (on the y-axis) and its column variable
(on the x-axis). For example, the scatterplot in the first
row, second column shows MPG-city on the y-axis and
price on the x-axis. In the second row, first column, the
axes are reversed: MPG city is on the x-axis, and price is
on the y-axis.

The R function for plotting this matrix is pairs(). To
calculate the coordinates for all scatterplots, this
function works with numerical columns from a matrix or
a data frame.

For convenience, you create a data frame that’s a subset
of the Cars93 data frame. This new data frame consists of
just the three variables to plot. The function subset()
handles that nicely:

> cars.subset <- subset(Cars93, select = c(MPG.
city,Price,Horsepower))

The second argument to subset creates a vector of exactly
what to select out of cars93. Just to make sure the new
data frame is the way you want it, use the head() function
to take a look at the first six rows:

> head(cars.subset)
MPG.city Price Horsepower

1 25 15.9 140

2 18 33.9 200

3 20 29.1 172

4 19 37.7 172

5 22 30.0 208

6 22 15.7 110
And now,

> pairs(cars.subset)



creates the plot you see in Figure 3-13.

This capability isn't limited to three variables, nor to
continuous ones. To see what happens with a different
type of variable, add Cylinders to the vector for select and
then use the pairs() function on cars.subset.

Boxplots

To draw a boxplot like the one shown earlier, in Figure 3-
6, you use a formula to show that Horsepower is the
dependent variable and Cylinders is the independent
variable:

> boxplot(Cars93$Horsepower ~ Cars93$Cylinders, xlab="Cylinders",
ylab="Horsepower")

If you get tired of typing the $-signs, here's another way:

> boxplot(Horsepower ~ Cylinders, data = Cars93,

xlab="Cylinders", ylab="Horsepower")

ne  With the arguments laid out as in either of the two
preceding code examples, plot() works exactly like
boxplot().

Graduating to ggplot2

The Base R graphics toolset will get you started, but if
you really want to shine at visualization, it's a good idea
to learn ggplot2. Created by R-megastar Hadley
Wickham, the “gg” in the package name stands for
“grammar of graphics” and that’s a good indicator of
what’s ahead. That’s also the title of the book (by Leland
Wilkinson) that is the source of the concepts for this
package.



In general, a grammar is a set of rules for combining
things. In the grammar you’re most familiar with, the
things happen to be words, phrases, and clauses: The
grammar of the language you use tells you how to
combine these components to produce valid sentences.

So, a grammar of graphics is a set of rules for combining
graphics components to produce graphs. Wilkinson
proposed that all graphs have underlying common
components — like data, a coordinate system (the x- and
y-axes you know so well, for example), statistical
transformations (like frequency counts), and objects
within the graph (dots, bars, lines, or pie slices, to name
a few).

Just as combining words and phrases produces
grammatical sentences, combining graphics components
produces graphs. And, just as some sentences are
grammatical but make no sense (“Colorless green ideas
sleep furiously.”), some ggplot2 creations are beautiful
graphs that aren’t always useful. It’s up to the
speaker/writer to make sense for their audience, and it’s
up to the graphic developer to create useful graphs for
people who use them.

Histograms

In ggplot2, Wickham’s implementation of Wilkinson’s
grammar is an easy-to-learn structure for R graphics
code. To learn that structure, make sure you have
ggplot2 in the library so that you can follow what comes
next. (Find ggplot2 on the Packages tab and select its
check box.)

A graph starts with ggplot(), which takes two arguments.
The first argument is the source of the data. The second
argument maps the data components of interest into



components of the graph. The function that does the job
1S aes().

To begin a histogram for Price in Cars93, the function is

> ggplot(Cars93, aes(x=Price))

The aes() function associates Price with the x-axis. In
ggplot-world, this is called an aesthetic mapping. In fact,
each argument to aes() is called an aesthetic.

This line of code draws Figure 3-14, which is just a grid
with a gray background and Price on the x-axis.

Price

FIGURE 3-14: Applying ggplot() and nothing else.

Well, what about the y-axis? Does anything in the data
map into it? No. That's because this is a histogram and
nothing explicitly in the data provides a y-value for each
X. So you can’t say “y=" in aes(). Instead, you let R do the



work to calculate the heights of the bars in the
histogram.

And what about that histogram? How do you put it into
this blank grid? You have to add something indicating
that you want to plot a histogram and let R take care of
the rest. What you add is a geom function (geom is short
for geometric object).

These geom functions come in a variety of types — ggplot2
supplies one for almost every graphing need and
provides the flexibility to work with special cases. To
draw a histogram, the geom function to use is called

geom histogram().

How do you add geom histogram() to ggplot()? With a plus
sign:

ggplot(Cars93, aes(x=Price)) +

geom_histogram()

This produces Figure 3-15. The grammar rules tell
ggplot2 that when the geometric object is a histogram, R
does the necessary calculations on the data and
produces the appropriate plot.

At the bare minimum, ggplot2 graphics code has to have
data, aesthetic mappings, and a geometric object. It's
like answering a logical sequence of questions: What'’s
the source of the data? What parts of the data are you
interested in? Which parts of the data correspond to
which parts of the graph? How do you want the graph to
look?



Price

FIGURE 3-15: The initial histogram for Price in Cars93.

Beyond those minimum requirements, you can modify
the graph. Each bar is called a bin and, by default,
ggplot() uses 30 of them. After plotting the histogram,
ggplot() displays an onscreen message that advises
experimenting with binwidth (which, unsurprisingly,
specifies the width of each bin) to change the graph's
appearance. Accordingly, you use binwidth = 5 as an
argument in geom histogram().

Additional arguments modify the way the bars look:

geom_histogram(binwidth=5, color = "black", fill = "white")

With another function, labs(), you modify the labels for
the axes and supply a title for the graph:

labs(x = "Price (x $1000)", y="Frequency",title="Prices of 93
Models of 1993 Cars")

Altogether now:



ggplot(Cars93, aes(x=Price)) +
geom_histogram(binwidth=5,color="black", fill="white") +
labs(x = "Price (x $1000)", y="Frequency", title="Prices of

93 Models of 1993 Cars")

The result is Figure 3-16. (Note that it's a little different
from Figure 3-2. I'd have to tinker a bit with both of
them to make them come out the same.)

Prices of 93 Models of 1993 Cars
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FIGURE 3-16: The finished Price histogram.

Bar plots

Drawing a bar plot in ggplot2 is a little easier than
drawing one in base R: It’s not necessary to first create a
table like Table 3-1 in order to draw the graph. You also
don’t need to specify an aesthetic mapping for y. This
time, the geom function is geom bar(), and the rules of the
grammar tell ggplot2 to do the necessary work with the
data and then draw the plot:



ggplot(Cars93, aes(x=Type))+
geom bar() +
labs(y="Frequency", title="Car Type and Frequency in Cars93")

Figure 3-17 shows the resulting bar plot.

Car Type and Frequency in Cars93
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FIGURE 3-17: Bar plot for car Type.

Scatterplots

As I describe earlier, a scatterplot is a helpful way to
show the relationship between two variables, like
horsepower and miles per gallon for city driving. And
ggplot() is a helpful way to draw the scatterplot. If you've
been following along, the grammar of this will be easy
for you:

ggplot(Cars93,aes(x=Horsepower, y=MPG.city) )+
geom_point()

Figure 3-18 shows the scatterplot. I'll leave it to you to
change the y-axis label to “Miles per Gallon (City)” and



to add a descriptive title.

About that plot twist ...

Take another look at Figure 3-12, which shows the
relationship between MPG.city and Horsepower. In that
one, the points in the plot aren’t dots. Instead, each data
point is the number of cylinders, which is a label that
appears as a text character.

How do you do make that happen in ggplot-world? First,
you need an additional aesthetic mapping in aes(). That
mapping is label, and you set it to Cylinders:

ggplot(Cars93, aes(x=Horsepower, y=MPG.city, label = Cylinders))

Horsepower

FIGURE 3-18: MPG.city versus Horsepower in Cars93.

You add a geometric object for text and voila:



ggplot(Cars93, aes(x = Horsepower,y = MPG.city, label =
Cylinders)) +
geom_text()

Figure 3-19 shows the graph this code produces. One

difference from base R is “rotary” rather than “r” as a
data point label.

Additional functions modify the graph's overall
appearance. To make the scatterplot look more like the
one shown in Figure 3-12, I use a family of these
functions called themes. One member of this family,
theme bw() eliminates the gray background. Another, the
theme () function (with a specific argument), eliminates
the grid:

theme(panel.grid=element blank())
The function element blank() draws a blank element.
Putting it all together

ggplot(Cars93, aes(x=Horsepower, y=MPG.city, label=Cylinders)) +
geom_text() +
theme bw() +
theme(panel.grid=element blank())
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FIGURE 3-19: The initial ggplot2 scatterplot for MPG.city versus Horsepower
with Cylinders as the data point label.

produces Figure 3-20. Once again, I leave it to you to use

labs() to change the y-axis label and to add a descriptive
title.
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FIGURE 3-20: Modified scatterplot for MPG.city vs Horsepower with Cylinders as
the data point label.

Scatterplot matrix

A matrix of scatterplots shows the pairwise relationships
among more than two variables. Figure 3-13, earlier in
this chapter, shows how the base R pairs() function
draws this kind of matrix.

The ggplot2 package had a function called plotpairs()
that did something similar, but not any more. GGally, a
package built on ggplot2, provides ggpairs() to draw
scatterplot matrices, and it does this in a flamboyant
way.

ne  The GGally package isn't on the Packages tab. You
have to select Install and type GGally in the Install



Packages dialog box. When it appears on the
Packages tab, select the check box next to it.

Earlier, I created a subset of cars93 that includes
MPG.city, Price, and Horsepower:

> cars.subset <- subset(Cars93, select = c(MPG.city,Price,
Horsepower))

With the GGally package in your library, this code creates
the scatterplot matrix in Figure 3-21:

> ggpairs(cars.subset)
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FIGURE 3-21: Scatterplot matrix for MPG.city, Price, and Horsepower.

As Figure 3-21 shows, this one's a beauty. The cells
along the main diagonal present density plots of the
variables. (See the earlier subsection “Adding graph
features,” and also see Chapter 8.) One drawback is that




the y-axis is visible for the variable MPG.city only in the
first row and first column.

The three scatterplots are in the cells below the main
diagonal. Rather than show the same scatterplots with
the axes reversed in the cells above the main diagonal
(like pairs() does), each above-the-diagonal cell shows a
correlation coefficient that summarizes the relationship
between the cell's row variable and its column variable.
(Correlation coefficients? No, I don’t explain them now.
See Chapter 15.)

For a visual treat, add Cylinders to cars.subset and then
apply ggpairs():

> cars.subset <- subset(Cars93, select = c(MPG.city,Price,
Horsepower,Cylinders))
> ggpairs(cars.subset)
Figure 3-22 shows the new scatterplot matrix, in all its
finery.
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FIGURE 3-22: Adding Cylinders produces this scatterplot matrix.

Cylinders isn't a variable that lends itself to scatterplots,
density plots, or correlation coefficients. (Thought
question: Why not?) Thus, the cell in the fourth column,
fourth row, has a bar plot rather than a density plot. Bar
plots relating Cylinders (on each y-axis) to the other three
variables (on the x-axes) are in the remaining three cells
in row 4. Boxplots relating Cylinders (on each x-axis) to
the other three variables (on the y-axes) are in the
remaining three cells in column 4.

Which brings me to the next graph type... .
Boxplots

Statisticians use boxplots to quickly show how groups
differ from one another. As in the base R example, I show
you the boxplot for Cylinders and Horsepower. This is a



replication of the graph in row 3, column 4 of Figure 3-
22.

At this point, you can probably figure out the ggplot()
function:

ggplot(Cars93, aes(x=Cylinders, y= Horsepower))

What's the geom function this time? If you guessed
geom_boxplot(), you're right!

So the code is

ggplot(Cars93, aes(x=Cylinders,y=Horsepower)) +
geom_boxplot ()

And that gives you Figure 3-23.

Want to show all the data points in addition to the boxes?
Add the geom function for points

ggplot(Cars93, aes(x=Cylinders,y=Horsepower)) +
geom boxplot()+
geom_point()

to produce the graph shown in Figure 3-24.

Remember that this is data for 93 cars. Do you see 93
data points? Neither do I. This, of course, is because
many points overlap. Graphics gurus refer to this as
overplotting.
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FIGURE 3-23: Boxplot for Horsepower versus Cylinders.
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FIGURE 3-24: Boxplot with data points.




Horsepower

One way to deal with overplotting is to randomly

reposition the points so as to reveal them but not change
what they represent. This is called jittering. And ggplot2

has a geom function for that: geom jitter(). Adding this

function to the code

ggplot(Cars93, aes(x=Cylinders,y=Horsepower)) +
geom_boxplot()+
geom_point()+
geom jitter()

draws Figure 3-25.

300+ —3 T .
" .:
200- _— .
‘1 .._::_;..hﬂ ™ .
Ll - '. : ;'
| R X
100 "‘". —
. L
| | I | |
4 5 6 8 rotary
Cylinders

FIGURE 3-25: Boxplot with jittered data points.

rememeer Jittering involves randomization, so your jittered
plot won’t look exactly like mine.




Wrapping Up

As far as graphics goes, I've just scratched the surface. R
has a rich set of graphics tools and packages — many
more than I could show you in this chapter. In the
chapters to come, every time I show you an analytic
technique, I also show you how to visualize its results. I'll
use what you’ve read in this chapter, along with new
tools and packages as necessary.



Chapter 4
Finding Your Center

IN THIS CHAPTER

» Working within your means

» Meeting conditions
» Understanding that the median is the message
» Getting into the mode

If you’ve ever worked with a set of numbers and had to
figure out how to summarize them with a single number,
you’ve faced a situation that statisticians deal with all
the time: Where would this ideal “single number” come
from?

A good idea might be to select a number from
somewhere in the middle of the set. That number could
then represent the entire set of numbers. When you’re
looking around in the middle of the set, you're looking at
central tendency. You can address central tendency in a
variety of ways.

Means: The Lure of
Averages

We’ve all used averages. Statisticians refer to the
average as the mean. The mean is an easy way to
summarize your spending, your school grades, or your
performance in a sport over time.



In the course of their work, scientists calculate means.
When a researcher does a study, they apply some kind of
treatment or procedure to a small sample of people or
things. Then they measure the results and estimate the
effects of the procedure on the population that produced
the sample. Statisticians have shown that the sample
mean is the estimate of the mean of the population.

I think you know how to calculate the mean, but I'll walk
you through it anyway. Then I'll show you the statistical
formula. My objective is for you to understand statistical
formulas in general, and then I'll show you how R
calculates means.

A mean is just the sum of a set of numbers divided by
how many numbers you added. Suppose you measure the
heights (in inches) of six 5-year-old children and find that
their heights are

36, 42, 43, 37, 40, 45

The average height of these six children is
36,42, 43, 37,40,45

6
The mean of this sample, then, is 40.5 inches.

=40.5

A first attempt at a formula for the mean might be

Sum of Numbers
Amount of Numbers You Added Up

Mean =

Formulas, though, usually involve abbreviations. A
common abbreviation for “Number” is X. Statisticians
usually abbreviate “Amount of Numbers You Added Up”
as N. So the formula becomes

Sumof X

Mean = -
L III“I



Statisticians also use an abbreviation for Sum of — the
uppercase Greek letter for S. Pronounced “sigma,” it
looks like this: > . So the formula with the sigma is

> X
N

I'm not done yet. Statisticians abbreviate mean, too. You
might think that M would be the abbreviation, and some
statisticians agree with you, but most prefer a symbol
that’s related to X. For this reason, the most popular
abbreviation for the mean is X, which is pronounced “X
bar.” And here’s the formula:

— X
I have to tie up one more loose end. In Chapter 1, I
discuss samples and populations. Symbols in formulas
have to reflect the distinction between the two. The
convention is that English letters, like Y, stand for
characteristics of samples, and Greek letters stand for
characteristics of populations. For the population mean,
the symbol is the Greek equivalent of M, which is p. It’s
pronounced like “you” but with “m” in front of it. The
formula for the population mean, then, is

24X
H="N"

Mean =

The Average in R: mean()

R provides an extremely straightforward way of
calculating the mean of a set of numbers: mean(). I apply
it to the example of the heights of six children.

First, I create a vector of the heights:

> heights <- c(36, 42, 43, 37, 40, 45)



Then I apply the function:

> mean(heights)
[1] 40.5

And there you have it.

What's your condition?

When you work with a data frame, sometimes you want
to calculate the mean of just the cases (rows) that meet
certain conditions rather than the mean of all the cases.
This is easy to do in R.

For the discussion that follows, I use the same Cars93
data frame that I use in Chapter 3. It’s the one that has
data for a sample of 93 cars from 1993. It’s in the MASS
package. So make sure you have the MASS package in your
library. (Find MASS on the Packages tab and click to select
its check box.)

Suppose I'm interested in the average horsepower of the
cars made in the USA. First, I select those cars and put
their horsepowers into a vector:

Horsepower.USA <- Cars93$Horsepower[Cars93$0rigin == "USA"]

(If the right end of that line looks strange to you, reread
Chapter 2.)

The average horsepower is then

> mean(Horsepower.USA)

[1] 147.5208
Hmm, I wonder what that average is for cars not made in
the USA:

Horsepower.NonUSA <- Cars93$Horsepower[Cars93$0rigin ==
"non-USA"]
> mean(Horsepower.NonUSA)
[1] 139.8889

So the averages differ a bit. (Can we examine that
difference more closely? Yes, we can, which is just what I



show you how to do in Chapter 11.)

Eliminate $-signs forth with()

In the preceding R-code, the $-signs denote variables in
the cars93 data frame. R provides a way out of using the
name of the data frame (and hence, the $-sign) each time
you refer to one of its variables.

In Chapter 3, I show that graphics functions take, as
their first argument, the data source. Then, in the
argument list, it isn't necessary to repeat the source
along with the $-sign to denote a variable to plot.

The function with() does this for other R functions. The
first argument is the data source, and the second
argument is the function to apply to a variable in that
data source.

To find the mean horsepower of USA cars in Cars93:

> with(Cars93, mean(Horsepower[Origin == "USA"]))
[1] 147.5208

This also skips the step of creating the Horsepower.USA
vector.

How about multiple conditions, like the average
horsepower of USA 4-cylinder cars?

> with(Cars93, mean(Horsepower[0Origin == "USA" &
Cylinders ==4]))
[1] 104.0909

warnine R also provides the attach() function as a way of
eliminating $-signs and keystrokes. Attach the data
frame [attach(Cars93), for example] and you don't
have to refer to it again when you use its variables.



Numerous R authorities recommend against this
strategy, however, because it can lead to errors.

Exploring the data

Now that I've shown you how to examine the horsepower
means of USA and non-USA cars, how about the overall
distributions?

That calls for a little data exploration. I use the ggplot2
package (see Chapter 3) to create side-by-side
histograms from the Cars93 data frame so that I can
compare them. (Make sure you have ggplot2 in the
library.) Figure 4-1 shows what I mean.
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FIGURE 4-1: Horsepower histograms for USA and non-USA cars in Cars93.

To create the histograms in the figure, I begin in the
usual way:



ggplot(Cars93, aes(x=Horsepower))

and then add a geom function

geom_histogram(color="black", fill="white",binwidth = 10)

I tinkered around a little to arrive at that binwidth value.

The code so far creates an ordinary histogram with
Horsepower on the x-axis. How can I create Figure 4-1? To
do that, I add a ggplot capability called faceting, which,
simply put, splits the data according to a nominal
variable — like origin, which is either “USA” or “non-
USA.” A couple of faceting functions are available. The
one I use here is called facet wrap(). To split the data
according to Origin, it's

facet wrap(~0rigin)

Just a reminder: The tilde operator (~) means “depends
on,” so think of origin as an independent variable. The
full code for Figure 4-1 is

ggplot(Cars93, aes(x=Horsepower)) +

geom _histogram(color="black", fill="white",binwidth = 10)+

facet wrap(~0rigin)
As you can see, the distributions have different overall
shapes. The USA cars seem to have a gap between the
low 200s and the next-highest values, and the non-USA
cars, not so much. You also see higher maximum values
for the USA cars. What other differences do you see? (I
address those differences in Chapter 7.)

Outliers: The flaw of averages

An outlier is an extreme value in a dataset. If the dataset
is a sample and you're trying to estimate the population
mean, the outlier might bias the estimate.

Statisticians deal with outliers by trimming the mean —
eliminating extreme values at the low end and the high



end before calculating the sample mean. The amount of
trim is a percentage, like the upper and lower 5 percent
of the scores.

For example, the histogram on the left side of Figure 4-1
shows some extreme values. To trim the upper and lower
5 percent, you add the trim argument to mean():

> mean(Horsepower.USA, trim =.05)
[1] 144.1818

The result is a bit lower than the untrimmed mean.

rememeer What's the appropriate percentage for trim? That’s
up to you. It depends on what you’re measuring, how
extreme your scores can be, and how well you know
the area you're studying. When you report a trimmed
mean, let your audience know that you’ve done this
and tell them the percentage you’ve trimmed.

In the upcoming section about the median, I show you
another way to deal with extreme scores.

Other means to an end

In this section, I tell you about two additional averages
that are different from the mean you’re accustomed to
working with.

rememeer 1 NE everyday, garden-variety mean is called the
arithmetic (pronounced “arith-MET-ic”) mean.

How many different kinds of means are possible? Ancient
Greek mathematicians came up with 11!

Geomelric mean



Suppose you have a 5-year investment that yields these
percentages: 10 percent, 15 percent, 10 percent, 20
percent, and 5 percent. (Yes, yes. I know. This is fiction.)
What’s the average annual rate of return?

Your first guess might be to average those percentages.
That average is 12 percent. And it would be incorrect.

Why? It misses an important point. At the end of the first
year, you multiply your investment by 1.10 — you don’t
add 1.10 to your investment. At the end of the second
year, you multiply the first-year result by 1.15, and so on.

The arithmetic mean won’t give you the average rate of
return. Instead, you calculate that average this way:

Average Rate of Return = ¥/1.10x1.15x1.10x1.20 2 1.05 = 1.118847

The average rate of return is a little less than 12 percent.
This kind of average is called the geometric mean.

In this example, the geometric mean is the fifth root of
the product of five numbers. Is it always the nth root of
the product of n numbers? Yep.

Base R doesn’t provide a function for calculating the
geometric mean, but it’s easy enough to calculate.

I begin by creating a vector of the numbers:

invest <- ¢(1.10,1.15,1.10,1.20,1.05)

I use the prod() function to calculate the product of the
numbers in the vector, and use the length() function to
calculate how many numbers are in the vector. The
calculation is then

> gm.invest <- prod(invest)”~(1l/(length(invest)))

> gm.invest
[1] 1.118847

Harmonic mean



Here's a situation you sometimes encounter in real life,
but more often in algebra textbooks.

Suppose you’'re in no hurry to get to work in the morning
and you drive from your home to your workplace at a
rate of 30 miles per hour. At the end of the day, on the
other hand, you'd like to get home quickly. So on the
return trip (over exactly the same distance), you drive
from your job to your home at 50 miles per hour. What is
the average rate for your total time on the road?

It’s not 40 miles per hour, because you're on the road a
different amount of time for each leg of the trip. Without
going into this distinction too deeply, the formula for
figuring it out is

_ 1[ 1. L} __1

Average 2| 30 50 | 375
The average is 37.5. This type of average is called a
harmonic mean. This example consists of two numbers,
but you can calculate it for any amount of numbers. Just
put each number in the denominator of a fraction with 1
as the numerator. Mathematicians call this the reciprocal
of a number. (So Y50 is the reciprocal of 30.) Add all the
reciprocals together and take their average. The result is
the reciprocal of the harmonic mean.

Base R doesn’t have a function for the harmonic mean,
but (again) it’s easy to calculate. You begin by creating a
vector of the two speeds:

speeds <- c(30,50)
Taking the reciprocal of the vector results in a vector of
reciprocals:

> 1/speeds
[1] 0.03333333 0.02000000

So the harmonic mean is



> hm.speeds <- 1/mean(1l/speeds)
> hm.speeds
[1] 37.5

Medians: Caught in the
Middle

The mean is a useful way to summarize a group of
numbers. One drawback (“the flaw of averages”) is that
it’s sensitive to extreme values. If one number is out of
whack, the mean is out of whack, too. When that
happens, the mean might not be a good representative of
the group.

Here, for example, are the reading speeds (in words per
minute) for a group of children:

56, 78, 45, 49, 55, 62
The mean is

> reading.speeds <- c(56, 78, 45, 49, 55, 62)

> mean(reading.speeds)

[1] 57.5
Suppose the child who reads at 78 words per minute
leaves the group and an exceptionally fast reader
replaces him. Her reading speed is a phenomenal 180
words per minute:

> reading.speeds.new <-

replace(reading.speeds, reading.speeds == 78,180)
> reading.speeds.new
[1] 56 180 45 49 55 62

Now the mean is

> mean(reading.speeds.new)
[1] 74.5

The new average is misleading. Except for the new child,
no one else in the group reads nearly that fast. In a case



like this, it’s a good idea to use a different measure of
central tendency — the median.

Median is a fancy name for a simple concept: It’s the
middle value in a group of numbers. Arrange the
numbers in order, and the median is the value below
which half the scores fall and above which half the
scores fall:

> sort(reading.speeds)
[1] 45 49 55 56 62 78
> sort(reading.speeds.new)
[1] 45 49 55 56 62 180

In each case, the median is halfway between 55 and 56,
or 55.5.

The Median in R: median()

So it’s no big mystery how to use R to find the median:

> median(reading.speeds)

[1] 55.5

> median(reading.speeds.new)
[1] 55.5

With larger datasets, you might encounter replication of
scores. In any case, the median is still the middle value.

For example, here are the horsepowers for 4-cylinder
cars in Cars93:

> Horsepower.Four <- with(Cars93,Horsepower[Cylinders == 4])
> sort(Horsepower.Four)

[1] 63 74 81 81 82 82 85 90 90 92 92 92 92 92

[15] 93 96 100 160 100 1602 163 1605 116 110 110 110 116 110
[29] 1160 114 115 124 127 128 130 130 130 134 135 138 140 140
[43] 140 141 150 155 160 164 208

You see quite a bit of duplication in these numbers —
particularly around the middle. Count through the sorted
values and you’ll see that 24 scores are equal to or less



than 110, and 24 scores are greater than or equal to 110,
which makes the median

> median(Horsepower.Four)
[1] 110

Statistics a la Mode

One more measure of central tendency, the mode, is
important. It’s the score that occurs most frequently in a
group of scores.

Sometimes the mode is the best measure of central
tendency to use. Imagine a small company that consists
of 30 consultants and two high-ranking officers. Each
consultant has an annual salary of $40,000. Each officer
has an annual salary of $250,000. The mean salary in
this company is $53,125.

Does the mean give you a clear picture of the company’s
salary structure? If you were looking for a job with that
company, would the mean influence your expectations?
You're probably better off if you consider the mode,
which in this case is $40,000 (unless you happen to be
high-priced executive talent!).

Nothing is complicated about finding the mode. Look at
the scores and find the one that occurs most frequently,
and you’ve found the mode. Do two scores tie for that
honor? In that case, your set of scores has two modes.
(The technical name is bimodal.)

Can you have more than two modes? Absolutely.

If every score occurs equally often, you have no mode.

The Mode in R



Base R doesn’t provide a function for finding the mode. It
does have a function called mode(), but it's for something
much different. Instead, you need a package called
modeest in your library. (On the Packages tab, click
Install, and then in the Install dialog box, type modeest
in the Packages box, and then click Install again. Then
select its check box when it appears on the Packages
tab.)

One function in the modeest package is called mfv()
(“most frequent value”), and that’s the one you need.
Here’s a vector with two modes (2 and 4):

> scores <- c(1,2,2,2,3,4,4,4,5,6)
> mfv(scores)
[1] 2 4



Chapter 5

Deviating from the
Average
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IN THIS CHAPTER
» Finding out what variation is all about

» Working with variance and standard deviation
» Exploring R functions that calculate variation

Here’s a well-known statistician joke: Three statisticians
go deer hunting with bows and arrows. They spot a deer
and take aim. One shoots and the arrow flies off ten feet
to the left. The second shoots and the arrow flies ten feet
to the right. The third statistician happily yells out, “We
got him!”

Moral of the story: Calculating the mean is a helpful way
to summarize a set of numbers, but the mean might
mislead you. How? By not giving you all the information
you typically need. If you rely only on the mean, you
might miss important information about the set of
numbers.

To avoid missing important information, another type of
statistic is necessary — a statistic that measures
variation. Think of variation as a kind of average of how
much each number in a group of numbers differs from
the group mean. Several statistics are available for
measuring variation. They all work the same way: The
larger the value of the statistic, the more the numbers



differ from their mean. The smaller the value, the less
they differ.

Measuring Variation

Suppose you measure the heights of a group of children
and you find that their heights (in inches) are

48, 48, 48, 48, and 48

Then you measure another group and find that their
heights are

50, 47, 52, 46, and 45

If you calculate the mean of each group, you’ll find
they’'re the same — 48 inches. Just looking at the
numbers tells you the two groups of heights are
different: The heights in the first group are all the same,
whereas the heights in the second vary quite a bit.

Averaging squared deviations:

Variance and how to calculate it

One way to show the dissimilarity between the two
groups is to examine the deviations in each one. Think of
a deviation as the difference between a score and the
mean of all the scores in a group.

Here’s what I'm talking about. Table 5-1 shows the first
group of heights and their deviations.

TABLE 5-1 The First Group of Heights and
Their Deviations

Height Height-Mean Deviation

48 48-48 0




Height Height-Mean Deviation

48 48-48 0
48 48-48 0
48 48-48 0
48 48-48 0

One way to proceed is to average the deviations. Clearly,
the average of the numbers in the Deviation column is 0.

Table 5-2 shows the second group of heights and their
deviations.

TABLE 5-2 The Second Group of Heights and
Their Deviations

Height Height-Mean Deviation

50 50-48 2
47 47-48 -1
52 52-48 4

46 46-48 -2
45 45-48 -3

What about the average of the deviations in Table 5-27?
That'’s ... zero!

Now what?

Averaging the deviations doesn’t help you see a
difference between the two groups, because the average
of deviations from the mean in any group of numbers is
always zero. In fact, veteran statisticians will tell you
that’s a defining property of the mean.

The joker in the deck here is the negative numbers. How
do statisticians deal with them?



The trick is to use something you might recall from
algebra class: A minus times a minus is a plus. Sound
familiar?

So ... does this mean that you multiply each deviation
times itself and then average the results? Absolutely.
Multiplying a deviation times itself is called “squaring a
deviation." The average of the squared deviations is so
important that it has a special name: variance.

Table 5-3 shows the group of heights from Table 5-2,
along with their deviations and squared deviations.

The variance — the average of the squared deviations for
this group —is(4+1+16+4+9)/5=34/5=6.8. This, of
course, is quite different from the first group, whose
variance is zero.

TABLE 5-3 The Second Group of Heights and
Their Squared Deviations

Height Height-Mean Deviation Squared Deviation

50 50-48 2 4
47 47-48 -1 1
52 52-48 4 16
46 46-48 -2 4
45 45-48 -3 9

To develop the variance formula for you and show you
how it works, I use symbols to show all this: X represents
the Height heading in the first column of the table, and ¥
represents the mean.

A deviation is the result of subtracting the mean from
each number, so

(x-X)



symbolizes a deviation. How about multiplying a
deviation by itself? That’s

(X-X)°

To calculate variance, you square each deviation, add
them up, and find the average of the squared deviations.
If N represents the amount of squared deviations you
have (in this example, five), the formula for calculating
the variance is

(X-X)
J'-.’Ir
The ) character is the uppercase Greek letter sigma,
and it means “the sum of.”

What’s the symbol for variance? As I mention in Chapter
1, Greek letters represent population parameters, and
English letters represent sample statistics. Imagine that
our little group of five numbers is an entire population.
Does the Greek alphabet have a letter that corresponds
to Vin the same way that p (the symbol for the
population mean) corresponds to M?

Nope. Instead, you use the lowercase sigma! It looks like
this: 0. And, on top of that, because you’re talking about

squared quantities, the symbol for population variance is

o2

Bottom line: The formula for calculating population
variance is
2(X-X)

N

of =




rememeer A large value for the variance tells you that the
numbers in a group vary greatly from their mean. A
small value for the variance tells you that the
numbers are similar to their mean.

Sample variance

The variance formula I show you in the preceding section
is appropriate if the group of five measurements is a
population. Does this mean that variance for a sample is
different? It does, and here’s why.

If your set of numbers is a sample drawn from a large
population, your objective is most likely to use the
variance of the sample to estimate the variance of the
population.

The formula in the preceding section doesn’t work as an
estimate of the population variance. Although the mean
calculated in the usual way is an accurate estimate of the
population mean, that’s not the case for the variance, for
reasons far beyond the scope of this book.

rememeer 1T'S pretty easy to calculate an accurate estimate
of the population variance. All you have to do is use
N-1 in the denominator rather than N (again, for
reasons way beyond this book’s scope).

And, because you're working with a characteristic of a
sample (rather than of a population), you use the English
equivalent of the Greek letter — s rather than o. This
means that the formula for the sample variance (as an
estimate of the population variance) is



H_Z{X_If}

N-1
The value of s?, given the squared deviations in the set of
five numbers, is

(4414+164449)/4=34/4=85
So if these numbers

50, 47, 52, 46, and 45

are an entire population, their variance is 6.8. If they're
a sample drawn from a larger population, the best
estimate of that population’s variance is 8.5.

Variance in R

Calculating variance in R is simplicity itself — you use
the var() function. But which variance does it give you?
The one with N in the denominator or the one with N-17?
Let's find out:

> heights <- c(50, 47, 52, 46, 45)
> var(heights)
[1] 8.5

It calculates the estimated variance (with N-1 in the
denominator). To calculate that first variance I showed
you (with N in the denominator), I have to multiply this
number by (N-1)/N. Using length() to calculate N, that’s

> var(heights)*(length(heights)-1)/length(heights)
[1] 6.8

If I were going to work with this kind of variance
frequently, I'd define a function var.p():
var.p = function(x){var(x)*(length(x)-1)/length(x)}

And here's how to use it:

> var.p(heights)
[1] 6.8



rememeer FOT Teasons that will become clear later, I'd like
you to think of the denominator of a variance
estimate (like N-1) as degrees of freedom. Why? Stay
tuned. (Chapter 12 reveals all!)

Back to the Rootls:
Standard Deviation

After you calculate the variance of a set of numbers, you
have a value whose units are different from your original
measurements. For example, if your original
measurements are in inches, their variance is in square
inches. This is because you square the deviations before
you average them. So the variance in the 5-score
population in the preceding example is 6.8 square
inches.

It might be hard to grasp what that statement means.
Often, it’s more intuitive if the variation statistic is in the
same units as the original measurements. It’s easy to
turn variance into that kind of statistic. All you have to
do is take the square root of the variance.

Like the variance, this square root is so important that it
has a special name: standard deviation.

Population standard deviation

The standard deviation of a population is the square root
of the population variance. The symbol for the population
standard deviation is oma (lowercase sigma). Its formula
is



o = |2

N
For this 5-score population of measurements (in inches):

50, 47, 52, 46, and 45

the population variance is 6.8 square inches, and the
population standard deviation is 2.61 inches (rounded

off).

Sample standard deviation

The standard deviation of a sample — an estimate of the
standard deviation of a population — is the square root
of the sample variance. Its symbol is s and its formula is

=12
2 Z( X-X ]
s= s = J N-1
For this sample of measurements (in inches):

50, 47, 52, 46, and 45

the estimated population variance is 8.4 square inches,
and the estimated population standard deviation is 2.92
inches (rounded off).

Standard Deviation in R

As is the case with variance, using R to compute the
standard deviation is easy: You use the sd() function.
And, like its variance counterpart, sd() calculates s, not
o:

> sd(heights)

[1] 2.915476

For 0 — treating the five numbers as a self-contained
population, in other words — you have to multiply the



sd() result by the square root of (N-1)/N:

> sd(heights)*(sqrt((length(heights)-1)/length(heights)))
[1] 2.607681

Again, if you're going to use this one frequently, defining
a function is a good idea:
sd.p=function(x){sd(x)*sqrt((length(x)-1)/length(x))}

And here’s how you use this function:

> sd.p(heights)
[1] 2.607681

Conditions, Conditions,
Conditions ...

In Chapter 4, I point out that with larger data frames,
you sometimes want to calculate statistics on cases
(rows) that meet certain conditions rather than on all the
cases.

As in Chapters 3 and 4, I use the Cars93 data frame for
the discussion that follows. That data frame has data for
a sample of 93 cars from 1993. You'll find it in the MASS
package, so be sure you have that package in your
library. (Find MASs on the Packages tab and select its
check box.)

I calculate the variance of the horsepowers of cars that
originated in the USA. Using the with() function I show
you in Chapter 4, that’s

> with(Cars93, var(Horsepower[Origin == "USA"]))
[1] 2965.319

How many of those cars are in this group?

> with(Cars93, length(Horsepower[Origin == "USA"]))
[1] 48



How about the non-USA cars?

> with(Cars93, var(Horsepower[Origin == "non-USA"]))
[1] 2537.283

> with(Cars93, length(Horsepower[Origin == "non-USA"]))
[1] 45

Can you compare those variances? Sure — but not until
Chapter 11.

I'll leave it as an exercise for you to compute the
standard deviations for the USA cars and for the non-
USA cars.




Chapter 6

Meeting Standards and
Standings
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IN THIS CHAPTER
» Standardizing scores

» Making comparisons
» Working with ranks in files
» Rolling in the percentiles

In my left hand, I hold 100 Philippine pesos. In my right,
I hold 1,000 Colombian pesos. Which is worth more?
Both are called pesos, right? So shouldn’t the 1,000 be
greater than the 100? Not necessarily. Peso is just a
coincidence of names. Each one comes out of a different
country, and each country has its own economy.

To compare the two amounts of money, you have to
convert each currency into a standard unit. The most
intuitive standard for U.S. citizens is our own currency.
How much is each amount worth in dollars and cents? As
I write this chapter, 100 Philippine pesos are worth
almost $2. One thousand Colombian pesos are worth 23
cents.

So when you compare numbers, context is important. To
make valid comparisons across contexts, you often have
to convert numbers into standard units. In this chapter, I
show you how to use statistics to do just that. Standard
units show you where a score stands in relation to other



scores within a group. I also show you other ways to
determine a score’s standing within a group.

Catching Some Z’s

A number in isolation doesn’t provide much information.
To fully understand what a number means, you have to
take into account the process that produced it. To
compare one number to another, they have to be on the
same scale.

When you’re converting currency, it’s easy to figure out
a standard. When you convert temperatures from
Fahrenheit to Celsius, or lengths from feet to meters, a
formula guides you.

When it’s not so clear-cut, you can use the mean and
standard deviation to standardize scores that come from
different processes. The idea is to take a set of scores
and use its mean as a zero point and its standard
deviation as a unit of measure. Then you make
comparisons: You calculate the deviation of each score
from the mean and then you compare that deviation to
the standard deviation. You're asking, “How big is a
particular deviation relative to (something like) an
average of all the deviations?”

To make a comparison, you divide the score’s deviation
by the standard deviation. This transforms the score into
another kind of score. The transformed score is called a
standard score, or a z-score.

The formula for this is
X-X
5
if you’re dealing with a sample, and

-
e



if you're dealing with a population. In either case, x
represents the score you’re transforming into a z-score.

Characteristics of z-scores

A z-score can be positive, negative, or zero. A negative z-
score represents a score that’s less than the mean, and a
positive z-score represents a score that’s greater than
the mean. When the score is equal to the mean, its z-
score 1S zero.

When you calculate the z-score for every score in the set,
the mean of the z-scores is 0, and the standard deviation
of the z-scores is 1.

After you do this for several sets of scores, you can
legitimately compare a score from one set to a score
from another. If the two sets have different means and
different standard deviations, comparing without
standardizing is like comparing apples with kumquats.

In the examples that follow, I show how to use z-scores
to make comparisons.

Bonds versus the Bambino

Here’s an important question that often comes up in the
context of serious metaphysical discussions: Who is the
greatest home run hitter of all time: Barry Bonds or Babe
Ruth? Although this question is a difficult one to answer,
one way to wrap your mind around it is to look at each
player’s best season and compare the two. Bonds hit 73
home runs in 2001, and Ruth hit 60 in 1927. On the
surface, Bonds appears to be the more productive hitter.

The year 1927 was quite different from 2001, however.
Baseball (and everything else) went through huge, long-
overdue changes in the intervening years, and player



statistics reflect those changes. A home run was harder
to hit in the 1920s than in the 2000s. Still, 73 versus 60?
Hmmm... .

Standard scores can help decide whose best season was
better. To standardize, I took the top 50 home run hitters
of 1927 and the top 50 from 2001. I calculated the mean
and standard deviation of each group and then turned
Ruth’s 60 and Bonds’s 73 into z-scores.

The average from 1927 is 12.68 homers with a standard
deviation of 10.49. The average from 2001 is 37.02
homers with a standard deviation of 9.64. Although the
means differ greatly, the standard deviations are pretty
close.

And the z-scores? Ruth’s is

60 -12.68
Z="To49 -4
Bonds’s is
T3=-37.02 . _.
—_ W — I-;.?-S'

The clear winner in the z-score best-season home run
derby is Babe Ruth. Period.

Just to show you how times have changed, Lou Gehrig hit
47 home runs in 1927 (finishing second to Ruth) for a z-
score of 3.27. In 2001, 47 home runs amounted to a z-
score of 1.04.

Exam scores

Moving away from sports debates, one practical
application of z-scores is the assignment of grades to
exam scores. Based on percentage scoring, instructors
traditionally evaluate a score of 90 points or higher (out
of 100) as an A, 80-89 points as a B, 70-79 points as a C,
60-69 points as a D, and fewer than 60 points as an F.



Then they average together scores from several exams to
assign a course grade.

Is that fair? Just as a peso from the Philippines is worth
more than a peso from Colombia, and a home run was
harder to hit in 1927 than in 2001, is a “point” on one
exam worth the same as a “point” on another? Like
pesos, isn’t points just a coincidence?

Absolutely. A point on a difficult exam is, by definition,
harder to come by than a point on an easy exam.
Because points might not mean the same thing from one
exam to another, the fairest thing to do is convert scores
from each exam into z-scores before averaging them.
That way, you're averaging numbers on a level playing
field.

A lower numerical score on one exam can result in a
higher z-score than a higher numerical score from
another exam. For example, on an exam where the mean
is 65 and the standard deviation is 12, a score of 71
results in a z-score of .5. On another exam, with a mean
of 69 and a standard deviation of 14, a score of 75 is
equivalent to a z-score of .429. (Yes, it’s like Ruth’s 60
home runs versus Bonds’s 73.) Moral of the story:
Numbers in isolation tell you very little. You have to
understand the process that produces them.

Standard Scores in R

The R function for calculating standard scores is scale().

Supply a vector of scores, and scale() returns a vector of
z-scores along with, helpfully, the mean and the standard
deviation.

To show scale() in action, I isolate a subset of the Cars93
data frame. (It's in the MASS package. On the Packages



tab, select the check box next to MAss if it's deselected.)

Specifically, I create a vector of the horsepowers of 8-
cylinder cars from the USA:

> Horsepower.USA.Eight <- with(Cars93, Horsepower[Origin == "USA" & Cylinders

== 8])
> Horsepower.USA.Eight
[1] 200 295 170 300 190 210

And now for the z-scores:

> scale(Horsepower.USA.Eight)
[,1]

[1,] -0.4925263

[2,] 1.2089283

[3,] -1.0298278

[4,] 1.2984785

[5,] -0.6716268

[6,] -0.3134259

attr(,"scaled:center")

[1] 227.5

attr(,"scaled:scale")

[1] 55.83458

That last value is s, not o. If you have to base your z-
scores on o, divide each element in the vector by the
square root of (N-1)/N:

> N <- length(Horsepower.USA.Eight)

> scale(Horsepower.USA.Eight)/sqrt((N-1)/N)
[,1]

[1,] -0.5395356

[2,] 1.3243146

[3,] -1.1281198

[4,] 1.4224120

[5,]1 -0.7357303

[6,] -0.3433408

attr(,"scaled:center")

[1] 227.5

attr(,"scaled:scale")

[1] 55.83458

Notice that scale() still returns s.



CACHING SOME Z’'S

Because negative z-scores might have connotations that are, well, negative,
educators sometimes change the z-score when they evaluate students. In
effect, they’re hiding the z-score, but the concept is the same —
standardization with the standard deviation as the unit of measure.

One popular transformation, the T-score, eliminates negative scores because
a set of T-scores has a mean of 50 and a standard deviation of 10. The idea
is to give an exam, grade all the tests, and calculate the mean and standard
deviation. Next, turn each score into a z-score. Then follow this formula:

T'=(z)(10)+50
People who use the T-score often like to round to the nearest whole number.

Here’s how to transform the vector from the example into a set of T-scores:

T.Hp.USA.Eight <- round((10*scale(Horsepower.USA.Eight)+50), digits = 0)

The digits=0 argument in the round() function rounds off the result to the
nearest whole number.

SAT scores are another transformation of the z-score. (Some refer to the SAT
as a C-score.) Under the old scoring system, the SAT has a mean of 500 and
a standard deviation of 100. After the exams are graded, and their mean and
standard deviation calculated, each exam score becomes a z-score in the
usual way. This formula converts the z-score into a SAT score:

SAT =(z)(100)+ 50
Rounding to the nearest whole number is part of the procedure here, too.

The IQ score is still another transformed z. Its mean is 100, and its standard
deviation is 15. What's the procedure for computing an IQ score? You
guessed it. In a group of IQ scores, calculate the mean and standard
deviation, and then calculate the z-score. Then it's

1Q=(z)(15)+100

As with the other two, IQ scores are rounded to the nearest whole number.

Where Do You Stand?

Standard scores show you how a score stands in relation
to other scores in the same group. In a standard score,
the standard deviation is a unit of measure.



If you don’t want to use the standard deviation, you can
show a score’s relative standing in a simpler way. You
can determine the score’s rank within the group: In
ascending order, the lowest score has a rank of 1, the
second-lowest has a rank of 2, and so on. In descending
order, the highest score is ranked 1, the second-highest
2, and so on.

Ranking in R
Unsurprisingly, the rank() function ranks the scores in a
vector. The default order is ascending:

> Horsepower.USA.Eight
[1] 200 295 170 300 190 210
> rank(Horsepower.USA.Eight)
[1] 351624
For descending order, put a minus sign (-) in front of the

vector name:

> rank(-Horsepower.USA.Eight)
[1] 426153

Tied scores

R handles tied scores by including the optional
ties.method argument in rank(). To show you how this
works, I create a new vector that replaces the sixth value
(210) in Horsepower.USA.Eight with 200:

> tied.Horsepower <- replace(Horsepower.USA.Eight,6,200)
> tied.Horsepower
[1] 200 295 170 300 190 200

One way of dealing with tied scores is to give each tied
score the average of the ranks they would have attained.
So the two scores of 200 would have been ranked 3 and
4, and their average (3.5) is what this method assigns to
both of them:

> rank(tied.Horsepower, ties.method = "average")
[1] 3.5 5.0 1.0 6.0 2.0 3.5



Another method assigns the minimum of the ranks:

> rank(tied.Horsepower, ties.method = "min")
[1] 351623

And still another assigns the maximum of the ranks:

> rank(tied.Horsepower, ties.method = "max")
[1] 451624

A couple of other methods are available. Type ?rank into
the Console window for the details (which appear on the
Help tab).

Nth smallest, Nth largest

You can turn the ranking process inside out by supplying
a rank (like second-lowest) and asking which score has
that rank. This procedure begins with the sort() function,
which arranges the scores in increasing order:

> sort(Horsepower.USA.Eight)
[1] 170 190 200 210 295 300

For the second-lowest score, supply the index value 2:

> sort(Horsepower.USA.Eight)[2]
[1] 190

How about from the other end? Start by assigning the
length of the vector to N:

> N <- length(Horsepower.USA.Eight)
Then, to find the second-highest score, it's

> sort(Horsepower.USA.Eight) [N-1]
[1] 295

Percentiles

Closely related to rank is the percentile, which
represents a score’s standing in the group as the percent
of scores below it. If you've taken standardized tests like
the SAT, you’ve encountered percentiles. An SAT score



in the 80th percentile is higher than 80 percent of the
other SAT scores.

Sounds simple, doesn’t it? Not so fast. Percentile can
have a couple of definitions, and hence, a couple (or
more) ways to calculate it. Some define percentile as
“greater than” (as in the preceding paragraph), and
some define percentile as “greater than or equal to.”
“Greater than” equates to exclusive. “Greater than or
equal to” equates to inclusive.

The function quantile() calculates percentiles. Left to its
own devices, it calculates the Oth, 25th, 50th, 75th, and
100th percentiles. It calculates the percentiles in a
manner that’s consistent with inclusive and (if
necessary) interpolates values for the percentiles.

I begin by sorting the Horsepower.USA.Eight vector so that
you can see the scores in order and compare with the
percentiles:

> sort(Horsepower.USA.Eight)
[1] 170 190 200 210 295 300

And now, the percentiles:

> quantile(Horsepower.USA.Eight)
0% 25% 50% 75%  100%
170.00 192.50 205.00 273.75 300.00

Notice that the 25th, 50th, and 75th percentiles are
values that aren't in the vector.

To calculate percentiles consistent with exclusive, add
the type argument and set it equal to 6:
> quantile(Horsepower.USA.Eight, type = 6)

0% 25% 50% 75%  100%
170.00 185.00 205.00 296.25 300.00

The default type (the first type I showed you) is 7, by the
way. Seven other types (ways of calculating percentiles)



are available. To take a look at them, type ?quantile into
the Console window (and then read the documentation
on the Help tab.)

Moving forward, I use the default type for percentiles.

The 25th, 50th, 75th, and 100th percentiles are often
used to summarize a group of scores. Because they
divide a group of scores into fourths, they're called
quartiles.

You're not stuck with quartiles, however. You can get
quantile() to return any percentile. Suppose you want to
find the 54th, 68th, and 91st percentiles. Include a
vector of those numbers (expressed as proportions) and
you're in business:

> quantile(Horsepower.USA.Eight, c(.54, .68, .91))
54% 68% 91%
207.00 244.00 297.75

Percent ranks

The quantile() function gives you the scores that
correspond to given percentiles. You can also work in the
reverse direction: Find the percent ranks that
correspond to given scores in a dataset. For example, in
Horsepower.USA.Eight, 170 is lowest in the list of six, so its
rank is 1 and its percent rank is 1/6, or 16.67 percent.

Base R doesn't provide a function for this, but it’s easy
enough to create one:

percent.ranks <-
function(x){round((rank(x)/
length(x))*100, digits = 2)}

The round() function with digits = 2 rounds the results to
two decimal places.

Applying this function:



> percent.ranks(Horsepower.USA.Eight)
[1] 50.00 83.33 16.67 100.00 33.33 66.67

A NEAT TRICK

Sometimes, you might want to know only the percent rank of a single score
in a set of scores — even if that score isn't in the dataset. For example, what
is the percent rank of 273 in Horsepower.USA.Eight?

To answer this question, you can harness mean(). Using this function along
with logical operators yields interesting results. Here's what | mean:
xx <- c(15,20,25,30,35,40,45,50)
Here’s a result you'd expect:
> mean (xx)
[1] 32.5
But here’s one you might not:
> mean(xx > 15)
[1] 0.875
The result is the proportion of scores in xx that are greater than 15.
Here are a few more:
> mean(xx < 25)
[1] 0.25
> mean(xx <= 25)
[1] 0.375

> mean(xx <= 28)
[1] 0.375

That <= operator, of course, means “less than or equal to,” so that last one
gives the proportion of scores in xx that are less than or equal to 28.

Are you catching my drift? To find the percent rank of a score (or a potential
score) in a vector like Horsepower.USA.Eight, it's

> mean(Horsepower.USA.Eight <= 273)*100
[1] 66.66667

Summarizing



In addition to the functions for calculating percentiles
and ranks, R provides a couple of functions that quickly
summarize data and do a lot of the work I discuss in this
chapter.

One is called fivenum(). This function, unsurprisingly,
yields five numbers. They’'re the five numbers that the
boxplot creator John Tukey used to summarize a dataset.
Then he used those numbers in his boxplots (see Chapter
3):

> fivenum(Horsepower.USA.Eight)
[1] 170 190 205 295 300

From left to right, that’s the minimum, lower hinge,
median, upper hinge, and maximum. Remember the
quantile() function and the nine available ways (types) to
calculate quantiles? This function's results are what type
= 2 yields in quantile().

Another function, summary(), is more widely used:

> summary (Horsepower.USA.Eight)
Min. 1st Qu. Median Mean 3rd Qu. Max.
170.0 192.5 205.0 227.5 273.8 300.0
It provides the mean along with the quantiles (as the

default type in quantile() calculates them).

The summary () function is versatile. You can use it to
summarize a wide variety of objects, and the results can
look different from object to object. I use it quite a bit in
upcoming chapters.



Chapter 7
Summarizing It All
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IN THIS CHAPTER
» Working with things great and small

» Understanding symmetry, peaks, and plateaus
» Experiencing special moments

» Finding frequencies

» Getting descriptive

The measures of central tendency and variability that I
discuss in earlier chapters aren’t the only ways of
summarizing a set of scores. These measures are a
subset of descriptive statistics. Some descriptive
statistics — like maximum, minimum, and range — are
easy to understand. Some — like skewness and kurtosis
— are not.

This chapter covers descriptive statistics and shows you
how to calculate them in R.

How Many?

Perhaps the fundamental descriptive statistic is the
number of scores in a set of data. In earlier chapters, I
work with length(), the R function that calculates this
number. As in earlier chapters, I work with the Cars93
data frame, which is in the MAsS package. (If it isn't
selected, click to select the check box next to MASS on the
Packages tab.)



Cars93 holds data on 27 variables for 93 cars available in
1993. What happens when you apply length() to the data
frame?

> length(Cars93)

[1]1 27
So length() returns the number of variables in the data
frame. The function ncol() does the same thing:

> ncol(Cars93)

[1] 27
I already know the number of cases (rows) in the data
frame, but if I had to find that number, nrow() would get
it done:

> nrow(Cars93)
[1] 93

If you want to know how many cases in the data frame
meet a particular condition — like how many cars
originated in the USA — you have to take into account
the way R treats conditions: R attaches the label “TRUE”
to cases that meet a condition, and “FALSE” to cases
that don't. Also, R assigns the value 1 to “TRUE” and 0 to
“FALSE.”

To count the number of USA-originated cars, then, you
state the condition and then add up all the 1s:

> sum(Cars93$0rigin == "USA")
[1] 48

To count the number of non-USA cars in the data frame,
you can change the condition to "non-USA", of course, or

you can use !'= — the not-equal-to operator:
> sum(Cars93$0rigin != "USA")
[1] 45

More complex conditions are possible. For the number of
4-cylinder USA cars:



> sum(Cars93$0rigin == "USA" & Cars93$Cylinders == 4)
[1] 22

Or, if you prefer no $ signs:

> with(Cars93, sum(Origin = "USA" & Cylinders == 4))

[1] 22
To calculate the number of elements in a vector, length(),
as you may have read earlier, is the function to use.
Here's a vector of horsepowers for 4-cylinder USA cars:

> Horsepower.USA.Four <- with(Cars93, Horsepower[Origin == "USA" & Cylinders
== 4])
and here’s the number of horsepower values in that
vector:

> length(Horsepower.USA.Four)
[1] 22

The High and the Low

Two descriptive statistics that need no introduction are
the maximum and minimum value in a set of scores:

> max(Horsepower.USA.Four)
[1] 155
> min(Horsepower.USA.Four)
[1] 63

If you happen to need both values at the same time:

> range(Horsepower.USA.Four)
[1] 63 155

Living in the Moments

In statistics, moments are quantities that are related to
the shape of a set of numbers. By “shape of a set of
numbers,” I mean “what a histogram based on the
numbers looks like” — how spread out it is, how
symmetric it is, and more.



A raw moment of order k is the average of all numbers in
the set, with each number raised to the kth power before
you average it. So the first raw moment is the arithmetic
mean. The second raw moment is the average of the
squared scores. The third raw moment is the average of
the cubed scores, and so on.

A central moment is based on the average of deviations
of numbers from their mean. (Beginning to sound
vaguely familiar?) If you square the deviations before
you average them, you have the second central moment.
If you cube the deviations before you average them,
that’s the third central moment. Raise each one to the
fourth power before you average them, and you have the
fourth central moment. I could go on and on, but you get
the idea.

Two quick questions:

1. For any set of numbers, what’s the first central
moment?

2. By what other name do you know the second central
moment?

Two quick answers:

1. Zero.
2. Population variance.

Read or reread Chapter 5 if you don’t believe me.

A teachable moment

Before I proceed, I think it’s a good idea to translate into
R everything I've said so far in this chapter. That way,
when you get to the next R package to install (which



calculates moments), you’ll know what’s going on behind
the scenes.

Here’s a function for calculating a central moment of a
vector:

cen.mom <-function(x,y){mean((x - mean(x))”y)}

The first argument, x, is the vector. The second
argument, y, is the order (second, third, fourth ...).

Here's a vector to try it out on:

Horsepower.USA <- with(Cars93, Horsepower[Origin == "USA"])

And here are the second, third, and fourth central
moments:

> cen.mom(Horsepower.USA,2)
[1] 2903.541
> cen.mom(Horsepower.USA, 3)
[1] 177269.5
> cen.mom(Horsepower.USA,4)
[1] 37127741

Back to descriptives

What does all this about moments have to do with
descriptive statistics? As I said ... well ... a moment ago,
think of a histogram based on a set of numbers. The first
raw moment (the mean) locates the center of the
histogram. The second central moment indicates the
spread of the histogram. The third central moment is
involved in the symmetry of the histogram, which is
called skewness. The fourth central moment figures into
how fat or thin the tails (extreme ends) of the histogram
are. This is called kurtosis. Getting into moments of
higher order than that is way beyond the scope of this
book.

But let’s get into symmetry and “tailedness.”



Skewness

Figure 7-1 shows three histograms. The first is
symmetric; the other two are not. The symmetry and the
asymmetry are reflected in the skewness statistic.

Symmetric: Skewness =0

Skewed to the left: Skewness is negative

H””m_’m Skewed to the right: Skewness is positive

FIGURE 7-1: Three histograms, showing three kinds of skewness.

For the symmetric histogram, the skewness is 0. For the
second histogram — the one that tails off to the right —
the value of the skewness statistic is positive. It’s also
said to be “skewed to the right.” For the third histogram
(which tails off to the left), the value of the skewness
statistic is negative. It’s also said to be “skewed to the
left.”



Now for a formula. I'll let M, represent the kth central
moment. To calculate skewness, it’s

s

= 9
Y(X-X) M,

(N-1)s®  M)°

In English, the skewness of a set of numbers is the third
central moment divided by the second central moment
raised to the 1.5 power. With the R function I defined
earlier, it’s easier done than said:

skewness =

> cen.mom(Horsepower.USA, 3)/cen.mom(Horsepower.USA,2)"1.5
[1] 1.133031

With the moments package, it’s easier still. On the
Packages tab, click Install and type moments into the
Install Packages dialog box, and then click Install. Then
on the Packages tab, select the check box next to moments.

Here's its skewness() function in action:

> skewness (Horsepower.USA)
[1] 1.133031

So the skew is positive. How does that compare with the
horsepower for non-USA cars?

> Horsepower.NonUSA <- with(Cars93, Horsepower[Origin != "USA"])
skewness (Horsepower.NonUSA)
[1] 0.642995

The skew is more positive for USA cars than for non-USA
cars. What do the two histograms look like?

I produced them side-by-side in Figure 4-1, over in
Chapter 4. For convenience, I show them here as Figure
7-2.
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FIGURE 7-2: Horsepower histograms for USA cars and non-USA cars.

The code that produces them is

ggplot(Cars93, aes(x=Horsepower)) +
geom_histogram(color="black", fill="white",binwidth = 10)+
facet wrap(~0rigin)
Consistent with the skewness values, the histograms
show that in the USA cars, the scores are more bunched
up on the left than they are in the non-USA cars.

ne  It’s sometimes easier to see trends in a density
plot rather than in a histogram. A density plot shows
the proportions of scores between a given lower
boundary and a given upper boundary (like the
proportion of cars with horsepower between 100 and
140). I discuss density in more detail in Chapter 8.




Changing one line of code produces the density plots:

ggplot(Cars93, aes(x=Horsepower)) +
geom _density() +
facet wrap(~0rigin)

Figure 7-3 shows the two density plots.
With the density plots, it seems to be easier (for me,

anyway) to see the more leftward tilt (and hence, more
positive skew) in the plot on the left.
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FIGURE 7-3: Horsepower density plots for USA cars and non-USA cars.

Kurtosis

Figure 7-4 shows two histograms. The first has fatter
tails than the second. The first is said to be leptokurtic.
The second is platykurtic. The kurtosis for the first
histogram is greater than for the second.
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FIGURE 7-4: Two histograms, showing two kinds of kurtosis.

The formula for kurtosis is

Z(X_ ‘f]‘1 _ M,
(N-1)s" M:
where M, is the fourth central moment and M, is the

second central moment. So kurtosis is the fourth central
moment divided by the square of the second central
moment.

kurtosis =




ne  Many statisticians subtract 3 from the result of the
kurtosis formula. They refer to that value as excess
kurtosis. By excess, they mean kurtosis that’s greater
(or possibly less) than the kurtosis of something
called the standard normal distribution, which I
discuss in Chapter 8. Because of the subtraction,
excess kurtosis can be negative. Why does 3
represent the kurtosis of the standard normal
distribution? Don’t ask.

Using the cen.mom() function I defined earlier, in the
section “A teachable moment”, the kurtosis of
horsepower for USA cars is

> cen.mom(Horsepower.USA,4)/cen.mom(Horsepower.USA,2)"2
[1] 4.403952

Of course, the kurtosis() function in the moments package
makes this a snap:

> kurtosis(Horsepower.USA)
[1] 4.403952

The fatter tail in the left-side density plot in Figure 7-3
suggests that the USA cars have a higher kurtosis than
the non-USA cars. Is this true?

> kurtosis(Horsepower.NonUSA)
[1] 3.097339

Yes, it is!

ne In addition to skewness() and kurtosis(), the moments
package provides a function called moment () that does
everything cen.mom() does and a bit more. I just
thought it would be a good idea to show you a user-



defined function that illustrates what goes into
calculating a central moment. (Was I being
“momentous” — or did I just “seize the moment”?
Okay. I'll stop.)

Tuning in the Frequency

A good way to explore data is to find out the frequencies
of occurrence for each category of a nominal variable
and for each interval of a numerical variable.

Nominal variables: table() et al

For nominal variables, like Type of Automobile in Cars93,
the easiest way to find the frequencies is to use the
table() function I show you in Chapter 3:

> car.types <-table(Cars93$Type)
> car.types
Compact Large Midsize Small Sporty Van
16 11 22 21 14 9
Another function, prop.table(), expresses these

frequencies as proportions of the whole amount:

> prop.table(car.types)

Compact Large Midsize Small Sporty Van
0.17204301 0.11827957 0.23655914 0.22580645 0.15053763
0.09677419

rememeer 1 NE Values here are unsightly. If I round off the
proportions to two decimal places, the output looks a
lot cleaner:

> round(prop.table(car.types),2)
Compact Large Midsize Small Sporty Van
0.17 0.12 0.24 0.23 0.15 0.10

Another function, margin.table(), adds up the frequencies:



> margin.table(car.types)
[1] 93

Numerical variables: hist()

Tabulating frequencies for intervals of numerical data is
part and parcel of creating histograms (see Chapter 3).
To create a table of frequencies, use the graphical
function hist(), which produces a list of components
when the plot argument is FALSE:

> prices <- hist(Cars93$Price, plot=F, breaks=5)
> prices

$breaks

[1] © 10 20 30 40 50 60 70

$counts

[1] 1250 19 9 20 1

$density

[1] 0.012903226 0.053763441 0.020430108 0.009677419 0.002150538 0.000000000
[7] 0.001075269

$mids

[1] 5 15 25 35 45 55 65

$xname

[1] "Cars93$Price"

$equidist

[1] TRUE

(In cars93, remember, each price is in thousands of
dollars.)

Although I specified five breaks, hist() uses a number of
breaks that makes everything look “prettier.” From here,
I can use mids (the interval-midpoints) and counts to first
make a matrix of the frequencies and then a data frame:

> prices.matrix <- matrix(c(prices$mids,prices$counts), ncol = 2)

> prices.frame <- data.frame(prices.matrix)

> colnames(prices.frame) <- c("Price Midpoint (X $1,000)","Frequency")
> prices.frame

Price Midpoint (X $1,000) Frequency

1 5 12

2 15 50

3 25 19

4 35 9

5

45 2



6 55
7 65 1

Cumulative frequency

Another way of looking at frequencies is to examine
cumulative frequencies: Each interval's cumulative
frequency is the sum of its own frequency and all
frequencies in the preceding intervals.

The cumsum() function does the arithmetic on the vector of
frequencies:

> prices$counts

[1] 1250 19 920 1

> cumsum(prices$counts)
[1] 12 62 81 90 92 92 93

To plot a cumulative frequency histogram, I substitute
the cumulative frequencies vector for the original one:

> prices$counts <- cumsum(prices$counts)

and then apply plot():

> plot(prices, main = "Cumulative Histogram", xlab = "Price", ylab =
"Cumulative Frequency")

The result is shown in Figure 7-5.
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FIGURE 7-5: Cumulative frequency histogram of the price data in cars93.

Step by step: The empirical cumulative

distribution function

The empirical cumulative distribution function (ecdf) is
closely related to cumulative frequency — rather than
show the frequency in an interval, however, the ecdf
shows the proportion of scores that are less than or
equal to each score. (If this sounds familiar, it's probably
because you read about percentiles in Chapter 6.)

In base R, it’s easy to plot the ecdf:

> plot(ecdf(Cars93$Price), xlab = "Price", ylab = "Fn(Price)")
This produces the result shown in Figure 7-6.
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FIGURE 7-6: Empirical cumulative distribution function for the price data in
Cars93.

Making the F in Fn on the y-axis uppercase is a notational
convention for a cumulative distribution. The Fn here
means, in effect, “cumulative function” as opposed to f
or fn, which just means “function.” (The y-axis label
could also be Percentile(Price).)

Look closely at the plot. When consecutive points are far
apart (like the two on the top right), you can see a
horizontal line extending rightward out of a point. (A line
extends out of every point, but the lines aren't visible
when the points are bunched up.) Think of this line as a
“step,” and then the next dot is a step higher than the
previous one. How much higher? That would be 1/N,
where N is the number of scores in the sample. For
Cars93, that would be 1/93, which rounds off to .011.
(Now reconsider the title of this subsection. See what I
did there?)



Why is this called an empirical cumulative distribution
function? Something that’s empirical is based on
observations, like sample data. Is it possible to have a
non-empirical cumulative distribution function (cdf)? Yes
— and that’s the cdf of the population that the sample
comes from (see Chapter 1). One important use of the
ecdf is as a tool for estimating the population cdf.

So the plotted ecdf is an estimate of the cdf for the
population, and the estimate is based on the sample
data. To create an estimate, you assign a probability to
each point and then add up the probabilities, point by
point, from the minimum value to the maximum value.
This produces the cumulative probability for each point.
The probability assigned to a sample value is the
estimate of the proportion of times that value occurs in
the population. What is the estimate? That’s the
aforementioned 1/N for each point — .011, for this
sample. For any given value, that might not be the exact
proportion in the population. It’s just the best estimate
from the sample.

I prefer to use ggplot() to visualize the ecdf. Because I
base the plot on a vector (Cars93sPrice), the data source is
NULL:

ggplot (NULL, aes(x=Cars93$Price))

In keeping with the step-by-step nature of this function,
the plot consists of steps, and the geom function is

geom step. The statistic that locates each step on the plot
is the ecdf, so that's

geom step(stat="ecdf")
and I'll label the axes:
labs(x= "Price X $1,000",y = "Fn(Price)")

Putting those three lines of code together



ggplot (NULL, aes(x=Cars93$Price)) +
geom step(stat="ecdf") +
labs(x= "Price X $1,000",y = "Fn(Price)")

gives you Figure 7-7.

Price X 81 000

FIGURE 7-7: The ecdf for the price data in cars93, plotted with ggplot().

To put a little pizzazz in the graph, I add a dashed
vertical line at each quartile. Before I add the geom
function for a vertical line, I put the quartile information
in a vector:

price.q <-quantile(Cars93$Price)

And now

geom vline(aes(xintercept=price.q), linetype = "dashed")

adds the vertical lines. The aesthetic mapping sets the x-
intercept of each line at a quartile value.



So these lines of code

ggplot (NULL, aes(x=Cars93$Price)) +
geom step(stat="ecdf") +
labs(x= "Price X $1,000",y = "Fn(Price)") +
geom vline(aes(xintercept=price.q),linetype = "dashed")

result in Figure 7-8.

Price X 51 000

FIGURE 7-8: The ecdf for price data, with a dashed vertical line at each
quartile.

A nice finishing touch is to put the quartile values on the
x-axis. The function scale x_continuous() gets that done. It
uses one argument called breaks (which sets the location
of values to put on the axis) and another called 1labels
(which puts the values on those locations). Here's where
that price.q vector comes in handy:

scale x_continuous(breaks = price.q,labels = price.q)



And here’s the R code that creates Figure 7-9:

ggplot (NULL, aes(x=Cars93$Price)) +
geom step(stat="ecdf") +
labs(x= "Price X $1,000",y = "Fn(Price)") +
geom vline(aes(xintercept=price.q),linetype = "dashed")+
scale x _continuous(breaks = price.q,labels = price.q)

Numerical variables: stem()

Boxplot creator John Tukey popularized the stem-and-
leaf plot as a way to quickly visualize a distribution of
numbers. It’s not a “plot” in the usual sense of a graph in
the Plot window. Instead, it’s an arrangement of
numbers in the Console window. With each score
rounded off to the nearest whole number, each “leaf” is a
score’s rightmost digit. Each “stem” consists of all the
other digits.

Price X 81,000

FIGURE 7-9: The ecdf for price data, with quartile values on the x-axis.




An example will help. Here are the prices of the cars in
Cars93, arranged in ascending order and rounded off to
the nearest whole number (remember that each price is
in thousands of dollars):

> rounded <- (round(sort(Cars93%$Price),0))

I use cat() to display the rounded values on this page.
(Otherwise, it would look like a mess.) The value of its
fill argument limits the number of characters (including
spaces) on each line:

> cat(rounded, fill = 50)

78888999910 10 10 160 16 11 11 11 11 11
11 12 12 12 12 12 13 13 14 14 14 14 14 15 15 16
16 16 16 16 16 16 16 16 16 17 18 18 18 18 18 18
19 19 19 19 19 20 20 20 20 20 20 20 21 21 21 22
23 23 23 24 24 26 26 26 27 28 29 29 30 30 32 32
34 34 35 35 36 38 38 40 48 62

The stem() function produces a stem-and-leaf plot of
these values:

> stem(Cars93$Price)

The decimal point is 1 digit(s) to the right of the |
| 788889999

| 60000111111222233344444556666666667788888999999
| 00000001112333446667899
| 00234455688
| 08

I
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In each row, the number to the left of the vertical line is
the stem. The remaining numbers are the leaves for that
row. The message about the decimal point means
“multiply each stem by 10.” Then add each leaf to that
stem. So, the bottom row tells you that one rounded
score in the data is 62. The next row up reveals that no
rounded score is between 50 and 59. The row above that
one indicates that one score is 40 and another is 48. I'll
leave it to you to figure out (and verify) the rest.



warnine AS I reviewed the leaves, I noticed that the stem
plot shows one score of 32 and another of 33. By
contrast, the rounded scores show two 32s and no
33s. Apparently, stem() rounds differently than round()
does.

Summarizing a Data
Frame

If you're looking for descriptive statistics for the
variables in a data frame, the summary() function will find
them for you. I illustrate with a subset of the Cars93 data
frame:

> autos <- subset(Cars93, select = c(MPG.city,Type, Cylinders, Price,
Horsepower))
> summary (autos)

The summary command produces the output shown in
Figure 7-10.

MPG.city Type Cylinders Price Horsepower
Min. :15.00 Compact:l6é 3 P30 Min. : 7.40 Min. : 55.0
1st Qu.:18.00 Large :11 4 149 1st Qu.:12.20 1st Qu.:103.0
Median :21.00 Midsize:22 5 ;2 Median :;17.70  Median :140.0
Mean :22.37  small :21 6 :31  Mean :19.51  Mean :143.8
3rd Qu.:25.00 Sporty :14 8 7 3rd Qu.:23.30 3rd Qu.:170.0
Max. :46.00 van 19 rotary: 1 Max. :61.90 Max. :300.0

FIGURE 7-10: The output of summary(autos).

Notice the maxima, minima, and quartiles for the
numerical variables and the frequency tables for Type and
for Cylinders.

Two functions from the Hmisc package also summarize
data frames. To use these functions, you need Hmisc in



your library. (On the Packages tab, click Install and type
Hmisc into the Packages box in the Install dialog box.
Once installation is complete, check the check box next
to Hmisc.)

One function, describe (), provides output that's a bit
more extensive than what you get from summary(), as
shown in Figure 7-11.

» describe(autos)

autos
5 wvariables 03 gbservations
MPG.CITY
n missing distinct Info Mean pMedian Gmd .05 .10 .25 .50
93 o 21 0.993 22. 37 21.5 5.8 16.6 17.0 15.0 21.0
.75 .80 .95
25.0 29.0 3.4

Type g g 0 i

n missing distinct

a3 o &
value compact  Large Midsize  small  Sporty van
Fregquency 16 11 22 £1 14 9
Propertien 0,172 ©.118 0.237 0,226 0,151 0,097
Cylinders

n missing distinct

93 o &
value 3 4 1 [ 8§ rotary
Frequency L1 49 2 5l 7 1

Propertion ©0.03Z 0.527 0.022 0.333 0.07% 0.011

Price

n missing distinct Info Mean pMedian Gmd .05 .10 .25 .50
93 i} 81 1 19,51 18.25 10.17 B.52 9.84 12.20 17.70
T8 .90 95

23,30 33.62 3674

Towest © 7.4 8§ £.3 8.4 B&.6 , highest: 37.7 38 40.1 47.9 61.%

Horsepower
n missing distinct Infa mean pMedian Gmd .05 .10 .25 .50
93 o 57 0.999 143.8 140 57.44 7B.2 836.0 103.0 140.0
.75 80 .95

170.0 206.8 237.0

lowest : &5 63 70 T3 74, highest: 225 255 278 295 300

FIGURE 7-11: The output of describe(autos).

A value labeled Info appears in the summaries of the
numerical variables. That value is related to the number
of tied scores — the greater the number of ties, the lower
the value of info. (The calculation of the value is fairly
complicated.)



Another Hmisc function, datadensity(), gives graphical
summaries, as shown in Figure 7-12:

> datadensity(autos)

uPGaty |t ettt t + t

Cylinders =

Price  —————HHEHH-HEE R

je ma opn R [l 1y ! k|
LLCLE B B I R ) T LI I T

Hiors apower

FIGURE 7-12: Chart created by datadensity (autos).

warning 1f yOu plan to use the datadensity() function,
arrange for the first data frame variable to be
numerical. If the first variable is categorical (and
thus appears at the top of the chart), longer bars in
its plot are cut off at the top.




Chapter 8
What’s Normal?

00000000000000000000000000000000000000000000000000000000000000000000000000000

IN THIS CHAPTER

» Meeting the normal distribution family

» Working with standard deviations and the
normal distribution

» Understanding R’s normal distribution functions

One of the main jobs of a statistician is to estimate
characteristics of a population. The job becomes easier if
the statistician can make some assumptions about the
populations they study.

Here’s an assumption that works over and over again: A
specific attribute, ability, or trait is distributed
throughout a population so that (1) most people have an
average or near-average amount of the attribute and (2)
progressively fewer people have increasingly extreme
amounts of the attribute. In this chapter, I discuss this
assumption and its implications for statistics. I also
discuss R functions related to this assumption.

Hitting the Curve

Attributes in the physical world, like length or weight,
are all about objects you can see and touch. It’s not that
easy in the world of social scientists, statisticians,
market researchers, and businesspeople. They have to be
creative when they measure traits they can’t put their
hands around — like intelligence, musical ability, or
willingness to buy a new product.



The assumption I mention in this chapter’s introduction
— that most people are around the average and
progressively fewer people are toward the extremes —
seems to work out well for those intangible traits.
Because this happens often, it’s become an assumption
about how most traits are distributed.

It’s possible to capture this assumption in a graphical
way. Figure 8-1 shows the well-known bell curve that
describes the distribution of a wide variety of attributes.
The horizontal axis represents measurements of the
ability under consideration. A vertical line drawn down
the center of the curve would correspond to the average
of the measurements.
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FIGURE 8-1: The bell curve.




Assume that it’s possible to measure a trait like
intelligence and assume that this curve represents the
distribution of intelligence in the population: The bell
curve shows that most people have about average
intelligence, only a few have little intelligence, and only a
few are geniuses. That seems to fit nicely with what we
know about people, doesn’t it?

Digging deeper

On the horizontal axis of Figure 8-1 you see x, and on the
vertical axis, f(x). What do these symbols mean? The
horizontal axis, as I mention, represents measurements,
so think of each measurement as an x.

The explanation of f(x) is a little more involved. A
mathematical relationship between x and f(x) creates the
bell curve and enables you to visualize it. The
relationship is rather complex, and I won’t burden you
with it right now. (I discuss it in a little while.) Just
understand that f(x) represents the height of the curve
for a specified value of x. This means that you supply a
value for x (and for a couple of other things), and then
that complex relationship returns a value of f(x).

Let me get into specifics. The formal name for bell curve
is normal distribution. The term f(x) is called probability
density, so a normal distribution is an example of a
probability density function. Rather than give you a
technical definition of probability density, I ask you to
think of probability density as something that allows you
to think about area under the curve as probability.
Probability of ... what? That’s coming up in the next
subsection.

Parameters of a normal distribution



You often hear people talk about “the normal
distribution.” That’s a misnomer. It’s really a family of
distributions. The members of the family differ from one
another in terms of two parameters — yes, parameters
because I'm talking about populations. Those two
parameters are the mean (p) and the standard deviation
(0). The mean tells you where the center of the
distribution is, and the standard deviation tells you how
spread out the distribution is around the mean. The
mean is in the middle of the distribution. Every member
of the normal distribution family is symmetric — the left
side of the distribution is a mirror image of the right.
(Remember skewness, from Chapter 7? Symmetric
means that the skewness of a normal distribution is
Z€ro.)

The characteristics of the normal distribution family are
well known to statisticians. More important, you can
apply those characteristics to your work.

How? This brings me back to probability. You can find
some useful probabilities if you

» Can lay out a line that represents the scale of the
attribute you’'re measuring (the x-axis, in other words)

» Can indicate on the line where the mean of the
measurements is

» Know the standard deviation

» Can assume that the attribute is normally distributed
throughout the population

I work with IQ scores to show you what I mean. Scores
on the IQ test follow a normal distribution. The mean of
the distribution of these scores is 100, and the standard
deviation is 15. Figure 8-2 shows the probability density
for this distribution.



'&53
"sure - You might have read elsewhere that the standard
deviation for IQ is 16 rather than 15. That’s the case
for the Stanford-Binet version of the IQ test. For
other versions, the standard deviation is 15.

0013

55 70 85 100 115 130 145

FIGURE 8-2: The normal distribution of 1Q, divided into standard deviations.

As Figure 8-2 shows, I've laid out a line for the IQ scale
(the x-axis). Each point on the line represents an IQ
score. With the mean (100) as the reference point, I've
marked off every 15 points (the standard deviation). I've
drawn a dashed line from the mean up to f(100) (the
height of the distribution where x = 100) and drawn a
dashed line from each standard deviation point.

The figure also shows the proportion of area bounded by
the curve and the horizontal axis, and by successive pairs



of standard deviations. It also shows the proportion
beyond three standard deviations on either side (55 and
145). Note that the curve never touches the horizontal. It
gets closer and closer, but it never touches.
(Mathematicians say that the curve is asymptotic to the
horizontal.)

So, between the mean and one standard deviation —
between 100 and 115 — are .3413 (or 34.13 percent) of
the scores in the population. Another way to say this: The
probability that an IQ score is between 100 and 115 is
.3413. At the extremes, in the tails of the distribution,
.0013 (.13 percent) of the scores are on each side (less
than 55 or greater than 145).

rememeer 1 NE Proportions in Figure 8-2 hold for every
member of the normal distribution family, not just for
IQ scores. For example, in the “Catching Some Z’s”
section in Chapter 6, I mention SAT scores, which
have a mean of 500 and a standard deviation of 100.
They’re normally distributed, too. That means 34.13
percent of SAT scores are between 500 and 600,
34.13 percent are between 400 and 500, and ... well,
you can use Figure 8-2 as a guide for other
proportions.

Working with Normal
Distributions

The complex relationship I told you about between x and

f(x) is



(x—p)©

flx)= L el
a2

If you supply values for p (the mean), o (the standard
deviation), and x (a score), the equation gives you back a
value for f(x), the height of the normal distribution at x.
The constants m and e are important in mathematics: 1 is
approximately 3.1416 (the ratio of a circle’s
circumference to its diameter); e is approximately
2.71828. It’s related to something called natural
logarithms (described in Chapter 16) and to numerous
other mathematical concepts.

Distributions in R

The normal distribution family is one of many
distribution families baked into R. Dealing with these
families is intuitive. Follow these guidelines:

» Begin with the distribution family’s name in R (norm for
the normal family, for example).

» To the beginning of the family name, add d to work
with the probability density function. For the
probability density function for the normal family,
then, it's dnorm() — which is equivalent to the equation
| just showed you.

» For the cumulative density function (cdf ), add p
(pnorm(), for example).

» For quantiles, add g (gnorm(), which in mathematical
terms is the inverse of the cdf).

» To generate random numbers from a distribution, add
r. So rnorm() generates random numbers from a
member of the normal distribution family.

Normal density function



When working with any normal distribution function, you
have to let the function know which member of the
normal distribution family you're interested in. You do
that by specifying the mean and the standard deviation.

So, if you happen to need the height of the IQ
distribution for IQ = 100, here’s how to find it:

> dnorm(100,m=100, s=15)
[1] 0.02659615

rememeer 1 NIS does not mean that the probability of finding
an IQ score of 100 is .027. Probability density is not
the same as probability. With a probability density
function, it only makes sense to talk about the
probability of a score between two boundaries — like
the probability of a score between 100 and 115.

Plotting a normal curve

dnorm() is useful as a tool for plotting a normal
distribution. I use it along with ggplot() to draw a graph
for IQ that looks a lot like what you see in Figure 8-2.

rememeer ON the Packages tab, make sure the check box
next to ggplot2 is selected.

Before I set up a ggplot() statement, I create three
helpful vectors. The first

x.values <- seq(40,160,1)

is the vector I give to ggplot() as an aes (aesthetic
mapping) for the x-axis. This statement creates a
sequence of 121 numbers, beginning with 40 (4 standard



deviations below the mean) to 160 (4 standard deviations
above the mean).

The second

sd.values <- seq(40,160,15)

is a vector of the nine standard deviation values from 40
to 160. This figures into the creation of the vertical
dashed lines at each standard deviation in Figure 8-2.

The third vector

zeros9 <- rep(0,9)

will also be part of creating the vertical dashed lines. It's
just a vector of nine zeros.

On to ggplot(). Because the data is a vector, the first
argument is NULL. The aesthetic mapping for the x-axis is,
as I mention earlier, the x.values vector. What about the
mapping for the y-axis? Well, this is a plot of a normal
density function for mean = 100 and sd =15, so you'd
expect the y-axis mapping to be dnorm(x.values, m=100,
s=15), wouldn’t you? And you’d be right! Here’s the
ggplot() statement:

ggplot (NULL,aes(x=x.values,y=dnorm(x.values,m=100,s=15)))

Add a line geom function for the plot and labels for the
axes, and here's what I have:

ggplot (NULL,aes(x=x.values,y=dnorm(x.values,m=100,s=15))) +
geom line() +
labs (x="IQ",y="f(IQ)")

And that draws Figure 8-3.
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FIGURE 8-3: Initial plot of the normal density function for 1Q.

As you can see, ggplot() has its own ideas about the
values to plot on the x-axis. Rather than stick with the
defaults, I want to place the sd.values on the x-axis. To
change those values, I use scale x_continuous() to rescale
the x-axis. One of its arguments, breaks, sets the points on
the x-axis for the values, and the other, labels, supplies
the values. For each one, I supply sd.values:

scale x _continuous(breaks=sd.values, labels = sd.values)

Now the code is

ggplot (NULL,aes(x=x.values,y=dnorm(x.values,m=100,s=15))) +
geom line() +
labs (x="IQ",y="f(IQ)")+
scale x continuous(breaks=sd.values, labels = sd.values)

and the result is shown in Figure 8-4.



FIGURE 8-4: The normal density function for 1Q with standard deviations on the
X-axis.

In ggplot world, vertical lines that start at the x-axis and
end at the curve are called segments. So the appropriate
geom function to draw them is geom segment(). This function
requires a starting point for each segment and an end
point for each segment. I specify those points in an
aesthetic mapping within the geom. The x-coordinates
for the starting points for the nine segments are in
sd.values. The segments start at the x-axis, so the nine y-
coordinates are all zeros — which happens to be the
contents of the zeros9 vector. The segments end at the
curve, so the x-coordinates for the end points are, once
again, sd.values. The y-coordinates? Those would be
dnorm(sd.values, m=100,s=15). Adding a statement about
dashed lines, the rather busy geom segment() statement is



geom_segment((aes(x=sd.values,y=zeros9,xend =
sd.values,yend=dnorm
(sd.values,m=100,s=15))),
linetype = "dashed")

The code now becomes

ggplot (NULL, aes(x=x.values,y=dnorm(x.values,m=100,s=15))) +
geom line() +
labs (x="IQ",y="f(IQ)")+
scale x_continuous(breaks=sd.values,labels = sd.values) +
geom_segment((aes(x=sd.values,y=zeros9,xend =
sd.values, yend=dnorm(sd.values,m=100,s=15))),
linetype = "dashed")

which produces Figure 8-5.

FIGURE 8-5: The IQ plot with vertical dashed line segments at the standard
deviations.

One more little touch and I'm done showing you how it’s
done. I'm not all that crazy about the space between the



x-values and the x-axis. I'd like to remove that little slice
of the graph and move the values up closer to where (at
least I think) they should be.

To do that, I use scale y continuous(), whose expand
argument controls the space between the x-values and
the x-axis. It's a two-element vector with defaults that set
the amount of space you see in Figure 8-5. Without going

too deeply into it, setting that vector to c(0,0) removes
the spacing.

These lines of code draw the aesthetically pleasing
Figure 8-6:

ggplot (NULL,aes(x=x.values,y=dnorm(x.values,m=100,s=15))) +
geom line() +
labs (x="IQ",y="f(IQ)")+
scale x continuous(breaks=sd.values, labels = sd.values) +
geom_segment((aes(x=sd.values,y=zeros9,xend =
sd.values,yend=dnorm(sd.
values,m=100,s=15))),
linetype = "dashed")+
scale y continuous(expand = c(0,0))
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FIGURE 8-6: The finished product: The IQ plot with no spacing between the x-
values and the x-axis.

Cumulative density function

The cumulative density function pnorm(x,m,s) returns the
probability of a score less than x in a normal distribution
with mean m and standard deviation s.

As you'd expect from Figure 8-2 (and the subsequent
plots I created):

> pnorm(100,m=100,s=15)
[1] 0.5
How about the probability of less than 857?

> pnorm(85,m=100,s=15)
[1] 0.1586553

If you want to find the probability of a score greater than
85, pnorm() can handle that, too. It has an argument



called lower.tail whose default value, TRUE, returns the
probability of “less than.” For “greater than,” set the
value to FALSE:

> pnorm(85,m=100,s=15, lower.tail = FALSE)

[1] 0.8413447
It's often the case that you want the probability of a
score between a lower bound and an upper bound — like
the probability of an IQ score between 85 and 100.
Multiple calls to pnorm() combined with a little arithmetic
will get that done.

That’s not necessary, however. A function called pnormGc ()
in a terrific package called tigerstats does that and more.
The letters GC stand for graphical calculator, but they
could also stand for Georgetown College (in Georgetown,
Kentucky), the school from which this package
originates. (On the Packages tab, click Install and then,
in the Install Packages dialog box, type tigerstats and
click Install. When you see tigerstats on the Packages
tab, select its check box.)

Now watch closely:

>pnormGC(c(85,100), region="between",m=100, s=15,graph=TRUE)
[1] 0.3413447

In addition to the answer, the graph=TRUE argument
produces Figure 8-7.



Normal Curve, mean = 100, 5D = 15
Shaded Area = 0.3413
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FIGURE 8-7: Visualizing the probability of an 1Q score between 85 and 100 (in
the tigerstats package).

Plotting the cdf

Given that I've already done the heavy lifting when I
showed you how to plot the density function, the R code
for the cumulative density function is a snap:

ggplot (NULL, aes(x=x.values,y=pnorm(x.values,m=100,s=15))) +
geom line() +
labs (x="IQ",y="Fn(IQ)")+
scale x_continuous(breaks=sd.values,labels = sd.values) +
geom_segment((aes(x=sd.values,y=zeros9,xend =
sd.values,yend=pnorm(sd.
values,mean=100,sd=15))),
linetype = "dashed")+
scale y continuous(expand=c(0,0))

Yes, all you do is change dnorm to pnorm and edit the y-axis
label. Code reuse — it's a beautiful thing. And so (I hope
you agree) is Figure 8-8.



The line segments shooting up from the x-axis clearly
show that 100 is at the 50th percentile (.50 of the scores
are below 100) — which brings me to quantiles of normal
distributions, the topic of the next section.

L]}

FIGURE 8-8: Cumulative density function of the IQ distribution.

Quantiles of normal distributions
The gnorm() function is the inverse of pnorm(). Give gnorm()
an area, and it returns the score that cuts off that area
(to the left) in the specified normal distribution:

> gnorm(0.1586553,m=100,s=15)
[1] 85

The area (to the left), of course, is a percentile
(described in Chapter 6).

To find a score that cuts off an indicated area to the
right:




> gqnorm(0.1586553,m=100,s=15, lower.tail = FALSE)
[1] 115

Here's how gnormGC() (in the tigerstats package) handles
it:

> gnormGC(.1586553, region = "below",m=100,s=15, graph=TRUE)
[1] 85

This function also creates Figure 8-9.

Normal Curve, mean = 100, SD =15
Percentile = 15.8655%
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FIGURE 8-9: Plot created by gnormGC().

You're typically not concerned with the 15.86553rd
percentile. Usually, it’s quartiles that attract your
attention:

> gnorm(c(0,.25,.50,.75,1.00),m=100,s=15)
[1] -Inf 89.88265 100.00000 110.11735 Inf

The Oth and 100th percentiles (-Infinity and Infinity)
show that the cdf never completely touches the x-axis



nor reaches an exact maximum. The middle quartiles are
of greatest interest, and best if rounded:

> round(qnorm(c(.25,.50,.75),m=100,s=15))
[1] 90 100 110

Plotting the cdf with quartiles

To replace the standard deviation values in Figure 8-8
with the three quartile values, you begin by creating two
new vectors:

> q.values <-round(gnorm(c(.25,.50,.75),m=100,s=15))
> zeros3 <- ¢(0,0,0)

Now all you have to do is put those vectors in the
appropriate places in scale x continuous() and in
geom segment():

ggplot (NULL,aes(x=x.values,y=pnorm(x.values,m=100,s=15))) +
geom line() +
labs (x="IQ",y="Fn(IQ)")+
scale x_continuous(breaks=q.values, labels = g.values) +
geom_segment((aes(x=qg.values,y=zeros3,xend =
g.values,yend=pnorm(q.
values,mean=100,sd=15))),
linetype = "dashed")+
scale y continuous(expand=c(0,0))

The code produces Figure 8-10.
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FIGURE 8-10: The normal cumulative density function with quartile values.

Random sampling
The rnorm() function generates random numbers from a
normal distribution.

Here are five random numbers from the IQ distribution:

> rnorm(5,m=100,s=15)
[1] 127.02944 75.18125 66.49264 113.98305 103.39766

Here's what happens when you run that again:

> rnorm(5,m=100, s=15)

[1] 73.73596 91.79841 82.33299 81.59029 73.40033
Yes, the numbers are all different. (In fact, when you run
rnorm(), I can almost guarantee your numbers will be
different from mine.) Each time you run the function, it
generates a new set of random numbers. The
randomization process starts with a number called a



seed. If you want to reproduce randomization results,
use the set.seed() function to set the seed to a particular
number before randomizing:

> set.seed(7637060)
> rnorm(5,m=100, s=15)
[1] 71.99120 98.67231 92.68848 103.42207 99.61904
If you set the seed to that same number the next time

you randomize, you get the same results:

> set.seed(7637060)

> rnorm(5,m=100, s=15)

[1] 71.99120 98.67231 92.68848 103.42207
99.61904

If you don't, you won't.

Randomization is the foundation of simulation, which
comes up in Chapters 9 and 18. Bear in mind that R (or
most any other software) doesn’t generate true random
numbers. R generates pseudo-random numbers, which
are sufficiently unpredictable for most tasks that require
randomization — like the simulations I discuss later.

A Distinguished Member
of the Family

To standardize a set of scores so that you can compare
them to other sets of scores, you convert each one to a z-
score. (I discuss z-scores in Chapter 6.) The formula for
converting a score to a z-score (also known as a standard
score) is

X

o

The idea is to use the standard deviation as a unit of
measure. For example, the Wechsler version of the IQ
test (among others) has a mean of 100 and a standard

Z




deviation of 15. The Stanford-Binet version has a mean of
100 and a standard deviation of 16. How does a
Wechsler score of, say, 110, stack up against a Stanford-
Binet score of 1107

One way to answer this question is to put the two
versions on a level playing field by standardizing both
scores. For the Wechsler:

. 110 -100
15

For the Stanford-Binet:

S 110 -100
16
So 110 on the Wechsler is a slightly higher score than
110 on the Stanford-Binet.

Now, if you standardize all the scores in a normal
distribution (such as either version of the IQ), you have a
normal distribution of z-scores. Any set of z-scores
(normally distributed or not) has a mean of O and a
standard deviation of 1. If a normal distribution has
those parameters, it’s a standard normal distribution — a
normal distribution of standard scores. Its equation is

=667

=.625

e

flz)

V27
Figure 8-11 shows the standard normal distribution. It
looks like Figure 8-2, except that I've substituted O for
the mean and I've entered standard deviation units in the
appropriate places.
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FIGURE 8-11: The standard normal distribution, divided up by standard
deviations.

warnine 1'his is the member of the normal distribution
family that most people are familiar with. It’s the one
they remember most from statistics courses, and it’s
the one that most people have in mind when they
(mistakenly) say the normal distribution. It’s also
what people think of when they hear about the term
z-scores. This distribution leads many to the
mistaken idea that converting to z-scores somehow
transforms a set of scores into a normal distribution.

Working with the standard normal
distribution in R



The standard normal distribution in R couldn’t be easier
to work with. The only change you make to the four norm

functions is to not specify a mean and a standard
deviation — the defaults are 0 and 1.

Here are some examples:

> dnorm(0)

[1] 0.3989423

> pnorm(0)

[1] 0.5

> gnorm(c(.25,.50,.75))

[1] -0.6744898 0.0000000 0.6744898
> rnorm(5)

[1] -0.4280188 -0.9085506 0.6746574 1.0728058
-1.2646055

This also applies to the tigerstats functions:

> pnormGC(c(-1,0), region="between")
[1] 0.3413447

> gnormGC(.50, region = "below")
[1] ©

Plotting the standard normal

distribution

To plot the standard normal distribution, you create a
couple of new vectors

z.values <-seq(-4,4,.01)
z.sd.values <- seq(-4,4,1)

and make a few changes to the code you use earlier to
plot the IQ distribution:

ggplot (NULL,aes(x=z.values,y=dnorm(z.values))) +

geom line() +

labs(x="z",y="f(z)")+

scale x_continuous(breaks=z.sd.values, labels=z.sd.values) +

geom_segment((aes(x=z.sd.values,y=zeros9,xend =
z.sd.values,yend=dnorm(z.sd.values))),linetype =
"dashed")+

scale y continuous(expand=c(0,0))



In addition to putting the new vectors into

scale x_continuous() and geom segment(), the notable change
is to drop the mean and standard deviation arguments
from dnorm(). The code creates Figure 8-12.

z

FIGURE 8-12: The standard normal distribution, divided by standard deviations
and plotted in ggplot().

I leave it to you as an exercise to plot the cumulative
density function for the standard normal distribution.



Part 3

Drawing Conclusions from
Data




IN THIS PART ...

Create sampling distributions

Figure out confidence limits

Work with t-tests

Work with analysis of variance

Visualize t, chi-square, and F distributions
Understand correlation and regression



Chapter 9

The Confidence Game:
Estimation
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IN THIS CHAPTER

» Introducing sampling distributions

» Understanding standard error

» Approximately simulating the sampling
distribution of the mean

» Attaching confidence limits to estimates

Population and sample are pretty easy concepts to
understand. A population is a huge collection of
individuals, and a sample is a group of individuals you
draw from a population. Measure the sample-members
on some trait or attribute, calculate statistics that
summarize the sample, and you're off and running.

In addition to those summary statistics, you can use the
statistics to estimate the population parameters. This is a
big deal: Just on the basis of a small percentage of
individuals from the population, you can draw a picture
of the entire population.

How definitive is that picture? In other words, how much
confidence can you have in your estimates? To answer
this question, you have to have a context for your
estimates. How probable are they? How likely is the true
value of a parameter to be within a particular lower
bound and upper bound?



In this chapter, I introduce the context for estimates,
show how that context plays into confidence in those
estimates, and show how to use R to calculate confidence
levels.

Understanding Sampling
Distributions

So you have a population, and you pull a sample out of
this population. You measure the sample-members on
some attribute and calculate the sample mean. Return
the sample-members to the population. Draw another
sample, assess the new sample-members, and then
calculate their mean. Repeat this process again and
again, always with same number of individuals as in the
original sample. If you could do this an infinite amount of
times (with the same sample size every time), you’'d have
an infinite amount of means. Those sample means form a
distribution of their own. This distribution is called the
sampling distribution of the mean.

For a sample mean, this is the “context” I mention at the
beginning of this chapter. Like any other number, a
statistic makes no sense by itself. You have to know
where it comes from in order to understand it. Of course,
a statistic comes from a calculation performed on sample
data. In another sense, a statistic is part of a sampling
distribution.

rememeer 1IN general, a sampling distribution is the
distribution of all possible values of a statistic for a
given sample size.



I've italicized the definition for a reason: It’s extremely
important. After many years of teaching statistics, I can
tell you that this concept usually sets the boundary line
between people who understand statistics and people
who don’t.

So ... if you understand what a sampling distribution is,
you’ll understand what the field of statistics is all about.
If you don’t, you won't. It’s almost that simple.

If you don’t know what a sampling distribution is,
statistics will be a cookbook type of subject for you:
Whenever you have to apply statistics, you’ll find
yourself plugging numbers into formulas and hoping for
the best. On the other hand, if you'’re comfortable with
the idea of a sampling distribution, you’ll grasp the big
picture of inferential statistics.

To help clarify the idea of a sampling distribution, take a
look at Figure 9-1. It summarizes the steps in creating a
sampling distribution of the mean.

A sampling distribution — like any other group of scores
— has a mean and a standard deviation. The symbol for
the mean of the sampling distribution of the mean (yes, I
know that’s a mouthful) is #z = 4.

rememeer 1 e Standard deviation of a sampling distribution
is a pretty hot item. It has a special name: standard
error. For the sampling distribution of the mean, the
standard deviation is called the standard error of the

. - {T —
mean. Its symbol is o /m,.



Population

Sampling Distribution of the Mean
FIGURE 9-1: Creating the sampling distribution of the mean.

An EXTREMELY Important

Idea: The Central Limit
Theorem

The situation I asked you to imagine never happens in
the real world. You never take an infinite amount of
samples and calculate their means, and you never
actually create a sampling distribution of the mean.




Typically, you draw one sample and calculate its
statistics.

So, if you have only one sample, how can you ever know
anything about a sampling distribution — a theoretical
distribution that encompasses an infinite number of
samples? Is this all just a wild goose chase?

No, it’s not. You can figure out a lot about a sampling
distribution because of a wonderful gift from
mathematicians to the field of statistics: the central limit
theorem.

rememeer ACcCoOrding to the central limit theorem:

» The sampling distribution of the mean is
approximately a normal distribution if the sample size
is large enough.

Large enough means about 30 or more.
» The mean of the sampling distribution of the mean is
the same as the population mean.
In equation form, that’s
My = [

» The standard deviation of the sampling distribution of
the mean (also known as the standard error of the
mean) is equal to the population standard deviation
divided by the square root of the sample size.

The equation for the standard error of the mean is
=Y N

Notice that the central limit theorem says nothing about
the population. All it says is that if the sample size is
large enough, the sampling distribution of the mean is a



normal distribution, with the indicated parameters. The
population that supplies the samples doesn’t have to be a
normal distribution for the central limit theorem to hold.

What if the population is a normal distribution? In that
case, the sampling distribution of the mean is a normal
distribution, regardless of the sample size.

Figure 9-2 shows a general picture of the sampling
distribution of the mean, partitioned into standard error
units.

f(x)
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FIGURE 9-2: The sampling distribution of the mean, partitioned.

(Approximately) Simulating the

central limit theorem
It almost doesn’t sound right: How can a population
that’s not normally distributed produce a normally



distributed sampling distribution?

To give you an idea of how the central limit theorem
works, I walk you through a simulation. This simulation
creates something like a sampling distribution of the
mean for a very small sample, based on a population
that’s not normally distributed. As you’ll see, even
though the population is not a normal distribution, and
even though the sample is small, the sampling
distribution of the mean looks quite a bit like a normal
distribution.

Imagine a huge population that consists of just three
scores — 1, 2, and 3, and each one is equally likely to
appear in a sample. That kind of population is definitely
not a normal distribution.

Imagine also that you can randomly select a sample of
three scores from this population. Table 9-1 shows all
possible samples and their means.

TABLE 9-1 ALL Possible Samples of Three
Scores (and Their Means) from a Population
Consisting of the Scores 1, 2, and 3

Sample Mean Sample Mean Sample Mean

1,11 1.00 2,11 1.33 3,11 1.67
1,1,2 1.33 2,1,2 1.67 3,1,2 2.00
1,1,3 l1.67 2,1,3 2.00 3,1,3 2.33
12,1 1.33 2,2,1 1.67 3,21 2.00
1,2,2 1.67 22,2 2.00 3,2,2 2.33
1,2,3 2.00 2,2,3 2.33 3,2,3 2.67
1,31 1.67 2,31 2.00 3,31 2.33
1,3,2 2.00 2,3,2 2.33 3,3,2 2.67
1,3,3 2.33 2,3,3 2.67 3,3,3 3.00




If you look closely at the table, you can almost see what’s
about to happen in the simulation. The sample mean that
appears most frequently is 2.00. The sample means that
appear least frequently are 1.00 and 3.00. Hmmm ... .

In the simulation, you randomly select a score from the
population and then randomly select two more. That
group of three scores is a sample. Then you calculate the
mean of that sample. You repeat this process for a total
of 600 samples, resulting in 600 sample means. Finally,
you graph the distribution of the sample means.

What does the simulated sampling distribution of the
mean look like? I walk you through it in R. You begin by
creating a vector for the possible scores, and another for
the probability of sampling each score:

values <- c(1,2,3)
probabilities <- c(1/3,1/3,1/3)

One more vector will hold the 600 sample means:

smpl.means <- NULL

To draw a sample, you use the sample() function:

smpl <-sample(x=values,prob = probabilities,
size=3, replace=TRUE)

The first two arguments, of course, provide the scores to
sample and the probability of each score. The third is the
sample size. The fourth indicates that after you select a
score for the sample, you replace it. (You put it back in
the population, in other words.) This procedure
(unsurprisingly called sampling with replacement)
simulates a huge population from which you can select
any score at any time.

Each time you draw a sample, you take its mean and
append it (add it to the end of) the smpl.means vector:

smpl.means <- append(smpl.means, mean(smpl))



I don't want you to have to manually repeat this whole
process 600 times. Fortunately, like all computer
languages, R has a way of handling this: Its for loop does
all the work. To do the sampling, the calculation, and the
appending 600 times, the for loop looks like this:

for(i in 1:600){
smpl <-sample(x = values,prob = probabilities,
size = 3,replace=TRUE)
smpl.means <- append(smpl.means, mean(smpl))
}
As you can see, the curly braces enclose what happens in
each iteration of the loop, and i is a counter for how

many times the loop occurs.

If you'd like to run this, here’s all the code preceding the
for loop, including the seed so that you can replicate my
results:

> values <- c(1,2,3)

> probabilities <- c(1/3,1/3,1/3)
> smpl.means <- NULL

> set.seed(7637060)

Then run the for loop. If you want to run the loop over
and over again, make sure you reset smpl.means to NULL
each time. If you want to produce different results each
time, don't set the seed to the same number (or don’t set
it at all).

What does the sampling distribution look like? Use
ggplot() to do the honors. The data values (the 600
sample means) are in a vector, so the first argument is
NULL. The smpl.means vector maps to the x-axis. And you're
creating a histogram, so the geom function is

geom histogram():

ggplot (NULL,aes(x=smpl.means)) +
geom_histogram()



Figure 9-3 shows the histogram for the sampling
distribution of the mean.

srogpl means

count

FIGURE 9-3: Sampling distribution of the mean based on 600 samples of size 3
from a population consisting of the equally probable scores 1, 2, and 3.

Looks a lot like the beginnings of a normal distribution,
right? I explore the distribution further in a moment, but
first I show you how to make the graph a bit more
informative. Suppose you want the labeled points on the
x-axis to reflect the values of the mean in the smpl.means
vector. You can't just specify the vector values for the x-
axis, because the vector has 600 of them. Instead, you
list the unique values:

> unique(smpl.means)

[1] 2.333333 1.666667 1.333333 2.000000
2.666667 3.000000

[7 1 1.000000



They look better if you round them to two decimal
places:

> round(unique(smpl.means),2)
[1] 2.33 1.67 1.33 2.00 2.67 3.00 1.00

Finally, you store these values in a vector called m.values,
which you use to rescale the x-axis:

> m.values <-round(unique(smpl.means),2)

For the rescaling, use a trick that I show you in Chapter
8:

scale x_continuous(breaks=m.values, label=m.values)

Another trick from Chapter 8 eliminates the space
between the x-axis values and the x-axis:

scale y continuous(expand = c(0,0))

One more trick uses R’s expression syntax to display X as
the x-axis label and fnequwuy{k’) as the y-axis label:

labs (x=expression(bar(X)),y=expression(frequency(bar(X))))

Putting it all together gives the sampling distribution
shown in Figure 9-4:

ggplot (NULL,aes(x=smpl.means)) +
geom_histogram()+
scale x_continuous(breaks=m.values, label=m.values)+
scale y continuous(expand = c(0,0)) +
labs (x=expression(bar(X)),y=expression
(frequency(bar(X))))
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FIGURE 9-4: The sampling distribution of the mean with the x-axis rescaled and
cool axis labels.

Predictions of the central limit

theorem
How do the characteristics of the sampling distribution
match up with what the central limit theorem predicts?

To derive the predictions, you have to start with the
population. Think of each population value (1, 2, or 3) as
an X, and think of each probability as pr(x).
Mathematicians would refer to X as a discrete random
variable.

The mean of a discrete random variable is called its
expected value. The notation for the expected value of x
1S E(X).



To find E(x), you multiply each x by its probability and
then add all those products together. For this example,
that's

1y /1y (1% .
E:x]=anpr{xn=1[§)+g(§)+,1(§]=3
Or, if you prefer R:

> E.values <- sum(values*probabilities)
> E.values
[1] 2

To find the variance of x, subtract £(x) from each x,
square each deviation, multiply each squared deviation
by the probability of x, and add the products. For this
example:

var{}f):Z{X—E{xn-’*mrtx}}={1—2}*(%)42—213(%]43—2)3(
In R:

)=.G?

Lo —

> var.values <- sum((values-E.values)”2*probabilities)
> var.values
[1] 0.6666667

As always, the standard deviation is the square root of
the variance:

o= Jvar(X) =+.67 =.82
Again, in R:

> sd.values <- sqrt(var.values)
> sd.values
[1] 0.8164966

So the population has a mean of 2 and a standard
deviation of .82.

According to the central limit theorem, the mean of the
sampling distribution should be

Mg =p=2
and the standard deviation should be
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How do these predicted values match up with the
characteristics of the sampling distribution?

> mean(smpl.means)
[1] 2.002222

> sd(smpl.means)
[1] 0.4745368

Pretty close! Even with a non-normally distributed
population and a small sample size, the central limit
theorem paints an accurate picture of the sampling
distribution of the mean.

Confidence: It Has Its
Limits!

I tell you about sampling distributions because they help
answer the question I pose at the beginning of this
chapter: How much confidence can you have in the
estimates you create?

The procedure is to calculate a statistic and then use that
statistic to establish upper and lower bounds for the
population parameter with, say, 95 percent confidence.
(The interpretation of confidence limits is a bit more
involved than that, as you'll see.) You can do this only if
you know the sampling distribution of the statistic and
the standard error of the statistic. In the next section, I
show how to do this for the mean.

Finding confidence limits for a mean
The FarBlonJet Corporation manufactures navigation
systems. (Corporate motto: “Taking a trip? Get
FarBlonJet.”) The company has developed a new battery
to power its portable model. To help market this system,



FarBlonJet wants to know how long, on average, each
battery lasts before it burns out.

The FarBlonJet employees like to estimate that average
with 95 percent confidence. They test a sample of 100
batteries and find that the sample mean is 60 hours, with
a standard deviation of 20 hours. The central limit
theorem, remember, says that with a large enough
sample (30 or more), the sampling distribution of the
mean approximates a normal distribution. The standard
error of the mean (the standard deviation of the
sampling distribution of the mean) is

=Y N

The sample size, N, is 100. What about o? That’s
unknown, so you have to estimate it. If you know o, that
would mean you know 11, and establishing confidence
limits would be unnecessary.

The best estimate of o is the standard deviation of the
sample. In this case, that’s 20. This leads to an estimate
of the standard error of the mean.

« _s/ __20 _20/ _9
>x /J;? J100 10

The best estimate of the population mean is the sample
mean: 60. Armed with this information — estimated
mean, estimated standard error of the mean, normal
distribution — you can envision the sampling distribution
of the mean, which is shown in Figure 9-5. Consistent
with Figure 9-2, each standard deviation is a standard
error of the mean.
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FIGURE 9-5: The sampling distribution of the mean for the FarBlon)et battery.

Now that you have the sampling distribution, you can
establish the 95 percent confidence limits for the mean.
Starting at the center of the distribution, how far out to
the sides do you have to extend until you have 95
percent of the area under the curve? (For more on the
area under a normal distribution and what it means, see
Chapter 8.)

One way to answer this question is to work with the
standard normal distribution and find the z-score that
cuts off 2.5 percent of the area in the upper tail. Then
multiply that z-score by the standard error. Add the
result to the sample mean to calculate the upper
confidence limit; subtract the result from the mean to
calculate the lower confidence limit.




Here’s how to do all that in R. First, the setup:

> mean.battery <- 60

> sd.battery <- 20

> N <- 100

> error <- qgnorm(.025,lower.tail=FALSE)*sd.battery/sqrt(N)

Then the limits:

> lower <- mean.battery — error
> upper <- mean.battery + error
> lower

[1] 56.08007

> upper

[1] 63.91993

Figure 9-6 shows these bounds on the sampling
distribution.

|
|
|
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FIGURE 9-6: The 95 percent confidence limits on the FarBlonjet sampling
distribution.




What does this tell you, exactly? One interpretation is
that if you repeat this sampling and estimation
procedure many times, the confidence intervals you
calculate (which would be different every time you do it)
would include the population mean 95 percent of the
time.

Fittoat

The central limit theorem specifies (approximately) a
normal distribution for large samples. In the real world,
however, you typically deal with smaller samples, and
the normal distribution isn’t appropriate. What do you
do?

First of all, you pay a price for using a smaller sample —
you have a larger standard error. Suppose the
FarBlon]Jet Corporation found a mean of 60 and a
standard deviation of 20 in a sample of 25 batteries. The
estimated standard error is

— 20 — 20
= s s
which is twice as large as the standard error for N =
100.

Second, you don’t get to use the standard normal
distribution to characterize the sampling distribution of
the mean. For small samples, the sampling distribution
of the mean is a member of a family of distributions
called the t-distribution. The parameter that
distinguishes members of this family from one another is
called degrees of freedom.

.,;_‘:



rememeer AS I said in Chapter 5, think of “degrees of
freedom” as the denominator of your variance
estimate. For example, if your sample consists of 25
individuals, the sample variance that estimates
population variance is

e Dx-x)" F(x-%)" Y (x-%)

N -1 25-1 24
The number in the denominator is 24, and that’s the
value of the degrees of freedom parameter. In general,
degrees of freedom (df) = N-1 (NN is the sample size)
when you use the t-distribution the way I show you in
this section.

Figure 9-7 shows two members of the t-distribution
family (df = 3 and df = 10), along with the normal
distribution for comparison. As the figure shows, the
greater the df, the more closely t approximates a normal
distribution.

df = e (standard normal)
df =10
df =3

4 e,

flt)

FIGURE 9-7: Some members of the t-distribution family.




To determine the lower and upper bounds for the 95
percent confidence level for a small sample, work with
the member of the t-distribution family that has the
appropriate df. Find the value that cuts off the upper 2.5
percent of the area in the upper tail of the distribution.
Then multiply that value by the standard error.

Add the result to the mean to get the upper confidence
limit; subtract the result from the mean to get the lower
confidence limit.

R provides dt() (density function), pt() (cumulative
density function), qt() (quantile), and rt() (random
number generation) for working with the t-distribution.
For the confidence intervals, I use qt().

In the FarBlon]Jet batteries example:

> mean.battery <- 60

> sd.battery <- 20

>N <- 25

> error <- qt(.025,N-1,lower.tail=FALSE)*sd.battery/sqrt(N)
> lower <- mean.battery - error

> upper <- mean.battery + error

> lower

[1] 51.74441

> upper

[1] 68.25559

The lower and upper limits are 51.74 and 68.26. Notice

that with the smaller sample, the range is wider than in
the previous example.

If you have the raw data, you can use t.test() to
generate confidence intervals:

> battery.data <- c(82,64,68,44,54,47,50,85,51,41,61,84,
53,83,91,43,35,36,33,87,90,
86,49,37,48)
Here's how to use t.test() to generate the lower and
upper bounds for 90 percent confidence — the default
value is .95:



The t.test() function is more appropriate for the next
chapter.



Chapter 10
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IN THIS CHAPTER

» Introducing hypothesis tests

» Testing hypotheses about means

» Testing hypotheses about variances
» Visualizing distributions

Whatever your occupation, you often have to assess
whether something new and different has happened.
Sometimes you start with a population that you know a
lot about (like its mean and standard deviation) and you
draw a sample. Is that sample like the rest of the
population, or does it represent something out of the
ordinary?

To answer that question, you measure each individual in
the sample and calculate the sample’s statistics. Then
you compare those statistics with the population’s
parameters. Are they the same? Are they different? Is
the sample extraordinary in some way? Proper use of
statistics helps you make the decision.

Sometimes, though, you don’t know the parameters of
the population that the sample came from. What happens
then? In this chapter, I discuss statistical techniques and
R functions for dealing with both cases.



Hypotheses, Tests, and
Errors

A hypothesis is a guess about the way the world works.
It’s a tentative explanation of some process, whether that
process occurs in nature or in a laboratory.

rememeer Before studying and measuring the individuals in a
sample, a researcher formulates hypotheses that
predict what the data should look like.

Generally, one hypothesis predicts that the data won’t
show anything new or out of the ordinary. This is called
the null hypothesis (abbreviated H;). According to the
null hypothesis, if the data deviates from the norm in any
way, that deviation is due strictly to chance. Another
hypothesis, the alternative hypothesis (abbreviated H,),
explains things differently. According to the alternative
hypothesis, the data show something important.

After gathering the data, it’s up to the researcher to
make a decision. The way the logic works, the decision
centers around the null hypothesis. The researcher must
decide to either reject the null hypothesis or to not reject
the null hypothesis.

In hypothesis testing, you

» Formulate null and alternative hypotheses.
» Gather data.

» Decide whether to reject or not reject the null
hypothesis.



rememser INOthing in the logic involves accepting either
hypothesis. Nor does the logic involve making any
decisions about the alternative hypothesis. It’s all
about rejecting or not rejecting Hy,.

Regardless of the reject-don’t-reject decision, an error is
possible. One type of error occurs when you believe that
the data shows something important and you reject Hy,
but in reality the data are due just to chance. This is
called a Type I error. At the outset of a study, you set the
criteria for rejecting Hj. In so doing, you set the
probability of a Type I error. This probability is called
alpha (o).

The other type of error occurs when you don’t reject Hy

and the data is due to something out of the ordinary. For
one reason or another, you happened to miss it. This is
called a Type II error. Its probability is called beta (B).
Table 10-1 summarizes the possible decisions and errors.

TABLE 10-1 Decisions and Errors in
Hypothesis Testing

“True State” of the World

Hy is True H; is True

Reject H Type | Error Correct Decision

Decision

Do Not Reject Hy Correct Decision Type Il Error

Note that you never know the true state of the world. (If
you do, it’s not necessary to do the study!) All you can
ever do is measure the individuals in a sample, calculate



the statistics, and make a decision about H,,. (I discuss
hypotheses and hypothesis testing in Chapter 1.)

Hypothesis Tests and
Sampling Distributions

In Chapter 9, I discuss sampling distributions. A
sampling distribution, remember, is the set of all
possible values of a statistic for a given sample size.

Also in Chapter 9, I discuss the central limit theorem.
This theorem tells you that the sampling distribution of
the mean approximates a normal distribution if the
sample size is large enough (for practical purposes, at
least 30). This works whether or not the population is
normally distributed. If the population is a normal
distribution, the sampling distribution is normal for any
sample size. Here are two other points from the central
limit theorem:

» The mean of the sampling distribution of the mean is
equal to the population mean.
The equation for this is

Mz =

» The standard error of the mean (the standard
deviation of the sampling distribution) is equal to the
population standard deviation divided by the square
root of the sample size.

This equation is
=N

The sampling distribution of the mean figures
prominently into the type of hypothesis testing I discuss
in this chapter. Theoretically, when you test a null



hypothesis versus an alternative hypothesis, each
hypothesis corresponds to a separate sampling
distribution.

Figure 10-1 shows what I mean. The figure shows two
normal distributions. I placed them arbitrarily. Each
normal distribution represents a sampling distribution of
the mean. The one on the left represents the distribution
of possible sample means if the null hypothesis is truly
how the world works. The one on the right represents
the distribution of possible sample means if the
alternative hypothesis is truly how the world works.

Hg H,
Sampling Distribution  Sampling Distribution
\ / Critical
Value
p
/ a
Ho I8 Rejection Region
Do Not Reject Hg Reject Hy

FIGURE 10-1: Hy and H; each correspond to a sampling distribution.

Of course, when you do a hypothesis test, you never
know which distribution produces the results. You work



with a sample mean — a point on the horizontal axis. The
reject-or-don’t reject decision boils down to deciding
which distribution the sample mean is part of. You set up
a critical value — a decision criterion. If the sample
mean is on one side of the critical value, you reject Hy. If

not, you don't.

In this vein, the figure also shows « and B. These, as I
mention earlier in this chapter, are the probabilities of
decision errors. The area that corresponds to a is in the
H, distribution. I've shaded it in dark gray. It represents

the probability that a sample mean comes from the H,
distribution, but it’s so extreme that you reject Hy,.

rememeer Where you set the critical value determines «. In
most hypotheses testing, you set « at .05. This means
you’'re willing to tolerate a Type I error (rejecting H,
when you shouldn’t) 5 percent of the time.
Graphically, the critical value cuts off 5 percent of
the area of the sampling distribution. By the way, if
you’'re talking about the 5 percent of the area that’s
in the right tail of the distribution (refer to Figure
10-1), you're talking about the upper 5 percent. If it’s
the 5 percent in the left tail you’'re interested in,
that’s the lower 5 percent.

The area that corresponds to B is in the H; distribution.

I've shaded it in light gray. This area represents the
probability that a sample mean comes from the H;

distribution, but it’s close enough to the center of the H,
distribution that you don’t reject Hy (but you should

have). You don’t get to set B. The size of this area
depends on the separation between the means of the two



distributions, and that’s up to the world we live in — not
up to you.

These sampling distributions are appropriate when your
work corresponds to the conditions of the central limit
theorem: if you know that the population you’'re working
with is a normal distribution or if you have a large
sample, in other words.

Catching Some Z’s Again

Here’s an example of a hypothesis test that involves a
sample from a normally distributed population. Because
the population is normally distributed, any sample size
results in a normally distributed sampling distribution.
Because it’s a normal distribution, you use z-scores in
the hypothesis test:

X=-u
z= £
p=
'II_I!"';F
One more because: Because you use the z-score in the

hypothesis test, the z-score here is called the test
statistic.

Suppose you think that people living in a particular zip
code have higher-than-average 1Qs. You take a sample of
nine people from that zip code, give them IQ tests,
tabulate the results, and calculate the statistics. For the
population of IQ scores, 1 = 100 and o = 15.

The hypotheses are

Ho: Mzip code = 100
Hi: uzip code > 100



Assume that a = .05. That’s the shaded area in the tail of
the H; distribution earlier, in Figure 10-1.

Why the < in Hy? You use that symbol because you'll
reject Hy only if the sample mean is larger than the

hypothesized value. Anything else is evidence in favor of
not rejecting Hy,.

Suppose the sample mean is 108.67. Can you reject Hy?

The test involves turning 108.67 into a standard score in
the sampling distribution of the mean:

X—p 108.67-100 867  8.67
- (15} 5
v (g (3)

Is the value of the test statistic large enough to enable
you to reject Hy with 0 = .057 It is. The critical value —

the value of z that cuts off 5 percent of the area in a
standard normal distribution — is 1.645. (After years of
working with the standard normal distribution, I happen
to know this. Read Chapter 8 and find out about R’s
gnorm() function, and then you can have information like
that at your fingertips, too.) The calculated value, 1.73,
exceeds 1.645, so it's in the rejection region. The
decision is to reject Hy,.

=1.73

=z =

This means that if Hj is true, the probability of getting a

test statistic value that’s at least this large is less than
.05. That’s strong evidence in favor of rejecting H.

rememser [N Statistical parlance, anytime you reject Hy, the
result is said to be statistically significant.



This type of hypothesis testing is called one-tailed
because the rejection region is in one tail of the sampling
distribution.

A hypothesis test can be one-tailed in the other direction.
Suppose you have reason to believe that people in that
zip code have lower-than-average 1Qs. In that case, the
hypotheses are

Ho: Mzip code = 100
Hi: uzip code < 100

For this hypothesis test, the critical value of the test
statistic is -1.645 if a = .05.

A hypothesis test can be two-tailed, meaning that the
rejection region is in both tails of the Hy sampling

distribution. That happens when the hypotheses look like
this:

Ho: uzip coge = 100
Hi: uzip code* 100

In this case, the alternative hypothesis just specifies that
the mean is different from the null-hypothesis value,
without saying whether it’s greater or whether it’s less.
Figure 10-2 shows what the two-tailed rejection region
looks like for a« = .05. The 5 percent is divided evenly
between the left tail (also called the lower tail) and the
right tail (the upper tail).
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FIGURE 10-2: The two-tailed rejection region for a = .05.

For a standard normal distribution, incidentally, the z-
score that cuts off 2.5 percent in the right tail is 1.96.
The z-score that cuts off 2.5 percent in the left tail is -
1.96. (Again, I happen to know these values after years
of working with the standard normal distribution.) The z-
score in the preceding example, 1.73, does not exceed
1.96. The decision, in the two-tailed case, is to not reject
Hy

ne  This brings up an important point: A one-tailed
hypothesis test can reject Hy, whereas a two-tailed

test on the same data might not. A two-tailed test
indicates that you're looking for a difference between



the sample mean and the null-hypothesis mean, but
you don’t know in which direction. A one-tailed test
shows that you have a pretty good idea of how the
difference should come out. For practical purposes,
this means you should try to have enough knowledge
to be able to specify a one-tailed test: That gives you
a better chance of rejecting Hy when you should.

Z Testing in R

An R function called z.test() would be useful for doing
the kind of testing I discuss in the previous section. One
problem: That function doesn't exist in base R. Although
you can find one in other packages, it’s easy enough to
create one and learn a bit about R programming in the
process.

The function will work like this:

> IQ.data <- c(100,101,104,109,125,116,105,108,110)
> z.test(IQ.data,100,15)

z =1.733

one-tailed probability = 0.042

two-tailed probability = 0.084

Begin by creating the function name and its arguments:

z.test = function(x,mu,popvar){

The first argument is the vector of data, the second is the
population mean, and the third is the population
variance. The left curly brace signifies that the
remainder of the code is what happens inside the
function.

Next, create a vector that will hold the one-tailed
probability of the z-score you’ll calculate:

one.tail.p <- NULL



Then you calculate the z-score and round it to three
decimal places:

z.score <- round((mean(x)-mu)/(popvar/sqrt(length(x))),3)

Without the rounding, R might calculate many decimal
places, and the output would look messy.

Finally, you calculate the one-tailed probability (the
proportion of area beyond the calculated z-score), and
again round to three decimal places:

one.tail.p <- round(pnorm(abs(z.score),lower.tail = FALSE),3)

Why put abs() (absolute value) in the argument to pnorm?
Remember that an alternative hypothesis can specify a
value below the mean, and the data might result in a
negative z-score.

The next order of business is to set up the output display.
For this, you use the cat() function. I use this function in
Chapter 7 to display a fairly sizable set of numbers in an
organized way. The name cat is short for concatenate
and print, which is exactly what I want you to do here:
Concatenate (put together) strings (like one-tailed
probability =) with expressions (like one.tail.p), and then
show that whole thing onscreen. I also want you to start
a new line for each concatenation, and \n is R's way of
making that happen.

Here’s the cat statement:

cat(" z =",z.score,"\n",
"one-tailed probability =", one.tail.p,"\n",
"two-tailed probability =", 2*one.tail.p )}

The space between the left quotation mark and z lines up
the first line with the next two onscreen. The right curly
brace closes off the function.

Here it is, all together:



z.test = function(x,mu,popvar){
one.tail.p <- NULL
z.score <- round((mean(x)-mu)/(popvar/sqrt(length(x))),3)
one.tail.p <- round(pnorm(abs(z.score), lower.tail
= FALSE),3)
cat(" z =",z.score,"\n",
"one-tailed probability =", one.tail.p,"\n",
"two-tailed probability =", 2*one.tail.p )}
Running this function produces the code output you see

at the beginning of this section.

t for One

In the preceding example, you work with IQ scores. The
population of IQ scores is a normal distribution with a
well-known mean and standard deviation. Thus, you can
work with the central limit theorem and describe the
sampling distribution of the mean as a normal
distribution. You can then use z as the test statistic.

In the real world, however, you usually don't have the
luxury of working with well-defined populations. You
usually have small samples, and you’re typically
measuring something that isn’t as well-known as 1Q. The
bottom line is that you often don’t know the population
parameters, nor do you know whether the population is
normally distributed.

When that’s the case, you use the sample data to
estimate the population standard deviation, and you treat
the sampling distribution of the mean as a member of a
family of distributions called the t-distribution. You use t
as a test statistic. In Chapter 9, I introduce this
distribution and mention that you distinguish members
of this family by a parameter called degrees of freedom

(df).

The formula for the test statistic is
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Think of df as the denominator of the estimate of the
population variance. For the hypothesis tests in this
section, that’s N-1, where N is the number of scores in
the sample. The higher the df, the more closely the t-
distribution resembles the normal distribution.

Here’s an example. FarKlempt Robotics, Inc., markets
microrobots. The company claims that its product
averages four defects per unit. A consumer group
believes this average is higher. The consumer group
takes a sample of nine FarKlempt microrobots and finds
an average of seven defects, with a standard deviation of
3.12. The hypothesis test is

HO: M= 4
H1: |J.>4
a=.05
The formula is
X-p -4 3
=57 =313 _"312, "%
JN V9 3

Can you reject Hpy? The R function in the next section
tells you.

t Testing in R

I preview the t.test() function in Chapter 2 and talk
about it in a bit more detail in Chapter 9. Here, you use
it to test hypotheses.

Start with the data for FarKlempt Robotics:




> FarKlempt.data <- ¢(3,6,9,9,4,10,6,4,12)
Then apply t.test(). For the example, it looks like this:

t.test(FarKlempt.data,mu=4, alternative="greater")

The second argument specifies that you're testing
against a hypothesized mean of 4, and the third

argument indicates that the alternative hypothesis is that
the true mean is greater than 4.

Here it is in action:
> t.test(FarKlempt.data,mu=4, alternative="greater")

One Sample t-test
data: FarKlempt.data
t = 2.8823, df = 8, p-value = 0.01022
alternative hypothesis: true mean is greater than 4
95 percent confidence interval:

5.064521 Inf
sample estimates:
mean of X

7

The output provides the t-value, and the low p-value

shows that you can reject the null hypothesis with a =
.05.

This t.test() function is versatile. I work with it again in
Chapter 11 when I test hypotheses about two samples.

Working with t-
Distributions

Just as you can use d, p, q, and r prefixes for the normal
distribution family, you can use dt() (density function),
pt() (cumulative density function), qt() (quantiles), and

rt() (random number generation) for the t-distribution
family.




Here are dt() and rt() at work for a t-distribution with 12
df:

> t.values <- seq(-4,4,1)
> round(dt(t.values,b12),2)
[1] 0.00 0.01 0.06 0.23 0.39 0.23 0.06 0.01 0.00
> round(pt(t.values,12),2)
[1] 0.00 0.01 0.63 0.17 0.50 0.83 0.97 0.99 1.00
I show you how to use dt() more in the next section.

(Way more. Trust me.)

For quantile information about the t-distribution with 12
df:

> quartiles <- c¢(0,.25,.50,.75,1)
> qt(quartiles,12)
[1] -Inf -0.6954829 0.0000000 0.6954829 Inf

The -Inf and Inf tell you that the curve never touches the
x-axis at either tail.

To generate eight (rounded) random numbers from the t-
distribution with 12 df:

> round(rt(8,12),2)
[1] ©.73 0.13 -1.32 1.33 -1.27 0.91 -0.48 -0.83

rememeer All these functions give you the option of working
with t-distributions not centered around zero. You do
this by entering a value for ncp (the noncentrality
parameter). In most applications of the t-distribution,
noncentrality doesn't come up.

Visualizing t-Distributions

Visualizing a distribution often helps you understand it.
The process can be a bit involved in R, but it’s worth the
effort. Over in Chapter 9, Figure 9-7 shows three




members of the t-distribution family on the same graph.
The first has df = 3, the second has df = 10, and the third
is the standard normal distribution (df = infinity).

In this section, I show you how to create that graph in
base R graphics and in ggplot2.

With either method, the first step is to set up a vector of
the values that the density functions will work with:

t.values <- seq(-4,4,.1)

ne  Be careful — that third argument to seq() is .1, not
1.

One more thing and I'll get you started. After the graphs
are complete, you’ll put the infinity symbol, «, on the
legends to denote the df for the standard normal
distribution. To do that, you use this nifty little function:

expression(infinity)

Plotting t in base R graphics
Begin with the plot() function, and plot the t-distribution
with 3 df:

plot(x = t.values,y = dt(t.values,3), type = "1", lty =
"dotted", ylim = c(0,.4), xlab = "t", ylab = "f(t)")

The first two arguments are pretty self-explanatory. The
next two establish the type of plot — type ="1" means line
plot (that's a lowercase letter L, not the number 1), and
Lty = "dotted" indicates the type of line. The ylim
argument sets the lower and upper limits of the y-axis —
ylim = c(0,.4). A little tinkering shows that if you don't do
this, subsequent curves get chopped off at the top. The
final two arguments label the axes. Figure 10-3 shows
the graph so far:
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FIGURE 10-3: t-distribution with 3 df, base R.

The next two lines add the t-distribution for df=10 and
for the standard normal (df = infinity):

lines(t.values,dt(t.values,10),1ty = "dashed")
lines(t.values,dnorm(t.values))

The line for the standard normal is solid (the default
value for 1ty). Figure 10-4 shows the progress. All that's
missing is the legend that explains which curve is which.
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FIGURE 10-4: Three distributions in search of a legend.

One advantage of base R is that positioning and
populating the legend is not difficult:

legend("topright", title = "df",legend =

c(expression(infinity),"10","3"), lty =

c("solid", "dashed", "dotted"), bty = "n")
The first argument positions the legend in the upper
right corner. The second gives the legend its title. The
third argument is a vector that specifies what’s in the
legend. As you can see, the first element is that infinity
expression I showed you earlier, corresponding to the df
for the standard normal. The second and third elements
are the df for the remaining two t-distributions. You
order them this way because that’s the order in which
the curves appear at their centers. The 1ty argument is
the vector that specifies the order of the linetypes (they
correspond with the df). The final argument bty="n"
removes the border from the legend.



And this produces Figure 10-5.
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FIGURE 10-5: The final graph, including the legend.

Plotting t in ggplot2

The grammar-of-graphics approach takes considerably
more effort than base R. But follow along and you'll learn
a lot about ggplot2.

You start by putting the relevant numbers into a data
frame:

t.frame = data.frame(t.values,
df3 = dt(t.values,3),
df10 = dt(t.values,10),
std normal =
dnorm(t.values))

The first six rows of the data frame look like this:

> head(t.frame)

t.values df3 df1o std normal
1 -4.0 0.009163361 0.002031634 0.0001338302
2 -3.9 0.009975671 0.002406689 0.0001986555
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0.010875996
0.011875430
0.012986623
0.014224019

0.002854394
0.003388151
0.004024623
0.004783607

0.0002919469
0.0004247803
0.0006119019
0.0008726827

That’s a pretty good-looking data frame, but it’s in wide
format. However, ggplot() prefers long format — which is
the three columns of density-numbers stacked into a
single column. To get to that format — it's called
reshaping the data — make sure you have the reshape2
package installed. Select its check box on the Packages
tab and you're ready to go.

Reshaping from wide format to long format is called
melting the data, so the function is

t.frame.melt <- melt(t.frame,id="t.values")

The id argument specifies that t.values is the variable
whose numbers don't get stacked with the rest. Think of
it as the variable that stores the data. The first six rows
of t.frame.melt are

> head(t.frame.melt)

t.values variable value
1 -4.0 df3 0.009163361
2 -3.9 df3  0.009975671
3 -3.8 df3 0.010875996
4 -3.7 df3 0.011875430
5 -3.6 df3 0.012986623
6 -3.5 df3  0.014224019

It’s always a good idea to have meaningful column
names, SO

> colnames(t.frame.melt)= c("t","df","density")
> head(t.frame.melt)

t df density
1 -4.0 df3 0.009163361
2 -3.9 df3 0.009975671
3 -3.8 df3 0.010875996
4 -3.7 df3  0.011875430
5 -3.6 df3 0.012986623
6 -3.5 df3 0.014224019



Now for one more thing before I have you start on the
graph. This is a vector that will be useful when you lay
out the x-axis:

x.axis.values <- seq(-4,4,2)

Begin with ggplot():

ggplot(t.frame.melt, aes(x=t,y=f(t),group =df))

The first argument is the data frame. The aesthetic
mappings tell you that t is on the x-axis, density is on the
y-axis, and the data falls into groups specified by the df
variable.

This is a line plot, so the appropriate geom function to add
1S geom line:

geom_line(aes(linetype=df))

Geom functions can work with aesthetic mappings. The
aesthetic mapping here maps df to the type of line.

Rescale the x-axis so that it goes from -4 to 4, by twos.
Here's where to use that x.axis.values vector:

scale x_continuous(breaks=x.axis.values, labels=x.axis.values)

The first argument sets the breakpoints for the x-axis,
and the second provides the labels for those points.
Putting these three statements together

ggplot(t.frame.melt, aes(x=t,y=density,group =df)) +
geom line(aes(linetype=df)) +
scale x continuous(breaks = x.axis.values, labels =
X.axis.values)

results in Figure 10-6. One of the benefits of ggplot2 is
that the code automatically produces a legend.
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FIGURE 10-6: Three t-distribution curves, plotted in ggplot2.

You still have some work to do. First of all, the default
linetype assignments are not what you want, so you have
to redo them:

scale linetype manual(values =
c("dotted", "dashed", "solid"),
labels = c("3","10",
expression(infinity)))

The four statements

ggplot(t.frame.melt, aes(x=t,y=density,group =df)) +
geom_line(aes(linetype=df)) +
scale x _continuous(breaks = x.axis.values, labels =
x.axis.values)+
scale linetype manual(values =
c("dotted","dashed", "solid"),
labels = c("3","10", expression(infinity)))

produce Figure 10-7.
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FIGURE 10-7: Three t-distribution curves, with the linetypes reassigned.

As you can see, the items in the legend aren't in the
order that the curves appear at their centers. I'm a
stickler for that. I think it makes a graph more
comprehensible when the graph elements and the legend
elements are in sync. ggplot2 provides guide functions that
enable you to control the legend's details. To reverse the
order of the linetypes in the legend, here’s what you do:

guides(linetype=guide legend(reverse = TRUE))

Putting all the code together, finally, yields Figure 10-8:

ggplot(t.frame.melt, aes(x=t,y=density,group =df)) +
geom line(aes(linetype=df)) +
scale x _continuous(breaks = x.axis.values, labels =
x.axis.values)+
scale linetype manual(values =
c("dotted","dashed", "solid"),
labels = c("3","10",



expression(infinity)))+
guides(linetype=guide legend(reverse = TRUE))

I leave it to you as an exercise to relabel the y-axis f(t).
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FIGURE 10-8: The final product, with the legend rearranged.

Base R graphics versus ggplot2: It's like driving a car with
a standard transmission versus driving with an automatic
transmission — but I'm not always sure which is which!

One more thing about ggplot2

I could have had you plot all this without creating and
reshaping a data frame. An alternative approach is to set
NULL as the data source, map t.values to the x-axis, and
then add three geom line statements. Each of those
statements would map a vector of densities (created on
the fly) to the y-axis, and each one would have its own
linetype.



The problem with that approach? When you do it that
way, the grammar doesn't automatically create a legend.
Without a data frame, it has nothing to create a legend
from. It’s something like using ggplot() to create a base R
graph.

Is it ever a good idea to use this approach? Yes, it is —
when you don’t want to include a legend but you want to
annotate the graph in some other way. I provide an
example in the later section “Visualizing Chi-Square
Distributions.”

Testing a Variance

So far, I discuss one-sample hypothesis testing for
means. You can also test hypotheses about variances.

This topic sometimes comes up in the context of
manufacturing. Suppose that FarKlempt Robotics, Inc.,
produces a part that has to be a certain length with a
very small variability. You can take a sample of parts,
measure them, find the sample variability, and perform a
hypothesis test against the desired variability.

The family of distributions for the test is called chi-

square. Its symbol is y2. I won’t go into all the
mathematics. I'll just tell you that, once again, df is the
parameter that distinguishes one member of the family
from another. Figure 10-9 shows two members of the
chi-square family.

As the figure shows, chi-square is not like the previous
distribution families I showed you. Members of this
family can be skewed, and none of them can take a value
less than zero.

The formula for the test statistic is
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N is the number of scores in the sample, s is the sample
variance, and o? is the population variance specified in
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FIGURE 10-9: Two members of the chi-square family.

With this test, you have to assume that what you're
measuring has a normal distribution.

Suppose the process for the FarKlempt part has to have,
at most, a standard deviation of 1.5 inches for its length.
(Notice that I use standard deviation. This allows me to
speak in terms of inches. If I use variance, the units



would be square inches.) After measuring a sample of
ten parts, you find a standard deviation of 1.80 inches.

The hypotheses are

Ho: o2 < 2.25 (remember to square the “at-most”
standard deviation of 1.5 inches)

H;: 0% > 2.25
a=.05

Working with the formula,

. r_ i _ 2 i oy
z‘.:*:{f"b i].‘: =l[l'[] l]{l_;‘&{l] =[.}}i{:5.£5] _12.96
o (1.5) 2.25

Can you reject Hjy? Read on.

Testing in R

At this point, you might think that the function
chisq.test() would answer the question. Although base R
provides this function, it's not appropriate here. As you
can see in Chapter 18, statisticians use this function to
test other kinds of hypotheses.

Instead, turn to a function called varTest, which is in the
EnvStats package. On the Packages tab, click Install. Then
type EnvStats into the Install Packages dialog box and
click Install. When EnvStats appears on the Packages
tab, select its check box.

Before you use the test, you create a vector to hold the
ten measurements described in the example in the
preceding section:

FarKlempt.data2 <- c¢(12.43, 11.71, 14.41, 11.05, 9.53,
11.66, 9.33,11.71,14.35,13.81)

And now, the test:



varTest(FarKlempt.data2,alternative="greater",conf.level= 0.95,sigma.squared
= 2.25)
The first argument is the data vector. The second
specifies the alternative hypothesis that the true
variance is greater than the hypothesized variance, the
third gives the confidence level (1-a), and the fourth is
the hypothesized variance.

Running that line of code produces these results:

Results of Hypothesis Test

Null Hypothesis: variance = 2.25
Alternative Hypothesis: True variance is greater than 2.25
Test Name: Chi-Squared Test on Variance
Estimated Parameter(s): variance = 3.245299
Data: FarKlempt.data2
Test Statistic: Chi-Squared = 12.9812
Test Statistic Parameter: df = 9
P-value: 0.163459
95% Confidence Interval: LCL = 1.726327

UCL = Inf

Among other statistics, the output shows the chi-square
(12.9812) and the p-value (0.163459). (The chi-square
value in the previous section is a bit lower because of
rounding.) The p-value is greater than .05. Therefore,
you cannot reject the null hypothesis.

How high would chi-square (with df = 9) have to be in
order to reject? Hmmm... .

Working with Chi-Square
Distributions

As is the case for the distribution families I discuss in
this chapter, R provides functions for working with the
chi-square distribution family: dchisq() (for the density
function), pchisq() (for the cumulative density function),



qchisq() (for quantiles), and rchisq() (for random-number
generation).

To answer the question I pose at the end of the previous
section, I use qchisq():

> qchisq(.05,df=9, lower.tail = FALSE)
[1] 16.91898

The observed value missed that critical value by quite a
bit.

Here are examples of the other chisq functions with df =
9. For this set of values,

> chisq.values <- seq(0,16,2)

here are the densities

> round(dchisq(chisq.values,9),3)
[1] 0.000 0.016 0.066 0.100 0.101 0.081 0.056 0.036 0.021

and here are the cumulative densities

> round(pchisq(chisq.values,9),3)
[1] 0.000 0.009 0.089 0.260 0.466 ©0.650 0.787 0.878 0.933

Here are six random numbers selected from this chi-
square distribution:

> round(rchisq(n=6,df=9),3)
[1] 13.231 5.674 7.396 6.170 11.806 7.068

Visualizing Chi-Square
Distributions

Figure 10-9 nicely shows a couple of members of the chi-
square family, with each member annotated with its
degrees of freedom. In this section, I show you how to
use base R graphics and ggplot2 to re-create that picture.
You'll learn some more about graphics, and you’ll know
how to visualize any member of this family.



Plotting chi-square in base R
graphics

To get started, you create a vector of values from which
dchisq() calculates densities:

chi.values <- seq(0,25,.1)

Start the graphing with a plot statement:

plot(x=chi.values,
y=dchisq(chi.values,df=4),

type = II'LII'
xlab=expression(chi”~2),
y'Lab=ll n )

The first two arguments indicate what you're plotting —
the chi-square distribution with four degrees of freedom
versus the chi.values vector. The third argument specifies
a line (that’s a lowercase letter L, not the number 1). The
third argument labels the x-axis with the Greek letter chi
(x) raised to the second power. The fourth argument
gives the y-axis a blank label.

Why did I have you do that? When I first created the
graph, I found that ylab locates the y-axis label too far to
the left, and the label was cut off slightly. To fix that, I
blank out ylab (i.e., set ylab = "") and then use mtext():

mtext(side = 2, text = expression(f(chi”2)), line = 2.5)

The side argument specifies the side of the graph to
insert the label: bottom = 1, left = 2, top = 3, and right =
4. The text argument sets f( z° ) as the label for the axis.
The line argument specifies the distance from the label
to the y-axis: The distance increases with the value.

Next, you add the curve for chi-square with ten degrees
of freedom:

lines(x=chi.values,y=dchisq(chi.values,df= 10))



Rather than add a legend, follow Figure 10-9 and add an
annotation for each curve. Here's how:

text(x=6,y=.15, label="df=4")
text(x=16, y=.07, label = "df=10")
The first two arguments locate the annotation, and the

third one provides the content.
Putting it all together:

plot(x=chi.values,
y=dchisq(chi.values,df=4),

type = II'LII'
xlab=expression(chi”~2),

y'Lab=ll n )
mtext(side = 2, expression(f(chi”2)), line = 2.5)

lines(x=chi.values,y=dchisq(chi.values,df= 10))

text(x=6,y=.15, label="df=4")
text(x=16, y=.07, label = "df=10")

creates Figure 10-10.
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FIGURE 10-10: Two members of the chi-square family, plotted in base R

graphics.



Plotting chi-square in ggplot2

In this plot, I again have you use annotations rather than
a legend, so you set NULL as the data source and work
with a vector for each line. The first aesthetic maps
chi.values to the x-axis:

ggplot (NULL, aes(x=chi.values))

Then you add a geom line for each chi-square curve, with
the mapping to the y-axis as indicated:

geom line(aes(y=dchisq(chi.values,4)))
geom_line(aes(y=dchisq(chi.values,10)))

As I point out earlier in this chapter, this is like using
ggplot2 to create a base R graph, but in this case it works
(because it doesn't create an unwanted legend).

Next, you label the axes:

labs (x=expression(chi”2),y=expression(f(chi~2)))

And finally, the aptly named annotate() function adds the
annotations:

annotate(geom = "text",x=6,y=.15, label="df=4")

annotate(geom = "text",x=16,y=.07,label="df=10")
The first argument specifies that the annotation is a text
object. The next two locate the annotation in the graph,
and the fourth provides the label.

So all of this

ggplot (NULL, aes(x=chi.values))+
geom line(aes(y=dchisq(chi.values,4))) +
geom line(aes(y=dchisq(chi.values,10))) +
labs (x=expression(chi”2),y=expression(f(chi®2)))+
annotate(geom = "text",x=6,y=.15,label = "df=4")+
annotate(geom = "text",x=16,y=.07,label = "df=10")

draws Figure 10-11.
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FIGURE 10-11: Two members of the chi-square family, plotted in ggplot2.




Chapter 11

IN THIS CHAPTER

» Testing differences between means of two
samples

» Testing means of paired samples
» Testing hypotheses about variances
» Understanding F-distributions

In a variety of fields, the need often arises to compare
one sample with another. Sometimes the samples are
independent, and sometimes they’re matched in some
way. Each sample comes from a separate population. The
objective is to decide whether these populations are
different from one another.

Usually, this involves tests of hypotheses about
population means. You can also test hypotheses about
population variances. In this chapter, I show you how to
carry out these tests as well as how to use R to get the
job done.

Hypotheses Built for Two

As in the one-sample case (see Chapter 10), hypothesis
testing with two samples starts with a null hypothesis
(Hy) and an alternative hypothesis (H;). The null

hypothesis specifies that any differences you see




between the two samples are due strictly to chance. The
alternative hypothesis says, in effect, that any
differences you see are real and not due to chance.

It’s possible to have a one-tailed test, in which the
alternative hypothesis specifies the direction of the
difference between the two means, or a two-tailed test in
which the alternative hypothesis does not specify the
direction of the difference.

For a one-tailed test, the hypotheses look like this:

Hy: gy — g2 =0
Hy: -1 >0
or like this:
Hy: gy = =10
Hy: oy — s <0
For a two-tailed test, the hypotheses are
Ho: gy — g2 =0
Hy:py — s =0

The zero in these hypotheses is the typical case. It’s
possible, however, to test for any value — just substitute
that value for zero.

To carry out the test, you first set a, the probability of a
Type I error that you’'re willing to live with (see Chapter
10). Then you calculate the mean and standard deviation
of each sample, subtract one mean from the other, and
use a formula to convert the result into a test statistic.
Compare the test statistic to a sampling distribution of
test statistics. If it’s in the rejection region that o
specifies (again, see Chapter 10), reject Hy. If it’s not,

don’t reject Hy,.




Sampling Distributions
Revisited

In Chapter 9, I introduce the idea of a sampling
distribution — a distribution of all possible values of a
statistic for a particular sample size. In that chapter, I
describe the sampling distribution of the mean. In
Chapter 10, I show its connection with one-sample
hypothesis testing.

For two-sample hypothesis testing, another sampling
distribution is necessary. This one is the sampling
distribution of the difference between means.

The sampling distribution of the difference between
means is the distribution of all possible values of
differences between pairs of sample means with the
sample sizes held constant from pair to pair. (Yes, that’s
a mouthful.) Held constant from pair to pair means that
the first sample in the pair always has the same size, and
the second sample in the pair always has the same size.
The two sample sizes are not necessarily equal.

rememeer Within each pair, each sample comes from a
different population. All samples are independent of
one another so that picking individuals for one
sample has no effect on picking individuals for
another.

Figure 11-1 shows the steps in creating this sampling
distribution. This is something you never do in practice.
It’s all theoretical. As the figure shows, the idea is to
take a sample out of one population and a sample out of
another, calculate their means, and subtract one mean



from the other. Return the samples to the populations
and repeat over and over and over. The result of the
process is a set of differences between means. This set of
differences is the sampling distribution.

Population 1 Population 2

Sampling Distribution of the Difference Between Means

FIGURE 11-1: Creating the sampling distribution of the difference between
means.

Applying the central limit theorem
Like any other set of numbers, this sampling distribution
has a mean and a standard deviation. As is the case with
the sampling distribution of the mean (see Chapters 9
and 10), the central limit theorem applies here.

According to the central limit theorem, if the samples are
large enough, the sampling distribution of the difference
between means is approximately a normal distribution. If
the populations are normally distributed, the sampling



distribution is a normal distribution even if the samples
are small.

The central limit theorem also has something to say
about the mean and standard deviation of this sampling
distribution. Suppose that the parameters for the first
population are p; and «; and that the parameters for the

second population are p, and a,. The mean of the
sampling distribution is
Mz, = My — fy

The standard deviation of the sampling distribution is

N, is the number of individuals in the sample from the
first population, and N, is the number of individuals in
the sample from the second.

rememeer 1 NiS Standard deviation is called the standard
error of the difference between means.

Figure 11-2 shows the sampling distribution along with
its parameters, as specified by the central limit theorem.
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FIGURE 11-2: The sampling distribution of the difference between means,
along with the critical value for a = .05 and the obtained value of the test
statistic in the 1Q example.

Z’s once more
Because the central limit theorem says that the sampling
distribution is approximately normal for large samples
(or for small samples from normally distributed
populations), you use the z-score as your test statistic.
Another way to say “use the z-score as your test statistic”
is “perform a z-test.” Here’s the formula:
(X, =Xy ) — (4 — #y)

o

T =

X|=7Xg
The term (1¢-11,) represents the difference between the
means in H,.

This formula converts the difference between sample
means into a standard score. Compare the standard



score against a standard normal distribution — a normal
distribution with 1 = 0 and o = 1. If the score is in the
rejection region defined by «, reject Hy. If it’s not, don’t

reject Hy,.

You use this formula when you know the value of o2 and
(X22.
Here’s an example. Imagine a new training technique
designed to increase IQ. Take a sample of nine people
and train them under the new technique. Take another
sample of nine people and give them no special training.
Suppose that the sample mean for the new technique
sample is 110.222, and for the no-training sample it’s
101. The hypothesis test is

Hg N S Tl ] E“’
Hy:py —ps >0
I'll set a at .05.

The IQ is known to have a standard deviation of 15, and I
assume that standard deviation would be the same in the
population of people trained on the new technique. Of
course, that population doesn’t exist. The assumption is
that if it did, it should have the same value for the
standard deviation as the regular population of IQ
scores. Does the mean of that (theoretical) population
have the same value as the regular population? H says it

does. H; says it’s larger.

The test statistic is
L (F=%a) - (=) _ (51 =%p)-(n—prp) _ (110.222-101) _ 9.222
[efor T i TN

=1.304

NN,

9 9

With a = .05, the critical value of z — the value that cuts
off the upper 5 percent of the area under the standard



normal distribution — is 1.645. (You can use the gnorm()
function from Chapter 8 to verify this.) The calculated
value of the test statistic is less than the critical value, so
the decision is to not reject H. Figure 11-3 summarizes

this.
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FIGURE 11-3: The sampling distribution of the difference between means,
according to the central limit theorem.

Z-testing for two samples in R

As is the case for one-sample testing (explained in
Chapter 10), base R provides no function for a two-
sample z-test. If this function existed, you'd probably
want it to work like this for the example:

> samplel <-c(100,118,97,92,118,125,136,95,111)
> sample2 <-c(91,109,83,88,115,168,127,102,86)
> z.test2(samplel, sample2,15,15)

meanl = 110.2222 mean2 = 101

standard error = 7.071068

z = 1.304

one-tailed probability
two-tailed probability

0.096
0.192



Because this function doesn’t exist, I'll show you how to
create it.

Begin with the function name and the arguments:

z.test2 = function(x,y,popsdl,popsd2){

The first two arguments are data vectors, and the second
two are the population standard deviations. The left curly
brace indicates that subsequent statements are what
occurs inside the function.

Next, you initialize a vector that will hold the one-tailed
probability:

one.tail.p <- NULL

Then you calculate the standard error of the difference
between means

std.error <- sqrt((popsdl~2/length(x) + popsd2”2/length(y)))
and then the (rounded) z-score

z.score <- round((mean(x)-mean(y))/std.error,3)

Finally, you calculate the rounded one-tailed probability:

one.tail.p <- round(pnorm(abs(z.score),lower.tail = FALSE),3)

The abs () function (absolute value) ensures the
appropriate calculation for a negative z-score.

Last but not least, a cat() (concatenate-and-print)
statement displays the output:

cat(" meanl =", mean(x)," ", "mean2 =", mean(y), "\n",
"standard error =", std.error, "\n",
"z =", z.score,"\n",
"one-tailed probability =", one.tail.p,"\n",
"two-tailed probability =", 2"one.tail.p )}

I use a cat() function like this one for the one-sample
case in Chapter 10. The right curly brace closes off the
function.




Here's the newly defined function:

z.test2 = function(x,y,popsdl,popsd2){
one.tail.p <- NULL
std.error <- sqrt((popsdl~2/length(x) + popsd2~2/length(y)))
z.score <- round((mean(x)-mean(y))/std.error,3)
one.tail.p <- round(pnorm(abs(z.score),lower.tail = FALSE),3)

cat(" meanl =", mean(x)," ", "mean2 =", mean(y), "\n",
“standard error =", std.error, "\n",
"z =", z.score,"\n",

"one-tailed probability
"two-tailed probability

", one.tail.p,"\n",
' 2*one.tail.p )}

Give it a try! Create those vectors I showed you for
samplel and sample2 and watch z.test2() do its thing.

t for Two

The example in the preceding section involves a situation
you rarely encounter — known population variances. If
you know a population's variance, you're likely to know
the population mean. If you know the mean, you
probably don’t have to perform hypothesis tests about it.

Not knowing the variances takes the central limit
theorem out of play. This means that you can’t use the
normal distribution as an approximation of the sampling
distribution of the difference between means. Instead,
you use the t-distribution, a family of distributions I
introduce in Chapter 9 and apply to one-sample
hypothesis testing in Chapter 10. The members of this
family of distributions differ from one another in terms of
a parameter called degrees of freedom (df). Think of df
as the denominator of the variance estimate you use
when you calculate a value of t as a test statistic.
Another way to say “calculate a value of t as a test
statistic” is “Perform a t-test.”




rememeer UNKnown population variances lead to two
possibilities for hypothesis testing. One possibility is
that although the variances are unknown, you have
reason to assume they’re equal. The other possibility
is that you cannot assume they’'re equal. In the
sections that follow, I discuss these possibilities.

Like Peas in a Pod: Equal
Variances

When you don’t know a population variance, you use the
sample variance to estimate it. If you have two samples,
you average (sort of) the two sample variances to arrive
at the estimate.

Putting sample variances together to estimate a
population variance is called pooling. With two sample
variances, here’s how you do it:

o2 _ (N, =1)s% +(N,-1)s?
P (N, -1)+(N,-1)

In this formula, sp2 stands for the pooled estimate.
Notice that the denominator of this estimate is (IN;-1) +
(N5-1). Is this the df? Absolutely!

The formula for calculating t is

_(a-x) -l —p)
1 1
L e
e ;"'I"] N;»_'
On to an example. FarKlempt Robotics is trying to

choose between two machines to produce a component
for its new microrobot. Speed is of the essence, so the

t




company has each machine produce ten copies of the
component, and time each production run. The
hypotheses are

Hy gy - py =0

Hy:py = 20
They set a at .05. This is a two-tailed test because they
don’t know in advance which machine might be faster.

Table 11-1 presents the data for the production times in
minutes.

TABLE 11-1 Sample Statistics from the
FarKlempt Machine Study

Machine 1 Machine 2

Mean Production Time 23.00 20.00
Standard Deviation 2.71 2.79
Sample Size 10 10

The pooled estimate of a? is
2 (N =1)sf +(Ny=1)si  (10-D(2.7D)* +(10-1)(2.79)

=T (N, -D)+(N,-1) (10-1D)+(10-1)
C(DRTDZH(92.79)  66+T0 256
- (9)+(9) T

The estimate of « is 2.75, the square root of 7.56.
The test statistic is

(X X ) - —pp) _ (23-20) 3 _ 944
] 1 ) \/ 1 1 1.23 7
x{Nl N, 2510 10
For this test statistic, df = 18, the denominator of the

variance estimate. In a t-distribution with 18 df, the
critical value is 2.10 for the right-side (upper) tail and -

I =

S,



2.10 for the left-side (lower) tail. If you don’t believe me,
apply qt() (see Chapter 10). The calculated value of the
test statistic is greater than 2.10, so the decision is to
reject Hy. The data provide evidence that Machine 2 is
significantly faster than Machine 1. (You can use the
word significant whenever you reject Hy.)

t-Iesting in R

Here are a couple of vectors for the sample data in the
example in the preceding section:

machinel <-c(24.58, 22.09, 23.70, 18.89, 22.02, 28.71, 24.44,
20.91, 23.83, 20.83)

machine2 <- c(21.61, 19.06, 20.72, 15.77, 19, 25.88, 21.48,
17.85, 20.86, 17.77)

R provides two ways for performing the t-test. Both
involve t.test(), which I use in Chapters 9 and 10.

Working with two vectors
Here's how to test the hypotheses with two vectors and
the equal variances assumption:

t.test(machinel,machine2,var.equal = TRUE, alternative="two.
sided", mu=0)

The alternative=two-sided argument reflects the type of
alternative hypothesis specified in the example, and the
last argument indicates the hypothesized difference
between means.

Running that function produces this output:

Two Sample t-test

data: machinel and machine2

t = 2.4396, df = 18, p-value = 0.02528

alternative hypothesis: true difference in means is not
equal to 0

95 percent confidence interval:



0.4164695 5.5835305
sample estimates:
mean of X mean of y

23 20

The t-value and the low p-value indicate that you can
reject the null hypothesis. Machine 2 is significantly
faster than Machine 1.

Working with a data frame and a

formula

The other way of carrying out this test is to create a data
frame and then use a formula that looks like this:

prod.time ~ machine

The formula expresses the idea that production time
depends on (~) the machine you use. Although it's not
necessary to do the test this way, it’s a good idea to get
accustomed to formulas. I use them quite a bit in later
chapters.

The first thing to do is create a data frame in long

format. First you create a vector for the 20 production

times — machinel’s times first and then machine2's:
prod.time <- c(machinel,machine2)

Next, you create a vector of the two machine names:

machine <-c("machinel", "machine2")

Then you turn that vector into a vector of ten repetitions
of "machinel" followed by ten repetitions of "machine2". It's
a little tricky, but here’s how:

machine <- rep(machine, times = c(10,10))

And the data frame is

FarKlempt.frame <-data.frame(machine,prod.time)

Its first six rows are



> head(FarKlempt. frame)

machine prod.time
1 machinel 24.58
2 machinel 22.09
3 machinel 23.70
4 machinel 18.89
5 machinel 22.02
6 machinel 28.71

The t.test() function is then

with (FarKlempt.frame,t.test(prod.time~machine,
var.equal =
TRUE,
alternative="two.sided",
mu=0) )
This produces virtually the same output as the two-
vector version.

Visualizing the results
In studies like in the preceding section, two ways of
presenting the results are boxplots and bar graphs.

Boxplots

Boxplots depict the data in each sample along with the
sample median (as explained in Chapter 3). They're easy
to create in base R and in ggplot2. For base R graphics,
the code looks quite a bit like the formula method for
t.test():

with (FarKlempt.frame,boxplot(prod.time~machine, xlab =
"Machine", ylab="Production Time (minutes)"))

The plot looks like Figure 11-4.



28

26

24-

22 -

20

Production Time (minutes)

18

16

I T
machinel machine?
Machine

FIGURE 11-4: Boxplot of FarKlempt Machines data in base R.

Figure 11-5 shows the boxplot rendered in ggplot2. The
code that produces that boxplot is

ggplot(FarKlempt.frame, aes(x=machine, y=prod.time))+
stat boxplot(geom="errorbar", width =.5) +
geom_boxplot()
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FIGURE 11-5: Boxplot of FarKlempt Machines data in ggplot2.

The only new function is stat boxplot(), which adds the
perpendicular line to the end of each whisker. The
default width of those lines is the width of the box. I
added width =.5 to cut that width in half.

'&5&‘

"see - In ggplot2, stat is a way of summarizing the data
so that a geom function can use it. The stat function
used here calculates the components for the boxplot.
You use it to override the default appearance of the
boxplot — which is without the perpendicular line at
the end of each whisker. In earlier examples (and in
the next one), you use stat= "identity" to instruct
geom bar() to use table data rather than bother with
counting instances in the raw data.



Bar graphs

Traditionally, researchers report and plot sample means
and standard errors. It's easy to do that in ggplot2.
Figure 11-6 shows what I mean.

HH

migan mas

machmne Names

FIGURE 11-6: FarKlempt Machine means and standard errors.

The t-shaped bars that extend above and below the top of
each bar are the error bars that denote the standard
error of the mean.

To use ggplot2, you have to create a data frame of
machine names, mean times, and standard errors. The
three vectors that will constitute the data frame are

machine.names <-c("machinel", "machine2")

mean.times <- c(mean(machinel),mean(machine2))

se.times <- c(sd(machinel)/sqrt(length(machinel)), sd(machine2)/
sqrt(length(machine2)))



The data frame is then

FKmeans.frame <-data.frame(machine.names,mean.times,se.times)

It looks like this:

> FKmeans.frame

machine.names mean.times se.times
1 machinel 23 0.8570661
2 machine2 20 0.8818339

The code to create Figure 11-6 is

ggplot (FKmeans.frame, aes(x=machine.names, y=mean.
times))+
geom bar(stat="identity", width=.4,color="black",
fill="white")+
geom_errorbar(aes(ymin=mean.times-se.times, ymax=mean.times+se.
times) ,width=.1)

The first function sets the stage with the aesthetic
mappings, and the second plots the bars. The stat =
identity argument instructs geom bar to use the tabled
statistics rather than to count instances of machinel and
machine2. The other arguments set the appearance of the
bars.

The third function is the geom that plots the error bars.
The aesthetic mappings set the minimum point and
maximum point for each error bar. The width argument
sets the width for the perpendicular line at the end of
each error bar.

ne  In most scientific publications, you see graphs like
this with only the positive error bar — the one
extending above the mean. To graph it that way in
this example, set ymin=mean.times rather than
ymin=mean.times-se.times.

Like p's and q’s: Unequal variances



The case of unequal variances presents a challenge. As it
happens, when variances are not equal, the t-distribution
with (IN;-1) + (IN,-1) degrees of freedom is not as close

an approximation to the sampling distribution as
statisticians would like.

Statisticians meet this challenge by reducing the degrees
of freedom. To accomplish the reduction, they use a
fairly involved formula that depends on the sample
standard deviations and the sample sizes.

Because the variances aren’t equal, a pooled estimate is
not appropriate. So you calculate the t-test in a different
way:

lfl_f'_g}_':ﬂl _.-”3]

[ = .
{2 2
sy 85

VN, °N,

You evaluate the test statistic against a member of the t-
distribution family that has the reduced degrees of
freedom.

Here’s what t.test() produces for the FarKlempt
example if I assume the variances are not equal:

with (FarKlempt.frame,t.test(prod.time~machine,
var.
equal = FALSE,
alternative="two.sided",
mu=0) )

Welch Two Sample t-test
data: prod.time by machine
t = 2.4396, df = 17.985, p-value = 0.02529
alternative hypothesis: true difference in means between group
machinel and group machine2 is
not equal to 0O
95 percent confidence interval:
0.4163193 5.5836807
sample estimates:
mean in group machinel mean in group machine2
23 20



You can see the slight reduction in degrees of freedom.
The variances are so close that little else changes.

A Matched Set: Hypothesis
Testing for Paired Samples

In the hypothesis tests I describe so far, the samples are
independent of one another. Choosing an individual for
one sample has no bearing on the choice of an individual
for the other.

Sometimes, the samples are matched. The most obvious
case is when the same individual provides a score under
each of two conditions — as in a before-after study.
Suppose ten people participate in a weight loss program.
They weigh in before they start the program and again
after one month on the program. The important data is
the set of before-after differences. Table 11-2 shows the
data:

TABLE 11-2 Data for the Weight Loss Example

Person ’I;I:iig'l‘;t':efore ;‘IIIVs:"gtl;,tAfter One Difference
1 198 194 4
2 201 203 -2
3 210 200 10
4 185 183 2
5 204 200 4
6 156 153 3
7 167 166 1
8 197 197 0
9 220 215 5
10 186 184 2



Weight Before Weight After One

Person Program Month Difference
Mean 2.9
Standard

Deviation 3.25

The idea is to think of these differences as a sample of
scores and treat them as you would in a one-sample t-
test. (See Chapter 10.)

You carry out a test on these hypotheses:
Hg:pg <0
Hy:py =0

The d in the subscripts stands for “difference.” Set a =
.05. The formula for this kind of t-test is

d - M

Sd
In this formula, 4 is the mean of the differences. To find
S5, you calculate the standard deviation of the
differences and divide by the square root of the number
of pairs:

I =

The df is N-1 (where N is the number of pairs).

From Table 11-2,

_ d - Mg _ 2.9 _
s¢  (3.25/10)

With df = 9 (Number of pairs - 1), the critical value for «

= .05 1is 1.83. (Use qt() to verify.) The calculated value
exceeds this value, so the decision is to reject Hy,.
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Paired Sample t-Testing in
R

For paired sample t-tests, it's the same formula as for
independent samples t-tests. As you’ll see, you add an
argument. Here’s the data from Table 11-2:

before <-c(198,201,210,185,204,156,167,197,220,186)
after <- c(194,203,200,183,200,153,166,197,215,184)

And the t-test:

t.test(before,after,alternative = "greater", paired=TRUE)

That last argument, of course, specifies a paired-samples
test. The default value for that one is FALSE.

Running that test yields
Paired t-test

data: before and after
t = 2.8241, df = 9, p-value = 0.009956
alternative hypothesis: true mean difference is greater
than 0
95 percent confidence interval:
1.017647 Inf
sample estimates:
mean difference
2.9

Because of the very low p-value, you reject the null
hypothesis.

Testing Two Variances

The two-sample hypothesis testing I describe in this
chapter pertains to means. It’s also possible to test
hypotheses about variances.

In this section, I extend the one-variance manufacturing
example I use in Chapter 10. FarKlempt Robotics, Inc.,




produces a part that has to be a certain length with a
very small variability. The company is considering two
machines to produce this part, and it wants to choose the
one that results in the least variability. FarKlempt
Robotics takes a sample of parts from each machine,
measures them, finds the variance for each sample, and
performs a hypothesis test to see whether one machine’s
variance is significantly greater than the other’s.

The hypotheses are
Hyor =03
H.of 203

As always, an a is a must-have item. As usual, I set it to
.05.

When you test two variances, you don’t subtract one
from the other. Instead, you divide one by the other to
calculate the test statistic. Sir Ronald Fisher is a famous
statistician who worked out the mathematics and the
family of distributions for working with variances in this
way. The test statistic is named in his honor. It’s called
an F-ratio and the test is the F-test. The family of
distributions for the test is called the F-distribution.

Without going into all the mathematics, I'll just tell you
that, once again, df is the parameter that distinguishes
one member of the family from another. What’s different
about this family is that two variance estimates are
involved, so each member of the family is associated with
two values of df, rather than one as in the t-test. Another
difference between the F-distribution and the others
you’'ve seen is that the F cannot have a negative value.
Figure 11-7 shows two members of the F-distribution
family.
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FIGURE 11-7: Two members of the F-distribution family.

The test statistic is

larger s*
smaller s°

Suppose FarKlempt Robotics produces 10 parts with
Machine 1 and finds a sample variance of .81 square
inches. It produces 15 parts with Machine 2 and finds a
sample variance of .64 square inches. Can the company
reject Hy?

F:

Calculating the test statistic,
_ 8l
T
The df’s are 9 and 14: The variance estimate in the

numerator of the F-ratio is based on 10 cases, and the

variance estimate in the denominator is based on 15
cases.

F 1.27



When the df’s are 9 and 14 and it’s a two-tailed test at «o
= .05, the critical value of F is 3.21. (In a moment, I show
you an R function that calculates this.) The calculated
value is less than the critical value, so the decision is to
not reject Hy,.

rememeer 1€ Makes a difference which df is in the numerator
and which df is in the denominator. The F-
distribution for df = 9 and df = 14 is different from
the F-distribution for df = 14 and df = 9. For
example, the critical value in the latter case is 3.80,
not 3.21.

F-testing in R

R provides a function for testing hypotheses like the one
in the FarKlempt Robotics two-machines example. It’s
called var.test(). Should it have been called F.test()?
Well, maybe.

The important point is to not confuse this function with
varTest (), which I use in Chapter 10 to test hypotheses

about a single sample variance (with chi-square). That

function is in the EnvStats package.

To apply var.test(), you first create the vectors that hold
the data for the parts that Machine 1 and Machine 2
produce:

ml.parts <-c(3.8,2.5,2.3,2.1,3.5,3.9,2.0,3.8,4.0,4.4)
m2.parts <-c(2.9,3.5,2.2,4.5,3.1,3.8,4.3,2.4,2.7,2.6,3.6,4.1,
4.8,3.0,3.0)
The vectors are the first two arguments to var.test(),
which takes four arguments. The third is the ratio of
their variances under the null hypothesis, and the fourth
is the nature of the alternative hypothesis:



> var.test(ml.parts,m2.parts,ratio=1,alternative="two.sided")
F test to compare two variances

data: ml.parts and m2.parts
F = 1.2805, num df = 9, denom df = 14, p-value = 0.6544
alternative hypothesis: true ratio of variances is not
equal to 1
95 percent confidence interval:
0.3990074 4.8634101
sample estimates:
ratio of variances
1.280535

The low F-ratio and high p-value indicate that you cannot
reject the null hypothesis. (The slight discrepancy
between this F-ratio and the one calculated in the
example is due to rounding.)

F in conjunction with t

One use of the F-distribution is in conjunction with the t-
test for independent samples. Before you do the t-test,
you use F to help decide whether to assume equal
variances or unequal variances in the samples.

In the equal variances t-test example I show you earlier,
the standard deviations are 2.71 and 2.79. The variances
are 7.34 and 7.78. The F-ratio of these variances is

7.78

7.34

Each sample is based on ten observations, so df = 9 for
each sample variance. An F-ratio of 1.06 cuts off the
upper 47 percent of the F-distribution whose df are 9
and 9, so it's safe to use the equal variances version of
the t-test for these data.

How does all this play out in the context of hypothesis
testing? On rare occasions, Hj is a desirable outcome

and you’d rather not reject it. In that case, you stack the

F = =1.06




deck against not rejecting by setting a at a high level so
that small differences cause you to reject H,.

This is one of those rare occasions. It’s more desirable to
use the equal variances t-test, which typically provides
more degrees of freedom than the unequal variances t-
test. Setting a high value of o (.20 is a good one) for the
F-test enables you to be confident when you assume
equal variances.

Working with F-
Distributions

Just like the other distribution-families I cover earlier
(normal, t, chi-square), R provides functions for dealing
with F-distributions: qf () gives quantile information, df()
provides the density function, pf() provides the
cumulative density function, and rf() generates random
numbers.

ne  Note that throughout this section, I spell out
degrees of freedom rather than use the abbreviation
df as I do elsewhere. That's to avoid confusion with
the density function df().

That critical value I refer to earlier for a two-tailed F-test
with 9 and 14 degrees of freedom is

> qf(.025,9,14,lower.tail = FALSE)
[1] 3.2093

It’s a two-tailed test at a« = .05, so .025 is in each tail.

To watch df() and pf() in action, you create a vector for
them to operate on:



F.scores <-seq(0,5,1)

With 9 and 14 degrees of freedom, the (rounded)
densities for these values are

> round(df(F.scores,9,14),3)
[1] 0.000 0.645 0.164 0.039 0.011 0.004

The (rounded) cumulative densities are

> round(pf(F.scores,9,14),3)
[1] 0.000 0.518 0.882 0.968 0.990 0.996

To generate five random numbers from this member of
the F-family:

> rf(5,9,14)
[1] 0.6409125 0.4015354 1.1601984 0.6552502 0.8652722

Visualizing F-Distributions

As I've said, visualizing distributions helps you learn
them. F-distributions are no exception, and with density
functions and ggplot2, it’s easy to plot them. I show you
how to use ggplot2 to depict an F-distribution with 5 and
15 degrees of freedom and another with 10 and 20
degrees of freedom.

Begin with a vector of values for df() to do its work on:

F.values <-seq(0,5,.05)

Then create a vector of densities for an F-distribution
with 5 and 15 degrees of freedom:

F5.15 <- df(F.values,5,15)

and another for an F-distribution with 10 and 20 degrees
of freedom:

F10.20 <- df(F.values,10,20)

Now for a data frame for ggplot2:

F.frame <- data.frame(F.values,bF5.15,F10.20)



This is what the first six rows of F.frame look like:

> head(F.frame)

F.values F5.15 F10.20
1 0.00 0.00000000 0.000000000
2 0.05 0.08868702 0.001349914
3 0.10 0.21319965 0.015046816
4 0.15 0.33376038 0.053520748
5 0.20 0.43898395 0.119815721
6 0.25 0.52538762 0.208812406

This is in wide format. As I point out earlier, ggplot()
prefers long format, in which the data values are stacked
on top of one another in one column. This is called
melting the data and is part and parcel of the reshape2
package. (On the Packages tab, find the check box next
to reshape2. If it's deselected, click on it to select it.)

To appropriately reshape the data,

F.frame.melt <- melt(F.frame,id="F.values")

The id argument tells melt() what not to include in the
stack. (F.values is the “identifier,” in other words.) Next,
assign meaningful column names:

colnames (F.frame.melt)=c("F", "deg.fr", "density")

The first six rows of the melted data frame are

> head(F.frame.melt)

F deg.fr density
1 0.00 F5.15 0.00000000
2 0.05 F5.15 0.08868702
3 0.16 F5.15 0.21319965
4 0.15 F5.15 0.33376038
5 0.20 F5.15 0.43898395
6 0.25 F5.15 0.52538762

To begin the visualizing, the first statement, as always, is
ggplot():

ggplot(F.frame.melt, aes(x=F,y=density,group=deg.fr))

The first argument is the data frame. The first two
aesthetic mappings associate F with the x-axis, and



density with the y-axis. The third mapping forms groups
based on the deg. fr variable.

Next, you add a geom line:

geom line(stat="identity",aes(linetype=deg.fr))

The stat argument tells the geom function to use the
tabled data. The aesthetic mapping associates the
linetype ("solid" and "dotted" are the default values) with
deg.fr.

If you prefer "solid" and "dashed", as in Figure 11-7, you
have to change things manually:

scale linetype manual(values = c("solid", "dashed"),
labels = c("5,15","10,20"))

The values and labels will appear in the legend that the
grammar automatically creates.

Here’s the code:

ggplot(F.frame.melt,aes(x=F,y=density,group=deg.fr)) +
geom line(stat="identity",aes(linetype=deg.fr))+
scale linetype manual(values = c("solid", "dashed"),

labels = c("5,15","10,20"))

Figure 11-8 shows the result, complete with legend.

Experiment with other values for degrees of freedom and
see what the curves look like.
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FIGURE 11-8: Two members of the F-distribution family in ggplot2.




Chapter 12

Testing More than Two
Samples

IN THIS CHAPTER
» Understanding why multiple i-tests won’t work

» Analyzing variance

» Taking the next step after an ANOVA
» Working with repeated measures

» Performing a trend analysis

Statistics would be limited if you could only make
inferences about one or two samples. In this chapter, I
discuss the procedures for testing hypotheses about
three or more samples. I show what to do when samples
are independent of one another, and what to do when
they’re not. In both cases, I discuss what to do after you
test the hypotheses. I also discuss R functions that do the
work for you.

Testing More than Two

Imagine this situation. Your company asks you to
evaluate three different methods for training its
employees to do a particular job. You randomly assign 30
employees to one of the three methods. Your plan is to
train them, test them, tabulate the results, and make
some conclusions. Before you can finish the study, three



people leave the company — one from the Method 1
group and two from the Method 3 group.

Table 12-1 shows the data.
TABLE 12-1 Data from Three Training Methods

Method 1 Method 2 Method 3

95 83 68
91 89 75
89 85 79
90 89 74
99 81 75
88 89 81
96 90 73
98 82 77
95 84
80
Mean 93.44 85.20 75.25
Variance 16.28 14.18 15.64
Standard Deviation 4.03 3.77 3.96

Do the three methods provide different results, or are
they so similar that you can’t distinguish among them?
To decide, you have to carry out a hypothesis test

Ho @ gty = gz = 15
H, : Not H,
with o = .05.

A thorny problem

Finding differences among three groups sounds pretty
easy, particularly if you've read Chapter 11. Take the
mean of the scores from Method 1, the mean of the




scores from Method 2, and do a t-test to see whether
they’re different. Follow the same procedure for Method
1 versus Method 3, and for Method 2 versus Method 3. If
at least one of those t-tests shows a significant
difference, reject Hy.

Nothing to it, right? Wrong. If your « is .05 for each t-
test, you're setting yourself up for a Type I error with a
probability higher than you planned on. The probability
that at least one of the three t-tests results in a
significant difference is way above .05. In fact, it’s .14,
which is way beyond acceptable. (The mathematics
behind calculating that number is a little involved, so I
won'’t elaborate.)

With more than three samples, the situation gets even
worse. Four groups require six t-tests, and the
probability that at least one of them is significant is .26.
Table 12-2 shows what happens with increasing numbers
of samples.

TABLE 12-2 The Incredible Increasing Alpha

Number of Samples Number of Pr (At Least One Significant
t Tests t)
3 3 14
4 6 .26
5 10 40
6 15 .54
7 21 .66
8 28 .76
9 36 .84

10 45 .90




Carrying out multiple t-tests is clearly not the answer.
What do you do?

A solution
It’s necessary to take a different approach. The idea is to
think in terms of variances rather than means.

I'd like you to think of variance in a slightly different
way. The formula for estimating population variance,
remember, is

§2 D(x-Xx )

N-1

Because the variance is almost a mean of squared
deviations from the mean, statisticians also refer to it as
mean-square. In a way, that’s an unfortunate nickname:
It leaves out “deviation from the mean,” but there you
have it.

The numerator of the variance — excuse me, mean-
square — is the sum of squared deviations from the
mean. This leads to another nickname, sum of squares.
The denominator, as I say in Chapter 10, is degrees of
freedom (df). So the slightly different way to think of
variance 1is

Sum of Squares
df
You can abbreviate this as

. S8
MS = a
Now, on to solving the thorny problem. One important
step is to find the mean-squares hiding in the data.
Another is to understand that you use these mean-
squares to estimate the variances of the populations that
produced these samples. In this case, assume that those

variances are equal, so you’'re really estimating one

Mean Square =



variance. The final step is to understand that you use
these estimates to test the hypotheses I show you at the
beginning of this chapter.

Three different mean-squares are inside the data in
Table 12-1. Start with the whole set of 27 scores,
forgetting for the moment that they’re divided into three
groups. Suppose that you want to use those 27 scores to
calculate an estimate of the population variance. (A dicey
idea, but humor me.) The mean of those 27 scores is 85.
I'll call that mean the grand mean because it’s the
average of everything.

So the mean-square would be

(95-85)° +(91-85)% +...+(73-85)% +(77-85)
(27-1)
The denominator has 26 (27 - 1) degrees of freedom. I
refer to that variance as the total variance, or in the new
way of thinking about this, the MS+;,;. It’s often
abbreviated as MSr.

= 65.08

Here’s another variance to consider. In Chapter 11, I
describe the t-test for two samples with equal variances.
For that test, you put together the two sample variances
to create a pooled estimate of the population variance.
The data in Table 12-1 provides three sample variances
for a pooled estimate: 16.28, 14.18, and 15.64. Assuming
that these numbers represent equal population
variances, the pooled estimate is

G2 _ (N, =1)sf +(N,=1)s5 +(N,-1)s5
e (N =1)+(N;=1)+(N; -1)
(9-1)(16.28 ) +(10-1)(14.18) +(8-1)(15.64 )
- (9-1)+(10-1)+(8-1)
Because this pooled estimate comes from the variance
within the groups, it’s called MSyy;iihin, OF MSw.

=15.31




One more mean-square to go — the variance of the
sample means around the grand mean. In this example,
that means the variance in these numbers 93.44, 85.20,
and 75.25 — sort of. I say “sort of” because these are
means, not scores. When you deal with means, you have
to take into account the number of scores that produced
each mean. To do that, you multiply each squared
deviation by the number of scores in that sample.

So this variance is
(9)(93.44 -85)% +(10)(85.20-85)° +(8)(75.25-85)°
3-1
The df for this variance is 2 (the number of samples - 1).

=701.54

Statisticians, not known for their crispness of usage,
refer to this as the variance between sample means.
(Among is the correct word when you’re talking about
more than two items.) This variance is known as
MSBetweenl or 1\/ISB-

So you now have three estimates of population variance:
MS+, MSyy, and MSg. What do you do with them?

Remember that the original objective is to test a
hypothesis about three means. According to H,, any

differences you see among the three sample means are
due strictly to chance. The implication is that the
variance among those means is the same as the variance
of any three numbers selected at random from the
population.

If you could somehow compare the variance among the
means (that’s MSg, remember) with the population

variance, you could see if that holds up. If only you had
an estimate of the population variance that'’s
independent of the differences among the groups, you’d
be in business.



Ah ... but you do have that estimate. You have MSy;, an
estimate based on pooling the variances within the
samples. Assuming that those variances represent equal
population variances, this is a solid estimate. In this
example, it’s based on 24 degrees of freedom.

The reasoning now becomes this: If MSg is about the
same as MSy,, you have evidence consistent with Hg. If
MSg is significantly larger than MSyy, you have evidence
that’s inconsistent with Hg. In effect, you transform these
hypotheses

H-:-3 Hi=Hz=l3
H,: Not H,
into these:

Hy:op <oy
H,:of > 0oy
Rather than perform multiple t-tests among sample

means, you perform a test of the difference between two
variances.

What is that test? In Chapter 11, I show you the test for
hypotheses about two variances. It’s called the F-test. To
perform this test, you divide one variance by the other.
You evaluate the result against a family of distributions
called the F-distribution. Because two variances are
involved, two values for degrees of freedom define each
member of the family.

For this example, F has df = 2 (for the MSg) and df = 24
(for the MSyy). Figure 12-1 shows what this member of

the F family looks like. For our purposes, it’s the
distribution of possible f-values if H is true. (See the

section in Chapter 11 about visualizing F-distributions.)
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FIGURE 12-1: The F-distribution with 2 and 24 degrees of freedom.

The test statistic for the example is

701.34

15.31
What proportion of area does this value cut off in the
upper tail of the F-distribution? From Figure 12-1, you
can see that this proportion is microscopic, as the values
on the horizontal axis only go up to 5. (And the

proportion of area beyond 5 is tiny.) It’s way less than
.05.

This means that it’s highly unlikely that differences
among the means are due to chance. It means that you
reject Hy.

rememeer 1 N1S Whole procedure for testing more than two
samples is called the analysis of variance, often

F= =45.82



abbreviated as ANOVA. In the context of an ANOVA,
the denominator of an F-ratio has the generic name
error term. The independent variable is sometimes

called a factor. So this is a single-factor or (1-factor)
ANOVA.

In this example, the factor is Training Method. Each
instance of the independent variable is called a level. The
independent variable in this example has three levels.

More complex studies have more than one factor, and
each factor can have many levels.

Meaningful relationships

Take another look at the mean-squares in this example,
each with its sum of squares and degrees of freedom.
Before, when I calculated each mean-square for you, I
didn’t explicitly show you each sum of squares, but here
I include them:

MSy = :};;H = Mﬂth =701.34
. 8Sy 36732 .
MSy = i, = 2 =15.31
. SS, ITT0
MS; = P = 68.08

Start with the degrees of freedom: dfy = 2, dfyy = 24, and
dfr = 26. Is it a coincidence that they add up? Hardly.
It’s always the case that

dfy +dfy, = dfy
How about those sums of squares?

1402.68 +367.32 = 1770

Again, this is no coincidence. In the analysis of variance,
this always happens:



5SSy +5Sy =SSy
In fact, statisticians who work with the analysis of
variance speak of partitioning (read “breaking down into
non-overlapping pieces”) the SSt into one portion for the
SSy and another for the SSyy, and partitioning the dfy
into one amount for the dfg and another for the dfyy.

ANOVA in R

In this section, I walk you through the previous section’s
example and show you how straightforward an analysis
of variance is in R. In fact, I start at the finish line so that
you can see where I'm heading.

The R function for ANOVA is aov(). Here's how it looks
generically:

aov (Dependent variable ~ Independent variable, data)

In the example, the scores are the dependent variable
and the method is the independent variable. So you need
a 2-column data frame with Method in the first column
and Score in the second. (This is equivalent to the “long-
form” data format, which I discuss in Chapters 10 and
11))

Start with a vector for each column in Table 12-1:

methodl.scores <- c(95,91,89,90,99,88,96,98,95)
method2.scores <- c(83,89,85,89,81,89,90,82,84,80)
method3.scores <- c(68,75,79,74,75,81,73,77)
Then create a single vector that consists of all these

scores:

Score <- c(methodl.scores, method2.scores, method3.scores)

Next, create a vector consisting of the names of the
methods, matched up against the scores. In other words,
this vector has to consist of “method1” repeated nine



times, followed by “method2” repeated ten times,
followed by “method3” repeated eight times:

Method <- rep(c("methodl", "method2", "method3"),
times=c(length(methodl.scores),
length(method2.scores),

length(method3.scores)))

The data frame is then

Training.frame <- data.frame(Method,Score)

And the ANOVA is

analysis <-aov(Score ~ Method,data = Training.frame)

For a table that summarizes the analysis, use summary():

> summary(analysis)

Df Sum Sq Mean Sq F value Pr(>F)
Method 2 1402.7 701.3 45.82 6.38e-09 ***
Residuals 24 367.3 15.3

Signif. codes: @ '**x' @,001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The first column consists of Method and Residuals, which
map onto Between and Within from the preceding
section. A residual, in this context, is a score’s deviation
from its group mean. (I have more to say about residuals
in Chapter 14.) The next columns provide degrees of
freedom, SS, MS, F, and p.

The high value of F and the tiny value of p (listed here as
Pr(>F)) tell you to reject the null hypothesis. The
significance codes tell you that F is so high that you can
reject the null hypothesis even if you happen to be using
an « as extreme as .0001.

Visualizing the results
One way of plotting the findings is to show them as a
boxplot. Here's how to plot one in ggplot2.

The first statement maps variables to the axes:



ggplot(Training.frame, aes(x=Method, y=Score))

The next sets up the crossbars for the whiskers:

stat boxplot(geom="errorbar", width =.5)

And the last plots the appropriate geom function:

geom_boxplot()
So these lines of R code

ggplot(Training. frame, aes(x=Method, y=Score))+
stat boxplot(geom="errorbar", width =.5) +
geom_boxplot ()

produce Figure 12-2.
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FIGURE 12-2: Boxplot of the sample results.

After the ANOVA
An ANOVA enables you to decide whether to reject Hy.

After you decide to reject, then what? All you can say is




that somewhere within the set of means, something is
different from something else. The analysis doesn’t
specify what those “somethings” are.

Planned comparisons

To get more specific, you have to do some further tests.
Not only that, you have to plan those tests in advance of
carrying out the ANOVA.

These post-ANOVA tests are called planned comparisons.
Some statisticians refer to them as a priori tests or
contrasts. 1 illustrate by following through with the
example. Suppose that before you gathered the data, you
had reason to believe that Method 2 would result in
higher scores than Method 3 and that Method 1 would
result in higher scores than Method 2 and Method 3
averaged together. In that case, you plan in advance to
compare the means of those samples in the event your
ANOVA-based decision is to reject Hy.

As I mention earlier, the overall analysis partitions the
SSt into the SSg and the SSyy, and the dfy into the dfy

and the dfyy. Planned comparisons further partition the
SSy and the dfg. Each contrast (remember, that’s

another name for “planned comparison”) has its own SS
along with 1 df. I refer to Method 2 versus Method 3 as
Contrastl and to Method 1 versus the average of Method
2 and 3 as Contrast2. For this example,

*‘;Sr'rﬂr.'.fru.ﬂ] + ‘Sl‘gl':-.li.'l'."cr.il':.-: = 5*5‘.!,&
and
df!‘r.-ri-rrr.-:ﬂ + I:ﬂr['u.'i-r.":.'.':r: = de

Because each SS has 1 df, it’s equal to its corresponding
MS. Dividing the SS for the contrast by MSyy yields an F-

ratio for the contrast. The F has df=1 and dfyy. If that F



cuts off less than .05 in the upper tail of its F-
distribution, reject the null hypothesis for that contrast
(and you can refer to the contrast as “statistically
significant”).

It’s possible to set up a contrast between two means as
an expression that involves all three of the sample
means. For example, to compare Method 2 versus
Method 3, I can write the difference between them as

{UJE[ +{+l}fd +{_l}.1_‘;
The 0, +1, and -1 are comparison coefficients. I refer to
them, in a general way, as ¢y, ¢, and c3. To compare
Method 1 versus the average of Method 2 and Method 3,
it’s
The important point is that the coefficients add up to O.
How do you use the comparison coefficients and the

means to calculate a SS for a contrast? For this example,
here’s SScontrast1:

((0)(93.44)+( +1)(85.20) +(=1)( 75.25))°
(0)° (+1)° (-1)°
9 "0 T8

“5'3 Ceomfrasi] =

= J08.5

: P _ ¥ _ 9 2
ﬁcmm:t{+z:qﬁ.;.44j+zt 1)(85.20) + z1:{?5._5}1 10442
(2)° , (-D° (-1
9 10 8

In general, the formula is
2]
2
t.'J,
()

]

*5:;’ Covifrast =



in which the j subscript stands for “level of the
independent variable” (for Method 1, j=1, for example).

For Contrast 1

— ";";i ewalfrastl _ 358.5 oy g
FLM - 'IM‘;H'IW.'fIi - I-L-]*; - zjdz
and for Contrast 2
— S"{i'urn'ruxrz _ ]ﬂdqz — R 9
F]IM - M“;Hr'.ff.'_'r'r.' - lc':! =68.22

Are these contrasts significant? Yes they are — meaning
that Method 2 yields significantly higher learning than
Method 3, and that Method 1 results in significantly
higher learning than the average of Methods 2 and 3.
You can use pf() to verify (or wait until the upcoming
subsection “Contrasts in R.”)

Another word about contrasts

Earlier, I say that the important thing about a contrast is
that its coefficients add up to 0. Another important thing
is the relationship between the coefficients in a set of
contrasts. In the two contrasts I show you, the sum of the
products of corresponding coefficients is O:

(D)) +(+D-D)+((-D(-1))=0
When this happens, the contrasts are orthogonal. This
means they have no overlapping information. It doesn't
mean that other contrasts aren’t possible. It’s just that
other contrasts would be part of a different set (or sets)
of orthogonal contrasts.

The two other sets of orthogonal contrasts for this
example are: (1) Method 1 versus Method 2, and Method
3 versus the average of Method 1 and Method 2; (2)
Method 1 versus Method 3, and Method 2 versus the
average of Method 1 and Method 3.



Contrasts in R
The objective here is to create a table of the ANOVA that
shows the contrasts partitioning the SSz and will show

the associated F-ratios and p-values. It will look like this:

Df Sum Sq Mean Sq F value Pr(>F)

Method 2 1402.7 701.3 45.82 6.38e-09 ***
Method: 2 vs 3 1 358.5 358.5 23.42 6.24e-05 ***
Method: 1 vs 2 & 3 1 1044.2 1044.2 68.22 1.78e-08 ***

Residuals 24 367.3 15.3

Signif. codes: 0 '**x' @,001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

To set up for the contrasts, you first define
Training.frame$Method as a factor:

Training.frame$Method <- as.factor(Training.frame$Method)

Then create a matrix of the coefficients in the set of
orthogonal contrasts:

contrasts(Training.frame$Method) <- matrix(c(0,1,-1,2,-1,-1),3,2)

On the left, the term inside the parentheses specifies
what to contrast — the levels of the independent variable
Method in the Training.frame. On the right, the matrix()
function creates a matrix with the coefficients in the
columns:

> contrasts(Training. frame$Method)
[,1] [,2]

methodl 0 2
method?2 1 -1
method3 -1 -1

Next, you run the analysis of variance, but this time with
a contrasts argument:

Anova.w.Contrasts <-aov(Score ~ Method,data=Training.frame,
contrasts =
contrasts(Training. frame$Method))



ne  If you see a Warning message when you run the
preceding code, you can safely ignore it.

How do you create the summary table at the beginning
of this subsection? With a summary() statement that adds a
little twist:

summary (Anova.w.Contrasts,split=list(Method=1ist("2 vs 3"= 1,

"1 vs 2 & 3" =2)))

The little twist (a little “split,” actually) is in the second
argument. The goal is to partition Method into two pieces
— one that corresponds to the first contrast and one that
corresponds to the second. You do that with split, which
divides a list into the indicated number of components
and reassembles the list with a name assigned to each
component. In this case, the list is Method split into a list
with two components. The name of each component
corresponds to what's in the contrast.

Running that summary statement produces the summary
table at the top of this subsection.

Unplanned comparisons

Things would get boring if your post-ANOVA testing is
limited to comparisons you have to plan in advance.
Sometimes you want to snoop around your data and see
whether anything interesting reveals itself. Sometimes,
something jumps out at you that you didn’t anticipate.

When this happens, you can make comparisons you
didn’t plan on. These comparisons are called a posteriori
tests, post hoc tests, or simply unplanned comparisons.
Statisticians have come up with a wide variety of these



tests, many of them with exotic names and many of them
dependent on special sampling distributions.

The idea behind these tests is that you pay a price for not
having planned them in advance. That price has to do
with stacking the deck against rejecting H for the

particular comparison.

One of the best-known members of the post-hoc world is
Tukey’s HSD (Honest Significant Difference) test. This
test performs all possible pairwise comparisons among
the sample means.

Wait. What? In the earlier section “A thorny problem,” I
discuss why multiple pairwise t-tests don’t work — if
each test has o = .05, the overall probability of a Type I
error increases with the number of means.

So, what'’s the story? The story is that Tukey’s test
adjusts for the number of sample means and compares
the differences not to the t-distribution but to the
studentized range distribution. Comparison with this
distribution makes it more difficult to reject the null
hypothesis about any pairwise comparison than it would
be if you compare the difference against the t-
distribution. (I haven’t heard multiple t-tests referred to
as “Dishonest Significant Differences,” but maybe
someday... .)

This test is easy to do in R:

> TukeyHSD(analysis)
Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = Score ~ Method, data = Training.frame)
$Method

diff lwr upr p adj
method2-methodl -8.244444 -12.73337 -3.755523 0.0003383



method3-methodl -18.194444 -22.94172 -13.447166 0.0000000

method3-method2 -9.950000 -14.58423 -5.315769 0.0000481
The summary table shows each pairwise comparison
along with the difference, lower and upper 95 percent
confidence limits, and adjusted probability. Each
probability is much lower than .05, so the conclusion is
that each difference is statistically significant.

Another Kind of
Hypothesis, Another Kind
of Test

The preceding ANOVA works with independent samples.
As Chapter 11 explains, sometimes you work with
matched samples. For example, sometimes a person
provides data in a number of different conditions. In this
section, I introduce the ANOVA you use when you have
more than two matched samples.

This type of ANOVA is called repeated measures. You’ll
see it called other names, too, like randomized blocks or
within subjects.

Working with repeated measures
ANOVA

To show how this works, I extend the example from
Chapter 11. In that example, ten men participate in a
weight loss program. Table 12-3 shows their data over a
three-month period.

Is the program effective? This question calls for a
hypothesis test:

Ho @ tgetore = 1 = Ha = i3
H, : NotH,



Once again, you set o« = .05

TABLE 12-3 Data for the Weight Loss Example

Person Before One Month Two Months Three Months Mean

Al 198 194 191 188 192.75
Bill 201 203 200 196 200.00
Charlie 210 200 192 188 197.50
Dan 185 183 180 178 181.50
Ed 204 200 195 191 197.50
Fred 156 153 150 145 151.00
Gary 167 166 167 166 166.50
Harry 197 197 195 192 195.25
Irv 220 215 209 205 212.25
Jon 186 184 179 175 181.00
Mean 192.4 189.5 185.8 182.4 187.525

As in the previous ANOVA, start with the variances in the
data. The MSr is the variance in all 40 scores from the

grand mean, which is 187.525:

(198 -187.525)" +(201-187.525)" +...+(175-187.525)°
(40-1)

The people participating in the weight loss program also
supply variance. Each one’s overall mean (his average
over the four measurements) varies from the grand
mean. Because these data are in the rows, I call this
MSgows:

MSy = =J318.20

(192.75-187.525)° +(200-187.525)" +...+(181-187.525)°
(10-1)

The means of the columns also vary from the grand

mean:

MS,,. = - 129241




(192.4-187.525) +(189.5-187.525)° + (185.8 - 187.525 )% + (182.4-187.525 )’
(4-1)

‘M‘}ﬁhﬁﬂnm =

= 189.69

One more source of variance is in the data. Think of it as
the variance left over after you pull out the variance in
the rows and the variance in the columns from the total
variance. Actually, it’s more correct to say that it’s the
sum of squares that’s left over when you subtract the
SSrows @nd the SSci1umns from the SSr.

This variance is called MSg,,- As I say earlier, in the

ANOVA the denominator of an F is called an error term.
So the word error here gives you a hint that this MS is a
denominator for an F.

To calculate MSg,,, YOUu use the relationships among
the sums of squares and among the df.

SSp Sy =SS in ~ SSeommne  209.175
df}.'r‘rr:-r' - dff - drﬁ-ue ' df{.'ufurr.'r.'i - ET

Here’s another way to calculate the dfg, .

=7.75

MS Error =

dfg,., = (number of rows - 1){ number of columns - 1)
To perform the hypothesis test, you calculate the F:
M‘qi'rl.’umn.u _ ]Hqﬁq
M‘i'rk'rrur - 7.75

With 3 and 27 degrees of freedom, the critical F for a =
.05 is 2.96. (Use gf() to verify.) The calculated F is larger
than the critical F, so the decision is to reject H,.

F= =24.49

What about an F involving MSg,.s? That one doesn't
figure into H, for this example. If you find a significant F,

all it shows is that people are different from one another
with respect to weight and that doesn’t tell you much.

Repeated measures ANOVA in R



To set the stage for the repeated measures analysis, put
the columns of Table 12-3 into vectors:

Person <-c("Al", "Bill", "Charlie", "Dan", "Ed", "Fred",
"Gary","Harry","Irv","Jon")

Before <- ¢(198,201,210,185,204,156,167,197,220,186)

OneMonth <- c(194,203,200,183,200,153,166,197,215,184)

TwoMonths <- ¢(191,200,192,180,195,150,167,195,209,179)

ThreeMonths <- ¢(188,196,188,178,191,145,166,192,205,175)

Then create a data frame:
Weight.frame <- data.frame(Person, Before, OneMonth,

TwoMonths,
ThreeMonths)

The data frame looks like this:

> Weight.frame

Person Before OneMonth TwoMonths ThreeMonths

1 Al 198 194 191 188
2 Bill 201 203 200 196
3 Charlie 210 200 192 188
4 Dan 185 183 180 178
5 Ed 204 200 195 191
6 Fred 156 153 150 145
7 Gary 167 166 167 166
8 Harry 197 197 195 192
9 Irv 220 215 209 205
10 Jon 186 184 179 175

It’s in wide format, and you have to reshape it. With the
reshape2 package installed (on the Packages tab, select
the check box next to reshape2), melt the data into long
format:

Weight.frame.melt <- melt(Weight.frame,id="Person")

Next, assign column names to the melted data frame:

colnames (Weight.frame.melt) = c("Person","Time", "Weight")

And now, the first six rows of the new data frame are

> head(Weight.frame.melt)
Person Time Weight
1 Al Before 198



2 Bill Before 201
3 Charlie Before 210
4 Dan Before 185
5 Ed Before 204
6 Fred Before 156
In addition to Person, you now have Time as an

independent variable.

I'm going to use R as a teaching tool: To give you an idea
of how this analysis works, I'll start by pretending that
it’s an independent samples analysis, like the first one in
this chapter. Then Ill run it as a repeated measures
analysis so that you can see the differences and perhaps
better understand what a repeated measures analysis
does.

As independent samples:

> ind.anova <- aov(Weight ~ Time, data=Weight.frame.melt)
> summary(ind.anova)
Df Sum Sq Mean Sq F value Pr(>F)
Time 3 569 89.7 0.577 0.634
Residuals 36 11841 328.9

This analysis shows no significant differences among the
levels of the Time. The key is to tease out the effects of
having each row represent the data from one person.
That will break down the SS for Residuals into two
components — one SS for Person (which has nine degrees
of freedom) and another SS that has the remaining 27
degrees of freedom. Divide that second SS by its degrees
of freedom and you have the MSg,, I mention earlier

(although R doesn't refer to it that way).
Here’s how to get that done:

rm.anova <- aov(Weight ~ Time + Error(Person/Time),
data = Weight.frame.melt)

The new term indicates that weight depends not only on
Time but also on Person, and that each Person experiences
all levels of Time. The effect of Time — decreasing body



weight over the four levels of Time — is evident within
each Person. (It's easier to see that in the wide format
than in the long.)

rememeer 1IN SOMe fields, the word subject means person:
That’s why a repeated measures analysis is also
called a within-subjects analysis, as I point out
earlier.

And now for the summary table:

> summary(rm.anova)

Error: Person
Df Sum Sq Mean Sq F value Pr(>F)
Residuals 9 11632 292

Error: Person:Time

Df Sum Sq Mean Sq F value Pr(>F)
Time 3 569.1 189.69 24.48 7.3e-08 **x*
Residuals 27 209.2 7.75

Signif. codes: 0 '***' 0,001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1

Now the analysis shows the significant effect of Time.

Visualizing the results

One way to visualize the results is to plot the mean
weight loss on the y-axis and the month (0, 1, 2, 3) on the
x-axis. Figure 12-3 shows the plot, along with the
standard error of the mean (reflected in the error bars).
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FIGURE 12-3: The means and standard errors for the weight loss example.

b

rememeer INOtiCce I use 0-3 to represent the levels of Time
(Before, OneMonth, TwoMonths, ThreeMonths).

The foundation for the plot is a data frame that holds
time (for convenience, as a numerical variable), mean
weight, and standard error:

time <- c(0,1,2,3)
mean.weight <- c(mean(Before),mean(OneMonth),
mean (TwoMonths) ,mean(ThreeMonths))
se.weight <- c(sd(Before), sd(OneMonth), sd(TwoMonths),
sd(ThreeMonths))/sqrt(length(Person))
wt.means.frame <- data.frame(time,mean.weight,se.weight)>
wt.means. frame
time mean.weight se.weight
1 0 192.4 6.144917
2 1 189.5 5.856146



3 2 185.8 5.466667
4 3 182.4 5.443038

Plotting in ggplot2:

ggplot (wt.means.frame, aes(x=time,y=mean.weight)) +
geom_point(size=3)+
geom_errorbar(aes(ymin=mean.weight-se.weight,
ymax=mean.weight+se.weight),width=.1)

The first statement maps the independent variable into
the x-axis, and the dependent variable into the y-axis.
The second statement sets the size for each point. The
third statement gives the boundaries and size for the
error-bars.

Getting Trendy

In situations like the one in the weight loss example, you
have an independent variable that's quantitative — its
levels are numbers (0 months, 1 month, 2 months, 3
months). Not only that, but in this case, the intervals are
equal.

With that kind of an independent variable, it’s often a
good idea to look for trends in the data rather than just
plan comparisons among means. As Figure 12-3 shows,
the means in the weight loss example seem to fall along
a line.

Trend analysis is the statistical procedure that examines
that pattern. The objective is to see whether the pattern
contributes to the significant differences among the
means.

A trend can be linear, as it apparently is in this example,
or nonlinear (in which the means fall on a curve). The
two nonlinear types of curves for four means are called
quadratic and cubic. If the means show a quadratic



trend, they align in a pattern that shows one change of
direction. Figure 12-4 shows what I mean.

If the means show a cubic trend, they align in a pattern
that shows two changes of direction. Figure 12-5 shows
what a cubic trend looks like.

The three components are orthogonal, so
*Slﬁ.l'.ﬂu'trr + I“’:.‘4;";'f.a"rn1tfr‘rﬂ'r-v + S"ﬂri'ﬁu-’uu = SSTJHW
and

dff..'.'.'wrr +df{hrcrdrrmc' +d'rlf-'rf-'a|'c' = 1:"I‘r'nl"rrrrr'
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FIGURE 12-4: A quadratic trend with four means.
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FIGURE 12-5: A cubic trend with four means.

To analyze a trend, you use comparison coefficients —
those numbers you use in contrasts. You use them in a
slightly different way than you did before. The formula
for computing a SS for a trend component is

’ — 2
. N{ Em’ )
‘E“." Lenfn portent = E{,' 2

In this formula, N is the number of people and ¢
represents the coefficients.

So you start by using comparison coefficients to find a
sum of squares for linear trend. I abbreviate that as

SSLinear-
The comparison coefficients are different for different

numbers of samples. For four samples, the linear
coefficients are -3, -1, 1, and 3.



ne  The easiest way to get the coefficients is to look
them up in a stat textbook or on the Internet!

For this example, the SS;;,eqr 1S

N(Yex) _10[(-3)(192.4) + (~1)(189.5)+(1)(185.8) + (3)(182.4)]°
yed (=3)* +(=1)* +(3)* +(1)°

After you calculate SSi;,eqr, YOU divide it by dffeqr O

produce MSj 0o This is extremely easy because dfy,eqar

= 1. Divide MSypear bY MSg,or @and you have an F. If that

F is higher than the critical value of F with df = 1 and
dfg,or at your «, then weight is decreasing in a linear

way over the period of the weight loss program. The F-
ratio here is

_ M‘{;.I'.I'J'Il-"-:’u" _ 567.85 _ "I
F= MSe =775 = 73.30
The critical value for F with 1 and 27 degrees of freedom
and o = .05 is 4.21. Because the calculated value is
larger than the critical value, statisticians would say the
data shows a significant linear component. This, of

course, verifies what you see earlier, in Figure 12-3.

"';".;I.rrﬂ'rar = = E{i?ﬂdﬁ

The linear component of SS+;,,. is so large that the other
two components are very small. I'll walk you through the
computations anyway.

The coefficients for the quadratic component are 1, —1,
—1, and 1. So the SSqyagratic 1S

N Zr}]” C10[(1)(192.4)+(~1)(189.5)+(~1)(185.8)+(1)(182.4))* 06
3¢ (1) + (=1 +(=1)"+(1)° |

The coefficients for the cubic component are -1, 3, -3,
and 1. The SScypic 1S

S8 Chadratic =



=.b

N(Yex }._,. C10[(=1)(192.4)+(3)(189.5)+(=3)(185.8)+(1)(182.4)]°
: (=1 +(3)" +(=3)"+(1)*
Rather than complete the final calculations to get the

microscopic F-ratios, I'll let R do the work for you in the
next subsection.

I could go on with more means, coefficients, and exotic
component names (hextic? septic?), but enough already.
This should hold you for a while.

A LITTLE MORE ON TREND

Linear, quadratic, and cubic are as far as you can go with four means. With
five means, you can look for those three plus a quartic component (three
direction changes), and with six, you can try to scope out all the preceding
plus a quintic component (four direction changes). What do the coefficients
look like?

For five means, they're

Linear: -2,-1,0,1, 2
Quadratic: 2, -1, -2, -1, 2
Cubic: -1,2,0,-2,1
Quartic: 1, -4,6, 4,1

And for six means, they’'re

Linear: -5,-3,-1,1, 3,5
Quadratic: 5, -1, -4, -4,-1,5
Cubic: -5,7,4,-4,-7,5
Quartic: 1, -3, 2,2,-3,1
Quintic: -1, 5, -10, 10, -5, 1

Trend Analysis in R



I treat this analysis pretty much the same way as
contrasts for the independent-samples example. I begin
by creating a matrix of the coefficients for the three
trend components:

contrasts(Weight.frame.melt$Time) <- matrix(c(-3,-1,1,3,1,-1,
-1,1,-1,3,-3,1), 4, 3)

Then I run the ANOVA, adding the contrasts argument:

rm.anova <- aov(Weight ~ Time + Error(factor(Person)/Time),

data=Weight.frame.melt,
contrasts = contrasts(Weight.frame.melt$Time))
ne  If you see a Warning message when you run the
preceding code, you can safely ignore it.

Finally, I apply summary() (including the split of Time into
three components) to print the table of the analysis:

summary (rm.anova,split=1list(Time=1list("Linear" =1,
"Quadratic"=2,"Cubic" =3)))

Running this statement produces this summary table:

Error: factor(Person)
Df Sum Sq Mean Sq F value Pr(>F)
Residuals 9 11632 1292

Error: factor(Person):Time
Df Sum Sq Mean Sq F value Pr(>F)

Time 3 569.1 189.7 24.485 7.30e-08 ***
Time: Linear 1 567.8 567.8 73.297 3.56e-09 ***
Time: Quadratic 1 0.6 0.6 0.081 0.779
Time: Cubic 1 0.6 0.6 0.078 0.782
Residuals 27 209.2 7.7
Signif. codes: 0 '"***' @,001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Once again, you can see the overwhelming linearity of
the trend — just as you would expect from Figure 12-3.



Chapter 13
More Complicated Testing

IN THIS CHAPTER
» Working with two variables

» Working with replications

» Understanding interactions

» Mixing variable types

» Working with multiple dependent variables

In Chapter 11, T show you how to test hypotheses with
two samples. In Chapter 12, I show you how to test
hypotheses when you have more than two samples. The
common thread in both chapters is one independent
variable (also called a factor).

Many times, you have to test the effects of more than one
factor. In this chapter, I show how to analyze two factors
within the same set of data. Several types of situations
are possible, and I describe R functions that deal with
each one.

Cracking the
Combinations

Imagine that a company has two methods of presenting
its training information: One is via a person who
presents the information orally, and the other is via a
text document. Imagine also that the information is
presented in either a humorous way or a technical way. I



refer to the first factor as Presentation Method and to
the second as Presentation Style.

Combining the two levels of Presentation Method with
the two levels of Presentation Style gives four
combinations. The company randomly assigns 4 people
to each combination, for a total of 16 people. After
providing the training, they test the 16 people on their
comprehension of the material.

Figure 13-1 shows the combinations, the four
comprehension scores within each combination, and
summary statistics for the combinations, rows, and

columns.

Spoken

Presentation
Method

Text

Presentation Style

Humorous Technical
ra it
Spoken 57 Spoken 22
and 56 and 21
Humorous 60 Technical 29
G4 25
© Mean=5925 |  Mean=2425
Variance = 12.92 Variance = 12.92
Text 33 Text 66
and 25 and 65
Humorous 28 Technical n
K] 12
Mean = 29.25 Mean = 68.50

Variance =12.25

Variance = 12.33

A

Mean = 44.25

Mean = 46.38

Mean = 41.75

Mean = 48.88

Grand Mean = 44.31

FIGURE 13-1: Combining the levels of Presentation Method with the levels of
Presentation Style.

rememeer With each of two levels of one factor combined
with each of two levels of the other factor, this kind
of study is called a 2 X 2 factorial design.



Here are the hypotheses:

HE' + Mspoken = MText

H, :NotH,
and
HEI + HHumorous = HTechnical
H| : J'Hbl'rfld-l.:.

Because the two presentation methods (Spoken and
Text) are in the rows, I refer to Presentation Type as the
row factor. The two presentation styles (Humorous and
Technical) are in the columns, so Presentation Style is
the column factor.

Interactions

When you have rows and columns of data and you're
testing hypotheses about the row factor and the column
factor, you have an additional consideration. Namely,
you have to be concerned about the row-column
combinations. Do the combinations result in peculiar
effects?

For the example I present, it’s possible that combining
Spoken and Text with Humorous and Technical yields an
unexpected result. In fact, you can see that in the data in
Figure 13-1: For Spoken presentation, the Humorous
style produces a higher average than the Technical style.
For Text presentation, the Humorous style produces a
lower average than the Technical style.

rememeer A Situation like this one is called an interaction. In
formal terms, an interaction occurs when the levels
of one factor affect the levels of the other factor
differently. The label for the interaction is row factor



x column factor, so for this example, that’s Method x
Type.
The hypotheses for this are

H; : Presentation Method does not interact with Presentation Style
H, : NotH,

The analysis

The statistical analysis is, once again, an analysis of
variance (ANOVA). As is the case with the ANOVAs I
show you earlier (in Chapter 12), it depends on the
variances in the data. It’s called a two-factor ANOVA, or
a two-way ANOVA.

The first variance is the total variance, labeled MSr.

That’s the variance of all 16 scores around their mean
(the grand mean), which is 44.81:

(57-45.31)° +(56-45.31)" +...+(72-45.31)" _ 5885.43
16-1 15
The denominator tells you that df = 15 for MS¢

MS; = - 392.36

The next variance comes from the row factor. That’s
MSethod- @nd it’s the variance of the row means around

the grand mean:

(8)(41.75-45.31)" +(8)(48.88-45.31)" _ 203.06
2-1 1
The 8 in the equation multiplies each squared deviation
because you have to take into account the number of
scores that produced each row mean. The df for
MSpethod 1S the number of rows - 1, which is 1.

Mg.lﬁ’mwf = - 2”3““

Similarly, the variance for the column factor is

(8)(43.25-45.31)" +(8)(46.38-45.31)°  18.06
2-1 T

The df for MSgiy e is 1 (the number of columns - 1).

=18.06

MS Shle =



Another variance is the pooled estimate based on the
variances within the four row-column combinations. It’s
called the MSyyithin, Or MSyy. (For details on MS,, and

pooled estimates, see Chapter 12.). For this example,
(4-1)(12.92)+(4-1)(12.92)+(4-1){12.25)+(4-1)(12.33)

MSy = (4-1)+(4-1)+(4-1)+(4-1)

_151.25
12
This one is the error term (the denominator) for each F

you calculate. Its denominator tells you that df = 12 for
this MS.

The last variance comes from the interaction between
the row factor and the column factor. In this example,
it’s labeled MSyethod x Type- YOU can calculate this in a

couple of ways. The easiest way is to take advantage of
this general relationship:

= 12.60

SSH! ww X Column = SS'!' - -{‘:“'Hnm Factor — AN} Column Factor — SSw
And this one:

dfh'uu:' X Cofumn = df.l' - deuu Fador — df{.‘ufr:rrr.r.l Faclor — df]{
Another way to calculate this is

dfpow ¥ commn = | NUMber of rows - 1 ){ number of columns - 1)

The MS is

“’S Reone X Column
dfk’-’:u' X Column

JHI’.} Row X Colemn =

For this example,
SS Method X syie  5885.43 — 203.06 - 18.06 — 151.25

M5 Method X Style

B df.lﬂf.f.hwf X Stvle - 15-12-1-1
551306 _ o100
= i =010,

To test the hypotheses, you calculate three Fs:



T TMSy  12.60

=143

 MSipoq  203.06 . .
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Fordf =1 and 12, the critical F at o« = .05 is 4.75. (You
can use qf () to verify). The decision is to reject H for the

Presentation Method and the Method X Style interaction
and to not reject H, for the Presentation Style.

rememeer 1£'S pOSsible, of course, to have more than two
levels of each factor. It’s also possible to have more
than two factors. In that case, things (like
interactions) become much more complex.

Two-Way ANOVA in R

As in any analysis, the first step in tackling my
Presentation Method/Presentation Style example is to
get the data in shape, and in R, that means getting the
data into long format.

=437.54

Start with vectors for the scores in each of the columns
in Figure 13-1:

humorous <- c¢(57,56,60,64,33,25,28,31)
technical <- c(22,21,29,25,66,65,71,72)

Then combine them to produce a vector of all scores:

Score = c(humorous,technical)



Next, create vectors for Method and for Style:

Method =rep(c("spoken","text"),each=4,2)
Style =rep(c("humorous", "technical"),beach=8)

And then put everything into a data frame:

pres.frame <-data.frame(Method,Style,Score)

which looks like this:

> pres.frame

Method
spoken
spoken
spoken
spoken
text
text
text
text
spoken
spoken
spoken
spoken
text
text
text
16 text

© 0o N O Ul b WN =

[ T T
U Dh WNROO

Style Score
humorous 57
humorous 56
humorous 60
humorous 64
humorous 33
humorous 25
humorous 28
humorous 31

technical 22

technical 21
technical 29
technical 25
technical 66
technical 65
technical 71
technical 72

And here's the two-way analysis of variance:

> two.way <- aov(Score ~ Style*Method, data =

pres.frame)

The style*Method expression indicates that all levels of
Style (humorous and technical) combine with all levels of
Method (spoken and text).

Here's the ANOVA table:

> summary (two.way)

Style
Method

Style:Method 1

Residuals

Signif. codes: 0

Df  Sum Sq Mean Sq F value Pr(>F)
1 18 18 1.433 0.25438
1 203 203 16.111 0.00172 **
5513 5513 437.400 8.27e-11 ***
12 151 13
"Rxkl 9,001 '**' 0.01 '*' 0.05 '.' 0.1 " ' 1



Again, the F-values and p-values indicate rejection of the
null hypothesis for Method and for the Style X Method
interaction, but not for Styte.

With just two levels of each factor, no post-analysis tests
are necessary to explore a significant result.

Visualizing the two-way results

The best way to show the results of a study like this one
is with a grouped bar plot that shows the means and the
standard errors. The foundation for the plot is a data
frame that holds these statistics for each combination of
levels of the independent variables:

> mse.frame

Method Style Mean SE
1 spoken humorous 59.25 1.796988
2 text humorous 29.25 1.750000
3 spoken technical 24.25 1.796988
4 text technical 68.50 1.755942

To create this data frame, start by creating these four
vectors:

Score.spk.hum <- with(pres.frame, Score[Method=="spoken" &
Style=="humorous"])

Score.txt.hum <- with(pres.frame, Score[Method=="text" &
Style=="humorous"])

Score.spk.tec <- with(pres.frame, Score[Method=="spoken" &
Style=="technical"])

Score.txt.tec <- with(pres.frame, Score[Method=="text" &
Style=="technical"])

Then concatenate the vector means into another vector:

mean.Scores <- c(mean(Score.spk.hum), mean(Score.txt.hum),
mean(Score.spk.tec), mean(Score.txt.tec))

and concatenate the standard errors into still another
vector:

se.Scores <- c(sd(Score.spk.hum), sd(Score.txt.hum),
sd(Score.spk.tec), sd(Score.txt.tec))/2



In dividing by 2, I cheated a bit on that last one. Each
combination consists of four scores, and the square root
of 4 is 2.

Create a vector for the levels of Method and another for
the levels of style:

mse.Method =rep(c("spoken","text"),2)
mse.Style =rep(c("humorous", "technical"),each=2)

Then create the data frame:

mse.frame <- data.frame(mse.Method,mse.Style,mean.Scores,se.Scores)

Finally, make the column names a little nicer-looking:

colnames (mse. frame)=c("Method", "Style", "Mean", "SE")

On to the visualization. In ggplot2, begin with a ggplot()
statement that maps the components of the data to the
components of the graph:

ggplot(mse.frame,aes(x=Method, y=Mean, fill=Style))

Now use a geom bar that takes the given mean as its
statistic:

geom bar(stat = "identity", position = "dodge",
color = "black", width = .5)
The position argument sets up this plot as a grouped bar
plot, the color argument specifies "black" as the border
color, and width sets up a size for nice-looking bars. You
might experiment a bit to see whether another width is
more to your liking.

ne  If you don't change the colors of the bars, they
appear as light red and light blue, which are pleasant
enough but would be indistinguishable on a black-
and-white page. Here’s how to change the colors:



scale fill grey(start = 0,end = .8)

In the grey scale, 0 corresponds to black and 1 to white.
Finally, geom errorbar adds the bars for the standard
errors:

geom_errorbar(aes(ymin=Mean,ymax=Mean+SE), width=.2,
position=position dodge(width=.5))
Using Mean as the value of ymin ensures that you plot only
the upper error bar, which is what you typically see in
published bar plots. The position argument uses the
position dodge() function to center the error bars.

So these lines of code:

ggplot(mse.frame,aes(x=Method, y=Mean, fill=Style)) +
geom bar(stat = "identity", position = "dodge",
color = "black", width = .5)+
scale fill grey(start = 0,end = .8)+
geom_errorbar(aes(ymin=Mean,ymax=Mean+SE), width=.2,
position=position dodge(width=.5))

produce Figure 13-2.
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FIGURE 13-2: Means and standard errors of the presentation study.

This graph clearly shows the Method X Style interaction.
For the spoken presentation, humorous is more effective
than technical, and it's the reverse for the text
presentation.

Two Kinds of Variables ...
at Once

What happens when you have a Between Groups variable
and a Within Groups variable ... at the same time? How
can that happen?

Very easily. Here’s an example. Suppose you want to
study the effects of presentation media on the reading
speeds of fourth-graders. You randomly assign the



fourth-graders (I'll call them subjects) to read either
books or e-readers. So "Medium" is the Between Groups
variable.

Let’s say you're also interested in the effects of font. So
you assign each subject to read each of these fonts:
Haettenschweiler, Arial, and Calibri. (I've never seen a
document in Haettenschweiler, but it’s my favorite font
because “Haettenschweiler” is fun to say. Try it. Am I
right?) Because each subject reads all the fonts, "Font" is
the Within Groups variable. For completeness, you have
to randomly order the fonts for each subject.

Table 13-1 shows data that might result from a study like
this. The dependent variable is the score on a reading
comprehension test.

TABLE 13-1 Data for a Study of Presentation
Media (Between Groups Variable) and Font
(Within Groups Variable)

Medium Subject Haettenschweiler Arial Calibri

Alice 48 40 38

Brad 55 43 45
Book

Chris 46 45 44

Donna 61 53 53

Eddie 43 45 47

Fran 50 52 54
e-reader

Gil 56 57 57

Harriet 53 53 55




rememeer Because this kind of analysis mixes a Between
Groups variable with a Within Groups variable, it's
called a Mixed ANOVA.

To show you how the analysis works, I present the kind
of table that results from a Mixed ANOVA. It’s a bit more
complete than the output of an ANOVA in R, but bear
with me. Table 13-2 shows it to you in a generic way. It’s
categorized into a set of sources that make up Between
Groups variability and a set of sources that make up
Within Groups (also known as Repeated Measures)
variability.

In the Between category, A is the name of the Between
Groups variable. (In the example, that’s Medium.) Read
"S/A" as “Subjects within A.” This just says that the
people in one level of A are different from the people in
the other levels of A.

In the Within category, B is the name of the Within
Groups variable. (In the example, that's Font.) A X B is the
interaction of the two variables. B X S/A is something like
the B variable interacting with subjects within A. As you
can see, anything associated with B falls into the Within
Groups category.

TABLE 13-2 The ANOVA Table for the Mixed
ANOVA

Source SS df MS F

Between SSBetween dfBetween

A SS, df, SSp/dfs MSA/MSq)a

S/A SSe/a dfs/a SSq/a/dfs/a




Source SS df MS F

Within ~ SSwithin ~ 9fwithin
B SSg dfg SSg/dfg MSg/MSg x s/a

AXB SSaxe  dfaxs  SSaxs/dfaxs  MSaxe/MSgxs/a

BXS/A SSgxsa dfgxsia  SSpx s/a/dfe x s/a

Total SStotal dfpotal

The first thing to note is the three F-ratios. The first one
tests for differences among the levels of A, the second for
differences among the levels of B, and the third for the
interaction of the two. Notice also that the denominator
for the first F-ratio is different from the denominator for
the other two. This happens more and more as ANOVAs
increase in complexity.

Next, it's important to be aware of some relationships. At
the top level:

DO Berween T OO Within = OO Tatal
dfgaween + Awinin = Ao

The Between component breaks down further:
SS, +5S84,, =88,

dfy +dfs; s = dfgayeen

“PwWesen

The Within component breaks down, too:
SSp +35 axp +355.5/4 = SSwithin

dfy +dfyxp +dfgxs s = dfwinin

rememeer 18'S POSSible to have more than one Between
Groups factor and more than one repeated measure
in a study.

On to the analysis... .



Mixed ANOVA in R

First, I show you how to use the data from Table 13-1 to
build a data frame in long format. When finished, it looks
like this:

> mixed.frame

Medium Font Subject Score
1 Book Haettenschweiler Alice 48
2 Book Haettenschweiler Brad 55
3 Book Haettenschweiler Chris 46
4 Book Haettenschweiler Donna 61
5 Book Arial Alice 40
6 Book Arial Brad 43
7 Book Arial Chris 45
8 Book Arial Donna 53
9 Book Calibri Alice 38
10 Book Calibri Brad 45
11 Book Calibri Chris 44
12 Book Calibri Donna 53
13 E-reader Haettenschweiler Eddie 43
14 E-reader Haettenschweiler Fran 50
15 E-reader Haettenschweiler Gil 56
16 E-reader Haettenschweiler Harriet 53
17 E-reader Arial Eddie 45
18 E-reader Arial Fran 52
19 E-reader Arial Gil 57
20 E-reader Arial Harriet 53
21 E-reader Calibri Eddie 47
22 E-reader Calibri Fran 54
23 E-reader Calibri Gil 57
24 E-reader Calibri Harriet 55

I begin with a vector for the Book scores and a vector for
the e-reader scores:

BkScores <- c(48,55,46,61,40,43,45,53,38,45,44,53)
ErScores <- c(43,50,56,53,45,52,57,53,47,54,57,55)

Then I combine them into a vector:

Score <-c(BkScores,ErScores)

I complete a similar process for the subjects: one vector
for the Book subjects and another for the e-reader
subjects. Note that I have to repeat each list three times:



BkSubjects <- rep(c("Alice","Brad","Chris", "Donna"),3)
ErSubjects <- rep(c("Eddie","Fran","Gil","Harriet"),3)

Then I combine the two:

Subject <- c(BkSubjects,ErSubjects)

Next up is a vector for Book versus e-reader, and note that
I repeat that list 12 times:

Medium <- rep(c("Book","E-reader"),each=12)

The vector for Font is a bit tricky. I have to repeat each
font name four times and then repeat that again:

Font <- rep(c("Haettenschweiler","Arial","Calibri"),
each=4,2)

I can now create the data frame:

mixed.frame <-data.frame(Medium,Font,Subject,Score)

The analysis is

mixed.anova <- aov(Score ~ Medium*Font + Error(Subject/Font),
data=mixed. frame)

The arguments show that Score depends on Medium and
Font and that Font is repeated throughout each Subject.

To see the table:

> summary(mixed.anova)
Error: Subject

Df Sum Sq Mean Sq F value Pr(>F)
Medium 1 108.4 108.37 1.227 0.31
Residuals 6 529.9 88.32

Error: Subject:Font

Df Sum Sq Mean Sq F value Pr(>F)
Font 2 40.08 20.04 5.681 0.018366 *
Medium:Font 2 120.25 60.13 17.043 0.000312 ***
Residuals 12 42.33 3.53

Signif. codes: 0 '***' 0,001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1

You can reject the null hypothesis about Font and about
the interaction of Medium and Font, but not about Medium.



Visualizing the mixed ANOVA results

You use ggplot() to create a bar plot of the means and
standard errors. Begin by creating this data frame,
which contains the necessary information:

> mixed.mse. frame

Medium Font Mean SE
1 Book Hattenschweiler 52.50 3.427827
2 Book Arial 45.25 2.780138
3 Book Calibri 45.00 3.082207
4 E-reader Hattenschweiler 50.50 2.783882
5 E-reader Arial 51.75 2.495830
6 E-reader Calibri 53.25 2.174665

To create this data frame, begin by partitioning the data:

Score.book.haett <- with(mixed.frame, Score[
Font=="Haettenschweiler" & Subject == BkSubjects ])

Score.book.arial <- with(mixed.frame, Score[Font=="Arial" &
Subject == BkSubjects])

Score.book.cal <- with(mixed.frame, Score[Font=="Calibri" &
Subject == BkSubjects])

Score.ereader.haett <- with(mixed.frame, Score[
Font=="Haettenschweiler" & Subject == ErSubjects 1)

Score.ereader.arial <- with(mixed.frame, Score[
Font=="Arial" & Subject == ErSubjects])

Score.ereader.cal <- with(mixed.frame, Scorel
Font=="Calibri" & Subject == ErSubjects])

Next, calculate the means and the standard errors:

mixed.mean.Scores <- c(mean(Score.book.haett),mean(Score.book.
arial),mean(Score.book.cal),mean(Score.ereader.
haett),mean(Score.ereader.arial),mean(Score.ereader.cal))

mixed.se.Scores <- c(sd(Score.book.haett),sd(Score.book.
arial),sd(Score.book.cal),sd(Score.ereader.haett),sd(Score.
ereader.arial),sd(Score.ereader.cal))/2

Then set up the structure of the data frame:

mixed.mse.Medium = rep(c("Book","E-reader"),each=3)
mixed.mse.Font = rep(c("Hattenschweiler", "Arial","Calibri"),2)

Fill up the data frame:



mixed.mse.frame <- data.frame(mixed.mse.Medium,mixed.mse.
Font,mixed.mean.Scores,mixed.se.Scores)

Add some meaningful column names

colnames (mixed.mse.frame) = c("Medium","Font", "Mean", "SE")

and you create the data frame I showed you earlier.

The ggplot code is the same as for the preceding plot,
with the name of the new data frame:

ggplot(mixed.mse. frame,aes(x=Medium,y=Mean, fill=Font)) +
geom bar(stat = "identity", position =
"dodge",color="black",width = .5) +
scale fill grey(start = 0,end = .8) +
geom_errorbar (aes(ymin=Mean, ymax=Mean+SE),
width=.2,position=position dodge(width=.5))

The result is Figure 13-3. The figure shows the Between
Groups variable on the x-axis and levels of the repeated
measure in the bars — but that's just my preference. You
might prefer vice versa. In this layout, the different
ordering of the heights of the bars from Book to e-reader
reflects the interaction.
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FIGURE 13-3: Means and standard errors for the Book-versus-e-reader study.

After the Analysis

As I point out in Chapter 12, a significant result in an
ANOVA tells you that an effect is lurking somewhere in
the data. Post-analysis tests tell you where. Two types of
tests are possible: planned or unplanned. Chapter 12
provides the details.

In this example, the Between Groups variable has only
two levels. For this reason, if the result is statistically
significant, no further test would be necessary. The
Within Groups variable, Font, is significant. Ordinarily,
the test would proceed as described in Chapter 12. In
this case, however, the interaction between Media and
Font necessitates a different path.




With the interaction, post-analysis tests can proceed in
either (or both) of two ways. You can examine the effects
of each level of the A variable (the Between Groups
variable) on the levels of the B variable (the repeated
measure), or you can examine the effects of each level of
the B variable on the levels of the A variable. Statisticians
refer to these as simple main effects.

For this example, the first way examines the means for
the three fonts in a book and the means for the three
fonts in the e-reader. The second way examines the
means for the book versus the mean for the e-reader
with Haettenschweiler font, with Arial, and with Calibri.

Statistics texts provide complicated formulas for
calculating these analyses. R makes them easy. To
analyze the three fonts in the book, do a repeated
measures ANOVA for Subjects 1-4. To analyze the three
fonts in the e-reader, do a repeated measures ANOVA for
Subjects 5-8.

For the analysis of the book versus the e-reader in the
Haettenschweiler font, that's a single-factor ANOVA for
the Haettenschweiler data. You’'d complete a similar
procedure for each of the other fonts.

Multivariate Analysis of
Variance

The examples thus far in this chapter involve a
dependent variable and more than one independent
variable. Is it possible to have more than one dependent
variable? Absolutely! That gives you MANOVA — the
abbreviation for the title of this section.

When might you encounter this type of situation?
Suppose you’'re thinking of adopting one of three



textbooks for a basic science course. You have 12
students, and you randomly assign 4 of them to read
Book 1, another 4 to read Book 2, and the remaining 4 to
read Book 3. You're interested in how each book
promotes knowledge in physics, chemistry, and biology,
so after the students read the books, they take a test of
fundamental knowledge in each of those three sciences.

The independent variable is Book, and the dependent
variable is multivariate — it’s a vector that consists of
Physics score, Chemistry score, and Biology score. Table
13-3 shows the data.

TABLE 13-3 Data for the Science Textbook
MANOVA Study

Student Book Physics Chemistry Biology

Art Book 1 50 66 71
Brenda Book 1l 53 45 56
Cal Book 1 52 48 65
Dan Book 1 54 51 68
Eva Book 2 75 55 88
Frank Book 2 72 58 85
Greg Book 2 64 59 79
Hank Book 2 76 59 82
Iris Book 3 68 67 55
Jim Book 3 61 56 59
Kendra Book 3 62 66 63
Lee Book 3 64 78 61

The dependent variable for the first student in the Book
1 sample is a vector consisting of 50, 66, and 71.



What are the hypotheses in a case like this? The null
hypothesis has to take all components of the vector into
account, so here are the null and the alternative:

H Book] Phys M Book?2 Phys M Book? Phys
HD | HBooklChem | = | MBook2Chem | = | MBook3 Chem

HBookl Bio J \ MBook2 Bio M Boak3 Bio
H] . J’h'l'r't'lf H“

I don’t go into the same depth on MANOVA in this
chapter as I did on ANOVA in Chapter 12. I don’t discuss
SS, MS, and df — that would require knowledge of math
(matrix algebra) and other material that’s beyond the
scope of this chapter. Instead, I dive right in and show
you how to get the analysis done.

MANOVA in R

The data frame for the MANOVA looks just like Table 13-
3:

> Textbooks. frame
Student Book Physics Chemistry Biology

1 Art Bookl 50 66 71
2 Brenda Bookl 53 45 56
3 Cal Bookl 52 48 65
4 Dan Bookl 54 51 68
5 Eva Book2 75 55 88
6 Frank Book2 72 58 85
7 Greg Book2 64 59 79
8 Hank Book2 76 59 82
9 Iris Book3 68 67 55
10 Jim Book3 61 56 59
11 Kendra Book3 62 66 63
12 Lee Book3 64 78 61

To create the data frame, create a vector for each
column. Then use data.frame() to put them together.
Finally, add column names.



In ANOVA, the dependent variable for the analysis is a
single column. In MANOVA, the dependent variable for
the analysis is a matrix. In this case, it's a matrix with 12
rows (one for each student) and three columns (Physics,
Chemistry, and Biology).

To create the matrix, use the cbind() function to bind the
appropriate columns together. You can do this inside the
manova() function that performs the analysis:

m.analysis <- manova(cbind(Physics,Chemistry,Biology) ~ Book,
data = Textbooks.frame)

The formula inside the parentheses shows the 12 X 3
matrix (the result of cbind()) depending on Book, with
Textbooks.frame as the source of the data.

As always, apply summary() to see the summary table:

> summary(m.analysis)

Df Pillai approx F num Df den Df Pr(>F)
Book 2 1.7293 17.036 6 16 3.922e-06 ***
Residuals 9

Signif. codes: 0 '***' 0,001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1

The only new item is Pillai, a test statistic that results
from a MANOVA. It’s a little complicated, so I'll leave it
alone. Suffice to say that R turns pillai into an F-ratio
(with 6 and 16 df) and that's what you use as the test
statistic. The high F and exceptionally low p-value
indicate rejection of the null hypothesis.

Pillai is the default test. In the summary statement, you
can specify other MANOVA test statistics. They're called
“Wilks", "Hotelling-Lawley", and "Roy". For example:

> summary(m.analysis, test = "Roy")
Df Roy approx F num Df den Df Pr(>F)
Book 2 10.926 29.137 3 8 0.0001175 ***

Residuals 9

Signif. codes: 0 '***' 0,001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1



The different tests result in different values for F and df,
but the overall decision is the same.

rememeer 1 NIS example is a MANOVA extension of an
ANOVA with just one factor. It’s possible to have
multiple dependent variables with more complex
designs (like the ones I discuss earlier in this
chapter).

Visualizing the MANOVA results

The objective of the study is to show how the distribution
of Physics, Chemistry, and Biology scores differs from
book to book. A separate set of boxplots for each book
visualizes the differences. Figure 13-4 shows what I'm
talking about.

Score

Bookl BookZ Book3




FIGURE 13-4: Three boxplots show the distribution of scores for Physics,
Chemistry, and Biology for each book.

The ggplot2 faceting capability splits the data by Book
and creates the three side-by-side graphs. Each graph is
called a facet. (See the section in Chapter 4 about
exploring the data.)

To set this all up, you have to reshape the Textbooks. frame
into long format. With the reshape2 package loaded (on
the Packages tab, select the check box next to reshape2),
apply the melt() function:

Textbooks.frame.melt = melt(Textbooks.frame)

After assigning column names:

colnames (Textbooks.frame.melt) = c("Student", "Book",
"Science","
Score")

the first six rows of the melted frame are

> head(Textbooks.frame.melt)
Student Book Science Score
1 Art Bookl Physics 50
2 Brenda Bookl Physics 53
3 Cal Bookl Physics 52
4 Dan Bookl Physics 54
5 Eva Book2 Physics 75
6  Frank Book2 Physics 7 72

To create Figure 13-4 in ggplot2, begin with

ggplot(Textbooks.frame.melt, (aes(x=Science,y=Score)))

which indicates the data frame and aesthetically maps
Science to the x-axis and Score to the y-axis.

Next, use stat boxplot() to calculate the perpendicular
lines for the whiskers:

stat boxplot(geom="errorbar", width =.5)

Then, a geom function for the boxplot:



geom_boxplot()

And, finally, the statement that splits the data by Book
and creates a row of three graphs (excuse me — facets):

facet grid(. ~ Book)

The dot followed by the tilde (~) followed by Book
arranges the facets side-by-side. To put the three graphs
in a column, it's

facet grid(Book ~ .)

Putting it all together, the code for creating Figure 13-4
is

ggplot (Textbooks.frame.melt, (aes(x=Science,y=Score)))+
stat boxplot(geom="errorbar", width =.5) +
geom boxplot() +
facet grid(. ~ Book)

After the analysis

When a MANOVA results in rejection of the null
hypothesis, one way to proceed is to perform an ANOVA
on each component of the dependent variable. The

results tell you which components contribute to the
significant MANOVA.

The summary.aov() function does this for you. Remember
that m.analysis holds the results of the MANOVA in this
section's example:

> summary.aov(m.analysis)
Response Physics :
Df Sum Sq Mean Sq F value Pr(>F)
Book 2 768.67 384.33 27.398 0.0001488 ***
Residuals 9 126.25 14.03

Signif. codes: 0 '**x' @,001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Response Chemistry :
Df Sum Sq Mean Sq F value Pr(>F)
Book 2 415.5 207.750 3.6341 0.06967 .
Residuals 9 514.5 57.167



Signif. codes: 0 '***' 0.001 '**' 0.61 '*' 0.05 '.' 0.1 ' '1

Response Biology :

Df Sum Sq Mean Sq F value Pr(>F)
Book 2 1264.7 632.33 27.626 0.0001441 ***
Residuals 9 206.0 22.89

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1

These analyses show that Physics and Biology contribute
to the overall effect, and Chemistry just misses
significance.

ne  Notice the word Response in these tables. This is R
terminology for “dependent variable.”

5

"stee - This separate-ANOVAs procedure doesn’t consider
the relationships among pairs of components. The
relationship is called correlation, which I discuss in
Chapter 15.




Chapter 14

Regression: Linear,
Multiple, and the General
Linear Model

IN THIS CHAPTER

» Summarizing a relationship

» Working with regression

» Taking another look at ANOVA

» Exploring analysis of covariance

» Examining the general linear model

One of the main things you do when you work with
statistics is make predictions. The idea is to use data
from one or more variables to predict the value of
another variable. To do this, you have to understand how
to summarize relationships among variables, and to test
hypotheses about those relationships.

In this chapter, I introduce regression, a statistical way
to do just that. Regression also enables you to use the
details of relationships to make predictions. First, I show
you how to analyze the relationship between one variable
and another. Then I show you how to analyze the
relationship between a variable and two others. Finally, I
let you in on the connection between regression and
ANOVA.



The Plot of Scatter

FarMisht Consulting, Inc., is a consulting firm with a
wide range of specialties. It receives numerous
applications from people interested in becoming
FarMisht consultants. Accordingly, FarMisht Human
Resources has to be able to predict which applicants will
succeed and which ones will not. They’'ve developed a
Performance measure that they use to assess their
current employees. The scale is 0-100, where 100
indicates top performance.

What’s the best prediction for a new applicant? Without
knowing anything about an applicant, and knowing only
their own employees’ Performance scores, the answer is
clear: It’s the average Performance score among their
employees. Regardless of who the applicant is, that’s all
the Human Resources team can say if its members’
knowledge is limited.

With more knowledge about the employees and about
the applicants, a more accurate prediction becomes
possible. For example, if FarMisht develops an aptitude
test and assesses its employees, Human Resources can
match up every employee’s Performance score with their
Aptitude score and see whether the two pieces of data
are somehow related. If they are, an applicant can take
the FarMisht aptitude test, and Human Resources can
use that score (and the relationship between Aptitude
and Performance) to help make a prediction.

Figure 14-1 shows the Aptitude-Performance matchup in
a graphical way. Because the points are scattered, it’s
called a scatterplot. By convention, the vertical axis (the
y-axis) represents what you're trying to predict. That's
also called the dependent variable, or the y-variable. In
this case, that’s Performance. Also. by convention, the



Performance

horizontal axis (the x-axis) represents what you’re using
to make your prediction. That’s also called the
independent variable, or x-variable. Here, that's
Aptitude.

Each point in the graph represents an individual’s
Performance and Aptitude. In a scatterplot for a real-life
corporation, you’d see many more points than I show
here. The general tendency of the set of points seems to
be that high Aptitude scores are associated with high
Performance scores and that low Aptitude scores are
associated with low Performance scores.

I've singled out one of the points. It shows a FarMisht
employee with an Aptitude score of 54 and a
Performance score of 58. I also show the average
Performance score, to give you a sense that knowing the
Aptitude-Performance relationship provides an
advantage over knowing only the mean.
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FIGURE 14-1: Aptitude and Performance at FarMisht Consulting.

How do you make that advantage work for you? You start
by summarizing the relationship between Aptitude and
Performance. The summary is a line through the points.
How and where do you draw the line?

I get to that in a minute. First, I have to tell you about
lines in general.

Graphing Lines

In the world of mathematics, a line is a way to picture a
relationship between an independent variable (x) and a
dependent variable (y). In this relationship,

v=4+2x

if you supply a value for x, you can figure out the
corresponding value for y. The equation says to multiply
the x-value by 2 and then add 4.

If x =1, for example, y=6. If x =2, y= 8. Table 14-1
shows a number of x-y pairs in this relationship,
including the pair in which x = 0.

Figure 14-2 shows these pairs as points on a set of x-y
axes, along with a line through the points. Each time I
list an x-y pair in parentheses, the x-value is first.

As the figure shows, the points fall neatly onto the line.
The line graphs the equation y = 4 + 2x. In fact,
whenever you have an equation like this, where x isn’t
squared or cubed or raised to any power higher than 1,
you have what mathematicians call a linear equation. (If
x is raised to a higher power than 1, you connect the
points with a curve, not a line.)

TABLE 14-1 x-y Pairsiny = 4 + 2x




(6,16)

FIGURE 14-2: The graph fory = 4 + 2x.

rememser Flere are a couple of things to keep in mind about
a line: You can describe a line in terms of how
slanted it is, and where it runs into the y-axis.




The how-slanted-it-is part is the slope. The slope tells you
how much y changes when x changes by one unit. In the
line shown in Figure 14-2, when x changes by one (from
4 to 5, for example), y changes by two (from 12 to 14).

The where-it-runs-into-the-y-axis part is called the y-
intercept (or sometimes just the intercept). That’s the

value of y when x = 0. In Figure 14-2, the y-intercept is
4.

You can see these numbers in the equation. The slope is
the number that multiplies x, and the intercept is the
number you add to x. In general,

yv=a+bx

where a represents the intercept and b represents the
slope.

The slope can be a positive number, a negative number,
or 0. In Figure 14-2, the slope is positive. If the slope is
negative, the line is slanted in a direction opposite to
what you see in Figure 14-2. A negative slope means that
y decreases as x increases. If the slope is 0, the line is
parallel to the horizontal axis. If the slope is 0, y doesn’t
change as x changes.

The same applies to the intercept — it can be a positive
number, a negative number, or 0. If the intercept is
positive, the line cuts off the y-axis above the x-axis. If
the intercept is negative, the line cuts off the y-axis
below the x-axis. If the intercept is 0, it intersects with
the y-axis and the x-axis, at the point called the origin.

And now, back to what I was originally talking about.

Regression: What a Line!



I mention earlier that a line is the best way to summarize
the relationship in the scatterplot in Figure 14-1. It's
possible to draw an infinite amount of straight lines
through the scatterplot. Which one best summarizes the
relationship?

Intuitively, the “best fitting” line ought to be the one that
passes through the maximum number of points and isn’t
too far away from the points it doesn’t pass through. For
statisticians, that line has a special property: If you draw
that line through the scatterplot, and then draw
distances (in the vertical direction) between the points
and the line, and then square those distances and add
them up, the sum of the squared distances is a minimum.

Statisticians call this line the regression line, and they
indicate it as

Vv =a+bx

Each y'; is a point on the line. It represents the best
prediction of y for a given value of x.

To figure out exactly where this line is, you calculate its
slope and its intercept. For a regression line, the slope
and intercept are called regression coefficients.

The formulas for the regression coefficients are pretty
straightforward. For the slope, the formula is

bzzjx—fny—?]
Zu——f]z

The intercept formula is

a=y-bx
I illustrate with an example. To keep the numbers
manageable and comprehensible, I use a small sample

instead of the hundreds (or perhaps thousands) of
employees you’d find in a scatterplot for a corporation.



Table 14-2 shows a sample of data from 16 FarMisht
consultants.

TABLE 14-2 Aptitude Scores and Performance
Scores for 16 FarMisht Consultants

Consultant Aptitude Performance
1 45 56

2 81 74

3 65 56

4 87 81

5 68 75

6 91 84

7 77 68

8 61 52

9 55 57

10 66 82

11 82 73

12 93 90

13 76 67

14 83 79

15 61 70

16 74 66
Mean 72.81 70.63
Variance 181.63 126.65

Standard deviation 13.48 11.25

For this set of data, the slope of the regression line is

b (45-T2.81)(56=T70.63 )+(81-T2.81)(74=70.63 ) +...+(74-T2.81)( 66 -70.63)

(45-72.81)% +(81-72.81)" +...+(74-72.81)°
=0.654



The intercept is
a=y-bx =70.63-0.654(72.81)=23.03
So the equation of the best-fitting line through these 16
points is
v =23.03 +0.654x
Or, in terms of Performance and Aptitude, it’s
Predicted Performance = 23.03 +0.654( Aptitude )

rememeer 1 NE SlOpe and the intercept of a regression line
are generically called regression coefficients.

Using regression for forecasting
Based on this sample and this regression line, you can
take an applicant’s Aptitude score — say, 85 — and
predict the applicant’s Performance:

Predicted Performance = 23.03 +0.654( 85 ) =78.59

Without this regression line, the only prediction is the
mean Performance, 70.63.

Variation around the regression line
In Chapter 5, I describe how the mean doesn’t tell the
whole story about a set of data. You have to show how
the scores vary around the mean. For that reason, I
introduce the variance and standard deviation.

You have a similar situation here. To form the full picture
of the relationship in a scatterplot, you have to show how
the scores vary around the regression line. Here, 1
introduce the residual variance and standard error of
estimate, which are analogous to the variance and the
standard deviation, respectively.



The residual variance is sort of an average of the
squared deviations of the observed y-values around the
predicted y-values. Each deviation of a data point from a
predicted point (y - V') is called a residual; hence, the
name. The formula is

2 2=y

. N-2
I say “sort of” because the denominator is N-2 rather
than N. Telling you the reason for the -2 is beyond the
scope of this discussion. As I mention in Chapter 5, the
denominator of a variance estimate is degrees of
freedom (df), and that concept comes in handy in a little
while.

The standard error of estimate is

] { - rJE

To show you how the residual error and the standard
error of estimate play out for the data in the example,
here’s Table 14-3. This table extends Table 14-2 by
showing the predicted Performance score for each given
Aptitude score.

As the table shows, sometimes the predicted
Performance score is pretty close, and sometimes it’s
not.

For these data, the residual variance is

o 2y=y)" (56-5244)" +(71-75.98)" +..+(66-T1.40)" 73565
WETN-2 T 16-2 14
=52.54

The standard error of estimate is

Sye =55 =525 =7.25




If the residual variance and the standard error of
estimate are small, the regression line is a good fit to the
data in the scatterplot. If the residual variance and the
standard error of estimate are large, the regression line
is a poor fit.

What’s “small”? What’s “large”? What's a “good” fit?
Keep reading.
TABLE 14-3 Aptitude Scores, Performance

Scores, and Predicted Performance Scores for
16 FarMisht Consultants

Consultant Aptitude Performance Predicted Performance
1 45 56 52.44
2 81 74 75.98
3 65 56 65.52
4 87 81 79.90
5 68 75 67.48
6 91 84 82.51
7 77 68 73.36
8 6l 52 62.90
9 55 57 58.98
10 66 82 66.17
11 82 73 76.63
12 93 90 83.82
13 76 67 72.71
14 83 79 77.28
15 61 70 62.90
16 74 66 71.40
Mean 72.81 70.63

Variance 181.63 126.65




Consultant Aptitude Performance Predicted Performance

Standard deviation 13.48 11.25

Testing hypotheses about regression
The regression equation you’re working with:

Vv =a+bx

summarizes a relationship in a scatterplot of a sample.
The regression coefficients a and b are sample statistics.
You can use these statistics to test hypotheses about
population parameters, and that’s what you do in this
section.

The regression line through the population that produces
the sample (like the entire set of FarMisht consultants) is
the graph of an equation that consists of parameters
rather than statistics. By convention, remember, Greek
letters stand for parameters, so the regression equation
for the population is

Viza+fx+s

The first two Greek letters on the right are a (alpha) and
B (beta) — the equivalents of a and b. What about that
last one? It looks something like the Greek equivalent of
e. What’s it doing there?

That last term is the Greek letter epsilon. It represents
“error” in the population. In a way, error is an
unfortunate term. It’s a catchall for “things you don’t
know or things you have no control over.” Error is
reflected in the residuals — the deviations from the
predictions. The more you understand about what you’'re
measuring, the more you decrease the error.

You can’t measure the error in the relationship between
Aptitude and Performance, but it’s lurking there.
Someone might score low on the Aptitude, for example,



and then go on to have a wonderful consulting career
with a higher-than-predicted Performance. On a
scatterplot, this person’s Aptitude-Performance point
looks like an error in prediction. As you find out more
about that person, you might discover that they were
sick on the day of the Aptitude test, and that explains the
“error.”

You can test hypotheses about «, B, and ¢, and that’s
what you do in the upcoming subsections.

Testing the fit

You begin with a test of how well the regression line fits
the scatterplot. This is a test of g, the error in the
relationship.

The objective is to decide whether the line really does
represent a relationship between the variables. It’s
possible that what looks like a relationship is just due to
chance and the equation of the regression line doesn’t
mean anything (because the amount of error is
overwhelming) — or it’s possible that the variables are
strongly related.

These possibilities are testable, and you set up
hypotheses to test them:

H.: No real relationship
H]f N{}t Hn

Although those hypotheses make for nice, light reading,
they don’t set up a statistical test. To set up the test, you
have to consider the variances. To consider the
variances, you start with the deviations. Figure 14-3
focuses on one point in a scatterplot and its deviation
from the regression line (the residual) and from the
mean of the y-variable. It also shows the deviation
between the regression line and the mean.



X
FIGURE 14-3: The deviations in a scatterplot.

As the figure shows, the distance between the point and
the regression line and the distance between the
regression line and the mean add up to the distance
between the point and the mean:

(y=y)+(y'=y)=(y-¥)
This sets the stage for some other important
relationships.

Start by squaring each deviation. That gives you ( y - y')*,
(y'-y)% and ( y-y)* If you add up each of the squared
deviations, you have

S(y-y)°
You just saw this one. That’s the numerator for the

residual variance. It represents the variability around the
regression line — the “error” I mention earlier. In the



terminology of Chapter 12, the numerator of a variance
is called a sum of squares, or SS. So this is SSgresiqual-

Y(y-¥)
This one is new. The deviation ( y'- ¥ ) represents the gain

in prediction due to using the regression line rather than
the mean. The sum reflects this gain and is called

SSRegression:

S(y-7)°
I show you this one in Chapter 5 — although I use x
rather than y. That’s the numerator of the variance of y.

In Chapter 12 terms, it’s the numerator of total variance.
This one is SStgia1-

This relationship holds among these three sums:
S3 Residual +HSFlc-grx'ﬁ:~jmn =355 Total

Each one is associated with a value for degrees of
freedom — the denominator of a variance estimate. As I
point out in the preceding section, the denominator for
SSresidual IS N-2. The df for SSt,i, is N-1 (see Chapters 5

and 12). As with the SS, the degrees of freedom add up:

{:Ifﬂl.'!-ihjl.li-l] +{I'le."'_;!rl.".‘-'F~|l..l]I = {“-'I ot al
This leaves one degree of freedom for Regression.

Where is all this headed, and what does it have to do
with hypothesis testing? Well, since you asked, you get
variance estimates by dividing SS by df. Each variance
estimate is called a mean-square, abbreviated MS (again,
see Chapter 12):

MS _ hhfh-.:rlﬂ:élull
v Regression — "
¢ Hegression

Mq — hhHE‘.‘iiﬂllM

' Residual
{”Ih-:alchlal



M{.; _ HS'I'-::I&J

v Total — ["'I'm;-,L
Now for the hypothesis part. If Hj is true and what looks

like a relationship between x and y is really no big deal,
the piece that represents the gain in prediction because
of the regression line (MSgegression) Should be no greater

than the variability around the regression line
(MSgesiqual) - If Hg is not true, and the gain in prediction

is substantial, then MSgegression Should be a lot bigger
than MSResidual-

So the hypotheses now set up as
2 2
Hl} * O Regresslon S O Residual
2 2
HI : Crlh.-grwﬁlml > O Residual

These are hypotheses you can test. How? To test a
hypothesis about two variances, you use an F test (see
Chapter 11). The test statistic here is

To show you how it all works, I apply the formulas to the
FarMisht example. The MSgqg;qya) i the same as s;, from

the “Variation around the regression line” section,
earlier in this chapter, and that value is 18.61. The

MSRegression is
MS (59.64-70.63)" +(71.40-70.63)* +...+(66.17-70.63)

W Regresslon = l

=1164.1

This sets up the F:

F = MSHL*QI’H-‘»HHJ]I _ 1164.1
- MSHcﬁlxlllal - r'lzrl';

With 1 and 14 df and o = .05, the critical value of F is
4.60. (Use gf() to verify.) The calculated F is greater

=22.15




than the critical F, so the decision is to reject H,. That

means the regression line provides a good fit to the data
in the sample.

Testing the slope

Another question that arises in linear regression is
whether the slope of the regression line is significantly
different from zero. If it's not, the mean is just as good a
predictor as the regression line.

In this example, the hypotheses for this test are
H,:p<0
H:5>0
It’s a directional (one-tailed) test because the Aptitude
test is set up for higher Aptitude scores to correspond

with higher levels of performance and lower Aptitude
scores with lower levels of performance.

The statistical test is t, which I discuss in Chapters 9, 10,
and 11 in connection with means. The t-test for the slope
1S

with df = N-2. The denominator estimates the standard
error of the slope. This term sounds more complicated
than it is. The formula is

5 X

Sh = i
Sp(N-1)
where s, is the standard deviation of the x-variable. For
the data in the example,
__ Sw _ 7.25 _
s.A(N=1) (1348)/(16-1)
,_b-p _.651-0
- - 139

sy, 139

=4.71
)

?



This is greater than the critical value of t for 14 df and «
= .05 (2.14), so the decision is to reject Hy,.

Testing the intercept
Finally, here’s the hypothesis test for the intercept. The
hypotheses are

Hy:a=0
Hy:az0
The test, once again, is a t-test. The formula is
Of = ¥

t

L

The denominator is the estimate of the standard error of
the intercept. Without going into detail, the formula for
S, 1S

§, =8 L+E—d
Sa =y N .[Jl"'l.-"--]:l-";_;n:E

where s, is the standard deviation of the x-variable, s,

the variance of the x-variable, and #? is the squared
mean of the x-variable. Applying this formula to the data
in the example,

1 X
s,=8 || st —X | -10.27
e \”N :N-nsi}

the t-test is

a-a 23.03

= = -l:' W
s, 1027 24
With 15 degrees of freedom, and the probability of a
Type I error at .05, the critical t is 2.13 for a two-tailed

test. It’s a two-tailed test because H; is that the intercept

doesn’t equal 0 — it doesn’t specify whether the
intercept is greater than O or less than 0. Because the

2 is

=




calculated value is greater than the critical value, the
decision is to reject H,.

Linear Regression in R

Time to see how R handles linear regression. To start the
analysis for this example, create a vector for the Aptitude
scores and another for the Performance scores:

Aptitude <- c(45, 81, 65, 87, 68, 91, 77, 61, 55, 66, 82, 93,
76, 83, 61, 74)

Performance <- c(56, 74, 56, 81, 75, 84, 68, 52, 57, 82, 73, 90,
67, 79, 70, 66)

Then use the two vectors to create a data frame:

FarMisht.frame <- data.frame(Aptitude,Performance)

The 1m() (linear model) function performs the analysis:

FM.reg <-lm(Performance ~ Aptitude, data=FarMisht.frame)

As always, the tilde (~) operator signifies “depends on,”
so this is a perfect example of a dependent variable and
an independent variable.

Applying summary() to FM.reg produces the regression
information:

> summary (FM. reg)

Call:
Im(formula = Performance ~ Aptitude, data = FarMisht.frame)

Residuals:

Min 1Q Median 3Q Max
-10.9036 -5.3720 -0.4379 4.2111 15.8281
Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 23.0299 10.2732 2.242 0.041697 *
Aptitude 0.6537 0.1389 4.707 0.000337 ***

Signif. codes: 0 '***' 0.001 '**' 0.601 '*' 0.05 '.' 0.1 ' '1



Residual standard error: 7.249 on 14 degrees of freedom

Multiple R-squared: 0.6128, Adjusted R-squared: 0.5851

F-statistic: 22.15 on 1 and 14 DF, p-value: 0.0003368
The first couple of lines provide summary information
about the residuals. The coefficients table shows the
intercept and slope of the regression line. If you divide
each number in the Estimate column by the adjoining
number in the std. Error column, you get the number in
the t value column. These t-values, of course, are the
significance tests I mention earlier for the intercept and
the slope. The extremely low p-values indicate rejection
of the null hypothesis for each coefficient.

The bottom part of the output shows the info on how well
the line fits the scatterplot. It presents the standard
error of the residual, followed by Multiple R-squared and
Adjusted R-squared. These last two range from 0 to 1.00 —
the higher the value, the better the fit. (I discuss them in
Chapter 15, but for now I'll leave them alone.) The F-
statistic corresponds to the F-ratio I show you in
Chapters 12 and 13. Its high value and low associated p-
value indicate that the line is a great fit to the
scatterplot.

rememeer 1 Te€fer to the result of the linear regression
analysis as “the linear model.”

Features of the linear model

The linear model produced by im() is an object that
provides information — if you ask for it in the right way.
As I already showed you, applying summary() gives all the
information you need about the analysis.

You can also zero in on the coefficients:



> coefficients(FM.reg)
(Intercept) Aptitude
23.029869 0.653667

and on their confidence intervals:

> confint (FM.reg)
2.5 % 97.5 %
(Intercept) 0.9961369 45.0636002
Aptitude 0.3558034 0.9515307
Applying fitted(FM.reg) produces the fitted values, and

residuals(FM.reg) gives the residuals.

Making predictions

The value of linear regression is that it gives you the
ability to predict, and R provides a function that does
just that: predict() applies a set of x-values to the linear
model and returns the predicted values. Imagine two
applicants with Aptitude scores of 85 and 62:

predict(FM. reg,data.frame(Aptitude=c(85,62)))

The first argument is the linear model, and the second
makes a data frame out of the vector of values for the

independent variable. Running this function produces

these predicted values:

1 2
78.59157 63.55723

Visualizing the scatterplot and

regression line

With the ggplot2 package, you can visualize a scatterplot
and its regression line in three statements. The first
statement, as always, indicates the data source and maps
the components of the data to components of the plot:

ggplot(FarMisht.frame,aes(x=Aptitude,y=Performance))

The second statement plots points in the graph



geom _point()
and the third specifies a geom function that adds the
regression line (as indicated by the method = m
argument):

geom_smooth(method=1m)

Putting all three together

ggplot(FarMisht.frame,aes(x=Aptitude,y=Performance)) +
geom _point()+
geom_smooth(method=1m)

produces Figure 14-4.

Parermance

Aptitude

FIGURE 14-4: Scatterplot and regression line for the 16 FarMisht consultants.

The shaded area represents the 95 percent confidence
interval around the regression line.

Plotting the residuals



After a regression analysis, it's a good idea to plot the
residuals against the predicted values. If the residuals
form a random pattern around a horizontal line at 0,
that’s evidence in favor of a linear relationship between
the independent variable and the dependent variable.

Figure 14-5 shows the residual plot for the example. The

pattern of residuals around the line is consistent with a
linear model.

regidualaFM rag

fitted{FM reg)

FIGURE 14-5: Residuals plot for the FarMisht example.

The plot is based on FM.reg, the linear model. Here’s the
ggplot() statement:

ggplot(FM.reg, aes(x=fitted(FM.reg), y=residuals(FM.reg)))

The x and y mappings are based on information from the
analysis. As you might guess, fitted(FM.reg) retrieves the



predicted values, and residuals(FM.reg) retrieves the
residuals.

To plot points, add the appropriate geom function:

geom_point()

and then a geom function for the dashed horizontal line
whose y-intercept is O:

geom hline(yintercept = 0, linetype = "dashed" )

So the code for Figure 14-5 is

ggplot(FM.reg, aes(x=fitted(FM.reg), y=residuals(FM.reg)))+
geom point() +
geom hline(yintercept = 0, linetype = "dashed" )

Juggling Many
Relationships at Once:
Multiple Regression

Linear regression is a useful tool for making predictions.
When you know the slope and the intercept of the line
that relates two variables, you can take a new x-value
and predict a new y-value. In the example you've been
working through in this chapter, you take an Aptitude
score and predict a Performance score for a FarMisht
applicant.

What if you knew more than just the Aptitude score for
each applicant? For example, imagine that the FarMisht
management team decides that a particular personality
type is ideal for their consultants. So they develop the
FarMisht Personality Inventory, a 20-point scale in which
a higher score indicates greater compatibility with the
FarMisht corporate culture and, presumably, predicts



better performance. The idea is to use that data along
with Aptitude scores to predict performance.

Table 14-4 shows the Aptitude, Performance, and
Personality scores for the 16 current consultants. Of
course, in a real-life corporation, you might have many
more employees in the sample.

When you work with more than one independent
variable, you’'re in the realm of multiple regression. As in
linear regression, you find regression coefficients. In the
case of two independent variables, you’'re looking for the
best-fitting plane through a three-dimensional
scatterplot. Once again, the term best-fitting means that
the sum of the squared distances from the data points to
the plane is a minimum.

Here’s the equation of the regression plane:

residual - average residual
55:".’

standard residual =

For this example, that translates to
vi=a+bx, +b.x,

You can test hypotheses about the overall fit, and about
all three of the regression coefficients.

I don’t walk you through all the formulas for finding the
coefficients, because that gets really complicated.
Instead, I go right to the R analysis.

TABLE 14-4 Aptitude, Performance, and
Personality Scores for 16 FarMisht

Consultants
Consultant Aptitude Performance Personality
1 45 56 9

2 81 74 15




Consultant Aptitude Performance Personality

3 65 56 11
4 87 81 15
5 68 75 14
6 91 84 19
7 77 68 12
8 61 52 10
9 55 57 9
10 66 82 14
11 82 73 15
12 93 90 14
13 76 67 16
14 83 79 18
15 61 70 15
16 74 66 12
Mean 72.81 70.63 13.63
Variance 181.63 126.65 8.65
Standard Deviation 13.48 11.25 2.94

Here are a few things to bear in mind before I proceed:

» You can have any number of x-variables. (I use two in
this example.)

» Expect the coefficient for Aptitude to change from
linear regression to multiple regression. Expect the
intercept to change, too.

» Expect the standard error of estimate to decrease from
linear regression to multiple regression. Because
multiple regression uses more information than linear
regression, it reduces the error.

Multiple regression in R



I begin by adding a vector for the personality scores in
Column 4 of Table 14-4:

Personality <- c(9, 15, 11, 15, 14, 19, 12, 10, 9, 14, 15, 14,
16, 18, 15, 12)

And then I add that vector to the data frame:
FarMisht.frame["Personality"] = Personality
Applying im() produces the analysis:

FM.multreg <- lm(Performance ~ Aptitude + Personality,
data = FarMisht.frame)

And applying summary() gives the information:
> summary (FM.multreg)

Call:
Im(formula = Performance ~ Aptitude + Personality, data = FarMisht.frame)

Residuals:

Min 1Q Median 3Q Max
-8.689 -2.834 -1.840 2.886 13.432
Coefficients:

Estimate Std. Error t value Pr(>|t])

(Intercept) 20.2825 9.6595 2.100 0.0558 .
Aptitude 0.3905 0.1949 2.003 0.0664 .
Personality 1.6079 0.8932 1.800 0.0951 .
Signif. codes: 0 '***' 0,001 '**' @.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6.73 on 13 degrees of freedom
Multiple R-squared: 0.69, Adjusted R-squared: 0.6423
F-statistic: 14.47 on 2 and 13 DF, p-value: 0.0004938

So the generic equation for the regression plane is
Predicted GPA = a+ b ( SAT )+ b, ( High School Average )
Or, in terms of this example:
v =a+.0025x, +.043x,

Again, the high F-value and low p-value indicate that the
regression plane is an excellent fit for the scatterplot.



Making predictions

Once again, predict() enables predictions of
Performance. This time, I use it with the multiple
regression model: FM.multreg. Imagine two applicants:
One has Aptitude and Personality scores of 85 and 14,
and the other has Aptitude and Personality scores of 62
and 17. This requires two vectors — one for the Aptitude
scores and one for the Personality scores:

> predict(FM.multreg, data.frame(Aptitude = c(85,62),
Personality=c(14,17)))
1 2
75.98742 71.82924

Visualizing the 3D scatterplot and

regression plane

The ggplot2 package, for all its wonderful features, does
not provide a way to draw 3-dimensional graphics — like
a scatterplot for a dependent variable and two
independent variables. Never fear, however: R has a
number of other ways to do this. In this main section, I
show you two of them.

The scatterplot3d package

If you want to make a nifty three-dimensional scatterplot
like the one shown in Figure 14-6 — a figure that looks
good on a printed page, the scatterplot3d() function is for
you.

First, install the scatterplot3d package. On the Packages
tab, find scatterplot3d and select its check box.

Next, write a statement that creates the plot:

splot <- with(FarMisht.frame, scatterplot3d(Performance ~
Aptitude + Personality, type = "h", pch = 19))
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FIGURE 14-6: Scatterplot for the FarMisht multiple regression example,
rendered in scatterplot3d().

If you use with(), you don't have to repeat the name of
the data frame (along with a $-sign) three times. The first
argument to scatterplot3d() is the formula for setting up
the linear model. The second argument adds the vertical
lines from the x-y plane to the data points. (Those
vertical lines aren't absolutely necessary, but I think they
help the viewer understand where the points are in the
plot.) The third argument specifies what the plot
characters look like.

The function produces an object you can use to embellish
the plot. For example, here’s how to add the regression
plane and produce Figure 14-7:

splot$plane3d(FM.multreg, Lty="dashed")
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FIGURE 14-7: Scatterplot for the FarMisht multiple regression example,
complete with regression plane.

car and rgl: A package deal

If you have to present a 3D scatterplot to an audience
and you want to dazzle them with an interactive plot, the
next method is for you.

The plot-creating function is called scatter3d(), and it
lives in the car package. On the Packages tab, click
Install. In the Install Packages dialog box, type car and
click Install. When car appears on the Packages tab,
select its check box.

Although the scatter3d() function lives in the car package,
it spends most of its time working with the rgl package,
which uses tools from the Open Graphics Library
(OpenGL) to create pretty cool 2D and 3D graphics.
You'll find OpenGL tools at work in virtual reality,
computer-aided design, flight simulation, and a number
of other applications.



In the Install Packages dialog box, type rgl and click
Install. When rgl appears on the Packages tab, select its
check box.

With those two packages installed, run this function:

scatter3d(Performance ~ Aptitude + Personality,
data=FarMisht.frame)

This opens an RGL window with the 3D scatterplot
shown in Figure 14-8. As you can see, the scatterplot
shows the regression plane and the residuals.
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FIGURE 14-8: Scatterplot for the FarMisht multiple regression example,
rendered in scatter3d().




You can move the mouse inside this plot, press the left
mouse button, and rotate the plot to present different
angles. You can also use the scroll wheel to zoom in or
out of the plot. Try it!

ANOVA: Another Look

Here's a statement you might find radical: Analysis of
variance and linear regression are really the same thing.

They’re both part of what’s called the general linear
model (GLM). In linear regression, the objective is to
predict a value of a dependent variable given a value of
an independent variable. In ANOVA, the objective is to
decide whether several sample means differ enough from
one another to enable you to reject the null hypothesis
about levels of the independent variable.

How are they similar? It’s easier to see the connection if
you rethink ANOVA: Given the data, imagine that the
objective is to predict the dependent variable given the
level of the independent variable. What would be the
best prediction? For any level of the independent
variable, that would be the mean of the sample for that
level — also known as the group mean. This means that
deviations from the group mean (the best predicted
value) are residuals, and this is why, in an R ANOVA, the
MSg;ror is called MSgesiquals-

It goes deeper than that. To show you how, I revisit the
ANOVA example from Chapter 12. For convenience,
here’s Table 12-1 reproduced as Table 14-5.

You have to test

Hy:py = py = p13
H, : Not H,



To use the aov() function to produce an analysis of
variance (as in Chapters 12 and 13), set up the data in
long format. Here are the first six rows:

> head(Training. frame)

Method Score

methodl
methodl
methodl
methodl
methodl
methodl

SO Ul WN -

95
91
89
90
99
88

TABLE 14-5 Data from Three Training Methods

(ANOVA Example from Chapter 12)

Method 1 Method 2 Method 3

95 83 68
91 89 75
89 85 79
90 89 74
99 81 75
88 89 81
96 90 73
98 82 77
95 84
80
Mean 93.44 85.20 75.25
Variance 16.28 14.18 15.64
Standard Deviation 4.03 3.77 3.96

The result of the analysis is

> analysis <-aov(Score~Method,data = Training.frame)
> summary(analysis)

Df

Sum Sq

Mean Sq

F value Pr(>F)



Method 2 1402.7 701.3 45.82 6.38e-09 ***
Residuals 24 367.3 15.3

Signif. codes: 0 '***' 0,001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
What if you tried a linear regression analysis on the
data?

> reg.analysis <-1m(Score~Method,data = Training.frame)
> summary(reg.analysis)

Call:
Im(formula = Score ~ Method, data = Training.frame)

Residuals:

Min 1Q Median 3Q Max
-7.250 -2.822 -0.250 3.775 5.750
Coefficients:

Estimate Std. Error t value Pr(>|t])

(Intercept) 84.6315 0.7560 111.942 < 2e-16 *okx
Methodl 4.9750 0.9279 5.362 1.67e-05 *okk
Method2 4.4065 0.5335 8.260 1.78e-08 Fxk
Signif. codes: 0 '***' Q0,001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.912 on 24 degrees of freedom

Multiple R-squared: 0.7925, Adjusted R-squared: 0.7752

F-statistic: 45.82 on 2 and 24 DF, p-value: 6.381e-09
You see a good bit more information than in the ANOVA
table, but the bottom line shows the same F-ratio and
associated information as the analysis of variance. Also,
the coefficients provide the group means: The intercept
(93.444) is the mean of Method 1, the intercept plus the
second coefficient (-8.244) is the mean of Method 2
(85.20), and the intercept plus the third coefficient (-
18.194) is the mean of Method 3 (75.25). Check the
Means in Table 14-1, if you don’t believe me.

A bit more on the coefficients: The intercept represents
Method 1, which is a baseline against which to compare
each of the others. The t-value for Method 2 (along with
its associated probability, which is much less than .05)



shows that Method 2 differs significantly from Method 1.
It’s the same story for Method 3, which also differs
significantly from Method 1.

Here’s a question that should be forming in your mind:
How can you perform a linear regression when the
independent variable (Method) is categorical rather than
numerical?

Glad you asked.

rememeer 10 fOrm a regression analysis with categorical
data, R (and other statistical software packages)
recode the levels of a variable like Method into
combinations of numeric dummy variables. The only
values a dummy variable can take are 0 or 1: 0
indicates the absence of a categorical value; 1
indicates the presence of a categorical value.

I'll do this manually. For the three levels of Method
(Method 1, Method 2, and Method 3), I need two dummy
variables. I'll call them p1 and D2. Here's how I
(arbitrarily) assign the values:

» For Method 1,D1 = 0 and D2 = 0
» For Method 2, D1 = 1, and D2 = 0
» For Method 3, D1 = 0, and D2 =1

To illustrate further, here's a data frame called
Training.frame.w.Dummies. Ordinarily, I wouldn’t show you
all 27 rows of a data frame, but here I think it’s
instructive:

> Training.frame.w.Dummies
Method D1 D2 Score
1 methodl 0 © 95
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methodl
methodl
methodl
methodl
methodl
methodl
methodl
methodl
method2
method2
method2
method2
method2
method2
method2
method2
method2
method2
method3
method3
method3
method3
method3
method3
method3
method3
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91
89
90
99
88
96
98
95
83
89
85
89
81
89
90
82
84
80
68
75
79
74
75
81
73
77

These lines of code

model.w.Dummies <- lm(Score ~ D1 + D2,

Coefficients:
Estimate
93.444
-7.667
-17.667

(Intercept)

D1
D2

data= Training.frame.w.Dummies)
summary (model.w.Dummies)

produce the same result as the analysis of variance and
the linear regression I showed you earlier. The only
difference is that the coefficients are expressed in terms
of the dummy variables:

Std. Error

1.286
1.819
1.819

t value Pr(>|t])
72.651 < 2e-16 **¥*
-4.215 0.000306 ***
-9.712 8.66e-10 ***

So, dummy variables enable a linear regression model
with categorical independent variables. In fact, linear



regression with categorical independent variables is the
analysis of variance.

Analysis of Covariance:
The Final Component of
the GLM

In this chapter, I show you how linear regression works
with a numeric independent (predictor) variable, and
with a categorical independent (predictor) variable. Is it
possible to have a study with both a numeric predictor
variable and a categorical predictor variable?

Absolutely! The analytical tool for this type of study is
called the Analysis of Covariance (ANCOVA). It’s the
third and final component of the general linear model.
(Linear regression and ANOVA are the first two.) The
easiest way to describe it is with an example.

Make sure you have the MASS package installed. On the
Packages tab, click Install and type MASS into the
Install Packages dialog box. Then click the Install button.
After mass is installed, find its check box on the Packages
tab and select it.

In the MASS package is a data frame called anorexia. (I use
it in Chapter 2.) This data frame contains data for 72
young women randomly selected for one of three types of
treatment for anorexia: Cont (a control condition with no
therapy), (BT (cognitive behavioral therapy), or FT (family
treatment).

Here are the first six rows:

> head(anorexia)
Treat Prewt Postwt
1 Cont 80.7 80.2



Cont 89.4 80.1
Cont 91.8 86.4
Cont 74.0 86.3
Cont 78.1 76.1
Cont 88.3 78.1

SO Ul WN

Prewt is the weight before treatment, and Postwt is the
weight after treatment. What you need, of course, is a
variable that indicates the amount of weight gained
during treatment. I'll call it wtGain, and here’s how to add
it to the data frame:

anorexial["WtGain"]=anorexia["Postwt"]-anorexial"Prewt"]

Now:

> head(anorexia)
Treat Prewt Postwt WtGain

1 Cont 80.7 80.2 -0.5
2 Cont 89.4 80.1 -9.3
3 Cont 91.8 86.4 -5.4
4 Cont 74.0 86.3 12.3
5 Cont 78.1 76.1 -2.0
6 Cont 88.3 78.1 -10.2

Figure 14-9 plots the data points for this data frame.
Here’s the code for this plot, in case you’'re curious:

ggplot(anorexia,aes(x=Treat,y=WtGain) )+
geom_point()
An analysis of variance or a linear regression analysis
would be appropriate to test these:
Ho @ ticom = Hert = Mrr
H,: NotH,
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FIGURE 14-9: Weight Gain versus Treat in the anorexia data frame.

Here’s the linear regression model:

> anorexia.linreg <-lm(WtGain ~ Treat, data=anorexia)
> summary(anorexia.linreg)

Call:
Im(formula = WtGain ~ Treat, data = anorexia)

Residuals:

Min 1Q Median 3Q Max
-12.565 -4.543 -1.007 3.846 17.893
Coefficients:

Estimate  Std. Error t value Pr(>|t])

(Intercept) 3.007 1.398 2.151 0.0350 *
TreatCont -3.457 2.033 -1.700 0.0936 .
TreatFT 4,258 2.300 1.852 0.0684 .
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 7.528 on 69 degrees of freedom



Multiple R-squared: 0.1358, Adjusted R-squared: 0.1108

F-statistic: 5.422 on 2 and 69 DF, p-value: 0.006499
The F-ratio and p-value in the bottom line tell you that
you can reject the null hypothesis.

Let’s look at the coefficients. The intercept represents
CBT. This is the baseline against which you compare the
other treatments. The t-values and associated
probabilities (greater than .05) tell you that neither of
those levels differs from cBT. The significant F-ratio must
result from some other comparisons.

Also, check the coefficients against the treatment means.
Here's a quick and easy way to find the treatment
means: Use the function tapply() to apply mean() and find
the mean wtGain in the levels of Treat:

> with (anorexia, tapply(WtGain,Treat,mean))
CBT Cont FT
3.006897 -0.450000 7.264706
The intercept, remember, is the mean for cBT. Add the
intercept to the next coefficient to calculate the mean for
Cont, and add the intercept to the final coefficient to

calculate the mean for FT.

If you prefer to see the F-ratio and associated statistics
in an ANOVA table, you can apply the anova() function to
the model:

> anova(anorexia.linreg)
Analysis of Variance Table

Response: WtGain

Df Sum Sq Mean Sq F value Pr(>F)
Treat 2 614.6 307.322 5.4223 0.006499 **
Residuals 69 3910.7 56.677
Signif. codes: 0 '***x' @,001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

You can dig a little deeper. Suppose weight gain depends
on not only type of treatment but also a person’s initial



weight (which is called a covariate). Taking Prewt into
consideration might yield a more accurate picture. Treat
is a categorical variable, and Prewt is a numerical
variable. Figure 14-10 shows a plot based on the two
variables.

The code for this plot is

ggplot(anorexia, aes(x=Prewt,y=WtGain, shape = Treat)) +
geom _point(size=2.5)

Treat
1 * cor
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i B FT
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FIGURE 14-10:wtGain versus Treat and Prewt in the anorexia data frame.

The first statement maps Prewt to the x-axis, wtGain to the
y-axis, and Treat to shape. Thus, the shape of a data point
reflects its treatment group. The second statement
specifies that points appear in the plot. Its size argument
enlarges the data points and makes them easier to see.



For the analysis of covariance, I use the 1m() function to
create a model based on both Treat and Prewt:

> anorexia.T.and.P <- lm(WtGain ~ Treat + Prewt, data=anorexia)
> summary(anorexia.T.and.P)

Call:
Im(formula = WtGain ~ Treat + Prewt, data = anorexia)

Residuals:

Min 1Q Median 3Q Max
-14.1083 -4.2773 -0.5484 5.4838 15.2922
Coefficients:

Estimate Std. Error t value Pr(>|t])

(Intercept) 49.7711 13.3910 3.717 0.000410  **x*
TreatCont -4.0971 1.8935 -2.164 0.033999 *
TreatFT 4.5631 2.1333 2.139 0.036035 *
Prewt -0.5655 0.1612 -3.509 0.000803  x*x*
Signif. codes: 0 '"***' @,001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6.978 on 68 degrees of freedom

Multiple R-squared: 0.2683, Adjusted R-squared: 0.236

F-statistic: 8.311 on 3 and 68 DF, p-value: 8.725e-05
Note in the last line that the degrees of freedom have
changed from the first analysis: Adding Prewt takes a
degree of freedom from the df Residual and adds it to the
df for Treat. Note also that the F-ratio is higher and the p-
value considerably lower than in the first analysis.

And now look at the coefficients. Unlike the original
analysis, the t-values and associated probabilities (less
than .05) for cont and FT show that each one differs
significantly from CBT.

So it seems that adding Prewt to the analysis has helped
uncover treatment differences. Bottom line: The
ANCOVA shows that when evaluating the effect of an
anorexia treatment, it's important to also know an
individual’s pretreatment weight.



But “it seems” is not really enough for statisticians. Can
you really be sure that the ANCOVA adds value? To find
out, you have to compare the linear regression model
with the ANCOVA model. To make the comparison, use
the anova() function, which does double duty: In addition
to creating an ANOVA table for a model (which is the
way you saw it used earlier), you can use it to compare
models. Here’s how:

> anova(anorexia.linreg,anorexia.T.and.P)
Analysis of Variance Table

Model 1: WtGain ~ Treat
Model 2: WtGain ~ Treat + Prewt

Res.Df RSS Df Sum of Sq F Pr(>F)
1 69 3910.7
2 68 3311.3 1 599.48 12.311 0.0008034 ***
Signif. codes: 0 '***' 9.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

What do the numbers in the table mean? The RsS
indicates the residual sums of squares from each model.
They're next to their degrees of freedom in the Res.DF
column. In the pf column, 1 is the difference between the
two Res.Dfs. In the Sum of Sq column, 599.48 is the
difference between the two RSS. The F-ratio is the result
of dividing two mean squares: The mean square for the
numerator is 599.48 divided by its df (1), and the mean
square for the denominator is 3311.3 divided by its df
(68). The high F-ratio and low Pr(>F) (probability of a
Type 1 error) tell you that adding Prewt significantly
lowered the residual sum of squares. In English, that
means it was a good idea to add Prewt to the mix.

—
““‘
TECHNICAL

sture - Statisticians would say that this analysis
statistically controls for the effects of the covariate



(Prewt).

But Wait — There's More

In an analysis of covariance, it’s important to ask
whether the relationship between the dependent variable
and the numerical predictor variable is the same across
the levels of the categorical variable. In this example,
that’s the same as asking whether the slope of the
regression line between wtGain and Prewt is the same for
the scores in Cont as it is for the scores in (BT and for the
scores in FT. If the slopes are the same, that's called
homogeneity of regression. If not, you have an
interaction of Prewt and Treat and you have to be careful
about how you state your conclusions.

Adding the regression lines to the plot in Figure 14-10 is
helpful. To do this, I add this line to the code that
produced Figure 14-10:

geom_smooth(method = lm,se = FALSE, aes(linetype=Treat))

This instructs ggplot to add a separate line that
“smooths” the data within each treatment group. The
method argument specifies 1m (linear modeling) so that
each line is a regression line. The next argument,
se=FALSE, prevents the plotting of the confidence interval
around each line. Finally, the aesthetic mapping
indicates that the line for each level of Treat will look
different. So the full code is

ggplot(anorexia, aes(x=Prewt,y=WtGain, shape = Treat)) +
geom point(size=2.5) +
geom_smooth(method = lm,se = FALSE, aes(linetype=Treat))

and the result is shown in Figure 14-11.

As you can see, the three negatively sloped regression
lines are not parallel. The line for BT parallels the line



for FT, but the line for cont (the control condition) has a
much greater negative slope. Assuming that patients in
the control group received no treatment, this sounds
fairly intuitive: Because they received no treatment,
many of these anorexic patients (the heavier ones)
continued to lose weight (rather than gain weight),
resulting in the highly negative slope for that line.
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FIGURE 14-11:wtGain versus Treat and Prewt in the anorexia data frame, with a
regression line for the scores in each level of Treat.

Apparently, we have a Treat X Prewt interaction. Does
analysis bear this out?

To include the interaction in the model, I have to add
Treat*Prewt to the formula:

anorexia.w.interaction <- lm(WtGain ~ Treat + Prewt +
Treat*Prewt, data=anorexia)



Does adding the interaction make a difference?

> anova(anorexia.T.and.P,anorexia.w.interaction)
Analysis of Variance Table

Model 1: WtGain ~ Treat + Prewt
Model 2: WtGain ~ Treat + Prewt + Treat * Prewt

Res.Df RSS Df Sum of Sq F  Pr(>F)
1 68 3311.3
2 66 2844.8 2 466.48 5.4112 0.006666 **
Signif. codes: 0 '***' 9.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

It sure does! In your conclusions about this study, you
have to include the caveat that the relationship between
pre-weight and weight-gain is different for the control
than it is for the cognitive-behavioral treatment and for
the family treatment.



Chapter 15

Correlation: The Rise and
Fall of Relationships

IN THIS CHAPTER
» Understanding what correlation is all about

» Discovering how correlation connects to
regression

» Drawing conclusions from correlations
» Analyzing items

In Chapter 14, I introduce the concepts of regression, a
tool for summarizing and testing relationships between
(and among) variables. In this chapter, I introduce you to
the ups and downs of correlation, another tool for
looking at relationships. I use the example of employee
aptitude and performance from Chapter 14 and show
how to think about the data in a slightly different way.
The new concepts connect to what I show you in Chapter
14, and you’ll see how those connections work. I also
show you how to test hypotheses about relationships and
how to use R functions for correlation.

Scatterplots Again

A scatterplot is a graphical way of showing a relationship
between two variables. In Chapter 14, I show you a
scatterplot of the data for employees at FarMisht
Consulting, Inc. I reproduce that scatterplot here as
Figure 15-1. Each point represents one employee’s score




on a measure of Aptitude (on the x-axis) and on a
measure of Performance (on the y-axis).
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FIGURE 15-1: Aptitude and Performance at FarMisht Consulting.

Understanding Correlation

In Chapter 14, I refer to Aptitude as the independent
variable and to Performance as the dependent variable.
The objective in Chapter 14 is to use Aptitude to predict
Performance.

rememser Although I use scores on one variable to predict
scores on the other, I do not mean that the score on
one variable causes a score on the other.
Relationship doesn’t necessarily mean causality.




Correlation is a statistical way of looking at a
relationship. When two things are correlated, it means
that they vary together. Positive correlation means that
high scores on one are associated with high scores on
the other, and that low scores on one are associated with
low scores on the other. The scatterplot in Figure 15-1 is
an example of positive correlation.

Negative correlation, on the other hand, means that high
scores on the first thing are associated with low scores
on the second. Negative correlation also means that low
scores on the first are associated with high scores on the
second. An example is the correlation between body
weight and the time spent on a weight loss program. If
the program is effective, the higher the amount of time
spent on the program, the lower the body weight. Also,
the lower the amount of time spent on the program, the
higher the body weight.

Table 15-1, a repeat of Table 14-2 (refer to Chapter 14),
shows the data for 16 FarMisht consultants.

TABLE 15-1 Aptitude Scores and Performance
Scores for 16 FarMisht Consultants

Consultant Aptitude Performance
1 45 56
2 81 74
3 65 56
4 87 81
5 68 75
6 91 84
7 77 68
8 61 52
9 55 57




Consultant Aptitude Performance

10 66 82

11 82 73

12 93 90

13 76 67

14 83 79

15 61 70

16 74 66
Mean 72.81 70.63
Variance 181.63 126.65

Standard Deviation 13.48 11.25

In keeping with the way I use Aptitude and Performance
in Chapter 14, Aptitude is the x-variable and
Performance is the y-variable.

The formula for calculating the correlation between the
two is

5.8y

rF=

The term on the left, r, is called the correlation
coefficient. It’s also called Pearson’s product-moment
correlation coefficient, after its creator, Karl Pearson.

The two terms in the denominator on the right are the
standard deviation of the x-variable and the standard
deviation of the y-variable. The term in the numerator is
called the covariance. Another way to write this formula
is

covix,v)
r=————=—=

5xSy



The covariance represents x and y varying together.
Dividing the covariance by the product of the two
standard deviations imposes some limits. The lower limit
of the correlation coefficient is -1.00, and the upper limit
is +1.00.

A correlation coefficient of -1.00 represents perfect
negative correlation (low x-scores associated with high y-
scores, and high x-scores associated with low y-scores).
A correlation of +1.00 represents perfect positive
correlation (low x-scores associated with low y-scores
and high x-scores associated with high y-scores). A
correlation of 0.00 means that the two variables are not
related.

Applying the formula to the data in Table 15-1,
[NI_JZ(X-EH}’-PJ

r=

S48,

{ : }[{45-?2.31]{55_?&53;+...+(?«1-72.31;{%_?0.33}]

16-1
(13.48)(11.25)

What, exactly, does this number mean? I'm about to tell
you.

=.783

Correlation and
Regression

Figure 15-2 shows the scatterplot of just the 16
employees in Table 15-1 with the line that “best fits” the
points. It’s possible to draw an infinite number of lines
through these points. Which one is best?

To be the best, a line has to meet a specific standard: If
you draw the distances in the vertical direction between



the points and the line, and you square those distances,
and then you add those squared distances, the best-
fitting line is the one that makes the sum of those
squared distances as small as possible. This line is called
the regression line.
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FIGURE 15-2: Scatterplot of 16 FarMisht consultants, including the regression
line.

Performance

The regression line’s purpose in life is to enable you to
make predictions. As I mention in Chapter 14, without a
regression line, the best predicted value of the y-variable
is the mean of the y’s. A regression line takes the x-
variable into account and delivers a more precise
prediction. Each point on the regression line represents
a predicted value for y. In the symbology of regression,
each predicted valueisa y.

Why do I tell you all this? Because correlation is closely
related to regression. Figure 15-3 focuses on one point in



the scatterplot, and on its distance to the regression line
and to the mean. (This is a repeat of Figure 14-3.)

PR P—

X
FIGURE 15-3: One point in the scatterplot and its associated distances.

Notice the three distances laid out in the figure. The
distance labeled (y-y’) is the difference between the point
and the regression line’s prediction for where the point
should be. (In Chapter 14, I call that a residual.) The
distance labeled (y-y) is the difference between the
point and the mean of the y’s. The distance labeled
(¥'—¥)is the gain in prediction capability that you get
from using the regression line to predict the point
instead of using the mean to predict the point.

Figure 15-3 shows that the three distances are related
like this:

(y=¥ )+ (¥ =-¥)=(y-¥%)



As I point out in Chapter 14, you can square all the
residuals and add them, square all the deviations of the
predicted points from the mean and add them, and
square all the deviations of the actual points from the
mean and add them, too.

It turns out that these sums of squares are related in the
same way as the deviations I just showed you:

S5 Residual +th{r-!.Lr-.'1~':~iﬂ|1 =35 Total

If SSRegression 18 large in comparison to SSgegiqual, the
relationship between the x-variable and the y-variable is
a strong one. It means that, throughout the scatterplot,
the variability around the regression line is small.

On the other hand, if SSpegregssion 18 SMall in comparison
to SSgesiqual, the relationship between the x-variable and
the y-variable is weak. In this case, the variability around
the regression line is large throughout the scatterplot.
One way to test SSgegression @gainst SSgegiquar 1S to divide
each by its degrees of freedom (1 for SSgegression @and N-2
for SSgesiquap) to form variance estimates (also known as

mean-squares, or MS), and then divide one by the other
to calculate an F. If MSgggression 18 Significantly larger

than MSgpeqigua, YOU have evidence that the x-y
relationship is strong (see Chapter 14 for details).

Here’s the clincher, as far as correlation is concerned:
Another way to assess the size of SSgegression 1S tO

compare it with SSt;,. Divide the first by the second. If
the ratio is large, this tells you the x-y relationship is
strong. This ratio has a name. It’s called the coefficient
of determination. Its symbol is . Take the square root of

this coefficient, and you have ... the correlation
coefficient!



S8

w7t Regression
Sﬂ'l'uml
The plus-or-minus sign (+) means that ris either the

positive or negative square root, depending on whether
the slope of the regression line is positive or negative.

So, if you calculate a correlation coefficient and you
quickly want to know what its value signifies, just square
it. The answer — the coefficient of determination — lets
you know the proportion of the SSt;,, that's tied up in

the relationship between the x-variable and the y-
variable. If it’s a large proportion, the correlation
coefficient signifies a strong relationship. If it’s a small
proportion, the correlation coefficient signifies a weak
relationship.

In the Aptitude-Performance example, the correlation
coefficient is .783. The coefficient of determination is

ré=(.783)" =.613
In this sample of 16 consultants, the SSgegression 1S 61.3

percent of the SSt,.,. Sounds like a large proportion, but

what’s large? What’s small? Those questions scream out
for hypothesis tests.

Testing Hypotheses About
Correlation

In this section, I show you how to answer important
questions about correlation. Like any other kind of
hypothesis testing, the idea is to use sample statistics to
make inferences about population parameters. Here, the
sample statistic is r, the correlation coefficient. By
convention, the population parameter is p (rho), the



Greek equivalent of r. (Yes, it does look like the letter p,
but it really is the Greek equivalent of r)

Two kinds of questions are important in connection with
correlation:

» Is a correlation coefficient greater than 07?

» Are two correlation coefficients different from one
another?

Is a correlation coefficient greater

than zero?

Returning once again to the Aptitude-Performance
example, you can use the sample r to test hypotheses
about the population p — the correlation coefficient for
all consultants at FarMisht Consulting.

Assuming that you know in advance (before you gather
any sample data) that any correlation between Aptitude
and Performance should be positive, the hypotheses are

Hy: p=0
Hl . I,r?}{]
Set a = .05.

The appropriate statistical test is a t-test. The formula is

t="——L
&

r

This test has N-2 df.

For the example, the values in the numerator are set: ris
.783 and p (in Hy) is 0. What about the denominator? I

won’t burden you with the details. I'll just tell you that’s




With a little algebra, the formula for the t-test simplifies
to

. rJN=-2
Jl=r®
For the example,
Ir_“:_:' L) "_-l'
‘e r+ N 2 _ 183416 .3 4707
JI-r?  41-.7832

With df = 14 and a = .05 (one-tailed), the critical value
of t is 1.76. Because the calculated value is greater than
the critical value, the decision is to reject Hy,.

Do two correlation coefficients
differ?

FarKlempt Robotics has a consulting branch that
assesses aptitude and performance with the same
measurement tools that FarMisht Consulting uses. In a
sample of 20 consultants at FarKlempt Robotics, the
correlation between Aptitude and Performance is .695. Is
this different from the correlation (.783) at FarMisht
Consulting? If you have no way of assuming that one
correlation should be higher than the other, the
hypotheses are

Ho : Prarvishe = Prarklempt
Hi: Orarmisne # Prarklempt
Again, o = .05.
For highly technical reasons, you can’t set up a t-test for

this one. In fact, you can’t even work with .783 and .695,
the two correlation coefficients.

Instead, what you do is transform each correlation
coefficient into something else and then work with the



two “something elses” in a formula that gives you —
believe it or not — a z-test.

5
ture - The transformation is called Fisher’s r to z
transformation. Fisher is the statistician who is
remembered as the F in F-test. He transforms the r

into a z by doing this:
Z, = %[lngt.{l+r J=log,.(1=r)]

If you know what log, means, fine. If not, don’t worry

about it. (I explain it in Chapter 16.) R takes care of all of
this for you, as you see in a moment.

Anyway, for this example

Z 7gs = %[1%,( 1+.783) ~log, (1-.783)] = 1.0530

Z s = é[lug,,q1+.ﬁ£151—1ug,,{ 1-.695)]=0.8576

After you transform r to z, the formula is

Gr-l =

The denominator turns out to be easier than you might
think. It’s

[
s TN -3 TN, -3

For this example,

I I 1 [ o
Taz :JNl—:‘.‘.JrNE-:?. =\/]H—f§+2ﬂ—.‘l =308

The whole formula is




_zy-z, L10530-0.8576 .

Z = - = 368 =.531
The next step is to compare the calculated value to a
standard normal distribution. For a two-tailed test with «
= .05, the critical values in a standard normal
distribution are 1.96 in the upper tail and -1.96 in the
lower tail. The calculated value falls between those two,
so the decision is to not reject Hy,.

=) R

Correlation in R

In this section, I work with the FarMisht example. The
data frame, FarMisht.frame, holds the data points shown
over in Table 14-4 (from Chapter 14). Here’s how I
created it:

Aptitude <- c(45, 81, 65, 87, 68, 91, 77, 61, 55, 66, 82, 93,
76, 83, 61, 74)

Performance <- c(56, 74, 56, 81, 75, 84, 68, 52, 57, 82, 73, 90,
67, 79, 70, 66)

Personality <- c(9, 15, 11, 15, 14, 19, 12, 10, 9, 14, 15, 14,
16, 18, 15, 12)

FarMisht.frame <- data.frame(Aptitude, Performance, Personality)

Calculating a correlation coefficient
To find the correlation coefficient for the relationship
between Aptitude and Performance, I use the function
cor():

> with(FarMisht.frame, cor(Aptitude,Performance))
[1] 0.7827927

5
"stee - The Pearson product-moment correlation
coefficient that cor() calculates in this example is the

default for its method argument:



cor(Farmisht.frame, method = "pearson")

Two other possible values for method are "spearman" and
"kendall", which I cover in Appendix B.

Testing a correlation coefficient

To find a correlation coefficient — and test it at the same
time — R provides cor.test(). Here's a one-tailed test
(specified by alternative = "greater"):

> with(FarMisht.frame, cor.test(Aptitude,Performance,
alternative = "greater"))

Pearson's product-moment correlation

data: Aptitude and Performance
t = 4.7068, df = 14, p-value = 0.0001684
alternative hypothesis: true correlation is greater than 0
95 percent confidence interval:
0.5344414 1.0000000
sample estimates:
cor
0.7827927

T —
%7
TECHMNICAL

sture - AS is the case with cor(), you can specify "spearman”
or "kendall" as the method for cor.test().

Testing the difference between two

correlation coefficients

In the earlier section “Do two correlation coefficients
differ?” I compare the Aptitude-Performance correlation
coefficient (.695) for 20 consultants at FarKlempt
Robotics with the correlation (.783) for 16 consultants at
FarMisht Consulting.

The comparison begins with Fisher's rto z
transformation for each coefficient. The test statistic (Z)



is the difference of the transformed values divided by the
standard error of the difference.

A function called r.test() does all the work if you provide
the coefficients and the sample sizes. This function lives
in the psych package, so on the Packages tab, click Insert.
Then, in the Insert Packages dialog box, type psych and
click Install. When psych appears on the Packages tab,
select its check box.

Here's the function, and its arguments:

r.test(rl2=.783, n=16, r34=.695, n2=20)

This one is pretty particular about how you state the
arguments. The first argument is the first correlation
coefficient. The second is its sample size. The third
argument is the second correlation coefficient, and the
fourth is its sample size. The 12 label for the first
coefficient and the 34 label for the second indicate that
the two coefficients are independent.

If you run that function, this is the result:

Correlation tests

Call:r.test(n = 16, r12 = 0.783, r34 = 0.695, n2 = 20)

Test of difference between two independent correlations
z value 0.53 with probability 0.6

Calculating a correlation matrix

In addition to finding a single correlation coefficient,
cor() can find all the pairwise correlation coefficients for
a data frame, resulting in a correlation matrix:

> cor(FarMisht. frame)
Aptitude Performance Personality

Aptitude 1.0000000 0.7827927 0.7499305
Performance 0.7827927 1.0000000 0.7709271
Personality 0.7499305 0.7709271 1.0000000

Visualizing correlation matrices



In Chapter 3, I describe a couple of ways to visualize a
matrix like the one in the preceding section. Here's how
to do it with base R graphics:

pairs(FarMisht.frame)

This function produces Figure 15-4.

Aptitude - . P r®
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FIGURE 15-4: The correlation matrix for Aptitude, Performance, and
Personality, rendered in base R graphics.

The main diagonal, of course, holds the names of the
variables. Each off-diagonal cell is a scatterplot of the
pair of variables named in the row and the column. For
example, the cell to the immediate right of Aptitude is
the scatterplot of Aptitude (y-axis) and Performance (x-
axis). The cell just below Aptitude is the reverse — it’s
the scatterplot of Performance (y-axis) and Aptitude (x-
axis).



As I also mention in Chapter 3, a package called GGally
(built on ggplot2) provides ggpairs(), which produces a
bit more. Find GGally on the Packages tab and select its
check box. Then

ggpairs(FarMisht.frame)

draws Figure 15-5.
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FIGURE 15-5: The correlation matrix for Aptitude, Performance, and
Personality, rendered in GGally (a ggplot2-based package).

The main diagonal provides a density function for each
variable, the upper off-diagonal cells present the
correlation coefficients (and their significance levels),
and the remaining cells show pairwise scatterplots.

More elaborate displays are possible with the corrgram
package. On the Packages tab, click Install, and in the
Install dialog box, type corrgram and click Install. Then,
on the Packages tab, find corrgram and select its check

box.



The corrgram() function works with a data frame and
enables you to choose options for what goes into the
main diagonal (diag.panel) of the resulting matrix, what
goes into the cells in the upper half of the matrix
(upper.panel), and what goes into the cells in the lower
half of the matrix (lower.panel). For the main diagonal, I
chose to show the minimum and maximum values for
each variable. For the upper half, I specified a pie chart
to show the value of a correlation coefficient: The filled-
in proportion represents the value. For the lower half, I'd

like a scatterplot in each cell:

corrgram(FarMisht.frame, diag.panel=panel.minmax,
upper.panel = panel.pie,
lower.panel = panel.pts)

The result is Figure 15-6.
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FIGURE 15-6: The correlation matrix for Aptitude, Performance, and
Personality, rendered in the corrgram package.




Multiple Correlation

The correlation coefficients in the correlation matrix
described in the preceding section combine to produce a
multiple correlation coefficient. This is a number that
summarizes the relationship between the dependent
variable — Performance, in this example — and the two
independent variables (Aptitude and Personality).

To show you how these correlation coefficients combine,
I abbreviate Performance as P, Aptitude as A, and
Personality as F (FarMisht Personality Inventory). So rp,

is the correlation coefficient for Performance and
Aptitude (.7827927), rpg is the correlation coefficient for
Performance and Personality (.7709271), and ryr is the
correlation coefficient for Aptitude and Personality
(.7499305).

Here’s the formula that puts them all together:

Rp s = \]*‘ffﬁ + i = 2rpAT P ap
: I -rip

The uppercase R on the left indicates that this is a
multiple correlation coefficient, as opposed to the
lowercase r, which indicates a correlation between two
variables. The subscript PAF means that the multiple
correlation is between Performance and the combination
of Aptitude and Personality.

For this example,

=.8306841

o [(7827927)°+ (7709271)° -2(.7827927)(.7709271)(.7499305)
A 1-(.7499305)*

If you square this number, you get the multiple
coefficient of determination. In Chapter 14, you met




Multiple R-Squared, and that’s what this is. For this
example, that result is

R i =(.830641)" =.6900361

Multiple correlation in R
The easiest way to calculate a multiple correlation

coefficient is to use im() and proceed as in multiple
regression:

> FarMisht.multreg <- lm(Performance ~ Aptitude + Personality,
data = FarMisht.frame)
> summary(FarMisht.multreg)

Call:
Im(formula = Performance ~ Aptitude + Personality, data =
FarMisht. frame)

Residuals:
Min 1Q Median 3Q Max
-8.689 -2.834 -1.840 2.886 13.432
Coefficients:
Estimate Std. Error t value Pr(>|t]|)
(Intercept) 20.2825 9.6595 2.100 0.0558 .
Aptitude 0.3905 0.1949 2.003 0.0664 .
Personality 1.6079 0.8932 1.800 0.0951 .
Signif. codes: 0 '***' 0,001 '**' @.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6.73 on 13 degrees of freedom

Multiple R-squared: 0.69, Adjusted R-squared: 0.6423

F-statistic: 14.47 on 2 and 13 DF, p-value: 0.0004938
In the next-to-last line, Multiple R-squared is right there,
waiting for you.

If you have to work with that quantity for some reason,
that’s

> summary(FarMisht.multreg)$r.squared
[1] 0.6900361

And to calculate R:



> Mult.R.sq <- summary(FarMisht.multreg)$r.squared
> Mult.R <- sqrt(Mult.R.sq)

> Mult.R

[1] 0.8306841

Adjusting R-squared
In the output of wm(), you see Adjusted R-squared. Why is
it necessary to “adjust” R-squared?

In multiple regression, adding independent variables
(like Personality) sometimes makes the regression
equation less accurate. The multiple coefficient of
determination, R-squared, doesn't reflect this. Its
denominator is SS,:, (for the dependent variable), and

that never changes. The numerator can only increase or
stay the same. So any decline in accuracy doesn’t result
in a lower R-squared.

Again, you’d never do this — you have to run im() in
order to calculate the coefficients, and after you've done
that, you already have everything you need. I just
thought this might help you understand multiple R.

ANOTHER LOOK AT MULTIPLE
CORRELATION

Now I'm going to use R (the statistics software) as a teaching tool to show
you what | said earlier about R (the multiple correlation coefficient): R (the
coefficient) is the correlation between the dependent variable and the
combination of the two independent variables.

You would never do this in practice, but here goes: | set up a correlation
between Performance and the combination of Aptitude and Personality. The
important thing is to weight these variables by their coefficients (as
determined by im()):

> with(FarMisht.frame, cor(Performance, .390519*Aptitude +
1.607918*Personality))
[1] 0.8306841




Taking degrees of freedom into account fixes the flaw.
Every time you add an independent variable, you change
the degrees of freedom, and that makes all the
difference. Just so you know, here’s the adjustment:
< etord P2 _1_(1_ p2? (N-1)

Adjusted R* =1-(1-R ){m}
The k in the denominator is the number of independent
variables.

If you ever have to work with this quantity (and I'm not
sure why you would), here’s how to retrieve it:

> summary(FarMisht.multreg)$adj.r.squared
[1] 0.6423494

Partial Correlation

Performance and Aptitude are associated with
Personality (in the example). Each one’s association with
Personality might somehow hide the true correlation
between them.

What would their correlation be if you could remove that
association? Here’s another way to ask this: What would
be the Performance-Aptitude correlation if you could
hold Personality constant?

One way to hold Personality constant is to find the
Performance-Aptitude correlation for a sample of
consultants who have one Personality score — 17, for
example. In a sample like this, the correlation of each
variable with Personality is 0. This usually isn’t feasible
in the real world, however.

Another way is to find the partial correlation between
Performance and Aptitude. This is a statistical way of
removing each variable’s association with Personality in



your sample. You use the correlation coefficients in the
correlation matrix to do this:

FRAF = =7 [EA_PITAF
VI=rpg \frl =T AF
Once again, P stands for Performance, A for Aptitude,
and F for Personality. The subscript PA.F means that the

correlation is between Performance and Aptitude with
Personality “partialed out.”

For this example,
T827927 - (.7709271)(.7499305)

, ; J — 4857198
1-(.7709271)° J1 —(.7499305)*
N (

Fpar =

Partial Correlation in R

A package called ppcor holds the functions for calculating
partial correlation and for calculating semipartial
correlation, which I cover in the next section.

On the Packages tab, click Install. In the Install Packages
dialog box, type ppcor and then click Install. Next, find
ppcor in the Packages dialog box and select its check box.

The function pcor.test() calculates the correlation
between Performance and Aptitude with Personality
partialed out:

> with (FarMisht.frame, pcor.test(x=Performance, y=Aptitude,
z=Personality))
estimate p.value statistic n gp Method
1 0.4857199 0.06642269 2.0035 16 1 pearson

In addition to the correlation coefficient (shown below
estimate), it calculates a t-test of the correlation with N-3
df (shown below statistic) and an associated p-value.

If you prefer to calculate all possible partial correlations
(and associated p-values and t-statistics) in the data



frame, use pcor():

> pcor(FarMisht. frame)

estimate p.value statistic n gp Method

1 0.4857199 0.06642269 2.0035 16 1 pearson
> pcor(FarMisht. frame)
$estimate

Aptitude Performance Personality
Aptitude 1.0000000 0.4857199 0.3695112
Performance 0.4857199 1.0000000 0.4467067
Personality 0.3695112 0.4467067 1.0000000
$p.value

Aptitude Performance Personality
Aptitude 0.00000000 0.06642269 0.17525219
Performance 0.06642269 0.00000000 0.09506226
Personality 0.17525219 0.09506226 0.00000000
$statistic

Aptitude Performance Personality

Aptitude 0.000000 2.003500 1.433764
Performance 2.003500 0.000000 1.800222
Personality 1.433764 1.800222 0.000000
$n
[1] 16
$9p
[1] 1
$method

[1] "pearson"

Each cell under $estimate is the partial correlation of the
cell's row variable with the cell’s column variable, with
the third variable partialed out. If you have more than
three variables, each cell is the row-column partial
correlation with everything else partialed out.

Semipartial Correlation

It’s possible to remove the correlation with Personality
from just Aptitude without removing it from
Performance. This is called semipartial correlation. The



formula for this one also uses the correlation coefficients
from the correlation matrix:

_ Tpy =Tprlar
FpAp) = — /= —
I—FM.-

The subscript P(A.F) means that the correlation is
between Performance and Aptitude with Personality
partialed out of Aptitude only.

Applying this formula to the example,
827927 - (.7709271)(.7499305)

, = 3093663
J1-(.7499305)°

Fepary =

rememeer SOMeE Statistics textbooks refer to semipartial
correlation as part correlation.

Semipartial Correlation in
R

As I mention earlier in this chapter, the ppcor package
has the functions for calculating semipartial correlation.
To find the semipartial correlation between Performance
and Aptitude with Personality partialed out of Aptitude
only, use spcor.test():

> with (FarMisht.frame, spcor.test(x=Performance, y=Aptitude,
z=Personality))
estimate p.value statistic n gp Method
1 0.3093664 0.2618492 1.172979 16 1 pearson

As you can see, the output is similar to the output for
pcor.test(). Again, estimate is the correlation coefficient
and statistic is a t-test of the correlation coefficient with
N-3 df.



> spcor(FarMisht.frame)

To find the semipartial correlations for the whole data
frame, use spcor():

$estimate

Aptitude Performance Personality
Aptitude 1.0000000 0.3213118 0.2299403
Performance 0.3093664 1.0000000 0.2779778
Personality 0.2353503 0.2955039 1.0000000
$p.value

Aptitude Performance Personality
Aptitude 0.0000000 0.2429000 0.4096955
Performance 0.2618492 0.0000000 0.3157849
Personality 0.3984533 0.2849315 0.0000000
$statistic

Aptitude Performance Personality
Aptitude 0.0000000 1.223378 0.8518883
Performance 1.1729794 0.000000 1.0433855
Personality 0.8730923 1.115260 0.0000000
$n
[1] 16
$gp
[1] 1
$method

[1] "pearson"

Notice that, unlike the matrices in the output for pcor(),
in these matrices the numbers above the diagonal are
not the same as the numbers below the diagonal.

The easiest way to explain is with an example. In the
$estimate matrix, the value in the first column, second
row (0.3093364) is the correlation between Performance
(the row variable) and Aptitude (the column variable)
with Personality partialed out of Aptitude. The value in
the second column, first row (0.3213118) is the correlation
between Aptitude (which is now the row variable) and
Performance (which is now the column variable) with
Personality partialed out of Performance.



What happens when you have more than three variables?
In that case, each cell value is the row-column

correlation with everything else partialed out of the
column variable.



Chapter 16

Curvilinear Regression:
When Relationships Get
Complicated

IN THIS CHAPTER
» Understanding exponents

» Connecting logarithms to regression
» Pursuing polynomials

In Chapters 14 and 15, I describe linear regression and
correlation — two concepts that depend on the straight
line as the best-fitting summary of a scatterplot.

But a line isn’t always the best fit. Processes in a variety
of areas, from biology to business, conform more to
curves than to lines.

For example, think about when you learned a skill — like
tying your shoelaces. When you first tried it, it took quite
a while didn’t it? And then whenever you tried it again, it
took progressively less time for you to finish, right? Until
finally, you can tie your shoelaces very quickly but you
can’t really get any faster — you’re now doing it as
efficiently as you can.

If you plotted shoelace-tying-time (in seconds) on the y-
axis and trials (occasions when you tried to tie your
shoes) on the x-axis, the graph might look something like
Figure 16-1. A straight line is clearly not the best
summary of a plot like this.
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FIGURE 16-1: Hypothetical plot of learning a skill — like tying your shoelaces.

How do you find the best-fitting curve? (Another way to
say this: “How do you formulate a model for these
data?”) I'll be happy to show you, but first I have to tell
you about logarithms, and about an important number

called e.

Why? Because those concepts form the foundation of
three kinds of nonlinear regression.

What Is a Logarithm?

Plainly and simply, a logarithm is an exponent — a power
to which you raise a number. In the equation

10° =100

2 is an exponent. Does that mean that 2 is also a
logarithm? Well ... yes. In terms of logarithms,

log ;100 =2



That’s really just another way of saying 102 = 100.
Mathematicians read it as “the logarithm of 100 to the
base 10 equals 2.” It means that if you want to raise 10
to some power to get 100, that power is 2.

How about 1,000? As you know

107 = 1000
SO

log,, 1000 = 3

How about 763? Uh... . Hmm... . That’s like trying to
solve

10" =763

What could that answer possibly be? The term 102 means
10 x 10 and that gives you 100; 103 means 10 x 10 x 10
and that’s 1,000. But 7637

Here’s where you have to think outside the dialog box.
You have to imagine exponents that aren’t whole
numbers. I know, I know: How can you multiply a
number by itself a fraction at a time? If you could,
somehow, the number in that 763 equation would have
to be between 2 (which gets you to 100) and 3 (which
gets you to 1,000).

In the 16th century, the mathematician John Napier
showed how to do it, and logarithms were born. Why did
Napier bother with this? One reason is that it was a
great help to astronomers. Astronomers have to deal
with numbers that are, well, astronomical. Logarithms
ease computational strain in a couple of ways. One way
is to substitute small numbers for large ones: The
logarithm of 1,000,000 is 6, and the logarithm of
100,000,000 is 8. Also, working with logarithms opens up
a helpful set of computational shortcuts. Before



calculators and computers appeared on the scene, this
was a very big deal.

Incidentally,
10%%5% ~ 763
which means that
log,, 763 = 2.882525
You can use R’s 10g10() function to check that out:

> 10g10(763)
[1] 2.882525

If you reverse the process, you'll see that

> 1072.882525
[1] 763.0008

So 2.882525 is a tiny bit off, but you get the idea.

A bit earlier, I mention “computational shortcuts” that
result from logarithms. Here’s one: If you want to
multiply two numbers, add their logarithms and then find
the number whose logarithm is the sum. That last part is
called “finding the antilogarithm.” Here’s a quick
example: To multiply 100 by 1,000:

log, (100) +1og,, (1000) =
2+3=5
antilog ;(5) = 10 = 100,000

Here’s another computational shortcut: Multiplying the

logarithm of a number x by a number b corresponds to
raising x to the b power.

Ten, the number that’s raised to the exponent, is called
the base. Because it’s also the base of our number
system and everyone is familiar with it, logarithms of
base 10 are called common logarithms. And, as you just
saw, a common logarithm in R is log1le.



Does that mean you can have other bases? Absolutely.
Any number (except 0 or 1 or a negative number) can be
a base. For example,

7.8 = 60.84
So
log- s 60.84 =2
And you can use R’s log() function to check that out:
> log(60.84,7.8)
[1] 2

In terms of bases, one number is special ...

What Is e?

Which brings me to e, a constant that's all about growth.

Imagine the princely sum of $1 deposited in a bank
account. Suppose that the interest rate is 2 percent a
year. (Yes, this is just an example!) If it’s simple interest,
the bank adds $.02 every year, and in 50 years you have

$2.

If it’s compound interest, at the end of 50 years you have
(1 + .02)%% — which is just a bit more than $2.68,
assuming that the bank compounds the interest once a
year.

Of course, if the bank compounds interest twice a year,
each payment is $.01, and after 50 years the bank has
compounded it 100 times. That gives you (1 + .01)190 or
just over $2.70. What about compounding it four times a
year? After 50 years — 200 compoundings — you have (1
+ .005)290 which results in the don’t-spend-it-all-in-one-
place amount of $2.71 and a tiny bit more.



Focusing on “just a bit more” and “a tiny bit more” and
taking it to extremes, after 100,000 compoundings, you
have $2.718268. After 100 million, you have $2.718282.

If you could get the bank to compound many more times
in those 50 years, your sum of money approaches a limit
— an amount it gets ever so close to but never quite
reaches. That limit is e.

The way I set up the example, the rule for calculating the
amount is

(1+(2)

where n represents the number of payments. Two cents
is 1/50th of a dollar and I specified 50 years — 50
payments. Then I specified two payments a year (and
each year’s payments have to add up to 2 percent) so
that in 50 years you have 100 payments of 1/100th of a
dollar, and so on.

To see this concept in action,

X <- c(seq(1,10,1),50,100,200,500,1000,10000,100000000)
>y <- (14+(1/x))"™x
> data.frame(x,y)
X y
le+00 2.000000
2e+00 2.250000
3e+00 2.370370
4e+00 2.441406
5e+00 2.488320
6e+00 2.521626
7e+00 2.546500
8e+00 2.565785
2
2
2
2
2
2
2
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9e+00 2.581175
10 le+01 2.593742
11 5e+01 2.691588
12 1e+02 2.704814
13 2e+02 2.711517
14 5e+02 2.715569
15 1le+03 2.716924



16 le+04 2.718146

17 1le+08 2.718282
So e is associated with growth. Its value is 2.718282... .
The ellipsis (the three dots at the end) means that you
never quite get to the exact value (like 1, the constant
that enables you to find the area of a circle).

The number e pops up in all kinds of places. It’s in the
formula for the normal distribution (along with 11; see
Chapter 8), and it’s in distributions I discuss in Chapter
18 and Online Appendix A. Many natural phenomena are
related to e.

It’s so important that scientists, mathematicians, and
business analysts use it as a base for logarithms.
Logarithms to the base e are called natural logarithms.
In many textbooks, a natural logarithm is abbreviated as
In. In R, it’s 1log.

Table 16-1 presents some comparisons (rounded to three
decimal places) between common logarithms and natural
logarithms.

TABLE 16-1 Some Common Logarithms
(Logl0) and Natural Logarithms (Log)

Number Logl0 Log

e 0.434 1.000
10 1.000 2.303
50 1.699 3.912
100 2.000 4.605
453 2.656 6.116

1000 3.000 6.908

One more thing: In many formulas and equations, it’s
often necessary to raise e to a power. Sometimes the



power is a fairly complicated mathematical expression.
Because superscripts are usually printed in a small font,
it can be a strain to have to constantly read them. To
ease the eyestrain, mathematicians have invented a
special notation: exp. Whenever you see exp followed by
something in parentheses, it means to raise e to the
power of whatever’s in the parentheses. For example,

exp(1.6) =e'® =4.953032
R’s exp() function does that calculation for you:

> exp(1.6)

[1] 4.953032
Applying the exp() function with natural logarithms is like
finding the antilog with common logarithms.

Speaking of raising e, when executives at Google, Inc.,
filed its IPO, they said they wanted to raise
$2,718,281,828, which is e times a billion dollars
rounded to the nearest dollar.

And now ... back to curvilinear regression.

Power Regression

Biologists have studied the interrelationships between
the sizes and weights of parts of the body. One
fascinating relationship is the relation between body
weight and brain weight. One way to study this is to
assess the relationship across different species.
Intuitively, it seems like heavier animals should have
heavier brains — but what's the exact nature of the
relationship?

In the MASS package, you’ll find a data frame called Animals
that contains the body weights (in kilograms) and brain
weights (in grams) of 28 species. (To follow along, start
by clicking Install on the Package tab. Then, in the Install



Packages dialog box, type MASS. When MASS appears on
the Packages tab, select its check box.)

The first six rows of Animals are

> head(Animals)

body brain
Mountain beaver 1.35 8.1
Cow 465.00 423.0
Grey wolf 36.33 119.5
Goat 27.66 115.0
Guinea pig 1.04 5.5
Dipliodocus 11700.00 50.0

Have you ever seen a dipliodocus? No? Outside of a
natural history museum, no one else has, either. In
addition to this dinosaur in row 6, Animals has triceratops
in row 16 and brachiosaurus in row 26. Here, I'll show
you:

> Animals[c(6,16,26), ]

body brain
Dipliodocus 11700 50.0

Triceratops 9400 70.0
Brachiosaurus 87000 154.5

To confine your work to living species, create

> Animals.living <- Animals[-c(6,16,26),]

which causes those three dinosaurs to vanish from the
data frame as surely as they have vanished from the face
of the earth.

Let’s take a look at the data points. This code snippet

ggplot(Animals.living, aes(x=body, y=brain))+
geom_point()

produces Figure 16-2. Note that the idea is to use body
weight to predict brain weight.
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FIGURE 16-2: The relationship between body weight and brain weight for 25

animal species.

Doesn’t look much like a linear relationship, does it? In
fact, it’s not. Relationships in this field often take the
form

¥ b
v =ax

rememeer BeCause the independent (predictor) variable x
(body weight, in this case) is raised to a power, this
type of model is called power regression.

R doesn’t have a specific function for creating a power
regression model. Its im() function creates linear models,
as described in Chapter 14. But you can use m() in this
situation: You have to somehow transform the data so




that the relationship between the transformed body
weight and the transformed brain weight is linear.

And this is why I told you about logarithms.

You can “linearize” the scatterplot by working with the
logarithm of the body weight and the logarithm of the

brain weight. Here's some code to do just that. For good

measure, I'll throw in the animal name for each data

point:

ggplot(Animals.living, aes(x=log(body), y=log(brain)))+

geom_point()+
geom_text(aes(label=rownames (Animals.living)))

Figure 16-3 shows the result.
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FIGURE 16-3: The relationship between the log of body weight and the log of

brain weight for 25 animal species.




I'm surprised by the closeness of donkey and gorilla, but
maybe my concept of gorilla comes from King Kong.
Another surprise is the closeness of horse and giraffe.

Anyway, you can fit a regression line through this
scatterplot. Here’s the code for the plot with the line and
without the animal names:

ggplot(Animals.living, aes(x=log(body), y=log(brain)))+

geom_point()+

geom _smooth(method = "1m",se=FALSE)
The first argument in the last statement (method = "1m")
fits the regression line to the data points. The second
argument (se=FALSE) prevents ggplot() from plotting the
95 percent confidence interval around the regression
line. These lines of code produce Figure 16-4.

bran)

log(bady)

FIGURE 16-4: The relationship between the log of body weight and the log of
brain weight for 25 animal species, with a regression line.




This procedure — working with the log of each variable
and then fitting a regression line — is exactly what to do
in a case like this. Here's the analysis:

powerfit <- lm(log(brain) ~ log(body), data = Animals.living)

As always, lmn() indicates a linear model, and the
dependent variable is on the left side of the tilde (~) with
the predictor variable on the right side. After you run the
analysis, run summary() to see the results.

> summary (powerfit)
Call:
Im(formula = log(brain) ~ log(body), data = Animals.living)

Residuals:
Min 1Q Median 3Q Max
-0.9125 -0.4752 -0.1557 0.1940 1.9303

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 2.15041 0.20060 10.72 2.03e-10 ***
log (body) 0.75226 0.04572  16.45 3.24e-14 ***

Signif. codes: 0 '***' 0,001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1

Residual standard error: 0.7258 on 23 degrees of freedom

Multiple R-squared: 0.9217, Adjusted R-squared: 0.9183

F-statistic: 270.7 on 1 and 23 DF, p-value: 3.243e-14
The high value of F (270.7) and the extremely low p-
value let you know that the model is a good fit.

The coefficients tell you that in logarithmic form, the
regression equation is

log(v')=log(a+bx)

log( brainweight’ ) = log( 2.15041 +(.75226 x bodyweight ) )
For the power regression equation, you have to take the
antilog of both sides. As I mention earlier, when you're

working with natural logarithms, that’s the same as
applying the exp() function:



exp(log( vy ))=exp(log(a+bx))
v =expla)x’

brainweight” = exp(2.15041) x bodyweight "***°

To226

brainweight’ = 8.588397 x bodyweight

All this is in keeping with what I say earlier in this
chapter:

» Adding the logarithms of numbers corresponds to
multiplying the numbers.

» Multiplying the logarithm of x by b corresponds to
raising x to the b power.

Here’s how to use R to find the exp of the intercept:

> a <- exp(powerfit$coefficients[1])
> a
(Intercept)
8.588397
You can plot the power regression equation as a curve in

the original scatterplot:

ggplot(Animals.living, aes(x=body, y=brain))+
geom_point()+
geom_line(aes(y=exp(powerfit$fitted.values)))

That last statement is the business end, of course:
powerfit$fitted.values contains the predicted brain
weights in logarithmic form, and applying exp() to those
values converts those predictions to the original units of
measure. You map them to y to position the curve. Figure
16-5 shows the plot.
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FIGURE 16-5: Original plot of brain weights and body weights of 25 species,
with the power regression curve.

Exponential Regression

As I mention earlier, e figures into processes in a variety
of areas. Some of those processes, like compound
interest, involve growth. Others involve decay.

Here's an example. If you’'ve ever poured a glass of beer
and let it stand, you might have noticed that the head
gets smaller and smaller (it “decays,” in other words) as
time passes. You haven’t done that? Okay. Go ahead and
pour a tall, cool one and watch it for six minutes. I'll
wait.

... And we’re back. Was I right? Notice that I didn’t ask
you to measure the height of the head as it decayed.



Physicist Arnd Leike did that for us for three brands of
beer.

He measured head-height every 15 seconds from 0 to
120 seconds after pouring the beer, and then every 30
seconds from 150 seconds to 240 seconds, and, finally, at
300 seconds and 360 seconds. (In the true spirit of
science, he then drank the beer.) Here are those
intervals as a vector:

seconds.after.pour <- c(seq(0,120,15), seq(150,240,30),
c(300,360))

and here are the measured head-heights (in centimeters)
for one of those brands:

head.cm <- c(17, 16.1, 14.9, 14, 13.2, 12.5, 11.9, 11.2, 10.7,
9.7, 8.9, 8.3, 7.5, 6.3, 5.2)

I combine these vectors into a data frame:

beer.head <- data.frame(seconds.after.pour,head.cm)

Let’s see what the plot looks like. This code snippet

ggplot(beer.head, aes(x=seconds.after.pour,y=head.cm))+
geom_point()

produces Figure 16-6.
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FIGURE 16-6: How beer head-height (head.cm) decays over time.

This one is crying out (in its beer?) for a curvilinear
model, isn’t it?

One way to linearize the plot (so that you can use 1m() to
create a model) is to work with the log of the y-variable:

ggplot(beer.head, aes(x=
seconds.after.pour,y=log(head.cm)))+
geom_point()+
geom_smooth(method="1m", se=FALSE)
The last statement adds the regression line (method =
"1m") and doesn't draw the confidence interval around

the line (se = FALSE). You can see all this in Figure 16-7.
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FIGURE 16-7: How log(head.cm) decays over time, including the regression line.

As in the preceding section, creating this plot points the
way for carrying out the analysis. The general equation
for the resulting model is

y' =ae™

Because the predictor variable appears in an exponent
(to which e is raised), this is called exponential
regression.

And here's how to do the analysis:

expfit <- Im(log(head.cm) ~ seconds.after.pour,
data = beer.head)

Once again, lm() indicates a linear model, and the
dependent variable is on the left side of the tilde (~), with
the predictor variable on the right side. After running the
analysis, summary() shows the details.



> summary (expfit)

Call:

Im(formula = log(head.cm) ~ seconds.after.pour, data =
beer.head)

Residuals:
Min 1Q Median 3Q Max
-0.031082 -0.019012 -0.001316 0.017338 0.047806

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 2.785e+00 1.110e-02 250.99 < 2e-16 ***
seconds.after.pour -3.223e-03 6.616e-05 -48.72 4.2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.601 '*' 0.05 '.' 0.1 ' '1

Residual standard error: 0.02652 on 13 degrees of freedom

Multiple R-squared: 0.9946, Adjusted R-squared: 0.9941

F-statistic: 2373 on 1 and 13 DF, p-value: 4.197e-16
The F and p-value show that this model is a
phenomenally great fit. The R-squared is among the
highest you’ll ever see. In fact, Arnd did all this to show
his students how an exponential process works. [If you
want to see his data for the other two brands, check out
Leike, A. (2002), “Demonstration of the exponential
decay law using beer froth,” European Journal of
Physics, 23(1), 21-26.]

According to the coefficients, the regression equation in
logarithmic form is

log( vy )=a+bx

log( head.cm') = 2,785 +(( —.003223 ) x seconds.after.pour)

For the exponential regression equation, you have to
take the exponential of both sides — in other words, you
apply the exp() function:



exp(log(y’))=expla+bx)
vy =exp(a)e™
head.cm’ = EX[](E THE_} ¥ & 0322 3seconds.alter.pour

head.cm’ = 16.20642 x W& seconds.alter pour
Analogous to what you did in the preceding section, you
can plot the exponential regression equation as a curve
in the original scatterplot:

ggplot(beer.head, aes(x= seconds.after.pour,y=head.cm))+

geom _point()+

geom_line(aes(y=exp(expfit$fitted.values)))
In the last statement, expfit$fitted.values contains the
predicted beer head-heights in logarithmic form, and
applying exp() to those values converts those predictions
to the original units of measure. Mapping them to y
positions the curve for you. Figure 16-8 shows the plot.
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FIGURE 16-8: The decay of head.cm over time, with the exponential regression
curve.

Logarithmic Regression

In the two preceding sections, I explain how power
regression analysis works with the log of the x-variable
and the log of the y-variable, and how exponential
regression analysis works with the log of just the y-
variable. As you might imagine, one more analytic
possibility is available to you: working with just the log of
the x-variable. The equation of the model looks like this:

v =a+blog(x)

Because the logarithm is applied to the predictor
variable, this is called logarithmic regression.

Here's an example that uses the Cars93 data frame in the
MASS package. (Make sure you have the MASS package
installed. On the Packages tab, find the MASS check box
and, if it's not selected, click it.)

This data frame, featured prominently in Chapter 3,
holds data on a number of variables for 93 cars in the
model year 1993. Here, I focus on the relationship
between Horsepower (the x-variable) and MPG.highway (the y-
variable).

This is the code to create the scatterplot in Figure 16-9:

ggplot(Cars93, aes(x=Horsepower,y=MPG.highway) )+
geom_point()
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FIGURE 16-9:MPG.highway and Horsepower in the Cars93 data frame.

For this example, linearize the plot by taking the log of
Horsepower. In the plot, include the regression line, and

here's how to draw it:

ggplot(Cars93, aes(x=log(Horsepower),by=MPG.highway) )+

geom_point()+
geom_smooth(method="1m", se=FALSE)

Figure 16-10 shows the result.
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FIGURE 16-10: MPG.highway and Log(Horsepower) in Cars93, along with the
regression line.

With log(Horsepower) as the x-variable, the analysis is

logfit <- 1m(MPG.highway ~ log(Horsepower), data=Cars93)

After carrying out that analysis, summary() provides the
details:

> summary (logfit)

Call:
Im(formula = MPG.highway ~ log(Horsepower), data = Cars93)

Residuals:
Min 1Q Median 3Q Max
-10.3109 -2.2066 -0.0707 2.0031 14.0002

Coefficients:

Estimate Std. Error t value Pr(>|t]|)
(Intercept) 80.003 5.520 14.493 < 2e-16 ***
log(Horsepower) -10.379 1.122 -9.248 9.55e-15 ***




Signif. codes: 0 '***' 0.001 '**' 0.61 '*' 0.05 '.' 0.1 ' '1

Residual standard error: 3.849 on 91 degrees of freedom
Multiple R-squared: 0.4845, Adjusted R-squared: 0.4788
F-statistic: 85.53 on 1 and 91 DF, p-value: 9.548e-15

The high value of F and the very low value of p indicate

an excellent fit.

From the coefficients, the regression equation is
MPG.highway' = 80.03 - 10.3791log ( Horsepower )

As in the preceding sections, I plot the regression curve

in the original plot:

ggplot(Cars93, aes(x=Horsepower,y=MPG.highway) )+

geom_point()+
geom _line(aes(y=logfit$fitted.values))

Figure 16-11 shows the plot with the regression curve.
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FIGURE 16-11:MPG.highway and Horsepower, with the logarithmic regression curve.




Polynomial Regression: A
Higher Power

In all the types of regression I describe earlier in this
chapter, the model is a line or a curve that does not
change direction. It is possible, however, to create a
model that incorporates a direction-change. This is the
province of polynomial regression.

I touch on direction-change in Chapter 12, in the context
of trend analysis. To model one change of direction, the
regression equation has to have an x-term raised to the
second power:

y =a+bx+b,x*

To model two changes of direction, the regression
equation has to have an x-term raised to the third power:

y =a+bx+bx* +byx’
and so forth.

I illustrate polynomial regression with another data
frame from the MASS package. (On the Packages tab, find
MASS. If its check box isn't selected, click it.)

This data frame is called Boston. It holds data on housing
values in the Boston suburbs. Among its 14 variables are
rm (the number of rooms in a dwelling) and medv (the
median value of the dwelling). I focus on those two
variables in this example, with rm as the predictor
variable.

Begin by creating the scatterplot and regression line:

ggplot(Boston, aes(x=rm,y=medv) )+
geom_point()+
geom_smooth(method=1m, se=FALSE)



Figure 16-12 shows what this code produces.
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FIGURE 16-12: Scatterplot of median value (medv) versus rooms (rm) in the
Boston data frame, with the regression line.

The linear regression model is

linfit <- lm(medv ~ rm, data=Boston)
> summary(linfit)

Call:
Im(formula = medv ~ rm, data = Boston)

Residuals:
Min 1Q Median 3Q Max
-23.346 -2.547 0.090 2.986 39.433

Coefficients:

Estimate Std. Error t value Pr(>|t]|)
(Intercept) -34.671 2.650 -13.08 <2e-16 ***
rm 9.102 0.419 21.72 <2e-16 ***

Signif. codes: 0 '"***' @,001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1



Residual standard error: 6.616 on 504 degrees of freedom
Multiple R-squared: 0.4835, Adjusted R-squared: 0.4825
F-statistic: 471.8 on 1 and 504 DF, p-value: < 2.2e-16

The F and p-value show that this is a good fit. R-squared
tells you that about 48 percent of the SSt,.,; for medv is

tied up in the relationship between rm and medv. (Check
out Chapter 15 if that last sentence sounds unfamiliar.)

The coefficients tell you that the linear model is

medv’ = -34.671 +9.102rm

But perhaps a model with a change of direction provides
a better fit. To set this up in R, create a new variable rm2
— which is just rm squared:

rm2 <- Boston$rm”2

Now treat this as a multiple regression analysis with two
predictor variables: rm and rm2:

polyfit2 <-lm(medv ~ rm + rm2, data=Boston)

ne  You can't just go ahead and use rm*2 as the second
predictor variable: 1m() won't work with it in that
form.

After you run the analysis, here are the details:
> summary (polyfit2)

Call:
Im(formula = medv ~ rm + rm2, data = Boston)

Residuals:
in 1Q Median 3Q Max
-35.769 -2.752 0.619 3.003 35.464

Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) 66.0588 12.1040 5.458 7.59e-08 ***



rm -22.6433 3.7542 -6.031 3.15e-09 ***
rm2 2.4701 0.2905 8.502 < 2e-16 ***

Signif. codes: 0 '***' 0,001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1

Residual standard error: 6.193 on 503 degrees of freedom
Multiple R-squared: 0.5484, Adjusted R-squared: 0.5466
F-statistic: 305.4 on 2 and 503 DF, p-value: < 2.2e-16

Looks like a better fit than the linear model. This time, R-
squared tells you that almost 55 percent of the SS;,; for

medv is due to the relationship between medv and the
combination of rm and rm~2. The increase in R-squared
comes at a cost — the second model has 1 less df (503
versus 504).

The coefficients indicate that the polynomial regression
equation is

medv’ = 66.0588 - 22 6433rm +2.4701rm*

Is it worth the effort to add rm~2 to the model? To find
out, I use anova() to compare the linear model with the
polynomial model:

> anova(linfit,polyfit2)
Analysis of Variance Table

Model 1: medv ~ rm
Model 2: medv ~ rm + rm2
Res.Df RSS Df Sum of Sq F Pr(>F)
1 504 22062
2 503 19290 1 2772.3 72.291 < 2.2e-16 ***

Signif. codes: 0 '***' 0,001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1

The high F-ratio (72.291) and extremely low Pr(>F)
indicate that adding rm*2 is a good idea.

Here's the code for the scatterplot, along with the curve
for the polynomial model:

ggplot(Boston, aes(x=rm,y=medv))+
geom_point()+
geom line(aes(y=polyfit2¢$fitted.values))



The predicted values for the polynomial model are in
polyfit2¢$fitted.values, which you use in the last statement
to position the regression curve in Figure 16-13.
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FIGURE 16-13: Scatterplot of median value (medv) versus rooms (rm) in the

Boston data frame, with the polynomial regression curve.

The curve in the figure shows a slight downward trend in
the dwelling’s value as rooms increase from fewer than
four to about 4.5, and then the curve trends more
sharply upward.

Which Model Should You
Use?

I present a variety of regression models in this chapter.
Deciding on the one that’s right for your data is not



necessarily straightforward. One superficial answer
might be to try each one and see which one yields the
highest F and R-squared.

The operative word in that last sentence is superficial.
The choice of model should depend on your knowledge of
the domain from which the data comes and the processes
in that domain that produce the data. Which regression
type allows you to formulate a theory about what might
be happening in the data?

For instance, in the Boston example, the polynomial
model showed that dwelling-value decreases slightly as
the number of rooms increases at the low end, and then
value steadily increases as the number of rooms
increases. The linear model couldn’t discern a trend like
that. Why would that trend occur? Can you come up with
a theory? Does the theory make sense?

I'll leave you with an exercise. Remember the shoelace-
tying example at the beginning of this chapter? All I gave
you was Figure 16-1, but here are the numbers:

trials <-seq(1,18,1)
time.sec <- c(230, 140, 98, 75, 66, 54, 45, 31, 20, 15,
10, 9, 9, 9, 8, 8, 8, 8)
What model can you come up with? And how does it help
you explain the data?
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Chapter 17
Introducing Probability

00000000000000000000000000000000000000000000000000000000000000000000000000000

IN THIS CHAPTER
» Defining probability

» Working with probability

» Dealing with random variables and their
distributions

» Focusing on the binomial distribution
» Learning probability-related R functions

Probability is the basis of hypothesis testing and
inferential statistics, so I use this concept throughout the
book. (Seems like a fine time to introduce it!)

Most of the time, I represent probability as the
proportion of area under part of a distribution. For
example, the probability of a Type I error (also known as
«) is the area in a tail of the standard normal
distribution, or in a tail of the t-distribution.

It’s time to examine probability in greater detail,
including random variables, permutations, and
combinations. First I show you some fundamentals and
applications of probability, and then I focus on a couple
of specific probability distributions and also tell you
about some probability-related R functions.

What Is Probability?

Most people have an intuitive idea of probability. Toss a
fair coin, and you have a 50-50 chance that it comes up



heads. Toss a fair die (one of a pair of dice), and you
have a 1-in-6 chance that it comes up displaying a 2.

If you wanted to be more formal in your definition, you’'d
most likely say something about all the possible things
that could happen, and the proportion of those things
you care about. Two things can happen when you toss a
coin, and if you care about only one of them (heads), the
probability of that event happening is one out of two. Six
things can happen when you toss a die, and if you care
about only one of them (2), the probability of that event
happening is one out of six.

Experiments, trials, events, and

sample spaces

Statisticians and others who work with probability refer
to a process like tossing a coin or throwing a die as an
experiment. Each time you go through the process, that’s
a trial.

This might not fit your personal definition of an
experiment (or of a trial, for that matter), but for a
statistician, an experiment is any process that produces
one of at least two distinct results (like heads or tails).

Here’s another piece of the definition of an experiment:
You can’t predict the result with certainty. Each distinct
result is called an elementary outcome. Put a bunch of
elementary outcomes together and you have an event.
For example, with a die, the elementary outcomes 2, 4,
and 6 make up the event “even number.”

Put all the possible elementary outcomes together, and
you’ve got yourself a sample space. The numbers 1, 2, 3,
4, 5, and 6 make up the sample space for a die. Heads
and tails make up the sample space for a coin.



Sample spaces and probability

How do events, outcomes, and sample spaces play into
probability? If each elementary outcome in a sample
space is equally likely, the probability of an event is

Number of Elementary Outcomes in the Event
Number of Elementary Outcomes in the Sample Space

pr(Event )=

So the probability of tossing a die and rolling an even
number is

Number of Even-Numbered Elementary Outcomes 3 _ 5
Number of Possible Outcomes of a Die 6

If the elementary outcomes are not equally likely, you
find the probability of an event in a different way. First,
you have to have some way to assign a probability to
each one. Then you add up the probabilities of the
elementary outcomes that make up the event.

pr( Even Number ) =

A couple of things to bear in mind about outcome
probabilities:

» Each probability has to be between o and 1.

» All the probabilities of elementary outcomes in a
sample space have to add up to 1.00.

How do you assign those probabilities? Sometimes you
have advance information — such as knowing that a coin
is biased toward coming up heads 60 percent of the time.
Sometimes you just have to think through the situation to
figure out the probability of an outcome.

Here's a quick example of “thinking through the
situation.” Suppose a die is biased so that the probability
of an outcome is proportional to the numerical label of
the outcome: A 6 comes up six times as oftenasa 1, a5
comes up five times as often as a 1, and so on. What is
the probability of each outcome? All the probabilities



have to add up to 1.00, and all the numbers on a die add
upto21 1 +2+3+4+5+6=21), sothe
probabilities are: pr(1) = 1/21, pr(2) = 2/21, ..., pr(6) =
6/21.

Compound Events

Some rules for dealing with compound events help you
“think through.” A compound event consists of more than
one event. It’s possible to combine events by either union
or intersection (or both).

Union and intersection

With a fair die, what’s the probability of rollinga 1 or a
4? Mathematicians have a symbol for or. It’s called
union, and it looks like this: U. Using this symbol, the
probability of a 1 or a 4 is pr(1 U 4).

In approaching this kind of probability, it’s helpful to
keep track of the elementary outcomes. One elementary
outcome is in each event, so the event “1 or 4” has two
elementary outcomes. With a sample space of six
outcomes, the probability is 2/6, or 1/3. Another way to
calculate this is
1 1 2 1

prilud)=pr(l)+pr(d)=c+r=r=7
Here’s a slightly more involved one: What’s the
probability of rolling a number between 1 and 3 or a
number between 2 and 47

Just adding the elementary outcomes in each event won't
get it done this time. Three outcomes are in the event
“between 1 and 3,” and three are in the event “between
2 and 4.” The probability can’t be 3 + 3 divided by the six
outcomes in the sample space, because that’s 1.00,



leaving nothing for pr(5) and pr(6). For the same reason,
you can’t just add the probabilities.

The challenge arises in the overlap of the two events.
The elementary outcomes in “between 1 and 3” are 1, 2,
and 3. The elementary outcomes in “between 2 and 4”
are 2, 3, and 4. Two outcomes overlap: 2 and 3. In order
to avoid counting them twice, the trick is to subtract
them from the total.

A couple of things will make life easier as I proceed. I
abbreviate “between 1 and 3” as A and “between 2 and
4” as B. Also, I use the mathematical symbol for
“overlap.” The symbol is N and it’s called intersection.

Using the symbols, the probability of “between 1 and 3”
or “between 2 and 4” is
priAuB)=
Number of Qutcomes in A + Number of Outcomes in B - Number of Outcomes in (A~B)
Number of OQutcomes in the Sample Space

~3+3-2 4 2
priAuB)= SR T
You can also work with the probabilities:
3 3 2 4 2

pr{AuBJ=ﬁ+ﬁ—E =3

The general formula is
priduB)=pr(A)+pr(B)-pr(AnB)})

Why was it okay to just add the probabilities together in
the earlier example? Because pr(1 N 4) is zero: It’s
impossible to roll a 1 and a 4 in the same roll of a die.
Whenever pr(A N B) = 0, A and B are said to be mutually
exclusive.

Intersection again
Imagine throwing a coin and rolling a die at the same
time. These two experiments are independent because



the result of one has no influence on the result of the
other.

What’s the probability of getting heads and a 4? You use
the intersection symbol and write this as pr(heads N 4):

Number of Elementary Outcomes in Heads ~ 4
Number of Elementary Outcomes in the Sample Space

Start with the sample space. Table 17-1 lists all the
elementary outcomes.

TABLE 17-1 The Elementary Outcomes in the
Sample Space for Throwing a Coin and Rolling
a Die

pr(Heads~4)=

Heads, 1 Tails,
Heads, 2 Tails,
Heads, 3 Tails,
Heads, 4 Tails,
Heads, 5 Tails,
Heads, 6 Tails,

Ol b, WIN|HF

As the table shows, 12 outcomes are possible. How many
outcomes are in the event “heads and 4”? Just one. So:

Number of Elementary Outcomes in Heads n4 1
Number of Elementary Outcomes in the Sample Space 12

pr(Heads~4)=
You can also work with the probabilities:

pr{Heads~4)=pr(Heads)=pr(4)= 0
In general, if A and B are independent,

priAnB)=priA)xpr(B)

Conditional Probability



In some circumstances, you narrow the sample space.
Suppose that I roll a die and tell you the result is greater
than 2. What'’s the probability that it’s a 57

Ordinarily, the probability of a 5 would be 1/6. In this
case, however, the sample space isn’t 1, 2, 3, 4, 5, and 6.
When you know the result is greater than 2, the sample
space becomes 3, 4, 5, and 6. The probability of a 5 is
now 1/4.

This is an example of conditional probability. It’s
“conditional” because I've given a “condition” — the roll
resulted in a number greater than 2. The notation for
this is

pr(5|Greater than 2)

rememser 1 NE vertical line (|) is shorthand for the word
given, and you read that notation as “the probability
of a 5 given greater than 2.”

Working with the probabilities

In general, if you have two events A and B,

pr(AnB)
pr(B)

as long as pr(B) isn’t zero.

priAlB)=

For the intersection in the numerator on the right, this is
not a case where you just multiply probabilities together.
In fact, if you could do that, you wouldn’t have a
conditional probability, because that would mean A and
B are independent. If they’'re independent, one event
can’t be conditional on the other.

You have to think through the probability of the
intersection. In a die, how many outcomes are in the



event “5 N Greater than 2”? Just one, so pr(5 N Greater
than 2) is 1/6, and

. 1
. oy bridnGreaterthan2) g 1
pr(5|Greater than 2) = or(Greater than2) 4 / =

The foundation of hypothesis testing
All the hypothesis testing I discuss in previous chapters
involves conditional probability. When you calculate a
sample statistic, compute a statistical test, and then
compare the test statistic against a critical value, you’'re
looking for a conditional probability. Specifically, you're
trying to find

pr( obtained test statistic or a more extreme value |H; is true)

If that conditional probability is low (less than .05 in all
the examples I show you in hypothesis-testing chapters),
you reject Hy,.

Large Sample Spaces

When dealing with probability, it’s important to
understand the sample space. In the examples I've
shown you so far in this chapter, the sample spaces are
small. With a coin or a die, it’s easy to list all the
elementary outcomes.

The world, of course, isn’t that simple. In fact, even the
probability problems that live in statistics textbooks
aren’t that simple. Most of the time, sample spaces are
large and it’s not convenient to list every elementary
outcome.

Take, for example, rolling a die twice. How many
elementary outcomes are in the sample space consisting
of both tosses? You can sit down and list them, but it’s



better to reason it out: Six possibilities for the first toss,

and each of those six can pair up with six possibilities on
the second. So the sample space has 6 x 6 = 36 possible
elementary outcomes.

This is similar to the coin-and-die sample space in Table
17-1, where the sample space consists of 2 x 6 = 12
elementary outcomes. With 12 outcomes, it was easy to
list them all in a table. With 36 outcomes, it starts to
become, well, dicey. (Sorry.)

Events often require some thought, too. What’s the
probability of rolling a die twice and totaling 5? You have
to count the number of ways the two tosses can total 5
and then divide by the number of elementary outcomes
in the sample space (36). You total a 5 by rolling any of
these pairs of tosses: 1 and 4, 2 and 3, 3 and 2, or 4 and
1. That totals four ways, and they don’t overlap (excuse
me — intersect), so

Number of Ways of Rolling a 5 B
Number of Possible Outcomes of Two Tosses 36
Listing all the elementary outcomes for the sample space
is often a nightmare. Fortunately, shortcuts are
available, as I show in the upcoming subsections.
Because each shortcut quickly helps you count a number
of items, another name for a shortcut is a counting rule.

=.11

prib)=

Believe it or not, I just slipped one counting rule past
you. A couple of paragraphs ago, I say that, in two tosses
of a die, you have a sample space of 6 x 6 = 36 possible
outcomes. This is the product rule: If N, outcomes are

possible on the first trial of an experiment and N,
outcomes are possible on the second trial, the number of
possible outcomes is N{N,. Each possible outcome on the
first trial can associate with all possible outcomes on the
second. What about three trials? That’'s N;N,N3.



Now for a couple more counting rules.

Permutations

Suppose you have to arrange five objects into a
sequence. How many ways can you do that? For the first
position in the sequence, you have five choices. After you
make that choice, you have four choices for the second
position. Then you have three choices for the third, two
for the fourth, and one for the fifth. The number of ways
is (5) (4) (3) (2) (1) =120.

In general, the number of sequences of N objects is N(IN-
1)(N-2)...(2)(1). This kind of computation occurs fairly
frequently in the probability world, and it has its own
notation: N! You don’t read this by screaming out “N” in
a loud voice. Instead, it’s “N factorial.” By definition, 1!
=1,and 0! = 1.

Now for the good stuff. If you have to order the 26 letters
of the alphabet, the number of possible sequences is 26!,
a huge number. But suppose the task is to create 5-letter
sequences so that no letter repeats in the sequence. How
many ways can you do that? You have 26 choices for the
first letter, 25 for the second, 24 for the third, 23 for the
fourth, 22 for the fifth, and that’s it. So that’s (26)(25)
(24)(23)(22). Here’s how that product is related to 26!:

26!

21!
Each sequence is called a permutation. In general, if you
take permutations of N things r at a time, the notation is
NP, (the P stands for permutation). The formula is

N!

Just for completeness, here’s another wrinkle. Suppose
that I allow repetitions in these sequences of 5. That is,



aabbc is a permissible sequence. In that case, the
number of sequences is 26 x 26 x 26 x 26 x 26, or, as
mathematicians would say, “26 raised to the fifth

power.” Or, as mathematicians would write, “26°.”

Combinations

In the preceding example, these sequences are different
from one another: abcde, adbce, dbcae, and on and on
and on. In fact, you could come up with 5! = 120 of these
different sequences just for the letters a, b, ¢, d, and e.

Suppose I add the restriction that one of these sequences
is no different from another and all I'm concerned about
is having sets of five nonrepeating letters in no particular
order. Each set is called a combination. For this example,
the number of combinations is the number of
permutations divided by 5!:
26!

51211
In general, the notation for combinations of N things
taken r at a time is 5C, (the C stands for combination).

The formula is
N!

."I.'Cr'= J‘{N—T]l

I touch on this topic in Online Appendix B. In the context
of a statistical test called the Wilcoxon Rank-Sum Test, I
use as an example the number of combinations of eight
things taken four at a time:

8!
bl C.JI = W = ?U
Now for that completeness wrinkle again. Suppose I
allow repetitions in these sequences. How many

sequences would I have? It turns out to be equivalent to




N+r-1 things taken N-1 at a time, or . ,,1Cn_1- For this
example, that would be 37C>s.

R Functions for Counting
Rules

R provides factorial() for finding the factorial of a
number:

> factorial(6)
[1] 720

You can also use this function to find the factorial of each
number in a vector:

> xx <- ¢(2,3,4,5,6)
> factorial(xx)
[1] 2 6 24 120 720

For combinations, R provides a couple of possibilities.
The choose() function calculates 5C, — the number of

combinations of N things taken r at a time. So, for 8
things taken 4 at a time, that's

> choose(8,4)
[1] 70

To list all combinations, use combn(). I illustrate with ,C,.

I have a vector containing the names of four of the Marx
Brothers

Marx.Bros <- c("Groucho","Chico","Harpo","Zeppo")

and I want to list all possible combinations of them taken
two at a time:

> combn(Marx.Bros,2)

[,1] [,2] [,3] [,4] [,5] [,6]
[1,1 "Groucho" "Groucho" "Groucho" "Chico" "Chico" "Harpo"
[2,] "Chico" "Harpo" "Zeppo" "Harpo" "Zeppo" "Zeppo"



This matrix tells me that six such combinations are
possible, and the two rows in each column show the two
names in each combination.

In my view, the best functions for dealing with
combinations and permutations are in the gtools
package. On the Packages tab, click Install and type
gtools into the dialog box. Then click the Install button.
After the package installs, find gtools on the Packages
tab and select its check box.

Here are the combinations() and permutations() functions
from gtools at work:

> combinations(4,2,v=Marx.Bros)

[,1] [,2]

[1,] "Chico" "Groucho"
[2,] "Chico" "Harpo"
[3,] "Chico" "Zeppo"

[4,1 "Groucho" "Harpo"
[5,] "Groucho" "Zeppo"
[6’] IIHarpOII "Zeppo"

> permutations(4,2,v=Marx.Bros)
[,1] [,2]

[1,] "Chico" "Groucho"
[2,] "Chico" "Harpo"
[3,] "Chico" "Zeppo"

[4,] "Groucho" "Chico"
[5,] "Groucho" "Harpo"
[6,] "Groucho" "Zeppo"

[7,]1 "Harpo" "Chico"
[8,] "Harpo" "Groucho"
[9,] "Harpo" "Zeppo"
[10,] "Zeppo" "Chico"
[11,] "Zeppo" "Groucho"
[12,] “"Zeppo" "Harpo"

For each function, the first argument is N, the second is r,
and the third is the vector containing the items. Without
the vector, here's what happens:

> combinations(4,2)
[,1]1 [,2]



[1,
[2,
[3,
[4,
[5,
(6,

If all you want to do is solve for the number of
combinations:

._.._.._.._.._.._.
W NNR PP
A D W DA WN

> nrow(combinations(4,2))
[1] 6

Of course, you can do the same for permutations.

Random Variables:
Discrete and Continuous

Let me go back to tosses of a fair die, where six
elementary outcomes are possible. If I use x to refer to
the result of a toss, x can be any whole number from 1 to
6. Because x can take on a set of values, it’s a variable.
Because x’s possible values correspond to the
elementary outcomes of an experiment (meaning you
can’t predict its values with absolute certainty), x is
called a random variable.

Random variables come in two varieties. One variety is
discrete, of which die-tossing is a good example. A
discrete random variable can only take on what
mathematicians like to call a countable number of values
— like the numbers 1 through 6. Values between the
whole numbers 1 through 6 (like 1.25 and 3.1416) are
impossible for a random variable that corresponds to the
outcomes of die tosses.

The other kind of random variable is continuous. A
continuous random variable can take on an infinite
number of values. Temperature is an example.



Depending on the precision of a thermometer, having
temperatures like 34.516 degrees is possible.

Probability Distributions
and Density Functions

Back to die-rolling again. Each value of the random
variable x (1-6, remember) has a probability. If the die is
fair, each probability is 1/6. Pair each value of a discrete
random variable like x with its probability and you have a
probability distribution.

Probability distributions are easy enough to represent in
graphs. Figure 17-1 shows the probability distribution

for x.

pr(x)

164 - - - - -

—

1 T 1 T T

1 2 3 4 5 6

FIGURE 17-1: The probability distribution for x, a random variable based on the
tosses of a fair die.




A random variable has a mean, a variance, and a
standard deviation. Calculating these parameters is
pretty straightforward. In the random-variable world, the
mean is called the expected value, and the expected
value of random variable x is abbreviated as E(x). Here’s
how you calculate it:

E(x)=Y x(pr(x))

For the probability distribution in Figure 17-1, that’s

1 1) o 1) e
+{41(E]+t5}[{—i]+[{a}({—i)_.i,g

The variance of a random variable is often abbreviated
as V(x), and the formula is

Vix)=Yx*(pr(x))-[E(x)]

Working with the probability distribution in Figure 17-1
once again,

Vo =(19) g Jo(2 5 ) )+ () )+ 5°) )+ (6°) 5 1351 =27
The standard deviation is the square root of the variance,
which in this case is 1.708.

E(x)=) x(pr(x))=(1 ](El—].]ﬂ 2 J(é]ﬂ 3)

1
b

For continuous random variables, things get a little
trickier. You can’t pair a value with a probability,
because you can’t really pin down a value. Instead, you
associate a continuous random variable with a
mathematical rule (an equation) that generates
probability density, and the distribution is called a
probability density function. To calculate the mean and
variance of a continuous random variable, you need
calculus.

In Chapter 8, I show you a probability density function —
the standard normal distribution. I reproduce it here as
Figure 17-2.
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FIGURE 17-2: The standard normal distribution: a probability density function.

In the figure, f(x) represents the probability density.
Because probability density can involve some
heavyweight mathematical concepts, I don’t go into it. As
I mention in Chapter 8, think of probability density as
something that turns the area under the curve into
probability.

Although you can’t speak of the probability of a specific
value of a continuous random variable, you can work
with the probability of an interval. To find the probability
that the random variable takes on a value within an
interval, you find the proportion of the total area under
the curve that’s inside that interval. Figure 17-2 shows
this concept. The probability that x is between 0 and 1«
is .3413.

For the rest of this chapter, I deal just with discrete
random variables. A specific one is up next.



The Binomial Distribution

Imagine an experiment that has these five
characteristics:

» The experiment consists of N identical trials.
A trial could be the toss of a die or the toss of a coin.

» Each trial results in one of two elementary outcomes.

It’s standard to call one outcome a success and the
other a failure. For die-tossing, a success might be a
toss that comes up 3, in which case a failure is any
other outcome.

» The probability of a success remains the same from
trial to trial.

Again, it’s standard to use p to represent the
probability of a success and to use 1-p (or q) to
represent the probability of a failure.

» The trials are independent.

» The discrete random variable x is the number of
successes in the N trials.

This type of experiment is called a binomial experiment.
The probability distribution for x follows this rule:

V! -

Prix)= i

On the extreme right, p*(1-p)N X is the probability of one
combination of x successes in N trials. The term to its
immediate left is 5 C,, the number of possible

combinations of x successes in N trials.
This is called the binomial distribution. You use it to find

probabilities like the probability you’ll roll four 3s in ten
tosses of a die:



100 (1VY5y -
fﬂ'{ 4 }I W(E) (E) =054

The negative binomial distribution is closely related. In
this distribution, the random variable is the number of
trials before the xth success. For example, you use the
negative binomial to find the probability of five tosses
that result in anything but a 3 before the fourth time you
roll a 3.

For this to happen, in the eight tosses before the fourth
3, you have to roll five non-3s and three successes
(tosses when a 3 comes up). Then the next toss results in
a 3. The probability of a combination of four successes
and five failures is p#(1-p)®. The number of ways you can
have a combination of five failures and four-to-one
successes is 5,4.1C4_1. So the probability is

pr( 5 failures before the 4th success ) =

(5+4-1)! [ 1\*'f5°
m—l}!{ﬁli}(ﬁ) [E] =0l
In general, the negative binomial distribution (sometimes
called the Pascal distribution) is

(f+x-1)!
(x=1)1F)

The Binomial and Negative
Binomial in R

R provides binom functions for the binomial distribution,
and nbinom functions for the negative binomial
distribution. For both distributions, I work with die
tosses so that p (the probability of a success) = 1/6.

pr( f failures before the xth success ) = p(1- j'}]'r

Binomial distribution



As is the case for other built-in distributions, R provides
these functions for the binomial distribution: dbinom()
(density function), pbinom() (cumulative distribution
function), gbinom() (quantiles), and rbinom() (random
number generation).

To show you a binomial distribution, I use dbinom() to plot
the density function for the number of successes in ten
tosses of a fair die. I begin by creating a vector for the
number of successes:

successes <- seq(0,10)

and then a vector for the associated probabilities:

probability <- dbinom(successes,10,1/6)

The first argument, of course, is the vector of successes,
the second is the number of trials, and the third (1/6) is
the probability of a success with a fair 6-sided die.

To plot this density function:

ggplot (NULL,aes(x=successes,y=probability))+
geom bar(stat="identity",width=1,color="white")

The NULL argument in ggplot() indicates that I haven't
created a data frame — I'm just using the successes and
probability vectors. In geom bar(), the stat= "identity"
argument indicates that the values in the probability
vector set the heights of the bars, width = 1 widens the
bars a bit from the default width, and color = "white"
adds clarity by placing a white border around each bar.
The code creates Figure 17-3.
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FIGURE 17-3: Binomial distribution of the number of successes in ten tosses of
a fair die.

Next, I use pbinom() to show you the cumulative
distribution for the number of successes in ten rolls of a

fair die:
cumulative <-pbinom(successes,10,1/6)

And here's the code for the plot:

ggplot (NULL, aes(x=successes,y=cumulative) )+
geom _step()

The second statement produces the stepwise function
you see in Figure 17-4.
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FIGURE 17-4: Cumulative distribution of the number of successes in ten tosses
of a fair die.

In the figure, each step represents the probability of
rolling x or fewer successes in ten tosses.

The gbinom() function computes quantile information. For
every fifth quantile from the 10th through the 95th in the
binomial distribution with N = 10 and p = 1/6:

> gbinom(seq(.10,.95,.05),10,1/6)
[110061111112222223334

To sample five random numbers from this binomial
distribution:

> rbinom(5, 10, 1/6)
(1] 43302

Negative binomial distribution



For the negative binomial functions, dnbinom() provides
the density function, pnbinom() gives you the cumulative
distribution function, gnbinom() gives quantile
information, and rnbinom() produces random numbers.

The example I show you earlier involves the number of
failures before the fourth success of a die roll. That case
was the probability of five failures before the fourth roll,
and I use dnbinom() to calculate that probability:

> dnbinom(5,4,1/6)

[1] 0.01736508
The first argument to dnbinom() is the number of failures,

the second is the number of successes, and the third is
the probability of a success.

If I want to know the probability of five or fewer failures
before the fourth success:

> pnbinom(5,4,1/6)
[1] 0.04802149

which is the same as

> sum(dnbinom(seq(0,5),4,1/6))
[1] 0.04802149

For every fifth quantile from the 10th through 95th of

the number of failures before four successes (with p =
1/6):

> gnbinom(seq(.10,.95,.05),4,1/6)
[1] 8 9 11 12 13 14 16 17 18 20 21 22 24 26 28 31 35 41

And to sample five random numbers from the negative
binomial with four successes and p = 1/6:

> rnbinom(5, 4, 1/6)
[1] 10 5 4 23 7



Hypothesis Testing with
the Binomial Distribution

Hypothesis tests sometimes involve the binomial
distribution. Typically, you have some idea about the
probability of a success and you put that idea into a null
hypothesis. Then you perform N trials and record the
number of successes. Finally, you compute the
probability of getting that many successes or a more
extreme amount if your Hj is true. If the probability is

low, reject H,.

When you test in this way, you're using sample statistics
to make an inference about a population parameter.
Here, that parameter is the probability of a success in
the population of trials. By convention, Greek letters
represent parameters. Statisticians use 1 (pi), the Greek
equivalent of p, to stand for the probability of a success
in the population.

Continuing with the die-rolling example, suppose you
have a die and you want to test whether it’s fair. You
suspect that if it’s not, it’s biased toward 3. Define a roll
that results in 3 as a success. You roll it ten times. Five
rolls are successes. Casting all this into hypothesis-
testing terms:

Ho:x<1l/6
Hz>1/6
As I usually do, I set a = .05.

To test these hypotheses, you have to find the probability
of getting at least four successes in ten rolls with p =
1/6. That probability is



pr(5)+pr(6)+pr(T)+pr(8)+pr (D+pr(10). If the total is less
than .05, reject Hy,.

Once upon a time, that would have been a lot of
calculating. With R, not so much. The function
binom.test() does all the work:

binom.test(5,10,1/6, alternative="greater")

The first argument is the number of successes, the
second is the number of rolls, the third is o, and the
fourth is the alternative hypothesis. Running this
function produces

> binom.test(5,10,1/6, alternative="greater")

data: 5 out of 10
number of successes = 5, number of trials = 10, p-value = 0.01546
alternative hypothesis: true probability of success is greater than 0.1666667
95 percent confidence interval:

0.2224411 1.0000000
sample estimates:
probability of success

0.5

The p-value (0.01546) is much less than .05, and that
tells me to reject the null hypothesis. Also, note the
additional information about confidence intervals and the
estimated probability of a success (the number of
obtained successes divided by the number of trials).

If you’'ve been following the discussion about the
binomial distribution, you know that two other ways of
calculating that p-value are

> sum(dbinom(seq(5,10),10,1/6))
[1] 0.01546197

and

> 1-pbinom(4,10,1/6)
[1] 0.01546197



Any way you slice it, the decision is to reject the null
hypothesis.

More on Hypothesis

Testing: R versus Tradition

When N 1 = 5 (Number of trials x the hypothesized
probability of a success) and N (1 - 1) = 5 (number of
trials x the hypothesized probability of a failure) are both
greater than 5, the binomial distribution approximates
the standard normal distribution. In those cases,
statistics textbooks typically tell you to use the statistics
of the normal distribution to answer questions about the
binomial distribution. For the sake of tradition, let’s
carry that through and then compare with binom.test().

Those statistics involve z-scores, which means that you
have to know the mean and the standard deviation of the
binomial. Fortunately, they're easy to compute. If N is
the number of trials and 1 is the probability of a success,
the mean is

w=Nr
the variance is
c°=Nr(l-1)
and the standard deviation is

o= Nx(l-1)
When you test a hypothesis, you're making an inference
about m and you have to start with an estimate. You run
N trials and get x successes. The estimate is

A
P:ﬁ_'r



To create a z-score, you need one more piece of
information: the standard error of P. This sounds harder
than it is, because this standard error is just

m(l-x
Now you’'re ready for a hypothesis test.

Here’s an example. The CEO of FarKlempt Robotics, Inc.,
believes that 50 percent of FarKlempt robots are
purchased for home use. A sample of 1,000 FarKlempt
customers indicates that 550 of them use their robots at
home. Is this significantly different from what the CEO
believes? The hypotheses:

Hy: 7 =.50
H,: 7= .50
I set o = .05.

N 11 =500, and N(1 - 1) = 500, so the normal
approximation is appropriate.

First, calculate P:

x 550
P‘.ﬁ.—-“lrmﬂ"ﬁﬁ
Now create a z-score:
__P-x _ 55-50 05 46
\/;rtl—r] (.50)(1-.50) 25
N ‘f 1000 1000

With a = .05, is 3.162 a large enough z-score to reject
Hy?

> pnorm(3.162, lower.tail = FALSE)*2
[1] 0.001566896

This is much less than .05, so the decision is to reject H,.

With a little thought, you can see why statisticians
recommended this procedure back in the day. To



compute the exact probability, you have to calculate the
probability of at least 550 successes in 1,000 trials. That
would be pr(550) + pr(551) + ... + pr(1000), so an
approximation based on a well-known distribution was
most welcome — particularly in statistics textbooks.

But now
> binom.test(550,1000,.5,alternative="two.sided")

data: 550 out of 1000

number of successes = 550, number of trials = 1000, p-value
= 0.001731

alternative hypothesis: true probability of success is not
equal to 0.5

95 percent confidence interval:
0.5185565 0.5811483

sample estimates:

probability of success

0.55

Voila! The binom.test() function calculates the exact
probability in the blink of an eye. As you can see, the
exact probability (0.001731) differs slightly from the

normally approximated p-value, but the conclusion
(reject Hy) is the same.



Chapter 18
Introducing Modeling

IN THIS CHAPTER

» Discovering models

» Modeling and fitting
» Working with the Monte Carlo method

A model is something you know and can work with that
helps you understand something you know little about. A
model is supposed to mimic, in some way, the thing it’s
modeling. A globe, for example, is a model of the earth. A
street map is a model of a neighborhood. A blueprint is a
model of a building.

Researchers use models to help them understand natural
processes and phenomena. Business analysts use models
to help them understand business processes. The models
these people use might include concepts from
mathematics and statistics — concepts so well-known
that they can shed light on the unknown. The idea is to
create a model that consists of concepts you understand,
put the model through its paces, and see whether the
results look like real-world results.

In this chapter, I discuss modeling. My goal is to show
how you can harness R to help you understand processes
in your world.

Modeling a Distribution



In one approach to modeling, you gather data and group
them into a distribution. Next, you try to figure out a
process that results in that kind of a distribution. Restate
that process in statistical terms so that it can generate a
distribution and then see how well the generated
distribution matches up with the real one. This “process
you figure out and restate in statistical terms” is the
model.

If the distribution you generate matches up well with the
real data, does this mean your model is “right”? Does it
mean that the process you guessed is the process that
produces the data?

Unfortunately, no. The logic doesn’t work that way. You
can show that a model is wrong, but you can’t prove that
it’s right.

Plunging into the Poisson

distribution

In this section, I walk you through an example of
modeling with the Poisson distribution. I discuss this
distribution in Online Appendix A, where I tell you it
seems to characterize an array of processes in the real
world. By “characterize a process,” I mean that a
distribution of real-world data looks a lot like a Poisson
distribution. When this happens, it’s possible that the
kind of process that produces a Poisson distribution is
also responsible for producing the data.

What is that process? Start with a random variable x that
tracks the number of occurrences of a specific event in
an interval. (In Online Appendix A, the “interval” is a
sample of 1,000 universal joints and the specific event is
“defective joint.”) Poisson distributions are also
appropriate for events occurring in intervals of time, and
the event can be something like “arrival at a toll booth.”



Next, I outline the conditions for a Poisson process and
use both defective joints and toll booth arrivals to
illustrate:

» The numbers of occurrences of the event in two
non-overlapping intervals are independent.

The number of defective joints in one sample is
independent of the number of defective joints in
another. The number of arrivals at a toll booth during
one hour is independent of the number of arrivals
during another.

» The probability of an occurrence of the event is
proportional to the size of the interval.

The chance that you'll find a defective joint is larger
in a sample of 10,000 than it is in a sample of 1,000.
The chance of an arrival at a toll booth is greater for
one hour than it is for a half-hour.

» The probability of more than one occurrence of
the event in a small interval is 0 or close to O.

In a sample of 1,000 universal joints, you have an
extremely low probability of finding two defective
ones right next to one another. At any time, two
vehicles don’t arrive at a toll booth simultaneously.

As I show you in Online Appendix A, the formula for the
Poisson distribution is
x!

i

prix)=

In this equation, p represents the average number of
occurrences of the event in the interval you’re looking at,
and e is the constant 2.781828 (followed by infinitely
many more decimal places).



Modeling with the Poisson

distribution

Time to use the Poisson in a model. At the FarBlonJet
Corporation, web designers track the number of hits per
hour on the intranet home page. They monitor the page
for 200 consecutive hours and group the data, as listed
in Table 18-1.

TABLE 18-1 Hits Per Hour on the FarBlonjet
Intranet Home Page

Hits per Hour Observed Hours Hits/Hour X Observed Hours

0 10 0

1 30 30
2 44 88
3 44 132
4 36 144
5 18 90
6 10 60
7 8 56
Total 200 600

The first column shows the variable Hits per Hour. The
second column, Observed Hours, shows the number of
hours in which each value of hits per hour occurred. In
the 200 hours observed, 10 of those hours went by with
no hits, 30 hours had one hit, 44 had two hits, and so on.
These data lead the web designers to use a Poisson
distribution to model hits per hour. Here's another way
to say this: They believe that a Poisson process produces
the number of hits per hour on the web page.



Multiplying the first column by the second column
results in the third column. Summing the third column
shows that in the 200 observed hours, the intranet page
received 600 hits. So the average number of hits per
hour is 3.00.

Applying the Poisson distribution to this example,
pret e I
x! x!

Figure 18-1 shows the density function for the Poisson
distribution with p = 3.

012
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dpois(x values, 3]

FIGURE 18-1: The Poisson distribution with p = 3.

The axis labels in Figure 18-1 hint at how to create it.
Start with a vector of values for the x-axis.

x.values <- seq(0,7)



Then work with the density function for the Poisson
distribution (see Online Appendix A):

dpois(x.values,3)

That’s the function to use for the aesthetic mapping of y
In ggplot():

ggplot (NULL, aes (x=x.values,y=dpois(x.values,3)))+
geom_bar(stat="identity",width=.5)+
scale x continuous(breaks=seq(0,7))
The second statement plots the bars. Its first argument
(stat="identity") specifies that the height of each bar is
the corresponding density function value mapped to y.
The indicated width (.5) in its second argument narrows
the bars a bit from the default value (.9). The third
statement puts 0-7 on the x-axis.

The purpose of a model is to predict. For this model, you
want to use the Poisson distribution to predict the
distribution of hits per hour. To do this, multiply each
Poisson probability by 200 — the total number of hours:

Predicted <- dpois(x.values,3)*200

Here are the predictions:

> Predicted
[1] 9.957414 29.872241 44.808362 44.808362 33.606271
20.163763 10.081881 4.320806
To work with the observed values (Column 2 in Table 18-

1), create a vector:

Observed <- ¢(10,30,44,44,36,18,10,8)

You want to use ggplot to show how close the predicted
hours are to the observed, so create a data frame. This
involves three more vectors:

Category <-c(rep("Observed",8),rep("Predicted",8))
Hits.Hr <- c(x.values,x.values)
Hours <- c(Observed,Predicted)



And now you can create

FBJ.frame <-data.frame(Category,Hits.Hr,Hours)

which looks like this

> FBJ.frame

Category Hits.Hr Hours
1 Observed 0 10.000000
2 Observed 1 30.000000
3  Observed 2 44.000000
4 Observed 3  44.000000
5 Observed 4 36.000000
6 Observed 5 18.000000
7 Observed 6 10.000000
8 Observed 7 8.000000
9 Predicted 0 9.957414
10 Predicted 1 29.872241
11 Predicted 2 44.808362
12 Predicted 3 44.808362
13 Predicted 4 33.606271
14 Predicted 5 20.163763
15 Predicted 6 10.081881
16 Predicted 7 4.320806

To plot it all out:

ggplot (FBJ.frame,aes(x=Hits.Hr,y=Hours, fill=Category) )+
geom bar(stat="identity", position="dodge", color="black",
width=.6)+
scale x_continuous(breaks=x.values)+
scale fill grey()+
theme bw()

The first statement uses the data frame, with the
indicated aesthetic mappings to x, y, and fill. The
second statement plots the bars. The position= "dodge"
argument puts the two categories of bars side by side,
and color = "black" draws a black border around the bars
(which won't show up on the black-filled bars, of course).
As before, the third statement puts the values in the
x.values vector on the x-axis.

The fourth statement changes the fill-colors of the bars
to colors that show up on the page you’re reading, and



the final statement removes the default gray
background. (That makes the bars easier to see.)

Figure 18-2 shows the plot. The observed and the
predicted look pretty close, don’t they?

Testing the model’s fit

Well, “looking pretty close” isn’t enough for a
statistician. A statistical test is a necessity. As is the case
with all statistical tests, this one starts with a null
hypothesis and an alternative hypothesis. Here they are:

Hy : The distribution of observed hits per hour follows a Poisson distribution.
H, : Not H,
The appropriate statistical test involves an extension of
the binomial distribution. It’s called the multinomial
distribution — multi because it encompasses more

categories than just “success” and “failure.” This is a
difficult distribution to work with.
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FIGURE 18-2: FarBlonjet intranet home page hits per hour, observed and

Poisson-predicted (u = 3).

Fortunately, pioneering statistician Karl Pearson
(inventor of the correlation coefficient) noticed that y?
(“chi-square”), a distribution I show you in Chapter 10,
approximates the multinomial. Originally intended for
one-sample hypothesis tests about variances, y2 has
become much better known for applications like the one
I'm about to show you.

Pearson’s big idea was this: If you want to know how
well a hypothesized distribution (like the Poisson) fits a
sample (like the observed hours), use the distribution to
generate a hypothesized sample (your predicted hours,
for instance), and work with this formula:

2 E{{]l}ﬁerved— Predicted )’
L= Predicted



Usually, the formula is written with Expected rather than
Predicted, and both Observed and Expected are
abbreviated. The usual form of this formula is

2 _(0-E)°
r‘:' _Z E
For this example,
e Z{m-ff _(10-99574)° (30-29.8722)°  (8-4.3208)°
R E 99574 29.8722 4.3208

what does that total up to? You can use R as a calculator
to figure this out — I've already called the vector of
predicted values Predicted, and I don’t feel like changing
the name to Expected:

> chi.squared <- sum(((Observed-Predicted)”2)/Predicted)
> chi.squared
[1] 3.566111

Okay. Now what? Is 3.566111 high, or is it low?

To find out, you evaluate chi.squared against the 2
distribution. The goal is to find the probability of getting
a value at least as high as the calculated value,
3.566111. The trick is to know how many degrees of
freedom (df) you have. For a goodness-of-fit application
like this one

df =k-m-1
where k = the number of categories and m = the number
of parameters estimated from the data. The number of
categories is 8 (0 Hits per Hour through 7 Hits per

Hour). The number of parameters? I used the observed

hours to estimate the parameter 11, so m in this example
is 1. That means df = 8-1-1 = 6.

To find the probability of obtaining a value of chi.squared
(3.566111) or more, I use pchisq() with 6 degrees of
freedom:



> pchisq(chi.squared, 6, lower.tail = FALSE)

[1] 0.7351542
The third argument, lower.tail = FALSE, indicates that I
want the area to the right of 3.56111 in the distribution
(because I'm looking for the probability of a value that
extreme or higher). If a = .05, the returned probability
(.7351542) tells me to not reject Hy — meaning you can’t

reject the hypothesis that the observed data come from a
Poisson distribution.

This is one of those infrequent times when it’s beneficial
to not reject Hy — if you want to make the case that a

Poisson process is producing the data. A low value of y?
indicates a close match between the data and the
Poisson predictions. If the probability had been just a
little greater than .05, not rejecting Hy would look

suspicious. The high probability, however, makes it
reasonable to not reject Hy — and to think that a Poisson

process might account for the data.

A word about chisq.test()

R provides the function chisq.test(), which by its name
suggests that you can use it instead of the calculation I
show you in the preceding section. You can, but you have
to be careful.

This function can take up to eight arguments, but I
discuss only three:

chisq.test(0Observed, p=dpois(x.values,3),rescale.p=TRUE)

The first argument is the vector of data — the observed
values. The second is the vector of Poisson-predicted
probabilities. I have to include p= because it's not really
the second argument in the list of arguments the
function takes.



For the same reason, I include rescale.p=in the third
argument, which tells the function to “rescale” the vector
of probabilities. Why is that necessary? One requirement
for this function is that the probabilities have to add up
to 1.00, and these probabilities do not:

> sum(dpois(x.values,3))
[1] 0.9880955

Rescaling changes the values so that they do add up to
1.00.

When you run that function, this happens:

> chisq.test(Observed, p=dpois(x.values,3), rescale.p=TRUE)
Chi-squared test for given probabilities

data: Observed
X-squared = 3.4953, df = 7, p-value = 0.8357

Warning message:

In chisq.test(Observed, p = dpois(x.values, 3),
rescale.p = TRUE) :
Chi-squared approximation may be incorrect

Let’s examine the output. In the line preceding the
warning message, notice the use of X? rather than y*
This is because the calculated value approximates y? and
the shape and appearance of X approximate the shape
and appearance of y. The X-squared value is pretty close
to the value I calculated earlier, but it’s off because of
the rescaled probabilities.

But another problem lurks. Note that df equals 7 rather
than the correct value, 6, and thus the test against the
wrong member of the y? family. Why the discrepancy?
Because chisq.test() doesn't know how you arrived at the
probabilities. It has no idea that you had to use the data
to estimate one parameter (1) and thus lose a degree of
freedom. So, in addition to the warning message about
the chi-squared approximation, you have to be aware



that the degrees of freedom aren’t correct for this type of
example.

ne  When would you use chisq.test()? Here’s a quick
example: You toss a coin 100 times and it comes up
heads 65 times. The null hypothesis is that the coin is
fair. Your decision?

> chisqg.test(c(65,35), p=c(.5,.5))

Chi-squared test for given
probabilities

data: c(65, 35)
X-squared = 9, df = 1, p-value = 0.0027

The low p-value tells you to reject the null hypothesis.

Playing ball with a model

Baseball is a game that generates huge amounts of
statistics — and many people study these statistics
closely. The Society for American Baseball Research
(SABR) has sprung from the efforts of a band of
dedicated fan-statisticians (fantasticians?) who delve into
the statistical nooks and crannies of the great American
pastime. They call their work sabermetrics. (I made up
fantasticians. They call themselves sabermetricians.)

The reason I mention this is that sabermetrics supplies a
nice example of modeling. It’s based on the obvious idea
that, during a game, a baseball team’s objective is to
score runs and to keep its opponent from scoring runs.
The better a team does at both tasks, the more games it
wins. Bill James, who gave sabermetrics its name and is
its leading exponent, discovered a neat relationship
between the number of runs a team scores, the number



of runs the team allows, and its winning percentage. He
calls it the Pythagorean percentage:

( Runs Scored ]E

» a4 .  J— ago = i
Pythagorean Percentage (Runs Scored )” +(Runs Allowed )*
The squares in the expression reminded James of the
Pythagorean theorem, hence the name Pythagorean
percentage. Think of it as a model for predicting games
won. (This is James’s original formula, and I use it
throughout. Over the years, sabermetricians have found
that 1.83 is more accurate than 2.)

Calculate this percentage and multiply it by the number
of games a team plays. Then compare the answer to the
team’s wins. How well does the model predict the
number of games each team won during the 2024
season?

To find out, I found all the relevant data (number of
games won and lost, runs scored, and runs allowed) for
every American League (AL) team in 2024. I put the data
into a data frame called AL2024:

> AL2024

Team Won Lost Runs.Scored Runs.Allowed
1 NYY 94 68 815 668
2 CLE 92 69 708 621
3 BAL 91 71 786 699
4 HOU 88 73 740 649
5 KAN 86 76 735 644
6 DET 86 76 682 642
7 SEA 8 77 676 607
8 MIN 82 80 742 735
9 BOS 81 81 751 747
106 TB 80 82 604 663
11 TEX 78 84 683 738
12 TOR 74 88 671 743
13 0AK 69 93 643 764
14 LAA 63 99 635 797

=
(6]

CHw 41 121 507 813



The next step is to find the Pythagorean percentage for
each team:

pythag <- with(AL2024, Runs.Scored”2/(Runs.Scored”2 + Runs.
Allowed”2))
I use with(), to avoid having to type expressions like
AL2024$Runs.Scored™ 2.

Then I find the predicted numbers of wins:

Predicted.Wins <- with(AL2024, pythag*(Won + Lost))

The expression Won + Lost, of course, gives the number of
games each team played. Don't they all play the same
number of games? Nope. Sometimes a game is rained
out and then not rescheduled if the outcome wouldn’t
affect the final standings.

All that remains is to find y? and test it against a chi-
squared distribution:

> chi.squared <- with(AL2024,

sum( (Won-Predicted.Wins)”~2/Predicted.Wins))

> chi.squared

[1] 2008068
I didn’t use the won data in Column 2 to estimate any
parameters, like a mean or a variance, and then apply
those parameters to calculate predicted wins. Instead,
the predictions came from other data — the runs scored
and runs allowed. For this reason, df = k-m-1= 15-0-1 =
14. The test is

> pchisq(chi.squared, 14, lower.tail=FALSE)

[1] ©.9999147
As in the previous example, lower.tail=FALSE indicates
that I want the area to the right of 3.2008068 in the
distribution (because I'm looking for the probability of a
value that extreme or higher).



The very high p-value tells you that with 14 degrees of
freedom, you have a huge chance of finding a value of y?
at least as high as the X? you’d calculate from these
observed values and these predicted values. Here’s
another way to say this: The calculated value of X? is
very low, meaning that the predicted wins are close to
the actual wins. Bottom line: The model fits the data
extremely well.

If you're a baseball fan (as I am), it’s fun to match up won
with Predicted.Wins for each team. This gives you an idea
of which teams overperformed and which ones
underperformed given how many runs they scored and
how many they allowed. These two expressions

AL2024["Predicted"]<-round(Predicted.Wins)
AL2024["W-P"] <- AL2024["Won"]-AL2024["Predicted"]

create a column for Predicted and a column for w-p (Won-
Predicted), respectively, in the data frame. These are the
sixth and seventh columns.

This expression

AL2024 <-AL2024[,c(1,2,6,7,3,4,5)]

puts the sixth and seventh columns next to won, for easy
comparison. (Don't forget that first comma in the
bracketed expression on the right.)

The data frame is now

> AL2024

Team Won Predicted W-P Lost Runs.Scored Runs.Allowed
1 NYY 94 97 -3 68 815 668
2 CLE 92 91 1 69 708 621
3 BAL 91 90 1 71 786 699
4 HOU 88 91 -3 73 740 649
5 KAN 86 92 -6 76 735 644
6 DET 86 86 0 76 682 642
7 SEA 85 90 -5 77 676 607
8 MIN 82 82 0 80 742 735
9 BOS 81 81 0 81 751 747



106 TB 80 73 7 82 604 663
11 TEX 78 75 3 84 683 738
12 TOR 74 73 1 88 671 743
13 0AK 69 67 2 93 643 764
14 LAA 63 63 0 99 635 797
15 CHwW 41 45 -4 121 507 813

The w-P column shows that T8 (the Tampa Bay Rays)
outperformed their prediction by seven games — and
that was the biggest overperformance in the American
League in 2024.

Surprisingly, the winningest team — the Nyy (New York
Yankees, my personal favorite) — underperformed their
prediction by three games. They more than made up for
it, however, by going on to win the American League
Championship Series. (What's that you say? The 2024
World Series? That shall not appear in this book. Ever.)

A Simulating Discussion

Another approach to modeling is to simulate a process.
The idea is to define as much as you can about what a
process does and then somehow use numbers to
represent that process and carry it out. It’s a useful way
to find out what a process does, in case other methods of
analysis are overly complex.

Taking a chance: The Monte Carlo
method

Many processes contain an element of randomness. You
just can’t predict the outcome with certainty. To simulate
this type of process, you have to have some way of
simulating the randomness. Simulation methods that
incorporate randomness are called Monte Carlo
simulations. The name comes from the city in Monaco
whose main attraction is gambling casinos.



In the next few sections, I show you a couple of
examples. These examples aren’t so complex that you
can’t analyze them. I use them for just that reason: You
can check the results against analysis.

Loading the dice

In Chapter 17 in the section on samples spaces and
probability, I talk about a die (one member of a pair of
dice) that’s biased to come up according to the numbers
on its faces: A 6 is six times as likely as a 1, a 5 is five
times as likely, and so on. On any toss, the probability of
rolling a number n is n/21.

Suppose you have a pair of dice loaded this way. What
would the outcomes of 2,000 tosses of these dice look
like? What would be the average of those 2,000 tosses?
What would be the variance and the standard deviation?
You can use R to set up Monte Carlo simulations and
answer these questions.

I begin by writing an R function to calculate the
probability of each possible outcome. Before I develop
the function, I'll trace the reasoning for you. For each
outcome (2-12), I have to have all the ways of producing
the outcome. For example, to roll a 4, I can have a 1 on
the first die and a 3 on the second, 2 on the first die and
2 on the second, or 3 on the first and 1 on the second.
The probability (I call it loaded.pr) of a 4, then, is

1y (1x3)+(2x2)+(3=1]
21 zl) (.—31 31] [31 31) : {21 -
Rather than enumerate all possibilities for each outcome
and then calculate the probability, I create a function
called loaded.pr() to do the work. I want it to work like
this:

=.02267574

loaded.pr(4) = (

> loaded.pr(4)
[1] 0.02267574



First, I set up the function:

loaded.pr <-function(x){

Next, I want to stop the whole thing and print a warning
if x is less than 2 or greater than 12:

if(x <2 | x >12) warning("x must be between 2 and 12,
inclusive")

Then I set a variable called first that tracks the value of
the first die, depending on the value of x. If x is less than
7,1 set first to 1. If x is 7 or more, I set first to 6 (the
maximum value of a die roll):

if(x < 7) first=1

else first=6
The variable second (the value of the second die), of
course, 1S x-first:

second = x-first

I'll want to keep track of the sum for the numerator (as
in the equation I just showed you), so I start the value at
0:

sum = 0

Now comes the business end: a for loop that does the
calculating given the values of first (the toss of the first
die) and second (the toss of the second die):

for(first in first:second){
second = x-first
sum = sum + (first*second)

}

Because of the preceding if statement, if x is less than 7,
first increases from 1 to x-1 with each iteration of the for
loop (and second decreases). If x is 7 or greater, first
decreases from 6 to x-6 with each iteration (and second
increases).



Finally, when the loop is finished, the function returns
the sum divided by 21%:

}
return(sum/21°2)

}
Here it is all together:

loaded.pr <- function(x){
if(x <2 | x > 12) warning("x must be between 2 and 12, inclusive")
if(x < 7) first=1
else first=6
second = x-first
sum = 0
for(first in first:second){
second = x-first
sum=sum + (first*second)

}
return(sum/21°2)

}
To set up the probability distribution, I create a vector
for the outcomes

outcome <- seq(2,12)

and use a for loop to create a vector pr.outcome to hold
the corresponding probabilities:

pr.outcome <- NULL
for(x in outcome){pr.outcome <- c(pr.outcome,loaded.pr(x))}

In each iteration of the loop, the curly-braced statement
on the right appends a calculated probability to the
vector.

Here are the probabilities rounded to three decimal
places so that they look good on the page:

> round(pr.outcome, 3)
[1] 0.002 0.009 0.023 0.045 0.079 0.127 0.159 0.172 0.10.136 0.082

And now I'm ready to randomly sample 2,000 times from
this discrete probability distribution — the equivalent of
2,000 tosses of a pair of loaded dice.



rememeer Randomization functions in R are
“pseudorandom.” They start from a “seed” number
and work from there. If you set the seed, you can
determine the course of the randomization; if you
don’t set the seed, the randomization takes off on its
own each time you run it.

So I start by setting a seed:

set.seed(123)

This isn’t necessary, but if you want to reproduce my
results, start with that function and that seed number. If
you don’t, your results won’t look exactly like mine
(which is not necessarily a bad thing).

For the random sampling, I use the sample() function and
assign the results to results:

results <- sample(outcome,size = 2000, replace = TRUE,
prob=pr.outcome)

The first argument, of course, is the set of values for the
variable (the possible dice tosses), the second is the
number of samples, the third specifies sampling with
replacement, and the fourth is the vector of probabilities
I just calculated.

ne 1o reproduce the exact results, remember to set
that seed before every time you use sample().

Here's a quick look at the distribution of the results:

> table(results)

results
2 3 4 5 6 7 8 9 10 11 12
3 28 39 79 154 246 335 356 311 284 165



The first row is the possible outcomes, and the second is
the frequencies of the outcomes. So 39 of the 2,000
tosses resulted in 4, and 165 of them came up 12. I leave
it as an exercise for you to graph these results.

What about the statistics for these simulated tosses?

> mean(results)

[1] 8.6925

> var(results)

[1] 4.423155

> sd(results)

[1] 2.10313
How do these values match up with the parameters of
the random variable? This is what I meant earlier by
“check the result against analysis.” In Chapter 17, I show
how to calculate the expected value (the mean), the
variance, and the standard deviation for a discrete
random variable.

The expected value is
Et.r]=zx[;:rr[,r,'|}
I can calculate that easily enough in R:

> E.outcome = sum(outcome*pr.outcome)
> E.outcome
[1] 8.666667

The variance is

Vix)=Yx*(pr(x))-[E(x)]
In R, that’s

> Var.outcome <- sum(outcome”2*pr.outcome)-E.outcome”2
> Var.outcome
[1] 4.444444

The standard deviation is, of course

> sd.outcome <- sqrt(Var.outcome)
> sd.outcome
[1] 2.108185



Table 18-2 shows that the results from the simulation
match up closely with the parameters of the random
variable. You might try repeating the simulation with a
lot more simulated tosses — 10,000, perhaps. Will
increased tosses pull the simulation statistics closer to
the distribution parameters?

TABLE 18-2 Statistics from the Loaded-Dice-
Tossing Simulation and the Parameters of the
Discrete Distribution

Simulation Statistic Distribution Parameter

Mean 8.6925 8.666667
Variance 4.423155 4.444444
Standard Deviation 2.10313 2.108185

Simulating the central limit

theorem

This statement might surprise you, but statisticians often
use simulations to make determinations about some of
their statistics. They do this when mathematical analysis
becomes quite difficult.

For example, some statistical tests depend on normally
distributed populations. If the populations aren’t normal,
what happens to those tests? Do they still do what
they’'re supposed to? To answer that question,
statisticians might create non-normally distributed
populations of numbers, simulate experiments with
them, and apply the statistical tests to the simulated
results.

In this section, I use simulation to examine an important
statistical item: the central limit theorem. In Chapter 9, I
introduce this theorem in connection with the sampling




distribution of the mean. In fact, I simulate sampling
from a population with only three possible values to
show you that even with a small sample size, the
sampling distribution starts to look normally distributed.

Here, I set up a normally distributed population and
draw 10,000 samples of 25 scores each. I calculate the
mean of each sample and then set up a distribution of
those 10,000 means. The idea is to see how that
distribution’s statistics match up with the central limit
theorem’s predictions.

The population for this example has the parameters of
the population of scores on the IQ test, a distribution I
use for examples in several chapters. It’s a normal
distribution with p1 = 100 and o = 15. According to the
central limit theorem, the mean of the distribution of
means (the sampling distribution of the mean) should be
100, and the standard deviation (the standard error of
the mean) should be 3 — the population standard
deviation (15) divided by the square root of the sample
size (5). The central limit theorem also predicts that the
sampling distribution of the mean is normally
distributed.

The rnorm() function does the sampling. For one sample
of 25 numbers from a normally distributed population
with a mean of 100 and a standard deviation of 15, the
function is

rnorm(25,100,15)

and if I want the sample mean, it’s

mean(rnorm(25,100,15))

I'll put that function inside a for loop that repeats 10,000
times and appends each newly calculated sample mean
to a vector called sampling.distribution, which I initialize:



sampling.distribution <- NULL

The for loop is

for(sample.count in 1:10000){
set.seed(sample.count)
sample.mean <- mean(rnorm(25,100,15))
sampling.distribution <- c(sampling.distribution,sample.mean)

}
Again, the set.seed() statement is necessary only if you
want to reproduce my results.

How about the statistics of the sampling distribution?

> mean(sampling.distribution)
[1] 100.0214

> sd(sampling.distribution)
[1] 2.990658

Pretty close to the predicted values!

ne  Be sure to reset sampling.distribution to NULL before
each time you run the for loop.

What does the sampling distribution look like? To keep
things looking clean, I round off the sample means in
sampling.distribution and then create a table:

table(round(sampling.distribution))

I'd show you the table, but the numbers get all
scrambled up on the page. Instead, I'll go ahead and use
ggplot() to graph the sampling distribution.

First, I create a data frame

sampling.frame <- data.frame(table(round(sampling.distribution)))

and specify its column names:

colnames(sampling.frame) <- c("Sample.Mean","Frequency")

Now for the plot:



ggplot(sampling.frame, aes(x=Sample.Mean,y=Frequency))+
geom bar(stat="identity")

The result is shown in Figure 18-3, a plot that closely
approximates the shape and symmetry of a normal
distribution.
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FIGURE 18-3: Sampling distribution of the mean (N = 25) based on 10,000
samples from a normal distribution with p = 100 and o = 15.
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Chapter 19

Probability Meets
Regression: Logistic
Regression

IN THIS CHAPTER
» Understanding logistic regression

» Working with logistic regression
» Visualizing the results

In this chapter, I explore a type of regression that’s
different from any regression analysis I discuss in
Chapters 14 and 16. The regression I talk about there
involves a continuous dependent variable whose value
you predict from a continuous independent variable (or
from a set of independent variables). You make that
prediction on the basis of data on each independent
variable.

In this new and different type of regression, the
dependent variable is the probability of a “success” of a
binary event — like, say, if a person decides to buy a
product (success) or not (failure) after spending some
time looking at an ad for the product. “Time spent
looking at the ad” is the independent variable.

The goal is to estimate the probability of buying the
product based on how much time the person looks at the
ad. The dependent variable is continuous, but based on



what you’ve learned about probability, you know it has a
minimum value of 0 and a maximum value of 1.

This is called logistic regression.

As in all regression analyses, you start with data. Table
19-1 shows data for 24 people. The first column shows
the time (in seconds) each person spent looking at the
ad, the second shows the outcome — whether they
bought the product (1) or didn’t (0).

TABLE 19-1 Time (in seconds) Spent Looking
at an Ad and Outcome (1 = Bought the
Product, 0 = Did Not Buy the Product)

Seconds Outcome

10
12
15
17
22
23
23
24
25
28
30
33
35
36
38
40
42

o
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Seconds Outcome

45
47
50
52
53
55
60
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Because the only possible values for the dependent
variable are 0 and 1, the scatterplot is unlike any you've
seen. Figure 19-1 shows the scatterplot.
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FIGURE 19-1: The scatterplot for the data in Table 19-1.




pr(Outcome = 1)

What would a graph of a logistic regression model look
like? Intuitively, you might think it looks something like
Figure 19-2, and you’d be right.
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FIGURE 19-2: Logistic regression model for the data in Table 19-1.

The function (that curved line) in Figure 19-2 is the
solution to this equation:

{ a+b* Seconds )
e

-

P = { a+b* Seconds )

l+e

ne  If you don’t know what e represents, read the
sections in Chapter 16 describing what a logarithm is
and what e is.

So logistic regression is all about finding values for a and
b that result in the function that best fits the data. In
linear regression, the idea is to find the best-fitting line



that minimizes the sum of the squared residuals. By
contrast, logistic regression finds the best fit by using an
algorithm called “Maximum Likelihood method”
repeatedly on the data to converge on the values for the
regression coefficients.

I won't discuss the nuts and bolts of how the Maximum
Likelihood method works. What I will show you is how to
do a logistic regression analysis in R.

Getting the Data

I begin by building a data frame for the data in Table 19-
1. First, I create a vector for seconds and another for
outcome:

> seconds <- c(10,12,15,17,22,23,23,24,25,28,30,33,35,36,38,40,4

2,45,47,50,52,53,55,60)
> outcome <-c(0,0,0,0,0,0,1,1,0,1,0,1,0,0,1,0,0,1,1,1,1,1,1,1)

Now for the data frame:

ad frame <- data.frame(seconds, outcome)

Doing the Analysis

The analysis is based on the gim() function (General
Linear Model), and it's easy to do:

> logistic model <- glm(outcome ~ seconds, data=ad frame, family
= binomial)

To show the results, I use summary():

> summary(logistic_model)

Running that function causes this to appear:

Call:
glm(formula = outcome ~ seconds, family = binomial, data = ad_frame)

Coefficients:



Estimate Std. Error z value Pr(>|z])

(Intercept) -3.82981 1.60984 -2.379 0.0174 *
seconds 0.11345 0.04566 2.484 0.0130 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 33.271 on 23 degrees of freedom
Residual deviance: 23.591 on 22 degrees of freedom
AIC: 27.591

Number of Fisher Scoring iterations: 4

Quite a bit of complex math is connected to the elements
of this output, so I don’t discuss them in detail.

The highlights are the two regression coefficients. The
intercept coefficient (-3.82891) and the seconds
coefficient (0.11345) tell you that the logistic regression
equation for this dataset is
ﬁ _ e 38289 140, 1 1345 Seconds

1+E’ 38289 1+ 0.1 1345* Secands
Each coefficient divided by its standard error results in
its z-score. As the listing shows, each z-score has a
probability less than .05, so you'd conclude that these
regression coefficients do a good job of predicting the

probabilities.

The terms null deviance and residual deviance are
additional indicators of how well the model fits the data.
Deviance is something like variance, but because of the
associated math, it’s more complicated, so I don’t dwell
on it.

Still, you can draw some analogies with variance in
linear regression. Null deviance shows how well the
model fits if you just use the intercept as a predictor. It’s
reminiscent of SSt.;,; in linear regression. Residual

deviance shows the fit when you add the independent



variable (Seconds) to the model. This one is like
SSRresiquar In linear regression — it reflects how much the

model doesn’t account for. Ideally, you want to see a
large difference between the two. That difference is
analogous to SSgegression i linear regression — the SS

that shows how much the model does account for (see
Chapter 14 and Chapter 15).

In linear regression, remember (or go back and look),
you calculate R? (an indicator of fit) by dividing the
SSRegression PY the SStyta. Nobel laureate Daniel

McFadden pointed out that you can calculate a Pseudo
R-squared for logistic regression by finding the
difference between the null deviance and the residual
deviance and then dividing that difference by the null
deviance.

It seems that the difference between the two deviances
is important enough conceptually to have its own name. I
haven’t been able to find one, so I'll unofficially call it
regression component from here on. That way, I can say:
You divide the regression component by the null
deviance to produce McFadden’s Pseudo R-squared:

> regression.component <- logistic model$null.
deviance-logistic model$deviance

ne  Notice that you use $null.deviance to extract the
model’s null deviance, but you use $deviance to
extract the residual deviance.

> regression.component

[1] 9.680063

> pseudoR2 <- regression.component/logistic_model$null.deviance
> pseudoR2

[1] 0.2909454



So the regression component accounts for 29% of the
null deviance.

How do you make sense of the size of the regression
component? Is a statistical test available?

Absolutely.

In Chapter 10, I discuss the chi-square distribution as a
way of testing hypotheses about variances. (I discuss chi-
square again in Chapter 18 in a different context.) It
turns out (for reasons too technical to go into) that you
can treat the Regression component as a value in a chi-
square distribution with degrees of freedom equal to the
number of predictor variables in the model. If the
distribution yields a low probability (less than .05) of a
regression component as large as the one you observe,
you can conclude that the regression component is
significant — i.e., large enough to indicate that the model
is a good predictor.

The expected value of a chi-square distribution is its
degrees of freedom. In this case, df = 1 (because you
have one predictor, Seconds). The Regression
component is 9.680063, so the question becomes “How
probable is a value as high as 9.68003 in a chi-square
distribution whose expected value is 1?”

Short answer: Not very.
Long answer:

> pchisq(regression.component,df=1, lower.tail = FALSE)
[1] 0.001862782

That very low probability means it's unlikely that the
value of the Regression component is due to chance.

So, the Regression component is a big piece of the pie.
Accounting for 29% of the Null deviance with just one
predictor is a pretty good job.



By the way, “Fisher Scoring” (displayed at the bottom of
the gim() function’s output) is the name of the Maximum
Likelihood algorithm I mentioned earlier. It cycles
through the data a number of times (4, in this case) to
converge on the best estimates for the coefficients. Is
this Fisher the same guy that the F-ratio is named after?
Yes, he is!

Visualizing the Resulis

In this section, I show you how to use ggplot() to create a
graph that looks like Figure 19-2.

To help with this venture, gim() kindly provides a vector
of the predicted values. If you want to see them:

> logistic model$fitted.values

I'd show you all the values, but the display would look
ugly on this page.

So, make sure you have ggplot2 installed and open for
business:

> library(ggplot2)

Three statements get the job done. The first,

ggplot(ad frame, aes(x=seconds,y=outcome))

handles the general layout and labels the axes.

The second,

geom_point()

adds the data points.
The third,

geom_line(aes(y=logistic _model$fitted.values))

supplies the logistic regression line according to the
model.



outcome

Here’s how you put them together:

ggplot(ad frame, aes(x=seconds,y=outcome)) +
geom point() +
geom_line(aes(y=logistic _model$fitted.values))

The result is shown in Figure 19-3.

Logistic regression is a powerful and increasingly
popular tool. To acquaint you with its basics, I've just
scratched the surface with this simple example.

Ultimately, you'll use it on more complex datasets with
much more data and many more predictor variables.
When you do, you can use logistic regression to assess
which variables aid most in prediction, and to filter out
the variables that add little value.
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FIGURE 19-3: Logistic regression model plotted in ggplot().
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The Part of Tens



IN THIS PART ...

Learn similarities and differences between R and Excel
Use the Clipboard to import data from Excel into R
Explore online resources for learning R



Chapter 20
Ten Tips for Excel Emigrés

IN THIS CHAPTER

» Defining a vector and naming a range

» Operating on vectors and ranges
» Importing a table from Excel into R

Excel, the most widely used spreadsheet program, has an
impressive array of statistical analysis tools, which many
people use. (And believe me, no one is happier about that
than I am!)

If you’re one of those people and you need a bit of help
transitioning to R, this chapter is for you. I point out
similarities and differences that might help you make the
leap.

Defining a Vector in R Is
Like Naming a Range in
Excel

Here’s a standard, everyday garden-variety vector in R:

x <- ¢(15,16,17,18,19,20)

If you're used to naming arrays in Excel, you've already
done something like this. Figure 20-1 shows a
spreadsheet with these numbers in cells F2 through F7
and headed by x in F1. The figure also shows the New
Name dialog box that opens when you highlight F2



through F7, right-click, and choose Define Name from
the menu that pops up. Clicking OK defines x as the
name of that range, just as the R statement creates the

vector Xx.
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FIGURE 20-1: A range in Excel, about to be named x.

ne  What? You don’t name ranges in Excel? Don’t
make me shamelessly plug that other book again ... I
mean it!

Operating On Vectors Is
Like Operating On Named
Ranges




You can multiply the vector x by a constant:

> 5*x
[1] 75 80 85 90 95 100

Back to the spreadsheet with the named range x. Select
a cell — say, G2 — and type = 5*x.

Figure 20-2 shows this.
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FIGURE 20-2: Multiplying the named range x by 5.

Pressing Enter puts the results in G2 through G7, as
Figure 20-3 shows.
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FIGURE 20-3: The results of the multiplication come back in an array.

The similarities abound. In R,

> sum(x)
[1] 1065

adds up the numbers in x, as does =SUM(x) typed into a
selected cell.

To sum the squares of the numbers in x:

> sum(x”™2)
[1] 1855

In the spreadsheet, select a cell and type =SUMSQ(x).
If you have another vector y

y <- c(42,37,28,44,51,49)

then
> x*y
[1] 630 592 476 792 969 980

On the spreadsheet, you can have another named range
called y in cells G2 through G7, as shown in Figure 20-4.
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Selecting cell H2, typing =x*y, and pressing Enter puts
the answers in H2 through H7, as Figure 20-5 shows.
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Sometimes Statistical
Functions Work the Same
Way ...

To find the correlation between the vectors x and y in R:

> cor(x,y)
[1] 0.5900947

For the named ranges x and y in the spreadsheet, select
a cell and enter

=CORREL (x,Yy)

The answer appears in the selected cell.

... and Sometimes They
Don’t

If x and y represent data from two groups, a t-test is
appropriate for testing the difference between the means
(see Chapter 11).

Here’s how you carry out that test in R:

> t.test(x,y,alternative="two.sided",var.equal=FALSE)
Welch Two Sample t-test

data: ] x and y

t = -6.9071, df = 5.492, p-value = 0.000663

alternative hypothesis: true difference in means is not
equal to 0

95 percent confidence interval:
-33.15068 -15.51598

sample estimates:

mean of x mean of y
17.50000 41.83333



The third argument to t.test specifies a two-tailed test,
and the fourth indicates that the two variances are not
equal. (Those values for the last two arguments are the
default conditions, so it's not necessary to state them.)
As you can see, R’s t.test() function gives you a full
report.

Not so in Excel. Select a cell and enter

=T.TEST(x,y,2,3)

The third argument, 2, means this is a two-tailed test.
The fourth argument, 3, specifies unequal variances.
Press Enter and all you get is the p-value.

Contrast: Excel and R
Work with Different Data
Formats

Throughout this book, I differentiate between wide
format:

> wide.format
Xy
15 42
16 37
17 28
4 18 44
5 19 51
6 20 49

and long format:

w N =

> long.format
Group Score
X 15
16
17
18
19

u b W N =
X X X X



20
42
37
28
44
51
49

KKK K K X

Excel works with wide format.

ne  If you worked with Excel 2011 for the Mac (or
earlier Mac versions), you might have installed
StatPlus:mac LE, a third-party add-in that provides
numerous statistical analysis tools for the Mac
version of Excel. StatPlus works with long-format
data.

R, for the most part, uses long format. For example, the
t.test() function I just showed you can also work like
this:

Welch Two Sample t-test

data: Score by Group
t = -6.9071, df = 5.492, p-value = 0.000663
alternative hypothesis: true difference in means between group X
and group y is not equal to ©
95 percent confidence interval:
-33.15068 -15.51598
sample estimates:
mean in group X mean in group Yy
17.50000 41.83333

Notice that the output is the same except that you end
up with data: Score by Group rather than data: x and y as in
the earlier example. The next-to-last line is also slightly
different.



Distribution Functions Are
(Somewhat) Similar

Both Excel and R have built-in functions that work with
distribution families (like the normal and the binomial).
Because R is specialized for statistical work, it has

functions for more distribution families than Excel does.

I'll show you how both work with the Normal family, and
you’ll see the similarities.

In a normal distribution with mean = 100 and standard
deviation = 15, if you want to find the density associated
with 110 in Excel, that’s

=NORM.DIST(110,100,15,FALSE)
The fourth argument, FALSE, indicates the density
function.
In R, you’d use

> dnorm(110,100,15)
[1] 0.02129653

For the cumulative probability of 110 in that distribution
=NORM.DIST (110,100, 15, TRUE)

Here, TRUE indicates the cumulative distribution function.

The R version is

> pnorm(110,100,15)
[1] 0.7475075

To find the score at the 25th percentile in Excel, you use
the NORM. INV function:

=NORM. INV(0.25,100,15)

And in R:



> gnorm(.25,100,15)
[1] 89.88265

One difference: R has a function for generating random
numbers from this distribution:

> rnorm(5,100,15)
[1] 85.06302 84.40067 99.73030 98.01737 61.75986

To do this in Excel, you have to use the Random Number
Generation tool in an add-in called the Data Analysis
ToolPak.

A Data Frame Is
(Something) Like a
Multicolumn Named
Range

In this section and the next, I show you how to use a
spreadsheet that holds a multicolumn array
corresponding to the AL2024 data frame in Chapter 18.
Here's the data frame:

> AL2024

Team Won Lost Runs.Scored Runs.Allowed
1 NYY 94 68 815 668
2 CLE 92 69 708 621
3 BAL 91 71 786 699
4 HOU 88 73 740 649
5 KAN 86 76 735 644
6 DET 86 76 682 642
7 SEA 85 77 676 607
8 MIN 82 80 742 735
9 BOS 81 81 751 747
10 TB 80 82 604 663
11 TEX 78 84 683 738
12 TOR 74 88 671 743
13 0AK 69 93 643 764



14 LAA 63 99 635 797
15 CHw 41 121 507 813

Figure 20-6 shows the spreadsheet. I've defined AL 2024
as the name for the entire table (cells A2 through E16).
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FIGURE 20-6: The AL2024 data frame in a spreadsheet. Its Excel name is
AL _2024.

In R, you can find the average of Runs.scored this way:

> mean(AL2024[,4])
[1] 691.8667

Runs.scored is in column 4, and the comma in the square
brackets specifies all the rows in that column.

On the spreadsheet, you select a cell and enter

=AVERAGE (INDEX (AL 2024, ,4))

The two commas in the parentheses specify all the rows
in column 4.



I know, I know. You can do that in several other ways in
both R and Excel. I'm just trying to show you the
commonalities.

The “several other ways” make things fall apart. For
example, Excel has nothing analogous to

> mean(AL2024$Runs.Scored)
[1] 691.8667

The sapply() Function Is
Like Dragging

To find all the column means in AL__2024 in Excel, you
can select cell B17 at the bottom of the second column
and enter

=AVERAGE (B2:B16)

and then drag through the third, fourth, and fifth
columns. Figure 20-7 shows the results of dragging.
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FIGURE 20-7: Averaging across columns by dragging from the first column.

To calculate those column means in R, you would do this:

> sapply(AL2024[,2:5],mean)
Won Lost Runs.Scored Runs.Allowed
79.33333 82.53333 691.86667 702.00000

Using data edit() Is
(Almost) Like Editing a
Spreadsheet

If you're used to spreadsheets and you're finding it hard
to make changes to data frames in R, the data edit()
function is for you. It’s in the DataEditR package. On the
Packages tab, click Install. Then, in the Install Dialog
Box, type DataEditR and click Install. After installation



is complete, find DataEditR on the Packages tab and
select its check box.

To change a data frame, you assign it another name and
open it with data edit():

> AL2024.changed <- data edit(AL2024)

This opens up the DataEditR window in Figure 20-8.

FIGURE 20-8: R's DataEditR window.

Now you can make changes. For example, to indulge my
wishful thinking, I suggest that you change NYY’s won from
94 to 104 and Lost from 68 to 58. To do that, you double-
click the appropriate cells, make the changes, click the
Synchronize icon (the two circular arrows), and click
Done.

When you open the first row of the newly named data
frame, you see data that is eminently more palatable,



although regrettably unrealistic:

> AL2024.changed[1, ]
Team Won Lost Runs.Scored Runs.Allowed
1 NYY 104 58 815 668

Use the Clipboard to
Import a Table from Excel
into R

So you want to use R to analyze your data, but your data
resides mostly in spreadsheets. What do you do?

In Chapter 2, I describe the x1sx package. This package
provides read.x1sx(), which enables you to read a
spreadsheet into R. To use this function, you have to
know which directory the spreadsheet is in and which
page of the spreadsheet you want to import.

But here's the easiest way to import an Excel table into
an R data frame: Copy the table (to the Clipboard) and
then use this:

read.table("clipboard", header = TRUE)

The second argument specifies that the first row of the
table contains column headers.

ne  For this technique to work, you have to have no
spaces in the names in your column headers.

Suppose you want to bring the table in Figure 20-4 into
R. You select cells F1 through G7 and press Ctrl+C to
copy the selected cells to the Clipboard.

Then in R:



> clip.frame <-read.table("clipboard", header = TRUE)
> clip.frame

Xy

15 42

16 37

17 28

18 44

19 51

6 20 49

and just like that, R grabs the data from the Clipboard
and you have a data frame.

ne  HoOw can you be sure it’s a data frame? The
function is.data.frame() returns TRUE if its argument is
a data frame and FALSE, if not:

ua B W N -

> is.data.frame(clip.frame)
[1] TRUE



Chapter 21

Ten Valuable Online R
Resources

IN THIS CHAPTER

» Finding websites for R users

» Learning from online documents

One reason for the rapid rise of R is the supportive R
community. It seems that as soon as someone becomes
proficient in R, they immediately want to share their
knowledge with others — and the web is the place to do
it. This chapter points you to some of the helpful web-
based resources the R community has created.

Websites for R Users

As you work with R, you might run into a situation or two
that requires some expert help. The websites in this
section can provide the assistance you need.

R-bloggers

As I write this, the R-bloggers website comprises the
efforts of hundreds of R bloggers. Visit www.r-bloggers. com/
to sample their efforts.

Statistics Ph.D. candidate Tal Galili runs the show. As he
says, his objective is to empower R bloggers to empower
R users. In addition to the blogs, you’ll find links to
courses, conferences, and job opportunities.



http://www.r-bloggers.com/

Posit

The driving force behind RStudio, and now R, Posit has
quickly developed into a go-to resource for all things R.
And, best of all, everything they create is open source.
Visit https://posit.co/ and see for yourself.

Datacamp

This terrific website covers a variety of areas within Al.
To find the extensive R-related material, visit
www.datacamp.com/doc/r/category/r-documentation.

Stack Overflow

Not limited to R, Stack Overflow is a multimillion-
member community of programmers dedicated to
helping each other. You can search their Q&A base for
help with a problem, or you can ask a question. To ask a
question, however, you have to be a member (it’s free)
and log in.

The site also provides links to jobs, documentation, and
more. Unsurprisingly, the website is at
http://stackoverflow.com/.

Online Books and
Documentation

The web has a wealth of books and documents that will
help get you up to speed when it comes to R. One way to
link to them is to click the Home button of the Help tab
in RStudio.

Here are a few more resources.

R manuals


https://posit.co/
https://www.datacamp.com/doc/r/category/r-documentation
http://stackoverflow.com/

If you want to go directly to the source, visit the R
manuals page at https://cran.r-project.org/manuals.html.

That’s where you'll find links to the R Language
Definition and other documentation.

R documentation
For links to even more R documentation, try
https://www.r-project.org/other-docs.html.

RDocumentation

Wait. Didn’t I just use this title? Yes, well ... the Canadian
Football League once had a team named the Rough
Riders and another named the Roughriders. It’s
something like that.

The RDocumentation page at www.rdocumentation.org/ is
quite a bit different from the web page in the previous
section. This one doesn’t link to manuals and other
documents. Instead, this website enables you to search
for R packages and functions that suit your needs.

How many packages are available? Over 29,000!

YOU CANanalytics

The brainchild of Roopham Upadhyay, the YOU
CANanalytics website provides a number of helpful blogs
and case studies and could have gone into the first main
section.

Why is it in this one? Because this page
http://ucanalytics.com/blogs/learn-r-12-books-and-online-
resources/ enables you to download classic R books in
PDF. Some of the titles are at the introductory level,
some are advanced, and all of them are free!



https://cran.r-project.org/manuals.html
https://www.r-project.org/other-docs.html
http://www.rdocumentation.org/
http://ucanalytics.com/blogs/learn-r-12-books-and-online-resources/

ne A book in PDF is a very long document. If you're
reading it on a tablet, it’s user-friendlier to turn the
PDF file into an e-book. To do this, upload your PDF
document into an e-reader like Google Playbooks,
and voila — your PDF file becomes an e-book.

Geocomputation with R

This one is a little different from the others I've listed.
Rather than a set of documents about R, this is an online
book that focuses on a specific area — one that just
might fascinate you. Visit https://r.geocompx.org/ and
prepare to be intrigued.

The R Journal

I saved this one for last, because it’s at an advanced
level. Like academic publications, The R Journal is
refereed — experts in the field decide whether a
submitted article is worthy of publication.

Take a look at the articles at https://journal.r-project.org/
and you’ll see what’s in store for you when you become
one of those experts!



https://r.geocompx.org/
https://journal.r-project.org/
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exponent, 334

exponential regression, 344-348
extracting data from data frames, 37-38

facet, 268, 270
faceting, 84, 268
facet wrap() function, 84
factor() function, 33
factorial() function, 367
factors, 33-34, 51, 249
F-distributions

o about, 215

o t-testing and, 218

o visualizing, 219-222

o working with, 218-219
files

o CSV, 44-45

o text, 45-46




e Files tab, 19
e finding
o confidence limits for a mean, 165-167
o patterns, 49-55
 fit, testing, 282-285, 386-388
e fivenum() function, 111
e for loop, 160-161
e forecasting, using regression for, 279
e formulas
o adjusted R, 327
o intercept, 278
o kurtosis, 121
o mean-square, 225-226
o multiple correlation, 325
o Poisson distribution, 383
o probability, 13
o R, 42-43
o regression coefficients, 277
o regression plane, 292
o SS for trend components, 244
o test statistics, 180, 190
o working with, 207-208
e F-ratio, 215
* frequency, 122-130




e F-testing

O

O

about, 215, 228
inR, 217-218

e functions

o

o

o

abs(), 179, 203

aes(), 66-67, 70-71
annotate(), 196

anova(), 305, 307, 354
aov(), 43, 230, 298
as.character(), 62-63
attach(), 83

barplot(), 59-60
binom.test(), 377, 378, 380
boxplot(), 65

c(), 26, 29

cat(), 129, 179, 203-204
cbind(), 267

cen.mom(), 121
chisq.test(), 191, 389-390
choose(), 367/
combinations(), 368
combn(), 367

cor(), 320, 321, 322
corrgram(), 324




cor.test(), 320-321
for counting rules, 367-369
cumsum(), 124
datadensity(), 132
data edit(), 426-427
data.frame(), 36
dbinom(), 37/3-374
dchisq(), 194
density, ﬂ 372
describe(), 131
, m-219
dim(), 32
distribution, 422-423
dnbinom(), 375, 376
dnorm(), 137, 138, 144, 151
(), 168, 181, 182
element blank(), /1
exp(), 338-339, 343-344, 347/-348
facet wrap(), 84
factor(), 33
factorial(), 367
fivenum(), 111

geom S, 67, 69, 83, 126, 127, 139, 187, 221,
269, 289-290, 291

geom bar(), 69, 210, 374




geom boxplot(), /5

geom histogram(), 67/-68, 161
, 16

geom segment(), 140-141, 146-147, 151

geom jitter()

geom step, 126
ggpairs(), /3, 74, 323

ggplot(), 66, 68, 70, 75, 138-140, 161, 185-
186, 190, 220, 221, 256, 262, 291, 342,
374, 384, 400, 409

glm(), 406, 409

head(), 39, 64

hist(), 122-123

is t.test(), 35
is.data.frame(), 428
kurtosis(), 121

labs(), 68, 72

length(), 37, 86, 96, 113-115
lines(), 58

list(), 34

(), 287, 288, 294, 306, 325-326, 327/,
340-341, 342, 346, 347, 353

log(), 350

loglo(), 335
margin.table(), 122
matrix(), 32-33, 235




(

)

norm(), 137, 150
nrow()

pairs(

pbinom(), 373, 374
pchisq(), 193
pcor(), 329, 331

pcor.test(), 328

permutations(), 368

pf(), 218-219

plot(), 61-63, 65, 124, 183-185
plotpairs(), 73

pnbinom(), 375

pnorm(), 137, 143-145

position dodge(), 256-257
predict(), 289, 295

prod(), 86




prop.table(), 122

pt(), 168, 181

gbinom(), 373, 375

qchisq(), 193

qf(), 218, 253

gnbinom(), 375

gnorm(), 138, 145-147, 176, 201-202
qt(), 168-169, 181, 206

quantile(), 109-110, 112

R, 26-28

randomization, 396

rank(), 107

rbinom(), 373
rchisq(), 193
read.table(), 45
rep(), 30-31

rf(), 218

rnbinom(), 375

rnorm(), 138, 147-148, 399
round(), 106, 110

rt(), 168, 181, 182
r.test(), 321

sample(), 397

sapply(), 42




scale(), 104-105

scale x continuous(), 128, 140, 142, 146-
147, 151

scatter3d(), 297
scatterplot3d(), 295-296
sd(), 98

seq(), 30-31, 183
set.seed(), 148, 400
skewness(), 118, 121
sort(), 108

spcor(), 330
spcor.test(), 330

stat, 210

stat boxplot(), 210, 269
stem(), 128-130
subset(), 64

substr(), 27, 28, 30
sum(), 26

summary (), 112, 130-132, 235, 247, 267,
287, 288, 294, 342, 347, 350, 406
summary.aov(), 2/0-271

t(), 32

table(), 122

tapply(), 305
theme(), 71




o tigerstats s, 150

o t.test(), 169, 181, 206, 208, 212, 420, 421
o user-defined, 28

o var(), 26, 96

o varTest(), 192, 217-218

o var.test(), 217-218

o with(), 82, 99, 296, 391

o write.table(), 46

GC (graphical calculator), 143
general linear model (GLM)
o about, 298

o analysis of covariance (ANCOVA) and, 302-
308

Geocomputation with R, 432

geom functions, 67, 69, 83, 126, 127, 139, 187,
221, 269, 289-290, 291

geom bar() function, 69, 210, 374
geom boxplot() function, 75
geometric mean, 85-86

geometric object, 67

geom histogram() function, 67-68, 161
geom jitter() function, 76

geom line, 195



geom segment() function, 140-141, 146-147, 151
geom step function, 126

GGally package, 73

ggpairs() function, 73, 74, 323

ggplot() function, 66, 68, 70, 75, 138-140, 161,
185-186, 190, 220, 221, 256, 262, 291, 342,
374, 384, 400, 409

ggplot2 package
o about, 40-41, 65-66, 289-290, 295
bar graphs, 69-70
box plots, 75-77
histograms, 66-69
plotting chi-square in, 195-196
plotting t in, 185-189
scatterplots, 70-75
GLM (general linear model)
o about, 298

o analysis of covariance (ANCOVA) and, 302-
308

glm() function, 406, 409
grammar, 66

grammar of graphics, 66
grand mean, 226

graphical calculator (GC), 143
graphics

o

O

o

o

o

o




o

O

about, 49
adding features, 57-59
bar graphs, 51-52, 59-60, 69-70
base R
= about, 56
= adding features, 57-59
= bar graphs, 59-60
= box plots, 65
= histograms, 56-57
= pie graphs, 61
= plotting chi-square in, 194-195
= plotting tin, 183-185
= scatterplots, 61-65
box-and-whisker plots, 54-55, 65, 75-77
finding patterns, 49-55
ggplot2, 65-77
graphing distributions, 50-51
histograms, 56-57, 66-69
pie graphs, 52-53, 61
scatterplots, 54, 61-65, 70-75

e graphing lines, 275-277
e Greek letters, 11

H



harmonic mean, 86-87
head() function, 39, 64
Help tab, 19, 20
hinges, 54
hist() function, 122-123
histograms
o in base R graphics, 56-57
o center of, 117
o in ggplot2, 66-69
o skewness, 117-120
o symmetry of, 117
History pane, 19
homogeneity of regression, 308-309
hypothesis, 172
hypothesis testing
o with binomial distribution, 376-378
o combinations, 249-253
o correlation, 317-319
o correlation coefficients, 320-321

o difference between two correlation
coefficients, 321

o fit, 282-285, 386-388
o foundation of, 364
o hypotheses, 14-16
o intercept, 286-287



o more than two samples, 223-247
o multivariate analysis of variance (MANOVA),

265-

271

o one-sample

O

o

o

O

o

o

o

about, 171

chi-square distributions, 193

errors, 1/7/2-173

hypotheses, 172-173

sampling distributions and, 172-173
t-distributions, 181-182

testing variances, 190-192
t-testing, 180

t-testing in R, 181

visualizing chi-square distributions,
193-196

visualizing t-distributions, 182-190
z-score testing in R, 178-179
z-scores, 1/5-178

for paired samples, 213-214
post ANOVA, 264-265

R versus traditional, 378-380
regression, 281-287

slope, 285-286

testing, 14-16

two-sample



o

(0]

O

o

about, 197-198

applying central limit theorem, 199-
200

equal variances, 204-206

for paired samples, 213-214

for paired samples in R, 214-215
sampling distributions, 198-204
t-testing, 204

t-testing in R, 206-212

for two variances, 215-218
unequal variances, 212

visualizing F-distributions, 219-222
visualizing results, 208-211

working with data frames and
formulas, 207-208

working with F-distributions, 218-219
working with two vectors, 206-207
z-scores, 201-202

z-testing in R, 202-204

two-way ANOVA in R, 253-257
variables, 257-264

variances, 190-192

variances in R, 191-192



icons, explained, 4-5
importing tables from Excel into R, 427-428
independent variables, 11-12, 274, 312
inferential statistics

o about, 14

o alternative hypotheses, 15

o error types, 16

o null hypotheses, 15
Insert Packages dialog box, 321
Install Packages dialog box, 41, 143, 297, 328
installing ggplot2, 41
interactions, 251
intercepts

o about, 27

o testing, 286-287

Internet resources
o Cheat Sheet, 5
Datacamp, 430
Geocomputation with R, 432
Posit, 430
R, 18
R documentation, 431
R Journal, 432
R manuals, 430-431

o

O

O

o

O

O

o



o

for R users, 429-430
R-bloggers, 429-430
RDocumentation, 431
RStudio, 18
Stack Overflow, 430

o YOU CANanalytics, 431
intersection, 361-363
interval data, 12
is t.test() function, 35
is.data.frame() function, 42

o

O

O

o

jittering, 76

keyword matching, 28
kurtosis, 120-121
kurtosis() function, 121

labs() function, 68, 72
large sample spaces, 365-367
length() function, 37, 86, 96, 113-115




leptokurtic, 120
library, 38
limit, 337
line plot, 183
linear equations, 275
linear model, 288-289
linear regression, in R, 287-291
lines, graphing, 275-277
lines() function, 58
list() function, 34
lists

o about, 34-35

o statistics and, 35-36

wm() function, 287, 288, 294, 306, 325-326, 327,
340-341, 342, 346, 347, 353

log() function, 350
logl0o() function, 335
logarithmic regression, 348-351
logarithms, 334-336
logical operator, 37
logical vectors, 30
logistic regression
o about, 403-406
o analysis, 406-409
o getting data, 406




o visualizing results, 409-411
e lower quartile, 54
e lower tail, 177
* luggage capacity, 2

M

MANOVA (multivariate analysis of variance)
o about, 265-266
o inR, 266-268
* margin.table() function, 122
e MASS package, 38, 302, 339, 349, 352
e matrices
o about, 31-33
o scatterplot, 63-65, 73-75
e matrix() function, 32-33, 235
e maximum value, 115
e mean
o about, 79-81
o finding confidence limits for a, 165-167
o geometric, 85-86
o harmonic, 86-87
o outliers, 84-85
o in R, 81-87
o of sampling distribution, 173




mean() function, 26, 81-87, 110-111, 305
mean-square, 225-229, 284
measuring
o correlation coefficient, 320
o correlation matrices, 322
o variance, 92-95
o variation, 92-96
median
o about, 54, 87-88
o in R, 88-89
median() function, 88-89
melt() function, 220, 269
melting data, 186, 220
Meys, Joris (author)
o R For Dummies, 29
mfv() function, 90
Microsoft Excel, transitioning to R from, 415-428
minimum value, 115
minus sign (-), 107
missing data, 25-26
mixed ANOVA
o about, 257-259
o inR, 260-262
mode




o about, 89
o in R, 89-90
* mode() function, 89-90
e modeling
o about, 381
o chisq.test() function, 389-390
o distributions, 381-393
o Monte Carlo method, 393-398
o Poisson distribution, 382-386
o sabermetrics, 390-393
o simulating central limit theorem, 398-401
o testing fit, 386-388
e moment() function, 121
e moments, 115-121
e moments package, 118
e Monte Carlo method, 393-398
e mtext() function, 194
e multiple coefficient of determination, 325
e multiple correlation
o about, 324-325
o adjusting R-squared, 326-327
o in R, 325-326
 multiple correlation coefficient, 324
e multiple regression




o

about, 292-293
making predictions, 295
in R, 294-295

visualizing 3D scatterplot and regression
plane, 295-298

multivariate analysis of variance (MANOVA)
o about, 265-266
o inR, 266-268

mutually exclusive, 362

o

@)

o

NA (Not Available), 25

natural logarithms, 338

ncol() function, 114

negative binomial distribution, 373, 375-376
negative correlation, 312
negative skewness statistic, 118
nominal data, 12

nominal variables, 122
noncentrality parameter, 182
norm() function, 137, 150

normal curves, plotting, 138-142
normal density function

o about, 138-142




o

random sampling, 147-148

e normal distribution

o

o

o

O

o

about, 133

bell curve, 133-137

cumulative density function, 143-145
normal density function, 138-142
parameters of, 135-137

quantiles of, 145-147

in R, 137-138

standard deviation and, 148-151
working with, 137-148

 Not Available (NA), 25

e nrow() function, 114

e Nth smallest, Nth largest, 108
 null deviance, 407

e null hypotheses, 15, 172

e numerical variables, 122-130

e numerical vectors, 30-31

* objects, 19
e octothorpe, 29
e one-sample hypothesis testing

o

about, 171



o

O

chi-square distributions, 193

errors, 172-173

hypotheses, 172-173

sampling distributions and, 172-173
t-distributions, 181-182

testing variances, 190-192
t-testing, 180

t-testing in R, 181

visualizing chi-square distributions, 193-
196

visualizing t-distributions, 182-190
z-score testing in R, 178-179
z-scores, 17/5-178

one-tailed tests, 176-177, 198
online resources, for R, 429-432
ordinal data, 12

orthogonal contrasts, 234
outliers, 54, 84-85

packages, 38-42
Packages tab, 19
paired samples

o

hypothesis testing for, 213-214



o t-testing in R, 214-215
pairs() function, 64, 65, 74
parameters

o defined, 10

o of normal distribution, 135-137
partial correlation

o about, 327-328

o in R, 328-329
Pascal distribution, 373
patterns, finding, 49-55
pbinom() function, 373, 374
pchisq() function, 193
pcor() function, 329, 331
pcor.test() function, 328
Pearson, Karl, 313, 387

Pearson's product-moment correlation
coefficient. See correlation coefficient

percent ranks, 110-111
percentiles, 108-110
permutations, in large sample spaces, 366
permutations() function, 368
pf() function, 218-219
pie graphs
o about, 52-53
o in base R graphics, 61




planned comparisons, 232-234
platykurtic, 120

plot() function, 61-63, 65, 124, 183-185
plotpairs() function, 73

Plots tab, 19

plotting

o

o

o

o

o

o

o

O

o

chi-square in base R graphics, 194-195
chi-square in ggplot2, 195-196
cumulative density function (cdf), 144-145

cumulative density function (cdf) with
quartiles, 146-147

normal curves, 138-142

residuals, 290-291

standard normal distribution, 150-151
t in base R graphics, 183-185

t in ggplot2, 185-189

plotting character, 61-62
plus-or-minus sign, 316
pnbinom() function, 375

pnorm() function, 137, 143-145
Poisson distribution

o

o

about, 382-383
modeling with, 383-386

polynomial regression, 351-355
pooling, 205



population standard deviation, 97
populations, 10-11, 155
Posit, 430
positional matching, 27
position dodge() function, 256-257
positive correlation, 312
positive skewness statistic, 118
post hoc tests, 236-237
power regression, 339-344
predict() function, 289, 295
predictions
o of central limit theorem, 163-164
o making, 289, 295
Presentation tab, 19, 20
probability
o about, 13-14, 58, 359-360
o binomial distribution, 372-375, 376-378
o combinations, 366-367
o compound events, 361-363
o conditional
= about, 14, 363-364
= foundation of hypothesis testing, 364
= working with, 364
o continuous random variables, 369




o

o

o

density functions, 370-372

discrete random variables, 369
distributions, 370-372

events, 360, 361-363

experiments, 360

foundation of hypothesis testing, 364
hypothesis testing in R, 378-380

hypothesis testing with binomial
distribution, 376-378

intersection, 361-363

large sample spaces, 365-367
negative binomial in R, 375-376
permutations, 366

R functions for counting rules, 367-369
random variables, 369

sample spaces, 360-361

trials, 360

union, 361-362

working with, 364

probability density, 135

probability density function, 135, 371

prod()

function, 86

product rule, 365

prop.

table() function, 122

) function, 168, 181




Pythagorean percentage, 390-391

gbinom() function, 373, 375

gqchisq() function, 193

qf () function, 218, 253

gnbinom() function, 375

gnorm() function, 138, 145-147, 176, 201-202
qt() function, 168-169, 181, 206
quadratic trend, 243

quantile() function, 109-110, 112
quantiles, of normal distribution, 145-147
quartic component, 246

quintic component, 246

R. See also base R graphics
o about, 9,17
o analysis of variance (ANOVA) in, 230-237
o binomial distribution in, 373-375
o comments, 29
o contrasts in, 234-236
o correlation in, 320-324
o data formats in, 420-422




data frames in, 423-424

data edit() function, 426-427
defining vectors, 415-416
distribution functions, 422-423
documentation for, 431
downloading, 18-21

formulas, 42-43

F-testing in, 217-218

functions, 26-28

functions for counting rules, 367-369
hypothesis testing in, 378-380
importing tables from Excel into, 427-428
linear regression in, 287-291
manuals for, 430-431

mean in, 81-87

median in, 88-89

missing data, 25-26

mixed ANOVA in, 260-262
mode in, 89-90

multiple correlation in, 325-326
multiple regression in, 294-295

multivariate analysis of variance (MANOVA)
in, 266-268

normal distributions in, 137-138
online resources for, 429-432



operating on vectors, 416-419
packages, 38-42

partial correlation in, 328-329
randomization functions, 396
ranking in, 107

reading, 43-46

repeated measures ANOVA in, 239-241
sapply() function, 425

semipartial correlation in, 330-331
standard deviation in, 98

standard normal distribution in, 150
standard scores in, 104-105
statistical functions, 419-420
structures, 29-38

testing variances in, 191-192

transitioning from Microsoft Excel to, 415-
428

trend analysis in, 246-247

t-testing in, 181, 206-212

t-testing paired samples in, 214-215
two-way ANOVA in, 253-257
user-defined functions, 28

using, 22-25

variance in, 96

website, 18




o working directory, 21-22
o writing, 43-46
o z-scoresin, 178-179
o z-testing for two samples in, 202-204
R For Dummies (de Vries and Meys), 29
R Journal, 432
random sampling, 147-148
random variables, probability and, 369
randomization functions, 396
randomized blocks ANOVA, 237
rank() function, 107
ranking, in R, 107
ratio, 12-13
raw moment, 115
rbinom() function, 373
R-bloggers, 429-430
rchisq() function, 193
RDocumentation, 431
reading, in R, 43-46
read.table() function, 45
regression
o about, 273, 277-279
o analysis of covariance (ANCOVA), 302-308
o analysis of variance (ANOVA), 298-302




o correlation and, 314-317
o curvilinear

about, 333-334

choosing models, 355-356

e, 336-339

exponential regression, 344-348
logarithmic regression, 348-351
logarithms, 334-336

polynomial regression, 351-355
power regression, 339-344

exponential, 344-348
graphing lines, 275-277
homogeneity of, 308-309
linear regression in R, 287-291
logarithmic, 348-351

logistic

= about, 403-406

= analysis, 406-409

= getting data, 406

= visualizing results, 409-411

multiple

= about, 292-293
» making predictions, 295
= in R, 294-295



= visualizing 3D scatterplot and
regression plane, 295-298

polynomial, 351-355
power, 339-344
scatterplots, 274-275
testing hypotheses about, 281-287
using for forecasting, 279

o variation around regression line, 279-281
regression coefficients, 277-279
regression component, 408
regression lines

o about, 277-280

o variation around, 279-281

o visualizing, 289-290
regression plane, visualizing, 295-298
relationship, 312
Remember icon, 4
rep() function, 30-31
repeated measures ANOVA

o about, 237

o inR, 239-241

o working with,
reshape2 package,
reshaping data, 185-186
residual deviance, 407

O

o

o

o

O



e residual variance, 280
e residuals
o about, 231, 280, 316
o plotting, 290-291
e resources, Internet
o Cheat Sheet, 5
o Datacamp, 430
o Geocomputation with R, 432
o Posit, 430
o R, 18
o R documentation, 431
o R Journal, 432
o R manuals, 430-431
o for R users, 429-430
o R-bloggers, 429-430
o RDocumentation, 431
o RStudio, 18
o Stack Overflow, 430
o YOU CANanalytics, 431
e rf() function, 218
e rgl package, 297-298
e rnbinom() function, 375
 rnorm() function, 138, 147-148, 399
e round() function, 106, 110




row factor, 250, 251
R-squared, adjusting, 326-327
RStudio

o downloading, 18-21

o website, 18
rt() function, 168, 181, 182
r.test() function, 321

sabermetrics, 390-393
sample() function, 397
sample spaces
o about, 360
o large, 365-367
o probability and, 360-361
sample standard deviation, 97, 155
sample variance, 95
samples
o about, 10-11
o testing more than two, 223-247
sampling distributions
o of the difference between means, 198-199
o hypothesis tests and, 173-175
o of the mean, 156-157



o two-sample hypothesis testing and, 198-
204

sampling with replacement, 160
sapply() function, 425
scale() function, 104-105

scale x continuous() function, 128, 140, 142,
146-147, 151

scatter3d() function, 297
scatterplot3d() function, 295-296
scatterplot3d package, 295-296
scatterplots

o about, 53

o in base R graphics, 61-65

o correlation and, 311-312

o in ggplot2, 70-75

o regression and, 274-275

o visualizing, 289-290, 295-298
Schmuller, Joseph (author)

o Statistical Analysis with Excel For Dummies,
43

Scripts pane, 20

sd() function, 98
seed, 148

segments, 140
semipartial correlation




o about, 330

o in R, 330-331
seq() function, 30-31, 183
set.seed() function, 148, 400
significant linear component, 245
simple main effects, 264

simulating central limit theorem, 159-163, 398-
401

skewness, 117-120
skewness () function, 118, 121
slope
o about, 276-277
o testing, 285-286
sort() function, 108
spcor() function, 330
spcor.test() function, 330
spreadsheets, 43-44
squared deviations, averaging, 92-95
Stack Overflow, 430
standard deviation
o about, 96-97, 191
conditions, 98-99
normal distribution and, 148-151
population, 97
in R, 98

O

o

o

o



o sample, 97
e standard error
o about, 156
o of the difference between means, 200
o of estimate, 280
o of the mean, 156, 173
e standard normal distribution
o about, 121, 149
o plotting, 150-151
o in R, 150
e standard units
o about, 101
o Nth smallest, Nth largest, 108
o percent ranks, 110-111
o percentiles, 108-110
o inR, 104-105
o ranking in R, 107
o summarizing, 111-112
o tied scores, 107-108
o z-scores, 102-104, 106
Stanford-Binet version of IQ test, 136, 148
start position, 27
stat function, 210
stat boxplot() function, 210, 269




Statistical Analysis with Excel For Dummies
(Schmuller), 43

statistical functions, 419-420
statistical terminology

o data types, 12-13

o populations, 10-11

o probability, 13-14

o samples, 10-11

o variables, 11-12
statistically significant, 176

statistics

o defined, 10
o descriptive

about, 113

frequency, 122-130

how many, 113-115

kurtosis, 120-121

maximum value, 115
minimum value, 115
moments, 115-121

nominal variables, 122
numerical variables, 122-130
skewness, 117-120

summarizing data frames, 130-132

o inferential



about, 14
alternative hypotheses, 15
error types, 16
null hypotheses, 15
o lists and, 35-36
stem() function, 128-130
stem-and-leaf plot, 128-130
structures, R, 29-38
studentized range distribution, 236
subjects, 257
subset () function, 64
substr() function, 27, 28, 30
sum() function, 26
sum of squares, 225
summarizing
o about, 111-112, 113
o data frames, 130-132

summary () function, 112, 130-132, 235, 247, 267,
287, 288, 294, 342, 347, 350, 406

summary.aov () function, 270-271
symmetric, 135
symmetry, of histograms, 11




t() function, 32
table() function, 122
tables, importing from Excel into R, 427-428
tapply() function, 305
t-distributions
o about, 167-169, 180
o two-sample hypothesis tests and, 204
o visualizing, 182-190
o working with, 181-182
Technical Stuff icon, 5
Terminal tab, 19
test statistic, 175
testing. See hypothesis testing
testing, hypothesis
o with binomial distribution, 376-378
o combinations, 249-253
o correlation, 317-319
o correlation coefficients, 320-321

o difference between two correlation
coefficients, 321

o fit, 282-285, 386-388

o foundation of, 364

o hypotheses, 14-16

o intercept, 286-287

o more than two samples, 223-247




o multivariate analysis of variance (MANOVA),
265-271

o for paired samples, 213-214
o post ANOVA, 264-265
o R versus traditional, 378-380
o regression, 281-287
o slope, 285-286
o testing, 14-16
o two-way ANOVA in R, 253-257
o variables, 257-264
o variances, 190-192
o variances in R, 191-192
text files, 45-46
theme() function, 71
themes, 71
tied scores, 107-108
tigerstats functions, 150
tilde operator (~), 42-43, 84, 270, 287
Tip icon, 4
total variance, 251, 284
transforming correlation coefficients, 319
transposing matrices, 32
trend analysis
o about, 243-246
o inR, 246-247




trials, 360
trimming the mean, 84
T-score, 106

t.test() function, 169, 181, 206, 208, 212, 420,
421

t-testing
o about, 40
o F-distribution and, 218
o of paired samples in R, 214-215
o inR, 181, 206-212
Tukey, John (statistician), 53
Tukey's test, 236
Tutorial pane, 19
two-factor ANOVA, 251-253
two-sample hypothesis testing
o about, 197-198
o applying central limit theorem, 199-200
o equal variances, 204-206
o for paired samples, 213-214
o for paired samples in R, 214-215
o sampling distributions, 198-204
o t-testing, 204
o t-testing in R, 206-212
o for two variances, 215-218
o unequal variances, 212




o visualizing F-distributions, 219-222
o visualizing results, 208-211

o working with data frames and formulas,
207-208

o working with F-distributions, 218-219
o working with two vectors, 206-207
o z-scores, 201-202
o z-testing in R, 202-204
two-tailed tests, 177, 198
two-way ANOVA
o about, 251-253
o in R, 253-257

2 x 2 factorial design, 25

Type | error, 16, 172
Type Il error, 16, 172

unequal variances, for two-sample hypothesis
tests, 212

union, 361-362

unplanned comparisons, 236-237
Upadhyay, Roopham, 431

upper quartile, 54

upper tail, 177



e user-defined functions, 28

| %

e var() function, 26, 96
e variables. See also mixed ANOVA

O

o

o

o

o

about, 11-12
categorical, 33-34
dependent, 274, 312
dummy, 300
independent, 274, 312
nominal, 122
numerical, 122-130
random, 369

e variances

o

o

o

about, 24

calculating, 92-95

equal, 204-206

hypothesis testing two, 215-218
in R, 96

sample, 95

testing, 190-192

two-sample hypothesis tests and equal,
204-206

unequal, 21



e variation
o about, 91
o around regression lines, 279-281
o calculating variance, 92-95
o measuring, 92-96
o sample variance, 95
o variance in R, 96
e var.test() function, 217-218
e varTest() function, 192, 217-218
e vectors
o about, 22-23, 29-30
o data frames, 36-38
o defining, 415-416
o factors, 33-34
o lists, 33-36
o matrices, 31-33
o numerical, 30-31
o operating on, 416-419
o working with two, 206-207
e vertical line (|), 364
e Viewer tab, 19, 20
e visualizing
o chi-square distributions, 193-196
o correlation matrices, 322-324




o F-distributions, 219-222
o regression lines, 289-290
o regression plane, 295-298

o results, 208-211, 231-232, 242-243, 255-
257, 262-264, 268-269, 409-411

o scatterplots, 289-290, 295-298
o t-distributions, 182-190

w

 Warning icon, 4

e websites
o Cheat Sheet, 5
o Datacamp, 430
o Geocomputation with R, 432
o Posit, 430
o R, 18
o R documentation, 431
o R Journal, 432
o R manuals, 430-431
o for R users, 429-430
o R-bloggers, 429-430
o RDocumentation, 431
o RStudio, 18
o Stack Overflow, 430



o YOU CANanalytics, 431
Wickham, Hadley, 65-66
Wilkinson, Leland (author), 65-66
with() function, 82, 99, 296, 391
within subjects ANOVA, 237
working directory, in R, 21-22
workspace, 21
write.table() function, 46
writing, in R, 43-46

xX-axis, 274
x-coordinate, 53
xlsx package, 43-44
x-value, 275

x-variable, 274

y-axis, 274
y-coordinate, 53
y-intercept, 276

YOU CANanalytics, 431
y-variable, 274



Z

e zero, correlation coefficient greater than, 317-
318

e z-sCoOres
o about, 102-104, 106, 150, 175-178
o inR,178-179
o two-sample hypothesis tests and, 201-202
e z-testing, for two samples in R, 202-204
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