

[image: Image 1]

[image: Image 2]

AWS Certified Data

Engineer Associate Study

Guide

In-Depth Guidance and Practice

Sakti Mishra, Dylan Qu, and Anusha

Challa

AWS Certified Data Engineer Associate Study Guide by Sakti Mishra, Dylan Qu, and Anusha Challa

Copyright © 2025 Sakti Mishra, Dylan Qu, and Anusha

Challa. All rights reserved.

Published by O’Reilly Media, Inc., 141 Stony Circle, Suite

195, Santa Rosa, CA 95401.

O’Reilly books may be purchased for educational, business,

or sales promotional use. Online editions are also available

for most titles (http://oreilly.com). For more information, contact our corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Megan Laddusaw

Development Editor: Shira Evans

Production Editor: Gregory Hyman

Copyeditor: Charles Roumeliotis

Proofreader: Vanessa Moore

Indexer: Potomac Indexing, LLC

Cover Designer: Susan Brown

Interior Designer: David Futato

Cover Illustrator: José Marzan, Jr.

Interior Illustrator: Kate Dullea

September 2025: First Edition

Revision History for the First Edition

2025-08-22: First Release

See http://oreilly.com/catalog/errata.csp?

 isbn=9781098170073 for release details.

The O’Reilly logo is a registered trademark of O’Reilly

Media, Inc. AWS Certified Data Engineer Associate Study

 Guide, the cover image, and related trade dress are

trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors

and do not represent the publisher’s views. While the

publisher and the authors have used good faith efforts to

ensure that the information and instructions contained in

this work are accurate, the publisher and the authors

disclaim all responsibility for errors or omissions, including without limitation responsibility for damages resulting from

the use of or reliance on this work. Use of the information

and instructions contained in this work is at your own risk.

If any code samples or other technology this work contains

or describes is subject to open source licenses or the

intellectual property rights of others, it is your

responsibility to ensure that your use thereof complies with

such licenses and/or rights.

978-1-098-17007-3

[LSI]

Preface

As Data Analytics Specialist Architects at Amazon Web

Services (AWS), we—Sakti, Dylan, and Anusha—spent more

than five years collaborating to solve some of the most

challenging and innovative data problems for diverse

clients. Our collective experience spans a wide range of

industries and use cases: helping Chief Data Officers shape

organizational data strategies, architecting petabyte-scale

lakehouses, and building operationally excellent data

platforms through proven best practices in performance,

cost optimization, security, and comprehensive data

governance. In today’s landscape, the demand for skilled

data professionals has become more critical than ever, with

the rise of generative AI compelling companies to leverage

their data as a key business differentiator.

Throughout our tenure at AWS, we were constantly asked

by colleagues from diverse backgrounds how they could

break into the dynamic field of data engineering. Our

consistent recommendation was to use the AWS Certified

Data Engineer Associate (DEA-C01) certification as a

starting point. Our rationale is not simply about acquiring

another credential but about leveraging the certification’s

curriculum as a structured framework to gain a

fundamental understanding of data engineering principles,

both in general and specifically on the AWS Cloud. This

book is the result of that shared experience and our passion

for teaching, created to provide the clear, comprehensive,

and practical guide we wished we had.

What This Book Isn’t

Before we detail what this book covers, it’s important to

clarify what it isn’t. This book is not an exhaustive deep

dive into a single AWS service, nor is it a comprehensive

manual for hands-on implementation. While many excellent

books approach data engineering from a specific

technology perspective, their focus can be narrow. Instead,

our goal is to provide comprehensive coverage of the

fundamental concepts and architectural patterns for data

engineering on AWS.

What This Book Is About

This book is designed to be your comprehensive guide to

mastering the skills for the AWS Certified Data Engineer

Associate (DEA-C01) certification. Our goal is to provide a

clear path from foundational concepts to advanced,

practical application.

By the end of this book, you will understand:

The format of the DEA-C01 exam, how to prepare

effectively, and strategies for success on test day

The key responsibilities and mindset of an AWS

Certified Data Engineer

How core AWS database, analytics, and auxiliary

services function and how to apply them to solve

real-world data challenges

The art of selecting the right services to architect

solutions that are optimized for cost, performance,

security, and high availability

Who Should Read This Book

Our primary audience is any technical practitioner who

wants to prepare for the DEA-C01 certification. This guide

is crafted to serve a diverse group of professionals, and you will find this book especially valuable if you are:

A software engineer, data scientist, or data analyst

interested in transitioning into data engineering. We

provide the foundational knowledge and practical

AWS skills needed to make a successful career pivot.

A current data engineer focused on specific

technologies who wants to broaden their perspective

across the entire AWS data ecosystem. This book

will help you connect the dots and build a more

comprehensive skill set.

How This Book Is Organized

The book is organized into four parts, each building upon

the last to create a complete learning journey:

 Chapters 1 to 3

This part lays the essential groundwork. We begin by

defining the data engineer’s role and breaking down the

AWS Certified Data Engineer Associate exam itself—what it

covers, how to register, and a recommended study plan. We

then cover the prerequisite knowledge every data engineer

needs, including foundational concepts in databases, data

lakes, distributed processing frameworks like Spark and

Flink, and the fundamentals of the AWS Cloud. This part

ensures you have the solid base needed to tackle the core

technical content.

 Chapters 4 to 7

This is the heart of the book, diving deep into the four

technical domains of the certification. This part is

meticulously structured to align with the official exam guide, helping you build a solid understanding of the required

knowledge. You will learn to design and implement pipelines

for data ingestion and transformation (Chapter 4), select and manage the right data stores for any use case (Chapter 5), maintain and optimize data pipelines for operational

excellence (Chapter 6), and secure your data with robust governance and security controls (Chapter 7).

 Chapters 8 and 9

Here we transition from theory to practical application and

exam readiness. In Chapter 8, we provide a hands-on implementation guide for building both batch and real-time

streaming data pipelines, allowing you to apply the concepts learned in previous chapters. To solidify your knowledge

and build confidence for the exam, Chapter 9 provides an extensive practice exam with over 40 certification-style

questions, complete with detailed explanations and

rationales that guide you on how to approach and solve

them.

 Chapter 10

Finally, we look to the future, covering the latest services

and features in the AWS data landscape. While some of these

newer capabilities may not yet be on the current exam,

understanding them is vital for any forward-looking data

engineer. We are committed to keeping this guide relevant

and will update this section in future editions as the

certification scope and AWS services evolve.

Accessing the Book’s Images Online

Readers of the printed book can access large-format

versions of the book’s images at https://oreil.ly/aws-

 certified-data-engineer-images.

Conventions Used in This Book

The following typographical conventions are used in this

book:

 Italic

Indicates new terms, URLs, email addresses, filenames, and

file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements such as variable or function

names, databases, data types, environment variables,

statements, and keywords.

Constant width bold

Used to highlight snippets of special interest in program

listings.

TIP

This element signifies a tip or suggestion.

NOTE

This element signifies a general note.

O’Reilly Online Learning

NOTE

For more than 40 years, O’Reilly Media has provided technology and business training, knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their

knowledge and expertise through books, articles, and our

online learning platform. O’Reilly’s online learning platform gives you on-demand access to live training courses, in-depth learning paths, interactive coding environments, and

a vast collection of text and video from O’Reilly and 200+

other publishers. For more information, visit

 https://oreilly.com.

How to Contact Us

Please address comments and questions concerning this

book to the publisher:

O’Reilly Media, Inc.

141 Stony Circle, Suite 195

Santa Rosa, CA 95401

800-889-8969 (in the United States or Canada)

707-827-7019 (international or local)

707-829-0104 (fax)

 support@oreilly.com

 https://oreilly.com/about/contact.html

We have a web page for this book, where we list errata and

any additional information. You can access this page at

 https://oreil.ly/aws-certified-data-engineer.

For news and information about our books and courses,

visit https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-

 media.

Watch us on YouTube: https://youtube.com/oreillymedia.

Acknowledgments

We would like to extend our deep appreciation to our

technical reviewers, Julian Setiawan, Pooja Chitrakar, and

Sam Warner, for their invaluable feedback that helped

enhance the quality of this work.

Working with the O’Reilly team has been a true pleasure.

We extend special thanks to Shira Evans for her excellent

organization and assistance; Greg Hyman, our diligent

production editor; Kate Dullea, our wonderful technical

illustrator; and Megan Laddusaw, our content acquisition

editor.

On a personal note:

Sakti extends his heartfelt gratitude to his coauthors, Dylan and Anusha, whose invaluable collaboration and insights

were instrumental in bringing this work to fruition. He is

deeply thankful to his wife, Soumya Mishra, for her

unwavering support and patience throughout this journey.

He is deeply grateful to his parents, Asoka and Bijayalaxmi

Mishra, and his sister, Sabujima Mishra, who have been

constant pillars of strength in his life and instilled in him the value of continuous learning and perseverance.

Dylan would like to express his sincere gratitude to his

coauthor Sakti, who first proposed this book and assembled

such a dream team to bring it to life. He is also immensely

thankful for his coauthor Anusha, whose dedication and

deep technical insights were essential to the quality of this guide. A special thanks to his wife, Surui Qu, for her

constant support and encouragement throughout this

entire process. He is also deeply grateful to his mother, Xin Li, and father, Anjing Qu, for surrounding him with love

and inspiring him to strive for excellence from a young age.

Anusha is grateful to her coauthors, Dylan, and Sakti, whose collaboration transcended into meaningful personal

connections. Anusha owes gratitude to her husband

Saravana, whose understated support made the long hours

manageable. She is blessed to have her mother, Padmavati,

father, Buddha Bhagavan, and sister, Praveena, who take

immense pride in her smallest achievements. Each of these

individuals played a vital part in the completion of this

work, and their contributions were truly irreplaceable.

Chapter 1. Certification

Essentials

Welcome to your journey toward becoming an AWS

Certified Data Engineer Associate! This comprehensive

study guide is designed to equip you with the essential

skills and knowledge to excel as a proficient AWS data

engineer and assist you in passing the certification.

In today’s data-driven landscape, organizations are

grappling with an avalanche of data, seeking ways to

unlock its potential and gain valuable insights. As a data

engineer, you hold the power to transform raw data into

actionable intelligence, driving innovation and business

growth.

In this chapter, you will learn the following:

Understand the role and responsibilities of a data

engineer.

Gain a comprehensive overview of the AWS Certified

Data Engineer Associate certification, establishing a

foundational understanding of the domains covered

in the exam.

Learn the significance of obtaining this certification,

the topics covered in the exam, and the exam

format.

Gain insights into the registration process for the

exam and a recommended study plan to prepare

effectively.

By the end of this chapter, you will have a clear grasp of the certification’s importance, the exam structure, and

other key information required for successful preparation.

Who Is a Data Engineer?

Data engineers are the architects behind the scenes,

building the critical infrastructure that powers all data

solutions, from real-time analytics to artificial intelligence.

These professionals design and implement sophisticated

systems that transform vast amounts of raw data into

valuable business insights.

At its core, data engineering involves creating high-

performance data workflows that handle petabytes of

information with low latency while providing high

reliability. This includes developing robust ETL (extract,

transform, load) processes as well as data warehouses and

lakes, implementing real-time streaming solutions, and

ensuring data quality at scale. Data engineers serve as the

bridge between raw data and actionable insights, enabling

data scientists to build machine learning models, analysts

to generate business intelligence, and applications to

access data seamlessly.

AWS offers a comprehensive set of capabilities that data

engineers can leverage to build data pipelines. From data

processing and SQL analytics to streaming, search, and

business intelligence, AWS delivers unmatched price

performance and scalability with governance built in. In

this book, we’ll explore AWS’s powerful suite of data

engineering services, diving deep into how industry leaders

architect solutions for massive-scale data processing. You’ll master services like Amazon EMR, AWS Glue, Amazon

Redshift, and Amazon Kinesis, understanding not just how

to use them individually but how to orchestrate them into comprehensive data platforms that drive business value.

Whether you’re preparing for the AWS Certified Data

Engineer Associate certification or advancing your

technical expertise, this guide will equip you with the skills required for success. Through real-world scenarios and

hands-on examples, you’ll learn to design and implement

data architectures that scale effortlessly, handle complex

transformations efficiently, and deliver insights reliably in the AWS ecosystem.

Becoming an AWS Data Engineer

Associate

Amazon Web Services (AWS) holds a leading position in

cloud computing and offers an extensive suite of data

analytics services. Many organizations of varying sizes use

AWS to store, process, and analyze their data. As data

continues to proliferate and organizations increasingly rely

on cloud-based solutions for their data analytics needs,

there are several compelling reasons to obtain your AWS

Certified Data Engineer Associate certification. The five

major benefits are as follows:

 Gain comprehensive and applicable knowledge

The AWS Certified Data Engineer Associate certification and

accompanying study resources provide a thorough and

practical understanding of AWS data engineering principles,

best practices, and services. You’ll acquire knowledge and

skills applicable to roles such as data engineer, data

architect, and other AWS data-related positions.

 Enhance career opportunities

AWS Data Engineer is an in-demand role with a limited supply of skilled professionals. Organizations across

industries are actively seeking professionals with proven

expertise in cloud-based data analytics solutions. Holding

the AWS Certified Data Engineer Associate certification can

open doors to new career opportunities or career

progression within your current organization.

 Stay current with best practices and industry standards

The certification process requires you to demonstrate a deep

understanding of AWS best practices for data analytics,

including data governance, security, operational excellence,

and compliance. By achieving this certification, you

demonstrate your ability to design analytics solutions that

meet industry standards, best practices, and regulatory

requirements.

 Join a thriving community of innovators

Earning your AWS Certified Data Engineer Associate

credential connects you with a global network of

professionals who share your passion for data and

innovation. From meetups and conferences to online

forums, you’ll have countless opportunities to network,

share insights, and collaborate with industry leaders and

peers.

 Future-proofing your skills in an AI era

Here’s the secret no one tells you: AI is only as good as its data. Behind every ChatGPT, DeepSeek, or self-driving car

are armies of data engineers who cleaned, structured, and

delivered the training data. By earning this certification, you position yourself at the heart of the AI revolution.

Exam Topics

AWS Certified Data Engineer Associate certification

validates skills and knowledge in core data-related AWS

services, including the ability to ingest and transform data, orchestrate data pipelines while applying programming

concepts, design data models, manage data lifecycles, and

ensure data quality.

The exam has the following content domains and

weightings:

 Domain 1: Data Ingestion and Transformation (34% of

 scored content)

This domain assesses your understanding of how to perform

data ingestion, transform and process data, orchestrate data

pipelines, and apply programming concepts to your

pipelines and queries.

 Domain 2: Data Store Management (26% of scored content)

This domain focuses on evaluating your understanding of

choosing the right data store, comprehending data catalog

systems, managing the data lifecycle, designing data models,

and handling schema evolution.

 Domain 3: Data Operations and Support (22% of scored

 content)

For this domain, the focus is on analyzing data with AWS

services, automating data processing, maintaining and

monitoring data pipelines, and ensuring data quality.

 Domain 4: Data Security and Governance (18% of scored

 content)

For this domain, the focus is on evaluating your knowledge

of applying authentication and authorization mechanisms,

ensuring data encryption and masking, preparing logs for auditing, and understanding data privacy and governance.

Exam Format

The exam contains two styles of questions:

 Multiple choice

These have exactly one right answer and three wrong ones

(distractors). The distractors are designed to seem

reasonable, especially to someone with partial knowledge of

the topic.

 Multiple response

These questions may have several correct answers.

For multiple-choice questions, while several answers might

technically work, pay close attention to specific

requirements in the question, such as “lowest cost” or

“least operational overhead.” The correct answer must

satisfy these specific criteria.

Multiple-response questions, on the other hand, have two

or more correct responses out of five or more response

options. You’ll need to select all the correct responses to

answer these questions successfully.

Unanswered questions are scored as incorrect, and there is

no penalty for guessing, encouraging you to attempt every

question.

Exam details are as follows:

 Type: Associate-level certification

 Delivery method: Available at Pearson VUE testing centers or through online proctored exams

 Number of questions: 65 (50 scored, 15 unscored)

 Time: 130 minutes

 Cost: $150 USD. Refer to the exam pricing page for prices in local currency for other countries (look for

the Associate row in the pricing table).

 Language: English, Japanese, Korean, and Simplified

Chinese

The 15 unscored questions are used by AWS to evaluate

their suitability for future exams and do not contribute to

your final score. These questions are not identified on the

exam. For more information about the exam, visit the AWS

Certified Data Engineer Associate page.

Registering for the Exam

To register for an exam, navigate to aws.training. Next, click Certification in the top menu and sign in using your

AWS Builder ID (or create one if you don’t already have

one). Then, choose Exam Registration in the left navigation

pane and click on “Schedule an exam.” Find the exam using

the title “AWS Certified Data Engineer – Associate” or the

code “DEA-C01” and click the Schedule button. You will

then be redirected to the test delivery provider’s

scheduling page, where you will complete your exam

registration.

Exam-Style Questions

In skillbuilder.aws, AWS has provided a free Exam Prep

Official Practice Question Set for AWS Certified Data

Engineer Associate, which features 20 questions developed by AWS experts, designed to simulate the style and format

of the certification exam. These exam-style questions come

with detailed feedback and recommended resources, aiding

your preparation efforts for the actual exam.

Furthermore, each domain chapter within this book

presents additional exam-style questions, allowing you to

hone your skills. The final chapter provides an extensive

collection of exam-style queries, enabling you to further

explore and solidify your understanding.

Think Like an AWS Solutions

Architect: Translating a Real-World

Problem-Solving Framework into

Certification

AWS certification exams do more than just test your

memory—they validate your ability to think systematically

and solve practical business and technical problems

effectively. The questions you encounter in these exams are

deliberately designed to mimic the real-world challenges

faced by AWS Solutions Architects and Data Engineers. By

adopting a structured approach to interpreting and

responding to these questions, you not only boost your

chances of certification success but also sharpen the same

skills you’ll need daily in your role as an AWS professional.

In this section, we’ll explore how the structured thought

process used by AWS Solutions Architects to solve real-

world problems translates directly into successfully navigating certification scenarios. You will see how

applying a clear, repeatable framework can help you

quickly detect question intent, eliminate distractors, and

pinpoint the best answers efficiently.

The Solutions Architect’s Problem-Solving

Framework

Whether addressing a complex customer requirement or

deciphering an intricate certification scenario, a successful solutions architect follows a structured, repeatable thought

process. This approach ensures that solutions align closely

with customer needs, constraints, and business goals.

Here’s a practical framework that solutions architects

commonly follow:

 1. Understand the use case.

First, get a clear picture of what problem needs to be solved.

This means actively listening to the customer’s description of their challenge or goal. For example, is the customer trying

to process streaming data in real time, migrate a database

with minimal downtime, or ensure their data lake is secure?

Knowing the core use case sets the target for the solution.

 2. Gather current solutions and pain points.

In many cases, the customer already has some legacy

solution that might not fit their forward-looking use cases.

The architect’s job here is twofold: to understand what

currently exists and to identify where it falls short. Are there performance bottlenecks during peak usage? Is the current

solution too costly to maintain? Does it require excessive

manual effort or lack the flexibility to support new data

formats or sources? By surfacing both the strengths and

limitations of the current state, the architect builds a strong

foundation for designing a solution that delivers measurable improvements and aligns with the customer’s evolving

goals.

 3. Determine and rank success criteria.

It’s crucial to know what a successful solution looks like for your customer. This might be defined by key performance

indicators (KPIs) or outcomes (e.g., reducing latency by 50%, cutting costs by 30%, achieving 99.9% availability, etc.).

Success criteria help prioritize trade-offs. For instance, if the top success metric is cost reduction, the architect will favor a simpler, cost-efficient design over a feature-rich but

expensive one.

 4. Consider customer specificity and context.

Every customer has a context—their industry, their existing

architecture, the skill set of their team, and so on. Are they a startup all-in on serverless, or an enterprise with legacy

systems? Do they have a strong preference for open source

technologies, or do they prefer managed proprietary

solutions for simplicity? Context helps tailor the solution.

Great architects frame the problem within the bigger picture

of the customer’s environment. They carefully consider

these specifics to ensure that solutions are not only

technically viable but also practical and culturally aligned.

 5. Explore possible solutions.

Only after understanding the preceding points do architects

start brainstorming solutions. They will typically consider

multiple approaches—for example, if the use case is “ real-time analytics on streaming data, ” possible solutions might include Amazon Kinesis Data Streams, Amazon MSK

(Managed Kafka), or even nonstreaming options if near real

time is acceptable.

 6. Evaluate trade-offs and choose the best fit.

Finally, solutions architects evaluate each potential solution against the previously defined success criteria and customer

context. They explicitly address trade-offs—such as cost

versus performance or feature richness versus operational

simplicity. This step results in selecting the optimal solution that aligns closely with customer objectives while respecting their constraints and specific circumstances.

Following this structured approach ensures the solutions

architect delivers effective, practical, and customer-aligned recommendations. In essence, they act as the customer’s

trusted advisor, balancing what’s ideal with what’s

practical.

Real-World Example: Designing a Serverless

Stream Analytics Platform to Detect Fraud

Let’s apply this framework to a real-world use case from a

leading fintech company focused on delivering fast and

reliable banking services. The customer needed to detect

fraudulent activity on their platform in near real time,

requiring a scalable and low-latency analytics pipeline

capable of handling millions of events per day:

 1. Understand the use case.

The core challenge was to analyze incoming transaction data

in near real time and identify suspicious behavior patterns,

allowing them to act swiftly against potential fraud.

 2. Gather current solutions and pain points.

The customer had legacy detection mechanisms that were

batch-oriented, leading to several minutes of delay between

event ingestion and fraud detection. These systems also lacked scalability and required heavy operational

management.

 3. Determine and rank success criteria.

The primary goals were low-latency detection (subsecond),

high scalability to support business growth, and a reduction

in operational overhead.

 4. Consider customer specificity and context.

As a fintech startup, the customer was cloud-native with a

preference for managed, serverless technologies to

minimize undifferentiated heavy lifting. Their engineering

team was small but skilled in event-driven architectures.

 5. Explore possible solutions.

For the streaming layer, the customer had two main options:

Amazon Kinesis Data Streams or Amazon MSK (Managed

Kafka). On the data processing side, they considered Spark

Structured Streaming hosted on AWS Glue or Amazon EMR,

and Apache Flink hosted on Amazon Managed Service for

Apache Flink. Each option came with trade-offs in terms of

operational complexity, performance tuning, and developer

familiarity.

 6. Evaluate trade-offs and choose the best fit.

Given the need for simplicity and tight AWS integration,

Kinesis was favored over MSK. While MSK offered more

flexibility and control, it required more operational

overhead. On the processing side, the customer team had

stronger technical experience with Spark Structured

Streaming than with Flink. As a result, Spark hosted on AWS

Glue was chosen as the best fit. This combination provided

[image: Image 3]

the necessary scalability and low latency while minimizing

operational complexity and aligning with the team’s existing

expertise. Figure 1-1 illustrates the design fitting these needs.

 Figure 1-1. Stream-based fraud detection system

How This Thought Process Applies to

Certification Questions

I hope you’ve realized by this time that AWS certification

questions are, in many ways, simplified customer case

studies. The exam presents you with condensed versions of

real-world problems—focused on a specific requirement,

constraint, or outcome. What these questions are really

testing is your ability to think like a solutions architect

under time constraints.

Let’s walk through the same reference customer example

we discussed earlier but in a certification question format,

to see how the six-step problem-solving framework maps to

a certification-style scenario.

Here’s our sample question:

A data engineering team is building a new analytics pipeline to process real-time clickstream data from their

mobile app. The solution must support rapid ingestion and

low-latency processing. The team has limited operational

capacity and prefers managed services. They already use

Apache Spark for batch jobs and are familiar with its APIs.

Which solution will meet the requirement with the least

operational overhead?

A. Amazon MSK with Apache Flink on Amazon

Managed Service for Apache Flink

B. Amazon Kinesis Data Streams with AWS Lambda

C. Amazon MSK with Spark Streaming on Amazon EMR

D. Amazon Kinesis Data Streams with Spark Structured

Streaming on AWS Glue

Let’s apply the framework:

 1. Understand the use case.

The question is about processing real-time clickstream data,

so it’s a streaming analytics use case with low-latency

requirements.

 2. Gather current solutions and pain points.

The team currently uses Spark for batch jobs—indicating

they are familiar with Spark’s ecosystem. Their stated pain

point is limited operational capacity, so self-managed or

complex services may not be a good fit.

 3. Determine and rank success criteria.

The key phrase here is “least operational overhead.” This is

the dominant decision factor, more important than

flexibility or advanced capabilities.

 4. Consider customer specificity and context.

They prefer managed services and have Spark experience.

That suggests a solution combining managed infrastructure

and Spark would align best with their context.

 5. Explore possible solutions.

Here we consider each of the possible solutions:

A (MSK + Flink): Managed Flink is good, but the team

lacks Flink familiarity. MSK requires cluster

management.

B (Kinesis + Lambda): Operationally light but limited for

complex analytics.

C (MSK + EMR + Spark): More operational burden with

EMR and MSK.

D (Kinesis + Glue + Spark): Fully managed, Spark-friendly,

and minimal overhead.

 6. Evaluate trade-offs and choose the best fit.

Option D stands out as the best combination of managed

services and Spark compatibility, with minimal operational

overhead. Others either require more setup/management or

are mismatched with the team’s expertise.

 Correct answer: D. Amazon Kinesis Data Streams with

 Spark Structured Streaming on AWS Glue

This approach mirrors how you’d think through real

customer problems. Certification questions just compress

the story and require you to apply this structured mindset quickly and confidently.

A WORD ON THE AWS CERTIFIED DATA

ENGINEER ASSOCIATE EXAM

This particular certification targets the data engineering

persona. While many questions follow the data

architecting patterns we’ve discussed so far, expect

some to test hands-on familiarity with data engineering

workflows and tools. These questions may evaluate your

experience working directly with services like AWS

Glue, Amazon Redshift, or Lake Formation, including

configurations, CLI usage, performance tuning, and

troubleshooting. They’re designed to reflect real-life

experience using the technology, beyond architectural

knowledge. We will cover many such examples in the

sample questions later in this book.

Study Plan

Preparing for the AWS Certified Data Engineer Associate

exam requires a structured approach. Here is a sample

study plan that you can follow while tailoring it to your

specific studying style:

1. Get to know the exam-style questions as described in

the preceding section.

2. Refresh your AWS knowledge and skills by reading

this study guide. Complete the practice questions at

the end of each chapter and in Chapter 9 to assess your understanding and readiness.

3. Get hands-on experience using:

 AWS Builder Labs

These AWS Skill Builder self-paced labs provide

hands-on cloud skills practice in the AWS

Management Console. They are available with an

AWS Skill Builder individual subscription and team

subscription.

 AWS Cloud Quest (Choose Data Analytics domain) AWS Cloud Quest is the only 3D role-playing game to

help you build practical AWS Cloud skills. Choose

your role—Data Analytics Specialist—then learn and

apply your cloud skills to help the citizens of your

virtual city.

 AWS Jam

AWS Jam is an immersive gamified training that

helps you apply your AWS Cloud skills to solve real-

world, open-ended problems using AWS services.

4. Assess your exam readiness by taking the AWS

Certification Official Practice Exam. You will get

access to this exam after you register for the exam.

Conclusion

In this chapter, we explored the fundamental role of data

engineers and their critical responsibilities in modern

organizations. We delved into why the AWS Certified Data

Engineer Associate certification is valuable for your career

growth and professional development. You’ve gained a

clear understanding of the exam’s structure and

registration process as well as familiarity with the exam

question formats and key content domains that you’ll need to master.

Chapter 2. Prerequisite

Knowledge for Aspiring

Data Engineers

Before being introduced to AWS services, you need to have

some prerequisite knowledge on data engineering

concepts. This chapter briefly covers the foundational

knowledge related to databases, data lakes, data ingestion,

data processing, data consumption, working with code

repositories, and AWS Cloud that you’re going to need

before you begin preparing for AWS Certified Data

Engineer Associate certification.

Databases and Types of Databases

Most applications require persistent storage of their data

and an efficient way to query it. The data can be stored in

different formats depending on use case, but for most use

cases, storing in databases is one of the best solutions for

persistent storage (if the data is available in structured or semi-structured format). Let’s understand what a database

is, and the different types of databases that you can

consider while designing your application.

What Is a Database?

A database is a collection of data that can help represent an entity as a table or view having a fixed or flexible set of

attributes stored electronically for easier access and

management. It provides better performance compared to storing data in files and reading from them.

What Is a Database Management System?

The software system that integrates database features such

as create, insert, update, and delete is called a database

management system (DBMS). It acts as an interface

between the database and the end user. Apart from the end

user operations, a DBMS also provides support for

administrative tasks such as managing performance, in-

memory cache, storing indexes, export/import, and many

more. DBMS systems store data in a proprietary format

that is efficient for data ingestion and queries. Some

examples of DBMSs are MySQL, PostgreSQL, Oracle,

MSSQL Server, and Amazon Aurora.

Types of Databases

There are several types of databases such as hierarchical,

relational, and NoSQL. Each one of them excels in

performance for different use cases. Let’s learn a bit more

about these databases.

Hierarchical Databases

Hierarchical databases became popular around 1970. They

store data in a tree kind of structure that maps parent

records to child records and each one of them is treated as

a node of the tree. For example, if you need to design a

hierarchical database for a university, you can define a

department as a parent with employees and courses as

child records. Similarly, you can also map students as

parents and courses as child records. In hierarchical

databases, you can maintain a one-to-many relationship by mapping multiple children to one parent with a constraint

that a child can have only one parent.

Over time, adoption of these kinds of databases has

reduced because of their complexity and inability to scale

with data size and number of entities.

Relational Databases

Around the 1980s, relational databases became very

popular because of their simple tabular storage structure

where each entity type is treated as a table or view, entities within the tables and views are treated as records, and

attributes of the entity are treated as columns of the table

or view. It is very simple for end users to visually

understand the data and represent it as records and

columns. If you consider the same university example, then

the department can be treated as a table within which each

department will be treated as a record and the attributes of

the department such as department name and department

ID will be treated as columns.

Even today, after so many years, relational databases are

the most popular database type and are a great fit for a lot

of use cases. Next, let’s understand what SQL is and how it

relates to relational databases.

Structured Query Language (SQL) is a programming

language that interacts with databases. You can leverage

SQL client tools or programming SDKs to submit SQL

queries to the database engine for the operations the

database engine supports. The database operations may

include create table, select/insert/update/delete records,

execute stored procedures, and many more.

Relational databases provide SQL interfaces to insert, update, and query data. They also provide PL/SQL

(Procedural Language for SQL), which is a procedural

language that combines more than one SQL statement to

achieve a common task or return a set of values.

SQL commands are categorized as follows:

 Data Definition Language (DDL)

DDL helps manage objects and their structures, such as

CREATE tables, views, indexes, and more.

 Data Manipulation Language (DML)

DML helps modify the data using INSERT, UPDATE, and

DELETE statements.

 Data Query Language (DQL)

DQL helps retrieve data from the database using SELECT

statements.

 Data Control Language (DCL)

DCL helps database administrators manage authorization on

database objects and data in tables using GRANT statements.

 Transaction Control Language (TCL)

TCL helps the database engine make automatic changes to

the database, for example reverting erroneous transactions

using ROLLBACK statements.

Next, let’s learn about NoSQL databases.

NoSQL Databases

Relational databases are great when you have a fixed

schema and the values across columns are well populated

or expected to be populated. When you have a use case that

will have variable schema, which means each record may

have a different set of attributes, then NoSQL databases

are a great fit. You can still leverage relational databases in this case, by adding more columns with ALTER statements,

but that will create a sparse table, which has a lot of NULL

values and is inefficient. In addition, NoSQL databases do

not provide referential integrity between multiple tables

and you cannot perform table JOINs to retrieve data.

There are other use cases that may require you to choose a

NoSQL database as well, as there may be a specific query

pattern for which a specific type of NoSQL database may

give better performance. Some of the popular NoSQL

database types are key value store, document store, graph

database, in-memory database, and search database. We

will dive deep into each of these NoSQL database types in

future chapters.

Now let’s understand the difference between two data

processing systems, OLTP and OLAP.

OLTP Versus OLAP

Online transaction processing (OLTP) and online analytical

processing (OLAP) are two different data processing

systems designed for two different purposes. OLTP systems

primarily perform record-level processing and serve

frontend applications that require request responses in a

few seconds. Conversely, OLAP systems primarily perform

column-level operation and serve analytics and business intelligence (BI) reporting use cases.

OLAP system response time varies depending on the data

volume it scans, data distribution, query complexity, and

the architecture of the compute system. But the response

time of queries and concurrency for queries are generally

lower than OLTP systems. In general, OLTP databases are

more suited for record-level operations that require high

concurrency (e.g., insert product or order record as it is

placed by the user through frontend applications), whereas

OLAP systems are more suited for analyzing larger volumes

of records to find insights (e.g., find month over month

sales growth for the last five years).

In terms of storage, data lake and data warehousing

systems are primarily leveraged for OLAP use cases. Next,

let’s learn about the big data and distributed processing

frameworks that are popular in the OLAP world.

Overview of Big Data

Traditional database technologies are not able to scale to

process petabyte-scale data volume. This triggered the next

stage of innovation for distributed processing frameworks

that can scale horizontally by adding more nodes to an

existing cluster. Let’s understand what big data represents,

and from a technology standpoint, what options are

available today.

In simple terms, big data represents terabyte- to petabyte-

scale data, collected from various sources through different

frequencies, that is complex to process. These datasets are

large enough that traditional data processing software

can’t efficiently process or manage their storage and

retrieval. But these massive volume datasets add a lot of

value. Organizations can derive insights using analytics, provide forecasts for the future using machine learning, or

generate new content using generative AI.

Oftentimes big data is referred to as the five Vs. It started with three Vs, including Volume, Velocity, and Variety, but as it evolved, Veracity and Value also became major aspects of big data. The following provides an explanation of each

of the five Vs:

 Volume

This represents the amount of data you have or receive for

analytics, which depends on your organization and the use

case. It can range from terabyte to petabyte scale. Depending on the volume of data, you can design your data processing

pipeline and align the compute capacity needed.

 Velocity

This represents the speed or the frequency at which data is

being collected or processed for analysis. This can be a daily data feed you receive from your vendor or it can be a real-time streaming use case, where you receive data every few

seconds.

 Variety

This refers to the different forms or types of data you receive for processing or analysis. In general, there are three types of data:

 Structured

This refers to data that has a fixed schema or is readable

by distributed processing frameworks such as

MapReduce, Apache Spark, or Apache Flink. We

commonly treat data from relational databases, CSVs, and

delimited datasets as structured.

 Semi-structured

Data where some parts of fields are structured and other

parts are unstructured, are treated as semi-structured.

JSON, XML, and emails are good examples of semi-

structured datasets.

 Unstructured

Datasets on which a schema cannot be applied are

treated as unstructured. Media files such as audio, video,

and PDF documents are good examples of unstructured

data.

 Veracity

This represents how reliable or truthful your data is. The

accuracy or quality of the data is critical to deriving the

correct insights. For example, you may expect one data

source to send a 5 GB file every day with 100 attributes, and the attributes or columns in the structured dataset should be at least 70% populated.

 Value

This is often referred to as the worth of the data you have

collected, as it is meant to give insights that can help a

business drive growth.

The primary challenge from big data is to efficiently

process it, as single-server-based processing frameworks

cannot scale to process such a large volume of data. Big

data needs a distributed processing framework that can

process data in parallel with a cluster of servers. After

understanding what big data represents, let’s learn about

Hadoop, Spark, and a few other data processing

frameworks that have become popular to process big data.

Distributed Processing Frameworks

for Big Data

In simple terms, distributed processing means that the

processing happens in a multinode cluster instead of a

single virtual or physical machine. In the past 10 to 15

years, the Apache Hadoop framework has become popular because of its massive parallel processing capability on top

of commodity hardware and its fault-tolerant nature, which

has made it more reliable. It has been extended with

additional tools and applications to form an ecosystem that

can help to collect, store, process, analyze, and manage big

data.

Hadoop clusters consist of a master node and several data

nodes that can scale horizontally as the data or processing

volume increases. The common storage layer built on top of

all the data node disks is called Hadoop Distributed File

System (HDFS).

There were several distributed processing frameworks or

applications during the evolution of the Hadoop framework;

let’s learn about some of the popular ones.

MapReduce

MapReduce is a distributed processing framework, originally designed to process data concurrently from

HDFS by splitting data into 64 MB or 128 MB chunks. It

primarily consists of the following processes:

 A map process

This process takes input as key-value pairs then processes

and transforms them and writes another key-value pair as

intermediate output.

 A reduce process

This takes key-value pairs as input, aggregates them, and

writes output as another key-value pair.

 A combiner process

The combiner process is an optional stage that acts as a

mini-reducer. It aggregates records available in a single data node before it reaches the reducer stage.

With the growing popularity of Hadoop and MapReduce,

continued innovations have resulted in several other

frameworks built on top of Hadoop that provide better

performance and address different use cases. Let’s look at

a few other frameworks.

Spark

Apache Spark is an open source framework that provides optimized query execution compared to MapReduce and

does most of its processing in-memory to boost

performance. Similar to MapReduce, it provides batch

processing capability but also provides real-time streaming,

machine learning, and graph processing capabilities.

Another reason for its wide adoption is that Spark provides,

as shown in Figure 2-1, its APIs in the Java, Scala, Python, and R programming languages.

[image: Image 4]

 Figure 2-1. Apache Spark languages and library support

Spark represents the data it reads or writes as Resilient

Distributed Datasets (RDDs), DataFrames, or Datasets and

it provides the following two operations:

 Transformations

Transformations are operations in which you create a new

RDD, DataFrame, or Dataset from an existing one after

applying transformation rules such as map, filter, join, and

more. It is executed in a lazy manner, which means

transformations are only executed when Spark invokes an

action operation.

 Actions

Actions are operations that trigger transformations and

write the final output to an external location or return the

output to the Spark driver program.

Figure 2-2 shows the high-level Spark architecture, where:

Spark provides the option to execute in a standalone mode or in a cluster mode. In cluster mode, you

have a cluster manager and the driver program

submits a job to the cluster. The job gets split into

multiple tasks that get executed in different worker

nodes.

Each worker node may have more than one

executor, with each executor having a fixed amount

of memory and CPU cores for execution. The

executor may execute a map transformation task, or

an action that writes to the output location.

Each worker node has its own cache memory to

which you can write small datasets that may be

repeatedly used by multiple tasks; the tasks will get

performance boost as the requested dataset will be

available in memory. A great example of this is

caching reference lookup data that transformation

tasks may use.

[image: Image 5]

 Figure 2-2. Apache Spark architecture in cluster mode

Next, let’s learn about Apache Flink.

Flink

Apache Flink is an open source distributed processing framework primarily designed for real-time stream

processing of high throughput workloads. Similar to Spark,

Flink also does most of its processing in-memory and is

stateful while processing both unbounded streaming data

or bounded data as a batch. It provides advanced

capabilities such as out-of-order event processing, exactly-

once semantics, and backpressure control.

Figure 2-3 shows the high-level Flink architecture and its two primary components—JobManager and TaskManager:

 JobManager

JobManager has three subcomponents (ResourceManager,

Dispatcher, and JobMaster) that help to schedule new tasks,

coordinate checkpoints, react to task failures or completion,

[image: Image 6]

and more. You can increase the reliability of a cluster by

having more JobManagers where one becomes the leader

and the other stays on standby to provide high availability.

 TaskManager

TaskManagers or workers execute the tasks of a dataflow

that includes multiple task slots. For a job, you will have at least one TaskManager and one task slot that scale

horizontally for concurrent execution.

 Figure 2-3. Apache Flink high-level architecture

Client applications or programs submit a job to the JobManager and may stay active to receive the result; they

can also close the session to let the job run in background.

Next, let’s learn about Hive, Presto, and Trino, all of which provide SQL interfaces to end users to analyze big data.

Hive

Apache Hive is a popular open source application that data analysts and data scientists use to query or prepare data

for analytics. You need not write complex Java or Scala

programs using MapReduce or Spark APIs to analyze the

data and you can write your transformation logic using

SQL. It was originally created at Facebook (now Meta)

around 2008 to simplify data processing on Hadoop

clusters.

Hive is positioned as the data warehouse in the Hadoop

ecosystem and users can configure it to leverage

MapReduce, Tez, or Spark as its backend processing

engine. It provides a SQL-like query interface called Hive

Query Language (HiveQL).

Hive keeps all its schema metadata in a relational

database, maintained by the Hive Metastore Server (HMS).

HMS enables you to define a virtual table schema on top of

the data available in HDFS (or other object stores), so that

end users can query them using SQL standards.

Presto

Similar to Hive, Presto (or PrestoDB) is also an open source, distributed SQL query engine that is optimized for

low-latency data access from the distributed file system.

It’s used for complex queries, aggregations, joins, and

window functions. It is capable of querying from the schema defined in HMS or other object stores.

The Presto engine complies the end user SQL queries,

executes them through multiple stages in-memory, and

takes the compute capacity of the Hadoop clusters. You can

scale the parallelism of Presto queries with additional

nodes.

Presto has become a popular alternative to Hive because of

its higher performance and in-memory processing

capability. It was also open sourced by Facebook around

2013. Presto provides a lot of connectors to query data

from additional sources such as object stores, relational

databases, and NoSQL databases such as Cassandra,

MongoDB, and HBase.

Trino

In January 2019, a few engineers of the original Presto

project left Meta (formerly known as Facebook) and forked

the open source Presto to better serve the open source

community. They named it PrestoSQL, which got rebranded

as Trino in December 2020.

Today, Spark for batch processing, Spark Structured

Streaming, and Flink for real-time streaming are very

popular among data engineers. Similarly Hive, Presto, and

Trino are very popular among data analysts and data

scientists to analyze or prepare data using SQL-like

queries.

Next, let’s understand what a data lake is and how it helps

optimize data analytics.

What Is a Data Lake?

A data lake is treated as a centralized repository that can

store structured, semi-structured, and unstructured

datasets at any scale. Data lakes store the raw data as it is, on top of which you can integrate distributed processing

frameworks to process and query the petabyte-scale

datasets.

Data lakes became popular with the growing popularity of

Hadoop clusters. HDFS storage was treated as a data lake

that can scale horizontally with the addition of more nodes

to the cluster. Later, cloud object stores such as Amazon S3

got widely adopted for data lake storage compared to disc-

based block storage, because of its higher reliability,

scalability, cheaper cost, and operational efficiency.

A data lake can bring in all data together to build one

source of truth and make it available for analytics. Data

lakes enable data science teams to leverage historical data

for machine learning, transforming a subset of data for

downstream systems, and many more use cases. While

managing a data lake, it is important to make sure the data

lake does not end up as a data swamp. A data swamp

represents a repository of data that has become

unmanageable over time and lacks structure, metadata,

and governance around it.

What Is a Data Warehouse?

Data warehouses (DW) are also meant to act as a

centralized repository to enable data analysis and BI

reporting, but they are primarily built to support structured and semi-structured relational datasets, and the compute

architecture supports low-latency queries. DW systems

store data in a proprietary format designed to analyze larger volumes of data efficiently.

Most data warehouses support tiered storage and different

data distribution techniques that you can integrate based

on your use cases. Different data warehousing systems may

have different options, but at a minimum they support

storing some of the frequently accessed data in-memory

(less frequently accessed data is in SSD storage). DW

systems support distributing the data through different

mechanisms for efficient querying based on the use cases.

The mechanism may include distributing the data across all

nodes evenly, or by the unique key of the records to

facilitate faster joins, or storing all the data in every node if the data is smaller and needs to be cached in each node.

In addition to centralized data warehousing systems,

certain organizations integrate data marts that may hold

subsets of data for a specific business unit or department

such as finance, marketing, or human resources. Data

marts are smaller in data size compared to data warehouse

and may have aggregated data for a specific use case.

Data Warehouse Versus Data Lake

Ideally you need to have both data lakes and data

warehouses in your organization as both serve different use

cases. Data warehouses are not meant to store all historical

data and are best utilized to store the last few years of data needed for analytics with lower latency. Compared to that,

data lakes are generally meant to store both structured and

unstructured datasets and store historical data to support

analytics as well as time series or machine learning use

cases.

Data warehouses support SQL for data analysis, as the data is generally structured, and are built on top of database

engines. Similar to databases, data warehouses follow a

“schema on write” approach where the schema of the

tables are defined first and then the data is ingested. But

data lakes follow a “schema on read” approach, which

means the data is stored in a storage layer and a virtual

schema is applied on top of it while reading or querying the

data to represent the datasets as a table or view.

While data warehouses support SQL-focused interfaces,

data lakes primarily support programming interfaces with

Python or distributed processing frameworks like Spark,

Flink, Hive, or Tez. Irrespective of use case requirements,

sometimes customers choose commercial licensed data

warehouses that have better technical support to meet

service-level agreements (SLAs) defined for their

production applications as compared to open source

technologies.

ETL Versus ELT

When you plan to ingest data to your data lake or data

warehouse and make it available for consumption,

depending on the usage pattern you may choose between

extract, transform, and load (ETL) or extract, load, and

transform (ELT):

 Extract

Extract represents fetching the data from a data source such

as databases, third-party APIs, FTP systems, or object stores.

The extraction process may involve fetching all datasets or

incremental datasets based on the use case.

 Transform

Transform represents modifying the data based on consumption pattern. The transformation process can be

done using SQL or a distributed processing framework, such

as Spark, or any single-threaded programming language,

such as Python.

 Load

Load represents saving the data in a storage layer from

which end users intend to query the data. The storage layer

can be a database, data lake, or data warehouse.

ETL and ELT vary based on what stage the data

transformation occurs. If the data gets transformed first

before getting loaded into the target, then it is ETL; if the extracted data gets loaded first and then gets transformed,

then it is ELT.

Let’s assume the data is completely structured and the data

analysts would like to access the raw data first (because

the data freshness latency requirements are low), then

write their own SQL-based transformation for consumption.

In that case, ELT is a great approach. Compared to that,

let’s assume the data is semi-structured or in a format that

cannot be consumed directly and needs to be transformed

first. In that case, ETL is better. There are other factors

that customers consider while choosing between ELT and

ETL. For example, if the data is structured and the data

analysts are not comfortable with data processing

frameworks like Spark, then they choose ELT.

There is no clear winner between ETL and ELT; you need

to choose the approach that provides better efficiency for

your use case. Next, let’s understand the different ways to

ingest and process the data.

Different Ways to Process Data

The frequency of data extraction and processing varies

depending on use case and different factors such as

processing the data in a scheduled manner, triggering the

processing when the data arrives, or processing the data on

a continuous basis if the data source is a streaming data.

Let’s understand how batch and stream processing

methods vary and what factors to consider.

Batch Processing Pipeline

If you have datasets that need to be processed in a regular

interval by combining data collected over time, then it’s

treated as a batch execution. The size of data in every

batch may vary depending on the amount of change that

happens in the source system and whether the business has

a need to process it in real time.

Here are a few example scenarios that we can treat as a

batch execution:

The source system sends files every few hours that

need to be processed nightly.

Process all the files that arrive every hour (for

example, application logs).

Pull all the data from the source database or SaaS

system and process them at once.

In general, batch jobs process a higher volume of data, and

they may take more time to process.

Real-Time Stream Processing

Batch jobs are best suited for bounded datasets, but you

may have data sources that are unbounded, such as

streaming data, which need to be processed on a

continuous basis and therefore require real-time stream

processing.

Here are a few examples of real-time stream processing:

Ingesting or processing user clicks from a website or

mobile app as soon as they are received

Processing events coming from IoT devices

Ingesting database changes (e.g., inserts, updates,

deletes) to a data warehouse system as they happen

through the change data capture (CDC) mechanism

Processing incremental data from SaaS sources

In general, the data volume for real-time stream processing

systems are smaller compared to batch jobs and involve

additional complexities such as processing out-of-order

records, late arriving records, checkpointing, and retries

for failed processing.

Event-Driven Processing

Event-driven processing is somewhat similar to batch

processing but is triggered on a particular event. You may

have a requirement to process the data as soon as it

arrives, but you cannot keep a real-time streaming

infrastructure active as the data does not flow continuously

or the source system does not send it in regular intervals.

In such scenarios, to reduce cost you may prefer event-

driven processing. The volume of data may be small or big

depending on the source system. The compute

[image: Image 7]

infrastructure generally scales to accommodate the

variable data volumes.

High-Level Architecture Overview of

Data Processing Pipelines

Figure 2-4 shows a high-level architecture for a data pipeline irrespective of the technologies you choose to

integrate. This architecture can evolve based on specific

use case requirements.

 Figure 2-4. High-level architecture for data pipeline

Let’s understand each block of the architecture diagram:

 Data sources

This component of the architecture highlights different data

sources that you may plan to integrate in your data pipeline.

 Ingestion

You need to extract the full or incremental data from the

data sources through the ingestion layer. It may include

scheduled batch jobs to extract data from a source, a message bus such as Kafka to which the data source pushes

incremental data, or a queue that keeps the filepaths or

messages that need to be processed sequentially.

 Distributed storage

The ingestion layer pushes raw input data to the distributed

storage layer, which may include a data lake, data

warehouse, or database for further processing.

 Processing

The raw input data gets validated against data quality, then

enriched, transformed, and pushed to the final distributed

storage layer.

 Technical and business catalog

Once the data is in the storage layer, you can integrate a

metadata catalog (which may include databases, table, and

column-level information) for data discovery.

 Consumption

Data consumers consume data from a data lake or data

warehouse for analytics, BI reporting, machine learning, or

to further transform the data to push to downstream

systems.

 Data security and governance

This spans all preceding components to enable data security

and governance that includes fine-grained access control,

data encryption, data masking, data lineage, data sharing,

and more.

 Workflow orchestration

The data ingestion and processing jobs can be orchestrated through a workflow service that may help monitor job

execution status, enable retry in case of job failures, and

build reporting for all pipelines.

 Monitoring

This component helps monitor compute infrastructure

health, analyze logs for troubleshooting, audit access logs,

and build alerting for failures.

Next let’s get an overview of code repositories and what

value add they provide during software development.

Working with Code Repositories

Code repositories are basic core components of application

development. They improve developer productivity and

provide an efficient way to release and deploy approved

code.

What Is a Code Repository?

Code repositories provide centralized storage and

management of application codes where multiple

developers can collaborate. They provide:

 Collaboration

Multiple developers can push code or pull code from a single

repository and modify a single file.

 Version control

Any change to the repository and code files are tracked

incrementally with an ability to revert back to any previous

version.

 Security

An organization or team can define access control to define

who from the team can read, write, or merge code in the

repository.

 Productivity

When a team of developers work on a single project and can

efficiently collaborate to read and write code, maintenance

time is reduced and accuracy improves.

 Code review and release

Repositories facilitate team members’ ability to review code, test it, and merge the changes with production branches for

smoother release.

How to Work with Code Repositories

There are several popular code repositories such as

GitHub, BitBucket, Gitlab, and more. Let’s use GitHub as

an example to learn a few ways to manage your code and

interact with repositories.

You can interact with GitHub using its web interface or

command-line utility, or via third-party source control tools such as Sourcetree. The following are some example

commands that show how you can interact with the

repository.

The following command shows how you can clone a

repository from GitHub to your local system:

$ git clone https://github.com/<YOUR-USERNAME>/<YOUR-REPOSITORY> If you already have a local codebase directory that is linked to a specific GitHub repository, then you can execute the

following command to fetch all the new changes pushed by others to your local directory to keep it up to date. Please

note, this command points to the “origin/main” branch of

the remote repository:

$ git fetch <REMOTE-NAME>

There might be a different branch of the Git repository to

which your other members pushed code and if you would

like to merge those changes, then you can execute the

following command:

$ git merge <REMOTE-NAME>/<BRANCH-NAME>

You may also consider using the rebash command, which is

a process of combining a sequence of commits to a new

base:

$ git rebash <REMOTE-NAME>/<BRANCH-NAME>

Alternatively, you can also use the git pull command,

which is a combination of git merge and git fetch:

$ git pull <REMOTE-NAME> <BRANCH-NAME>

The following command shows how you can push code from

your local system to the GitHub repository:

$ git push <REMOTE-NAME> <BRANCH-NAME>

If someone else from your team modified the same file and

same line number that you modified, then the above push

command will fail by highlighting a conflict in merging the

file. In such cases, you take the following steps:

1. From the command-line terminal, navigate to your local directory: $ cd <REPOSITORY-DIRECTORY>.

2. Execute the following command to list all the files

that have a conflict: $ git status.

3. Using a code editor such as Visual Studio, navigate

to the specific file that has a merge conflict.

4. You will notice the following structure in the line

where you have conflict. The <<<<<<< HEAD

represents the beginning of the line from the base

branch. The ======= represents a separator

between the base branch code and the other branch

code that has a conflict, and >>>>>>> branch-a represents the end of the conflict and the branch

name:

If you have questions, please

<<<<<<< HEAD

open an issue

=======

ask your question in IRC.

>>>>>>> branch-a

5. You should manually modify the preceding block of

code to keep the correct one for your application

logic and delete the rest. Then to add or stage your

changes, use the following command: $ git add.

6. Finally, execute git commit with a comment on the

file merging action: $ git commit -m "Resolved

merge conflict by incorporating the correct

code".

To learn more about GitHub commands, please visit the

GitHub documentation. Next, let’s understand what CI/CD

is and what value it brings while releasing or deploying applications.

CI/CD

CI/CD are the core components of DevOps that allow you to

integrate and validate code merged by developers and then

create a build that can be released for deployment. It

makes software development and deployment easier by

automating most of the processes:

 Continuous integration

Continuous integration (CI) integrates code from multiple

developers in a repository and creates an automated build

that has gone through test case validations.

 Continuous delivery

Continuous delivery (CD) delivers the code to a

preproduction environment for quality assurance and

validates the build in an equivalent runtime environment.

 Continuous deployment

Continuous deployment (CD) automatically deploys the build

to a production environment.

You can leverage different tools to implement the CI/CD

pipeline such as Jenkins, GitHub Actions, and AWS Code ‐

Pipe line.

Cloud Computing and AWS

Traditionally if an organization needs a set of servers for

their applications, they need to pay in advance to

preprovision the servers, configure them with necessary software libraries, and then make them available for

application teams. Preprovisioning servers and maintaining

one’s own data center has several challenges, such as:

Longer time for procurement

Additional cost

Inability to scale capacity when needed

Complexity of managing infrastructure spread

across different geographies

Even if the application servers are needed for a short

period of time, customers need to go through the complete

procurement cycle, which delays projects. Let’s understand

what a cloud is and how it addresses all these challenges.

What Is Cloud Computing?

Cloud computing refers to a vast amount of remote

computing resources that may include physical servers,

virtual machines, networking components, managed

services (related to storage, database, analytics), machine

learning, and many more that are available in various

locations throughout the world.

You can access these computing resources on demand with

a pay-as-you-go model or reserve them for a longer

duration with a discounted price. The availability of

computing resources in specific parts of the world and their

capabilities depends on the cloud provider. The following

are the key benefits of cloud computing:

 Agility

Amazon Web Services (AWS) offers multiple services that solve different business problems and map to different

technology domains such as data, AI, IoT, AppDev, storage,

and more. You get the flexibility to choose, experiment, and

deploy quickly to validate your business idea.

 Elasticity

This enables you to scale up server capacity or increase the

number of servers when needed and scale down when you

have reduced application load. In addition, with serverless

services you can avoid thinking about infrastructure

scalability. Depending on business demand, you can scale

your capacity up and down, instead of provisioning for the

highest capacity you need.

 Cost savings

You can access a pay-as-you-go pricing model, which means

you pay for what you use. Compared to traditional on-

premises server procurement processes, where you pay in

advance and get resources for the highest potential capacity

you need, AWS gives you cost savings as you can provision

resources for a few minutes or few hours and then

terminate to save cost.

 Deploy globally in minutes

Avoiding the server provisioning delay, you can make

servers available in any AWS region in minutes with a few

clicks. You don’t need to go through creating a data center in different regions of the globe, which takes months to years

of time and involves a huge investment as well.

There are many popular cloud providers such as AWS,

Microsoft Azure, Google Cloud Platform, Oracle Cloud, and

a few others. Each of these cloud providers offer computing

resources through infrastructure as a service (IaaS), platform as a service (PaaS), and software as a service

(SaaS).

Let’s learn more about AWS.

An Overview of Amazon Web Services

AWS is a cloud computing platform that provides

computing resources (i.e., servers) plus many managed

services to reduce the operational burden of customers.

The following are some key benefits of AWS:

It provides agility and the flexibility to choose from

200+ services based on the use case.

It offers cost-saving measures with a pay-as-you-go

model, reserved instances, savings plans, and more.

It enables developers to choose from many purpose-

built services and exposes automation using AWS

CDK, SDK, and CloudFormation services.

Its services and compute/storage resources are

available across the globe through its Regions and

Availability Zones, which allows users to provision

resources within minutes.

Let’s learn how AWS makes computing resources available

across the globe using Regions and Availability Zones.

The AWS global infrastructure consists of Regions and

Availability Zones (AZs). AWS Regions are geographically

separated areas that consist of two or more Availability

Zones, which are separated from each other but are

connected through low latency, high throughput, and a

redundant network. Figure 2-5 shows an AWS Region with

[image: Image 8]

three Availability Zones that are connected through the

network.

 Figure 2-5. AWS Region and Availability Zone example

In AWS, most of the services are regional, which means you

need to first choose an AWS Region based on your business

and customer presence, then choose the AWS services in

that Region. But there are few services that are global in

nature, such as AWS Identity and Access Management

(IAM).

Some of the regional managed services of AWS leverage

multiple AZs for reliability and scalability, and there are

some services that are AZ dependent, meaning that you will

have to choose an AZ where you plan to deploy the

resources.

TIP

If a managed service has multiple AZs built into it, then there is no additional cost for data transfer between AZs, whereas applications you deploy across multiple AZs will incur AZ data transfer charges.

Similarly, data getting transferred between AWS Regions also incurs data transfer charges.

Please refer to the AWS documentation to identify the list of Regions and Availability Zones available across the

world.

Getting Started with AWS

AWS outlines a sequence of steps to onboard someone new to it. At a high level, here are the steps you will need to

take to get started with AWS:

1. Set up an AWS account.

2. Configure access with AWS IAM.

3. Choose the primary AWS Region for your account.

4. Provision compute and storage services as per your

needs.

As you continue to operate, there are a few best practices

you can follow for operational efficiency, such as:

Defining a budget in AWS Budget and monitoring

cost using AWS Cost Explorer

Having a tagging strategy to tag resources by team,

application, and other criteria for cost reporting

Implementing logging with Amazon CloudWatch and

audit reporting with AWS CloudTrail

Having a disaster recovery strategy for your

application data and workloads so you can recover

within a defined recovery point objective (RPO) and

recovery time objective (RTO)

Implementing security controls by leveraging AWS

security best practices and integrating AWS security

services

Optimizing cost by monitoring your usage and

integrating serverless services, utilizing capacity

reservations, integrating autoscaling, and optimizing

storage costs

Next, let’s look at how you can set up an AWS account.

How to Set Up an AWS Account

An AWS account is a formal business relationship with

AWS. To set up an account, you will need to provide the

following details:

Root user email address

AWS account name

Address

Phone number

Navigate to the Amazon Web Services home page and click

“Create account” to get started. You need to specify the

root email address and verify the email address to proceed.

You can follow the detailed steps outlined in the AWS

documentation to create an account.

TIP

Please note AWS offers a Free Tier for more than 100 AWS products.

Please refer to the AWS website to identify which AWS services are eligible for the Free Tier and how much free credit they offer.

The following are a few of the best practices you can follow

while setting up your AWS account:

If the AWS account is for a business, then it is

important that you use a corporate email address

that is managed by a group and a corporate phone

number instead of any individual employee’s details,

so that you can retain the account even if the

employee leaves the organization.

To keep your account secure, turn on multifactor

authentication (MFA) for the root user after signing

in to the AWS console. It provides additional security

in case your password gets compromised.

If you have multiple business units or workloads that

need to be isolated through multiple AWS accounts,

then it is recommended to leverage AWS

Organizations, which enables you to link accounts with parent–child relationships for better structure

and governance. In addition, leverage AWS Control

Tower to set up a multiaccount environment quickly.

Understand the AWS Shared Responsibility Model to be clear on what part of cloud security is owned by

AWS and how you can follow security best practices

to secure your AWS account and deployed

resources.

Next, let’s learn how you can configure access using AWS

IAM.

Configure Access with AWS IAM

AWS Identity and Access Management is a global AWS

service that helps to define and manage access to AWS

resources using IAM users, groups, policies, and roles. To

define permissions, you need to create an IAM policy that

includes the AWS service, the service action you plan to

allow, and the specific resource ID with any optional

permission boundaries. The root user of the AWS account

ideally has all permissions to all the AWS services.

You can leverage AWS IAM features at no additional cost

and most AWS services support authorization with AWS

IAM. For a complete list of services that support AWS IAM,

please refer to the AWS documentation.

Create an IAM User for Authentication

You can create an AWS IAM user using AWS console, AWS

CLI, or AWS APIs and then attach policies to it or to the

role the user is going to assume to manage access. It is

recommended to follow the least-privilege access principle

and provide AWS console access or access keys to users

based on need. Users should change their password after

first login and enable MFA for better security.

You can also integrate your existing Active Directory with

AWS Identity Center, which allows your existing corporate

users to sign in to AWS using the same corporate

credentials.

Add Permissions to Authorize the User

Before you add permissions, you need to first come up with

a strategy on how many policies, roles, and groups you

need to create to be able to manage permissions efficiently.

Lack of planning may lead to duplicate policies and too

many permissions to maintain and will create operational

overhead and security risk in the future. Let’s understand

how IAM policies and roles help define permissions.

What Is an IAM Policy?

An IAM policy is an IAM entity that enables combining

multiple permissions to create an object, which can be

assigned to an IAM user, role, or group. This improves

operational efficiency as you do not need to attach

individual permissions to users or roles, rather you can

group permissions that serve the need of a specific

function. Most policies are stored as JSON documents in

AWS.

AWS IAM supports three types of policies:

 AWS-managed policies

You can attach these policies to your IAM user or role

directly, but you cannot modify them.

 Customer-managed policies

You can create these policies to meet your specific

requirements.

 Inline policies

You can add these policies to an IAM user or role directly.

They are not available for attachment to other users or roles.

What Is an IAM Role?

An IAM role is an IAM entity that you can attach multiple

IAM policies or permissions to, so that different end users

can assume the IAM roles to interact with AWS services.

IAM roles provide several benefits, such as:

Providing efficiency, as you can avoid attaching the

same set of permissions to all users, reducing

operational overhead

Improving security posture, as you can avoid

providing long-term credentials as users can use

temporary credentials when they assume the role

Enabling you to delegate access to users,

applications, or services that do not have access to

AWS resources

Next, let’s learn some of the best practices you can follow

while integrating AWS IAM.

Best Practices to Follow with AWS IAM

The following are a few of the best practices you can follow

while configuring access to AWS IAM:

Enable MFA for IAM users to achieve tighter

security for authentication.

Instead of attaching permissions or policies directly

to the user, it is recommended to create IAM roles

and let the user assume roles for different actions.

Implement least-privilege permission, meaning that

you should grant only the required specific

permissions, instead of providing broader

permissions. For example, a user who needs read-

only access to a specific Amazon S3 bucket should not get full S3 permission for that bucket, or an IAM

user needing AWS console access should not create

access keys.

Let human users use federation with an identity

provider to access AWS using temporary credentials

instead of using IAM users with long-term

credentials. You should use IAM users only for

specific use cases that are not supported by federated users.

Leverage IAM Identity Center as a centralized way

to manage users across multiple AWS accounts or to

easily connect to your existing SAML 2.0 identity

provider.

Add metadata to IAM users, so that you can do user-

based audit reporting.

You can read more about AWS IAM in the AWS IAM

documentation.

Conclusion

In this chapter, we have explained some of the prerequisite

knowledge that you should have before diving deep into

AWS. We provided an overview of the different types of

databases and discussed how big data and distributed

processing frameworks help with OLAP. We also showed

different ways to ingest data, and how to work with code

repositories. Then we explained what benefits cloud

computing provides over self-managed on-premises

infrastructure. We also provided an overview of AWS and

how to get started with it.

This chapter will help refresh your fundamentals and provide a stepping stone before you learn about different

AWS services in Chapter 3.

Resources

The following are a few additional resources that will help

you dive deeper and gain more knowledge on the

fundamentals of databases, data lakes, data warehouses,

and more:

NoSQL databases

Key-value stores

Document databases

Graph databases

In-memory databases

Search databases

OLAP versus OLTP

Data lakes

Data warehouses

“Getting Started with an AWS Account”

AWS Identity and Access Management

Chapter 3. Overview of

AWS Analytics and

Auxiliary Services

This chapter aims to equip you with foundational

knowledge of the primary AWS services in scope for the

AWS Certified Data Engineer Associate certification. We

will explore key analytics services, including Amazon

Redshift, Amazon Athena, Amazon EMR, and AWS Glue,

among others, highlighting their core functionalities and

roles within a modern data architecture. By understanding

these services, you will gain insights into how AWS enables

scalable, flexible, and cost-effective data analysis solutions.

Additionally, we will dive into auxiliary services that

enhance and support analytics workloads, such as Amazon

S3 for data storage, AWS Lambda for serverless

processing, and AWS IAM for security and access

management. This comprehensive overview will include

reference architectures to illustrate how users can

integrate these services to build robust and efficient

analytics solutions.

By the end of this chapter, you will be well versed in the

AWS analytics landscape, prepared to design and

implement data engineering solutions that leverage the full

power of AWS, thus laying a strong foundation for your

certification journey.

AWS Analytics Services

AWS provides a comprehensive set of analytics services

designed to meet all your data analytics needs, enabling

organizations of all sizes and industries to reinvent their

business with data. With the broadest selection of analytics

services, AWS empowers users to process, analyze, and

visualize vast amounts of data efficiently and effectively.

These managed services are not only cost-effective but also

simplify data management across various data stores and

data lakes, ensuring seamless integration and accessibility.

Moreover, AWS analytics services offer extension points to

machine learning and generative AI services, allowing

businesses to derive deeper insights and drive innovation.

This section will dive into the key AWS analytics services,

exploring their features, benefits, and use cases to help you harness the full potential of your data.

Amazon Kinesis Data Streams

Amazon Kinesis Data Streams is a real-time, fully managed, and scalable data streaming service that allows you to

collect, process, and analyze data continuously. It enables

organizations to ingest and analyze data streams from a

wide variety of sources, such as website clickstreams,

database event logs, financial transactions, social media

feeds, and IoT devices. With its ability to handle large

volumes of data in real time, Kinesis Data Streams allows

businesses to gain timely insights and react to new

information almost instantaneously .

Feature highlights include:

 Easy administration

Amazon Kinesis Data Streams simplifies the administration of real-time data streaming. The service is fully managed,

meaning you do not need to worry about provisioning,

managing, or maintaining the infrastructure. You can focus

on building and deploying your applications. This ease of

administration reduces operational overhead and allows

you to rapidly develop and iterate on your streaming

applications.

 Native AWS services integration

Amazon Kinesis Data Streams integrates natively with a

range of other AWS services, creating a seamless and

cohesive ecosystem for your data streaming needs. You can

ingest data from AWS IoT Core, Amazon CloudWatch Logs,

or Amazon Database Migration Service, and process it with

AWS Lambda, Amazon Firehose, or Amazon Managed

Service for Apache Flink. These native integrations enable

you to leverage the full power of the AWS ecosystem to build

comprehensive, end-to-end data processing and analytics

solutions.

 Autoscaling with on-demand mode

Amazon Kinesis Data streams in the on-demand mode

require no capacity planning and automatically scale to

handle gigabytes of write and read throughput per minute.

This means that your data streams can handle spikes in

traffic without any manual intervention. The on-demand

capacity mode is ideal for workloads with unpredictable

traffic patterns, ensuring that you always have the capacity

you need without overprovisioning resources.

 Flexible retention options

Amazon Kinesis Data Streams provides flexible data

retention options, allowing you to retain data in your

streams from 24 hours up to 7 days by default, and up to 365

days with extended retention. This flexibility enables you to revisit and reprocess data as needed, supporting use cases

like troubleshooting, historical analysis, and replays of data streams for machine learning model training.

 Reduced latency with enhanced fan-out

The enhanced fan-out feature in Amazon Kinesis Data Streams significantly reduces latency by providing dedicated

throughput per consumer. Each consumer can receive up to

2 MB/second per shard, ensuring that multiple consuming

applications can process the data stream concurrently

without being throttled. This feature is particularly

beneficial for high-throughput, low-latency applications,

such as real-time analytics and complex event processing.

Some common use cases for this service include:

 Streaming log and event data

Ingest and collect terabytes of data per day from application and service logs, clickstream data, sensor data, and in-app

user events to power live dashboards, generate metrics, and

deliver data into data lakes.

 Powering event-driven applications

Build applications that process and react to data in real time, such as monitoring systems, fraud detection, and customer

experience personalization.

 Evolving from batch to real-time analytics

Transition from traditional batch processing to real-time

data analytics, enabling faster decision making and more

timely insights.

Amazon Data Firehose

Amazon Data Firehose, previously known as Amazon Kinesis Data Firehose, is a fully managed near-real-time

streaming ETL (extract, transform, and load) service. It

simplifies the process of capturing, transforming, and

loading vast volumes of streaming data from various

sources into data lakes, data warehouses, and analytics

services. Amazon Data Firehose continuously processes

data streams, automatically scales based on the data

volume, and delivers data within seconds.

Feature highlights for this service include:

 Native integration with AWS services

Amazon Data Firehose natively integrates with various AWS

services, facilitating seamless data flow and processing. It

can ingest data from sources like Amazon MSK and Amazon

Kinesis Data Streams, apply lightweight transformations

using AWS Lambda, and deliver data to destinations such as

Amazon S3, Amazon Redshift, and Amazon OpenSearch

Service. This tight integration within the AWS ecosystem

streamlines the process of building comprehensive data

pipelines.

 Integration with popular third-party destinations

Besides AWS services, Amazon Data Firehose integrates with

popular third-party services, enabling versatile data streaming solutions. You can configure Data Firehose to

deliver data to third-party destinations such as Splunk,

Datadog, Snowflake, MongoDB, and New Relic. This

integration extends the utility of Data Firehose, allowing you to leverage various tools for data analysis, monitoring, and

visualization.

 Easy to set up

Amazon Data Firehose is designed to be straightforward and user-friendly, requiring no custom code to set up data

streams. You can configure data producers to send data to

Data Firehose, and it automatically handles data capture,

transformation, and delivery. This ease of use allows you to

quickly start loading stream data without extensive

development efforts.

 Serverless

As a fully managed, serverless service, Amazon Data

Firehose removes the complexity of managing the

underlying infrastructure. It automatically scales to match

the throughput of your data streams and adjusts capacity

based on the incoming data volume.

 Enable lightweight transformation

Amazon Data Firehose allows for lightweight data

transformations before loading the data into the final

destination. You can use AWS Lambda functions to perform

operations like data formatting, filtering, and enrichment.

Additionally, Data Firehose buffers incoming data to

optimize data delivery based on the destination’s

requirements, ensuring efficient and reliable data

processing .

Some common use cases for this service include:

 Streaming into data lakes and warehouses

Seamlessly load streaming data into Amazon S3 and Amazon

Redshift for long-term storage, analytics, and reporting.

 Streaming log data into SIEM tools

Deliver log data from applications and infrastructure to

security information and event management (SIEM) tools

like Splunk for real-time security monitoring and analysis.

Amazon Managed Service for Apache Flink

Amazon Managed Service for Apache Flink, previously known as Amazon Kinesis Data Analytics, is a fully

managed service that simplifies building and running real-

time streaming applications with Apache Flink. Amazon

Managed Service for Apache Flink provides the underlying

infrastructure for your Apache Flink applications. By

leveraging Amazon Managed Service for Apache Flink, you

can process gigabytes of data per second with subsecond

latencies and respond to events in real time, enabling you

to make real-time decisions and insights.

Feature highlights include:

 Fully compatible with Apache Flink

Apache Flink is an open source distributed processing engine, offering powerful programming interfaces for both

stream and batch processing. It supports complex event

processing, data enrichment, and machine learning on

streaming data. A standout feature of Flink is its support for stateful computing, which allows applications to maintain and manage state information over time, enabling critical

tasks such as session management, anomaly detection, and

complex event processing. Additionally, Apache Flink

ensures exactly-once processing, which guarantees that each event is processed precisely once, even in the case of failures or retries. This ensures data consistency and reliability,

making Flink an ideal choice for building fault-tolerant, real-time data processing applications that require high accuracy

and precision.

 Interactive development experience with Studio notebook

The Studio notebook feature in Amazon Managed Service for Apache Flink provides an interactive development

environment that allows customers to build, test, and deploy

real-time streaming applications with ease. Powered by

Apache Zeppelin, the Studio notebook supports SQL, Python,

and Scala, enabling users to write and run code in a

serverless environment without worrying about

infrastructure management. This feature is particularly

beneficial for data scientists and developers who need to

iterate quickly, visualize results, and experiment with

different data transformations in real time.

 Flexible APIs with multilanguage support

Amazon Managed Service for Apache Flink offers flexible

APIs in Java, Scala, Python, and SQL specialized for different use cases including stateful event processing, streaming ETL, and real-time analytics. This feature significantly reduces

development time and fosters collaboration among teams

with diverse skill sets.

 AWS service integrations with connectors

Amazon Managed Service for Apache Flink offers seamless

integration with various AWS services through a rich set of

built-in connectors. These connectors enable you to easily

ingest and process streaming data from sources like Amazon

Kinesis Data Streams and Amazon Managed Streaming for

Apache Kafka and deliver the processed data to destinations

such as Amazon S3, Amazon Redshift, and Amazon

OpenSearch Service. By leveraging these connectors,

customers can quickly deploy scalable, real-time analytics

and processing solutions that are deeply integrated with

their existing AWS infrastructure, ensuring consistency,

reliability, and ease of use across their data workflows.

Some common use cases for this service include: Real-time analytics

Amazon Managed Service for Apache Flink is commonly

used for real-time analytics, where it processes continuous

data streams to generate immediate insights. This is crucial

for applications such as monitoring user activity on

websites, tracking financial transactions, or analyzing sensor data from IoT devices. Flink’s ability to handle high-throughput data with low latency ensures that businesses

can react quickly to changing conditions and make data-

driven decisions in real time.

 Fraud detection

Flink’s stateful processing capabilities make it ideal for

detecting fraudulent activities in real time. By continuously analyzing patterns across multiple data streams, such as

transactions or login attempts, Flink can identify anomalies

and trigger alerts when suspicious behavior is detected.

 Event-driven applications

Amazon Managed Service for Apache Flink is often used to

power event-driven architectures where applications need

to respond to specific events or triggers in real time. This is especially useful in scenarios such as dynamic pricing,

personalized recommendations, or automated responses in

customer service. By processing events as they happen, Flink

enables businesses to offer highly responsive and

personalized user experiences, enhancing customer

satisfaction and engagement.

Amazon Managed Streaming for Apache Kafka

Amazon Managed Streaming for Apache Kafka (Amazon

MSK) is a fully managed service that simplifies the process

of building and running applications that use Apache Kafka to process real-time streaming data. Amazon MSK provides

high availability, security, and seamless integration with

other AWS services, making it an ideal choice for

enterprises looking to implement event-driven

architectures and real-time data processing pipelines.

Feature highlights include:

 Fully compatible with Apache Kafka

Apache Kafka is a distributed, open source event streaming platform used by organizations to build real-time data

pipelines and streaming applications. It is highly scalable,

fault-tolerant, and designed to handle high-throughput, low-

latency data streaming.

Amazon MSK runs native versions of Apache Kafka,

ensuring complete compatibility with existing Kafka

applications and tools. This means you can migrate your

Kafka workloads to AWS without any code changes and

continue using familiar custom and community-built tools

such as MirrorMaker. Additionally, MSK integrates with AWS

security features like VPC isolation, encryption, and IAM-

based access control, making it easier to secure your Kafka

workloads while focusing on innovation and real-time data

processing.

 Managed scaling with Amazon MSK Serverless

Amazon MSK Serverless is an option within Amazon MSK

that automatically scales your Kafka workloads based on

demand, eliminating the need to manually manage cluster

capacity. This feature allows you to handle variable

workloads efficiently, optimizing costs and performance.

 Extended data retention with tiered storage

Amazon MSK offers tiered storage, which enables you to retain data for extended periods cost-effectively. With tiered storage, older data is automatically moved to a lower-cost

storage tier. This feature is particularly useful for

applications that require long-term storage of streaming

data, such as for compliance or historical analysis.

 Amazon MSK Connect

Amazon MSK Connect is a managed feature of Amazon MSK

that streamlines streaming data between Apache Kafka and

various sources or destinations. It simplifies deployment and management of Kafka connectors without handling

infrastructure, allowing seamless integration with AWS

services. MSK Connect offers scalability, security, and

reliability, making it ideal for real-time data movement

across diverse applications and platforms.

 Automated data replication with Amazon MSK Replicator

Amazon MSK Replicator provides a fully managed solution

for replicating data across Amazon MSK clusters, even

across different AWS Regions. This feature ensures data

consistency and availability across multiple locations,

enabling disaster recovery scenarios and global data

distribution. It also simplifies the migration process for your Kafka workloads.

Some common use cases for this service include:

 Real-time data analytics and processing

Amazon MSK enables organizations to ingest, process, and

analyze large volumes of data in real time, providing

valuable insights for business intelligence and decision

making. This capability is particularly valuable in industries such as ecommerce and fintech for real-time analysis of user

behavior, driving personalized recommendations and fraud detection.

 Building event-driven architectures and microservices

Amazon MSK provides a robust foundation for

implementing event-driven architectures and microservices.

By using MSK as an event hub, developers can decouple

different components of their applications, allowing for

independent scaling and easier maintenance. This

architecture style is particularly beneficial for large-scale, distributed systems where loose coupling between services

is essential for agility and scalability.

 Implementing change data capture (CDC)

Amazon MSK facilitates efficient CDC processes, enabling

real-time database replication and synchronization across

different systems. By streaming database changes through

MSK, organizations can maintain consistent data across

multiple data stores, power real-time analytics on

operational data, and implement robust disaster recovery

solutions.

 Powering IoT data streaming solutions

Amazon MSK serves as a scalable and reliable platform for

ingesting and processing data from IoT devices, enabling

real-time device monitoring and management.

Organizations can build sophisticated IoT applications that

provide real-time insights, predictive maintenance

capabilities, and automated responses to device events by

using MSK to handle high-volume, high-velocity data

streams generated by IoT sensors and devices.

Reference Architecture: Streaming Analytics

Pattern with Apache Flink and MSK

The following reference architecture illustrates a streaming

analytics pipeline employing Amazon MSK and Amazon

Managed Service for Apache Flink for real-time fraud

detection. As you’ll see in Figure 3-1, events are ingested through an API Gateway and then streamed into Amazon

MSK. Subsequently, Apache Flink applications perform

real-time computations, such as anomaly detection or data

enrichment, utilizing reference data from Amazon S3.

The processed output supports three primary use cases: (1)

delivering fraud detection notifications via Lambda and

Amazon SNS; (2) enabling real-time search and reporting

with Amazon OpenSearch Service; and (3) facilitating long-

term log storage in Amazon S3. This architecture is well

suited for event-driven applications, fraud monitoring, and

the processing of high-velocity logs.

[image: Image 9]

 Figure 3-1. Real-time fraud detection system

AWS Glue

AWS Glue is a fully managed, serverless data integration service that simplifies the process of discovering,

preparing, and loading data for analytics. As you’ll see in

Figure 3-2, AWS Glue provides a comprehensive suite of tools, including a data catalog, ETL capabilities, and

support for event-driven workflows, enabling data

engineers to quickly and easily build scalable and cost-

effective data pipelines. Glue reduces the time and effort

required to prepare data, allowing teams to focus more on

deriving insights and less on managing infrastructure.

[image: Image 10]

 Figure 3-2. AWS Glue key capabilities

Feature highlights include:

 Scalable data transformation engine

AWS Glue features a robust, serverless ETL engine that

supports various deployment options to match different

workload requirements. For batch processing, Glue provides

Apache Spark–based ETL jobs that can efficiently handle

large-scale data transformations. For real-time data

processing, Glue Streaming ETL uses Apache Spark

Structured Streaming to manage continuous data flows.

Additionally, Glue offers lightweight Python shell jobs for

simpler transformations. This versatility allows

organizations to select the most appropriate processing

model for their specific needs.

 Centralized technical catalog and unified data quality

 control

AWS Glue provides a centralized platform for managing and

governing your data assets. The AWS Glue Data Catalog

serves as a centralized technical metadata repository. Glue

Crawlers automatically discover, catalog, and classify data

from various sources, populating the Glue Data Catalog with schema definitions and metadata. This catalog integrates

seamlessly with AWS Lake Formation and Amazon

DataZone, providing fine-grained access control and

enabling data sharing. Glue Data Quality features allow you

to define, run, and monitor data quality rules, ensuring the

integrity and reliability of your data assets. This unified

approach enhances data discovery, compliance, and

consistent management practices across the organization.

 Tailored ETL interfaces

AWS Glue enhances user productivity by providing a variety

of interfaces tailored to different personas, including data

engineers, data scientists, and data analysts. AWS Glue

Studio offers a visual drag-and-drop interface for designing

ETL workflows, while notebooks and interactive sessions

cater to those who prefer a code-centric approach.

Additionally, AWS Glue includes robust monitoring and

logging capabilities, allowing users to track job performance, troubleshoot issues, and ensure that data operations run

smoothly and efficiently.

 Connect and ingest data with ease

AWS Glue simplifies the process of connecting to and

ingesting data from a wide array of sources through its

extensive library of built-in connectors. These connectors

support a broad range of data stores, including relational

databases, NoSQL databases, data warehouses, and SaaS

applications. Glue’s ability to connect effortlessly to diverse data sources and ingest data in various formats reduces the

complexity of data integration projects and accelerates time-

to-insight for analytics initiatives.

Some common use cases for this service include:

 Building and managing data lakes

AWS Glue is often used to build and manage data lakes on

AWS. By automating the discovery, cataloging, and

transformation of data, AWS Glue simplifies the creation of a data lake, allowing organizations to quickly ingest, store,

and analyze large volumes of data from various sources.

Glue’s integration with services like Amazon Athena and

Amazon Redshift enables efficient querying of the data lake,

supporting a wide range of analytics use cases from ad-hoc

queries to complex data science projects.

 Data warehouse ETL

AWS Glue simplifies the process of loading and transforming

data for data warehousing solutions like Amazon Redshift

and Snowflake. It efficiently extracts data from various

sources, performs necessary transformations such as data

cleansing and format conversion, and loads the processed

data into data warehouse tables. Glue’s ability to automate

ETL code generation and support incremental data loading

is particularly valuable for maintaining up-to-date data

warehouses.

 Real-time data processing

AWS Glue supports real-time data processing scenarios

where data needs to be ingested, transformed, and analyzed

on the fly. For example, Glue can process streaming data

from sources like Amazon Kinesis or Amazon MSK, perform

transformations with Apache Spark Structured Streaming,

and load the results into analytics-ready destinations.

 Data preparation for machine learning

Data preparation is a crucial step in the machine learning

(ML) process. AWS Glue’s ability to clean, normalize, and

transform large datasets makes it an excellent tool for feature engineering and data preprocessing. Glue’s

integration with Amazon SageMaker streamlines the process

of moving prepared data to ML training environments,

accelerating the development and deployment of machine

learning models.

 Data integration from multiple sources

AWS Glue allows organizations to easily extract, transform,

and load (ETL) data from a wide range of sources, such as

on-premises databases, cloud data stores, and third-party

applications. It enables automated schema discovery and

provides prebuilt transformations to streamline data

integration. This use case is essential for businesses looking to consolidate data into a unified format for analytics or

reporting.

AWS Glue DataBrew

AWS Glue DataBrew is a visual data preparation tool that allows users to clean, normalize, and transform data

without writing any code. With over 250 prebuilt

transformations, DataBrew empowers users of all skill

levels to prepare data quickly and efficiently for analytics, machine learning, and other data-driven projects. While

AWS Glue (as introduced in the preceding section) is

tailored for developers, engineers, and analysts building

scalable ETL pipelines, DataBrew is designed for those who

prefer a no-code, visual interface for interactive data

preparation.

Feature highlights include:

 Visual data exploration and profiling

AWS Glue DataBrew offers robust data profiling capabilities.

Users can quickly understand data distributions, identify

outliers, and detect data quality issues through its

interactive visualizations. The service generates detailed

profile reports that include column-level statistics, data type suggestions, and correlation analysis. These features enable

users to gain a comprehensive understanding of their data’s

characteristics, facilitating informed decisions about

necessary data transformations and cleansing steps.

 No-code data transformation

AWS Glue DataBrew enables users to perform complex data

transformations without writing code. Its drag-and-drop

interface allows users to apply a wide range of

transformations—such as filtering, grouping, joining, and

pivoting data—using a library of over 250 prebuilt functions.

This feature empowers users, regardless of their technical

expertise, to execute advanced data preparation tasks

efficiently.

 Automated data quality and validation

AWS Glue DataBrew includes automated data quality checks

and validation rules that can be applied to datasets. Users

can define custom data quality rules based on their specific

requirements, such as value ranges, data formats, or

business logic. This feature ensures that the resulting

datasets meet predefined quality standards, enhancing the

reliability of downstream analytics and machine learning

processes.

 Reproducible and auditable workflows

AWS Glue DataBrew enables the creation of reusable

recipes, which are sequences of data transformation steps

that can be applied to multiple datasets or rerun on updated

data. This automation reduces manual intervention and ensures consistency in data preparation. The service also

maintains detailed logs of all data preparation activities,

supporting audit requirements and enabling users to track

changes over time.

Some common use cases for this service include:

 Ad-hoc data exploration and analysis

Data analysts frequently use AWS Glue DataBrew for ad-hoc

data exploration and analysis. The ability to quickly profile and transform datasets allows analysts to gain insights into

data patterns, identify trends, and prepare data for more in-

depth analysis.

 Data preparation for business intelligence (BI) reporting AWS Glue DataBrew transforms raw data into structured

formats that can be easily ingested by BI tools. By applying

transformations such as aggregations, calculations, and data

enrichment, users ensure that the data used in dashboards

and reports is accurate, consistent, and up-to-date, leading to more reliable business insights.

 Data cleaning and preprocessing for machine learning

AWS Glue DataBrew is often used to clean and normalize

data before feeding it into machine learning models. By

applying transformations like handling missing values,

standardizing formats, and normalizing distributions,

DataBrew ensures that the dataset is in optimal condition for training accurate and reliable models.

Amazon Athena

Amazon Athena is a serverless, interactive analytics service built on open source frameworks, supporting open table

and file formats. It enables users to analyze petabytes of

data in Amazon S3 and 30 other data sources, including on-

premises and cloud systems, using SQL or Python. Built on

Trino, Presto, and Apache Spark, Athena requires no

infrastructure management, offering a simplified way to

query data where it resides. Its pay-per-query pricing

model and support for various data formats provide a cost-

effective and flexible solution for ad-hoc analysis, log

processing, and building data-driven applications.

Feature highlights include:

 Serverless SQL query engine

Athena’s core functionality is its serverless SQL query

engine, which allows users to analyze data using ANSI SQL.

It supports a wide range of data formats, including CSV,

JSON, ORC, Avro, and Parquet. The service automatically

scales to handle query workloads, ensuring high availability

and performance. This design, coupled with a pay-per-query

pricing model where users are charged only for the amount

of data scanned by each query, makes Athena highly cost-

effective for ad-hoc analysis and intermittent workloads.

 Amazon Athena for Apache Spark

Amazon Athena offers the ability to run Apache Spark

workloads alongside SQL queries. This feature allows data

engineers and data scientists to leverage the in-memory

processing capabilities of Apache Spark for faster, more

complex data transformations and analyses. Athena for

Spark provides a simplified notebook experience in the

Athena console, with instant-on resources that start in seconds.

 Native support for open table formats

Athena provides native support for open table formats, most

notably Apache Iceberg. Iceberg tables offer advanced

features like schema evolution, hidden partitioning, and

time travel queries. This feature allows users to perform

read, time travel, write, and use DDL operations on Iceberg

tables directly through Athena.

 Federated query and prebuilt data source connectors

Athena’s federated query capability, coupled with its wide

array of prebuilt data source connectors, enables querying

data from various sources beyond Amazon S3 without data

movement. With connectors for popular systems like

Amazon DynamoDB, Amazon Redshift, MySQL, and

PostgreSQL, Athena allows joining data from multiple

origins in a single query. This feature provides a unified

interface for querying distributed data ecosystems. It

simplifies complex data analysis by eliminating the need for

data movement or ETL processes, making Athena a powerful

tool for organizations with heterogeneous data

environments.

Some common use cases for this service include:

 Data lake exploration and analytics

Athena excels in supporting interactive, ad-hoc querying of

large datasets stored in S3. Data analysts and business users can quickly explore data, test hypotheses, and answer

business questions without the need for complex ETL

processes or data warehousing solutions. The ability to run

SQL queries directly on data in S3 enables rapid insight

generation, supporting agile decision-making processes across various business functions.

 Business intelligence reporting

Users can easily integrate Athena with BI tools like Amazon

QuickSight to power dashboards and reports. The ability to

query data directly in S3, coupled with Athena’s support for

various data formats and open table standards, ensures that

your BI tools are always accessing up-to-date data.

 Log analysis and operational intelligence

Organizations frequently use Athena to analyze log and

event data stored in Amazon S3. Whether it’s analyzing

application logs, security events, or user activity logs, Athena provides the ability to query and filter large volumes of log data quickly. This enables teams to troubleshoot issues,

monitor systems, and generate reports without setting up

complex data pipelines. However, for scenarios that require

keyword search, Amazon OpenSearch may be a more

efficient choice due to its optimized search engine.

Amazon EMR

As shown in Figure 3-3, Amazon EMR (Elastic MapReduce)

is a cloud-native big data platform that simplifies the

processing and analysis of vast amounts of data. It

manages the complexities of running popular open source

frameworks like Apache Hadoop, Apache Spark, and Presto

on dynamically scalable clusters. By abstracting cluster

management tasks, EMR allows users to focus on

extracting insights from their data efficiently and cost-

effectively.

[image: Image 11]

 Figure 3-3. Amazon EMR value proposition

Feature highlights include:

 Support for multiple big data frameworks

Amazon EMR natively supports a comprehensive range of

open source big data frameworks, including Apache Hadoop,

Apache Spark, Apache HBase, Apache Flink, and Presto. It

also supports open table formats like Apache Iceberg,

Apache Hudi, and Delta Lake, enabling advanced data

management features such as time travel and schema

evolution. This broad support allows users to efficiently

process and analyze large datasets using the most suitable

tools for their specific needs.

 Versatile workload and user interfaces

Amazon EMR is designed to handle various workloads,

including batch processing, real-time streaming, interactive

querying, and machine learning. Users can interact with

EMR through multiple interfaces, such as command-line

tools, APIs, or interactive notebooks. For SQL-based

analytics, EMR integrates with tools like Hive and Presto, allowing users to run interactive queries on massive

datasets.

 Flexible deployment options

Amazon EMR offers flexible deployment options to meet

different operational needs. You can run EMR on EC2

instances for traditional cluster-based processing, providing full control over the infrastructure. For containerized

environments, EMR on EKS integrates seamlessly with

Kubernetes, enabling consistent deployment and

management across hybrid environments. Additionally, EMR

Serverless provides a fully managed, autoscaling

environment, eliminating the need for cluster management.

EMR also supports EC2 Spot Instances, offering significant

cost savings for fault-tolerant workloads. Amazon EMR on

AWS Outposts enables you to run big data applications in on-

premises facilities.

Some common use cases for this service include:

 Large-scale batch data processing

Amazon EMR is widely used for batch ETL processes,

transforming large volumes of raw data into structured

formats suitable for analysis. With robust support for

Apache Spark and Apache Hadoop, EMR efficiently

processes data stored in Amazon S3, enabling companies to

extract valuable insights and make data-driven decisions. Its distributed computing capabilities make it ideal for handling large-scale data transformation tasks.

 Real-time data processing

Amazon EMR is an excellent choice for real-time data

processing, leveraging frameworks like Apache Flink and

Apache Spark Streaming. Organizations use EMR to process and analyze streaming data from sources such as IoT

devices, clickstreams, and social media feeds.

 Big data analytics and machine learning

With its ability to run machine learning frameworks like

Apache Spark MLlib, Amazon EMR is often used for big data

analytics and machine learning workloads. Data scientists

can process large datasets, train models, and perform

predictive analytics directly within EMR. Integration with

AWS services like Amazon SageMaker enhances EMR’s

capabilities, enabling end-to-end machine learning

workflows from data preparation to model deployment.

Amazon Redshift

Amazon Redshift is a managed, petabyte-scale data warehouse service that enables users to store and analyze

large volumes of data using standard SQL. It is designed to

handle datasets ranging from a few hundred gigabytes to

several petabytes, offering fast query performance through

its Massively Parallel Processing (MPP) architecture. As

you’ll see in Figure 3-4, it integrates seamlessly with other AWS services, making it an ideal solution for businesses

looking to leverage cloud-based data warehousing for

analytics, reporting, and machine learning needs.

[image: Image 12]

 Figure 3-4. Amazon Redshift feature highlights

Feature highlights include:

 Scalability and elasticity

Amazon Redshift offers exceptional scalability and elasticity to meet evolving data warehousing demands. With RA3

instances, Redshift decouples storage and compute, allowing

independent scaling for cost efficiency. Redshift Serverless

further enhances the storage-compute decoupling by

automatically adjusting the compute capacity for analytics

workloads without infrastructure management.

 Seamless integration with the AWS ecosystem

Amazon Redshift integrates deeply with the AWS analytics

ecosystem. It works cohesively with services like AWS Lake

Formation for data governance and Amazon QuickSight for

business intelligence. Redshift Spectrum enables you to

query and analyze data directly in Amazon S3 without the

need to load it into your Redshift cluster. Redshift also

supports zero-ETL data ingestion from various data sources

like Aurora and DynamoDB, simplifying data collection and

loading. This tight integration accelerates analytics workflows and streamlines data management across your

AWS environment.

 Secured data collaboration

With Amazon Redshift data sharing, you can seamlessly share live data across Redshift clusters, workgroups, AWS

accounts, and regions without duplicating or moving the

data. This enables database administrators and data

engineers to provide secure, real-time access to data for

analytics. Data sharing supports both read and write

permissions across different clusters, allowing users to

access the most up-to-date information immediately after it’s committed.

 Maximize value with machine learning

Amazon Redshift empowers organizations to maximize the

value of their data by integrating machine learning

capabilities directly within the data warehouse. With

Amazon Redshift ML, you can create, train, and deploy

machine learning models using familiar SQL commands.

This feature leverages Amazon SageMaker’s power without

requiring data movement, enabling advanced analytics and

predictive insights.

Some common use cases for this service include:

 Empowering business intelligence and reporting

Amazon Redshift enhances business intelligence by enabling

efficient processing and analysis of large datasets. Its fast query performance and integration with tools like Amazon

QuickSight facilitate the creation of detailed dashboards and reports.

 Enabling big data analytics

Companies leverage Amazon Redshift for big data analytics

on massive datasets. With parallel processing and columnar

storage, organizations perform complex queries faster,

uncovering patterns and deriving insights from extensive

data assets.

 Accelerating machine learning with SQL

Amazon Redshift integrates machine learning into SQL

workflows, allowing users to build and deploy ML models

directly within the data warehouse. Using familiar SQL

commands with Redshift ML, they can predict customer

behavior or detect anomalies without moving data to

separate ML platforms, streamlining predictive analytics.

 Monetizing data assets

Redshift facilitates data monetization through secure

sharing and collaboration. Integration with AWS Data

Exchange allows businesses to license datasets to third

parties, creating new revenue streams. By combining

internal and external data, organizations can offer enriched

products and expand market opportunities.

Amazon QuickSight

Amazon QuickSight empowers organizations with unified business intelligence (BI) at scale. Designed to provide fast, easy-to-understand insights from data, it helps businesses

make informed decisions. QuickSight is both scalable and

serverless, enabling it to support thousands of users

without requiring infrastructure management. With

Amazon QuickSight Q, business analysts can use natural

language to discover, build, and share insights in seconds.

Feature highlights include:

 Serverless and scalable architecture

Amazon QuickSight’s serverless architecture allows it to

seamlessly accommodate varying numbers of users without

requiring manual infrastructure management. This

scalability ensures consistent performance, whether you

have a handful of users or tens of thousands. In addition to

traditional per-user licensing, QuickSight offers a cost-

effective, pay-per-session pricing model, where

organizations are billed only when users access dashboards

or reports. This approach reduces costs, especially for

organizations with large or fluctuating user bases.

 Super-fast, Parallel, In-memory Calculation Engine (SPICE) QuickSight’s SPICE engine delivers rapid data retrieval and

analysis at scale. By storing data in-memory, SPICE reduces

data load times and accelerates query performance. It

automatically replicates data for high availability, allowing thousands of users to simultaneously perform fast,

interactive analyses without compromising performance.

 Embedded analytics

QuickSight enables organizations to embed interactive

dashboards and analytics into their own applications,

portals, or websites. This feature allows developers to

integrate rich data visualizations directly into their user

experience, enhancing engagement and providing

immediate insights to end users without the need to switch

contexts.

 Generative BI

Generative BI, powered by Amazon QuickSight Q, allows

users to interact with their data through natural language

queries. Users can ask questions in plain English and receive accurate answers in the form of visualizations or narratives, democratizing access to data insights across the

organization.

 Pixel-perfect reports

Amazon QuickSight allows users to create and deliver pixel-

perfect reports tailored to specific formatting and layout

requirements. This capability is crucial for organizations

needing high-quality reports for regulatory compliance,

financial reporting, or executive presentations. QuickSight’s comprehensive reporting tools offer detailed customization

options to ensure alignment with organizational standards

and branding needs.

Some common use cases for this service include:

 Business reporting

Organizations use Amazon QuickSight for business reporting

by connecting it to operational data warehouses or data

lakes on AWS. It provides an efficient way to generate

reports and dashboards that help track performance

metrics, visualize trends, and make informed decisions

based on real-time data.

 Embedded analytics in customer applications

Independent software vendors (ISVs) and enterprises embed

QuickSight dashboards into their customer-facing

applications to enhance value propositions. By providing

users with interactive analytics within the application

context, companies improve user engagement and

satisfaction.

Reference Architecture: Lakehouse with Glue, Redshift, and Athena

Figure 3-5 illustrates a modern lakehouse setup, combining a centralized Amazon S3 data lake with Amazon Redshift as

the data warehouse. Data is initially ingested into the

Amazon S3 data lake. Subsequently, an AWS Lambda

function triggers AWS Glue jobs to transform the raw data

into structured formats, storing the processed data back in

Amazon S3 for downstream analytics. Amazon Redshift

then consumes this curated data for high-performance SQL

analytics. Simultaneously, Amazon Athena enables

interactive, serverless querying of raw and semi-structured

data directly within Amazon S3.

Amazon QuickSight provides business users and analysts

with visualization dashboards, while another AWS Lambda

function triggers SPICE refreshes for near-real-time

reporting. This architecture supports ad-hoc queries, batch

reporting, and BI use cases across large datasets.

[image: Image 13]

 Figure 3-5. Lakehouse pattern with AWS Glue, Amazon Redshift, and Amazon Athena

Amazon OpenSearch Service

Amazon OpenSearch Service is a managed solution that simplifies deploying, operating, and scaling OpenSearch

workloads in the cloud. As illustrated in Figure 3-6, OpenSearch, an open source search and observability suite,

empowers users to derive insights from large volumes of

unstructured data. With built-in visualization tools like

OpenSearch Dashboards, users can search, analyze, and

explore their data without worrying about infrastructure

management complexities.

[image: Image 14]

 Figure 3-6. Amazon OpenSearch reference use cases

Feature highlights include:

 Managed OpenSearch solutions

Amazon OpenSearch Service provides both provisioned

OpenSearch clusters and OpenSearch Serverless options,

offering flexibility for different workloads. Provisioned

clusters suit predictable workloads, while serverless

configurations are ideal for dynamic, on-demand scaling,

reducing the need for infrastructure management and

improving operational efficiency.

 Price-performant features

Amazon OpenSearch Service offers multiple features

designed to optimize performance and cost. It supports

Graviton instances for enhanced performance and cost

savings, as well as the OpenSearch-optimized OR1 instance

type, designed specifically to deliver superior performance

for heavy operational analytics workloads. Additionally,

tiered storage allows users to store infrequently accessed

data cost-effectively while ensuring fast access to frequently

queried data, helping optimize costs for different data patterns.

 Managed data ingestion and transformation

Amazon OpenSearch Service streamlines data ingestion

through OpenSearch Ingestion, powered by Data Prepper.

This fully managed service automates the process of

ingesting, filtering, enriching, transforming, and routing

data to OpenSearch domains or serverless collections. It

scales automatically to accommodate changing data

volumes, eliminating the need for managing complex,

multinode ingestion pipelines.

 Comprehensive security governance

Amazon OpenSearch Service provides comprehensive

security governance, including fine-grained access control,

encryption at rest and in transit, and integration with AWS

Identity and Access Management (IAM). These features

ensure that your data remains secure and compliant with

industry standards.

 Integration with open source tools

OpenSearch Service integrates natively with popular open

source tools such as OpenSearch Dashboards for data

visualization, and log ingestion solutions like Logstash,

Fluent Bit, and Fluentd. This allows users to maintain

familiar workflows while leveraging the benefits of a fully

managed service.

Some common use cases for this service include:

 Log analytics and observability

Amazon OpenSearch Service is ideal for real-time log

analytics and system observability. It enables users to

monitor application performance, detect security issues, and respond to incidents efficiently by aggregating and analyzing logs from multiple sources in real time. This proactive

insight facilitates quick issue resolution, ensuring system

health and an improved customer experience.

 Lexical search

Amazon OpenSearch Service delivers fast and precise lexical

search for applications like ecommerce, content discovery,

and document repositories. It supports key search features

such as keyword search, fuzzy matching, and auto-

completion, allowing users to quickly locate relevant

information and improving the overall search experience.

 Semantic search and retrieval-augmented generation

 (RAG)

Amazon OpenSearch’s advanced vector search capabilities

improve the accuracy of natural language queries. This

feature is crucial for applications requiring semantic

understanding and context-aware responses, such as

personalized recommendations and AI-driven chatbots. It

plays a key role in RAG workflows, enhancing the relevance

of AI-generated results in knowledge-driven applications.

Amazon DataZone

Amazon DataZone is a data management service designed to streamline cataloging, discovering, governing, and

consuming data across various sources, including AWS, on-

premises, and third-party platforms. It provides a unified

portal for efficient data management, enabling

collaboration among data engineers, scientists, analysts,

and business users while ensuring appropriate data access

and governance.

Feature highlights include:

 Managed business data catalog

Amazon DataZone’s core feature is its managed business

catalog, which provides a centralized repository of data

assets enriched with business context. It automatically

extracts metadata from sources like data lakes and data

warehouses, ensuring that the catalog is always

comprehensive and up-to-date. Additionally, Amazon

DataZone leverages large language models (LLMs) to

recommend accurate metadata, generating consistent

business descriptions and names for data assets.

 Personalized data portal

The personalized data portal offers a unified interface for

data producers and consumers. This web-based application

allows users to access, analyze, and collaborate on data

assets without logging into the AWS Management Console.

Users can search the catalog, request access to data, and

perform analyses using tools such as Amazon Redshift or

Amazon Athena, all within a single, streamlined

environment.

 Governed data sharing

Amazon DataZone simplifies data sharing across teams,

departments, or business units with fine-grained access

control and approval workflows for data subscriptions.

Additionally, Amazon DataZone offers the ability to group

data assets into predefined data products, simplifying

cataloging and discovery for specific business use cases.

 Automated data quality and data lineage management

Amazon DataZone provides automated tools for managing

both data quality and lineage. Organizations can define rules

to assess dataset accuracy, completeness, and consistency.

The data lineage capabilities offer an end-to-end view of

data movement over time, helping users understand data

provenance, trace changes, and conduct root cause analysis.

Some common use cases for this service include:

 Enterprise data cataloging

Large enterprises often struggle to maintain visibility into

their scattered datasets. Amazon DataZone helps build a

unified, searchable data catalog across multiple AWS

services. It significantly enhances data discoverability across an organization.

 Cross-business unit or cross-account data sharing

Amazon DataZone facilitates secure and governed data

sharing across organizational boundaries, enabling self-

service access for distributed teams.

 Streamlined analytics workflows

Amazon DataZone integrates with AWS analytics services

and third-party tools, allowing seamless transitions between

different stages of the data lifecycle—from discovery to

analysis—without switching contexts.

AWS Lake Formation

AWS Lake Formation simplifies centralized data governance, security, and global data sharing for analytics

and machine learning workloads. It integrates with the

AWS Glue Data Catalog, providing a unified platform for

managing data permissions with fine-grained access

controls. The service facilitates both internal and external

data sharing while offering comprehensive auditing by tracking user- and role-based data interactions.

Feature highlights include:

 Centralized data permission management

AWS Lake Formation provides a centralized interface to

manage permissions for data lakes and data warehouses in

AWS. Users can define and manage access controls using

database-like grants. This security model applies not only to AWS services such as Amazon Redshift, Amazon Athena, and

Amazon EMR, but also extends to third-party platforms like

Starburst and Dremio, ensuring a unified security

framework for all data consumers.

 Advanced data governance at scale

Lake Formation helps organizations implement fine-grained

access controls (FGAC) and tag-based access controls (TBAC)

for more scalable data governance. With FGAC, users can

control access at multiple levels, including database, table, and column levels, allowing for a granular approach to data

security. With TBAC, users can label data resources with tags and manage data access based on tags. This feature enables

organizations to enforce policies and track compliance

effectively across a large number of users and services.

 External data sharing

Lake Formation integrates with AWS Data Exchange to

facilitate external data sharing without requiring data

movement. This allows organizations to license structured

tables to external parties such as partners, vendors, or

clients. Data consumers can query and analyze this shared

data using Lake Formation– compatible engines like Amazon

Athena, reducing ETL overhead and accelerating insights

from third-party data.

AWS Lake Formation plays a crucial role in simplifying data governance within and beyond organizational boundaries.

Internally, it allows administrators to enforce fine-grained

and tag-based access controls across teams and accounts,

ensuring users have appropriate access while maintaining

compliance. Externally, the integration with AWS Data

Exchange enables secure data sharing with partners and

clients. This unified approach ensures secure collaboration

while meeting both regulatory and organizational

requirements.

Auxiliary Services for Analytics

In the previous section, we covered the core AWS analytics

services that are in scope for the AWS Certified Data

Engineer Associate (DEA-C01) exam. These services

provide a comprehensive set of tools for data ingestion,

processing, storage, and analysis. However, to build

complete and efficient analytics solutions on AWS, it’s

essential to understand the auxiliary services that work in

conjunction with these core analytics offerings.

In this section, we will explore the key auxiliary AWS

services that support and enhance analytics workloads.

These services span various categories, such as application

integration, compute, containers, databases, and more. By

leveraging these auxiliary services, you can create robust,

scalable, and secure analytics architectures that meet your

specific requirements. For a comprehensive list of in-scope

AWS services and features for the DEA-C01 exam, refer to

the official exam guide.

Application Integration

Application integration services enable communication and

coordination between applications, microservices, and

distributed systems. These services facilitate event-driven

architectures, workflow orchestration, and decoupling of

components, allowing developers to build scalable,

resilient, and modular applications that can respond

quickly to changing business needs.

In analytics workloads, application integration services play a crucial role in enabling real-time data ingestion,

triggering analytical processes, and orchestrating data

pipelines. For example, an organization might use Amazon

EventBridge to trigger real-time analytics workflows when

new data arrives in an Amazon S3 bucket. Additionally,

AWS Step Functions can be used to orchestrate an ETL

pipeline that processes data as it becomes available.

The application integration services covered in this

certification include:

 Amazon EventBridge

A serverless event bus that enables you to build event-

driven architectures by routing events from various sources

to target services for processing and analysis. The service

makes it easy to connect applications using data from your

own applications, integrated SaaS, and AWS services.

 Amazon Simple Queue Service (Amazon SQS)

A managed message queuing service that enables

decoupling and scaling of microservices, distributed

systems, and serverless applications. It allows you to send,

store, and receive messages between microservices at scale.

 Amazon Simple Notification Service (Amazon SNS)

A managed pub/sub messaging service for application-to-application and application-to-person communication. It

enables message fan-out from one producer to multiple

subscribers.

 Amazon Managed Workflows for Apache Airflow (Amazon

 MWAA)

A managed service for Apache Airflow that allows you to

orchestrate data pipelines and workflows. With Amazon

MWAA, you can design directed acyclic graphs (DAGs) that

define and orchestrate your workflows without the

operational burden of managing the infrastructure.

 AWS Step Functions

Acts as a serverless orchestration service that provides tight integration with over 220 AWS services, enabling you to

define and execute workflows that automate processes,

handle errors, and ensure the proper sequence of steps in

your data pipelines.

 Amazon AppFlow

A managed integration service that enables secure and

automated data transfer between SaaS applications and

AWS services.

Compute and Containers

Compute and container services in AWS form the backbone

of cloud-based applications. These services encompass

virtual servers, serverless computing, and container

orchestration platforms, enabling you to choose the optimal

compute model for your workloads. They allow you to run

code, manage applications, and process large-scale data

efficiently without the overhead of managing physical hardware.

In analytics workloads, these compute services are

essential for processing, transforming, and analyzing vast

amounts of data, particularly for customers who are self-

managing their analytics workloads in the cloud. For

example, you can self-manage Amazon EC2 or Amazon EKS

clusters to run Spark or Hadoop workloads for distributed

data processing. AWS Batch allows you to efficiently

orchestrate batch computing jobs, such as data

preprocessing or model training. AWS Lambda enables you

to run code in response to events, making it ideal for event-

level data processing and lightweight transformations.

The key compute and container services include:

 Amazon EC2

Provides scalable virtual servers in the cloud, allowing you

to launch virtual servers with a wide range of instance types and configurations.

 Amazon Elastic Container Service (Amazon ECS)

A fully managed container orchestration service that

simplifies running and managing Docker containers. It

deeply integrates with the AWS environment and provides

an easy-to-use solution for running container workloads on

AWS.

 Amazon Elastic Kubernetes Service (Amazon EKS)

A managed Kubernetes service that makes it easy for you to

run Kubernetes on AWS and on-premises. Amazon EKS

manages the availability and scalability of the Kubernetes

control plane, making it easy to deploy, manage, and scale

containerized workloads.

 Amazon Elastic Container Registry (Amazon ECR)

A fully managed container registry that makes it easy to

store, manage, and deploy container images securely and at

scale.

 AWS Lambda

A serverless compute service that lets you run code without

provisioning or managing compute resources. It allows you

to take actions in response to events, ideal for event-driven or real-time data processing tasks.

 AWS Serverless Application Model (AWS SAM)

An open source framework that streamlines the

development and deployment of serverless applications,

offering a simplified syntax to define functions, APIs, and

databases.

 AWS Batch

A fully managed batch processing service that dynamically

provisions the optimal compute resources based on the

volume and specific requirements of the batch jobs you

submit. It can provision workloads on ECS clusters, EKS

clusters and EC2 instances.

By leveraging these compute and container services, you

can build scalable and efficient analytics solutions on AWS,

whether you prefer the flexibility of virtual machines, the

simplicity of serverless, or the portability of containers.

Database

AWS offers a wide range of database services designed to

support diverse data models and workload requirements.

These include relational databases, key-value stores, document databases, in-memory data stores, graph

databases, and more—providing the flexibility to choose the

right tool for each job. By managing the underlying

database infrastructure, AWS enables organizations to

focus on application development and innovation rather

than database administration.

AWS database services are integral to analytics workflows,

serving as the original data store for structured and

unstructured data. They act as data sources for analytics

workloads, enabling real-time analytics, data warehousing,

operational analytics, and more. For example, Amazon

Aurora powers high-performance transactional workloads

for ecommerce or financial applications, while Amazon

DynamoDB is ideal for ingesting high-velocity data from

web applications, gaming, ad tech, and IoT devices. By

integrating these databases with analytics services like

Amazon Redshift or AWS Glue, organizations can perform

comprehensive data analyzes to support decision making

and strategic planning.

Key database services include:

 Amazon Relational Database Service (Amazon RDS)

Simplifies the setup, operation, and scaling of relational

databases in the cloud. It supports multiple database engines like MySQL, PostgreSQL, Oracle, and SQL Server.

 Amazon Aurora

A high-performance, fully managed relational database

compatible with MySQL and PostgreSQL. It offers enhanced

speed and availability by separating compute and storage

layers, allowing for automatic scaling and replication across multiple Availability Zones.

 Amazon DynamoDB

A fast and flexible key-value database providing single-digit millisecond latency at any scale. It’s ideal for applications requiring consistent, low-latency performance.

 Amazon DocumentDB

A fully managed NoSQL database service compatible with

MongoDB, optimized for JSON documents and scalable

performance.

 Amazon Keyspaces (for Apache Cassandra)

A scalable, highly available, and managed Apache

Cassandra–compatible database service. Apache Cassandra

is an open source, distributed NoSQL database engine ideal

for handling large volumes of data across many servers

without a single point of failure.

 Amazon MemoryDB

A durable, in-memory database service that delivers ultra-

fast performance for modern applications, compatible with

Redis data structures and APIs.

 Amazon Neptune

A managed graph database service for building and running

applications that work with highly connected datasets,

optimized for storing and navigating graph structures.

We will dive into when to use each database in more detail

in Chapter 5.

Storage

AWS offers a comprehensive suite of storage services

designed to cater to various data types and access patterns.

From block-level storage for EC2 instances to object

storage for massive amounts of unstructured data, these

services provide the flexibility and reliability needed to

meet the diverse requirements of modern applications.

In analytics workloads, these storage services are

foundational for storing, managing, and archiving data. For

example, Amazon S3 is commonly used as the storage layer

for data lakes, enabling easy access for analytics services

like Amazon Athena. Additionally, Amazon EBS can serve

as the underlying storage for Hadoop workloads, allowing

for distributed processing of large datasets.

Key storage services include:

 Amazon Elastic Block Store (Amazon EBS)

Provides easy-to-use, scalable, and high-performance block-

storage volumes for Amazon EC2 instances. EBS volumes

deliver consistent, low-latency performance, making them

suitable for applications that require rapid access to data.

 Amazon Elastic File System (Amazon EFS)

A scalable, elastic file storage service that lets you share file data across Amazon EC2 instances. It supports the Network

File System (NFS) protocol, enabling concurrent access and

file sharing among instances.

 Amazon S3

An object storage service that allows organizations to store

and retrieve any amount of data from anywhere. It offers

industry-leading scalability, data availability, security, and

performance, making it ideal as the storage layer for data lakes.

 Amazon S3 Glacier

A secure, durable, and low-cost storage class within Amazon

S3 designed for data archiving and backup use cases. It

provides a cost-effective solution for infrequently accessed

data, with retrieval times ranging from milliseconds to

hours.

 AWS Backup

A fully managed backup service that simplifies the creation,

management, and restoration of backups across multiple

AWS services, including Amazon EBS, Amazon EFS, and

Amazon S3. It helps ensure data protection and enables

quick recovery in case of disasters.

Machine Learning

Machine learning (ML) is a field of study within artificial

intelligence that focuses on developing algorithms using

mathematical and statistical models, with an objective to

imitate human intelligence. Machine learning models are

trained with a huge volume of historical data and are

expected to predict future patterns, derive insights, or

generate new data. For example, an organization’s data

science team can train an ML model with the last 10 years

of sales data to help them predict the sales growth in the

next quarter. The accuracy of ML models depends on

various factors such as the quality of data, volume and

veracity of the data, training process, and model evaluation

process.

There are multiple ways to integrate ML models such as

developing your own custom model by training it with your

own data, fine-tuning an existing ML model with data that is already trained with historical data, or integrating a

purpose-built ML model that is already trained with similar

data as your use case.

AWS offers a few services to serve different use cases of

customers with different integration options. Let’s learn

about some of the popular services AWS offers under the

machine learning domain:

 Amazon SageMaker

A fully managed machine learning service that enables data

scientists and ML engineers to build, train, and deploy ML

models into a production-ready environment. It provides

features and workflows that can help developer productivity

and fast-track your model development and deployment.

SageMaker natively integrates with other AWS services that

enables data science teams to query data from their data

lake or data warehouse, store model artifacts in an object

store, integrate security with AWS IAM, enable model

inference with an API service layer, and provide end-to-end

monitoring capability for operational efficiency.

 Amazon Bedrock

A fully managed service that enables you to choose from

high-performing foundation models (FMs) available in

Bedrock or import your own custom model to fast-track your

generative AI application development. Some of the popular

model providers available in Bedrock are Anthropic, Meta,

Cohere, Mistral AI, Stability AI, AI21 Labs, and Amazon’s

own Titan models. In addition to a managed environment to

host foundation models, Bedrock also provides knowledge

bases to support RAG architecture, agents to perform

complex tasks, and Guardrails to filter harmful content and

safeguard from prompt attacks.

 Amazon Q

A generative AI–powered assistant built on Amazon Bedrock

that includes several capabilities. It includes Amazon Q

Business, which can help answer questions, provide

summaries, and generate content. Amazon Q Developer

helps improve developer productivity by transforming code

or generating new code. In addition, Amazon Q is also

integrated into multiple AWS services such as Amazon

QuickSight to generate visualizations with natural language,

AWS Glue to generate code, Amazon Redshift to generate

SQL, Amazon Connect for better customer service, and AWS

Supply Chain to help inventory managers with supply

demand planning.

We have highlighted a few of the popular ML services here

but you can learn about other ML/AI services from the

AWS documentation.

Migration and Transfer

With the popularity of cloud services and AWS, a lot of

customers are looking to migrate their workloads to AWS,

which requires a large amount of historical data transfer.

To help such customers, AWS offers multiple services that

can help with one-time or continuous data transfers from

on-premises or other cloud providers to AWS. The data

being transferred may involve files or databases and the

varying size may require a different approach for the data

transfer. Let’s learn about some of the popular AWS

services that help with data migration and transfer:

 AWS Database Migration Service (DMS)

A managed service that helps move data between data stores

such as between AWS cloud services and from on-premises

or other cloud providers to AWS. You can migrate data from relational or NoSQL databases to AWS databases or object

stores by defining the data movement as a one-time full load

activity or by loading incremental data on a continuous

basis.

 AWS Schema Conversion Tool (SCT)

Integrated as part of AWS DMS to help modify the schema

and provide schema compatibility reports between the

source and target database during data movement. Please

read the documentation to check which data stores are supported as source and target for SCT.

 AWS DataSync

An online data transfer and discovery service that enables

the secure transfer of files or objects from, to, and between AWS services. If you have a large volume of NFS or HDFS

files and plan to migrate to an AWS object store then

DataSync might be a good option.

 AWS Data Exchange

An AWS service that provides a data marketplace with data

from AWS and other third parties with a subscription

pricing model. It helps streamline data consumption and

also enables you to sell your data to external customers

through the marketplace. It makes the data available in a

secured manner that can be accessed through files, APIs, or

Amazon Redshift queries.

 AWS Snow Family

Enables processing of data at the edge or moving petabyte-

scale data from and to AWS. It includes the AWS Snowball

and Snowcone services. Snowball is popular for moving

petabyte-scale data and is available with compute or storage

optimized options. Snowcone is the most compact service and specifically designed to be used outside of traditional

data centers.

 AWS Transfer Family

Enables secure transfer of data from and to AWS over the

SFTP, AS2, FTPS, FTP protocols. You can move data from and

to the Amazon S3 object store or Amazon EFS. It is a fully

managed service that provides workflow to easily configure,

run, and monitor files being transferred.

You can learn more about all of the migration and transfer

services from the AWS documentation.

Networking and Content Delivery

As AWS is a public cloud that is being used by millions of

customers, network isolation, low-latency access, and

domain routing are some of the key components for

security and efficiency. AWS offers multiple services to

address these needs that customers can take advantage of.

Let’s review some of these services:

 Amazon Virtual Private Cloud (VPC)

Provides virtual network isolation, which you can integrate

to deploy workloads that need to be logically isolated from

other workloads. An AWS VPC includes the option to create a

public subnet or a private subnet. A public subnet will have

a route to the internet, which means applications deployed

in a public subnet can be configured to be accessible from

the internet. Private subnets are meant to be accessible

within VPC only and are not accessible over the internet.

 AWS PrivateLink

Enables applications hosted within a VPC to access other AWS services through the AWS network, without getting

routed through the internet. For example, if an application

running within a VPC needs to access objects available in an

Amazon S3 object store, then AWS PrivateLink will help

establish that connection in a secured manner. This helps

improve efficiency as the request gets routed through the

Amazon internal network.

 Amazon Route 53

Provides a highly scalable and available Domain Name

System (DNS) with which domains such as example.com can get routed to a designated IP address of a server, which

serves the response for the HTTP/HTTPS request. It provides

several features to configure domain routing such as

latency-based routing, IP-based routing, geo-based routing,

DNS failover, health-check monitoring, and many more.

 Amazon CloudFront

A content delivery network (CDN) service from which you

can serve geospecific requests from CloudFront’s nearby

edge locations in a secure manner, which reduces network

latency and improves performance. It also provides

computing at the edge through the CloudFront Functions

and Lambda@Edge features. It natively integrates with the

Amazon S3 object store and supports continuous

deployment with real-time metrics and logging capabilities.

AWS offers several other networking services that you can

dive into from the AWS documentation.

Security, Identity, and Compliance

AWS defines security as its top priority and makes sure all

of its services are built with security at their core. It

provides several products to address different security

needs including identity management, user authentication,

authorization, data encryption at rest and in transit,

securing applications from external security attacks, and

features that can enable you to monitor and audit access

requests. AWS provides compliance certifications for its services to help customers who follow specific industry

regulations.

Key security, identity, and compliance services include:

 AWS Identity and Access Management (IAM)

A fully managed global service that enables authentication

of users and authorized access to AWS resources. You can

integrate external identity services to enable single sign on, implement fine-grained access control on AWS actions,

enable just-in-time temporary credential vending, and much

more.

 AWS Key Management Service (KMS)

A managed service that helps you create and manage

encryption keys in AWS. It is able to encrypt data at rest that is stored in object stores, databases, or filesystems. You can take advantage of certain advanced features of AWS KMS

such as multiregion KMS keys (replica of KMS keys in each

region), creating KMS keys in an external key store (protect

AWS resources using cryptographic keys outside of AWS),

and connecting to KMS keys using private VPC endpoints.

 Amazon Macie

A managed service that enables detecting sensitive data from storage layers such as Amazon S3 and sends

notifications to respective stakeholders. It leverages machine learning and pattern matching to automatically detect

sensitive data (e.g., names, address, phone number, credit

card numbers, and more) in a cost-effective way.

 AWS Secrets Manager

Enables storing and managing sensitive data elements such

as database credentials, so that developers can avoid

hardcoding them in scripts. You can control access to the

secrets using IAM roles and let your application code refer to the Secrets Manager keys to get the credentials.

 AWS Shield

Provides protection against distributed denial of service

(DDoS) attacks for applications deployed in AWS.

Additionally, AWS Shield Advanced managed threat

protection service helps improve security by providing DDoS

detection, mitigation, and response capabilities.

 AWS WAF

An AWS service that acts as a firewall for web applications

hosted on AWS by protecting HTTP or HTTPS requests. You

can control access to your web content using WAF as it

supports integration with multiple AWS resources such as

CloudFront distribution, the REST APIs of API Gateway,

application load balancers, AppSync GraphQL APIs, Cognito

user pool, and many more.

You can learn about additional security services in the AWS

documentation.

Management Governance

To be operationally efficient, AWS offers several services

that you can integrate in your data analytics workloads to

automate resource creation using infrastructure as code

(IaC), enable observability through logging and monitoring,

and improve management and auditability of resources. In

this section, we will highlight a few of the services that are commonly integrated:

 AWS CloudFormation

A managed service that enables you to automate the

creation and deployment of AWS services using an IaC

approach. It reduces your effort compared to manually

deploying, tracking failure, and rolling back failed

deployments.

 AWS CloudTrail

A managed service that keeps track of all the events or API

actions taken by any user, role, group, or a service, which

enables auditing actions and meeting compliance needs. It

keeps track of activities including actions taken through

SDKs, the console, and the CLI. CloudTrail is active by default when you create an AWS account.

 Amazon CloudWatch

An AWS service that enables logging and monitoring of AWS

resources and applications you are running in AWS. You can

monitor metrics, define alarms, build dashboards, and

analyze logs to improve system performance.

 AWS Config

An AWS service that helps audit configuration changes in

AWS resources and also provides a detailed view of how

resources are related to each other. The AWS resources are

entities such as EBS volume, VPC, security groups, VPC

endpoints, and more. You can leverage AWS Config to

identify how configuration values have changed for a

resource over time and also build alerting for configuration

changes.

 Amazon Managed Service for Prometheus

A managed offering for the open source Prometheus

solution, which is popular for metrics monitoring and

alerting. It has native integration for container-based

applications and also can be integrated into an organization-

wide metrics monitoring solution. The managed offering

from AWS helps integrate autoscaling capability and reduce

operational overhead compared to a self-managed setup.

 Amazon Managed Grafana

A managed offering for the open source Grafana solution,

which is popular for building visualizations on top of

metrics, traces, and logs. It is a great solution for

observability and can be easily integrated on top of

Prometheus, Elastic, and many third-party products. The

managed offering from AWS helps reduce operational

overhead and integrate security standards.

 AWS Systems Manager

An AWS service that provides visibility and control of your

infrastructure on AWS. You can leverage Systems Manager

for application management, node management, change

management, and operations management. It provides a

visual interface that offers a common view across your

infrastructures and also enables you to automate a lot of

operational tasks. For example, you can automate patch

upgrades and common library installations across multiple

services in a few easy steps.

Developer Tools

AWS offers a comprehensive set of tools and services that

empower developers to efficiently develop, build, test, and

deploy applications on the AWS platform. By automating

tasks, enhancing collaboration, and seamlessly integrating

with other AWS services, these tools streamline the

software development lifecycle and accelerate innovation.

In the context of analytics workloads, AWS Developer Tools

play a crucial role in the rapid development and

deployment of data processing pipelines and applications.

For example, developers can use AWS CodeCommit to

store and version-control their ETL scripts, ensuring a

single source of truth for data processing logic.

Key developer tools and services include:

 AWS Command Line Interface (AWS CLI)

A unified command-line tool that enables developers to

manage AWS services directly from the terminal, facilitating

automation through scripts and commands.

 AWS CloudShell

A browser-based, preauthenticated shell that provides

command-line access to AWS resources directly from the

AWS Management Console, simplifying access without the

need for local installation or configuration.

 AWS Cloud Development Kit (AWS CDK)

An open source software development framework that

allows developers to define cloud infrastructure using

familiar programming languages such as TypeScript, Python,

Java, .NET, and Go. Infrastructure is then provisioned

through AWS CloudFormation, ensuring infrastructure-as-

code practices.

 AWS Code Services

Includes AWS CodeCommit, AWS CodeBuild, AWS

CodeDeploy, and AWS CodePipeline. This suite of managed

services facilitates continuous integration and continuous

delivery (CI/CD) workflows. AWS Code Services enable

developers to store and version-control their code

(CodeCommit), build and test their applications (CodeBuild),

automate the deployment of their applications to various

compute services (CodeDeploy), and orchestrate the entire

release process (CodePipeline).

Cloud Financial Management

Effective cost management is essential when working with

cloud services, especially in data-intensive analytics

workloads. AWS provides Cloud Financial Management

tools that empower organizations to monitor, manage, and

optimize their cloud spending. These services offer visibility into cost drivers, enable budget setting, and facilitate

forecasting. By leveraging these tools, organizations can

ensure that their analytics workloads remain within

financial constraints while maximizing resource efficiency.

Key Cloud Financial Management tools include:

 AWS Cost Explorer

A tool that helps you visualize, understand, and manage

your AWS costs and usage over time. It provides a set of

default reports and the ability to create custom reports,

allowing you to analyze your cost and usage data, forecast

spending, identify trends, and uncover areas for potential

savings.

 AWS Budgets

Allows you to set custom cost and usage budgets for your AWS services. You can configure alerts to notify you via

email or Amazon SNS when your actual or forecasted costs

exceed your defined thresholds. This proactive approach

helps you stay within budget and avoid unexpected

expenses.

AWS Well-Architected Tool

The AWS Well-Architected Tool is a service in AWS that provides a trusted framework that you can utilize to apply

design best practices from AWS, implement improvements,

and monitor progress. The WA tool integrates with AWS

Trusted Advisor and AWS Service Catalog App Reg istry,

which help review and answer Well-Architected Tool

questions.

The Well-Architected Framework explains key concepts of design principles and architectural best practices that can

be applied for your workloads deployed in the AWS Cloud.

The best practice guidelines are categorized into six pillars: Security, Reliability, Sustainability, Operational Excellence, Performance Efficiency, and Cost Optimization.

Additionally, Well-Architected Lenses extend the best

practices of Well-Architected Tools to specific technology

domains such as machine learning, IoT, SAP, and industries

such as financial services, healthcare life science, sports,

and more. Please read more about Well-Architected Lenses

in the AWS documentation.

Conclusion

In this chapter, we have explored the core AWS analytics

services and auxiliary services that are essential for

certification. By understanding the features, use cases, and integration capabilities of services like Amazon Kinesis,

AWS Glue, Amazon Redshift, and Amazon QuickSight, you

are now well equipped to design robust, scalable, and cost-

effective data analytics solutions on AWS.

Additionally, we have highlighted the importance of

auxiliary services spanning application integration,

compute, databases, storage, machine learning, security,

governance, and cloud financial management. These

services work in conjunction with the core analytics

offerings to create comprehensive, end-to-end analytics

architectures.

As you progress through this book, you will dive deeper

into each service, learn best practices for their

implementation, and gain hands-on experience through

practical exercises. By mastering the concepts and services

covered in this chapter, you will be well on your way to

becoming an AWS Certified Data Engineer, ready to tackle

real-world data challenges and drive innovation in your

organization.

Additional Resources

The following are a few additional resources that will help

you dive deeper and gain more knowledge:

“Overview of Amazon Web Services”

“Analytics on AWS”

“What Is Data Strategy?”

“Choosing an AWS Analytics Service”

“Amazon SageMaker”

Chapter 4. Data Ingestion

and Transformation

The ability to efficiently collect, ingest, and transform data from diverse sources is crucial for driving valuable insights and well-informed decisions. Organizations constantly

strive to unlock insights from their data by analyzing their

data assets and making better business decisions through

data analytics.

For data engineers, optimizing this end-to-end data

ingestion and transformation process is a core

responsibility. They are often tasked with building reliable

pipelines that power an organization’s data-driven

initiatives. However, selecting the appropriate data

ingestion and transformation solutions is critical, as

different varieties of data sources with varying volumes,

velocities, and transformation needs may necessitate the

use of various AWS services and approaches.

In this chapter, you will learn how to do the following:

Design and implement efficient data ingestion

pipelines using appropriate AWS services

Choose the right AWS services for real-time/near-

real-time and batch data processing

Build reliable data pipelines for both batch and real-

time scenarios

Implement efficient data transformation strategies

Apply best practices for data ingestion and

transformation

Orchestrate complex data workflows

By the end of this chapter, you will have a comprehensive

understanding of how to build data pipelines with data

ingestion and transformation capabilities in AWS, and how

to orchestrate them. You will learn how to carefully

evaluate the trade-offs, implementation complexity,

performance implications, and cost factors, and you will

also answer a set of practice questions similar to the kind

of questions you can expect in the Data Engineer Associate

certification exam.

Data Ingestion

Data ingestion is the process of importing data from

various sources into AWS storage and processing systems.

Organizations typically deal with the following three

ingestion patterns:

 Real-time streaming

This is high-velocity data requiring immediate ingestion

and/or processing. Examples include IoT sensor readings,

clickstream data, and social media feeds. Streaming data is

characterized by a continuous flow of small data records.

 Batch

Ingesting batch data means periodic data loads at scheduled

intervals. Examples include daily database dumps and

weekly report files. Larger volumes of data are processed

together and the focus is on throughput over latency.

 Near real time

Near real time is data with semi-frequent updates with slight delay tolerance. Examples include inventory updates, price

changes, and the like. While ingesting it, it is important to balance between timeliness and efficiency. Typically CDC

(change data capture) mechanisms are used for ingestion.

Modern organizations typically need to ingest data from

multiple sources such as streaming sources that generate

events and messages, databases, files, and third parties.

Let’s now take a look at various patterns on how to ingest

all your data into an analytics data store for reporting and

analytics.

Real-Time Streaming Data Ingestion

Organizations have thousands of data sources that typically

simultaneously emit messages, events ranging in size from

a few bytes to several megabytes (MB). These sources span

across user interactions (e.g., website clickstreams, mobile

app activities, gaming events), IoT and equipment data

(e.g., sensor readings, connected vehicle data, industrial

equipment notifications, security system alerts), and

business transactions (e.g., financial trades, payment

processing, order updates).

A streaming data pipeline for data analytics typically

consists of five primary components, as shown in Figure 4-

1.

[image: Image 15]

 Figure 4-1. Streaming data pipeline for data analytics on AWS

This pipeline ingests and optionally transforms streaming

data in real time. It then loads into target analytics data

stores for further processing, reporting, and analytics:

 Stream sources

Streaming data sources can be application logs, clickstream

logs, mobile apps (e.g., user actions, location data, sensor

data, social media interactions), etc.

 Stream ingestion

The stream ingestion layer is responsible for ingesting data

into the stream storage layer. It provides the ability to collect data from tens of thousands of data sources and ingest in

near real time. After collecting data, the data is sent to stream storage containing a stream name, data value, and

sequence number:

Kinesis Agent is a standalone Java application that can be used to monitor files (e.g., logs) and ingest new data

continuously into Kinesis Data Streams. It can be

installed on Linux-based server environments such as

web servers, log servers, and database servers. By

default, it considers each newline (\n) as a record.

However, you can configure it to parse multiline records

(see the Amazon Kinesis documentation).

DynamoDB Streams captures and produces a stream of time-ordered sequences of item-level modifications in

any DynamoDB table. This data can be streamed through

Kinesis Data Streams using a direct integration.

Data produced from many AWS services such as Amazon

CloudWatch, Amazon Connect, Amazon EventBridge,

Amazon CloudFront, Amazon PinPoint, etc. can stream

data directly into Kinesis Data Streams.

AWS IoT Core can connect to IoT devices and stream data into Kinesis Data Streams and Amazon MSK. IoT devices

can send public data to AWS IoT Core using MQTT

messages. AWS IoT Core can then route the data into

Kinesis Data Streams or Amazon MSK.

AWS DMS can connect to transactional databases, perform change data capture, and load the data into both

Kinesis Data Streams and Amazon MSK.

Amazon MSK Connect can continuously ingest data from files, perform change data capture from databases, and

load streaming data into Amazon MSK.

If these out-of-the-box stream producers don’t work for

your use case, you can build custom stream producers

using AWS SDK and Kinesis Producers Library (KPL). This option has high implementation complexity and high

operational overhead; carefully evaluate your needs

before choosing this option.

 Stream storage

This is the central layer for streaming data pipelines. They

can collect data from stream producers, store it for a set

duration of time (typically a few hours to days), and

distribute the stored data to consumers. Stream data

collectors store streaming data in the order it was received

for a set duration of time, and can replay it indefinitely

during that time. They decouple the stream producers from

stream consumers. In AWS, there are two stream data

collectors. In the next section, you will learn how to choose between these two services:

Amazon Managed Streaming for Apache Kafka (Amazon

MSK)

Amazon Kinesis Data Streams (KDS)

 Stream consumption and processing

Stream consumers read data from stream storage and load it

into the target data store. They can either load the data as is into the target data store or apply transformations before

loading the data into the target data store for analytics. The

following are the relevant stream consumption and processing services:

Amazon Data Firehose

Amazon Redshift (Provisioned/Serverless) compute

Amazon Managed Streaming for Apache Flink (MSF)

AWS Glue streaming jobs

Apache Spark Streaming or Apache Flink in Amazon EMR

AWS Lambda

A custom application with Kinesis Consumer Library

(KCL)

These processing services will be discussed in detail later in this chapter.

 Destination data store

The storage layer used for analytics streaming data pipelines needs fast, inexpensive, and repeatable reads and writes of

large data streams. You should be able to load large volumes

of continuously streaming data with low latency. The most

common target data stores for streaming data in the context

of data and analytics are typically the following:

Data lakes: Amazon S3

Data warehouses: Amazon Redshift

Search and log analytics solutions: Amazon OpenSearch

[image: Image 16]

Kinesis Data Streams Versus Amazon MSK

When choosing between the AWS streaming services KDS

and Amazon MSK for your streaming data ingestion needs,

it’s important to carefully assess your specific requirements and use case.

Check if your data sources and targets have direct

integration with the streaming service. A direct integration

significantly simplifies your solution and will be the one

with least operational overhead. Amazon Kinesis Data

Streams offers direct integrations with many AWS services,

as shown in Figure 4-2.

 Figure 4-2. Integration for Amazon Kinesis Data Streams

Figure 4-2 describes the integrations available for Amazon Kinesis Data Streams for producers and consumers at the

time of writing. Kinesis offers AWS-focused integrations

and simplicity in operational management. On the other

hand, Amazon MSK is an open source ecosystem with

richer connectors and a higher level of flexibility. If you

prefer open source ecosystem support (e.g., if you use

DuckDB or ClickHouse), you will find MSK easier to use. In

addition to integrations, consider the options in Table 4-1.

 Table 4-1. Comparison between Kinesis Data Streams and Amazon MSK

Kinesis Data

Attribute

Streams

Amazon MSK

Management

Low

Low (Amazon MSK

overhead

Serverless) to medium

(Amazon MSK

Provisioned)

Scalability

Scale in seconds

Scale in minutes with

with one click

one click

Throughput

On-demand

Highest throughput of

scaling is

two options

available, but

scaled within

certain limits

Open source

No

Yes

Data

You can retain

You can retain data

retention

data for up to

for a longer duration

365 days.

and it is configurable.

With the tiered

storage feature of

Amazon MSK, you can

cost-efficiently store

vast amounts of data

in Amazon S3.

Latency

70 milliseconds

Lowest

when using

enhanced fan-out

consumers, 200–

[image: Image 17]

Kinesis Data

Attribute

Streams

Amazon MSK

500 milliseconds

without the

enhanced fan-out

Sample Streaming Ingestion Use Cases

Let’s now take a look at some common streaming data

ingestion use cases and how to solve them.

Ingesting streaming data from IoT devices into a data

lake

The first use case is to ingest data from thousands of IoT

devices into an Amazon S3 data lake for further

transformation and analytics with the least operational

overhead, implementation complexity, and lowest latency.

To achieve this, you can use the ELT architecture described

in Figure 4-3.

 Figure 4-3. Streaming ingestion architecture for IoT data into an Amazon S3

 data lake

In this architecture, the IoT devices publish MQTT

messages to AWS IoT Core. An IoT Core rule will then load

these streaming messages into Amazon MSK. MSK is

chosen over KDS because it provides the lowest latency.

Once the data is read into Amazon MSK, you’ll need a

consumer to load it into the Amazon S3 data lake. This is where Amazon Data Firehose (ADF) comes into play. It is a

fully managed consumer service that can read from both

Amazon KDS and Amazon MSK and load the data reliably

into Amazon S3. You will learn more about this later in this

chapter.

Often, the incoming data is not in a format that is optimized for data lake consumption. It is produced in formats like

JSON. ADF has built-in transformations to support

converting JSON to optimized Apache Parquet and Apache

ORC formats. These columnar data formats save space and

enable faster queries on the Amazon S3 data lake. If your

input is in non-JSON data format (like CSV, XML,

structured text, etc.), ADF can invoke an AWS Lambda

function that first transforms these files into JSON, before

converting it to Apache Parquet or ORC. Additionally, ADF

can compress the data using GZIP, ZIP, or SNAPPY before

delivering it to the Amazon S3 data lake.

Ingesting click streams into a data warehouse for

real-time reporting

The second use case is to ingest clickstream data into

columnar storage in Amazon Redshift within 10 seconds of

data generation with the lowest operational overhead and

lowest implementation complexity. Data warehouses like

Amazon Redshift are high-performance hubs. Ingesting

streaming data into a data warehouse opens up new

opportunities for high-performance, real-time analytics

with minimal query response latency, enabling faster

decision making.

Figure 4-4 presents an architecture diagram for ingesting clickstream data into an Amazon Redshift data warehouse

using the streaming ingestion feature.

[image: Image 18]

 Figure 4-4. Streaming ingestion for Amazon Redshift data warehouse Using this feature, you can directly ingest streaming data

from KDS, Amazon MSK, or self-managed Apache Kafka

into Amazon Redshift in real time with minimal operational

overhead and implementation complexity.

With streaming ingestion, the data read from the stream is

seamlessly loaded into a materialized view (MV) within the

Amazon Redshift database. Streaming sources typically

stream data in semi-structured formats like JSON. You have

the flexibility to either load the semi-structured format data as is into the semi-structured data type in Amazon Redshift

(called SUPER), or you can shred the data into individual columns. You can define transformations in the MV

definition to apply business logic on incoming data.

As the MV is refreshed, Amazon Redshift automatically and

incrementally consumes the new data from the stream and

loads it into it. This incremental refresh ensures that only

the newest records (e.g., 100 new records since the last

refresh) are loaded, rather than reloading the entire

dataset.

The MV refresh can be set to run manually or

automatically. With automatic refresh, Amazon Redshift

automatically updates the MV as soon as possible, as new

data becomes available in the streaming source. Amazon

Redshift prioritizes your workloads over auto-refresh and

might stop auto-refresh to preserve the performance of

[image: Image 19]

your workload. This approach might delay refresh of some

materialized views. In some cases, you might need more

deterministic refresh behavior for your materialized views.

If so, consider using manual refresh as described in the

AWS documentation.

Streaming Amazon DynamoDB data into a centralized

data lake

The third use case is to ingest financial data from a

DynamoDB database into an Amazon S3 data lake for real

analytics. DynamoDB has a feature called DynamoDB

Streams that captures and streams changes made to

DynamoDB in real time. The changes can be loaded into

KDS using a direct integration between DynamoDB

Streams and KDS. This data can then be delivered through

any consumer that KDS supports.

For this use case, the data is delivered into Amazon S3

using Amazon Data Firehose for analytics as shown in

Figure 4-5. For more details on this solution refer to the

blog “Streaming Amazon DynamoDB Data into a

Centralized Data Lake”.

 Figure 4-5. Streaming finance data from DynamoDB into S3

Ingesting AWS logs into log analytics solutions

The fourth use case is to ingest logs from AWS services into

Amazon OpenSearch for real-time monitoring and analysis.

[image: Image 20]

This allows organizations to detect and respond to issues,

security threats, or anomalies in near real time, facilitating timely incident response and enhancing overall operational

efficiency. You can use subscription filters in Amazon

CloudWatch log groups to ingest data directly to ADF, as

shown in Figure 4-6. The data can be delivered to the Amazon OpenSearch service or third-party log analytics

solutions like Splunk.

 Figure 4-6. Integrations for Amazon Data Firehose

ADF is designed for batch-oriented, higher-latency data processing, making it suitable for applications that can

tolerate higher latency. It automatically delivers data to the selected destination in batches, with typical latencies of a

few minutes to an hour. It has native integration with the

following targets, making it an operationally efficient and

low implementation complexity solution to load data into

these supported targets:

Multiple third-party solutions like Splunk,

Dynatrace, etc.

Amazon Redshift and Amazon OpenSearch

Amazon S3 to Iceberg format tables or plain Parquet

ADF is a good choice for use cases that require streaming

ingestion to Iceberg tables or S3 data lakes for data lake

ingestion, log data collection, and data backup.

ADF has the capability of taking an optional backup of the

raw incoming data into an Amazon S3 bucket. While

applying transformations, if any records have errors, they

are routed into a separate S3 location.

Ingesting Data Using Zero-ETL

Integrations

Zero-ETL is a set of integrations that minimizes the need to build complex ETL data pipelines to extract data.

Traditional ETL processes are time-consuming and complex

to develop, maintain, and scale. Instead, zero-ETL

integrations facilitate continuous, point-to-point data

movement without the need to create ETL data pipelines.

AWS offers zero-ETL integrations into Amazon S3 data lakes, Amazon Redshift data warehouses, and Amazon

OpenSearch from a variety of sources, including the

following:

AWS relational databases: Amazon Aurora, Amazon

RDS

AWS NoSQL databases: Amazon DynamoDB,

Amazon DocumentDB

SaaS applications: Salesforce, ServiceNow, Zendesk,

SAP, etc.

Files from Amazon S3

Even though zero-ETL integrations are not available for all

source and target combinations, when a zero ETL

integration is available, it is the easiest, most cost-effective and reliable solution with the lowest operational

complexity. Note that the zero-ETL integrations offer near-real-time latency.

If you have real-time sub second latency requirements for

ingestion, consider the options that we discussed in “Real-

Time Streaming Data Ingestion”. Table 4-2 shows the zero-

ETL integrations available in AWS at the time of writing.

Please refer to the links provided to learn further about

these integrations.

 Table 4-2. AWS zero-ETL integrations

Amazon

Amazon

Amazon

OpenSearch

S3

Redshift

(search and

(data

(data

log

lake)

warehouse) analytics)

Amazon

Amazon

Amazon

Amazon

DynamoDB

DynamoDB

DynamoDB

DynamoDB

zero-ETL

zero-ETL

zero-ETL

integration

integration

integration

with

with Amazon

with Amazon

Amazon S3

Redshift

OpenSearch

enables

enables

Service

integration

high-

provides

of

performance

advanced

DynamoDB

analytics on

search

data with

DynamoDB

capabilities,

Iceberg

data in

such as full-

format

Amazon

text and

tables is

Redshift

vector

Amazon S3

search, on

Amazon

DynamoDB

data

Amazon

Amazon

DocumentDB

DocumentDB

zero-ETL

integration

with Amazon

OpenSearch

Service

provides

Amazon

Amazon

Amazon

OpenSearch

S3

Redshift

(search and

(data

(data

log

lake)

warehouse) analytics)

advanced

search

capabilities,

such as fuzzy

search,

cross-

collection

search, and

multilingual

search, on

Amazon

DocumentDB

documents

Amazon

Amazon

Aurora

Aurora zero-

MySQL

ETL

integration

with Amazon

Redshift

makes

transactional

Amazon

data from

Aurora

Aurora

Postgres

available in

Amazon

Redshift for

analytics

Amazon

Amazon

Amazon

OpenSearch

S3

Redshift

(search and

(data

(data

log

lake)

warehouse) analytics)

Amazon RDS

Amazon RDS

MySQL

MySQL zero-

ETL

integration

with Amazon

Redshift

makes

transactional

data from

RDS MySQL

available in

Amazon

Redshift for

analytics

Amazon S3

Simplifies

Amazon

data

OpenSearch

ingestion

Service zero-

from

ETL

Amazon S3

integration

to Amazon

with Amazon

Redshift

S3, an

using auto-

efficient way

copy

to query

operational

logs in

Amazon S3

data lakes,

removing the

Amazon

Amazon

Amazon

OpenSearch

S3

Redshift

(search and

(data

(data

log

lake)

warehouse) analytics)

need to

switch

between

tools to

analyze data

SaaS

Zero-ETL

Amazon

applications

integration

Redshift and

is available

support for

zero-ETL

integrations

from SaaS

applications

including

Facebook

Ads,

Instagram

Ads,

Salesforce,

Salesforce

Marketing

Cloud

Account

Engagement,

SAP OData,

ServiceNow,

Zendesk,

Zoho CRM

Amazon

Amazon

Amazon

OpenSearch

S3

Redshift

(search and

(data

(data

log

lake)

warehouse) analytics)

Amazon

Amazon

CloudWatch

OpenSearch

Logs

Service zero-

ETL

integration

with Amazon

CloudWatch

Logs enables

direct

querying and

visualization

of log data in

near real

time

Amazon

Amazon

Security

OpenSearch

Lake

Service zero-

ETL

integration

with Amazon

Security

Lake enables

direct

searching

and analysis

of security

data

Ingesting Data from Databases with

CDC Using AWS Data Migration

Service

When zero-ETL integrations are not available and/or when

you want to load data into a data lake, you can use the AWS

Data Migration Service (DMS), an AWS service that

leverages change data capture (CDC) capabilities to enable

near-real-time data ingestion from databases into AWS

services like Amazon S3, Amazon Redshift, Amazon RDS,

and others.

This technique monitors and captures insert, update, and

delete operations performed on a database in near real

time. It provides a stream of change events reflecting the

actual data modifications occurring, including details like

operation type, data values before and after the change,

timestamp, and contextual information. CDC enables

capturing data source changes with low impact, without

directly querying the transactional systems.

As illustrated in Figure 4-7, DMS uses a replication instance to connect to the source database, capture

changes using transaction logs, and stream those data

changes to the target in near real time.

[image: Image 21]

 Figure 4-7. Change data capture (CDC) using AWS DMS

This CDC approach reduces the impact on source

databases during data migration compared to bulk

extraction methods. DMS supports homogeneous and

heterogeneous database migrations while providing

features like multi-AZ deployment for high availability.

DMS can perform one-time migration of data in addition to

performing CDC. Review the following supported sources

and targets to understand if it is a good fit for your use

case.

Supported Sources for AWS DMS

AWS DMS publishes a list of supported sources for data

migration in their documentation. Refer to it to see if your database and its version are supported as a source. At the

time of writing, the key sources supported are as follows:

On-premises databases such as Oracle, Microsoft

SQL Server, MySQL, MariaDB, PostgreSQL,

MongoDB, SAP Adaptive Server Enterprise (ASE),

IBM Db2

Third-party managed database services such as

Microsoft Azure SQL Database, Microsoft Azure

PostgreSQL, Microsoft Azure MySQL, Google Cloud for MySQL, Google Cloud for PostgreSQL, OCI

MySQL Heatwave

Amazon RDS database instances including Amazon

RDS Oracle, Amazon RDS Microsoft SQL server,

Amazon RDS MySQL, Amazon RDS MariaDB,

Amazon RDS PostgreSQL, Amazon Aurora MySQL,

Amazon Aurora PostgreSQL, Amazon RDS for IBM

Db2 LUW

Amazon S3 data lakes

Amazon DocumentDB

Supported Targets for AWS DMS

AWS DMS also publishes a list of supported targets for

data migration in their documentation. Refer to it to see if your database and its version are supported as a target. At

the time of writing, the key supported targets are as

follows:

Amazon RDS database instances (Oracle, SQL

Server, MySQL, MariaDB, PostgreSQL, Aurora)

Amazon Redshift data warehouses

Amazon S3 data lakes

Amazon DynamoDB NoSQL databases

Amazon OpenSearch clusters

Apache Kafka clusters

Kinesis Data Streams for real-time data streaming

Amazon DocumentDB document databases

[image: Image 22]

Amazon Neptune graph databases

Databases like Oracle, SQL Server, PostgreSQL

hosted on EC2 or on premises

Sample Use Cases

Following are some sample use cases for AWS DMS.

Ingesting data into an Amazon S3 data lake using

DMS

As you have seen in the supported targets list, AWS DMS

allows you to ingest data in near real time into an Amazon

S3 data lake from any of the supported database sources.

Figure 4-8 presents the architecture diagram for loading data from source databases into an Amazon S3 data lake in

near real time using AWS DMS.

 Figure 4-8. Change data capture (CDC) into Amazon S3

When loading data into S3, DMS doesn’t preserve the

transaction order by default. In order to preserve

transaction order for CDC data, configure the target S3

endpoint settings to specify a folder path for storing CDC

transaction files.

DMS allows you to control the frequency at which CDC files

are written to the S3 target during a data replication task.

This is done by setting the following extra connection

attributes. Choose these values in such a way as to avoid files that are too small or too large (more than 1 GB):

cdcMaxBatchInterval

This attribute specifies the maximum time (in seconds) to

accumulate CDC data before writing it to the S3 target as a

file. A higher value means less frequent file writes, but

larger file sizes.

cdcMinFileSize

This attribute sets the minimum file size (in KB) before AWS

DMS will write a CDC file to the S3 target. A higher value

means fewer, larger files.

To enable faster queries on the loaded data, set the target

file format as Apache Parquet instead of the default CSV.

Parquet is a columnar format and has efficient compression

and encoding for improved query performance and lower

storage costs.

Ingesting data into Amazon Redshift using DMS

For those source databases that don’t have a zero-ETL

integration with Amazon Redshift, you can use AWS DMS

to ingest data using CDC techniques. Before setting up

ongoing replication from a source database to Amazon

Redshift, it is often common to perform a one-time schema

conversion from the source database format to the Redshift

format, and a one-time data migration. For schema

conversion, you can use the AWS Schema Conversion Tool

(SCT), and for the one-time data migration and ongoing

replication, you can use AWS DMS. DMS also supports

creating schemas; however, for good performance, it is

recommended to use AWS SCT instead of DMS for schema

conversion.

[image: Image 23]

Figure 4-9 presents the architecture diagram for both one-time schema conversion and ongoing CDC from supported

source databases and Amazon Redshift.

 Figure 4-9. Change data capture (CDC) into Amazon Redshift using AWS DMS

Converting schema using DMS Schema Conversion

DMS Schema Conversion facilitates database migrations between different types. Using DMS Schema Conversion

you can first create a report to assess the complexity of

your migration. Then you can convert database schemas

and code objects and apply the converted code to your

target database.

DMS Schema Conversion automatically converts your

source database schemas and most of the database code

objects to a format compatible with the target database.

This conversion includes tables, views, stored procedures,

functions, data types, synonyms, and so on. Any objects

that DMS Schema Conversion can’t convert automatically

are clearly marked. To complete the migration, you can

convert these objects manually.

Ingesting files from on premises

Most enterprises have a mix of cloud and on-premises

applications/data sources. Ingesting on-premises file data

into the cloud allows combining it with cloud data for a

unified analytical view across the hybrid landscape. AWS

DataSync is a managed data transfer service that makes it simple and fast to move large amounts of file data online

between on-premises storage systems and AWS storage

services. DataSync uses proprietary technology to

accelerate transfers by moving data in parallel, minimizing

network overhead, and automating encryption and data

integrity validation.

With DataSync, you can schedule one-time or recurring

data transfers to keep data updated between your on-

premises servers, NAS, and AWS storage like S3 and EFS.

DataSync copies only changed files/objects after the initial

data seeding, minimizing transfer times for subsequent

syncs. It handles a wide variety of storage formats natively

without needing to convert data, while preserving metadata

and permissions. With pay-as-you-go pricing based on data

volume transferred, DataSync provides a reliable, secure,

cost-efficient, and operationally efficient way to move large file datasets to AWS.

Ingesting third-party datasets

Third-party data sources like demographic, geographic,

economic, weather, etc., can enrich and add context to an

organization’s internal data, enabling more comprehensive

and insightful analytics. AWS Data Exchange is a service that simplifies the process of accessing and integrating

third-party data. It serves as a comprehensive marketplace

where data providers can publish and sell their datasets,

and data consumers can easily discover, subscribe to, and

integrate the data they need. It offers a wide range of datasets across various industries, such as S&P Global

Ratings data, weather decision data, FINRA regulation

data, etc., which can be easily found, subscribed to, and

integrated using the AWS Data Exchange API.

Once subscribed, data consumers can access the datasets

through a user-friendly console or API. The Data Exchange

service supports a variety of data formats, making it easy to integrate the data into existing analytics and machine

learning pipelines. With its robust data governance

features and seamless integration with other AWS services,

AWS Data Exchange simplifies the process of accessing and

leveraging third-party data to drive business insights and

innovation.

Best Practices for Data Ingestion

When there is a zero-ETL integration available to ingest

data, it is almost always the best option to choose for data

ingestion. Zero-ETL integrations are the most cost-effective

and operationally simple options. In all other cases, a

number of best practices should be followed.

Best Practices for Streaming Ingestion

Kinesis Data Streams (KDS), Amazon MSK, and Amazon

Data Firehose (ADF) form an integral part of streaming

ingestion pipelines. By following some best practices you

can get the most value from using these services.

It is important to understand the architecture of KDS to

grasp the best practices when using it. Figure 4-10

represents the high-level architecture.

[image: Image 24]

 Figure 4-10. Kinesis Data Stream architecture

The fundamental resource that you will create when using

KDS is a data stream. Each data stream is a set of shards

and each shard has a sequence of data records. Each data

record can be up to 1 MB in size. The sources that push

data into the data stream are called producers, and the consumers process the data in real time.

You can choose a capacity mode for each data stream

which determines how the capacity of a data stream is

managed and how you are charged for the usage of your

data stream. There are two capacity modes: on-demand

mode and a provisioned mode.

Each shard has write throughput and read throughput.

Write throughput is the rate at which data can be written

into a shard and read throughput is the rate at which data

can be read from the shard:

 Provisioned mode

In provisioned mode, each shard has the following:

A write throughput of 1,000 records per second for

writes, for up to a maximum total data write rate of 1 MB

per second (including partition keys).

A read throughput of 5 transactions per second, for up to

a maximum total data read rate of 2 MB per second.

The data capacity of your stream is the sum of the capacities of its shards. If your data rate increases or decreases, you

can reshard a stream to increase or decrease the number of shards allocated to your stream.

 On-demand mode

In on-demand mode, Kinesis Data Streams automatically

manages the shards to ramp them up and down and provide

the necessary throughput. You are charged only for the

actual throughput that you use. You need not determine the

number of shards, the service determines it for you. In on-

demand mode:

Each stream has a base write throughput of 4 MB per

second, which can automatically scale up to 10 GB per

second.

Each stream has a base read throughput of 8 MB per

second, which can automatically scale up to 20 GB per

second.

Leveraging Amazon KDS for real-time data streaming requires careful consideration of several factors to optimize performance, scalability, and cost-effectiveness.

Best Practices for Choosing Data Stream

Capacity Mode

Use on-demand capacity mode when you have

unpredictable data volume or traffic spikes and prefer AWS

to automatically manage capacity. Use provisioned capacity

mode for predictable data volumes where you want fine-

grained control over shard allocation and can forecast your

capacity needs precisely:

 On-demand

Ideal for applications with fluctuating traffic or unknown

data volume.

Automatically scales the number of shards based on data

throughput.

Pay-per-use model, billed based on actual data processed.

Less management overhead, as you don’t need to

manually adjust shard count.

 Provisioned

Best for predictable data flow where you can accurately

estimate required capacity.

You explicitly define the number of shards needed for

your application.

Offers more control over data distribution across shards.

Best Practices for Sharding

Data records in Kinesis are partitioned across shards based

on their partition key. The partition key is a unique

identifier associated with each data record that determines

which shard the record will be stored in. Each data record

in a shard is assigned a unique sequence number.

Sequence numbers are used to track the order of records

within a shard and enable ordering guarantees. In

provisioned mode, increasing the number of shards

increases the overall read and write throughput of the

stream. In on-demand mode, KDS does it automatically for

you. The following are the best practices for sharding when

using provisioned mode:

 Determine the optimal number of shards

Analyze the expected data throughput and adjust the

number of shards accordingly. Start with the minimum

number of shards and scale up as needed.

 Distribute data evenly across shards

Use a well-distributed partition key to ensure that data is

evenly distributed across shards. Avoid using predictable or

sequential partition keys, as this can lead to partition

skewing. Consider hashing or using a random prefix in the

partition key to achieve better distribution.

 Handle shard splits and merges

Monitor shard utilization and be prepared to split or merge

shards as the workload changes. Splitting a shard increases

the overall stream capacity, while merging shards can help

reduce costs. Use the UpdateShardCount API to adjust the

number of shards programmatically.

 Ensure data ordering within shards

Maintain ordering guarantees within a shard by processing records in the order of their sequence numbers. If the order

of records is important, design your application to process

data within a shard in sequence.

 Implement shard-level checkpointing

Maintain checkpoints or offsets for each shard to enable

reliable processing and reprocessing of data. This allows

your application to resume from the last processed record in

case of failures or restarts.

Best Practices for Consuming Data from KDS

Parallelism and read throughput are crucial for consuming

applications. Multiple consumer applications can read from

a stream in parallel. Consumers can use the following two

modes of operations:

 Shared throughput consumers

This is the default mode for consumers. As we saw earlier,

the read throughput for each shard in a Kinesis Data Stream

is 2 MB/sec. In shared throughput mode, this 2 MB/sec is

shared across all consumers reading from that shard. If you

add more consumers, each consumer will get a fraction of

the 2 MB/sec.

 Enhanced fan-out consumers

With enhanced fan-out, each consumer gets its own

dedicated 2 MB/sec read throughput, regardless of how

many other consumers are reading from the same stream.

This means that multiple consumers can read data from the

same stream in parallel, without contending for read

throughput with each other. With enhanced fan-out you get

data latencies as low as 70 milliseconds.

Table 4-3 compares the key differences between shared throughput and enhanced fan-out.

 Table 4-3. Shared throughput versus enhanced fan-out

 consumers

Shared

Feature

throughput

Enhanced fan-out

Read

2 MB/sec per shard,

2 MB/sec per

throughput

shared across all

shard, per

consumers

consumer

Scaling

Limited by shared

Can scale

consumers

throughput

consumers linearly

without contention

Therefore, in order to improve the performance of the

consuming application, use enhanced fan-out consumers.

Best Practices for Amazon MSK

Let’s start by learning some Amazon MSK concepts. When

using Amazon MSK, the main resource you provision is an

Amazon MSK cluster. As shown in Figure 4-11, logically, data in a cluster is organized into topics. Each topic has

multiple partitions. Data records are routed into partitions

based on the partition key. All records with the same

partition key will go to the same partition. From a

hardware resources standpoint, a cluster is made up of

multiple brokers; there are different kinds of Amazon MSK

clusters.

Amazon MSK provisioned cluster versus serverless The provisioned cluster has three brokers by default across

3 AZs by default. Each of the three brokers is a replica of

each other. You can add more brokers as needed. For each

new broker you add, two replicas will be created. The

default maximum number of brokers per cluster is 30 for

ZooKeeper-based clusters and 60 for KRaft-based clusters.

You can request a limit increase if you need more.

As shown in Figure 4-11, there are two kinds of brokers—

standard and express:

 Standard brokers

They provide flexibility to configure a cluster’s performance.

You can choose from a wide range of broker sizes. Each broker has a fixed storage attached to it. Amazon MSK

handles the hardware maintenance of standard brokers and

attached storage resources, automatically repairing

hardware issues that may arise. Follow the best practices

listed in the AWS documentation for standard broker sizing.

 Express brokers

Express brokers for MSK are simpler to manage, more cost-

effective to run at scale, and more elastic with the low

latency you expect. Express brokers all use a common elastic

Amazon MSK managed storage with pay-as-you-go pricing. It

requires no sizing, provisioning, or proactive monitoring.

Depending on the broker size selected, each broker node can provide up to 3 times more throughput per broker, scale up

to 20 times faster, and recover 90% quicker compared to

standard brokers. Express brokers come preconfigured with

Amazon MSK’s best practice defaults and enforce client

throughput quotas to minimize resource contention

between clients and Kafka’s background operations. Follow

[image: Image 25]

the best practices listed in the AWS documentation for express broker sizing.

 Figure 4-11. Amazon MSK provisioned cluster architecture with different broker types

Amazon MSK serverless cluster

With MSK serverless, you can easily run Apache Kafka

clusters without needing to rightsize the cluster. It

automatically and instantly scales I/O without you needing

to worry about scaling up and down. It has a maximum

write throughput of 200 MiB/second, maximum read

throughput of 400 MiB/second, maximum number of

partitions of 2400, and unlimited storage.

Use the chart in Figure 4-12 to determine whether a provisioned MSK cluster or serverless MSK cluster is better

for your use case and if you are choosing provisioned,

[image: Image 26]

whether you need standard or express brokers. Using a

provisioned cluster with express brokers is a good place to

start.

 Figure 4-12. Choose the cluster type and broker type

General practices when using Amazon MSK

Here are some recommended general practices when using

Amazon MSK:

When selecting a partition key, carefully consider

the distribution of your data to prevent partition

skewing. Your chosen key should enable an even

spread of data across partitions. A common mistake

is selecting a key that results in disproportionate

data distribution. For instance, if your dataset

contains multiple resource IDs but one particular

resource accounts for 90% of the total data, using a

resource ID as your partition key would create a

heavily imbalanced system with one overloaded

partition. The ideal partition key should distribute

data uniformly across partitions, ensuring balanced

storage and efficient query performance across your

entire dataset.

Rightsize your Amazon MSK cluster by ensuring the

best practices for standard brokers and best

practices for express brokers.

Use Amazon MSK Connect for easy integration between Amazon MSK and external data

sources/targets. It is a fully managed service that

provides connectors that stream data into Amazon

MSK clusters from external systems like databases,

storage engines, etc., as shown in Figure 4-13, with the least operational overhead. It can also act as a

consumer that reads data from Amazon MSK

clusters and writes into various targets. There are

different connector categories:

 Source connectors

These pull data from an external data source (like a

database, queue, API, etc.) and push this data into the

Amazon MSK cluster.

 Sink connectors

These pull data from the Kafka cluster and push it

into an external data sink (like Amazon S3, search

engine, analytics system, etc.).

[image: Image 27]

 Figure 4-13. MSK source connectors example

Connectors can perform lightweight

transformations, format conversions, or data

filtering before delivering the data. Each connector

consists of workers (JVM processes) that run the

connector logic. The workers create parallelized

tasks that do the actual work of copying data in a

resilient and scalable manner.

Use Amazon MSK Replicator to build highly available and regionally resilient streaming

applications across AWS Regions. It is a feature of

Amazon MSK that enables replicating data between

MSK clusters in different AWS Regions or within the

same region. It provides automatic and reliable

asynchronous replication without requiring custom

coding or cross-region networking setup. Follow

these best practices when using MSK Replicator:

– Since Replicator acts as a consumer, high

replication throughput can throttle other

consumers on the source cluster. To avoid

this, apply a network bandwidth quota (bytes

per second rate) on the Replicator’s service execution role at the broker level. This

controls how much cluster capacity the

Replicator can consume. Verify that the

ReplicatorThroughput metric stays within

the set quota.

– Set the log retention period to 7 days for

source and target MSK clusters to ensure

periodic clearing of older data to free up disk

space, while still providing sufficient data

history based on requirements.

Optimize cluster throughput for larger instance

types (e.g., m5.4xl, m7g.4xl, or larger) by tuning

num.io.threads and num.network.threads

configurations.

Build highly available clusters by using 3 Availability

Zones, a replication factor of at least 3, a proper

min.insync.replicas setting, and client connection

strings with brokers from each AZ.

Monitor and maintain CPU usage under 60% to

allow headroom for operations like broker

replacement.

Monitor disk space usage and adjust data retention

parameters or scale storage when usage exceeds

85%.

Monitor Kafka memory usage via the

HeapMemoryAfterGC metric and take corrective

actions when it exceeds 60%.

Don’t add non-MSK brokers to avoid incorrect

cluster information.

Enable in-transit encryption.

Use the partition reassignment tool to rebalance

clusters after scaling operations.

Best Practices for Amazon Data Firehose

Amazon Data Firehose can reliably deliver data streams

into Amazon S3, Amazon OpenSearch, and Amazon

Redshift. It has the ability to do some lightweight

operations like:

Converting data from JSON to Parquet format

Compressing and decompressing output

Adding delimiters

Batching data for optimal file size

Creating dynamic partitions for Amazon S3 buckets

It can also optionally invoke a Lambda function to perform

transformations like data format conversion from CSV/XML

to JSON and eventually to Parquet. Since Kinesis Data

Streams and Amazon MSK don’t have the ability to directly

connect to target data stores in Amazon S3 and Amazon

OpenSearch, Amazon Data Firehose acts as a delivery

solution for these targets.

Utilize the following best practices when using Amazon

Data Firehose:

Optimize buffering hints for delivery requirements.

Amazon Data Firehose buffers incoming data to a

certain size and for a certain period before

delivering it to the destinations. You can configure

the buffering size (in MB) and buffering interval (in

seconds) to control batching and delivery behavior:

– For real-time, low-latency use cases, setting a 0 second buffering interval triggers

immediate delivery for minimum lag.

– For high-throughput destinations like S3,

increase buffer size and interval to allow

bigger batches for better performance.

Leverage dynamic partitioning when you expect

significant variance or spikes in your data ingestion

rates over time. This allows Firehose to

automatically scale up the number of shards to

handle increased throughput during peak periods

and scale back down when traffic subsides, saving

costs. Dynamic partitioning is also useful when you

have very high sustained data rates that could

overwhelm the capacity of a single shard.

Dynamically distributing the load across more

shards enables achieving higher overall parallelism

and throughput to destinations like Amazon S3 or

Redshift.

Amazon Data Firehose supports various data

destinations, such as Amazon S3, Amazon Redshift,

Amazon Elasticsearch Service, and Amazon Splunk

as shown in Figure 4-6. Carefully evaluate your data storage and processing requirements and select the

most suitable destination(s) for your use case.

If Amazon Data Firehose has a direct integration

with your desired target, using it will most likely

provide you the least operational overhead.

Configure delivery stream settings, such as buffer

size, buffer interval, compression, and file type to

optimize the delivery of data to your chosen

destination. This can help reduce costs and improve overall performance.

Utilize Firehose’s batching and partitioning

capabilities to group multiple records into a single

delivery and partition data based on time or other

relevant attributes.

Best Practices for AWS DMS Replication

Instances and Tasks

Ensuring optimal performance is crucial when executing

database migrations with AWS DMS, especially for large

datasets or mission-critical workloads. AWS provides a

range of configuration options and best practices to boost

migration speeds and throughput while minimizing

downtime and impact on source and target databases. Key

performance considerations include:

Provision a proper replication instance:

– Use larger instance types like C4 or R4 for

CPU-intensive heterogeneous migrations.

– Ensure sufficient memory (R4 instances

provide more memory per vCPU).

– Increase storage if needed for logs/cached

data.

– Use multi-AZ instances for better availability.

Load multiple tables in parallel:

– By default, DMS loads eight tables at a time.

– Increase this number slightly for larger

replication instances.

– Reduce for smaller instances.

Use parallel full load:

– For partitioned/subpartitioned tables from

certain sources.

– Split large tables into segments and load in

parallel.

Manage indexes/constraints during migration:

– Drop secondary indexes, constraints, and

triggers before full load.

– Add indexes before the CDC phase.

– Enable triggers before cutover.

Turn off backups/logging on target during

migration:

– Use multiple tasks for different table sets.

– Use batch optimized apply mode (violates

referential integrity).

Tune LOB (large binary objects) settings:

– Use Limited LOB mode (32 KB default limit).

– Increase LOB limit if needed.

– Use per-table LOB settings.

– Use Inline LOB mode for mixed LOB sizes.

Improve performance for large tables:

– Use row filtering to break into multiple tasks.

– Use parallel load by ranges/partitions.

– Identify and eliminate bottlenecks on source and target databases.

Best Practices for AWS DMS Tasks with Amazon

Redshift Target

Use the following best practices when using AWS DMS to

ingest data into Amazon Redshift:

Enable the BatchApplyEnabled task setting and

configure BatchApplyTimeoutMin/Max based on how

frequently you need data refreshed. Redshift is

optimized for analytical workloads, not transactional

changes. Enabling BatchApplyEnabled allows DMS

to efficiently handle changes to Redshift tables

during change data capture (CDC) by batching

transactions, as applying transactional changes one-

by-one can impact Redshift performance.

Set BatchSplitSize=0 to allow unlimited batch

sizes, and increase BatchApply

Me

moryLimit to a

higher value (e.g., 1024 MB) to process more

records per commit batch. Large batch sizes can

improve CDC performance to Redshift by

maximizing the number of records processed in each

commit batch. This reduces the overhead of

committing transactions and takes advantage of

Redshift’s strengths in handling analytical

workloads.

For large data migrations, increase the maxFileSize

(e.g., 250,000 KB) and fileTransferUploadStreams

(e.g., 20) connection attributes. DMS transfers data

to Redshift via CSV files in S3, so increasing the file

size and number of parallel upload streams can

improve full load performance by reducing the overhead of transferring data, particularly for large

data volumes.

Use primary keys on both source and target tables

to improve CDC performance to Redshift. Without

primary keys, updates and deletes are applied one-

by-one, which can impact performance.

Avoid VARCHAR data types larger than 64 KB, as

Redshift doesn’t support them. DMS will convert

BLOB/CLOB to VARCHAR. Redshift has limitations on

certain data types, so avoiding unsupported data

types ensures data compatibility between the source

and Redshift target, preventing errors or data loss

during migration.

Use ParallelApplyThreads for multithreaded CDC

and ParallelApplyBufferSize for buffers to

improve performance. Parallelizing CDC operations

can improve throughput by leveraging multiple

threads for applying changes and buffering data

during CDC, which can significantly improve

performance, especially for high-volume

transactional workloads.

For full loads, use ParallelLoadThreads along with

MaxFullLoadSubTasks to leverage parallel loading

into Redshift. Allocate sufficient replication instance

memory. Redshift can benefit from parallel loading

for large data volumes, speeding up the full load

process by parallelizing the data transfer and

loading, reducing the overall migration time by

utilizing multiple threads and the resources of the

replication instance.

Create target Redshift tables with appropriate distribution and sort keys for optimized data storage

and querying. Redshift’s performance is heavily

influenced by its data distribution and sort

strategies, so properly defining distribution and sort

keys can significantly improve query performance

and reduce the need for resource-intensive data

redistribution, ensuring efficient data storage and

retrieval in Redshift.

Monitor Redshift metrics like WLM queue disk spill.

Use AutoWLM or customize WLM queues if

workloads impact performance. Redshift’s Workload

Management (WLM) system manages memory

allocation and concurrency. By monitoring WLM

metrics and adjusting queue configurations, you can

prevent the DMS workload from impacting other

workloads on the Redshift cluster and ensure

optimal performance.

Ensure there are no locks or blocking sessions in

Redshift that can impact performance. Redshift can

experience performance issues due to locks or

blocked queries. Identifying and resolving any

potential locking or blocking issues in Redshift

prevents reduced throughput and increased latency,

ensuring DMS migration performance is not

negatively affected.

Data Transformation

Data integration and transformation are essential steps in

modern data analytics pipelines. As organizations collect

data from diverse sources, there is a critical need to

integrate this data into a consistent format, clean it, and

transform it into a structure suitable for analysis.

Depending on the use case, data transformation can be

applied in either batch mode or streaming mode.

Batch Data Transformation

In batch mode, the data is processed in large, discrete

chunks, allowing for more complex transformations and

validations. This approach is well suited for scenarios

where the data is accumulated over time and needs to be

processed periodically, such as hourly, daily, or weekly

data aggregations. Batch transformations can be performed

using Apache Spark jobs or SQL-based transformation. In

AWS you can author Spark batch jobs using the fully

managed Spark service AWS Glue or Amazon EMR. For

SQL-based data transformation, you can use Amazon

Redshift.

Streaming Data Transformation

Streaming data transformations involve processing

continuous flows of data in real time as events occur. Think

of it like a flowing river of data where you need to analyze, modify, or aggregate information as it passes by. Spark

Structured Streaming and Apache Flink provide ways to

handle these transformations but approach them

differently.

 Spark Structured Streaming treats streaming data as an unbounded table that continuously grows as new data

arrives. You can apply SQL-like operations (such as

filtering, grouping, or joining) to this “table,” making it

familiar to anyone who has worked with batch data

processing. For example, you might compute real-time

averages of sensor readings or filter out unwanted events

as they arrive. In AWS you can run Spark Structured Streaming jobs with either the fully managed service AWS

Glue or using Spark Structured Streaming jobs in Amazon

EMR.

 Flink, on the other hand, processes each event individually as it flows through the system. It can do both stateless and

stateful transformations. Stateless transformations don’t

need to retain state information across event records.

These are operations like filtering, routing, data

enrichment by performing lookups to external databases,

etc. Stateful transformations include maintaining state

between events and providing capabilities like event

aggregation, windowing operations, event correlation,

streaming joins, etc., to group and process related events

together. This makes it particularly good at tasks like

detecting patterns in real time (such as potential fraud in

financial transactions) or maintaining up-to-the-second

aggregations. In AWS you can run Flink jobs either with the

fully managed service Amazon Managed Streaming for

Flink (MSF) or using Flink jobs with Amazon EMR.

By leveraging the appropriate data transformation service,

you can ensure that the data is cleansed, formatted, and

enriched, enabling you to derive meaningful insights and

make informed decisions. In Chapter 3, you learned that AWS Glue, Amazon EMR, Amazon Managed Streaming for

Flink (MSF), AWS Lambda, and Glue DataBrew all have

data transformation capabilities. Let’s take a deeper look at them.

Data Transformation Using AWS Glue

AWS Glue is a serverless data transformation service with

which you can perform both batch and streaming data

transformation. Glue uses Spark for batch processing and Spark Structured Streaming for stream processing. In

addition for lightweight data processing, Glue provides the

ability to author Python shell jobs.

To perform the data transformation, you create AWS Glue

jobs. Jobs consist of scripts that contain the programming

logic that connects to sources, performs the

transformation, and writes the transformed data to the

target. Let’s understand some AWS Glue concepts and

terminology.

Glue Connectors

Glue connectors enable you to access and read data from

various data sources, including databases, data lakes, and

SaaS applications. These prebuilt, configurable components

allow you to easily ingest data from different sources,

without having to write custom code to handle all the

specifics. This makes it much simpler to set up and

maintain batch data ingestion pipelines, as you can

leverage the out-of-the-box connectors to quickly and

reliably ingest data. Examples of Glue connectors include

connectors for Amazon S3, Amazon RDS, Amazon Redshift,

and popular SaaS applications like Salesforce and

ServiceNow. For a complete list, refer to the available

connectors.

Glue Bookmarks

Job bookmarks in AWS Glue enable incremental batch data

processing over constantly changing data sources like S3

and databases. They help with CDC. They store information

about previously processed data in previous job runs, like

processed filepaths for S3 sources and primary key ranges

for JDBC sources. The Glue ETL jobs that use bookmarks can pick up where they left off and process only new or

modified data instead of redundantly reprocessing the

entire dataset on each scheduled run.

By leveraging Glue connectors and bookmarks, you can

simplify the process of batch data ingestion, making it

easier to set up, maintain, and scale your data integration

pipelines. This can be especially beneficial for use cases

where you need to regularly ingest data from a variety of

sources into your data lake or data warehouse.

Data Processing Units

The compute power in AWS Glue is provided by data

processing units (DPUs); you are charged for the number of

DPUs and duration of your job. A DPU consists of 4 vCPUs

of compute capacity and 16 GB of memory, operating as a

combination of compute and memory resources that

process your ETL jobs. AWS charges for Glue usage per

second based on the number of DPUs used, making it

important to balance performance needs with cost

considerations.

Worker Type

Glue job workers are the compute resources in AWS Glue

that execute your jobs. Workers determine the amount of

computing power for the job. They are responsible for

running the actual job tasks and processing the data,

whether it’s batch processing with Spark jobs, real-time

data streaming with streaming ETL jobs, or executing

Python scripts with Python shell jobs. AWS Glue

automatically scales the number of Glue job workers up or

down based on the job requirements, ensuring efficient resource utilization and optimizing performance.

The worker types available are G.1X. G.2X, G.4X, G.8X, and

G.025X:

Use the G.025X worker for low volume streaming

jobs. It is only available for AWS Glue version 3.0

streaming jobs.

Use the G.4X and G.8X workers for the jobs that

contain your most demanding transforms,

aggregations, joins, and queries and require more

compute power.

Use the G.2X worker to perform lightweight data

transforms, joins, and queries. It offers a scalable

and cost-effective way to run most jobs.

Glue Jobs

AWS Glue offers distinct job types to cater to various data

processing needs:

 Spark jobs

AWS Spark jobs are executed within an Apache Spark

environment that is fully managed by AWS Glue. These jobs

excel at batch processing of large datasets, leveraging the

power of Apache Spark’s distributed computing capabilities.

The minimum DPUs required for Spark jobs is 2, ensuring

sufficient resources for efficient batch data processing.

 Streaming ETL jobs

Streaming ETL utilizes the Apache Spark Structured

Streaming framework to seamlessly perform ETL operations

on continuous data streams. The jobs process and write data

in configurable time windows, with a default of 100 seconds.

This allows efficient processing and permits aggregations on late data. Supported compression formats like GZIP, Snappy,

and Bzip2 are automatically decompressed. You can supply

custom ETL scripts or use AWS Glue’s built-in transforms as

well as Apache Spark Structured Streaming operations to

transform the data. Supported streaming sources require

creating a Glue Data Catalog table, which can optionally use

schema detection on the data. These jobs require a

minimum of 2 DPUs. AWS Glue can transform data from

streaming data sources including Amazon Kinesis Data

Streams and Apache Kafka.

 Python shell jobs

Python shell jobs offer a flexible environment for running

Python scripts and are ideal for lightweight ETL jobs that

don’t require a lot of compute power. Because the minimum

required DPUs for Python scripts is only 1/16, they are a cost-efficient option for lightweight data transformations.

Jobs contain scripts that connect to sources, perform

transformations, and load data into targets. Let’s take the

example of Glue Spark jobs and look at the various

components of a job. For other job types, please refer to the

AWS Glue documentation.

Data Sources and Destinations

AWS Glue offers a wide selection of connectors for multiple applications and databases. You can use a native connector,

a connector from AWS Marketplace, or create your own

custom connectors. After you choose a connector, you can

create a connection based on that connector.

The AWS documentation has a list of available connectors

for AWS Glue. You will notice the following:

There are connectors available for databases such as Amazon Aurora, Amazon DocumentDB, Amazon

Redshift, MongoDB, MongoDB Atlas, MySQL, Oracle

database, PostgreSQL, Salesforce, SAP HANA,

Snowflake, Teradata Vantage, Vertica, etc.

There are connectors for applications like Instagram

Ads, LinkedIn, Facebook Ads, Asana, Salesforce,

Zendesk, SAP, etc.

When creating a connection on AWS Glue, you can

choose the source you are trying to connect to in the

“Choose data source” section, as shown in Figure 4-

14.

[image: Image 28]

 Figure 4-14. Data sources page in AWS Glue

AWS Glue accommodates different user preferences and

expertise levels through three distinct job authoring

interfaces.

Glue Studio

Glue Studio offers a drag-and-drop environment for

building ETL workflows with minimal coding. After you

[image: Image 29]

design a job in the graphical interface, it generates Apache

Spark code for you. When the job is ready, you can run it

and monitor the job status using the integrated UI.

Figure 4-15 shows a sample ETL job authored using Glue Studio, which has two source tables from Amazon S3,

which are joined, aggregated, and eventually written into

Amazon S3 after transformations.

 Figure 4-15. Sample ETL job authored using AWS Glue Studio Glue Studio notebooks

For those who favor a notebook-based development

experience, AWS Glue supports Jupyter notebooks. These

notebooks allow you to write and test PySpark code

interactively, combining code, visualizations, and

documentation in a single interface. This approach suits

data scientists and engineers who are comfortable with

Python and want to develop complex transformations.

Once you have developed and tested your data integration

logic within the notebook, AWS Glue Studio seamlessly

converts your notebook into a Glue job with just a click of a button. This seamless transition from interactive

development to production job execution streamlines the entire data integration process, enabling you to rapidly

iterate and deploy your ETL workflows.

AWS Glue interactive sessions

Interactive sessions enable real-time development and

debugging of Glue ETL scripts. They provide a development

environment where you can test your code against live

data, examine results immediately, and iterate quickly. This

interface is ideal for developers who need to fine-tune their ETL logic or troubleshoot complex transformations.

Best Practices for AWS Glue

Here are some of the best practices to follow when using

AWS Glue:

 Use appropriate worker types

Choose the worker type that best fits your workload

requirements. For compute-intensive jobs, consider using

G.4X or G.8X workers, which have more CPU and memory

resources.

 Optimize data partitioning

Partitioning your data can significantly improve the

performance of Glue jobs by reducing the amount of data

that needs to be scanned. Partition your data based on

frequently used filters or predicates in your queries.

 Use the right file format

Different file formats have varying performance

characteristics. For example, Apache Parquet and ORC

formats are generally more efficient for analytical

workloads compared to CSV or JSON formats.

 Leverage Glue Data Catalog partitions

AWS Glue Data Catalog supports partitioning, which can

improve query performance by pruning unnecessary data.

When creating or updating tables in the Data Catalog, make

sure to partition your data appropriately.

 Enable job bookmarks for incremental data processing

AWS Glue supports job bookmarks, which allow you to

resume failed jobs from the last successful checkpoint,

reducing the need to reprocess the entire dataset.

 Use Glue job monitoring

AWS Glue provides job monitoring capabilities that can help

you identify performance bottlenecks and optimize your

jobs accordingly. Analyze the job metrics and logs to identify potential areas for improvement.

 Use Glue Spark UI

For Apache Spark–based Glue jobs, you can use the Glue

Spark UI to analyze the performance of your Spark jobs,

including identifying slow stages, data skew, and other

potential issues.

 Use AWS Glue autoscaling

Automatically scale your jobs based on processing needs:

When transforming data from or data into a data lake,

ensure you have the optimal file size. Avoid too many

small files as both source and target. Also avoid files

larger than 1 GB.

Use the Flex execution class for non-sensitive jobs to save

cost.

Data Transformation Using Amazon

EMR

Enterprises often deal with large volumes of data

originating from diverse sources, requiring robust and

scalable solutions for data integration and processing.

While AWS Glue provides a serverless and managed

solution to run ETL workloads using Apache Spark or

Python shell scripts, there are scenarios where more big

data frameworks and customizations are needed. This is

where Amazon Elastic MapReduce (EMR) comes into play,

offering a powerful and flexible platform for processing and

analyzing vast amounts of data using open source

frameworks like Apache Hadoop, Apache Spark, Apache

Hive, Apache HBase, Apache Flink, and Apache Presto.

With EMR, organizations can do batch processing, real-

time stream processing, or interactive analytics. Batch

processing can be done using Spark, Hive, Presto, Trino,

etc. Stream data processing can be done using Apache

Spark Structured Streaming or Apache Flink frameworks.

Storage

When running long-running workloads on Amazon EMR,

organizations need to consider the persistent data storage

options available. Amazon EMR supports two primary

options for persistent data storage:

 Hadoop Distributed File System (HDFS)

HDFS is a distributed file system designed for storing and

processing large datasets across multiple nodes in a Hadoop

cluster. It provides fault tolerance and high throughput

access to data. However, managing an HDFS cluster can add

operational complexity and costs.

 Amazon S3

Amazon S3 is a highly durable, scalable, and cost-effective

object storage service provided by AWS. Using Amazon S3 as

a persistent data store eliminates the need for separate

HDFS storage, reducing operational overhead and costs.

Data stored in Amazon S3 persists even after the Amazon

EMR cluster terminates, allowing for efficient data reuse and long-running workloads. We recommend using Amazon S3

as storage instead of HDFS.

Deployment Options

Amazon EMR supports multiple deployment options for

various business needs:

 EMR on EC2

The EMR on EC2 deployment option is the classic approach

to running Amazon EMR. This option provides maximum

control over your big data infrastructure. With this option,

you can run multiple big data frameworks (Spark, Hive, Pig,

Presto, Trino, and others) concurrently within a single

cluster.

This option offers extensive customization options. You can

select specific EC2 instance types for your workloads or use

instance fleets to combine different instance types within

node groups. Bootstrap actions—shell scripts that execute

during startup—allow you to configure the software

environment to your exact specifications.

EMR on EC2 also enables strategic cost optimization. For

predictable workloads, you can reduce costs using Reserved

Instances or Savings Plans, while Spot Instances can

significantly lower expenses for interrupt-tolerant jobs.

 EMR Serverless

In contrast, the EMR Serverless deployment option provides

the most managed and simplified approach to running

Amazon EMR. With EMR Serverless, you don’t have to worry

about provisioning or managing the underlying

infrastructure—it’s all handled by AWS. This option

currently supports the Spark and Hive frameworks. You can

choose between x86 and Graviton instances, and you only

pay for the runtime of your jobs, without the need to

manage clusters. EMR Serverless automatically applies

updates, further reducing the management overhead. This

deployment option is well suited for users who have

intermittent or unpredictable workloads, as the automatic

scaling and pay-per-use pricing model can be more cost-

effective than managing a constantly running cluster.

 EMR on EKS

The EMR on EKS deployment option allows you to run

Amazon EMR on top of Amazon Elastic Kubernetes Service

(EKS), a managed Kubernetes service. This approach

simplifies infrastructure management, as EKS handles the

underlying compute resources and scaling of the worker

nodes. By deploying EMR components on top of EKS, you can

benefit from the flexibility and portability offered by

Kubernetes. This option is particularly suitable for users

who are already familiar with EKS and Kubernetes, as it

consolidates the management of multiple versions of Spark

on the same EKS cluster and simplifies Spark application

upgrades. Additionally, by leveraging EKS, you can take

advantage of multi-AZ resiliency, with worker nodes

distributed across multiple Availability Zones. The EMR on

EKS deployment option provides a balance between

infrastructure management and the customization

capabilities required for more complex or hybrid cloud deployments.

Instance Types

Amazon EMR supports various instance types for its core

nodes (which manage the cluster) and task nodes (which

execute the jobs). Organizations can choose from different

instance families based on their workload requirements

and cost considerations. Some of the instance types

available for Amazon EMR include:

 x86-based instances

These are the traditional instances based on x86

architecture, such as the M5, R5, and C5 instance families.

They offer a balance of compute, memory, and storage

resources for a wide range of workloads.

 Graviton instances

These instances are based on AWS’s own ARM-based

Graviton processors, which provide better performance and

cost savings compared to x86-based instances for certain

workloads. For Apache Spark workloads, Graviton instances

can offer up to 30% better price-performance compared to

x86-based instances.

 Spot Instances

Amazon EMR supports the use of Spot Instances, which are

spare Amazon EC2 compute capacity offered at a significant

discount compared to on-demand instances. However, Spot

Instances can be interrupted by AWS when capacity is

needed, making them less suitable for long-running

workloads that require high reliability.

Best Practices for Amazon EMR

Here are some best practices to get the most out of Amazon

EMR:

Use Amazon S3 as your persistent data store instead

of HDFS, as S3 is cheaper and more reliable for

storage.

Compress, compact, and convert your data to

optimized file formats like Parquet and ORC to

reduce storage and improve performance.

Partition and bucket your data in S3 to reduce the

amount that needs to be scanned.

Choose the right EC2 instance types for your

workloads (e.g., compute-optimized for CPU-heavy,

memory-optimized for memory-intensive).

Use Spot Instances, which can provide up to 90%

discount compared to on-demand pricing.

Mix Spot and on-demand instances to lower costs

while still meeting SLAs. Use on-demand for core

nodes and Spot for task.

Enable EMR-managed scaling to automatically

adjust cluster size based on workload.

Rightsize your application containers and resources

to fully utilize instances.

Use the latest EMR version, which includes

performance optimizations and cost savings.

Use EMR Serverless for sporadic workloads.

AWS Glue Versus Amazon EMR

Options

In this section let’s learn how to choose between the data

processing options we have discussed so far by considering

various factors such as serverless options, framework

support, startup time for jobs, solution scaling, etc.

(Table 4-4).

 Table 4-4. Comparison of AWS Glue and Amazon EMR option Amazon

Amazon

EMR

EMR on

AWS Glue

Serverless

EC2

Serverless

Yes

Yes

No

solution

Supported

Spark,

Spark, Hive

Spark,

frameworks

Python

Hive, Trino,

HBase,

Flink, and

more

Data

~10

~2 minutes

Cluster

processing

seconds

or few

creation

job startup

seconds if

time is ~5

time

preinitialized

minutes. If

capacity

the cluster

is

precreated

then job

submission

is

immediate

Scaling

Fully

Fully

Autoscaling

managed

managed

with

scaling

scaling

custom

policies

based on

CloudWatch

metrics

Amazon

Amazon

EMR

EMR on

AWS Glue

Serverless

EC2

Interactive

Yes

Yes, EMR

Yes, EMR

analytics

Glue

Studio

Studio

interactive

JupyterHub,

sessions,

Zeppelin,

Glue

Hue

Studio,

Glue

notebooks

Multi-AZ

No

Yes

No

(high

reliability

and

resilience)

Cost

Flex

Not

Spot

optimization

execution

applicable

Instances,

options

reserved

instances,

Graviton

instances,

and

managed

scaling

Management Low

Low

Medium

overhead

SQL-Based Data Transformation Using

Amazon Redshift

Amazon Redshift is a fully managed, petabyte-scale data

warehouse service that uses SQL and PL/SQL for data

transformation and analysis. Think of it as a massive, high-

performance database optimized for analyzing large

datasets using familiar SQL commands. Amazon Redshift

has a cluster architecture with compute and storage

separation.

Amazon Redshift Compute

Amazon Redshift has massively parallel compute. It is

available in both provisioned and serverless modes.

Serverless compute provides better ease of use.

Provisioned compute nodes are called RA3 and are

available in four different sizes—large, xlarge, 4xlarge, and 16xlarge. The documentation has compute specifications.

Provisioned compute has on-demand and reserved pricing.

With on-demand you are charged for each second of usage.

You can pause the on-demand cluster when the cluster is

not in use. To get 30%–60% cost savings you can use

reserved instances. You can reserve for 1 year or 3 years. A

3-year reservation will give you the lowest price.

Amazon Redshift Serverless measures data warehouse

capacity in Redshift Processing Units (RPUs). RPUs are

resources used to handle workloads. One RPU provides 16

GB of memory. Unlike provisioned, serverless doesn’t

charge for idleness. There is a charge only when an active

query or load is running. Serverless compute gives you

better ease of use compared to provisioned compute.

[image: Image 30]

Amazon Redshift Storage

Amazon Redshift has high-performant, proprietary

columnar storage that is optimized for analytics on large

datasets. RMS is a combination of local SSDs on compute

and Amazon S3. SSDs are used to cache the most

frequently accessed data.

Figure 4-16 showcases various aspects of the Amazon Redshift architecture. Amazon Redshift’s compute is

capable of accessing both data in proprietary format from

RMS and data in open source formats (like Iceberg, Hudi,

Delta Lake, JSON, CSV, Parquet, etc.) from an Amazon S3

data lake.

 Figure 4-16. Amazon Redshift architecture

Using Amazon Redshift, you can design your data

warehouse as a distributed data mesh, instead of a single

monolith. Monoliths pose resource contention and scalability concerns. On the other hand, a distributed

architecture can isolate workloads, thereby improving

scalability and performance. There are two common types

of multicluster architectures:

 Hub and spoke

In this architecture pattern, there is a separate Redshift

cluster for each workload. Typically, data warehouses have

workloads such as ETL, reporting, data science, etc. By using a separate cluster for each and isolating these workloads

completely from one another, you can reduce workload

interference (i.e., while ETL is running, your reporting jobs are not impacted and vice versa). You can onboard new

workloads rapidly.

 Data mesh

In this architecture pattern, there is a separate Redshift

cluster for each business unit. Each business unit gets

complete control of their data assets. They choose which

ones to share with other units and which ones not to share

to achieve their compliance and governance requirements.

Figure 4-17 shows the hub-and-spoke architecture and data mesh architecture. In the hub-and-spoke architecture,

notice two Redshift clusters performing transformations

and populating data assets and three Redshift clusters

consuming those data assets. In the data mesh architecture

notice how each business unit (finance, HR, operations,

etc.) gets their own compute endpoint.

[image: Image 31]

 Figure 4-17. Hub-and-spoke and data mesh architectures

These multicluster architectures are powered by an

Amazon Redshift feature called data sharing. Data sharing

allows for reading live data assets populated by other

endpoints in place, without making data copies, with

transactional consistency. Using data sharing you can also

write into common data assets (like tables) using multiple

endpoints thereby scaling the write workload horizontally.

SQL Data Transformations

Amazon Redshift has the following data transformation and

orchestration capabilities:

Provides materialized views for stored

transformations for batch data and streaming data

Supports stored procedures for complex logic

Amazon Redshift materialized views

Materialized views store precomputed query results, acting

like a cache for complex queries. Think of them as

snapshots of your query results that get periodically

refreshed to maintain data freshness. The most common

use case for materialized views is to improve performance

of dashboard queries. If your dashboard query has

complexity including multiple table joins, aggregations,

complex calculations, etc., consider creating a materialized

view to prepopulate the required dataset so that it need not

be generated at runtime. This helps in achieving latency in

seconds for your analytics dashboard:

 -- Example: Creating a materialized view for daily sales

 analytics

CREATE MATERIALIZED VIEW daily_sales_summary AS

SELECT

date_trunc('day', sale_timestamp) as sale_date,

product_category,

region,

COUNT(*) as transaction_count,

SUM(amount) as total_sales,

AVG(amount) as avg_sale_amount

FROM sales_transactions

GROUP BY 1, 2, 3;

Amazon Redshift’s materialized views have some notable

features:

 Automatic query rewriting

If you think that your queries will benefit from converting

them into a materialized view, you can just go ahead and

create the materialized view and don’t need to change your

existing queries to use this MV. Redshift has the capability to automatically use materialized views when applicable.

 Incremental and automatic refresh

Incremental refresh is an optimization technique where

Redshift updates only the changed data in a materialized

view instead of recomputing the entire view. Incremental

refresh is possible when the base tables are RMS tables

created by the cluster, RMS tables shared by another cluster, or external tables where data resides in Amazon S3 in open

formats. If you use certain operations in your materialized

view query, the view will not be able to incrementally

refresh. Please refer to the limitations for incremental

refresh to understand more.

Amazon Redshift also supports automatic refresh. It can

detect changes in the base tables and automatically trigger a refresh when the load on the cluster is low so that it doesn’t impact a user’s processes. Automatic refresh is supported on

views whose base tables are RMS tables created by the same

cluster or shared from another cluster. Automatic refresh

doesn’t happen if the base tables are external tables.

Amazon Redshift stored procedures

Stored procedures in Amazon Redshift can be used to

encapsulate logic for data transformation, data validation,

and business-specific logic. They combine multiple SQL

steps that can all be executed in a single stored procedure

call.

In Redshift, the stored procedures are typically used to populate the tables in Amazon Redshift Managed Storage

(RMS). You can define an industry standard data model like

a star schema and use stored procedures to periodically

refresh the data model tables with new incoming data from

the source. The typical steps include:

1. Extracting data from sources (such as S3) and

loading into staging tables

2. Merging the data from staging into the target

dimension or fact table

You can define an Amazon Redshift stored procedure using

the PostgreSQL procedural language PL/pgSQL. You can

control the flow of statement execution using procedural

language constructs such as looping and conditional

expressions. You can also use stored procedures for

delegated access control. For example, you can create

stored procedures to perform functions without giving a

user access to the underlying tables.

Following is a sample stored procedure that loads sales

data into a staging table and finally merges into the sales

fact table:

CREATE OR REPLACE PROCEDURE sp_merge_sales_data()

LANGUAGE plpgsql

AS $$

BEGIN

 -- Create staging table if it doesn't exist

DROP TABLE IF EXISTS staging.sales_staging;

CREATE TABLE staging.sales_staging

(

salesid INTEGER NOT NULL, listid INTEGER NOT NULL,

sellerid INTEGER, buyerid INTEGER, event id INTEGER,

dateid INTEGER, qtysold INTEGER, pricepaid DECIMAL(8,2),

commission DECIMAL(8,2), saletime TIMESTAMP

);

 -- Load data into staging table. This example copies from S3

COPY staging.sales_staging

FROM 's3://your-bucket/sales_data/'

IAM_ROLE 'arn:aws:iam::your-account-id:role/your-role'

FORMAT CSV

DELIMITER ','

IGNOREHEADER 1;

 -- Perform the merge operation

MERGE INTO dwh.fact_sales

USING staging.sales_staging source

ON (salesid = source.salesid AND listid = source.listid)

WHEN MATCHED THEN

UPDATE SET

qtysold = source.qtysold,

pricepaid = source.pricepaid,

commission = source.commission,

last_updated = GETDATE()

WHEN NOT MATCHED THEN

INSERT

(salesid,listid,sellerid,buyerid,eventid,dateid,qtysold,

pricepaid,commission,saletime,created_date)

VALUES (source.salesid,source.listid,source.sellerid,

source.buyerid,source.eventid,source.dateid,source.qtysold,

source.pricepaid,source.commission,source.saletime,

GETDATE());

 -- Clean up staging table

DROP TABLE IF EXISTS staging.sales_staging;

END;

$$;

Amazon Managed Service for Apache

Flink

Amazon Managed Service for Apache Flink (MSF) is a fully

managed service that allows you to query and analyze

streaming data using the Apache Flink framework. To

perform real-time transformations, aggregations,

windowing operations, and stateful computations on

[image: Image 32]

streaming data from Amazon Kinesis Data Streams or

Amazon MSK, you can use Amazon MSF. It is the solution

that offers the lowest latency and highest throughput for

streaming data transformations and has the least

operational overhead. When MSF is consuming data from

Kinesis as a consumer, it can use enhanced fan-out mode

(which was described earlier in the chapter when

discussing Kinesis Data Streams) to get dedicated read

throughput. The transformed data can be written to

Amazon S3 data lakes. It can also be written back to

Amazon Kinesis Data Streams or Amazon MSK for further

delivery to a target such as an Amazon Redshift data

warehouse, as shown in Figure 4-18.

 Figure 4-18. Integrations for Amazon Managed Service for Apache Flink When using MSF, follow these best practices:

Understand the cost model. Costs are determined by

the number of Kinesis Processing Units (KPUs),

which are based on the parallelism and parallelism per KPU settings.

Monitor for overprovisioning. Look for low CPU and

memory utilization metrics over time, or if the

application is purely I/O bound, which may indicate

too many KPUs allocated.

Increase parallelism per KPU. For I/O bound

workloads, increasing parallelism per KPU can allow

for running more tasks per KPU to densify

workloads.

Rightsize KPUs during load testing. Start with 1

KPU per 1 MB/s throughput and adjust parallelism

up/down based on performance testing.

Use autoscaling. Enable metric-based or scheduled

autoscaling to automatically adjust KPUs based on

load.

Optimize code. Use higher-level APIs, eliminate data

skew, and use async I/O to improve efficiency.

Evaluate whether Flink is indeed needed. For

stateless, high-latency workloads, consider

alternatives like AWS Lambda.

Amazon Data Firehose for

Transformation

As discussed earlier in the chapter when reviewing

streaming ingestion, Amazon Data Firehose’s main function

is data stream delivery to various AWS analytics services

including Amazon S3, OpenSearch, and Redshift. Given

that Kinesis Data Streams and Amazon MSK lack direct

connectivity to Amazon S3 and OpenSearch, Firehose plays a crucial role as an intermediary delivery solution.

While delivering data, it can perform lightweight

operations, such as converting data from JSON to Parquet

format, handling output compression and decompression,

adding delimiters, optimizing data through batching, and

creating dynamic partitions for Amazon S3 buckets.

Firehose can also leverage AWS Lambda functions for

slightly more complex transformations, such as converting

data formats from CSV/XML to JSON and subsequently to

Parquet.

AWS Lambda for Transformation

When you have simple, event-driven data transformation

tasks that can be handled by short-running (less than 15

minutes), stateless functions you can use AWS Lambda. It

can perform lightweight data transformation needs, such as

data format conversions, basic filtering, or small-scale

aggregations in a cost-efficient manner as you can take

advantage of the scalability, fault tolerance, and pay-per-

use pricing model of AWS Lambda.

Choosing the Right Streaming

Transformation Service

There are multiple options for running streaming jobs on

AWS, with trade-offs between operational simplicity and

control (Table 4-5).

You can run Spark Structured Streaming jobs on either:

AWS Glue (fully managed, serverless)

Amazon EMR (either provisioned clusters or

serverless)

For Flink applications, your choices are:

Amazon MSF (fully managed)

Amazon EMR (either provisioned clusters or

serverless)

 Table 4-5. Choosing between Spark Streaming jobs and Flin Spark

Streaming jobs

 (Glue

 Streaming or

 Spark

 Structured

Amazon Data

 Streaming jobs

Firehose + AWS

 on Amazon

 F

Criteria

Lambda

 EMR)

 A

Data

If you want to use

Stateless/stateful

transformation

AWS Lambda for

transformations

transformation

Use if you want

t

Simple stateless

to use Spark

transformations or

Structured

t

limited windowing

Streaming

(15 min. windows)

specifically

Schema

Limited (new

Yes

evolution

column

addition/changes)

Schema

No

Yes

Y

registry

support

Write

Can do

Appends rows of

A

operations

insert/update/delete

microbatch to

the table or

completely

replaces the

table content at

each microbatch

or merge using

foreachbatch

Low-latency

Flink generally has

Flink generally

requirements

lower latencies

has lower

l

latencies

High-

Flink often

Flink often

throughput

outperforms for

outperforms for

requirements

high throughput

high throughput

Large batch

Small batches

Spark Streaming

workloads

is efficient for

large batch

processing

p

Exactly-once

No

With additional

processing

configuration,

but some

limitations

Handling out-

Limited capabilities

Limited

of-order

capabilities

events

w

Integration

No

Yes, integrates

with Spark

well with other

ecosystem

Spark libraries

Ease of use for

Yes, leverages

Yes, leverages

existing Spark

familiar Python/Java

familiarity with

users

code

Spark APIs

AWS Glue and Amazon MSF are fully managed solutions that handle infrastructure management, scaling, and

maintenance tasks. This significantly reduces operational

overhead and is ideal for teams that want to focus on

application logic rather than infrastructure. Amazon EMR,

while offering both provisioned and serverless options,

requires more operational expertise. However, it provides

granular control over job parameters, cluster

configurations, and runtime environments.

Choosing the Right Batch

Transformation Service

When it comes to batch data transformation in AWS, you

have four main options: AWS Glue, Amazon EMR, Amazon

Redshift, and AWS Lambda.

The choice depends on factors such as the complexity of

your transformation requirements, the need for

customization and control, the scale and performance

demands of your workload, and the expertise of your

development team. Let’s take a closer look at when to use

each service in Table 4-6.

 Table 4-6. Choosing the right batch transformation service Criteria

AWS Glue

Amazon EMR

Suitable use

cases

Spark-

Data

based data

processing w

processing

any of Spark

Batch-

Hadoop,

oriented

HBase, Hive

ETL

Hudi, Presto

pipelines

Complex, la

Data

scale data

format

transformat

conversions

High

Ease of use

performance

low latency

and

serverless

Highly

operational

customized

simplicity

ETL workflo

desired

Complexity of

For large-scale

Suitable for comple

transformation data

large-scale data

transformations

transformations tha

using Apache

require the full

Spark jobs; also

capabilities of

suited for

frameworks like Sp

lightweight

or Flink

transformations

using Python shell

scripts that run for

more than 15

minutes

Criteria

AWS Glue

Amazon EMR

Customization

Provides a

Offers a high degre

and control

managed,

customization and

abstracted layer

control over the dat

with limited

transformation

customization

pipeline, including

options

ability to use custom

libraries and integr

with other AWS

services

Infrastructure

Fully managed

Requires some

management

service,

management of the

eliminating the

underlying EMR

need to provision

cluster infrastructu

or manage servers

but provides a

managed service on

top of EC2. EMR

Serverless offers fu

managed solution f

Apache Spark, Hive

and Presto

Expertise

Relatively lower

Requires expertise

required

barrier to entry,

using and managing

suitable for data

open source big dat

engineers with

frameworks like Sp

general ETL

or Flink

experience

Data Preparation for Nontechnical

Personas

Data transformation capabilities empower nontechnical

individuals to independently manipulate and restructure

raw data into insightful formats, democratizing data

exploration and analysis across various roles. AWS Glue

DataBrew is an AWS service designed to assist

nontechnical personas with data cleaning and preparation

tasks. As a fully managed, low-code, visual interface

solution, it offers a comprehensive set of over 250 built-in

transformation and cleaning functions to address a wide

range of data quality issues. DataBrew caters specifically to data analysts, data scientists, and business users who may

not possess extensive coding skills, enabling them to

leverage its powerful data transformation and enrichment

capabilities effortlessly. The AWS Certified Data Engineer

Associate certification exam may include questions related

to specific function names and their roles within DataBrew,

reflecting the importance of understanding this service for

effective data preparation and transformation.

The following are Glue transformations for some of the

common data cleansing and data transformation scenarios.

Fill Missing Values

Missing data is predominant in all datasets and can have a

significant impact on the analytics or ML models using the

data. Missing values in datasets can skew or bias the data

and result in invalid conclusions. In a DataBrew project,

you can get a quick view of the missing values in your

sample data under the Data Quality section in the Schema

view and within the Column Statistics. This provides

valuable insights into the extent and distribution of missing

[image: Image 33]

data in your dataset. DataBrew offers several built-in

functions to handle missing values, including:

 Fill missing values

This allows you to replace missing values with a constant

value, the mean/median/mode of the column, or the

previous/next nonmissing value.

 Drop rows with missing values

This transformation removes any rows that contain one or

more missing values.

 Impute missing values

DataBrew provides advanced imputation methods, such as

 k-nearest neighbors (KNN) and decision tree imputation, to estimate missing values based on the patterns in the data.

These missing value handling transformations can be easily

incorporated into your DataBrew recipes using a visual

interface as shown in Figure 4-19.

 Figure 4-19. Handling missing values using DataBrew

For any data column, you can choose to either remove the missing rows or fill them with an empty string, null, last

valid value, most frequent value, or custom value. For

numerical data columns, you can also fill missing values

with numerical aggregates of values like average, mode,

sum, or median. Figure 4-19 shows a menu of all the options that DataBrew provides to handle missing values. It

also shows an example of how rows with missing values will

be deleted.

Identify Duplicate Records

Using the FLAG_DUPLICATE_ROWS functions, DataBrew can

return a new column with a specified value in each row that

indicates whether that row is an exact match of an earlier

row in the dataset. When matches are found, they are

flagged as duplicates. The initial occurrence is not flagged, because it doesn’t match an earlier row.

Formatting Functions

AWS DataBrew provides a comprehensive suite of text

manipulation functions categorized into formatting,

extraction, and replacement capabilities. The formatting

functions include various case modifications

(CAPITAL_CASE, LOWER_CASE, UPPER_CASE, SENTENCE_CASE),

quote additions, and date formatting options. The

extraction functions enable pulling text between delimiters,

from specific positions, using regular expression patterns,

and from nested data structures.

For data cleaning and standardization, DataBrew offers

robust replacement functions that include removing

specific character combinations (REMOVE

_COM

BINED),

replacing text between delimiters or positions

(REPLACE_BETWEEN

_DELIM

ITERS,

REPLACE_BETWEEN_POSITIONS), and performing simple text

substitutions (REPLACE_TEXT). These functions collectively

provide a powerful toolkit for transforming and

standardizing data within your AWS DataBrew workflows.

Integrating Data from Multiple Sources

In data analysis, it’s common to need information from

multiple datasets to arrive at useful insights. DataBrew

provides two powerful transformations to combine data

from different sources—union and join.

Nesting and Unnesting Data Structures

As you work with data from various sources, you may

encounter complex data structures, such as nested fields,

arrays, and maps. Effectively handling and transforming

these data structures is a critical part of the data

preparation process. AWS Glue DataBrew offers a set of

powerful data structure recipe steps that allow you to work with these complex data formats, simplifying the task of

preparing your data for analysis and downstream

applications.

The nesting and unnesting functions in DataBrew provide a

flexible way to work with complex data structures:

 Nesting functions

The nesting functions allow you to consolidate related data

elements into a more compact and structured format:

NEST_TO_ARRAY

Combines multiple columns into a single array column

NEST_TO_MAP

Combines multiple columns into a single JSON-formatted

map column

NEST_TO_STRUCT

Combines multiple columns into a single structured

column

These nesting functions are useful when you need to

consolidate related data elements into a more compact and

structured format, which can simplify downstream

processing and analysis.

 Unnesting functions

Unnesting functions enable you to “flatten” these complex

structures into a tabular format that is more easily

consumable by analytics tools and applications:

UNNEST_ARRAY

Extracts values from an array column into individual

rows

UNNEST_MAP

Extracts key-value pairs from a map column into

individual rows

UNNEST_STRUCT

Extracts fields from a structured column into individual

columns

UNNEST_STRUCT_N

Extracts a specific field from a structured column

The unnesting functions allow you to “flatten” complex data structures, breaking them down into more easily

consumable tabular formats. This can be particularly useful

when integrating data from different sources with varying

schemas or when preparing data for analysis tools that work

better with flat, tabular data.

By leveraging these nesting and unnesting transformations

in your DataBrew recipes, you can efficiently handle and

reshape complex data structures, making it easier to

prepare your data for downstream analytics and reporting.

Protecting Sensitive Data

When working with real-world data, you may encounter

sensitive or personally identifiable information (PII) that

requires special handling to ensure data privacy and

compliance. AWS Glue DataBrew provides a set of

functions specifically designed to help you protect and

obfuscate sensitive data elements within your datasets.

At the time of this writing, the PII data handling functions

available in DataBrew include:

CRYPTOGRAPHIC_HASH

Applies a cryptographic hash function to a text value, such

as SHA-256 or MD5, to create a one-way, irreversible

transformation of the data.

DECRYPT

Decrypts a value that has been encrypted using a specified

key.

DETERMINISTIC_DECRYPT

Decrypts a value that has been encrypted using a deterministic encryption algorithm, which produces the

same ciphertext for the same plaintext and key.

DETERMINISTIC_ENCRYPT

Encrypts a value using a deterministic encryption algorithm,

which produces the same ciphertext for the same plaintext

and key.

ENCRYPT

Encrypts a value using a specified key.

MASK_CUSTOM

Masks a value using a custom masking pattern.

MASK_DATE

Masks a date value by replacing it with a randomly

generated date within a specified range.

MASK_DELIMITER

Masks a value by replacing characters between delimiters

with a specified character.

MASK_RANGE

Masks a numeric value by replacing it with a random value

within a specified range.

REPLACE_WITH_RANDOM_BETWEEN

Replaces a value with a randomly generated value within a

specified range.

REPLACE_WITH_RANDOM_DATE_BETWEEN

Replaces a date value with a randomly generated date

within a specified range.

SHUFFLE_ROWS

Shuffles the order of rows in a dataset, to help obfuscate any potential correlation between rows.

Refer to the AWS documentation to get the current list of functions to handle PII. These PII data handling functions

allow you to protect sensitive information while still

maintaining the overall structure and integrity of your data.

By incorporating these transformations into your DataBrew

recipes, you can ensure that your data preparation process

aligns with data privacy regulations and best practices.

Other Data Preparation Transformations

AWS Glue DataBrew extends beyond basic data cleaning to

offer a comprehensive suite of advanced transformation

capabilities. These include sophisticated outlier detection

and handling mechanisms, robust column structure

manipulations (merging, splitting, and flagging), formatting

functions for numeric and phone data, and specialized data

science transformations like binarization and one-hot

encoding. The service further enhances its utility with

mathematical operations, text manipulations, date

calculations, window-based transformations, and web-

specific functions for handling IP addresses and URL

parameters, making it a powerful all-in-one solution for

complex data preparation needs in modern analytics and

machine learning workflows.

Orchestrating Data Pipelines

Orchestration refers to the coordinated execution and

management of the various components and steps involved

in a data processing pipeline or workflow. Effective orchestration is crucial for building robust data systems, as it ensures that the different stages of data ingestion,

transformation, analysis, and delivery are seamlessly

integrated and executed in the correct sequence. In AWS

services, users can orchestrate with AWS Step Functions,

Amazon Managed Workflows for Apache Airflow (MWAA),

AWS Glue workflows, Amazon Redshift query scheduler, or

Amazon EventBridge. Let’s learn about each of them and

understand how to choose the right solution for your use

case.

AWS Step Functions

AWS Step Functions is a serverless orchestration service

that allows data engineers to build and run serverless

applications and workflows using AWS services. It provides

a way to visualize and coordinate event-driven

architectures using a graphical console to arrange and

visualize the components of your application as a series of

steps. Step Functions enables you to easily create and

update serverless workflows that combine various AWS

services. Key use cases for Step Functions include

automating ETL processes, orchestrating large-scale

parallel workloads, coordinating microservices, and

automating IT/security workflows with approval steps.

Depending on your use case, you can have Step Functions

call AWS services, such as Lambda, to perform tasks. You

can create workflows that process and publish machine

learning models.

Step Functions is based on state machines and tasks. In Step Functions, state machines are called workflows, which are a series of event-driven steps. Each step in a workflow

is called a state. For example, a Task state represents a

[image: Image 34]

unit of work that another AWS service performs, such as

calling another AWS service or API. Figure 4-20 shows a sample Step Functions state machine.

 Figure 4-20. Sample Step Functions state machine

Managed Workflows for Apache Airflow

Amazon Managed Workflows for Apache Airflow (Amazon

MWAA) is a fully managed orchestration service for the

[image: Image 35]

open source Apache Airflow platform. Amazon MWAA

allows you to orchestrate workflows that span both AWS

and non-AWS resources. With Amazon MWAA, you can

programmatically author, schedule, and monitor workflows

consisting of sequences of processes and tasks, known as

directed acyclic graphs (DAGs). Figure 4-21 is a sample DAG for a data pipeline that checks for files in Amazon S3,

creates tables for those files in Amazon Athena, joins them,

and transfers the data to Amazon Redshift for reporting.

 Figure 4-21. Sample MWAA DAG

Following are the key components in MWAA:

 DAGs (directed acyclic graphs)

DAGs represent the workflows in Airflow, which are

collections of tasks that need to be executed in a specific

order. DAGs are written in Python scripts and define the

tasks, their dependencies, and the overall flow of the

workflow. Each DAG has a schedule that determines when it

should be executed (e.g., hourly, daily, or based on specific conditions). DAGs in MWAA can be created using a visual

interface as shown in Figure 4-21.

 Tasks

Tasks are instances of operators within a DAG. Each task

represents a specific unit of work that needs to be executed

as part of the workflow. Tasks can have dependencies on

other tasks, which determine the execution order within the

DAG. Each task invokes an operator.

 Operators

Operators define the actual work that needs to be

performed, such as running a Python function, executing a

Bash command, transferring data between systems, or

interacting with various data sources.

Airflow provides a wide range of built-in operators for

common operations, and you can also create custom

operators for specific use cases. Examples of built-in

operators include PythonOperator, EmailOperator,

BashOperator, MySql Opera tor,

S3FileTransferOperator, RedshiftDataOperator, and

many more.

 Dependencies

Dependencies define the relationships between tasks in a

DAG. They specify the order in which tasks should be

executed, ensuring that tasks with dependencies are

executed only after their upstream tasks have completed

successfully.

Airflow supports different types of dependencies, such as

upstream/downstream dependencies, cross-DAG

dependencies, and external task sensors.

Sample Use Case

Consider a media and entertainment firm that gets movie

data in three ratings and tags data in three separate files.

As the files arrive, you want to join them using Amazon

Athena and load into Amazon Redshift for further analytics

every 10 minutes. The workflow that solves this use case

and orchestrates the interactions is represented in

Figure 4-21.

movie-list-dag is the MWAA DAG. Each box you see in

the DAG is a task. Following is information on each task’s

function and the operators that it is invoking:

The check_s3_for_key task uses the S3KeySensor

operator to check if the required files are present in

the S3 bucket.

The create_athena_movie_table,

create_athena_ratings_table, and cre

ate

_athena_tags_table tasks use the

AWSAthenaOperator to create external tables in

Amazon Athena for the movie, ratings, and tags

data, respectively.

The join_athena_tables task uses the

AWSAthenaOperator to perform a join operation on

the Athena tables to retrieve the movie titles and

ratings.

The clean_up_csv task uses the PythonOperator to

clean up the CSV data downloaded from Athena.

The create_redshift_table_if_not_exists task

uses the RedshiftData

Opera

tor to create a Redshift

table if it doesn’t already exist.

The transfer_to_redshift task uses the

S3ToRedshift operator to transfer the cleaned-up

CSV data from S3 to the Redshift table.

The tasks are then connected using the right-shift >>

operator, which defines the dependencies between the

tasks. For example, check_s3_for_key >> files_to_s3

means that the files_to_s3 task can be executed only

after the check_s3_for_key task is completed successfully.

The complete dependencies code for the DAG is presented

here:

check_s3_for_key >> files_to_s3 >> create_athena_movie_table \

>> join_athena_tables >> clean_up_csv >> transfer_to_redshift files_to_s3 >> create_athena_ratings_table >> join_athena_tables files_to_s3 >> create_athena_tags_table >> join_athena_tables files_to_s3 >> create_redshift_table_if_not_exists >> transfer_to_redshift

AWS Glue Workflows

AWS Glue workflows serve as a powerful orchestration tool,

seamlessly coordinating the interactions between AWS

Glue’s core components—crawlers and jobs. You can get

started in two primary ways: you can either use prebuilt

AWS Glue blueprints for common scenarios or construct

your workflow piece by piece using the visual user

interface available in the AWS Management Console or

AWS Glue API.

Within these workflows, triggers act as the connective

tissue, initiating jobs and crawlers based on various

conditions. These triggers can fire when previous

components complete their execution, creating a chain of

dependent tasks. The workflow itself begins with a start

[image: Image 36]

trigger, which you can configure to run on a schedule, on-

demand, or in response to Amazon EventBridge events—

including the ability to handle event batches.

One particularly useful feature is the workflow’s ability to

maintain state through run properties. These properties,

defined as name/value pairs, are accessible to all jobs

within the workflow, enabling them to share information.

Jobs can both read and modify these properties through the

API, affecting the behavior of subsequent jobs in the

pipeline.

Sample Use Case

Let’s explore a practical retail scenario where AWS Glue

workflows offer an efficient solution. Imagine a retail

company processing payments from two sources: ACH

transactions and check payments. These payments land in

separate S3 locations with different data formats, and the

business needs to combine and analyze them daily.

Figure 4-22 shows an AWS Glue workflow that solves this use case.

 Figure 4-22. Sample AWS Glue workflow

First, two AWS Glue crawlers scan the S3 locations, one for ACH payments and another for check payments, and

automatically detect and catalog the structure of the input

files, regardless of their different formats. Once both the

crawlers complete their schema inference, the workflow

triggers an AWS Glue ETL job that performs the necessary

transformations and aggregations on the combined dataset.

This entire process is orchestrated using AWS Glue

workflows, which is particularly cost-effective since all

components (crawlers and jobs) are native to AWS Glue.

There’s no need for additional orchestration tools or their

associated costs—the workflow functionality comes built-in

with AWS Glue. You can schedule this workflow to execute

daily with minimal operational overhead, automatically

managing dependencies between the crawlers and the

transformation job. It ensures that the transformation job

starts only after both crawlers have successfully updated

their schemas, maintaining data consistency and reliability.

Amazon Redshift Scheduler

Amazon Redshift Query Editor v2 provides a

straightforward solution for automating SQL queries

through its built-in scheduler. This feature allows you to

run Amazon Redshift SQL statements automatically at

specified times or intervals without managing complex

infrastructure or dependencies. It’s particularly useful for

standalone operations like refreshing materialized views,

running recurring analytics, or performing regular

maintenance tasks. For example, if you need to refresh a

materialized view daily at 8:00 p.m. EST, you can simply

schedule the refresh query once, and the scheduler will

handle the execution automatically. This native scheduling

capability offers the most operationally simple approach for

[image: Image 37]

basic query automation needs, though for more complex

workflows with dependencies, you might want to consider

other AWS orchestration services.

Amazon EventBridge

Amazon EventBridge is a serverless service that facilitates

event-driven orchestration by acting as a serverless event

bus, allowing you to connect applications and services, and

route events to multiple targets for downstream

processing, such as AWS Lambda, AWS Glue workflows,

Amazon Redshift, Amazon KDS, Amazon API Gateway,

Amazon Simple Notification Service (SNS), or Step

Functions. EventBridge was formerly called Amazon

CloudWatch Events; it uses the same CloudWatch Events

API.

The primary resource in EventBridge is an event bus

(Figure 4-23). An event bus is a router that receives events

and delivers them to zero or more destinations, or targets.

Event buses are well suited for routing events from many

sources to many targets, with optional transformation of

events prior to delivery to a target.

 Figure 4-23. EventBridge architecture

Each event bus is associated to rules. There are two kinds of rules—event-driven rules that respond to changes (such

as file arrival in S3), and schedule-based rules that execute at specified times (like 8:00 p.m. EST on weekdays).

The event routing process follows a straightforward flow.

An event source, which can be an AWS service, custom

application, or SaaS provider, sends an event to an

EventBridge bus. EventBridge then evaluates the event

against rules defined for that bus. For matching rules,

EventBridge forwards the event to specified targets. During

this process, optional event transformation can occur

before delivery to targets. The target actions that

EventBridge rules can perform are as follows:

Send payloads of the events received to Amazon

Data Firehose, Amazon Kinesis Data Streams,

Amazon SNS topic, or Amazon SQS queue.

Initiate AWS Lambda functions for further

processing, such as initiating a Lambda function to

resize images after they arrive.

Initiate batch processing by triggering AWS Glue

workflows or AWS Step Functions state machines.

Initiate queries on an Amazon Redshift data

warehouse using the Amazon Redshift data API.

Initiate ML workflows using the Amazon SageMaker

AI pipeline.

Route event to API Gateway endpoints.

In schedule-driven scenarios, EventBridge initiates actions

at configured times, commonly triggering data processing

workflows, ETL jobs, or analytics queries. The service

offers flexible configuration options: a single event can

match multiple rules, each rule can specify up to five

targets, and event transformation can be configured within

rules. This architecture supports both real-time data processing and scheduled batch operations within the same

service, all without requiring infrastructure management,

making it effective for diverse data pipeline requirements.

Some use cases that can be solved using EventBridge are

as follows:

 Orchestrating workflows

You can use EventBridge to trigger complex workflows by

routing events to Step Functions, AWS Glue workflows,

Amazon MWAA, etc.

 Building event-driven applications

EventBridge simplifies the process of building loosely

coupled, scalable, and event-driven applications.

 Integrating with SaaS applications

You can connect SaaS applications to your AWS services

using EventBridge.

 Connecting to private APIs

EventBridge allows you to securely integrate legacy systems

with cloud-native applications using event-driven

architectures and workflow orchestration.

Sample Use Case

Event-driven ingestion is a powerful data processing

approach that leverages the power of Amazon S3 and AWS

Lambda to ingest and transform files in near real time. The

ingestion process begins when a user or application adds,

modifies, or deletes a file in an Amazon S3 bucket. Amazon

S3 is then configured to generate an event notification

whenever a new object is created, modified, or deleted in

[image: Image 38]

the bucket. This event notification can be sent to Amazon

EventBridge to trigger an AWS Lambda function, which can

be designed to perform the necessary data ingestion and

processing tasks.

Consider the following use case: you receive Parquet

format files from a source into a raw data bucket in

Amazon S3. Upon arrival, you need to validate that the files

have the correct schema in near real time before loading

them into the processed Amazon S3 bucket for reporting.

The architecture shown in Figure 4-24 can solve this use case in an operationally efficient and cost-effective manner

by using all serverless services.

 Figure 4-24. Event-driven architecture for S3 file format conversion When a new Amazon S3 file arrives, it sends it to an

Amazon EventBridge bus, and the EventBridge rule

triggers a Lambda function that does schema validation

and loads the file into the processed data layer in the data

lake. By using this architecture, the schema validation can

happen almost immediately after the file is uploaded,

eliminating the need for periodic batch processing or

manual intervention.

The benefits of this approach include the following:

 Decoupling

Event-driven architecture promotes loose coupling between

services, making your applications more flexible and

scalable.

 Scalability

EventBridge can handle a large volume of events, ensuring

that your applications can scale to meet demand.

 Simplified integration

EventBridge simplifies the process of integrating different

services and applications.

 Serverless

EventBridge is a serverless service, meaning you don’t need

to manage infrastructure.

 Faster time to market

By eliminating the need to write and maintain custom

networking or integration code, developers can build

extensible systems and add new capabilities easily.

Choosing the Right Orchestration Service

When choosing the right orchestration service among AWS

Step Functions, Amazon Managed Workflows for Apache

Airflow (MWAA), AWS Glue workflows, Amazon Redshift

scheduler, and Amazon EventBridge, it’s important to

consider the specific requirements of your use case. Here

are some key considerations:

 Interactions

Analyze the interactions that you need to orchestrate:

If you only need to orchestrate interactions between AWS

Glue crawlers and/or AWS Glue jobs, use AWS Glue

workflows. It will be the most cost-efficient solution for

this specific scenario.

If you only need to schedule Amazon Redshift SQL

statements without dependencies, such as running table

maintenance on Amazon Redshift tables at a certain time

every week/day, running a recurring data export from

Amazon Redshift to Amazon S3, refreshing Amazon

Redshift materialized views, etc., then use the Amazon

Redshift query scheduler.

If you need to orchestrate interactions between AWS

services only and have no external dependencies,

consider using AWS Step Functions. Step Functions is

serverless and can help in building end-to-end serverless

or event-driven applications.

If your orchestration involves interaction with external

services/dependencies, or if you prefer open source

technology for orchestration, consider using MWAA.

If you need event-based orchestration, then use Amazon

EventBridge.

 Coding

Understand which coding language each orchestration

service uses:

AWS Step Functions uses Amazon States Language (ASL)

to define the workflow. It has a visual interface.

MWAA jobs are written in Python code. For ease of use,

MWAA has a visual interface that provides a visual

representation of the DAGs written in Python.

AWS Glue workflows can be built using a visual user

interface or programmatically using JSON.

The Amazon Redshift scheduler uses one-time (at

format) or recurring (cron format) scheduled action.

Schedule invocations must be separated by at least one

hour. There is no visual interface.

You create event buses and associate rules that either

respond to an event or run at a schedule. Schedules are

defined either using (1) cron-based schedules (a schedule

set using a cron expression that runs at a specific time,

such as 8:00 a.m. PST on the first Monday of every month)

or (2) rate-based schedules (a schedule that runs at a

regular rate, such as every 10 minutes).

 Monitoring and debugging

MWAA provides detailed logging and monitoring capabilities

through Apache Airflow’s UI, making it easier to debug and

troubleshoot workflows. Step Functions, Glue workflows,

Amazon Redshift scheduler, and Amazon EventBridge also

offer monitoring and logging features, but they may not be

as comprehensive as MWAA.

 Community and support

Apache Airflow, which MWAA is based on, has a large and

active open source community, providing access to a wide

range of resources, plug-ins, and community support. Step

Functions, Glue workflows, Amazon Redshift scheduler and

Amazon EventBridge are proprietary AWS services, so

support and resources are primarily provided by AWS.

 Cost

Utilizing Glue workflows does not incur additional charges

beyond the costs associated with the individual components

they orchestrate. The same applies to Amazon Redshift scheduler.

AWS Step Functions incurs additional cost; however, it is

generally more cost-effective for simpler use cases, as the

pricing has a pay-per-use model. MWAA has a higher up-

front cost due to its managed service nature, but it may be

more cost-effective for complex workflows with multiple

dependencies and requirements.

Conclusion

This chapter has provided a comprehensive overview of the

various approaches and best practices for ingesting and

transforming data in AWS. We’ve explored how to

effectively ingest streaming data, data from databases,

SaaS applications, third-party datasets, and on-premises

files using a variety of AWS services like Amazon Kinesis,

MSK, DMS, and DataSync. We’ve also delved into the

specifics of batch and real-time data transformation

capabilities offered by services like AWS Glue, Amazon

EMR, Amazon MSF, and AWS Lambda, highlighting the

strengths and trade-offs of each approach. Additionally, we

covered how to orchestrate these data pipelines using AWS

Step Functions, Amazon Managed Workflows for Apache

Airflow, and AWS Glue workflows.

By understanding the nuances of data ingestion and

transformation in AWS, data engineers can build reliable,

scalable, and cost-effective data pipelines that power an

organization’s data-driven initiatives. Mastering these

techniques is essential for the AWS Certified Data Engineer

Associate certification exam, as they form the foundation

for building robust and efficient data processing solutions

in the cloud.

Next, let’s try to validate our knowledge with a few practice questions that may help you prepare for the AWS Certified

Data Engineer Associate certification exam.

Practice Questions

These practice questions may help you understand what

kind of questions to expect on the exam so you can prepare

accordingly. The answers are listed in the Appendix.

1. A marketing team at a retail company needs to

regularly ingest data from their Salesforce CRM into

their Amazon Redshift data warehouse. The data

includes customer information, sales transactions,

and marketing campaign details. The team wants to

ensure the data is ingested reliably, with minimal

manual intervention, and in a cost-effective manner.

Which AWS service would be the best choice to meet

these requirements with the least operational

overhead?

A. AWS Glue ETL jobs

B. AWS Data Migration Service (DMS)

C. Zero-ETL integration between Salesforce and

Redshift in AWS Glue

D. Amazon Data Firehose

2. A marketing team at a retail company needs to

automatically process customer survey data that is

uploaded to an Amazon S3 bucket. The team wants

to create an AWS Lambda function that will convert

the customer survey data from .txt format to .json

format whenever a new .txt file is added to the S3

bucket.

Which solution will meet these requirements with

the least operational overhead?

A. Create an Amazon CloudWatch event rule

that triggers the Lambda function when an S3

ObjectCreated event occurs. Use a filter to

only trigger the event for files with the .txt

extension.

B. Create an Amazon EventBridge (Amazon

CloudWatch Events) rule that triggers the

Lambda function when an S3 ObjectCreated

event occurs. Use a filter to only trigger the

event for files with the .txt extension.

C. Create an S3 event notification that triggers

the Lambda function when an S3

ObjectCreated event occurs. Use a filter rule

to only trigger the event for files with the .txt

extension.

D. Create an S3 event notification that triggers

an Amazon SNS topic when an S3

ObjectCreated event occurs. Subscribe the

Lambda function to the SNS topic and use a

filter rule to only trigger the event for files

with the .txt extension.

3. The data engineering team at a large ecommerce

company needs to clean, transform, and prepare

customer data from various sources before loading it

into their Amazon Redshift data warehouse. The

data includes customer profiles, order history, and

product reviews, stored in a mix of CSV, JSON, and Excel files in an Amazon S3 data lake.

The team wants to implement a data preparation

process that can handle missing values, inconsistent

formatting, and other quality issues, while also

allowing them to combine and enrich the data from

multiple sources. The solution should require

minimal coding, be easy to configure and maintain,

and provide visibility into the data transformation

steps.

Which AWS service and approach would be the best

choice to meet these requirements?

A. Use AWS Glue to create custom ETL jobs that

extract data from the S3 data lake, transform

it using PySpark code, and load it into

Redshift. Leverage AWS Glue’s built-in data

quality checks and error handling features.

B. Implement a data preparation pipeline using

Amazon EMR and Apache Spark, writing

custom Scala or Python code to handle the

data cleansing, transformation, and

integration requirements.

C. Use AWS Glue DataBrew to visually design

and configure data preparation recipes that

can address the various data quality issues,

combine datasets, and output the

transformed data directly to Redshift.

D. Create an Amazon Athena query federation to

integrate the disparate data sources, then use

Amazon Athena’s built-in data type

conversion and transformation functions to

prepare the data for loading into Redshift.

4. A marketing team at an ecommerce company needs

to analyze customer activity data in near real time to

identify trends and optimize their online campaigns.

The data includes website clicks, product views, and

shopping cart activities, which are currently being

captured in various AWS services, including Amazon

CloudWatch Logs, Amazon Kinesis Data Streams,

and Amazon DynamoDB.

The team wants to set up a data processing pipeline

that can consolidate all this real-time data and send

it to their Datadog instance for further analysis and

reporting.

Which solution will meet these requirements with

the least operational overhead?

A. Configure an Amazon Kinesis Data Streams

data stream to use Datadog as the

destination. Create separate CloudWatch

Logs subscription filters, Kinesis Data

Streams, and DynamoDB Streams to send the

data to the Kinesis Data Streams.

B. Create an Amazon Data Firehose delivery

stream to use Datadog as the destination.

Configure CloudWatch Logs, Kinesis Data

Streams, and DynamoDB Streams to send the

data to the Amazon Data Firehose delivery

stream.

C. Create an Amazon Data Firehose delivery

stream to use Datadog as the destination.

Write an AWS Lambda function to pull the

data from CloudWatch Logs, Kinesis Data

Streams, and DynamoDB Streams, and send it

to the Amazon Data Firehose delivery stream.

D. Configure an AWS Lambda function to pull

the data from CloudWatch Logs, Kinesis Data

Streams, and DynamoDB Streams, and send it

directly to the Datadog instance, bypassing

the need for an intermediate streaming

service.

5. A data engineering team at a retail company needs

to process customer purchase data stored in JSON

files. The files contain the following structure:

{ "customer_id": "123", "purchase_date": "2023-04-15",

"items": [{ "item_id": "ABC123", "item_name": "T-Shirt",

"quantity": 2, "price": 19.99 }, { "item_id": "XYZ456",

"item_name": "Jeans", "quantity": 1, "price": 49.99 }],

"total_amount": 89.97 }

The team wants to create a new column that

calculates the total revenue generated from each

customer’s purchases, based on the item quantity

and price.

Which AWS Glue DataBrew transformation would be

the best solution to meet this requirement with the

least coding effort?

A. Use the UNNEST_STRUCT transformation to

extract the item data, then apply the SUM and

MULTIPLY functions to calculate the total

revenue.

B. Leverage the EXTRACT_VALUE transformation

to access the nested item data, and then use

the SUM function to calculate the total

revenue.

C. Implement the CUSTOM_CODE transformation

in AWS Glue DataBrew to write a Python

script that processes the JSON data and

calculates the total revenue.

D. Use the APPLY_MAPPING transformation to

map the relevant fields from the JSON data

and then apply a custom formula to calculate

the total revenue.

6. A financial services company has several on-

premises file servers that store customer account

records, transaction history, and compliance

documents. The company wants to regularly transfer

this data to an Amazon S3 data lake for long-term

storage and analytical processing.

The data is updated daily, and the company needs to

ensure that only the changes are transferred to S3,

minimizing the time and resources required for each

data transfer. The solution should also provide the

ability to monitor the data transfer process and

troubleshoot any issues that may arise.

Which AWS service would be the best choice to meet

these requirements with the least operational

overhead?

A. Amazon S3 Batch Operations

B. AWS DataSync

C. Amazon S3 cross-region replication

D. AWS Storage Gateway

7. A data engineering team at a media company needs to build a data processing pipeline that ingests data

from various sources, including real-time event

streams, batch files, and third-party APIs. The

pipeline includes several steps, such as data

validation, transformation, and loading into a data

warehouse and data lake that depend on external

dependencies. The team wants to ensure the

pipeline is reliable, scalable, and easy to monitor

and manage.

Which orchestration service would be the best

choice to meet these requirements, based on the

best practices discussed in the content?

A. AWS Step Functions

B. Amazon Managed Workflows for Apache

Airflow (MWAA)

C. AWS Glue workflows

D. A combination of AWS Step Functions and

AWS Glue workflows

8. A marketing team at an ecommerce company needs

to cleanse and deduplicate their customer database,

which contains information such as customer name,

email address, phone number, and address. The

database has been built up over time from various

sources, and it contains many duplicate records for

the same customers.

The team wants to implement an automated solution

to identify and merge these duplicate records,

ensuring that the customer data is accurate and up-

to-date. They want to minimize the manual effort

required to maintain the customer database and

ensure that the deduplication process is reliable and scalable as the data grows.

Which solution will meet these requirements with

the least operational overhead?

A. Use the FindMatches transformation in AWS

Glue DataBrew to identify and merge

duplicate customer records.

B. Write a custom Python script using the

Dedupe library and run it as an AWS Lambda

function to deduplicate the customer data.

C. Leverage Amazon Comprehend to perform

entity extraction and matching on the

customer data, then use Amazon Redshift to

consolidate the records.

D. Implement a custom ETL pipeline using AWS

Glue to perform fuzzy matching and record

linkage on the customer data.

9. A media company needs to build a real-time

analytics pipeline to monitor user engagement data

from their online streaming platform. The data,

which includes video views, user interactions, and

device information, is currently being captured in an

Amazon Kinesis Data Streams stream.

The company wants to set up a solution that can

continuously ingest this real-time data, store it in an

Amazon Redshift Serverless data warehouse, and

enable near-real-time analytics on both the latest

and historical data.

Which AWS service and approach would be the best

choice to meet these requirements with the least

operational overhead?

A. Configure an Amazon Data Firehose delivery

stream to ingest the data from the Kinesis

Data Streams and load it directly into the

Amazon Redshift Serverless warehouse.

B. Leverage the streaming ingestion feature of

Amazon Redshift Serverless to directly

consume the data from the Kinesis Data

Streams.

C. Create an AWS Lambda function to read the

data from the Kinesis Data Streams, store it

in an Amazon S3 data lake, and then use the

COPY command to load the data into the

Amazon Redshift Serverless warehouse.

D. Utilize DMS to load data into Amazon

Redshift Serverless.

10. A data engineering team at an ecommerce company

has set up an Amazon Kinesis Data Streams stream

to ingest real-time customer event data, such as

website clicks, product views, and shopping cart

activities. The team has configured several AWS

services, including Amazon Data Firehose and AWS

Lambda, to consume data from the Kinesis stream

and process it for downstream analytics.

However, the team has noticed that the stream’s

read throughput is lower than expected, and they

are seeing increased latency in the data processing

pipeline. The team suspects that there may be an

issue with the partitioning or sharding of the Kinesis

stream.

Which steps should the data engineering team take to troubleshoot and resolve the performance issues

with the Kinesis Data Streams stream? (Choose two)

A. Monitor the shard-level metrics in Amazon

CloudWatch and identify any hot shards or

uneven data distribution across shards.

B. Increase the number of shards in the Kinesis

Data Streams stream to scale the overall read

and write throughput.

C. Modify the partition key used to distribute

data across shards, ensuring a well-

distributed and random partition key.

D. Increase the number of Amazon Data

Firehose delivery stream instances to handle

the increased read throughput from the

Kinesis stream.

E. Configure the Amazon Kinesis Client Library

(KCL) to use the enhanced fan-out feature to

improve the read throughput for consumer

applications.

Additional Resources

The following are a few additional resources that will help

you dive deeper and gain more knowledge on data

ingestion and transformation:

“Data Ingestion Methods” and “Transforming Data

Assets”

“Data Ingestion and Preparation”

“Data Ingestion” and “Data Transformation”

“Solving Different Data Ingestion Use Cases with

AWS”

“Ingestion Layer”

“Workflow Orchestration” and resources on building

an operationally excellent data pipeline

Chapter 5. Data Store

Management

In this chapter, you’ll gain essential skills for managing

your data efficiently, regardless of whether you’re working

with structured, semi-structured, or unstructured data.

Selecting the appropriate data store significantly affects

your organization’s capability to store, retrieve, and

analyze data effectively.

In this chapter, you’ll learn more about the following

topics:

How to choose the right data store based on your

use case

How to classify your data and build a data catalog

for data discovery

How to manage the lifecycle of data

How to design data models and manage schema

evolution

By the end of this chapter, you will have a solid

understanding in data store management, supported by

practice questions to reinforce your learning and prepare

you for the certification exam and real-world scenarios. You

will also answer a set of practice questions similar to the

kind of questions you can expect in the AWS Certified Data

Engineer Associate certification exam.

Let’s dive deep into the specific topics.

Choosing a Data Store

We will begin by exploring how to choose the right data

store based on your specific use case, considering factors

such as data volume, variety, velocity, value, and veracity.

A deep understanding of different data storage options will

help you make informed decisions that align with your

business requirements and technical constraints.

AWS offers a comprehensive suite of storage services, each

tailored to meet diverse workload requirements. In this

section, we focus on two primary categories: core storage

services and managed databases.

AWS Core Storage Services

AWS core storage services include block, file, and object

storage. Block storage, offered by Amazon Elastic Block

Store (Amazon EBS), is ideal for enterprise applications

such as databases and ERP systems that demand

dedicated, low-latency storage. Similar to direct-attached

storage (DAS) or a storage area network (SAN), block-

based cloud storage provides ultra-low latency essential for

high-performance workloads. Amazon EBS can be attached

to Amazon Elastic Compute Cloud (Amazon EC2) instances

and managed by the operating system or application,

offering various options to suit different use case needs.

With Amazon EBS Elastic Volumes, you can increase the

volume size, change the volume type, or adjust the

performance of your EBS volumes without detaching the

volume. This feature offers better scalability and flexibility over DAS. Amazon EBS volumes are automatically

replicated within their Availability Zone (AZ) to protect

against hardware failures.

File storage is essential for applications that require shared file access through a file system, typically supported by

network attached storage (NAS). AWS offers managed file

storage through two primary services: Amazon Elastic File

System (Amazon EFS) and Amazon FSx. Amazon EFS

provides simple, scalable, multi-AZ file storage using the

NFS protocol, suitable for general-purpose workloads.

Amazon FSx, on the other hand, offers specialized file

storage options, including Amazon FSx for Lustre for high-

performance computing and machine learning workloads,

Amazon FSx for Windows File Server optimized for

Microsoft applications, and Amazon FSx for NetApp

ONTAP, which supports both block and file storage.

Amazon FSx also supports multi-AZ deployments, ensuring

high availability and resilience for mission-critical

applications.

Object storage, offered by Amazon Simple Storage Service

(Amazon S3), provides vast scalability and flexibility,

making it ideal for modern cloud-native applications, data

analytics, backup, and archival purposes. Amazon S3 is

most commonly used as the storage layer for data lakes in

the data analytics world. Its security features ensure data is protected by default. It enables architectures that decouple

storage from compute, allowing for more efficient resource

management. Among the three core storage categories,

Amazon S3 is the most cost-effective option, supporting

virtually unlimited scale and accommodating structured,

semi-structured, and unstructured data. It integrates

seamlessly with AWS native analytics services and the vast

majority of SaaS solutions. Furthermore, Amazon S3 offers

multiple storage classes to meet different pricing, access,

and availability requirements, which we will discuss in

more detail in “Managing the Lifecycle of Data”. Amazon S3 is optimized primarily for throughput rather than low-

latency, random-access workloads. As a result, it might not be the best fit for transactional database applications or

workloads that require frequent, small-file updates and

high IOPS. For such scenarios, block or file storage

solutions like Amazon EBS or Amazon FSx may provide

superior performance.

Data engineers commonly interact with Amazon S3 directly

if they are managing data lakes on AWS. In many cases,

Amazon EBS and Amazon EFS are either abstracted by a

managed service such as Amazon Relational Database

Service (Amazon RDS) or managed by a separated

infrastructure team. Now let’s look at different managed

database and data warehouse services that can come up in

the certification.

AWS Cloud Databases

In this section, we will dive into the diverse landscape of

AWS cloud databases. AWS offers a broad array of

database services, each designed to meet specific

application requirements. Understanding the supported

data structure of these services and their common use

cases is essential for architects and developers aiming to

build efficient, scalable, and robust data-driven applications on the AWS platform.

The AWS Certified Data Engineer Associate exam covers

the following database types:

Relational databases:

– Data type: Structured data with predefined

schemas and relationships between them.

– Characteristics: These databases are

designed to support ACID transactions and

SQL-based queries and to maintain strong

data consistency.

– Use cases: Traditional applications,

enterprise resource planning (ERP), customer

relationship management (CRM), and

business intelligence.

– AWS services: Amazon Aurora, Amazon RDS,

and Amazon Redshift.

Key-value databases:

– Data type: Key-value pairs.

– Characteristics: These databases are

designed for simple, fast, and highly efficient

data retrieval. They excel at handling high

concurrency and are specifically optimized

for well-defined access patterns. Importantly,

with key-value databases, you design your

schema explicitly around your most common

and important queries, making these queries

as fast and cost-effective as possible.

– Use cases: High-traffic web applications,

gaming, IoT applications, real-time bidding,

and session management.

– AWS services: Amazon DynamoDB.

Document databases:

– Data type: Semi-structured data stored as

documents, typically in JSON, BSON, or XML

formats.

– Characteristics: These databases enable developers to build and update applications

quickly by accepting flexible and hierarchical

data structures.

– Use cases: Content management systems,

user profiles, and mobile applications.

– AWS services: Amazon DocumentDB (with

MongoDB compatibility).

In-memory databases:

– Data type: Key-value pairs and semi-

structured.

– Characteristics: Data stored in-memory for

faster read and write operations, typically

providing submillisecond latency.

– Use cases: Real-time analytics, caching,

session storage, leaderboards, and high-

frequency trading.

– AWS services: Amazon ElastiCache and

Amazon MemoryDB for Redis.

Graph databases:

– Data type: Nodes, edges, and properties.

– Characteristics: Graph databases are for

applications that need to navigate and query

complex relationships and interconnections

between highly connected graph datasets.

– Use cases: Social networks, recommendation

engines, fraud detection, knowledge graphs,

and network analysis.

– AWS services: Amazon Neptune.

Search engine:

– Data type: Semi-structured data stored as

documents or unstructured free text (e.g., log

files, metrics).

– Characteristics: These databases are

optimized for search functionalities, providing

full-text search, indexing, and real-time

search capabilities.

– Use cases: Ecommerce search, enterprise

search, and semantic search. It can also

function as an analytics engine, facilitating

interactive log analytics, real-time application

monitoring, and security analytics.

– AWS services: Amazon OpenSearch.

When choosing between different managed databases, start

by considering the target use case and the nature of your

data. This approach will help you narrow down your options

to a specific database category and, in most cases, a

particular AWS service. If there are multiple AWS services

within the chosen category, focus on the differentiated

features of each service to make your final decision.

Choosing between Amazon Aurora/RDS and Amazon

Redshift in the relational database category is a common

technology decision. It’s important to understand that,

while all three are relational databases, they serve different purposes. Amazon Aurora/RDS are designed for online

transaction processing (OLTP) workloads, which mostly

handle high-concurrency record-level transactions. In

contrast, Amazon Redshift is optimized for online analytical

processing (OLAP) workloads, which involve complex queries and data analysis.

The fundamental difference between OLTP and OLAP

systems lies in their design and targeted use cases. OLTP

systems prioritize transaction speed and data accuracy,

with a physical data layout optimized for quick access and

updates. They can process high-concurrency application

transactions and require a highly normalized database

structure to minimize data redundancy. Conversely, OLAP

systems are built for query performance and data retrieval

efficiency, often employing a denormalized schema to

reduce the number of joins and facilitate faster query

responses. These systems support complex querying of

large datasets to facilitate business intelligence and

analytical applications.

Data Storage Formats for Data Lakes

When designing a data lake, choosing the appropriate data

storage format is critical for optimizing performance and

efficiency. The two primary types of file formats are row

based and column based, each suited to different use cases

and access patterns.

Row-Based File Formats

Row-based file formats, such as CSV and JSON, store data

in rows. All data associated with a specific record is stored adjacently. These formats are advantageous for

transactional and operational workloads where entire

records need to be accessed quickly. Row-based file

formats are commonly used for smaller datasets or at the

raw data layer when the new data first lands at the data

lake. Common row-based formats include:

 CSV (comma-separated values)

Simple and widely used for data exchange and initial data

ingestion. CSV files are in text format and therefore human

readable.

 JSON (JavaScript Object Notation)

Flexible and suitable for semi-structured data, often used in web applications and APIs. JSON files are also in text format and human readable.

 Avro

A row-based binary format that supports schema evolution,

often used in data serialization and stream processing.

Column-Based File Formats

Column-based file formats, such as Parquet and ORC, store

data in columns. The values of each table column (field) are

stored next to each other. This format is ideal for analytical workloads where specific columns need to be queried and

aggregated. Columnar formats enable efficient data

compression and faster query performance, particularly for

read-heavy operations. They are suitable for large-scale

data analytics use cases and processed data layers in a data

lake. Common column-based formats include:

 Parquet

Optimized for complex nested data structures, widely used

in big data processing and analytics.

 ORC (Optimized Row Columnar)

Designed for high-performance data processing, particularly

in Hadoop ecosystems.

Table Formats

Table formats have emerged as a new trend, enabling more

flexible and efficient data lake management (Figure 5-1).

These formats offer a layer of abstraction over data files

stored in data lakes and introduce database-like

functionalities. They provide useful features such as ACID

transactions, scalable metadata handling, schema

evolution, and time-travel capabilities, making data lakes

more robust and easier to manage. The three major open

source table formats are as follows:

 Apache Iceberg

Apache Iceberg is a high-performance format for huge

analytic tables. Iceberg brings the reliability and simplicity of SQL tables to big data, while making it possible for data

readers and writers to safely work with the same tables, at

the same time.

 Apache Hudi

Apache Hudi is a transactional data lake platform that

brings database and data warehouse capabilities to the data

lake. Hudi enhances traditional batch data processing with a

powerful incremental processing framework for low-latency

analytics.

 Delta Lake

Built on top of Apache Spark, Delta Lake enhances data lakes

with ACID transactions and scalable metadata handling.

In summary, selecting the right data storage format and

table format for your data lake is a crucial decision that

impacts performance and efficiency. By understanding

these formats and their appropriate use cases, you can

optimize your data lake for both current and future data

[image: Image 39]

processing needs. We will dive into data lake storage best

practices in the last section of this chapter.

 Figure 5-1. Table formats in the data lake file stack

Building a Data Strategy with

Multiple Data Stores

Building a robust data strategy often involves leveraging

multiple data stores to accommodate diverse data types

and workloads. Organizations can gain deeper and richer

insights by bringing together all their relevant data,

regardless of structure or source, for comprehensive

analysis. To achieve this, they are aggregating data from

various silos into centralized locations, where they can

perform analytics and machine learning directly on the

centralized data. In parallel, they are also utilizing purpose-built data stores to optimize performance for specific use

cases. This multifaceted approach ensures that

organizations can harness the full potential of their data to drive better decision making and innovation. This section

will explore the concepts of the lakehouse architecture and

federated queries for creating a cohesive and effective data

strategy.

The lakehouse architecture is a modern data strategy that

combines the benefits of data lakes, data warehouses, and

other purpose-built data consumption services. At the

storage layer, this approach leverages the scalability and

cost-effectiveness of data lakes to store and manage vast

quantities of data, while also utilizing the performance and

schema enforcement of data warehouses for structured

data analysis. A modern lakehouse architecture goes

beyond merely integrating data lakes with data

warehouses. It relies on seamless data movement from

sources into the lakehouse, cost-efficient data

transformation, unified governance, and the use of

purpose-built data consumption services. This

comprehensive approach ensures efficient data

management and maximizes the value extracted from

diverse data sources. A lakehouse architecture shines for

use cases such as business intelligence and reporting that

require standard data transformation, large-scale

centralized analytics, machine learning, and long-term

storage with unified governance and security. You can

stack a lakehouse architecture into five logical layers, as

shown in Figure 5-2.

The lakehouse architecture on AWS leverages Amazon S3

as the object storage service for the data lake and Amazon

Redshift as the data warehouse service. Amazon S3 offers

industry-leading scalability, data availability, security, and performance. Additionally, S3’s seamless integration with

AWS and third-party ingestion, analytics, and machine

learning services allows for comprehensive data

management and analysis. Complementing Amazon S3 in

the lakehouse architecture is Amazon Redshift. Amazon

Redshift Spectrum is one of the centerpieces of the natively integrated lake house storage layer. Redshift Spectrum

enables Amazon Redshift to present a unified SQL interface

where the same query can reference and combine datasets

hosted in the data lake as well as data warehouse storage.

Refer to the AWS document “The Lakehouse Architecture

of Amazon SageMaker” for more information.

[image: Image 40]

 Figure 5-2. Lakehouse architecture on AWS

In addition to the lakehouse architecture, another powerful

approach to managing and querying data across multiple

stores is the use of federated queries. Unlike the lakehouse

architecture, which often involves moving data into a

centralized data lake, federated queries enable you to

query data in place without moving or duplicating it. This

in-place query pattern makes federated queries ideal for

real-time analytics and ad-hoc analysis, as it reduces the

operational overhead associated with data transfer, storage, and management. However, federated queries also

come with limitations. Since the queries are executed

directly on the data sources, they can cause compute

overhead on those sources, potentially impacting their

performance. Additionally, the scale and complexity of

federated queries are often limited compared to centralized

queries on lakehouses. Managing security across multiple

data systems can also be more complex, requiring robust

coordination and consistent security policies.

Amazon Athena Federated Query is a common example of

federated query on AWS, allowing you to run SQL queries

across a variety of data sources, both in the cloud and on

premises. This means you can query not only data stored in

Amazon S3 but also data residing in other AWS services

like Amazon RDS, Amazon Redshift, and third-party data

stores without the need to move the data into a centralized

repository. Refer to the AWS blog “Extracting and joining

data from multiple data sources with Athena Federated

Query” for more information.

To conclude, building a data strategy that leverages

multiple data stores is essential for managing diverse data

types and workloads effectively. It is crucial for architects to carefully decide when to centralize data into a lakehouse

versus when to perform federated queries. Together, these

strategies empower organizations to harness the full

potential of their data, driving better decision making and

innovation.

Data Cataloging Systems

Effectively managing and discovering data is crucial for

enabling efficient analytics and decision making. This

section dives into the core aspects of data cataloging systems, focusing on their role in organizing and managing

data stores. We will explore the key components of

metadata and data catalogs and introduce different

approaches to populating an AWS Glue Data Catalog.

Additionally, we will cover best practices for maintaining

an effective data catalog. By understanding and

implementing these principles, you can enhance your

organization’s ability to manage, discover, and utilize data

more effectively.

Components of Metadata and Data Catalogs

Metadata and data catalogs are the backbone of any data

system, providing critical context and information about

the data stored within an organization. Metadata can be

broadly categorized into two types: technical metadata and

business metadata.

Technical metadata includes details about the data’s

structure and format, such as table schemas, column data

types, partition layout, table statistics, data lineage, and

data source information. This type of metadata is essential

for developers and data engineers to understand the

technical aspects of data and how it flows through various

systems.

Business metadata, on the other hand, provides context

about the data from a business perspective. This includes

definitions of business terms, data ownership, usage

policies, and data quality information. Business metadata

helps bridge the gap between technical teams and business

users, ensuring that everyone has a common understanding

of the data’s meaning and relevance. It also aids in data

governance and compliance by clearly defining data

ownership, quality standards, and usage policies.

AWS offers managed catalog services for both types of metadata. The AWS Glue Data Catalog is a centralized

repository that stores technical metadata about your

organization’s datasets. It integrates with various AWS

services to provide a comprehensive view of your data

landscape, making it easier to manage and query your data.

Amazon DataZone supports business data cataloging. This

service, which became generally available in October 2023,

provides a platform for managing business and technical

metadata, helping organizations to catalog, discover,

analyze, share, and govern data at scale. Although Amazon

DataZone offers significant capabilities for data cataloging, the following sections of this book will primarily focus on

AWS Glue, as Amazon DataZone is not yet included in the

certification due to its relatively recent introduction.

A robust data catalog can significantly improve data

discoverability and usability. A well-implemented data

catalog not only drives better decision making and

innovation but also enhances data governance and

compliance by providing a single source of truth for

metadata management. By ensuring that users can easily

access and understand the data, organizations can unlock

the full potential of their data assets.

Populating an AWS Glue Data Catalog

Populating the AWS Glue Data Catalog is a crucial step in

building an organized and efficient data management

system. There are four major approaches to populating an

AWS Glue Data Catalog. This section will dive into each

method, highlighting their benefits and appropriate use

cases.

Using Glue crawlers

Glue crawlers are the most scalable and common approach

to populating the AWS Glue Data Catalog. Crawlers

automatically discover and catalog metadata from various

data stores, including Amazon S3, Amazon DynamoDB,

JDBC-based data sources (e.g., Amazon Redshift,

Snowflake, and various RDBMS sources), and MongoDB

client-based databases (e.g., Amazon DocumentDB and

MongoDB). They can infer the schema and create or update

tables in the Data Catalog, making them ideal for large-

scale environments where automation and scalability are

essential. Glue crawlers are particularly useful for handling dynamic and evolving data structures, as they can be

scheduled to run at regular intervals, ensuring the catalog

is always up-to-date. The general workflow of Glue crawlers

is illustrated in Figure 5-3 and further described here: 1. Crawler runs

The process begins with the crawler being initiated, either as a scheduled task or triggered via APIs. The crawler requires

an IAM role with the appropriate permissions. This role

should be able to access the necessary AWS resources, such

as Amazon S3, AWS Glue, and optionally, AWS KMS if you’re

dealing with encrypted data.

 2. Classifiers

The crawler works with custom classifiers that you choose to

infer the format and schema of your data. You provide the

code for custom classifiers and they run in the order that

you specify. If no custom classifier is provided or matches

your data’s schema, built-in classifiers attempt to recognize your data’s schema.

 3. Connection

The crawler connects to the data store where the data resides. Some data stores require a preconfigured connector

that stores information such as login credentials, URI strings, and virtual private cloud (VPC) information.

 4. Schema inference

The crawler reads the data and infers the schema. This

involves determining the structure, format, and partition

layout of the data.

 5. Metadata writing

Finally, the crawler writes the inferred metadata into a

database in the AWS Glue Data Catalog by creating/updating

the necessary tables. You can configure Glue crawlers to log

schema changes or update the table schemas directly. Glue

supports schema versioning, meaning each schema change

is versioned and stored. This allows you to track changes

over time and revert to previous versions if necessary.

TIP

For more information, refer to “Configuring a Crawler” in the AWS

Glue User Guide.

[image: Image 41]

 Figure 5-3. Glue crawler workflow

Defining metadata manually

Manually defining metadata is another approach to

populating the Glue Data Catalog. This method is ideal

when working with unsupported data formats, when you

need full control over the schema, or during proof-of-

concept (POC) projects at a small scale. By manually

specifying the metadata, you can ensure full control over

the metadata definitions. This approach requires more

operational effort and expertise but provides the highest

level of customization and precision.

Integrating with other AWS services

Integration with other AWS services, such as Amazon

Athena, offers an alternative way to populate the Glue Data

Catalog. This approach is less common but beneficial when you prefer to use ANSI SQL-based data definition language

(DDL) statements to manage schemas. For example, you

can create tables in Athena using CREATE TABLE

statements, and the metadata will be stored in the Glue

Data Catalog. You can also use the MSCK REPAIR TABLE

command in Athena to load Apache Hive–style partitions

into the Glue Data Catalog.

Migrating from an existing Hive catalog

Migrating from an existing Hive catalog is another

approach to populate the Glue Data Catalog. This method is

useful for organizations that have an established Hive

metastore and wish to leverage the capabilities of AWS

Glue without losing their existing metadata. Hive Metastore

to AWS Glue Data Catalog migration typically requires Glue

ETL jobs to extract metadata from the source database and

load it into Glue Data Catalog.

TIP

For more information, refer to “Migration Between the Hive

Metastore and the AWS Glue Data Catalog” on GitHub.

Choosing the right approach to populate the AWS Glue

Data Catalog depends on your specific use cases and the

nature of your data environment. By understanding and

leveraging the methods described here, you can effectively

populate your Glue Data Catalog, ensuring accurate,

organized, and accessible technical metadata for all your

data assets.

Data Catalog Best Practices

When implementing a data catalog, adhering to best

practices ensures the catalog is efficient, scalable, and

secure. The following best practices focus on organizing

and managing AWS Glue Data Catalogs effectively, but

these principles can also be applied to other technical data

catalogs.

Establish a consistent naming convention

A well-organized Data Catalog starts with clear and

consistent naming conventions for databases and tables.

Use meaningful and descriptive names that reflect the

data’s content and purpose. This makes it easier for users

to find and understand the data they need. Group related

tables into logical databases and use prefixes or suffixes to indicate different environments (e.g., dev, test, prod) or

data types (e.g., raw, processed).

Secure the Data Catalog

Security is paramount in managing the Data Catalog.

Implement fine-grained access control to ensure that only

authorized users can view or modify the metadata. Use

AWS Identity and Access Management (IAM) policies to

define who has access to what resources. Encrypt sensitive

data at rest and in transit to protect against unauthorized

access. Regularly audit access logs to detect and respond

to any suspicious activity.

Manage schema changes effectively

Managing schema changes is crucial for maintaining data

integrity and ensuring that downstream processes function

correctly. Take advantage of the schema inference

capabilities of AWS Glue crawlers to detect schema

changes. Schedule regular crawls or use trigger-based crawls to automatically update the catalog when there are

changes in the data schema. This proactive approach

ensures that your metadata stays up-to-date and accurate.

Use schema evolution features to handle schema changes

gracefully.

Monitor schema changes

Review and update schema changes before applying them

to avoid breaking downstream applications. Monitoring

tools and notifications can alert you to schema changes,

allowing you to take corrective actions promptly. For more

details, refer to the AWS blog “Identifying Source Schema

Changes Using AWS Glue”.

Use crawlers effectively

Incremental crawls are particularly useful for frequently changing data sources. They add new partitions to existing

tables when the schemas are compatible, without

recrawling the entire dataset. This approach saves time

and resources, ensuring that the catalog is updated

promptly as new data becomes available. Please note that

with incremental crawls, no schema changes are made to

existing tables and no new tables will be added to the Data

Catalog after the first crawl run.

Optimize performance with Glue Data Catalog

AWS Glue allows you to compute column-level statistics for

AWS Glue Data Catalog tables in data formats such as

Parquet, ORC, JSON, ION, CSV, and XML. Glue Data

Catalog supports statistics for column values such as

minimum value, maximum value, total null values, total

distinct values, and average length of values. AWS

analytical services such as Amazon Redshift and Amazon

Athena can use these column statistics to generate optimized query execution plans that improves query

performance. For more information, refer to “Optimizing

Query Performance Using Column Statistics” in the AWS

Glue documentation.

Additionally, working with partition indexes in the AWS

Glue Data Catalog can further enhance performance.

Partition indexes allow for faster retrieval of partition

information by maintaining indexes of the partitions,

reducing query planning time. This feature is useful for

tables with large amounts of partitions. More details can be

found in “Creating Partition Indexes” in the AWS Glue documentation.

Enriching Data Catalogs with Data

Classification

Having explored the foundational aspects of technical

metadata and the maintenance of technical catalogs on

AWS, we now turn our attention to enriching these catalogs

with data classification. Data classification enhances the

utility of your Data Catalog by adding meaningful context

and enabling more efficient data management practices.

Data classification is a crucial step in managing and

utilizing data effectively. It involves organizing data into

categories to streamline data discovery and control

permissions. This classification not only aids in identifying and retrieving data more efficiently but also enhances

security and compliance by ensuring that sensitive

information is properly protected. By classifying data

according to requirements, organizations can establish

clear guidelines for how data should be handled, accessed,

and used, aligning with regulatory requirements and

internal policies.

One primary benefit of data classification is its ability to facilitate data discovery. When data is classified, users can easily search and locate the information they need based

on predefined categories. This is particularly important in

large organizations where data is distributed across various

departments and systems. By classifying data by

ownership, such as by business unit, organization, or

project, it becomes easier to track and manage data assets.

Additionally, classifying data by sensitivity levels ensures

that sensitive information is flagged and handled

appropriately, reducing the risk of data breaches and

unauthorized access.

Another common classification is to categorize datasets in

stages, such as raw, cleansed, and processed data, or

sandbox and production data. This classification is

particularly useful for tracking the data transformation

process and managing different environments within the

data pipeline. Raw data represents unprocessed

information directly collected from sources, cleansed data

has undergone preliminary processing to remove errors or

inconsistencies, and processed data is fully transformed

and ready for analysis or business use. Similarly, sandbox

data is used for development and testing purposes, while

production data is the final, operational data used in live

applications. Categorizing data in these stages ensures that

each dataset is used appropriately and maintains its

integrity throughout its lifecycle.

Data classification also plays a vital role in permission

control. By tagging data with specific classifications,

organizations can enforce fine-grained access controls,

ensuring that only authorized users can access certain

types of data. AWS Lake Formation is a service that

exemplifies the power of data classification in a data

cataloging system. It allows users to tag data at the database, table, and column level, providing a high degree

of granularity in data classification. This capability enables organizations to apply fine-grained classifications that align with their specific needs and use cases. We will expand on

this topic in Chapter 7. The concept of data classification can be applied to other cataloging services as well,

ensuring that data is organized, secured, and utilized

effectively across different platforms.

In conclusion, enriching a Data Catalog with data

classification is essential for effective data management. It enhances data discovery, improves permission control, and

provides valuable insights into data usage patterns. By

implementing robust data classification strategies,

organizations can ensure that their data is secure,

compliant, and easily accessible to those who need it.

Managing the Lifecycle of Data

Understanding the nuances of data lifecycle management is

crucial for organizations to make informed decisions about

storing, moving, and deleting data, ensuring both efficiency

and regulatory compliance. In this and the following

section, we will explore strategies and best practices for

managing the data lifecycle, with a focus on the data

storage layer. We will cover a range of topics, including

selecting appropriate storage solutions, optimizing storage

costs, and meeting business and legal compliance

requirements. Additionally, we will provide practical

insights into performing load and unload operations

between Amazon S3 and Amazon Redshift, managing S3

lifecycle policies, and utilizing tools like DynamoDB TTL to

automate data expiration. Through these discussions, you

will gain the knowledge and skills needed to effectively manage your data throughout its lifecycle.

Selecting Storage Solutions for Hot and Cold

Data

In the realm of data analytics, understanding the

distinction between hot and cold data is fundamental for

efficient data lifecycle management. Hot data refers to

information that is frequently accessed and requires rapid

retrieval times. This type of data is critical for real-time

analytics, operational processes, and data analyses

demanding immediate access to up-to-date information.

Examples of hot data include transactional records,

streaming data, and near-real-time analytical tables. These

datasets are essential for driving real-time to near-real-time decision making and providing insights that support

dynamic business operations. Conversely, cold data is

accessed infrequently and can endure longer retrieval

times. It is often used for archival purposes, historical

analysis, and regulatory compliance. Examples of cold data

include historical transaction logs, long-term sensor data,

and compliance records. Recognizing the characteristics of

hot and cold data is essential as it directly influences

storage decisions, performance, and cost.

The spectrum of storage solutions ranges from high-

performance, in-memory store to block storage to object

storage. In-memory storage solutions, such as Amazon

ElastiCache, offer extremely fast data retrieval suitable for hot data but come at a higher cost. Block storage solutions,

like Amazon EBS, provide high performance and are ideal

for applications requiring low-latency access to data.

Object storage solutions, such as Amazon S3, offer scalable

storage at lower costs and are suitable for both hot and cold data depending on the chosen storage class.

To choose the right storage solution, it is crucial to

evaluate the data access patterns and performance

requirements. Key criteria include the following:

 Analytics technology and engine

Determine the analytics technology and compute engine

based on your use case, query pattern, and data structure.

This is the first decision to make and it helps you zoom in on the storage solutions you can select.

 Latency requirements

Define the maximum acceptable delay for data updates and

retrievals to ensure performance meets user expectations.

 Query performance

Ensure the system can handle typical query loads within

acceptable time frames to support business operations.

 Cost

The unit data storage cost must be aligned with the budget

while meeting performance needs.

 Access frequency

Determine how often data needs to be accessed to select the

most efficient storage tier.

 Scalability

Ensure the storage solution can expand as data grows

without compromising performance. Assess the amount of

data being stored to choose a storage solution that can

handle the scale efficiently.

 Durability and availability

Consider the need for data protection and continuous

availability to avoid data loss and downtime.

Evaluating these factors helps in aligning storage solutions

with specific business needs, ensuring both efficiency and

cost-effectiveness. Hot data storage solutions, which

provide high-speed access and low latency, are typically

more expensive. These solutions are designed to deliver

rapid performance to support real-time to near-real-time

analytics at scale. Conversely, cold data storage solutions

offer significant cost savings by sacrificing data retrieval

speed and decoupling compute from storage. These

solutions are optimized for data that does not require

immediate access, thus allowing organizations to store

large volumes of data at a reduced cost.

By strategically balancing these trade-offs, organizations

can optimize their storage expenditures while meeting their

performance requirements. Additionally, some cold storage

options also provide lower availability or durability.

Consider the availability and durability of different

solutions during the selection of technology to ensure that

data remains accessible and protected as organizational

needs evolve.

Example: Building a Petabyte-Scale Log

Analytics Solution on AWS

Let’s say you need to build a log analytics solution on AWS

with 10 TB of raw application logs generated every day.

The development teams send new logs to the analytics

layer in an append-only fashion and most query the past 2

days of data. The development teams query the past 14

days of data 5 to 10 times per week and might perform historical data analytics that spans 6 months of data once

per month. You need to store the logs in your S3 bucket for

2 years for compliance requirements.

The first decision to make is selecting the appropriate

analytics technology and compute engine based on the use

case, query pattern, and data structure. For this use case,

Amazon OpenSearch Service is chosen as the analytics

engine due to its robust capabilities in handling large-scale log data and providing powerful search, analytics, and

visualization functionality.

Storage Tier Decisions for Different Access

Patterns

After selecting Amazon OpenSearch Service, the next step

is to decide the appropriate storage tiers for different

query patterns and data lifecycle stages. As you see in

Figure 5-4, Amazon OpenSearch offers three storage tiers: Hot, UltraWarm, and Cold, each optimized for specific data

access requirements and cost efficiencies. Amazon

OpenSearch also supports direct query with Amazon S3,

which is a new way to query operational logs in Amazon S3

and S3 data lakes without needing to switch between

services. This feature extends cold data from service-

attached storage to object storage:

Hot storage:

– Data: Latest 2–7 days of logs.

– Characteristics: Frequently accessed,

requires rapid retrieval and updates.

– Benefits: Provides the fastest access to data,

supporting real-time analytics and indexing.

UltraWarm storage:

– Data: Logs between the past 1 week to 2

months.

– Characteristics: Less frequently accessed,

read-only.

– Benefits: Offers a cost-effective solution for

older data while still providing an interactive

experience similar to Hot storage.

Cold storage:

– Data: Logs between the past 2 months and 1

year.

– Characteristics: Infrequently accessed, long-

term storage.

– Benefits: Provides significant cost savings by

storing data at near S3 prices, suitable for

historical analysis.

Zero-ETL direct query:

– Data: An archive copy of the past 2 years of

logs.

– Characteristics: Ultra-infrequent access,

mainly for archival usage.

[image: Image 42]

 Figure 5-4. Three storage tiers for Amazon OpenSearch Service Effectively managing the lifecycle of data requires selecting appropriate storage solutions that align with the specific

access patterns and performance needs of the data. By

understanding the characteristics of hot and cold data,

evaluating cost considerations, and choosing the right

storage options, organizations can ensure efficient and

cost-effective data management. It’s important to note that

hot and cold data is a relative concept.

In the preceding example, UltraWarm storage is considered

a colder tier compared to Hot storage in Amazon

OpenSearch but a hotter tier compared to Cold storage in

OpenSearch or archived data in S3. Keep this concept in

mind when selecting different storage options in the

certification and in architecting data solutions.

Defining Data Retention Policy and Archiving

Strategies

Data retention policies dictate how long data should be

kept and when it should be moved between different

storage tiers to optimize efficiency and cost-effectiveness.

In data lifecycle management, these policies ensure that

data is stored appropriately based on its usage patterns and regulatory requirements. By systematically

transitioning data from high-performance, expensive

storage to more economical options as it ages,

organizations can reduce storage costs while maintaining

data accessibility and integrity. This approach not only

enhances operational efficiency but also ensures

compliance with legal and business mandates.

Data archiving strategies, on the other hand, focus on the

long-term preservation of data that is no longer actively

used but must be retained for compliance, historical

reference, or other purposes. Archiving helps organizations

meet regulatory requirements by ensuring that data is

preserved in a secure, retrievable manner for specified

periods. This strategy is crucial for maintaining the

integrity of critical data over time, enabling businesses to

reference historical data for audits, legal inquiries, or

strategic analysis. Effective archiving ensures that cold

data is stored cost-effectively while remaining accessible

when necessary.

Implementing data retention and archiving strategies

involves several best practices. First, it is essential to work backward from business and compliance needs to

determine appropriate retention periods and archiving

requirements for different data types. This alignment

ensures policies meet organizational objectives and

regulatory standards. Second, implementing automation is

crucial to operationalize data movement. Tools such as

AWS S3 Lifecycle policies and automated scripts can

manage the transition of data between storage tiers,

reducing manual intervention and minimizing errors.

Finally, periodic review and validation of data lifecycle

management practices are necessary to ensure retention

and archiving strategies remain effective and compliant with evolving business needs and regulatory changes.

To effectively manage data retention and archiving,

organizations should adopt a holistic approach that

integrates these strategies into their broader data

management framework. This includes defining data

classification tiers, mapping data retention and archiving

policies to data classes, leveraging automation for data

movement, and regularly reviewing practices to ensure

ongoing compliance and efficiency.

In the following sections, we will dive into detailed

examples of how to operationalize these strategies. We will

explore specific techniques such as unloading Redshift data

to S3 in a lakehouse architecture and managing S3 lifecycle

policies to automate data retention. These practical

examples will provide a deeper understanding of how to

implement effective data lifecycle management in your

organization.

Performing COPY and UNLOAD Operations to

Move Data Between Amazon S3 and Amazon

Redshift

Organizations can gain deeper insights by aggregating data

from various silos into a centralized location known as a

data lake. In addition, they use purpose-built data stores

like data warehouses to perform complex queries on

structured data. To maximize insights from all their data,

organizations need to facilitate easy data movement

between data lakes and these specialized stores. To

address this, AWS introduced the lakehouse architecture, which integrates a data lake, a data warehouse, and other

purpose-built stores. This architecture is a common

architecture pattern for large enterprises and a popular topic in the certification.

Amazon S3 and Amazon Redshift serve different purposes

within this architecture, distinguished by the types of data

they store. Amazon S3 is designed for durable and scalable

storage of all types of data. It is a colder and more cost-

efficient storage layer compared to Amazon Redshift. It

commonly stores raw data from various sources before it

gets cleaned, enriched, and ingested into Redshift. It also

acts as an archive layer for less frequently accessed tables

and older partitions. Redshift Spectrum allows users to

query data that resides in S3 buckets from their Redshift

clusters.

On the other hand, Amazon Redshift is optimized for

structured data that requires complex queries and high-

performance analytics. Data in Redshift is typically

frequently accessed, transformed, and organized based on

common query patterns, making it ideal for business

intelligence applications, reporting, and data analysis

tasks.

Amazon Redshift provides SQL commands for data loading

and unloading:

COPY command

The COPY command loads data from S3 into Amazon

Redshift tables. It supports various data formats and applies transformations during the load process, making it highly

flexible and efficient.

UNLOAD command

The UNLOAD command exports data from Redshift tables to

S3. It allows you to extract data in parallel, compress it, and specify various output formats.

Efficient data lifecycle management between Amazon S3

and Amazon Redshift is crucial for a lakehouse

architecture. It ensures data is accessible and manageable

throughout its lifecycle, optimizing both storage costs and

query performance. Figure 5-5 shows different data flow patterns for a lakehouse architecture:

You can perform ETL (extract, transform, and load)

operations with Amazon EMR or AWS Glue to

prepare the raw data into curated format and then

use the COPY command to load the data into Amazon

Redshift.

You can directly load raw data into Amazon Redshift

and then prepare the data with an ELT (extract,

load, and transform) pattern.

You can unload less-frequent data from Amazon

Redshift into Amazon S3 with the UNLOAD command.

The unloaded data can be further assessed via

Amazon Athena or Amazon SageMaker for ad-hoc

analytics and ML usage.

[image: Image 43]

 Figure 5-5. Data flow patterns for a lakehouse architecture on AWS

Optimizing Data Management with

Amazon S3

As data volumes continue to grow exponentially, managing

storage costs becomes crucial for businesses. Amazon S3

data lifecycle management offers a powerful solution to

optimize storage costs by automating the movement of data

between different storage classes based on its lifecycle. By implementing S3 lifecycle policies, organizations can

efficiently handle data from creation to deletion, ensuring

cost-effective storage management. This section explores

the value of S3 lifecycle management, starting with an

understanding of the various S3 storage classes.

Overview of S3 Storage Classes

Amazon S3 offers a range of storage classes designed to

cater to different access patterns and cost requirements.

By categorizing data based on access patterns, you can

select the most suitable storage class to optimize costs and

performance.

Frequently accessed storage classes

Frequently accessed storage classes include the following:

 S3 Standard

This is the default storage class, designed for frequently

accessed data. It offers high durability, availability, and low-latency access, making it suitable for a wide range of use

cases including cloud applications, dynamic websites, and

content distribution:

 Durability: 99.999999999%

 Availability: 99.99%

 Retrieval speed: Milliseconds

 S3 Express One Zone

Designed for latency-sensitive applications that require

single-digit millisecond data access. S3 Express One Zone is

the lowest-latency cloud object storage class available today, with data access speed up to 10x faster and request costs up

to 80% lower than S3 Standard. However, it has a higher

storage cost than S3 Standard and stores data in a single

Availability Zone, making it suitable for workloads that

prioritize performance and frequent access over storage

costs and multi-AZ redundancy:

 Durability: 99.999999999%

 Availability: 99.5%

 Retrieval speed: Milliseconds

Infrequently accessed storage classes

Following are infrequently accessed storage classes:

 S3 Standard-IA (Infrequent Access)

Ideal for data that is accessed less frequently (once a month) but requires rapid access when needed. It provides the same

high durability and low latency as S3 Standard but at a

lower cost for data that is not accessed often:

 Durability: 99.999999999%

 Availability: 99.9%

 Retrieval speed: Milliseconds

 S3 One Zone-IA

Similar to S3 Standard-IA but stores data in a single

Availability Zone, making it less resilient. It’s suitable for infrequently accessed data that can be easily re-created if

lost:

 Durability: 99.999999999%

 Availability: 99.5%

 Retrieval speed: Milliseconds

Rarely accessed storage classes

Rarely accessed storage classes comprise the following:

 S3 Glacier Instant Retrieval

Designed for archival data that requires millisecond

retrieval times. It is ideal for long-term data that is rarely accessed but needs to be retrieved quickly when required:

 Durability: 99.999999999%

 Availability: 99.99%

 Retrieval speed: Milliseconds

 S3 Glacier Flexible Retrieval

Suitable for archival data that does not require immediate

access. It offers a lower cost option with retrieval times

ranging from minutes to hours:

 Durability: 99.999999999%

 Availability: 99.99%

 Retrieval speed: Minutes to hours

 S3 Glacier Deep Archive

The lowest-cost storage class designed for long-term

retention of data that is rarely accessed. Retrieval times can

take up to 12 hours, making it suitable for data that is accessed very infrequently:

 Durability: 99.999999999%

 Availability: 99.99%

 Retrieval speed: Hours

Storage class for changing or unknown access

patterns

Finally, S3 Intelligent-Tiering is a storage class suitable for changing or unknown access patterns:

 S3 Intelligent-Tiering

Designed for data with unknown, changing, or

unpredictable access patterns. It automatically moves data

to the most cost-effective access tier, without performance

impact or operational overhead:

 Durability: 99.999999999%

 Availability: 99.9%

 Retrieval Speed: Milliseconds to minutes

We will dive deeper into this class in the next section.

Choosing the Right Storage Class

When picking the storage class, it’s essential to understand

the type of data you have and its access pattern. This will

help you categorize your data into frequently accessed,

infrequently accessed, or rarely accessed classes. Once

categorized, you can then choose the specific storage class based on additional factors such as:

 Data retrieval speed

Determine how quickly you need to access the data. For

example, use S3 Glacier Instant Retrieval for millisecond

access or S3 Glacier Flexible Retrieval for archival data that can tolerate longer retrieval times.

 Data re-creation ability

Consider if the data can be easily re-created. For example,

use S3 One Zone-IA for data that can be regenerated if the

Availability Zone fails, while using S3 Standard-IA for critical data that can’t be re-created.

By aligning your data storage strategy with these

considerations, you can optimize costs and performance

effectively. For more detailed information on these storage

classes, visit the AWS S3 Storage Classes documentation.

S3 Intelligent-Tiering

Amazon S3 Intelligent-Tiering is designed to optimize

storage costs by automatically moving data to the most

cost-effective access tier when access patterns change.

This storage class is ideal for data with unpredictable

access patterns, and therefore no predefined data retention

policy. This storage class eliminates the need to manually

move data between different storage classes, reducing

operational overhead and ensuring cost optimization.

S3 Intelligent-Tiering works by monitoring object access

patterns and moving objects that haven’t been accessed for

some consecutive days to a lower access tier. S3

Intelligent-Tiering includes three default access tiers and two optional archival tiers:

 Frequent Access tier (automatic)

This is the default access tier that any object created or

transitioned to S3 Intelligent-Tiering begins its lifecycle in.

An object remains in this tier as long as it is being accessed.

The Frequent Access tier provides low latency and high-

throughput performance.

 Infrequent Access tier (automatic)

Objects are moved to this tier after 30 consecutive days of

inactivity, providing lower storage costs while maintaining

low access latency.

 Archive Instant Access tier (automatic)

If an object is not accessed for 90 consecutive days, the

object moves to the Archive Instant Access tier. The Archive

Instant Access tier provides low latency and high-

throughput performance.

 Archive Access tier (optional)

Suitable for archival data that can be retrieved within

minutes to hours, offering lower storage costs but longer

retrieval times. After activation, the Archive Access tier

automatically archives objects that have not been accessed

for a minimum of 90 consecutive days. You can extend the

last access time for archiving to a maximum of 730 days.

 Deep Archive Access tier (optional)

Intended for long-term archival data that can tolerate

retrieval times of up to 12 hours, providing the most cost-

effective storage for rarely accessed data. After activation, the Deep Archive Access tier automatically archives objects

that have not been accessed for a minimum of 180

consecutive days. You can extend the last access time for

archiving to a maximum of 730 days.

To move data to S3 Intelligent-Tiering, specify this storage

class when uploading objects to S3 using the AWS

Management Console, AWS CLI, or SDKs. Additionally, you

can configure lifecycle policies to transition objects from

other storage classes to S3 Intelligent-Tiering based on

specific criteria.

To enable archive tiers, you can activate one or both of the

archive access tiers by creating a bucket, prefix, or object

tag level configuration using the AWS Management

Console, AWS CLI, or Amazon S3 API. Following is a code

example to transition objects that have not been accessed

under the prefix images to Archive Access after 90 days

and Deep Archive Access after 180 days:

aws s3api put-bucket-intelligent-tiering-configuration \

--bucket DOC-EXAMPLE-BUCKET \

--id "ExampleConfig" \

--intelligent-tiering-configuration \

file://intelligent-tiering-configuration.json

Contents of intelligent-tiering-configuration.json:

{

"Id": "ExampleConfig",

"Status": "Enabled",

"Filter": {

"Prefix": "images"

},

"Tierings": [

{

"Days": 90,

"AccessTier": "ARCHIVE_ACCESS"

},

{

 "Days": 180,

"AccessTier": "DEEP_ARCHIVE_ACCESS"

}

]

}

Managing the Data Lifecycle with Amazon S3

Lifecycle

Amazon S3 Lifecycle enables you to manage your objects so

that they are stored cost-effectively throughout their

lifecycle. A lifecycle configuration is a set of rules that

define actions that Amazon S3 applies to a group of objects,

such as transitioning them to another storage class or

deleting them after a certain period. These rules help

automate the process of managing the lifecycle of your

data, ensuring that it is stored in the most cost-effective

way over time.

Amazon S3 Lifecycle and S3 Intelligent-Tiering both help

manage storage costs, but they are suited to different use

cases:

 Amazon S3 Lifecycle

Best suited for data with a well-defined data retention policy and known access pattern. With that information, you can

automate storage class transitions with corresponding

lifecycle configurations. For example, you can create

lifecycle configurations to transition logs to archival storage after a specific period or delete them after the compliance

required period.

 S3 Intelligent-Tiering

This is ideal for data with unpredictable or changing access

patterns. Intelligent-Tiering automatically moves objects

between frequent and infrequent access tiers based on

access patterns, without the need for manual intervention or predefined rules.

To create an Amazon S3 Lifecycle configuration, you define

a set of rules in an XML file that specify the actions to be

performed on objects during their lifetime. These actions

can include transitioning objects to different storage

classes or deleting them after a certain period. You can

create and manage lifecycle configurations using the AWS

Management Console, AWS CLI, AWS SDKs, or the REST

API.

Here’s an example configuration that transitions objects to

progressively cheaper storage classes and then deletes

them after a specified period. This example assumes you

want to move objects to the Standard-IA storage class after

30 days, to Glacier Flexible Retrieval after 90 days, and

then delete them after 365 days:

<LifecycleConfiguration>

<Rule>

<ID>example-id</ID>

<Filter>

<Prefix>logs/</Prefix>

</Filter>

<Status>Enabled</Status>

<Transition>

<Days>30</Days>

<StorageClass>STANDARD_IA</StorageClass>

</Transition>

<Transition>

<Days>90</Days>

<StorageClass>GLACIER</StorageClass>

</Transition>

<Expiration>

<Days>365</Days>

</Expiration>

</Rule>

</LifecycleConfiguration>

TIP

For more examples, refer to “Examples of S3 Lifecycle

Configurations” in the AWS documentation.

Monitoring the Amazon S3 Data Lifecycle

Effective monitoring and management of Amazon S3 data

lifecycle configurations are essential for ensuring cost

optimization and data accessibility. AWS provides several

tools and features to help you monitor data usage patterns,

identify objects that may benefit from lifecycle policies, and ensure your S3 storage is cost-effective.

S3 Storage Lens

S3 Storage Lens offers a comprehensive view of object

storage usage and activity across hundreds, or even

thousands, of accounts in an organization. S3 Storage Lens

delivers more than 60 metrics on Amazon S3 storage usage

and activity to an interactive dashboard in the Amazon S3

console. It helps you analyze storage usage, identify cost-

saving opportunities, and ensure compliance with lifecycle

policies. At no additional cost, all Amazon S3 users can

access an interactive S3 Storage Lens dashboard in the

Amazon S3 console containing preconfigured views to

visualize storage trends. S3 Storage Lens provides the

following key information when it comes to S3 data

lifecycle management:

 Identify largest buckets

With S3 Storage Lens, you get a centralized view of all the

buckets in your account. You can rank your buckets by the

total storage metric for a selected date range. S3 Storage

Lens helps you visualize and sort your buckets by size,

making it easier to identify the ones that require immediate attention. By pinpointing your largest buckets, you can focus your cost-optimization efforts where they will have the most

impact.

 Uncover cold S3 buckets

S3 Storage Lens exposes activity metrics about how your

storage is requested (for example, all requests, get requests, put requests), bytes uploaded or downloaded, and errors,

which allows you to detect buckets or prefixes that have not

been accessed frequently. “Cold” buckets may contain data

that can be transitioned to lower-cost storage classes such as S3 Glacier or S3 Glacier Deep Archive.

 Identify buckets without lifecycle rules

The tool helps you identify buckets that do not have lifecycle policies in place. By uncovering these buckets, you can add

appropriate lifecycle rules to ensure that your data is

transitioned to the correct storage classes over time,

optimizing costs.

S3 Storage Lens provides automated recommendations to

help you optimize your storage. You can also publish S3

Storage Lens metrics to Amazon CloudWatch to create a

unified view of your operational health in CloudWatch

dashboards.

Storage Class Analysis

Storage Class Analysis helps you analyze the access

patterns of your data to determine the most appropriate

storage class. It is particularly useful for identifying objects that are infrequently accessed and may benefit from

transitioning to lower-cost storage classes, such as S3

Standard-IA or S3 Glacier. Run Storage Class Analysis

periodically to keep track of changing access patterns and ensure that data is stored in the most cost-effective class.

AWS Cost Explorer

AWS Cost Explorer helps you visualize and analyze your

AWS costs and usage over time. It provides detailed

insights into your S3 storage costs, allowing you to track

trends, identify anomalies, and discover opportunities for

savings. AWS Cost Explorer offers the following capabilities

when it comes to S3 data management:

 Break down S3 charges by components

Use Cost Explorer to break down your S3 charges by

different components such as storage, requests, and data

transfer. This detailed view can help you identify specific

areas where you can optimize costs.

 Break down S3 charges by cost allocation tags

Use cost allocation tags to categorize and track costs by

different projects or business units, making it easier to

identify specific areas where cost optimization is needed.

 Forecast and budget

Utilize Cost Explorer to forecast future costs and set budgets, helping you proactively manage and optimize your S3

storage expenses.

For more details, refer to the AWS blog “Analyzing Request

and Data Retrieval Charges to Optimize Amazon S3 Cost”.

By leveraging these monitoring tools, you can effectively

manage your Amazon S3 data lifecycle configurations,

ensuring that your storage costs are optimized and your

data remains accessible as needed.

Expiring Snapshots from Open Table Formats As part of managing the data lifecycle effectively on

Amazon S3, it’s crucial to optimize storage not only at the

individual object level, as described in previous sections,

but also when using advanced table management

frameworks. Open table formats such as Apache Hudi,

Apache Iceberg, and Delta Lake offer unique capabilities—

like upsert operations, merges, schema evolution, and time

travel—that extend beyond the basic object storage

functionality of Amazon S3.

A key concept underlying these advanced formats is

 snapshots, which capture the state of a table at specific points in time. Snapshots enable powerful capabilities such

as data versioning, historical queries, and consistent views.

However, snapshot accumulation over time can

significantly increase storage costs, counteracting your

optimization efforts in data lifecycle management.

While traditional Amazon S3 lifecycle rules operate on

individual objects without awareness of these snapshot

relationships, open table formats manage snapshots as

collections of interdependent files. Therefore, to effectively control storage growth and complement broader Amazon

S3 cost-management practices, it’s essential to use the

native snapshot expiration capabilities provided by these

open table formats (Iceberg Expire Snapshot, Hudi

Cleaning, Delta Lake Remove Files). These functions understand the internal structure and dependencies of

snapshot files, enabling expiration of outdated snapshots in

a safe, performance-friendly, and cost-effective manner

that integrates seamlessly with your overall data

management and lifecycle optimization strategies on

Amazon S3.

TIP

For more information, refer to the AWS documentation on optimizing

storage with Apache Iceberg.

Archiving Data from Amazon DynamoDB to

Amazon S3

Another common data lifecycle management pattern is to

archive data from an application backend such as Amazon

DynamoDB to Amazon S3. Customers frequently use

DynamoDB to store time series data, such as webpage

clickstream data or transaction events. Instead of deleting

older, less frequently accessed items, many customers

prefer to archive them to ensure compliance with various

regulatory requirements and support further analytical

needs.

Figure 5-6 shows a solution that uses DynamoDB Time to Live (TTL) to automatically delete expired items from

DynamoDB tables and subsequently archive these expired

items in Amazon S3 through the use of DynamoDB

Streams.

[image: Image 44]

 Figure 5-6. Archive data from Amazon DynamoDB to Amazon S3

Here is how the process works:

 Enable DynamoDB TTL

DynamoDB TTL is a feature that allows you to define a per-

item expiration timestamp, after which the item is

automatically deleted. This is particularly useful for

managing the lifecycle of data that has a specific retention

period. To set up TTL on a DynamoDB table, you need to

enable TTL and specify the attribute that will store the

expiration timestamp. Once enabled, DynamoDB will

periodically scan the table for expired items and delete

them.

 Set up DynamoDB Streams with Kinesis Data Streams

DynamoDB Streams capture a time-ordered sequence of

item-level modifications in a DynamoDB table. The stream

records the data modification, including deletions, which

can then be processed further. When TTL deletes an item,

this deletion is recorded in the DynamoDB Stream. In the

architecture in Figure 5-6, the DynamoDB Stream sends these change logs to Amazon Kinesis Data Streams,

providing a reliable and scalable way to capture and process the deletion events.

 Create a Lambda function to select TTL records

In this architecture, Amazon Data Firehose, formerly known

as Amazon Kinesis Data Firehose, is configured to receive

data from Kinesis Data Streams. You can attach an AWS

Lambda function to Amazon Data Firehose to filter and

transform the data. Specifically, the Lambda function filters out expired items that were deleted by the TTL process.

Items deleted by TTL will have the attribute

userIdentity.principalId:

"dynamodb.amazonaws.com", which can be used as a filter criterion.

 Set up an Amazon Data Firehose to archive the records in

 Amazon S3

The transformed data, now filtered to include only TTL-

deleted items, is delivered to Amazon S3 in JSON format.

Storing the data in S3 provides a cost-effective and scalable solution for long-term retention. This archived data can then be used for compliance with data lifecycle policies. By

storing the data in JSON format, it remains flexible and

accessible for various data processing and analysis tools,

enabling deeper insights and value extraction from the

archived data.

This pattern not only optimizes storage costs by efficiently

managing the data lifecycle but also ensures regulatory

compliance and enhances the potential for data analytics.

For more details, refer to “Archive data from Amazon

DynamoDB to Amazon S3 using TTL and Amazon Kinesis

integration” in the AWS documentation.

Ensuring S3 Data Resiliency with S3 Versioning Versioning is another fundamental concept designed to

enhance data resiliency and support compliance and

governance requirements. Maintaining multiple versions of

an object, throughout some timespan, allows organizations

to preserve, retrieve, and restore data to previous states.

This capability is essential for ensuring data integrity and

availability, especially in environments where data

accuracy and recoverability are critical.

Versioning helps protect against accidental deletions and

unintended modifications, which are common risks in data

management. In the context of compliance and governance,

versioning is critical. Many regulations, such as the

General Data Protection Regulation (GDPR) and Health

Insurance Portability and Accountability Act (HIPAA),

require strict data retention and protection policies.

Versioning facilitates compliance by ensuring that

historical data is preserved in its exact state, supporting

audit trails and legal hold requirements. Organizations can

demonstrate adherence to data retention policies and

respond to regulatory inquiries more effectively when they

can access every version of their data.

Moreover, versioning aids in implementing robust data

governance practices. It allows for the tracking of data

changes over time, providing a clear history of

modifications. This transparency is crucial for maintaining

accountability and traceability within an organization. In

scenarios where data must be retained for specific periods

due to legal or business requirements, versioning ensures

that older versions of data are not inadvertently deleted or

altered.

Amazon S3 Versioning is a feature that allows you to keep multiple versions of an object in the same bucket. Once

versioning is enabled on a bucket, S3 automatically

generates a unique version ID for each object stored,

making it possible to preserve, retrieve, and restore every

version of every object stored in the bucket. This capability is especially useful for protecting against accidental

deletions or overwrites, as each change to an object creates

a new version rather than replacing the existing data.

Enabling Versioning on an S3 Bucket

Enabling versioning on an S3 bucket is straightforward and

can be done via the AWS Management Console, AWS CLI,

or SDKs. To enable versioning using the AWS Management

Console, navigate to the S3 service, select the desired

bucket, go to the Properties tab, and under the Versioning

section, click Edit and enable versioning. Using the AWS

CLI, you can enable versioning with the following

command:

aws s3api put-bucket-versioning \

--bucket your-bucket-name --versioning-configuration

Status=Enabled

Once versioning is enabled, S3 starts keeping track of all

versions of the objects in the bucket. This means that any

subsequent operations such as PUT, DELETE, or POST will

create new versions instead of overwriting the existing

ones. It is important to note that versioning cannot be

disabled once it is enabled; it can only be suspended, which

stops S3 from creating new versions but retains the

existing versions in the bucket.

When working with S3 Versioning in Amazon S3 buckets,

you can optionally add another layer of security by

configuring a bucket to enable MFA (multifactor authentication) delete. When you do this, the bucket owner

must include two forms of authentication in any request to

delete a version or change the versioning state of the

bucket.

S3 Versioning and Object Lifecycle

Management

Integrating S3 Versioning with lifecycle policies is essential for managing storage costs and ensuring efficient data

management. Lifecycle policies allow you to define actions

to transition objects between different storage classes and

to expire objects after a specified period. By combining

versioning with lifecycle policies, you can automatically

manage the lifecycle of both current and noncurrent object

versions.

For instance, you can create a lifecycle policy that

transitions noncurrent versions to colder storage classes

such as S3 Glacier or S3 Glacier Deep Archive after a

certain number of days. This helps in reducing storage

costs while retaining the ability to restore previous versions if needed. Additionally, you can set policies to permanently

delete noncurrent versions after a specified period,

ensuring that obsolete data does not accumulate and

consume storage space unnecessarily.

Here is an example of a lifecycle policy that transitions

noncurrent versions to S3 Glacier after 30 days and

permanently deletes them after 365 days:

<LifecycleConfiguration>

<Rule>

<ID>TransitionNonCurrentVersions</ID>

<Status>Enabled</Status>

<NoncurrentVersionTransition>

 <NoncurrentDays>30</NoncurrentDays>

<StorageClass>GLACIER</StorageClass>

</NoncurrentVersionTransition>

<NoncurrentVersionExpiration>

<NoncurrentDays>365</NoncurrentDays>

</NoncurrentVersionExpiration>

</Rule>

</LifecycleConfiguration>

By implementing such lifecycle policies, you can automate

the management of versioned objects, ensuring data

resiliency while optimizing storage costs.

TIP

For more detailed information, refer to the AWS documentation on

S3 Versioning.

Designing Data Models and Schema

Effective data model design is essential for achieving

efficient data storage, retrieval, and analysis. Proper data

modeling not only enhances performance but also ensures

scalability, maintainability, and data accuracy. This section explores the importance of this concept, highlighting best

practices for different types of data stores. We will provide detailed examples of structured data models with Amazon

Redshift, discuss data modeling strategies for Amazon

DynamoDB, and examine data lake data modeling

techniques.

Introduction to Data Modeling

Data modeling is a foundational concept in database

management and data engineering. It involves creating a

virtual representation of an entire information system or

parts of it, illustrating the types of data, their relationships, and how they interact within the system. It ensures that

data is organized systematically, enhancing understanding

and communication among stakeholders. There are three

main types of data models: conceptual, logical, and

physical, each serving a distinct purpose and level of detail: Conceptual data models

These models provide a high-level overview of the data

structure, focusing on the entities and their relationships

without diving into technical specifics. They are useful for

communicating with business stakeholders, ensuring that all

parties have a common understanding of the data

requirements and share common terminologies.

 Logical data models

These add more detail to the conceptual model by defining

data attributes, primary and secondary keys, and the

relationships between different data entities. These models

are crucial for developers, database administrators, and

data engineers as they provide a blueprint for the actual

schema design without considering physical storage details.

 Physical data models

Physical data models translate the logical models into

technical specifications that can be implemented at the

physical level. They include detailed configuration about

data storage tiering, physical layouts, indexing, and

performance optimization strategies specific to the data

stores being used.

The benefits of well-designed data models and physical

layouts are manifold. They ensure data accuracy and

consistency, reduce data redundancy, and improve query

performance. Well-structured data models make it easier for data consumers to extract insights, predict trends, and

make informed business decisions. They also streamline the

development process, making it faster and less error-prone,

and provide a scalable foundation that can evolve with the

organization’s needs. In this book, we will mainly focus on

the design of logical and physical data models.

A general best practice in data modeling is to work

backward from data access patterns to derive the data

models. This approach ensures that the data structures are

optimized for the types of queries that will be performed,

enhancing performance and efficiency. For instance, in a

retail scenario, if the primary query pattern involves

analyzing sales data by store and product, the data model

should be designed to facilitate these queries with

appropriate indexing and partitioning strategies.

Effective data modeling involves several key steps:

engaging stakeholders, gathering requirements, creating

initial designs, validating and refining these designs, and

finally implementing them in a physical data store. Each

step is iterative and involves feedback loops to ensure the

model aligns with business objectives and technical

requirements.

By following these practices, organizations can ensure their

data models and physical layouts are well designed,

scalable, and optimized for performance, thereby enabling

efficient data management and robust analytics

capabilities. Now let’s look at data model best practices for different AWS data stores.

Data Modeling Strategies for Amazon Redshift Structured data modeling is a critical component of modern

data strategy, enabling organizations to efficiently store,

manage, and analyze large volumes of relational data.

Amazon Redshift, a fully managed data warehouse service

in the AWS cloud, offers robust capabilities for handling

structured data. This chapter dives into the methodologies

and best practices for designing and implementing

structured data models in Amazon Redshift. We will explore

common schema design patterns and discuss trade-offs

between them. Furthermore, we will discuss the benefits of

denormalization in online analytical processing (OLAP)

systems. The section also covers a dimensional modeling

technique, the Kimball methodology, and provides insights

into the intricacies of physical data modeling on Amazon

Redshift.

Common schema design patterns

In relational database management systems (RDBMS),

several schema design patterns are commonly used: star

schema, snowflake schema, and third normal form (3NF)

schema. Each has its advantages and trade-offs,

particularly in terms of data normalization and

performance:

 Star schema

The star schema is a type of denormalized schema used in

data warehousing. It consists of a central fact table

surrounded by dimension tables. The fact table stores the

core data, usually numerical, such as sales figures,

transaction amounts, or other quantitative metrics. Each

dimension table contains descriptive attributes related to

the facts (e.g., dates, products, customers). This schema is

designed for efficient querying and is optimized for read-

heavy operations. It minimizes the number of joins, thus speeding up query performance .

 Snowflake schema

The snowflake schema is an extension of the star schema,

featuring a more complex and normalized design. In this

design, dimension tables are further normalized into

multiple related tables, forming a structure that resembles a snowflake. While this approach can save storage space and

reduce data redundancy, it often results in more complex

queries due to the increased number of joins needed to

retrieve data .

 Third normal form (3NF)

A 3NF schema is a highly normalized form where data is

organized to eliminate redundancy and ensure data

integrity. In 3NF, tables are structured so that each non-

primary-key attribute is only dependent on the primary key.

This design is beneficial for transactional systems where

write operations are frequent, but it can be less efficient for read-heavy analytical queries due to the need for multiple

joins to assemble data. Thus it is an anti-pattern for Amazon Redshift.

The primary distinction between star, snowflake, and 3NF

schemas lies in their levels of data normalization. Data

normalization is the process of organizing data to reduce

redundancy and improve data integrity. This is typically

achieved by dividing a large flat table that contains

columns of various entities into smaller, related tables and

defining relationships among them. The primary goal of

normalization is to minimize data anomalies during

operations such as updates, insertions, and deletions,

thereby enhancing data consistency and integrity.

However, while normalization reduces redundancy and improves data integrity, it can also lead to complex queries

due to the need for multiple joins between tables.

In Online Analytical Processing (OLAP) systems, such as

data warehouses, a certain level of denormalization is often

beneficial. Denormalized schemas, such as the star schema,

simplify query structures and enhance performance by

reducing the need for multiple joins. This results in faster

data retrieval and improved query efficiency, crucial for

large-scale data analysis and reporting.

Amazon Redshift, with its columnar storage format, further

amplifies the benefits of denormalization. In Redshift, data

is stored column-wise, allowing it to efficiently scan only

the necessary columns during query execution. This

significantly reduces I/O operations and accelerates query

performance, especially for denormalized tables where fact

and dimension data are closely integrated. Additionally,

Redshift’s advanced compression techniques can effectively

reduce storage requirements and speed up data retrieval

processes, making denormalized schemas even more

efficient.

Logical data modeling in Amazon Redshift

Logical data modeling is an essential phase in designing

data warehouse schemas. It focuses on defining the

structure and relationships of data without diving into

technical implementation details. One widely used logical

modeling approach specifically designed for analytical

workloads is dimensional modeling. Dimensional modeling

organizes data into dimensions and facts, simplifying

complex business queries and improving analytical

performance.

The Kimball methodology, developed by Ralph Kimball, is a widely adopted approach to dimensional modeling. It

provides a systematic method for designing data models

that are optimized for query performance and ease of use.

While there are other dimensional modeling techniques, we

use the Kimball methodology here to demonstrate the

process.

The Kimball methodology emphasizes creating a data

warehouse through a series of incremental steps, focusing

on individual business processes. The workflow of the

Kimball methodology can be broken down into the

following steps:

 1. Identify the business process.

Determine the key business processes within the

organization. These processes are the operational activities

such as taking an order or processing an insurance claim.

Each process is represented by a fact table.

 2. Declare the grain of your data.

Define the level of detail, or grain, of the data in the fact table. For example, in a sales process, the grain could be

individual sales transactions.

 3. Identify and implement dimensions.

Develop dimension tables that describe the context of the

business process. These tables typically include descriptive

attributes like time, product, customer, and location.

 4. Identify and implement facts.

Develop fact tables with numerical measurements and

foreign keys that link to dimension tables. For example, in a sales transaction fact table, numerical measurements can be

sales amount, unit price, and commission.

The Kimball methodology ensures that data is organized in a way that aligns with business requirements, providing a

robust foundation for data analysis and decision making.

The AWS blog “Dimensional Modeling in Amazon Redshift”

provides an example of implementing dimensional

modeling using this approach.

Physical data modeling in Amazon Redshift: Choosing

the best distribution style

Physical data models translate the logical table schemas

into technical specifications that can be implemented at the

data store level. Physical data modeling in Amazon Redshift

heavily influences overall query performance. Key

considerations include distribution styles, sort keys,

compression encodings, and column sizes.

When you run a query, the query optimizer redistributes

the data to the compute nodes as needed to perform any

joins and aggregations. The goal in selecting a table’s

distribution style is to minimize the data redistributions.

Amazon Redshift provides four primary distribution styles

to manage how data is distributed across nodes in a

cluster:

AUTO distribution

With AUTO distribution, Amazon Redshift assigns an optimal

distribution style based on the size of the table data. We

recommend using AUTO distribution by default. Only choose

a distribution key manually if you have a thorough

understanding of the query patterns and wish to fine-tune

the data distribution.

EVEN distribution

Data is distributed evenly across all nodes using a round-

robin approach, regardless of the values in any particular

column. EVEN distribution is appropriate when a table doesn’t participate in joins.

KEY distribution

Data is distributed based on the values in one specified

column (the distribution key). Rows with the same key are

stored on the same node. A general best practice is to use

KEY distribution for large tables that are frequently joined

with other large tables. If both tables in a join are

distributed using the same key, data with the same key is

colocated, resulting in faster join operations. When choosing the distribution key, ensure that the column has high

cardinality to minimize the likelihood of data skew.

ALL distribution

A complete copy of the table is stored on every node. This

style is ideal for small dimension tables that change

seldomly, as it eliminates the need for data movement

during joins.

TIP

To view the distribution style of a table, query the

PG_CLASS_INFO view or the SVV_TABLE_INFO view.

Physical data modeling in Amazon Redshift: Choosing

the best sort key

Sort keys determine the order in which data is stored on

disk, significantly impacting query performance. Properly

chosen sort keys enable efficient data retrieval by allowing

Amazon Redshift to skip large data blocks that do not

match the query criteria. Some best practices to select the

best sort keys are:

 Let Amazon Redshift choose

Let Amazon Redshift choose the appropriate sort order by

specifying SORTKEY AUTO when you create your tables.

Amazon Redshift will pick the appropriate sort key bases on

your access pattern.

 Analyze common query patterns

Analyze common query patterns if you prefer to configure

the sort keys on your own. For example, if queries often

filter by order_date and customer_id, consider making

these columns part of your sort key.

 Optimize for large tables first

For large tables, sort keys can significantly impact query

performance by reducing the amount of data scanned.

Prioritizing your effort on large tables provides you the best ROI on physical data modeling.

 Use compound sort keys

Use compound sort keys when queries frequently filter on a

consistent set of leading columns. A compound key is made

up of all of the columns listed in the sort key definition. The data is then sorted based on the order of columns specified

in the sort key. The performance benefits of compound

sorting decrease when queries depend only on secondary

sort columns, without referencing the primary columns.

Therefore, it works best when most of your queries filter on

a consistent set of leading columns.

 Sort on commonly joined columns

Specify the join column as both the first column of the sort

key and the distribution key for commonly joined tables.

Doing this enables the query optimizer to choose a sort merge join instead of a slower hash join.

TIP

For more information, see the AWS documentation on working

with sort keys.

Additional best practices for data modeling with

Amazon Redshift

In the following we list some other key best practices to

consider when data modeling with Amazon Redshift:

 Optimize column size

Using the smallest possible column size reduces storage

requirements and improves query performance by

minimizing the amount of data read from disk. You can

define precise data types and lengths (e.g., VARCHAR(50)

instead of VARCHAR(255)) based on your data requirements.

 Choose the appropriate compression encodings

Compression reduces storage requirements and enhances

I/O performance by minimizing the amount of data read

from disk. You can specify compression encodings when you

create a table, but in most cases, automatic compression

produces the best results. Create a table with ENCODE AUTO

to let Amazon Redshift manage compression encoding for all

columns in the table. Additionally, it is a best practice to

avoid compressing sort key columns.

For more information, see the AWS documentation on

Amazon Redshift best practices for designing tables.

In summary, designing and implementing structured data models in Amazon Redshift involves understanding and

applying various schema design patterns, with careful

consideration of the trade-offs between normalization and

denormalization. Dimensional modeling, particularly using

the Kimball methodology, provides a robust framework for

organizing data in a way that aligns with business

processes and analytical needs. Physical data modeling

decisions, such as choosing the best distribution styles, sort keys, compression encodings, and data types, are crucial

for optimizing query performance and storage efficiency.

By leveraging the capabilities of Amazon Redshift,

organizations can effectively manage and analyze large

volumes of structured data, driving informed decision

making and achieving business goals.

Data Modeling Strategies for Amazon

DynamoDB

In this section, we will explore the data modeling strategies for Amazon DynamoDB. Understanding the differences

between NoSQL and relational database design is crucial,

as DynamoDB operates fundamentally differently from

traditional relational databases. By the end of this section, you will have a comprehensive understanding of key

DynamoDB concepts such as partition keys, sort keys, and

global secondary indexes (GSIs). You will also learn how to

strategically select and utilize these elements to meet your

application’s unique access patterns and performance

requirements.

NoSQL versus relational data modeling

NoSQL databases, such as Amazon DynamoDB, and

relational databases (RDBMS) have distinct advantages

and challenges that influence their use. RDBMS utilize a highly structured format with tables, rows, and columns,

enabling flexible data access patterns through table joins.

However, this flexibility can hinder scalability and

performance under high throughput. In contrast, NoSQL

databases prioritize scalability and performance. In a

NoSQL database like DynamoDB, data can be queried

efficiently within specific access patterns, but outside of

these patterns, queries can become expensive and slow.

Designing a schema for a NoSQL database like DynamoDB

requires a shift from traditional relational database design.

In RDBMS, data modeling often starts with normalization,

organizing data into separate tables based on entities and

relationships without initially considering access patterns.

Data models can be adjusted and extended later as new

query requirements arise. However, in NoSQL databases, it

is crucial to understand data access patterns up front

before designing the schema, as query performance and

cost-efficiency rely heavily on how well the schema

supports specific queries. It is typically hard, if not

impossible, to perform table joins with NoSQL databases to

accommodate unexpected query patterns. Additionally,

unlike the large number of tables in a highly normalized

RDBMS, maintaining as few tables as possible in a NoSQL

database simplifies scalability, improves data locality, and

reduces the complexity of permissions management,

contributing to lower operational costs.

The first step in designing your NoSQL database

application is to identify the specific query patterns that

the system must satisfy. It is important to understand three

fundamental properties of your application’s access

patterns: the list of entities to be stored (such as users,

orders, or products), the list of access patterns (including

entity reads and writes), and the approximate size of each entity, including cardinality (number of distinct values) and throughput. By carefully considering these factors, a robust

and efficient table schema can be developed to meet the

application’s specific needs.

Example use case: Ecommerce website

To illustrate the data collection process, let’s consider an

example of data modeling for an ecommerce website. The

list of entities to be stored includes the following:

1. Customers

2. Products

3. Shopping carts

4. Orders

The list of access patterns include the following:

1. Customer accesses the inventory info of a specific

product

2. Customer adds products to their shopping cart

3. Customer checks out a shopping cart

4. Customer views the status of their most recent

orders

5. Company wants to view all unfulfilled orders

Sample entity cardinality and query frequency analysis are

as follows:

Customer accesses the inventory info of a specific

product:

– Entity: Products

– Cardinality: Medium to high (potentially millions of products)

– Query frequency: Very high (frequent query

by customers)

Customer views the status of their most recent

orders:

– Entity: Orders

– Cardinality: High

– Query frequency: Medium (2-3 queries per

customer per week)

We will use this use case in the following sections for

DynamoDB data modeling. Working backward from the

access patterns will ensure that the database schema is

optimized for the most frequent and critical queries.

Core concepts of DynamoDB

Let’s first level-set some core DynamoDB concepts.

Understanding these core concepts is crucial for designing

effective and scalable data models in DynamoDB:

 Table, items, and attributes

At the heart of Amazon DynamoDB lies the table, a collection

of data organized into items, which are analogous to rows in

traditional databases. Each item is a collection of attributes, where an attribute is a fundamental data element, similar to

a column in relational databases. Attributes can be of

various data types, including strings, numbers, binaries, and more complex structures like sets and maps. DynamoDB

tables are schemaless, which means that neither the

attributes nor their data types need to be defined

beforehand. Each item can have its own distinct attributes.

 Primary key, partition key, and sort key DynamoDB tables must have a primary key, which uniquely

identifies each item. There are two types of primary keys:

simple primary keys and composite primary keys. A simple

primary key consists of a single attribute, known as the

partition key. In contrast, a composite primary key

comprises two attributes: the partition key and the sort key.

The partition key determines the physical storage units

where the item is stored, ensuring scalability by distributing data across multiple partitions. Items with the same

partition key are bucketed into the same physical location.

The sort key allows for sorting and querying of items within

the same partition, facilitating complex data retrieval

patterns and enhancing query performance.

 Secondary indexes

To enhance querying capabilities beyond the primary key,

DynamoDB supports secondary indexes. A secondary index

is a data structure that contains a subset of attributes from a table, with the physical data organized in a different way.

There are two types: local secondary indexes (LSIs) and

global secondary indexes (GSIs). An LSI uses the same

partition key as the base table but allows for a different sort key, providing an additional query dimension within the

same partition. In contrast, a GSI permits the use of different partition and sort keys, enabling queries on attributes that

are not part of the primary key. Secondary indexes consume

additional storage space, as they maintain a copy of the

indexed attributes. Every secondary index is automatically

maintained by DynamoDB. When you add, modify, or delete

items in the base table, any indexes on that table are also

updated to reflect these changes.

 Querying and scanning

DynamoDB provides two primary mechanisms for retrieving data: querying and scanning. The query operation is

efficient and uses the primary key or secondary indexes to

fetch specific items or a range of items that match given

filters. This operation is preferred for its speed and cost-

effectiveness. On the other hand, the scan operation

examines every item in the table or index, filtering the

results based on specified attributes. While flexible,

scanning is resource-intensive and should be used

judiciously, especially for large datasets. One key goal in

Dyna mo DB data modeling is to make sure all critical data

access patterns can be done via query operations.

Selecting the right partition key

Selecting the right partition key is critical for ensuring

efficient data distribution and performance in DynamoDB.

Here are some best practices to guide you through the

process:

 Starting with entities and access patterns

Start by identifying all the entities that will be stored in the table and the access patterns required by your application.

Consider the queries your application will perform most

frequently. For example, a customer can be identified by

their name, email, or UUID. Those are all potential partition keys for the customer entity.

 Ensuring high cardinality

Choosing a partition key with high cardinality helps

distribute the workload evenly across multiple partitions. In the preceding customer example, among name, email, or

UUID, UUID is the one with the highest cardinality. It is the best fit for the partition key because each customer

generates distinct traffic patterns, reducing the risk of hot partitions and improving performance.

 Leveraging owner entities for data bucketing

The partition key is an efficient way to bucket relevant data of different entities into the same physical partitions. For

example, in a single-table design, where you store

customers, shopping carts, and orders in the same

DynamoDB table, most queries are initiated at the customer

level. Thus, the customer UUID is the best partition key for

all three entities. Entities of the same customer are further sorted by the sort key.

 Avoiding hot partitions

Hot partitions occur when a disproportionate number of

requests target a single partition, leading to throttling and performance issues. To avoid this, you can employ a

sharding strategy, which involves adding a random suffix to

the partition key. For example, if you expect a high volume

of writes for a single partition key, you can add a suffix from a predetermined range (e.g., 0–9) to spread the load across

multiple partitions. This technique is particularly useful for write-heavy workloads.

In the ecommerce example, the following are good

mappings of partition key (PK) selections for all entities:

Customer: Customer UUID

Product: Product UUID

Shopping cart: Customer UUID

Order: Customer UUID

Selecting the right sort key

Designing an effective sort key in DynamoDB is essential

for optimizing data retrieval and ensuring efficient

querying. Here are some best practices to help guide your

sort key design:

 Grouping related data

The primary function of a sort key is to group related items

together under the same partition key, enabling efficient

queries. By using sort keys, you can retrieve sets of related items using range queries with operators like begins_with,

between, <, >, etc. For example, assuming the Order entity has an incremental Order ID, a sort key of ORDER#OrderID

sorts the order of a customer from the latest to the oldest.

 Implementing hierarchical relationships

Sort keys are particularly useful for defining hierarchical

relationships. By structuring the sort key in a hierarchical

manner, you can effectively model one-to-many

relationships. For instance, you might want to group items in shopping carts into different status like ACTIVE and SAVED,

then a sort key of CART #STA TUS#ProductUUID can be

useful.

 Using sort keys for time-ordered data

Sort keys are often used to store time-ordered data, such as

logs, events, or messages. By using a timestamp as part of the sort key, you can efficiently retrieve data within a specific time range.

 Maintaining version control

Sort keys can also be used to manage item versioning. A

common pattern is to include a version number in the sort

key, allowing you to store multiple versions of an item. This

is particularly useful for applications that need to track changes or maintain audit logs.

In the ecommerce example, the following are good

mappings of PK and sort key (SK) selections for all entities: Customer:

– PK: Customer UUID

– SK: VersionNumber

Product:

– PK: Product UUID

– SK: VersionNumber

Shopping cart:

– PK: Customer UUID

– SK: CART#STATUS#ProductUUID

Order:

– PK: Customer UUID

– SK: ORDER#OrderID

Utilizing global secondary indexes and local

secondary indexes

Amazon DynamoDB provides two types of secondary

indexes to enhance query flexibility beyond the primary key

structure: global secondary indexes (GSIs) and local secondary indexes (LSIs). Both index types allow you to query data efficiently based on attributes other than the

primary key but differ in flexibility, performance

characteristics, and constraints:

 Global secondary indexes

GSIs allow you to define an entirely new partition key and

an optional sort key, independent from your base table’s

primary key. They offer significant flexibility, as they can be created or modified at any time after table creation, making

them particularly suitable for evolving application

requirements. GSIs support queries against attributes not

present in the table’s primary key and enable you to define

different projections (all attributes, keys-only, or selected attributes).

 Local secondary indexes

LSIs share the same partition key as the base table but use

an alternative sort key. They are more restrictive, as they

must be created when you define your table and cannot be

added or removed afterward. LSIs enable queries based on

alternative sort keys within the same partition, which can

help with queries requiring different sort orders or

conditions within partitions.

Table 5-1 outlines how to decide when to use GSIs versus LSIs.

 Table 5-1. When to use GSIs versus LSIs

Feature /

Global secondary

Local secondary

Trade-off

index (GSI)

index (LSI)

Partition key

Can use any

Must use the base

flexibility

attribute

table’s partition

independently

key

Creation and

Can be created or

Must be created at

modification

modified any time

table creation;

after table creation

cannot be

modified later

Read/write

Consumes additional

Shares read/write

costs

read/write capacity

capacity with the

separately from the

base table

base table

Read

Eventually

Supports strongly

consistency

consistent reads

consistent reads

supported, newly

written data may not

appear immediately

Storage

Can be sparse;

Includes all items

efficiency

indexes only items

sharing the base

with the indexed

partition key, even

attribute

if the indexed

attribute is absent

Common use cases and considerations

Key considerations for GSIs and LSIs for your use case

include the following:

 GSIs

GSIs are ideal when you need flexible queries across multiple partitions or when query requirements evolve over

time. The trade-off is increased cost (in terms of provisioned capacity), eventual consistency and potentially higher

storage usage if projecting many attributes.

 LSIs

LSIs are beneficial when you need alternative sorting or

querying capabilities within the same partition. They are

cost-effective because they share provisioned capacity with

the base table. However, their fixed nature might limit your

flexibility.

For example, if you frequently query products by a specific

category and subcategory across many partitions, a GSI

with Category#Subcategory as the partition key is

appropriate. If you regularly query orders for a customer

by different timestamps or statuses within the same

customer partition, an LSI would be a good choice.

Data modeling in DynamoDB requires a deep

understanding of your application’s access patterns and

entity relationships. By carefully selecting partition and

sort keys and utilizing secondary indexes, you can optimize

your database schema for performance, scalability, and

cost-efficiency. The ecommerce example demonstrates how

these concepts are applied in practice, ensuring that your

DynamoDB tables are well suited to handle the demands of

real-world applications.

Data Modeling Strategies for Data Lakes

Many AWS customers require a data storage and analytics

solution that offers more agility and flexibility than

traditional data management systems. A data lake has

emerged as a powerful solution for storing and managing vast amounts of structured and unstructured data. A well-architected data lake not only facilitates efficient data

storage but also enables robust data processing and

analytics. This part of the chapter dives into the essential

techniques for effective data lake management, focusing on

the layered architecture known as the medallion

architecture—comprising Bronze, Silver, and Gold layers—

and best practices for data storage in Amazon S3. By

understanding these foundational elements, data engineers

can ensure their data lakes are optimized for performance,

scalability, and data quality, setting the stage for advanced analytics and machine learning applications. We’ll first look at the common data layers for data lakes.

Raw data layer: The landing zone for raw data

The raw data layer is the initial landing zone for all raw

data flowing into the data lake from various sources such

as databases, APIs, and files. This layer captures data in its most unprocessed form. General best practice is to retain a

fully unprocessed raw data layer in a cost-efficient storage

tier. This raw data can be used for reprocessing if needed,

without having to re-ingest from the original sources.

Stage data layer: Cleansed and conformed data

The stage data layer contains intermediate, processed data

that is optimized for consumption. The raw data is cleaned,

conformed, and minimally transformed to provide a trusted,

enterprise-wide view of key business entities and

transactions. This layer is optimized for agility and speed,

enabling self-service analytics for ad-hoc reporting,

advanced analytics, and machine learning. Common

transformations can be converting CSV files into Apache

Parquet format, data quality checks, and merging change data capture logs to the latest view of tables.

Analytics data layer: Curated and aggregated data

The analytics data layer represents the final, consumption-

ready state of the data, where complex business rules,

aggregations, and cross-referencing are applied to produce

highly refined and enriched datasets. These datasets power

analytics, machine learning models, and production

applications. The analytics data layer often employs

denormalized, read-optimized data models, to ensure low

latency and high performance for business intelligence

tools and dashboards.

Amazon S3 Data Lake Best Practices

The following presents some best practices for Amazon S3

Data Lake.

Partition your data

Partitioning divides your table into parts and keeps the

related data together based on column values such as date,

country, and region. Partitioning your data is crucial for

optimizing query performance in a data lake. By dividing

data into partitions based on a specific key, you can

significantly reduce the amount of data scanned during

queries, leading to faster performance and lower costs .

When selecting partition keys for your data, it is crucial to work backward from your queries and find fields that are

often used to filter the dataset. Effective partition keys

should have a relatively low cardinality to avoid excessive

metadata overhead and maintain optimal file sizes.

Additionally, be mindful of data skew; if your data is heavily concentrated around a single partition value frequently

used in queries, the performance benefits of partitioning might be diminished.

Bucket your data

Bucketing is another technique to enhance query efficiency

by organizing data into a fixed number of buckets, each

containing a subset of the data. This helps in evenly

distributing data across the storage and can improve the

performance of join operations by reducing data shuffling .

Bucketing is useful when you have a column with high

cardinality and many of your queries look up specific values

of the column. Good candidates for bucketing are columns

such as IDs for users or devices.

Use compression

Applying compression to your data reduces storage costs

and can improve query performance by decreasing the

amount of data transferred between storage and compute

resources. Various compression algorithms can be used

depending on the data and query requirements . The

SNAPPY format focuses on high compression and

decompression speed rather than the maximum

compression of data. The zstd (Zstandard) format is a newer compression format with a good balance between

performance and compression ratio.

Optimize file size

Queries run more efficiently when data can be read in

parallel, and as much data as possible can be read in a

single read request. Optimizing file sizes is essential for

achieving a balance between reducing the number of files

(to avoid excessive metadata overhead) and maintaining

file sizes that are manageable for the storage system. Large

files are preferred over numerous small files. A general guideline is to aim for files that are around or above 128

MB.

Use columnar file formats

Columnar file formats are designed to store data by

columns rather than rows, enabling higher compression

ratios and more efficient queries by only reading necessary

columns. Apache Parquet and Apache ORC are popular file formats for analytics workloads. They both also store

metadata such as the minimum and maximum value of a

column each block of data, allowing query engines to skip

irrelevant data blocks.

Another benefit of Parquet and ORC is that they are

splittable. A splittable file format allows efficient parallel processing of large files. This means a large file can be

divided into smaller chunks, and each chunk can be

processed independently by multiple processors or nodes in

a distributed system. This capability is crucial for large-

scale data processing and analytics, as it enables faster

data loading and querying by leveraging parallel

computing. Parquet and ORC files are always splittable

because these formats compress sections of the files

separately and include metadata that contains the locations

within the files for the different sections.

Use open table formats

Leveraging open table formats such as Apache Iceberg,

Apache Hudi, and Delta Lake allows you to manage large-

scale data lakes with transactional consistency and schema

evolution capabilities. These formats support ACID

transactions, time-travel queries, and other features that

make it easier to maintain data quality and reliability .

Conclusion

In this chapter, we have explored the fundamental aspects

of data store management. We began by discussing how to

choose the appropriate data store based on specific use

cases, ensuring that the storage solution aligns with

performance, scalability, and cost considerations. We then

dived into the importance of classifying your data and

building a comprehensive data catalog to facilitate efficient data discovery and accessibility. Effective data lifecycle

management was another critical topic, emphasizing

strategies to maintain cost performance balance and

compliance throughout the data’s lifecycle. Lastly, we

covered the principles of designing robust data models.

Together, these topics form a cohesive framework for

managing data stores that not only support but also

enhance your organization’s data-driven initiatives.

Next, let’s try to validate our knowledge with a few practice questions that may help you prepare for the AWS Certified

Data Engineer Associate certification exam.

Practice Questions

These practice questions may help you understand what

kind of questions to expect on the exam so you can prepare

accordingly. The answers are listed in the Appendix.

1. A company has been using HDFS for their on-

premises data storage to handle large-scale data

processing. They use Apache Spark as the analytics

engine. They plan to migrate their data to AWS and

are looking for a scalable and cost-efficient storage

solution in the cloud.

Which cloud storage option should the company choose for this migration?

A. Migrate the data to Amazon S3 and use Spark

on Amazon EMR clusters for data processing.

B. Migrate the data to Amazon EBS volumes and

attach them to EC2 instances for data

processing.

C. Migrate the data to Amazon EBS volumes and

set up HDFS on Amazon EMR clusters.

D. Migrate the data to Amazon Elastic File

System (Amazon EFS) and configure Lambda

functions to mount the file system.

2. A retail company uses Amazon OpenSearch Service

to index and visualize its application logs. Over time,

the index size has grown significantly, impacting

performance and increasing costs. The company

wants to implement a strategy to manage index

lifecycle and reduce costs. The following are the log

data access patterns:

– The development team queries the past 3

days of logs frequently.

– The development team performs historical

data analytics that spans 6 months of data

rarely.

– You need to store the logs in the OpenSearch

cluster for 2 years for compliance

requirements.

Which solution will meet these requirements with

the least operational overhead?

A. Land new logs on OpenSearch Hot storage.

Use Amazon OpenSearch Service’s Index

State Management (ISM) policies to move

logs older than 3 days to UltraWarm and

further move logs older than 6 months to

Cold storage.

B. Land new logs on OpenSearch Hot storage.

Use Amazon OpenSearch Service’s Index

State Management (ISM) policies to move

logs older than 3 days to UltraWarm. Use

Lambda to snapshot logs older than 6 months

to Amazon S3.

C. Land new logs on OpenSearch Hot storage.

Schedule Lambda functions to automatically

move indexes to UltraWarm and Cold storage.

D. Land new logs on OpenSearch Hot storage.

Use Amazon OpenSearch Service’s Index

State Management (ISM) policies to move

logs older than 3 days to Cold storage.

Migrate them back to UltraWarm when you

need to query the data.

3. A financial services company uses Amazon Redshift

for its data warehouse and stores historical data in

Amazon S3. The company wants to query both the

current data in Redshift and the historical data in S3

without moving the data.

Which Amazon Redshift feature allows this

capability?

A. Redshift RA3 Nodes

B. Redshift Data Sharing

C. Redshift Spectrum

D. Redshift Serverless

4. A development team noticed that their storage costs

have increased greatly after they enabled versioning

on their S3 bucket to safeguard against accidental

deletions. How can the team manage their storage

costs while retaining the benefits of versioning?

A. Enable S3 Intelligent-Tiering for the bucket.

B. Use S3 Lifecycle policies to delete older

versions after a certain period.

C. Enable S3 Versioning and set a legal hold by

using S3 Object Lock.

D. Transition older S3 objects to the S3 Glacier

Deep Archive storage class.

5. An ecommerce company wants to ensure that their

product catalog data stored in Amazon S3 is

consistently organized and up-to-date. They need to

automatically detect changes in the data schema and

update the catalog accordingly.

Which solution will meet their requirements with the

least operational overhead?

A. Create an AWS Glue crawler to scan the data

in Amazon S3 and to populate table metadata

in an AWS Glue Data Catalog. Schedule the

crawler to run periodically to identify any

changes in the schema and to generate new

versions of the tables.

B. Schedule a Lambda function to scan and

classify the data in Amazon S3. Configure the

Lambda function to create tables and

columns in an AWS Glue Data Catalog.

C. Use Amazon Redshift to query the data and

manually manage the catalog updates.

D. Configure Amazon EMR to process the data

and manually synchronize the schema

changes with the AWS Glue Data Catalog.

6. A retail company uses Amazon RDS, Amazon S3, and

Snowflake to store their sales and customer data.

They want to catalog data from these sources in one

place to enable unified data access and analysis.

Which solutions will achieve this with minimal

operational overhead? (Select two.)

A. Use AWS Glue crawlers to connect to Amazon

RDS and Snowflake, automatically cataloging

the data into an AWS Glue Data Catalog.

B. Create an AWS Glue crawler to scan the data

in Amazon S3 and to populate table metadata

in an AWS Glue Data Catalog.

C. Manually export data from Amazon RDS and

Snowflake to Amazon S3 and then use AWS

Glue crawlers to catalog the data.

D. Write custom scripts using AWS Lambda to

extract data from Amazon RDS and

Snowflake and populate the AWS Glue Data

Catalog.

7. A media company stores large volumes of web

server logs on Amazon S3 and intends to analyze

this data with Amazon Athena. The majority of their

queries are analytical, focusing on logs from a specific region or a specific period of time.

To optimize query performance in Athena and

reduce costs, which combination of techniques

should they use? (Select two.)

A. Partition the data by region, year, and month.

B. Store the data in CSV format.

C. Use SELECT * in queries.

D. Use compressed file formats like gzip or

Snappy.

E. Keep logs in their original format.

8. An ecommerce company stores user order histories

in an Amazon DynamoDB table. Each order contains

a user ID, product ID, purchase timestamp, delivery

timestamp, and delivery location.

The primary access patterns are the following:

– Retrieve all orders for a specific user sorted

by the purchase time.

– Retrieve the latest order for a specific user.

Which schema design will meet these requirements

most efficiently?

A. Table Partition Key: 'UserID' Table Sort Key:

'PurchaseTimestamp'

B. Table Partition Key: 'UserID' Table Sort Key:

'ProductID'

C. Table Partition Key: 'ProductID' Table Sort Key: 'UserID'

D. Table Partition Key: 'ProductID' Table Sort

Key: 'UserID#'Purchase

Times

tamp'

9. A company uses Amazon Redshift as its data

warehouse. The company stores the data in multiple

tables and selects the EVEN distribution style for all

tables. Some tables are hundreds of gigabytes in

size. Others are less than 10 MB in size. You need to

manually configure distribution styles to optimize

query performance. At the same time, you must keep

data storage as low as possible.

Which solution will meet these requirements?

A. Use a distribution style of ALL for large

tables. Specify primary and foreign keys for

all tables.

B. Use a distribution style of ALL for small and

rarely updated tables. Specify primary and

foreign keys for all tables.

C. Use a distribution style of KEY for all tables.

Specify distribution, primary, and foreign

keys for all tables.

D. Use a distribution style of EVEN for the all

tables. Specify primary and foreign keys for

all tables.

10. A healthcare company needs to store patient data in

Amazon S3. The data is accessed frequently within

the first year and must be available immediately.

Due to regulatory requirements, the data must be

retained for five years. Data older than one year

must be securely stored and made available when needed for compliance evaluation within 48 hours.

Data older than five years must be deleted.

Which solution will meet these requirements in the

most cost-effective manner?

A. Store new data on the Amazon S3 Standard

storage class. Create a lifecycle rule to

transition the data to the S3 Glacier Flexible

Retrieval storage class after one year.

Configure the lifecycle rule to delete the data

after five years.

B. Store new data on the Amazon S3 Infrequent

Access storage class. Create a lifecycle rule

to migrate the data to the S3 Glacier Flexible

Retrieval storage class after one year.

Configure the lifecycle rule to delete the data

after five years.

C. Store new data on the Amazon S3 Standard

storage class. Create a lifecycle rule to

migrate the data to the S3 Glacier Deep

Archive storage class after one year.

Configure the lifecycle rule to delete the data

after five years.

D. Store new data on the Amazon S3 Intelligent-

Tiering storage class. Opt in to the deep

archive access tier. Create a lifecycle rule to

delete the data after five years.

Additional Resources

The following are a few additional resources that will help

you dive deeper and gain more knowledge on data store

management:

“What Is Data Management?”

“What Is a Data Store?”

“Storage Best Practices for Data and Analytics

Applications”

“Amazon Redshift Best Practices for Designing

Tables”

“Best Practices for Designing and Architecting with

DynamoDB”

Chapter 6. Data

Operations and Support

In the evolving world of data-driven decision making, the

ability to effectively manage, monitor, and optimize data

processing pipelines is crucial for organizations seeking to

unlock the full potential of their data assets. As data

engineers, you play a pivotal role in ensuring the reliability, performance, and cost-effectiveness of these data pipelines,

which power the critical analytics and business intelligence

initiatives within your organization.

This chapter will explore the key aspects of data operations

and support, equipping you with the knowledge and skills

required to automate data processing, analyze data,

maintain and monitor data pipelines, and ensure data

quality. By mastering these techniques, you will become a

valuable asset in your organization’s data-driven journey,

enabling seamless data operations and supporting the

delivery of actionable insights.

This chapter will help you learn how to do the following:

Analyze data using a variety of AWS services,

including Amazon QuickSight, Amazon Athena, and

Amazon Redshift.

Monitor data pipelines by deploying comprehensive

logging and monitoring solutions, leveraging tools

like Amazon CloudWatch, AWS CloudTrail, Amazon

Macie, and system tables for specific services.

Apply best practices for performance tuning and troubleshooting data processing pipelines.

Build robust data pipelines to achieve your recovery

point objective (RPO) and recovery time objective

(RTO) in case of unlikely outages.

By the end of this chapter, you will have a comprehensive

understanding of the data operations and support

capabilities within the AWS ecosystem, enabling you to

design, implement, and maintain efficient and reliable data

processing pipelines that support your organization’s data-

driven initiatives. You will also answer a set of practice

questions similar to the kind of questions you can expect in

the AWS Certified Data Engineer Associate certification

exam.

As a data engineer, analyzing data is a crucial step in

unlocking the value of your organization’s data assets. By

leveraging the powerful analytics capabilities within AWS,

you can uncover meaningful insights, identify trends, and

make informed, data-driven decisions to support your

business initiatives.

In the first part of this chapter, you will learn about three key AWS services that can help you analyze data

effectively: Amazon QuickSight, Amazon Athena, and

Amazon Redshift. Each of these services offers unique

features and capabilities. The guidance here will help you

understand how to leverage them to meet your specific

data analysis requirements.

Amazon QuickSight

Amazon QuickSight is a scalable, serverless, and fully

managed business intelligence (BI) service that enables you

to create and publish interactive dashboards and reports, enabling data visualization and analysis for various data

sources. To get started with QuickSight, you’ll first create a dataset from a data source. Using the dataset, you can create visualizations, group them into analyses, and publish them as dashboards. You can also build interactive stories.

Let’s understand each of these key concepts in further

detail.

Data Sources

In Amazon QuickSight, you can use a variety of data

sources such as AWS databases, AWS analytics services,

third-party services, on-premises data sources, and more.

At the time of this writing, the following is the list of

supported data sources:

Relational databases:

– AWS databases: Amazon Aurora and Amazon

RDS (MySQL, PostgreSQL, SQL Server,

Oracle)

– Third-party and open source databases. Some

common ones are Snowflake, Starburst,

Trino, Teradata, Microsoft SQL Server 2012

or later, MySQL 5.7 or later, MariaDB 10.0 or

later, Oracle 12c or later, PostgreSQL 9.3.1

or later

Big data and analytics services:

– Amazon Redshift

– Amazon S3 (including data in various file

formats like CSV, TSV, JSON, XLSX)

– Amazon OpenSearch Service

– Amazon Athena

– AWS IoT Analytics

SaaS applications and web services: Products such

as Salesforce, ServiceNow, Jira, GitHub, Adobe

Analytics (via OAuth), etc.

Other sources: Sources such as on-premises

databases accessible via Amazon VPC or Direct

Connect

For a more up-to-date list, please refer to the supported

data sources webpage.

The flexibility to integrate data from such a diverse set of

sources is a core strength of QuickSight. By bringing

together information from across your organization and

beyond, you can build dashboards and visualizations that

provide a comprehensive, 360-degree view of your

business. Figure 6-1 shows a screenshot of data sources available at the time of writing.

[image: Image 45]

 Figure 6-1. Data sources for use with QuickSight

Datasets

After you connect QuickSight to a data source, such as a

database, data lake, or SaaS application, you create a

dataset from that data source. The datasets can do one of

the following two things:

Directly query the live data from the data source.

Import data from the data source source and store it

in a highly optimized, in-memory cache called SPICE

(Super-fast, Parallel, In-memory Calculation

Engine).

SPICE is a highly optimized in-memory cache that

significantly enhances analytical query performance

compared to direct querying. Instead of waiting for time-

consuming queries to process against the underlying data

source, SPICE executes queries against preprocessed and

cached data, resulting in faster response times and a more

responsive analytical experience. Also, since data stored in SPICE can be reused multiple times without additional

querying costs, it can lead to significant cost savings,

especially when working with pay-per-query data sources

like Amazon Athena. When using SPICE, you need to set up

refreshes to periodically fetch data from data sources.

Refreshing SPICE Datasets

You have several options to refresh the data stored in

SPICE:

 Manual refresh

You can manually trigger a refresh of a SPICE dataset from

the QuickSight console or during data preparation. On the

Datasets page, select the dataset and choose the Refresh

option. During data preparation, you can refresh the dataset

by clicking the Refresh now button.

 Scheduled refresh

You can schedule refreshes to ensure that your SPICE data is

automatically updated at regular intervals, keeping your

analyses aligned with the latest data from your sources. By

default, the refreshes are full refreshes (i.e., the complete dataset is fetched from source and refreshed in SPICE). You

can configure refresh schedules to run Daily, Weekly, or Monthly.

 Incremental refresh

In enterprise edition, for SQL-based data sources such as

Amazon Redshift, Athena, Snowflake, etc. that can identify

incremental data using a date column, you can schedule

incremental refreshes. For incremental refresh, you will

choose a column on which the lookback window is based on

and a window size that determines how long back you are

looking. For example, if your dataset contains a transaction_date field, which is the date on which the transaction is created, you can schedule an incremental

refresh to look back based on transaction_date for the last

day and refresh the SPICE dataset. You can choose to

incrementally refresh Every 15 minutes, Every 30 minutes, Hourly, Daily, Weekly, or Monthly.

 API and automation

If you want to do a trigger-based refresh, for example, you

want to refresh the SPICE dataset after a file arrives each

day, you can use QuickSight APIs. They allow you to

programmatically refresh SPICE datasets and manage

refresh schedules. You can integrate QuickSight dataset

refreshes into your existing data pipelines or automation

workflows, enabling seamless data synchronization.

Manual refresh is ideal for test environments, allowing

users to update datasets on-demand as needed. Scheduled

refresh is best suited for scenarios where data updates

occur at regular intervals and there are no upstream

dependencies—this automated approach ensures your

reports consistently reflect the latest data. For event-driven requirements, such as when a vendor uploads new files to

Amazon S3, the API and automation approach is most

appropriate. This method enables immediate dataset

updates in response to specific triggers, ensuring your

reports reflect new data as soon as it becomes available.

Visualizations

Once the datasets are ready, you can start visualizing data.

A visualization is a graphical representation that can

present complex data in an easily understandable and

visually appealing fashion. QuickSight offers a wide range of visualization types to suit different various visualization needs. Some of the commonly used chart types include the

following:

 Bar charts (vertical, horizontal, stacked)

Bar charts are used to compare magnitudes of different

categories, groups, or dimensions. They can be displayed

vertically or horizontally. Stacked bar charts are used to

show the composition of a total value across multiple

categories. Figure 6-2 represents various kinds of bar charts.

Figure 6-2(a) shows the number of occurrences for each event. Figure 6-2(b) represents the number of website visits for each event with separate colored sets of bars for unique

and total visits. Figure 6-2(c) shows the number of visits for each event by categorizing weekdays and nonweekdays in

different colors. Figure 6-2(d) does the same as Figure 6-2(c) by normalizing using percentages instead of counts.

 Line charts

Line charts are used to compare changes in one/multiple

measures over a period of time, as in Figure 6-3.

[image: Image 46]

 Figure 6-2. Types of bar charts: (a) single-measure, (b) multimeasure, (c) stacked, and (d) stacked 100%

[image: Image 47]

 Figure 6-3. Types of line charts: (a) area line chart, (b) stacked, and (c) stacked area line chart

[image: Image 48]

The first line chart in Figure 6-3 shows a trend of unique visits by date. The other two show trends for two metrics

stacked with overlap and without overlap for comparison.

 Pie charts/donut charts

Pie and donut charts show a proportion or percentage of a

total. Figure 6-4 shows the proportion of the number of occurrences of an event.

 Figure 6-4. Donut chart for count of records by event

 Scatter plots

Scatter plots are useful for identifying trends, clusters, and outliers in the data. Figure 6-5 presents a scatter plot that shows sales and profit correlation for various product

categories.

[image: Image 49]

[image: Image 50]

 Figure 6-5. Scatter plot for sales across different categories Histograms

Using histograms you can analyze distribution of a single

measure, as they provide insights into the center, spread,

and shape of data. Figure 6-6 shows a histogram of distribution of Twitter mentions.

 Figure 6-6. Histogram showing spread of Twitter mentions

 Box plots

[image: Image 51]

Box plots are used to compare distribution of data between

different groups. They are a compact summary of the data,

showing the median, the middle 50% of the data (the box),

and the minimum and maximum values (the whiskers). The

box plot in Figure 6-7 compares distribution of website visits between two workdays while showing min/max/median and

mid 50% for both days.

 Treemaps

Treemaps are used to display hierarchical data in a compact

and easy-to-understand format. They are particularly useful

when you need to visualize how a larger whole is composed

of its parts. Figure 6-8 shows how each opportunity contributed to the whole.

 Figure 6-7. Box plot comparing website visits across two days

[image: Image 52]

 Figure 6-8. Treemap of Salesforce opportunities

 Pivot tables

Pivot tables enable you to build interactive

multidimensional reports where you can slice and dice data

across any number of dimensions without needing to modify

the underlying data structure. They are very similar to Excel pivot functions where you can drag dimensions and

measures and show them in a tabular format. The pivot

table in Figure 6-9 shows how the Billed Amount measure can be sliced and diced across four dimensions, with two

dimensions (customer region, consumption channel) as rows

and the other dimensions (customer segment, service line)

as columns.

[image: Image 53]

 Figure 6-9. Pivot table for Billed Amount

 KPIs (key performance indicators)

A KPI displays a value comparison, the two values being

compared, and a visual that provides context to the data

that’s displayed. Figure 6-10 shows the number of customers KPI. It shows a 25.4% increase from November 2023 to

October 2023.

[image: Image 54]

 Figure 6-10. KPI: number of customers

In addition to these standard chart types, QuickSight also

provides more advanced visualizations such as:

Geospatial maps for location-based data

Funnel charts for visualizing stages in a process

Gauges and meters for displaying performance

against targets

Calendar heatmaps for identifying trends over time

QuickSight makes it easy for you to generate the

visualizations using the AutoGraph feature. It intelligently

suggests the most suitable visualization type based on the

data fields you select.

Presentation Formats

You can present visualizations in various formats:

 Analyses

An analysis organizes multiple visualizations on different

sheets or pages. It allows you to combine various charts,

graphs, and tables to tell a comprehensive data story.

 Sheets

Within an analysis, you can have one or more sheets, which

are individual pages or sections displaying a specific set of visualizations and insights. Sheets help organize and

separate different aspects of your data story.

 Dashboards

A dashboard is the published, shareable version of an

analysis. It presents the finalized visualizations in an

interactive format that can be accessed by other users with

specified permissions.

 Data stories

You can create data stories, which are narrative-driven

presentations that guide viewers through visualizations with

descriptive text, commentary, and annotations. Stories are

ideal for explaining insights and conveying a cohesive

message using your data.

Figure 6-11 presents a sample QuickSight dashboard showing a business summary. It has KPI charts, sales

trends, and order trends. It also has a donut chart showing

sales by industry, a bar chart showing orders by state,

heatmaps showing top customers by state, a profit

segmentation map showing shipments by state, a

profitability waterfall chart, and a box plot for scores by

[image: Image 55]

gender. The visuals are organized into multiple sheets in

this dashboard for summary, details, metrics boards, etc.

 Figure 6-11. Sample QuickSight dashboard

QuickSight GenBI Capabilities (QuickSight Q)

To make building visualizations easy, QuickSight offers a

GenAI-based feature called QuickSight Q that allows you to

build visualizations and stories and generate executive

summaries using natural language prompts. You ask

questions about your data in plain English and get answers

in the form of charts, graphs, and visualizations. The

following subsections detail the various capabilities of

QuickSight Q.

Generate stories

Amazon Q in QuickSight helps you jumpstart your data

storytelling process. You simply enter a prompt and select

your visuals, and Amazon Q will create an initial draft of

your data story. While these AI-generated drafts aren’t

meant to replace your analysis or creative input, they

provide a solid foundation that you can build upon. The system intelligently combines your prompts with chosen

visualizations to suggest relevant content, giving you a

customizable framework for your final data narrative.

Figure 6-12 shows a sample prompt to QuickSight Q asking it to build a story on how to increase conversion for free

trial customers and the generated story.

[image: Image 56]

 Figure 6-12. Ask QuickSight Q to build a story

Create executive summaries

You can use executive summaries to set the big picture

from your dashboards. These summaries automatically

highlight key insights from your dashboard’s data, making

it easy for readers to grasp important findings without

diving into individual visualizations. Enabling executive summaries is simple—just select “Allow executive

summary” when publishing your dashboard.

Enhanced dashboard Q&A

You can enable Q&A on your QuickSight dashboards. It’s as simple as checking the “Allow data Q&A” box when

publishing your dashboard. When activating dashboard

Q&A, you can select which datasets to include, ensuring

users have access to the most relevant information. This

feature leverages the data displayed on your dashboard,

allowing users to explore different angles of the same

information they see.

For example, in Figure 6-13 you can see the answers QuickSight Q generated for the question, “Why did revenue

go down in October 2022?”

[image: Image 57]

 Figure 6-13. Q&A in QuickSight Q

SQL Analytics Using Amazon Athena

SQL (Structured Query Language) is a common and

powerful tool for analyzing and modifying datasets. Using

SELECT statements, you can choose the columns you want,

filter and sort data using WHERE and ORDER BY clauses, and

perform calculations and aggregations using functions like

SUM, AVG, and COUNT. SQL provides capabilities for joining multiple tables, enabling you to combine data from

different sources and gain a more comprehensive

understanding of the relationships between different

entities. Additionally, SQL offers advanced analytical

functions, such as window functions and subqueries, which

allow for complex data transformations and analysis. These

features enable analysts to perform tasks like ranking,

moving averages, and data partitioning, making SQL a

versatile tool for exploring and uncovering patterns and

trends within large datasets. In AWS, you can perform SQL

data analytics using two services: Amazon Athena and

Amazon Redshift (the subject of a later section).

Amazon Athena is a serverless, interactive query service that makes it easy to analyze data stored in Amazon S3 and

other federated sources using standard SQL. Athena is

particularly well suited for ad-hoc, cost-effective, low-

operational overhead data exploration and analysis, as it

allows you to quickly run queries on your data without the

need to set up and manage any infrastructure, on a pay-

per-query basis.

Choice of Querying Engine

In Athena, you have a choice of leveraging Trino SQL using

the Athena SQL engine or the PySpark engine to query

data, as shown in Figure 6-14.

[image: Image 58]

[image: Image 59]

 Figure 6-14. Amazon Athena console landing page

Trino SQL

To query your data with Trino SQL, you will use Athena’s

query editor, as shown in Figure 6-15, or use Athena APIs such as StartQueryExecution.

 Figure 6-15. Amazon Athena query editor

When you log in to Amazon Athena query editor, you will

see all the Data sources, databases, and tables that your

IAM role has access to. You can query this data using

[image: Image 60]

simple SQL statements, as shown in Figure 6-15. Your queries are run in a workgroup named Primary by default.

Spark SQL/PySpark

To query your data using Apache Spark SQL, you will use

the Amazon Athena notebook editor. These notebooks

integrate with Spark’s distributed processing engine and

enable you to run Spark SQL, work with Spark

DataFrames, and utilize Spark’s advanced analytics

functions to analyze data. Figure 6-16 shows a screenshot of the Athena notebook editor with which you can run

Spark SQL queries.

 Figure 6-16. Amazon Athena notebook editor

Workgroups

Workgroups are resources within Amazon Athena that

allow you to separate and control different query workloads

and users. For each workgroup you can choose the Athena

engine or PySpark engine, as shown in Figure 6-17.

[image: Image 61]

 Figure 6-17. Amazon Athena workgroups

Athena workgroups can be used for the following purposes:

You can create different workgroups for different

types of workloads (e.g. one for automated

scheduled applications like report generation, and

another for ad-hoc queries by analysts).

Control access by teams for each workgroup. Since

workgroups act as IAM resources, you can use IAM

policies to control which teams/users can access and

run queries in each workgroup. This allows you to

isolate queries for different teams.

You can set workgroup-wide settings like query

result location, encryption, etc. that all queries in

that workgroup must follow.

You can publish query metrics to CloudWatch,

monitor usage metrics, and set data usage controls

and cost allocation tags at the workgroup level to

better track and control costs.

Capacity Reservations

By default, workgroups use on-demand pricing. However,

with Athena’s default on-demand pricing, there’s no way to

guarantee that your critical queries will have enough

compute resources when you need them, especially during

peak loads.

Capacity reservations solve this by allowing you to preallocate and reserve a specific amount of computing

power exclusively for your use. This reserved capacity is

measured in data processing units (DPUs), where 1 DPU =

4 vCPUs and 16 GB RAM. You can assign one or more

workgroups (which logically group your queries) to this

reserved capacity. Any queries submitted to these

workgroups will run on the reserved capacity you

purchased, while queries in other workgroups still use the

on-demand capacity.

Athena Federated SQL

Amazon Athena Federated extends Athena’s querying

capabilities beyond S3, allowing you to query data stored in

various AWS and non-AWS data sources using AWS

Lambda–based data source connectors.

Figure 6-18 shows how Amazon Athena Federated Query works. When you execute a federated query, Athena uses

data connectors to translate your SQL query into the

appropriate format for the target data source, executes the

query against that source, and then processes the results

seamlessly. The connector, running as an AWS Lambda

function, handles connecting to the external source (like

RDS, DynamoDB, Snowflake, Google BigQuery, or other

databases), managing authentication, optimizing the query

for that specific data source, retrieving the data, and

converting it into a format that Athena can process.

For example, if you query both S3 data and Snowflake data

in a single SQL statement, Athena coordinates the

execution across both sources, handles the data federation,

and combines the results before presenting them to you. As

a user, you simply write standard SQL queries regardless of

where the underlying data resides, making it possible to

analyze data across multiple sources without moving or copying the data. The following are some of the most

common data sources:

 Data source connectors for non-AWS services

Snowflake, Google BigQuery, Azure Data Lake Storage, Azure

Synapse, Cloudera Hive, Cloudera Impala

 Data source connectors for AWS services

Amazon DocumentDB, DynamoDB, Amazon OpenSearch,

Amazon CloudWatch, Amazon Redshift, Amazon MSK

(Apache Kafka)

Refer to the available list of Athena connectors for a full list of connectors.

[image: Image 62]

 Figure 6-18. Amazon Athena Federated Query

Some common use cases for Athena’s federated queries

include the following:

 Multicloud analytics

Leverage connectors for Azure Data Lake, Google BigQuery,

etc., to analyze data across cloud platforms without data

egress fees.

 One-time analysis jobs across multiple data sources

The serverless and pay-per-use nature of Athena makes

federated queries cost-effective for ad-hoc analysis jobs

spanning multiple data sources like Amazon S3, Google BigQuery, Azure Data Lake Storage, Snowflake, etc.

 Ad-hoc data exploration

Query data across various data sources without up-front

data movement, enabling self-service exploration and

analysis.

Use Cases

Using Athena’s SQL Analytics, you can solve the following

use cases:

Query data stored in Amazon S3, such as AWS

service logs stored in S3, or data lake tables in

various open formats.

Query data from various external data sources using

Athena Federated Query.

Query Apache Iceberg tables, including time-travel

queries, and Apache Hudi datasets.

Perform geospatial analytics using geospatial

functions and datatypes.

Perform machine learning (ML) inference from

Amazon SageMaker:

– You can prebuild ML models in Amazon

SageMaker and run inferences using them

without complex programming and using

familiar SQL.

– To use this feature, define a function in

Athena using the USING EXTERNAL FUNCTION

clause. This function references a SageMaker

model endpoint that you want to use and

[image: Image 63]

specifies the variable names and data types to

pass to the model. Within the SQL query, you

invoke this function, passing in data values as

input to the ML model. The model processes

the input data using its algorithms and

returns the inference results to the query, as

shown in Figure 6-19.

 Figure 6-19. Machine learning inference with Amazon

 Athena and Amazon SageMaker

For example, you can integrate an anomaly

detection ML model. The query passes data to

the model, which analyzes it to identify and

flag any anomalous values in the results.

Query using your own user-defined functions defined

in AWS Lambda:

– You can extend Athena’s extending SQL

capabilities through user-defined functions

(UDFs) powered by AWS Lambda. You define

a UDF in your Athena SQL query and specify

the Lambda function containing its

implementation. When the query calls the

UDF, Athena invokes the corresponding

Lambda function.

– UDFs enable custom data transformations,

integrations with AWS services, calling

external APIs, and more—all within Athena

SQL queries. For example, you can create

UDFs for text translation, sentiment analysis,

or custom data processing.

For example, the following SQL invokes a

Lambda function to convert polygons to cells:

USING EXTERNAL FUNCTION

polygon_to_cells(polygonWKT VARCHAR, res INT)

RETURNS ARRAY(BIGINT) LAMBDA '<MY-LAMBDA-ARN>'

SELECT polygon_to_cells('POLYGON (

43.604652 1.444209,

47.218371 -1.553621,

50.62925 3.05726)');

DDL Capabilities

DDL (Data Definition Language) is a subset of SQL used to

define and modify the structure of database objects. It

includes commands that create, alter, and delete database

structures like tables, views, etc. Common DDL commands

include CREATE (to make new database objects), ALTER (to

modify existing objects), and DROP (to remove objects).

Amazon Athena supports a range of DDL statements that

allow you to create, modify, and manage databases, tables,

and views directly in the Athena query engine. While not all

Hive DDL statements are supported, the following DDLs are supported:

CREATE DATABASE, TABLE, VIEW

DROP DATABASE, TABLE, VIEW

ALTER TABLE to add/drop partitions, rename

partitions, replace columns

DESCRIBE to get metadata on tables and views

– This shows information about the columns in

a table, including details on complex column

types like structs and arrays.

SHOW statements to list databases, tables, views,

columns, etc.

MSCK REPAIR TABLE to synchronize partition

metadata:

– Use this command to update the metadata in

the AWS Glue Data Catalog after you’ve

added new Hive-compatible partitions to your

data files in Amazon S3. It scans the S3

filesystem for partitions that were added after

the Athena table was created, compares them

to the partitions recorded in the catalog

metadata, and adds any new partitions found

to the table’s metadata in the Data Catalog.

– Running this command reconciles this

metadata discrepancy, allowing Athena to

query the newly added partitions.

– It’s recommended to use MSCK REPAIR TABLE

when initially creating a partitioned table

from existing data, or when you are unsure if the partitions in the data match the metadata.

However, for frequent metadata updates like

daily partitions, ALTER TABLE ADD PARTITION

may be more efficient to avoid query timeouts

from excessive scanning.

Best Practices When Using Amazon Athena

Athena’s query performance and cost depends on the

volume of data scanned. Use the following best practices to

improve performance and reduce cost:

 Partition your data and pick partition keys that will

 support your queries. Select partition keys that align with your most common query patterns. Good

partition keys are those that you frequently use in

WHERE clauses to filter your data. For instance, if you

often query data by date, partitioning by date (e.g.,

year, month, day) can be highly effective.

 Improve query performance on highly partitioned

 tables using partition projection . Partition projection is a feature in Amazon Athena that can speed up

query processing for highly partitioned tables. The

key benefit is that by avoiding the metadata lookup,

partition projection can reduce query execution

time, especially for queries constrained by partition

metadata retrieval from the data catalog. In

addition, it can also perform automated partition

management.

 Partition projection is useful in the following

 scenarios:

– When queries against a highly partitioned

table are not completed quickly enough.

– When you regularly add new date/time

partitions to tables as new data arrives. With

partition projection, you can configure

relative date ranges that can accommodate

new data.

– When you have highly partitioned data in

Amazon S3 that is impractical to fully model

in the AWS Glue Data Catalog, and your

queries read only small parts of the data.

– When your partition structure follows a

predictable pattern like a sequence of

integers, dates, or enumerated values that

can be defined in the partition projection

configuration.

 Optimize cost and performance using query result

 reuse. Query result reuse is a performance and cost

optimization that allows Athena to return cached

results for identical queries, significantly reducing

query execution time and costs, especially for

recurring or parameterized queries with stable data

sources. Use this feature when the query results are

unlikely to change within a given timeframe:

– This is an opt-in feature: You can enable or

disable query result reuse on a per-query

basis.

– Maximum age setting: You can specify a

maximum age (in minutes, hours, or days) for

the previous query results to be reused. The

maximum is 7 days.

– Matching criteria: For Athena to reuse the previous results, the query string, database,

catalog, and result configuration must exactly

match the previous execution.

– Supported table types: Athena supports

reusing results for queries that reference

Apache Hive, Apache Hudi, Apache Iceberg,

and Linux Foundation Delta Lake tables

registered with AWS Glue Data Catalog.

– Workgroup scoped: The reused query results

are specific to the Athena workgroup where

the previous execution took place.

– Limitations: Certain query types like CTAS,

INSERT INTO, MERGE, UNLOAD, and DDL are

not supported for query result reuse. Tables

with fine-grained access controls or that are

governed by Lake Formation are also not

supported.

 Optimize cost and performance using columnar

 formats like Parquet and include only required

 columns in your select queries to limit the amount of

 data scanned. When dealing with large datasets, the

way you store and query your data significantly

impacts both cost and performance. Columnar file

formats like Parquet store data by columns rather

than rows, allowing you to read only the specific

columns you need instead of scanning entire rows.

For example, if you have a table with 100 columns

but only need data from three columns, a columnar

format lets you read just those three columns,

dramatically reducing the amount of data processed.

This is particularly cost-effective with services like

Amazon Athena, where you pay for the amount of data scanned per query. Additionally, when writing

queries, following the practice of specifically listing

needed columns (using SELECT column1, column2

instead of SELECT *) further reduces data scanning,

leading to faster query execution and lower costs.

You can read through “Top 10 Performance Tuning Tips for

Amazon Athena” for more best practices.

SQL Analytics Using Amazon Redshift

You can use SQL to analyze data in a Amazon Redshift data

warehouse as well. As you learned in Chapter 2, Amazon Redshift is a fully managed, petabyte-scale data warehouse

service that enables you to efficiently store, query, and

analyze large volumes of data. Amazon Redshift is designed

to handle complex SQL queries and supports a wide range

of analytical and business intelligence use cases. One of the key strengths of Amazon Redshift is its ability to process

and analyze data at scale. Redshift uses a massively

parallel processing (MPP) architecture, which allows it to

distribute the computational workload across multiple

nodes, resulting in fast query performance even on large

datasets.

To run SQL queries, Amazon Redshift offers a web-based

IDE called Redshift Query Editor v2, which is available

from the AWS Management Console. You can also use a

SQL IDE of your choice like DBeaver, SQLWorkbench, etc.

to connect to Redshift using JDBC/ODBC drivers. For data

analysis, you can connect to your Redshift cluster using

standard SQL clients or business intelligence tools, such as

Amazon QuickSight, Tableau, or Power BI. You can also

query Amazon Redshift programmatically using Amazon Redshift Data API.

SQL Functions

Amazon Redshift is built on the foundation of PostgreSQL

database software. However, Redshift has been extensively

modified to excel at analyzing and reporting on massive

datasets quickly. It provides advanced functions for

aggregation, calculations, working with dates/times, text

manipulation, JSON data, machine learning, and processing

specialized data types like arrays and spatial data.

As an example, let’s consider aggregation functions.

Amazon Redshift provides standard SQL aggregate

functions like AVG, COUNT, MAX, MIN, and SUM to combine

values over groups of rows. It also supports advanced

aggregate functions that go beyond traditional database

capabilities. This includes approximations like APPROXIMATE

PERCENTILE_DISC for estimating percentiles and LISTAGG

for concatenating strings within groups. There are

statistical aggregates like MEDIAN, STDDEV_SAMP,

STDDEV_POP, VAR_SAMP, and VAR_POP. It provides

specialized aggregates like ANY_VALUE to return any value

from a group, and PERCENTILE_CONT for computing

percentiles over numeric data. Amazon Redshift even has

bit-wise, HyperLogLog, and array aggregation functions for

advanced analysis of encoded, probabilistic, and array data

types, respectively. For a full list of functions, please refer to the SQL functions reference documentation.

Semi-Structured Data Analysis

Amazon Redshift allows you to query and analyze semi-

structured data like JSON, Avro, or Ion alongside your

structured data as is, without having to shred the JSON

attributes into separate columns.

Semi-structured data doesn’t have a fixed schema or format

like tables with columns. Amazon Redshift provides a

special data type called SUPER that can store semi-

structured data natively without having to first define all

the fields or structure. You can just insert entire JSON

documents into a SUPER column. This makes it very

flexible to ingest evolving, schemaless data without having

to predefine a rigid structure. The data can have nested

objects and arrays within it.

To query the semi-structured SUPER data, Redshift uses an

extended SQL called PartiQL. PartiQL understands nested

data structures and allows you to navigate into them using

familiar SQL syntax. PartiQL is schema-flexible, so you can

explore and query the semi-structured data dynamically

without strict schema validation during querying.

Let’s dive into semi-structured data analysis in Redshift

using an example. The customer_orders_lineitem table

has the following two records. The c_orders column has

semi-structured data in JSON format in Redshift:

id

c_name

c_orders

100

Customer#1

[

{

"o_orderkey": 1,

"o_orderdate": "1996-04-

12",

"o_lineitems": [

{

"l_partkey": 1,

"l_extendedprice": 45.67

},

{

"l_partkey": 2,

"l_extendedprice": 89.34

}

]

},

{

"o_orderkey": 2,

"o_orderdate": "1996-03-

21",

"o_lineitems": [

{

"l_partkey": 3,

"l_extendedprice": 56.78

}

]

}

]

101

Customer#2

[

{

"o_orderkey": 3,

"o_orderdate": "1996-05-

09",

"o_lineitems": [

{

"l_partkey": 10,

"l_saleprice":

56.78

}

]

id

c_name

c_orders

}

]

The first record shows that Customer#1 has two orders

(o_orderkey = 1 and o_orderkey = 2) with two line

items and one line item, respectively. The second record

shows that Customer#2 has one order (o_orderkey = 3)

with one line item. Now let’s look at how to query for order

information from this table for various use cases:

 Navigating into JSON objects/arrays

In the first use case, you want to retrieve the order keys of the first orders for each customer. This is a simple use case.

c_orders is an array that lists all the orders that the

customer made. Each array element can be accessed using a

subscript, c_orders[0] will be the first order and

c_orders[1] will be second order for each customer. Each

order is a structure that has various attributes. You can

query those attributes using a simple dot (.) notation. To

retrieve o_orderkey for the first order of each customer,

you need to select c_orders.o_orderkey as shown in the

following SELECT statement:

SELECT c_orders[0].o_orderkey FROM customer_orders_lineitem;

Result:

o_orderkey

—-----

1

2

 Unnesting arrays

In this use case, you want to un-nest the orders array and

print one row for each order that the customers made. That

is, as Customer#1 made two orders, there should be two

rows for Customer#1, and as Customer#2 made one order,

there should be one row. In order to un-nest arrays, you

need to include array(c_orders) in the FROM clause as

shown in the following query. Each element inside the array

can then be accessed using dot (.) notation:

SELECT c.c_name, o.o_orderkey, o.o_orderdate

FROM customer_orders_lineitem c, c.c_orders o;

Result:

c_name | o_orderkey | o_orderdate

-----------+------------+-------------

Customer#1 | 1 | 1996-04-12

Customer#1 | 2 | 1996-03-21

Customer#2 | 3 | 1996-05-09

 Unpivoting objects

This query unpivots the JSON object stored in c_orders[0].

It uses the UNPIVOT keyword to treat the object properties as individual rows, with the attr column containing the

property name and the val column containing the property

v:

SELECT attr, val

FROM customer_orders_lineitem c, UNPIVOT c.c_orders[0] AS val AT attr

WHERE c.c_custkey = 100;

Result:

attr | val

-------------+---------------------------------------

o_orderkey | 1

o_orderdate | "1996-04-12"

o_lineitems | [{"l_partkey":1 ,"l_extendedprice":45.67},

{"l_partkey":2,

"l_extendedprice":89.34}]

The queries showcase how PartiQL in Amazon Redshift

allows you to query and analyze semi-structured data.

Geospatial Data Analysis

As a data engineer, working with spatial data can be a

powerful way to unlock additional insights and capabilities

within your data processing pipelines. Amazon Redshift

provides robust spatial data analytics features that you can

leverage to support your geospatial use cases.

Redshift allows you to store and query geographic data

types like points, polygons, and more using the GEOMETRY

data type. It offers a suite of spatial SQL functions, such as ST_Distance, ST_Within, and ST_Intersects, that enable

you to perform advanced spatial analysis and querying on

your data. It also supports popular spatial data formats like Well-Known Text (WKT) and GeoJSON for importing and

exporting geographic information. Additionally, you can

utilize spatial predicates like the && operator to perform efficient spatial joins between your datasets.

To illustrate how you might apply these spatial capabilities, let’s consider an example scenario. Suppose you have an

“accommodations” table that stores Airbnb rental listings

in Berlin, including a “shape” column that stores the

geographic coordinates of each property as POINT data. You

also have a “zipcode” table that contains polygon

geometries representing the postal code boundaries in Berlin.

Here are some sample queries you could run to unlock

valuable spatial insights:

Counting accommodations within 500 m of a point

(Brandenburg Gate):

SELECT count(*)

FROM accommodations

WHERE ST_DistanceSphere(

shape,

ST_GeomFromText('POINT(13.377704 52.516431)', 4326)

) < 500;

This query uses the ST_DistanceSphere function to

calculate the distance between each

accommodation’s coordinates and the Brandenburg

Gate point, returning the count of accommodations

within 500 m radius.

Finding accommodation within a ZIP code polygon:

SELECT a.price, a.name, z.spatial_name

FROM accommodations a, zipcode z

WHERE price = 9000 AND ST_Within(a.shape,

z.wkb_geometry);

This query uses the ST_Within predicate to find the

accommodation with the highest $9,000 price that

falls within the polygon geometry of the

corresponding ZIP code area.

Query Data from Data Lake

One of Redshift’s key strengths is its ability to query and

analyze data across both data lakes and data warehouses

through its Redshift Spectrum feature. With Redshift

Spectrum, you can directly query vast amounts of data stored in open data formats like Parquet, ORC, RCFile,

TextFile, SequenceFile, RegexSerde, OpenCSV, and Avro in

Amazon S3 data lakes, without having to load the data into

Redshift tables first. You can also query tables in open

table formats (OTFs) like Apache Iceberg, Delta Lake, and

Hudi. To use Spectrum, you can follow these steps:

1. Define the structure of the files that are stored in

S3. You can do this in more than one way. You can

create external schemas and tables within Redshift

using CREATE EXTERNAL TABLE and CREATE

EXTERNAL SCHEMA statements. You can also use an

external data catalog like AWS Glue or Apache Hive

metastore.

2. You can partition the external tables for optimized

query performance. Amazon Redshift can ignore

unwanted partitions through partition pruning.

3. You can query and join the external S3 tables with

tables in your Redshift cluster.

4. When S3 data files are updated, the data is

immediately available for queries across all your

Redshift endpoints.

Analyzing Data from Operational Data Stores

Using Amazon Redshift

You can combine data from Amazon RDS and Amazon

Aurora databases with data in your Amazon Redshift

database. You do this using a special Amazon Redshift

feature called federated queries. Federated queries let you

directly query operational data stored in the source

databases, without having to move the data first. After

running the query, you can modify or transform the results, and then insert them into your Amazon Redshift tables.

When running these federated queries, some of the

computational work is split between Amazon Redshift and

the remote databases holding the source data. First,

Amazon Redshift connects to the remote database and gets

information about the tables there. Then it runs queries on

those tables and retrieves the rows of data matching the

query. Finally, it sends those rows of data to Amazon

Redshift’s own computing systems for any additional

processing.

In simple terms, federated queries allow you to integrate

and analyze data from different databases all in one query.

The work is shared across multiple systems, taking

advantage of their combined computing power.

Redshift ML and Generative AI

Amazon Redshift ML makes it easy to leverage machine

learning technology within Amazon Redshift, without

requiring deep expertise. It provides direct integration with AWS ML services like Amazon SageMaker, Amazon

Forecast, and Amazon SageMaker JumpStart. With Redshift

ML, you can create models for prediction use cases by

providing training data, and it automatically chooses the

best model using Amazon SageMaker Autopilot under the

hood. You can then make predictions on new data using

familiar SQL commands. Redshift ML currently supports

algorithms like XGBoost, neural networks, k-means

clustering, linear regression, forecasting, and invoking

generative AI models to augment datasets. This feature

allows SQL users to solve machine learning use cases

seamlessly within Amazon Redshift.

Amazon Redshift ML can solve various use cases such as customer churn prediction, fraud detection, sales

forecasting, and product recommendation—all without

having to move data out of Redshift or having deep

machine learning expertise:

 Prediction use cases

You can use historical customer information from Amazon

Redshift with Redshift ML to train models to predict the

future. You can solve binary classification use cases such as churn prediction for customers and fraud prediction for

financial transactions. You can solve multiclass classification problems such as classifying text documents into categories

like news, sports, entertainment, politics, etc. You can also solve linear regression problems such as predicting the

amount of original and counterfeit banknotes, finding the

average observation for an original and a counterfeit

banknote, etc.

 Clustering use cases

You can solve clustering problems such as grouping

customers who have similar viewing habits on a streaming

service, or grouping shows that have similar tones, actors, or locations, etc.

 Generative AI use cases

Use generative AI models using SQL statements in Redshift

to solve use cases such as sentiment analysis for reviews,

summarization of text, translating data from one language

to another, etc.

User-Defined Functions

Amazon Redshift enables you to create custom scalar user-

defined functions (UDFs). Three types of scalar UDFs are

supported by Amazon Redshift:

 SQL UDFs

These are created using a SQL SELECT clause. SQL UDFs help

with simple data transformations or calculations that can be

expressed in SQL. This logic is then made reusable and can

be applied across multiple queries.

 Python UDFs

These are created using a Python program. While you can

use standard Python functionality, you can also import your

own custom Python modules. Using Python UDFs you can

perform data processing that requires Python’s rich data

manipulation capabilities. You can perform complex data

transformations that are easier to implement in Python.

 Lambda UDFs

These allow you to use custom functions defined in AWS

Lambda as part of your SQL queries. Lambda UDFs can be

written in any language supported by Lambda like Java, Go,

PowerShell, Node.js, C#, Python, Ruby, or a custom runtime.

They provide more capabilities compared to Python and SQL

UDFs. Using Lambda UDFs, you can integrate with third-

party APIs, services, or data sources outside of Redshift for which Redshift doesn’t already have an integration (for

example, integration with third-party tokenization

solutions).

Analyzing Data Using Notebooks

Notebooks give you an easy way to leverage open source

Apache Spark in Amazon EMR (Elastic MapReduce) or

AWS Glue for data science, interactive analytics, preparing

and visualizing data, collaborating with peers, prototyping jobs before bringing them to production, etc.

AWS Glue Interactive Sessions

Glue interactive sessions is a feature within AWS Glue that

provides a powerful way for data engineers and data

scientists to interactively explore and analyze datasets. The key aspects of Glue interactive sessions are:

 Notebooks

Glue interactive sessions are based on Jupyter-compatible

notebooks, which are interactive coding environments that

allow you to write and execute code, visualize data, and

document your work in a single interface.

 On-demand Apache Spark

The backend compute for Glue interactive sessions is based

on Apache Spark. You need not manage any underlying

infrastructure to be able to process and analyze large

datasets using Spark.

 Visualization

Glue interactive sessions include native support for popular

data visualization libraries like Matplotlib and Seaborn,

using which you can create rich, interactive visualizations of your data directly within your notebook. If you want

additional libraries, just upload them to Amazon S3 and

specify the full path as a parameter value to the

additional_python_modules magic command.

Let’s walk through an example on how you can run a

sample visualization on the Iris dataset. The following shows the notebook code:

[image: Image 64]

[image: Image 65]

[image: Image 66]

[image: Image 67]

[image: Image 68]

[image: Image 69]

[image: Image 70]

[image: Image 71]

[image: Image 72]

import seaborn as sns

import matplotlib.pyplot as plt

 # Load the Iris dataset

iris = sns.load_dataset("iris")

 # Create a pair plot

sns.pairplot(iris, hue="species")

%matplot plt

These lines import two popular Python libraries for data

visualization: Seaborn and Matplotlib. Seaborn is a high-

level data visualization library that’s built on top of

Matplotlib, which is the core data visualization library.

This line is loading a well-known dataset called “Iris” into a variable called iris. The Iris dataset contains

measurements of different species of iris flowers, such as

petal length, petal width, sepal length, and sepal width.

This is where the visualization happens. The pairplot()

function from the Seaborn library creates a grid of scatter

plots, where each scatter plot shows the relationship

between two of the variables in the Iris dataset. The

hue="species" argument tells Seaborn to use different colors to represent the different species of iris flowers in the scatter plots.

This line is a “magic command” in the Jupyter notebook

environment that tells the notebook to display the

visualization created by the previous line of code.

In summary, this code is taking the Iris dataset, creating a

visual grid of scatter plots that show the relationships

between all the different measurements in the dataset, and

coloring the data points by the species of iris flower. This

type of visualization can help you quickly identify patterns

and relationships in the data, which can be very useful for exploratory data analysis and understanding the structure

of a dataset.

Amazon EMR Notebooks

Amazon EMR Notebooks is a managed environment based

on Jupyter notebooks. It enables users to interactively

analyze and visualize data, collaborate with peers, and

build applications using EMR clusters. EMR Notebooks is

designed for Apache Spark. It supports Spark Magic

kernels, which allows you to remotely run queries and code

on your EMR cluster using languages like PySpark, Spark

SQL, Spark R, and Scala.

With EMR Notebooks, there is no software or instances to

manage. You can either attach the notebook to an existing

cluster or provision a new cluster directly from the console.

You can attach multiple notebooks to a single cluster,

detach notebooks, and reattach them to new clusters. Here

is a typical workflow for using EMR Notebooks:

1. Create an EMR cluster with the required

components (e.g., Spark, Hive, Presto) for your data

processing and analytics needs.

2. Create a new EMR Notebook instance and connect it

to the EMR cluster.

3. Use the Jupyter notebook environment to read data

from various sources (e.g., S3, Glue Data Catalog),

perform exploratory data analysis, and visualize the

results.

4. Share the notebook with other team members,

allowing for collaboration and knowledge sharing.

5. Productionize the analytics workflows by creating scheduled jobs or integrating the notebooks into

your data pipeline.

You can run analytics similar to what was shown in the

AWS Glue interactive sessions using EMR notebooks.

Data Pipeline Resiliency

Building resilient data pipelines is crucial for ensuring

continuous and reliable data flow despite potential

disruptions. It involves implementing robust error handling,

data validation, comprehensive monitoring and alerting,

scalability and load management capabilities, data backup

and recovery processes, rigorous testing frameworks,

secure access controls, controlled change management,

and robust operational practices such as incident response

and disaster recovery plans. By prioritizing resiliency

through these measures, organizations can maintain data

integrity, ensure availability, minimize downtime, and

enhance the overall reliability of their data-driven systems

and applications.

Monitoring

Effective monitoring and observability are essential for

ensuring the reliability, performance, and cost-

effectiveness of your data processing pipelines. By

continuously monitoring your data pipelines, you can

quickly identify and address issues, optimize resource

utilization, and maintain the overall health and integrity of your data infrastructure. In this section, we will explore the key AWS services and tools that you can leverage to

monitor your data processing pipelines, including Amazon

[image: Image 73]

CloudWatch, AWS CloudTrail, and system tables within

your data processing services.

Monitoring metrics using CloudWatch

Amazon CloudWatch is a comprehensive monitoring and

observability service that provides you with visibility into

your AWS resources, applications, and services. Each AWS

service reports its metrics to CloudWatch. CloudWatch

collects and tracks these metrics, logs, and events, and

provides insights into the performance, health, and

utilization of your data pipelines. You can also publish

custom metrics to CloudWatch using the put-metric-data

API and AWS CLI. Figure 6-20 shows a sample metric graph for CPU utilization.

 Figure 6-20. Amazon CloudWatch metric sample

CloudWatch dashboards

CloudWatch dashboards allow you to visualize and monitor

data over time, in context with other related metrics and

information. They provide a way to tell a “story” about the

health and performance of your applications and

infrastructure by combining visualizations, annotations,

and context in a single view. Figure 6-21 is a sample CloudWatch dashboard.

[image: Image 74]

 Figure 6-21. Amazon CloudWatch dashboard

Monitoring API calls with CloudTrail

In addition to monitoring the performance and utilization of

your data processing resources, it’s important to track the

API calls and actions performed on your AWS services. This

is where AWS CloudTrail comes into play.

CloudTrail is a service that records API calls and related

events within your AWS environment, providing a

comprehensive audit trail of the actions taken by users,

roles, and services. When it comes to data processing

pipelines, CloudTrail can help you track activities such as

the creation, modification, or deletion of AWS Glue jobs,

AWS Step Functions state machines, Amazon Redshift

clusters, etc. among other data-related resources.

AWS CloudTrail will only show the results of the CloudTrail

event history for the current region you are viewing for the

last 90 days; it supports the AWS services found in the AWS

CloudTrail documentation. These events are limited to

management events with create, modify, and delete API calls and account activity. For a complete record of account

activity, including all management events, data events, and

read-only activity, you’ll need to configure a CloudTrail

trail.

By analyzing the CloudTrail logs, you can identify any

unauthorized or unexpected actions, monitor for potential

security breaches or compliance issues, and investigate any

changes or anomalies that may impact the operation of

your data pipelines. This level of visibility and auditability is crucial for maintaining the overall security and governance

of your data infrastructure. You can find CloudTrail log file

examples in the documentation.

Monitoring logs and traces

While CloudWatch and CloudTrail provide valuable insights

into the performance and API usage of your AWS services,

it’s also important to analyze the application-level logs

generated by your data processing workloads. These logs

can contain detailed information about the execution of

your data pipelines, such as job status, error messages, and

any transformations or processing steps performed.

Depending on the data processing services you’re using,

you may have access to different types of application logs.

For example, AWS Glue provides detailed logs for your ETL

jobs, including the execution status, runtime metrics, and

any errors or warnings encountered. Similarly, Amazon

EMR generates logs that capture the execution and

performance of your Spark, Hive, or other big data

workloads.

To analyze these application logs, you can leverage AWS

services like Amazon CloudWatch Logs, Amazon Athena,

and Amazon OpenSearch Service. CloudWatch Logs allows

you to centrally collect and store your application logs, while Athena can be used to run SQL queries on the log

data, enabling you to identify issues, analyze trends, and

troubleshoot problems. Additionally, you can use Amazon

OpenSearch Service to provide advanced log analysis and

visualization capabilities, allowing you to quickly identify

and respond to anomalies or critical events within your

data pipelines.

Monitoring using system tables

In addition to monitoring the performance, API usage, and

application-level logs of your data processing services, you

can also leverage built-in system tables and views to gain

deeper insights into the operation of your data pipelines.

System tables are available on the data warehouse service

Amazon Redshift. The following are some of the most

commonly used system tables in Amazon Redshift:

STL_QUERY_METRICS

Tracks query execution metrics like rows processed, CPU

usage, and disk I/O. Contains metrics for completed query

segments. Useful for analyzing query performance.

STL_ALERT_EVENT_LOG

Records alerts and warnings during query execution. Helps

identify potential issues like disk space and memory

constraints. Useful for proactive monitoring.

STL_LOAD_ERRORS

Contains details about data load errors. Records specific

rows that failed to load and why. Essential for

troubleshooting COPY command failures.

STL_LOAD_INFO

Tracks information about data load operations. Contains statistics about files loaded and rows processed. Useful for

monitoring load performance of COPY commands.

SYS_QUERY_HISTORY

Records user-submitted queries in original form. It has

single row per query execution. Contains query metadata

like user_id, transaction_id, and start/end times.

SYS_QUERY_DETAIL

Provides detailed metrics about query execution. Used for

troubleshooting query performance bottlenecks.

STL_PLAN_INFO

Contains query execution plan details. Shows how queries

are processed. Useful for query optimization.

STL_USAGE_CONTROL

Tracks resource usage and limits. Monitors concurrency

scaling usage. Helps manage cluster resources.

For more, consult the complete list of Amazon Redshift

system tables and the most used tables for troubleshooting in the SYS monitoring views documentation.

Alerting

As your data processing pipelines grow in complexity and

scale, manually monitoring and maintaining these systems

can become increasingly challenging and time-consuming.

To address this, you can leverage various AWS services to

automate the monitoring and maintenance of your data

pipelines, enabling you to proactively detect and respond to

issues, as well as maintain the overall health and integrity of your data infrastructure.

CloudWatch Alarms

When monitoring data pipelines with CloudWatch, you can

track metrics like CPU, memory, network utilization for

compute resources (EC2, Redshift, Lambda), data

throughput and latency for streaming services (Kinesis,

MSK), query performance and execution times for

analytical services (Athena, Redshift), and more.

CloudWatch alarms proactively notify you before

experiencing issues, such as Lambda errors, DynamoDB

throttles, API Gateway 500 errors, high CPU utilization in

Redshift, and others, enabling timely remediation and

preventing pipeline disruptions.

There are two types of CloudWatch Alarms:

 Metric alarms

These are the basic types of alarms that watch a single

metric, like CPU usage, network traffic, etc. You set a

threshold, and the alarm goes into an ALARM state if the

metric value goes above or below that threshold. When the

alarm state changes, it can trigger actions like sending a

notification or making an API call.

 Composite alarms

These are “alarms of alarms.” Instead of watching a single

metric, a composite alarm evaluates the states of other

metric alarms or even other composite alarms based on a

rule you define. For example, you could create a composite

alarm that only goes into ALARM state if both a CPU metric

alarm AND a memory metric alarm are in ALARM state. The

benefit is that it allows you to combine and filter out noise from multiple underlying alarms.

There are two different ways you could set up metric alarms based on CloudWatch metrics:

 Static threshold

A static threshold represents a hard limit that the metric

should not violate. You must define the range for the static

threshold, which defines the behavior during normal

operations. If the metric value falls below or above the static threshold, the alarm status will change to ALARM.

 Anomaly detection

CloudWatch anomaly detection analyzes past metric data

and creates a model of expected values by taking into

account the typical hourly, daily, and weekly patterns in the metric. You can apply the anomaly detection for each metric

as required and CloudWatch applies a machine-learning

algorithm to define the upper limit and lower limit for each

of the enabled metrics. It generates an alarm only when the

metrics fall out of the expected values.

Alarm state

Alarms have the following possible states:

OK

The metric or expression is within the threshold. The alarm

is not active, and all is well.

ALARM

The metric or expression is outside of the threshold. The

alarm is active.

INSUFFICIENT_DATA

The alarm has just started, the metric is not available, or not enough data is available for the metric to determine the

alarm state.

Notifications

CloudWatch allows you to set notifications to proactively

detect and respond to issues or performance degradations

within your data pipelines. CloudWatch uses the Simple

Notification Service (SNS) under the hood, as shown in

Figure 6-22. SNS is a notification service that can inform you in case of any errors. It sends notifications like emails, SMS, or in-app notifications. You can also attach an AWS

Lambda function to the SNS topic to:

Take automated actions to fix the issue (e.g., resize

an Amazon Redshift cluster in response to an alarm).

Send notifications to third-party tools like Slack, MS

Teams, Discord, etc.

[image: Image 75]

 Figure 6-22. Amazon CloudWatch alarm

Event-Driven Pipeline Maintenance with

EventBridge

Another powerful tool for automating the maintenance of

your data processing pipelines is Amazon EventBridge.

EventBridge is a serverless event bus service that allows

you to connect your applications and services, enabling

them to communicate and respond to events in near real

time.

When it comes to data pipeline maintenance, you can use

EventBridge to create rules that automatically trigger

actions in response to specific events, such as the

completion of an AWS Glue job, the addition of a new file to

an Amazon S3 bucket, or the failure of an AWS Lambda

function. You can create robust, self-healing data pipelines.

For example, you can create a rule that automatically

restarts an AWS Glue job if it fails to complete successfully.

You can set up an EventBridge rule that triggers an AWS

Lambda function to perform data quality checks whenever

a new file is added to your data lake.

Ensuring Data Quality and Reliability: Deequ

and DQDL

Maintaining high-quality, reliable data is essential for

driving accurate and meaningful insights from your data

processing pipelines. As data engineers, you play a crucial

role in ensuring the integrity, completeness, and accuracy

of the data that flows through your infrastructure, enabling

your organization to make informed, data-driven decisions.

The data quality solutions in AWS are based on the open

source Deequ framework. Deequ is an open source library

developed by Amazon for data quality validation in large-

scale data processing pipelines. It is built on Apache Spark.

It treats data quality checkers as testable assertions, similar to how unit tests work for code.

The Data Quality Definition Language (DQDL) is a

declarative language used to define data quality rules in a

structured and standardized way when using Deequ.

Instead of writing data quality checks in code, DQDL lets

you express them as simple configurations, enabling even

nondevelopers to write and manage rules.

In this section, we will explore the various AWS analytics

services that use Deequ and DQDL to provide data quality

solutions.

AWS Glue Data Quality

AWS Glue Data Quality is a managed serverless service

that allows you to measure and monitor the quality of your

data to make informed business decisions. It is built on top

of the DeeQu framework and uses DQDL to define data

quality rules.

There are two main entry points for using AWS Glue Data

Quality:

AWS Glue Data Catalog:

– You can generate data quality rule

recommendations by analyzing tables in your

Data Catalog.

– AWS Glue automatically identifies and

suggests rules based on your data.

– You can edit the recommended rulesets or

create custom rulesets using DQDL.

– Calculate a data quality score showing the

percentage of rules that passed.

[image: Image 76]

– View the score, passed/failed rule results,

and run history in the AWS Glue console.

– Requires an IAM role with permissions for

AWS Glue, Amazon S3, and CloudWatch.

– Set up scheduling, alerts, and save results to

S3.

Figure 6-23 shows how you can create a data quality rule in AWS Glue Data Catalog. The UI provides a

helper with a + button. You can click on it to add it

to the ruleset to generate your roles, as shown in the

figure. The rule in Figure 6-23 is checking that the correlation between columns A and B is less than

0.5, the average of both ratings is greater than or

equal to 0.9, and the number of columns is 10.

 Figure 6-23. Creating a data quality rule in the Glue Data Catalog AWS Glue ETL jobs:

– Perform proactive data quality tasks before

loading data into your data lake.

– Identify and filter out bad data before ETL

processing.

– Incorporate data quality tasks directly into

your ETL job scripts and pipelines.

[image: Image 77]

– Write code to define data quality rules in ETL

scripts using DQDL.

– Manage data quality through AWS Glue

Studio, Studio notebooks, and interactive

sessions.

– Use AWS Glue libraries and APIs for data

quality in ETL scripting.

Figure 6-24 shows the Evaluate Data Quality transform available in AWS Glue Studio. The rule is

validating that the values for the fare amount field

are between 1 and 100.

 Figure 6-24. Data quality in AWS Glue jobs using Glue Studio Let’s learn more about DQDL.

AWS Glue Data Quality DQDL syntax

In AWS Glue, a DQDL document is case sensitive and

contains a ruleset, which groups individual data quality

rules together. To construct a ruleset, you must create a

list named Rules (capitalized), delimited by a pair of

square brackets. The list should contain one or more

comma-separated DQDL rules like the following example:

Rules = [

IsComplete "order-id",

 IsUnique "order-id"

]

The rules generally fit the following format:

<RuleType> <Parameter> <Parameter> <Expression> RuleType is the case-sensitive name of the rule type that

you want to configure. Some of the most common rule

types are listed in Table 6-1.

 Table 6-1. Common rule types in AWS Glue Data Quality Rule type

Description

DistinctValuesC

Checks for duplicate values.

ount

ColumnCount

Checks if any columns are dropped.

ColumnDataType

Checks if a column is compliant with a

data type.

ColumnExists

Checks if columns exist in a dataset. This

allows customers building self-service

data platforms to ensure certain columns

are made available.

IsUnique

Checks if the column has all unique

values, excluding NULLs.

IsPrimaryKey

Checks if a column is a primary key (not

NULL and unique).

Sum

Checks if the sum matched a threshold.

AggregateMatch

Checks if two datasets match by

comparing summary metrics like total

sales amount. Useful for financial

institutions to compare if all data is

ingested from source systems.

ColumnCorrelati

Checks how well two columns are

on

correlated.

ColumnLength

Checks if length of data is consistent.

Rule type

Description

ColumnNamesMatc

Checks if column names match defined

hPattern

patterns. Useful for governance teams to

enforce column name consistency.

ColumnValues

Checks if data is consistent per defined

values. This rule supports regular

expressions.

Completeness

Checks for any blank or NULLs in data.

DataFreshness

Checks if data is fresh by evaluating the

difference between the current time and

the values of a date column.

DatasetMatch

Compares two datasets and identifies if

they are in sync.

Entropy

Checks for entropy of the data.

IsComplete

Checks if 100% of the data is complete.

Mean

Checks if the mean matches the set

threshold.

ReferentialInte

Checks if two datasets have referential

grity

integrity.

RowCount

Checks if record counts match a

threshold.

RowCountMatch

Checks if record counts between two

datasets match.

StandardDeviati

Checks if standard deviation matches the

Rule type

Description

on

threshold.

SchemaMatch

Checks if schema between two datasets

match.

Uniqueness

Checks if uniqueness of a dataset matches

threshold.

UniqueValueRati

Checks if the unique value ratio matches

o

threshold.

FileFreshness

Checks if files in Amazon S3 are fresh.

FileMatch

Checks if contents of file match to a

checksum or with another file. This rule

uses checksums to validate if two files are

the same.

FileSize

Checks if the size of a file matches with a

specified condition.

FileUniqueness

Checks if files are unique using

checksums.

CustomSQL

When the existing rule types don’t satisfy

your requirement, this allows you to

define your own rule using a custom SQL

statement.

Composite rules

You can combine multiple rules using and and or operators.

For example:

(IsComplete "id") and (IsUnique "id")

Let’s consider an example data quality pipeline where a data engineer ingests data from a raw zone and loads it

into a curated zone in a data lake. The data engineer is

tasked with not only extracting, transforming, and loading

data, but also identifying anomalies compared against data

quality statistics from historical runs. The dataset is the

New York taxi dataset and the data engineer wants to

validate the following:

At least 90% of rides must have passengers

(passenger count greater than 0).

The average trip distance should be less than 1.5

times the highest average from the last 3 runs.

The total amount of all fares should be above 80% of

the lowest total from the last 3 runs and below 120%

of the highest total from the last 3 runs.

The number of unique pickup locations should be

more than 80% of the average from the last 3 runs.

The number of columns should exactly match the

highest count from the last 2 runs.

The DQDL ruleset that can check these are as follows. Note

that the first rule is custom SQL that checks if 90% of rides have passengers. Also the last() function can be used to

check the values for the last N job runs:

CustomSql "select vendorid from primary where passenger_count > 0"

with threshold > 0.9,

Mean "trip_distance" < max(last(3)) * 1.50,

Sum "total_amount" between min(last(3)) * 0.8 and max(last(3)) *

1.2,

RowCount between min(last(3)) * 0.9 and max(last(3)) * 1.2,

Completeness "fare_amount" >= avg(last(3)) * 0.9, DistinctValuesCount "ratecodeid" between avg(last(3))-1 and avg(last(3))+2,

DistinctValuesCount "pulocationid" > avg(last(3)) * 0.8, ColumnCount = max(last(2))

Using Deequ with Amazon EMR

Since Deequ is based on Apache Spark, you can use this

library in Amazon EMR. Amazon EMR provides an ideal

platform for leveraging the power of Deequ. By running

Deequ on an Amazon EMR cluster, you can take advantage

of the scalable and distributed processing capabilities of

Apache Spark to verify the quality of your large-scale

datasets. Whether your data lives in Amazon S3 or other

distributed data sources you can easily access and analyze

your data for quality assurance. Here are the steps:

1. Create an Amazon EMR cluster with Spark 2.2.0 or

later. EMR takes care of the Spark configuration for

you.

2. Download the Deequ JAR by connecting to the

Amazon EMR master node using SSH and launch the

Spark shell using Deequ:

wget \

http://repo1.maven.org/maven2/com/amazon/deequ/deequ/1.0.

1/deequ-1.0.1.jar

spark-shell --conf spark.jars=deequ-1.0.1.jar

3. Read data into a Spark DataFrame; in this example

we will use sample Amazon reviews dataset:

val dataset = spark.read.parquet(

"s3://amazon-reviews-

pds/parquet/product_category=Electronics/")

4. Use AnalysisRunner to define the metrics you want

to compute:

from com.amazon.deequ.analyzers.runners import (

AnalysisRunner,

AnalyzerContext

)

from com.amazon.deequ.analyzers.runners.AnalyzerContext

import (

successMetricsAsDataFrame

)

from com.amazon.deequ.analyzers import *

val analysisResult: AnalyzerContext = {

AnalysisRunner

.onData(dataset)

.addAnalyzer(Size())

.addAnalyzer(Completeness("review_id"))

.addAnalyzer(ApproxCountDistinct("review_id"))

.addAnalyzer(Mean("star_rating"))

.addAnalyzer(Compliance("top star_rating",

"star_rating >= 4.0"))

.addAnalyzer(Correlation("total_votes",

"star_rating"))

.addAnalyzer(Correlation("total_votes",

"helpful_votes"))

.run()

}

val metrics = successMetricsAsDataFrame(spark,

analysisResult)

5. Use VerificationSuite to define data quality

checks:

import com.amazon.deequ.{VerificationSuite,

VerificationResult}

import

com.amazon.deequ.VerificationResult.checkResultsAsDataFra

me

import com.amazon.deequ.checks.{Check, CheckLevel}

val verificationResult: VerificationResult = {

VerificationSuite()

.onData(dataset)

.addCheck(

Check(CheckLevel.Error, "Review Check")

.hasSize(_ >= 3000000)

.hasMin("star_rating", _ == 1.0)

.hasMax("star_rating", _ == 5.0)

 .isComplete("review_id")

.isUnique("review_id")

.isComplete("marketplace")

.isContainedIn("marketplace", Array("US", "UK",

"DE", "JP", "FR"))

.isNonNegative("year")

)

.run()

}

val resultDataFrame = checkResultsAsDataFrame(spark,

verificationResult)

6. Call resultDataFrame.show(truncate=false) to

inspect the data quality check results. You can also

look at the computed metrics using

VerificationResult.successMetricsAsDataFrame

(spark,

verificationResult).show(truncate=False).

For more information, you can refer “Test Data Quality at

Scale with Deequ” in the documentation.

Automated Data Quality Checks and Error

Handling

In addition to automating the monitoring and maintenance

of your data processing pipelines, you can also leverage

AWS services to implement automated data quality checks

and error handling mechanisms.

For example, you can use AWS Glue DataBrew to define

and apply data validation rules, such as checking for

missing values, detecting and handling sensitive

information, or deduplicating records. These data quality

checks can be integrated into your ETL workflows,

ensuring that your data is consistently clean and reliable

before it is processed or loaded into your data warehouse

or data lake.

Furthermore, you can leverage the error handling capabilities of services like AWS Glue and AWS Step

Functions to automatically retry failed tasks, route data to

dead-letter queues for further investigation or trigger

custom remediation actions in response to specific error

conditions. This helps to ensure the overall resilience and

fault tolerance of your data processing pipelines,

minimizing the impact of temporary failures or issues.

Troubleshooting and Performance Tuning

As data processing pipelines grow in complexity and scale,

identifying and resolving performance issues and

bottlenecks becomes increasingly crucial. In this section,

we will explore various techniques and best practices for

troubleshooting and optimizing the performance of your

data processing pipelines. We can use AWS CloudWatch

Logs to review detailed error messages. From the error

message, we can identify the kind of error. Some of the

common errors are discussed in the following sections.

Connection timed out errors

This error means that a client or an AWS service is unable

to establish a connection with the service/server that it is

trying to connect to within a set period. This often indicates a problem with network connectivity. When it comes to

networks, there are multiple layers you need to check:

 VPC configuration

Most AWS resources like Amazon Redshift, OpenSearch, or

EMR clusters are deployed within VPCs. For successful

connections to them, both the client and server should either be in the same VPC or have proper connectivity between

different VPCs. If services are in different VPCs, you’ll need to either:

Set up VPC peering to connect the VPCs.

Create a VPC endpoint to enable service communication.

For example, when an AWS Glue job is attempting to connect

to Amazon Redshift to perform data processing, you may see

a connection timed out error. To fix this you need to ensure

that the Glue connection is using a VPC, and the VPC that the connection is using is the same as the VPC in which the

Redshift cluster is deployed.

 Security group settings

Security groups act as virtual firewalls controlling traffic to and from resources. The security group attached to your

target resource must explicitly allow incoming traffic from

the client/service trying to connect. For example, if an AWS

Glue job needs to access Redshift, the Redshift cluster’s

security group must permit incoming traffic from AWS Glue.

Access denied exceptions

These typically occur when an AWS service or user

attempts to perform an action they don’t have permission

for. This is typically due to insufficient or incorrectly

configured IAM policies. Do the following to fix these:

Ensure the IAM role associated with your analytics

service has the necessary permissions. For example,

an Amazon Athena query might fail if its execution

role lacks permissions to read from the S3 bucket

containing the data.

Some AWS resources have their own policies (e.g.,

S3 bucket policies, Amazon Redshift grants). Ensure

that these policies are allowing the action you are intending to perform. For example, if Amazon

QuickSight can’t access an S3 bucket, check if the

bucket policy allows QuickSight’s access.

Example scenario: Consider an Amazon EMR cluster trying

to read data from an S3 bucket:

Verify the EMR cluster’s IAM role has S3 read

permissions.

Check that the S3 bucket policy allows access from

the EMR cluster’s IAM role.

If using KMS encryption, ensure the EMR role has

permissions to use the KMS key.

Troubleshooting tips:

Review CloudTrail logs to identify the exact

permissions being denied.

Use the IAM Policy Simulator to test and validate

IAM policies.

For S3 access issues, enable S3 access logs to see

detailed access attempts.

Throttling errors

Throttling errors happen when too many API requests are

made in a short time. For example, too many concurrent

Glue job starts, excessive API calls to QuickSight, rapid S3

requests, or too many query requests through Redshift data

API or Athena. The solution is to implement exponential

backoff and request rate limiting. With exponential backoff,

when an error occurs, you retry the request with

progressively longer wait times between attempts (for

example, waiting one second, then two seconds, then four seconds, and so on), helping to avoid overwhelming the

service while still attempting to complete the operation.

Rate limiting complements this by controlling how many

requests you make within a specific time period—for

instance, limiting to 100 requests per second.

In addition, consider partitioning your data more effectively to distribute requests. For S3, avoid having a large number

of small files; instead, use AWS Glue ETL to periodically

compact your files. Monitor your usage and adjust your

service quotas if necessary. For Athena, consider using

workgroups to manage query concurrency and execution.

Resource constraints

Resource constraints can occur when the service doesn’t

have necessary resources to complete the task, for

example, a Lambda function doesn’t have enough memory

or processing power to handle the analytics task. To fix it,

increase resource allocation, if it is fixed. For example,

increase the memory allocation for your Lambda function,

which also increases CPU power proportionally.

CI/CD Pipelines

Implementing a CI/CD (continuous integration/continuous

deployment) pipeline for AWS analytics projects can

streamline the process of developing, testing, and

deploying analytics solutions. Here is an overview of how

you can set up a CI/CD pipeline for an AWS analytics

workflow involving services like Amazon Redshift, Glue,

Athena, EMR, or other related data processing tools.

Continuous integration (CI)

Continuous integration is a software development practice

where developers frequently integrate their code changes

into a central repository, after which automated builds and

tests are run. This helps catch issues quickly and ensures

the mainline codebase is always in a deployable state. You

can use AWS CodeBuild for CI, which is a fully managed build service that compiles source code, runs tests, and

produces deployment-ready artifacts without requiring you

to manage build servers. It offers preconfigured

environments for popular programming languages like

Java, Node.js, Python, etc. It scales automatically and

allows custom configurations while charging only for actual

usage.

Continuous deployment (CD)

Continuous deployment is a software release process that

automatically deploys every change that passes through the

production pipeline to production environments. There is

no human intervention, and deployments happen

automatically and seamlessly. You can use AWS

CodePipeline for CD. It is a continuous delivery service you can use to model, visualize, and automate the steps

required to release your data pipeline.

Version Control and Collaboration

Store your data processing scripts, transformation code,

and infrastructure as code using AWS CodeCommit. AWS

CodeCommit is a version control service that enables you

to privately store and manage Git repositories in the AWS

Cloud. You can implement workflows that include code

reviews and feedback by default, and control who can make

changes to specific branches.

Infrastructure as Code

Infrastructure as code (IaC) is the practice of managing

and provisioning cloud infrastructure resources through

defining them using code and configuration files instead of

manually clicking through consoles or running scripts. Just

like application code is written in programming languages

and version controlled, infrastructure definitions are also

codified using AWS services like CloudFormation or the

Cloud Development Kit. This allows infrastructure to be

built in a repeatable, consistent manner across multiple

environments through configuration files that are version

controlled. Infrastructure deployments can then be

automated and tracked just like deploying application code

changes.

AWS CloudFormation

AWS CloudFormation allows you to define and provision

your entire AWS infrastructure resources using simple text

files. Instead of clicking around the AWS Console to

manually provision resources like Amazon Redshift data

warehouses, AWS Glue jobs, Lambda functions, databases,

load balancers, etc., you can specify all your required

resources and their configurations in a CloudFormation

template file in JSON or YAML format. This template acts

like an executable blueprint for your infrastructure. You

just provide this template to CloudFormation, and it

provisions all the resources specified in the template in an

automated, coordinated manner. It figures out

dependencies and runs everything in the right order. A

CloudFormation template has the following three main

sections:

 Parameters

Parameters allow you to pass in values to the template when you create a stack. These could be things like instance types, CIDR blocks, database passwords, etc., that may vary across

environments. Parameters make your templates reusable.

 Resources

This is the core section where you define all the AWS

resources you want CloudFormation to create (e.g., EC2

instances, S3 buckets, RDS databases, etc.). You specify the

resource type and configuration properties.

 Outputs

Outputs are values that CloudFormation exposes after

creating resources. For example, it could output the public IP

of an EC2 instance or the endpoint for an Elastic Load

Balancer (ELB). You can use these outputs for data that may

be needed after provisioning.

For more information on CloudFormation, you can refer to

the documentation. Following is a sample CloudFormation template that deploys an AWS Glue database:

AWSTemplateFormatVersion: '2010-09-09'

Sample template to create a glue database

Input parameters

Parameters:

CFNDatabaseName:

Type: String

Default: cfn-mysampledatabse

Resources section defines resources that will be deploys

Resources:

Create an AWS Glue database

CFNDatabaseFlights:

Type: AWS::Glue::Database

Properties:

CatalogId: !Ref AWS::AccountId

DatabaseInput:

Name: !Ref CFNDatabaseName

 Description: Database to hold tables for flights data LocationUri: s3://public-us-east-1/flight/2016/csv/

The great thing is that this template is reusable. You can

use the same template to rebuild your infrastructure over

and over in any region, ensuring consistency across

environments. If you need to make changes, you just modify

the template file and CloudFormation updates only what

needs to be changed.

AWS Serverless Application Model

AWS Serverless Application Model (AWS SAM) is an open

source framework that makes it easier to build serverless

applications on AWS. Building CloudFormation templates

for multiservice applications can be complex. AWS SAM,

which is an extension of CloudFormation, helps simplify

this for serverless services:

It provides shorthand syntax to define serverless

resources like AWS Lambda functions, Amazon API

Gateway APIs, and Amazon DynamoDB tables in

simple and clean CloudFormation templates.

It handles all the CloudFormation syntax around

Lambda functions, API Gateways, etc., so you can

focus on just the application logic.

It supports modern development workflows

including local development, testing, and debugging

of serverless apps before deploying to AWS.

It extends and builds on top of AWS

CloudFormation, so you get all the deployment

capabilities of CloudFormation.

It allows organizing related components and

resources into versioned units that can be deployed

together as one entity.

It lets you define and share common configurations

across resources like memory, timeouts, etc.

It enables infrastructure-as-code best practices for

serverless apps by defining them declaratively.

AWS Cloud Development Kit (AWS CDK)

AWS CDK is an open source framework that allows you to

define and provision your cloud application resources using

popular programming languages like TypeScript, Python,

Java, and .NET. Instead of JSON or YAML configuration

files, you write actual code to model your infrastructure.

With the CDK, you can leverage their existing integrated

development environments (IDEs) with benefits like

autocompletion, inline documentation, and coding best

practices.

Under the hood, the CDK uses AWS CloudFormation;

however, you don’t have to deal with raw CloudFormation

syntax. The core building blocks are called “constructs,”

which represent components like Amazon Redshift data

warehouses, AWS Glue jobs, EC2 instances, Lambda

functions, databases, etc. The AWS CDK includes the AWS

Construct Library, containing constructs representing

many AWS services. By composing these constructs

together using programming languages, you can

programmatically define and provision even complex cloud

architectures on AWS through code.

AWS also provides CDK extensions for Kubernetes (AWS

Cloud Development Kit for Kubernetes) and Terraform

(AWS Cloud Development Kit for Terraform) to model infrastructure on those platforms using code as well. Refer

to the AWS Samples GitHub repository for CDK examples.

Choosing the right IaC solution

Consider the aspects discussed in Table 6-2 when choosing the right IaC solution for your use case.

 Table 6-2. Choosing the right IaC solution Aspect

SAM

CDK

Best for

Simple

Complex infrastructure, f

serverless

stack applications

applications,

Lambda-

focused

workloads

Learning

Lower: simple

Higher: Requires

curve

YAML syntax

programming knowledge

(TypeScript/Python/Java

Infrastructure

Specialized for

All AWS services and

scope

serverless

resources

(Lambda, API

Gateway,

DynamoDB)

Template

YAML/JSON

Programming languages

format

(TypeScript, Python, Java

C#, Go)

Development

Quick for

More setup initially, but

speed

serverless apps

faster for complex system

Testing

Basic unit

Comprehensive testing

capabilities

testing, local

options, unit/integration

Lambda testing

testing

Aspect

SAM

CDK

Team

Better for

Better for teams with

background

teams familiar

programming experience

with

CloudFormation

Reusability

Limited to

High: can create custom

CloudFormation

constructs and libraries

macros

Disaster Recovery and High Availability

Disaster recovery (DR) and high availability (HA) refers to

a system’s ability to remain operational and accessible for

extended periods, minimizing downtime through

redundancy and fault tolerance. In the context of analytics

systems, high availability ensures that data and analysis

capabilities remain accessible even when components fail

or during maintenance windows.

Recovery point objective (RPO) and recovery time objective

(RTO) are crucial metrics in disaster recovery planning.

RPO defines the maximum acceptable amount of data loss

measured in time—essentially how far back in time you

might need to go when recovering data. For example, an

RPO of one hour means you could lose up to one hour of

data in a disaster scenario. RTO, on the other hand,

specifies how quickly you need to restore your service to

operation after a disruption. An RTO of four hours means

your system must be back online within four hours of an

incident.

The first step in curating a DR plan is defining maximum

acceptable data loss (RPO) and maximum acceptable

service downtime (RTO) by working with your business stakeholders. For example, not all business reports are

business critical so it’s important that your DR plans are

aligned with the severity of the outage.

With these concepts in mind, organizations typically choose

between three main resilience architectures:

 Active-active setup

Maintains multiple fully operational environments

simultaneously, with data continuously synchronized

between them. This approach offers the highest availability

and lowest RTO, as traffic can immediately shift to the

functioning environment if one fails. However, it’s the most

complex and expensive option, requiring careful

management of data consistency and operational processes

across environments.

 Active-passive architecture

Maintains a primary environment that handles all

workloads while keeping a standby environment ready for

failover. This approach balances cost and resilience, offering good recovery times while avoiding the complexity of active-active setups. The standby environment remains ready but

inactive, regularly receiving data updates from the primary

system. While this means paying for resources that aren’t

actively used, it provides a reliable failover option when

needed.

 Backup-restore approach

Represents the most basic resilience strategy, regularly

creating backup copies of data that can be restored when

needed. While this is the most cost-effective option, it

typically results in longer recovery times and more potential data loss, as you can only restore to the last backup point.

This approach works well for systems with less stringent RPO and RTO requirements.

AWS analytics services protect against disruptions through

various HA features. Serverless analytics solutions include

built-in HA capabilities that work automatically without

additional configuration. For provisioned services like

Amazon EMR, Amazon MSK, Amazon OpenSearch, and

Amazon Redshift, you can manually configure high-

availability options to match your specific business

continuity requirements. These features ensure your

analytics workloads remain operational even during

potential outages or disasters. Let’s understand how to

configure high-availability options in these services.

HA for Amazon EMR clusters on EC2

When you launch an Amazon EMR cluster, you can choose

to have either one or three primary nodes (master nodes).

Having three primary nodes instead of one provides high

availability, which means if one of the primary nodes fails,

the other two can take over and keep the cluster running

without interruption. This way, the primary node is not a

single point of failure. Amazon EMR can automatically

replace a failed primary node with a new one that has the

same configuration and settings as the original.

To further improve cluster availability, you can use Amazon

EC2 placement groups. This ensures that the primary

nodes are placed on different underlying hardware, so if

one hardware fails, the other primary nodes can still

function.

HA for Amazon Redshift provisioned clusters Amazon Redshift is a fully managed service that comes with

built-in resiliency. It has an automatic fault detection

system that swiftly identifies and replaces any failed nodes

within your cluster. When a replacement is necessary,

Redshift seamlessly integrates the new node into your

existing infrastructure with minimal disruption. To expedite

the recovery process, Redshift prioritizes the restoration of your most frequently accessed data, retrieving it first from

Amazon S3. In addition to this, Redshift offers features that you can configure based on your RPO and RTO

requirements.

Availability Zone (AZ) failure recovery

Two main approaches exist in case of an unlikely event that

an entire AZ fails:

 Active-passive (relocation)

For single-AZ deployments, Redshift automatically relocates

clusters to another AZ when needed. Recovery typically

takes 10–60 minutes and requires cluster relocation to be

enabled.

 Active-active (multi-AZ)

Provides simultaneous operation across multiple AZs with

automatic failover in under 60 seconds. This offers the

highest availability but is only available for provisioned

clusters, not Redshift Serverless. This option has an RPO of 0

(i.e., your data remains up-to-date and current in the event

of a failure). With multi-AZ, Amazon Redshift offers a 99.99%

service-level agreement (SLA), compared to 99.9% for a

single-AZ deployment.

Backup and restore

Amazon Redshift provisioned clusters provide two types of

backups: automated snapshots and manual snapshots:

 Automated snapshots

Redshift provisioned clusters take automated snapshots

every 8 hours or after 5 GB of data changes per node,

whichever comes first. While automated snapshots are

enabled by default with a one-day retention period, you can

configure them to be retained for up to 30 days without

incurring additional charges. You can also create custom

snapshot schedules with a minimum frequency of one hour.

These automated snapshots are automatically deleted after

their retention period expires, and they’re also removed

when the cluster is deleted.

 Manual snapshots

Manual snapshots allow you to retain backups for any

length of time. You can convert automated snapshots to

manual snapshots or create new manual snapshots. They

are retained indefinitely by default, though you can specify

custom retention periods. These snapshots incur storage

charges until deleted. Manual snapshots can be shared with

other AWS accounts, enabling collaborative data access and

querying.

In Amazon Redshift Serverless, there are also two types of

backups—recovery points and manual snapshots:

 Recovery points

Recovery points are automated backups created every 30

minutes and retained for 24 hours before automatic

deletion. These recovery points can be converted to manual

snapshots for extended retention and to enable point-in-time recovery capabilities.

 Manual snapshots

Serverless manual snapshots work the same way as manual

snapshots do in provisioned clusters. They are manual

backups that users create explicitly for their serverless

namespace. These snapshots can be restored to either a new

serverless namespace or a provisioned cluster, with the

flexibility to choose node types and quantities when

restoring to a provisioned environment.

Both snapshots and recovery points represent the entire

state of objects and data in your Redshift cluster or

serverless namespace at that point in time. You can tag

snapshots and recovery points with key-value metadata for

better organization. All backups are stored encrypted on

Amazon S3. You can restore an Amazon Redshift data

warehouse from any snapshot. Tables can be excluded from

snapshots to reduce backup time/space by specifying the

BACKUP NO option on your tables.

Region failure recovery

While Redshift operates within a single region, cross-region

disaster recovery is supported through cross-region

snapshots. By enabling this feature, all snapshots

(automated and manual) are automatically copied to a

designated backup region, allowing cluster restoration in a

new region if the primary region fails. Figure 6-25 shows an architecture diagram illustrating how cross-region

snapshot copy works in Redshift.

[image: Image 78]

 Figure 6-25. Cross-region snapshot recovery in Amazon Redshift For more information about how to enable cross-region

snapshots, refer to the following:

Configuring cross-region snapshot copy for a non-

encrypted cluster

Configure cross-region snapshot copy for an AWS

KMS-encrypted cluster

HA for Amazon MSK

Amazon MSK is designed with high availability as a core

feature. By default, clusters are distributed across multiple Availability Zones, and single-AZ deployments aren’t

permitted. For maximum resilience, you can deploy across

three AZs. The service’s tiered storage capability separates

compute and storage resources, allowing you to configure

both local and remote storage tiers, which enhances cluster

availability and resilience. For protection against regional

failures, Amazon MSK Replicator enables data replication between MSK clusters, whether they’re in the same region

or different regions. This multilayered approach ensures

robust disaster recovery capabilities for your Kafka

workloads.

HA for Amazon OpenSearch

Data nodes are responsible for processing indexing and

search requests in the Amazon OpenSearch domain. You

can deploy your data nodes across multiple Availability

Zones to improve the availability of your domain. With a

multi-AZ deployment, your domain can remain available

even when a full AZ becomes unavailable.

You can use dedicated cluster manager (CM) nodes in your OpenSearch clusters to improve cluster stability. A CM

node tracks the cluster’s health, the state and location of

its indexes and shards, the mapping for all the indexes, and

the availability of its data nodes, and it maintains a list of cluster-level tasks in process. This offloading of cluster

management tasks increases the stability of your domain.

OpenSearch organizes data through indexes, which are

logical collections of documents. These indexes are divided

into primary shards for parallel processing, with each shard

serving as a physical storage and processing unit. The

service supports both primary and replica shards, with

replicas providing data durability and improved search

performance. When a primary shard fails, OpenSearch

Service automatically promotes a replica to primary status.

The service strategically places primary and replica shards

across different nodes and AZs to maximize reliability.

Cost Optimization for Data Pipelines

As data processing pipelines grow in scale and complexity,

it’s crucial to continuously optimize costs to ensure the

long-term sustainability and profitability of your data-

driven initiatives. By leveraging the right mix of AWS

services and cost optimization strategies, you can maximize

the value derived from your data processing investments

while minimizing unnecessary expenses.

In this section, we’ll explore various approaches to cost

optimization for your data pipelines, including the use of

serverless and on-demand services, optimizing resource

utilization, monitoring and controlling data transfer costs,

and leveraging caching and materialized views for Amazon

Athena.

Leveraging Serverless Services

One of the key ways to optimize costs for your data

processing pipelines is to take advantage of AWS’s

serverless services. These services, such as Amazon

Athena, AWS Glue, and AWS Lambda, allow you to scale

resources up and down as needed, without the overhead of

managing and provisioning underlying infrastructure.

By using serverless services, you can avoid the need to

overprovision resources to handle peak loads, as these

services will automatically scale to meet your processing

requirements. Additionally, with a pay-as-you-go pricing

model, you pay only for the resources you actually

consume, reducing the risk of idle or underutilized

capacity.

Similarly, for compute-intensive workloads, you can

leverage Amazon EC2 Spot Instances, which provide access

to spare Amazon EC2 capacity at significantly discounted rates. While Spot Instances can be interrupted, they can be

a highly cost-effective option for certain types of data

processing tasks, such as batch ETL jobs or exploratory

data analysis.

Autoscaling

Autoscaling can scale resources up and down based on

demand, optimizing costs by avoiding overprovisioning.

Amazon EMR has Managed Scaling to automatically size

the cluster based on workload metrics. AWS Glue provides

autoscaling for ETL and streaming jobs to allocate only the

required computing resources. Amazon Redshift offers AI-

driven autoscaling to automatically scale based on your

preferences. Application autoscaling can be used to

dynamically scale resources for services like Amazon EMR,

Amazon MSK, and EC2 instances.

Tiered Storage

Tiered storage enables you to balance cost and

performance based on your data usage patterns. Several

AWS analytics services and storage services offer tiered

storage capabilities, including Amazon OpenSearch Service

(with Hot, UltraWarm, and Cold storage), Amazon MSK

(with tiered storage for brokers), and Amazon S3 (with

Intelligent-Tiering, Glacier, and Glacier Deep Archive).

Columnar Formats

For optimal data analysis in Amazon S3, remember to

compress your data files, partition them using columns that

are frequently used in filter conditions, and utilize

columnar file formats like Parquet. While these practices

have been discussed in previous chapters, their importance warrants emphasis as they are fundamental to efficient

data storage and retrieval.

Monitor and Control Data Transfer Costs

Another important aspect of cost optimization for data

pipelines is the management and control of data transfer

costs. AWS charges for data transferred between different

AWS services or regions, and these costs can quickly add

up, especially if you have large volumes of data flowing

through your pipelines.

To mitigate these data transfer costs, you should monitor

your data transfer patterns and identify opportunities to

optimize data ingestion, processing, and storage workflows.

This may involve strategies like:

Minimizing data transfers between AWS services

and regions

Leveraging AWS Direct Connect or VPC Peering to

reduce data transfer costs between your VPCs

Compressing or aggregating data before

transferring it between services

Additionally, you can use AWS Cost Explorer and AWS

Budgets to track and manage your data transfer expenses,

setting alerts and budgets to proactively identify and

address any cost overruns.

Follow Cost Optimization Best Practices

In previous chapters, we discussed cost optimization and

performance optimization techniques for each major

analytical service. For example, using Spot Instances for re-

retryable jobs on EMR on EC2 clusters, using the Flex execution class in AWS Glue, using reserved instances in

Amazon Redshift provisioned clusters, choosing columnar

file formats to improve Athena query performance, using

Athena capacity reservations to provide necessary compute

capacity for queries, etc. Review and revise these best

practices and ensure you follow them. Best practices are

crucial for passing the exam.

Conclusion

Throughout this chapter, we have explored the key aspects

of data operations and support, equipping you with the

knowledge and skills required to automate data processing,

analyze data, maintain and monitor data pipelines, and

ensure data quality. By mastering these techniques, you

have become a valuable asset in your organization’s data-

driven journey, enabling seamless data operations and

supporting the delivery of actionable insights.

From orchestrating data pipelines using AWS Step

Functions, Amazon Managed Workflows for Apache Airflow

(MWAA), and AWS Glue workflows, to analyzing data with

Amazon QuickSight, Amazon Athena, and Amazon Redshift,

you have developed a comprehensive understanding of the

data operations and support capabilities within the AWS

ecosystem.

Moreover, you have learned how to effectively monitor and

maintain your data processing pipelines, leveraging

services like Amazon CloudWatch, AWS CloudTrail, and

system-specific monitoring tools to ensure the overall

health and reliability of your data infrastructure. You’ve

also explored strategies for ensuring data quality and

reliability, including the use of AWS Glue DataBrew for

data validation and cleansing, and techniques for detecting and handling sensitive data.

To further optimize your data processing pipelines, you

have discovered cost-saving approaches, such as leveraging

serverless and on-demand services, optimizing resource

utilization, and implementing caching and materialized

views. Additionally, you have learned how to integrate

various AWS services, including AWS Lambda, Amazon API

Gateway, and Amazon Redshift, to enhance the automation,

security, and flexibility of your data processing workflows.

As you continue to navigate the evolving landscape of data-

driven decision making, the knowledge and skills gained

from this chapter will empower you to design, implement,

and maintain efficient and reliable data processing

pipelines that support your organization’s strategic

objectives. By leveraging the comprehensive capabilities of

the AWS ecosystem, you will become a key contributor in

unlocking the full potential of your organization’s data

assets and driving impactful, data-driven initiatives.

Next, let’s try to validate our knowledge with a few practice questions that may help you prepare for the AWS Certified

Data Engineer Associate certification exam.

Practice Questions

These practice questions may help you understand what

kind of questions to expect on the exam so you can prepare

accordingly. The answers are listed in the Appendix.

1. A company’s analytics team frequently queries

partitioned data stored in Amazon S3 using Amazon

Athena. The team reports that query planning is

becoming increasingly slow as their dataset grows,

particularly due to the high number of partitions.

Which solutions would most effectively improve

query planning performance while maintaining the

existing architecture? (Select two.)

A. Implement AWS Glue partition indexing with

partition filtering enabled.

B. Configure Athena partition projection based

on partition patterns.

C. Convert all data files to the Apache Parquet

format with Snappy compression.

D. Create a new partitioning scheme based on

the most common WHERE clause columns.

E. Use AWS Glue jobs to combine smaller

partition files into larger files (over 128 MB).

2. A data engineer is using an Amazon Redshift data

warehouse to load and analyze historical data in

batches. The engineer faced a failure when running

a COPY command to load data from Amazon S3 to the

Redshift table. A data engineer must choose a

system table in Amazon Redshift that records the

load failures. Which table views should the data

engineer use to meet this requirement?

A. STL_LOAD_INFO

B. STL_LOAD_ERRORS

C. STL_ALERT_EVENT_LOAD

D. SYS_QUERY_HISTORY

3. A company has deployed a serverless ETL pipeline

where AWS Lambda functions orchestrated by Step

Functions process data from Amazon Kinesis and store results in Amazon DynamoDB. After

deployment, the Step Functions executions

consistently fail during the Lambda invocation steps.

What troubleshooting approaches would be most

effective in identifying the root cause? (Select two.)

A. Check IAM configuration and permissions by

validating the Step Functions execution role,

reviewing Lambda function permissions,

verifying Kinesis read access, and confirming

DynamoDB write permissions.

B. Examine network configuration details by

verifying VPC endpoint configurations,

checking Lambda function VPC settings,

reviewing security group rules, and analyzing

subnet routing tables.

C. Modify the state machine workflow by adding

wait states between steps, implementing

choice states, increasing timeout values, and

adding parallel processing branches.

D. Update the deployment process to use AWS

SAM for deployment, implement blue-green

deployment, add CloudFormation drift

detection, and enable automatic rollbacks.

E. Enhance error tracking setup by configuring

x-ray tracing, setting up CloudWatch alarms,

enabling detailed logging, and implementing

custom metrics.

4. A data architect wants to ensure that their Amazon

Redshift deployment is highly available with the

least operational overhead. What options can they choose? (Select two.)

A. Choose the multi-AZ deployment option in

Amazon Redshift.

B. Choose the multiregion deployment option in

Amazon Redshift.

C. Copy snapshots to another region using cross-

region snapshot copy.

D. Create two Amazon clusters in two AZs and

perform parallel data loads into each of them.

5. The company must schedule an Amazon Redshift

stored procedure that can run for more than 15

minutes at 8:00 p.m. every night. Which solution will

meet this requirement with the least cost and effort?

A. Create an MWAA DAG to run the stored

procedure at 8:00 p.m. each day.

B. Create a Step Functions state machine to call

a Lambda that calls the Redshift data API to

run the CALL stored procedure statement.

C. Use the scheduler in Query Editor v2 in

Amazon Redshift to schedule the stored

procedure run.

D. Use an AWS Glue workflow to call a Glue

Python job that calls the Redshift data API to

run the CALL stored procedure statement.

6. A data engineer must orchestrate a data pipeline

that consists of two AWS Glue crawlers and one

AWS Glue job. Which solution will meet these

requirements with the least management overhead and most cost efficiency?

A. Use an AWS Step Functions workflow to run

the three Lambda functions. Two of them will

run crawlers and one will run the AWS Glue

job.

B. Use an Apache Airflow workflow that is

deployed on an Amazon EC2 instance. Define

a directed acyclic graph (DAG) in which the

first two tasks will call Lambda functions that

will run the AWS Glue crawlers while the

third task will call a Lambda function to run

the AWS Glue job.

C. Use an AWS Glue workflow to orchestrate the

AWS Glue crawlers and AWS Glue job.

D. Use an MWAA directed acyclic graph (DAG)

with three tasks. The first two tasks will call

Lambda functions that will run the AWS Glue

crawlers and the third task will call Lambda

to run the AWS Glue job.

7. A healthcare analytics company needs to analyze

patient treatment data stored in Amazon S3 (several

terabytes) using Amazon Athena. The data is

updated daily through AWS Glue jobs that run

overnight. Multiple departments run identical

reports throughout the day, causing unnecessary

query processing and increased costs. The reports

need to reflect data no older than four hours to meet

compliance requirements.

The analytics team needs to optimize Athena usage

while maintaining data freshness requirements and

minimizing additional infrastructure costs.

Which solution is most cost-effective with the least

operational overhead?

A. Implement Athena workgroups with query

result caching enabled, setting a cache

duration of four hours for frequently run

queries.

B. Convert all data files to Apache ORC format

with Zlib compression and implement

partitioning by date.

C. Deploy an Amazon RDS read replica to cache

frequently accessed data from Athena

queries.

D. Create materialized views in Athena for

commonly used query patterns.

E. Implement an Amazon DynamoDB table to

cache query results with a TTL of four hours.

8. A data analyst wants to create a visualization but is

not well versed with Amazon QuickSight. How can

the analyst develop visualizations with the least

support?

A. Using Amazon Q to generate visuals using

natural language prompts.

B. Read through the Amazon QuickSight

documentation and master all visuals.

C. Try different visualization options in Amazon

QuickSight.

D. Use the autograph feature in QuickSight.

9. A retail company deployed an application on Amazon EC2 instances inside a VPC. In order to detect

suspicious traffic patterns or potential security

threats the company wants to analyze VPC flow logs.

Which solution will meet these requirements with

the least operational overhead most cost-effectively?

A. Publish flow logs to Amazon S3 in Parquet

format. Use Amazon Redshift provisioned

clusters for analytics.

B. Publish flow logs to Amazon CloudWatch. Use

Amazon Redshift provisioned clusters for

analytics.

C. Publish flow logs to Amazon CloudWatch. Use

Amazon Athena for analytics.

D. Publish flow logs to Amazon S3 in Parquet

format. Use Amazon Athena for analytics.

10. A healthcare provider processes patient records

using AWS Glue ETL jobs. The data team needs to

implement strict data validation to ensure Patient

IDs follow a specific format, date fields are within

valid ranges, required fields are not null, and

numeric values fall within acceptable medical

ranges.

What is the most efficient way to implement these

data quality requirements in their ETL pipeline?

A. Implement using AWS Glue Data Quality

rules. Example:

dq_rules = {

'Patient_Validation': {

'PatientID': 'Matches "[A-Z]{2}\\d{6}"',

 'DateOfBirth': 'Between "1900-01-01" AND

current_date',

'BloodPressure': 'Between 60 AND 200' }}

B. Create custom PySpark validation functions.

C. Use AWS Glue Data Catalog validation.

D. Implement AWS Lake Formation tags.

Additional Resources

SQL analytics using Amazon Athena

Amazon Redshift SQL reference

Data Quality Definition Language (DQDL)

AWS Glue notebooks and Amazon EMR notebooks

“Amazon S3 Backups”

“Amazon Redshift Backups and Snapshots”

Cost optimization in AWS analytics services

Performance efficiency in AWS analytics services

Reliability in AWS analytics services

Chapter 7. Data Security

and Governance

In today’s internet world, the size of data is growing

exponentially and is expected to grow even faster in the

future. Irrespective of data size, you need to prioritize data security to avoid unauthorized data access and utilize

governance to make sure your data meets the expected

quality, has the required access controls in place to expose

the data to your consumers, and has audit controls in place

that can help you meet regulatory compliance needs.

In this chapter, we will dive deep into the following topics: How to secure your AWS workload with VPC and

security groups

How to integrate user authentication and

authorization with AWS IAM

How to enable data security and privacy by

integrating different AWS services

Understanding the different data governance pillars

and which AWS services can be integrated to meet

your requirements

At the end of this chapter, we will also provide a set of

practice questions related to data security and governance

that can help you understand the kind of questions you can

expect and prepare for the role and certification exam

accordingly. Let’s dive deep into the specific topics.

Network Security

In this section, we will explain how you can secure the

networking elements involved in your AWS data analytics

workloads with Amazon VPC, security groups, VPC

endpoints, and more.

Amazon VPC Overview

An Amazon VPC (Virtual Private Cloud) is a logical construct that enables you to define a network perimeter

for a set of workloads that you plan to isolate from other

workloads. VPC integration resembles a network in an on-

premises data center.

When you create an AWS account, for every region, you

will have a default VPC that allows you to create EC2

instances within the VPC. You can create additional VPCs

as needed to isolate workloads. An Amazon VPC will have a

subnet for every Availability Zone (AZ) in a specific region, and you can define the subnets as private or public by

controlling the network traffic to them through the internet

gateway.

Let’s assume you have a web application, which has web

servers for the application and a database for persistent

storage. As a general practice, both components should be

in a single VPC, with the web servers in the public subnet

so that they are accessible by public users and the

database in the private subnet.

Figure 7-1 represents a reference architecture for this

setup. You can read more on this in the AWS

documentation.

[image: Image 79]

 Figure 7-1. Web application with database deployed in a VPC with two Availability Zones

Security Groups Overview

A security group is similar to a virtual firewall, with which you can control traffic to a single instance or cluster. As

shown in Figure 7-1, security groups provide restrictions so that only the web servers can access the database server,

which is available in the private subnet so no other

application inside or outside the VPC can access it. Let’s

learn some of the best practices you should follow while

integrating security groups.

TIP

Learn more from the AWS documentation on how you can control traffic using security groups.

Best Practices for Configuring Security Groups

for Your Workloads

The following list provides some of the common best

practices you should follow while configuring security

groups for your workloads:

 Don’t configure 0.0.0.0/0 as the inbound access in security groups.

To follow the least-privilege principle, you should never

configure 0.0.0.0/0 as the source for the inbound

connection in your security groups, which means anyone

inside or outside of AWS can access it. Ideally you should

control access by specifying specific IPs as the source or a

specific security group as the source.

You may configure 0.0.0.0/0 as the outbound connection,

if you have a use case where your application needs to pull

data or code from public repositories. For example, your EC2

instance might need to pull the latest code from a public

GitHub repository or your Lambda function needs to

connect to a few third-party APIs to fetch data.

 Try to group security groups that are related for

 operational efficiency.

Assume you have multiple Lambda functions that need to

connect to a single RDS (Relational Database Service)

database for different functionalities. You have the option to create a security group for each Lambda function and

configure them in the RDS for inbound access, but it may not be operationally efficient to manage.

The ideal way to implement this will be to create one single

security group or a limited number of security groups by

grouping related Lambda functions and including them for

inbound access in the RDS security group.

 Avoid using the default VPC or default security group for production workloads.

When you create an AWS account, you will have a default

VPC and security groups readily available to integrate in

your workloads. The default VPC and security groups may

not have least-privilege access integrated, which means they

are not recommended for production workloads that may

require keeping resources within a private subnet or do not

need access through the public internet.

So, it’s best to create new VPCs and security groups and give them the specific permissions they need for your workload.

As an example, let’s look at how you can configure a VPC

and security group for one of the analytics services such as

Amazon EMR.

Configuring a VPC and Security Group for an

Amazon EMR Cluster

Amazon EMR provides multiple deployment options such as

EMR on EC2, EMR on EKS, EMR Serverless, and EMR on

AWS Outposts. Let’s take the example of EMR on EC2 to

understand how you can configure a VPC and security

group for the cluster.

You can configure an EMR cluster in a public subset or

private subnet depending on your use case. Figure 7-2

[image: Image 80]

represents an EMR on EC2 cluster deployment in a private

subnet of the VPC that connects to Amazon S3 using VPC

endpoints. We will explain more about VPC endpoints later

in the chapter.

 Figure 7-2. EMR cluster deployed in a private subnet

When you deploy an EMR cluster in a private subnet, the

following some considerations you need to take note of:

Once you have deployed an EMR cluster in a private

subnet, you cannot modify the setup to take it to a

public subnet or vice versa.

Not all AWS services provide VPC endpoints; for services that do not have endpoints, plan to

integrate a NAT instance/NAT Gateway or Internet

Gateway.

EMRFS (EMR File System) integrates Amazon

DynamoDB under the hood, so if you have deployed

an EMR cluster in a private subnet, then plan to

configure the route from the private subnet to the

DynamoDB service.

TIP

Please read the EMR documentation to learn more about networking options available for Amazon EMR.

Managed Services Versus Unmanaged Services

Before discussing the difference between managed and

unmanaged services, let’s take a look at the shared

responsibility model published by AWS, which is represented in Figure 7-3.

[image: Image 81]

 Figure 7-3. Shared responsibility model published by AWS

As you can see from Figure 7-3, there is a division of responsibilities between AWS and its customers. For

example, the global hardware infrastructure and related

software are managed by AWS, whereas the applications

deployed on the infrastructure and the network as well as

security configurations are managed by the customers. This

scope changes for AWS-managed services as some of the

network and security configurations are also managed by

AWS.

With AWS-managed services you can achieve better

operational efficiency as you do not need to put effort into

configuring network or security controls to integrate your

hardware infrastructure, which may reduce the chance of

human errors. In addition, you will have better built-in

scalability and better support from AWS. On the other

hand, you will also have less flexibility with the

configurations and may see the increased cost that comes with fully managed solutions.

VPC Endpoints Overview

Let’s look at another example to understand this process

better. Assume you have an EC2 instance within your VPC

running an application that uploads images to Amazon S3.

If you have not configured VPC endpoints for your VPC

with S3 service, then the application running on the EC2

instance connects to S3 using the public internet. This

approach is not secure and also not performant.

VPC endpoints are virtual devices that are highly available

and scalable. Using VPC endpoints, you can enable a

private connection to supported AWS services, so that you

avoid routing through the public internet and stay within

the AWS network to obtain better performance and

security. There are two VPC endpoints: interface endpoints

and gateway endpoints. Figure 7-4 provides a great explanation of how AWS VPC endpoints work.

TIP

You can read more about VPC endpoints in the AWS documentation.

You can also learn more about updating VPC endpoint policies from the documentation.

A few of the managed services in AWS provide native

integration with VPC endpoints as managed VPC endpoints.

Let’s review a few of the analytics services that provide

default integration with VPC endpoints.

[image: Image 82]

 Figure 7-4. VPC endpoint integration in an AWS Region

Redshift-managed VPC endpoints

If you have client tools running in a VPC and would like to

enable connection to a Redshift cluster or workgroup that

is in a different VPC, then you can take advantage of

Redshift-managed VPC endpoints to set up a private

connection between them. This also works if you have a

second VPC in a different AWS account with the additional

step of using a Redshift cluster account (granter) to

provide access to the connecting account (grantee).

Redshift-managed VPC endpoints also work with Redshift

Serverless workgroups.

You need to add the IAM policies ec2:CreateVpcEndpoint or ec2:ModifyVpcEndpoint to your role to create or modify

managed VPC endpoints in Redshift. Note that Redshift-

managed VPC endpoints are not accessible from the

internet.

There are a few considerations you need to be aware of

while integrating Redshift-managed VPC endpoints:

If you are configuring a Redshift provisioned cluster,

then it should have the RA3 node type and a subnet

group. In addition, make sure you have enabled

cluster relocation or multi-AZ.

The default port for accessing the Redshift cluster

through the security group is 5439. You need to

make sure to define valid port ranges of 5431–5455

and 8191–8215 for security group access for the

VPC endpoints to work.

If an Availability Zone is down, Redshift does not

create an Elastic Network Interface for another AZ.

You may have to create a new VPC endpoint.

Please read the Redshift documentation to learn more.

OpenSearch Service–managed VPC endpoints

Similar to Amazon Redshift–managed VPC Endpoints, if

client applications running in your VPC need to access an

OpenSearch domain then you can leverage OpenSearch

Service–managed VPC endpoints. This will enable a private

connection as if the OpenSearch Service is available within

your VPC. You can configure OpenSearch Service VPC

endpoints if your VPC is in another AWS account as well.

Figure 7-5 represents the Amazon OpenSearch Service and AWS PrivateLink within the same VPC sharing a private

[image: Image 83]

connection. AWS PrivateLink is a service that enables

private connectivity between resources within AWS VPCs

with other services, including other AWS services, services

hosted in other AWS accounts, and AWS Marketplace

services. It routes traffic through the Amazon network,

ensuring data stays private and secure without exposing it

to the public internet.

 Figure 7-5. Amazon OpenSearch Service–managed VPC endpoints The following are a few considerations to take note of when

integrating OpenSearch Service–managed VPC endpoints:

OpenSearch domains marked for public access

cannot be accessed using interface VPC endpoints;

they integrate only with domains launched within a

VPC.

You can connect only to OpenSearch domains

available within the same Region.

The HTTP protocol is not supported, so make sure to leverage HTTPS only.

You cannot create an interface VPC endpoint with

AWS CloudFormation, so the only options are

creating one through the OpenSearch Service

console or APIs.

For a complete list of considerations and limitations, please refer to AWS documentation. Next, let’s understand how you can integrate authentication and authorization with the

help of AWS IAM service.

User Authentication and

Authorization

AWS Identity and Access Management (IAM) is a global service in AWS that enables authentication to AWS and

provides flexibility to configure authorization through IAM

groups, roles, and policies. Let’s dive deep into the different authentication and authorization mechanisms you

can integrate with AWS IAM.

Authenticating Users with IAM Credentials

The simplest way to get started is by creating an IAM user

with security credentials (access key and secret key) that

you can use to log in to the AWS Console. You can

configure IAM policies for the user to provide access to

specific AWS service actions. Optionally you can add

multiple users to IAM groups and attach permissions to the

IAM group too.

Integrating AWS IAM user security credentials directly into

your application or server is not a recommended approach,

as there is a chance the security credentials might be misused; it is also not operationally efficient. This

authentication method is ideal if there are non-AWS tools

or applications hosted outside of AWS that plan to interact

with AWS APIs.

IAM Role-Based Authentication and

Authorization

IAM role-based authentication and authorization is the

most common and recommended mechanism in AWS. The

IAM role will have some set of permissions attached to it

and IAM users or AWS services assume that role to perform

the actions authorized to the IAM role.

TIP

Read more from AWS documentation on how you can create and use

an IAM role. Please make sure to follow the least-privilege principle, which means instead of providing full access to any service, you assign the exact actions you need for the service and also restrict access to the specific Amazon Resource Name (ARN) of the resource.

Service-Linked Roles

A service-linked role is a role that is linked to an AWS

service directly and includes all the permissions that

service needs to call other AWS services on your behalf.

Service-linked roles will have inline policies that are related to that service and you cannot add managed policies to

them.

Please note that a service role and service-linked roles are

different: a service role is an IAM role that a service

assumes to perform actions on your behalf, whereas

service-linked roles are owned by the service and you cannot modify them.

Managed Versus Self-Managed Policies

For authorization, you need to assign policies to IAM roles

or users; the policies can be managed policies, inline

policies, or custom policies. Managed policies are provided

by AWS and cannot be edited. You can create IAM roles

and attach predefined managed policies such as read-only

access or full access to a service. Managed policies help

reduce operational overhead as all required permissions

are already packaged and new permissions are

automatically updated by AWS. Inline policies are directly

embedded into the role and are not available for reuse or

attachment to multiple roles. This is not the recommended

approach, unless it’s highly specific to that role itself.

Custom policies are new policies where you can include the

exact specific actions you need on a service and the specific ARN on which you need the permission. This is the

recommended method that follows the least-privilege

principle, as managed policies may include a broader set of

permissions that you may not need. Custom policies can be

reused, which means once created, you can attach the

same policy to multiple roles as applicable.

Enable Single Sign-on with AWS IAM Identity

Center

AWS IAM Identity Center is built on top of AWS IAM to centralize and simplify access to multiple AWS accounts

and SAML-enabled cloud applications (e.g., Salesforce,

Microsoft 365, Box), and to help integrate with Active

Directory or other directory services for single sign-on

(SSO). It eliminates the administrative complexity and operational overhead of managing permissions for each

AWS account separately and boosts employee productivity.

Let’s understand how AWS IAM Identity Center integrates

with a few of the AWS analytics services.

IAM Identity Center integration with AWS Lake

Formation

AWS Lake Formation works with IAM Identity Center,

which means you can integrate Identity Center with your

organization’s directory service to authenticate users to

AWS with SSO and then data lake administration can

configure fine-grained access on the data lake for the same

users with Lake Formation permissions. Figure 7-6

provides a screenshot of the AWS Lake Formation console

where you can grant permission to users or groups

authenticated through IAM Identity Center.

[image: Image 84]

 Figure 7-6. Lake Formation grant for IAM Identity Center principals

TIP

Lake Formation provides credential vending for temporary access to S3 data. Please note when leveraging AWS IAM Identity Center

authenticated users in Lake Formation, by default CloudTrail

includes the IAM role only as part of its audit logs to interact with the analytics services.

If you have used a user-defined role to register the Amazon S3 data location with Lake Formation, you can opt in to include the IAM

Identity Center user’s context in the CloudTrail events and then track the users that access your resources. To include object-level Amazon S3 API requests in CloudTrail, you need to enable CloudTrail event

logging for Amazon S3 buckets and objects. Please read the AWS

documentation to learn how to enable this.

IAM Identity Center integration with Amazon

DataZone

As you learned in Chapter 3, Amazon DataZone enables an organization to create a data lake, data warehouse, or

machine learning environment, and helps integrate data

access control, data analytics, data sharing, and data

lineage across AWS accounts within an organization.

If you have configured IAM Identity Center, then you can

enable SSO users or groups to log in to the DataZone

domain data portal. To enable Identity Center integration

in DataZone, you can edit the DataZone domain

configurations and select the “Enable users in IAM Identity

Center” checkbox where you can choose from the following

two assignment modes:

 Implicit user assignment

With this option, all the users added to the IAM Identity

Center directory can access the specified DataZone domain.

 Explicit user assignment

With this option, you can choose specific users or groups of the IAM Identity Center directory who will have access to

the specified DataZone domain.

TIP

Please note, once your domain is updated, you cannot change it later.

Next, let’s understand what other mechanisms you can

follow to secure your datasets in addition to AWS IAM.

Data Security and Privacy

Apart from IAM role-based authorization, there are several

other data security factors that need to be addressed. Let’s

review what other data security approaches you should

consider as a way to avoid unauthorized access to your

datasets. The following are a few of the approaches you can

consider to secure your data.

Secure Data in Amazon S3

You can avoid unauthorized access to Amazon S3 buckets

or prefixes by specifying which IAM role, group, or user

can access the S3 prefix. Optionally, you can also specify

bucket policies to control cross-account access or provide

access to external customers.

You can also consider integrating resource-based policies

with which you can configure who has access to the

resource (e.g., Amazon S3) and what actions they can

perform on it. To identify which AWS services support

resource-based policies, please check the AWS

documentation. For all S3 buckets, it is recommended to

disable public access unless it contains website media assets that need to be publicly available.

Apart from the data in object stores, you may have data in

databases hosted in AWS. Let’s see how you can secure the

database credentials to avoid unauthorized access.

Manage Database Credentials

It is not recommended to hardcode database credentials in

applications or pass them through environment variables,

as that creates a security risk of unauthorized users

misusing them. In AWS, integrating AWS Secrets Manager

is recommended, where you can store your database

credentials, control access to secrets using IAM roles, and

let your application code refer to Secrets Manager keys to

get the credentials.

AWS Secrets Manager is a fully managed service that

enables secured storage of database or other credentials

and API keys; it also enables auto-rotation and retrieval of

sensitive information. Figure 7-7 presents a high-level architecture showing how AWS Secrets Manager can be

integrated to secure your database credentials. AWS

Secrets Manager provides end-to-end encryption and

integration with Amazon CloudWatch and AWS CloudTrail

for logging and auditing of the key usage.

[image: Image 85]

 Figure 7-7. AWS Secrets Manager for database credentials management Data Encryption and Decryption and Managing

the Encryption Keys

Even if we have integrated user authentication and the

right level of authorization with AWS IAM, we still need to

make sure the data is encrypted with cryptographic keys

and that only the authorized user can decrypt it for

consumption. We need to make sure the data is encrypted

both at rest and in transit.

There are two ways you can enable encryption at rest for

your datasets. One is where the encryption and decryption

happens on the server side, typical within the server

infrastructure. The second one is client side, which means

you encrypt the data first with your own key and then send or upload it to the server for storage. You can follow either server-side or client-side encryption based on your use

case.

For encryption in transit, you should integrate SSL/TLS

certificates that can encrypt data while it is getting

transferred or moved to or from AWS services. All the AWS

services that move data—such as AWS Data Migration

Service (DMS), DataSync, AWS Backup, and AWS VPN—

support encryption in transit by default.

Next, let’s learn about AWS KMS and how it enables easier

and safer management of encryption keys.

Managing Encryption Keys with AWS KMS

AWS Key Management Service (KMS) is a managed service

that makes it easier to create and manage cryptographic

keys in AWS. It natively integrates with several other AWS

services to enable a centralized way to manage keys. You

can look at the AWS documentation to find all the services that integrate with AWS KMS.

You can benefit from certain advanced features of AWS

KMS such as multiregion KMS keys (replica of KMS keys in

each region), creating KMS keys in an external key store

(protecting AWS resources using cryptographic keys

outside of AWS), and connecting to KMS keys using private

VPC endpoints.

Figure 7-8 is a high-level architecture taken from the AWS

documentation that represents how you can integrate AWS

KMS with other AWS services and how you can leverage

Amazon CloudWatch for logging and AWS CloudTrail for

auditing user or API actions related to KMS.

[image: Image 86]

 Figure 7-8. AWS KMS integration with some AWS services

Next, let’s look at the different ways you can enable

encryption in AWS services, which are either natively

supported by the service or integrated with AWS KMS.

Enabling encryption and managing keys in AWS

Some AWS services such as Amazon S3 support encryption

at rest natively (SSE-S3), whereas a few other services

integrate keys from AWS KMS. Let’s dive deep into the

encryption options available in Amazon S3 to better

understand the features:

Server-wide encryption:

– SSE-S3: Server-wide encryption (SSE) with

Amazon S3 is the default encryption applied

to all buckets in S3; the key is managed by

Amazon S3. If you need to apply different

encryption, then you can specify this while

uploading objects to the bucket through the

PUT request.

– SSE-KMS: Server-side encryption with AWS

KMS enables you to manage your own keys

(e.g., create, edit, view, disable, enable,

delete, rotate, monitor) with AWS KMS,

which Amazon S3 will leverage to encrypt

objects.

– DSSE-KMS: Dual-layer server-side encryption

(DSSE) with AWS KMS enables you to apply

dual-layer encryption and can help

organizations meet compliance standards that

require multilayer encryption when objects

are uploaded to Amazon S3.

– SSE-C: This option enables you to provide a

custom key that will be used by Amazon S3 to

encrypt your objects.

Client-side encryption:

– With this option, when you upload objects to

Amazon S3, it encrypts objects with the key

provided by you with AES-256 encryption and

then removes the key from memory. You need

to provide the same encryption key while

decrypting the objects.

Please note that when you integrate keys managed by AWS

KMS, both the data and the KMS key should be in the same

region.

Best practices for managing keys with AWS KMS

The following are some of the best practices you can follow

while integrating AWS KMS:

 Cross-account key sharing

If you plan to share data with a consumer in another AWS

account, then instead of creating separate KMS keys in each

AWS account, you should plan to share the KMS key with the

other account. Please refer to the AWS documentation to learn how you can share KMS keys.

 Enable multifactor authentication (MFA)

For additional security, enable MFA for specific KMS actions

such as PutKeyPolicy and ScheduleKeyDeletion.

 Leverage key aliases

With the help of key aliases, you can abstract away the key

ARN or key ID from the end users and they can just refer to

the key alias for integration. This also helps if you have a

multiregion application, where instead of a region-specific

ID, you can refer to the same key alias across regions.

 Enable KMS key rotation

AWS KMS supports automatic key rotation every year by

default. In addition, you have the flexibility to define your key rotation frequency from 90 days to 7 years. This

improves security as the application refers to key aliases and the encryption keys are rotated automatically based on the

frequency you defined. In addition, for customer-managed

keys, you have the flexibility to invoke key rotation.

TIP

In addition, please refer to the AWS documentation for additional security best practices related to AWS KMS. Similar to Amazon S3, if you need to understand how other AWS services integrate with AWS

KMS, then please refer to the AWS documentation.

Enabling Encryption in AWS Analytics Services

Most AWS services support mechanisms to encrypt data at

rest and in transit. Let’s try to understand the encryption

options available in a few of the popular AWS services.

AWS Glue

In AWS Glue, you can enable encryption for Glue Data

Catalog and for Glue ETL jobs. When you enable

encryption, you can configure the KMS key you would like

to use for the encryption and decryption process. Figure 7-

9 represents the two settings you can enable to encrypt

metadata and connection credentials.

[image: Image 87]

 Figure 7-9. AWS Glue Data Catalog settings for encrypting metadata and connection credentials

Figure 7-10 represents Glue ETL job encryption settings, where you can encrypt data in Amazon S3 with SSE-S3 or

SSE-KMS keys, encrypt logs in CloudWatch with the KMS

key of your choice, and also enable encryption for the

metadata stored by the Glue Job Bookmarks feature.

[image: Image 88]

 Figure 7-10. AWS Glue ETL job settings to enable encryption Amazon EMR

Amazon EMR provides integration with AWS KMS for

encryption at rest and in transit. In addition to that, it also provides other encryption options to support open source

applications. Figure 7-11 represents the encryption options EMR supports, including:

Encryption for data stored in Amazon S3 with SSE-

S3, SSE-KMS, and data getting transferred over

EMRFS with TLS.

Encryption at rest for data stored in the write-ahead

log (WAL) with SSE-EMR-WAL or SSE-KMS-WAL.

Enable encryption for the data available in HDFS

using AES-256 encryption.

Default NVMe encryption for the EC2 instance store

volume and default encryption options available for

EBS volumes.

Encryption in transit depends on the support

available for the open source applications as listed in

the documentation.

[image: Image 89]

 Figure 7-11. Encryption options available in Amazon EMR

TIP

Read the AWS documentation to learn more about the encryption options available in Amazon EMR.

Amazon Redshift

Amazon Redshift supports both encryption at rest and in

transit. For encryption at rest, you can configure both

server-side and client-side encryption.

Amazon Redshift uses a hierarchy of encryption keys to

encrypt the cluster database. You can enable encryption

[image: Image 90]

either with AWS KMS or a hardware security module

(HSM) depending on how you would like to manage your

keys. Amazon Redshift provides easy integration with AWS

KMS as represented in Figure 7-12.

 Figure 7-12. Encryption options available in Amazon Redshift But if you plan to integrate HSM for encryption, then you

must use client- and server-side certificates to provide a

trusted connection between the HSM and the Redshift

cluster. Please note that if you enable encryption for an

existing cluster by modifying its configurations, then

Redshift automatically migrates your existing data to the

new encrypted cluster. You can also enable encryption for

the database password that you use for authentication

using AWS KMS.

Amazon Redshift provides an HTTPS endpoint for

encryption in transit. Redshift creates and installs AWS

Certificate Manager (ACM)–issued certificates in each

cluster. It leverages the SSL certificates to interact with

other AWS services such as Amazon S3 and Amazon

DynamoDB for data load and unload operations.

TIP

Read more about encryption options available in Amazon Redshift from the AWS documentation. To explain how we enable encryption, we provided three services as examples; please refer to the

documentation for the other AWS services to learn how you can enable encryption for them.

Next, let’s understand how to secure sensitive data within

your datasets, if applicable.

Sensitive Data Detection and Redaction

As you process or ingest data into your data lake or data

warehouse, privacy regulations may require you to detect

PII (personally identifiable information) elements in your

datasets and redact (remove or mask) them for

consumption within the organization. Depending on the use

case, you may have a requirement to keep the PII data in

the raw layer and redact it in the final consumption layer or redact it in the raw layer itself.

When you consider redacting the PII elements in your data,

it is necessary to consider both data at rest and in transit.

Let’s review what AWS service features we can integrate to

detect and redact PII elements both at rest and in transit.

Integrating Amazon Macie for data at rest

Let’s assume you have a lot of historical data available in

Amazon S3 that needs to be scanned for PII. Then you can

take action to redact it or notify respective stakeholders to review it manually.

Amazon Macie leverages machine learning and pattern

matching to automatically detect sensitive data (e.g.,

names, address, phone number, credit card numbers, and

[image: Image 91]

[image: Image 92]

more) from Amazon S3 in a cost-effective way. Figure 7-13

represents the workflow Amazon Macie follows for

sensitive data detection.

 Figure 7-13. Amazon Macie on top of Amazon S3 to detect sensitive data You can configure Amazon Macie to publish events to

Amazon EventBridge and integrate notification

mechanisms using Amazon SNS to alert respective

stakeholders. Figure 7-14 explains how you can build that workflow.

 Figure 7-14. Reference architecture for Amazon Macie with S3 that sends notifications

Next, let’s see how we can integrate the AWS Glue

sensitive data detection feature that also enables us to

process data to mask or redact elements.

Integrating AWS Glue sensitive data detection AWS Glue allows you to define rules to detect sensitive

data in your datasets and also can apply redaction rules

such as remove a column, mask it, or store the masked data

in a new column. While configuring, you can also specify if

you would like to scan the complete dataset or a sample set

of data to validate if sensitive data is present.

This feature supports a broad list of categories to detect

sensitive data such as universal PII elements (e.g., email,

credit card), HIPAA compliance standard fields (e.g., US

driver’s license, HCPCS code), networking elements (e.g.,

IP address, MAC address), and country-specific PII

standard elements.

NOTE

You can review the complete list of supported elements in the AWS

documentation.

Alternatively, you can also integrate a custom detection

mechanism with a regular expression pattern. Figures 7-15

and 7-16 are from the AWS Glue Console and highlight how you can configure sensitive data detection parameters.

[image: Image 93]

 Figure 7-15. AWS Glue Studio screenshot showing the ETL pipeline You can integrate Glue sensitive data detection for both

data at rest (by reading from a Glue Data Catalog table)

and in transit (by integrating it in Glue ETL jobs). Next,

let’s look at how you can integrate fine-grained access

control on your data with AWS Lake Formation.

[image: Image 94]

 Figure 7-16. AWS Glue Studio screenshot showing options for sensitive data detection

Fine-Grained Access Control with AWS Lake Formation

To follow compliance standards and industry regulations,

you need to have tighter security controls on your data and

implement mechanisms that allow fine-grained access

controls. You need the capability to define who can ingest

data to your data stores and also who can access your data,

not only databases and tables but also who can access

which columns and rows.

In the AWS Cloud, the AWS Lake Formation service

enables you to integrate fine-grained access control on

your data lake and data warehouse. It integrates with

several AWS analytics services such as AWS Glue, Amazon

EMR, Amazon Athena, Amazon QuickSight, Amazon

SageMaker, and Amazon Redshift and a few third-party

apps such as Collibra, Privacera, Dremio, and Starburst.

Figure 7-17 shows a high-level architecture that illustrates how AWS Lake Formation integrates with data sources and

analytics tools to provide fine-grained access control.

[image: Image 95]

 Figure 7-17. AWS Lake Formation architecture for data pipeline integration To integrate AWS Lake Formation, you need to register

your Amazon S3 prefix as the data lake location, define

permissions for Glue Catalog databases, tables, columns,

and rows and enable your end users to follow the defined

permissions while consuming the data. AWS Lake

Formation facilitates defining permissions based on

attributes (attribute-based access control [ABAC]) and also

based on tags (tag-based access control [TBAC]). TBAC is

useful when you have a larger number of databases and

tables and it’s not operationally efficient to define access

control for each table separately. It also helps when you

have data from different domains or business units and you

need to control access by teams by defining respective tags

for tables or columns. Let’s dive deep into the different

levels of access control you can configure with Lake Formation.

Register the data lake location

As a first step, you need to register a data lake location in the Lake Formation console that points to an Amazon S3

path available in the same AWS account or a different AWS

account. Figure 7-18 provides a screenshot of the Lake Formation console where you can register your S3 path as

the data lake location.

[image: Image 96]

 Figure 7-18. AWS Lake Formation: register data lake location Granting permission to Glue Data Catalog databases,

[image: Image 97]

tables, and views

IAM principals who are not data lake administrators and

would like to grant or revoke permissions would need

additional IAM permissions such as lake

forma

tion:

<action>, glue:<action>, and iam:<action>. Please read the Lake Formation documentation for a complete list of IAM permissions needed.

Name-based access control

You can manage permission for Glue Data Catalog

databases, tables, and views using the AWS Console, AWS

APIs, and Cloud Formation. Figure 7-19 represents a Lake Formation console screenshot that shows how you can

select a database first and then all tables or specific tables under it to define access.

 Figure 7-19. AWS Lake Formation: access control for Glue Data Catalog tables

Tag-based access control

As explained earlier, you can define Lake Formation tags

(LF-Tags) for Glue Data Catalog resources and then assign

permission on the tags to IAM principals. Lake Formation

validates access to a resource when the IAM principal tag

value matches the resource tag values. Lake Formation

TBAC (LF-TBAC) is more scalable and reduces operational

overhead as you have less grants to manage, so it is a great

option when you have a large amount of resources for fine-

grained access control.

NOTE

Please note that you need to have tight control over who can create LF-Tags and who can assign LF-Tags through IAM policies, so that you can avoid duplicate redundant tags that may defeat the

operational advantage you were expecting with LF-TBAC. Refer to the AWS documentation to understand which IAM permissions you should assign for managing metadata related to LF-Tags.

Row- and column-based data filtering

Apart from the database, tables, and views, Lake Formation

also enables access control at the column and row level.

Let’s see how you can define row- and column-based data

filters for permission management:

 Access control based on column names (column-level

 security)

Let’s assume you have a table with 10 columns, with 3

columns that include sensitive data that you do not want to

expose to a specific set of users or groups. In this scenario, you can define column-level security in Lake Formation to

define which columns IAM principals can access and which

columns should be excluded.

 Access control based on data in rows (row-level security) Let’s assume you have a common data lake table that

includes the data of multiple business units with a column

that captures the business unit name. You would like to

define permissions so that the respective business unit users can see only the records belonging to them. In this scenario, Lake Formation row-based access control is helpful as you

can define a row-based filter such as business_unit=BU1

and assign that to the respective business unit users for

access. Please read more from the Lake Formation

documentation on what PartiQL filter expressions you can integrate while defining row-level filtering.

 Control access with both row- and column-based

 permissions (cell-level security)

Let’s assume you have a requirement to define permissions

for both rows and columns. If you combine the use case of

column-level security and row-level security we, you might

be able to meet a requirement that says the business units

can see only the records belonging to them and instead of all the columns of the table, only the non-PII columns. There

are a few additional IAM permissions needed to define cell-

level security in Lake Formation; please refer to the Lake

Formation documentation.

Figure 7-20 provides a screenshot of the Lake Formation console that shows how you can define row- and column-based filtering.

[image: Image 98]

 Figure 7-20. Row- and column-based data filter in AWS Lake Formation

Next, let’s review some of the best practices you can follow while integrating Lake Formation permissions.

Best practices to integrate AWS Lake Formation

Here are some of the best practices you should follow while

implementing AWS Lake Formation:

 Avoid bucket policies for Amazon S3 buckets registered as a data lake location.

When you register an Amazon S3 prefix as your data lake

location, AWS Lake Formation manages access to its data

through the Lake Formation authentication and

authorization mechanism. So avoid additional bucket

policies for these specific S3 buckets to have a consistent

way to manage permissions.

 Avoid using the AWS root admin user as the data lake

 admin user.

When you are setting up AWS Lake Formation for the first

time, you are expected to create or declare a data lake

admin, who will act as a Lake Formation administrator.

Often to follow an easier route, customers use the root AWS

IAM user as the data lake admin user, but to follow the least-privilege principle, you should create a separate IAM user to designate as the data lake admin for Lake Formation.

 Avoid using the Lake Formation service-linked role in

 production.

As explained earlier, a service-linked role (SLR) is a specific type of IAM role that includes all the permissions needed by

the service to call other AWS services. In general, it is not recommended to use service-linked roles in production, as

they may create security risks and do not follow the least-

privilege principle.

Please note there are a few limitations that you need to be aware of such as that Amazon EMR on EC2 does not support

SLR-registered locations for data access, encrypted catalogs

do not support SLR for cross-account sharing, and a large

number of S3 locations registered for data access may cause

failures because of IAM policy limits. Creating a separate

IAM role is recommended for registering data locations with

Lake Formation.

Best practices for cross-account sharing

Lake Formation leverages AWS Resource Access Manager

for cross-account grants. The following are a few things to

consider when integrating Lake Formation for cross-

account data sharing:

Leverage AWS Organizations to organize your AWS

accounts, so that it’s easier to grant permissions.

Instead of granting permissions to many individual

tables, look for an opportunity to combine them as a

single database and use All Tables permissions for

that database, which results in one grant.

Instead of creating a resource link for each table

that is shared, the data lake administrator should

create a placeholder database and grant

CREATE_TABLE permission to the ALLIAMPrincipal

group. Then, all IAM principals in the recipient

account can create resource links in the placeholder

database and start querying the shared tables.

Best practices for tag-based access control

The following are some of the best practices you can follow

while implementing TBAC in AWS Lake Formation:

Before assigning LF-Tags to Glue Data Catalog resources, make sure to define them. As a best

practice, you can designate a person or team who is

responsible for defining tags and control that access

through IAM permissions. Also plan to define tags in

lowercase, as tag keys and values are converted to

all lowercase when they are stored.

Wildcards are not supported when you assign LF-

Tags. If you would like to assign the same LF-Tag to

all the tables of a single database, then assign it to

the database, as all the tables within the database

inherit the same tag. The inheritance of tags works

for table to column too.

Make sure to assign full table access for Glue ETL

jobs, as that is a requirement for the ETL jobs

without which the jobs will fail.

Keep the tagging ontology as simple as possible.

Having too many LF-Tags can make it difficult to

manage and track permissions. Document the

tagging ontology and share it with the data stewards

so that they are very clear when/how to use the LF-

Tags.

NOTE

There are a few additional considerations and limitations that you should be aware of, which are included in the AWS documentation.

Next, let’s learn how you can manage permissions in

Amazon Redshift.

Database Security in Amazon Redshift

Amazon Redshift provides the following features for

managing database security.

Manage permissions with GRANT and REVOKE

Similar to relational databases, you can create users or

groups within Redshift and define what level of access they

will have using the GRANT or REVOKE command. Redshift supports SELECT, INSERT, UPDATE, DELETE, REFERENCES,

CREATE, TEMPORARY, and USAGE permissions. By default, the

superuser or the owner of the database object can query,

modify, or grant permissions on the object. Objects owners

get implicit GRANT, REVOKE, and DROP access on their objects

that cannot be revoked.

Role-based access control

Role-based access control (RBAC) enables you to control access at both broader and finer levels. For granular

control you can create roles, assign users to roles, and

define permissions for the role. RBAC helps implement the

least-privilege principle, and for any permission change

instead of making changes at the object level, you can

make changes at the role level that will impact all the users associated with the role.

RBAC also supports nesting roles, which means you can

assign a role to a user or to another role. If you assign role 1 to role 2, then users assuming role 2 will have the

permissions of both role 1 and role 2. To create roles the

database user needs to have the CREATE ROLE permission,

or the superuser can GRANT the CREATE ROLE permission to

the user.

Row-level security

Row-level security (RLS) in Redshift enables granular

access control on sensitive data where you can define

which rows of a schema or a table can be accessed by

which user or role. You can combine row-level security and

column-based filters to implement fine-grained access

control.

When RLS is enforced and users run a query, the returned

result gets filtered based on the row- and column-level

permission assigned to the user running the query. There

are a few best practices you can follow while defining RLS

policies such as avoiding complex statements in policies

and not using excessive table joins in the policy definition.

Dynamic data masking

Dynamic data masking (DDM) in Redshift enables you to protect or mask sensitive data in table columns during

query time. You can configure masking policies that apply

custom obfuscation rules for specific users or roles. You

can also integrate conditional dynamic data masking to apply masking at the cell level by writing conditions that

may check the value of any columns in that row.

Next, let’s learn how you can integrate fine-grained access

control in Amazon QuickSight.

Fine-Grained Access Control in Amazon

QuickSight

There are two ways you can enable fine-grained access

control in Amazon QuickSight. One is with IAM policies and

the other is with AWS Lake Formation.

Access control with IAM policies

Using IAM policies you can control which IAM user or role

can take which action on QuickSight resources. For

example, you can control which IAM user or role can create

QuickSight dashboards or datasets and which users can

access which visualization. In addition to QuickSight

resources, you also need to provide access to underlying

data sources such as the Amazon S3 prefix that the IAM

user will need while accessing the dataset.

Access control with Lake Formation

Amazon QuickSight supports querying datasets managed

by Lake Formation. This means if your QuickSight dataset

is created through Athena on a dataset available in S3, then

the queries will follow the column-, row-, and tag-based

permissions defined in Lake Formation for the IAM user.

Next, let’s review the different pillars of data governance

and what AWS service features you can integrate to

address them.

Data Governance

Apart from data security and privacy, the following are a

few other pillars of data governance that need to be

addressed for end-to-end data governance:

Data Catalog for metadata management

Data sharing

Data quality

Data profiling

Data lifecycle management

Data lineage

Logging and auditing

Let’s try to understand each of these pillars and what AWS

services or features can help address them.

Metadata Management and Technical Catalog

Centralized metadata management is the key to integrating

end-to-end governance. You might have multiple data

sources including databases, data lakes, and data

warehousing systems and for all these data stores you need

to have a common metadata layer, on top of which you can

integrate access controls, auditing, and reporting.

In the AWS Cloud, the AWS Glue Data Catalog serves as

the centralized technical catalog and also provides Glue

crawlers for schema detection. Let’s try to understand both

of these components.

AWS Glue Data Catalog

AWS Glue Data Catalog is a managed service that acts as a

centralized technical catalog in AWS, where you can define

virtual table schema on top of datasets in Amazon S3, as

well as tables in relational databases, Amazon Redshift,

DynamoDB, and many more other data stores through Glue

connections.

AWS Glue Data Catalog is a highly available, scalable, and

Hive Metastore–compatible catalog. It is serverless and

integrates with AWS IAM for security controls and provides

logging and auditing with Amazon CloudWatch and AWS

CloudTrail. Figure 7-21 represents the high-level features of AWS Glue Data Catalog.

[image: Image 99]

 Figure 7-21. AWS Glue Data Catalog features

Other AWS services such as Amazon Athena, Amazon

Redshift Spectrum, Amazon EMR or AWS Glue ETL jobs,

AWS Lake Formation, Amazon DataZone, and Amazon

QuickSight integrate with AWS Glue Data Catalog to fetch

metadata and query data from the source tables.

AWS Glue crawler

AWS Glue crawler helps auto-detect the schema by

scanning a subset of data from the data lake and creating

metadata tables in Glue Data Catalog. There are scenarios

where source systems send new datasets and to automate

metadata discovery you can integrate Glue crawlers to

create metadata tables and then trigger ETL jobs for

transformations. You can integrate built-in classifiers or custom classifiers in Glue crawlers to parse the schema of

the dataset in the data lake.

Amazon DataZone business glossary

Glue Data Catalog acts as a technical catalog in AWS, but

business users generally struggle to discover metadata

from technical catalogs as they are unfamiliar with the

technical terms. In such situations bringing in a business

catalog adds a lot of value, where you can map business

glossary terminologies to technical attributes, so that

business users can search the catalog through business

terms.

Amazon DataZone solves this requirement by enabling you to define a business glossary, terms, and metadata forms

with which business users can define metadata and enable

users to search the metadata catalog. Amazon DataZone

provides additional capabilities that enable you to share

data through publisher and subscriber models. Let’s learn

about it in the next section.

Data Sharing

When you think of data sharing, there are several use cases

that come to mind such as sharing data with your team

members, with other teams, with other business units of

the organization, or with external entities. For each use

case, you need to have a secured mechanism and the

architecture to share datasets.

We discussed AWS Lake Formation earlier, which enables

you to implement fine-grained access control. It is one of

the key components for sharing data, as you need to have

control over what subset of data you are going to share and

[image: Image 100]

with whom. We can define data sharing within the broader

categories represented in Figure 7-22. Let’s review each one of them in detail.

 Figure 7-22. Different data sharing mechanisms

Share within a single AWS account

If you are planning to share data with your team members

or with other teams within a single AWS account, then you

can leverage AWS Lake Formation’s fine-grained access

control to define permissions for individual IAM users,

roles, or groups. In this scenario, the assumption is you

have a single data lake or data warehouse and the

producers and consumers are within the same account.

Multiaccount, hub-and-spoke model for data sharing Assume your organization is split into multiple business

units and each business unit has its own AWS account. You

have a centralized data lake or data warehouse and other

AWS accounts act as consumers to query data from it. In

that case, you can integrate AWS Lake Formation’s cross-

account data sharing capability to control access to

databases or tables from centralized data lake accounts for

users of the consumer accounts.

Amazon Redshift provides a data sharing feature, using which you can share live data of your cluster across

Redshift clusters, workgroups, other AWS accounts, or

AWS Regions. With this feature you can avoid copying data

to other clusters and can serve live, up-to-date data to the

consumers as soon as the data is committed in the source

cluster. Producer Redshift clusters can create read-only

 data share objects referred to as outbound shares, and consumer clusters can receive these objects, referred to as

 inbound shares. Please note that you can integrate the Redshift data shares with AWS Data Exchange and AWS

Lake Formation. Figure 7-23 provides a high-level architecture diagram that represents how Redshift data

share can be integrated for multiple use cases.

[image: Image 101]

 Figure 7-23. Amazon Redshift data share with producer and consumer clusters In the hub-and-spoke model, there is no centralized

governance and each producer is responsible for

controlling access to its own consumers. Next, let’s learn

how you can implement centralized governance with a data

mesh.

Data mesh with centralized governance

A data mesh is well suited to a multiaccount scenario,

where your organization has multiple data lakes or data

warehouses managed by respective business units or AWS

accounts and you need to bring in centralized governance

control to share data between them. Each of the AWS

[image: Image 102]

accounts will have AWS Lake Formation integrated to

define fine-grained access control and you can integrate

Amazon DataZone to set up the publisher-subscriber

workflow. Learn more about data meshes from the AWS

documentation.

Figure 7-24 provides a high-level architecture of a data mesh on AWS, where producer and consumer accounts

collaborate for data sharing with Amazon DataZone in the

middle for centralized governance. This helps meet the four

core principles of a data mesh: “domain-driven ownership,”

“data as a product,” “federated governance,” and “self-

serve data platform.”

 Figure 7-24. Data mesh reference architecture with Amazon DataZone

Figure 7-25 represents a technical flow of how a producer account shares a subset of data lake and data warehousing

data to a consumer account using DataZone (Domain →

Projects), enables fine-grained access control with Lake

Formation, and enables querying using Athena or Redshift.

[image: Image 103]

 Figure 7-25. Reference architecture of data sharing in AWS

Next, let’s review what options you have if you need to

share data with external entities.

Cross-organization or business-to-business data

sharing

There are instances when your organization needs to

collaborate with other organizations for sharing data and

deriving insights for business decisions. These are B2B

(business-to-business) data sharing, where you can

integrate AWS Clean Rooms on top of your data lake to share a subset of your data with your partners to aggregate

datasets and derive cross-organization insights. Figure 7-26

provides a high-level architecture diagram that explains

how AWS Clean Rooms integration works.

[image: Image 104]

 Figure 7-26. AWS Clean Rooms collaboration in AWS

Exposing data as a product in a data marketplace

Your organization might have a business model where the

aggregated data you produce is represented as a product

and needs to be available in a public data marketplace,

from which end consumers can pay to subscribe to the

datasets. In the AWS Cloud, AWS Data Exchange enables building a data marketplace to which you can publish

datasets or subscribe to third-party datasets available for

free or with payment. AWS Data Exchange integrates with

Amazon Redshift, Amazon S3, and AWS Lake Formation.

Figure 7-27 explains how you can make Amazon Redshift data available in the AWS Marketplace using AWS Data

Exchange and let your consumers subscribe to it and query

it using their Redshift cluster.

[image: Image 105]

[image: Image 106]

 Figure 7-27. Amazon Redshift integration with AWS Data Exchange

Figure 7-28 represents how you can take advantage of AWS

Lake Formation integration with AWS Data Exchange to

share a subset of data lake data through the marketplace

and let data subscribers consume it using AWS Glue,

Amazon Redshift Spectrum, or Amazon Athena.

 Figure 7-28. AWS Lake Formation integration with AWS Marketplace Next, let’s learn about the data quality pillar of governance and how you can integrate AWS Glue’s capability for it.

Data Quality

As data gets ingested into the data lake or data

warehousing systems, validating the quality of the

incoming data becomes key before making it available for

[image: Image 107]

consumption. Low-quality data may lead to incorrect

business decisions that you need to prevent.

If the data is structured or available in a tabular format

(columns and rows), then you can apply standard validation

rules, such as if the data follows predefined schema, if it

has a minimum number of rows you expect, if the columns

are populated with correct values, and if the values in a

column fall within a defined range. You may also need to

apply custom rules as applicable to your business.

For structured datasets, you can leverage AWS Glue Data

Quality, which is serverless, cost-effective, and provides

petabyte-scale processing capability. You can integrate the

Glue Data Quality capability into the data available at rest

(by defining a Glue Data Catalog table on top of existing

data) or into the data in transit (by integrating the rules in Glue ETL jobs).

Figure 7-29 explains how you can integrate the Glue Data Quality feature. The feature recommends rules after

analyzing the data, and as a data steward you can refine

those rules and create a final ruleset. Then Glue evaluates

those rules against the dataset to produce Data Quality

check results. Data quality rule examples include validating

the number of records, checking the data type of a column,

or validating the completeness of the dataset.

 Figure 7-29. AWS Glue Data Quality workflow

If your data includes unstructured datasets or media files, then you can integrate AWS Artificial Intelligence (AI)

services such as Amazon Rekognition, Amazon

Comprehend, Amazon Textract or custom models deployed

in Amazon Bedrock or Amazon SageMaker to extract

metadata from the media files and then integrate data

quality rules on the extracted metadata to validate the

quality of the datasets.

Next, let’s learn how you can profile your data for reporting or notify about anomalies.

Data Profiling

Profiling data is one of the ways to make sure the data you

have received from the source systems or processed

through the ingestion pipeline meets the expectation

defined for those datasets. What you want to profile in the

dataset differs based on source systems and the business

rules defined by your organization. Some of the common

ways you can profile your data may include:

Number of rows received or processed for a specific

dataset

Number of columns expected in a data source

Type of data (number or string or date) expected in

a specific field

Values of a column fall in the defined range; for

example, a country code field has valid values or a

month column has values between 1 to 12

A numeric field value that follows the mean or

median of all values in that field

In the AWS Cloud, you can leverage the following features or tools to implement your data profiling requirements:

 Glue Data Quality rules

As explained in the previous section, you can leverage the

Glue Data Quality Definition Language (DQDL) rules and

integrate custom logic to profile your data.

 AWS Glue Deequ framework

The AWS Glue Data Quality feature was developed from the

open source Deequ framework, which you can customize as

per your requirements. The framework also provides a lot of

flexibility with which you can integrate your data profiling

needs.

 AWS Glue DataBrew recipes

You can also integrate DataBrew recipes to scan values in

columns or count the rows to profile your data. DataBrew

provides predefined functions that you can integrate

without writing any custom code.

 AWS Samples Data Profiler utility

This Data Profiler utility available in AWS Samples provides

an option to profile the tables available in Glue Data Catalog using AWS Glue or Amazon EMR.

 Third-party free or paid tools

Apart from the preceding options, you can always look for

third-party non-AWS tools that can help profile your

datasets, provide periodic reports, and trigger alerts for

anomalies.

Next, let’s learn how you can maintain your data and

control cost with data lifecycle management.

Data Lifecycle Management

Every dataset your organization uses or maintains has its

own life span. Certain use cases may require the previous

few years of data to be immediately available for analytics,

whereas other use cases may need to access a subset of

data infrequently, and older datasets may need to be

archived or deleted. Apart from business needs,

organizations also follow industry guidelines where they

need to keep older data for a certain duration or delete

specific customer data when the customer leaves the

platform.

In Chapter 5, we explained in detail how you can leverage S3 storage classes and S3 lifecycle configurations to move data to different S3 storage tiers, how you can leverage

export features in databases, and how you can leverage the

expire snapshot features of open table formats.

As an alternative to native export features of databases,

you can also write a batch script, which can export older

data from the database to an object store or file storage

layer and delete the same data from the database to save

cost.

Next, let’s learn about data lineage and how you can

integrate it in AWS.

Data Lineage

Data lineage involves tracking and visualizing the journey

of data from its source through various systems and

transformations until it reaches its final destination. This

process provides a detailed map of data flows,

transformations, and storage locations, ensuring complete

transparency and traceability throughout the data lifecycle.

Managing data lineage requires collecting various types of metadata to document the flow and transformation of data

across an organization. The key types of metadata include:

 Technical metadata

Captures details about data sources, schemas,

transformations, and consumers.

 Business metadata

Provides context by detailing data ownership, business

definitions, and classifications to ensure appropriate data

usage.

 Operational metadata

Includes transformation schedules, execution timestamps,

and data flow information, offering insights into data

movement through different systems and processes.

 Quality metrics

Assesses the data’s accuracy, completeness, and job status to maintain high data quality.

Data lineage offers distinct benefits tailored to different

personas within an organization:

For data engineers, it enhances data quality by

pinpointing where errors occur, allowing for

efficient root cause analysis and timely rectification.

Changes in data pipelines are easier to apply and

validate because engineers can identify a job’s

upstream dependencies and downstream usage to

properly evaluate service impacts.

Data platform administrators benefit from data

lineage by gaining comprehensive insights into data

integration processes. This understanding helps them manage data from various sources accurately,

ensuring seamless aggregation without data

duplication or entity mismatch. Additionally, data

lineage aids in regulatory compliance by providing

clear audit trails, helping administrators meet

compliance requirements like GDPR and CCPA.

For data analysts and data scientists, the ability to

view and track data flow as it moves from source to

destination helps them better understand the

meaning and context of a dataset or a particular

metric.

Business data consumers benefit from the improved

data integration and quality, leading to more

accurate and trustworthy data for decision making.

They can rely on the data’s integrity, knowing that

any issues can be traced and addressed promptly,

ensuring that insights derived from the data are

valid and actionable.

AWS provides several services to help implement data

lineage effectively.

Amazon DataZone

Amazon DataZone offers a comprehensive, API-driven data

lineage feature compatible with OpenLineage, providing an

end-to-end view of data movement over time. Users can

visualize and understand data provenance, trace changes,

and conduct root cause analysis when data errors occur.

This service captures transformations of data assets and

columns, offering a detailed view of data movement from

source to consumption. The graphical interface for

navigating data relationships enhances productivity and

decision making. The lineage data includes activities inside the DataZone business catalog, catalog assets, subscribers

who consumed those assets, and any additional activities

captured using APIs.

Building lineage solutions with AWS Glue, Amazon

Neptune, and Spline

This approach uses AWS Glue as the ETL engine to ingest,

transform, and load data. The Spline agent captures

runtime lineage information from Spark jobs in AWS Glue,

recording the data’s journey through various

transformations. This data is then stored and modeled in

Amazon Neptune, a graph database optimized for querying

highly connected data. The captured lineage data is

visualized using Neptune notebooks, providing interactive

analysis capabilities for managing complex data

relationships effectively. You can refer to the AWS blog for more details.

Amazon SageMaker ML Lineage Tracking

For machine learning workflows, Amazon SageMaker ML

Lineage Tracking offers a robust solution to capture and

visualize the lineage of machine learning models. This

feature tracks and stores information about each step of

the ML workflow, from data preparation to model

deployment. SageMaker ML Lineage integrates with

SageMaker Pipelines to provide detailed lineage

information, ensuring reproducibility and governance of

ML models. This capability is essential for establishing

model governance, auditing model performance, and

ensuring compliance with regulatory requirements. By

capturing the complete lineage of ML workflows,

SageMaker enables data scientists and engineers to

understand the impact of data changes on model outcomes

and maintain high standards of data quality and integrity throughout the model’s lifecycle.

Apart from the above AWS service features, you also have

the flexibility to configure other open source products such

as DataHub, Collibra, and Amundsen. Next, let’s learn how we should make sure logging and auditing is in place for

your data platform to help meet governance and

compliance needs.

Logging and Auditing

Logging and auditing is one of the key pillars of data

governance, which enables you to analyze log data and also

audit user actions for security and compliance needs. Let’s

understand which AWS services can be integrated for

logging and auditing and how you can query these logs for

deriving insights.

There are multiple options you can consider while looking

for an AWS service that can store logs. Let’s understand

each of those options.

Amazon CloudWatch

Amazon CloudWatch is a managed logging service in AWS

that not only enables you to store logs but also analyze

logs, integrate alarms for anomalies, and create

visualizations on log data for reporting. It natively

integrates with all AWS services, which means without

custom coding effort, AWS services can push logs to

CloudWatch. Figure 7-30 provides a high-level architecture diagram that explains how Amazon CloudWatch works.

[image: Image 108]

 Figure 7-30. Amazon CloudWatch integration for logging and monitoring Amazon OpenSearch Service

Amazon OpenSearch Service, previously known as Amazon

Elasticsearch Service, is a managed service built for storing and analyzing logs. It is a distributed search and analytics

engine built on Apache Lucene. It solves a wide range of

use cases such as log analytics, security intelligence,

operational analytics, and full-text search.

To ingest log data to the OpenSearch cluster, you can

leverage open source tools such as Logstash or leverage its

APIs for transactional insert, or you can load data through

bulk loader APIs. You can integrate Amazon OpenSearch

Dashboard (previously known as Kibana Dashboards) to

build visualizations on log data.

Amazon OpenSearch Service can be a great logging

solution if you would like to design your own indexes and

manage the log schema for faster search. With

OpenSearch, you can choose to have a fixed node

provisioned cluster or can go with Amazon OpenSearch

Serverless. You can also integrate Amazon CloudWatch

alarms to monitor OpenSearch cluster health and configure

alerts for cluster issues.

Amazon S3

You might have a use case where you may plan to just keep

the log data in file storage and not invest in integrating a

managed solution like Amazon CloudWatch. In that case,

Amazon S3 can help you store the log data and you can

integrate Amazon Athena to query the logs or Amazon EMR

to process the logs for analytics.

Let’s review an example of one of the analytics services

such as Amazon Redshift and understand how you can

enable logging for the cluster.

Logging and auditing in Amazon Redshift

Amazon Redshift natively integrates with Amazon

CloudWatch and CloudTrail. It publishes several metrics to

Amazon CloudWatch, which you can leverage to monitor

cluster health, memory utilization, CPU utilization, read or

write IOPS, user activity logs, and more. You can refer to

the AWS documentation for a complete list of metrics Redshift publishes to Amazon CloudWatch. Alternatively,

you can also consider pushing the logs to a specific Amazon

S3 bucket.

Redshift publishes connection logs, user logs, and user

activity logs. You can filter logs in CloudWatch by filtering the new log group created for the Redshift cluster that

follows the

 /aws/redshift/cluster/<cluster_name>/<log_type> path. For connection logs, the log group path will be

 /aws/redshift/cluster/<cluster_name>/connectionlog.

Redshift also publishes audit logs to CloudTrail, where you

can identify who made the request, from which IP it was

made, what time it was, and additional request details.

Refer to the AWS documentation to understand how you can enable audit logging for the cluster.

NOTE

Please note audit logging for a Redshift cluster is not enabled by default and you need to explicitly enable it by specifying a log export to CloudWatch or to an S3 prefix.

Amazon Managed Service for Prometheus and

Grafana

Apart from logs, you may look for a dedicated solution to

store application-level metrics for monitoring and build

alerting and visualization on top of it. For such use cases

you can integrate Prometheus for storing metrics and

Grafana to build visualizations. Both of these open source solutions are widely adopted in the industry for metrics

monitoring or observability.

AWS also offers managed services for both of these open

source tools (Amazon Managed Service for Prometheus and

Amazon Managed Grafana) that you can integrate if you would like to reduce operational overhead or manage the

open source versions and the related infrastructure

hardware.

AWS CloudTrail to audit actions or API invocations

AWS CloudTrail is a managed logging solution to keep track of user activities or AWS API actions. You can also

integrate it in a hybrid or multicloud environment. These

logs are stored immutably to enable compliance audits of

user actions and can aggregate multiple events to derive

insights.

Analyzing CloudTrail logs using CloudTrail Lake To analyze CloudTrail logs with ease, AWS offers

CloudTrail Lake as a managed data lake service that you can use to aggregate, visualize, or query user activity data

that includes AWS and non-AWS actions.

CloudTrail Lake enables you to write SQL queries to

analyze the data and also offers visualization capability

with CloudTrail Lake Dashboards. It also makes writing

SQL queries easier by enabling SQL query generation with

natural language prompts. Alternatively, you can integrate

Amazon Athena to query from CloudTrail Lake or can

integrate Amazon QuickSight or Grafana for visualizations.

Analyzing Logs Using AWS Services

Analyzing logs helps troubleshoot issues or aggregate user

actions to derive insights that can help make business

decisions. After understanding the AWS services that

enable you to store logs, let’s review how you can analyze

these logs.

Amazon Athena

As documented in the AWS documentation, you can integrate Amazon Athena to query logs of several AWS

services such as CloudTrail, VPC logs, Application Load

Balancer, Network Load Balancer, Route53, and more. You

can also query Amazon S3 access logs and web server logs.

You can define an external table that points to an Amazon

S3 prefix and specifies the input file format with the

respective SerDes to query the data using SQL. SerDes

represents the serialization and deserialization process that converts data from one format to another. Serialization

primarily converts data from a readable format to a

compressed/encrypted storage format (e.g., text to binary), whereas deserialization represents converting

compressed/encrypted storage format back to readable

format (e.g., binary to text).

Amazon CloudWatch Log Insights

Using CloudWatch Log Insights, you can interactively query different logs available in CloudWatch and identify

operational issues in your source application or AWS

services. It provides query generation using natural

language and can auto-detect fields available in logs. You

can visualize the insights data using graphs and save the

query and the query result for future reference.

AWS CloudTrail Insights

AWS CloudTrail Insights continuously analyzes

management events and baselines the API call volumes and

error rates. It generates insights in case of anomalies such

as the API call volume or error rates being more than the

baseline pattern. CloudTrail Insights analyzes management

events that occur in a single AWS region.

Amazon OpenSearch Dashboards

Amazon OpenSearch Dashboards is an open source

visualization tool designed to work with an Amazon

OpenSearch cluster. OpenSearch Service enables

installation of OpenSearch Dashboards with every domain

you create and works only with the hot data you have on

the cluster.

Processing logs with Amazon EMR or AWS Glue

You have learned about several AWS services that natively

support capabilities to analyze log data, but there might be

scenarios where you receive custom log formats or log data that is not well structured for querying. In such cases, you

might need a data processing framework where you can

integrate custom logic to parse the input log data and write

the standardized output for easier querying.

AWS Glue or Amazon EMR service with Apache Spark

framework are great options for such use cases that can

help process terabyte-scale log data using their distributed

processing capability. After transforming the log data, you

can write to Amazon S3 for querying using Amazon Athena.

Auditing AWS configuration changes with AWS Config

AWS Config is a managed service that continuously

assesses the configurations of AWS services and helps in

auditing configuration changes over time. It is a great tool

for implementing change management, as AWS Config

keeps history of all changes, provides a dashboard for

monitoring, and also delivers change history to Amazon S3

for compliance auditing. You can also leverage AWS Config

to record configurations for third-party resources, on-

premises servers, software-as-a-service (SaaS) tools, and

many other resources.

Conclusion

In this chapter, we have dived deep into different data

security, privacy, and governance controls, including

securing networks with VPC and security groups,

authentication and authorization with AWS IAM, securing

data with encryption and AWS Lake Formation fine-grained

access control, and handling several other data governance

pillars with AWS services.

Next, let’s try to validate our knowledge with a few practice questions that may help you prepare for the AWS Certified

Data Engineer Associate exam.

Practice Questions

These practice questions may help you understand what

kind of questions to expect on the exam so you can prepare

accordingly. The answers are listed in the Appendix.

1. Assume your five-member team is spread across the

globe and your application’s RDS database is hosted

in the AWS us-east-1 region. You have already got

the IP address of your individual team members and

would like to restrict access only to those IPs.

What is the best way to configure this access

restriction with the least-privilege access principle?

A. Include the IP addresses in the Route 53

service, where the database fully qualified

domain name is configured to restrict the

access.

B. Include the IP addresses in the security group

of the database to specify inbound access is

allowed only from those IPs.

C. Include the IP addresses in the NACL of the

VPC, so that the restriction is at the subnet

level for least-privilege access.

D. Include the IP addresses in the security group

of the database to specify inbound access is

allowed from those IPs only on the database

port for connection.

2. Assume you are building a three-tier web application that has a React JS–based web interface that invokes

a REST API configured using Amazon API Gateway.

The API invokes an AWS Lambda function that

writes to or reads from the RDS database. The

database instance is deployed in a private VPC and

you need to configure the Lambda function in a way

that it can connect to the database.

Please note this three-tier application will have

several REST APIs, which means you will have

multiple Lambda functions that need to interact with

the database. What is the most operationally

efficient way you can configure access for the

Lambda functions to connect to the database?

A. Configure the Lambda function and the RDS

instance within the same VPC. Include the

Lambda function and the database within a

single subnet and configure NACL so that

they can interact with each other seamlessly.

B. Deploy the Lambda function in the same VPC

as the RDS instance, then add the Lambda

function’s security group in the RDS instance

security group as inbound access.

C. Create an IAM role for the Lambda function

and add a policy to access the RDS instance.

D. Configure a VPC endpoint for the Lambda

function so that it can access the RDS

instance natively.

3. Assume you have data stored in one AWS account

(Account 1), which is encrypted using AWS KMS

keys. You have received a request from users of

another AWS account (Account 2) to access your account’s (Account 1) datasets. What is the most

efficient way to make sure that they can access the

encrypted data?

A. Configure separate AWS KMS keys that

belong to each account and encrypt the data

in Account 1 with the KMS keys of Account 2,

so that users of Account 2 can access it.

B. Share the KMS key of Account 1 with Account

2.

C. Instead of using AWS KMS, integrate SSE-S3

encryption, so that AWS takes care of the

encryption/decryption internally.

D. Create a KMS key alias in Account 1 and

share the key alias with Account 2 to access

the data.

4. Your organization has a centralized data lake that

holds the data of multiple business units such as

Finance, Marketing, and Human Resources. You are

supposed to implement tighter security control so

that employees can access only the data belonging

to their business unit. What is the best way to

implement security for this?

A. Integrate IAM groups for each business unit

and configure IAM roles so that users can

access only their business unit data.

B. Make sure each database table has

business_unit as an attribute and integrate

AWS Lake Formation with a row filter for the

business_unit attribute.

C. Configure S3 bucket policies with IAM users to make sure users can access the data

available in a specific S3 prefix.

D. Set up separate data lakes for each business

unit and integrate Lake Formation for fine-

grained access control.

5. Your organization is planning to integrate a

centralized metadata catalog across data lakes and

data warehousing systems. They would like to

reduce operational overhead and look for a managed

solution. Which option in AWS is better suited to this

scenario?

A. Integrate Hive Metastore with Apache

Ranger to build the centralized catalog in

AWS.

B. Set up Hive Metastore with AWS-managed

databases such as Aurora to reduce

operational overhead.

C. Integrate AWS Glue Data Catalog as the

centralized catalog that integrates with most

of the analytics services.

D. Build a custom catalog on top of AWS-

managed databases so that you have the

flexibility to manage the metadata.

6. You have enabled CloudTrail in your AWS account

and for compliance audits you would like to query

and analyze the logs with less operational overhead.

What is the easiest way to implement this?

A. CloudTrail logs are stored in S3, so you can

use S3 SELECT feature to directly query from

S3 without any additional service.

B. Integrate Amazon Athena on top of CloudTrail

logs in S3 to allow querying using SQL.

C. Leverage CloudTrail Lake, which natively

supports analyzing CloudTrail logs.

D. CloudTrail logs are nested in format and also

have a larger data size. So integrating

Amazon EMR to process and analyze the logs

is the best possible way.

7. Your organization has four business units and each

business unit has its own data warehousing system

built on Amazon Redshift. Each of the business units

got their own AWS account where the Redshift

cluster is set up. You need to enable data sharing

between business units, where one business unit can

share a few tables with another business unit

directly. What is the operationally efficient way to

achieve this requirement?

A. Leverage Redshift data share to share one

cluster’s data with another cluster that

belongs to the consumer business unit.

B. As Redshift data share does not support

cross-account data sharing, you can expose

the data to AWS Data Exchange and leverage

fine-grained access control with AWS Lake

Formation.

C. Export the data that needs to be shared to

Amazon S3 and integrate Lake Formation

fine-grained access control to share with the

consumer business unit to query using

Athena.

D. The easiest way is to set up AWS Clean

Rooms collaboration by bringing in the four

business units as collaborators and enabling

data sharing and querying using Clean

Rooms.

8. Your company has multiple business units and each

business unit has its own AWS account. To structure

the AWS accounts better, you have already

integrated AWS Organizations. As part of your data

backup strategy, you have defined a few AWS

Regions where the backup data should be stored. To

avoid human error, you would like to put restrictions

so that no team can push backup data to an AWS

Region that is not approved. What is the best way to

achieve this requirement?

A. Create CloudFormation templates that

configure backup policies to write backups

only to approved AWS Regions. Let your team

use only the Cloud Formation templates for

configuring backups.

B. Define service control policies to restrict

writing backups to unapproved Regions.

C. Configure AWS Backup in a central AWS

account to trigger backup in other accounts

and make sure the central account has a

configuration to write to the approved

Regions.

D. Create a custom utility that is managed by

your organization’s security team and is

configured to write backups to approved

Regions only. Define guidelines for all teams

to use the common utility for backups.

9. Your mobile application has a backend relational

database built on Amazon Aurora Serverless V2 with

PostgreSQL as the database engine. You have batch

analytics queries that run on the database every

month for end-of-the-month reporting. Over the

years, the data in the database has grown

significantly and you have started seeing

performance issues in the database queries. To

improve the performance and also enable a few

additional use cases, you have decided to move older

data from the database to Amazon S3 for analytics.

What is the operationally efficient way to implement

this requirement?

A. Integrate stored procedures within the

Aurora database that query older data and

write to Amazon S3.

B. Write a custom AWS Glue ETL job that is

scheduled to run every night and that queries

older data from S3 and writes the output to

Amazon S3.

C. Leverage the Export to S3 feature of Aurora

PostgreSQL to automate the older data export

requirement.

D. Create monthly database snapshots and copy

them to Amazon S3 for analytics.

10. Your application is built using Amazon API Gateway

for REST APIs, AWS Lambda for serverless compute,

and Amazon Aurora as the backend database. Your

security team identified that your Lambda function’s Python code has hardcoded database credentials

that are checked in to the Github repositories. To

avoid the security risk, you are assigned to come up

with the best way to configure the database

credentials in AWS. Which of the following

approaches would you suggest as the most secure

solution?

A. Remove the database credentials from the

Lambda function’s Python code and configure

them as environmental variables of the

Lambda function.

B. Create a configuration database that has

encryption at rest and stores all the database

credentials. Let the Lambda function query

the database in real time to query the latest

credentials and then connect to it for

querying.

C. Integrate AWS Secrets Manager to store the

database credentials and the Lambda

function to refer to the secrets in its code.

D. Create a database configuration file that is

stored in an Amazon S3 bucket, which is only

accessible to the Lambda function. Let the

Lambda function read the credentials from

the configuration file from S3 when it needs

to query the database.

Additional Resources

The following are a few additional resources that will help

you dive deeper and gain more knowledge on data security

and governance in AWS:

Organization and network security:

– “Controlling Access with Security Groups”

– “Scenarios for Accessing a DB Cluster in a

VPC”

– “Control Network Traffic with Security

Groups for Your Amazon EMR Cluster”

– “Identity Providers and Federation”

– “Amazon Security Lake and AWS

Organizations”

Data security:

– “Data Protection in Amazon S3”

– Monitoring data security with AWS Managed

Security Services

– “Security Best Practices for Amazon S3”

– Managing Redshift database security

– Security best practices for AWS KMS

Data governance:

– “Data Governance with AWS”

– AWS Cloud Adoption Framework and data

governance

– Enterprise Data Governance Catalog

– “AWS Offerings for Data Mesh”

– “Monitoring and Optimizing the Data Lake

Environment”

Chapter 8. Implementing

Batch and Streaming

Pipelines

In previous chapters, we provided an overview of AWS data

analytics services and explained how to design a data

ingestion pipeline, apply transformations, manage data

stores, implement security and governance, and achieve

operational efficiency for your analytics workloads.

In this chapter, we will provide a hands-on implementation

guide of popular use cases for batch and streaming

pipelines. Before getting started, please make sure you

have created an AWS account and configured IAM

permissions as described in Chapter 2.

Data Processing Pipeline

A data processing pipeline is a sequence of steps to refine

and transform the data and make it available in a format

that can be consumed by end users for analytics. The use

cases for which data needs to be transformed may include

the following:

Cleansing data and improving data quality

Transforming data by aggregating with internal

datasets and applying specific business rules

Formatting it for time series analysis or preparing

data for machine learning model development

[image: Image 109]

Creating a specific data model for faster data

analysis or BI reporting

Making data available in a specific format to share

with downstream systems

Figure 8-1 represents a high-level architecture for a data pipeline that includes data sources, data ingestion, data

processing, and data consumption layers.

 Figure 8-1. High-level architecture for data processing pipeline Next, let’s take publicly available sample datasets and

implement a batch and streaming pipeline with detailed

hands-on steps in AWS.

Implementing a Batch Processing

Pipeline

Batch processing means combining multiple records or files

to be processed at once. The processing frequency can be

scheduled or executed on demand. Let’s take an example

use case and follow a step-by-step implementation guide to execute a data processing job as a batch.

NOTE

Please note that implementing the end-to-end solution will have some cost implications based on AWS public pricing for each service.

Except for the AWS Glue PySpark job, the rest of the services might

be eligible for the Free Tier so please check the AWS Free Tier

documentation.

Use Case and Architecture Overview

Figure 8-2 represents a high-level architecture that includes the following steps:

 Step 1.1

Input datasets are uploaded to the Amazon S3 Raw input

bucket.

 Steps 1.21 and 1.22

AWS Glue PySpark is triggered through an Amazon

EventBridge scheduler.

 Step 1.3

The Glue PySpark job loads the transformed data into an

Amazon Redshift table.

 Steps 2.1 and 2.2

A data analyst builds an Amazon QuickSight visualization

that summarizes the data of the Redshift table.

[image: Image 110]

 Figure 8-2. High-level architecture for batch data processing pipeline Overview of Input Dataset

To explain the use case, we will refer to the publicly

available sales dataset, which contains a list of over 20,000

sales opportunity records for a fictitious business. Each

record has fields that specify the following:

A date, potentially when an opportunity was

identified

The salesperson’s name

A market segment to which the opportunity belongs

Forecasted monthly revenue

For this use case, let’s assume these sales CSV files are

maintained by your organization’s Sales team and that they

upload the input files to Amazon S3 input bucket at the end

of every month. The aggregated output data is created

through a series of data preparation steps, and the

business team uses the output data to create business

intelligence (BI) reports.

Step-by-Step Implementation Guide

Before beginning these steps, make sure you have the

required permissions to create the resources required as

part of the solution. Please note that we have used the us-

east-1 region to deploy the solution but you can choose

your preferred region before getting started.

NOTE

Please note the implementation steps in this chapter mention the Amazon S3 bucket name “ch8-ex1-input-data.” Amazon S3 names

should be globally unique within a partition (AWS partitions as specified in the AWS documentation: aws [commercial regions], aws-cn [China regions], and aws-us-gov [AWS GovCloud (US) regions]).

While implementing in your AWS account, please make sure to add a few random characters at the end of the bucket name so that it is unique.

Create Amazon S3 buckets

Refer to the following steps to create the Amazon S3 input

bucket or prefix and upload the sales data CSV into it:

1. Navigate to the Amazon S3 console.

2. Choose “Create bucket.”

3. Specify the bucket name as ch8-ex1-input-data and

leave the remaining fields as default as represented

in Figure 8-3.

[image: Image 111]

[image: Image 112]

 Figure 8-3. Create Amazon S3 bucket using AWS console

4. Choose “Create bucket.”

5. On the bucket detail page, choose Upload.

6. Then choose “Add files” and upload the sales dataset

into it. Figure 8-4 represents the sales dataset file successfully uploaded to the defined S3 bucket.

 Figure 8-4. Amazon S3 console (object upload successful screen) Create Amazon Redshift cluster

Refer to the following steps to create a Redshift Serverless

cluster:

1. Navigate to the Amazon Redshift Serverless console.

2. Choose “Create workgroup.”

[image: Image 113]

3. As represented in Figure 8-5, specify the Workgroup name as “ch8-ex1-redshift-serverless” and the Base

capacity as 8, which is the default minimum. Then

click Next.

 Figure 8-5. Amazon Redshift: create cluster using AWS Console 4. As represented in Figure 8-6, specify “salesdata” in the Namespace field with the “Create a new

namespace” option. In addition, choose “Customize

admin user credentials” and specify a password for

your database.

[image: Image 114]

 Figure 8-6. Amazon Redshift: create a namespace using the AWS

 Console

5. Under Permissions, select “Create IAM role” and

select the “Any S3 bucket” option to create the IAM

role. After creating, you should see the output in

Figure 8-7. Please note, we have selected the “Any S3 bucket” option for this use case implementation

but you can follow the least privilege principle and

make the permission more restrictive to specific S3

buckets.

6. Leave the other values as default and Choose Next.

7. In the review screen, review the configurations and

choose Create.

[image: Image 115]

[image: Image 116]

 Figure 8-7. Amazon Redshift: associate IAM role to the cluster In a few minutes, you should see that the “ch8-ex1-redshift-serverless” workgroup has been created and attached to

the salesdata namespace.

You need to make sure that the security group attached to

the Redshift cluster’s workgroup has allowed inbound

access on the “8182” port and also has allowed inbound

access from the same security group as shown in Figure 8-

8. You can select the same security group for the Glue job

so it can connect to the Redshift cluster.

 Figure 8-8. Amazon Redshift: attach inbound rule to the security group

[image: Image 117]

Next, let’s create a data connection in AWS Glue so that the

Glue ETL job can leverage the connection to write to the

Redshift cluster.

Create Glue data connection for the Redshift cluster

Before creating a Glue job, let’s first create a data

connection for the new Redshift namespace:

1. To create the connection, you will need the Redshift

cluster’s connection details. To get those details,

navigate to the Redshift cluster workgroup page,

then collect the JDBC URL from the General

information section as shown in Figure 8-9.

 Figure 8-9. Amazon Redshift: cluster workgroup detail page 2. Also collect the VPC, subnet, and security group

details from the Data access tab as shown in

Figure 8-10.

[image: Image 118]

 Figure 8-10. Amazon Redshift Cluster: Network connectivity and access security details

Save these details in a notepad, as they will be

needed while creating the Glue connection.

3. Next, navigate to AWS Glue’s data connection

console.

4. Under Connections, choose “Create connection.”

5. In Data sources, search for JDBC, select the JDBC

connection option as shown in Figure 8-11, and choose Next.

[image: Image 119]

 Figure 8-11. AWS Glue: create a data connection

6. As shown in Figure 8-12, specify the Redshift cluster JDBC URL and provide the Username and Password

for authentication.

[image: Image 120]

 Figure 8-12. AWS Glue: configure data connection

7. As illustrated in Figure 8-13, expand the Network options section to specify the VPC, subnet (select

one of the subnets that your Redshift cluster is

assigned to), and security group. Then choose Next.

[image: Image 121]

[image: Image 122]

 Figure 8-13. AWS Glue data connection: configure network

8. In the next screen specify the connection Name as

“ch8-ex1-redshift-connection” as represented in

Figure 8-14 and choose Next.

 Figure 8-14. AWS Glue data connection: set properties

[image: Image 123]

9. As represented in Figure 8-15, review the details in the final screen and choose “Create connection.”

This should take you to the connection detail page

with a success message.

 Figure 8-15. AWS Glue data connection detail

After we create the connection, we will create a Glue

PySpark ETL job, which will ingest the raw data available

in the Amazon S3 path to the Redshift Serverless cluster.

Create AWS Glue PySpark ETL job

Refer to the following steps to create a Glue ETL job

through the Glue Studio interface:

1. Navigate to the Glue Studio console.

[image: Image 124]

2. Choose Visual ETL, which will take you to the Studio

editor.

3. From the Visual tab, add Amazon S3 as the source,

configure its properties to point to the input S3

bucket where we uploaded the sales data CSV file,

and specify the type as CSV as represented in

Figure 8-16.

 Figure 8-16. AWS Glue Studio: design ETL pipeline

4. As you make progress in the visual studio, it’s better

to save the job, which you can do by specifying a

name for the Glue job (e.g., “ch8-glue-spark-etl-job”)

and choosing Save.

5. Please note that the CSV header has column names

with empty space and before writing the data to

Redshift, we need to rename the columns by

replacing empty spaces with an underscore (_). To

rename the columns, you can integrate the Change

Schema transformation.

6. Choose the + icon in the visual editor and search

“Change Schema,” then choose that. As shown in

Figure 8-17, choose Amazon S3 under Node parents,

[image: Image 125]

and rename the columns (e.g., “opportunity stage”

to “opportunity_stage,” “weighted revenue” to

“weighted_revenue”) to replace the empty space

with an underscore.

 Figure 8-17. AWS Glue Studio: design ETL pipeline: change schema 7. Next choose the + icon in the visual editor and add

“Redshift” as the target node. As represented in

Figure 8-18, configure the Redshift connection properties by specifying the Parent node as “Change

Schema,” the Data Connection name as “ch8-ex1-

redshift-connection,” the Schema as “public,” and

the Table as “sales.”

[image: Image 126]

 Figure 8-18. AWS Glue Studio: design ETL Pipeline—Redshift target 8. Make sure to configure the IAM role in the Job

details tab so that it has permission to read the input

S3 bucket, execute the Glue job, and write to the

Amazon Redshift cluster.

9. Finally choose Run, which will trigger an execution,

and you can see the status of the job in the Runs tab.

As shown in Figure 8-19, the initial status of the run will be “Waiting,” as it waits for the compute

resources to get assigned.

[image: Image 127]

[image: Image 128]

 Figure 8-19. AWS Glue: ETL job run

10. Then you will notice the status transitions to

“Running,” and then “Succeeded” as represented in

Figure 8-20.

 Figure 8-20. AWS Glue: ETL job run succeeded

11. After the job is successfully completed, navigate to

the Redshift cluster, choose the “salesdata”

namespace and then choose “Query data,” which

will load the Redshift Query Editor v2.

[image: Image 129]

12. Within the Query Editor, choose the “ch8-ex1-

redshift-serverless” cluster, and navigate to native

databases → dev → public → Tables, then execute a

SELECT query on the “sales” table. You should see

the output illustrated in Figure 8-21, which validates the Glue job ingested data to the Redshift cluster

successfully.

 Figure 8-21. Amazon Redshift Query Editor v2 in the AWS Console Next, let’s create a visualization using Amazon QuickSight

on top of the data ingested into the Redshift cluster.

Create Amazon QuickSight execution role using AWS

IAM

Before creating the visualization, you will need to create an AWS IAM role that will act as QuickSight’s execution role.

For the execution role, you’ll need to create or select an

IAM role with the necessary permissions for QuickSight to

interact with your VPC and Redshift cluster. Here are the

permissions the role should have:

VPC access:

– ec2:CreateNetworkInterface

– ec2:DescribeNetworkInterfaces

– ec2:DeleteNetworkInterface

– ec2:DescribeSubnets

– ec2:DescribeSecurityGroups

– ec2:DescribeVpcs

Redshift access:

– redshift:DescribeClusters

– redshift:DescribeClusterSubnetGroups

– redshift:DescribeClusterSecurityGroups

If you’re using Redshift Serverless:

– redshift-serverless:GetWorkgroup

– redshift-serverless:ListWorkgroups

Here’s a sample IAM policy that includes these

permissions:

{

"Version": "2012-10-17",

"Statement": [

{

"Effect": "Allow",

"Action": [

"ec2:CreateNetworkInterface",

"ec2:DescribeNetworkInterfaces",

"ec2:DeleteNetworkInterface",

"ec2:DescribeSubnets",

"ec2:DescribeSecurityGroups",

"ec2:DescribeVpcs",

"redshift:DescribeClusters",

"redshift:DescribeClusterSubnetGroups",

"redshift:DescribeClusterSecurityGroups",

"redshift-serverless:GetWorkgroup",

"redshift-serverless:ListWorkgroups"

],

"Resource": "*"

}

]

}

To create this role:

1. Go to the AWS IAM console.

2. Click on “Roles” in the left sidebar.

3. Click “Create role.”

4. For “Trusted entity type,” choose “AWS service.”

5. For “Use case,” choose EC2.

6. Click Next.

7. Attach the preceding policy (you can create a new

policy with the JSON provided).

8. Give the role a name (e.g., “quicksight-redshift-vpc-

access”).

9. Create the role.

Once you create the role, attach a few additional

permissions to this role as specified in the “Prerequisites”

section of the AWS documentation.

Remember, it’s a best practice to follow the principle of

least privilege. If you know exactly which VPCs, subnets,

and Redshift clusters you’ll be accessing, you can further

restrict the “Resource” section of the policy to those

specific ARNs for added security.

Sign up for and manage Amazon QuickSight

In the AWS Console’s search box, search for “QuickSight”

and choose that, which will load the screen shown in

[image: Image 130]

Figure 8-22 if you have not signed up for QuickSight yet.

 Figure 8-22. Amazon QuickSight: sign up screen

Choose “SIGN UP FOR QUICKSIGHT,” which will load to

the page in Figure 8-23. For the “Authentication method,”

choose “Use IAM federated identities & QuickSight-

managed users,” choose the AWS region where your

Redshift Serverless cluster is created, and provide a

QuickSight account name.

[image: Image 131]

 Figure 8-23. Amazon QuickSight: sign up properties

Once you submit, you should see something similar to

Figure 8-24, which shows that the account was created successfully.

[image: Image 132]

[image: Image 133]

 Figure 8-24. Amazon QuickSight: account created successfully Next, let’s add the VPC connection, so that QuickSight can

connect to the Redshift cluster. Choose the profile icon on

the top right corner and choose Manage QuickSight, which

will take you to all the settings you can manage for

QuickSight (Figure 8-25).

 Figure 8-25. Amazon QuickSight: option to manage QuickSight Then from the left navigation choose Manage VPC

Connections and then Add VPC Connection, which will take

you to a page similar to Figure 8-26:

[image: Image 134]

1. Specify a name for the connection.

2. Specify the VPC ID (same as the Redshift cluster).

3. Select “quicksight-redshift-vpc-access” for the

Execution role.

4. Select the subnet IDs for all the Availability Zones.

5. Select the same Redshift cluster security group for

the Security Group IDs.

6. Choose Add.

 Figure 8-26. Amazon QuickSight: add VPC connection

You should see the VPC connection’s initial status as

UNAVAILABLE (Figure 8-27) and after a few minutes, the

[image: Image 135]

[image: Image 136]

status should change to AVAILABLE, as shown in Figure 8-

28.

 Figure 8-27. Amazon QuickSight: manage VPC connection in UNAVAILABLE

 status

 Figure 8-28. Amazon QuickSight: VPC connection now available Next, choose “Security & permissions” from the left

navigation of the Manage QuickSight page, and choose

Manage for the “IAM role in use.” In the next screen,

choose “Use an existing role” option and select the

“quicksight-redshift-vpc-access” role you created in the

previous step. Then choose Save, as shown in Figure 8-29.

[image: Image 137]

 Figure 8-29. Amazon QuickSight: attach an existing role

These steps mark completion of the QuickSight setup. This

should make you ready to create datasets and

visualizations.

Create Amazon QuickSight visualization

Navigate back to the QuickSight home screen by clicking

the QuickSight logo available in the top left corner and

choose Datasets from the left navigation. Then choose

“Create a Dataset,” which will load a page similar to

Figure 8-30, and choose the “Redshift - Manual connect”

option.

[image: Image 138]

[image: Image 139]

 Figure 8-30. Amazon QuickSight: create a dataset

Populate the Redshift connection details in the New

Redshift data source overlay with the same details you used

while creating the Glue data connection (Figure 8-31).

Choose Validate to confirm the connection is successful and

then choose “Create data source.”

 Figure 8-31. Amazon QuickSight: configure Redshift data source

[image: Image 140]

[image: Image 141]

In the next screen, choose “public” for Schema and “sales”

for Tables and then choose Select (Figure 8-32).

 Figure 8-32. Amazon QuickSight: select Redshift table

In the following “Finish dataset creation” screen, choose

“Import to SPICE for quicker analytics” and choose

Visualize (Figure 8-33).

 Figure 8-33. Amazon QuickSight: finish dataset creation

As shown in Figure 8-34, keep everything default and choose CREATE.

[image: Image 142]

 Figure 8-34. Amazon QuickSight: create sheet

This should open a blank canvas to design a visualization.

Choose “Area line chart” for Visuals and then drag the

“region” field for X AXIS and the

“forecasted_monthly_revenue” field for VALUE and use the

“segment” attribute for the COLOR.

This should load the visualization represented in Figure 8-

35, which shows a graph to represent the count of

“forecasted_monthly_revenue” by Region and Segment.

[image: Image 143]

[image: Image 144]

 Figure 8-35. Amazon QuickSight: design visualization

Next, choose the PUBLISH option from the top right corner

of the screen and specify “sales-data-forecast” as shown in

Figure 8-36. Choose “Publish dashboard.”

 Figure 8-36. Amazon QuickSight: publish sheet to a dashboard You should see a visualization like that in Figure 8-37 in your QuickSight dashboard, and hovering your mouse on

the graph should show you the forecasted revenue break

up for different segments in a region.

[image: Image 145]

 Figure 8-37. Amazon QuickSight: dashboard

Congratulations, you have successfully implemented the

solution.

Best Practices and Optimization Techniques

There are certain best practices you can follow while

implementing this architecture:

Security:

– Integrate AWS Secrets Manager to manage

Redshift cluster credentials and avoid

managing the user ID and password

manually.

– Restrict the security groups of the resources to the specific clusters.

– Restrict IAM policies to the specific AWS

resources instead of allowing permissions to

the entire service to follow the least-privilege

principle.

Performance:

– For Amazon S3 input datasets, implement

partitioning for better structure and query

performance.

– For Amazon QuickSight, leverage SPICE for

caching the datasets, which may help improve

performance of the visualizations.

Cost:

– Enable autoscaling in the Glue job to avoid

overprovisioning.

– Define the base and max Redshift Processing

Units (RPUs) for the Redshift serverless

cluster to control the cost.

Next, let’s learn how to implement a real-time streaming

pipeline.

Implementing a Real-Time Streaming

Pipeline

To get started, we need a data producer that generates

streaming data, a message bus or buffering layer that can

store the streaming data, and a consumer that can process

the data in real time.

[image: Image 146]

For the message bus or buffering the streaming data, AWS

offers Kinesis Data Streams and AWS Managed Streaming

for Apache Kafka (MSK). As a streaming consumer you

have multiple options such as AWS Lambda, Spark

Structured Streaming in AWS Glue or Amazon EMR, and

Managed Service for Flink (MSF).

Let’s get an overview of the use case and architecture that

you will be implementing.

Use Case and Architecture Overview

Figure 8-38 provides a high-level architecture of the use case that integrates the following:

Kinesis Data Generator (KDG) to generate sample

streaming data

Kinesis Data Streams (KDS) for storing the

streaming data

EMR Serverless with Spark Structured Streaming as

a streaming consumer

Amazon S3 as a data lake with Apache Iceberg as

the open table format

Amazon Athena as a query engine for data analysis

 Figure 8-38. High-level architecture for streaming data processing pipeline

Step-by-Step Implementation Guide

As highlighted in the previous use case, before beginning

these steps, make sure you have the required permissions

to create the resources needed as part of the solution.

Please note we have used the us-east-1 region to deploy the

solution; you can choose your preferred region before

getting started.

Creating a Kinesis data stream

You can refer to the following steps to create a Kinesis data stream, which will store the streaming messages that the

streaming consumer applications will process:

1. Navigate to the KDS console and click the “Create data stream” button.

2. In the create page, specify the “Data stream name”

as “ch8-kinesis-stream.”

3. Keep everything else as the default value and choose

“Create data stream.”

Figure 8-39 shows the Kinesis Data Streams console for creating the stream.

[image: Image 147]

 Figure 8-39. Kinesis Data Streams console: creating a new data stream It will take a few minutes to create the stream and then you

should see a success message: “Data stream ‘ch8-kinesis-

stream’ successfully created.” The status of the stream will

be Active.

Setting up Amazon Kinesis Data Generator

Amazon Kinesis Data Generator (KDG) is an open source tool that will enable us to generate sample data and publish

messages to Amazon KDS. The tool provides a user-friendly

web interface (Figure 8-40), where you can do the following:

Create templates that represent the schema of the

records for your use cases.

Populate the templates with fixed data or random

data.

Save the templates for future use.

Configure the tool to send thousands of records per

second continuously to KDS.

[image: Image 148]

The KDG tool requires you to create an Amazon Cognito

user, which you will use to log in to the KDG portal. The

KDG tool offers an AWS CloudFormation template that you

can deploy to configure the Amazon Cognito user

credentials. Please refer to the following steps to deploy

the solution:

1. Refer to the KDG tool’s help page and click the

“Create a Cognito User with CloudFormation”

button to configure the Cognito user credentials.

 Figure 8-40. Creating a CloudFormation stack in the AWS Console 2. Specify the username and password you plan to

configure (Figure 8-41).

[image: Image 149]

 Figure 8-41. CloudFormation stack screenshot: specify stack name and credentials

3. Review the configurations and click Create.

4. It will take a few minutes to create the required

resources and then you should see the status

CREATE_COMPLETE.

5. Then navigate to the Outputs tab as shown in

Figure 8-42 and click the URL value specified for the KinesisDataGeneratorUrl key.

[image: Image 150]

 Figure 8-42. CloudFormation stack screenshot: Output tab

6. The Kinesis Data Generator URL will open a new

page, where you need to provide the username and

password you specified while deploying the Cloud ‐

For mation stack.

7. Once the login is successful, you should see a screen

similar to Figure 8-43, where after selecting your specific AWS Region, the delivery stream name will

be available in the drop-down list to choose.

[image: Image 151]

 Figure 8-43. Kinesis Data Generator: configure screen

8. In the Record template, rename “Sales Transaction

Data” to “Product Inventory Data” and paste the

following JSON template inside the text area:

{"ProductID": "{{random.number({"min": 1, "max": 10000

})}}",

"ProductName": "{{random.weightedArrayElement({"weights":

[0.2, 0.2, 0.2, 0.2], "data": ["FRIDGE", "COOKWARE",

"SHOES",

"PAINTING"]})}}",

"ApplicableCountry": "

{{random.weightedArrayElement({"weights":

[0.5, 0.3, 0.1], "data": ["US", "UK", "GB"]})}}"

"ListPrice": "{{random.number({"min": 300, "max": 500})}}",

"DiscountedPrice": "{{random.number({"min": 100, "max": 300})}}",

"MarketingCampaign": "

{{random.weightedArrayElement({"weights":

[0.3, 0.1, 0.2, 0.4], "data": ["SUPER-SAVER-WEEKEND",

"THANKS-GIVING",

"PRE-CHRISTMAS", "None"]})}}",

"ShippingType": "

{{random.weightedArrayElement({"weights":

[image: Image 152]

[0.1, 0.2, 0.2, 0.5], "data": ["EXPRESS", "NEXT DAY",

"OVERNIGHT", "REGULAR"]})}}",

"ShippingMode": "

{{random.weightedArrayElement({"weights":

[0.4, 0.5, 0.1], "data": ["AIR", "SEA", "BIKE"]})}}",

"ShippingCarrier": "

{{random.weightedArrayElement({"weights":

[0.3, 0.1, 0.2, 0.4], "data": ["AIRBORNE", "ALLIANCE",

"BARIAN",

"DHL", "GERMA", "FEDEX", "TBS", "UPS"]})}}",

"LastUpdatedDate": "{{date.now("DD/MMM/YYYY")}}",

"LastUpdatedTime": "{{date.now("HH:mm:ss")}}"

}

9. Review the format by choosing the “Test template”

button (Figure 8-44).

 Figure 8-44. Kinesis Data Generator: testing the template 10. Finally, click the “Send data” button to send sample

records to the Kinesis data stream named “ch8-

kinesis-stream” (Figure 8-45).

[image: Image 153]

[image: Image 154]

 Figure 8-45. Kinesis Data Generator: sending sample data

11. Then, navigate to the “ch8-kinesis-stream” KDS

stream within the AWS Console and select the

Monitoring tab to validate the stream is receiving

input records, as illustrated in Figure 8-46.

 Figure 8-46. Kinesis Data Generator: monitoring the Kinesis data stream

At this step, you have incoming product inventory data available in the KDS and the next step is to create a stream

consumer application.

Create Amazon S3 buckets for an Iceberg data lake

and a streaming checkpoint

Refer to the steps from the previous batch processing

pipeline solution to create the following Amazon S3

buckets:

 s3://ch8-ex2-streaming-checkpoint

To hold the streaming consumer application’s checkpoint

information. This will help when the application fails and

needs to track to what point of the Kinesis data stream it has processed, and from which record it should resume

processing.

 s3://ch8-ex2-iceberg-data-lake

To store the final processed data in Iceberg format.

 s3://ch8-ex2-scripts

To store the Spark Structured Streaming Python script.

Next, let’s create the PySpark streaming application that

will read from the Kinesis data stream and write to Amazon

S3.

Creating an EMR Studio and EMR Serverless

application

Use the following steps to create an EMR Serverless

application and submit a Spark Structured Streaming job:

1. Navigate to EMR Studio, as you need a Studio to manage the EMR Serverless applications.

2. Choose Create Studio.

3. Choose “custom” from the “Setup options,” specify a

“name” for the studio (e.g., “ch8-ex2-emr-studio”),

and select the “IAM role” that has the required

permissions. Leave the other fields as default and

choose “Create Studio and launch Workspace.”

4. Once you have successfully created the Studio,

navigate to the EMR Serverless console, choose the Studio under “Manage applications,” and click the

“Manage applications” button as shown in Figure 8-

47.

5. The action from the previous step should take you to

the application list screen of the Studio. Here you

need to choose “Create application.”

6. Specify a name for the application (e.g., “ch8-ex2-

spark-streaming-app”) and set the Type as “Spark”

and the Release version as “emr-7.1.0.” Keep the

Architecture as the default “x86_64” and for

Application setup options choose “Use custom

settings” (Figure 8-48).

[image: Image 155]

 Figure 8-47. EMR Serverless console

[image: Image 156]

 Figure 8-48. EMR Serverless console: configuring the application 7. Expand the “Network connections” section, specify

the VPC where you plan to deploy the application,

and choose all the applicable Subnets and Security

groups. For this solution we have selected the

default VPC, the related subnets, and the default

security group (Figure 8-49).

[image: Image 157]

 Figure 8-49. EMR Serverless console: configuring the network for the application

8. Leave the other field values as default and choose

“Create and start application.” This should take you

to the application list page, where you will see the

application status transitions from “Creating” to

“Started” (Figure 8-50). Please copy the Application ID and save it on your local system, as it will be

[image: Image 158]

needed while submitting the Spark Streaming job

using the AWS CLI.

 Figure 8-50. EMR Serverless console: application detail

Please note that while creating an EMR Serverless

application, even if the VPC selection under the “Network

connections” section is marked as optional, for a streaming

application it is mandatory to deploy the application within

a VPC.

Creating VPC endpoints for Kinesis Data Streams,

Amazon S3, and EMR Serverless

When the streaming application is deployed within a VPC

that will read from Kinesis Data Streams and write to

Amazon S3, you need to create VPC endpoints for KDS, S3,

and EMR Serverless, so that the application can connect to

the respective resources.

To create VPC endpoints, navigate to VPC Service, choose Endpoints from the left navigation, and choose “Create

endpoint.” Let’s first create the EMR Serverless endpoint:

1. To create an endpoint for EMR Serverless, choose

AWS services as the Type and choose

[image: Image 159]

“com.amazonaws.us-east-1.emr-serverless” as the

service (Figure 8-51).

 Figure 8-51. AWS VPC console: configuring the VPC endpoint for EMR

 Serverless

2. From the Network settings, choose the specific VPC

where you deployed the EMR Serverless application

and choose all the applicable Subnets with their

Subnet ID (Figure 8-52).

[image: Image 160]

 Figure 8-52. AWS VPC console: specifying the VPC for the VPC

 endpoint

3. Select the applicable Security groups, leave all other

fields as default, and choose “Create endpoint.”

Next, you can create the Kinesis Data Streams endpoint.

Follow similar steps as you did for the EMR Serverless

endpoint and choose the “com.amazonaws.us-east1.kinesis-

streams” AWS service, as specified in Figure 8-53.

[image: Image 161]

[image: Image 162]

 Figure 8-53. AWS VPC console: configuring the VPC endpoint for Kinesis Data Streams

Follow similar steps to create the Amazon S3 endpoint by

selecting the service “com.amazonaws.us-east-1.s3” and

choosing interface endpoints (Figure 8-54). Read

“Choosing Your VPC Endpoint Strategy for Amazon S3” in the AWS documentation to learn when to use S3 gateway

endpoints versus S3 interface endpoints.

 Figure 8-54. AWS VPC console: specifying the VPC endpoint for Amazon S3

Once all three endpoints are created, you are ready to submit the Spark Streaming job.

Submitting the Spark Streaming job to the EMR

Serverless application

The Spark Structured Streaming job will read the JSON

data from Kinesis Data Streams and write the output to

Amazon S3 in Apache Iceberg format. Before triggering the

job, let’s first create the target Iceberg table using the

Amazon Athena console:

1. Navigate to the Amazon Athena console.

2. Execute the following SQL script that creates the

“icebergdb” database first and then creates the

“productcatalog” table that has the same attributes

as the JSON data available in Kinesis Data Streams

(Figure 8-55):

CREATE DATABASE icebergdb;

CREATE TABLE icebergdb.productcatalog (

ProductID STRING,

ProductName STRING,

ApplicableCountry STRING,

ListPrice DOUBLE,

DiscountedPrice DOUBLE,

MarketingCampaign STRING,

ShippingType STRING,

ShippingMode STRING,

ShippingCarrier STRING,

LastUpdatedDate TIMESTAMP,

LastUpdatedTime STRING

)

LOCATION 's3://ch8-ex2-iceberg-data-

lake/icebergdb/productcatalog/'

TBLPROPERTIES (

'table_type' = 'ICEBERG',

'format' = 'parquet',

'write_compression' = 'snappy'

);

[image: Image 163]

 Figure 8-55. Amazon Athena console: query editor

Next, create a script in your local system text editor with

the following code and save it as stream-processor.py.

Make sure to modify the S3 data lake and checkpoint

prefixes and the Kinesis stream name as highlighted in the

script before finally saving it. Then upload stream-

 processor.py to an Amazon S3 path (e.g., s3://ch8-ex2-scripts/):

from pyspark.sql import SparkSession

from pyspark.sql.streaming import DataStreamReader

from pyspark.sql.functions import *

from pyspark.sql.types import *

import base64

import time

 # Initialize Spark session

spark = SparkSession.builder \

.appName("KinesisToIcebergStreaming") \

.config(

"spark.sql.extensions",

"org.apache.iceberg.spark.extensions.IcebergSparkSessionExtension s"

) \

.config(

"spark.sql.catalog.glue_catalog",

"org.apache.iceberg.spark.SparkCatalog"

) \

.config(

"spark.sql.catalog.glue_catalog.catalog-impl",

"org.apache.iceberg.aws.glue.GlueCatalog"

) \

.config(

"spark.sql.catalog.glue_catalog.warehouse",

" s3://ch8-ex2-iceberg-data-lake/"

) \

.config("spark.sql.defaultCatalog", "glue_catalog") \

.config("spark.sql.parquet.compression.codec", "snappy") \

.config("spark.sql.streaming.kafka.useDeprecatedOffsetFetching",

"false") \

.getOrCreate()

 # Define the schema of your Kinesis data

schema = StructType() \

.add("ProductID", StringType()) \

.add("ProductName", StringType()) \

.add("ApplicableCountry", StringType()) \

.add("ListPrice", FloatType()) \

.add("DiscountedPrice", FloatType()) \

.add("MarketingCampaign", StringType()) \

.add("ShippingType", StringType()) \

.add("ShippingMode", StringType()) \

.add("ShippingCarrier", StringType()) \

.add("LastUpdatedDate", TimestampType()) \

.add("LastUpdatedTime", StringType())

 # Read from Kinesis Data Streams

kinesis_stream = spark.readStream.format("aws-kinesis") \

.option("kinesis.region", "us-east-1") \

.option("kinesis.streamName", " ch8-kinesis-stream") \

.option("kinesis.consumerType", "GetRecords") \

.option("kinesis.endpointUrl", "https://kinesis.us-east1.amazonaws.com") \

.option("kinesis.startingposition", “LATEST”) \

.load()

 # Parse the Kinesis data

parsed_stream = kinesis_stream \

.select(from_json(col("data").cast("string"), schema).alias("parsed_data")) \

 .select("parsed_data.*")

 # Write to S3 in Iceberg format

query = parsed_stream.writeStream \

.format("iceberg") \

.outputMode("append") \

.option("path", "glue_catalog.icebergdb.productcatalog") \

.option(

"checkpointLocation",

" s3://ch8-ex2-streaming-checkpoint/kinesis-to-iceberg/"

) \

.start()

query.awaitTermination()

Next, open the Cloud Shell console by clicking the icon in

the console header and submit the following AWS CLI

command. Make sure to modify <emr-serverless-

application-id>, <iam-role-arn>, and the stream-

processor.py script path before submitting the command:

aws emr-serverless start-job-run \

--application-id <emr-serverless-application-id> \

--execution-role-arn <iam-role-arn> \

--mode STREAMING \

--retry-policy '{

"maxFailedAttemptsPerHour": 5

}' \

--job-driver '{

"sparkSubmit": {

"entryPoint": " s3://ch8-ex2-scripts/stream-processor.py",

"entryPointArguments": [

"s3://ch8-ex2-iceberg-data-lake/output"

],

"sparkSubmitParameters": "--conf spark.executor.cores=4 \

--conf spark.executor.memory=16g \

--conf spark.driver.cores=4 \

--conf spark.driver.memory=16g \

--conf spark.executor.instances=3 \

--jars /usr/share/aws/kinesis/spark-sql-kinesis/lib/\

spark-streaming-sql-kinesis-connector.jar"

}

}'

[image: Image 164]

[image: Image 165]

Figure 8-56 shows the execution of the command.

 Figure 8-56. AWS Cloud Shell: AWS CLI command execution

Next, navigate to the EMR Serverless application detail

page and choose the “Streaming job runs” tab, which

should show the job status as “Running” as represented in

Figure 8-57.

 Figure 8-57. EMR Serverless Application: streaming job runs You can choose the “Live spark UI” link, which will open

the Spark History Server in a new tab (as represented in

Figure 8-58). This will show the successful execution of the Spark job executors.

[image: Image 166]

[image: Image 167]

 Figure 8-58. EMR Serverless application: job run’s Spark History Server To validate that the streaming output is getting written to

the S3 data lake, you can navigate to the S3 data lake path

(e.g., s3://ch8-ex2-iceberg-data-lake/icebergdb/

 pro ductcatalog/), where you will notice two folders: data (to store the actual data in Parquet format) and metadata (to store Iceberg metadata in JSON format) (Figure 8-59).

 Figure 8-59. EMR Serverless Application: streaming output in an Amazon S3

 bucket

Figure 8-60 shows the metadata in JSON format.

[image: Image 168]

[image: Image 169]

 Figure 8-60. EMR Serverless application: Iceberg metadata in an Amazon S3

 bucket

Figure 8-61 shows the data being written in Parquet format.

 Figure 8-61. EMR Serverless application: Iceberg data in an Amazon S3 bucket As a final step, you can navigate to the Amazon Athena

console and query the icebergdb.productcatalog table to

see the data in tabular format (Figure 8-62).

[image: Image 170]

 Figure 8-62. Amazon Athena console: query editor

Conclusion

In this chapter, we explained how you can implement a

batch data processing pipeline with an AWS Glue PySpark

job, and a real-time streaming job using KDS and Spark

Streaming in EMR Serverless.

These are the two most popular use cases, but you can

learn step-by-step implementations for other use cases

from the AWS blogs included in the “Resources” section.

Resources

The following are a few additional resources that will help

you dive deeper and gain more knowledge related to

implementing data processing pipelines:

“Implement a CDC-based UPSERT in a Data Lake

Using Apache Iceberg and AWS Glue”

“Enforce Fine-Grained Access Control on Data Lake

Tables Using AWS Glue 5.0 Integrated with AWS

Lake Formation”

“Stream, Transform, and Analyze XML Data in Real

Time with Amazon Kinesis, AWS Lambda, and

Amazon Redshift”

“Build a Modern Data Architecture and Data Mesh

Pattern at Scale Using AWS Lake Formation Tag-

Based Access Control”

“Unlocking Data Governance for Multiple Accounts

with Amazon DataZone”

“Enhance Data Governance with Enforced Metadata

Rules in Amazon DataZone”

“Introducing End-to-End Data Lineage (Preview)

Visualization in Amazon DataZone"

Chapter 9. Practice Exam

This chapter is designed to help you assess your readiness

and simulate the real certification experience. The

following questions cover a wide range of topics and

practical scenarios you can expect to encounter on the

actual exam. We highly recommend you attempt each

question before reviewing the detailed solutions and

rationales provided. This will not only test your knowledge

but also deepen your understanding of the core concepts

and help you think critically about how to apply AWS data

and analytics services effectively. The answers are listed in the Appendix. Good luck!

1. A company aims to construct an open source–based

change data capture (CDC) pipeline to extract

changes from an Amazon Aurora MySQL database

and load the change streams into an Amazon S3–

based data lake.

As a Solutions Architect, which steps should you

take to configure this pipeline? (Select three.)

A. Enable binary logging on the Aurora MySQL

database to allow change data capture.

B. Deploy the Debezium MySQL connector

directly on the Aurora MySQL instance to

capture data changes.

C. Deploy MSK Connect with the Debezium

MySQL source connector to stream changes

from Aurora MySQL to MSK topics.

D. Deploy an Amazon MSK cluster to serve as

the streaming platform for the change data.

E. Set up AWS Database Migration Service

(DMS) to replicate data from Aurora MySQL

to Amazon S3.

F. Use Amazon Kinesis Data Streams to natively

read the binary log from the Aurora MySQL

database.

2. An ecommerce company collects customer activity

events such as clicks, searches, and purchases in

real time. These events are streamed to an Amazon

Kinesis data stream. The company wants to ingest

this streaming data into an Amazon Redshift table

for further analyses.

Which solution will meet the requirement with the

least operational overhead?

A. Set up an Amazon Managed Service for

Apache Flink application to process the

stream and write the results to Amazon

Redshift.

B. Use an AWS Glue streaming job to read data

from the Kinesis data stream and write it

directly to Amazon Redshift using the

Redshift Data API.

C. Use the streaming ingestion feature of

Amazon Redshift to consume data directly

from the Kinesis data stream.

D. Use Amazon Data Firehose to deliver the

streaming data to an Amazon S3 bucket. Use

the COPY command in Amazon Redshift to

load the data from S3 at regular intervals.

3. A customer relationship management (CRM)

solution company stores all its customer data in

Amazon Aurora PostgreSQL to handle online

transaction processing (OLTP) workloads. As the

business grows, the company is experiencing scaling

challenges when running analytical queries directly

on the Aurora database, impacting the performance

of its frontend applications.

To address this, the company wants a solution that

enables scalable data analysis while offloading

analytics from Aurora. The solution must ensure up-

to-date data availability in the analytics environment

and must be designed with the least operational

overhead.

Which solution should you implement?

A. Set up AWS Glue jobs to extract data from

Aurora PostgreSQL, load it into an Amazon

S3 bucket, and then use the COPY command in

Amazon Redshift to load the data into a

Redshift table for analysis.

B. Use Amazon Database Migration Service

(DMS) to replicate data from Aurora

PostgreSQL to Amazon Redshift in near real

time.

C. Enable Amazon Aurora zero-ETL integration

to continuously and automatically replicate

data from Aurora MySQL to Amazon Redshift

for analysis.

D. Configure an Amazon Aurora read replica to export data to an Amazon S3 bucket using

SQL queries, and use Amazon Redshift

Spectrum to query the data directly from S3.

4. A data engineer is working on a project that involves

AWS analytics services. The project’s code is stored

in a Git repository. The data engineer recently

completed work on a feature branch named

optimize-glue-jobs and now needs to integrate

those changes into the main branch (main). They

have already switched to the main branch locally.

Which Git command should the consultant use to

bring the changes from optimize-glue-jobs into

main?

A. git pull optimize-glue-jobs

B. git merge optimize-glue-jobs

C. git rebase main

D. git checkout optimize-glue-jobs

5. A media streaming startup is building an analytics

platform on AWS to track user engagement across

its mobile and web applications. The architecture

includes Amazon Kinesis Data Streams, AWS

Lambda, Amazon S3, and Amazon Redshift. The

team wants to define this infrastructure using code

that supports object-oriented programming

constructs, can be reused across staging and

production environments, and allows the use of

Python for consistency with the rest of their stack.

Which approach best aligns with the team’s goals?

A. Use AWS Cloud Development Kit (CDK) to

define infrastructure as reusable constructs

and deploy consistently across multiple

environments.

B. Use the AWS Management Console to

provision resources and export

CloudFormation templates for reuse across

environments.

C. Use AWS CLI scripts to sequentially create

each service and pass configuration

parameters for each environment.

D. Use AWS CloudFormation templates to define

the infrastructure and replicate the templates

for each environment.

6. A company runs large-scale Apache Spark–based

ETL jobs regularly to process and transform massive

data. The jobs are not time-sensitive and can

tolerate interruptions. The company wants to

minimize costs while leveraging a scalable solution

for these recurring ETL workloads.

Which solution should the company choose?

A. Use Amazon EMR with exclusively On-

Demand Instances to ensure job stability and

predictable performance.

B. Use Amazon EMR with a mix of EC2 Spot

Instances and On-Demand Instances,

leveraging Spot Instance fleets for cost

savings and On-Demand Instances for job

stability.

C. Use AWS Glue as a fully managed serverless solution to run Spark ETL jobs without

needing to manage EC2 instances.

D. Set up a self-managed Apache Spark cluster

on EC2 Spot Instances to reduce costs and

scale as needed.

7. A healthcare analytics company collects patient data

from various sources and stores it in Amazon S3.

The data is uploaded as CSV files, and each file must

undergo schema validation and be converted to

Apache Parquet format for optimized analytics and

storage. The company requires a real-time, file-level

processing solution that triggers transformations as

soon as the files arrive in the S3 bucket. Source CSV

files are around 10–100 MB. The solution must

operate with the least operational overhead to

ensure simplicity and scalability.

Which solution should the data engineer implement?

A. Configure Amazon S3 Event Notifications to

trigger an AWS Lambda function. Use the

Lambda function to validate the schema and

convert the CSV file to Parquet format,

storing the output back in Amazon S3.

B. Use AWS Glue crawlers to detect newly

uploaded CSV files in Amazon S3. When new

files are discovered, trigger an AWS Glue job

to perform schema validation and convert the

files to Parquet format.

C. Use Amazon S3 Event Notifications to trigger

an AWS Step Functions workflow. Design the

workflow to include schema validation and

format conversion tasks using AWS Glue jobs.

D. Configure Amazon S3 Batch Operations to

process files on a schedule. Use an AWS Glue

job to validate file schemas and convert files

to Parquet format.

8. A fintech company processes real-time transaction

data to detect fraudulent activities. The company

requires a stateful streaming data processing

solution to monitor transaction patterns, maintain

session state, and identify anomalies in near real

time. They need a fully managed service to run and

scale their stream processing applications with

minimal operational overhead.

Which solution should the company choose?

A. Set up a self-managed Apache Flink cluster

on EC2 instances to process the streaming

data and maintain state for fraud detection.

B. Use AWS Lambda with Amazon Kinesis Data

Streams to process the transaction data,

storing state in an Amazon DynamoDB table

for anomaly detection.

C. Use Amazon Managed Service for Apache

Flink to build and run stateful stream

processing applications.

D. Use Amazon EMR to run an Apache Flink

cluster and process streaming data,

managing state with an external database.

9. A media analytics company processes large datasets

on Amazon EMR to analyze user engagement

patterns and optimize content recommendations.

The company wants to host the source code for its

data processing jobs in a code repository to

efficiently track code changes, collaborate across

teams, and promote code reuse. They need a

solution to seamlessly integrate the repository with

their EMR Notebooks to streamline development

and testing workflows.

Which solution should the company use?

A. Enable version control by storing EMR

Notebook source code in an Amazon S3

bucket and manually tracking changes

outside of EMR.

B. Use Amazon EMR Notebooks to directly

associate a Git-based repository, such as AWS

CodeCommit or GitHub.

C. Create a local copy of the Git-based

repository on an EC2 instance and manually

upload the job scripts to EMR Notebooks for

processing.

D. Use AWS Glue Studio to manage and track

the ETL scripts in the Git-based repository,

then export them to EMR Notebooks when

needed.

10. A retail company manages a large-scale data

platform to analyze customer purchase behavior and

enhance product recommendations. The company’s

data pipeline involves multiple stages, including

stream-based data ingestion into an Amazon S3 data

lake and data transformation using Amazon EMR

and Amazon Managed Service for Apache Flink.

The pipeline must be highly scalable, available, and secure, while minimizing the operational overhead

of managing the orchestration engine. The company

also requires detailed monitoring and logging of

each transformation job for debugging and

optimization purposes.

Which solution should the company choose to

orchestrate the data pipeline?

A. Set up a self-managed Apache Airflow cluster

on Amazon EC2 instances to orchestrate the

pipeline, ensuring complete control over the

infrastructure.

B. Use AWS Glue workflows to manage the

entire pipeline, configuring it to handle

ingestion, transformation, and loading steps.

C. Deploy a custom Python-based orchestration

engine on Amazon ECS, scaling the service as

needed to manage pipeline execution.

D. Use Amazon Managed Workflows for Apache

Airflow (MWAA) to orchestrate the pipeline,

leveraging its fully managed environment for

scalability, availability, and security.

11. A media streaming company operates a data pipeline

that processes user activity logs in near real time to

generate personalized recommendations. The

pipeline uses multiple AWS Lambda functions for

tasks like data parsing, transformation, and

enrichment. Each Lambda function relies on the

same set of third-party Python libraries for

processing. To simplify library management and

ensure consistency across functions, the company

needs a solution to centralize and reuse these dependencies while minimizing operational

overhead.

Which solution should the company implement?

A. Package the required libraries with each

Lambda function’s deployment package to

ensure each function has all necessary

dependencies.

B. Use AWS Lambda layers to package the

common libraries separately and apply the

layer across all Lambda functions.

C. Store the libraries in an Amazon S3 bucket

and download them at runtime within each

Lambda function to minimize deployment

size.

D. Configure an Amazon EFS filesystem to host

the Python libraries, then mount this

filesystem into each Lambda function to

centrally manage dependencies.

12. A financial services company needs to incorporate

third-party datasets, such as historical market data,

economic indicators, and consumer spending trends,

into its analytics platform hosted on AWS. The

company wants a solution that allows it to easily

discover, subscribe to, and use third-party data in

the cloud.

Which solution should the company implement?

A. Use AWS Data Exchange to find and

subscribe to third-party datasets.

B. Use AWS DataSync to find and subscribe to third-party datasets.

C. Use Redshift Data Marketplace to find and

subscribe to third-party datasets.

D. Use Redshift Data Sharing to find and

subscribe to third-party datasets.

13. An ecommerce company uses Amazon Redshift to

analyze customer feedback stored in a feedback

table. The table contains a comments column with

customer remarks. The company wants to identify

feedback that includes case-insensitive keywords

like “refund,” “cancel,” or “complaint” to track

negative sentiment patterns. They need to write a

SQL query using pattern-matching conditions to

efficiently retrieve the relevant records.

Which SQL query should the company use to achieve

this?

A. SELECT * FROM feedback WHERE comments =

'refund' OR comments = 'cancel' OR

comments = 'complaint';

B. SELECT * FROM feedback WHERE comments

~* '(refund|cancel|complaint)';

C. SELECT * FROM feedback WHERE comments

IN ('%refund%', '%cancel%',

'%complaint%');

D. SELECT * FROM feedback WHERE comments ~

'%(refund|cancel|complaint)%';

14. A healthcare company processes patient data daily

to generate summary reports for compliance and

operational insights. The ETL pipeline consists of multiple AWS Glue jobs, each handling tasks like

data extraction, transformation, and loading into an

Amazon S3 data lake. The pipeline must be

orchestrated and triggered every day at a specific

time. While the completion time for the entire

pipeline is not critical, the company wants to

prioritize cost-efficiency while ensuring reliable

execution of all the jobs.

Which solution should the company implement?

A. Use AWS Lambda to trigger each AWS Glue

job at the specified time and configure the

jobs to use the default worker type for faster

completion.

B. Configure an AWS Glue workflow to

orchestrate the multiple Glue jobs and set up

a time-based trigger using a cron expression

to schedule the workflow. Use the default

worker type to minimize costs.

C. Schedule each AWS Glue job directly using

Amazon CloudWatch Events, configuring the

jobs to use AWS Glue FLEX for cost savings.

D. Configure an AWS Glue workflow to

orchestrate the multiple Glue jobs and set up

a time-based trigger using a cron expression

to schedule the workflow. Use AWS Glue

FLEX for the jobs to minimize costs.

15. A marketing analytics firm receives hundreds of .csv

files from its clients on a daily basis, containing sales

and customer transaction data. These files are

uploaded to an Amazon S3 bucket. The firm needs to

catalog this data in an AWS Glue Data Catalog to enable data querying and reporting. A data engineer

is tasked to make the previous day’s data accessible

by 7:00 a.m. every day.

Which solution should the data engineer implement

to meet the requirement?

A. Create an IAM role with the

AmazonS3FullAccess policy and the AWSGlue

Ser

viceRole managed policy. Attach it to the

crawler. Specify the S3 bucket path of the

source data as the crawler’s data store. Set

up the AWS Glue crawler to run on-demand

and specify a database name for the output.

B. Create an IAM role with the

AWSGlueServiceRole managed policy and add

an inline policy granting the crawler read

permission on the specific Amazon S3 bucket

containing the CSV data. Attach it to the

crawler. Specify the S3 bucket path of the

source data as the crawler’s data store. Set

up the AWS Glue crawler to run on-demand

and specify a database name for the output.

C. Create an IAM role with the

AmazonS3ReadOnlyAccess policy and the

AWSGlueServiceRole managed policy. Attach

it to the crawler. Specify the S3 bucket path

of the source data as the crawler’s data store.

Create a daily schedule to run the crawler

and specify a database name for the output.

D. Create an IAM role with the

AWSGlueServiceRole managed policy and add

an inline policy granting the crawler read

permission on the specific Amazon S3 bucket

containing the CSV data. Attach it to the

crawler. Specify the S3 bucket path of the

source data as the crawler’s data store.

Create a daily schedule to run the crawler

and specify a database name for the output.

16. An ecommerce company uses various AWS services

to collect, process, and store user activity data for

tracking customer behavior and transaction trends.

The data engineering team is tasked with designing

a cost-effective solution that leverages Amazon S3,

Amazon DynamoDB, and Amazon QuickSight to meet

business reporting and archival requirements while

minimizing costs:

– The most recent three months of data must

be fetched from the DynamoDB table and

displayed on a custom QuickSight dashboard

for recent trend analysis.

– Older user activity data must be archived in a

data lake for five years and remain accessible

for occasional queries using Amazon Athena

with reasonable performance.

– Data older than five years must be purged to

comply with data retention policies.

Which solution should the data engineer implement

to meet these requirements? (Select three.)

A. Use the Time to Live feature to automatically

delete items older than 90 days from the

DynamoDB table.

B. Store all user activity data indefinitely in the DynamoDB table. Configure the table to use

the DynamoDB Standard-Infrequent Access

(DynamoDB Standard-IA) table class to

reduce cost.

C. Build an AWS Glue job to export user activity

data from the DynamoDB table to Amazon S3.

D. Configure an Amazon S3 Lifecycle policy to

transition user activity data older than 90

days to the S3 Infrequent Access (S3-IA)

storage class and then permanently delete it

after five years.

E. Configure an Amazon S3 Lifecycle policy to

transition user activity data older than 90

days to the Amazon S3 Glacier Deep Archive

storage class and then permanently delete it

after five years.

17. A company has a single Amazon Redshift cluster

shared by two teams: the Analytics Team and the

Reporting Team. The Analytics Team performs data

transformation and analysis to derive critical

business insights, while the Reporting Team

generates reports for business users.

Each morning, as business users access reports, the

shared Redshift cluster becomes unstable due to the

simultaneous demand for data transformation and

reporting workloads. This issue causes delays in

report generation and impacts overall system

performance.

The company needs a solution to separate the

workloads of the two teams while ensuring that the

Reporting Team can access the transformed data without delay for publishing reports on an Amazon

QuickSight dashboard.

Which solution will best meet these requirements

with minimal impact on the workflow?

A. Separate the workloads into two Redshift

clusters. Configure Amazon Redshift Data

Sharing with the Analytics Team’s cluster as

the producer and the Reporting Team’s

cluster as the consumer.

B. Configure AWS Database Migration Service

to replicate data from the Analytics Team’s

cluster to a separate cluster for the Reporting

Team.

C. Separate the workloads into two Amazon

Redshift clusters. Configure zero-ETL jobs to

synchronize the required tables between the

Analytics Team’s cluster and the Reporting

Team’s cluster.

D. Separate the workloads into two Amazon

Redshift clusters. Unload required tables

from the Analytics Team’s cluster into an

Amazon S3 bucket. Create an Amazon

Redshift Spectrum table in the Reporting

Team’s cluster to access the data.

18. An ecommerce company collects customer

transaction data daily in an Amazon S3 bucket. The

data is stored in uncompressed CSV format and is

queried frequently by the analytics team using

Amazon Athena to analyze purchase trends and

customer behavior. The majority of their queries are

analytical, focusing on transactions from a specific region or a specific period of time.

To optimize query performance in Athena and

reduce costs, which combination of techniques

should they use? (Select two.)

A. Convert the data from CSV to JSON format

and compress the files using Snappy

compression.

B. Bucket the data by region, year, and month.

C. Convert the data from CSV to Apache Parquet

format and compress the files using Snappy

compression.

D. Partition the data by region, year, and month.

19. A retail company uses an Amazon DynamoDB table

in provisioned capacity mode to manage its

inventory data. The application workload follows a

predictable pattern: every Monday morning, there is

a significant increase in activity as stores across the

country sync their inventory data. During weekends,

the workload drops to minimal levels as most stores

operate in offline mode. The company needs to

ensure that the application maintains consistent

performance throughout the week.

Which solution will meet these requirements in the

most cost-effective way?

A. Change the capacity mode to on-demand.

DynamoDB will automatically scale to handle

increased throughput requirements.

B. Increase the provisioned capacity to

accommodate peak throughput levels.

C. Use AWS Application Auto Scaling to

schedule higher capacity during Monday

mornings when the workload spikes and

reduce capacity during weekends to minimize

costs.

D. Create a separate DynamoDB table for peak

usage and switch the application to use this

table on Mondays.

20. A data engineer is tasked with improving the

performance of ad-hoc queries run on data stored in

Amazon S3 using Amazon Athena. The dataset is

partitioned by date, and over time, the number of

partitions has grown significantly, causing a

noticeable degradation in query planning

performance.

Which solution will improve the query performance

with the least operational overhead?

A. Create partition indexes in AWS Glue and

enable partition projection for the specific

table.

B. Merge old partitions periodically into larger

ones to reduce the number of partitions.

C. Consolidate smaller files into larger ones

periodically to reduce the number of files.

D. Restructure the data layout using a bucketing

strategy.

21. A retail company stores its data across multiple sources: customer transaction data is saved in

Parquet format on Amazon S3, inventory data

resides in an Amazon Aurora MySQL database, and

order history is stored in Amazon DynamoDB tables.

The company’s data engineering team needs to

provide a solution that allows data scientists to

seamlessly query all these data sources using SQL

or SQL-like syntax. The solution should require the

least operational overhead.

Which combination of solutions meets these

requirements? (Select three.)

A. Use AWS Glue crawlers to crawl all data

sources and store metadata in the AWS Glue

Data Catalog.

B. Use Amazon Athena to query the Amazon S3–

based data lake.

C. Migrate all data to a single Amazon Redshift

data warehouse and use Redshift Spectrum to

query the Parquet data on Amazon S3.

D. Use AWS Glue jobs to transform the data

from all data sources to Apache Parquet files

on Amazon S3.

E. Leverage Amazon Athena’s federated query

capability to access the Amazon Aurora

MySQL database and the Amazon DynamoDB

tables.

22. A company utilizes Amazon OpenSearch Service for

log analytics. The current instance types struggle to

meet performance demands with increasing

indexing throughput, leading to delays and

increased costs. The company seeks a cost-effective

solution to enhance indexing performance without

compromising data durability.

Which solution will meet the requirement?

A. Switch to UltraWarm storage for better

performance in indexing-heavy workloads.

B. Migrate to OR1 instances.

C. Upgrade to larger general-purpose instances

with increased CPU and memory resources.

D. Use Index State Management (ISM) to

schedule the deletion of older data.

23. A data engineer is tasked with improving the

usability and reliability of a data lake that stores

large volumes of data in Amazon S3. The current

system faces challenges with schema evolution,

where changes to the schema disrupt workflows,

and concurrent writes, which often result in

inconsistent or corrupted data. The engineer must

implement a solution that addresses these issues

while ensuring compatibility with existing analytics

tools.

Which solution will best address these challenges?

A. Partition the data by key attributes and

implement a locking mechanism to manage

concurrent writes.

B. Store the data using the Apache Parquet

format and enforce schema validation during

data ingestion.

C. Migrate the data lake to use the Apache

Iceberg table format.

D. Use Amazon EMR to create custom scripts for

handling schema changes and retrying failed

writes.

24. A media streaming company needs to implement

real-time analytics capabilities to monitor viewer

engagement and streaming performance. The

company processes large volumes of streaming data

and plans to use Amazon Managed Streaming for

Apache Kafka (Amazon MSK) and Amazon Redshift

for its data pipeline. The objective is to derive near-

real-time insights while minimizing operational

overhead, leveraging existing business intelligence

(BI) and analytics tools.

Which solution will meet these requirements with

the least operational overhead?

A. Use a Kafka sink to stage data in Amazon S3.

Use the COPY command to load data from

Amazon S3 into Amazon Redshift to make the

data available for near-real-time analysis.

B. Connect Amazon MSK to Amazon Kinesis

Data Firehose. Use Kinesis Data Firehose to

stage the data in Amazon S3. Use the COPY

command to load data from Amazon S3 into

Amazon Redshift.

C. Connect Amazon MSK directly to Amazon

Redshift using the streaming ingestion

feature. Define materialized views in Amazon

Redshift to consume data from Amazon MSK

topics.

D. Use AWS Glue Spark Streaming jobs to read data from Amazon MSK, transform it as

needed, and load the transformed data into

Amazon Redshift.

25. An ecommerce company manages a data lake in

Amazon S3 to store transaction and activity events.

The data lake tables are updated once every 24

hours through an ETL pipeline. The company’s BI

layer queries the data via Amazon Athena every hour

to refresh dashboards.

The team needs a solution that ensures dashboard

refresh while reducing query costs. Which solution

will meet this requirement with the least operational

overhead?

A. Use Athena’s --result-reuse-

configuration API parameter to enable

query result reuse, specifying the maximum

age for cached results to ensure they are

refreshed after the ETL updates the tables.

B. Use a Lambda function to execute the queries

hourly and store the results in an Amazon S3

bucket. Configure the BI layer to pull data

from the S3 bucket.

C. Partition the data lake tables by hour and

adjust the BI queries to target the latest

partition. Refresh dashboards hourly.

D. Configure the BI layer to cache query results

and manually clear the cache after the ETL

process completes every 24 hours.

26. A large multinational retail company uses Amazon Athena to query a centralized data lake stored in

Amazon S3. The company has multiple regional

teams (e.g., North America, Europe, and Asia) that

access the data lake during their respective working

hours. As the company grows, data engineers notice

increasing query queuing and performance

degradation in Athena, particularly during peak

hours for each region. The traffic patterns are

predictable, with each region querying the data lake

during specific time windows. The company wants to

improve query performance while minimizing

operational overhead.

Which solution would best address this issue with

the least operational overhead?

A. Configure Amazon Athena Provisioned

Capacity for each region, allocating dedicated

query processing resources based on their

peak usage hours.

B. Use Amazon Redshift instead of Athena to

handle the increasing query workload and

improve performance.

C. Create separate S3 buckets and Athena

workgroups for each region to isolate query

traffic.

D. Implement a query scheduling system to

distribute query execution evenly throughout

the day, reducing peak-time congestion.

27. A data infrastructure team has observed a steady

increase in AWS Glue usage over the past six

months. To optimize resource utilization and reduce

costs, they aim to scale their AWS Glue jobs dynamically based on the need. Which approach

should the team take to achieve this goal with

minimal operational overhead?

A. Manually reduce the number of DPUs for all

Glue jobs by 50% and monitor for any

performance degradation.

B. Use AWS Glue autoscaling to dynamically

adjust the number of DPUs based on

workload demands, while monitoring metrics

such as workerUtilization to validate

performance.

C. Migrate all AWS Glue jobs to AWS Lambda to

reduce costs and eliminate the need for DPU

management.

D. Implement custom scripts to analyze job

performance logs and dynamically modify

DPU allocations before each job run.

28. A financial services company is building a data lake

on Amazon S3 to store customer records, loan

applications, and supporting documents. To comply

with regulatory requirements such as PCI-DSS, the

company needs to automatically identify and classify

personally identifiable information (PII) such as

names, addresses, and credit card numbers.

Additionally, they want to detect custom data types,

such as internal customer reference IDs and

application form codes, which follow specific

patterns.

Which of the following approaches best meet these

requirements? (Select two.)

A. Enable Macie’s managed data identifiers to detect common PII types like email

addresses, credit card numbers, and national

ID numbers.

B. Use AWS Lake Formation to detect and tag

PII in S3 data using Macie integration.

C. Define custom data identifiers in Macie to

detect sensitive information that matches

specific patterns unique to the organization.

D. Use Amazon GuardDuty to scan S3 buckets

and classify sensitive information based on

anomaly detection.

E. Configure Amazon EMR with custom regex

rules in Spark jobs to scan and classify S3

data containing internal reference data

patterns.

29. A financial services company ingests transaction

data from multiple sources into an Amazon S3–based

data lake. Before processing the data with AWS Glue

ETL jobs, the data analytics team needs to ensure

the quality of the ingested data, checking for

missing values, format inconsistencies, and

duplicate records.

Which solution would best address this issue with

the least operational overhead?

A. Use AWS Lambda to trigger a custom Python

script that validates the data in S3 before

AWS Glue processing begins.

B. Use AWS Glue Data Quality to define and run

data quality rules on the source data in S3,

and configure Amazon CloudWatch Alarms to

notify the team of any quality issues.

C. Configure an Amazon Athena query that runs

daily to check for anomalies in the ingested

data and alerts the data team.

D. Use Amazon EMR with Apache Spark to run

data quality checks on the ingested data

before AWS Glue processes it.

30. A media analytics company is developing a

serverless data pipeline using Amazon EMR

Serverless to process streaming video engagement

data. The pipeline includes multiple ETL jobs that

require orchestration with job dependencies and

automatic retries for failed jobs to ensure reliable

execution. The company aims to minimize

operational overhead.

Which combination of steps should the team take to

address this requirement? (Select two.)

A. Deploy a self-managed Apache Airflow cluster

on Amazon EC2 to orchestrate the workflow,

providing full customization and control over

job dependencies and failure handling.

B. Use AWS Step Functions to define a state

machine that orchestrates Amazon EMR

Serverless jobs.

C. Configure Amazon EventBridge to trigger

Amazon EMR Serverless jobs based on

predefined schedules, ensuring automated

execution without additional orchestration

logic.

D. Define IAM policies and roles that grant AWS

Step Functions the necessary permissions to

invoke Amazon EMR Serverless jobs.

E. Define IAM policies and roles for the self-

managed Apache Airflow cluster on Amazon

EC2 to securely interact with Amazon EMR

Serverless Application.

31. A retail company uses Amazon Redshift to analyze

customer purchase patterns and website traffic. The

analytics team frequently runs complex aggregate

queries on large datasets to generate real-time sales

reports and personalized product recommendations.

However, these queries are repetitive and resource-

intensive, leading to high query execution times and

increased compute costs.

Which approach would best optimize query

performance while minimizing operational

overhead?

A. Manually create Materialized Views (MVs) in

Amazon Redshift and schedule periodic

refresh jobs using AWS Lambda to ensure

query performance improvements.

B. Manually create materialized views (MVs) in

Amazon Redshift and use Query Editor v2 in

Amazon Redshift to schedule refreshes of the

materialized views.

C. Enable Automated Materialized Views

(AutoMVs) in Amazon Redshift to

automatically detect and maintain

materialized views for frequently executed

queries, improving performance without

manual intervention.

D. Implement Result Caching in Amazon

Redshift to store query results for repeated

executions, reducing processing time for

identical queries.

32. A financial services company currently uses Apache

Airflow to orchestrate its on-premises data pipelines

for ETL processing and reporting workflows. The

company plans to migrate these workflows to AWS

while minimizing code changes and operational

overhead.

Which solution would best address this issue?

A. Deploy a self-managed Apache Airflow cluster

on Amazon EC2, giving the team full control

over the environment.

B. Convert the pipelines to AWS Step Functions

workflows, leveraging the serverless AWS

Step Functions workflow engine to reduce

operational overhead.

C. Migrate the existing Apache Airflow

workflows to Amazon Managed Workflows for

Apache Airflow (Amazon MWAA).

D. Rebuild the workflows using AWS Glue

workflows, which provide serverless

orchestration and eliminate the need for

Apache Airflow.

33. A large enterprise has multiple business units

sharing a single Amazon Redshift cluster as their

central data warehouse. The company wants to

implement cost attribution metrics to track resource consumption by each business unit based on data

scanned and CPU time used. To achieve this, they

need to extract query execution details from

Redshift system tables.

Which Amazon Redshift system table should the

company use to obtain query-level metrics such as

data scanned and CPU time for cost attribution?

A. SVL_QUERY_METRICS_SUMMARY

B. STL_SCAN

C. SVL_QUERY_REPORT

D. STL_WLM_QUERY

34. A company uses an AWS Glue job to process data in

a specific database within the AWS Glue Data

Catalog. The current IAM policy for the Glue job

execution role is as follows:

{

"Version": "2012-10-17",

"Statement": [

{

"Effect": "Allow",

"Action": [

"glue:Get*",

"glue:Create*",

"glue:Update*",

"glue:Delete*"

],

"Resource": "*"

}

]

}

This policy grants excessive permissions and violates

the least-privilege principle. As a data engineer, you

are tasked with revising the IAM policy to ensure the Glue job has read-only permission to all the tables in

database “db1.” Which of the following changes

would best meet this requirement?

A. Replace the Action field with "Action":

["glue:GetDatabase", "glue:GetTables",

"glue:GetTable"] and the Resource field

with "Resource": ["arn:aws:glue:us-

west-2:123456789012:catalog",

"arn:aws:glue:us-west-

2:123456789012:database/db1"].

B. Add "Action": [glue:GetDatabase",

"glue:GetTables", "glue:GetTable"] to

the Action field. Replace the Resource field

with "Resource": ["arn:aws:glue:us-

west-2:123456789012:database/db1"].

C. Replace the Action field with "Action":

["glue:GetDatabase", "glue:GetTables",

"glue:GetTable"] and the Resource field

with "Resource": ["arn:aws:glue:us-

west-2:123456789012:catalog"].

D. Replace the Action field with "Action":

["glue:Get*"] and the Resource field with

"Resource": ["arn:aws:glue:us-west-

2:123456789012:catalog",

"arn:aws:glue:us-west-

2:123456789012:database/db1"].

35. A data engineer is tasked with preprocessing raw

CSV files containing sensitive customer information

for an ML model training pipeline. The upstream

data producer team uploads raw data files to an

Amazon S3 bucket without a defined schedule. The data engineer must ensure that personally

identifiable information (PII) is detected,

anonymized, and partially redacted while still

enabling transaction verification.

What steps should the data engineer take to achieve

this? (Select three.)

A. Set up an AWS Glue workflow that listens to

S3 PutObject data events.

B. Use an AWS Step Functions state machine to

orchestrate a data pipeline with a time-based

schedule.

C. Use the Detect PII transform in AWS Glue

Studio to identify the PII fields in the dataset.

D. Create a rule in AWS Glue Data Quality to

obfuscate the PII.

E. Permanently delete all PII data from the

dataset to eliminate privacy concerns.

F. Partially redact detected PII text.

36. A company is building a centralized data lake on

Amazon S3 and wants to enforce fine-grained access

control on its data lake tables. The data lake will be

accessed by multiple teams using various compute

engines, such as Amazon Athena, AWS Glue, and

Amazon Redshift Spectrum.

To meet the requirements, the company needs a

scalable solution to manage fine-grained access

control across these compute engines. Which steps

should you take to configure this environment?

(Select three.)

A. Enable Lake Formation permissions on the

data lake by registering the Amazon S3 data

lake location with AWS Lake Formation.

B. Grant data permissions in Lake Formation to

specific IAM users, roles, or groups to control

access.

C. Use AWS Identity and Access Management

(IAM) policies to define access control for

individual tables and columns in the data

lake.

D. Configure Lake Formation tags (LF-Tags) and

assign them to tables and columns to enable

scalable tag-based access control.

E. Enable encryption on the Amazon S3 buckets

and manage key-based access control using

AWS KMS to enforce fine-grained table

access.

F. Add specific compute engines, such as

Athena, Glue, and Redshift Spectrum, as

principals in Lake Formation and grant them

necessary permissions.

37. A healthcare organization manages a data lake on

Amazon S3 storing sensitive patient information. To

comply with strict healthcare regulations, the

organization must apply two layers of encryption to

all files uploaded to the S3 bucket.

Which solution will meet this requirement with the

least operational overhead?

A. Use client-side encryption to encrypt data

before uploading it to Amazon S3. Configure

server-side encryption (SSE) for the S3

bucket to encrypt the data stored on S3.

B. Use dual-layer server-side encryption with

keys stored in AWS Key Management Service

(DSSE-KMS).

C. Use server-side encryption with AWS Key

Management Service (AWS KMS) keys (SSE-

KMS).

D. Use both server-side encryption with AWS

KMS keys (SSE-KMS) and Amazon S3–

managed keys (SSE-S3).

38. A company is using AWS Glue to extract data from a

MongoDB database and perform transformations

before storing the results in an Amazon S3 data

lake. During a security review, the team discovered

that the database credentials were hardcoded

directly into the Glue job script. The company needs

to remediate this security vulnerability and ensure

that the credentials are stored and accessed

securely.

Which of the following solutions will meet this

requirement?

A. Store the credentials in AWS Secrets

Manager. Create a Glue connection to your

MongoDB instance referring to the secret.

B. Store the credentials in the AWS Glue job

parameters.

C. Utilize the AWS IAM Identity Center to

authenticate to the MongoDB instance.

D. Store the credentials in a configuration file in an Amazon S3 bucket. Grant the AWS Glue

job IAM access to the configuration file.

39. A global company is using Amazon QuickSight to

build dashboards for their analysts. Each regional

analyst group should be able to view data specific to

only their respective geographic region, as

determined by the region field in the dataset.

You have been tasked with configuring QuickSight

to ensure this data segregation. Which steps should

you take to configure the QuickSight environment to

meet these requirements? (Select two.)

A. Create user groups in Amazon QuickSight for

each analyst group and assign users to their

respective groups.

B. Enable the “Filter by Region” option in the

QuickSight dataset configuration panel and

assign each group to their corresponding

region filter.

C. Use Amazon QuickSight’s row-level security

(RLS) by creating a permissions dataset that

maps analyst groups to the specific regions

they are allowed to access.

D. Configure IAM policies to restrict access to

specific rows of the dataset based on analyst

groups.

E. Modify the source dataset by creating

separate datasets for each region and assign

them to the respective groups in QuickSight.

40. A company is setting up a multitenant Amazon MSK

cluster to host event streams for multiple lines of

business (LOBs). Each LOB has its own set of

microservices that produce and consume messages

to and from Kafka topics. The company requires that

microservices of each LOB have permission to

access only the Kafka topics associated with their

LOB.

As a Solutions Architect, which steps should you

take to configure IAM access control to enforce

these requirements? (Select three.)

A. Enable IAM access control on the Amazon

MSK cluster by updating the cluster’s

settings to use IAM as the authentication

mechanism.

B. Create an IAM policy for each LOB,

specifying permissions to allow access only to

their respective Kafka topics using the

kafka-cluster:Topic resource.

C. Configure IAM role-based access control

(RBAC) within Kafka to assign permissions

for each LOB’s microservices to their

respective topics.

D. Attach the appropriate IAM policies to the

IAM roles assumed by each LOB’s

microservices.

E. Use Kafka ACLs (access control lists) to

restrict access to topics for each LOB’s

microservices.

F. Use VPC security groups to isolate network traffic for each LOB, ensuring that

microservices cannot access topics of other

LOBs.

41. A healthcare analytics provider is building a data

pipeline to process patient records and generate

insights for hospitals. The pipeline ingests data from

Amazon S3, processes it using Amazon EMR on EC2,

and loads transformed data into Amazon Redshift for

analysis.

Due to the sensitive nature of the data, the

architecture must prevent public exposure of any

data. The company also wants centralized

management of sensitive parameters such as

database usernames and API keys used within EMR

jobs.

Which of the following should the company

implement to meet these requirements? (Select

two.)

A. Store all credentials in an encrypted S3

bucket, grant access via IAM roles with S3

read permissions.

B. Store sensitive credentials such as API keys

and database passwords in AWS Systems

Manager Parameter Store.

C. Configure an Amazon S3 Gateway VPC

endpoint to ensure private access to S3 from

the EMR cluster.

D. Inject all credentials and API keys into EMR

cluster instances through environment

variables at bootstrap.

E. Use EC2 instance user data scripts to

hardcode database credentials in each node

at launch time.

F. Mount the S3 bucket to the EMR cluster

using S3FS and configure the route through a

NAT Gateway.

42. A digital advertising company is building a real-time

event streaming platform using Amazon Managed

Streaming for Apache Kafka (Amazon MSK) to

collect and process clickstream data. The Amazon

MSK cluster is deployed in private subnets within a

VPC. Kafka producers and consumers are deployed

in separate Amazon Elastic Kubernetes Service

(Amazon EKS) clusters, each running in different

private subnets and in separate VPCs within the

same AWS Region. The team must ensure only

authorized workloads can access the Kafka brokers.

Which of the following configurations will help meet

these requirements?

A. Associate the MSK brokers with a security

group that allows inbound traffic on Kafka

broker ports only from the security groups of

the EKS worker nodes in both VPCs and

establish VPC peering or AWS Transit

Gateway connectivity between the clusters.

B. Associate the MSK brokers with a security

group that allows inbound traffic on all ports

from the entire VPC CIDR blocks of both EKS

clusters to ensure connectivity.

C. Deploy a public-facing Network Load

Balancer in front of the MSK brokers and use

IP whitelisting to restrict access from each EKS cluster.

D. Enable internet access on the MSK cluster

using a NAT Gateway and configure IAM

authentication to control Kafka access from

producer and consumer pods.

Chapter 10. What’s New in

AWS for Data Engineers

Chapters 1 to 9 provided details on established AWS

services and concepts that have been widely available since

late 2024. AWS has since introduced several new features,

with some currently in the preview phase and others

having recently achieved general availability status.

This chapter aims to provide a high-level overview of some

of these new features, which will help you get familiar with

the new capabilities and answer questions related to these

features should they appear in the certification exam.

The following are the new announcements that change how

developers integrate AWS data analytics services:

Amazon SageMaker Unified Studio

Amazon SageMaker Catalog

Amazon SageMaker Lakehouse

Improving the developer experience with generative

AI

Amazon S3 Tables and S3 Metadata

Let’s get an overview of each of these capabilities.

Amazon SageMaker Unified Studio

As explained in previous chapters, Amazon Web Services

offer a wide range of data analytics services (e.g., Amazon

EMR, AWS Glue, Amazon Athena, Amazon Redshift, and more) that customers can integrate to build an end-to-end

data pipeline. These services help address analytical needs,

but they require effort to assemble or require in-depth

knowledge to integrate with each other through their

respective service interfaces. To address the ease-of-use

concern, during re:Invent 2024, AWS announced Amazon

SageMaker Unified Studio.

Amazon SageMaker Unified Studio provides an integrated

developer experience to use all your data and tools for

analytics and AI. You can use Amazon SageMaker Unified

Studio to discover your existing data and put it to work

with familiar AWS analytics and machine learning services

for model development, generative AI application

development, big data processing, and SQL-based analytics

assisted by Amazon Q Developer.

Figure 10-1 represents the high-level components of SageMaker Unified Studio, which also provides access to

SageMaker Lakehouse and enables you to integrate

governance capabilities with SageMaker Catalog (both are

discussed in upcoming sections). While writing this

chapter, streaming (Amazon MSK, Amazon Kinesis),

business intelligence (Amazon QuickSight), and search

(Amazon OpenSearch Service) services are not yet

available through SageMaker Unified Studio but are

planned as part of a future update.

[image: Image 171]

 Figure 10-1. High-level components of SageMaker Unified Studio The next generation of Amazon SageMaker is a platform

that brings together all your favorite services and tools into a unified experience through the Unified Studio, with

unified data access through the lakehouse, and end-to-end

governance built-in for your data and AI.

Next, let’s learn about SageMaker Catalog, which enables

metadata management and governance.

Amazon SageMaker Catalog

Amazon SageMaker Catalog accelerates data discovery and collaboration. It enhances data discovery with generative AI that automatically adds business context to table

attributes, making it easy for all users to find and

understand data. Users can search data by business

glossary terms or by technical attributes. It supports both

centralized and decentralized governance models with

seamless data sharing through publishing and subscribing

workflows.

SageMaker Catalog also integrates AWS Lake Formation

and Amazon DataZone capabilities to enforce security and

fine-grained access controls to ensure that only authorized users can access the right data and AI models for approved

purposes.

[image: Image 172]

In addition, SageMaker Catalog lets you gain visibility into

data and machine learning model workflows with

automated data quality reporting, and track lineage to understand asset transformations and usage across

workflows.

Each catalog maps to one of the following storage types,

which are represented in Figure 10-2:

Create a managed catalog for Redshift Managed

Storage

Bring existing data stores into a federated catalog.

Mount data from:

– Amazon Redshift

– Amazon S3 table buckets

– External sources like Snowflake, MySQL

 Figure 10-2. High-level components of SageMaker Catalog

The unified catalog simplifies building data products by

enabling data producers and consumers to collaborate and

bring in governance controls.

Amazon SageMaker Lakehouse

Organizations are building data-driven applications to

guide business decisions, improve agility, and drive

innovation. Many of these applications are complex to build

because they require collaboration across teams and the

integration of data, tools, and services.

Building advanced data-driven applications poses several

challenges, such as:

It is time consuming for users to learn multiple

services’ development experiences.

Since data, code, and other development artifacts

(e.g., ML models) are stored in different services, it

is cumbersome for users to understand how they

interact with each other and to make changes.

Configuring and governing access to appropriate

users for data, code, development artifacts, and

compute resources (e.g., clusters, serverless

endpoints) across services is a manual process.

To help customers address these challenges, AWS

announced Amazon SageMaker Lakehouse, which combines the capability of a data lake and data warehouse

within a single interface. It brings in a single copy of data including structured, semi-structured, and unstructured

data with a Unified Data Catalog.

As highlighted in Figure 10-3, the following are the high-level components of SageMaker Lakehouse:

Flexible storage for diverse workloads

[image: Image 173]

Unified technical catalog that manages all data

Integrated permission management to secure and

share data

Apache Iceberg APIs to access data from AWS

Analytics services and open source engines

 Figure 10-3. High-level components of SageMaker Lakehouse Amazon SageMaker Lakehouse helps in unifying all the

data available across multiple sources for your analytics

and AI initiatives with a single copy of data, regardless of

how and where the data is stored. SageMaker Lakehouse

brings together your existing data across Amazon S3 data

lakes and Amazon Redshift data warehouses. In addition,

you can zero-ETL data from operational databases and

enterprise applications to the lakehouse in near real time.

You can also use hundreds of AWS Glue connectors to

integrate across different data sources. Furthermore, you

[image: Image 174]

can access and query data in-place with federated query

capabilities across third-party data sources.

The Iceberg-compatible API interface in SageMaker

Lakehouse enables you to access and query all your data in-

place with all Apache Iceberg–compatible tools and

engines. This provides you with the flexibility to use the

analytic tools and engines of your choice, such as your

preferred SQL, Spark, BI, and AI/ML tools, and collaborate

with data stored across Amazon S3 data lakes or Amazon

Redshift data warehouses.

In addition, SageMaker Lakehouse provides a single place

for integrated, fine-grained access controls that are

consistently enforced across all your data in all analytic

tools and engines. This enables you to define permissions

once and securely share data across your organization.

Amazon SageMaker AI

With the announcement of a new generation of SageMaker

including SageMaker Unified Studio and Lakehouse, AWS

renamed the existing SageMaker service to SageMaker AI.

As shown in Figure 10-4, SageMaker AI helps in model training, fine-tuning, and deployment, and provides

approaches for optimization with model monitoring and

MLOps governance.

 Figure 10-4. High-level components of SageMaker AI

As a refresher, the following are the unique capabilities of SageMaker AI:

Amazon SageMaker AI provides access to high-

performance, cost-effective, scalable, and fully

managed infrastructure and tools for each step of

the ML lifecycle. Using Amazon SageMaker tools,

you can easily train, test, troubleshoot, deploy, and

manage foundation models (FMs) at scale and boost

productivity of developers while maintaining model

performance in production.

You can explore Amazon SageMaker JumpStart,

which is an ML hub offering models, algorithms, and

prebuilt ML solutions. SageMaker JumpStart offers

hundreds of ready-to-use FMs from various model

providers.

Amazon SageMaker machine learning operations

(MLOps) capabilities help you create repeatable

workflows across the ML lifecycle to experiment,

train, deploy, and govern ML models at scale while

maintaining model performance in production.

Amazon SageMaker provides purpose-built

governance tools to help you implement ML

responsibly. Amazon SageMaker Model Cards makes

it easier to capture, retrieve, and share essential

model information. Once the models are deployed,

SageMaker Model Dashboard gives you unified

monitoring across all your models by providing

notice of deviations from expected behavior,

automated alerts, and troubleshooting to improve

model performance. Amazon SageMaker Clarify

detects and measures potential bias using a variety

of metrics to help you address potential bias and explain model predictions.

With Amazon SageMaker Ground Truth, you can use

human feedback to customize models on company-

or domain-specific data for your unique use case to

improve model output and task performance.

Amazon SageMaker AI continues to be the choice for

customers who plan to develop custom models or fine-tune

existing models, deploy models for batch/real-time

inference, and leverage SageMaker AI’s end-to-end ML

development and MLOps capabilities.

Amazon S3 Tables

Over recent years, we have seen an increase in adoption of

the Apache Iceberg table format for data lake use cases. To

achieve optimal performance, Apache Iceberg tables need

to be maintained by expiring older snapshots, optimizing

files with compaction, and cleaning up unreferenced files.

To reduce operational overhead, AWS announced Amazon

S3 Tables as an S3 bucket type built for tabular data, which acts as a managed Iceberg table.

It supports the advanced capabilities of Apache Iceberg

tables such as row-level transactions (UPSERT/MERGE),

schema evolution, and queryable snapshots. Compared to

an open source Iceberg table, it provides the following

benefits:

Optimized for analytics with up to 3x faster query

throughput and 10x higher transactions per second

Seamless integration with Query Engines

Scales effortlessly as your data lake evolves

Automates table maintenance:

– Continually optimizes query efficiency and

storage costs

– Automates tasks like compaction, snapshot

management, and unreferenced file cleanup

Amazon S3 Metadata

Amazon S3 Metadata helps instantly discover and understand S3 data through automated metadata that is

updated in near real time. This enables data identification,

curation, and business analytics.

The metadata includes system-defined metadata such as

size, object source, etc., and custom metadata such as tags

for SKU, transaction ID, content rating, and more.

The metadata gets captured when the object is uploaded to

Amazon S3, and in near real time (within minutes) you get

a read-only view of the metadata to query. These metadata

elements are stored in S3 Tables, which is optimized for

tabular data and is Iceberg compatible.

Improving the Developer Experience

with Generative AI

There are several generative AI (GenAI) capabilities

integrated into AWS’s data analytics services that improve

developer experience and productivity. The following

presents a summary of the capabilities.

Generative AI–Powered Code Generation with

Amazon Q Developer

Code generation is one of the most valuable

implementations of generative AI, improving developer

productivity. The Amazon Q Developer code generation capability is integrated into multiple AWS services such as

AWS Glue ETL jobs and interactive sessions, SageMaker

Unified Studio notebooks, and Amazon Redshift Query

Editor v2 for SQL code generation.

In AWS Glue, Amazon Q Developer supports both Python

and Scala, the two languages used for coding ETL scripts

for Spark jobs. Currently, code generation works only with

the PySpark kernel.

The integration offers context-awareness capability, which

carries the context from the previous user query only,

within the same conversation. It does not retain context

beyond the immediately preceding query. Currently,

context awareness supports only a subset of required

configurations for various nodes. Context awareness and

DataFrame support are available in Q Developer Chat and

SageMaker Unified Studio notebooks but not yet available

in AWS Glue Studio notebooks.

Automated Script Upgrade in AWS Glue

AWS Glue added a new capability that enables developers

to upgrade their Glue 2.0 (Spark 2.4.3, Python 3.7) projects

to Glue 4.0 (Spark 3.3.0, Python 3.10). Upgrading Spark

application code is complex as it involves the following

challenges:

A mix of imperative and declarative programming

style code

Spark configurations and default values that might have changed between different Spark versions,

which needs to be tested while upgrading

This automatic Spark job upgrade leverages AI to automate

both the identification (analyzes both the code and Spark

configuration) and validation of required changes in your

AWS Glue Spark applications.

The AI-driven upgrade plan generation looks at the

following four areas for the upgrade and then runs

automated validation jobs in your environment after the

upgrade:

Spark SQL API methods and functions

Spark DataFrame API methods and operations

Python language updates (including module

deprecations and syntax changes)

Spark SQL and Core configuration settings

Please note, the current implementation has the following

limitations:

Only limited to PySpark jobs that do not have

additional dependencies

Maximum 10 concurrent jobs per account

GenAI-Powered Troubleshooting for Spark in

AWS Glue

Root cause analysis for job failures is one of the most time-

consuming tasks as Spark jobs involve the following:

Extensive connectivity and configuration options.

[image: Image 175]

Spark’s in-memory processing and distributed

partitioning makes it difficult to debug issues.

Lazy evaluation of Spark transformations makes it

difficult to accurately identify the actual reason for

the failures.

The new GenAI-powered troubleshooting provides

automated root cause analysis for failed Spark applications

by analyzing job metadata and metrics/logs associated with

the error signature; it also provides actionable

recommendations with remediation steps. The capability is

accessible from the Glue job list, job details, and

monitoring page of the Glue console.

Figure 10-5 provides a screenshot of the Glue console that highlights the reason for the job failure and

recommendations for resolving the issue.

 Figure 10-5. Spark application failure troubleshooting in AWS Glue As a best practice, before implementing any suggested

changes in your production environment, review the

suggested changes thoroughly.

Conclusion

This chapter explained a few of the top features announced

during re:Invent 2024 that change the way customers

interact with AWS data analytics services. You can stay up

to date with new feature announcements by reviewing the

“What’s New with AWS” page.

Resources

The following are additional resources that may help you

learn more about these new capabilities:

“An Integrated Experience for All Your Data and AI

with Amazon SageMaker Unified Studio”

“Foundational Blocks of Amazon SageMaker Unified

Studio: An Admin’s Guide to Implement Unified

Access to All Your Data, Analytics, and AI”

“Catalog and Govern Amazon Athena Federated

Queries with Amazon SageMaker Lakehouse”

“Discover, Govern, and Collaborate on Data and AI

Securely with Amazon SageMaker Data and AI

Governance”

“Access Your Existing Data and Resources Through

Amazon SageMaker Unified Studio, Part 1: AWS

Glue Data Catalog and Amazon Redshift”

“Access Your Existing Data and Resources Through

Amazon SageMaker Unified Studio, Part 2: Amazon

S3, Amazon RDS, Amazon DynamoDB, and Amazon

EMR”

“Amazon Q Data Integration Adds DataFrame

Support and In-Prompt Context-Aware Job Creation”

Appendix. Solutions to the

Practice Questions

This appendix lists the solutions to the practice questions

appearing at the end of Chapters 4–7 and the practice exam in Chapter 9.

Chapter 4

1. C: The zero-ETL integration between Salesforce and

Redshift that AWS Glue provides is the most

seamless, optimal-cost, and low-overhead solution

for integrating Salesforce data into Amazon

Redshift. AWS takes care of the heavy lifting of

identifying new data from the source and

continuously replicating it to the target Redshift.

Where zero-ETL integrations are available, they are

almost always the right solution.

2. C: Creating an S3 event notification that triggers the

Lambda function directly when an S3

ObjectCreated event occurs, with a filter rule for

 .txt files, provides the most straightforward and

least operationally complex solution for this

requirement.

3. C: AWS Glue DataBrew offers a visual, low-code

interface for designing data preparation workflows,

making it ideal for handling the described data

quality issues and transformations with minimal

coding and operational overhead.

4. B: Amazon Data Firehose provides the most

streamlined solution for consolidating real-time data

from multiple AWS services and delivering it to

Datadog with minimal operational overhead, offering

built-in integrations and automatic scaling.

5. A: UNNEST_STRUCT is the function that solves the

requirement here.

6. B: AWS DataSync is purpose-built for efficient, automated data transfer from on-premises to AWS,

with change detection capabilities to minimize

transfer times and built-in monitoring features,

making it the ideal choice for this scenario.

7. B: Amazon Managed Workflows for Apache Airflow

(MWAA) provides a fully managed, scalable

orchestration service that can handle complex data

processing pipelines with external dependencies,

offering robust monitoring and management

capabilities.

8. A: The FindMatches transformation in AWS Glue

DataBrew provides a managed, ML-powered solution

for identifying and merging duplicate records,

offering the least operational overhead for

deduplicating customer data at scale.

9. B: The Amazon Redshift Serverless streaming

ingestion feature allows direct consumption of data

from Kinesis Data Streams, providing the most

streamlined and low-overhead solution for real-time

data ingestion and analytics.

10. A, C: Monitoring shard-level metrics in CloudWatch

helps identify performance issues, while modifying

the partition key can improve data distribution

across shards, addressing the root causes of the

observed throughput and latency problems.

Chapter 5

1. A: Amazon S3 is a scalable, cost-effective storage

service that integrates natively with Spark on

Amazon EMR, making it ideal for big data

processing workloads migrated from HDFS.

2. A: ISM policies in OpenSearch Service automate

tiered storage transitions—Hot to UltraWarm to

Cold—minimizing operational overhead while

optimizing cost and performance for time-based

access patterns.

3. C: Redshift Spectrum allows Amazon Redshift to

directly query data stored in Amazon S3 without

data movement, enabling seamless access to

historical datasets.

4. B: S3 Lifecycle policies help with automatically

deleting noncurrent object versions after a defined

period, which directly addresses the storage cost

increase caused by versioning.

5. A: AWS Glue crawlers automatically detect schema

changes in S3 data and update the Glue Data

Catalog with minimal manual effort, offering the

least operational overhead.

6. A, B: Glue crawlers provide a low-overhead,

automated way to catalog data from Amazon S3,

RDS, and Snowflake into the Glue Data Catalog,

enabling unified access without custom scripting or

manual exports.

7. A, D: Partitioning prunes the data by allowing Athena to scan only the specific subfolders relevant

to your query’s filters, drastically reducing query

time and cost. Using compressed file formats

reduces the amount of data Athena needs to read

from S3, which directly improves query speed and

lowers data scan costs.

8. A: This design is the most efficient because using

UserID as the partition key allows for a direct query

to retrieve all orders for a specific user, while using

PurchaseTimestamp as the sort key automatically

organizes those orders chronologically, fulfilling

both access patterns with a single, highly

performant query operation.

9. B: Applying the ALL distribution style to small

dimension tables is a key Redshift optimization

strategy, as it places a full copy of the table on every

node, which completely eliminates data

redistribution costs during joins with large fact

tables, significantly boosting query performance

with minimal storage impact.

10. C: S3 Standard provides immediate access during

the first year. Glacier Deep Archive is the lowest-

cost option that still meets the 48-hour retrieval SLA

(as it supports restores within 12–48 hours), making

it the most cost-effective choice for long-term

compliance storage.

Chapter 6

1. A, B: Implementing AWS Glue partition indexing and

configuring Athena partition projection are the most

effective solutions for improving query planning

performance with partitioned data. Partition

indexing creates a searchable index of partition

locations, while partition projection eliminates the

need to read partition metadata from the Glue Data

Catalog.

2. B: STL_LOAD_ERRORS is the correct system table for

viewing detailed information about COPY command

load failures in Redshift. It contains specific error

messages, row numbers, and other details crucial

for troubleshooting.

3. A, B: Checking IAM configurations and examining

network settings are the most effective approaches

because Step Functions failures during Lambda

invocation typically stem from permission issues or

network connectivity problems.

4. A, C: Choosing multi-AZ deployment and

implementing cross-region snapshot copy provide

the highest availability with minimal operational

overhead. Multi-AZ automatically handles failover,

while cross-region snapshots provide disaster

recovery capabilities.

5. C: Using the scheduler in Query Editor v2 is the

most straightforward and cost-effective solution for

scheduling long-running stored procedures in

Redshift.

6. C: The AWS Glue workflow is the most efficient solution for orchestrating Glue components, offering

native integration and minimal overhead.

7. A: Implementing Athena workgroups with query

result caching is the most cost-effective solution

while meeting the four-hour freshness requirement.

8. A: Using Amazon Q with natural language prompts

provides the easiest way for non-expert users to

create visualizations.

9. D: Publishing flow logs to S3 in Parquet format and

using Athena for analysis provides the most cost-

effective solution with minimal operational

overhead.

10. A: Using AWS Glue Data Quality rules is the most

efficient way to implement data validation

requirements, offering a declarative approach with

built-in functionality.

Chapter 7

1. D: In AWS security groups you can configure

specific IP addresses to provide access to the RDS

database. Option A also mentions the same but

option D is the best answer as it follows the least-

privilege principle and suggests configuring IP

address access only for the database port for

enhanced security.

2. B: Deploying the AWS Lambda function in the same

VPC as RDS will enable network connectivity. Then

adding the Lambda function security group into RDS

inbound access will open up the firewall for access.

3. B: AWS KMS enables you to share the KMS key with

another AWS account; that’s the efficient way to

provide access to the dataset.

4. B: AWS Lake Formation enables you to implement

fine-grained access control on your data by

integrating row-based, column-based, and tag-based

filters.

5. C: AWS Glue Data Catalog is a managed service that

reduces operational overhead as you do not need to

manage any infrastructure and it scales with the

number of metadata objects and number of requests.

6. C: AWS CloudTrail Lake is a managed service for

aggregating, storing, and analyzing user and API

activities across AWS environments. It allows for

querying activity logs using SQL-based queries. It is

the best answer as you can directly use it without

any custom integration.

7. A: Amazon Redshift supports cross-account data sharing and you can enable the primary cluster to

share with other Redshift clusters, which reduces

operational overhead.

8. C: AWS Backup provides the capability to trigger

backup from a central account and also define to

which region data should be written. That’s the best

way to achieve the requirement.

9. C: Aurora PostgreSQL’s export to S3 feature makes the implementation simple and reduces operational

overhead.

10. C: AWS Secrets Manager stores credentials in a

secured way and the Lambda functions refer only to

the Secrets Manager key, so anyone having access

to the Lambda function code will still not be able to

get the database login credentials.

Chapter 9

1. Correct Answers: A, C, D

This scenario requires building an open source–

based CDC pipeline from Aurora MySQL to Amazon

S3, which strongly aligns with using Debezium and

Apache Kafka.

– Option A (Enable binary logging) – Correct:

Debezium relies on MySQL binary logs for

capturing database changes, making this step

mandatory.

– Option B (Deploy Debezium directly on

Aurora MySQL) – Incorrect: Aurora MySQL is

a managed database service and doesn’t

support direct installation of third-party

software like Debezium connectors.

– Option C (Deploy MSK Connect with

Debezium) – Correct: Amazon MSK Connect

runs Kafka connectors (like Debezium)

natively, effectively capturing database

changes from Aurora MySQL into Kafka

topics.

– Option D (Deploy an Amazon MSK cluster) –

Correct: MSK provides a managed Kafka

environment necessary for Debezium

connectors to stream CDC events.

– Option E (Set up AWS DMS) – Incorrect: AWS

DMS is a proprietary service and does not

meet the open source requirement stated in

the scenario.

– Option F (Use Kinesis Data Streams) –

Incorrect: Amazon Kinesis does not natively

support CDC directly from Aurora MySQL

binary logs without additional tooling or

integrations.

 References:

– “Build an End-to-End CDC Pipeline with

Amazon MSK Connect”

2. Correct Answer: C

This scenario requires ingesting real-time streaming

data from an Amazon Kinesis data stream directly

into Amazon Redshift with minimal operational

overhead. The emphasis is on simplicity, minimal

management, and AWS-native integrations.

– Option A (Amazon Managed Service for

Apache Flink) – Incorrect: Although

technically feasible, using Apache Flink

introduces additional operational complexity,

including managing application code and

MSF applications, making it less optimal for

minimal operational overhead.

– Option B (AWS Glue Streaming with Redshift

Data API) – Incorrect: AWS Glue streaming

jobs combined with Redshift’s Data API

provide a valid streaming solution, but

require more operational management,

monitoring, and troubleshooting than direct

ingestion approaches.

– Option C (Redshift streaming ingestion) –

Correct: Amazon Redshift’s native streaming

ingestion directly consumes data from Kinesis

Data Streams without intermediate storage or

complex setup. This approach provides the

lowest operational overhead.

– Option D (Kinesis Data Firehose + S3 +

Redshift COPY command) – Incorrect:

Although commonly used, this method

involves additional steps such as managing

intermediate S3 storage and scheduling COPY

commands, resulting in increased operational

overhead compared to direct streaming

ingestion.

 References:

– Amazon Redshift streaming ingestion

3. Correct Answer: C

This scenario requires offloading analytical queries

from Aurora PostgreSQL to Amazon Redshift, with

an emphasis on (1) minimal operational overhead

and (2) near-real-time data synchronization.

– Option A (AWS Glue ETL + S3 + Redshift

COPY command) – Incorrect: Although

commonly used and technically feasible, this

is a batch-oriented method that requires

scheduled ETL jobs, additional data

management, and introduces latency.

– Option B (AWS DMS replication to Redshift) –

Incorrect: While AWS DMS is a valid

replication approach and offers near-real-time

replication, it still involves managing

replication tasks, monitoring, and occasional

troubleshooting, adding operational

complexity compared to a fully automated

zero-ETL feature.

– Option C (Aurora zero-ETL integration) –

Correct: Aurora zero-ETL integration

automatically replicates data from Aurora

PostgreSQL into Amazon Redshift

continuously without manual ETL

management or intermediate storage. This

AWS-managed solution provides real-time

data synchronization with the least

operational overhead.

– Option D (Aurora read replica + export to S3

+ Redshift Spectrum) – Incorrect: Exporting

data directly from an Aurora PostgreSQL read

replica to Amazon S3 is not supported, as

Aurora permits only data export operations

(SELECT INTO S3) from a writer instance.

Thus, this solution is technically infeasible.

 References:

– “Aurora Zero-ETL Integration with Amazon

Redshift”

4. Correct Answer: B

This scenario describes integrating changes from a

feature branch (optimize-glue-jobs) into the main

branch after switching to the main branch locally.

The correct Git operation needs to merge feature

changes into the current active branch (main).

– Option A (git pull optimize-glue-jobs) –

Incorrect: git pull fetches and merges

changes from a remote repository, not from a

feature branch to a main branch.

– Option B (git merge optimize-glue-jobs) –

Correct: git merge optimize-glue-jobs

integrates changes from the specified local

feature branch directly into the currently

checked-out branch (main). This is exactly

what’s required.

– Option C (git rebase main) – Incorrect: git

rebase main reapplies commits onto the main

branch. You need to switch to the optimize-

glue-jobs branch first to make this command

work.

– Option D (git checkout optimize-glue-

jobs) – Incorrect: git checkout optimize-

glue-jobs switches to the feature branch

rather than merging its changes into main.

5. Correct Answer: A

This scenario requires defining AWS infrastructure

as code (IaC) using (1) object-oriented programming

constructs, (2) reusable across environments, and

(3) with explicit support for Python.

– Option A (AWS Cloud Development Kit) –

Correct: AWS CDK supports defining

infrastructure using familiar object-oriented

programming languages such as Python and

TypeScript. It allows developers to build

reusable constructs, greatly simplifying

consistency across staging and production

environments.

– Option B (Manual provision + export to

CloudFormation templates) – Incorrect: Using

the AWS Management Console to provision

resources and exporting CloudFormation

templates lacks object-oriented capabilities

and introduces manual overhead, making it

less scalable and reusable.

– Option C (AWS CLI scripts) – Incorrect: CLI

scripts are procedural focused and not

designed for IaC usage.

– Option D (AWS CloudFormation templates) –

Incorrect: While AWS Cloud For mation offers

infrastructure as code, it doesn’t natively

support object-oriented constructs or

programming languages like Python. Thus, it

doesn’t align fully with the team’s stated

preferences.

6. Correct Answer: B

This scenario involves large-scale Apache Spark–

based ETL workloads that are recurring, not time-

sensitive, and can tolerate interruptions. The

primary objective is minimizing costs while

maintaining scalability and stability.

– Option A (EMR On-Demand Instances only) –

Incorrect: Using exclusively On-Demand

Instances ensures stability but is more

expensive compared to the mixed Spot and

On-Demand solution described in Option B.

This doesn’t align with the goal of cost

minimization.

– Option B (EMR with Spot and On-Demand

Instances) – Correct: Combining Spot and On-

Demand Instances in Amazon EMR provides

significant cost savings by leveraging lower-

priced Spot Instances, while maintaining job

stability through the use of some On-Demand

Instances to mitigate interruptions.

– Option C (AWS Glue serverless solution) –

Incorrect: While AWS Glue offers a fully

managed, serverless Spark environment, it

typically incurs higher costs for continuous,

large-scale Spark workloads compared to

optimized EMR setups with Spot Instances.

– Option D (Self-managed Spark on EC2 Spot

Instances) – Incorrect: A fully self-managed

cluster on Spot Instances could reduce costs

but would significantly increase operational

complexity and risks of job failures without

any built-in fallback or stability guarantees

provided by managed services such as

Amazon EMR or AWS Glue.

7. Correct Answer: A

This scenario requires real-time, file-level processing

triggered immediately upon file upload to Amazon

S3, including schema validation and CSV-to-Parquet

format conversion. The ideal solution must

emphasize simplicity, scalability, and minimal

operational overhead.

– Option A (S3 Event Notification + AWS

Lambda) – Correct: Using Amazon S3 Event

Notifications to trigger AWS Lambda

functions provides immediate processing

upon file arrival, effectively handling schema

validation and conversion tasks for the given

file size (10–100 MB). This solution offers

simplicity, scalability, and minimal

management overhead.

– Option B (AWS Glue crawlers + Glue jobs) –

Incorrect: AWS Glue crawlers run periodically

rather than reactively upon file arrival, thus

not fulfilling the real-time requirement. It

introduces latency and additional operational

overhead.

– Option C (S3 Event Notification + AWS Step

Functions + Glue jobs) – Incorrect: While

technically possible, AWS Glue jobs are

overkill for lightweight, individual file-based

processing.

– Option D (Amazon S3 Batch Operations +

Glue jobs) – Incorrect: Batch Operations are

schedule-based rather than event-driven,

failing the real-time processing requirement

and causing processing delays. Additionally,

Amazon S3 Batch Operations does not

natively support integration with AWS Glue.

 References:

– “Get Started with Amazon S3 Event-Driven

Design Patterns”

8. Correct Answer: C

This scenario requires stateful, near-real-time stream processing, strongly aligning with Apache

Flink as an optimal technology. Additionally, the

solution must be fully managed to ensure scalability

and minimal operational overhead.

– Option A (Self-managed Apache Flink on

EC2) – Incorrect: Deploying and managing a

self-hosted Flink cluster significantly

increases operational complexity and

management overhead, conflicting with the

fully managed requirement.

– Option B (AWS Lambda + DynamoDB) –

Incorrect: While feasible for simple state

handling, using DynamoDB as external state

storage can increase latency and complexity.

Lambda also has inherent limitations for

complex, stateful stream processing scenarios

at scale.

– Option C (Amazon Managed Service for

Apache Flink) – Correct: Amazon Managed

Service for Apache Flink (MSF) is specifically

designed for stateful streaming analytics. It

offers fully managed infrastructure,

automatic scaling, and built-in state

management, perfectly aligning with the

minimal operational overhead and real-time

fraud detection requirements.

– Option D (EMR-managed Apache Flink) –

Incorrect: Although EMR simplifies cluster

management compared to a self-managed

setup, it still requires managing cluster

lifecycle, configuration, and scaling, resulting

in higher operational overhead compared to

MSF.

9. Correct Answer: B

This scenario requires integrating Amazon EMR

Notebooks seamlessly with a Git-based source code

repository to effectively track changes, enhance

team collaboration, and promote code reuse within

EMR-based workflows. A solution must directly

support version control without operational

overhead.

– Option A (Store notebook code in Amazon S3)

– Incorrect: Using Amazon S3 for storing

notebook code lacks built-in version control

capabilities, requiring manual effort for

tracking changes and introducing

unnecessary operational complexity.

– Option B (EMR Notebooks with Git repository

integration) – Correct: Amazon EMR

Notebooks natively integrate with Git-based

repositories like AWS CodeCommit and

GitHub. This enables users to pull, push, and

manage notebook code changes directly

within the notebook interface, meeting the

seamless integration and collaboration goals.

– Option C (Local Git repository on EC2) –

Incorrect: This manual method significantly

increases operational overhead, complicates

synchronization, and undermines real-time

collaboration by requiring manual uploads of

job scripts to EMR Notebooks.

– Option D (AWS Glue Studio to EMR

Notebooks) – Incorrect: AWS Glue Studio

primarily targets Glue-based workflows and

doesn’t directly support EMR Notebooks

integration, introducing unnecessary

complexity and operational overhead.

10. Correct Answer: D

This scenario involves orchestrating a large-scale,

multistage data pipeline across multiple analytics

services, making Apache Airflow an ideal technology

due to its flexibility and wide integration support.

Additionally, the solution must be fully managed to

minimize operational overhead, ensure scalability,

availability, and security, and provide detailed

logging and monitoring capabilities.

– Option A (Self-managed Apache Airflow on

EC2) – Incorrect: Deploying Apache Airflow

manually on EC2 requires significant

operational overhead for setup, maintenance,

scaling, and security management, conflicting

with the minimal overhead goal.

– Option B (AWS Glue workflows) – Incorrect:

AWS Glue workflows primarily orchestrate

Glue-specific ETL jobs and lack native

integration and flexibility for orchestrating

comprehensive EMR and Flink-based

pipelines.

– Option C (Custom Python-based engine on

ECS) – Incorrect: Building a custom

orchestration solution introduces extensive

complexity in development, deployment,

maintenance, and scaling, resulting in higher operational overhead.

– Option D (Amazon Managed Workflows for

Apache Airflow - MWAA) – Correct: Amazon

MWAA provides a fully managed, secure, and

scalable orchestration service leveraging

Apache Airflow. It supports comprehensive

orchestration across various AWS analytics

services (S3, EMR, Flink) with built-in

detailed logging, monitoring, and minimal

operational overhead.

11. Correct Answer: B

This scenario involves managing multiple AWS

Lambda functions with shared third-party Python

libraries. The company requires a solution that

centralizes dependency management and ensures

consistency.

– Option A (Package libraries with each

Lambda) – Incorrect: Bundling libraries

individually with each function increases

duplication, deployment complexity, and

maintenance overhead.

– Option B (AWS Lambda Layers) – Correct:

AWS Lambda Layers allow common libraries

to be packaged separately and centrally

managed. This approach simplifies updates,

ensures consistent dependencies across

multiple Lambda functions, and significantly

reduces operational overhead.

– Option C (Libraries stored in S3, downloaded

at runtime) – Incorrect: Downloading libraries

at runtime from S3 increases complexity due

to managing runtime errors, library versions,

and network dependencies.

– Option D (EFS filesystem mounted into

Lambda) – Incorrect: Although technically

feasible, using Amazon EFS introduces

additional complexity in setup and

management compared to Lambda Layers. It

is also typically reserved for larger files or

persistent storage needs rather than

lightweight library management.

 References:

– Managing Python dependencies with Lambda

Layers

12. Correct Answer: A

This scenario involves easily discovering,

subscribing to, and incorporating third-party

datasets into an AWS-based analytics platform. The

company requires a solution specifically designed

for accessing and integrating external data in the

cloud.

– Option A (AWS Data Exchange) – Correct:

AWS Data Exchange is specifically designed

to help customers find, subscribe to, and

seamlessly integrate third-party datasets into

their AWS environment, fully aligning with

the scenario’s requirements.

– Option B (AWS DataSync) – Incorrect: AWS

DataSync is primarily for migrating data

between on-premises and AWS or across AWS

storage services. It does not offer capabilities to discover or subscribe to third-party

datasets.

– Option C (Redshift Data Marketplace) –

Incorrect: “Redshift Data Marketplace” does

not exist as an independent AWS service.

– Option D (Redshift Data Sharing) – Incorrect:

Redshift Data Sharing allows sharing data

across Amazon Redshift clusters but does not

enable discovery or subscription to external

third-party datasets.

13. Correct Answer: B

This scenario involves querying a text column in an

Amazon Redshift table to find records containing

case-insensitive keywords (“refund,” “cancel,” or

“complaint”). The SQL query needs efficient pattern-

matching capabilities to detect these keywords

within the comments text.

– Option A (Exact match with =) – Incorrect:

Using the = operator performs an exact match

against the entire column value and won’t

match partial strings or phrases within

comments.

– Option B (Case-insensitive regex with ~*) –

Correct: The ~* operator in Redshift performs

case-insensitive regular expression matching,

efficiently retrieving records containing the

specified keywords anywhere within the text.

– Option C (IN operator with wildcards) –

Incorrect: The IN operator does not support

wildcard patterns; it only checks for exact

matches within a defined list of values.

– Option D (Case-sensitive regex with ~) –

Incorrect: The ~ operator in Redshift

performs case-sensitive regex matching.

 References:

– Pattern-matching conditions in Amazon

Redshift

– Regular expression functions in Amazon

Redshift

14. Correct Answer: D

This scenario requires orchestrating multiple AWS

Glue jobs in a daily ETL pipeline with an emphasis

on cost efficiency and reliable, scheduled execution.

The solution should leverage AWS Glue’s

orchestration capabilities and cost-effective

configurations.

– Option A (AWS Lambda to trigger Glue jobs

with default worker) – Incorrect: Using AWS

Lambda individually to trigger each Glue job

adds complexity in orchestration and job

dependency management. Additionally, the

default worker type is typically more

expensive than Glue FLEX.

– Option B (Glue workflow with default worker

type) – Incorrect: While AWS Glue workflows

provide reliable orchestration and scheduling,

using the default worker type prioritizes

speed over cost efficiency, increasing overall

costs.

– Option C (Individual Glue jobs via

CloudWatch Events with FLEX) – Incorrect:

Scheduling each Glue job individually via

CloudWatch Events is possible but

complicates orchestration and increases

operational complexity compared to a Glue

workflow.

– Option D (Glue workflow with Glue FLEX) –

Correct: AWS Glue workflows orchestrate and

schedule multiple Glue jobs seamlessly, while

Glue FLEX workers provide cost-effective

execution suitable for non-time-critical

workloads, fully aligning with the company’s

requirement for reliability and cost-efficiency.

15. Correct Answer: D

This scenario involves cataloging CSV data from

Amazon S3 into the AWS Glue Data Catalog,

ensuring that the previous day’s data is

automatically accessible each day by 7:00 a.m. The

ideal solution must automate catalog updating on a

daily basis with appropriate permissions.

– Option A (On-demand crawler with

AmazonS3FullAccess) – Incorrect: Using on-

demand crawlers requires manual triggering,

and the policy (AmazonS3FullAccess)

provides unnecessarily broad permissions,

not aligning with security best practices.

– Option B (On-demand crawler with inline

bucket-specific read-only policy) – Incorrect:

While the permissions setup is secure,

running the crawler on-demand does not

automate daily batch processing, failing to

meet the daily requirement.

– Option C (Scheduled crawler with

AmazonS3ReadOnlyAccess) – Incorrect:

Though scheduling meets the automation

requirement, AmazonS3ReadOnlyAccess

provides overly broad access to all S3

buckets, not adhering to the principle of least

privilege.

– Option D (Scheduled crawler with inline

bucket-specific read-only policy) – Correct:

This approach securely combines precise,

bucket-specific permissions with automated

daily scheduling, fully meeting the

requirement to update the catalog

automatically on a batch daily basis.

16. Correct Answers: A, C, D

This scenario requires designing a cost-effective

data pipeline that integrates Amazon DynamoDB,

Amazon S3, and Amazon QuickSight. The company

requires recent data (last three months) to be

quickly available via DynamoDB for QuickSight

dashboards, while older data (three months to five

years) must be archived affordably yet remain

accessible through Amazon Athena queries with

reasonable performance. Data older than five years

must be automatically deleted.

– Option A (DynamoDB TTL to auto-delete data

older than 90 days) – Correct: Using

DynamoDB TTL ensures automatic deletion of

data older than 90 days from DynamoDB,

meeting the recent data requirement for

QuickSight dashboards and reducing costs.

– Option B (Store data indefinitely in

DynamoDB Standard-IA) – Incorrect: Keeping

data indefinitely in DynamoDB Standard-IA

class is costly and does not meet archival and

cost-efficiency requirements for long-term

data retention.

– Option C (AWS Glue job to export DynamoDB

data to S3) – Correct: An AWS Glue job

effectively moves data from DynamoDB to

Amazon S3, enabling cost-efficient long-term

storage in a data lake accessible via Amazon

Athena.

– Option D (S3 Lifecycle transition to S3-IA,

delete after five years) – Correct: The S3

Infrequent Access (S3-IA) storage class

provides lower-cost storage with reasonable

retrieval performance suitable for occasional

Athena queries. The lifecycle policy ensures

automatic deletion after five years.

– Option E (S3 Lifecycle transition to Glacier

Deep Archive, delete after five years) –

Incorrect: While Glacier Deep Archive is

extremely cost-effective, it involves lengthy

restoration delays (several hours) before data

can be queried, failing the “reasonable

performance” requirement.

17. Correct Answer: A

This scenario involves isolating workloads for

Analytics and Reporting teams to address contention

issues on a shared Amazon Redshift cluster. The optimal solution must effectively separate

workloads, enable instant data availability for the

Reporting Team, and minimize impact on the

existing workflow.

– Option A (Separate clusters with Amazon

Redshift Data Sharing) – Correct: Amazon

Redshift Data Sharing allows the Reporting

Team (consumer cluster) to immediately

query transformed data from the Analytics

Team’s cluster (producer cluster) without

data movement. This solution seamlessly

isolates workloads and preserves current

workflows.

– Option B (Use AWS DMS for replication) –

Incorrect: AWS DMS introduces complexity

and latency because replication tasks have to

be managed separately, and data

synchronization is not immediate, potentially

causing delays in report availability.

– Option C (Separate clusters with zero-ETL

jobs) – Incorrect: Zero-ETL integrations are

primarily designed between transactional

databases (like Aurora) and Redshift, not

between two Redshift clusters. Thus, it’s not a

suitable approach for this scenario.

– Option D (Separate clusters with S3 unload

and Spectrum tables) – Incorrect: This

method introduces overhead and latency due

to data unloading and reliance on external S3

storage. It impacts data freshness and

increases operational complexity.

18. Correct Answers: C, D

This scenario requires optimizing Amazon Athena

query performance and reducing query costs when

analyzing transaction data frequently filtered by

specific regions or time periods. The solution should

include efficient storage formats and appropriate

data organization techniques.

– Option A (Convert to JSON and compress

with Snappy) – Incorrect: While JSON is

flexible, it is not optimized for analytical

queries in Athena. JSON typically leads to

larger file sizes and slower performance

compared to columnar formats like Parquet.

– Option B (Bucket data by region, year, and

month) – Incorrect: Bucketing is most

effective when applied to high-cardinality

columns (e.g., user IDs). In contrast, region,

year, and month are low-cardinality attributes

better suited to partitioning.

– Option C (Convert CSV to Parquet with

Snappy compression) – Correct: Converting

CSV to Apache Parquet, a columnar format,

significantly enhances query performance by

allowing Athena to efficiently scan only

relevant columns. Snappy compression

further reduces storage size and cost,

aligning with AWS best practices.

– Option D (Partition data by region, year, and

month) – Correct: Partitioning by region,

year, and month enables Athena queries to

scan only the necessary partitions, greatly

reducing data volume processed, speeding up

queries, and lowering overall costs.

 References:

– “Top 10 Performance Tuning Tips for Amazon

Athena”

19. Correct Answer: C

This scenario describes a predictable weekly pattern

in DynamoDB workload—significant usage spikes

every Monday morning followed by minimal

weekend activity. The ideal solution must maintain

consistent performance while optimizing costs

through targeted capacity adjustments.

– Option A (Switch to on-demand mode) –

Incorrect: Although on-demand automatically

adjusts to workload changes, it’s typically

more costly for predictable traffic patterns

compared to scheduled capacity adjustments

with provisioned capacity.

– Option B (Increase provisioned capacity to

peak traffic) – Incorrect: Adjust provisioning

capacity to peak levels significantly increases

costs, especially during weekends and off-

peak periods when usage is minimal.

– Option C (Scheduled Auto Scaling) – Correct:

Using AWS Application Auto Scaling to

schedule higher capacity during predictable

peak periods (Monday mornings) and lower

capacity during off-peak periods (weekends)

provides cost optimization and consistent

performance aligned precisely with the

workload patterns.

– Option D (Separate table for peak usage) –

Incorrect: Managing multiple tables for

different usage periods unnecessarily

complicates application logic, increases

operational overhead, and doesn’t efficiently

optimize costs compared to scheduled

scaling.

 References:

– Managing DynamoDB provisioned capacity

with autoscaling

20. Correct Answer: A

This scenario describes performance degradation in

Amazon Athena query planning due to a growing

number of partitions in an Amazon S3 dataset. The

solution should enhance Athena’s query

performance by optimizing partition handling with

minimal operational overhead.

– Option A (Glue partition indexes and partition

projection) – Correct: Creating partition

indexes in AWS Glue and enabling partition

projection in Athena significantly improves

query planning speed by eliminating the need

to retrieve partition metadata from Glue each

time. This approach directly addresses the

described issue and requires minimal

operational management.

– Option B (Merge partitions periodically) –

Incorrect: Merging partitions reduces the

partition count but introduces complexity in managing periodic merging processes and

can disrupt the existing partitioning strategy

used by queries.

– Option C (Consolidate smaller files) –

Incorrect: While consolidating files improves

query execution performance, it doesn’t

specifically solve the partition metadata

retrieval bottleneck causing query planning

slowdowns.

– Option D (Restructure data using bucketing)

– Incorrect: Restructuring data using

bucketing could reduce the number of

subfolders. However, this introduces

complexity during the data restructure

process and can disrupt the existing data

processing pipeline.

21. Correct Answers: A, B, E

This scenario requires providing data scientists with

seamless SQL-based querying capabilities across

diverse data sources: Parquet files on Amazon S3,

Aurora MySQL, and DynamoDB, while ensuring

minimal operational overhead.

– Option A (AWS Glue crawlers for metadata) –

Correct: AWS Glue crawlers efficiently crawl

multiple data sources, automatically

extracting schemas and maintaining

metadata in the Glue Data Catalog. This

simplifies schema management and data

discovery.

– Option B (Amazon Athena for S3 querying) –

Correct: Amazon Athena provides serverless

SQL querying capability directly against

Parquet files on S3, requiring no

infrastructure management and ensuring

minimal operational overhead.

– Option C (Migrate all data to Redshift) –

Incorrect: Migrating all data into Amazon

Redshift introduces significant operational

overhead and complexity and isn’t necessary

since federated querying can directly access

multiple data sources without moving data.

– Option D (AWS Glue jobs to transform all

data to Parquet) – Incorrect: Transforming

and replicating data from Aurora and

DynamoDB to S3 using Glue jobs introduces

additional ETL overhead, operational

complexity, and latency that can be avoided

with federated queries.

– Option E (Athena federated queries for

Aurora and DynamoDB) – Correct: Amazon

Athena’s federated query capability enables

direct SQL-based querying of Aurora MySQL

and DynamoDB tables, eliminating the need

for data movement and significantly reducing

operational overhead.

22. Correct Answer: B

This scenario describes performance issues related

to indexing throughput in Amazon OpenSearch

Service. The company requires a cost-effective

solution that specifically enhances indexing

performance without compromising data durability.

– Option A (Switch to UltraWarm storage) –

Incorrect: UltraWarm storage is optimized for

cost-effective querying and long-term

storage, not indexing-heavy workloads. It

would not effectively improve indexing

throughput.

– Option B (Migrate to OR1 instances) –

Correct: OR1 instances are specifically

designed for indexing-heavy workloads,

offering up to 30% improved price-

performance compared to other instance

types. They leverage Amazon S3-backed

storage, providing superior durability and

operational simplicity, directly meeting the

scenario’s requirements.

– Option C (Upgrade to larger general-purpose

instances) – Incorrect: Upgrading general-

purpose instances can provide incremental

performance improvements but lacks the

indexing-specific optimizations and cost

benefits offered by OR1 instances.

– Option D (Use Index State Management to

delete older data) – Incorrect: ISM helps

optimize storage by deleting older data but

doesn’t directly address indexing throughput

performance issues.

23. Correct Answer: C

This scenario involves addressing two critical

challenges in an Amazon S3 data lake: schema

evolution disrupting existing workflows and

inconsistent or corrupted data resulting from

concurrent writes. The optimal solution should

robustly handle schema changes, manage

concurrent writes safely, and integrate smoothly

with existing analytics tools.

– Option A (Partitioning and locking) –

Incorrect: Manual partitioning and

implementing custom locking mechanisms

adds complexity, increases operational

overhead, and does not inherently address

the schema evolution issue.

– Option B (Apache Parquet format with

schema validation) – Incorrect: While Apache

Parquet is efficient for analytics workloads, it

does not inherently support schema

evolution. Enforcing strict schema validation

at ingestion is rigid and can hinder flexibility.

– Option C (Migrate to Apache Iceberg) –

Correct: Apache Iceberg provides native

support for schema evolution, allowing

schema changes without workflow

disruptions. It also manages concurrent

writes safely through snapshot isolation and

atomic transactions. Iceberg seamlessly

integrates with common AWS analytics

services (Athena, EMR, Glue), meeting all the

scenario requirements effectively.

– Option D (EMR custom scripts) – Incorrect:

Writing custom scripts increases operational

complexity and maintenance burden. It also

lacks standardized, robust solutions for

schema evolution and concurrent write

management.

24. Correct Answer: C

This scenario involves building a near-real-time

analytics pipeline to process streaming data from

Amazon MSK to Amazon Redshift. The solution must

minimize operational overhead, provide near-real-

time insights, and seamlessly integrate with existing

BI tools.

– Option A (Kafka sink → S3 → Redshift COPY) –

Incorrect: While feasible, staging data in

Amazon S3 and then loading it via COPY

introduces latency and operational

complexity, hindering true near-real-time

analytics.

– Option B (MSK → Kinesis Data Firehose → S3

→ Redshift COPY) – Incorrect: This approach

involves multiple intermediate steps, causing

additional latency and operational overhead,

making it less suitable for near-real-time

analysis.

– Option C (Native integration with Redshift

streaming ingestion) – Correct: Amazon

Redshift’s streaming ingestion feature

directly integrates with Amazon MSK,

allowing near-real-time data availability

without intermediate storage layers.

Materialized views further optimize query

performance for BI tools, resulting in the

least operational overhead and meeting all

scenario requirements.

– Option D (Glue Spark Streaming jobs →

Redshift) – Incorrect: Using AWS Glue Spark

Streaming jobs adds additional infrastructure complexity, requires operational

maintenance, and involves higher cost

compared to direct MSK-to-Redshift

streaming ingestion.

25. Correct Answer: A

This scenario involves optimizing Amazon Athena

queries for a BI dashboard that refreshes hourly,

with underlying data updated by ETL once every 24

hours. The chosen solution should reduce query

costs while ensuring dashboards refresh efficiently

with minimal operational overhead.

– Option A (Athena query result reuse) –

Correct: Athena’s query result reuse

efficiently caches query results, significantly

reducing costs by avoiding redundant query

processing. By setting the cache maximum

age aligned with the ETL schedule (24 hours),

dashboards remain accurate and timely,

offering the least operational overhead.

– Option B (Lambda-based query trigger with

S3 caching layer) – Incorrect: Using AWS

Lambda functions to execute queries hourly

and storing results separately introduces

additional management overhead and cost

compared to Athena’s built-in caching

capability.

– Option C (Partition tables hourly) – Incorrect:

Partitioning data by hour does not align with

the existing ETL schedule, which refreshes

data only every 24 hours.

– Option D (BI layer caching with manual cache clearance) – Incorrect: Manually managing

cache invalidation introduces unnecessary

operational overhead and potential human

error, making it less efficient than Athena’s

automated caching mechanism.

26. Correct Answer: A

This scenario involves addressing repeated

performance degradation and query queuing in

Amazon Athena due to teams querying a centralized

data lake during specific peak hours. The solution

must enhance query performance effectively, while

requiring minimal operational overhead.

– Option A (Athena Provisioned Capacity per

region) – Correct: Amazon Athena

Provisioned Capacity allows dedicated query-

processing resources to be allocated during

predictable peak usage windows. This

solution directly improves query performance

and reduces queuing without extensive

operational management.

– Option B (Use Amazon Redshift) – Incorrect:

Migrating the workload to Amazon Redshift

would introduce significant operational

complexity, additional ETL overhead, and

management costs, making it less suitable

compared to Athena Provisioned Capacity.

– Option C (Separate S3 buckets and Athena

workgroups) – Incorrect: Creating separate

buckets and workgroups increases complexity

and does not directly alleviate resource

contention or improve query performance

during peak hours.

– Option D (Implement query scheduling) –

Incorrect: Implementing a query scheduling

mechanism introduces substantial operational

overhead and reduces flexibility, negatively

impacting the regional teams’ capability to

perform ad-hoc analytics.

27. Correct Answer: B

This scenario involves dynamically scaling AWS Glue

jobs to optimize utilization and cost efficiency. The

solution should require minimal operational

overhead and automatically adjust resources

according to workload demand.

– Option A (Manual reduction of DPUs) –

Incorrect: Manually reducing DPUs by a fixed

percentage doesn’t dynamically adapt to

changing workloads, potentially causing

performance degradation and requiring

continuous monitoring and adjustments.

– Option B (AWS Glue autoscaling) – Correct:

AWS Glue autoscaling dynamically adjusts the

number of DPUs based on real-time job

demands. Monitoring metrics like

workerUtilization validates job

performance automatically, providing a

balance between cost savings and minimal

operational overhead.

– Option C (Migrate jobs to AWS Lambda) –

Incorrect: Migrating Glue ETL workloads to

AWS Lambda is not practical because

Lambda has significant execution time limits (15 minutes), resource limits, and is not

optimized for the long-running ETL workloads

typical of AWS Glue.

– Option D (Custom scripts for dynamic

scaling) – Incorrect: Using custom scripts

introduces significant operational complexity,

ongoing maintenance overhead, and potential

for errors. AWS Glue’s native autoscaling

capabilities provide a more streamlined and

efficient alternative.

28. Correct Answers: A, C

This scenario requires automatically identifying and

classifying personally identifiable information (PII)

and detecting custom data types that match specific

patterns in an Amazon S3 data lake. The solution

must meet regulatory compliance (e.g., PCI-DSS)

requirements efficiently and accurately.

– Option A (Macie managed data identifiers) –

Correct: Amazon Macie’s built-in managed

data identifiers automatically detect common

PII types (such as email addresses, credit

card numbers, and national IDs) out-of-the-

box, providing comprehensive regulatory

compliance coverage.

– Option B (Lake Formation with Macie

integration) – Incorrect: AWS Lake Formation

manages data lake permissions and data

governance but does not provide native

integration for detecting or tagging PII

directly through Macie.

– Option C (Custom data identifiers in Macie) –

Correct: Amazon Macie allows the creation of

custom data identifiers using regular

expressions to detect sensitive data matching

unique, organization-specific patterns,

addressing the requirement to identify

internal customer reference IDs and custom

form codes.

– Option D (GuardDuty anomaly detection) –

Incorrect: Amazon GuardDuty is a security

threat detection service focused on

identifying security anomalies and malicious

activities, not classifying or detecting

structured sensitive data like PII.

– Option E (EMR custom regex in Spark jobs) –

Incorrect: While technically feasible, using

Amazon EMR with custom Spark jobs

introduces significant complexity, operational

overhead, and ongoing maintenance

compared to Macie’s automated and managed

detection capabilities.

 References:

– Amazon Macie managed data identifiers

– Creating custom data identifiers in Amazon

Macie

29. Correct Answer: B

This scenario requires validating the quality of

transaction data stored in an Amazon S3–based data

lake before processing with AWS Glue ETL jobs. The

solution must efficiently detect missing values,

format inconsistencies, and duplicate records with minimal operational overhead.

– Option A (AWS Lambda with custom Python

scripts) – Incorrect: Although Lambda can

execute data quality scripts, managing

custom scripts introduces significant

development effort and ongoing maintenance,

and lacks built-in data quality frameworks.

– Option B (AWS Glue Data Quality with

CloudWatch Alarms) – Correct: AWS Glue

Data Quality provides built-in rule-based

validations to detect missing values,

duplicates, and format inconsistencies on

data stored in Amazon S3. Integrating with

Amazon CloudWatch Alarms enables

automated alerts, delivering a fully managed

solution.

– Option C (Daily Athena anomaly queries) –

Incorrect: Using Athena for daily data quality

checks adds latency and complexity. It also

lacks the structured, proactive data validation

framework provided by AWS Glue Data

Quality.

– Option D (EMR with Apache Spark for data

quality checks) – Incorrect: Running data

quality checks via Amazon EMR adds

substantial operational complexity, additional

cluster management overhead, and script

development effort compared to AWS Glue’s

built-in data quality capabilities.

30. Correct Answers: B, D

This scenario involves orchestrating Amazon EMR

Serverless ETL jobs for streaming video engagement

data processing. The solution must reliably handle

job dependencies and automatic retries with

minimal operational overhead.

– Option A (Self-managed Airflow on EC2) –

Incorrect: Deploying a self-managed Apache

Airflow environment increases operational

overhead significantly, requiring manual

patching, maintenance, and scaling.

– Option B (AWS Step Functions orchestration)

– Correct: AWS Step Functions provides a

fully managed, serverless orchestration

capability, enabling robust definition of job

dependencies, state transitions, and

automatic retries for EMR Serverless jobs,

aligning well with the requirements.

– Option C (EventBridge schedule triggers) –

Incorrect: Amazon EventBridge scheduling

provides basic triggering capabilities but

lacks advanced orchestration features like

automatic retries, job dependency handling,

or failure management.

– Option D (Define IAM policies for Step

Functions and EMR Serverless) – Correct:

Defining IAM policies and roles ensures AWS

Step Functions has appropriate permissions

to securely invoke Amazon EMR Serverless

jobs.

– Option E (Define IAM policies for self-

managed Airflow) – Incorrect: Since Option A

(self-managed Airflow) is not suitable due to its higher operational overhead, setting IAM

permissions for it is also not necessary.

31. Correct Answer: C

This scenario describes repetitive, complex

aggregate queries in Amazon Redshift causing high

execution times and increased compute costs. The

solution should optimize query performance with

minimal manual effort.

– Option A (Manual materialized views with

AWS Lambda refresh) – Incorrect: Using AWS

Lambda to manually schedule materialized

view refreshes introduces additional

complexity, operational overhead, and

ongoing maintenance.

– Option B (Manual materialized views

scheduled via Redshift Query Editor v2) –

Incorrect: While Redshift Query Editor v2

simplifies query scheduling, the materialized

view generation process still involves

development effort, configuration overhead,

and manual intervention.

– Option C (Automated materialized views

[AutoMVs]) – Correct: Amazon Redshift’s

AutoMVs feature automatically identifies

frequently executed queries and dynamically

creates and maintains materialized views

without manual scheduling or maintenance,

significantly optimizing query performance

with minimal operational overhead.

– Option D (Result caching) – Incorrect: Result caching helps reduce execution time for

identical repeated queries but doesn’t

efficiently handle varying parameters or

improve general aggregation query

performance like AutoMVs.

32. Correct Answer: C

This scenario involves migrating existing Apache

Airflow workflows used for orchestrating ETL and

reporting pipelines to AWS. The company aims to

minimize both code changes and operational

overhead during this migration.

– Option A (Self-managed Apache Airflow on

EC2) – Incorrect: Deploying Apache Airflow

manually on EC2 introduces additional

operational overhead, requiring ongoing

infrastructure maintenance, management,

and monitoring.

– Option B (Convert pipelines to AWS Step

Functions) – Incorrect: While AWS Step

Functions provide serverless orchestration,

migrating existing Airflow DAGs to Step

Functions would require extensive code

rework, contradicting the goal to minimize

code changes.

– Option C (Migrate to Amazon MWAA) –

Correct: Amazon Managed Workflows for

Apache Airflow (MWAA) provides a fully

managed Apache Airflow environment on

AWS. This approach minimizes both code

changes (existing DAGs can be migrated

directly) and operational overhead, as AWS

manages infrastructure scaling, patching, and

availability.

– Option D (Rebuild workflows with AWS Glue

workflows) – Incorrect: Rebuilding existing

workflows in AWS Glue workflows would

require significant refactoring effort and code

changes, increasing both migration

complexity and operational overhead.

33. Correct Answer: A

This scenario requires extracting query-level metrics

—specifically data scanned and CPU time—from

Amazon Redshift system tables to enable accurate

cost attribution across different business units.

– Option A (SVL_QUERY_METRICS_SUMMARY) –

Correct: The SVL_QUERY

_MET

RICS_SUMMARY

system view provides comprehensive query-

level performance metrics, including data

scanned, CPU time, and I/O metrics. This

makes it the ideal choice for accurate and

detailed cost attribution.

– Option B (STL_SCAN) – Incorrect: STL_SCAN

provides information specifically about table

scans but lacks aggregated CPU usage data,

making it insufficient for comprehensive cost

attribution.

– Option C (SVL_QUERY_REPORT) – Incorrect:

SVL_QUERY_REPORT contains summary

statistics and basic metrics for queries but

does not include the detailed CPU time or

granular data scanned information needed.

– Option D (STL_WLM_QUERY) – Incorrect:

STL_WLM_QUERY is focused on workload

management metrics and concurrency

information and does not provide detailed

query-level data scan or CPU usage metrics.

34. Correct Answer: A

This scenario requires modifying an overly

permissive IAM policy to grant only read-only

permissions to all tables in a specific AWS Glue Data

Catalog database (db1). The solution must adhere to

the principle of least privilege.

– Option A – Correct: This option correctly

specifies the minimum set of Glue actions

needed for read-only access

(glue:GetDatabase, glue:GetTables, and

glue:GetTable). It includes resources

explicitly at the catalog and database levels,

precisely meeting the requirement for

accessing all tables within the specified

database.

– Option B – Incorrect: While it specifies

correct actions, it adds the actions to the

existing list, which does not adhere to the

least-privilege principle.

– Option C – Incorrect: This option lacks the

database-specific resource reference

(database/db1).

– Option D – Incorrect: Using glue:Get* is

overly broad, allowing access to potentially

unnecessary Glue resources beyond

databases and tables. It does not strictly

adhere to the least-privilege principle.

 References:

– Managing access control with AWS Glue

resources

35. Correct Answers: A, C, F

This scenario requires detecting, anonymizing, and

partially redacting personally identifiable

information (PII) from CSV files uploaded to Amazon

S3 reactively. The solution must support partial

redaction to retain sufficient data for transaction

verification.

– Option A (AWS Glue workflow triggered by

S3 events) – Correct: AWS Glue workflows

triggered by Amazon S3 event notifications

(such as PutObject) provide immediate,

automated processing whenever raw data

files arrive, effectively handling uploads

without a defined schedule.

– Option B (AWS Step Functions with a time-

based schedule) – Incorrect: AWS Step

Functions with a time-based schedule does

not fit the scenario’s unpredictable upload

pattern, potentially causing processing delays

or missed files.

– Option C (Detect PII transform in AWS Glue

Studio) – Correct: AWS Glue Studio’s built-in

“Detect PII” transform automatically

identifies PII fields within datasets,

streamlining data anonymization processes.

– Option D (AWS Glue Data Quality rule for PII obfuscation) – Incorrect: AWS Glue Data

Quality rules focus primarily on validating

data quality (format, completeness,

duplicates) but do not directly provide

functionality for obfuscation or

anonymization.

– Option E (Permanently delete all PII data) –

Incorrect: Completely removing all PII data

prevents transaction verification, conflicting

with the requirement for partial redaction

that preserves data usability.

– Option F (Partially redact detected PII text) –

Correct: Partial redaction maintains data

integrity necessary for transaction

verification while effectively protecting

sensitive customer information, directly

meeting compliance and usability

requirements.

 References:

– “Detect and Process Sensitive Data Using

AWS Glue Studio”

36. Correct Answers: A, B, D

This scenario requires implementing scalable, fine-

grained access control on Amazon S3 data lake

tables accessed by multiple compute engines

(Athena, Glue, Redshift Spectrum). AWS Lake

Formation is ideal for centrally managing these

permissions in a scalable way.

– Option A (Register S3 data lake location with Lake Formation) – Correct: Registering the

Amazon S3 data lake location with AWS Lake

Formation is essential to enable centralized

governance and fine-grained permissions

management across the entire data lake.

– Option B (Grant Lake Formation data

permissions) – Correct: AWS Lake Formation

allows you to grant table- and column-level

permissions directly to IAM users, roles, and

groups. This centralized permission model

ensures consistent and fine-grained access

control across all supported compute engines.

– Option C (Use IAM policies for access

control) – Incorrect: IAM policies alone do not

support fine-grained, column-level

permissions directly. Additionally, IAM

policies become cumbersome to manage as

scale increases, making Lake Formation

permissions preferable for fine-grained

governance.

– Option D (Configure Lake Formation tags) –

Correct: Lake Formation tags provide

scalable, attribute-based access control.

Assigning these tags to tables and columns

simplifies permission management

significantly, enabling easier administration

across multiple teams and compute services.

– Option E (Enable encryption with AWS KMS)

– Incorrect: AWS KMS provides encryption at

rest but does not provide fine-grained access

controls at the table or column level within

data lake objects. It focuses primarily on

securing data, rather than managing granular

permissions.

– Option F (Add compute engines as principals)

– Incorrect: Compute engines such as Athena,

Glue, and Redshift Spectrum are integrated

with Lake Formation but could not be

explicitly added as principals. Permissions

should be granted to IAM users, roles, or

groups rather than the compute engines

themselves.

37. Correct Answer: B

This scenario requires applying two layers of

encryption on sensitive healthcare data stored in

Amazon S3 to comply with strict regulations, while

also minimizing operational overhead.

– Option A (Client-side encryption + server-side

encryption [SSE]) – Incorrect: While

technically providing two encryption layers,

client-side encryption adds significant

operational overhead, requiring management

of encryption keys and client-side encryption

logic.

– Option B (Dual-layer server-side encryption

with KMS [DSSE-KMS]) – Correct: Amazon

S3’s DSSE-KMS automatically applies two

separate encryption layers using AWS KMS-

managed keys. It provides strong compliance

assurance with minimal operational overhead,

as AWS manages key storage, rotation, and

encryption operations.

– Option C (Single-layer server-side encryption with KMS [SSE-KMS]) – Incorrect: SSE-KMS

alone provides only a single encryption layer,

insufficient to meet the stated requirement

for dual-layer encryption.

– Option D (Combine SSE-KMS and SSE-S3) –

Incorrect: Amazon S3 does not support

applying two different types of server-side

encryption simultaneously to the same object

(e.g., SSE-KMS and SSE-S3). Therefore, this

approach is not feasible.

 References:

– Amazon S3 dual-layer server-side encryption

with AWS KMS (DSSE-KMS)

38. Correct Answer: A

This scenario requires securely storing and

accessing MongoDB credentials used by an AWS

Glue job, eliminating the security risk from

hardcoded credentials within the job script.

– Option A (AWS Secrets Manager with Glue

connections) – Correct: AWS Secrets

Manager securely stores database

credentials, enabling AWS Glue connections

to retrieve these credentials securely and

dynamically at runtime. This approach

eliminates hardcoded credentials, enhances

security, and simplifies credential rotation.

– Option B (AWS Glue job parameters) –

Incorrect: Using Glue job parameters for

credentials is insecure, as parameters may

inadvertently be logged or exposed in

configurations, thus not fully addressing the

security concern.

– Option C (AWS IAM Identity Center

authentication) – Incorrect: AWS IAM Identity

Center (formerly AWS SSO) doesn’t directly

support authentication to external databases

like MongoDB. It manages user access to

AWS services and resources, but is not

suitable for this specific use case.

– Option D (Credentials in S3 configuration file)

– Incorrect: Storing credentials in plaintext or

even encrypted files on S3 introduces

complexity and potential exposure risks. It

requires additional custom logic to securely

manage credential retrieval and rotation,

unlike Secrets Manager’s built-in secure

access mechanism.

39. Correct Answers: A, C

This scenario involves configuring Amazon

QuickSight dashboards to restrict data visibility so

each regional analyst group can access data relevant

to only their geographic region. The solution must

efficiently enforce data segregation based on a field

in the dataset, which points to row-level access

control.

– Option A (Create QuickSight user groups) –

Correct: Creating user groups in Amazon

QuickSight simplifies user management,

allowing easy assignment and consistent

permission application across regional

analyst groups.

– Option B (Enable “Filter by Region” in

dataset configuration) – Incorrect: QuickSight

does not have a built-in “Filter by Region”

dataset option. Filtering based on user

attributes is handled through row-level

security (RLS).

– Option C (Implement QuickSight row-level

security) – Correct: Amazon QuickSight’s RLS

provides granular, secure control over

dataset rows, ensuring each analyst group

sees data corresponding to only their

assigned region.

– Option D (Configure IAM policies for row-

level access) – Incorrect: IAM policies

manage service-level or resource-level

permissions, but they do not control row-level

access within QuickSight datasets. Row-level

security is handled internally by QuickSight.

– Option E (Create separate regional datasets)

– Incorrect: Creating separate datasets for

each region introduces unnecessary

duplication, complexity, and maintenance

overhead compared to using QuickSight’s

native row-level security capability.

 References:

– Row-level security in Amazon QuickSight

40. Correct Answers: A, B, D

This scenario involves setting up a multitenant Amazon MSK cluster with microservices from

multiple lines of business (LOBs). Each LOB must

have restricted access only to its own Kafka topics.

The optimal solution uses IAM-based authentication

and authorization to ensure secure, granular access

control.

– Option A (Enable IAM access control on MSK)

– Correct: Enabling IAM authentication for

the MSK cluster allows granular, identity-

based control using AWS IAM, simplifying

secure access management.

– Option B (Create IAM policies for each LOB

using kafka-cluster:Topic) – Correct:

Defining IAM policies with resource-level

permissions (e.g., kafka-cluster:Topic)

allows each LOB to have specific and

restricted access to only their respective

Kafka topics.

– Option C (Configure IAM RBAC within Kafka)

– Incorrect: IAM-based RBAC within Kafka is

not currently supported directly in Amazon

MSK. IAM authorization is managed

externally through IAM policies, not

internally within Kafka RBAC.

– Option D (Attach IAM policies to IAM roles

assumed by microservices) – Correct:

Attaching the defined IAM policies to the

roles used by each LOB’s microservices

ensures that each microservice inherits

correct permissions, providing secure and

seamless access control.

– Option E (Kafka ACLs) – Incorrect: Kafka

ACLs are Kafka-native authorization

mechanisms. Since IAM-based authentication

and authorization are in use, IAM policies

provide a simpler and more centralized

approach compared to Kafka ACLs.

– Option F (VPC security groups for isolation) –

Incorrect: VPC security groups manage

network-level access control but do not

provide topic-level granular control required

by this scenario.

41. Correct Answers: B, C

This scenario involves building a secure data

pipeline using Amazon EMR on EC2, Amazon S3,

and Amazon Redshift to handle sensitive healthcare

data. The solution must ensure data remains private

and provide centralized, secure management of

sensitive parameters like credentials.

– Option A (Encrypted credentials in S3 bucket)

– Incorrect: Storing credentials in Amazon S3

—even encrypted—introduces complexity and

security risks in credential management, as

S3 isn’t optimized for secure key-value

storage of parameters.

– Option B (AWS Systems Manager Parameter

Store) – Correct: AWS Systems Manager

Parameter Store securely stores sensitive

credentials such as database usernames,

passwords, and API keys. It provides

centralized parameter management with

granular access control and encryption,

effectively addressing the secure credential management requirement.

– Option C (S3 Gateway VPC endpoint) –

Correct: A Gateway VPC endpoint for Amazon

S3 ensures that EMR clusters access data

stored in S3 privately within the AWS

backbone, without traversing the public

internet, preventing data exposure.

– Option D (Inject credentials via environment

variables at bootstrap) – Incorrect: Injecting

sensitive credentials directly into

environment variables on EMR instances can

pose security risks due to potential exposure

through logs or instance metadata.

– Option E (EC2 user data scripts to hardcode

credentials) – Incorrect: Hardcoding

credentials into EC2 user data scripts is

insecure, exposing sensitive information and

making credential rotation and management

challenging.

– Option F (Mount S3 bucket via S3FS and NAT

Gateway) – Incorrect: Using S3FS mounts

with a NAT Gateway unnecessarily routes

traffic via the public internet, increasing

complexity, latency, and potential exposure

risk.

42. Correct Answer: A

This scenario involves securely connecting Amazon

MSK deployed in private subnets with Kafka

producers and consumers hosted on Amazon EKS

clusters in separate VPCs. The solution must restrict access exclusively to authorized workloads.

– Option A (Security groups + VPC peering or

Transit Gateway) – Correct: Configuring MSK

brokers with security groups that explicitly

allow Kafka traffic only from security groups

associated with authorized EKS worker nodes

provides least-privilege access control.

Establishing network connectivity between

VPCs through VPC peering or AWS Transit

Gateway enables secure and private

communication without exposing traffic to the

internet.

– Option B (Allow inbound traffic from entire

VPC CIDRs) – Incorrect: Allowing traffic from

entire VPC CIDR blocks excessively broadens

access, weakening the security posture by

granting unintended access to other

workloads within these VPCs.

– Option C (Public-facing NLB + IP

Whitelisting) – Incorrect: Deploying a public-

facing load balancer unnecessarily exposes

internal Kafka brokers to internet-based

threats and complicates security

management. IP whitelisting alone is less

flexible than using private connectivity and

security groups.

– Option D (NAT Gateway + IAM

authentication) – Incorrect: Enabling internet

access via NAT Gateway is inappropriate for

internal Kafka communication and introduces

unnecessary complexity and potential

security risks. Kafka access control via IAM

does not eliminate network-level security

risks associated with public internet

exposure.

Index

A

ABAC (attribute-based access control), Fine-Grained Access

Control with AWS Lake Formation

access control

– ABAC, Fine-Grained Access Control with AWS Lake

Formation

– access denied exceptions, Access denied exceptions

– Athena workgroups, Workgroups

– Lake Formation, AWS Lake Formation, Fine-Grained

Access Control with AWS Lake Formation-Best

practices for tag-based access control

– QuickSight, Fine-Grained Access Control in Amazon

QuickSight, Create Amazon QuickSight execution role

using AWS IAM-Create Amazon QuickSight execution

role using AWS IAM

– RBAC, Role-based access control

– TBAC, Fine-Grained Access Control with AWS Lake

Formation, Tag-based access control, Best practices for

tag-based access control

access patterns, S3 Intelligent-Tiering, S3 Intelligent-

Tiering

actions (Spark), Spark

active-active resilience architecture, Disaster Recovery and

High Availability, Availability Zone (AZ) failure recovery

active-passive resilience architecture, Disaster Recovery

and High Availability, Availability Zone (AZ) failure

recovery

ad-hoc data exploration and analysis, Glue DataBrew use

case, AWS Glue DataBrew

ADF (see Amazon Data Firehose)

AI (artificial intelligence), Becoming an AWS Data Engineer

Associate

– (see also machine learning)

– AWS Artificial Intelligence, Data Quality

– certification advantages for working on AI data,

Becoming an AWS Data Engineer Associate

– Glue to troubleshoot Spark, GenAI-Powered

Troubleshooting for Spark in AWS Glue

– new Amazon/AWS products and upgrades to integrate,

Improving the Developer Experience with Generative

AI-GenAI-Powered Troubleshooting for Spark in AWS

Glue

– OpenSearch Service use case, Amazon OpenSearch

Service

– Redshift AI-driven autoscaling, Autoscaling

– Redshift ML for data analytics, Redshift ML and

Generative AI

– SageMaker AI, Amazon SageMaker AI-Amazon

SageMaker AI

– SageMaker Catalog, Amazon SageMaker Catalog

– visualization building with, QuickSight GenBI

Capabilities (QuickSight Q)-Enhanced dashboard Q&A

Airflow, Application Integration, Managed Workflows for

Apache Airflow-Sample Use Case

alerting, data pipeline resiliency, Alerting-Notifications

Amazon AppFlow, Application Integration

Amazon Athena, Amazon Athena-Amazon Athena

– best practices, Best Practices When Using Amazon

Athena-Best Practices When Using Amazon Athena

– Glue Data Catalog integration, Integrating with other

AWS services

– lakehouse architecture, Reference Architecture:

Lakehouse with Glue, Redshift, and Athena

– querying logs with, Amazon Athena

– reference architecture using, Reference Architecture:

Lakehouse with Glue, Redshift, and Athena

– SQL analytics using, Amazon Athena, Building a Data

Strategy with Multiple Data Stores, SQL Analytics

Using Amazon Athena-Best Practices When Using

Amazon Athena

– use cases, Use Cases-Use Cases

Amazon Athena Federated Query, Building a Data Strategy

with Multiple Data Stores, Athena Federated SQL-Athena

Federated SQL

Amazon Aurora, Database, Analyzing Data from

Operational Data Stores Using Amazon Redshift

Amazon Bedrock, Machine Learning

Amazon CloudFront, Networking and Content Delivery

Amazon CloudWatch

– alarms, CloudWatch Alarms-Notifications

– KMS integration, Managing Encryption Keys with AWS

KMS

– logging and auditing, Management Governance,

Ingesting AWS logs into log analytics solutions, Amazon

CloudWatch

– monitoring metrics with, Monitoring metrics using

CloudWatch

– Redshift logging and auditing, Logging and auditing in

Amazon Redshift

– S3 Storage Lens metrics, S3 Storage Lens

– workgroup monitoring and control, Workgroups

Amazon CloudWatch Events API, Amazon EventBridge

Amazon CloudWatch Log Insights, Amazon CloudWatch

Log Insights

Amazon CloudWatch Logs, Monitoring logs and traces

Amazon Data Firehose (ADF), Amazon Data Firehose-

Amazon Data Firehose

– archiving data with Lambda functions, Archiving Data

from Amazon DynamoDB to Amazon S3

– best practices, Best Practices for Amazon Data

Firehose-Best Practices for Amazon Data Firehose

– data transformation with, Amazon Data Firehose for

Transformation

– and DynamoDB in data ingestion, Streaming Amazon

DynamoDB data into a centralized data lake

– log ingestion for analysis, Ingesting AWS logs into log

analytics solutions-Ingesting AWS logs into log

analytics solutions

– streaming data ingestion, Ingesting streaming data

from IoT devices into a data lake, Best Practices for

Amazon Data Firehose-Best Practices for Amazon Data

Firehose

Amazon DataZone, Amazon DataZone-Amazon DataZone

– business data cataloging, Components of Metadata and

Data Catalogs, Amazon DataZone business glossary

– data lineage feature, Amazon DataZone

– data mesh architecture for governance, Data mesh with

centralized governance-Data mesh with centralized

governance

– Glue Catalog integration, AWS Glue

– IAM Identity Center integration, IAM Identity Center

integration with Amazon DataZone

– SageMaker Catalog integration, Amazon SageMaker

Catalog

Amazon DocumentDB, Database, AWS Cloud Databases

Amazon DynamoDB

– archiving data to S3, Archiving Data from Amazon

DynamoDB to Amazon S3-Archiving Data from Amazon

DynamoDB to Amazon S3

– and Data Firehose, Streaming Amazon DynamoDB data

into a centralized data lake

– data model design, Data Modeling Strategies for

Amazon DynamoDB-Common use cases and

considerations

– and KDS, Streaming Amazon DynamoDB data into a

centralized data lake, Archiving Data from Amazon

DynamoDB to Amazon S3

– key-value databases, Database, AWS Cloud Databases

Amazon DynamoDB Streams, Real-Time Streaming Data

Ingestion, Streaming Amazon DynamoDB data into a

centralized data lake, Archiving Data from Amazon

DynamoDB to Amazon S3

Amazon DynamoDB TTL, Archiving Data from Amazon

DynamoDB to Amazon S3

Amazon EBS Elastic Volumes, AWS Core Storage Services

Amazon EC2 Spot Instances, Instance Types, Leveraging

Serverless Services

Amazon Elastic Block Store (EBS), Storage, AWS Core

Storage Services, Selecting Storage Solutions for Hot and

Cold Data

Amazon Elastic Compute Cloud (EC2), Compute and

Containers

– block cloud storage, AWS Core Storage Services

– deployment option with EMR, Deployment Options

– Spot Instances, Instance Types, Leveraging Serverless

Services

Amazon Elastic Container Registry (ECR), Compute and

Containers

Amazon Elastic Container Service (ECS), Compute and

Containers

Amazon Elastic File System (EFS), Storage, AWS Core

Storage Services

Amazon Elastic Kubernetes Service (EKS), Compute and

Containers, Deployment Options

Amazon Elastic MapReduce (EMR), Amazon EMR-Amazon

EMR

– autoscaling with, Autoscaling

– batch data transformation, Batch Data Transformation,

Choosing the Right Batch Transformation Service

– data transformation, Data Transformation Using

Amazon EMR-AWS Glue Versus Amazon EMR Options

– Deequ with, Using Deequ with Amazon EMR-Using

Deequ with Amazon EMR

– and EC2 Spot Instances, Instance Types

– enabling encryption in, Amazon EMR-Amazon EMR

– high availability, HA for Amazon EMR clusters on EC2

– log processing with, Processing logs with Amazon EMR

or AWS Glue

– streaming transformation service, Choosing the Right

Streaming Transformation Service

– Virtual Private Cloud for cluster configuration,

Configuring a VPC and Security Group for an Amazon

EMR Cluster

Amazon Elasticache, Selecting Storage Solutions for Hot

and Cold Data

Amazon EMR Notebooks, Amazon EMR Notebooks

Amazon EMR Serverless, Amazon EMR, Deployment

Options, Creating an EMR Studio and EMR Serverless

application-Creating VPC endpoints for Kinesis Data

Streams, Amazon S3, and EMR Serverless

Amazon EMR Studio, Creating an EMR Studio and EMR

Serverless application-Creating an EMR Studio and EMR

Serverless application

Amazon EventBridge, Application Integration, Amazon

EventBridge-Sample Use Case, Event-Driven Pipeline

Maintenance with EventBridge

Amazon FSx, AWS Core Storage Services

Amazon Keyspaces, Database

Amazon Kinesis Data Generator, Setting up Amazon Kinesis

Data Generator-Setting up Amazon Kinesis Data Generator

Amazon Kinesis Data Streams (KDS), Amazon Kinesis Data

Streams-Amazon Kinesis Data Streams

– consuming data from, Best Practices for Consuming

Data from KDS

– Data Firehose to connect to data stores, Best Practices

for Amazon Data Firehose

– data ingestion, Real-Time Streaming Data Ingestion,

Best Practices for Streaming Ingestion-Best Practices

for Streaming Ingestion

– data transformations with MSF, Amazon Managed

Service for Apache Flink

– and DynamoDB, Streaming Amazon DynamoDB data

into a centralized data lake, Archiving Data from

Amazon DynamoDB to Amazon S3

– Kinesis Agent, Real-Time Streaming Data Ingestion

– versus MSK, Kinesis Data Streams Versus Amazon

MSK-Kinesis Data Streams Versus Amazon MSK

– sharding best practices, Best Practices for Sharding

– stream storage, Real-Time Streaming Data Ingestion

– streaming pipeline implementation, Creating a Kinesis

data stream-Setting up Amazon Kinesis Data Generator

– VPC endpoints, Creating VPC endpoints for Kinesis

Data Streams, Amazon S3, and EMR Serverless-

Creating VPC endpoints for Kinesis Data Streams,

Amazon S3, and EMR Serverless

Amazon Macie, Security, Identity, and Compliance,

Integrating Amazon Macie for data at rest

Amazon Managed Grafana, Management Governance

Amazon Managed Prometheus, Management Governance

Amazon Managed Service for Apache Flink (MSF), Amazon

Managed Service for Apache Flink-Amazon Managed

Service for Apache Flink

– best practices, Amazon Managed Service for Apache

Flink

– reference architecture for streaming analytics,

Reference Architecture: Streaming Analytics Pattern

with Apache Flink and MSK

– stream consumption and processing, Real-Time

Streaming Data Ingestion

– streaming data transformation, Streaming Data

Transformation, Amazon Managed Service for Apache

Flink, Choosing the Right Streaming Transformation

Service-Choosing the Right Streaming Transformation

Service

Amazon Managed Service for Apache Kafka (MSK),

Amazon Managed Streaming for Apache Kafka-Amazon

Managed Streaming for Apache Kafka

– Data Firehose to connect to data stores, Best Practices

for Amazon Data Firehose

– data transformation, Best Practices for Amazon MSK-

General practices when using Amazon MSK, Amazon

Managed Service for Apache Flink

– high availability, HA for Amazon MSK

– IoT device data ingestion, Ingesting streaming data

from IoT devices into a data lake

– reference architecture for streaming analytics,

Reference Architecture: Streaming Analytics Pattern

with Apache Flink and MSK

– stream storage, Real-Time Streaming Data Ingestion

– streaming data ingestion, Real-Time Streaming Data

Ingestion, Kinesis Data Streams Versus Amazon MSK-

Kinesis Data Streams Versus Amazon MSK, Best

Practices for Amazon MSK-General practices when

using Amazon MSK

Amazon Managed Workflows for Apache Airflow (MWAA),

Application Integration, Managed Workflows for Apache

Airflow-Sample Use Case

Amazon MemoryDB, Database

Amazon MSK Connect, Amazon Managed Streaming for

Apache Kafka, General practices when using Amazon MSK

Amazon MSK Replicator, Amazon Managed Streaming for

Apache Kafka, General practices when using Amazon MSK,

HA for Amazon MSK

Amazon MSK Serverless, Amazon Managed Streaming for

Apache Kafka

Amazon Neptune, Database, Building lineage solutions with

AWS Glue, Amazon Neptune, and Spline

Amazon OpenSearch Dashboards, Amazon OpenSearch

Dashboards

Amazon OpenSearch Service, Amazon OpenSearch Service-

Amazon OpenSearch Service, AWS Cloud Databases

– AI use case, Amazon OpenSearch Service

– destination streaming data store, Real-Time Streaming

Data Ingestion

– high availability, HA for Amazon OpenSearch

– ingesting data, Amazon OpenSearch Service, Ingesting

AWS logs into log analytics solutions-Ingesting AWS

logs into log analytics solutions

– log analysis, Amazon Athena, Example: Building a

Petabyte-Scale Log Analytics Solution on AWS-Storage

Tier Decisions for Different Access Patterns, Amazon

OpenSearch Service

– streaming analytics pattern, reference architecture,

Reference Architecture: Streaming Analytics Pattern

with Apache Flink and MSK

– VPC endpoints, OpenSearch Service–managed VPC

endpoints

Amazon Q, Machine Learning

Amazon Q Business, Machine Learning

Amazon Q Developer, Machine Learning, Amazon

SageMaker Unified Studio, Generative AI–Powered Code

Generation with Amazon Q Developer

Amazon QuickSight, Amazon QuickSight-Amazon

QuickSight, Amazon QuickSight-Enhanced dashboard Q&A

– access control, Fine-Grained Access Control in Amazon

QuickSight, Create Amazon QuickSight execution role

using AWS IAM-Create Amazon QuickSight execution

role using AWS IAM

– batch processing pipeline implementation, Sign up for

and manage Amazon QuickSight-Sign up for and

manage Amazon QuickSight

– BI reporting, Amazon Athena, Amazon QuickSight

– creating datasets, Datasets

– data sources, High-Level Architecture Overview of Data

Processing Pipelines, Data Sources-Data Sources

– refreshing SPICE datasets, Refreshing SPICE Datasets-

Refreshing SPICE Datasets

– visualizations, Reference Architecture: Lakehouse with

Glue, Redshift, and Athena, Visualizations-Enhanced

dashboard Q&A, Create Amazon QuickSight

visualization-Create Amazon QuickSight visualization

Amazon QuickSight Q, Amazon QuickSight, Amazon

QuickSight, QuickSight GenBI Capabilities (QuickSight Q)-

Enhanced dashboard Q&A

Amazon Redshift, Amazon Redshift-Amazon Redshift

– AI-driven autoscaling, Autoscaling

– batch transformation service, Choosing the Right Batch

Transformation Service

– data model design, Data Modeling Strategies for

Amazon Redshift-Additional best practices for data

modeling with Amazon Redshift

– data sharing feature, Amazon Redshift Storage,

Multiaccount, hub-and-spoke model for data sharing

– database management for security, Database Security

in Amazon Redshift-Dynamic data masking

– destination streaming data store, Real-Time Streaming

Data Ingestion

– enabling encryption in, Amazon Redshift

– high availability, HA for Amazon Redshift provisioned

clusters

– ingesting data, Ingesting click streams into a data

warehouse for real-time reporting-Ingesting click

streams into a data warehouse for real-time reporting,

Ingesting data into Amazon Redshift using DMS, Best

Practices for AWS DMS Tasks with Amazon Redshift

Target-Best Practices for AWS DMS Tasks with Amazon

Redshift Target

– and lakehouse architecture, Reference Architecture:

Lakehouse with Glue, Redshift, and Athena, Performing

COPY and UNLOAD Operations to Move Data Between

Amazon S3 and Amazon Redshift

– logging and auditing, Logging and auditing in Amazon

Redshift

– query scheduler, Amazon Redshift Scheduler

– QuickSight visualization, Create Amazon QuickSight

visualization-Create Amazon QuickSight visualization

– reference architecture, Reference Architecture:

Lakehouse with Glue, Redshift, and Athena

– SQL analytics using, SQL Analytics Using Amazon

Redshift-User-Defined Functions

– for SQL-based data transformations, Batch Data

Transformation, SQL-Based Data Transformation Using

Amazon Redshift-Amazon Redshift stored procedures

– stream consumption and processing, Real-Time

Streaming Data Ingestion

– VPC endpoints managed by, Redshift-managed VPC

endpoints

Amazon Redshift Managed Storage (RMS), Amazon

Redshift stored procedures

Amazon Redshift ML, Amazon Redshift, Redshift ML and

Generative AI

Amazon Redshift Serverless, Amazon Redshift, Amazon

Redshift Compute, Create Amazon Redshift cluster-Create

Amazon Redshift cluster

Amazon Redshift Spectrum, Amazon Redshift, Building a

Data Strategy with Multiple Data Stores

Amazon Relational Database Service (RDS), Database,

Analyzing Data from Operational Data Stores Using

Amazon Redshift

Amazon Route 53, Networking and Content Delivery

Amazon S3

– and OpenSearch for hot and cold data, Storage Tier

Decisions for Different Access Patterns

– archiving data from DynamoDB to, Archiving Data from

Amazon DynamoDB to Amazon S3-Archiving Data from

Amazon DynamoDB to Amazon S3

– Athena analytics, Amazon Athena

– creating buckets, Create Amazon S3 buckets, Create

Amazon S3 buckets for an Iceberg data lake and a

streaming checkpoint

– data lake best practices, Amazon S3 Data Lake Best

Practices-Use open table formats

– destination streaming data store, Real-Time Streaming

Data Ingestion

– with EMR, Storage

– ingesting data into data lake with DMS, Ingesting data

into an Amazon S3 data lake using DMS

– and lakehouse architecture, Building a Data Strategy

with Multiple Data Stores, Performing COPY and

UNLOAD Operations to Move Data Between Amazon S3

and Amazon Redshift

– logging and auditing, Reference Architecture:

Streaming Analytics Pattern with Apache Flink and

MSK, Amazon S3

– object storage from, AWS Core Storage Services

– optimizing data management (see optimizing data

lifecycle)

– and Redshift, Amazon Redshift, Reference Architecture:

Lakehouse with Glue, Redshift, and Athena, Performing

COPY and UNLOAD Operations to Move Data Between

Amazon S3 and Amazon Redshift

– securing data in, Secure Data in Amazon S3

– streaming analytics reference architecture, Reference

Architecture: Streaming Analytics Pattern with Apache

Flink and MSK

– VPC endpoints for real-time streaming, Creating VPC

endpoints for Kinesis Data Streams, Amazon S3, and

EMR Serverless-Creating VPC endpoints for Kinesis

Data Streams, Amazon S3, and EMR Serverless

Amazon S3 Data Lake, Amazon S3 Data Lake Best

Practices-Use open table formats

Amazon S3 Express One Zone, Frequently accessed storage

classes

Amazon S3 Glacier, Storage

Amazon S3 Glacier Deep Archive, Rarely accessed storage

classes

Amazon S3 Glacier Flexible Retrieval, Rarely accessed

storage classes

Amazon S3 Glacier Instant Retrieval, Rarely accessed

storage classes

Amazon S3 Intelligent-Tiering, Storage class for changing

or unknown access patterns, S3 Intelligent-Tiering-S3

Intelligent-Tiering, Managing the Data Lifecycle with

Amazon S3 Lifecycle

Amazon S3 Lifecycle, Managing the Data Lifecycle with

Amazon S3 Lifecycle-Managing the Data Lifecycle with

Amazon S3 Lifecycle

Amazon S3 Metadata, Amazon S3 Metadata

Amazon S3 OneZone-IA, Infrequently accessed storage

classes

Amazon S3 Standard storage class, Frequently accessed

storage classes

Amazon S3 Standard-IA, Infrequently accessed storage

classes

Amazon S3 Storage Lens, S3 Storage Lens

Amazon S3 Tables, Amazon S3 Tables

Amazon S3 Versioning, Ensuring S3 Data Resiliency with

S3 Versioning-S3 Versioning and Object Lifecycle

Management

Amazon SageMaker, Amazon Redshift, Machine Learning,

Use Cases

Amazon SageMaker Catalog, Amazon SageMaker Catalog

Amazon SageMaker Clarify, Amazon SageMaker AI

Amazon SageMaker Ground Truth, Amazon SageMaker AI

Amazon SageMaker JumpStart, Amazon SageMaker AI

Amazon SageMaker Lakehouse, Amazon SageMaker

Lakehouse-Amazon SageMaker Lakehouse

Amazon SageMaker Model Cards, Amazon SageMaker AI

Amazon SageMaker Unified Studio, Amazon SageMaker

Unified Studio-Amazon SageMaker Unified Studio

Amazon Simple Notification Service (SNS), Reference

Architecture: Streaming Analytics Pattern with Apache

Flink and MSK, Application Integration, Notifications

Amazon Simple Queue Service (SQS), Application

Integration

Amazon Virtual Private Cloud (VPC), Networking and

Content Delivery, Amazon VPC Overview-Security Groups

Overview

– batch processing pipeline implementation, Sign up for

and manage Amazon QuickSight-Sign up for and

manage Amazon QuickSight

– best practices, Best Practices for Configuring Security

Groups for Your Workloads

– EMR cluster configuration, Configuring a VPC and

Security Group for an Amazon EMR Cluster

– endpoints, VPC Endpoints Overview-OpenSearch

Service–managed VPC endpoints

– real-time streaming pipeline implementation, Creating

VPC endpoints for Kinesis Data Streams, Amazon S3,

and EMR Serverless-Creating VPC endpoints for

Kinesis Data Streams, Amazon S3, and EMR Serverless

Amazon Web Services (AWS), certification benefits,

Becoming an AWS Data Engineer Associate-Becoming an

AWS Data Engineer Associate

analysis visualization format, Presentation Formats

analytics data layer, Analytics data layer: Curated and

aggregated data

anomaly detection, CloudWatch, CloudWatch Alarms

Apache Airflow, Application Integration, Managed

Workflows for Apache Airflow-Sample Use Case

Apache Cassandra, Database

Apache Flink (see Amazon Managed Service for Apache

Flink)

Apache Hive, Hive, Hive, Migrating from an existing Hive

catalog

Apache Hive Metastore Server (HMS), Hive

Apache Hive Query Language (HiveQL), Hive

Apache Hudi, Table Formats

Apache Iceberg, Amazon Athena, Table Formats, Use

Cases, Amazon SageMaker Lakehouse

Apache Kafka (see Amazon Managed Service for Apache

Kafka)

Apache ORC, Ingesting streaming data from IoT devices

into a data lake, Use columnar file formats

Apache Parquet data format, Ingesting streaming data from

IoT devices into a data lake, Ingesting data into an Amazon

S3 data lake using DMS, Column-Based File Formats, Use

columnar file formats

Apache Spark, Spark

– and Athena, Amazon Athena

– batch data transformations, Batch Data Transformation

– code upgrades from Glue, Automated Script Upgrade in

AWS Glue

– Delta Lake table format, Table Formats

– Glue interactive sessions with, AWS Glue Interactive

Sessions

– troubleshooting with Glue, GenAI-Powered

Troubleshooting for Spark in AWS Glue

Apache Spark SQL/PySpark, Spark SQL/PySpark

Apache Spark Streaming, Real-Time Streaming Data

Ingestion

Apache Spark Structured Streaming, Streaming Data

Transformation

– batch processing pipeline implementation, Create

Amazon S3 buckets for an Iceberg data lake and a

streaming checkpoint-Creating an EMR Studio and

EMR Serverless application

– choosing a streaming transformation service, Choosing

the Right Streaming Transformation Service-Choosing

the Right Streaming Transformation Service

– and Glue Streaming ETL, AWS Glue, Glue Jobs

– real-time streaming pipeline implementation,

Submitting the Spark Streaming job to the EMR

Serverless application-Submitting the Spark Streaming

job to the EMR Serverless application

Apache Zeppelin, Amazon Managed Service for Apache

Flink

API call monitoring, CloudTrail, Monitoring API calls with

CloudTrail

APIs, MSF’s variety of, Amazon Managed Service for

Apache Flink

AppFlow, Application Integration

applications, Glue connectors for, Data Sources and

Destinations

archiving data, Archiving Data from Amazon DynamoDB to

Amazon S3-Archiving Data from Amazon DynamoDB to

Amazon S3

– data archiving strategies, Defining Data Retention

Policy and Archiving Strategies

– S3 Glacier Deep Archive, Rarely accessed storage

classes

Athena (see Amazon Athena)

attribute-based access control (ABAC), Fine-Grained Access

Control with AWS Lake Formation

attributes, DynamoDB table, Core concepts of DynamoDB

Aurora, Database, Analyzing Data from Operational Data

Stores Using Amazon Redshift

authentication and authorization, user, Create an IAM User

for Authentication, Security, Identity, and Compliance,

User Authentication and Authorization-IAM Identity Center

integration with Amazon DataZone

AutoGraph feature, QuickSight, Visualizations

automated data quality checks and error handling,

Automated Data Quality Checks and Error Handling

automatic query rewriting, Redshift materialized views,

Amazon Redshift materialized views

automatic refresh, Redshift materialized views, Amazon

Redshift materialized views

autoscaling, Amazon Kinesis Data Streams, Best Practices

for AWS Glue, Autoscaling

auxiliary analytic services, Auxiliary Services for Analytics-

AWS Well-Architected Tool

– application integration services, Application

Integration-Application Integration

– AWS WA Tool, AWS Well-Architected Tool

– cloud financial management, Developer Tools

– compute and containers, Compute and Containers-

Compute and Containers

– database, Database-Database

– developer tools, Developer Tools

– machine learning, Machine Learning-Machine Learning

– management governance, Management Governance-

Management Governance

– migration and transfer, Migration and Transfer-

Migration and Transfer

– networking and content delivery, Networking and

Content Delivery

– security, identity, and compliance, Security, Identity,

and Compliance-Security, Identity, and Compliance

– storage, Storage

Availability Zones (AZs), An Overview of Amazon Web

Services, Availability Zone (AZ) failure recovery, Amazon

VPC Overview

AVRO row-based file format, Row-Based File Formats

AWS account setup, How to Set Up an AWS Account

AWS Artificial Intelligence (AI), Data Quality

AWS Backup, Storage

AWS Budgets, Cloud Financial Management, Monitor and

Control Data Transfer Costs

AWS Certificate Manager, Amazon Redshift

AWS Clean Rooms, Cross-organization or business-to-

business data sharing

AWS CLI, Developer Tools, Enabling Versioning on an S3

Bucket

AWS Cloud Development Kit (CDK), Developer Tools, AWS

Cloud Development Kit (AWS CDK)

AWS Cloud Quest, Study Plan

AWS CloudFormation, Management Governance, AWS

CloudFormation-AWS CloudFormation

AWS CloudShell, Developer Tools

AWS CloudTrail, Management Governance

– API call monitoring, Monitoring API calls with

CloudTrail

– AWS KMS integration, Managing Encryption Keys with

AWS KMS

– IAM role in audit logs, IAM Identity Center integration

with AWS Lake Formation

– logging and auditing, AWS CloudTrail to audit actions

or API invocations

– Redshift audit logging to, Logging and auditing in

Amazon Redshift

AWS CloudTrail Insights, AWS CloudTrail Insights

AWS CloudTrail Lake, Analyzing CloudTrail logs using

CloudTrail Lake

AWS Code Services, Developer Tools

AWS CodeBuild, Developer Tools, Continuous integration

(CI)

AWS CodeCommit, Developer Tools, Version Control and

Collaboration

AWS CodeDeploy, Developer Tools

AWS CodePipeline, Developer Tools, Continuous

deployment (CD)

AWS Config, Management Governance, Auditing AWS

configuration changes with AWS Config

AWS Construct Library, AWS Cloud Development Kit (AWS

CDK)

AWS Control Tower, How to Set Up an AWS Account

AWS Cost Explorer, Cloud Financial Management, AWS

Cost Explorer, Monitor and Control Data Transfer Costs

AWS Data Exchange, Migration and Transfer, Ingesting

third-party datasets

– data marketplace building, Exposing data as a product

in a data marketplace

– Lake Formation integration, AWS Lake Formation

– Redshift integration, Amazon Redshift, Multiaccount,

hub-and-spoke model for data sharing

AWS Database Migration Service (DMS), Migration and

Transfer

– data ingestion with Redshift, Ingesting data into

Amazon Redshift using DMS, Best Practices for AWS

DMS Tasks with Amazon Redshift Target-Best Practices

for AWS DMS Tasks with Amazon Redshift Target

– performance in database migrations, Best Practices for

AWS DMS Replication Instances and Tasks-Best

Practices for AWS DMS Replication Instances and

Tasks

– supported sources and targets for, Supported Sources

for AWS DMS

– use cases, Sample Use Cases

AWS DataSync, Migration and Transfer, Ingesting files

from on premises

AWS Developer Tools, Developer Tools

AWS Glue, AWS Glue-AWS Glue

– autoscaling with, Best Practices for AWS Glue,

Autoscaling

– batch data transformations with Spark, Batch Data

Transformation

– best practices, Best Practices for AWS Glue

– choosing batch transformation service, Choosing the

Right Batch Transformation Service

– choosing streaming transformation service, Choosing

the Right Streaming Transformation Service

– code upgrades for Spark and Python, Automated Script

Upgrade in AWS Glue

– connectors, Glue Connectors, Data Sources and

Destinations-AWS Glue interactive sessions, Create

Glue data connection for the Redshift cluster-Create

Glue data connection for the Redshift cluster

– crawlers, AWS Glue, AWS Glue crawler

– data transformation, Data Transformation Using AWS

Glue, AWS Glue Versus Amazon EMR Options

– versus EMR for data processing options, AWS Glue

Versus Amazon EMR Options

– enabling encryption in, AWS Glue

– error handling by, Automated Data Quality Checks and

Error Handling

– exploring and analyzing datasets, AWS Glue Interactive

Sessions-AWS Glue Interactive Sessions

– GenAI-powered troubleshooting for Spark, GenAI-

Powered Troubleshooting for Spark in AWS Glue

– interactive sessions for dataset analysis, AWS Glue

Interactive Sessions-AWS Glue Interactive Sessions

– lakehouse reference architecture, Reference

Architecture: Lakehouse with Glue, Redshift, and

Athena

– log processing with, Processing logs with Amazon EMR

or AWS Glue

– orchestrating data pipelines, AWS Glue Workflows-

Sample Use Case

– sensitive data detection, Integrating AWS Glue

sensitive data detection-Integrating AWS Glue sensitive

data detection

– stream consumption and processing, Real-Time

Streaming Data Ingestion

AWS Glue API, AWS Glue Workflows

AWS Glue Data Catalog, AWS Glue

– Deequ and DQDL in, AWS Glue Data Quality

– encryption for, AWS Glue

– Lake Formation integration, AWS Lake Formation

– metadata management, AWS Glue Data Catalog

– optimizing performance with, Optimize performance

with Glue Data Catalog

– partitions, Best Practices for AWS Glue

– populating, Populating an AWS Glue Data Catalog-

Migrating from an existing Hive catalog

– security, Secure the Data Catalog

– streaming ETL jobs, Glue Jobs

AWS Glue Data Quality, AWS Glue, AWS Glue Data Quality-

Composite rules, Data Quality

AWS Glue Data Quality Definition Language (DQDL), Data

Profiling

AWS Glue DataBrew, AWS Glue DataBrew-AWS Glue

DataBrew, Data Preparation for Nontechnical Personas-

Other Data Preparation Transformations, Automated Data

Quality Checks and Error Handling, Data Profiling

AWS Glue ETL jobs, Glue Jobs

– batch processing pipeline implementation, Create AWS

Glue PySpark ETL job-Create AWS Glue PySpark ETL

job

– data lineage building, Building lineage solutions with

AWS Glue, Amazon Neptune, and Spline

– data quality checks with, AWS Glue Data Quality

– encryption for, AWS Glue

AWS Glue Spark UI, Best Practices for AWS Glue

AWS Glue Studio, Glue Studio, AWS Glue Data Quality

AWS IAM Identity Center, Best Practices to Follow with

AWS IAM, Enable Single Sign-on with AWS IAM Identity

Center-IAM Identity Center integration with Amazon

DataZone

AWS Identity and Access Management (IAM), Configure

Access with AWS IAM, Security, Identity, and Compliance

– IAM groups, Authenticating Users with IAM

Credentials

– IAM roles, What Is an IAM Role?

– policies, What Is an IAM Policy?, Secure the Data

Catalog, Redshift-managed VPC endpoints, Access

control with IAM policies

– QuickSight creation of execution role, Create Amazon

QuickSight execution role using AWS IAM-Create

Amazon QuickSight execution role using AWS IAM

– user authentication and authorization, Create an IAM

User for Authentication, Security, Identity, and

Compliance, User Authentication and Authorization-

IAM Identity Center integration with Amazon DataZone

AWS IoT Core, Real-Time Streaming Data Ingestion,

Ingesting streaming data from IoT devices into a data lake

AWS Jam, Study Plan

AWS Key Management Service (KMS), Security, Identity,

and Compliance

AWS Lake Formation, AWS Lake Formation-AWS Lake

Formation

– access control, AWS Lake Formation, Fine-Grained

Access Control with AWS Lake Formation-Best

practices for tag-based access control

– cross-account data sharing, Best practices for cross-

account sharing, Multiaccount, hub-and-spoke model

for data sharing

– and data classification for permission control,

Enriching Data Catalogs with Data Classification

– Glue Data Catalog integration, AWS Glue

– governance role, AWS Lake Formation, Data mesh with

centralized governance-Data mesh with centralized

governance

– IAM Identity Center integration, IAM Identity Center

integration with AWS Lake Formation-IAM Identity

Center integration with AWS Lake Formation

– QuickSight access control with, Access control with

Lake Formation

– SageMaker Catalog integration, Amazon SageMaker

Catalog

AWS Lambda

– archiving data from DynamoDB to S3, Archiving Data

from Amazon DynamoDB to Amazon S3

– attaching function to SNS, Notifications

– data format conversion for streaming ingestion,

Ingesting streaming data from IoT devices into a data

lake

– data source connecting for Athena Federated Query,

Athena Federated SQL

– data transformation with, AWS Lambda for

Transformation, Choosing the Right Batch

Transformation Service

– event-driven quality checks, Event-Driven Pipeline

Maintenance with EventBridge

– reference architecture, Reference Architecture:

Streaming Analytics Pattern with Apache Flink and

MSK

– serverless compute service, Compute and Containers

– stream consumption and processing, Real-Time

Streaming Data Ingestion

– triggering Glue jobs with, Reference Architecture:

Lakehouse with Glue, Redshift, and Athena

AWS Lambda UDFs, User-Defined Functions

AWS Management Console, Glue workflows, AWS Glue

Workflows, Enabling Versioning on an S3 Bucket

AWS Organizations, How to Set Up an AWS Account, Best

practices for cross-account sharing

AWS PrivateLink, Networking and Content Delivery

AWS Resource Access Manager, Best practices for cross-

account sharing

AWS SageMaker ML Lineage, Amazon SageMaker ML

Lineage Tracking

AWS Samples Data Profiler utility, Data Profiling

AWS Schema Conversion Tool (SCT), Migration and

Transfer, Ingesting data into Amazon Redshift using DMS

AWS SDK, data ingestion customization, Real-Time

Streaming Data Ingestion

AWS Secrets Manager, Security, Identity, and Compliance,

Manage Database Credentials

AWS Serverless Application Model (SAM), Compute and

Containers, AWS Serverless Application Model

AWS Service Catalog AppRegistry, AWS Well-Architected

Tool

AWS Shield, Security, Identity, and Compliance

AWS Skill Builder Labs, Study Plan

AWS Snow Family, Migration and Transfer

AWS Snowball, Migration and Transfer

AWS Snowcone, Migration and Transfer

AWS Spark jobs, Glue Jobs

AWS Step Functions, Application Integration, AWS Step

Functions, Automated Data Quality Checks and Error

Handling

AWS Systems Manager, Management Governance

AWS Transfer Family, Migration and Transfer

AWS Trusted Advisor, AWS Well-Architected Tool

AWS Well-Architected Framework (WAF), Security,

Identity, and Compliance

B

backup service (AWS Backup), Storage

backup-restore resilience architectures, Disaster Recovery

and High Availability, Backup and restore

bar charts, QuickSight, Visualizations

batch data processing, Batch Processing Pipeline

– and Amazon EMR, Amazon EMR

– data transformation, Batch Data Transformation,

Choosing the Right Batch Transformation Service

– with Glue bookmarks, Glue Bookmarks

– ingesting data, Data Ingestion

– pipeline implementation, Implementing a Batch

Processing Pipeline-Best Practices and Optimization

Techniques

– Amazon S3 buckets, creating, Create Amazon S3

buckets

– best practices, Best Practices and Optimization

Techniques

– Glue data connection for Redshift cluster, Create

Glue data connection for the Redshift cluster-

Create Glue data connection for the Redshift

cluster

– Glue PySpark ETL job, creating, Create AWS Glue

PySpark ETL job-Create AWS Glue PySpark ETL job

– input dataset, Overview of Input Dataset

– QuickSight sign-up and management, Sign up for

and manage Amazon QuickSight-Sign up for and

manage Amazon QuickSight

– QuickSight visualization, creating, Create Amazon

QuickSight visualization-Create Amazon QuickSight

visualization

– Redshift Serverless cluster, Create Amazon

Redshift cluster-Create Amazon Redshift cluster

– use case and architecture, Use Case and

Architecture Overview

– visualization, Create Amazon QuickSight execution

role using AWS IAM-Create Amazon QuickSight

execution role using AWS IAM

Bedrock, Machine Learning

BI (see business intelligence)

big data, Overview of Big Data-Overview of Big Data

– AWS-supported services, Data Sources

– and EMR, Amazon EMR, Amazon EMR, Deployment

Options

– and Redshift, Amazon Redshift

block storage (EBS), Storage, AWS Core Storage Services,

Selecting Storage Solutions for Hot and Cold Data

bookmarks, Glue, Glue Bookmarks

box plots, QuickSight, Visualizations

brokers, MSK clusters, Amazon MSK provisioned cluster

versus serverless, General practices when using Amazon

MSK

bucketing of data

– creating buckets in Amazon S3, Create Amazon S3

buckets, Create Amazon S3 buckets for an Iceberg data

lake and a streaming checkpoint

– data lake access control, Best practices to integrate

AWS Lake Formation

– S3 Data Lake, Bucket your data

Budgets, Cloud Financial Management, Monitor and

Control Data Transfer Costs

buffering hints, optimizing with Data Firehose, Best

Practices for Amazon Data Firehose

business intelligence (BI), Certification Essentials

– (see also Amazon QuickSight)

– Athena use case, Amazon Athena

– Glue DataBrew use case, AWS Glue DataBrew

– metadata for, Components of Metadata and Data

Catalogs

– and Redshift, Amazon Redshift

business-to-business data sharing, Cross-organization or

business-to-business data sharing-Exposing data as a

product in a data marketplace

C

capacity mode, choosing data stream, Best Practices for

Choosing Data Stream Capacity Mode

capacity reservations, Athena, Capacity Reservations

case modifications, formatting functions (DataBrew),

Formatting Functions

Cassandra, Database

CDC (change data capture), Amazon Managed Streaming

for Apache Kafka, Data Ingestion, Ingesting Data from

Databases with CDC Using AWS Data Migration Service-

Ingesting third-party datasets

cdcMaxBatchInterval attribute, Ingesting data into an

Amazon S3 data lake using DMS

cdcMinFileSize attribute, Ingesting data into an Amazon S3

data lake using DMS

CDK (Cloud Development Kit), Developer Tools, AWS Cloud

Development Kit (AWS CDK)

CDN (content delivery network), Networking and Content

Delivery

cell-level access control, Lake Formation, Row- and column-

based data filtering

Certificate Manager, Amazon Redshift

certification essentials, Certification Essentials-Conclusion

– applying problem-solving process to questions, How

This Thought Process Applies to Certification

Questions-How This Thought Process Applies to

Certification Questions

– exam format, Exam Format

– exam topics, Exam Topics

– exam-style questions, Exam-Style Questions

– focus for the data engineering persona, How This

Thought Process Applies to Certification Questions

– real-world problem-solving framework, Think Like an

AWS Solutions Architect: Translating a Real-World

Problem-Solving Framework into Certification-How

This Thought Process Applies to Certification Questions

– registering for exam, Registering for the Exam

– study plan, Study Plan

change data capture (CDC), Amazon Managed Streaming

for Apache Kafka, Data Ingestion, Ingesting Data from

Databases with CDC Using AWS Data Migration Service-

Ingesting third-party datasets

CI/CD (continuous integration/continuous deployment),

CI/CD, CI/CD Pipelines

Clean Rooms, Cross-organization or business-to-business

data sharing

click stream ingesting into data warehouse, Ingesting click

streams into a data warehouse for real-time reporting-

Ingesting click streams into a data warehouse for real-time

reporting

client-side encryption, Enabling encryption and managing

keys in AWS

cloud environment

– block-based storage, AWS Core Storage Services

– compute and container services in AWS, Compute and

Containers-Compute and Containers

– data store management, AWS Cloud Databases-AWS

Cloud Databases

– financial management, Cloud Financial Management

– knowledge on computing in, Cloud Computing and

AWS-What Is Cloud Computing?

– management governance tools, Management

Governance

Cloud Quest, Study Plan

CloudFormation, Management Governance, AWS

CloudFormation-AWS CloudFormation

CloudFront, Networking and Content Delivery

CloudShell, Developer Tools

CloudTrail (see AWS CloudTrail)

CloudWatch (see Amazon CloudWatch)

cluster manager (CM), OpenSearch, HA for Amazon

OpenSearch

cluster mode, Spark, Spark

clusters, Amazon MSK, Best Practices for Amazon MSK-

General practices when using Amazon MSK

code generation, AI, Generative AI–Powered Code

Generation with Amazon Q Developer

code repositories, Working with Code Repositories-How to

Work with Code Repositories

Code Services, Developer Tools

CodeBuild, Developer Tools, Continuous integration (CI)

CodeCommit, Developer Tools, Version Control and

Collaboration

CodeDeploy, Developer Tools

CodePipeline, Developer Tools, Continuous deployment

(CD)

cold and hot data, selecting storage solutions for, Selecting

Storage Solutions for Hot and Cold Data-Storage Tier

Decisions for Different Access Patterns

column-level access control, Lake Formation, Row- and

column-based data filtering

columnar file formats

– cost advantage, Best Practices When Using Amazon

Athena, Columnar Formats

– data lake, Column-Based File Formats

– S3 Data Lake, Use columnar file formats

combiner process, MapReduce, MapReduce

comma-separated values (CSV) row-based format, Row-

Based File Formats

command-line tool (AWS CLI), Developer Tools

compliance certifications, Security, Identity, and

Compliance

– (see also governance)

composite alarms, CloudWatch, CloudWatch Alarms

compression encodings, Redshift, Additional best practices

for data modeling with Amazon Redshift

compression of data, S3 Data Lake, Use compression

compute resources

– Glue job workers as, Worker Type

– Redshift’s massively parallel compute, Amazon Redshift

Compute

conceptual data models, Introduction to Data Modeling

configuration changes, auditing (AWS Config),

Management Governance

connection timed out errors, Connection timed out errors

connections, making

– Data Firehose for data stores, Best Practices for

Amazon Data Firehose

– Glue, Glue Connectors, Data Sources and Destinations-

AWS Glue interactive sessions, Create Glue data

connection for the Redshift cluster-Create Glue data

connection for the Redshift cluster

– Lambda for Athena Federated Query, Athena Federated

SQL

– MSK Connect, Amazon Managed Streaming for Apache

Kafka, General practices when using Amazon MSK

Construct Library, AWS Cloud Development Kit (AWS CDK)

consumers, data stream, Real-Time Streaming Data

Ingestion, Best Practices for Streaming Ingestion, Best

Practices for Consuming Data from KDS

consumption component, data processing pipeline, High-

Level Architecture Overview of Data Processing Pipelines

containerized environments, Amazon EMR, Compute and

Containers

content delivery network (CDN), Networking and Content

Delivery

context-awareness, Q Code Developer, Generative AI–

Powered Code Generation with Amazon Q Developer

continuous integration/continuous deployment (CI/CD),

CI/CD, CI/CD Pipelines

Control Tower, How to Set Up an AWS Account

COPY command, Redshift SQL, Performing COPY and

UNLOAD Operations to Move Data Between Amazon S3

and Amazon Redshift

core storage services, AWS Core Storage Services-AWS

Core Storage Services

Cost Explorer, Cloud Financial Management, AWS Cost

Explorer, Monitor and Control Data Transfer Costs

cost optimization, Cost Optimization for Data Pipelines-

Follow Cost Optimization Best Practices

– capacity reservations with Athena, Capacity

Reservations

– with columnar file formats, Best Practices When Using

Amazon Athena, Columnar Formats

– query result reuse strategy, Best Practices When Using

Amazon Athena

– serverless services, Leveraging Serverless Services

– tiered storage, Tiered Storage

crawlers, Glue, AWS Glue Workflows, Using Glue crawlers

cross-account data sharing, Lake Formation, Best practices

for cross-account sharing, Multiaccount, hub-and-spoke

model for data sharing

cross-organization data sharing, Cross-organization or

business-to-business data sharing-Exposing data as a

product in a data marketplace

cross-region snapshots for failure recovery (Redshift),

Region failure recovery

CSV (comma-separated values) row-based format, Row-

Based File Formats

custom policies, authorization, Managed Versus Self-

Managed Policies

D

DAGs (directed acyclic graphs), Application Integration

DAS (direct-attached storage), AWS Core Storage Services

dashboard visualization, Presentation Formats, Create

executive summaries, Amazon OpenSearch Dashboards,

Amazon SageMaker AI

data access patterns, Introduction to Data Modeling,

NoSQL versus relational data modeling-Example use case:

Ecommerce website

data analytics (see data operations and support)

data cataloging, Data Cataloging Systems-Enriching Data

Catalogs with Data Classification

data classification, in data catalogs, Enriching Data

Catalogs with Data Classification-Enriching Data Catalogs

with Data Classification

data cleaning and standardization, Glue DataBrew,

Formatting Functions

Data Control Language (DCL), Relational Databases

Data Definition Language (DDL), Relational Databases,

DDL Capabilities

data discovery

– classification of data, Enriching Data Catalogs with

Data Classification

– SageMaker Catalog, Amazon SageMaker Catalog

Data Exchange (see AWS Data Exchange)

data ingestion, Data Ingestion and Transformation, Data

Ingestion-Best Practices for AWS DMS Tasks with Amazon

Redshift Target

– AWS Glue for data ingestion, AWS Glue

– batch ingesting, Data Ingestion

– best practices, Best Practices for Data Ingestion-Best

Practices for AWS DMS Tasks with Amazon Redshift

Target

– data processing pipeline, High-Level Architecture

Overview of Data Processing Pipelines, Orchestrating

Data Pipelines-Choosing the Right Orchestration

Service

– ETL versus ELT, ETL Versus ELT

– as exam topic, Exam Topics

– from CDC databases with DMS, Ingesting Data from

Databases with CDC Using AWS Data Migration

Service-Ingesting third-party datasets

– Glue Connectors, Glue Connectors

– log data to OpenSearch cluster, Amazon OpenSearch

Service

– near real-time ingesting, Data Ingestion

– OpenSearch Service, Amazon OpenSearch Service,

Ingesting AWS logs into log analytics solutions-

Ingesting AWS logs into log analytics solutions

– real-time streaming, Real-Time Streaming Data

Ingestion-Ingesting AWS logs into log analytics

solutions

– with zero-ETL integrations, Ingesting Data Using Zero-

ETL Integrations

data lakes, What Is a Data Lake?

– (see also AWS Lake Formation)

– Amazon S3 used for storage in, AWS Core Storage

Services

– Athena exploration and analytics, Amazon Athena

– and AWS Glue, AWS Glue

– data model design strategies, Data Modeling Strategies

for Data Lakes-Use open table formats

– destination streaming data store, Real-Time Streaming

Data Ingestion

– prerequisite knowledge, What Is a Data Lake?, Data

Warehouse Versus Data Lake

– Redshift Spectrum querying of, Query Data from Data

Lake

– storage formats for, Data Storage Formats for Data

Lakes-Table Formats

– streaming into with Data Firehose, Amazon Data

Firehose

– streaming IoT device data, Ingesting streaming data

from IoT devices into a data lake

data lifecycle management, Managing the Lifecycle of

Data-Performing COPY and UNLOAD Operations to Move

Data Between Amazon S3 and Amazon Redshift

– archiving data from DynamoDB and S3, Archiving Data

from Amazon DynamoDB to Amazon S3-Archiving Data

from Amazon DynamoDB to Amazon S3

– data lineage, Data Lineage-Amazon SageMaker ML

Lineage Tracking

– data retention policies, Defining Data Retention Policy

and Archiving Strategies

– governance role, Data Lifecycle Management

– hot and cold data storage selection, Selecting Storage

Solutions for Hot and Cold Data-Storage Tier Decisions

for Different Access Patterns

– lakehouse architecture, Performing COPY and UNLOAD

Operations to Move Data Between Amazon S3 and

Amazon Redshift

– log analytics example, Example: Building a Petabyte-

Scale Log Analytics Solution on AWS

– optimizing (see optimizing data lifecycle)

– storage tiers, decisions for access patterns, Storage

Tier Decisions for Different Access Patterns-Storage

Tier Decisions for Different Access Patterns

data lineage, Amazon DataZone, Data Lineage-Amazon

SageMaker ML Lineage Tracking

Data Manipulation Language (DML), Relational Databases

data marketplace exposure of data, Exposing data as a

product in a data marketplace

data marts, What Is a Data Warehouse?

data mesh architecture, Amazon Redshift Storage-Amazon

Redshift Storage, Data mesh with centralized governance-

Data mesh with centralized governance

data migration, DMS ingestion into Redshift, Ingesting data

into Amazon Redshift using DMS

data model design, Designing Data Models and Schema-

Use open table formats

– data lake strategies, Data Modeling Strategies for Data

Lakes-Use open table formats

– DynamoDB, Data Modeling Strategies for Amazon

DynamoDB-Common use cases and considerations

– Redshift, Data Modeling Strategies for Amazon

Redshift-Additional best practices for data modeling

with Amazon Redshift

data normalization, and schema design patterns, Common

schema design patterns

data operations and support, Exam Topics, Data Operations

and Support-Conclusion

– (see also data processing pipelines)

– as exam topic, Exam Topics

– generative AI for BI analysis, QuickSight GenBI

Capabilities (QuickSight Q)-Enhanced dashboard Q&A

– notebooks, analyzing data using, Analyzing Data Using

Notebooks-Amazon EMR Notebooks

– QuickSight, Amazon QuickSight-Enhanced dashboard

Q&A

– SQL analytics using Athena, SQL Analytics Using

Amazon Athena-Best Practices When Using Amazon

Athena

– SQL analytics using Redshift, SQL Analytics Using

Amazon Redshift-User-Defined Functions

data processing methods, prerequisite knowledge,

Different Ways to Process Data-Event-Driven Processing

data processing pipelines, Data Processing Pipeline-Data

Processing Pipeline

– building resilient (see resiliency, data pipelines)

– cost optimization, Cost Optimization for Data Pipelines-

Follow Cost Optimization Best Practices

– data ingestion, High-Level Architecture Overview of

Data Processing Pipelines

– governance in, High-Level Architecture Overview of

Data Processing Pipelines

– high-level architecture knowledge, High-Level

Architecture Overview of Data Processing Pipelines-

High-Level Architecture Overview of Data Processing

Pipelines

– OpenSearch Service for data ingestion, Amazon

OpenSearch Service

– security in, High-Level Architecture Overview of Data

Processing Pipelines

– streaming for data analytics, Real-Time Streaming Data

Ingestion

data processing units (DPUs), Data Processing Units

data profiling, AWS Glue DataBrew, Data Profiling

data quality

– automated checks and error handling, Automated Data

Quality Checks and Error Handling

– DataZone management, Amazon DataZone

– with Deequ and DQDL, Ensuring Data Quality and

Reliability: Deequ and DQDL-Using Deequ with Amazon

EMR

– Glue Data Quality, AWS Glue, AWS Glue Data Quality-

Composite rules, Data Quality

– Glue DataBrew checks, AWS Glue DataBrew

– governance role, Data Quality-Data Quality

Data Quality Definition Language (DQDL), Ensuring Data

Quality and Reliability: Deequ and DQDL-Using Deequ with

Amazon EMR

Data Query Language (DQL), Relational Databases

data replication, Amazon Managed Streaming for Apache

Kafka, Best Practices for AWS DMS Replication Instances

and Tasks

data retention, Amazon Kinesis Data Streams, Amazon

Managed Streaming for Apache Kafka, Defining Data

Retention Policy and Archiving Strategies

data security (see security)

data sharing

– cross-account, Best practices for cross-account sharing,

Multiaccount, hub-and-spoke model for data sharing

– DataZone’s governed, Amazon DataZone

– governance role, Data Sharing-Exposing data as a

product in a data marketplace

– Lake Formation, AWS Lake Formation

– Redshift, Amazon Redshift, Amazon Redshift Storage,

Multiaccount, hub-and-spoke model for data sharing

data skew, Partition your data

data sources

– accessing with QuickSight, High-Level Architecture

Overview of Data Processing Pipelines, Data Sources-

Data Sources

– Glue connections to, Data Sources and Destinations

– incremental crawls to update, Use crawlers effectively

data store management, Data Store Management-

Conclusion

– Amazon RDS and Aurora with Redshift, Analyzing Data

from Operational Data Stores Using Amazon Redshift

– AWS core storage services, AWS Core Storage

Services-AWS Core Storage Services

– cloud databases, AWS Cloud Databases-AWS Cloud

Databases

– data cataloging, Data Cataloging Systems-Enriching

Data Catalogs with Data Classification

– data lakes, storage formats for, Data Storage Formats

for Data Lakes-Table Formats

– data model design, Designing Data Models and

Schema-Use open table formats

– as exam topic, Exam Topics

– lifecycle of data, Managing the Lifecycle of Data-

Performing COPY and UNLOAD Operations to Move

Data Between Amazon S3 and Amazon Redshift

– multiple data stores for data strategy, Building a Data

Strategy with Multiple Data Stores-Building a Data

Strategy with Multiple Data Stores

– optimizing data management, Optimizing Data

Management with Amazon S3-S3 Versioning and Object

Lifecycle Management

data stories visualization format, Presentation Formats

data swamp, What Is a Data Lake?

data transfer costs, monitoring and controlling, Monitor

and Control Data Transfer Costs

data transformation, Data Ingestion and Transformation,

Data Transformation-Other Data Preparation

Transformations

– (see also data ingestion)

– batch data transformation, Batch Data Transformation,

Choosing the Right Batch Transformation Service

– data classification role in, Enriching Data Catalogs with

Data Classification

– Data Firehose, Amazon Data Firehose, Amazon Data

Firehose for Transformation

– EMR, Data Transformation Using Amazon EMR-AWS

Glue Versus Amazon EMR Options

– as exam topic, Exam Topics

– Glue, Data Transformation Using AWS Glue, AWS Glue

Versus Amazon EMR Options

– Glue DataBrew no-code, AWS Glue DataBrew

– Lambda, AWS Lambda for Transformation

– MSF, Amazon Managed Service for Apache Flink

– orchestrating data pipelines, Orchestrating Data

Pipelines-Choosing the Right Orchestration Service

– preparation of data for nontechnical personas, Data

Preparation for Nontechnical Personas-Other Data

Preparation Transformations

– Redshift for SQL-based transformations, SQL-Based

Data Transformation Using Amazon Redshift-Amazon

Redshift stored procedures

– streaming data transformation, Streaming Data

Transformation, Choosing the Right Streaming

Transformation Service-Choosing the Right Streaming

Transformation Service

data warehouses, What Is a Data Warehouse?

– (see also Amazon Redshift)

– click stream ingesting for real-time reporting, Ingesting

click streams into a data warehouse for real-time

reporting-Ingesting click streams into a data warehouse

for real-time reporting

– Data Firehose streaming into, Amazon Data Firehose

– destination streaming data store, Real-Time Streaming

Data Ingestion

– Glue use case, AWS Glue

– and Hive, Hive

– prerequisite knowledge, What Is a Data Warehouse?

– Redshift Spectrum querying of, Query Data from Data

Lake

– star schema in, Common schema design patterns

database management system (DBMS), What Is a Database

Management System?

databases

– credentials management, Manage Database Credentials

– Glue connectors for, Data Sources and Destinations

– prerequisite knowledge, Databases and Types of

Databases-NoSQL Databases

– relational (see relational databases)

DataFrames, Spark, Spark

datasets

– creating with QuickSight, Datasets

– input set for data processing pipeline, Overview of

Input Dataset

– Spark Datasets, Spark

DataSync, Migration and Transfer, Ingesting files from on

premises

DataZone (see Amazon DataZone)

DBMS (database management system), What Is a Database

Management System?

DCL (Data Control Language), Relational Databases

DDL (Data Definition Language), Relational Databases,

DDL Capabilities

DDOS (distributed denial of service) attacks, Security,

Identity, and Compliance

Deequ framework, Ensuring Data Quality and Reliability:

Deequ and DQDL-Using Deequ with Amazon EMR, Data

Profiling

Delta Lake (table format), Table Formats

denormalized schemas, Common schema design patterns

dependencies, DAG, Managed Workflows for Apache

Airflow

destination data stores, Real-Time Streaming Data

Ingestion, Best Practices for Amazon Data Firehose

dimensional modeling, Logical data modeling in Amazon

Redshift

direct-attached storage (DAS), AWS Core Storage Services

directed acyclic graphs (DAGs), Application Integration,

Managed Workflows for Apache Airflow

disaster recovery (DR), Disaster Recovery and High

Availability-HA for Amazon OpenSearch

distributed denial of service (DDOS) attacks, Security,

Identity, and Compliance

distributed processing frameworks, Distributed Processing

Frameworks for Big Data-Trino

distributed storage layer, data processing pipeline, High-

Level Architecture Overview of Data Processing Pipelines

distribution styles, Redshift clusters, Physical data

modeling in Amazon Redshift: Choosing the best

distribution style

DML (Data Manipulation Language), Relational Databases

DMS (see AWS Database Migration Service)

DMS Schema Conversion, Converting schema using DMS

Schema Conversion

Docker, Compute and Containers

document databases, AWS Cloud Databases

DocumentDB, Database, AWS Cloud Databases

Domain Name System (DNS), Networking and Content

Delivery

DPUs (data processing units), Data Processing Units

DQDL (Glue Data Quality Definition Language), Data

Profiling

DQL (Data Query Language), Relational Databases

duplicate records, identifying (DataBrew), Identify

Duplicate Records

dynamic data masking (DDM), Redshift, Dynamic data

masking

dynamic partitioning, Data Firehose, Best Practices for

Amazon Data Firehose

DynamoDB (see Amazon DynamoDB)

E

EBS (Amazon Elastic Block Store), Storage, AWS Core

Storage Services, Selecting Storage Solutions for Hot and

Cold Data

EC2 (see Amazon Elastic Compute Cloud)

ECR (Elastic Container Registry), Compute and Containers

ECS (Elastic Container Service), Compute and Containers

EFS (Elastic File System), Storage, AWS Core Storage

Services

EKS (Elastic Kubernetes Service), Compute and

Containers, Deployment Options

Elasticache, Selecting Storage Solutions for Hot and Cold

Data

ELT (extract, load, and transform), ETL Versus ELT,

Ingesting streaming data from IoT devices into a data lake,

Performing COPY and UNLOAD Operations to Move Data

Between Amazon S3 and Amazon Redshift

embedded analytics, QuickSight, Amazon QuickSight

EMR (see Amazon Elastic MapReduce)

EMRFS (EMR File System), Configuring a VPC and

Security Group for an Amazon EMR Cluster

encryption and decryption, Manage Database Credentials,

Data Encryption and Decryption and Managing the

Encryption Keys-Amazon Redshift

encryption keys, Security, Identity, and Compliance,

Managing Encryption Keys with AWS KMS-Best practices

for managing keys with AWS KMS

enhanced fan-out feature, KDS, Amazon Kinesis Data

Streams, Best Practices for Consuming Data from KDS

error handling

– automated, Automated Data Quality Checks and Error

Handling

– data pipelines, Troubleshooting and Performance

Tuning-Resource constraints

ETL (extract, transform, and load), ETL Versus ELT

– Data Firehose near real-time streaming, Amazon Data

Firehose

– versus ELT, ETL Versus ELT

– Glue, AWS Glue, AWS Glue, Glue Jobs, AWS Glue

interactive sessions

– Glue Studio for workflows, Glue Studio

– moving data between S3 and Redshift, Performing

COPY and UNLOAD Operations to Move Data Between

Amazon S3 and Amazon Redshift

Event bus (router), Amazon EventBridge

event-driven architectures and processing, Event-Driven

Processing

– EventBridge, Application Integration, Sample Use

Case-Sample Use Case, Event-Driven Pipeline

Maintenance with EventBridge

– KDS, Amazon Kinesis Data Streams

– MSF use case, Amazon Managed Service for Apache

Flink

– MSK use case, Amazon Managed Streaming for Apache

Kafka

– Step Functions, AWS Step Functions

EventBridge, Application Integration, Amazon EventBridge-

Sample Use Case, Event-Driven Pipeline Maintenance with

EventBridge

events and API actions, tracking (CloudTrail), Management

Governance

exam information (see certification essentials)

Exam Prep Official Practice Question Set, Exam-Style

Questions

executive summaries, QuickSight Q, Create executive

summaries

expiring snapshots from open table formats, Expiring

Snapshots from Open Table Formats

express brokers, MSK clusters, Amazon MSK provisioned

cluster versus serverless

extract, load, and transform (ELT), ETL Versus ELT,

Ingesting streaming data from IoT devices into a data lake,

Performing COPY and UNLOAD Operations to Move Data

Between Amazon S3 and Amazon Redshift

extract, transform, and load (ETL) (see ETL (extract,

transform, and load))

extraction functions, Glue DataBrew, Formatting Functions

F

federated queries, Amazon Athena, Building a Data

Strategy with Multiple Data Stores, Athena Federated SQL-

Athena Federated SQL, Analyzing Data from Operational

Data Stores Using Amazon Redshift

federated users, IAM, Best Practices to Follow with AWS

IAM

file formats

– AVRO, Row-Based File Formats

– columnar, Column-Based File Formats, Use columnar

file formats, Best Practices When Using Amazon

Athena, Columnar Formats

– CSV, Row-Based File Formats

– Glue best practices, Best Practices for AWS Glue

– JSON, Ingesting streaming data from IoT devices into a

data lake, Row-Based File Formats, Semi-Structured

Data Analysis-Semi-Structured Data Analysis

– Parquet, Ingesting streaming data from IoT devices into

a data lake, Ingesting data into an Amazon S3 data lake

using DMS, Column-Based File Formats, Use columnar

file formats

file size optimization, S3 Data Lake, Optimize file size

file storage, AWS Core Storage Services

fine-grained access controls (FGAC), AWS Lake Formation

firewall, Security, Identity, and Compliance, Security

Groups Overview

Flink (see Amazon Managed Service for Apache Flink)

formatting functions, Glue DataBrew, Formatting Functions

foundation models (FMs), machine learning, Machine

Learning, Amazon SageMaker AI

fraud detection, Amazon Managed Service for Apache

Flink, Reference Architecture: Streaming Analytics Pattern

with Apache Flink and MSK

FSx, AWS Core Storage Services

G

generative AI (GenAI)

– Amazon Redshift ML for data analytics, Redshift ML

and Generative AI

– AWS Glue to troubleshoot Spark, GenAI-Powered

Troubleshooting for Spark in AWS Glue

– new Amazon/AWS products and upgrades to integrate,

Improving the Developer Experience with Generative

AI-GenAI-Powered Troubleshooting for Spark in AWS

Glue

– SageMaker Catalog, Amazon SageMaker Catalog

– visualization building with, QuickSight GenBI

Capabilities (QuickSight Q)-Enhanced dashboard Q&A

generative AI–powered assistant (Amazon Q), Machine

Learning

generative BI (QuickSight Q), Amazon QuickSight

geospatial analytics, Use Cases, Geospatial Data Analysis

git add, How to Work with Code Repositories

git clone, How to Work with Code Repositories

git commit, How to Work with Code Repositories

git fetch, How to Work with Code Repositories

git merge, How to Work with Code Repositories

git pull, How to Work with Code Repositories

git push, How to Work with Code Repositories

git status, How to Work with Code Repositories

GitHub, How to Work with Code Repositories

global secondary indexes (GSIs), DynamoDB, Core

concepts of DynamoDB, Utilizing global secondary indexes

and local secondary indexes

Glue (see AWS Glue)

governance, Data Governance-Auditing AWS configuration

changes with AWS Config

– Amazon Lake Formation, AWS Lake Formation

– business metadata for, Components of Metadata and

Data Catalogs

– cloud environment management, Management

Governance

– data lifecycle management, Data Lifecycle Management

– data lineage, Data Lineage-Amazon SageMaker ML

Lineage Tracking

– in data processing pipeline, High-Level Architecture

Overview of Data Processing Pipelines

– data quality, Data Quality-Data Quality

– data sharing, Data Sharing-Exposing data as a product

in a data marketplace

– as exam topic, Exam Topics

– logging and auditing, Logging and Auditing-Auditing

AWS configuration changes with AWS Config

– machine learning implementation, Amazon SageMaker

AI

– metadata management, Metadata Management and

Technical Catalog-Amazon DataZone business glossary

– OpenSearch Service, Amazon OpenSearch Service

– privacy (see privacy)

– profiling data, Data Profiling

– security (see security)

– versioning for data lifecycle optimization, Ensuring S3

Data Resiliency with S3 Versioning-S3 Versioning and

Object Lifecycle Management

Grafana, Management Governance, Amazon Managed

Service for Prometheus and Grafana

graph database service (Neptune), Database, AWS Cloud

Databases

Graviton instances (EMR), Instance Types

GSIs (global secondary indexes), DynamoDB, Core

concepts of DynamoDB, Utilizing global secondary indexes

and local secondary indexes

H

Hadoop clusters, What Is a Data Lake?

Hadoop Distributed File System (HDFS), Distributed

Processing Frameworks for Big Data, What Is a Data Lake? ,

Storage

Hadoop framework, Distributed Processing Frameworks for

Big Data

hardware security module (HSM) encryption, Amazon

Redshift

hierarchical databases, Hierarchical Databases

high availability (HA), Disaster Recovery and High

Availability-HA for Amazon OpenSearch

histograms, QuickSight, Visualizations

Hive (see Apache Hive)

HiveQL (Apache Hive Query Language), Hive

HMS (Hive Metastore Server), Hive

hot and cold data, selecting storage solutions for, Selecting

Storage Solutions for Hot and Cold Data-Storage Tier

Decisions for Different Access Patterns

HSM (hardware security module) encryption, Amazon

Redshift

hub and spoke architecture, Redshift, Amazon Redshift

Storage-Amazon Redshift Storage

Hudi, Table Formats

I

IaaS (infrastructure as a service), What Is Cloud

Computing?

IaC (infrastructure as code), Management Governance,

Infrastructure as Code-Choosing the right IaC solution

IAM (see AWS Identity and Access Management)

Iceberg, Amazon Athena, Table Formats, Use Cases,

Amazon SageMaker Lakehouse

in-memory databases, Database, AWS Cloud Databases

in-memory storage, Selecting Storage Solutions for Hot and

Cold Data

incremental crawls, to update changing data sources, Use

crawlers effectively

incremental refresh, Redshift materialized views, Amazon

Redshift materialized views

Independent software vendors (ISVs), Amazon QuickSight

indexes

– OpenSearch, HA for Amazon OpenSearch

– partition, Optimize performance with Glue Data

Catalog

– secondary DynamoDB, Core concepts of DynamoDB,

Utilizing global secondary indexes and local secondary

indexes-Common use cases and considerations

infrastructure as a service (IaaS), What Is Cloud

Computing?

infrastructure as code (IaC), Management Governance,

Infrastructure as Code-Choosing the right IaC solution

ingesting data (see data ingestion)

inline policies, authorization, Managed Versus Self-

Managed Policies

instance types, EMR, Instance Types

IoT Core, Real-Time Streaming Data Ingestion, Ingesting

streaming data from IoT devices into a data lake

IoT devices

– Amazon MSK use case, Amazon Managed Streaming

for Apache Kafka

– streaming data ingestion into data lake, Ingesting

streaming data from IoT devices into a data lake

ISVs (Independent software vendors), Amazon QuickSight

items, DynamoDB table, Core concepts of DynamoDB

J

Jam, Study Plan

job bookmarks, Glue, Glue Bookmarks, Best Practices for

AWS Glue

job worker types, Glue, Worker Type

JobManager, Flink, Flink

jobs, Glue, Data Transformation Using AWS Glue, Glue

Jobs, AWS Glue Workflows

Join data transformation, Glue DataBrew, Integrating Data

from Multiple Sources

JSON file format, Ingesting streaming data from IoT

devices into a data lake, Row-Based File Formats, Semi-

Structured Data Analysis-Semi-Structured Data Analysis

Jupyter notebooks, Glue Studio notebooks, Amazon EMR

Notebooks

K

Kafka (see Amazon Managed Service for Apache Kafka)

KDS (see Amazon Kinesis Data Streams)

key-value databases, DynamoDB, Database, AWS Cloud

Databases

Keyspaces, Database

Kimball methodology, Logical data modeling in Amazon

Redshift

Kimball, Ralph, Logical data modeling in Amazon Redshift

Kinesis Agent, Real-Time Streaming Data Ingestion

Kinesis Consumer Library (KCL), Real-Time Streaming

Data Ingestion

Kinesis Data Streams (see Amazon Kinesis Data Streams)

Kinesis Producers Library (KPL), Real-Time Streaming Data

Ingestion

KMS (Key Management Service), Security, Identity, and

Compliance

KPIs (key performance indicators), QuickSight,

Visualizations

Kubernetes, Amazon EMR, Compute and Containers

L

Lake Formation (see AWS Lake Formation)

lakehouse architecture, Building a Data Strategy with

Multiple Data Stores

– Amazon SageMaker Lakehouse, Amazon SageMaker

Lakehouse-Amazon SageMaker Lakehouse

– data store management, Performing COPY and

UNLOAD Operations to Move Data Between Amazon S3

and Amazon Redshift

– reference architecture with Glue, Redshift, and Athena,

Reference Architecture: Lakehouse with Glue, Redshift,

and Athena

Lambda (see AWS Lambda)

least privilege principle, IAM Role-Based Authentication

and Authorization, Create Amazon QuickSight execution

role using AWS IAM

lexical search, OpenSearch Service, Amazon OpenSearch

Service

LF-Tags (Lake Formation tags), Tag-based access control,

Best practices for tag-based access control

lifecycle of data, management of (see data lifecycle

management)

lightweight data transformations, Data Firehose, Amazon

Data Firehose

line charts, QuickSight, Visualizations-Visualizations

local secondary indexes (LSIs), DynamoDB, Core concepts

of DynamoDB, Utilizing global secondary indexes and local

secondary indexes

log analytics

– Athena use case, Amazon Athena

– example data lifecycle, Example: Building a Petabyte-

Scale Log Analytics Solution on AWS

– ingesting logs for analysis, Ingesting AWS logs into log

analytics solutions-Ingesting AWS logs into log

analytics solutions

– OpenSearch Service, Amazon OpenSearch Service

log data, Data Firehose for streaming into SIEM tools,

Amazon Data Firehose

log storage in Amazon S3, Reference Architecture:

Streaming Analytics Pattern with Apache Flink and MSK

logging and auditing for governance, Logging and Auditing-

Auditing AWS configuration changes with AWS Config

logical data modeling, Introduction to Data Modeling,

Logical data modeling in Amazon Redshift

logs and traces, pipeline processing, Monitoring logs and

traces

LSIs (local secondary indexes), DynamoDB, Core concepts

of DynamoDB

M

machine learning (ML)

– data lineage tracking, Amazon SageMaker ML Lineage

Tracking

– EMR, Amazon EMR

– Glue, AWS Glue

– Glue DataBrew, AWS Glue DataBrew

– Redshift, Amazon Redshift

– Redshift ML, Redshift ML and Generative AI

– SageMaker, Use Cases

– SageMaker AI, Amazon SageMaker AI-Amazon

SageMaker AI

machine learning operations (MLOps), Amazon SageMaker

AI

managed business data catalog, DataZone, Amazon

DataZone

managed versus self-managed policies for authorization,

Managed Versus Self-Managed Policies

managed versus unmanaged services, Managed Services

Versus Unmanaged Services

map process (MapReduce), MapReduce

MapReduce, Certification Essentials, MapReduce

– (see also Amazon Elastic MapReduce)

massively parallel processing (MPP) architecture, Amazon

Redshift, SQL Analytics Using Amazon Redshift

materialized views (MVs), Ingesting click streams into a

data warehouse for real-time reporting, SQL Data

Transformations

medallion architecture, data lake management, Data

Modeling Strategies for Data Lakes

MemoryDB, Database

message queuing service (SQS), Application Integration

messaging service (SNS), Application Integration

metadata

– Amazon S3 Metadata, Amazon S3 Metadata

– collecting for data lineage, Data Lineage

– data store catalogs, Components of Metadata and Data

Catalogs

– governance management role for, Metadata

Management and Technical Catalog-Amazon DataZone

business glossary

– manually defining for Glue Data Catalog, Defining

metadata manually

metadata catalog, data processing pipeline, High-Level

Architecture Overview of Data Processing Pipelines

metric alarms, CloudWatch, CloudWatch Alarms

metrics monitoring and alerting (Managed Prometheus),

Management Governance

MFA (multifactor authentication), How to Set Up an AWS

Account, Best Practices to Follow with AWS IAM

missing data values, filling with Glue DataBrew, Fill

Missing Values-Fill Missing Values

MLOps (machine learning operations), Amazon SageMaker

AI

monetization of data, Redshift, Amazon Redshift

MongoDB, Database

monitoring and observability, data pipeline resiliency,

Monitoring-Monitoring using system tables

monitoring component, data processing pipeline, High-

Level Architecture Overview of Data Processing Pipelines

MPP (massively parallel processing) architecture, Amazon

Redshift, SQL Analytics Using Amazon Redshift

MQTT messages, Real-Time Streaming Data Ingestion

MSF (see Amazon Managed Service for Apache Flink)

MSK (see Amazon Managed Service for Apache Kafka)

multi-account environment setup, How to Set Up an AWS

Account

multi-cluster architectures, Redshift storage, Amazon

Redshift Storage-Amazon Redshift Storage

multifactor authentication (MFA), How to Set Up an AWS

Account, Best Practices to Follow with AWS IAM

multiple choice questions, Exam Format

multiple data stores for data strategy, Building a Data

Strategy with Multiple Data Stores-Building a Data

Strategy with Multiple Data Stores

multiple response questions, Exam Format

MVs (materialized views), Ingesting click streams into a

data warehouse for real-time reporting, SQL Data

Transformations

MWAA (Managed Workflows for Apache Airflow),

Application Integration, Managed Workflows for Apache

Airflow-Sample Use Case

N

name-based access control, Lake Formation, Name-based

access control

naming conventions

– Amazon S3 buckets, Step-by-Step Implementation

Guide

– Glue Data Catalog, Establish a consistent naming

convention

near real-time data ingestion, Data Ingestion

nesting functions, data structures (Glue DataBrew),

Nesting and Unnesting Data Structures, Nesting and

Unnesting Data Structures

network security, Network Security-OpenSearch Service–

managed VPC endpoints

no-code data transformation, Glue DataBrew, AWS Glue

DataBrew

normalization of data, and schema design patterns,

Common schema design patterns

NoSQL databases, NoSQL Databases, Database, Data

Modeling Strategies for Amazon DynamoDB-Common use

cases and considerations

notebook-based development, Glue Studio, Glue Studio

notebooks

notebooks, analyzing data using, Analyzing Data Using

Notebooks-Amazon EMR Notebooks

O

object storage, AWS Core Storage Services, Selecting

Storage Solutions for Hot and Cold Data, S3 Storage Lens

on-demand mode, data stream capacity, Best Practices for

Streaming Ingestion

on-premises applications and data sources, ingesting into cloud, Ingesting files from on premises

online analytical processing (OLAP), OLTP Versus OLAP,

Common schema design patterns

online transaction processing (OLTP), OLTP Versus OLAP

open table formats

– Athena support for, Amazon Athena

– expiring snapshots from, Expiring Snapshots from

Open Table Formats

– with S3 Data Lake, Use open table formats

OpenSearch Service (see Amazon OpenSearch Service)

operators, DAG, Managed Workflows for Apache Airflow

optimizing data lifecycle, Optimizing Data Management

with Amazon S3-S3 Versioning and Object Lifecycle

Management

– Amazon S3 Lifecycle configuration tool, Managing the

Data Lifecycle with Amazon S3 Lifecycle-Managing the

Data Lifecycle with Amazon S3 Lifecycle

– archiving data from DynamoDB and S3, Archiving Data

from Amazon DynamoDB to Amazon S3-Archiving Data

from Amazon DynamoDB to Amazon S3

– expiring snapshots from open table formats, Expiring

Snapshots from Open Table Formats

– monitoring and management, Monitoring the Amazon

S3 Data Lifecycle-AWS Cost Explorer

– S3 Intelligent-Tiering, S3 Intelligent-Tiering-S3

Intelligent-Tiering

– storage classes, Overview of S3 Storage Classes-

Choosing the Right Storage Class

– versioning for data resiliency and compliance, Ensuring

S3 Data Resiliency with S3 Versioning-S3 Versioning

and Object Lifecycle Management

ORC (optimized row columnar), file format, Column-Based

File Formats

ORC data format, Ingesting streaming data from IoT

devices into a data lake, Use columnar file formats

orchestrating data pipelines, Orchestrating Data Pipelines-

Choosing the Right Orchestration Service

– choosing best service, Choosing the Right

Orchestration Service-Choosing the Right

Orchestration Service

– data ingestion, Orchestrating Data Pipelines-Choosing

the Right Orchestration Service

– data transformation, Orchestrating Data Pipelines-

Choosing the Right Orchestration Service

– ECS, Compute and Containers

– EventBridge, Application Integration, Amazon

EventBridge-Sample Use Case, Event-Driven Pipeline

Maintenance with EventBridge

– Glue workflows, AWS Glue Workflows-Sample Use Case

– MWAA, Managed Workflows for Apache Airflow-Sample

Use Case

– Redshift Query Editor v2, Amazon Redshift Scheduler

– Step Functions, AWS Step Functions

– workflow orchestration, High-Level Architecture

Overview of Data Processing Pipelines, AWS Step

Functions

ownership, data classification by, Enriching Data Catalogs

with Data Classification

P

PaaS (platform as a service), What Is Cloud Computing?

parallelism, Overview of Big Data

– enhanced fan-out consumers mode, KDS, Best Practices

for Consuming Data from KDS

– MPP architecture, Amazon Redshift, SQL Analytics

Using Amazon Redshift

– Presto, Presto

Parquet data format, Ingesting streaming data from IoT

devices into a data lake, Ingesting data into an Amazon S3

data lake using DMS, Column-Based File Formats, Use

columnar file formats

partition indexes, Optimize performance with Glue Data

Catalog

partition keys

– Athena, Best Practices When Using Amazon Athena

– DynamoDB, Core concepts of DynamoDB

– MSK, Best Practices for Amazon MSK, General

practices when using Amazon MSK

– S3 Data Lake, Partition your data

– shards in KDS, Best Practices for Sharding

partition projection, Best Practices When Using Amazon

Athena

partition skewing, General practices when using Amazon

MSK

partitioning data, Best Practices for AWS Glue, Partition

your data

performance

– batch processing pipeline implementation, Best

Practices and Optimization Techniques

– data pipeline tuning, Troubleshooting and Performance

Tuning-Resource constraints

– database migrations, Best Practices for AWS DMS

Replication Instances and Tasks-Best Practices for AWS

DMS Replication Instances and Tasks

– Glue Data Catalog for optimizing, Optimize

performance with Glue Data Catalog

– KPIs (QuickSight), Visualizations

– OpenSearch Service, Amazon OpenSearch Service

– SPICE in-memory cache for query, Datasets-Refreshing

SPICE Datasets

permissions

– data classification’s role in, Enriching Data Catalogs

with Data Classification

– Lake Formation management of, AWS Lake Formation

– Redshift GRANT and REVOKE, Manage permissions

with GRANT and REVOKE

– setting user IAM, Add Permissions to Authorize the

User, Best Practices to Follow with AWS IAM

personalized data portal, DataZone, Amazon DataZone

personally identifiable information (PII), Protecting

Sensitive Data-Protecting Sensitive Data, Sensitive Data

Detection and Redaction

physical data modeling, Introduction to Data Modeling,

Physical data modeling in Amazon Redshift: Choosing the

best distribution style-Physical data modeling in Amazon

Redshift: Choosing the best sort key

pie and donut charts, QuickSight, Visualizations

pivot tables, QuickSight, Visualizations

PL/pgSQL, Amazon Redshift stored procedures

PL/SQL (Procedural Language for SQL), Relational

Databases

platform as a service (PaaS), What Is Cloud Computing?

PostgreSQL database software, SQL Functions

preparation of data for nontechnical personas, Glue

DataBrew, Data Preparation for Nontechnical Personas-

Other Data Preparation Transformations

prerequisite knowledge for data engineers, Prerequisite

Knowledge for Aspiring Data Engineers-Conclusion

– big data, Overview of Big Data-Overview of Big Data

– CI/CD, CI/CD

– cloud computing, Cloud Computing and AWS-What Is

Cloud Computing?

– code repositories, Working with Code Repositories-How

to Work with Code Repositories

– data lakes, What Is a Data Lake? , Data Warehouse

Versus Data Lake

– data processing methods, Different Ways to Process

Data-Event-Driven Processing

– data warehouses, What Is a Data Warehouse?

– databases, Databases and Types of Databases-NoSQL

Databases

– distributed processing frameworks, Distributed

Processing Frameworks for Big Data-Trino

– getting started with AWS, Getting Started with AWS-

Best Practices to Follow with AWS IAM

– high-level architecture of data processing pipelines,

High-Level Architecture Overview of Data Processing

Pipelines-High-Level Architecture Overview of Data

Processing Pipelines

– OLTP versus OLAP, OLTP Versus OLAP

presentation formats, QuickSight, Presentation Formats

Presto (PrestoDB), Presto

primary key, DynamoDB, Core concepts of DynamoDB

privacy

– GDPR and HIPAA compliance, Ensuring S3 Data

Resiliency with S3 Versioning

– KMS keys, Managing Encryption Keys with AWS KMS

– PII protection, Protecting Sensitive Data-Protecting

Sensitive Data, Sensitive Data Detection and Redaction

– sensitive data detection and redaction, Sensitive Data

Detection and Redaction-Integrating AWS Glue

sensitive data detection

– VPC (see Amazon Virtual Private Cloud)

PrivateLink, Networking and Content Delivery

Procedural Language for SQL (PL/SQL), Relational

Databases

processing component, data processing pipeline, High-

Level Architecture Overview of Data Processing Pipelines

producers, data stream, Best Practices for Streaming

Ingestion

Prometheus, Management Governance, Amazon Managed

Service for Prometheus and Grafana

provisioned compute, Amazon Redshift Compute

provisioned mode, data stream capacity, Best Practices for

Streaming Ingestion

PySpark, Glue Studio notebooks, Create Amazon S3

buckets for an Iceberg data lake and a streaming

checkpoint-Creating an EMR Studio and EMR Serverless

application

Python shell jobs (Glue), AWS Glue, Glue Jobs

Python UDFs, User-Defined Functions

Q

Q&A, enabling on visualization dashboard, Create

executive summaries

queries (see Amazon Athena; Amazon Redshift; SQL)

query operation, DynamoDB, Core concepts of DynamoDB

query result reuse strategy, Best Practices When Using

Amazon Athena

QuickSight (see Amazon QuickSight)

R

RAG (retrieval-augmented generation), Amazon

OpenSearch Service

raw data layer, data lake, Raw data layer: The landing zone

for raw data

RBAC (role-based access control), Role-based access

control

RDBMS (relational database management systems),

Common schema design patterns-Common schema design

patterns, NoSQL versus relational data modeling

RDDs (Resilient Distributed Datasets), Spark

RDS (Relational Database Service), Database, Analyzing

Data from Operational Data Stores Using Amazon Redshift

real-time analytics and processing

– EMR, Amazon EMR

– MSF use case, Amazon Managed Service for Apache

Flink

– MSK use case, Amazon Managed Streaming for Apache

Kafka

real-time search, OpenSearch Service, Reference

Architecture: Streaming Analytics Pattern with Apache

Flink and MSK

real-time streaming, Real-Time Stream Processing

– Data Firehose ETL, Amazon Data Firehose

– data ingestion, Real-Time Streaming Data Ingestion-

Ingesting AWS logs into log analytics solutions

– data ingestion/processing use cases, Data Ingestion,

Sample Streaming Ingestion Use Cases-Ingesting AWS

logs into log analytics solutions

– data transformation, Streaming Data Transformation,

Choosing the Right Streaming Transformation Service-

Choosing the Right Streaming Transformation Service

– KDS data analytics, Amazon Kinesis Data Streams

– pipeline implementation, Implementing a Real-Time

Streaming Pipeline-Conclusion

– Amazon S3 buckets, Create Amazon S3 buckets for

an Iceberg data lake and a streaming checkpoint

– EMR Studio and EMR Serverless application,

Creating an EMR Studio and EMR Serverless

application-Creating an EMR Studio and EMR

Serverless application

– KDS, Creating a Kinesis data stream

– Kinesis Data Generator, Setting up Amazon Kinesis

Data Generator

– Spark Structured Streaming job, Submitting the

Spark Streaming job to the EMR Serverless

application-Submitting the Spark Streaming job to

the EMR Serverless application

– use case and architecture, Use Case and

Architecture Overview

– VPC endpoints, Creating VPC endpoints for Kinesis

Data Streams, Amazon S3, and EMR Serverless-

Creating VPC endpoints for Kinesis Data Streams,

Amazon S3, and EMR Serverless

rebash command, How to Work with Code Repositories

recovery point objective (RPO), Disaster Recovery and High

Availability-Disaster Recovery and High Availability

recovery time objective (RTO), Disaster Recovery and High

Availability-Disaster Recovery and High Availability

Redshift (see Amazon Redshift)

Redshift Managed Storage (RMS), Amazon Redshift stored

procedures

Redshift Processing Units (RPUs), Amazon Redshift

Compute

reduce process (MapReduce), MapReduce

region failure recovery (Redshift), Region failure recovery

Regions, AWS, An Overview of Amazon Web Services

relational database management systems (RDBMS),

Common schema design patterns-Common schema design

patterns, NoSQL versus relational data modeling

Relational Database Service (RDS), Analyzing Data from

Operational Data Stores Using Amazon Redshift

relational databases, Relational Databases, AWS Cloud

Databases

– AWS-supported services, Data Sources

– choosing among Amazon offerings, AWS Cloud

Databases

– RDS, Database

replacement functions for data cleaning and

standardization, Glue DataBrew, Formatting Functions

resharding a stream, Best Practices for Streaming

Ingestion

resiliency, data pipeline, Data Pipeline Resiliency-HA for

Amazon OpenSearch

– alerting, Alerting-Notifications

– automated data quality checks and error handling,

Automated Data Quality Checks and Error Handling

– CI/CD pipelines, CI/CD Pipelines

– data quality and reliability, Ensuring Data Quality and

Reliability: Deequ and DQDL-Using Deequ with Amazon

EMR

– disaster recovery and high availability, Disaster

Recovery and High Availability-HA for Amazon

OpenSearch

– event-driven pipeline maintenance, Event-Driven

Pipeline Maintenance with EventBridge

– IaC, Infrastructure as Code-Choosing the right IaC

solution

– monitoring and observability, Monitoring-Monitoring

using system tables

– troubleshooting and performance tuning,

Troubleshooting and Performance Tuning-Resource

constraints

– version control and collaboration, Version Control and

Collaboration

Resilient Distributed Datasets (RDDs), Spark

Resource Access Manager, Best practices for cross-account

sharing

resource constraints, error handling for, Resource

constraints

resource-based access policies, Secure Data in Amazon S3

retrieval-augmented generation (RAG), Amazon

OpenSearch Service

reusable recipes, Glue DataBrew, AWS Glue DataBrew

RMS (Amazon Redshift Managed Storage), Amazon

Redshift stored procedures

role-based access control (RBAC), Role-based access

control

role-based authentication and authorization, IAM Role-

Based Authentication and Authorization

root admin user, avoidance of in data lake access control,

Best practices to integrate AWS Lake Formation

row-based file formats, data lake, Row-Based File Formats

row-level access control, Lake Formation, Row- and

column-based data filtering

row-level security (RLS), Redshift, Row-level security

RPO (recovery point objective), Disaster Recovery and High

Availability-Disaster Recovery and High Availability

RPUs (Redshift Processing Units), Amazon Redshift

Compute

RTO (recovery time objective), Disaster Recovery and High

Availability-Disaster Recovery and High Availability

rules, EventBridge, Amazon EventBridge

run properties, in Glue workflows, AWS Glue Workflows

S

S3 (see Amazon S3)

SaaS (software as a service), What Is Cloud Computing?,

Data Sources

SageMaker (see Amazon SageMaker)

SageMaker AI (formerly SageMaker), Amazon SageMaker

AI-Amazon SageMaker AI

SageMaker Model Dashboard, Amazon SageMaker AI

SAM (Serverless Application Model), Compute and

Containers, AWS Serverless Application Model

SAML-enabled cloud applications, Enable Single Sign-on

with AWS IAM Identity Center

Samples Data Profiler utility, Data Profiling

SAN (storage area network), AWS Core Storage Services

scaling and scalability

– autoscaling, Amazon Kinesis Data Streams, Best

Practices for AWS Glue, Autoscaling

– AWS Glue’s ETL engine, AWS Glue

– Glue autoscaling, Best Practices for AWS Glue

– message queuing service (SQS), Application

Integration

– MSK Serverless, Amazon Managed Streaming for

Apache Kafka

– QuickSight, Amazon QuickSight

– Redshift, Amazon Redshift

scan operation, DynamoDB, Core concepts of DynamoDB

scatter plots, QuickSight, Visualizations

schema change management, Glue Data Catalog, Manage

schema changes effectively

schema conversion, Ingesting data into Amazon Redshift

using DMS

Schema Conversion Tool (SCT), Migration and Transfer

schema design patterns, Common schema design patterns-

Common schema design patterns, NoSQL versus relational

data modeling-Example use case: Ecommerce website

“schema on read” approach, data lakes, Data Warehouse

Versus Data Lake

“schema on write” approach, data warehouses, Data

Warehouse Versus Data Lake

SCT (Schema Conversion Tool), Migration and Transfer

search and log analytics, destination streaming data store,

Real-Time Streaming Data Ingestion

search engine (OpenSearch), AWS Cloud Databases

secondary indexes, DynamoDB tables, Core concepts of

DynamoDB, Utilizing global secondary indexes and local

secondary indexes-Common use cases and considerations

secrets (sensitive data), Security, Identity, and Compliance

Secrets Manager, Security, Identity, and Compliance,

Manage Database Credentials

security, Data Security and Governance-Access control with

Lake Formation

– access control (see access control)

– Amazon Redshift database management, Database

Security in Amazon Redshift-Dynamic data masking

– Amazon S3 data, Secure Data in Amazon S3

– batch processing pipeline implementation, Best

Practices and Optimization Techniques

– in data processing pipeline, High-Level Architecture

Overview of Data Processing Pipelines

– data sharing with Redshift, Amazon Redshift

– database credentials management, Manage Database

Credentials

– encryption and decryption, Data Encryption and

Decryption and Managing the Encryption Keys-Amazon

Redshift

– as exam topic, Exam Topics

– Glue Data Catalog, Secure the Data Catalog

– network, Network Security-OpenSearch Service–

managed VPC endpoints

– OpenSearch Service, Amazon OpenSearch Service

– sensitive data detection and redaction, Sensitive Data

Detection and Redaction-Integrating AWS Glue

sensitive data detection

– user authentication and authorization, Create an IAM

User for Authentication, Security, Identity, and

Compliance, User Authentication and Authorization-

IAM Identity Center integration with Amazon DataZone

security groups, Security Groups Overview-Configuring a

VPC and Security Group for an Amazon EMR Cluster,

Redshift-managed VPC endpoints

semantic search (OpenSearch), Amazon OpenSearch

Service

semi-structured data, Overview of Big Data, Ingesting click

streams into a data warehouse for real-time reporting,

Semi-Structured Data Analysis-Semi-Structured Data

Analysis

sensitive data, protecting, Security, Identity, and

Compliance, Protecting Sensitive Data-Protecting Sensitive

Data, Enriching Data Catalogs with Data Classification,

Sensitive Data Detection and Redaction-Integrating AWS

Glue sensitive data detection

SerDes (serialization and deserialization) for data format

conversion, Amazon Athena

server-wide encryption, Enabling encryption and managing

keys in AWS

Serverless Application Model (SAM), Compute and

Containers, AWS Serverless Application Model

serverless services

– Athena (see Amazon Athena)

– cost optimization advantage, Leveraging Serverless

Services

– Data Firehose, Amazon Data Firehose

– designing to detect fraud, Real-World Example:

Designing a Serverless Stream Analytics Platform to

Detect Fraud-Real-World Example: Designing a

Serverless Stream Analytics Platform to Detect Fraud

– Glue (see AWS Glue)

– Lambda (see AWS Lambda)

– MSK cluster, Amazon MSK serverless cluster

– QuickSight, Amazon QuickSight

Service Catalog AppRegistry, AWS Well-Architected Tool

service-level agreements (SLAs), Data Warehouse Versus

Data Lake

service-linked roles (SLRs), Service-Linked Roles, Best

practices to integrate AWS Lake Formation

shards and sharding, Best Practices for Streaming

Ingestion, Best Practices for Streaming Ingestion

shared responsibility model, AWS, Managed Services

Versus Unmanaged Services

shared throughput consumers mode, KDS, Best Practices

for Consuming Data from KDS

sheets visualization format, Presentation Formats

Shield, Security, Identity, and Compliance

Simple Queue Service (SQS), Application Integration

single sign-on (SSO) with IAM Identity Center, Enable

Single Sign-on with AWS IAM Identity Center-IAM Identity

Center integration with Amazon DataZone

sink connectors, MSK Connect, General practices when

using Amazon MSK

Skill Builder Labs, Study Plan

skillbuilder.aws, Exam-Style Questions

SLRs (service-linked roles), Service-Linked Roles, Best

practices to integrate AWS Lake Formation

SNAPPY format, data compression, Use compression

snapshots, table format, Expiring Snapshots from Open

Table Formats

Snow Family, Migration and Transfer

Snowball, Migration and Transfer

Snowcone, Migration and Transfer

snowflake schema, Common schema design patterns

SNS (Simple Notification Service), Reference Architecture:

Streaming Analytics Pattern with Apache Flink and MSK,

Application Integration, Notifications

software as a service (SaaS), What Is Cloud Computing?

Solutions Architects, problem-solving framework, Think

Like an AWS Solutions Architect: Translating a Real-World

Problem-Solving Framework into Certification-The

Solutions Architect’s Problem-Solving Framework

sort keys, Physical data modeling in Amazon Redshift:

Choosing the best sort key, Core concepts of DynamoDB,

Selecting the right sort key

source connectors, MSK Connect, General practices when

using Amazon MSK

Spark (see Apache Spark)

Spark jobs, Glue Jobs

SPICE in-memory cache, Amazon QuickSight, Reference

Architecture: Lakehouse with Glue, Redshift, and Athena,

Datasets-Refreshing SPICE Datasets

Spline agent, data lineage building, Building lineage

solutions with AWS Glue, Amazon Neptune, and Spline

SQL (Structured Query Language), Relational Databases

– Athena for analytics, Amazon Athena, Building a Data

Strategy with Multiple Data Stores, SQL Analytics

Using Amazon Athena-Best Practices When Using

Amazon Athena

– Redshift for analytics, SQL Analytics Using Amazon

Redshift-User-Defined Functions

– Redshift ML, Amazon Redshift

SQL functions, Redshift, SQL Functions

SQL UDFs, User-Defined Functions

SQL-based data transformations, Batch Data

Transformation, SQL-Based Data Transformation Using

Amazon Redshift-Amazon Redshift stored procedures

SQS (Simple Queue Service), Application Integration

SSL/TLS certificates, Data Encryption and Decryption and

Managing the Encryption Keys

SSO (single sign-on) with IAM Identity Center, Enable

Single Sign-on with AWS IAM Identity Center-IAM Identity

Center integration with Amazon DataZone

stage data layer, data lake, Stage data layer: Cleansed and

conformed data

standard brokers, MSK clusters, Amazon MSK provisioned

cluster versus serverless

star schema, Common schema design patterns

state machines, as workflows in Step Functions, AWS Step

Functions

static threshold setup for metric alarms, CloudWatch

Alarms

Step Functions, Application Integration, AWS Step

Functions, Automated Data Quality Checks and Error

Handling

storage

– Amazon S3 (see Amazon S3)

– classes for optimizing data lifecycle, Overview of S3

Storage Classes-Choosing the Right Storage Class

– data store (see data store management)

– EMR workload consideration, Storage

– ingestion into stream storage layer, Real-Time

Streaming Data Ingestion-Real-Time Streaming Data

Ingestion

– Redshift architecture, Amazon Redshift Storage-

Amazon Redshift Storage

– tiered, Amazon Managed Streaming for Apache Kafka,

Storage Tier Decisions for Different Access Patterns-

Storage Tier Decisions for Different Access Patterns,

Tiered Storage

storage area network (SAN), AWS Core Storage Services

Storage Class Analysis, Storage Class Analysis

stored procedures, Redshift, Amazon Redshift stored

procedures

stream storage layer, data pipeline, Real-Time Streaming

Data Ingestion

streaming of data

– data sources, Real-Time Streaming Data Ingestion

– data transformation, Streaming Data Transformation,

Choosing the Right Streaming Transformation Service-

Choosing the Right Streaming Transformation Service

– destination data store, Real-Time Streaming Data

Ingestion

– ETL, Glue Jobs

– ingestion, Real-Time Streaming Data Ingestion, Best

Practices for Streaming Ingestion-Best Practices for

Amazon Data Firehose

– KDS, Amazon Kinesis Data Streams-Amazon Kinesis

Data Streams, Best Practices for Streaming Ingestion

– MSK Connect, Amazon Managed Streaming for Apache

Kafka

– real-time (see real-time streaming)

– reference architecture with Flink and MSK, Reference

Architecture: Streaming Analytics Pattern with Apache

Flink and MSK

structured data, Overview of Big Data, Data Quality

Structured Query Language (see SQL)

Studio notebook, MSF, Amazon Managed Service for

Apache Flink

study plan, certification exam, Study Plan

Super-fast, Parallel, In-memory Calculation Engine

(SPICE), Amazon QuickSight, Reference Architecture:

Lakehouse with Glue, Redshift, and Athena, Datasets-

Refreshing SPICE Datasets

system tables, Redshift, Monitoring using system tables

Systems Manager, Management Governance

T

table formats

– Athena support for, Amazon Athena

– data lake, Table Formats

– Delta Lake, Table Formats

– DynamoDB table organization, Core concepts of

DynamoDB

– expiring snapshots from, Expiring Snapshots from

Open Table Formats

– Hudi, Table Formats

– Iceberg, Amazon Athena, Table Formats, Use Cases,

Amazon SageMaker Lakehouse

tag-based access control (TBAC), Fine-Grained Access

Control with AWS Lake Formation, Tag-based access

control, Best practices for tag-based access control

targets, EventBridge, Amazon EventBridge

TaskManagers, Flink, Flink

tasks, DAG, Managed Workflows for Apache Airflow

TCL (Transaction Control Language), Relational Databases

technical metadata, Components of Metadata and Data

Catalogs

third normal form (3NF) schema, Common schema design

patterns

third-party datasets, ingesting data from, Ingesting third-

party datasets

throttling errors, Throttling errors

tiered storage, Amazon Managed Streaming for Apache

Kafka, Storage Tier Decisions for Different Access Patterns-

Storage Tier Decisions for Different Access Patterns, Tiered

Storage

Transaction Control Language (TCL), Relational Databases

Transfer Family, Migration and Transfer

transformations, Spark, Spark

transforming data (see data transformation)

treemaps, QuickSight, Visualizations

triggers, in Glue workflows, AWS Glue Workflows

Trino (formerly PrestoSQL), Trino

Trino SQL, Trino SQL

Trusted Advisor, AWS Well-Architected Tool

U

ultraWarm storage of data, Storage Tier Decisions for

Different Access Patterns

Union data transformation, Glue DataBrew, Integrating

Data from Multiple Sources

UNLOAD command, Redshift SQL, Performing COPY and

UNLOAD Operations to Move Data Between Amazon S3

and Amazon Redshift

unstructured data, Overview of Big Data, Data Quality

user authentication and authorization, Create an IAM User

for Authentication, Security, Identity, and Compliance,

User Authentication and Authorization-IAM Identity Center

integration with Amazon DataZone

user-defined functions (UDFs), Use Cases, User-Defined

Functions

V

value aspect of big data, Overview of Big Data

variety aspect of big data, Overview of Big Data

velocity of big data, Overview of Big Data

veracity (reliability) of big data, Overview of Big Data

version control and collaboration, Ensuring S3 Data

Resiliency with S3 Versioning-S3 Versioning and Object

Lifecycle Management, Version Control and Collaboration

virtual network isolation, Networking and Content Delivery

virtual servers, cloud environment, Compute and

Containers

visualizations, Visualizations-Enhanced dashboard Q&A

– AutoGraph feature, Visualizations

– AWS IAM, Create Amazon QuickSight execution role

using AWS IAM-Create Amazon QuickSight execution

role using AWS IAM

– bar charts, Visualizations

– box plots, Visualizations

– GenAI to build, QuickSight GenBI Capabilities

(QuickSight Q)-Enhanced dashboard Q&A

– Glue interactive sessions, AWS Glue Interactive

Sessions

– histograms, Visualizations

– KPIs, Visualizations

– line charts, Visualizations-Visualizations

– pie and donut charts, Visualizations

– pivot tables, Visualizations

– presentation formats, Presentation Formats

– QuickSight, Create Amazon QuickSight execution role

using AWS IAM-Create Amazon QuickSight execution

role using AWS IAM

– scatter plots, Visualizations

– treemaps, Visualizations

volume aspect of big data, Overview of Big Data

W

Well-Architected Framework (WAF), AWS Well-Architected

Tool

Well-Architected Lenses, AWS Well-Architected Tool

worker nodes, Spark, Spark

worker types, Glue, Worker Type

workflow orchestration, High-Level Architecture Overview

of Data Processing Pipelines, AWS Step Functions

workgroups, Athena, Workgroups

X

x86-based instances, EMR, Instance Types

Z

zero-ETL integrations, Ingesting Data Using Zero-ETL

Integrations, Storage Tier Decisions for Different Access

Patterns, Amazon SageMaker Lakehouse

zstd (Zstandard) format, data compression, Use

compression

About the Authors

Sakti Mishra is an engineer, architect, author, and

technology leader with more than 18 years of working

experience in the IT product and service industry. He is

currently working as a principal data and AI solutions

architect at Amazon Web Services, where he helps

customers solve complex data- and AI-related problems

with cloud native architecture patterns.

Sakti is passionate about technologies and is always

curious to learn about the latest innovations happening in

the technology domain. During his career he has gained

expertise in multiple industry domains and technologies

such as big data, analytics, machine learning, artificial

intelligence, generative AI, relational/NoSQL/graph

databases, web/mobile application development, and cloud

technologies such as Amazon Web Services and Google

Cloud Platform.

Dylan Qu is a technology leader, architect, engineer, and public speaker with eight years of experience in the IT

industry. He currently works at Amazon Web Services as a

principal solutions architect, where he helps customers

architect highly scalable, performant, and secure data

solutions on AWS. Dylan has authored various blogs and

whitepapers across a diverse range of technologies, such as

big data, serverless, IoT, and machine learning. He is

passionate about new technologies and adept at turning

technical innovations into production workloads at scale.

Anusha Challa brings over 14 years of comprehensive

experience to the analytics and data warehousing field. She

has worked with hundreds of diverse clients and developed

scalable data architectures to meet specific organizational

needs. With a master’s degree in computer science

specializing in machine learning from Georgia Tech, Anusha has authored informative blogs and whitepapers

covering topics such as data warehousing, data security,

machine learning, and artificial intelligence. Anusha’s

expertise extends to public speaking engagements, where

she’s delivered presentations at major events including

AWS re:Invent and the AWS Summit in New York, sharing

her insights on data analytics and cloud computing.

Passionate about her work, Anusha remains dedicated to

exploring emerging technologies and industry trends in

data analytics.

Colophon

The animal on the cover of AWS Certified Data Engineer

 Associate Study Guide is the mandrill (Mandrillus sphinx)—

an iconic, vividly colored Old World monkey species native

to west Central Africa.

Mandrills live in dense tropical forests, where they travel in large, loosely organized groups. These gatherings—called

“troops”—can sometimes include over one hundred

individuals. Males are significantly larger than females and

display the most vibrant coloring, thanks to blood vessels

close to the skin (responsible for the red) and light-

reflecting collagen fibers (which create the blue).

Mandrills spend much of their time foraging along the

forest floor, feeding primarily on fruits, seeds, leaves, and insects. They store food in large cheek pouches as they

move, a handy adaptation in competitive environments.

With their expressive faces, complex social hierarchies, and

impressive appearance, mandrills stand out as one of the

more distinctive primates of the African rainforest.

The mandrill is classified as vulnerable on the IUCN Red

List. Many of the animals on O’Reilly covers are

endangered; all of them are important to the world.

The cover illustration is by José Marzan, Jr., based on an

antique line engraving from Lydekker’s Royal Natural

 History. The series design is by Edie Freedman, Ellie Volckhausen, and Karen Montgomery. The cover fonts are

Gilroy Semibold and Guardian Sans. The text font is Adobe

Minion Pro; the heading font is Adobe Myriad Condensed;

and the code font is Dalton Maag’s Ubuntu Mono.

Document Outline

	Preface

	What This Book Isn’t

	What This Book Is About

	Who Should Read This Book

	How This Book Is Organized

	Accessing the Book’s Images Online

	Conventions Used in This Book

	O’Reilly Online Learning

	How to Contact Us

	Acknowledgments

	1. Certification Essentials

	Who Is a Data Engineer?

	Becoming an AWS Data Engineer Associate

	Exam Topics

	Exam Format

	Registering for the Exam

	Exam-Style Questions

	Think Like an AWS Solutions Architect: Translating a Real-World Problem-Solving Framework into Certification

	The Solutions Architect’s Problem-Solving Framework

	Real-World Example: Designing a Serverless Stream Analytics Platform to Detect Fraud

	How This Thought Process Applies to Certification Questions

	Study Plan

	Conclusion

	2. Prerequisite Knowledge for Aspiring Data Engineers

	Databases and Types of Databases

	What Is a Database?

	What Is a Database Management System?

	Types of Databases

	Hierarchical Databases

	Relational Databases

	NoSQL Databases

	OLTP Versus OLAP

	Overview of Big Data

	Distributed Processing Frameworks for Big Data

	MapReduce

	Spark

	Flink

	Hive

	Presto

	Trino

	What Is a Data Lake?

	What Is a Data Warehouse?

	Data Warehouse Versus Data Lake

	ETL Versus ELT

	Different Ways to Process Data

	Batch Processing Pipeline

	Real-Time Stream Processing

	Event-Driven Processing

	High-Level Architecture Overview of Data Processing Pipelines

	Working with Code Repositories

	What Is a Code Repository?

	How to Work with Code Repositories

	CI/CD

	Cloud Computing and AWS

	What Is Cloud Computing?

	An Overview of Amazon Web Services

	Getting Started with AWS

	How to Set Up an AWS Account

	Configure Access with AWS IAM

	Create an IAM User for Authentication

	Add Permissions to Authorize the User

	What Is an IAM Policy?

	What Is an IAM Role?

	Best Practices to Follow with AWS IAM

	Conclusion

	Resources

	3. Overview of AWS Analytics and Auxiliary Services

	AWS Analytics Services

	Amazon Kinesis Data Streams

	Amazon Data Firehose

	Amazon Managed Service for Apache Flink

	Amazon Managed Streaming for Apache Kafka

	Reference Architecture: Streaming Analytics Pattern with Apache Flink and MSK

	AWS Glue

	AWS Glue DataBrew

	Amazon Athena

	Amazon EMR

	Amazon Redshift

	Amazon QuickSight

	Reference Architecture: Lakehouse with Glue, Redshift, and Athena

	Amazon OpenSearch Service

	Amazon DataZone

	AWS Lake Formation

	Auxiliary Services for Analytics

	Application Integration

	Compute and Containers

	Database

	Storage

	Machine Learning

	Migration and Transfer

	Networking and Content Delivery

	Security, Identity, and Compliance

	Management Governance

	Developer Tools

	Cloud Financial Management

	AWS Well-Architected Tool

	Conclusion

	Additional Resources

	4. Data Ingestion and Transformation

	Data Ingestion

	Real-Time Streaming Data Ingestion

	Kinesis Data Streams Versus Amazon MSK

	Sample Streaming Ingestion Use Cases

	Ingesting Data Using Zero-ETL Integrations

	Ingesting Data from Databases with CDC Using AWS Data Migration Service

	Supported Sources for AWS DMS

	Supported Targets for AWS DMS

	Sample Use Cases

	Best Practices for Data Ingestion

	Best Practices for Streaming Ingestion

	Best Practices for Choosing Data Stream Capacity Mode

	Best Practices for Sharding

	Best Practices for Consuming Data from KDS

	Best Practices for Amazon MSK

	Best Practices for Amazon Data Firehose

	Best Practices for AWS DMS Replication Instances and Tasks

	Best Practices for AWS DMS Tasks with Amazon Redshift Target

	Data Transformation

	Batch Data Transformation

	Streaming Data Transformation

	Data Transformation Using AWS Glue

	Glue Connectors

	Glue Bookmarks

	Data Processing Units

	Worker Type

	Glue Jobs

	Data Sources and Destinations

	Best Practices for AWS Glue

	Data Transformation Using Amazon EMR

	Storage

	Deployment Options

	Instance Types

	Best Practices for Amazon EMR

	AWS Glue Versus Amazon EMR Options

	SQL-Based Data Transformation Using Amazon Redshift

	Amazon Redshift Compute

	Amazon Redshift Storage

	SQL Data Transformations

	Amazon Managed Service for Apache Flink

	Amazon Data Firehose for Transformation

	AWS Lambda for Transformation

	Choosing the Right Streaming Transformation Service

	Choosing the Right Batch Transformation Service

	Data Preparation for Nontechnical Personas

	Fill Missing Values

	Identify Duplicate Records

	Formatting Functions

	Integrating Data from Multiple Sources

	Nesting and Unnesting Data Structures

	Protecting Sensitive Data

	Other Data Preparation Transformations

	Orchestrating Data Pipelines

	AWS Step Functions

	Managed Workflows for Apache Airflow

	Sample Use Case

	AWS Glue Workflows

	Sample Use Case

	Amazon Redshift Scheduler

	Amazon EventBridge

	Sample Use Case

	Choosing the Right Orchestration Service

	Conclusion

	Practice Questions

	Additional Resources

	5. Data Store Management

	Choosing a Data Store

	AWS Core Storage Services

	AWS Cloud Databases

	Data Storage Formats for Data Lakes

	Row-Based File Formats

	Column-Based File Formats

	Table Formats

	Building a Data Strategy with Multiple Data Stores

	Data Cataloging Systems

	Components of Metadata and Data Catalogs

	Populating an AWS Glue Data Catalog

	Data Catalog Best Practices

	Enriching Data Catalogs with Data Classification

	Managing the Lifecycle of Data

	Selecting Storage Solutions for Hot and Cold Data

	Example: Building a Petabyte-Scale Log Analytics Solution on AWS

	Storage Tier Decisions for Different Access Patterns

	Defining Data Retention Policy and Archiving Strategies

	Performing COPY and UNLOAD Operations to Move Data Between Amazon S3 and Amazon Redshift

	Optimizing Data Management with Amazon S3

	Overview of S3 Storage Classes

	Choosing the Right Storage Class

	S3 Intelligent-Tiering

	Managing the Data Lifecycle with Amazon S3 Lifecycle

	Monitoring the Amazon S3 Data Lifecycle

	Expiring Snapshots from Open Table Formats

	Archiving Data from Amazon DynamoDB to Amazon S3

	Ensuring S3 Data Resiliency with S3 Versioning

	Enabling Versioning on an S3 Bucket

	S3 Versioning and Object Lifecycle Management

	Designing Data Models and Schema

	Introduction to Data Modeling

	Data Modeling Strategies for Amazon Redshift

	Data Modeling Strategies for Amazon DynamoDB

	Data Modeling Strategies for Data Lakes

	Amazon S3 Data Lake Best Practices

	Conclusion

	Practice Questions

	Additional Resources

	6. Data Operations and Support

	Amazon QuickSight

	Data Sources

	Datasets

	Refreshing SPICE Datasets

	Visualizations

	Presentation Formats

	QuickSight GenBI Capabilities (QuickSight Q)

	SQL Analytics Using Amazon Athena

	Choice of Querying Engine

	Workgroups

	Capacity Reservations

	Athena Federated SQL

	Use Cases

	DDL Capabilities

	Best Practices When Using Amazon Athena

	SQL Analytics Using Amazon Redshift

	SQL Functions

	Semi-Structured Data Analysis

	Geospatial Data Analysis

	Query Data from Data Lake

	Analyzing Data from Operational Data Stores Using Amazon Redshift

	Redshift ML and Generative AI

	User-Defined Functions

	Analyzing Data Using Notebooks

	AWS Glue Interactive Sessions

	Amazon EMR Notebooks

	Data Pipeline Resiliency

	Monitoring

	Alerting

	Event-Driven Pipeline Maintenance with EventBridge

	Ensuring Data Quality and Reliability: Deequ and DQDL

	Automated Data Quality Checks and Error Handling

	Troubleshooting and Performance Tuning

	CI/CD Pipelines

	Version Control and Collaboration

	Infrastructure as Code

	Disaster Recovery and High Availability

	Cost Optimization for Data Pipelines

	Leveraging Serverless Services

	Autoscaling

	Tiered Storage

	Columnar Formats

	Monitor and Control Data Transfer Costs

	Follow Cost Optimization Best Practices

	Conclusion

	Practice Questions

	Additional Resources

	7. Data Security and Governance

	Network Security

	Amazon VPC Overview

	Security Groups Overview

	Best Practices for Configuring Security Groups for Your Workloads

	Configuring a VPC and Security Group for an Amazon EMR Cluster

	Managed Services Versus Unmanaged Services

	VPC Endpoints Overview

	User Authentication and Authorization

	Authenticating Users with IAM Credentials

	IAM Role-Based Authentication and Authorization

	Service-Linked Roles

	Managed Versus Self-Managed Policies

	Enable Single Sign-on with AWS IAM Identity Center

	Data Security and Privacy

	Secure Data in Amazon S3

	Manage Database Credentials

	Data Encryption and Decryption and Managing the Encryption Keys

	Managing Encryption Keys with AWS KMS

	Enabling Encryption in AWS Analytics Services

	Sensitive Data Detection and Redaction

	Fine-Grained Access Control with AWS Lake Formation

	Database Security in Amazon Redshift

	Fine-Grained Access Control in Amazon QuickSight

	Data Governance

	Metadata Management and Technical Catalog

	Data Sharing

	Data Quality

	Data Profiling

	Data Lifecycle Management

	Data Lineage

	Logging and Auditing

	Analyzing Logs Using AWS Services

	Conclusion

	Practice Questions

	Additional Resources

	8. Implementing Batch and Streaming Pipelines

	Data Processing Pipeline

	Implementing a Batch Processing Pipeline

	Use Case and Architecture Overview

	Overview of Input Dataset

	Step-by-Step Implementation Guide

	Best Practices and Optimization Techniques

	Implementing a Real-Time Streaming Pipeline

	Use Case and Architecture Overview

	Step-by-Step Implementation Guide

	Conclusion

	Resources

	9. Practice Exam

	10. What’s New in AWS for Data Engineers

	Amazon SageMaker Unified Studio

	Amazon SageMaker Catalog

	Amazon SageMaker Lakehouse

	Amazon SageMaker AI

	Amazon S3 Tables

	Amazon S3 Metadata

	Improving the Developer Experience with Generative AI

	Generative AI–Powered Code Generation with Amazon Q Developer

	Automated Script Upgrade in AWS Glue

	GenAI-Powered Troubleshooting for Spark in AWS Glue

	Conclusion

	Resources

	Appendix. Solutions to the Practice Questions

	Chapter 4

	Chapter 5

	Chapter 6

	Chapter 7

	Chapter 9

	Index

	About the Authors

index-504_1.png
Single account Hub and spoke Datamesh

Lake
Formation

Producer

=

Centralized Multicustomer Datamesh central

single account Cross-organization governance

Simple to get Organizational autonomy
started

Business to business

Lake
Formation

Multicustomer
Cross-organization

index-502_1.png
AWS Glue Data Catalog
Anopen, performant, and scalable technical metastore

Great durability, Integrated
availability, and statistics with query
scalability engines

Serverless and Broad catalog of

cost-effective [integrated tools

Many ways to get AWS Glue Top-tier security,

i Data Catal compliance, and
metadatain o8 audit capabilities

Integrated
with customer
existing catalogs

index-396_7.png

index-396_6.png

index-396_9.png

index-396_8.png

index-400_1.png
Ot Qe i kst
: 8 (G« | 8] s e | - B

720 [Ofimmargie

- [t

o s o 1 S st] :‘ [Ea——
Ea— 2.88« [l
iAo S

3.6k

index-510_2.png
Data provider Data subscriber

AWS Glue ETL

=
AWS
Marketplace

AWS Lake
Formation

AWS Data
Exchange

AWS Lake
Formation

index-399_1.png
[P oo B (=)=
e [y~
P o
= .
]

index-510_1.png
E AWS Data Exchange

& Q for Amazon Redshift
Query

Subscriber provider

data
&
= AWS Data AWS
o Exchange Marketplace

Data

provider

index-410_1.png

index-519_1.png
O Application
monitoring

eWl Amazon CloudWatch @ Syzf;rlgmy‘de

@ Resource
@ (_q optimization

Collect Monitor Act Analyze

Unified
operational health

Unified cross-account
observability

index-407_1.png
EEEREER

index-511_1.png
Data
steward

= 2 3 v <

Selectsa AWS Glue Data AWS Glue Data)
datasetin | 7| Data Quality steward Data Quality stewarc
AWS Glue analyzes refinesthe evaluates revews
Data Catalog dataand rulesto rules results: EE
recommends create alerts, takes
rules finalized rules appropriate

action

index-437_1.png
(=] Aws
Virtual network A @ Virtual network B

dedicated to your é",ﬂi’x:; dedicated to your

account; account

RegionA

index-507_1.png
Producer Consumer

7~ i

S ot

Objectsand "
T Environments Amazon DataZone domains Environments data
analytics | e pyics | o0
services

services

Producer/consumer Consumer
AR < &
Objectsand Objects and
data || Environments data

Anaytics || Catalog Arsics | Caalog

services

index-411_1.png

index-506_1.png
Producer cluster Consumer cluster

m Leader node

Compute nodes Compute nodes
©eeeoleeeee
] Read shared data

Amazon Redshift

Read and write
private data

Managed storage

index-509_1.png
Collaboration 2

Collaboration 4

Collaboration
members

Collaboration 1

£ AWS Clean Rooms

Analyze on AWS

Amazon
Redshift

constraints | |data analysis

Use with
third parties

index-508_1.png
)

ata domain 1 producer - Centralized organization:) -~ Data domain N: consumer

federated governance Subscribe and query shared data products
Regiter ~ account e shared

Amazon || Data
Exchange Ji{ Redshift J| share

dato Share
focation, ossets g
colecons

AWS Data
Exchange

Grantdata
share tables,

AWSLake columntags ||

Formation Grantconsimer prisson

| columntags

Grantdata
share tables

columntags

Populate metadata

cover_image.jpg
@
AWS Certified

~» Data Engineer <

Associate Study
Guide (for True
Epub)

\

Ea

Sakti Mishra, Dylan Qu
Anusha Challa

index-646_1.png
Job run (1/2) . AT © G Gume) (3 s) (R Groves

e oo i o i+ o+ oo | wwm | e+
(© o 0 T e - sy “)
At | 1| ot | s | ot ST | s s
ot

index-640_1.png
- Model training Scalable MLOps
Model building || an fine-tuning deployment | [and governance

index-370_2.png
Amazon Athena > Query editor

© workgroup.

Editor | Recentqueries Saved queries Settings pim:
Data G ¢ Queyti X | Quenzi X |@auenysi X
oatasource IR0+ 5700 “retaii b eall_conter” Timit 107
vsostacaalog J run Query
sy Freien Table
ome 3 Generste tabie0DL.

Inert
Ostabase

(oma e
pis

Tabesand views |

Q Filter tables and views (Gonariiastatitics S

(s |

v Tables 20) <] viewingue

ol conter P oy ————

index-636_1.png
Unified Studio

Search

i Data Model | GenAlapp | Business i 3
sQLanalytics | 1 o0dine | development| developnient | inteligence | Streaming | - analytics
fmazon | AmazonEMR | Amazon Amazon Amazon | AmazonhK | Amazon,

= AWSGlue | SageMakerAl | Bedrock Quicksight | Amazon Kinesis| - OFEToEar

(Notebooks | Query editor | Visual editor | Gen AT DEs)

index-594_1.png
e ——

o o« smeix/Qommix .
ooty i T
o e ame
- e (o) G G B ey

e |

index-372_1.png

index-639_1.png
mazon SageMaker Unified Studio §; AWS analytics services Third:party applications

1 1

Open data access (lceberg REST catalog API)

Redshift || General-
Managed || purpose
Storage

index-371_1.png
Notebook editor g (i ¥)

Notebooks. 0 ¢ | Bt | D wtmtemiox oot (47

| G N

index-637_1.png
Unified technical catalog
Federated catalogs Managed catalogs

Amazon Amazon 3 External
Redshift DW J| table buckets J{ sources

index-377_1.png
USING FUNCTION detect ancmaly(b INT) RETURNS DOUBLE TYPE SAGEMAKER INVOKE_ENDPOINT
ondpoTnt = ' randorcut forest-2020-07-09-15-10-48-391')

‘count(+) S nunber,
detect_anomaly(cast(count() AS int))

£ROU *lambdasnysql .sales.orders

GROUP BY o ordardat

GRDER BY datect. anomaly(cast(count(+) AS int)) DESC limit 10;

R T r—

Use Cir + Ente to run query, Ct + Space to autocomplet

Results

- o_orderdate ~ number ~ _col2 v

1 1995.0623 o 305865174199
2 1907-10-02 % 299215054133

3 1995-11-15 88 283019103371

index-375_1.png
Amazon S3
@

ElasticCache
(Redis)

DocumentDB

SQL Server

index-396_2.png

index-396_1.png

index-396_4.png

index-396_3.png

index-396_5.png

index-593_2.png
QS (S () (o) (o) G o) G

index-591_1.png

index-588_1.png
Tabesndvions (G) ©

@ poscnsen

TG St b

O T e sttt ¢
sosticamiecoutry ST,

Somidtne ST,
Shopingse ST

T S i,

B et ST,

B e

i

R e ————
3. Teterts ¢

s 1w
@D D (o) @) G Qs

Quepreits queysas

= o e s o)

index-481_1.png
AWS KMS
Choose the key to use.

Use AWS Key Management Service (AWS KMS)
Select to encrypt your cluster's data using AWS Key Management Service.

Choose an AWS KMS key
This key is used for encryption instead of the defauit key. Learn more about service integration[}

O Use AWS owned key (Default Redshift key)
Akey that AWS owns and manages for you.

O Choose a different AWS KMS key (advanced)
Choose a key you have permission to use, or create a new one.

Q. Choose an AWS KMS key or enter an ARN. Create an AWS KMS key [

index-592_1.png
P srs s [oo Swmen Embeman

Spark Jobs)

r——

index-480_1.png
At-rest data encryption In-transit data encryption
Forwrite-ahead logging (WAL) with For Amazon EMR traffic between

‘Amazon EVR cluster nodes and write-ahead
logging (WAL)with Amazon EMR
Opensource HOFS encryption
LUKS enayption Automaticallyenabled
TLSenayption

In-transit data encryption At-rest data encryption
Fordistbuted appiications Forcuster nodes (EC2instance
volumes)
Opensaurceenayption
Amazon Opensorce HOFS encryption
EMR LUKS encryption

In-transit data encryption
For EMRFS traffic between S3 and
clsternodes

Automaticall enabled
TLS enaryption

At-rest data encryption
FOrEMRFS on S3

Serversideor lient:side encryption
(SSE3, SSE-KMS, or CSE-custom)

Local
volumes
(instance

store/EBS)

index-591_2.png
Properties | Swhibrem | Sssmbagibres-ser | T

Streaming o runs 1) . G e o [

Q sy o 0, Ao+ [7o 1o e

e o s v b v Ry OnwlmMel SwttmeUTeson v mmtme o esatugs

o Oumm o 1 et s - e

index-483_2.png
Aws

Scanfor
53 Amazon eventeridge| Lambda
datasets | 7%l | “Macie s

index-585_1.png
Network settings
S tne i st it

(Cocomemre pems v e

 Adationt seings
.

oss—
one

Subnets (6/6) e

81 motsiyzne v | s o | ot i | tstis v | rtis 5
8 ot (oo) o

8 ety (o o) o

8 wemiciran (b) o

8 emistoen (b) o

R e) o

index-483_1.png
B Y| & 8 o

Amazon Macie Continually Automated Fulldiscovery Takeaction
Enable Macie with evaluate sensitive data scans Generate indings
one selectionin Amazon 53 discovery Run targeted andsendto
the AWS. storage Automatically sensitive data Amazon
management Automatically build aninteractive discovery jobs EventBridge and
consoleorasingle | | generate S3bucket datamapof your based onresults AWS Security Hub
APlcall inventory and Sensitive data fromthe for automated
provide nsights ins3 interactive data remediation and
onbucket-level map ‘workflow
security and integration

accesscontrols

index-584_1.png
s
e

i

[or—r—n

index-486_1.png
Transform

Types of sensitive information to detect

‘Select the types of sensitve information you would like o detec. For example, email or redit card number.

O Include all available types (256)
“Ths wilselect al types avallable at ob authoring time.

O select categories

“Tis will éynamically nclude ll paternsIn categories you select.
O Select specific patterns

Only patterns you explcityselect wil be detected.

Selected pattems

[[Q search patterns, or browse to select | [“srowse || createnew 2

[Us/canada bank account X | [Japan Bank Account X

Select global detection sensitivity
Choose the evel o detecton sensithty to apply to your data set.
© High (default)

Detects more entitie foruse cases that requie a higher evelof senithity.

O Low
Detects fewer entities and reduces false positives.

Select global action (required)
Choose an action to take on detected entities

© DETECT. Enrich data with detection resuits.
Create a new column that wil contain any enity type detected in that row:
O REDACT. Redact detected text.
Replace detected entit with string you choose.
O PARTIAL_REDACT. Partially redact detected text.
Replace part of a detected entity with a sring you choose.
O SHA256_HASH. Apply cryptographic hash.
‘Apply 2 SHA-256 cryptographic hash function to the input string.

e grained actions (overrides) (0) Detete

Select entites to add fine grained action different from the global action above.

Q Filter action overrides

Entity type 4 Action ¥ Action options

No overrides

index-586_2.png

index-485_1.png
Wt | scipe | sobdents | mams | owncunty-spted | st | Voo anrl

A

B

@
a
o
o
o

index-586_1.png

index-490_1.png
Grant permissions
‘Add access permissions for specific storage locations.

O My account O External account
User or role from this AWS account. AWS account or AWS organization
outside of my account.
1AM users and roles

Add one or more IAM users or roles.

Choose IAM principals to add v

datalake_user X
User

SAML and Amazon QuickSight users and groups
Enter a SAML user or group ARN or Amazon QuickSight ARN. Press Enter to add additional ARNS.

Ex amiawsiiam::<Accountld>:saml-provider/<SamProviderNan |

Storage locations
Choose one or more data lake locations.

53/ /retail /transactions/2020q1 | [Browse

Registered account location
‘The account where this storage location is registered in AWS Lake Formation.

123456789012 |

() Grantable

Cancel Grant

index-488_1.png
AWS Lake
Formation

AmazonS3
Data lake storage

index-494_1.png
Create data filter x

J— |
o

restrict-pharma

Nome may contain eters (4.2, numbers (0-9), yphens (), o under-scores), and belss than 256
anarscers.

Target database ‘
Selctth database tht contains the argt tabe.

sales X
054881201579

Target table:
Selctth tabl for which the data e wil becrsted.

Choose tables v Load more

orders X
osemz01579

Column-evel access
Choose whether this fter shud hav column-evel resrictions

© Access o ll columns
Fiter won't ave any column estrictions.

© Include columns
Fiter il ony slow accss 0 specic colrnns.

© Exlude columns
Fiter il allow secess t il utspecic columrs.

Select columns

Choose one or more columns v

customer_name X
sng

Row filte expression
Enter the et of th olloing query statement "SELECT * FROM orders WHERE.
Pleae see the documentationfor examples of fier expessions.

product_type='pharma’

)

index-88_1.png
AWS Glue: key capabilities
Serverless dataintegration service

Scalable data Centralized and unified ||~ Connectandingest || User productivity and
transformationengine || datagovernance data dataops

Builtn data ransforms | || | AWS Glue Data Catalog | || | AwS Give connectors Persona specifictools
Execution engine AWS Glue Data Quality ‘marketplac Pmdumwly tools

= Boel

AWS Glue || AWS Lake
Mnmml crawlers J| Formation Variousinterfaces Datanpsma\s

A ol =] oo o—°

index-491_1.png
LF-Tags or catalog resources

© Resources matched by LF-Tags (recommended) | © Named data catalog resources
Manage permissions indirectlyfor resources or data Manager permissons fo specfc databases or tables n
‘matched by a speifcset of F-Tags. addition to fine-grained data access.

Databases.
Select one or more databases.

Tables - optional

Select one or more tables.

Choose tables v Load more

inventory X
No descrption available:

index-87_1.png
AWS Cloud

Amazon
Fraud
Detector

APl
Gateway

Amazon
Managed
Service for

Amazon
MSK

Apache Flink

Amazon S3
(reference
data)

Amazon
SNS

Amazon [}
+| opensearch [
1 senvice

A
I
Amazon
MSK
Connect

jual

index-100_1.png
Unify data across databases,
data lakes, and data warehouses
with a zero-ETL approach

Amazon Redshift

‘Best-in-class securily, governance, and compliance

Insights

index-593_1.png
- e o=

EE [)
(. SEECOEDEREC S
e —] . . T .
— B = S

index-592_2.png

index-97_1.png
Amazon EMR
Easily run Spark, Hive, Presto, Flink, and more open source framework applications

. Best performance Flexible and Unified data access
Latestversions atlowest cost versatile withgovernance
4
& | Lo x| @
areh
Updated with latest | || | Spark workdoads run Run batch, Fine-grained
opensource 5.5x faster streaming, access control,
frameworks within compared to 055 interactive using AWS Lake
90days notebooks, and Formation
50-80% reduction SQLworkloads
Support for popular in costs with EC2 Across frameworks:
open table formats Spotand Reserved Choice of Spark, Trino
Tike Iceberg, Hudi, Instances deployment options:
and Delta Lake serverless, EC2,

Per-second billng and EKS

index-107_1.png
Input
Capture, process, and
load datainto Amazon
OpenSearch Service

Output
Search,analyze, and visualize
Togs toget realtime insighs

Amazon Opensearch
Service

Includes buitt-in

Opensearch Dashboards
andKibana

index-106_1.png
Dataingestion Eventtrigger Dataprocessing Dataanalytics Data visualization

EINERNE)

Amazon $3 AWS AWS Glue Amazon Amazon Business
(datalake) | | Lambda jobs Redshift Quicksight analysts

48

Data
engineers

AWS Glue Amazon Amazon S3 Amazon
Data Catalog) | CloudWatch (data lake) Athena

Cal Quidksight
ingestion APl torefresh|
the SPICE data set

index-577_1.png
Sonding Data o Kinosis

QO o

index-576_1.png
Productinentory Data

(#ProductID": *({randon.nusber({"min®: 1, max’: 10000)))",
Productiase”: "{{randon.weightedArrayEleent(("welghts": (0.2, 0.2, 0.2, 0.2), "data"s
CODMRE", “SHIES", "PAINTING"]})))"
ApplicableCountry®s {{randon.veightedhrrayElenent((weights"s (0.5, 0.3, 0.1],
)"

“Listprice": *{{randon.nusber(("ain": 300, "aax": SOBN))",

Oiscountedprice?: *({randon.nusber((“ain": 100, “max": 300))1)",

MarketingCoapaign’: "{{randos.weightedhrrayElenent (weights": (0.3, 0.1, 0.2, 0.4], “dat
SAVER-WEEKEND", “THANKS-GIVING', "PRE-CHRISTHAS", "Hone]1))}",

"ShippingType": *{{randon.weightedhrrayElenent (("weights™ (9.1, 0.2, 0.2, 0.5, "data": ["EXPRESS", "WEXT
DAY, OVERMIGHT", "REGULAR"11))}",

ShippingHoder: "{{rondon.weightedArrayElenent ((weights™: (0.4, 0.5, 0.11, “dota": ["AIR", “SEA",
“BIKET1)) 1",

ShippingCarrier”: ({randon.veiohtedhrroyElement((Welghtss (0.3, 0.1, 0.2, 0.4], “dota": ["AIRSORIE",
“ALLIAKCE", “BARIA", "OHL", "GERWA", "FEDEX", “TES", "UPS"I})}}",

Lastpdtedbate”: ({date.nau{ "0/ M/ VY" 1)),

“LastlpdatedTise": "{{date.now("Hinm:ss"))"
»

rrsuren-

Test template.

index-453_1.png
Availability Zone

(2] Public subnet

Availability Zone ;

Public subnet

Ty
(5
Web

servers

servers

Database
Servers

index-580_1.png
)

Amazon EMR Serverless Manage applicatons
. Run big data applications without
Lo managing clusters and servers

Introduction

G
Serverless Documentation 2

index-577_2.png
o - ot o

——— o

index-458_1.png
Compute || Storage I[Database || Networking

Regions

) (wailabitty zones]| Edgelocations

index-573_1.png
Create stack.
@ Ceesoc

[y m——

Contigure sackopions

Specify stack details

Provide a stack name
Stackname

(oG oo

Parameters

ok s Gt T

Parameters e defined nyous tempiat nd llow ot npu cstom vl whe you crese o update tck

‘Cognito User for Kinesis Data Generator

Usename
o e f ey want et A gt

(onn

password

(=

‘Optional / Advanced Parameters (OK to ignore)

permissionssoundaryhm

==

P

index-456_1.png
Private subnet

EMR
service

Endpoints

index-462_1.png
Private subnet

-y
il
Amazon —— Amazon

PrivateLink OpenSearch
Service

index-575_1.png
Conpres Recars 0
Lt SRR S S R -

CCustonerios *({randon maber(Fmin®s 1, s 6197 DI,
Tl “({randon mntar(eins 2 s TR
orderIo *({randon moert eiats 55089, “me TSN,
Listpricer ~Cirandon,nosert{nin i
Soteprices “Girandon,noert{aie ot S00ne
B e s e

index-460_1.png
Amazon AP Gateway
AWS CloudFormation

Amazon CloudWatch

Amazon CloudWatch Events
Amazon CloudWatch Logs.
AWS CodeBuild

AWS Config

Amazon EC2 API

Elastic Load Balancing API
AWS Key Management Service

Interface VPC endpoint services

‘Amazon Kinesis Data Streams.
Amazon SageMaker Runtime
AWS Secrets Manager

AWS Security Token Service
AWS Service Catalog
Amazon SNS

Amazon S5

AWS Systems Manager
andmore

Gateway || Gateway
VPC VPC
endpoints | endpoints
VPC N .

i Availability Zone } H + Availability Zone H
: 52l Subnet H H + [l subnet H H
flastic ||} flastic ||}
: EQ Network | |} : EQ Network | |}
i[| instance || Interface ||} i[| instance || interface | |

index-574_1.png
Kinesis-Data-Generator-Cognito-Use

Stackinto | Events-updated

Reources outputs

® >

ramers Template Chungesets Gitaync

Outputs)
[z)
o NS e
Koo oo T corte
Gt etpamrtin 5 serws
[——
vy
rem—
ey [a——
e, ety
T i
-

1 e

©

index-471_1.png
ﬂ AAWS Secrets Manager

Store credential, APl keys, tokens,
and other secrets securely

-

Encrypted AWS Key Your applications

secrets | Management Access integrated services
Service without hardcoding your

secrets n plain text

AWS Lambda

Automatically rotates
secrets on aschedule

‘Automate monitoringand audit
‘compliance of secrets

index-467_1.png
AWS Lake Formation > Grant permissions

Grant data lake permissions

Principals

Choose the principal to grant permissions.

O IAMusers and © 1AM Identity
roles. Center - new
Users o roles from Users and groups

this AWS account.

configured in 1AM

O SAML users and
groups.
SAML users and
group or QuickSight

O External accounts.
AWS account, AWS
organizaton or 1AM
principal outside of
thisaccount

dentityCenter i
Users and groups (3) Remove || Add
Choose users and groups to grant permissions.

Q_ Find users and groups <1 @

Name [4

[m]

O Datastewards
[m] userl
o

v | Type

Group

User

User

index-477_1.png
AWSGlue > Data catalog settings
Last pdated (UTQ)

Data catalog settings Juy 13, 2034 0t 223741

Choose encryption and permission options for your accounts data catalog.

Encryption options nfo
When ensbled and customer master key (CMK) s not provided,the enryption stting defaults o use the AWS managed Gloe KNS key.

9 Metadata encryption
Enableat.rest encrypion for metadata stored i the data catlog

AWS KMS key for metadata encryption
Q alas/aws/glue X [createanaws
KM key 2

(0] Delegate KMS operations to an 1AM role
Provid an 1AM ol t us for metadata ncryption.

Encrypt connection passwords

When enabed,the password you ravide whe you ceat a conecton s encrypted wth the iven AWS KNS ke

AWS KMS key for password encryption

QU Choose an AWS KNS key or enter an ARN Create an AWS.
KMS key (2

index-473_1.png
AWS KMS
Createand controlthe cryptographic keys that protect your data

0=

Create akMS key

AWS KMS-integrated services

WS services perform envelope encryption|
Your KNS keys never eave using data keys protected by your KMS

our FIPS 140 valdated HoMs ey toencrypt data at rest
unencrypted, and you control Generate and
who can access and use them verify MACs

KMS key monitoring

Automate monitoring to receive event
alerts and audit who used which keys, on
which resources, and when

index-582_1.png
v Network connections - optional nfo

Virtual private cloud (VPC)
Choose the VPC with AWS resources or data stores that you want your application to access.

Vpc-6e1d8b14 (Defaut VPC) v ‘ c

Subnets
Choose at least two subnets in different Avalability Zones for high availabiliy.

Choose one or more subets V‘ ‘ c ‘

subnet-b63c7c98 X
172.31.80.0/20 - us-east-1a - 4079 avalable IP addresses

subnet-6b566964 X
172:31.64.0/20 - us-east-1 - 4081 available IP addresses

subnet-ca1550ad X
172:31.0.0/20 - us-east-1d - 4081 available IP addresses

subnet-c630769a X
172.31.32.0/20 - us-east-Tc - 4078 available IP addresses

subnet-18170252 X
172.31.16.0/20 - u-east-1b - 4083 available IP addresses.

Security groups
Choose the security groups that il allow your application to access VPC resources.

ot oty g . el

5g-9d54b3c4 (default) X

index-478_1.png
Encryption settings info

Enable and choose options for at-rest encryption.

Enable 53 encryption
Enable at-rest encryption for data stored on S3.

Encryption mode

O SSE-S3
Protect data using server-side encryption with Amazon S3-managed encryption keys.

O SSE-KMs
Protect data using server-side encryption with CMKs stored in AWS Key Management Service.

Create an AWS
KMS key (2

Enable CloudWatch logs encryption
Enable at-rest encryption when writing logs to Amazon CloudWatch.

AWS KM key for CloudWatch encryption

Q. Choose an AWS KMS key or enter an ARN

v Advanced settings

Enable job bookmark encryption
Enable at.rest encryption of ob bookmark.

AWS KMS key for Job Bookmark encryption
Q_ Choose an AWS KMS key or enter an ARN

Create an AWS
KMS key [2

index-581_1.png
Appl

chB-ex2-spark-streaming-appl
Moy nctadeup o 64 Sphanumerc, undescore,yphen, orward s, s and period craraciers.

e
Spark v
Release version
emr7.10 v

Accitecture 1nfo
Chooseannsruction se arccture54) otonforyour applcation.
© 8664

i vt s 98 processors and i compatible with ost gty s an Ui
O armea - new

s arciectur s the AWS Graiton e of procssrs, which ncudes AWS Graion and AWS Gravion2procesors. You ight
ave o recompi some thic parytols nd e o your exing workfows.

Application setup options e

O Use defaultsetingsfor batch | | O Use defaut setings for 0 Use costorn settiogs
jobs only. interactive workloads. Specty il pplcatin setings
Getstartd it dfait Getstrtd it dfatt sich s pr-iszed capacty,
Spplkation sttingswhenyou applation settogs when ourun network connections, and custom

image.

o batchjobr neracive wokionds

index-583_1.png
-seete e > ttusey > G getanenig ey
— chB-ex2-sparkstreaming-app. O s [s |+
. Jr—

— oy [Y— =

r— o o iy

S) (e

index-1_1.png
OREILLY"

AWS Certified
Data Engineer

Associate
Study Guide

In-Depth Guidance
and Practice

Sakti Mishra, Dylan Qu & Anusha Challa

index-27_1.png
Amazon
Kinesis Data
Streams

Amazon
DynamoDB

AWS Glue
streaming jobs

Amazon
DynamoDB
online feature
store

Amazon S3
offline feature

store

Amazon
SageMaker
model
inference

Amazon
SageMaker
model training
and hosting.

index-2_1.png
OREILLY®

index-45_1.png
Worker node

Executor

Driver program

SparkContext Cluster manager

Worker node

Executor

index-43_1.png
MLIib

Machine
learning

SQL

Interactive
queries

Streaming

Real-time
analytics

GraphX
Graph
processing

Apache Spark Core

EEIEE

index-55_1.png
Data sources

Technical and business catalog Consumption

¥

Ingestion Processing
Saas Validate | (Transform and
| appllca(lons] |Ba|;h e’“’“‘] andclean || _aggregate

¥

Machine
learning

Distributed storage
Data ETLfor
(e] (osatue]| warehouse downstream

: £ :

Data security and governance / workflow orchestration / monitoring

index-46_1.png
(Worker)

==

TaskManager TaskManager
Task | ((Task | ((Task Task | ((Task | (Task
siot || slot || siot siot || slot || slot

=l

 |[Memoryand o manager]| . |(Memory and O manager

Flink program Networ

sreams
ik manager

Network manager

Program code

Actorsystem

Actorsystem

Statistics |
andresults:

Status

Submitiob | | pdates

(send dataflow)

Deploy/stop/
canceltasks

Trigger
checkpoints

Task status
Heartbeats
Statistcs

index-65_1.png
Data center

index-565_1.png

index-564_2.png

index-566_2.png
[rray—

LYee—.
[— |

s

Py —

e
[

index-566_1.png
BV eo4l-"TERE
vt x [

index-564_1.png

index-563_2.png

index-204_1.png
Serverless

Amazon Redshift Amazon Redshift
Serverless compute cluster

Provisioned con(}pute C|I.:St9f (RA3)
110128 nodes per cluster
(4101024 RPU) Large/XLarge/4XLarge/16XLarge

-
E~ Redshift Managed Storage (RMS)

index-192_1.png
® (Crrrrs)

index-211_1.png
¢ N

Output
Capture streaming data with ngvnlg :suotm ;fytoltget; ﬁlmslfo
(M createalerts and respondin

Kinesis Data Streams,
and other data sources.

Amazon Kinesis Amazon Kinesis
Data Streams
Data Streams

AAmazon Managed
Amazon MSK ServlceFflol I:&pan:he Amazon MSK
in

AmazonS3 streaming data
Other
5
Analytics tools

realtime

index-206_1.png
Amazon Amazon Amazon Amazon Amazon
Redshift Redshift Redshift Redshift Redshift
Cluster for Cluster for ClusterforHR | Cluster for Cluster for
streaming batch ETL Finance Operations
ETL workload workload

: Redshift Managed Storage (RMS)

Amazon Amazon Amazon

Redshift || Redshift Redshift

Clusterfor | Clusterfor || Optimized
reporting || exploratory |f tostore science
workload analytics ‘workloads

Amazon

Redshift Redshift

Cluster for Cluster for
Marketing Custormer
Service

Data science
applications

index-229_1.png
o\ Lambda: Invoke
UA\}| Validate account data

Choice state
I Account valid?

Rule #1 Defautt

DynamoDB: Putitem

DynamoDB Putitem

v

SNS: Publish oy ss:pubtsn
Send mail success \‘CE Send email fail

]]

Succeed state Fail state
Success I ® Fail

index-569_1.png
AWS

12 13 22

Kinesis Data EMR Amazon S3 Amazon
Stream Serverless | {(lceberg table)} Athena

Kinesis Data | 1.1
Generator
application

index-221_1.png
= Chimscleanvp
PR R——

B oc¥ynm exz g8 8

2R ® B

E T — [r—
Tt =
—lr Mo et

[———
SP

index-567_1.png
(d Quicksight

da

Count o Forecasted_monthly_revenue by Region and Segment

H
;
b

« [

een
segment _ forecasted_monthly.revenve
Enterprise 1,980

es 291

sy 558

-

Segment

index-234_1.png
‘Select the graph nodes toresume and then choose Resume run. [

) 'fé B

aneec e pracen

oo

index-572_1.png
PEoHH OB
it

Ry | T |- N—

index-230_1.png
B DAG: movie-list-dag ——

e 8 e Weswotons 31§ e G 8]

———) o e) DD D e

[—
B o

ok s for oy -+ 1053

e e
‘create,roch_tabl,tnot_exits —

index-571_1.png
B tesmie) Snmwe) Cukdnams hd

Crete dota stream .
s s contgion

==)

[ra—

[e ————p—

i N—

index-175_1.png
=5

Amazon
Relational
Database Service
(Amazon RDS)

Amazon Simple
Storage Service
(Amazon $3)

R
b

Amazon MSK
Connect

Amazon
Managed
Streaming for
Apache Kafka

index-173_1.png
More control «-- ~» More automation

Standard brokers Express brokers Amazon MSK

for Amazon MSK for Amazon MSK serverless

~Migratingan existing ||+ Value performance ||+ Quickly deployand

Kafkasefup and elasticity scale up Kafka
« Need fine-grained «Wantor need lower ||« Zero Kafka
control of Kafka control over Kafka management

« Deeply know howto ||« Operating Kafka «NewtoKafka or
manage Kafka estate at scale streaming

Express brokers is a good place to start for your Kafka workloads

index-191_1.png
SN 2 M e

ol Choose data source

Choose datasource
Step 2 Data sources (22)
Configure onnection [Finddetosorcs
suos Data Source Description
sk © Amazon Aurora. Connect to Amazon Aurora.
s O Amazon Documentos Connec o Amazon Document0B.
reenand e O Amazon OpenSearch Service Connect to Amazon OpenSearch Service instances.
O Amazon Reasifc Connect to Amozon Recshit.
O roxeratia Comnecttosreaming dtain Apache Kafla
O hawrecosmos Connect to Azure Cosmos DB for NoSQL.
O Aaresa Connect to Azure QL Database.
O Google BigQuery. Connect to Google BigQuery.
o mec Comect 04 atasystem sing JOBC.
O waraos Connect to MarisD8 Sever.
O MicrosofesQL server Connec to Micrsofe SQU Sever.
O Mongods Connect to MongoDB.
O MongoDs Atas Connect to MongoDB Atas.
O My Connect to MySQL.
O Newok Conigure network ccess for lue.
O oradevatabose Connect t0 Orace Databose.
O posgresa Connect to PostgresaL.
O solesfore-new Saesorc is custome elationship management (CAY)
O swenn Comectt05AP HANA Database.
O snoutake Comnect to Sowfiake.
O Terstotavartage Connect to Teradata antage.
O Vertia Connect to Vertica.

index-558_1.png
Authentication method

® Use 1AM federated identities & QuickSight-managed users
Authenticate with single sign-on (SAML or OpeniD Connect), AWS 1AM credentials, or QuickSight credentials

O use Aws i ety Center
Authenticate using AWS 1AM dntity ceter
© Manage accss 1o QuickSigh b asgning users andgroups from AM denty CeterLean more

O use 1AM federated identities only
Authenticate with single sign-on (SAML or OpeniD Connect) or AWS IAM credentials

O use Active Directory
Authenticate with Active Directory credentials

QuickSight region
Selecta region o
Us East (N. Virginia) v

‘Amazon Q uses cross-region inference within your geography to provide the best application experience. Learn More

Account info

QuickSight account name
You will need this for you and others to sign in °

chg-quicksight-report

QuickSight access to AWS services

index-557_1.png
d Quicksight

Let's get started

aws
*

o
Ask. Build. Share.
Turn data into meaningful -
insights easily. —
» -

X
®
-

f

index-559_2.png

index-559_1.png
d Quicksisht =

(] Ask. Build. Share.
Turn data into meaningful
Account created succesfully e ety

index-554_1.png

index-148_1.png
Stream
ingestion

Streamstorage

Stream
consumption

Destination
datastore

B

Finance
applications

Amazon
DynamoDB.
Streams

&
7o

Amazon Kinesis
DataStreams

e

Amazon Data
Firehose

Amazon Simple
Storage Service
(Amazon $3)

index-563_1.png
T ————)

Create a Dataset

Uplosda e & seore o,

[I Al nens 0~
Redstife [S e

[— 8 orae =T —

index-158_1.png
{:} Target

- database
DMS replication b
instance

Source
database

O

Transaction log
processing

index-149_1.png
Sources

‘AmazonEC2
Kinesis Agent (Linux)
or AWS SDK

[EAWS streaming services

AWSlogs

‘Amazon CloudWatch Logs,
Amazon MSK Broker Logs,
Amazon Route 53 Resolver
query logs, WS Network
Firewall Alers Logs, AWS
Network Firewall Flow Logs,
Amazon Elasicache, Redis
SLOWLOG

Other AWS services

Amazon
EventBiidge

Third-party integration
Fluentbit, Fluentd, Apache
Nifi, Snowflake

Amazon Kinesis
Data Firehose

Transform,
compress
batch, buffer

Targets

E Amazontc

HITP endpoint

BT aws services

Amazons3

Amazon

Opensearch
Service

“Third-party integration
Splunk, Splunk
Observabilty Cloud,
Sumo Logic, Snowflake,
Honeycomb, Logic
Monitor, Logz.o,
MongoDB Cloud, New
Relic, Coralogix, Datadog.
Dynatrace, Elastic

index-162_1.png
N Sourceschema @ Converted schema

database AWS Schema Amazon
Conversion Redshift (data
Tool (SCT) warehouse)

O One-time migration

Transaction logs and CDC

Source
database AWS Data Amazon
Migration Service Redshift (data
(AWS DMS) warehouse)

index-561_1.png
ad Quic

Manage QuickSight / Manage VPC connections

Manage VPC connections

Comabsces MGENS maedoruId. 086k [

index-160_1.png
S

Transaction logs

AWS Data

Migration Service
(AWS DMS)

Parquet

Amazon 3
(data lake)

index-560_1.png
Add VPC Connection

Securely connect your data to QuiCkSight using a
Virtual Pivate Cloud (VPC) connecton. Learn
AWS console links

vec

Subnes

Security. o

O resaler

18M console

aitabiity Zone

(st

submeto

e sToT3851

index-172_1.png
Standard brokers Express brokers

|S(oragez| | Storagel | [S(orages

| Amazon MSK fully manages storage

Amazon MSK provisioned cluster Amazon MSK provisioned cluster

index-562_1.png
QuickSight access to AWS services

Make your existing AWS data and users available in QuickSight. Learn More

1AM Role
O use Quicksight-managed role (default)

® Use an exising role

arm:awsiam: 297109802302 role/quicksight-redshift-vpc-access

Create new role

Dont see the role you are looking for? Make sure it set up to trust QuickSight.Lear More

Q

index-165_1.png
Provisioned mode

Read throughput per shard
5 transactions/sec per shard
2MB/sec per shard

Data stream

0On-demand mode

Read throughput per stream
8MB/second
Can scale up to 10 GB/second

index-561_2.png
Manage QuickSght / Manage VP€ connectons

Manage VPC connections >

OsrMiaces s smasqudson eIz s o

index-142_1.png
Producers

AmazonEC2
Kinesis Producer Library

(KPL), Kinesis Data Streamns
API, o Kinesis Agents

AWS services
(key services only)

:
Amazon || AWS loT core}

Aurora/RDS .

=2 Amazon
CloudWatch |(EventBridge
Logs

AWS
Database
Migration

Service

(AWSDMS)

Third-party integration
Fluentd, Debezium, Oracle
Golden Gate, Kafka
Connect, Striim, etc.

Amazon Kinesis
Data Streams

Consumers

A amaonec

Kinesis Client Library (KCL)

AWS services
(key services only)

EventBridge || Kinesis Data
Pipes Firehose

Third-party integration
‘Apache Druid, Apache
‘Spark, Databricks,
Confluent Kafka,
Kinesumer, Talend, etc.

index-138_1.png
Stream
sources

107 sensors

Mobileand
enterprise apps,

Social media

Streamingestion

Kinesis
Agent

‘Amazon Connect,
Amazon
EventBridge,
Amazon
CloudFront,
CloudWatch || Amazon Pinpoint,
etc.

AWS SDKs

AWS Database.
Wigration
Service (AWS DMS)

A;

AmazonMSK Connect

Managed
Streamingfor
Apache Kafka

Amazon Data
Firehose

Amazon
Redshift
(provisioned/
serverless)

Amazon

Managed
Service for

Apache Flink

Amazon EMR

AWS Glue

(Amazon $3)

Redshift
Manag
Storage (RMS)

Amazon
OpenSearch
Service

index-147_1.png
Stream
producer

tream storage

Stream Destination
consumption datasstore

3

Clickstrea|

Aws
SDKs.

Data Streams

"Amazon Redshift
Managed Storage:
(RMS)

E==

(provisioned/ Real-time
serverless) materialized view

index-145_1.png
Stream Destination
consumption data store

Stream
ingestion

Stream

sources Streamstorage

Publishir
T
mestoges

=

| Amazon Managed Amazon Simple
AWSloT Streamingfor Amazon Data Storage Service:
Core Apache Kafka Firehose (Amazon3)

T devices

index-547_1.png
Create connection [oC]

@ Gusseasssare Configure connection

lO Corfoure comection | Connection details

‘ JDBC URL

e B oot A o 05, e il b

© seprperte (bredntyiot e v 297109003085 e et et iz)
T

O Reviewand create
JDBC Drver Clas name - ptionel

C)
e o O e ot o o o o o

108 Oiver 3 Pt -t

(Q ssspaedrembies) G @) Coowess)
et g S35 o3 e i

credentiat e

© Usemame and password

O aws Screts Mansger

(o)

Password

(

index-546_1.png
Create connection o ®

step1
@ choosedatasource - Choose data source

[

O Configure comnection Data sources (1)
O set properties
‘ stepa JDBC o
eview and create
O 8 Connect to: data system
using JDBC.

Learn more [2

et QD

index-548_2.png
Create connection ® o

< Step1

Choose datasource ~ Set properties

‘ Step2 Connection Properties
Configure connection o

‘ Step3 ch8-ex1-redshift-connection|

Set properties
© set properts [Require SSL connection

O Review and create Description - optional
\)
» Tags

index-548_1.png
¥ Network options
1 your AWS G o e 0 Az st Compote Ciowd 2 (EC2) nstances i 3 il ot loud V) bt you st pde
aditons VPG spacic confaton nformation.

(= 2]¢)
subnet e

et 5650758

i ——— .

Secutygroups et
s o e or sy s st s 1 e sy VP, Sy 1 e 1 By et Yo s s
et o ety ot s it e s Tt

(Crorsoneor more sty g

index-358_2.png

index-358_1.png
Aggregated values with colorand abel
- —t——— "

index-360_1.png
Expected Revenue vs Opportunity Amount

FraanaD v
100000

Color xpectedRevenie Group y: Name

index-553_2.png
<hi-gluesparkcettiob [))

L A S " R ——

Jobruns 176 e R © G (i) (& i) QN)

e
e T v ekt + T it _+ Lomin v | o=+ | m = | ot

[T R T R =

At i s 1 | | b | s Tt - St se

e, s v by

)

Pty

o . .

) e T

e e o

e

index-359_1.png
‘Website Unique Visits by Workday

g 8
8 b

A susip anbwn aysaoM.

workday

index-553_1.png
et o () () QD

h-gluesparkcettiob

119 e S © G G (3 s
e
[P

e rers v | sommatoon v | tsematacd o | own
(o= 0 s % o

[R = r=> 11

)

[T T RO —

(e

. s oz w prrs——

index-362_1.png
2 o
No. of Customers

Nov 2023 Oct 2023
53,635,301 42,760,415

25.4% ~

index-361_1.png
Fiod wels

= = b

Revenue by Service Line, Customer Region, Custormer Segment, and Consumpion Channel

Custanar Sogment > Sanvica Lo

© Enerprise Y
Matng 0 By Markoing Bung
‘CustomerRogion ConsumptonC.. [Blled Amount_Biled Amount_Biled Amaun_ BiSed Amount _ Biled Amount_Blled Ameun]
eamc » Towmm memss wimes | wses wumew | %ens
Mobio Wmuas osess merms awm smers sesei
o mmn ammna sessm sws woowm iisess
S emen » o e s wma maen ses
Mot wsas sz e wams mee s
W sowas osamss umessiz vamery e s
Bus » Zomsm wnwss s eson mamm s
ot wraus s wowssm wmen aeses e
et 717203 idsssea72 12841083 203735 305uS wessar

index-366_1.png
% Build forme.

Descrbe the story you want to telinsimple language.

Buid 3 story bout how we can incresse the converion o froe
i customers nto pying 3

Selctth theme fo yourstory

ot

- =

close [[BUiLD

“Free Trials to Paid Accounts: Bundling Features
and Engaging Communications to Boost

Conversions and Sales”

Introduction

index-550_1.png
. B D @D
B e P o= e B

M
=
Yy P
R o —
o
o

ot oupasiens am
v i 20 . EE © G Grmmames
)

(@ 1

index-364_1.png
B sonwp >

Overview ™/ LoanDita

Loan purpose coelaton between avginterestrate and defaut rato

LOAN_AMOUNT

s

so

MonthlyReport | Ahitcture

Avginterestate

+

Ga

index-549_1.png
ch8-ex1-redshift-connection ® °

ecton you must create aob.

ch8-ex1-redshift-connection | createjon

Connection details o

Connector type: Connection URL
Jo8C dbcredshift//cha-ex1-redshift-serveless 297109802302 us-eastredshif-
serverlss.amazonaws.com:5439/dev

Drivercass name Driverpath
Usermame Require SSL connection
admin .

Subnet Securty groups.

subnet b63C7C98 sg-9dsablcs
Description Createdon

- 2025-01-17 01:43:41.632000

Last modified Class name
2025.01-17 01:43:41.632000 -

index-370_1.png
Qlslale|ne

Amazon Athena
Start querying data instantly.

index-552_1.png

index-368_1.png
Q@ software sales - why did tevenue 9o down in October 2022
iy i oo) change FarORh 202210 from dtase: Dty CstomerSles

Sales decreased 14% ¢ from $90,489 to $77,794 n October 131, 2022 compared to September 1 -30, 2022

Key Driver

Contribution

CUSTOMER CONTACT 15 A KEY DRVER FOR CHANGES I SALES

Sals from Jennifer Payne ncreased by N/A% ($13,716)going fom $0t0
$15.716.Compared t other values n Customer Contact, Jefer Payne
Contributed the most o the change i Sales for ths period and is
responsibl for 108% of the 12,695 decrease in Sales. @

(COUNTRY 15 A KEY DRVER FOR CHANGES INSALES

Sols from United Kingdom ncreased by 68% (§9987) going from
$14.738 t0 $24,725. Compared o othr alue in County,United
Kingdom contrbuted the mst o th change n Sals fo tis period and
s responsibe for 79% o the-$12,695 decrease n Sles. @

PRODUCT 5 A KEY DRVER FOR CHANGES INSALES.

Sales from Financehub decreasd by 725 (-12959) oing from $18,022
105083, Compared o other value n Product,FinanceHub contributed
the mast tothe change inSalesfo this period nd s responsible for
102% ofthe $12,695 decrease n ales. @

INDUSTRY 5 A KEY DRIVER FOR CHANGES INSALES

Sales from Healthare decreased by 65% (-7,516) going from $11,631 0
4114, Compared t othr values n Industry, Healthcare contributed the
most o the change inSals for this priod and s respansibe or 59% of
the 512,65 decreasen Sales.

%0IFF.

N/A

0w 813716

0.

68% 1

$14738w.
s24725

% 0IFF.

-72% 4

18022
$5083

5 0IFF.

-65% ¢
s
sa11e

index-551_1.png
]
g
i
i

| bt

[

index-357_1.png
peT——

oyt

oo
=

index-536_1.png
Data sources

Technical and business catalog Consumption

¥

Ingestion Processing
Saas Validate | (Transform and
| appllca(lons] |Ba|;h e’“’“‘] andclean || _aggregate

¥

Machine
learning

Distributed storage
Data ETLfor
(e] (osatue]| warehouse downstream

: £ :

Data security and governance / workflow orchestration / monitoring

index-540_1.png
Create bucket .

eners coniuratin
v

e | ==

(eovmont)
e e B

et e

index-538_1.png
Amazon
QuickSight

2

Data
analyst

AmazonS3
rawinput

AWSGlue
PySpark job

index-265_1.png
Processing

Catalog

Table format

File format [« JSON Parquet Avio ORC

Storage

index-274_1.png
Amazon Amazon Amazon
AmazonS3 RDS Redshift || DynamoDB

Inferschemas

() Built-in
Connectors | | classifiers | | classifiers

index-544_1.png
Aot st > Wotgonp st > v

e e s e

ot | X

Tomman st s s e e 0 S i

chB-ex1-redshift-serverless...

Generatnformation

o

o eion
o

e 252024 2075 WTC0800)

e

ot

-

o v [cumya @

c
T ——p——
S —

0 it et TR
Ptmeastb——

e p—

index-268_1.png
Consumption 0\ '*'
layer Interactive Business Machine
queries inteligence learing
Processng &
layer Bigdata Near-real-
ET processing time ETL
Catalog
e Shared catalog
Lake house
Storage
layer
= Data warehouse)
Unstructured, semi-structured,
Sogestion Structured T
Tayer (oo Yoo)| | (oo) (o)
x
E|E l SO E
sources Saas 2]
applications | OLTP || ERP || CRM s evices| b |sensors socil

index-543_2.png
G2 > Secutty Groups > 59.9d54b34 - defait > Edtinbound rles

e C Com—] w—)
IV—0]

index-291_1.png
Amazon
SageMaker

index-286_1.png
Amazon OpenSearch Service
Choose from these three tiers: Hot, UltraWarm, and Cold

‘€>

Hot storage UltraWarm storage Coldstorage
Used forindexingand updating || Optimized tostoreand serve || Optimized to storeinfrequently
while providing the fastest ‘olderand ess-frequently || accessed or istorical dataat
accesstodata accessed data, while providing (| near S3 pricesand attachable
the sameinteractive to UltraWarm when you need

experience toquery

index-545_1.png
Ostasccess | Umits | Performance | Tags

Network and security e

Virtual private cloud (VPC)
r—

VPC endpoint 1D
Vpce-014e6a8184cH1481

VPC security group
prane]

Subnet
suboet 63798,
subnet 60566964,
subnetca1ssood,
suboet<6307699,
suboet. 18170252,
suboet 61013851,

ssL
Disbled

et

Enhanced VPC routing
of

Publicly accessible

Tumed of

1P address type
vt

index-351_1.png

index-541_1.png
Swp2.
Chooseramespace

st
Review and cese

Workgroup
Worrupi. colcton o omp e o hch it et Compt e s ek iy
ey

Workgroup rame
o e st s e .

ranrenre——"
Tra et e o -4 s Vo s o o) 63 s 0 e

Performance and cost controls o

et oty ot e s of i i s Rt A Rl oo i
ey st e o 13t 10 e s Ao P s e <8 0 P T
o e e i s

Pertormance and cost controls
© Basecpaciy.

e ——
O price-petormance arge - new.

oot e e g 3o Aon S ettty A O Tt ke

Base capacty
e el 281905 T chang s o s s 90 e

O

index-306_1.png
Modified items

incudin
TIL :ﬂ;ﬂ & \ Deertos3
& - p
e 75 ol in

Amazon AmazonKinesis Amazon Data
DynamoDB. Data Streams Firehose

Amazons3

Transformation to
selctonly TTLrecords

N

AWS Lambda

index-540_2.png
yrgee—.

Fles s oders 10,1 6)

Sononims
. . N

[

index-356_1.png
5 7
SRS

e

Pr—

index-543_1.png
Permissions

@ Associate an 1AM role so that your serverless endpoint can LOAD and UNLOAD data. You can create an
1AM role as the default for this confguration that has the AmazonRedshiftAllCommandsFullAccess (2
policy attached. This poicy includes permisions to un SQL commands to COPY, UNLOAD, and query data
with Amazon Redshift Serverlss. This policy aso grants permissions to run SELECT statements forrelated
services, such as Amazon §3, Amazon CloudWatch logs, Amazon SageMaker, and AWS Glue. You won't be
able to run these SQL commands without an 1AM role attached to your namespace.

Associated IAM roles (1)

[seraetaus v][ctons +
Creste, st o o n A ol You i ssocateup 1 50 AM e, You an s chooss s AM ol and st .35t

ataut

(@ Fnd associted iom rotes] <15 @
0 wMness v | st | Roletype
o /AmazonRedshift-CommandsAccessRole-20241223720... Not applied Default

index-355_1.png

index-542_1.png
2 Namespace

Choose MBMESPaCE Namspce i colcion f dabse et d s Ot ropertes e Gt name s s persions oy

suos
Revewandcress | © Createanewnamespace
© Add toan eisting ramespace

Homespace
stestaa

T e e —— T
ppens

Database name and password

Ostabase ame.

e
[T T ——
Adrin ser credentits

sl peodnd o Gt i o rrsi,To 443 e i s s e,

) Customize adminusercredentls

index-239_1.png
S3event Porquet
Amazon Simple Amazon Simple
Storage Service Storage Service
(Amazon $3) Amazon (Amazon's3)
Rawdata EventBridge Processed data

index-236_1.png
Event source 4 EventBridge

Event source >~ Eventbus

Event source

