

[image: Image 1]

Hallo .NET 9.0: Practical ASP.NET

Core Minimal API

Agus Kurniawan

Ilmu Data

21 August 2025

© 2025 Ilmu Data. All rights reserved.

Table of Contents

Preface

Acknowledgments

1 Introduction

1.1 Overview of .NET 9.0

1.1.1 Unified Platform

1.1.2 Performance Enhancements

1.1.3 Improved Cloud and Container Support

1.1.4 Enhanced C# Language Features

1.1.5 Blazor and WebAssembly Innovations

1.1.6 Expanded AI and Machine Learning Capabilities

1.1.7 Better Security and Compliance

1.1.8 Enhanced Tooling and Development Experience

1.2 Understanding ASP.NET Core Minimal API

1.3 Benefits of Using Minimal APIs

1.4 Best Practices and Use Cases

1.5 Setting Up the Development Environment

1.5.1 Installing .NET 9.0 SDK

1.5.2 Installing SSL Certificates Development Tool

1.5.3 Setting Up an Integrated Development

Environment (IDE)

1.5.4 Verifying the Setup

1.5.5 Additional Tools and Extensions

2 ASP.NET Core Minimal API Development

2.1 Introduction

2.2 Exercise 1: Hello World - ASP.NET Core Minimal API

2.2.1 Objective

2.2.2 Requirements

2.2.3 Lab Steps

2.2.4 Conclusion

2.3 Exercise 2: RESTful Service Request and Response

2.3.1 Objective

2.3.2 Requirements

2.3.3 Lab Steps

2.3.4 Conclusion

2.4 Exercise 3: OpenAPI Documentation

2.4.1 Conclusion

2.5 Exercise 4: Buidling a Calculator Service

2.5.1 Objective

2.5.2 Requirements

2.5.3 Lab Steps

2.5.4 Conclusion

2.6 Exercise 5: Upload and Download File Web

2.6.1 Objective

2.6.2 Requirements

2.6.3 Lab Steps

2.6.4 Conclusion

2.7 Exercise 6: Exception Handling and Logging

2.7.1 Objective

2.7.2 Requirements

2.7.3 Lab Steps

2.7.4 Conclusion

2.8 Exercise 7: Middleware and Filters

2.8.1 Objective

2.8.2 Requirements

2.8.3 Lab Steps

2.8.4 Conclusion

3 Accessing SQL and NoSQL Databases

3.1 Introduction

3.2 .NET Entity Framework Core

3.3 Entity Framework Core tools

3.4 Exercise 8: EF Core 9.0 Code First and ASP.NET Core

Minimal API

3.4.1 Objective

3.4.2 Requirements

3.4.3 Lab Steps

3.4.4 Conclusion

3.5 Exercise 9: EF Core 9.0 Database First and ASP.NET

Core Minimal API

3.5.1 Objective

3.5.2 Requirements

3.5.3 Lab Steps

3.5.4 Conclusion

3.6 Introduction to Database Transactions

3.7 Exercise 10: Database Transaction

3.7.1 Objective

3.7.2 Requirements

3.7.3 Lab Steps

3.7.4 Conclusion

3.8 Introduction to NoSQL Databases

3.9 Exercise 11: NoSQL Database and ASP.NET Core

Minimal API

3.9.1 Objective

3.9.2 Requirements

3.9.3 Lab Steps

3.9.4 Conclusion

4 Deep Dive into Web Security

4.1 Introduction

4.2 Exercise 12: Authentication and Authorization

4.2.1 Objective

4.2.2 Requirements

4.2.3 Lab Steps

4.2.4 Conclusion

4.3 Exercise 13: Role-Based Access Control (RBAC)

4.3.1 Objective

4.3.2 Requirements

4.3.3 Lab Steps

4.3.4 Conclusion

4.4 Exercise 14: Data Privacy and Protection

4.4.1 Objective

4.4.2 Requirements

4.4.3 Lab Steps

4.4.4 Conclusion

4.5 Exercise 15: Rate Limiting and Throttling

4.5.1 Objective

4.5.2 Requirements

4.5.3 Lab Steps

4.5.4 Conclusion

4.6 Exercise 16: Configuring CORS in ASP.NET Core 9.0

Minimal API

4.6.1 Objective

4.6.2 Requirements

4.6.3 Lab Steps

4.6.4 Conclusion

5 Monitoring and Deployment

5.1 Introduction

5.1.1 Monitoring in ASP.NET Core 9.0 Minimal API

5.1.2 Deployment of ASP.NET Core 9.0 Minimal API

5.2 Exercise 17: Health Check and Monitoring

5.2.1 Objective

5.2.2 Requirements

5.2.3 Lab Steps

5.2.4 Implement Custom Health Checks (Advanced)

5.2.5 Conclusion

5.3 Exercise 18: Deploying to Web Server IIS

5.3.1 Objective

5.3.2 Requirements

5.3.3 Lab Steps

5.3.4 Conclusion

5.4 Exercise 19: Deploying to Linux Server with Nginx

5.4.1 Objective

5.4.2 Requirements

5.4.3 Lab Steps

5.4.4 Conclusion

5.5 Exercise 20: Deploying to Container Platforms

5.5.1 Objective

5.5.2 Requirements

5.5.3 Lab Steps

5.5.4 Conclusion

Appendix A: C# Cheat Sheet

Appendix B: Resources

SQL Server 2025 High Availability & Disaster Recovery:

Always On Solutions Course

Enhance Your Learning with Our Udemy Course

Dive Deeper into Containerization with Our Udemy Course

Build Secure PHP APIs Like a Pro with Laravel 12, OAuth2,

and JWT

Master Real-World Logging & Visualization with the Full

ELK Stack

Appendix C: Source Code

About

Preface

In the ever-evolving landscape of software development, staying abreast of the latest technologies and frameworks is not just a requirement but a necessity. With the release of .NET 9.0, Microsoft continues its tradition of offering robust, efficient, and forward-thinking solutions for developers worldwide. Among its many features, ASP.NET Core Minimal API stands out as a revolutionary approach to building web APIs with less boilerplate code, enabling developers to focus more on their application’s core functionality.

“Hallo .NET 9.0: Practical ASP.NET Core Minimal API” is crafted to guide you through the journey of understanding and implementing Minimal APIs in .NET 9.0. This book aims to equip you with the knowledge and practical skills to build efficient and scalable web APIs using the new features and paradigms introduced in .NET 9.0. Whether you are a seasoned developer or just starting, this book will serve as a comprehensive resource for mastering Minimal APIs.

Throughout this book, we’ll delve into various aspects of ASP.NET Core Minimal API, starting from the basics and gradually moving to more advanced topics. You’ll learn about:

What will you learn:

The fundamentals of .NET 9.0 and its improvements over previous versions.

Step-by-step guidance on setting up and configuring a Minimal API project.

Best practices for structuring your projects for maintainability and scalability.

Advanced features like dependency injection, middleware integration, and data access.

Practical examples demonstrating the use of Minimal APIs in real-world scenarios.

Deployment strategies and performance optimization tips.

This book is designed for a wide range of readers - from beginners who have a basic understanding of .NET and C# to experienced developers looking to enhance their skills with the latest advancements in .NET 9.0.

It’s also a valuable resource for IT professionals, students, and anyone interested in developing modern web applications efficiently.

Agus Kurniawan

Depok, August 2025

Acknowledgments

A heartfelt thank you to the community of developers, contributors, and technology enthusiasts whose feedback and insights have been invaluable in shaping this book.

As you turn these pages, I hope you find “Hallo .NET 9.0: Practical ASP.NET Core Minimal API” not only informative but also inspiring, opening new avenues for your creativity and innovation in the world of software development.

1 Introduction

1.1 Overview of .NET 9.0

.NET 9.0 marks a significant milestone in the evolution of Microsoft’s .NET

platform. Building upon the foundation laid by its predecessors, .NET 9.0

brings a host of new features, improvements, and optimizations that cater to the needs of modern software development. This section delves into the core aspects of .NET 9.0, highlighting its most impactful changes and how they benefit developers and businesses alike.

1.1.1 Unified Platform

.NET 9.0 continues the journey towards a unified framework, further integrating capabilities across different .NET components. This unification simplifies the development process, making it easier for developers to build applications that run seamlessly across various platforms, including Windows, Linux, macOS, and mobile devices.

1.1.2 Performance Enhancements

One of the hallmark features of .NET 9.0 is its enhanced performance. The runtime and core libraries have undergone significant optimizations, resulting in faster application startup times, reduced memory footprint, and improved overall efficiency. These enhancements ensure that applications built on

.NET 9.0 are not only faster but also more resource-efficient.

1.1.3 Improved Cloud and Container Support

.NET 9.0 offers enhanced support for cloud and container-based environments. With native cloud integration and optimized container performance, it becomes a go-to choice for building cloud-native applications. This version also includes features that simplify the development and deployment of microservices and serverless applications.

1.1.4 Enhanced C# Language Features C# continues to evolve alongside .NET, and version 9.0 of the framework fully supports the latest version of the C# language. This update introduces new language features that promote cleaner, more maintainable code, enhancing developer productivity and application maintainability.

1.1.5 Blazor and WebAssembly Innovations

Blazor, Microsoft’s framework for building interactive web UIs with C#, receives significant updates in .NET 9.0. These include performance improvements and new features for Blazor WebAssembly, enabling developers to build highly performant client-side web applications.

1.1.6 Expanded AI and Machine Learning Capabilities

.NET 9.0 expands its capabilities in AI and machine learning with enhanced ML.NET libraries. This makes it easier for developers to integrate machine learning into their applications, leveraging the power of AI for more intelligent, data-driven solutions.

1.1.7 Better Security and Compliance

Security is a top priority in .NET 9.0, with strengthened security measures and compliance features. This ensures that applications built using .NET 9.0

are not only robust and performant but also secure and compliant with the latest industry standards.

1.1.8 Enhanced Tooling and Development Experience Finally, .NET 9.0 brings improvements to its tooling and development experience. With a more refined Visual Studio integration, developers can enjoy a smoother, more efficient development workflow, complete with powerful debugging and diagnostic tools.

1.2 Understanding ASP.NET Core Minimal API

Minimal APIs in ASP.NET Core 9 represent a streamlined, low-ceremony method for building HTTP APIs. They are designed to reduce the complexity and boilerplate code traditionally associated with setting up a new API in ASP.NET Core.

Key Features of Minimal APIs

Simplicity and Conciseness: Emphasize how Minimal APIs reduce the amount of code needed to start a basic API project, making them ideal for small services or microservices.

Routing and Middleware Integration: Explain how routing is handled in Minimal APIs and how they seamlessly integrate with existing middleware in the ASP.NET Core ecosystem.

Dependency Injection: Describe how Minimal APIs support dependency injection, allowing services to be injected directly into route handlers.

Building a Minimal API

Setting Up: Step-by-step guide on setting up a new project with a Minimal API in ASP.NET Core 9, including the required NuGet packages and project configuration.

Defining Endpoints: Demonstrate how to define HTTP endpoints (GET, POST, PUT, DELETE) using the simplified syntax of Minimal APIs.

Request and Response Handling: Overview of handling requests and sending responses, including parsing query parameters and returning different types of responses (JSON, plain text, etc.).

1.3 Benefits of Using Minimal APIs

Reduced Complexity: Discuss how Minimal APIs make it easier to build and maintain small to medium-sized APIs by reducing the layers of abstraction and the amount of boilerplate code.

Improved Performance: Highlight any performance improvements associated with using Minimal APIs, particularly in terms of memory footprint and startup time.

Flexibility and Testability: Explain how the simplicity of Minimal APIs offers greater flexibility in development and makes unit testing more straightforward.

1.4 Best Practices and Use Cases

When to Use Minimal APIs: Provide guidance on scenarios where Minimal APIs are the most beneficial, such as microservices, small web services, or when building APIs for simple applications.

Best Practices: Share best practices for structuring and organizing Minimal API projects, error handling, and security considerations.

1.5 Setting Up the Development Environment

To effectively work with .NET 9.0 and utilize Native AOT, it’s crucial to set up a robust development environment. This section walks you through the steps to prepare your system for .NET 9.0 development, focusing on tools, software, and configurations necessary for taking full advantage of Native AOT.

1.5.1 Installing .NET 9.0 SDK

Download the SDK: Begin by downloading the .NET 9.0 Software Development Kit (SDK) from the official Microsoft .NET website.

Ensure you select the correct version for your operating system.

Installation Process: Follow the installation instructions specific to your OS. This typically involves running an installer or executing a set of commands in the terminal.

1.5.2 Installing SSL Certificates Development Tool To enable HTTPS in your ASP.NET Core applications, you need to install the SSL certificates development tool. This tool is available as a .NET global tool, which you can install using the following command: dotnet tool install --global dotnet-dev-certs

[image: Image 2]

This command installs the dotnet-dev-certs tool globally, allowing you to manage development certificates for HTTPS in your applications.

If you use Ubuntu, you may need to install the libnss3-tools package before installing the tool. Now you can use the tool to generate and install the required certificates:

dotnet dev-certs https

sudo -E dotnet dev-certs https -ep /usr/local/share/ca-certificates/aspnet/https.crt

--format PEM

1.5.3 Setting Up an Integrated Development Environment (IDE) Choosing an IDE: Visual Studio, Visual Studio Code, or JetBrains Rider are recommended IDEs for .NET development. Choose one that best fits your development style and needs.

 Figure 1.1 Visual Studio Code.

IDE Configuration: Install the necessary extensions or plugins for

.NET development. For Visual Studio, the .NET desktop development

[image: Image 3]

workload is essential. For Visual Studio Code, the C# extension by OmniSharp is required.

In this book, we will use Visual Studio Code for all code examples and demonstrations.

We will also use the C# extension by REST Client(Huachao Mao) for

Visual Studio Code, https://marketplace.visualstudio.com/items?

itemName=humao.rest-client. This extension allows us to test our APIs

using a simple text file. The extension is shown in Figure 1.2.

 Figure 1.2 Visual Studio Code extension for REST Client.

1.5.4 Verifying the Setup

Testing the .NET Installation: After installing the SDK, open a command prompt or terminal and run dotnet --version to verify the installation.

Creating a Test Project: Create a simple .NET project using the command line or your IDE to ensure everything is working correctly.

This can be a basic “Hello World” application.

Experimenting with ASP.NET Core Minimal API: Compile the test project with ASP.NET Core Minimal API to confirm that your setup supports this feature. Monitor the compilation process and output for any errors or issues.

1.5.5 Additional Tools and Extensions

Source Control Integration: Consider installing Git and integrating it with your IDE for version control.

Debugging and Diagnostic Tools: Familiarize yourself with debugging tools available in your IDE, as they are essential for development and troubleshooting.

2 ASP.NET Core Minimal API

Development

2.1 Introduction

Welcome to the exciting world of ASP.NET Core Minimal API development in

.NET 9.0. This chapter serves as your comprehensive guide, combining the robust features of ASP.NET Core Minimal API with the performance improvements offered by .NET 9.0. It’s a journey through innovative and efficient web development techniques.

Chapter Overview

In this chapter, we embark on a series of exercises designed to build your proficiency in ASP.NET Core 9.0 Minimal API:

1. Exercise 1: Hello World - ASP.NET Core Minimal API Kickstart your journey with a simple “Hello World” application, introducing the basics of ASP.NET Core Minimal API.

2. Exercise 2: RESTful Service Request and Response Dive deeper into the creation of a RESTful service, focusing on handling requests and sending responses.

3. Exercise 3: Swagger API Documentation

Learn how to implement Swagger for your API documentation, making your web services more accessible and easier to use.

4. Exercise 4: Building a Calculator Service

Develop a calculator service to understand handling different types of HTTP requests and performing basic operations.

5. Exercise 5: Upload and Download File Web API Explore the process of setting up APIs for file upload and download, a common requirement in modern web applications.

6. Exercise 6: Exception Handling and Logging

Delve into best practices for exception handling and logging to build robust and reliable web applications.

7. Exercise 7: Middleware and Filters

Conclude with an exploration of middleware and filters, crucial for managing HTTP requests and responses in your API.

Preparing for Hands-On Labs

These exercises are designed to be hands-on and engaging, providing practical experience in building, optimizing, and deploying ASP.NET Core Minimal API using.NET 9.0. Each exercise builds on the previous one, ensuring a comprehensive understanding of the subject.

2.2 Exercise 1: Hello World - ASP.NET Core Minimal API

In this exercise, you’ll create a basic “Hello World” application using ASP.NET

Core 9.0 Minimal API. You’ll learn how to set up, modify, and run a compiled ASP.NET Core Minimal API project, gaining a foundation in this innovative approach to .NET development.

2.2.1 Objective

Create a basic “Hello World” Web API application using ASP.NET Core 9.0 with the webapi template, showcasing ASP.NET Core Minimal API capabilities.

2.2.2 Requirements

.NET 9.0 SDK installed

A preferred code editor (e.g., Visual Studio, Visual Studio Code) Basic understanding of ASP.NET Core and C#

2.2.3 Lab Steps

Here’s a step-by-step guide to creating your first ASP.NET Core Minimal API project:

1. Create a New ASP.NET Core Minimal API Project Open a command prompt or terminal.

Navigate to the directory where you want to create the project.

Or create a new directory for the project:

[image: Image 4]

mkdir hello

cd hello

Run the following command to create a new ASP.NET Core Minimal API project template:

dotnet new webapi

Open the project in your code editor:

code .

You should see the following project structure in your code editor: Figure 2.1 Project structure of the ASP.NET Core Minimal API project.

2. Build and Run the Application

Return to the command prompt or terminal.

Run the following command to build the project:

dotnet build

To run the application, you can use the following command: dotnet run

To run the application with https profile, you can use the following command:

[image: Image 5]

dotnet run --launch-profile https

3. Test the API

Open a web browser or use a tool like Postman.

Navigate to http://localhost:<server-port>/weatherforecast.

Change the port number <server-port> to the port number displayed in the command prompt or terminal.

You should see a response displaying weather forecast.

 Figure 2.2 Output weather forecast application.

We can also use the REST Client extension to test the API. The following is the content of the hello.http file:

@hello_HostAddress = http://localhost:5259

GET {{hello_HostAddress}}/weatherforecast

Accept: application/json

###

[image: Image 6]

Modify port 5259 to the port number displayed in the command prompt or terminal.

Click the Send Request button to test the API.

You should see a response displaying weather forecast.

 Figure 2.3 Test using http file with REST Client tool.

2.2.4 Conclusion

This lab has guided you through creating a basic “Hello World” application using the ASP.NET Core 9.0 Minimal API. You’ve seen firsthand how to set up, modify, and run a compiled ASP.NET Core Minimal API project, gaining a foundation in this innovative approach to .NET development.

2.3 Exercise 2: RESTful Service Request and Response This lab provides a practical introduction to creating RESTful services with ASP.NET Core 9 using the minimal API approach. It’s designed to offer hands-on experience with the core concepts of RESTful service development in a modern and efficient way.

2.3.1 Objective

Develop a RESTful service using ASP.NET Core 9 Minimal API that handles various HTTP methods (GET, POST, PUT, DELETE) and provides appropriate responses.

2.3.2 Requirements

.NET 9.0 SDK installed

A preferred code editor (e.g., Visual Studio, Visual Studio Code) 2.3.3 Lab Steps

1. Create a New ASP.NET Core Minimal API Project Open a command prompt or terminal.

Navigate to your desired working directory.

Run the following command to create a new ASP.NET Core Minimal API project:

mkdir restfulapi

cd restfulapi

dotnet new webapi

Open the project in your code editor:

code .

2. Modify the Project for Minimal API

Open the project in your code editor.

Remove all endpoints from the Program.cs file.

Add the content of GET Restfull API with the following code:

...

 // In-memory data store

var items = new List<string>();

for (int i = 1; i <= 5; i++)

{

items.Add($"Item {i}");

}

 // GET endpoint

app.MapGet("/items", () => items);

...

Add the content of POST Restfull API with the following code:

 // POST endpoint

app.MapPost("/items", (string item) =>

{

items.Add(item);

return Results.Created($"/items/{items.Count - 1}", item);

});

Add the content of PUT Restfull API with the following code:

 // PUT endpoint

app.MapPut("/items/{id}", (int id, string item) =>

{

if (id < 0 || id >= items.Count)

{

return Results.NotFound();

}

items[id] = item;

return Results.NoContent();

});

Add the content of DELETE Restfull API with the following code:

 // DELETE endpoint

app.MapDelete("/items/{id}", (int id) =>

{

if (id < 0 || id >= items.Count)

{

return Results.NotFound();

}

items.RemoveAt(id);

return Results.Ok();

});

3. Build and Run the Application

Use the command prompt or terminal to build and run the project: dotnet run

You can also run the application with https profile: dotnet run --launch-profile https

4. Testing the API

You can use tools like Postman or the built-in REST client in Visual Studio Code to test your API.

Test the following endpoints:

GET /items: Retrieve a list of items.

POST /items: Add a new item (include the item as a plain text in the request body).

PUT /items/{id}: Update an item at a specific index (provide the index in the URL and the new item as plain text in the request body).

DELETE /items/{id}: Delete an item at a specific index.

We also test using the REST Client extension. The following is the content of the restfulapi.http file:

@restfulapi_HostAddress = http://localhost:5013

GET {{restfulapi_HostAddress}}/items

Accept: application/json

POST {{restfulapi_HostAddress}}/items?item=item 20

Accept: application/json

PUT {{restfulapi_HostAddress}}/items/2?item=item 2-edited Accept: application/json

DELETE {{restfulapi_HostAddress}}/items/1

Accept: application/json

###

Modify port 5013 to the port number displayed in the command prompt or terminal or based your configuration.

Click the Send Request button to test the API.

You should see a response displaying the list of items.

[image: Image 7]

 Figure 2.4 Test using http file for Restful API application.

2.3.4 Conclusion

In this lab, you have created a simple RESTful service using ASP.NET Core 9

Minimal API. This service demonstrates handling different types of HTTP

requests and sending appropriate responses. You have also learned how to manage a simple in-memory data store and perform basic CRUD operations.

2.4 Exercise 3: OpenAPI Documentation

With the release of ASP.NET Core 9.0, creating robust and well-documented web APIs has become more streamlined than ever. One of the key changes in the webapi template is the transition from Swagger to built-in OpenAPI support. This integration provides developers with a modern, standardized approach to API documentation and testing.

Built-in OpenAPI Integration

Out-of-the-Box OpenAPI Support: When you create a new web API project using the webapi template in ASP.NET Core 9.0, OpenAPI support is included by default. This provides an interactive documentation interface without any additional setup.

Microsoft.AspNetCore.OpenApi: ASP.NET Core 9.0 uses the built-in OpenAPI package to generate API documentation. This package provides a set of tools for generating OpenAPI specifications based on your API code.

builder.Services.AddOpenApi();

var app = builder.Build();

 // Configure the HTTP request pipeline.

if (app.Environment.IsDevelopment())

{

app.MapOpenApi();

}

Explaining the Code

We can see the following code in the Program.cs file:

 // Add services to the container.

builder.Services.AddOpenApi();

AddOpenApi(): This method registers the OpenAPI services in the application’s dependency injection container. The OpenAPI generator produces the OpenAPI specification for your API - a standardized, machine-readable representation of your API’s structure and capabilities. It includes information about available endpoints, their parameters, response types, and other details necessary for documenting and interacting with the API.

if (app.Environment.IsDevelopment())

{

app.MapOpenApi();

}

if (app.Environment.IsDevelopment()): This conditional statement checks if the application is running in the development environment. It’s a best practice to enable OpenAPI documentation only in development, as exposing your API’s structure in production environments can lead to security risks.

app.MapOpenApi(); : This method maps the OpenAPI specification endpoint to your application. By default, it serves the generated OpenAPI specification as a JSON document at /openapi/v1.json. This JSON file contains the complete API specification that can be consumed by various tools and documentation generators.

Accessing OpenAPI Documentation

OpenAPI Specification: Once your ASP.NET Core web API is running, you can access the OpenAPI specification by navigating to the /openapi/v1.json endpoint in your web browser. For example, if your API is hosted at http://localhost:5000, you can view the OpenAPI specification at http://localhost:5000/openapi/v1.json.

Scalar UI (Optional): While OpenAPI specification provides the raw JSON

format, you can enhance the developer experience by adding Scalar UI for a more interactive documentation interface. To add Scalar UI, install the package:

dotnet add package Scalar.AspNetCore --version 2.6.9

Then modify your Program.cs:

builder.Services.AddOpenApi();

var app = builder.Build();

if (app.Environment.IsDevelopment())

{

app.MapOpenApi();

app.MapScalarApiReference();

}

Benefits of Built-in OpenAPI Support

Standard Compliance: OpenAPI is an industry-standard specification for describing REST APIs, ensuring better interoperability with various tools and platforms.

Lightweight: The built-in OpenAPI support is more lightweight compared to the previous Swagger implementation.

Modern Tooling: OpenAPI specifications can be consumed by various modern tools for code generation, testing, and documentation.

Better Performance: The native implementation provides better performance and reduced dependencies.

Customizing OpenAPI Documentation Modifying OpenAPI Settings: You can customize the OpenAPI documentation by configuring options such as API title, version, description, and adding custom metadata.

Adding XML Comments: You can include XML documentation comments in your code to provide more detailed descriptions in the generated OpenAPI specification.

Demo

We can use the previous restfulapi project to demonstrate the built-in OpenAPI support in ASP.NET Core 9.0. First, let’s update the project to use OpenAPI: 1. Update the Program.cs file:

var builder = WebApplication.CreateBuilder(args);

 // Add services to the container.

builder.Services.AddOpenApi();

var app = builder.Build();

 // Configure the HTTP request pipeline.

if (app.Environment.IsDevelopment())

{

app.MapOpenApi();

}

 // In-memory data store

var items = new List<string>();

for (int i = 1; i <= 5; i++)

{

items.Add($"Item {i}");

}

 // GET endpoint

app.MapGet("/items", () => items);

 // POST endpoint

app.MapPost("/items", (string item) =>

{

items.Add(item);

return Results.Created($"/items/{items.Count - 1}", item);

});

 // PUT endpoint

app.MapPut("/items/{id}", (int id, string item) =>

{

if (id < 0 || id >= items.Count)

{

return Results.NotFound();

}

 items[id] = item;

return Results.NoContent();

});

 // DELETE endpoint

app.MapDelete("/items/{id}", (int id) =>

{

if (id < 0 || id >= items.Count)

{

return Results.NotFound();

}

items.RemoveAt(id);

return Results.Ok();

});

app.Run();

 You don’t need to add the builder.Services.AddOpenApi() line if you are using the webapi template, as it is already included by default.

2. Run the project:

dotnet run --launch-profile https

3. Access the OpenAPI specification:

Open a web browser and navigate to https://localhost:

<port>/openapi/v1.json.

You should see the OpenAPI specification in JSON format, which provides a complete description of your API’s endpoints and models.

[image: Image 8]

 Figure 2.5 OpenAPI specification JSON for restfulapi project.

4. Optional: Add Scalar UI for better visualization: Install Scalar UI package:

dotnet add package Scalar.AspNetCore --version 2.6.9

Update your Program.cs to include Scalar UI:

[image: Image 9]

if (app.Environment.IsDevelopment())

{

app.MapOpenApi();

app.MapScalarApiReference();

}

Navigate to https://localhost:<port>/scalar/ to view the interactive API documentation.

 Figure 2.6 Scalar UI interface showing API documentation.

5. Testing the API:

You can use the OpenAPI specification with tools like Postman, Insomnia, or any OpenAPI-compatible client.

Import the OpenAPI specification URL (https://localhost:

<port>/openapi/v1.json) into your preferred API testing tool.

Since we have used Scalar UI, you can also test the API directly from the Scalar UI interface. Click on the endpoints to see their details, and you can even execute requests directly from the documentation interface.

Click /itens endpoint to see the details of the GET request. You can also click on the Test Request button to execute the request directly from the documentation interface.

[image: Image 10]

[image: Image 11]

 Figure 2.7 Testing API using Scalar UI.

You will have a form like Figure 2.8. Click the Send button to execute the request.

You should see a response displaying the list of items.

 Figure 2.8 Make /items request from Scalar UI.

6. OpenAPI and Postman

If you prefer to use Postman, you can import the OpenAPI specification directly into Postman:

Open Postman and click on the Import button.

Select the Link tab and paste the OpenAPI specification URL

(https://localhost:<port>/openapi/v1.json).

Click Continue and then Import to load the API endpoints into Postman.

You can now test the API endpoints directly from Postman, using the imported OpenAPI specification to guide you through the available operations.

If you got failed to import the OpenAPI specification, you can also export the OpenAPI specification as a JSON file and import it into Postman.

2.4.1 Conclusion

The transition to built-in OpenAPI support in ASP.NET Core 9.0’s webapi template represents a significant improvement in API documentation and tooling. This change provides developers with a more standardized, lightweight, and performant approach to API documentation. The OpenAPI specification ensures better compatibility with modern development tools and provides a solid foundation for API-first development practices. Whether you are building a new API or migrating existing services to ASP.NET Core 9.0, the integrated OpenAPI support offers enhanced developer experience and better industry standard compliance.

2.5 Exercise 4: Buidling a Calculator Service

In this lab, you’ll create a basic calculator web service using ASP.NET Core 9

Minimal API. You’ll learn how to handle different types of HTTP requests and perform basic arithmetic operations, gaining a foundation in this innovative approach to .NET development.

2.5.1 Objective

Develop a basic calculator web service using ASP.NET Core 9 Minimal API that supports basic arithmetic operations.

2.5.2 Requirements

.NET 9.0 SDK installed

A preferred code editor (e.g., Visual Studio, Visual Studio Code) 2.5.3 Lab Steps

1. Create a New ASP.NET Core Minimal API Project Open a command prompt or terminal.

Run the following command to create a new ASP.NET Core Minimal API project:

mkdir calculatorapi

cd calculatorapi

dotnet new webapi

code .

2. Define the Numeric Record

Open the Program.cs file in your code editor.

Define the Numeric record at the last of the file: record Numeric(double Number1, double Number2, double Result = 0); 3. Implement the Calculator Endpoints Using Numeric Modify the existing calculator endpoints to use the Numeric record. For addition, subtraction, multiplication, and division, the input and output are represented by the Numeric record.

Open the Program.cs file in your code editor.

Add endpoints for the four addition arithmetic operation:

...

var calculatorApi = app.MapGroup("/api/calculator"); calculatorApi.MapPost("/add", (Numeric numbers) =>

{

var result = numbers.Number1 + numbers.Number2;

return Results.Ok(new Numeric(numbers.Number1, numbers.Number2, result));

});

...

Add the following code snippet for subtraction: calculatorApi.MapPost("/subtract", (Numeric numbers) =>

{

var result = numbers.Number1 - numbers.Number2;

return Results.Ok(new Numeric(numbers.Number1, numbers.Number2, result));

});

Add the following code snippet for multiplication: calculatorApi.MapPost("/multiply", (Numeric numbers) =>

{

var result = numbers.Number1 * numbers.Number2;

return Results.Ok(new Numeric(numbers.Number1, numbers.Number2, result));

});

Add the following code snippet for division:

calculatorApi.MapPost("/divide", (Numeric numbers) =>

{

if (numbers.Number2 == 0)

{

return Results.BadRequest("Cannot divide by zero");

}

var result = numbers.Number1 / numbers.Number2;

return Results.Ok(new Numeric(numbers.Number1, numbers.Number2, result));

});

In this setup, each arithmetic operation takes a Numeric record as input, performs the calculation, and returns a new Numeric record with the result.

3. Build and Run the Application

Use the command prompt or terminal to build and run the project: dotnet run

You can also run the application with https profile: dotnet run --launch-profile https

4. Modify .http File for Testing

Modify a content of calculatorapi.http file.

@calculatorapi_HostAddress = http://localhost:5003

POST {{calculatorapi_HostAddress}}/api/calculator/add

Accept: application/json

Content-Type: application/json

{

"Number1": 10,

"Number2": 5

}

POST {{calculatorapi_HostAddress}}/api/calculator/subtract Accept: application/json

Content-Type: application/json

{

"Number1": 10,

"Number2": 5

}

POST {{calculatorapi_HostAddress}}/api/calculator/multiply Accept: application/json

Content-Type: application/json

{

"Number1": 10,

"Number2": 5

}

POST {{calculatorapi_HostAddress}}/api/calculator/divide Accept: application/json

Content-Type: application/json

{

"Number1": 10,

"Number2": 5

}

Save the file.

4. Testing the Calculator Service

Use tools like Postman to test your calculator service by sending POST

requests.

For each operation, send a JSON object in the request body, e.g., { "Number1": 5, "Number2": 3 }, and specify the content type as application/json.

Test the following endpoints:

Addition: http://localhost:5003/api/calculator/add Subtraction: http://localhost:5003/api/calculator/subtract Multiplication: http://localhost:5003/api/calculator/multiply Division: http://localhost:5003/api/calculator/divide You can also test using the REST Client extension.

[image: Image 12]

Click the Send Request button to test the API.

You should see a response displaying the result of the operation.

 Figure 2.9 Response from server using REST Client extension.

2.5.4 Conclusion

In this lab, you have created a calculator web service using ASP.NET Core 9

Minimal API with a focus on using a record type (Numeric) for clean and efficient data handling. This approach demonstrates the power of records in simplifying parameter passing and result representation in web APIs.

2.6 Exercise 5: Upload and Download File Web

In this exercise, you’ll learn how to implement file upload and download functionality using ASP.NET Core 9.0 Minimal API. Handling files is a common requirement in modern web applications, and this lab will guide you through setting up endpoints for uploading files to the server and downloading them from a designated directory. You’ll gain practical experience with multipart form data, file streams, and serving static content, all within the context of a minimal API project.

2.6.1 Objective

Develop an ASP.NET Core 9 Web API that allows users to upload and download files. This lab demonstrates handling file streams and setting appropriate API endpoints.

2.6.2 Requirements

.NET 9.0 SDK installed

A preferred code editor (e.g., Visual Studio, Visual Studio Code) Basic knowledge of ASP.NET Core

2.6.3 Lab Steps

1. Create a New ASP.NET Core Minimal API Project Open a command prompt or terminal.

Create a new project using the webapi template:

mkdir fileapi

cd fileapi

dotnet new webapi

Open the project in your code editor:

code .

2. Create uploads folder

Create a new folder named uploads in the root of web root directory wwwroot.

If you don’t have wwwroot folder, create it inside the root of the project.

The wwwroot folder is used to serve static files, such as HTML, CSS, JavaScript, and images, in ASP.NET Core Minimal API applications.

You can see the project structure in your code editor:

[image: Image 13]

 Figure 2.10 Project structure of the ASP.NET Core Minimal API project.

3. Disable Atiforgery

Since we use multipart/form-data for file upload, we need to disable the antiforgery token validation.

Open the Program.cs file in your code editor.

...

builder.Services.AddAntiforgery();

var app = builder.Build();

app.UseAntiforgery();

...

4. Create the API for File Upload to Use uploads Open the Program.cs file in your code editor.

Import the necessary namespaces at the top of the file: using Microsoft.AspNetCore.Mvc;

Add a service for file upload, pointing to the wwwroot/uploads directory: var fileApi = app.MapGroup("/api/file"); fileApi.MapPost("/upload", async (IFormFile file,[FromForm]string description) =>

{

var uploadsFolderPath = Path.Combine(app.Environment.WebRootPath, "uploads"); Directory.CreateDirectory(uploadsFolderPath);

var filePath = Path.Combine(uploadsFolderPath, file.FileName); using (var stream = new FileStream(filePath, FileMode.Create))

{

 await file.CopyToAsync(stream);

}

return Results.Ok(new { FilePath = $"/Uploads/{file.FileName}", Description = des

}).DisableAntiforgery();

We use .DisableAntiforgery() to disable the antiforgery token validation for this endpoint.

5. Create the API for File Download to Use wwwroot/uploads Add the following code snippet for the file download endpoint, pointing to the wwwroot/Uploads directory:

fileApi.MapGet("/download/{fileName}", async (string fileName) =>

{

var filePath = Path.Combine(app.Environment.WebRootPath, "Uploads", fileName); if (!File.Exists(filePath))

{

return Results.NotFound("File not found.");

}

var memoryStream = new MemoryStream();

using (var stream = new FileStream(filePath, FileMode.Open, FileAccess.Read))

{

await stream.CopyToAsync(memoryStream);

}

memoryStream.Position = 0;

return Results.File(memoryStream, "application/octet-stream", fileName);

});

6. Build and Run the Application

In the terminal, build and run the project using dotnet run.

dotnet run

We can also run the application with https profile: dotnet run --launch-profile https

7. Modify .http File for Testing

Open the fileapi.http file in your code editor.

Write the following scripts

@fileapi_HostAddress = https://localhost:7010

Upload File

POST {{fileapi_HostAddress}}/api/file/upload Content-Type: multipart/form-data; boundary=----WebKitFormBoundary7MA4YWxkTrZu0gW

Accept: application/json

------WebKitFormBoundary7MA4YWxkTrZu0gW

Content-Disposition: form-data; name="description"

This is a test file

------WebKitFormBoundary7MA4YWxkTrZu0gW

Content-Disposition: form-data; name="file"; filename="example.txt"

Content-Type: text/plain

< ./example.txt

------WebKitFormBoundary7MA4YWxkTrZu0gW--

Download File

GET {{fileapi_HostAddress}}/api/file/download/example.txt Save the file.

We also create a file named example.txt in the root of the project.

Just write some text in the file.

8. Testing the API

Use a tool like Postman or a similar HTTP client to test the file upload and download functionality.

If you use Postman, you follow these steps:

Import https://localhost:7201/openapi/v1.json to Postman to get the API endpoints.

Create a new request in Postman or open a new tab.

Set the method to POST.

Enter the URL of your file upload endpoint, which will be something like https://localhost:7201/api/file/upload. Change this URL to match your API’s URL.

In the ‘Headers’ section, you don’t need to explicitly set the Content-Type to multipart/form-data as Postman will automatically add it when you select a file to upload.

Go to the Body tab in Postman.

Select form-data.

In the key field, select File from the dropdown.

Click on the Select Files button or simply drag and drop the file into the key-value area to attach the file you want to upload.

Add key description and value This is a test file.

[image: Image 14]

Click the Send button to execute the request.

You should receive a response indicating that the file upload was successful.

 Figure 2.11 Response from server.

You can also test using the REST Client extension.

Click the Send Request button to test the API.

[image: Image 15]

 Figure 2.12 Response from server using REST Client extension.

2.6.4 Conclusion

In this lab, you’ve set up a minimal API for file uploading and downloading in ASP.NET Core 9, utilizing the wwwroot directory for storing files. This approach is typical in web applications for managing static content, including files uploaded by users.

2.7 Exercise 6: Exception Handling and Logging In this lab, you’ll enhance your ASP.NET Core 9.0 Minimal API project to handle various HTTP errors and implement logging to a file. Exception handling and logging are crucial for building robust APIs that can effectively communicate errors to clients and maintain a log for troubleshooting and monitoring.

2.7.1 Objective

Enhance the ASP.NET Core 9.0 Minimal API project to handle various HTTP

errors (500, 502, 404, 400) and implement logging to a file.

2.7.2 Requirements

.NET 9.0 SDK installed

Visual Studio Code or another code editor

REST Client extension installed in Visual Studio Code for testing A package for logging to a file, such as Serilog

2.7.3 Lab Steps

1. Set Up the Project and Serilog

Create a new project (if not already created) and navigate to the project directory as previously described.

mkdir exceptionhandlingapi

cd exceptionhandlingapi

dotnet new webapi

Open the project in your code editor.

code .

Install Serilog via NuGet:

dotnet add package Serilog

dotnet add package Serilog.AspNetCore

dotnet add package Serilog.Extensions.Logging

dotnet add package Serilog.Sinks.File

dotnet add package Serilog.Sinks.Console

Configure Serilog in Program.cs:

using Microsoft.AspNetCore.Diagnostics;

using Microsoft.AspNetCore.Mvc;

using Serilog;

var builder = WebApplication.CreateBuilder(args); builder.Logging.ClearProviders();

...

 // Configure Serilog

var logger = new LoggerConfiguration()

.WriteTo.Console()

.WriteTo.File("log-.txt", rollingInterval: RollingInterval.Day)

.CreateLogger();

 // Register Serilog

builder.Logging.AddSerilog(logger);

 // Other configurations...

2. Implement Custom Error Handling and Responses Modify the Program.cs to handle different types of errors: var app = builder.Build();

app.UseExceptionHandler("/error");

app.MapGet("/error", (HttpContext httpContext) =>

{

var exceptionFeature = httpContext.Features.Get< IExceptionHandlerFeature>(); var exception = exceptionFeature?.Error;

var problemDetails = new ProblemDetails

{

Status = 500,

Title = "An error occurred while processing your request."

};

if (exception is FileNotFoundException)

{

problemDetails.Status = 404;

problemDetails.Title = "File not found.";

}

else if (exception is InvalidOperationException)

{

problemDetails.Status = 400;

problemDetails.Title = "Invalid operation.";

}

 // Logging the exception

app.Logger.LogError(exception, "An error occurred: {ErrorMessage}", exception.Me return Results.Problem(problemDetails.Title, statusCode: problemDetails.Status);

});

 // Define other routes...

3. Create Endpoints to Simulate Errors

Add endpoints to simulate different errors:

app.MapGet("/causeinternalerror", () =>

{

throw new Exception("Internal server error.");

});

app.MapGet("/causefileerror", () =>

{

throw new FileNotFoundException("Example file not found.");

});

app.MapGet("/causeinvalidoperation", () =>

{

throw new InvalidOperationException("Invalid operation example.");

});

 // Other routes...

4. Build and Run the Application

Build and run your project using dotnet run.

You can also run the application with https profile: dotnet run --launch-profile https

5. Create the .http File for Testing Different Errors Create ExceptionHandlingApi.http with the following content:

@exceptionhandlingapi_HostAddress = http://localhost:5100

GET {{exceptionhandlingapi_HostAddress}}/weatherforecast Accept: application/json

Simulate Internal Server Error

GET {{exceptionhandlingapi_HostAddress}}/causeinternalerror

Simulate File Not Found Error

GET {{exceptionhandlingapi_HostAddress}}/causefileerror

Simulate Invalid Operation Error

GET {{exceptionhandlingapi_HostAddress}}/causeinvalidoperation Change port 5100 to the port number displayed in the command prompt or terminal.

6. Testing Error Handling and Logging

Use the REST Client extension in Visual Studio Code to test each endpoint.

Click the Send Request button to test the API.

You should see a response displaying the error message.

[image: Image 16]

[image: Image 17]

Check the log-xxxxxx file in your project directory for logged error details.

 Figure 2.13 Log file.

2.7.4 Conclusion

In this modified lab, you have enhanced an ASP.NET Core 9.0 Minimal API application to handle different HTTP errors and log exceptions to a file. This approach is vital for building robust APIs that can effectively communicate errors to clients and maintain a log for troubleshooting and monitoring.

2.8 Exercise 7: Middleware and Filters

In this lab, you’ll learn how to implement custom middleware and filters in ASP.NET Core 9.0 Minimal API. You’ll explore the use of middleware for request processing and handling, as well as the use of filters for request filtering and response formatting.

A middleware is a component that is executed on every request in the ASP.NET

Core pipeline. It can be used to perform actions such as logging, authentication, and error handling. Filters are used to apply cross-cutting concerns to specific endpoints or controllers, such as authorization, caching, and response formatting.

2.8.1 Objective

Implement custom middleware and demonstrate the use of filters in an ASP.NET

Core 9.0 Minimal API project.

2.8.2 Requirements

.NET 9.0 SDK installed

Visual Studio Code or another code editor

REST Client extension installed in Visual Studio Code for testing 2.8.3 Lab Steps

1. Create a New ASP.NET Core Minimal API Project Open a command prompt or terminal.

Create a new ASP.NET Core Minimal API project:

mkdir middlewareapi

cd middlewareapi

dotnet new webapi

Open the project in your code editor:

code .

2. Implement Custom Middleware

Open the project in your code editor.

Modify the Program.cs to include a simple logging middleware: var builder = WebApplication.CreateBuilder(args); var app = builder.Build();

 // Custom Middleware for Logging

app.Use(async (context, next) =>

{

Console.WriteLine("Request Incoming");

await next();

Console.WriteLine("Response Outgoing");

});

 // Define routes

app.MapGet("/", () => "Hello World"); app.Run();

We can also create a middleware class.

Create a new file named LoggingMiddleware.cs in the root of the project.

Add the following code snippet:

using Microsoft.AspNetCore.Http;

using System.Threading.Tasks;

public class LoggingMiddleware

{

private readonly RequestDelegate _next; public LoggingMiddleware(RequestDelegate next)

{

_next = next;

}

public async Task InvokeAsync(HttpContext context)

{

Console.WriteLine("LoggingMiddleware>> Request Incoming"); await _next(context);

Console.WriteLine("LoggingMiddleware>> Response Outgoing");

 }

}

In the Program.cs file, modify the Main method to use the middleware. Write these after builder.Build():

...

 // Custom Middleware for Logging

app.UseMiddleware<LoggingMiddleware>();

...

3. Implement a Simple Filter (Optional in Minimal API) In Minimal APIs, filters as known in MVC aren’t directly available.

However, you can achieve similar functionality using middleware or service injection in endpoint delegates.

For simplicity, we’ll focus on middleware in this lab. (For advanced scenarios, consider converting to a Controller-based approach to use filters.) 4. Build and Run the Application

Build and run the project using:

dotnet run

You can also run the application with https profile: dotnet run --launch-profile https

5. Create the .http File for Testing

Create middlewareapi.http with the following content to test the middleware:

@middlewareapi_HostAddress = http://localhost:5104

GET {{middlewareapi_HostAddress}}/weatherforecast Accept: application/json

###

Change port 5104 to the port number displayed in the command prompt or terminal.

6. Testing the Middleware

Open middlewareapi.http in Visual Studio Code.

[image: Image 18]

Use the REST Client extension to send the request.

Observe the console output to see the middleware in action.

You should see the following output in the console.

 Figure 2.14 Response from server using REST Client extension.

Another way to test the middleware is to use the Swagger UI.

Open a web browser and navigate to https://localhost:5062/swagger.

Change port 5062 to the port number displayed in the command prompt or terminal.

2.8.4 Conclusion

In this lab, you’ve implemented a custom middleware in an ASP.NET Core 9.0

Minimal API application. This middleware logs messages to the console before and after processing HTTP requests. While Minimal APIs don’t support filters in the same way as MVC, middleware offers a powerful alternative for request processing and handling.

3 Accessing SQL and NoSQL

Databases

3.1 Introduction

Welcome to the comprehensive guide on accessing SQL and NoSQL databases in

.NET 9.0. In today’s data-driven world, the ability to efficiently interact with various types of databases is essential for any application. This chapter is crafted to equip you with the necessary skills and knowledge to seamlessly integrate and manipulate data stored in both SQL and NoSQL databases using the latest .NET

technologies.

Understanding the Database Landscape

SQL Databases: We start by exploring SQL databases, the traditional and widely used systems for managing structured data. Here, you’ll learn about establishing connections, executing SQL queries, and handling transactions using .NET’s rich set of libraries and tools.

NoSQL Databases: Transitioning from the structured world of SQL, we delve into the realm of NoSQL databases. These systems offer flexibility and scalability for handling unstructured data, and we’ll cover how to interact with popular NoSQL databases using .NET.

Key Concepts and Technologies

Entity Framework Core: A significant part of this chapter will focus on Entity Framework Core, .NET’s flagship ORM, which simplifies data access in both SQL and NoSQL databases.

ADO.NET: For SQL databases, ADO.NET remains a cornerstone, and we’ll revisit its powerful features and how they integrate into modern .NET

applications.

NoSQL Client Libraries: We’ll also explore various client libraries available for NoSQL databases, discussing how to choose and work with them effectively in .NET.

Practical Examples and Best Practices

Hands-On Examples: The chapter will be rich in practical examples, demonstrating CRUD operations, complex queries, and performance optimization techniques in real-world scenarios.

Best Practices: As we navigate through different database technologies, we’ll emphasize best practices in database design, query optimization, and maintaining data integrity and security.

Preparing for the Hands-On Labs

The following sections and hands-on labs are designed to be interactive and incremental, ensuring a deep and practical understanding of each topic. Whether you are developing a new application or maintaining an existing one, this chapter will provide you with the tools and insights needed to work effectively with SQL

and NoSQL databases in .NET 9.0.

By the end of this chapter, you will be well-equipped to make informed decisions about database technologies and implement robust data access solutions in your

.NET applications. Let’s embark on this journey to master the art of database interaction in the modern .NET ecosystem.

3.2 .NET Entity Framework Core

Entity Framework Core 9.0 is the latest version of Microsoft’s Object-Relational Mapping (ORM) framework, providing a powerful and flexible way to interact with databases in .NET applications. EF Core supports two primary development approaches: Code First and Database First. Each has its unique advantages and use cases.

1. Code First Approach

Overview: In the Code First approach, developers define database models and relationships using C# classes. EF Core then generates the database schema based on these models. This approach is popular in scenarios where the database schema is initially unknown or subject to frequent changes.

Getting Started:

Define Models: Create C# classes to represent entities. Each class typically corresponds to a table in the database.

Define DbContext: Create a class that derives from DbContext. This class acts as a session with the database, allowing querying and saving data.

Configuration: Use Data Annotations or Fluent API within the DbContext to configure models, relationships, keys, and other constraints.

Migrations: EF Core migrations track changes to the model and update the database schema accordingly. Use commands like dotnet ef migrations add and dotnet ef database update to manage database changes.

Benefits:

Full control over the database schema through code.

Seamless integration with version control systems.

Ideal for Agile development and rapid prototyping.

2. Database First Approach

Overview: The Database First approach starts with an existing database.

Developers use EF Core tools to generate C# classes that map to the database tables, views, and stored procedures. This approach is suitable when working with a legacy database or a database designed by a separate team.

Getting Started:

Scaffold DbContext: Use the EF Core command-line tools to scaffold a DbContext and entity classes from the existing database using the dotnet ef dbcontext scaffold command.

Customize Models (if needed): Modify the generated classes to better fit your application’s needs, though be cautious as customizations might be overwritten if scaffolding is repeated.

Maintaining Synchronization: Keep the entity classes and the database schema in sync. Changes to the database require re-scaffolding and potential manual adjustments to the entity classes.

Benefits:

Quick setup for applications built around existing databases.

Reduces the need for manual coding of the data access layer.

Ideal for projects where database schema is managed by a separate database administration team or tool.

Best Practices and Considerations

Version Control: Migrations in the Code First approach should be committed to version control to track changes over time.

Database Updates: In the Database First approach, be cautious about database schema changes as they might require re-scaffolding and code adjustments.

Performance: Regardless of the approach, pay attention to performance implications of your design choices, like lazy loading, eager loading, and the efficiency of generated SQL queries.

Entity Framework Core 9.0 provides robust support for both Code First and Database First approaches, catering to different project requirements and stages.

Understanding the strengths and limitations of each approach is key to effectively managing your application’s data layer. Whether you are starting from scratch with a new database design or integrating with an existing database, EF Core offers the tools and flexibility needed for modern .NET data access.

3.3 Entity Framework Core tools

Entity Framework Core (EF Core) tools are a set of command-line tools that simplify the development and maintenance of EF Core applications. These tools are available as a .NET global tool, which can be installed using the following command:

dotnet tool install --global dotnet-ef

Once installed, you can use the dotnet ef command to run EF Core commands. For example, to list all available commands, use:

dotnet ef -h

To update the EF Core tools to the latest version, use: dotnet tool update --global dotnet-ef

We’ll use EF Core tools throughout this chapter to scaffold database models, generate migrations, and perform other tasks.

3.4 Exercise 8: EF Core 9.0 Code First and ASP.NET

Core Minimal API

In this exercise, you’ll learn how to use Entity Framework Core 9.0 (EF Core) in an ASP.NET Core Minimal API project. You’ll create a simple RESTful service that performs CRUD operations on a SQL Server database. You’ll also learn how to use EF Core migrations to create and update the database schema.

In this lab, we use Code First approach to create the database schema.

3.4.1 Objective

Integrate Entity Framework Core 9.0 with ASP.NET Core Minimal API to create a simple RESTful service that performs CRUD operations on a database.

3.4.2 Requirements

.NET 9.0 SDK installed

Visual Studio Code or another code editor

REST Client extension installed in Visual Studio Code for testing SQL Server or another EF Core compatible database 3.4.3 Lab Steps

1. Set Up the ASP.NET Core Minimal API Project Open a command prompt or terminal.

Navigate to your desired working directory or create a new one.

mkdir efcoredb

cd efcoredb

Create a new ASP.NET Core Minimal API project:

dotnet new webapi

Open the project in Visual Studio Code:

code .

2. Install Entity Framework Core

Install the necessary EF Core packages via NuGet. For SQL Server and In-MemoryDB, use:

dotnet add package Microsoft.EntityFrameworkCore.SqlServer dotnet add package Microsoft.EntityFrameworkCore.InMemory dotnet add package Microsoft.EntityFrameworkCore.Design 3. Create a Model and DbContext

In your project, create a new folder named Models.

Inside Models, create a file Product.cs with the following content: using System.ComponentModel.DataAnnotations; using System.ComponentModel.DataAnnotations.Schema; namespace EFCoreDb.Models

{

public class Product

{

[Key]

[DatabaseGenerated(DatabaseGeneratedOption.Identity)]

public int Id { get; set; }

public string Name { get; set; }

public decimal Price { get; set; }

}

}

Inside Models, create a file AppDbContext.cs:

using Microsoft.EntityFrameworkCore;

namespace EFCoreDb.Models

{

public class AppDbContext : DbContext

{

public AppDbContext(DbContextOptions<AppDbContext> options)

: base(options)

{

}

public DbSet<Product> Products { get; set; }

}

protected override void OnModelCreating(ModelBuilder modelBuilder)

{

base.OnModelCreating(modelBuilder);

 // Define precision for decimal property

modelBuilder.Entity<Product>()

.Property(product => product.Price)

.HasPrecision(18, 2);

}

}

4. Configure DbContext in Program.cs

In Program.cs, configure EF Core:

using EFCoreDb Models;

using EFCoreDb.Models;

using Microsoft.EntityFrameworkCore;

var builder = WebApplication.CreateBuilder(args);

 // Add services to the container.

builder.Services.AddDbContext<AppDbContext>(options => {

var useInMemoryDb = builder.Configuration.GetValue<bool>("UseInMemoryDatabase"); if (useInMemoryDb)

{

options.UseInMemoryDatabase("TrainingDB");

}

else

{

options.UseSqlServer(builder.Configuration.GetConnectionString("MyDB"));

}

});

var app = builder.Build();

 // Configure the HTTP request pipeline.

 // ...

In appsettings.json and appsettings.Development.json files, add database configuration with the following content:

{

"UseInMemoryDatabase": true,

"ConnectionStrings": {

"MyDB": "server=localhost; database=TrainingDB; uid=tester; pwd=pass123"

}

}

Change the connection string to match your database configuration.

5. Implement CRUD Operations

In Program.cs, implement GET endpoints for Product: app.MapGet("/products", async (AppDbContext dbContext) => await dbContext.Products.ToListAsync());

app.MapGet("/products/{id}", async (AppDbContext dbContext, int id) =>

{

var product = await dbContext.Products.Where(p => p.Id == id).FirstOrDefaultAsync return Results.Ok(product);

});

app.MapPost("/products", async (AppDbContext dbContext, Product product) =>

{

dbContext.Products.Add(product);

await dbContext.SaveChangesAsync();

return Results.Created($"/products/{product.Id}", product);

});

The following code is for the update and delete endpoints: app.MapPut("/products/{id}", async (AppDbContext dbContext, Product product, int id)

{

var p = await dbContext.Products.Where(p => p.Id == id).FirstOrDefaultAsync(); if(p != null)

{

p.Price = product.Price;

if(!string.IsNullOrEmpty(product.Name))

p.Name = product.Name;

dbContext.Products.Update(p);

await dbContext.SaveChangesAsync();

}

return Results.Ok(p);

});

app.MapDelete("/products/{id}", async (AppDbContext dbContext, int id) =>

{

var product = await dbContext.Products.Where(p => p.Id == id).FirstOrDefaultAsync if (product != null)

{

dbContext.Products.Remove(product);

await dbContext.SaveChangesAsync();

}

return Results.Ok(product);

});

Save the file.

Next, we migrate the database.

6. Set Up the Database

Ensure your connection string in appsettings.json and appsettings.Development.json are correct.

If you are using SQL Server:

Create a database named database based on the connection string.

Create a username and password for the database.

Change value "UseInMemoryDatabase": true, to "UseInMemoryDatabase": false, in appsettings.json and appsettings.Development.json.

Use EF Core migrations to create the database:

dotnet ef migrations add InitialCreate

dotnet ef database update

After running the above commands, you should see a new database based your database connection string in your SQL Server instance.

If you have errors related to Invariant Globalization, you may disable InvariantGlobalization as false on project file, efcoredb.csproj.

If you are using In-Memory Database:

No additional setup is required.

7. Add Scalar UI for OpenAPI (Optional)

To enhance the API documentation, you can add Scalar UI for OpenAPI.

This provides a user-friendly interface to interact with your API.

Install the Scalar UI package:

dotnet add package Scalar.AspNetCore

In Program.cs, add the following lines to configure Scalar UI: using Scalar.AspNetCore;

...

if (app.Environment.IsDevelopment())

{

app.MapOpenApi();

app.MapScalarApiReference();

}

8. Build and Run the Application

Use dotnet run to start the application.

dotnet run

You can also run the application with https profile: dotnet run --launch-profile https

9. Create the .http File for Testing

Create a file EfCoreMinimalApi.http with test requests:

@efcoredb_HostAddress = http://localhost:5069

Get all

GET {{efcoredb_HostAddress}}/products

Accept: application/json

Get by id

GET {{efcoredb_HostAddress}}/products/1

Accept: application/json

Create

POST {{efcoredb_HostAddress}}/products

Content-Type: application/json

{

"name": "Product 1",

"price": 100

}

PUT {{efcoredb_HostAddress}}/products/1

Content-Type: application/json

{

"name": "Product 41edit",

"price": 100

}

Delete by id

DELETE {{efcoredb_HostAddress}}/products/2

Accept: application/json

Change the port number to match your application’s port number.

10. Testing the API

Use the REST Client extension in Visual Studio Code to send requests.

Open the efcoredb.http file and click on the “Send Request” link above each request to test the API endpoints.

For adding a new product, you can modify the JSON body in the POST

request as needed.

To update and delete products, modify the PUT and DELETE requests accordingly.

You can see my program output from REST client below:

[image: Image 19]

[image: Image 20]

 Figure 3.1 REST Client for efcoredb program.

You also can use Scalar UI to test the API. Open browser and navigate to https://<server>/scalar.

 Figure 3.2 Scalar UI for efcoredb program.

3.4.4 Conclusion

In this lab, you’ve integrated Entity Framework Core 9.0 with Code First approach on ASP.NET Core Minimal API to build a simple RESTful service. This service demonstrates basic CRUD operations on a SQL Server database, showcasing how to use EF Core in modern ASP.NET Core applications.

3.5 Exercise 9: EF Core 9.0 Database First and ASP.NET Core Minimal API

In this exercise, you’ll learn how to use Entity Framework Core 9.0 (EF Core) in an ASP.NET Core Minimal API project. You’ll create a simple RESTful service that performs CRUD operations on a SQL Server database. You’ll also learn how to use EF Core migrations to create and update the database schema.

3.5.1 Objective

Utilize the Database First approach with Entity Framework Core 9.0 in an ASP.NET Core Minimal API project. This lab will guide you through creating a RESTful service that interfaces with an existing database.

3.5.2 Requirements

.NET 9.0 SDK installed

Visual Studio Code or another code editor

REST Client extension installed in Visual Studio Code for testing Access to a pre-existing SQL Server database

SQL Server Management Studio or another database management tool (optional for database inspection)

3.5.3 Lab Steps

1. Create the Product Table in SQL Server

Open SQL Server Management Studio (SSMS) and connect to your SQL

Server instance.

Execute the following SQL script to create a Product table:

CREATE DATABASE EfCoreLab GO

USE EfCoreLab

GO

CREATE TABLE Product (

Id INT IDENTITY PRIMARY KEY, Name NVARCHAR(100) NOT NULL,

Price DECIMAL(18, 2) NOT NULL

);

This script creates a new database named EfCoreLab and a Product table with Id, Name, and Price columns.

You may create user and password for the database if you don’t want to use admin user.

2. Set Up the ASP.NET Core Project

Open a command prompt or terminal.

Navigate to your desired working directory or create a new one.

mkdir efcoredbfirst

cd efcoredbfirst

Create a new ASP.NET Core Minimal API project:

dotnet new webapi

Open the project in Visual Studio Code:

code .

3. Install Entity Framework Core Tools

Install EF Core Design and SQL Server packages via NuGet: dotnet add package Microsoft.EntityFrameworkCore.Design dotnet add package Microsoft.EntityFrameworkCore.SqlServer dotnet add package Microsoft.EntityFrameworkCore.Tools Install the EF Core CLI tools globally (if not already installed): dotnet tool install --global dotnet-ef

4. Scaffold DbContext and Models from Existing Database

[image: Image 21]

Assuming you have access to an existing SQL Server database, run the following command to scaffold the DbContext and entity classes. Replace the connection string and other options as needed:

dotnet ef dbcontext scaffold "db-connection-string" Microsoft.EntityFrameworkCore.Sql Change the connection string db-connection-string to match your database configuration. Here is an example:

"Server=localhost;Database=EfCoreLab;User Id=tester;Password=pass123;TrustServerCerti If you use database access with Windows Authentication, you can use:

"Server=localhost;Database=EfCoreLab;Trusted_Connection=True;TrustServerCertificate=T

If you have errors related to Invariant Globalization, you may disable InvariantGlobalization as false on project file, efcoredbfirst.csproj.

This command creates C# models and a DbContext based on the schema of the existing database in the Models directory.

You can see my output from the command below:

 Figure 3.3 Output from scaffold command.

We have warnings about security on connection string. Open EfCoreLabContext.cs, remove or comment out on protected override void OnConfiguring..

We move our database connection string to appsettings.json and appsettings.Development.json files.

In appsettings.json and appsettings.Development.json files, add database configuration with the following content:

{

"ConnectionStrings": {

"MyDB": "db-connection-string"

}

}

Change the connection string db-connection-string to match your database configuration.

5. Configure the DbContext in Program.cs

In Program.cs, configure the DbContext:

using efcoredbfirst.Models;

using Microsoft.EntityFrameworkCore;

var builder = WebApplication.CreateBuilder(args);

 // Add services to the container.

builder.Services.AddDbContext<EfCoreLabContext>(options => options.UseSqlServer(builder.Configuration.GetConnectionString("MyDB"))); var app = builder.Build();

 // Define routes and logic using the scaffolded DbContext and models

 // ...

app.Run();

6. Implement Basic CRUD Operations

Implement minimal API endpoints to perform CRUD operations. Use the scaffolded DbContext and models to interact with the database.

We can copy the code from previous lab, Exercise 8, step 5.

Change the DbContext from AppDbContext to EfCoreLabContext.

The following is the code for GET endpoints:

app.MapGet("/products", async (EfCoreLabContext dbContext) => await dbContext.Products.ToListAsync());

app.MapGet("/products/{id}", async (EfCoreLabContext dbContext, int id) =>

{

var product = await dbContext.Products.Where(p => p.Id == id).FirstOrDefaultAsync return Results.Ok(product);

});

The following is the code for POST and PUT endpoints: app.MapPost("/products", async (EfCoreLabContext dbContext, Product product) =>

{

dbContext.Products.Add(product);

await dbContext.SaveChangesAsync();

return Results.Created($"/products/{product.Id}", product);

});

app.MapPut("/products/{id}", async (EfCoreLabContext dbContext, Product product, int

{

var p = await dbContext.Products.Where(p => p.Id == id).FirstOrDefaultAsync(); if(p != null)

{

p.Price = product.Price;

if(!string.IsNullOrEmpty(product.Name))

p.Name = product.Name;

dbContext.Products.Update(p);

await dbContext.SaveChangesAsync();

}

return Results.Ok(p);

});

The following is the code for DELETE endpoint:

app.MapDelete("/products/{id}", async (EfCoreLabContext dbContext, int id) =>

{

var product = await dbContext.Products.Where(p => p.Id == id).FirstOrDefaultAsync if (product != null)

{

dbContext.Products.Remove(product);

await dbContext.SaveChangesAsync();

}

return Results.Ok(product);

});

Save all files.

7. Add Scalar UI for OpenAPI (Optional)

To enhance the API documentation, you can add Scalar UI for OpenAPI.

This provides a user-friendly interface to interact with your API.

Install the Scalar UI package:

dotnet add package Scalar.AspNetCore

In Program.cs, add the following lines to configure Scalar UI:

using Scalar.AspNetCore;

...

if (app.Environment.IsDevelopment())

{

app.MapOpenApi();

app.MapScalarApiReference();

}

8. Build and Run the Application

Use dotnet run to start the application.

You can also run the application with https profile: dotnet run --launch-profile https

9. Create the .http File for Testing

Create a file efcoredbfirst.http in your project with test requests for the CRUD

operations:

@efcoredbfirst_HostAddress = http://localhost:5219

Get all

GET {{efcoredbfirst_HostAddress}}/products

Accept: application/json

Get by id

GET {{efcoredbfirst_HostAddress}}/products/1

Accept: application/json

Create

POST {{efcoredbfirst_HostAddress}}/products

Content-Type: application/json

{

"name": "Product 1",

"price": 100

}

PUT {{efcoredbfirst_HostAddress}}/products/1

Content-Type: application/json

{

"name": "Product 41edit",

"price": 100

}

Delete by id

DELETE {{efcoredbfirst_HostAddress}}/products/2

Accept: application/json

[image: Image 22]

###

10. Testing the API

Use the REST Client extension in Visual Studio Code to send requests and interact with your database.

For adding a new product, you can modify the JSON body in the POST

request as needed.

To update and delete products, modify the PUT and DELETE requests accordingly.

 Figure 3.4 REST Client for efcoredbfirst program.

You also can use Scalar UI to test the API. Open browser and navigate to https://<server>/scalar.

Click on the “Products” endpoint to see the available operations.

[image: Image 23]

 Figure 3.5 Scalar UI for efcoredbfirst program.

3.5.4 Conclusion

In this lab, you have used the Database First approach with EF Core 9.0 in an ASP.NET Core Minimal API project. You’ve learned how to scaffold DbContext and entity classes from an existing database, configure the DbContext, and create endpoints to perform CRUD operations.

3.6 Introduction to Database Transactions

What is a Database Transaction?

A database transaction is a fundamental concept in database management systems, representing a single unit of work that either fully succeeds or fully fails. It’s a sequence of operations performed as a single logical unit, which means that if any part of the transaction fails, the entire transaction fails, and the database state is left unchanged.

In technical terms, a transaction is a series of read/write operations that begins with the command BEGIN TRANSACTION and ends with either COMMIT (which saves the changes) or ROLLBACK (which undoes all changes made during the transaction).

Why Are Database Transactions Important?

1. Atomicity: Transactions ensure atomicity, which means that all operations within a transaction block are treated as a single unit. Either all operations are executed successfully, or none are.

2. Consistency: Transactions help in maintaining the consistency of the database. They ensure that the database transitions from one valid state to another valid state, without exposing intermediate states to end users.

3. Isolation: Transactions provide isolation, meaning they can operate independently without interference from other concurrent transactions, thus preventing data corruption.

4. Durability: Once a transaction is committed, the changes it has made to the data are permanent, even in the case of a system failure. This property ensures data integrity and reliability.

How Are Transactions Implemented in Databases?

SQL Databases: In SQL databases like MySQL, SQL Server, and PostgreSQL, transactions are managed using SQL commands. You start a transaction with BEGIN TRANSACTION, make your database read and write operations, and then either commit with COMMIT or rollback with ROLLBACK based on the success or failure of the operations.

NoSQL Databases: Transaction support in NoSQL databases varies depending on the database system. For example, MongoDB offers multi-document transactions, which work similarly to transactions in SQL

databases, ensuring atomicity, consistency, isolation, and durability.

Entity Framework in .NET: In .NET applications using Entity Framework, transactions are handled through the DbContext. You can start a transaction using dbContext.Database.BeginTransaction(), perform data operations using the DbContext, and then commit or rollback the transaction.

Handling in Application Code: Transactions can also be managed programmatically in application code, where you can include business logic to determine the success or failure of a transaction.

Understanding database transactions is crucial for building robust, reliable, and consistent database-driven applications. They are key in ensuring data integrity and consistency, especially in systems where multiple concurrent operations occur.

By properly implementing transactions, developers can prevent data anomalies, maintain data accuracy, and enhance the overall stability of applications.

3.7 Exercise 10: Database Transaction

In this exercise, you’ll learn how to use Entity Framework Core 9.0 (EF Core) in an ASP.NET Core Minimal API project. You’ll create a simple RESTful service that performs database transaction on a SQL Server database. You’ll also learn how to use EF Core migrations to create and update the database schema.

3.7.1 Objective

Demonstrate how to manage database transactions in an ASP.NET Core 9

Minimal API application using EF Core 9.0. This lab will use a code-first approach with multiple tables to illustrate transaction handling.

3.7.2 Requirements

.NET 9.0 SDK installed

Visual Studio Code or another code editor

SQL Server or another relational database

REST Client extension in Visual Studio Code for testing 3.7.3 Lab Steps

1. Set Up the ASP.NET Core Project

Open a command prompt or terminal.

Navigate to your desired working directory or create a new one.

mkdir efcoretrans

cd efcoretrans

Create a new ASP.NET Core Minimal API project:

dotnet new webapi

Open the project in Visual Studio Code:

code .

2. Install Entity Framework Core Install the necessary EF Core packages for your chosen database. For SQL

Server, use:

dotnet add package Microsoft.EntityFrameworkCore.SqlServer dotnet add package Microsoft.EntityFrameworkCore.Design 3. Define Models and DbContext

Create a folder named Models.

Inside Models, create classes for your entities. For illustration, let’s use Order.cs: using System.ComponentModel.DataAnnotations; using System.ComponentModel.DataAnnotations.Schema; namespace efcoretrans.Models;

public class Order

{

[Key]

[DatabaseGenerated(DatabaseGeneratedOption.Identity)]

public int Id { get; set; }

public string CustomerName { get; set; } = ""; public List<Product> Products { get; set; }

}

Write codes in Product.cs file with following codes: using System.ComponentModel.DataAnnotations; using System.ComponentModel.DataAnnotations.Schema; namespace efcoretrans.Models;

public class Product

{

[Key]

[DatabaseGenerated(DatabaseGeneratedOption.Identity)]

public int Id { get; set; }

public string Name { get; set; } = ""; public decimal Price { get; set; }

}

Inside Models folder, create AppDbContext.cs:

using Microsoft.EntityFrameworkCore;

namespace efcoretrans.Models;

public class AppDbContext : DbContext

{

public AppDbContext(DbContextOptions<AppDbContext> options)

: base(options) { }

 public DbSet<Order> Orders { get; set; }

public DbSet<Product> Products { get; set; }

protected override void OnModelCreating(ModelBuilder modelBuilder)

{

base.OnModelCreating(modelBuilder);

 // Define precision for decimal property

modelBuilder.Entity<Product>()

.Property(product => product.Price)

.HasPrecision(18, 2);

}

}

4. Configure the DbContext in Program.cs

In Program.cs, configure the DbContext to use SQL Server: using efcoretrans.Models;

using Microsoft.EntityFrameworkCore;

 //...

builder.Services.AddDbContext<AppDbContext>(options => options.UseSqlServer(builder.Configuration.GetConnectionString("MyDB")));

 //...

var app = builder.Build();

 //...

5. Implement Transactional Operations

Implement an API endpoint that demonstrates a transactional operation involving both Order and Product:

app.MapPost("/createorder", async (AppDbContext dbContext, Order order) =>

{

using var transaction = await dbContext.Database.BeginTransactionAsync(); try

{

dbContext.Orders.Add(order);

await dbContext.SaveChangesAsync();

await transaction.CommitAsync();

return Results.Ok(order);

}

catch

{

 // Rollback transaction if there are any exceptions await transaction.RollbackAsync();

throw;

}

});

6. Create the Database and Apply Migrations Configure your connection string in appsettings.json and appsettings.Development.json.

{

// ..

"ConnectionStrings": {

"MyDB": "server=localhost; database=EfCoreLab; uid=tester;pwd=pass123; TrustServe

},

// ..

}

Change the connection string to match your database configuration.

Create migrations and update the database:

dotnet ef migrations add InitialCreate

dotnet ef database update

If you have errors related to Invariant Globalization, you may disable InvariantGlobalization as false on project file, efcoretrans.csproj.

7. Add Scalar UI for OpenAPI (Optional)

To enhance the API documentation, you can add Scalar UI for OpenAPI.

This provides a user-friendly interface to interact with your API.

Install the Scalar UI package:

dotnet add package Scalar.AspNetCore

In Program.cs, add the following lines to configure Scalar UI: using Scalar.AspNetCore;

...

if (app.Environment.IsDevelopment())

{

app.MapOpenApi();

app.MapScalarApiReference();

}

8. Build and Run the Application

Compile and run your application using dotnet run.

You can also run the application with https profile: dotnet run --launch-profile https

9. Create the .http File for Testing

Create a file efcoretrans.http in your project with test requests for the transactional endpoint:

@efcoretrans_HostAddress = http://localhost:5038

POST {{efcoretrans_HostAddress}}/createorder

Content-Type: application/json

Accept: application/json

{

"customerName": "Ahmad Lee",

"products": [

{ "name": "Product 1", "price": 10.99 },

{ "name": "Product 2", "price": 15.50 }

]

}

10. Testing the Transactional Endpoint

Use the REST Client extension in Visual Studio Code to send requests and validate the transactional behavior.

For adding a new product, you can modify the JSON body in the POST

request as needed.

To update and delete products, modify the PUT and DELETE requests accordingly.

[image: Image 24]

 Figure 3.6 REST Client for efcoretrans program.

We also use Scalar UI to test the API. Open browser and navigate to https://<server>/scalar.

3.7.4 Conclusion

In this lab, you’ve learned how to manage database transactions in an ASP.NET

Core 9 Minimal API application using EF Core 9.0. You’ve implemented a transactional operation that involves multiple tables, demonstrating how to ensure data integrity in complex scenarios.

3.8 Introduction to NoSQL Databases

What is a NoSQL Database?

NoSQL databases, standing for “Not Only SQL” or “Non-SQL,” represent a wide range of database technologies that were developed to handle the shortcomings of traditional relational database management systems (RDBMS). Unlike RDBMS

which use tables to store data, NoSQL databases use various data models,

including document, key-value, wide-column, and graph formats. These databases are known for their flexibility, scalability, and the ability to handle large volumes of unstructured or semi-structured data.

Why Are NoSQL Databases Important?

1. Flexibility: NoSQL databases do not require a fixed schema, allowing the data model to evolve over time and developers to store complex data structures easily.

2. Scalability: They are designed to scale out by distributing data across multiple servers, making them well-suited for cloud computing and big data applications.

3. High Performance: NoSQL databases are optimized for specific data models and access patterns, which can lead to higher performance for certain types of applications, particularly those requiring large-scale data processing.

4. Handling Unstructured Data: With the increasing amount of unstructured data (such as social media content, multimedia, text), NoSQL databases provide efficient ways to store and retrieve such data.

How Are NoSQL Databases Implemented and Used?

Types of NoSQL Databases:

Document-Oriented: Such as MongoDB and CouchDB, store data in JSON-like documents and are ideal for storing, retrieving, and managing document-oriented information.

Key-Value Stores: Like Redis and DynamoDB, store data as a collection of key-value pairs. They are highly efficient for lookups and are useful for caching, sessions, and simple data models.

Wide-Column Stores: Including Cassandra and HBase, use columns to store data. They are excellent for analyzing large datasets.

Graph Databases: Such as Neo4j and Amazon Neptune, are used for storing and navigating relationships. They are ideal for social networks, fraud detection, and recommendation systems.

Usage in Applications:

NoSQL databases are often used in big data applications, real-time web applications, and in services requiring rapid development and iteration.

They are typically accessed through APIs provided by the database vendors, with support for various programming languages.

Considerations:

Choose a NoSQL database based on the specific requirements of your application, such as data model, scalability needs, and consistency requirements.

Understand the trade-offs, as NoSQL databases often provide eventual consistency rather than the strong consistency offered by traditional RDBMS.

NoSQL databases offer a modern approach to data storage and management, addressing the challenges and requirements of contemporary application development. They provide developers with efficient ways to handle varied and voluminous data, making them an essential component of the modern technology landscape, especially in the realms of big data, real-time processing, and cloud computing. Understanding when and how to effectively utilize NoSQL

technologies is crucial for developers and architects designing scalable and flexible systems.

3.9 Exercise 11: NoSQL Database and ASP.NET Core Minimal API

This lab offers practical experience in using MongoDB with ASP.NET Core, demonstrating the advantages of NoSQL databases in handling dynamic, schema-less data models and providing a foundation for building scalable and high-performance web APIs.

3.9.1 Objective

Learn to integrate MongoDB, a NoSQL database, with an ASP.NET Core 9.0

Minimal API project. This lab will cover the steps to perform CRUD operations on a MongoDB collection.

3.9.2 Requirements

.NET 9.0 SDK installed

MongoDB installed and running

Visual Studio Code or another code editor

MongoDB C# driver

REST Client extension installed in Visual Studio Code for testing

3.9.3 Lab Steps

1. Set Up the MongoDB Server

You can install MongoDB on your local machine or use a cloud-hosted MongoDB service.

Download and install MongoDB Community Server from

https://www.mongodb.com/try/download/community.

In this exercise, we’ll use a local MongoDB server based Docker container.

You may use Docker Desktop. Install Docker Desktop from

https://www.docker.com/products/docker-desktop.

For demo purpose, we create docker-compose file to run MongoDB server and mongo-express.

mongo-express is a web-based MongoDB admin interface written with Node.js, Express, and Bootstrap3.

The following is a content of docker-compose.yml file version: "3.8"

services:

mongo:

image: mongo:latest

container_name: mongo

environment:

- MONGO_INITDB_ROOT_USERNAME=root

- MONGO_INITDB_ROOT_PASSWORD=pass123

restart: unless-stopped

ports:

- "27017:27017"

networks:

- mongonet

volumes:

- ./database/db:/data/db

- ./database/dev.archive:/Databases/dev.archive

- ./database/production:/Databases/production mongo-express:

image: mongo-express

container_name: mexpress

environment:

- ME_CONFIG_MONGODB_ADMINUSERNAME=root

- ME_CONFIG_MONGODB_ADMINPASSWORD=pass123

- ME_CONFIG_MONGODB_URL=mongodb://root:pass123@mongo:27017/?authSource=admin

- ME_CONFIG_BASICAUTH_USERNAME=mexpress

- ME_CONFIG_BASICAUTH_PASSWORD=pass123

links:

- mongo

[image: Image 25]

restart: unless-stopped

ports:

- "8081:8081"

networks:

- mongonet

networks:

mongonet:

Now you can run this using this command.

docker-compose up

You also can run it in background.

docker-compose up -d

After running the command, you can access mongo-express from http://localhost:8081.

Enter username and password as defined in docker-compose.yml file.

You can see my mongo-express below:

 Figure 3.7 A dashboard of mongo-express application.

2. Set Up the ASP.NET Core Project Open a command prompt or terminal.

Navigate to your desired working directory or create a new one.

mkdir mongodbapp

cd mongodbapp

Create a new ASP.NET Core Minimal API project:

dotnet new webapi

Open the project in Visual Studio Code:

code .

3. Install MongoDB C# Driver

Install the MongoDB C# driver via NuGet:

dotnet add package MongoDB.Driver

4. Define a Model

Create a Models folder.

Inside Models, create a Product class:

using MongoDB.Bson;

using MongoDB.Bson.Serialization.Attributes; namespace mongodbapp.Models;

public class Product

{

[BsonId]

[BsonRepresentation(BsonType.ObjectId)]

public string? Id { get; set; }

public string Name { get; set; } = ""; public decimal Price { get; set; }

}

5. Create a MongoDB Context

Inside Models, create MongoDbContext.cs:

using MongoDB.Driver;

namespace mongodbapp.Models;

public class MongoDbContext

{

private readonly IMongoDatabase _database; public MongoDbContext(IConfiguration configuration)

{

var client = new MongoClient(configuration.GetConnectionString("MongoDb")); _database = client.GetDatabase("MongoDbDemo");

}

public IMongoCollection<Product> Products => _database.GetCollection<Product>("Pr

}

6. Configure the Service in Program.cs

In Program.cs, add the MongoDB context as a service: using mongodbapp.Models;

using MongoDB.Driver;

using MongoDB.Bson;

 // ...

builder.Services.AddSingleton<MongoDbContext>();

 // ...

Configure your connection string in appsettings.json and appsettings.Development.json.

{

// ..

"ConnectionStrings": {

"MongoDb": "mongodb://root:pass123@localhost:27017/?authSource=admin"

},

// ..

}

Change the connection string root and pass123 to match your database configuration.

7. Implement CRUD Operations

Implement endpoints in Program.cs to perform CRUD operations:

 // POST: Add a new product

app.MapPost("/products", async (MongoDbContext dbContext, Product product) =>

{

await dbContext.Products.InsertOneAsync(product);

 return Results.Created($"/products/{product.Id}", product);

});

 // GET: Retrieve all products

app.MapGet("/products", async (MongoDbContext dbContext) => await dbContext.Products.Find(product => true).ToListAsync());

 // GET: Retrieve a single product by ID

app.MapGet("/products/{id}", async (MongoDbContext dbContext, string id) =>

{

var product = await dbContext.Products.Find(p => p.Id == id).FirstOrDefaultAsync(

return product is not null ? Results.Ok(product) : Results.NotFound();

});

 // Additional endpoints for PUT and DELETE

The following is the code for PUT and DELETE endpoints:

 // PUT: Update a product

app.MapPut("/products/{id}", async (MongoDbContext dbContext, Product product, string

{

var filter = Builders<Product>.Filter.Eq(p => p.Id, id); var update = Builders<Product>.Update

.Set(p => p.Name, product.Name)

.Set(p => p.Price, product.Price);

await dbContext.Products.UpdateOneAsync(filter, update); return Results.Ok(product);

});

 // DELETE: Delete a product

app.MapDelete("/products/{id}", async (MongoDbContext dbContext, string id) =>

{

var filter = Builders<Product>.Filter.Eq(p => p.Id, id); await dbContext.Products.DeleteOneAsync(filter);

return Results.Ok();

});

8. Add Scalar UI for OpenAPI (Optional)

To enhance the API documentation, you can add Scalar UI for OpenAPI.

This provides a user-friendly interface to interact with your API.

Install the Scalar UI package:

dotnet add package Scalar.AspNetCore

In Program.cs, add the following lines to configure Scalar UI: using Scalar.AspNetCore;

...

if (app.Environment.IsDevelopment())

{

app.MapOpenApi();

app.MapScalarApiReference();

}

9. Build and Run the Application

Use dotnet run to start the application.

You can also run the application with https profile: dotnet run --launch-profile https

10. Create the .http File for Testing

Create a mongodbapp.http file in your project with test requests for CRUD

operations if it’s not exists:

@mongodbapp_HostAddress = http://localhost:5103

Add a New Product

POST {{mongodbapp_HostAddress}}/products

Content-Type: application/json

{

"name": "Sample Product 1",

"price": 9.99

}

Get All Products

GET {{mongodbapp_HostAddress}}/products

Get Product by ID

GET {{mongodbapp_HostAddress}}/products/657599bc6d53d83cc2780da5

Update Product

PUT {{mongodbapp_HostAddress}}/products/657599bc6d53d83cc2780da5

Content-Type: application/json

Accept: */*

{

"id": "657599bc6d53d83cc2780da5",

"name": "Updated Product",

"price": 19.99

}

Delete Product

DELETE {{mongodbapp_HostAddress}}/products/657599bc6d53d83cc2780da5

Change the port number to match your application’s port number.

You may change the product ID 657599bc6d53d83cc2780da5 to match your data.

11. Testing the API

[image: Image 26]

You also can use Scalar UI to test the API. Open browser and navigate to https://<server>/scalar.

You can see my Scalar UI below:

 Figure 3.8 Scalar UI for mongodbapp program.

Click Try it out button and click Execute button.

Use the REST Client extension in Visual Studio Code to send requests.

Click Send Request button.

You can see my output from REST client below:

[image: Image 27]

 Figure 3.9 REST Client for mongodbapp program.

3.9.4 Conclusion

In this lab, you’ve integrated MongoDB with an ASP.NET Core 9.0 Minimal API project and performed CRUD operations using MongoDB as the data store. This lab provides a hands-on experience in working with NoSQL databases in .NET

applications, showcasing MongoDB’s flexibility and ease of use for managing unstructured data.

4 Deep Dive into Web Security

4.1 Introduction

ASP.NET Core Minimal APIs, introduced in ASP.NET Core 6, offer a streamlined method for creating lightweight HTTP APIs. They are designed to simplify and speed up the process of setting up APIs, reducing the need for boilerplate code. Security in ASP.NET Core Minimal APIs encompasses authentication, authorization, data protection, and ensuring secure communication and data handling.

Why is Security in ASP.NET Core Minimal APIs Important?

1. Protect Sensitive Data: Securing APIs is crucial to protect sensitive data from unauthorized access and breaches.

2. Compliance and Trust: Proper security measures ensure compliance with legal and regulatory requirements and build trust with users.

3. Prevent Attacks: Security mechanisms help in preventing various types of attacks like SQL injection, cross-site scripting (XSS), and others.

4. Secure Communication: Implementing security protocols like HTTPS

ensures that the data exchanged between the client and server is encrypted and secure.

How to Implement Security in ASP.NET Core Minimal APIs?

1. Authentication and Authorization:

Authentication: Determine the user’s identity using various methods like JWT tokens, OAuth, or basic authentication.

Authorization: Ensure that an authenticated user has the right permissions to access resources. This can be role-based, policy-based, or claim-based authorization.

Example: Implementing JWT token-based authentication and securing endpoints with [Authorize] attribute.

2. Data Protection:

Protect sensitive data using ASP.NET Core’s Data Protection APIs.

Encrypt sensitive information in configuration files.

3. Securing Data Transfer:

Enforce the use of HTTPS to secure data in transit.

Implement proper CORS policies to control cross-origin requests.

4. Input Validation and Sanitization:

Validate and sanitize user input to prevent injection attacks.

Use model validation to enforce data integrity.

5. Dependency Management:

Regularly update dependencies to incorporate security patches.

Use only trusted libraries and packages.

6. Logging and Monitoring:

Implement logging to record significant events and potential security incidents.

Monitor API usage and behavior to detect anomalies.

7. Rate Limiting:

Implement rate limiting to prevent abuse and denial-of-service attacks.

Security in ASP.NET Core Minimal APIs is not just an optional feature but a fundamental aspect that needs to be ingrained throughout the API development lifecycle. From authenticating users to protecting data and ensuring secure communication, each aspect plays a crucial role in safeguarding the API from various security threats. As such, understanding and implementing robust security practices is essential for developing reliable and secure ASP.NET Core Minimal APIs.

4.2 Exercise 12: Authentication and Authorization In this lab, we’ll implement authentication and authorization in an ASP.NET

Core Minimal API application. This lab covers user registration, login with basic authentication, token generation, and accessing user profiles with token authentication. We’ll use Entity Framework Core with a code-first approach for user data and bcrypt for password hashing.

4.2.1 Objective

Implement authentication and authorization in an ASP.NET Core Minimal API application. This lab covers user registration, login with basic authentication, token generation, and accessing user profiles with token authentication. We’ll use Entity Framework Core with a code-first approach for user data and bcrypt for password hashing.

4.2.2 Requirements

.NET 9.0 SDK installed

Visual Studio Code or another code editor

Entity Framework Core

A package for bcrypt, like BCrypt.Net-Next

A package for JWT (JSON Web Tokens), like

Microsoft.AspNetCore.Authentication.JwtBearer

4.2.3 Lab Steps

1. Set Up the ASP.NET Core Project

Open a command prompt or terminal.

Navigate to your desired working directory or create a new one.

mkdir secrestapi

cd secrestapi

Create a new ASP.NET Core Minimal API project:

dotnet new webapi

Open the project in Visual Studio Code:

code .

2. Install Required Packages

Install EF Core, bcrypt, and JWT packages:

dotnet add package Microsoft.EntityFrameworkCore.SqlServer dotnet add package Microsoft.EntityFrameworkCore.Design dotnet add package BCrypt.Net-Next

dotnet add package Microsoft.AspNetCore.Authentication.JwtBearer

Install the Scalar UI package:

dotnet add package Scalar.AspNetCore

3. Define Models and DbContext

Create a Models folder and define a ApiUser model on ApiUser.cs file: using System.ComponentModel.DataAnnotations; using System.ComponentModel.DataAnnotations.Schema; namespace secrestapi.Models;

public class ApiUser

{

[Key]

[DatabaseGenerated(DatabaseGeneratedOption.Identity)]

public int Id { get; set; }

public string Username { get; set; } = ""; public string Password { get; set; } = ""; public string Name { get; set; } = ""; public string Email { get; set; } = "";

}

We also create DTOs (Data Transfer Objects) for user registration and login. These DTOs are used to transfer data between the client and server.

Inside Models folder, write UserLogin.cs file and write the following code: namespace secrestapi.Models;

public class UserLogin

{

public string UserName { get; set; } = ""; public string Password { get; set; } = "";

}

We also create UserToken.cs file as DTO for JWT token. This DTO is used to transfer JWT token between the client and server.

namespace secrestapi.Models;

public class UserToken

{

public string Token { set; get; } = ""; public string ExpiredAt { set; get; } = ""; public string Message { set; get; } = "";

}

Inside a Models folder and implement AppDbContext on AppDbContext.cs file: using Microsoft.EntityFrameworkCore;

namespace secrestapi.Models;

public class AppDbContext : DbContext

{

public AppDbContext(DbContextOptions<AppDbContext> options) : base(options) public DbSet<ApiUser> Users { get; set; }

}

4. Configure DbContext and JWT in Program.cs

Configure DbContext and add JWT authentication in Program.cs.

In Program.cs, configure the DbContext:

using secrestapi.Models;

using Microsoft.EntityFrameworkCore;

using Microsoft.AspNetCore.Authentication.JwtBearer; using Microsoft.AspNetCore.Authorization;

using Microsoft.IdentityModel.Tokens;

using System.Text;

using BC = BCrypt.Net.BCrypt;

using System.IdentityModel.Tokens.Jwt;

using System.Security.Claims;

using Microsoft.OpenApi.Models;

using Scalar.AspNetCore;

 // ...

builder.Services.AddDbContext<AppDbContext>(options => options.UseSqlServer(builder.Configuration.GetConnectionString("MyDB")));

 // ...

To generate JWT tokens, we need to add a secret key to the configuration.

Then, we add authentication for bearer JWT token

Write this code before builder.Build()

 // configure jwt

var key = builder.Configuration["AppSettings:Secret"]; var keyBytes = Encoding.ASCII.GetBytes(key ?? "aaaaabbbbbcccccddddd11234df4444sd builder.Services.AddAuthentication(o =>

{

o.DefaultAuthenticateScheme = JwtBearerDefaults.AuthenticationScheme;

 o.DefaultChallengeScheme = JwtBearerDefaults.AuthenticationScheme;

})

.AddJwtBearer(o =>

{

o.RequireHttpsMetadata = false;

o.SaveToken = true;

o.TokenValidationParameters = new TokenValidationParameters

{

ValidateIssuerSigningKey = true,

IssuerSigningKey = new SymmetricSecurityKey(keyBytes), ValidateIssuer = false,

ValidateAudience = false

};

});

We add authorization to enable authorization using the [Authorize]

attribute.

var multiPolicyAuthorization = new AuthorizationPolicyBuilder(

JwtBearerDefaults.AuthenticationScheme)

.RequireAuthenticatedUser()

.Build();

builder.Services.AddAuthorization(o => o.DefaultPolicy = multiPolicyAuthorizati Since we activate the authorization, we need to add the OpenAPI to our application.

We modify the builder.Services.AddOpenApi() method as follows: builder.Services.AddOpenApi(options =>

{

options.AddDocumentTransformer((document, context, cancellationToken) =>

{

document.Info.Title = "Secure REST API"; document.Info.Version = "v1";

document.Info.Description = "A secure REST API with JWT authentication"

 // Add JWT security scheme

document.Components ??= new OpenApiComponents(); document.Components.SecuritySchemes["Bearer"] = new OpenApiSecuritySchem

{

Type = SecuritySchemeType.Http,

Scheme = "bearer",

BearerFormat = "JWT",

Description = "Enter JWT Bearer token"

};

return Task.CompletedTask;

});

});

We also add Scalar UI to our application. Write this code before builder.Build()

Last, we activate Scalar UI, uthentication and authorization in our application. Write this code after builder.Build() var app = builder.Build();

if (app.Environment.IsDevelopment())

{

app.MapOpenApi();

app.MapScalarApiReference(options =>

{

options.Title = "Secure REST API";

options.Theme = ScalarTheme.Purple;

options.ShowSidebar = true;

options.DefaultHttpClient = new(ScalarTarget.CSharp, ScalarClient.HttpCl

});

}

 // ...

app.UseHttpsRedirection();

 // add these lines

app.UseAuthentication();

app.UseAuthorization();

5. Create the Database and Apply Migrations

Configure your connection string and secret key of JWT token in appsettings.json and appsettings.Development.json.

{

// ..

"ConnectionStrings": {

"MyDB": "server=localhost; database=TrainingDB; uid=tester; pwd=pass123; Tru

},

"AppSettings": {

"Secret": "aaaaabbbbbcccccddddd11234df4444sd"

}

// ..

}

Change the connection string to match your database configuration.

You can also change the secret key of JWT token. Recommend to use a random string with 32 characters.

Create migrations and update the database:

dotnet ef migrations add InitialCreate

dotnet ef database update

If you have errors related to Invariant Globalization, you may disable InvariantGlobalization as false on project file, secrestapi.csproj.

6. Implement Registration and Login Endpoints

Implement a registration endpoint to create new users with hashed passwords.

In Program.cs, write this code for registration endpoint app.MapPost("/register", async (AppDbContext dbContext, ApiUser usr) =>

{

var user = new ApiUser

{

Username = usr.Username,

Password = BC.HashPassword(usr.Password),

Email = usr.Email,

Name = usr.Name

};

dbContext.Users.Add(user);

await dbContext.SaveChangesAsync();

return Results.Ok();

});

Implement a login endpoint that authenticates users with database authentication and returns a JWT token.

app.MapPost("/login", (AppDbContext dbContext, IConfiguration configuration, Use

{

 // ambil user

var usr = dbContext.Users.Where(o => o.Username == model.UserName).FirstOrDe if (usr != null)

{

if (BC.Verify(model.Password, usr.Password))

{

var key = configuration.GetValue<string>("AppSettings:Secret"); var keyBytes = Encoding.ASCII.GetBytes(key ?? "aaaaabbbbbcccccddddd1

 // generate token + expired

var expiredAt = DateTime.Now.AddDays(2);

var tokenHandler = new JwtSecurityTokenHandler();

 var tokenDescriptor = new SecurityTokenDescriptor

{

Subject = new ClaimsIdentity(

new Claim[]

{

new Claim(ClaimTypes.Name,usr.Username)

}),

Expires = expiredAt,

SigningCredentials = new SigningCredentials(

new SymmetricSecurityKey(keyBytes),

SecurityAlgorithms.HmacSha256Signature)

};

var token = tokenHandler.CreateToken(tokenDescriptor); var userToken = new UserToken

{

Token = tokenHandler.WriteToken(token),

ExpiredAt = expiredAt.ToString(),

Message = ""

};

return userToken;

}

}

return new UserToken { Message = "Username or password is invalid" };

});

Explanation:

This code snippet appears to be part of an ASP.NET Core application, specifically from an API endpoint for user authentication. It authenticates users and generates a JSON Web Token (JWT) upon successful login. Here’s a breakdown of its functionality: User Authentication:

The snippet begins by attempting to retrieve a user from the database (dbContext) based on the username provided in the model (likely a login request model).

It checks if the user exists (usr != null). If the user is found, it proceeds to verify the password.

Password Verification:

The password verification is done using the BCrypt library (BC.Verify). It compares the provided password (model.Password) with the hashed password stored in the database (usr.Password).

JWT Token Generation:

If the password verification is successful, the code proceeds to generate a JWT token.

It retrieves a secret key from the application’s configuration (configuration.GetValue<string>("AppSettings:Secret")). This key is used to sign the JWT token and should be kept confidential.

A new JWT token is created with an expiration date set to 2

days from the current time (DateTime.Now.AddDays(2)).

The JwtSecurityTokenHandler is used to create a token with the specified claims, expiration, and signing credentials.

The token includes a claim for the username (ClaimTypes.Name), which identifies the user.

Token and Response Creation:

A new instance of UserToken (presumably a custom class) is created to hold the generated JWT token, its expiration date, and a message field (empty in this case).

This UserToken instance is returned, containing the JWT token as a string (tokenHandler.WriteToken(token)) and its expiration date.

Error Handling:

If the user is not found or if the password verification fails, the method returns a UserToken instance with a message indicating that the username or password is invalid.

Save all change codes.

7. Implement Profile Endpoint

Create an endpoint to retrieve the user profile, which requires a valid JWT token to access.

app.MapGet("/profile", [Authorize] async (HttpContext httpContext, AppDbContext

{

var username = httpContext.User.Identity?.Name;

var user = await dbContext.Users.FirstOrDefaultAsync(u => u.Username == user return user != null ? Results.Ok(new {

user.Username,

 user.Name,

user.Email

}) : Results.NotFound();

});

8. Build and Run the Application

Compile and run your application.

Use dotnet run to start the application.

You can also run the application with https profile: dotnet run --launch-profile https

9. Create the .http File for Testing

Create an secrestapi.http file for testing the registration, login, and profile endpoints.

@secrestapi_HostAddress = http://localhost:5124

@token =

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1bmlxdWVfbmFtZSI6InVzZXIxIiwibmJmIjoxNz AyMjg1NjMxLCJleHAiOjE3MDI0NTg0MzEsImlhdCI6MTcwMjI4NTYzMX0.mE7s2rSIIT78b-bjp-5hhbgGEPGr1eJTww8Wg0DpRMo

register

POST {{secrestapi_HostAddress}}/register

Accept: application/json

Content-Type: application/json

{

"Email": "user1@email.com",

"Password": "pass123",

"Username": "user1",

"Name": "User 1"

}

login

POST {{secrestapi_HostAddress}}/login

Accept: application/json

Content-Type: application/json

{

"Password": "pass123",

"Username": "user1"

}

GET {{secrestapi_HostAddress}}/profile

Accept: application/json

Content-Type: application/json

[image: Image 28]

Authorization: Bearer {{token}}

###

Change the @secrestapi_HostAddress variable to match your application’s address.

The @token variable is used to store the JWT token generated by the login endpoint. This token is then used to access the profile endpoint.

10. Testing the API

Test user registration, login, and profile access using Scalar UI or the REST Client extension in Visual Studio Code.

For Scalar UI, navigate to https://localhost:<port>/scalar and try the endpoints.

 Figure 4.1 Scalar UI.

Firstly, create user by using register endpoint.

Then, login by using login endpoint. Copy the JWT token from the response of login endpoint.

[image: Image 29]

 Figure 4.2 Perform login on Scalar UI.

Finally, access the profile endpoint by using the JWT token.

Add the JWT token to the Authorization header in Scalar UI.

Put as Bearer <token> where <token> is the JWT token you copied from the response of login endpoint.

Then, click the Send button to send the request to the profile endpoint.

[image: Image 30]

[image: Image 31]

 Figure 4.3 Authorize with JWT token.

Now you can access the profile endpoint.

Another option, you can set a token to Scalar Authentication.

Click Bearer for Auth Type and paste the JWT token to the Token field.

 Figure 4.4 Add JWT token on Scalar UI.

[image: Image 32]

You also use the REST Client extension in Visual Studio Code to test the endpoints.

Click the Send Request button to send the request to the endpoint.

 Figure 4.5 REST Client extension in Visual Studio Code.

Afer signed in, copy token value from the response and paste it to the

@token variable in the .http file.

4.2.4 Conclusion

This lab demonstrates how to implement a basic authentication and authorization system in an ASP.NET Core Minimal API application using Entity Framework Core for user management, bcrypt for password hashing, and JWT for token generation and validation.

4.3 Exercise 13: Role-Based Access Control

(RBAC)

In this lab, we’ll implement Role-Based Access Control (RBAC) in an ASP.NET Core Minimal API application using JWT tokens for authorization.

This lab will guide you through creating roles, assigning them to users, and securing API endpoints based on these roles.

4.3.1 Objective

Implement Role-Based Access Control (RBAC) in an ASP.NET Core 9.0

Minimal API application using JWT tokens for authorization. This lab will guide you through creating roles, assigning them to users, and securing API endpoints based on these roles.

4.3.2 Requirements

.NET 9.0 SDK installed

Visual Studio Code or another code editor

JWT authentication setup in the ASP.NET Core project REST Client extension in Visual Studio Code for testing 4.3.3 Lab Steps

1. Set Up the ASP.NET Core 9.0 Minimal API Project Open a command prompt or terminal.

Navigate to your desired working directory or create a new one.

mkdir rbacapp

cd rbacapp

Create a new ASP.NET Core Minimal API project:

dotnet new webapi

Open the project in Visual Studio Code:

code .

2. Install Required Packages

Install EF Core, bcrypt, and JWT packages: dotnet add package Microsoft.EntityFrameworkCore.SqlServer dotnet add package Microsoft.EntityFrameworkCore.Design dotnet add package BCrypt.Net-Next

dotnet add package Microsoft.AspNetCore.Authentication.JwtBearer Install the Scalar UI package:

dotnet add package Scalar.AspNetCore

3. Define Models and DbContext

Create a Models folder and define a ApiUser model on ApiUser.cs file: using System.ComponentModel.DataAnnotations; using System.ComponentModel.DataAnnotations.Schema; namespace rbacapp.Models;

public class ApiUser

{

[Key]

[DatabaseGenerated(DatabaseGeneratedOption.Identity)]

public int Id { get; set; }

public string Username { get; set; } = ""; public string Password { get; set; } = ""; public string Name { get; set; } = ""; public string Email { get; set; } = "";

}

We also create DTOs (Data Transfer Objects) for user registration and login.

These DTOs are used to transfer data between the client and server. - Inside Models folder, write UserLogin.cs file and write the following code: namespace rbacapp.Models;

public class UserLogin

{

public string UserName { get; set; } = ""; public string Password { get; set; } = "";

}

We also create UserToken.cs file as DTO for JWT token. This DTO is used to transfer JWT token between the client and server.

namespace rbacapp.Models;

public class UserToken

{

public string Token { set; get; } = ""; public string ExpiredAt { set; get; } = ""; public string Message { set; get; } = "";

}

To implement RBAC, we need to create a Role model and a UserRole model.

Every user can have one or more roles.

The Role model represents a role in the application, such as “Admin” or

“Manager”.

The following code snippet shows the Role model, Role.cs in the Models folder:

using System.ComponentModel.DataAnnotations; using System.ComponentModel.DataAnnotations.Schema; namespace rbacapp.Models;

public class Role

{

[Key]

[DatabaseGenerated(DatabaseGeneratedOption.Identity)]

public int Id { get; set; }

public string Name { get; set; } = ""; public List<ApiUser>? Users { get; set; }

}

The following code snippet shows the UserRole model, UserRole.cs in the Models folder:

using Microsoft.AspNetCore.Identity;

using System.ComponentModel.DataAnnotations; using System.ComponentModel.DataAnnotations.Schema; namespace rbacapp.Models;

public class UserRole

{

[Key]

[DatabaseGenerated(DatabaseGeneratedOption.Identity)]

public int Id { get; set; }

public ApiUser? User { get; set; } = null!; public Role? Role { get; set; } = null!;

}

Inside a Models folder and implement AppDbContext on AppDbContext.cs file: using Microsoft.EntityFrameworkCore;

namespace rbacapp.Models;

public class AppDbContext : DbContext

{

public AppDbContext(DbContextOptions<AppDbContext> options) : base(options public DbSet<ApiUser> Users { get; set; }

public DbSet<Role> Roles { get; set; }

public DbSet<UserRole> UserRoles { get; set; }

}

4. Configure DbContext and JWT in Program.cs

In general, we use the same configuration as the previous lab.

Configure DbContext and add JWT authentication in Program.cs.

In Program.cs, configure the DbContext:

using rbacapp.Models;

using Microsoft.EntityFrameworkCore;

using Microsoft.AspNetCore.Authentication.JwtBearer; using Microsoft.AspNetCore.Authorization;

using Microsoft.IdentityModel.Tokens;

using System.Text;

using BC = BCrypt.Net.BCrypt;

using System.IdentityModel.Tokens.Jwt;

using System.Security.Claims;

using Microsoft.OpenApi.Models;

using Microsoft.Extensions.Options;

using Scalar.AspNetCore;

 // ...

builder.Services.AddDbContext<AppDbContext>(options => options.UseSqlServer(builder.Configuration.GetConnectionString("MyDB")));

 // ...

To generate JWT tokens, we need to add a secret key to the configuration.

Then, we add authentication for bearer JWT token

Write this code before builder.Build()

 // configure jwt

var key = builder.Configuration["AppSettings:Secret"]; var keyBytes = Encoding.ASCII.GetBytes(key ?? "aaaaabbbbbcccccddddd11234df4444sd builder.Services.AddAuthentication(o =>

{

o.DefaultAuthenticateScheme = JwtBearerDefaults.AuthenticationScheme; o.DefaultChallengeScheme = JwtBearerDefaults.AuthenticationScheme;

})

.AddJwtBearer(o =>

{

o.RequireHttpsMetadata = false;

o.SaveToken = true;

o.TokenValidationParameters = new TokenValidationParameters

{

ValidateIssuerSigningKey = true,

IssuerSigningKey = new SymmetricSecurityKey(keyBytes), ValidateIssuer = false,

ValidateAudience = false,

};

});

We add authorization to enable authorization using the [Authorize]

attribute.

var multiPolicyAuthorization = new AuthorizationPolicyBuilder(

JwtBearerDefaults.AuthenticationScheme)

.RequireAuthenticatedUser()

.Build();

builder.Services.AddAuthorization(o =>

{

o.DefaultPolicy = multiPolicyAuthorization;

});

Since we activate the authorization, we need to add the OpenAPI to our application.

We modify the builder.Services.AddOpenApi() method as follows: builder.Services.AddOpenApi(options =>

{

options.AddDocumentTransformer((document, context, cancellationToken) =>

{

document.Info.Title = "Secure REST API"; document.Info.Version = "v1";

document.Info.Description = "A secure REST API with JWT authentication"

 // Add JWT security scheme

document.Components ??= new OpenApiComponents(); document.Components.SecuritySchemes["Bearer"] = new OpenApiSecuritySchem

{

Type = SecuritySchemeType.Http,

Scheme = "bearer",

BearerFormat = "JWT",

 Description = "Enter JWT Bearer token"

};

return Task.CompletedTask;

});

});

We also add Scalar UI to our application. Write this code before builder.Build()

Last, we activate Scalar UI, uthentication and authorization in our application. Write this code after builder.Build() var app = builder.Build();

if (app.Environment.IsDevelopment())

{

app.MapOpenApi();

app.MapScalarApiReference(options =>

{

options.Title = "Secure REST API";

options.Theme = ScalarTheme.Purple;

options.ShowSidebar = true;

options.DefaultHttpClient = new(ScalarTarget.CSharp, ScalarClient.HttpCl

});

}

 // ...

app.UseHttpsRedirection();

 // add these lines

app.UseAuthentication();

app.UseAuthorization();

5. Create the Database and Apply Migrations

Configure your connection string and secret key of JWT token in appsettings.json and appsettings.Development.json.

{

// ..

"ConnectionStrings": {

"MyDB": "server=localhost; database=Training2DB; uid=tester; pwd=pass123; Tr

},

"AppSettings": {

"Secret": "aaaaabbbbbcccccddddd11234df4444sd"

}

// ..

}

Change the connection string to match your database configuration.

You can also change the secret key of JWT token. Recommend to use a random string with 32 characters.

Create migrations and update the database:

dotnet ef migrations add InitialCreate

dotnet ef database update

If you have errors related to Invariant Globalization, you may disable InvariantGlobalization as false on project file, rbacapp.csproj.

6. Set up Roles

In this lab, we will create two roles: “Admin” and “Manager”.

We create /setuproles API endpoint to create roles into the database.

app.MapGet("/setuproles", async (AppDbContext dbContext) =>

{

var roles = dbContext.Roles.ToList();

if(roles.Count <= 0)

{

dbContext.Roles.Add(new Role { Name = "Admin" }); dbContext.Roles.Add(new Role { Name = "Manager" }); await dbContext.SaveChangesAsync();

}

return Results.Ok(new { Message = "Roles was created"});

});

To address duplicate roles, we check if the roles already exist in the database. If not, we create them.

7. Implement Registration and Login Endpoints

Implement a registration endpoint to create new users with hashed passwords.

In Program.cs, write this code for registration endpoint app.MapPost("/register", async (AppDbContext dbContext, ApiUser usr) =>

{

var user = new ApiUser

{

Username = usr.Username,

 Password = BC.HashPassword(usr.Password), Email = usr.Email,

Name = usr.Name

};

dbContext.Users.Add(user);

await dbContext.SaveChangesAsync();

return Results.Ok();

});

Implement a login endpoint that authenticates users with database authentication and returns a JWT token.

app.MapPost("/login", (AppDbContext dbContext, IConfiguration configuration, Use

{

 // ambil user

var usr = dbContext.Users.Where(o => o.Username == model.UserName).FirstOrDe if (usr != null)

{

if (BC.Verify(model.Password, usr.Password))

{

List<Claim> claims = new List<Claim>();

 // get roles by userid

var roles = from userRole in dbContext.UserRoles join role in dbContext.Roles on userRole.Role!.Id equals where userRole.User!.Id == usr.Id

select role.Name;

foreach (var roleName in roles)

{

claims.Add(new Claim(ClaimTypes.Role, "" + roleName));

}

claims.Add(new Claim(ClaimTypes.Name, usr.Username));

 // generate token

var key = configuration.GetValue<string>("AppSettings:Secret"); var keyBytes = Encoding.ASCII.GetBytes(key ?? "aaaaabbbbbcccccddddd1

var symKey = new SymmetricSecurityKey(keyBytes); // Use a secure key var creds = new SigningCredentials(symKey, SecurityAlgorithms.HmacS

var expiry = DateTime.Now.AddDays(2);

var token = new JwtSecurityToken(

claims: claims,

expires: expiry,

signingCredentials: creds

);

var userToken = new UserToken

{

Token = new JwtSecurityTokenHandler().WriteToken(token), ExpiredAt = expiry.ToString(),

Message = ""

};

return userToken;

}

}

return new UserToken { Message = "Username or password is invalid" };

});

Modify secret key aaaaabbbbbcccccddddd11234df4444sd with your secret key.

After user login, we get the user’s roles from the database.

Use these roles to create claims for the JWT token.

We put user roles and username as claims in the JWT token.

8. Assign a Role to an User

In this lab, we don’t privide a dashboard to manage roles and users.

We provide an API endpoint to assign a role to an user.

We create /addrole/{username}/role/{rolename} API endpoints to assign a role to an user.

{username} is existing username in the database.

{rolename} is existing role name in the database.

The following is a complete code snippet for the

/addrole/{username}/role/{rolename} endpoint:

 // add role

app.MapGet("/addrole/{username}/role/{rolename}", async (AppDbContext db, string username, string rolename) =>

{

var role = db.Roles.Where(a => a.Name == rolename).FirstOrDefault(); if (role is null) return Results.NotFound(); var user = db.Users.Where(a => a.Username == username).FirstOrDefault(); if (user is null) return Results.NotFound(); var userRole = new UserRole { Role = role, User = user }; await db.UserRoles.AddAsync(userRole);

await db.SaveChangesAsync();

return Results.Ok($"Role has been added. ID: {userRole.Id}");

});

After the role is assigned to the user, we can see the role in the database.

Call the /addrole/{username}/role/{rolename} endpoint to assign a role to an user.

9. Resource Endpoints

We provide some resource endpoints to test the role-based access control.

We define /profile endpoint to get user profile.

Any user can access this endpoint but the user must have a valid JWT

token.

This endpoint is secured by JWT token.

The following is a complete code snippet for the /profile endpoint: app.MapGet("/profile", [Authorize] async (HttpContext httpContext, AppDbContext

{

var username = httpContext.User.Identity?.Name;

var user = await dbContext.Users.FirstOrDefaultAsync(u => u.Username == user return user != null ? Results.Ok(new {

user.Username,

user.Name,

user.Email

}) : Results.NotFound();

});

ASP.NET Core provides a built-in [Authorize] attribute to secure an endpoint.

User can access this endpoint if the user has a valid JWT token.

We also define /admin, /manager and /adminmanager endpoints to test the role-based access control.

/admin endpoint is secured by JWT token and only can be accessed by user with “Admin” role.

We use [Authorize(Roles = "Admin")] attribute to secure this endpoint.

app.MapGet("/admin", [Authorize(Roles = "Admin")]() =>

{

return Results.Ok(new

{

Message="This content is only for admin"

});

});

/manager endpoint is secured by JWT token and only can be accessed by user with “Manager” role.

We use [Authorize(Roles = "Manager")] attribute to secure this endpoint.

app.MapGet("/manager", [Authorize(Roles = "Manager")] () =>

{

return Results.Ok(new

{

Message = "This content is only for manager"

});

});

/adminmanager endpoint is secured by JWT token and only can be accessed by user with “Admin” or “Manager” role.

We use [Authorize(Roles = "Admin,Manager")] attribute to secure this endpoint.

app.MapGet("/adminmanager",[Authorize(Roles = "Admin,Manager")] () =>

{

return Results.Ok(new

{

Message = "This content is only for admin and manager"

});

});

10. Create the .http File for Testing

Prepare an rbacapp.http file with requests for the role-secured endpoints.

@rbacapp_HostAddress = http://localhost:5289

@token = <token>

Change the @rbacapp_HostAddress variable to match your application’s address.

The @token variable is used to store the JWT token generated by the login endpoint. This token is then used to access the profile endpoint.

We can call the /setuproles endpoint to create roles in the database.

setup roles

GET {{rbacapp_HostAddress}}/setuproles

Accept: application/json

Content-Type: application/json

We can call the /register endpoint to create a new user.

register

POST {{rbacapp_HostAddress}}/register

Accept: application/json

Content-Type: application/json

{

"Email": "user3@email.com",

"Password": "pass123",

"Username": "user3",

"Name": "User 3"

}

You may change the username, password, email, and name.

We can call the /login endpoint to get JWT token.

login

POST {{rbacapp_HostAddress}}/login

Accept: application/json

Content-Type: application/json

{

"Password": "pass123",

"Username": "user3"

}

Change the username and password with your username and password.

After user login, we get the JWT token from the response.

Copy the JWT token and paste it to the @token variable.

We can call resource endpoints to perform role-based access control.

GET {{rbacapp_HostAddress}}/profile

Accept: application/json

Content-Type: application/json

Authorization: Bearer {{token}}

GET {{rbacapp_HostAddress}}/manager

Accept: application/json

Content-Type: application/json

Authorization: Bearer {{token}}

GET {{rbacapp_HostAddress}}/admin

Accept: application/json

Content-Type: application/json

Authorization: Bearer {{token}}

GET {{rbacapp_HostAddress}}/adminmanager

Accept: application/json

Content-Type: application/json

Authorization: Bearer {{token}}

Save all change codes.

11. Build and Run the Application

Compile and run your application.

Use dotnet run to start the application.

You can also run the application with https profile: dotnet run --launch-profile https

12. Testing the API with Roles

Test the role-based secured endpoints using JWT tokens with appropriate role claims.

Use a REST Client or Postman to send requests with JWT tokens to your endpoints.

If we use Scalar UI, we can test the endpoints as follows.

Open the Scalar UI at https://localhost:<port>/scalar.

[image: Image 33]

 Figure 4.6 Scalar UI from RBAC app.

You may need to change the port number.

Firstly, call the /setuproles endpoint to create roles in the database.

Then, call the /register endpoint to create a new user.

Create three users with different roles:

User1 with “Admin” role

User2 with “Manager” role

User3 with no role (or any other role)

Assign a role to the user by calling the /addrole/{username}/role/{rolename}

endpoint.

RBAC Testing Steps:

After user login, we get the JWT token from the response.

Copy the JWT token and paste it to the Authorize input field.

Now we can call resource endpoints to perform role-based access control.

Try to sign in an user with Admin role.

Access the /profile, /manager and /adminmanager endpoints.

[image: Image 34]

You should be able to access the /profile and /admin endpoints but not the

/adminmanager endpoint.

Now try to access /manager endpoint.

You should get an error message (HTTP Code 403) because you don’t have the Manager role.

 Figure 4.7 Access denied on Scalar UI from RBAC app.

You can explore another endpoints on Scalar UI.

For REST Client, we can test the endpoints as follows.

Open rbacapp.http file.

Click Send Request for /login.

[image: Image 35]

 Figure 4.8 Perform calling login.

You have a token after performed a login.

Copy this token to @token variable.

Try to access resource endpoints.

If you signed with “Admin” role, then you access /manager endpoint.

You will get error “HTTP code 403” because you are not “Manager”

role.

[image: Image 36]

 Figure 4.9 Access denied on REST API client from RBAC app.

Try to perform any endpoint.

4.3.4 Conclusion

This lab provides a hands-on experience in implementing Role-Based Access Control in an ASP.NET Core Minimal API application using JWT tokens. By completing this lab, you’ll learn how to create roles, assign them to users, and secure API endpoints based on these roles, ensuring that only authorized users can access specific resources.

4.4 Exercise 14: Data Privacy and Protection

In this lab, we learn how to protect sensitive data in an ASP.NET Core Minimal API application using Entity Framework Core and ASP.NET Core Data Protection APIs. We’ll implement data protection for an Employee model by encrypting sensitive fields such as email, phone, and birthdate before

storing them in SQL Server. We’ll also mask these fields when retrieving the list of employees.

4.4.1 Objective

Implement data protection for an Employee model in an ASP.NET Core 9.0

Minimal API application. Encrypt sensitive fields such as email, phone, and birthdate before storing in SQL Server, and mask these fields when retrieving the list of employees.

4.4.2 Requirements

.NET 9.0 SDK installed

Visual Studio Code or another code editor

SQL Server installed and accessible

Entity Framework Core

ASP.NET Core Data Protection APIs

4.4.3 Lab Steps

1. Set Up the ASP.NET Core 9.0 Minimal API Project Open a command prompt or terminal.

Navigate to your desired working directory or create a new one.

mkdir privdata

cd privdata

Create a new ASP.NET Core Minimal API project:

dotnet new webapi

Open the project in Visual Studio Code:

code .

2. Install Required Packages

Install EF Core and data protection packages:

dotnet add package Microsoft.EntityFrameworkCore.SqlServer dotnet add package Microsoft.EntityFrameworkCore.Design dotnet add package Microsoft.AspNetCore.DataProtection dotnet add package Microsoft.AspNetCore.DataProtection.EntityFrameworkCore Install the Scalar UI package:

dotnet add package Scalar.AspNetCore

3. Define the Employee Model

In the Models folder, create Employee.cs:

using System.ComponentModel.DataAnnotations; using System.ComponentModel.DataAnnotations.Schema; namespace privdata.Models;

public class Employee

{

[Key]

[DatabaseGenerated(DatabaseGeneratedOption.Identity)]

public int Id { get; set; }

public string Name { get; set; } = ""; public string Email { get; set; } = ""; // To be encrypted public string Phone { get; set; } = ""; // To be encrypted public string Birthdate { get; set; } = ""; // To be encrypted

}

4. Implement AppDbContext

We use SQL Server to store data protection keys.

In the Models folder, create AppDbContext.cs:

using Microsoft.EntityFrameworkCore;

using Microsoft.AspNetCore.DataProtection.EntityFrameworkCore; namespace privdata.Models;

public class AppDbContext : DbContext, IDataProtectionKeyContext

{

public AppDbContext(DbContextOptions<AppDbContext> options) : base(options) public DbSet<Employee> Employees { get; set; }

public DbSet<DataProtectionKey> DataProtectionKeys { get; set; }

}

In AppDbContext.cs, implement IDataProtectionKeyContext to store data protection keys in the database.

DataProtectionKey is a built-in model for storing data protection keys in the database.

In Program.cs, add and configure AppDbContext as previously described.

using privdata.Models;

using Microsoft.EntityFrameworkCore;

using Microsoft.AspNetCore.DataProtection; using Scalar.AspNetCore;

var builder = WebApplication.CreateBuilder(args);

 // ...

 // add database

builder.Services.AddDbContext<AppDbContext>(options => options.UseSqlServer(builder.Configuration.GetConnectionString("MyDB"))); 5. Configure Data Protection Services

Since we store data protection keys in the database, we need to configure data protection services.

We create a custom data protection provider to handle data protection keys in the database.

Create SqlServerDataProtectionProvider.cs file inside Models folder and write these codes

using Microsoft.AspNetCore.DataProtection; using Microsoft.AspNetCore.DataProtection.EntityFrameworkCore; namespace privdata.Models;

public class SqlServerDataProtectionProvider : IDataProtectionProvider

{

private readonly AppDbContext _dbContext; public SqlServerDataProtectionProvider(AppDbContext dbContext)

{

_dbContext = dbContext;

}

public IDataProtector CreateProtector(string purpose)

{

 // Implement logic to retrieve or create a new key from the database var key = _dbContext.DataProtectionKeys.Where(o => o.FriendlyName == pur

 if(key == null)

{

key = CreateNewKey(purpose);

}

var protector = DataProtectionProvider.Create(key.FriendlyName ?? purpos

.CreateProtector(purpose);

return protector;

}

private DataProtectionKey CreateNewKey(string purpose)

{

var key = new DataProtectionKey { FriendlyName = purpose }; _dbContext.DataProtectionKeys.Add(key);

_dbContext.SaveChanges();

return key;

}

}

CreateProtector() is used to create a data protector for a specific purpose.

CreateNewKey() is used to create a new key if the key doesn’t exist in the database.

We also create a SensitiveDataService class to handle encryption and masking logic.

Create SensitiveDataService.cs file inside Models folder In Program.cs, add and configure Data Protection services as previously described.

 // ...

 // Add data protection services

builder.Services.AddDataProtection()

.PersistKeysToDbContext<AppDbContext>();

 // add custom data protection provider

builder.Services.AddTransient<IDataProtectionProvider, SqlServerDataProtectionPr

 // ...

6. Implement Encryption and Masking Logic

We create a SensitiveDataService class to handle encryption and masking logic.

Create SensitiveDataService.cs file inside Models folder Following is a complete code snippet for the SensitiveDataService class: using Microsoft.AspNetCore.DataProtection; using Microsoft.AspNetCore.DataProtection.EntityFrameworkCore; namespace privdata.Models;

public class SensitiveDataService

{

private readonly IDataProtector _protector; public SensitiveDataService(IDataProtectionProvider provider)

{

_protector = provider.CreateProtector("EmployeeDataProtector");

}

public Employee EncryptEmployeeData(Employee employee)

{

employee.Email = _protector.Protect(employee.Email); employee.Phone = _protector.Protect(employee.Phone); employee.Birthdate = _protector.Protect(employee.Birthdate); return employee;

}

public Employee MaskEmployeeData(Employee employee)

{

employee.Email = MaskEmail(_protector.Unprotect(employee.Email)); employee.Phone = MaskPhone(_protector.Unprotect(employee.Phone)); employee.Birthdate = "*****"; // Simple mask for birthdate return employee;

}

public static string MaskEmail(string email)

{

var atIndex = email.IndexOf('@');

if (atIndex == -1 || atIndex == 0) return email; // Invalid or empty ema var accountPart = email.Substring(0, atIndex);

var domainPart = email.Substring(atIndex);

var maskedLength = accountPart.Length / 2;

var maskedPart = new string('*', maskedLength); var visiblePart = accountPart.Substring(maskedLength); return maskedPart + visiblePart + domainPart;

}

private string MaskPhone(string phone)

{

 // Implement phone masking logic

return "*******" + phone.Substring(phone.Length - 4); // Example

 }

}

EncryptEmployeeData() is used to encrypt sensitive employee data before storing it in the database.

We encrypt the email, phone, and birthdate fields using the data protector.

MaskEmployeeData() is used to mask sensitive employee data when sending it to clients.

We mask the email and phone fields using the MaskEmail() and MaskPhone() methods.

MaskEmail() masks the email address by replacing the first half of the account name with asterisks *****.

MaskPhone() masks the phone number by replacing the first 7 digits with asterisks *******.

For birthdate, we simply replace the value with asterisks *****.

Since we use the data protector to encrypt and decrypt sensitive data, we need to inject the SensitiveDataService class into the API endpoints.

...

builder.Services.AddTransient<SensitiveDataService>();

...

7. Create the Database and Apply Migrations

Configure your connection string and secret key of JWT token in appsettings.json and appsettings.Development.json.

{

// ..

"ConnectionStrings": {

"MyDB": "server=localhost; database=Training3DB; uid=tester; pwd=pass123; Tr

},

"AppSettings": {

"Secret": "aaaaabbbbbcccccddddd11234df4444sd"

}

 // ..

}

Change the connection string to match your database configuration.

You can also change the secret key of JWT token. Recommend to use a random string with 32 characters.

Create migrations and update the database:

dotnet ef migrations add InitialCreate

dotnet ef database update

If you have errors related to Invariant Globalization, you may disable InvariantGlobalization as false on project file, privdata.csproj.

8. Create API Endpoints

Implement API endpoints for adding and retrieving Employee data: app.MapPost("/employees", (AppDbContext dbContext, SensitiveDataService service,

{

dbContext.Employees.Add(service.EncryptEmployeeData(employee)); dbContext.SaveChanges();

return Results.Ok();

});

app.MapGet("/employees", (AppDbContext dbContext, SensitiveDataService service)

{

var employees = dbContext.Employees.AsEnumerable().Select(service.MaskEmploy return Results.Ok(employees);

});

9. Create the .http File for Testing

Create a privdata.http file with requests for adding and retrieving employee data.

@privdata_HostAddress = http://localhost:5252

Create Employee

POST {{privdata_HostAddress}}/employees

Accept: application/json

Content-Type: application/json

{

"name": "user 5",

 "email": "user5@email.com",

"phone": "08134455483",

"birthdate": "11-des-1996"

}

Get All Employees

GET {{privdata_HostAddress}}/employees

Accept: application/json

10. Configure Scalar UI

In Program.cs, configure Scalar UI to provide a user-friendly interface for testing the API endpoints.

using Scalar.AspNetCore;

...

builder.Services.AddOpenApi();

var app = builder.Build();

if (app.Environment.IsDevelopment())

{

app.MapOpenApi();

app.MapScalarApiReference();

}

11. Build and Run the Application

Compile and run your application.

Use dotnet run to start the application.

You can also run the application with https profile: dotnet run --launch-profile https

12. Testing the API

We use Scalar UI to test the API.

Open the Scalar UI at https://localhost:<port>/scalar.

[image: Image 37]

[image: Image 38]

 Figure 4.10 Scalar UI from PrivData app.

Try to add some employees.

Then, open the database and see the employee data.

 Figure 4.11 Employee data in the database.

You can see the email, phone, and birthdate fields are encrypted.

Now, try to get all employees.

You can see the email, birthdate and phone fields are masked.

[image: Image 39]

 Figure 4.12 Employee data in the database.

We also use the REST Client extension to test adding and retrieving encrypted and masked employee data.

Click Send Request for POST /employees to add an employee.

Click Send Request for GET /employees to get all employees.

[image: Image 40]

 Figure 4.13 A list of employee data with masked data.

4.4.4 Conclusion

This lab demonstrates how to encrypt sensitive employee data before storing it in SQL Server and how to mask this data when sending it to clients in an ASP.NET Core 9.0 Minimal API application. By completing this lab, you gain practical experience in handling sensitive data securely.

4.5 Exercise 15: Rate Limiting and Throttling

In this lab, we learn how to implement rate limiting and throttling in an ASP.NET Core Minimal API application. We’ll use the AspNetCoreRateLimit package to manage the rate of requests to our API and protect it from abuse and overuse.

4.5.1 Objective

Implement rate limiting and throttling in an ASP.NET Core 9.0 Minimal API to control the rate of requests a user can send to the API. This lab will cover setting up middleware to manage request rates and protect the API from abuse and overuse.

4.5.2 Requirements

.NET 9.0 SDK installed

Visual Studio Code or another code editor

A package for rate limiting, such as AspNetCoreRateLimit REST Client extension in Visual Studio Code for testing 4.5.3 Lab Steps

1. Set Up the ASP.NET Core 9.0 Minimal API Project Open a command prompt or terminal.

Navigate to your desired working directory or create a new one.

mkdir ratelimitapi

cd ratelimitapi

Create a new ASP.NET Core Minimal API project:

dotnet new webapi

Open the project in Visual Studio Code:

code .

2. Install the Rate Limiting Package

Install AspNetCoreRateLimit, a library to implement rate limiting: dotnet add package AspNetCoreRateLimit

Install the Scalar UI package:

dotnet add package Scalar.AspNetCore 3. Configure Rate Limiting in Program.cs

In Program.cs, configure rate limiting services and middleware: using Scalar.AspNetCore;

using AspNetCoreRateLimit;

var builder = WebApplication.CreateBuilder(args);

 // Add services to the container.

builder.Services.AddMemoryCache();

builder.Services.Configure<IpRateLimitOptions>(builder.Configuration.GetSection builder.Services.AddInMemoryRateLimiting();

builder.Services.AddSingleton<IRateLimitConfiguration, RateLimitConfiguration>(

var app = builder.Build();

 // Configure the HTTP request pipeline.

app.UseIpRateLimiting();

if (app.Environment.IsDevelopment())

{

app.MapOpenApi();

app.MapScalarApiReference();

}

 // ... other middleware ...

Add rate limiting settings in appsettings.json:

"IpRateLimiting": {

"EnableEndpointRateLimiting": true,

"StackBlockedRequests": false,

"GeneralRules": [

{

"Endpoint": "*",

"Period": "1m",

"Limit": 10

}

]

}

4. Add Test API Endpoints

We use existing endpoints from the webapi project template

/weatherforecast.

5. Build and Run the Application

[image: Image 41]

Run the application using dotnet run.

We also run the application with https profile:

dotnet run --launch-profile https

6. Create the .http File for Testing

Prepare a ratelimitapi.http file with requests to test the rate-limited endpoints:

@ratelimitapi_HostAddress = http://localhost:5205

GET {{ratelimitapi_HostAddress}}/weatherforecast

Accept: application/json

7. Testing Rate Limiting

We can test the rate limiting using Scalar UI.

Open the Scalar UI at https://localhost:<port>/scalar.

Click Try it out and Execute button for /weatherforecast endpoint.

Try to click more than 10 times until you get an error message.

 Figure 4.14 Scalar UI from RateLimitApi app.

[image: Image 42]

You should receive 429 Too Many Requests responses.

Use the REST Client extension to send multiple requests to your API and observe the rate limiting in action. After exceeding the limit, you should receive 429 Too Many Requests responses.

 Figure 4.15 REST Client from RateLimitApi app.

4.5.4 Conclusion

This lab provides practical experience in implementing rate limiting in an ASP.NET Core Minimal API. Through the setup of AspNetCoreRateLimit, you’ll understand how to manage and restrict the rate of requests to your API, which is crucial for maintaining service stability and preventing abuse.

4.6 Exercise 16: Configuring CORS in ASP.NET

Core 9.0 Minimal API

In this lab, we learn how to configure and use Cross-Origin Resource Sharing (CORS) in an ASP.NET Core Minimal API application. We’ll configure CORS to allow requests from specific origins and test its functionality.

4.6.1 Objective

Learn how to configure and use Cross-Origin Resource Sharing (CORS) in an ASP.NET Core 9.0 Minimal API application. This lab covers setting up CORS to allow requests from specific origins and testing its functionality.

4.6.2 Requirements

.NET 9.0 SDK installed

Visual Studio Code or another code editor

Basic understanding of CORS (Cross-Origin Resource Sharing) REST Client extension in Visual Studio Code or a front-end application for testing

4.6.3 Lab Steps

1. Set Up the ASP.NET Core 9.0 Minimal API Project Open a command prompt or terminal.

Navigate to your desired working directory or create a new one.

mkdir corsapi

cd corsapi

Create a new ASP.NET Core Minimal API project:

dotnet new webapi

Open the project in Visual Studio Code:

code .

2. Configure CORS in Program.cs

In Program.cs, configure CORS to allow specific origins, methods, and headers:

var builder = WebApplication.CreateBuilder(args);

 // Add CORS services

builder.Services.AddCors(options =>

{

options.AddPolicy("AllowSpecificOrigin", builder => builder.WithOrigins(["http://example.com", "http://test.com"])

.AllowAnyMethod()

.AllowAnyHeader());

});

var app = builder.Build();

 // Use CORS with the specified policy

app.UseCors("AllowSpecificOrigin");

 // ... other configurations like app.MapGet ...

3. Add Test API Endpoints

Implement some test API endpoints to demonstrate CORS functionality We use existing endpoints from the webapi project template

/weatherforecast.

4. Build and Run the Application

Run your application using dotnet run.

You can also run the application with https profile: dotnet run --launch-profile https

5. Create Client App

We use a simple HTML page to test CORS.

Create index.html file in the root folder of the project.

Write these codes

<!DOCTYPE html>

<html>

[image: Image 43]

<head>

<title> CORS Test</title>

</head>

<body>

<h1> CORS Request Test</h1>

<button id="test-cors" > Test CORS</button>

<script>

document.getElementById('test-cors').addEventListener('click', () => {

fetch(' https://localhost:7140/weatherforecast')

.then(response => response.text())

.then(data => console.log(data))

.catch(error => console.error('CORS Error:', error));

});

</script>

</body>

</html>

Change the port number to match your application’s address.

Project folder should be put on web server.

We also run this project using Python or PHP built-in web server.

For Python, run this command inside project folder python -m http.server 8000

 Figure 4.16 CORS Test page.

[image: Image 44]

Open Developer Tools so you can see the console output.

6. Test CORS Configuration

After running the application, open the CORS test page in your browser.

Click the Test CORS button to send a request to your API.

 Figure 4.17 Get CORS error.

You should see a CORS error in the console.

Now, we configure CORS to allow requests from the test page.

In Program.cs, change the CORS policy to allow all origins, methods, and headers

We add "http://localhost:8080"into WithOrigins method.

 // Add CORS services

builder.Services.AddCors(options =>

{

options.AddPolicy("AllowSpecificOrigin", builder => builder.WithOrigins(["http://example.com", "http://test.com", "http://lo

.AllowAnyMethod()

[image: Image 45]

.AllowAnyHeader());

});

Run the application again and test the CORS request.

 Figure 4.18 CORS request is successful.

You should see the response from the API in the console.

4.6.4 Conclusion

This lab guides you through setting up and testing CORS in an ASP.NET

Core 9.0 Minimal API application. By completing this lab, you’ll understand how to configure CORS policies to control how resources in your API can be accessed from a different domain.

5 Monitoring and Deployment

5.1 Introduction

5.1.1 Monitoring in ASP.NET Core 9.0 Minimal API What is Monitoring?

Monitoring in the context of ASP.NET Core 9.0 Minimal API involves observing and tracking the application’s performance, health, and activities. It includes logging, metrics collection, and health checks.

Key Aspects of Monitoring:

1. Logging: ASP.NET Core provides built-in support for logging. You can log information about application events, errors, and other significant actions. It supports various logging providers like console, debug, event source, and third-party providers like Serilog or NLog.

2. Health Checks: ASP.NET Core offers health check APIs that can be used to check the health of the application and its dependencies, like databases or external services.

3. Performance Metrics: Using tools like Application Insights or Prometheus, you can gather performance metrics (response times, request rates, failure rates, etc.) to understand how well the application is performing.

4. Distributed Tracing: For microservices architecture, distributed tracing tools like OpenTelemetry or Jaeger can be used to trace requests across different services.

5.1.2 Deployment of ASP.NET Core 9.0 Minimal API

What is Deployment? Deployment is the process of installing, configuring, and enabling a specific version of an application on a server or cloud environment.

Deployment Strategies:

1. IIS Hosting: Host your ASP.NET Core app on a Windows Server using Internet Information Services (IIS). Ensure to install the .NET Core Hosting Bundle and configure IIS for ASP.NET Core.

2. Docker Containers: Containerize your app with Docker, creating a portable and consistent environment. This allows easy deployment to container orchestration platforms like Kubernetes.

3. Cloud Platforms: Deploy your application to cloud services like Azure App Service, AWS Elastic Beanstalk, or Google Cloud Run. These platforms offer easy scaling, management, and additional services like databases, caching, etc.

4. Linux Hosting: Deploy the application on a Linux server using reverse proxies like Nginx or Apache. Ensure the server has the .NET runtime installed.

5. CI/CD Pipeline: Implement continuous integration and continuous deployment using tools like GitHub Actions, Jenkins, or Azure DevOps.

Automate the testing and deployment process to ensure reliable and frequent deployments.

Best Practices:

Environment-Specific Configuration: Use appsettings.json, environment variables, or secret management tools to manage different configurations for development, staging, and production environments.

Database Migrations: Automate database updates using Entity Framework Core migrations to ensure the database schema is up-to-date with the application.

Security: Implement security practices like HTTPS enforcement, CORS

policies, and securing sensitive data.

Testing: Prior to deployment, conduct thorough testing including unit testing, integration testing, and load testing.

Monitoring and deployment are crucial aspects of the development lifecycle of ASP.NET Core 9.0 Minimal API applications. Effective monitoring ensures the application runs smoothly and efficiently, while a well-planned deployment strategy enables reliable and scalable delivery of the application to end-users.

5.2 Exercise 17: Health Check and Monitoring

In this lab, you will learn how to implement health checks and monitoring in an ASP.NET Core 9.0 Minimal API application. You will set up health checks for various components of your application and monitor their status.

5.2.1 Objective

Implement health checks and monitoring in an ASP.NET Core 9.0 Minimal API application. This lab will guide you through setting up health checks for various components of your application and monitoring their status.

5.2.2 Requirements

.NET 9.0 SDK installed

Visual Studio Code or another code editor

Basic understanding of ASP.NET Core and its middleware REST Client extension in Visual Studio Code for testing 5.2.3 Lab Steps

1. Set Up the ASP.NET Core 9.0 Minimal API Project Open a command prompt or terminal.

Navigate to your desired working directory or create a new one.

mkdir healthcheckapi

cd healthcheckapi

Create a new ASP.NET Core Minimal API project:

dotnet new webapi

Open the project in Visual Studio Code:

code .

2. Add Health Checks

In Program.cs, add the health checks middleware:

var builder = WebApplication.CreateBuilder(args);

// Add health checks

builder.Services.AddHealthChecks()

.AddCheck("MyApp", () => HealthCheckResult.Healthy("The check of the sample is OK!"), tags: ["myapp"]);

// ... other configurations ...

var app = builder.Build();

// Map health check endpoints

app.MapHealthChecks("/health");

// ... other app configurations ...

3. Build and Run the Application

Compile and run your application.

Use dotnet run to start the application.

You can also run the application with https profile: dotnet run --launch-profile https

4. Create the .http File for Testing

[image: Image 46]

Prepare an HealthCheckApi.http file with a request to the health check endpoint:

@healthcheckapi_HostAddress = http://localhost:5145

GET {{healthcheckapi_HostAddress}}/health

Accept: application/json

###

5. Testing the Health Checks

Use the REST Client extension to test the health check endpoint.

Click the Send Request button to send the request to the health check endpoint. You should receive a response indicating the health status of the application components.

 Figure 5.1 Testing the health check endpoint.

You will receive a message Healthy if the application is running correctly.

6. Configure Additional Health Checks (Optional) For more advanced scenarios, add health checks for databases, external services, or custom components.

For example, to add a health check for a SQL Server database, use the following code:

builder.Services.AddHealthChecks()

.AddSqlServer(builder.Configuration["ConnectionStrings:MyDB"], name: "SQL Server",

tags: new[] { "db", "sql", "sqlserver" }); Since we call AddSqlServer(), we need to add the following package to the project:

dotnet add package AspNetCore.HealthChecks.SqlServer If you have errors related to Invariant Globalization, you may disable InvariantGlobalization as false on project file, healthcheckapi.csproj.

Configure your database connection string in appsettings.json and appsettings.Development.json.

{

// ..

"ConnectionStrings": {

"MyDB": "server=localhost; database=TrainingDB; uid=tester; pwd=pass123; Tru

}

// ..

}

Change the connection string to match your database configuration.

Now you can test the health check endpoint again. You should receive a response indicating the health status of the application components.

Try to stop the SQL Server and test the health check endpoint again.

You should receive a response indicating the health status of the application components.

[image: Image 47]

 Figure 5.2 Testing the health check endpoint included checking SQL Server.

5.2.4 Implement Custom Health Checks (Advanced) To create a custom health check in ASP.NET Core that verifies the uptime of an external website (e.g., http://localhost:9090, https://www.google.com), you will need to implement a custom IHealthCheck class. This class will make an HTTP

request to the specified URL and determine the health based on the response.

Here’s how you can create and register this custom health check: 1. Create a Custom Health Check Class

Create a new class that implements the IHealthCheck interface. This class will make an HTTP request to the external website and return Healthy if it receives a successful response:

using Microsoft.Extensions.Diagnostics.HealthChecks; using System.Net.Http;

using System.Threading;

using System.Threading.Tasks;

public class ExternalEndpointHealthCheck : IHealthCheck

{

private readonly string _externalUrl;

public ExternalEndpointHealthCheck(string externalUrl)

{

_externalUrl = externalUrl;

}

public async Task<HealthCheckResult> CheckHealthAsync(HealthCheckContext context,

{

using (var httpClient = new HttpClient())

{

try

{

var response = await httpClient.GetAsync(_externalUrl, cancellationTo if (response.IsSuccessStatusCode)

{

return HealthCheckResult.Healthy($"The check for {_externalUrl} i

}

return HealthCheckResult.Unhealthy($"The check for {_externalUrl} fai

}

catch

{

return HealthCheckResult.Unhealthy($"The check for {_externalUrl} fai

}

}

}

}

2. Register the Custom Health Check

In your Program.cs or Startup.cs, register your custom health check with the dependency injection container:

var builder = WebApplication.CreateBuilder(args); builder.Services.AddHealthChecks()

.AddCheck<ExternalEndpointHealthCheck>("ExternalEndpointHealthCheck", null,

new[] { "external_endpoint" });

var app = builder.Build();

 // Map health check endpoint

app.MapHealthChecks("/health");

 // ... other configurations ...

3. Configure the Custom Health Check

In the registration step, pass the URL of the external website (https://www.google.com) to the constructor of your custom health check:

builder.Services.AddSingleton<ExternalEndpointHealthCheck>(_ => new ExternalEndpointHealthCheck("https://www.google.com")); 4. Test the Health Check

Run your application and access the /health endpoint. It should now include the status of the external website in the health check response.

5.2.5 Conclusion

This lab provides a hands-on approach to implementing health checks in an ASP.NET Core 9.0 Minimal API application. By setting up health checks, you can monitor the status of various components of your application and ensure its overall health.

The custom health check provides a simple way to monitor the availability of an external service or website that your application depends on. The health check makes an HTTP request to the specified URL and reports the service as healthy if it receives a successful HTTP response, and unhealthy otherwise.

This can be particularly useful in microservices architectures where your service might depend on other external services.

5.3 Exercise 18: Deploying to Web Server IIS

In this lab, you will learn how to deploy an ASP.NET Core 9.0 Minimal API application to an Internet Information Services (IIS) web server. You will cover the necessary steps to prepare, publish, and configure your ASP.NET

Core application for IIS deployment.

5.3.1 Objective

Learn how to deploy an ASP.NET Core 9.0 Minimal API application to an Internet Information Services (IIS) web server. This lab covers the necessary steps to prepare, publish, and configure your ASP.NET Core application for IIS deployment.

5.3.2 Requirements

[image: Image 48]

A Windows server with IIS installed

.NET 9.0 SDK and Runtime installed on the server

ASP.NET Core Hosting Bundle installed on the server Visual Studio Code or another code editor

An ASP.NET Core 9.0 Minimal API project

For demo, I use Windows Server 2022 with IIS 10.0 on Virtual Machine.

 Figure 5.3 Windows Server 2022 with IIS 10.0.

5.3.3 Lab Steps

1. Set Up the ASP.NET Core Project

Open a command prompt or terminal.

Navigate to your desired working directory or create a new one.

mkdir dotnetapp

cd dotnetapp

Create a new ASP.NET Core Minimal API project:

dotnet new webapi

Open the project in Visual Studio Code: code .

2. Prepare the Application for IIS

Ensure that the application is configured to run behind a reverse proxy (IIS acts as a reverse proxy):

In Program.cs, add the forward headers middleware: using Microsoft.AspNetCore.HttpOverrides;

 // ...

var builder = WebApplication.CreateBuilder(args); builder.Services.Configure<ForwardedHeadersOptions>(options =>

{

options.ForwardedHeaders = ForwardedHeaders.XForwardedFor | ForwardedH

});

var app = builder.Build();

app.UseForwardedHeaders();

 // ... other middleware and configurations ...

3. Publish the Application

Use the .NET CLI to publish your application:

dotnet publish -c Release -o ./publish

This command compiles the application and places the output in the

./publish directory.

You can see the output of publush directory as follows: 4. Install ASP.NET Core Runtime 9.0.0

Download the ASP.NET Core Runtime 9.0.0 from

https://dotnet.microsoft.com/download/dotnet/9.0.

Copy the downloaded file to the server and install it.

[image: Image 49]

Install the ASP.NET Core Runtime 9.0.0 on the server.

5. Configure and Deploy the Published Application to IIS

Copy the contents of the ./publish directory to your IIS server.

For instance, you can copy the files to C:\inetpub\wwwroot\dotnetapp.

On the IIS server, click Application Pools and create a new application pool for your application, for instance, dotnetapp.

Ensure that the application pool is configured to use the .NET CLR

version No Managed Code, as ASP.NET Core runs in its own runtime.

 Figure 5.4 Creating a new application pool for the application.

On the IIS server, create a new website or application in the IIS

Manager, pointing the physical path to where you’ve placed the published files, C:\inetpub\wwwroot\dotnetapp.

Set the application pool to the one you created in the previous step.

Set port 8081 as the binding port for the website.

[image: Image 50]

 Figure 5.5 Creating a new website for the application.

Click OK to save the website configuration.

6. Test the Deployment

After setting up the site in IIS, navigate to the application URL in a web browser or use a tool like curl to test the endpoints.

Navigate to http://localhost:8081/WeatherForecast to test the application.

Verify that the application is accessible and functioning as expected.

[image: Image 51]

 Figure 5.6 Testing the application in a web browser.

7. Troubleshooting (if needed)

If the application doesn’t work immediately, check the Windows Event Viewer for any application-related errors.

Ensure that the server’s firewall allows traffic on your application’s port.

5.3.4 Conclusion

This lab provides a practical guide to deploying an ASP.NET Core 9.0

Minimal API application on an IIS web server. By following these steps, you can successfully deploy and run your application in a Windows server environment.

Note: Deployment to a production environment often requires additional considerations, such as setting up secure connections (HTTPS), configuring proper logging, and ensuring that the environment is secure. Always test thoroughly in a staging environment before deploying to production.

5.4 Exercise 19: Deploying to Linux Server with Nginx

[image: Image 52]

In this lab, you will learn how to deploy an ASP.NET Core 9.0 Minimal API application on a Linux server (Ubuntu) using Nginx as a reverse proxy. You will configure .NET Core to run as a daemon on Ubuntu for a production-ready setup.

5.4.1 Objective

Learn how to deploy an ASP.NET Core 9.0 Minimal API application on a Linux server (Ubuntu) using Nginx as a reverse proxy. Configure .NET Core to run as a daemon on Ubuntu for a production-ready setup.

5.4.2 Requirements

A Linux server running Ubuntu

Basic knowledge of Linux commands and Nginx

.NET 9.0 SDK and runtime installed on the server

Nginx installed on the server

An ASP.NET Core 9.0 Minimal API project

For demo, I use Ubuntu 22.04 on Virtual Machine.

 Figure 5.7 Ubuntu 22.04 on Virtual Machine.

5.4.3 Lab Steps

1. Set up .NET on Linux

You can follow the instructions on the official Microsoft documentation to install .NET on Ubuntu: https://learn.microsoft.com/en-us/dotnet/core/install/linux

For demo, I use Ubuntu Server 22.04 on Virtual Machine.

Firstly, we register the Microsoft key and feed,

https://learn.microsoft.com/en-us/dotnet/core/install/linux-ubuntu#supported-distributions:

 # Get Ubuntu version

declare repo_version=$(if command -v lsb_release &> /dev/null; then lsb_release

 # Download Microsoft signing key and repository wget https://packages.microsoft.com/config/ubuntu/$repo_version/packages-microso

 # Install Microsoft signing key and repository sudo dpkg -i packages-microsoft-prod.deb

 # Clean up

rm packages-microsoft-prod.deb

 # Update packages

sudo apt update

You can install .NET 9.0 SDK using the following commands: sudo apt-get update && \

sudo apt-get install -y dotnet-sdk-9.0

Verify the installation:

dotnet --version

You should see your dotnet version

If you prefer to install .NET 9.0 Runtime, you can use the following commands:

sudo apt-get update && \

sudo apt-get install -y aspnetcore-runtime-9.0

2. Prepare the ASP.NET Core Application

Develop your ASP.NET Core 9.0 Minimal API application on your development machine.

Ensure it runs correctly locally before proceeding with the deployment.

Navigate to your desired working directory or create a new one.

mkdir dotnetapp

cd dotnetapp

Create a new ASP.NET Core Minimal API project:

dotnet new webapi

Open the project in Visual Studio Code:

code .

Ensure that the application is configured to run behind a reverse proxy (IIS acts as a reverse proxy):

In Program.cs, add the forward headers middleware: using Microsoft.AspNetCore.HttpOverrides;

 // ...

var builder = WebApplication.CreateBuilder(args); builder.Services.Configure<ForwardedHeadersOptions>(options =>

{

options.ForwardedHeaders = ForwardedHeaders.XForwardedFor | ForwardedH

});

var app = builder.Build();

app.UseForwardedHeaders();

 // ... other middleware and configurations ...

Check to build to ensure that our application is running correctly: dotnet build

3. Publish the Application

Use the .NET CLI to publish your application: dotnet publish -c Release -o ./publish

This command will create a publish directory with all the necessary files to run your application.

4. Install Nginx

Install Nginx on your Linux server:

sudo apt install nginx

Start Nginx and enable it to start on boot:

sudo systemctl start nginx

sudo systemctl enable nginx

Verify that Nginx is running:

sudo systemctl status nginx

5. Transfer the Published Application to the Linux Server dt - We will deploy our application to /var/www/dotnetapp directory. sh sudo mkdir

/var/www/dotnetapp - Copy the contents of the ./publish directory to your Linux server. - For instance, you can copy the files to /var/www/dotnetapp. - You can use cp command to copy the files: sh sudo cp -r ./publish/* /var/www/dotnetapp -

You can see the output of /var/www/dotnetapp directory as follows: sh ls -l

/var/www/dotnetapp - Ensure that the application files are owned by the current user: sh sudo chown -R $USER:$USER /var/www/dotnetapp - Ensure that the application files have the correct permissions: sh sudo chmod -R 755

/var/www/dotnetapp

- You can see the output of /var/www/dotnetapp directory as follows: sh ls -la

/var/www/dotnetapp

If your application is located on different machine, use scp or a similar tool to transfer the contents of the publish directory to your Linux server.

6. Configure .NET Core Application as a Daemon Create a systemd service file for your application:

sudo nano /etc/systemd/system/dotnetapp.service Add the following content to the service file:

[Unit]

Description=Example .NET Web API App running on Ubuntu

[Service]

WorkingDirectory=/var/www/dotnetapp

ExecStart=/usr/bin/dotnet /var/www/dotnetapp/dotnetapp.dll Restart=always

RestartSec=10

KillSignal=SIGINT

SyslogIdentifier=dotnet-example

User=agusk

Environment=ASPNETCORE_ENVIRONMENT=Production

[Install]

WantedBy=multi-user.target

Replace /var/www/dotnetapp with the path to your application and dotnetapp.dll with the name of your application DLL.

7. Start and Enable the .NET Core Service

Start the service and enable it to start on boot: sudo systemctl start dotnetapp.service

sudo systemctl enable dotnetapp.service

Verify that the service is running:

sudo systemctl status dotnetapp.service

8. Install and Configure Nginx as a Reverse Proxy If Nginx is not installed, install it:

sudo apt install nginx

Configure Nginx to reverse proxy to your application: sudo nano /etc/nginx/sites-available/default

Add the following configuration inside the server block: location / {

proxy_pass http://localhost:5000;

[image: Image 53]

proxy_http_version 1.1;

proxy_set_header Upgrade $http_upgrade;

proxy_set_header Connection keep-alive;

proxy_set_header Host $host;

proxy_cache_bypass $http_upgrade;

proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for; proxy_set_header X-Forwarded-Proto $scheme;

}

Comment if you find location / block.

 Figure 5.8 Configuring Nginx as a reverse proxy.

Replace http://localhost:5000 with the URL and port your .NET

application is running on.

http://localhost:5000 is the default URL and port for ASP.NET Core applications.

8. Restart Nginx

Restart Nginx to apply the changes:

sudo systemctl restart nginx

9. Test the Deployment

[image: Image 54]

Open a web browser and navigate to your server’s IP address or domain name. You should see your ASP.NET Core application running.

Navigate to http://<server-ip>/WeatherForecast to test the application.

 Figure 5.9 Testing the application in a web browser.

5.4.4 Conclusion

You have successfully deployed an ASP.NET Core 9.0 Minimal API application on a Linux server running Ubuntu, using Nginx as a reverse proxy. The application runs as a systemd service, ensuring it starts automatically and remains running.

Security and Maintenance Tips:

Regularly update your Ubuntu server and installed packages.

Secure your application and server using firewalls, SSL/TLS

certificates, and by following best security practices.

Monitor your application and server performance and logs for any issues or potential improvements.

5.5 Exercise 20: Deploying to Container Platforms In this lab, you will learn how to containerize an ASP.NET Core 9.0 Minimal API application and deploy it to a container platform. You will cover creating a Docker container for your application and deploying it to a container orchestration platform such as Kubernetes or Docker Swarm.

5.5.1 Objective

Learn how to containerize an ASP.NET Core 9.0 Minimal API application and deploy it to a container platform. This lab will cover creating a Docker container for your application and deploying it to a container orchestration platform such as Kubernetes or Docker Swarm.

5.5.2 Requirements

.NET 9.0 SDK installed

Docker installed on your local machine

Basic understanding of containerization concepts

Access to a container orchestration platform (like Kubernetes, Docker Swarm, or a cloud-based container service)

5.5.3 Lab Steps

1. Set Up the ASP.NET Core Project

Develop your ASP.NET Core 9.0 Minimal API application locally.

Test the application to ensure it’s working correctly before containerizing it.

Navigate to your desired working directory or create a new one.

mkdir dotnetdocker

cd dotnetdocker

Create a new ASP.NET Core Minimal API project:

dotnet new webapi

Open the project in Visual Studio Code: code .

2. Create a Dockerfile

In the root of your ASP.NET Core project, create a file named Dockerfile.

Add the following contents to the Dockerfile:

FROM mcr.microsoft.com/dotnet/aspnet:9.0 AS base WORKDIR /app

EXPOSE 80

EXPOSE 443

 # Use SDK image to build the application

FROM mcr.microsoft.com/dotnet/sdk:9.0 AS build WORKDIR /src

COPY dotnetdocker.csproj .

RUN dotnet restore "dotnetdocker.csproj"

COPY . .

RUN dotnet build "dotnetdocker.csproj" -c Release -o /app/build FROM build AS publish

RUN dotnet publish "dotnetdocker.csproj" -c Release -o /app/publish

 # Build runtime image

FROM base AS final

WORKDIR /app

COPY --from=publish /app/publish .

ENTRYPOINT ["dotnet", "dotnetdocker.dll"]

Replace dotnetdocker with the name of your project.

3. Build and Test the Docker Image

Build the Docker image from the root of your project: docker build -t dotnetdocker .

Once the image is built, run it locally to test:

docker run --rm -p 8080:8080 dotnetdocker

Navigate to http://localhost:8080/weatherforecast in your browser to ensure the containerized application is running correctly.

4. Push the Image to a Container Registry For instance, if we want to publish to Docker Hub, we need to tag the image as follows:

docker tag dotnetdocker yourdockerhubusername/dotnetdocker:tag Change yourdockerhubusername with your Docker Hub username and tag with the version of your application.

Sign in to Docker Hub:

docker login

Push the image to Docker Hub:

docker push yourdockerhubusername/dotnetdocker:tag 5. Deploy to a Container Orchestration Platform Prepare your deployment and service YAML files for Kubernetes or a similar configuration for other platforms.

Write deployment.yaml and service.yaml files as follows: apiVersion: apps/v1

kind: Deployment

metadata:

name: dotnetdocker

labels:

app: dotnetdocker

spec:

replicas: 1

selector:

matchLabels:

app: dotnetdocker

template:

metadata:

labels:

app: dotnetdocker

spec:

containers:

- name: dotnetdocker

image: yourdockerhubusername/dotnetdocker:tag ports:

- containerPort: 8080

Change yourdockerhubusername with your Docker Hub username and tag with the version of your application.

Write service.yaml file as follows:

apiVersion: v1

kind: Service

metadata:

name: dotnetdocker

labels:

app: dotnetdocker

spec:

type: LoadBalancer

ports:

- port: 80 # external port

targetPort: 8080 # internal port

selector:

app: dotnetdocker

Deploy the application to the container platform: kubectl apply -f deployment.yaml

kubectl apply -f service.yaml

Check the deployment status to ensure everything is running correctly.

6. Access the Deployed Application

Once deployed, access your application through the load balancer or node port provided by your container platform.

5.5.4 Conclusion

You have successfully containerized and deployed an ASP.NET Core 9.0

Minimal API application to a container platform. This deployment strategy enhances the scalability, portability, and consistency of your application across different environments.

Best Practices: - Always test your containerized application locally before deploying it to production. - Manage sensitive configuration data using environment variables or configuration management tools provided by your container platform. - Keep your container images updated and scan them for vulnerabilities. - Monitor the performance and health of your deployed application using platform-specific tools or third-party solutions.

This is the end of the book. I hope you enjoyed it. If you have any questions, please contact me.

Appendix A: C# Cheat Sheet

Basic Syntax and Structure:

1. Hello World:

using System;

namespace HelloWorld

{

class Program

{

static void Main(string[] args)

{

Console.WriteLine("Hello World!");

}

}

}

2. Variables and Data Types:

int number = 10;

string text = "Hello";

bool isTrue = true;

double decimalNumber = 5.99;

char letter = 'A';

3. Constants:

const double PI = 3.14159;

4. Arrays:

int[] numbers = { 1, 2, 3, 4, 5 };

string[] names = new string[5];

5. Loops:

For Loop:

for (int i = 0; i < 5; i++)

{

Console.WriteLine(i);

}

While Loop:

int i = 0;

while (i < 5)

{

Console.WriteLine(i);

i++;

}

Foreach Loop:

string[] names = { "Anna", "Bill", "Cindy" }; foreach (string name in names)

{

Console.WriteLine(name);

}

6. Conditionals:

If-Else:

if (number > 0)

{

Console.WriteLine("Positive");

}

else

{

Console.WriteLine("Non-Positive");

}

Switch:

switch (number)

{

case 1:

Console.WriteLine("One");

break;

case 2:

Console.WriteLine("Two");

break;

default:

Console.WriteLine("Other");

break;

}

7. Methods:

void PrintName(string name)

{

Console.WriteLine(name);

}

8. Classes and Objects:

Class Definition:

public class Person

{

public string Name { get; set; }

public int Age { get; set; }

public void Greet()

{

Console.WriteLine("Hello " + Name);

}

}

Creating an Object:

Person person = new Person();

person.Name = "Alice";

person.Greet();

ASP.NET Core Specific:

9. Minimal API Endpoint:

var builder = WebApplication.CreateBuilder(args); var app = builder.Build();

app.MapGet("/", () => "Hello World!"); app.Run();

10. Dependency Injection in Controllers:

public class MyController : ControllerBase

{

private readonly MyService _service; public MyController(MyService service)

{

_service = service;

}

}

11. Entity Framework Core - Basic Query:

using (var context = new MyDbContext())

{

 var users = context.Users.ToList();

}

12. Middleware:

app.Use(async (context, next) =>

{

 // Pre-processing logic here

await next.Invoke();

 // Post-processing logic here

});

This cheat sheet provides a quick reference to some of the most commonly used features and syntax in C#. It’s a handy tool for developers working with the .NET framework and ASP.NET Core, especially when developing Minimal APIs. Remember that C# and .NET are vast, and this cheat sheet only scratches the surface of what’s possible.

Appendix B: Resources

SQL Server 2025 High Availability & Disaster Recovery: Always On Solutions Course

Dive into the world of SQL Server 2025 with our comprehensive Udemy course, “SQL Server 2025: Build Always On HA & DR Solutions.” This course is designed for database administrators and IT professionals who want to master high availability (HA) and disaster recovery (DR) solutions using the latest features of SQL Server 2025.

What You’ll Learn

In this course, you will learn to:

Understand HA and DR concepts in SQL Server 2025

Build and configure Windows Server Failover Clustering (WSFC) Deploy Always On Availability Groups from scratch Set up and manage the AG Listener for client connections Configure read-only routing for reporting and BI workloads Offload backups using Preferred Backup Replica

Perform failover testing: automatic, manual, and forced Monitor and troubleshoot AG health

Integrate real-world ASP.NET Core apps with AG Listener Apply best practices for performance and uptime

100% Hands-On with Real Labs

This course is not just theory. You’ll build your own lab environment using virtual machines and simulate real-world HA/DR use cases.

We guide you through every step — from cluster setup to full availability group testing. Whether you’re creating an AG with two replicas or

deploying to a multi-subnet environment, this course shows you how it works in practice.

No scripts without context. No fluff. Just practical demos you can repeat and apply at work.

Enroll today: SQL Server 2025: Build Always On HA & DR Solutions

https://www.udemy.com/course/sqlserverag/?

referralCode=2E28F5CFD4DFBAD4EC15

Enhance Your Learning with Our Udemy Course

For those who’ve journeyed with us through this book, we have something special to further your understanding — a comprehensive Udemy course titled “Red Hat NGINX Web Server: Publishing and Deploying Web Apps.”

Why Choose This Course?

1. Specialized Knowledge: Dive deep into the world of Red Hat and NGINX. Understand how to use NGINX on the Red Hat platform, a powerful combination for web server deployments.

2. Hands-On Approach: Our course isn’t just about theory; we believe in the ‘learn by doing’ philosophy. With guided tutorials and real-world examples, grasp how to publish and deploy various web applications effectively.

3. Expert Instructors: Benefit from the insights and expertise of professionals who are not just educators but industry practitioners with years of experience.

4. Flexible Learning: Learn at your own pace. With lifetime access, you can revisit topics anytime and solidify your understanding.

Who Is This Course For? - Web developers looking to understand the deployment process on Red Hat using NGINX. - System administrators aiming to expand their knowledge in server configuration and optimization.

- IT professionals transitioning to roles that require knowledge of web server setup and deployment on Red Hat.

Enroll today: Red Hat NGINX Web Server: Publishing and Deploying

Web Apps https://www.udemy.com/course/rhel-nginx/?

referralCode=C9CFA39AE9E332ADA9FB

While I can’t directly access or view content on external sites, including Udemy, I can draft a promotional piece for your course “Mastering Docker: Publishing and Deploying Web Applications” based on the title and URL

you’ve provided. Here’s a promotional content for your course: Dive Deeper into Containerization with Our

Udemy Course

Having explored the vast realm of NGINX, it’s time to take a leap into another crucial technology in the modern web infrastructure world: Docker.

We’re excited to introduce our Udemy course: “Mastering Docker: Publishing and Deploying Web Applications.”

Course Highlights:

1. Comprehensive Docker Mastery: Navigate through the intricacies of Docker, from understanding its architecture to deploying real-world web applications.

2. Practical & Hands-On: Delve into practical scenarios, Dockerfile creation, container orchestration, and more. The course isn’t just about theory; it’s about empowering you with real-world skills.

3. Expert Guidance: Learn from seasoned professionals who bring their wealth of industry knowledge to the table. Each module is tailored to ensure you grasp the essence of Docker in web deployments.

4. On-The-Go Learning: Our course is structured for both beginners and seasoned developers. With lifetime access, dive into lessons at your convenience, and revisit modules anytime.

Who Should Enroll?

Web developers keen on leveraging containerization for their applications.

DevOps professionals looking to streamline their CI/CD processes using Docker.

IT enthusiasts aiming to gain a firm grasp on the future of web application deployment.

Exclusive Features: - Detailed lessons breaking down Docker’s complex topics. - Engaging quizzes to test and solidify your understanding. - A certificate of completion to enhance your professional journey. - A vibrant community forum to discuss, share, and learn from peers.

Expand your horizons beyond traditional web server technologies. Dive into Docker and understand why it’s the talk of the tech world!

Join the learning journey: Mastering Docker: Publishing and Deploying

Web Applications https://www.udemy.com/course/webdocker/?

referralCode=E839AA8926D06B16DD61

Build Secure PHP APIs Like a Pro with Laravel

12, OAuth2, and JWT

Unlock the full potential of Laravel 12 for REST API development! This hands-on course on Udemy teaches you how to build robust, secure, and modern APIs using Laravel, MySQL, OAuth2, JWT, Sanctum, and Role-Based Access Control (RBAC). Perfect for real-world applications and 2025 standards.

🚀 Highlight Topics

What’s New in Laravel 12 for API development

Build RESTful APIs from scratch (Hello World to full CRUD) File upload and user data handling via REST API

Secure authentication with Sanctum, JWT, and OAuth2

Role-Based Access Control (RBAC) with middleware

Legacy support: Laravel 8, 7.x, and 6.x projects included Real project codebases and testing tutorials

 Who Should Enroll?

Laravel developers aiming to modernize their API skills Backend engineers securing APIs with token-based auth Teams migrating legacy Laravel APIs to newer standards Students and professionals building real-world Laravel apps Anyone preparing for backend development roles in 2025

 Future-proof your Laravel skills. This course gives you everything you

 need to build secure, scalable, and professional REST APIs in Laravel 12.

 Learn by doing — with real code, live tests, and full project coverage.

👉 Join now and start building APIs that meet today’s security demands. PHP REST API: Laravel 12, MySQL, OAuth2, JWT, Roles-Based

https://www.udemy.com/course/phprestapi/?

referralCode=2C5B2F14100B499E9845

Master Real-World Logging & Visualization with the Full ELK Stack

Take control of your logging, search, and monitoring pipeline with this hands-on Udemy course covering Elasticsearch, Logstash, Kibana, and Beats. Learn how to set up, ingest, visualize, and scale log data using practical projects — all designed for developers, sysadmins, and DevOps engineers in real production environments.

🚀 Highlight Topics

Cross-platform installation: Windows, Ubuntu, macOS, Docker Elasticsearch REST API: CRUD, mapping, queries, aggregation, SQL, geo fields

Real-world API integration: PHP, ASP.NET Core, Node.js, Python Logstash ingestion: files, folders, and RDBMS (MySQL) Kibana Lens visualizations: charts, maps, dashboards, Canvas Beats agents: Filebeat, Winlogbeat, Metricbeat, Packetbeat, Heartbeat, Auditbeat

High Availability (HA) setup for Elasticsearch and Kibana with Nginx

 Who Should Enroll?

Developers and DevOps engineers building log-driven applications System administrators responsible for monitoring and observability Backend/API developers seeking integration with Elasticsearch Cybersecurity analysts and IT ops engineers using ELK for log auditing

Teams adopting open-source observability tools for modern infrastructure

 Log smarter, visualize better, and scale with confidence. Whether you’re just getting started or already managing production systems, this course gives you everything you need to build and operate a powerful ELK Stack

 pipeline. With real-world use cases, cross-platform setups, and step-by-step guidance, you’ll go beyond the basics and into expert territory.

👉 Enroll today to master the ELK Stack and unlock actionable insights from your data! Practical Full ELK Stack: Elasticsearch, Kibana and

 Logstash https://www.udemy.com/course/elkstack/?

referralCode=863C1036F77169C975C5

Appendix C: Source Code

You can download the source code files for this book from GitHub at

https://github.com/agusk/ilmudata-book-aspnet9-minimalapi.

About

Agus Kurniawan’s journey in the field of technology, spanning from 2001, is a remarkable blend of deep technical expertise and a fervent passion for sharing knowledge. As a seasoned professional, Agus has carved a niche in diverse technological domains, including software development, IoT

(Internet of Things), Machine Learning, IT infrastructure, and DevOps. His experiences are not just limited to developing cutting-edge solutions but also extend to shaping the future of upcoming technologists through training and workshops.

Agus’s career is marked by significant contributions to both technological innovation and community development. His recognition as a Microsoft Most Valuable Professional (MVP) from 2004 to 2022 underlines his proficiency in Microsoft technologies and his dedication to educating others. Agus has been at the forefront of delivering various training sessions and workshops, sharing his insights and helping others grow in the ever-evolving tech industry.

Agus Kurniawan’s book, “Hallo .NET 9.0: Practical ASP.NET Core Minimal API,” is a comprehensive guide that captures his extensive experience in the realm of software development, particularly focusing on the latest advancements in .NET technology. This book is a culmination of Agus’s in-depth knowledge and practical approach to building applications using ASP.NET Core 9.0, a framework known for its efficiency and minimalism.

Contact the Author

Agus Kurniawan values the feedback, queries, and insights of his readers.

Whether you have a technical question related to .NET, a suggestion for future editions of this book, or just want to share your experiences and thoughts, Agus welcomes your correspondence.

Email: aguskur@hotmail.com, agusk2007@gmail.com

LinkedIn: linkedin.com/in/agusk

Twitter: [@agusk2010]

Document Outline

	Preface

	Acknowledgments

	1 Introduction

	1.1 Overview of .NET 9.0

	1.1.1 Unified Platform

	1.1.2 Performance Enhancements

	1.1.3 Improved Cloud and Container Support

	1.1.4 Enhanced C# Language Features

	1.1.5 Blazor and WebAssembly Innovations

	1.1.6 Expanded AI and Machine Learning Capabilities

	1.1.7 Better Security and Compliance

	1.1.8 Enhanced Tooling and Development Experience

	1.2 Understanding ASP.NET Core Minimal API

	1.3 Benefits of Using Minimal APIs

	1.4 Best Practices and Use Cases

	1.5 Setting Up the Development Environment

	1.5.1 Installing .NET 9.0 SDK

	1.5.2 Installing SSL Certificates Development Tool

	1.5.3 Setting Up an Integrated Development Environment (IDE)

	1.5.4 Verifying the Setup

	1.5.5 Additional Tools and Extensions

	2 ASP.NET Core Minimal API Development

	2.1 Introduction

	2.2 Exercise 1: Hello World - ASP.NET Core Minimal API

	2.2.1 Objective

	2.2.2 Requirements

	2.2.3 Lab Steps

	2.2.4 Conclusion

	2.3 Exercise 2: RESTful Service Request and Response

	2.3.1 Objective

	2.3.2 Requirements

	2.3.3 Lab Steps

	2.3.4 Conclusion

	2.4 Exercise 3: OpenAPI Documentation

	2.4.1 Conclusion

	2.5 Exercise 4: Buidling a Calculator Service

	2.5.1 Objective

	2.5.2 Requirements

	2.5.3 Lab Steps

	2.5.4 Conclusion

	2.6 Exercise 5: Upload and Download File Web

	2.6.1 Objective

	2.6.2 Requirements

	2.6.3 Lab Steps

	2.6.4 Conclusion

	2.7 Exercise 6: Exception Handling and Logging

	2.7.1 Objective

	2.7.2 Requirements

	2.7.3 Lab Steps

	2.7.4 Conclusion

	2.8 Exercise 7: Middleware and Filters

	2.8.1 Objective

	2.8.2 Requirements

	2.8.3 Lab Steps

	2.8.4 Conclusion

	3 Accessing SQL and NoSQL Databases

	3.1 Introduction

	3.2 .NET Entity Framework Core

	3.3 Entity Framework Core tools

	3.4 Exercise 8: EF Core 9.0 Code First and ASP.NET Core Minimal API

	3.4.1 Objective

	3.4.2 Requirements

	3.4.3 Lab Steps

	3.4.4 Conclusion

	3.5 Exercise 9: EF Core 9.0 Database First and ASP.NET Core Minimal API

	3.5.1 Objective

	3.5.2 Requirements

	3.5.3 Lab Steps

	3.5.4 Conclusion

	3.6 Introduction to Database Transactions

	3.7 Exercise 10: Database Transaction

	3.7.1 Objective

	3.7.2 Requirements

	3.7.3 Lab Steps

	3.7.4 Conclusion

	3.8 Introduction to NoSQL Databases

	3.9 Exercise 11: NoSQL Database and ASP.NET Core Minimal API

	3.9.1 Objective

	3.9.2 Requirements

	3.9.3 Lab Steps

	3.9.4 Conclusion

	4 Deep Dive into Web Security

	4.1 Introduction

	4.2 Exercise 12: Authentication and Authorization

	4.2.1 Objective

	4.2.2 Requirements

	4.2.3 Lab Steps

	4.2.4 Conclusion

	4.3 Exercise 13: Role-Based Access Control (RBAC)

	4.3.1 Objective

	4.3.2 Requirements

	4.3.3 Lab Steps

	4.3.4 Conclusion

	4.4 Exercise 14: Data Privacy and Protection

	4.4.1 Objective

	4.4.2 Requirements

	4.4.3 Lab Steps

	4.4.4 Conclusion

	4.5 Exercise 15: Rate Limiting and Throttling

	4.5.1 Objective

	4.5.2 Requirements

	4.5.3 Lab Steps

	4.5.4 Conclusion

	4.6 Exercise 16: Configuring CORS in ASP.NET Core 9.0 Minimal API

	4.6.1 Objective

	4.6.2 Requirements

	4.6.3 Lab Steps

	4.6.4 Conclusion

	5 Monitoring and Deployment

	5.1 Introduction

	5.1.1 Monitoring in ASP.NET Core 9.0 Minimal API

	5.1.2 Deployment of ASP.NET Core 9.0 Minimal API

	5.2 Exercise 17: Health Check and Monitoring

	5.2.1 Objective

	5.2.2 Requirements

	5.2.3 Lab Steps

	5.2.4 Implement Custom Health Checks (Advanced)

	5.2.5 Conclusion

	5.3 Exercise 18: Deploying to Web Server IIS

	5.3.1 Objective

	5.3.2 Requirements

	5.3.3 Lab Steps

	5.3.4 Conclusion

	5.4 Exercise 19: Deploying to Linux Server with Nginx

	5.4.1 Objective

	5.4.2 Requirements

	5.4.3 Lab Steps

	5.4.4 Conclusion

	5.5 Exercise 20: Deploying to Container Platforms

	5.5.1 Objective

	5.5.2 Requirements

	5.5.3 Lab Steps

	5.5.4 Conclusion

	Appendix A: C# Cheat Sheet

	Appendix B: Resources

	SQL Server 2025 High Availability & Disaster Recovery: Always On Solutions Course

	Enhance Your Learning with Our Udemy Course

	Dive Deeper into Containerization with Our Udemy Course

	Build Secure PHP APIs Like a Pro with Laravel 12, OAuth2, and JWT

	Master Real-World Logging & Visualization with the Full ELK Stack

	Appendix C: Source Code

	About

index-102_1.jpg
O ® SeareResTAN o e
N o T m——— olw) &~ A
b 2
Introduction
o 7 | https: //localhost:7275 /profile 7 Open API Client
‘secrestapi
Iweatherforecas| Al 12ms 2000K * T
2 ttpClient v
Iregister ~ Authentication Optional AuthType v > Cookies
/a0 > RequestHeaders 2
No authentication selected
[profile > R Jeaders (3
Models e ~ Body & Download
Key Value application/json i
v Headers 1v 1
v Accept o 2 “username*: “userl’,
3 “name®: "User 1",
v Authorization Bearer eyJhbGCiOUIUZINIISINRSCCIBIPXVC... | 4 “email": “useri@email.com"
Key Value a4 B
~ Query Parameters
Key Value
> Code Snippet

7 Open API Client

Powered by Scalar ©
Madale

index-101_1.jpg
D @ SecureRESTA s [EE - o x

N o L RR——— olw) Gl B - @
" K X
N
Introduction
is] rost | https: //localhost:7275 /login 7 Open API Client
‘secrestapi ttpClient v
/weatherforecas Al 163ms 200 OK = Al
Iregister ' Authentication Optional AuthType v > Cookies
{flogin > Request Headers 2
No authentication selected
Jprofile > Response Headers 3
Models B ookiex ~ Body & Downloag |"°"\ "\
Key Value application/json
~ Headers Tr n/3sc
o b 2 *token": "eyJhbGci0iJIUzIINiISINR5cCI6IKPXVCJI9.eyJlbmlxdWVFbmFtZSI6InVZzZXI
3 "expiredAt®: "23/08/2025 08:17:48",
v Content-Type application/json 4 nessage”: "
Key Value 2 i
* Query Parameters
Key Value
I Schema
~ Body
JSON v
1w §
2 “yserName": “userl’,
3 “password": “passi2it
4}
> Code Snippet

7 Open API Client

Powered by Scalar ©

index-103_1.jpg
<

B ©® % & o ©

G @ @

@

X ®0A0 SonarQube focus: overall code.

3

Edit Selection View Go -

[o secrestapittp

£ secrestapihttp > @ POST /register
7 (@token

eyIhbGci0i ITUZTANITSINRSCCIETKPXVC: {geeerery

9 ### register
Send Request

10 POST {{secrestapi_HostAddress}}/register
11 Accept: application/json
12 Content-Type: application/json
13
1 {
15 "useri@email.com",
16 “"password”: “pass123”,
17 "Username”: “useri”,
18 “Name": "User 1"
19 }
20
21 ### login
Send Request
22 POST {{secrestapi_HostAddress}}/login
23 Accept: application/json

PROBLEMS ~ OUTPUT DEBUGCONSOLE TERMINAL PORTS

SONARQUBE

: icrosoft.Hosting. Lifetine[0]
Application started. Press Ctrl:C to shut down.
: Microsoft.Hosting. Lifetine[o]
Hosting environment: Development
§iif8: Microsoft.Hosting. Lifetime[@]
EGFS:

£ secrestapi

@ Response(366ms) X

EOEm - o x
meoo-

1 HTTP/1.1 200 OK

2 Connection: close

3 Content-Type: application/json; charset=utf-8

4 Date: Thu, 21 Aug 2025 ©1:08:05 GMT

5 Server: Kestrel

6 Transfer-Encoding: chunked

7

8

9 “token": "eyJhbGci0ilIUZIINiISINRSCCI6IKpXVCIS.e
yI1bmlxdwWVFbmFtZSI6InVzZXIxIiwibmImIjoxNZUINZMANDE
2LCI1eHAIOFE3NTUSMTEYODYSImLhdCI6MTCINTCZODQANNO. t
GWdw1VI26UL jelzakave zxEQWFbwkkounDsznDk3Y",

10 "expiredAt”: "23/08/2025 08:08:06",

11 “"message”: ""

12 }

Executed DbComand (64ns) [Parameters=[gpe="2" (Size - 408), @p1="2" (Size = 4600), @p2="2" (Size - 4000), @p3-"2" (Size - 4666)], CommandType"Text’, C

Content root path: D:\GitHub\ilmudata-books\uebapio\codes\secrestapi
Microsoft. EntityFrameworkCore. Database. Command[26161]
ommandTimeout="36"]

SET IMPLICIT_TRANSACTIONS OFF;

SET NOCOUNT ON;

D366ms 03728

A A (A

index-102_2.jpg
O @ secureresTapl .
< C (& https://localhost:7275/scalar/#tag/secrestapi/post/login A) o = 9 e
~K
Introd
(in} 7 | https: //localhost:7275 /profile 7 Open API Client
sec

Iwe \ A= 61ms 2000K « v
Bearerv > Cookies

/¢~ Authentication Optional
/1% Enter JWT Bearer token > Request Headers 1

© > Response Headers 3

/PC. Bearer Token:

Mot cookies v Body & Download

Key Value application/json

* Headers 1v 4

¢ el e
Key Value 4 "yseri@email.com"

* Query Parameters °
Key Value

> Code Snippet

7 Open API Client

Powered by Scalar ©

index-118_1.jpg
O @ SecureRESTAPI . - = i2g

& G [B htps//localhost7290/scalar/#tag/rbacapp/get/manager Olw) @l M
RequestUri = new Uri(Localhost:7298/nana
“K
C response = await client.SendAsync(request))
Introd
[in] c7 | https: //localhost:7298 /manager 7 Open API Client
rbal
I Al'= 7ms 403 Forbi s
/s€l v Authentication Optional Bearer v > Cookies
/rec Enter JWT Bearer token > Request Headers 1

/19 Bearer Token: sssssess
Jad(

« © > ResponseHeaders 3

1ol ¥ Cookies v Body
Jord L KoY Value

Jaqi ¥ Headers

L ¥ Accept P

Jaci 7 | Key Value

Mot ¥ Query Parameters

Key Value

> Code Snippet
7 Open AP Client oK T TeqUesT = RTTPREqUESTHESSage

Powered by Scalar 9 Method = HttpMethod.Get

index-117_1.jpg
D ® sereResTAn

e -

& G (@ hups//localhost7290/scalar/#tag/rbacapp

Q search

Introduction

~ rbacapp
Iweatherforecast
Jsetuproles
Iregister
Jlogin

[addrole/{username}/role/{
rolename}

Jprofile

Jadmin
Jmanager
Jadminmanager

> Models

7 Open API Client
Powered by Scalar

3

er

er
posT
posT

e

6ET
Ger
6eT

6eT

ac

vi) (0AS3.01

Secure REST API
Download OpenAPI Document

A secure REST API with JWT authentication

Server

https://localhost:7290

Authentication Optional Auth Type v
No authentication selected

Client Libraries

>_ Shell #j Ruby ® Nodejs @ PHP @ Python @ More

C# HttpClient

pr—

index-120_1.jpg
B ® % &8 obd

® @

$)

3

Edit Selection View Go > £ tbacapp 8-
c o £ rbacapphttp | @ Response(6ms) X
£ rbacapphttp > ...
48 ### Wee= 1 HTTP/1.1 403 Forbidden
Send Request lima 2 Content-Length: @
49 GET {{rbacapp_HostAddress}}/profile e B o Rpection:| eTase
50 Accept: application/json 4 Date: Thu, 21 Aug 2025 04:
51 Content-Type: application/json 5 e (el
52 Authorization: Bearer {{token}}
53 5
54 7
Send Request
55 GET {{rbacapp_HostAddress}}/manager
56 Accept: application/json
57 Content-Type: application/json
58 Authorization: Bearer {{token}}
59 |
60 it
Send Request
61 GET {{rbacapp_HostAddress}}/admin
62 Accept: application/json
63 application/json

e

PROBLEMS ~ OUTPUT DEBUGCONSOLE TERMINAL PORTS SONARQUSE

HRES:

FROM [Users] AS [u]

WHERE [u].[Usernane] = @_model_UserName &

Microsoft. EntityFrameworkCore. Database. Command[26161]

Executed DbComand (5ms) [Parameters=[@__usrId 6="2" (DbType = Int32)], CommandType="Text’, CommandTimeout="30']
SELECT [re]. [Name]

FROM [UserRoles] AS [u]

LEFT JOIN [Roles] AS [r] ON [u].[RoleId] = [r].[1d]

INNER JOIN [Roles] AS [re] ON [r].[Id] = [re].[Id]

LEFT JOIN [Users] AS [u6] ON [u].[UserId] = [ve].[1d]

WHERE [u0].[1d] = @ _usr_Id @

T e e R R

goQm -

o

ne0o-

7:22 GMT

Hoonet ++ T & ~ | 12 x

—

@ Go Live

[

index-119_1.jpg
) File Edit Selection View Go « > P tbacapp 8- poEO - o

lg [[£ rbacapp.http - @ Response(133ms) X led] © o -
£ rbacapphttp > @ POST /login .
el 26 POST_{{rbacapp_HostAddress}}/register ! HTTP/! 1-1 200 0K
. . = fmaan | 2 Connection: close
34 ‘Nam User 3 irbazso R
3 35} L 3 Content-Type: application/json; charset=utf-8
26 L 4 Date: Thu, 21 Aug 2025 04:25:48 GMT
~ . rwa_r X
& 37 ### login tmia 5 Server: Kestrel
| Send Request Wslawe 6 Transfer-Encoding: chunked
¥ 38 POST {{rbacapp_HostAddress}}/login -
39 Accept: application/json 8]
&8 2‘; ContentlveesRanplication/ison _ 9 "token": "eyJhbGCci0ilIUZIINiISINRSCCI6IKPXVCI
o { 9.eyJodHRWO18vc2NoZW1hcyStalNyb3NvZnQuy29tL 3dzLz
. Spassuords Tpassizat, TWMDEVMDYvaWR1bnRpdHkvY2xhaW1z1 3JvbGUi0iIBZG61pbi
©) aa "Username”: “user1” IsImhodHA6LY9ZY2h1bWFzLnhtbHNVYXAub3InL 3dzLzIwMD
45} UVMDUVaWR1bnRpdHkvY2xhaW1zL 25hbWUi0iJ1c2VyMSISIm
= 26 VACCI6MTCINTKyMZEGOX®. hnozqKaaDi3jzqlm368ukzMzfa
47 DkT3koL36QpCHbmTo",
L] JE RO 10 "expiredAt": "23/08/2025 11:25:49", ~
Send Request o ..
49 GET {{rbacapp HostAddress}}/profile message
PROBLEMS ~ OUTPUT DEBUGCONSOLE TERMINAL PORTS SONARQUBE dotnet ++ [0 @ - | 03 x
FROM [Users] AS [u]
WHERE [u].[Username] = @ _model_UserName_©
§iif8: Microsoft.EntityFrameworkCore.Database.Command[26161]
Executed DbCommand (5ms) [Parameters=[@ usr_Id @='2" (DbType = Int32)], CommandType='Text’, CommandTimeout='38"]
SELECT [ro]. [Name]
FROM [UserRoles] AS [u]
LEFT JOIN [Roles] AS [r] ON [u].[RoleId] = [r].[1d]
INNER JOIN [Roles] AS [re] ON [r].[Id] = [re].[Id]
LEFT J0IN [Users] AS [ue] ON [u].[UserId] - [ve].[Id]
WHERE [v@].[1d] = @ _usr_Td @

A0 SonarQube focus: overall code D 133ms 0 4848 =)

=]

ronment @ Go Lve.

cover_image.jpg
Agus Kurniawan

index-88_1.png
) File Edit
c

~ e

Nou s w

B ©® % & o ©

(&)
©

9
10
11
12
13
14
15
16

(G)

$)

@

17
18
19

Selection View Go Run - « >

[3

ongodbapp http

£ mongodbapp.http > @ POST /products

6 references
(@mongodbapp_HostAddress = http://localhost:5103

Send Request
GET {{mongodbapp_HostAddress}}/weatherforecast/
Accept: application/json

i
Add a New Product

Send Request

POST {{mongodbapp_HostAddress}}/products
Content-Type: application/json

“name”: “Sample Product 1",
“price”: 9.99

}

Get All Products
Send Request
GET {{mongodbapp_HostAddress}}/products

Get Product by ID
Send Request

PROBLEMS ~ OUTPUT DEBUGCONSOLE ~ TERMINAL PORTS SONARQUSE

§ife:
§ife:

§ife:

X ®oAo

Microsoft.Hosting. Lifetine[14]
Now listening on: https://localhost:7068
Microsoft.Hosting. Lifetine[14]

Now listening on: http://localhost:5103
Microsoft.Hosting. Lifetine[6]

Application started. Press Ctrl+C to shut down.

2 Microsoft.Hosting. Lifetine[6]

Hosting environment: Development

2 Microsoft.Hosting. Lifetine[6]

D319ms O 2488

EOED - o x

£ mongodbapp

o - @ Response(319ms) X i} © o -

i HTTP/1.1 201 Created
{iman_aue

Connection: close

1
2
k 3 Content-Type: application/json; charset=utf-8
4 Date: ued, 20 Aug 2025 5:10:13 GMT
5 Server: Kestrel
6
7
8
9

Location: /products/68a558b5964f0e64344330ac
Transfer-Encoding: chunked

8a558b5964f0e64344330ac”,
sample Product 17,
1 9.99

" ® @Golve O |

index-87_1.png
M @ Scalar APIReference x +

& G (O nttps//localhost7068/scalar/#tag/mongodbapp/get/products

~K

~ mongodbapp
Iweatherforeca
Jproducts
Iproducts + Cookies
Iproducts/{id} Key
Jproducts/{idl | | Headers
Iproducts/fid} | , Accept
> Models

> Code Snippet
7 Open API Client

Powered by Scalar o

&7 | https://localhost:7868 | /products

Value

e

Value

Value

/products/{id}

A

171ms 200 OK «

> Cookies
> Request Headers 1
> Response Headers 3
Y
appLication/json
~ [
v
*id": "68a558b5964fBe64344330ac",
“name®: "Sample Product 1",
“price”: 9.99
i3
1

No o s wn e

7 Open API Client

Al
Jell Curl

t Request
& Download

Schema

index-100_1.jpg
D ® seareResTan

e -

& G (O ntipsy/localhost7275/scalar/

Olw) &lx M

3

Q search K
Introduction
v secrestapi
Iweatherforecast L
Iregister posT
Jlogin posT
Jprofile e
> Models
2 Open API Client
Powered by Scalar (9

vl [OAs 301

Secure REST API

Download OpenAPI Document S
https://localhost:7275

A secure REST API with JWT authentication
Authentication Optional Auth Type v

No authentication selected

Client Libraries.

>_ Shell £ Ruby ® Nodejs @ PHP @ Python @ More

C# HttpClient

secrestapi

»

index-63_1.png
> File Edit Selection View Go « > £ efcoredb 8- poEdO - o X

@ ¢
fcoredb.http > @ POST /products

0 11

efcoredb.http 4] - @ Response(10ms) X i} © o -

HTTP/1.1 200 OK

Send Request Connection: close

12 GET {{efcoredb_HostAddress}}/products/1
13 Accept: application/json

Content-Type: application/json; charset=utf-8
Date: Wed, 20 Aug 2025 00:26:39 GMT

()
£ 1 Server: Kestrel
12 Y Ereie Transfer-Encoding: chunked
¥ Send Request
g 17 PosT {{efcoredb Hostaddress})/products NI
18 Content-Type: application/json v A{
19 "id": 1,
20 11 "name Product 1",
® 21 12 “price”: 100
- Z | price”: 100 . 1,
= 1V {
® ;‘5‘ o 15 "id": 2,
Send Request 16 “name”: "Product 2", ~
26 PUT {{efcoredb_HostAddress}}/products/1 17 “price”: 100

PROBLEMS ~ OUTPUT DEBUGCONSOLE ~ TERMINAL PORTS SONARQUSE

§ii6: Microsoft.Hosting. Lifetine[e]
Hosting environment: Development
§ii6: Microsoft.Hosting. Lifetine[e]
Content root path: D:\GitHub\ilmudata-books\uebapio\codes\efcoredn
§ii6: Microsoft. EntityFraneworkCore. Update[30100]
Saved 1 entities to in-memory store.
(@ #: Microsoft.EntityFrameuorkCore. Update[30100]
Saved 1 entities to in-memory store.
§ii6: Microsoft. EntityFraneworkCore.Update[30100]
{:":} Saved 1 entities to in-memory store.

X ®0A0 SonarQube focus overall code D 10ms 0 2548 8 NoEnvionment @ Go Live

index-66_1.png
Command Prompt X 4 v - o X

D:\GitHub\ilmudata-books\webapi9\codes\efcoredbfirst>dotnet ef dbcontext scaffold "Data Source=localhost;Initial Catalog
=EfCoreLab; Integrated Security=True;TrustServerCertificate=True;" Microsoft.EntityFrameworkCore.SqlServer o Models
Build started...

Build succeeded.

To protect potentially sensitive information in your connection string, you should move it out of source code. You can a
void scaffolding the connection string by using the Name= syntax to read it from configuration - see https://go.microsof
‘t.com/fwlink/?1inkid=2131148. For more guidance on storing connection strings, see https://go.microsoft.com/fwlink/?Link
1d=723263.

D:\GitHub\ilmudata-books\webapi9\codes\efcoredbfirst>

index-63_2.png
O @ Scolar APIReference

B+

& G (O nttps//localhost7184/scalar/#tag/efcoredb/get/products

+ efcoredb
Iweatherforecast
Jproducts
Jproducts
Jproducts/{id}
Jproducts/{id}
Jproducts/{id}

> Models

7 Open API Client

Powered by Scalar

~K

PuT

DEL

Key

Key
' Query Parameters.
Key

> Code Snippet

prave numoer GO

Fropees

eET

https: //localhost: 7184 /products
A

Value

i

Value

Value

10ms 200 OK »
> Cookies

> RequestHeaders 1
> Response Headers 3
v Body

application/json

“Product 1",

: "Product 3",
: 100

71 Open API Client

A

Shell Curl v

» Test Request

Show Schema

& Download

Shell Curl v

index-71_1.png
O @ Scolar API Reference

x +

& G (O ntips//localhost7037/scalar/#tag/efcoredbfirst/get/products

+ efcoredbfirst
Iweatherforecast
Jproducts
Jproducts
Jproducts/{id}
Jproducts/{id}
Jproducts/{id}

> Models

7 Open API Client

Powered by Scalar

~K

PuT

DEL

Key

Key
' Query Parameters.
Key

> Code Snippet

prave numoer

Fropees

eET

https: //localhost:7837 /products

Value

-+

Value

Value

alE

9ms 200 OK

>

Cookies

> Request Headers 1
> Response Headers 3

v Body

application/json

1v

2v o

3

4 roduct 17,
5 1600

6

7y

8

9 roduct 2",
10 1600

1

12 v

13

14 Product 3",
15 1600

16

17 v

18

19 roduct 4”,
20 1600

2

22

71 Open API Client

A

& Download

Shell Curl v

» Test Request

Show Schema

Shell Curl v

index-70_1.png
5 File Edit Selecion View Go Run - « > £ efcoredbfirst 8- poEdO - o X

D v <« efcoredbfirsthttp = @ Response(3sms) X ne0o-

| fcoredbirsthttp > € POST /products

Jo) GEI {{ETCOrEUDTLISL_HOS LAUUIESS | }/Wed LIErTOrecas s 1 HTTP/1.1 200 OK
Accept: application/json {2 Connection: close
(@) itefcoreal 3 Content-Type: application/json; charset=utf-8
9 i etcored.
e 4 Date: Wed, 20 Aug 2025 01:03:32 GMT
et a
pos Send Request 5 server: Kestrel
8 GET {{efcoredbfirst_HostAddress}}/products 6 Transfer-Encoding: chunked
¥ 9 Accept: application/json 7
10 8 v[
B 11 ### Get by id - A
= 10 "id": 1,
Send Request . “name”: "Product 1"
13 GET {{efcoredbfirst_HostAddress}}/products/1 name roduct 17, |
C) 14 Accept: application/json 2 (riEErs A2y ‘
. 15 13 1
=5 16 ### Create 1V {
17 15 "id": 2,
@ Send REqU:fsl dbfi add , 16 "name”: "Product 2",
18 POST {{efcore 1r?t7Ht_)s g ress}}/products P “price”: 100.00
19 Content-Type: application/json
EC I
20
P 19v {
22 “name”: "Product 4", 20 "id": 3,
23 “price”: 100 21 “name”: "Product 3", A
24} 22 "price": 100.00
PROBLEMS ~ OUTPUT DEBUGCONSOLE TERMINAL PORTS SONARQUBE dotnet 4+ [0 @ - | (I x
='30°]
SET INPLICIT_TRANSACTIONS OFF;
SET NOCOUNT ON;
INSERT INTO [Product] ([Name], [Price])
OUTPUT INSERTED. [Id]
| VALUES (800, @p1);
@ iif@: Microsoft.EntityFrameworkCore.Database.Command[20101]
Executed DbCommand (1ms) [Parameters=[], CommandType='Text', CommandTimeout='30']
SELECT [p]-[1d], [p].[Name], [p].[Price]
% FROM [Product] AS [p]

D35ms 03068

index-82_1.png
o Mongo Express Database ~

Mongo Express

Databases

View

View

View

Server Status

Hostname
Uptime

Server Time

Current Connections
Active Clients
Clients Reading

Read Lock Queue

Disk Flushes

Time Spent Flushing

admin

config

local

Obc65ads8co4
67 seconds

Wed, 20 Aug 2025 04:43:08 GMT

ms

MongoDB Version
Node Version

V8 Version

Available Connections
Queued Operations
Clients Writing

Write Lock Queue

Last Flush

Average Flush Time

803

18.20.3

10.2.154.26-node. 37

838857

ms

index-78_1.png
> File

Edit Selection View Go < >

[[£ efcoretranshttp

fcoretranshttp > @ POST /createorder

@ [
p 2 references fieror
1 @efcoretrans_HostAddress = http://localhost:- = "
El@ 2
Send Request
n'> 3 GET {{efcoretrans_HostAddress}}/weatherforec
4 Accept: application/json
g 5
6
® Send Request
7 POST {{efcoretrans_HostAddress}}/createorder
8 Content-Type: application/json
9 Accept: application/json
® 10
1 {
= 12 “customerName™: "Ahmad Lee",
= 13 “products”: [
@ 14 “Product 1", “price”: 10.99
15 “Product 2", “price”: 15.50
16 1
17}
18
PROBLEVS OUTPUT DEBUGCONSOLE TERMINAL PORTS SONARQUEE

(Scale = 2) (DbType = Decimal)], CommandType='Text', CommandTimeout='30"]
SET IMPLICIT_TRANSACTIONS OFF;
SET NOCOUNT ON;
MERGE [Products] USING (
VALUES (@p1, @p2, Gp3, ©),
(@4, @S, @6, 1)) AS i ([Name], [OrderId], [Price], Position) ON 1-0
VHEN NOT MATCHED THEN
INSERT ([Name], [OrderId], [Price])
VALUES (i.[Name], i.[OrderTd], i.[Price])
OUTPUT INSERTED.[Id], i. Position;

()
Al

50 ®0A0 D ssoms

B 2658

P efeoretrans

® Response(586ms) X

gOoDQm - o

HTTP/1.1 200 OK

Connection: close

Content-Type: application/json; charset=utf-8
Date: Wed, 20 Aug 2025 ©4:19:12 GMT

Server: Kestrel

Transfer-Encoding: chunked

idm: 1,
"customerName

Ahmad Lee”,
v “products”: [

v {

“Product 17,
10.99

g 2,

“Product 2",
15.50

B @ Golive

ne0o-

[2)

index-48_1.png
>Q File Edit Selection View Go « > P exceptionhandlingapi 8- poDEdO -] X

< = T | @ Response@7ms) X a0 o -
£ exceptionhandlingapihttp > & GET /causeinvalidoperation
AT 1 HTTP/1.1 500 Internal Server Error

2 Connection: close

"

@exceptionhandlingapi_HostAddress = http://!

~

Content-Type: application/problem+json
Send Request

4 Date: Tue, 19 Aug 2025 21:29:24 GMT

3 GET {{except?onh?ndli_ngapiJlosU\ddl‘eSS}}/'le& 5 GmErg sl
;‘ accertibpel icabion/ecn 6 Cache-Control: no-cache,no-store
& = 7 Expires: -1
7 ### Simulate Internal Server Error 8 Pragma: no-cache

Send Request 9 Transfer-Encoding: chunked
8 GET {{exceptionhandlingapi_HostAddress}}/cat T 10
9

10 ### Simulate File Not Found Error

https://tools. ietf.org/html/rfco110#sec

O H @O BT E oD

Send Request .
11 GET {{exceptionhandlingapi_HostAddress}}/cal e nloi
® 13 "title": "An error occurred while processing you
13 ### Simulate Invalid Operation Error r request.”
Send Request 14 “status™: 500,
14 GET {{exceptionhandlingapi_HostAddress}}/cai 15 “"detail": "An error occurred while processing yo
ur request.”
16 }

PROBLEMS ~ OUTPUT DEBUGCONSOLE ~ TERMINAL PORTS SONARQUSE

[04:29:25] An error occurred: Internal server error.
Systen. Exception: Internal server error.

at Program. <>c.<<Main>$>b_0 1() in D:\GitHub\ilmudata-books\webapio\codes\exceptionhandl ingapi\Program. cs: line 64
at lambda_method2(Closure, Object, HttpContext)
at Microsoft. AsplletCore. Rout ing. Endpointitiddleware. Invoke(HttpContext httpContext)

25 INF] Setting HITP status code 500.

25 INF] Writing value of type 'ProblenDetails’ as Json.

25 INF] Executed endpoint "HTTP: GET /error’

:25 INF] Request Finished HTTP/1.1 GET https://localhost:7151/causeinternalerror - 568 null application/problemsjson 52.687ms

X ®oA0 D7ms B3758 B @colve

index-44_1.png
R
i

File Edit

© Programcs

PROBLEMS

§ife:

§ife:

§ife:

Selection View Go Run « >
[example.txt
Upload File
Send Request
POST {{fileapi_HostAddress}}/api/file/upload
Content-Type: multipart/form-data; boundary=----Web

Accept: application/json

--WebKitFormBoundary7MAAYWxkTrZuogW
Content-Disposition: form-data; name="description"

This is a test file

--WebKi tFormBoundary7MA4YWxKTrZuogw
Content-Disposition: form-data; name="file"; filena
Content-Type: text/plain

< ./example.txt

—MahK i FEarmRAnndarTMAAVLIVL TR7 O

SONARQUBE

OUTPUT DEBUGCONSOLE TERMINAL PORTS

Microsoft.Hosting. Lifetine[14]
Now listening on: https://localhost:7201
Microsoft.Hosting. Lifetine[14]

Now listening on: http://localhost:5008
Microsoft.Hosting. Lifetine[6]

Application started. Press Ctrl+C to shut down.

2 Microsoft.Hosting. Lifetine[6]

Hosting environment: Development

2 Microsoft.Hosting. Lifetine[6]

Content root path: D:\GitHub\ilnudata-books\webapio\codes\Ffileapi

SonarQube focus: overall code D 23ms 3 2048

gODQmDn - o X

@ Response(23ms)

VBN WA WN R

10
11

HTTP/1.1 200 OK

Connection: close

Content-Type: application/json; charset=utf-8
Date: Tue, 19 Aug 2025 10:03:01 GMT

Server: Kestrel

Transfer-Encoding: chunked

g
filePath®
“description

}

/Uploads/example.txt",
“This is a test file"

n6,Col4 Spacesi4 UTF-8 CRLF () HTTP @ NoEmvironment @ Golive O

index-52_1.png
|

B

B ©® % & o ©

G @ @

@

()
)

X ®0A0 D2ems B548

File Edit Selection View Go « > P middlewareapi

c middlewareapihtip % | €

middlewareapihttp > ...
1 reference

1 @middlewareapi_HostAddress = http://localhost:5104
2
Send Request
3 GET {{middlewareapi_HostAddress}}/weatherforecast/
4 Accept: application/json
5
6
7

PROBIEMS ~ OUTPUT DESUGCONSOLE ~ TERMINAL PORTS SONARQUEE
§ii6: Microsoft.Hosting. Lifetine[e]

Request Incoming

Loggingiddleware>> Request Incoming

Loggingiddleware>> Response Outgoing

Response Outgoing.

Request Incoming

Loggingiddleware>> Request Incoming

Loggingiddleware>> Response Outgoing

Eﬁlmse Outgoing

=]

@ Response(éms) X

HTTP/1.1 200 OK
Connection: close
Content-Type: application/json; charset=
utf-8
Date: Tue, 19 Aug 2025 22:53:45 GMT
Server: Kestrel
Transfer-Encoding: chunked
v
v {
“date”: "2025-08-21",
“temperatureC”: 8,
“summary”: "Cool"”,
“temperatureF": 46
3
v {
“date”: "2025-08-22",

ne0o-

B @ Golive

I

index-48_2.png
) File Edit Selecion View Go Run - « > O exceptionhandiingapi 8- podo - o X

@ EXPLORER « | € program.cs £ exceptionhandlingapi.http = log-20250820.t X @ - | @ Response(77ms)
 BXCEPTIONHANDLINGAP! £ log-202508208¢
> bin 7 2025-08-20 04:29:25.026 +07:00 | INF] Request tinished HTTP/1.1 GET http:// 1 HTTP/1.1 500 Inter
> obj 8 2025-08-20 04:29:25.052 +07:00 [INF] Request starting HTTP/1.1 GET https nal Server Error
[> Poperies 9 2025-08-20 04:29:25.056 +07:00 [INF] Executing endpoint 'HTTP: GET /causei 5 GEmesEers @lhee
- i apwwmjﬂl 10 2025-08-20 04:29:25.057 +07:00 [INF] Executed endpoint "HTTP: GET /causein 3 Content-Type: appl
rs | {} appsettingsjson 11 2025-08-20 04:29:25.058 +07:00 [ERR] An unhandled exception has occurred w P 5
Bl .« oectcctoomngepicons : ication/problem+js
ecept pL.Csproj 12 System.Exception: Internal server error.
g 13 at Program.<>c.<<Main>$>b_ @ _1() in D:\GitHub\ilmudata-books\webapio\cc on
=e 14 at lambda_method2(Closure, Object, HttpContext) A DEiieg s, 10 AU
® S 15 at Microsoft.AspNetCore.Routing.EndpointMiddleware. Invoke(HttpContext h | | 2025 21:29:24 GMT
16 at Microsoft.AspNetCore.Diagnostics.ExceptionHandlerMiddlewareImpl.Invc 5 server: Kestrel
17 2025-08-20 04:29:25.086 +07:00 [INF] Executing endpoint 'HTTP: GET /error® 6 Cache-Control: no-
18 2025-08-20 04:29:25.088 +07:00 [ERR] An error occurred: Internal server er cache, no-store
® 19 System.Exception: Internal server error. Expires: -1
20 at Program.<>c.<<Main>$>b_ @ 1() in D:\GitHub\ilmudata-books\webapi9\cc Pragma: no-cache
=~ 21 at lambda_method2(Closure, Object, HttpContext) . X
= S . P Transfer-Encoding:
22 at Microsoft.AspNetCore.Routing.EndpointMiddleware. Invoke(HttpContext h
23 at Microsoft.AspNetCore.Diagnostics.ExceptionHandlermiddlewareImpl.Invc chunked
24 2025-08-20 04:29:25.091 +07:00 [INF] Setting HTTP status code 500. 10
25 2025-08-20 04:29:25.100 +07:00 [INF] Writing value of type 'ProblemDetails 11
26 2025-08-20 04:29:25.104 +07:00 [INF] Executed endpoint "HTTP: GET /error® 12
27 2025-08-20 04:29:25.105 +07:00 [INF] Request finished HTTP/1.1 GET https:/ s://tools.ietf,
- ~
2 g/html /rfco11000
tion-15.6.1".
PROBLEMS ~ OUTPUT DEBUGCONSOLE TERMINAL PORTS SONARQUBE Hootnet ++ [@ - | I3 x
System.Exception: Internal server error.
at Program.<>c.<<Main>$>b__@ 1() in D:\GitHub\ilmudata-books\webapio\codes\exceptionhandlingapi\Program. cs:line 64
at lambda_method2(Closure, Object, HttpContext)
at Microsoft.AspNetCore.Routing. EndpointMiddleware. Invoke (HttpContext httpContext)
at Microsoft.AspNetCore.Diagnostics. ExceptionHandlerttiddlewareImpl . Invoke(HttpContext context)
25 INF] Setting HTTP status code 560.
@ 25 INF] Writing value of type 'ProblemDetails’ as Json.
25 INF] Executed endpoint 'HTTP: GET /error’
S . 25 INF] Request finished HTTP/1.1 GET https://localhost:7151/causeinternalerror - 569 null application/problem:json 52.687ms
B ane
[X ®0A0 SonarQube focus: overall code D 77ms B 3758 Ln20,Col43 Spaces:3 UTF-8 CRLF () PlainText & NoEnvironment @ Golive (2

index-153_1.jpg
W Internet Information Services (IIS) Manager

5 & » WIN-ALFSSMBESGN » Sites »

File View Help

Q- &
G Start Page
95 WIN-4LFSSMBESGN (WIN-4LFSSMBESGN\Ad
22 Application Pools
v Lol Sites
>) Default Web Site
> @ ExpressiS
> @ mygoapp

QS

Filter:
Name

‘Add Website
Site name: Application pool:
[dotnetapp | [dotnetapp | seect..
Content Directory
Physical path:
[Cainetpublwwwroot\dotnetapp i - |
Pass-through authentication
et) E
Binding
Tpe: 1P address: Port
htp | [Al Unassigned] [eost]
Host name:
[J
Example: www.contoso.com or marketing.contoso.com
[Start Website immediately
oK

index-152_1.jpg
W Internet Information Services (IIS) Manager

|2 > WIN-ALFSSMBESGN » Application Pools

File View Help

_‘ I q Application Pools
N start Page This page lets you view and manage the list of application pools on the server. Application pools are associated
v4 S“*m‘ﬂlw“mmm more applications, and provide isolation among different applications.
v -8l Sites Fiter: A p— S
3 ::: E—— Py ~ Add Application Pool ? X e
:® P) DefaultAppPool Started v4(Name: /
2 gospp Started No| [dotnetapp |
2 nodejspool Stated No T
|No Managed Code Y]
Managed pipeline mode:
[Start application pool immediately
oK Cancel

index-155_1.jpg
W agusk@server01: ~ 53 + v

agusk@server@l:~$ lsb_release -a
No LSB modules are available.
Distributor ID: Ubuntu

Description: Ubuntu 22.04.1 LTS
Release: 22.04
Codename: jammy

agusk@server0l:~$

index-154_1.jpg
<« [&] » WIN-4LFSSMBESGN »

File View Help
Connections
Q- |28

G5 Start Page
v -85 WIN-ALFSSMBESGN (WIN-4LFSSMBES
£ Application Pools

v 8] Sites
@ Default Web Site
@ Expressis
@ mygoapp
@ dotnetapp

<

Ready
H L Type here to search

M [localhost:8081/WeatherForecast X

< G @ localhost:8081/WeatherForecast

11

2 4

3 “date": "2023-12-17",
4 "temperatureC

5 "summary" :

6 “temperatureF": 82

7 3,

8 1

9 ~ "date": "2023-12-18",
10 "temperatur

11 "summary" : A

12 “temperatureF": 55
13 3

14 E

15 "date": "2023-12-19",
16 "temperatureC”: 5,
17 "summary”: "Chilly",
18 “temperatureF": 40
19 %

20 {

21 “date": "2023-12-20",
22 "temperatureC": 39,
23 "summary”: "Balmy”,
21 "temperatureF": 102
25

26 {

27 "date": "2023-12-21",
28 "temperatureC": 31,
29 "summary”: "Mild",
30 "temperatureF": 87
31 3

32/

s | o] Contentview

Set Website Defaults.

Edit Site

Bindings

asic Settings.

plore

ermissions.
Remove

Rename

View Applications

View Virtual Directori

Manage Website
2 Restart

® Siop

index-161_1.jpg
Q © O [192168.199.138/weatherforecast X + v

& © A Notsecure | 192.168.199.138/weatherforecast

CoNAUAWN R

2023-12-1
‘temperatureC”: 50,
summary”: "Bracing”,
“temperatureF”: 121

“date": “2023-12-18",

summary
"temperatureF": 89

“date”: "2023-12-19",
eratureC”: 23,
summary”: "Balmy”,

“temperatureF": 73

"2023-12-20",
‘temperatureC”: 39,

summary”: "Wars
"temperatureF": 102

"date”: "2023-12-21",
‘temperatureC”: 27,

summary”: "Wars
"temperatureF": 80

index-33_1.png
O @ Scolar API Reference x + - o

x
< C) httpsy/localhost:7172/scalar/#tag/restfulapi/get/items A) @ Q]
a
Q Search 20
+ restfulapi
fitems cer Jitems
[items posT
GET /items Shell Curl v
fitems/{ic} G Responses I
Jitems/{id} oEL 1 curl https://localhost:7172/itens
> 200 OK
200 Show Schema
[
1
oK
ems
POST /items Shell Curl v
Query Parameters
1 curl ‘nttps://localhost:7172/itens?iten=" \
item sting required 2 —request P0ST
R Request
200 200
7 Open API Client oK —

Powered by Scalar < No Body

index-160_1.jpg
B agusk@server0l: ~/dotnetapy X + v =

GNU nano 6.2 vailable/default *
#location / {
First attempt to serve request as file, then

as directory, then fall back to displaying a 46u.

try_files $uri $uri/ =deu;
#}
location / {
proxy_pass http://localhost:5000;

proxy_http_version 1.1;

proxy_set_header Upgrade $http_upgrade;

proxy_set_header Connection keep-alive;

proxy_set_header Host $host;

proxy_cache_bypass $http_upgrade;

proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header X-Forwarded-Proto $scheme;

}

pass PHP scripts to FastCGI server

#

#location ~ \.php$ {

include snippets/fastcgi-php.conf;

e Help Write Out QU Where Is Cut gl Execute MY Location
Rl Exit Read File g\ Replace Paste B Justify Wl Go To Line

index-32_1.png
D © Scolor APl Reference

x +

& C (O nhttps//flocathost7172/scalar/#tag/restiulapi/get/items

A) &

Q search

~ restfulapi
litems
[items
[itemsfid}
[itemsfid}

7 Open API Client

Powered by Scalar

K
SET v1.00 O0AS3.01
rost restfulapi | v1
Pur Download OpenAPI Document
.
restfulapi
&

Server

https://localnost:7172

Client Libraries
>_Shell ZiRuby ® Nodejs

Shell curl

Operations

GET [items

POST /items

PUT /items/{id}
DELeie Jitems/{id}

@ PHP @ Python

~ More

index-38_1.png
> File Edit Selecion View Go Run - « > £ calculatorapi 8- poEdO - o X

@ 3 £ calculatorapihttp -+ @ Response(6ms) X = Qo -
£ calculatorapihttp > ...
0 o e 1 HTTP/1.1 200 OK
1 (@calculatorapi_HostAddress = http://localhost:5076 i 2 Connection: close
= 2 G~ 3 Content-Type: application/json; charset-utf-g
Send Request . el 4 Date: Tue, 19 Aug 2025 ©9:13:01 GMT
ﬂr> 3 GET {ifalcu}?tn:?plir_losmddress}}/ueatherforecast/ 5 SorErs [Esdl
;' accertibpel icabion/ecn 6 Transfer-Encoding: chunked
P2 e 7
7 8
8 Send Request 9
8 POST {{calculatorapi_HostAddress}}/api/calculator/ac 10
9 Accept: application/json 1
® 10 Content-Type: application/json -
11
= 12 {
= 13 “Number1”: 10,
14 “Number2": 5
@ 15}
16
17
Send Request
18 POST {{calculatorapi_HostAddress}}/api/calculator/st ~
19 Accept: application/json
PROBLEMS ~ OUTPUT DEBUGCONSOLE ~ TERMINAL PORTS SONARQUBE dotret ++ [@ - | I3 x

§if6: Microsoft.Hosting. Lifetine[14]
Now listening on: https://localhost:7054
§iifd: Microsoft.Hosting. Lifetine[14]
Now listening on: http://localhost:5076
§iif6: Microsoft.Hosting. Lifetine[6]
Application started. Press Ctrl+C to shut down.
(@ [i: microsoft.Hosting.Lifetinefo]
Hosting environment: Development
§iif6: Microsoft.Hosting. Lifetine[6]
i Content root path: D:\GitHub\ilmudata-books\uebapio\codes\calculatorapi

B ®0A0 SonarQube focusioverall code D 6ms O 1708 B NoEmionment @ Golve &

index-33_2.png
- o x

M @ Scalar APIReference x +
& C (@ nitps//localhost7172/scalar/#tag/restfulapi/get/items At Gl @ - @
Sear K x
- restf{
in] e | https://localhost:7172 /items 7 Open API Client
Jitem|
Jitem A= 7ms 2000K « e
fitem + Cookles > Cookies
[item| Key Value > Request Headers 1
~ Headers > Response Headers 3]
v Accept b ~ Body o —
Key Value application/json
~ Query Parameters 1
Key Value z R
y 5 2,
4 “Item 3",
5 “Item 4",
6 "Item 5"
7 1
> Code Snippet
7 Open API Client oK

Powered by Scalar © No Body

index-43_1.png
= ¢ Home Workspaces v APINetwork Q Search Postman ot K -@Q.-— o x

& posT fapifiefupload 7 Gat Weather Forecast

flcapi|vi (5! fiespi .+ v N Noenvironment v

] V110l e | uplos | [apiffitejupload B save v
Cotections
=] ‘Posr v {baseUrn) fapiffil/upload
[Eo—
5 Params Authorization Headers (10) Body e Scripts Settings
Fone none @ form-data () x-www-form-urlencoded
o Value Description
History
Fie A exampletxt G (Required)
88 Text -« Thisisatestfile (Required)
Key Text v | Value Descriptio
Body Cookies Headers (4) TestResuts D 2000 - 10ms - 219B - @&

{}JSON v D Preview ¢ Visualize

i

“description”

IS

E] @ Online Q Find and replace 53 Console [l Import Complate

“filePath": */Uploads/example.txt",
This is a test il

) Postbot (-] Runner " Start Proxy @ Cookies

E
=
‘Cookies <>

« BulkEdit

Save Response ssc

Q

@ Vault

(2]

i Trash B @

index-40_1.png
> obj

> Properties

> wwwroot\uploads

1} appsettings.Developmentjson
{} appsettingsjson

S fileapi.csproj

£ fileapihttp

© Program.cs

CHCHCHCHC]

index-150_1.jpg
& Server Manager

= o X
SERVERS

Dashboard IO All servers | 1 total TASKS ¥

Local Server 93 Internet Information Services (IS) Manager = u} X

All Servers & & @) StartPage %) L@~

File and Storage Servid| File View Help

=TT i Internet Information
T senrege | A0

€5 WIN-4LFSSMBESGN (WIN-4LF
Recent connections

Online resources

N Connect to localhost 1Is News 2nd Information

@ WIN-4LFSSMBESGN Connect to a server... 1IS Downloads
i Connecttoa site... NS Fisnis

Connect to an application... TechNet
Menn

Enable IIS News TASKS ¥

1IS News is disabled, click the Enable IIS News link to get the most recent online news.

L Type here to search

index-130_1.jpg
D ® ScolarAPIReference

] (@ https://localhost:7052/scalar/#tag/privdata/get/employees.

A w) e M

privi
Iwes
Jem}
/47 v Cookies
Mod _ | key
~ Headers
v Accept

Key

<

Query Parameters

Key

> Code Snippet
71 Open AP Client

Powered by Scalar

i

& | https://localhost: 7852 /employees

AT

Value

b

Value

Value

Employee

WeatherForecast

17ms 200 OK «

> Cookies
> Request Headers 1
> Response Headers 3

v Body

application/json

1v [

2v A

3

4 ser 17,

5 "email": "+ erl@email.con”,
6 “phone”: "sitiikx5483",

7 “birthdate

8 Y

9v o

10 Sigs 0%

1 “name": "user 2",

12 "email": "sker2@email.con”,
13 kR AR5483"

14 “birthdate S

15 r

71 Open API Client

A

& Download

index-134_1.jpg
O @ Scolar API Reference: . - = o X
& C (& ntos/ocaost7177/scolar/#tog/ratelimitapi/getweathertorecast A) el M [
K x
rate|
o 7 | https://localhost:7177 /weatherforecast ® 7 Open API Client
Iwe
Mod A= 1Ims 429 Too Many Requests - T
~ Cookies > Cookies
Key Value > Request Headers 1
~ Headers > Response Headers 4
v Accept " ~ Body & Downioad
Key Value text/plain
~ Query Parameters 1 API calls quota exceeded! maxinum admitted 10 per in.
Key Value
> Code Snippet
74 Open API Client
Powered by Scalar ©

index-131_1.jpg
] File Edit Selection View Go « > £ privdata 8- poEO - o X

@ c (3 (3 £ privdatahttp - @ Response(22ms) X led] © o -
£ privdatahttp > @ POST /employees.
p 3 ererencas 1 HTTP/1.1 200 OK
1 @privdata Hostaddress = 2 Connection: close
o 2 3 Content-Type: application/json; charset=utf-g
h Send Request 4 Date: Thu, 21 Aug 2025 ©5:31:34 GMT
ﬂ[> j iile{il-’r?dﬁz;:?zx‘!:x“)”Heatherforemﬂ S e Pl
- 8 J 6 Transfer-Encoding: chunked
S 7
® 7 ### Create Employee g 3V
Send Request av {
8 POST {{pr‘ivd?tail_k)steddress)}/emplnyees 10 P
9 Accept: application/json 11 “name”: “user 1",
® 12 Content-Type: application/json i gL i
N > 1 13 cxxrrsrsg3n
= 13 “user 5", 12 e
® 14 "users@email.com", 15
5 “phone”: "@8134455483", 16 v
16 “"birthdate”: "11-des-1996" 17 Bidg:
17} 18 "name”: “"user 2",
18 19 "email": "**er2@email.com”,
19 ### Get All Employees = “phone™: "kksressgyn
Send Request "
20 GET {{privdata_HostAddress}}/employees 2 “birthdate”; "xxxxxr
21 Accept: application/json 22 1
PERVINS
24 Sk 2
25 “name”: “user 3", o
26 "email”: "**er3@email.com”,
a2 EIUNC R ————"
(@) | rromesus ourur DmsucconsoLs TERMNAL PORTS sonaRause Eoowet ++ M @ ~ | I3 x

| SELECT [e].[1d], [e].[Birthdate], [e].[Enail], [e].[Nane], [e].[Phone]
i i FROM [Enployees] AS [e]

X' ®0A0 SonarQube focus overall code D 22ms) 5998 B NoEnvionment @ Golive (&

index-138_1.jpg
A © O [corstest o+ v
& © @® localhost:80 ¢ 3 0m ® .. @y

¢/>Eements (3 Console R souces A p & B @ + - @ X

Default levels v © 2 &3

Console Issue

index-135_1.jpg
> File Edit Selection View Go « > £ ratelimitapi 8- poEO - o X

@ 3 ratelimitapi.http 143 ~+ @ Response(ms) X i Qo
ratelimitapihttp > .
,O A fance = 1 HTTP/1.1 429 Too Many Requests
1 @ratelimitapi_HostAddress = http://localhosi 2 Connection: close
(7] 2 3 Content-Type: text/plain
SendRequest 4 Date: Thu, 21 Aug 2025 05:51:41 GMT
ﬂ[> 3 GET {{ratel]l_lltalujk?stl\ddress}}/ueatherfor‘(S e Pl
4 Accept: application/json =
. 6 Retry-After: 54 w
& E 7 Transfer-Encoding: chunked |
7 8 ‘
| o APT calls quota exceeded! maximum admitted 10 per
m.

(G)

PROBLEMS ~ OUTPUT DEBUGCONSOLE TERMINAL PORTS SONARQUSE

ket v [T = | 5 X

tifier GHNFOEQT3V3DN:00066025. Monitortiode: False
§iifa: AspNetCoreRatel imit. IpRatel imitHiddleware[6]
Request get: /weatherforecast from TP ::1 has been blocked, quota 10/1m exceeded by 3. Blocked by rule *, Traceldentifier GHNFOEQT3V3DN:00906627. Monitort
ode: False
§i0: AspNetCoreRatel init. IpRateL imitHiddleware[e]
Request get: /ueatherforecast from TP 127.0.6.1 has been blocked, quota 16/im exceeded by 1. Blocked by rule *, TraceIdentifier @HNFOEQT3V3E3:00000001. Mo
@ ritortoe: False
§if6: AspNetCoreRatel imit. IpRatel imitiiddleware[6]
Request get: /ueatherforecast from TP 127.0.6.1 has been blocked, quota 16/im exceeded by 2. Blocked by rule *, TraceIdentifier GHNFOEQT3V3E4:00000001. Mo
i ll:lumﬂhie False

X ®0A0 SonarQube focus overall code D 2ms 0 1798 B NoEnvionment @ Golive 0

index-140_1.jpg
(im] [CORS Test X + v
& G O localhosts: ® |0 =

3

CORS Request Test

[Test cors |

G0 Qv </> Elements 3 console 3 Sources

@ top ¥ o |Filter Default levels ¥ 1

[{"date": :"Cool”, "temperatureF”:
18", "temperatureC”:12, " summar, “temperatureF" :53},{"date"
19", "temperatureC”:1, "summary emperaturef”

20", "temperatureC
217, "temperatureC

21, summar,

Console

index-139_1.jpg
m @ O [CorsTest x| + v
& G @ locahost ¢ oM =

CORS Request Test

[Test cors |

REO0 R ments [, Console > 6 0 ¥ + X
@ top ¥ o |Filter Defaultlevels ¥ © 2 &3

© Access to fetch at * * from origin * * has been blocked
by CORS policy: No ‘Access-Control-Allow-Origin® header is present on the requested resource. If an opague response serves your
needs, set the request’s mode to ‘no-cors’ to fetch the resource with CORS disabled.

© PGET net: :ERR_FATLED 200 (OK)
© PCORS Error: TypeError: Failed to fetch
at HTMLButtonElement . <anonymous> ()

index-147_1.jpg
goDQm - o X

> File Edit Selection View Go £ £ healthcheckapi

@ € Program.cs {} appsettingsjson ‘healthcheckapihttp X @ - | @ Response(15044ms)

£ healthcheckapittp > ...

i §eo) Diiefreras e 1 HTTP/1.1 503 Service Unavailable
1 @healthcheckapi_HostAddress = http://localhc 2 Connection: close
2 3 Content-Type: text/plain
Send Request . 4 Dpate: Thu, 21 Aug 2025 ©9:55:38 GMT
z iET {{healt?fhe:l_(ap;fﬂostnddress}}/ueatherﬁ S e Pl
ccept: application/json
- Pt: app J _ 6 cache-Control: no-store, no-cache
G e 7 Expires: Thu, @1 Jan 1970 00:00:00 GMT
Send Request 8 Pragma: no-cache
7 GET {{healthcheckapi_HostAddress}}/health 9 Transfer-Encoding: chunked
8 Accept: application/json)
2 11 Unhealthy
~
PROBLEMS ~ OUTPUT DEBUGCONSOLE ~ TERMINAL PORTS SONARQUEE Edotnet ++ M @ - | I3 X
ction)

at Microsoft.Data. ProviderBase DbConnectionPool .UserCreateRequest (DbConnection owningObject, DbConnectionOptions userdptions, DbConnectionInternal old
Connection)
at Microsoft.Data. ProviderBase.DbConnectionPool . TryGetConnect ion(DbConnection owningObject, UInt32 waitFortultipleObjectsTimeout, Boolean allowCreate,
Boolean onlyOneCheckConnection, DbConnection0ptions userOptions, DbConnectionInternal& connection)
at Microsoft.Data. ProviderBase.DbConnectionPool .WaitForPendingdpen()
-~ End of stack trace from previous location -
® at HealthChecks. SqlServer. SqlServereal thCheck. CheckHealthAsync (Heal thCheckContext context, CancellationToken cancellationToken) in /home/runner/work/
AspNetCore. Diagnostics. Heal thchecks/AspietCore .Diagnostics. Heal thChecks/src/Heal thchecks. Sqlserver/Sqlservertieal thCheck. cs: line 28
= 5
i Error Number:2,State:0,Class:20
x

0

®0A0 SonarQube focus: overall code D 15044ms 0 2058 In9Coll Spacesid UTF8 CREE () HTTP @ NoEnvionment @ Golve (3

index-145_1.jpg
) File Edit
D °
jel

il
7 2
&

5
g 6
&8 7

® @
©w

$)

Selection View Go « > £ healthcheckapi

£ healthcheckapihttp

£ healthcheckapittp > ...

2 references
@healthcheckapi_HostAddress = http://localhost:5145

Send Request
GET {{healthcheckapi_HostAddress}}/weatherforecast/
Accept: application/json

i

Send Request

GET {{healthcheckapi_HostAddress}}/health
Accept: application/json

PROBLEMS ~ OUTPUT DEBUGCONSOLE TERMINAL PORTS SONARQUSE

@ e
s
S
[Ts

@ 0

&

X ®oAo

Microsoft.Hosting. Lifetine[14]

Now listening on: http://localhost:5145

Microsoft.Hosting. Lifetine[6]

Application started. Press Ctrl+C to shut down.

Microsoft.Hosting. Lifetine[6]

Hosting environment: Development

Microsoft.Hosting. Lifetine[6]

Content root path: D:\GitHub\ilmudata-books\uebapio\codes\healthcheckapi

SonarQube focus: overall code D 11ms) 2038

@ Response(1ms) X Daeoo
I 1 HTTP/1.1 200 OK
it
2 Connection: close
3 Content-Type: text/plain
4 Date: Thu, 21 Aug 2025 09:12:49 GMT
5 Server: Kestrel
_ 6 Cache-Control: no-store, no-cache
7 Expires: Thu, @1 Jan 1970 00:00:00 GMT
8 Pragma: no-cache
o Transfer-Encoding: chunked
10
11 Healthy

B NoEnvironment @ Go Live

[

y

index-129_2.jpg
©-0|a | @ Newauery | ©
¥ Becte =/ 5

Connect~ ¥ 7§ = Y U

& B locelhost(SQL Server 16.0,10006 - AKUR2024\a
1 Databases

4 Securiy

1 Server Objects

1 Replication

1 Always On High Availabity

1 Management

B 5QL Server Agent (Agent XPs disabled)

T XEvent Profiler

SomEwm

5QLQuery3.sql...\agusk (66) =

Fle Edit View Gt Project Tools Extensions Window Help | O Search~ Solutionl

- -8B 5 o copiot L

|8°88am| o

SELECT TOP (1000) [Id]
, [Name]
, [Email]
+ [Phone]
, [Birthdate]
FROM [Training3D8]. [dbo] . [Employees]

Phone

Bithdate.

CADUBKYi 735w SErdwr VimTm6 Ui TL SaZip EPowFgiaKpy 2udhé.

‘CADUBKYs 735w SErdurVimTm6UijdOopdZ30BntPEG TeRBSIN

CADUBKYi 735w SErdwrVim TmW MV Zguvp Wo3qmnR TRYr.

CADUBKYi 735w SErdwrVimTm6UyEOLdwysdNgv_LbrE7CZnd

CADJBKYi Tru35wSErdwrVimTm6Xsp4ESuP01szhRICTVOG035g.

CADJBKYi 735w SErdurVim Tm6Xag_XCSHkKhaoH3UAM kY.

CADUBKYi 735w ErdwrVim Tm6VP3H25taVmeaq2 UKW/ Obb.

CADUBKYi 735w SErdwr Vim TmXZkPO0UKOK Y6ABQ-Yv-Tia LY.

CADUBKYiTu35wSErdwrim Tm6VDGe Hk 8YEm PagSingde 7023..

CADJBKYi 735w SErdurVim TmUCQ SxDAtbié2FybohGNIB.

CADUBKYi 35w ErdwrVim Tm6XGxM_8dJUWgBUZAY mcED.

CADJBKYi T 35w SErcurVim Tm6 Ubp Uie XG5KeCyr_kamd 71_Atd

CADUBKYi T 35w ErdwrVim Tm6UdzlwCn 151 Tvyb TQp 7GZB.

CADJBKYi 735w SErdwr Vim TmBWNCUdoHEQscmp 44 TC 098U

CADUBKYi 735w SErdwrVim TmXxLUCECev L tHIRubwtsbrUsm.

index-129_1.jpg
M @ Scalar APIReference .

o X

< C w (@ https//localhost:7052/scalar/#tag/privdata A ﬁ\/‘ 3 Q
Q search K
~ privdata

Iweatherforecast er V100 (0AS301

Jemployees ost privdata | v1

[employees cET Download OpenAPI Document [Coreen
> Models https:/flocalhost:7052

Client Libraries

>_Shell 4 Ruby ® Nodejs @ PHP @ Python
Shell Curl

privdata

71 Open API Client Operations
Powered by Scalar GET /weatherforecast
e e

index-1_1.jpg
HALLO

Practical ASP.NET Core
Minimal API

AGUS KURNIAWAN

index-16_1.png
marketplace visualstudio.comyit

g VisualStudio | Marketplace Signin

Visual Studio Code > Programming Languages > REST Client New to Visual Studio Code? Get it now.

REST Client

Huachao Mao | & 4,015901 installs | (351) | Free

REST Client for Visual Studio Code

Trouble Installing?t2

Version History Q&A Rating & Review

REST Client Categories

Programming Languages Snippets Linters
["open in visual Studio Code | ©) Node c1 |passing] chat |

REST Client allows you to send HTTP request and view the response in Visual Studio Code directly.

Tags
GraphQL Hitp keybindings markdown

. multi-root ready REST snippet
Main Features

Works with
« Send/Cancel/Rerun HTTP request in editor and view response in a separate pane with syntax highlight Universal
« Send GraphQL query and author GraphQL variables in editor
* Send cURL command in editor and copy HTTP request as cURL command Resources

« Auto save and view/clear request history
« Compose MULTIPLE requests in a single file (separated by ### delimiter)
« View image response directly in pane

« Save raw response and response body only to local disk

index-15_1.png
) File Edit Selection View - £ hello DEmoe - [m] X

@ EXPLORER © Program.cs X 0 <
* HELLO © Program.cs > ...
> bin 1 using System.Text.Json.Serialization;
> obj 2
Z’ . Pmpmies B 3 var builder = WebApplication.CreateSlimBuilder(args)
{} appsettings.Developmentjson

r 1 appsettingsjson 4

o 3 hello.csproj 5 builder.Services.ConfigureHttpJsonOptions(options =>

2 X
7 options.SerializerOptions.TypeInfoResolverChain.
8 1)
)
16 var app = builder.Build();
11
12 var sampleTodos = new Todo[] {
13 new(1, "Walk the dog"),
14 new(2, "Do the dishes", DateOnly.FromDateTime(Da I
15 new(3, "Do the laundry", DateOnly.FromDateTime(D i
16 new(4, "Clean the bathroom"),
17 new(5, "Clean the car", DateOnly.FromDateTime(Da
PE:I H

b3)

> OUTLINE

N
®

var todosApi = app.MapGroup("/todos");
{{? 7 TIMELINE 21 todosApi.MapGet("/", () => sampleTodos);

>C . = EN R P ~~_asmsccsaam fx_a xan
X ¥ ®0A0 W0 % AWS:profiledefault X CodeWhisperer Git Graph &5 Select Postgres Server Spaces:4 UTF-8 CRLF C# & @sSpell 0Q

index-21_1.png
O @ lowlhosti02weatherorecast X+ - g x
< C (O ntips//localhost7032/weatherforecast vl A - O
pretty-print ¥
l
{

“"date": "2025-08-20",
“temperatureC”: 19,
“summary”: "Cool”,
“temperatureF”: 66

"date": "2025-08-22",
“temperatureC”: 10,
“summary”: “"Cool”,
“temperatureF”: 49

I

{

“date": "2025-08-23",
“temperatureC”: 48,

"date": "2025-08-24",

index-20_1.png
) File Edit Selection View Go

o oo

 HEwo
> obj
> Properties

[| 1 appsetingsDeveopmentjson
1) appsettingsjson

> S hello.csproj

index-26_1.png
) File Edit

@
L

1
] 2
&
e Z
&8 7

8

o
10

® 11

12
13

(] 14

15

16
17
18
19
20

Selection View Go « > P restiulapi

restfulapihttp

restfulapihttp > @ DELETE /items/1

4 references
@restfulapi_HostAddress = http://localhost:5007

Send Request
GET {{restfulapi_HostAddress}}/items
Accept: application/json

i
Send Request

POST {{restfulapi HostAddress}}/items?item=item 20

Accept: application/json
HiH

Send Request

PUT {{restfulapi_HostAddress}}/items/2?item=item 2-edited

Accept: application/json

i

Send Request

DELETE {{restfulapi_HostAddress}}/items/1
Accept: application/json

i

PROBLEMS ~ OUTPUT DEBUGCONSOLE ~ TERMINAL PORTS SONARQUSE

info:
info:
info:
info:

® info:

00

X ®oAo

Microsoft.Hosting. Lifetine[14]

Now listening on: https://localhost:7172
Microsoft.Hosting. Lifetine[14]

Now listening on: http://localhost:5007
Microsoft.Hosting. Lifetine[6]

Application started. Press Ctrl+C to shut down.
Microsoft.Hosting. Lifetine[6]

Hosting environment: Development

2 Microsoft.Hosting. Lifetine[6]

Content root path: D:\GitHub\ilnudata-books\webapio\codes\restfulapi

D22ms B 1798

8- EgOoDEDl - o X
@ Response(2z2ms) X De0o-
1 HTTP/1.1 200 OK
2 Connection: close
3 Content-Type: application/json; ch
arset=utf-8
4 Date: Tue, 19 Aug 2025 01:28:31 GM
T
5 Server: Kestrel
6 Transfer-Encoding: chunked
7
8 V[
9 “Item1",
10 “Item 2",
11 “Item
12 “Item
13 “Item
14]

B8 @colve 0

index-22_1.png
> File Edit Selection View Go « > £ hello 8- poEO - o X

@ £ hello.http - @ Response(10ms) X De0o -
hellohttp > ...

0 1 reference Gin 1 HTTP/1.1 200 OK
1 @hello_HostAddress = http://localhost:5086 2 Connection: close
= 2 3 Content-Type: application/json; charset-utf-8
Send Request ‘ 4 Date: Tue, 19 Aug 2025 00:52:19 GMT
a'> j ii;{i’-‘e;h’f:::z:;e'::i}/“eatherﬁwecBSt/ 5 SorErs [Esdl
. (8 J — 6 Transfer-Encoding: chunked
oo .
7 vl
&8 av {
10 “date”: "2025-08-20",
11 “temperatureC”: 9,
® 12 “summary”: "Warm",
13 “temperatureF": 48
= u 1,
15v {
@ 16 “date”: "2025-08-21",
17 “temperatureC”: 29,
18 “summary”: “"Scorching”,
) 19 “temperatureF": 84
2 3, A

B 21v {

¥ ®0A0 Dioms B 5158 T " B @colve O

index-31_1.png
DO @ loclhost7i72/openapifvijson X +

< C

@ httpsy//localhost 7172/openapi/v1json

pretty-print ¥

3.0.1%,

restfulapi | V17,
"Lo.0"

»

