
        
            
                
            
        

    
[image: Image 1]

Mastering Business Data with SQL

A Practical Guide to Querying, Modeling, and Compliance Using SQL

Server 2025

Agus Kurniawan

Ilmu Data

5 August 2025

© 2025 Ilmu Data. All rights reserved. 

Table of Contents

Preface

Acknowledgments

Section 1: Getting Started with SQL Server 2025

1 Introduction and Setup

1.1 Introduction

1.2 What’s New in SQL Server 2025

1.3 Tools You’ll Use in This Book

1.3.1 SQL Server Management Studio (SSMS) 21.x

1.3.2 Visual Studio Code with MSSQL Extension

1.3.3 Optional Tools

1.4 Exercise 1: Install SQL Server and Restore

AdventureWorks2022

1.4.1 Description

1.4.2 Objectives

1.4.3 Prerequisites

1.4.4 Steps

1.4.5 Summary

1.5 Exercise 2: Explore SSMS and Run Your First Query

1.5.1 Description

1.5.2 Objectives

1.5.3 Prerequisites

1.5.4 Steps

1.5.5 Summary

1.6 Conclusion

Section 2: Querying Data – Core Skills

2 SELECT and Filtering Essentials

2.1 The SELECT Statement: Retrieving Data

2.2 The WHERE Clause: Filtering Rows

2.3 The ORDER BY Clause: Sorting Results

2.4 Combining SELECT, WHERE, and ORDER BY

2.5 Exercise 3: Select and Filter Data from

AdventureWorks2022

2.5.1 Description

2.5.2 Objectives

2.5.3 Prerequisites

2.5.4 Steps

2.5.5 Summary

2.6 Exercise 4: Filter Sales by Region and Date

2.6.1 Description

2.6.2 Objectives

2.6.3 Prerequisites

2.6.4 Steps

2.6.5 Summary

2.7 Conclusion

3 Expressions, NULLs, and Logic

3.1 Using Expressions in SELECT

3.2 Understanding NULLs

3.3 The CASE Expression: Conditional Logic

3.4 Combining Expressions, NULLs, and CASE

3.5 Exercise 5: Add Calculated Columns and Handle Missing

Data

3.5.1 Description

3.5.2 Objectives

3.5.3 Prerequisites

3.5.4 Steps

3.5.5 Summary

3.6 Exercise 6: Use CASE for Business Rule Logic

3.6.1 Description

3.6.2 Objectives

3.6.3 Prerequisites

3.6.4 Steps

3.6.5 Summary

3.7 Conclusion

Section 3: Data Modeling and Design

4 Relational Database Design Basics

4.1 Tables and Data Types

4.1.1 What is a Table? 

4.1.2 Data Types in SQL Server 2025

4.2 Keys in Relational Tables

4.2.1 Primary Key (PK)

4.2.2 Foreign Key (FK)

4.2.3 Candidate Key

4.2.4 Surrogate Key vs. Natural Key

4.3 Introduction to Normalization

4.3.1 First Normal Form (1NF)

4.4 Second Normal Form (2NF)

4.5 Third Normal Form (3NF)

4.6 Exercise 7: Basic ERD Design

4.6.1 Description

4.6.2 Objectives

4.6.3 Prerequisites

4.6.4 Steps

4.6.5 Step 7: Show ERD Diagram

4.6.6 Summary

4.7 Exercise 8: Design Schema for a Subscription Business

4.7.1 Description

4.7.2 Objectives

4.7.3 Prerequisites

4.7.4 Steps

4.7.5 Step 8: Show ERD Diagram

4.7.6 Summary

4.8 Exercise 9: Insert and Query Sample Data

4.8.1 Description

4.8.2 Objectives

4.8.3 Prerequisites

4.8.4 Steps

4.8.5 Summary

4.9 Exercise 10: Apply Normalization to Improve Table

Design

4.9.1 Description

4.9.2 Objectives

4.9.3 Prerequisites

4.9.4 Steps

4.9.5 Summary

4.10 Conclusion

5 Views and Logical Data Modeling

5.1 What Is a View? 

5.2 Creating Views in SQL Server 2025

5.3 Views as Virtual Tables

5.4 Updatable Views

5.5 Role-Based Schema Simplification Using Views

5.6 Security and Compliance with Views

5.7 Indexed Views (Materialized Views)

5.8 Exercise 11: Create Reusable Views for Sales Analysis

5.8.1 Description

5.8.2 Objectives

5.8.3 Prerequisites

5.8.4 Steps

5.8.5 Summary

5.9 Exercise 12: Simplify Complex Joins via Views

5.9.1 Description

5.9.2 Objectives

5.9.3 Prerequisites

5.9.4 Steps

5.9.5 Summary

5.10 Conclusion

6 Designing Multi-Tenant and SaaS Databases

6.1 What Is a Multi-Tenant Database? 

6.2 Multi-Tenant Patterns in SQL Server

6.2.1 Pattern 1: Shared Database, Shared Schema

6.2.2 Pattern 2: Shared Database, Schema-Per-Tenant

6.2.3 Pattern 3: Database-Per-Tenant

6.3 Tenant Isolation and Identity Filtering

6.3.1 Option 1: Manual Filtering by Tenant ID

6.3.2 Option 2: Use Row-Level Security (RLS)

6.4 Managing Identity and Shared Metadata

6.5 Best Practices for Multi-Tenant SQL Server Design

6.6 Exercise 13: Add Tenant Column and Apply Security

Filters

6.6.1 Description

6.6.2 Objectives

6.6.3 Prerequisites

6.6.4 Steps

6.6.5 Summary

6.7 Exercise 14: Build Views and Indexes per Tenant

6.7.1 Description

6.7.2 Objectives

6.7.3 Prerequisites

6.7.4 Steps

6.7.5 Summary

6.8 Conclusion

Section 4: Aggregation, Data Combination and Analytical Query

Techniques

7 Grouping, Aggregation, and PIVOTs

7.1 What Is Aggregation? 

7.2 GROUP BY: Summarizing Rows by Category

7.3 HAVING: Filtering Groups

7.4 Multiple Columns in GROUP BY

7.5 PIVOT: Rotating Data for Reports

7.6 Unpivoting (Optional Advanced)

7.7 Exercise 15: Generate Monthly Revenue Summaries

7.7.1 Description

7.7.2 Objectives

7.7.3 Prerequisites

7.7.4 Steps

7.7.5 Summary

7.8 Exercise 16: Create Pivoted Sales Report

7.8.1 Description

7.8.2 Objectives

7.8.3 Prerequisites

7.8.4 Steps

7.8.5 Summary

7.9 Exercise 17: Filter Aggregated Results Using HAVING

7.9.1 Description

7.9.2 Objectives

7.9.3 Prerequisites

7.9.4 Steps

7.9.5 Summary

7.10 Conclusion

8 Joins and UNION Queries

8.1 Introduction to Joins

8.2 INNER JOIN

8.3 LEFT JOIN (LEFT OUTER JOIN)

8.4 FULL JOIN (FULL OUTER JOIN)

8.5 UNION vs UNION ALL

8.6 Best Practices

8.7 Exercise 18: Combine Customer, Order, and Region Data

8.7.1 Description

8.7.2 Objectives

8.7.3 Prerequisites

8.7.4 Steps

8.7.5 Summary

8.8 Exercise 19: Merge Archived and Active Records

8.8.1 Description

8.8.2 Objectives

8.8.3 Prerequisites

8.8.4 Steps

8.8.5 Summary

8.9 Conclusion

9 Trends, Time, and Window Functions

9.1 Introduction to Window Functions

9.2 ROW_NUMBER, RANK, and DENSE_RANK

9.3 LEAD and LAG: Accessing Adjacent Rows

9.4 DATE and TIME Functions

9.5 Combining Window + Time Analysis

9.6 Exercise 20: Rank Top Customers Monthly

9.6.1 Description

9.6.2 Objectives

9.6.3 Prerequisites

9.6.4 Steps

9.6.5 Summary

9.7 Exercise 21: Compare Customer Revenue Month-over-

Month

9.7.1 Description

9.7.2 Objectives

9.7.3 Prerequisites

9.7.4 Steps

9.7.5 Summary

9.8 Exercise 22: Calculate Moving Averages on Sales

9.8.1 Description

9.8.2 Objectives

9.8.3 Prerequisites

9.8.4 Steps

9.8.5 Summary

9.9 Exercise 23: Analyze Customer Sales Percentiles

9.9.1 Description

9.9.2 Objectives

9.9.3 Prerequisites

9.9.4 Steps

9.9.5 Summary

9.10 Conclusion

Section 5: Security, Access, and Compliance

10 User Management and Access Control

10.1 Authentication vs Authorization

10.2 Logins and Users

10.3 Fixed Server and Database Roles

10.4 Custom Roles and Role-Based Access Control (RBAC)

10.5 Schema-Level Security

10.6 Security Best Practices

10.7 Auditing Access

10.8 Exercise 24: Create Analyst Role and Grant Access

10.8.1 Description

10.8.2 Objectives

10.8.3 Prerequisites

10.8.4 Steps

10.8.5 Summary

10.9 Exercise 25: Restrict Access by Schema

10.9.1 Description

10.9.2 Objectives

10.9.3 Prerequisites

10.9.4 Steps

10.9.5 Summary

10.10 Exercise 26: Revoke Permissions and Audit Role

Membership

10.10.1 Description

10.10.2 Objectives

10.10.3 Prerequisites

10.10.4 Steps

10.10.5 Summary

10.11 Conclusion

11 Row-Level Security and Tenant Isolation

11.1 What Is Row-Level Security (RLS)? 

11.2 RLS Architecture in SQL Server

11.2.1 How RLS Works Internally

11.2.2 Types of Security Predicates

11.2.3 Security Policy Management

11.2.4 Auditing RLS Activity

11.3 Example Scenario: Tenant-Based Filtering

11.4 Step-by-Step: Implementing RLS for Tenant Isolation

11.5 RLS for User-Specific Access

11.6 Best Practices for RLS

11.7 RLS Limitations to Note

11.8 Exercise 27: Enforce Tenant Filtering with RLS

11.8.1 Description

11.8.2 Objectives

11.8.3 Prerequisites

11.8.4 Steps

11.8.5 Summary

11.9 Exercise 28: Validate Isolation Using Test Accounts

11.9.1 Description

11.9.2 Objectives

11.9.3 Prerequisites

11.9.4 Steps

11.9.5 Summary

11.10 Exercise 29: Audit RLS Access and Log Session

Context Activity

11.10.1 Description

11.10.2 Objectives

11.10.3 Prerequisites

11.10.4 Steps

11.10.5 Summary

11.11 Conclusion

12 Masking, Encryption, and Auditing

12.1 Dynamic Data Masking (DDM)

12.2 Encryption Options

12.2.1 Transparent Data Encryption (TDE)

12.2.2 Always Encrypted

12.2.3 Cell-Level Encryption (CLE)

12.3 Auditing Access to Sensitive Data

12.4 Best Practices for Data Protection

12.5 Exercise 30: Mask Email and Phone Fields in Query

Output

12.5.1 Description

12.5.2 Objectives

12.5.3 Prerequisites

12.5.4 Steps

12.5.5 Summary

12.6 Exercise 31: Encrypt Sensitive Data Using Always

Encrypted

12.6.1 Description

12.6.2 Objectives

12.6.3 Prerequisites

12.6.4 Steps

12.6.5 Summary

12.7 Exercise 32: Enable and Configure an Audit Policy

12.7.1 Description

12.7.2 Objectives

12.7.3 Prerequisites

12.7.4 Steps

12.7.5 Summary

12.8 Conclusion

13 Complying with GDPR and Privacy Regulations

13.1 Key GDPR Data Subject Rights

13.1.1 Right of Access (Article 15)

13.1.2 Right to Erasure / Right to Be Forgotten (Article

17)

13.1.3 Right to Data Portability (Article 20)

13.2 Data Minimization

13.3 Pseudonymization

13.4 Data Classification in SQL Server 2025

13.5 Auditing for Compliance

13.6 Best Practices for GDPR Compliance

13.7 Exercise 33: Apply DDM to PII Columns

13.7.1 Description

13.7.2 Objectives

13.7.3 Prerequisites

13.7.4 Steps

13.7.5 Summary

13.8 Exercise 34: Apply Pseudonymization with Computed

Columns or Hashes

13.8.1 Description

13.8.2 Objectives

13.8.3 Prerequisites

13.8.4 Steps

13.8.5 Summary

13.9 Exercise 35: Implement the Right to Erasure and

Portability

13.9.1 Description

13.9.2 Objectives

13.9.3 Prerequisites

13.9.4 Steps

13.9.5 Summary

13.10 Exercise 36: Simulate GDPR “Right to Be Forgotten” 

13.10.1 Description

13.10.2 Objectives

13.10.3 Prerequisites

13.10.4 Steps

13.10.5 Summary

13.11 Exercise 37: Enable Auditing and Access Log for

GDPR

13.11.1 Description

13.11.2 Objectives

13.11.3 Prerequisites

13.11.4 Steps

13.11.5 Summary

13.12 Exercise 38: Log Consent and Data Processing

Activities for GDPR Audits

13.12.1 Description

13.12.2 Objectives

13.12.3 Prerequisites

13.12.4 Steps

13.12.5 Summary

13.13 Conclusion

Section 6: Reporting and Exporting

14 Reporting and Data Connectivity

14.1 Exporting SQL Data to Excel and CSV

14.1.1 Export Using SQL Server Management Studio

(SSMS)

14.1.2 xport Using SQL Server Import and Export

Wizard

14.1.3 Export via bcp (Bulk Copy Program) CLI

14.1.4 Export to CSV with T-SQL (via SSMS

scripting)

14.2 Connecting Power BI to SQL Server

14.3 Building Reports on Exported Data

14.4 Practices for Reporting and Data Access

14.5 Exercise 39: Export Sales Summary to Excel

14.5.1 Description

14.5.2 Objectives

14.5.3 Prerequisites

14.5.4 Steps

14.5.5 Summary

14.6 Exercise 40: Connect SQL Server to Power BI Desktop

for Dynamic Visualization

14.6.1 Description

14.6.2 Objectives

14.6.3 Prerequisites

14.6.4 Steps

14.6.5 Summary

14.7 Conclusion

Appendix A: T-SQL Cheatsheet (SQL Server 2025)

Appendix B: Resources

SQL Server 2025 High Availability & Disaster Recovery:

Always On Solutions Course

Enhance Your Learning with Our Udemy Course

Build Secure PHP APIs Like a Pro with Laravel 12, OAuth2, 

and JWT

Master Real-World Logging & Visualization with the Full

ELK Stack

Appendix C: Source Code

About

Preface

In today’s data-driven business landscape, mastering SQL is essential for unlocking the full potential of your organization’s information. SQL Server 2025 introduces powerful new features and enhancements, enabling professionals to query, model, and manage data with greater efficiency and compliance. 

“Mastering Business Data with SQL: A Practical Guide to Querying, Modeling, and Compliance Using SQL Server 2025”  is crafted to help you build a strong foundation in SQL while exploring advanced techniques for real-world business scenarios. This book offers a hands-on approach, guiding you through practical examples and step-by-step instructions to ensure you gain the skills needed to work confidently with business data. 

Inside, you will discover:

Core SQL concepts and the latest features in SQL Server 2025. 

Methods for querying and analyzing business data effectively. 

Best practices for designing and modeling databases for scalability and compliance. 

Advanced topics such as data security, regulatory compliance, and performance optimization. 

Practical case studies demonstrating SQL’s role in solving business challenges. 

Tips for deploying, maintaining, and optimizing SQL Server environments. 

Whether you are a beginner or an experienced professional aiming to deepen your expertise, this book serves as a comprehensive resource for students, IT specialists, and anyone seeking to harness the power of SQL

Server 2025 in business data management. 

Agus Kurniawan

Depok, August 2025

Acknowledgments

I extend my sincere gratitude to the SQL Server community, dedicated contributors, and data professionals whose insights and encouragement have greatly influenced the development of this book. 

As you read through these chapters, I hope  Mastering Business Data with SQL: A Practical Guide to Querying, Modeling, and Compliance Using SQL Server 2025 proves both practical and inspiring, empowering you to achieve new levels of proficiency and innovation in business data management. 

Section 1: Getting Started with

SQL Server 2025

1 Introduction and Setup

1.1 Introduction

This book is designed for business users, data analysts, and professionals who work with relational data and need to develop skills in querying, modeling, and ensuring compliance using SQL Server 2025. You may be: A business analyst generating reports and insights from enterprise data A data professional supporting analytics and reporting pipelines A developer building SaaS solutions with secure, multi-tenant databases A compliance-oriented user interested in applying data governance, security, and auditing best practices

Unlike books that target full-time database administrators (DBAs) or performance tuners, this book emphasizes real-world, hands-on skills for interacting with SQL

Server in a business-driven context, with a focus on: Writing effective and meaningful queries

Designing relational data models that scale

Enforcing access control, masking, and auditing for compliance (e.g., GDPR) Supporting multi-tenant SaaS-style architecture from a data perspective The book assumes basic familiarity with databases, such as tables and rows, but no prior experience with T-SQL or SQL Server is required. 

1.2 What’s New in SQL Server 2025

SQL Server 2025, part of Microsoft’s modern data platform, continues its evolution as a hybrid and cloud-integrated database engine. As of July 2025, these are the notable features relevant to this book’s focus:

✅ Enhanced T-SQL capabilities, including window function improvements, performance hints, and support for DATETIME2 granularity enhancements

✅ Built-in support for data classification, sensitivity labeling, and improved auditing — critical for GDPR/PII compliance

✅ Improved Row-Level Security (RLS) performance and diagnostics

✅ Support for ledger tables (blockchain-style tamper-evidence) for scenarios where data integrity tracking is required

✅ SSMS 20.x and Azure Data Studio 1.47+ fully support SQL Server 2025’s feature set

✅ Seamless integration with Microsoft Purview, Power BI, and Azure Arc for hybrid deployments

These features make SQL Server 2025 well-suited for data-driven businesses, especially those delivering multi-tenant services, operating under regulatory compliance, or requiring enterprise-level data analysis. 

1.3 Tools You’ll Use in This Book

To follow along with the exercises and labs in this book, you’ll primarily use the following tools:

1.3.1 SQL Server Management Studio (SSMS) 21.x

The classic, full-featured Windows tool for managing SQL Server databases. SSMS

includes:

Query editor with IntelliSense for T-SQL

Object Explorer for browsing schemas, views, procedures

UI-based features for backups, security, and auditing

Graphical plans for query analysis

🔎  As of July 2025, the latest SSMS release is v21.x, which is compatible with SQL

 Server 2025 and backward-compatible with earlier versions. 

You can download SSMS from the official Microsoft site: Download SQL Server

Management Studio https://learn.microsoft.com/en-us/ssms/install/install. 

While installing, you can choose some workload-specific options, but the defaults are generally sufficient for most users. Figure 1.1 shows the installation process. 

[image: Image 2]

[image: Image 3]

Figure 1.1: Installing SQL Server Management Studio (SSMS) 21.x. 

After installation, you can launch SSMS and connect to your SQL Server instance using Windows Authentication or SQL Server Authentication. The connection dialog allows you to specify the server name, authentication method, and credentials. 

Figure 1.2: SQL Server Management Studio (SSMS) 21.x. 

1.3.2 Visual Studio Code with MSSQL Extension

As Microsoft transitions away from Azure Data Studio, Visual Studio Code (VS

Code) combined with the official MSSQL extension is now the preferred

lightweight, cross-platform SQL editor. With this setup, you can: Connect to SQL Server on Windows, Linux, or macOS

Run and save T-SQL queries directly from the VS Code editor Use IntelliSense, result grid, and connection profiles

Leverage Git and terminal integration for hybrid workflows

🟢  The MSSQL extension, maintained by Microsoft, brings ADS-like features to VS

 Code and is actively supported as of July 2025. 

❗  Microsoft has officially announced the retirement of Azure Data Studio, and

 recommends moving to VS Code + MSSQL extension for future development: What’s

 Happening to Azure Data Studio

1.3.3 Optional Tools

While the primary focus is on SSMS and VS Code, you may also find value in exploring additional tools that complement your SQL Server workflow. These optional tools can help with data visualization, automation, and advanced management tasks, depending on your specific needs and environment. 

Power BI Desktop: Connects directly to SQL Server to build visual dashboards SQLCMD or Azure CLI: For automation and command-line interaction (covered briefly)

1.4 Exercise 1: Install SQL Server and Restore

AdventureWorks2022

1.4.1 Description

In this lab, you will install SQL Server 2025 Developer Edition, set up SQL Server Management Studio (SSMS), and restore the AdventureWorks2022 sample database. This environment will be used for hands-on exercises throughout the book. 

1.4.2 Objectives

Install SQL Server 2025 Developer Edition

Install SSMS 21.x

Download the AdventureWorks2022.bak sample database Restore the .bak file into a new database using SSMS

1.4.3 Prerequisites

Windows 10/11 or Windows Server 2019/2022

Administrator access to install software

Stable internet connection

At least 4 GB RAM and 10 GB free disk space

1.4.4 Steps

Here’s a step-by-step guide to complete this exercise:

1.4.4.1 Step 1: Download and Install SQL Server 2025 Developer Edition 1. Visit the SQL Server 2025 download pagehttps://www.microsoft.com/en-us/sql-

server/sql-server-downloads

Since SQL Server 2025 is not yet released, you can download the SQL Server 2025 on https://www.microsoft.com/en-us/evalcenter/evaluate-sql-server-2025. 

The steps will be similar. 

2. Download the Developer Edition installer (free for development use) 3. Run the installer and choose Basic installation

4. Accept license terms and continue

5. Wait until the installation completes

6. Note the instance name (default: MSSQLSERVER) and make sure SQL Server services are running

1.4.4.2 Step 2: Install SQL Server Management Studio (SSMS) 21.x 1. Go to the official SSMS download page, https://learn.microsoft.com/en-

us/ssms/install/install

2. Download the latest SSMS 21.x installer (as of July 2025) 3. Run the installer and complete the setup

4. Launch SSMS and connect to your local SQL Server instance

[image: Image 4]

1.4.4.3 Step 3: Download AdventureWorks2022 Sample Database 1. Visit the official Microsoft GitHub repository:

👉 https://github.com/microsoft/sql-server-samples/releases

2. Locate and download: AdventureWorks2022.bak from the AdventureWorks OLTP

section. 

Direct link (as of July 2025):

👉 https://github.com/microsoft/sql-server-samples/releases/tag/adventureworks

3. Save the .bak file to a known directory, e.g., C:\Backups\AdventureWorks2022.bak Figure 1.3: Connect to SQL Server from SQL Server Management Studio (SSMS) 21.x. 

1.4.4.4 Step 4: Restore AdventureWorks2022 in SSMS

1. Open SSMS and connect to the SQL Server instance 2. In Object Explorer, right-click on Databases → choose Restore Database…

3. In the  Source section:

Select Device

Click Add… and browse to C:\Backups\AdventureWorks2022.bak

[image: Image 5]

4. In the  Destination section:

Database name: AdventureWorks2022

5. Click on the Files tab:

Change the restore file path if needed (ensure it points to a valid DATA folder) Figure 1.4: Restore AdventureWorks2022. 

6. Click OK to begin the restore

7. Wait until the success message appears

1.4.4.5 Step 5: Verify the Database

1. In Object Explorer, expand Databases → AdventureWorks2022

[image: Image 6]

Figure 1.5: Explore AdventureWorks2022 database. 

2. Expand Tables to verify that objects like Sales.SalesOrderHeader and Person.Person exist

3. Run a sample query:

SELECT TOP 10 * FROM Person.Person; 

[image: Image 7]

Figure 1.6: Perform a query on MSSQL Studio. 

1.4.5 Summary

In this exercise, you:

Installed SQL Server 2025 Developer Edition and SSMS 21.x Downloaded the AdventureWorks2022 .bak file from Microsoft’s GitHub repository

Restored the database into SQL Server using SSMS

Verified the successful restore and ran a test query

You are now ready to begin querying and working with a real-world sample database in the next chapters. 

1.5 Exercise 2: Explore SSMS and Run Your First Query 1.5.1 Description

In this hands-on lab, you will explore the SQL Server Management Studio (SSMS) 21.x user interface and run your first query against the AdventureWorks2022

database. This lab helps you become familiar with core features of SSMS that you’ll use throughout the book. 

1.5.2 Objectives

Navigate the SSMS interface: Object Explorer, Query Editor, and Results Pane Connect to a SQL Server 2025 instance

Run a basic SELECT statement on the restored AdventureWorks2022 database View and interpret query results

1.5.3 Prerequisites

SQL Server 2025 Developer Edition is installed and running SQL Server Management Studio (SSMS) 21.x is installed

AdventureWorks2022 database is already restored (from Exercise 1) User has access to connect as a SQL Server administrator or equivalent 1.5.4 Steps

Here’s a step-by-step guide to complete this exercise:

1.5.4.1 Step 1: Launch SSMS and Connect to SQL Server 1. Open SQL Server Management Studio (SSMS). 

2. In the Connect to Server dialog:

Server type:  Database Engine

Server name:  (local) or localhost

Authentication:  Windows Authentication (or SQL Authentication if configured)

3. Click Connect. 

4. Once connected, you will see Object Explorer on the left panel. 

1.5.4.2 Step 2: Explore the SSMS Interface

Familiarize yourself with key UI elements:

Object Explorer (left pane): View servers, databases, tables, views, and more Query Editor: Write and run T-SQL scripts

Toolbar: Save files, execute queries, and format code Results Pane: View query output (grid or text)

Expand the following to get familiar:

1. Databases → AdventureWorks2022

[image: Image 8]

2. Expand Tables, Views, and Security

1.5.4.3 Step 3: Open a New Query Window

1. In Object Explorer, right-click on the AdventureWorks2022 database 2. Click New Query

3. Ensure the database context (top-left dropdown) is set to AdventureWorks2022

1.5.4.4 Step 4: Run a Simple Query

In the new query window, type the following T-SQL statement: SELECT TOP 10 FirstName, LastName 

FROM Person.Person; 

Click Execute (or press F5). 

Figure 1.7: Run a query. 

1.5.4.5 Step 5: View the Results

Review the Results tab (default grid view)

Notice column names and values

Optionally click the Messages tab to view query execution info (e.g., (10 rows affected))

You can also change the output to:

Text: Right-click in the query window → Results To → Results to Text (Ctrl+T) File: Right-click → Results To → Results to File (Ctrl+Shift+F) 1.5.5 Summary

In this exercise, you:

Connected to SQL Server 2025 using SSMS 21.x

Navigated the SSMS interface and Object Explorer

Opened a query window and set the database context

Ran your first SQL query against the AdventureWorks2022 database Viewed results in the results pane

You’re now ready to dive into querying and data exploration in upcoming chapters. 

1.6 Conclusion

This book provides a comprehensive introduction to SQL Server 2025, focusing on practical skills for business users and data professionals. By completing the exercises in this chapter, you have set up your environment and gained familiarity with the tools and interfaces that will be used throughout the book. 

Section 2: Querying Data – Core

Skills

2 SELECT and Filtering Essentials

In this chapter, we introduce the foundation of querying data from SQL Server 2025. You’ll learn how to retrieve specific columns using SELECT, limit rows with WHERE, and organize results with ORDER BY. These skills are essential for analyzing business data effectively and precisely. 

2.1 The SELECT Statement: Retrieving Data

The SELECT statement is the most fundamental command in SQL—it lets you extract data from one or more tables. 

Sample syntax:

SELECT column1, column2, ... 

FROM table_name; 

Here’s how to retrieve all columns from the Customers table in the Sales schema: SELECT * 

FROM Sales.Customers; 

Here’s how to select only the CustomerID, FirstName, and LastName columns: SELECT CustomerID, FirstName, LastName 

FROM Sales.Customers; 

 Avoid SELECT * in production queries. Always specify the columns you need to improve performance and clarity. 

2.2 The WHERE Clause: Filtering Rows

WHERE is used to filter rows that meet specific criteria. It allows business users to focus on relevant data only. 

Sample syntax:

SELECT column1, column2, ... 

FROM table_name 

WHERE condition; 

Comparison operators are used in the WHERE clause to filter data based on specific conditions. Here are the common operators:

Operator

Meaning

=

Equal

<> or !=

Not equal

> 

Greater than

< 

Less than

>=

Greater or equal

<=

Less or equal

Here’s how to select customers from the ‘North’ region:

SELECT CustomerID, Region 

FROM Sales.Customers 

WHERE Region = 'North'; 

You can combine multiple conditions using AND and OR:

SELECT OrderID, OrderDate, TotalAmount 

FROM Sales.Orders 

WHERE TotalAmount > 1000 AND Status = 'Completed'; The WHERE clause can also use special operators for more complex filtering: IN: Checks if a value exists in a list

BETWEEN: Checks within a range

LIKE: Pattern matching (with % and _)

Here are some examples:

 -- Customers from specific regions 

SELECT FirstName, LastName 

FROM Sales.Customers 

WHERE Region IN ('West', 'South'); 



 -- Orders between two dates 

SELECT OrderID, OrderDate 

FROM Sales.Orders 

WHERE OrderDate BETWEEN '2025-01-01' AND '2025-06-30'; 

 

 -- Customers with names starting with 'J'  

SELECT FirstName, LastName 

FROM Sales.Customers 

WHERE FirstName LIKE 'J%'; 

Explanation:

The first query retrieves customers from the ‘West’ and ‘South’ regions. 

The second query finds orders placed in the first half of 2025. 

The third query gets customers whose first names start with ‘J’. 

2.3 The ORDER BY Clause: Sorting Results

ORDER BY is used to sort query results by one or more columns, either ascending (ASC, default) or descending (DESC). 

Basic syntax:

SELECT column1, column2, ... 

FROM table_name 

ORDER BY column1 [ASC|DESC], column2 [ASC|DESC]; Here’s how to sort customers by their last names in ascending order: SELECT FirstName, LastName 

FROM Sales.Customers 

ORDER BY LastName ASC; 

Here’s how to sort customers by their total purchase amount in descending order: SELECT CustomerID, TotalPurchase 

FROM Sales.CustomerRevenue 

ORDER BY TotalPurchase DESC; 

2.4 Combining SELECT, WHERE, and ORDER BY

You can combine SELECT, WHERE, and ORDER BY to create powerful queries that retrieve and organize data effectively. 

Here’s an example that retrieves orders over $500 and sorts them by order date: SELECT OrderID, CustomerID, OrderDate, TotalAmount FROM Sales.Orders 

WHERE TotalAmount > 500 

ORDER BY OrderDate DESC; 

This retrieves orders over $500 and sorts them from the most recent. 

2.5 Exercise 3: Select and Filter Data from

AdventureWorks2022

2.5.1 Description

In this exercise, you will learn how to retrieve data from a SQL Server 2025

database using the SELECT statement and apply filtering using the WHERE clause. You’ll explore the Production.Product and Sales.SalesOrderHeader tables in the AdventureWorks2022 sample database to extract meaningful information. 

This lab builds your foundation for writing real-world business queries using SQL

Server Management Studio (SSMS) 21.x. 

2.5.2 Objectives

Understand how to use the SELECT statement to retrieve specific columns Apply the WHERE clause to filter rows based on conditions Use logical operators such as AND, OR, and comparison operators Retrieve business-relevant data from AdventureWorks2022

2.5.3 Prerequisites

SQL Server 2025 Developer Edition is installed and running SSMS 21.x is installed

AdventureWorks2022 database has been restored (from Exercise 1) User is connected to the SQL Server instance with appropriate permissions 2.5.4 Steps

Here’s a step-by-step guide to complete this exercise:

2.5.4.1 Step 1: Open a New Query Window in SSMS

1. Launch SQL Server Management Studio (SSMS)

2. Connect to your SQL Server instance

3. In Object Explorer, expand Databases → right-click on AdventureWorks2022 → choose New Query

4. Ensure the database context (in the dropdown near the toolbar) is set to AdventureWorks2022

2.5.4.2 Step 2: Retrieve Product Name and List Price

In the query editor, type:

SELECT Name, ListPrice 

FROM Production.Product; 

Click Execute or press F5. This returns a list of all products with their list prices. 

2.5.4.3 Step 3: Filter Products with Non-Zero Price

Now let’s filter out products that have a price of 0.00: SELECT Name, ListPrice 

FROM Production.Product 

WHERE ListPrice > 0; 

This query returns only sellable products with a valid list price. 

2.5.4.4 Step 4: Add Filtering by Product Color

Let’s get only red-colored products:

SELECT Name, Color, ListPrice 

FROM Production.Product 

WHERE Color = 'Red'; 

You can change 'Red' to other values such as 'Black', 'Silver', etc. 

2.5.4.5 Step 5: Combine Multiple Conditions with AND and OR

Get all red or black products with a price above 500: SELECT Name, Color, ListPrice 

FROM Production.Product 

WHERE (Color = 'Red' OR Color = 'Black') 

AND ListPrice > 500; 

This shows how to use parentheses to control logic with AND / OR. 

2.5.4.6 Step 6: Query Sales Orders by Date Range

[image: Image 9]

Now switch to the Sales.SalesOrderHeader table and query orders in 2013: SELECT SalesOrderID, OrderDate, TotalDue 

FROM Sales.SalesOrderHeader 

WHERE OrderDate BETWEEN '2013-01-01' AND '2013-12-31'; This helps you retrieve filtered transactional data. 

Figure 2.1: Perform a query get orders by date range. 

2.5.5 Summary

In this exercise, you:

Used the SELECT statement to query specific columns

Applied WHERE filters to extract meaningful subsets of data Combined logical conditions with AND and OR

Explored data from both Product and SalesOrderHeader tables in AdventureWorks2022

These skills are essential for any business analyst or developer working with relational data in SQL Server. 

2.6 Exercise 4: Filter Sales by Region and Date

2.6.1 Description

In this hands-on lab, you will practice writing SQL queries to filter sales orders based on both region (territory) and date range, using the AdventureWorks2022

database in SQL Server 2025. You will also use the ORDER BY clause to sort the results for better readability and analysis. 

2.6.2 Objectives

Join Sales.SalesOrderHeader with Sales.SalesTerritory

Apply multiple filters using WHERE with AND and BETWEEN

Sort results using the ORDER BY clause

Retrieve region-specific sales activity within a date range 2.6.3 Prerequisites

SQL Server 2025 Developer Edition installed and running

SSMS 21.x is installed

AdventureWorks2022 database is restored (from Exercise 1) Familiarity with SELECT, WHERE, and JOIN from previous exercises 2.6.4 Steps

Here’s a step-by-step guide to complete this exercise:

2.6.4.1 Step 1: Open a New Query Window in SSMS

1. Launch SQL Server Management Studio (SSMS)

2. Connect to your SQL Server instance

3. In Object Explorer, right-click AdventureWorks2022 → New Query 4. Ensure that the database context is set to AdventureWorks2022

2.6.4.2 Step 2: View Sales Order Data

Start with a basic query to explore Sales.SalesOrderHeader: SELECT TOP 10 SalesOrderID, OrderDate, TerritoryID, TotalDue FROM Sales.SalesOrderHeader; 

 This gives you a sense of available fields, including region (TerritoryID). 

2.6.4.3 Step 3: Join with Sales Territory Table

To retrieve the region name, join with Sales.SalesTerritory: SELECT  

h.SalesOrderID, 

h.OrderDate, 

t.Name AS Territory, 

h.TotalDue 

FROM Sales.SalesOrderHeader h 

JOIN Sales.SalesTerritory t ON h.TerritoryID = t.TerritoryID; This query combines sales orders with their respective territories, allowing you to see which region each order belongs to. 

2.6.4.4 Step 4: Filter by Region and Date Range

Now filter for sales in the “Southwest”  region during the year 2013: SELECT  

h.SalesOrderID, 

h.OrderDate, 

t.Name AS Territory, 

h.TotalDue 

FROM Sales.SalesOrderHeader h 

JOIN Sales.SalesTerritory t ON h.TerritoryID = t.TerritoryID 

WHERE  

t.Name = 'Southwest' 

AND h.OrderDate BETWEEN '2013-01-01' AND '2013-12-31'; You can try other territory names such as 'Northwest', 'Central', or 'Canada'. 

[image: Image 10]

Figure 2.2: Perform filtering data by region and date range. 

2.6.4.5 Step 5: Sort Results by Total Sales Value

Add ORDER BY to sort by TotalDue in descending order:

SELECT  

h.SalesOrderID, 

h.OrderDate, 

t.Name AS Territory, 

h.TotalDue 

FROM Sales.SalesOrderHeader h 

JOIN Sales.SalesTerritory t ON h.TerritoryID = t.TerritoryID 

WHERE  

t.Name = 'Southwest' 

AND h.OrderDate BETWEEN '2013-01-01' AND '2013-12-31' 

ORDER BY h.TotalDue DESC; 

 This helps prioritize the highest value orders for analysis. 

2.6.5 Summary

In this lab, you:

Joined the SalesOrderHeader and SalesTerritory tables

Filtered records by region and date range using WHERE and BETWEEN

Used ORDER BY to sort sales by their total value

Retrieved actionable sales insights for a specific region and time period These skills are essential for generating regional reports and analyzing sales performance in SQL Server 2025. 

2.7 Conclusion

This chapter introduced the foundational SQL skills needed to retrieve and filter data effectively. You learned how to use the SELECT statement, apply filters with WHERE, and sort results with ORDER BY. These skills are crucial for any data professional working with SQL Server 2025, enabling you to extract meaningful insights from your data. 

3 Expressions, NULLs, and Logic

This chapter explores how to write expressions, handle NULL values, and apply conditional logic using CASE. These are essential tools for business analysts and data professionals who must generate derived insights, perform transformations, and manage missing or incomplete data. 

3.1 Using Expressions in SELECT

Expressions allow you to perform calculations, manipulate strings, and format output directly in your SQL queries. 

In general, expressions can be categorized into:

Arithmetic expressions

String expressions

Date/time expressions

Arithmetic expressions perform calculations using numeric data types. They can include addition, subtraction, multiplication, and division. 

Here’s how to calculate the total price of items in an order: SELECT ProductID, Quantity, UnitPrice, Quantity * UnitPrice AS TotalPrice FROM Sales.OrderDetails; 

String expressions concatenate or manipulate text data. You can combine fields, format names, or create dynamic labels. 

Here’s how to create a full name from first and last names: SELECT FirstName + ' ' + LastName AS FullName FROM Sales.Customers; 

Date/time expressions allow you to manipulate dates, such as calculating future dates or extracting parts of a date. 

Here’s how to calculate an expected delivery date by adding 30 days to the order date:

SELECT OrderID, OrderDate, 

DATEADD(day, 30, OrderDate) AS ExpectedDelivery 

FROM Sales.Orders; 

3.2 Understanding NULLs

NULL represents missing or unknown data. It’s not the same as 0 or an empty string. 

Any comparison with NULL results in UNKNOWN (not TRUE or FALSE), which affects filtering and logic. 

SELECT *  

FROM HR.Employees 

WHERE ManagerID = NULL;  -- This does NOT return expected rows Use IS NULL or IS NOT NULL:

SELECT *  

FROM HR.Employees 

WHERE ManagerID IS NULL; 

Here are two common functions to handle NULL values:

Function

Description

ISNULL()

Replace NULL with a given value

COALESCE()

Return the first non-null expression

Here’s how to replace NULL phone numbers with a default value: SELECT CustomerID, ISNULL(PhoneNumber, 'Not Provided') AS ContactNumber FROM Sales.Customers; 

The COALESCE function returns the first non-null value from a list of expressions. It’s useful for providing fallback values. 

SELECT ProductID, COALESCE(SalePrice, ListPrice, 0) AS EffectivePrice FROM Inventory.Products; 

3.3 The CASE Expression: Conditional Logic

The CASE expression allows you to perform if-then-else logic in SQL queries. This is useful for categorization, flagging, and conditional formatting. 

Let’s start with a simple example that maps specific values to new labels. 

SELECT  

OrderID, 

Status, 

CASE Status 

WHEN 'Completed' THEN 'Green' 

WHEN 'Pending' THEN 'Yellow' 

ELSE 'Red' 

END AS StatusColor 

FROM Sales.Orders; 

For more complex conditions, you can use the searched CASE syntax, which allows for multiple conditions. 

SELECT  

CustomerID, 

TotalPurchase, 

CASE  

WHEN TotalPurchase >= 10000 THEN 'Platinum' 

WHEN TotalPurchase >= 5000 THEN 'Gold' 

WHEN TotalPurchase >= 1000 THEN 'Silver' 

ELSE 'Bronze' 

END AS LoyaltyLevel 

FROM Sales.CustomerRevenue; 

The CASE expression is versatile and can be used for various purposes: Group numeric values into buckets (e.g., sales tier)

Convert raw codes into readable labels

Flag risky or abnormal data

3.4 Combining Expressions, NULLs, and CASE

In real-world SQL queries, you often need to combine expressions, handle NULL

values, and apply conditional logic all at once. This is especially important when creating calculated fields, generating business metrics, or preparing data for reports and dashboards. 

By integrating arithmetic or string expressions with CASE statements and NULL

handling functions, you can produce more robust and meaningful query results. 

The following examples demonstrate how these concepts work together to solve practical business problems. 

Here’s how to categorize customer revenue while handling potential NULL values: SELECT  

CustomerID, 

    Revenue, 

CASE  

WHEN Revenue IS NULL THEN 'Unknown' 

WHEN Revenue > 10000 THEN 'High' 

ELSE 'Normal' 

END AS RevenueStatus 

FROM Sales.Customers; 

This query checks if the Revenue is NULL and categorizes it accordingly, ensuring that all customers are accounted for, even those with missing data. 

A more complex example that combines multiple concepts:

SELECT  

OrderID, 

Quantity, 

UnitPrice, 

Quantity * UnitPrice AS TotalAmount, 

CASE  

WHEN Quantity * UnitPrice >= 5000 THEN 'Large Order' 

ELSE 'Standard' 

END AS OrderSize 

FROM Sales.OrderDetails; 

This query calculates the total amount for each order and categorizes it as either a

“Large Order” or “Standard” based on the total value, demonstrating how to derive insights from existing data while applying conditional logic. 

3.5 Exercise 5: Add Calculated Columns and Handle

Missing Data

3.5.1 Description

In this hands-on lab, you will learn how to add calculated columns in SQL

queries using expressions, such as arithmetic operations and string concatenation. 

You will also learn how to handle missing or NULL values using the IS NULL

condition and the COALESCE() function. These techniques help create cleaner, business-ready output from raw data. 

3.5.2 Objectives

Create derived columns using arithmetic and string expressions Use the IS NULL condition to identify missing data

Apply COALESCE() to substitute default values for NULLs

Enhance result sets for reporting and analytics

3.5.3 Prerequisites

SQL Server 2025 Developer Edition is installed and running SSMS 21.x is installed

AdventureWorks2022 database is restored (from Exercise 1) Familiarity with basic SELECT and WHERE clauses

3.5.4 Steps

Here’s a step-by-step guide to complete this exercise:

3.5.4.1 Step 1: Open a New Query Window in SSMS

1. Launch SQL Server Management Studio (SSMS)

2. Connect to your SQL Server instance

3. Right-click on the AdventureWorks2022 database → New Query 4. Ensure that the database context is set to AdventureWorks2022

3.5.4.2 Step 2: Calculate Discounted List Price

Let’s assume a 10% promotional discount on all products. You can calculate the discounted price with a derived column:

SELECT  

Name, 

ListPrice, 

ListPrice * 0.9 AS DiscountedPrice 

FROM Production.Product 

WHERE ListPrice > 0; 

 This adds a new column called DiscountedPrice without altering the actual table. 

3.5.4.3 Step 3: Combine First and Last Names

Use + to concatenate FirstName and LastName into a full name: SELECT  

FirstName + ' ' + LastName AS FullName, 

EmailPromotion 

FROM Person.Person; 

3.5.4.4 Step 4: Identify NULL Values Using IS NULL

Let’s find products with no color information:

SELECT  

Name, 

Color 

FROM Production.Product 

WHERE Color IS NULL; 

 This query returns products where the Color column is missing (i.e., NULL). 

3.5.4.5 Step 5: Replace NULL Values Using COALESCE

To improve output for reporting, use COALESCE() to replace NULLs with a default value:

SELECT  

Name, 

COALESCE(Color, 'Not Specified') AS ProductColor 

FROM Production.Product; 

 COALESCE(Color, 'Not Specified') returns 'Not Specified' when Color is NULL. 

You can also use this for numeric or date columns:

SELECT  

ProductID, 

Weight, 

COALESCE(Weight, 0) AS Weight_KG 

FROM Production.Product; 

3.5.4.6 Step 6: Combine Expressions

Let’s combine calculations and NULL handling:

SELECT  

Name, 

ListPrice, 

COALESCE(Color, 'N/A') AS Color, 

ListPrice * 0.95 AS SalePrice 

FROM Production.Product 

WHERE ListPrice > 100 

ORDER BY SalePrice DESC; 

[image: Image 11]

Figure 3.1: Perform query to combine expression. 

3.5.5 Summary

In this lab, you:

Created calculated columns using arithmetic and string operations Identified missing data using IS NULL

Used COALESCE() to replace NULLs with default values

Combined expressions for enhanced output

These techniques are useful for transforming raw data into business-friendly reports and preparing it for dashboards or exports. 

3.6 Exercise 6: Use CASE for Business Rule Logic 3.6.1 Description

In this hands-on lab, you will learn how to use the CASE expression in SQL Server 2025 to apply conditional logic in query results. The CASE expression allows you to implement simple business rules directly in your SQL queries—without writing procedural code. You’ll use data from the AdventureWorks2022 database to classify product pricing and evaluate sales performance. 

3.6.2 Objectives

Understand how to use the CASE expression in SELECT statements Apply conditional logic to classify numeric and text-based fields Enhance SQL output with human-readable rule-based columns Practice combining CASE with filtering and sorting logic 3.6.3 Prerequisites

SQL Server 2025 Developer Edition installed and running

SSMS 21.x installed

AdventureWorks2022 database restored (from Exercise 1) Familiarity with basic SELECT and WHERE clauses

3.6.4 Steps

Here’s a step-by-step guide to complete this exercise:

3.6.4.1 Step 1: Open a New Query Window in SSMS

1. Launch SQL Server Management Studio (SSMS)

2. Connect to your SQL Server instance

3. In Object Explorer, right-click on AdventureWorks2022 → choose New Query

4. Ensure that the database context is set to AdventureWorks2022

3.6.4.2 Step 2: Classify Products by Price Tier

Use CASE to group products based on their ListPrice into categories:

SELECT  

Name, 

ListPrice, 

CASE  

WHEN ListPrice = 0 THEN 'Free' 

WHEN ListPrice < 100 THEN 'Low Price' 

WHEN ListPrice BETWEEN 100 AND 500 THEN 'Mid Range' 

WHEN ListPrice > 500 THEN 'Premium' 

ELSE 'Unknown' 

END AS PriceCategory 

FROM Production.Product 

ORDER BY ListPrice; 

💡  This creates a new column PriceCategory based on product pricing logic. 

3.6.4.3 Step 3: Show Promotion Status for Customers

Use CASE to display a human-readable status from the EmailPromotion field: SELECT  

FirstName + ' ' + LastName AS FullName, 

EmailPromotion, 

CASE  

WHEN EmailPromotion = 0 THEN 'No Promotions' 

WHEN EmailPromotion = 1 THEN 'Subscribed - Basic' 

WHEN EmailPromotion = 2 THEN 'Subscribed - Advanced' 

ELSE 'Unknown' 

END AS PromotionStatus 

FROM Person.Person; 

 EmailPromotion is an integer, and the CASE expression maps it to readable labels. 

3.6.4.4 Step 4: Flag High-Value Sales Orders

Use CASE to add a flag column to identify large sales:

SELECT  

SalesOrderID, 

OrderDate, 

TotalDue, 

CASE  

WHEN TotalDue >= 10000 THEN 'High Value' 

WHEN TotalDue BETWEEN 5000 AND 9999.99 THEN 'Medium Value' 

ELSE 'Low Value' 

END AS OrderCategory 

FROM Sales.SalesOrderHeader 

WHERE OrderDate >= '2013-01-01' 

ORDER BY TotalDue DESC; 

[image: Image 12]

 You can use this logic for dashboards, alerts, or reports. 

Figure 3.2: Perform query to flag high-value sales orders. 

3.6.5 Summary

In this lab, you:

Used the CASE expression to implement conditional logic in query results Created rule-based output fields such as PriceCategory, PromotionStatus, and OrderCategory

Combined CASE with sorting and filtering for better insights CASE is a powerful tool for translating business logic directly into your SQL queries

— a must-have skill for analysts and developers working with SQL Server 2025. 

3.7 Conclusion

In this chapter, we explored how to use expressions, handle NULL values, and apply conditional logic with the CASE expression in SQL Server 2025. These techniques are essential for transforming raw data into meaningful insights, enabling better decision-making and reporting. 

Section 3: Data Modeling and

Design

4 Relational Database Design Basics

This chapter introduces essential concepts of relational database design. We’ll explore tables, data types, keys, and the principles of normalization (1NF to 3NF). These concepts ensure that business data is stored efficiently, consistently, and with minimal redundancy—key goals in enterprise data systems. 

4.1 Tables and Data Types

We’ll start with the fundamental building blocks of relational databases: tables and data types. Understanding these concepts is crucial for designing effective database schemas that meet business requirements. 

4.1.1 What is a Table? 

A table is a structured set of data made up of rows and columns. Each row (or record) represents a single entity instance, and each column holds a specific attribute. 

Here’s a simple example of a Customers table:

CustomerID FirstName LastName Email

Region

1

Indah

Chen

indah@ilmudata.id

West

2

Jane

Brown

jane@ilmudata.id

South

4.1.2 Data Types in SQL Server 2025

SQL Server provides a rich set of data types to define what kind of data can be stored in each column. 

Here are some common data types used in SQL Server 2025: Category

Data Types

Numbers

INT, BIGINT, DECIMAL(p,s), FLOAT

Category

Data Types

Characters

CHAR(n), VARCHAR(n), TEXT

Date/Time

DATE, DATETIME2, TIME

Logical

BIT

Unique IDs

UNIQUEIDENTIFIER

Following is a SQL statement to create a Customers table with various data types: CREATE TABLE Customers ( 

CustomerID INT PRIMARY KEY, 

FirstName VARCHAR(50), 

LastName VARCHAR(50), 

Email VARCHAR(100) UNIQUE, 

Region VARCHAR(30), 

CreatedAt DATETIME2 DEFAULT GETDATE() 

); 

4.2 Keys in Relational Tables

Keys are essential for uniquely identifying records in a table and establishing relationships between tables. They help maintain data integrity and enforce business rules. 

4.2.1 Primary Key (PK)

A Primary Key is a column (or set of columns) that uniquely identifies each row in a table. It ensures that no two rows can have the same value in the primary key column(s). 

Here’s how to define a primary key in SQL Server:

CONSTRAINT PK_Customers PRIMARY KEY (CustomerID) 4.2.2 Foreign Key (FK)

A Foreign Key is a column (or set of columns) that creates a link between two tables. It enforces referential integrity by ensuring that the value in the foreign key column matches a value in the primary key column of another table. 

Here’s how to define a foreign key in SQL Server: FOREIGN KEY (CustomerID) REFERENCES Customers(CustomerID) 4.2.3 Candidate Key

A Candidate Key is any column (or set of columns) that can uniquely identify a row in a table. A table can have multiple candidate keys, but only one is chosen as the primary key. 

4.2.4 Surrogate Key vs. Natural Key

A Surrogate Key is an artificial key created to uniquely identify a record, often using an auto-incrementing integer or a unique identifier (GUID). A Natural Key is a real-world attribute that naturally identifies a record, such as a Social Security Number or email address. 

4.3 Introduction to Normalization

Normalization is the process of organizing data in a database to reduce redundancy and improve data integrity. It involves decomposing tables into smaller, related tables and defining relationships between them. 

Normalization is a design process that organizes data to: Minimize redundancy, 

Avoid update anomalies, 

Improve integrity. 

4.3.1 First Normal Form (1NF)

First Normal Form (1NF) requires that all columns in a table contain atomic values (indivisible) and that each column contains only one value per row. This means no repeating groups or arrays. 

Here’s an example of a table that violates 1NF:

OrderID

Customer

ProductNames

1

John

TV, Laptop, Headphones

To convert this table to 1NF, we need to ensure that each product is stored in a separate row:

OrderID

Customer

ProductName

1

John

TV

1

John

Laptop

1

John

Headphones

4.4 Second Normal Form (2NF)

Second Normal Form (2NF) builds on 1NF by ensuring that all non-key attributes are fully functionally dependent on the entire primary key. This means eliminating partial dependencies, where a non-key attribute depends only on part of a composite primary key. 

Follow these rules to achieve 2NF:

Be in 1NF, and

All non-key attributes must depend on the entire primary key (eliminate partial dependencies). 

Here’s a table that violates 2NF:

In a table with a composite key:

CREATE TABLE OrderDetails ( 

OrderID INT, 

ProductID INT, 

ProductName VARCHAR(100),  -- partial dependency 

Quantity INT, 

PRIMARY KEY (OrderID, ProductID) 

); 

This table has a composite primary key (OrderID, ProductID), but ProductName only depends on ProductID, not the entire key. 

To fix this, we need to move ProductName to a separate table: Move ProductName to a separate Products table. 

CREATE TABLE Products ( 

ProductID INT PRIMARY KEY, 

ProductName VARCHAR(100) 

); 

4.5 Third Normal Form (3NF)

Third Normal Form (3NF) goes a step further by ensuring that all non-key attributes are not only fully functionally dependent on the primary key but also that there are no transitive dependencies. This means that non-key attributes should not depend on other non-key attributes. 

To achieve 3NF, a table must:

Be in 2NF, and

No transitive dependencies (non-key attributes must depend only on the key). 

Here’s a table that violates 3NF:

CREATE TABLE Employees ( 

EmployeeID INT PRIMARY KEY, 

Name VARCHAR(50), 

DepartmentID INT, 

DepartmentName VARCHAR(50)  -- transitive dependency 

); 

In this example, DepartmentName depends on DepartmentID, which is not the primary key. This creates a transitive dependency. 

To fix this, we need to remove the transitive dependency by moving DepartmentName to a separate table:

Move DepartmentName to a separate Departments table. 

CREATE TABLE Departments ( 

DepartmentID INT PRIMARY KEY, 

DepartmentName VARCHAR(50) 

); 

4.6 Exercise 7: Basic ERD Design

4.6.1 Description

Understanding how to represent different types of relationships in SQL Server is essential for effective relational database design. In this hands-on lab, we’ll explore four fundamental relationship types—one-to-one, one-to-many, many-to-many, and self-referencing—and implement them in a SQL Server 2025

database. Each relationship will be implemented through proper table creation and foreign key constraints. 

4.6.2 Objectives

Learn how to create and enforce:

One-to-One relationships

One-to-Many relationships

Many-to-Many relationships (via junction tables)

Self-referencing relationships (hierarchical)

Understand when and why to use each type

4.6.3 Prerequisites

SQL Server 2025 Developer Edition

SQL Server Management Studio (SSMS) 21.x or higher

Basic knowledge of CREATE TABLE and FOREIGN KEY syntax

4.6.4 Steps

Here’s a step-by-step guide to implementing these relationships in SQL Server. 

Each step includes the SQL code needed to create the tables and relationships, along with explanations of the design choices made. 

4.6.4.1 Step 1: Create the Database

We begin by creating a new sandbox database called ERDDesignDemo. 

CREATE DATABASE ERDDesignDemo; 

GO 



USE ERDDesignDemo; 

GO

4.6.4.2 Step 2: One-to-One Relationship (Employee ↔  EmployeeDetail)

A one-to-one relationship means that each row in one table is linked to a single row in another. 

We’ll simulate an Employee table with a one-to-one EmployeeDetail. 

CREATE TABLE Employee ( 

EmployeeID INT PRIMARY KEY, 

FullName NVARCHAR(100), 

HireDate DATE 

); 



CREATE TABLE EmployeeDetail ( 

EmployeeID INT PRIMARY KEY, 

Address NVARCHAR(200), 

Phone NVARCHAR(20), 

FOREIGN KEY (EmployeeID) REFERENCES Employee(EmployeeID) 

); 

📝 Explanation:

EmployeeDetail.EmployeeID is both a primary and foreign key, ensuring one-to-one mapping. 

4.6.4.3 Step 3: One-to-Many Relationship (Customer → Orders) A one-to-many relationship means one record in a table is linked to multiple records in another. 

CREATE TABLE Customer ( 

CustomerID INT PRIMARY KEY, 

CustomerName NVARCHAR(100) 

); 



CREATE TABLE Orders ( 

OrderID INT PRIMARY KEY, 

CustomerID INT, 

OrderDate DATE, 

FOREIGN KEY (CustomerID) REFERENCES Customer(CustomerID) 

); 

📝 Explanation:

One customer can have many orders, but each order belongs to one customer. 

4.6.4.4 Step 4: Many-to-Many Relationship (Student ↔  Course) To model many-to-many, we use a junction table between Student and Course. 

CREATE TABLE Student ( 

StudentID INT PRIMARY KEY, 

StudentName NVARCHAR(100) 

); 



CREATE TABLE Course ( 

CourseID INT PRIMARY KEY, 

CourseName NVARCHAR(100) 

); 



CREATE TABLE StudentCourse ( 

StudentID INT, 

CourseID INT, 

PRIMARY KEY (StudentID, CourseID), 

FOREIGN KEY (StudentID) REFERENCES Student(StudentID), FOREIGN KEY (CourseID) REFERENCES Course(CourseID) 

); 

📝 Explanation:

A student can enroll in many courses, and a course can have many students. 

The StudentCourse table manages the link. 

4.6.4.5 Step 5: Self-Referencing Relationship (Employee → Manager) A self-referencing relationship models hierarchical structures, like managers in an organization. 

CREATE TABLE OrgEmployee ( 

EmpID INT PRIMARY KEY, 

EmpName NVARCHAR(100), 

ManagerID INT NULL, 

FOREIGN KEY (ManagerID) REFERENCES OrgEmployee(EmpID) 

); 

📝 Explanation:

The ManagerID column refers back to EmpID, enabling an employee to report to another employee. 

4.6.4.6 Step 6: Verify the Schema Structure

Run a query to validate the structure by listing all created tables. 

SELECT TABLE_NAME 

FROM INFORMATION_SCHEMA. TABLES 

WHERE TABLE_TYPE = 'BASE TABLE' AND TABLE_CATALOG = 'ERDDesignDemo'; 

[image: Image 13]

 This confirms the objects exist in the current database. 

Figure 4.1: Verifiying the Schema Structure. 

4.6.5 Step 7: Show ERD Diagram

To visualize the relationships, you can use SQL Server Management Studio’s built-in diagram feature: 1. Right-click on the Database Diagrams folder in ERDDesignDemo. 2. Select New Database Diagram. 3. Add the tables you created. 4. 

Arrange them to show the relationships visually. 

 This helps you see how the tables relate to each other in a graphical format. 

[image: Image 14]

Figure 4.2: Showing ERD diagram for ERDDesignDemo. 

4.6.6 Summary

In this hands-on lab, you’ve learned how to implement the most fundamental database relationship types in SQL Server:

Relationship Type

Example Tables

One-to-One

Employee ↔  EmployeeDetail

One-to-Many

Customer → Orders

Many-to-Many

Student ↔  Course via StudentCourse

Self-Referencing

OrgEmployee → ManagerID

Understanding and applying these patterns is crucial when designing normalized, efficient relational models for real-world applications. 

4.7 Exercise 8: Design Schema for a Subscription Business

4.7.1 Description

In this lab, you’ll walk through designing a relational database schema for a basic subscription-based business. You’ll start from identifying business entities, normalize them into separate tables, and build relationships that comply with Third Normal Form (3NF). You’ll implement the design by creating tables in a new SQL Server 2025 database. 

4.7.2 Objectives

Analyze a real-world business scenario into logical database entities Normalize the data to eliminate redundancy and maintain data integrity Use SQL Server 2025 to create normalized tables and define relationships Apply primary and foreign keys for relational consistency 4.7.3 Prerequisites

SQL Server 2025 Developer Edition installed and running

SSMS 21.x installed

Basic SQL DDL (Data Definition Language) knowledge

Familiarity with primary/foreign keys and normalization principles 4.7.4 Steps

Here’s a step-by-step guide to designing the schema for a subscription business: 4.7.4.1 Step 1: Understand the Business Requirements

We are modeling a subscription-based service where users can subscribe to different plans. Each subscription is billed monthly. 

Entities Identified:

Customer: who subscribes

SubscriptionPlan: the available subscription types (Basic, Premium) Subscription: the link between customer and plan

Payment: monthly billing records

 Each of these will become a table. 

4.7.4.2 Step 2: Create a New Database

Create a new isolated database named SubscriptionDB to contain our schema. 

CREATE DATABASE SubscriptionDB; 

GO 



USE SubscriptionDB; 

GO

 This step ensures we don’t affect other existing databases. 

4.7.4.3 Step 3: Create Customer Table (1NF Compliant) What we’re doing: Define a table that stores customer personal information with atomic values. 

CREATE TABLE Customer ( 

CustomerID INT PRIMARY KEY IDENTITY, 

FirstName NVARCHAR(100) NOT NULL, 

LastName NVARCHAR(100) NOT NULL, 

Email NVARCHAR(255) UNIQUE NOT NULL, JoinDate DATE DEFAULT GETDATE() 

); 

 The Email column is set as unique. JoinDate defaults to current date. 

4.7.4.4 Step 4: Create SubscriptionPlan Table

Store plan types, pricing, and billing frequency. This helps normalize data instead of storing this info in every subscription record. 

CREATE TABLE SubscriptionPlan ( 

PlanID INT PRIMARY KEY IDENTITY, 

PlanName NVARCHAR(50) NOT NULL, 

MonthlyPrice DECIMAL(10,2) NOT NULL, 

    Description NVARCHAR(255) 

); 

 This allows easy management of plan changes and reuse across customers. 

4.7.4.5 Step 5: Create Subscription Table (2NF and 3NF Compliant) This table links each customer to a plan. It contains foreign keys to both Customer and SubscriptionPlan. 

CREATE TABLE Subscription ( 

SubscriptionID INT PRIMARY KEY IDENTITY, 

CustomerID INT NOT NULL, 

PlanID INT NOT NULL, 

StartDate DATE NOT NULL, 

EndDate DATE NULL, 

IsActive BIT NOT NULL DEFAULT 1, 

FOREIGN KEY (CustomerID) REFERENCES Customer(CustomerID), FOREIGN KEY (PlanID) REFERENCES SubscriptionPlan(PlanID) 

); 

 This avoids redundancy and maintains clear entity relationships. 

4.7.4.6 Step 6: Create Payment Table for Monthly Billing Track each payment per subscription per billing cycle. This further normalizes the schema for scalability. 

CREATE TABLE Payment ( 

PaymentID INT PRIMARY KEY IDENTITY, 

SubscriptionID INT NOT NULL, 

PaymentDate DATE NOT NULL, 

Amount DECIMAL(10,2) NOT NULL, 

PaymentStatus NVARCHAR(50) CHECK (PaymentStatus IN ('Paid', 'Failed', 'Pending')), FOREIGN KEY (SubscriptionID) REFERENCES Subscription(SubscriptionID) 

); 

 This structure allows multiple payments per subscription and clear billing history. 

4.7.4.7 Step 7: Verify the Schema Structure

[image: Image 15]

Run a query to validate the structure by listing all created tables. 

SELECT TABLE_NAME  

FROM INFORMATION_SCHEMA. TABLES  

WHERE TABLE_TYPE = 'BASE TABLE' AND TABLE_CATALOG = 'SubscriptionDB'; This confirms the objects exist in the current database. 

Figure 4.3: Showing all tables for SubscriptionDB database. 

4.7.5 Step 8: Show ERD Diagram

To visualize the relationships, you can use SQL Server Management Studio’s built-in diagram feature: 1. Right-click on the Database Diagrams folder in SubscriptionDB. 2. Select New Database Diagram. 3. Add the tables you created. 4. 

Arrange them to show the relationships visually. 

 This helps you see how the tables relate to each other in a graphical format. 

[image: Image 16]

Figure 4.4: Showing ERD diagram for SubscriptionDB. 

4.7.6 Summary

In this hands-on lab, you:

Identified key entities and their relationships for a subscription business Applied 1NF, 2NF, and 3NF principles to structure your tables Created tables using SQL Server 2025 with proper primary and foreign keys

Designed a scalable and clean schema ready for query, analytics, and compliance

 This foundational schema can now be extended for reporting, analytics, and business rules in upcoming chapters. 

4.8 Exercise 9: Insert and Query Sample Data

4.8.1 Description

This lab guides you through inserting sample records into the subscription database schema you created in the previous lab. After populating tables, you’ll verify relational integrity using SELECT queries and JOIN clauses across related tables. 

4.8.2 Objectives

Populate normalized tables using SQL INSERT statements

Verify referential integrity and relationships using INNER JOIN queries Understand how table relations reflect real-world business data 4.8.3 Prerequisites

SQL Server 2025 Developer Edition is installed and running SSMS 21.x is installed

SubscriptionDB schema from Exercise 8 is already created Basic familiarity with SQL INSERT and SELECT statements

4.8.4 Steps

Here’s a step-by-step guide to complete this exercise:

4.8.4.1 Step 1: Connect and Use the SubscriptionDB

Connect to SQL Server and ensure we’re using the correct database. 

USE SubscriptionDB; 

GO

 This ensures all operations are scoped within the correct database. 

4.8.4.2 Step 2: Insert Sample Data into SubscriptionPlan Add subscription plans customers can choose from. 

INSERT INTO SubscriptionPlan (PlanName, MonthlyPrice, Description) VALUES  

('Basic Plan', 9.99, 'Access to standard features'), 

('Premium Plan', 19.99, 'Access to all features including analytics'), ('Enterprise Plan', 49.99, 'Custom enterprise support and reporting'); This query inserts three different subscription plans into the SubscriptionPlan table. 

 Each plan has a name, price, and description. These are referenced in subscriptions. 

4.8.4.3 Step 3: Insert Sample Data into Customer

Add some example customers to simulate real subscribers. 

INSERT INTO Customer (FirstName, LastName, Email) VALUES  

('Linda', 'Alice', 'linda.alice@ilmudata.id'), 

('Ujang', 'Smith', 'ujang.smith@ilmudata.id'), 

('Cindy', 'Lee', 'cindy.lee@ilmudata.id'); 

This inserts three customers into the Customer table. 

 The Email field must remain unique per customer. 

4.8.4.4 Step 4: Insert Data into Subscription

Link customers to plans, simulating active subscriptions. 

 -- Ujang subscribes to Basic 

INSERT INTO Subscription (CustomerID, PlanID, StartDate) VALUES (1, 1, '2025-07-01'); 



 -- Ujang subscribes to Premium 

INSERT INTO Subscription (CustomerID, PlanID, StartDate) VALUES (2, 2, '2025-07-01'); 



 -- Cindy subscribes to Enterprise 

INSERT INTO Subscription (CustomerID, PlanID, StartDate) VALUES (3, 3, '2025-07-01'); 

 Ensure CustomerID and PlanID match those inserted earlier. You can verify with SELECT

 if unsure. 

4.8.4.5 Step 5: Insert Sample Data into Payment

Simulate first billing cycle payments for each subscription. 

INSERT INTO Payment (SubscriptionID, PaymentDate, Amount, PaymentStatus) VALUES  

(1, '2025-07-05', 9.99, 'Paid'), 

(2, '2025-07-05', 19.99, 'Paid'), 

(3, '2025-07-05', 49.99, 'Pending'); 

 This gives each subscription an associated billing record. 

4.8.4.6 Step 6: Query Data with Joins to Verify Relationships Run JOIN queries to inspect data across tables and verify referential integrity. 

 -- List subscriptions with customer and plan info 

SELECT  

s.SubscriptionID, 

c.FirstName + ' ' + c.LastName AS CustomerName, 

sp.PlanName, 

sp.MonthlyPrice, 

s.StartDate, 

s.IsActive 

FROM Subscription s 

JOIN Customer c ON s.CustomerID = c.CustomerID 

JOIN SubscriptionPlan sp ON s.PlanID = sp.PlanID; This should return all customer-plan mappings clearly. 

 -- Show payment history with customer info 

SELECT  

p.PaymentID, 

c.FirstName + ' ' + c.LastName AS Customer, 

sp.PlanName, 

p.PaymentDate, 

p.Amount, 

p.PaymentStatus 

FROM Payment p 

JOIN Subscription s ON p.SubscriptionID = s.SubscriptionID 

JOIN Customer c ON s.CustomerID = c.CustomerID 

JOIN SubscriptionPlan sp ON s.PlanID = sp.PlanID; 

 You’ll see how payment records are tied to both plans and customers. 

4.8.5 Summary

In this hands-on lab, you:

Populated all key tables in a normalized subscription business schema Practiced structured INSERT commands

Verified data relationships with JOIN-based queries

Saw how relational integrity provides accurate, multi-table views of business data

✅ This lab prepares you for data retrieval, reporting, and enforcing business rules in future chapters. 

4.9 Exercise 10: Apply Normalization to Improve

Table Design

4.9.1 Description

This exercise introduces database normalization by starting with a poorly designed table containing redundant and inconsistent data. You will progressively apply the first three normal forms (1NF, 2NF, and 3NF) by decomposing the unnormalized table into well-structured relational tables. 

Normalization helps eliminate redundancy, maintain data integrity, and simplify future queries or updates. In this lab, we focus on applying normalization concepts practically in SQL Server 2025. 

4.9.2 Objectives

Identify design problems in an unnormalized table

Apply 1NF, 2NF, and 3NF to improve data structure

Implement normalized tables using SQL Server

Understand the trade-offs of normalization in real-world design 4.9.3 Prerequisites

SQL Server 2025 Developer Edition

SQL Server Management Studio (SSMS) 21.x or later

Basic understanding of CREATE TABLE, INSERT, and SELECT

Prior completion of Exercise 7 (Basic ERD Design) is helpful but not mandatory

4.9.4 Steps

Here’s a step-by-step guide to complete this exercise:

4.9.4.1 Step 1: Create the Database

We’ll create a new database for this exercise called NormalizationDemo. 

CREATE DATABASE NormalizationDemo; 

GO 



USE NormalizationDemo; 

GO

4.9.4.2 Step 2: Start with an Unnormalized Table

The following table stores customer orders but mixes customer, order, and product info in a single table. 

CREATE TABLE Orders_Unnormalized ( 

OrderID INT, 

CustomerName NVARCHAR(100), 

CustomerPhone NVARCHAR(20), 

Product1 NVARCHAR(100), 

Product2 NVARCHAR(100), 

Product3 NVARCHAR(100) 

); 

Insert some sample records:

INSERT INTO Orders_Unnormalized VALUES 

(1, 'Nadia', '1234567890', 'Laptop', 'Mouse', 'Keyboard'), (2, 'Marcel', '0987654321', 'Monitor', NULL, NULL); 

📝 Explanation: This structure violates 1NF due to repeating groups (Product1, Product2, Product3). It’s also hard to manage product details or query specific items. 

4.9.4.3 Step 3: Apply First Normal Form (1NF)

We’ll remove repeating groups and move each product to its own row. 

CREATE TABLE Orders_1NF ( 

OrderID INT, 

CustomerName NVARCHAR(100), 

CustomerPhone NVARCHAR(20), 

Product NVARCHAR(100) 

); 



CREATE TABLE Orders_1NF ( 

OrderID INT, 

CustomerName NVARCHAR(100), 

CustomerPhone NVARCHAR(20), 

Product NVARCHAR(100) 

); 



INSERT INTO Orders_1NF VALUES 

(1, 'Zahra', '1234567890', 'Laptop'), 

(1, 'Zahra', '1234567890', 'Mouse'), 

(1, 'Zahra', '1234567890', 'Keyboard'), 

(2, 'Thariq', '0987654321', 'Monitor'); 

📝 Explanation: Now each row represents a single product per order. This satisfies 1NF, but still has redundant customer data. 

4.9.4.4 Step 4: Apply Second Normal Form (2NF)

Next, we remove partial dependencies—data that depends only on part of a composite key (e.g., CustomerName on OrderID). 

We split the table into separate Customers and Orders tables. 

CREATE TABLE Customers ( 

CustomerID INT PRIMARY KEY, 

CustomerName NVARCHAR(100), 

CustomerPhone NVARCHAR(20) 

); 



CREATE TABLE Orders ( 

OrderID INT PRIMARY KEY, 

CustomerID INT, 

FOREIGN KEY (CustomerID) REFERENCES Customers(CustomerID) 

); 



CREATE TABLE OrderDetails ( 

OrderID INT, 

Product NVARCHAR(100), 

PRIMARY KEY (OrderID, Product), 

FOREIGN KEY (OrderID) REFERENCES Orders(OrderID) 

); 

Insert normalized data:

INSERT INTO Customers VALUES 

(1, 'Zahra', '1234567890'), 

(2, 'Thariq', '0987654321'); 



INSERT INTO Orders VALUES 

(1, 1), 

(2, 2); 



INSERT INTO OrderDetails VALUES 

(1, 'Laptop'), 

(1, 'Mouse'), 

(1, 'Keyboard'), 

(2, 'Monitor'); 

📝 Explanation: This eliminates the redundant storage of customer information across multiple order rows. 

4.9.4.5 Step 5: Apply Third Normal Form (3NF)

Now assume product names have additional properties. We’ll factor products out to a Products table and use IDs. 

CREATE TABLE Products ( 

ProductID INT PRIMARY KEY, 

ProductName NVARCHAR(100) 

); 



CREATE TABLE OrderDetails_3NF ( 

OrderID INT, 

ProductID INT, 

PRIMARY KEY (OrderID, ProductID), 

FOREIGN KEY (OrderID) REFERENCES Orders(OrderID), FOREIGN KEY (ProductID) REFERENCES Products(ProductID) 

); 

Insert products:

INSERT INTO Products VALUES 

(1, 'Laptop'), 

(2, 'Mouse'), 

(3, 'Keyboard'), 

(4, 'Monitor'); 



INSERT INTO OrderDetails_3NF VALUES 

(1, 1), 

(1, 2), 

(1, 3), 

(2, 4); 

📝 Explanation: This final form ensures all non-key attributes depend only on the key, the whole key, and nothing but the key—thus achieving 3NF. 

4.9.5 Summary

This exercise showed how to refactor an unnormalized flat table into a clean, normalized relational model through:

Normal Form

Key Improvement

1NF

Removed repeating columns

2NF

Eliminated partial dependencies

3NF

Removed transitive dependencies via lookup

Normalization is key to long-term scalability, consistency, and easier querying in any real-world SQL Server system. You now have a solid foundation to spot and improve poor database designs. 

4.10 Conclusion

In this chapter, we covered the basics of relational database design, including tables, data types, keys, and normalization principles. We also explored how to implement these concepts in SQL Server 2025 through practical exercises. 

Understanding these foundational elements is crucial for building efficient and maintainable databases that meet business needs. 

5 Views and Logical Data Modeling

This chapter introduces the concept of views in SQL Server 2025, a powerful tool for abstracting complex data relationships. Views function as virtual tables, allowing you to create simplified, reusable representations of data. We also explore how views support role-based access control and logical data modeling, critical for secure and scalable enterprise reporting. 

5.1 What Is a View? 

A view is a saved SQL query that presents data as a virtual table. It does not store data physically, but provides a consistent, queryable layer over one or more base tables. 

Views can encapsulate complex joins, aggregations, and business logic, making it easier for users to access and analyze data without needing to understand the underlying table structures. 

Views offer several advantages:

Abstracts complex joins or business rules

Simplifies queries for end users

Enables consistent definitions of business metrics

Supports security and compliance through access control

5.2 Creating Views in SQL Server 2025

To create a view, you use the CREATE VIEW statement followed by the view name and the SELECT query that defines its structure. Here’s a basic example: CREATE VIEW view_name AS 

SELECT column1, column2, ... 

FROM table_name 

WHERE condition; 

For instance, to create a view that shows customer orders with relevant details:

CREATE VIEW Sales.vw_CustomerOrders AS 

SELECT  

c.CustomerID, 

c.FirstName, 

c.LastName, 

o.OrderID, 

o.OrderDate, 

o.TotalAmount 

FROM Sales.Customers c 

JOIN Sales.Orders o ON c.CustomerID = o.CustomerID; This view combines customer and order data, allowing users to query customer orders without needing to write complex joins each time. 

Users can now query:

SELECT * FROM Sales.vw_CustomerOrders 

WHERE OrderDate >= '2025-01-01'; 

5.3 Views as Virtual Tables

Views behave much like physical tables in that you can query them using standard SQL statements. When you select from a view, SQL Server dynamically generates the result set based on the underlying query definition. 

You can join views with other views or tables, enabling you to build complex queries on top of simplified, reusable data structures. However, it’s important to remember that views do not store data themselves; instead, they produce results at runtime each time they are queried. 

You can join views just like you would with tables. For example, if you have a view for customer orders and another for order details, you can combine them:

SELECT * 

FROM Sales.vw_CustomerOrders co 

JOIN Sales.vw_OrderDetails od ON co.OrderID = od.OrderID; 

5.4 Updatable Views

Not all views are updatable, but many simple views allow updates. 

An updatable view allows you to modify data through the view as if it were a table. For example, if you have a view that shows customer names and emails, you can update the email directly through the view: CREATE VIEW HR.vw_Employees AS 

SELECT EmployeeID, FirstName, LastName 

FROM HR.Employees; 

You can then update the view like this:

UPDATE HR.vw_Employees 

SET LastName = 'Anderson' 

WHERE EmployeeID = 101; 

Certain conditions make a view non-updatable. For example, if a view includes:

Contains aggregate functions such as SUM or AVG

Uses set operations like DISTINCT, GROUP BY, or UNION

Includes joins across multiple tables (in most cases)

5.5 Role-Based Schema Simplification Using

Views

Views can be tailored to different user roles, providing a simplified schema that exposes only the necessary data. This is particularly useful in environments with diverse user groups, such as finance, HR, and sales teams. 

For example, you might have a complex sales database with sensitive financial data. Instead of exposing the entire schema, you can create views that present only the relevant information for each department: Finance users see financial metrics. 

HR users see employee data. 

Sales team sees customer and order history. 

Each group can be given access to tailored views:

For HR users, you might create a view that shows employee names and departments without sensitive salary information:

CREATE VIEW Secure.vw_EmployeeDirectory AS 

SELECT FirstName, LastName, Department, HireDate 

FROM HR.Employees; 

This view allows HR personnel to access employee information without exposing sensitive data like salaries or personal identifiers. 

For the sales team, you might create a view that aggregates customer orders by region:

CREATE VIEW Secure.vw_SalesSummary AS 

SELECT CustomerID, Region, SUM(TotalAmount) AS TotalSales FROM Sales.Orders 

GROUP BY CustomerID, Region; 

This view provides a high-level summary of sales data, allowing sales representatives to focus on their performance metrics without needing to understand the underlying table structures. 

5.6 Security and Compliance with Views

Views can enhance security by restricting access to sensitive data. By granting users permissions on views instead of base tables, you can control what data they can see and modify. 

Here are some key benefits of using views for security:

Views can restrict access to sensitive columns. 

Views support schema-level abstraction for regulatory compliance (e.g., GDPR, HIPAA). 

You can create a view that masks sensitive information, such as email addresses, while still allowing users to see other relevant data:

CREATE VIEW Compliance.vw_CustomerPublic AS 

SELECT  

CustomerID, 

FirstName, 

LEFT(Email, CHARINDEX('@', Email)) + '***.com' AS MaskedEmail FROM Sales.Customers; 

This view allows users to see customer names while masking their email addresses, ensuring compliance with data protection regulations. 

5.7 Indexed Views (Materialized Views)

Indexed views, also known as materialized views, are a powerful feature in SQL Server that allows you to store the results of a view physically. This can significantly improve query performance, especially for complex aggregations or joins. 

An indexed view is physically stored with a clustered index—like a materialized view. 

Indexed views are particularly useful for:

Aggregate data for reports

Improve performance on frequent heavy queries

To create an indexed view, you first define the view and then create a clustered index on it. Here’s an example of creating an indexed view that summarizes sales by region:

CREATE VIEW Sales.vw_TotalRevenueByRegion 

WITH SCHEMABINDING AS 

SELECT Region, SUM(TotalAmount) AS Revenue FROM dbo.Orders 

GROUP BY Region; 



CREATE UNIQUE CLUSTERED INDEX idx_TotalRevenue ON Sales.vw_TotalRevenueByRegion(Region); 

This indexed view allows you to quickly retrieve total revenue by region without recalculating the aggregation each time the view is queried. It is important to note that indexed views have specific requirements and limitations, such as:

 Note: WITH SCHEMABINDING is mandatory for indexed views. 

5.8 Exercise 11: Create Reusable Views for Sales

Analysis

5.8.1 Description

In this exercise, you’ll create SQL views to simplify recurring sales queries. 

Views provide an abstraction over complex JOIN and WHERE logic, making analysis more accessible to business users and report developers. We’ll simulate a basic sales reporting layer by joining customer, product, and sales information into reusable views. These views reflect how logical data modeling is implemented in SQL Server. 

5.8.2 Objectives

Understand the purpose and benefits of views for logical modeling Learn to build CREATE VIEW statements with JOIN, WHERE, and calculated columns

Simplify multi-table reporting using views

Query from views as if they were tables

5.8.3 Prerequisites

SQL Server 2025 Developer Edition installed and running

SQL Server Management Studio (SSMS) 21.x installed

Basic understanding of SELECT, JOIN, and filtering in SQL

Internet access to download sample data (optional)

⚠  Note: We will create a fresh database named SalesAnalysisDB for this exercise. 

5.8.4 Steps

Here’s a step-by-step guide to complete this exercise:

5.8.4.1 Step 1: Create a New Database

We begin by creating an isolated database to work with views without modifying existing systems. 

CREATE DATABASE SalesAnalysisDB; 

GO 



USE SalesAnalysisDB; 

GO

 This will be the workspace for our view-based modeling tasks. 

5.8.4.2 Step 2: Create Sample Tables

What we’re doing: Define simple Customer, Product, and SalesOrder tables to simulate transactional data. 

CREATE TABLE Customer ( 

CustomerID INT PRIMARY KEY IDENTITY, 

FullName NVARCHAR(100), 

Region NVARCHAR(50) 

); 



CREATE TABLE Product ( 

ProductID INT PRIMARY KEY IDENTITY, 

ProductName NVARCHAR(100), 

Category NVARCHAR(50), 

Price DECIMAL(10,2) 

); 



CREATE TABLE SalesOrder ( 

SalesOrderID INT PRIMARY KEY IDENTITY, 

CustomerID INT, 

ProductID INT, 

OrderDate DATE, 

Quantity INT, 

FOREIGN KEY (CustomerID) REFERENCES Customer(CustomerID), FOREIGN KEY (ProductID) REFERENCES Product(ProductID) 

); 

 These tables reflect a simplified model suitable for building analytical views. 

5.8.4.3 Step 3: Insert Sample Data

What we’re doing: Add representative data to simulate real sales records. 

 -- Insert Customers 

INSERT INTO Customer (FullName, Region) 

VALUES ('Minji Kim', 'North'), ('Hiroshi Sato', 'South'), ('Priya Singh', 'East'); 



 -- Insert Products 

INSERT INTO Product (ProductName, Category, Price) VALUES  

('Subscription A', 'Service', 15.00), 

('Subscription B', 'Service', 25.00), 

('Consulting Package', 'Consulting', 100.00); 



 -- Insert Sales Orders 

INSERT INTO SalesOrder (CustomerID, ProductID, OrderDate, Quantity) VALUES  

(1, 1, '2025-07-01', 2), 

(2, 2, '2025-07-02', 1), 

(3, 3, '2025-07-03', 3); 

 This dataset is enough to support basic aggregation and filtering through views. 

5.8.4.4 Step 4: Create a View for Sales Summary

Build a view to show aggregated sales metrics like total sales amount and quantity per order. 

CREATE VIEW vw_SalesSummary AS 

SELECT  

so.SalesOrderID, 

c.FullName AS CustomerName, 

c.Region, 

p.ProductName, 

p. Category, 

so.Quantity, 

p.Price, 

    (so.Quantity * p.Price) AS TotalAmount, so.OrderDate 

FROM SalesOrder so 

JOIN Customer c ON so.CustomerID = c.CustomerID 

JOIN Product p ON so.ProductID = p.ProductID; This reusable view simplifies multi-table joins and includes a calculated column for total order amount. 

5.8.4.5 Step 5: Query the View

Query the view just like a regular table to see how it simplifies access to sales data. 

SELECT * FROM vw_SalesSummary 

WHERE Region = 'North' 

ORDER BY OrderDate DESC; 

 This returns all sales for customers in the North region, sorted by the most recent orders. 

5.8.4.6 Step 6: Create Another View: Total Sales per Region Create a view that groups and aggregates sales by region. 

CREATE VIEW vw_TotalSalesByRegion AS 

SELECT  

c.Region, 

SUM(p.Price * so.Quantity) AS TotalSales, 

COUNT(DISTINCT so.SalesOrderID) AS OrdersCount FROM SalesOrder so 

JOIN Customer c ON so.CustomerID = c.CustomerID 

JOIN Product p ON so.ProductID = p.ProductID 

GROUP BY c.Region; 

 This view is useful for generating dashboards that show high-level business metrics per region. 

5.8.4.7 Step 7: Query the Aggregated View Run a query to show summarized metrics across regions. 

SELECT * FROM vw_TotalSalesByRegion 

ORDER BY TotalSales DESC; 

 You now have a reusable, analytical view for regional sales comparison. 

5.8.5 Summary

In this hands-on lab, you:

Created sample transactional tables simulating a business environment Populated them with initial data to mimic real-world sales Defined views that abstract away join logic and calculation complexity Demonstrated how views can model reusable logical representations for analysts and BI tools

✅ Views make querying easier, cleaner, and more consistent—especially in collaborative or BI-focused environments. 

5.9 Exercise 12: Simplify Complex Joins via Views

5.9.1 Description

In many real-world database environments, data is often stored across multiple related tables—especially in normalized systems. Writing queries that involve multiple joins can become tedious, especially for business analysts or application developers who are only interested in specific high-level information. In this lab, you’ll learn how to create a view that joins multiple tables (SalesOrder, Customer, Product) into a single logical object. This view will help simplify downstream queries by encapsulating complex relationships behind a reusable layer. 

5.9.2 Objectives

Understand how views help abstract join logic

Create a SQL view that joins multiple tables

Use calculated columns within views

Query the view as if it were a single flat table

5.9.3 Prerequisites

SQL Server 2025 Developer Edition running

SQL Server Management Studio (SSMS) 21.x installed

Exercise 11 completed (database SalesAnalysisDB with related tables and sample data)

5.9.4 Steps

Here’s a step-by-step guide to complete this exercise:

5.9.4.1 Step 1: Review Existing Schema

What we’re doing: Before we build the view, it’s helpful to recall the structure of the tables we’ll join. 

SalesOrder contains references to CustomerID and ProductID

Customer includes FullName and Region

Product includes ProductName, Category, and Price

These tables are all linked via foreign keys, and we’ll leverage those relationships in our view. 

5.9.4.2 Step 2: Create a New View with Multiple Joins What we’re doing: We’ll write a view named vw_SalesDetails that joins the three tables and adds a computed column. 

USE SalesAnalysisDB; 

GO 

 

CREATE VIEW vw_SalesDetails AS 

SELECT 

so.SalesOrderID, 

so.OrderDate, 

c.CustomerID, 

c.FullName AS CustomerName, 

c.Region, 

p.ProductID, 

p.ProductName, 

p. Category, 

p.Price, 

so.Quantity, 

(so.Quantity * p.Price) AS TotalAmount 

FROM SalesOrder so 

JOIN Customer c ON so.CustomerID = c.CustomerID 

JOIN Product p ON so.ProductID = p.ProductID; This view combines customer, product, and sales order data into a single logical structure. It allows users to see all relevant information in one place without needing to write complex joins each time. 

This view flattens out the data structure and includes a calculated field for TotalAmount. 

5.9.4.3 Step 3: Query the View

Now that the view is created, we can query it like a regular table to get a full picture of sales. 

SELECT * FROM vw_SalesDetails 

ORDER BY OrderDate DESC; 

You’ll see customer, product, and transaction data joined and formatted in a single result set. 

5.9.4.4 Step 4: Filter and Project Specific Columns

We can use standard filtering and projection to refine our results without rewriting the joins. 

SELECT 

CustomerName, 

Region, 

ProductName, 

    Quantity, 

TotalAmount 

FROM vw_SalesDetails 

WHERE Region = 'South' AND Category = 'Service'; This shows how views can support business-level queries with minimal SQL complexity for the user. 

5.9.4.5 Step 5: View Query Plan (Optional)

To understand performance, you can check the execution plan in SSMS by clicking “Include Actual Execution Plan” before running a query on the view. 

 This helps confirm that the view is executed dynamically and doesn’t materialize data unless indexed. 

5.9.5 Summary

In this lab, you:

Built a view that joins multiple normalized tables

Included calculated fields to provide richer data output Simplified how users access and analyze relational data

Demonstrated how views improve productivity and consistency 5.10 Conclusion

In this chapter, we explored the concept of views in SQL Server 2025, including their creation, usage, and benefits. We learned how views can simplify complex queries, enhance security through role-based access control, and support logical data modeling. Additionally, we discussed indexed views for performance optimization. 

6 Designing Multi-Tenant and SaaS

Databases

This chapter explores how to design SQL Server 2025 databases to support multi-tenant Software-as-a-Service (SaaS) applications. You’ll learn architectural patterns—shared database, schema-per-tenant, and how to enforce tenant isolation using identity filtering. These practices help deliver secure, scalable services across many customers (tenants) while maintaining performance and compliance. 

6.1 What Is a Multi-Tenant Database? 

A multi-tenant database serves multiple customers (tenants) using shared infrastructure, with varying levels of data isolation. 

Here are the primary goals of a multi-tenant database design: Scalability: Support many tenants without duplicating infrastructure. 

Security: Isolate data between tenants. 

Cost-efficiency: Share computing and storage resources. 

6.2 Multi-Tenant Patterns in SQL Server

SQL Server 2025 supports several architectural patterns for multi-tenant applications. The choice of pattern depends on your specific requirements for data isolation, scalability, and management complexity. 

6.2.1 Pattern 1: Shared Database, Shared Schema

Well-known in SaaS, this pattern allows multiple tenants to share the same database and tables. Each table includes a TenantID column to identify which tenant owns the data. 

With this approach: * All tenants share the same database and tables. * A TenantID column is added to every table to identify which tenant owns which data. 

For instance, an Orders table might look like this: CREATE TABLE Orders ( 

OrderID INT PRIMARY KEY, 

TenantID INT NOT NULL, 

CustomerID INT, 

OrderDate DATE, 

TotalAmount DECIMAL(10,2) 

); 

This allows you to filter queries by TenantID to ensure each tenant only sees their own data:

SELECT * FROM Orders WHERE TenantID = @TenantID; Well-suited for SaaS applications with many small tenants: Low cost and resource usage. 

Easy to scale and manage. 

Simplifies updates and deployments. 

Weigh the benefits against challenges:

Risk of data leakage if queries are not properly filtered. 

Performance issues with large datasets. 

Complex queries may require additional logic to ensure tenant isolation. 

Harder to enforce row-level security. 

6.2.2 Pattern 2: Shared Database, Schema-Per-Tenant

In this pattern, each tenant has its own schema within a shared database. This provides better data isolation while still allowing shared infrastructure. 

 One shared database, but each tenant has their own schema. 

This approach allows you to create separate schemas for each tenant, which can help with data isolation and management. For example, you might have schemas like tenant_101, tenant_102, etc. 

CREATE SCHEMA tenant_101; 

CREATE TABLE tenant_101.Orders (...); 

With schema-per-tenant, you get:

Better data isolation compared to shared schema. 

Easier to manage tenant-specific changes. 

Allows for tenant-specific optimizations (e.g., indexing). 

Simplifies compliance with data protection regulations. 

Easier to enforce row-level security. 

We also face challenges:

More complex management as the number of schemas grows. 

Increased metadata overhead. 

6.2.3 Pattern 3: Database-Per-Tenant

In this pattern, each tenant has its own dedicated database. This provides the highest level of data isolation and security. 

 Each tenant has a separate database. 

Advantages of this approach include:

Complete data isolation. 

Simplified compliance with data protection regulations. 

Easier to manage tenant-specific performance tuning. 

Simplifies backup and restore operations for individual tenants. 

Allows for different database configurations per tenant (e.g., performance, storage). 

We also face challenges:

Higher resource usage due to multiple databases. 

Increased management overhead for backups, updates, and monitoring. 

More complex deployment and scaling strategies. 

Difficult to apply updates globally. 

 Note: SQL Server 2025 supports elastic pools and automation, but this pattern is best for large tenants. 

6.3 Tenant Isolation and Identity Filtering In multi-tenant applications, tenant isolation is crucial to prevent data leakage between tenants. SQL Server provides several mechanisms to enforce this isolation, including:

Identity filtering: Ensuring queries only return data for the current tenant. 

Row-Level Security (RLS): Automatically filtering rows based on the tenant context. 

Views: Creating tenant-specific views to simplify access control. 

Stored procedures: Encapsulating tenant logic to enforce isolation. 

6.3.1 Option 1: Manual Filtering by Tenant ID

The simplest way to enforce tenant isolation is to include a TenantID column in every table and filter queries by this ID. This approach requires you to manually add the TenantID filter in every query. 

 Include TenantID in every table and apply it to every query. 

For example, to retrieve orders for a specific tenant:

SELECT OrderID, CustomerID, TotalAmount 

FROM Orders 

WHERE TenantID = @TenantID; 

This method is straightforward but requires discipline to ensure every query includes the TenantID filter. It can lead to potential data leaks if queries are not properly constructed. 

 Best Practice: Always filter by TenantID in app layer and/or views. 

6.3.2 Option 2: Use Row-Level Security (RLS)

Row-Level Security (RLS) allows you to define security policies that automatically filter rows based on the user or session context. This provides a robust way to enforce tenant isolation without requiring manual filtering in every query. 

 SQL Server’s Row-Level Security automatically filters rows based on the user or session context. 

Let’s create a simple RLS policy to enforce tenant isolation: CREATE FUNCTION Security.fn_TenantFilter(@TenantID INT) RETURNS TABLE 

WITH SCHEMABINDING 

AS 

RETURN SELECT 1 AS Result 

WHERE @TenantID = CAST(SESSION_CONTEXT(N'TenantID') AS INT); This function checks if the TenantID in the session context matches the TenantID in the row. Next, we create a security policy that uses this function: CREATE SECURITY POLICY Security.TenantSecurityPolicy ADD FILTER PREDICATE Security.fn_TenantFilter(TenantID) ON dbo.Orders 

WITH (STATE = ON); 

Now, when a user queries the Orders table, SQL Server automatically filters rows based on the TenantID set in the session context. 

We can set the TenantID in the session context at the start of each user session: EXEC sp_set_session_context @key = N'TenantID', @value = 101; This ensures that all subsequent queries in that session automatically filter by the tenant ID, providing a secure and efficient way to enforce tenant isolation. 

All queries automatically return data only for TenantID = 101. 

6.4 Managing Identity and Shared Metadata

In shared-schema systems, you often need shared metadata tables (e.g., product catalogs) while keeping tenant data isolated. 

For example, you might have a Products table that is shared across all tenants, while the Orders table is tenant-specific. Here’s how you can structure your queries to handle this:

Products: Shared

Orders: Tenant-isolated

To retrieve product information for a specific tenant’s orders, you can join the Products table with the Orders table while filtering by TenantID: SELECT p.ProductName, o.TotalAmount 

FROM Products p 

JOIN Orders o ON p.ProductID = o.ProductID 

WHERE o.TenantID = @TenantID; 

This allows you to access shared metadata while ensuring tenant isolation for transactional data. 

6.5 Best Practices for Multi-Tenant SQL Server Design Here are some best practices to follow when designing multi-tenant databases in SQL Server:

Practice

Benefit

Add TenantID to every tenant-specific table

Data isolation and filtering

Enforce TenantID via views or RLS

Prevents accidental data leaks

Use views for tenant-specific access

Simplifies reporting and filtering

Avoid cross-tenant joins

Keeps boundaries clean

Encrypt tenant data at rest and in transit

Compliance and security

6.6 Exercise 13: Add Tenant Column and Apply

Security Filters

6.6.1 Description

In Software-as-a-Service (SaaS) environments, it’s common to host data for multiple customers (tenants) in a single database. A popular approach is the shared-database, shared-schema model, where tables include a TenantID column to isolate data between tenants. In this lab, you’ll design a simple multi-tenant schema with a TenantID column, and then implement security filtering using views to restrict tenant access. This approach provides both simplicity and scalability for multi-tenant applications. 

6.6.2 Objectives

Create a database and schema that supports multiple tenants Add a TenantID column to relevant tables

Insert data for multiple tenants

Create filtered views to enforce row-level security logic 6.6.3 Prerequisites

SQL Server 2025 Developer Edition installed

SQL Server Management Studio (SSMS) 21.x

Basic knowledge of CREATE TABLE, INSERT, and VIEW syntax A new database will be created for this lab

6.6.4 Steps

Here’s a step-by-step guide to complete this exercise:

6.6.4.1 Step 1: Create a New Database

We’ll begin by creating a new database for this exercise named SaaSAppDB. 

CREATE DATABASE SaaSAppDB; 

GO 



USE SaaSAppDB; 

GO

6.6.4.2 Step 2: Create Tables with TenantID

We define two main tables: Tenant to register each tenant, and Customer to store customer data tied to a TenantID. This is the core of our multi-tenant schema. 

 -- Tenant registration table 

CREATE TABLE Tenant ( 

TenantID INT PRIMARY KEY IDENTITY(1,1), 

TenantName NVARCHAR(100) NOT NULL 

); 



 -- Shared Customer table 

CREATE TABLE Customer ( 

CustomerID INT PRIMARY KEY IDENTITY(1000,1), TenantID INT NOT NULL, 

FullName NVARCHAR(100), 

Email NVARCHAR(100), 

    CreatedAt DATETIME2 DEFAULT SYSDATETIME(), FOREIGN KEY (TenantID) REFERENCES Tenant(TenantID) 

); 

The Customer table includes TenantID as a foreign key, which ensures each customer is scoped to a tenant. 

6.6.4.3 Step 3: Insert Sample Data for Multiple Tenants Now, we insert demo tenants and customers to simulate a real SaaS setup. 

 -- Insert two tenants 

INSERT INTO Tenant (TenantName) VALUES ('Ilmu Data.'), ('Neuville Ltd.'); 



 -- Insert customers for each tenant 

INSERT INTO Customer (TenantID, FullName, Email) VALUES 

(1, 'Amina Okoro', 'amina@ilmudata.id'), 

(1, 'Jeroen van Dijk', 'jeroen@ilmudata.id'), 

(1, 'Élodie Martin', 'elodie@ilmudata.id'), 

(1, 'Niran Chaiyawat', 'niran@ilmudata.id'), 

(1, 'Lucas Silva', 'lucas@ilmudata.id'), 

(2, 'Kwame Mensah', 'kwame@neuville.id'), 

(2, 'Sanne de Vries', 'sanne@neuville.id'), 

(2, 'Julien Dubois', 'julien@neuville.id'), 

(2, 'Anong Srisuk', 'anong@neuville.id'), 

(2, 'Bruna Costa', 'bruna@neuville.id'); 

This creates two distinct sets of customers, one for each tenant. Each customer is associated with a specific TenantID, ensuring data isolation. 

6.6.4.4 Step 4: Create a View to Filter by TenantID

Instead of querying Customer directly, we’ll create a filtered view for a specific tenant. This ensures tenant isolation. 

 -- View for Ilmu Data (TenantID = 1) 

CREATE VIEW vw_IlmuData_Customers AS 

SELECT * FROM Customer WHERE TenantID = 1; Later, a stored procedure or app logic can switch tenant context dynamically. 

6.6.4.5 Step 5: Use the View to Query Tenant-Specific Data Query the view to get only Ilmu Data’s customers—this simulates how the application would restrict data visibility. 

SELECT FullName, Email, CreatedAt FROM vw_IlmuData_Customers; 

 Output should only include rows where TenantID = 1. 

6.6.4.6 Step 6 (Optional): Create a Parameterized Filtering Procedure If you want a reusable query for multiple tenants, you can use a stored procedure with TenantID as a parameter:

CREATE PROCEDURE GetCustomersByTenant 

@TenantID INT 

AS 

BEGIN 

SELECT FullName, Email, CreatedAt 

FROM Customer 

WHERE TenantID = @TenantID; 

END; 

GO 



 -- Usage 

EXEC GetCustomersByTenant @TenantID = 2; 

 This is a flexible way to support multiple tenants securely from backend logic. 

6.6.5 Summary

In this hands-on lab, you:

Designed a shared-schema, multi-tenant database model

Added a TenantID column to enforce row-level separation

Created filtered views to isolate tenant data

Explored how to use stored procedures for secure tenant access

✅ This pattern is foundational for SaaS applications running on a single database while maintaining logical data separation per tenant. 

6.7 Exercise 14: Build Views and Indexes per Tenant

6.7.1 Description

In multi-tenant database designs, isolating tenant data using views is common for security and logical separation. However, performance may degrade as data grows. A common strategy is to create filtered indexes on tenant-specific data, paired with views per tenant or parameterized views. This lab demonstrates how to build efficient views and tenant-filtered indexes to enhance query performance in SQL Server 2025. 

6.7.2 Objectives

Create a schema with tenant data

Define views per tenant for logical access control

Build filtered indexes to improve performance

Evaluate execution plans with and without indexes

6.7.3 Prerequisites

SQL Server 2025 Developer Edition

SQL Server Management Studio (SSMS) 21.x

Basic familiarity with CREATE VIEW, CREATE INDEX, and SELECT queries No prior index tuning experience required

6.7.4 Steps

Here’s a step-by-step guide to complete this exercise:

6.7.4.1 Step 1: Create the Multi-Tenant Database

We’ll start by creating a new database SaaSPerfDB. 

CREATE DATABASE SaaSPerfDB; 

GO 



USE SaaSPerfDB; 

GO

6.7.4.2 Step 2: Define Tables with TenantID

We define two core tables: Tenant and Invoice. Each invoice belongs to a tenant using the TenantID field. 

CREATE TABLE Tenant ( 

TenantID INT PRIMARY KEY IDENTITY(1,1), 

    TenantName NVARCHAR(100) NOT NULL 

); 



CREATE TABLE Invoice ( 

InvoiceID INT PRIMARY KEY IDENTITY(1000,1), TenantID INT NOT NULL, 

InvoiceDate DATE, 

CustomerName NVARCHAR(100), 

Amount DECIMAL(10,2), 

Status NVARCHAR(50), 

FOREIGN KEY (TenantID) REFERENCES Tenant(TenantID) 

); 

6.7.4.3 Step 3: Insert Sample Data for Multiple Tenants We insert two tenants with several invoices each, simulating a real-world workload. 

 -- Add tenants 

INSERT INTO Tenant (TenantName) VALUES ('RetailCorp'), ('HealthPlus'); 



 -- Add invoices 

INSERT INTO Invoice (TenantID, InvoiceDate, CustomerName, Amount, Status) VALUES 

(1, '2025-01-15', 'Pram Jatmiko', 1200, 'Paid'), 

(1, '2025-02-10', 'Olga Ivanova', 1500, 'Pending'), 

(1, '2025-03-05', 'John Miller', 1800, 'Paid'), 

(2, '2025-01-12', 'Siti Aisyah', 980, 'Paid'), 

(2, '2025-03-10', 'Ivan Petrov', 2150, 'Pending'); 

This creates two tenants with invoices, each having a unique TenantID. 

 Each tenant now has its own subset of invoices. 

6.7.4.4 Step 4: Create Tenant-Specific Views

For security and simplicity, we’ll define views to isolate each tenant’s data. 

 -- View for RetailCorp (TenantID = 1) 

CREATE VIEW vw_RetailCorp_Invoices AS 

SELECT * FROM Invoice WHERE TenantID = 1; GO 



 -- View for HealthPlus (TenantID = 2) 

CREATE VIEW vw_HealthPlus_Invoices AS 

SELECT * FROM Invoice WHERE TenantID = 2; GO

 These views simulate per-tenant data access in a SaaS application. 

6.7.4.5 Step 5: Query Views (Without Indexes)

Now, test the views to simulate how a tenant would access their data: SELECT * FROM vw_RetailCorp_Invoices; 

Open the execution plan in SSMS to see that it scans the entire table. 

 Even though you’re filtering by TenantID, without an index, SQL Server performs a table scan. 

6.7.4.6 Step 6: Add Filtered Indexes for Each Tenant

To optimize performance, we create filtered indexes that include only rows per tenant:

 -- Index for RetailCorp 

CREATE NONCLUSTERED INDEX IX_Invoice_Tenant1 

ON Invoice (InvoiceDate) 

WHERE TenantID = 1; 



 -- Index for HealthPlus 

CREATE NONCLUSTERED INDEX IX_Invoice_Tenant2 

ON Invoice (InvoiceDate) 

WHERE TenantID = 2; 

These indexes reduce the I/O cost when querying tenant views or filtering by TenantID. 

6.7.4.7 Step 7: Re-Run Queries and Review Execution Plan Re-run the earlier view queries and inspect the execution plan again: SELECT * FROM vw_HealthPlus_Invoices WHERE InvoiceDate >= '2025-01-01'; You should now observe an index seek instead of a scan, showing improved performance. 

[image: Image 17]

Figure 6.1: Observing view queries performance. 

6.7.5 Summary

In this lab, you learned how to:

Implement tenant views to isolate data

Use filtered indexes for performance gains

Optimize access to large multi-tenant tables

Analyze query performance using SSMS tools

This technique is vital in SaaS systems where maintaining both data security and query responsiveness is crucial. 

6.8 Conclusion

In this chapter, we explored how to design multi-tenant databases in SQL Server 2025, focusing on architectural patterns like shared database, schema-per-tenant, and database-per-tenant. We also discussed tenant isolation techniques such as identity filtering and row-level security. By following best practices and leveraging SQL Server features, you can build secure, scalable multi-tenant applications that meet diverse customer needs. 

Section 4: Aggregation, Data

Combination and Analytical Query

Techniques

7 Grouping, Aggregation, and

PIVOTs

This chapter introduces how to summarize and transform large datasets using GROUP BY, aggregate functions, HAVING filters, and PIVOT

queries in SQL Server 2025. These techniques are essential for reporting, analytics, and deriving business intelligence directly from structured data. 

7.1 What Is Aggregation? 

Aggregation refers to the process of calculating summary values (e.g., totals, averages, counts) across groups of rows. It allows you to condense large datasets into meaningful insights, making it easier to analyze trends and patterns. 

7.2 GROUP BY: Summarizing Rows by Category

When you want to summarize data, you use the GROUP BY clause to group rows that share a common value in one or more columns. This is often combined with aggregate functions like SUM, AVG, COUNT, etc. 

Here’s the basic syntax:

SELECT column1, AGG_FUNCTION(column2) 

FROM table 

GROUP BY column1; 

Following are some commonly used aggregate functions in SQL Server: Function

Description

COUNT()

Number of rows

SUM()

Total value

Function

Description

AVG()

Average value

MIN()

Smallest value

MAX()

Largest value

Now, let’s look at some examples of using GROUP BY with aggregate functions. 

We can calculate total sales for each region using the SUM function: SELECT Region, SUM(TotalAmount) AS TotalSales FROM Sales.Orders 

GROUP BY Region; 

This query groups the Orders table by Region and calculates the total sales amount for each region. 

We can also calculate the average order value per customer: SELECT CustomerID, AVG(TotalAmount) AS AvgOrderValue FROM Sales.Orders 

GROUP BY CustomerID; 

This query groups the Orders table by CustomerID and calculates the average order value for each customer. 

7.3 HAVING: Filtering Groups

Sometimes, you want to filter the results of a GROUP BY query based on the aggregated values. This is where the HAVING clause comes in. It allows you to specify conditions on aggregate functions, similar to how WHERE filters individual rows. 

 HAVING filters grouped results, similar to how WHERE filters rows. 

Here’s the syntax for using HAVING:

SELECT column1, AGG_FUNCTION(column2) FROM table 

GROUP BY column1 

HAVING AGG_FUNCTION(column2) condition; 

For example, to find regions with total sales greater than 100,000: SELECT Region, SUM(TotalAmount) AS TotalSales FROM Sales.Orders 

GROUP BY Region 

HAVING SUM(TotalAmount) > 100000; 

 Tip: Use HAVING only with aggregate functions. 

7.4 Multiple Columns in GROUP BY

You can group by multiple columns to create more detailed summaries. For example, to get total sales by both region and product category: SELECT  

Region, 

YEAR(OrderDate) AS OrderYear, 

SUM(TotalAmount) AS TotalSales 

FROM Sales.Orders 

GROUP BY Region, YEAR(OrderDate); 

This query groups the Orders table by both Region and the year of the OrderDate, providing a breakdown of sales by region and year. 

7.5 PIVOT: Rotating Data for Reports

The PIVOT operator allows you to transform row values into columns, making it ideal for creating cross-tab reports. This is particularly useful for summarizing data in a more readable format. 

Here’s the basic syntax for a PIVOT query:

SELECT * 

FROM ( 

SELECT column_to_group, column_to_pivot, value_column FROM your_table 

) AS SourceTable 

PIVOT ( 

AGG_FUNCTION(value_column) 

FOR column_to_pivot IN ([col1], [col2], [col3]) 

) AS PivotTable; 

For example, to create a report showing monthly sales totals by region, you can use the following PIVOT query:

SELECT * 

FROM ( 

SELECT  

Region, 

FORMAT(OrderDate, 'MMM') AS OrderMonth, 

TotalAmount 

FROM Sales.Orders 

) AS RawData 

PIVOT ( 

SUM(TotalAmount) 

FOR OrderMonth IN ([Jan], [Feb], [Mar], [Apr], [May], [Jun]) 

) AS MonthlySales; 

This query transforms the monthly sales data into a format where each month becomes a column, allowing for easy comparison of sales across regions. 

Here’s another example that shows how to pivot order details by status: SELECT * 

FROM ( 

SELECT ProductName, Status, Quantity 

FROM Sales.OrderDetails 

) AS SourceData 

PIVOT ( 

SUM(Quantity) 

FOR Status IN ([Pending], [Shipped], [Cancelled]) 

) AS PivotResult; 

This query summarizes the quantity of products ordered by their status, creating a clear view of how many items are pending, shipped, or cancelled. 

7.6 Unpivoting (Optional Advanced)

UNPIVOT rotates columns back into rows—useful when data is stored in a wide format but you need a tall structure. 

Here’s the syntax for UNPIVOT:

SELECT CustomerID, Metric, Value FROM SalesMetrics 

UNPIVOT ( 

Value FOR Metric IN (TotalSales, TotalOrders, TotalReturns) 

) AS Unpivoted; 

7.7 Exercise 15: Generate Monthly Revenue

Summaries

7.7.1 Description

In this exercise, you’ll write SQL queries to generate monthly revenue summaries from the AdventureWorks2022 database. You’ll group sales data by month and year, calculate total revenue, and prepare it for potential reporting or dashboarding use. This is a foundational exercise in analyzing business trends over time using SQL Server 2025. 

7.7.2 Objectives

By the end of this exercise, you will be able to:

Use GROUP BY with DATEPART() to extract month and year. 

Calculate monthly revenue using SUM(). 

Sort and interpret aggregated results. 

7.7.3 Prerequisites

SQL Server 2025 installed and running. 

SQL Server Management Studio (SSMS) 21.x installed. 

AdventureWorks2022 database restored (from Exercise 1). 

A basic understanding of SELECT queries and aggregate functions. 

7.7.4 Steps

Here’s a step-by-step guide to complete this exercise:

7.7.4.1 Step 1: Connect to SQL Server and Select Database

Before running any queries, open SSMS and connect to your SQL Server 2025 instance. Once connected, set the context to use the AdventureWorks2022

database. 

USE AdventureWorks2022; 

GO

📌  This command sets your working database so you can query tables like Sales.SalesOrderHeader and Sales.SalesOrderDetail. 

7.7.4.2 Step 2: Explore the Sales Data

Let’s review the structure of the sales orders. The key table is Sales.SalesOrderHeader, which contains order dates and total due amounts. 

SELECT TOP 10 OrderDate, TotalDue 

FROM Sales.SalesOrderHeader 

ORDER BY OrderDate DESC; 

📌  You’ll notice that OrderDate is a datetime column and TotalDue includes tax, shipping, and discounts—perfect for calculating revenue. 

7.7.4.3 Step 3: Group Sales by Month and Year

Now let’s write a query that groups sales by month and year, and then calculates the total revenue per group. 

SELECT  

DATEPART(YEAR, OrderDate) AS OrderYear, 

DATEPART(MONTH, OrderDate) AS OrderMonth, 

SUM(TotalDue) AS MonthlyRevenue 

FROM Sales.SalesOrderHeader 

GROUP BY  

DATEPART(YEAR, OrderDate), 

DATEPART(MONTH, OrderDate) 

ORDER BY  

OrderYear, 

OrderMonth; 

📌  We use DATEPART(YEAR, OrderDate) and DATEPART(MONTH, OrderDate) to extract year and month. SUM(TotalDue) calculates the total revenue for each period. 

 Finally, we ORDER BY to make the report chronological. 

7.7.4.4 Step 4: Format Month-Year for Readability (Optional) To improve readability, you can format the month and year into a single column (e.g., 2025-01). 

SELECT  

FORMAT(OrderDate, 'yyyy-MM') AS OrderPeriod, 

SUM(TotalDue) AS MonthlyRevenue 

FROM Sales.SalesOrderHeader 

GROUP BY FORMAT(OrderDate, 'yyyy-MM') 

ORDER BY OrderPeriod; 

📌  FORMAT() helps you create a user-friendly label for reporting. It’s especially useful if you’re feeding data into Excel or Power BI dashboards. 

7.7.4.5 Step 5: Filter Specific Year (Optional)

If you’re only interested in a specific year—say 2013—you can use WHERE

with DATEPART. 

SELECT  

FORMAT(OrderDate, 'yyyy-MM') AS OrderPeriod, 

SUM(TotalDue) AS MonthlyRevenue 

FROM Sales.SalesOrderHeader 

WHERE DATEPART(YEAR, OrderDate) = 2013 

GROUP BY FORMAT(OrderDate, 'yyyy-MM') 

ORDER BY OrderPeriod; 

📌  This query helps focus the summary on just one year, which is useful for year-over-year analysis. 

7.7.5 Summary

In this exercise, you:

Connected to the AdventureWorks2022 database using SSMS. 

Explored sales data in the Sales.SalesOrderHeader table. 

Used GROUP BY and DATEPART to summarize revenue by month and year. 

Enhanced readability using FORMAT(). 

Applied filtering to focus on specific years. 

✅  This foundational analysis is essential for generating executive summaries, financial reports, and feeding BI dashboards. You now have the SQL skills to explore temporal trends and revenue cycles in a business context. 

7.8 Exercise 16: Create Pivoted Sales Report

7.8.1 Description

In this hands-on exercise, you will learn how to use SQL Server’s PIVOT

operator to transform row-level data into column-based summaries. 

This is especially useful when creating cross-tab reports such as monthly totals by region, sales by product category, or order status breakdowns. You will use data from the AdventureWorks2022 database. 

7.8.2 Objectives

By the end of this exercise, you will be able to:

Use a subquery to prepare data for pivoting. 

Apply the PIVOT operator to aggregate values and convert rows to columns. 

Generate a dynamic report layout that’s easier to interpret visually. 

7.8.3 Prerequisites

SQL Server 2025 installed and running. 

SQL Server Management Studio (SSMS) 21.x. 

AdventureWorks2022 database restored (as completed in Exercise 1). 

Familiarity with GROUP BY and aggregate functions like SUM(). 

7.8.4 Steps

Here’s a step-by-step guide to complete this exercise:

7.8.4.1 Step 1: Connect to SQL Server and Select the Database

Start by connecting to your SQL Server instance in SSMS. Then, set your active database context to AdventureWorks2022. 

USE AdventureWorks2022; 

GO

📌  This ensures all your queries run against the correct dataset. 

7.8.4.2 Step 2: Understand the Source Data for Pivoting We will build a report showing total sales (TotalDue) for each Sales Territory across different order statuses (e.g., In Progress, Shipped, Cancelled). 

Let’s explore the base table:

SELECT TOP 10  

soh.SalesOrderID, 

st.Name AS Territory, 

soh.Status, 

soh.TotalDue 

FROM Sales.SalesOrderHeader soh 

JOIN Sales.SalesTerritory st ON soh.TerritoryID = st.TerritoryID; 

📌  This query retrieves the key fields we’ll use: territory, status, and total revenue. The Status column is an integer from 1–6 indicating order state. 

7.8.4.3 Step 3: Prepare the Data to Be Pivoted

Let’s build the inner query that PIVOT will use:

SELECT  

st.Name AS Territory, 

soh.Status, 

soh.TotalDue 

FROM Sales.SalesOrderHeader soh 

JOIN Sales.SalesTerritory st ON soh.TerritoryID = st.TerritoryID; 

📌  This query selects the territory, status, and sales amount, which we will later convert into a pivoted format. 

7.8.4.4 Step 4: Apply the PIVOT Operator

We now use PIVOT to transform status values into columns, showing the total revenue per status for each territory. 

SELECT * 

FROM ( 

SELECT  

st.Name AS Territory, 

soh.Status, 

soh.TotalDue 

FROM Sales.SalesOrderHeader soh 

JOIN Sales.SalesTerritory st ON soh.TerritoryID = st.TerritoryID 

) AS SourceData 

PIVOT ( 

SUM(TotalDue) 

FOR Status IN ([1], [2], [3], [4], [5], [6]) 

) AS PivotTable 

ORDER BY Territory; 

📌  Each number in IN ([1], [2], ..., [6]) corresponds to a sales order status. The pivoted result shows territories as rows and statuses as columns

 with aggregated TotalDue. 

 Tip: Status codes can be interpreted as: 1 = In Process, 2 = Approved, 3 = 

 Backordered, etc. (check BOL for full mapping). 

7.8.4.5 Step 5: Optional – Add Readable Status Labels (via View or Report Layer)

While the pivot output shows numeric status columns (1 to 6), you may use aliases or map them in your application/reporting layer for readability. 

Example:

 -- In reporting tool: rename column [1] as 'In Process', [2] as 'Approved', etc. 

📌  SQL Server’s PIVOT requires static column names—dynamic pivoting requires dynamic SQL, which is beyond this beginner exercise. 

7.8.5 Summary

In this lab, you:

Explored order data grouped by sales territory and status. 

Wrote a query to prepare the data for pivoting. 

Used the PIVOT operator to turn row values (Status) into column headers. 

Created a cross-tab report that summarizes total revenue by territory and order status. 

✅  Pivoting is essential for transforming operational data into clear business reports—especially in dashboards, Excel exports, or Power BI models. 

7.9 Exercise 17: Filter Aggregated Results Using

HAVING

7.9.1 Description

In this exercise, you’ll learn how to use the HAVING clause to filter grouped results based on aggregate values. Unlike WHERE, which filters individual rows, HAVING filters after aggregation, making it ideal for reporting scenarios where only high-performing products, customers, or territories should be included. 

7.9.2 Objectives

By the end of this exercise, you will be able to:

Differentiate between WHERE and HAVING. 

Use HAVING to filter groups by aggregated conditions. 

Build queries that report only relevant summarized data (e.g., top-selling products). 

7.9.3 Prerequisites

SQL Server 2025 installed and running. 

SQL Server Management Studio (SSMS) 21.x. 

AdventureWorks2022 database restored (as per Exercise 1). 

Familiarity with GROUP BY and aggregate functions like SUM() or COUNT(). 

7.9.4 Steps

Here’s a step-by-step guide to complete this exercise:

7.9.4.1 Step 1: Connect to SQL Server and Use the Database Start by connecting to your SQL Server instance in SSMS, and set the context to AdventureWorks2022. 

USE AdventureWorks2022; 

GO

📌  Always ensure you’re working in the correct database before running queries. 

7.9.4.2 Step 2: Explore the Sales Data by Territory

We’ll group order data by sales territory to calculate total revenue and number of orders per region. 

SELECT  

st.Name AS Territory, 

COUNT(soh.SalesOrderID) AS OrderCount, 

SUM(soh.TotalDue) AS TotalRevenue 

FROM Sales.SalesOrderHeader soh 

JOIN Sales.SalesTerritory st ON soh.TerritoryID = st.TerritoryID 

GROUP BY st.Name 

ORDER BY TotalRevenue DESC; 

📌  This gives a summary of sales per territory. Every territory is included at this point, regardless of performance. 

7.9.4.3 Step 3: Apply HAVING to Filter Only High-Revenue Territories Now let’s say you only want to include territories with revenue over $10,000,000. You’ll add a HAVING clause to filter based on the SUM() result. 

SELECT  

st.Name AS Territory, 

COUNT(soh.SalesOrderID) AS OrderCount, 

SUM(soh.TotalDue) AS TotalRevenue 

FROM Sales.SalesOrderHeader soh 

JOIN Sales.SalesTerritory st ON soh.TerritoryID = st.TerritoryID 

GROUP BY st.Name 

HAVING SUM(soh.TotalDue) > 10000000 

ORDER BY TotalRevenue DESC; 

📌  HAVING filters the grouped result after aggregation. Unlike WHERE, you can

 use aggregate functions like SUM() inside HAVING. 

7.9.4.4 Step 4: Filter Groups by Multiple Conditions

You can combine aggregate conditions using logical operators like AND or OR. 

SELECT  

st.Name AS Territory, 

COUNT(soh.SalesOrderID) AS OrderCount, 

SUM(soh.TotalDue) AS TotalRevenue 

FROM Sales.SalesOrderHeader soh 

JOIN Sales.SalesTerritory st ON soh.TerritoryID = st.TerritoryID 

GROUP BY st.Name 

HAVING  

SUM(soh.TotalDue) > 5000000 AND  

COUNT(soh.SalesOrderID) > 100; 

📌  This returns only territories that have both high total revenue and a high number of orders—great for identifying your best-performing regions. 

7.9.4.5 Step 5: Optional – Compare with WHERE

Try filtering with WHERE to see how it differs. 

 -- This filters individual orders BEFORE aggregation SELECT  

st.Name AS Territory, 

COUNT(soh.SalesOrderID) AS OrderCount, 

SUM(soh.TotalDue) AS TotalRevenue 

FROM Sales.SalesOrderHeader soh 

JOIN Sales.SalesTerritory st ON soh.TerritoryID = st.TerritoryID 

WHERE soh.TotalDue > 10000  -- filters orders over 10K only GROUP BY st.Name 

ORDER BY TotalRevenue DESC; 

📌  This query only includes orders over $10,000 before grouping. Compare this with HAVING, which filters based on the summary outcome. 

7.9.5 Summary

In this exercise, you:

Used GROUP BY to summarize sales data by territory. 

Applied HAVING to filter results after aggregation. 

Combined HAVING conditions for more precise reporting. 

Learned the difference between WHERE (row-level) and HAVING (group-level) filtering. 

✅  HAVING is a crucial tool for data analysts when refining reports to show only relevant, high-level summaries—particularly in dashboards and KPI reports. 

7.10 Conclusion

In this chapter, we explored how to summarize and transform data using GROUP BY, aggregate functions, and PIVOT queries in SQL Server 2025. We learned how to group rows by categories, filter groups with HAVING, and create cross-tab reports using PIVOT. These techniques are essential for reporting, analytics, and deriving business intelligence directly from structured data. 

8 Joins and UNION Queries

Real-world business data is rarely stored in a single table. In this chapter, you’ll learn how to combine data from multiple tables using different types of JOINs, and how to merge result sets using UNION and UNION ALL. 

These techniques are fundamental for querying relational datasets in SQL

Server 2025. 

8.1 Introduction to Joins

A JOIN allows you to combine rows from two or more tables based on a related column, usually a primary-foreign key relationship. 

Joins can be categorized into several types, each serving different purposes: Join

Description

Type

INNER JOIN

Returns only matching rows in both tables

Returns all rows from the left table and matches from the LEFT JOIN

right

FULL JOIN

Returns all rows when there’s a match in one or both tables 8.2 INNER JOIN

An INNER JOIN returns only the rows where there is a match in both tables. It’s the most common type of join and is used when you want to retrieve related data from multiple tables. 

 Returns only rows where there is a match in both tables. 

Following is the basic syntax for an INNER JOIN: SELECT a.Column1, b.Column2 

FROM TableA a 

INNER JOIN TableB b ON a. Key = b. Key; For example, to retrieve orders along with customer details, you can use an INNER JOIN between the Orders and Customers tables:

SELECT o.OrderID, o.OrderDate, c.FirstName, c.LastName FROM Sales.Orders o 

INNER JOIN Sales.Customers c ON o.CustomerID = c.CustomerID; This query retrieves all orders along with the corresponding customer names, but only for customers who have placed orders. 

8.3 LEFT JOIN (LEFT OUTER JOIN)

Returns all rows from the left table, and matching rows from the right. If there’s no match, right-side columns are NULL. 

For example, to find all customers and their orders, including those who haven’t placed any orders, you can use a LEFT JOIN:

SELECT c.CustomerID, c.FirstName, o.OrderID 

FROM Sales.Customers c 

LEFT JOIN Sales.Orders o ON c.CustomerID = o.CustomerID; Useful for identifying records without matching data (e.g., customers who haven’t ordered). 

8.4 FULL JOIN (FULL OUTER JOIN)

Returns all rows from both tables. If there’s no match on either side, the unmatched side will contain NULL. 

For example, to retrieve all customers and all orders, including those without matches, you can use a FULL JOIN:

SELECT c.CustomerID, o.OrderID, c.FirstName, o.OrderDate FROM Sales.Customers c 

FULL JOIN Sales.Orders o ON c.CustomerID = o.CustomerID; Ideal when comparing two sets and wanting everything, including non-matching entries. 

8.5 UNION vs UNION ALL

Both are used to combine rows from two or more separate queries with the same number and type of columns. 

You can see the differences in how they handle duplicates: Feature

UNION

UNION ALL

Removes

Yes

No

duplicates

Includes all

No (only unique rows)

Yes (all rows, including

rows

duplicates)

Performance Slower (due to duplicate

Faster (no duplicate check)

removal)

Use case

When you need unique

When you want all results, 

results

including duplicates

For both UNION and UNION ALL, the syntax is similar:

SELECT column1, column2 FROM TableA 

UNION 

SELECT column1, column2 FROM TableB; 

To combine domestic and international orders into a single result set, you can use UNION ALL:

SELECT OrderID, CustomerID, 'Domestic' AS Source FROM Sales.DomesticOrders 

 

UNION ALL 



SELECT OrderID, CustomerID, 'International' AS Source FROM Sales.InternationalOrders; 

8.6 Best Practices

Always specify columns instead of SELECT * in joins for clarity and performance. 

When using LEFT JOIN, test for missing matches with IS NULL. 

Always align data types and column order when using UNION or UNION 

ALL. 

8.7 Exercise 18: Combine Customer, Order, and

Region Data

8.7.1 Description

In this exercise, you will combine customer, sales order, and region information using JOIN operations in SQL Server 2025. The goal is to produce a report that provides meaningful business insights—such as who ordered, what they ordered, when, and from which region—by querying across multiple related tables in the AdventureWorks2022 database. 

8.7.2 Objectives

By the end of this exercise, you will be able to:

Use INNER JOIN to combine logically related tables. 

Join three or more tables in a single query. 

Select and format relevant columns to generate a sales report. 

8.7.3 Prerequisites

SQL Server 2025 installed and running. 

SQL Server Management Studio (SSMS) 21.x. 

AdventureWorks2022 database restored (from Exercise 1). 

Understanding of primary/foreign key relationships and basic SELECT

queries. 

8.7.4 Steps

Here’s a step-by-step guide to complete this exercise:

8.7.4.1 Step 1: Set the Working Database

First, open SSMS, connect to your SQL Server instance, and set your session to use the AdventureWorks2022 database. 

USE AdventureWorks2022; 

GO

📌  This ensures that your queries are executed against the correct data context. 

8.7.4.2 Step 2: Explore the Relevant Tables

You will use the following tables:

Sales.Customer: customer details

Sales.SalesOrderHeader: order headers with dates and totals Sales.SalesTerritory: region/territory information

Let’s quickly preview these tables. 

 -- Preview Customers 

SELECT TOP 5 CustomerID, PersonID, StoreID, TerritoryID 

FROM Sales.Customer; 



 -- Preview Orders 

SELECT TOP 5 SalesOrderID, CustomerID, OrderDate, TotalDue FROM Sales.SalesOrderHeader; 



 -- Preview Territories 

SELECT TOP 5 TerritoryID, Name AS RegionName FROM Sales.SalesTerritory; 

📌  These previews help you understand how tables are related. For example, Customer.TerritoryID links to SalesTerritory.TerritoryID. 

8.7.4.3 Step 3: Join Customers with Orders

Let’s join the Customer and SalesOrderHeader tables using CustomerID to retrieve customer-related orders. 

SELECT  

c.CustomerID, 

soh.SalesOrderID, 

soh.OrderDate, 

soh.TotalDue 

FROM Sales.Customer c 

INNER JOIN Sales.SalesOrderHeader soh  

ON c.CustomerID = soh.CustomerID; 

📌  This query lists all customer orders with totals. The INNER JOIN ensures we only get orders from existing customers. 


8.7.4.4 Step 4: Join Region Data with Customer and Orders Now let’s add the third table, SalesTerritory, using TerritoryID. This enriches the result with regional context. 

SELECT  

c.CustomerID, 

soh.SalesOrderID, 

soh.OrderDate, 

soh.TotalDue, 

st.Name AS Region 

FROM Sales.Customer c 

INNER JOIN Sales.SalesOrderHeader soh  

ON c.CustomerID = soh.CustomerID 

INNER JOIN Sales.SalesTerritory st  

ON c.TerritoryID = st.TerritoryID 

ORDER BY soh.OrderDate DESC; 

📌  The report now includes not just who and what was ordered, but also

 where the customer is located, using region names like “Northwest”, 

 “Southwest”, etc. 

8.7.4.5 Step 5: Optional – Add Filtering for a Specific Region

To generate a regional report (e.g., for the “Southwest”), you can add a WHERE

clause. 

SELECT  

c.CustomerID, 

soh.SalesOrderID, 

soh.OrderDate, 

soh.TotalDue, 

st.Name AS Region 

FROM Sales.Customer c 

INNER JOIN Sales.SalesOrderHeader soh  

ON c.CustomerID = soh.CustomerID 

INNER JOIN Sales.SalesTerritory st  

ON c.TerritoryID = st.TerritoryID 

WHERE st.Name = 'Southwest' 

ORDER BY soh.OrderDate DESC; 

📌  This version filters the report to a specific region—ideal for regional sales managers. 

8.7.5 Summary

In this hands-on lab, you:

Used INNER JOIN to combine customer and order data. 

Extended your query to include regional sales territory information. 

Generated a combined report with customer ID, order details, and region. 

Practiced adding filters for region-specific reporting. 

✅  By mastering multi-table joins, you’re able to build comprehensive views of your business data—critical for analysis, reporting, and executive decision-making. 

8.8 Exercise 19: Merge Archived and Active

Records

8.8.1 Description

In this hands-on lab, you’ll learn how to combine data from two similar tables—one active and one archived—using the UNION operator. You’ll

simulate a scenario where sales records are stored in an active table (Sales.SalesOrderHeader) and an archived version (Sales.SalesOrderHeaderArchive, created for this exercise). You’ll use UNION to merge both sources into a single view while tagging each record with a source indicator. 

8.8.2 Objectives

By the end of this exercise, you will be able to:

Understand the difference between UNION and UNION ALL. 

Merge datasets with similar structure. 

Add source indicators (e.g., “Active” vs. “Archive”) to distinguish merged rows. 

8.8.3 Prerequisites

SQL Server 2025 installed and running. 

SQL Server Management Studio (SSMS) 21.x. 

AdventureWorks2022 database restored. 

Sales.SalesOrderHeaderArchive table created (included below). 

Basic understanding of SELECT and JOIN statements. 

8.8.4 Steps

Here’s a step-by-step guide to complete this exercise:

8.8.4.1 Step 1: Set the Active Database

Ensure you’re working in the AdventureWorks2022 database: USE AdventureWorks2022; 

GO

📌  This will ensure your queries execute against the right context. 

8.8.4.2 Step 2: Create an Archive Table for Simulation

For the purpose of this lab, let’s create a simplified archive table by copying a subset of historical data from Sales.SalesOrderHeader. 

SELECT * 

INTO Sales.SalesOrderHeaderArchive 

FROM Sales.SalesOrderHeader 

WHERE OrderDate < '2013-01-01'; 

📌  This creates SalesOrderHeaderArchive with the same schema and data from older records. 

8.8.4.3 Step 3: Preview the Active and Archived Data

Use basic queries to inspect both tables:

 -- Active Orders 

SELECT TOP 5 SalesOrderID, OrderDate, TotalDue 

FROM Sales.SalesOrderHeader 

ORDER BY OrderDate DESC; 



 -- Archived Orders 

SELECT TOP 5 SalesOrderID, OrderDate, TotalDue 

FROM Sales.SalesOrderHeaderArchive 

ORDER BY OrderDate DESC; 

📌  This step confirms both tables contain similarly structured data. 

8.8.4.4 Step 4: Combine the Two Sources with UNION

Let’s now merge the two datasets using UNION and add a source label column to track where each row comes from. 

SELECT  

SalesOrderID, 

OrderDate, 

TotalDue, 

'Active' AS Source 

FROM Sales.SalesOrderHeader 



UNION 



SELECT  

SalesOrderID, 

OrderDate, 

TotalDue, 

'Archive' AS Source 

FROM Sales.SalesOrderHeaderArchive ORDER BY OrderDate DESC; 

📌  This combines the datasets while removing duplicates (if any) between them. The Source column helps users distinguish between current and historical orders. 

8.8.4.5 Step 5: Use UNION ALL to Preserve Duplicates

In some scenarios, you might want to preserve all records, even if duplicates exist. Use UNION ALL instead:

SELECT  

SalesOrderID, 

OrderDate, 

TotalDue, 

'Active' AS Source 

FROM Sales.SalesOrderHeader 



UNION ALL 



SELECT  

SalesOrderID, 

OrderDate, 

TotalDue, 

'Archive' AS Source 

FROM Sales.SalesOrderHeaderArchive 

ORDER BY OrderDate DESC; 

📌  Unlike UNION, UNION ALL does not perform a distinct sort, and it’s generally faster for large datasets. 

8.8.4.6 Step 6: Filter the Combined Result by Source

You can now filter the merged result to view only one category—for example, archived orders only:

SELECT * 

FROM ( 

SELECT SalesOrderID, OrderDate, TotalDue, 'Active' AS Source FROM Sales.SalesOrderHeader 

UNION ALL 

SELECT SalesOrderID, OrderDate, TotalDue, 'Archive' AS Source FROM Sales.SalesOrderHeaderArchive 

) AS CombinedOrders 

WHERE Source = 'Archive'; 

📌  This is useful for reports or dashboards where you want a flexible way to switch between current and archived data. 

8.8.5 Summary

In this hands-on lab, you:

Created an archive version of SalesOrderHeader to simulate historical data. 

Combined archived and active sales records using UNION and UNION ALL. 

Added a Source column to track where each record came from. 

Filtered the combined results to view specific sources. 

✅  Using UNION allows you to build unified datasets from distributed sources while maintaining clarity and flexibility—essential in environments that split data for performance or compliance. 

8.9 Conclusion

In this chapter, you learned how to effectively combine data from multiple tables using various types of joins (INNER JOIN, LEFT JOIN, FULL JOIN) and how to merge datasets using UNION and UNION ALL. These techniques are essential for querying relational databases, enabling you to create comprehensive reports and insights from your data. 

9 Trends, Time, and Window

Functions

This chapter introduces window functions and date/time functions in SQL

Server 2025. These are powerful tools for tracking business trends, computing rankings, and performing time-based analysis, such as comparing current sales to previous months or identifying top-performing products per region. 

9.1 Introduction to Window Functions

Window functions perform calculations across a set of rows related to the current row, without collapsing the result into a single group. 

They differ from GROUP BY because they preserve row-level detail while enabling analytics over partitions (e.g., over each customer, region, or month). 

9.2 ROW_NUMBER, RANK, and DENSE_RANK

These functions assign a rank or number to rows based on specified ordering. 

For example, to assign a unique number to each order per customer: SELECT  

CustomerID, OrderDate, TotalAmount, 

ROW_NUMBER() OVER (PARTITION BY CustomerID ORDER BY OrderDate) AS OrderNumber FROM Sales.Orders; 

 Example Use Case: Identify each customer’s first order, or paginate data. 

RANK() assigns a unique rank to each row within a partition, but if two rows have the same value, they receive the same rank, and the next rank will skip numbers. 

SELECT  

ProductID, Category, TotalSales, 

RANK() OVER (PARTITION BY Category ORDER BY TotalSales DESC) AS SalesRank FROM Sales.ProductSales; 

 Use case: Top-selling products in each category. 

DENSE_RANK() assigns ranks without gaps, meaning if two rows share the same rank, the next rank will be the immediate next number. 

SELECT  

Region, SalesRep, Revenue, 

DENSE_RANK() OVER (PARTITION BY Region ORDER BY Revenue DESC) AS RepRank FROM Sales.RegionalRevenue; 

9.3 LEAD and LAG: Accessing Adjacent Rows

These functions let you compare current row values with previous or next rows, useful for trends and comparisons. 

LAG() retrieves a value from a previous row in the result set, allowing you to compare current values with past ones. 

SELECT  

OrderID, CustomerID, OrderDate, TotalAmount, 

LAG(TotalAmount, 1) OVER (PARTITION BY CustomerID ORDER BY OrderDate) AS PrevOrderAmoun FROM Sales.Orders; 

LEAD() retrieves a value from a subsequent row, enabling you to compare current values with future ones. 

SELECT  

OrderID, CustomerID, OrderDate, TotalAmount, 

LEAD(TotalAmount) OVER (PARTITION BY CustomerID ORDER BY OrderDate) AS NextOrderAmount FROM Sales.Orders; 

 Use case: Detect sales drops, gaps in service, or payment delays. 

9.4 DATE and TIME Functions

SQL Server provides many functions for working with dates and times. 

Function

Description

GETDATE()

Current date and time

Function

Description

SYSDATETIME()

Higher precision than GETDATE()

DATEPART()

Extracts part of a date (e.g., year)

DATEDIFF()

Calculates the difference between dates

EOMONTH()

End of month for a given date

FORMAT()

Format a date/time value as text

For example, to get the current date and time:

SELECT  

OrderID, OrderDate, 

YEAR(OrderDate) AS OrderYear, 

MONTH(OrderDate) AS OrderMonth 

FROM Sales.Orders; 

For example, to find the number of days between orders for each customer: SELECT  

CustomerID, OrderID, OrderDate, 

LAG(OrderDate) OVER (PARTITION BY CustomerID ORDER BY OrderDate) AS PrevOrderDate, DATEDIFF(day, LAG(OrderDate) OVER (PARTITION BY CustomerID ORDER BY OrderDate), OrderDa FROM Sales.Orders; 

To format sales data by month and year, you can use the FORMAT() function: SELECT  

FORMAT(OrderDate, 'yyyy-MM') AS OrderPeriod, 

SUM(TotalAmount) AS TotalSales 

FROM Sales.Orders 

GROUP BY FORMAT(OrderDate, 'yyyy-MM'); 

9.5 Combining Window + Time Analysis

You can combine window functions with date/time functions to analyze trends over time. 

For example, to calculate the monthly revenue and compare it with the previous month:

SELECT  

FORMAT(OrderDate, 'yyyy-MM') AS Month, 

SUM(TotalAmount) AS MonthlyRevenue, 

LAG(SUM(TotalAmount)) OVER (ORDER BY FORMAT(OrderDate

'yyyy-MM')) AS PrevMonthRevenue

    LAG(SUM(TotalAmount)) OVER (ORDER BY FORMAT(OrderDate,  yyyy MM )) AS PrevMonthRevenue FROM Sales.Orders 

GROUP BY FORMAT(OrderDate, 'yyyy-MM'); 

 Use Common Table Expressions (CTE) if needed for complex aggregations with window functions. 

9.6 Exercise 20: Rank Top Customers Monthly

9.6.1 Description

In this exercise, you will use SQL Server 2025’s window functions, specifically RANK() with PARTITION BY, to assign monthly rankings to customers based on their total purchases. This approach enables insights like “Top 3 Customers Each Month” and supports leaderboard-style reporting, trend tracking, and KPI analysis. 

9.6.2 Objectives

By the end of this exercise, you will be able to:

Use RANK() to assign rank values based on aggregated totals. 

Use PARTITION BY to segment ranking per month. 

Combine grouping, aggregation, and windowing in a single query. 

9.6.3 Prerequisites

SQL Server 2025 and SSMS 21.x. 

AdventureWorks2022 database restored. 

Familiarity with GROUP BY, SUM(), and subqueries or CTEs. 

Some experience with window functions (OVER, PARTITION BY, ORDER BY). 

9.6.4 Steps

Here’s a step-by-step guide to complete this exercise:

9.6.4.1 Step 1: Connect to SQL Server and Set the Database Open SSMS and set the working database to AdventureWorks2022. 

USE AdventureWorks2022; 

GO

📌  This ensures all queries run against the correct environment. 

9.6.4.2 Step 2: Understand the Sales Data Structure

We’ll use these tables:

Sales.SalesOrderHeader: contains CustomerID, OrderDate, TotalDue. 

Sales.Customer: additional customer info (optional for labeling). 

Preview the order data:

SELECT TOP 5 SalesOrderID, CustomerID, OrderDate, TotalDue FROM Sales.SalesOrderHeader 

ORDER BY OrderDate DESC; 

📌  We’ll rank customers by SUM(TotalDue) per month. 

9.6.4.3 Step 3: Aggregate Sales Monthly Per Customer

To prepare for ranking, we first calculate monthly revenue per customer. 

SELECT  

CustomerID, 

FORMAT(OrderDate, 'yyyy-MM') AS OrderMonth, 

SUM(TotalDue) AS MonthlyTotal 

FROM Sales.SalesOrderHeader 

GROUP BY CustomerID, FORMAT(OrderDate, 'yyyy-MM'); 

📌  This shows each customer’s total purchases for each month. The FORMAT() function helps extract and label the month. 

9.6.4.4 Step 4: Apply RANK() to Determine Top Customers per Month Now we’ll wrap the aggregation inside a Common Table Expression (CTE) and apply RANK():

WITH MonthlyCustomerTotals AS ( 

SELECT  

CustomerID, 

FORMAT(OrderDate, 'yyyy-MM') AS OrderMonth, 

SUM(TotalDue) AS MonthlyTotal 

FROM Sales.SalesOrderHeader 

GROUP BY CustomerID, FORMAT(OrderDate, 'yyyy-MM') 

) 

SELECT  

CustomerID, 

OrderMonth, 

MonthlyTotal, 

RANK() OVER (PARTITION BY OrderMonth ORDER BY MonthlyTotal DESC) AS RevenueRank FROM MonthlyCustomerTotals 

ORDER BY OrderMonth, RevenueRank; 

📌  Here’s what happens:

PARTITION BY OrderMonth: resets ranking per month. 

ORDER BY MonthlyTotal DESC: highest spenders get lowest rank (1 = top). 

RANK() handles ties by skipping numbers if there’s a tie. 

9.6.4.5 Step 5: Optional – Filter to Top 3 Customers Per Month To focus only on top performers, wrap the query and filter where RevenueRank <= 3. 

WITH MonthlyCustomerTotals AS ( 

SELECT  

CustomerID, 

FORMAT(OrderDate, 'yyyy-MM') AS OrderMonth, 

SUM(TotalDue) AS MonthlyTotal 

FROM Sales.SalesOrderHeader 

GROUP BY CustomerID, FORMAT(OrderDate, 'yyyy-MM') 

) 

SELECT * 

FROM ( 

SELECT  

CustomerID, 

OrderMonth, 

MonthlyTotal, 

RANK() OVER (PARTITION BY OrderMonth ORDER BY MonthlyTotal DESC) AS RevenueRank FROM MonthlyCustomerTotals 

) AS RankedData 

WHERE RevenueRank <= 3 

ORDER BY OrderMonth, RevenueRank; 

📌  This final result gives a leaderboard of the top 3 customers per month, which is useful for CRM, loyalty programs, or sales contests. 

9.6.5 Summary

In this exercise, you:

Grouped customer revenue monthly using FORMAT() and SUM(). 

Applied RANK() with PARTITION BY to rank customers within each month. 

Filtered to identify the top performers each month. 

✅  Window functions like RANK() allow you to build dynamic, trend-based reports with ease—perfect for competitive analysis, top-N reporting, and business dashboards. 

9.7 Exercise 21: Compare Customer Revenue Month-

over-Month

9.7.1 Description

This exercise focuses on comparing each customer’s monthly revenue to their previous and next month’s performance using LAG() and LEAD() window functions. These functions are ideal for detecting trends like sales drops, growth, or inactivity gaps—all within SQL Server 2025 using built-in analytics capabilities. 

9.7.2 Objectives

By the end of this exercise, you will be able to:

Use LAG() and LEAD() to reference adjacent rows in partitioned data. 

Track month-to-month performance per customer. 

Calculate growth or decline in revenue over time. 

9.7.3 Prerequisites

SQL Server 2025 and SSMS 21.x. 

AdventureWorks2022 database restored (as in Exercise 1). 

Familiarity with GROUP BY, SUM(), and basic window functions like RANK(). 

9.7.4 Steps

Here’s a step-by-step guide to complete this exercise:

9.7.4.1 Step 1: Connect to SQL Server and Use the Correct Database Begin by opening SSMS and setting the working database context: USE AdventureWorks2022; 

GO

📌  Ensure you are querying within the correct environment. 

9.7.4.2 Step 2: Aggregate Monthly Revenue per Customer Before applying window functions, let’s aggregate revenue per customer for each month. 

SELECT  

CustomerID, 

FORMAT(OrderDate, 'yyyy-MM') AS OrderMonth, 

SUM(TotalDue) AS MonthlyTotal 

FROM Sales.SalesOrderHeader 

GROUP BY CustomerID, FORMAT(OrderDate, 'yyyy-MM') ORDER BY CustomerID, OrderMonth; 

📌  We’re preparing a dataset where each row shows how much a customer spent each month. 

9.7.4.3 Step 3: Apply LAG() and LEAD() to Track Adjacent Revenue Now, use a CTE to build the base, then apply LAG() and LEAD() to compare month-over-month revenue. 

WITH MonthlyRevenue AS ( 

SELECT  

CustomerID, 

FORMAT(OrderDate, 'yyyy-MM') AS OrderMonth, 

SUM(TotalDue) AS MonthlyTotal 

FROM Sales.SalesOrderHeader 

GROUP BY CustomerID, FORMAT(OrderDate, 'yyyy-MM') 

) 

SELECT  

CustomerID, 

OrderMonth, 

MonthlyTotal, 

LAG(MonthlyTotal) OVER (PARTITION BY CustomerID ORDER BY OrderMonth) AS PreviousMonthRe LEAD(MonthlyTotal) OVER (PARTITION BY CustomerID ORDER BY OrderMonth) AS NextMonthReven FROM MonthlyRevenue 

ORDER BY CustomerID, OrderMonth; 

📌  This allows you to see revenue values from the previous and next month per customer. If NULL appears, it means no activity for that customer in that adjacent month. 

9.7.4.4 Step 4: Calculate Month-over-Month Change (Optional)

You can now compute revenue growth or decline using arithmetic on the window values. 

WITH MonthlyRevenue AS ( 

SELECT  

CustomerID, 

FORMAT(OrderDate, 'yyyy-MM') AS OrderMonth, 

SUM(TotalDue) AS MonthlyTotal 

FROM Sales.SalesOrderHeader 

GROUP BY CustomerID, FORMAT(OrderDate, 'yyyy-MM') 

) 

SELECT  

CustomerID, 

OrderMonth, 

MonthlyTotal, 

LAG(MonthlyTotal) OVER (PARTITION BY CustomerID ORDER BY OrderMonth) AS PreviousMonthRe MonthlyTotal - LAG(MonthlyTotal) OVER (PARTITION BY CustomerID ORDER BY OrderMonth) AS 

FROM MonthlyRevenue 

ORDER BY CustomerID, OrderMonth; 

📌  This version shows how much each customer’s spending changed from the previous month—helpful for detecting retention or drop-off trends. 

9.7.4.5 Step 5: Filter Specific Customer (Optional)

To zoom in on a specific customer’s history, use a WHERE clause. 

 -- Example for CustomerID 11000 

WITH MonthlyRevenue AS ( 

SELECT  

CustomerID, 

FORMAT(OrderDate, 'yyyy-MM') AS OrderMonth, 

SUM(TotalDue) AS MonthlyTotal 

FROM Sales.SalesOrderHeader 

GROUP BY CustomerID, FORMAT(OrderDate, 'yyyy-MM') 

) 

SELECT  

CustomerID, 

OrderMonth, 

MonthlyTotal, 

LAG(MonthlyTotal) OVER (PARTITION BY CustomerID ORDER BY OrderMonth) AS PreviousMonthRe MonthlyTotal - LAG(MonthlyTotal) OVER (PARTITION BY CustomerID ORDER BY OrderMonth) AS 

FROM MonthlyRevenue 

WHERE CustomerID = 11000 

ORDER BY OrderMonth; 

📌  This is useful for account managers or CRM analytics dashboards. 

9.7.5 Summary

In this lab, you:

Aggregated monthly customer revenue. 

Used LAG() and LEAD() to compare current revenue to adjacent months. 

Calculated revenue changes to detect growth or decline trends. 

✅  These techniques are critical for trend analysis, performance monitoring, and customer behavior prediction in modern BI systems. 

9.8 Exercise 22: Calculate Moving Averages on Sales

9.8.1 Description

In this hands-on lab, you will calculate moving averages for customer sales using SQL Server 2025’s windowing capabilities. Moving averages help identify short-term trends and smooth out fluctuations in revenue over time. You’ll use the AVG() function with a window frame (ROWS BETWEEN) to compute rolling revenue insights. 

9.8.2 Objectives

By the end of this exercise, you will be able to:

Use AVG() as a window function. 

Define custom window frames to calculate moving averages. 

Apply time-based logic using PARTITION BY and ORDER BY. 

9.8.3 Prerequisites

SQL Server 2025 and SSMS 21.x installed. 

AdventureWorks2022 database restored (from Exercise 1). 

Familiarity with OVER, PARTITION BY, and basic aggregate functions. 

9.8.4 Steps

Here’s a step-by-step guide to complete this exercise:

9.8.4.1 Step 1: Set Up the Database Context

Start your session by selecting the appropriate database:

USE AdventureWorks2022; 

GO

📌  This ensures you’re working with the correct sample data. 

9.8.4.2 Step 2: Prepare Monthly Customer Revenue

Start by computing monthly totals for each customer. You’ll need this base to compute moving averages over months. 

SELECT  

CustomerID, 

FORMAT(OrderDate, 'yyyy-MM') AS OrderMonth, 

SUM(TotalDue) AS MonthlyTotal 

FROM Sales.SalesOrderHeader 

GROUP BY CustomerID, FORMAT(OrderDate, 'yyyy-MM'); 

📌  Each row now represents the revenue a customer generated in a particular month. 

9.8.4.3 Step 3: Apply Moving Average with a Window Frame Now calculate a 3-month moving average using AVG() with a sliding window of the current and previous 2 months. 

WITH MonthlyRevenue AS ( 

SELECT  

CustomerID, 

FORMAT(OrderDate, 'yyyy-MM') AS OrderMonth, 

SUM(TotalDue) AS MonthlyTotal 

FROM Sales.SalesOrderHeader 

GROUP BY CustomerID, FORMAT(OrderDate, 'yyyy-MM') 

) 

SELECT  

CustomerID, 

OrderMonth, 

MonthlyTotal, 

AVG(MonthlyTotal) OVER ( 

PARTITION BY CustomerID 

ORDER BY OrderMonth 

ROWS BETWEEN 2 PRECEDING AND CURRENT ROW 

) AS MovingAvg3Months 

FROM MonthlyRevenue 

ORDER BY CustomerID, OrderMonth; 

📌  This query calculates the average of the current month and the two preceding months—similar to a 3-month financial moving average. 

[image: Image 18]

Figure 9.1: Applying moving average with a window frame. 

9.8.4.4 Step 4: Interpret the Moving Average

Look at how the MovingAvg3Months column, Figure 9.1, smooths out spikes or dips. 

For the first two months per customer, the average may only include 1 or 2 values (not a full 3-month window), but SQL Server handles this automatically. 

9.8.4.5 Step 5: Filter a Specific Customer (Optional) To see a clean trendline for one customer:

WITH MonthlyRevenue AS ( 

SELECT  

CustomerID, 

        FORMAT(OrderDate, 'yyyy-MM') AS OrderMonth, SUM(TotalDue) AS MonthlyTotal 

FROM Sales.SalesOrderHeader 

GROUP BY CustomerID, FORMAT(OrderDate, 'yyyy-MM') 

) 

SELECT  

CustomerID, 

OrderMonth, 

MonthlyTotal, 

AVG(MonthlyTotal) OVER ( 

PARTITION BY CustomerID 

ORDER BY OrderMonth 

ROWS BETWEEN 2 PRECEDING AND CURRENT ROW 

) AS MovingAvg3Months 

FROM MonthlyRevenue 

WHERE CustomerID = 11000 

ORDER BY OrderMonth; 

📌  This is useful for visual analysis, business health checks, or feeding into BI dashboards. 

9.8.5 Summary

In this exercise, you:

Aggregated monthly revenue per customer. 

Applied the AVG() function with a rolling window to compute 3-month moving averages. 

Used ROWS BETWEEN to create a sliding analytic window. 

✅  This pattern is valuable for understanding revenue stability, seasonality, and forecasting performance over time. 

9.9 Exercise 23: Analyze Customer Sales Percentiles

9.9.1 Description

This hands-on lab explores how to use percentile-based window functions in SQL Server 2025. You’ll learn how to apply CUME_DIST() and PERCENT_RANK() to rank customers based on their total purchases, providing insight into how each customer performs relative to others. These functions are essential in loyalty programs, revenue segmentation, and targeted marketing strategies. 

9.9.2 Objectives

By the end of this exercise, you will be able to:

Calculate cumulative distribution and percentile rank over a dataset. 

Apply percentile logic using window functions in SQL. 

Identify customers in the top or bottom percentiles of revenue. 

9.9.3 Prerequisites

SQL Server 2025 and SSMS 21.x. 

AdventureWorks2022 database restored. 

Basic familiarity with OVER(...), ORDER BY, and window functions. 

9.9.4 Steps

Here’s a step-by-step guide to complete this exercise:

9.9.4.1 Step 1: Set the Working Database

Begin by setting your database context to AdventureWorks2022: USE AdventureWorks2022; 

GO

📌  This ensures all subsequent queries run in the correct environment. 

9.9.4.2 Step 2: Compute Total Revenue per Customer

Let’s first aggregate total revenue for each customer. 

SELECT  

CustomerID, 

SUM(TotalDue) AS TotalRevenue 

FROM Sales.SalesOrderHeader 

GROUP BY CustomerID; 

📌  This forms the base dataset used for percentile calculations. 

9.9.4.3 Step 3: Apply CUME_DIST() and PERCENT_RANK()

Wrap the previous aggregation in a Common Table Expression (CTE) and apply both percentile functions. 

WITH CustomerRevenue AS ( 

SELECT  

CustomerID, 

[image: Image 19]

SUM(TotalDue) AS TotalRevenue 

FROM Sales.SalesOrderHeader 

GROUP BY CustomerID 

) 

SELECT  

CustomerID, 

TotalRevenue, 

CUME_DIST() OVER (ORDER BY TotalRevenue DESC) AS CumulativeDistribution, PERCENT_RANK() OVER (ORDER BY TotalRevenue DESC) AS PercentRank FROM CustomerRevenue 

ORDER BY TotalRevenue DESC; 

📌  This returns each customer’s revenue along with two metrics: CUME_DIST() → shows the proportion of customers with equal or lower revenue. 

PERCENT_RANK() → shows rank percentile, with lowest revenue = 0.0 and highest = 1.0. 

Figure 9.2: Applying CUME_DIST() and PERCENT_RANK(). 

9.9.4.4 Step 4: Interpret the Results A customer with CUME_DIST() = 0.95 is among the top 5% by revenue. 

A PERCENT_RANK() of 0.0 means the lowest-ranked customer, while 1.0 is the highest. 

 Note: PERCENT_RANK() has one fewer steps than total rows, while CUME_DIST() includes ties and equals 1 for the topmost record. 

9.9.4.5 Step 5: Filter for High-Performing Customers (Optional) You can now use a WHERE clause to get the top 10% customers by revenue: WITH CustomerRevenue AS ( 

SELECT  

CustomerID, 

SUM(TotalDue) AS TotalRevenue 

FROM Sales.SalesOrderHeader 

GROUP BY CustomerID 

) 

SELECT * 

FROM ( 

SELECT  

CustomerID, 

TotalRevenue, 

CUME_DIST() OVER (ORDER BY TotalRevenue DESC) AS CumulativeDistribution FROM CustomerRevenue 

) AS RankedCustomers 

WHERE CumulativeDistribution <= 0.10 

ORDER BY TotalRevenue DESC; 

📌  This is powerful for generating targeted sales reports or tiered loyalty segments. 

9.9.5 Summary

In this lab, you:

Aggregated customer revenue. 

Used CUME_DIST() and PERCENT_RANK() to evaluate each customer’s percentile. 

Identified top-performing customers for targeted analysis. 

✅  Percentile functions allow businesses to contextualize performance within the broader customer base—ideal for ranking, segmentation, and performance

 targeting. 

9.10 Conclusion

In this chapter, you learned how to leverage SQL Server 2025’s powerful window functions and date/time capabilities to analyze trends, compute rankings, and perform time-based analyses. These skills are essential for building advanced analytics solutions, enabling you to derive insights from your data that drive business decisions. 

Section 5: Security, Access, and

Compliance

10 User Management and Access

Control

This chapter introduces essential SQL Server 2025 concepts for user management and access control, including logins, users, roles, and schema-level security. Understanding these concepts is critical for safeguarding sensitive business data and ensuring that access aligns with organizational policies and compliance standards. 

10.1 Authentication vs Authorization

Authentication and authorization are two fundamental concepts in SQL Server security. 

Concept

Description

Authentication

Confirms who the user is (login identity)

Authorization

Defines what they are allowed to do (permissions) SQL Server uses logins for authentication and users/roles/permissions for authorization. 

10.2 Logins and Users

A login is a server-level identity that allows a user to connect to SQL Server. A user is a database-level identity that maps to a login and defines what the user can do within a specific database. 

To create a login, you can use the CREATE LOGIN statement: CREATE LOGIN reporting_user WITH PASSWORD = 'StrongPassword123!'; To create a user in a specific database that maps to the login: USE SalesDB; 

CREATE USER reporting_user FOR LOGIN reporting_user; 

 Now reporting_user can connect to the SalesDB database. 

10.3 Fixed Server and Database Roles

SQL Server provides fixed server roles and fixed database roles that grant predefined sets of permissions. These roles simplify user management by grouping common permissions. 

The following are some of the key fixed server roles:

Role

Purpose

sysadmin

Full control of SQL Server

securityadmin

Manage logins and permissions

serveradmin

Configure server-wide settings

These roles are specific to a database and control access to its objects: Role

Description

db_owner

Full control over the database

db_datareader

Can read all data from all user tables

db_datawriter

Can modify (insert/update/delete) data

db_ddladmin

Can run CREATE, ALTER, and DROP commands

To assign a role to a user, you can use the sp_addrolemember stored procedure:

 -- Assign reader role 

EXEC sp_addrolemember 'db_datareader', 'reporting_user'; You can combine roles to tailor permission sets. 

10.4 Custom Roles and Role-Based Access Control (RBAC)

You can create custom roles to define more granular access control. 

We can create a custom role for business analysts that allows them to read data from the Sales schema:

CREATE ROLE SalesAnalyst; 



GRANT SELECT ON SCHEMA::Sales TO SalesAnalyst; EXEC sp_addrolemember 'SalesAnalyst', 'reporting_user'; This allows all members of SalesAnalyst role to query all tables in the Sales schema. 

10.5 Schema-Level Security

Schemas in SQL Server are containers for database objects. Permissions can be applied at the schema level, which simplifies access management. 

To grant a user access to all objects in a schema, you can use the GRANT statement at the schema level:

GRANT SELECT, INSERT, UPDATE ON SCHEMA::Sales TO SalesAnalyst; Rather than granting table-level permissions one by one, this approach simplifies access for business analysts. 

10.6 Security Best Practices

Well-defined security practices are crucial for protecting sensitive data and ensuring compliance with regulations. Here are some best practices: Practice

Reason

Practice

Reason

Use least privilege principle

Prevents accidental or malicious

access

Use roles instead of user-specific grants

Easier to audit and manage

Separate data readers from data writers

Ensures role clarity and

auditability

Regularly review user access

Keep access compliant with org

policies

Avoid using sa or sysadmin for daily tasks

Reduces exposure and risks

10.7 Auditing Access

Auditing is a critical component of a secure SQL Server environment. By monitoring and recording access and activity, organizations can detect unauthorized actions, investigate incidents, and demonstrate compliance with regulatory requirements. SQL Server provides several built-in tools and system views to help administrators track who accessed what data and when. 

To track and audit access:

Use SQL Server Audit (Enterprise)

Enable login auditing at server level

Query system views like sys.database_principals, sys.database_permissions, sys.server_principals

10.8 Exercise 24: Create Analyst Role and Grant

Access

10.8.1 Description

In this exercise, you will practice implementing role-based access control (RBAC) in SQL Server 2025 using T-SQL. You will create a new database, define a custom database role named Analyst, and grant it read-only access to

selected tables. This is a fundamental step in enforcing principle of least privilege and securing data access within business systems. 

10.8.2 Objectives

By the end of this exercise, you will be able to:

Create a new SQL Server database. 

Create a user and assign it to a custom database role. 

Create a role and grant it appropriate read-only permissions. 

Validate role-based access control using a login or impersonation. 

10.8.3 Prerequisites

SQL Server 2025 and SSMS 21.x installed. 

Permission to create databases and logins. 

Basic familiarity with CREATE DATABASE, CREATE LOGIN, and GRANT. 

10.8.4 Steps

Here’s a step-by-step guide to complete this exercise:

10.8.4.1 Step 1: Create a New Database for Testing

Start by creating a clean database named SecureDataLab for this exercise. 

CREATE DATABASE SecureDataLab; 

GO 



USE SecureDataLab; 

GO

📌  This isolates our RBAC test environment and avoids changes to production databases. 

10.8.4.2 Step 2: Create Sample Tables and Seed Data

Create a few tables that an analyst would typically query—like customers and sales. 

CREATE TABLE Customers ( 

CustomerID INT PRIMARY KEY, 

    FullName NVARCHAR(100), 

Email NVARCHAR(100), 

Region NVARCHAR(50) 

); 



CREATE TABLE Orders ( 

OrderID INT PRIMARY KEY, 

CustomerID INT FOREIGN KEY REFERENCES Customers(CustomerID), OrderDate DATE, 

Amount DECIMAL(10,2) 

); 



 -- Insert sample data 

INSERT INTO Customers VALUES  

(1, 'Ahmad Smith', 'smith@ilmudata.id', 'East'), 

(2, 'Laura Ave', 'ave@ilmudata.id', 'West'); 



INSERT INTO Orders VALUES  

(101, 1, '2025-01-15', 1500.00), 

(102, 2, '2025-02-10', 2300.00); 

📌  These simple tables simulate real business data an analyst might need. 

10.8.4.3 Step 3: Create a Login and Map It to a Database User Create a SQL Server login and map it to the SecureDataLab database as a user. 

 -- Create SQL login 

CREATE LOGIN analyst_user WITH PASSWORD = 'StrongP@ssword123!'; GO 



 -- Map login to database user 

USE SecureDataLab; 

GO 

CREATE USER analyst_user FOR LOGIN analyst_user; 

📌  This sets up the user that will be granted controlled access via a role. 

10.8.4.4 Step 4: Create the Analyst Role and Assign Permissions Now define the custom role Analyst and grant it read-only access to the tables. 

 -- Create custom role 

CREATE ROLE Analyst; 

GO 



 -- Grant SELECT permissions to role 

GRANT SELECT ON Customers TO Analyst; GRANT SELECT ON Orders TO Analyst; GO 



 -- Add user to the role 

EXEC sp_addrolemember 'Analyst', 'analyst_user'; 

[image: Image 20]

📌  This ensures the analyst can read but not modify data. You can reuse this role for other analysts in the future. 

10.8.4.5 Step 5: Test Role Access (Optional via EXECUTE AS) To test permissions from the analyst’s perspective:

 -- Impersonate analyst_user 

EXECUTE AS USER = 'analyst_user'; 



 -- This should succeed 

SELECT * FROM Customers; 



 -- This should fail (no INSERT permission) 

INSERT INTO Customers VALUES (3, 'Unauthorized', 'hack@fake.com', 'North'); 



 -- Revert session 

REVERT; 

📌  This helps verify that the user has only SELECT access as intended. 

Figure 10.1: Error on inserting data. 

10.8.5 Summary

In this hands-on lab, you:

Created a new database (SecureDataLab) for secure access testing. 

Built customer and order tables with sample data. 

Created a SQL login and mapped it to a database user. 

Defined a custom Analyst role and granted it read-only access. 

Tested permissions to ensure proper role enforcement. 

✅  This exercise illustrates how to implement practical, secure, and reusable role-based access control strategies using SQL Server 2025. 

10.9 Exercise 25: Restrict Access by Schema

10.9.1 Description

In this exercise, you will practice managing access control at the schema level in SQL Server 2025. You’ll create separate schemas for sensitive and general data, assign different permissions, and restrict access to specific schemas using GRANT and DENY. Schema-based access control helps manage logical separation of data and simplifies security management in multi-user environments. 

10.9.2 Objectives

By the end of this exercise, you will be able to:

Create and use custom schemas. 

Assign ownership to schemas and manage access using GRANT and DENY. 

Restrict user access based on schema-level permissions. 

10.9.3 Prerequisites

SQL Server 2025 and SSMS 21.x installed. 

SecureDataLab database created (see Exercise 24). 

analyst_user login and user mapped to the database. 

Familiarity with roles, users, and GRANT/DENY. 

10.9.4 Steps

Here’s a step-by-step guide to complete this exercise:

10.9.4.1 Step 1: Use the Existing Database

Ensure you are working within the SecureDataLab database: USE SecureDataLab; 

GO

📌  This keeps all security exercises contained in one place. 

10.9.4.2 Step 2: Create New Schemas

Let’s define two schemas:

PublicData – for general-purpose access. 

SensitiveData – for restricted access. 

CREATE SCHEMA PublicData; 

GO 

CREATE SCHEMA SensitiveData; 

GO

📌  Schemas act like containers or namespaces for tables, allowing grouped permission management. 

10.9.4.3 Step 3: Create Tables in Each Schema

Now add tables to the new schemas:

 -- General access table 

CREATE TABLE PublicData.SalesSummary ( 

Year INT, 

Region NVARCHAR(50), 

TotalSales DECIMAL(12,2) 

); 



 -- Restricted access table 

CREATE TABLE SensitiveData.EmployeeSalaries ( 

EmployeeID INT, 

FullName NVARCHAR(100), 

Salary DECIMAL(10,2) 

); 



 -- Insert example data 

INSERT INTO PublicData.SalesSummary VALUES (2025, 'East', 150000.00); INSERT INTO SensitiveData.EmployeeSalaries VALUES (1, 'Ahmad Smith', 90000.00); 

📌  This simulates a typical setup with public and sensitive business data. 

10.9.4.4 Step 4: Grant Access to Public Schema Only

Grant read access on the PublicData schema to the Analyst role: GRANT SELECT ON SCHEMA::PublicData TO Analyst; 

📌  This enables users in the Analyst role (e.g., analyst_user) to read all tables in the PublicData schema. 

10.9.4.5 Step 5: Explicitly Deny Access to Sensitive Schema Deny access to the SensitiveData schema for the Analyst role: DENY SELECT ON SCHEMA::SensitiveData TO Analyst; 

📌  This ensures that even if a user has broad SELECT rights, they cannot access sensitive tables. 

10.9.4.6 Step 6: Test Access as Analyst User (Optional) Impersonate the analyst to test access control:

 -- Impersonate 

EXECUTE AS USER = 'analyst_user'; 



 -- Should succeed 

SELECT * FROM PublicData.SalesSummary; 



 -- Should fail 

SELECT * FROM SensitiveData.EmployeeSalaries; 



 -- Revert session 

REVERT; 

📌  The SELECT on PublicData works, but the attempt on SensitiveData is denied—even though both exist in the same database. 

[image: Image 21]

Figure 10.2: Error on selecting data. 

10.9.5 Summary

In this exercise, you:

Created logical schemas for public and sensitive data. 

Used GRANT and DENY to manage access at the schema level. 

Enforced security boundaries using container-level permission control. 

✅  Managing access by schema allows organizations to apply role-based access rules with clarity and precision, reducing risks of unauthorized access and simplifying permission maintenance. 

10.10 Exercise 26: Revoke Permissions and Audit Role

Membership

10.10.1 Description

Security is not just about granting access — it’s equally important to  revoke access when no longer needed and  audit who has which permissions. This hands-on lab teaches how to revoke object-level permissions from a user or role and how to inspect existing role memberships and permission assignments in SQL Server. 

These skills are crucial for implementing the Principle of Least Privilege and ensuring data security. 

10.10.2 Objectives

By the end of this lab, you will be able to:

Revoke permissions from users and roles

Audit role membership using system views

Identify permission grants on objects

Use queries to document access control configuration

10.10.3 Prerequisites

SQL Server 2025

SQL Server Management Studio (SSMS) 21.x

A dedicated database for this exercise

10.10.4 Steps

Here’s a step-by-step guide to complete this exercise:

10.10.4.1 Step 1: Create a Dedicated Security Demo Database We’ll start by creating a new database to isolate our permission configuration and auditing. 

CREATE DATABASE SecurityAuditDemo; 

GO 

USE SecurityAuditDemo; 

GO

✅ This ensures your practice won’t interfere with production or existing configurations. 

10.10.4.2 Step 2: Create Tables and Seed Data

Create a simple table to simulate sensitive data access. 

CREATE TABLE Sales ( 

SaleId INT IDENTITY PRIMARY KEY, 

ProductName NVARCHAR(100), 

[image: Image 22]

Amount MONEY 

); 



INSERT INTO Sales (ProductName, Amount) 

VALUES ('Widget A', 1500), ('Widget B', 2400), ('Widget C', 720); GO

✅ This is our target object for permission testing. 

10.10.4.3 Step 3: Create Users and Assign Permissions We’ll create a test login, database user, and assign SELECT permission. 

CREATE LOGIN reportuser WITH PASSWORD = 'ComplexPass123!'; CREATE USER reportuser FOR LOGIN reportuser; GRANT SELECT ON dbo.Sales TO reportuser; GO

✅ At this point, the reportuser has access to query the Sales table. 

Figure 10.3: Login as reportuser to SQL Server. 

Try to login as reportuser and run:

SELECT * FROM dbo.Sales; 

[image: Image 23]

10.10.4.4 Step 4: Revoke the SELECT Permission

Now simulate revoking access, such as when a user changes role or leaves the team. 

REVOKE SELECT ON dbo.Sales FROM reportuser; GO

✅ This removes the permission without deleting the user. 

Try running the same SELECT query again as reportuser:

SELECT * FROM dbo.Sales; 

Figure 10.4: Error on selecting data while signing as reportuser to SQL

Server. 

10.10.4.5 Step 5: Create a Custom Role and Grant Permission Create a role for analysts and assign permission at the role level. 

CREATE ROLE analyst_role; 

EXEC sp_addrolemember 'analyst_role', 'reportuser'; GRANT SELECT ON dbo.Sales TO analyst_role; GO

✅ This demonstrates permission via roles rather than direct user-level grants. 

10.10.4.6 Step 6: Audit Role Membership

Let’s now check which users belong to which roles. 

SELECT  

r.name AS RoleName, 

m.name AS MemberName 

FROM  

sys.database_role_members drm 

JOIN  

sys.database_principals r ON drm.role_principal_id = r.principal_id JOIN  

sys.database_principals m ON drm.member_principal_id = m.principal_id; 

✅ This is useful for documenting role-based access control (RBAC). 

10.10.4.7 Step 7: Audit Object-Level Permissions

You can check what permissions each user or role has using this query: SELECT  

dp.name AS PrincipalName, 

dp.type_desc AS PrincipalType, 

o.name AS ObjectName, 

p.permission_name, 

p.state_desc AS PermissionState 

FROM  

sys.database_permissions p 

JOIN  

sys.objects o ON p.major_id = o.object_id 

JOIN  

sys.database_principals dp ON p.grantee_principal_id = dp.principal_id WHERE  

o. type = 'U';  -- U = User table

✅ This helps you monitor what access is currently in place. 

[image: Image 24]

Figure 10.5: Checking permissions for each user. 

10.10.5 Summary

In this hands-on lab, you:

Created a security sandbox with a simple table

Granted and revoked permissions using GRANT and REVOKE

Created a custom role and added a user to it

Audited role membership and permission assignments using system views

✅ These are foundational skills for securing a SQL Server environment, maintaining compliance, and managing user access lifecycles. 

10.11 Conclusion

In this chapter, you learned how to manage user access and permissions in SQL

Server 2025. You explored concepts such as logins, users, roles, and schema-level security. You also practiced creating custom roles, granting permissions, and auditing access control configurations. These skills are essential for ensuring data security, compliance with organizational policies, and effective role-based access control in SQL Server environments. 

11 Row-Level Security and Tenant

Isolation

In a multi-user or multi-tenant system, data isolation is critical. SQL Server 2025

supports Row-Level Security (RLS)—a powerful feature that filters records dynamically based on the user’s identity or session context. This chapter covers how to implement RLS for tenant isolation and fine-grained access control, ensuring each user only sees the data they are authorized to access. 

11.1 What Is Row-Level Security (RLS)? 

Row-Level Security enables automatic filtering of rows based on rules tied to the current user’s context—without rewriting the queries. It adds a security layer directly at the database level. 

Why is RLS important? 

Enforces data privacy at the lowest level. 

Centralizes filtering logic, reducing app-side complexity. 

Supports multi-tenant SaaS models with shared tables. 

Helps meet compliance and audit requirements (e.g., GDPR, HIPAA). 

11.2 RLS Architecture in SQL Server

RLS works by defining a security predicate function that returns a table of rows the user is allowed to see. This function is then applied through a security policy to one or more tables. 

11.2.1 How RLS Works Internally

When a query is executed against a table with RLS enabled, SQL Server automatically appends the security predicate to the query’s WHERE clause. This happens transparently—users and applications do not need to change their queries. 

The filtering logic is enforced at the storage engine level, ensuring that unauthorized rows are never returned, even if users attempt to bypass application logic. 

11.2.2 Types of Security Predicates

There are two main types of security predicates in SQL Server RLS: FILTER Predicate: Restricts which rows are visible to users. This is the most common use case for tenant isolation. 

BLOCK Predicate: Prevents unauthorized users from performing certain actions (like UPDATE or DELETE) on rows they should not access. 

You can combine both predicate types for more granular control, such as allowing users to see some rows but not modify them. 

11.2.3 Security Policy Management

A security policy is a database object that binds one or more predicate functions to tables. Policies can be enabled or disabled without dropping them, making it easy to test or roll back RLS configurations. Policies can also be applied to multiple tables, allowing for consistent enforcement across your data model. 

11.2.4 Auditing RLS Activity

Because RLS operates at the database level, all access attempts—successful or blocked—are logged in SQL Server’s audit logs. This provides a reliable audit trail for compliance and security reviews. You can further enhance auditing by combining RLS with SQL Server Audit or Extended Events to track access patterns and detect suspicious activity. 

11.3 Example Scenario: Tenant-Based Filtering

Assuming we have a shared Orders table that contains orders from multiple tenants, we can use RLS to ensure that each tenant only sees their own orders. 

CREATE TABLE Sales.Orders ( 

OrderID INT PRIMARY KEY, 

TenantID INT, 

CustomerID INT, 

TotalAmount DECIMAL(10,2), 

OrderDate DATE 

); 

Each tenant’s data is distinguished by the TenantID column. 

11.4 Step-by-Step: Implementing RLS for Tenant Isolation

Follow these steps to implement Row-Level Security for tenant isolation in SQL

Server:

1. Step 1: Enable SESSION_CONTEXT for Tenant ID

The application must set the current tenant using:

EXEC sp_set_session_context @key = N'TenantID', @value = 101; 2. Step 2: Create Predicate Function

Create a security predicate function that checks the TenantID against the session context:

CREATE FUNCTION Security.fn_TenantPredicate(@TenantID INT) RETURNS TABLE 

WITH SCHEMABINDING 

AS 

RETURN 

SELECT 1 AS Result 

WHERE @TenantID = CAST(SESSION_CONTEXT(N'TenantID') AS INT); This function compares the current row’s TenantID to the session’s context value. 

3. Step 3: Apply Security Policy to Table

We need to create a security policy that uses this predicate function: CREATE SECURITY POLICY Security.TenantPolicy 

ADD FILTER PREDICATE Security.fn_TenantPredicate(TenantID) ON Sales.Orders 

WITH (STATE = ON); 

This policy ensures that any query against the Sales.Orders table will automatically filter rows based on the current tenant’s context. 

4. Step 4: Test the Filtering

We can now test the RLS implementation by querying the Orders table:

 -- Set current tenant to 101 

EXEC sp_set_session_context @key = N'TenantID', @value = 101; 



 -- Run unrestricted query 

SELECT * FROM Sales.Orders; 

This query will only return rows where TenantID = 101, effectively isolating the tenant’s data. 

11.5 RLS for User-Specific Access

RLS can also be used for user identity-based filtering, such as allowing users to only see their own records. 

For instance, consider an EmployeeDocuments table where each employee can only access their own documents:

CREATE TABLE HR.EmployeeDocuments ( 

DocID INT, 

EmployeeID INT, 

DocumentName NVARCHAR(100) 

); 

To filter documents based on the logged-in user, we can create a predicate function that checks the EmployeeID against the current user’s login: CREATE FUNCTION HR.fn_UserAccessPredicate(@EmployeeID INT) RETURNS TABLE 

WITH SCHEMABINDING 

AS 

RETURN 

SELECT 1 AS Result 

WHERE @EmployeeID = ( 

SELECT EmployeeID FROM HR.Users WHERE LoginName = SYSTEM_USER 

); 

 Use SYSTEM_USER or ORIGINAL_LOGIN() to get current login name. 

11.6 Best Practices for RLS

When implementing Row-Level Security, consider these best practices: Practice

Benefit

Practice

Benefit

Use SESSION_CONTEXT() for multi-tenant apps

Better than parsing

usernames

Avoid hardcoding user logic in app

Centralizes logic in DB

Keep security predicate functions simple

Required for performance

and indexing

Use separate security schemas for RLS logic

Improves clarity and

modularity

Combine with views or stored procedures for

Simplifies reporting and

added control

access

11.7 RLS Limitations to Note

For all its power, RLS has some limitations:

Limitation

Notes

No support for TEXT, NTEXT, IMAGE columns

Must be excluded

Not compatible with INSTEAD OF triggers

Will be blocked

Applies only to SELECT, UPDATE, 

Not enforced on INSERT

DELETE

logic

Admins (sysadmin) are exempt

They bypass RLS

automatically

11.8 Exercise 27: Enforce Tenant Filtering with RLS

11.8.1 Description

Row-Level Security (RLS) allows SQL Server to restrict access to rows in a table based on the executing user’s context. In this exercise, you’ll simulate a multi-tenant SaaS environment by applying RLS so each tenant can access only their

own data. This is especially important for applications requiring strict data isolation without duplicating schema or database logic. 

11.8.2 Objectives

By completing this exercise, you will:

Understand the purpose and implementation of Row-Level Security. 

Learn to create and bind a security policy to filter data. 

Implement SESSION_CONTEXT() to set the current tenant at runtime. 

11.8.3 Prerequisites

SQL Server 2025 and SSMS 21.x installed. 

User has sysadmin or db_owner rights on the server. 

Basic familiarity with SQL Server logins, users, and SESSION_CONTEXT(). 

11.8.4 Steps

Here’s a step-by-step guide to complete this exercise:

11.8.4.1 Step 1: Create a New Database for RLS Demo

Create a clean database named RlsTenantLab. 

CREATE DATABASE RlsTenantLab; 

GO 



USE RlsTenantLab; 

GO

📌  This isolates our RLS demonstration from other labs and databases. 

11.8.4.2 Step 2: Create a Table with Tenant Data

Create a CustomerOrders table that includes a TenantId column used to filter data. 

CREATE TABLE CustomerOrders ( 

OrderID INT IDENTITY PRIMARY KEY, 

TenantId INT NOT NULL, 

CustomerName NVARCHAR(100), 

OrderDate DATE, 

Amount DECIMAL(10,2) 

); 

📌  Each row is tagged with a TenantId, which determines which tenant “owns” the record. 

11.8.4.3 Step 3: Insert Sample Tenant Data

Insert rows for two different tenants:

INSERT INTO CustomerOrders (TenantId, CustomerName, OrderDate, Amount) VALUES  

(1, 'Tata Industries', '2025-07-01', 1200.00), 

(1, 'Tata Industries', '2025-07-15', 3000.00), 

(2, 'Infosys Ltd', '2025-07-02', 1500.00), 

(2, 'Infosys Ltd', '2025-07-20', 500.00); 

📌  This simulates two tenants: Tenant 1 and Tenant 2. 

11.8.4.4 Step 4: Create a Predicate Function for RLS

Create an inline table-valued function to check if the current row’s TenantId matches the user’s context. 

CREATE FUNCTION fn_tenant_filter(@TenantId INT) RETURNS TABLE 

WITH SCHEMABINDING 

AS 

RETURN SELECT 1 AS result 

WHERE @TenantId = CAST(SESSION_CONTEXT(N'TenantId') AS INT); 

📌  This function uses SESSION_CONTEXT('TenantId') which you’ll set dynamically in your app or session. 

11.8.4.5 Step 5: Create a Security Policy Using the Predicate Bind the filter function to the CustomerOrders table:

CREATE SECURITY POLICY TenantFilterPolicy 

ADD FILTER PREDICATE dbo.fn_tenant_filter(TenantId) ON dbo.CustomerOrders 

WITH (STATE = ON); 

📌  This policy ensures that whenever a query is run against CustomerOrders, only matching rows for the current TenantId are returned. 

11.8.4.6 Step 6: Test the Policy with Different Tenant Contexts

Set the tenant context using SESSION_CONTEXT, then query the data. 

 -- Simulate Tenant 1 session 

EXEC sp_set_session_context @key = N'TenantId', @value = 1; SELECT * FROM CustomerOrders; 

 -- Returns only rows for TenantId = 1 



 -- Simulate Tenant 2 session 

EXEC sp_set_session_context @key = N'TenantId', @value = 2; SELECT * FROM CustomerOrders; 

 -- Returns only rows for TenantId = 2

📌  The RLS filter activates automatically. If the context is not set or doesn’t match, zero rows are returned. 

[image: Image 25]

Figure 11.1: Quering by tenant Id. 

11.8.4.7 Step 7: Optional – Add a Role and User for Tenant Access You can simulate an app login per tenant and use a login trigger or app logic to set the SESSION_CONTEXT. 

 -- Create login and user for Tenant1 

CREATE LOGIN Tenant1User WITH PASSWORD = 'StrongP@ssword123!'; CREATE USER Tenant1User FOR LOGIN Tenant1User; GRANT SELECT ON CustomerOrders TO Tenant1User; Then log in as Tenant1User, execute:

[image: Image 26]

EXEC sp_set_session_context @key = N'TenantId', @value = 1; SELECT * FROM CustomerOrders; 

📌  This setup simulates app-level row-level access without changing application logic. 

Figure 11.2: Login as Tenant1User and then perform a query. 

11.8.5 Summary

In this exercise, you:

Created a predicate function and bound it via a security policy. 

Used SESSION_CONTEXT() to control visibility by tenant. 

Enforced tenant-level filtering without altering query logic. 

✅  Row-Level Security (RLS) is a powerful feature for tenant isolation and is critical for modern SaaS, multi-tenant apps using SQL Server. 

11.9 Exercise 28: Validate Isolation Using Test

Accounts

11.9.1 Description

After applying Row-Level Security (RLS), it’s essential to verify tenant isolation by simulating access from different users. In this lab, you’ll create test user accounts that represent different tenants and validate that each user only sees their own data—even when using the same queries. 

11.9.2 Objectives

By the end of this lab, you will:

Create separate users for different tenants. 

Use login sessions to simulate application users. 

Confirm that RLS policies enforce isolation without needing to alter application code. 

11.9.3 Prerequisites

Completed Exercise 27 ( Enforce Tenant Filtering with RLS). 

Database RlsTenantLab with RLS already applied. 

SQL Server 2025 and SSMS 21.x installed. 

Login privileges to create users, roles, and set session context. 

11.9.4 Steps

Here’s a step-by-step guide to complete this exercise:

11.9.4.1 Step 1: Reuse or Confirm Setup from Exercise Ensure you’re using the same database and that the CustomerOrders table, fn_tenant_filter() function, and TenantFilterPolicy are already present and active. 

USE RlsTenantLab; 

GO 



 -- Confirm table 

SELECT * FROM sys. tables WHERE name = 'CustomerOrders'; 



 -- Confirm security policy 

SELECT * FROM sys.security_policies WHERE name = 'TenantFilterPolicy'; 

📌  If the policy or function is missing, complete Exercise 26 before continuing. 

11.9.4.2 Step 2: Create Test Logins and Users for Tenants

Create one SQL login and user per tenant. Each will have read-only access to the table. 

 -- Tenant 1 

CREATE LOGIN Tenant1User1 WITH PASSWORD = 'Tenant1Pass!'; CREATE USER Tenant1User1 FOR LOGIN Tenant1User1; GRANT SELECT ON dbo.CustomerOrders TO Tenant1User1; 



 -- Tenant 2 

CREATE LOGIN Tenant2User1 WITH PASSWORD = 'Tenant2Pass!'; CREATE USER Tenant2User1 FOR LOGIN Tenant2User1; GRANT SELECT ON dbo.CustomerOrders TO Tenant2User1; 

📌  These users simulate tenant accounts connecting to the database from an external app or reporting tool. 

11.9.4.3 Step 3: Create a Logon Trigger to Set Tenant Context Use a logon trigger to automatically set the correct TenantId in the session context based on login. 

CREATE OR ALTER TRIGGER trg_SetTenantContext ON ALL SERVER 

FOR LOGON 

AS 

BEGIN 

DECLARE @tenantId INT; 



IF ORIGINAL_LOGIN() = 'Tenant1User1' 

SET @tenantId = 1; 

ELSE IF ORIGINAL_LOGIN() = 'Tenant2User1' 

SET @tenantId = 2; 



EXECUTE AS LOGIN = ORIGINAL_LOGIN(); 

EXEC sp_set_session_context @key = N'TenantId', @value = @tenantId; REVERT; 

END; 

📌  This ensures each tenant automatically gets the correct TenantId set during login. 

11.9.4.4 Step 4: Test Isolation via SSMS Query Windows Open two SSMS sessions with different logins and test each account’s visibility. 

Session A — Login as Tenant1User1

 -- Connect using SQL login: Tenant1User1 

USE RlsTenantLab; 

SELECT * FROM dbo.CustomerOrders; 

[image: Image 27]

Expected output: Only orders where TenantId = 1. 

Figure 11.3: Login as Tenant1User1 and then perform a query. 

Session B — Login as Tenant2User1

 -- Connect using SQL login: Tenant2User1 

USE RlsTenantLab; 

SELECT * FROM dbo.CustomerOrders; 

Expected output: Only orders where TenantId = 2. 

[image: Image 28]

Figure 11.4: Login as Tenant2User1 and then perform a query. 

📌  Notice that both users run the same query but only see their own rows due to RLS. 

11.9.4.5 Step 5: Try Bypassing RLS (Readonly Context Prevents Override) By default, sp_set_session_context can override the value set by the logon trigger. To prevent this, set the context value as readonly in the logon trigger so it cannot be changed during the session. 

Update your logon trigger as follows:

CREATE OR ALTER TRIGGER trg_SetTenantContext ON ALL SERVER 

FOR LOGON 

AS 

BEGIN 

DECLARE @tenantId INT; 



IF ORIGINAL_LOGIN() = 'Tenant1User1' 

SET @tenantId = 1; 

ELSE IF ORIGINAL_LOGIN() = 'Tenant2User1' 

SET @tenantId = 2; 



EXECUTE AS LOGIN = ORIGINAL_LOGIN(); 

EXEC sp_set_session_context @key = N'TenantId', @value = @tenantId, @readonly = 1; REVERT; 

END; 

[image: Image 29]

; 

This ensures that once the tenant context is set, it cannot be changed during the session. 

Now, attempts to override the context will fail:

 -- Attempt to impersonate Tenant2 as Tenant1User1 (run as Tenant1User1) EXEC sp_set_session_context @key = N'TenantId', @value = 2; SELECT * FROM dbo.CustomerOrders; 

Expected: The session context remains restricted to the login-defined tenant, and the override attempt will result in an error. 

Figure 11.5: Error on overriding Tenant 2 to Tenant 1. 

11.9.5 Summary

In this exercise, you:

Created separate users representing tenants. 

Used a logon trigger to automatically assign tenant context. 

Verified that Row-Level Security restricts access correctly based on login identity. 

✅  RLS enforcement is transparent to application users and ensures secure, tenant-isolated access to shared data in SQL Server. 

11.10 Exercise 29: Audit RLS Access and Log Session Context Activity

11.10.1 Description

After implementing Row-Level Security (RLS), it’s important to verify and monitor how users access sensitive or tenant-specific rows. In this lab, you will configure a mechanism to log every access attempt to a sensitive table by capturing the session context. This simulates an audit log to review who accessed which data—useful for compliance, debugging, or multi-tenant systems. 

11.10.2 Objectives

By the end of this hands-on lab, you will be able to:

Create a logging table to capture RLS access

Use SQL Server’s SESSION_CONTEXT for tenant/user tracking Implement triggers to log access to RLS-protected tables Query and interpret the access logs

11.10.3 Prerequisites

SQL Server 2025

SQL Server Management Studio (SSMS) 21.x

A new dedicated database for this exercise (to avoid affecting production or shared schemas)

11.10.4 Steps

Here’s a step-by-step guide to complete this exercise:

11.10.4.1 Step 1: Create a New Database

Let’s begin by creating a clean environment for testing and logging. 

CREATE DATABASE RLS_AuditLab; 

GO 

USE RLS_AuditLab; 

GO

✅ This isolates our test data and ensures no interference with other exercises. 

11.10.4.2 Step 2: Create Tenant Data Table and Sample Users Create a basic Invoices table with a TenantId. 

CREATE TABLE Invoices ( 

InvoiceId INT PRIMARY KEY IDENTITY, 

TenantId INT, 

CustomerName NVARCHAR(100), 

Amount MONEY 

); 

GO 



INSERT INTO Invoices (TenantId, CustomerName, Amount) VALUES (1, 'Cecep', 1200.00), 

(1, 'Bambang', 890.00), 

(2, 'Ita', 455.50), 

(2, 'Diana', 310.75); 

GO

✅ This simulates tenant-partitioned data. 

11.10.4.3 Step 3: Add Security Predicate for RLS

Define a function and security policy for tenant isolation. 

CREATE FUNCTION fn_tenant_filter(@TenantId INT) RETURNS TABLE 

WITH SCHEMABINDING 

AS 

RETURN SELECT 1 AS result 

WHERE @TenantId = CAST(SESSION_CONTEXT(N'TenantId') AS INT); GO 



CREATE SECURITY POLICY InvoiceTenantFilter 

ADD FILTER PREDICATE dbo.fn_tenant_filter(TenantId) ON dbo.Invoices 

WITH (STATE = ON); 

GO

✅ This ensures users can only see data matching their session’s tenant ID. 

11.10.4.4 Step 4: Create a Logging Table

Now create a table to capture access attempts. 

CREATE TABLE InvoiceAccessLog ( 

LogId INT IDENTITY PRIMARY KEY, 

TenantId INT, 

    Username NVARCHAR(100), 

AccessedAt DATETIME2 DEFAULT SYSUTCDATETIME(), 

QueryType NVARCHAR(10) 

); 

GO

✅ This will be used by a trigger to log activity transparently. 

11.10.4.5 Step 5: Create AFTER INSERT Trigger

We’ll simulate access logging by capturing INSERT operations. 

 -- SQL Server does not support SELECT triggers; use an AFTER INSERT trigger for demonstrati CREATE TRIGGER trg_log_invoice_access 

ON Invoices 

AFTER INSERT 

AS 

BEGIN 

DECLARE @tenantId INT = CAST(SESSION_CONTEXT(N'TenantId') AS INT); DECLARE @username NVARCHAR(100) = SYSTEM_USER; 



INSERT INTO InvoiceAccessLog (TenantId, Username, QueryType) SELECT DISTINCT @tenantId, @username, 'INSERT' 

FROM inserted; 

END; 

GO

✅ This will log all SELECTs made to the table. 

11.10.4.6 Step 6: Simulate Tenant Access

Let’s simulate different users accessing the system. 

 -- Simulate access as Tenant 1 

EXEC sp_set_session_context 'TenantId', 1; 

INSERT INTO Invoices (TenantId, CustomerName, Amount) VALUES (1, 'Tenant1 Customer', 100.00



 -- Simulate access as Tenant 2 

EXEC sp_set_session_context 'TenantId', 2; 

INSERT INTO Invoices (TenantId, CustomerName, Amount) VALUES (2, 'Tenant2 Customer', 200.00

✅ Each access should insert a record into InvoiceAccessLog. 

11.10.4.7 Step 7: Review Audit Logs

Now review the contents of the audit table. 

SELECT * FROM InvoiceAccessLog; 

[image: Image 30]

✅ You should see which tenant accessed the data, at what time, and what operation was performed. 

Figure 11.6: Showing audit log from InvoiceAccessLog table. 

11.10.5 Summary

In this exercise, you:

Created an RLS-protected table using SESSION_CONTEXT

Built an audit mechanism to capture access events

Simulated tenants accessing their own data

Logged and reviewed access history using a custom log table

✅ This approach enhances observability and compliance, particularly for multi-tenant or regulated systems. 

11.11 Conclusion

In this chapter, you learned how to implement Row-Level Security (RLS) in SQL

Server 2025 to enforce tenant isolation and fine-grained access control. You explored the architecture of RLS, created security predicates, and applied them through security policies. Additionally, you practiced auditing access to ensure compliance and security in multi-tenant applications. 

12 Masking, Encryption, and Auditing In today’s regulatory environment, safeguarding sensitive business data—such as personal identifiers, financials, and healthcare records—is not optional. This chapter explores key SQL Server 2025 features for data privacy and protection, including Dynamic Data Masking (DDM), encryption options, and auditing access to sYou’ll create a table with sensitive data, then use the Always Encrypted Wizard in SSMS 21.x to encrypt existing columns. This approach is more practical and user-friendly than manual key management.nsitive data. 

12.1 Dynamic Data Masking (DDM)

Dynamic Data Masking limits sensitive data exposure by masking it in query results, while keeping it unchanged in storage. 

 Ideal for restricting sensitive columns (e.g., SSNs, emails) from non-privileged users. 

Here’s how to apply DDM to a column:

ALTER TABLE Employees 

ALTER COLUMN Email ADD MASKED WITH (FUNCTION = 'email()'); The following functions are commonly used for masking:

Function Example Column

Masked Output

default()

Salary → 0

Numeric/string

fallback

email()

jane@corp.com → jXXX@XXXX.com

partial()

partial(1,"XXXX",1) → shows start/end only

For numeric data: masks with random

random()

values

We can create a table with masked columns like this: CREATE TABLE Customers ( 

CustomerID INT PRIMARY KEY, 

FullName NVARCHAR(100), 

Email NVARCHAR(100) MASKED WITH (FUNCTION = 'email()'), CreditCard CHAR(16) MASKED WITH (FUNCTION = 'partial(4,"XXXX-XXXX-XXXX-",4)')

); 

 Masking is applied at query time for users without UNMASK permission. 

To allow a user to see masked data, you can grant them the UNMASK permission:

 -- Allow access to see original data 

GRANT UNMASK TO auditor_user; 



 -- Revoke access 

REVOKE UNMASK FROM analyst_user; 

Use DDM to protect sensitive data while allowing users to work with the data they need without exposing sensitive information. 

12.2 Encryption Options

SQL Server supports multiple encryption models for securing data at rest, in transit, and in use. 

12.2.1 Transparent Data Encryption (TDE)

Encrypts the entire database at the file level, including backups and transaction logs. 

We can enable TDE with the following steps:

 -- Step 1: Create a master key 

CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'YourStrongPassword!'; 



 -- Step 2: Create certificate 

CREATE CERTIFICATE MyTDECert WITH SUBJECT = 'TDE Cert'; 



 -- Step 3: Create encryption key and enable TDE 

CREATE DATABASE ENCRYPTION KEY 

WITH ALGORITHM = AES_256 

ENCRYPTION BY SERVER CERTIFICATE MyTDECert; 



ALTER DATABASE SalesDB SET ENCRYPTION ON; 

These commands create a master key, a certificate, and then enable TDE on the SalesDB database. 

12.2.2 Always Encrypted

Encrypts specific columns at the client-side, so data is never visible in plaintext to SQL Server. 

 Ideal for highly sensitive values like SSNs, credit cards. 

Requires client drivers and key management. 

Columns must be defined as encrypted during creation. 

12.2.3 Cell-Level Encryption (CLE)

Encrypts individual column values using functions like EncryptByKey and DecryptByKey. 

Here’s how to encrypt a credit card number:

 -- Create symmetric key 

CREATE SYMMETRIC KEY CreditCardKey 

WITH ALGORITHM = AES_256 

ENCRYPTION BY PASSWORD = 'KeyPassword123!'; 



 -- Open and use the key 

OPEN SYMMETRIC KEY CreditCardKey DECRYPTION BY PASSWORD = 'KeyPassword123!'; SELECT  

CONVERT(varchar, DecryptByKey(EncryptedCreditCard)) AS CreditCard FROM Customers; 



 -- Close key 

CLOSE SYMMETRIC KEY CreditCardKey; 

12.3 Auditing Access to Sensitive Data

SQL Server provides native tools to track and log access to sensitive tables, columns, or actions. 

SQL Server Audit allows you to create server-level and database-level audits to track specific actions, such as:

SELECT on sensitive columns

INSERT/UPDATE on critical tables

Login/logout events

You can create an audit and then define a database audit specification to capture specific actions:

 -- Create server audit 

CREATE SERVER AUDIT Audit_SensitiveData 

TO FILE (FILEPATH = 'C:\AuditLogs\', MAXSIZE = 10 MB); 



 -- Enable the audit 

ALTER SERVER AUDIT Audit_SensitiveData WITH (STATE = ON); 



 -- Create database audit specification 

CREATE DATABASE AUDIT SPECIFICATION Audit_PII_Reads FOR SERVER AUDIT Audit_SensitiveData 

ADD (SELECT ON OBJECT::dbo.Customers BY public); 



 -- Enable it 

ALTER DATABASE AUDIT SPECIFICATION Audit_PII_Reads WITH (STATE = ON); This setup captures all SELECT operations on the Customers table and logs them to the specified audit file. 

 You can also filter by user roles or specific actions. 

You can query the audit logs using the sys.fn_get_audit_file function: SELECT * 

FROM sys.fn_get_audit_file('C:\AuditLogs\*.sqlaudit', DEFAULT, DEFAULT); 12.4 Best Practices for Data Protection

The following best practices can help ensure effective data protection in SQL

Server:

Practice

Why It Matters

Use DDM for casual data hiding

Easy to implement, low impact

Use Always Encrypted for PII/PHI

Data never exposed to DB or admins

Use TDE for broad protection

Transparent protection of entire database

Practice

Why It Matters

Limit UNMASK and CONTROL grants

Enforce least privilege

Enable auditing on sensitive objects For compliance and breach detection 12.5 Exercise 30: Mask Email and Phone Fields in

Query Output

12.5.1 Description

In this exercise, you will explore Dynamic Data Masking (DDM), a feature in SQL Server that helps protect sensitive information such as email addresses and phone numbers by obfuscating data in query results. This is especially useful in scenarios where users should not see full personal data—like junior analysts or customer support staff. 

You’ll define masking rules directly in the schema, control who sees unmasked data, and test the impact through different users. 

12.5.2 Objectives

By the end of this lab, you will be able to:

Create a table with sensitive columns. 

Apply built-in DDM functions (email, partial, default) to mask data. 

Verify masked output for standard users. 

Grant unmask privileges to view actual data. 

12.5.3 Prerequisites

SQL Server 2025 instance with SSMS 21.x. 

Permission to create databases, users, and apply masking rules. 

12.5.4 Steps

Here’s a step-by-step guide to complete this exercise:

12.5.4.1 Step 1: Create a New Database for the Lab

Let’s begin by creating a new test database called DataMaskingLab. 

CREATE DATABASE DataMaskingLab; 

GO 



USE DataMaskingLab; 

GO

📌  This database will hold our customer table and test users. 

12.5.4.2 Step 2: Create a Table with Sensitive Fields Now define a Customers table with columns for name, email, and phone. We’ll apply masks to email and phone fields using DDM. 

CREATE TABLE Customers ( 

CustomerId INT IDENTITY PRIMARY KEY, 

FullName NVARCHAR(100), 

Email NVARCHAR(100) MASKED WITH (FUNCTION = 'email()'), PhoneNumber NVARCHAR(20) MASKED WITH (FUNCTION = 'partial(2,"XXXXXXX",2)') 

); 

📌  The email() mask hides the username part; partial() keeps the first and last 2

 characters visible in phone numbers. 

12.5.4.3 Step 3: Insert Sample Data

Next, insert several rows with full data. 

INSERT INTO Customers (FullName, Email, PhoneNumber) VALUES 

('Priya Sharma', 'priya.sharma@ilmudata.id', '08123456789'), ('Wei Zhang', 'wei.zhang@ilmudata.id', '08561234567'), 

('Ananya Gupta', 'ananya.gupta@ilmudata.id', '08781239876'); 12.5.4.4 Step 4: Query the Data as Admin

Check the data from your current admin context. You’ll see the full values. 

SELECT * FROM Customers; 

Expected result as shown below:

[image: Image 31]

Figure 12.1: Showing data from Customers table. 

12.5.4.5 Step 5: Create a Limited Access User

Create a new login and user that will query the data without unmasking rights. 

CREATE LOGIN ReadOnlyUser WITH PASSWORD = 'ReadOnlyPass!'; CREATE USER ReadOnlyUser FOR LOGIN ReadOnlyUser; GRANT SELECT ON Customers TO ReadOnlyUser; 

📌  The new user can query the table, but sensitive fields should be masked. 

12.5.4.6 Step 6: Open a New Session as ReadOnlyUser

In SSMS, open a new query window using login:

Username: ReadOnlyUser

Password: ReadOnlyPass! 

Run:

USE DataMaskingLab; 

SELECT * FROM Customers; 

Expected masked output as shown below:

[image: Image 32]

[image: Image 33]

Figure 12.2: Showing masking data. 

12.5.4.7 Step 7: Grant UNMASK Permission

Return to the admin session and grant the user permission to see full data. 

GRANT UNMASK TO ReadOnlyUser; 

Re-run the query in the other window logged in as ReadOnlyUser. 

Now the user will see unmasked data, same as the admin. 

Figure 12.3: Showing unmasked data from Customers table. 

12.5.5 Summary

In this hands-on lab, you:

Created a table with masked email and phone fields. 

Used Dynamic Data Masking (DDM) to obscure output without changing the data. 

Simulated masked and unmasked access for different users. 

✅  DDM allows for secure access control with minimal application logic and is perfect for compliance with data privacy regulations. 

12.6 Exercise 31: Encrypt Sensitive Data Using Always Encrypted

12.6.1 Description

This exercise introduces Always Encrypted, a feature in SQL Server that protects sensitive data like credit card numbers or national IDs  at rest, in transit, and in use. The encryption and decryption are handled on the client side—so SQL Server itself can’t view the plaintext data. 

You’ll create a table with sensitive data, then use the Always Encrypted Wizard in SSMS 21.x to encrypt existing columns. This approach is more practical and user-friendly than manual key management. 

12.6.2 Objectives

By the end of this lab, you will:

Create a table with sensitive data

Use the Always Encrypted Wizard in SSMS 21.x to encrypt columns Configure Column Master Key (CMK) and Column Encryption Key (CEK) automatically

Test querying encrypted data with column encryption enabled/disabled Understand limitations when querying encrypted columns

12.6.3 Prerequisites

SQL Server 2019 or later and SSMS 21.x (Always Encrypted UI support required)

Windows environment (for Windows Certificate Store)

Administrative privileges on the local machine

12.6.4 Steps

Here’s a step-by-step guide to complete this exercise:

12.6.4.1 Step 1: Create a New Database and Table

Start by creating a new lab database and a table with sensitive data: CREATE DATABASE AlwaysEncryptedLab; 

GO 

USE AlwaysEncryptedLab; 

GO 



 -- Create table with sensitive data (unencrypted initially) CREATE TABLE Customers ( 

CustomerId INT IDENTITY PRIMARY KEY, 

FullName NVARCHAR(100), 

Email NVARCHAR(100), 

NationalID NVARCHAR(20), 

CreditCardNumber NVARCHAR(20), 

Salary DECIMAL(10,2) 

); 

12.6.4.2 Step 2: Insert Sample Data

Insert some test data that we’ll encrypt later:

INSERT INTO Customers (FullName, Email, NationalID, CreditCardNumber, Salary) VALUES 

('Thariq Akbar', 'thariq.akbar@ilmudata.id', '1234567890123456', '4532-1234-5678-9012', 750

('Zahra Zhafirah', 'zahra.zhafirah@ilmudata.id', '9876543210987654', '5678-9012-3456-7890', ('Ananda Putra', 'ananda.putra@ilmudata.id', '5555666677778888', '1234-5678-9012-3456', 950

Verify the data was inserted:

SELECT * FROM Customers; 

You should see the full values in the NationalID and CreditCardNumber columns. 

12.6.4.3 Step 3: Launch the Always Encrypted Wizard

1. In Object Explorer, expand AlwaysEncryptedLab database so that you can see the tables

2. Right-click on the table name Customers and select menu Always Encrypted Wizard 3. The Always Encrypted Wizard will open

[image: Image 34]

Figure 12.4: Always Encrypted Wizard. 

📌  This wizard will guide you through encrypting existing columns without manual key management. 

12.6.4.4 Step 4: Select Columns to Encrypt

In the Column Selection page:

1. Select the table: dbo.Customers

2. Choose columns to encrypt:

NationalID: Select Deterministic encryption (allows equality searches) CreditCardNumber: Select Randomized encryption (highest security) 3. Click Next

[image: Image 35]

Figure 12.5: Configuring columns. 

📌  Deterministic encryption allows WHERE clauses with equality. Randomized provides better security but limits querying. 

12.6.4.5 Step 5: Configure Master Key

In the Master Key Configuration page:

1. Key Store: Select Windows Certificate Store 2. Auto generate column master key: select this option 3. Select Current User for a master key source

4. Click Next

[image: Image 36]

Figure 12.6: Configuring master key. 

📌  The wizard will automatically create a certificate in your Windows Certificate Store. 

12.6.4.6 Step 6: Run Settings

1. Select Offline (Default) for the encryption process 2. Click Next to confirm the settings

12.6.4.7 Step 7: Validation and Summary

1. Validation page: The wizard checks prerequisites 2. Summary page: Review the encryption settings:

Column Master Key will be created

[image: Image 37]

Column Encryption Key will be created

Selected columns will be encrypted

3. Click Finish to start the encryption process

Figure 12.7: Setting confirmation. 

📌  This process may take several minutes as it encrypts existing data. 

12.6.4.8 Step 8: Verify Encryption Setup

After the wizard completes, verify the encryption objects were created:

 -- Check Column Master Keys 

SELECT name, key_store_provider_name  

FROM sys.column_master_keys; 



 -- Check Column Encryption Keys  ex 

[image: Image 38]

SELECT name, column_encryption_key_id 

FROM sys.column_encryption_keys; 



 -- Check encrypted columns 

SELECT c.name, c.encryption_type_desc, c.encryption_algorithm_name FROM sys. columns c 

WHERE c.encryption_type IS NOT NULL; Figure 12.8: Verifying the encryption objects. 

12.6.4.9 Step 8: Test Querying with Column Encryption Disabled To test viewing encrypted data as binary values, we need to create a new connection with Always Encrypted disabled:

1. In Object Explorer, click Connect → Database Engine 2. Enter your server details

3. Click Advanced button

4. Select Disabled on column encryption settings

[image: Image 39]

Figure 12.9: Verifying the encryption objects. 

5. Click OK button

6. Click Connect

7. In the new connection, run:

USE AlwaysEncryptedLab; 

SELECT * FROM Customers; 

[image: Image 40]

[image: Image 41]

Figure 12.10: Showing encrypted data on query. 

📌  You should see encrypted binary data in the NationalID and CreditCardNumber columns (showing as hexadecimal values like 0x01A2…). 

12.6.4.10 Step 9: Test Querying with Column Encryption Enabled Now test with Always Encrypted enabled to see decrypted values: 1. In Object Explorer, click Connect → Database Engine 2. Enter your server details

3. Click Advanced button

4. Select Enabled on column encryption settings

5. Click Connect

6. In this new connection, run:

USE AlwaysEncryptedLab; 

SELECT * FROM Customers; 

Figure 12.11: Showing descrypted data on query. 

📌  You should now see the actual (decrypted) values in all columns, exactly as you inserted them. 

12.6.4.11 Step 10: Test Query Limitations

Try different query types to understand encryption limitations:

✔ Equality search on deterministic encrypted column (works): SELECT * FROM Customers  

WHERE NationalID = '1234567890123456'; 

✖ Pattern search on encrypted column (fails):

SELECT * FROM Customers  

WHERE CreditCardNumber LIKE '4532%';  -- This will give an error

✖ Comparison operators on randomized encrypted column (fails): SELECT * FROM Customers  

WHERE CreditCardNumber > '4000-0000-0000-0000';  -- This will give an error

📌  Only equality comparisons work with deterministic encryption. No operations work with randomized encryption except retrieval. 

12.6.5 Summary

In this lab, you:

Created a table with sensitive data using standard SQL

Used the Always Encrypted Wizard in SSMS 21.x to encrypt existing columns

Automatically configured Column Master Key (CMK) and Column Encryption Key (CEK)

Tested querying encrypted data with different connection settings Understood the limitations and proper use cases for deterministic vs. randomized encryption

✅  This wizard-based approach is much more practical for real-world implementations than manual key management, making Always Encrypted accessible for protecting sensitive data in production environments. 

12.7 Exercise 32: Enable and Configure an Audit Policy

12.7.1 Description

This exercise focuses on using SQL Server Audit, a built-in feature for tracking and logging server and database-level activity. You’ll create an audit specification that captures SELECT operations on a sensitive table, configure it to write logs to a file, and then test it by querying the data. This is critical for compliance and data access monitoring in regulated environments (e.g., GDPR, HIPAA). 

12.7.2 Objectives

By the end of this lab, you will:

Create a server audit and database audit specification

Configure SQL Server to store audit logs in a file

Monitor SELECT statements executed on sensitive data

Review audit log content via T-SQL

12.7.3 Prerequisites

SQL Server 2025 instance with FILESTREAM or file system access SSMS 21.x with administrative privileges

Use AlwaysEncryptedLab database from the previous exercise or any test database with a sensitive table

12.7.4 Steps

Here’s a step-by-step guide to complete this exercise:

12.7.4.1 Step 1: Create an Audit Object at the Server Level Start by creating a file-based audit log on your local system. 

CREATE SERVER AUDIT Audit_Read_Access 

TO FILE ( 

FILEPATH = 'C:\SQLAuditLogs\', 

MAXSIZE = 10 MB, 

MAX_FILES = 10, 

RESERVE_DISK_SPACE = OFF 

) 

WITH ( 

QUEUE_DELAY = 1000, 

ON_FAILURE = CONTINUE 

); 

📌  Make sure C:\SQLAuditLogs\ exists and SQL Server has permission to write to it. 

Then enable the audit:

ALTER SERVER AUDIT Audit_Read_Access 

WITH (STATE = ON); 

12.7.4.2 Step 2: Create a Database Audit Specification Switch to the target database and create a specification to track SELECT

operations on a sensitive table. 

USE AlwaysEncryptedLab; 

GO 



CREATE DATABASE AUDIT SPECIFICATION Audit_Select_Customers FOR SERVER AUDIT Audit_Read_Access 

ADD (SELECT ON dbo.Customers BY PUBLIC) WITH (STATE = ON); 

📌  This specification audits all SELECTs on the Customers table by any user. 

12.7.4.3 Step 3: Generate Audit Events

Run a SELECT query to trigger the audit:

SELECT * FROM dbo.Customers; 

Run this as a different user (if available) to simulate real access. 

12.7.4.4 Step 4: Read the Audit Logs

To read and inspect the audit logs stored in the file:

SELECT 

event_time, 

session_server_principal_name, 

database_name, 

object_name, 

statement, 

action_id, 

[image: Image 42]

succeeded 

FROM sys.fn_get_audit_file('C:\SQLAuditLogs\*.sqlaudit', DEFAULT, DEFAULT); You should see the SELECT statements you ran earlier, with information about the user and the exact query text. 

Figure 12.12: Showing the audit logs. 

12.7.4.5 Step 5: (Optional) Audit Other Actions

You can expand the scope to other actions like INSERT, UPDATE, or SCHEMA_OBJECT_CHANGE_GROUP:

ALTER DATABASE AUDIT SPECIFICATION Audit_Select_Customers WITH (STATE = OFF); 

GO 



ALTER DATABASE AUDIT SPECIFICATION Audit_Select_Customers ADD (UPDATE ON dbo.Customers BY PUBLIC); GO 



ALTER DATABASE AUDIT SPECIFICATION Audit_Select_Customers WITH (STATE = ON); 

GO

This will allow you to track updates on the Customers table as well. 

12.7.5 Summary

In this exercise, you:

Created a server audit to capture audit logs in a file Monitored SELECT access on a sensitive table (Customers) Reviewed audit logs via sys.fn_get_audit_file

Learned how SQL Server Audit supports visibility and compliance

✅  SQL Server Audit is a powerful tool for tracking access to protected data and generating audit trails required by privacy regulations and internal policies. 

12.8 Conclusion

In this chapter, we explored essential features for protecting sensitive data in SQL

Server:

Dynamic Data Masking (DDM) to obscure sensitive information in query results. 

Always Encrypted to secure data at rest, in transit, and in use. 

SQL Server Audit to track and log access to sensitive data. 

These features help ensure compliance with data privacy regulations and protect sensitive information from unauthorized access, while still allowing necessary operations on the data. 

13 Complying with GDPR and Privacy

Regulations

With global regulations like the General Data Protection Regulation (GDPR) and others (e.g., CCPA, HIPAA), organizations must ensure that personal data is handled lawfully, transparently, and securely. This chapter outlines how to implement privacy-centric practices using SQL Server 2025—supporting data access, erasure, portability, and principles like data minimization and pseudonymization. 

13.1 Key GDPR Data Subject Rights

GDPR grants individuals several rights over their personal data. SQL Server solutions must support the ability to fulfill these rights effectively and securely. 

13.1.1 Right of Access (Article 15)

The right of access ensures that individuals can obtain confirmation as to whether their personal data is being processed, and, if so, access to that data along with information about its use. Organizations must be able to identify and retrieve all relevant personal data for a specific user upon request. This typically involves searching across multiple tables and systems to gather a comprehensive data set. 

In SQL Server, supporting this right means designing your schema and queries to efficiently locate and return all personal data linked to a user. This may require maintaining clear relationships between user identities and their associated records, and ensuring that sensitive data is not inadvertently exposed to unauthorized users. Implementing robust authentication and authorization controls is essential to prevent data leaks during access requests. 

 Users have the right to view their personal data. 

We can create views or stored procedures that return personal records based on the user’s identity. Following the principle of least privilege, we can restrict access to only the data that the user is authorized to see. 

Create views or stored procedures to return personal records based on identity. 

Use Row-Level Security (RLS) to restrict access to the requesting user only. 

Here’s an example of a view that allows users to access their own personal information:

 -- Example: View for user to access their own data 

CREATE VIEW HR.vw_MyPersonalInfo AS 

SELECT FirstName, LastName, Email, HireDate 

FROM HR.Employees 

WHERE LoginName = SYSTEM_USER; 

13.1.2 Right to Erasure / Right to Be Forgotten (Article 17) The right to erasure allows individuals to request the deletion of their personal data when it is no longer necessary for the purposes for which it was collected, or if they withdraw consent on which the processing is based. Organizations must implement processes to handle such requests efficiently while ensuring compliance with legal obligations. 

 Users can request that their personal data be deleted. 

To implement the right to erasure, you can create a stored procedure that deletes a user’s personal data from all relevant tables. This procedure should ensure that all associated records are also removed to prevent orphaned data. 

Design DELETE logic or masking strategies. 

Implement a soft-delete mechanism for traceability. 

Audit every erase request. 

We can implement soft-delete logic by adding a flag to indicate that the record is deleted, rather than physically removing it from the database. This allows for traceability while complying with the right to erasure. 

 -- Soft-delete example 

UPDATE Customers 

SET IsDeleted = 1, DeletedAt = GETDATE() 

WHERE CustomerID = @UserID; 

13.1.3 Right to Data Portability (Article 20)

The right to data portability allows individuals to receive their personal data in a structured, commonly used, and machine-readable format, and to transmit that data to another controller without hindrance. This right is particularly relevant when users wish to switch service providers or access their data for personal use. 

 Users can request a structured, machine-readable export of their data. 

We can create a stored procedure that exports user data into a format like CSV or JSON. This procedure should ensure that the exported data is structured and includes all relevant personal information. 

Provide data in formats like JSON, CSV, or XML. 

Use FOR JSON or FOR XML to generate export formats. 

 -- Export customer profile as JSON 

SELECT CustomerID, FirstName, LastName, Email 

FROM Customers 

WHERE CustomerID = @UserID 

FOR JSON PATH; 

 Combine with application-layer file generation or BCP/export tools. 

13.2 Data Minimization

Data minimization is a key principle of GDPR that requires organizations to collect and process only the personal data that is necessary for the intended purpose. This means avoiding the collection of excessive or irrelevant data, which can reduce the risk of data breaches and enhance user privacy. 

 Collect and retain only data that is necessary for processing. 

Follow these techniques to implement data minimization in SQL Server: Avoid SELECT * queries; use only needed columns. 

Archive or purge unused fields periodically. 

Use views or column-level security to restrict visibility. 

 -- Example: Limit exposed data 

CREATE VIEW Public.vw_EmployeeDirectory AS 

SELECT FirstName, LastName, Department 

FROM HR.Employees; 

13.3 Pseudonymization

Pseudonymization is a technique that replaces personal identifiers with pseudonyms or tokens, allowing data to be processed without directly identifying individuals. This approach helps reduce the risk of re-identification while still enabling data analysis and processing. 

 Transform personal data so it can’t be attributed to a person without additional info. 

Here are some common pseudonymization techniques:

Replace names or emails with pseudonyms or tokens. 

Use hashing, encryption, or masking. 

 -- Hash email for pseudonymization 

SELECT CustomerID, HASHBYTES('SHA2_256', Email) AS PseudoEmail FROM Customers; 

 Store original values separately with strict access control. 

13.4 Data Classification in SQL Server 2025

SQL Server 2025 supports data classification and sensitivity labels to help organizations identify and manage sensitive data. This feature allows you to classify data based on its sensitivity level, making it easier to apply security measures and compliance controls. 

To classify sensitive data, you can use the ADD SENSITIVITY CLASSIFICATION command:

 -- Mark column as sensitive 

ADD SENSITIVITY CLASSIFICATION TO Customers.Email WITH (LABEL = 'Confidential', INFORMATION_TYPE = 'Contact Info'); 

 Use SQL Server Management Studio (SSMS) to audit and review classifications. 

13.5 Auditing for Compliance

Auditing is essential for compliance with GDPR and other privacy regulations. 

SQL Server provides built-in auditing features that allow you to track data access, modifications, and security events. This helps organizations demonstrate compliance and investigate potential breaches. 

To comply with GDPR, organizations must log:

Data access events

Erasure and export requests

Permission changes

Following SQL Server Audit features can help you track compliance: CREATE DATABASE AUDIT SPECIFICATION GDPR_AccessLog FOR SERVER AUDIT GDPRAudit 

ADD (SELECT ON Customers BY public), ADD (DELETE ON Customers BY public); 13.6 Best Practices for GDPR Compliance

Following best practices ensures that your SQL Server environment is compliant with GDPR and other privacy regulations. Here are some key practices: Practice

Why It Matters

Apply RLS and DDM

Minimize unnecessary data

exposure

Track data exports and erasures

Mandatory for legal compliance

Use pseudonymization where possible

Helps reduce risk in analytics

Purge expired or unused data regularly

Aligns with data minimization

principle

Practice

Why It Matters

Create procedures/views for data access

Supports timely, accurate

requests

responses

13.7 Exercise 33: Apply DDM to PII Columns

13.7.1 Description

In this exercise, we’ll explore how to apply Dynamic Data Masking (DDM) in SQL Server 2025 to protect Personally Identifiable Information (PII) such as emails, phone numbers, and national ID numbers. DDM helps minimize exposure of sensitive data by automatically masking it in the result set based on the user’s access privileges. 

You will define masking rules on selected columns and test how users with different privileges see the data differently—crucial for meeting GDPR data minimization and privacy-by-default principles. 

13.7.2 Objectives

By the end of this hands-on lab, you will:

Create a table containing PII fields

Apply dynamic masking functions to relevant columns

Create test users to validate how masking works

Understand how DDM supports GDPR-aligned data protection strategies 13.7.3 Prerequisites

SQL Server 2025 installed

SQL Server Management Studio (SSMS) 21.x

sysadmin or db_owner privileges to create database and users Windows or SQL logins (can be test/demo users)

13.7.4 Steps

Here’s a step-by-step guide to complete this exercise:

13.7.4.1 Step 1: Create the Working Database and Table Let’s start by creating a fresh database to isolate this lab and define a simple table with typical PII fields. 

CREATE DATABASE GDPRLab; 

GO 

USE GDPRLab; 

GO 



CREATE TABLE Customers ( 

CustomerID INT PRIMARY KEY, 

FullName NVARCHAR(100), 

Email NVARCHAR(100) MASKED WITH (FUNCTION = 'email()'), Phone VARCHAR(20) MASKED WITH (FUNCTION = 'partial(0,"XXX-XXX-",4)'), SSN CHAR(11) MASKED WITH (FUNCTION = 'default()') 

); 

📌 The MASKED WITH clause applies the masking function. 

email() masks the email except for the first character and domain. 

partial() masks part of the phone number. 

default() fully obfuscates the value. 

13.7.4.2 Step 2: Insert Sample Data

Add some rows so we can later observe how masking works. 

INSERT INTO Customers (CustomerID, FullName, Email, Phone, SSN) VALUES 

(1, 'Devi Johnson', 'devi.johnson@ilmudata.id', '555-123-4567', '123-45-6789'), (2, 'Smith Lee', 'smith.lee@ilmudata.id', '555-987-6543', '987-65-4321'), (3, 'Hans Müller', 'hans.mueller@ilmudata.id', '555-111-2222', '321-54-6789'), (4, 'Giulia Rossi', 'giulia.rossi@ilmudata.id', '555-333-4444', '654-32-1987'), (5, 'Pierre Dubois', 'pierre.dubois@ilmudata.id', '555-555-6666', '789-12-3456'), (6, 'Sven de Vries', 'sven.devries@ilmudata.id', '555-777-8888', '876-54-3210'); This creates a diverse set of customers with different names, emails, phones, and SSNs. 

13.7.4.3 Step 3: Create a Low-Privilege User

Now let’s create a login and user with  read-only access (but no UNMASK

permission):

CREATE LOGIN AnalystUser WITH PASSWORD = 'StrongPassword!123'; CREATE USER AnalystUser FOR LOGIN AnalystUser; ALTER ROLE db_datareader ADD MEMBER AnalystUser; 

[image: Image 43]

🧠  The AnalystUser can read data but should see it masked. 

13.7.4.4 Step 4: Test the Masking Behavior

Now log in as AnalystUser (or simulate using EXECUTE AS) and run: EXECUTE AS USER = 'AnalystUser'; 

SELECT * FROM Customers; 

REVERT; 

✅ You will see:

Masked email like aXXXX@XXXX.com

Partially masked phone like XXX-XXX-4567

SSN shown as XXXXXXX

Figure 13.1: Showing masked data. 

13.7.4.5 Step 5: Unmask Privilege for Admin Role

If someone with full privileges needs to see the original data, you can grant UNMASK. 

GRANT UNMASK TO AnalystUser; 

[image: Image 44]

Then re-run the SELECT * FROM Customers as AnalystUser and observe the difference. 

Figure 13.2: Showing unmasked data. 

13.7.5 Summary

In this lab, you:

Created a table with PII data (email, phone, SSN)

Applied various masking functions using DDM

Verified the effect of masking on a limited user account Used UNMASK permission to control visibility

✅  Dynamic Data Masking is a lightweight, built-in mechanism to help protect sensitive data from unauthorized access and aligns with GDPR’s privacy-by-design principle. 

13.8 Exercise 34: Apply Pseudonymization with Computed Columns or Hashes

13.8.1 Description

In this exercise, you’ll learn how to implement pseudonymization techniques using computed columns and hashing functions in SQL Server 2025. While masking hides data on output, pseudonymization transforms the data at rest—an essential GDPR strategy for reducing re-identification risks while allowing analytical usage. 

We’ll use SHA2 hashing to pseudonymize sensitive fields like email and phone. 

This approach supports privacy-by-design practices without sacrificing data integrity in analytics. 

13.8.2 Objectives

By the end of this lab, you will:

Understand the concept of pseudonymization vs. masking

Use SQL Server’s built-in hashing function HASHBYTES

Create computed columns that store hashed PII

Explore usage in GDPR-compliant analytics

13.8.3 Prerequisites

SQL Server 2025 installed

SQL Server Management Studio (SSMS) 21.x

sysadmin or db_owner privileges

Enable CONCAT_NULL_YIELDS_NULL (default is ON)

13.8.4 Steps

Here’s a step-by-step guide to complete this exercise:

13.8.4.1 Step 1: Create a New Database and Table

Start by creating a new working environment to isolate pseudonymized data. 

[image: Image 45]

CREATE DATABASE GDPRPseudonymLab; 

GO 

USE GDPRPseudonymLab; 

GO 



CREATE TABLE Customers ( 

CustomerID INT PRIMARY KEY, 

FullName NVARCHAR(100), 

Email NVARCHAR(100), 

Phone VARCHAR(20), 

EmailHash AS CONVERT(VARCHAR(100), HASHBYTES('SHA2_256', Email), 2) PERSISTED, PhoneHash AS CONVERT(VARCHAR(100), HASHBYTES('SHA2_256', Phone), 2) PERSISTED 

); 

📌 Here:

HASHBYTES('SHA2_256', column) produces a 256-bit hash

CONVERT(..., 2) renders the binary hash as a hex string

PERSISTED ensures the computed hash is stored physically and indexable 13.8.4.2 Step 2: Insert Sample Data

Add records with real email and phone numbers. 

INSERT INTO Customers (CustomerID, FullName, Email, Phone) VALUES 

(1, 'Hans Müller', 'hans.mueller@neuville.id', '555-123-4567'), (2, 'Pierre Dubois', 'pierre.dubois@neuville.id', '555-987-6543'); Now query to view the hashed fields:

SELECT CustomerID, Email, EmailHash, Phone, PhoneHash FROM Customers; You’ll see EmailHash and PhoneHash show long SHA-256 hash values. 

Figure 13.3: Showing hashed data. 

13.8.4.3 Step 3: Use Hashed Columns for Analytics Joins Let’s say you need to pseudonymously join customers with another table using hashed emails:

CREATE TABLE EmailCampaigns ( 

CampaignID INT, 

TargetEmailHash VARCHAR(100) 

); 



INSERT INTO EmailCampaigns (CampaignID, TargetEmailHash) VALUES 

(1001, (SELECT EmailHash FROM Customers WHERE CustomerID = 1)); Now pseudonymously match records:

SELECT c.CustomerID, c.FullName, e.CampaignID 

FROM Customers c 

JOIN EmailCampaigns e ON c.EmailHash = e.TargetEmailHash; 

🧠 You achieved a GDPR-aligned join  without using raw PII. 

13.8.4.4 Step 4: Add Index on Hashed Columns (Optional) You can index the hashed column for fast filtering:

CREATE INDEX IX_Customers_EmailHash ON Customers (EmailHash); This supports performance in large analytical datasets. 

13.8.5 Summary

In this lab, you:

Created computed columns with HASHBYTES for pseudonymization Stored SHA-256 hashes for email and phone

Used hashed fields for secure joins

Understood the distinction between masking and pseudonymization

✅  Pseudonymization enhances privacy compliance and enables GDPR-compatible analytics without compromising data utility. 

13.9 Exercise 35: Implement the Right to Erasure and

Portability

13.9.1 Description

The General Data Protection Regulation (GDPR) grants individuals the right to access, port, and erase their personal data. In this lab, you’ll learn how to model and implement these rights in SQL Server 2025 using T-SQL. You will create mechanisms to:

Export user data in a machine-readable format (CSV-compatible) Erase personal data while preserving referential integrity These operations are foundational for compliance in modern business systems. 

13.9.2 Objectives

By completing this exercise, you will:

Export PII and transactional data in a readable and portable format Pseudonymize or erase data fields to support “right to be forgotten” 

Use safe deletion via UPDATE and NULLing strategies instead of physical DELETE

13.9.3 Prerequisites

SQL Server 2025 installed

SQL Server Management Studio (SSMS) 21.x

GDPRPseudonymLab database from Exercise 34 (or create a new one) Sufficient privileges to modify and select from the database 13.9.4 Steps

Here’s a step-by-step guide to complete this exercise:

13.9.4.1 Step 1: Add Export-Ready View for User Data

You’ll create a view that exposes only the relevant personal data for portability (e.g., to share with the user upon request). 

USE GDPRPseudonymLab; 

GO 



CREATE VIEW vCustomerExport AS 

SELECT  

CustomerID, 

FullName, 

Email, 

Phone 

FROM Customers; 

Now, run:

SELECT * FROM vCustomerExport WHERE CustomerID = 1; 

📤 This supports  portability by exporting a clean snapshot of the user’s PII. 

13.9.4.2 Step 2: Simulate CSV Output for Portability

You can simulate CSV export using concatenation. Tools like SSMS or apps can copy/paste this output to Excel or flat files. 

SELECT  

'"' + CAST(CustomerID AS VARCHAR) + '","' + 

FullName + '","' + 

Email + '","' + 

Phone + '"' AS CSVRow 

FROM vCustomerExport 

WHERE CustomerID = 1; 

This produces a single CSV row for the customer, which can be copied to a file. 

13.9.4.3 Step 3: Implement Right to Erasure with UPDATE

Instead of DELETE, which breaks foreign key relationships, use UPDATE to nullify or pseudonymize PII:

UPDATE Customers 

SET  

FullName = NULL, 

Email = NULL, 

Phone = NULL 

WHERE CustomerID = 1; 

Now recheck:

SELECT * FROM Customers WHERE CustomerID = 1; 

✅ The personal data is erased, but surrogate key (CustomerID) and related records can be retained for audit or aggregation purposes. 

13.9.4.4 Step 4: Use a Reversible Erasure Flag (Optional)

Add a column to track erasure status for audit or recovery in non-production environments:

ALTER TABLE Customers ADD IsErased BIT DEFAULT 0; 



 -- Erase customer PII and flag it 

UPDATE Customers 

SET  

FullName = NULL, 

Email = NULL, 

Phone = NULL, 

IsErased = 1 

WHERE CustomerID = 2; 

Now you can query:

SELECT * FROM Customers WHERE IsErased = 1; You’ll see records with NULL PII but still retain the CustomerID for traceability. 

13.9.5 Summary

In this GDPR-focused hands-on lab, you:

Exported user data for portability in a flat format

Simulated a compliant CSV row

Erased personal information using UPDATE rather than DELETE

Optionally tracked erasure with a status flag

🔐 These techniques help businesses comply with GDPR while maintaining data model integrity and traceability. 

13.10 Exercise 36: Simulate GDPR “Right to Be

Forgotten” 

13.10.1 Description

The GDPR mandates that users can request to be forgotten. In database terms, this often translates to soft deletion (marking a record as deleted rather than physically removing it) and anonymization (removing personal identifiers). This exercise simulates this process on a customer table using SQL Server 2025. 

You will create anonymization logic that replaces personally identifiable information (PII) with generic placeholders and mark the record as erased, 

preserving referential integrity and auditability. 

13.10.2 Objectives

By the end of this exercise, you will:

Soft-delete records using an IsDeleted flag

Anonymize sensitive data like name, email, and phone

Build and run reusable Stored Procedure for GDPR erasure requests 13.10.3 Prerequisites

SQL Server 2025

SQL Server Management Studio (SSMS) 21.x

A database named GDPRLab (create it below if needed)

Table Customers with sample PII

13.10.4 Steps

Here’s a step-by-step guide to complete this exercise:

13.10.4.1 Step 1: Create and Seed the Customers Table Let’s build the setup to simulate real user data and PII. 

CREATE DATABASE GDPRLab; 

GO 

USE GDPRLab; 

GO 



CREATE TABLE Customers ( 

CustomerID INT IDENTITY PRIMARY KEY, 

FullName NVARCHAR(100), 

Email NVARCHAR(100), 

Phone NVARCHAR(50), 

RegisteredDate DATE, 

IsDeleted BIT DEFAULT 0 

); 

GO 



INSERT INTO Customers (FullName, Email, Phone, RegisteredDate) VALUES  

('Ujang Johnson', 'ujang.johnson@ilmudata.id', '555-1234', '2024-05-10'), ('James Turner', 'james.turner@neuville.id', '555-1122', '2024-04-18'), ('Sophie Evans', 'sophie.evans@ilmudata.id', '555-3344', '2024-03-22'), ('Lucía García', 'lucia.garcia@ilmudata.id', '555-5566', '2024-02-14'), ('Carlos Martínez', 'carlos.martinez@neuville.id', '555-7788', '2024-01-30'), 

[image: Image 46]

('Giulia Rossi', 'giulia.rossi@ilmudata.id', '555-9900', '2024-05-25'), ('Marco Bianchi', 'marco.bianchi@neuville.id', '555-2233', '2024-06-05'); This creates three sample customers in the Customers table. 

13.10.4.2 Step 2: Define the Anonymization and Soft Delete Logic We’ll simulate the “Right to Be Forgotten” by replacing PII with anonymized values and setting IsDeleted = 1. 

UPDATE Customers 

SET  

FullName = CONCAT('DeletedUser_', CustomerID), 

Email = NULL, 

Phone = NULL, 

IsDeleted = 1 

WHERE CustomerID = 2; 

🔐 You retain the CustomerID and RegisteredDate but anonymize the user. 

Figure 13.4: Showing anonymized data. 

13.10.4.3 Step 3: Create a Stored Procedure to Generalize the Action

Make the process reusable via a stored procedure: CREATE PROCEDURE AnonymizeAndSoftDeleteCustomer 

@CustomerID INT 

AS 

BEGIN 

UPDATE Customers 

SET  

FullName = CONCAT('DeletedUser_', @CustomerID), 

Email = NULL, 

Phone = NULL, 

IsDeleted = 1 

WHERE CustomerID = @CustomerID; 

END; 

Now run it:

EXEC AnonymizeAndSoftDeleteCustomer @CustomerID = 3; 

🎯 This ensures consistent anonymization logic across requests. 

13.10.4.4 Step 4: Query to Verify Forgotten Records

Check results:

SELECT * FROM Customers; 

You’ll see that James and Sophie’s records are anonymized and flagged as deleted:

[image: Image 47]

Figure 13.5: Showing customer data. 

13.10.5 Summary

In this hands-on lab, you:

Created a sample customer table with PII

Simulated GDPR erasure using anonymization and soft deletion Built a stored procedure to automate the “Right to Be Forgotten” process This pattern enables regulatory compliance while maintaining integrity in transactional systems. 

13.11 Exercise 37: Enable Auditing and Access Log for GDPR

13.11.1 Description

To comply with GDPR, it’s essential to track who accessed personal data, when, and why. This exercise demonstrates how to set up SQL Server Audit to capture

access events to personal data stored in the database. You will create a server-level audit and a database audit specification that tracks SELECT operations on a PII-related table. 

13.11.2 Objectives

By the end of this exercise, you will:

Configure a SQL Server Audit object

Create a database audit specification for SELECT access

Review logs to identify data access events

13.11.3 Prerequisites

SQL Server 2025

SQL Server Management Studio (SSMS) 21.x

Database GDPRLab with the Customers table (from Exercise 36) Sufficient permissions (SQL Server sysadmin or audit admin) 13.11.4 Steps

Here’s a step-by-step guide to complete this exercise:

13.11.4.1 Step 1: Create a Server Audit Object

We begin by creating a server audit that writes events to a file. 

USE master; 

GO 



CREATE SERVER AUDIT GDPR_Data_Access_Audit TO FILE ( 

FILEPATH = 'C:\SQLAuditLogs\',  -- Ensure this folder exists MAXSIZE = 10 MB, 

MAX_ROLLOVER_FILES = 5, 

RESERVE_DISK_SPACE = OFF 

) 

WITH (ON_FAILURE = CONTINUE); 

GO 



ALTER SERVER AUDIT GDPR_Data_Access_Audit 

WITH (STATE = ON); 

📝 This sets up a file-based audit log. Replace the FILEPATH with a valid path on your SQL Server machine. 

13.11.4.2 Step 2: Create a Database Audit Specification Now link specific audit actions to the GDPRLab database: USE GDPRLab; 

GO 



CREATE DATABASE AUDIT SPECIFICATION GDPR_Customers_Access_Spec FOR SERVER AUDIT GDPR_Data_Access_Audit 

ADD (SELECT ON OBJECT::dbo.Customers BY PUBLIC) WITH (STATE = ON); 

📌 This captures any SELECT access to the Customers table, regardless of the user. 

13.11.4.3 Step 3: Simulate a Data Access Event

Let’s mimic a user querying the Customers table:

USE GDPRLab; 

GO 



SELECT * FROM dbo.Customers; 

This action is now captured in the audit logs. 

13.11.4.4 Step 4: View the Audit Logs

Use the following script to query the audit records:

SELECT 

event_time, 

server_principal_name, 

database_name, 

object_name, 

statement 

FROM sys.fn_get_audit_file( 

'C:\SQLAuditLogs\*', NULL, NULL); 

This shows you:

When the access occurred

Who accessed the table

What object was accessed

The query issued (if applicable)

[image: Image 48]

Figure 13.6: Showing audit data. 

13.11.5 Summary

In this hands-on lab, you:

Created a server audit and database audit specification

Monitored SELECT access to sensitive PII data

Verified audit log entries using T-SQL

✅ This setup provides traceability and accountability—an essential part of GDPR

compliance when dealing with user personal data. 

13.12 Exercise 38: Log Consent and Data Processing

Activities for GDPR Audits

13.12.1 Description

GDPR requires that data processing be lawful, transparent, and accountable. 

Organizations must track whether users have given explicit consent to process their personal data, along with when and how that consent was granted. In this lab, you’ll implement a consent logging mechanism and simulate logging of data processing events tied to that consent. 

13.12.2 Objectives

By the end of this exercise, you will:

Create tables to log consent and data processing activities Insert and manage consent records

Simulate GDPR-compliant activity logging for audit purposes 13.12.3 Prerequisites

SQL Server 2025

SQL Server Management Studio (SSMS) 21.x

Database GDPRLab with existing user data (from Exercise 36) Appropriate permissions to create tables and insert data 13.12.4 Steps

Here’s a step-by-step guide to complete this exercise:

13.12.4.1 Step 1: Create Tables for Consent and Processing Logs We start by designing two core tables: one for storing user consent, and another for tracking any processing done based on that consent. 

USE GDPRLab; 

GO 



 -- Table to store user consent information 

CREATE TABLE ConsentLog ( 

ConsentID INT IDENTITY(1,1) PRIMARY KEY, 

UserID INT NOT NULL, 

ConsentGiven BIT NOT NULL, 

ConsentDate DATETIME2 NOT NULL DEFAULT GETDATE(), ConsentMethod NVARCHAR(100) NOT NULL,  -- e.g., "Checkbox on registration form"  

Notes NVARCHAR(255) 

); 



 -- Table to log data processing activity 

CREATE TABLE DataProcessingLog ( 

LogID INT IDENTITY(1,1) PRIMARY KEY, 

UserID INT NOT NULL, 

Activity NVARCHAR(100) NOT NULL,  -- e.g., "Email marketing", "Exported data"  

ProcessedAt DATETIME2 NOT NULL DEFAULT GETDATE(), PerformedBy NVARCHAR(100),  -- e.g., app/service/user ConsentID INT NULL, 

FOREIGN KEY (ConsentID) REFERENCES ConsentLog(ConsentID) 

); 

✅ These tables support GDPR accountability for “lawful basis of processing” . 

13.12.4.2 Step 2: Insert a Sample Consent Record

Let’s simulate a user giving consent during signup. 

INSERT INTO ConsentLog (UserID, ConsentGiven, ConsentMethod, Notes) VALUES (1001, 1, 'Checkbox on signup form', 'User agreed to receive promotional emails'); This stores a positive consent tied to user 1001. 

13.12.4.3 Step 3: Log a Data Processing Activity

Now simulate that data from this user was processed (e.g., for marketing), referencing the consent record. 

INSERT INTO DataProcessingLog (UserID, Activity, PerformedBy, ConsentID) VALUES ( 

1001, 

'Email campaign - August 2025', 

'MarketingSystemApp', 

(SELECT TOP 1 ConsentID FROM ConsentLog WHERE UserID = 1001 ORDER BY ConsentDate DESC) 

); 

💡 This trace links who processed what and which consent justified it. 

13.12.4.4 Step 4: Query Logs for Compliance Reporting To retrieve full accountability logs:

SELECT  

dp.UserID, 

dp.Activity, 

dp.ProcessedAt, 

dp.PerformedBy, 

cl.ConsentDate, 

cl.ConsentMethod, 

cl.Notes 

FROM DataProcessingLog dp 

JOIN ConsentLog cl ON dp.ConsentID = cl.ConsentID 

ORDER BY dp.ProcessedAt DESC; 

This gives a clear audit trail of activity justified by explicit consent. 

[image: Image 49]

Figure 13.7: Showing audit data. 

13.12.5 Summary

In this hands-on lab, you:

Created GDPR-friendly tables to record user consent and processing activities

Simulated real-world user consent scenarios

Ensured every processing activity was tied back to an explicit consent

✅ This supports Article 5 and Article 7 of GDPR—accountability and lawful basis. 

13.13 Conclusion

In this chapter, we explored how to implement GDPR and privacy regulations in SQL Server 2025. By leveraging features like Dynamic Data Masking, pseudonymization, data classification, and auditing, organizations can ensure compliance with data protection laws while maintaining the integrity and utility of their databases. 

We also covered practical exercises to demonstrate how to fulfill data subject rights such as access, erasure, and portability. By following these guidelines and best practices, you can build a robust SQL Server environment that respects user privacy and adheres to legal requirements. 

Section 6: Reporting and Exporting

14 Reporting and Data Connectivity

This chapter focuses on how to extract business data from SQL Server 2025 for reporting and visualization. You’ll learn how to export query results to formats like Excel and CSV, and how to connect SQL Server to Power BI for building interactive dashboards. These skills are essential for data analysts, BI developers, and business users who rely on SQL Server as their reporting backbone. 

14.1 Exporting SQL Data to Excel and CSV

SQL Server provides multiple options for exporting tabular data, including SQL

Server Management Studio (SSMS) and T-SQL utilities. 

14.1.1 Export Using SQL Server Management Studio (SSMS) We can export data directly from SSMS using the following methods: 1. Run your query in SSMS. 

2. Right-click on the result grid. 

3. Select Save Results As…

4. Choose format: CSV, Excel (*.xls, *.xlsx via copy/paste), or Text (tab-delimited). 

5. Save and distribute. 

 Best for one-time exports or manual reporting. 

14.1.2 xport Using SQL Server Import and Export Wizard The SQL Server Import and Export Wizard provides a user-friendly interface for exporting data to various formats, including Excel and CSV. 

Steps:

1. Right-click on database → Tasks → Export Data. 

2. Choose:

Data source: SQL Server

Destination: Flat File Destination or Excel 3. Choose tables or query to export. 

4. Define file path and schema mapping. 

5. Run and save the package (optional). 

 Ideal for recurring exports or large datasets. 

14.1.3 Export via bcp (Bulk Copy Program) CLI

The bcp utility allows you to export data from SQL Server to a file using command-line operations. This is useful for automation and scripting. 

bcp "SELECT * FROM Sales.Orders" queryout "orders.csv" -c -t, -S server -U username -P password

-c: character format

-t,: comma delimiter

-S: server name

-U, -P: login credentials

 Use for automation and scripting. 

14.1.4 Export to CSV with T-SQL (via SSMS scripting)

You can also use T-SQL to export data to CSV format by leveraging the bcp utility or using xp_cmdshell to run command-line operations directly from SQL Server. 

EXEC xp_cmdshell 'bcp "SELECT * FROM Sales.Customers" queryout "C:\Exports\customers.csv" -c -t, Requires enabling xp_cmdshell and proper file permissions. 

14.2 Connecting Power BI to SQL Server

Power BI is a Microsoft analytics platform for building interactive reports and dashboards using data from SQL Server and other sources. 

Power BI allows users to create visualizations, perform data modeling, and share insights across the organization. It supports both Import and DirectQuery modes for connecting to SQL Server databases. 

The following steps outline how to connect Power BI Desktop to a SQL Server database:

1. Open Power BI Desktop. 

2. Click Home → Get Data → SQL Server. 

3. Enter:

Server name

Database name (optional)

4. Choose:

Import or DirectQuery mode

Windows or SQL Server Authentication

5. Click OK, then select tables or write SQL query. 

We can choose between two modes when connecting Power BI to SQL Server: Mode

Description

Import

Data copied into Power BI (.pbix) file

DirectQuery

Live queries run directly on SQL Server

 Use Import for performance, DirectQuery for real-time data. 

To use a custom SQL query in Power BI:

1. Choose Advanced Options in Get Data. 

2. Paste query:

SELECT Region, SUM(TotalAmount) AS Revenue FROM Sales.Orders 

GROUP BY Region; 

 Ideal for filtering or joining data before loading into Power BI. 

Once your Power BI report is published to the Power BI Service, you can set up scheduled refreshes to keep your data up-to-date. This ensures that your reports reflect the latest data from SQL Server without manual intervention. 

14.3 Building Reports on Exported Data

Once you have exported data to CSV or Excel, you can use various tools to build reports and visualizations. Common options include:

Open the CSV or Excel file in Power BI, Excel, or other tools. 

Use pivot tables, charts, slicers, or Power BI visuals to explore trends. 

 Use Power BI datasets to standardize reporting sources across the business. 

14.4 Practices for Reporting and Data Access

Following best practices for exporting and accessing data ensures that reports are efficient, secure, and maintainable. Here are some key practices: Practice

Reason

Limit result sets when exporting

Prevent bloated exports and timeouts

Use views or stored procedures for Power

Encapsulate logic, improve reuse

BI

Apply row-level filtering before export

Protect sensitive or irrelevant data

Enable auditing for BI access

Track who accessed or exported

reports

Use parameters in Power BI queries

Support dynamic filtering and reuse

14.5 Exercise 39: Export Sales Summary to Excel

14.5.1 Description

Exporting SQL Server query results into Excel-compatible formats is a common requirement for reporting and analysis. In this hands-on lab, you’ll create a sales summary query from the AdventureWorks2022 database and export it to a .csv file using SQL Server Management Studio (SSMS) and SQLCMD, making it easy for stakeholders to open the file in Excel. 

14.5.2 Objectives

By the end of this exercise, you will be able to:

Write a sales summary query using GROUP BY

Export query results from SSMS to .csv

Export query results from SQLCMD to .csv

14.5.3 Prerequisites

SQL Server 2025 instance with the AdventureWorks2022 database restored SQL Server Management Studio (SSMS) 21.x installed

sqlcmd available via terminal or Command Prompt

Folder like C:\Exports available to store CSV files

14.5.4 Steps

Here’s a step-by-step guide to complete this exercise:

14.5.4.1 Step 1: Write a Sales Summary Query in SSMS**

We’ll summarize total sales by year using the Sales.SalesOrderHeader table. Use the YEAR() function and aggregate with SUM(). 

USE AdventureWorks2022; 

GO 



SELECT  

YEAR(OrderDate) AS SalesYear, 

COUNT(*) AS OrderCount, 

SUM(TotalDue) AS TotalSales 

FROM Sales.SalesOrderHeader 

GROUP BY YEAR(OrderDate) 

ORDER BY SalesYear; 

✅ This returns annual sales totals, perfect for exporting. 

14.5.4.2 Step 2: Export Results from SSMS as CSV

You can export this result directly from SSMS to a .csv file: 1. Open SSMS and run the query above. 

2. Right-click the result grid and choose Save Results As…

3. Select file type CSV (Comma delimited) (*.csv)

4. Save it as: C:\Exports\SalesSummary.csv

5. Open the file in Excel to verify the format. 

✅ This approach is quick and user-friendly for business analysts. 

14.5.4.3 Step 3: Export Results Using SQLCMD (Command Line) You can also automate exports using sqlcmd. Here’s how:

sqlcmd -S localhost -d AdventureWorks2022 -E -Q "SET NOCOUNT ON; SELECT YEAR(OrderDate) AS Sales Explanation:

-S localhost: SQL Server instance

-d AdventureWorks2022: database name

-E: use Windows Authentication

-Q: query

-s ",": delimiter is comma

-o: output file path

📌 This method is suitable for automation or scheduling using PowerShell or Task Scheduler. 

14.5.4.4 Step 4: Verify and Open in Excel

Open C:\Exports\SalesSummary_cmd.csv in Excel. Check for: Correct columns and headers

No extra messages (due to SET NOCOUNT ON)

Proper comma-separated formatting

If required, you can add headers manually or adjust formatting within Excel. 

14.5.5 Summary

In this exercise, you:

Created a yearly sales summary query

Exported results from SSMS to CSV

Automated export using sqlcmd for command-line reporting Verified that outputs work seamlessly with Excel

✅ This enables business users and external systems to consume SQL data without direct database access. 

14.6 Exercise 40: Connect SQL Server to Power BI

Desktop for Dynamic Visualization

14.6.1 Description

Power BI enables users to analyze and visualize data interactively. This exercise demonstrates how to connect Power BI Desktop to your SQL Server 2025 instance and build a dynamic dashboard using data from the AdventureWorks2022 database. You’ll use Power BI’s query editor and visual tools to explore and visualize sales data. 

14.6.2 Objectives

By the end of this exercise, you will be able to:

Connect Power BI Desktop to a SQL Server database

Load and transform data using Power Query

Create basic sales visualizations and summaries

14.6.3 Prerequisites

SQL Server 2025 instance with AdventureWorks2022 database restored (from Exercise 1)

Power BI Desktop installed (latest version recommended)

Access to localhost or your SQL Server instance

Basic familiarity with Power BI UI

14.6.4 Steps

Here’s a step-by-step guide to complete this exercise:

14.6.4.1 Step 1: Launch Power BI Desktop and Connect to SQL Server 1. Open Power BI Desktop. 

[image: Image 50]

[image: Image 51]

2. On the Home tab, click SQL Server for data source. 

3. Enter the server name (e.g., localhost) and database name AdventureWorks2022. 

Figure 14.1: Connecting to SQL Server. 

4. Use either:

Windows authentication, or

Database authentication if needed

Select my current credentials if using Windows authentication Figure 14.2: Selecting authentication on SQL Server. 

5. Click OK and allow Power BI to load available tables. 

[image: Image 52]

✅ This step sets up the live connection between Power BI and your SQL Server instance. 

14.6.4.2 Step 2: Select and Load Sales Data

In the Navigator window:

1. Expand the Sales schema. 

2. Select the following tables:

SalesOrderHeader

SalesOrderDetail

Customer

Person

SalesTerritory

Figure 14.3: Selecting tables. 

3. Click Load (or Transform Data if you want to clean the data before loading). 

[image: Image 53]

✅ Power BI loads the selected tables into the model for analysis. 

14.6.4.3 Step 3: Build Relationships (if needed)

If Power BI doesn’t detect relationships automatically:

1. Go to Model View. 

2. Power BI may suggest relationships based on foreign keys. 

3. If not, you can manually connect:

SalesOrderHeader.CustomerID → Customer.CustomerID

Customer.PersonID → Person.BusinessEntityID

SalesOrderHeader.SalesTerritoryID → SalesTerritory.TerritoryID

SalesOrderDetail.SalesOrderID → SalesOrderHeader.SalesOrderID

✅ Establishing relationships allows Power BI to perform cross-table analysis. 

Figure 14.4: Power BI detects model relationship. 

14.6.4.4 Step 4: Create a Sales Dashboard

Now let’s visualize sales trends:

1. In Report View, insert a Bar Chart:

Axis: SalesTerritory.Name

Value: SalesOrderHeader.TotalDue (Sum)

[image: Image 54]

Title: “Total Sales by Territory” 

2. Insert a Line Chart:

Axis: SalesOrderHeader.OrderDate (Month)

Value: SalesOrderHeader.TotalDue (Sum)

Title: “Sales Trend Over Time” 

3. Insert a Card:

Field: SalesOrderHeader.TotalDue

Aggregation: Sum

Title: “Total Revenue” 

✅ You’ve created an interactive dashboard from SQL Server data. 

Figure 14.5: Data visualization on Power BI. 

14.6.4.5 Step 5: Save and Refresh Data

1. Save your Power BI report as AdventureWorksSalesReport.pbix. 

2. Click Refresh to reload data from the SQL Server source. 

Optional:

Set up Scheduled Refresh (requires Power BI Pro or Premium service +

gateway). 

14.6.5 Summary

In this exercise, you:

Connected Power BI Desktop to SQL Server 2025

Loaded and modeled data from the AdventureWorks2022 database Created a dynamic report with charts and KPIs

Enabled refresh to keep data synchronized

✅ This allows you to empower business users with self-service BI directly from trusted SQL Server data. 

14.7 Conclusion

In this chapter, we explored how to export SQL Server data for reporting and visualization, focusing on practical methods using SSMS, bcp, and Power BI. By mastering these techniques, you can effectively share insights and build interactive dashboards that drive business decisions. 

Appendix A: T-SQL Cheatsheet

(SQL Server 2025)

This cheatsheet provides a quick reference to common T-SQL commands and concepts in SQL Server 2025. It covers database operations, data manipulation, filtering, functions, aggregations, joins, subqueries, transactions, stored procedures, window functions, and security. 

1. Database and Table Operations

Create Database

CREATE DATABASE SalesDB; 

Use Database

USE SalesDB; 

Create Table

CREATE TABLE Customers ( 

CustomerID INT PRIMARY KEY, 

FullName NVARCHAR(100), 

Email NVARCHAR(100), 

CreatedAt DATETIME DEFAULT GETDATE() 

); 

Alter Table

ALTER TABLE Customers ADD Phone NVARCHAR(20); Drop Table

DROP TABLE Customers; 

2. Data Manipulation (CRUD)

Insert

INSERT INTO Customers (CustomerID, FullName, Email) VALUES (1, 'John Doe', 'john@example.com'); 

Update

UPDATE Customers 

SET Email = 'john.doe@example.com' 

WHERE CustomerID = 1; 

Delete

DELETE FROM Customers 

WHERE CustomerID = 1; 

Select

SELECT * FROM Customers; 

3. Filtering and Sorting

WHERE Clause

SELECT * FROM Customers 

WHERE Email LIKE '%@gmail.com'; 

ORDER BY

SELECT * FROM Customers 

ORDER BY CreatedAt DESC; 

4. Functions

String

SELECT UPPER('hello'), LEN('hello world'); 

Date/Time

SELECT GETDATE(), DATEPART(YEAR, GETDATE()); 

Mathematical

SELECT ROUND(123.4567, 2), ABS(-42); 

5. Aggregations and Grouping

SELECT COUNT(*) AS TotalCustomers FROM Customers; 



SELECT YEAR(CreatedAt) AS Year, COUNT(*) AS Count FROM Customers 

GROUP BY YEAR(CreatedAt); 

6. Joins

INNER JOIN

SELECT o.OrderID, c.FullName 

FROM Orders o 

INNER JOIN Customers c ON o.CustomerID = c.CustomerID; LEFT JOIN

SELECT c.FullName, o.OrderID 

FROM Customers c 

LEFT JOIN Orders o ON c.CustomerID = o.CustomerID; 7. Subqueries and CTE

Subquery

SELECT * FROM Orders 

WHERE CustomerID IN (SELECT CustomerID FROM Customers WHERE FullName LIKE 'J%'); CTE

WITH RecentOrders AS ( 

SELECT TOP 10 * FROM Orders ORDER BY OrderDate DESC 

) 

SELECT * FROM RecentOrders; 

8. Transactions

BEGIN TRANSACTION; 



UPDATE Accounts 

SET Balance = Balance - 100 

WHERE AccountID = 1; 



UPDATE Accounts 

SET Balance = Balance + 100 

WHERE AccountID = 2; 



COMMIT; 

 -- or use ROLLBACK; 

9. Stored Procedures and Functions

Stored Procedure

CREATE PROCEDURE GetCustomerByID @ID INT 

AS 

BEGIN 

SELECT * FROM Customers WHERE CustomerID = @ID; END; 

Scalar Function

CREATE FUNCTION dbo.GetYear (@date DATETIME) RETURNS INT 

AS 

BEGIN 

RETURN YEAR(@date); 

END; 

10. Window Functions

SELECT CustomerID, OrderDate, 

RANK() OVER (PARTITION BY CustomerID ORDER BY OrderDate DESC) AS OrderRank FROM Orders; 

11. Security and Users

CREATE LOGIN user1 WITH PASSWORD = 'StrongP@ssword!'; CREATE USER user1 FOR LOGIN user1; 

GRANT SELECT ON Customers TO user1; 

Appendix B: Resources

SQL Server 2025 High Availability & Disaster

Recovery: Always On Solutions Course

Dive into the world of SQL Server 2025 with our comprehensive Udemy course, “SQL Server 2025: Build Always On HA & DR Solutions.”  This course is designed for database administrators and IT professionals who want to master high availability (HA) and disaster recovery (DR) solutions using the latest features of SQL Server 2025. 

What You’ll Learn

In this course, you will learn to:

Understand HA and DR concepts in SQL Server 2025

Build and configure Windows Server Failover Clustering (WSFC) Deploy Always On Availability Groups from scratch

Set up and manage the AG Listener for client connections Configure read-only routing for reporting and BI workloads Offload backups using Preferred Backup Replica

Perform failover testing: automatic, manual, and forced

Monitor and troubleshoot AG health

Integrate real-world ASP.NET Core apps with AG Listener

Apply best practices for performance and uptime

100% Hands-On with Real Labs

This course is not just theory. You’ll build your own lab environment using virtual machines and simulate real-world HA/DR use cases. 

We guide you through every step — from cluster setup to full availability group testing. Whether you’re creating an AG with two replicas or

deploying to a multi-subnet environment, this course shows you how it works in practice. 

No scripts without context. No fluff. Just practical demos you can repeat and apply at work. 

Enroll today:  SQL Server 2025: Build Always On HA & DR Solutions

https://www.udemy.com/course/sqlserverag/? 

referralCode=2E28F5CFD4DFBAD4EC15

Enhance Your Learning with Our Udemy Course

For those who’ve journeyed with us through this book, we have something special to further your understanding — a comprehensive Udemy course titled “Red Hat NGINX Web Server: Publishing and Deploying Web Apps.” 

Why Choose This Course? 

1. Specialized Knowledge: Dive deep into the world of Red Hat and NGINX. Understand how to use NGINX on the Red Hat platform, a powerful combination for web server deployments. 

2. Hands-On Approach: Our course isn’t just about theory; we believe in the ‘learn by doing’ philosophy. With guided tutorials and real-world examples, grasp how to publish and deploy various web applications effectively. 

3. Expert Instructors: Benefit from the insights and expertise of professionals who are not just educators but industry practitioners with years of experience. 

4. Flexible Learning: Learn at your own pace. With lifetime access, you can revisit topics anytime and solidify your understanding. 

Who Is This Course For?  - Web developers looking to understand the deployment process on Red Hat using NGINX. - System administrators aiming to expand their knowledge in server configuration and optimization. 

- IT professionals transitioning to roles that require knowledge of web server setup and deployment on Red Hat. 

Enroll today:  Red Hat NGINX Web Server: Publishing and Deploying Web

 Apps https://www.udemy.com/course/rhel-nginx/? 

referralCode=C9CFA39AE9E332ADA9FB

Build Secure PHP APIs Like a Pro with Laravel

12, OAuth2, and JWT

Unlock the full potential of Laravel 12 for REST API development! This hands-on course on Udemy teaches you how to build robust, secure, and modern APIs using Laravel, MySQL, OAuth2, JWT, Sanctum, and Role-Based Access Control (RBAC). Perfect for real-world applications and 2025 standards. 

🚀 Highlight Topics

What’s New in Laravel 12 for API development

Build RESTful APIs from scratch (Hello World to full CRUD) File upload and user data handling via REST API

Secure authentication with Sanctum, JWT, and OAuth2

Role-Based Access Control (RBAC) with middleware

Legacy support: Laravel 8, 7.x, and 6.x projects included Real project codebases and testing tutorials

 Who Should Enroll? 

Laravel developers aiming to modernize their API skills

Backend engineers securing APIs with token-based auth

Teams migrating legacy Laravel APIs to newer standards

Students and professionals building real-world Laravel apps Anyone preparing for backend development roles in 2025

 Future-proof your Laravel skills.  This course gives you everything you

 need to build secure, scalable, and professional REST APIs in Laravel 12. 

 Learn by doing — with real code, live tests, and full project coverage. 

👉 Join now and start building APIs that meet today’s security demands.   PHP REST API: Laravel 12, MySQL, OAuth2, JWT, Roles-Based

https://www.udemy.com/course/phprestapi/? 

referralCode=2C5B2F14100B499E9845

Master Real-World Logging & Visualization with

the Full ELK Stack

Take control of your logging, search, and monitoring pipeline with this hands-on Udemy course covering Elasticsearch, Logstash, Kibana, and Beats. Learn how to set up, ingest, visualize, and scale log data using practical projects — all designed for developers, sysadmins, and DevOps engineers in real production environments. 

🚀 Highlight Topics

Cross-platform installation: Windows, Ubuntu, macOS, Docker Elasticsearch REST API: CRUD, mapping, queries, aggregation, SQL, geo fields

Real-world API integration: PHP, ASP.NET Core, Node.js, Python Logstash ingestion: files, folders, and RDBMS (MySQL)

Kibana Lens visualizations: charts, maps, dashboards, Canvas Beats agents: Filebeat, Winlogbeat, Metricbeat, Packetbeat, Heartbeat, Auditbeat

High Availability (HA) setup for Elasticsearch and Kibana with Nginx  Who Should Enroll? 

Developers and DevOps engineers building log-driven applications System administrators responsible for monitoring and observability Backend/API developers seeking integration with Elasticsearch Cybersecurity analysts and IT ops engineers using ELK for log auditing

Teams adopting open-source observability tools for modern infrastructure

 Log smarter, visualize better, and scale with confidence.  Whether you’re just getting started or already managing production systems, this course gives you everything you need to build and operate a powerful ELK Stack

 pipeline. With real-world use cases, cross-platform setups, and step-by-step guidance, you’ll go beyond the basics and into expert territory. 

👉 Enroll today to master the ELK Stack and unlock actionable insights from your data!  Practical Full ELK Stack: Elasticsearch, Kibana and

 Logstash https://www.udemy.com/course/elkstack/? 

referralCode=863C1036F77169C975C5

Appendix C: Source Code

You can download the source code files for this book from GitHub at

https://www.github.com/agusk/ilmudata-book-sqlserver. 

About

Agus Kurniawan’s journey in the field of technology, spanning from 2001, is a remarkable blend of deep technical expertise and a fervent passion for sharing knowledge. As a seasoned professional, Agus has carved a niche in diverse technological domains, including software development, IoT

(Internet of Things), Machine Learning, IT infrastructure, and DevOps. His experiences are not just limited to developing cutting-edge solutions but also extend to shaping the future of upcoming technologists through training and workshops. 

Agus’s career is marked by significant contributions to both technological innovation and community development. His recognition as a Microsoft Most Valuable Professional (MVP) from 2004 to 2022 underlines his proficiency in Microsoft technologies and his dedication to educating others. Agus has been at the forefront of delivering various training sessions and workshops, sharing his insights and helping others grow in the ever-evolving tech industry. 

Mastering Business Data with SQL 

 A Practical Guide to Querying, Modeling, and Compliance Using SQL

 Server 2025

This book is crafted for professionals and learners aiming to master business data analysis and management using SQL Server 2025. Drawing on Agus Kurniawan’s extensive experience in software engineering and data technologies, it delivers practical techniques, real-world scenarios, and best practices for querying, modeling, and ensuring compliance with business data. 

Agus invites readers to share feedback, questions, and suggestions. If you have inquiries about SQL, ideas for future editions, or wish to discuss your learning experiences, please get in touch. 

For those seeking private or group training on SQL, data management, or related technologies, Agus offers customized programs for individuals and organizations. Contact him for details on available topics, schedules, and formats. 

Email: aguskur@hotmail.com, agusk2007@gmail.com

LinkedIn: linkedin.com/in/agusk

Twitter: [@agusk2010]





Document Outline


	Preface

	Acknowledgments

	Section 1: Getting Started with SQL Server 2025

	1 Introduction and Setup

	1.1 Introduction

	1.2 What’s New in SQL Server 2025

	1.3 Tools You’ll Use in This Book

	1.3.1 SQL Server Management Studio (SSMS) 21.x

	1.3.2 Visual Studio Code with MSSQL Extension

	1.3.3 Optional Tools





	1.4 Exercise 1: Install SQL Server and Restore AdventureWorks2022

	1.4.1 Description

	1.4.2 Objectives

	1.4.3 Prerequisites

	1.4.4 Steps

	1.4.5 Summary





	1.5 Exercise 2: Explore SSMS and Run Your First Query

	1.5.1 Description

	1.5.2 Objectives

	1.5.3 Prerequisites

	1.5.4 Steps

	1.5.5 Summary





	1.6 Conclusion





	Section 2: Querying Data – Core Skills

	2 SELECT and Filtering Essentials

	2.1 The SELECT Statement: Retrieving Data

	2.2 The WHERE Clause: Filtering Rows

	2.3 The ORDER BY Clause: Sorting Results

	2.4 Combining SELECT, WHERE, and ORDER BY

	2.5 Exercise 3: Select and Filter Data from AdventureWorks2022

	2.5.1 Description

	2.5.2 Objectives

	2.5.3 Prerequisites

	2.5.4 Steps

	2.5.5 Summary





	2.6 Exercise 4: Filter Sales by Region and Date

	2.6.1 Description

	2.6.2 Objectives

	2.6.3 Prerequisites

	2.6.4 Steps

	2.6.5 Summary





	2.7 Conclusion





	3 Expressions, NULLs, and Logic

	3.1 Using Expressions in SELECT

	3.2 Understanding NULLs

	3.3 The CASE Expression: Conditional Logic

	3.4 Combining Expressions, NULLs, and CASE

	3.5 Exercise 5: Add Calculated Columns and Handle Missing Data

	3.5.1 Description

	3.5.2 Objectives

	3.5.3 Prerequisites

	3.5.4 Steps

	3.5.5 Summary





	3.6 Exercise 6: Use CASE for Business Rule Logic

	3.6.1 Description

	3.6.2 Objectives

	3.6.3 Prerequisites

	3.6.4 Steps

	3.6.5 Summary





	3.7 Conclusion





	Section 3: Data Modeling and Design

	4 Relational Database Design Basics

	4.1 Tables and Data Types

	4.1.1 What is a Table? 

	4.1.2 Data Types in SQL Server 2025





	4.2 Keys in Relational Tables

	4.2.1 Primary Key (PK)

	4.2.2 Foreign Key (FK)

	4.2.3 Candidate Key

	4.2.4 Surrogate Key vs. Natural Key





	4.3 Introduction to Normalization

	4.3.1 First Normal Form (1NF)





	4.4 Second Normal Form (2NF)

	4.5 Third Normal Form (3NF)

	4.6 Exercise 7: Basic ERD Design

	4.6.1 Description

	4.6.2 Objectives

	4.6.3 Prerequisites

	4.6.4 Steps

	4.6.5 Step 7: Show ERD Diagram

	4.6.6 Summary





	4.7 Exercise 8: Design Schema for a Subscription Business

	4.7.1 Description

	4.7.2 Objectives

	4.7.3 Prerequisites

	4.7.4 Steps

	4.7.5 Step 8: Show ERD Diagram

	4.7.6 Summary





	4.8 Exercise 9: Insert and Query Sample Data

	4.8.1 Description

	4.8.2 Objectives

	4.8.3 Prerequisites

	4.8.4 Steps

	4.8.5 Summary





	4.9 Exercise 10: Apply Normalization to Improve Table Design

	4.9.1 Description

	4.9.2 Objectives

	4.9.3 Prerequisites

	4.9.4 Steps

	4.9.5 Summary





	4.10 Conclusion





	5 Views and Logical Data Modeling

	5.1 What Is a View? 

	5.2 Creating Views in SQL Server 2025

	5.3 Views as Virtual Tables

	5.4 Updatable Views

	5.5 Role-Based Schema Simplification Using Views

	5.6 Security and Compliance with Views

	5.7 Indexed Views (Materialized Views)

	5.8 Exercise 11: Create Reusable Views for Sales Analysis

	5.8.1 Description

	5.8.2 Objectives

	5.8.3 Prerequisites

	5.8.4 Steps

	5.8.5 Summary





	5.9 Exercise 12: Simplify Complex Joins via Views

	5.9.1 Description

	5.9.2 Objectives

	5.9.3 Prerequisites

	5.9.4 Steps

	5.9.5 Summary





	5.10 Conclusion





	6 Designing Multi-Tenant and SaaS Databases

	6.1 What Is a Multi-Tenant Database? 

	6.2 Multi-Tenant Patterns in SQL Server

	6.2.1 Pattern 1: Shared Database, Shared Schema

	6.2.2 Pattern 2: Shared Database, Schema-Per-Tenant

	6.2.3 Pattern 3: Database-Per-Tenant





	6.3 Tenant Isolation and Identity Filtering

	6.3.1 Option 1: Manual Filtering by Tenant ID

	6.3.2 Option 2: Use Row-Level Security (RLS)





	6.4 Managing Identity and Shared Metadata

	6.5 Best Practices for Multi-Tenant SQL Server Design

	6.6 Exercise 13: Add Tenant Column and Apply Security Filters

	6.6.1 Description

	6.6.2 Objectives

	6.6.3 Prerequisites

	6.6.4 Steps

	6.6.5 Summary





	6.7 Exercise 14: Build Views and Indexes per Tenant

	6.7.1 Description

	6.7.2 Objectives

	6.7.3 Prerequisites

	6.7.4 Steps

	6.7.5 Summary





	6.8 Conclusion





	Section 4: Aggregation, Data Combination and Analytical Query Techniques

	7 Grouping, Aggregation, and PIVOTs

	7.1 What Is Aggregation? 

	7.2 GROUP BY: Summarizing Rows by Category

	7.3 HAVING: Filtering Groups

	7.4 Multiple Columns in GROUP BY

	7.5 PIVOT: Rotating Data for Reports

	7.6 Unpivoting (Optional Advanced)

	7.7 Exercise 15: Generate Monthly Revenue Summaries

	7.7.1 Description

	7.7.2 Objectives

	7.7.3 Prerequisites

	7.7.4 Steps

	7.7.5 Summary





	7.8 Exercise 16: Create Pivoted Sales Report

	7.8.1 Description

	7.8.2 Objectives

	7.8.3 Prerequisites

	7.8.4 Steps

	7.8.5 Summary





	7.9 Exercise 17: Filter Aggregated Results Using HAVING

	7.9.1 Description

	7.9.2 Objectives

	7.9.3 Prerequisites

	7.9.4 Steps

	7.9.5 Summary





	7.10 Conclusion





	8 Joins and UNION Queries

	8.1 Introduction to Joins

	8.2 INNER JOIN

	8.3 LEFT JOIN (LEFT OUTER JOIN)

	8.4 FULL JOIN (FULL OUTER JOIN)

	8.5 UNION vs UNION ALL

	8.6 Best Practices

	8.7 Exercise 18: Combine Customer, Order, and Region Data

	8.7.1 Description

	8.7.2 Objectives

	8.7.3 Prerequisites

	8.7.4 Steps

	8.7.5 Summary





	8.8 Exercise 19: Merge Archived and Active Records

	8.8.1 Description

	8.8.2 Objectives

	8.8.3 Prerequisites

	8.8.4 Steps

	8.8.5 Summary





	8.9 Conclusion





	9 Trends, Time, and Window Functions

	9.1 Introduction to Window Functions

	9.2 ROW_NUMBER, RANK, and DENSE_RANK

	9.3 LEAD and LAG: Accessing Adjacent Rows

	9.4 DATE and TIME Functions

	9.5 Combining Window + Time Analysis

	9.6 Exercise 20: Rank Top Customers Monthly

	9.6.1 Description

	9.6.2 Objectives

	9.6.3 Prerequisites

	9.6.4 Steps

	9.6.5 Summary





	9.7 Exercise 21: Compare Customer Revenue Month-over-Month

	9.7.1 Description

	9.7.2 Objectives

	9.7.3 Prerequisites

	9.7.4 Steps

	9.7.5 Summary





	9.8 Exercise 22: Calculate Moving Averages on Sales

	9.8.1 Description

	9.8.2 Objectives

	9.8.3 Prerequisites

	9.8.4 Steps

	9.8.5 Summary





	9.9 Exercise 23: Analyze Customer Sales Percentiles

	9.9.1 Description

	9.9.2 Objectives

	9.9.3 Prerequisites

	9.9.4 Steps

	9.9.5 Summary





	9.10 Conclusion





	Section 5: Security, Access, and Compliance

	10 User Management and Access Control

	10.1 Authentication vs Authorization

	10.2 Logins and Users

	10.3 Fixed Server and Database Roles

	10.4 Custom Roles and Role-Based Access Control (RBAC)

	10.5 Schema-Level Security

	10.6 Security Best Practices

	10.7 Auditing Access

	10.8 Exercise 24: Create Analyst Role and Grant Access

	10.8.1 Description

	10.8.2 Objectives

	10.8.3 Prerequisites

	10.8.4 Steps

	10.8.5 Summary





	10.9 Exercise 25: Restrict Access by Schema

	10.9.1 Description

	10.9.2 Objectives

	10.9.3 Prerequisites

	10.9.4 Steps

	10.9.5 Summary





	10.10 Exercise 26: Revoke Permissions and Audit Role Membership

	10.10.1 Description

	10.10.2 Objectives

	10.10.3 Prerequisites

	10.10.4 Steps

	10.10.5 Summary





	10.11 Conclusion





	11 Row-Level Security and Tenant Isolation

	11.1 What Is Row-Level Security (RLS)? 

	11.2 RLS Architecture in SQL Server

	11.2.1 How RLS Works Internally

	11.2.2 Types of Security Predicates

	11.2.3 Security Policy Management

	11.2.4 Auditing RLS Activity





	11.3 Example Scenario: Tenant-Based Filtering

	11.4 Step-by-Step: Implementing RLS for Tenant Isolation

	11.5 RLS for User-Specific Access

	11.6 Best Practices for RLS

	11.7 RLS Limitations to Note

	11.8 Exercise 27: Enforce Tenant Filtering with RLS

	11.8.1 Description

	11.8.2 Objectives

	11.8.3 Prerequisites

	11.8.4 Steps

	11.8.5 Summary





	11.9 Exercise 28: Validate Isolation Using Test Accounts

	11.9.1 Description

	11.9.2 Objectives

	11.9.3 Prerequisites

	11.9.4 Steps

	11.9.5 Summary





	11.10 Exercise 29: Audit RLS Access and Log Session Context Activity

	11.10.1 Description

	11.10.2 Objectives

	11.10.3 Prerequisites

	11.10.4 Steps

	11.10.5 Summary





	11.11 Conclusion





	12 Masking, Encryption, and Auditing

	12.1 Dynamic Data Masking (DDM)

	12.2 Encryption Options

	12.2.1 Transparent Data Encryption (TDE)

	12.2.2 Always Encrypted

	12.2.3 Cell-Level Encryption (CLE)





	12.3 Auditing Access to Sensitive Data

	12.4 Best Practices for Data Protection

	12.5 Exercise 30: Mask Email and Phone Fields in Query Output

	12.5.1 Description

	12.5.2 Objectives

	12.5.3 Prerequisites

	12.5.4 Steps

	12.5.5 Summary





	12.6 Exercise 31: Encrypt Sensitive Data Using Always Encrypted

	12.6.1 Description

	12.6.2 Objectives

	12.6.3 Prerequisites

	12.6.4 Steps

	12.6.5 Summary





	12.7 Exercise 32: Enable and Configure an Audit Policy

	12.7.1 Description

	12.7.2 Objectives

	12.7.3 Prerequisites

	12.7.4 Steps

	12.7.5 Summary





	12.8 Conclusion





	13 Complying with GDPR and Privacy Regulations

	13.1 Key GDPR Data Subject Rights

	13.1.1 Right of Access (Article 15)

	13.1.2 Right to Erasure / Right to Be Forgotten (Article 17)

	13.1.3 Right to Data Portability (Article 20)





	13.2 Data Minimization

	13.3 Pseudonymization

	13.4 Data Classification in SQL Server 2025

	13.5 Auditing for Compliance

	13.6 Best Practices for GDPR Compliance

	13.7 Exercise 33: Apply DDM to PII Columns

	13.7.1 Description

	13.7.2 Objectives

	13.7.3 Prerequisites

	13.7.4 Steps

	13.7.5 Summary





	13.8 Exercise 34: Apply Pseudonymization with Computed Columns or Hashes

	13.8.1 Description

	13.8.2 Objectives

	13.8.3 Prerequisites

	13.8.4 Steps

	13.8.5 Summary





	13.9 Exercise 35: Implement the Right to Erasure and Portability

	13.9.1 Description

	13.9.2 Objectives

	13.9.3 Prerequisites

	13.9.4 Steps

	13.9.5 Summary





	13.10 Exercise 36: Simulate GDPR “Right to Be Forgotten” 

	13.10.1 Description

	13.10.2 Objectives

	13.10.3 Prerequisites

	13.10.4 Steps

	13.10.5 Summary





	13.11 Exercise 37: Enable Auditing and Access Log for GDPR

	13.11.1 Description

	13.11.2 Objectives

	13.11.3 Prerequisites

	13.11.4 Steps

	13.11.5 Summary





	13.12 Exercise 38: Log Consent and Data Processing Activities for GDPR Audits

	13.12.1 Description

	13.12.2 Objectives

	13.12.3 Prerequisites

	13.12.4 Steps

	13.12.5 Summary





	13.13 Conclusion





	Section 6: Reporting and Exporting

	14 Reporting and Data Connectivity

	14.1 Exporting SQL Data to Excel and CSV

	14.1.1 Export Using SQL Server Management Studio (SSMS)

	14.1.2 xport Using SQL Server Import and Export Wizard

	14.1.3 Export via bcp (Bulk Copy Program) CLI

	14.1.4 Export to CSV with T-SQL (via SSMS scripting)





	14.2 Connecting Power BI to SQL Server

	14.3 Building Reports on Exported Data

	14.4 Practices for Reporting and Data Access

	14.5 Exercise 39: Export Sales Summary to Excel

	14.5.1 Description

	14.5.2 Objectives

	14.5.3 Prerequisites

	14.5.4 Steps

	14.5.5 Summary





	14.6 Exercise 40: Connect SQL Server to Power BI Desktop for Dynamic Visualization

	14.6.1 Description

	14.6.2 Objectives

	14.6.3 Prerequisites

	14.6.4 Steps

	14.6.5 Summary





	14.7 Conclusion





	Appendix A: T-SQL Cheatsheet (SQL Server 2025)

	Appendix B: Resources

	SQL Server 2025 High Availability & Disaster Recovery: Always On Solutions Course

	Enhance Your Learning with Our Udemy Course

	Build Secure PHP APIs Like a Pro with Laravel 12, OAuth2, and JWT

	Master Real-World Logging & Visualization with the Full ELK Stack





	Appendix C: Source Code

	About




index-181_1.png
File Edit View Quey Gt Project Tools Extensions Window Help | O Search~  Solutionl

©-0|a | BNewauey B9 - -|B|BB|
4 | [RLS Auditiab I b Beate = v 32 E[E] 3848

Object Explorer

2y Ckin bt - simulate access as Tenant 1

© 8 Jocathest BQL Server 170,009 STANDALO 65 |v EXEC sp_set_session_context ‘TenantId', 1;
66 ||| INSERT INTO Invoices (TenantId, CustomerName, Amount) VALUES (1, ‘Tenantl Customer’, 160.00);
67
68 || — sinulate access as Tenant 2
69 ||| EXEC sp_set_session_context ‘TenantId', 2;
76 ||| INSERT INTO Invoices (TenantId, Customeriame, Amount) VALUES (2, ‘Tenant2 Customer’, 200.00);
7
7
73 || = Test
R =t ——
75
76

'STANDALONEO!\Adminstrator | 2025-08.04 00:08:11.6428654 | INSERT
2 |2 |2 'STANDALONE!\Adminstrator | 2025-08.04 00:08:11.6442350 | INSERT






index-177_1.png
Connect~ ¥ *§ (O

B localhost (SQL Server 17.0.700.3 - STANDAL
= @ ]locaihost (S Server 1707003 Tenantil
¥ Databases

i Security

9 Server Objects

4 Replication

1 Always On High Availablity

1 Management

T8 XEvent Profler

& @ localhost (SQL Server 17.0.7009 - T

4 Databases

i Security

9 Server Objects

4 Replication

1 Always On High Availablity

1 Management

T8 XEvent Profler

R signin - O X

* I

1 —- Attempt to impersonate Tenant2 as TenantlUserl (run as TenantlUserl) =
2 |v USE RlsTenantLal -
3
4 EXEC sp_set_session_context @key = N'TenantId', @value |
5 SELECT = FROM dbo.Customer0rders;
100% =]  © Noissues found “« b1 Cm1 TBS  CRIF
 Resuits. Messages.
Mag 15664, Level 16, State 1, Procsdure sp_set_session_context, Line 1 (Bateh Starc Line 01 <
Camnot set key 'Tementld' in the session context. The key hes been set as resd only for this session.
(2 zows afzected)
Complesion time: 2025-08-03T16:46:53.1130681-07:00 b1l
|
[100% © No issues found “ b m7 Cm1 TAES  MXED






index-189_1.png
©-0s

O+
@ locelhost (SQL Server 17.0.7009 - STANDALONEOT
& 8 [Tocalhost (S Server 1707008~ ReadOmiyUsen)|

vied

File Edit View Quey Gt Project Tools Extensions Window Help | O Search~  Solutionl R signin - O X

?-c|lmin, * I

B 57356 &

' USE DataMaskinglLab;
SELECT » FROM Customers;|






index-188_1.png
©-0 | | B New Query
f | [DataMaskingLab ~|| b Becute

Object Explorer
Connect = ¥ ¥ O+
& @ locelhost (S0 Server 1701009 - STANDALG

v i

oo

File Edit View Quey Gt Project Tools Extensions Window Help | O Search~  Solutionl
9-¢-||

B|5.
lE eyl

\ CREATE TABLE Customers (

CustomerId INT IDENTITY PRIMARY KEY,

FullName NVARCHAR(160),

Email NVARCHAR(100) MASKED WITH CFUNCTION = 'email()'),

PhoneNunber NVARCHAR(20) MASKED WITH (FUNCTION = ‘partial(2, "XXX0(X",2)')

- INSERT INTO Customers (FullName, Email, PhoneNumber)

VALUES

C'Priya sharma’, 'priya.sharma@ilmudata.id, '08123u56789'),
C'Wlei Zhang', 'wei.zhang@ilmudata.id', '0856123u567'),
C*Ananya Gupta', ‘ananya.gupta@ilmudata.id', '08781239876');

SELECT * FROM Customers;
] ao Tl
Hessages
Filame | Enal Phoneliumber

Priya Shama | piya shama@imudataid | 08123456789

WeiZhang | welzhang@imudataid | 08561234567

#nanya Gupta | ananya gupta@imudataid | 08781239876






index-192_1.png
B Aways Encrypted

r' TIntroduction
&

Column Selecton
Column Assessment
Master Key Configuraton
In-Place Encryption Settings
Run Settings

Summary

Results

@Hep

Always Encrypted is a family of industry-leading data protection features that provide a separation
between those who own the data and can view t, and those who manage the data but should have no
access like high-privileged but unauthorized users. This wizard can be used to encrypt columns for both
Always Encrypted and Always Encrypted with secure enclaves.

() Do notshow this page sgsin.

< Previous Cancel






index-189_2.png
Solution! R signin  — O %

i

' USE DataMaskinglLab;
SELECT » FROM Customers;|






index-194_1.png
B Always Encrypted - o x

Master Key Configura

Introduction @ Help

Column Selection
To generate a new column encryption key, select a column master key to protect it.

Column Assessment

Select column master key:

Auto generate column master key v
In-Place Encryption Settings SEEnEErErT S Windows certificate store v
Run Settings Select a master key source:
Summary Current User ~

Results

< Previous Cancel






index-193_1.png
F Always Encrypted

£ - P—

Results

- a X
@ Help
() Apply the same encryption type to all checked columns: Randomized
Encryption Type (0 Encryption Key &)
T Tropi

(0 & dbo.Customers
o i Customerld
o i FullName
o i Email
2 NationallD Deterministic « CEK_Autol (New)
@] Salary
(O Show affected columns only






cover_image.jpg
.

Mastering

7 Business Data <
with SQL

\» 9,






index-175_1.png
File Edit View Gt Project Tools Extensions Window Help | O Search~  Solution! R signin - O X

olmie, * I

|3 ggam| | |

RisTenanttab | b B

SQLQuery2T.s...t1User1 (91" &
- Connect using SQL login: TenantlUserl
- USE RlsTenantLab;

@ localhost (SQL Server 17.0.700.9 - STANDALONEOT\ Adrministra [ SELECT » FROM dbo.Custonerorders;

= @ [iocaihost (SGI Server 17.0.700.8 - TenantiUserT)
4 Datobases
i Security
9 Server Objects
1 Replication
1 Always On High Availablity
1 Management
T8 XEvent Profler
& 8 localhost (SQL Server 17.0.7009 - Tenant2Userl)
1 Detobases

i Security

9 Server Objects

1 Replication

1 Always On High Availablity
1 Management

T8 XEvent Profler






index-172_1.png
File Edit View Gt Project Tools Edensions Window Help | % Search~  Solutionl R Signin
©-0|a | @Newauey @[ 9 - - B B[,

RisTenanttab | b B [soss

5QLQueny24s..nt1User TO)" =
S [P USE RlsTenantlab;

@ focalhost (SQL Server 17.0.7009 - STANDALO! co

focaihost (SQL Server 1707008~ : :
@ Ei [ 0003 Sleneet v EXEC sp_set_session_context gkey = N'TenantId', @value = 1;
e i"""’m | SELECT » FROM CustomerOrders;
5 Database Snapshots
@ AdventureWorks2022

o x






index-176_1.png
File Edit View Quey Gt Project Tools Extensions Window Help | O Search~  Solutionl R signin - O X

|S B @ By 8|9 - -8B, X o |
5 | [RisTenantLab ]| b Beate w v 22 E[E] §

£1User] 81)°
O~ - Connect using SQL login: Tenant2Userl
- USE RlsTenantLab;

@ localhost (SQL Server 17.0.700.9 - STANDALONEOT\ Adrministra [ SeLECT » FRpM dbo.Custonerorders;

o liocaihost (SO Server 1707008 - TenantiUseri)}
5 Databases
5 Security
9 Server Objects
1 Replication
15 Always On High Availability
1 Management
[ XEvent Profiler
& @ localhost (SQL Server 17.0.700. - Tenant2User!)
5 Databases

5 Security

9 Server Objects

1 Replication

15 Always On High Availability
1 Management

[ XEvent Profiler






index-143_1.png
CUME_DIST() and PERCENT_RANK()

= @ localhost (SQL Server 17.0.700.9 - STANDALO
5 1 Databases

5 System Databases

4 Database Snapshots

@ AdventureWorks2022

@ ERDDesignDemo

@ NormalzationDemo

@ [S35App08]

@ SelcsnaiysiDB

© sumscnn

5 Security

9 Server Objects

4 Replication

1 Always On High Availablity

1 Management

B SQL Server Agent

T8 XEvent Profler

B Messages
CustomerlD_| TotaRevenue | CumativeDitbution | PercertRank

T [2618 | 989184062 | 523039907944976605 | 0

2 [29715 | 9167585% | 0.000104G07981583995 | 523067266450466E.05
3 [2972 | 954021923 | 0.000196911972383493 | 0.000104613453290083
4 [30117 | 9198018183 | 0000209215963177%9

5 | 2914 | 901346856 | 0.000261519953972488 | 0.000209226506580185
6 | 293 | 8670904106 | 0.000313623944766985 | 0.000261533633225233
7 |2 8418665522 | 0.000365127935561483 | 0.000313640359870279
8 [ 2917 | 8344755271 | 0.00D418431926355981 | 0.000366147086515325
9 [ 29994 | 8243317662 | 0.000470735917150479 | 0.000418453813160372
0| 2946 | 6203835466 | 0.000523039907544976 | 0.000470760539805419
1| 29680 | 615914253 | 0.000575343898739474 | 0.000523067266450465
2| 29627 | 60176621 | 0.000627647689533971 | 0.000575373993095512
13| 29497 | 798842837 0.000527680719740559
e | 29716 | 107178 000067998 7446385605
15 | 29913 | 7574496604 | 0.000764559861917464 | 0.000732294173030652






index-157_1.png
File Edit View Quey Gt Project Tools Extensions Window Help | O Search~  Solutionl

NewQueyy 8|9 - -|H|8| 5
I b Beate = v 32 E[E] 3848

O+

& B localhost (SQL Server 17.07003 - STANDALO
@ 4 Databases

5 System Databases

5 Database Snapshots

@ AdventureWorks2022

@ ERDDesignDemo.

@ NormalizationDemo.

@ [S5aSApEDE]

@ SeieshnaiysisDe

@ SubscrptionDB

5 Securty

5 Server Objects

1 Replication

5 Aways On High Availabilty

= Management

B SQL Sever Agent

T XEvent Profler

DENY SELECT ON SCHEMA: :

ensitiveData TO Analyst;

- Inpersonate
EXECUTE AS USER = ‘analyst_user';

- Should succeed
SELECT » FROM PublicData. SalesSunmary;

h

-~ Revert session
REVER

80 Messages
Nag 225, Loval 14, Svace 5, Lime 41
The SSIECT permission was demied on the cbject ‘ErpleyesSalsries’, davsbase 'Securedsveleb', schems 'Semsivivedata-

Complecion time: 2025-08-03T05:07:16.4636345-07:00





index-153_1.png
YO
& B localhost (SQL Server 17.07003 - STANDALO
@ 4 Databases

50 G0

51
52 -~ Add user to the role

53 ||v EXEC sp_addrolemember ‘Analyst’, ‘analyst_user';
54

55

56 - Inpersonate analyst_user

57 EXECUTE AS USER = 'analyst_user’

58

59 - This should succeed

60 SELECT = FROM Customers;

61

62
63

6u
65 - Revert session
66 REVERT;

[100% -]  © Nojissues found

B Messages

Msg 229, Level 14, State 5, Line 63
The INSERT permission was demisd on the chject 'Customers’,

Complecion time: 2025-05-03T08:38:32.6273035-07:00

database 'SecureDatalab’, schema 'dbo’ -





index-160_1.png
File Edit View Quey Gt Project Tools Extensions Window Help | O Search~  Solutionl
| BNewauey B[O - - BB |5,

| [SecuriyhudiDemo || b Becute ® v 22 BI[E]5° 556D

Eall

uery21 sq..istrator (74)"

O+

& B localhost (SQL Server 17.07003 - STANDALO
@ 4 Databases
5 System Databases
5 Database Snapshots
@ AdventureWorks2022
gmmsa,ogm

NormalizationDemo

6% =] © No ssues found
8 Messages

Msg 229, Level 14, State 5, Line 4
The SSLECT permission was demied on the cbjsct 'Sales’, dstabase 'SscurityhuditDeme’, schems 'dbo’

2 Abways On High Avsiabity
4 Management Complavion cime: 2025-05-03T03:22:37.4627421-07:00
B 5QL Server Agent
2] XEvent Profiler

o @ iocaihost (G Server 1707008 ~ reportuser
¥ Databases

5 Security

9 Server Objects

1 Replication

15 Always On High Availability
1 Management





index-159_1.png
File Edit View Gt Project Tools Extensions Window Help | O Search~  Solutionl
©-0|& | B New Query -l@mlE.

| [SecurtyAuditoemo ]| el | =% =z
SQLQuery22srtuser (102 = N al.nistator (69) isrtor (52)
S O+ 1 USE SecurityAuditDemo;
5 @ locslhost(SQL Server 17.07009 - STANDALO S E Comnect (Preview) x
= 1 Databases -
u || seLect + Fron sates; History
5 System Databases
5 Dotabase Snapshots .
5 P Recent Connections
@ ERDDesignDemo. 8 localhost, <defauit> (reportuser)
8 NormalizationDemo B localhost, <defauit> (STANDALONEOT\Administrator)
& SeesprDE
§ SelsanalysisDB
@ SubscriptionDB. [10% -] @ Noissues found
4 ey 5 Resuts |g) Messages
: Server Objects Sdeld | Productiame | Amourt
151 Aways On High Availablity 1 Widget A | 150000 ~ Connection Properties
- 7 2| Wews | 20000
8 saLs: A 3 3 Widget C 72000 Server Name: |localhost
5] Xevent rofler At 3 Server Authenti
el = - entication: [SQL Serer Authentication
5 Databases UserName: reportuser
- Secury
[ Password:
5 Replication
1 Alvays On High Availabilty
= High Database Name: B
Encrypt E
st Server Certfcte
calor ] [custom-
Advanced

Connect Cancel Help






index-171_1.png
34 ||V CREATE SECURITY POLICY TenantFilterPolicy
35 ADD FILTER PREDICATE dbo.fn_tenant_filter(TenantId)
36 ON dbo.CustomerOrders

37 WITH (STATE = ON);

fws ] ©1 A0 4 L

1 1 Tata Incustries | 20250701 | 120000
2 |2 1 Tata Incustries | 20250715 | 300000

OrderlD_| Tenantid | CustomerNiame | OrderDate | Amourt






index-162_1.png
File Edit View Quey Gt Project Tools Extensions Window Help | O Search~  Solutionl

|2 | BNewauey B[O - - BB |5,
[SecurityAuditDemo. ]| b Beate = v 32 E[H]3°566m/

Connect~ ¥ % = 7 U 4
= i@ localhost (SQL Server 17.0.700.9 - STANDALO

- Audit Object-Level Permissions

& @ |locaihost (S0 Server 17.0:7009 Teporitse]
7 Databases
i Security

100% -]

®@2 a0 1 U

Messages.
PrncipalName | PrincipalType Objecthame | pemission_name | PemissionSate
1 [enalysirole | DATABASE ROLE | Sdes SELECT GRANT

1 Replcation
2 Abways On High Avsiabity
5 Management






index-68_1.png
©-0s

SubscriptionDB

==

File Edit View Gt Project TableDesigner Tools Bdtensions Window Help | O Search ~

| B Newauey B[ 9 - ©

AT
|3°88 4|

Solution!

2 TableView~ R | 12 %8

100% -

Object Explorer

Connect~ ¥ ¥ = Y U 4

© @ localhost (SQL Server 17.0.7009 -

© 5 Databases
4 System Databases

= Database Snapshots

@ AdventureWorks2022

@ ERDDesignDemo

& @ SubscriptionDE,

i [Dtabase Diagrams

= Tables

i Views

= Extemal Resources

1 Synonyms

= Programmabilty

1 Query Store

1 Senvice Broker

= Storage

8 Security

1 Security

5 Server Objects

1 Replcation

2 Abways On High Avsiabity

® 1 Mansgement

® 8 SQL Server Agent

[ T2 XEvent Profiler

STANDALO

SubscriptionPlan

 PlaniD

al .istrator (64)"

Customer






index-67_1.png
File Edit View Quey Gt Project Tools Extensions Window Help | O Search~  Solutionl

PRESHLIN J)=
| b Beate = v 52 B[E] 866D/

Comnect~ § 7 O+ u
& @ localhost (SQL Server 17.0.7009 - STANDALO| =

36 || CREATE TABLE Payment (

37 PaymentID INT PRIMARY KEY IDENTITY,

38 SubscriptionID INT NOT NULL,

39 PaymentDate DATE NOT NULL,

ue Amount DECIMAL(16,2) NOT NULL,

41 Paymentstatus NVARCHAR(S0) CHECK (Paymentstatus IN (*Paid’, 'Failed’, 'Pending’)),
w2 FOREIGN KEY (SubscriptionID) REFERENCES Subscription(SubscriptionID)

43 %

wy

us

u v
u7
ug

[0 -] @2 ao T






index-140_1.png
Hoving Average with a Window Frame

& B localhost (SQL Server 17.0.7009 - STANDALO!
5 1 Databases

16 System Databases

1 Detabase Snapshots

8 AdventureWorks2022

@ ERDDesignDemo.

@ NormalizationDemo

@ [SeaSAppDE]

@ SelcsAnalysisDB.

8 Subscit

5 Security

1 Server Objects

1 Replication

11 Alweys On High Avelability

1 Management

B SQL Server Agent

T2 Xevent Profiler

MovingAvg3Morths
1 [11000 201106 | 3756989 | 3756989
2[00 01306 | 25876769 | 31724328
3 [ 100 01310 | 27702832 | 3038378
4| oot 01106 | 3729368 | 3729364
5 | oot 01306 | 26740227 | 3201
6 | oot 201405 | 6508008 | 23613958
7 [Tz 201106 | 3756989 | 3756989
8 | 1o 201306 | 25%964 | 31464765
EREL) 201307 | 26730613 | 29886714
10| 11003 201105 | 3756989 | 3756989
11| 11003 201306 | 25624508 | 31697199
12| 11003 01310 | 26744757 | 29979718
13| 11004 201106 | 3756989 | 3756989
14| 11004 201306 | 26265408 | 31917649
15 | 11004 201310 | 26730613 | 30188637






index-102_1.png
File Edit View Quey Gt Project Tools Extensions Window Help | O Search~  Solutionl

©-0|& | @Newauey B[99 - -8B 5
| [saasperion b Beate = v 32 B[E] 3 | &

At Chi = Index for RetailC
- Index for RetailCorp
© 8 localhost (50 sever 1707003 - STANDAL 52 ||\ CREATE NONCLUSTERED INDEX IX_Invoice Tenantl
OIS 53 ON Invoice (InvoiceDate)
su ||| WHERE TemantId = 1;
55
56 ||| — Index for Healthplus
57 ||V CREATE NONCLUSTERED INDEX IX_Invoice Tenant2
58 || o Invoice (InvoiceDate)
59 || WHERE TemantId = 2;
60
61
62
63 ||| SELECT « FROM vn_HealthPlus_Invoices WHERE InvoiceDate >= '2025-01-61';

100% -]

a0 1t

3 Erecution lan

[uery 1+ Guery cost (selevive to the bavcm): 1068
SEczcr + Facw (o sieasiapias Tavoiocs] WAERE (TavoiceDace]>-Gl
;
iy
[ —
I .

2ot
2 (1008






index-237_1.png
SQL Server database
Sever@

localhost

Database (option)

AdventureWorks2022

Data Connectivity mode @
© Import
@ DirectQuery

Advanced options

Cancel





index-228_1.png
File Edit View Quey Gt Project Tools Edensions Window Help | O Search~

| @Newauey B[ - -|B|BB| T

-1l Beare « v g2 E[H] §°2840)

%

*Email campaign - August 2025',
*MarketingSystemApp’
(SELECT TOP 1 ConsentID FROM Consentlog WHERE UserID = 1601 ORDER BY ConsentDate DESC)

Solution!

QLQuery46s

8 Messages
oty Processedit Pefomedsy ConsentDte Consereeinod Notes
Email campaign - August 2025 | 2025-08-04 23:01:17.0300000 | MarketingSystemApp | 2025-08-04 23:01:13.3000000 | Checkbox on signup form | User agreed to receive promotional emails






index-238_1.png
»
Display Options B
o purcnssing vurchaseUrderteader

ME Purchasing ShipMethod
M E PurchasingVendor

ME Sales CountryRegionCurrency
BE SalesCreditCard

ME SalesCurency

BE SolesCurenyfate

¥ B SalesCustomer

ME SalesPersonCreditCard

¥ B Sales SalesOrderDetil

¥ B SalesSalesOrderHeader

BE Soles SalesOrderHeaderArchive
ME Soles SalesOrderHeaderSalesReason
¥ B SalesSalesPerson

ME Sales SalesPersonQuotablistory

B E SolesSalesReason

BE SolesSalesTaxRate

Y SalesSalesTerrtory

B E Sales SalesTerritoryHistory

M E Sales ShoppingCarttem

Select Relted Tables

Sales SalesTerritory

TeritoryD | Name
1 Northwest
2 Northeast
3 Central
4 Southwest
5 Southeast
6 Canada
7 France
8 Germany
5 Australia
10 United Kingdom

us
us
us
us

2R 382§

=)

Group
North America
North America
North America
North America
North America
North America

i

Transform Data

SalesyD
78
24

slelelslelnlSle





index-237_2.png
Windows

Microsoft account

SQL Server database

§ localhost;AdventureWorks2022
Use your Windows credentials to access this database.

© Use my current credentials
® Use alternate credentials

Select which level to apply these settings to

localhost






index-240_1.png
File

Untitied - Power Bl

Home Insert Modeling View Optimize Help

BLhoOERE® L B L d

Get Ewel Onelake SQL Enter Dataverse Recent Transfomn Refresh  New Tet More
data~ workbook catalog v Server data sourcesw  datav visual box visuals

Daa Queres nsert

‘Sum of TotalDue by Name

Sum of TotalDue

Total Revenue

$123.22M

Sum of TotalDue by Month

Sum of TotalOue

New  Quick

Cacuttions.

Senseivty

4 2@
:

Share Coplor

= Filters
Q search
Filters on this page

Add data fields here

Filters on all pages.

Add data fields here

Signin

Visualizations

>

EEWE N
o MR B
EMFLEOO
BHewA~rE
EDEEER
Py B =8 (]

[NEER:

Values
Add data fields here

Drill through

[re—
Keepalfiters @)

Add drill-through filds here

[o——,
CustomerlD
DueDate
Freight
ModifiedDate
OnlineOrderfL.
OrderDate
PurchaseOrde.
[r——
rowguid
SalesOrderlD
SalesOrderiu..
SalespersoniD
ShipDate
ShipMethodiD
ShipToAddres
Status
Subotal

MMM MM

Tadhmt
TeritorylD

™M

TotalDue
> D Sales SalesPerson
~ B Sals SalesTerrtory
Costlastfear
CostyTD






index-40_1.png
B Messges

J0TN Sales.SalesTerritory t ON h.TerritoryID

. TerritoryID;

OrderDate.

TotalDue

20130101 00:0000.000

865.204

20130103 00:0000.000

22839187

20130103 00:0000.000

865.204

20130104 00:0000.000

22839187

20130105 00:0000.000

26999018

20130105 00:0000.000

865.204

20130107 00:0000.000

24106266

20130108 00:0000.000

22839187

20130111 00:0000.000

22839187

20130112 00:0000.000

26999018

20130113 00:0000.000

24106266

20130113 00:0000.000

24106266

20130113 00:0000.000

11054834

20130113 00:0000.000

865204

20130116 00:0000.000

26425%






index-239_1.png
Untitied - Power Bl Desktop

File  Home Help

B BR ORE® B

Get Excel Onelake SQL Enter Dataverse Recent
data~ workbook catalog v Server data
o

Cipbosrd

(2) sues seserson

R

¥ soms
BusiessEnii0

¥ Commssordex

6 Modhedate
rowguid

¥ saestasttesr

% saesuon

¥ sdevm

5 Taronis

E3}

Colapse

CamerTrackingfumber

%ttt
& 0 Mosteime
J X orsmay
@ % productd
oy
T SdeOrdevasiO
soesorgend

% Soecalofierd
Colspsz

@

2
(8] soes suestertory

Signin & =
N
AL L AP A al}
Manage View QA Language Linguistic Publish
roles 2  setp v schemav
Seariy asa Seritity | Share
« | Data
)
8 | Tables  Model
s
2
£ |[_Q Search

> D Sales Customer
> D Sales SalesOrderDetai
> D Sales SalesOrdertieader
> D Sales SalesPerson

> D Sales SalesTerrtory






index-37_1.png
File Edit View Quey Gt Project Tools Extensions Window Help | O Search~  Solutionl

©-0 | EE 8| &Newauey -lelme.
# % | [Adventureworks202 ]| b Brecute = v 22 B[H]| 2258 0|

Object Explorer

Connect~ ¥ ¥ = T U 4
& 8 localhost(SQL Server 17.07009 - STANDALO

\ SELECT Name, Color, ListPrice
FROM Production. Product
WHERE (Color = 'Red' OR Color = 'Black')
AND ListPrice > 560;

5 Resuts | Messages

SalesOrderlD_| OrderDate TotalDue
1 [asel 20130101 00:00:00.000 | 24106266
2 @ 20130101 00:00:00.000 | 2699.9018
3 | 20130101 00:00:00.000 | 2699.9018
4 | 20130101 00:00:00.000 | 2264.25%
5 | 49185 20130101 00:00:00.000 | 2264.25%
6 | 4136 20130101 00:00:00.000 | 2699.9018
7 | a7 20130101 00:00:00.000 | 24106266
EREEE 20130101 00:00:00.000 | 2264.25%
EREEE) 20130101 00:00:00.000 | 865204
10| 49190 20130101 00:00:00.000 | 1105.4834
11| 4919 20130102 00:00:00.000 | 1105.4834






index-51_1.png
ELSE

*Unknown*

END AS PromotionStatus

FROM Person.Person;

B Messges

SalesOrderlD_| OrderDate TotalDue | OrderCategory
1 (51 20130530 00:0000.000 | 187487.625 | High Value.
2 201308:30 00:00:00.000 | 1820186272 | High Value.
EREE) 20130630 00:00:00.000 | 145454366 | High Value.
4| st 201306:30 00:00:00.000 | 140042.1209 | High Value.
5 | 57150 20130930 00:00:00.000 | 137721.3102 | High Value.
6 | &7 20140301 00:00:00.000 | 130907.0496 | High Value.
7 |smn 201307:31 00:00:00.000 | 130249.2557 | High Value.
EREE) 20130630 00:00:00.000 | 126852.1615 | High Value.
ERE] 201403:31 00:00:00.000 | 126514.9931 | High Value.
10 | 57188 20130930 00:00:00.000 | 126230418 | High Value.
11| 51739 20130630 00:00:00.000 | 125157.3774 | High Value.
12| 5112 20130530 00:00:00.000 | 124397.7924 | High Value.
13| 57105 20130930 00:00:00.000 | 124249.4919 | High Value.
% 201403:31 00:00:00.000 | 122916.4563 | High Value.
15 | 63284 201312:31 00:00:00.000 | 121623.1946 | High Value.






index-48_1.png
| s

| & New Query

[AdventureWorks2022

| b beate « v 32 B[E]| 575840 &

File Edit View Quey Gt Project Tools Edensions Window Help | O Search~
9-¢-|@(m|E.

FROM Production. Product;

Solution!

B Messages
LitPrce | Color_| SalePrce
FRoad 150Red.62 | 357827 | Red | 3399356500
Road 150 Red. 44 | 357827 | Red | 3399.356500
Road-150Red. 48| 357827 | Red | 3399356500
Road-150Red. 52 | 357827 | Red | 3399356500
Road-150Red. 56 | 357827 | Red | 3399356500
Mourtain-100 Siver, 38 | 339999 | Siver | 3229.990500
Mourtain-100 Siver, £2 | 339999 | Siver | 3229.990500
Mourtain-100 Siver, 44_| 339999 | Siver | 3229.990500
Mourtain-100 Siver, 48 | 3399.99 | Siver | 3229.990500
Mourtain-100 Black. 38 | 337499 | Back | 3206240500
11| Mountan-100 Back, 42 | 337499 | Back | 3206 240500
12| Mountan-100 Back, 44 | 337499 | Back | 3206 240500
13| Mountan-100 Back, 48 | 337499 | Back | 3206 240500
14 | Road250Red 44 | 244335 | Red | 2321182500
15 | Road250Red 48 | 244335 | Red | 2321182500
16 | Road250Red.52 | 244335 | Red | 2321182500
17 | Road250Red.58 | 244335 | Red | 2321182500






index-63_1.png
©-0s

[ERDDesignDemo

Connect~ ¥ ¥ = Y U 4

Brecute

£ @ localhost (SQL Server 17.0.700.9 - STANDALO!

= W Databases.

5 System Databases

5 Database Snapshots
@ AdventureWorks2022
& @ ERDDesignDemo

= [Batabase Diagrams]
= Tables

i Views

5 Btemal Resources
1 Synonyms.

= Programmabilty
1 Query Store

1 Senvice Broker

= Storage

8 Security

1 Security

5 Server Objects

4 Replication

¥ Aways On High Avalability
= Management

8 SQL Server Agent

7] XEvent Profiler

File Edit View Gt Project TableDesigner Tools Bdtensions Window Help | O Search ~

| @Newauey B[ 9 - - B[ 8| 58 8 | 2 Tabeview- R 528

|3 ggam| |

Solution!

100% -

sql..istrator (61))"

9 EmpD
EmpName
ManagerD
StudentCourse Course EmployeeDetail
9 Studentid  Courseld 9 Employeeld
§ Courseld CourseName Address
Phone
Customer 3
9 Customerd
CustomerNName
Student
9 Studentid Employee
StudentName 9 Employeeld
FullName
HireDate
Orders
9 OrderD
Customerld
OrderDate






index-62_1.png
File Edit View Quey Gt Project Tools Extensions Window Help | O Search~  Solutionl

| @Newauey B[ - -|B|BB| T
ERDDesignDemo -]l b Beate = v 33 E[E] 375563/ |

YO+ 57 )
o oo G sever 107008 -sTanoof | 5
o 60
1 System Databases 61 ||v SELECT TABLE_NAME

62 FROM INFORMATION_SCHEMA.TABLES
63 WHERE TABLE_TYPE = 'BASE TABLE' AND TABLE_CATALOG = 'ERDDesignDemo’;

a0 1ty






index-225_1.png
354

e

|

\+ SELECT » FROM dbo.Customers;

server_principal_name database_name | object_name | statement
'STANDALONED!\Admiitrator
'STANDALONED \Admiistrator | AwaysEncryptedLab | Customers | SELECT * FROM_dbo Customers
'STANDALONED!\Admiritrator
'STANDALONED! \Administraor | GDPRLab Customers | SELECT * FROM _dbo Customers.






index-197_1.png
]
B Connect (Preview)
Hist Advanced Properties x
oo EH2 1D
G| et NotSpeciied
q Column Encryption Setting Disabled v
B \
B Eomt True
HostName In Certicate
B0 rntegatedseanty False
. @l P AddessPreference st
8 Passnord
| 19 persstsecurity Info True
v Con|  server Certficate
TrstServer Certfcate True
Sene | Userm s
v Source
uthg AttachDbFilename l
User| | Context Comecton False =
Data Source localhost =
Passy||_ Falover Partner
‘Column Encryption Setting
Defaut column encryption seting for al the commands onthe connection.
Datat -
Encry Data Source=locshostPersst Secuity Info=True;User al|
D=so;Pocing=Fake Mltle Acte Resuit
Sets—FaseiEncrypt—True;Trust Server Certicate=True;Appication
‘Name="SQL Server Management Studio”;Column Encryption
Color Seting=Disbled;Command Tmeout=0

[ =

Connect Cancel Help






index-198_2.png
| BNewauey B9 - - |8 [BB|
<]l b Beate v 22 E[H] 2

SELECT + FROM Custoners;|

8 Server Objects
5 Replicstion
8 Always On igh Avalabilty
8 Management

B SOL Server Agent 6% =] © No sues found

T8 XEvent Profler

o @ locihost (SGL Server 1707004 5} Customerld | FulName Email NationallD CreditCardNumber Salary
= Databases I oAb | o Sbo@imudad | TEMSETIO0TINSS | S5 TZASETE0T2 | 500000
= securty P Taeo Tt | va shlehGimdnaid | STESAE21O00TE4 | 55753072 3456709 | 6500000
1 server Objects e anda e nenda pure@inudtasd | 555655577775888 | 103456755012 3456 | 5500000

1 Replcation
2 Abways On High Avsiabity






index-198_1.png
File Edit View Quey Gt Project Tools Extensions Window Help | O Search~  Solutionl

| Prevasey B9 - -8B 1o
[AbaysEncyptedlab -|| b Becute w v 32 E[H] 2° 1843

QLQuery0.q..Lab (sa (128) istrato
O 1 [|v USE AlwaysEncryptedLab
SELECT = FROM Customers;|

9 Server Objects
1 Replication
1 Always On High Availablity
1 Management
B SQL Sever Agent
T8 XEvent Profler
& @ ]localhost (SQL Server 1707003 53)]

1 Databases

:5“‘"’, [100% =] © Noissues found

& Repli o © Resuts [ Messages

8 Always O High Avalabilty Cosomekd_|FulNome | Emad NotonalD CrodtCordhumber Sy
18 Management T Thata Adar | thaia abar@imudataid | 0:0121381DZ7460F 5B 125EBD16254DGE6CE23766CF603.._| O016CT362BA51 4BDUDDCSODA3BD626DEE5FB0B4B04EF .. | 75000.00
8 SQL Server Agent 2 |2 Zabva Zhafish | zahva zhafirah@imudataid | 0<01FOC26D270F TF9BFAC3F756CD 1CCE7945B54994D2955ED... | OxD1BEEF96432DD4115D26B240252AFD9049417D31C6742D0... | 85000.00
[ XEvent Profiler 3 |3 Ananda Putra_| ananda putra@imudataid | O<01FEE63B820125F7C6873F763DEC1AB22CDBCTECDBATF... | (x01F22467ABIBEGAS28FBFBESS100A60340575926D4A08CD... | 95000.00






index-211_1.png
|3 ggdm|

INSERT INTO Customers (CustomerID, FullName, Email, Phone, SSN)
VALUES

(1, 'Devi Johnson', ‘devi.johnson@ilmudata.id', '555-123-4567', '123-45-6789'),
(2, 'Smith Lee', 'smith.lee@ilmudata.id', '555-987-6543', '987-65-4321'),

(3, 'Hans Miller', 'hans.nueller@ilmudata.id’, '555-111-2222', '321-54-6789'),
(4, 'Giulia Rossi', 'giulia.rossi@ilmudata.id', '555-333-44ud’, '654-32-1987'),
(S, 'Pierre Dubois', 'pierre.dubois@ilmudata.id', '555-555-6666', '789-12-3u56'),
(6, 'Sven de Vries', 'sven.devriesgilmudata.id', '555-777-8888", '876-5u-3210"

CREATE LOGIN AnalystUser WITH PASSWORD = ‘StrongPassword!123';
CREATE USER AnalystUser FOR LOGIN AnalystUser;
ALTER ROLE db_datareader ADD MEMBER Analystuser;

Q4 Ao JON
8 Messages
CostomerD | FlName [ Emal Phone s

Devidohnson | XOX@X000com | XOOKHA567

SmithLee | SXO@X000com | XOOK00ES3

Hans Miler | mOX@X000com | X00K0K2222

Giuia Rossi | gX0(@X000com | X000X004444

Fierre Dubois_| pXOXX@X000com | XOOKE68

‘Sven de Vies | SXUX@X0Xcom | XO0KK8388






index-202_1.png
| Prevasey B9 - -8B
-l b Beate = v 22 E[E] 3°

SELECT » FROM dbo.Customers;

5 Resuts g Messoges
event_time session_server prncipal_name | database name | object name | statemert action 1d_| succeeded
1 [ 20750804 733007 1981532 | STANDALONEDT Administrator AUSC |1
2| 20250804 233031 77127% | STANDALONEDT\Adminstrtor | AwaysEncryptedLab | Customers | SELECT - FROM_dbo Customers | SL T






index-214_1.png
| & New Query
<1 b Eecute

File Edit View Quey Gt Project Tools Extensions Window Help | O Search~  Solutionl
9-¢-lalsE,

354

v B[E e

b

VALUES
@1, ‘Hans Miller',

©s a0 1 L

Phone VARCHAR(20),
EmailHash AS CONVERT(VARCHAR(160), HASHBYTES('SHA2 256
Phonetash AS CONVERT(VARCHAR(160), HASHBYTES('SHA2_256

(2, 'Pierre Dubois’,

v INSERT INTO Customers (CustomerID, FullName, Email, Phone)

‘hans.muellergneuville.id', '555-123-4567'),

*pierre.dubois@neuville.id', '555-987-6543';

, Email), 2) PERSISTED,
, Phone), 2) PERSISTED

B Messages
Enal Enaikiash Phone Phonetiash
hans mueler@neuvile id_| ES8ABE9203E4AF 25AADS3B4AGIB4GBD5H44CTDEBAABBT25 | 5551234567 | DIGEE3182208DSF ZCIBBIF IFB7CD317ATIESS527CBIS72090.
2D763CD0D7A70992365530FDEAFDD 362 TFAEDGFABT285725. .| 555 9676543 | 263444AABG29F3AT18274382ED271DCBB45D24CDS TS TDE 1A






index-212_1.png
| & New Query
<1 b Eecute

File Edit View Quey Gt Project Tools Edensions Window Help | O Search~
9-¢-lalsE,

a=1E1]

354

e

GRANT UNMAS

SK TO Analystuser;

CREATE USER AnalystUser FOR LOGIN AnalystuUser;
ALTER ROLE db_datareader ADD MEMBER Analystuser;

Solution!

©s a0 1 L

D Messages
Fuleme | Emai Phone B
Devidohnson | devijohnson@imudataid | 5551234567 | 123456789
Smithlee | smihlee@imudataid | 5559876543 | 987:654321
Hans Miler | hans musller@imudataid_| 5551112222 | 321546783
Guuia Rossi | gularossi@imudataid | 5553334444 | 654321987
Fiere Dubois | piere dubois @imudataid | 555-555-6666 | 789-123456
‘Sven de Vies | sven dewies @imudataid | 5557778388 | 876-54-3210






index-222_1.png
| & New Query
| b Eecte

File Edit View Quey Gt Project Tools Edensions Window Help | O Search~
9-¢-lalsE,

v aE] il

EXEC AnonymizeAndSoftDeleteCustomer @CustomerID

Solution!

strator (12

@2 A0 1 L

) Messages
FullName Emai Phone [ RegisteredDate | IsDeleted
Uang Johnson | wangjohnson@imudataid | 5551234 | 20240510 | 0
DeletedUser 2 | NULL NOLL [ 20260478 | 1
DeletedUser 3 | NULL NOLL [ 20240322 | 1
Lucia Garcia | lucia garcia@imudataid | 5555566 | 20240214 | 0
Carlos Mattinez | carlos matinez@neuvile id | 5557788 | 20240130 | 0
Guia Ross | guiarossi@imudataid | 5559900 | 20240525 | 0
Marco Banchi | marco bianchi@neuvileid | 5552233 | 20240605 | 0






index-220_1.png
strator (120))

'+ UPDATE Customers
SET
FullName = CONCAT('Deleteduser_', CustomerID),
Email = NULL,
Phone = NULL,
IsDeleted = 1
WHERE CustomerID = 2;

®1 a0 1t U

8 Messages
FullName ‘Email Phone. RegisteredDate | IsDeleted
Ujang Johnson | ujang johnson@imudataid | 5551234 | 2024-05-10

DeletedUser 2 | NULL NULL | 20240418
‘Sophie Evans | sophie evans@imudataid | 5553344 | 20240322
Lucia Garcia | lucia garcia@imudataid | 5555566 | 20240214
Carlos Matinez | carlos mattinez@neuvile id | 5557788 | 20240130
Guia Ross | guliarossi@imudataid | 5559900 | 20240525
Marco Banchi | marco bianchi@neuvileid | 5552233 | 20240605






index-196_1.png
File Edit View Quey Gt Project Tools Extensions Window Help | O Search~  Solutionl

[9-¢-|em&.
| b Beate = v 23 E[H] 5°

Connect~ § " = 7 U 2
5 @ localhost (SQL Server 17.0.700.9 - STANDALONEOT) 4 2
u
M Databases 25 SELECT » FROM Customers;
5 System Databases b
4 Database Snapshots e
@ AdventureWorks2022 b
= @ AwaysEncryptedLab 29
5 Database Diagroms 30
© 1 Tables 2
5 System Tables 2
4 FileTables 33
4 External Tables En
1 Graph Tables 35
B {dbo Cstorers] 36
1 Dropped Ledger Tables 37
5 Views 8
11 Extemnal Resources =
5 Synonyms
Programmailty
: Query Store o -] @2 40 1t U
4 Service Broker 6 Resufts | g3 Messoges
1 Storage name. key_store_provider name
g &=y 1 [CKAfsl | MSSQL_CERTIFICATE STORE
DataMaskingLab
@ ERDDesignDemo
@ NormalzationDemo
@ RLS Auditab
@ R name. ‘cokumn_encryption.key_id
S ssssppDe T [CEK Aol | 1
@ SeasPerDB
@ SeleshnalysisDB
@ SecureDatalab.
@ SecurityAuditDemo. name. ‘encryption type_desc | encryption_ agorthm_name
1| GrediCardNumber_| RANDOMIZED 'AEAD_AES_256_CBC_HVAC_SHA 256
2| NatiorallD DETERMINISTIC | AEAD_AES_256_CBC_HVAC_SHA 256






index-195_1.png
B Aways Encrypted

Introducton
Column Selecton

Column Assessment

Master Key Configuraton
In-Place Encryption Settings

Run Settings

Results

Verify the choices made in this wizard.

Click Finish to perform the operations with the following seftings:

@Hep

5 Source database settings
Source server name: STANDALONEO!
Source database name: AlwaysEncryptedLab

£ Run settings.

Encryption approach: Offline

£ Create new master key
New master key name: CMK Autol
New master key in Windows certificate store: ‘CurrentUser’
Enclave computations: Disallowed

£ Create new encryption key
New encryption key: CEK Autol

£ Encrypt column NationallD
Table name: Customers
Encryption key name: CEK Autol
Encryption type: Deterministic
Operation mode: Client-side

£ Encrypt column CreditCardNumber
Table name: Customers
Encryption key name: CEK Autol
Encryption type: Randomized
Operation mode: Client-side

< Previous

Cancel






index-1_1.jpg
MASTERING
BUSINESS DATA
WITH SQL

A Practical Guide to Querying, Modeling, and
Compliance Using SQL Server 2025

AGUS KURNIAWAN

—
i\_\a'





index-21_2.png
Connect~= ¥ ¥ O+
& B locelhost(SQL Server 16010006 - AKUR2024\agusk)

oo

e

v SELECT TOP (1600) [AddressID]
, [AddressLine1]
, [AddressLine2]
J[city]
. [stateProvinceID]
. [PostalCode]
. [SpatialLocation]
 [rowguid]
, [ModifiedDate]

FROM [Adventureliorks2022]. [Person] . [Address]

i

SpatialLocation

rowguid

ModfiedDate

O<E6100000010CAEBBFC28BCE4474067A89189898ASECD

'SAADCBOD 36CF483F-84D8 585C2DAECEES

20071204 00:0000.000

(O<E6100000010CD6FAB5TAEGD 747408 262A0AD3905EC0

'32A54B9E E034BFB-B573 A7ICDESIDECO

20081130 00:0000.000

(<E6100000010C18E304CAADE 14740DA30CT893915EC0

4C506923 6D 1B-452C-ADTC BAAGF5B14284

20130307 00:0000.000

(<E6100000010CE13A0DFSFDEA74011ASC2BATCI55ECO

[E5946C78.4BCC-477F SFAT CCODET6ABE0

20090203 00:0000.000

O<E6100000010C61C64DBABBDS4 740C460EATFDESSSECD

FBAFF937-4A97 4AF0-81FD B849900ESBB0

20081219 00:0000.000

<E6100000010CEQB4E50458DA47402F 12A5FB0CH75ECO

FEBF191-9804-44CE 677A 33FDES4FO07S

20090213 00:0000.000

O<E6100000010C 18E304CAADE 474011ASC2BATCI55ECO

0175A174.6C34-4D41BIC14415CDGAL446.

20091211 00:0000.000

O<E5100000010C0029A5D93BDF4740E248962FD5STSECD

‘37156613 4DCA4SEDBF1C-31857D21F269

20081217 00:0000.000

O<E6100000010CEABDAD742DDC4 74085 1574F 7198C5ECO

‘268AF62176D74C78.9441144FD139821A

20120530 00:0000.000

(E5100000010C219D64AE 1 FE474040862564B7825EC0

0B6B739D-8EB64378-8D55 FE196AF34C04

20081202 00:0000.000

O<E6100000010CCEFFBBFDSFES474057B9479C726E6EC0

‘98183303 ACA2-45C7 9A% FBG70785B269

20130228 00:0000.000

<E6100000010CEABDAD742DDC4 7401 1ABC2BATCISBECD

1C2COCFE-ABSF-4F96 8E1F-DIBEEBEFTF22

20130105 00:0000.000

(O<E6100000010CC3226C0867E84740F 3BC 1698 TF835EC0

'E0BA2F52.C907-4553 ADDB 67FC67D28AES

20131214 00:0000.000

(O<E6100000010C219D64AE 1FE4474067A89189898ASECO

AICG58AE C5534A9D-A081-AS50D39B64DF

20091204 00:0000.000

(O<E6100000010C219D64AE 1FE447405E6ED 163B49456C0

F397E64A AIDE4ES7 9ETC B10328ACADDG

20131118 00:0000.000

(O<E6100000010CF76E45EFCIDC4TA06TARY 18989BAECO

0312865 CB60-4396 9ECT-A78B2EACTATE.

20121109 00:0000.000

<E6100000010C034C75E402DE4740BC262A0A03905EC0

‘CESB3B47.92674727 BCD2687CA7482C06

20131108 00:0000.000

O<E6100000010C219D64AE 1 FE447405FFA07D247845EC0

‘96385477 E3CB46A1-A3DB-1BOSF71D6473

20131130 00:0000.000

HEHHBHEHEHEHERHE RS

33|32 3|02 | || | | B ||

O<E5100000010CE13A0DFSFDE47407DDBBAC 144965EC0

'6B7ACBOF CDBF 447D BA14-EB0SASGC1562

20140403 00:0000.000






index-21_1.png
- B

Modifying — SQL Server Management Studio 21 — 2148

Workloads  Individual components  Language packs  Installation locations
SSMS (4) )
Installation details
o A tmarin ] B mT o » SSMS Core Components
A-powered asistants o help you wite queries and ' Empower your business end-to-end, transforming data
manage your databases more effiently. e o e s e » Al Assistance
~ Code tools
< G
B "U Hybrid and Migration (m] ? Code tools Ve =R
Assess database upgrade readiness, and move your data 5% Tooks to it when and where you work while improving O Help Viewer
== e
Location [ I—————

CAProgram Files\Microsoft SQL Server Management Studio 2T\Release

Total space required 0 B

By contining, you agree to the license for the product edition you selected. We also offer the ability to download other software. This software is
licensed separately, as set out in the 3rd Party Notices or in its accompanying license. By continuing, you also agree to thos licenses.

Install while downloading

| [ close






index-25_1.png
& Restore Database - AdventureWorks2022 - [u} X

@ Ready
Select a page
5 Generdl
5 Fies
% Opiions v
C\dventure Works2022bak
AdvertureWorks2022 5
[pavertreWorks2022 -
The last backup taken (Tuesday. 23 May 2023 11:56:14) Timeline.
Backup ses to resore:
Restore  Name Component  Type Server Database
8} AdventureWorks2022 Full Database Backup  Dafabase  Full (Copy Orly) DESKTOP-E20ERUT  Adventure|
Connection
¥ 192.168.182.141 fsa]
View connecton proerties
Progress
@™
Verify Backup Media






index-24_1.png
Fle Edt View Git Tools Biensions Window Help | O Search -

©-0 | &3 New Query BB | 5 @ copilot
FIL__
Connect~ § % = T () - E
& Connect (Preview)
History  Browse
Recent Connections
W 192.163.182.136, <default> (sa)
® localhost, <default> (AKUR2024\agusk)
(%) Connection Properties
Authentication: | Windows Authentication
User Name [AKUR2024\agusk
Database Nome: | <default>
encypt: Mandatory
Trust Server Certficate
- Q

[ Realy





index-27_1.png
Connect~ ¥ ¥ = T U 4
& B localhost (SQL Server 17.07003 - STANDALO

NameStyle | Ttle | Frsthame | MiddeName | LastName | Sufix_| EmaiPromotion | AddtionalContactinfo_| Demographics.
[ NULL | Ken J Sénchez | NULL | 0 NULL <indvidualSurvey wmins="itp://schemas micros
[ NULL | Tem Lee Duffy NULL [ NULL <indvidualSurvey ymins="tp://schemas micros
[ NULL | Robeto | NULL Tamburelo | NULL | 0 NULL <indvidualSurvey ymins="tp://schemas micros
[ NULL | Rob NULL Waters | NULL | 0 NULL <indvidualSurvey ymins="tp://schemas micros
[ Ms. | Gal A Eickson | NULL | 0 NULL <indvidualSurvey ymins="tp://schemas micros
[ M |Jossef | H Goldberg | NULL [ 0 NULL <indvidualSurvey ymins="tp://schemas micros
[ NULL [ Dyan  |A [ NULL [ 2 NULL <indvidualSurvey ymins="tp://schemas micros
[ NULL [ Diane | L Marghem | NULL | 0 NULL <indvidualSurvey ymins="tp://schemas micros
[ NULL | Gig N Mathew | NULL | 0 NULL <indvidualSurvey ymins="tp://schemas micros
[ NULL | Michael | NULL Raheem | NULL | 2 NULL <indvidualSurvey ymins="tp://schemas micros






index-26_1.png
Fie Edt View Gt Tools Edensions Window Help | O Search~

-0 | BNewauey B9 - ¢ -8 B3| 5 ¢

| = E

Object Explorer v Rx

Connect~ § ¥ O+
& @ localhost (SQL Server 17.0700.3 - STANDALONEOT\Adrmi
© 5 Databases
System Databases
Database Snapshots
& @ AdventureWorks2022
Database Disgrams
Tables
Views

External Resources
Synonyms
Programmability
Service Broker
Storage
Security

Security

Server Objects

Replication

Always On High Availability

Menagement
B SQL Server Agent
T2 XEvent Profiler






index-29_1.png
File Edit View Quey Gt Project Tools Extensions Window Help | O Search~  Solutionl

©-0 | | BNewauey B9 - - |8 [BB|
“ | [dventureWorks202 <] | b Becute = v §2 B[H]| §°38 6B | &

Comnect ¥ ¥ O 1 [[v SELECT T0P 10 FirstName, Lasthame

O I O 2 ||| #ron Person.person;
© 1 Databases
8 System Databases
8 Database Snapshots
& W {AdventureWorks2073
5 Datobase Dingroms

1 Tables

W Views

1 External Resources

= Synonyms

8 Programmabilty 0% =] © Noissues found

1 Service Broker

= Storage

5 Security

o Security u

1l Server Objects 2

= Replication 3

8 Always On igh Avalabilty s

5 Management s
G
7
B
B

B 5QL Server Agent
T8 XEvent Profler






