

Certification Study Companion Series

The Apress Certification Study Companion Series offers guidance and

hands-on practice to support technical and business professionals

who are studying for an exam in the pursuit of an industry certification.

Professionals worldwide seek to achieve certifications in order to advance

in a career role, reinforce knowledge in a specific discipline, or to apply for

or change jobs. This series focuses on the most widely taken certification

exams in a given field. It is designed to be user friendly, tracking to topics

as they appear in a given exam and work alongside other certification

material as professionals prepare for their exam.

More information about this series at https://link.springer.com/
bookseries/17100.

https://link.springer.com/bookseries/17100
https://link.springer.com/bookseries/17100

Azure Data
Fundamentals
Certification
Companion

A Complete Guide to
DP-900 Exam Success

Naveen Kumar M

Azure Data Fundamentals Certification Companion: A Complete Guide to

DP-900 Exam Success

ISBN-13 (pbk): 979-8-8688-1683-3		 ISBN-13 (electronic): 979-8-8688-1684-0
https://doi.org/10.1007/979-8-8688-1684-0

Copyright © 2025 by Naveen Kumar M

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images
only in an editorial fashion and to the benefit of the trademark owner, with no intention of infringe-
ment of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Smriti Srivastava
Desk Editor: Laura Berendson
Editorial Project Manager: Jessica Vakili

Cover image from Pixabay.com

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 New York
Plaza, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a Delaware LLC and the sole
member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance
Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions
and licenses are also available for most titles. For more information, reference our Print and eBook
Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on the Github repository: https://github.com/Apress/Azure-Data-Fundamentals-Certification-
Companion. For more detailed information, please visit https://www.apress.com/gp/services/
source-code.

If disposing of this product, please recycle the paper

Naveen Kumar M
Chennai, Tamil Nadu, India

https://doi.org/10.1007/979-8-8688-1684-0

To the one who stood by me with love and
patience – my wife.

vii

About the Author��xiii

About the Technical Reviewer���xv

Acknowledgments���xvii

Introduction��xix

Chapter 1: ��Exam Overview and Structure��1

Introduction to DP-900 Certification��2

Purpose of the Exam��2

What Is the Primary Purpose of the DP-900 Exam?���2

Who Should Take This Exam?���3

Benefits of DP-900 Certification���4

Exam Domains and Weightage��6

Understanding Core Data Concepts (25–30%)���7

Working with Relational Data on Azure (20–25%)��8

Exploring Non-relational Data on Azure (15–20%)���8

Analytics Workloads on Azure (25–30%)��9

Understanding the Exam Format���10

DP-900 Question Types���10

Time Allocation and Scoring System��11

Study Plan and Strategies��12

Four-Week Preparation Plan���12

Week 1: Chapter 2 – Understanding Core Data Concepts (25–30%)��������������12

Week 2: Chapter 3 – Working with Relational Data on Azure (20–25%)���������13

Table of Contents

https://doi.org/10.1007/979-8-8688-1684-0_1
https://doi.org/10.1007/979-8-8688-1684-0_1
https://doi.org/10.1007/979-8-8688-1684-0_1#Sec1
https://doi.org/10.1007/979-8-8688-1684-0_1#Sec2
https://doi.org/10.1007/979-8-8688-1684-0_1#Sec3
https://doi.org/10.1007/979-8-8688-1684-0_1#Sec4
https://doi.org/10.1007/979-8-8688-1684-0_1#Sec5
https://doi.org/10.1007/979-8-8688-1684-0_1#Sec6
https://doi.org/10.1007/979-8-8688-1684-0_1#Sec7
https://doi.org/10.1007/979-8-8688-1684-0_1#Sec8
https://doi.org/10.1007/979-8-8688-1684-0_1#Sec9
https://doi.org/10.1007/979-8-8688-1684-0_1#Sec10
https://doi.org/10.1007/979-8-8688-1684-0_1#Sec11
https://doi.org/10.1007/979-8-8688-1684-0_1#Sec12
https://doi.org/10.1007/979-8-8688-1684-0_1#Sec13
https://doi.org/10.1007/979-8-8688-1684-0_1#Sec14
https://doi.org/10.1007/979-8-8688-1684-0_1#Sec15
https://doi.org/10.1007/979-8-8688-1684-0_1#Sec16
https://doi.org/10.1007/979-8-8688-1684-0_1#Sec17

viii

Week 3: Chapter 4 – Exploring Non-relational Data on Azure (15–20%)��������13

Week 4: Chapter 5 – Analytics Workloads on Azure (25–30%)�����������������������14

Leveraging Microsoft Learn, Documentation, and Practice Labs�������������������14

Summary���15

1. �Introduction to DP-900 Certification���16

2. �Exam Domains and Weightage���16

3. �Understanding the Exam Format��17

4. �Study Plan and Strategies��18

Chapter 2: ��Understanding Core Data Concepts������������������������������������19

Introduction to Data Representation��20

Overview���20

Ways to Represent Data���20

Structured Data��21

Semi-structured Data���24

Unstructured Data��27

Data Storage Options���29

Delimited Text Files��30

Key Characteristics���30

Example��31

JavaScript Object Notation (JSON)���32

JSON Structure���33

Extensible Markup Language (XML)���34

Binary Large Object (BLOB)��36

Optimized File Formats��37

Explore Databases���39

Relational Databases��39

Non-relational Databases���40

Table of Contents

https://doi.org/10.1007/979-8-8688-1684-0_1#Sec18
https://doi.org/10.1007/979-8-8688-1684-0_1#Sec19
https://doi.org/10.1007/979-8-8688-1684-0_1#Sec20
https://doi.org/10.1007/979-8-8688-1684-0_1#Sec21
https://doi.org/10.1007/979-8-8688-1684-0_1#Sec22
https://doi.org/10.1007/979-8-8688-1684-0_1#Sec23
https://doi.org/10.1007/979-8-8688-1684-0_1#Sec24
https://doi.org/10.1007/979-8-8688-1684-0_1#Sec25
https://doi.org/10.1007/979-8-8688-1684-0_2
https://doi.org/10.1007/979-8-8688-1684-0_2
https://doi.org/10.1007/979-8-8688-1684-0_2#Sec1
https://doi.org/10.1007/979-8-8688-1684-0_2#Sec2
https://doi.org/10.1007/979-8-8688-1684-0_2#Sec3
https://doi.org/10.1007/979-8-8688-1684-0_2#Sec4
https://doi.org/10.1007/979-8-8688-1684-0_2#Sec8
https://doi.org/10.1007/979-8-8688-1684-0_2#Sec12
https://doi.org/10.1007/979-8-8688-1684-0_2#Sec16
https://doi.org/10.1007/979-8-8688-1684-0_2#Sec17
https://doi.org/10.1007/979-8-8688-1684-0_2#Sec18
https://doi.org/10.1007/979-8-8688-1684-0_2#Sec19
https://doi.org/10.1007/979-8-8688-1684-0_2#Sec23
https://doi.org/10.1007/979-8-8688-1684-0_2#Sec25
https://doi.org/10.1007/979-8-8688-1684-0_2#Sec27
https://doi.org/10.1007/979-8-8688-1684-0_2#Sec29
https://doi.org/10.1007/979-8-8688-1684-0_2#Sec31
https://doi.org/10.1007/979-8-8688-1684-0_2#Sec35
https://doi.org/10.1007/979-8-8688-1684-0_2#Sec36
https://doi.org/10.1007/979-8-8688-1684-0_2#Sec37

ix

Data Workloads��41

Transactional Workloads���42

Online Transaction Processing (OLTP)���42

Analytical Workloads��44

Online Analytical Processing (OLAP)���44

Key Differences Between Transactional and Analytical Workloads����������������48

Roles and Responsibilities in Data Workloads���49

1.�Database Administrator (DBA)���50

2.�Data Engineer��50

3.�Data Analyst��51

Explore Data Services��52

Data Services in Azure���52

Roles and Services���56

Summary���57

Chapter 3: ��Working with Relational Data on Azure�����������������������������61

Relational Data Concepts���62

Features of Relational Data��62

Explore SQL��70

Explore Database��76

Azure Relational Data Services��81

Overview���81

Azure SQL Family���81

Comparison of Azure SQL Services��82

Key Features of Azure SQL Services���83

Business Benefits of Azure Relational Data Services�������������������������������������84

Comparative Business Benefits Summary���87

Table of Contents

https://doi.org/10.1007/979-8-8688-1684-0_2#Sec38
https://doi.org/10.1007/979-8-8688-1684-0_2#Sec39
https://doi.org/10.1007/979-8-8688-1684-0_2#Sec40
https://doi.org/10.1007/979-8-8688-1684-0_2#Sec43
https://doi.org/10.1007/979-8-8688-1684-0_2#Sec44
https://doi.org/10.1007/979-8-8688-1684-0_2#Sec49
https://doi.org/10.1007/979-8-8688-1684-0_2#Sec50
https://doi.org/10.1007/979-8-8688-1684-0_2#Sec51
https://doi.org/10.1007/979-8-8688-1684-0_2#Sec52
https://doi.org/10.1007/979-8-8688-1684-0_2#Sec53
https://doi.org/10.1007/979-8-8688-1684-0_2#Sec54
https://doi.org/10.1007/979-8-8688-1684-0_2#Sec55
https://doi.org/10.1007/979-8-8688-1684-0_2#Sec66
https://doi.org/10.1007/979-8-8688-1684-0_2#Sec67
https://doi.org/10.1007/979-8-8688-1684-0_3
https://doi.org/10.1007/979-8-8688-1684-0_3
https://doi.org/10.1007/979-8-8688-1684-0_3#Sec1
https://doi.org/10.1007/979-8-8688-1684-0_3#Sec2
https://doi.org/10.1007/979-8-8688-1684-0_3#Sec16
https://doi.org/10.1007/979-8-8688-1684-0_3#Sec29
https://doi.org/10.1007/979-8-8688-1684-0_3#Sec35
https://doi.org/10.1007/979-8-8688-1684-0_3#Sec36
https://doi.org/10.1007/979-8-8688-1684-0_3#Sec37
https://doi.org/10.1007/979-8-8688-1684-0_3#Sec41
https://doi.org/10.1007/979-8-8688-1684-0_3#Sec42
https://doi.org/10.1007/979-8-8688-1684-0_3#Sec46
https://doi.org/10.1007/979-8-8688-1684-0_3#Sec60

x

Open Source Relational Databases on Azure���89

Overview of Services��89

Azure Managed Open Source Database Services��90

Benefits of Azure Managed Open Source Databases�������������������������������������92

Summary���94

Chapter 4: ��Exploring Non-relational Data on Azure�����������������������������97

Introduction to Non-relational Data��98

Overview���98

Non-relational Data��99

Why Non-relational on Azure?��99

Difference Between Relational and Non-relational Data������������������������������100

When to Choose Non-relational Data?��101

Examples of Non-relational Data��101

Azure Storage Services��103

Explore Azure Blob Storage��103

Explore Azure Data Lake Storage Gen2��107

Explore Microsoft OneLake in Fabric��111

Explore Azure File Storage��115

Explore Azure Tables���119

Azure Cosmos DB: A Multi-model Database Service���122

Explore Azure Cosmos DB: Key Features and When to Use��������������������������122

Explore APIs for Azure Cosmos DB���125

Common Use Cases for Azure Cosmos DB���129

Summary���133

1. �Non-relational vs. Relational Data��133

2. �Azure Storage Services for Non-relational Data���������������������������������������133

3. �Azure Cosmos DB: The Multi-model Database Powerhouse���������������������134

4. �Real-World Applications of Azure Cosmos DB��135

Table of Contents

https://doi.org/10.1007/979-8-8688-1684-0_3#Sec61
https://doi.org/10.1007/979-8-8688-1684-0_3#Sec62
https://doi.org/10.1007/979-8-8688-1684-0_3#Sec66
https://doi.org/10.1007/979-8-8688-1684-0_3#Sec70
https://doi.org/10.1007/979-8-8688-1684-0_3#Sec74
https://doi.org/10.1007/979-8-8688-1684-0_4
https://doi.org/10.1007/979-8-8688-1684-0_4
https://doi.org/10.1007/979-8-8688-1684-0_4#Sec1
https://doi.org/10.1007/979-8-8688-1684-0_4#Sec2
https://doi.org/10.1007/979-8-8688-1684-0_4#Sec3
https://doi.org/10.1007/979-8-8688-1684-0_4#Sec5
https://doi.org/10.1007/979-8-8688-1684-0_4#Sec6
https://doi.org/10.1007/979-8-8688-1684-0_4#Sec7
https://doi.org/10.1007/979-8-8688-1684-0_4#Sec8
https://doi.org/10.1007/979-8-8688-1684-0_4#Sec14
https://doi.org/10.1007/979-8-8688-1684-0_4#Sec15
https://doi.org/10.1007/979-8-8688-1684-0_4#Sec23
https://doi.org/10.1007/979-8-8688-1684-0_4#Sec30
https://doi.org/10.1007/979-8-8688-1684-0_4#Sec37
https://doi.org/10.1007/979-8-8688-1684-0_4#Sec52
https://doi.org/10.1007/979-8-8688-1684-0_4#Sec59
https://doi.org/10.1007/979-8-8688-1684-0_4#Sec60
https://doi.org/10.1007/979-8-8688-1684-0_4#Sec64
https://doi.org/10.1007/979-8-8688-1684-0_4#Sec71
https://doi.org/10.1007/979-8-8688-1684-0_4#Sec79
https://doi.org/10.1007/979-8-8688-1684-0_4#Sec80
https://doi.org/10.1007/979-8-8688-1684-0_4#Sec81
https://doi.org/10.1007/979-8-8688-1684-0_4#Sec82
https://doi.org/10.1007/979-8-8688-1684-0_4#Sec83

xi

Chapter 5: ��Analytics Workloads on Azure���137

Explore Fundamentals of Large-Scale Analytics��138

Describe Data Warehousing Architecture���138

Explore Data Ingestion Pipelines��141

Explore Analytical Data Stores��146

Explore Fundamentals of Real-Time Analytics���151

Understand Batch and Stream Processing���151

Core Components of a Stream Processing Architecture�������������������������������159

Explore Microsoft Fabric Real-Time Intelligence��163

Explore Apache Spark Structured Streaming���166

Explore Fundamentals of Data Visualization with Microsoft Power BI���������������169

Introduction��169

Capabilities and Features of Power BI��170

Building Data Models in Power BI��174

Understanding Analytical Models���174

Tables and Schema Design��175

Attribute Hierarchies��176

Data Modeling in Microsoft Power BI���177

Choosing the Right Visualization for Insights���178

Key Considerations for Data Visualization��178

Common Visualization Types in Power BI���179

Interactive Reports in Power BI��181

Summary���182

1. �Explore Fundamentals of Large-Scale Analytics��������������������������������������182

2. �Explore Fundamentals of Real-Time Data Analytics���������������������������������183

3. �Explore Fundamentals of Data Visualization with Microsoft Power BI�����184

Table of Contents

https://doi.org/10.1007/979-8-8688-1684-0_5
https://doi.org/10.1007/979-8-8688-1684-0_5
https://doi.org/10.1007/979-8-8688-1684-0_5#Sec1
https://doi.org/10.1007/979-8-8688-1684-0_5#Sec2
https://doi.org/10.1007/979-8-8688-1684-0_5#Sec8
https://doi.org/10.1007/979-8-8688-1684-0_5#Sec20
https://doi.org/10.1007/979-8-8688-1684-0_5#Sec28
https://doi.org/10.1007/979-8-8688-1684-0_5#Sec29
https://doi.org/10.1007/979-8-8688-1684-0_5#Sec37
https://doi.org/10.1007/979-8-8688-1684-0_5#Sec42
https://doi.org/10.1007/979-8-8688-1684-0_5#Sec52
https://doi.org/10.1007/979-8-8688-1684-0_5#Sec59
https://doi.org/10.1007/979-8-8688-1684-0_5#Sec60
https://doi.org/10.1007/979-8-8688-1684-0_5#Sec61
https://doi.org/10.1007/979-8-8688-1684-0_5#Sec77
https://doi.org/10.1007/979-8-8688-1684-0_5#Sec78
https://doi.org/10.1007/979-8-8688-1684-0_5#Sec79
https://doi.org/10.1007/979-8-8688-1684-0_5#Sec82
https://doi.org/10.1007/979-8-8688-1684-0_5#Sec83
https://doi.org/10.1007/979-8-8688-1684-0_5#Sec84
https://doi.org/10.1007/979-8-8688-1684-0_5#Sec85
https://doi.org/10.1007/979-8-8688-1684-0_5#Sec91
https://doi.org/10.1007/979-8-8688-1684-0_5#Sec98
https://doi.org/10.1007/979-8-8688-1684-0_5#Sec99
https://doi.org/10.1007/979-8-8688-1684-0_5#Sec100
https://doi.org/10.1007/979-8-8688-1684-0_5#Sec101
https://doi.org/10.1007/979-8-8688-1684-0_5#Sec102

xii

Chapter 6: ��Exam Preparation and Practice���������������������������������������185

Overview��185

Online vs. Offline Exam Readiness���185

Online Exam Readiness (Remote Proctored Exam)��������������������������������������186

Offline Exam Readiness (Test Center–Based Exam)�������������������������������������187

Exam Tips and Common Pitfalls���189

Final Preparation Checklist��191

After the Exam���191

Practice Questions and Answers���192

Practice Questions with Explanations��192

Scenario-Based Practice Questions���203

Mock Exam��208

Full-Length Practice Test��208

Answers and Explanations���221

Conclusion���225

�Index��227

Table of Contents

https://doi.org/10.1007/979-8-8688-1684-0_6
https://doi.org/10.1007/979-8-8688-1684-0_6
https://doi.org/10.1007/979-8-8688-1684-0_6#Sec1
https://doi.org/10.1007/979-8-8688-1684-0_6#Sec2
https://doi.org/10.1007/979-8-8688-1684-0_6#Sec3
https://doi.org/10.1007/979-8-8688-1684-0_6#Sec8
https://doi.org/10.1007/979-8-8688-1684-0_6#Sec13
https://doi.org/10.1007/979-8-8688-1684-0_6#Sec19
https://doi.org/10.1007/979-8-8688-1684-0_6#Sec20
https://doi.org/10.1007/979-8-8688-1684-0_6#Sec21
https://doi.org/10.1007/979-8-8688-1684-0_6#Sec22
https://doi.org/10.1007/979-8-8688-1684-0_6#Sec28
https://doi.org/10.1007/979-8-8688-1684-0_6#Sec33
https://doi.org/10.1007/979-8-8688-1684-0_6#Sec34
https://doi.org/10.1007/979-8-8688-1684-0_6#Sec35
https://doi.org/10.1007/979-8-8688-1684-0_6#Sec36

xiii

About the Author

Naveen Kumar is an accomplished IT

professional with more than 14 years of

experience specializing in data engineering

and cloud technologies. He has extensive

expertise in database design, data

warehousing, ETL development, and data-

driven solution architecture. With a strong

background in data modeling, visualization,

and scalable system design, he has

successfully delivered solutions that address

complex business challenges. 

As a passionate technical writer, mentor, and speaker, Naveen actively

shares his knowledge through articles, webinars, YouTube content, and

community engagements. With a self-driven, results-oriented approach,

he continuously explores emerging technologies, contributing to

innovative solutions that drive business success.

xv

About the Technical Reviewer

Dr. Gomathi S is a dedicated educator, author,

and technology trainer with over 14 years of

experience empowering students, developers,

and professionals in the fields of software

development, data analytics, and artificial

intelligence. Her areas of expertise include

Microsoft Power BI, Business Central, Copilot

Studio, Power Apps, Python, Tableau, and

machine learning. 

With a Ph.D. in computer science

specializing in data mining, she brings both

academic rigor and real-world practicality to her teaching. Dr. Gomathi

is widely recognized for her hands-on, example-driven training style,

making complex technical topics accessible and actionable for learners at

all levels.

She has authored multiple technical books and research papers and

has filed several national and international patents. Her deep involvement

in the tech education community includes designing curriculum,

conducting workshops, and creating digital learning content across

platforms and development environments.

Through her commitment to democratizing access to AI-powered tools

like Business Central and Copilot Studio, she continues to inspire learners

to embrace intelligent development and build future-ready skills.

xvii

Acknowledgments

To my wife, Priya (Shanthi Priya N) – the one who stood beside me when

the pages were blank. My greatest supporter, my truest friend. Your

unwavering strength, love, and patience made this journey possible, and

for that, I am forever grateful.

I extend my heartfelt thanks to Dr. Gomathi S, a mentor whose belief

in me and encouragement helped bring this book to completion. Your

trust, encouragement, and unwavering support were constant sources of

motivation.

To Susmi Jose – no words can truly express my gratitude. You’ve been

my constant support, guiding me like a mentor, standing by me like a

friend. You always believed in me at every step, encouraging me to keep

moving forward.

To my friend Ramanathan A, who once told me I should write a book,

not necessarily a technical one – thank you for supporting my writing

journey from the very start. This book is the result of the seed you planted.

Finally, to Shobana Srinivasan and Smriti Srivastava – your consistent

support and keen insights throughout every stage, from proposal to

publication, were truly indispensable.

To all of you – your encouragement, belief, and love have made this

journey possible. Thank you for helping me bring this dream to life.

xix

Introduction

In the era of data-driven decision-making, organizations across every

industry are harnessing the power of data to gain actionable insights,

enhance operational efficiency, and fuel innovation. As cloud adoption

accelerates, Microsoft Azure has emerged as a leading platform for data

services, offering scalable, secure, and versatile tools for data storage,

processing, and analytics. With businesses increasingly relying on these

tools, a foundational understanding of Azure's data services is becoming

essential for both technical and non-technical professionals.

Azure Data Fundamentals Certification Companion: A Complete

Guide to DP-900 Exam Success is your comprehensive resource for

building that foundation and achieving success in the DP-900 certification

exam. This book is carefully designed to provide learners with a deep

yet approachable understanding of core data concepts and how they are

implemented in Azure.

Whether you're an aspiring data professional, a student, a business

analyst, or an IT generalist seeking to expand your knowledge of cloud data

technologies, this guide will equip you with the concepts and practical

insights needed to confidently take the next step in your cloud learning

journey.

Throughout this book, we will explore the key domains of the DP-900

exam, starting with fundamental data principles – such as relational and

non-relational data types, batch vs. stream processing, and data analytics

workloads. You’ll then dive into how Azure implements these concepts

using services like Azure SQL Database, Cosmos DB, Azure Data Lake,

Synapse Analytics, and Power BI.

xx

Each chapter is aligned with the official DP-900 exam objectives,

helping you build both theoretical understanding and practical awareness.

With clear explanations, real-world examples, and chapter-wise review

questions, this book ensures you not only prepare thoroughly for the exam

but also develop a meaningful grasp of how data solutions function in

modern cloud environments.

We also dedicate a section to exam readiness strategies, including tips,

mock questions, and insights, to help reduce anxiety and maximize your

chances of success on exam day.

Whether you're just beginning your journey into the world of data or

you're pivoting your career toward cloud-based roles, this book will serve

as your trusted guide. By the time you complete it, you'll have built a solid

data fundamentals knowledge base and be well prepared to earn your

Microsoft Certified: Azure Data Fundamentals credential.

Start your learning journey with confidence, and take the first step

toward becoming a data-savvy professional in the cloud era. Your success

in the DP-900 exam and beyond begins here.

Introduction

1© Naveen Kumar M 2025
N. Kumar M, Azure Data Fundamentals Certification Companion, Certification Study
Companion Series, https://doi.org/10.1007/979-8-8688-1684-0_1

CHAPTER 1

Exam Overview
and Structure
In this chapter, you will learn about the form and substance of the DP-900:

Microsoft Azure Data Fundamentals question test. This core exam

validates the candidate’s knowledge of common data concepts and how

they are implemented using Microsoft Azure data services. You will learn

the objectives and advantages of certification and who this certification is

intended for.

We’ll then dissect the core domains of the test, such as relational and

non-relational data and analytics workloads. You will familiarize yourself

with how the test is structured, what kinds of questions you can expect,

and how it’s scored. Lastly, we’ll give you a complete study plan and the

top resources to study effectively.

You will be clear about what to learn, how this course is structured, and

what strategy you should follow to prepare for and pass the DP-900 exam

so that you can break ground on Azure data-related certifications.

https://doi.org/10.1007/979-8-8688-1684-0_1#DOI

2

�Introduction to DP-900 Certification
�Purpose of the Exam
DP-900: Microsoft Azure Data Fundamentals certification exams are

intended to evaluate proficiency in understanding the following core data

concepts and being able to work within the Microsoft Azure environment.

This is a good certificate if you have started in the data field or if you have

data responsibilities in your current job but don’t have a strong technical

background. This exam is intended to test the candidates’ knowledge of

the different types of data stores, both relational and non-relational, and

what options are available with each on Azure.

�What Is the Primary Purpose
of the DP-900 Exam?

•	 Concepts pertaining to data and data storage; core data

concepts, such as data types and data processing

•	 The concepts of relational data and how it is

implemented in Azure using services like Azure SQL

Database and Azure Synapse Analytics

•	 Non-relational data concepts and how to use Microsoft

Azure services to support these, for example, Azure

Cosmos DB and Azure Blob Storage

•	 Analytical workloads and how to govern and optimize

them with Azure services such as Azure Data Lake,

Azure Databricks, and Azure Synapse Analytics

Chapter 1 Exam Overview and Structure

3

By passing the DP-900 exam, candidates demonstrate their ability to

work with data in the cloud, understand the different types of data storage

and processing options available on Azure, and make informed decisions

about which services to use for specific scenarios.

�Who Should Take This Exam?
The DP-900 exam is intended for everybody, whether they are a data

engineer or not, from a variety of professionals engaged in work related to

data. This exam is especially ideal for

•	 New to Data Engineering: For those new to data

engineering looking to gain a solid foundation of data

concepts and services in Azure.

•	 IT Professionals: IT professionals who work with data

as a part of their job but do not possess a technical data

engineering background.

•	 Database Administrators: Database administrators

wanting to learn about cloud-based data services and

how to use them to manage and process data.

•	 Data Analysts: It would be suitable for data analysts

who would like to know about the core data

infrastructure and how analytics is performed there.

•	 Students and Career Changers: With or without a job

but interested in a career in data or data-related fields

and want to start with a certification that introduces

the basics.

The DP-900 exam also serves as a prerequisite to more enhanced

Azure certifications as shown in Figure 1-1.

Chapter 1 Exam Overview and Structure

4

Figure 1-1.  Azure Data Certification Flow

•	 DP-700 (Microsoft Fabric Data Engineer Associate)

•	 DP-600 (Microsoft Fabric Analytics Engineer Associate)

•	 PL-300 (Power BI Data Analyst Associate)

•	 DP-300 (Azure Database Administrator Associate)

•	 DP-100 (Azure Data Scientist Associate)

It provides a solid foundation for those who plan to pursue these

higher-level certifications in the future.

�Benefits of DP-900 Certification
Here’s why it’s beneficial to earn a DP-900 credential for both emerging

tech pros and their companies:

Chapter 1 Exam Overview and Structure

5

	 1.	 Foundational Knowledge Validation: The

certification validates an understanding of basic

data concepts and how they are implemented in

Azure. This is a must-know for anyone who works

with data in the cloud.

	 2.	 Career Opportunities: The DP-900 certification

helps open new doors to prospective jobs in

data analysis, data engineering, and database

administration. It shows an employer that you

possess the core skills required to work with data in

the cloud.

	 3.	 Increased Earning Potential: Many certified

professionals receive more than their non-certified

counterparts. Earning the DP-900 certification could

help you differentiate yourself in a crowded job

market and increase your earning potential.

	 4.	 Benefits to the Organization: Organizations

benefit from having employees with the DP-900

certification, as it builds a strong foundation

in cloud data management. This can result in

better utilization of Azure data services and more

informed storage and processing decisions.

	 5.	 Prepare for Advanced Certifications: If you

have plans to take more advanced Azure

certifications, then DP-900 is the ideal beginning.

It is the prerequisite for learning some other

hard topics about data engineering and database

administration.

Chapter 1 Exam Overview and Structure

6

	 6.	 Microsoft Resources Certification: Certified

professionals have access to Microsoft resources,

such as training and community support options,

freeing up more time to spend on other teaching

tasks. These resources can help you keep current on

the newest Azure data services and keep your skills

current.

�Exam Domains and Weightage
The DP-900 exam breaks down into four main areas, which span different

areas of data concepts and Azure data services. The domains are also

weighted differently according to their relative importance to the

examination. Knowing the percentage of questions in each of these areas

will allow you to budget your time for the different parts of the test and,

more importantly, make sure you study the right bits.

Table 1-1 shows an overview of the key areas covered in the exam. Each

domain is explained in detail in the sections that follow.

Table 1-1.  Exam Domain and Weightage

Domain Weightage

Understanding Core Data Concepts 25–30%

Working with Relational Data on Azure 20–25%

Exploring Non-relational Data on Azure 15–20%

Analytics Workloads on Azure 25–30%

Chapter 1 Exam Overview and Structure

7

�Understanding Core Data Concepts (25–30%)
The first domain is Understanding Core Data Concepts. This testing

domain carries the most weight in the test, making up 25–30% of all of the

questions. This domain includes material that is prerequisite to working

with data in all settings, from on-premises to the cloud. Some of the topics

in this area are

•	 Data Types and Structures: Understanding the

different types of data (structured, semi-structured, and

unstructured) and the way they are being stored and

processed

•	 Data Storage: Knowledge of different data store

options such as databases, data warehouses, and

data lakes

•	 Data Processing: An understanding of data processing,

including batch and real time

•	 Data Security and Compliance: Understanding data

security fundamentals, including encryption, access

control, and regulatory compliance

This domain is especially important as it serves as the basis of the

others. It will be almost impossible to understand more advanced exam

topics without a good understanding of fundamental data concepts.

Chapter 1 Exam Overview and Structure

8

�Working with Relational Data on Azure (20–25%)
The second domain, Working with Relational Data on Azure, makes up

20–25% of the test. This area covers relational data concepts and how they

are used in Azure. Topics in this domain include

•	 Relational Database Concepts: Understanding the

basics of relational databases, including tables, rows,

columns, and relationships between tables

•	 Azure SQL Database: Familiarity with Azure SQL

Database, a fully managed relational database service

in Azure

•	 Azure Synapse Analytics: Knowledge of Azure

Synapse Analytics, a service that combines big data and

data warehousing capabilities

•	 Data Migration: Learn how to migrate on-premises

relational databases to Azure, including Azure

Database Migration Service

This domain is relevant to anyone who deals with relational data and

covers the main Azure services for managing and processing relational

data in the cloud.

�Exploring Non-relational Data on Azure
(15–20%)
The third domain, “Exploring Non-relational Data on Azure,” accounts for

15–20% of the exam. This domain covers non-relational data concepts and

how they are implemented in Azure. Topics in this domain include

Chapter 1 Exam Overview and Structure

9

•	 Non-relational Database Concepts: Understanding

the basics of non-relational databases, including

document stores, key-value stores, and graph databases

•	 Azure Cosmos DB: Familiarity with Azure Cosmos DB,

a globally distributed, multi-model database service

•	 Azure Blob Storage: Understanding of Azure

Blob Storage, a service to store large volumes of

unstructured data

•	 Data Modeling for Non-relational Data: Learn how

to model your data for NoSQL databases, including

denormalization and partitioning

This is a critical domain area for anyone working with non-relational

data, considering this comprises the primary Azure services for non-

relational data management and processing in the cloud.

�Analytics Workloads on Azure (25–30%)
The fourth domain, Analytics Workloads on Azure, has a percentage

weight of 25–30%. This domain pertains to analytics topics and the

application of analytics in an Azure environment. Topics in this

domain include

•	 Data Analytics Concepts: Understanding the basics

of data analytics, including descriptive, diagnostic,

predictive, and prescriptive analytics

•	 Azure Data Lake: Knowledge of Azure Data Lake,

which is a scalable data storage and analytic service

•	 Azure Databricks: Understanding of Azure Databricks

for big data analytics and machine learning

Chapter 1 Exam Overview and Structure

10

•	 Azure Synapse Analytics: Discover how to use

Azure Synapse Analytics for big data and data

warehousing needs

•	 Data Visualization: Familiarity with data visualization

tools, such as Power BI, and how to use them to

generate data insights

This domain is important for anyone who works with analytics, as

it covers the key Azure services used to manage and process analytics

workloads in the cloud.

�Understanding the Exam Format
The DP-900 is focused on testing your knowledge about data workloads

and Azure data services via different question types. Knowing how the

exam is structured can make your prepping more efficient and can give

you the needed structure while taking the exam.

�DP-900 Question Types
The DP-900 exam includes several types of questions, each designed to test

different aspects of your knowledge. These question types are summarized

in Table 1-2.

Chapter 1 Exam Overview and Structure

11

Table 1-2.  Question Types and Examples

Question Type Description Example

Multiple
Choice

These are the most common type of

questions on the exam. You will be

presented with a question and several

possible answers, and you will need

to select the correct answer(s). Some

questions may have more than one

correct answer, so be sure to read the

instructions carefully

Selecting one or more

correct Azure services

for a given scenario

Drag-and-
Drop

These questions require dragging and

dropping items into correct positions.

Often involve matching concepts or

ordering steps in a process

You may be asked to

match Azure services

to their corresponding

use cases or to arrange

steps in a process in the

correct order

Case Studies Case study questions present you

with a scenario and ask you to answer

questions based on the information

provided. These questions are designed

to test your ability to apply your

knowledge to real-world situations

Analyzing a business

problem and

recommending suitable

Azure data services

based on provided

details

�Time Allocation and Scoring System
The DP-900 exam consists of 40–60 questions, and you will have 60

minutes to complete the exam. The exact number of questions may vary,

but you can expect to answer around 40–60 questions in total.

Chapter 1 Exam Overview and Structure

12

The exam is scored on a scale of 1–1000, with a minimum passing

score of 700. The scoring is determined by the difficulty of the questions,

with harder ones being worth more points. There is no negative score for

incorrect answers, but be sure you have answered all the questions.

To manage your time effectively during the exam, it is recommended

that you spend no more than 1–1.5 minutes on each question. If you

encounter a difficult question, mark it for review and move on to the next

question. You can return to the marked questions at the end of the exam if

you have time.

�Study Plan and Strategies
Preparing for the DP-900 exam requires a well-structured study plan and

the right resources. In this section, we will outline a four-week preparation

plan and discuss the best resources for exam success.

�Four-Week Preparation Plan
A four-week preparation plan is ideal for most candidates, as it provides

enough time to cover all the exam domains without feeling rushed.

Here is a suggested study plan.

�Week 1: Chapter 2 – Understanding Core Data
Concepts (25–30%)

•	 Day 1–2: Study structured, semi-structured, and

unstructured data types, including use cases for each.

•	 Day 3–4: Learn about file storage formats like JSON,

CSV, and Parquet, and understand optimized file

formats.

Chapter 1 Exam Overview and Structure

https://doi.org/10.1007/979-8-8688-1684-0_2

13

•	 Day 5–6: Explore relational and non-relational

databases, and understand the differences

between them.

•	 Day 7: Review transactional and analytical workloads

and their key differences.

�Week 2: Chapter 3 – Working with Relational
Data on Azure (20–25%)

•	 Day 1–2: Study relational data features, normalization,

SQL basics, and database objects.

•	 Day 3–4: Learn about the Azure SQL Family –

Azure SQL Database, Managed Instance, and SQL

Server on VMs.

•	 Day 5–6: Explore open source relational databases on

Azure – MySQL, PostgreSQL, and MariaDB.

•	 Day 7: Review Azure-managed open source database

services and their benefits.

�Week 3: Chapter 4 – Exploring Non-relational
Data on Azure (15–20%)

•	 Day 1–2: Understand non-relational data and how it

differs from relational data, with practical examples.

•	 Day 3–4: Learn about Azure Blob Storage, Data Lake

Gen2, OneLake in Fabric, and other storage services.

Chapter 1 Exam Overview and Structure

https://doi.org/10.1007/979-8-8688-1684-0_3
https://doi.org/10.1007/979-8-8688-1684-0_4

14

•	 Day 5–6: Explore Cosmos DB, including its

multi-model support, APIs, and key use cases.

•	 Day 7: Study data modeling approaches for

non-relational data and review the week’s topics.

�Week 4: Chapter 5 – Analytics Workloads
on Azure (25–30%)

•	 Day 1–2: Study data analytics concepts and data

warehousing architecture, including Azure Synapse

Analytics.

•	 Day 3–4: Learn about data ingestion pipelines using

Azure Data Factory and explore analytics data stores.

•	 Day 5–6: Understand batch vs. stream processing, real-

time intelligence with Microsoft Fabric, and Apache

Spark structured streaming.

•	 Day 7: Explore Power BI capabilities, build data

models, and learn how to choose the right visualization

for insights.

�Leveraging Microsoft Learn, Documentation,
and Practice Labs
Microsoft offers a wealth of resources to help you prepare for the DP-900

exam. These resources include

Chapter 1 Exam Overview and Structure

https://doi.org/10.1007/979-8-8688-1684-0_5

15

	 1.	 Microsoft Learn: Microsoft Learn is free and

interactive and offers courses designed for the

DP-900 exam. These modules are designed to cover

all of the exam domains and feature hands-on labs

giving you the opportunity to practice with Azure

data services.

	 2.	 Microsoft Documentation: The official Microsoft

documentation provides in-depth information on

all Azure data services. It is a valuable resource for

understanding the features and capabilities of each

service.

	 3.	 Practice Labs: Hands-on experience is essential for

passing the DP-900 exam. Microsoft Learn offers

practice labs that allow you to work with Azure data

services in a real-world environment. These labs are

a great way to reinforce your knowledge and gain

practical experience.

By following a structured study plan and leveraging the right resources,

you can increase your chances of passing the DP-900 exam and earning

your Azure Data Fundamentals certification.

�Summary
In this chapter, we explored the DP-900 Azure Data Fundamentals

certification exam in detail, providing a comprehensive guide to help you

understand its purpose, structure, and preparation strategies. Here’s a

summary of the key points covered.

Chapter 1 Exam Overview and Structure

16

�1. Introduction to DP-900 Certification

•	 The DP-900 exam validates foundational knowledge

of core data concepts and Azure data services, making

it ideal for beginners and professionals working

with data.

•	 Who Should Take This Exam? The certification

is tailored for beginners in data engineering, IT

professionals, database administrators, data analysts,

students, and career changers. It also serves as a

stepping stone for advanced certifications like the

DP-700 (Microsoft Fabric Data Engineer Associate).

•	 Benefits of Certification: Earning the DP-900

certification validates foundational data skills,

enhances career opportunities, increases earning

potential, and prepares candidates for advanced Azure

certifications.

�2. Exam Domains and Weightage
The DP-900 exam is divided into four domains, each with a specific

weightage:

	 1.	 Understanding Core Data Concepts (25–30%):

Covers data types, storage options, processing

techniques, and data security

	 2.	 Working with Relational Data on Azure (20–25%):

Focuses on relational database concepts, Azure

SQL Database, Azure Synapse Analytics, and data

migration

Chapter 1 Exam Overview and Structure

17

	 3.	 Exploring Non-relational Data on Azure
(15–20%): Explores non-relational data concepts,

Azure Cosmos DB, Azure Blob Storage, and data

modeling

	 4.	 Analytics Workloads on Azure (25–30%): Includes

data analytics concepts, Azure Data Lake, Azure

Databricks, Azure Synapse Analytics, and data

visualization tools like Power BI

Understanding the weightage of each domain helps candidates

allocate study time effectively.

�3. Understanding the Exam Format

•	 The DP-900 exam consists of 40–60 questions to be

completed in 60 minutes.

•	 Question Types: Multiple choice, drag-and-drop, and

case study questions are used to assess knowledge and

practical application.

•	 Scoring System: The exam is scored on a scale of

1–1000, with a passing score of 700. No penalties are

applied for incorrect answers, so it’s better to attempt

all questions.

•	 Time Management: Allocate 1–1.5 minutes per

question and mark difficult questions for review to

ensure efficient time usage.

Chapter 1 Exam Overview and Structure

18

�4. Study Plan and Strategies

•	 A four-week preparation plan is recommended to

cover all exam domains systematically:

•	 Week 1: Core Data Concepts

•	 Week 2: Relational Data on Azure

•	 Week 3: Non-relational Data on Azure

•	 Week 4: Analytics Workloads on Azure

•	 Key Resources: Leverage Microsoft Learn, official

documentation, and practice labs for hands-on

experience.

•	 Additional Resources: Use books, online courses,

practice exams, and study groups to reinforce

knowledge and identify areas for improvement.

Chapter 1 Exam Overview and Structure

19© Naveen Kumar M 2025
N. Kumar M, Azure Data Fundamentals Certification Companion, Certification Study
Companion Series, https://doi.org/10.1007/979-8-8688-1684-0_2

CHAPTER 2

Understanding Core
Data Concepts
In this chapter, you will get introduced to the basic concepts of data

representation and how data can be organized in various formats. You

will discover types of data, for example, structured, semi-structured, and

unstructured data, with examples and use cases. The chapter also walks

through the options available for data storage, explaining the details

of various data formats, such as JSON and CSV, as well as optimized

file formats such as Avro, ORC, and Parquet and other storage services

provided by Azure.

Next, you will take a look at the two general classes of data workloads:

transactional workloads and analytical workloads. By knowing their

definitions, characteristics, and main differences, you will be able to tell

when to use which approach according to your needs.

Lastly, the chapter introduces the different roles and responsibilities

involved in data workloads: Database Administrator, Data Engineer, and

Data Analyst. You will explore the tasks and tools that fall under each role

and gain insight into how each role will contribute to data management

and transformation.

This chapter covers essential core data concepts, storing data,

workloads, and key roles in data management, giving you a good

foundational understanding as you embark on a journey with Azure data

services.

https://doi.org/10.1007/979-8-8688-1684-0_2#DOI

20

�Introduction to Data Representation
�Overview
The amount of data generated by devices, applications, and systems has

exploded over the last few decades. We have data all around us and in

various forms and structures. In times of large, up-to-date amounts of data

processing, this is where artificial intelligence becomes sophisticated.

Different data tokens are the internal way we represent data for storing

and processing. Working with different types of data like structured,

semi-structured, and unstructured is a common problem faced across

different industries, and data professionals must learn how to work with

each of them. Data analysis helps generate valuable insights that serve as

the basis for significant business decisions.

All companies worldwide should possess the power to gather, record,

and process data. In this chapter, you will learn how to work with common

data workloads and multiple ways to store and express your data. This

module will lay the groundwork for you to learn about data processing

methods and services.

�Ways to Represent Data

•	 Structured data

•	 Semi-structured data

•	 Unstructured data

Figure 2-1 illustrates the representation of structured, semi-structured,

and unstructured data.

Chapter 2 Understanding Core Data Concepts

21

Figure 2-1.  Type of Data

�Structured Data
Structured data is a highly organized type of data. It refers to data that

has a defined schema and is stored in tables. This architecture, typically

structured in rows and columns, contains unique records or data entries

for every row and a specific kind of data residing in its column (such as a

customer’s name, product price, or order date). Conventional database

management systems (DBMS), such as SQL-based systems, can process

structured data quickly because it is highly organized and easily searchable

and queryable.

It is also better for analysis because structured data adheres to

strict rules or schemas and is stored in relational databases. This makes

structured data very predictable and also easy to understand, which in

turn allows humans to interact with it using familiar tools such as SQL

queries.

Chapter 2 Understanding Core Data Concepts

22

Table 2-1 contains structured data about individual customers,

including their unique ID, name, email address, and phone number. This

table serves as a reference for managing customer-related information in a

systematic and organized format.

Table 2-1.  Customer Table

ID Name Email Phone

1 Kumar kumar@ntech.com 1234567890

2 David david@tek.com 9876543210

3 Priya Priya@ntech.com 9876123123

4 Ram Ram@tek.com 9988776653

5 John John@ntech.com 9000011111

�Examples

•	 Customer Database: A retail business can store

information about a customer such as their name,

email, phone number, shipping address, and past

purchases in a database. In the table, each client would

generate a row, and one of these particular properties

would occupy each column. This can be used to

easily fetch data about clients, update them, and

analyze them.

•	 Inventory Management System: An inventory

database might contain organized data on items,

such as their amounts, prices, suppliers, and storage

places, which is relevant in manufacturing or retail.

Each product is represented as a record, and product

information (like product ID, name, price, and quantity

in stock) is stored as columns in the database.

Chapter 2 Understanding Core Data Concepts

23

•	 Logistics Company: An example of structured

data would be a logistics organization that could

store their shipping details in an orderly manner

with each shipment containing attributes like

ShipmentID, Origin, Destination, ShipmentDate,

DeliveryDate, Carrier, Status, and TrackingNumber.

The standardization of this data helps ensure it is

easily retrievable for report generation, inventory

management, shipment tracking, etc.

�Use Cases

•	 Analytics and Reporting: Structured data is preferred

during data analysis and report generation. A business

analyst might query a customer database to put

together a report on sales by region or customer

demographics. Its uniform and clear format ensures

systematic analysis of structured data.

•	 Data Consistency and Integrity: The use of its

structured format ensures data consistency and

integrity by enforcing rules and relationships between

data. Foreign Keys: You can use foreign keys to

establish a clear relationship between customers and

their orders, ensuring data accuracy and integrity.

•	 Transactional Systems: Many transactional systems

rely on structured data to process orders, payments,

or personnel records, for instance. This helps

these systems process and store data correctly and

without errors.

Chapter 2 Understanding Core Data Concepts

24

�Real-Time Example

For example, consider a sales team’s customer relationship management

(CRM) system. Sales interactions, contact details, and the status of

an account are some of the structured data on clients that this system

maintains in a database. This data can be simply queried to help

discussion staff review past conversations, monitor client involvement,

and identify new sales potential. SQL queries can be used to quickly

pull up reports that show sales numbers, sales trends, customer

demographics, etc.

�Semi-structured Data
Semi-structured data, which cannot be easily framed into the confines of

the structured data, is nonetheless somewhat organized. Markers or tags

are often used to separate other elements in semi-structured data, to make

the data more readable when compared to structured data, which remains

in the form of tables with predefined columns and rows. These files are

most commonly found using JSON, XML, and YAML (YAML Ain’t Markup

Language) format.

While semi-structured data does not have the rigid schema of

structured data, it still contains enough organizational features (such as

tags, key-value pairs, or nested structures) to make it useful for processing

and analysis. Semi-structured data provides a level of flexibility in how

the information is stored, enabling an easy representation of complex,

dynamic, or diverse data sources.

�Examples

•	 JSON Data: JSON is used to send data between

the web application and the server. For example,

product data may have attributes such as ProductID,

Chapter 2 Understanding Core Data Concepts

25

ProductName, Price, and Category and may be stored

on an ecommerce platform in a JSON format. Unlike

structured data, the structure is flexible because,

depending on the fed category, some products may

have additional features (size or color, for instance).

	 Example of JSON data:

{
 "ProductID": "12345",
 "ProductName": "Laptop",
 "Price": 799.99,
 "Category": "Electronics",
 "Attributes": {
 "Brand": "Dell",
 "Size": "15 inches",
 "Color": "Black"
 }
}

•	 XML Data: XML is often used for transferring data in

many industries. For example, the XML format for a

book catalog might have elements for Title, Author,

Publisher, and ISBN. As different books may have

different metadata such as PageCount or Genre, the

structure is more flexible than standard relational

databases.

	 Example of XML data:

<Book>
 <Title>Azure Data Fundamentals Companion</Title>
 <Author>Naveen Kumar M</Author>
 <Publisher>Apress</Publisher>

Chapter 2 Understanding Core Data Concepts

26

 979-8-8688-1683-30987654321</ISBN>
 <Attributes>
 <PageCount>180</PageCount>
 <Genre>Technology</Genre>
 </Attributes>
</Book>

�Use Cases

•	 Web Services and APIs: Many web services and APIs

exchange data using semi-structured data types (e.g.,

XML or JSON). An example of this would be a service

from a weather provider similar to the one I defined

above, where the result might be JSON containing current

temperature, windspeed, and forecast for a region.

•	 Logs and Events: System logs, event tracking, and

sensor data are all examples of semi-structured data.

Each log entry or event may contain a different set of

attributes depending on the type of data source. This

flexibility allows for rapid adaptation to changing data

sources.

•	 Data Interchange: Semi-structured data is ideal for

sharing information between two systems that do not

have a similar schema. A retailer and a supplier may,

for example, exchange product information in a semi-

structured way to aid in inventory management.

Chapter 2 Understanding Core Data Concepts

27

�Real-Time Example

Consider a social networking website like Twitter. The other difficulty in

storing information in a constant schema is the fact that the attributes

of a tweet, for example, timestamp, user mentions, hashtags, etc., may

vary from tweet to tweet. Using the JSON language, the software is able to

use flexible fields to store this data since individual tweets have different

structures. For example, some tweets may have additional media (images

or videos), whereas other tweets do not. Due to its flexibility, semi-

structured data is well suited for representing flexible content, such as

social media postings.

�Unstructured Data
Unstructured data is information that does not have a predefined data

model or is not organized in a predefined manner. It can take the form of text

documents but also photos, movies, audio files, or social media posts. Unlike

structured or semi-structured data, unstructured data does not follow any

rules or model. Nevertheless, unstructured data often has valuable insight

embedded, which can be processed and analyzed given the right tools.

The challenge with unstructured data is that to extract value from it,

you need advanced techniques like machine learning, computer vision,

or natural language processing (NLP). Unstructured data is often stored in

data lakes or file systems that support different file formats.

�Examples

•	 Text Documents: A collection of text documents,

including emails, reports, or blog posts, is a type of

unstructured data. Even though these files contain

valuable information, they are not organized like

structured data; therefore, analysis becomes more

difficult.

Chapter 2 Understanding Core Data Concepts

28

•	 Pictures and Videos: Images and videos can be

considered as two popular types of unstructured data.

For example, a healthcare organization needs to retain

medical images (such as MRIs or X-rays) and needs

machine learning algorithms to see if there are any

trends or abnormalities.

•	 Audio Files: Audio data is another category of

unstructured data, consisting of voice messages,

podcasts, and customer support call recordings.

Audio data can be transcribed through speech-to-text

algorithms, helping to assess content.

�Use Cases

•	 Sentiment Analysis: Businesses can find out whether

the consumer feedback (social media, emails, reviews,

etc.) is positive, negative, or neutral. This type of

analysis is most effective when applied to unstructured

data, like written documents and social media posts.

•	 Image Recognition and Classification: In sectors such

as security and healthcare, unstructured picture data

is processed to either identify patterns in or classify

objects. AI can be applied, for example, to recognize

faces in video footage of people under surveillance or

to analyze medical imaging for signs of disease.

•	 Voice Recognition and Speech-to-Text: Audio data

that is unstructured can be transcribed and analyzed

to learn things about the client. As another example, a

Chapter 2 Understanding Core Data Concepts

29

customer support center may review recorded phone

calls to identify common problems among clients or to

measure satisfaction of customers.

�Real-Time Example

For example, take the case of a logistics company analyzing customer

support call recordings. These audio files fall into the unstructured data

category since they do not have a given structure. It uses speech-to-text

technology to transcribe the calls and natural language processing to

analyze the content, identifying common issues or customer sentiment, to

help them improve service quality and resolve recurring problems.

�Data Storage Options
In this module, you will gain the skills to select the correct file format and

store data appropriately to ensure efficacy and efficiency while working on

data on Azure or any other cloud platform. You’ve learned about the basics

of every computer system and file storage. While files can be stored on

USB devices, external drives, or personal PCs, the scope and safety of these

alternatives are limited.

When it comes to companies, though, they tend to utilize shared file

storage systems, which are often cloud based, to store their key data in a

central location. Cloud-based storage solutions offer several advantages,

including scalability to manage increasing data volumes, enhanced

security to protect sensitive information, and cost efficiency as they

eliminate the need for large on-premises hardware. Cloud storage can

use these advantages to write jobs of big datasets while non-stop keeping

availability and flexibility.

Chapter 2 Understanding Core Data Concepts

30

There are several aspects to consider: the file format to choose.

•	 The type of data (structured, semi-structured, or

unstructured)

•	 Whether the applications and services that need access

to the data are compatible

•	 If the files should be human-readable or efficient for

storage and as a processing format

Here are a few common and optimized formats for file storage.

�Delimited Text Files
Delimited text files are simple text files that contain data in rows and

columns. In addition, rows are split by a new line character (\n), and

columns are split by a delimiter (some character). Because of their

simplicity, portability, and ability to be parsed with most computer

languages and tools, these files are widely used for interchange and

transmission of data between different systems.

�Key Characteristics

	 1.	 Delimiter: Set of characters which maintains fields

(columns) under a row. Common delimiters include

•	 Comma (,) – CSV (Comma-Separated Values)

•	 Tab (\t) – TSV (Tab-Separated Values)

•	 Pipe (|) – Pipe-Separated Files

•	 Semicolon (;) – Often used in European

data formats

Chapter 2 Understanding Core Data Concepts

31

	 2.	 Row Separation: Each row of data is represented as

a new line in the file.

	 3.	 Plain Text: Human-readable and editable using text

editors.

	 4.	 File Extensions: Common extensions include .csv,

.tsv, and .txt.

�Example
�CSV File Example

Filename: employees.csv

EmployeeID,FirstName,LastName,Department,

Salary

101,Prem,Kumar,Engineering,75000

102,David,William,Marketing,68000

103,Bob,Brown,Sales,72000

�TSV File Example

Filename: products.tsv

ProductID ProductName Category Price

1 Keyboard Electronics 29.99

2 Mouse Electronics 19.99

3 Notebook Stationery 5.49

Chapter 2 Understanding Core Data Concepts

32

�Pipe-Separated File Example

Filename: orders.txt

OrderID|CustomerName|OrderDate|TotalAmount

2001|Alice Johnson|2025-01-01|150.50

2002|David Miller|2025-01-02|300.00

�JavaScript Object Notation (JSON)
JavaScript Object Notation (JSON) is a lightweight data-interchange format

that is easy for humans to read and write and easy for machines to parse

and generate. It can be utilized in nearly all programming languages, but

its primary purpose for web applications is for sharing data between a

server and a client.

�Key Characteristics

•	 Lightweight: Slim and short, making it perfect for

sending data over networks.

•	 Human-Readable: The format is human-readable and

easy to understand.

•	 Self-Descriptive: Data is organized in a key-value

structure that describes itself.

•	 Language-Agnostic: There is a parser for JSON in

almost every programming language out there.

Chapter 2 Understanding Core Data Concepts

33

�JSON Structure
JSON data structure has two main types that enable you to represent data:

	 1.	 Objects: Ranges of key-value pairs wrapped in { }.

•	 Keys must be strings, and values can be strings,

numbers, booleans, arrays, objects, or null.

Example:

{
 "name": "John Doe",
 "age": 30,
 "isMarried": false
}

	 2.	 Arrays: An ordered list of comma-separated values

within square brackets [].

Example:

["apple", "banana", "cherry"]

�Example JSON Data

For example, the following is JSON data that represents a user profile:

{
 "user": {
 "id": 101,
 "name": "Alice Johnson",
 "email": "alice@example.com",
 "isVerified": true,
 "roles": ["admin", "editor"],
 "profile": {
 "age": 28,

Chapter 2 Understanding Core Data Concepts

34

 "city": "New York",
 "preferences": {
 "theme": "dark",
 "language": "en"
 }
 }
 }
}

�Extensible Markup Language (XML)
Extensible Markup Language (XML) is a markup language designed to

store and exchange data in a human-readable and machine-readable

format as well as in a structured and platform-independent way. Its

human- and machine-readable format allows for flexible data interchange

across many systems.

The standard XML defined by W3C allows us to create custom tags,

properties, and formats for representing data. XML is primarily concerned

with describing and transporting data, whereas HTML is focused on

dictating the presentation of data.

�Key Characteristics

	 1.	 Self-Descriptive Structure: XML is self-descriptive,

which makes it easy to understand.

	 2.	 Platform Independent: XML can be used on

different platforms and programming languages.

	 3.	 Extensibility: You can read more about the exact

format of the data you can send to the parser. As I

mentioned on the first point, users can extend the

basic tags to add custom tags to fulfill their needs.

Chapter 2 Understanding Core Data Concepts

35

	 4.	 Hierarchical Structure: The XML model organizes

data in a hierarchical format, including parent and

child relationships.

	 5.	 Unicode Support: XML has support for many

languages and character sets.

	 6.	 Validation: The XML documents can be validated

using a Document Type Definition (DTD) or XML
Schema Definition (XSD) to confirm correctness.

Example:

<?xml version="1.0" encoding="UTF-8"?>
<library>
 <book id="1">
 <title>Learning XML</title>
 <Author>John Doe</author>
 <publisher>Tech Press</publisher>
 <price>29.99</price>
 </book>
 <book id="2">
 <title>Mastering XML</title>
 <Author>Jane Smith</author>
 <publisher>CodeWorld</publisher>
 <price>39.99</price>
 </book>
</library>

Chapter 2 Understanding Core Data Concepts

36

�Binary Large Object (BLOB)
A BLOB is a collection of binary data stored as a single entity in a database

or file system. BLOBs are commonly used to store multimedia objects such

as images, videos, audio, and other similar data. Typically, the database

sees them as opaque data; in other words, it stores the BLOB without

decoding its contents.

BLOBs can be used to save large binary files or serialized objects

that do not align well with traditional relational database tables. They

allow applications to efficiently access and store data without needing to

translate it to and from text or other formats.

�Characteristics of a BLOB

	 1.	 Binary Data: A BLOB can be thought of as a binary

large object, which is data not in a fixed format but

in the form of a data stream.

	 2.	 Large Size: BLOBs are used to store a big size of

data, i.e., megabytes to gigabytes.

	 3.	 Database Support: Most relational databases like

SQL Server, MySQL, PostgreSQL, and Oracle have

BLOB as a data type.

	 4.	 Non-Human-Readable: BLOBs are not human-

readable as they store data in binary format.

	 5.	 Flexible Use: Supports different file types –

images (JPEG, PNG), documents (PDF, DOCX),

videos (MP4).

Chapter 2 Understanding Core Data Concepts

37

Example:

•	 Images: Formats like JPEG, PNG, BMP, TIFF, and GIF

store image data as binary.

•	 Audio: Formats like MP3, WAV, AAC, FLAC, and OGG

store audio data as binary.

•	 Video: Formats such as MP4, AVI, MKV, MOV, and

WMV store video and multimedia data as binary.

•	 Documents: Formats like PDF, DOC, DOCX, XLS,

and XLSX.

�Optimized File Formats
Optimized file formats are specifically designed to store data in a way that

optimizes processing, query performance, and storage efficiency. These

formats are necessary for the handling and processing of big data. A few

popular optimized file formats are Avro, ORC, and Parquet; each has

special features that make it suitable for specific scenarios.

�Avro

Apache Avro is a data serialization system developed to provide a compact,

schema-based mechanism for data persistence and transport. It describes

the structure of data using a schema, so serialization and deserialization

are consistent across various systems. Avro files are self-describing and

easy to interpret since the schema is encapsulated in a file and saved in

JSON format without any extra metadata.

Avro supports a more efficient and compact format when compared to

text-based file formats like XML or JSON, as it encodes the data in binary

format. Moreover, the format enables schema evolution (e.g., adding new

Chapter 2 Understanding Core Data Concepts

38

fields or modifying optional items) without breaking compatibility with

existing data. Its adaptability makes Avro ideal for large data applications

in which data schemas evolve over time.

�ORC (Optimized Row Columnar)

Optimized Row Columnar (ORC) is a highly efficient columnar storage

format optimized for big data processing in the distributed Hadoop

ecosystem such as Apache Hive. This way, it stores the data in columns

rather than rows, making it super efficient for compressing the large

amount of data and answering queries faster as it needs to retrieve only the

columns relevant for the query. ORC has integrated metadata with its file,

such as row counts, data types, and min/max values, which means systems

can skip searching those sections of the data, allowing for better query

performance.

ORC provides support for highly efficient compression techniques,

such as run-length encoding and dictionary encoding, per column based

on the data type, which reduces the amount of storage space required

by the format. Its splittable format allows distributed propositions over

multiple nodes in distributed environments, so it’s very well suited for

large-scale data analytics. ORC is popular in big data ecosystems because

of its storage efficiency, query optimization, and scalability.

�Parquet

Parquet is a column-oriented storage format that has been designed

for analytics workflows with large-scale data processing in distributed

systems like Apache Hadoop, Apache Spark, or Apache Hive. It reduces

I/O operations and speeds up processing by organizing data by columns as

opposed to rows, enabling queries to read just the required columns. This

columnar approach also allows for better file compression since you can

pack similar types of data into a column rather than grouping them by row

with differing data types.

Chapter 2 Understanding Core Data Concepts

39

Are you familiar with the Parquet format? It stores metadata, like min/

max values and statistics for each column, which can be used at query

time for efficient filtering and predictive pushdown. Parquet is widely

used for data storage and retrieval due to its performance, efficiency, and

support for structured and semi-structured data.

�Explore Databases
Databases are structured information sets that allow efficient management,

retrieval, and storage of information. They power everything from simple

websites to complex enterprise applications and are critical to modern

applications. There are many types of databases, and they can be categorized

broadly as relational and non-relational (or NoSQL) databases. Every one of

these forms of databases is created to meet unique needs in terms of storing

and using data.

�Relational Databases
There are relational databases which use structured tables with rows and

columns to store data. Each table represents an entity like customers or

items, and keys (primary and foreign keys) are used to create relationships

between the tables as shown in Figure 2-2. This is a widely used method,

ensuring data consistency, integrity, and the ability to access data through

Structured Query Language (SQL).

Examples of Relational Databases

	 1.	 Microsoft SQL Server

	 2.	 MySQL

	 3.	 PostgreSQL

	 4.	 Oracle Database

	 5.	 SQLite

Chapter 2 Understanding Core Data Concepts

40

Figure 2-2.  Relational Databases

�Non-relational Databases
NoSQL provides support for unstructured, semi-structured, or rapidly

changing data. Since they do not depend on predefined schemas, they are

more flexible and scalable for some use cases.

Figure 2-3.  Non-relational Databases

Chapter 2 Understanding Core Data Concepts

41

These are the four most common types of non-relational databases as

illustrated in Figure 2-3:

	 1.	 Key-Value Databases: These are used to store data

as a collection of key-value pairs, where KEY is a

unique identifier of an associated value.

Examples: Redis, DynamoDB

	 2.	 Document Databases: Store data in document

formats (JSON or BSON) to allow representation of

complex data structures.

Examples: MongoDB, CouchDB

	 3.	 Column-Family Databases: Organizing data in

column families instead of rows, like column stores,

saves space and allows for efficient storage and

retrieval of analytical queries.

Examples: Apache Cassandra, HBase

	 4.	 Graph Databases: Designed around relationships,

they use nodes for entities and edges for their

connections.

Examples: Neo4j, Amazon Neptune

�Data Workloads
Data workloads refer to all the various ways that businesses collect, store,

processes, and analyzes data to support decision-making, company

operations, and strategy. There are workloads based on the type of data

you have and how you want to use it, like real-time transactions, analytical

reporting, or long-term storage and retrieval.

Chapter 2 Understanding Core Data Concepts

42

The common types of data workloads:

•	 Online Transaction Processing (OLTP)

•	 Online Analytical Processing (OLAP)

•	 Data Warehousing

�Transactional Workloads

�Online Transaction Processing (OLTP)
OLTP stands for Online Transaction Processing. This describes a type of

data processing system designed for real-time handling and support of

database transactional data. OLTP systems are designed to process many

small online transactions, typically with small amounts of data (insert,

update, delete, query).

�Key Characteristics of OLTP Systems

	 1.	 High Transaction Volume: Process transactions,

for example, online purchases and bank transfers, at

tens of thousands per second.

	 2.	 Real-Time Processing: Transactions are processed

immediately as they occur.

	 3.	 Data Integrity: Guarantees consistency and

accuracy of data using concepts like constraints,

indexes, and relational models.

	 4.	 Concurrency: Allows multiple users to access

and modify the database concurrently with no or

minimal performance degradation.

Chapter 2 Understanding Core Data Concepts

43

	 5.	 Fast Query Execution: OLTP systems are optimized

for fast reads and writes, typically out of small

datasets.

	 6.	 Normalization: Database schemas have a very

high normalization for OLTP systems as they try to

eliminate the redundancy of data.

�ACID Properties of OLTP

OLTP systems follow the ACID properties to maintain the integrity and

consistency of the data:

	 1.	 Atomicity: Ensures that all parts of a transaction are

completed successfully. If any part fails, the entire

transaction is rolled back.

Example: Transferring funds between accounts

either completes fully or does not happen at all.

	 2.	 Consistency: Guarantees that a transaction

transitions the database from one valid state

to another, maintaining all defined rules and

constraints.

Example: A balance update in a banking system

ensures the total funds remain accurate.

	 3.	 Isolation: Ensures that concurrent transactions do

not interfere with each other, providing consistent

results.

Example: Two users withdrawing funds

simultaneously will not affect each other’s

transactions.

Chapter 2 Understanding Core Data Concepts

44

	 4.	 Durability: Ensures that once a transaction is

committed, the changes are permanent, even in

case of a system crash.

Example: Once a payment is processed, it remains

recorded even if the system restarts.

The following are the Azure OLTP services as given in Figure 2-4:

•	 Azure SQL Database

•	 SQL Server in Virtual Machine

•	 Azure Database for MySQL

•	 Azure Database for PostgreSQL

Figure 2-4.  Azure OLTP Services

�Analytical Workloads

�Online Analytical Processing (OLAP)
Analytical data processing often utilizes read-only (or read-mostly)

systems that store vast amounts of historical data or business indicators.

This data, at a moment in time or a sequence of snapshots, can

form the basis for analytics. OLAP systems are developed to process

Chapter 2 Understanding Core Data Concepts

45

multidimensional data and handle complex analytical queries, often

over aggregated data. These tools help the user to generate business

intelligence and to apply advanced analytics to large datasets.

�Key Characteristics of OLAP

	 1.	 Multidimensional Data: In Mater Data

Management (MDM), the data is arranged in a

cube-like structure where each dimension is a

different data insight (time, region, product, etc.),

giving the ability to efficiently query data using

multiple dimensions.

	 2.	 Slice and Dice: Users can “slice” the data (view

from usefulness perspective from specific subset)

and “dice” it (from different positions according to

different angles).

	 3.	 Drill Down/Up: Users are able to drill down into

the data for more granular details (e.g., from

yearly to monthly data) and drill up for more

aggregated views.

	 4.	 Pivoting: It helps you reorganize the data so that

you can see it from different angles.

	 5.	 Real-Time Querying: OLAP is ideal for extensive

data, as it allows for rapid querying of premises.

The following are the Azure OLAP services as given in Figure 2-5:

•	 SQL Server with Column Store index

•	 Azure Analysis Service

•	 Azure Synapse Analytics

•	 Azure SQL Data Warehouse

Chapter 2 Understanding Core Data Concepts

46

•	 Azure Cosmos DB (with Analytical Store)

•	 Power BI (with Azure Integration)

Figure 2-5.  Azure OLAP Services

�Data Warehouse

What is a data warehouse? A data warehouse is a central data repository

for reporting and analyzing data. It serves as a foundation for supporting

BI and reporting tools and analytical activities. It combines data from data

warehouses, transactional systems, databases, and computer systems

into a single format that is optimized for reporting and querying and not

transaction processing.

�Key Characteristics of a Data Warehouse

	 1.	 Subject Oriented: Types of data can be organized

around various business dimensions (like sales,

inventory, finance).

	 2.	 Integrated: Merged data from various sources with

consistency in naming convention, formats, and

encoding.

Chapter 2 Understanding Core Data Concepts

47

	 3.	 Time Variant: Keeps the historical data to enable

the evolution over their duration and timestamp

in order to provide the details of the changes

occurring.

	 4.	 Non-volatile: The data stores in the data warehouse

when all data has been written to its final state.

�Components of a Data Warehouse

	 1.	 Data Sources: The data comes from systems,

operational databases, flat files, or external sources.

	 2.	 ETL (Extract, Transform, Load): A process that

extracts data from sources, transforms it into the

right format, and loads it into the data warehouse.

	 3.	 Data Storage: This is the database or storage layer

where the transformed data is stored, typically in the

star or snowflake schema.

	 4.	 OLAP Cubes: Multidimensional data structures

designed to allow for fast retrieval of data by analysis

tools to allow for multidimensional analysis,

enabling users to view data from a variety of

perspectives.

	 5.	 BI Tools: Using tools (e.g., Tableau, Power BI, etc.)

for users to visualize and analyze data.

Chapter 2 Understanding Core Data Concepts

48

�Key Differences Between Transactional
and Analytical Workloads
The key differences between OLTP (Online Transaction Processing) and

OLAP (Online Analytical Processing) are shown in Table 2-2.

Table 2-2.  OLTP and OLAP Features

Feature OLTP OLAP

Purpose Designed for managing day-to-

day transactional data, typically

used for operational tasks such

as order processing, inventory

management, and customer

data

Designed for complex querying

and analysis of historical data,

supporting decision-making and

strategic planning, typically used for

business intelligence and reporting

Data

Structure

Data is stored in normalized

relational databases to reduce

redundancy and ensure

consistency, typically with many

tables

Data is stored in multidimensional

models (e.g., star schema

or snowflake schema), often

denormalized for fast querying

Transactions Supports a high volume of

small transactions, such as

INSERT, UPDATE, and DELETE,

with each transaction affecting

a few rows

Supports fewer, larger queries,

usually involving aggregations over

vast amounts of data

Query

Complexity

Queries are generally simple

and involve operations like

searching, inserting, or

updating records

Queries are more complex and

often involve aggregations,

groupings, and calculations over

large datasets

(continued)

Chapter 2 Understanding Core Data Concepts

49

Table 2-2.  (continued)

Feature OLTP OLAP

Performance Prioritizes fast processing of

transactional operations and

ensures data integrity, usually

requiring high throughput and

low latency

Prioritizes fast querying and

reporting, with performance

optimized for complex analytical

queries on large datasets

Data Volume Typically handles smaller

datasets, as the data volume

is focused on day-to-day

operations

Handles large datasets, often from

multiple years, used for in-depth

analysis and reporting

Users Primarily used by front-end

applications, transactional

systems, and operational staff

(e.g., cashiers, salespeople)

Used by analysts, managers, and

decision-makers who need to

perform in-depth data analysis and

reporting

Update

Frequency

Data is updated frequently,

with real-time updates for

transactions

Data is typically updated in batches

or through ETL processes, with

updates occurring periodically

�Roles and Responsibilities
in Data Workloads
Data Workload Roles: There are different roles involved in managing,

processing, and interpreting data in context of workload.

Here’s an overview of the key roles and their responsibilities.

Chapter 2 Understanding Core Data Concepts

50

�1. Database Administrator (DBA)
The DBA (Database Administrator) is responsible for the management,

security, and performance of databases. They guarantee databases are

accessible, optimized, and secure.

Key Responsibilities

•	 Database Maintenance: Regularly monitor and

optimize database performance, ensuring that

databases run smoothly and are efficient.

•	 Backup and Recovery: Implement robust backup

and recovery strategies to ensure data integrity and

availability in case of failures.

•	 Security: Enforce database security policies, including

setting up user roles and permissions to prevent

unauthorized access.

•	 Data Integrity: Ensure data consistency and accuracy,

handling data corruption issues when they arise.

•	 Migration and Upgrades: Manage database upgrades,

migrations, and patching to ensure systems are up

to date.

•	 Query Optimization: Help with the optimization

of queries to improve performance, especially for

complex transactions.

�2. Data Engineer
A Data Engineer develops and maintains systems and infrastructure that

enable the collection, storage, and transformation of vast amounts of data.

They can also be seen as working on data pipelines and working closely

with data scientists and analysts.

Chapter 2 Understanding Core Data Concepts

51

Key Responsibilities

•	 Data Pipeline Development: Build and maintain

scalable data pipelines to ingest, process, and store

data from various sources (e.g., databases, APIs, logs).

•	 ETL (Extract, Transform, Load): Implement ETL

processes to clean, transform, and load data into data

warehouses, data lakes, or databases.

•	 Data Modeling: Design data models to ensure efficient

storage and retrieval. This may involve normalizing or

denormalizing data and setting up indexing strategies.

•	 Automation: Automate data flows and processes

to handle repetitive tasks and ensure timely data

availability.

•	 Performance Optimization: Ensure that data systems

are scalable and optimized for performance, especially

when dealing with large datasets.

•	 Collaboration with Data Scientists: Work closely with

data scientists to ensure that the data infrastructure

supports advanced analytics and machine

learning tasks.

�3. Data Analyst
The role of a Data Analyst is to interpret data, thereby assisting

organizations in making informed decisions. They are used to data that is

already modeled and cleanly mapped in databases or data marts.

Chapter 2 Understanding Core Data Concepts

52

Key Responsibilities

•	 Data Analysis: Analyze datasets to identify trends,

patterns, and insights that can inform business

strategies.

•	 Reporting and Visualization: Develop reports and

dashboards using tools like Power BI, Tableau, or

Excel to present findings in an understandable and

actionable format.

•	 Business Intelligence: Work with stakeholders to

understand their data needs and ensure that the

reports and insights provided align with business

objectives.

•	 Data Validation: Verify data integrity to ensure that the

data used for analysis is accurate and reliable.

•	 Collaboration: Work closely with both data engineers

(to access the data) and business teams (to understand

the requirements and communicate insights).

�Explore Data Services
�Data Services in Azure
One of their major assets is the Azure platform, which includes a huge

selection of services for the management, storage, and analysis of data

across multiple applications. These services enable organizations to

address various data storage, management, and analytics requirements

while ensuring scalability, performance, and security. These services

make it easier to work with both structured and unstructured data, engage

Chapter 2 Understanding Core Data Concepts

53

with machine learning and artificial intelligence, and perform large-scale

analytics. They are designed to serve different user types (data engineer,

analyst, or DBAs).

�1. Azure SQL

This service is referred to as Azure SQL and is built for on-premises or

cloud-based SQL Server workloads and provides managed database

services with varying deployment models to meet unique needs:

•	 Azure SQL Database: A fully managed relational

database offering in the cloud for cloud applications. It

offers built-in intelligence for performance tuning with

high availability, scalability, and security.

•	 Azure SQL Managed Instance: A service that provides

a fully managed instance of SQL Server in the cloud

with near-complete compatibility with SQL Server for

customers. It enables support for broader SQL Server

workloads like SQL Agent and cross-db queries.

•	 Azure SQL VM: A VM running on SQL Server with full

control over the server and database configuration. It is

ideal for customers looking to lift and shift existing SQL

Server workloads to Azure with little change.

�2. Open Source Databases in Azure

Azure supports popular open source relational databases, offering fully

managed services for developers who prefer open source technologies:

•	 Azure Database for MySQL: A fully managed MySQL

database service that provides built-in high availability,

automated backups, and scaling

Chapter 2 Understanding Core Data Concepts

54

•	 Azure Database for MariaDB: A fully managed

MariaDB database service suitable for customers who

are using the MariaDB community version

•	 Azure Database for PostgreSQL: A fully managed

PostgreSQL database service with features such

as automatic scaling, high availability, and data

encryption

�3. Azure Cosmos DB

Azure Cosmos DB is a mission-critical, globally distributed, multi-model

database service. It supports key-value, document, graph, and column-

family data models. Indeed, it is optimal for applications with high

availability and multi-region responsiveness due to low latency and elastic

scalability.

�4. Azure Storage

Azure Storage provides scalable and durable cloud storage solutions for

unstructured data:

•	 Blob Containers: For storing large amounts of

unstructured data like images, videos, or documents.

•	 File Shares: An Azure file share is a cloud-based file

system that can be accessed using the SMB (Server

Message Block) or NFS (Network File System) protocol.

•	 Tables: Azure Table Storage is a NoSQL key-value store

for storing large amounts of structured data.

Chapter 2 Understanding Core Data Concepts

55

�5. Azure Data Factory

Azure Data Factory is a cloud-based data integration service that allows

you to orchestrate and automate data workflows. It facilitates data

movement, transformation, and loading (ETL/ELT) across various sources,

including on-premises and cloud storage.

�6. Microsoft Fabric

Microsoft Fabric is a unified data platform that combines data engineering,

data science, data warehousing, and business intelligence. Fabric supports

•	 Data Engineering

•	 Data Science

•	 Data Lakehouse

•	 Data Warehousing

•	 Real-Time Analytics

•	 BI (Business Intelligence) with Power BI Integration

•	 Azure Synapse Analytics

It allows organizations to simplify data management and integrate

various data processes.

�7. Azure Databricks

Azure Databricks is a cloud-native analytics platform based on Apache

Spark. It enables data engineering, data science, and machine learning

workloads. Databricks allows other users on the data and tableau side to

seamlessly work together to explore the data, prepare the data, and run

advanced analytics with Spark-based processing capabilities built in.

Chapter 2 Understanding Core Data Concepts

56

�8. Azure Stream Analytics

Azure Stream Analytics is a real-time data stream processing service. It is

suitable for processing real-time analytics and monitoring streaming data

coming from devices, sensors, social media, and other sources.

�9. Azure Data Explorer

Azure Data Explorer is a fast and highly scalable data exploration service

to analyze large volumes of data. It is tailored for high-frequency log and

telemetry data and leverages low-latency query processing for interactive

exploration of large datasets.

�10. Microsoft Purview

We only have Microsoft Purview as a unified data governance solution that

makes it easy to manage and govern cloud and on-premises data schemes

across Azure, other cloud platforms, or your on-premises platforms. It

offers functionality such as data cataloging, data lineage, compliance

tracking, and data classification.

�Roles and Services
The roles which interact with Azure data services are Data Engineers, Data

Analysts, and DBAs. Now let’s get into these roles and the services they

typically use:

•	 Data Engineers: Data Engineers typically work with

services such as Azure Data Factory, Azure Databricks,

Azure SQL, and Microsoft Fabric for data pipeline

engineering, data preparation, and data infrastructure

management.

Chapter 2 Understanding Core Data Concepts

57

•	 Data Analysts: Use Azure SQL, Azure Databricks, Azure

Stream Analytics, and Microsoft Fabric for running

queries on data, analyzing data, and generating reports.

They are often heavily dependent on Azure Synapse

and Power BI for visualization and insights of the data.

•	 DBAs: When we talk about database administrators,

we are referring to those who manage database

instances such as Azure SQL Database, Azure SQL

Managed Instance, Azure SQL VM, and open source

databases (like MySQL, MariaDB, and PostgreSQL).

They are responsible for securing and performing those

database instances with high availability.

�Summary
This chapter introduced readers to the basic principles of data

representation, storage, and management, which form the foundation

for understanding how data is organized, processed, and used in

contemporary systems. Here’s a summary of what we covered:

Types of Data

•	 Structured Data: Data that is highly organized and

follows a well-defined schema, generally stored in the

form of tables with rows and columns, and used a lot in

transactional systems and analytics (like RDBMS)

•	 Semi-structured Data: Data that has a certain degree

of organization but does not conform to a rigid

structure, commonly seen in formats such as JSON or

XML, which is widely used in web services, APIs, and

log files

Chapter 2 Understanding Core Data Concepts

58

•	 Unstructured Data: Data with no predetermined

structure, including text documents, photos, and

videos, requiring sophisticated tools (like machine

learning) to process

Data Storage Options

•	 In this section, we talked about data storage formats,

delimited text file (CSV, TSV), JSON, XML, and

optimized storage techniques like Avro, ORC, and

Parquet which are used for efficiently storing and

processing large datasets.

•	 Cloud-based storage solutions are a necessity for

modern data management due to their scalability,

security, and cost efficiency, which are core attributes

of Azure as well.

Databases

•	 Databases come in various types, that are broadly

classified into two main categories: (1) databases for

structured data – examples are SQL Server, MySQL,

etc., and (2) databases for unstructured or semi-

structured data (NoSQL) – examples are MongoDB,

Cassandra, etc.

•	 From transactional systems to big data analytics, every

type of database has a specific use case.

Data Workloads
We exposed two main types of data processing workloads:

•	 Transactional Workloads (OLTP): Designed for

transactional work such as order processing or

banking.

Chapter 2 Understanding Core Data Concepts

59

•	 Analytical Workloads (OLAP): OLAP databases are

optimized for running complex queries and analyzing

historical data, being used in business intelligence and

reporting.

Roles in Data Management
Some key roles involved in data workloads are

•	 Database Administrators (DBAs): Ensuring database

performance, security, and upkeep

•	 Data Engineers: Designing and maintaining data

pipelines and systems for processing data

•	 Data Analysts: Utilizing usage data to help generate

insights or drive decisions

Azure Data Services
Azure offers a full range of data services, such as

•	 Managed relational databases with Azure SQL

•	 Azure Cosmos DB for global distributed multi-model

databases

•	 Azure Data Factory for data integration and ETL/ELT

workflows

•	 Azure Synapse Analytics and Azure Databricks for big

data and advanced analytics processing

•	 Microsoft Fabric: The unified analytics platform for

data engineering, science, warehousing, and business

intelligence

Chapter 2 Understanding Core Data Concepts

61© Naveen Kumar M 2025
N. Kumar M, Azure Data Fundamentals Certification Companion, Certification Study
Companion Series, https://doi.org/10.1007/979-8-8688-1684-0_3

CHAPTER 3

Working with
Relational Data
on Azure
To get started, this chapter covers the core principles of relational

databases and how they are used in the context of Azure. You will learn the

basics of relational data, how data needs to be normalized to be effectively

structured, and how relational data is supported by common SQL

statements and database objects.

The chapter gives an overview of the Azure SQL family, which is a

family of relational database services (Azure SQL Database, Managed

Instance, and Server on VMs) and their features and scenarios. It also dives

into how Azure supports popular open source relational databases, such as

MySQL, PostgreSQL, and MariaDB, and how they are applied in modern

data solutions.

In this chapter, you will be introduced to relational data concepts and

various relational database services on Azure that will help you choose and

deploy the right service for your data needs.

https://doi.org/10.1007/979-8-8688-1684-0_3#DOI

62

�Relational Data Concepts
�Features of Relational Data
�Overview

In the early days of computing, every application used a unique way of

storing data, which left us with a fragmented and inefficient landscape.

Whether it meant pulling information or manipulating it, developers

needed to know intimately each individual data structure, making

application development clumsy and prone to error. Managing and

optimizing the performance of these ad hoc storage methods proved to be

cumbersome.

These issues prompted the development of the relational database

model, which brought forth a standardized method for structuring and

accessing data. Rather than copying in arbitrary application-specific

structures, the relational model surfaces data in tables, a logical, human-

intuitive, and exceedingly efficient format. This consistency also allows

any application to work with data as the common interface without having

detailed knowledge about the underlying storage mechanics.

The relational model uses tables to represent data relationships,

offering a flexible and scalable approach to managing structured

information while maintaining data integrity, minimizing redundancy,

and supporting advanced querying capabilities. This was a game

changer in database management, enabling a new era of modern high-

performance applications.

�Relational Data

Relational data is structured in a form that organizes data into multiple

tables (also known as relations) of rows and columns. The relationships

that define how these tables are related to each other enable efficient data

storage, retrieval, and manipulation.

Chapter 3 Working with Relational Data on Azure

63

�Example of Relational Data

Figure 3-1 illustrates the Entity-Relationship (ER) diagram for the student

enrollment system, depicting the relationships between Students,

Departments, Courses, and Enrollments.

Figure 3-1.  Entity-Relationship Diagram for University Database

Here, relationships are established using keys as illustrated in

Figure 3-1:

•	 A primary key uniquely identifies a row (e.g.,

StudentID in the Students table).

•	 A foreign key links to a primary key in another

table (e.g., DepartmentID in Students references

DepartmentID in Departments).

Chapter 3 Working with Relational Data on Azure

64

�Features of Relational Data

	 1.	 Tables (Relations): A structured set of data

elements in rows (tuples) and columns (attributes)

	 2.	 Primary Keys: Distinguish each row uniquely

across a table (such as StudentID)

	 3.	 Foreign Keys: Establish relationships

between tables

	 4.	 Normalization: Minimizes redundancy by

organizing data efficiently

	 5.	 ACID Compliance: Ensures transactions are

Atomic, Consistent, Isolated, and Durable

	 6.	 SQL (Structured Query Language): Standard

language for querying and managing relational data

	 7.	 Indexes: Improve query performance by speeding

up data retrieval

	 8.	 Constraints: Enforce data integrity (e.g., NOT

NULL, UNIQUE, CHECK)

�Data Normalization

Normalization is the process that involves a series of transformation steps

from one form to the next higher form. It is where large tables are broken

down into smaller, relevant tables, and the data dependencies are logical.

Chapter 3 Working with Relational Data on Azure

65

�Why Normalization?

•	 Reduces data redundancy (duplication of data)

•	 Avoids update anomalies (insertion, deletion, and

modification problems)

•	 Improves data consistency

•	 Makes the database structure less complex

�Levels of Normalization

Normalization consists of several progressive levels called Normal Forms

(NF) where each level is a building block to the next.

�1. First Normal Form (1NF)

Rules

•	 All values in each column have to be atomic

(indivisible).

•	 There must be a unique row identifier (primary key).

•	 There will be no repeating groups or arrays in columns.

Example (Before 1NF)

OrderID Customer Products

1001 John David Laptop, Mouse, Keyboard

1002 Dave Smith Monitor, Headphones

Chapter 3 Working with Relational Data on Azure

66

Problem: The “Products” column contains multiple values.

After 1NF

OrderID Customer Product

1001 John David Laptop

1001 John David Mouse

1001 John David Keyboard

1002 Dave Smith Monitor

1002 Dave Smith Headphones

Problem Fixed: Each product is in a separate row.

�2. Second Normal Form (2NF)

Rules

•	 Must be in 1NF.

•	 There should be no partial dependency, meaning all

non-key columns should depend on the complete

primary key.

Example (Before 2NF)

OrderID ProductID ProductName Price

1001 P001 Laptop 50000

1001 P002 Mouse 1500

1002 P003 Monitor 5000

Problem: ProductName and Price are dependent on ProductID rather

than the complete primary key, i.e., OrderID + ProductID.

Chapter 3 Working with Relational Data on Azure

67

After 2NF
Orders Table

OrderID ProductID

1001 P001

1001 P002

1002 P003

Products Table

ProductID ProductName Price

P001 Laptop 50000

P002 Mouse 1500

P003 Monitor 5000

Problem Fixed: It was separated into two tables to eliminate the

partial dependency.

�3. Third Normal Form (3NF)

Rules

•	 Must be in 2NF.

•	 There is no transitive dependency (non-key columns

must depend only on key columns).

Chapter 3 Working with Relational Data on Azure

68

Example (Before 3NF)

StudentID Name DepartmentID DepartmentName

101 Kumar D01 Computer Science

102 Priya D02 Mathematics

Problem: DepartmentName depends on DepartmentID, not directly

on StudentID.

After 3NF
Students Table

StudentID Name DepartmentID

101 Kumar D01

102 Priya D02

Departments Table

DepartmentID DepartmentName

D01 Computer Science

D02 Mathematics

Problem Fixed: Eliminated transitive dependency.

�4. Boyce-Codd Normal Form (BCNF)

Rules

•	 Stricter than 3NF.

•	 All determinants must be superkey (a.k.a.

candidate key).

Chapter 3 Working with Relational Data on Azure

69

Example (Before BCNF)

StudentID Course Professor

101 Math Dr. Gomathi

101 Physics Dr. Priya

102 Math Dr. Gomathi

Problem: If a professor teaches a single course, then Professor

determines Course; however, Professor is not a superkey.

After BCNF
Student Courses Table

StudentID Course

101 Math

101 Physics

102 Math

Professor Courses Table

Professor Course

Dr. Gomathi Math

Dr. Priya Physics

Dr. Gomathi Math

Problem Fixed: Ensured all determinants are superkeys.

Chapter 3 Working with Relational Data on Azure

70

�5. Fourth Normal Form (4NF) and Fifth Normal Form (5NF)

•	 4NF: Eliminates multi-valued dependencies

•	 5NF: Ensures lossless decomposition (no data loss

when splitting tables)

�When to Stop Normalizing?

•	 Excessive normalization can cause many joins and slow

down queries.

•	 In some cases, we perform denormalization (i.e., we

introduce redundancy) in order to obtain performance.

Databases preserve their efficiency when structured nicely using

normalization. There are higher normal forms above those (BCNF, 4NF,

5NF), but most applications are designed in up to 3NF.

�Explore SQL
SQL (Structured Query Language) is the standard language for managing

relational databases. It allows users to

•	 Create and modify database structures

•	 Insert, update, and delete data

•	 Retrieve information through queries

•	 Control access to data

SQL is implemented in various database management systems

(DBMS), each with slight variations in syntax and features.

Chapter 3 Working with Relational Data on Azure

71

�Common RDBMS That Uses SQL

�1. Microsoft SQL Server (T-SQL)

•	 Developed by Microsoft

•	 Uses Transact-SQL (T-SQL) extensions

•	 Tight integration with Windows ecosystem

•	 Features like Common Language Runtime (CLR)

integration and XML support

�2. MySQL

•	 Open source RDBMS

•	 Owned by Oracle

•	 Popular for web applications

•	 Known for speed and reliability

�3. PostgreSQL

•	 Advanced open source RDBMS

•	 Supports complex data types (JSON, GIS)

•	 ACID compliant with strong standards compliance

�4. MariaDB

•	 Fork of MySQL by original developers

•	 Fully open source

•	 Improved performance and features over MySQL

Chapter 3 Working with Relational Data on Azure

72

�5. Oracle Database (PL/SQL)

•	 Enterprise-grade RDBMS

•	 Uses PL/SQL procedural language

•	 Advanced security and scalability features

�SQL Command Categories

Figure 3-2.  SQL Command Categories

Figure 3-2 illustrates the SQL command categories, including DDL, DQL,

DML, DCL, and TCL. Each of these parts is explained in detail below.

�1. DDL (Data Definition Language)

It manages database structure.

Commands

•	 CREATE: Creates objects

•	 ALTER: Modifies objects

•	 DROP: Deletes objects

•	 TRUNCATE: Removes all records

•	 RENAME: Renames objects

Chapter 3 Working with Relational Data on Azure

73

Example:

-- Create a table
CREATE TABLE Employees (
 EmployeeID INT PRIMARY KEY,
 FirstName VARCHAR(50),
 LastName VARCHAR(50),
 Department VARCHAR(50)
);

-- Alter table (add column)
ALTER TABLE Employees ADD Email VARCHAR(100);

-- Drop table
DROP TABLE Employees;

-- Truncate table (delete all data)
TRUNCATE TABLE Employees;

�2. DQL (Data Query Language)

It retrieves data from databases.

Command

•	 SELECT: Retrieves data

Example:

-- Basic select
SELECT * FROM Employees;

-- Select specific columns
SELECT FirstName, LastName FROM Employees;

-- With conditions
SELECT * FROM Employees WHERE Department = 'IT';

Chapter 3 Working with Relational Data on Azure

74

-- With sorting
SELECT * FROM Employees ORDER BY LastName;

-- With aggregation
SELECT Department, COUNT(*)
FROM Employees
GROUP BY Department;

�3. DML (Data Manipulation Language)

It modifies data within tables.

Commands

•	 INSERT: Adds new records

•	 UPDATE: Modifies existing records

•	 DELETE: Removes records

•	 MERGE: Upsert operation

Example:

-- Insert data
INSERT INTO Employees
VALUES (1, 'John', 'Doe', 'IT', 'john@example.com');

-- Update data
UPDATE Employees
SET Department = 'HR'
WHERE EmployeeID = 1;

-- Delete data
DELETE FROM Employees
WHERE EmployeeID = 1;

Chapter 3 Working with Relational Data on Azure

75

�4. DCL (Data Control Language)

It controls access to data.

Commands

•	 GRANT: Gives privileges

•	 REVOKE: Removes privileges

•	 DENY: Explicitly denies permissions

Example:

-- Grant select permission
GRANT SELECT ON Employees TO user1;

-- Revoke update permission
REVOKE UPDATE ON Employees FROM user1;

-- Deny delete permission
DENY DELETE ON Employees TO user1;

�5. TCL (Transaction Control Language)

It manages database transactions.

Commands

•	 COMMIT: Saves changes permanently

•	 ROLLBACK: Undoes changes

•	 SAVEPOINT: Sets a point to roll back to

•	 SET TRANSACTION: Configures transaction properties

Example:

BEGIN TRANSACTION;
 UPDATE Accounts SET balance = balance - 100
 WHERE account_id = 1;

Chapter 3 Working with Relational Data on Azure

76

 UPDATE Accounts SET balance = balance + 100
 WHERE account_id = 2;

 -- If everything is OK
 COMMIT;

 -- If error occurs
 -- ROLLBACK;

The Structured Query Language (SQL) is a powerful method of

accessing relational database engines across multiple platforms. Although

the underlying SQL syntax is mostly universal, each DBMS implements its

own extensions and optimizations. It is an essential aspect for anyone who

aims to manage a database effectively or develop applications.

�Explore Database
�1. Tables

To architect your data in a tabular format – i.e., to lay it down in the form

of tables, which are the primary storage entities in any relational systems –

the data is split into verticals, which we refer to as columns or fields, and

horizontals, which we refer to as rows or records.

Key Features

•	 Store structured data

•	 Enforce data integrity with constraints (PK, FK,

UNIQUE, NOT NULL)

•	 Support data types (INT, VARCHAR, DATE, etc.)

Example:

-- Creating a table
CREATE TABLE Employees (
 EmployeeID INT PRIMARY KEY,

Chapter 3 Working with Relational Data on Azure

77

 FirstName VARCHAR(50) NOT NULL,
 LastName VARCHAR(50) NOT NULL,
 HireDate DATE,
 Salary DECIMAL(10,2),
 DepartmentID INT,
 CONSTRAINT FK_Department FOREIGN KEY (DepartmentID)
 REFERENCES Departments(DepartmentID)
);

-- Inserting data
INSERT INTO Employees VALUES
(1, 'Naveen', 'Kumar', '2020-01-15', 75000.00, 101),
(2, 'Will', 'Smith', '2019-05-22', 82000.00, 102);

�2. Views

Views are virtual tables that represent the result of a stored SQL query.

Key Features

•	 Simplify complex queries

•	 Provide security by restricting column access

•	 Don’t store data physically (except materialized views)

Example:

-- Creating a view
CREATE VIEW IT_Employees AS
SELECT EmployeeID, FirstName, LastName, HireDate
FROM Employees
WHERE DepartmentID = 101; -- IT Department

-- Using the view
SELECT * FROM IT_Employees;

Chapter 3 Working with Relational Data on Azure

78

�3. Functions

Functions are reusable database objects that perform operations and

return a single value or a table.

Types

•	 Scalar Functions: Return a single value

•	 Table-Valued Functions: Return a result set

Example (Scalar Function):

-- Creating a function
CREATE FUNCTION GetEmployeeAge(@EmployeeID INT)
RETURNS INT
AS
BEGIN
 DECLARE @Age INT;
 SELECT @Age = DATEDIFF(YEAR, BirthDate, GETDATE())
 FROM Employees
 WHERE EmployeeID = @EmployeeID;
 RETURN @Age;
END;

-- Using the function
SELECT dbo.GetEmployeeAge(1) AS EmployeeAge;

Example (Table-Valued Function):

CREATE FUNCTION GetDepartmentEmployees(@DeptID INT)
RETURNS TABLE
AS
RETURN (

Chapter 3 Working with Relational Data on Azure

79

 SELECT EmployeeID, FirstName, LastName
 FROM Employees
 WHERE DepartmentID = @DeptID
);

-- Using the function
SELECT * FROM dbo.GetDepartmentEmployees(101);

�5. Indexes

Indexes are database objects that improve data retrieval speed by creating

optimized access paths.

Types

•	 Clustered Index: Determines physical order of data

(one per table)

•	 Non-clustered Index: Separate structure with

pointers to data

•	 Unique Index: Enforces uniqueness

•	 Composite Index: On multiple columns

Example:

-- Creating a clustered index (usually on PK)
CREATE CLUSTERED INDEX IX_Employees_EmployeeID
ON Employees(EmployeeID);

-- Creating a non-clustered index
CREATE NONCLUSTERED INDEX IX_Employees_Department
ON Employees(DepartmentID);

-- Creating a composite index
CREATE INDEX IX_Employees_Name
ON Employees(LastName, FirstName);

Chapter 3 Working with Relational Data on Azure

80

-- Creating a unique index
CREATE UNIQUE INDEX IX_Employees_Email
ON Employees(Email);

�Comparison of Database Objects

The key comparison between various database objects in terms of

purpose, storage, update frequency, and performance impact is presented

in Table 3-1.

Table 3-1.  Database Object Comparison

Object Type Purpose Storage Update Frequency Performane
Impact

Table Data storage Physical High N/A

View Virtual table

representation

Logical

(query)

Dynamic Depends on base

table

Function Return computed

values

Logical Reusable Varies by

complexity

Stored
Procedure

Execute business

logic

Logical Reusable High (pre-

compiled)

Index Speed up queries Physical Updated on DML High (read speed)

A database is a structured collection of objects designed to efficiently

store and process data. These objects include tables, hold raw data, views

are used to clarify access to that data, functions and procedures automate

processes, and indexes speed up searches. Understanding these concepts

is key to making optimized, secure, and performant systems around

databases.

Chapter 3 Working with Relational Data on Azure

81

�Azure Relational Data Services
�Overview
SQL Server workloads in the cloud contain a set of fully managed and

self-managed Azure services. These services provide different degrees of

control, compatibility, and management based on business requirements.

�Azure SQL Family
�1. Azure SQL Database

It is a serverless, intelligent, and scalable version of the SQL Database with

built-in high availability, security, and automatic tuning.

Ideal for: Modern cloud applications and automated management

�2. Azure SQL Managed Instance

It is a bridge between SQL Server and Azure SQL Database, offering

close to 100% SQL compatibility (common language) across on-premises

SQL Server.

Ideal for: Lift-and-shift migrations that need less modification

�3. SQL Server on Azure Virtual Machines (VMs)

SQL Server installed on Azure Virtual Machines, where you are responsible for

managing both the SQL Server instance and the underlying operating system.

Ideal for: Behind-the-times applications requiring full control over

SQL Server

Chapter 3 Working with Relational Data on Azure

82

�Comparison of Azure SQL Services
The key differences among Azure SQL Database, Azure SQL Managed

Instance, and SQL Server on Azure Virtual Machines in terms of cloud

service type, SQL Server compatibility, architecture, high availability,

maintenance and patching, scalability, security, use cases, pricing model,

and networking are presented in Table 3-2.

Table 3-2.  Azure SQL Services Comparison

Feature Azure SQL
Database

Azure SQL Managed
Instance

SQL Server on
Azure VMs

Type of Cloud
Service

Fully managed PaaS Nearly fully managed

PaaS

Self-managed IaaS

SQL Server
Compatibility

Latest features,

some limitations

Near 100%

compatibility

Full compatibility

Architecture Single database or

elastic pool

Instance-level isolation Full VM control

(OS + SQL)

High
Availability

Built-in (99.99%

SLA)

Built-in (99.99% SLA) Customer configured

(requires Always On)

Maintenance
and Patching

Fully automated Fully automated Manual (customer

responsibility)

Scalability Auto-scaling

(serverless option)

Manual scaling Manual scaling (VM

resizing)

Security Built-in threat

detection,

encryption

Advanced security

features

Customer-managed

security

(continued)

Chapter 3 Working with Relational Data on Azure

83

Feature Azure SQL
Database

Azure SQL Managed
Instance

SQL Server on
Azure VMs

Use Cases Cloud-native apps,

SaaS solutions

Lift-and-shift

migrations, enterprise

apps

Legacy apps, full

control needed

Pricing Model DTU/vCore,

serverless

vCore based VM + SQL licensing

costs

Networking Public endpoint,

private link

VNet integration

required

Full VNet

customization

Table 3-2.  (continued)

�Key Features of Azure SQL Services
�1. Azure SQL Database

•	 Serverless compute option (auto-pauses when it is

not in use)

•	 Hyperscale (extreme scalability, up to 100TB+)

•	 AI built-in performance tuning

•	 High availability with the zone redundant

�2. Azure SQL Managed Instance

•	 Almost 100% compatible with SQL Server

•	 Instance-level isolation (e.g., on-prem SQL Server)

•	 Support for virtual network (VNet) native

•	 Cross-database queries and SQL Agent

Chapter 3 Working with Relational Data on Azure

84

�3. SQL Server on Azure VMs

•	 Operating system (OS, SQL settings) full

administrative control

•	 Fully integrated with all SQL Server features (SSIS,

SSRS, SSAS)

•	 Bring Your Own License (BYOL) or pay-as-you-go

•	 Individualized backup and disaster recovery solutions

�Business Benefits of Azure Relational
Data Services
�1. Azure SQL Database Benefits

�Cost Efficiency

•	 Lower operational expenses (no hardware/software

maintenance)

•	 Serverless option (pay per active usage, auto-pauses

during periods of inactivity)

•	 Inherent high availability (LLD DR configurations are

unnecessary)

�Performance and Scalability

•	 Automatic performance tuning (optimization

driven by AI)

•	 Hyperscale support (expands to 100TB+ with no

downtime)

•	 Elastic pools (cost-efficient allocation of resources to

databases)

Chapter 3 Working with Relational Data on Azure

85

�Security and Compliance

•	 Integrated threat detection (detects SQL injections,

brute-force attacks)

•	 Always Encrypted (helps encrypt sensitive data in use

and at rest)

•	 Compliance certifications (GDPR, HIPAA, ISO 27001)

�Business Agility

•	 Quick provision (minutes)

•	 Global scalability (deploy to Azure regions)

•	 Integration with other Azure services (Power BI, Azure

Functions, Logic Apps)

�2. Azure SQL Managed Instance Benefits

�Migration Simplicity

•	 Near 100% compatibility with on-prem SQL Server (low

code changes)

•	 Lift-and-shift ready (supports SQL Agent, cross-db

queries)

•	 Native VNet integration (secure connectivity like

on-prem)

Chapter 3 Working with Relational Data on Azure

86

�Enterprise-Grade Features

•	 Instance isolation (dedicated resources, no noisy

neighbors)

•	 Business-critical tier (99.995% SLA with added replica

failover)

•	 Point-in-time restore (recover against accidental

deletions)

�Hybrid Cloud Flexibility

•	 Linked Server support (connect to on-prem data

sources)

•	 Distributed transactions (operations at multiple

databases consistently)

•	 Shard instance pools (saves cost for small workloads)

�3. SQL Server on Azure VMs Benefits

�Full Control and Customization

•	 Full admin rights (tool level, OS, SQL Server settings,

third-party tools)

•	 Full support for every SQL component (SSIS, SSRS,

SSAS, R/Python)

•	 Bring Your Own License (BYOL) (using existing SQL

Server licenses)

Chapter 3 Working with Relational Data on Azure

87

�Legacy Application Support

•	 No changes in the application (suitable for “no-touch”

migrations)

•	 Custom backup/DR solutions (business oriented)

•	 Resource dedicated (guaranteed processing for

mission-critical applications)

�Cost Optimization

•	 Reserved Instances (save up to 72% on long-term

workloads)

•	 Hybrid Benefit (up to 55% off for reusing on-prem

licenses)

•	 Shutdown/startup VMs (control costs for non-

production stacks)

�Comparative Business Benefits Summary
The key business benefits of Azure SQL Database, Azure SQL Managed

Instance, and SQL Server on Azure Virtual Machines in terms of cost

savings, migration ease, management overhead, high availability, security,

legacy support, and global scaling are presented in Table 3-3.

Chapter 3 Working with Relational Data on Azure

88

Table 3-3.  Azure SQL Services Business Benefits

Business Need Azure SQL Database Azure SQL
Managed Instance

SQL Server on
VMs

Cost Savings Pay-as-you-go, auto-

scaling

License-included

pricing

BYOL and Hybrid

Benefit

Migration Ease May require app

changes

Near-zero code

changes

No changes

needed

Management
Overhead

Fully automated Mostly automated Self-managed

High Availability 99.99% SLA built-in 99.99% SLA built-in Customer

configured

Security Built-in encryption and

threat detection

Enterprise security

features

Customer

managed

Legacy Support Limited SQL Agent, linked

servers

Full feature

support

Global Scaling Multi-region deploy Limited to single

region

Complex to scale

Microsoft Azure has options like Azure SQL Database for cloud-

native, scalable environments, Azure SQL Managed Instance for easy

migration, and SQL Server on VMs for legacy support and full control.

Each service comes with its own benefits such as pricing, ease of

management, compatibility, and scalability, offering businesses the option

to select the service that best suits their workloads.

Chapter 3 Working with Relational Data on Azure

89

�Open Source Relational Databases on Azure
Enterprises rely on data today, and they require dependable, scalable,

and cost-effective database solutions. Open source relational databases

such as MySQL, MariaDB, and PostgreSQL have gained popularity for

their flexibility, performance, and community support. These databases

are also available as fully managed services from Microsoft Azure as Azure

Database for MySQL, Azure Database for MariaDB, and Azure Database

for PostgreSQL, leveraging the best of open source technologies integrated

with Microsoft Azure’s cloud benefits like high availability, security, and

auto-scaling.

�Overview of Services
�MySQL

MySQL is one of the most often used open source relational databases,

originally developed by MySQL AB, and is now owned by Oracle. MySQL

is known for its fast performance, dependability, and ease of use, making

it one of the most popular databases for web applications, especially in

the LAMP stack (Linux, Apache, MySQL, and PHP/Python/Perl). MySQL

supports full ACID compliance through its InnoDB storage engine and

supports replication, partitioning, and full-text search. It is often applied

in ecommerce, content management systems (such as WordPress and

Drupal), and Online Transaction Processing (OLTP) applications.

�MariaDB

MySQL was forked into a community version called MariaDB by the

original developers of MySQL, shortly after Oracle’s acquisition raised

alarms. It also remains highly compatible with MySQL, so you can switch

most applications from MySQL to MariaDB without changing any code.

Chapter 3 Working with Relational Data on Azure

90

MariaDB provides performance improvements, new storage engines (like

Aria, ColumnStore), and better scalability. This is commonly used for data

warehousing, analytics, and high-performance web applications.

�PostgreSQL

PostgreSQL (or Postgres) is an advanced open source object-relational

database system that is known for its robustness, extensibility, and

standards compliance. PostgreSQL, unlike MySQL and MariaDB, supports

complex queries, JSON/document storage, geospatial data (PostGIS),

and custom functions in several programming languages (Python, R, PL/

pgSQL). It is best suited for applications having high concurrency, large-

scale data processing, and enterprise-level features, including, but not

limited to, financial systems, geospatial applications, and AI/ML data

pipelines.

�Azure Managed Open Source Database Services
Azure offers fully managed versions of these databases, meaning that

infrastructure management is taken care of, while providing high

availability, security, and scalability.

Figure 3-3.  Azure Open Source Database Services

Chapter 3 Working with Relational Data on Azure

91

Figure 3-3 shows the Azure open source database services; the services

are labeled as 1, 2, and 3. Each of these services is explained below.

�1. Azure Database for MySQL

•	 A PaaS (Platform-as-a-Service) offering with support

for both Single Server (legacy) and Flexible Server

(recommended) deployments

•	 Includes automated backup, scale, and HA

(99.99% SLA)

•	 Best for web applications, SaaS platforms, and OLTP

(Online Transaction Processing)

�2. Azure Database for MariaDB

•	 A managed service for MariaDB workloads, though

Microsoft advises migrating to MySQL Flexible Server

as that service is being retired

•	 Compatible with bare minimum high availability and

VNet integration

�3. Azure Database for PostgreSQL

•	 Provides Single Server (legacy), Flexible Server

(preferred), and Hyperscale (Citus) for distributed

workloads

•	 Supports advanced data types (JSON, GIS), AI/ML

integration, and horizontal scaling

•	 Best suited for enterprise applications, real-time

analytics, and geospatial systems

Chapter 3 Working with Relational Data on Azure

92

�Benefits of Azure Managed Open
Source Databases
�Benefits of Azure Database for MySQL

You get the following enterprise-grade features with Azure Database

for MySQL:

•	 Create high availability with automatic failover out

of the box

•	 Predictable, consistent performance across workloads

•	 On-demand elastic scaling that automatically adjusts to

the demand

•	 End-to-end security with data encryption at rest and

in transit

•	 Automated backups with 35-day point-in-time restore

•	 Large enterprise compliance with worldwide security

standards

•	 Economical price costs with pay-as-you-go model

A full set of monitoring functionality with various alerts, performance

metrics, and diagnostics is available for Azure Database for MySQL.

�Benefits of Azure Database for MariaDB

Azure Database for MariaDB provides

•	 High availability architecture – included at no extra cost

•	 Transparent pricing with proven delivery

•	 Pay only for what you need, with instant scaling to align

with workload demands

Chapter 3 Working with Relational Data on Azure

93

•	 Military-grade security safeguarding data at rest and

in motion

•	 Protection for backup using migration automation,

with a 35-day restoration period

•	 Enterprise security controls and compliance

certifications

Important  Microsoft encourages users to transition to Azure
Database for MySQL Flexible Server in order to receive continued
support and improved capabilities.

�Benefits of Azure Database for PostgreSQL

Azure Database for PostgreSQL delivers

•	 Smart high availability with automatic failover

•	 Well-known PostgreSQL experience, pgAdmin

compatible

•	 Improved monitoring via azure_sys query tracking

•	 Built-in protections to ensure enterprise-grade security

•	 Flexible deployment – Hyperscale (Citus)

•	 International compliance standards for regulated

industries

PgAdmin can be used for your database maintenance, but Azure

Managed Service handles the backend server maintenance operations

backups automatically. The Query Store, including views like get_mfe_qs_

view_qs, provides insights for performance tuning.

Chapter 3 Working with Relational Data on Azure

94

�Summary
This chapter introduced fundamental principles of relational databases on

Azure, discussing

	 1.	 Relational Data Fundamentals

•	 What tables, rows, and columns are

•	 Keys and relationships: primary key and foreign key

•	 Advantages of normalization (1NF, 2NF, 3NF)

	 2.	 SQL and Database Management

•	 SQL commands (DDL, DML, DQL, DCL, TCL)

•	 Common variants of SQL (MySQL, PostgreSQL,

SQL Server)

	 3.	 Database Objects

•	 Tables, views, stored procedures, functions,

and indexes

	 4.	 Azure SQL Services

•	 Azure SQL Database (PaaS for cloud-native apps)

•	 Azure SQL Managed Instance (almost 100% of SQL

Server compatibility)

•	 SQL Server on Azure VMs (complete control for

legacy workloads)

	 5.	 Open Source Databases on Azure

•	 MySQL, MariaDB, and PostgreSQL overview

•	 Azure services management for each with out-of-

the-box HA, security, and scaling

Chapter 3 Working with Relational Data on Azure

95

	 6.	 Business Benefits of Azure Manager Open Source
Database

•	 Reduced management overhead

•	 Industrial security and compliance

•	 On-demand scalability and cost efficiency

In this chapter, you learned about relational databases in Azure,

including how to choose a suitable service for different workloads.

Chapter 3 Working with Relational Data on Azure

97© Naveen Kumar M 2025
N. Kumar M, Azure Data Fundamentals Certification Companion, Certification Study
Companion Series, https://doi.org/10.1007/979-8-8688-1684-0_4

CHAPTER 4

Exploring
Non-relational
Data on Azure
In this chapter, you will also learn about non-relational data modalities

and how they differ from relational data. These range from JSON

documents for schema-less data structures to a myriad of key-value pairs

for fast lookups to graph data for complex relationships.

This chapter walks you through Azure’s storage services, from Azure

Blob Storage for unstructured data such as media files, Azure Data Lake

Storage Gen2 for big data analytics, Microsoft OneLake for keeping all

data in one place within Fabric, Azure File Storage for shared file systems,

and Azure Table Storage as simple NoSQL key-value storage. You will

learn about their characteristics and when to use each one depending on

various performance, scale, and access pattern requirements.

Additionally, the chapter introduces Azure Cosmos DB, a massively

powerful multi-model database service that offers simple and fast global

scalability with low latency. Learn about key features such as automatic

indexing, turnkey global distribution, and SLAs that ensure high

availability.

https://doi.org/10.1007/979-8-8688-1684-0_4#DOI

98

In this chapter, we will cover the various APIs it provides, including

•	 Core (SQL) for document data

•	 MongoDB for MongoDB compatibility

•	 Cassandra for column-family data

•	 Gremlin for graph traversals

•	 Table for key-value scenarios

•	 PostgreSQL for distributed relational workloads

We will also cover real-world use cases for Azure Cosmos DB,

including globally distributed apps, IoT telemetry management, real-time

recommendation engines, and high-speed gaming leaderboards. The

following examples should give you a sense of when to use this service for

different use cases that require massive scale and performance.

Finally, by the end of this chapter, you will have a recovery method

from non-relational data, and your storage services will be available on

Azure for various unstructured data needs, and you will discover how you

can use the multi-model solution of Azure Cosmos DB for managing and

working with different Renaissance and citizen data types that you need to

go hybrid or cloud-native in your applications.

�Introduction to Non-relational Data
�Overview
Non-relational data has become a key part of modern applications due

to the growth of unstructured and semi-structured data. Social media

content, IoT telemetry data, JSON documents, multimedia files – a motley

collection of diverse data types that do not conform to classical tabular

schemas.

Chapter 4 Exploring Non-relational Data on Azure

99

�Non-relational Data
Non-relational data, also known as NoSQL data, is a type of database

built for various types of data models apart from tables, like documents,

graphs, or key-value pairs. While traditional RDBMS focuses on strict data

structures, non-relational databases are built for flexibility, scalability, and

performance in today’s applications.

�Key Characteristics

•	 Schema Flexibility: No fixed schema; structures evolve

with application needs.

•	 Scalability: Horizontal scaling (distributing data across

servers) for massive workloads.

•	 Data Models: Supports documents, key-value, graph,

and column-family formats.

•	 Use Cases: Ideal for unstructured/semi-structured data

(e.g., social media, IoT), real-time apps, and global-

scale solutions.

�Why Non-relational on Azure?
Azure provides managed services like Azure Cosmos DB and Blob Storage

to handle non-relational data efficiently, enabling developers to focus on

innovation rather than infrastructure.

Chapter 4 Exploring Non-relational Data on Azure

100

�Difference Between Relational
and Non-relational Data
The key differences between relational and non-relational data in terms

of data model, schema, storage, query language, scalability, consistency

model, transactions, examples, and use cases are shown in Table 4-1.

Table 4-1.  Difference Between Relational and Non-relational Data

Feature Relation Data Non-relational Data

Data Model Tabular (rows and columns) Flexible, varies by type

(documents, key-value, etc.)

Schema Fixed schema (predefined

structure)

Schema-less or flexible schema

Storage Tables in relational databases

(SQL)

Collections, documents, blobs,

etc.

Query

Language

SQL Varies: NoSQL, JSON queries,

API-based

Scalability Vertical scaling (upgrading

server hardware)

Horizontal scaling (adding

servers)

Consistency

Model

ACID (strong consistency) BASE (eventual consistency)

Transactions Complex multi-row transactions Limited to single document/entity

Examples SQL Server, PostgreSQL, MySQL Azure Cosmos DB, MongoDB,

Cassandra, Azure Blob Storage

Use Case Structured data, complex joins Unstructured or semi-structured,

hierarchical, or varied

Chapter 4 Exploring Non-relational Data on Azure

101

�When to Choose Non-relational Data?

•	 Data is changing rapidly or has no consistent schema.

•	 Need for flexible data formats (e.g., JSON, XML).

•	 Real-time or large-scale ingestion of telemetry data.

•	 High-velocity and high-volume data processing (e.g.,

logs, clickstreams).

�Examples of Non-relational Data
Understanding the different types of non-relational data helps determine

which Azure service to use. Below are the common types.

�1. Key-Value

•	 Data is stored as key-value pairs.

•	 Extremely fast for read/write operations.

•	 Common in caching, session storage, and real-time

lookups.

•	 Azure Service: Azure Cosmos DB (Key-Value API),

Azure Cache for Redis.

�2. Document

•	 Stores data in formats like JSON, BSON (Binary

JSON), or XML.

•	 BSON (Binary JSON) is a binary-encoded

serialization format that extends JSON with support

for additional data types and faster processing.

Chapter 4 Exploring Non-relational Data on Azure

102

•	 Flexible schema allows each document to have a

different structure.

•	 Ideal for content management systems, product

catalogs, and user profiles.

•	 Azure Service: Azure Cosmos DB (API for MongoDB,

SQL API), Azure Document DB (legacy).

�3. Column-Family

•	 Data is stored in columns rather than rows.

•	 Optimized for read-heavy workloads and high

performance over wide datasets.

•	 Used in time-series data, recommendation engines,

and analytics.

•	 Azure Service: Azure Cosmos DB (Cassandra API),

Apache HBase on HDInsight.

�4. Graph

•	 Data is modeled as nodes and edges with properties.

•	 Useful for modeling relationships and interconnected

data (e.g., social networks, fraud detection).

•	 Azure Service: Azure Cosmos DB (Gremlin API).

�5. Object (Blob Storage)

•	 Stores unstructured binary data like images, videos,

backups, and logs.

•	 Best for large-scale storage and analytics on raw data.

•	 Azure Service: Azure Blob Storage.

Chapter 4 Exploring Non-relational Data on Azure

103

�Azure Storage Services
�Explore Azure Blob Storage
�Introduction to Azure Blob Storage

Azure Blob Storage is Microsoft’s cloud object storage solution. It is

optimized for storing large quantities of unstructured data – data that

does not follow a formal data model or definition, including text, binary

files, images, videos, backups, and logs. The term “Blob” refers to Binary

Large Object, and Azure Blob Storage is a foundational service designed to

provide scalable, durable, and secure storage for this type of data.

Blob Storage is ideal for

•	 Serving images or documents directly to a browser

•	 Storing files for distributed access

•	 Streaming video and audio

•	 Writing to log files

•	 Storing data for backup, disaster recovery, and

archiving

•	 Storing data for analysis by an on-premises or Azure-

hosted service

�Types of Blobs in Azure Blob Storage

Azure Blob Storage supports three distinct types of blobs, each designed

for different use cases.

Chapter 4 Exploring Non-relational Data on Azure

104

�1. Block Blobs

Best for

•	 Storing text and binary data like documents, media

files, backups, etc.

•	 Data is broken into blocks (up to 100 MB per block),

each identified by a block ID.

•	 You can upload or modify individual blocks before

committing the whole blob.

Use Case Examples

•	 Storing images, videos, and PDFs for a website

•	 Uploading large files in parallel (efficient for large

media content)

�2. Page Blobs

Best for

•	 Frequent read/write operations and random access

patterns.

•	 Used primarily for Azure virtual machine disks

(VHD files).

•	 Data is organized into 512-byte pages for efficient I/O.

Chapter 4 Exploring Non-relational Data on Azure

105

Use Case Examples

•	 Azure VM operating system and data disks

•	 Databases or applications requiring high-performance

random reads/writes

�3. Append Blobs

Best for

•	 Append-only operations (data is only added, not

modified)

•	 Optimized for use cases where data is continuously

appended

Use Case Examples

•	 Logging from applications or IoT devices

•	 Audit trails and telemetry collection

�Azure Blob Storage Access Tiers

To help manage cost and performance, Azure Blob Storage provides

three access tiers for storing blob data. The characteristics of Azure Blob

Storage access tiers – Hot, Cool, and Archive – in terms of description,

performance and cost, common use cases, and data availability are shown

in Table 4-2.

These tiers allow you to balance between cost and access frequency.

Chapter 4 Exploring Non-relational Data on Azure

106

Table 4-2.  Azure Blob Storage Access Tiers

Access
Tier

Description Performance
and Cost

Common Use
Cases

Data Availability

Hot Default tier for

frequently accessed

data. Stored on

high-performance

media

Highest

performance

Higher storage

cost

Lower access

cost

Active files,

media, real-time

data processing

Data is available

immediately

(low latency in

milliseconds)

Cool For infrequently

accessed data.

Suitable for data

that becomes less

active over time

Lower

performance

than Hot

Lower storage

cost

Higher access

cost

Backups, older

documents,

staging inactive

data before

archiving

Data is available

immediately

(slightly higher

latency than Hot)

Archive Designed for rarely

accessed historical

data. Data is

offline and must be

rehydrated before

use

Lowest

storage cost

Highest access

cost

High latency

Compliance

data, archived

logs, long-term

backups

Data is offline;

retrieval can

take hours

(rehydration

required)

�Real-World Use Cases

Real-world use cases of Azure Blobs in terms of scenario, type of blob, tier,

and description are shown in Table 4-3.

Chapter 4 Exploring Non-relational Data on Azure

107

Table 4-3.  Azure Blob Real-World Use Cases

Scenario Type of Blob Tier Description

Storing product images

and manuals for an

ecommerce site

Block Blob Hot Frequently accessed assets

delivered to users via a CDN

Application logging for

microservices

Append Blob Cool Logs written continually but

accessed only during debugging

or audits

VM operating system

disk

Page Blob NA Mounted as a disk on an Azure

Virtual Machine

Archiving employee

records for regulatory

compliance

Block Blob Archive Stored for years, accessed only

when needed

Backing up database

snapshots weekly

Block Blob Cool Infrequent restore operations,

with life cycle rules to move to

archive

IoT telemetry ingestion Append Blob Hot/Cool Real-time stream stored in

append format for later analysis

�Explore Azure Data Lake Storage Gen2
�Introduction to Azure Data Lake Storage Gen2

Azure Data Lake Storage Gen2 (ADLS Gen2) is the next generation of

Azure Data Lake Storage for big data analytics workloads built on Azure

Blob Storage hyperscale data lake solution. It builds on the strengths of

Azure Blob Storage, incorporating benefits such as scalability and cost-

efficiency, while also providing a hierarchical namespace that supports

Chapter 4 Exploring Non-relational Data on Azure

108

a file system structure (directory, subdirectory, and file). ADLS Gen2 is

designed for analytics frameworks like Apache Spark, Hadoop, and Azure

Synapse Analytics, making it ubiquitous within modern data architectures.

�Key Features

•	 Hierarchical Namespace: Organize data into folders

and subfolders (unlike Blob Storage’s flat structure)

•	 POSIX Compliance: Supports POSIX permissions for

fine-grained access control

•	 Multi-protocol Access: Access data via Blob APIs (for

existing apps) and Azure Data Lake Storage REST
APIs (for analytics)

•	 Massive Scalability: Store exabytes of data with

petabyte-scale throughput

•	 Integration: Native compatibility with Azure analytics

services (e.g., Azure Databricks, Synapse Analytics)

�Core Components of ADLS Gen2

	 1.	 Hierarchical Namespace

•	 Enables directory-level operations (create, rename,

delete) and atomic file updates.

•	 For example, organize raw, processed, and curated

data in folders like /raw/sales/2023.

	 2.	 Optimized for Analytics

•	 Supports ACID transactions for reliable data

processing.

•	 Columnar data formats (Parquet, Delta Lake) are

stored efficiently for fast querying.

Chapter 4 Exploring Non-relational Data on Azure

109

	 3.	 Security

•	 Role-Based Access Control (RBAC): Manage

permissions at the storage account, directory, or

file level.

•	 Azure Active Directory (AAD) Integration:

Securely authenticate users and services.

	 4.	 Cost Efficiency

•	 Leverages Blob Storage’s access tiers (Hot, Cool,

Archive) for cost optimization.

�Why Use ADLS Gen2 over Blob Storage for Analytics?

The comparison between Azure Blob Storage and Azure Data Lake Storage

Gen2 in terms of various aspects is shown in Table 4-4.

Table 4-4.  ADLS Gen2 over Blob Storage

Aspect Blob Storage ADLS Gen2

Data Organization Flat namespace Hierarchical namespace with

folders and files

Big Data Compatibility Limited Full support (HDFS compatible)

File Operations Expensive or not natively

supported

Native support for rename,

move, delete, etc.

Analytics Integration Not optimized for analytics Designed for high-

performance analytics

workloads

Security Model Azure RBAC only Azure RBAC + POSIX ACLs

Chapter 4 Exploring Non-relational Data on Azure

110

�Use Cases for Azure Data Lake Storage Gen2

	 1.	 Enterprise Data Lake

•	 Central repository for structured, semi-structured,

and unstructured data.

•	 Example: A retail company ingests sales

transactions (CSV), social media feeds (JSON), and

customer call recordings (audio) into ADLS Gen2

for unified analytics.

	 2.	 Real-Time Analytics

•	 Stream IoT or telemetry data into ADLS Gen2 and

analyze it in near real time.

•	 Example: A manufacturing plant uses Azure

Stream Analytics to write sensor data to ADLS

Gen2, then trains predictive maintenance models

with Azure Machine Learning.

	 3.	 Machine Learning Pipelines

•	 Store training datasets in Parquet format for fast

access by ML frameworks.

•	 Example: A healthcare provider uses ADLS Gen2 to

store anonymized patient data, which is processed by

Azure Databricks to train disease prediction models.

	 4.	 Log and Event Analytics

•	 Ingest application logs or clickstream data for

troubleshooting and user behavior analysis.

•	 Example: A gaming company stores player event

logs in ADLS Gen2 and uses Synapse Analytics to

identify gameplay trends.

Chapter 4 Exploring Non-relational Data on Azure

111

�Integration with Other Azure Services

•	 Azure Synapse Analytics: Run big data queries directly

on files stored in ADLS Gen2.

•	 Azure Data Factory: Use ADF pipelines to ingest,

transform, and orchestrate data movement.

•	 Azure Databricks: Read and write to ADLS Gen2 using

Spark for scalable analytics.

•	 Power BI: Connect to curated and transformed data

from ADLS Gen2 for visualization.

•	 Azure Purview (Microsoft Purview): Perform data

discovery, cataloging, and lineage tracking.

�Explore Microsoft OneLake in Fabric
�Introduction to Microsoft OneLake

OneLake is a unified logical data lake within Microsoft Fabric that

acts as the single storage layer for every analytics workload across an

organization. Compared to traditional data lakes that require you to

manage disparate, siloed repositories, OneLake offers the “OneDrive for

data” experience, allowing for easy collaboration, governance, and scale.

�Key Features

•	 Unified Storage: A single logical data lake for all data

(structured, semi-structured, unstructured)

•	 Integrated with Fabric: Provisioned automatically with

every Microsoft Fabric workspace, no setup needed

Chapter 4 Exploring Non-relational Data on Azure

112

•	 Open Data Formats: Based on Delta Parquet and

compatible with open source analytic tools (i.e.,

Spark, Pandas)

•	 Shortcuts: Possible to virtualize data from third-party

sources (i.e., Azure Data Lake Storage, Amazon S3)

without having to duplicate it

•	 Governance: Unified security, lineage, and discovery

with Microsoft Purview integration

•	 Multi-cloud Support: Connect to data across Azure,

AWS, and Google Cloud

�Why OneLake?

In Fabric, OneLake allows analytics, machine learning, and business

intelligence workflows by eliminating data silos by consolidating data from

various sources into a logical layer.

�Core Concepts of OneLake

	 1.	 Logical Data Lake

•	 A unified, virtualized storage layer that wraps

physical storage (i.e., Azure Blob storage)

transpiring among workspaces.

•	 For instance, data engineers and analysts will be

accessing the same OneLake storage from Fabric’s

Synapse Data Engineering and Power BI.

	 2.	 Delta Lake Foundation

•	 Delta Lake format (Parquet-based) type data

storage supports ACID transaction, schema

enforcement, and time travel.

Chapter 4 Exploring Non-relational Data on Azure

113

	 3.	 Shortcuts

•	 Linking to data sources in external storage without

data copy (ADLS Gen2, AWS S3, etc.).

•	 For example, a shortcut to an Azure SQL Database

table surfaces itself as a Delta table in OneLake.

	 4.	 Workspaces

•	 Data in OneLake is organized into Fabric workspaces,

which serve as collaborative workspaces for teams.

	 5.	 Security

•	 Role-Based Access Control (RBAC): Set

permissions at the workspace, folder, or file level.

•	 Microsoft Entra ID (Azure AD): Unified

authentication for users and services.

�Use Cases for Microsoft OneLake

	 1.	 Enterprise-Wide Data Sharing

•	 Centralize sales, marketing, and supply chain data

in OneLake for cross-departmental analytics.

•	 Example: A financial institution consolidates

transaction logs, customer profiles, and risk models

in OneLake for fraud detection.

	 2.	 Self-Service Analytics

•	 Business user’s access pre-curated datasets in

OneLake via Power BI without relying on IT.

•	 Example: Marketing teams analyze campaign

performance using Delta tables stored in OneLake.

Chapter 4 Exploring Non-relational Data on Azure

114

	 3.	 Real-Time Insights

•	 Stream IoT data into OneLake and process it with

Fabric’s Real-Time Analytics.

•	 Example: A logistics company monitors fleet

telemetry in real time and predicts delivery delays.

	 4.	 AI/ML Workflows

•	 Train machine learning models on Delta tables in

OneLake using Fabric’s Data Science tools.

•	 Example: A healthcare provider uses OneLake data

to predict patient readmission risks.

�Integration with Microsoft Fabric Tools

•	 Synapse Data Engineering: Transform raw data into

Delta tables using Spark notebooks.

•	 Data Factory: Ingest data from 200+ connectors into

OneLake.

•	 Power BI: Build reports directly on OneLake datasets.

•	 Data Science: Train ML models with OneLake data

using Python/R.

•	 Data Warehouse: Query OneLake data using T-SQL in

Fabric’s serverless Data Warehouse.

Chapter 4 Exploring Non-relational Data on Azure

115

�Explore Azure File Storage
�Introduction to Azure File Storage

Azure File Storage is a fully managed file share in the cloud, compatible

with industry standard protocols such as SMB (Server Message Block) and

NFS (Network File System). It supports consistent and detailed data access

across hybrid or cloud-native scenarios, including legacy application

migrations, collaborative workspaces, and lift-and-shift workloads.

�Key Features

•	 Cross-Platform Compatibility: Accessible from

Windows, Linux, and macOS systems

•	 Fully Managed: No hardware provisioning or patching

required

•	 Scalability: Scale storage capacity and performance

independently

•	 Integration: Mount file shares to Azure VMs, on-

premises servers, or serverless apps

•	 Security: Supports encryption at rest and in transit,

Azure AD/AD DS authentication (SMB), and virtual

network (VNet) isolation

�Supported Network File Sharing Protocols

Azure File Storage supports two protocols for file sharing, each tailored to

specific operating systems and use cases as shown in Table 4-5.

Chapter 4 Exploring Non-relational Data on Azure

116

Table 4-5.  Network File Sharing Protocol Types

Protocol Description Requirements

SMB (Server
Message
Block)

Industry standard protocol

for Windows file sharing, also

supported by Linux/macOS via

SMB clients

Standard or Premium tier
storage accounts

Azure AD or Active Directory

Domain Services (AD DS) for

identity-based access

NFS (Network
File System)

Protocol commonly used in Unix/

Linux environments for high-

performance file sharing

Premium tier storage account

Virtual network (VNet)
configuration to control access.

NFS clients (Linux/macOS)

�Key Differences

•	 SMB is ideal for hybrid environments (e.g., Windows-

based applications).

•	 NFS is preferred for Linux workloads requiring

POSIX-compliant file systems (e.g., high-performance

computing).

�Deployment Considerations

�1. Storage Account Tiers

•	 Premium Tier

•	 Required for NFS shares

•	 Offers low latency, high throughput, and IOPS for

performance-sensitive workloads

•	 Billed per provisioned capacity (GB)

Chapter 4 Exploring Non-relational Data on Azure

117

•	 Standard Tier

•	 Supports SMB shares only

•	 Cost-effective for general-purpose file sharing

•	 Billed per used capacity (GB)

�2. Network Configuration

•	 SMB

•	 Accessible over public internet (with SAS tokens) or

private endpoints

•	 Integrates with Azure AD or AD DS for user-level

permissions

•	 NFS

•	 Requires VNet peering or private endpoints for

secure access.

•	 Public internet access is disabled by default for

NFS shares.

�3. Redundancy Options

•	 Locally Redundant Storage (LRS): Data replicated

within a single data center

•	 Zone-Redundant Storage (ZRS): Replicates across

availability zones for higher resilience

•	 Geo-redundant Storage (GRS): Cross-region

replication for disaster recovery

Chapter 4 Exploring Non-relational Data on Azure

118

�Use Cases and Examples

�1. Hybrid Cloud File Sharing (SMB)

•	 Scenario: A company migrates an on-premises

Windows application to Azure VMs but retains a file

share for configuration files.

•	 Solution: Use SMB file shares to maintain

compatibility with existing scripts and tools.

�2. Lift-and-Shift Linux Workloads (NFS)

•	 Scenario: A research team runs a genomics analysis

tool on Linux VMs, requiring shared access to large

datasets.

•	 Solution: Deploy NFS shares on Premium tier for

POSIX compliance and high throughput.

�3. Collaborative Development Environments

•	 Scenario: Developers across Windows and macOS

machines need shared access to source code.

•	 Solution: Mount an SMB file share to all machines

using Azure AD credentials.

�4. Backup and Archival

•	 Scenario: An organization backs up user home

directories to Azure File Storage.

•	 Solution: Use Cool tier SMB shares for cost-effective

long-term storage.

Chapter 4 Exploring Non-relational Data on Azure

119

�Integration with Azure Services

•	 Azure Backup: Automate file share backups with

point-in-time restore.

•	 Azure File Sync: Sync on-premises file servers to Azure

File Storage for hybrid cloud caching.

•	 Azure Kubernetes Service (AKS): Mount SMB/NFS

shares to containers for persistent storage.

•	 Azure VMs: Attach file shares as network drives to VMs

running Windows or Linux.

�Explore Azure Tables
�Introduction to Azure Table Storage

Azure Table Storage is a NoSQL data store in the cloud included in

the Azure Storage services. It enables you to handle huge amounts of

structured, non-relational data in a scalable, cost-effective manner. Azure

Table Storage can manage data that is not structured in any required way;

therefore, Azure Table Storage doesn’t need a fixed schema like that of

relational databases. Hence, this makes it a nice choice for a developer

who needs flexibility and quick access to data.

It is based on the key-value pair model, where each entity is identified

by a partition key and a row key pair. This allows for good querying and

operations, in turn, when data is well partitioned.

�Key Concepts and Data Model

Further, Azure Table Storage is structured into tables, and each table is

a collection of entities. An entity is like a row in a traditional database,

and each entity can have as many as 252 individual properties. These

properties are name-value and don’t have any predefined schema so the

data model is quite flexible.

Chapter 4 Exploring Non-relational Data on Azure

120

To uniquely identify an entity, you use a combination of a

PartitionKey and a RowKey:

•	 The PartitionKey is used to group related entities

together and helps with data distribution and load

balancing.

•	 The RowKey is the unique ID for an entity within a

given partition.

Together, these keys provide fast lookup and efficient access to data.

�Partitioning and Scalability

Azure Table Storage has many important features, and partitioning is

one of them. Data is automatically sharded by the PartitionKey, and each

shard can be queried independently. It enables you to scale out reads and

writes horizontally with your dataset. A partitioned architecture allows for

efficiency and can help protect users against throttling.

�When to Use Azure Table Storage

Azure Table Storage is excellent for situations between requiring to save

a huge volume of structured but streamlined information on a restricted

basis as well as a complete relational data resource. It’s typically used in

cases like

•	 IoT and Telemetry Data: Storing high-speed sensor or

device logs

•	 Audit Logs and Activity History: Applications that

generate large volumes of logging information

•	 User Profile and Session Data: Apps that store user

preferences or session state in a flexible schema

Chapter 4 Exploring Non-relational Data on Azure

121

•	 Catalogs or Product Inventories: Storing catalog-style

information where items may vary slightly in structure

•	 Configuration Data: Lightweight key-value

configuration and reference data that can be read

quickly by apps

�Accessing Azure Table Storage

You can interact with Azure Tables using various tools and SDKs.

These include

•	 Azure SDKs (available in languages like .NET, Java,

Python, Node.js, and more)

•	 Azure CLI or PowerShell

•	 Azure Storage REST API

•	 Azure Storage Explorer (a GUI tool for viewing and

managing storage accounts)

Here’s a simple example in C# using the Azure SDK:

var tableClient = new TableClient(connectionString, "MyTable");
await tableClient.AddEntityAsync(new TableEntity("User", "001")
{
 { "FirstName", "Naveen" },
 { "LastName", "Kumar" }
});

�Azure Table Storage vs. Azure Cosmos DB Table API

You can also use Azure Cosmos DB by means of the Table API for table

storage capabilities. Azure Cosmos DB retains its advantages as an

advanced, fully managed database service with global distribution,

Chapter 4 Exploring Non-relational Data on Azure

122

low-latency reads and writes, automatic indexing, and tunable throughput,

even though both services use the same programming model and

structure.

How does Azure Cosmos DB work? Azure Cosmos DB is best for

applications where you have stringent performance requirements and

a user globally distributed. In contrast, Azure Table Storage is more

suitable for less advanced scenarios with lower latency and availability

requirements.

�Azure Cosmos DB: A Multi-model
Database Service
�Explore Azure Cosmos DB: Key Features
and When to Use
�Introduction to Azure Cosmos DB

Azure Cosmos DB is Microsoft’s fully managed, globally distributed, multi-

model NoSQL database service, designed for high availability, low latency,

and elastic scalability for mission-critical applications. Azure Cosmos DB

enables developers to build global high-performance applications with fast

and consistent access to data on a massive scale.

What differentiates Azure Cosmos DB is its ability to natively support

multiple data models and corresponding APIs in one service. With Azure

Cosmos DB, there’s a data model to match, whether your app works with

documents, key-value pairs, graphs, or columnar data.

Chapter 4 Exploring Non-relational Data on Azure

123

�Key Features

	 1.	 Global Distribution

•	 Deploy data to any Azure region worldwide with

automatic replication.

•	 Multi-region writes enable low-latency access for

globally distributed users.

	 2.	 Multi-model and Multi-API Support

•	 Supports document (JSON), key-value, graph, and

column-family data models.

•	 Compatible with popular APIs like SQL, MongoDB,

Cassandra, Gremlin (Apache TinkerPop), and

Azure Table Storage.

	 3.	 Elastic Scalability

•	 Independently scale storage and throughput

(provisioned or serverless modes).

•	 Automatically scales to handle spikes in demand

without downtime.

	 4.	 Guaranteed Performance

•	 Single-digit millisecond latency for reads/writes.

•	 99.999% availability SLA for multi-region accounts.

	 5.	 Consistency Flexibility

•	 Five tunable consistency levels (strong, bounded

staleness, session, consistent prefix, eventual) to

balance performance and data accuracy.

Chapter 4 Exploring Non-relational Data on Azure

124

	 6.	 Integrated Analytics

•	 Built-in support for real-time analytics with Azure

Synapse Link.

	 7.	 Security and Compliance

•	 Encryption at rest and in transit, private endpoints,

and compliance certifications (e.g., GDPR, HIPAA).

	 8.	 Cost Optimization

•	 Serverless mode for sporadic workloads and

autoscale for predictable traffic.

�When to Use Azure Cosmos DB?

	 1.	 Globally Distributed Applications

•	 Apps requiring low-latency access across

continents (e.g., gaming, retail, social platforms)

	 2.	 High-Scale, Low-Latency Workloads

•	 Real-time scenarios like IoT telemetry, fraud

detection, or recommendation engines

	 3.	 Multi-model Data Needs

•	 Applications using diverse data types (e.g., JSON

documents, graph relationships, or key-value pairs)

	 4.	 Migration from Existing NoSQL Databases

•	 Lift-and-shift MongoDB, Cassandra, or Gremlin-

based apps with minimal code changes

	 5.	 Unpredictable or Rapidly Growing Workloads

•	 Startups or enterprises needing elastic scaling

without manual intervention

Chapter 4 Exploring Non-relational Data on Azure

125

	 6.	 Mission-Critical Systems

•	 Applications requiring 99.999% uptime and robust

disaster recovery

	 7.	 Real-Time Analytics

•	 Combine operational and analytical workloads

using Synapse Link for near real-time insights

�Explore APIs for Azure Cosmos DB
Azure Cosmos DB is a globally distributed, multi-model database for any

scale built on Microsoft’s planet-scale data infrastructure – an anonymous

service natively supporting both relational and non-relational workloads.

They can use popular open source database engines like PostgreSQL,

MongoDB, and Apache Cassandra to build or migrate applications. When

creating the Azure Cosmos DB instance, you are choosing the database

engine startup based on data type, existing application compatibility,

developer support, etc.

�Azure Cosmos DB for NoSQL

Microsoft’s native non-relational service designed specifically for the

document data model is called Azure Cosmos DB for NoSQL. It saves

information as JSON documents with queries written using SQL-

like syntax.

Example Query
Retrieve product details from a catalog:

SQL

SELECT *
FROM products p
WHERE p.productId = "P101"

Chapter 4 Exploring Non-relational Data on Azure

126

Result

{
 "productId": "P101",
 "name": "Wireless Mouse",
 "price": 29.99,
 "category": "Electronics"
}

�Azure Cosmos DB for MongoDB

This API is compatible with MongoDB’s BSON (Binary JSON) data model,

so developers can use MongoDB client libraries and syntax.

Example Query
Find a user by email in the users collection:

JavaScript

db.users.find({ email: "alice@contoso.com" })

Result

{
 "_id": "5f3d8a9e",
 "email": "alice@contoso.com",
 "displayName": "Alice Brown",
 "lastLogin": "2023-10-05T14:23:54Z"
}

�Azure Cosmos DB for PostgreSQL

This is a scalable PostgreSQL-based distributed relational database. It is

also capable of supporting relational tables and SQL queries.

Chapter 4 Exploring Non-relational Data on Azure

127

Example Table

OderId Customer Total

1001 Naveen 149.99

1002 Priya 89.95

Example Query
SQL

SELECT Customer, Total
FROM Orders
WHERE OrderID = 1001;

Result

Customer Total

Naveen 149.99

�Azure Cosmos DB for Table

This is a key-value store optimized for high scalability, compatible with

Azure Table Storage.

Example Table

PartitionKey RowKey Item Stock

Electronics E123 Headphones 120

Furniture F456 Dask Lamp 75

Chapter 4 Exploring Non-relational Data on Azure

128

Example Request
Retrieve the desk lamp stock using the Table API:

Http

GET https://endpoint/Inventory(PartitionKey='Furniture',RowK
ey='F456')

�Azure Cosmos DB for Apache Cassandra

This is a column-family store compatible with Apache Cassandra, allowing

flexible schemas.

Example Table

ISBN Title Author Genre

978-978-045152 1984 George Orwell Dystopian

978-006112 The Alchemist Paulo Coelho

Example Query
SQL

SELECT * FROM Books WHERE ISBN = '978-045152';

Result

ISBN Title Author Genre

978-978-045152 1984 George Orwell Dystopian

�Azure Cosmos DB for Apache Gremlin

It manages graph data with vertices (nodes) and edges (relationships).

Example Graph
A social network graph showing users (vertices) and friendships (edges).

Chapter 4 Exploring Non-relational Data on Azure

129

Example Queries

	 1.	 Add a new user vertex:

g.addV('user').property('userId', 'U4').
property('name', 'Carlos')

	 2.	 Create a friendship edge:

g.V('U4').addE('friendsWith').to(g.V('U2'))

	 3.	 Retrieve users sorted by join date:

g.V().hasLabel('user').order().by('joinDate')

�Common Use Cases for Azure Cosmos DB
The Azure Cosmos DB service is a multi-model database service for

modern applications offering global distribution, low latency, and high

throughput in a single database service. Here, I’m sharing some of the

scenarios which Azure Cosmos DB shines.

�1. Globally Distributed Applications

Data can be replicated in multiple Azure regions for low-latency access to

users worldwide through Azure Cosmos DB’s turnkey global distribution.

Example Use Case

•	 A social media app with users in North America, Europe,

and Asia stores profiles and posts in Azure Cosmos DB,

ensuring fast reads/writes regardless of location.

Key Benefits

•	 Automatic multi-region replication

•	 Single-digit millisecond latency

•	 Configurable consistency levels

Chapter 4 Exploring Non-relational Data on Azure

130

�2. IoT and Telemetry Data

These capabilities require the use of a scalable data layer that helps

organizations deal with the time-series data generated by a large number

of IoT devices, sensors, and logs at a high rate and high volume – Azure

Cosmos DB is designed to excel at exactly this.

Example Use Case

•	 A smart home system ingests millions of sensor

readings (temperature, motion, energy usage) daily.

Azure Cosmos DB scales elastically to manage spikes in

data ingestion.

Key Benefits

•	 High write throughput (millions of requests/sec)

•	 Serverless option for cost-efficient scaling

•	 Time-to-live (TTL) for automatic data expiration

�3. Real-Time Personalization and Recommendations

The low-latency queries provided by Azure Cosmos DB are ideal for real-

time recommendation engines.

Example Use Case

•	 An ecommerce platform uses Azure Cosmos DB

to store user behavior data (clicks, purchases) and

generates personalized product recommendations in

milliseconds.

Key Benefits

•	 Fast reads/writes for dynamic user profiles

•	 Flexible schema (NoSQL) for evolving data models

•	 Integration with Azure Synapse for analytics

Chapter 4 Exploring Non-relational Data on Azure

131

�4. Gaming Leaderboards and Player Data

Gaming applications need high-speed reads/writes for leaderboards,

player inventories, and live updates.

Example Use Case

•	 A mobile battle royale game uses Azure Cosmos DB to

track real-time player stats, match history, and global

rankings with minimal lag.

Key Benefits

•	 Single-digit millisecond response times

•	 Automatic scaling during peak gaming hours

•	 Support for both document (NoSQL) and key-value

(Table) models

�5. Multi-tenant SaaS Applications

Azure Cosmos DB’s partitioning and scalability makes it ideal for SaaS

apps that serve so many customers.

Example Use Case

•	 A CRM platform stores customer data for thousands of

businesses, with each tenant’s data isolated in a logical

partition.

Key Benefits

•	 Efficient partitioning for tenant isolation

•	 Cost-effective scaling per tenant demand

•	 Support for relational (PostgreSQL) and NoSQL models

Chapter 4 Exploring Non-relational Data on Azure

132

�6. Fraud Detection and Financial Transactions

Transactional throughput must be low latency, deterministic, and

auditable.

Example Use Case

•	 A payment processing system uses Azure Cosmos DB

to log transactions, detect anomalies, and prevent fraud

in real time.

Key Benefits

•	 Strong consistency for financial accuracy

•	 High availability with 99.999% SLA

•	 Encryption at rest and in transit

�7. Content Management and Catalog Systems

Azure Cosmos DB’s flexible schema is great for dynamic content, such as

product catalogs or media libraries.

Example Use Case

•	 A streaming service stores movie metadata (genres,

actors, ratings) in Azure Cosmos DB, enabling fast

searches and personalized content feeds.

Key Benefits

•	 Schema-agnostic storage (JSON documents)

•	 Full-text search integration (Azure Cognitive Search)

•	 Geo-replication for global content delivery

Chapter 4 Exploring Non-relational Data on Azure

133

�Summary
The evolution of modern applications is leaning toward non-relational

data solutions that can comprehensively scale to handle diverse data types.

With this chapter, we examined concepts as well as some Azure services

used to manage non-relational data.

�1. Non-relational vs. Relational Data
The foundation of this chapter contrasted two data paradigms:

•	 Non-relational (NoSQL) data allows developers to have

flexible schemas, ensures horizontal scalability, and

is optimized for unstructured/semi-structured data

formats such as JSON documents, key-value pairs, and

graph data.

•	 Relational data has to have rigid schemas (tables, rows,

and columns), making it powerful for less complex

joins and transactions.

�2. Azure Storage Services for Non-relational Data
Azure provides specialized services for different non-relational data needs:

•	 Azure Blob Storage: Ideal for unstructured data like

images, logs, and backups

•	 Azure Data Lake Storage Gen2: Optimized for big data

analytics with hierarchical namespace

•	 Microsoft OneLake: Unified data lake solution within

Fabric for all analytics workloads

Chapter 4 Exploring Non-relational Data on Azure

134

•	 Azure File Storage: Managed file shares accessible

from cloud or on-premises

•	 Azure Table Storage: Simple NoSQL key-value storage

for lightweight scenarios

�3. Azure Cosmos DB: The Multi-model
Database Powerhouse
Azure Cosmos DB stands out with its

•	 Enterprise-Grade Features: Global distribution,

single-digit millisecond latency, automatic scaling, and

99.999% availability SLA

•	 Multi-model support through various APIs

•	 NoSQL (Core SQL): Native JSON document storage

•	 MongoDB: Fully managed MongoDB-

compatible service

•	 Cassandra: Column-family store for wide-

column data

•	 Gremlin: Graph database for relationship-rich data

•	 Table: High-scale key-value storage

•	 PostgreSQL: Distributed relational database

capabilities

Chapter 4 Exploring Non-relational Data on Azure

135

�4. Real-World Applications of Azure Cosmos DB
The chapter highlighted transformative use cases:

•	 Global Applications: Delivering low-latency access

across worldwide regions

•	 IoT Solutions: High-velocity ingestion and processing

of sensor telemetry

•	 Personalization Engines: Dynamic user profiling and

real-time recommendations

•	 Gaming Platforms: Millisecond-response

leaderboards and player data

•	 SaaS Applications: Efficient multi-tenant architectures

with isolated partitions

This comprehensive exploration of non-relational data solutions

on Azure equips you to select optimal storage and database services

based on your specific data characteristics, performance requirements,

and scalability needs. The next step is to apply this knowledge by

experimenting with these services in practical scenarios.

Chapter 4 Exploring Non-relational Data on Azure

137© Naveen Kumar M 2025
N. Kumar M, Azure Data Fundamentals Certification Companion, Certification Study
Companion Series, https://doi.org/10.1007/979-8-8688-1684-0_5

CHAPTER 5

Analytics Workloads
on Azure
In this chapter, you will go deep into big data analytics and how to ingest,

process, and store that data. You will be introduced to the fundamental

differences between batch and streaming data and how these differences

influence the analytics workflows. The chapter also delves into Azure

analytical data stores, such as Azure Synapse Analytics and Data Lake

Storage, and the comparison between data warehouses and data lakes.

You’ll know what they are, what they do, and how to select the best

solution for your analysis requirements.

You will then turn your attention to real-time data analytics, including

streaming data analytics, and the tools Azure offers for real-time data

processing, including Azure Stream Analytics, Event Hubs, and IoT Hub.

The chapter concludes with Microsoft Power BI for data visualization.

You will learn the capabilities Power BI provides for your data discoveries,

how to work with the different elements of a data model, and how to

properly choose visualizations.

By the end of this chapter, you will have an overview of workloads,

analytics, and capturing and analyzing real-time data, as well as gain

experience with visualizing data with Power BI items that are necessary

when using Azure to do advanced analytics.

https://doi.org/10.1007/979-8-8688-1684-0_5#DOI

138

�Explore Fundamentals
of Large-Scale Analytics
�Describe Data Warehousing Architecture
�Overview

Enterprise data warehousing solutions integrate traditional data

warehousing (often behind business intelligence) and big data processing

patterns – big data analytics patterns. Conventional DWs generally use

data loaded from Online Transaction Processing (OLTP) systems and have

a schema optimized for complex queries (analysis) over the data, often

in a multidimensional model. By comparison, big data solutions process

mountains of disparate data in a variety of formats, as it arrives or in

batches, into a data lake. Distributed data processing systems (e.g., Apache

Spark) are then employed in analyzing this data. Combining scalable and

flexible data lake storage with the powerful structured querying available

in data warehouses has resulted in a modern architectural design pattern

known as the data lakehouse.

Figure 5-1.  Data Warehousing Architecture

Chapter 5 Analytics Workloads on Azure

139

Figure 5-1 shows the data warehousing architecture with four major

components labeled as 1, 2, 3, and 4. The functions of these components

are explained in detail below.

�1. Data Ingestion and Processing

At the heart of any analytics workload is data ingestion. Data is ingested

from different sources in Azure transactional databases, files, APIs, and

real-time streams into a data lake or a relational data warehouse.

This workflow usually adheres to an ETL (Extract, Transform, Load) or

ELT (Extract, Load, Transform) pattern:

•	 ETL: Data is cleaned, filtered, and transformed before

being loaded into the analytical store.

•	 ELT: Raw data is loaded first and then transformed

within the analytical environment.

Both strategies target the preprocessing of data into a structure best

suited for analysis and querying.

To handle high volume of data, these are components Azure leans

to distributed processing systems such as Apache Spark pools in Azure

Synapse, which are multi-node clusters working together to perform

parallel processing.

Data ingestion is available for batch processing (processing static data

based on a schedule) as well as real-time stream processing for nearly

instant insight from live data sources.

Chapter 5 Analytics Workloads on Azure

140

�2. Analytical Data Store

The aggregated or processed data is stored in an analytical data store (a

system built to support large-scale query and analysis). Azure has several

such types:

•	 Relational data warehouses (e.g., Azure Synapse

SQL pools)

•	 File system–based data lakes (e.g., Azure Data Lake

Storage Gen2)

•	 Hybrid solutions, like data lakehouses or lake

databases, which combine the features of both for

greater flexibility and performance

These stores are designed to support high-speed analytical workloads

and can scale with increasing data demands.

�3. Analytical Data Model

While data scientists and analysts can query the data in the store

directly, it’s typical to create analytical models that make reporting more

straightforward and faster. These models

•	 Pre-aggregate data for efficient access

•	 Support multidimensional analysis using cubes that

aggregate metrics (e.g., total sales) across dimensions

like time, product, or geography

•	 Enable drill-up and drill-down navigation to explore

data at various levels of detail

Tools like Power BI and Azure Analysis Services are often used to

create these models.

Chapter 5 Analytics Workloads on Azure

141

�4. Data Visualization

Now comes the last step: turning the data into insights. With applications

such as Power BI, analysts and even those who are not technically savvy

can create reports, dashboards, and visualizations. These visuals

•	 Highlight trends, comparisons, and key performance

indicators (KPIs)

•	 Can be shared via printed reports, documents,

presentations, or interactive web dashboards

•	 Empower self-service analytics across an organization

Visualization brings the analytical power of the data warehouse to life,

enabling data-driven decision-making at all levels.

�Explore Data Ingestion Pipelines
�Overview

After you learn how big data analytics is built and distributed and the

system patterns applied to the processing of massive volumes of data, the

next important thing to master is data ingestion: the process of moving

data from a variety of sources into a big data store for processing and

analysis.

In Azure, data ingestion is generally facilitated via the use of data

pipelines, which automate the movement of data from source systems

to data lakes or data warehouses. They serve as the backbone for

developing scalable, repeatable, and manageable data workflows –

especially in enterprise settings with dozens of data sources and complex

transformations.

Chapter 5 Analytics Workloads on Azure

142

�Data Pipelines in Azure

To implement large-scale ingestion pipelines, Azure offers two major

services:

•	 Azure Data Factory (ADF): A fully managed, serverless

data integration service that enables the creation,

scheduling, and monitoring of ETL/ELT workflows

•	 Microsoft Fabric Pipelines: A newer, unified

experience built into Microsoft Fabric, allowing users

to manage ingestion, transformation, and storage in a

single collaborative environment

Both services provide a visual or code-based interface to define

pipelines that automate the movement and transformation of data at scale.

�Key Components of Data Ingestion Pipelines

�1. Pipeline Structure

A pipeline consists of

•	 Activities: Individual tasks that perform operations

(e.g., copying data, running transformations)

•	 Datasets: Represent the input and output data

structures (e.g., CSV files, SQL tables)

•	 Linked Services: Define connections to external data

sources (e.g., Azure Blob Storage, SQL Database)

Chapter 5 Analytics Workloads on Azure

143

�2. Types of Activities

Pipelines support different activity types:

•	 Data movement activities (copy data from source to

destination)

•	 Data transformation activities (apply transformations

using Azure Databricks, SQL, or custom code)

•	 Control flow activities (conditional logic, loops,

branching)

•	 Built-in activities (predefined tasks like web calls or

stored procedures)

�3. Linked Services and Integration

Linked services connect pipelines to external systems, such as

•	 Azure Blob Storage/ADLS Gen2 (for raw data ingestion)

•	 Azure SQL Database/Synapse SQL (for relational

transformations)

•	 Azure Databricks/Spark (for big data processing)

•	 Azure Functions (for custom logic)

�4. Execution and Orchestration

Pipelines can be triggered:

•	 On a schedule (e.g., daily/hourly batches)

•	 Event based (e.g., new file arrival in Blob Storage)

•	 Manually (ad hoc execution)

Chapter 5 Analytics Workloads on Azure

144

�ETL vs. ELT in Azure Pipelines

Table 5-1 shows a high-level comparison of the two data integration

approaches commonly used in Azure.

Table 5-1.  ETL vs. ELT in Azure Pipeline

ETL (Extract, Transform, Load) ELT (Extract, Load, Transform)

Data is transformed before loading into

the warehouse

Data is loaded into the warehouse before

being transformed

Best for structured data with predefined

schemas

Ideal for raw/unstructured data (e.g., data

lakes)

Uses Azure Data Factory + Databricks

for transformations

Uses Azure Data Factory + Databricks for

transformations

�Example: Building a Pipeline in Azure Data Factory

	 1.	 Ingest Raw Data

•	 Use a Copy Activity to pull data from a source (e.g.,

on-prem SQL Server ➤ Azure Blob Storage).

	 2.	 Transform Data

•	 Apply a data flow (Spark based) or stored procedure

(SQL based) for cleansing.

	 3.	 Load into Analytical Store

•	 Output to Azure Synapse, Fabric Lakehouse, or

Power BI.

	 4.	 Monitor and Schedule

•	 Set up failure alerts and automated triggers.

Chapter 5 Analytics Workloads on Azure

145

�Microsoft Fabric Pipelines (Unified Approach)

If using Microsoft Fabric, pipelines integrate seamlessly with

•	 OneLake (unified data lake storage)

•	 Warehouses and lakehouses (for structured and semi-

structured analytics)

•	 Power BI (For visualization)

This end-to-end integration simplifies management compared to

stand-alone ADF.

�Why Use Data Pipelines?

Data pipelines offer numerous benefits in large-scale analytics scenarios:

•	 Automation: Schedule and run ingestion workflows

without manual intervention.

•	 Scalability: Handle massive volumes of data from

various sources.

•	 Modularity: Separate stages of ingestion,

transformation, and loading for better reusability.

•	 Monitoring and Logging: Track pipeline executions,

detect failures, and debug issues using built-in

monitoring tools.

•	 Flexibility: Combine services and technologies

tailored to specific tasks – whether that’s a simple copy

operation or a complex ML transformation.

Chapter 5 Analytics Workloads on Azure

146

�Explore Analytical Data Stores
In a modern data analysis environment, Analytics Data Stores plays a

distinctive role in allowing organizations to store, manage, and analyze

large amounts of data effectively. These stores are designed for rich queries

and data exploration, operating at human interactive latencies for users

ranging from analysts to data scientists.

There are two types of modes of analytical data stores: the data

warehouse and the data lake. On top of that, hybrid solutions, like

data lakehouses, are coming up – trying to give you the best from the

two worlds.

�1. Data Warehouses

Figure 5-2.  Data Warehouse

As shown in Figure 5-2, data warehouses are centralized repositories

specifically designed for analytical queries and reporting. They store

structured data in a predefined schema and are optimized for fast,

SQL-based querying.

Chapter 5 Analytics Workloads on Azure

147

Key Characteristics

•	 Stores highly structured and cleansed data

•	 Follows a schema-on-write model

•	 Supports complex queries and aggregations

•	 Ideal for business intelligence (BI), reporting, and

dashboards

•	 Often uses star or snowflake schemas

Azure Example

•	 Azure Synapse Analytics (formerly SQL Data

Warehouse) is Microsoft’s cloud-based data warehouse

that integrates enterprise data warehousing with big

data analytics.

�2. Data Lakes

Figure 5-3.  Data Lake

Chapter 5 Analytics Workloads on Azure

148

As shown in Figure 5-3, data lakes are designed to store vast amounts of

raw data – both structured and unstructured – at any scale. They support

a schema-on-read approach, which means the data is interpreted and

structured at the time of analysis.

Key Characteristics

•	 Stores raw data in its native format (e.g., JSON, CSV,

images, logs)

•	 Supports structured, semi-structured, and

unstructured data

•	 Ideal for machine learning, big data processing, and

real-time analytics

•	 Provides flexibility for data exploration and

experimentation

Azure Example

•	 Azure Data Lake Storage Gen2 is a highly scalable and

secure data lake built on Azure Blob Storage, optimized

for analytics workloads.

�Hybrid Approaches: Data Lakehouses

To address the challenges associated with using each of these platforms

alone, firms are adopting more hybrid “data lakehouse” approaches.

A data lakehouse is an architecture that includes the structure and

reliability of a data warehouse with the openness and direct access to data

of a data lake. It allows users to execute BI queries directly on raw or semi-

structured data with SQL engines.

Key benefits

•	 Unified storage for structured and unstructured data

•	 Reduces data movement between lakes and

warehouses

Chapter 5 Analytics Workloads on Azure

149

•	 Supports both traditional BI and modern AI/ML

workloads

•	 Allows for real-time analytics with lower latency

�Azure Services for Analytical Data Stores

Azure provides powerful services to implement data warehouses, data

lakes, and hybrid lakehouse solutions.

�Microsoft Fabric

Microsoft Fabric is an end-to-end analytics platform that unifies data

engineering, data science, data warehousing, and BI into a single

integrated experience.

•	 Offers lakehouse as a native concept combining data

lake and warehouse functionalities

•	 Built on OneLake, a unified storage layer that serves all

Fabric workloads

•	 Enables seamless collaboration between data

engineers, analysts, and scientists

•	 Includes Power BI, Data Factory, and Synapse

experiences for complete analytics workflows

Use Case: Ideal for organizations looking for a cohesive, all-in-one

platform with deep integration between ingestion, transformation,

modeling, and visualization.

Chapter 5 Analytics Workloads on Azure

150

�Azure Databricks

Azure Databricks is a collaborative analytics platform built on Apache

Spark, optimized for big data and AI workloads.

•	 Supports large-scale data processing using Spark SQL,

Python, Scala, and R

•	 Integrates well with Azure Data Lake for lakehouse

architecture

•	 Offers Delta Lake, a powerful storage layer that brings

ACID transactions to data lakes

•	 Enables machine learning, data science, and advanced

analytics

Use Case: Best suited for scenarios requiring powerful distributed

computing, real-time data processing, and advanced machine learning

workflows.

�Bringing It All Together

In each of these cases, you can consider these services as an analytical data

store in that you get a schema and interface through which you can query

the data. But in many cases, the data is actually sitting in a data lake, and

the service is about processing this data and running queries.

Some options may even link the use of these services. An Extract, Load,

and Transform (ELT) ingestion process could copy data into a data lake,

followed by using one of these services to transform the data and the other

to query it. For instance, a pipeline might use a notebook running in Azure

Databricks to munge a very large amount of data in the data lake and then

move it into a SQL in Microsoft Fabric Warehouse to perform additional

analysis and reporting on the cleansed data.

Chapter 5 Analytics Workloads on Azure

151

�Explore Fundamentals of Real-Time
Analytics
�Understand Batch and Stream Processing
�Overview

Driven by higher technology adoption by people, businesses, and

institutions, in conjunction with the proliferation of smart devices

and broad internet access, data generation has exploded. This data is

consistently collected from different channels, i.e., IOT sensors, social

media, transaction systems, and applications.

A lot of this data can be analyzed in real time (or near real time),

allowing systems to offer real-time insights, automatic responses, and

event trend discovery as events take place.

This subsection is intended to give a high-level understanding of

real-time data processing, how processing can be classified into batch and

streaming, and introduce the Azure services that can help you to realize

real-time analytics solutions.

�What Is Data Processing?

At its core, data processing is the transformation of raw data into

structured, meaningful information. This can support decision-making,

analytics, and automation.

There are two general types of data processing.

�1. Batch Processing

Batch processing involves collecting large volumes of data over time and

processing them together in a scheduled or triggered operation.

Chapter 5 Analytics Workloads on Azure

152

•	 How It Works: Data is ingested, stored temporarily,

and then processed as a group.

•	 When It’s Used: Ideal for periodic reporting, historical

analysis, and large ETL/ELT workloads.

For example, imagine you want to track the number of likes on your

social media posts. A batch processing approach would mean you wait

until the end of the day, gather all the likes from every post, and then count

them all at once, as shown in Figure 5-4.

Batch Method

•	 You check your posts only once at midnight.

•	 You count all the likes that accumulated throughout the

day in one go.

•	 You don’t know the exact number of likes until the

batch counting is done.

Figure 5-4.  Batch Processing Example

Chapter 5 Analytics Workloads on Azure

153

Real-World Example
A retail chain collects all sales transactions throughout the day. At

midnight, it runs a batch job to calculate daily totals, generate dashboards,

and update inventory.

Advantages

•	 Handles large data volumes efficiently

•	 Optimized for performance and cost in periodic jobs

•	 Easier to debug and manage workflows

Disadvantages

•	 Not suitable for real-time insights.

•	 Delays in processing may cause outdated results.

•	 All input data must be ready and validated before

processing. Any errors or crashes can stop the entire

batch job. Even minor issues may require fixing and

rerunning the full job.

Azure Services

•	 Azure Data Factory

•	 Azure Synapse Analytics

•	 Microsoft Fabric (Data Pipelines and Warehouses)

�2. Stream Processing

Stream processing involves analyzing data in motion – as soon as it is

generated.

•	 How It Works: Each data point is ingested and

processed in real time or near real time with

minimal delay.

Chapter 5 Analytics Workloads on Azure

154

•	 When It’s Used: Perfect for detecting fraud, monitoring

IoT devices, alerting, or personalizing user experiences

instantly.

If your post goes viral and gets thousands of likes per hour, waiting

until the end of the day means you miss real-time updates. For instance,

instead of waiting until midnight to count likes, a streaming approach

would track and display each new like the moment it happens, giving you

real-time updates, as shown in Figure 5-5.

Figure 5-5.  Steam Processing Example

Real-World Example
An online food delivery app tracks rider locations in real time and uses

stream processing to estimate delivery times and send alerts when food is

near the customer.

Advantages

•	 Enables real-time decisions and alerts

•	 Immediate visibility into critical operations

•	 Supports time-sensitive applications (e.g., fraud

detection, live dashboards)

Chapter 5 Analytics Workloads on Azure

155

Disadvantages

•	 Complex to design and scale

•	 Requires robust error handling and latency control

Azure Services

•	 Azure Stream Analytics

•	 Azure Event Hubs

•	 Azure IoT Hub

•	 Azure Databricks (Structured Streaming)

�Batch vs. Stream Processing: Key Differences

While both batch and stream processing transform raw data into

actionable insights, they differ significantly in how they handle and

analyze data:

•	 Data Scope

•	 Batch processing works with the entire dataset at

once, allowing comprehensive analysis across all

available data.

•	 Stream processing deals with real-time data,

typically focusing on recent records or a sliding

time window (e.g., the last 30 seconds).

•	 Data Size

•	 Batch processing efficiently handles large volumes

of data collected over time.

•	 Stream processing is optimized for individual

records or small sets of data (micro-batches) as

they arrive.

Chapter 5 Analytics Workloads on Azure

156

•	 Performance (Latency)

•	 Batch jobs usually have higher latency, often

processing data every few hours or at scheduled

intervals.

•	 Stream processing provides near real-time

responsiveness, with latencies measured in

seconds or milliseconds.

•	 Type of Analysis

•	 Batch processing is ideal for in-depth, complex

analysis, such as reporting, trend discovery, and

historical comparisons.

•	 Stream processing supports real-time use cases,

like live dashboards, alerts, and immediate event-

driven actions using simple aggregations or rolling

metrics.

�Combining Batch and Stream Processing

Most big data analytics systems leverage both batch and stream processing

to provide a full perspective (e.g., based on history and live facts).

In classic form, stream processing is used for collecting and processing

real-time data (filters or aggregates) and rendering immediate insights via

live dashboards (e.g., the number of cars going through a point per hour).

The cooked data is then cached for future use.

Meanwhile, batch processing may be using this stored data to carry out

more complex, heavy-duty analysis like spotting traffic trends over the last

12 months.

Chapter 5 Analytics Workloads on Azure

157

Even if you are not concerned with immediate insights, streaming

technologies are still helpful for acquiring and loading real-time data into

storage systems. This data can then be processed in batches at a later time,

like rounding up cars in a parking lot and then counting them.

A hybrid model is the best for the enterprise for many use cases.

It permits businesses to respond to live signals as well as overarching

historical trends.

Example Use Case
A smart factory monitors machines in real time using stream

processing to detect faults and raise alerts. At the same time, it uses batch

processing to analyze production trends, optimize performance, and

schedule maintenance.

�Benefits of Hybrid Approaches

	 1.	 Balance between real-time action and deep analysis

	 2.	 Supports both time-critical and strategic use cases

	 3.	 Enhances reliability and scalability

Figure 5-6 shows some ways in which batch and stream processing can

be combined in a large-scale data analytics architecture.

Figure 5-6.  Batch and Stream Processing

Chapter 5 Analytics Workloads on Azure

158

Figure 5-6 illustrates the integration of batch and stream processing

within a modern data architecture. The diagram highlights key

components involved in this hybrid approach, labeled as 1, 2, 3, and so on.

Each of these numbered elements is explained below:

	 1.	 Streaming data is captured in real time as

events occur.

	 2.	 Data from other sources is ingested into a data

store – typically a data lake – for batch processing.

	 3.	 If immediate analysis isn’t needed, real-time data

can be stored first and processed later in batches.

	 4.	 For real-time analytics, stream processing

technologies are used to filter or aggregate incoming

data over time windows for instant insights or

visualizations.

	 5.	 Batch processing is used at intervals to prepare non-

streaming data for analysis, with results stored in

an analytical data store (often a data warehouse) for

long-term insights.

	 6.	 Processed results from real-time streams can also

be stored in the analytical data store to support

combined historical analysis.

	 7.	 Visualization and analytics tools are then used to

explore both real-time and historical data together.

Chapter 5 Analytics Workloads on Azure

159

�Core Components of a Stream
Processing Architecture
While there are numerous tools and technologies available to build a

stream processing solution, most architectures share a set of foundational

components, regardless of the specific implementation. Let’s explore the

typical structure and services that underpin stream processing in Azure.

�A High-Level Overview of Stream
Processing Architecture

At its core, a basic stream processing architecture typically includes the

stages given in Figure 5-7.

Figure 5-7.  Stream Processing Architecture

Figure 5-7 shows the stream processing architecture, with the key

components labeled as 1, 2, 3, and 4. Each of these parts is explained in

detail below:

	 1.	 Event Generation

A data stream starts with an event; an example is

the reading of a sensor, the user posting something

on social media, or the logging of an entry in a file –

anything that generates data in digital form.

Chapter 5 Analytics Workloads on Azure

160

	 2.	 Data Ingestion (Streaming Source)

A streaming source retrieves the produced data – in

simpler systems, perhaps a folder in cloud storage

or a table in a database. More mature structures

rely on message queues or event hubs to guarantee

the orderliness and correctness of one-time data

processing so they can provide guaranteed and

ordered event transmission.

	 3.	 Stream Processing Logic

Processing of incoming data occurs in real time

and is accomplished by a long-running query or

processing job. This logic could filter out specific

event types, project or change data fields, or

calculate aggregations over a window of time – such

as counting the number of temperature readings we

see every minute.

	 4.	 Output Delivery (Sink)

The sink is where the stream processing results are

sent. This might be a file system, a database table,

a real-time dashboard, or another queue for more

processing.

�Real-Time Analytics Technologies in Azure

To implement real-time stream analytics, Microsoft provides a range of

services, including

Chapter 5 Analytics Workloads on Azure

161

•	 Azure Stream Analytics

	 A fully managed Platform as a Service (PaaS) offering

that allows you to create streaming jobs. These jobs

ingest data from streaming sources, apply real-time

queries, and write the results to various outputs.

•	 Spark Structured Streaming

	 A powerful open source library used for building

scalable stream processing solutions on Apache

Spark. It integrates well with Azure services like Azure

Databricks and Microsoft Fabric.

•	 Microsoft Fabric

	 An integrated data analytics platform that supports

a wide range of data operations, including real-time

analytics, data engineering, data science, and more – all

within a unified environment.

�Data Sources for Stream Processing in Azure

Various Azure services can serve as input sources for stream processing

workflows:

•	 Azure Event Hubs

	 A highly scalable event ingestion service that handles

data streams, ensuring messages are processed in order

and exactly once.

•	 Azure IoT Hub

	 Tailored for managing data from IoT devices, this

service provides a secure and efficient way to stream

telemetry data from the edge to the cloud.

Chapter 5 Analytics Workloads on Azure

162

•	 Azure Data Lake Storage Gen2

	 Though commonly used for batch analytics, this

scalable storage solution can also act as a source for

stream processing under certain scenarios.

•	 Apache Kafka

	 A widely adopted open source event streaming

platform often used in combination with Apache Spark

for real-time data pipelines.

�Output Targets (Sinks) for Stream Processing

Once data has been processed, it is typically routed to one or more of the

following sinks:

•	 Azure Event Hubs

	 Enables the queuing of processed data for subsequent

downstream operations.

•	 Azure Data Lake Storage Gen2, Microsoft OneLake,
or Azure Blob Storage

	 These services provide persistent storage of processed

data in file formats suitable for further analysis or

archiving.

•	 Azure SQL Database, Azure Databricks,
Microsoft Fabric

	 These platforms allow processed data to be stored in

relational or distributed tables, making it accessible for

querying and advanced analytics.

Chapter 5 Analytics Workloads on Azure

163

•	 Microsoft Power BI

	 Facilitates real-time data visualization by integrating

with streaming datasets, empowering users to build live

dashboards and interactive reports.

�Explore Microsoft Fabric Real-Time Intelligence
In today’s world of data-driven organizations, the desire to work with

data as soon as it arrives vs. in retrospect is paramount. Microsoft Fabric

Real-Time Intelligence is built for this: it’s a platform that lets you ingest,

analyze, and react to streaming data at scale. It allows users to unlock the

value of data in motion and deliver insights “in the moment” across the

organization.

This solution is applicable to most real-time and event-driven

use cases – ranging from monitoring events in IoT telemetry, live log

streams, etc. By basing decisions, strategies, campaigns, and programs

on data gathered in real time – in giant buckets or in small – the real-time

intelligence capability allows organizations to be nimble, confident, and

right every time.

�Key Features of Real-Time Intelligence
in Microsoft Fabric

�1. End-to-End Streaming Solution

Real-time intelligence is a complete pipeline to consume, process, analyze,

and visualize data in real time. It covers all steps, from data input to data

output and everything in between, without the need for users to write too

much code.

Chapter 5 Analytics Workloads on Azure

164

�2. Unified Real-Time Hub

This capability is powered by the Real-Time Hub – an organization-wide

stream data catalog and data platform. It removes the barriers of time-

sensitive data discovery, sharing, and integration among departments.

This single landscape means everybody has current info, which promotes

not just strong decision-making but also cooperation.

�3. No-Code Data Connectivity

Microsoft Fabric makes stream processing systems easier to develop with

a no-code library of connectors. These connectors allow rapid connection

to any number of streaming sources, which can include internal systems,

third-party services, IoT devices, and more, with no need for custom

development.

�4. Rich Visualizations and Dashboards

Users can interactively explore patterns, discover anomalies, and forecast

trends with intuitive dashboards after data is ingested and processed with

Real-Time Intelligence. Developers can simply drop these dashboards

into their workflows, and they can take advantage of them to apply natural

language queries, AI-powered assistants like Copilot, and drag-and-drop

interfaces meant to make insights accessible to even non-technical users.

�5. Real-Time Alerts with Reflex

Use Reflex – a feature that enables you to create alerts and automatic

responses to conditions to act upon insights. For instance, when sensor

information is found to be abnormal, a service ticket or an email alert can

be issued on the spot, which can be used not only for the control of the

situation, such as abnormal situations in other operation facilities, but also

for the rapid management of a business-critical event.

Chapter 5 Analytics Workloads on Azure

165

�6. Geospatial and Advanced Analytics

Real-Time Intelligence enables geospatial analysis, which is great

for applications involving physical locations – like tracking vehicles,

monitoring assets, or enacting logistics based on the weather. Paired with

real-time predictions and machine learning models, it makes for smart

analysis well beyond basic KPIs.

�Exploring and Acting on Data in Real Time

Working with Real-Time Intelligence typically begins with selecting a live

data stream – either from within the organization or an external partner.

Once selected, the platform provides robust tools to

•	 Visualize key metrics and trends

•	 Identify unexpected spikes, drops, or outliers

•	 Forecast future values using real-time models

•	 Share insights across teams using dashboards

and alerts

From exploration to action, every component is designed to minimize

latency and maximize business value.

�How Real-Time Intelligence Fits into Microsoft Fabric

One of the greatest strengths of Real-Time Intelligence is its deep

integration with the wider Microsoft Fabric ecosystem, including

•	 Data Factory for data movement and transformation

•	 Data Engineering for scalable processing

•	 Data Science for advanced modeling

Chapter 5 Analytics Workloads on Azure

166

•	 Power BI for visualization and reporting

•	 OneLake for unified data storage

This alignment ensures that real-time and batch data processing

coexist in a cohesive, secure, and scalable environment.

�Explore Apache Spark Structured Streaming
In the current life of big data, such organizations have to handle huge

streams of data in a continuously incoming manner. Apache Spark, a

powerful distributed processing engine, provides an idiomatic SIMD-like

API for arbitrary expression trees to be executed over location-transparent

static and streaming datasets. In Microsoft Azure, such as Microsoft Fabric

and Azure Databricks, Spark acts as a powerful data processing platform,

and it is also used for advanced analytics.

�Apache Spark: A Unified Engine for Batch
and Streaming

Apache Spark is intended to execute applications in parallel across a cluster,

which is a great basis for processing large datasets. It is usable with several

programming languages, like Python, Scala, Java, etc., and has a wide

variety of usage, from ETL and machine learning to real-time analytics.

One important feature of Spark is its integrated processing framework,

which provides a unified platform and codebase for batch and stream

processing, simplifying system building effectively.

�Introducing Spark Structured Streaming

Spark Structured Streaming has many methods to do stream processing

that have set coarse boundaries between batch and interactive queries, but

Structured Streaming continues the trend from Spark’s first release (0.8) of

blurring these boundaries.

Chapter 5 Analytics Workloads on Azure

167

Real-time data stream processing is provided by using Apache Spark

and the Spark Structured Streaming library. This high-level streaming API

makes it easy to consume, process, and analyze real-time data streams in

Apache Spark using dataframe and SQL-like semantics.

�How It Works

•	 Ingestion: Data is continuously read from a streaming

source (e.g., Apache Kafka, cloud file stores, or network

sockets) into an unbounded dataframe – a Spark

structure that grows as new data arrives.

•	 Transformation: You define a query on this dataframe

to filter, project, or aggregate the streaming data.

Often, these operations are applied over time-based
windows to derive meaningful trends (e.g., average

sensor readings per 10-minute interval).

•	 Output: The results of the query generate a new

dataframe, which can be directed to various sinks such

as databases, cloud storage, or real-time dashboards.

This abstraction allows developers to think about streaming data in the

same way as static data – making real-time processing more accessible and

easier to maintain.

�Use Cases for Spark Structured Streaming

Spark Structured Streaming is well suited for use cases that require

•	 Real-time ingestion into data lakes or warehouses

•	 Continuous monitoring and alerting based on

event data

Chapter 5 Analytics Workloads on Azure

168

•	 Joining and enriching live data streams with

historical records

•	 Scalable streaming pipelines integrated with batch

workloads

Its compatibility with the broader Spark ecosystem ensures seamless

integration with machine learning libraries, SQL engines, and big data

storage formats.

�Delta Lake: Enhancing Stream and Batch Consistency

To further strengthen Spark’s capabilities, Microsoft Azure supports Delta
Lake – an open source storage layer that brings reliability, consistency,
and schema enforcement to data lake architectures.

With Delta Lake, you can

•	 Ensure ACID-compliant transactions on

streaming data

•	 Apply schema validation to enforce data quality

•	 Use a single table for both batch and stream processing

•	 Enable time travel queries for point-in-time data

analysis

Delta Lake seamlessly integrates with Spark Structured Streaming,

allowing tables to act as both streaming sources and sinks. For example,

you could ingest streaming log data into a Delta table, perform windowed

aggregations, and write the results back to another Delta table for

dashboard reporting.

Chapter 5 Analytics Workloads on Azure

169

�Spark on Microsoft Azure: Where It All Comes Together

Both Microsoft Fabric and Azure Databricks provide managed Spark

environments that natively support Structured Streaming and Delta Lake.

These platforms offer

•	 Auto-scaling compute clusters

•	 Built-in data connectors and monitoring tools

•	 Integration with Power BI for real-time visualization

•	 Support for collaborative development in notebooks

and pipelines

Whether you’re building a real-time recommendation engine,

monitoring IoT sensors, or processing financial transactions as they

happen, Spark Structured Streaming combined with Delta Lake offers a

scalable and resilient foundation for streaming analytics in Azure.

�Explore Fundamentals of Data Visualization
with Microsoft Power BI
�Introduction
In this data-driven world, you don’t just collect and store data. The power

of data is actually unlocked when it’s converted into great insights. And

here you need the wonders that data visualization can do for you. Data

visualization is the graphical representation of information and data. It

facilitates the understanding of complex concepts, recognizing patterns,

and discovering trends faster and more efficiently.

In this chapter, we will discuss what I consider to be the basics of data

visualization in Microsoft Azure. The tool at the top of our list of business

analytics tools is Microsoft Power BI, one of the most powerful and popular

tools in the same category.

Chapter 5 Analytics Workloads on Azure

170

�Capabilities and Features of Power BI
�What Is Power BI?

Power BI is a suite of business analytics tools to analyze data and share

insights. Monitor your business and get answers quickly with rich

dashboards available on every device. It is an interactive visualization and

business intelligence tool that provides an interface where end users can

create their own reports and dashboards.

�Key Components of Power BI

Power BI comprises several components that work together in a

streamlined workflow.

�1. Power BI Desktop

•	 A free Windows desktop application used for creating

reports and data visualizations

•	 Allows users to connect to multiple data sources,

transform the data using Power Query, and create

robust data models

•	 Primary development tool for building Power

BI reports

�2. Power BI Service (Power BI Online)

•	 A cloud-based service (SaaS) where users publish,

share, and collaborate on reports

•	 Allows dashboard creation and access to reports from

anywhere

•	 Includes features like scheduled data refresh, row-level

security, and workspace collaboration

Chapter 5 Analytics Workloads on Azure

171

�3. Power BI Mobile Apps

•	 Native apps for iOS, Android, and Windows devices

•	 Enables users to access and interact with their reports

and dashboards on the go

�4. Power BI Report Server

•	 An on-premises solution for hosting Power BI reports

behind your firewall

•	 Useful for organizations with strict data governance or

compliance requirements

�5. Power BI Gateway

•	 Bridges on-premises data sources and the Power BI

cloud service

•	 Enables scheduled refresh and live queries against on-

prem data sources

�Power BI Workflow: From Data to Dashboard

Understanding the typical Power BI workflow helps in mastering its

use for analytics and visualization. The process generally involves the

following steps.

�Step 1: Connect to Data Sources

Power BI supports a wide range of data sources, including

•	 Excel and CSV files

•	 Azure SQL Database and SQL Server

Chapter 5 Analytics Workloads on Azure

172

•	 Azure Data Lake and Blob Storage

•	 Online services like Microsoft 365, Dynamics 365,

Salesforce, and more

�Step 2: Transform and Clean Data

Using Power Query Editor, users can

•	 Clean data (remove duplicates, handle missing values)

•	 Filter, sort, and merge data

•	 Rename columns and change data types

•	 Create calculated columns and measures

�Step 3: Model the Data

Data modeling involves defining relationships between tables and

optimizing the data structure for analytics. Key tasks include

•	 Creating relationships using foreign keys

•	 Using DAX (Data Analysis Expressions) to add

calculated columns, measures, and KPIs

•	 Organizing tables into star schemas where possible

�Step 4: Create Visualizations

Users can drag and drop fields onto the report canvas to build

•	 Bar, line, and pie charts

•	 Maps and geographical visuals

•	 Tables and matrix visuals

•	 Slicers and filters for interactive exploration

Chapter 5 Analytics Workloads on Azure

173

�Step 5: Publish and Share

Once the report is ready

•	 Publish it to the Power BI Service

•	 Create and pin visuals to dashboards

•	 Share reports and dashboards with stakeholders

•	 Set up data refresh schedules and alerts

�Step 6: Collaborate and Act

Through integration with Microsoft Teams, SharePoint, and Power

Platform, users can

•	 Collaborate on reports

•	 Automate workflows using Power Automate

•	 Embed reports in apps or web portals

�Benefits of Using Power BI for Data Visualization

•	 Ease of Use: Intuitive drag-and-drop interface suitable

for beginners and advanced users alike

•	 Scalability: Handles datasets from small Excel files to

large-scale enterprise data warehouses

•	 Real-Time Dashboards: Supports live dashboards with

real-time streaming data

•	 Advanced Analytics: Integration with Python, R, and

AI capabilities for deeper analysis

•	 Security: Supports role-based access, row-level

security, and compliance with global standards

Chapter 5 Analytics Workloads on Azure

174

�Building Data Models in Power BI
As businesses become more data driven, how that data is organized

becomes more and more important. Data modeling is a fundamental

aspect of analytics through which you can arrange data in logical

structures to enable effective querying and insightful analysis. A good data

model will help to increase your performance, simplify your reporting, and

drive a level of consistency in your analytics.

�Understanding Analytical Models
Analytical models offer a structured way to organize such data to facilitate

thoughtful analysis. Such models are usually based on sets of related data

in which there are both measurable values and descriptive attributes.

At the heart of an analytical model are two key elements:

•	 Measures: These are numeric values you want to

analyze, such as sales, profit, or units sold.

•	 Dimensions: These are the descriptive entities

that provide context for measures – like products,

customers, or time periods.

Think of an analytical model as a multidimensional grid – commonly

referred to as a cube – where each cell in the grid represents an aggregated

measure for a unique combination of dimension values. For example, this

structure allows you to answer questions such as

•	 What is the total revenue per product category?

•	 How many items were sold each month?

•	 Which customer segment contributed most to

total sales?

Chapter 5 Analytics Workloads on Azure

175

By organizing data in this manner, analytical models enable fast,

intuitive exploration of trends and performance metrics across different

business perspectives.

�Tables and Schema Design
�Dimension Tables

Dimension tables contain information about the items you might use to

categorize or filter data. A separate row in a dimension table is a distinct,

individual entity instance of that type of object (one time for each product,

each customer, etc.), and all of the descriptive characteristics about that

object are in that row.

For instance, a product dimension table could have the following

columns:

•	 ProductID (unique identifier)

•	 ProductName

•	 Category

•	 Brand

Similarly, a customer dimension may contain

•	 CustomerID

•	 FullName

•	 City

•	 Region

Dimension tables act as the filters and groupings in your analysis, so

they are crucial in giving your model context to the raw data.

It’s also typical to add a Date or Time dimension to see any trends of

the data over time (e.g., by year, quarter, or month).

Chapter 5 Analytics Workloads on Azure

176

�Fact Tables

Fact tables contain quantitative data the measures being analyzed. Each

row in a fact table represents a fact or an event and is linked to dimension

tables, i.e., it contains the respective foreign keys.

For a Sales fact table, one can have

•	 SaleID

•	 DateKey

•	 ProductKey

•	 CustomerKey

•	 QuantitySold

•	 Revenue

This structure allows you to summarize numerical values on related

dimensions – think sum total revenue by product or average purchase

value by customer.

As fact tables tend to be high in row count, they are optimized for read

operations and aggregation.

�Attribute Hierarchies
In practice, it is common for analysts to seek data from a variety of levels

of detail. Here is where that relates to attribute hierarchies: hierarchies

enable cut mechanisms so that users can drill down from a broad view to

more specified contexts – and roll up for an overview.

Some examples of attribute hierarchies are

•	 Time Hierarchy: Year ➤ Quarter ➤ Month ➤ Day

•	 Product Hierarchy: Category ➤ Subcategory ➤

Product Name

•	 Geographic Hierarchy: Country ➤ State ➤ City

Chapter 5 Analytics Workloads on Azure

177

In the presence of hierarchies, a lightweight analytical model makes

dynamic and user-friendly exploration possible. For instance, a sales

report could first display aggregate sales by year that can be clicked to drill

into monthly or even daily sales.

Hierarchies also support calculations that are pre-aggregated at every

level, improving the speed and usability of analysis.

�Data Modeling in Microsoft Power BI
Microsoft Power BI provides a powerful environment for building data

models for analysis. From Model view in Power BI Desktop, you can

•	 Define Relationships: Create relations links between

the fact table and the dimension table by creating one-

to-many relationships on keys.

•	 Set Data Types: Confirm fields are set with the correct

data types – money for revenue and dates for date/

time data.

•	 Create Hierarchies: Categorize fields and create

drillable levels to help users navigate between similar

fields in reports.

•	 Manage Table Properties: Handle what fields are

displayed and how they’re formatted, summarized,

or sorted.

•	 Build Calculated Columns and Measures: Write

formulas in DAX (Data Analysis Expressions) and

include summary values in your model, such as profit

margins or year-over-year growth.

Chapter 5 Analytics Workloads on Azure

178

By building a strong model in Power BI, you are able to provide

your visualizations with a firm, performant, and scalable substrate. The

modeling layer serves as a unified source of truth, ensuring various reports

and dashboards share the same metrics and definitions.

�Choosing the Right Visualization
for Insights
After you have that well-trained data model, the next step in the analytics

is creating charts. Visualizations make raw data beautiful and easy

to navigate and act upon. The “right” visualization type is important

for effective communication of insights and enabling data-driven

decision-making.

�Key Considerations for Data Visualization
Before getting into the nitty-gritty of visual design, it’s useful to know the

fundamental rules that underpin effective data visualization.

�1. Know Your Audience

Various stakeholders need different layers or insights. And one executive

might want the big picture, whereas an analyst may want all the nitty-gritty

detail. Make visualizations that are audience appropriate and level of data

literacy appropriate.

Chapter 5 Analytics Workloads on Azure

179

�2. Select the Right Visualization Type

All charts were not created equal. The data type and the story you want

to tell should influence your selection of visualization. For instance,

line charts are more appropriate for displaying trends over time,

while comparisons among categories are better shown using bar or

column charts.

�3. Prioritize Clarity and Simplicity

Avoid cluttered visuals. A clean, bold design allows your audience to

viscerally comprehend your insights. Make sure to use readable color

palettes, axis labels, and legends.

�4. Ensure Accuracy

I mean, visualizations need to be representative of the data.

Misrepresentative scales, flawed aggregations, or cut-off axes can mislead

and result in wrong decisions.

�5. Use Interactivity Wisely

Interactive capabilities let users interrogate the data the way they want –

filtering, drilling, or highlighting aspects of a report. But interactivity

should enhance the story you are telling, not muddy it.

�Common Visualization Types in Power BI
Power BI includes a large set of built-in visuals, which can be further

extended by custom visuals available in the AppSource marketplace. Some

of the frequently used visual types are listed below.

Chapter 5 Analytics Workloads on Azure

180

�1. Tables and Text Cards

We can use these cases to illustrate which parts of the system exhibit good

performance when given a particular input. Tables showing the raw figures

for a trend provide a structured representation of the raw figures when a

comparative distinction is to be drawn or when displaying hundreds or

even thousands of related measurements.

Cards provide multiple types of single values (e.g., totals, averages,

or KPIs) and highlight important values (e.g., total revenue or count of

customers).

Use Case: If you have a bunch of sales numbers, you would like to

display them and quickly see the profit or revenue.

�2. Bar and Column Charts

These charts are perfect to compare quantities of categories. With the

exception of orientation (they are horizontal or vertical, respectively), the

two chart types are identical in structure.

Use Case: When you want to compare the revenue by product category

or by customer segment across various regions.

�3. Line Charts

Line charts are also a good choice for displaying trends over time. They’re

really great for seeing patterns, seasonality, and performance evolution.

Use Case: IF-THEN conditions on monthly sales growth or website

traffic over weeks.

�4. Pie and Donut Charts

The charts present data in proportions or percentages, and they essentially

make up fractions of a circle as well over here. Though they’re attractive,

they do serve as an obstruction – particularly for numerous categories, you

should only use them as a special effect.

Use Case: Show the market share of various product lines.

Chapter 5 Analytics Workloads on Azure

181

�5. Scatter Plots

Scatter plots display the relationship between two numeric variables. They

can be used to detect correlations, clusters, or outliers in the data.

Use Case: Let’s say we want to analyze if there is a relationship between

how much money we spend on marketing and how that influences the

amount of revenue that is coming in.

�6. Maps

Maps chart data that have a geographic element to them. Power BI has

different map visuals you can use (filled maps, background images, shape

maps, and map visualizations, including bubble maps) to view geographic

data on the map.

Use Case: Compare sales between stores or track shipping per region.

�Interactive Reports in Power BI
One of the beautiful things about Power BI is the built-in capability to

create interactive reports. In these reports

•	 Value from one visual can filter or cross-highlight other

visuals.

•	 Users can add slicers to filter data throughout the

report by date, product, region, and other factors.

•	 At the very least, as end users drill down to higher

levels of detail, they would like to investigate that data

at higher levels of dumps (year to quarter to month).

For example, when a user clicks “Seattle” in a column chart showing

sales by city, all of the other visuals in the report change to only show

metrics related to Seattle.

Chapter 5 Analytics Workloads on Azure

182

This interactivity transforms a static dashboard into a dynamic, self-

service analytics feature in which users can explore data as they see fit.

�Summary
In this chapter, you learned the basics of analytics workloads on Microsoft

Azure and how cloud technologies can help you analyze data on a massive

scale, gain real-time analytics, and create visuals to intuitively explore data.

The chapter consisted of three major sections.

�1. Explore Fundamentals of Large-Scale
Analytics
Data analysis at scale is particularly critical for data-driven decision-

making by today’s enterprises. This section has introduced fundamental

ideas about data warehousing and ingestion pipelines and the analytic

data stores that are used to facilitate high-volume, high-performance

analytics workloads.

•	 Data Warehousing Architecture: You learned how

data warehouses, including Azure Synapse Analytics,

can bring structured data into a unified analytical store.

The design decouples computation from storage, which

makes this architecture scalable, massively parallelized,

and performance enhanced.

•	 Data Ingestion Pipelines: Pipelines to ingest data is

the process of importing data from different sources

into an analytical system. You learned about Azure

Data Factory and Azure Synapse Pipelines – tools that

can be used to efficiently orchestrate, transform, and

load data from a variety of sources.

Chapter 5 Analytics Workloads on Azure

183

•	 Analytics Data Stores: You considered Azure-native

data stores such as Azure Data Lake Storage and Azure

Synapse Dedicated SQL Pools, which can handle

petabyte-scale datasets for storage and querying. These

systems are designed for fast read operations, and they

serve as the analytical query engine for data engineers

and analysts.

�2. Explore Fundamentals of Real-Time
Data Analytics
This section drilled into real-time insights with Azure, which does this by

processing data as it arrives – an absolute must for some applications, such

as fraud detection, live dashboards, and IoT telemetry.

•	 Batch vs. Stream Processing: You learned the

distinction between batch (processing big sets of data

at once) and stream processing (processing data as it

arrives) and when you might prefer one over the other.

•	 Stream Processing Architecture Basics: While not

listed in the original frameworks, the key pieces of a

modern real-time pipeline from event ingestion (Event

Hubs or IoT Hub), processing engines (Azure Stream

Analytics or Apache Spark Structured Streaming), and

output sinks (Power BI or big data stores) were covered.

•	 Microsoft Fabric Real-Time Intelligence: This

upcoming solution provides a converged platform for

streaming data ingestion, processing, and visualization,

using familiar and easy-to-scale tools. It accelerates

time to insight with its rich integration with the

Microsoft data stack.

Chapter 5 Analytics Workloads on Azure

184

•	 Apache Spark Structured Streaming: You saw how

Spark gives you scalable, distributed stream processing,

making it easy to do complex transformations, joins,

and aggregations in near real time on your real-time

data feeds using well-known API types.

�3. Explore Fundamentals of Data Visualization
with Microsoft Power BI
The last section stressed the need for data to be transformed into visual

understanding for business and the democratization of analytics.

•	 Power BI Capabilities and Features: Power BI has

strong data modeling, transforming, and visualization

capabilities. You got exposure to main elements like

Power BI Desktop, Power BI Service, and mobile apps

and how it integrates with Excel and Azure services.

•	 Creating Data Models in Power BI: Data models are

the backbone of analysis. You learned how Power

BI allows you to preprocess data to build analytical

models, such as tables from tables (fact and dimension

tables) and hierarchies, and how we can use DAX to

create calculated measures and columns.

•	 Selecting the Appropriate Visualization for Insights:

How good your report is depends on how you use the

visual. You examined common kinds of visualizations,

such as tables, bar and line charts, maps, and scatter

plots, and discovered how Power BI creates filterable

reports where users can interact with their data.

Chapter 5 Analytics Workloads on Azure

185© Naveen Kumar M 2025
N. Kumar M, Azure Data Fundamentals Certification Companion, Certification Study
Companion Series, https://doi.org/10.1007/979-8-8688-1684-0_6

CHAPTER 6

Exam Preparation
and Practice

�Overview
You have made your way through the world of Azure data services, ranging

from core database concepts to cloud-native data tools, and now comes

the most exciting part – let’s put it all together! This is the final chapter that

will walk you through how to prepare for the exam, as well as the exam

objectives, and help assess if you are ready to pass the Microsoft DP-900:

Azure Data Fundamentals certification exam.

�Online vs. Offline Exam Readiness
Depending on your preference and availability, Microsoft offers two

delivery modes for the DP-900 exam:

•	 Online (Remote Proctored)

•	 Offline (Test Center Based)

Each has specific requirements. Here’s how to prepare for both.

https://doi.org/10.1007/979-8-8688-1684-0_6#DOI

186

�Online Exam Readiness (Remote
Proctored Exam)
Taking the exam from home or office is convenient but comes with strict

technical and environmental requirements.

�A. System and Technical Requirements

•	 A reliable PC or Mac with

•	 Windows 10 or later/macOS 10.13 or later

•	 Google Chrome or Microsoft Edge browser

•	 Webcam (internal or external)

•	 Microphone

•	 Stable internet connection (minimum 1 Mbps

upload/download)

•	 Install the OnVUE software from Pearson VUE system

check: HYPERLINK “https://www.microsoft.com/en-
us/learning/online-exams.aspx”

Tip  Run the system test at least two days before your exam to
detect hardware, software, or firewall issues.

�B. Environment Readiness

•	 Room must be

•	 Well lit

•	 Quiet and free of disturbances

Chapter 6 Exam Preparation and Practice

https://www.microsoft.com/en-us/learning/online-exams.aspx
https://www.microsoft.com/en-us/learning/online-exams.aspx

187

•	 No unauthorized materials (books, phones,

notepads)

•	 Desk/table must be clear – no external monitors, sticky

notes, or headphones.

•	 You’ll be asked to use your webcam to scan the room

before the exam starts.

•	 No breaks allowed unless specified (accommodations

must be pre-approved).

�C. ID Verification

•	 Valid government-issued photo ID (name must match

your Microsoft account exactly).

�D. Best Practices

•	 Log in 30 minutes early.

•	 Close all applications and background processes.

•	 Follow proctor instructions strictly – violations may

result in test termination.

�Offline Exam Readiness (Test Center–Based
Exam)
If you prefer a controlled environment and better focus, you can take your

exam at an authorized Pearson VUE test center.

Chapter 6 Exam Preparation and Practice

188

�A. Booking a Test Center

•	 Find a nearby test center.

•	 Choose your time slot and location, and receive a

confirmation email.

�B. What to Bring

•	 Valid government-issued ID with a photo and

signature

•	 Confirmation email (optional but helpful)

Note  Some centers require two forms of ID, so read your
appointment instructions carefully.

�C. What to Expect

•	 Your items (phone, bag, etc.) will be stored in a locker.

•	 You’ll go through a security check, including photo

and palm scan (in some locations).

•	 An administrator will guide you to your workstation.

•	 Scratch paper or erasable whiteboards may be provided

for notes.

�D. Center Etiquette

•	 Arrive 15–30 minutes early.

•	 Maintain silence and follow all proctor instructions.

•	 Breaks are typically allowed but pause the exam timer.

Chapter 6 Exam Preparation and Practice

189

Tip  Choose a test center with good reviews and low noise levels.

�Exam Tips and Common Pitfalls
Successfully passing the DP-900 exam not only requires understanding the

content but also being aware of how to approach the questions effectively.

Here are some practical tips to help you prepare.

�General Tips

•	 Read the Question Carefully: Many questions include

qualifiers like “not,” “best,” or “most appropriate.” These

words can change the entire meaning of the question.

•	 Don’t Rush: Take your time to review all answer

options before selecting one, especially when multiple

answers may be correct.

•	 Eliminate Wrong Answers: If you’re unsure, start by

eliminating obviously incorrect options. This improves

your odds even when guessing.

�Multiple Choice Questions

•	 Watch out for “all of the above” or “none of the above”

options – make sure every statement is true or false

before choosing.

•	 Be cautious of distractors – options that sound correct

but don’t apply to the specific scenario given.

Chapter 6 Exam Preparation and Practice

190

�Drag-and-Drop Questions

•	 Focus on understanding relationships and sequences.

Practice matching services to scenarios and arranging

steps logically.

•	 Double-check the placement before submitting –

misplaced items could lead to incorrect answers.

�Case Study Questions

•	 Read the scenario thoroughly before jumping to

questions. Understanding the business need or

technical environment is key.

•	 Apply your knowledge contextually; focus on what’s

best for the scenario, not just what is technically

possible.

•	 Don’t bring in outside assumptions. Stick strictly to the

information provided.

�Common Pitfalls to Avoid

•	 Overthinking simple questions. If it seems

straightforward, it probably is.

•	 Ignoring instructions. For example, selecting more than

one answer when only one is required.

•	 Not reviewing flagged questions. Always leave time at

the end to review any flagged or uncertain responses.

Chapter 6 Exam Preparation and Practice

191

�Final Preparation Checklist
•	 Microsoft Learn modules completed

•	 Hands-on practice with Azure free services

•	 At least two full-length practice exams taken

•	 Technical setup and room environment checked

(if online)

•	 Valid ID ready

•	 Appointment confirmed and calendar reminder set

•	 Ready to stay calm, focused, and confident

�After the Exam
•	 You’ll receive your score immediately after submitting.

•	 If you pass, your certification will be available on your

Microsoft Learn profile.

•	 If not, review your performance report and reattempt

after 24 hours (retake policy applies).

Chapter 6 Exam Preparation and Practice

192

�Practice Questions and Answers
�Practice Questions with Explanations
�Section 1: Introduction to Data Representation

	 1.	 Which of the following is an example of
structured data?

	 A.	 Log files

	 B.	 JSON documents

	 C.	 SQL tables

	 D.	 Audio recordings

Answer: C

Explanation: Structured data is highly organized

and easily searchable using simple queries. SQL

tables have a defined schema, with data stored in

rows and columns, making them the classic example

of structured data.

	 2.	 What type of data is best represented in a
JSON format?

	 A.	 Relational data with fixed schemas

	 B.	 Tabular data

	 C.	 Semi-structured data

	 D.	 Binary data

Answer: C

Chapter 6 Exam Preparation and Practice

193

Explanation: JSON is a text-based format that

supports nested structures and flexible schemas,

which makes it suitable for representing semi-

structured data, such as logs or configuration files.

	 3.	 Which scenario is best suited for using
unstructured data?

	 A.	 Financial transactions stored in SQL tables

	 B.	 Ecommerce product catalogs

	 C.	 Analyzing images in a computer vision system

	 D.	 Storing product prices in a CSV file

Answer: C

Explanation: Images are a classic example of

unstructured data because they do not follow

a predefined model and require specialized

processing and storage.

	 4.	 Semi-structured data typically includes

	 A.	 Tables with strict schemas

	 B.	 Images and videos

	 C.	 Logs and sensor data in JSON format

	 D.	 Encrypted files

Answer: C

Explanation: Semi-structured data like JSON-

encoded sensor logs has a loose structure but is not

as rigid as relational tables, allowing more flexibility.

Chapter 6 Exam Preparation and Practice

194

	 5.	 Which of the following is NOT a characteristic of
structured data?

	 A.	 Defined schema

	 B.	 Stored in relational databases

	 C.	 High flexibility in schema design

	 D.	 Uses rows and columns

Answer: C

Explanation: Structured data relies on a predefined

and rigid schema, which means it is not flexible.

Schema changes can be complex and impact data

integrity.

�Section 2: Data Storage Options

	 1.	 Which of the following file formats is optimized

for analytical workloads due to its columnar
storage?

	 A.	 CSV

	 B.	 JSON

	 C.	 Parquet

	 D.	 TXT

Answer: C

Explanation: Apache Parquet is a columnar storage

format that is highly efficient for queries in analytical

workloads because it reads only the required

columns.

Chapter 6 Exam Preparation and Practice

195

	 2.	 What is the key disadvantage of using CSV files for
storing large datasets?

	 A.	 Lack of support for structured data

	 B.	 Inability to be compressed

	 C.	 Inefficient performance with large datasets

	 D.	 No support in Azure services

Answer: C

Explanation: CSV files are plain text and do

not support columnar storage, compression, or

metadata, making them less efficient for processing

large datasets.

	 3.	 Which format is best suited for semi-
structured data?

	 A.	 Parquet

	 B.	 CSV

	 C.	 JSON

	 D.	 SQL

Answer: C

Explanation: JSON is ideal for semi-structured

data because it allows nested and varying attributes

across records.

	 4.	 Parquet is particularly effective for which of the
following use cases?

	 A.	 Real-time audio processing

	 B.	 Transactional systems

Chapter 6 Exam Preparation and Practice

196

	 C.	 Big data analytics and column-based queries

	 D.	 Text-based logging

Answer: C

Explanation: Parquet is optimized for read-heavy

analytical queries that process large volumes of data,

especially in big data tools like Spark.

	 5.	 Which file format stores data in a human-
readable format?

	 A.	 JSON

	 B.	 Parquet

	 C.	 Avro

	 D.	 ORC

Answer: A

Explanation: JSON is a text-based, human-readable

format, unlike Parquet or Avro, which are binary

formats.

�Section 3: Explore Databases

	 1.	 A relational database stores data in

	 A.	 Key-value pairs

	 B.	 Graph nodes

	 C.	 Tables with rows and columns

	 D.	 Blobs

Chapter 6 Exam Preparation and Practice

197

Answer: C

Explanation: Relational databases organize data

into tables with clearly defined columns (schema)

and rows, supporting SQL-based queries.

	 2.	 Which database type is best suited for storing
product catalog data with dynamic attributes?

	 A.	 Relational database

	 B.	 Document database

	 C.	 Column-family database

	 D.	 Time-series database

Answer: B

Explanation: Document databases like MongoDB

are ideal for semi-structured data that may vary

in structure from document to document, such as

product catalogs.

	 3.	 Which is a key feature of non-relational
databases?

	 A.	 Fixed schema

	 B.	 Support for SQL

	 C.	 Schema flexibility

	 D.	 Complex joins

Answer: C

Explanation: Non-relational databases allow

flexible schema design, enabling changes to data

structure without the need to alter a fixed schema.

Chapter 6 Exam Preparation and Practice

198

	 4.	 Which scenario is ideal for a relational database?

	 A.	 Real-time telemetry data

	 B.	 User profile data with frequent changes in structure

	 C.	 Financial transaction records

	 D.	 Product reviews with star ratings and comments

Answer: C

Explanation: Financial systems require strict data

consistency, relationships, and support for ACID

transactions, which are best provided by relational

databases.

	 5.	 Which of the following is a non-relational
database type?

	 A.	 SQL Server

	 B.	 PostgreSQL

	 C.	 MongoDB

	 D.	 MySQL

Answer: C

Explanation: MongoDB is a document-oriented

NoSQL database that stores data in BSON format,

suitable for semi-structured and unstructured data.

�Section 4: Data Workloads

	 1.	 Transactional workloads typically involve

	 A.	 Complex aggregations over large datasets

	 B.	 Batch processing of historical data

Chapter 6 Exam Preparation and Practice

199

	 C.	 High volume of real-time transactions

	 D.	 Dashboard visualization

Answer: C

Explanation: Transactional workloads focus on

high-throughput, real-time processing of data with

ACID compliance, such as order processing systems.

	 2.	 Which is a characteristic of analytical workloads?

	 A.	 Real-time write performance

	 B.	 High-frequency updates

	 C.	 Large-scale aggregations

	 D.	 Point lookups

Answer: C

Explanation: Analytical workloads often involve

summarizing and aggregating large datasets to

extract insights, typically in a data warehouse.

	 3.	 Which of the following best differentiates
analytical from transactional workloads?

	 A.	 Analytical workloads are optimized for large-scale reads.

	 B.	 Transactional workloads involve fewer users.

	 C.	 Analytical workloads have strict consistency requirements.

	 D.	 Transactional workloads run infrequently.

Answer: A

Explanation: Analytical systems are tuned for large,

read-heavy queries that analyze large datasets,

whereas transactional systems are optimized for

frequent writes.

Chapter 6 Exam Preparation and Practice

200

	 4.	 Which workload type is best suited for a data
warehouse?

	 A.	 Transactional

	 B.	 Analytical

	 C.	 Real time

	 D.	 Operational

Answer: B

Explanation: Data warehouses are designed to

support analytical workloads, with optimized

storage and query performance for data analysis.

	 5.	 Transactional systems are typically optimized for

	 A.	 High concurrency and fast writes

	 B.	 Predictive analytics

	 C.	 Dashboarding and BI

	 D.	 Data archival

Answer: A

Explanation: Transactional systems handle

numerous concurrent users and operations, such

as inserts and updates, ensuring fast, reliable

transactions.

Chapter 6 Exam Preparation and Practice

201

�Section 5: Roles and Responsibilities
in Data Workloads

	 1.	 Which of the following is a key responsibility of a
Data Engineer?

	 A.	 Creating visual dashboards

	 B.	 Managing database access

	 C.	 Designing data transformation pipelines

	 D.	 Writing ad hoc reports

Answer: C

Explanation: Data engineers build and maintain

pipelines that ingest, transform, and load data for

analytics and operational uses.

	 2.	 A Data Analyst primarily focuses on

	 A.	 Building pipelines for data ingestion

	 B.	 Managing storage infrastructure

	 C.	 Analyzing and visualizing data

	 D.	 Writing stored procedures

Answer: C

Explanation: Data analysts derive insights from

data through reports, dashboards, and visualizations

using tools like Power BI.

Chapter 6 Exam Preparation and Practice

202

	 3.	 Who is responsible for the availability and
performance of a database system?

	 A.	 Data Analyst

	 B.	 Software Developer

	 C.	 Database Administrator

	 D.	 Data Engineer

Answer: C

Explanation: DBAs ensure that databases run

efficiently, are secure, and have proper backup and

recovery mechanisms in place.

	 4.	 What is a common task of a Database
Administrator (DBA)?

	 A.	 Designing Power BI dashboards

	 B.	 Writing machine learning models

	 C.	 Implementing database backup and recovery

	 D.	 Creating ETL pipelines

Answer: C

Explanation: DBAs manage administrative tasks

such as backups, maintenance, tuning, and security

of the database systems.

	 5.	 Which role is most likely to use Power BI daily?

	 A.	 Database Administrator

	 B.	 Data Analyst

	 C.	 Data Engineer

	 D.	 Network Engineer

Chapter 6 Exam Preparation and Practice

203

Answer: B

Explanation: Data analysts frequently use Power

BI to create dashboards and share insights with

stakeholders.

�Scenario-Based Practice Questions
�Chapter 2: Understanding Core Data Concepts

Scenario Question:
XYZ Insurance is building a modern data platform on Azure. They

manage structured customer data in a SQL database, store semi-structured

policy forms in JSON format, and analyze unstructured call center audio

recordings. Their team needs to choose optimal file formats for storing this

data in Azure, set up both transactional and analytical systems, and assign

roles to data professionals across the solution. The business also wants to

understand which Azure data services are most appropriate for each part

of their workload.

Which of the following combinations BEST supports XYZ’s
requirements?

	 A.	 Use Azure Data Lake with Parquet for structured

data, Cosmos DB for all storage types, implement

OLTP workloads for analytics, and have data

engineers focus on database indexing.

	 B.	 Use Azure SQL Database for structured data, Blob

Storage with JSON for semi-structured data, Data

Lake with unstructured audio files, Parquet for

analytics, and assign roles: DBAs manage Azure

SQL, Data Engineers manage data pipelines, Data

Analysts build Power BI dashboards.

Chapter 6 Exam Preparation and Practice

https://doi.org/10.1007/979-8-8688-1684-0_2

204

	 C.	 Use Azure Cosmos DB for structured and

unstructured data, store everything in CSV format,

implement batch workloads for transactions, and

assign all tasks to DBAs.

	 D.	 Store all data in Azure Table Storage, use only

CSV as the file format, define an OLAP system for

transactional workloads, and rely solely on Data

Analysts for pipeline design.

Correct Answer: B
Explanation:

•	 Azure SQL is best for structured data.

•	 JSON files in Blob Storage are ideal for semi-
structured data.

•	 Azure Data Lake can handle unstructured audio files

efficiently.

•	 Parquet is optimal for analytical queries on large data.

•	 Transactional and analytical workloads should be

split appropriately.

•	 DBAs manage databases, data engineers build
pipelines, and analysts create insights, which

matches real-world responsibilities.

•	 Azure provides all the required services.

�Chapter 3: Working with Relational Data on Azure

Scenario Question:
ABC Retail wants to migrate their on-premises inventory management

system to Azure. Their current database is highly normalized and uses

stored procedures and triggers. They are evaluating Azure SQL services

Chapter 6 Exam Preparation and Practice

https://doi.org/10.1007/979-8-8688-1684-0_3

205

and also considering open source databases due to their existing

PostgreSQL expertise. The team is exploring whether to deploy via a

managed service or VMs and want to understand how the choice will affect

performance, cost, and manageability.

Which of the following options BEST meets ABC’s needs for
flexibility, minimal management overhead, and use of existing
PostgreSQL skills?

	 A.	 Deploy SQL Server on Azure VMs, manage

normalization manually, and run all procedures

using T-SQL exclusively.

	 B.	 Choose Azure SQL Managed Instance for all

workloads, even those based on PostgreSQL, to

centralize administration.

	 C.	 Use Azure Database for PostgreSQL as a fully

managed service, continue using normalized

schemas and stored procedures, and benefit from

minimal management overhead.

	 D.	 Use Azure SQL Database serverless with

denormalized data, rewrite PostgreSQL scripts in

T-SQL, and manage indexing manually.

Correct Answer: C
Explanation:

•	 Azure Database for PostgreSQL is a fully managed
service for PostgreSQL users.

•	 It supports stored procedures, normalization, and

other advanced features with minimal overhead.

•	 This respects their team’s current skillset while taking

advantage of Azure’s PaaS capabilities.

Chapter 6 Exam Preparation and Practice

206

•	 VM-based deployments would increase management

complexity, and switching to SQL Server unnecessarily

changes technologies.

�Chapter 4: Exploring Non-relational Data on Azure

Scenario Question:
A startup called NKTech is developing a video analysis platform. They

store high-resolution videos, log files, and IoT sensor data. The data must

be queried flexibly based on attributes (e.g., timestamp, device ID). The

team is considering using Cosmos DB to enable global data availability

and is exploring which Azure Storage services are most suitable for storing

large, unstructured files, with options to scale.

Which solution BEST fits NKTech’s needs for storage, query
flexibility, and global availability?

	 A.	 Use Azure Table Storage for videos and logs and

Azure SQL for sensor data; replicate manually

across regions.

	 B.	 Store videos in Azure Blob Storage, use Cosmos DB

with a SQL API for logs and sensor data, and enable

global distribution.

	 C.	 Use Azure Data Lake Gen2 for all data types and

access it through REST APIs for querying IoT data.

	 D.	 Use Microsoft OneLake for videos and Cosmos DB

with the Gremlin API for querying sensor metrics by

timestamp.

Chapter 6 Exam Preparation and Practice

https://doi.org/10.1007/979-8-8688-1684-0_4

207

Correct Answer: B
Explanation:

•	 Blob Storage is ideal for large unstructured data like

video files.

•	 Cosmos DB with SQL API supports flexible queries on

semi-structured data like logs and IoT readings.

•	 Cosmos DB’s multi-region replication and low
latency features meet the global availability

requirement.

•	 Table Storage and OneLake don’t support the rich

query capabilities needed here.

�Chapter 5: Analytics Workloads on Azure

Scenario Question:
A financial services company is building a real-time analytics

dashboard to monitor fraud across global transactions. Data is ingested

from multiple sources, including batch data from legacy systems and

real-time feeds from APIs. The team uses Microsoft Fabric for real-time

processing and wants to design appropriate pipelines and data models.

They also need to visualize the data in Power BI to provide timely insights

to decision-makers.

Which architecture best meets their goals for ingestion, real-time
analytics, and visualization?

	 A.	 Use Azure Synapse Pipelines for real-time feeds,

store results in a SQL Server VM, and connect to

Power BI using imported datasets.

	 B.	 Use Azure Data Factory for ingestion, store data in

Azure SQL, process with T-SQL scripts, and embed

static dashboards in Power BI.

Chapter 6 Exam Preparation and Practice

https://doi.org/10.1007/979-8-8688-1684-0_5

208

	 C.	 Use Microsoft Fabric Real-Time Intelligence for

streaming ingestion, Apache Spark Structured

Streaming for transformation, store results in a

Lakehouse, and use Power BI Direct Lake mode for

dynamic visualization.

	 D.	 Use Power BI for both ingestion and storage, and

create dashboards based on manually uploaded

Excel files.

Correct Answer: C
Explanation:

•	 Microsoft Fabric Real-Time Intelligence enables real-
time ingestion.

•	 Apache Spark Structured Streaming can process data

in real time.

•	 A Lakehouse offers scalable storage with analytics

capabilities.

•	 Power BI Direct Lake provides fast, near real-time

insights by directly querying the Lakehouse data

without importing.

�Mock Exam
�Full-Length Practice Test

	 1.	 Which of the following best describes semi-

structured data?

	 A.	 Data stored in relational tables with fixed schemas

	 B.	 Binary data without any structure

Chapter 6 Exam Preparation and Practice

209

	 C.	 Data that contains tags or markers to separate data elements

	 D.	 Data stored as plain text files

	 2.	 In which scenario is the use of Parquet format most

beneficial?

	 A.	 Streaming data ingestion

	 B.	 Low-latency transactional processing

	 C.	 Complex analytical queries with large datasets

	 D.	 Real-time dashboard updates

	 3.	 Which statement correctly differentiates between

analytical and transactional workloads?

	 A.	 Analytical workloads modify data; transactional ones read

data only

	 B.	 Transactional workloads support batch processing

	 C.	 Analytical workloads handle complex queries over

historical data

	 D.	 Transactional workloads are not time-sensitive

	 4.	 Which role is most responsible for building ETL

pipelines and maintaining data flow orchestration?

	 A.	 Data Analyst

	 B.	 Data Engineer

	 C.	 Business Analyst

	 D.	 Database Administrator

Chapter 6 Exam Preparation and Practice

210

	 5.	 JSON, CSV, and Parquet are examples of

	 A.	 Database types

	 B.	 Data query languages

	 C.	 File formats for storing structured and semi-structured data

	 D.	 Cloud storage solutions

	 6.	 What is a primary advantage of using managed

relational databases on Azure?

	 A.	 Full control over OS and hardware configurations

	 B.	 Automatic patching and scaling

	 C.	 Manual tuning of all query plans

	 D.	 Ability to run NoSQL queries

	 7.	 Which of the following statements is true about

Azure SQL Managed Instance?

	 A.	 It supports only T-SQL and not stored procedures.

	 B.	 It’s a fully platform-as-a-service (PaaS) offering with near

100% compatibility with SQL Server.

	 C.	 It’s only available in Azure Government clouds.

	 D.	 It is a serverless database only used for dev/test.

	 8.	 What does normalization in relational databases

primarily aim to achieve?

	 A.	 Maximize disk usage

	 B.	 Increase redundancy for better performance

	 C.	 Eliminate data redundancy and improve data integrity

	 D.	 Speed up transaction commits

Chapter 6 Exam Preparation and Practice

211

	 9.	 Which database object is responsible for ensuring

referential integrity?

	 A.	 View

	 B.	 Index

	 C.	 Foreign Key

	 D.	 Trigger

	 10.	 Which Azure service would be ideal for hosting a

PostgreSQL database with minimal administrative

overhead?

	 A.	 Azure Blob Storage

	 B.	 Azure Cosmos DB

	 C.	 Azure Database for PostgreSQL – Flexible Server

	 D.	 Azure SQL Database

	 11.	 In what scenario is a NoSQL database like Azure

Cosmos DB preferred?

	 A.	 Applications with fixed schemas

	 B.	 OLAP-based data warehouses

	 C.	 Applications requiring high availability and low latency

globally

	 D.	 Banking applications with ACID transaction requirements

	 12.	 Azure Data Lake Storage Gen2 is optimized for

	 A.	 Low-latency transactional data

	 B.	 Real-time dashboards

	 C.	 Big data analytics with hierarchical namespace support

	 D.	 Mobile app caching

Chapter 6 Exam Preparation and Practice

212

	 13.	 Which Azure service would be most appropriate

to store petabytes of unstructured log data for

analytics?

	 A.	 Azure File Storage

	 B.	 Azure SQL Database

	 C.	 Azure Blob Storage

	 D.	 Azure Table Storage

	 14.	 Which of the following APIs is NOT supported by

Azure Cosmos DB?

	 A.	 SQL

	 B.	 MongoDB

	 C.	 Cassandra

	 D.	 MySQL

	 15.	 What’s a key feature of Microsoft OneLake in

Microsoft Fabric?

	 A.	 Only supports structured data

	 B.	 Requires external data warehouse integration

	 C.	 Provides a single unified data lake for all analytics workloads

	 D.	 Built only for use with SQL Server

	 16.	 Which service is designed to handle both structured

and unstructured data using a multi-model

approach?

	 A.	 Azure SQL Managed Instance

	 B.	 Azure Cosmos DB

Chapter 6 Exam Preparation and Practice

213

	 C.	 Azure Data Factory

	 D.	 Azure Data Explorer

	 17.	 A data workload requiring high transactional

throughput with strict consistency would benefit

most from

	 A.	 Azure Table Storage

	 B.	 Azure Blob Storage

	 C.	 Azure SQL Database

	 D.	 Microsoft Fabric Real-Time Intelligence

	 18.	 Which Azure service provides real-time analytics on

data streams?

	 A.	 Azure Data Lake Storage Gen2

	 B.	 Azure Blob Storage

	 C.	 Microsoft Fabric Real-Time Intelligence

	 D.	 Azure File Storage

	 19.	 What is the role of a foreign key in a relational

database?

	 A.	 Improves read performance

	 B.	 Links data between tables and enforces relationships

	 C.	 Allows table partitioning

	 D.	 Tracks historical changes

Chapter 6 Exam Preparation and Practice

214

	 20.	 Which Azure data service supports the

Cassandra API?

	 A.	 Azure SQL Database

	 B.	 Azure Table Storage

	 C.	 Azure Cosmos DB

	 D.	 Azure Database for PostgreSQL

	 21.	 Which component is crucial in a stream processing

architecture?

	 A.	 File storage

	 B.	 Queue or messaging system

	 C.	 Data warehouse

	 D.	 Static ETL jobs

	 22.	 Which Azure Storage service provides SMB

protocol access?

	 A.	 Azure Table Storage

	 B.	 Azure Blob Storage

	 C.	 Azure File Storage

	 D.	 Azure Data Lake Storage Gen2

	 23.	 What is the key benefit of Apache Spark structured

streaming?

	 A.	 One-time batch ingestion

	 B.	 Stateless data processing

	 C.	 Real-time processing with fault tolerance and event-time

processing

	 D.	 Support only for SQL syntax

Chapter 6 Exam Preparation and Practice

215

	 24.	 Power BI allows users to create data models

primarily for

	 A.	 High-performance OLTP systems

	 B.	 Predictive analytics model training

	 C.	 Generating business insights via visualizations

	 D.	 Code-first application development

	 25.	 Which type of workload would most benefit from

using Azure Synapse Analytics?

	 A.	 A payroll system

	 B.	 A blogging platform

	 C.	 A real-time chat app

	 D.	 A business intelligence system analyzing large datasets

	 26.	 Which feature of Power BI allows aggregation of

large datasets across multiple data sources?

	 A.	 Power Automate

	 B.	 Power Query

	 C.	 Composite Models

	 D.	 DAX Measures

	 27.	 What is a significant difference between a relational

and non-relational database?

	 A.	 Relational databases can’t be used in cloud environments.

	 B.	 Non-relational databases use fixed schemas.

	 C.	 Relational databases use tabular structures; non-relational

databases are more flexible.

	 D.	 Non-relational databases do not support transactions.

Chapter 6 Exam Preparation and Practice

216

	 28.	 What is the main advantage of data normalization?

	 A.	 Slower join operations

	 B.	 Better disk utilization through redundancy

	 C.	 Efficient updates by eliminating data duplication

	 D.	 Storing blobs as text

	 29.	 Azure Blob Storage is most suitable for

	 A.	 Hosting relational databases

	 B.	 Storing transaction logs

	 C.	 Serving image and video files for a website

	 D.	 Managing SQL stored procedures

	 30.	 In Power BI, which feature would you use to

perform row-level security?

	 A.	 Data Gateway

	 B.	 DAX Filters

	 C.	 Role Definitions

	 D.	 Visual-Level Filters

	 31.	 Which type of database is best for storing IoT sensor

data in a time-series format?

	 A.	 Azure SQL Database

	 B.	 Azure Cosmos DB

	 C.	 Azure Table Storage

	 D.	 Azure Data Lake Storage

Chapter 6 Exam Preparation and Practice

217

	 32.	 Which Power BI component helps build dashboards

using existing datasets?

	 A.	 Power Query

	 B.	 Power BI Service

	 C.	 Power Pivot

	 D.	 Power Automate

	 33.	 What’s the role of a Database Administrator in an

organization?

	 A.	 Defining visualization logic

	 B.	 Managing and securing database environments

	 C.	 Developing web interfaces

	 D.	 Analyzing market trends

	 34.	 Cosmos DB ensures high availability through

	 A.	 Single-node replication

	 B.	 Manual backups

	 C.	 Multi-region replication and consistency models

	 D.	 Infrequent indexing

	 35.	 Which feature allows Power BI users to define

reusable calculations?

	 A.	 Power Query

	 B.	 Power Apps

	 C.	 DAX

	 D.	 SQL Studio

Chapter 6 Exam Preparation and Practice

218

	 36.	 Which SQL feature allows users to fetch only certain

rows meeting specific conditions?

	 A.	 GROUP BY

	 B.	 SELECT *

	 C.	 WHERE clause

	 D.	 JOIN

	 37.	 Which Azure service allows scalable ingestion and

orchestration of data from multiple sources?

	 A.	 Azure Stream Analytics

	 B.	 Azure Data Factory

	 C.	 Azure Cosmos DB

	 D.	 Power BI

	 38.	 One advantage of managed open source databases

on Azure is

	 A.	 Complete isolation from cloud environment

	 B.	 No support for backup

	 C.	 High availability with less manual maintenance

	 D.	 Support for Microsoft Access

	 39.	 What defines the OLTP workload?

	 A.	 Historical data mining

	 B.	 Real-time analytical dashboards

	 C.	 High-volume read-write operations with short transactions

	 D.	 Massive batch processing

Chapter 6 Exam Preparation and Practice

219

	 40.	 Which Microsoft tool enables near real-time

reporting through dashboards?

	 A.	 SSIS

	 B.	 Power Automate

	 C.	 Power BI

	 D.	 Excel Macros

	 41.	 Which is not a feature of Azure SQL Database?

	 A.	 Elastic scaling

	 B.	 In-memory processing

	 C.	 Data replication

	 D.	 Hadoop integration

	 42.	 What format is columnar and optimized for big data

analytics?

	 A.	 CSV

	 B.	 JSON

	 C.	 Parquet

	 D.	 TXT

	 43.	 Which capability is offered by Microsoft Fabric Real-

Time Intelligence?

	 A.	 Database mirroring

	 B.	 Real-time alerting and analytics using streaming data

	 C.	 Static reporting

	 D.	 SQL Server clustering

Chapter 6 Exam Preparation and Practice

220

	 44.	 Data Analysts primarily use which tool for

reporting?

	 A.	 Azure Synapse

	 B.	 Azure Data Factory

	 C.	 Power BI

	 D.	 Azure Data Lake

	 45.	 Which Power BI capability allows for custom visual

creation?

	 A.	 DAX Editor

	 B.	 Query Editor

	 C.	 Developer Tools and Custom Visual SDK

	 D.	 Dashboard Designer

	 46.	 Which Azure service is designed for serverless event

processing?

	 A.	 Azure Functions

	 B.	 Azure Table Storage

	 C.	 Azure SQL Database

	 D.	 Azure Active Directory

	 47.	 What is a key business benefit of using Azure SQL

Database?

	 A.	 Complex manual configurations

	 B.	 Auto-scaling and built-in high availability

	 C.	 Limited data size

	 D.	 No geographic replication

Chapter 6 Exam Preparation and Practice

221

	 48.	 Which type of key helps prevent duplication in a

relational table?

	 A.	 Composite Key

	 B.	 Unique Key

	 C.	 Foreign Key

	 D.	 Surrogate Key

	 49.	 Which tool allows drag-and-drop visual report

creation?

	 A.	 SQL Server Management Studio

	 B.	 Azure Monitor

	 C.	 Power BI Desktop

	 D.	 Visual Studio Code

	 50.	 Microsoft Fabric is best described as

	 A.	 A data replication service

	 B.	 A unified platform for data integration, engineering, and

real-time analytics

	 C.	 A NoSQL engine

	 D.	 A backup-only solution

�Answers and Explanations

	 1.	 C – Tags like in XML or JSON structure semi-

structured data.

	 2.	 C – Parquet is optimized for large-scale analytical

queries.

Chapter 6 Exam Preparation and Practice

222

	 3.	 C – Analytical workloads are for large, complex

queries over historical data.

	 4.	 B – Data Engineers manage pipelines and

transformations.

	 5.	 C – These are file formats for structured/semi-

structured data.

	 6.	 B – Managed services reduce overhead with

automation.

	 7.	 B – SQL MI is a PaaS offering with broad SQL Server

compatibility.

	 8.	 C – Normalization minimizes redundancy, ensuring

data integrity.

	 9.	 C – Foreign keys maintain referential integrity.

	 10.	 C – Flexible Server offers managed PostgreSQL

hosting.

	 11.	 C – Cosmos DB supports global distribution and low

latency.

	 12.	 C – Optimized for big data analytics with Hadoop-

compatible storage.

	 13.	 C – Blob Storage handles massive unstructured

data best.

	 14.	 D – Cosmos DB does not support MySQL API.

	 15.	 C – OneLake unifies analytics storage in

Microsoft Fabric.

	 16.	 B – Cosmos DB supports multiple models like key-

value, graph, etc.

Chapter 6 Exam Preparation and Practice

223

	 17.	 C – SQL DB is ideal for transactional consistency.

	 18.	 C – Microsoft Fabric Real-Time Intelligence supports

streaming data analytics.

	 19.	 B – Foreign keys enforce relational links

between tables.

	 20.	 C – Cosmos DB supports the Cassandra API.

	 21.	 B – Messaging systems enable real-time data flow.

	 22.	 C – Azure File Storage uses SMB protocol.

	 23.	 C – Structured streaming is fault-tolerant and

supports real-time logic.

	 24.	 C – Power BI turns models into business insights.

	 25.	 D – Synapse Analytics suits large-scale analytical

workloads.

	 26.	 C – Composite models integrate datasets across

sources.

	 27.	 C – Relational uses rigid tables; non-relational is

schema-flexible.

	 28.	 C – Normalization optimizes update performance

by eliminating redundancy.

	 29.	 C – Blob Storage handles web file delivery well.

	 30.	 C – Role-based row-level security controls access.

	 31.	 B – Cosmos DB is well suited for time-series

IoT data.

	 32.	 B – Power BI Service builds dashboards from

datasets.

Chapter 6 Exam Preparation and Practice

224

	 33.	 B – DBAs manage and secure database

infrastructure.

	 34.	 C – Multi-region and consistency options

ensure uptime.

	 35.	 C – DAX allows for custom, reusable calculations.

	 36.	 C – WHERE limits results based on condition.

	 37.	 B – Azure Data Factory integrates and

orchestrates data.

	 38.	 C – Managed services reduce overhead and increase

reliability.

	 39.	 C – OLTP involves many quick, read-write

interactions.

	 40.	 C – Power BI supports real-time dashboarding.

	 41.	 D – Hadoop integration is not a native feature.

	 42.	 C – Parquet is a columnar format suited to big data.

	 43.	 B – Real-Time Intelligence supports alerts and fast

queries.

	 44.	 C – Analysts use Power BI for visuals and reporting.

	 45.	 C – Developers use SDKs to create custom visuals.

	 46.	 A – Azure Functions handle serverless event-

based logic.

	 47.	 B – Built-in scaling and HA are major benefits.

	 48.	 B – Unique keys enforce value uniqueness.

Chapter 6 Exam Preparation and Practice

225

	 49.	 C – Power BI Desktop supports drag-and-drop

reporting.

	 50.	 B – Microsoft Fabric provides an all-in-one analytics

platform.

�Conclusion
The DP-900 is not just an exam – it’s your first step into the world of
cloud data. Whether you’re transitioning careers, validating knowledge, or

stepping into a data-related role, this certification lays the foundation.

Go forward confidently. You’re more ready than you think. Go get

certified!

Chapter 6 Exam Preparation and Practice

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Exam Overview and Structure
	Introduction to DP-900 Certification
	Purpose of the Exam
	What Is the Primary Purpose of the DP-900 Exam?
	Who Should Take This Exam?
	Benefits of DP-900 Certification

	Exam Domains and Weightage
	Understanding Core Data Concepts (25–30%)
	Working with Relational Data on Azure (20–25%)
	Exploring Non-relational Data on Azure (15–20%)
	Analytics Workloads on Azure (25–30%)

	Understanding the Exam Format
	DP-900 Question Types
	Time Allocation and Scoring System

	Study Plan and Strategies
	Four-Week Preparation Plan
	Week 1: Chapter 2 – Understanding Core Data Concepts (25–30%)
	Week 2: Chapter 3 – Working with Relational Data on Azure (20–25%)
	Week 3: Chapter 4 – Exploring Non-relational Data on Azure (15–20%)
	Week 4: Chapter 5 – Analytics Workloads on Azure (25–30%)
	Leveraging Microsoft Learn, Documentation, and Practice Labs

	Summary
	1. Introduction to DP-900 Certification
	2. Exam Domains and Weightage
	3. Understanding the Exam Format
	4. Study Plan and Strategies

	Chapter 2: Understanding Core Data Concepts
	Introduction to Data Representation
	Overview
	Ways to Represent Data
	Structured Data
	Examples
	Use Cases
	Real-Time Example

	Semi-structured Data
	Examples
	Use Cases
	Real-Time Example

	Unstructured Data
	Examples
	Use Cases
	Real-Time Example

	Data Storage Options
	Delimited Text Files
	Key Characteristics
	Example
	CSV File Example
	TSV File Example
	Pipe-Separated File Example

	JavaScript Object Notation (JSON)
	Key Characteristics

	JSON Structure
	Example JSON Data

	Extensible Markup Language (XML)
	Key Characteristics

	Binary Large Object (BLOB)
	Characteristics of a BLOB

	Optimized File Formats
	Avro
	ORC (Optimized Row Columnar)
	Parquet

	Explore Databases
	Relational Databases
	Non-relational Databases

	Data Workloads
	Transactional Workloads
	Online Transaction Processing (OLTP)
	Key Characteristics of OLTP Systems
	ACID Properties of OLTP

	Analytical Workloads
	Online Analytical Processing (OLAP)
	Key Characteristics of OLAP
	Data Warehouse
	Key Characteristics of a Data Warehouse
	Components of a Data Warehouse

	Key Differences Between Transactional and Analytical Workloads

	Roles and Responsibilities in Data Workloads
	1. Database Administrator (DBA)
	2. Data Engineer
	3. Data Analyst

	Explore Data Services
	Data Services in Azure
	1. Azure SQL
	2. Open Source Databases in Azure
	3. Azure Cosmos DB
	4. Azure Storage
	5. Azure Data Factory
	6. Microsoft Fabric
	7. Azure Databricks
	8. Azure Stream Analytics
	9. Azure Data Explorer
	10. Microsoft Purview

	Roles and Services

	Summary

	Chapter 3: Working with Relational Data on Azure
	Relational Data Concepts
	Features of Relational Data
	Overview
	Relational Data
	Example of Relational Data
	Features of Relational Data
	Data Normalization
	Why Normalization?
	Levels of Normalization
	1. First Normal Form (1NF)
	2. Second Normal Form (2NF)
	3. Third Normal Form (3NF)
	4. Boyce-Codd Normal Form (BCNF)
	5. Fourth Normal Form (4NF) and Fifth Normal Form (5NF)

	When to Stop Normalizing?

	Explore SQL
	Common RDBMS That Uses SQL
	1. Microsoft SQL Server (T-SQL)
	2. MySQL
	3. PostgreSQL
	4. MariaDB
	5. Oracle Database (PL/SQL)

	SQL Command Categories
	1. DDL (Data Definition Language)
	2. DQL (Data Query Language)
	3. DML (Data Manipulation Language)
	4. DCL (Data Control Language)
	5. TCL (Transaction Control Language)

	Explore Database
	1. Tables
	2. Views
	3. Functions
	5. Indexes
	Comparison of Database Objects

	Azure Relational Data Services
	Overview
	Azure SQL Family
	1. Azure SQL Database
	2. Azure SQL Managed Instance
	3. SQL Server on Azure Virtual Machines (VMs)

	Comparison of Azure SQL Services
	Key Features of Azure SQL Services
	1. Azure SQL Database
	2. Azure SQL Managed Instance
	3. SQL Server on Azure VMs

	Business Benefits of Azure Relational Data Services
	1. Azure SQL Database Benefits
	Cost Efficiency
	Performance and Scalability
	Security and Compliance
	Business Agility

	2. Azure SQL Managed Instance Benefits
	Migration Simplicity
	Enterprise-Grade Features
	Hybrid Cloud Flexibility

	3. SQL Server on Azure VMs Benefits
	Full Control and Customization
	Legacy Application Support
	Cost Optimization

	Comparative Business Benefits Summary

	Open Source Relational Databases on Azure
	Overview of Services
	MySQL
	MariaDB
	PostgreSQL

	Azure Managed Open Source Database Services
	1. Azure Database for MySQL
	2. Azure Database for MariaDB
	3. Azure Database for PostgreSQL

	Benefits of Azure Managed Open Source Databases
	Benefits of Azure Database for MySQL
	Benefits of Azure Database for MariaDB
	Benefits of Azure Database for PostgreSQL

	Summary

	Chapter 4: Exploring Non-relational Data on Azure
	Introduction to Non-relational Data
	Overview
	Non-relational Data
	Key Characteristics

	Why Non-relational on Azure?
	Difference Between Relational and Non-relational Data
	When to Choose Non-relational Data?
	Examples of Non-relational Data
	1. Key-Value
	2. Document
	3. Column-Family
	4. Graph
	5. Object (Blob Storage)

	Azure Storage Services
	Explore Azure Blob Storage
	Introduction to Azure Blob Storage
	Types of Blobs in Azure Blob Storage
	1. Block Blobs
	2. Page Blobs
	3. Append Blobs

	Azure Blob Storage Access Tiers
	Real-World Use Cases

	Explore Azure Data Lake Storage Gen2
	Introduction to Azure Data Lake Storage Gen2
	Key Features
	Core Components of ADLS Gen2
	Why Use ADLS Gen2 over Blob Storage for Analytics?
	Use Cases for Azure Data Lake Storage Gen2
	Integration with Other Azure Services

	Explore Microsoft OneLake in Fabric
	Introduction to Microsoft OneLake
	Key Features
	Why OneLake?
	Core Concepts of OneLake
	Use Cases for Microsoft OneLake
	Integration with Microsoft Fabric Tools

	Explore Azure File Storage
	Introduction to Azure File Storage
	Key Features
	Supported Network File Sharing Protocols
	Key Differences
	Deployment Considerations
	1. Storage Account Tiers
	2. Network Configuration
	3. Redundancy Options

	Use Cases and Examples
	1. Hybrid Cloud File Sharing (SMB)
	2. Lift-and-Shift Linux Workloads (NFS)
	3. Collaborative Development Environments
	4. Backup and Archival

	Integration with Azure Services

	Explore Azure Tables
	Introduction to Azure Table Storage
	Key Concepts and Data Model
	Partitioning and Scalability
	When to Use Azure Table Storage
	Accessing Azure Table Storage
	Azure Table Storage vs. Azure Cosmos DB Table API

	Azure Cosmos DB: A Multi-model Database Service
	Explore Azure Cosmos DB: Key Features and When to Use
	Introduction to Azure Cosmos DB
	Key Features
	When to Use Azure Cosmos DB?

	Explore APIs for Azure Cosmos DB
	Azure Cosmos DB for NoSQL
	Azure Cosmos DB for MongoDB
	Azure Cosmos DB for PostgreSQL
	Azure Cosmos DB for Table
	Azure Cosmos DB for Apache Cassandra
	Azure Cosmos DB for Apache Gremlin

	Common Use Cases for Azure Cosmos DB
	1. Globally Distributed Applications
	2. IoT and Telemetry Data
	3. Real-Time Personalization and Recommendations
	4. Gaming Leaderboards and Player Data
	5. Multi-tenant SaaS Applications
	6. Fraud Detection and Financial Transactions
	7. Content Management and Catalog Systems

	Summary
	1. Non-relational vs. Relational Data
	2. Azure Storage Services for Non-relational Data
	3. Azure Cosmos DB: The Multi-model Database Powerhouse
	4. Real-World Applications of Azure Cosmos DB

	Chapter 5: Analytics Workloads on Azure
	Explore Fundamentals of Large-Scale Analytics
	Describe Data Warehousing Architecture
	Overview
	1. Data Ingestion and Processing
	2. Analytical Data Store
	3. Analytical Data Model
	4. Data Visualization

	Explore Data Ingestion Pipelines
	Overview
	Data Pipelines in Azure
	Key Components of Data Ingestion Pipelines
	1. Pipeline Structure
	2. Types of Activities
	3. Linked Services and Integration
	4. Execution and Orchestration

	ETL vs. ELT in Azure Pipelines
	Example: Building a Pipeline in Azure Data Factory
	Microsoft Fabric Pipelines (Unified Approach)
	Why Use Data Pipelines?

	Explore Analytical Data Stores
	1. Data Warehouses
	2. Data Lakes
	Hybrid Approaches: Data Lakehouses
	Azure Services for Analytical Data Stores
	Microsoft Fabric
	Azure Databricks

	Bringing It All Together

	Explore Fundamentals of Real-Time Analytics
	Understand Batch and Stream Processing
	Overview
	What Is Data Processing?
	1. Batch Processing
	2. Stream Processing
	Batch vs. Stream Processing: Key Differences
	Combining Batch and Stream Processing
	Benefits of Hybrid Approaches

	Core Components of a Stream Processing Architecture
	A High-Level Overview of Stream Processing Architecture
	Real-Time Analytics Technologies in Azure
	Data Sources for Stream Processing in Azure
	Output Targets (Sinks) for Stream Processing

	Explore Microsoft Fabric Real-Time Intelligence
	Key Features of Real-Time Intelligence in Microsoft Fabric
	1. End-to-End Streaming Solution
	2. Unified Real-Time Hub
	3. No-Code Data Connectivity
	4. Rich Visualizations and Dashboards
	5. Real-Time Alerts with Reflex
	6. Geospatial and Advanced Analytics

	Exploring and Acting on Data in Real Time
	How Real-Time Intelligence Fits into Microsoft Fabric

	Explore Apache Spark Structured Streaming
	Apache Spark: A Unified Engine for Batch and Streaming
	Introducing Spark Structured Streaming
	How It Works
	Use Cases for Spark Structured Streaming
	Delta Lake: Enhancing Stream and Batch Consistency
	Spark on Microsoft Azure: Where It All Comes Together

	Explore Fundamentals of Data Visualization with Microsoft Power BI
	Introduction
	Capabilities and Features of Power BI
	What Is Power BI?
	Key Components of Power BI
	1. Power BI Desktop
	2. Power BI Service (Power BI Online)
	3. Power BI Mobile Apps
	4. Power BI Report Server
	5. Power BI Gateway

	Power BI Workflow: From Data to Dashboard
	Step 1: Connect to Data Sources
	Step 2: Transform and Clean Data
	Step 3: Model the Data
	Step 4: Create Visualizations
	Step 5: Publish and Share
	Step 6: Collaborate and Act

	Benefits of Using Power BI for Data Visualization

	Building Data Models in Power BI
	Understanding Analytical Models
	Tables and Schema Design
	Dimension Tables
	Fact Tables

	Attribute Hierarchies
	Data Modeling in Microsoft Power BI

	Choosing the Right Visualization for Insights
	Key Considerations for Data Visualization
	1. Know Your Audience
	2. Select the Right Visualization Type
	3. Prioritize Clarity and Simplicity
	4. Ensure Accuracy
	5. Use Interactivity Wisely

	Common Visualization Types in Power BI
	1. Tables and Text Cards
	2. Bar and Column Charts
	3. Line Charts
	4. Pie and Donut Charts
	5. Scatter Plots
	6. Maps

	Interactive Reports in Power BI

	Summary
	1. Explore Fundamentals of Large-Scale Analytics
	2. Explore Fundamentals of Real-Time Data Analytics
	3. Explore Fundamentals of Data Visualization with Microsoft Power BI

	Chapter 6: Exam Preparation and Practice
	Overview
	Online vs. Offline Exam Readiness
	Online Exam Readiness (Remote Proctored Exam)
	A. System and Technical Requirements
	B. Environment Readiness
	C. ID Verification
	D. Best Practices

	Offline Exam Readiness (Test Center–Based Exam)
	A. Booking a Test Center
	B. What to Bring
	C. What to Expect
	D. Center Etiquette

	Exam Tips and Common Pitfalls
	General Tips
	Multiple Choice Questions
	Drag-and-Drop Questions
	Case Study Questions
	Common Pitfalls to Avoid

	Final Preparation Checklist
	After the Exam
	Practice Questions and Answers
	Practice Questions with Explanations
	Section 1: Introduction to Data Representation
	Section 2: Data Storage Options
	Section 3: Explore Databases
	Section 4: Data Workloads
	Section 5: Roles and Responsibilities in Data Workloads

	Scenario-Based Practice Questions
	Chapter 2: Understanding Core Data Concepts
	Chapter 3: Working with Relational Data on Azure
	Chapter 4: Exploring Non-relational Data on Azure
	Chapter 5: Analytics Workloads on Azure

	Mock Exam
	Full-Length Practice Test
	Answers and Explanations

	Conclusion

