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The book provides a comprehensive review of developments in all aspects 
of solar photovoltaic technology in a single volume. It discusses maximum 
power point tracking (MPPT) control for achieving maximum possible 
power, robust control to maintain stable operation under varying internal 
as well as the ambient environment, inverter control for constant frequency 
operation, and automating the maintenance of photovoltaic solar plants.

This book:

•	 Presents modeling methods based on mathematical and physical 
principles for solar photovoltaic cells, power quality analysis of rooftop 
grid-connected PV, and PV generation analyzed by bidirectional long 
short-term memory networks (BiLSTM) to evaluate the performance 
reliability of the bifacial module and the control system of the 
synchronous reference CCVSI for active power injection.

•	 Provides an overview of SPECS control, various control loops, control 
algorithms, controllers, and their impact on the prosumer and the 
smart grid and discusses instantaneous power theory (pq theory).

•	 Covers control techniques of power electronic converters, optimization 
techniques, and management of the grid-connected solar PV arrays, 
qualification testing of bifacial modules as per IEC- 61215: 2021 
and IEC 61730, including analytical approach elaborated for the 
performance of a building-integrated solar PV/T system.

•	 Discusses and comprehensively reviews degradation mechanisms, 
characterization techniques, and occurrence frequencies based 
on field testing, long-term analyses of PV installations, harmonic 
compensation, and the enhancement of Power Quality for the entire 
system, a novel approach of developing an effective and systematic 
brownout procedure and a novel game theory auctioning framework 
for trading energy in smart grids and explains Gbest-guided Artificial 
Bee Colony (GABC) optimization.

•	 Includes real-life case studies.

It will serve as an ideal reference text for senior undergraduate, graduate 
students, and academic researchers in fields including electrical engineering, 
electronics and communications engineering, environmental engineering, 
and renewable energy.
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Preface

Photovoltaic power generation is rapidly growing in popularity as a sustain-
able and reliable source of clean energy. As the demand for photovoltaic 
systems increases, so does the need for a comprehensive understanding of 
the fundamentals, modeling, performance analysis, and control of these 
systems.

This book, Photovoltaic Modules: Fundamentals, Modeling, 
Performance Analysis, and Control, covers all aspects of photovoltaic sys-
tems in a structured and systematic manner. The primary goal of this book 
is to provide readers with a deep understanding of the theory and practical 
applications of photovoltaic systems.

The book begins by introducing the fundamentals of photovoltaic tech-
nology, including the physics of solar cells, different types of solar panels, 
and the design of photovoltaic systems. It then delves into the modeling of 
photovoltaic systems, covering topics such as system sizing, performance 
prediction, and energy yield estimation.

The book also explores the performance analysis of photovoltaic systems, 
including techniques for assessing the efficiency, reliability, and degradation 
of solar panels. In addition, it provides an overview of the various control 
strategies used to optimize the operation of photovoltaic systems, such as 
maximum power point tracking and grid integration.

Throughout the book, practical examples and case studies are used to 
illustrate key concepts and principles. The book is intended for students, 
researchers, and professionals in the fields of renewable energy, electrical 
engineering, and sustainability, who are seeking to enhance their knowl-
edge and skills in photovoltaic systems.

We hope that this book will serve as a valuable resource for anyone inter-
ested in learning more about photovoltaic systems and their applications in 
the modern world. We believe that a solid understanding of photovoltaic 
technology is crucial for shaping a sustainable future, and we invite you to 
join us on this journey of exploration and discovery.

Dhiraj Magare,  
Prasiddh Trivedi,  

Kedar Khandeparkar
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Chapter 1

Solar photovoltaic cell
History, working principle, 
and landscape

Sudhir Kumar

1.1 � PHOTOVOLTAIC CONCEPT

Photovoltaic (PV) essentially means “voltage” created by light “photons”. 
Photons are minute energy packets of electromagnetic radiation, also called 
“light quantum”. The concept originated (1905) in Albert Einstein’s expla-
nation of the photoelectric effect, in which he proposed the existence of dis-
crete energy packets during the transmission of light. A photon is assumed 
to be a subatomic particle, having energy and momentum but no mass or 
electric charge. The definition of photovoltaic is derived from the Greek 
words’ “photo”, meaning “light”, and “voltaic”, meaning “voltage”.

Photovoltaic cells convert artificial light or sunlight into electricity. They 
are more commonly known as SPV (solar photovoltaic) cells due to their 
ability to utilize the free energy source of solar energy to generate market-
able electricity. A photovoltaic (PV) cell, or solar cell, is a nonmechanical 
device that instantly converts sunlight directly into electricity, functioning 
as a silent electric generator. Sunlight is composed of photons, or energy 
packets, of solar energy. Corresponding to the different wavelengths of the 
solar spectrum, photons contain varying amounts of energy. A PV cell is 
made of semiconductor material. When photons strike a PV cell, the por-
tion of absorbed photons (say 20%) provides energy to generate electricity, 
while the rest either are reflected or pass through.

Solar radiation has three ranges or bands in its spectrum: ultraviolet, 
visible, and infrared (Figure 1.1). Of the light that reaches Earth’s surface, 
infrared radiation makes up 49.4%, while visible light contributes 42.3%. 
Ultraviolet radiation makes up just over 8% of the total solar radiation (Sze 
et. al. Chapter 1). Most infrared photons correspond to higher wavelengths 
with lower energy and may not excite electrons in solar cells to produce 
electricity. UV photons have lower wavelengths and high energy and will 
excite too many electrons that will get lost before generating electrical cur-
rent. It is the visible or near-infrared photons with optimum energy that are 
mainly responsible for generating electricity through solar cells.

Photovoltaic Modules 
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Solar photovoltaic cell

1.2 � HISTORICAL DEVELOPMENT

Literature beautifully documenting historical development in a concise 
manner is available (Elizabeth et. al.). Recalling history as an event on this 
day is presented in an interesting way [1]. However, a detailed chronological 
account has been presented elsewhere [3]. Fraas has divided the historical 
developments into six time periods, beginning with the discovery in 1839.

	 a.	1800–1904: Discovery Years
	 b.	1905–1950: Scientific Foundation
	 c.	1950–1959: First Practical Device Demonstration
	 d.	1960–1980: Enthusiastic Progress and New PV Devices
	 e.	1980–2000: Sluggish Development Phase
	 f.	2000–Present: International Support and New Opportunities

The story starts from the early observation of the photovoltaic effect in 
1839. French physicist Alexandre Edmond Becquerel was working with 
metal electrodes in an electrolyte solution when he noticed that small elec-
tric currents were produced when the metals were exposed to light. He 
just reported the effect but could not give any explanation. As we know 
today, semiconductors, rather than metals, can show a photovoltaic effect. 
It appears that the metal electrodes were unknowingly converted to semi-
conductors due to inherent impurities. A few decades later, French math-
ematician Augustin Mouchot was inspired by the physicist’s work. He 
began registering patents for solar-powered engines in the 1860s. In 1873, 
Willoughby Smith discovered that selenium had photoconductive potential, 
leading to William Grylls Adams’ and Richard Evans Day’s 1876 discov-
ery that selenium creates electricity when exposed to sunlight. For the first 

Figure 1.1  �Solar spectrum in outer atmosphere and at sea level of the Earth. (Courtesy: 
Refer Annexure A)
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time, the real solar cell was demonstrated in 1883 when New York inventor 
Charles Fritts created the first solar cell by coating selenium with a thin 
layer of gold. Fritts reported that the selenium module produced a current 
“that is continuous, constant, and of considerable force”. This cell achieved 
an energy conversion rate of 1 to 2% (compared to 20% of today’s solar 
cells). Following this, Wilhelm Hallwachs made a semiconductor-junction 
solar cell (copper and copper oxide) in 1904.

Now that the occurrence of photovoltaic effect was confirmed, proven, 
and established in laboratory experiments, it was time to uncover the sci-
ence behind it. It took 45 years (from 1905 to 1950) to establish a solid sci-
entific foundation for photovoltaic theory. It started, in 1905, with Albert 
Einstein’s explanation of photoelectric effect based on quantum theory. 
Later, Jan Czochralski, a Polish scientist, invented a method in 1918 to 
grow single crystal of metal, which 50 years later served as the founda-
tion for the commercial production of single crystal silicon. However, the 
production of single crystals created immense interest in the study of their 
ordered structure with its electrical and electronic properties based on the 
new quantum theory. This led F. Bloch in 1928 to develop band theory 
based on the single crystal periodic lattice. Following this, A. H. Wilson 
developed, in 1931, the theory of high-purity semiconductors. The next 
major advancement in solar cell technology came in 1940 from Russell 
Shoemaker Ohl, a semiconductor researcher at Bell Labs. He was inves-
tigating some silicon samples, one of which had a crack in the middle. He 
noticed that in this particular sample, current flowed through this crack 
when it was exposed to light. This crack, which had probably formed when 
the sample was made, actually marked the boundary between regions con-
taining different levels of impurities, so one side was positively doped and 
the other side negatively doped. Ohl had inadvertently made a p-n junction, 
the basis of a solar cell. Excess positive charge builds up on one side of the 
p-n barrier, and excess negative charge builds up on the other side of the 
barrier, creating an electric field. When the cell is hooked up in a circuit, an 
incoming photon that hits the cell can then give an electron a kick, start-
ing the flow of current. Ohl patented his solar cell, which had an efficiency 
of about one percent. In 1948, Gordon Teal and John Little adapted the 
Czochralski method of crystal growth to produce single-crystalline germa-
nium and, later, silicon. The concept of deliberate doping of pure semicon-
ductors with impurities (dopant atoms) to increase electrical conductivity 
was beginning to take shape.

The real foundation for modern silicon solar cells was laid down during 
1950–1959 when the first practical device was demonstrated. The first prac-
tical silicon solar cell was created by a team of scientists working together at 
Bell Labs. In 1953, the Bell Labs engineer Daryl Chapin tried selenium solar 
cells, but found them very inefficient. Meanwhile, his other colleagues, 
Calvin Fuller, a chemist, and Gerald Pearson, a physicist, were working 
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on controlling the properties of semiconductors by introducing impurities. 
They also created a silicon p-n junction that provided encouraging photo-
response. Soon they realized that silicon was a better material for solar 
cells. Chaplin also joined them. The three then worked for several months 
on improving the properties of their silicon solar cells. After making some 
other improvements to the design, they linked several solar cells together to 
create what they called a “solar battery”. Bell Labs announced the inven-
tion on April 25, 1954, in Murray Hill, New Jersey. They demonstrated 
their solar panel by using it to power a small toy Ferris wheel and a solar-
powered radio transmitter. These cells had about 6% efficiency. The New 
York Times forecasted that solar cells would eventually lead to a source of 
“limitless energy of the Sun”. The confidence was so high that solar cells 
were used in outer space where solar energy was used to power satellites. In 
1958, the Vanguard I satellite used a tiny 1-watt panel to power its radios. 
Later that year Vanguard II, Explorer III, and Sputnik-3 were all launched 
with PV technology on board. In 1958, T. Mandelkorn, US Signal Corps 
Laboratories, created n-on-p silicon solar cells, which were more resistant 
to radiation damage and were better suited for space. Hoffman Electronics 
created a 10% efficient commercial solar cell in 1959 that opened the vast 
door of market.

The fourth phase of 1960–1980 saw an encouraging response from all 
over the world to this sector, with huge amounts of funds pouring into 
research projects and field demonstrations. A strong feeling was prevailing 
all around that solar cells were the solution to the energy crisis. Pollution-
free technology was envisaged as the savior of the Earth. In 1960, Hoffman 
Electronics created a 14% efficient solar cell. The Telstar communications 
satellite was powered by solar cells in 1962. In 1964, NASA launched 
the Nimbus spacecraft, the first satellite capable of running entirely on a 
470-watt solar array. In 1966, NASA launched the world’s first Orbiting 
Astronomical Observatory, powered by a 1-kilowatt array. Soyuz 1, in 1967, 
was the first human-crewed spacecraft to be powered by solar cells. Due to 
its suitability, using solar cells for space applications became routine. The 
first highly efficient GaAs heterostructure solar cells were created in 1970 
by Zhores Alferov and his team in the USSR. In 1972, Hovel and Woodall 
at IBM demonstrated AlGaAs/GaAs solar cells with 18%–20% efficiency. 
For the first time a pathbreaking project to transition silicon PV from space 
to terrestrial applications was undertaken by Jet Propulsion Laboratory, 
California Institute of Technology, in 1975. The world production of pho-
tovoltaic cells exceeded 500 kW by 1977. L. Fraas and R. Knechtli pre-
sented the InGaP/GaInAs/Ge triple junction concentrator cell, predicting 
40% efficiency at the concentration of 300 suns in 1978. In short, the plat-
form was ready for solar cells’ use in terrestrial applications soon.

The momentum gained in the fourth phase was dampened in the fifth 
phase of 1980–2000, and the progress was not as expected due to a lack 
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of political will from world leaders. Investments and research project fund-
ings were reduced in the first half of this phase. The second half witnessed 
some recovery. Still, the damage was done and the dream of making solar 
cells as a common commodity remained unfulfilled. The best part was that 
technology matured with high reliability. With a very low degradation rate, 
the life of solar cells was predicted to be a minimum of 25 years with high 
confidence. The only hitch was the high cost. Now the main focus was to 
reduce the production cost with innovative technological improvements. 
The world was also looking at some innovative financial and commercial 
instruments to drastically reduce production costs such as scaling up, using 
cheaper products or services, market-stimulating policies, and improve-
ments to module efficiency. Meanwhile, there was slow but steady prog-
ress toward commercialization through incentivization policies. The first 
Concentrating PV system using Fresnel Lenses went into operation with 
350 kW funded by the US and Saudi Arabia SOLERAS project in 1981. By 
1983, worldwide photovoltaic production exceeded 21.3 megawatts, and 
sales exceeded $250 million. A 20% efficient silicon cell was created by the 
Centre for Photovoltaic Engineering at the University of New South Wales 
in 1985. L. Fraas et al. (1990) reported a 35% efficient two-chip stack 
GaAs/GaSb concentrator solar cell. A premier institute NREL, US was cre-
ated in 1993. Kuryla, Fraas, and Bigger (1992) reported 25% efficient CPV 
module using GaAs/GaSb stacked cell circuit. The first thermophotovoltaic 
stove with heat and electricity co-generation, Midnight Sun, was demon-
strated by JX Crystals Inc. in 1998. Despite all the hindrances, it appeared 
that the solar PV market was ready to expand with a big bang anytime.

As stated earlier, the fifth phase was struggling mainly with high costs. 
Soon the sixth phase, from 2000 to the present, broke all the barriers. 
Suntech Power was founded in China in 2001. SunPower Corp’s first 
manufacturing facility, which makes 20% A-300 cells, came online in the 
Philippines, and the company’s first utility-scale power plant came online 
in Bavaria in 2004.

In 2007, a 15 MW Nellis Solar Power Plant was installed using SunPower 
Corp modules. Polysilicon use in photovoltaics exceeded all other polysili-
con uses for the first time. The most important development in the history of 
solar cells was the construction of fast-growing factories in China, pushing 
the manufacturing costs from $40 per watt in 1980 down to about $1.25 
per watt for silicon photovoltaic modules. As a result, installations doubled 
worldwide, with cumulative worldwide solar PV installations crossing over 
100 GW in 2013.

Finally, the journey of around two centuries (1889 – 2022) of solar cells 
has culminated into commoditization and democratization of environmen-
tally benign technology for the benefit of all. Earlier a little less efficient 
polycrystalline silicon solar cells were dominating the market due to some 
cost advantages over more efficient mono-crystalline silicon. Innovative 
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manufacturing processes have brought parity of cost between both types 
of silicon solar cells. Naturally, the recent market is dominated by mono-
crystalline silicon solar cells. Solar cells are now available to everybody, 
everywhere, and at affordable cost. What a story to narrate to our future 
generations! Today, the cost of solar modules is just $0.26 per watt (October, 
2022). The total installed capacity in the world (off grid + grid) is around 
1000 GW, and the figure is still growing at a faster rate. This is a mind-bog-
gling achievement, considering the hurdles that the solar sector has faced. 
Nobody can deny the great contribution of China, who single handedly has 
brought down the cost to an unbelievable scale due to cheaper labor, dedi-
cated manufacturing hubs, and innovative inventory management. This is 
like the happy ending story of a Hollywood film with a win-win situation 
for all the players. Are we not moving toward a 100% renewable energy 
and cleaner world?

1.3 � SOLAR CELL DEVELOPMENT

The solar cell is an electronic device which converts solar energy directly 
into electrical energy through the photovoltaic effect. It is a typical semi-
conductor p-n junction device. When the light falls on the device, the light 
photons of certain wavelengths are absorbed by the semiconducting mate-
rial and electrical charge carriers, electrons, and holes are generated. These 
carriers diffuse to the junction where a strong electric field exists. The elec-
trons and holes are separated by this field and produce an electric current 
in the external circuit (Figure 1.2). A typical silicon p-n junction solar cell 
has a p-type wafer with a very thin coating of n-type silicon over it, with a 
back electrical contact of metal paint and a front electrical contact of a very 
fine metal grid.

An ideal solar cell material must be a semiconductor in the solid state. It 
should be responsive to the visible range of the solar spectrum. Since it will 
be used under rough environmental conditions for a long time, the material 
should be stable under outdoor use with no or minimum annual degrada-
tion. Abundant availability of the material in nature is highly desirable. For 
wider and common use, it should have affordable cost compared to contem-
porary energy-producing materials. The most critical criterion of all is that 
the solid semiconductor material must have a suitable bandgap. This can be 
easily explained by the band theory of semiconductors, as explained below.

The band theory of semiconductors has been the most suitable and con-
venient explanation in the history of material physics in a simplistic man-
ner (Sze et. al. Chapter 1). Let us start with the simplest atom of hydrogen, 
which has the electronic configuration 1s1 with just one electron in the s 
atomic orbital around the hydrogen nucleus. Once two hydrogen atoms 
(H) approach each other, they make a hydrogen molecule H2 with each 
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electron, combining with each other to form a molecular bond (MO). Two 
atomic bonds combine to make two molecular bonds: the lower one, called 
bonding MO and the upper one antibonding MO. Both electrons settle in 
bonding MO, and the antibonding MO remains empty, similar to water 
filling the lower level first. Similarly, if we take the example of the helium 
molecule (He2), the helium atom has molecular configuration 1s2. Thus, the 
He2 molecule has a total of 4 electrons: 2 electrons filling bonding MO and 
2 electrons filling antibonding MO (Figure 1.3).

As stated above, an ideal solar cell material must be a semiconductor in 
the solid state. Before looking at the band theory of solid semiconductors, 
let us first look at the available materials. Based on electrical conductivities, 
solid-state materials are categorized into three classes: insulators, semicon-
ductors, and conductors. Insulators have the least conductivity (10−18–10−8 
S/cm). Semiconductors have mid-value conductivities (10−8–103 S/cm). 
Conductors have high conductivities (103–108 S/cm). The conductivities are 

Figure 1.2  �Typical p-n junction solar cell. (Courtesy: Refer Annexure A)

Figure 1.3  �Molecular orbital diagram of hydrogen and helium. (Courtesy: Refer Annexure 
A)



10  Photovoltaic Modules ﻿

presented as an international system of units (S/cm = siemens/cm, S = A/V). 
Examples are insulators (glass, SiO2, Diamond), semiconductors (Si, Ge, 
GaAs, CdS), and conductors (silver, copper, gold). Si, Ge, and Sn are called 
element semiconductors. A binary compound semiconductor is a combina-
tion of two elements such as GaAs and CdS. Semiconductors of ternary 
compounds and quaternary compounds are made of alloys of binary com-
pounds such as CuInSe2, Cu2SnS3, Cu2ZnSnS4, GaAsSb, and InGaAsSb. 
However, for practical purposes, silicon has become the most sought-after 
semiconductor.

Unlike hydrogen and helium, silicon is a solid material. The band theory 
of silicon is related to the crystalline nature of the material. The periodic 
arrangement of atoms in a crystal is called a lattice. In a crystal, an atom 
never strays far from a single, fixed position. For a given semiconductor, 
there is a unit cell that is representative of the entire lattice; by repeating 
the unit cell throughout the crystal, one can generate the entire lattice [4].

A silicon atom has electronic configuration 1s2 2s2 2p6 3s2 3p2. The 2 
electrons from the first s orbital, 2 electrons from the second s orbital, and 
6 electrons from the second p orbitals are well fixed in their orbitals and 
stabilized. These electrons (a total of 10) are not available for either con-
duction or forming bonds with any other element. The 4 electrons (2 in 3s 
and 2 in 3p orbitals) available in the outermost third orbital are available 
for interaction with other atoms. In the crystal lattice structure of silicon, a 
unit cell has a silicon atom surrounded by four silicon atoms, each sharing 
one electron. This sharing of electrons is known as covalent bonding; each 
electron pair constitutes a strong covalent bond. Each unit has a 3D tetra-
hedron structure. The same can be shown as a simplified two-dimensional 
bonding diagram for the tetrahedron (Figure 1.4).

Now we can conveniently develop the band theory of solid semiconduc-
tor crystals. Similar to the examples of hydrogen and helium, when two 
identical Si atoms are brought closer, the two atomic energy levels will split 
into two molecular energy levels by the interaction between the atoms. But 
in Si crystal, a large number of isolated atoms are brought together to form 
a solid and the orbits of the outer electrons of different atoms overlap and 
interact with each other. In such interaction, instead of two levels, a large 
number of separate but closely spaced levels are formed. This results in an 
essentially continuous band of energy.

The electrons can no longer be treated as belonging to their parent 
atoms. They belong to the crystal as a whole. The topmost band is called 
the Conduction Band and the lower one is called the Valence Band. A gen-
eralized concept is that the conduction band is devoid of electrons and the 
valence band is filled with bonded electrons. The energy gap between the 
lowest energy level of the conduction band and highest energy level of the 
valence band is called the Forbidden Band, or more commonly known as 
the Bandgap, as shown in Figure 1.5.



﻿Solar photovoltaic cell  11

This bandgap has very high significance while deciding the electrical 
nature of the solid material, such as whether it is a conductor or an insula-
tor or a semiconductor. Conduction in solid crystal occurs when tightly 
held electrons in the valence band are pushed or excited to jump to the 
conduction band by externally applying an electric field with energy more 
than the bandgap energy. The empty energy levels in the conduction band 
allow the excited electrons to move freely throughout the crystal, enhancing 
conductivity. The lower the bandgap, the higher the possibility of valence 
band electrons moving toward the conduction band in larger numbers.

Figure 1.4  �Bonding diagram for the (a) single unit of silicon 3D tetrahedron (b) two-
dimensional representation of a tetrahedron bond, and (c) simplified sketch 
of the actual crystal structure. (Courtesy: Refer Annexure A)

Figure 1.5  �Formation of conduction band, valence band, and bandgap in a solid semicon-
ductor. (Courtesy: Refer Annexure A)
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Interestingly, the bandgap in a conductor, also called metal, is so close 
that the conduction band is already partially filled. In many cases conduc-
tion bands even partially merge with valence bands. Electrons are free to 
move with only a small applied field in a metal because there are many 
unoccupied states close to the occupied energy states. Therefore, current 
conduction can readily occur in conductors. An insulator is another oppo-
site extreme case wherein the bandgap is so high that it is practically impos-
sible to excite electrons of the valence band to jump to the conduction band 
by externally applying an electric field. When the electric field is applied, 
so few electrons actually occupy conduction band states that the overall 
contribution to electrical conductivity is very small, resulting in a very high 
resistivity. Therefore, an insulator cannot conduct current. Insulators usu-
ally have bandgap energy of more than 3 eV.

Now is the interesting case of semiconductors. Semiconductors are 
reported to have bandgap energy 0.6–3.0 eV. At absolute zero-degree tem-
perature, all electrons are in the valence band, and there are no electrons in 
the conduction band, making them poor conductors. At room temperature, 
good numbers of electrons are thermally excited from the valence band to 
the conduction band. Since there are many empty states in the conduction 
band, a small applied potential can easily move these electrons, resulting 
in a moderate current. Such behavior is highly desirable in electronics and 
solar applications. Three types of solid materials are represented in Figure 
1.6.

Scientists have introduced the electron-hole concept to make it easy to 
understand the semiconductor behavior. As we have seen in the case of 
semiconductors, a very small number of electrons are present in the con-
duction band at room temperature. These electrons are the ones which have 
jumped to the conduction band, leaving vacant space in the valence band, 
which are called holes. Holes are naturally positively charged. The number 
of holes in the valence band is equal to that of excited electrons in the con-
duction band. For convenience, it is assumed that holes also migrate like 
electrons, but in the opposite direction. A semiconductor with an equal 
number of holes in the valence band and electrons in the conduction band 
is called an Intrinsic Semiconductor. It has such low conductivity that it is 
not suitable for practical purposes.

Intrinsic semiconductors need to be converted to extrinsic semiconduc-
tors wherein either electrons are in excess of holes or holes are in excess 
of electrons to attain an optimum conductivity for useful purposes. This 
is desirable in electronic and solar photovoltaic applications. Extrinsic 
properties are achieved simply by incorporating an additional atom in the 
intrinsic semiconductor crystal, replacing a Si atom. The additional atom 
may be having an extra electron compared to silicon that is donated to con-
duction band; hence it is called a donor element. On the other hand, if the 
additional atom is devoid of one electron compared to the silicon atom, it 



﻿Solar photovoltaic cell  13

accepts an additional electron from the valence band and generates a hole 
there; hence, it is called an acceptor element.

Figure 1.7 shows the silicon lattice with phosphorus donor and boron 
acceptor. A silicon atom with atomic number 14 is replaced (or substituted) 
by a phosphorus atom. Phosphorus with atomic number 15 has the elec-
tronic configuration 1s2, 2s2, 2p6, 3s23p3 with five valence electrons. The 
phosphorus atom forms covalent bonds with its four neighboring silicon 
atoms. The fifth electron has a relatively small binding energy to its host 
phosphorus atom and can be “ionized” to become a conduction electron at 
a moderate temperature. The silicon is called an n-type semiconductor with 
an additional negative charge carrier. Similarly, a silicon atom with atomic 
number 14 is replaced (or substituted) by a boron atom. Boron, with atomic 
number 5, has the electronic configuration 1s2, 2s22p1 with three valence 
electrons. When a boron atom with three valence electrons substitutes for 
a silicon atom, an additional electron is “accepted” to form four covalent 
bonds around the boron, and a positively charged “hole” is created in the 
valence band. The silicon is now called a p-type semiconductor with an 
additional positive charge carrier.

The addition of impurities in the form of donor or acceptor atoms is in 
extremely small proportion e.g., 1 atom B or P in 10,00,000 Si. The n-type 
silicon is rich in electrons, while the p-type is rich in holes. The ability of 
the extrinsic Si crystal to conduct electricity is comparatively increased. 
The impurity atoms are imperfections and interrupt the perfect periodic-
ity of the lattice. The impurity atoms will introduce the creation of energy 

Figure 1.6  �Energy band diagram of insulator, semiconductor, and conductor based on 
bandgap energy. (Courtesy: Refer Annexure A)
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levels ED (donor) or EA (acceptor) in the bandgap (Figure 1.8). For the sake 
of comparison, a reference level Ei termed “intrinsic level” is defined as the 
location of the Fermi level when the number of electrons is the same as 
that of holes. The Fermi level is defined as the highest energy level that an 
electron can occupy at the absolute zero temperature. The Fermi level lies 
between the valence band and the conduction band because at absolute zero 
temperature, the electrons are all in the lowest energy state. The Fermi level 
determines the probability of electron occupancy at different energy levels. 
The closer the Fermi level is to the conduction band energy, the easier it will 
be for electrons in the valence band to transition into the conduction band.

A typical Si solar cell works with a junction of p- and n-type semiconduc-
tors by depositing a very thin layer of 300 nm of n-type on 0.3 mm p-type 
wafer, thus creating a p-n junction. When the p- and n-type semiconductors 
combine, holes from the p-side diffuse into the n-side, and electrons from 
the n-side diffuse into the p-side. Consequently, a negative space charge 

Figure 1.7  �Extrinsic semiconductor with (a) phosphorus as donor atom and (b) boron as 
acceptor atom in the Si crystal lattice. (Courtesy: Refer Annexure A)

Figure 1.8  �Creation of energy levels ED (donor) and EA (acceptor) in the bandgap due to 
impurity atoms. (Courtesy: Refer Annexure A)
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forms near the p-side of the junction and a positive space charge forms near 
the n-side. This space charge region creates an electric field that is directed 
from the positive charge toward the negative charge (Figure 1.9). The width 
of the space charge region is 500–1000 nm. This is the p-n junction at ther-
mal equilibrium without external bias. If we apply a positive voltage to the 
p-side with respect to the n-side, the p-n junction becomes forward-biased. 
The total electrostatic potential across the junction decreases and the for-
ward bias reduces the depletion layer width. By contrast, if we apply posi-
tive voltage to the n-side with respect to the p-side, the p-n junction now 
becomes reverse-biased. The total electrostatic potential across the junction 
increases and reverse bias increases the depletion layer width. Needless to 
say, reverse biasing is favorable if we want quicker charge separation before 
the electron-holes recombine. That is what happens in a p-n junction solar 
cell.

A p-n junction solar cell schematic is represented in Figure 1.10. It con-
sists of (a) a shallow p-n junction formed on the surface, (b) a front ohmic 
electrical contact strip and fingers, (c) a back ohmic contact that covers the 
entire back surface, and (d) an antireflection coating on the front surface. 
When the cell is exposed to the solar spectrum, a photon that has an energy 
less than the bandgap Eg makes no contribution to the cell output. A pho-
ton that has energy same as Eg contributes an energy Eg to the cell output. 
Energy greater than Eg is wasted as heat. When electron-hole pairs are cre-
ated in the depletion layer, they are separated by the built-in electric field. If 
a wire is connected from the cathode (n-type silicon) to the anode (p-type 

Figure 1.9  �A p-n junction at thermal equilibrium with no applied bias. (Courtesy: Refer 
Annexure A)
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silicon) electrons will flow through the wire. The electron is attracted to 
the positive charge of the p-type material and travels through the external 
load (meter), creating a flow of electric current. The hole created by the 
dislodged electron is attracted to the negative charge of n-type material and 
migrates to the back electrical contact. As the electron enters the p-type 
silicon from the back electrical contact, it combines with the hole, restoring 
the electrical neutrality.

A typical crystalline silicon solar cell is made from a p-type silicon wafer 
of thickness 0.3 mm, width 6" and length 6". A very thin film (300 nm) of 
n-type silicon is deposited on the p-type silicon wafer. Backside contact is 
a thin coating of silver that covers the entire back surface. The entire front 
surface cannot be coated since the n-type layer with a shallow p-n junction 
needs to be exposed to light for electron-hole pair generation. However, 
since we need to collect the photogenerated electrons for useful purposes, 
ohmic contact is necessary. The best compromise is to print very thin (0.05 
mm) silver grid fingers on the front surface using the technology of photo-
lithography. Vertical bus bars of 0.2 mm flat strips of copper or aluminum 
are then fixed on the grid fingers (Figure 1.11). Busbars with tapered ends 
have lower losses than a busbar of constant width. The fingers collect the 
generated electrons and deliver them to the busbars. A comparatively larger 
surface area of busbars allows heat to dissipate.

Under light exposure, electrons flow from p to n; hence, the n-type side 
is the negative terminal (cathode) and the back contact of the p-type side 
is the positive terminal (anode). The photocurrent is actually a reverse bias 
current because electrons flow toward the cathode and the holes flow to 
the anode. For creating a solar module, the negative terminals of bus bars 
on n-type Si of one cell are connected to the positive terminal of the p-type 
back surface paint of another cell and so on in series. Traditionally 2 busbar 
Si cells were manufactured in the 1980s and were replaced by 3 busbar cells 
in the 1990s. Thereafter, practically all solar cells have 5 busbars (Figure 
1.12).

Figure 1.10  �A p-n junction solar cell schematic. (Courtesy: Refer Annexure A)
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The increase in the number of busbars, although desirable for collecting 
maximum number of electrons, reduces the cell area, causing loss of pro-
ductive energy. Therefore, having 5 bus bars is a good compromise.

1.4 � CURRENT-VOLTAGE CHARACTERISTICS 
OF SOLAR CELL

Current-Voltage or I-V characteristics are essential for characterization of a 
solar cell to know its efficiency, Voc, Isc, and power rating. [5]. These solar 
cell characteristics are determined by connecting a variable load resistor to 
the cell and plotting the resulting currents and voltages at different loads, 
as indicated in Figure 1.13.

The characteristics of a solar cell without any irradiance (dark character-
istics) correspond to the characteristics of a diode [6]. When the solar cell 
is illuminated, these characteristics shift by the amount of the photocurrent 
in the blocking direction (Figure 1.14).

For the sake of convenience, the I-V curve is more generally represented 
by Figure 1.14 (b), which is an inversion of Figure 1.14 (a) about the voltage 
axis. By choosing a proper load, close to 80% of the product Isc and Voc can 
be extracted, where Isc is the short-circuit current and Voc is the open-circuit 

Figure 1.11  �A single Si solar cell (a) 0.3 mm thick p-Si wafer, (b) entire back surface silver 
metal thin coating, and (c) front surface thin (0.05 mm) silver grid fingers and 
vertical bus bars of 0.2 mm flat strips of copper or aluminum. (Courtesy: 
Refer Annexure A)

Figure 1.12  �Silicon solar cells with 2, 3, and 5 busbars. (Courtesy: Refer Annexure A)
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voltage of the cell. The theoretically attainable (optimal) power Pop, which 
could be taken from the terminal, is the product of short-circuit current Isc 
and open-circuit voltage Voc:

Pop = Isc × Voc

The attainable power Pmp is defined by the greatest possible product of V 
and I at an operating point:

Pmp = Imp × Vmp

Figure 1.13  �Devices to measure I-V characteristics and efficiency. (Courtesy: Refer 
Annexure A)

Figure 1.14  �I-V characteristics of solar cells in (a) dark and under illumination and (b) its 
inverted representation. (Courtesy: Refer Annexure A)
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The ratio of Pmp to Pop is called the fill factor or FF. It describes the “rectan-
gular-ness” of I-V characteristic. For a good photovoltaic cell, the FF of a 
minimum of 0.7 is desired.

The photovoltaic conversion efficiency is defined by the ratio of the PV 
electrical power output to the irradiated power on a solar cell. This depends 
on irradiance and spectrum. The conversion efficiency is determined under 
standard test conditions (STC): an irradiance of 1,000 W/m2 perpendicular 
onto the front surface, a cell temperature of 25 °C and a spectral distribu-
tion according to solar irradiance passing at an elevation angle of 41.8° 
through the atmosphere (air mass 1.5). For example, let us assume a solar 
panel of 600 W with size 2.4 m × 1.3 m = 3.12 m2. The solar radiation inci-
dent on the solar panel at STC will be 3.12 m2 × 1,000 W/m2 = 3120 W. The 
module’s efficiency will be power output divided by solar power received in 
the solar cell area i.e. (600 W/3120 W) × 100 = 19.23%.

1.5 � EFFICIENCY LIMITATION

High values of Imp and Vmp are desirable to get maximum Pmp. However, 
solar cells suffer from many loss mechanisms. Around 31% of incident light 
is reflected and is not available for conversion to electrical energy in a sili-
con solar cell. Photons with less energy than the bandgap Eg make no con-
tribution to the cell output. Photons with energy equivalent to the bandgap 
Eg contribute to the cell output. Photons with energy higher than the band-
gap Eg transfer the surplus energy as lattice vibrations, i.e., as heat. Silicon 
is a so-called indirect bandgap semiconductor that makes the absorption 
of a photon dependent on the occurrence of a phonon (lattice vibration); 
hence its absorption coefficient is comparatively low. This is not the case 
with direct bandgap solar cells such as GaAs. Details of direct and indi-
rect bandgaps are beyond the scope of this topic. In addition, shadowing 
losses caused by the front contacts, losses by non-absorbed (transmitted) 
irradiance, ohmic losses from series resistors, recombination losses, and 
additional diode losses contribute to lowering the efficiency. The practical 
efficiency of Si crystalline solar cells has been obtained at a maximum of 
21%.

Efforts are on to improve efficiency. However, the theoretical limit of effi-
ciency of semiconductors based on their bandgaps has been calculated and 
is known as the Shockley–Queisser limit [7], which is the plot of bandgap 
vs. maximum efficiency (Figure 1.15). Of all the power contained in sun-
light (about 1000 W/m2) falling on an ideal single-junction solar cell, only 
33.7% of that could ever be turned into electricity. This corresponds to the 
bandgap of 1.34 eV. The most popular solar cell material, silicon, has a less 
favorable bandgap of 1.1 eV, resulting in a maximum efficiency of about 
32%. Modern commercial monocrystalline solar cells produce a maximum 
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of about 24% conversion efficiency. This theoretical limit is for single p-n 
junction solar cells. Multi-junction solar cells may have a theoretical limit 
of up to 80%.

1.6 � SILICON MATERIAL PREDOMINANCE

As stated earlier, an ideal solar cell material must be a semiconductor in the 
solid state, responsive to the visible range of the solar spectrum, be stable 
under outdoor use with no or minimum annual degradation, be abundant 
in nature, and have an affordable cost and a suitable bandgap. We can see 
some semiconductor materials in Table 1.1.

As per table, GaAs, CdTe, and InP are the ideal materials since their band 
gaps are very close to the ideal bandgap of 1.34 eV. Si hardly comes closer 
to the ideal bandgap value. Still Si is the most used material in the world 
today for solar cells. GaAs could have been the best material if it could be 
affordable. It is stable in outdoor conditions, has an ideal bandgap, has a 
direct bandgap, has the least annual degradation, and has high efficiency. 
That is why it is being used mostly in space applications where cost is a sec-
ondary consideration. CdTe is again a costly rare earth material. All other 
qualities match GaAs. It must be used in thin-film form to save material and 
to reduce cost. But thin films have their own limitations such as lower effi-
ciency and higher degradation rates [8]. The most critical fact is that Cd is 
highly poisonous and needs to be avoided, considering the potential health 
hazards during manufacturing and after-life disposal. InP is not a stable 

Figure 1.15  �Shockley–Queisser theoretical efficiency limit single p-n junction solar cells. 
(Courtesy: Refer Annexure A)
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material in outdoor conditions and is yet to be produced commercially. 
Silicon has become a practical semiconductor material for electronics and 
solar cells. The main reasons for the use of silicon in vogue are that it exhib-
its better properties at room temperature, and high-quality or high-purity 
silicon can be grown thermally with ease. A device-grade silicon costs much 
less than any other semiconductor material. Silicon in the form of silica and 
silicates comprises 25% of the Earth’s crust, and silicon is second only to 
oxygen in abundance. Even with its non-ideal bandgap and low absorption 
coefficient, crystalline silicon is the most sought-after material, mainly due 
to its stability under outdoor rugged conditions. Its sustained performance 
till the useful life of 25–30 years has been proven due to a comparatively 
low degradation rate (0.3%–0.4% per annum).

1.7 � EFFECT OF TEMPERATURE AND RADIATION

Open-circuit voltage practically remains constant (very little increase) with 
an increase in radiation level. The short-circuit current is directly propor-
tional to the irradiance because the current is equivalent to the number 
of electron-hole pairs generated by the absorbed photons. Consequently, 
the output power of a PV module increases with an increase in irradiance 
(Figure 1.16).

An increase in cell temperature at constant radiation causes a reduction 
of the open-circuit voltage while short-circuit current remains practically 
constant (Figure 1.17). A solar cell with a Voc of 0.6 V at 25°C reaches a 
value of 0.45 V at 75°C. This is a considerable reduction, which can be 
about 25% in practice. The short-circuit current increases with increas-
ing temperatures at a rate of about 0.1% for each degree centigrade rise 
in temperature. A solar cell with a short-circuit current of 2.0 A at 25 0C 

Table 1.1  �Bandgaps of some solar cell materials

S.N. Semiconductor Material Chemical Formula Bandgap (eV)

1 Silicon Si 1.11
2 Aluminum Antimonide AlSb 1.6
3 Gallium Phosphide GaP 2.26
4 Gallium Arsenide GaAs 1.43
5 Gallium Sulfide GaS 2.5 
6 Indium Phosphide InP 1.35
7 Cadmium Sulfide CdS 2.42
8 Cadmium Selenide CdSe 1.73
9 Cadmium Telluride CdTe 1.49
10 Copper Oxide Cu2O 2.17
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reaches a value of 2.1 A at 75°C. This means an increase of 5%. Due to 
the combined effect of current and voltage, the output power decreases by 
−0.4%/°C to −0.5%/°C for crystalline silicon solar cells, while the values 
for thin-film solar cells are −0.25%/°C to −0.35%/°C. That is why output 

Figure 1.16  �Current-voltage characteristics of a multi-crystalline silicon PV module at 
different radiation levels. (Courtesy: Refer Annexure A)

Figure 1.17  �Current-voltage characteristics of a multi-crystalline silicon PV module at 
different temperatures. (Courtesy: Refer Annexure A)
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of solar power projects have been reported to suffer loss of 10%–20% in 
summer and enjoy 10%–20% gain in winter. This is significant for large 
solar power projects.

1.8 � TYPES OF SOLAR CELLS

Silicon is the most abundant element available on the Earth, and the earliest 
solar cell was made of crystalline silicon. Today, silicon is used in mono-
crystalline, polycrystalline and amorphous forms for fabrication of solar 
cells (Figure 1.18). The majority of the commercial cells use monocrystal-
line silicon. The polycrystalline and amorphous types of silicon are a result 
of the engineering of silicon material where lattice perfection is sacrificed 
to achieve a significant reduction in the cost of silicon technology for solar 
cell applications. Many other semiconducting compounds have also been 
investigated [9]. Solar cells based on gallium arsenide, cadmium telluride, 
and copper indium di-selenide are now commercially available. Thus, based 
on the formation of material, solar cells are grouped into three major cat-
egories: a) crystalline, b) thin film, and c) emerging technologies. Each type 
of solar cell is briefly described below.

1.8.1 � Crystalline solar cells

Under the crystalline category, there are two types of technologies, namely, 
monocrystalline and polycrystalline technology.

1.8.1.1 � Monocrystalline silicon solar cells

Most of the solar cells manufactured all over the world today are fabri-
cated using monocrystalline silicon chips or wafers as the base. The input 

Figure 1.18  �Mono-crystalline, polycrystalline, and thin-film solar cells. (Courtesy: Refer 
Annexure A)
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material is SiO2, available either in the form of quartz sand or as natural 
crystalline quartz converted into metallurgical grade silicon in a furnace 
through a reduction process using coal. Metallurgical silicon, after puri-
fication, is converted into rods of polycrystalline nature, i.e., many small 
crystals ordered close to each other. These polycrystalline rods are melted 
in a crucible to produce pure silicon ingots of monocrystalline nature, i.e., 
completely structured single crystal lattice, prepared by the crystal pulling 
method. The principle of the Czocharalski process is predominantly used 
for single crystal growth. In this process, a seed of single crystal silicon con-
tacts with the melt of high-purity silicon, and as the seed is slowly raised, 
the atoms of the molten silicon adapt to the pattern of the single crystal seed 
as it cools and solidifies into a single crystal structure. This rod can be up 
to 2 m long. It is made of its own crystals and therefore the name “mono-
crystalline”. From this single-crystalline ingot, wafers are sliced and tex-
tured to improve solar energy absorption. These wafers are then fabricated 
into p-n junctions by high temperature diffusion of dopants, mainly boron 
and phosphorous, that modify the surface layer composition.

Monocrystalline silicon solar cells have proven their credibility as a 
source of reliable electric power both on land and in space. Practical effi-
ciencies in the range of 17–21% have been measured for the monocrys-
talline silicon cells. Recently on December 12, 2022, a Chinese solar cell 
company JinkoSolar has announced a new record, achieving a maximum 
solar conversion efficiency of 26.4% for its 182 mm and above large-size 
monocrystalline silicon TOPCon solar cell. This result has been indepen-
dently confirmed by the National Institute of Metrology, China (https://
www​.jinkosolar​.com​/en​/site​/newsdetail​/1827). The lab research product is 
soon expected to come into the market for commercial applications.

1.8.1.2 � Polycrystalline silicon solar cells

After monocrystalline silicon, polycrystalline silicon is the second most 
common natural substance used for the manufacture of solar cells. For solar 
cells, one does not require silicon as pure as one needs for manufacturing 
semiconductors for electronics applications. Therefore, another approach 
to silicon technology is to prepare polycrystalline silicon blocks with no 
lattice perfection. The manufacturing process is simpler and cheaper. The 
most popular commercial process is the “casting process” wherein the mol-
ten silicon is poured into rectangular mold and allowed to solidify into an 
ingot.

The ingot is then sliced into wafers. This means that the process of cut-
ting and polishing and the waste resulting from this process are much the 
same as that required for single crystal silicon, and hence the cost reduction 
may not be very large. Nonetheless, the poly technology has lowered the 
costs of PV technology because the “casting” process is relatively cheaper 

https://www.jinkosolar.com/en/site/newsdetail/1827)
https://www.jinkosolar.com/en/site/newsdetail/1827)
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and less sophisticated compared to the Czochralski process. Due to the 
presence of structural imperfections, mostly grain boundaries, the efficien-
cies are slightly lower, around 15%–18%.

Both monocrystalline and polycrystalline silicon solar cell wafers are 
available in the world market with thicknesses of 200–300 µm and sizes 
150 mm × 150 mm to 210 mm × 210 mm.

1.8.2 � Thin-film solar cells (TFSC)

A thin film is a material created ab initio by the random nucleation and 
growth processes of individually condensing/reacting atomic/ionic/molec-
ular species on a substrate. The structural, chemical, metallurgical, and 
physical properties of such a material are strongly dependent on a large 
number of deposition parameters and may also be thickness dependent [10].

Pure crystalline silicon has been conventionally an expensive material. 
So, continuous efforts have been made to produce cells with very little quan-
tity of solar cell material. This type of cell technology is usually known as 
thin-film technology. Thin-film modules are made by depositing very thin 
layers of photosensitive materials onto a low-cost backing. Typical inex-
pensive substrates used for the purpose are made of glass, stainless steel, or 
even plastic. Three types of thin-film modules are commercially available 
at present.

	 1.	Amorphous silicon
	 2.	Cadmium telluride
	 3.	Copper indium di-selenide

1.8.3 � Amorphous silicon

In amorphous Si (a-Si), the atoms are arranged in a haphazard manner. 
Before 1975, it was the usual opinion that amorphous silicon could not be 
used to produce solar cells. Later, it became possible for the first time to 
dope a-Si, in which an alloy of silicon and hydrogen from the gaseous form 
of silane could be separated. This product was named a-Si:H (hydrogenated 
amorphous silicon). It could be doped during the process of separation. 
There are several methods today which can be used to deposit a-Si layers 
on a base substance. Already in the laboratory, efficiencies of about 12.5%, 
which are still very much lower than those of monocrystalline silicon PV, 
have been obtained.

Amorphous silicon is widely accepted as a thin-film solar cell material 
because: (a) it is abundant and non-toxic; (b) it requires low process tem-
perature, enabling module production on flexible and low-cost substrates; 
(c) the technological capability for large-area deposition exists; (d) its very 
thin film (= 1 µm) has low material requirements, due to the inherent high 
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absorption coefficient compared with crystalline silicon; (e) it has a larger 
bandgap (which gives higher open-circuit voltage) (f) it exhibits low energy 
consumption during manufacture; and (g) there is a possibility of automa-
tion of the manufacturing process.

The main disadvantages are the lower efficiency and faster degradation 
due to higher internal resistance and therefore a smaller photon current. 
Drastic cost reduction in more efficient crystalline silicon has made this 
technology practically obsolete.

1.8.4 � Cadmium telluride solar cell

Cadmium telluride is an excellent solar cell material with the highest theo-
retical conversion efficiency. Several preparation techniques such as vacuum 
evaporation, spraying, screen-printing and electro-deposition have been ini-
tially used to produce good solar cells. Owing to its optoelectronic and 
chemical properties, CdTe is an ideal absorber material for high efficiency 
and low-cost thin-film polycrystalline solar cells. CdTe is a direct bandgap 
material with an energy gap of 1.44 eV and an absorption coefficient of 
around 105/cm in the visible region, which means that a layer thickness of a 
few micrometers is sufficient to absorb ∽90% of the incident photons.

Lab solar cells’ efficiency is up to 16%, while commercial cells’ efficiency 
of up to 6%–10% has been reported by a few manufacturers. The cells are 
relatively stable, although humidity affects them to some extent. Spraying 
and screen-printing are techniques with high economic potential. The tox-
icity of cadmium raises two main problems: the possibility of health haz-
ards during production and after-life environmental pollution. In spite of 
these demerits, there has been significant progress in developing low-cost 
manufacturing processes for rapid commercialization of CdTe cells. One 
problem with CdTe is that p-type CdTe films tend to be highly resistive 
electrically, which leads to large internal resistance losses.

1.8.5 � Copper indium di-selenide

CuInSe2, having a bandgap of 1.53 eV, is considered an ideal material for 
photovoltaic application. The difficulties in controlling the Sulfur during 
deposition and the relatively rapid diffusion of metals and impurity spe-
cies, even at low temperatures, slow down the development of this material. 
However, devices with an efficiency of 11.4% have been reported.

An increase in the bandgap and improved process conditions resulted in 
the fabrication of high-performance solar cells with efficiencies of 19.2% 
for small areas and 13.1% for large areas. Even though the efficiency and 
stability of the device are very promising, there are several factors that 
are less favorable for large-scale production of such devices. The increas-
ing number of alloy components makes the multiple processes extremely 
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complex, and thus intelligent processes are required for precise control of 
the composition during deposition. The use of expensive and rare metals 
such as In and Ga adds to the cost of manufacturing.

1.8.6 � Copper indium gallium selenide solar cell

The beauty of this type of solar cell is that it is “polycrystalline” thin film, 
unlike most thin films of amorphous nature. Another advantage is that it is 
deposited on a large-area metal substrate, thus avoiding the use of delicate 
glass substrate. It has a bandgap 1.5–1.7 eV, ideally suited for solar cells. 
High efficiency (17–20%) with strong absorption has been observed. Even 
though it uses expensive rare metals, it is able to be partially commercial-
ized. Higher cost compared to Si solar cells is the main deterrent for full 
commercialization. However, due to its many advantages, it is expected to 
achieve commercialization soon.

1.9 � EMERGING TECHNOLOGIES

In addition to the above solar cells, which are either commercialized or on 
the verge of commercialization, there are other materials attracting large-
scale attention from researchers with the potential for commercialization in 
the future. Some of them are explained below.

1.9.1 � Gallium arsenide

Mostly used in space applications due to high cost, gallium arsenide (GaAs) 
and its variants gallium aluminum arsenide (GaAlAs) and gallium indium 
arsenide phosphide (GsInAsP) are the most efficient solar cell materials 
reported till today. These cells are generally combined in multiple junctions 
to achieve high efficiencies. These materials are highly suited to multiple 
bandgap cell designs because the band gaps are adjustable by changing the 
relative compositions of the components. Cell efficiencies of about 30%–
34% are obtained for these structures, which are extremely high, though 
they are too expensive to be used for terrestrial applications.

1.9.2 � Organic semiconductors

Organic materials are attractive for photovoltaics primarily because of the 
prospect of high throughput manufacture using processes such as reel-to-
reel deposition. Additional attractive features are the possibilities for ultra-
thin, flexible devices, which may be integrated into appliances or building 
materials and tuning of color through chemical structure. This field of 
research has made impressive progress since the late 1990s. Solar power 
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conversion efficiencies of over 3% have been reported. A growing range of 
new photovoltaic materials have been studied, and increasing numbers of 
research groups and companies have declared an interest in “soft” solar 
cells.

Organic semiconductors can be classified into three categories, depend-
ing on their chemical properties, as insoluble, soluble, and liquid crystal-
line. They can be further classified as monomers, such as dyes, pigments, 
and polymers. Doping of organic semiconductors can be done by introduc-
ing foreign atoms or molecules, or by electrochemical oxidation/reduction 
processes. Organic solar cells have a stability problem that is common to 
conjugated polymers. However, these may not be very serious problems and 
may be overcome in the near future.

1.9.3 � Dye-sensitized cells

The dye-sensitized cells are also considered thin-film cells. The principle of 
working is based on photosensitization of wide-bandgap semiconductors. A 
wide-gap semiconductor with a large surface area is covered with dye mol-
ecules. When the light is incident, the light is absorbed in the dye molecules, 
which are excited, and the electrons from their excited state are directly 
injected into the semiconductor, without the need for transport of photo 
generated carriers within the dye. The ground state of the molecules has to 
be filled again so that the process goes on. Since the technology does not 
require high-purity semiconductors, these types of cells are highly prom-
ising. In Germany, the company INAP GmbH has been working on the 
development of dye-sensitized TiO2 cells, and efficiencies of 7% on 30 cm 
× 30 cm areas have been reached. There has been a lot of research activity 
and new photosensitizing chemicals are being developed. This is considered 
a potential and low-cost PV technology.

1.9.4 � Nanotechnology solar cells

The basic concept is that tiny nano-rods prompt “spectrum modification”. 
As we know, conventional solar cells absorb photons with energy equiva-
lent to Eg. Photons energy less than Eg does not get absorbed at all. Photons 
with energy higher than Eg are only partially absorbed and most of them 
go to waste as heat. Scientists have found that nanostructures, e.g., quan-
tum dots, luminescent dye molecules, and lanthanide-doped glasses, absorb 
photons at a certain wavelength and emit photons at a different wavelength, 
thus “squeezing” the wide solar spectrum (300–2500 nm) to a single small 
band spectrum. Such a quasi-monochromatic solar cell could “in principle” 
reach efficiencies over 80% (Wonderful concept!). Materials only with rare 
earth metals are used, e.g., Pr3+, Yb3+, Gd3+, Nd3+, Er3+, Tb3+, Ce3+. Major 
advantages are: flexibility, lower costs, clean manufacturing, achievable 
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efficiency of up to 65%, not requiring complicated equipment, low manu-
facturing cost, light weight, and transparent solar modules. They may be 
useful for military applications, remote areas, and windows. However, 
research is still in its infancy.

1.9.5 � Perovskite solar cell

Any material with a crystal structure like calcium titanium oxide (CaTiO3) 
is called Perovskite. It is named after the Russian mineralogist L. A. 
Perovski. Perovskite belongs to a general chemical formula: ABX3 – A and 
B cations and an X anion that bonds to both. A Perovskite solar cell is a 
Perovskite structured compound, hybrid organic-inorganic lead halide – as 
the light-harvesting active layer. It has emerged from the field of dye-sen-
sitized solar cells. The most common materials are methylammonium lead 
trihalide CH3NH3PbX3 (X=I, Br and/or Cl) with an ideal bandgap of 1.5-
2.3 eV. It is reported to have excellent light absorption properties. It is pos-
sible to have low cost, high efficiency, thin, lightweight, and flexible solar 
modules (industry-scalable). As of today, a maximum of 27.3% conversion 
efficiency has been reported. The main reason for its non-use on a large 
scale is the doubt about its long-term stability, posing the biggest challenge 
to researchers.

1.9.6 � Bio-nano solar cell

Normally, photosynthesis stops if a plant leaf is plucked. More than 40 
years ago, scientists discovered that one of the proteins involved in photo-
synthesis (PS1) was able to function even after it was extracted from plants. 
PS1 impressively converts sunlight into electrical energy with nearly 100% 
efficiency compared to a maximum of 30% of silicon solar cells. Spinach 
is very rich in PS1 and hence is useful for bio-solar cells. Scientists at MIT, 
USA, extracted PS1 proteins from spinach and placed ~2 billion PS1 on a 
piece of glass in an artificial cell membrane. Then fixed a layer of proteins 
between layers of semiconductors and exposed to sunlight to produce elec-
tric current. This itself opened another door for a new type of solar cell, 
although it produced much less current (1 mA/cm2) vs. Si (30 mA/cm2). It 
has a lifespan of just weeks or months vs. Si (25 years).

1.9.7 � Hot solar cells

Based on the principle of Thermophotovoltaics (Heat → Light → Electricity), 
sunlight is concentrated on an efficient absorber (e.g., Graphite) to achieve a 
temperature of 1000°C. The connected thermal emitter (photonic crystal), 
e.g., Tungsten or SiC converts heat into light which are mostly low energy 
light useful for lower bandgap solar cells. An optical filter transmits only 
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desired light to “narrow band gap” PV solar cells, e.g., GaSb (0.72 eV), Ge 
(0.66 eV), and InAs (0.33 eV). An added advantage is that unwanted light is 
reflected back to the absorber (heat recycling). Low bandgap semiconduc-
tors, which are otherwise useless, become useful solar cells. In addition, if 
heat is stored, it can give light even at night. Alternatively, it can have dual 
use as CHP (Combined Heat and Power). Presently, such solar cells have 
low efficiency and high cost and are still under development.

1.10 � SUMMARY OF DIFFERENT 
TYPES OF SOLAR CELLS

After having an insight into different types of solar cells, it is imperative 
to summarize them to give an overview and to select a practically appli-
cable choice for field applications for specific applications. The summary 
presented in Table 1.2 also provides the platform for researchers to explore 
emerging fields for future commercialization. The present market status of 
different solar technologies is given ahead in Section 1.12.

1.11 � SOLAR MODULE AND RATED POWER

A single silicon solar cell typically has a size of 6” × 6”. Each crystalline 
silicon solar cell has Voc 0.6–0.7 V and Isc 35–40 mA/cm2 at Standard Test 
Condition (STC). STC is explained below separately. The Voc and Isc of com-
mon single solar cells are given in Table 1.3.

Assembly of the solar module is done by simply connecting the top metal 
contact of one cell to the bottom metal contact of the other cell in series 
(Figure 1.19). Initially, modules with 36 cells were manufactured (Figure 
1.20). Now we have modules in the market with 60, 72, and 120 solar cells. 
One can roughly estimate the total Voc of full modules by just multiplying 
the voltages and Isc by multiplying the area of total cells in modules by per 
cell Isc.

While manufacturing, the desired number of cells connected in series 
are laminated with a mechanical scheme of Glass–Encapsulant–Solar cells–
Encapsulant–Back sheet (Figure 1.21). The glass sheets are made of iron free 
and thermal tempered glass at a thickness of 2 to 4 mm, to achieve a high 
optical transmission. Encapsulant is a 0.5–0.7 mm thick layer of ethylene 
vinyl acetate (EVA). EVA is UV resistant to avoid “yellowing” or “brown-
ing” during long-term solar light exposure. The back sheet is a 0.5 mm 
thick white DuPont Tedlar polyvinyl fluoride (PVF) sheet. The lamination 
process is carried out at 150°C in a vacuum laminator. The EVA “cures” 
at that temperature and makes the lamination process non-reversible. The 
vacuum avoids air bubbles inside the laminate. Finally, the whole laminated 
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Figure 1.20  �PV module with 36 cells interconnected to form a series string. (Courtesy: 
Refer Annexure A)

Table 1.3  �Voc and Isc of common single solar cells

S. N. Solar Cell Material
Typical Single Cell 

Voc Typical Single Cell Isc

1 Crystalline and Polycrystalline 
Silicon (x-Si)

~0.6 Volts ~35 mA/cm2

2 Gallium Arsenide ~1.0 Volts ~27 mA/cm2

3 Amorphous Si (a-Si) ~0.9 Volts ~15 mA/cm2

4 Tandem a-Si ~1.8 Volts ~10 mA/cm2

5 Copper lndium Di-selenide ~0.4 Volts ~35 mA/cm2

6 Cadmium Sulfide, Cadmium 
Telluride

~0.7 Volts ~25 mA/cm2

Figure 1.19  �Connection of one solar cell to another in series. (Courtesy: Refer Annexure 
A)
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set up is framed with an aluminum frame and hermetically sealed using 
silicon rubber suitable for long-term outdoor use.

The nameplate power of a solar module is the Pmp measured under 
Standard Test Condition (STC). STC is defined as the test condition of 
ambient temperature 25°C, irradiance 1000 W/m² (perpendicular) and Sun 
spectrum equivalent to Air Mass 1.5, or AM 1.5. AM 1.5 is defined as a 
spectral distribution according to solar irradiance passing at an elevation 
angle of 41.8° through the atmosphere. The maximum sunlight intensity 
occurs when the Sun is straight overhead (i.e., AM 1.0). Solar spectrum 
outside the Earth’s atmosphere is the air mass zero condition (AM 0). All 
these positions of the Sun are shown in Figure 1.22.

There is a convention to represent the rating of a solar module in Wp, 
i.e., Watt peak. A five-hundred-watt module is called 500 Wp module. 
Solar modules have to keep working usefully for a minimum of 25 years 
under rough outdoor conditions. Hence it should also fulfill many other 
test conditions, which are called an international standard, well known as 
IEC standard (The International Electrotechnical Commission standard). 
The IEC is a world organization based in Geneva to develop international 
standards for electrical and electronic items. In addition, each country has 
its own standard such as IS for India, EN for European countries, BDS for 
Bangladesh, etc. The latest IEC standards for solar modules (2022) are:

•	 IEC 61215-2:2021 Terrestrial photovoltaic (PV) modules – Design 
qualification and type approval – Part 2: Test procedures

•	 IEC 61701:2020 Photovoltaic (PV) modules – Salt mist corrosion 
testing

Figure 1.21  �Different layers of a solar module. (Courtesy: Refer Annexure A)
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•	 IEC 61730-1:2016 Photovoltaic (PV) module safety qualification
•	 IEC 62716:2013 Photovoltaic (PV) modules – Ammonia corrosion 

testing
•	 IEC 60068-2-68 Environmental testing – Part 2-68: Tests –Test L: 

Dust and sand
•	 IEC TS 62804-1-1:2020 Photovoltaic (PV) modules – Test methods for 

the detection of potential-induced degradation – Part 1-1: Crystalline 
silicon - Delamination

•	 IEC TS 62804-2:2022 Photovoltaic (PV) modules – Test methods for 
the detection of potential-induced degradation – Part 2: Thin-film

1.12 � SPV TECHNOLOGY LANDSCAPE

Monocrystalline Si modules dominated the solar module market (market 
size itself was very small) from 1980 to 1995 [11]. Thereafter, polycrystal-
line Si modules percentage started growing due to cheaper manufacturing 
technology. There was only a little compromise in efficiency of polycrystal-
line compared to that of monocrystalline Si. Manufacturing procedure of 
monocrystalline was still costly. A major portion of market was captured 
by polycrystalline till 2016 untill the latest industry research enabled the 
cost reduction of manufacturing of monocrystalline Si due to latest technol-
ogies. Everybody was aware that monocrystalline is preferable anytime due 
to its lowest degradation rate, longer life, and better outdoor stability. Cost 
reduction further prompted the market to prefer it for commercial applica-
tions. By 2022, out of total PV production, monocrystalline Si is the most 
dominant in market, with a share of 120.6 GWp, while polycrystalline Si 

Figure 1.22  �The concept of Air Mass. (Courtesy: Refer Annexure A)
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is only 23.3 GWp, and expectedly, thin film is only 7.7 GWp (Figure 1.23). 
Out of 7.7 GWp of thin-film solar modules, CdTe has a share of 6.1 GWp, 
CIGS 1.5 GWp and amorphous Si 0.2 GWp (Figure 1.24).

As regards installation of PV projects in the world, according to IRENA 
– International Renewable Energy Agency website (https://www​.irena​
.org/) – the trend is shown in Figure 1.25, Figure 1.26 and Figure 1.27. The 
installed capacity of solar photovoltaic power projects has a share of 27.7% 
globally, which was just around 5% a decade ago. It shows the success story 
of the 100 GW to 1000 GW path from 2012 to 2022.

This data shows that the world is now nearing 1 TW installed capacity. 
This was unimaginable just a decade ago. Needless to say, that China is far 
far ahead in terms of solar PV installed capacity. After all, they have been 
the main trendsetter for the drastic reduction in the cost all over the world. 

Figure 1.23  �PV global annual production by technology. (Courtesy: Refer Annexure A)

Figure 1.24  �Global market share of thin-film technologies. (Courtesy: Refer Annexure 
A)

https://www.irena.org/)
https://www.irena.org/)
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Figure 1.26  �Year-wise PV installed capacity (MW) in the world. (Courtesy: Refer 
Annexure A)

In addition, China is the main exporter of solar modules to many countries 
in the world. This is the advantage of a common open world market.

The most interesting is the price trend of the Si solar cells [12]. This is 
mind boggling and unbelievable that a solar cell at USD 76 per watt in 
1977 can be available for just USD 0.30 in 2020 as shown in Figure 1.28. If 
inflation of currencies is considered, the solar cell would appear to be avail-
able practically free for the past generation. Let the next generation enjoy 

Figure 1.25  �Share of solar power projects in total RE installed capacity in the world in 
2021. (Courtesy: Refer Annexure A)
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it. That is why solar cells are now fully commoditized and commercial-
ized. Power generation from solar energy is today cheaper than practically 
all sources of energy, whether conventional or nonconventional, renewable 
or non-renewable, local or imported – that too without any detrimental 
impact on the environment.

Figure 1.27  �Country Ranking: PV Installed Capacity (MW) by 2021. (Courtesy: Refer 
Annexure A)

Figure 1.28  �Price history of silicon PV cells. (Courtesy: Refer Annexure A)
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1.13 � SOLAR PV FUTURE SCENARIOS

The world is moving confidently toward Net Zero Emissions (NZE) by 
2050. Solar PV generation increased by a record 179 TWh (up 22%) in 
2021 to exceed 1,000 TWh [13]. An average annual generation growth 
of 25% in the period 2022-2030 is needed to follow the NZE scenario. 
The growth rate is similar to the average annual expansion recorded in the 
past 5 years. This corresponds to a more than three-fold increase in annual 
capacity deployment until 2030 amounting to approximately 7,400 TWh in 
2030 (Figure 1.29).

Out of the global solar PV capacity additions in 2021 the share of utility-
scale plants is 52%, followed by the residential (28%) and commercial and 
industrial (19%) segments. The total global installed capacity of PV power 
projects is projected to 5,042 GW as per the NZE scenario by 2030.

As per the prevailing trend, the crystalline (poly- + mono-) Si PV modules 
were dominant, with over 95% market share. With the sharp narrowing of 
the gap between the costs of mono- and polycrystalline modules, the more 
efficient monocrystalline wafers technology is capturing almost all crystal-
line PV production. Even among the different types of Si monocrystalline 
modules, more efficient cell architecture such as Passivated Emitter Rear 
Contact (PERC) has been dominant since 2021, with almost 75% market 

Figure 1.29  �Solar PV power generation under the Net Zero Scenario, 2010-2030 
(Courtesy: Refer Annexure A)
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share. Now, even higher-efficiency cell designs (using technologies such as 
TOPCon, heterojunction, and back contact) saw expanded commercial 
production and captured about 20% of the market in 2021.

The above projected figures are based on the NZE scenario by 2050. 
Another report [14] is presenting the projections based on Low, Medium, 
and High scenarios. The challenges identified by the report are:

	 (a)	 Today, prices for silicon, wafer, cell, and modules are considerably 
higher than those at the beginning of 2021, and price relief is not 
expected in the near future.

	 (b)	 The world is in an inflationary phase; the negative impacts of the pan-
demic are not yet overcome.

	 (c)	 Russian war against Ukraine and its impact on the global market.

Despite all these challenges, solar energy is seeing impressive growth from 
2022. The forecast for annual addition to the global solar PV market offers 
encouraging results (Figure 1.30). The Medium Scenario anticipates annual 
installed capacity additions to reach 328.5 GW, while the Low Scenario 
offers 243.5 GW and High Scenario 458.8 GW by 2026.

As regards the cumulative installed capacity of solar power projects, less 
than 10 years after the 100 GW mark was reached in 2012, the total oper-
ating on-grid solar power capacity has reached the 1 TW level in 2022. 
The solar power is expected to grow with rapid strides in the next decades. 
The Medium Scenario projects the cumulative installed capacities to reach 
2,300 GW, while the Low Scenario offers 1,991 GW and the High Scenario 
2,708 GW by 2026 (Figure 1.31).

Figure 1.30  �Projected annual solar PV addition 2022–2026 globally (Courtesy: Refer 
Annexure A)
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1.14 � ADVANCES IN SOLAR MODULES

Once the efficiency and quality of solar cells were optimized, the solar 
industry started R&D to improve the efficiency of solar modules by fine-
tuning the manufacturing processes. As a result, many variations of solar 
modules with great improvements are now available in the market. Some 
of them are:

•	 Glass-Glass SPV modules with both sides glass cover (weather proof, 
frameless, stronger, fire resistant)

•	 Bifacial glass-glass modules with metal fingers and busbar printed on 
both sides (efficiency gains of 11%, weather proof, frameless, stron-
ger, fire resistant)

•	 Flexible monocrystalline silicon modules (no breakable glass, easy 
installation, can be fixed at curved surfaces – tilted surface, facade, 
sun shed, car parking)

•	 Solar modules integrated with IMM – Individual Module Monitoring 
(“real time” data, plant efficiency improvement: 3%; O&M cost sav-
ing: 50%)

•	 BIPV – Building Integrated PV modules (serves as building envelope 
material and also power generator)

•	 Half-Cut SPV modules (each cell produces 1/2 current with 1/4 resis-
tance, higher fill factor, efficiency gain of 0.5%–1%, power gain of 
3%–5%)

•	 Shingled Cells SPV Modules with seamless soldering like shingles on a 
roof (lower ohmic losses, reducing stress on cells, 10% gain in energy, 
improved aesthetics)

Figure 1.31  �Global total solar PV market scenarios 2022–2026 (Courtesy: Refer 
Annexure A)
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•	 PERC – Passivated Emitter Rear Contact SPV modules. A dielectric 
passivation layer is added to the rear of the cell to allow more sunlight 
to be captured. (1% efficiency gain)

•	 HIT – Heterojunction with Intrinsic Thin Layer SPV module (lower 
temperature coefficient, high efficiency)

•	 SPV Modules with LiFePO4 battery (modular, better than central 
storage, shuts down over 50°C)

•	 SPV Modules with Optimizer with local DC/DC converter (constantly 
tracking MPPT of each module, monitor module performance, safe 
DC feature, accepts multiple orientations, tilts, and module types)

•	 SPV modules with micro-inverter (convert the DC to AC locally, no 
string/central inverter needed, modular, safer AC, no string sizing 
limitation)

•	 Wearable Solar Modules (solar textiles: tiny solar panels stitched into 
the fabric of clothing; application: window curtains, heating car seats)

We will witness many more developments in the future. It is an ongoing 
progress driven by a dynamic and competitive market. The above descrip-
tions are just in brief. Details of “Advances in Solar Modules” are beyond 
the scope of this topic.

1.15 � DEVELOPMENTS BEYOND THE LATEST

The PERC solar cell technology has become the dominant solar cell tech-
nology. In 2022, PERC solar cells held 75% of the market share. There 
is a continuous innovation effort from the solar manufacturing plants to 
improve solar module efficiency, lower inherent losses, and improve sta-
bility under outdoor conditions. The efficiency improvement potential of 
PERC now seems to have been exhausted and further optimization of the 
technology now seems elusive.

Manufacturers are now looking beyond it to:

•	 n-PERT (passivated emitter rear totally diffused)
•	 Heterojunction (HJT)
•	 Interdigitated back contact (IBC)
•	 n-TOPCon

Details of these newest technologies are beyond the scope of this topic; 
however, they are briefly touched upon below.

Unlike PERC, in the PERT structure, the rear surface is “totally diffused” 
with phosphorus (n-type). PERT technology is implemented on n-type Si 
solar cells with the advantages of lower temperature coefficient and lower 
light induced degradation than p-type Si wafers.
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HJT technology was patented by Panasonic, which expired in 2010, and, 
thereafter, many manufacturers are trying in their own way to produce 
this kind of module due to its inherent higher qualities. HJT solar mod-
ules combine two different technologies into one cell: a crystalline silicon 
cell sandwiched between two layers of amorphous “thin film” silicon. Used 
together, these technologies allow more energy to be harvested compared 
to using either technology alone, resulting into high efficiency and low tem-
perature coefficient.

IBC is an architectural approach to module design. The highest silicon 
wafer-based solar cell power conversion efficiencies reported to date have 
been achieved with the interdigitated back contact (IBC) architecture. IBC 
solar cells require interdigitated (or striped) doping on the rear surface and 
only have contacts on the rear. There are several advantages of the IBC archi-
tecture over the more commonly fabricated front and rear contact design: 
(a) the elimination of front grid shading, allowing for potentially higher 
short-circuit currents, (b) the elimination of front surface doping allows for 
a wider range of front surface texturing and light trapping schemes to be 
deployed on the front surface.

n-TOPCon or N-Type TOPCon (Tunnel Oxide Passivated Contact) is the 
new buzz in the solar industry. In a TOPCon cell, a tunnel oxide layer and 
an intrinsically polysilicon layer are added to the rear side. The front side is 
passivated by a dielectric stack of passivation and antireflection layer offer-
ing high efficiency and low temperature coefficient.

Only scattered information regarding these technologies is available on 
websites. Hopefully, very soon a well-documented report on these topics 
will be available for the benefit of all.

ANNEXURE A: SOURCES FOR FIGURES

Figure No. Caption Source

Figure 1.1 Figure 1.1. Solar spectrum 
in outer atmosphere and 
at sea level of the Earth.

Fondriest Environmental, 
Inc. https://www​.fondriest​
.com​/environmental​
-measurements​/
parameters​/weather​/solar​
-radiation/

Figure 1.2 Typical p-n junction solar 
cell.

https://www​.neetprep​.com​/
section​/chapter​/704/​
?sectionId​=270 

Figure 1.3 Molecular orbital diagram 
of hydrogen and helium.

https://www​.chegg​.com​/
homework​-help​/questions​
-and​-answers​/5​-hydrogen​
-exists​-diatomic​-gas​
-helium​-exists​-free​-atm​
-molecular​-hez​-complete​
-molecular​-orb​-q58231300 

https://www.fondriest.com/environmental-measurements/parameters/weather/solar-radiation/
https://www.fondriest.com/environmental-measurements/parameters/weather/solar-radiation/
https://www.fondriest.com/environmental-measurements/parameters/weather/solar-radiation/
https://www.fondriest.com/environmental-measurements/parameters/weather/solar-radiation/
https://www.fondriest.com/environmental-measurements/parameters/weather/solar-radiation/
https://www.neetprep.com/section/chapter/704/?sectionId=270
https://www.neetprep.com/section/chapter/704/?sectionId=270
https://www.neetprep.com/section/chapter/704/?sectionId=270
https://www.chegg.com/homework-help/questions-and-answers/5-hydrogen-exists-diatomic-gas-helium-exists-free-atm-molecular-hez-complete-molecular-orb-q58231300
https://www.chegg.com/homework-help/questions-and-answers/5-hydrogen-exists-diatomic-gas-helium-exists-free-atm-molecular-hez-complete-molecular-orb-q58231300
https://www.chegg.com/homework-help/questions-and-answers/5-hydrogen-exists-diatomic-gas-helium-exists-free-atm-molecular-hez-complete-molecular-orb-q58231300
https://www.chegg.com/homework-help/questions-and-answers/5-hydrogen-exists-diatomic-gas-helium-exists-free-atm-molecular-hez-complete-molecular-orb-q58231300
https://www.chegg.com/homework-help/questions-and-answers/5-hydrogen-exists-diatomic-gas-helium-exists-free-atm-molecular-hez-complete-molecular-orb-q58231300
https://www.chegg.com/homework-help/questions-and-answers/5-hydrogen-exists-diatomic-gas-helium-exists-free-atm-molecular-hez-complete-molecular-orb-q58231300
https://www.chegg.com/homework-help/questions-and-answers/5-hydrogen-exists-diatomic-gas-helium-exists-free-atm-molecular-hez-complete-molecular-orb-q58231300
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Figure No. Caption Source

Figure 1.4 Bonding diagram for the 
(a) single unit of silicon 
3D tetrahedron

https://commons​.wikimedia​
.org​/wiki​/File​:Silicon​
_Crystal​_structure​.svg 

(b) two-dimensional 
representation of a 
tetrahedron bond

http://hyperphysics​.phy​-astr​
.gsu​.edu​/hbase​/Solids​/sili​
.html 

(c) simplified sketch of the 
actual crystal structure.

https://www​.pveducation​
.org​/pvcdrom​/pn​-junctions​
/semiconductor​-structure 

Figure 1.5 Formation of conduction 
band, valence band, and 
bandgap in a solid 
semiconductor.

[4]

Figure 1.6. Energy band diagram of 
insulator, semiconductor, 
and conductor based on 
bandgap energy.

[4]

Figure 1.7(a) Extrinsic semiconductor 
with (a) phosphorus as 
donor atom

 https://en​.wikipedia​.org​/
wiki​/Donor_(semi 
conductors 

Figure 1.7(b) (b) boron as acceptor 
atom in the Si crystal 
lattice

https://en​.wikipedia​.org​/wiki​
/Donor_(semiconductors 

Figure 1.8 Creation of energy levels 
ED (donor) and EA 
(acceptor) in the 
bandgap due to impurity 
atoms.

[4]

Figure 1.9 A p-n junction at thermal 
equilibrium with no 
applied bias

 https://www​.google​.com​/
url​?sa​=i​&url​=https​%3A​%2F​
%2Fedurev​.in​%2Fstudytube​
%2FP​-N​-Junction​-Diode​
%2Fa335d78c​-4053​-4f63​
-bec4​-11e5c4a4688e​_t​
&psig​=AOv​Vaw3​JHjc​o6Wf​
5isj​hbMSwcKvc​&ust​
=1668270296884000​
&source​=images​&cd​=vfe​
&ved​=0CB​EQjh​xqFw​
oTCO​Cd8s​zFpv​sCFQ​
AAAA​AdAA​AAABAF 

Figure 1.10 A p-n junction solar cell 
schematic.

https://www​.imagesco​.com​/
articles​/photovoltaic​/
photovoltaic​-pg4​.html 

https://commons.wikimedia.org/wiki/File:Silicon_Crystal_structure.svg
https://commons.wikimedia.org/wiki/File:Silicon_Crystal_structure.svg
https://commons.wikimedia.org/wiki/File:Silicon_Crystal_structure.svg
http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/sili.html
http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/sili.html
http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/sili.html
https://www.pveducation.org/pvcdrom/pn-junctions/semiconductor-structure
https://www.pveducation.org/pvcdrom/pn-junctions/semiconductor-structure
https://www.pveducation.org/pvcdrom/pn-junctions/semiconductor-structure
https://en.wikipedia.org/wiki/Donor_(semiconductors
https://en.wikipedia.org/wiki/Donor_(semiconductors
https://en.wikipedia.org/wiki/Donor_(semiconductors
https://en.wikipedia.org/wiki/Donor_(semiconductors
https://en.wikipedia.org/wiki/Donor_(semiconductors
https://www.google.com/url?sa=i&url=https%3A%2F%2Fedurev.in%2Fstudytube%2FP-N-Junction-Diode%2Fa335d78c-4053-4f63-bec4-11e5c4a4688e_t&psig=AOvVaw3JHjco6Wf5isjhbMSwcKvc&ust=1668270296884000&source=images&cd=vfe&ved=0CBEQjhxqFwoTCOCd8szFpvsCFQAAAAAdAAAAABAF
https://www.google.com/url?sa=i&url=https%3A%2F%2Fedurev.in%2Fstudytube%2FP-N-Junction-Diode%2Fa335d78c-4053-4f63-bec4-11e5c4a4688e_t&psig=AOvVaw3JHjco6Wf5isjhbMSwcKvc&ust=1668270296884000&source=images&cd=vfe&ved=0CBEQjhxqFwoTCOCd8szFpvsCFQAAAAAdAAAAABAF
https://www.google.com/url?sa=i&url=https%3A%2F%2Fedurev.in%2Fstudytube%2FP-N-Junction-Diode%2Fa335d78c-4053-4f63-bec4-11e5c4a4688e_t&psig=AOvVaw3JHjco6Wf5isjhbMSwcKvc&ust=1668270296884000&source=images&cd=vfe&ved=0CBEQjhxqFwoTCOCd8szFpvsCFQAAAAAdAAAAABAF
https://www.google.com/url?sa=i&url=https%3A%2F%2Fedurev.in%2Fstudytube%2FP-N-Junction-Diode%2Fa335d78c-4053-4f63-bec4-11e5c4a4688e_t&psig=AOvVaw3JHjco6Wf5isjhbMSwcKvc&ust=1668270296884000&source=images&cd=vfe&ved=0CBEQjhxqFwoTCOCd8szFpvsCFQAAAAAdAAAAABAF
https://www.google.com/url?sa=i&url=https%3A%2F%2Fedurev.in%2Fstudytube%2FP-N-Junction-Diode%2Fa335d78c-4053-4f63-bec4-11e5c4a4688e_t&psig=AOvVaw3JHjco6Wf5isjhbMSwcKvc&ust=1668270296884000&source=images&cd=vfe&ved=0CBEQjhxqFwoTCOCd8szFpvsCFQAAAAAdAAAAABAF
https://www.google.com/url?sa=i&url=https%3A%2F%2Fedurev.in%2Fstudytube%2FP-N-Junction-Diode%2Fa335d78c-4053-4f63-bec4-11e5c4a4688e_t&psig=AOvVaw3JHjco6Wf5isjhbMSwcKvc&ust=1668270296884000&source=images&cd=vfe&ved=0CBEQjhxqFwoTCOCd8szFpvsCFQAAAAAdAAAAABAF
https://www.google.com/url?sa=i&url=https%3A%2F%2Fedurev.in%2Fstudytube%2FP-N-Junction-Diode%2Fa335d78c-4053-4f63-bec4-11e5c4a4688e_t&psig=AOvVaw3JHjco6Wf5isjhbMSwcKvc&ust=1668270296884000&source=images&cd=vfe&ved=0CBEQjhxqFwoTCOCd8szFpvsCFQAAAAAdAAAAABAF
https://www.google.com/url?sa=i&url=https%3A%2F%2Fedurev.in%2Fstudytube%2FP-N-Junction-Diode%2Fa335d78c-4053-4f63-bec4-11e5c4a4688e_t&psig=AOvVaw3JHjco6Wf5isjhbMSwcKvc&ust=1668270296884000&source=images&cd=vfe&ved=0CBEQjhxqFwoTCOCd8szFpvsCFQAAAAAdAAAAABAF
https://www.google.com/url?sa=i&url=https%3A%2F%2Fedurev.in%2Fstudytube%2FP-N-Junction-Diode%2Fa335d78c-4053-4f63-bec4-11e5c4a4688e_t&psig=AOvVaw3JHjco6Wf5isjhbMSwcKvc&ust=1668270296884000&source=images&cd=vfe&ved=0CBEQjhxqFwoTCOCd8szFpvsCFQAAAAAdAAAAABAF
https://www.google.com/url?sa=i&url=https%3A%2F%2Fedurev.in%2Fstudytube%2FP-N-Junction-Diode%2Fa335d78c-4053-4f63-bec4-11e5c4a4688e_t&psig=AOvVaw3JHjco6Wf5isjhbMSwcKvc&ust=1668270296884000&source=images&cd=vfe&ved=0CBEQjhxqFwoTCOCd8szFpvsCFQAAAAAdAAAAABAF
https://www.google.com/url?sa=i&url=https%3A%2F%2Fedurev.in%2Fstudytube%2FP-N-Junction-Diode%2Fa335d78c-4053-4f63-bec4-11e5c4a4688e_t&psig=AOvVaw3JHjco6Wf5isjhbMSwcKvc&ust=1668270296884000&source=images&cd=vfe&ved=0CBEQjhxqFwoTCOCd8szFpvsCFQAAAAAdAAAAABAF
https://www.google.com/url?sa=i&url=https%3A%2F%2Fedurev.in%2Fstudytube%2FP-N-Junction-Diode%2Fa335d78c-4053-4f63-bec4-11e5c4a4688e_t&psig=AOvVaw3JHjco6Wf5isjhbMSwcKvc&ust=1668270296884000&source=images&cd=vfe&ved=0CBEQjhxqFwoTCOCd8szFpvsCFQAAAAAdAAAAABAF
https://www.google.com/url?sa=i&url=https%3A%2F%2Fedurev.in%2Fstudytube%2FP-N-Junction-Diode%2Fa335d78c-4053-4f63-bec4-11e5c4a4688e_t&psig=AOvVaw3JHjco6Wf5isjhbMSwcKvc&ust=1668270296884000&source=images&cd=vfe&ved=0CBEQjhxqFwoTCOCd8szFpvsCFQAAAAAdAAAAABAF
https://www.imagesco.com/articles/photovoltaic/photovoltaic-pg4.html
https://www.imagesco.com/articles/photovoltaic/photovoltaic-pg4.html
https://www.imagesco.com/articles/photovoltaic/photovoltaic-pg4.html
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Figure No. Caption Source

Figure 1.11 A single Si solar cell (a) 
0.3 mm thick p-Si wafer, 
(b) entire back surface 
silver metal thin coating, 
and (c) front surface thin 
(0.05 mm) silver grid 
fingers and vertical bus 
bars of 0.2 mm flat strips 
of copper or aluminum.

[9] 

Figure 1.12 Silicon solar cells with 2, 
3, 5 busbars.

Open-source Google 
search 

Figure 1.13 Devices to measure I-V 
characteristics and 
efficiency.

https://www​.google​.com​/url​
?sa​=i​&url​=https​%3A​%2F​
%2Fwww​.ele​ctri​calt​
echnology​.org​%2F2020​
%2F10​%2Fcalculation​
-design​-solar​-photovoltaic​
-modules​-array​.html​&psig​
=AOvVaw1UeurT​
-oSty63o4pscDHts​&ust​
=1668321643943000​
&source​=images​&cd​=vfe​
&ved​=0CB​EQjh​xqFw​
oTCP​iA99​eEqP​sCFQ​
AAAA​AdAA​AAABAD 

Figure 1.14 I-V characteristics of solar 
cells in (a) dark and 
under illumination and 
(b) its inverted 
representation.

[5]

Figure 1.15 Shockley–Queisser 
theoretical efficiency 
limit single p-n junction 
solar cells.

[7] 

Figure 1.16 Current-voltage 
characteristics of a 
multi-crystalline silicon 
PV module at different 
radiation levels.

[5]

Figure 1.17 Current-voltage 
characteristics of a 
multi-crystalline silicon 
PV module at different 
temperatures.

[5]

Figure 1.18 Mono-crystalline, 
polycrystalline, and 
thin-film solar cells.

Open-source Google 
search

Figure 1.19 Connection of one solar 
cell to another in series.

Open-source Google 
search

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.electricaltechnology.org%2F2020%2F10%2Fcalculation-design-solar-photovoltaic-modules-array.html&psig=AOvVaw1UeurT-oSty63o4pscDHts&ust=1668321643943000&source=images&cd=vfe&ved=0CBEQjhxqFwoTCPiA99eEqPsCFQAAAAAdAAAAABAD
https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.electricaltechnology.org%2F2020%2F10%2Fcalculation-design-solar-photovoltaic-modules-array.html&psig=AOvVaw1UeurT-oSty63o4pscDHts&ust=1668321643943000&source=images&cd=vfe&ved=0CBEQjhxqFwoTCPiA99eEqPsCFQAAAAAdAAAAABAD
https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.electricaltechnology.org%2F2020%2F10%2Fcalculation-design-solar-photovoltaic-modules-array.html&psig=AOvVaw1UeurT-oSty63o4pscDHts&ust=1668321643943000&source=images&cd=vfe&ved=0CBEQjhxqFwoTCPiA99eEqPsCFQAAAAAdAAAAABAD
https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.electricaltechnology.org%2F2020%2F10%2Fcalculation-design-solar-photovoltaic-modules-array.html&psig=AOvVaw1UeurT-oSty63o4pscDHts&ust=1668321643943000&source=images&cd=vfe&ved=0CBEQjhxqFwoTCPiA99eEqPsCFQAAAAAdAAAAABAD
https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.electricaltechnology.org%2F2020%2F10%2Fcalculation-design-solar-photovoltaic-modules-array.html&psig=AOvVaw1UeurT-oSty63o4pscDHts&ust=1668321643943000&source=images&cd=vfe&ved=0CBEQjhxqFwoTCPiA99eEqPsCFQAAAAAdAAAAABAD
https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.electricaltechnology.org%2F2020%2F10%2Fcalculation-design-solar-photovoltaic-modules-array.html&psig=AOvVaw1UeurT-oSty63o4pscDHts&ust=1668321643943000&source=images&cd=vfe&ved=0CBEQjhxqFwoTCPiA99eEqPsCFQAAAAAdAAAAABAD
https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.electricaltechnology.org%2F2020%2F10%2Fcalculation-design-solar-photovoltaic-modules-array.html&psig=AOvVaw1UeurT-oSty63o4pscDHts&ust=1668321643943000&source=images&cd=vfe&ved=0CBEQjhxqFwoTCPiA99eEqPsCFQAAAAAdAAAAABAD
https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.electricaltechnology.org%2F2020%2F10%2Fcalculation-design-solar-photovoltaic-modules-array.html&psig=AOvVaw1UeurT-oSty63o4pscDHts&ust=1668321643943000&source=images&cd=vfe&ved=0CBEQjhxqFwoTCPiA99eEqPsCFQAAAAAdAAAAABAD
https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.electricaltechnology.org%2F2020%2F10%2Fcalculation-design-solar-photovoltaic-modules-array.html&psig=AOvVaw1UeurT-oSty63o4pscDHts&ust=1668321643943000&source=images&cd=vfe&ved=0CBEQjhxqFwoTCPiA99eEqPsCFQAAAAAdAAAAABAD
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https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.electricaltechnology.org%2F2020%2F10%2Fcalculation-design-solar-photovoltaic-modules-array.html&psig=AOvVaw1UeurT-oSty63o4pscDHts&ust=1668321643943000&source=images&cd=vfe&ved=0CBEQjhxqFwoTCPiA99eEqPsCFQAAAAAdAAAAABAD
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Figure No. Caption Source

Figure 1.20 PV module with 36 cells 
interconnected to form a 
series string.

https://pv​-manufacturing​.org​
/solar​-cell​-manufacturing​/
pv​-module​-manufacturing/ 

Figure 1.21 Different layers of a solar 
module.

https://thesolarlabs​.com​/ros​
/photovoltaic​-modules/ 

Figure 1.22 The concept of Air Mass.  https://www​.azom​.com​/
article​.aspx​?ArticleID​
=10817 

Figure 1.23 PV global annual 
production by 
technology.

https://www​.ise​.fraunhofer​
.de​/content​/dam​/ise​/de​/
documents​/publications​/
studies​/Photovoltaics​
-Report​.pdf 

Figure 1.24 Global market share of 
thin-film technologies.

https://www​.ise​.fraunhofer​
.de​/content​/dam​/ise​/de​/
documents​/publications​/
studies​/Photovoltaics​
-Report​.pdf 

Figure 1.25 Share of solar power 
projects in total RE 
installed capacity in the 
world in 2021

https://www​.irena​.org​/
Statistics​/View​-Data​-by​
-Topic​/Capacity​-and​
-Generation​/Technologies 

Figure 1.26 Year-wise PV Installed 
Capacity (MW) in the 
world.

https://www​.irena​.org​/solar 

Figure 1.27 Country Ranking: PV 
Installed Capacity (MW) 
by 2021

https://www​.irena​.org​/
Statistics​/View​-Data​-by​
-Topic​/Capacity​-and​
-Generation​/Country​
-Rankings 
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Chapter 2

Significance of shadow 
and shading analysis in 
solar power projects

Sudhir Kumar

2.1 � INTRODUCTION

A shadow-free area is a prerequisite for a successful solar power plant. This 
is the first and foremost criterion for a site engineer when visiting a location 
for a site survey to install a new solar power plant, and one has to carry 
out the site survey with a careful consideration of shading or shadows from 
nearby objects [2]. Naturally, no one wants solar panels to be in shadow 
from a high-rise structure or nearby trees for the entire day of solar radia-
tion. Solar energy is the fuel for a solar power plant, and no power plant 
can run without fuel. If there are too many tall structures nearby, the site 
is deemed unfeasible. The best strategy, therefore, is to find a site that is 
completely shadow free. However, oftentimes, this is not possible, as there 
may be obstructing structures nearby (Figure 2.1). If there are many tall 
structures nearby, it is best to either remove the obstructing structures or 
avoid placing solar panels in areas where shadows are expected [9].

Shadows from solar light are not a constant phenomenon. They change 
every day and every hour throughout the year. In the Southern Hemisphere, 
shadows are at their maximum in December and at their minimum in June. 
One needs to find out the maximum length of the shadow on the shortest 
day in December. Once the shadow length is determined, a decision must 
be made whether to avoid the shaded area if sufficient land or roof area is 
available. In the event of non-availability of sufficient land or roof area, it is 
also important to find out how much energy loss is incurred annually. In the 
Northern Hemisphere, shadows are at their maximum in June and at their 
minimum in December. This process is called “shadow analysis”, which 
involves the study of the sun’s path and height angles corresponding to vari-
ous azimuth angles. The impact of partial shading and its detrimental effect 
have been well documented by several studies [3, 5​–7].

In a solar power plant, multiple panels (say 15–20) are connected in series 
to form a string to maintain the series voltage below 1000 volts and some-
times below 1500 volts. These strings are then connected in parallel to 
increase the current up to the limit required by the inverter, which can 
range from 30 to 3000 amperes depending on the size of the power plant. 
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Significance of shadow and shading analysis

Such a block of series-parallel combinations is called an array. Multiple 
arrays make a solar power plant. Each string is mounted on a metal struc-
ture, with panels placed side by side at a fixed tilt angle and height, depend-
ing on the size of the solar panel and the geographical location. Strings in 
parallel are placed one behind the other (Figure 2.2). The distance between 
two strings is determined by studying the shadow effect of one string on 
another (Solar Quarter). The inter-row spacing must be optimized for 

Figure 2.1  �Shadow of a tree on a rooftop solar power plant. (Source: Refer Annex. A)

Figure 2.2  �Inter-row spacing between solar strings in a solar power plant. (Source: Refer 
Annex. A)
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maximum solar output and efficient utilization of land. This process is 
called “shading analysis”.

The following sections are devoted to studying “shadow analysis” using 
a simple manual approach and with an instrument called Pathfinder. 
Similarly, “shading analysis” for inter-row spacing using the manual 
method and software or apps is discussed.

2.2 � GEOGRAPHICAL REASONS FOR SHADOW

Any one point on Earth can be identified by its latitude and longitude. 
The map of the Earth clearly shows the latitude and longitude lines for all 
locations (Figure 2.3). The vertical axis indicates latitude, with 0 degrees 
at the equator, spreading from 0° to 90° northward and 0 to 90 degrees 
southward. The horizontal axis indicates longitude, with 0 degrees at the 
Prime Meridian, spreading from 0° to 180° eastward and 0° to 180° west-
ward. Thus, we now have four quadrants: North-East (N-E), South-East 
(S-E), North-West (N-W) and South-West (S-W). Latitude is always desig-
nated with suffixes N or S, with angles ranging from 0° to 90°. Longitude 
is always designated with suffixes E or W, with angles ranging from 0° to 
180°. The examples below elucidate the positions of various cities.

Lat (N), Long (E): (Asia, Europe, North Africa) New Delhi 28.70° N, 
77.10° E

Figure 2.3  �World map showing longitude and latitude values. (Source: Refer Annex. A)
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Lat (S), Long (E): (Australia, Indonesia, New Zealand) Brisbane 27.46° 
S, 153.02° E

Lat (N), Long (W): (Canada, USA, Mexico, W Indies) New York 40.71° 
N, 74.00° W

Lat (S), Long (W): (Brazil, Argentina, Chile, Bolivia) Buenos Aires 
34.60° S, 58.38° W

Another convention is to denote the N, S, E, W by (+) or (−) signs. A nega-
tive latitude means South of the Equator, and a negative longitude means 
West of the Prime Meridian. That means N-E is + +, N-W is + −, S-W is 
− − and S-E is − +. New York will be thus represented as +40.71°, −74.00°.

Null Island, located in international waters in the Atlantic Ocean, is the 
point on the Earth’s surface at zero degrees latitude and zero degrees longi-
tude (0° N 0° E), i.e., where the Prime Meridian and the Equator intersect.

The shape of the Earth can be categorized as “oblate spheroid”, where 
“oblate” refers to a slight elliptical appearance and “spheroid” means 
almost a sphere but not quite. This term describes the true shape of the 
Earth, which flattens at the poles and bulges at the equator. Its shape is 
more accurately defined as a geoid (https://www​.vedantu​.com/). The spher-
oid shape of the Earth also affects the angle at which sunlight strikes the 
ground. Shadow length depends upon this angle at a given point on the 
Earth at a given time, day, and season. Earth is further divided into four 
hemispheres: (a) the Northern Hemisphere i.e., the upper half of the Earth 
above the equator, (b) the Southern Hemisphere i.e., the lower half of the 
Earth below the equator (c) the Eastern hemisphere i.e., the right half of the 
Earth to the east of the Prime Meridian, and (d) the Western hemisphere 
i.e., the left half of the Earth to the west of the Prime Meridian (Figure 2.4).

Figure 2.4  �Four hemispheres of the Earth. (Source: Refer Annex. A)

https://www.vedantu.com/
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The azimuth angle is of prime importance in solar power technology. 
However, some confusion surrounds the use of this term, which needs to be 
clarified. Solar scientists conveniently use the term “azimuth” for a given 
point on the Earth in two different ways for the same thing. The first is 
“geographical azimuth” and the second is “solar azimuth”, which is also 
called “plane azimuth”.

2.2.1 � Geographical azimuth

The basic definition of azimuth is the angle of the direction from which 
sunlight is coming onto a plane. It is measured clockwise on the horizontal 
plane, from north to planar rotation (Figure 2.5). True south represents 
180° azimuth and true north has an azimuth of 0°. Likewise, the true east 
is at 90° and the true west is at 270°. This distinction is important when we 
feed data in solar design software.

Most of the year, the sun’s path is tilted toward the south in the Northern 
Hemisphere and toward the north in the Southern Hemisphere. At the equi-
noxes (21 March and 23 September), the sun moves directly from east to 
west. Thus, the azimuth angles are 90° at sunrise and 270° at sunset. The 
azimuth angle varies with latitude and time and day of the year.

2.2.2 � Solar azimuth

Solar or plane azimuth considers 0° at true south in the Northern Hemisphere 
and at true north in the Southern Hemisphere. Solar design software such 
as PVsyst and PV*SOL uses solar azimuth, while SAM and PVWATT use 
geographical azimuth. Therefore, it is necessary to read software tutorials 
very carefully. For example, a screenshot of a PVsyst simulation for Pune 
(India), in the Northern Hemisphere, is shown in Figure 2.6, while that of 
Richmond (New Zealand), in the Southern Hemisphere, is shown in Figure 
2.7. To get maximum power output, the solar panel should face true south 
in Pune (azimuth 0°) at a tilt angle of 22°. The left side of the panel is ori-
ented toward the east, while the right side faces west. In Richmond, the 
azimuth is again 0° when the solar panel faces true north at the tilt angle 

Figure 2.5  �Geographical azimuth representation. (Source: Refer Annex. A)
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of 39°. Here the left side of the panel is oriented toward the west, while the 
right side faces east. It is worth noting here that according to the concept of 
“geographical azimuth”, the solar panel in Pune would be placed at a 180° 
azimuth angle; however, in PVsyst, this is considered as 0° [11].

Unlike the geographical azimuth concept, the solar azimuth concept con-
siders east and west as plus or minus 90° depending upon in which hemi-
sphere the point of measurement is. In the Northern Hemisphere, the solar 
azimuth is the angle between the true south and the solar collector plane. 
This angle is taken as negative toward the east and positive toward the west 
(Figure 2.8).

Figure 2.6  �Screenshot of PVsyst simulation for Pune, India. (Source: Refer Annex. A)

Figure 2.7  �Screenshot of PVsyst simulation for Richmond, New Zealand. (Source: Refer 
Annex. A)
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In the Southern Hemisphere, the solar azimuth is the angle between true 
north and the solar collector plane. This angle is taken as positive toward 
the east and negative toward the west (Figure 2.9).

A sun-path diagram is used to determine the location of the sun in the 
sky at any given moment during the day throughout the year. A 3-D view of 
a combined sun-path chart for 365 days and 12 hours for a single point on 
the Earth is shown in Figure 2.10, with hour lines and date lines included 
(Anthony et​.a​l.). To represent it on paper, two methods are adopted: 
Rectangular Coordinates and Polar Coordinates. Each point on Earth with 
specific latitude and longitude has its own sun-path chart. However, for 
shading analysis, we do not need to use this complicated chart. There are 
many other simple approaches, which are described below.

Figure 2.8  �Solar azimuth measurements in the Northern Hemisphere. (Source: Refer 
Annex. A)

Figure 2.9  �Solar azimuth measurements in the Southern Hemisphere. (Source: Refer 
Annex. A)

http://www.et.al.
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2.3 � THE CONCEPT OF SOLSTICE AND EQUINOX

Earth moves around the sun in an elliptical path called Earth Orbit. Earth 
is slightly tilted on its axis as it travels around the sun (23.5°). That is why 
we have different seasons. Sunshine hours are different at different points 
on a given day and even vary every day and every season. There are two 
solstices: the June Solstice (20th or 21st) and the December Solstice (21st 
or 22nd). The exact date depends upon the year. Solstices are responsible 
for the shortest or the longest days or nights of the year. The two equinoxes 
occur during the March Equinox (on the 20th or 21st) and the September 
Equinox (on the 22nd or 23rd). At equinoxes, the sun is exactly above equa-
tor, which makes day and night of equal lengths [1].

In the Northern Hemisphere, the June Solstice is called the Summer 
Solstice (with the longest day and the shortest night). The December 
Solstice is called the Winter Solstice (with the shortest day and the longest 
night). The September Equinox is called the Autumn Equinox (with equal 
day and night), while the March Equinox is called the Vernal or Spring 
Equinox (also with equal day and night). The solstices and equinoxes in the 
Northern Hemisphere are shown in Figure 2.11 [13].

In the Southern Hemisphere, the June Solstice is called the Winter Solstice 
(with the shortest day and longest night). The December Solstice is called the 
Summer Solstice (with the longest day and shortest night). The September 
Equinox is called the Vernal or Spring Equinox (with equal day and night). 

Figure 2.10  �A 3D representation of the sun-path chart for a single point on the Earth. 
(Source: Refer Annex. A)
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The March Equinox is called the Autumn Equinox (also with equal day and 
night). The solstices and equinoxes in the Southern Hemisphere are shown 
in Figure 2.12.

Figure 2.12  �The solstices and equinoxes in the Southern Hemisphere. (Source: Refer 
Annex. A)

Figure 2.11  �The solstices and equinoxes in the Northern Hemisphere. (Source: Refer 
Annex. A)
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2.4 � SHADOW ANALYSIS

While carrying out the shadow analysis, we may encounter two situations. 
The first situation is when there is a single structure or tree casting shad-
ows on the proposed solar site. In this case, we can calculate the shadow 
area under a worst-case scenario, e.g., on 21 December in the Northern 
Hemisphere, the day with the longest shadows [1]. This can be done using 
a simple manual approach by measuring the shadow length at varying solar 
height angles. Then we have the option to either remove the shadow-casting 
structure (tree, building, pillar, etc.), if feasible, or avoid the shadowed area. 
If the shadowed area cannot be avoided or the structure cannot be removed, 
we need to calculate the energy loss due to the shadow as a compromise. 
The second situation is when we encounter multiple structures or many trees 
nearby, complicating manual calculations. This is especially true in case of 
a lone bungalow surrounded by tall trees, where cutting down the trees is 
prohibited. In such cases, a versatile non-electronic instrument called the 
Pathfinder is very useful. The Pathfinder has the advantage of being used 
every day throughout the year, providing an annual overview. Moreover, 
it also helps in calculating energy loss. Thus, we have two methodologies 
for shadow analysis: (a) Shadow analysis using a manual approach and (b) 
shadow analysis using the Solar Pathfinder.

2.4.1 � Shadow analysis using the manual approach

Let us assume a 4-m-tall pillar on a roof at Pune, India, which is located 
in the Northern Hemisphere. We need to know the shadow length every 
hour of the day on the shortest day of the year, on 21 December, when 
the shadow is the longest. The first task is to get the hourly sun eleva-
tion (or sun’s height angle θ). This information is available from the PVsyst 
software on a personal computer or the MySolarPanel Android app on a 
smartphone. We can easily calculate the shadow length using Tan θ and the 
height of the pillar (Table. 2.1).

The above data can also be obtained directly through online tools, with-
out any need for calculations. One of the best websites for this purpose 
is https://www​.suncalc​.org/. One has to simply input the height of the 
shadow-casting object, along with the latitude, longitude, and date. The 
sun’s altitude, azimuth, and shadow lengths for each hour of the day can 
directly be obtained.

The next task is to calculate the x-y coordinates of the shadow’s tip every 
hour, which will help us in calculating the shadow coverage. We can use the 
shadow length values along with the zenith angle obtained from the PVsyst 
or MySolarPanel app (Figure 2.13).

https://www.suncalc.org/
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Such calculations provide Table 2.2, which shows the solar height angle 
(θ), the shadow height (4 m), the azimuth angle (α), and the coordinates 
(XD and YD).

Finally, we get the shadow diagram as depicted in Figure 2.14. The sun is 
southward and the total shadow area is toward the north of the pillar. Now 
the solar installer has many options:

	 (a)	 Leave a 10 m distance to completely avoid shadow. This luxury can be 
availed only if the roof area is much larger than the solar project area.

	 (b)	 Leave at least a 4 m distance as a good compromise, so that only 
the partial shadow areas from 8 am to 10 am and from 3 pm to 5 
pm are compromised. Please note that the shortest shadow length is 

Table 2.1  �Calculation of shadow length at Pune on 21 December 2022.

Time on
21 December 2022

Sun Height Angle (θ) at 
Pune

(18.52° N, 73.85° E) Shadow Length of 4 m Tall Structure

08:00 11.4 19.8378
09:00 23.3 9.2879
10:00 33.9 5.9526
11:00 42.4 4.3806
12:00 47.3 3.6911
13:00 47.5 3.6653
14:00 42.9 4.3045
15:00 34.7 5.7767
16:00 24.3 8.8590
17:00 12.4 18.1930

Figure 2.13  �Shadow tip coordinates using shadow length at a given time. (Source: Refer 
Annex. A)
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Figure 2.14  �Shadow diagram of a 4 m tall pillar on a roof on 21 December, 2022. (Source: 
Refer Annex. A)

Table 2.2  �Calculation of shadow tip coordinates using shadow length every hour of the 
day.

4 m Tall Object Shadow Length: Pune 21 Dec 2022

All length in meters (m)

Time (h)

Sun 
Height 

Angle (θ)
Shadow 

Length H

Sun 
Azimuth 
Angle (α)

Displacement X 
(XD)

Displacement Y 
(YD)

08:00 11.4 19.8378 -60.3 -17.23 9.83
09:00 23.3 9.2879 -53.1 -7.43 5.58
10:00 33.9 5.9526 -43.1 -4.07 4.35
11:00 42.4 4.3806 -29.2 -2.14 3.82
12:00 47.3 3.6911 -11.0 -0.7 3.62
13:00 47.5 3.6653 9.3 0.59 3.62
14:00 42.9 4.3045 27.8 2.01 3.81
15:00 34.7 5.7767 42.1 3.87 4.29
16:00 24.3 8.8590 52.3 7.01 5.42
17:00 12.4 18.1930 59.8 15.72 9.15
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at 12 noon. These partially shadowed areas are on the worst day of 
year, but before and after these times, the shadow areas will keep on 
decreasing. It is worth mentioning here that field technicians in the 
Northern Hemisphere use a rule of thumb in case of a parapet wall on 
the roof, leaving a distance equal to the height of the parapet wall on 
the south side.

	 (c)	 Remove the pillar structure to keep the roof completely shadow free, 
provided, structurally, there is no objection or it is not too costly.

	 (d)	 Install the solar plant, including the shadow area, to mitigate the loss 
of power generation during the worst months. This can be the case 
when there is an extreme shortage of roof space and when maximum 
power is needed. The annual loss of energy can be calculated using the 
Pathfinder instrument.

We may encounter a situation when a power project site has a tall tree or 
structure in its vicinity. The first task then is to measure its height, which 
can be very easily done by using an inclinometer [14]. In modern days, even 
a smartphone can easily be used as an inclinometer. The abovementioned 
MySolarPanel has a built-in inclinometer, which can be used in the follow-
ing steps, as shown in the Figure 2.15:

•	 Open the Inclinometer window in the app
•	 Keep the mobile flat at eye level while moving the other end up
•	 Align your eye level with both the upper end and the lower end of the 

mobile in line with the top of the tree
•	 Take a screenshot at this exact angle to get the inclination angle
•	 Find the height using the formula Tan θ × Distance (your distance 

from the tree)
•	 Add your body height to get the final height of the tree

Figure 2.15  �Measuring the height of a tree using an inclinometer. (Source: Refer Annex. 
A)
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2.4.2 � Shadow analysis with Solar Pathfinder

The Solar Pathfinder is a simple, non-electronic instrument [1] used for 
shadow analysis at any place on Earth. Tall objects nearby cast shadows on 
a plastic dome. Below this dome, a pre-printed sun-path diagram sheet is 
placed. The reflected shadow area is marked with a wax pencil. The scien-
tifically engineered diagram provides data for the entire year. Interestingly, 
any one-day measurement gives data for all months. There is no need to 
get data only on the worst shadow day of the year. It can be set even on 
any uneven surface or sloping roofs using a tripod with rubber tipped tele-
scopic legs. A compass and a bubble level are used to set the direction and 
level, respectively. The details can be found on the manufacturing com-
pany website https://www​.solarpathfinder​.com/. A simple scheme of a Solar 
Pathfinder in Figure 2.16 shows that it is made up of three sections:

Figure 2.16  �A simple scheme of a Solar Pathfinder. (Source: Refer Annex. A)

https://www.solarpathfinder.com/
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•	 A dome section: the part with the translucent lens/dome;
•	 An instrument section: the part with the compass and level;
•	 A base section: the part with the rubber grommets.

The Solar Pathfinder instrument is available in the market at the cost of 
USD 259.00 (2022). The cost includes pre-printed standard diagrams cor-
responding to different latitude ranges such as 0–25°, 37–43°, 54–65° N 
or S. Details are available on the Solar Pathfinder website (https://www​
.solarpathfinder​.com/). The time line and month arcs are shown in Figure 
2.17, which is self-explanatory.

Following are the steps to set up a Solar Pathfinder instrument:

•	 Step 1: Adjust the legs to get the base level
•	 Step 2: Put a paper sun-path diagram on the center pivot of the dia-

gram platform
•	 Step 3: Adjust the Pathfinder for the proper magnetic declination by 

aligning the declination number with the small white dot on the rim 
of the base (e.g., Pune: −0.23°; Google search). The numbers to the 
left of “0” indicate “west of north” and are negative numbers; the 
numbers to the right of “0” indicate “east of north” and are positive 
numbers (Figure 2.18).

•	 Step 4: With the sun-path diagram locked to its proper declination, 
set the instrument section onto the base. Rotate the instrument sec-
tion until the red pointer of the compass is pointing directly at the 
“N”. This is magnetic south. When working near buildings with fer-
rous material (large metal beams), move the compass away from such 
material until the compass needle direction stabilizes.

Figure 2.17  �A sample of the Solar Pathfinder diagram. (Source: Refer Annex. A)

https://www.solarpathfinder.com/
https://www.solarpathfinder.com/
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•	 Step 5: Place the plastic dome section on top of the instrument section. 
Start tracing the shadow area with a wax pencil. It is better to take pic-
tures with a digital camera and analyze them with “Solar Pathfinder 
Assistant Base” software, available at the cost of $189 (2022).

The final output is shown in Figure 2.19 and the site tracing on the monthly 
sun-path diagram is shown in Figure 2.20

Let us now interpret the monthly sun-path diagram. The diagram con-
tains 12 horizontal arcs, each representing the mean path of the sun for 
each month. Vertical lines represent solar time (different from actual time). 
The sun-path arc for December is the lowest winter sun path, while the sun-
path arc for June is the highest summer sun path (opposite in the Southern 
Hemisphere). The small white numbers inside the half-hour divisions are 
the percentage of shadow-free area for each half-hour. The numbers along 

Figure 2.18  �Setting the magnetic declination on Solar Pathfinder diagram. (Source: Refer 
Annex. A)
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each sun-path arc add up to one hundred percent. For January, the figures 
from the shadow free arc are 2 + 3 + 4 + 5 + 6 + 7 + 7 +8 + 8 + 8 + 6 = 64%. 
This means that only 64% of shadow-free area is available.

Energy loss calculations can be done with the help of the “Solar Pathfinder 
Assistant Base” software. An example is shown in Figure 2.21 for an indi-
vidual house with a 4-kW solar system with a fixed array on its roof. The 
house is situated at Franklin city in Johnson County, Indiana. The panels 
face a geographical azimuth of 180°at a tilt angle of 39.47° and a magnetic 

Figure 2.20  �Site tracing on the monthly sun-path diagram. (Source: Refer Annex. A)

Figure 2.19  �Final output of Solar Pathfinder at a given site. (Source: Refer Annex. A)
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declination of 3.98°. The percentage of unshaded areas is 91.97%, result-
ing in available radiation of only 93.02%. The actual AC energy output 
without shading is 4909 kWh per year, while with shading it is 4665 kWh 
per year. This means that the loss due to shading is 244 kWh, or 5% loss 
of energy per year.

2.5 � SHADING ANALYSIS: INTER-ROW SPACING

Shading analysis means studying the shadow effects of one row of strings 
on another [4, 8, 10, 15, 18, 20]. The objective is to minimize inter-row 
spacing for efficient land utilization without compromising power output. 
Optimizing inter-row spacing can be achieved through different methods, 
such as (a) manual calculations, (b) PVsyst software, (c) SAM software, and 
(d) Android solar apps.

2.5.1 � Shading analysis: Manual calculation

Let us consider the case of a manual study in Pune on 21 December (Winter 
Solstice). Unlike the shadow analysis described above, shading analysis, or 
inter-row spacing analysis, focuses on the shadow length at 8 am or 5 pm 
only. By using the tilt angle and the length of the panel, the vertical height 
of the panel is calculated [16]. The vertical height and the solar height angle 
give the shadow length at 8 am or 5 pm (Figure 2.22).

The next step is to get the Y displacement using the azimuth angle, which 
gives the distance between the outer edge of one row and the inner edge of 

Figure 2.21  �Energy loss calculation using Solar Pathfinder software output. (Source: 
Refer Annex. A)
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the next row (Figure 2.23). Finally, the horizontal coverage of the panel is 
added to get the pitch distance (the distance between the lower edges or the 
upper edges of two rows of panels).

Based on the above scheme in Pune, let us consider a row of solar pan-
els with a length 1.61 m and two panels placed vertically so that the total 
width of the panel row is 3.22 m. Pune is located at a latitude of 18.52° 
N and a longitude of 73.85° E. A tilt angle of 20° has been chosen as per 
PVsyst earlier to maximize energy generation. Accordingly, we get the ver-
tical height of the panel as 1.10 m and the horizontal coverage as 3.02 m. 

Figure 2.23  �A representative scheme for calculating inter-row spacing of solar panels. 
(Source: Refer Annex. A)

Figure 2.22  �A representative scheme for calculating vertical height and horizontal cover-
age of solar panels. (Source: Refer Annex. A)
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Adopting the principles and formulas of Table 2.3, Y displacement is cal-
culated corresponding to the solar height angle θ (11.4°) and the azimuth 
angle α (−60.3°) at 8 am. The Y displacement is 2.7 m. By adding the panel’s 
horizontal coverage of 3.02 m, the total pitch distance is 5.72 m, or 6 m 
when rounded off. ​

2.5.2 � Shading analysis: PVsyst software

The PVsyst software chooses the best and the shortest permissible inter-
row spacing, by permutation and combination, based on the length and tilt 
angle of the solar panel, thereby minimizing energy loss to 1% or less. An 
added advantage of the software is that it also considers the ground cover-
age ratio (GCR) to enhance land use efficiency. The ground coverage ratio 
describes the ratio of the module area to the overall area of the power plant. 
In other words, it describes the proportion of the system area that is used 
to collect sunlight. The step-by-step procedure for using PVsyst to get inter-
row spacing is as follows:

•	 Open PVsyst software – Tools – Tables and graphs of solar parameters 
– Shading optimization of sheds – Change the date to Winter Solstice 
i.e., 21 December – Enter location – Graphs

•	 Change the module dimensions and inactive band (thickness of mod-
ule) – Fix tilt angle – Show optimization – Keep changing the module 
pitch and minimize losses (1%) till optimum inter-row spacing

Table 2.3  �Manual inter-row shading analysis for Pune, India.

Time (h)

Sun 
Height 

Angle (θ)
Shadow 

Length H

Sun 
Azimuth 
Angle (α)

Displacement X 
(XD)

Displacement Y 
(YD)

07:00 0.0 0.0 0 0.0
08:00 11.4 5.4554 -60.3 4.7 2.7
09:00 23.3 2.5542 -53.1 2.0 1.5
10:00 33.9 1.6370 -43.1 1.1 1.2
11:00 42.4 1.2047 -29.2 0.6 1.1
12:00 47.3 1.0151 -11.0 0.2 1.0
13:00 47.5 1.0080 9.3 0.2 1.0
14:00 42.9 1.1837 27.8 0.6 1.0
15:00 34.7 1.5886 42.1 1.1 1.2
16:00 24.3 2.4362 52.3 1.9 1.5
17:00 12.4 5.0031 59.8 4.3 2.5
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•	 Maintain the Ground Coverage Ratio (GCR) by more than 0.45 – 
Change the pitch and find impact on GCR and optimize the distance 
between the two rows.

Keeping the parameters same as above, the PVsyst output for Pune will be 
as shown in Figure 2.24.

2.5.3 � Shading analysis: SAM software

An open-source (free of cost) software developed by the USA’s National 
Renewable Energy Laboratory (NREL) is the System Advisory Model 
(SAM). The software is available at https://sam​.nrel​.gov​/download. A 
guideline book provides details about the various analytical tools available 
in this software [17]. The procedure is as follows:

Open SAM – Register with password or entry key – Start a new project 
– Photovoltaic – Detailed PV model – Choose module – Choose inverter – 
Fix system design – Shading and layout – Self Shading – Standard – Adjust 
module combination – Find the inter-row spacing.

Unlike PVsyst, SAM does not need a date for shading analysis. Keeping 
the parameters, the same as above, the SAM output for Pune is shown in 
Figure 2.25.

Figure 2.24  �Shading analysis for inter-row spacing by PVsyst for solar panels of 1.61 m 
length with GCR 0.54 in Pune. (Source: Refer Annex. A)

https://sam.nrel.gov/download
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2.5.4 � Shading analysis: Android solar app

As discussed earlier, the MySolarPanel Android app is also quite useful. It 
is simple and fast. The procedure to find the inter-row spacing using this 
app is as follows:

Open the app – set location Pune – Set configurations by feeding the 
values of panel details, inverter efficiency, tilt angle, azimuth, etc. – Carry 
out simulation – Select option of shading model – Set tilt angle – Adjust row 
distance to set the energy loss at 1% or below. Similar to SAM, it does need 
a date for shading analysis. The final output is shown in Figure 2.26.

It can be seen from the above results that all of them give the inter-row 
spacing around 6 m. Design engineers will keep the inter-row spacing (pitch 
distance) of 6.5 as a safer margin.

2.5.5 � FAR SHADING AND HORIZON DIAGRAM

All the discussions explained above regarding shading pertain to any 
shadow-casting structure, a tree or any object, in the vicinity of the solar 
power project. This phenomenon is termed as Near Shading. Imagine the 
roof of a house situated in a hilly area with a hill or hillock 1–2 km away 
to the south, and we want to have a solar rooftop plant. This house will 
naturally have late sunrise and early sunset for most of the year, especially 
during the winter season. This distant object will definitely reduce the sun-
shine hours at that place compared to planar location. This is termed Far 
Shading.

Far shading is best assessed using the Horizon Tool available in PVsyst, 
which allows us to define large distant structures such as mountains and 
other environmental features as well as large buildings. PVsyst treats hori-
zon shading by completely blocking the beam component of irradiation 
when the sun is behind these horizon features. Horizon shading blocks 
direct irradiance for the entire PV system as opposed to the near shading, 

Figure 2.25  �Shading analysis by SAM for solar panel: 1.61 m length and GCR 0.54 in Pune. 
(Source: Refer Annex. A)
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Figure 2.26  �Shading analysis by MySolarPanel Android app for solar panel: 1.61 m length 
in Pune. The value of GCR 0.54 is an automatic output (52 m2/96 m2). 
(Source: Refer Annex. A)
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where only a portion of the PV array is shaded at any given time. However, 
there will still be diffuse radiation even when the sun is behind a distant 
mountain. The horizon diagram is well explained in the PVsyst tutorial, 
which is briefly described below.

While carrying out the simulation exercise for “grid connected” systems 
under the category of “project design”, click the “horizon” button. A win-
dow with some pattern diagram will appear for the given site with defined 
latitude and longitude (Figure 2.27).

On the X-axis, we have the azimuth angle, and on the Y-axis, the sun 
height angle. These represent all the possible positions of the sun through-
out the year. The lowest arch shows the solar path on the Winter Solstice. 
The upper arch shows the solar path during the Summer Solstice. The thick 
lines on both sides show the parts of the solar path that are behind the 
photovoltaic plane. Here the PV modules receive no direct beam irradiance 
even when there are no obstructions on the horizon. The next task is to 
obtain the horizon height angles relative to the azimuth for the given site. 
This data was obtained from the open-source software PVGIS and was fed 
into the column on the right side of the sun-path diagram. As a result, a 
dotted line curve is created, also known as the horizon line, indicating far 
shading. It has been observed that horizon shading has a smaller relative 
impact in subtropical regions compared to regions farther from the equa-
tor, since sun paths in the former are almost vertical in the morning and 
evening. This means far shading will have little impact in New Delhi as 
compared to that in New York. For design simulation, PVsyst uses horizon 
data only if the horizon profile has features higher than two degrees above 
the horizontal.

Figure 2.27  �Sun-path diagram with horizon line for a site at Pune, India Latitude 18.53° N 
Longitude 73.85° E and panel tilt angle 20°. (Source: Refer Annex. A)
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2.6 � SHADING ANALYSIS TOOLS REVIEW

There are many online tools and desktop software available for near shad-
ing analysis. Some of them are free of cost and some are paid versions. 
For example, using the Solar Pro software version 4.1 provides a detailed 
simulation of analysis of shading and therefore clear insights into the site 
under various shading conditions [4]. Most of them need measurements 
of shadow-casting objects, requiring a site visit. Only the Aurora Solar 
design tool can calculate the dimensions of obstacles without a site visit as 
it uses Light Detection And Ranging (LIDAR) [9]. Some popular tools are 
explained below.

2.6.1 � ScanTheSun Android App

This is available for free download on Google Play Store. The app has three 
main sections: (a) Define your geolocation, (b) Contour the horizon shape, 
and (c) Adjust solar panel. Each section has a Help tab at the bottom right 
corner, which provides tutorials and step-by-step procedures. One can get 
data from the app and validate it with site data.

2.6.2 � Online SketchUp tool

SketchUp is a simple user-friendly online tool for 3D designing, available 
for free at https://www​.sketchup​.com​/plans​-and​-pricing​/sketchup​-free. 
A step-by-step procedure for the first-time users can be found at https://
www​.linkedin​.com​/pulse​/free​-easy​-shading​-calculation​-sketchup​-eduardo​
-rodriguez​-e​-i-/. A paid version is available for advanced design, ranging 
from USD 119–699 per year (2022), depending upon the features one 
chooses. Models of solar panels and shadow-casting objects can be cre-
ated and the shadow length on a particular day and time of the year can be 
determined.

2.6.3 � Skelion tool

Skelion is a paid add-on for SketchUp Pro on desktop. It costs around $200/
year (2022) and allows users to do really fast and easy shadow analysis. 
It also allows users to export data to other modeling software (PVsyst 
or SAM) for a more in-depth study. It is useful for designing residential 
installations or ground-mounted power plants with just a few clicks using 
SketchUp and Google Earth.

https://www.sketchup.com/plans-and-pricing/sketchup-free
https://www.linkedin.com/pulse/free-easy-shading-calculation-sketchup-eduardo-rodriguez-e-i-/
https://www.linkedin.com/pulse/free-easy-shading-calculation-sketchup-eduardo-rodriguez-e-i-/
https://www.linkedin.com/pulse/free-easy-shading-calculation-sketchup-eduardo-rodriguez-e-i-/
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2.6.4 � SAM (system advisor model)

SAM is free software from National Renewable Energy Laboratory (NREL), 
USA. After downloading the latest version, enter your email address and 
click Register. You should receive an email with a registration key. Copy 
and paste the key from the email and click Confirm. SAM includes a “shad-
ing losses” option that allows you to design a 3D layout in order to simu-
late shading. The 3D design tool within SAM is less effective compared 
to SketchUp, and it can be really hard to model the obstacles. Ideally, it is 
better to obtain the shading losses by using other methods and input them 
into SAM for analysis.

2.6.5 � PVsyst software

One of the most recognized downloadable software programs, PVsyst is 
useful for designing solar power plants of any size. It includes a power-
ful shading calculator similar to SAM, but a bit complicated and not user 
friendly. It also allows you to import 3D models from SketchUp. It has only 
paid versions of software at the rate of around USD 630 per year (2022). 
The tutorial of PVsyst says that horizon shading is fairly accurate and easy. 
But for near shading, especially for large power projects, the analysis is sub-
jected to too many conditions and its accuracy has not yet been validated 
by any third party.

2.6.6 � HelioScope online tool

The software from Folsom Labs is a paid online tool that allows you to 
create quick 3D design and simulations of potential shading losses. It is one 
of the most preferred PC design software programs for creating proposals, 
SLD, and energy simulations. Although it requires manual input of dimen-
sions (height of objects), the shading calculation results are really easy to 
obtain in a visually simple way. It has two price options: USD 950 per year 
or USD 95 per month (2022). Its accuracy has been validated by an inde-
pendent study from the NREL, with the conclusion that the variance is only 
± 3% compared to the ground data.

2.6.7 � PVCad software

The software from the organization PVComplete is a solar PV design tool 
built into AutoCAD. It can be used as an AutoCAD plug-in or as a stand-
alone application. It is optimized for quick 2D design and also provides 
energy simulation reports. Its free online tool is also available at PVScketch​
.co​m. The paid version is available at USD 150/month or USD 1,500/year 
(2022).

http://www.PVScketch.com.
http://www.PVScketch.com.
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2.6.8 � Aurora solar

One does not need to visit the site and get the actual dimensions of shadow-
casting objects while using this software. It is supposed to be one of the 
most high-end online tools validated by the NREL. When it comes to 
shadow analysis, it provides LIDAR data that allows to remotely get the 
dimensions of objects like trees without an on-site survey. For more precise 
calculations one can manually input the dimensions of obstacles. If one can 
afford it, this would be the best tool for shadow analysis. It is available at 
USD 159–259 per month (2022).

2.6.9 � SunEye on-site tool

This is a good alternative to the Solar Pathfinder. The instrument with soft-
ware, available from Solmetric, provides high-end on-site shadow analysis. 
It simplifies the process and increases the quality and speed of data collec-
tion. The device includes a wide-angle lens camera that takes a picture of 
the surroundings and detects the obstructions in the sky. Then it uses the 
built-in sensors to determine the shading profile in that place. The software, 
including the tool, costs USD 2,415 (2022). This hand-held electronic tool 
measures the available solar energy by day, month, and year at the press 
of a button by determining the shading patterns of a particular site. The 
SunEye incorporates a calibrated fisheye camera, an electronic compass, a 
tilt sensor, and GPS to give immediate measurements in the field. Its one-
handed operation, rugged enclosure, and outdoor readable display make it 
reliable for field use. The SunEye-210 now includes a lifetime license for the 
PV Designer software, enabling you to import shade measurements, select 
modules and inverters, layout modules, simulate kWh production, and gen-
erate PDF reports.

2.7 � CONCLUSIONS

In case of a single obstruction element such as a pillar, an industrial chim-
ney, or a large tree nearby, a manual approach of shadow analysis is always 
preferable due to its reliability, accuracy, and cost effectiveness.

If there are many trees or tall structures surrounding the site, the Solar 
Pathfinder is the most reliable method for shadow analysis. At an affordable 
cost of only around USD 300, it is the most useful tool with data at high 
confidence level, especially for rooftop projects. The SunEye on-site tool, 
although costlier than the Solar Pathfinder, is also an equally good on-site 
tool.

As regards the inter-row spacing of solar modules or shading analysis, a 
manual approach is once again the best and cheapest option. Another very 
low-cost option is the MySolarPanel Android app, which is equally good. If 



74  Photovoltaic Modules﻿

you are well conversant with solar design software, the open-source SAM 
and the paid PVsyst can be confidently used. Based on the author’s expe-
rience, the results from PVsyst are found to be more consistent with the 
results from other tools.

Among the other technologies, HelioScope is one of the best online tools 
since it allows you to create quick 3D design and simulations of potential 
shading losses. Although it requires manual input of dimensions (height of 
objects), the shading calculation results are really easy to obtain in a visu-
ally simple way.

For large and very large solar projects, it is always advisable to use Aurora 
Solar software mainly due to its ease and off-field accuracy. Probably it is 
the only tool which provides LIDAR data that allows to remotely get the 
3D dimensions of objects like trees without an on-site survey, with visually 
presentable data and plots.

ANNEXURE A: SOURCES OF FIGURES

Figure No. Caption Source

Figure 2.1 Shadow of a tree on a 
rooftop solar power 
plant 

https://www​.linkedin​.com​/
pulse​/shadow​-analysis​
-tools​-software​-eduardo​
-rodriguez​-e​-i​-t-/ 

Figure 2.2 Inter-row spacing 
between solar strings in 
a solar power plant

https://solarquarter​.com​
/2020​/05​/30​/designing​
-bifacial​-pv​-power​-plants​
-getting​-the​-details​-right​
-part​-1/ 

Figure 2.3 World map showing 
longitude and latitude 
values

https://www​.printablee​.com​
/post​_printable​-blank​
-world​-maps​-with​-grid​
_397827/ 

Figure 2.4 Four hemispheres of the 
Earth

https://www​.pinterest​.com​/
pin​/163044448980515773/ 

Figure 2.5 Geographical azimuth 
representation 

By author

Figure 2.6 Screenshot of PVsyst 
simulation for Pune, India

[12]

Figure 2.7 Screenshot of PVsyst 
simulation for Richmond, 
New Zealand

[12]

Figure 2.8 Solar azimuth 
measurements in the 
Northern Hemisphere

By author

Figure 2.9 Solar azimuth 
measurements in the 
Southern Hemisphere

By author

https://www.linkedin.com/pulse/shadow-analysis-tools-software-eduardo-rodriguez-e-i-t-/
https://www.linkedin.com/pulse/shadow-analysis-tools-software-eduardo-rodriguez-e-i-t-/
https://www.linkedin.com/pulse/shadow-analysis-tools-software-eduardo-rodriguez-e-i-t-/
https://www.linkedin.com/pulse/shadow-analysis-tools-software-eduardo-rodriguez-e-i-t-/
https://solarquarter.com/2020/05/30/designing-bifacial-pv-power-plants-getting-the-details-right-part-1/
https://solarquarter.com/2020/05/30/designing-bifacial-pv-power-plants-getting-the-details-right-part-1/
https://solarquarter.com/2020/05/30/designing-bifacial-pv-power-plants-getting-the-details-right-part-1/
https://solarquarter.com/2020/05/30/designing-bifacial-pv-power-plants-getting-the-details-right-part-1/
https://solarquarter.com/2020/05/30/designing-bifacial-pv-power-plants-getting-the-details-right-part-1/
https://www.printablee.com/post_printable-blank-world-maps-with-grid_397827/
https://www.printablee.com/post_printable-blank-world-maps-with-grid_397827/
https://www.printablee.com/post_printable-blank-world-maps-with-grid_397827/
https://www.printablee.com/post_printable-blank-world-maps-with-grid_397827/
https://www.pinterest.com/pin/163044448980515773/
https://www.pinterest.com/pin/163044448980515773/


﻿Significance of shadow and shading analysis  75
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-calculate​-inter​-row​
-spacing​-on​-ground​-or​-flat​
-roof​-top​-solar​-plant/

Figure 2.24 Shading analysis for 
inter-row spacing by 
PVsyst for solar panel of 
1.61 m length with GCR 
0.54 in Pune.

[12]
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Figure No. Caption Source

Figure 2.25 Shading analysis by SAM 
for solar panel: 1.61 m 
length and GCR 0.54 in 
Pune.

SAM manual

Figure 2.26 Shading analysis by 
MySolarPanel Android 
app for solar panel: 1.61 
m length in Pune. The 
value of GCR 0.54 is an 
automatic output (52 
m2/96 m2). 

MySolarPanel app

Figure 2.27 Sun-path diagram with 
horizon line for a site at 
Pune, India Latitude 
18.53° N Longitude 
73.85° E and panel tilt 
angle 20°.

[12]
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Chapter 3

Prediction of photovoltaic 
generation using deep 
learning neural networks with 
hyperparameter optimization

Reinier Herrera Casanova and 
Arturo Conde Enríquez

3.1. � INTRODUCTION

The production of electrical energy is an issue of vital importance for 
humankind. In recent years, there has been a sustained growth in world-
wide electricity consumption, which is directly related to the degree of eco-
nomic and social development of each country. In many countries, the main 
source of electricity generation is based on the use of fossil fuels. It is well 
known that this form of electricity production pollutes the environment, 
emits greenhouse gases, and leads to climate change and pollution of the 
planet. Moreover, fossil fuels are considered to be a non-renewable energy 
source, and it is estimated that their reserves will be depleted within a few 
years [1]. In this context, electricity generation through renewable energy 
sources (RES), such as wind, solar, geothermal, hydroelectric, and others, 
has emerged as a promising solution to solve the problems related to envi-
ronmental pollution and the growing demand for electricity [2, 3].

One of the most widely used RES in recent years is solar energy, due to its 
high availability and high potential worldwide. Solar energy can be broken 
down into two main forms of energy: solar thermal and solar photovoltaic 
(PV). Solar photovoltaic energy has many advantages over conventional 
energy sources, including the following: it is a clean and safe energy source, 
it does not pollute the environment, it is available practically anywhere on 
the planet, it is easy to install and operate, it is a very flexible energy source, 
and it has a high level of adaptability. In addition, the costs of this technol-
ogy have been significantly reduced in recent years. For these reasons, many 
countries have become interested in this type of energy, as it represents a 
viable and safe solution for the energy future of humankind [4].

The generation of electricity based on solar energy has been growing 
at an accelerated rate every year. The installed capacity of PV generation 
increased from 9 GW in 2007 to 512 GW in 2018 [5]. A study issued on 
the status of renewable energy in 2019 made it known that more than 181 
GW of renewable energy had been installed worldwide during that period, 
and approximately 55% of that figure was accounted for by solar PV [6]. 
Moreover, during the year 2021, global solar power generation experienced 
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a 23% growth. In fact, it is considered to be the fastest-growing power 
generation source for 17 consecutive years. During 2021, this energy source 
produced approximately 3.7% of the world’s electricity, which is signifi-
cant compared to 2015, when only 1.1% was produced. By 2030, solar 
power generation is estimated to increase seven-fold, which is equivalent 
to approximately 19% of global electricity production [7]. According to a 
report by the Global Future Report 2013 REN21, by 2050 the global PV 
generation capacity may reach 8000 GW [8].

Solar PV can be integrated into electricity generation plants of various 
capacities, ranging from small-scale plants that can be operated in stand-
alone or grid-connected operations, as well as larger PV installations that 
are usually operated with a direct connection to the grid. Despite all the 
advantages of solar PV, its integration into the electricity system is a major 
challenge. This energy source is greatly affected by climatic factors such as 
temperature, cloud cover, wind, and rain. It is also affected by the periodic-
ity of days and nights, geographical location, and seasonal variations that 
occur during the year. All of this leads to the fact that the energy generated 
in PV installations presents a stochastic, intermittent, and variable charac-
ter, which causes serious problems for its integration into power grids [9, 
10].

The main problems associated with the connection of PV systems in 
power grids include frequency stability problems, which are associated 
with intermittent variations of PV generation during short time intervals 
and which, in turn, cause imbalances between load and generation. Voltage 
quality problems include voltage magnitude problems (under voltage and 
over voltage), voltage fluctuations, and voltage imbalances. Reverse power 
flows can also occur. This can be a problem when the network is designed 
for unidirectional power flow propagating from the higher voltage node 
to the lower voltage node. In addition, distortion in voltage and current 
waveforms, voltage flickers, and other power quality problems can occur. 
Moreover, the intermittency of this power source directly impacts grid sta-
bility, operation reliability, planning, and economic dispatch [11].

To address the above problems, grid operators highlight the need to 
decrease the degree of uncertainty of RES before it continues to increase its 
penetration in the system. In this context, accurate forecasting of the power 
generated in PV plants can be considered an extremely important aspect. 
Accurate forecasting allows efficient management of the operation of power 
grids, improves system stability, and leads to proper power generation plan-
ning. In addition, operating costs are reduced and a more economical and 
efficient operation of the system is achieved. It also helps extend the lifetime 
of battery energy storage systems, optimizing their charge and discharge 
cycles based on the prediction results and increasing the level of PV penetra-
tion in power grids. However, obtaining an accurate prediction of future PV 
energy production is difficult because the behavior of this energy source is 
governed by complex and unpredictable meteorological circumstances [12].
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In recent years, researchers and academics from all over the world have 
proposed different PV power prediction models. These models can be clas-
sified and grouped into different categories. First, according to the param-
eter to be predicted, PV prediction can be classified into direct or indirect 
predictions. In the direct strategy, PV power is predicted from historical 
generation data and/or meteorological conditions. In the indirect strategy, 
the solar irradiance is initially determined to subsequently calculate the PV 
power using a model of the PV installation [13]. Regarding the prediction 
horizon, there is no unified criterion in the literature, as several authors 
have presented different time intervals for the prediction horizons. A fre-
quently used classification for the prediction horizon is shown in Figure 3.1.

Very short-term forecasting is useful for voltage and power regulation, 
grid stability, and real-time power dispatch. Short-term forecasting impacts 
grid security, electricity market participation, and power reserve manage-
ment. Medium and long-term forecasts are characterized by high random-
ness and high prediction errors, so their application is mainly focused on 
issues related to grid planning. In fact, medium-term forecasting is benefi-
cial for unit commitment decisions, planning, and power system mainte-
nance scheduling. Long-term forecasting is of interest for planning power 
generation, transmission and distribution, and structuring and operating 
electricity markets [14].

Depending on the spatial scale of the prediction, it can be classified into 
regional prediction or single-plant prediction. On the other hand, depend-
ing on the type of prediction, models can be classified into point predic-
tion (deterministic) or probabilistic prediction. The deterministic prediction 
obtains a unique value at each instant of time. Probabilistic predictions 
report the confidence at an instant of time in which the value falls within 
a certain range defined by the model. In both cases, the prediction can be 
one step ahead or multiple steps ahead [15]. Various types of data can be 
used for PV prediction, e.g., time series, sky images, and spatial data. They 
can be univariate data (e.g., PV power time series) or multivariate (e.g., 
when combining PV power time series with meteorological data). In order 

Figure 3.1  �Classification of PV energy prediction horizons.
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to obtain satisfactory performance of forecast models, preprocessing of the 
data is required. Preprocessing may include plotting the data, correcting 
outliers, changing the temporal resolution of the data, decomposing and 
clustering data, correlation analysis, selection of the main input features, 
and data normalization or standardization, among other aspects of impor-
tance [16].

Another possible classification is related to the method used in the pre-
diction, in this case the following categories are defined: statistical meth-
ods, physical methods, artificial intelligence or machine learning methods 
(which also include deep neural networks), and hybrid methods [15]. A 
more detailed description of these classifications is shown in Figure 3.2.

Physical forecasting methods establish a mathematical model of the PV 
plant, considering several characteristics and parameters of the installa-
tion. They then use meteorological predictions of some variables (e.g., solar 
irradiance and ambient temperature) to combine them with the established 
model and obtain the PV power output. For example, the PV system output 
power, as a function of temperature and solar irradiance, can be obtained 
by Equation 3.1 [17].
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Figure 3.2  �Classification of PV energy forecasting methods.
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solar irradiance at time instant t. In addition, T tcell � � is the PV cell tempera-
ture at time t, αP  refers to the temperature coefficient for maximum power, 
and fPV  is a correction factor that takes into account the effect of shading 
losses and the degradation level of the PV panel.

The cell temperature is related to the ambient temperature and solar irra-
diance by Equation 3.2).

	 T t T t G t
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�
�

�
�
��

25
1000

	 (3.2)

where T tamb � � represents the ambient temperature at time t and NOCT  
represents the nominal operating temperature of the PV cell.

This model does not require historical data; its performance is mainly 
based on detailed plant information and weather forecasts for that geo-
graphic location. However, it presents low robustness and limited appli-
cability because it requires PV plant data that, in many situations, are not 
known and must be estimated. Moreover, its accuracy also depends on the 
accuracy of weather forecasts, which can sometimes have a high degree of 
uncertainty, especially in adverse weather conditions such as rainy or cloudy 
days [18]. Statistical methods consist of establishing a model between input 
and output data based on the correlation that may exist between histori-
cal data, estimation of some parameters, and curve fitting. Compared to 
physical methods, it can be said that statistical methods are simpler and 
more applicable in different locations. Their application requires a large 
number of historical measurements, and their accuracy is closely related to 
the quality of the data collected. It also requires a high number of numeri-
cal calculations, and sometimes, its execution time is high, which limits its 
application, especially for very short-term prediction horizons [19].

Machine learning (ML) based methods have become one of the most 
widely used methods in time series forecasting. These models have the abil-
ity to accurately extract high-dimensional complex nonlinear relationships 
between input and output data. In addition, they can achieve higher accu-
racy and prediction quality compared to other methods. However, shallow 
ML models, when faced with prediction problems with large data volumes 
and large numbers of time series of different variables, may have limited 
learning capability. Moreover, they may be affected by problems of over-
fitting, falling into local minima, and problems of vanishing or exploding 
gradients during the training process [20].

To solve the above problems, deep learning (DL) models are proposed. 
These models can extract nonlinear and complex behavioral patterns from 
time series, achieve higher generalization capability, and efficiently analyze 
large volumes of data. Compared with ML methods, DL models exhibit 
better performance, higher stability, and robustness in time series predic-
tion [15]. Hybrid methods combine different individual models in order to 
complement strategies, improve accuracy, optimize resources, and diversify 



86  Photovoltaic Modules﻿

their usefulness. In recent literature, it is common to find the union of ML 
or DL methods with heuristic methods (genetic algorithms (GA), particle 
swarm optimization (PSO), differential evolution (DE), ant colony opti-
mization (ACO), tabu search algorithm (TSA), and Bayesian optimization 
(BO), etc.). These heuristic methods can be used to optimize the set of 
hyperparameters of the ML or DL model, to obtain optimal initial weights, 
and to generally improve the performance of forecasting models [16].

3.1.1 � State of the art of PV forecasting

In recent years, the topic of PV forecasting has attracted the attention of 
many researchers around the world, and a large number of papers have 
been published on this subject.

In [21], a solar irradiance forecasting model was proposed based on satel-
lite data, meteorological predictions, and solar irradiance measurements at 
various locations. The proposed model outperformed another set of models 
that were trained with data from a specific location. On the other hand, 
[22] presented a PV power prediction approach that includes solar irradi-
ance information obtained from satellite data, numerical weather predic-
tion (NWP), and temperature measurements and power generated at a solar 
plant. The model performed favorably in PV prediction, with a forecast 
horizon up to 36 hours ahead. A prediction model based on satellite data 
and NWP forecasts was developed in [23]. Using these sources of infor-
mation and a Kalman filter, the cloudiness index for a city was predicted 
with intra-hour resolution. The results obtained can be very useful for solar 
energy forecasting.

The author of [24] performed the short-term prediction of solar radia-
tion and energy production of a PV plant using an autoregressive integrated 
moving average (ARIMA) model. The obtained results were compared with 
an intelligent persistence model, and the proposed model showed superior 
performance. In [25], a statistical model for short-term PV power predic-
tion (up to 6 hours ahead) was proposed. The proposal was based on a vec-
tor autoregressive (VAR) model and a least absolute reduction and selection 
operator (LASSO) for variable selection. It was shown that using spatio-
temporal data from several distributed plants can improve the quality of 
predictions. In [26], the prediction of the PV power of the next hour was 
performed using support vector regression (SVR). The conducted studies 
showed that the input feature selection process could significantly impact 
the prediction. Compared to other regression models (linear regression, 
quadratic regression and LASSO regression), the SVR model showed supe-
rior performance.

The authors of [27] presented a comparison of several prediction meth-
ods, such as artificial neural networks (ANN), decision trees (DT), extreme 
gradient boosting (XGB), and random forests (RF). In this case, the tests 
performed showed that the best-performing methods were ANN and DT. In 
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[28], a hybrid method, combining iterative filtering (IF) and extreme learn-
ing machine (ELM), was used for very short-term PV power forecasting. 
The performance of the proposed method was evaluated in three PV plants 
of different locations, and the obtained results were satisfactory. On the 
other hand, [29] implemented a hybrid model based on the combination of 
four feed-forward neural networks (FFNN) with wavelet transform (WT) 
to forecast PV power ten minutes in advance. The performance of the pro-
posed model was found to be superior compared to a persistent model and 
several ML models reported in the literature. In [30], short-term PV power 
prediction (30 minutes to 6 hours ahead) was performed using a hybrid 
method combining a support vector machine (SVM) and an improved ant 
colony optimization (IACO) algorithm. The results obtained were com-
pared with other simple models, and it was shown that the optimization of 
the SVM model parameters using the IACO algorithm was very beneficial.

In [31], very short-term PV power prediction was addressed by combin-
ing an instance-based feature selection method, known as RReliefF (RRF), 
and a multilayer perceptron (MLP) ANN. The proposed model was found 
to be more accurate than three widely used ML algorithms (ANN, SVR 
and RF). A neural network model was also used in [32] to predict PV energy 
with a very short time horizon; in this case, the nonlinear autoregressive 
neural network with exogenous inputs (NARX) optimized by (GA) was 
used. Comparison of the NARX-GA model with other models in the litera-
ture showed satisfactory results.

In [33], a long short-term memory (LSTM) model was combined with 
location-specific synthetic weather predictions to predict short-term PV 
generation. The model predictions were compared with a recurrent neural 
network (RNN) model, a generalized regression neural network (GRNN), 
and an extreme learning machine (ELM). In all cases, the predictions of the 
proposed model showed higher accuracy and stability. In [34], an LSTM 
model was also used to predict PV power one hour in advance in three dif-
ferent plants. A comparison of the proposed model with some ML models 
proved superior in terms of robustness and accuracy. In [35], an LSTM 
model was employed to forecast the next day’s PV power. This study high-
lighted the importance of data preprocessing to improve the quality of pre-
dictions. The LSTM model was compared with an MLP neural network 
model on different types of days (stable and variable) and at two differ-
ent times of the year (winter and summer). In all cases, the LSTM model 
showed better performance and accuracy in its predictions.

In [36], a hybrid NARX-LSTM prediction model was proposed. In this 
case, the most relevant hyperparameters of the LSTM model were opti-
mized using the tabu search algorithm (TSA). The prediction horizon 
analyzed ranged from 5 minutes to 24 hours ahead. To demonstrate the 
effectiveness of the proposed model in PV prediction, two real databases, 
with different temporal resolutions and geographical locations, were used. 
In [37], a four-core convolutional neural network (CNN) model was pre-
sented for PV forecasting with a horizon of 5 minutes to 1 hour-ahead. 
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The model was compared with a CNN model and a CNN-LSTM model, 
and its results were superior. In addition, it was shown that the quality of 
predictions worsens with increasing prediction horizon and decreasing tem-
poral resolution of the data. In [38], a gated recurrent unit (GRU) based DL 
model was proposed to predict the solar irradiance of the next hour. The 
proposed model was compared with an LSTM model. Both models showed 
similar accuracy, but the GRU model required less training time. It was 
shown that including exogenous weather variables and cloud cover data as 
inputs to both models significantly improved forecast accuracy.

Reference [39] presented a very short-term PV prediction model based on 
a bidirectional long short-term memory (BiLSTM) neural network and a 
GA, for optimization of the fundamental hyperparameters of the BiLSTM 
model. The proposed model was compared with a group of ML and DL 
models. The obtained results showed that the BiLSTM model is a power-
ful tool in time series prediction. A BiLSTM model based on an attention 
mechanism was also proposed in [40], to predict solar irradiance for a short-
term horizon. The model was able to forecast variations in solar irradiance 
at short intervals efficiently. In [41], a hybrid deep learning model (BiLSTM-
CNN) was implemented for PV energy prediction. In this case, the BiLSTM 
model was responsible for extracting the temporal features of PV energy, 
while CNN was responsible for extracting the spatial features. The predic-
tions of the proposed model showed higher accuracy, compared to other 
simple and hybrid deep learning models. In [42], different types of statisti-
cal models and various types of neural networks (LSTM, BiLSTM, FFNN, 
MLP) were compared in PV prediction for a short-term time horizon. The 
results obtained showed that ANN-based models were more accurate than 
statistical methods. Of all the models analyzed, BiLSTM showed the best 
performance for all prediction horizons and for different climatic conditions.

In [43], a hybrid model based on variational mode decomposition (VMD), 
improved sparrow search algorithm (ISSA), and GRU was proposed for 
short-term prediction of PV power. The VMD method was applied to 
decompose the original PV series into several subseries to reduce the non-
stationarity of the original data. The optimization algorithm was used to 
fit some hyperparameters of the GRU model. Compared with other ML 
and DL algorithms, the proposed model ensured efficient prediction of PV 
power under different weather conditions.

Also, in [44] a hybrid model for the prediction of the hour-ahead power 
output in three different types of PV modules was presented. The model 
was based on the combination of LSTM and the salp swarm algorithm 
(SSA), for the optimization of five relevant hyperparameters. The proposed 
model was compared with GA-LSTM, PSO-LSTM, and LSTM and showed 
higher robustness and effectiveness in the predictions made.

From the literature review, it can be seen that a large number of recent 
publications have focused on artificial intelligence methods for PV power 
prediction in very-short and short-term time horizons. Within the AI field, 
machine learning and deep learning methods have gained in popularity. 
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In the case of DL-based models (LSTM, GRU, CNN, BiLSTM, among 
others), they have a great capacity to extract complex behavior patterns in 
time series, handle large volumes of data, and predict the future behavior 
of the time series with high accuracy. In many cases, the union of several 
deep learning models or the optimization of their hyperparameters through 
optimization methods leads to results of higher quality and robustness. 
However, there are many models in the literature that, despite their high 
accuracy, are very computationally expensive. In addition, they handle 
large amounts of input data that are sometimes difficult to obtain or are 
simply not available, making their practical application difficult and lim-
ited. On the other hand, in some cases, the data preprocessing and model 
input selection stage, which is a key factor in ensuring the satisfactory per-
formance of forecasting models, is not analyzed in the required depth.

In this work, a BiLSTM deep learning model is proposed to predict the 
power generated in different PV installations for an hour-ahead and day-
ahead forecast horizon. The main contributions of this work are as follows:

•	 An efficient algorithm for data preprocessing is proposed in order to 
improve the quality of the data and obtain a better performance of the 
prediction model.

•	 A Bayesian optimization algorithm (BOA) is implemented to obtain 
the optimal adjustment of the hyperparameters of the model, which 
contributes to improving its efficiency and generalization capacity.

•	 An efficient and accurate working methodology is proposed, applica-
ble to any photovoltaic installation with the necessary historical data.

•	 A comparative analysis of the results obtained by the BiLSTM model 
with respect to a NARX model and an MLP model is presented. In 
this way, the efficiency and quality of the proposed model in predicting 
the PV power of the hour-ahead and the day-ahead is demonstrated.

For future research, it is intended to analyze some hybrid DL models 
and use other larger data sets and from other PV installations. In 
this way, the performance of the proposed model in other operation 
scenarios could be evaluated.

3.2. � FORMULATION OF THE MODELS

This section describes the basic formulation of some artificial neural net-
works used in PV energy prediction. The general characteristics of RNNs 
are outlined and then the performance of the LSTM type RNN model is 
discussed. Subsequently, a more advanced and deeper variant of the recur-
rent neural network, the BiLSTM network, is analyzed. The Bayesian 
optimization algorithm, which is used to adjust the most relevant hyperpa-
rameters of the prediction models, is also described.
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3.2.1 Recurrent neural networks

Recurrent neural networks [45​–47] are a family of artificial neural net-
works that specialize in processing sequential data. Therefore, they are use-
ful for problems where time dependence exists, e.g., in time series. The 
following is a mathematical description of the RNN model and its funda-
mental characteristics.

An RNN can be viewed as a dynamic system, as follows:

	 y s g x st t t t� � � � � � �� �� � �, , 1 	 (3.3)

where x t� � is the input vector of the sequence at instant t, g x st t� � �� �� �, 1  is 
the transition function that maps from the previous instant to the current 

instant, y t� � is the output vector at instant t and s t� � is the internal state of 
the model. Figure 3.3 shows the recursive development of an RNN.

Depending on the RNN architecture, the transition function may vary. 
In general, the transition function can be represented by a three-layer graph 
consisting of an input layer, a hidden layer, and an output layer. The nodes 
found in the input layer represent the values or features of the input vec-

tor x t� � [47]. The nodes in the other layers take as input the values of the 
previous layer and deliver an output value through a linear combination, as 
follows:
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where aq d,  is the output of node q in layer d, w0 is the bias, and wqj  is the 
weight or connection between node j in the previous layer and node q in 
layer d. The term aj d, −1 is the previous output of layer d, and f is a function 
that may be nonlinear, called the activation function.

The activation function of an RNN is responsible for giving it the abil-
ity to find nonlinear relationships between input values. Among the most 
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Figure 3.3  �Recursive development of an RNN.
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commonly used activation functions are the sigmoid (σ ), the hyperbolic tan-
gent (tanh), and the rectified unified unit (ReLU) [45].

The sigmoid function is defined as:

	 � z
e z� � �

� �
1

1
	 (3.5)

The hyperbolic tangent function is defined as:
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The rectified unified unit function is defined as:

	 ReLU z z max z� � � � � �� 0, 	 (3.7)

The functions σ and tanh are characterized by a smooth transition between 
[0, 1] and [1] respectively. On the other hand, the ReLU function is not 
bounded and its transition is not smooth, so there is no derivative when z 
is equal to zero.

After defining the architecture and the activation function, it is impor-
tant to find the parameters of the wqj  model that best fit the data. There 
are several techniques to perform this optimization, and in general what is 
sought are the parameters wqj  that minimize a loss function L. In predic-
tion problems, the mean square error (MSE) can be used as the loss func-
tion, as shown in Equation 3.8 [46].
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where yi are the actual values of the variable, ŷi  are the output values of the 
RNN and n is the number of measurements.

The major difficulty encountered in the use of RNNs is their limited learn-
ing capability when faced with large time series. In this situation, vanishing 
or gradient explosion problems may occur, leading to a model with poor 
training, poor generalization capability, and high prediction errors [47].

3.2.2 � Recurrent neural networks LSTM

To solve the problems concerning RNNs, Sepp Hochreiter and Jürgen 
Schmidhuber proposed the LSTM recurrent neural network model in 1997 
[48]. Since then, LSTM networks have proven their effectiveness in multiple 
tasks and applications, including large time series prediction. In traditional 
neural networks, the main element is the artificial neuron, while the basic 
element of LSTM networks is the memory cell. The model can contain a 
certain number of memory cells depending on the problem to be solved. 
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Each memory cell presents three main gates in its architecture, known as: 
input gate, output gate, and forgetting gate [49]. Figure 3.4 shows the struc-
ture of a memory cell of the LSTM model.

The memory cell remembers values over arbitrary time intervals, and the 
three gates control the flow of information into and out of the memory cell. 
The information entering and leaving the memory cell is controlled by the 
input (It ) and output (Ot) gates respectively. The forgetting gate ( )Ft  con-
trols the information in the internal state of the memory cell and determines 
whether features should be forgotten or retained in the learning process. 
The operation of the LSTM model is described by Equations 3.9–3.14) [36]:

	 C x W H W bt t xc t hc c� � �� �� ��tanh 1 	 (3.9)

	 I x W H W bt t xi t hi i� � �� �� ��� 1 	 (3.10)

	 F x W H W bt t xf t hf f� � �� �� ��� 1 	 (3.11)

	 O x W H W bt t xo t ho o� � �� �� ��� 1 	 (3.12)

	 C C I F Ct t t t t� �� � �


1 	 (3.13)

	 H C Ot t t� � � �tanh 	 (3.14)

where W W W Wxc xi xf xo, , , ,W W W Whc hi hf ho, , ,  represent the model 
weights; the previous and current time instant are represented by t−1 and t, 
respectively. The biases are represented by b b b bc i f o, , , . The hidden layer 

Figure 3.4  �Structure of a memory cell of the LSTM model.
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at the previous instant is represented by Ht−1. The element Ct  represents the 
candidate memory cell, Ct  is the memory cell of the current time step, Ct−1 
represents the memory cell at the previous time step, Ht is the hidden state, 
and xt  is the current time entry., and the symbol (*) represents an element-
by-element multiplication, also known as the Hadamard product.

3.2.3 � Recurrent neural networks BiLSTM

In the unidirectional LSTM network, the information is transmitted in one 
direction and the processing of the data sequence is performed only for-
ward. The BiLSTM model can perform data processing in two directions 
– forward and backward. This allows it to more effectively extract deep fea-
tures and comprehensively learn time-correlated information. In this way, 
it can achieve higher accuracy in predicting complex time series, such as PV 
energy [39].

In the BiLSTM model, there are LSTM layers that perform forward and 
backward propagation of information. In the horizontal direction, the 
model operation is based on performing the calculation of the hidden vec-
tor in the forward direction ht

uru
 and in the backward direction ht

suu
 for each 

time step t, simultaneously. In the vertical direction, a unidirectional flow 
is realized that propagates from the input layer to the hidden layer and then 
to the output layer [50, 51]. The basic structure of the BiLSTM model is 
shown in Figure 3.5.

The operation of the BiLSTM model is described by:

	
 
h LSTM x ht t t� � ��, 1 	 (3.15)

	 h LSTM x ht t t

suu s
� � ��, 1 	 (3.16)

Figure 3.5  �Basic structure of the BiLSTM model.
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where xt  and yt  correspond to the input and output at time t, W
hy

  and W
hy

  

represent the weights of the LSTM model in the forward and backward 
direction, respectively. The term by  represents the output layer bias.

3.2.4 � Bayesian optimization algorithm for 
hyperparameter adjustment

Proper tuning of the hyperparameters of a prediction model ensures good 
performance and higher quality of predictions. Bayesian optimization is 
a method that can be efficiently applied to fit the hyperparameters of a 
prediction model. Compared to other automatic search methods, such as 
grid search and random search, Bayesian optimization is more efficient. Its 
operation is based on finding a point to minimize a real valued function 
called the objective function. To perform a more efficient search, Bayesian 
optimization can rely on the previous data set and use this information to 
update the future values of the optimization function [52, 53].

In this work, the Bayesian optimization algorithm (BOA) is used to tune 
the following hyperparameters: number of hidden layers (Nhl ), number of 
units in the hidden layer (Nhu), initial learning rate (Ilr ), regularization fac-
tor L2 ( RL2 ), and mini-batch size (Smb ). Table 3.1 shows the possible search 
spaces for each hyperparameter considered.

The proper adjustment of these hyperparameters is of great importance 
to ensure a satisfactory performance of the prediction model. For exam-
ple, the number of hidden layers of the model is an important parameter, 
since using a larger number of hidden layers may improve the accuracy of 
the predictions, but increases the computational cost of the model. The 
number of hidden units also has a significant influence on the performance 
of the predictive model. A very small value of this parameter can lead to 
poor training and poor generalization capability of the model. On the other 
hand, too large a value can lead to overfitting problems and very long train-
ing times. With respect to the initial learning rate, a very small value may 
cause extremely slow convergence of the model or even failure to converge 

Table 3.1  �Search space of the proposed hyperparameters

Hyperparameter Search space

Number of hidden layers [1–2]
Number of units in each hidden layer [50–200]
Initial learning rate [0.001–0.010]
Regularization factor L2  [10 4− –10 2− ]
Mini-batch size [32–256]
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for a given number of iterations. Conversely, a very high initial learning 
rate may cause a very fast convergence of the model, but the solution may 
be of low quality. The regularization factor L2 is used to avoid overfitting of 
the model, and its value should be selected appropriately to obtain higher 
robustness and stability in the predictions. The size of the mini-batch is 
related to the number of examples that are introduced for training the net-
work in each iteration. A small value causes the network to have a small 
amount of data in its memory; under these conditions, the training is faster 
and the model response can be more unstable. If the mini-batch size has a 
large value, the opposite effect occurs [53].

In this case the Bayesian optimization problem is established through 
a functional association between the hyperparameters of the prediction 
model and the loss function:

	 h argmin Opth H obj
* � � ( ) 	 (3.18)

	 Opt H N N I R Sobj hl hu lr L mb: , , , ,2� � 	 (3.19)

where h* represents the optimized hyperparameter combination, H repre-
sents the hyperparameter search space, h denotes the set of hyperparameter 
combinations in H and Optobj represents the objective function.

Initially, BOA fits a surrogate probability model based on Bayes’ rule. 
Then, the surrogate probability model is updated through a Gaussian pro-
cess (GP) model in order to obtain a posterior distribution. The next step 
is to use the posterior distribution to obtain an acquisition function that is 
used to determine the next point to be evaluated. In this case the acquisition 
function, called expected improvement (EI), is used. The BOA performs 
exploration in regions of the search space where the surrogate probability 
model expects to find the global optimal solution to the problem. The above 
steps are continuously repeated until a certain number of user-defined itera-
tions is reached. Finally, a combination of hyperparameters that guarantees 
a minimum prediction error of the model is obtained [54].

3.3. � DATA ANALYSIS AND PREPARATION

This section initially describes the data used in the study. These data cor-
respond to two photovoltaic plants of different power that are located in 
different places. Then, the different parts that make up the proposed algo-
rithm for data preprocessing are explained. This algorithm includes outlier 
removal, filtering of the night values, selection of the input features of the 
forecast model by Pearson correlation analysis, change of temporal resolu-
tion, and normalization of the data.
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3.3.1 � Description of the data

The historical data used in the study were obtained from two PV plants 
of different installed capacity, which are located at different latitudes. The 
first case is a PV system with a fixed tilt angle of 15° and facing south. 
This plant has a nominal installed capacity of 3 MW and covers an area 
of about 61,200 m2. The plant is equipped with 12,000 monocrystalline 
silicon photovoltaic modules with a nominal power of 250 W, which feed 
three inverters. The power data is measured at the final power delivery 
point of the PV system. Measurements of generated power, solar irradiance, 
ambient temperature, and PV panel temperature are available at this plant. 
The measurements were recorded with a time resolution of 5 minutes from 
January 1 to December 31, 2016. Table 3.2 shows the description of the 
main characteristics of each variable present in the database.

Figure 3.6 shows the behavior of each time series over a 14-day time 
period from December 18 to December 31, 2016. It is evident that the PV 
power generated has very similar behavior to the solar irradiance. Both 
variables present a zero value during the night time, and start to increase 
their value at dawn, reaching their maximum value in the midday hours. 
Then they begin to decrease as the afternoon progresses and return to zero 
at dusk. In the case of the ambient temperature and the temperature of the 
photovoltaic panels, a pattern of behavior is also observed that shows how 
temperatures increase during the day, when the solar irradiance is higher, 
and decrease during the night, because the solar irradiance becomes zero.

The second case corresponds to the eco-Kinetics PV system, which is 
located at the Desert Knowledge Australia Solar Center (DKASC), Alice 
Springs, Australia [55] and was installed in 2010. It is a two-axis solar 
tracking system. The system has a nominal installed power of 26.52 kW 
and occupies an area of approximately 199.16 m2. There are 156 mono-
crystalline silicon photovoltaic panels, with a nominal power of 170 W, 
installed in this plant. The system is equipped with two Fronius Symo 15 M 
X2 inverters. The data collected includes the active power generated, global 

Table 3.2  �Description of the variables present in the database 1

Variables present in the 
database

Unit of 
measure Minimum value

Maximun 
value Mean

PV power generated 
(Ppv)

[MW] 0 2.73 0.76

Global horizontal 
irradiance (GHI)

[W/m²] 0 1296 368

Ambient temperature 
(Ta)

[°C] 13.90 37.50 27.51

Temperature of PV 
panels (Tp)

[°C] 6.80 64.90 36.97
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horizontal irradiance, ambient temperature, relative humidity, wind speed, 
and wind direction. These data were recorded from July 29 to December 
10, 2020, with a temporal resolution of 5 minutes.

A general description of the variables present in this database is presented 
in Table 3.3.

Figure 3.7 shows the behavior of the different variables that make up data-
base 2 for the time period from August 7 to August 20, 2020. In this case, 
similar conclusions to the previous case are obtained regarding the behavior 
of photovoltaic power, solar irradiance, and ambient temperature. In the 
case of the wind speed variable, an eminently variable and random char-
acter is observed, although there is a certain behavior pattern that shows 
that this variable increases its value during the day and decreases during 
the night. In the case of the wind direction variable, its behavior is totally 
random and a certain pattern of behavior cannot be clearly defined. Finally, 
the relative humidity variable shows the opposite behavior to power, irradi-
ance, ambient temperature, and wind speed. When these variables reach 
their maximum value during the day, relative humidity is at its minimum 
value, and then during the night, the opposite process occurs.

In the rest of the document, the data pertaining to the first PV plant are 
defined as (D1) and those pertaining to the second plant are represented by 
(D2).

3.3.2 � Data preprocessing

To guarantee a good performance of the prediction models, it is necessary 
to perform a preprocessing of the data collected in the initial phase of the 
study. This can improve the convergence of the models, reduce the compu-
tational cost, and increase the quality and accuracy of the forecasts to be 
carried out. Preprocessing may include several important phases such as 
outlier correction, missing data handling, filtering of night values, correla-
tion analysis to define possible inputs to the prediction model, change of the 

Table 3.3  �Description of the variables present in database 2

Variables present in the 
database

Unit of 
measure Minimum value

Maximum 
value Mean

PV power generated 
(Ppv)

[MW] 0 8.36 3.55

Global horizontal 
irradiance (GHI)

[W/m²] 0 1281 511.80

Ambient temperature 
(Ta)

[°C] 4.85 43.70 26.75

Relative humidity (Rh) [%] 5.82 70.35 23.61
Wind speed (Ws) [m/s] 0.07 4.98 2.14
Wind direction (Wd) [°] 19.52 350.60 160.50
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time resolution, and data normalization. A description of each of the above 
phases is presented in the following sections.

3.3.2.1 � Correction of outliers and missing data

Outliers are values that differ significantly from the remaining values of 
the time series and can be produced mainly by errors in the sensors or mea-
surement equipment. In the case of missing data, their presence is mainly 
associated with failures or disconnections in the equipment during a cer-
tain period of time, which causes the loss of information in that period of 
time. In both cases, it is extremely important to correct these problems to 
improve data quality and achieve a positive impact on the performance of 
prediction models [16].

In this work, for the correction of outliers, a method was initially imple-
mented that consists of correcting the values that are outside the logical lim-
its of each time series. Subsequently, an algorithm was used that considers 
outliers as values that exceed the standard deviation of the mean by more 
than three times and then replaces those values with the non-outlier clos-
est to its position in the time series. Figure 3.8 shows the result of applying 
the described procedure to the GHI time series of the D1 database for the 
period of time between February 7 and February 10, 2016. In this case, 
the initial data has been represented, the outliers detected by the algorithm 
(8 in this case), as well as the clean final data derived from the process of 
detection and correction of outliers.

To solve the problems related to missing data, a procedure is applied, 
based on filling the missing data by using the moving average method and 
a sliding window of a given length. In this work, a window size equal to 12 
measurements was used, which corresponds to a time period of one hour. 
However, for larger data absences, the window resolution can be extended. 
Figure 3.9 shows the missing value correction for the Ta time series of data 
set D1 during a three-day period of the month of June 2016. It can be seen 
that the implemented method works properly. The corrections which were 
made appear to be accurate and fit the behavior of the time series.

3.3.2.2 � Filtering of night values

A recommended technique to improve forecast accuracy and reduce the 
computational burden of prediction models is to eliminate nighttime mea-
surements [16]. During nighttime hours, the solar radiation presents a zero 
value, and therefore, the PV power generated will also be zero during that 
time period. However, the night hours vary according to the seasons of the 
year and this aspect should be considered when eliminating these measure-
ments [56]. It is best to perform a preliminary inspection of the data and 
precisely define the values that can be eliminated, so as not to affect the 
quality of the data.
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Figure 3.10 shows the behavior of the Ppv time series for the time period 
August 10 to August 13, 2020. The first case represented corresponds to 
the original Ppv series and the second case corresponds to that series after 
filtering the night values. It can be observed that the applied method main-
tains the quality and adequate behavior of the filtered data and eliminates 
a large number of zero value measurements, which are unnecessary for the 
prediction.

3.3.2.3 � Correlation analysis

Correlation analysis is a very effective technique for determining the degree 
of linear relationship between two specific variables. The linear correla-
tion coefficient can take values in the range [1]. A value between 0 and 1 
indicates a positive correlation between the variables, i.e., there is a direct 

Figure 3.9  �Correction of missing data in the Ta time series of data set D1.

Figure 3.8  �Outlier correction in the GHI time series of the D1 data set.
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relationship between them. On the other hand, a value between 0 and −1 
is equivalent to a negative correlation; i.e., there is an inverse relationship 
between the variables analyzed. Correlation coefficient values equal to or 
close to zero indicate that there is no (or a very weak) linear relationship 
between the variables. Values close to 1 or −1 indicate that there is a strong 
relationship between the variables, in either the direct or inverse direction 
[57]. In this study, the Pearson correlation coefficient (PCC) method [33] is 
used to determine the degree of correlation of each variable, with respect to 
the target variable to be predicted (Ppv).

The Pearson correlation coefficient can be determined for two vectors x 
and y by using the Equation 3.20:
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where x  and y  are the mean of each vector, xi  and yi represent the values 
of the variables for observation i, and n corresponds to the number of ele-
ments in the sample.

Figures 3.11 and 3.12 show the Pearson correlation values between the 
different variables that make up the D1 and D2 databases, respectively. 
Figure 3.11 shows that the GHI variable has the highest level of correlation 
(0.9616) with respect to the Ppv variable. It is followed in that order by the 
variables Tp, with a correlation of 0.8725, and Ta, with a value of 0.5464. 
Since the three variables mentioned correlate adequately with the output 
variable, it is decided to use these three variables (GHI, Tp, and Ta) as pos-
sible inputs to the prediction model for data set D1.

Figure 3.10  �Filtering of nighttime values in the Ppv time series of data set D2: (a) 
Represents the original series and (b) Represents the filtered series.
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In the case of Figure 3.12, it can be seen that there are a larger number 
of variables involved in the correlation analysis. As in the previous case, the 
variable most strongly correlated with Ppv is GHI, with a value of 0.9592. 
It is followed by the variable Ta, with a correlation of 0.4426, and Ws, with 
a value of 0.3437. On the other hand, the variable Rh presents a weak and 
negative correlation with respect to Ppv, with a value of −0.2576, and the 
variable Wd also presents a negative correlation and is very close to zero 
(−0.0902). Therefore, for data set D2, the variables GHI, Ta, and Ws are 
defined as possible inputs to the prediction model.

3.3.2.4 � Change of the temporal resolution of the data

In this work, the data obtained were measured with a high temporal reso-
lution (5 min). However, the objective of the research is the prediction of 
PV energy for a one-hour horizon and for the following day. Therefore, in 
some cases, it is necessary to change the temporal resolution of the data 
to 30 min or 1 hour. The method used is based on averaging the values of 
each interval and taking these average values to reconstruct the time series. 
Figure 3.13 shows the results obtained by changing the temporal resolution 
of the GHI variable in the D1 data set. As can be seen, as the temporal reso-
lution changes, data smoothing is achieved, and fluctuations are reduced. 
However, sometimes some useful information may be lost, regarding phe-
nomena that occur in relatively short time intervals.

Figure 3.11  �Correlation matrix for dataset D1.
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3.3.2.5 � Data normalization

The normalization of data is considered an aspect of great importance when 
working with time series that present different scales of values. As can be 
seen in Tables 3.2 and 3.3, the ranges of minimum and maximum values of 
each variable differ. These differences in scale can have a negative impact 
on the performance of forecasting models. For example, when using train-
ing algorithms based on the gradient descent technique, differences in the 
scale of the data can cause difficulties in the learning process and reduce the 
speed of convergence of the algorithm. To solve these problems and ensure 
good performance and quality in predictions, normalization is applied [16].

A widely used normalization technique is Min-Max scaling, which is 
described by Equation 3.21:

	 � �
�
�

x
x x

x x
min

max min

	 (3.21)

where ′x  represents the normalized value of the variable, x  is the observed 
value, and xmax , xmincorrespond to the maximum and minimum values, 
respectively.

The application of this technique allows rescaling of all the variables in 
the range [0, 1] and reducing the dispersion among the data. Finally, the 
model predictions must be denormalized by means of a reverse procedure to 
the previous one. In this way, the predictions can be returned to their origi-
nal scale and appropriate comparisons can be made with the real values.

Figure 3.12  �Correlation matrix for dataset D2.
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3.3.3 � Proposed methodology for data 
analysis and preprocessing

Figure 3.14 presents the logical and sequential explanation of the proposed 
methodology for data preprocessing in the form of pseudocode. The algo-
rithm presented covers all the steps described above, from data collection 
and visualization to data quality improvement using different techniques, 
as well as the definition of the most relevant inputs for the forecasting mod-
els and their normalization. In this way, the quality of the available data 
is improved and a satisfactory performance of the prediction models is 
obtained.

3.4. � DEVELOPMENT OF THE PREDICTIVE MODEL

This section discusses the partitioning of the available data into training 
and test sets. In addition, several consistent metrics are defined to evaluate 
the performance of the models and the quality of their predictions. Next, 
the general structure of the proposed prediction model is defined, and the 
fit of its most relevant hyperparameters obtained using the BOA algorithm 
is shown. Then, a partial description of the programming performed for the 
creation of the model is given. Finally, the general methodology proposed 
for PV power prediction is presented.

3.4.1 � Division of the data

The division of the available historical data is an important aspect in the 
creation of a given forecast model. In the phase prior to model training, the 

Figure 3.13  �Change in temporal resolution of the GHI variable of data set D1.
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data are divided into several independent sets. In this work, the criterion 
shown in Figure 3.15 for the division of the historical data is applied.

The training data set is used to train the prediction model so that it learns 
the relationships between the data and is able to recognize patterns and 
trends in the time series. Within the training set itself, most of the data is 
used to train the model, and a small part is used to validate the learning 
using the cross-validation method. The test data set is used to evaluate the 
predictive and generalization capability of the developed model against a 
set of new data that were not part of the training process.

3.4.2 � Performance analysis

Several metrics recommended in the literature are used to evaluate the per-
formance of the prediction model developed. Among these are the mean 

Figure 3.14  �Pseudocode for data analysis and preprocessing. (*the programming of the 
algorithm was developed in MATLAB)
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absolute error (MAE), the mean absolute percentage error (MAPE), the 
root mean square error (RMSE) and the coefficient of determination (R²) 
[58]. The metrics are defined by Equations 3.22–3.25:

	 MAE
n

y y
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where yp represents the value predicted by the prediction model, ym repre-
sents the measured value of the PV power, yavg  is the average of the observed 
values and n corresponds to the number of observations.

The meaning of these metrics is described below. The MAE measures the 
average absolute difference between the actual values and those predicted 
by the model. The RMSE estimates the error by the square root of the aver-
age of the squared differences between the actual values and the model pre-
dictions. It is a suitable metric for analyzing large errors. In the case of the 
MAPE, it is considered a widely useful standard metric and is very fair for 
determining the accuracy of predictions. The coefficient of determination 
R² measures the degree of linear correlation between actual values and pre-
dictions and its value can range from zero to one. In practice, small values 
of MAE, MAPE and RMSE, and values close to one of the R², are desired 
to ensure good quality in the predictions made [58].

Figure 3.15  �Division of available historical data.
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3.4.3 � Structure of the predictive model

For the prediction of the power generated in plants D1 and D2, a structure 
similar to the one shown in Figure 3.16 is used. The internal structure of 
both models is the same, differing only in the inputs used. The structure of 
each model contains a sequence input layer, a BiLSTM layer with a certain 
number of hidden units, a dropout layer, a fully connected layer, and a 
regression layer at the output.

To avoid the risk of overfitting the prediction model, the dropout layer is 
added. By means of this layer, memory units are randomly removed from 
the neural network with a probability that can vary between 0.1 and 1.0. 
The addition of the dropout layer reduces the error rate in the forecasts and 
increases the robustness of the developed model [53]. The objective of the 
work is the prediction of the Ppv for the hour-ahead and the day-ahead. In 
the case of the hour-ahead prediction, the measurements were taken with 
a time resolution of 30 minutes for both data sets. In this case, six delays 
from each input time series are used as inputs to the prediction model. That 
is, the value of each time series at the current time and at five previous 
time instants is used. The number of lags is determined by autocorrelation 
analysis.

For the prediction of the day-ahead, it should be taken into account that, 
by eliminating the nighttime measurements and working only with the data 
between 7:00 am and 19:00 pm, the resulting days have a duration of 12 
hours. Therefore, in the prediction of the next day (12 hours-ahead), an 
hourly time resolution is used for the historical data. For this type of pre-
diction, 24 delays of each time series were used as inputs to the prediction 
model. An interesting aspect to note is that, despite using a large number 
of inputs to the prediction model (24 inputs for the hour-ahead prediction 
and 96 inputs for the day-ahead prediction), the computation time does 
not increase considerably. It could be seen that the computational cost of 
the model is mostly related to the internal structure of the network and the 
adjustment of its hyperparameters.

The adjustment of the hyperparameters of the prediction model is per-
formed using the BOA algorithm. There is another group of hyperparam-
eters that are manually adjusted according to values recommended in the 
literature. Table 3.4 shows the values of the different hyperparameters of 
the BiLSTM model for the two time horizons analyzed.

3.4.4 � Model implementation

The procedure for implementing the Ppv prediction model is represented 
in the form of pseudocode, as shown in Figure 3.17; the elements of major 
importance for the construction and training of the proposed model are 
represented.

Some important issues related to the training of the prediction model 
must be addressed. In neural network models, an optimization algorithm is 
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Figure 3.16  �General structure of the prediction models for data sets D1 and D2.

Table 3.4  �Adjustment of the hyperparameters of the BiLSTM model for the prediction 
of Ppv

Type of 
adjustment

Hyperparameter to 
adjust

Fit obtained
(One-hour-ahead 

prediction)

Fit obtained
(Day-ahead 
prediction)

Through BOA Number of hidden 
layers

1 1

BiLSTM units in hidden 
layers

90 120

Initial Learn Rate 0.005 0.01
Mini-batch size 64 128
Regularization factor L2 0.0001 0.0001

Manually Learn rate schedule Per parts (periods) Per parts 
(periods)

Optimization algorithm 
used for training

Adaptive moment 
estimation (Adam)

Adaptive moment 
estimation 

(Adam)
Dropout value 0.2 0.2
Number of training 
epochs

200 200

Learn rate drop period 125 125
Learn rate drop factor 0.5 0.5
Gradient Threshold 1 1
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used to minimize the error rate. The effectiveness of a specific optimization 
algorithm is given by its convergence speed and its generalization capabil-
ity. Several optimization algorithms can be used in training deep learning 
models, including adaptive moment estimation (Adam), stochastic gradi-
ent descent with momentum (SGDm), and root mean square propagation 
(RMSprop). In this work, the Adam algorithm, recommended for its high 
computational efficiency and easy tuning, was used. Another important 
aspect in model training is the number of epochs or iterations performed by 
the prediction model. In this case, 200 training epochs were used; this value 
was determined by the trial and error method. In this case it was observed 
that, around this value, the validation error practically stops decreasing 
and behaves in a stable way, so it is not necessary to continue increasing the 
number of iterations of the model [59]. Other aspects related to the mini-
batch size, initial learning rate and L2 regularization were addressed in the 
hyperparameter optimization section.

3.4.5 � General methodology for PV power prediction

PV power prediction encompasses a set of steps and procedures that must be 
integrated to obtain a prediction model that performs favorably. Figure 3.18 
shows the general methodology proposed for the prediction of PV power 
generated by a BiLSTM model with Bayesian hyperparameter optimization.

In the initial phase of the methodology, the necessary historical data are 
obtained, the analysis and preprocessing of this data are performed and 
then the data are divided into the training and test sets. In the next phase, 

Figure 3.17  �Pseudocode for building and training the prediction model. (*the program-
ming of the algorithm was developed in MATLAB)
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the architecture of the prediction model is defined, the optimization of its 
most relevant hyperparameters is performed through BOA and its train-
ing is carried out. Subsequently, the performance of the proposed model 
is tested using the test set data and its quality is determined. If the results 
obtained are not adequate, the hyperparameters of the model are modified 
and it is trained again. Finally, the trained model is used to make the next 
hour’s or next day’s Ppv forecast. The predictions are then denormalized, 
to restore them to their original scale; the results obtained are plotted and 
the process is completed.

Figure 3.18  �Proposed methodology for PV power prediction.
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3.5 � RESULTS AND DISCUSSION

This section presents and analyzes the main results obtained in the predic-
tion of Ppv for two different time horizons (hour-ahead and day-ahead) and 
different data sets (D1 and D2). The results are presented in graphical and 
numerical form to facilitate their understanding and to draw conclusions 
about the quality and accuracy of the predictions made.

3.5.1 � General considerations

In this work, a BiLSTM model with Bayesian hyperparameter optimization 
is proposed for the prediction of hour-ahead and day-ahead PV power. The 
proposed model is compared with two models widely used in the litera-
ture: a first model based on a basic MLP-type neural network and a second 
model based on a NARX type recurrent neural network. All models were 
implemented in MATLAB R2021b software.

The proposed architecture for the BiLSTM model was discussed in 
Section 3.4.3. All the analyzed models use a similar structure for the inputs 
and output. In the case of the MLP neural network, a structure with a 
hidden layer, 40 neurons in the hidden layer, sigmoidal logarithmic type 
hidden layer activation function and linear type output layer activation 
function was used. Levenberg-Marquardt was used as the learning algo-
rithm. The minimum value of the gradient was set to 0.0001 and the maxi-
mum number of iterations was 1000. For the NARX type recurrent neural 
network, an architecture with a hidden layer, 36 neurons in the hidden 
layer, hyperbolic tangent activation function for the hidden layer, and linear 
activation function for the output layer was used. The learning algorithm, 
the minimum value of the gradient and the maximum number of iterations 
were adjusted in the same way as in the MLP neural network.

To evaluate the performance of the proposed model and the comparison 
models, data sets (D1 and D2) corresponding to two PV plants of different 
installed capacity and different geographical location were used. In all cases 
the predictions were made for two different time horizons (hour-ahead and 
day-ahead).

3.5.2 � Results obtained in the prediction of 
the PV power with one hour-ahead

The prediction of the hour-ahead PV power is very useful to ensure proper 
operation of power grids. Figure 3.19 shows a comparison of the actual Ppv 
values recorded during one week and the predictions made by the BiLSTM, 
MLP, and NARX models for a prediction horizon of one hour-ahead. It 
should be clarified that all studies performed use data from the test set.
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To demonstrate the level of adaptability and robustness of the proposed 
prediction model, the study is performed on days of different behavior and 
on two different data sets. As can be seen, the predictions of the proposed 
model adequately fit the real PV power patterns during the whole time 
period analyzed. In the case of the MLP and NARX models, their predic-
tions do not fit with good accuracy to the actual behavior patterns of the PV 
power time series. These differences are more significant on days with high 
power variability due to the effect of cloudiness.

Figure 3.20 shows a comparison between the actual average PV power 
during the week analyzed and the average of the predictions made by each 
model. In this case, similar conclusions are obtained as in the previous case, 
since in both data sets the superiority of the BiLSTM model over the MLP 
and NARX models is evident. It can be observed that the proposed model 
behaves favorably in the prediction of photovoltaic power one hour-ahead 
and shows good stability and accuracy in its predictions for the analyzed 
time period.

Table 3.5 shows the average prediction errors made by each model dur-
ing the time period analyzed. In both data sets, the BiLSTM model presents 
the lowest values of MAE, RMSE, and MAPE and the highest value of the 
coefficient of determination R², which indicates a high quality of its pre-
dictions. The second place in accuracy is occupied by the recurrent neural 
network of the NARX type. In third place is the MLP neural network, 
which shows the most unfavorable indicators and the greatest uncertainties 
in prediction.

Figure 3.21 shows the scatter plots between the actual Ppv values and 
the predictions of the BiLSTM, MLP and NARXmodels. The straight 
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Figure 3.19  �Prediction of one-hour-ahead Ppv: (a) Prediction for data set D1 and (b) 
Prediction for data set D2.
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Figure 3.21  �Scatter plots between actual values and predictions from MLP, NARX, and 
BiLSTM models using data sets D1 (case a) and D2 (case b).

Table 3.5  �Errors of each model in the prediction of Ppv one hour-ahead using 
databases D1 and D2

Dataset used Metrics

Prediction models

MLP NARX BiLSTM

D1 MAE (kW) 116.01 102.82 18.27
RMSE (kW) 187.43 168.68 26.61
MAPE (%) 9.82 9.04 1.02
R² 0.9262 0.9318 0.9982

D2 MAE (kW) 0.51 0.46 0.09
RMSE (kW) 0.59 0.54 0.11
MAPE (%) 10.24 9.73 1.08
R² 0.9236 0.9298 0.9973
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Figure 3.20  �Comparison between the average actual power and the average prediction 
of each model for one week: (a) Results obtained for dataset D1 and (b) 
results obtained for dataset D2.
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line represents a perfect prediction. As can be seen in the two cases ana-
lyzed, most of the predictions of the BiLSTM model are concentrated on 
the perfect prediction line or very close to it. This indicates that there is a 
high level of correlation between the actual values and the predictions of 
this model. For the MLP and NARX models, a greater dispersion of the 
observations is evident, which is equivalent to a lower level of correlation 
between the predictions and the actual values and therefore a lower quality 
of the predictions.

Table 3.6 presents the values of MAE, RMSE, MAPE, and R² for three 
different types of days (sunny, partly sunny, and cloudy) and for both data 
sets. All models analyzed show superior performance (lower MAE, RMSE, 
MAPE and higher R² values) on a sunny day. The opposite is true for cloudy 
days and the performance of the prediction models is much lower. The 
partly sunny day can be considered as an intermediate case in the predic-
tion. It can also be seen that the BiLSTM model shows higher accuracy and 
stability in predictions on different types of days compared to the NARX 
and MLP models.

The significant differences in the accuracy of the predictions for the dif-
ferent types of days are mainly due to the variability of the weather con-
ditions. On sunny days there is no cloud cover and therefore no abrupt 
variations in solar irradiance incident on the PV plant occur. Under these 
conditions the prediction models can perform more favorably. However, 
as the incident cloudiness over the PV plant increases, fluctuations in the 
power output occur, and prediction becomes more difficult.

The results obtained in the prediction of the one-hour-ahead PV power 
show that the BiLSTM prediction model with Bayesian hyperparameter 
optimization is a powerful tool in time series prediction. Its particular 
structure allows it to extract deep features and learn complex nonlinear 
patterns. Therefore, it performs satisfactorily in predicting the PV power 
of the hour-ahead. In the case of the NARX and MLP models, the quality 
of their predictions is much lower compared to the proposed model. These 
two models are structurally simpler and require less computational cost. 
However, when faced with large and complex time series, they do not have 
sufficient learning capacity to achieve stable and high-quality predictions.

3.5.3 � Results obtained in the prediction 
of the day-ahead PV power

Day-ahead Ppv predictions are also of great importance, especially in mat-
ters related to power system planning and operation. Figure 3.22 shows the 
results obtained in the day-ahead PV power prediction from the proposed 
model and the comparison models. As in the hour-ahead prediction, two 
different data sets are used and a time period of one week is analyzed. As 
can be seen in comparison to the one-hour-ahead prediction, in this case the 
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accuracy of all models has decreased for both data sets as expected. Again, 
the BiLSTM model shows the best performance. The proposed model is 
able to fit the general patterns of behavior of the power time series, even 
though there are some days whose prediction is very difficult due to the 
high variability of weather conditions. In the case of the MLP and NARX 
models, their predictions have worsened significantly and their quality is 
poor. The predictions of these two models show significant differences with 
respect to the real power values recorded in both PV plants.

Figure 3.23 shows a comparison between the actual average PV power 
during the week analyzed and the average of the predictions made by each 
model for a day-ahead prediction horizon. The results obtained show that 
the average prediction of the BiLSTM model adequately adjusts to the aver-
age real power during the analyzed week. This reaffirms the effectiveness 
of this model for day-ahead Ppv prediction. In the case of the MLP and 
NARX models, they do not show a good performance and large differences 
with respect to the real power average are observed.

Table 3.7 shows the values of several metrics to determine the quality 
of the predictions made by each model for the time horizon of the day-
ahead. Evidently the accuracy of the models has decreased with increasing 
prediction horizon. In both data sets the BiLSTM model shows the best 
indicators, followed by the NARX model and the MLP model. All models 
show slightly better performance for the first data set. This may be associ-
ated with two fundamental issues. First, data set D1 has a duration of one 
year and set D2 only has measurements of 132 days. The length of the time 
series can be an influential factor in the training quality of a prediction 
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Figure 3.22  �Ppv prediction for the day-ahead: (a) Prediction for data set D1 and (b) pre-
diction for data set D2.
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model. On the other hand, the time period selected for dataset D2 has a 
higher variability in the behavior of PV power, which makes its prediction 
even more difficult.

Figure 3.24 shows the scatter plots between the actual Ppv values and the 
predictions of each model for the following day. In this case, a larger scat-
ter is observed between the predictions of each model and the actual Ppv 
power values, indicating that the quality of the predictions has degraded 
with increasing prediction horizon. The BiLSTM model again shows the 
best fit with respect to the perfect prediction line.

Table 3.8 shows the prediction errors made by each model for different 
types of days. As in the next hour prediction the best results are obtained 
for the sunny day and the most pessimistic results are obtained for the 
cloudy day. Again, the superiority of the BiLSTM model compared to the 
NARX and MLP models is evident for all test conditions analyzed.
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Figure 3.23  �Comparison between the average actual power and the average prediction of 
each model for one week: a) Results for dataset D1 and (b) Results for dataset D2.

Table 3.7  �Errors of each model in predicting day-ahead Ppv using databases D1 and D2

Dataset used Metrics

Prediction models

MLP NARX BiLSTM

D1 MAE (kW) 331.34 260.61 86.31
RMSE (kW) 416.96 335.70 137.68
MAPE (%) 36.43 27.84 10.19
R² 0.6614 0.7224 0.9352

D2 MAE (kW) 1.47 0.96 0.44
RMSE (kW) 1.82 1.31 0.63
MAPE (%) 37.12 28.78 10.96
R² 0.6486 0.6934 0.9295
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The general analysis of the predictions made for the day-ahead shows that 
as the prediction horizon increases, the quality and accuracy of the results 
decreases for all the models analyzed. The proposed prediction model has 
demonstrated its superiority in all the tests performed. Moreover, it has 
been able to adapt with good accuracy to different data sets and different 
operating conditions. Even in adverse weather conditions where the com-
parison models showed totally erroneous results, the BiLSTM model was 
able to generally capture the behavior pattern of the original PV power 
series and produce an accurate forecast.

3.6 � CONCLUSIONS

Solar photovoltaic energy is a renewable energy source that has been widely 
used in recent years. However, the power generated in a PV installation 
depends on several meteorological factors that cause its behavior to be 
dynamic, variable, and intermittent. In order to solve these problems and 
achieve a successful integration of this energy source into power grids, an 
accurate forecast of the PV power generated is required. In this study, a 
BiLSTM deep learning model was proposed to forecast the PV power of 
the hour-ahead and day-ahead. To obtain better performance of the fore-
casting model, a data preprocessing algorithm was implemented. This pro-
cedure improved the quality of the available historical data and increased 
the accuracy of the predictions. The adjustment of the most relevant hyper-
parameters of the proposed model was performed by means of a Bayesian 
optimization algorithm. In this way, the performance of the model and its 
generalization capacity could be improved.

The predictions of the BiLSTM model were compared with an MLP-type 
neural network model and a NARX type recurrent neural network model. 
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Different consistent metrics recommended in the specialized literature were 
used to determine the accuracy of the predictions. The models were tested 
using two historical data sets belonging to different PV installations. The 
performance of the models was evaluated for two prediction horizons and 
for different types of days (sunny, cloudy, and partly sunny). In all cases 
analyzed, the BiLSTM model obtained the best results and showed higher 
robustness, accuracy, and adaptability in the predictions. Even in adverse 
weather conditions where the MLP and NARX models showed unfavorable 
performance, the BiLSTM model was able to adequately adjust to the actual 
PV power patterns. The analysis of the results obtained for each available 
dataset and for the different forecast horizons studied demonstrated that 
the BiLSTM model is a powerful tool for PV power prediction.

Future work will be focused on further improving the performance of 
the proposed prediction model; for this, some hybrid model architectures 
such as BiLSTM-CNN can be applied so that temporal and spatial features 
can be extracted from the time series. The use of meteorological forecasts 
can also be useful to improve the accuracy of the predictions, especially for 
the day-ahead forecast horizon. In addition, larger data sets and data from 
other geographic locations can be used in the study, which will provide 
more conclusive evidence on the effectiveness of the proposed method.

It is also planned to use the proposed forecasting method for on-line 
applications, with a probabilistic approach that takes into account possible 
uncertainties in the prediction. In this sense, one-hour-ahead on-line fore-
casts are extremely important for real-time monitoring. Day-ahead forecasts 
are suitable for generation dispatch and the definition of reserve margins in 
the power grid. Although the results obtained with the BiLSTM model are 
promising, there is room for further improvement in prediction accuracy 
and real-time efficiency. One possible avenue for future research would be 
to explore new technologies such as artificial intelligence (AI), the Internet 
of Things (IoT), and robotics to optimize the prediction of PV generation. 
AI could be used to analyze large amounts of historical data and detect 
patterns and trends that can help to more accurately predict the power gen-
erated at a PV installation. IoT could be used to collect data from sensors 
and devices connected to solar power plants, allowing a better understand-
ing of the environment and conditions in real time. Robotics, meanwhile, 
could be used in tasks related to inspecting and maintaining solar panels 
and obtaining accurate measurements of solar radiation. Future research 
can explore how these technologies can be integrated into the proposed 
predictive models to improve their performance and adaptability to differ-
ent operating conditions, allowing for more efficient management of solar 
photovoltaic energy.



122  Photovoltaic Modules﻿

REFERENCES

	 1.	 Lotta, M. C.; Pye, S.; Dodds, P. E. Quantifying the co-impacts of energy sec-
tor decarbonization on outdoor air pollution in the United Kingdom. Energy 
Policy, 2017, vol. 101, pp. 42–51, doi: 10.1016/j.enpol.2016.11.028.

	 2.	 Abdel-Nasser, M.; Mahmoud, K. Accurate photovoltaic power forecasting 
models using deep LSTM-RNN. Neural Computing & Applications, 2019, 
vol. 31, pp. 2727–2740, doi: 10.1007/s00521-017-3225-z.

	 3.	 Zang, Haixiang, et al. Day-ahead photovoltaic power forecasting approach 
based on deep convolutional neural networks and meta learning. International 
Journal of Electrical Power & Energy Systems, 2020, vol. 118, p. 105790, 
doi: 10.1016/j.ijepes.2019.105790.

	 4.	 Gandoman, F. H.; Abdel Aleem, S. H. E.; Omar, N.; Ahmadi, A.; Alenezi, F. 
Q. Short-term solar power forecasting considering cloud coverage and ambi-
ent temperature variation effects. Renew Energy, 2018, vol. 123, p. 793e805, 
doi: 10.1016/j.renene.2018.02.102.

	 5.	 Gaëetan, M.; Izumi, K. Trends. In: Photovoltaic Applications. Paris, France: 
IEAPVPS; 2019.

	 6.	 REN21.2022. Renewables 2022 Global Status Report (Paris: REN21 
Secretariat), ISBN 978-3-948393-04-5.

	 7.	 Jones, Dave. Ember Global Electricity Review 2021, march 2021, www​
.ember​-climate​.org​/global​-electricity​-review​-2021.

	 8.	 Ismail, Abdul Muhaimin, et al. Progress of solar photovoltaic in ASEAN 
countries: A review. Renewable and Sustainable Energy Reviews, 2015, vol. 
48, pp. 399–412, doi: 10.1016/j.rser.2015.04.010.

	 9.	 Cheng, Lilin, et al. Short-term solar power prediction learning directly from 
satellite images with regions of interest. IEEE Transactions on Sustainable 
Energy, 2021, vol. 13, no. 1, pp. 629–639, doi: 10.1109/TSTE.2021.3123476.

	 10.	 Liu, Luyao, et al. Prediction of short-term PV power output and uncer-
tainty analysis. Applied Energy, 2018, vol. 228, pp. 700–711, doi: 10.1016/j.
apenergy.2018.06.112.

	 11.	 Kumar, Dhivya Sampath, et al. Review of power system impacts at high PV 
penetration Part II: Potential solutions and the way forward. Solar Energy, 
2020, vol. 210, pp. 202–221, doi: 10.1016/j.solener.2020.08.047.

	 12.	 Rodríguez, Fermín, et al. Very short-term temperature forecaster using MLP 
and N-nearest stations for calculating key control parameters in solar photo-
voltaic generation. Sustainable Energy Technologies and Assessments, 2021, 
vol. 45, p. 101085, doi: 10.1016/j.seta.2021.101085.

	 13.	 Das, Utpal Kumar, et al. Forecasting of photovoltaic power generation and 
model optimization: A review. Renewable and Sustainable Energy Reviews, 
2018, vol. 81, pp. 912–928, doi: 10.1016/j.rser.2017.08.017.

	 14.	 Akhter, Muhammad Naveed, et al. Review on forecasting of photovoltaic 
power generation based on machine learning and metaheuristic techniques. 
IET Renewable Power Generation, 2019, vol. 13, no 7, pp. 1009–1023, doi: 
10.1049/iet-rpg.2018.5649.

	 15.	 Wang, Kejun; Qi, Xiaoxia; Liu, Hongda. A comparison of day-ahead photovol-
taic power forecasting models based on deep learning neural network. Applied 
Energy, 2019, vol. 251, p. 113315, doi: 10.1016/j.apenergy.2019.113315.

http://dx.doi.org/10.1016/j.enpol.2016.11.028
http://dx.doi.org/10.1007/s00521-017-3225-z
http://dx.doi.org/10.1016/j.ijepes.2019.105790
http://dx.doi.org/10.1016/j.renene.2018.02.102
http://www.ember-climate.org/global-electricity-review-2021
http://www.ember-climate.org/global-electricity-review-2021
http://dx.doi.org/10.1016/j.rser.2015.04.010
http://dx.doi.org/10.1109/TSTE.2021.3123476
http://dx.doi.org/10.1016/j.apenergy.2018.06.112
http://dx.doi.org/10.1016/j.apenergy.2018.06.112
http://dx.doi.org/10.1016/j.solener.2020.08.047
http://dx.doi.org/10.1016/j.seta.2021.101085
http://dx.doi.org/10.1016/j.rser.2017.08.017
http://dx.doi.org/10.1049/iet-rpg.2018.5649
http://dx.doi.org/10.1016/j.apenergy.2019.113315


﻿Prediction of photovoltaic generation  123

	 16.	 Alkhayat, Ghadah; MEHMOOD, Rashid. A review and taxonomy of wind 
and solar energy forecasting methods based on deep learning. Energy and AI, 
2021, vol. 4, p. 100060, doi: 10.1016/j.egyai.2021.100060.

	 17.	 Ammar, Rim Ben; Ammar, Mohsen Ben; Oualha, Abdelmajid. Deep learning 
and optimization algorithms-based PV power forecast for an effective hybrid 
system energy management. International Journal of Renewable Energy 
Research (IJRER), 2022, vol. 12, no 1, pp. 97–108, doi: 10.20508/ijrer.
v12i1.12608.g8382.

	 18.	 Alonso-Montesinos, J.; Batlles, F. J.; Portillo, C. Solar irradiance forecasting 
at one-minute intervals for different sky conditions using sky camera images. 
Energy Conversion and Management, 2015, vol. 105, pp. 1166–1177, doi: 
10.1016/j.enconman.2015.09.001.

	 19.	 Dolara, Alberto; Leva, Sonia; Manzolini, Giampaolo. Comparison of differ-
ent physical models for PV power output prediction. Solar Energy, 2015, vol. 
119, pp. 83–99, doi: 10.1016/j.solener.2015.06.017.

	 20.	 Hossain, Monowar, et al. Application of extreme learning machine for 
short term output power forecasting of three grid-connected PV systems. 
Journal of Cleaner Production, 2017, vol. 167, pp. 395–405, doi: 10.1016/j.
jclepro.2017.08.081.

	 21.	 Lago, Jesus, et al. Short-term forecasting of solar irradiance without local 
telemetry: A generalized model using satellite data. Solar Energy, 2018, vol. 
173, pp. 566–577, doi: 10.1016/j.solener.2018. 07.050.

	 22.	 Carriere, Thomas, et al. A novel approach for seamless probabilistic photo-
voltaic power forecasting covering multiple time frames. IEEE Transactions 
on Smart Grid, 2019, vol. 11, no 3, pp. 2281–2292, doi:10.1109/
TSG.2019.2951288.

	 23.	 Harty, Travis M., et al. Intra-hour cloud index forecasting with data 
assimilation. Solar Energy, 2019, vol. 185, pp. 270–282, doi: 10.1016/j.
solener.2019.03.065.

	 24.	 Das, Subhra. Short term forecasting of solar radiation and power output of 
89.6 kWp solar PV power plant. Materials Today: Proceedings, 2021, vol. 39, 
pp. 1959–1969, doi: 10.1016/j.matpr.2020.08.449.

	 25.	 Agoua, Xwégnon Ghislain; Girard, Robin; Kariniotakis, George. Short-
term spatio-temporal forecasting of photovoltaic power production. IEEE 
Transactions on Sustainable Energy, 2017, vol. 9, no 2, pp. 538–546, doi: 
10.1109/TSTE.2017.2747765.

	 26.	 Alfadda, Abdullah, et al. Hour-ahead solar PV power forecasting using 
SVR based approach. 2017 IEEE Power & Energy Society Innovative Smart 
Grid Technologies Conference (ISGT). IEEE, 2017, pp. 1–5, doi: 10.1109/
ISGT.2017.8086020.

	 27.	 Essam, Yusuf, et al. Investigating photovoltaic solar power output fore-
casting using machine learning algorithms. Engineering Applications of 
Computational Fluid Mechanics, 2022, vol. 16, no. 1, pp. 2002–2034, doi: 
10.1080/19942060.2022.2126528.

	 28.	 Guermoui, Mawloud, et al. Forecasting intra-hour variance of photovoltaic 
power using a new integrated model. Energy Conversion and Management, 
2021, vol. 245, p. 114569, doi: 10.1016/j.enconman.2021.114569.

http://dx.doi.org/10.1016/j.egyai.2021.100060
http://dx.doi.org/10.20508/ijrer.v12i1.12608.g8382
http://dx.doi.org/10.20508/ijrer.v12i1.12608.g8382
http://dx.doi.org/10.1016/j.enconman.2015.09.001
http://dx.doi.org/10.1016/j.solener.2015.06.017
http://dx.doi.org/10.1016/j.jclepro.2017.08.081
http://dx.doi.org/10.1016/j.jclepro.2017.08.081
http://dx.doi.org/10.1016/j.solener.2018
http://dx.doi.org/10.1109/TSG.2019.2951288
http://dx.doi.org/10.1109/TSG.2019.2951288
http://dx.doi.org/10.1016/j.solener.2019.03.065
http://dx.doi.org/10.1016/j.solener.2019.03.065
http://dx.doi.org/10.1016/j.matpr.2020.08.449
http://dx.doi.org/10.1109/TSTE.2017.2747765
http://dx.doi.org/10.1109/ISGT.2017.8086020
http://dx.doi.org/10.1109/ISGT.2017.8086020
http://dx.doi.org/10.1080/19942060.2022.2126528
http://dx.doi.org/10.1016/j.enconman.2021.114569


124  Photovoltaic Modules﻿

	 29.	 Rodríguez, Fermín, et al. Forecasting intra-hour solar photovoltaic energy by 
assembling Wavelet based time-frequency analysis with deep learning neu-
ral networks. International Journal of Electrical Power & Energy Systems, 
2022, vol. 137, p. 107777, doi: 10.1016/j.ijepes.2021.107777.

	 30.	 Pan, Mingzhang, et al. Photovoltaic power forecasting based on a support 
vector machine with improved ant colony optimization. Journal of Cleaner 
Production, 2020, vol. 277, p. 123948, doi: /10.1016/j.jclepro.2020.123948.

	 31.	 Rafati et al. High dimensional very short-term solar power forecasting based 
on a data-driven heuristic method. Energy, vol. 219, p. 119647, 2021, doi: 
10.1016/j.energy.2020.119647.

	 32.	 M. A. Hassan, N. Bailek, K. Bouchouicha and S. C. Nwokolo. Ultra-short-
term exogenous forecasting of photovoltaic power production using genetically 
optimized non-linear autoregressive recurrent neural networks. Renewable 
Energy, vol. 171, pp. 191–209, 2021, doi: 10.1016/j.renene.2021.02.103.

	 33.	 M. S. Hossain and H. Mahmood. Short-term photovoltaic power forecasting 
using an LSTM neural network and synthetic weather forecast IEEE Access, 
vol. 8, pp. 172524–172533, 2020, doi: 10.1109/ACCESS.2020.3024901.

	 34.	 Akhter, Muhammad Naveed, et al. An hour-ahead PV power forecast-
ing method based on an RNN-LSTM model for three different PV plants. 
Energies, 2022, vol. 15, no 6, p. 2243, doi: 10.3390/en15062243.

	 35.	 Elsaraiti, Meftah; MERABET, Adel. Solar power forecasting using deep 
learning techniques. IEEE Access, 2022, vol. 10, pp. 31692–31698, doi: 
0.1109/ACCESS.2022.3160484.

	 36.	 Massaoudi, Mohamed, et al. An effective hybrid NARX-LSTM model for 
point and interval PV power forecasting. IEEE Access, 2021, vol. 9, pp. 
36571–36588, doi: 10.1109/ACCESS.2021.3062776.

	 37.	 Ren, Xiaoying, et al. Quad-kernel deep convolutional neural network for 
intra-hour photovoltaic power forecasting. Applied Energy, 2022, vol. 323, 
p. 119682, doi: 10.1016/j.apenergy.2022.119682.

	 38.	 Wojtkiewicz, Jessica, et al. Hour-ahead solar irradiance forecasting using 
multivariate gated recurrent units. Energies, 2019, vol. 12, no. 21, p. 4055, 
doi: 10.3390/en12214055.

	 39.	 Zhen, Hao, et al. Photovoltaic power forecasting based on GA improved 
Bi-LSTM in microgrid without meteorological information. Energy, 2021, 
vol. 231, p. 120908, doi: 10.1016/j.energy.2021.120908.

	 40.	 Bou-Rabee, Mohammed A., et al. BiLSTM network-based approach for solar 
irradiance forecasting in continental climate zones. Energies, 2022, vol. 15, 
no. 6, p. 2226, doi: 10.3390/en15062226.

	 41.	 Sabri, Mohammed; El Hassouni, Mohammed. Predicting photovoltaic 
power generation using double-layer bidirectional long short-term memory-
convolutional network. International Journal of Energy and Environmental 
Engineering, 2022, pp. 1–14, doi: 10.1007/s40095-022-00530-4.

	 42.	 Sharadga, Hussein; Hajimirza, Shima; Balog, Robert S. Time series forecast-
ing of solar power generation for large-scale photovoltaic plants. Renewable 
Energy, 2020, vol. 150, pp. 797–807, doi: 10.1016/j.renene.2019.12.131.

	 43.	 Jia, Pengyun, et al. Short-term photovoltaic power forecasting based on VMD 
and ISSA-GRU. IEEE Access, 2021, vol. 9, pp. 105939–105950, doi: 10.1109/
ACCESS.2021.3099169.

http://dx.doi.org/10.1016/j.ijepes.2021.107777
http://dx.doi.org/10.1016/j.jclepro.2020.123948
http://dx.doi.org/10.1016/j.energy.2020.119647
http://dx.doi.org/10.1016/j.renene.2021.02.103
http://dx.doi.org/10.1109/ACCESS.2020.3024901
http://dx.doi.org/10.3390/en15062243
http://dx.doi.org/10.1109/ACCESS.2021.3062776
http://dx.doi.org/10.1016/j.apenergy.2022.119682
http://dx.doi.org/10.3390/en12214055
http://dx.doi.org/10.1016/j.energy.2021.120908
http://dx.doi.org/10.3390/en15062226
http://dx.doi.org/10.1007/s40095-022-00530-4
http://dx.doi.org/10.1016/j.renene.2019.12.131
http://dx.doi.org/10.1109/ACCESS.2021.3099169
http://dx.doi.org/10.1109/ACCESS.2021.3099169


﻿Prediction of photovoltaic generation  125

	 44.	 Akhter, Muhammad Naveed, et al. A hybrid deep learning method for 
an hour ahead power output forecasting of three different photovol-
taic systems. Applied Energy, 2022, vol. 307, p. 118185, doi: 10.1016/j.
apenergy.2021.118185.

	 45.	 Li Gangqiang, et al. Recurrent neural networks based photovoltaic power 
forecasting approach. Energies, 2019, vol. 12, no 13, p. 2538, doi: 10.3390/
en12132538.

	 46.	 Pang, Zhihong; Niu, Fuxin; O’Neill, Zheng. Solar radiation prediction 
using recurrent neural network and artificial neural network: A case study 
with comparisons. Renewable Energy, 2020, vol. 156, pp. 279–289., doi: 
10.1016/j.renene.2020.04.042.

	 47.	 Sherstinsky, Alex. Fundamentals of recurrent neural network (RNN) and long 
short-term memory (LSTM) network. Physica D: Nonlinear Phenomena, 
2020, vol. 404, p. 132306, doi: 10.1016/j.physd.2019.132306.

	 48.	 Hochreiter, Sepp; Schmidhuber, Jürgen. Long short-term memory. 
Neural Computation, 1997, vol. 9, no 8, p. 1735–1780, doi: 10.1162/
neco.1997.9.8.1735.

	 49.	 Jung, Yoonhwa, et al. Long short-term memory recurrent neural network 
for modeling temporal patterns in long-term power forecasting for solar PV 
facilities: Case study of South Korea. Journal of Cleaner Production, 2020, 
vol. 250, p. 119476, doi: 10.1016/j.jclepro.2019.119476.

	 50.	 Lin, Wenshuai, et al. Multi-step prediction of photovoltaic power based on 
two-stage decomposition and BILSTM. Neurocomputing, 2022, vol. 504, 
pp. 56–67, doi: 10.1016/j.neucom.2022.06.117.

	 51.	 Salehinejad, Hojjat, et al. Recent advances in recurrent neural networks. 
arXiv preprint arXiv:1801.01078, 2017, doi: 10.48550/arXiv.1801.01078.

	 52.	 Sultana, Nahid, et al. Bayesian optimization algorithm-based statistical and 
machine learning approaches for forecasting short-term electricity demand. 
Energies, 2022, vol. 15, no. 9, p. 3425, doi: 10.3390/en15093425.

	 53.	 Michael, Neethu Elizabeth, et al. Short-term solar irradiance forecasting 
based on a novel Bayesian optimized deep Long Short-Term Memory neu-
ral network. Applied Energy, 2022, vol. 324, p. 119727, doi: 10.1016/j.
apenergy.2022.119727.

	 54.	 Martinez-cantin, Ruben. Bayesian optimization with adaptive kernels for 
robot control. In 2017 IEEE international conference on robotics and automa-
tion (ICRA). IEEE, 2017. p. 3350–3356, doi: 10.1109/ICRA.2017.7989380.

	 55.	 https://dkasolarcentre​.com​.au​/download​?location​=alice​-springs
	 56.	 Alzahrani, Ahmad, et al. Solar irradiance forecasting using deep neural 

networks. Procedia Computer Science, 2017, vol. 114, pp. 304–313, doi: 
10.1016/j.procs.2017.09.045.

	 57.	 Zhou, Yi, et al. Prediction of photovoltaic power output based on similar day 
analysis, genetic algorithm and extreme learning machine. Energy, 2020, vol. 
204, p. 117894, doi: 10.1016/j.energy.2020.117894.

	 58.	 Ahmed, Razin, et al. A review and evaluation of the state-of-the-art in PV solar 
power forecasting: Techniques and optimization. Renewable and Sustainable 
Energy Reviews, 2020, vol. 124, p. 109792, doi: 10.1016/j.rser.2020.109792.

	 59.	 Harrou, Fouzi; Kadri, Farid; Sun, Ying. Forecasting of photovoltaic solar 
power production using LSTM approach. Advanced statistical modeling, 
forecasting, and fault detection in renewable energy systems, London, UK: 
IntechOpen, vol. 3, 2020.

http://dx.doi.org/10.1016/j.apenergy.2021.118185
http://dx.doi.org/10.1016/j.apenergy.2021.118185
http://dx.doi.org/10.3390/en12132538
http://dx.doi.org/10.3390/en12132538
http://dx.doi.org/10.1016/j.renene.2020.04.042
http://dx.doi.org/10.1016/j.physd.2019.132306
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1016/j.jclepro.2019.119476
http://dx.doi.org/10.1016/j.neucom.2022.06.117
http://dx.doi.org/10.48550/arXiv.1801.01078
http://dx.doi.org/10.3390/en15093425
http://dx.doi.org/10.1016/j.apenergy.2022.119727
http://dx.doi.org/10.1016/j.apenergy.2022.119727
http://dx.doi.org/10.1109/ICRA.2017.7989380
https://dkasolarcentre.com.au/download?location=alice-springs
http://dx.doi.org/10.1016/j.procs.2017.09.045
http://dx.doi.org/10.1016/j.energy.2020.117894
http://dx.doi.org/10.1016/j.rser.2020.109792


126

Chapter 4

Bifacial PV technology
Performance analysis and applications
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and Mugala Naveen Kumar

4.1 INTRODUCTION

4.1.1 � What is bifacial technology?

A bifacial solar photovoltaic cell (BSPV) is capable of absorbing photons 
from both front and rear sides; therefore it is capable of generating more 
power compared to its mono-facial counterpart. BSPV cells absorb global 
radiation from the front side and reflected diffused (mostly) radiation from 
the rear side. Figure 4.1 shows the structure and configuration of bifacial 
and mono-facial photovoltaic cells.

The working principle of the BSPV cells is similar to the conventional 
mono-facial solar cells except for the fact that the rear side also consists of 
a passivated coating having anti-reflection properties and the back metal 
contact is in the form of fingers and is similar to the front metal contact. 
The anti-reflection coating on the rear side enhances the photon absorption 
from that aside and generates electron-hole pairs (EHPs). All the charge 
carriers generated near the front region move toward the junction, and the 
EHPs are separated such that the electrons are pushed toward the negative 
contact and the holes are pushed toward the positive contact. From the 
metal contacts, the charge carriers move through the external circuit, and 
the work is done. Figure 4.2 shows the schematic diagram of bifacial pho-
tovoltaic technology.

In contrast to the standard PV module, the bifacial PV module consists 
of glass on both the front and rear sides instead of one glass on the front 
side and a back sheet on the rear side. The total irradiance on the backside 
is mostly from the diffused light reflected from the surroundings and the 
light passing through the module, possibly due to the cell gaps. This allows 
for the module to produce more power than the mono-facial counterpart, 
without engaging additional area and utilizing the same amount of semi-
conductor material. Figure 4.3 shows the configuration of mono-facial and 
bifacial PV modules.

Photovoltaic Modules Bifacial PV technology
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Bifacial PV technology

Figure 4.1  �Structure and configuration of bifacial and mono-facial photovoltaic cells.

Figure 4.2  �Schematic of BPV technology.

Figure 4.3  �(A) A bifacial PV module and (B) a standard mono-facial PV module.
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4.2 � HISTORY OF BIFACIAL SOLAR CELL

The first theoretical bifacial solar cell was proposed in a Japanese patent 
dated October 4, 1960, by Hiroshi Mori [1]. However, the first bifacial 
solar cells and panels were fabricated during the Soviet Space Program in 
the Salyut 3 (1974) and Salyut 5 (1976) at the LEO military space station 
[2]. In Salyut 3, small experimental panels with a total cell surface of 24 
cm2 demonstrated a 34% increase in energy generation per satellite revolu-
tion due to Earth’s albedo compared to the mono-facial panels at that time 
[3, 4]. Except for these implementations in Russian satellite systems, the 
bifacial solar PV technology remained mostly ignored over the next two 
decades. Later in 1976 and 1977, Luque filed two patents based on micro-
electronic devices which are the precursors for modern bifacial solar cells [5​
–7]. These solar cells were based on both the npp+ and the pnp structures. 
The development in bifacial solar cell research increased resulting in three 
important theses authored by Andrés Cuevas (1980), Javier Eguren (1981), 
and Jesús Sangrador (1982). For the first time in 1976, Cuevas fabricated 
Luque’s patented bifacial solar cell having an npn architecture [8]. Eguren’s 
thesis demonstrated npp+ architecture, which is now commonly known 
as back surface field [9]. Sangrador’s thesis proposed the so-called vertical 
multi-junction edge-illuminated solar cell in which p+nn+ were stacked and 
connected in series and illuminated at their edges, and these being high-
voltage cells required no surface metal grid to extract the current [10].

The concept of bifaciality became very popular after that as the demand 
for generating more and more energy through renewable energy increased. 
More research was focused on cost-effective solutions, and their use in 
several niche applications, such as noise barriers, parking shades, and 
fences increased during the 1990s and early 2000s. Bifacial PV technol-
ogy caught the global market momentum in 2010 when solar PV manu-
facturers like Sanyo and Yingli Solar started commercializing bifacial 
modules using state-of-the-art PV technologies like Passivated Emitter and 
Rear Contact (PERC), Passivated Emitter with Rear Locally Diffused Cells 
(PERL), Passivated Emitter Rear Totally diffused (PERT), Interdigitated 
Back Contact (IBC), and heterojunction technology (HJT). Many large 
bifacial solar PV power plants have been installed throughout the globe, 
which demonstrated a gain of around 20% compared to mono-facial SPV 
plants [11]. As per the International Technology Roadmap for Photovoltaic 
(ITRPV), the market share of bifacial PV modules will increase to more 
than 35% by 2028 [12]. The introduction of the bifacial PV workshop “bifi-
PV-workshop” [13] in 2012 brought together R&D, industry, and investors 
under one roof and enabled them to work together in making the bifacial 
PV technology bankable. Most remarkable results were demonstrated with 
n-PERT bifacial PV technologies, but the introduction of PERC+ revolu-
tionized the PV module market and enabled the widespread availability of 
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bifacial PV modules with prices at par with its mono-facial counterpart. 
The reason behind the acceptance of PERC+ modules by the manufactur-
ers is that the production process flow is almost the same except for the 
rear metallization pattern compared to the PERC modules. The n-PERT 
and TOPCon technologies having a higher bifaciality factor will dominate 
the PV market in the near future as PERC technology is approaching its 
efficiency limits and more and more PERC Tier1 producers are also activat-
ing their n-type road maps, including Jinko, Canadian, and JA Solar [14]. 
With the introduction of high-quality n-PERT and TOPCon technology, 
the Levelized Cost of Electricity (LCOE) can decrease even faster due to 
increased bifaciality (up to 95%) and reduced degradation (no light-induced 
degradation (LID) and lower light and elevated temperature-induced deg-
radation (LeTID)). Further, they inherit some unique features like lower 
temperature coefficients and better low-light performance.

Bifacial PV modules are built with either frame or frameless configura-
tions as most of the modules consist of a double glass architecture. The junc-
tion boxes are kept shallow in size to avoid any possibility of shadows at 
the rear side of the module. As bifacial PV modules absorb light from both 
front and rear, the current produced is higher compared to the mono-facial 
modules, in which the number of busbars is increased and cut cell technol-
ogy is incorporated to reduce resistive power losses in the connecting rib-
bons. Another important development in the bifacial module technology is 
the filling up of inter-cell space with white reflectors replicating the mono-
facial PV module conditions where the reflected radiation is being used by 
the cells again. In the case of bifacial PV modules, it is circumstantial that 
the presence of the white reflectors in between the cell gap will enhance the 
power compared to the condition when the lights are being allowed to pass 
through and get reflected from the rear surface in the form of albedo.

Figure 4.4 shows various possible configurations in which the bifacial PV 
modules can be installed. The maximum bifacial gain in terms of energy 
can be obtained from the conventional fixed tilt configuration shown in 
Figure 4.4 with optimized height and spacing between the panels. The 
horizontal installations as shown in Figure 4.4 can be used in car parking 
and other applications where PV modules are used for shading purposes. 
The vertical configuration shown in Figure 4.4 is used for fencing, sound 
barrier, etc. The least LCOE can be achieved with the single-axis tracking 

Figure 4.4  �Possible installation configuration for bifacial modules.
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system as shown in Figure 4.4 as they not only can generate the highest 
amount of energy but also can demand periodic maintenance.

The energy generation from the bifacial PV modules depends on the rear 
side irradiation which ultimately depends on the following factors:

•	 Albedo of the ground surface,
•	 Mounting height of the modules above the ground,
•	 Spacing between the rows,
•	 The ratio between diffuse horizontal irradiance (DHI) and global 

horizontal irradiance (GHI).

The higher precision of the energy generation estimation can be done if all 
the dependent parameters are known with higher accuracy. Proper energy 
estimation will play a key role in making bifacial PV technology bankable.

4.3 � APPLICATIONS

The bifacial PV modules system can be used for various terrestrial 
applications:

4.3.1 � Solar power plants

As lower LCOE is preferred by the PV market, the utilization of sunlight 
from both sides is enabled by the use of bifacial PV modules. The energy 
generation from the bifacial solar photovoltaic (SPV) power plant is quite 
different from the mono-facial one and depends on the installation con-
figuration as shown in Figure 4.4. For utility-grade applications, maximum 
possible energy generation and minimum LCOE are the key requirements. 
To achieve these, the site survey is done properly and precise information 
regarding the parameters required for the energy generation is collected. 
It is observed that the fixed tilt configuration with optimized parameters 
enhancing the rear irradiation generates the highest energy in the non-track-
ing configuration. If financial support is available then minimum LCOE is 
achieved by a single-axis tracking system which then again demands peri-
odic maintenance.

4.3.2 � Agro-photovoltaic/agrivoltaic

Agrivoltaic and multiple uses of land is a hot topic of discussion nowadays. 
The definition of agrivoltaic is the simultaneous use of land for the produc-
tion of electricity through photovoltaic modules and agricultural produc-
tion. In this direction, Next2sun in collaboration with TOTAL in France 
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has developed a very innovative technology using vertical mounting sys-
tems [15] on dual-use land. Apart from conventional silicon-based solar cell 
technology, semitransparent photovoltaics were also used for agrivoltaic, 
either with spectral semitransparency with selective use of wavelengths [16] 
or with regional semitransparency by splitting the portion of the received 
solar rays between the PV panel and the crop below [17]. Figure 4.5 shows 
the vertical installations of bifacial PV modules at the National Institute of 
Solar Energy (NISE), Gurgaon, India.

4.3.3 � Buildings integrated with bifacial PV

Bifacial PV technology is also employed in Building-Integrated Photovoltaics 
(BIPV) [18], such as vertical facade integration [19] and shades [20]. There 
are many advantages to this application. Firstly, they not only generate elec-
tricity but also function as conventional building materials. In addition, 
they are less exposed to soiling losses, and therefore, huge cleaning costs 
can be reduced. Moreover, the orientation effect is not as important as in 
conventional mono-facial PV modules, which implies that they can face any 
orientation, including east and west. It can also serve as thermal insulation 
and a noise barrier to the building.

Figure 4.5  �Vertically installed bifacial PV power plant at NISE.
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4.3.4 � Noise barriers

With the increasing population, the land cost is also increasing in the cities, 
which puts an economic barrier to solar PV installations in urban areas. In 
such conditions, the bifacial PV modules can be installed as noise barriers 
along highway and railway tracks and have a huge potential for cost-effec-
tive renewable energy generation. In 1997, the first bifacial PV noise bar-
riers were installed and put into use in Switzerland [21]. Nowadays, noise 
barriers with bigger capacities are being built, for example, 730 kWp was 
installed in Italy in 2009, and a series of bifacial PV noise barriers ranging 
from 1 MWp to 2.065 MWp were installed in Germany [22].

However, the use of bifacial photovoltaic modules as a noise barrier 
requires an increase in the thickness of the module to be able to absorb 
noise and withstand any stones from the vehicle’s movement. These can 
also cast a shadow on the rear side of the bifacial module which may reduce 
the energy yield [23]. Two solutions can be considered to reduce the losses 
due to shading, firstly placing the bifacial module cells away from the mod-
ule frame and secondly increasing the number of bypass diodes [22].

4.3.5 � Floating bifacial PV power plants

Floating bifacial photovoltaic solar power is a conception in which a solar 
photovoltaic system is installed directly on a body of water (Figure 4.6), 
rather than on the ground or the roofs of buildings [24].

This type of installation is generally composed of a floating platform 
to keep the photovoltaic system above the water and a mooring system to 
keep the panels in the same position and prevent them from rotating or 
drifting away [25]. Additionally, for this application, more robust bifacial 
PV modules, such as those with polymers, are required to tolerate salty 
environments. The cables and connectors to extract the electricity from the 
solar photovoltaic installation and transport it to the shore are also to be 
adapted to the floating conditions. This means that the cables have to be 
properly coated with waterproof material because they generally have to 
pass through water to reach the land [26]. PV modules installed on water 
bodies can be very advantageous compared to PV systems installed on land 
in terms of savings in land costs, reduction of water evaporation, enhance-
ment of water quality, minimizing the effect of dust, and lowering the PV 
module temperatures due to inherited water-cooling effect [27]. The bifa-
cial floating photovoltaic system receives reflected irradiation from water. 
However, the albedo of water bodies is very low compared to the normal 
albedo of the soil [28]. A comparison between mono-facial and bifacial 
floating modeling and experimental data was performed, as mentioned in 
reference [29]. The installations had capacities of 3.84 kW for mono-facial 
and 4.14 kW for bifacial modules. The results show that the bifacial PV 
had a bifacial gain of 4.5% in Frankfurt (Germany) and 7.3% in Catania 
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Figure 4.6  �A picture of floating PV power plant.

(Italy). The data regarding floating bifacial PV are fewer and, to the best of 
the authors’ knowledge, there are not many large commercial installations 
made in the world. However, this is expected to change, as the cost of bifa-
cial PV is falling rapidly. Currently, a 2.83 MW floating solar PV farm, with 
about 6900 bifacial modules has been installed in Ratchathani, Thailand 
[30] from which an energy production of 4440 MWh is expected.

4.4 � ADVANTAGES AND DISADVANTAGES OF 
BIFACIAL SOLAR PHOTOVOLTAICS OVER 
MONO-FACIAL PHOTOVOLTAICS

4.4.1 � Advantages

	 (i)	 Enhanced power generation: As bifacial solar panels can absorb 
light from both the front and the rear sides, it produces more power 
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compared to their mono-facial counterparts and ultimately increases 
the power generation density. More power can be produced in the 
same amount of area which makes solar photovoltaic technology 
become cost economic. Some manufacturers claim that bifacial solar 
panels can generate up to 30% more energy than conventional mono-
facial solar panels. This higher efficiency translates into less space per 
watt.

	 (ii)	 Durability: As bifacial solar panels are covered with tempered glass 
from both sides, they’re often more durable. The tempered glass is 
weather resistant, UV resistant, and can withstand high temperatures 
and strong winds. As a result of this, the durability of bifacial solar 
panels increases.

	(iii)	 Aesthetically pleasing: Bifacial modules come in many designs, includ-
ing frameless. The wide variety of designs makes them usable for BIPV 
applications, which demand good aesthetics and power generation at 
the same time.

	 (iv)	 Capability to work with diffused light: The bifacial modules work 
well with diffused light also, and therefore, one doesn’t need to worry 
much about the orientation of the modules.

	 (v)	 Better reliability: As most of the bifacial modules come with a fra-
meless design, the solar cells are less likely to suffer from potential 
induced degradation (PID) as the most prominent path for the leakage 
current to flow is through the metallic frames. Furthermore, bifacial 
panels without a metal frame don’t require grounding.

	 (vi)	 Longer warranty: As bifacial PV modules are made up of high-quality 
solar cells like PERC, TOPCon, and HJT, the lifespan of these mod-
ules is generally more than 30 years as claimed by the manufacturers.

4.4.2 � Disadvantages

	 (i)	 High initial cost: The use of high-quality solar cells and the existence 
of glass on both sides increase their cost compared to its mono-facial 
counterpart. This increases the overall cost of the project.

	 (ii)	 Higher installation cost: As bifacial solar panels are heavier due to the 
presence of glass on both sides of the panel, the transportation and 
handling costs increase, which finally increase the installation costs.

	(iii)	 Higher cell temperature: The presence of glass on the back side is 
believed to trap heat which increases the cell temperature. Many stud-
ies are in progress to quantify the temperature of bifacial solar cells, 
but the presence of glass makes it difficult. Non-contact temperature 
measurements are preferred for the bifacial PV modules.
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4.5 � CURRENT BIFACIAL SOLAR CELL 
AND MODULE TECHNOLOGIES

Bifacial solar photovoltaics is an enhanced technology promising improved 
energy generation by virtue of its capability to absorb light from both sides 
in the PV module. In this chapter, the operating principles of the fundamen-
tal bifacial solar photovoltaic cell will be explained and various technologi-
cal designs will be discussed. Various PV module configurations for bifacial 
applications will also be explained.

4.5.1 � Bifacial solar cell technologies

In conventional mono-facial solar cells, light in the form of photons 
is absorbed only from the front side, whereas in bifacial solar cells, the 
photons are absorbed from both the front and rear sides. This additional 
absorption of photons from the rear side increases the EHP generation, and 
simultaneously, the power generation of the solar cell increases. Bifacial 
solar photovoltaic configurations have been under investigation since the 
1960s [1].

The enhanced power generation increases the power density of the PV 
modules compared to that of its mono-facial counterpart, and therefore, 
reduces the land requirement for generating a similar amount of energy. 
Another significant advantage of the bifacial solar cells is the reduction in 
absorption of the infrared part of the solar spectrum due to the absence 
of the full-area aluminum metallization at the rear side of the solar cells. 
However, thermal insulation on the rear side of the PV module compensates 
for this advantage where glass is present on the rear side. Another advan-
tage of bifacial configuration is the reduced recombination at the silicon-Al 
interface near the back surface field of the conventional mono-facial solar 
cells. Some of the currently used solar cell technologies in bifacial modules 
are given below:

	 i)	 PERC bifacial solar cell

Al-BSF solar cells were produced on a large scale as the solar photovoltaic 
market expanded significantly in the last decade. These solar cells have 
some drawbacks like rear side surface recombination near the silicon and 
full-area aluminum metallization, partial absorption of the infrared part 
of the solar spectrum, and the low carrier lifetime of the p-type silicon. 
Passivated Emitter Rear Contact (PERC) solar cell technology addressed 
the rear surface recombination and infrared absorption significantly by 
introducing rear side passivation and localized metal contacts at the rear 
side of the solar cell. As per the International Technology Roadmap for 
PV (ITRPV), PERC solar cells shared 50% of the worldwide PV industry 
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in 2019 and are expected to reach approximately 80% within the coming 
years [31].

PERC technology is already reaching its theoretical efficiency limit of 
22.5 %, and in this scenario, to enhance the power output, bifacial PERC 
solar cells have been introduced and are also popularly known as PERC+ 
[32]. The manufacturing process also doesn’t need much change as can be 
seen in Figure 4.7. The structure of the bifacial PERC (PERC+) is shown in 
Figure 4.7. It is very much similar to the PERC solar cell structure which has 
p-type silicon as the base wafer, N+ doped emitter at the front and above 
that, a layer of SiNx is present as a passivation cum anti-reflection coating 
(ARC) layer, and finally, the metal fingers are present on the front side for 
the collection of generated electrons. On the rear side, a stacked layer of 
SiNx and AlOx is present for passivation through which metal contacts are 
laser grooved. The difference between mono-facial and bifacial PERC is 
that the full-area rear Al screen-print in mono-facial PERC is replaced with 
an Al finger grid screen design in bifacial PERC. The Al metal fingers with 
a pitch identical to the local laser grooved opening pitch must be aligned 
to ensure the overlap of Al fingers and laser contact opening introduced 
through the rear passivation stack of AlOx/SiNy [33]. Finally, the local 
Al-BSF is formed during the firing process, with Al in direct contact with 
the silicon wafer.

With bifacial PERC+ cells, Al paste consumption decreases up to 0.2 g 
per wafer [34]. Optimization of the rear stacking layer consisting of AlOx/
SiNy is very critical from both the passivation and anti-reflection points of 
view. Also, the design of the rear metal grid has to be such that minimum 
series resistance loss is incurred.

At present, bifacial p-type Czochralski-grown PERC+ are produced with 
an average efficiency above 21.5%, whereas Trina Solar has announced a 

Figure 4.7  �Bifacial PERC solar cell.
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certified efficiency of 23.39% for a 252 cm2 PERC+ cell with nine-busbar 
technology using standard manufacturing equipment [35]. At the module 
level, SolarWorld initiated the mass production of PERC+ glass/glass bifa-
cial modules in 2015. Since then, various companies, such as Neo Solar 
Power Energy Corporation, Trina Solar, and LONGi Solar, have followed 
Solar World’s technology route to offer commercial PERC+ PV modules.

In the near future, the integration of the Tunnel Oxide Passivated Contact 
(TOPCon) technology with the PERC+ architecture is expected in which 
the passivating contact can be created with a thin interfacial oxide and a 
highly doped polysilicon layer on the top. TOPCon solar cells are expected 
to dominate the PV industry after the era of PERC solar cells. There are 
various limitations in today’s p-type wafers, which are creating barriers 
to efficiency enhancement. One of the most significant issues with p-type 
wafers is their low bulk carrier lifetime, which plays a dominant role in the 
performance of the solar cell. Another prominent issue is the light-induced 
degradation caused by boron-oxygen complexes. P-type wafers are also 
highly sensitive toward metal impurities.

	 ii)	 n-PERT bifacial solar cell

The limitations of p-type wafer-based solar cells are driving the PV indus-
try’s attention toward high-efficiency n-type solar cells, including n-PERT 
solar cells due to their high bulk carrier lifetime and potential of bifaciality 
factor of up to 95% [36].

Figure 4.8 shows the architecture of n-PERT bifacial solar cell structure 
which typically consist of n-type base wafer and P+ boron doped emitter 
at the front side which is also passivated mostly with SiO2/SiNx stacking 

Figure 4.8  �N-PERT bifacial solar cell.
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layer. An N+ phosphorous-doped back surface field cell (BSF) covers the 
rear side completely and is passivated by a SiNx dielectric layer. The basic 
difference between PERC+ and PERT solar cells is that the rear BSF is pres-
ent locally in the case of PERC+ while the BSF covers the complete rear side 
which eliminates the requirement of laser grooving and therefore decreases 
the series resistance loss significantly. The concept of n-PERT solar cells 
was first developed in 2002 at the University of New South Wales [37]. 
Interuniversity Microelectronics Centre (IMEC), in collaboration with 
Jolywood, recently reported a 23.2% efficient fully screen-printed bifacial 
n-PERT cell, which has a bifaciality coefficient above 80%.

	 iii)	 Heterojunction bifacial solar cell

Figure 4.9 presents a typical bifacial heterojunction (HJT) solar cell hav-
ing n-type monocrystalline silicon as the base absorber material. On both 
sides of the absorber, a thin (∼5 nm) intrinsic amorphous silicon [a-Si:H(i)] 
is deposited with plasma-enhanced chemical vapor deposition (PECVD). 
This layer provides high-quality passivation and obstructs surface recom-
bination at the edges of the base absorber. This significantly enhances the 
effective lifetime of the solar cell. Now, the n- and p-type doped a-Si:H lay-
ers are applied to opposite sides of the wafer, respectively, to form electrical 

Figure 4.9  �Bifacial HJT solar cell.
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contacts to the electrons and holes in the wafer. This in-situ doped a-Si:H 
layer facilitates efficient carrier selectivity. To enhance lateral transport 
of the collected carriers toward the metallic grids, transparent conductive 
oxides are sputtered on top of the doped a-Si:H layers on both sides of the 
wafer. In HJT solar cell technology, the efficiency is significantly enhanced 
by virtue of both surface passivation and carrier selectivity.

The HJT solar cells possess high Voc (typically around 750 mV) owing to 
high-quality chemical passivation by the a-Si:H(i) layer. Efficiencies greater 
than 25% have already been demonstrated for large-area HJT in integra-
tion Interdigitated Back Contact (IBC) technology [38]. Bifacial HJT solar 
cells offer significant benefits of low-temperature coefficient, compatibility 
with thin wafers, and most importantly, high bifaciality factor (typically > 
90%). In terms of limitations, bifacial HJT suffers from parasitic absorp-
tion losses in TCO and a-Si:H layer, which creates a trade-off between the 
Jsc and Voc [39].

	 iv)	 Bifacial perovskite‑heterojunction silicon tandem solar cells

The highest efficiency achieved in a single-junction silicon solar cell is 
26.7% with the integration of IBC and HJT concepts by Kaneka in Japan 
[40]. Still, the efficiency remains lower than the theoretical efficiency limit 
of 29.43% due to thermalization and transmission losses happening in sin-
gle-junction solar cells [41]. To overcome these major drawbacks, tandem 
solar cells came into existence. These have multi-junction configurations 
with various optical band gaps to harvest the entire solar spectrum range. 
Recently, four-terminal perovskite‑heterojunction silicon tandem solar cells 
with spectral albedo have been reported with an efficiency of around 30% 
[42]. Figure 4.10 shows the structure of bifacial perovskite‑heterojunction 
silicon tandem solar cells.

Figure 4.10  �Bifacial perovskite‑heterojunction silicon tandem solar cells.
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4.5.2 � Bifacial solar module technologies

Bifacial PV modules have either glass or transparent polymer back sheet 
at the rear side to enable the absorption of light from the rear side of the 
PV modules. The most common practice is to use glass at the rear side of 
bifacial modules, which is supported by the aluminum frames, but in some 
cases, these bifacial PV modules can be made frameless by increasing the 
rigidity of the adhesion between the glass-glass architecture.

The frameless PV modules enjoy the advantage of high insulation resis-
tance, which enhances their reliability against PID when used for high-
voltage power generation. This also reduces the weight of the PV modules, 
which eases the transport and installation of PV modules. Figure 4.11 

Figure 4.11  �Frameless bifacial PV modules.
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shows a frameless bifacial PV module. Another advancement in the bifa-
cial PV module technology which is penetrating the market significantly is 
the flexible module technology. This Light-Flexible High-Efficiency Module 
uses advanced composite encapsulation materials that are a perfect match 
for curved modules weighing 70% less than the products of its kind. Since 
they are light and flexible, they can be used in a variety of locations, such 
as a rooftop with low load-bearing capacity or the exterior of a building. 
Additionally, it is convenient to install these modules.

4.6 � PERFORMANCE MEASUREMENT 
OF THE BIFACIAL MODULE

4.6.1 � Performance measurement of the 
bifacial module in indoor conditions

Specific measurement procedures are demonstrated in IEC TS 60904-1-2 to 
characterize the power of bifacial PV modules that are capable of generat-
ing power from both the front and rear surfaces. The characterization of 
the bifacial PV modules includes three important steps:

	 a)	 Measurement of bifaciality factor at standard test conditions (STC).
	 b)	 Determination of rear-irradiance-driven power gain yield, BiFi.
	 c)	 Output power determination at 10% and 20% rear irradiance with 

respect to the front.

The performance measurement of the bifacial module in indoor conditions 
can be measured in two different ways as per IEC 60904-1-2 [43].

	 i)	 Solar simulator with adjustable irradiance levels for single-side 
illumination.

Solar simulators used for measuring bifacial PV modules are capable of 
providing irradiance levels of typically more than or equal to 1200 W/m2. 
The simulator’s non-uniformity of irradiance could be below 2% and could 
remain below this value at irradiance levels used for the characterization of 
bifacial devices.

	 a)	 Bifaciality factors measurement at STC.

Measurement of the front side is taken at STC following the conditions 
defined in IEC 60904-7 [44] while blocking the rear side of the module with 
black cloth/ paper so that the light incident on the rear side is less than 3 
W/m2. Similarly, the measurement at STC is taken from the rear side while 
covering the front side. This way, all the electrical parameters are obtained 
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from the front and rear sides individually at STC. Now the ratio of three 
crucial parameters is considered for bifaciality factor calculations:

φPmax = Ratio of rear to front side maximum power (Pmax),
φVOC = Ratio of rear to front side open-circuit voltage (Voc),
φIsc = Ratio of rear to front side short circuit current (φIsc).

The least value among the above three parameters is considered to be the 
bifaciality factor, φ . Values of φ typically range from 75% to 95% for 
n-PERT bifacial modules, from 60% to 70% for p-type PERC bifacial mod-
ules, and >90% for HJT bifacial modules.

	 b)	 Determination of rear irradiance-driven power gain yield, BiFi.

The power output of the bifacial module is determined by exposing the 
front side of the bifacial PV module at Gf =1000 W/m2 and various rear side 
irradiance  Gr, especially at different lower irradiance levels.

Gr = From 0 to 100 W/m2, from 100 to 200 W/m2, more than 200 W/m2

For solar simulators having only one light source, power output can be 
calculated using the equivalent irradiance GE method described by the 
equation:

GE = 1000 W/m2 + φ ∗  Gr

Now, the Pmax vs.  Gr is plotted for different rear irradiance and the 
slope calculated is defined as Xi

	 c)	 Output power determination at 10% and 20% rear irradiance with 
respect to the front.

Now the calculated Xi is used to determine the performance of the PV mod-
ule for two rear irradiance levels i.e., 10% and 20%:

Pmax Xi 100 = Pmax, STC + Xi ∗ 100 W/m2

Pmax Xi 200 = Pmax, STC + Xi ∗ 200 W/m2

	 ii)	 Solar simulator with adjustable irradiance levels for double-side 
illumination.
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A solar simulator, as defined in IEC 60904-9 [45], with the additional capa-
bility to simultaneously illuminate the bifacial device on both sides could be 
used. Such simulators were able to provide irradiance at different levels on 
both sides. The non-uniformity of irradiance was below 2 % on both sides, 
at the irradiance levels used for the characterization of bifacial devices. For 
simulators having two light sources with adjustable irradiance levels, the 
front side can be illuminated with Gf = 1000 W/m² and the rear side with 
at least two irradiance levels (100 W/m2 and 200 W/m2). The nameplate 
power output may be defined at STC on both the front and rear sides indi-
vidually and at 1000 W/m2 on the front side and 100 W/m2 and 200 W/m2 
on the rear side.

4.6.2 � Performance measurement of the 
bifacial module in outdoor conditions

The performance measurement of the bifacial module can also be done in 
outdoor conditions using an I-V tracer. In addition to the measuring equip-
ment as per IEC 60904-1, at least two additional PV reference devices, as 
described in IEC 60904-2, are required to measure the irradiance level on 
the rear side and the rear side irradiance non-uniformity. Their spectral 
responsivity should be as close as possible to the PV module under test. It 
should be ensured that the non-uniformity of irradiance on the rear side 
must be below 10% during outdoor measurement under natural sunlight. 
To determine the non-uniformity, at least five reference devices shall be 
placed across the rear side of the PV module as shown in Figure 4.12 and 
their mean value should be considered. At present, there is no standard 
procedure to translate the I-V data of the bifacial module to STC. However, 
the translation can be done using the procedure defined in IEC 60891. The 
module temperature in the outdoor condition should be measured using 
either a non-contact temperature sensor or the Voc data. Research is still 
required to establish the procedure for estimating the bifacial module tem-
perature and the translation of I-V.

4.6.3 � Bifacial PV module nameplate rating

As of now, there is no clarity on the nameplate rating of the bifacial PV 
modules. Some of the manufacturers use conventional front STC results, 
whereas some manufacturers add some power based on the assumed contri-
bution from the rear. Technischer Überwachungsverein (TÜV) Rheinland 
has proposed specific bifacial standard test conditions of 1000 W/m² for 
front side irradiance and 135 W/m² for rear side irradiance [44]. The defini-
tion of rear side irradiance is as follows:

•	 Albedo factor: 0.21 (light soil)
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•	 Clearance height: 1 m
•	 Inclination angle: 37°
•	 Front side irradiance:1000 W/m2

Figure 4.12  �Position of irradiance measurement device to check the non-uniformity.
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The nominal output power at BSTC of the bifacial module is then measured 
with an equivalent irradiance of GE = 1000 W/m² + φ * 135 W/m2.

As per IEC 60904-1-2, the nameplate rating of bifacial module can be 
given as follows:

Bifaciality 
coefficient

Front side 
irradiance 
(W/m2)

Rear side 
irradiance 
(W/m2)

Equivalent 
irradiance 
(W/m2)

Pmax 
(W)

BiFi , ref 
(W/W/

m2) Pmax Bifi-DUT

X 1000 0 1000 P1 Z1
100 P2 Z2
200 P3 Z3

Based on the reflecting surface used in the field, the bifacial PV power plant 
size should be calculated for estimating the energy output.

4.7 � PERFORMANCE AND RELIABILITY 
TESTING OF THE BIFACIAL MODULE

The performance and reliability of PV modules can be measured in indoor 
and outdoor conditions. For the indoor reliability testing of PV modules, 
people use IEC 61215 standards for design and qualification checking and 
IEC 61730 for safety testing.

4.7.1 � Testing procedure as per IEC 61215: 2021 [46]

	 i)	 Visual inspection (Module Quality Test (MQT) 1): The visual defects 
of PV modules can be inspected under the illumination of 1000 lux. 
For qualifying the visual inspection test as per IEC 61215, the follow-
ing visual defects should not be observed during the inspection:
a) � Broken, cracked, or torn external surfaces, including superstrates, 

substrates, frames, and junction boxes;
b) � Bent or misaligned external surfaces, including superstrates, sub-

strates, frames, and junction boxes;
c) � A crack in a cell, the propagation of which could remove more 

than 10% of that cell’s area from the electrical circuit of the 
module;

d) � Bubbles or delaminations forming a continuous path between any 
part of the electrical circuit and the edge of the module;

e) � Loss of mechanical integrity, to the extent that the installation 
and/or operation of the module would be impaired.

	 ii)	 Maximum power determination (MQT 2): The purpose of this test 
is to measure the performance of the module at the maximum power 
point. The following apparatuses are required for this test:
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a) � Either natural light source or radiant light source as per IEC 
60904-9.

b) � I-V tracing unit as per IEC 60904-1 for measuring current-voltage 
characteristics.

c) � A PV reference device for measuring the in-plane irradiance.
d) � Module temperature sensor.

For measuring the performance, the spectral response of the PV refer-
ence device, test sample as per IEC 60904-8, and spectrum of the light are 
required to estimate the mismatch factor as per IEC 60904-7. The MMF 
should be included while measuring the in-plane irradiance. The maximum 
power determination should be done at a temperature between 20 °C and 
50 °C and an irradiance between 700 W/m2 and 1100 W/m2. The standard 
does not mention about the measurement of the bifacial module with both 
sides exposed simultaneously. However, one can measure it by covering the 
other side.

	 iii)	 Insulation test (MQT 3): This test is used to check the resistance 
between the solar cell and the module frame. The test procedure for 
the bifacial module is the same as a mono-facial module. The system 
voltage should be applied for 2 minutes to measure the resistance of 
the PV module. The passing criteria of insulation resistance will be 40 
MΩ m2.

	 iv)	 Measurement of temperature coefficients (MQT 4): The purpose of 
this is to measure the effect of temperature on the short circuit cur-
rent, open-circuit voltage, and maximum power at 1000 W/m2. For 
measuring the temperature coefficient, a procedure as per IEC 60891 
can be used. The short circuit current, open-circuit voltage, and power 
should be plotted against the temperature, and the linear coefficient 
should be estimated. From the slope of the linear plot, the temperature 
coefficient can be estimated using the electrical parameter at STC.

	 v)	 Performance of bifacial module at STC (MQT 6.1) and low irradiance 
condition (MQT 7): The performance of the bifacial module at STC 
should be measured using the procedure mentioned in IEC TS 60904-
1-2. For the measurement at STC, in the bifacial module, 1000 W/m2 
on the front side and 100 W/m2 and 200 W/m2 on the rear side were 
used for estimating the performance. The performance of the bifacial 
module was measured at a low irradiance of 200 W/m2 and 25 °C using 
the procedure as mentioned in IEC TS 60904-1-2. The procedure for 
measuring the performance at low irradiance conditions is the same as 
STC; however, the irradiance is 200 W/m2 instead of 1000 W/m2.

	 vi)	 Outdoor exposure test (MQT 8): The main purpose of this study is to 
assess the ability of the module to withstand exposure to outdoor con-
ditions. The bifacial module should be installed at a latitude of ±5°. A 
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suitable fixed resistive load or MPPT load can be used to operate near 
the maximum point. A uniform reflective surface may be used for this 
test. The in-plane irradiance should be measured on the front side, 
and the test should be done for a total exposure of 60 kWh/m2.

	 vii)	 Hot spot endurance test (MQT 9): The main purpose of this test is 
to check the ability of the module to withstand reverse bias hot spot 
heating effects. The procedure for mono-facial and bifacial modules 
is the same. For bifacial module hot spot testing, light source as per 
IEC 60904-1-2 should be used and the backside should be covered if 
single-side illumination is used.

	viii)	 UV preconditioning test (MQT 10): The purpose of this test is to 
check the susceptibility of the PV module to UV light degradation. 
The procedure for a mono-facial and bifacial module is the same. The 
total UV dose should be an irradiation of at least 15 kWh/m2 at 60 ± 
5°C. For bifacial modules, the rear side also should be exposed to UV 
light.

	 ix)	 Thermal cycling test (MQT 11): The main purpose of this test is to 
check the withstanding capability of the PV module with repeated 
changes in temperature. The module needs to be installed in a climatic 
chamber with a 5 N weight and the temperature stress should range 
from −40 °C to 85 °C. For one test sequence, the number of cycles is 
50 and for other test sequences it is 200. The applied current needs to 
be estimated for the bifacial C-Si module as per IEC 61215-1-1: 2021.

	 x)	 Humidity freeze test (MQT 12): The main purpose of this test is to 
check the withstanding capability of the PV module at high tem-
perature and humidity followed by subzero temperature. The mod-
ule needs to be installed in a climatic chamber and temperature and 
humidity stress from 85 °C, 85% RH to −40 °C should be applied 
with no humidity control. Totally, ten cycles of stress need to be given 
over the module to check the capability. The applied current should be 
50% of the current estimated for the bifacial C-Si module as per IEC 
61215-1-1: 2021 for the thermal cycling test.

	 xi)	 Damp heat test (MQT 13): The main purpose of this test is to check 
the capability of the PV module to withstand long-term exposure to 
humidity. The module needs to be installed in a climatic chamber 
and the temperature and humidity stress should be set at 85 °C, 85% 
RH for 1000 cycles. The module should be short-circuited during the 
stress.

	xii)	 Robustness of terminations (MQT 14): The main purpose of this test 
is to check the withstanding capability of terminations during normal 
assembly or handling operations. There are two types of robustness 
of terminations test: retention of the junction box on the mounting 
surface and cord anchorage test. The test procedure for the bifacial 
module is the same as the mono-facial module.
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	xiii)	 Wet leakage current test (MQT 15): The purpose of this test is to 
evaluate the insulation resistance of the solar cell and the frame of the 
PV module during wet conditions. Usually, system voltage is applied 
for 2 minutes in the module with the shorted positive and negative 
terminal and the module frame. The test procedure for bifacial will be 
the same as that for mono-facial module. Water needs to be sprayed 
properly on the rear surface of the module also. The passing criteria 
for large-size modules is that the insulation resistance should be more 
than 40 MΩ.m2.

	xiv)	 Static mechanical load test (MQT 16): The purpose of this test is to 
evaluate the ability to withstand a static mechanical load. The test 
load should be equal to the design load multiplied by the safety factor. 
The test load should be maintained consecutively on each side of the 
module for 1 hour and the cycles should be repeated three times.

	 xv)	 Hail test (MQT 17): The purpose of this is to evaluate the hail impact 
withstanding capability of PV modules. Ice balls of the size mentioned 
in the IEC 61215 are used. They are thrown over the different regions 
of the PV module at a specified speed. After the impact, the power 
degradation and cracks need to be checked in the module.

	xvi)	 Bypass diode test (MQT 18): There are two types of bypass diode 
tests: bypass diode thermal test and bypass diode functionality test. 
The purpose of the thermal test is to check the adequacy and reli-
ability of the diode to reduce the damage caused due to hot spots. A 
current of 1.25 times the short circuit current should be applied with 
a pulse of less than 1 ms. For bifacial modules, the applied current 
should be 1.25 times the short circuit current including the rear side 
irradiance as defined in IEC 61215-1. The purpose of the bypass diode 
functionality test is to check the functionality of the diode after giving 
stress over the module. For this purpose, the I-V tracer is used to mea-
sure the current-voltage characteristics of the PV module at different 
conditions as mentioned in IEC 61215-2.

	xvii)	 Stabilization test (MQT 19): The purpose of this test is to stabilize 
the PV module electrically. The performance of the module needs to 
be measured repeatedly after exposing the module with different pro-
cedures as mentioned in IEC 61215-2. The stabilization of the PV 
module is technology specific and defined as follows:

	
Maximumpower Minimumpower

Average power
z

�
�

	

where z is the technology-specific value.
The light-induced degradation can be performed in both indoor and out-

door conditions. The module should be in the MPPT conditions during the 
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stabilization procedure. The initial stabilization should be done to verify 
the nameplate of the PV module after repetitive exposure to light. There 
are two passing criteria defined in IEC 61215-1 (gate 1 and gate 2). Gate 1 
is for initial stabilization and gate 2 is for estimating the module degrada-
tion. There is another stabilization procedure to put the defects causing the 
boron-oxygen LID into the regenerate state.

	xviii)	Cyclic (dynamic) mechanical load test (MQT 20): The purpose of this 
is to check the withstanding capability of PV module components in 
the dynamic mechanical load. It is required to check the integrity of 
the module components after giving stress. The test procedure is the 
same for both the mono-facial and bifacial modules.

	xix)	 Potential induced degradation test (MQT 21): The purpose of this test 
is to check the withstanding design capability of the PV module at sys-
tem voltage under high humidity and high temperature. The module 
needs to be put in a climatic chamber and the system voltage defined 
by the module manufacturer should be applied at 85 oC temperature 
and 85% relative humidity. Stress is applied for 96 hours. The test 
procedure is the same for both the mono-facial and bifacial modules.

	xx)	 Bending test (MQT 22): The purpose of this is to check the bending 
capability of the flexible module as specified by the manufacturer. The 
module needs to roll from a flat position to the specified radius of 
curvature of a cylinder. There should not be any crack in the module 
during visual inspection, and the module should qualify for the wet 
leakage test.

4.7.2 � Testing procedure as per IEC 
61730 standards [47]

At present, for the bifacial module, there is no IEC standard available for 
safety testing. So, the IEC 61730:2016 is modified in light of the IEC 61215: 
2021 for bifacial module testing and the details are given below:

	 i)	 Visual inspection (Module Safety Test (MST) 01): As per IEC 61730, 
visual inspection needs to be done as per IEC 61215-2, and other 
safety aspects should be carried out as per MST 01 of IEC 61730-2. 
The inspection criteria are the same for both mono-facial and bifacial 
modules.

	 ii)	 Performance at STC (MST 02): The purpose of this test is to verify 
Isc and Voc of PV modules after stabilization as per IEC 61215 with 
respect to the nameplate value declared by the manufacturer. The 
passing criterion was Isc and Voc within tolerances declared by the 
manufacturer after stabilization.
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	 iii)	 Maximum power determination (MST 03): The purpose of this test 
is to verify the electrical characteristics as per MQT 02 of IEC 61215-
2. There should not be any abnormal behavior in the I-V curve with 
respect to the initial I-V curve as per MST 02.

	 iv)	 Insulation thickness test (MST 04): The purpose of this test is to ver-
ify the insulation thickness of the PV module as per different classes 
of PV modules specified in IEC 61730-1. The thickness needs to be 
checked for both sides of bifacial PV modules.

	 v)	 Durability of markings (MST 05): The purpose of this test is to check 
the durability of markings in the PV modules. The inspection is done 
by rubbing the hand with a piece of cloth soaked with water and 
petroleum spirits.

	 vi)	 Sharp edge test (MST 06): The purpose of this test is to check the 
sharp edges and burs in the PV module, which may damage the con-
ductors and injure the user. This test should be done during inspection 
only.

	 vii)	 Bypass diode functionality test (MST 07): The bypass diode function-
ality test for bifacial PV modules needs to be done as per MQT 18.2 
of IEC 61215 as mentioned earlier.

	viii)	 Accessibility test (MST 11): The purpose of this test is to check the 
protection against access to the hazardous live parts in the PV module. 
The test fixture should be as per IEC 61032. The resistance between 
the live part and the test fixture should not be less than 1 MΩ.

	 ix)	 Cut susceptibility test (MST 12): The purpose of this test is to check 
the withstanding capability of polymeric materials used in the PV 
module during handling PV module installation and maintenance to 
avoid electric shock. However, for a glass-to-glass bifacial module, 
this test is not applicable.

	 x)	 Continuity test of equipotential bonding (MST 13): The main pur-
pose of this test is to check the resistivity of accessible conductive 
parts like the metallic frame in PV modules. The resistance between 
conductive components should be less than 0.1 Ω.

	 xi)	 Impulse voltage test (MST 14): The main purpose of this is to check 
the high-voltage insulation withstanding capability of the PV module. 
The module needs to be covered with conductive metallic foil with the 
best possible contact. The negative terminal of the impulse voltage 
generator should be connected to the foil and the positive terminal 
should be connected to shorted output terminals of the PV module. 
The surge impulse voltage should be applied as per IEC 60060-1. 
There should not be any visual defects, dielectric breakdown, and 
failure in the insulation test after applying surge impulse voltage to 
qualify the test.

	xii)	 Insulation test (MST 16): The purpose of this test is to check the insu-
lation between the conductive component of the PV module and the 
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frame. The applied voltage should be as per IEC 61730 for differ-
ent classes of PV modules. The voltage should be applied between 
the shorted output terminal and the frame. The insulation resistance 
should be more than 40 MΩ.m2.

	xiii)	 Wet leakage current test (MST 17): The purpose of this test is to check 
the insulation resistance between the conductive component and the 
frame during wet conditions. The voltage should be applied between 
the shorted output terminal and frame as per IEC 61730-1 for differ-
ent classes of PV modules. The insulation resistance during the wet 
leakage test should be more than 40 MΩ.m2.

	xiv)	 Temperature test (MST 21): The purpose of this test is to estimate the 
maximum reference temperature for different components of the PV 
module during its operation. There are two types of methods to do 
this test: the outdoor method and the indoor method. In the outdoor 
method, the following parameters should be measured during the test: 
temperature of PV components, ambient temperature, in-plane irradi-
ance, and wind speed. The environmental conditions during the test 
should be ambient temperature ranging from 20 °C to 45 °C and irra-
diance ranging from 700 W/m2 to 1000 W/m2. In indoor conditions, 
the intensity during the test should be 1000 W/m2

.

	 xv)	 Hot spot endurance test (MST 22): The purpose of this test is to check 
the ability of the module to withstand reverse bias hot spot heating 
effects. The test is the same as mentioned earlier for the hot-spot 
endurance test as per IEC 61215.

	xvi)	 Fire test (MST 23): The purpose of this test is to check the fire resis-
tance properties of PV modules to fire originating from an outside 
source. The fire testing of the PV module can be done using ENV 1187 
and ANSI/UL 1703.

	xvii)	 Ignitability test (MST 24): The purpose of this test is to check the 
ignitability of PV modules using a direct flame. For this test, the stan-
dard ISO 11925-2 is used. The testing should be done at an environ-
mental temperature of 23 ± 5 °C and relative humidity of 50% ± 
20%. The ignitability test should be done on the surface and edge of 
the PV module. The flame application time for this test is 15 S.

	xviii)	Bypass diode thermal test (MST 25): The purpose of this is to check 
the adequacy and reliability of the diode in reducing the damaging 
effect of hot spots. For the bifacial module, the applied current should 
be 1.25 times the short circuit current including the rear side irradi-
ance as defined in IEC 61215-1. The test procedure is the same as the 
bypass diode thermal test of IEC 61215.

	xix)	 Reverse current overload test (MST 26): The purpose of this test is 
to check the withstanding capability of the PV module at overload 
reverse current. Due to the applied reverse current in the PV module, 
the components get heated up and dissipate heat. The current should 
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be 135% of the maximum over the current rating i.e., the fuse rating 
of the PV module. The module needs to be covered with white tissue 
paper during the test, and there should not be any flaming or charring 
in the tissue after the test.

	xx)	 Module breakage test (MST 32): The purpose of this test is to check 
the risk of physical injuries if the module is broken during the instal-
lation. An impactor of weight 45.5 ± 0.5 kg is used to impact the 
module from a height of 300 mm from the surface of the PV module. 
After the stress, the module should not be separated from the frame. 
There should not be any breakage in the module, and if there is any 
breakage, then the size of the opening should not be more than 76 mm 
diameter, and the particle ejected from the module surface should be 
less than 65 cm2.

	xxi)	 Screw connections test (MST 33): There are two types of screw con-
nections test: test for general screw connections (MST 33a) and test 
for locking screws (MST 33b). The purpose of this test is to check 
the reliability of screw connections used in the PV module. In case 
of general screw connections test, the screws and nuts that are likely 
to be tightened by users should be tightened and loosened five times 
at a particular torque specified in the standard. There should not be 
any damage to the screw during the test, and the screw should still be 
usable. The purpose of locking screw testing is to check the reliability 
after applying a specified torque to the screw. The torque should be 
applied to the screw for 1 minute each both in clockwise and anti-
clockwise directions at 25 °C. The screw should not be loose after the 
test.

	xxii)	Static mechanical load test (MST 34): The purpose of this test is to 
evaluate the ability to withstand a static mechanical load. The test 
procedure is the same as the test procedure mentioned in MQT 16 in 
IEC 61215-2.

	xxiii)	Peel test (MST 35): The purpose of this test is to check the durability 
of the adhesion of different polymeric materials in the PV module. 
The test is not applicable to glass-to-glass bifacial modules. The test 
needs to be done as per ISO 5893. The polymeric material needs to be 
peeled from the module surface at 90o ± 10o at a rate of 50 mm/min ± 
5 mm/min. The test needs to be performed at different positions of the 
PV module, and the mean value of peel off force should be estimated.

	xxiv)	Lap shear strength test (MST 36): The purpose of this test is to check 
the durability of the adhesion of glass-to-glass assemblies. The test is 
mainly applicable to glass-to-glass bifacial modules. The test needs to 
be done as per ISO 4587. Glass-to-glass samples need to be prepared 
as per the design criteria of the module. Ten samples need to be tested 
before giving stress, and ten samples need to be tested after a weath-
ering test like UV exposure. The loss in the mean breaking force of 
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ten samples before applying stress to the mean breaking force of ten 
samples after weathering stress should be less than 50%.

	xxv)	 Materials creep test (MST 37): The purpose of this test is to check 
the creep or adhesion capability of PV module materials after oper-
ating at the highest temperature that a module will face in the field. 
The module needs to be installed in an environmental chamber and 
the temperature should be set at 105 °C ± 5 °C for 200 h. Depending 
on the class of the PV module, the creepage and clearance distances 
should meet the criteria as per IEC 61730-1.

	xxvi)	Robustness of terminations test (MST 42): The main purpose of this 
test is to check the withstanding capability of terminations during 
normal assembly or handling operations. The test procedure is the 
same as the MQT 14.1 and MQT 14.2 in IEC 61215-2.

	xxvii) �Thermal cycling test (MST 51): The main purpose of this test is to check 
the withstanding capability of the PV module at repeated changes in 
temperature. The test procedure is the same as the MQT 11 in IEC 
61215-2.

	xxviii) �Humidity freeze test (MST 52): The main purpose of this test is to check the 
withstanding capability of the PV module at high temperature and 
humidity followed by subzero temperature. The test procedure is the 
same as the MQT 12 in IEC 61215-2.

	xxix)	Damp heat test (MST 53): The main purpose of this test is to check 
the withstanding capability of the PV modules during long-term pen-
etration of humidity. There are two different standard durations used 
in this test: 1000 h and 200 h. The test procedure is the same as the 
MQT 13 in IEC 61215-2.

	xxx)	UV test (MST 54): The purpose of this test is to check the susceptibil-
ity of the PV module to UV light degradation. In this test, two dif-
ferent standard doses are used: 15 kWh/m2 and 60 kWh/m2. The test 
procedure is the same as the MQT 10 in IEC 61215-2.

	xxxi)	Cold conditioning (MST 55): The purpose of this test is to check the 
withstanding capability of the PV module at sub-zero temperature. A 
climatic chamber should be used, and the module should be installed in 
the chamber. The temperature of the chamber should be set at −40 °C  
for 48 h. There should not be any visual defects, and the insulation 
resistance test should be passed by withstanding the stress.

	xxxii) Dry heat conditioning (MST 56): The purpose of this test is to check the 
withstanding capability of the PV module at high temperatures. A 
climatic chamber should be used, and the module should be installed 
in the chamber. The temperature of the chamber should be set at  
105 °C ± 5 °C, which is less than 50% RH for 200 h. There should 
not be any visual defects, and the insulation resistance test should be 
passed by withstanding the stress.
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4.7.3 � Performance and reliability test of the 
bifacial module in outdoor conditions

The performance and reliability test of the bifacial PV module in outdoor 
conditions can be performed in the following configurations: single module 
exposure with MPPT load, PV modules as a PV power plant

	 i)	 Single module exposure with Maximum Power Point Tracker (MPPT) 
load

For performance and reliability analysis on a single module basis, the fol-
lowing configurations can be used to expose the PV module in the field. 
Figure 4.13 shows the configuration of single module testing in outdoor 
conditions.

The following parts are required for this configuration:

•	 Module mounting structure,
•	 Reference solar cell for irradiance measurement (in-plan and albedo),
•	 Temperature sensors for the module and ambient temperature 

measurement,
•	 Humidity sensor,
•	 Datalogger,
•	 I-V tracer,
•	 MPPT load/micro-inverter/DC-DC optimizer with a fixed load,
•	 Wind sensor.

Module needs to be connected with MPPT load. The load may be an elec-
tronic load or one can use a DC-DC optimizer with the fixed load. The mod-
ule mounting structure can be either with a fixed tilt equal to the latitude 
of the test site or with a tracking facility. The temperature sensor should 
be placed near the mounting structure in shadow conditions for measur-
ing the ambient temperature. For module temperature, it is not possible to 

Figure 4.13  �Block diagram of single module exposure for long-term testing.
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stick the temperature sensor in the backside of the bifacial module as it will 
block the radiation on the rear side. For this, one can measure and put the 
temperature sensor in the glass. There is one more procedure to estimate the 
module temperature, which is by measuring the Voc, ambient temperature, 
and in-plane irradiance and wind sensors.

The module connected to the MPPT load may be connected through a 
relay system, and this can be used to connect and disconnect the module 
from the load and I-V tracer. From the I-V data, the degradation of the PV 
module can be estimated. The details are given in the successive section.

	 ii)	 PV modules as a PV power plant

For performance and reliability analysis on power plant basis, the following 
configurations can be used to expose the PV module in the field. Figure 4.14 
shows the configuration that can be used for performing long-term testing 
of bifacial PV modules as power plant mode.

The following parts are required for this configuration:

•	 Module mounting structure,
•	 Reference solar cell for irradiance measurement (in-plan and albedo),

Figure 4.14  �Block diagram of PV module power plant for long-term testing.
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•	 Temperature sensors for the module and ambient temperature 
measurement,

•	 Humidity sensor,
•	 Datalogger,
•	 I-V tracer,
•	 Inverter,
•	 Wind sensor,
•	 Grid connection,
•	 Combiner box.

The bifacial module PV power plant needs to be installed at an optimum 
tilt angle as per the site conditions. The following equations may be used to 
estimate the optimum tilt angle [48].

βo = x × L + y

x = 0.86 − 0.57 × A × exp (−E/H)

y = 4.5 + 62 × A × exp (−E/H)

If βo ≥ 90°, βopt = 90° and if βo < 90°, βopt = βo

Where βopt is the optimal tilt angle, L is the latitude, E is the elevation, H is 
the module height, and A is the albedo.

The number of PV modules in series of the bifacial PV power plant can 
be decided based on the system voltage of the PV power plant. At least two 
strings in parallel should be used to install the PV power plant. One can 
use reflective surfaces for enhancing the albedo effect of bifacial PV module 
performance. Before installation, it is always better to measure the reflec-
tivity of the surface to be used. The irradiance-measuring sensor should be 
used to measure the in-plane irradiance and irradiance in the backside. For 
measuring the temperature, the procedure mentioned may be used.

	 iii)	 Procedure for performance degradation and reliability analysis

The following equipment are required for performance and reliability anal-
ysis in outdoor conditions:

•	 I-V tracer,
•	 Electroluminescence (EL) camera with DC power supply,
•	 Infra-red (IR) camera,
•	 Insulation tester.
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Before installation of the bifacial PV module for long-term analysis, it is 
always recommended to baseline the measurement of the module in indoor 
conditions. The I-V data of the bifacial module need to be measured at STC 
and at 10% and 20% albedo effect. However, this measurement should 
be as per the albedo effect of the reflective surface to be used in the field. 
The electroluminescence (EL) imaging of the module needs to be done 
for both sides at 0.1 Isc and Isc. The infrared thermal imaging should be 
done at MPPT condition using DC power supply. The insulation resistance 
testing and wet leakage current testing of the PV module need to be done 
before installation. If an I-V tracer is used to measure the performance of 
a PV module in the outdoor condition, then a proper translation procedure 
should be used to translate the I-V data to STC as per IEC 60891.

It will be good if the performance of the PV module measured by I-V test-
ing, electroluminescence (EL) imaging, infrared (IR) imaging, insulation 
testing and wet leakage testing can be done once every week. This will give 
proper data for measuring the degradation of the module. The continuous 
logging of other environmental parameters is required to check in a particu-
lar interval of time. In case of bifacial PV power plants, there is no standard 
procedure for estimating the performance ratio. For estimating the perfor-
mance ratio of the bifacial module, the following equation can be used:
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The PV power plant size should be based on the rating of the PV module 
given with respect to the albedo effect of the reflective surface and both the 
front side irradiance and back side irradiance should be used.

The degradation can be estimated for both sides of the bifacial module 
individually. For this, the performance of the front side should be measured 
by covering the rear side and vice versa. The following equation can be used 
to estimate the degradation rate of bifacial module:
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The bifacial PV module is a new technology that exists in the market. The 
uses of bifacial module technology are increasing day by day. However, 
there are many issues that need to be addressed through research for this 
particular technology to become even more efficient.
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Chapter 5

Performance degradation 
of photovoltaic module

Amandeep Singh Makhija and Shabbir S. Bohra

5.1 � INTRODUCTION

The development of sustainable energy has been given strong emphasis in 
UN SDG-7, and it is something that the world is getting closer to. By 2030, 
enhanced international cooperation will be achieved in order to facilitate 
public access to clean energy research and technology, including renew-
able energy, energy efficiency, and new, cleaner fossil fuels, as well as to 
encourage investment in energy infrastructure and clean energy technolo-
gies [1]. The energy demand continues to rise worldwide, and according 
to International Energy Agency’s (IEA) 2019 international energy outlook 
reference case, the world’s energy consumption would rise by about 50% 
between 2018 and 2050, with Asia seeing the biggest rise. Due to the consid-
erable downsides of conventional fossil fuels and the escalation of irrevers-
ible environmental issues, the development trend of the world’s energy has 
entered a critical transition phase. A crucial component of the development 
of energy is electricity. Hydropower, wind power, solar power, and other 
sources are all part of the typical renewable energy generation strategy. 
Among them, solar power is thought to be the most promising power gen-
eration method due to its availability, universality, reproducibility, and lack 
of pollution. The hydropower and wind power are other popular renewable 
resources at some places.

The most direct and effective way to use solar energy is through SPV 
power generation [2]. The SPV has become increasingly popular in recent 
years because its energy production costs are lower; it has no maintenance 
cost, it is pollution free, and it has government support. Around 3.4 million 
exajoules (EJ) of energy are delivered to Earth. Earth’s solar energy poten-
tial is about 3,500 GW, even at 10% efficiency. As of 2018, 425 GW of 
solar energy has been produced utilizing various PV systems. By 2050, it is 
anticipated that global solar power generation would have increased about 
20 times to 1.8 TW due to improvements in SPV technologies. According to 
estimates, SPV systems will be supplying around 25% of the world’s total 
energy requirements by 2030. The officials have implemented new laws 
and offered subsidies to encourage the use of SPV installations. By offering 
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subsidies, businesses and homeowners will be encouraged to switch to inde-
pendent solar energy and lessen their dependency on grid electricity [3].

Making PV-generated electricity cost-effective is the primary problem 
faced by the industry at the moment. Determining the factors that can 
lower the cost of energy generated by PV is therefore crucial. To make PV 
technology a financially viable source of energy, the long-term durability of 
PV modules is therefore crucial. The failure mode and degradation process 
of solar panels can be checked to gauge their reliability when used in field. 
It has been observed that operating a PV system outside in tropical condi-
tions under higher voltage bias can have a significant impact on the system’s 
performance [4].

5.2 � DEGRADATION MODES IN PV MODULES

Solar panel life and power generation products are affected by several fac-
tors over time, including climate, type of module technology, and track-
ing systems. A progressive decrease in solar panel production over time is 
called the degradation rate. The inaccuracy in calculating the degradation 
rate of the photovoltaic power generation system increases the financial risk 
[5]. The projected service life for c-Si SPV modules is 25–30 years, with 
annual power degradation of 0.5%–1.0%. However, it has been claimed 
that installed modules incur a 0.5%–10% annual power degradation rate. 
The field-installed c-Si SPV deteriorates for a variety of reasons. Exposure 
to a variety of cyclic temperatures combined with operations at high tem-
peratures [6] and exposure to changing weather, depending on the local 
climate, might lead to accelerated material deterioration [7]. The cyclic tem-
perature loading causes thermo-mechanical fatigue in the solder joints in 
the c-Si SPV module interconnects. The accumulation of power degradation 
in the SPV modules is largely a result of operations under a variety of cur-
rents and voltages. The degradation rate is also affected by the ultraviolet 
(UV) light that strikes SPV cells. The combined effects of these elements on 
the deterioration of SPV operating in tropical conditions are critical. The 
performance of the module is lowered and its power output is decreased by 
additional factors related to the packaging material, connectivity, solder 
joint, adhesion, delamination, moisture buildup, and semiconductor device 
temperature difficulties, which raises concern about SPV dependability[6]. 
Figure 5.1 depicts several important factors affecting SPV performance. 
Among all, weather conditions (specifically tropical climate) and the PV 
module packaging quality have a significant effect on the degradation.

The next section gives a summary of the degradations or faults related to 
SPV cells/modules, including corrosion of front grid fingers, EVA discolor-
ation, snail trails, hotspots, bubble formation, de-lamination, LID, LeTID, 
PID, damage in solar cell, panel back sheet, and junction box failure.
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5.2.1 � Corrosion of front grid fingers

After prolonged exposure to high temperatures and humidity, the delami-
nation effect causes moisture to enter through EVA and corrode the metal 
components. Ingress of moisture can penetrate PV modules more easily 
because of the EVA’s comparatively high diffusivity [6]. The corrosion often 
occurs near the edges of cells and at cell breakage.

The output terminals, fingers, bus bars, cell, and string interconnects get 
corroded, which in turn reduces the module’s output power due to increase 
in series resistance (Rs) and decrease in fill factor (FF). In a detailed field 
investigation, interconnected fracture and corrosion caused 90% of the 
modules to fail [4]. In a study on a 5 MW PV system, corrosion of the met-
allization and interconnects reduces annual power by 1.5–2.5% [8]. Figure 
5.2b depicts the corrosion of the fingers grid of a 1 MW canal top plant in 
Chandrasan, India, which has been operational for the past 10 years.

Figure 5.1  �Factors responsible for SPV degradation.
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5.2.2 � EVA (ethylene-vinyl acetate) discoloration

This defect is mainly due to poor encapsulant quality, and long-term expo-
sure of PV module to high temperatures, UV exposure, and humidity [9]. 
Acetic acid may develop as a result of incompatible additions in the EVA. 
Photo-oxidative bleaching is the cause of these occurrences, in which oxy-
gen bleaches the discolored areas in the presence of UV radiation [10]. In 
that case, the encapsulant absorbs more light in the visible high-energy 
range, turning yellow or brown [7].

This defect would cause the transmittance to decline, which would then 
cause the short circuit current (Isc) to decrease. The Isc decomposition range 
can be 6%–8% lower than the nominal value, and it can be 10%–13% 
lower for entire discoloration [11]. Due to non-uniform discoloration, per-
formance decreases from 1%–10%, and a considerable reduction in FF is 
seen [4, 10]. EVA discoloration on 100% of modules was noted due to 
outdoor exposure of 22 years, in an instance [12]. The vertical path of 
Browning Effect is seen on the surface of the PV module in Figure 5.2a, 
taken at a 1 MW canal top plant in Chandrasan, India.

Figure 5.2  �Defects observed at canal top SPV project, Chandrasan, India. (a) EVA brown-
ing and (b) fingers corrosion.
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5.2.3 � Snail trails

The snail trails result from the oxidation of the silver grid, which is caused 
by the entry of moisture, oxygen, carbon dioxide, and other chemicals 
through cell gaps and cracks [7]. The front contacts’ silver paste can develop 
a grayish hue at cell edges or cracks, creating the appearance of a snail trail 
above the cell. They can appear on the margins of solar cells as well as near 
micro cracks running through them [9]. The snail trails can be seen with the 
naked eye (Figure 5.3a). When a crack is present, depending on the climatic 
conditions, snail trails start to form after 3–12 months of operation.

The presence of snail trail lowers the irradiance transmittance to cells, 
which lowers the Isc and impacts the panel’s performance.

5.2.4 � Hotspot in cell

The solar cell in PV module is connected in series in order to increase mod-
ule voltage. If a short circuit occurs and a particular PV cell malfunctions, 
the voltage will reverse, becoming equal to and the opposite of that of the 
remaining cells in the series. That particular portion of the cell gets heated 

Figure 5.3  �(a) Snail trails [9], (b) hot spots[7].
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and turns into darker spot, which is known as a hotspot (Figure 5.3b.). 
Hot spots result from this defective solar cell’s burden on the other cells 
and comparatively high heat-dissipation sites [11]. The PV materials get 
affected due to elevated temperature spots, and other modes of degrada-
tion are accelerated by it. Hot patches can turn into burning spots and 
causes the browning of the encapsulant [7]. The following situations result 
in hotspots:

	 a)	 Any damaged or shaded solar cells within the module.
	 b)	 High PV module temperatures and irradiation.

To avoid the effect of the hot spot, two/three bypass diodes are used for 
72-cell PV module. The bypass diode bypasses the current from the hot 
spot area to another non-hot spot area, reducing the open circuit voltage 
(Voc) [9].

It was discovered that after 130 Sun hours, the hot spot declined the per-
formance of the copper indium selenium (CIS) module by more than 20% 
and the performance of the c-Si module by 60% [4].

5.2.5 � Bubble formation in front panel and back sheet

The detachment of the two layers, EVA-glass and EVA-back sheet, is a pos-
sible reason for both bubble formation and delamination. The impacted 
area of the bubble is less than that of the delamination, which is how they 
differ from one another. During field operation, the temperature of module, 
and hence, the cells rises; it causes certain gases to be released from the back 
of the solar cell as a result of a chemical reaction and creates a void space 
or bubble. The back sheet’s deterioration, such as delamination and bubble 
formation, can locally reduce thermal conductivity, leading to hot patches 
that can eventually worsen solar cells’ performance [4]. The bubbles on the 
back and the front side of PV modules are shown in Figure 5.4

In a survey, only a small number of modules (13% of the total examined 
modules) exhibited bubbles and delamination in the back sheet, and they 
were all older than ten years. All of the damaged modules are in the com-
posite zone’s hot and humid zone, both of which have operated in a high 
relative humidity (RH). It may be argued that this means that excessive 
humidity encourages the growth of bubbles [12].

5.2.6 � Delamination

Delamination happens when the EVA loses its adhesive strength in con-
ditions of high humidity and high temperature, particularly around the 
ribbon [11]. In contrast to the solar cells’ blue anti-reflective coating, the 
encapsulant delamination on their top surface is visible as white patches 



﻿Performance degradation of photovoltaic module  167

or spots on the solar cells (Figure 5.5). The transparent conductive oxides 
(TCOs) in contact with glass could create sodium ions as a result, which 
affects the TCO and causes it to degrade quickly [4]. In the afflicted zone, 
delamination may encourage moisture infiltration and buildup, which may 
result in physical corrosion. Delaminated areas have less heat conductivity, 
which could cause hot spots to emerge. It is the most frequent reason for PV 
modules to degrade when exposed for an extended period to high tempera-
tures and humidity [9].

As a result of the delaminated section reflecting a large portion of the 
incident light, the affected cell’s light input is reduced, which lowers its Isc 
and performance losses up to 4% [7].

5.2.7 � Light-induced degradation (LID)

The LID occurs when crystalline modules are exposed to the sun light for 
the first few hours. There were minute amounts of oxygen in the molten sili-
con during the Czochralski process. Due to the influence of light exposure, 
positively charged oxygen dimers may spread throughout the silicon lattice 

Figure 5.4  �Bubbles formation in PV module. (a) Back panel [9] and (b) front side [11].
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and combine with acceptors of Boron dopant. The Boron-Oxygen (B-O) 
complexes create energy levels in the silicon lattice and can trap electrons 
and holes that would otherwise be lost due to the PV effect. The LID is 
therefore associated with both B-O concentrations.

The LID loss, which can range from 1% to 3%, is commensurate to wafer 
manufacturing quality (or even more). Initial power loss in amorphous sili-
con (a-Si) modules is up to 15%, whereas, in c-Si cells, it ranges from 3% 
to 6% [7].

5.2.8 � Light and elevated temperature-
induced degradation (LeTID)

The probability of LeTID occurring in PV modules with p-type passivated 
emitter rear contact cells is the highest. It has subsequently been found 
that it also occurs, albeit to a lower extent, in other varieties of crystal-
line Si cells. Unlike LID, it occurs at temperatures over 50°C. Although 
one of the most frequent causes is the diffusion of hydrogen into the cell’s 
bulk, which has already happened as a result of the deposition of the rear-
side passivation layer. The precise mechanism of this phenomenon is still 
unknown. The degradation in Voc was observed after prolonged exposure 
to high temperatures, which was most likely caused by an increase in rear-
surface recombination, which can happen even in the absence of light [13]. 
During normal operation, the LeTID degradation may saturate and occa-
sionally even rebound. Complete degradation is anticipated to take ten 
years, whereas recovery takes much longer and may extend longer than the 
module’s lifetime [7].

The performance loss due to the LeTID varies from 1% to 4% and records 
up to 16% are even reported [7].

5.2.9 � Potential-induced degradation (PID)

In c-Si cells, polarization and PID have been identified as significant failure 
mechanisms. A high negative voltage exists between the PV module’s cells 
and the aluminum frame, which is earthed for safety, when the modules are 

Figure 5.5  �Patches of delamination on the PV front panel [11].
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operating with a negative potential to Earth. The effect becomes more pro-
nounced toward the negative polarity of the PV array, where the potential 
can exceed half of the array’s voltage. The outcome is that the electrons from 
the PV module’s parts can separate, move with the electric field, and even-
tually leave through the aluminum frame. If preventative steps are not fol-
lowed, the result is an increase in the module’s charge (polarization), which 
changes its characteristic curve and, as a result, its power. Additionally, 
the encapsulation (often referred to as EVA) and the anti-reflective coating 
(ARC) allow the sodium ions to go from the glass plate to the cell. These 
ions reduce the output by effectively opening a shunt channel throughout 
the cell. The effect is stronger and gradually becomes cumulative when the 
cell is operated at a higher negative potential. Contrary to corrosion and 
normal aging-related degeneration, it has been found that this polarization 
can typically be reversed; therefore, it is not a permanent effect [14].

The plant may have PID if any of the following symptoms are present:

	 a.	The maximum voltage-to-open-circuit voltage (Vm/Voc) ratio and the 
Voc have steadily decreased compared to the datasheet values.

	 b.	The influence of the PID was readily apparent due to increased local 
shunting brought on by surface recombination and a decline in the FF.

The PID is caused by a variety of elements, including the architecture of 
a panel, its high potential with respect to the ground, and environmental 
elements like humidity and temperature [11]. The PID exists in three levels 
in PV modules i.e., system, module, and solar cells. PID is highlighted by 
darker cells in an electroluminescence (EL) image that have accumulated 
close to the frame. With infrared thermography (IR-T), the heat produced 
by the shunted cells can also be observed [7].

PID decreases shunt resistant (Rsh), lowers the maximum power (Pmax) 
and Voc of the module, and subsequently decreases the overall PV plant yield 
[15]. The module degradation rate varies from 1% to 4% per annum, up to 
20% per annum, and reaches a complete power loss of up to almost 100% 
[7]. The PID in a solar power plant has a significant impact on the PR on 
a large scale. A power loss of up to 30% has been observed in the major-
ity of the panels when measured in the string’s negative area [16]. After 9 
years of outdoor exposure in Malaysia, a degradation rate of 61%, 66%, 
and 73% was observed at the negative end of the c-Si PV module as a result 
of the combined effects of outdoor exposure and voltage of 300, 400, and 
600 V, respectively [4]. Three key factors that affect the performance of PV 
modules are an increase in Rs, a fall in the cell’s Rsh, and ARC degradation 
[17, 18]. As shown in Figure 5.6, the deterioration of modules in the string 
follows a pattern, with the negative side being the most affected than the 
positive side [19]. Figure 5.7 shows the several dark cells/spots which are 
typically detected in the PID-affected module caused due to the shunting 
of solar cell.
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Figure 5.7  �Dark cells/spots detected in PID-affected modules [20].

5.2.10 � Damage in solar cell, PV panel back 
sheet, and junction box failure

These are not the type of degradation which occurs annually at a defined 
rate, but this event can impact the performance of the SPV. The cost of 
the PV module decreases as a result of the reduced material use, but it also 
increases the risk of a crack in the cell or glass. In the process of manufac-
turing a PV module, about 6% of solar cells develop breaking/cracking [4]. 

Figure 5.6  �PID effect in a PV module string: the negative side of the string is affected 
more by PID than the positive side.
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Despite not always being evident to the unaided eye, a crack in a solar cell 
is an obvious flaw. For finding cracks in solar cells, EL is one of the most 
reliable technique [7]. The effects of a crack in a solar cell can range from 
not affecting the power to completely shutting down the module, depending 
on the size and position of the crack. It is probable that cracks enlarge over 
time, isolating individual cell components or obstructing current passage 
in the cells, causing faster deterioration and associated power loss. A PV 
module’s power loss due to cell cracks is proportional to the area of discon-
nected cells and ranges for PV modules between 1 and 15% [7].

The power output of the module is normally unaffected by minor frame 
damage, but over time, any small imperfection might cause a severe safety 
or performance problem, such as chances of moisture or water penetration 
into the module. In a survey, for 39% of the instances, the module frame 
was rusted, deformed, or somehow damaged [10]. The EVA encapsulant 
swells or deforms as a result of the rear sheet’s cracking, which makes it 
easier for moisture to get inside.

The junction box provides housing to the bypass diodes and the output 
terminals. Burned junction boxes and bypass diodes, as shown in Figure 
5.8 are common failure mechanisms that, in the worst situations, increase 
the risk of fire. The system’s severe stress, the junction box’s inadequate 
attachment to the back sheet, the lid’s inappropriate closure, moisture, and 
improper wiring are among the major offenders for junction box failure 
[11].

5.3 � DEGRADATION ANALYSIS 
CHARACTERIZATION METHODS

A plethora of module inspection methods have recently undergone thor-
ough evaluation in laboratories, and the majority of those methods have 
been implemented as on-site procedures. O&M companies are keenly inter-
ested in these techniques but frequently struggle to select the most effective 
one [21].

Figure 5.8  �Burned junction boxes and bypass diodes [11].



172  Photovoltaic Modules﻿

The next section provides a summary of each technique’s on-site appli-
cation as well as an explanation of the physical principles underlying the 
measurement’s interpretation. Figure 5.9 shows the visual demonstration 
of the different modes of degradation characterization techniques. All the 
techniques, excluding measurements of the IV-characteristic curve, pro-
duce qualitative data. Quantitative information can only be obtained via 
the IV-characteristic curve approach [7, 9, 21].

•	 Visual inspection
•	 I-V characteristics
•	 Infrared thermography (IR imaging)
•	 Ultraviolet fluorescence
•	 Ultrasonic inspection
•	 Luminescence techniques

•	 Electroluminescence (EL imaging)
•	 Photoluminescence (PL imaging)

•	 Laser beam-induced current (LBIC)

5.3.1 � Visual inspection

The simplest yet highly efficient method is a visual examination. Although 
many performance changes are imperceptible and require investigation 
using more complex characterization techniques, many other failures, such 
as hot spots, burn marks, delamination, yellowing, back sheet blistering, 
junction box failures, and many others, can be detected by visual inspec-
tion [21]. The visual inspection after PV module production has been made 

Figure 5.9  �Various characterization methods for degradation analysis [22–28].
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mandatory as per IEC 61215-1; however, it is also recommended for field 
inspections [7].

5.3.2 � I-V characteristics

The IV characteristics (IV), as the name implies, is a quantitative evaluation 
approach that specifies certain parameters using the I-V curve of an illumi-
nated or dark (applying external supply) PV module. The illuminated I-V 
curve shows the module’s current and voltage output under different light 
levels. It helps determine the maximum power output at Pmax. The dark 
I-V curve shows output without light and is useful for identifying defects. 
The slope of the dark I-V curve at higher voltages can indicate any defects 
or irregularities in the module’s construction, such as a damaged cell or a 
faulty connection. There are several circumstances in which an I-V curve 
can be measured inside standard test conditions (STC), i.e., AM1.5G spec-
trum in a laboratory [7] or outside in the field and then converting the 
measured values to the comparable values under STC. This process is spe-
cifically laid up to rate the PV module by the IEC 60904. The most crucial 
variables measured are short circuit current (Isc), open circuit voltage (Voc), 
and power at maximum power point (Pmax). Based on the characteristic 
curve, the Rs, Rsh, and FF can be determined [21].

Investigations using dark IV (DIV) at PV plants are also helpful for pre-
selection. Sometimes EL measurements are paired with the technique. With 
the assistance of a power supply and a multi-meter, DIV characteristic 
curves can be obtained [21].

5.3.3 � Infrared thermography (IR imaging)

Infrared thermography, where the measurement is carried out under steady 
sunlight illumination, is the non-destructive technique, quick (real-time 
analysis), contactless, and most frequently employed for on-site analysis of 
PV-generating plants. IR imaging is majorly used to detect “hot spots” in 
solar cells. This technique makes use of the idea of localized heat creation 
caused by the joule heating effect. This joule heating effect is caused by 
faulty connections, short circuits, and shunted cells. Any series-connected 
cell that generates less current than the others and acts as a resistor or 
load to the others generates heat. When thermal imaging is done using 
an IR camera (spectral range of 8–14 µm), the dissipated heat creates a 
temperature gradient that appears as bright spots (commonly known as 
“hot spots”) [9]. The IEC 62446-1:2016 specifies general standards for IR 
thermography. The measurements can be done using a Testo 890 high-
resolution camera with a tiny bolometer detector. Many IR thermography 
methods, including forward looking infrared (FLIR), dark lock-in (DLIT), 
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and illuminated lock-in thermography (ILIT), have been developed recently 
to detect failures in SPV modules [21].

5.3.4 � Ultraviolet fluorescence

The goal of UV-fluorescence (UV-F) method is to detect the presence of 
luminophores, which are produced when the encapsulating material EVA 
breaks down when it is exposed to UV radiation. They stop becoming 
fluorescent when these luminophores interact with oxygen. Because they 
appear darker in the UV-F picture, this behavior can be exploited to iden-
tify cell fissures and other oxygen-leaking locations. The fluorophores reach 
a sufficient fluorescence signal after 80 kWh/m2, which equates to 1.5 years 
of outdoor operation in the mid-latitudes [7]. The measurement comprises 
the UV-fluorescence unit of UV-LEDs, the remaining visible light being 
blocked by a filter glass [21].

5.3.5 � Ultrasonic inspection

There are two subcategories for ultrasonic inspection: pulse-echo method 
and transmission method. By moving an ultrasonic transducer across the 
PV panel, the PV module is scanned using both techniques. By reflecting 
ultrasonic pulses from the defects and recording those pulses, defects are 
found using the pulse-echo method. When using a transmission method 
to find flaws, a PV module is subjected to an ultrasonic energy scan by an 
ultrasonic signal being passed through it. Some signals are attenuated dur-
ing the scanning process because the module has defects, and these attenu-
ated signals are then recorded. Therefore, the transmission method locates 
the defect’s magnitude in this manner [9].

5.3.6 � Luminescence techniques

Luminescence radiation is a form of light emitted by the radiative recombi-
nation of charge carriers in semiconductors. It can be initiated from the out-
side and the data gathered to produce a picture of the solar cells’ conductive 
qualities. This technique is divided into EL and PL techniques, which are 
used to effuse the luminescence radiation emission in solar cells [7].

5.3.6.1 � Electroluminescence (EL imaging)

EL imaging works on the same principle as a light emitting diode (LED). 
Radiative carrier recombination results in light emission when current is 
injected into a solar cell, which is effectively a big diode. Since silicon is 
an indirect bandgap semiconductor, the majority of recombination in it 
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happens as a result of defects or auger recombination. Cell regions that emit 
more photons and those that emit fewer photons can be distinguished in the 
EL picture. Since there aren’t many photons released, EL imaging must be 
carried out in complete darkness. If optical filters are used, a measurement 
at dusk (outdoor) or low ambient light (in a lab, below 100W/m2) is also 
possible. EL is frequently carried out with Isc and occasionally additionally 
with 1/10 Isc to assess the severity of cell cracks [21]. An EL image enables 
the quantitative interpretation of solar cell characteristics such as series 
resistance, shunt resistance, minority carrier lifetime, and diffusion length 
[7]. In the IEC 60904-13, the EL technique is defined for use in lab settings 
and at nighttime ground inspections on single modules. For the measure-
ments, a modified consumer camera (Canon EOS 700D) in which, the IR 
blocking filter has been removed can be used to detect the emitted 1,100 nm 
infrared light [21]. It is non-destructive and rather quick, with measurement 
periods of just one second.

5.3.6.2 � Photoluminescence (PL imaging)

The process by which the luminescence signal is triggered differs between 
PL and EL. In traditional PL, which is often done during the manufactur-
ing of solar cells, the solar cell or PV module is lit by outside, homogenous 
artificial light sources. Images at two separate operation points of the PV 
module are taken to retrieve the weak luminescence signal that is overlaid 
by the intense sunshine. One image, taken at open circuit voltage, retains 
the luminescence signal but another, taken at a high current state like full 
power, does not because the carriers either participate in the current or 
recombine. Sun radiation is removed from the photos by subtracting them, 
leaving only the luminescence signal [7]. A new methodology Day Light 
Luminescence System (DaySy) is developed in which measurement can be 
done under daylight conditions. DaySy system uses both electrolumines-
cence and photoluminescence to give additional information [21].

5.3.7 � Laser beam-induced current (LBIC)

The LBIC technique is employed to find any early defects that might have 
developed in the module during the manufacturing process. A thorough 
scan of the module surface with the aid of a concentrated HeNe laser beam 
with a wavelength between 638 and 850 nm is done. An electron-hole pair 
is formed in the semiconductor when a light beam scans across the surface 
of a photosensitive device, causing the direct current to flow. This current 
may then be measured using the appropriate tools [29], and photocurrent 
maps of the module are created. The module’s photocurrent as a function of 
the laser beam’s position creates an image that depicts the module’s useful 
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output current [9]. More variation in the current indicates that the cell is 
more defective [29].

5.4 � THE OCCURRENCE FREQUENCY OF 
VARIOUS DEGRADATION MODES

The most frequent issues with modern PV modules are hot spots, internal 
circuitry discoloration, and glass breakage, whereas PID, glass breakage, a 
faulty back sheet, and delamination rank highest among PV module risks 
[7]. To discover several defects and failure scenarios for mono-c-Si solar 
modules over a 25-year period, a case study was conducted [4]. Figure 5.10 
depicts various degradation and failure modules in percentage, with EVA 
discoloration occurring most frequently. Similar outcomes were observed in 
another study, as illustrated in Figure 5.11 [9].

In India, 57 c-Si modules installed at 26 different sites spread across 5 
different climatic zones were examined for I-V data. As shown in Figure 
5.12, discoloration and corrosion were present in nearly all age groups of 
modules older than 5 years, while delamination and back sheet degradation 
was only observed in a module older than 10 years. Higher-than-average 
degradation rates, i.e., a median rate of 1.22% per annum, were asserted. 
It was observed that the Isc reduction and the degradation rate are closely 
connected. The principal cause of the decrease in Isc and consequent accel-
eration of power deterioration was the discoloration of EVA caused by 
metal corrosion in hot and humid conditions [10]. In a visual inspection 
carried out for 177 c-Si PV modules installed in southern China’s hot and 
humid location for 30 years, it was observed that 100% of the PV mod-
ules were affected by the EVA yellowing (discoloration), busbar corrosion, 
and glass soiling (Figure 5.13). The optical properties of the EVA degrade 

Figure 5.10  �Various degradation and failure modules [4].



﻿Performance degradation of photovoltaic module  177

Figure 5.11  �Count of occurrence of Defects 9.

Figure 5.12  �Frequency of occurrence of defects in PV [10].
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Figure 5.13  �Modules affected by failure modes [12].

Figure 5.14  �Occurrence of failures mode [30].

with yellowing, decreasing transmission by 12.6%. In more than 60% of 
the tested modules, delamination, cell cracks, and EVA bubbles were also 
found [12].

A much greater variety of degradation modes were reported for modules 
placed in hot and humid regions than for those in the desert and temperate 
conditions. In comparison to other climates, hot and humid regions are more 
likely to experience delamination and diode/J-box problems. Hot spots and 
internal circuitry discoloration seem to be the biggest degradation-related 
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security risks for systems deployed in the last ten years (Figure 5.14). The 
most frequent form of degradation, especially in older systems, was encap-
sulant discoloration [30]. Also in another study, the predominant failure 
mode (83.5% of failures) of the 25-year-old c-Si PV modules operating in a 
mild climate was EVA discoloration [31].

The average linear Pmax degradation rate across all c-Si sites is depicted in 
Figure 5.15 as a function of age. For locations where the rate of degradation 
is higher than the dataset’s median (1.37% per annum), most young sites 
(those between 1 and 5 years old) are degrading more quickly than the old 
sites (older than 5 years). Surprisingly, the majority of the young sites decay 
quicker even after subtracting 2% for early rapid degradation brought on 
by LID. High degradation rates in younger sites are thought to be primarily 
caused by PID, which is then followed by interconnect/finger degradation 
[32].

The risk priority number (RPN) of various failure types is calculated in 
a study by examining the effects of performance and safety flaws. The per-
formance RPN for various kinds of degradation for various climate zones 
is shown in Figure 5.16. Hot spots, internal circuitry discoloration, back 
sheet issues, and grounding wire corrosion were the main issues with older 
PV systems. Back sheet burn marks, back sheet peeling, and grounding wire 
corrosion were the main safety concerns in hot zones while frame ground-
ing corrosion, back sheet difficulties, and hot spots were present in non-hot 
zones. These defects are observed in some young modules as well, but the 
degree of occurrence is less than in the older ones [33].

Figure 5.15  �Average linear Pmax degradation rate as a function of age [32].
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5.5 � CONCLUSION

In summary, it has been observed that various factors impact the degrada-
tion and mode of failure for SPV, and among all, ambient weather condi-
tions and the PV module packaging quality have a significant impact on the 
degradation. A comprehensive summary has been represented for the vari-
ous degradation modes or faults for SPV cells and modules, including cor-
rosion of front grid fingers, EVA discoloration, snail trails, hotspots, bubble 
formation, delamination, light-induced degradation, light and elevated tem-
perature-induced degradation, potential-induced degradation, damage to 
solar cells, PV panel back sheets, and junction box failure. Different char-
acterization techniques for degradation analysis are summarized briefly, 
including visual inspection, I-V characteristics, infrared thermography, 
ultraviolet fluorescence, ultrasonic inspection, luminescence techniques, 
electroluminescence, photoluminescence, and laser beam-induced current. 
It has been observed that EL imaging is the most preferred technique by the 
SPV O&M team as it is non-destructive, quick (real-time analysis), contact-
less, and most frequently employed for on-site analysis of PV-generating 
plants.

A concise summary of the occurrence frequency of various degradation 
modes for PV modules performing in outdoor conditions, as observed in 
many studies, is presented. It was discerned that, among all degradation 
modes, EVA discoloration shows the highest occurrence, with a value rang-
ing between 18 and 20%, followed by delamination, i.e., 12 to 15%, cell 
hotspot, and corrosion. It was claimed that PV modules operating in hot and 
humid climates with age over 20 years were affected by EVA discoloration, 

Figure 5.16  �Performance RPN for various failure modes for Young and Old modules [33].
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i.e., around 80–100% of PV modules, followed by 60–100% by corrosion 
in the front grid, metallization, and output terminals. The variety of deg-
radation mechanisms reported for modules deployed for extended periods 
in hot and humid environments was significantly greater than for modules 
deployed in the desert and mild climates. It has been observed that the PV 
modules installed in hot and dry conditions are more prone to EVA discol-
oration, while the hot and humid zone are most prone to the PID effect, 
corrosion in their metallization interconnects, and output terminals as well 
as back sheet degradation, while the modules placed in the cold zone expe-
rience the least degradation.
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Chapter 6

Performance analysis of a 
building-integrated solar PV/T 
system located in Gulmarg

Subhra Das

6.1 INTRODUCTION

India is a land having diverse geographical features ranging from snow-
capped mountains to desert and lush green plain land to plateau. It has been 
reported by researchers (Ramachandra et al., 2011) that during February, 
a major part of India receives above 5 kWh/m2/day while the Western and 
Eastern Himalayan region receives insolation in the range of 3–4 kWh/
m2/day. The socioeconomic status of the people is also impacted by the 
geographical conditions as the hilly areas in the northern and eastern 
Himalayan region face scarcity of energy and food due to the extreme envi-
ronmental conditions (Sati, 2015; Konwar, 2015), which is attributed to 
moderate-to-heavy snowfall with temperature ranging from −2°C to 22°C 
during winters in the hilly regions depending on the altitude of the place 
(Dikshit et al., 2014). Thus, technology needs to be devised to address these 
issues related to scarcity of energy supply. Research on solar photovoltaic-
thermal systems provides evidence that these systems can to some extent 
provide solution to the energy problems in these regions.

A photovoltaic-thermal (PV/T) collector is a module in which the pho-
tovoltaic panel not only produces electricity but also serves as a thermal 
absorber. These collectors can produce heat and power simultaneously 
(Das, 2022). It consists of solar photovoltaic (PV) panel, heat transfer tubes, 
header pipes, thermal insulation, and casing as show in Figure 6.1.

Solar radiation incident on the solar PV panel is absorbed by it. It utilizes 
a part of the incident solar radiation to produce electricity and the rest is 
converted to heat energy. A part of the heat energy is transferred to the fluid 
flowing through the heat transfer tubes and the rest is lost to the ambient. 
This helps in lowering the temperature of the solar PV panels and thereby 
improving the efficiency of the panels.

The performance of the PV/T collector is affected by the design and con-
trol parameters such as glazing, mass flow rate, absorber, heat transfer fluid 
characteristics, and many more (Singh, 2009). Researchers have designed 
a concentrating solar PV/T system to increase the efficiency of the solar 
cell by concentrating the solar radiation on the solar cell and attaching 
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it with fins to transfer heat to the heat transfer fluid flowing through its 
back (Othman et al., 2005). Kribus et al. (2006) designed a miniature con-
centrating solar PV/T system that is useful for high temperature applica-
tions, and it produces 140–180 W of electricity and 400–500 W of thermal 
energy. Researchers have shown that a solar concentrating PV/T collector 
performs better than a flat solar PV/T collector (Othman et al., 2005).

Solar PV/T is also classified based on the heat transfer fluid. It is observed 
that an air-based PV/T collector is preferred over the water-based PV/T col-
lector because of the ease of designing, ease of flow of fluid underneath the 
absorber surface, and danger of electrical faults due to leakage of water in 
the circuit (Tonui and Tripanagnostopoulos, 2007). However, air type solar 
PV/T also has some disadvantages related to low density, low heat capacity, 
and low thermal conductivity, which leads to poor heat extraction by the 
circulating air (Tonui et al., 2007). To extract heat from the solar PV panel, 
air is forced through the channels having in-built fins. These limitations 
of air as a heat transfer fluid in solar PV/T systems inspired researchers to 
consider water as the coolant and observed that a water-based solar PV/T 
system has a better efficiency than an air-cooled solar PV/T system (He et 
al., 2006).

6.1.1 � Building-integrated solar 
photovoltaic-thermal system

Building-integrated solar photovoltaic-thermal (BIPV/T) system is the inte-
gration of photovoltaic and thermal (PV/T) system into the building enve-
lope (Misara, 2011). The solar PV/T modules are used to build the outer 
layer of the exterior walls of building thus replacing conventional building 
envelope materials. The solar panels generate power during the daytime 
which can be stored in batteries or can be fed into the grid. The thermal 
system at the back of the collector collects the heat from the panel using air 
or phase change materials to produce hot fluid, which can be stored in a 
thermal storage tank. The life cycle cost of these buildings is lower than a 
conventional building without BIPV/T or with rooftop PV, which require 
dedicated mounting structures.

Figure 6.1  �Solar PV/T collector.
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A complete BIPV/T system (Das, 2022) consists of PV/T modules which 
may be thin-film or crystalline, transparent or opaque; heat transfer tubes 
at the back to collect heat from the solar PV panel; a charge controller to 
regulate the power into and out of the battery storage bank (in stand-alone 
systems); a power storage system which is generally a battery bank in case 
of off grid system and the utility grid in case of grid interactive systems; 
power conversion equipment including an inverter to convert the DC output 
to AC compatible with the utility grid; backup power supplies (optional) in 
case of stand-alone systems; and mounting structures, wiring, and safety 
devices to disconnect the system in case of any electrical faults. BIPV/T 
systems can be designed as stand-alone systems or can be connected to the 
grid. Power generation at the point of use reduces transmission and distri-
bution losses thereby contributing to savings to utility. It reduces the elec-
tricity bills of the consumer because of peak shaving, which is like matching 
peak production with periods of peak demand. Buildings generating power 
and heat through renewable energy sources help in reducing the overall 
greenhouse gas emissions.

6.2 � PERFORMANCE OF BUILDING-
INTEGRATED SOLAR PV/T SYSTEM

The performance of a building-integrated solar PV/T system can be per-
formed following the steps below:

Step 1: Specify the location of the building, day, and duration of the 
study.

Step 2: Estimate the incident solar radiation on the walls of the building 
having solar PV/T system using the Klucher model (Das, 2021):
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IT is the total insolation received on the tilted surface, ID is diffuse insola-
tion received on horizontal surface, IB is the direct insolation received on 
horizontal surface, θt is tilt angle. Incidence angle, θ, and zenith angle θz   
are computed for each wall having different orientations (Duffie and 
Beckmann, 1980).

The ASHRAE model can be used to estimate IB and ID on the horizontal 
surface using the following relations:
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where A, B, and C are constants whose values are determined month wise 
(Sukhatme et al., 2012).

Step 3: Estimate the temperature of the solar PV panel using the follow-
ing relation (PV Performance Modeling collaborative):

	 T I exp a bV Tp T a� �� � � 	 (6.4)

Here the parameters a and b depend on the module construction, materials, 
and mounting configuration. In the present case, the module configuration 
is glass/cell/polymer sheet with insulation at the backside. Thus, the values 
of a = −2.81 and b = −0.0455 are considered.

The overall heat loss coefficient UL is expressed as:

	 U U U UL t b s� � � 	 (6.5)

The top loss coefficient Ut can be expressed as:
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Where δ1 and δ2 are the thickness of the encapsulation material and the 
glass cover of the solar panel respectively and K1 and K2 are the thermal 
conductivity the encapsulation material and the glass cover of the solar 
panel respectively and h is the convective and radiative heat transfer coef-
ficient from the glass and is expressed as (Duffie and Beckmann, 1980):

	 h V� �5 7 3 8. . 	 (6.7)

where V is the wind speed and h is measured in W/m2K.
The back loss coefficient is computed using the following relation:
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Here (K3, K4) and (δ3, δ4) is the thermal conductivity and thickness of the 
brick and concrete material respectively used as the building material. The 
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side loss coefficient is neglected in this calculation as it will be considered 
while computing the top loss coefficient for the adjacent wall.

Step 4: Assuming that all the solar PV/T panels are connected in series in 
a wall and receives uniform solar insolation at any time t. The electri-
cal power output PE from the solar PV panel can be estimated using 
the following relation [HOMER Pro 3.15]:

	 P P f
I

I
T TE r E PV
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,1 � 	 (6.9)

Where Pr,E is the rated capacity of the PV array [kW], fPV is the PV derating 
factor [%], IT, STC is the incident radiation at standard test conditions [kW/
m2], αp is the temperature coefficient of power [%/oC], and Tp,STC is the PV 
cell temperature under standard test conditions.

Step 5: Estimate the thermal output PT from the solar PV/T collector 
using the following relation:

	 P mc T TT p o a� �� � 	 (6.10)

Step 6: Overall electrical and thermal performance of the solar PV/T 
wall can be obtained using the following relation:
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Note that the output from each of the wall will be different so these arrays 
are not connected. The output from each of these arrays is fed separately to 
the battery bank or inverter.

6.3 � CASE STUDY: PERFORMANCE OF A BUILDING-
INTEGRATED SOLAR PV/T SYSTEM IN GULMARG

Consider a house made of integrated PV/T walls where a conventional air 
heater is fabricated at the back side of the solar PV panel which is fitted to 
the wall made of bricks. Consider that all the outer walls of the house are 
of same area Ac (10’ × 12’) facing east, west, north, and south. Three solar 
PV panels (having dimensions 1,655 mm × 990 mm × 34 mm) of 250 kWp 
are connected in series on each wall. The rated output from the array is 
750k Wp.

The performance of the house with building-integrated solar PV/T sys-
tem is analyzed for a particular day using MATLAB following the steps 
described in section 6.2. The assumptions that had been made regarding 
the specifications of the panel, material characteristics, site details, are tab-
ulated in Table 6.1.
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Firstly, the incident solar radiation on the four walls is estimated using 
Klucher’s model, and the amount of radiation absorbed by the solar panels 
is computed. The absorbed radiation is partly converted to electrical power, 
partly transferred to the heat transfer fluid flowing through the channels 
below the PV panel, and the rest is lost to the ambient from the top surface 
of the panel and through the wall to inside the room. The temperature of 
the PV panel is computed from morning 5 am to 5 pm using equation (6.4) 
and is tabulated in Table 6.2.

The electrical and thermal outputs from the four walls are computed 
separately and are depicted in Figure 6.2. The eastern wall produces power 
in the morning half till 1 pm and attains a maximum around 7 am to 9 
am. The eastern wall does not receive sunlight in the afternoon and conse-
quently does not produce any electrical or thermal power output.

During this time, the inlet duct to the air heater needs to be closed to 
prevent heat loss from the room. During the morning, the eastern wall pro-
duces an average electrical output of 199 W and thermal output of 1157.4 
W utilizing the incident solar radiation on the wall.

The western wall receives sunlight in the afternoon, and hence, gener-
ates electricity and heat from 1 pm to 5 pm as shown in Figure 6.3. The 
building-integrated solar PV/T wall produces an average electrical output 

Table 6.1  �Assumptions made for simulation

Parameters Values

IT, STC, W/m2 1,000
αp, per °C −0.3% to −0.5%

Tp,STC, °C 25

δ1, mm 0.5
δ2, mm 3
k1, W/mK 0.311
k2, W/mK 2
Thickness of cement mortar plaster, m 0.0125
Thickness of brick wall, m 0.1778
Thermal conductivity of cement mortar plaster, W/mK 1.515
Thermal conductivity of brick wall, W/mK 0.8
τglass 0.9
αcell 0.85
Day June 11, 2021
Location Gulmarg
Latitude 34.0484° N
Longitude 74.3805° E
Mass flow rate of air, kg/s 0.02
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of 146.2 W and thermal output of 724.0 W using the average solar radia-
tion of 222.1 W/m2 over the day.

The northern wall receives solar radiation in the early morning hours and 
in the late evening. Thus, the output from this wall is low compared to the 
other walls as shown in Figure 6.4. It records an average electrical output of 
68.6 W and thermal output of 307.5 W over the day. An average radiation 
of 93.4 W/m2 is recorded over the day.

The southern wall contributes the most in terms of the number of hours 
of generation of electrical and thermal output as shown in Figure 6.5. It 
receives solar radiation from 7 am to 5 pm and generates an average electri-
cal power output of 103.1 W and thermal output of 468.6 W over the day.

Table 6.2  �Temperature of the building-integrated solar PV/T panels

S. No. Time, h Ta, C TpE, C TpW, C TpN, C TpS, C

1 5 12 12.7 12.0 12.2 12.0
2 6 13 42.7 13.0 25.5 13.0
3 7 15 57.8 15.0 28.4 15.0
4 8 18 61.1 18.0 27.7 21.8
5 9 20 58.4 20.0 25.5 29.1
6 10 22 51.9 22.0 23.8 35.4
7 11 24 43.1 24.0 24.0 39.9
8 12 24 31.6 27.7 24.0 40.6
9 13 24 24.0 38.8 24.0 39.5
10 14 24 24.0 48.6 24.0 36.7
11 15 25 25.0 57.6 25.0 33.6
12 16 25 25.0 62.3 34.3 28.7
13 17 25 25.0 61.2 37.5 25.0

Figure 6.2  �Electrical and thermal output of the eastern wall.
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The average electrical and thermal efficiency of each of the wall sepa-
rately and the average efficiency of the combined solar PV/T system is tabu-
lated in Table 6.3.

It is observed that individually the system performance is not very high 
but when we combine both solar PV and thermal system together, the sys-
tem efficiency for the southern and eastern wall is above 50%. And for the 
other two walls, the overall efficiency is greater than 35%. This shows that 
building-integrated solar PV/T walls are more efficient than any conven-
tional wall or a simple solar PV plant.

Figure 6.3  �Electrical and thermal output of the western wall.

Figure 6.4  �Electrical and thermal output of the northern wall.
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6.4 � CONCLUSIONS

In the present case study, solar panels which are available in the market 
have been used for the simulation. The solar panels only cover 44% of the 
total wall area. Better results can be achieved by increasing the area covered 
by solar PV/T panels. The analysis shows that there is a potential to gener-
ate both electrical and thermal output by the east, west, and southern walls 
but the northern wall does not contribute significantly to energy genera-
tion. Thus, it is advisable to build northern wall using conventional build-
ing materials having poor thermal conductivity. The output from the other 
three walls varies over the day. So, these need not be connected in series 
rather the input from each wall should be fed in the inverter separately.

The hybridization of solar PV and thermal system helps in the utilization 
of the same space to generate energy and thus results in improved energy 
efficiency of the overall system. These systems will be particularly useful 
for places where both electricity is scare and heating load is high like places 
in hilly areas.

Figure 6.5  �Electrical and thermal output of the southern wall.

Table 6.3  �Average electrical and thermal efficiency of the four walls

Average Efficiency East West North South

Electrical 0.09 0.06 0.09 0.10
Thermal 0.41 0.29 0.33 0.43
Solar PV/T wall 0.50 0.36 0.42 0.54
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Chapter 7

Multi-functional prosumer 
converters design and control 
for solar photovoltaic energy 
conversion systems

T. Sathiyanarayanan

7.1 � INTRODUCTION

The electrical network along with the core building components have been 
constantly changing and upgrading in order to meet the ever-growing 
demand, to include the modern technological advancements, and to rectify 
the socioeconomic challenges concerned with the electrical energy sources. 
The fast-depleting fossil fuels together with their growing environmental 
concerns added to the issues in transmission and distribution systems, and 
this has led to the widespread adoption of distributed renewable energy 
resources (DRER) across all parts of the globe [1]. The high price related 
with the DRER, which has been a major roadblock in the past, has gradu-
ally come down over the recent years [2], and it is now a viable and potent 
alternative to replace the fossil fuel–based power generation. The bigger 
installations are constantly planned, designed, and implemented [3, 4], 
and of the renewable sources, solar photovoltaic energy conversion system 
(SPECS) and wind energy conversion system (WECS) are more prominent.

The race for fully DRER-based grids has started, and SPECS has a major 
contribution due to the supple nature of photovoltaic (PV) coming in differ-
ent ranges of power, varying from small-sized cells of few Watts to big-sized 
farms of Million/Mega Watt range; the adept nature of it to be connected 
in series and parallel to increase the voltage, current, and power ratings 
give lot of flexibility and freedom for the users. There are many standards 
framed, reformed, and re-framed over the course of the installations in 
order to connect and operate SPECS with the conventional electrical grids 
[5​​–8]. The countries, the states within, and the regions within delineate the 
operation codes of SPECS (and DRER, in general) [9].

Sunlight, the primary energy source for SPECS, isn’t available all-around 
the day and can be erratic in nature/level due to cloud movements; this 
uncertain nature and the generated power from PV panels being direct cur-
rent (DC) begets power electronic converters for interfacing and controlling 
the PV [10​–12] and battery energy storage system (BESS) to smoothen the 
fluctuations and provide power in the absence of sunlight. The power elec-
tronic converters are consisting power electronic switches, which in turn 
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requires to be controlled at high speed, and this leads to modification of the 
performance of the SPECS as per the requirements [13​​–16].

The conventional grid generators had slow dynamic response due to the 
widespread usage of big synchronous machines and only the loads had faster 
dynamics (switching, variations); the modern electric grids with DRER not 
only have faster dynamics on load side, but also on the source side due to 
the usage of small-sized power sources, demanding faster control for source 
side. Among the various controllers, model predictive control (MPC) has 
been found to be an alternate for traditional proportional integral (PI) con-
trol and having very good dynamic response [17​​​–21]. With the ability of 
converting system operation into objective function, the MPC can be easily 
applied for control of SPECS in futuristic grids [22​​​–26] where the user is 
becoming an active Prosumer = producer + consumer as against the existing 
passive consumer.

7.2 � SMART GRIDS, PROSUMERS, AND DISTRIBUTED 
RENEWABLE ENERGY RESOURCES

The electric power grid as of now consists of big centralized generating sta-
tions, coal-fired, nuclear-powered, hydroelectric, which are usually located 
near the fuel source, and load centers are fed through transmission and 
distribution networks as shown in Figure 7.1. The safety, environmental, 
and depletion of sources are major concerns, which added with aggregated 
technical and commercial losses in generation, transmission, and distribu-
tion call forth the imminent change.

Figure 7.1  �Conventional electrical power network.
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Aforementioned points are generally overlooked in the past where the 
primary aim has been developing the economy and due to high cost of alter-
nate sources of energy. This conventional power grid has unidirectional 
power flow, from the generating stations to the load centers and the end 
user is a customer buying the electricity with little-to-zero involvement in 
the structure. In smart grids, the prosumer can buy as well as sell power 
making it more active, and based on the buying/selling, it can be beneficial 
to the prosumer or the network or both; this means that there is bidirec-
tional power flow and the overall losses can be reduced. A simple smart 
grid with an addition of high and low power prosumers is shown in Figure 
7.2. This has made the technical committees and the national/state/regional 
grid authorities across the globe to revamp the standards set for DRER.

The prosumers form clusters of generators and loads establishing a local-
ized/decentralized market structure where they can sell/buy active power, 
reactive power, and ancillary services for which the MPC is suited [27, 
28] with different control frames. The changing standards and grid codes 
dictates the technical specifications, transforming the normal inverters to 
smart converters [29​–31], of which low-voltage ride through (LVRT), fre-
quency support, and reactive power support are notable[32​​–35].

7.3 � SOLAR PHOTOVOLTAIC POWER 
CONVERSION SYSTEM CONTROL

The initial years of SPECS inclusion to the electric grid didn’t call for 
advanced control strategies as the amount of solar PV installed wasn’t high 

Figure 7.2  �Electrical power network with prosumers.
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and simple power injection to grid was the goal. The penetration of DRER 
as a whole and SPECS in particular has been constantly increasing to the 
extent where it can be said like “A SPECS for every rooftop/every home.” 
The changeover of centralized power system to decentralized system means 
that electricity has become a commodity which a prosumer can buy and/
or sell from home, making power trading a possible part-time or even a 
full-time job further enhancing the economy while catering to the growing 
energy demand.

The solar cells are put in series parallel combination to get solar panels, 
and a BESS is taken in parallel to smoothen the erratic PV output and store 
power during daytime to use for night time. The control can be broadly 
classified as DC side controls and AC side controls, with the DC side having 
control for extracting maximum power from PV and maintaining DC volt-
age while AC side taking care of the grid connection, codes, and supportive 
functionalities. A simple rooftop PV system with battery is illustrated in 
Figure 7.3, which is connected to grid after appropriate controls.

The control topology of each section with detailed converter structure 
is explained in the following sections and note that the controller, con-
trol algorithm, converter topology, and the control loops can be modified 
so as to meet the requirements, economical constraints, and the market 
availability.

7.4 � SPECS CONTROL LOOPS AND 
CONTROL ALGORITHMS

The most basic and the most researched control loop for the SPECS is the 
maximum power point tracking (MPPT) control. The cost of the solar 

Figure 7.3  �A domestic prosumer SPECS.
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panels is high, and in order to efficiently operate it, the maximum possible 
power needs to be extracted. Older iterations of the tracking have been 
toward mechanical tracking with moving panels physically to receive sun-
light at one particular angle and the newer iterations of MPPT have been 
toward electrical tracking. There are many possible methods for MPPT 
like perturb observe, incremental conductance, and AI based, and from the 
MPPT algorithm employed, the gate signal for the boost converter can be 
obtained as shown in Figure 7.4.

The power from solar PV is erratic, and even though in-depth research 
has given many MPPT algorithms to track properly, the variations in the 
MPP can cause Vdc to fluctuate which makes the BESS an essential support; 
this in turn helps in operating the SPECS during night time with no sunlight 
available, and the stored power in the BESS can be utilized for enabling the 
prosumer.

A bidirectional converter is used for BESS, and its control is depicted in 
Figure 7.5. The sizing of PV panels for BESS needs to be done with the con-
sideration of load ratings, economics, and space constraints.

The control of PV with MPPT and BESS makes the DC voltage constant 
as long as the assumption of BESS capacity not hit; now the system can be 
treated as a voltage source converter as the dynamics on DC side are fast. 
For the AC side, it is not as simple as DC side as the parameters to be con-
trolled increases. In order to have a grid connection, it is required to have 
3-phase output; for low load, domestic SPECS 1 phase is sufficient, but for 
generalized case, domestic/industrial/commercial loads 3 phase is suitable. 
For the three-phase system, let a, b, c be the three phases being equal mag-
nitude and spatially displaced by 120°. For effective control operation and 
calculations, two transformations are shown in Figure 7.6, which are abc to 
d-q (direct axis, quadrature axis) and abc to � ��  (alpha-beta).

DC/DC Boost converter
Solar panels

S
C Vout

Gs

L

Vpv Ipv
Maximum Power
Point Tracking (MPPT) + PWM

Figure 7.4  �Solar PV MPPT control.
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The basic principle behind these transformations is to reduce the number 
of equations to be solved by the controller, from 3 phase to 2 quantities; in 
alpha-beta frame, these two quantities are sinusoidal and in direct-quadra-
ture frame, these two quantities are constants. The transformation matrices 
are given below:

Battery/
Batteries

C

S1

L

GS1

GS2
Vdc

Vdc*

Idc

S2

C

DC/DC Bidirectional
Converter

Dc Voltage Control + PWN

Figure 7.5  �Bidirectional control for Vdc control.

Figure 7.6  �Different frames of control.



﻿Multi-functional prosumer converters design and control  205

Under balanced condition assumption, the third quantity in I��  and Idq 
is zero. The point to be noted here is that, there will be unbalanced condi-
tions temporarily due to faults and permanently due to unbalanced loads, 
which requires the Io component and a special 4-leg converter for balancing 
through neutral. The concepts explained for the 3-leg converter shown in 
Figure 7.7 can be extended to 4-leg converters too.

7.5 � SIGNIFICANCE OF SPECS CONTROLLERS

The vast literature on the controllers can be viewed as a constant search for 
a better controller and although PI controllers have been deployed across all 
industries, the scope for improvement has always pushed researchers from 
industries and academia to try out different controllers [15, 16]. The control 
frame needs to be dq (or constant reference) for PI controller to work well 
and the tuning is a tedious job. This is the place where advanced controllers 
like model predictive control (MPC) is coming in and due to the inherent 
nature of fast dynamic response matching to the fast-changing smart grid 
environment it works better for power electronic systems [19].

Figure 7.7  �DC-AC voltage source converter control.



206  Photovoltaic Modules﻿

As shown in Figure 7.8, there is no issue of tuning of controllers and no 
constraints on the frame of control, which can be viewed as a potential 
candidate for system not requiring additional components like phase locked 
loop (PLL) for the adc to dq transformation.

Figure 7.8  �MPC in different control frames: (A) dq, (B) alpha-beta, (C) abc.
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The fast response of the current controller determines the system 
response, and with the newer grid requirements like fast frequency 
response (FFR), having the faster controller is highly beneficial to the sta-
bility of the system.

In Figure 7.9 the active-reactive power capability curve of a voltage 
source converter is given for producer and consumer zones, considering 
active power P as the generation/consumption criteria.

The actual apparent power rating of the converter (Snameplate) is slightly 
higher than the maximum possible apparent power in producer and con-
sumer zone (Spro and Scon) considering future expansion and SPECS 
momentary overloading. The difference is determined by economics mostly, 
as SPECS can be included module by module.

The producer and the consumer ratings usually are different, as the maxi-
mum active or reactive power in producer zone (Ppro, Qpro) comes from 
both SPV and BESS while in consumer zone Pcon, Qcon comes only from 
BESS. Assuming the safety considerations, the limits of P and Q for both 

Figure 7.9  �Active-reactive power capability of converter for producer and consumer 
zones (producer = P generated, consumer = P consumed).
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zones can be calculated. The operation of SPECS ultimately lies in these 
two zones and with newer standards and grid codes, the need for different 
power factor operation can also be effectively solved by fast and proper 
control.

7.6 � MULTI-FUNCTIONAL CONVERTER CONTROL

The SPECS with modified prosumer controls has to meet some of the grid 
requirements; as of now, the grid codes for bigger DRER is taken and is 
generalized for prosumer control with the futuristic opinion that every pro-
sumer will eventually contribute to grid support in the race for full DRER-
based smart grids for both economic and technical reasons.

The multiple functions of the converter can be broadly split as voltage 
support and frequency support or reactive power support and active power 
support.

Figure 7.10 depicts a general voltage ride through curve and till the volt-
age recovers to a certain point the SPECS need to stay connected to give 
support to the grid. If correct support isn’t provided, the voltage may dete-
riorate leading to a possible brownout which might end up in a black-out. 
The property of smart grids being self-healing lies in their components and 
SPECS need to take part in grid support during events like fault or load 
change or generation change.

The grid support for voltage can be obtained by deploying a control loop 
like Figure 7.11; the voltage monitoring and conditioning needs to be done 
in order to classify the type of event.

The voltage limits are based on standards and grid codes; based on nature 
of the event, it can be required to control only Q or both P and Q. Point to 
be noted here is that, if there is ample sunlight and enough storage capacity 
P can be maintained while Q is increased during LVRT but due to the need 
of fault limiting, usually it is advisable to reduce P.

The major threat to any power system is a black-out and smart grid SPECS 
need to do its share to avoid it. The main reason for black-out is generators 
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Figure 7.10  �Voltage ride through operations.
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falling out of synchronism, which is caused by power imbalance between 
the generation and the load; the parameter that can be measured locally 
to get the information about power imbalance globally is frequency and 
by contributing to frequency restoration every SPECS can try to heal and 
restore the system in case of major events. The lack of inertia from SPECS 
due to no-rotating parts and so no kinetic energy need to be addressed for 
this, and the impact of inertia over frequency restoration can be seen in 
Figure 7.12.

The guidelines for frequency support are also available from various 
standards and grid codes; for the frequency range of operation, the normal 
control is followed and when it deviates from rated frequency, the active 
power P is modified in order to restore the frequency. This is depicted in 
Figure 7.13 and based on f-P modifications, and different types of frequency 
responses can be obtained.

Figure 7.11  �Voltage-reactive support loop for SPECS.
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Figure 7.12  �Frequency restoration and inertia significance.

Figure 7.13  �Frequency-active power support loop for SPECS.
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7.7 � PROSUMER SPECS SMART CONVERTERS

The prosumer SPECS smart converters control loops are summarized in 
Figure 7.14, and the existing control frame of dq frame is used for evalu-
ating the performance of the multiple grid-supportive functionalities. The 
measurements for the phase locked loop (PLL) are taken from the point of 
common coupling (PCC). The measured quantities are converted to per-
unit bases so as to present the general response of SPECS irrespective of the 
system size.

7.7.1 � Case1: Major fault at PCC, t = 5 s and cleared 
by t = 5.3 s (Indian grid code for LVRT)

The power system is very dynamic, and the faults are occurring despite the 
best efforts of safe operation across the countries. Due to a major fault, 
the voltage dips to 0.15 p.u. from 1 p.u. and then recovers. This is shown 
in Figure 7.15 below and the change in active, reactive powers is shown in 
Figure 7.16:

Figure 7.14  �Multi-functional prosumer smart converter for SPECS.
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7.7.2 � Case2: Minor fault at PCC, t = 
5 s and cleared by t = 8 s

Voltage reduction from 1 p.u. to 0.85 p.u. is due to a minor fault and that 
exists for longer time than case 1. The PCC voltage and the SPECS response 
to the same is shown in Figures 7.17 and  7.18.

7.7.3 � Case3:Load/generation change leading to 
high voltage (high voltage ride through)

Voltage shoot-up from 1 p.u. to 1.2 p.u. The PCC voltage and the SPECS 
response to the same is shown in Figures 7.19 and 7.20.

Figure 7.16  �SPECS P and Q for LVRT: −0.85 p.u. dip in Vpcc.

Figure 7.15  �LVRT voltage at PCC: 1 p.u. to 0.15 p.u.
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7.7.4 � Case 4: Load/generation change 
leading to voltage variations

Voltage shoot-up from 1 p.u. to 1.2 p.u. The PCC voltage and the SPECS 
response to the same is shown in Figures 7.21 and 7.22.

7.7.5 � Case 5: Load/generation change leading to 
frequency variations (f is lesser than frated)

The case study for overall load is higher than generation and so the fre-
quency of system is reducing. The active power support delivered by SPECS 

Figure 7.18  �SPECS P and Q for LVRT: −0.15 p.u. dip in Vpcc

Figure 7.17  �LVRT voltage at PCC: 1 p.u. to 0.85 p.u.
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is limited by their Pmax in producer and consumer zone. The PCC fre-
quency and the SPECS response to the same is shown in Figures 7.23 and 
7.24.

7.7.6 � Case 6: Load/generation change leading to 
frequency variations (f is greater than frated)

The case study for overall load is lesser than generation and so the frequency 
of system is increasing. The active power support delivered by SPECS is 

Figure 7.20  �SPECS P and Q for HVRT: −0.2 p.u. shoot-up in Vpcc.

Figure 7.19  �HVRT voltage at PCC: 1 p.u. to 1.2 p.u.
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limited by their Pmax in producer and consumer zone. The PCC frequency 
and the SPECS response to the same is shown in Figures 7.25 and 7.26.

These results visualize the multi-functional smart prosumer converter 
operation for various cases and following grid connectivity standards and 
codes for smart control. The scope of this can be expanded in multiple 
domains like the following:

	 1.	Controller performance evaluation (PI, proportional resonant, hyster-
esis, sliding mode control, deadbeat, MPC, H-∞ , LQR),

	 2.	Converter topology (4-leg converter, multilevel converter),

Figure 7.22  �SPECS P and Q for variations in Vpcc.

Figure 7.21  �PCC voltage variations due to loads/generation changes.
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	 3.	Fast frequency response (rate of change of frequency-based control, 
Pinj within 2s for events),

	 4.	Weak grid operation, islanded/synchronising operation,
	 5.	PLL-less control algorithms for highly dynamic systems,
	 6.	Fully DRER-based smart grids.

Figure 7.24  �SPECS P and Q for variations in fpcc.

Figure 7.23  �PCC frequency variations due to loads/generation changes.
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7.8 � CONCLUSION

The SPECS have become a valuable solution for many of the current prob-
lems in the electrical sector, and the growth of SPECS is going to be ramping 
up due to its overall cost reducing and the impressive flexibility. The ubiq-
uitous SPECS will require a good control for its satisfactory operation, and 
with the present electrical grids transforming into smart grids, the SPECS 
will also need a multi-functional converter control for the prosumers. The 
new guidelines from the worldwide standards and the country codes depict 
the various changes needed for facilitating a myriad of modifications that 
are beneficial to both the prosumers and the grid. These are implemented 

Figure 7.26  �SPECS P and Q for variations in fpcc.

Figure 7.25  �PCC frequency variations due to loads/generation changes.
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in the various control loops, and scope for improvement of the current con-
trollers used is also discussed. The SPECS control with added functional-
ities is a pragmatic approach to the increasing power converter-based smart 
grids, and this would bolster the SPECS inclusion in the existing system.

The performance of the prosumer SPECS smart converter control corrob-
orates the benefits in the fast-changing generation and loading conditions. 
With the use of artificial intelligence techniques, it is possible to precisely 
forecast and control the SPECS as well as the loads. The futuristic self-heal-
ing smart grid requires multi-functional smart converters, and it converts 
the challenges in fully renewable powered grids into opportunities for the 
prosumers, indirectly motivating the widespread usage of SPECS.
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In recent years, the world energy matrix, traditionally based on fossil fuels 
(nearly 80%), has experienced significant changes toward a cleaner source 
where renewable energy is becoming more prominent. Both thermal and 
hydroelectric power generation, which have always accounted for most of 
the electric power generated in the planet, have been losing space for wind 
and solar power generation, which need power electronic devices to be con-
nected to the power grid.

An example is found in countries such as Germany, which intends to 
stop power generation from mineral coal until 2038, gradually replacing 
this type of power generation with sources such as wind power and photo-
voltaic power (PV), mainly. Another important player in this transition is 
Australia, which in 2010 had one of the largest carbon-based matrices in 
the world, and today has over one-third of its power generation based on 
renewable energy sources (RES). In that country, 20% of end users already 
have installed PV generation systems [1]. In Brazil, from 2019 to 2020 there 
was an increase in electric power generation from all sources (with greater 
representativity of solar and wind power), except for those produced with 
coal and fossil fuels [2].

Power loads have changed in the last decades. They are not linear and pas-
sive as they traditionally used to be. For instance, electric vehicle chargers 
and LED lighting generate great harmonic distortion and phase imbalance.

In face of this, a new challenge has arisen in power systems all over the 
world. How to add auxiliary functions to frequency inverters, so that they 
perform roles that are usually performed by synchronous generators? For 
example, delivery of reactive power, not only in regular operation but also 
under sustained or transient fault, work and operation, even with loads 
with non-sinusoidal currents, feeding heavily imbalanced three-phase 
loads, and more.

In this chapter, multifunctional inverters (MIs), developed by several 
researchers, will be presented. These inverters inject power from renewable 
sources and also improve the power quality (PQ) by mitigating harmonic 
distortions, correcting phase imbalances and power factor, among others.

Photovoltaic Modules
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Inverters for photovoltaic generation

8.1 � STATE OF THE ART

In this section, some recent research regarding the development of MIs is 
discussed. Aiming at a faster response of the inverter control, in regard 
of network disturbances and changes in the system parameters due to the 
climate, Ray et al, in [3] used a series hybrid active filter (SEHAF) to a PV 
array and connected them to the system via an isolating transformer. This 
was characterized by having a passive filter for the 5th and 7th  harmonics 
and for those above the 25th harmonic, and another active filter controlled 
by the Robust Extended Complex Kalman Filter (RECKF) technique [4] in 
series with the network and the load.

Then a dc-link was connected to the three-phase voltage source inverter 
(VSI). The RECKF technique aimed to generate reference voltages from 
the fundamental components of estimated voltage and current. Thus, the 
author compared the traditional PI and a Fuzzi Logic controller (FLC) to 
control the RECKF, showing that the proposed system is superior. Figure 
8.1 shows the basic configuration of this system.

In [5], a control using the theory of instantaneous real and reactive pow-
ers pq was implemented in a three-phase four-wire system (Figure 8.2). 
Further details on the pq theory and the equations used can be seen in [5, 
6]. Consequently, the system acts to correct harmonic distortions and cur-
rent imbalances caused by unbalanced and non-linear loads. An Adaptive 
Hysteresis Band Controller (AHBC) is used to generate the inverter pulses 
by comparing the reference currents and measurements on the load. The 
choice for adaptive control was that the common hysteresis band control-
ler, although simple, generates a non-constant and harmonic switching 

Figure 8.1  �Diagram of the system proposed by [3].
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frequency, which can be problematic for the network. The AHBC used in 
the work is presented in [7].

The system used by the cited author is similar to the one used in the pres-
ent chapter. The use of AHBC makes the design of passive grid connection 
filters simpler. To make the MI control structure proposed in this chapter 
simpler, it was decided to use a conventional hysteresis controller.

In [8], the pq and pqr theories were assessed and compared in a PV (Figure 
8.3). The traditional pq theory, proposed by [6], was developed for a three-
phase system with three conductors, and later modified, including the zero 
sequence for an unbalanced system with four conductors. However, accord-
ing to [8], the modified pq theory does not provide an independent control 
for the real, reactive, and zero sequence powers. In [9], the so-called pqr 
theory based on a three-dimensional rotational reference for a three-phase 

Figure 8.2  �Diagram of the MI system proposed by [5].

Figure 8.3  �Diagram of the MI system proposed by [8].
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system with four conductors, makes the three power components linearly 
independent from each other and allows the control of each one of them.

In the work [10], was proposed a new processing unit to estimate sym-
metrical components, which are used to improve PQ. This unit is based on a 
new structure called multi-output adaptive linear neuron (MO-ADELINE) 
with greater capacity to manage multi-output (MO) systems than the origi-
nal (ADELINE) [11], since the latter is only suitable for managing single 
output systems. The study in question, a Fuzzi Logic Controller (FLC) was 
used in place of the conventional PI controller so that the system can follow 
the voltage reference at the point of common coupling (PCC). The perfor-
mance of the proposed system was tested using the PSCAD/EMTDC simu-
lator. The system topology can be seen in Figure 8.4. The control system 
based on MO-ADELINE receives the load current, composed by linear, 
non-linear, and susceptible to switching elements and generates a current 
reference that is added to other current references to provide real power 
and keep the PCC voltage regulated. However, the proposed MI by the 
author uses a coupling transformer which makes it heavier, and moreover, 
no emphasis was given to unbalanced three-phase systems.

In [12] it was proposed to include a Kalman filter to reduce the number 
of sensors in the design of the inverter. Thus, an adaptive control was used 
to estimate the grid voltage. The control topology can be seen in Figure 
8.5 and includes three loops: capacitor current control, output current, and 
output power control. The outermost control loop measures three-phase 
currents and provides the current reference in steady state, improving the 
performance of the inverter in terms of PQ and stability. The innermost 
loop controls the capacitor current to provide dynamic compensation for 
grid disturbances. The control is based on the SRF system dq and therefore 
uses a phase-locked loop (PLL) to measure the ω  frequency of the network 
which is also used for the current control of the capacitor. The power loop 
uses information from the estimated grid voltage to provide real and reac-
tive power to the system.

In the work of [13], the improved linear sinusoidal tracer (ILST) [14] 
algorithm was used, where the reference currents were extracted from the 
load current measurements. The voltages were measured in the network, 

Figure 8.4  �System and control proposed by [10].
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and the phase components were calculated in p.u. After that, the compo-
nents were obtained. In this way, the system is able to compensate harmonic 
distortion and reactive power. Figure 8.6 shows the system used in the arti-
cle. However, in this article, a simple L filter was used for grid connection 
and [13] also does not emphasize the case of unbalanced grids.

In [15] was presented a three-phase PV, connected to the grid. The mod-
eling of the PWM converter is detailed, and the control strategy used is the 
instantaneous powers theory (pq theory) using the dq0 transform (SRF). 
The system runs as an active filter compensating harmonic components 
and reactive power generated by the local loads. An input voltage clamp-
ing technique, making the system operate close to the maximum power 
point (MPP) and delivering this energy from the PV system to the grid. The 
proposed system uses a Texas Instruments DSP model TMS320F2812 in 
its assembly. Tests on the prototype were performed with distinct types of 
loads. Simulation and experimental results are presented.

Table 8.1 shows the main models and control strategies found in the ref-
erences described above.

It should be emphasized that all the works cited above have analyzed the 
behavior of PCC voltages and currents that used MIs. This behavior has not 

Figure 8.5  �Control system proposed by [12].

Figure 8.6  �Diagram of the systems proposed by [13].
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been studied for the external distribution network or when these networks 
are not running at an infinite bus where there is no voltage and frequency 
variation in the grid.

Regarding smart microgrids, a literature review conducted on important 
databases showed an exponential increase in publications, which indicate 
the contemporaneity of the problem. In addition, there is growing con-
cern regarding the PQ improvement in islanded microgrid operations. A 
poor PQ affects the performance of a network either running in a bulk 
power system (BPS), concerning the quality of the product delivered by the 
power distribution utility or when it is running through islanded microgrid 
operation, regarding control systems, especially when energy resources are 
predominantly renewable and frequency inverters are used. These control 
systems can be affected when voltages and currents are highly harmonic 
distorted [16–18]. Thus, the use of equipment that integrates active filters 
with inverters for electricity generation (MI), presents itself as an intelligent 
solution to improve the performance of these networks. In [19] an active 
shunt filter based on the theory of instantaneous powers was used, also 
called the pq theory proposed by [6].

However, the active filter does not inject active power from an energy 
source such as PV for example, and there is also the fact that the microgrid 
model used in the article is not detailed. In [20] an active filter is also used 
for the mitigation of harmonics. Although this study uses a real microgrid 
model, it is a three-wire MV grid, and it lacks the proper focus on the inte-
grated filter usage in a power source. On the other hand, [21] presents the 
use of a MI acting on a microgrid to improve PQ, same as [22] that brings 
computational analysis, as well as experimental results.

Although these papers detail the MI controls for microgrids operation, 
they do not present the microgrid model, and use three-phase balanced 
systems models, lacking to assess the imbalance loads and neutral currents, 
common in LV grids. On the other hand, in the study [23], the test model 
chosen was a three-phase 220 V line-to-line and 60 Hz LV distribution net-
work. Several single-phase MI are connected along the network. Through 

Table 8.1  �Summary of PV models and control strategies

Ref. Strat. inv. ctrl.

[5] pq theory AHBC
[3] RECKF
[8] pq and pqr theory
[10] MO-ADELINE
[12] Modif. Kalman F.
[13] ILST
[15] pq theory SRF
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master/slave communication, these inverters are controlled to minimize the 
imbalance between the phases. Operating modes were analyzed both with 
the LV network connected to the MV transformer as well as disconnected, 
functioning as an islanded microgrid and with asymmetric and distorted 
voltages.

Thus, there are rare or non-existent studies that analyze the performance 
of a PV running on a four-wire LV microgrid. Hence, this study represents 
an important contribution to the development of alternatives to reduce the 
impacts caused by low PQ in unbalanced four-wire LV networks. To simu-
late the LV distribution system, the four-wire commercial CIGRÉs network 
was implemented in MATLAB/Simulink software, where it was possible to 
observe the neutral current. The simulation model for a LV network capable 
of operating with unbalanced and non-linear loads is an important contri-
bution of this chapter.

The models of power and control circuits used are seen in detail in Section 
8.2. This system allows to assess the typical behavior of a LV network, 
which is still little explored in the literature, since most studies usually 
consider balanced and sinusoidal systems. In addition, few studies show 
the MI operating on a more complete network and its benefits across the 
grid. Currently, standardized indexes of PQ have been used to compare if 
results are in consonance with the limits considered. A multifunctional PV 
system requires the development of several components and control strate-
gies. Such system is comprised of PV modules, dc-dc converters, frequency 
inverters with dc-link, and passive filter. Regarding a control system, it is 
necessary to develop strategies to find the maximum power point tracking 
(MPPT) through control of the dc-dc converter, and it is necessary to con-
trol the real power injection that can be made by the dc-link control voltage 
and injecting the maximum power available from PV modules. Moreover, 
regarding control, to mitigate harmonic contents, it is necessary to control 
the injection of equalization currents to balance the phases required by non-
linear loads. The main components of such system are presented below.

8.2 � BACKGROUND

This section will present the models of the main components, as well as 
some of the control techniques used in MIs.

8.2.1 � Photovoltaic modules

The PV modules are built from the serial or parallel association of sev-
eral units called PV cells. Each small PV cell can generate approximately 
between 1 and 2 Watts, and a commercial module has an average genera-
tion capability of up to 600 W . There are several types of modules that are 
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different in the manufacturing process and the physical aspect and energy 
conversion efficiency. The most used are those of single crystal Si and multi-
crystalline (also called polycrystalline), which account for 90% of the mar-
ket. With much easier manufacturing process, the thin-film panels have 
lower cost, but also less efficiency. It is also worth mentioning that the 
amorphous silicon (a-Si), which typically has lower efficiency compared to 
single crystal and polycrystalline.

The output voltage of a PV module is usually around 30 V, with a current 
of some amperes and that is the reason modules are usually associated in 
arrays. These arrays may be connected in series or parallel, depending on 
the intended voltage and power in the dc-dc converter input. Figure 8.7(a) 
shows how current and voltage vary, depending on solar radiation, in a 215 
Wp polycrystalline solar panel (model Soltech 1STH-215-P). With a fixed 
temperature of 25C, it is noticeable that the current remains constant until 
it gets close to 30 V, and then it suffers a fast reduction. Figure 8.7b shows 
how the power available in the module and the voltage vary for the same 

Figure 8.7  �(a) Current versus voltage and (b) power versus voltage according to solar 
radiation for a PV module. 
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value range of solar radiation. Here, it is possible to notice that, for a given 
voltage, there is a maximum power value for each range of solar radiation. 
Such power value is known as MPP. A detailed presentation of the various 
cell models and PV modules is presented in [24].

8.2.1.1 � Mathematical model of photovoltaic modules

There has been abundant research on electric circuit models that represent 
the behavior of PV panels. Some authors, such as [25], used a simplified 
model composed of an ideal source and a diode connected in parallel with 
the source as well as a series resistor. Therefore, the output current of the 
cell will be represented by (8.1). The most used model is quite more com-
plex, since it has a resistance in series and another in parallel [26] as shown 
in the Figure 8.8. In this case, the current that passes by the resistance in 
parallel Ip (8.2) must be considered and (8.1) gets one more term referring 
to this current, (8.3).
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Where I0  is the saturation current of the diode [A]; V  is the terminal volt-
age of the module [V]; Rs and Rp are the resistances in series and in paral-
lel, respectively, [Ω ]; n is the ideality factor of the diode; Vt is the terminal 
voltage of the module [V], (V m kT qt � � �/ ); k is the Boltzmann constant 
(1 38 10 23. � � J/K); T  is the temperature of the cell [K]; q is the Coulomb 
constant (1 6 10 19. � �  C); Id is the current of the diode. The current of the PV 

Figure 8.8  �Equivalent circuit of PV module with Rs and Rp.
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module Ipv  depends on the irradiance S and on the temperature of the cell, 
as may be seen in (8.4) [27].

	 I I
S J

T Tpv SC ref ref� �
�
�

�
�
� � �� ��

�
�

�

�
�, 1000 100
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Where ISC ref,  is the current of reference short-circuit at the temperature 
(Tref ) and radiation (Sref ) reference.

8.2.2 � DC-DC converter

Aiming at adjusting voltage and current in the PV array in the connection 
with the dc-link of the frequency inverter, a dc-dc converter is commonly 
used. Such converter may be defined as a system comprised of power semi-
conductor switches, as Mosfets and IGBTs, in addition to the association of 
inductors and capacitors aimed at controlling the power flow between an 
input and an output [28] (Figure 8.9), where Vs  is the source voltage and Vo 
is the output voltage of the dc-dc converter. The control variable is known 
as duty-cycle (D), and when its value is between 0 and 1, it activates the 
power switches through a control loop. The most common types of dc-dc 
converters are buck converter(step-down), boost converter (step-up), buck-
boost (step-down/step-up) converter, Cuk, and SEPIC. The buck converter 
is used to raise the input voltage, while the boost is used to lower such volt-
age. Buck-boost, Cuk, and SEPIC converters may be used for both raising 
and lowering such voltage in relation to the output. Table 8.2 shows the 
voltage gains between input and output in relation to the duty-cycle for the 
converter operating in continuous mode ([28]).

8.2.3 � DC-AC converter

The DC-AC conversion stage of a photovoltaic inverter has a simple topol-
ogy, with a low number of components, low cost, and high efficiency. 
Inverters can be configured as half-bridge or full-bridge (or H-bridge), with 

Figure 8.9  �Simplified representation of a dc-dc converter.
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the latter being more commonly used due to its simplicity of implementa-
tion and high efficiency. This is also because in a half-bridge circuit, the 
input voltage needs to be twice the required amplitude, requiring a capaci-
tive divider that serves as an intermediate voltage point between the capaci-
tors and provides the reference for zero voltage, to enable the return path 
for load current [29].

Figure 8.10 shows an H-bridge for a single-phase inverter, where each 
semiconductor is controlled using pulse width modulation (PWM), and the 
effective output voltage value in one switching cycle is directly proportional 
to the modulation index and the amplitude of the DC bus voltage. Positive 
voltage (positive half-cycle) is applied to the load when switches 1 and 4 
are turned on simultaneously, and reverse voltage (negative half-cycle) is 
applied to the load when switches 2 and 3 are turned on.

When it comes to three-phase inverters, they have a similar topology as 
shown in Figure 8.10, with the difference that they have three arms, one for 
each phase of the system.

Nowadays, many applications have been using multilevel inverters, which 
are called so because they provide multiple levels of output voltage, instead 

Table 8.2  �Voltage gain with duty-cycle relation

Converter Voltage gain

Buck D
Boost 1/(1 - D)
Buck-Boost −D/(1 - D)
Cuk −D/(1 - D)
SEPIC D/(1 - D)

Source: [28].

Figure 8.10  Single-phase H-bridge.
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of the two levels (on and off) found in traditional inverters. One of their 
main advantages is the improvement in power quality, as the output voltage 
with multiple levels results in a smoother waveform closer to a pure sine 
wave, which reduces harmonic distortion.

Its disadvantage is the increased complexity of design, higher initial cost, 
and higher maintenance requirements due to the use of more advanced 
power electronic components, so the overall cost-benefit must be evaluated 
considering the specific needs of the application.

8.2.3.1 � Multilevel inverters

There are three main topologies that can be used to implement a multilevel 
inverter. The diode clamped type (Figure 8.11) uses diodes and provides 
various voltage levels across the different phases to series-connected capaci-
tor banks. Each diode transfers a limited amount of voltage, thus reducing 
stress on other electrical devices. The maximum output voltage is half of 
the DC input voltage, which is a disadvantage of this topology.

This type of inverter has main applications in static VAR compensation, 
variable speed drive for motors, interconnections in high voltage systems, 
and DC and AC transmission lines. Its main advantages are [30]:

•	 Entire phase share a common dc bus, which minimize the capacitance 
requirement of the converter;

•	 Capacitance of the capacitor is low;
•	 High efficiency at fundamental frequency.

And disadvantages:

•	 Practical limit on the number of levels, because it requires clamping 
diode;

•	 If the control and monitoring are not precise, DC level will discharge.

Figure 8.11  �Diode clamped multilevel inverter.
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The flying capacitor model (Figure 8.12) is made through a series connec-
tion of switching cells clamped by capacitors. In this case, instead of diodes, 
capacitors limit the voltage across the circuit components. In this type of 
inverter, the switching states occur in the same way as in the inverter with 
fixed diodes, and as mentioned before, the output voltage is half of the DC 
input voltage. Its main applications are related to induction motor torque 
control and sinusoidal current rectifiers. Its main advantages are:

•	 Eliminates the clamping diode problems;
•	 Phase redundancies are available for balancing the voltage levels of 

the capacitors, real and reactive power flow controlled;
•	 The large number of capacitor enables the inverter to save from short 

duration outage and deep voltage sags.

And disadvantages:

•	 Complex start-up;
•	 Lower switching efficiency;
•	 Capacitors are expensive than diodes;
•	 Voltage control across all the capacitors is difficult.

8.2.4 � Passive filter for grid-connected inverters

The main objective of a passive filter is filtering the wave signals of voltage 
and current that flow from the inverter toward the load. This filter must 

Figure 8.12  �Flying capacitor multilevel inverter.
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let the low frequency components pass and block those of high frequency, 
which derive mainly from the switching of the power semiconductors. 
According to [31], there are three main types of passive filters for frequency 
inverters, the L, LC, ad LCL types. The L type filter on Figure 8.13a is 
of first order, and it is capable of attenuating up to −20 dB/decade on all 
frequency ranges. This filter is commonly used in CCVSI-type converters.

The LC type filter (Figure 8.13b) is of the second order, and it attenuates 
−40db/decade, and it is used in VCVSI-type converters.

The third type of filter (third order), LCL (Figure 8.13c), has greater 
attenuation to switching frequencies of the inverter. It has an attenuation 
of −60 dB/decade and lower production of reactive power compared to the 
LC filter. Thus, like the L type, LCL type is commonly used in CCVSI-type 
inverters.

Due to having better attenuation, the LCL filter was chosen for this 
study and shall be better approached. The remaining types of filters may be 
known with more detail in [31]. In Figure 8.13, Vc  and Vg  are the inverter 
and the grid voltages.

8.2.4.1 � LCL passive filter analysis

The design and analysis of the LCL filter, for the three-phase inverter, used 
in this study was based in the methodology proposed by [32]. The three-
phase LCL filter with wye-connected capacitors and with a damping resis-
tor in serial connection with the capacitor has the single-phase simplified 
model presented in Figure 8.14. The conductor’s inductor resistance is not 
considered in this model. Where L1 and L2 are respectively the inductances 
of the input and output inductors, C is the capacitance of the capacitor, R 

Figure 8.13  �Circuits configuration for passive filter (a) L, (b) LC, and (c)LCL.
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is the damping resistance of the LCL filter. The variables Vc  and Ic are the 
converter voltages and currents, Vg  and Ig  are the grid voltages and cur-
rents, and Vcap and Icap are the LCL filter capacitor voltage and current.

The equations of voltages and currents are obtained by applying the 
Kirchhoff laws and are represented by (8.5), (8.6), and (8.7) below.
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By organizing the equations and rewriting in the form of state space, the 
result is (8.8).
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Figure 8.14  �LCL filter per-phase model.



236  Photovoltaic Modules﻿

	 A

R
L

R
L L

R
L

R
L L

C C

�

�

�

�

�

�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�

1 1 1

1 1 1

1

1

1 1
0

	 (8.10)

	 x

i

i

v

c

g

cap

�

�

�

�
�
�
�

�

�

�
�
�
�

	 (8.11)

	 B

L

L
� �

�

�

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

1
0

0
1

0 0

1

2

	 (8.12)

	 u

v

v
c

g�

�

�

�
�
�

�

�

�
�
�0

	 (8.13)

According to [32, 33], considering that the filter is connected to a grid with 
ideal sinusoidal voltage, it may be considered that, for high frequencies, the 
LCL filter output is in short-circuit, therefore vg = 0. And the transfer func-
tion G s i vg i� � � / , shall remain as (8.14) below.
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As an example, the following parameters are considered for the LCL filter: 
L mH1 1= , L mH2 0 1= . , and C H� 4 973. � . For such values, a Bode dia-
gram was traced with the damping resistance varying from zero to R � 10 � ,  
which can be seen in Figure 8.15. A proper value for this resistor is the key 
to combine the damping in the resonance frequency and the effectiveness 
of the LCL filter. It is noticeable that as the damping resistance value R 
increases, there is also attenuation in the signal caused in the resonance fre-
quency. However, the effectiveness of the filter decreases as this resistance 
increases, because there is lower attenuation in high frequencies.
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8.2.5 � Maximum power point tracker – MPPT

The maximum power point, as shown in Figure 8.7b, is a point in the volt-
age graphic versus power where the PV array supplies the highest electric 
power. And there are several control techniques aimed at varying the duty-
cycle in the dc-dc converter (thus varying the terminal voltage of the panels), 
and, therefore, maximizing the generated power. Such methods are known 
as maximum power point tracker (MPPT). Among the most known tech-
niques, it is worth mentioning incremental conductance (IncCond), perturb 
and observe (P&O), neural networks, and Fuzzy logic. The description and 
comparison of several of these techniques can be seen in [34]. As it is a tech-
nique that is widely applied and easy to implement, the P&O method shall 
be shown and used in this study.

8.2.5.1 � The P&O technique applied to the boost converter

The P&O method seeks the maximum power based on the disturbance of 
the duty-cycle D and on the observation of the value obtained. Figure 8.16 
shows the algorithm for implementation of this technique. At first, initial 
values are estimated for voltage V 0� � and current I 0� � and the actual values 
V k� � and I k� � are measured, where k is the iterations number. Power is cal-
culated as the product of such values. With the product obtained, ∆P and 
∆V  are calculated subtracting the new calculated values from the old ones. 
In case the value of ∆P is positive, it means that there was a power increase, 
and it indicates that the algorithm is moving the voltage towards the MPP. 

Figure 8.15  �Bode diagram for damping resistance R � 0 1. � (red), R � 1� (green), 
R � 2 �  (blue), and R � 5 � (black).
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When ∆P is negative, it is a sign that the voltage is moving in the opposite 
direction of the MPP. As seen, in CCM, the relation between the output and 
input voltage in the boost converter is given by V V Do i/ /� �� �1 1 . Thus, 
when D increases, there is a decrease in the input voltage Vi .

Figure 8.17 shows that on the left side of MPP, it is necessary to increase 
the voltage in the terminals of the PV array by decreasing D and on the 
right side of MPP, it is necessary to do the opposite. After this process, new 
values of V k� � and I k� � will be obtained and the process is restarted. When 
the value of ∆P is within a tolerable margin of error, the MPP was reached, 
and the systems enters a steady state.

Figure 8.16  �Algorithm for the P&T technique.

Figure 8.17  �Duty-cycle increment and decrement directions for the MPP.
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8.2.6 � Phase-locked loop – PLL

The phase-locked loop (PLL) is a fundamental part of technologies such 
as frequency inverters, radio and wireless transmissions, and systems that 
require synchronization of a signal based on a reference. It is a negative 
feedback system that can be implemented either analogically or digitally, 
with the basic difference between the two modes being their components. 
While digital PLLs operate in discrete time and use digital filters, analog 
PLLs usually consist of a phase detector, a low-pass filter, and a voltage-
controlled oscillator (VCO) via electronic circuits. The objective of this sec-
tion is to present its operating principle and list the main techniques for 
application in frequency inverters [35].

The basic operating principle consists of continuously correcting the 
phase and/or frequency difference between the input and output signals 
of the loop. This occurs through the interaction among three main blocks: 
phase and frequency detector (PD/PEDD), low-pass filter (LPF), and volt-
age-controlled oscillator (VCO), as shown in Figure 8.18 [36].

The phase and frequency detector block provides an output voltage 
whose DC component is proportional to the phase and frequency differ-
ence between the input signal and the VCO signal, generating an error sig-
nal. The signal generated by the PD is then forwarded to the filter, where 
its DC component is extracted for use as a control signal for the oscillator. 
The filter is responsible for filtering the output of the PD and converting the 
current pulses into a continuous voltage value, which is used to control the 
VCO, i.e., it performs conversion while filtering. This block is also related 
to the stability of the feedback, attenuation of unwanted noises, and deter-
mination of the loop bandwidth, which influences the total noise of the PLL 
[35].

Figure 8.18  �Control loop of a PLL.



240  Photovoltaic Modules﻿

The VCO is responsible for generating a signal whose frequency is depen-
dent on the control voltage, and this signal is fed back into the loop as the 
input of the PD. As a result, it is observed that the frequency of the VCO 
output signal is a multiple of the frequency of the reference signal. In a situ-
ation where there is no input signal, the frequency of the output signal is 
determined solely by the VCO, based on its characteristics, and remains at 
a central value.

In summary, when an input is applied to the system, the PD compares the 
input with generated signals by the VCO. If they are different, an error pro-
portional to this difference is generated, which passes through the filter and 
serves as the control voltage for the VCO, adjusting the frequency of the 
output signal from the VCO and bringing it closer to the frequency of the 
input signal. Once they are equal, the VCO locks or “captures” the input 
signal and the output of the PLL is a frequency-multiplied signal by a factor. 
A change in the frequency of the input signal will result in a new difference 
signal generated at the output of the PD, causing a change in the output 
voltage of the filter, which will then adapt the VCO to the new frequency.

Generally, these circuits are implemented digitally, where there are several 
possible topologies according to the requirements. When it comes to appli-
cations focused on multifunctional frequency inverters, two types stand 
out. The �� -PLL has the main characteristic of using the Clarke transform 
for angular frequency detection, transforming the natural abc reference 
frame into the stationary ��  reference frame. The block diagram shown 
in Figure 8.19 depicts the closed-loop diagram used to control the varia-
tion in θ  in such a way that its value is zero, where θ  is the angular velocity 
obtained by the PLL, and θ  is the measured reference angular velocity in 
the power grid [37].

The dq-PLL (Figure 8.20) is very common in three-phase applications, 
and the main difference from the previous one is that the frequency detec-
tion is done using the Park transform, where the three-phase voltage vec-
tor is transformed from the natural abc reference frame to the rotating dq 

Figure 8.19  �Block diagram of a �� -PLL.



﻿Inverters for photovoltaic generation  241

reference frame. A feedback loop is used to regulate the q component to 
zero, controlling the angular velocity of the dq reference frame. The ampli-
tude of the voltage vector is given by the d  component, and the output of 
the feedback loop provides the grid angular velocity.

In balanced systems, this model is capable of eliminating steady-state 
error in phase and frequency tracking and achieving high bandwidth, which 
offers fast and accurate tracking performance. However, it is very sensitive 
to harmonics or voltage imbalances, and therefore, more sophisticated con-
trol schemes are needed in such situations.

8.2.7 � CCVSI and VCVSI

The frequency inverter is the connection link between the solar source, 
which generates power in DC and the power grid, which usually operates in 
AC. When connected to the grid, the inverter has its voltage and frequency 
synchronized with the grid. It must operate supplying the grid with the 
maximum power that may be generated by the PV panels, under certain 
conditions of solar radiation and temperature. The inverters may be single-
phase or three-phase.

According to [38], in a wider manner, inverters may be classified as volt-
age source inverters (VSI) or current source inverters (CSI). Regarding the 
control system, they may be classified as current controlled (CC) or voltage 
controlled (VC). The VSI is designed to supply power as a voltage source, 
keeping the voltage values fixed while the current changes. The CSI oper-
ates as a current source, keeping the current fixed and changing the voltage.

Although the VSI and CSI converters are remarkably similar construc-
tively, there is a crucial difference in the connection between the DC side 
and the inverter bridge. Regarding VSI, the connection between the DC 
side and the inverter bridge is made by connecting the capacitors in parallel, 
while with CSI there is a serial connection of an inductor. Most inverters 

Figure 8.20  �Block diagram of a dq-PLL.
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for use in PV power generation are the voltage source type. The voltage-
controlled voltage source inverter (VCVSI) use grid voltage feedback in 
their control loop where it is intended to operate with a reference voltage. 
Nowadays, the VCVSI inverters are becoming more prominent with the 
development of islanded microgrids, where it is necessary to supply a volt-
age and frequency reference to the grid [39]. The current-controlled voltage 
source inverter (CCVSI) needs current feedback in its control loop.

Such current is adjusted with the injection of real power from the PV, 
which is usually done by the voltage control of the dc-link. It is also possible 
to supply reactive power to the grid through the same control loop.

8.2.8 � Active filter for power quality enhancement

In recent years, with the advance of technological development of devices 
based in power electronics, active filters to correct harmonic distortions, 
especially for loads located in the same PCC have gained much space in the 
industry. When compared to conventional passive filters that traditionally 
are used for the mitigation of harmonics, the active filters (AFs) have bet-
ter control and compensation adjustment of a wide range of the frequency 
spectrum, being automatically adjusted for load variations. Moreover, pas-
sive filters, due to their electric features, may get in resonance with the grid, 
which does not happen with the AFs. In case of passive filters, they are 
designed for certain load conditions. This conditions can be, changeling 
loads, both linear and non-linear, during the operation of this grid; for 
some situations, compensation may not be the best, letting pass certain har-
monic components. In addition, the AFs may improve the PF in a dynamic 
manner, like steps, as in the case of modular capacitor banks. Furthermore, 
three-phase AFs may balance unbalanced loads, making an improved cur-
rent distribution in phase conductors.

According to [40], AFs may be classified regarding type, topology, and 
phase number. They may be VSI or CSI type, series, or shunt, or they may 
be single-phase or three-phase. Figure 8.21 shows the topology of a shunt-
type filter. Due to the simplicity and for not needing the use of transformers, 
this topology is usually the most applied. The active filter injects harmonic 
currents in opposite phase to those requested by non-linear loads, to reduce 
distortions in the current wave format. Figure 8.22 shows a series-type filter 
that uses a transformer to make the coupling between the AF and the grid, 
thus regulating the voltage in the connection. It is normally used when it 
is intended to decrease the negative sequence voltage [41] and regulate the 
voltage in three-phase systems [42]. Figure 8.23 presents a filter known as 
unified power quality conditioner (UPQC), which combines the connection 
of two types, series, and shunt. Both units share the same dc-link capacitor. 
As it combines both the function of current and voltage harmonic correc-
tion, it is considered an ideal AF [40]. It is used mainly in loads that are 
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Figure 8.22  Series-type AF.

Figure 8.23  �Unified power quality conditioner AF.

Figure 8.21  Shunt-type AF.
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Figure 8.24  Hybrid-type AF.

overly sensitive to harmonic distortions, such as medical equipment. Due 
to the vast number of keys and greater complexity in control systems, it 
usually also has a higher cost. Figure 8.24 shows the setting of a hybrid 
filter that combines robustness of a passive filter with the performance of 
an active filter. The hybrid filters may be connected in series or parallel with 
the grid [43]. In these figures, ig  and iL are both grid and load currents, and 
ic  is the capacitor current of the filter.

8.3 � STANDARDIZATION

With the increasing adoption of DERs, it is essential to analyze and use 
PQ standards to ensure that these systems function effectively. Among the 
key standards is [44], which focuses on harmonic control in electric power 
systems. Additionally, recent revisions of standards, such as [45], have been 
introduced to establish compliance requirements for equipment that inter-
connects the network. Furthermore, [46] focuses on the interconnection 
and interoperability of inverter-based resources (IBRs) in electrical power 
systems. These international technical standards lay down the criteria that 
frequency inverters and microgrids must follow for a better performance 
[47]. Therefore, these standards were referenced in the performance analy-
sis of the MI and microgrid in this case study.

Regarding current distortion limits, the recent revision of [44] presents 
a tree decision flow. If the average annual generation based on DERs and 
inverter-based generation is greater than 10% of the total energy demand in 
the grid, the readers are directed to the [45] or the [46].

Among the primary international standards regulating the connection of 
DERs in an electric power system, the [45] is worth mentioning. Where tech-
nical specifications of interconnection and interoperability tests between 
the electric power systems and the DERs are in focus. It includes general 
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requirements, such as response to abnormal conditions, PQ, islanding, and 
other vital topics for the safe operation of DERs, such as FRT requirements.

The performance requirements of DERs under abnormal operating con-
ditions is divided in three categories: namely I, II, and III.

According to [45], about abnormal operating performance:

•	 Category I is based on essential BPS stability and reliability needs and 
is achievable by all DER technologies that are in common use today.

•	 Category II covers all BPS stability and reliability needs and is coordi-
nated with existing reliability standards to avoid tripping for a wider 
range of disturbances that concern BPS stability.

•	 Category III is based on both BPS stability and reliability and distribu-
tion system reliability and PQ needs and is coordinated with existing 
interconnection requirements for extremely high DER penetration.

Category I is less restrictive, on the other hand, category III is the most 
restrictive. Under abnormal conditions, the DER must keep its operation 
for extended periods to ensure system stability and reliability [45].

The parameters for cat. I systems are used in this study due to the char-
acteristics of the LV circuit of the case study. According to the standard, the 
DERs must be designed to provide FRT capability during voltage sags, not 
exceeding their operational capabilities. The DER must operate indefinitely 
when the voltage remains between 0.88 and 1.10 p.u. It must keep opera-
tion for the time (TFRT ) given by (8.15) when the rms voltage sag (vsag) is 
between 0.70 and 0.88 p.u. For voltage sags below 0.50 p.u., the DER may 
be disconnected instantaneously. The standard establishes minimum opera-
tion time during voltage swells, in such cases, the DER may disconnect in 
up to one cycle.

	 T s
s

p u
V p uFRT sag� � �� �0 7

4
1

0 7.
. .

. . . 	 (8.15)

8.3.1 � Limits of harmonic distortions

The [44] limits to 5% individual voltage harmonics and to 8% the THD 
(total harmonic distortion) for V ≤ 1 0.  kV. Referred here as THDv. In the 
case of currents, for rated voltages between 120 V and 69 kV, the stan-
dard limits harmonics according to the ratio between the short-circuit 
current (ISC ) and demand current (IL ) in the PCC. Table 8.3 shows the 
limits of harmonic distortions recommended by the standard for the case of 
100 1000< <I ISC L/ ; values that were considered for this study [27].

Where TDD is the demand distortion rate that indicates harmonic distor-
tions in percentage of the current of the maximum IL  demand. The indi-
vidual current harmonic components (Ih) up to the 50th order, excluding 
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the interharmonics, were considered for calculation purposes. TDD can be 
found using (8.16).

	 TDD
I

I
h h

L

� �� 2

50 2

	 (8.16)

Measurement is obtained through statistic methods and may be conducted 
(very short time harmonic measurements – 3 s) with readings during the 
period of one day, considering a 99% percentile, or one week (short time 
harmonic measurements – 10 min), considering a 95% percentile. In other 
words, the magnitude is in conformity when 99% or 95% of the samples 
are below the limits set. Criteria to measure and obtain the samples used 
are based on [48], which defines methods for measurement and interpreta-
tion of results of quality parameters of electric power for alternate current 
systems at 50/60 Hz.

8.4 � CHAPTER REMARKS

With the actual and irreversible transition from power sources mostly based 
on synchronous generators, which primary sources traditionally were coal 
and hydro power plants to more decentralized and cleaner power sources, 
with their indispensable power electronics devices, PQ related issues have 
arisen.

Likewise, electric loads have no longer been predominantly linear and 
passive, and today, loads such as LED lighting and electric vehicle chargers 
contribute to harmonics emission.

Table 8.3  �Limits of harmonic distortions of total currents in 
% of the maximum demand current fundamental 
according to [44]

Order of harmonic currents of 
the current  100 1000< <

I
I
SC

L

 3 11� �h 12.0%

 11 17� �h 5.5%

 17 23� �h 5.0%

 23 35� �h 2.0%

 35 50� �h 1.0%

 TDD 15.0%
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The purpose of this chapter was to show that by adding some auxiliary 
services to the frequency inverter (especially the PV), it may become an ally 
to improve the PQ.

This chapter presented the state of the art in the development of MIs, as 
well as some models of inverters with the function of active filters. All sys-
tem components, such as PV arrays, DC-DC converter, inverter bridge, and 
control methods were shown in detail.
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Practical applications on microgrids have evolved a lot in the recent years. 
With a significant amount of research, new and revised standards have been 
published, mainly in relation to networks with high penetration of distrib-
uted energy resources (DERs).

Although isolated grids have been used for several decades in remote 
communities – typically using fossil fuel resources – with the high penetra-
tion of DERs, microgrid operation has provided essential benefits for grids. 
One advantage is that microgrids can increase the reliability and supply of 
energy in distribution systems: in this case, the microgrid can operate both 
synchronized and isolated when part of the feeder fails.

However, along with this technological advancement, several new chal-
lenges, both in network protection and operation, are obstacles to the wide 
application of such systems. For example, load sharing, power quality (PQ), 
and renewable energy intermittency. Some researchers have developed pro-
posals for multifunctional frequency inverters (MI) using instantaneous 
power theory and other harmonic mitigation techniques [1], but few works 
have evaluated the behavior of their MIs in more complete models of dis-
tribution networks.

Thus, new functionalities become important, such as reactive power 
control and the incorporation of active harmonic filters, for example. The 
main difference between an MI and an active power filter is that the MI 
is capable of not only improving PQ (power quality) but also generating 
energy through a primary source connected to its dc-link. Therefore, the 
main functionalities of an MI are to contribute to the improvement of PQ 
in an electrical network and also to generate energy through a DC source. 
There is no significant difference regarding the constructive aspects of an 
MI and a conventional frequency inverter. The main difference is in its con-
trol system that combines more advanced techniques to generate reference 
signals capable of compensating harmonic distortions, current imbalance, 
and low power factor.

In the previous chapter, the main components of a frequency inverter 
were presented, both for traditional generation and for generation that 
offers auxiliary services. In this chapter, a case study is performed, with the 
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application of more than one inverter of this type, in a microgrid that oper-
ates both connected to the main system and temporarily isolated.

A model of a multifunctional inverter (MI) based on PV, which, in addi-
tion to generating electric power, works as an active filter of current har-
monics for local non-linear loads, is presented in this chapter. Such MI also 
has the capacity to correct phase imbalance and power factor.

Aiming at carrying out a detailed assessment of the behavior of MIs and 
of its contribution when they are connected to grids with major penetration 
of RES based in power electronics, a case study is presented, simulating the 
connection of two MIs in one LV grid.

This study shall present both the operation of this grid connected to the 
MV grid of the utility as well as when it is operating as an island microgrid. 
This grid has linear and non-linear loads, balanced and imbalanced loads, 
and a frequency inverter that operates sometimes as the main source during 
island microgrid operation.

9.1 � NOVEL FUNCTIONALITIES OF A 
FREQUENCY INVERTER

Conventionally, a frequency inverter for use in PV, wind power, battery, 
fuel cell generation, etc., transforms a direct current (DC) voltage into an 
alternating current (AC) voltage of adjustable frequency and magnitude. 
Its main function is to change the voltage signal generated from a primary 
source, into voltages and frequencies that are usual in distribution and con-
sumption. Thus, the inverter can deliver electric power to the system or to 
the load. Considering the new challenges of power systems, which migrate 
from synchronous machine central generation and linear passive loads to 
converter-based DER and non-linear loads, adding new functionalities 
to power converters is relevant. This study proposes a PV model that, in 
addition to generating power jointly with a PV array, also contributes to 
improve the PQ by compensating harmonic components of the current, cor-
rection of PF of local loads and line current balance.

9.1.1 � Instantaneous power theory or PQ theory

In this study, the instantaneous power theory, also known as the pq theory, 
was employed to determine and generate the harmonic components at the 
load, which are generated by the inverter connected in parallel with the 
load. From the current readings of the non-linear load, it is possible to com-
pensate for these distortions and keep the current from the grid sinusoidal. 
This method is usually applied for active filter control, and it enables the 
calculation, through Clarke transformation, of the instantaneous active 
and reactive powers. Based on such voltages (9.1) and currents (9.2) from 
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the original system abc (angles in radians), it is possible to find the volt-
ages and currents in the system 0�� , applying (9.3); and the instantaneous 
active (p) and reactive (q) powers applying (9.4), (9.5), and (9.6). Note that 
the presented system includes the zero sequence components (p0, i0 and v0), 
which also allows its use for imbalanced systems.

	

v V cos t

v V cos t

v V cos t

a a

b b

c c

� � � �
� � �� �
� � �� �

�
� �
� �

2 3

2 3

/

/
	 (9.1)

	

i I cos t

i I cos t

i I cos t

a a a

b b b

c c c

� � �� �
� � � �� �
� � � �� �

� �
� � �
� � �

2 3

2 3

/

/
	 (9.2)

	

x

x

x

0
2
3

1

2

1

2

1

2

1
1
2

1
2

0
3

2
3

2

�

�

�

�

�
�
�

�

�

�
�
�
� �

� �

�

�

�

�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
��
�
�

�

�

�
�
�
�

�

�

�
�
�
�

x

x

x

a

b

c

	 (9.3)

	 p v i0 0 0� � 	 (9.4)

	 p v i v i� � � �� � � � 	 (9.5)

	 q v i v i� � � �� � � � 	 (9.6)

Where x0, xα , and xβ  can be both voltages (v0�� ) and currents (i0�� ) on 
the 0, α  and β  axis and xa, xb and xc  can be the voltages (vabc  in volts) or 
currents (iabc in amperes) on the axes a, b and c. According to the pq the-
ory, instantaneous active and reactive powers can be decomposed into two 
parts: an average real power (p  in Watts) and an average reactive power (q  
in var), and an oscillating real power ( p) and an oscillating reactive power 
( q), according to (9.7) and (9.8).

	 p p p� �  	 (9.7)
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	 q q q� �  	 (9.8)

Knowing the p and q powers of the system, you can select the oscillating 
powers and take them as a reference by calculating the reference currents 
using (9.9) [2]:
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9.1.2 � Control system of the synchronous referential 
CCVSI for injection of active power

The main functionality of a frequency inverter for PV solar generation is to 
deliver to the grid the maximum active power generated by the PV array. 
In possession of the concepts of pq theory and Park transformation [3], 
it is possible, using the synchronous reference frame (SRF) to control the 
active power injected by PV based on the MPPT reference by adjusting 
the dc-link voltage of the inverter. The generation system, starting from 
the DC source, is designed to inject balanced currents into the grid. Any 
unbalanced current components are handled separately by the active filter 
control. Therefore, the zero-sequence component can be disregarded, which 
simplifies the system of equations. The transformation of the abc system to 
the synchronous system is given by (9.10) and (9.11) below [3]:

	 K

cos t cos t cos t

sin t sin t

� �
� � ��

�
�

�
�
� ��

�
�

�
�
�

� � �

2
3

2
3

2
3

2
3

� �
�

�
�

� �
���

�
�

�
�
� ��

�
�

�
�
�

�

�

�
�
�
�

�




�
�
�
�sin t�

�2
3

	 (9.10)

	

x

x K

x

x

x

q

d

a

b

c

�

�

�
�
�

�

�

�
�
�
� �

�

�

�
�
�
�

�

�

�
�
�
�

	 (9.11)

The angular velocity can be found by � �� d dt/ . For implementations, it 
is more common to use the variable θ that can be obtained using a PLL. 
Where θ is the lag angle of the reference axis that rotates synchronously 
with the angular velocity of the ω grid. In this case, simply replace ωt with 
θ in (9.11) [4]. It is now possible to calculate instantaneous powers in the dq 
system by (9.12) and (9.13), which defines the p active power and q reactive.
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	 p v i v iq q d d� � � � �� �3
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	 (9.12)

	 q v i v iq d d q� � � � �� �3
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	 (9.13)

In a balanced feeding system, if Va is taken as reference Vd = 0, isolating the 
currents and taking them as a reference, (9.14) and (9.15) are taken.
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9.1.3 � Active filtering, PF increase, and 
current imbalance compensation

Based on the pq theory, it is possible to use VSI to compensate harmonic 
distortions caused by non-linear loads. As seen in the previous subsection, 
the real, and reactive powers may be decomposed in two components, a 
continuous one and an oscillating one (9.7) and (9.8). Therefore, the pres-
ence of harmonics in the current makes the signal of instantaneous real 
power more oscillating. As an example, Figure 9.1 shows the real power 
absorbed by a non-linear load. It is possible to perceive, in blue, an oscil-
lating behavior of the instantaneous real power (p), which is the sum of the 
oscillating component, plus the average real power. The red curve shows 

Figure 9.1  �Waveforms of the oscillatory instantaneous power (before passing through 
the filter) and average (after the filter).
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the average real power (p) after the passage by the low-pass filter of the 
Figure 9.1.

The MI can also correct the PF of the load by injection of reactive power. 
In this case, the MI will generate the same power consumed by the load. 
Looking at the Figure 9.5, it is possible to see that the instantaneous reac-
tive power, which is calculated based on the reading of the load current 
IL abc,  is sent directly to the inverse transformation block. Furthermore, 
another great contribution of MI is current balancing in the phases. With 
the calculation of zero sequence currents, and, subsequently, insertion of 
this information in the inverse transformation, the active filter can compen-
sate such currents, so that the system is balanced in the common connection 
point, between the source, the load, and the MI.

9.2 � METHODOLOGY

This work proposes a methodology aimed at modeling, simulating, and 
building a prototype and a test microgrid for multifunctional photovol-
taic inverters, in order to enable the evaluation of the performance of these 
inverters in power microgrids. Using simulation software, the various com-
ponents of the photovoltaic system, such as panels, inverters, and batter-
ies, as well as the low-voltage electrical network and linear and non-linear 
loads, will be modeled and evaluated. A case study will be conducted with 
simulations in two different scenarios. Performance evaluation will be 
based on indicators of electrical PQ, according to international standards.

To do so, a thorough research on theoretical fundamentals and the state 
of the art regarding MIs and power supply and quality control in microgrids 
is initially conducted.

Subsequently, the MI, the battery-powered VCVSI inverter, and a LV grid 
are modeled. The control of active filter and power injection from the PV is 
conducted from the MI model. The operating mode connected to the grid, 
where the grid references are read with a PLL, is programmed from the 
VCVSI. This system can run in parallel with the grid or in standby mode. 
For this, it must change its controls for an occasion when bulk power sys-
tem (BPS) is not available. In this new control model, active and reactive 
power is calculated with methods of voltage and frequency drops. In grid 
modeling, model simulations were used which consider mutual impedances 
and that enable analysis at four lines. Subsequently, all these methods are 
grouped, forming a power microgrid that is more complex and closer to the 
practical one, with generation from the conventional grid and frequency 
inverters, as well as linear and non-linear loads, balanced or not.

In the case study, three different simulation scenarios are created, one 
with the grid connected to the BPS, other considering the grid operat-
ing as an island microgrid. At the end, some PQ indicators described in 
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international standards are reviewed. The p.u. values shown in the graphs 
below are based on the power of the transformer, that is, 75kVA and rms 
network voltages, 400V. ​

9.3 � PROPOSED MODELS

In this chapter, the modeling of the components of the inverters (MI-CCVSI 
and VCVSI) is presented.

9.3.1 � Model of the multifunction inverter 
(MI-CCVSI) and its components

The proposed MI model is presented in Figure 9.3 where, from a PV array 
that is connected to the dc-link through a boost converter and, later, to an 
LCL filter, can deliver power to the grid and correct the harmonic distor-
tions caused by the non-linear load connected to the same PCC. The boost 
converter is controlled from an MPPT that reads the voltage (VPV ) and the 
current (IPV ) of the PV array. A PLL extracts the angular velocity (ωe) of the 
grid that is used in active power control, which regulates the voltage of the 

Figure 9.2  �Flowchart of the proposed methodology.
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dc-link (VDC ); this power control generates the reference current IP abc, . On 
the other hand, compensating currents (Ih abc, ) are calculated with the use of 
the pq theory, and the input variables are the voltage (Vc abc, ) in the PCC and 
the current (IL abc, ) of the non-linear load. Finally, a hysteresis band control-
ler is used to generate the current references (I I Ic abc h abc P abc, , ,

* � � ) and send 
them to the IGBTs gates in the six-pulse three-phase inverter bridge. The 
models of each block comprising the system are then presented.

9.3.1.1 � DC-DC converter with P&O MPPT

As seen in the previous chapter, there are different sets of dc-dc converters. 
Because the output voltage of the PV array is lower than the voltage of the 
dc-link of the MI, a boost converter was used in this study. Such choice was 
made also due to the simplicity of the model and because this is one of the 
most widely used converters in commercial and research applications. The 
implemented MPPT method was the P&O. The MPPT output is the duty 
cycle that is sent to a PWM generator and then, to the Mosfet gate of the 
boost converter. Thus, the voltage on the PV array is adjusted to obtain the 
MPP. ​

9.3.1.2 � CCVSI with LCL filter

The frequency inverter in the developed MI is CCVSI type. Reference cur-
rents are obtained applying the pq theory, where it is possible to generate 
harmonic currents in phase opposition to those requested by the non-lin-
ear load, as well as to compensate the reactive power using instantaneous 

Figure 9.3  �Proposed multifunctional inverter model.
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reactive power information of the load and compensate the phase imbal-
ance from the zero sequence currents.

Figure 9.5 shows the current harmonic compensation controller block, 
which contains the implementation of the active filter. The pq block has the 
transformation equation of the system abc coordinates to the ��0 and of 
the instantaneous powers p, q, and 0. Subsequently, these powers pass by 
a filter, remaining only the oscillating component, which, shall be sent to 
the inverse block pq. In this last block, the inverse transformation shall be 
made, thus generating the reference currents Ir

* again in the abc coordinates.
Active power control and injection is performed based on the equa-

tions seen in section 1.1.2. The power reference for the inverter will be 
P P Pc dc� � , where Pdc  is the power measured before the capacitor, which 
in the case of this work will be the maximum power of the PV array and 
Pc  will be the active power reference obtained from voltage regulation with 
the use of a PI controller.

In the control proposed by [5], where the v2 magnitude that is the dc-
squared link voltage, is controlled by a feed-forward scheme that aims 
to improve the system response. This practice is common because the W  
energy stored in the capacitor is proportional to the square of the voltage 
W t Cv t� � � � � � �1 2 2/ .

Figure 9.4  �Boost converter model connected to a VSI.

Figure 9.5  �Current harmonic compensation controller block.



260  Photovoltaic Modules﻿

In this work, by mathematical simplification, VDC  voltage was used 
directly, instead of using the same squared one and the control implemented 
can be seen in Figure 9.6.

9.3.2 � Model of a VCVSI with LC filter

Nowadays it is common to see several inverters operating in a low-voltage 
feeder. Therefore, in order to consider this situation, a VCVSI frequency 
inverter controlled by voltage is modeled. This inverter operates when 
the microgrid is connected to the BPS and when it is islanded. When the 
microgrid is islanded, this inverter provides voltage and frequency refer-
ences. For that reason, this specific inverter has no other functionalities 
than delivering active power to the grid, with frequency and voltage equal 
to the BPS.

In this system, the inverter obtains the references of voltage and current 
of the grid through a PLL, when it is connected to the BPS. If there is a need 
to operate islanded, it will generate its references by itself. When VCVSI 
operates in the islanded microgrid, the references are obtained by the volt-
age and frequency drop control technique [4, 6]. In [5]; a control system for 
voltage-controlled inverters is presented through the SRF. The equivalent 
circuit representing the AC side of the frequency inverter is given by Figure 
9.7. The voltage equations in abc coordinates are given by 9.16. Equation 
(9.17) is obtained through the Park transform, considering the system run-
ning in steady state mode, and in the synchronous referential frames, and 
also considering that the resistances are negligible. In that conditions, the 
control system can be represented by (9.18).
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Figure 9.6  �Control system of active power injection.
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The reference currents are obtained from the real and reactive power using 
(9.14), (9.15), and (9.18), more details of the mathematical deduction, and 
of the models of VSI can be seen in [5, 7].

9.3.2.1 � Microgrid connected to the BPS: power control

The VCVSI model can be seen in Figure 9.8, while its control system is 
presented in Figure 9.9. Equation (9.18) system was used for its implementa-
tion. Again, a PLL was used to obtain the angular frequency of the ωe and 
perform Park’s transformation and inversion. In this model, the reference 
real (P) and reactive (Q) power values are adjusted, and the values of the 
Vc abc,  and Ic abc,  are measured for system feedback. With this information, 
the values of Vabc

*  are calculated which will be sent to the inverter through 
a sinusoidal PWM generator.

9.3.2.2 � Islanded microgrid: voltage and frequency 
drop through power control

The power flow approach normally adopted for HV and MV grids cannot 
be applied to these grids, since the ratio of reactance and resistance X/R is 
very low and the microgrid has special characteristics, such as radial dis-
tribution, very short length, and a variety in conductor types and sections.

Considering Figure 9.10, where Rg  and Xg  is the resistance and the reac-
tance of the grid, the power flow (S � �P jQ) in the line from the point A to 
the point B is given by (9.19) and (9.20).

Figure 9.7  �Equivalent circuit of the frequency inverter by AC side.
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Figure 9.9  �Control system of the voltage-controlled inverter.

Figure 9.8  �Model of the voltage-controlled inverter.
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Typically, in LV distribution grids R Xg g>> . In this case, neglecting Xg  and 
if δ  is small, then sin � �� � �  and cos �� � � 1. Hence (9.19) and (9.20) can be 
rewritten as (9.21) and (9.22).
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V
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V V
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c

g

c g
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� �
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	 (9.21)

	 Q
V V

R
c g

g

� � 	 (9.22)

In this case, the difference V Vc g−  is exceedingly small, and it is possible to 
control the real power P with the voltage Vc  and the reactive power Q with 
the angle δ  and with the frequency f  [6]. Thus, it is possible to implement 
a voltage droop control through real power and a frequency droop control 
through reactive power.

9.4 � CASE STUDY

As seen in previous chapter, many studies have dedicated to the develop-
ment of power electronics devices and control techniques for the operation 
of PVs. However, the use of such systems in LV grids with large penetration 
of power electronic loads and sources has been poorly explored so far. In 
this section, an LV distribution grid model, where non-linear loads and two 
frequency inverters that will operate in parallel and without communica-
tion between them, will be used as case study.

Aiming at exemplifying the application of PVs and demonstrating their 
performance, computer simulations were carried out with assistance of the 
MATLAB/Simulink software. In such simulations, all the components of 
inverters and of the LV grid to which they are connected were modeled. The 
LV grid considered in this study was that of CIGRÉ European Commercial 

Figure 9.10  �Power flow from inverter to grid.
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Overhead [8] with four wires. The methodology adopted in the simulations 
may be seen in the Figure 9.2.

9.5 � PV ARRAY USED IN THE CASE 
STUDY SIMULATIONS

The configured model of MATLAB/Simulink, which uses the circuit of a 
diode and two resistances, and has preset parameters from several PV panel 
manufacturers, was used in this work. The chosen PV panel was SunPower 
SPR-315E-WHT-D, for which the model is preset in MATLAB. The param-
eters of the PV arrays used may be seen in the PV table. ​

9.6 � DC-DC CONVERTER DESIGNED

The input inductor was sized for the continuous conduction mode, where 
Vs  and D is the voltage and duty cycle of the MPP of the array, ∆IL is the 
maximum current ripple that was adjusted by 20%, and fS is the switching 
frequency of the adjusted PWM at 10 kHz, and its value is 82 mH.

9.7 � CIGRÉ LV TEST GRID

From a current scenario of energy transition, in which DERs start to play 
a key role, the need to create parameters has arisen, for the validation of 
grid models and smart microgrids. In the CIGRÉ Task Force (TF) report 
C6.04.02 [8] modeling and creation of benchmarks were proposed for dif-
ferent types of grids, such as for high voltage (HV) transmission, as well 
as for distribution MV grids and distribution LV grids with frequency of 

Table 9.1  �Parameters of PV module

Parameter Value

Maximum power (Pmax ) 315 Wp
Series-connected modules per string 6
Parallel strings 8
Cells per module 96

Open circuit voltage (Voc ) 64.6 V

Voltage at maximum power point (Vmp) 54.7 V

Current at maximum power point (Imp ) 5.76 A

Short-circuit current (Isc) 6.14 A
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Figure 9.11  �Commercial European CIGRÉ overhead network.
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50 Hz (European) and 60 Hz (USA). In the report, there are three different 
LV grids: residential, industrial, and commercial. The grid used in the case 
study presented here will be the 400/230 V 50 Hz European overhead com-
mercial one. The grid topology can be seen in Figure 9.11.

All circuits of the LV commercial network are three-phase and 30 m 
long. The electrical parameters of the circuits are provided in Table 9.2. 
Commonly, power system simulators are developed to work with three-
phase three-wire systems and have few component models with the ability 
to simulate four-wire systems. To solve this issue, the neutral conductor is 
considered solidly grounded, which makes it possible to use the Kron reduc-
tion to simplify a four-wire system by a three-wire equivalent circuit [8]. 
However, this model omits essential information regarding currents that 
circulate through neutral in imbalanced and non-linear loads. Therefore, 
the most complete model was proposed to verify these neutral currents, 
since imbalance of loads and harmonic distortions are common in LV grids. 
The complete data of the European overhead LV grid, including neutral, is 
shown in Table 9.3. More information on the grid as well as the list of loads 
can be seen at [8].

Table 9.2  �Connections and parameters of the European commercial LV grid

Line segment Node from Node to Conduct. Id

1 C1 C2 OH1
2 C2 C3 OH1
3 C3 C4 OH1
4 C4 C5 OH1
5 C5 C6 OH1
6 C6 C7 OH1
7 C7 C8 OH1
8 C8 C9 OH1
9 C3 C10 OH2
10 C10 C11 OH2
11 C11 C12 OH3
12 C11 C13 OH3
13 C10 C14 OH3
14 C5 C15 OH2
15 C15 C16 OH2
16 C15 C17 OH3
17 C16 C18 OH3
18 C8 C19 OH3
19 C9 C20 OH3

Source: [8]
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On this grid, a MI and non-linear loads are connected. This LV grid 
is simulated both connected to the MV system and islanded. During the 
islanded, a VCVSI connects a Battery Energy Storage System (BESS) mod-
eled as a DC source to the grid. The inverter control can be severely affected 
by PQ disturbances, such as harmonic distortion of currents and voltages. 
The simulation of the case study is performed in time domain to obtain the 
harmonic distortion observed in steady state operation. To achieve that, 
the models were developed in MATLAB/SIMULINK with the Simscape/
Electrical/Specialized Power Systems package.

9.8 � MICROGRID MODELING

Power system simulators offer very few models to represent four-wire LV 
systems. In the model proposed here, the MATLAB/Simulink block called 
mutual inductance is used. With this block it is possible to indicate a 

Table 9.3  �Connections and parameters of the European commercial LV grid

Conductor ID

Installation A B C N

OH1 / 3-ph A 0.540 + 
j0.777

0.049 + 
j0.505

0.049 + 
j0.462

0.049 + 
j0.436

B 0.049 + 
j0.505

0.540 + 
j0.777

0.049 + 
j0.505

0.049 + 
j0.462

C 0.049 + 
j0.462

0.049 + 
j0.505

0.540 + 
j0.777

0.049 + 
j0.505

N 0.049 + 
j0.436

0.049 + 
j0.462

0.049 + 
j0.505

0.540 + 
j0.777

OH2 / 3-ph A 1.369 + 
j0.812

0.049 + 
j0.505

0.049 + 
j0.462

0.049 + 
j0.436

B 0.049 + 
j0.505

1.369 + 
j0.812

0.049 + 
j0.505

0.049 + 
j0.462

C 0.049 + 
j0.462

0.049 + 
j0.505

1.369 + 
j0.812

0.049 + 
j0.505

N 0.049 + 
j0.436

0.049 + 
j0.462

0.049 + 
j0.505

1.369 + 
j0.812

OH3 / 3-ph A 2.065 + 
j0.825

0.049 + 
j0.505

0.049 + 
j0.462

0.049 + 
j0.436

B 0.049 + 
j0.505

2.065 + 
j0.825

0.049 + 
j0.505

0.049 + 
j0.462

C 0.049 + 
j0.462

0.049 + 
j0.505

2.065 + 
j0.825

0.049 + 
j0.505

N 0.049 + 
j0.436

0.049 + 
j0.462

0.049 + 
j0.505

2.065 + 
j0.825

Source: [8]
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general matrix of mutual impedance of multiple windings, with balanced 
or unbalanced mutual coupling. In this way, it is also possible to represent 
a four-wire LV distribution network. Therefore, it is possible to include 
the neutral in the model and use the most complete impedance matrix pre-
sented in Table 9.3. The CIGRÉ LV grid shown in Figure 9.11 is modeled in 
MATLAB/Simulink as shown in the Figure 9.12. The LV grid is connected 
at C1 to the 20/0.4 kV transformer and then at C0 to the BPS.

In the original CIGRÉ grid, there is a generic load also connected at the 
C1 node. This load represents other circuits that are connected to the same 
transformer. To better represent the PQ disturbances and indices, this load 
was neglected, and the rated power of the transformer was reduced to 75 
kVA.

A VCVSI as show in the Figure 9.8 was connected at C12. This inverter 
shall remain in standby mode when the feeder is connected to BPS and as 
main power source when the microgrid is islanded. Three single-phase rec-
tifiers, each with four diode bridge and RL load and MI from a PV system, 
were connected at node C20. Figure 9.12 shows the complete proposed 
model.

For this case study, two scenarios were created, namely Scenarios 1 and 
2. In Scenario 1, it is admitted that the LV grid is working in a conven-
tional manner, i.e., connected to the MV distribution system of the BPS. In 
Scenario 2, an islanded operation was simulated, and in this case, in both 
the scenarios, at node C20 a three-phase non-linear load is connected at t 

Figure 9.12  �LV CIGRÉ network modeled in MATLAB/Simulink and adapted for the case 
study.
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= 0.1 s and an MI (called MI A) is connected at t = 0.3 s. At node C17, at t 
= 0.5, another non-linear load, this time single phase, is turned on; and at t 
= 1 s another MI (MI B) comes running. During grid-connected operation, 
the VCVSI remains connected in parallel with the main network. When 
the microgrid is islanded the VCVSI shall deliver the voltage and frequency 
reference required to operate the other inverters.

9.9 � RESULTS

As mentioned in the previous section, two scenarios were simulated. The 
first, Scenario 1, with the LV grid connected to the MV grid of the utility, 
and the second, Scenario 2, with the main grid disconnected. The results 
for both working conditions are presented below. The TDD was calculated 
with nominal demand equals the apparent nominal power of the trans-
former (75kVA). The imbalance I %� � was calculated according [9] i.e. 
I V Vneg pos%� � � / , where Vneg is the negative sequence of voltage and Vpos  is 
the positive. The imbalance of currents is calculated of similar form. All the 
results are presented for phase A.

9.9.1 � Scenario 1: Microgrid connected to MV grid

The operation of Scenario 1 considers that the LV grid is working con-
nected to the grid of the utility. In addition, the VCVSI operates in parallel 
with the grid, delivering 30.4 kW with PF = 1. The currents and voltages of 
the grid are represented in Figure 9.13a and 9.13b, as well as the load cur-
rents (Figure 9.13c), and the currents injected by multifunctional inverter 
A at the node C20 (Figure 9.13d). Three non-linear and imbalanced single 
phase loads are connected to node C20 in t = 0.1 s, which causes a distor-
tion in the voltage (THDv = 3.97%) (9.13a) and the current (TDD = 43.4%) 
(Figure 9.13b) waveform at this point. The MI A is connected at t = 0.3 s, 
after a short transient the currents of the grid become sinusoidal and bal-
anced, with the THDv = 1.2% and TDD = 5.3%.

Similar behavior happens at the node C17, where the load, a single phase 
rectifier, is connected in t = 0.5s, which causes great imbalance between 
phases. Figure 9.14a shows the voltages in the point of common coupling 
(PCC) with harmonic distortion (THD = 2.4%) before the operation of MI 
A. In t = 1s, the multifunctional inverter B is connected, which reduces the 
THD to 0.7% at this point and the voltage imbalance, which was 0.85%, 
decreased to 0.16%. In Figure 9.14b, it is possible to see that the current, 
after the connection of MI B, becomes virtually sinusoidal and balanced. 
TDD at this point is reduced from 100% to 0.1%. Figures 9.14c and 9.14d 
show the load currents and compensating currents delivered by MI B.
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In the LV side of transformer (node C1), in Figure 9.15, it is possible to 
see the waveforms of voltages (9.15a) and currents (9.15d) and rms of volt-
ages (9.15b) and currents (9.15d), at the moment when the non-linear load 
is connected in C1 (t = 0.1 s) and also when MI A starts to operate (t = 0.3 
s). At this point, with the load in steady state, between t = 0.1 s and t = 0.3 
s, THDv and TDD at this point was 2.0% and 4.5%, becoming 0.45% and 
0.40%, respectively, after compensation, and the voltage imbalance was 
0.1% and turned into 0.08%.

The apparent, real, and reactive power delivered from transformer, as 
well as FP can be seen in Figures 9.16a, 9.16b, 9.16c and 9.16d. It is possible 
to see a reduction of the powers delivered from the grid during the MIs 
operation. At t = 1.8 s the VCVSI was disconnected, which the grid close 

Figure 9.13  �Voltages and currents at node C20 – MI A – Scenario 1.

Figure 9.14  �Voltages and currents at the node C17 – MI B – Scenario 1.
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to an overload. If the other inverters were previously turned off, the trans-
former will operate above its rated capacity.

Now, at node C12, in Figure 9.17 it is possible to see the instantaneous 
voltages (Figure 9.17a), rms voltages (Figure 9.17b), instantaneous currents 
(Figure 9.17c), and rms currents (Figure 9.17d) that are delivered by the 
VCVSI in parallel with the grid. Note that the waveforms in the VCVSI are 
affected by the harmonic distortion produced by the load.

Figure 9.18 summarizes the results of THDv and TDD for the Scenario 1.

Figure 9.15  �Voltages and currents at node C1 in Transformer (LV side) – Scenario 1.

Figure 9.16  �Apparent, real power, reactive power (in pu) and power factor at node C1 in 
Transformer – Scenario 1.
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9.9.2 � Scenario 2: operation connected 
to MV network

In the microgrid operation, VCVSI assumes the function of generating the 
voltage and frequency reference for synchronism of the remaining inverters. 
In Figure 9.19, it is possible to see the waveform of voltage (Figure 9.19a) 
and current (Figure 9.19b) in the C20 point PCC, as well as the wave-
form of current in the load (Figure 9.19c) and the compensation currents 
of MI A (Figure 9.19d). Now, both MI A and the three single phase loads 
remain connected all the time. However, in C12, there is a non-linear single 
phase load that generates a strong imbalance in voltage. In t = 1 s the MI B 
starts to operate, which improves the imbalance and the voltage levels in the 

Figure 9.17  �Voltages and currents at node C12 – VCVSI – Scenario 1.

Figure 9.18  �THDv and TDD values calculated in Scenario 1.
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entire grid. This fact also has effects on the client PQ connected in C20, as 
it may be seen in the graphic.

Figure 9.20 shows the instantaneous voltage in the PCC in C17 (MI B) 
(Figure 9.20a), the current absorbed from the grid at this point (Figure 
9.20b), the current of the non-linear single phase load (Figure 9.20c) and 
the compensating currents of MI B Figure 9.20d. As it may be seen, volt-
age experienced important improvement both in terms of amplitude and in 
phase balance (before the correction it was 2.5% and after the correction 
it was 1.5%). It is also possible to notice that the current of the grid, which 
was concentrated in a single phase and strongly distorted, assumed a sinu-
soidal characteristic and entered into a three-phase balanced situation.

Figure 9.19  �Voltages and currents at the node C20 – MI A – Scenario 2.

Figure 9.20  �Voltages and currents at the node C17 – MI B – Scenario 2.
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Figure 9.21 shows the behavior of instantaneous voltages (Figure 9.21a) 
and its rms values (Figure 9.21b) in the VCVSI, where it is possible to notice 
an important improvement both in voltage levels and in phase balance with 
the operation of the MIs. Figures 9.21c and 9.21d show, respectively, the 
instantaneous currents and rms currents that leave the inverter. Figure 
9.22 shows the apparent, real, and reactive powers and the power factor 
delivered by the VCVSI. This graph shows the importance of the MIs that 
contribute to the generation of electricity for the system, thus reducing the 
power demand from the VCVSI. Figure 9.23 summarizes the results of 
THDv and TDD for Scenario 2.

Figure 9.21  �Voltages and currents at the node C12 – VCVSI – Scenario 2.

Figure 9.22  �Apparent, real power, reactive power (in pu) and power factor at node C12 
– VCVSI – Scenario 2.



﻿Multifunctional inverters connected to LV microgrids  275

The results show that the network can continue operating normally even 
in the presence of a heavily unbalanced and distorted load. Comparing the 
distortions between Scenarios 1 and 2, it is noted that the values were prac-
tically similar, although there are more harmonic distortions in Scenario 2. 
A greater imbalance was also noted in the voltages generated in Scenario 
2 due to the nature of the load and voltage control strategy of the VCVSI.

9.10 � CHAPTER REMARKS

With technological advances, new ways of operating the power grids have 
become prominent both in terms of availability and reliability. Among 
them, the benefit of operating in intentionally and temporarily isolated 
microgrids is notorious. However, this type of operation brings some chal-
lenges, for example, when this network operates with loads that generate 
high harmonic distortions and current or voltage unbalance.

This chapter has presented an electric model of a four-wire LV feeder 
where several MI were connected. Furthermore, simulation of unbalanced 
loads were considered as well as two MIs and a VCVSI type inverter.

Two scenarios were simulated. One when the microgrid operates con-
nected to the MV grid and other when the MV grid is unavailable and the 
VCVSI assumes the voltage and frequency reference for proper function-
ing of the MIs. Significant improvements were observed in the PQ. MIs 
reduced the overloading of the distribution transformer, not only with the 
regular load of the grid in the fundamental frequency, but also regarding its 
harmonic content. When operating as islanded microgrid, the VCVSI oper-
ated normally within acceptable PQ values even in the presence of heavily 
distorted and imbalanced loads.

Figure 9.23  �THDv and TDD values calculated in Scenario 2.
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Chapter 10

A bi-level programming 
approach for solar power 
integration in distribution feeder

Mukul Dixit, Anuradha, and Nitin Chand

10.1 INTRODUCTION

As it is well known, the higher R/X ratio causes the distribution system to 
lose more money than the transmission system. The main aim of all electri-
cal power companies is to reduce such power losses. Optimal DG placement 
at the ideal location with the highest rating helps to fully satisfy the load 
demand, increase the voltage level, and also reduce the network power loss. 
The power loss of the entire network increases and the network’s voltage 
level is perturbed if the rating and position of the DG are improperly cho-
sen. There are two types of power losses such as (i) real power loss and (ii) 
reactive power loss.

	 P I Rloss j j
j

br

�
�
� 2

1

	 (10.1)

	 Q I Xloss j j
j

br

�
�
� 2

1

	 (10.2)

Where, Rj and Xj are the branch’s resistance and reactance, respectively, 
and j stands for the branch number. Ij is the branch current connecting the 
two buses. In addition, numerous writers have used a variety of intelligence 
strategies to solve the optimal DG placement problem in published litera-
ture studies.

10.2 � LITERATURE REVIEW

Many writers have written numerous studies on the DG placement problem 
in the distribution system during the last few years. Such DGs may be renew-
able based and non-renewable based. Using an analytical approach [1], opti-
mal DG placement in balanced distribution system for power loss reduction 
has been applied to 15-bus and 33-bus distribution networks. To enhance 
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Bi-level programming approach

the voltage profile and to lower down the power losses of the system, DG 
integration at various points in the distribution system has been done using 
the MINLP technique [2]. A novel voltage stability index-based approach to 
DG integration is the most effective for reducing power losses in distribution 
system with load increment. When compared to previous sensitivity-based 
strategies, this methodology produces more numerical results [3]. For the 
accurate placement and correct rating of DG in the distribution network, 
as well as to lower power system losses, an improved non-dominated sort-
ing GA-II with a multi-objective fitness function has been shown [4]. To cut 
down power loss and increase the cost-benefit ratio while utilizing GA, the 
ideal DG rating and position for a meshed power system were established 
[5]. In order to improve the voltage profile and reduce power system losses 
of the system, a new power stability index has been developed. This method 
of analysis has been used on distribution systems with 12 and 69 buses [6]. 
In order to decrease network voltage variation, increase voltage level, and 
reduce power losses, a novice multi-object quasi-opposition TLBO has been 
presented for the best placement and rating of DG in distribution systems 
[7]. In this article, author uses the sensitivity-based approach to find the best 
site for solar power and the GABC optimization algorithm to find the best 
rating. PV is installed in the distribution system at both single and locations 
with a unity power factor. The ultimate goal is to reduce power loss and 
improve the network’s voltage profile. Compare the system power loss both 
with and without solar power integration.

The aforementioned work and research papers which are available in the 
literature utilized various meta-heuristic as well as artificial intelligence 
techniques for the integration of solar power at optimal locations under 
varying load levels. But in this work, a novel approach is used for solar 
power integration under uncertain conditions of solar and load demand. 
Such collective impact of this work makes it different from other authors’ 
work. Thus, it can be said that, this is a research gap that found from the 
published literature. The following are the topics that the authors covered:

•	 A novel GABC-based two-stage method has been developed for the 
identification of optimal buses with optimal number of PV module in 
distribution system.

•	 Formulation of 24-hour uncertain load demand for each bus to ana-
lyze the effect of solar and load demand uncertainties on distribution 
systems.

10.3 � PROBLEM FORMULATION

The deployment of solar power in RDN to reduce the overall actual power 
losses and enhance the voltage profile of the system while subject to specific 
operating constraints are the study’s key goals. It has been assumed that the 
system is balanced.



﻿Bi-level programming approach  281

The following equation defines the objective function for the best solar 
installation as the total real power loss (10.3).

	 Minimize P PTloss loss n
n

br

�
�
� ,

1

	 (10.3)

Below mentioned equation shows that the solar power capacity is smaller 
than the system’s overall load:

	 P Q P QPV PV
2 2 2 2� � � 	 (10.4)

Equation (10.5) specifies the maximum voltage allowed at each bus within 
the permitted range:

	 V V Vimin max≤ ≤ 	 (10.5)

Where Vmin and Vmax are the system voltage’s minimum and maximum val-
ues, respectively, and Vi is the bus of ith bus voltage magnitude.

Consider a distribution line between the two nodes p and q, which is 
depicted in Figure 10.1 and has a load (PL+jQL) as well as resistance and 
reactance (Rpq and Xpq, respectively). The equations shown below (10.7–
10.9) [8] can be used to compute the active and reactive power flow between 
the two nodes as well as the receiving end voltage.

Vp

P q

Ipq
Pq

Vq

F FjQpq

PL ��jQL

Rpq ��jXpq

Ppq ��jQpq

�

Figure 10.1  �Equivalent diagram of two-bus system.
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Where Ppq and Qpq, respectively, represent the total active and reactive pow-
ers flowing through the branches.

10.4 � SOLAR GENERATION MODEL

The PV module’s output power is primarily dependent on the intensity of 
the solar radiation. Knowing the behavior of solar radiation at a certain 
spot for each hour would reveal that it typically followed a binomial dis-
tribution. The two straight unimodal relations are connected to this model 
[9, 10]. Both unimodal makes use of the beta probability density function 
(PDF), which is explained in more detail below:
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Here, the letter s stands for solar radiation (kW/m2). The beta distribution 
function’s parameters are calculated using (10.10) and (10.11) accordingly.
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The entire day is divided into 24-hour time periods for the purpose of 
obtaining the probability values. Depending on the amount of solar radia-
tion, each hour has its own likelihood. The hourly s and s of the day are 
assessed using previous data. It is assumed that there are 20 stages of opera-
tion every hour, each with a step of 0.05 kW/m2. The probability values for 
each hour of the day with 20 states are calculated using the values of s and 
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s (10.9). Accordingly, utilizing (10.12) [9], the output power of PV module 
(PVout) is calculated for that specific hour.

	 PV s N F V Iout F y y( ) � � � � 	 (10.12)
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Using (10.16), the total expected output power (EOP) of the PV module can 
be assessed for any given time period t.

	 EOP t PV s f s dsPV out b( ) ( ) ( )� ��
0

1

	 (10.16)

The EOP of PV module at various levels of si is calculated by (10.9)–(10.16). 
The output power produced hourly wise by PV modules is shown in Figure 
10.2.

10.5 � VOLTAGE DEVIATION

The most extreme necessary sign to assess the power attribute is a deviation 
in bus voltage magnitude. If there are significant disruptions in the voltage 
profile, the system appears to failing in that instance. Each bus’s overall 
24-hour voltage variation is calculated using (10.16).
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10.6 � OPTIMIZATION TECHNIQUE: GABC ALGORITHM

GABC optimization algorithm is a variant/modified version of ABC tech-
nique; it is motivated through the social behavior of honey bees to find the 
food source position. This algorithm is formed by Zhu and Kwong in 2010 
[11]. It is associated with three types of artificial bees named as employed 
bees, onlooker bees, and scout bees. The location of various food sources 
indicates a likely result of the considered optimization task. The nectar 
quantity of the food source clarifies the eminence or capability of the result.



284  Photovoltaic Modules﻿

In addition, the steps for the implementation of the GABC technique are 
mentioned below:

Step 1: Initialize the control variables of GABC algorithm such as popu-
lation size, limit, and MCN etc. Normally, the optimization task is 
designed in terms of the objective function.

Step 2: Generate initial population: GABC algorithm initiates with pop-
ulation of food sources Ppop = (p1, p2,...,pK). Ppop is denoted as an 
array of dimension K × d, and the rows indicate the food source solu-
tions and columns illustrate the variables of such solutions. It can be 
represented using (10.18).
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Figure 10.2  �Output power of PV module for each hour.
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Here, is the ith variable in the jth solution. These solutions are depending 
upon the random generation of variables. It can be defined using (10.19).

	 p p rand p pi
j

i i i� � � �� ��� ��,min ,max ,min,0 1 	 (10.19)

	 j K∈1 2, ,...., 	

Step 3: Employed bee phase: In this stage, each food source is allocated 
for an employed bee. The total numbers of employed bees present in 
the hive are equal to the food sources. The target of each and every 
employed bee is to search out better food source location in the avail-
able search space. The search equation for determining the food 
source location can be expressed by (10.20):

	 p p rand p pi
j

i
j

i
j

i
m’ ,� � � �� ��

�
�
�0 1 	 (10.20)

Where m and j K� � �1 2, ,...., ; pk is chosen from the population (Ppop) in 
random manner, j m≠ ; i d� � �1 2, ,...., . rand 0 1,� � is the random number 

between 0 and 1. pi
j’ is the new food source nearer to pi

j.

Step 4: Onlooker bee phase: In this section, the employed bees return 
to their hive after searching out the food source and share the infor-
mation with the onlooker bees related to the food source location 
through waggle dance. As per the information received, the onlooker 
bees go there and search out for better quality food source that is 
having a good amount of nectar. The search equation of the onlooker 
bee to determine the food source location will remain the same as 
employed bee, as given in (10.20). The tendency of onlooker bee is to 
attain better quality food source in the search space. Therefore, the 
probability values can be determined for the selection of better food 
source using equation (10.21).

	 Probability
fitness

fitness
j

j

i
i

K
�

�
�

1

	 (10.21)

Where,fitnessj indicates the objective function value of food source j, and 
the probability value Probabilityj depends upon the objective function 
fitnessj  value.
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Figure 10.3  �33-bus radial distribution system.

Step 5: Scout bee phase: Whenever the employed and onlooker bees could 
not improve the quality of food source location, then the food source 
is abandoned. After that, the scout bees explore the new food source 
location in the search space randomly using (10.19).

Step 6: In this step, they remember the best result found so far and dis-
card the worst ones.

Step 7: Stopping criteria: If the stopping condition is satisfied i.e., iter = 
Max iter, then the program will terminate.

10.7 � SIMULATION RESULT AND DISCUSSION

The effect of solar power on a 28-bus distribution system has been exam-
ined in this section. In order to eliminate the full power loss, the proposed 
integrated technique has also been implemented on an 11 kV 33-bus radial 
distribution feeder. Thirty-three buses, 32 branches, 1 major feeder, and 3 
laterals make up this system. It has a base of 100 MVA and runs at 11 kV. 
Figure 10.3 displays the single-line schematic for this test system. Figure 
10.4 illustrates the variable load demand for each bus over a 24-hour 
period. The MATLAB software (R2009) version, which is compatible with 
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Intel®CoreTMi5 CPUs, is used for the entirety of the simulation work. 
Sensitive buses of the distribution system are determined via voltage devia-
tion, and those buses having a large voltage deviation can be considered as 
sensitive buses for PV installation. Figure 10.5 indicates the sensitive level 
of each bus of the network.
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Figure 10.5  �Voltage deviation of each bus.
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Figure 10.6  �Real power loss of each hour for 33-bus distribution system.

Table 10.1  �Simulation of 33-bus radial distribution system after solar power 
installation.

Items Before solar power installation After solar power installation

Real power loss (KW) 2114.73 1840.61
Reactive power loss 
(KVAR)

1433.59 1259.99

Optimal location of PV – 16
17
18

No. of PV module – 5130
617
8482

Table 10.1 indicates the simulation results before and after inclusion of 
solar power in distribution network. The active and reactive power loss of 
the network becomes 1840.61 kW and 1259.99, respectively, after solar 
power integration. The optimal buses for PV installation are 16, 17, and 
18, and the respective number of PV modules required on these locations is 
5,130, 617, and 8,482. Hour-wise active power and reactive power that has 
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been occurred before and after solar power integration are shown in Figure 
10.6 and Figure 10.7, respectively.

10.8 � CONCLUSION

In this work, a complex model of distribution system has been presented 
with the inclusion of solar power under uncertain load demand of 24 hours. 
GABC-based two-stage method is proposed and demonstrated successfully 
on a standard 33 bus test network for determining the optimal buses and 
number of PV module. Moreover, following are the essential facts that are 
obtained from this study as discussed below:

•	 Beta PDF has been applied effectively for assessing the probability as 
well as EOP of solar for every hour. Then, consequently decide the 
finest number of PV module in distribution system.

•	 From the simulation outcomes, it is analyzed that after solar power 
integration, the total power loss is reduced significantly to a great 
value.
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Figure 10.7  �Reactive power loss of each hour for 33-bus distribution system.
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•	 From Table 10.1, performance comparison can be made between 
before and after solar power integration in the distribution 
network.

•	 From the attained simulation outcomes through the proposed tech-
nique, it can be said that the proposed technique is capable and 
suitable to solve typical optimization problems. Furthermore, it 
can be said that GABC algorithm finds the finest solution in lesser 
iterations.
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Chapter 11

Implementing brownout 
through fair threshold allocation

Anshul Agarwal and Kedar Khandeparkar

11.1 � INTRODUCTION

On a global scale, the residential sector has witnessed a sharp increase in 
energy consumption due to the rapid growth of population and various 
technologies. However, the majority of nations lack the necessary infra-
structure to meet these rising demands, and the gap between power con-
sumption demand and supply in these nations is widening over time.

Globally, the residential sector contributes the most to a country’s total 
electricity consumption [1​–3]. Consequently, the majority of research 
focuses on reducing the energy demand of residential residents and their 
peak power consumption.

For the electric grid to function properly, the gap between power sup-
ply and demand must be as small as possible to prevent grid failure and 
instability [4, 5]. Recent research has focused on demand side management 
(DSM) programs that attempt to regulate the power demands of households 
to address these issues [6, 7].

When power utility companies are unable to provide the necessary 
amount of electricity to homes, they employ a technique known as rolling 
blackouts. It implies that the utilities disconnect the power supply to differ-
ent parts of the distribution region for distinct time periods. During black-
outs, circuit breakers are activated, allowing for the disconnection of some 
system loads. This helps utilities manage the increased demand for electric-
ity. Thus, residents of numerous cities in these nations regularly experience 
power outages.

Although blackouts are simple to implement, they have the following dis-
advantages: (a) residents are inconvenienced and (b) if the circuit breakers 
are not opened in time, a large, undesirable blackout may occur.

To address these blackout-related issues, a more intelligent solution 
known as brownout can be implemented. In contrast to blackouts, it per-
mits a drop in voltage, which reduces the load on the grid and allows resi-
dents to use some of their appliances. However, the implementation of this 
brownout scheme necessitates investment and upgrade of the electric net-
work, resulting in an increase in capital expenditures. It may also cause 
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Brownout via fair threshold allocation

equipment failure [8, 9]. Therefore, a more pragmatic approach is required 
for the effective implementation of brownout.

This chapter presents a novel strategy for the efficient implementation of 
brownout. It consists of allocating load thresholds to the distribution region 
(consisting of households) during the times when the power demands of the 
households cannot be fulfilled by the power utility company. It ensures that 
(a) households are allocated load thresholds in a fair manner and (b) mini-
mal violation of this allocated threshold should be observed across all the 
households. Following are the contributions of this chapter:

•	 Load threshold allocation algorithms that use different heuristic crite-
ria to ensure fairness in allocation to the households.

•	 A novel optimal algorithm that ensures threshold allocation has mini-
mum percentage violation in all the time slots. It also avoids starva-
tion of households with respect to threshold allocation since it uses 
multiple heuristic criteria for threshold allocation. This is the primary 
contribution of this chapter.

•	 The developed algorithms have been tested on a real world dataset 
consisting of twenty households.

11.2 � RELATED WORK

Demand side management (DSM) is gaining popularity for regulating the 
demand and consumption of customers. It applies to smart grids that employ 
Information and Communication Technologies (ICT) to monitor the status 
of the grid and the behavior of customers. Albadi & El-Saadany [10] and 
Strbac [4] have discussed different DSM techniques. Using minimum sen-
sors to reduce building energy consumption is proposed by [11]. Elma and 
Selamogullari have proposed a home energy management (HEM) algorithm 
based on the voltage control method [12]. However, this algorithm for con-
trolling voltage has no effect on the power consumption of electronic loads 
such as printers and televisions. Zhou et al. [13] and Abouelela & Abouelela 
[14] discuss alternative strategies for implementing HEMs. Detecting faulty 
HVACs to reduce energy wastage is discussed in [15]. Costanzo et al. [16] 
have presented a novel framework for autonomous DSM with the layers load 
balancing, admission control, and DR management. It has been primarily 
concerned with the architecture and development of a solution for only two 
layers. Shafie-Khah et al. have proposed a novel decentralized DR model 
that is dependent on bidirectional communications. It is also possible to 
reduce peak power demand by requesting that customers move their appli-
ances in a methodical manner. Several methods have been proposed [17​​​​​–23] 
to reduce the peak demand for electricity. Mahmood et al. [24] have pro-
posed an autonomous scheme for residents with installed power meters and 
energy control units. By scheduling home appliances, the scheme reduces 
power consumption costs and peak power demand. But (a) these techniques 
require active participation from consumers and providers, which can be 
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challenging in real-world scenarios; (b) these techniques have not been suc-
cessfully applied on a large scale to residential customers; (c) scheduling 
home appliances may cause increased inconvenience for residents because 
they want to schedule the appliances according to their needs.

Rastegar et al. propose an optimization formulation for minimizing the 
cost of consumption [25]. Using a nonlinear control method, Yang et al. 
[26] have proposed a price-based demand response (DR) scheme. It is a 
nonlinear power management system with price feedback. Alsalloum et 
al. [27] discuss a Stackelberg game theory model for optimizing price and 
energy demands via interaction between prosumer and provider. Mishra & 
Parida [28] propose a new pricing structure with an integrated feature to 
capture the benefits of both real-time pricing (RTP) and time of use (TOU).

Bin-Halabi et al. [29] have proposed an algorithm that proportionally allo-
cates the utility-specified threshold to consumers’ appliances. The techniques 
discussed by [30, 31] classify loads as either essential or non-essential. These 
systems aim to first allocate power to essential loads, and then distribute the 
remaining power to non-essential loads. Salimian & Aghamohammadi [32] 
have discussed predicting blackouts with decision trees (constructed using a 
combination of parameters such as frequency and voltage index). This chap-
ter’s algorithm provides a pragmatic approach to the equitable allocation of 
thresholds. Additionally, it ensures that the proportion of violations attribut-
able to households in a region is minimal at all times.

11.3 � METHODOLOGY

Whenever there is a shortage of power supply relative to demand in a given 
time slot, utilities define a maximum power limit (called a load threshold) 
that can be consumed without penalty during this time slot. If the region’s 
power consumption exceeds this limit, the utility will impose a penalty. 
This load threshold allocated by the utility to a distribution region in time 
slot t is denoted as Dt  in this chapter. The developed algorithms then dis-
tribute the local load threshold to individual households. It is indicated by 
the notation dt h,  for household h in time slot t. Table 11.1 provides specifics 
about the various notations utilized in this chapter.

The utility assigns a fixed load threshold to the distribution region for a 
given time slot. Before the start of the time slot, it is necessary to determine 
the load threshold that will be assigned to each household. This ensures 
that the threshold does not change during the allotted time period.

Since multiple algorithms are proposed in this chapter, it is imperative 
to have a metric that can be used to compare different approaches for load 
threshold algorithm. This metric is termed as mean percentage violation 
(MPV). Let us consider an example to understand how this metric is cal-
culated. Assume a household is allocated a load threshold of 200 Watts for 
the time slot t. Now if the power consumption of this house exceeds 200 
Watts during time slot t, then these will be treated as violation. For a given 
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time slot and house, the ratio of (a) summation of power consumption of 
this house at time instances for which violation has occurred and (b) total 
power consumption of this house in the given time slot – is calculated. 
Taking mean of this violation ratio across the entire neighborhood will give 
the value of MPV. This is denoted by Eq. (11.1) as follows:
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where MPVt  represents MPV for time slot t, li h,
’  denotes power consumption 

of house h at time instance i  and d ht � � represents load threshold allocated 

to house h in time slot t. Suppose there are two algorithms algo algoi j,� � 
that allocate load thresholds to households in a neighborhood. Now con-
sider the following scenario:

	 MPV MPVt
algo

t
algo

i j< 	

It denotes that the value of MPV of algorithm algoj  in time slot t is higher 
than that of algorithm algoi in the same time slot; This implies that the 
threshold allocated by algoi leads to lesser violations as compared to algoj  
and thus, is preferred over algoj .

The proposed infrastructure required for this brownout implementation 
is shown in Figure 11.1 and is briefly described below. When a region’s 

Table 11.1  �Semantics of notations

Notation Semantics

 Dt
Load threshold allocated by the utility to the distribution region for 
time slot t

 H� � Set of households present in the distribution region

 t Time slot

 S Slot size

 lt h, Power consumption of household h  in time slot t

 li h,
’ Power consumption of household h  at time instance x

 lh
max Maximum power that may be consumed by household h

 algo Load threshold allocation algorithm

 d ht
algo �� �� Local load threshold allocated to household h  by algorithm algo  in 

time slot t

 rrturn Household id that is selected for maximum load threshold allocation 
while implementation of round robin based threshold allocation

 vcnth Number of violations incurred by household h
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power demand is high enough to cause the grid to become overloaded, the 
utility decides to restrict the region’s power consumption. In a neighbor-
hood, a controller is present that receives data on energy consumption from 
the power meters installed in each home. It assigns the threshold load to 
each household in the region using the algorithms developed in this chapter. 
If a household’s power consumption exceeds the load threshold set by the 
controller, then the controller transmits this information to the utility and 
the household is penalized. This assists the utility in regulating the energy 
demand of residential customers.

A load threshold allocation should ensure that all households in the dis-
tribution region are treated fairly. Fairness in threshold allocation is neces-
sary because it prevents certain households from starving. The developed 
algorithms utilize various heuristic criteria to fairly assign thresholds to 
households. All algorithms discussed in this chapter receive as input the 
time t and threshold Dt  allocated to the region by the utility. Their specifics 
are described below.

Household 11

Household 1H

Controller

Distribution Region 1

Household R1

Household RH

Controller

Distribution Region R

UTILITY

Power meter

Figure 11.1  �Proposed layout for implementing the novel load threshold allocation 
algorithm.
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11.3.1 � Equal threshold allocation

This algorithm ensures that all households in a distribution region are allo-
cated equal load threshold. The details are presented in Algorithm 1.

In terms of implementation, this algorithm is the simplest of all algorithms. It 
functions well when households have comparable energy consumption needs 
during a given time period. In scenarios in which some households have high 
power demands and others have lower power demands, this algorithm will 
result in a high MPV of the region, as households with high power demands 
will have higher violations and households with lower demands will waste a 
(significant) portion of their allotted thresholds. Therefore, this algorithm does 
not adapt to the fluctuating (electricity consumption) needs of households.

11.3.2 � Proportion threshold allocation

To overcome the drawback of equal distribution, in this algorithm, power 
threshold allocation is done proportionally. The ratio is calculated as power 
demand of each consumer to the aggregate demand of the neighborhood. 
This is presented in Algorithm 2.

Unlike the equal allocation of load threshold, this algorithm takes into 
account the varying energy consumption requirements of different house-
holds. Nonetheless, it has the following flaws: (a) it does not incentivize 
households with lower power demands, and (b) it unfairly assigns high load 
thresholds to households with high power demands; the consumer can thus 
unfairly increase its demand to get higher power threshold allocation from 
this algorithm.

11.3.3 � Power usage ratio based threshold allocation

A household with a lower energy consumption cannot be considered supe-
rior to one with a higher energy consumption. This is due to the fact that 
a home with more residents, appliances, and square footage will consume 
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more electricity than one with fewer residents, fewer appliances, and a 
smaller square footage. Therefore, assigning a higher threshold to house-
holds that consume less energy is not a fair method of allocation. In this 
regard, the primary heuristic used by Algorithm 3 to allocate load thresh-
olds is the ratio of a household’s power consumption in the preceding time 
slot to the maximum power it could have consumed.

This facilitates equitable distribution among households. On the basis of 
this ratio, households are ranked, and those with lower values are assigned 
higher load thresholds. Therefore, this algorithm rewards households 
whose power consumption behavior is more prudent and frugal – a feature 
absent from proportional distribution. This results in fewer violations of 
household-specific thresholds.

11.3.4 � Round robin threshold allocation

Algorithm 4 allocates load thresholds in a round robin manner, explained 
as follows:

•	 rrturn is initialized with the minimum household id in the respective 
distribution region.

•	 in a given time slot t, rrturn is initialized with the threshold that is 
minimum of available threshold and maximum power demand of this 
household.

•	 if any threshold is available to be distributed amongst other house-
holds, it is then distributed amongst them using any allocation 
algorithm.

•	 rrturn is then initialized with the id of next household (using Next 
function) in the respective distribution region.



298  Photovoltaic Modules﻿

This process is repeated for every time slot. Unlike other algorithms, it gives 
a fair chance to every household at least once in every H  time slots to fulfill 
maximum power demand. But the disadvantages of this approach are as 
follows:

•	 MPV of households that are allotted the remaining threshold will be 
very high since the remaining threshold is generally very less.

•	 household with id as rrturn that is allowed to satisfy its maximum 
power demand may waste the allotted threshold since this household 
may not consume its maximum power at this given time slot.

•	 if the number of houses is very large in number, then a household will 
have a higher waiting time when it can satisfy its full power demand.

11.3.5 � Violation-based threshold allocation

Algorithm 5 uses the violation count as a heuristic to allocate threshold 
– as one of the requirements for load threshold allocation algorithms is 
minimal violation across all households. It keeps track of the number 
of instances in the past in which the household’s power consumption 
exceeded the load threshold allotted for the respective time slot. This is 
denoted by vcnth, where h is the household. On the basis of this number, 
households with a greater number of violations are assigned relatively 
lower load thresholds.
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This algorithm gives preference to households with a history of committing 
fewer violations. Thus, it encourages households to avoid exceeding assigned 
load limits. However, if a household has a very high violation rate during a 
specific time slot, the algorithm will punish this household for a very long 
period of time. Thus, even if the household’s behavior improves, the fair allo-
cation of threshold to this household will take a considerable amount of time.
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11.3.6 � Optimal threshold algorithm

The utility prefers a load threshold allocation algorithm that has a lower 
MPV. A particular algorithm among the algorithms discussed thus far may 
have a low MPV value in one time slot, but none of them guarantees a 
minimal MPV in all time slots. Before the start of each time slot, it simu-
lates these algorithms and calculates their MPV values (using the function 
get_MPV); it then selects the allocation algorithm with the smallest MPV 
value. This results in a load threshold allocation with minimal MPV across 
all time slots. Set algorithms� � is initialized with the list of threshold alloca-
tion algorithms. The output of the 6 algorithm is as follows:

•	 optimalt
algo : algorithm algo with minimum MPV value in time slot t 

that is selected by the optimal algorithm
•	 optimal ht

d � �: load threshold allocated by the optimal algorithm to 
household h in time slot t

•	 meant
mpv : mean of the MPV value of the optimal algorithm in time 

slot t across all the households

The primary benefit of this algorithm is that it guarantees a minimum 
amount of MPV in each time slot. In addition, it is more comprehensive in 
terms of load threshold allocation fairness because it takes into account dif-
ferent algorithms in different time slots; thus, a household whose threshold 
is not allocated fairly due to a particular algorithm will be allocated fairly 
by another algorithm. Therefore, it prevents households from going without 
load threshold allocation.
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11.4 � RESULTS AND EVALUATION

This section describes and compares the outcomes of applying various algo-
rithms developed in this chapter to an actual dataset.

11.4.1 � Dataset

Dataset description: Smart* Dataset [33] is the dataset used to evaluate the 
developed algorithms. It contains minute-by-minute electricity consump-
tion data for over 400 anonymous households. To understand the efficacy 
of the developed algorithms, a 20-household distribution region is consid-
ered. In the case study examined in this chapter, a total of 24 one-hour time 
slots are examined. The total power consumption of a given time slot is 
calculated as the median of the power consumption values that exceed the 
75th percentile for that time slot. This is a more accurate representation of 
the power consumption in that time slot than the mean or median value. 
As shown in Figure 11.2, the load threshold allocated by the utility to the 
distribution region is simulated as 70–80% (uniform random sampling) of 
the total aggregate power of the distribution region in the given time slot. 
Figure 11.3 depicts the hourly consumption of electricity by each of the 20 
households on the first day of February. The results obtained after applying 
the developed algorithms to the households are evaluated as follows.

11.4.1.1 � Performance of algorithms in the distribution region

MPV (Eq. (11.1)) is utilized to compare the performance of the devel-
oped algorithms. A household-wide algorithm with a lower MPV value is 
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Figure 11.4  �Comparison of algorithms in the distribution region.

preferred over one with a higher MPV value. Figure 11.4a depicts a sum-
mary of algorithms when applied to all of the region’s households. It dem-
onstrates that MPV of the optimal algorithm is the smallest across all time 
slots. Thus, the objective of having lowest MPV is achieved by this novel 
algorithm. Figure 11.4c displays a box plot depicting the MPV value for 
each algorithm. It indicates the algorithmic variation in relation to their 
MPV values. The following conclusions can be drawn from this graph:

Figure 11.3  �Power consumption of all the households for a given day.
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•	 Proportion-based allocation has the lowest standard deviation but the 
highest median of all algorithms. This indicates that the MPV values 
for all time slots are high. Even an outlier exists with a MPV value 
greater than 80%.

•	 The second quartile ranges of the round robin and violation algo-
rithms are nearly identical, but the median of the round robin algo-
rithm is higher than that of the violation algorithm.

•	 The usage algorithm has the lowest median, which is why it is chosen 
the most frequently by the optimal algorithm.

•	 Because the optimal algorithm has the lowest MPV value across all 
time slots, its second quartile range is less than that of the usage 
algorithm.

In Table 11.2, the various algorithms selected by the optimal algorithm 
in each time slot are described in detail. The optimal algorithm allocates 
load thresholds based on the power usage ratio 54.17% of the time. Equal 

Table 11.2  �Algorithms selected by the optimal algorithm in each time slot

Hour of the Day Algorithm with minimal MPV value MPV value

0 Equal 65.6
1 Usage 57.24
2 Violate 61.96
3 Round robin 74.3
4 Equal 68.1
5 Violate 66.05
6 Round robin 66.98
7 Usage 63.19
8 Usage 51.52
9 Usage 55.38
10 Usage 56.72
11 Usage 59.49
12 Usage 58.17
13 Usage 47.18
14 Violate 55.14
15 Usage 56.39
16 Usage 58.79
17 Usage 53.1
18 Equal 51.86
19 Equal 54.21
20 Usage 46.77
21 Equal 59.34
22 Usage 65.36
23 Round robin 52.1
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threshold allocation is chosen 20.83% of the time, while round robin and 
violation-based threshold allocation are chosen 12.5% of the time each. 
Therefore, the equal allocation method is superior to the violation and 
round robin allocation methods. The proportion allocation algorithm is 
never chosen by the optimal algorithm; consequently, allocation based on 
their relative power demand does not significantly decrease the MPV value. 
In comparison to other heuristics for threshold allocation, it can be con-
cluded that allocation based on the power usage ratio of each household has 
the greatest effect on the MPV value of the region. Thus, to minimize the 
MPV value across all households, the optimal approach allocates threshold 
primarily based on the power usage ratio of the households, as the usage 
algorithm dominates threshold allocation in the majority of time slots.

11.4.1.2 � Performance of algorithms at household level

Figure 11.5 depicts the MPV value for each household according to the algo-
rithms. Although the optimal algorithm has the lowest MPV in each time 
slot for each distribution region, it may not be the lowest at the household 
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level. Consider, for instance, House 1. During the first eight hours, the 
optimal algorithm does not have the minimum MPV value for House 1. 
Figure 11.4 depicts the mean MPV of all households for a given time slot, 
which is the lowest for the optimal algorithm in each time slot. Figure 11.6 
illustrates the time instances in which each household violated the load 
threshold, with the thick line representing the power consumption of each 
residence and the other lines representing the load thresholds allocated by 
various algorithms.

11.4.1.3 � Overall behavior of the algorithms

Figure 11.7 depicts a box plot for each algorithm applied to all households. 
It indicates the range of MPV values. The following are the conclusions 
drawn from this boxplot:

•	 From Figure 11.3, it can be seen that the power consumption of House 
4 is generally lower than that of other houses during all time slots. As 
shown in Figure 11.7, the MPV values for this residence’s equal, usage, 
and violation algorithms are low. This is due to the fact that these 

00 5 10 15 20 25
Hours of the Day

Pp
w

er
 [W

]
Equal

8000
6000
4000
2000

0
8000
6000
4000
2000

0
8000
6000
4000
2000

0
8000
6000
4000
2000

0
8000
6000
4000
2000

0

Usage Ratio Round Robin power
HybridViolationProportion

House 1 House 2 House 3 House 4

House 5 House 6 House 7 House 8

House 9 House 10 House 11 House 12

House 13 House 14 House 15 House 16

House 17 House 18 House 19 House 20

5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25
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algorithms incentivize this low consumption behavior, whereas round 
robin and proportional allocation do not.

•	 Equal algorithm reveals high MPV values for the majority of houses 
(Figure 11.7a). This is due to the fact that it does not account for the 
energy needs of households. Consequently, Houses 4, 15, 16, 19, and 
20 with a lower power consumption profile have lower MPV values. 
The majority of the allocated threshold for these residences is lost due 
to their low consumption. As a result, other homes have high MPV 
values. Figure 11.7b depicts that the proportion allocation algorithm 
has a high violation rate for all houses. Therefore, it is never chosen by 
the optimal algorithm for threshold allocation to regional households.

•	 Figure 11.7c depicts that the MPV values for the majority of houses 
are on the low end for the algorithm based on the power usage ratio. 
This algorithm intelligently considers the ratio of power consumed 
to the maximum power consumed by the household. Consequently, 
it modifies the threshold allocation such that lower MPV values are 
observed in the majority of households and is chosen the most fre-
quently by the optimal algorithm (Figure 11.7f).

•	 Similar to the equal allocation algorithm, the violation-based algo-
rithm results in lower MPV values for Houses 4, 15, 16, 19, and 
20 (Figure 11.7d). As a result of these households’ lower energy 

(a) Equal Distribution (b) Proportion Distribution (c) Power Usage based Distribution

Figure 11.7  �Box plots denoting MPV of the algorithms.
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consumption, fewer violations are observed in these homes. In con-
trast, the number of violations is high for other households. This algo-
rithm is only selected 12.5% of the time by the optimal threshold 
allocation algorithm.

•	 Round robin algorithm has MPV on the higher side (Figure 11.7e). 
This is primarily because in each time slot, household rrturn that is 
selected to fulfill its maximum demand might not want to consume 
maximum power at that time slot; consequently, the remaining thresh-
old after the allocation to this selected household is generally very less 
to satisfy the demands of other households satisfactorily. This leads to 
high MPV values for the remaining houses.

11.4.2 � Evaluation of algorithms using other metrics

Until now, the algorithms have been evaluated using MPV as the evalua-
tion metric. MPV represents an average percentage of algorithm violations 
across all the homes in the neighborhood for different time slots throughout 
the day. However, averaging the violations does not always reveal the signif-
icant violation that may have occurred at a specific residence. Consequently, 
the algorithms have also been evaluated based on a standard statistical met-
ric known as the L2 norm, and the results will be represented as L viol2 . It 
represents the squared difference between the percentage of violations that 
occurred in each home and the lowest possible violation rate for each home. 
It is represented by the equation 11.2.

	 L viol viol h viol ht
h H

t t
min2 2� � � � � �� ��

�
�

�

�
�

� �� �
� 	 (11.2)

where viol ht � � represents percentage violation of house h in time slot t, and 
viol ht

min � � represents minimum percentage violation of house h in time slot 
t. In the best-case scenario, the minimum percentage of violations across all 
residences and time periods of the day could be zero. The obtained results 
are depicted in Figure 11.8.

In comparison to other algorithms used for load threshold allocation, 
the value of the metric L viol2  is lowest for the optimal algorithm across all 
time slots of the day, as depicted in the figure. L viol2  can also be calculated 
for various algorithms on a given day by applying metric L2 norm to the 
MPV  values of each algorithm for various time slots. This metric is denoted 
by the symbol L viol2 ′.

Table 11.3 displays the value of the L viol2 ′ metric for various algorithms 
on a given day. From Table 11.3, the following are the observations:

•	 Proportion algorithm has the highest L viol2 ′ metric value signifying 
that it leads to the highest overall violations.

•	 Amongst all the load threshold algorithms (except the optimal algo-
rithm), the usage ratio algorithm has the minimum L viol2 ′ value.
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Figure 11.8  �L viol2  value of load threshold algorithms for different time slots.

•	 Round robin algorithm has a higher L viol2 ′ value as compared to 
equal and violation algorithms.

•	 Equal and violation algorithms have an almost similar value of L viol2 ′ 
metric.

•	 The optimal algorithm has a minimum metric value.

These violation patterns are also observed in Figure 11.4c for the MPV 
metric. As a result, it can be confirmed that the optimal algorithm allocates 
the load threshold with the least violations across all time slots, relative to 
other algorithms.

Table 11.3  �L2viol’ values of different load threshold algorithms for the given day

Algorithms used for load threshold allocation L2viol’ value for the given day

Equal 313.36
Proportion 352.07
Usage Ratio 297.60
Violation 313.21
Round Robin 326.39
Optimal 288.66
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11.5 � CONCLUSION

It is essential to ensure that a minimal percentage of the allocated thresh-
old for households is violated during all time slots. Additionally, house-
holds should be allocated thresholds fairly. In this regard, this chapter has 
developed and tested (using a dataset from the real world) five algorithms 
that use various heuristics to allocate thresholds fairly to households. After 
evaluating all of the results, it is possible to conclude that the novel optimal 
algorithm ensures minimal percentage violations (using MPV  and L viol2  
metrics) in each time slot and prevents households from getting starved 
in terms of threshold allocation. The results encourage us to adopt this 
approach in the practical and effective implementation of brownouts for 
managing the electric grid’s peak power consumption demand.
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Chapter 12

Using a novel game theory 
auctioning framework for 
trading energy in smart grids

Anshul Agarwal

12.1 � INTRODUCTION

According to a report by the International Energy Agency, non-renewable 
energy sources account for 80 to 85% of all the electricity produced in India 
[1]. Furthermore, peak consumption hours are when power demands are at 
their highest [2]. In order to meet peak demand, utilities must operate their 
backup power plants, which are not environmentally friendly and raise the 
cost of electricity per unit. Many developing nations lack the infrastructure 
necessary to meet these expanding demands. They consequently experi-
ence a serious power shortage. In this regard, the use of renewable energy 
sources as a substitute for traditional energy sources is encouraged. This is 
accomplished by combining both renewable and traditional energy sources 
and implementing a two-way or bi-directional communication architecture 
in smart grids [3]. Prosumers (those who produce and consume energy [4])) 
and utilities both gain from the smart grid in different ways. Prosumers, for 
instance, can earn from trading the extra energy they produce locally [5, 6]. 
Various policies and programs are also put into place by the government to 
encourage and promote the usage of renewable energy sources [7, 8]. The 
infrastructure for two-way communication offered by the smart grid makes 
this possible. The research and studies cited in [9] offer a summary of the 
many technologies and cutting-edge communication needed to establish a 
smart grid system. Because smart grids are complicated systems, reliable 
solutions and methods are required to make the energy trading process 
easier to execute [10].

The smart grids can implement peer-to-peer energy trading. A detailed 
review of the recent advances in the application of game-theoretic methods 
to local energy trading scenarios is presented in [11]. An extensive descrip-
tion of a complete game theory-based energy trading framework is pre-
sented. Game-theoretic approach is proposed by Liu et al. [12] to optimize 
the storage capacity and energy consumption considering the uncertainty 
of distributed generation. Sun et al. [13] have proposed a distance-oriented 
method for maximizing coalition utilities to guide the order of transac-
tions in a coalition, and the corresponding coalition utility, thus, would be 

Photovoltaic Modules Game-Theoretic Energy Auction Model

DOI:  10.1201/9781003623168-16

10.1201/9781003623168-16

http://dx.doi.org/10.1201/9781003623168-16


﻿Game-Theoretic Energy Auction Model  313

Game-Theoretic Energy Auction Model

fairly allocated by the Shapley value. Li et al. [14] discuss a tri-layer non-
cooperative energy trading approach among multiple grid-tied multi-energy 
microgrids (MEMGs) in the restructured integrated energy market. In the 
literature, several difficulties related to power limit distribution and PMU 
allocation in smart grids have been discussed [15​–17]. A three-level game-
play-based intelligent structure to evaluate individual and collaborative 
strategies of electricity manufacturers, considering network and physical 
constraints, is proposed by Moafi et al. [18]. Two iterative algorithms are 
proposed in [19] for the implementation of energy trading such that an equi-
librium state exists in each of the games. A hierarchical system architecture 
model is proposed by Zhang et al. [20] to identify and categorize the key 
elements and technologies involved in P2P energy trading. Prosumers can 
communicate on a P2P market platform using either a centralized approach 
[21] or a decentralized approach [22]. To reduce power losses, authors of 
[23] have suggested installing distributed generation (DG) and capacitors 
in the distribution system at the best possible location and size. Authors of 
[24] have suggested a novel strategy to reduce the amount of energy used 
by the computer center. But the discussed approaches do not integrate P2P 
energy with auction and forecasting models – which help in higher savings 
and increased user satisfaction.

To make P2P techniques more pragmatic for consumers to adapt to, there 
is still room for development. In this regard, the primary contribution of 
this chapter is the development of a P2P energy trading framework that 
incorporates an auction-based game theory method. This boosts cost sav-
ings for prosumers and consumers compared to trading with the primary 
energy provider or utility directly. Demand, storage capacity, and transmis-
sion line costs are other factors that are taken into account while developing 
the novel framework. To further analyze the performance of P2P energy 
trading framework using auctions, it is integrated with forecasting models 
that predict energy price, production, and consumption – this serves as the 
second major contribution of this chapter. To test the effectiveness of the 
developed framework, a simulation test bed that consists of trading energy 
among a set of hundred buildings and an energy supplier or utility has been 
discussed.

12.2 � METHODOLOGY

Our novel framework allows individuals who both produce and consume 
energy (called ”prosumers”) and consumers to trade energy with each other 
and with their primary energy provider using various game theoretic auc-
tion models. For evaluation of the framework, a simulation test bed featur-
ing a grid of buildings connected to a main energy supplier has been created. 
The simulation examines four different peer-to-peer (P2P) auction models. 
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In addition, the framework has also been integrated with forecasting mod-
els that predict energy prices, production, and consumption of buildings. It 
will be later discussed how the integration of forecasting models leads to a 
change in the performance of the trading approach. The developed frame-
work consists of several modules, which are discussed below.

12.2.1 � Smart grids

The various components of the smart grid include energy storage units, 
smart meters, demand supply management, electric vehicles, smart appli-
ances, renewable energy resources, self-consumption, and transmission 
automation, as shown in Figure 12.1. Smart Grid uses sensors through-
out the transmission and distribution to collect the data and provide bi-
directional communication between users. The users in smart grid are 
consumers, producers, and prosumers. The prosumers are the ones who 
can produce and consume the energy. These prosumers when integrated 
into smart grid with the use of distributed energy resources help in balanc-
ing the demand supply management as it will increase the possibilities of 
distributed generation; for example, consuming the energy generated from 
a resource located nearby (like the solar panel of the home) rather than the 

Figure 12.1  �Peer-to-Peer energy trading model.
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one generated at the main utility might be more efficient and economical 
as the distance from generation to consumption is reduced. The concept of 
two-way communication helps in improving electric power interactions for 
both utilities and end users (consumers and prosumers). This also provides 
more visibility and control over the consumption of energy. In this regard, 
a peer-to-peer (P2P) energy trading model has been discussed in this work; 
it is represented in Figure 12.2.

For the current work, a set of hundred buildings are simulated in a grid 
of 10 by 10. Buildings in the designed grid are positioned along its width 
and height at specific locations (x, y). There is a primary energy supplier 
for the grid at location (−1, −1). Consumers and prosumers calculate their 
(Manhattan) distance from the utility when transacting with it. There is an 
assumption that sending power over a greater distance will be more expen-
sive since it will be less efficient due to higher losses; this leads to increases 
in line payment costs. The following formula is used to determine the dis-
tance d i j,� � , which represents the separation between the seller at position 
( x yi i, ) and buyer at the position ( x yj j, ):

	 d i j x x y yi j i j,� � � � � �| | | 	 (12.1)

Having calculated the distance between buyer and seller, the next step is 
to calculate building’s excess energy, which is based on its production and 
consumption. After self-consumption, if the building still has excess energy, 
it stores it in an energy storage system. The grid receives the excess energy 
that cannot be stored by the energy system of buildings. The buildings 
exchange energy with one another using the P2P energy trading framework.

Figure 12.2  �Peer-to-Peer energy trading model.
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Depending on how much energy each building can store ( Ea ), the build-
ings are classified as either buyers or sellers. Buildings are classified as 
buyers if Ea < 0 , otherwise they are considered as sellers. The building typ-
ically purchases energy directly from the grid once per day if P2P trading is 
unable to meet its demand.

12.2.2 � Game theory approach: auction mechanisms

A game is defined as a competitive activity where the players or agents 
compete to maximize their own profit according to a set of rules. Thus, it 
consists of a set of players, the corresponding actions or strategies available 
for each player and the utility or payoff function that determines the profit 
of each player when a particular action or strategy is chosen. In this regard, 
auctions can also be considered as games since the bidders participating 
in the auctions are considered as players or agents of the game; the bid(s) 
placed by the bidders represent their actions in this auction game; and the 
profit or utility is generally defined as the difference between the bid and the 
corresponding valuation that the bidder has associated with the item being 
auctioned. Thus, in this work, auction is used as the primary game theory 
tool for providing a pragmatic solution to the problem of energy trading.

For presenting a complete analysis of the energy trading market, there 
are four different auction models that are discussed under the category of 
open bid and closed bid auctions. Properties and rules are different for each 
auction type, and thus, the strategies of buyers and sellers also change. This 
results in different price allocations to the energy being auctioned.

12.2.2.1 � Open bid auctions

In these types of auctions, the bids put forward by the bidders are known to 
all the bidders. In the energy trading market, the prosumers and consumers 
are the bidders. The bidders can only communicate with the buyers and no 
communication among the bidders is permitted. Set S S S Sn� �� �1 2, ,  rep-
resents the set of sellers; each seller Si  contains stored energy that the seller 
is willing to sell as E E E Ea a a an� �� �1 2, , ,  for the corresponding seller Si. 
Set P P P Ps n� �� �1 2, , ,  denotes the starting price decided by each seller Si. 
Set B B B Bm� �� �1 2, , ,  represents the set of buyers; their respective private 
valuations of the energy to be traded are denoted by P P P Pb m� �� �1 2, , , , 
respectively. Using Equation 12.1, the distance between a seller Si  and a 
buyer Bj  is calculated and represented as d i j,� � . The two types of open 
bid auctions discussed in this work are as follows:
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12.2.2.1.1 � English auction model

English Auction is an ascending dynamic auction. It follows an open bid 
auction mechanism. This auction follows an iterative algorithm. A starting 
bid is set and anybody is able to bid on the auction for that price or greater. 
After the first bid, bidders have to raise the price in an amount greater than 
a predetermined minimum increment. After each bid, the bidders drop out 
until only one bidder remains. The last one to remain is the winner and pays 
an amount equal to its bid placed at the last round. If nobody bids after the 
start of the auction, then the price is lowered by a lowering increment that 
is fixed till it reaches the fixed price set by the seller; still if no one bids, then 
the auction just ends.

The minimum increment ( MIi ) for each bid is calculated based on the 
initial price and an increment percentage ( IP ) is set to 2%; this implies a 
two percentage increase in the initial price. It is calculated as follows:

	 MI P IPi i� �’
	 (12.2)

where Pi
’  is the initial price of seller S Si ∈  . In addition, a lowering incre-

ment ( LI ) is also initialized to decrease the price if there are no bids after 
the start of the auction.

The set B  is iterated, and a Buyer say Bj  starts the auction and its mini-
mum cost value MCj  is set to its private value. Each seller S Si ∈  is at a cer-
tain distance d i j,� �  from the buyer Bj  and so the cost C i j,� �  is calculated 
by the buyer Bj  to each of these sellers based on distance and price of that 
seller that is open to the buyers as:

	
C i j P d i j di p, ,� � � � � ��� �’

	 (12.3)

where dp  is the line payment cost.
The buyer Bj  can offer bid Bid  to a particular seller Si only if: 

C i j MCj,� � � . The bid Bid  is calculated as follows:

	 Bid P MIi i� � 	 (12.4)

The bid is placed by the buyer Bj  if Bid MBi> , where MBi  is the mini-
mum bid. The process is iterative, with each buyer adhering to the same set 
of guidelines, and the bids are updated and raised in the order described 
above. If the new buyer submits a higher bid, the previous buyer withdraws, 
leaving the seller and the buyer who submitted the highest bid. After the 
auction is over, the seller gives the item (that was auctioned) to the highest 
bidder. After establishing the starting bid, if no bids are received, the seller 
reduces its value as follows:
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P P LIi i

' '� �
	 (12.5)

12.2.2.1.2 � Dutch auction model

Dutch auction uses the concept of a descending price auction. It comes 
under the category of open bid auction type. Up until a willing buyer makes 
a bid, the seller sets a starting bid and reduces the price by decrementing the 
starting bid’s value. The auction is won by the first bidder, who also gets the 
specified amount of energy for the bid price. The maximum starting price 
or bid that will start the auction is set by each seller in set S . The current 
starting bid SBi  is calculated as follows:

	 SB P D di i p� � �� �' 	 (12.6)

	
P SBi i=

	 (12.7)

where D  is the maximum distance possible between a buyer and a seller. 
The bidding ends when it is equal to a reserved price RPi  that is set by the 
seller. Initially, RP Pi i= ’  . The value of the lower increment ( LIi ) is set as 
0.05; this implies that the original price decreases by five percentage. The 
buyer Bj  checks which seller has not sold the energy yet and calculates the 
cost C i j,� �  based on distance and price from seller Si  (as calculated in 
Equation 12.3).

Each buyer in the buyer set B  calculates its minimum cost, which is its 
private value that they are ready to buy the energy amount for. This value 
is based on its place or position in the grid. The set is iterated and a Buyer 
say Bj  starts the auction and its minimum cost value MCj  is set to its 
private value Pj . The buyer offers the bid to a particular seller Si  only if 
C i j MCj,� � � .

Seller Si  sells the energy to the first buyer to place a bid after satisfying 
the above condition. If the energy is not sold after every iteration, the seller 
compares the lowered price to its reserve price. If this lowered price is less 
than the reserve price, the auction ends; otherwise, the lowered price is now 
the seller’s current price, and the bidding goes on. The buyer compares its 
price to the updated value once more and adjusts the bid as necessary.

12.2.2.2 � Sealed-bid auctions

In this auction type, bids are submitted simultaneously but in a secretive 
manner. This implies that no bidder is aware of the bids submitted by other 
bidders. The seller will gather all bids before awarding the auction to the 
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highest bidder, who will then pay the price of its bid. The bids are submitted 
in only one iteration of this mechanism. The sellers do not start the auction 
with a starting price or bid because it is a sealed bid. The buyers will submit 
their bids to the seller while adhering to certain guidelines.

12.2.2.2.1 � First Price auction model

The term blind auction is used to describe the First Price auction. The 
sealed-bid auction method is used in this auction. The buyer’s bid is slightly 
less than its true private value because the winning bidder will be required 
to pay his or her price or placed bid. The buyer determines the expected cost 
of each seller based on the estimated price. The buyer uses this price as the 
basis for deciding whether to submit a bid to the seller. Using private value 
information Pj  and taking the seller’s distance d i j,� �  into account, the 
buyer submits a bid Bid i j,� �  to the relevant seller Si , which is calculated 
as follows:

	 Bid i j P d i j dj p, ,� � � � � ��� � 	 (12.8)

This procedure is followed by all the buyers, and they place their bid to the 
respective sellers accordingly. The seller then compares the highest bid value 
that it has received with its initial price; if the value of the bid is greater than 
the initial price, then the buyer placing this highest bid wins and pays its 
respective bidding price.

12.2.2.2.2 � Vickrey auction model

The Vickrey auction, which uses the sealed-bid mechanism, is based on the 
concept of second price auction. The winner (buyer) pays an amount equal 
to the second highest bid in the entire auction. The procedure for gathering 
bids and starting the auction is the same as for a First Price auction, with 
the exception that when a bidder places a bid, it bids its true private value 
Pj . In the Vickrey auction model, the second highest bid will now be paid 
by the auction winner (that placed the highest bid).

After the conclusion of each of the aforementioned auctions, the total 
amount of energy and the balance of buyers and sellers are updated based 
on the amount of energy sold.

12.3 � RESULTS AND DISCUSSION

The effectiveness of the developed framework is tested on the simulation 
test bed (details as discussed in Section 12.2.1). The buildings in smart 
grids trade energy using both mechanisms during the model’s 100-day 
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simulations. Results are compared for primarily two cases: (a) direct trad-
ing with the utility or main energy supplier in the smart grids and (b) P2P 
trading. Smart grids have been simulated for 100 days. An auction is chosen 
from the English, Dutch, First Price, and Vickrey auctions for each simula-
tion. Support vector regression (SVR) mode is chosen as the forecasting 
model in this study. The results are analyzed for three types of models that 
consist of forecasting models and auctions. The details of these models are 
discussed as follows:

	 1.	M0 model: The auctioning is conducted among the buildings or users 
without a forecasting model

	 2.	M1 model: A forecasting model for price prediction is used while con-
ducting auctions. Each bidder, Bj  determines the minimum cost MCj  
that is its true value on which they are ready to bid and purchase the 
amount of energy being auctioned. For evaluating the developed mod-
els, Support Vector Regression (SVR) is used as the forecasting model.

	 3.	M2 model: When auctioning energy, the building uses an energy pro-
duction and an energy consumption prediction model. In this model, 
the buildings predict the energy production and consumption values 
of the grid for that period, after the total energy TE  is calculated. If it 
is anticipated that more energy will be produced, then that additional 
energy will be added to the amount of energy stored for trading; if it 
is anticipated that more energy will be consumed, then this additional 
energy will be subtracted from the stored energy value. Buildings or 
prosumers will use this total calculated energy amount to engage in 
P2P energy trading.

Buildings or prosumers are the sellers of energy when it is sold to the util-
ity, and the utility acts as the buyer. The following information is gathered 
for all prosumers or buildings participating as sellers in the energy trading 
activity with the utility based on the amount of energy sold.

AGS: Amount of money earned in selling energy to the grid
LGS: Line payment cost of selling energy to the grid
EGS: Energy sold to the grid

Average grid sell cost GCS  per unit of energy for all the buildings is calcu-
lated as:

	 GCS AGS LGS EGS� �� � / 	 (12.9)

Buildings or prosumers are the buyers when energy is purchased from a 
utility, and the utility acts as the seller. The following information is gath-
ered for all prosumers or buildings participating as buyers in the trading 



﻿Game-Theoretic Energy Auction Model  321

of energy to the utility based on the quantity of energy purchased from the 
grid.

AGB: Amount of money spent buying energy from the grid
LGB: Line payment cost buying energy from the grid
EGB: Energy bought from the grid

Average grid buy cost GCB  per unit energy for all the buildings is calcu-
lated as:

	 GCB AGB LGB EGB� �� � / 	 (12.10)

Thus, the average grid cost GC  is computed as follows:

	 GC mean GCS GCB� � �, 	 (12.11)

When energy is traded using a peer-to-peer (P2P) model, sellers with excess 
energy sell it to buyers who require it to meet their needs. For all the pro-
sumers or buildings, the following information is gathered based on the 
volume of energy traded in P2P.

DA: Amount of money traded in auction
EA: Energy traded in auction
LA: Line payments cost in auction while selling the energy

For all buildings, the average auction buy cost AB  per unit of energy is 
calculated as follows:

	 AB DA LA EA� �� � / 	 (12.12)

For all buildings, the average auction sell cost AS  is determined as follows:

	 AS DA EA= / 	 (12.13)

In P2P energy trading, the average auction cost AC  is calculated as follows:

	 AC mean AS AB� � �, 	 (12.14)

Using the average values calculated above, the following metrics are used 
to evaluate the performance of the developed framework when P2P energy 
trading is adopted as opposed to direct trading with the utility.
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12.3.1 � Average cost % advantage

The first metric demonstrates the advantage of trading energy through auc-
tions over trading with the grid in terms of the average cost of energy trad-
ing. The calculation for this metric is as follows:

Auction Buying % advantage:

	 �B GCB AB� � �/ 	 (12.15)

Auction Selling % advantage:

	 �S GCS AS� � �/ 	 (12.16)

Auction Trading % advantage:

	 �A GC AC� � �/ 	 (12.17)

where GC  represents average grid cost (Equation 12.11) and AC  denotes 
average auction cost (Equation 12.14).

Figure 12.3 represents the percentage advantage collected while buy-
ing energy using P2P trading model as compared to buying from utility in 
smart grids directly. Highest advantage while buying the energy is observed 
for the English auction; it is followed by the Vickrey, First Price, and Dutch 
auctions. It can be observed that integration with the forecasting model to 
predict the prices (M1 model) gives higher advantage to all the different 
auction types. On the other hand, use of forecasting for energy production 

Figure 12.3  �Percentage advantage accrued while buying energy.
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Figure 12.4  �Percentage advantage accrued while selling energy.

and consumption has an adverse effect and leads to reduction in advantage 
metric for all auction types.

Figure 12.4 represents the percentage advantage accrued while selling 
energy to the grid. It can be observed that the English auction produces the 
maximum percentage of advantage as compared to other types of auctions; 
it is followed by the Vickery, the First Price, and lastly the Dutch auction 
– that has the minimum value of the advantage metric. However, when 
forecasting models for energy production and consumption are used (M2 
model), the value of the advantage metric for the Dutch auction performs 
better than that of the First Price and the Vickery auction. It can also be 
observed that using the M1 model (that is using the forecasting model to 
predict the prices) helps the prosumers while selling the energy; and using 
the forecasting model to predict consumption and production, however, 
does not tend to make any significant difference in the overall metric value.

In terms of the average cost of the energy traded in smart grids, Table 
12.1 and the graph in Figure 12.5 illustrate the benefit of trading using an 
auction mechanism. In the absence of a forecasting model, the average cost 
efficiency of the English auction is 54.79%, but it increases to 59.55% when 
a price forecasting model is implemented. Nonetheless, the integration with 
the energy generation and consumption model results in a reduction in effi-
ciency. The English auction is followed by the Vickrey auction, which again 
demonstrated an increase in average cost efficiency when integrated with 
the M1 model. The efficiency of the First Price auction is 18.72%, which 
is comparable to the efficiency of the Vickrey auction for the M1 model. 
The Dutch auction performs poorly with the M0 and M1 models, but effi-
ciency improves when the M2 model is implemented. This metric takes into 
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account the average grid cost of energy and the average cost of energy when 
trading using an auction model to determine the efficiency in terms of cost 
savings per kiloWatt-Hour.

12.3.2 � Savings accrued while trading energy

Auction Trading $ savings: This metric calculates the overall sum of money 
saved by auctioning versus the case where all trading is conducted directly 
with the primary energy provider or utility in smart grids. The metrics are 
calculated as follows: Auction Buying $ savings:

	 �B GCB AB DA� �� �* 	 (12.18)

where DA  represents the amount of money traded in auction.
Auction Selling $ savings:

	 � S GCS AS DA� �� �* 	 (12.19)

Figure 12.5  �Auction trading percentage advantage.

Table 12.1  �Values of auction trading percentage advantage

Auction Type M0 Model M1 Model M2 Model

English 54.7954 59.5540 18.1101
Dutch −5.5392 −3.6322 4.5686
First Price 7.8485 18.7264 5.7266
Vickrey 13.3230 20.1658 5.9960
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Figure 12.6  �Percentage of savings obtained while buying energy.

Auction overall $ savings:

	 �A GC AC DA� �� �* 	 (12.20)

In order to perform the uniform comparison of all the auction scenarios, 
this section presents savings obtained under different auctions in terms of 
cost savings in percentage values.

Auction Buying % savings: This metric represents the percentage of 
money saved while buying energy using an auction as compared to buying 
energy directly from the grid. It is represented by Equation (12.21).

	 � �B B AGB DA LGB LA� � � �� �� �/ 	 (12.21)

Figure 12.6 shows the value of this metric for different auctions with M0, 
M1, and M2 models. It helps us to analyze how much money can be saved 
while buying energy through auction as compared to trading with the smart 
grid directly. It can be observed that for all the auctions integrating with 
the M2 model, the metric value increases only for the English auction and 
not for other types of auction. In fact, for other auctions, the M1 model 
gives the highest savings while buying energy. It may be noted that, overall, 
English auctions are producing the highest savings, followed by the First 
Price, and the Vickery auction; similar to the advantage metric, even here 
the Dutch auction performs the worst. In addition, the use of forecasting 
models for predicting energy production and consumption leads to lowest 
savings of about −0 39. %  (negative savings imply that the amount was paid 
rather than saved).
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Auction Selling % savings: This metric represents the percentage of 
money saved while selling energy to the grid. It is calculated as follows:

	 � �S S AGS DA LGS� � �� �� �/ 	 (12.22)

Figure 12.7 represents the values of percentage savings or returns obtained 
under different auction scenarios. The graph shows that selling the energy 
using the M1 model leads to the highest return for all the auctions, except 
for the Dutch auction – where the M2 model is the only case where actual 
savings are obtained. For Dutch auctions with the M0 and M1 models, 
negative returns are accrued. The M2 model proves to be more efficient 
in helping the prosumers in Dutch auctions to make money. Thus, the M1 
model is preferred for maximum savings in all the auction scenarios except 
Dutch, where the M2 model is preferred. Overall, the English auction 
produces the highest percentage returns, followed by the First Price and 
Vickrey auctions.

Auction Trading % savings: This is an important metric which shows 
the total percentage of amount that is saved by various buildings through 
trading with auctions instead of trading with the main energy supplier. It is 
calculated as follows:

	 � �A A AGS AGB DA LGS LGB LA� � � � � �� �� �/ 	 (12.23)

From Table 12.2 and Figure 12.8, it can be inferred that the English auc-
tion is clearly the most popular auction type, followed by First Price and 

Figure 12.7  �Percentage of savings obtained while selling energy.
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Figure 12.8  �Auction trading percentage savings.

Vickrey; the Dutch auction is clearly by far the least effective. The “Auction 
% Savings” metric depicts the total amount of money that different build-
ings saved by trading with auctions rather than with their primary energy 
provider in smart grids. Integration of the First Price and Vickrey auctions 
with the M1 model works best; integration with the M2 model increases 
the cost savings or returns when compared to the M0 model (not using 
any forecasting models). We can draw the conclusion that in the case of 
sealed-bid auctions, the First Price auction when integrated with the M1 
model has 0.82% savings, while the M2 model has 0.63% savings, both 
of which are higher than the efficiency when traded without using a fore-
casting model. When combined with the M1 model, the Vickrey auction 
also demonstrates improvement in cost savings percentage. Trading with-
out a forecasting model results in cost savings of 0.41%, which increases 
to 0.71% with model M1 and 0.64% with model M2. When model M2 is 
integrated into Dutch auctions, the cost savings rise. Another interesting 
observation is that Dutch auctions do not give good results (except in the 

Table 12.2  �Values of auction trading percentage savings

Auction Type M0 Model M1 Model M2 Model

English 1.2037 1.2333 1.5869
Dutch −0.0748 −0.0402 0.4981
First Price 0.3968 0.8270 0.6392
Vickrey 0.4115 0.7171 0.6446
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case of integration with the M2 model). Overall, it can be concluded that 
the English auction with the M2 model is the most effective auctioning 
method.

12.3.3 � Comparison based on amount of energy 
traded and number of auctions

Table 12.3 details the total amount of energy traded using different auction 
models. Following are the observations drawn from the table:

The amount of energy bought from the utility is higher than the energy 
sold to the grid and energy traded using P2P trading.

In all the auction types, the M2 model leads to a higher exchange of 
energy. This is attributed to the fact that prediction regarding consump-
tion and production of energy leads to better decision making due to more 
information and thus shows higher trading of energy.

For the M1 model, as far as energy is sold to the grid, the Dutch auction 
sells the highest amount of energy to the grid, followed by the Vickery, First 
Price, and English auctions. It should be noted that First Price and English 
auctions sell relatively very less energy to the grid. While buying energy 
from the grid, the Dutch auction again leads the scenario. However, the 
Dutch, First Price, and English auctions buy comparable energy from the 
grid. It is the Vickery auction that buys the least amount of energy from the 
utility. For the M2 model, observations obtained are similar to that of the 
M1 model.

Table 12.3  �Total amount of energy traded in different auction models

​ Energy Traded (kWh)

Models Selling to the Grid Buying from the Grid P2P Trading

English M0 1978.7898 533678.2465 101823.3919
English M1 2012.3957 532704.7854 102524.2562
English M2 2116766.5296 2629834.6501 2259492.9867
Dutch M0 29599.4815 562597.1605 22935.3835
Dutch M1 29803.1590 562930.6127 19255.9939
Dutch M2 1377134.6091 1900831.0437 1412119.5574
First Price 
M0

4524.4044 529003.8345 107686.1051

First Price 
M1

7690.7660 522702.3189 105124.0233

First Price 
M2

2370929.4234 2880699.5688 2624593.9617

Vickrey M0 17475.3308 354713.3638 47362.5157
Vickrey M1 17953.0995 152636.8064 28901.1180
Vickrey M2 2263883.9133 2749322.3472 2381997.6855
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For P2P trading, comparison results are different as compared to trading 
with utility. For M1 model, highest amount of energy is traded with First 
Price auction, followed by the English, Vickery, and Dutch auctions. In 
addition, the energy traded using the First Price and English auctions are 
comparable and very high as compared to the Vickery and Dutch auctions 
– where energy trading is lower.

To understand the effect of forecasting models on different types of auc-
tions, Figure 12.9 represents the total number of auctions conducted under 
each category.

It can be inferred from the figure that English auctions conduct the high-
est number of auctions among all the auctions.

The M0 model conducts the highest number of auctions within an auc-
tion type, with an exception of the Dutch auction type, where the M1 model 
has more numbers of auctions than the M0 model.

The least number of auctions is held by Dutch auctions.
First Price auctions have the second highest number of auctions, followed 

by the Vickery and Dutch auctions.

12.4 � SUMMARY AND CONCLUSION

After the comparative analysis, it can be observed that the Dutch auc-
tion performs worst among all the auctions with respect to advantage and 
savings metrics. The maximum amount of energy traded in the proposed 
approach is when M2 model is used by the prosumers in P2P trading. This 
concludes that integrating a forecasting model in the prediction of energy 

Figure 12.9  �Total number of auctions conducted under each category.
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production and consumption helps in increasing the amount of energy 
traded. However, this does not lead to an increase in the total number of 
auctions conducted. In fact, it leads to a minimum value of advantage and 
savings metric value for all the auction types – except the Dutch auction. In 
terms of advantage metric, the English auction has consistently performed 
well with all the three models, but the maximum benefit is with model 
M1 59.55%. This is followed by the sealed-bid auctions, like the Vickrey 
auction with 18.73% and the First Price auction with 20.17% using model 
M1. However, by analyzing the “Auction % Savings” metric to determine 
the amount of money saved/made, it is evident that the English auction 
produces maximum savings after integration with model M2. In the case 
of sealed-bid auctions, we can conclude that the Blind (First Price) auction 
when integrated with model M1 has 0.83% savings, whereas the Vickrey 
auction with model M1 has 0.72% savings. The Dutch auction leads to 
minimum savings; but when it is integrated with the forecasting model for 
energy production and consumption, it produces savings of around 49.8%. 
There can be many other factors influencing the way these forecasting mod-
els affect the auction model performance. But overall, we can conclude that 
integration of these (M0 and M1) models in the energy trading market defi-
nitely helps in improving efficiency and cost savings.

Conclusion: This chapter has developed a novel auction-based frame-
work for P2P energy trading in the smart grid. Different performance met-
rics have been discussed to compare the benefits of trading energy in the 
P2P model using the four different auction models versus the direct trad-
ing mechanism with the utility. As the P2P model has been shown to be 
more effective than direct trading with the utility, these results can be used 
to encourage prosumers to participate in energy trading with their peers. 
Overall, the results obtained strongly suggest the idea of integrating fore-
casting models into the energy trading framework through the use of an 
auction-based game theoretic approach.
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Chapter 13

Power quality analysis of 
rooftop grid-connected PV 
in composite climate
A case study

Saurabh Kumar Rajput, Mukta Singh, 
and Dharmendra Kumar Dheer

13.1 � INTRODUCTION

Nowadays, the grid-connected photo voltaic system (GCPVS) are widely 
used all around the world and since 1997 its market has grown continu-
ously [1]. In developed and developing countries, new renewable energy 
resources represent a 2.4% rapid growth among all the renewable energy 
resources [2]. India receives 5000 trillion kWh of solar energy in a year and 
2300–3200 hours annually. Also, in India most part receives 4–7 kWh of 
solar radiation per square meter per day and have 250–300 sunny days per 
year. With this much solar photovoltaic and solar thermal energy, India 
can generate 35 MW per square kilometer [3]. The year 2020 was record 
breaking for the solar PV market, with new installations of an estimated 
value of 139 GW, summing up the global total at an estimated 760 GW 
with both on grid and off-grid capacity. Demand for solar PV is increasing 
and expanding since it is becoming the most suitable option for electricity 
generation not only in households but also in industries. Solar PV power 
along with the wind power helped the renewable power sector to rise in 
the second half of 2020 and assisted in prevailing over the COVID-19 pan-
demic. Solar PV accomplished the largest increase ever seen in capacity in 
a year [4]. In the year 2030, there will be an increase of 1.5% annually in 
the worldwide energy demand and the developing countries of Asia will 
lead this growth with a 40% increase [5]. At the global level, sustainable 
development is prevailing with solar technology along with other renewable 
energy technologies. To existing energy systems, these technologies can give 
small increasing capacity additions with short lead times [6]. In a grid-
connected solar PV system, the inverter is an important component since it 
converts the generated DC power into AC power in order to match the grid 
frequency and voltage. Also an inverter is significant for the safety and reli-
able integration of the grid [7, 8]. At the Point of Common Coupling (PCC) 
when the inverter is connected to the grid, the power quality shouldn’t dete-
riorate [9]. As a result, the impacts of an inverter with poor power quality 
should be taken seriously [10]. Appropriate power quality can be produced 
by using current controlled VSI (Voltage Source Inverter) [11]. Regulations 
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Power quality analysis of rooftop grid-connected PV in composite 
climate

applied by grid codes [12] or international standard requirements like IEC 
61850-7-420 standards [13] and IEEE 1547 standards [14] say that Total 
Harmonic Distortion should be less than 5% [10] of fundamental current 
for current and less than 2% for voltage according to standard IEC 61727 
[15] and power factor greater than 0.9 [10]. According to the W. Mack 
Grady and Robert J. Gilleskie, if the total harmonic distortion increases 
then power factor decreases. This represents a relation of inverse propor-
tionality [16]. Several studies have been conducted in the past on the power 
quality aspects of PV inverter, which show test results of power factor and 
current THD’s mathematical models. These researches show that based on 
the capacity and the demand profile, the power factor can change [17, 18]. 
The PV also affects the energy quality parameters. To increase the power 
quality using compensation technique in micro grid, various devices are 
proposed and suppression of harmonics along with reactive power compen-
sation is done by deploying the droop control technique [19–21].

13.2 � SYSTEM UNDER STUDY

Solar PV systems directly convert sun light into electrical energy. The solar 
cells/modules are used in PV plants that convert sunlight into a direct cur-
rent (DC) form of electrical energy, which is converted to an alternating 
current (AC) supply via a solar inverter. Voltage and current management 
at load, maximum power point tracking, and power control for grid con-
nection are all possible with solar inverters. Hence, the PV-based electricity 
production majorly needs PV modules and PV inverter and transformer 
components (as shown in Figures 13.1 and 13.2).

The presented case study is performed on a 100 kWp grid integrated solar 
rooftop photovoltaic system (grid-connected solar rooftop PV system). The 
data is collected in the months of peak summer (May) and peak winter 
(December). As shown in the Figures 13.1 and 13.2, the system consists 
of PV array that converts solar energy into electrical energy. The PV array 
consists of 338 modules with Pmax  of 320 W per module. All the modules 

Figure 13.1  �Schematic diagram of PV grid-connected system.
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are opaque type polycrystalline. For maximum sunlight/radiation from the 
sun, the array is set at an inclination of 28.7°C in the south facing direc-
tion. The PV array is connected to an inverter with a 100 kW rating, which 
converts DC power into AC to feed the AC load. Solar PV modules have an 
open circuit voltage of 46 V, a rated voltage of 37.7 V, a short circuit cur-
rent of 9.03 A with a rated current of 8.50 A. The Fill Factor of modules 
is 77.04%, with an efficiency of 16.67%. The dimension of the module is 
1955 × 982 × 36) mm3. The solar PV system is integrated with a 63 kVA, 
3 phase delta (high-voltage side) – 3 phase-star (low-voltage side) distribu-
tion transformer (TPDT) with oil natural air cooling (ONAN) having HV 
side voltage as 11 kV and LV side voltage as 433 V. For recording the data 
regarding the power factor and harmonic distortion in current, a power 
analyzer is employed in parallel to the main connection (as shown in Figure 
13.2 (d)). The PCC receives power from both the PV system and the grid 
and supply to the AC load.

13.3 � POWER QUALITY PARAMETERS 
OF PV INVERTER AND THEIR 
MATHEMATICAL MODELING

A PV system often works alongside the grid in order to provide better 
service. Checking the quality of the power before feeding it to the grid is 
important to save the system from disruptions. Any complication with the 

Figure 13.2  �Experimental study and data monitoring from the study system.
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power quality is usually the disturbances in voltage, current, or frequency 
which produce impairment in the operations of the equipment. The PV sys-
tem shouldn’t get damaged due to any defects in the grid. In the same way, 
the failure in the PV system shouldn’t harm the grid and affect the consum-
ers [17]. For the performance study of a GCPVS system, the important 
power quality parameters are power factor and THDi.

13.3.1 � Power factor

The power factor is the ratio of working power measured in kilowatts (kW) 
to apparent power measured in kilovolt-amperes (kVA), as given in (1.1). 
Harmonic distortions are generated in current and voltage waveforms in 
non-linear or switching devices. This happens when there is a reactive load 
since there is a phase difference between current and voltage waveform.
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Where V and I are the voltage and current at time t, VRMS  and IRMS are 
the root mean square (RMS) of voltage and current and T is the period of 
the waveform which correlate to the integration time used to calculate the 
power [17].

The rooftop PV plant provides active power to the electrical power sys-
tem, but it can’t provide the reactive power that the connected electrical 
load needs [22]. Figure 13.3 illustrates the power triangle before and after 
the integration of a PV plant with an existing electrical power system. If 
the active and reactive power requirements of the load are P (kW) and Q 
(kVAR), then S (kVA) will be the apparent power (according to the power 

Figure 13.3  �power triangle before and after the integration of a PV plant with an existing 
electrical power system.
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triangle). After PV integration, if the real power support from the PV plant 
is PAC (kW), then the power factor angle will increase to 1 according to the 
new power triangle. As a result, the power factor will decrease from cos θ  
to cos θ  1 [22].

13.3.2 � Total harmonic distortion

The total harmonic distortion is the ratio of RMS value of harmonic com-
ponents in the current to the RMS value of the fundamental component of 
the current. The same is true for the total harmonic distortion in voltage, as 
given in (13.2) and (13.3).
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Where THDi is the total harmonic distortion in current, In is the current 
component of the nth harmonic, I1 is the fundamental component of cur-
rent, THDv is the total harmonic distortion in voltage, Vn  is the component 
of the voltage of the nth harmonic and V1 is the fundamental component of 
the voltage [17].

A solar inverter is an equipment that changes electricity from direct cur-
rent (DC) to alternating current (AC) [23, 24]. During this process, the 
inverters change the shape of the voltage wave and add THDi to the power 
system. THDi was found to be dependent on relative power [17, 22], which 
is the ratio of AC power output to rated power for an inverter, after testing 
ten different solar inverters [17].

13.3.3 � PV inverter modeling using MATLAB

In the presented work the mathematical modeling is done based on the 
results obtained by testing and storing the data through a power analyzer 
and then by curve plotting and fitting in MATLAB. The mathematical 
model is the function of relative power, which is the ratio of PAC  and 

PRATED, as given in (13.4) and (13.5).
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Where A and B are fitting parameters. PAC  is the inverter’s output power 
and PRATED is the inverter’s rated power. Three approximation methods 
validated with three functions was presented by Hernandez and Jay for 
representing the inverter with grid support functions in simulation to create 
an inverter model [25]. According to the research study by A. Rampinelli, 
the mathematical model used for calculating the power factor and total 
harmonic distortion in current as a function of the inverter’s relative power 
is given in (1.5) [17].
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Where C0, C1, C2, C3 are coefficients of the model [17].

13.4 � DATA ANALYSIS AND RESULTS

During the performance analysis in the peak summer season of May, the 
data is recorded from 6:30 am till 6 pm.

As shown in Figure 13.4 the highest power (70 kW) is produced in the 
afternoon time. This is because the solar intensity at this time is very high 
and it decreases in the morning and evening. The average power generation 
in May is the highest in the past one year. Figure 13.5 shows the variation 

Figure 13.4  �Variation of power with time (May).
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of average THDi with the time of the day. The harmonic distortion in cur-
rent is lowest in the afternoon time and higher in the morning and evening. 
The Figure 13.6 shows the variation of the power factor with the time of 
the day. Figure 13.7 depicts that the power factor value is highest in the 
afternoon and lesser at other times. In Figure 13.7 a comparison of average 
THDi with power generation (Watt) is shown for a typical summer day of 
May. It shows that when power produced is highest, the THDi is lowest and 
vice versa. In the noon time (From 11:30 am to 02:30 pm), the power out-
put of the plant is very high and corresponding values of average THDi are 
low in this duration. Hence, the generation of harmful THDi is inversely 
proportional to the power output of the plant. Figure 13.8 shows the varia-
tion of power and power factor with the time of the day in May. The power 

Figure 13.5  �Variation of average THDi with time (May).

Figure 13.6  �Variation of power factor with time (May).
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factor value is highest when the power is highest; that is, the power factor is 
directly proportional to the power. With the increase in the power output of 
the plant, the power factor automatically improves. In Figure 13.9, a com-
parison of average THDi and power factor is made for a typical summer 
day of May. The results shows that when the power factor is more, THDi 
is less and vice-versa.

The key observations of the collected data and its analysis using a math-
ematical model are as follows:

	 (a)	 The average THDi (%) reduces/ improves with the increase in the 
power output (W) of the PV plant.
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Figure 13.7  �Variation of average THDi and power with time (May).
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	 (b)	 The power factor increases/improves with the increase in the power 
output (W) of the PV plant.

	 (c)	 The average THDi (%) and power factor have an inverse relation with 
each other.

During the performance analysis in the peak winter season of December, 
the data is recorded from 9 am till 4:30 pm. The highest power is produced 
in the afternoon time and it decreases in the morning and evening. Similar 
to the summer season, the harmonic distortion in current is lowest in the 
afternoon time and higher in the morning and evening in the winter also. 
Also the power factor values are highest in the afternoon and lower at other 
times.

A comparison of PV plant performance in the summer and winter sea-
sons is also made in the study. While comparing the data obtained in May 
and December, the data collected during both the seasons are at different 
timings because of the fact that sun rises early in summer and also sets 
late, whereas in winter the sun rises late and also sets early. Due to this, 
PV plants will be able to work for longer hours in May than in December. 
Through the graphs plotted it can be clearly seen that although the power 
quality values follow the same pattern in both the months but they differ in 
the time period that they provide that result in. As shown in Figure 13.10, 
the power factor in May (with values above 0.9 lagging) is for a much lon-
ger time than in December. Likewise, it can also be seen in Figure 13.11 
that the values of THDi below the recommended value are obtained for a 
much shorter time in December than in May.

The key observations related to the relative power of the inverter are as 
follows
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Figure 13.10  �Comparison of power factor values obtained in the months of May and 
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	 (a)	 The relative power and power factor are directly proportional to each 
other.

	 (b)	 The harmonic distortion in the current (THDi) and relative power are 
inversely proportional to each other.

The minimum, average and maximum power values (for power factor above 
0.9 obtained from the testing in May and December) show that the maxi-
mum power at which power factor is above 0.9 is 71% of rated power and 
the minimum is 8% of rated power for summer whereas for winter maxi-
mum power is 41% of rated power and minimum is 8% of rated power. 
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Power for harmonic distortion in current values shows that THDi should 
be less than the recommended value, but above that value harmonic distor-
tion can impact the power quality severely. At 20% of rated power THDi 
is within the limits but below 20% it increases beyond the limit in May, 
whereas in December THDi goes beyond the advised value at and below the 
power at 30% of rated power.

In May the time for which total harmonic distortion in current is under 
limit is approximately 7 hours (9:10 am–16:40 pm), whereas in December 
it is reduced to approximately 2 hours (12:50 pm–14:20 pm) only. This 
concludes that total harmonic distortion in current is found for longer times 
in winter than in summer. The power factor ‘0.99 lagging’ is achieved at 
a minimum power of 33% of rated power in summer and in winter the 
minimum power is 32% of rated power. In May this high value of power 
factor is maintained for approximately 5.5 hours, and in December only, 
for 1.5 hours.

13.5 � CONCLUSION

In the work examined here, tests were done on a 100 kW system and data 
was collected in two different seasons to cover the range of changes in the 
power quality parameters (THDi and Power Factor). Through the tests, the 
inverse proportionality relation of power factor with THDi is obtained. It 
is also observed that the THDi and power factor values vary according to 
climate change. The following are the key conclusions of the study:

	 (a)	 The relative power and power factor are directly proportional to each 
other.

	 (b)	 The harmonic distortion in the current (THDi) and relative power are 
inversely proportional to each other.

	 (c)	 Both factors (power factor and THDi) are poor during the early 
morning and evening times, whereas they are improved during the 
day time, when the sun light intensity becomes high to support the PV 
produced electrical power.

	 (d)	 Comparison is also presented for the summer and winter months and 
it is deduced that power quality is impacted more in winter months 
like December than in summer months like May. This is because of 
poor relative power values in the winter months rather than the sum-
mer months.

Based on the available generation data and climatic conditions, the pre-
sented mathematical model and its experimental validation demonstrate 
that the model is useful for identifying the expected degradation in current 
harmonics and power factor.
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