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 Health Metrics and the Spread of Infectious Diseases: Machine Learning Applications and 

 Spatial Modelling Analysis with R is an introductory guide to health metrics and infectious diseases. It demonstrates how to calculate these metrics to compare the health status of different countries and explores the world of infectious diseases. It tests various machine learning tools for analyzing trends and relationships among key variables, aiming to prevent unexpected outcomes. Through detailed explanations and practical examples, readers will gain a comprehensive understanding of Disability Adjusted Life Years (DALYs) and their components. 

Key Features:

•  Structured into four main sections—foundational health metrics, machine learning applications, data visualization, and real-world case studies

•  Integrates real-world case studies with data visualization and machine learning techniques, including spatial modelling with the R programming language

•  Covers specific infectious diseases such as COVID-19 and malaria, providing insights into their spread and control

•  Includes detailed explanations, practical exercises, and clear illustrations to enhance understanding and application

•  Adopts a practical approach, making advanced concepts accessible to a wide audience

The book is primarily aimed at researchers, data scientists, and public health professionals who seek to leverage data to improve health outcomes. By blending theoretical knowledge with practical applications, the book equips readers with the tools to make informed decisions and produce meaningful data analyses in public health. 
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Preface

This book will teach you about health metrics such as Disability Adjusted Life Years

(DALYs), Years of Life Lost (YLLs), Years Lived with Disabilities (YLDs), and others. It

explains how to calculate these metrics and discusses their components in detail. You will explore the machine learning framework and learn how to apply the influence of infectious

disease dynamics on trends in these metrics. The book equips you with all the necessary

tools for data collection, analysis, visualisation, and modelling. 

Think of it as a toolbox for assessing the health of a country and comparing it with others. 

You will also learn how to select the best tools for predicting health trends using statistics, visualising data, and working with maps in the R programming language. 

Consider this book as your guide to understanding the health status of a population at both global and country levels, leveraging expertise in managing various statistical tools. 

Audience and Utility of the Book

This book serves as both a manual and a textbook for introductory courses in health

metrics data analysis. Additionally, it provides valuable source code for practitioners and data scientists. The book offers a comprehensive set of tools for analysing various models through tailored case studies. It focuses on health data, providing an overview of the burden of diseases to facilitate comparisons between populations’ health status. By combining

theoretical insights with practical applications, the book aims to equip readers with the

necessary skills to conduct health data analyses and make informed decisions. 

Prerequisites

Before delving into the book, it is beneficial for readers to have a basic understanding of health concepts and terminologies. Familiarity with fundamental statistical concepts can

aid in comprehending the metrics discussed. Additionally, a grasp of basic epidemiological principles and awareness of global health challenges will enhance the reader’s engagement. 

However, it is important to note that if this knowledge is not already in place, a dedicated section in the book provides the necessary background. 

A basic knowledge of the R programming language is required for those interested in the

technical aspects of health data analysis, which cover a large part of this book. An open

mindset and curiosity about the evolving field of health metrics are key prerequisites, as the book covers a spectrum from historical perspectives to modern machine learning applications. 
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Overall, a multidisciplinary approach, combining aspects of health sciences, statistics, and technology, will enrich the reader’s experience. 
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Introduction

1.1

The Concept of Health

The concept of being “well” has evolved over the years and is not solely confined to physical health. Traditionally, health metrics focused on factors like life expectancy, mortality rates, and the prevalence of diseases. However, the understanding of well-being has expanded

to include broader dimensions, incorporating mental health, social factors, and overall life satisfaction. 

In recent years, there has been an increased emphasis on holistic well-being, recognizing

that health is not merely the absence of disease but a state of complete physical, mental, and social well-being. This perspective aligns with the 1946  World Health Organization’s constitution principles1 of health which states: “a state of complete physical, mental, and social well-being and not merely the absence of disease or infirmity.” 

1.1.1

The Culture

The cultural context significantly influences the values, norms, and expectations within

a society, and these, in turn, contribute to people’s understanding of what constitutes a

good life. Education, media, legal systems, and community practices all play pivotal roles in shaping individuals’ perceptions of well-being. Cultural norms and values often define

what is considered acceptable or taboo, influencing individuals’ behaviours and aspirations. 

Understanding these cultural nuances is crucial when developing health metrics and policies that aim to capture and improve well-being. It emphasises the need for a holistic approach that considers not only physical health but also the social, cultural, and psychological

dimensions of individuals and communities. 

Achieving a global mean or standard for well-being involves considering, not just the diversity of cultures but also acknowledging the common elements that contribute to human happiness

and health. Behavioural education, more specifically the process of teaching individuals how to modify their behaviours in order to improve their overall well-being, plays a pivotal role in this process. Promoting positive behaviours that are conducive to both individual and

societal well-being can be a universal goal. Understanding what constitutes “good behavior” 

in the context of health and happiness is, indeed, central to standardising well-being metrics. 

1“Constitution of the World Health Organization,” n.d., https://www.who.int/about/accountability/gov

ernance/constitution. 
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Moreover, this aligns with the idea that  health is closely tied to happiness. Cultivating positive behaviours, such as maintaining a healthy lifestyle, fostering social connections, and contributing to one’s community, can significantly impact both health and happiness. These behaviours can be universal, yet their interpretation and emphasis might vary based on

cultural contexts. 

1.1.2

A Global Perspective

In essence, achieving global standardisation in well-being requires a multi-faceted approach that includes education, social support systems, and a collective effort to reshape cultural narratives. It’s a complex task, but incremental changes in education and social structures can contribute to a more harmonised vision of well-being across diverse cultures. 

The aim of this book is to provide extensive information about the way this well-being can be statically measured. Public health metrics, such as Years of Life Lost (YLL) and Years lived with Disability (YLD), are examples of the key metrics discussed and used throughout this book. They are expressed in  number of years of life lost  or  years lived with disabilities, and their sum represents a crucial value named Disability Adjusted Life Years (DALYs). DALYs are generally used for ranking the health status of a population. 

The book covers the history of the development of the health metrics and aims at stimulating reasoning to suggest alternatives by providing a comprehensive manual to make reference to if you get lost among the plethora of information. The hope is to provide insights for health researchers and policymakers. 

To be more specific, the book compares the metrics used to summarise the health status of a population across different locations. It tests prediction levels using key models. The initial tools are {tidymodels} and {INLA} for modelling, but other machine learning packages like

{mlr3} and {caret} are also tested as alternative tools. 

In practice, the data will include information about humanity such as age, sex, life expectancy, mortality, and risk levels. The interesting part is related to the identification of insights from past outbreaks to predict and manage future ones. This is done through a process called

 model transfer. Imagine each outbreak as a story with unique but similar events, like the spread patterns and impacts of diseases. By studying these  stories, models can be built to capture key factors influencing outbreaks, such as transmission rates, environmental triggers, and population behaviours.2

A focus on the impact of recent infectious disease outbreaks, such as SARS-Covid19, on the state of health of the population, will be provided along with the most affected locations to compare results of both  deterministic  and  stochastic (Bayesian) models. Risk factor analysis is another important aspect covered in this book. It aims at identifying connections that

could lead to an increase in the number of DALYs for specific populations. Additionally, it looks at providing suggestions for public health policy and practice. 3

2Kirstin Roster, Colm Connaughton, and Francisco A. Rodrigues, “Forecasting New Diseases in Low-Data Settings Using Transfer Learning,”  Chaos, Solitons, and Fractals  161 (August 2022): 112306, 

doi:10.1016/j.chaos.2022.112306. 

3Theo Vos et al., “Global Burden of 369 Diseases and Injuries in 204 Countries and Territories, 1990–2019: A Systematic Analysis for the Global Burden of Disease Study 2019,”  The Lancet  396, no. 10258 (October 2020): 1204–22, doi:10.1016/s0140-6736(20)30925-9. 
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1.2

The Structure of the Book

The book is structured with an alternation of text and chunks of code, primarily in the

R programming language; hints for translations in Python are provided in Appendix C. 

The book encourages readers to actively engage with real-world case studies, transforming

theoretical concepts into practical skills. This hands-on approach enables readers to become practitioners, applying the methods learned directly to relevant scenarios. 

The material supports full exploratory data analysis and model visualisation, offering code for generating compelling spatial visualisations using packages such as {ggplot2}, {leaflet}, 

{sf}, and {terra}, among others, which allow for extensive user customization. The inclusion of these tools is intended to unlock the full potential of the R language, broadening the

reader’s understanding of both spatial and health metrics. 

To ensure reproducibility, the book-project employs the {renv} package, which provides

a snapshot of the specific versions of all packages used during the writing of the book

Appendix B. This enables readers to restore all R package libraries to the exact versions they were in at the time of writing, ensuring that all code examples work as intended regardless of future package updates. This detail is crucial for readers who wish to recreate the analysis or adapt it to their own datasets. 

This book is designed for practitioners at early stages of their careers and graduate students in STEM fields, yet it remains a valuable resource for experts who seek to have all the tools in one place for quick reference. The overarching goal of this book is to contribute to the scientific development of health metrics and evaluation, providing a comprehensive resource that supports both learning and application in this important field. 4

1.2.1

Navigating the Chapters and Key Concepts

First Section: Metrics and Evaluation

The Metrics and Evaluation section introduces the foundational concepts of health metrics. Chapter 2 (Introduction to Health Metrics), provides an overview of the definitions, historical context, and development of health metrics over time. Chapter 3 (Methods and Calculations) is a first level calculation of the metrics, including Disability-Adjusted Life Years (DALYs) and their components: Years of Life Lost (YLLs) and Years Lived

with Disability (YLDs), along with Healthy Life Expectancy (HALE), which represents

an advanced development in assessing population health. Chapter 4 (Metrics Components) examines essential building blocks for maintaining consistency in population health calculations, covering life tables, life expectancy, mortality rates, incidence, prevalence, and disability weights. This chapter is complemented by Appendix A, where detailed calculations are further explained. Chapter 5 (Causes and Risks) evaluates the factors influencing these metrics and identifies major threats that increase YLLs and YLDs, stimulating exploration

of preventive strategies and policy development. 

Second Section: Machine Learning

The Machine Learning section offers a deeper dive into evaluating health metrics using modelling techniques and provides an overview of R packages. Chapter 6 (Introduction to

4Christopher JL Murray and Julio Frenk, “Health Metrics and Evaluation: Strengthening the Science,” 

 The Lancet  371, no. 9619 (April 5, 2008): 1191–99, doi:10.1016/S0140-6736(08)60526-7. 
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Machine Learning) guides readers on how to utilise machine learning models in health metrics analysis. Chapter 7 (Techniques for Machine Learning Applications) covers various types of models appropriate for health data. Chapter 8 (Essential R Packages for Machine Learning) lists useful R packages for modelling, paired with case study applications to illustrate practical use. Chapter 9 (Predictive modelling and Beyond) focuses on applying predictive models to forecast health outcomes and trends. 

Third Section: Data Visualisation

The Data Visualisation section equips readers with the knowledge to create and customise plots and maps in R. Chapter 10 (Introduction to Data Visualisation) discusses the history and application of data visualisation techniques in R. Chapter 11 (Interpreting Model Results Through Visualisation) provides detailed methods for tailoring visual representations to enhance data interpretation. Chapter 12 (Spatial Data Modelling and visualisation) instructs on how to create informative maps, while Chapter 13 (Advanced Data Visualisation Techniques) presents practical examples to reinforce learning. 

Fourth Section: Infectious Diseases

The Infectious Diseases section starts with Chapter 14 (Introduction to Infectious Diseases) setting the stage for detailed case studies. Chapter 15 (COVID-19 Outbreaks) and Chapter 16 (The Case of Malaria) provide in-depth analysis of COVID-19 and malaria, illustrating how these diseases impact population health metrics. The section concludes

with Chapter 17 (Summary: The State of Health), comparing countries and regions to evaluate health status. 

Conclusion

The tools and methods introduced in this book serve as a foundation for a deeper under-

standing of health metrics and evaluation. The book aims to empower readers to apply

these concepts to real-world scenarios, fostering a culture of data-driven decision-making in health policy and practice. By combining theoretical knowledge with practical skills, 

readers can develop a comprehensive understanding of health metrics and their applications, contributing to the advancement of public health research and policy. 

Part I

Health Metrics
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Introduction to Health Metrics

“The concept of health also has highly subjective connotations, precisely

because it is conditioned by the personal view of happiness.” René Dubos1

Health metrics are key variables to understanding the state of health of a population. In this first section of the book we’ll explore the history of these metrics, how to calculate them, and how to account for their variation due to causes and risks. We will examine the components of these metrics and the challenges in providing standardised values for global comparison. 

Additionally, in the following sections, we will learn how to build a model, evaluate the effect of infectious disease spread on health metrics, and how it impacts the overall health status of a population. 

2.1

The History of Health Metrics

The history of health metrics is a fascinating journey that spans centuries, evolving from rudimentary observations to sophisticated statistical methods, as illustrated by Figure 2.1. 

One of the earliest forms of health metrics can be traced back to the work of  John Graunt, an Englishman, in the 17th century.2 In 1662, Graunt published a landmark work titled

“Natural and Political Observations Made upon the Bills of Mortality.” Graunt, defined

as the father of human demography, was largely self-educated, and his interest in

mortality data was driven by the Bills of Mortality, which were weekly and annual records of deaths in London, and provided information on the number of births and deaths in the city. 

Graunt meticulously analysed this mortality data and produced tables that presented various patterns and trends. His work laid the foundation for modern demography and

statistical analysis. Among his notable contributions were the concepts of life expectancy and mortality rates. One of Graunt’s key observations was the consistent pattern of higher mortality among infants and young children. He noted the difference in life expectancy

between males and females and provided insights into factors influencing mortality, such as epidemics and seasons. 

Over time, advancements in mathematics, medicine, and statistics led to the development

of more sophisticated health metrics. The 19th century saw the emergence of life tables, which provided a systematic way to analyse mortality and life expectancy. 

1R Dubos, “The State of Health and the Quality of Life.”  Western Journal of Medicine  125, no. 1 (July 1976): 8–9, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1237171/. 

2“John Graunt,” January 24, 2024, https://en.wikipedia.org/w/index.php?title=John_Graunt&oldid=1

198718407. 
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More specifically,  Mary Dempsey  in 1940s wrote an article3 for the National Tuberculosis Association about the concept of Years of Life Lost (YLLs), assessing time-lost as a metric for health for the first time. She was then followed by other more advanced improvements

spanning all throughout the rest of the century. 

“The quality of life depends also on the state of “public health”-namely

on factors that affect the biological welfare of the community as a whole.” 4

The 20th century marked significant advancements in epidemiology, driving the expansion

and refinement of health metrics. This period saw the widespread adoption of life tables

and the modification of expected survival time to incorporate weighted metrics, such as

disability-adjusted life years (DALYs). These developments enabled more comprehensive

assessments of population health by accounting for both mortality and the quality of life, laying the foundation for modern health evaluation tools. 

The term Summary Measures of Population Health (SMPH)5 was established in the field, originating from the need to encapsulate both fatal and non-fatal health outcomes into a single, comprehensive measure, representing a significant evolution in health metrics. 

Used for various purposes, the SMPH compares the health of populations and includes the

contributions of different diseases, injuries and risk factors to the total disease burden in a population. SMPH, also referred to as a composite indicator,6 is divided into two broad families: health expectancies and health gaps. 

Health expectancies are summary measures that combine information on mortality and

morbidity to represent the average number of years that an individual can expect to live in good health. Such as healthy life expectancy (HALE) and the quality adjusted life expectancy (QALE) using health-related quality of life. 

Health gaps, on the other hand, represent the difference between the current health status of a population and an ideal health situation, providing a measure of the potential for improvement in health outcomes. Divided into the disability adjusted life years

(DALYs)7 in the global burden of disease (GBD) study and the quality adjusted life years (QALY) used as the outcome index of the cost-utility analysis. 

In the contemporary era, the integration of computing power and big data has further

transformed health metrics. Today, we have complex models, machine learning algorithms, 

and global health databases that allow for real-time tracking of diseases and health outcomes. 

John Graunt’s work may have been modest in its origins, but it laid the groundwork for

a scientific approach to understanding population health. From Graunt’s early analysis of

the  Bills of Mortality8 to the development of today’s advanced health metrics, this journey reflects the ongoing effort to measure and understand the complexities of human health and disease. 

3Mary Dempsey, “Decline in Tuberculosis,”  American Review of Tuberculosis, April 23, 2019, https:

//www.atsjournals.org/doi/epdf/10.1164/art.1947.56.2.157?role=tab. 

4Dubos, “The State of Health and the Quality of Life.” July 1976. 

5Christopher J. L. Murray et al., eds.,  Summary Measures of Population Health: Concepts, Ethics, Measurement and Applications (World Health Organization, 2002). 

6Adnan A. Hyder, Prasanthi Puvanachandra, and Richard H. Morrow, “Measuring the Health of Populations: Explaining Composite Indicators,”  Journal of Public Health Research  1, no. 3 (December 2012): 222–28, doi:10.4081/jphr.2012.e35. 

7C. J. Murray, “Quantifying the Burden of Disease: The Technical Basis for Disability-Adjusted Life Years.”  Bulletin of the World Health Organization  72, no. 3 (1994): 429–45, https://www.ncbi.nlm.nih.gov/p

mc/articles/PMC2486718/. 

8“John Graunt,” January 24, 2024, https://en.wikipedia.org/w/index.php?title=John_Graunt&oldid=1

198718407. 
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2.1.1

Quality-Adjusted Life Years (QALYs)

The concept of Quality-Adjusted Life Years (QALYs) emerged in the late 1970s, 

originating from the idea of combining both the  quantity  and  quality  of life by  Joseph S. 

 Pliskin, then it became a widely used metric for evaluating the  cost-effectiveness  of healthcare interventions.9 One  QALY  corresponds to one year in perfect health, it ranges from 1 (perfect health) to 0 (dead). However, this metric, used in various sectors such as health insurance, is somewhat criticised due to its lack of addressing disparities among individuals. It might result in discrimination against individuals with specific medical conditions or disabilities. 

A controversial outcome emerged after 25 years of research and studies, raising concerns

about the metric’s validity and inclusiveness. Started in the early 1989s, to step in the 2010

with the  European Commission10 which started the largest-ever study specifically dedicated to testing the assumptions of the  QALY ,11 ending in 2013 with the recommended “not using QALYs in healthcare decision making”, arguing that patients with disabilities are valued

less under a QALY-based system than individuals with no disabilities. This result has been further criticised and remains a topic of debate. 

“Thus, medicine cannot by itself determine the quality of life. It can only

help people to achieve the state of health that enables them to cultivate

the art of life-but in their own way. This implies the ability to enjoy the

fundamental satisfactions of the biological joie de vivre. It also implies

the ability for each person to do what he wants to do and become what

he wants to become, according to human values that transcend medical

judgement” R.Dubos12

Used in health policy to measure the value of medical interventions by balancing both the

quantity and quality of life added, QALYs help decision-makers determine which treatments

or programs offer the greatest health benefits relative to their costs. For example, a health policy might prioritise funding for treatments that deliver high QALYs per dollar spent, 

ensuring resources are allocated to maximise health outcomes across the population. This

approach guides decisions in healthcare budgeting, insurance coverage, and prioritising

interventions for chronic illnesses, preventive care, or new therapies. 

2.1.2

Disability-Adjusted Life Years (DALYs)

In the 1990s, the World Bank financed a study at Harvard University to develop a sustainable index that considered not only the health status but also the identification of the level of disabilities concerned by disparities. This lead to a new way of comparing the overall health and life expectancy of different countries, released along with the Global Burden of Disease Study in 1990; 13 a project that involved  Christopher J. L. Murray14 and  Alan Lopez, 15

9“Quality-Adjusted Life Year,” December 27, 2023, https://en.wikipedia.org/w/index.php?title=Quality-

adjusted_life_year&oldid=1192021016. 

10“Echoutcome,” October 8, 2016, https://web.archive.org/web/20161008010513/http://echoutcome.eu/. 

11David Holmes, “Report Triggers Quibbles over QALYs, a Staple of Health Metrics,”  Nature Medicine 19, no. 3 (March 1, 2013): 248–48, doi:10.1038/nm0313-248. 

12R Dubos, “The State of Health and the Quality of Life.”  Western Journal of Medicine  125, no. 1 (July 1976): 8–9, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1237171/. 

13C. J. Murray, A. D. Lopez, and D. T. Jamison, “The Global Burden of Disease in 1990: Summary Results, Sensitivity Analysis and Future Directions.”  Bulletin of the World Health Organization  72, no. 3

(1994): 495–509, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2486716/. 

14“Christopher J. L. Murray,” January 1, 2024, https://en.wikipedia.org/w/index.php?title=Christopher

_J._L._Murray&oldid=1192936044. 

15“Alan Lopez,” December 11, 2023, https://en.wikipedia.org/w/index.php?title=Alan_Lopez&oldid=11

89335406. 
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in collaboration with the World Health organization (WHO). This effort resulted in the

development of the Disability-Adjusted Life Years (DALYs), 16 a metric that combines years of life lost due to premature death (YLLs) and years lived with disabilities (YLDs). 

Figure 2.2 YLLs and YLDs components of DALYs

DALYs are connected with QALYs in that both metrics seek to quantify the impact of health

on quality and length of life. However, while QALYs focus on the benefits with and without medical intervention, DALYs measure the overall burden of diseases. 

The DALY metric is calculated by summing the years of life lost (YLLs) due to premature death and the years lived with disabilities (YLDs). This metric provides a comprehensive measure of a population’s health status by highlighting both mortality and disability. For example, consider a population with a life expectancy of 80 years. Individuals who die before reaching this age contribute to the YLLs, while those living with disabilities add to the

YLDs. The sum of these values gives the total DALYs for the population, which can then

be compared globally to assess health status and identify areas needing improvement in

facilities, research, or investment. 

2.1.3

Health-Adjusted Life Years (HALY)

Health Adjusted Life Years (HALY) is a metric that combines aspects of both DALYs and

QALYs to provide a comprehensive measure of health outcomes in a population. HALYs

quantify the burden of disease and the overall quality of life experienced by individuals, measuring the number of years of healthy life lived by a population while accounting for both mortality and morbidity. The information about the prevalence of diseases and disabilities, as well as the impact of these conditions on individuals’ quality of life is incorporated in the calculation of HALYs. 

HALYs adjust life expectancy levels based on the prevalence of health conditions and

their associated disability weights. Disability weights reflect the severity of different health conditions and their impact on daily functioning. By applying these weights to the prevalence of each condition, researchers can estimate the overall burden of disease in terms of years of healthy life lost, similar to the calculation of DALYs. Unlike DALYs, which focus primarily on morbidity and mortality, HALYs incorporate measures of individuals’ quality of life, 

allowing for a more comprehensive assessment of health outcomes. 

16“Disability-Adjusted Life Year,” December 8, 2023, https://en.wikipedia.org/w/index.php?title=Disabil

ity-adjusted_life_year&oldid=1188922629. 
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2.1.4

Health-Adjusted Life Expectancy (HALE)

Healthy Life Expectancy (HALE)1718 is a measure of overall health and well-being that accounts for both the quantity and quality of life. HALE combines years of life expectancy with the prevalence and severity of disability in a population, providing a more nuanced

view of health outcomes than traditional measures of life expectancy. 

HALE provides a more comprehensive view of health outcomes than other traditional

measures of life expectancy, which only consider the quantity of life. The calculation of

HALE typically involves estimating the number of years that an individual can expect to

live in good health, taking into account the impact of diseases and injuries on quality of life. This information is then used to estimate the overall health status of a population. 

It is a useful tool for public health practitioners and policy makers, as it provides a more nuanced view of the health outcomes of a population. This information can help inform

public health interventions and prioritise resources, as well as help track changes in health outcomes over time. Additionally, HALE can be used to compare the health outcomes of

different populations and identify disparities in health outcomes, which can help inform

targeted public health interventions. 

Overall, the HALE metric provides a valuable perspective on the overall health and well-

being of a population, combining information about both quantity and quality of life to

provide a comprehensive view of health outcomes. It adjusts overall life expectancy by the amount of time lived in less than perfect health. This is calculated by subtracting from the life expectancy a figure which is the number of years lived with disability multiplied by a weighting to represent the effect of the disability19. 20

2.1.5

Healthy Life Years (HLY)

There is one more health metrics that is worth mentioning, the Healthy Life Years

(HLYs) indicator, also known as Disability-Free Life Expectancy (DFLE) or Sullivan’s Index.21 It assesses the number of years an individual can expect to live in good health, free from significant health problems or disabilities. It is a measure of the  quality of life-adjusted life expectancy, focusing on the years lived in full health rather than simply the total number of years lived. It specifically focuses on the number of years a person can expect

to live without disability, providing valuable insights into overall health and well-being beyond just life expectancy. It takes into account both mortality and morbidity, providing a comprehensive picture of overall health and well-being. 

HLYs differs from HALE in that it focuses on the number of additional years a person can

expect to live in good health after reaching a certain age, typically 65. This makes HLYs

especially relevant for assessing health in ageing populations and evaluating interventions that aim to improve the quality of life for older adults. 

17Variations in Terminology: The terms “Health-Adjusted Life Expectancy” (HALE), “Healthy Life Expectancy” (HALE), and other variants are sometimes used interchangeably in this book. 

18“Indicator Metadata Registry Details,” n.d., https://www.who.int/data/gho/indicator-metadata-

registry/imr-details/158. 

19www.healthknowledge.org.uk

20“Healthy Life Expectancy (HALE),” n.d., https://www.who.int/data/gho/data/themes/topics/indicator-

groups/indicator-group-details/GHO/healthy-life-expectancy-(hale). 

21“Healthy Life Years,” January 26, 2024, https://en.wikipedia.org/w/index.php?title=Healthy_Life_Ye

ars&oldid=1199224227. 
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Table 2.1 Health Metrics Overview

Metric

Purpose

Focus

Usage

Calculation

QALY

Measures health

Health gains

Used in

Calculated by

(Quality-

benefits of

from

cost-effectiveness

adjusting life years

Adjusted

interventions by

interventions

studies, healthcare

gained for quality of

Life

combining

resource allocation, 

life (e.g., 1 year at

Year)

quantity and

and insurance

half quality = 0.5

quality of life

QALY)

gained

DALY

Measures burden

Health loss

Used in public

Calculated by

(Disability- of disease by

due to

health to

summing years of life

Adjusted

capturing

disease and

understand and

lost (YLL) and years

Life

premature death

disability

compare disease

lived with disability

Year)

and disability

burden globally

(YLD)

impact

HALY

General measure

Health gains

Used similarly to

Calculated by

(Health-

combining health

or losses

QALY, though less

adjusting life years

Adjusted

quantity and

from

frequently in

for health quality; 

Life

quality; similar to

interventions

decision-making

similar to QALY

Year)

QALY but less

or disease

common

impact

HALE

Estimates life

Overall

Primarily used in

Calculated by

(Healthy

expectancy in

healthy life

population health

adjusting total life

Life Ex-

‘healthy’ years, 

expectancy

and public health

expectancy based on

pectancy) adjusting for

at a

reports for health

age-specific disability

disability and

population

expectancy

prevalence

illness

level

HLY

Measures the

Healthy life

Used in geriatric

Typically calculated

(Health

additional healthy

expectancy

health assessments

by estimating

Life

years expected, 

focused on

and interventions

additional years of

Years)

often from a

ageing

for ageing

good health beyond a

specific age like 65

populations

populations

baseline age

WAHE

Incorporates both

Overall

Applicable for

Calculated by

(Well-

physical and

well-being

holistic health

weighting health

being

subjective

and mental

assessments, 

states to reflect

Adjusted

well-being for life

health as

incorporating

impact on well-being

Health

expectancy in ‘full

well as

quality of life and

and quality of life

Ex-

health’

physical

mental wellness

pectancy)

health

For example, an organisation focusing on elder care policy might use HLYs to measure

program impact on older adults specifically, while a global health agency might prefer HALE

for its applicability to general population health across all ages. 

HLY is typically calculated by subtracting the number of years lived with disability from

life expectancy at birth. The resulting figure represents the number of years an individual can expect to live in good health, free from significant health-related limitations. Unlike life expectancy, which focuses solely on the length of life, HLY incorporates measures of

the quality of life by considering the impact of health conditions on individuals’ ability to engage in daily activities and maintain independence. 
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2.1.6

Well-being-Adjusted Health Expectancy (WAHE)

Currently, Well-being-Adjusted Health Expectancy (WAHE) is still an emerging

metric in health research that combines traditional health indicators with well-being factors to provide a more comprehensive assessment of population health. WAHE is calculated

by estimating the number of life years equivalent to full health, taking into account both physical and psychological well-being. 

WAHE aims to capture the overall health and well-being of individuals by incorporating

measures of physical health, mental health, and social well-being. This metric goes be-

yond traditional health metrics like life expectancy and disability-adjusted life years to provide a more holistic view of health outcomes by considering factors like happiness, life satisfaction, and social connectedness. 

Particularly relevant in the context of global health, WAHE provides a more holistic view

of population health that can inform public health policies, healthcare interventions, and resource allocation decisions[22].23. 24

2.2

How the Metrics are Used in Global Health

These metrics are used alone or in combination with other health metrics in global health

assessments conducted by organisations such as the World Health Organisation (WHO), the European Commission, and the Institute for Health Metrics and Evaluation

(IHME). They provide a global perspective and insights into the health status of populations, helping to track progresses towards long-term health objectives over time. The metrics also inform public health policies, healthcare interventions, and resource allocation decisions, helping to prioritise health needs and target interventions effectively. 

The investigation into finding updated metrics is a sustained commitment, aiming to

develop new measures tailored to the evolving landscape of the health field. Recently, the new Summary Measure of Population Health (SMPH) proposed the Well-being-Adjusted Health Expectancy (WAHE) measure as an estimate of the number of life

years equivalent to full health. 25 This approach reflects a growing recognition that health metrics should account for physical and clinical indicators and consider psychological and overall well-being. 

2.3

Summary

Health metrics play a crucial role in understanding and improving population health. From

John Graunt’s early work in the 17th century to today’s sophisticated metrics like DALYs, 

22“Ipc2021,” n.d., https://ipc2021.popconf.org/abstracts/210817. 

23Magdalena Muszyńska-Spielauer and Marc Luy, “Well-Being Adjusted Health Expectancy: A New Summary Measure of Population Health,”  European Journal of Population  38, no. 5 (December 2022): 1009–31, doi:10.1007/s10680-022-09628-1. 

24Well-Being Adjusted Health Expectancy - a New Summary Measure of Population Health | Population Europe,” n.d., https://population-europe.eu/research/books-and-reports/well-being-adjusted-health-

expectancy-new-summary-measure-population. 

25Muszyńska-Spielauer and Luy, “Well-Being Adjusted Health Expectancy”. 
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QALYs, HALYs, HALE, and HLY, these measures have evolved to provide a comprehensive

view of health outcomes. They guide public health policies, healthcare interventions, and

global health assessments, highlighting areas for improvement and helping to allocate

resources effectively. As health metrics continue to evolve, incorporating both traditional and well-being indicators, they will remain essential tools in the quest to quantify and enhance the complexities of human health and disease. 

What’s next? In the next chapter we will investigate deeper into how DALYs break down

health impacts into two powerful metrics—Years of Life Lost (YLLs) and Years Lived with

Disability (YLDs). These calculations not only reveal the total toll of disease but drive

critical decisions on where to focus resources and which interventions can most effectively boost population health. 

3

Methods and Calculations

Learning Objectives

• Explore key health metrics and their significance in public health analysis

• Learn how to apply and interpret these metrics using real-world data

• Identify opportunities to improve health metrics and their use in decision-making

The objective of this chapter is to provide a first level calculation of the burden of diseases, focusing on disability and premature mortality, which are captured by DALYs and HALE. 

In Chapter 2, we defined the metrics to establish the theoretical framework for constructing them. In this chapter, we will proceed with a general calculation of YLLs and YLDs to obtain the DALYs. This step is essential for understanding the structure of the metric components, which will be further investigated in Chapter 4. 

Used to measure the burden of disease and quantify the impact of diseases and injuries on

individuals and populations, these metrics can help prioritise public health interventions and evaluate the effectiveness of public health programs. 

3.1

YLLs Calculation

The Years of Life Lost (YLLs) is a metric that measures the number of years a person would have lived if they had not died prematurely due to a disease or injury. YLLs are

calculated by subtracting the age at death from the expected age at death in a

population without the disease or injury. 

In the late 1940s (Chapter 2), William Haenszel1 introduced the concept of Standardized Rate for Mortality in units of Lost Years of Life, marking an early attempt to quantify the impact of premature mortality. This approach emphasized the importance of considering

the  age at death  and comparing it to the  expected life expectancy, highlighting that early deaths have a greater impact than those occurring later in life. It was ascertained that

accounting for the number of years lost for a group of people would help recognize the

potential life lost for a certain cause. Since this first approach, some adjustments to the standard death rates were made, leading to a new calculation that considered standardised

death rates applied to age-specific factors for specific causes of death. 

1William Haenszel, “A Standardized Rate for Mortality Defined in Units of Lost Years of Life,”  American Journal of Public Health and the Nations Health  40, no. 1 (January 1950): 17–26, https://www.ncbi.nlm.nih

.gov/pmc/articles/PMC1528498/. 

DOI: 10.1201/9781032625935-3
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Building on these ideas, Mary Dempsey2 formalized the concept in 1947 to assess the burden of tuberculosis, coining the term Years of Life Lost (YLLs). This metric was specifically designed to identify areas requiring improvement to reduce health loss and

prevent premature death. 3 Her work established YLLs as a critical tool for understanding and addressing the disproportionate effects of early mortality on population health. 

The impact of premature losses on society extends beyond the grief of losing a loved

one; it also includes the economic and social cost of losing productive members of

the workforce. Such premature deaths lead to a significant burden on the community, 

affecting overall economic stability and societal well-being. 

Standard Formula

 Y LL =  N ∗  le

(3.1)

In Equation 3.1,  N  is the number of premature deaths, and  le  is the standard life expectancy at the age of death. This calculation takes into account the number of deaths at each age and multiplies it by the standard life expectancy remaining at that age, using global life tables to determine life expectancy. More details about the components of YLLs are provided in

the next chapter (Chapter 4), and a sample of the construction of a life table with relative estimations of the life expectancy can be found in Appendix A. 

In general, the Global Burden of Disease studies (GBD) use standardised life tables, to consistently measure the impact of various diseases. This approach allows for reliable

comparisons across different conditions and populations, providing a comprehensive assess-

ment of disease burden on a global scale. 4 Additionally, country-specific life expectancies are valuable for investigating premature deaths resulting from health-related causes, such as

fatal diseases. For instance, certain types of country-specific life expectancies are frequently recommended due to their ability to provide insight into longevity characteristics, which

can inform policymakers and aid in prevention efforts, as exemplified by the Japanese life expectancy.5 A G7 cross-country study demonstrated that Japan has the longest average life expectancy, primarily attributed to significantly low mortality rates from ischemic heart disease and cancer, which are the leading causes of death in most countries, as indicated by the GBD study. 

3.1.1

Example: YLLs Due to Stroke

Stroke can be a consequence of several infectious diseases, such as COVID-19, Tuberculosis (TB), and Malaria. The impact of these diseases on the cardiovascular system can lead to

stroke, as infections can cause inflammation, blood clot formation, or direct damage to blood vessels. 

In the following example, we calculate the YLLs due to stroke in the year 2019 for the

Global region. We use the data from the Global Burden of Disease (GBD) study, which

2Mary Dempsey, “Decline in Tuberculosis,”  American Review of Tuberculosis, April 23, 2019, https:

//www.atsjournals.org/doi/epdf/10.1164/art.1947.56.2.157?role=tab. 

3Robert C. Reiner and Simon I. Hay, “The Overlapping Burden of the Three Leading Causes of Disability and Death in Sub-Saharan African Children,”  Nature Communications  13, no. 1 (December 6, 2022): 7457, doi:10.1038/s41467-022-34240-6. 

4Brecht Devleesschauwer et al., “Valuing the Years of Life Lost Due to COVID-19: The Differences and Pitfalls,”  International Journal of Public Health  65, no. 6 (2020): 719–20, doi:10.1007/s00038-020-01430-2. 

5Shoichiro Tsugane, “Why Has Japan Become the World’s Most Long-Lived Country: Insights from a Food and Nutrition Perspective,”  European Journal of Clinical Nutrition  75, no. 6 (2021): 921–28, doi:10.1038/s41430-020-0677-5. 
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provides estimates of the number of deaths due to stroke in different regions. The data can be downloaded from the {hmsidwR} package, which contains the necessary datasets

for this calculation. The deaths2019 dataset comprises 2754 observations and 7 variables, 

containing the estimated number of deaths due to 9 causes, including stroke, across 6 regions: Global, France, Italy, Germany, the United Kingdom, and the United States. We also use

the Global Health Observatory Life Tables to estimate the life expectancy at different ages, which is used to calculate the YLLs due to stroke. 

install.packages("hmsidwR")

# install.packages("devtools")

devtools::install_github("Fgazzelloni/hmsidwR")

library(tidyverse)

library(hmsidwR)

unique(hmsidwR::deaths2019$cause)

#> [1] "Lower respiratory infections" 

#> [2] "Stroke" 

#> [3] "Chronic obstructive pulmonary disease" 

#> [4] "Road injuries" 

#> [5] "Diabetes and kidney diseases" 

#> [6] "Colon and rectum cancer" 

#> [7] "Tracheal, bronchus, and lung cancer" 

#> [8] "Breast cancer" 

#> [9] "Alzheimer's disease and other dementias" 

Our specific task is to calculate the Years of Life Lost (YLLs) attributable to stroke in the year 2019 for the Global region. We filter the location to be “Global” and the cause to be

“Stroke”. The use of str_detect() is to match the cause of death containing a specific word, it is very useful when the cause of death is not exactly containing just one word. 

deaths_stroke <- hmsidwR::deaths2019 %>%

arrange(age)%>%

filter(location == "Global", 

str_detect(cause, "Stroke")) %>%

select(-location, -cause, -upper, -lower)

deaths_stroke %>% head()

#> # A tibble: 6 x 3

#> 

sex

age

dx

#> 

<chr> <ord> <dbl> 

#> 1 male

<1

3640. 

#> 2 female <1

2404. 

#> 3 both

<1

6044. 

#> 4 male

01-04 2049. 

#> 5 female 01-04 1505. 

#> 6 both

01-04 3553. 

Then, we visualise the number of deaths due to stroke by age group, with a geom_boxplot(). 

The boxplot shows the distribution of the number of deaths by age group, with the median, 

quartiles, and outliers. The plot is divided by age group and shows the variation in the

number of deaths due to stroke between gender as it is stratified by gender, highlighting

variations in stroke mortality between males and females. We can observe the difference in
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the number of deaths increases for older age groups. 

deaths_stroke %>%

filter(!sex == "both") %>%

ggplot(aes(x = age,y = dx)) +

geom_boxplot() +

labs(title = "Male and Female Deaths due to Stroke", 

subtitle = "Year 2019", 

caption = "IHME GBD 2019 Data", 

x = "Age Group", y = "Deaths") +

theme(axis.text.x = element_text(angle = 45, hjust = 1))

Male and Female Deaths due to Stroke

Year 2019

750000

500000

Deaths

250000

0

<1

85+

01−0405−0910−1415−1920−2425−2930−3435−3940−4445−4950−5455−5960−6465−6970−7475−7980−84

Age Group

IHME GBD 2019 Data

Figure 3.1 Boxplots showing male and female deaths variation due to Stroke by Age Group (2019)

Among the indicators available in the hmsidwR::gho_lifetables dataset, we specifically

focus on the indicator denoted as  ex. The expectation of life at age  x ( ex) refers to the average number of additional years a person is expected to live, given that they have already reached age  x. This measure is commonly referred to as life expectancy at age  x. This dataset is part of the Global Health Observatory (GHO) data repository, which is maintained by

the World Health Organization (WHO). The dataset also contains life table indicators, such as the number of person-years lived above age  x ( lx), the number of person-years lived between ages  x  and  x +  n ( nLx), the age-specific death rate between ages  x  and  x +  n ( nMx), the number of people dying between ages  x  and  x +  n ( ndx), and the probability of dying between ages  x  and  x +  n ( nqx). 
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Table 3.1 Life Table Indicators

Indicator

Description

Tx

person-years lived above age x

ex

expectation of life at age x

lx

number of people left alive at age x

nLx

person-years lived between ages x and x+n

nMx

age-specific death rate between ages x and x+n

ndx

number of people dying between ages x and x+n

nqx

probability of dying between ages x and x+n

We use the estimated value of the expected life for 5-year age groups, such as <1, ... , 05-09, 10-14, etc. for both females and males. 

On the other hand, the standard life expectancy represents the  maximum number of years a person is expected to live from birth. For example, according to estimates released in 2021

by the United Nations Population Division, the Japanese life expectancy at birth is approximately 84.6 years. This figure is significantly higher than the global average life expectancy of around 72.6 years. 

To calculate the YLLs due to stroke, we need to use the life expectancy at different ages. We filter the gho_lifetables dataset to year 2019, which is the most updated year available for the life expectancy data, and select the indicator ex to get the life expectancy at different ages, renaming it as le. 

ex2019 <- hmsidwR::gho_lifetables %>%

filter( year == 2019, indicator == "ex") %>%

select(-indicator, -year) %>%

rename(le = value)

ex2019 %>% head()

#> # A tibble: 6 x 3

#> 

age

sex

le

#> 

<ord> <chr> <dbl> 

#> 1 <1

male

70.8

#> 2 <1

female 75.9

#> 3 <1

both

73.3

#> 4 01-04 male

72.0

#> 5 01-04 female 76.9

#> 6 01-04 both

74.4

Then we merge the deaths_stroke with the ex2019 data to calculate the YLLs due to

stroke in the Global region with the full_join() function, and group the data by age and

sex before to create one more vector named YLL, which is the product of the number of

deaths and the life expectancy at that age. These YLLs values are expressed in millions, and are not necessarily the real values, but estimated values. Their values are strongly dependent on the life expectancy and the number of deaths due to stroke, also other adjustments can be made to the life expectancy values to get more accurate results. In the past, the calculation of YLLs included the use of a discount rate, which is no longer used in the most recent

calculations. 
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Table 3.2 YLLs due to Stroke in the Global region-5 years age groups YLL_global_stroke %>% head()

#> # A tibble: 6 x 5

#> 

sex

age

dx

le

YLL

#> 

<chr> <ord> <dbl> <dbl> 

<dbl> 

#> 1 male

<1

3640. 70.8 257916. 

#> 2 female <1

2404. 75.9 182396. 

#> 3 both

<1

6044. 73.3 443136. 

#> 4 male

01-04 2049. 72.0 147563. 

#> 5 female 01-04 1505. 76.9 115680. 

#> 6 both

01-04 3553. 74.4 264428. 

YLL_global_stroke <- deaths_stroke %>%

full_join(ex2019) %>%

group_by(age, sex) %>%

mutate(YLL = dx * le) %>%

ungroup()

Global Region : Years of Life Lost (YLLs) due to stroke

Year 2019 − Millions

female

male

6.00M

4.00M

2.00M

Value (Millions)

0.00M

<1 01−04 05−09 10−14 15−19 20−24 25−29 30−34 35−39 40−44 45−49 50−54 55−59 60−64 65−69 70−74 75−79 80−84 85+

Age Group

DataSource: WHO life expectancy & IHME results Stroke data

Figure 3.2 YLLs due to Stroke in the Global region

Based on these results, we can conclude that the components of YLLs due to stroke are

essential measures of the impact of this condition on the quality of life of individuals in the Global region. The YLLs due to stroke are particularly high in older age groups, where the number of deaths is higher, and the life expectancy is lower. This indicates that stroke has a significant impact on the overall burden of disease in the Global region, particularly among older populations. 
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Table 3.3 All-Ages IHME Metrics for Stroke in the Global region for the year 2019

stroke_ihme %>%

mutate(across(where(is.numeric), ~round(., 2))) %>%

filter(year == 2019, 

age == "All ages") %>%

select(metric, DALYs, YLDs, YLLs)

#> # A tibble: 3 x 4

#> 

metric

DALYs

YLDs

YLLs

#> 

<chr> 

<dbl> 

<dbl> 

<dbl> 

#> 1 Number 156261906. 

14462764. 

141799142. 

#> 2 Percent

0.06

0.02

0.08

#> 3 Rate

2018. 

187. 

1831. 

3.1.2

Exercise: All-Ages YLLs Estimation

Calculate the YLLs due to stroke in the Global region for All-ages, and compare the results with the IHME data for the year 2019. 

The YLLs due to stroke in the Global region in 2019-IHME data can be downloaded from

the healthdata.org, with 2019 data reflecting the updates of 2021 GDB releases. 

The stroke_ihme6 dataset contains the estimated values for the numbers, percent and rates of Deaths, DALYs, YLLs, and YLDs due to stroke in the Global region-All ages and

Age-standardized, for years 2019 and 2021. 

Filtering the data for the year 2019-All Ages, we can visualise only the values of all metrics due to stroke in the Global region, as shown below. 

In the Global region, YLLs (Years of Life Lost) due to stroke for all age groups total 141.799

million years, accounting for 8% of the total disease burden. On average, approximately 1,830

years of life were lost prematurely due to stroke for every 100,000 people in the population. 

To calculate the YLLs due to stroke in the Global region for All-ages use the Table 3.2

datasets, and compare the results with the IHME data for the year 2019. As estimated by

the IHME for the year 2019, this calculation is based on the number of deaths caused by

stroke and the corresponding life expectancy at different ages, which together determine the YLLs attributable to stroke. 7

Note that the values are not necessarily the real values, but estimated values. Their values are strongly dependent on the life expectancy and the number of deaths due to stroke, also other adjustments can be made to the life expectancy values to get more accurate results. 

In the past, the calculation of YLLs included the use of a discount rate, which is no longer used in the most recent calculations. 

6For reproducibility the stroke_ihme data is stored in the GitHub repository of the book (https:

//github.com/Fgazzelloni/hmsidR). 

7Alize J. Ferrari et al., “Global Incidence, Prevalence, Years Lived with Disability (YLDs), Disability-Adjusted Life-Years (DALYs), and Healthy Life Expectancy (HALE) for 371 Diseases and Injuries in 204

Countries and Territories and 811 Subnational Locations, 1990–2021: A Systematic Analysis for the Global Burden of Disease Study 2021,”  The Lancet  403, no. 10440 (May 18, 2024): 2133–61, doi:10.1016/S0140-

6736(24)00757-8. 

 YLDs Calculation

23

3.2

YLDs Calculation

YLDs (Years Lived with Disability) measure the number of years a person lives with a disability due to a disease or injury. It is calculated by multiplying the prevalence of a condition by the disability weight, which reflects the severity of the disability. 

The key factor of the disability weights (DW) is linked to the severity (mean of the range of health loss suffered to disease) of a non-fatal health condition due to disease or injury. DW

ranges between 0 (equivalent to full health) and 1 (equivalent to death). The estimation of the disability weights is challenging and has been continuously changed by modifying and

adapting methodologies in various studies. 8 The challenge is assigning disability weights to diseases with different levels of prevalence and severity, such as cases with high prevalence and low severity. People’s experiences of the same condition can vary significantly, making it difficult to establish a Standardised weight that accurately reflects the global impact on quality of life. Furthermore, the results need to be reported to a year-based value. 

Moreover, the calculation of YLDs has been updated over the years, shifting from an

incidence to a prevalence-based approach. More in-depth analyses are in Chapter 4; for now, we will show how both types of calculations differ, but then we will focus on using the most updated approach based on values of prevalence estimated by the GBD2021, summarised

in the hmsidwR::incprev_stroke dataset. This dataset specifically contains the estimated

values for the incidence and prevalence of stroke in the Global region for the years 2019 and 2021. 

3.2.0.1

Incidence-based Calculation

Standard Formula

 Y LDi =  I ∗  DW ∗  L

(3.2)

In Equation 3.2,  I  is the incidence of the condition,  DW  is the disability weight, and  L  is the average duration of the condition. The incidence takes into account the number of new

cases of a disease or health condition that occur in a population over a specific period. The disability weight reflects the severity of the health condition, and the average duration of the condition is the average length of time a person lives with the condition. 

3.2.0.2

Prevalence-based Calculation

Standard Formula

 Y LDp =  p ∗  DW

(3.3)

In Equation 3.3,  p  is the prevalence,  DW  are the disability weights. While an incidence-based approach focuses on the number of new cases of a health condition, the prevalence-based

approach considers the total number of cases in the population. The disability weight reflects the severity of the health condition and it is applied to the prevalence to calculate the YLDs, and the duration of the condition is not considered in the prevalence-based calculation. 

8Xiaoxue Liu et al., “Disability Weight Measurement for the Severity of Different Diseases in Wuhan, China,”  Population Health Metrics  21 (May 2023): 5, doi:10.1186/s12963-023-00304-y. 
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3.2.1

Example: YLDs Due to Stroke

Since the release of GBD 2010, the WHO has decided to switch to a prevalence-based

approach for the calculation of YLDs. The major impact of this shift is to distribute the

weights of the YLDs more evenly across all age groups, rather than concentrating them at

the age of incidence. 

In the following example we use the disability weights and the severity levels extracted

from a dataset in the GBD study. The disweights dataset is stored in the {hmsidwR} package and is made of 463 observations and 9 variables. It contains the estimated values for the

disability weights, which are measured on a scale from 0 to 1, where 0 equals a state of full health and 1 equals death. 

hmsidwR::disweights %>%

filter(year == 2019) %>%

group_by(cause1, severity) %>%

reframe(dw = mean(dw)) %>%

filter(cause1 == "Stroke")

#> # A tibble: 3 x 3

#> 

cause1 severity

dw

#> 

<chr> <chr> 

<dbl> 

#> 1 Stroke mild

0.019

#> 2 Stroke moderate 0.193

#> 3 Stroke severe

0.57

The level of severity is assigned based on the degree of disability assessed by the National Institutes of Health Stroke Scale (NIHSS). The classification is used by

healthcare providers to objectively quantify the impairment caused by a stroke. Here is

assumed a sample population affected by a stroke, categorised as mild, moderate, or severe with assigned proportions. 

Table 3.4 Level of disability by the National Institutes of Health NIH or more specifically by the National Institutes of Health Stroke Scale (NIHSS). 

Score

Stroke severity

Severity Level

Severity %

0-4

Minor stroke

Mild

50.3%

5–20

Moderate stroke

Moderate

25.3%

21-42

Severe stroke

Severe

24.4%

These levels are general for all ages; the values might vary for other specifications of the level of disability. 9

dwsev2019 <- hmsidwR::disweights %>%

select(cause1, severity, dw) %>%

drop_na() %>%

mutate(severity_n = case_when(

severity == "mild" ~ 0.503, 

severity == "moderate" ~ 0.253, 

severity == "severe" ~ 0.244))

9Grant M. A. Wyper et al., “Prioritising the Development of Severity Distributions in Burden of Disease Studies for Countries in the European Region,”  Archives of Public Health  78, no. 1 (January 2020): 3, 

doi:10.1186/s13690-019-0385-6. 
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dwsev2019 %>% head()

#> # A tibble: 6 x 4

#> 

cause1

severity

dw severity_n

#> 

<chr> 

<chr> 

<dbl> 

<dbl> 

#> 1 Infectious disease mild

0.006

0.503

#> 2 Infectious disease moderate 0.051

0.253

#> 3 Infectious disease mild

0.006

0.503

#> 4 Infectious disease mild

0.006

0.503

#> 5 Infectious disease mild

0.006

0.503

#> 6 Infectious disease mild

0.006

0.503

The values for disability weights and severity are considered for all ages; in general, they differ by age, and for different types of stroke. 

dw_stroke <- dwsev2019 %>%

filter(cause1 == "Stroke") %>%

group_by(severity, severity_n) %>%

reframe(avg_dw = mean(dw))

dw_stroke

#> # A tibble: 3 x 3

#> 

severity severity_n avg_dw

#> 

<chr> 

<dbl> <dbl> 

#> 1 mild

0.503 0.206

#> 2 moderate

0.253 0.293

#> 3 severe

0.244 0.632

Then, calculate the part of the population affected by a specific level of severity considering the prevalence (and/or the incidence) multiplied by the severity levels. 

For instance, here we use the incprev_stroke and the dw_stroke datasets to calculate the

YLDs due to stroke, and have a look at how incidence and prevalence differ from each other. 

Health metrics values can be expressed as numbers, percentages or rates:

• If the prevalence of stroke is 1,541,506.96 for male with age between 34-39 and it is

expressed in numbers, it means that there are approximately 1,541,507 individuals

in the age group 35-39 who had a stroke. 

• If the prevalence of stroke is 0.58 for male with age between 34-39 and it is expressed

in percent value (%), it means 0.58% of the population within that age range had

a stroke. 

• If the prevalence of stroke is expressed as rate, it is the number of cases of stroke

per 100,000 individuals in the population. 

Percentages and numbers are related by the size of the population in that age group. 

To convert between these forms, you need to know the total population in the age

group. 

Let’s consider the numbers of incidence and prevalence, and assign them as two separate

vectors in a new dataset named inc_prev_stroke_5y. We use the pivot_wider() function

to spread the data into a wider format, with the measure column as the key column and

the val column as the value column. 
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inc_prev_stroke_5y <- hmsidwR::incprev_stroke %>%

filter(year == 2019) %>%

select(measure, sex, age, val) %>%

pivot_wider(names_from = "measure", values_from = "val")

Let’s check the values for the age group 35-39. 

inc_prev_stroke_5y %>%

arrange(sex) %>%

filter(age == "35-39")

#> # A tibble: 3 x 4

#> 

sex

age

Prevalence Incidence

#> 

<chr> <ord> 

<dbl> 

<dbl> 

#> 1 both

35-39

3147689. 

257815. 

#> 2 female 35-39

1606182. 

113831. 

#> 3 male

35-39

1541507. 

143984. 

Then, multiply these values for the severity levels for stroke in the Global region. In this way we obtain three values, one for each severity level. 

For calculating the prevalence-based YLDs, we use the prevalence values, the severity

and the average weights, while for incidence-based YLDs, we also need to consider the

average duration of the condition. 

In particular, for stroke, the average duration of the condition can vary based on:

• duration for acute stroke: up to 28 days

• duration for chronic stroke: beyond 28 days, often modelled for long-term consequences, 

sometimes up to the lifetime of the patient depending on the model used. 

In this example, we consider the average duration of the condition for 28 days. It does need to be converted to be year-based:

ˆ

28

 Lstroke =

(3.4)

365

These values strongly depend on the disability weights and the severity values assigned to the condition. 

YLD_by_severity <- merge(inc_prev_stroke_5y, dw_stroke) %>%

group_by(sex, age, avg_dw) %>%

reframe(prev_sev = Prevalence*severity_n, 

inc_sev = Incidence*severity_n, 

yld_p = prev_sev* avg_dw, 

yld_i = inc_sev* avg_dw * 28/365)

Let’s check the values for the age group 35-39. 

YLD_by_severity %>%

filter(age == "35-39")

#> # A tibble: 9 x 7

#> 

sex

age

avg_dw prev_sev inc_sev

yld_p yld_i

#> 

<chr> <ord> <dbl> 

<dbl> 

<dbl> 

<dbl> <dbl> 

#> 1 both

35-39 0.206 1583288. 129681. 326847. 2054. 

#> 2 both

35-39 0.293 796365. 65227. 233379. 1466. 
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#> 3 both

35-39 0.632 768036. 62907. 485262. 3049. 

#> 4 female 35-39 0.206 807910. 57257. 166781. 907. 

#> 5 female 35-39 0.293 406364. 28799. 119087. 647. 

#> 6 female 35-39 0.632 391908. 27775. 247616. 1346. 

#> 7 male

35-39 0.206 775378. 72424. 160066. 1147. 

#> 8 male

35-39 0.293 390001. 36428. 114292. 819. 

#> 9 male

35-39 0.632 376128. 35132. 237646. 1703. 

We can reverse the calculation to check the original values. 

YLD_by_severity %>%

filter(age == "35-39") %>%

group_by(sex, age) %>%

reframe(prev=sum(prev_sev), 

inc=sum(inc_sev))

#> # A tibble: 3 x 4

#> 

sex

age

prev

inc

#> 

<chr> <ord> 

<dbl> 

<dbl> 

#> 1 both

35-39 3147689. 257815. 

#> 2 female 35-39 1606182. 113831. 

#> 3 male

35-39 1541507. 143984. 

And, finally calculate the total value for YLDs as:

Total YLDs = YLDmild + YLDmoderate + YLDsevere

(3.5)

YLD_global_stroke <- YLD_by_severity %>%

group_by(sex, age) %>%

reframe(YLD_p = sum(yld_p), 

YLD_i = sum(yld_i))

For instance, for a male with age 34-39, the YLDs due to stroke calculated on the population of that age group who have the condition for three different severity levels, are shown below. 

YLD_global_stroke %>%

filter(sex == "male", 

age == "35-39")

#> # A tibble: 1 x 4

#> 

sex

age

YLD_p YLD_i

#> 

<chr> <ord> 

<dbl> <dbl> 

#> 1 male 35-39 512004. 3669. 

This value is the sum of the severity levels of prevalence-based YLDs due to stroke; it

strongly depends on the disability weights and the severity values assigned to the condition. 

Here we have considered estimated values, which do not necessarily correspond to the real

values. 

We note the difference in the YLDs if incidence or prevalence is used in the calculation. The magnitude of the YLDs is similar, but the values are distributed differently across the age groups. 
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Global region: Prevalence based YLDs due to stroke

Global region: Incidence based YLDs due to stroke
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Figure 3.3 YLDs due to stroke in the Global region

In summary, the YLDs due to stroke are an important measure of the impact of this

condition on the quality of life of individuals in the Global region. In this example we saw how the level of disability and the severity of the condition can affect the YLDs, and how the prevalence-based and incidence-based calculations can provide different results. The

YLDs due to stroke are particularly high in older age groups, where the prevalence of the

condition is higher, and the severity of the disability is more pronounced. This indicates that stroke has a significant impact on the overall burden of disease in the Global region, particularly among older populations. 

3.2.2

Exercise: All-Ages YLDs Estimation

Calculate the YLDs due to stroke in the Global region for All-ages, and compare the results with the IHME data for the year 2019 as done for the YLLs. Use the IHME data provided

in Section 3.1.2 Table 3.3 from the stroke_ihme dataset. 

3.3

DALYs Calculation

As a measure of the overall disease burden, Disability Adjusted Life Years (DALYs)

are used to quantify the sum of years of potential life lost due to premature death (YLLs) and years lived with disability (YLDs). The number of DALYs indicates the number of years

of life lost due to premature deaths, disease, or injury. This metric takes into account both the quantity and quality of life. 

DALYs are a generalisation of the well-known Potential Years of Life Lost measure

(PYLLs), which includes the loss of good health. We do not consider PYLLs in this book, but more information can be found in the references.10

Standard Formula

 DALY s =  Y LLs +  Y LDs

(3.6)

One DALY is one lost year of healthy life. This measure is used to assess how diseases and injuries impact populations, providing a comprehensive picture of the overall burden of

disease by combining YLLs and YLDs in different groups. 

10“Global Health Estimates,” n.d., https://www.who.int/data/global-health-estimates. 
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3.3.1

Example: DALYs Due to Stroke

The sum of YLLs and YLDs releases the overall value of DALYs due to stroke in the Global

region. 

DALY_global_stroke <- YLL_global_stroke %>%

select(age, sex, YLL) %>%

full_join(YLD_global_stroke %>%

select(age, sex, YLD=YLD_p), 

by = c("age","sex")) %>%

distinct() %>%

mutate(DALY = YLL + YLD)

DALY_global_stroke %>%

head()

#> # A tibble: 6 x 5

#> 

age

sex

YLL

YLD

DALY

#> 

<ord> <chr> 

<dbl> <dbl> 

<dbl> 

#> 1 <1

male

257916. 1475. 259391. 

#> 2 <1

female 182396. 1696. 184092. 

#> 3 <1

both

443136. 3170. 446307. 

#> 4 01-04 male

147563. 25094. 172657. 

#> 5 01-04 female 115680. 30047. 145728. 

#> 6 01-04 both

264428. 55142. 319570. 

Let’s have a closer look at the 35-39 age groups. 

DALY_global_stroke %>%

filter(age == "35-39")

#> # A tibble: 3 x 5

#> 

age

sex

YLL

YLD

DALY

#> 

<ord> <chr> 

<dbl> 

<dbl> 

<dbl> 

#> 1 35-39 male

1363806. 512004. 1875809. 

#> 2 35-39 female 879509. 533485. 1412994. 

#> 3 35-39 both

2273474. 1045489. 3318963. 

In summary, DALYs are a valuable metric for assessing the overall burden. The DALYs due

to stroke provide a comprehensive measure of the impact of this condition on the quality of life of individuals, combining the years of life lost due to premature death and the years lived with disability. 

DALYs can vary significantly between conditions, reflecting both the severity and impact of each disease on quality and length of life. For instance, stroke and diabetes, both prevalent globally, differ widely in their DALY contributions. Strokes tend to have high DALYs due to their immediate impact on mortality (Years of Life Lost or YLLs) and long-term disability

(Years Lived with Disability or YLDs). On the other hand, diabetes, a chronic condition, 

has a lower YLLs but a higher YLDs, reflecting the long-term impact on quality of life. 

3.3.2

Exercise: Total DALYs Estimation

Calculate the DALYs due to stroke in the Global region for All-ages, and compare the results with the IHME data for the year 2019 as done for the YLLs. Use the IHME data

provided in Section 3.1.2 Table 3.3 from the stroke_ihme dataset. 
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Global region:Disability Adjusted Life Years (DALYs) due to stroke

Global region: DALYs, YLLs and YLDs due to stroke
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Figure 3.4 DALYs due to stroke in the Global region

3.4

How DALYs are Used

DALYs, YLLs, and YLDs can be used in several ways to help identify health priorities, 

evaluate the impact of diseases and injuries, and inform public health decision-making. Some common uses of these metrics include:

• Prioritising public health interventions: By calculating the overall burden of disease in a population, public health practitioners can prioritise which diseases and injuries

to address first. This helps allocate resources and target interventions to the areas of

greatest need. 

• Evaluating the impact of diseases and injuries: These metrics can be used to

measure the impact of diseases and injuries on individuals and populations and to track

changes over time. This information can help inform public health decision-making and

allocate resources more effectively. 


• Comparing the burden of disease across populations: DALY, YLL, and YLD

can be used to compare the burden of disease across populations and between different

regions. This information can help identify disparities in health outcomes and inform

targeted public health interventions. 

• Evaluating the effectiveness of public health programs: These metrics can be

used to evaluate the impact of public health programs and to assess the effectiveness

of public health interventions. This information can help public health practitioners

identify areas for improvement and make necessary changes to ensure that programs are

achieving their goals. 

• Monitoring global health trends: DALY, YLL, and YLD can also be used to monitor

global health trends and track changes in the burden of disease over time. This information can be used to inform global health policies and allocate resources to address emerging

health threats. 

To mention the case of Rwanda, the GBD 2021 results released by the IHME showed

that the country had made significant progress in reducing the burden of disease over

the past decade. 11 By using DALYs, YLLs, and YLDs, public health leaders were able to

11Ferrari et al., “Global Incidence, Prevalence, Years Lived with Disability (YLDs), Disability-Adjusted Life-Years (DALYs), and Healthy Life Expectancy (HALE) for 371 Diseases and Injuries in 204 Countries
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identify key areas for improvement and target resources to address the most pressing health challenges. For example, the government used the DALYs metrics to address the burden

of non-communicable diseases (NCDs), public health leaders observed that conditions like

cardiovascular disease and diabetes were contributing significantly to the country’s overall disease burden, surpassing infectious diseases in certain demographics. This insight led to targeted policy shifts, including prioritising funding for NCD prevention and treatment

programs, investing in training for healthcare providers on chronic disease management, and increasing public awareness of lifestyle risk factors like smoking and poor diet. 

Overall, the health metrics of DALY, YLL, and YLD provide valuable information for public

health practitioners, researchers, and policy makers to help prioritise and allocate resources, evaluate the impact of diseases and injuries, and inform public health decision-making. 

3.4.1

General Application of DALYs

As an example here is shown how the DALY metric can be used for prevention. Suppose

we have data on the number of cases of a particular disease, as well as the average number of years of life lost due to this disease. We can use this information to calculate the total number of DALYs lost due to this disease. 

# Data frame with the number of cases and average years of life lost

df <- data.frame(

YLL = c(5, 10, 15), 

YLD = c(1, 3, 4))

# Calculate the number of DALYs lost

df <- df %>% mutate(DALY = YLL + YLD)

# Sum the total number of DALYs lost

total_dalys <- sum(df$DALY)

total_dalys

#> [1] 38

In this example, the number of cases of the disease and the average years of life lost for each case are used to calculate the number of DALYs lost for each case. Finally, the total number of DALYs lost for the entire population. 

This information can be used to inform public health interventions to prevent the spread

of this disease and reduce the number of DALYs lost. For example, the information could

be used to prioritise resources for disease control and prevention activities, such as health education campaigns, vaccination programs, and screening and treatment programs. 

3.5

HALE Calculation

Healthy Life Expectancy (HALE) is a metric used to estimate the number of years a person

can expect to live in good health, taking into account both mortality and morbidity factors. It is often used as a measure of overall population health and quality of life. It takes into account and Territories and 811 Subnational Locations, 1990–2021”. 
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the impact of both fatal and non-fatal health outcomes on overall life expectancy. HALE is typically calculated using data on mortality rates and health-related quality of life measures, such as disability-adjusted life years (DALYs) or quality-adjusted life years (QALYs). These measures allow for the estimation of the number of years lost due to premature death or

disability. 

It can be used to identify health disparities, assess the effectiveness of healthcare interventions, and inform public health policies. By measuring the number of years lived in good health, 

HALE offers a more nuanced understanding of population health rather than traditional life expectancy measures. 

Standard Formula

 HALE = life expectancy −  Y LD

(3.7)

HALE is obtained by subtracting the YLDs from the life expectancy of a population. However, if we consider more specifications such as comorbidities and other health factors that can occur in real life, the calculation can be adjusted by assuming different levels of prevalence based on disease sequelae with associated disability weights, and eventually accounting for comorbidity levels by using a Monte Carlo simulation approach. 

We use age-specific mortality and YLDs per capita by location, age, sex, and year, and

define the HALE as:

the average number of years that a person at a given age can expect to live in good

health, taking into account mortality and loss of functional health. 

The process of calculating HALE for a specific population, considering factors such as sex, country, and year, involves computing the average health of individuals across different age groups within the population and integrating information on the prevalence of various health conditions and their associated disability weights. Comorbidity is addressed using a Monte Carlo simulation approach, assuming independence of comorbidities within each age group. 

Simulations are conducted to model exposure to different health conditions based on their

estimated prevalence in each age group, resulting in a simulated population reflecting the prevalence of multi-morbidities.12

Positive health associated with each health condition is defined as one minus the disability weight (1 −  DW ). The combined health for an individual in the simulated population is determined by multiplying these positive health values for all relevant health conditions

present. 

The average health values are then computed as one minus the Years Lived with Disability (YLD) (1 −  Y LD) per person in the population, which are used to calculate health-adjusted person years. The Sullivan method is employed to incorporate these average health values into the life table. This involves adjusting the values in the  nLx  column of the life table by the corresponding average health values, recalculating the life table using these adjusted values, and then using an iterative process to estimate health-adjusted person-years for

different age groups. 

Finally, HALE is calculated by dividing the adjusted person-years for each age group by the proportion of a hypothetical birth cohort still alive at that age. 

12Jeffrey D Stanaway et al., “Global, Regional, and National Comparative Risk Assessment of 84 Behavioural, Environmental and Occupational, and Metabolic Risks or Clusters of Risks for 195 Countries and Territories, 1990–2017: A Systematic Analysis for the Global Burden of Disease Study 2017,”  The Lancet 392, no. 10159 (November 2018): 1923–94, doi:10.1016/s0140-6736(18)32225-6. 

[image: Image 10]
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Figure 3.5 HALE - GLOBAL HEALTH METRICS VOLUME 392, ISSUE 10159, P1859-

1922, NOVEMBER 10, 2018

3.5.0.1

Simulating Life Table Data

To understand the process of calculating HALE, we can simulate life table data. We’ll define age intervals (e.g., every 5 years) and simulate survival probabilities for each age interval (between 0 and 1). 

set.seed(040424)

age_intervals <- seq(0, 100, by = 5)

survival_probabilities <- runif(length(age_intervals), 

min = 0.5, max = 1)

life_table <- data.frame(

Age = age_intervals, 

Survival_Probability = survival_probabilities, 

nLx = 100000 - (age_intervals * survival_probabilities))

life_table %>% head()

#> 

Age Survival_Probability

nLx

#> 1

0

0.5579497 100000.00

#> 2

5

0.9241893 99995.38

#> 3 10

0.8810716 99991.19

#> 4 15

0.9562922 99985.66

#> 5 20

0.6927314 99986.15

#> 6 25

0.5607459 99985.98

We then calculate adjusted  Tx  for each age group as the sum of health-adjusted person-years for all age intervals above the current age interval. 

# Simulate prevalences

prevalences <- runif(length(age_intervals), 

min = 0, max = 0.5)
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# Simulate disability weights

disability_weights <- runif(length(age_intervals), 

min = 0, max = 1)

# Calculate average health for each age group

average_health <- 1 - (prevalences * disability_weights)

# Adjust Tx for each age group

life_table$adjusted_px <- life_table$Survival_Probability * average_health

life_table %>% head()

#> 

Age Survival_Probability

nLx adjusted_px

#> 1

0

0.5579497 100000.00

0.5345848

#> 2

5

0.9241893 99995.38

0.7786488

#> 3 10

0.8810716 99991.19

0.5781898

#> 4 15

0.9562922 99985.66

0.7392462

#> 5 20

0.6927314 99986.15

0.5813254

#> 6 25

0.5607459 99985.98

0.3603310

Let’s make a function to calculate the HALE:

calculate_HALE <- function(age, px) {

# Initialise a vector to store adjusted Tx for each age group

adjusted_Tx <- numeric(length(age))

# Iterate over each age interval to calculate adjusted Tx

for (i in 1:length(age)) {

# Calculate adjusted Tx for the current age group

adjusted_Tx[i] <- sum(px[i:length(age)])

}

HALE <- numeric(length(age))

# Calculate HALE for each age group

for (i in 1:length(age)) {

# Calculate HALE for the current age group

HALE[i] <- adjusted_Tx[i] / px[i]

}HALE

}

Now, we calculate HALE for the simulated life table data. 

# Calculate HALE for the simulated life table data

HALE1 <- calculate_HALE(age_intervals, life_table$Survival_Probability)

HALE2 <- calculate_HALE(age_intervals, life_table$adjusted_px)

To visualise the HALE for both the standard and adjusted life table data we can plot the

results with a line graph. 

The difference between the two lines represents the impact of adjusting a life table for

health conditions on the calculation of HALE. The adjusted life table data considers the

prevalence of health conditions and their associated disability weights, providing a more

accurate estimate of the number of years a person can expect to live in good health. 

In general, HALE is a valuable metric for assessing the overall health of a population, 

by incorporating information on the prevalence of health conditions and their associated

disability weights, HALE offers a more specific understanding of population health. 
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Figure 3.6 Health Adjusted Life Expectancy (HALE) by Age. The blue line represents

the HALE for the simulated life table data, the dotted line represents the HALE for the

adjusted life table data. 

3.6

Summary

In this chapter, we have detailed the methods and calculations for evaluating the burden

of disease using key health metrics: YLLs, YLDs, and DALYs. By understanding how

to compute these metrics, we gain insights into the impact of diseases and injuries on

populations, guiding public health decisions and interventions. We also introduced HALE, a metric that combines mortality and morbidity data to provide a comprehensive measure

of population health. These metrics are invaluable tools for public health practitioners, 

policymakers, and researchers in their quest to improve global health outcomes. 

As we confront new global health challenges like pandemics, ageing populations, and climate-related health risks, traditional metrics like DALYs and QALYs are evolving to meet new

approaches to capture the complexity of health outcomes. The inclusion of well-being, 

resilience, and mental health is becoming increasingly essential to understanding the full impact of health conditions on individuals and populations. 

In the next chapter (Chapter 4), we will delve deeper into the components and variations

of these metrics, further enhancing our understanding of how to utilise them effectively in public health assessments. 

4

Metrics Components

Learning Objectives

• Understand the construction and interpretation of life tables and life expectancy measures

• Analyse mortality levels and rates to assess population health dynamics

• Distinguish between incidence and prevalence and their relevance in disease monitoring

• Interpret disability weights and severity levels in the context of burden of disease

estimation

In Chapter 3, we discussed the importance of health metrics in assessing the overall health status of a population and guiding the allocation of health resources. We have seen how

to calculate key metrics by providing direct calculations of each of them, but haven’t yet discussed the components that make up these metrics. In this chapter, we will investigate: life expectancy, mortality rates, incidence and prevalence, and disability weights. 

These components are crucial for understanding the burden of diseases and injury at both

global and population levels. 

4.1

Cause-Specific or Population-Wide

Health metrics are essential tools for evaluating the health status of a population and

guiding public health interventions. They provide valuable insights into the burden of disease and injury, helping policymakers and public health officials make informed decisions about resource allocation and health policy. By combining these metrics, policymakers and public health officials can make informed decisions about how to improve the health outcomes of a population and reduce the burden of disease and injury. 

What are the components of these health metrics, and how are they

calculated? 

The evaluation of health metrics begins with the assessment of their components, which is

crucial because results strongly depend on the types of life tables, mortality rates, and disability weights used in the analysis. Furthermore, it is important to consider whether the objective of the analyses is cause-specific or population-wide. This can significantly impact the granularity of the health metrics components, as in alignment with general

principles in epidemiological research and health metrics analysis, discussed in the Global Burden of Disease (GBD) study methodologies. 1

1Theo Vos et al., “Global Burden of 369 Diseases and Injuries in 204 Countries and Territories, 1990–2019: A Systematic Analysis for the Global Burden of Disease Study 2019,”  The Lancet  396, no. 10258 (October 2020): 1204–22, doi:10.1016/S0140-6736(20)30925-9. 

DOI: 10.1201/9781032625935-4
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Cause-specific metrics focus on disease intervention planning, such as assessing the burden of HIV or tuberculosis on specific populations. Population-wide metrics, on the other hand, are ideal for broader health policy decisions, like overall mortality rates or life expectancy, and provide a comprehensive view of the health landscape. 

The results of health metrics calculations can vary significantly based on various factors, including geographic location, the type and severity of diseases or injuries, the specific causes of death or disability, and the age groups analysed (whether age-standardised or covering

all ages). Additional variation arises from the chosen time points of analysis and whether the metrics are calculated across both sexes or specifically for males or females. Moreover, the disability weights applied can differ depending on the condition’s severity, its impact on quality of life, and other contextual parameters, resulting in tailored calculations that reflect local health challenges more accurately. 

In this chapter, practical examples and case studies are provided to illustrate the process of applying the components to the metrics. By understanding the structure of the components, 

you will be better equipped to analyse and interpret health data and make informed decisions about health policy and resource allocation. 

4.2

Life Tables and Life Expectancy

The first component is the life expectancy, used for calculating the YLLs as in Equation 3.1. 

More specification about life tables used to calculate the life expectancy is in the

Appendix A. As a key parameter in the calculation of health metrics, life expectancy is essential for estimating the number of years lost due to premature death. 

The standard life expectancy is defined as the average number of years a person is

expected to live based on current mortality rates, an important indicator of the overall

health status of a population used to compare the health outcomes of different populations over time. It is calculated based on the probability of survival at each age, taking into account the mortality rates for that age group. 

In life tables, the probability of survival and the mortality rates across different age groups are used for estimating the number of remaining expected life years. These tables provide

crucial insights into the longevity patterns within a population, enabling researchers and policymakers to predict life expectancy trends and to assess public health strategies effectively. 

Table 4.1 Extract of Global Health Observatory (GHO) Life Tables Components

age

lx

ndx

nLx

Tx

ex

40-44

92380

1320

458599

3530204

38

45-49

91060

1737

450958

3071605

34

50-54

89323

2547

440248

2620647

29

Where lx is the number of people alive at the beginning of the age, ndx is the number of

people dying between age  x  and  x + 1, nLx is the number of person-years lived between age x  and  x + 1, Tx is the total number of person-years lived by the cohort of persons alive at age  x, and ex is the expected remaining lifetime at age  x. 
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In the context of calculating Disability-Adjusted Life Years (DALYs), specifically for the component related to Years of Life Lost (YLLs),  ex (the expected remaining lifetime at age x) is typically used rather than overall life expectancy from birth ( le). This is because YLLs are calculated based on the difference between the age at death and the expected age

at death, which is more accurately represented by the remaining life expectancy at a specific age. 

To understand why the expected remaining lifetime at a specific age is used in the calculation of YLLs, consider the following example: if a person dies at age 50, the YLLs are calculated based on the difference between the expected remaining lifetime at age 50 and the actual

age at death. This approach provides a more precise measure of the years of life lost due to premature death, as it accounts for the age-specific mortality rates and the probability of survival at that age. 

While the life expectancy at birth provides an overall measure of the average number of

years a person is expected to live, the expected remaining lifetime at a specific age is more relevant for calculating YLLs, as it reflects the impact of premature death on the remaining years of life for individuals at different ages. 

4.2.1

Global Health Observatory Life Tables

The Global Health Observatory (GHO) Life Tables are essential tools provided by

the World Health Organization (WHO) to support global health monitoring and assessment. 

They are part of the broader GHO data repository, which serves as WHO’s gateway to

health-related statistics for its 194 Member States. The GHO life tables provide data on

life tables and life expectancy for different age groups. These tables are collected in the

{hmsidwR} package and used to show how to derive key health metrics. 

# install.packages("devtools")

devtools::install_github("Fgazzelloni/hmsidwR")

library(tidyverse)

library(hmsidwR)

The hmsidwR::gho_lifetables dataset contains five variables:

1. indicator: as shown in Table 3.1

2. age group: from <1 to 85+ in 5-year classes

3. sex: female, male, and both

4. value: indicators value

5. year: from 2000 to 2019

The life expectancy rates for each age group are calculated with consideration of the

probability of survival based on key parameters such as age, and deaths probabilities for that age. More info about how to calculate the life expectancy can be found in the Appendix A

section of this book. 

Figure 4.1a shows the ex - expectation of life at age x represented for each age group while in Figure 4.1b  ex  is represented by averaging value across all age groups from 2000 to 2019. 

By averaging across all age groups rather than plotting each line for each age group

individually, we can visualise the overall trend in life expectancy over time. This provides a more comprehensive view of how life expectancy has changed across different time. 
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Table 4.2 Global Health Observatory Life Tables

gho_lifetables %>%

filter(indicator == "ex", sex == "both") %>%

select(-indicator, -sex) %>%

head()

#> # A tibble: 6 x 3

#> 

year age

value

#> 

<dbl> <ord> <dbl> 

#> 1 2000 <1

66.8

#> 2 2005 <1

68.4

#> 3 2010 <1

70.5

#> 4 2015 <1

72.3

#> 5 2019 <1

73.3

#> 6 2000 01-04 69.4

We can see a difference in the life expectancy values for different age groups, with the highest values for the youngest age groups and the lowest values for the oldest age groups. This

reflects the impact of age on life expectancy, with younger individuals having a higher life expectancy than older individuals. The overall trend in life expectancy shows an increase

over time, indicating improvements in health outcomes and longevity for the population. 

More on how to build these plots can be found in the Chapter 10 chapter of this book. 

ex − expectation of life at age x

Global expectation of life (all ages avg value)

for the years 2000, 2005, 2010, 2015, and 2019
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DataSource: WHO GHO data repository

DataSource: WHO GHO data repository

(a) ex - expectation of life at age x

(b) GHO Life Tables

Figure 4.1 Global Health Observatory Life Tables - Expectation of Life The mathematical formulation for calculating the expectation of life at age x is computed as: T ( x)

 e( x) =

(4.1)

 l( x)

where  T ( x) is the total number of person-years lived by the cohort of persons alive at age x, and  l( x) is the number of persons alive at age x. 

It shows how  ex  is strongly related to the value of  T ( x) and  l( x). The total number of person-years lived by the cohort of persons alive at age x ( T ( x)) typically referred to in demographic and actuarial studies, as a function to measure the cumulative amount of

life that members of a cohort can expect to live beyond a certain age. Its changes over
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time indicate the effects of health policies, technological advancements, and socio-economic conditions on the longevity and health of populations. 

4.2.1.1

Exercise

For example, at age 50, what is the life expectancy value if the total number of person-years lived by the cohort of persons alive at age 50 is 2,370,099 and the number of persons alive at age 50 is 89,867 ?2

4.3

Mortality Level and Rates

Another fundamental component of health metrics is the mortality level which indicates the number of deaths in a population. In the calculation of YLLs if the number of deaths

are cause-specific, they are calculated for different diseases or injuries. If the number of deaths are population-wide, they are calculated for the entire population. 

This component represents the count of deaths at each age or for specific diseases within

a given time period. Data for this component is collected from vital registration systems, health surveys, hospital records, and epidemiological studies. 

Here is a table containing the mortality rates for different age groups in two regions. The mortality rates are expressed as the number of deaths per 1,000 population in each age

group. Data are used to illustrate the variation in mortality rates across age groups and

regions, providing insights into the health risks faced by different populations. 

Table 4.3 Example Mortality Rates by Age Group and Region

Age

Group

Region A Mortality Rate (per 1,000)

Region B Mortality Rate (per 1,000)

0-1

40.5

30.0

1-5

5.2

4.0

5-10

1.8

1.5

10-15

0.9

1.0

15-20

1.2

1.3

20-30

1.5

1.8

30-40

2.0

2.2

4.3.1

Understanding Death Counts and Mortality Rates

While mortality rates themselves are not directly used in the formula for the calculation

of YLLs, they are crucial for understanding the broader context of health risks and for

estimating the death counts in populations where direct data on deaths might be incomplete or unreliable. In regions or for populations where vital registration data are incomplete, mortality rates derived from sample surveys or demographic models can be used to estimate

the expected number of deaths. 

2Answer: e(50) = T(50)/l(50) = 2,370,099/89,867 = 26.4 (see “Life Expectancy for CP, VS, TBI and SCI,” n.d., https://www.lifeexpectancy.org/lifetable.shtml). 
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Table 4.4 Example Mortality Rates by Age Group and Region

Metric

Country X

Country Y

Total Population

5000000

20000000

Total Deaths

25000

40000

Mortality Rate (per 100,000)

500

200

An analysis of the mortality rates alongside YLLs provides a full picture of the health

challenges faced by a population. While YLLs emphasise the impact of premature death, 

mortality rates help in understanding the probability and distribution of these deaths within the population. 

The mortality rates can be calculated in different ways, depending on the specific nature

of the analysis. In general, what is considered as the most common mortality rates is the

Crude Mortality Rate (CMR), which represents the number of deaths per 100,000

population. 

Number of deaths

 CM R =

∗ 100 ,  000

(4.2)

Total population

Other types of mortality rates include:

• Age Specific Mortality Rate (ASMR): the number of deaths per 100,000

population in a specific age group

Number of deaths in a specific age group

 ASM R =

∗ 100 ,  000

(4.3)

Total population in that age group

• Cause-Specific Mortality Rate (CSMR): the number of deaths per 100,000

population due to a specific cause

Number of deaths due to a specific cause

 CSM R =

∗ 100 ,  000

(4.4)

Total population

• Infant Mortality Rate (IMR): the number of deaths per 1,000 live births in the

first year of life

Number of infant deaths

 IM R =

∗ 1 ,  000

(4.5)

Total number of live births

• Maternal Mortality Rate (MMR): the number of maternal deaths per 100,000

live births

Number of maternal deaths

 M M R =

∗ 100 ,  000

(4.6)

Total number of live births

These mortality rates are used to assess the impact of diseases or injuries on a

population and to identify areas where improvements in health care are needed. 

4.3.1.1

Example: Deaths Counts derived by Mortality Rates

Let’s simulate malaria death counts in an African population with a Case Fatality Rate (CFR) ranging from 0.01% to 0.40%, and a case-incidence of 59.4 per 1000 population annually. 3 Calculate the number of expected malaria cases and the resulting deaths based on this rate for a simulated population of 100,000 individuals over a year:

3“World Malaria Report 2022,” n.d., https://www.who.int/publications-detail-redirect/9789240064898. 
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• Define the Population: Assume a total population of 100,000. 

• Set the Malaria Incidence Rate: 59.4 per 1000 population annually. 

• Calculate Total Malaria Cases. 

• Apply the Case Fatality Rate: Calculate estimated deaths using the CFR range. 

# Define the total population

total_population <- 100000

# Define the incidence rate (cases per 1,000 population)

incidence_rate <- 59.4

# Calculate the total number of malaria cases per year

total_cases <- (incidence_rate / 1000) * total_population

# Case fatality rates (min and max)

cfr_min <- 0.0001 # 0.01%

cfr_max <- 0.004 # 0.40%

# Calculate estimated deaths for the minimum and maximum case fatality rates

deaths_min_cfr <- total_cases * cfr_min

deaths_max_cfr <- total_cases * cfr_max

#> [1] "Total population: 100000" 

#> [1] "Malaria incidence rate per 1,000 population: 59.4" 

#> [1] "Total estimated malaria cases per year: 5940" 

#> [1] "Estimated deaths at minimum CFR (0.01%): 1" 

#> [1] "Estimated deaths at maximum CFR (0.40%): 24" 

In the simulation scenario, the incidence rate of 59.4 cases per 1,000 annually helps to

understand how pervasive malaria is within the simulated population. By applying this

rate to the entire population, we can estimate the total number of new cases per year. 

Combining this with the case fatality rate gives an estimate of the expected number of

deaths, highlighting the impact of malaria on public health within that population. 

4.4

Incidence and Prevalence

Incidence and prevalence are two fundamental concepts used in epidemiology to measure

how often a disease occurs and how widespread it is within a population at a specific time. 

• Incidence refers to the number of new cases of a disease that develop in a population during a specific time period. It provides information about the risk of contracting the

disease and is usually expressed as a rate — for example, the number of new cases per

1,000 people per year. 

The incidence rate, even identified as the cumulative incidence (risk) -  r  is considered as a measure of the probability the disease occurs in a specified period of time. It quantifies the risk of an individual in the population at risk developing the disease during the specified time period. 
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number of new cases at time t

Incidence rate =

∗ 1000

(4.7)

total population at risk

• Prevalence measures the total number of cases of a disease in a population at a given time, including both new and existing cases. It is expressed as a proportion of the population

and helps to provide a snapshot of how widespread the disease is. 

The prevalence identifies the burden of disease at a specific time, rather than the probability of the disease to impact on the population, it expresses the probability of suffering from a disease, it is based on the total number of existing cases among the whole population. 

number of new + existing cases at time t

Prevalence =

(4.8)

total population

Like incidence, it can be multiplied by a factor of 10ˆn (where n is typically 1,000, 10,000, or 100,000) to express the prevalence per a standard number of people. 

Table 4.5 Example Influenza Incidence and Prevalence Data

Metric

January

April

July

October

December

Incidence (new cases per 1,000 people)

5

3

1

2

6

Prevalence (existing cases per 1,000 people)

15

10

5

7

20

In summary, incidence measures the rate of new cases arising within a population over

time, while prevalence measures the proportion of existing cases within the population at a specific point in time. These metrics are widely used in the literature and form the basis for many decisions in public health and clinical practice. They are discussed in foundational

texts such as  “Epidemiology: An Introduction” by Kenneth J. Rothman and in guidelines by health institutions like the Centers for Disease Control and Prevention (CDC) and the World Health Organization (WHO). Both metrics are crucial for understanding the dynamics and

burden of diseases within populations. 

4.4.1

Use of Prevalence in DALYs Calculation

In the context of the Global Burden of Diseases (GBD) study, the use of prevalence in the

calculation of Disability-Adjusted Life Years (DALYs) is pivotal because DALYs aim to

measure both the current impact of diseases and their long-term effects on populations as this metric combines years of life lost due to premature mortality (YLLs) with years

lived with disability (YLDs). In particular, for YLDs calculations, prevalence rather than incidence is used for several reasons:

• Direct Measurement of Burden: Prevalence data directly reflect the current burden of disease in the population, including both new and ongoing cases. It provides a snapshot of all individuals affected by the disease at a given time, which is essential for calculating the total amount of health loss due to disabilities. 

• Incorporation of Disease Duration: Using prevalence allows the calculation of YLDs to incorporate the duration of the disease until recovery or death. This is because prevalence captures both existing and new cases during the period of measurement. 

• Complexity of Disease Models: Many chronic diseases or conditions with long duration are better captured through prevalence data. This approach simplifies the modelling by
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Table 4.6 COVID-19 Cases and Recovered - simulate data

library(tidyverse, quietly = T)

population_size <- 100000 # Number of individuals

days <- 365 # Number of days

set.seed(123)

dates <- seq(as.Date("2019-01-01"), 

as.Date("2019-12-31"), 

by = "day")

avoiding the need for complex calculations that would otherwise be required to estimate

the duration of each new case (from incidence data) and its progression over time. 

The choice of prevalence over incidence in the calculation of YLDs thus reflects a pragmatic approach to capturing the current impact of diseases within a population, particularly for chronic diseases where ongoing management and sustained healthcare support are crucial. 

4.4.1.1

Example: Calculating YLD for a Disease Using Prevalence

Suppose we want to calculate the Years Lived with Disability (YLDs) for a chronic respiratory disease in a population of 100,000 people. The prevalence rate of the disease is 2%, with a Disability Weight (DW) of 0.3 and an average duration of the disease is 5

years. The YLD is calculated using the formula:

1. Prevalent Cases = Population Size × Prevalence Rate

Prevalent Cases = 100 ,  000 × 0 .  02 = 2 ,  000 cases

2. YLD = Prevalent Cases × Disability Weight × Average Duration

YLD = 2 ,  000 × 0 .  3 × 5 = 3 ,  000

So, the YLD for chronic respiratory disease in this population over the average duration of the condition is 3,000 years. This YLD value would then be added to the YLL (Years of Life Lost) for the disease to calculate the total DALY. 

4.4.1.2

Example: COVID-19 Incidence and Prevalence

Let’s simulate some COVID-19 cases for a population of 100 000 individuals over 365 days. 

Consider an average infection time of 5 days or 1/5=0.2 (20%) rate of infection, and an

average time of recovery of 20 days which corresponds to a recovery rate of 1/20=0.05 (5%) Cases and recovered are simulated using a Poisson distribution with  λ  of 0.2 and 0.05, respectively. To model the count of rare events in a large population happening within a

fixed interval of time or space, the Poisson distribution is particularly useful. It suits the initial spread of COVID-19 in many regions, and assumes that the events (new cases) occur

independently of each other, which can be a reasonable approximation in the context of

infection spread over short periods. 
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Table 4.7 COVID-19 Incidence and Prevalence - simulate data

covid_data <-

transform(covid_data, 

Cum_Cases = cumsum(Cases), 

Cum_Recovered = cumsum(Recovered))

# Calculate daily incidence and prevalence per 100,000 population

covid_data <-

transform(

covid_data, 

Incidence = (Cum_Cases / population_size) * 1000, 

Prevalence = ((Cum_Cases - Cum_Recovered) / population_size) * 1000)

To apply the Poisson distribution, we use the rpois() function, which generates random

numbers from a Poisson distribution with a specified rate parameter  λ. The probability mass function of the Poisson distribution is given by:

 λke− λ

 P ( X =  k) =

(4.9)

 k! 

where  X  is the random variable representing the number of events,  k  is the number of events, λ  is the rate parameter, and  e  is the base of the natural logarithm. 

cases <- rpois(length(dates), lambda = 0.2)

recovered <- rpois(length(dates), lambda = 0.05)

The simulated data are then combined into a data frame with the date, number of cases, 

and number of recovered individuals. 

covid_data <- data.frame(

Date = dates, 

Cases = cases, 

Recovered = recovered)

Let’s have a look at the first few rows of the dataset:

#> 

Date Cases Recovered

#> 1 2019-01-01

0

0

#> 2 2019-01-02

0

0

#> 3 2019-01-03

0

0

#> 4 2019-01-04

1

0

#> 5 2019-01-05

1

0

#> 6 2019-01-06

0

0

Calculate the cumulative incidence and prevalence over time:

#> 

Date Cum_Cases Cum_Recovered Incidence Prevalence

#> 1 2019-01-01

0

0

0.00

0.00

#> 2 2019-01-02

0

0

0.00

0.00

#> 3 2019-01-03

0

0

0.00

0.00

#> 4 2019-01-04

1

0

0.01

0.01

#> 5 2019-01-05

2

0

0.02

0.02

#> 6 2019-01-06

2

0

0.02

0.02
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total_cases <- sum(covid_data$Cases)

total_recoveries <- sum(covid_data$Recovered)

4.4.1.3

Incidence and Prevalence Rates for the Year

(incidence_rate <- total_cases / population_size)

#> [1] 0.00071

(prevalence_rate <- (total_cases - total_recoveries) / population_size)

#> [1] 0.00052

Incidence and Prevalence COVID−19 Cases

0.6

opulation

0.4

0.2

0.0

Number per 100,000 P

Jan 2019
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Jul 2019

Oct 2019

Jan 2020

Date

Metric

Incidence

Prevalence

Data: Synthetic Data

Figure 4.2 Incidence and Prevalence COVID-19 Cases - simulate data

4.5

Disability Weights and Severity Levels

The disability weights measure the severity of the health loss associated with specific health outcomes or diseases, ranging from 0 (no disability) to 1 (equivalent to death). 

These weights are used to calculate the number of years lived with a disability (YLDs) in

the calculation of DALYs, and play a pivotal role between mortality and morbidity when

estimating the Health Adjusted Life Expectancy (HALE). 

The disability weights are crucial for understanding the impact of diseases and injuries on the health status of a population, if the disability weight of a specific disease is overestimated, 
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the burden of the disease may be overestimated. Conversely, if the disability weight is

underestimated, the burden of disease could result underestimated.4

The severity levels of a disease or injury are determined through a combination of clinical data, epidemiological studies, and expert input. These levels are crucial for understanding the burden of disease and for developing strategies in healthcare management and resource

allocation. The severity levels can be assigned to be mild, moderate, or high, with respective probabilities reflecting the likelihood of each severity level occurring within the affected population. 

Table 4.8 Example Disability Weights

Condition

Disability Weight

Mild Depression

0.15

Moderate Anxiety

0.30

Severe Stroke

0.75

Diabetes (without complications)

0.10

Advanced Dementia

0.85

For determining the disability weights, the severity levels are assigned based on the impact of the condition on an individual’s quality of life. Higher weights are assigned to more severe conditions, reflecting the greater impact on an individual’s health status, while lower weights are assigned to less severe conditions. Hence, the disability weights are calculated based on the severity of the condition and the impact on an individual’s quality of life. 

4.5.1

Methodology for Disability Weights

The disability weights can be derived or computed, depending on data availability. Often

derived through large-scale population surveys, or expert panels through reviews of clinical descriptions and assessment scores based on understanding and professional experience. 

These methods involve trade-off exercises, such as Time Trade Off (TTO)5 or paired comparison tasks.6 Through surveys the respondents are asked to choose between different health states or to trade life years in different health states against a standard of full health. 

Expert panels would assess the severity of different health states based on clinical descriptions and their professional experience, rating the severity on a scale from 0 (no disability) to 1

(equivalent to death). 

Computed disability weights methods can vary from applying techniques such as Analytical Hierarchy Process (AHP)7 method used where health states are systematically compared in a pairwise fashion, and judgements about their relative severity are quantified. Or

Combining Results from different methods and different populations to produce a set of

4Minsu Ock et al., “Disability Weights Measurement for 289 Causes of Disease Considering Disease Severity in Korea,”  Journal of Korean Medical Science  34, no. Suppl 1 (February 2019): e60, 

doi:10.3346/jkms.2019.34.e60. 

5Anna K. Lugnér and Paul F. M. Krabbe, “An Overview of the Time Trade-Off Method: Concept, Foundation, and the Evaluation of Distorting Factors in Putting a Value on Health,”  Expert Review of Pharmacoeconomics & Outcomes Research  20, no. 4 (August 2020): 331–42, doi:10.1080/14737167.2020.1779062. 

6Jürgen Rehm and Ulrich Frick, “Establishing Disability Weights from Pairwise Comparisons for a US

Burden of Disease Study,”  International Journal of Methods in Psychiatric Research  22, no. 2 (May 2013): 144–54, doi:10.1002/mpr.1383. 

7“Analytic Hierarchy Process,”  Wikipedia, March 2024, https://en.wikipedia.org/w/index.php?title=Ana

lytic_hierarchy_process&oldid=1214553274. 
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Table 4.9 Disability Weights

disability_weights %>%

filter(year == 2019) %>%

select(specification, severity, dw) %>%

head()

#> # A tibble: 6 x 3

#> 

specification

severity

dw

#> 

<chr> 

<chr> 

<dbl> 

#> 1 Infectious disease, acute episode mild

0.006

#> 2 Infectious disease, acute episode moderate 0.051

#> 3 Infectious disease, acute episode mild

0.006

#> 4 Infectious disease, acute episode mild

0.006

#> 5 Infectious disease, acute episode mild

0.006

#> 6 Infectious disease, acute episode mild

0.006

disability weights that reflect a consensus view. Statistical models might be used to aggregate these results and ensure that they are consistent across different scales. 

The Global Burden of Disease (GBD) study led by the Institute for Health Metrics and

Evaluation (IHME) is one of the most comprehensive efforts to estimate disability weights

for a wide range of health conditions. The GBD study periodically updates and refines

disability weights based on extensive global surveys and expert consultations. In the 2010

iteration, for instance, IHME used community surveys across multiple countries, including

Bangladesh, Indonesia, Peru, and Tanzania, and an online survey to gather feedback on

how people perceive the severity of different health states. Respondents were asked to rank or rate hypothetical health conditions, which provided data for calculating standardised

disability weights. 

4.5.1.1

Disability Weights Data

Here is an example of a table containing the disability weights for twelve combinations of different conditions such as Infectious disease, Non-communicable diseases, and other health conditions. 

Data are from the results of a systematic analysis of Global burden of 369 diseases and

injuries in 204 countries and territories, 1990–2019. 8 The table can be downloaded from the

{hmsidwR} package, and contains the first two cause-specific disability weights for the year 2019, as well as the severity level of the condition set as to be mild, moderate, severe, and combined for selected communicable, and Non-communicable diseases. To access the data:

library(hmsidwR)

disability_weights <- hmsidwR::disweights

The table here shows the first 6 rows of the disability weights for cause1, severity, and

disability weights for the year 2019 for 204 countries and territories. 

If we focus on the first cause of disability for infectious disease, we can see that the disability weight varies along with the severity level. This indicates that the condition associated with a moderate level of severity has a disability weight of 0.057. This is set to reflect the impact

8Vos et al., “Global Burden of 369 Diseases and Injuries in 204 Countries and Territories, 1990–2019”. 

 Summary of the DALYs’ Components

49

Table 4.10 Severity and Disability Weights

library(hmsidwR)

disability_weights <- hmsidwR::disweights

disability_weights %>%

filter(year == 2019, 

cause1 == "Infectious disease") %>%

group_by(severity) %>%

summarize(dw = mean(dw))

#> # A tibble: 4 x 2

#> 

severity

dw

#> 

<chr> 

<dbl> 

#> 1 mean

0.219

#> 2 mild

0.0148

#> 3 moderate 0.0572

#> 4 severe

0.162

of the severity condition on an individual’s quality of life. 

4.6

Summary of the DALYs’ Components

4.6.1

YLLs Components

The components of YLLs include several factors that contribute to the calculation of

premature death due to a disease or injury. These components are:

• Age at death: The age at which a person died due to a disease or injury is a crucial component of YLL. The earlier the age at death, the greater the impact on potential years

of life lost. 

• Life expectancy: The expected age at death in a population without the disease or injury is an important component of YLL. This value is used to compare the actual age at death

with the expected age at death and determine the number of years of life lost. 

• Standard life expectancy: To make comparisons across populations and over time, YLL

is often expressed relative to a standard life expectancy, typically set at an age of 70 years. 

• Population size: The size of the population affected by a disease or injury is another important component of YLL. A larger population will have a greater impact on overall

YLL, regardless of the age at death. 

• Cause of death: The cause of death is also considered when calculating YLL, as different causes may have different impacts on potential years of life lost. 

4.6.2

YLDs Components

The estimation of YLDs requires certain epidemiological parameters such as prevalence, 

incidence, case-fatality rate, relative risk, odds ratio, hazard ratio, mean, incidence ratio, severity, duration and remission. 
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In particular, we are interested in the major factors that contribute to the calculation of the number of years lived with a disability due to a disease or injury. These components are:

• Prevalence and Incidence: The prevalence of a condition is the number of cases of a particular disease or injury present in a population at a given time. This is an important component of YLD as it determines the number of people who are affected by a disease or

injury and the overall impact on the population. The incidence is the impact of new cases

on a population in a specified time period, and it is calculated by considering the number of new cases affected by a condition divided by the size of a population. Both incidence

and prevalence can be used in the calculation. 

• Disability weight: The disability weight reflects the severity of the disability caused by a disease or injury. It is used to quantify the impact of a condition on quality of life, with higher weights assigned to more severe conditions. 

Prior to 2010, the calculation of YLDs included elements of discounting and age weighting, with discount rates that typically ranged from 3% to 4% per year. Considering the future

years of healthy life valued less than present years, the practice aimed to reflect the

economic theory of time preference, where immediate benefits are preferred over future

benefits. 

However, due to its complexity and ethical implications, this approach has been criticised. 

By 2010, the World Health Organization (WHO) and other health organisations began

to consider simplifying the methodology. The focus shifted to only the disability weights

used to quantify the severity of different health conditions, leaving aside the element of discounting

• Age: The age of the person affected by a disease or injury is also considered when calculating YLD. Conditions that occur at an earlier age will have a greater impact on the number of years lived with disability. 

• Population size: The size of the population affected by a disease or injury is another important component of YLD. A larger population will have a greater impact on overall

YLD, regardless of the age of the affected individuals. 

• Duration of disability: The duration of disability is also considered when calculating YLD. Conditions that last for a longer period of time will have a greater impact on the

number of years lived with disability. 

4.6.3

DALYs Components

Both YLLs and YLDs are components of the DALYs and are used to provide a comprehensive

assessment of the impact of disease and injury on a population. By combining YLLs and

YLDs, the DALYs take into account both premature death and the impact of disease or

injury on quality of life, providing a more comprehensive view of the overall burden of

disease. 

DALYs are especially useful in guiding the allocation of health resources as they provide a common numerator, allowing for the expression of utility in terms of dollar/DALY. 

For example, in Gambia, the provision of the pneumococcal conjugate vaccine costs $670

per DALY saved. This number can then be compared to other treatments for other diseases, 

to determine whether investing resources in preventing or treating a different disease would be more efficient in terms of overall health. 9

9“Disability-Adjusted Life Year,” December 8, 2023, https://en.wikipedia.org/w/index.php?title=Disabil

ity-adjusted_life_year&oldid=1188922629. 
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Table 4.11 Germany lungcancer

hmsidwR::germany_lungc %>%

select(age, sex, prevalence, dx) %>%

head()

#> # A tibble: 6 x 4

#> 

age

sex

prevalence

dx

#> 

<chr> <chr> 

<dbl> <dbl> 

#> 1 10-14 male

0.08 0.322

#> 2 10-14 female

0.18 0.457

#> 3 10-14 both

0.13 0.779

#> 4 15-19 male

0.48 1.27

#> 5 15-19 female

0.9 1.56

#> 6 15-19 both

0.68 2.83

4.7

Case Study: Germany Lung Cancer Study

For this case study, we used data from the GBD study for Germany, related to the number

of deaths due to lung-cancer in 2019. Data are available in the {hmsidwR} package and, and includes the upper and lower bounds of the estimates and the 5-yrs age group for both sexes. 

We do not have information for the 0-4, 5-9 and 85+ age groups. 

Here we can see the first 6 rows of the data, that we are going to use to calculate the YLLs, the YLDs and finally the DALYs. 

Joining germany_lungc with the GHO life tables (gho_lifetables) we can build a new

dataset with all information needed for calculating the YLLs for the lung cancer deaths in Germany in 2019. 

gelung_YLL <- germany_lungc %>%

filter(sex == "both") %>%

left_join(gho_lifetables %>%

filter(year == 2019, indicator == "ex") %>%

select(-indicator, -year) %>%

rename(life_expectancy = value)) %>%

group_by(age) %>%

reframe(dx, life_expectancy, YLL = dx * life_expectancy)

gelung_YLL %>%

head()

#> # A tibble: 6 x 4

#> 

age

dx life_expectancy

YLL

#> 

<chr> 

<dbl> 

<dbl> <dbl> 

#> 1 10-14

0.779

66.4

51.7

#> 2 15-19

2.83

61.6 174. 

#> 3 20-24

6.15

56.8 349. 

#> 4 25-29 13.5

52.1 704. 

#> 5 30-34 43.0

47.4 2041. 

#> 6 35-39 105. 

42.8 4502. 
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Table 4.12 Lung cancer - Disability Weights

lung_dw <- hmsidwR::disweights %>%

filter(year == 2019, 

str_detect(sequela, "lung")) %>%

select(sequela, dw)

Now to calculate the YLDs due to lung-cancer we need to consider not fatal disability status. 

This can appear in conjunction with other conditions, or morbidities, that are not fatal but are acting together with the lung-cancer. 10 The disability weights are available from GBD

study11 are the same as those found in the disweights dataset. 

So, 0.451 is the disability weight for the metastatic phase of lung, or lung cancer. We can use this value together with the prevalence of the disease to show how to calculate the YLDs for the lung cancer deaths in Germany in 2019. The number of lung cancer cases in Germany

in 2019 is 34,000, and the prevalence of the disease is 0.0004 for all ages and sex. While considering 5-yrs age groups with a common disability weight of 0.451. Total YLDs can be

calculated as the sum of the product of the prevalence and the disability weight for each age group. 

prev_germany_lungc <- germany_lungc %>%

filter(sex == "both") %>%

select(age, prevalence)

prev_germany_lungc %>% head()

#> # A tibble: 6 x 2

#> 

age

prevalence

#> 

<chr> 

<dbl> 

#> 1 10-14

0.13

#> 2 15-19

0.68

#> 3 20-24

0.98

#> 4 25-29

1.66

#> 5 30-34

3.85

#> 6 35-39

9.24

gelung_YLL %>%

select(age, YLL) %>%

left_join(gelung_YLD %>% select(age, YLD)) %>%

mutate(DALY = YLL + YLD)

#> # A tibble: 16 x 4

#> 

age

YLL

YLD

DALY

#> 

<chr> 

<dbl> 

<dbl> 

<dbl> 

#> 1 10-14

51.7

0.0586

51.7

#> 2 15-19

174. 

0.307

175. 

#> 3 20-24

349. 

0.442

350. 

#> 4 25-29

704. 

0.749

705. 

#> 5 30-34

2041. 

1.74

2043. 

10Michael Porst et al., “The Burden of Disease in Germany at the National and Regional Level,”  Deutsches Ärzteblatt International  119, no. 46 (November 2022): 785–92, doi:10.3238/arztebl.m2022.0314. 

11 Ihmeuw/Ihme-Modeling (Institute for Health Metrics; Evaluation, 2024), https://github.com/ihmeuw/

ihme-modeling. 
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Table 4.13 Lung Cancer Cases in Germany 2019

gelung_YLD <- prev_germany_lungc %>%

mutate(dw = 0.451, YLD = prevalence * dw)

gelung_YLD %>%

head()

#> # A tibble: 6 x 4

#> 

age

prevalence

dw

YLD

#> 

<chr> 

<dbl> <dbl> <dbl> 

#> 1 10-14

0.13 0.451 0.0586

#> 2 15-19

0.68 0.451 0.307

#> 3 20-24

0.98 0.451 0.442

#> 4 25-29

1.66 0.451 0.749

#> 5 30-34

3.85 0.451 1.74

#> 6 35-39

9.24 0.451 4.17

#> 6 35-39

4502. 

4.17

4506. 

#> 7 40-44 10814. 

10.0

10824. 

#> 8 45-49 28982. 

28.3

29010. 

#> 9 50-54 73451. 

58.7

73510. 

#> 10 55-59 121449. 101. 

121550. 

#> 11 60-64 137749. 139. 

137888. 

#> 12 65-69 135861. 164. 

136025. 

#> 13 70-74 108057. 169. 

108226. 

#> 14 75-79 95872. 136. 

96007. 

#> 15 80-84 66681. 112. 

66793. 

#> 16 85+

35158. 

77.1

35235. 

(YLLs <- sum(gelung_YLL$YLL))

#> [1] 821896.1

(YLDs <- sum(gelung_YLD$YLD))

#> [1] 1000.589

(DALYs <- YLLs + YLDs)

#> [1] 822896.6

Per 1000 population, the YLLs, YLDs, and DALYs for lung cancer deaths in Germany in

2019 are 821, 1, and 822, respectively. These metrics provide a comprehensive view of the

impact of lung cancer on the health status of the population, combining the years of life lost due to premature death with the years lived with disability. 

DALYs / 1000 # DALYs per 1000 population

#> [1] 822.8966

The value of the metrics changes when different disability weights are adopted. It is noteworthy that the value for the Years Lived with Disabilities (YLDs) is often quite small compared

to the contribution made by the Years of Life Lost (YLLs) in the calculation of DisabilityAdjusted Life Years (DALYs). This disparity highlights how mortality frequently dominates

the overall disease burden in many health evaluations, underscoring the critical impact of premature death on public health metrics. 

54

 Metrics Components

For instance, consider the disability weights for lung cancer as calculated in a study tailored to the Korean population.12 These weights are subdivided into four groups corresponding to the stages of the disease, from 1 to 4. Each stage reflects increasing severity and a

corresponding increase in the disability weight. Such gradations are crucial for accurately reflecting the progression of the disease and its escalating impact on patients’ lives. This differentiation allows health policymakers and researchers to fine-tune interventions and

allocate resources more effectively, targeting the stages that contribute most significantly to health deterioration. 

Cause of Disease

Disability Weights

lower

upper

Trachea, bronchus

0.600

0.542

0.656

and lung cancers

(stage 1)

Trachea, bronchus

0.738

0.686

0.785

and lung cancers

(stage 2)

Trachea, bronchus

0.758

0.710

0.801

and lung cancers

(stage 3)

Trachea, bronchus

0.906

0.873

0.932

and lung cancers

(stage 4)

In conclusion, disability weights have a fundamental role in influencing the overall calculations of DALYs, as they reflect the severity of health conditions and their impact on quality of life. Assigning appropriate weights to different diseases and injuries might be challenging, but it is essential for accurately assessing the burden of disease and guiding health policy decisions. The case study on lung cancer in Germany illustrates how the combination of

YLLs and YLDs provides a comprehensive view of the health impact of a specific condition, 

helping to inform public health strategies and resource allocation. 

12Ock et al., “Disability Weights Measurement for 289 Causes of Disease Considering Disease Severity in Korea”. 

5

Causes and Risks

Learning Objectives

• Identify major causes of disease and associated risk factors using health data

• Formulate clear and focused research questions for health outcomes analysis

• Gain an introductory understanding of causal inference concepts and their application in public health research

“. . . fear is the most pervasive emotion of modern society. . . ” 1

What qualifies as a risk is subject to dynamic social change2 , as well as the perception of risk has evolved over time, influenced by factors such as media coverage and sociopolitical dynamics. 

Historically, major risks included starvation, infections, and violent conflicts, while modern risks are often associated with lifestyle choices and chronic diseases such as obesity, cardiovascular disease, and cancer. Despite advancements in healthcare and increasing life expectancy in post-industrial countries, the focus often shifts to perceived threats like terrorism, global pandemics such as COVID-19, and environmental catastrophes. This shift is reflected in the increasing combination of quantitative analyses and public health interventions, tracking

changes in risk-related discourse and identifying key risk topics over time. 

Furthermore, tools like topic modelling and sentiment analysis help identify how the public perceives various risks and how these perceptions evolve over time. 

In the field of public health, the latest GBD results reveal significant insights into the causes and risks associated with health metrics and infectious diseases. The primary risks identified include behavioural, environmental, occupational, and metabolic factors. 

5.1

Conditions and Injuries

Conditions and injuries associated with the burden of disease and injury vary according to specific causes and risks. In this book causes and risk factors include:

• Lifestyle choices: Poor diet, physical inactivity, tobacco use, and excessive alcohol consumption are major risk factors for many chronic diseases and injuries, including heart disease, stroke, cancer, and liver disease. 

1Joanna Bourke,  Fear: A Cultural History (Catapult, 2007). 

2Ying Li, Thomas Hills, and Ralph Hertwig, “A Brief History of Risk,”  Cognition  203 (October 2020): 104344, doi:10.1016/j.cognition.2020.104344. 

DOI: 10.1201/9781032625935-5

55

[image: Image 11]

56

 Causes and Risks

Figure 5.1 FlowChart of Historical vs. Modern Risks: this flowchart illustrates how risk perception has evolved over time, shifting from historical to modern risks. It integrates key risk factors identified in the Global Burden of Disease (GBD) study. 

• Environmental factors: Exposure to pollutants, such as air pollution and toxic chemicals, can increase the risk of certain diseases and injuries. 

• Infections: Many diseases, such as tuberculosis, HIV/AIDS, and malaria, are caused by infectious agents. 

• Poverty: People living in poverty are often more susceptible to health problems due to limited access to healthcare, healthy food, and safe living conditions. 

• Ageing: As people get older, they are at an increased risk of many health problems, including chronic diseases and disabilities. 

• Genetics: Some diseases and injuries are caused by genetic factors, such as a genetic predisposition to certain cancers. 

• Injuries: Injuries, such as falls, road traffic accidents, and violence, can also contribute to the burden of diseases and injuries. 

sex

race

YLL

place

Cause

W

DALY

other

YLD

age

Figure 5.2 Causal relationships leading to fueling DALYs value. Weights (W), Years Lived with Disability (YLD), and Years of Life Lost (YLL) are the main components of the DALY

metric. 
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A particular health condition can have multiple causes (co-morbidities) and risk factors. 

For instance, a poverty status and the lack of access to healthcare facilities, is proven to be increasing the risk of infectious diseases, while poor diet and physical inactivity can increase the risk of chronic diseases. Acting in favour of addressing the  underlying causes and risk factors  for diseases and injuries is crucial for prompt public health interventions and can help reduce the overall burden of disease. 

5.2

Risk Measures

In health metrics,  risk  refers to the likelihood that an individual will experience a specific health outcome, such as illness or injury, due to certain behaviours, exposures, or conditions. 

Risk factors are variables that increase the probability of developing a particular health condition or experiencing an adverse health outcome; they are measurable probabilities

influenced by factors like lifestyle (e.g., smoking or diet), environmental exposures (e.g., air pollution), or underlying health conditions. 

To provide a comprehensive framework for assessing the burden of different risk factors on population health and guide effective public health strategies to mitigate these risks, key measures are used to assess risks and their impact on health outcomes:

• Risk-specific exposures

• Relative risks (RRs)

• Theoretical Minimum-Risk Exposure Levels (TMRELs)

• Population Attributable Fractions (PAFs)

5.2.1

Risk-Specific Exposures

The quantification of risks and causes involves the evaluation of a set of behavioural, 

environmental and occupational, and metabolic risks. Pairs of risk-outcome are investigated based on observations and statistical evidence. Convincing evidence consists of plausible

associations between exposure and disease in terms of size, duration and effects. Common

examples of risk exposures in health metrics include: smoking, physical inactivity, high blood pressure (hypertension), and others. 

Risk combinations can be additive (the occurrence of a least one event, A or B), multiplicative (the occurrence of both of two events, A and B) or just interactive, acting to influence other pairs, this action is generally identified as possible confounding, to be distinguished by factors in the causal pathway between exposure and outcome. 

To have an idea of the impact of different risk factors on a cause of illness, the Socio-demographic Index (SDI) provides insights into the potential magnitude of social, 

cultural and demographic factors looking at the risk exposures and possible paths for policy interventions. The life expectancy level is closely correlated to the level of the SDI indicator as it is based on average income per person, educational attainment, and total fertility rate (TFR). Higher SDI values typically indicate better socio-economic conditions, including

improved access to healthcare, education, and sanitation, which can mitigate various health risks. Conversely, lower SDI values are associated with higher risk exposure due to limited access to healthcare, poorer living conditions, and other socio-economic challenges. An

application of the SDI index on time series is on Chapter 9. 
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One more element to take into consideration is the Comparative Risk Assessment

(CRA)3 divided into attributable and avoidable burden. Considering as the objective the potential reduction of future disease burden, four types of minimum risk exposure

distributions are identified:

• Theoretical

• Plausible

• Feasible

• Cost-effective

The following provide a high level overview on quantifying attributable burden by using the theoretical minimum risk. 

5.2.2

Relative Risks (RRs)

The relative risk (or Risk Ratio) is a measure of the strength of the association between

an exposure and an outcome. It compares the likelihood of a particular health outcome, 

occurring in individuals exposed to a specific risk factor, to the likelihood in those who are not exposed. This metric helps quantify how much a risk factor, like smoking or high blood pressure, increases the probability of an adverse health effect. 

To calculate the risk-outcome pairs, such as mortality and morbidity, the attributable burden of a risk is decomposed to identify the impact on disease burden across factors like location, age, sex, and specific causes of disease. 4 This decomposition considers the combined effect of all risk exposures, which are categorised into metabolic, behavioural, and environmental risk factors. Each category contributes distinctly to the overall health outcome, enabling a nuanced understanding of how multiple exposures collectively influence disease burden and

health outcomes. 

The relative risk is the ratio between the proportions of exposed and unexposed groups. 

 p 0

 RR =

(5.1)

 p 1

where  p 1 and  p 0 are the proportions of exposed and unexposed groups respectively. Or, in terms of population, these group would approx the values of the real population:

 p 1

 d 1 /n 1

 RR =

=

(5.2)

 p 0

 d 0 /n 0

where  d 1 /n 1 and  d 0 /n 0 are the proportion of the population with and without the disease. 

For example, let’s say we are studying the association between smoking (exposure) and

lung cancer (outcome). We want to calculate the relative risk of lung cancer among smokers compared to non-smokers. If the relative risk is 2, it means that smokers are twice as likely to develop lung cancer compared to non-smokers. 

3Stanaway et al., “Global, Regional, and National Comparative Risk Assessment of 84 Behavioural, Environmental and Occupational, and Metabolic Risks or Clusters of Risks for 195 Countries and Territories, 1990–2017”. 

4Christopher J. L. Murray et al., “Global Burden of 87 Risk Factors in 204 Countries and Territories, 1990–2019: A Systematic Analysis for the Global Burden of Disease Study 2019,”  The Lancet  396, no. 10258

(October 17, 2020): 1223–49, doi:10.1016/S0140-6736(20)30752-2. 
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exposed <- c(50, 10)

unexposed <- c(20, 5)

# Calculate the relative risk

relative_risk <- function(exposed, unexposed) {

(exposed[1] / sum(exposed)) / (unexposed[1] / sum(unexposed))

}

relative_risk(exposed, unexposed)

#> [1] 1.041667

In this case, a relative risk of 1.04 indicates that the exposed group is 1.04 times more likely to develop the outcome compared to the unexposed group. 

A second example is to calculate the relative risk based on the number of events and

person-time at risk for exposed and unexposed groups. Let’s consider the following scenario: d1 <- 50 # Number of events in the exposed group

n1 <- 10 # Person-time at risk in the exposed group

d0 <- 20 # Number of events in the unexposed group

n0 <- 5 # Person-time at risk in the unexposed group

# Calculate the relative risk

relative_risk_d <- (d1 / n1) / (d0 / n0)

# Print the relative risk

relative_risk_d

#> [1] 1.25

In this case, the relative risk based on the number of events and person-time at risk is 1.25, indicating that the exposed group has a 1.25 times higher risk of developing the outcome

compared to the unexposed group. 

In summary, the relative risk can be calculated using two different formulas:

• The first formula,  RR =  p 1 /p 0, calculates the relative risk directly using the proportions of events  p 1 in the exposed group compared to the unexposed group  p 0 . This formula provides a more simplified view of the relative risk based solely on event proportions. 

• The second formula,  RR =  d 1 /n 1 , considers both the number of events ( d 1 , d 0) and d 0 /n 0

person-time at risk ( n 1 , n 0) for each group. This formula takes into account the incidence rate in addition to event proportions, providing a more specific understanding of the relative risk by incorporating information about the duration of exposure. 

5.2.3

Relative Risks and Network Analysis

In some cases, relative risks can be modelled using network analysis, a specialised approach within statistical modelling which extends the concept of mixed effects to compare multiple treatments while accounting for various factors and dependencies. The relationship between variables, represented by nodes and edges, considers the potential interactions or dependencies between different risk factors and outcomes. This approach is generally favourable when

exploring complex relationships among multiple variables. 
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Relative Risk Differences
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Figure 5.3 Bar chart showing the relative risk of outcome between exposed and unexposed groups. The relative risk is calculated based on the number of events and person-time at

risk for each group. 

To represent the network we can use a Directed Acyclic Graph (DAG) for drawing

causal relationships between variables, such as the relationship between health risks and

diseases. 

This is an example of a Network graph representing the causal pathways between different variables, such as smoking, physical inactivity, high blood pressure, lung cancer, heart disease, and stroke. By visualising the relationships between these variables, we can identify the

direct and indirect effects of risk factors on health outcomes. 

The following code shows one more example of a network graph that would be helpful to

identify the relationship between outcome (O), exposure (E) and different risk factors made with the {ggdag} package and the dagify() function. 

# Load the library

library(ggdag)

set.seed(555)

# Define the DAG structure

dag <- dagify(

y ~ x, 

x ~ c1 + c2 + c3, 

c1 ~ c2 + c3, 

c1 ~ c3)

# Plot the DAG

ggdag(dag) + theme_dag_grid()
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Network Analysis of Risk Factor Relationships

Lung Cancer

Smoking

Heart Disease
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Figure 5.4 Directed Acyclic Graph (DAG) - Network Analysis of Risk Factor Relationships. 
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Figure 5.5 DAG between outcome (O), exposure (E) and different risk factors. 

62

 Causes and Risks

5.2.3.1

Simulation of Risk Exposure

The simulation of the risk exposure can be done replicating a logistic regression model with a DAG structure. We can use the {dagitty} package, and the simulateLogistic() function. 

The model estimates the probability of an outcome (O), given exposure (E) to different risk factors, such as C1, C2, and C3 (confounders). The relative risk is calculated based on the estimated probabilities of the outcome given exposure and no exposure to the risk factors. 

# Load necessary libraries

library(dagitty)

library(tidyverse)

# Create DAG structure

dag <- dagitty("dag { E -> O

C1 -> O

C2 -> O

C3 -> O }")

dat <- dag %>% tidy_dagitty()

# Generate data

set.seed(123)

n <- 1000

data <- simulateLogistic(dag)

head(data)

#> 

C1 C2 C3 E O

#> 1 1 -1 1 1 -1

#> 2 -1 -1 -1 1 1

#> 3 1 1 1 1 1

#> 4 1 1 -1 -1 -1

#> 5 1 1 -1 -1 -1

#> 6 -1 -1 -1 1 1

# Fit logistic regression model

model <- glm(O ~ E + C1 + C2 + C3, 

data = data, 

family = "binomial")

# Extract estimated probabilities

pr_outcome_exp <- predict(model, type = "response")

pr_outcome_no_exp <- predict(model, 

newdata = data.frame(E = "1", 

C1 = data$C1, 

C2 = data$C2, 

C3 = data$C3), 

type = "response")

# Calculate relative risk

relative_risk <- pr_outcome_exp / pr_outcome_no_exp
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Figure 5.6 Histogram and density distribution of Relative Risk. 

5.2.4

Theoretical Minimum-Risk Exposure Levels (TMRELs)

Risk factors associated with a particular health condition are considered based on the

Theoretical minimum risk exposure levels (TMRELs) and as a function of the risk

exposure or relative risk (RR) value. Not all the variables that are thought to be risk factors increasing causes for a particular health condition are always the driving cause of the condition, for this reason a minimum level of risk exposure is established for the risk to be considered involved as effective in the outcome. 

Moreover, disease attributable to a particular risk factor or combination of risk factors

need to be ascertained by investigating the risk-outcome relationship. Risk factors can also act indirectly on the outcome via intermediate risks, such as the association of low fruit consumption and heart disease influenced by systolic blood pressure which acts as mediator between the two. 

low fruit

systolic blood pressure

heart disease

Figure 5.7 DAG: Risk-Outcome leading to heart disease. The relationship between low fruit consumption, systolic blood pressure, and heart disease. 

Examples of risk factors with established Theoretical Minimum Risk Exposure Levels

(TMRELs) include particulate matter air pollution, high systolic blood pressure, and smoking. For systolic blood pressure, the TMREL is typically set around 110/70 mmHg. 

Research has shown that maintaining blood pressure near this level is associated with

the lowest risk for cardiovascular disease and stroke. Similarly, for particulate matter air pollution, the TMREL is set at the lowest level of exposure that is feasible and achievable, typically based on World Health Organization (WHO) guidelines. For smoking, the TMREL

is set at zero, as any level of smoking is associated with increased health risks. 

In terms of Disability-Adjusted Life Years (DALYs), the overall level is significantly influenced by behavioural, environmental, and occupational risks. Behavioural risks, such as smoking and physical inactivity, and environmental exposures, like air pollution, contribute heavily to DALYs by increasing both mortality and disability rates within affected populations. 

Occupational risks further add to the burden, particularly in regions where workplace

safety standards are lower, underscoring the need for targeted interventions across different population groups. 
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5.2.5

Population Attributable Fractions (PAFs)

The Population Attributable Fraction (PAF) is a measure used to quantify the

proportion of disease incidence in a population that can be attributed to a specific risk factor. 

It represents the proportion of risk that would be reduced in a given year if the exposure to a risk factor in the past were reduced to an ideal exposure scenario. 

PAF is calculated based on the prevalence of the risk factor in the population and the

relative risk associated with that risk factor. The formula for calculating PAF is as follows: Pe × ( RR − 1)

 P AF =

(5.3)

1 +  Pe × ( RR − 1)

Where:

•  Pe  is the prevalence of the risk factor in the population. 

•  RR  is the relative risk associated with the risk factor, representing the increased risk of disease among individuals exposed to the risk factor compared to those who are not

exposed. 

The PAF ranges from 0% to 100%. A PAF of 0% indicates that the risk factor has no impact

on the incidence of the disease, while a PAF of 100% indicates that all cases of the disease in the population can be attributed to the risk factor. 

PAF is useful for public health interventions as it provides insight into the potential impact of reducing or eliminating a specific risk factor on the incidence of disease in the population. 

By targeting interventions to reduce exposure to the risk factor, public health efforts

can effectively reduce the burden of disease in the population and improve overall health

outcomes. 

5.3

Causal Inference

Causality concerns the relationship between two variables, where one variable ( the cause) directly influences the other ( the effect). For example, regular exercise improves cardiovascular health, or adequate sleep supports cognitive function. However, causality is distinct from correlation, which indicates a statistical association without implying a direct influence. For instance, a correlation between television watching and obesity does not imply a causal

link. Establishing causality requires systematically evaluating alternative explanations and accounting for confounding factors that could affect both the cause and effect. 

Causal inference is essential for understanding the underlying causes of a condition or

phenomenon, even if these causes are not immediately apparent. It often requires a structured data analysis to uncover hidden causal relationships within the observed data. 

Performing causal inference requires setting up an experiment, where there are treatment and outcome elements. The  treatment  is the intervention applied to the data. For example, to confirm the statement that  regular exercise leads to improved cardiovascular health, an intervention may be designed to introduce another variable, such as regular fruit consumption, and observe its combined effect with exercise on cardiovascular health. 

In this investigation, the primary factors are exercise and fruit intake. The goal is to examine whether their combination improves cardiovascular health. Once the intervention is analysed

[image: Image 12]

 Summarising the Relationship between Risk and Outcome

65

Figure 5.8 Causal Inference Flowchart. The flowchart outlines the steps involved in performing causal inference, from formulating a hypothesis to informing public health

actions. 

by measuring changes in cardiovascular health (the response variable), the next step is to apply a control procedure, often using a counterfactual scenario. This approach helps assess what might have happened in the absence of the treatment, providing a benchmark

to confirm the treatment’s true effect. 

5.4

Summarising the Relationship between Risk and Outcome

The relationship between risk and outcome in epidemiology is central to understanding the

causes of disease and guiding preventive strategies. This relationship involves assessing how exposure to certain risk factors affects the likelihood of developing specific health outcomes. 

Epidemiological studies quantify the strength of this association through measures like

Relative Risk (RR) and Population Attributable Fraction (PAF). 

Relative Risk (RR) compares the risk of developing a health outcome among individuals exposed to a risk factor with those who are not exposed. An RR greater than 1 indicates

an increased risk associated with the exposure. For example, if smokers have a relative risk of 15 for lung cancer compared to non-smokers, this suggests a strong association between

smoking and lung cancer. 

Population Attributable Fraction (PAF) estimates the proportion of disease incidence in a population that can be attributed to a specific risk factor, helping quantify the potential impact of reducing or eliminating that exposure on the overall disease burden. For example, if smoking accounts for 30% of lung cancer cases in a population, the PAF for smoking-related lung cancer is 0.30. 

To establish causality, epidemiologists must demonstrate consistent associations, dose-

response relationships (where increased exposure heightens risk), temporal precedence
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(exposure precedes outcome), and rule out alternative explanations. Ultimately, understanding these risk-outcome relationships enables evidence-based public health decisions, informing preventive strategies, interventions, and policies to improve population health. 

Table 5.1 Table showing risk measures, definitions, and examples. 

Risk Measure

Definition

Example

Relative Risk

Measures the likelihood of an

Smokers have a 15x higher relative risk

(RR)

outcome occurring in an

(RR = 15) of lung cancer compared to

exposed group relative to a

non-smokers. 

non-exposed group. 

Population

Estimates the proportion of

If smoking accounts for 30% of lung

Attributable

disease cases that could be

cancer cases, then the PAF for smoking

Fraction

prevented if a specific risk factor

is 0.30. 

(PAF)

were eliminated. 

Theoretical

Represents the ideal level of

The TMREL for PM2.5 (air pollution)

Minimum

exposure to a risk factor that

is set around 2.4  µ g/m3, as exposure

Risk

minimises adverse health effects. 

below this level is associated with

Exposure

minimal health risk. 

Level

(TMREL)

In conclusion, the study of risk and outcome has evolved beyond traditional epidemiologi-

cal methods to embrace advanced techniques like transfer learning. This interdisciplinary

approach enables the application of insights from epidemiology to other fields and vicev-

ersa, deepening our understanding of the complex relationships between risk factors and

health outcomes. Machine learning and data-driven techniques help identifying patterns, 

and develop predictive models that extend beyond conventional frameworks, offering fresh

perspectives on population health and guiding targeted interventions. 

Part II

Machine Learning

[image: Image 13]
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Introduction to Machine Learning

“Human beings are not just passive victims of disease. They are active

participants in the biological confrontation between man and microbe.” 

This chapter will walk you through a basic construction of a machine learning model, 

providing a simple explanation of how to model fast-growing phenomena, such as in the case of the spread of infectious diseases. Then in the following chapters of this second section you will dive deep into different techniques for modelling starting from feature engineering to making predictions. 

6.1

Deterministic and Stochastic Modelling

The spread of a virus can be seen as a random process, since the number of individuals who are infected at any given time can change randomly. The exact number of individuals

who will be infected in the future cannot be determined with certainty, as it depends on

various factors such as the contagiousness of the virus, the behaviour of individuals, and the efficacy of mitigation measures. 

A deterministic model, on the other hand, could be used to model the spread of a virus under certain conditions, such as a fixed number of individuals, constant contagiousness, 

and no mitigation measures. This type of model can be used to make predictions about the

spread of a virus under certain assumptions, but it will not account for the randomness

and uncertainty associated with real-world scenarios. In general, a stochastic process, or random process1 is the type of model which attempts to replicate uncertain outcomes, using probabilities. On the other hand, in a deterministic system the outcome is obtained from a given input, and for this reason it is reproducible. 

Most models used to study the spread of a virus are a combination of both deterministic and stochastic models. For example, the SIR (Susceptible-Infected-Recovered) model is a deterministic model that describes the dynamics of the spread of a virus, but it also includes stochastic elements such as random interactions between individuals. 

6.2

Machine Learning Models

What a machine learning model is and how it differs from statistical models (deterministic and stochastic) is all a matter of parameter calibration. Understanding the differences

1Robert P. Dobrow,  Introduction to Stochastic Processes with R (John Wiley & Sons, 2016). 

DOI: 10.1201/9781032625935-6
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between deterministic and stochastic models is crucial for effectively applying machine

learning techniques, as it informs the selection of the appropriate modelling approach based on the data characteristics and analysis goals. Machine learning models learn from data

to automatically adjust their parameters, optimising them to minimise errors or maximise

performance on a given task. Compared to traditional statistical models, they are more

flexible and adaptable to complex data patterns. 

Machine Learning (ML) techniques are identified as subfields of the Artificial Intelligence (AI) technology, acting by learning relationships in the data. Learning from experience (E), ML computes tasks (T) to improve performance (P). The origins of ML, 

dating back to the late 1950s, only flourished in the 1990s with the aim of minimising loss on unseen samples. 2

Figure 6.1 Machine Learning Cycle

The Machine Learning Cycle is a continuous process that involves the following steps: data collection, data preprocessing, model selection, model training, model evaluation, and model deployment. The cycle is iterative, with each step informing the next, and the process is repeated until the desired performance is achieved. The goal of the Machine Learning

cycle is to develop models that can make accurate predictions or decisions based on data. 

The emergence of infections is an ongoing evolution and adaptation. 3 In the late 1970s, Dr. René Dubos believed that ‘ the relationship between humans and microbes is dynamic

 and influenced by various factors, including environmental conditions, human behaviour, and microbial adaptation’. The importance of understanding the complex interactions between hosts and pathogens in the emergence and spread of infectious diseases is described as dynamic interplay between organisms and their environment, a process of continuous adaptation

and interaction. Organisms continuously respond to changes in their surroundings to maintain balance and survival. This is analogous to what happens inside a machine learning model environment. It involves continuous parameter learning and adjustment achieved

2“Machine Learning,”  Wikipedia, April 2024, https://en.wikipedia.org/w/index.php?title=Machine_lea

rning&oldid=1220758567. 

3Lyle D. Broemeling,  Bayesian Analysis of Infectious Diseases: COVID-19 and Beyond (New York: Chapman; Hall/CRC, 2021), doi:10.1201/9781003125983. 

 Machine Learning Models

71

through a technique called tuning or parameter calibration, resulting in a range of possible alternative scenarios and simulations of the observed data. 

6.2.1

Empirically Driven Models

To locate machine learning models within the models framework, we can think about the

scope of the analysis, which in this case is predicting the future and preventing undesired outcomes. 

In particular, these types of models are subdivided in:

1. Mechanistic Model: For example the SIR model is a classic compartmental

model used to simulate the spread of infectious diseases. It divides the population into three compartments: susceptible ( S), infectious ( I), and recovered ( R). The equations describe the rate of change of each compartment over time, where  β

represents the transmission rate and  γ  represents the recovery rate. 

  dS



= −  β ·  S ·  I



  dt





  dI

SIR model

= β ·  S ·  I −  γ ·  I

(6.1)

 dt







  dR





= γ ·  I

 dt

2. Empirically Driven Model: Empirically driven models do not have explicit

mathematical equations like mechanistic models. Instead, they learn patterns

and relationships directly from data. An example of an empirically driven model

is Random Forest which is a machine learning algorithm that builds multiple

decision trees and combines their predictions to make accurate predictions. It

works by splitting the data into subsets and building a decision tree for each subset. 

The final prediction is made by aggregating the predictions of all decision trees. 

Unlike mechanistic models, Random Forest does not rely on explicit equations or

known relationships but instead learns patterns from the input data. 

Machine learning models fall under the category of empirically driven models. Unlike mechanistic models, which are based on explicit equations and known relationships

between variables (such as the differential equations used in infectious disease modelling), machine learning models derive patterns and relationships directly from data without explicit knowledge of the underlying mechanisms. Therefore, while both mechanistic and empirically

driven models are used for prediction, they operate on different principles:

Mechanistic models rely on known relationships and equations, while machine

learning models learn patterns from data. 4

Before delving deep into machine learning techniques for analysing health data and metrics, it’s essential to proceed step by step in building a modelling framework. This approach

begins with a thorough understanding of the modelling procedures. 

4Ruth E. Baker et al., “Mechanistic Models Versus Machine Learning, a Fight Worth Fighting for the Biological Community?”  Biology Letters  14, no. 5 (May 16, 2018): 20170660, doi:10.1098/rsbl.2017.0660. 
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6.2.2

Learning Methods

There are a variety of models available, and the decision on which model to use depends on the type of learning method either supervised or unsupervised. Supervised learning is applied when data are labelled, meaning that the dataset includes both the independent

(predictors) and dependent (outcome) variables. It is the classical approach to machine

learning, where the model learns to predict the outcome variable based on the input variables. 

Unsupervised learning, on the other hand, only includes the input variables, so there is no a direct objective, or a “response” variable to focus on. The model learns to find patterns and relationships in the data without explicit labels, making it useful for clustering and dimensionality reduction. 

The nature of the data is also fundamental, including whether the outcome is continuous or discrete, and whether the number of predictors exceeds the number of observations. Models

can range from non-linear to multilevel, and they can involve more complex combinations. 

A major distinction is made between regression and classification based on whether the outcome variable is continuous. 

Machine learning models are all types of models that can be all of the above but allow for: learning from data through model parameters auto-calibration. Learning from data

is a process where an algorithm adjusts its parameters to minimise the errors in predictions. 

Each algorithm has its method of learning. 

6.2.3

Parameters and Hyper-Parameters

In machine learning and statistical modelling, parameters and hyperparameters are two

distinct concepts, each playing a crucial role in building and tuning models. 

Parameters are the internal coefficients or weights that the model learns from the training data. These values are adjusted during the training process to minimise the loss function

and improve the model’s accuracy. For instance, in a linear regression model, parameters

include the slope coefficients and the intercept (Equation 6.3). Parameters are optimised during the training phase using optimization algorithms that perform selection, mutation, 

and crossover of the coefficients. The goal is to find the set of parameters that best fit the training data. 

Hyperparameters are the external settings of the model that can be redefined by the practitioner, or optimised using techniques such as grid search, random search, or more

advanced methods like Bayesian optimization. This process involves evaluating model

performance with different hyperparameter settings. Examples of hyperparameters are

the sample size, the number of trees on a random forest model, the learning rate, the

regularisation setting ( λ ) in ridge and lasso regression, and so on. 

More will be explained below, but it’s important to understand that creating a model

might involve high-level calculations. This means progressing beyond a basic equation to

include parameter selection and hyperparameter optimization. In particular, in the study

of infectious diseases, the focus is on how variables will evolve over time. For this reason, selecting the appropriate model requires an understanding of the underlying patterns and

dynamics of growth. 

[image: Image 15]
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6.3

The Steps of Building a Model

The process of constructing a model that would be able to explain the relationships between dependent and independent variables in a given system is intended as model development. 

At the heart of this process is the application of a model function to estimate coefficients that minimise the difference between the model’s predictions and the observed data. 

Figure 6.2 Model Building Process

Let’s break this down further: Suppose we have a response variable, denoted as  y, which represents the number of deaths or infections in our dataset. Additionally, we have some

other variables called predictors  x 1 , x 2 , ... , which are factors that may influence the level of  y. 

These predictors are selected based on the type of analyses, and could include factors such as demographics, secondary health outcomes (morbidity), population density, temperature, 

vaccination rates, etc. The goal of model development is to create a mathematical function that captures the relationship between the response variable  y (or dependent variable) responding to changes in predictor variables  xi (or independent variables) within the study. 

This function, often referred to as the model equation or model function, is typically

represented as:

 y =  f ( x 1 , x 2 , ... ) +  ϵ

(6.2)
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Here,  f  represents the relationship between the predictors and the response, and  epsilon represents the error term, which captures the difference between the observed values of  y and the values predicted by the model. To estimate the coefficients of the model function, we employ statistical techniques such as linear regression for continuous response variables, logistic regression for binary response variables, and various machine learning algorithms that include tuning parameters to handle more complex dataset and model

specifications. These techniques analyse the relationship between the predictors and the

response in the dataset and determine the optimal coefficients that minimise the difference between the observed ( y) values and the values predicted by the model (ˆ

 y) . 

Once the model coefficients are estimated, we can use the model function to predict future values of  y  for new values of predictor variables  xi. This allows us to simulate the effect of different scenarios or make predictions about future outcomes based on the relationships

identified in the data. Overall, the model development process is a crucial step in the modelling framework, as it sets the foundation for understanding and analysing the relationships

between variables in a given system. It enables us to extract insights from the data, make predictions, and inform decision-making in various fields, including epidemiology, public

health, economics, and environmental science. 

6.3.1

Example: Cholera

The first dataset used is from the {HistData} package HistData::CholeraDeaths1849, 

made of 730 observations and 6 variables, with 2 causes of deaths: cholera and diarrhoea. 

For this example we select just the deaths due to cholera within 12 months in 1849. Let’s

have a look at the first 6 rows of the dataset:

library(tidyverse)

library(HistData)

cholera <- HistData::CholeraDeaths1849 %>%

filter(cause_of_death == "Cholera") %>%

select(date, deaths)

cholera %>% head()

#> # A tibble: 6 x 2

#> 

date

deaths

#> 

<date> 

<dbl> 

#> 1 1849-01-01

13

#> 2 1849-01-02

19

#> 3 1849-01-03

28

#> 4 1849-01-04

24

#> 5 1849-01-05

23

#> 6 1849-01-06

39

The response variable is y = deaths due to cholera, and the only predictor we are considering on this first step is x = date in days from 1849-01-01 to 1849-12-31. Let’s visualise our data by using the {ggplot2} package with geom_line() as layer. 

cholera %>%

ggplot(aes(x = date, y = deaths)) +

geom_line() +

labs(
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title = "Deaths due to Cholera in London (1849)", 

x = "Date", y = "N. deaths")

Deaths due to Cholera in London (1849)

900
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0
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Apr 1849

Jul 1849

Oct 1849

Jan 1850

Date

Figure 6.3 Deaths due to Cholera in London (1849)

Now let’s observe in mathematical terms what happens when we start investigating the

relationship between the response and the predictor, to explain the behaviour of the variables. 

The following mathematical formulation represent our observed data, where  β 0 and  β 1 are the parameters, respectively the intercept and the slope allowing the computation of the

equivalence between  y  and  x 5. 

 y =  β 0 +  β 1 x

(6.3)

When a model is attempted, the values of the slope ( β 0) and the intercept ( β 1) are estimated6

in order to be able to replicate the values ( y) of the response by applying  x  to our model function. 

ˆ

 y = ˆ

 β 0 + ˆ

 β 1 x

(6.4)

where ˆ

 β 0 is the estimate value of the intercept, and ˆ

 β 1 the estimated value of the slope. So, 

the estimated data will approximate the observed data, with some margin of error ( ϵ): y ∼ ˆ

 y +  ϵ

(6.5)

5We can compare this formulation to a general  Y =  a +  mx  linear function. In our case  a  would be the intercept and  m  the slope of the line that will summarise the information between  y  and  x. 

6The hat (ˆ) on top of the variables indicates the values are estimated. 
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The difference between  y  and ˆ

 y  is the error we make when applying a model. 

 y − ˆ

 y =  ϵ

(6.6)

Reducing the error ( ϵ) as much as possible can lead to better fit of the model. 

While the case of having just one predictor influencing our response variable might be useful for educational purposes, as illustrated in the data above, scenarios involving more than

one predictor are more realistic and lead to increased complexity in the model function. 

This situation typically results in a multivariate linear model, often referred to as multiple linear regression. 

 y =  β 0 +  β 1 x 1 +  β 2 x 2 +  ... +  βnxn (6.7)

In this case more than one predictor is used to investigate the varying effects of the response variable. A compact form of the model function with more than one predictor can be stated

as:

 p

X

 y =  β 0 +

 βixi =  β 0 +  βX

(6.8)

 i=1

In this notation, the capital  X  takes the form of a matrix containing various  xi:  X =

( x 1 , x 2 , x 3 , ..., xp), the predictors, and the  β = ( β 1 , β 2 , β 3 , ..., βp) are the coefficient to be estimated. 

Valuable insights into the trends and drivers of cholera mortality can be gained in order

to inform public health interventions and policies aimed at reducing the burden of this

disease. 

If we were to investigate this spread as we hadn’t seen before and looked at some point in time, let’s say in between June and August 1849 we could have thought that the trend was

linear and growing in time. And actually is until some point, as we know what happened next. 

In the first plot the model line (blue line) is obtained with the geom_smooth() function with the specification method = "lm" . In the second plot we have used all data up to August, and we can clearly see the infections spread smoothly to finally explode shaping an elbow

curve. The geom_smooth() selected the best function that suits the data with a locally

estimated scatterplot smoothing, or LOESS, which is a nonparametric method for smoothing a series of data in which no assumptions are made about the underlying structure of the data. 

cholera %>%

filter(date >= "1849-06-01" & date <= "1849-08-01") %>%

ggplot(aes(x = date, y = deaths)) +

geom_point() +

geom_smooth(method = "lm", se = F) +

labs(

title = "Deaths due to Cholera in London (June to August 1849)", 

subtitle = "Linear Model", 

x = "Date", y = "N. deaths")

cholera %>%

filter(date <= "1849-08-01") %>%

ggplot(aes(x = date, y = deaths)) +

geom_point() +

geom_smooth(se = F) +
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labs(

title = "Deaths due to Cholera in London (January to August 1849)", 

subtitle = "method LOESS", 

x = "Date", y = "N. deaths")

Deaths due to Cholera in London (June to August 1849)

Deaths due to Cholera in London (January to August 1849)

Linear Model

method LOESS
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200
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N. deaths

100
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Jun 01

Jun 15

Jul 01

Jul 15

Aug 01

Jan

Apr

Jul

Date

Date

(a) Deaths due to Cholera in London

(b) Deaths due to Cholera in London (January

(June to August 1849)

to August 1849)

Figure 6.4 Deaths due to Cholera in London (1849)

In the case of CholeraDeaths1849, and in the context of infectious diseases, the trend

typically starts at a certain point, then increases to reach a peak—the highest level of

infection spread—before eventually decreasing back to the initial level. This pattern is

inherently non-linear. 

To visualise both linear and non-linear trends we can use a geom_smooth() function7, with method = "lm" for linear model and method = "gam" for applying a general additive model. 

ggplot(cholera, aes(x = date, y = deaths)) +

geom_line() +

geom_smooth(method = "lm", se = F) +

geom_smooth(method = "gam", 

color = "darkred", se = F)

6.3.1.1

GAM - Generalised Additive Model

The purpose of creating a model is to identify underlying patterns within a series of

observations. This requires the model to interpolate given observations in order to represent the overall pattern accurately. For instance, in the visualisation above, the blue line made with the geom_smooth() function, when specified with method = "lm", helps us visualise the direction of a linear pattern in the data. However, it’s evident that the data points form a bell-shaped curve as distribution of deaths over time, indicating a non-linear relationship between date and cholera deaths. In the second layer we used method= "gam", Generalised Additive Models (GAMs) flexible extensions of linear models, the most suitable choice for this data used to model non-linear relationships between the response and predictor

variables. They are particularly useful when the relationship between the variables is complex and cannot be adequately captured by linear models. 

 g( µ) =  β 0 +  f ( x)

(6.9)

7More about data visualisations techniques are in chapter Chapter 10. 
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Figure 6.5 Deaths due to Cholera in London (1849)-GAM

where:  g() is a link function,  µ  is the expected value of the response variable,  β 0 is the intercept term,  f () represents the smooth functions of the predictor variable. In case of more than one predictor:  g( µ) =  β 0 +  f 1( xi 1 +  f 2( xi 2 +  f 3( xi 3 +  ... ) there will be  p = 1 , .., j number of  f () smooth functions as many as the number of predictors. 

What is happening here is a transformation of the predictors through the application of a

function:  x ∼  f ( x). The smooth functions are estimated using non-parametric techniques such as splines (polynomial transformations) or kernel functions. These smooth functions

allow for flexible modelling of the relationship between the predictor variables and the

response variable, capturing non-linearities and complex patterns in the data. The link

function  g() is typically chosen based on the distributional characteristics of the response variable, to represent the data mean trend. 

# Load the mgcv package

library(mgcv)

# use the days instead of the full date

cholera$days <- row_number(cholera)

# Fit a GAM using the gam() function

gam_model <- gam(deaths ~ s(days), data = cholera)

# Print the summary of the GAM model

summary(gam_model)

#> 

#> Family: gaussian
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#> Link function: identity

#> 

#> Formula:

#> deaths ~ s(days)

#> 

#> Parametric coefficients:

#> 

Estimate Std. Error t value Pr(>|t|)

#> (Intercept) 146.008

3.583

40.74

<2e-16 ***

#> ---

#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

#> 

#> Approximate significance of smooth terms:

#> 

edf Ref.df

F p-value

#> s(days) 8.969

9 431 <2e-16 ***

#> ---

#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

#> 

#> R-sq.(adj) = 0.914

Deviance explained = 91.6%

#> GCV = 4818.7 Scale est. = 4687

n = 365

The smooth term for days is significant, as indicated by the approximate significance

test. The effective degrees of freedom (edf) for the smooth term are 8.969, suggesting a

moderately flexible relationship between deaths and time. The adjusted R-squared value

is 0.914, indicating that the model explains approximately 91.4% of the variance in the

response variable (deaths). The deviance explained is 91.6%, suggesting that the model fits the data well. 


Overall, the model suggests that there is a positive relationship between increasing time and the number of deaths due to cholera, with the number of deaths increasing over time to reach a peak and then eventually slow down to zero. However, it’s essential to consider the context of the data and potential confounding variables before drawing conclusions about causality or making predictions based solely on this model. Other important factors influencing the

spread are social behaviour and vaccination. We will talk more about infectious diseases

spread in section 4 Chapter 14. 

6.3.2

Example: Epidemic X

6.3.2.1

SEIR Model

In this example we simulate data of an epidemic to build a SEIR (susceptible, exposed, 

infected, recovered) model, a case a little more complicated than just making a SIR (susceptible, infected, recovered) model (Equation 6.1). More about the compartmental models will be shown in Chapter 8, Chapter 14 and in Chapter 15. 

So, let’s start looking at how our simple linear equation  y =  β 0 +  β 1 x  can be changed to become a differential equation. A differential equation describes how a quantity changes

with respect to another quantity, in particular time in this case. So, we are interested in the variation of  y  within time. 

 dy

 y 1 −  y 0

 y′ =

=

(6.10)

 dt

 t 1 −  t 0
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And this is explained by the variation of the predictors in time, the calculation is a derivative. 

Recall that the derivative of a constant is 0, in our case  β 0 is the constant. 

 dy

 d( β 0 +  β 1 x)

 dx

=

=  β 1

(6.11)

 dt

 dt

 dt

This equation describes how  y  changes with respect to time  t, taking into account the rate of change of  x  with respect to time  t, and the constant slope  β 1 of the line. 

 dx

 y′ =  β 1

(6.12)

 dt

The Equation 6.12 will be used in the model to describe how individuals move between

compartments over time. 

For this example we use a package named {deSolve} which solves differential equations. 

# Load required packages

library(deSolve) # For solving differential equations

We define a function for making the SEIR model, and its parameters.  β  is the transmission rate,  σ  the rate of latent individuals becoming infectious, and  γ  the rate of recovery. 

SEIR <- function(time, state, parameters) {

# variables need to be in a list

with(as.list(c(state, parameters)), {

# Parameters

beta <- parameters[1] # Transmission rate

sigma <- parameters[2] # Rate of latent individuals becoming infectious

gamma <- parameters[3] # Rate of recovery

# SEIR equations

dS <- -beta * S * I / N

dE <- beta * S * I / N - sigma * E

dI <- sigma * E - gamma * I

dR <- gamma * I

# Return derivatives

return(list(c(dS, dE, dI, dR)))

})

}

Then simulate starting parameters by assigning a value to them. 

N <- 1000 # Total population size

beta <- 0.3 # Transmission rate

sigma <- 0.1 # Rate of latent individuals becoming infectious

gamma <- 0.05 # Rate of recovery

Set an initial state and a time vector, let’s say 100 days. 

initial_state <- c(S = N - 1, E = 1, I = 0, R = 0)

# Time vector

times <- seq(0, 100, by = 1)
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Here we use the ode() function from the {deSolve} package for solving the differential

equations in the the SEIR model function that we created above. 

output <- deSolve::ode(y = initial_state, 

times = times, 

func = SEIR, 

parms = c(beta = beta, 

sigma = sigma, 

gamma = gamma))

The output is class “deSolve”, “matrix” :

class(output)

#> [1] "deSolve" "matrix" 

So, it needs to be converted to be a dataframe of time, susceptible, exposed, infected and recovered. All simulated values in 100 days of an epidemic. 

simulated_data <- as.data.frame(output)

head(simulated_data)

#> 

time

S

E

I

R

#> 1

0 999.0000 1.0000000 0.00000000 0.000000000

#> 2

1 998.9857 0.9186614 0.09324728 0.002384628

#> 3

2 998.9452 0.8699953 0.17567358 0.009145043

#> 4

3 998.8812 0.8483181 0.25070051 0.019828923

#> 5

4 998.7954 0.8493639 0.32110087 0.034138118

#> 6

5 998.6890 0.8699856 0.38915443 0.051899977

This plot shows the simulated data of the SEIR model, with the number of susceptible, ex-

posed, infectious, and recovered individuals over time. The number of susceptible individuals decreases over time as they become exposed and infected, while the number of exposed and

infectious individuals increases before eventually decreasing as individuals recover from the infection. 

# Plot simulated data

ggplot(simulated_data, aes(x = time)) +

geom_line(aes(y = S, color = "Susceptible")) +

geom_line(aes(y = E, color = "Exposed")) +

geom_line(aes(y = I, color = "Infectious")) +

geom_line(aes(y = R, color = "Recovered")) +

labs(title = "Simulation of SEIR Model", 

x = "Time", y = "Population") +

scale_color_manual(values = c(

"Susceptible" = "navy", "Exposed" = "orange", 

"Infectious" = "brown", "Recovered" = "darkgreen")) 6.3.2.2

Random Forest

The next step is to calibrate this model by applying a machine learning algorithm. A random forest model is a type of model that uses an algorithm called ensemble learning to build multiple decision trees and combine their predictions to make accurate predictions. It works by splitting the data into subsets and building a decision tree for each subset. The final prediction is made by aggregating the predictions of all decision trees. Unlike mechanistic
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Figure 6.6 Simulation of SEIR Model: Susceptible, Exposed, Infectious, and Recovered individuals over Time interact with each other determining the scenario of the Epidemic. With the increase of the number of exposed and infectious individuals, the number of susceptible individuals decreases over time. The number of exposed and infectious individuals increases before eventually decreasing as individuals recover from the infection. 

models, Random Forest does not rely on explicit equations or known relationships but

instead learns patterns from the input data. 

The randomForest() function from the {randomForest} package is used to predict the

number of new infections in the simulated data, and train the model to which some normally distributed noise is added to the simulated data. 

simulated_data <- cbind(simulated_data, 

noise = rnorm(nrow(simulated_data), 

mean = 0, 

sd = 5))

Simulated data are split into training and testing sets to train the model and evaluate its performance. What this means is that the model is trained on a subset of the data (the training set) and then tested on the remaining data (the testing set) to assess its predictive performance. 

# Load required packages

library(randomForest)

# Split the data into training and testing sets

set.seed(123)

train_index <- sample(nrow(simulated_data), 

0.8 * nrow(simulated_data))

train_data <- simulated_data[train_index, ]

test_data <- simulated_data[-train_index, ]
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# Train the Random Forest model - non machine learning yet! 

rf_model <- randomForest(

formula = I ~ ., 

data = round(train_data)

)# Plot the tree

reprtree:::plot.getTree(rf_model, k = 3, depth = 4, cex = 0.8)

<< Y |

R < 107.5

N >> 

time < 55

E < 196

<< Y N >> 

<< Y N >> 

time < 45

time < 61.5

noise < 2.5

time < 76.5

<< Y N >> 

<< Y N >> 

<< Y N >> 

<< Y N >> 

4.667

43.000  83.000 133.400 324.800 332.000 204.200 304.900

Figure 6.7 Tree of Random Forest Model for Epidemic X: The model splits the sample by determining the most probable number of infected individuals, using multiple decision trees to enhance accuracy. Each tree in the forest evaluates different features and criteria to make predictions, combining their outputs to form a consensus estimate. This approach helps to

reduce overfitting and improve the robustness of the model in predicting the spread and

impact of the epidemic. 

It can be seen that the Random Forest model is trained on the simulated data, and the

decision tree is built grouping the data into different categories, in this case the model uses the input variables (S, E, R, noise) with depth = 4 to set the limit of the number of splits in the tree. Things can change with a different set of parameters, such as the number of

trees, the number of variables to consider at each split, and the minimum number of data

points required to split a node. 

To predict the number of new infections based on the input variables, the predict() function is used on the test set, and the Root Mean Squared Error (RMSE) is then calculated to

evaluate the model’s performance. It quantifies how much the predicted values deviate

from the actual values. The smaller the RMSE, the closer the predicted values are to the

actual values, indicating a better predictive model performance. Conversely, a higher RMSE

indicates a greater error between predicted and actual values. 

# Make predictions on the test set

predictions <- predict(rf_model, newdata = test_data)

# Calculate Root Mean Squared Error (RMSE)

(rmse <- sqrt(mean((test_data$I - predictions)ˆ2, na.rm = T)))

#> [1] 5.4194

This means that the model’s predictions deviate from the actual values by an average of

8.66 new infections. This value can be used to assess the model’s performance and identify areas for improvement. 
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cbind(test_data, pred = predictions) %>%

ggplot(aes(I, pred)) +

geom_point() +

geom_abline() +

labs(

title = "Prediction of Infections for Epidemic X", 

subtitle = "Simulate Data", 

x = "Infections", y = "Predicted values")

cbind(test_data, pred = predictions) %>%

ggplot(aes(x = time)) +

geom_point(aes(y = I)) +

geom_line(aes(y = pred), color = "navy") +

labs(

title = "Prediction of Infections for Epidemic X", 

subtitle = "Simulate Data", 

x = "Time (Day)", y = "Obeserved vs Estimated values")
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(a) Prediction of Infections for Epidemic X

(b) Observed vs Estimated values

Figure 6.8 Prediction of Infections for Epidemic X: The model predicts the number of new infections based on the input variables, using the Random Forest algorithm to enhance

accuracy. The plot shows the relationship between the observed and predicted values, with

the line representing the ideal prediction where the observed and predicted values are equal. 

The Root Mean Squared Error (RMSE) is calculated to evaluate the model’s performance, 

with a lower RMSE indicating a better predictive model. 

6.3.2.3

Optimization with Tidymodels

Random Forest model is a powerful machine learning algorithm that can be tuned to

improve its performance. The tuning process involves selecting the optimal values for the hyperparameters of the model, such as in the case of a random forest model, the number of

trees, the number of variables to consider at each split, and the minimum number of data

points required to split a node. These hyperparameters can significantly impact the model’s performance, and tuning them can help improve the model’s accuracy and generalisation to

new data. 

For this task we use the {tidymodels} package, a collection of packages for modelling

and machine learning using the tidyverse principles. The {tidymodels} package provides a

consistent interface for modelling tasks, making it easier to build, tune, and evaluate machine
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learning models. 

library(tidymodels)

library(dials)

tidymodels_prefer()

# Spending data

set.seed(1231) # Set seed for reproducibility

# Split the data into training and testing sets

split <- initial_split(simulated_data, prop = 0.8)

train_data <- training(split)

test_data <- testing(split)

# Create a resampling scheme: 5-fold cross-validation

cv_folds <- vfold_cv(train_data, v = 5)

# Create a recipe for data preprocessing

data_recipe <- recipe(I ~ ., data = train_data) %>%

step_nzv(all_predictors()) %>%

step_normalize(all_numeric())

# Define the Random Forest model

rf_ranger_model <-

# tuning parameters - Machine Learning Application

rand_forest(trees = tune(), 

min_n = tune()) %>%

set_engine("ranger") %>%

set_mode("regression")

Automate tuning parameters is performed, in this case, using a Bayesian Optimization with

the tune_bayes() function to specify the grid of hyperparameters to search over. You can

specify the number of iterations and initial random points to start the optimization. The

tune_bayes() function uses the bayes_opt() function from the {tune} package to perform

the optimization. 

# Bayesian optimization

set.seed(123)

bayes_results <- tune_bayes(rf_ranger_model, 

data_recipe, 

resamples = cv_folds, 

metrics = metric_set(rmse, rsq), 

# Number of initial random points

initial = 5, 

# Total iterations including initial points

iter = 20, 

param_info = parameters(rf_ranger_model))

Examine the results of the Bayesian optimization to identify the optimal hyperparameters

for the Random Forest model. The show_best() function displays the best hyperparameters

based on the optimization results. 
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# Summarise the tuning results

show_best(bayes_results, metric = "rmse")

#> # A tibble: 5 x 9

#> 

trees min_n .metric .estimator

mean

n std_err .config .iter

#> 

<int> <int> <chr> 

<chr> 

<dbl> <int> 

<dbl> <chr> 

<int> 

#> 1 1873

2 rmse

standard

0.0352

5 0.00844 Iter14

14

#> 2 1801

2 rmse

standard

0.0353

5 0.00855 Iter9

9

#> 3 1839

2 rmse

standard

0.0354

5 0.00832 Iter11

11

#> 4 1883

2 rmse

standard

0.0356

5 0.00831 Iter16

16

#> 5 1709

2 rmse

standard

0.0356

5 0.00863 Iter10

10

Extract the best parameters:

best_bayes <- select_best(bayes_results, metric = "rmse")

best_bayes

#> # A tibble: 1 x 3

#> 

trees min_n .config

#> 

<int> <int> <chr> 

#> 1 1873

2 Iter14

Finally, we can use the best hyperparameters to train the Random Forest model on the

training data and evaluate its performance on the test data. The fit() function fits the

model using the best hyperparameters, and the predict() function makes predictions on

the test data. We can then calculate the Root Mean Squared Error (RMSE) to evaluate the

model’s performance. 

# Final model with best parameters

final_bayes_model <- finalize_model(rf_ranger_model, 

best_bayes)

final_fit <- fit(final_bayes_model, 

formula = I ~ ., 

data = train_data)

# Predict and evaluate on test data

predictions <- predict(final_fit, new_data = test_data)

augumented <- augment(final_fit, new_data = test_data)

eval_metrics <- metrics(estimate = .pred, 

truth = I, 

data = augumented)

eval_metrics

#> # A tibble: 3 x 3

#> 

.metric .estimator .estimate

#> 

<chr> 

<chr> 

<dbl> 

#> 1 rmse

standard

4.25

#> 2 rsq

standard

0.999

#> 3 mae

standard

2.34

# Calculate Root Mean Squared Error (RMSE)

err <- (test_data$I - predictions$.pred)ˆ2

rmse <- sqrt(mean(err, na.rm = T))
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paste("RMSE:", rmse)

#> [1] "RMSE: 4.25017352277781" 

augumented %>%

ggplot(aes(I, .pred)) +

geom_point() +

geom_abline() +

labs(

title = "Prediction of Infections for Epidemic X", 

subtitle = "Simulate Data", 

x = "Infections", y = "Predicted values")

augumented %>%

ggplot(aes(x = time)) +

geom_point(aes(y = I)) +

geom_line(aes(y = .pred), color = "navy") +

labs(

title = "Prediction of Infections for Epidemic X", 

subtitle = "Simulate Data", 

x = "Time (Day)", y = "Obesrved vs Estimated values")
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Figure 6.9 Prediction of Infections for Epidemic X

6.3.3

Example: Epidemic Y

6.3.3.1

INLA: An Empirical Bayes Approach to GAMs

In this example is a simulation of an epidemic in 100 days based on temperature level and

number of cases simulated with a random poisson distribution. 

The model used is the INLA - integrated nested Laplace approximation8 model, an excellent choice for applications requiring repeated model fitting. The INLA approach is

particularly useful for fitting complex models, such as Generalised additive models (GAMs), which involve non-linear relationships between predictors and the response variable. 

8“Approximate Bayesian Inference for Latent Gaussian Models by Using Integrated Nested Laplace Approximations - Rue - 2009 - Journal of the Royal Statistical Society: Series b (Statistical Methodology) -

Wiley Online Library,” n.d., https://rss.onlinelibrary.wiley.com/doi/full/10.1111/j.1467-9868.2008.00700.x. 
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 n

X

 yi =  β 0 +

 fj( xi,j) +  ϵi

(6.13)

 j=1

 p

X

 fj( xi,j) =

 βj,kBj,k( xi,j)

(6.14)

 k=1

where  yi  represent the response vector of observations,  fj( xi,j) the smooth function of the predictors (random effects),  Bj,k  basis function such as splines,  β 0 and  βj  the intercept and the coefficients respectively. While  ϵi  is the error term with a Gaussian distribution: ϵi ∼  N orm(0 , σ 2)

(6.15)

Used as:

INLA::inla(y ~ x1 + x2 + ... + xn, data = data)

It is also a valid alternative to Markov Chain Monte Carlo (MCMC) methods used to

compute the joint posterior distribution of the model parameters9 - (Appendix B). Due to the deterministic nature of its approximations, the use of a Laplacian approximation

to estimate the individual posterior marginals of the model parameters, allows for faster

computation, and more efficient estimation of the posterior distribution, making it a popular choice for Bayesian inference in large-scale applications. However, it’s worth noting that for very complex models or those with multi-modal posteriors, MCMC might still be preferred

due to its flexibility and ability to characterise the entire posterior distribution. 

In INLA, each of GAMs components are treated as random effects with specific prior distributions (typically Gaussian). The smoothness of these effects is controlled by hyperparameters, which INLA estimates from the data. The model is then fitted using the {INLA} package, 

which provides a fast and efficient way to estimate the posterior distribution of the model parameters. 

Let’s assume new epidemic_data with columns day, cases, and temperature. To model

the number of cases as a function of time and temperature, considering a non-linear effect of time using a random walk model (model = "rw2") and a linear effect of temperature: install.packages("INLA", 

repos = c(getOption("repos"), 

INLA = "https://inla.r-inla-download.org/R/stable"), 

dep = TRUE)

library(INLA)

# Sample data creation

set.seed(123)

epidemic_data <- data.frame(

day = 1:100, 

temperature = rnorm(100, mean = 20, sd = 5), 

cases = rpois(100, 

9W. R. Gilks, S. Richardson, and David Spiegelhalter, eds.,  Markov Chain Monte Carlo in Practice (Chapman; Hall/CRC, 1995), doi:10.1201/b14835. 

 The Steps of Building a Model

89

lambda = 10 + sin(1:100 / 20) * 10 + rnorm(100, 

sd = 5)))

# Define the model formula

formula <- cases ~ f(day, model = "rw2") + temperature

# Fit the model using INLA

result <- inla(formula, 

family = "poisson", 

data = epidemic_data)

# Summary of the results

result$summary.fixed

The model summary shows the estimated coefficients for the fixed effects of the model, 

including the intercept and the effect of temperature. The estimated coefficients represent the average effect of each predictor on the response variable, accounting for the non-linear effect of time and the linear effect of temperature. The summary also includes the standard errors and 95% credible intervals for each coefficient, providing a measure of uncertainty around the estimates. 

result$summary.hyperpar %>% t()

#> 

Precision for day

#> mean

23176.059

#> sd

14734.793

#> 0.025quant

4473.788

#> 0.5quant

19952.248

#> 0.975quant

60407.981

#> mode

13533.496

# Extracting the fitted values and the effect of time

time_effect <- result$summary.random$day

fitted_values <- result$summary.fitted.values

# Creating a data frame for plotting

plot_data <- data.frame(Day = epidemic_data$day, 

FittedCases = fitted_values$mean, 

Lower = fitted_values$`0.025quant`, 

Upper = fitted_values$`0.975quant`)

# Plotting the results

ggplot(plot_data, aes(x = Day)) +

geom_ribbon(aes(ymin = Lower, ymax = Upper), 

fill = "lightblue", 

alpha = 0.4) +

geom_line(aes(y = FittedCases), 

color = "blue") +

labs(title = "Fitted GAM for Epidemic Y", 

x = "Day", y = "Fitted number of cases")
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Figure 6.10 Fitted GAM for Epidemic Y: The plot shows the fitted values of the GAM

model for Epidemic Y, with the shaded area representing the 95% credible interval around

the mean estimate. The blue line represents the mean estimate of the number of cases over

time, capturing the non-linear trend in the data. 

The inla() function allows a model specification, in this case a Poisson is used and a

formula. The non-linear effect is a second-order random walk model = "rw2", a statistical modelling approach used to represent a type of prior commonly used in Bayesian modelling

for time series or spatial data where you expect smoothness and some degree of continuity

between adjacent observations. In particular, GAMs are used to capture non-linear trends

by fitting smooth, flexible functions to the data. These functions can be represented through various basis functions, and a second-order random walk is one such basis function. The

random walk model assumes that the values of the response variable are correlated with

their neighbours, creating a smooth, continuous effect over time. 

6.4

Measures of Machine Learning Models

To evaluate the performance of machine learning models, the loss function and the evaluation metrics are used to assess how well the model generalizes to new, unseen data. The loss

function quantifies the discrepancy between the predicted outcomes and the actual values, 

providing a measure of the model’s performance. The evaluation metrics, such as accuracy, 

precision, recall, and F1 score, provide additional insights into the model’s performance and can help identify areas for improvement. 

6.4.1

Loss Functions

The loss function is a method for evaluating how well a machine learning algorithm

model features a dataset. The cost function is the average of all loss function values. 
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The accuracy of predictive models is checked with loss functions, which measure the discrepancy between the predicted outcomes and the actual values. This adjustment of the

model learning process is performed through iterative adjustments of the model parameters

with the objective to improve the model’s performance. 

Models are trained to a specific loss function that guides the optimization process and

quantifies the model performance. 

6.4.1.1

Regression Loss Functions

Regression loss functions are for regression tasks where the prediction involves continuous numbers, and include:

• Mean Squared Error (MSE): MSE calculates the average of the squares of the errors, i.e., the average squared difference between the estimated values and the actual value. This loss function is sensitive to outliers as it squares the errors before averaging them. 

 n

1 X

 M SE =

( ˆ

 Yi −  Yi)2

(6.16)

 n i=1

• Mean Absolute Error (MAE): MAE measures the average magnitude of the errors

in a set of predictions, without considering their direction (i.e., it averages the absolute differences between predictions and actual outcomes). Unlike MSE, MAE is not overly

sensitive to outliers, making it suitable for datasets with anomalies. 

 n

1 X

 M AE =

| ˆ

 Yi −  Yi|

(6.17)

 n i=1

• Mean Squared Logarithmic Error (MSLE): MSLE is useful when targeting a regres-

sion model to predict exponential growth. By taking the log of the predictions and actual

values, MSLE transforms the target variable to reduce the skew of the distribution, which

can lead to more stable predictions across a range of values. 

 n

1 X

 M SLE =

( log( ˆ

 Yi + 1) −  log( Yi + 1))2

(6.18)

 n i=1

6.4.1.2

Classification Loss Functions

Classification loss functions are for classification tasks, where the output is categorical, typical loss functions include:

• Binary Cross-Entropy: Also known as log loss, this function measures the performance of a classification model whose output is a probability value between 0 and 1. It is particularly useful for binary classification tasks. 

 m

1 X

 L = −

( yi ∗  log( ˆ

 yi) + (1 −  y) log(1 − ˆ

 y))

(6.19)

 m i=1

• Hinge Loss: Often used with Support Vector Machines (SVMs), hinge loss evaluates the margin of classification errors, providing a penalty for miss-classified points to improve model accuracy. 

 L =  max(0 ,  1 −  y ∗  f ( x))

(6.20)

Choosing the right loss function: The selection of a suitable loss function depends on the specific characteristics of the data and the model application. For instance, if predicting
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precise values is crucial and the data range is wide, MSE might be appropriate. Conversely, for models where the prediction scale is logarithmic or the data contains many outliers, 

MSLE or MAE could be more effective. 

The choice of a loss function is not merely a technical decision but a strategic one, affecting how a model learns and performs on unseen data. Each loss function has its strengths and

trade-offs, making it vital for practitioners to understand their implications thoroughly. 

Understanding these measures and how they influence model training and predictions can

greatly enhance the effectiveness of machine learning applications. 

6.4.2

Evaluation Metrics

While loss functions are used during the training process to guide the optimization of the model parameters, evaluation metrics measure how well the model’s predictions align with the actual outcomes, providing a signal to adjust the model. 

6.4.2.1

Regression Evaluation Metrics

For regression tasks, the following metrics are commonly used to assess the model’s predictive performance:

• Root Mean Squared Error (RMSE): A measure of the average deviation between

predicted and actual values, calculated as the square root of the average of the squared

differences between predicted and actual values. It is commonly used in regression tasks to assess the model’s predictive accuracy. 

v

u

 n

1

u

X

 RM SE = t

( Yi − ˆ

 Yi)2

(6.21)

 n i=1

• R-squared (R2): A statistical measure of how well the model fits the data, indicating the proportion of variance in the dependent variable that is explained by the independent

variables. It ranges from 0 to 1, with higher values indicating a better fit. 

 SSresidual

 R 2 = 1 −

(6.22)

 SStotal

• Adjusted R-squared: A modified version of R-squared that adjusts for the number of predictors in the model, providing a more accurate measure of the model’s goodness of

fit. It penalises the addition of unnecessary predictors that do not improve the model’s

performance. 

(1 −  R 2)( n − 1)

 AdjustedR 2 = 1 −

(6.23)

 n −  k − 1

6.4.2.2

Classification Evaluation Metrics

For classification tasks, the following metrics are commonly used to evaluate the model’s

performance:

• Accuracy: The proportion of correctly classified instances out of the total instances in the dataset. It is a simple and intuitive measure of a model’s performance, but it may not be suitable for imbalanced datasets. 

 T P +  T N

 Accuracy =

(6.24)

 T P +  T N +  F P +  F N
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• Precision: The proportion of true positive predictions out of all positive predictions made by the model. It is a measure of the model’s ability to avoid false positives. 

 T P

 P recision =

(6.25)

 T P +  F P

• Recall (Sensitivity): The proportion of true positive predictions out of all actual positive instances in the dataset. It is a measure of the model’s ability to identify all positive

instances. 

 T P

 Recall =

(6.26)

 T P +  F N

• Confusion Matrix: A table that summarises the performance of a classification model, showing the number of true positive (TP), true negative (TN), false positive (FP), and

false negative (FN) predictions. It is used to calculate metrics such as accuracy, precision, recall, and specificity. 

• F1 Score: The harmonic mean of precision and recall, providing a balanced measure of a model’s performance. It is particularly useful when dealing with imbalanced datasets. 

 P recision ×  Recall

 F  1 = 2 ×

(6.27)

 P recision +  Recall

• Receiver Operating Characteristic (ROC) Curve: A graphical representation of the

trade-off between true positive rate (sensitivity) and false positive rate (1-specificity) across different threshold values. It is used to evaluate the performance of binary classification models. 

 T P

 F P

 T P R =

;  F P R =

(6.28)

 T P +  F N

 F P +  T N

• Area Under the Curve (AUC): The area under the ROC curve, which provides a

single value to summarise the model’s performance. An AUC of 0.5 indicates a random

classifier, while an AUC of 1.0 indicates a perfect classifier. 

Z

1

 AU C =

 T P R( F P R) dF P R

(6.29)

0

These are only a few of the most common loss functions and evaluation metrics able to

provide insights into the model’s performance to generalize to new data and make accurate

predictions. 

6.4.3

Public Health Loss Functions

“The public may be less interested in environmental quality than in economic prosperity.” 

Dubos

In the field of public health the measures of cost like mortality and morbidity are used to evaluate the outcome of health and well-being of a population. 

The most common analyses methods are:10

• Cost-utility, using quality-adjusted life years (QALYs)

• Cost-effectiveness, for specific outcomes, such as life expectancy or medical outcomes. 

10Marja Hult et al., “Cost-Effectiveness Calculators for Health, Well-Being and Safety Promotion: A Systematic Review,”  The European Journal of Public Health  31, no. 5 (May 10, 2021): 997–1003, 

doi:10.1093/eurpub/ckab068. 
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As mentioned in the history of health metrics (Chapter 2), the cost-utility framework has been employed for calculating QALYs. Over time, this measure has been criticised for

potentially discriminating against certain disabilities in the population by assigning costs that were perceived as either too high or too low, and for failing to capture the full spectrum of human health conditions. 

Moreover, comprehensive tools that assess the impacts through cost-effectiveness measures to estimate the effectiveness of health interventions should also include a measure of disability. 

The measure of DALYs (Disability-Adjusted Life Years), developed in 1993, took major

consideration of the disability status in evaluating the well-being of a population. It was further enhanced by incorporating a layer based on disability weights. 

In summary, the measures for a cost-effectiveness intervention involve a careful calibration of following components: mortality, morbidity, and disability. 

7

Techniques for Machine Learning

Applications

Learning Objectives

• Apply feature engineering techniques to prepare data for modelling

• Evaluate and select the most appropriate machine learning model based on data character-

istics

• Understand the fundamentals of key machine learning algorithms and their applications

Selecting the most suitable machine learning model involves understanding the goals of the analysis, the nature of the data, and the statistical and machine learning methods that best suit the tasks. In Chapter 6, we learned about what machine learning models are, provided examples for building a model framework, and selected common metrics for model

performance calibration and evaluation. 

In this chapter, we focus on the strategies for selecting appropriate models by leveraging the strengths of different techniques, specifically for health metrics and for infectious diseases. 

We will explore various considerations involved in addressing potential biases, and discuss actions to prevent them. 

7.1

Goals of the Analysis and Nature of Data

The identification of the primary goal of the analysis is fundamental. Whether it involves trend analysis, investigating the relationships between response and predictor variables, 

or strictly forecasting to predict future outcomes, the strategy for model selection varies accordingly. 

Health Metrics Data:

• Composite Measures: Health metrics like DALYs are composite measures that include both mortality and morbidity data, often requiring sophisticated regression models capable of handling continuous variables and multiple predictors. By examining the components of

DALYs (e.g., Years of Life Lost (YLLs) and Years Lived with Disability (YLDs)), we can

identify the key drivers such as mortality rates, disease prevalence, and risk factors. 

• Regression Models: Regression models, including linear regression, Ridge regression, and Lasso regression, are commonly used to handle these continuous variables and

address challenges like correlation and multicollinearity with appropriate techniques such as regularisation. 

DOI: 10.1201/9781032625935-7
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Infectious Disease Data:

• Categorical and Continuous Data: Infectious disease data can be categorical (e.g., disease presence or absence) or continuous (e.g., incidence rates). Classification models are suitable for categorical outcomes, while regression models are appropriate for continuous

data. 

• Disease Dynamics: Understanding the dynamics of infectious diseases, such as transmission rates, incubation periods, and immunity, informs the selection of models. Common

models include compartmental models (e.g., SIR, SEIR) and agent-based models. 

Common considerations for health metrics and infectious diseases data type:

• Seasonality and Trends: The data may exhibit seasonality or trends, necessitating the use of time series analysis models like ARIMA or seasonal decomposition to capture these patterns. 

• Simulation Models: These models can predict the impact of interventions on DALYs

and infectious diseases, estimating the effectiveness of different interventions and guiding policy decisions. Examples of these types of models are: SIR models, and Agent-based models. In addition, confidence intervals and sensitivity analyses help assess the uncertainty associated with these predictions. 

• Bayesian Models: These models can estimate parameters and make predictions based

on prior knowledge and observed data, incorporating uncertainty and variability. 

• Predictive modelling: Such as decision trees, support vector machines (SVM), and Long Short-Term Memory (LSTM) neural networks, can predict disease

outbreaks, identify high-risk populations, and optimise resource allocation. 

7.2

Statistical and Machine Learning Methods

The choice of model depends on the type of data, the relationships between variables, and

the goals of the analysis. Once we have these factors well identified, we are a step forward in restricting the range of applicable models. 

The next step involves conducting a thorough exploratory data analysis (EDA). This

initial exploration helps to uncover the underlying structure of the data, the relationships between variables, and the way the response variable—which may also be referred to as the

outcome variable—depends on predictors. This phase is critical as it informs the necessity of subsequent data adjustments and transformations. 

The importance of data preparation and exploratory data analysis in machine learning

are the building blocks in the preparation of machine learning digestible data. Feature engineering is a technique that involves creating new features from existing ones based on domain knowledge or transformation of data to improve the model’s ability to discern

patterns. For example, creating features like moving averages or differences between consecutive days can reveal trends and cycles that are not immediately apparent from raw

data. 

Another example is the standardisation process, which is crucial when dealing with variables measured in different units. It involves rescaling the features so they have a mean of zero and a standard deviation of one. This process is particularly important when variables span
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several orders of magnitude; without standardisation, a model might incorrectly interpret

the scale of a feature as a proxy for importance. 

Furthermore, the application of transformations, such as logarithmic scaling or the application of spline functions can help in managing skewed data or enhancing model ability to capture non-linear relationships, which result particularly useful in complex data modelling. In addition, tailored adjustments, and more sophisticated manipulations have been

implemented over time to allow estimation of missing values in order to obtain customised, flexible, and more homogeneous data. For more information on feature engineering, see1

useful for effective machine learning strategy application, covering various techniques and appropriate use cases, focusing on practical understanding and implementation. 

7.3

Model Selection Strategies

In developing predictive models for health metrics and infectious diseases, selecting the

appropriate model is critical to ensure accurate and reliable forecasts. Here are outlined sample strategies employed in the model selection process, we introduce the Rabies dataset used for our discussion and demonstrate the selection of a suitable model for analysing

its impact. Rabies, although nearly 100% fatal once symptoms appear, presents a unique

challenge due to the relative rarity of cases and limited availability of comprehensive data. 

This scarcity complicates efforts to model the disease accurately and develop effective public health strategies. 

To address these challenges, we explore advanced modelling techniques that can enhance

the robustness of our analyses despite data limitations, which involves evaluating multiple models based on their performance and selecting the best-fitting models to achieve the most accurate predictions. 

7.4

Example: Rabies

The rabies dataset from the {hmsidwR} package contains information on death rates and disability-adjusted life years (DALYs) per 100,000 inhabitants due to rabies and all causes of mortality in Asia and for the Global region from 1990 to 2019. Rabies (2) is a fatal viral infection, and it is also classified as an infectious disease that can infect all mammals causing acute encephalitis. Caused by the rabies virus, which belongs to the Lyssavirus genus, it is transmitted to humans through the bite of an infected animal such as bats, raccoons, skunks, foxes, and obviously dogs, which are the main source of human rabies deaths. 3 Rabies defined as neglected tropical disease (NTD) predominantly affects already marginalised, poor and vulnerable populations. Although effective human vaccines and immunoglobulins exist

for rabies, these are often not readily available or accessible to everyone. 4

1Brandon Butcher and Brian J. Smith,  The American Statistician  74, no. 3 (July 2020): 308–9, 

doi:10.1080/00031305.2020.1790217. 

2CDC, “About Rabies,” May 14, 2024, https://www.cdc.gov/rabies/about/index.html. 

3Katie Hampson et al., “Estimating the Global Burden of Endemic Canine Rabies,”  PLOS Neglected Tropical Diseases  9, no. 4 (April 2015): e0003709, doi:10.1371/journal.pntd.0003709. 

4“Rabies,” n.d., https://www.who.int/news-room/fact-sheets/detail/rabies. 
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In this example we consider the number of DALYs per 100,000 inhabitants due to rabies in

Asia and the Global region, as our response variable, the dataset is made available in the

{hmsidwR} package. It is composed of 240 observations and 7 variables: measure, location, 

cause, year, val, upper, lower. 

library(tidyverse)

hmsidwR::rabies %>%

filter(year >= 1990 & year <= 2019) %>%

select(-upper, -lower) %>%

head()

#> # A tibble: 6 x 5

#> 

measure location cause

year

val

#> 

<chr> 

<chr> 

<chr> 

<dbl> 

<dbl> 

#> 1 Deaths Global

All causes 1990 1107. 

#> 2 Deaths Asia

Rabies

1990

0.599

#> 3 Deaths Global

All causes 1994 1095. 

#> 4 Deaths Global

All causes 1992 1090. 

#> 5 Deaths Asia

Rabies

1992

0.575

#> 6 Deaths Asia

Rabies

1994

0.554

Selecting only the cause == Rabies , the first thing to notice is that deaths rates and

DALYs are on different units, rates and years respectively. 

library(tidyverse)

rabies <- hmsidwR::rabies %>%

filter(year >= 1990 & year <= 2019) %>%

select(-upper, -lower) %>%

pivot_wider(names_from = measure, values_from = val) %>%

filter(cause == "Rabies") %>%

rename(dx_rabies = Deaths, dalys_rabies = DALYs) %>%

select(-cause)

rabies %>% head()

#> # A tibble: 6 x 4

#> 

location year dx_rabies dalys_rabies

#> 

<chr> 

<dbl> 

<dbl> 

<dbl> 

#> 1 Asia

1990

0.599

33.1

#> 2 Asia

1992

0.575

31.9

#> 3 Asia

1994

0.554

30.7

#> 4 Asia

1991

0.585

32.3

#> 5 Asia

1995

0.551

30.5

#> 6 Asia

1997

0.502

27.9

It can be seen that the number of deaths due to rabies is much lower than the number

of DALYs. This difference in scale can affect the model’s ability to learn from the data. 

To address this issue, we can scale and centre the numeric variables to make them more

comparable. 

p1 <- rabies %>%

ggplot(aes(x = year, group = location, linetype = location)) +

geom_line(aes(y = dx_rabies), 

linewidth = 1) +

geom_line(aes(y = dalys_rabies))
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p2 <- rabies %>%

# apply a scale transformation to the numeric variables

mutate(year = as.integer(year), 

across(where(is.double), scale)) %>%

ggplot(aes(x = year, group = location, linetype = location)) +

geom_line(aes(y = dx_rabies), 

linewidth = 1) +

geom_line(aes(y = dalys_rabies))

Dalys and Deaths due to Rabies − Not scaled

Dalys and Deaths due to Rabies − Scaled and centred

in Asia and Global Region

in Asia and Global Region

2

30

DALYs

Deaths

1

20

location

location

Asia

Asia

Value

Value

Global

0

Global

10

−1

0

1990

2000

2010

2020

1990

2000

2010

2020

Time(Year)

Time(Year)

(a) Not scaled

(b) Scaled and centred

Figure 7.1 Not Scaled and Scaled and Centred

Creating new features from existing ones provide additional predictive power. Then, combine the cause vector in a way to obtain two vectors for death rates due to rabies and all causes, scale and centre the numeric variables to obtain homogeneous data to use in the model. 

all_causes <- hmsidwR::rabies %>%

filter(year >= 1990 & year <= 2019) %>%

select(-upper, -lower) %>%

pivot_wider(names_from = measure, values_from = val) %>%

filter(!cause == "Rabies") %>%

rename(dx_allcauses = Deaths, dalys_allcauses = DALYs) %>%

select(-cause)

dat <- rabies %>%

full_join(all_causes, by = c("location", "year"))

dat %>% head()

#> # A tibble: 6 x 6

#> 

location year dx_rabies dalys_rabies dx_allcauses dalys_allcauses

#> 

<chr> 

<dbl> 

<dbl> 

<dbl> 

<dbl> 

<dbl> 

#> 1 Asia

1990

0.599

33.1

1179. 

50897. 

#> 2 Asia

1992

0.575

31.9

1151. 

49532. 

#> 3 Asia

1994

0.554

30.7

1120. 

48084. 

#> 4 Asia

1991

0.585

32.3

1166. 

50412. 

#> 5 Asia

1995

0.551

30.5

1116. 

47766. 

#> 6 Asia

1997

0.502

27.9

1072. 

46164. 
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To be able to visualise the magnitude of difference between death rates and DALYs for both rabies and all causes, it is necessary to scale or standardise the data as shown above. 

p3 <- dat %>%

select(-year, -location) %>%

scale() %>%

cbind(dat %>% select(year, location)) %>%

ggplot(aes(x = year, 

group = location, 

linetype = location)) +

geom_line(aes(y = dx_rabies), 

linewidth = 1) +

geom_line(aes(y = dx_allcauses))

p4 <- dat %>%

select(-year, -location) %>%

scale() %>%

cbind(dat %>% select(year, location)) %>%

ggplot(aes(x = year, 

group = location, 

linetype = location)) +

geom_line(aes(y = dalys_rabies), 

linewidth = 1) +

geom_line(aes(y = dalys_allcauses))

Deaths due to Rabies and All Causes

Dalys due to Rabies and All Causes

in Asia and Global Region

in Asia and Global Region
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All Causes
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0
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−1

−1
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1990
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Time(Year)

Time(Year)

(a) Deaths due to Rabies and All Causes

(b) Dalys due to Rabies and All Causes

Figure 7.2 Scaled and centred

For this task, we will use the {tidymodels} meta-package, as it provides a consistent

interface for modelling and machine learning tasks. In particular, we define and execute

modelling workflows, to create tailored data pre-processing tasks on various modelling

specifications, and evaluate the performance using resampling techniques, to eventually

select the best model. A more detailed explanation of the {tidymodels} framework can be

found in the book. 5

5Max Kuhn Silge and Julia,  Tidy Modeling with r, n.d., https://www.tmwr.org/. 
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7.4.1

Training Data and Resampling

Splitting data into training and test allows the model to train a subsection of the data

and then test its performance on the remaining part of the data, the test set. In this case, we will use the initial_split() function to split the data into training and test sets. 

The proportion assigned to trains can vary but it is usually assigned to be 80%, also a

stratification option can be set. 

library(tidymodels)

set.seed(11012024)

split <- initial_split(dat, prop = 0.8, strata = location)

training <- training(split)

test <- testing(split)

After that, it is important to create a set of folds, which means a set of subgroups of the original data by grouping following specific directions based on the type of resampling technique. Resampling techniques are used to evaluate the model’s performance and estimate its generalisation error. There are various types of resampling techniques, it depends on the specific characteristics of your dataset, and the goals of your analysis. Some of the most common resampling techniques include:

• k-Fold Cross-Validation for general model evaluation and hyperparameter tuning. 

• Bootstrap Resampling to estimate the variability of your model and for smaller datasets. 

• Time Series Cross-Validation for time-dependent data to preserve temporal structure. 

• Spatial Resampling for spatially correlated data to account for spatial dependencies. 

• Stratified Resampling when dealing with imbalanced datasets to ensure proper representation of all classes. 

In this case, we will use k-Fold Cross-Validation to evaluate the model’s performance. 

The vfold_cv() function creates a set of folds for cross-validation, which is used to train and test the model on different subsets of the data. 

set.seed(11102024)

folds <- vfold_cv(training, v = 10)

7.4.2

Data Preprocessing and Featuring Engineering

As already seen in the exploratory phase, preprocessing data is a crucial step in machine

learning. This process can include techniques for handling missing values, standardisation of the data, encoding categorical variables, and removing highly correlated variables. 

In this case, we will use the {recipes} package to create a recipe, with a set of prepro-

cessing steps. The recipe() function allows us to define a model formula and use various

step_<functions>() for manipulating data. We are going to set up 3 recipes, the first is a basic one which includes all variables and does not perform any data transformation. 

rec <- recipe(dalys_rabies ~ ., data = training)

The second recipe includes some key steps to transform the data into a way specific models would be able to understand and learn from it. Models such as k-nearest neighbours, or

support vector machines, that rely on distance metrics, can be sensitive to differences in feature scales. 
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For instance, non-standardised year data can dominate the model’s decision-making process, leading to biased results. By scaling and centring the data, we ensure that all features

contribute equally to the model’s predictions. 

We can create more complex recipes with more steps, but for this example, we will use a

step for encoding the location variable (Asia, Global) into a numeric vector, and a second step to normalise (or standardise) all predictors. 

rec1 <- recipe(dalys_rabies ~ ., data = training) %>%

# convert nominal variables to dummy variables

step_dummy(all_nominal_predictors()) %>%

# scale the numeric variables

step_normalize(all_numeric_predictors())

Once the recipe is created, we can apply it to the data using the prep() function, which

estimates the necessary parameters for the transformations and applies them to the data. 

Then, to check the results we can use the juice() function to extract the processed data. 

rec1 %>%

prep() %>%

juice() %>%

select(1, 2, 5) %>%

head()

#> # A tibble: 6 x 3

#> 

year dx_rabies dalys_rabies

#> 

<dbl> 

<dbl> 

<dbl> 

#> 1 -1.61

2.12

33.1

#> 2 -1.17

1.79

30.7

#> 3 -1.50

2.02

32.3

#> 4 -1.06

1.76

30.5

#> 5 -0.847

1.40

27.9

#> 6 -0.738

1.23

26.8

Trained data can be also tested on new data, in this case we test them on the test set with the bake() function. 

rec1 %>%

prep() %>%

bake(new_data = test) %>%

select(1, 2, 5) %>%

head()

#> # A tibble: 6 x 3

#> 

year dx_rabies dalys_rabies

#> 

<dbl> 

<dbl> 

<dbl> 

#> 1 -1.39

1.94

31.9

#> 2 -0.521

0.870

24.5

#> 3 -0.412

0.743

23.7

#> 4 0.131

0.375

20.7

#> 5 -0.738

0.255

20.7

#> 6 -0.521

0.0443

19.3

DALYs often aggregate various health impacts, and can have highly skewed distributions. 

This skewness arises due to several factors: the presence of outliers, the nature of the health condition being measured, and the distribution of the data itself. To handle the skewness of
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the data, we can apply:

• Log Transformation:  log( DALY s + 1)

√

• Sqrt Transformation:

 DALY s

• Yeo-Johnson Transformation, a generalisation of the Box-Cox transformation that can

handle both positive and negative values: (( DALY s + 1) p − 1) /p. 

Let’s apply the Yeo-Johnson transformations to the response variable (dalys_rabies) and see how the density distribution changes with different values of  λ. This is a step that can be tuned with a machine learning algorithm. 

Log10 transformation

Yeo−Johnson transformation p=−2

Yeo−Johnson transformation p=2
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Figure 7.3 Response variable transformation

Let’s now create a third recipe with the step_YeoJohnson() function. 

rec2 <- rec1 %>%

# apply Yeo-Johnson transformation to the response variable

step_YeoJohnson(dalys_rabies)

rec2 %>%

prep() %>%

juice() %>%

select(1, 2, 5) %>%

head()

#> # A tibble: 6 x 3

#> 

year dx_rabies dalys_rabies

#> 

<dbl> 

<dbl> 

<dbl> 

#> 1 -1.61

2.12

5.97

#> 2 -1.17

1.79

5.78

#> 3 -1.50

2.02

5.91

#> 4 -1.06

1.76

5.77

#> 5 -0.847

1.40

5.54

#> 6 -0.738

1.23

5.44

7.4.3

Correlation, Multicollinearity, and Overfitting

To be noted is that we haven’t applied any correlation selection step on this data. Filtering out highly correlated predictors, such as those with a correlation greater than 80% to avoid multicollinearity, would lead to excluding crucial variables. On the other hand, including all possible covariates in a model often yields implausible signs on covariates or unstable coefficients, as well as overfitting. 6

6Kyle J. Foreman et al., “Modeling Causes of Death: An Integrated Approach Using CODEm,”  Population Health Metrics  10, no. 1 (January 2012): 1, doi:10.1186/1478-7954-10-1. 
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When multiple predictors are correlated, but all are crucial for the analysis (e.g., deaths due to rabies, total deaths, and total DALYs for all causes), applying a correlation step that filters out correlated variables can be problematic. One way to overcome bias arising from it is using regularisation techniques like Ridge Regression or Lasso Regression is often the best approach to handle multicollinearity without removing any predictors. Alternatively, 

Principal Components Analysis (PCA) can reduce dimensionality while retaining most

of the variance. These methods ensure all important predictors are included in the model

without the adverse effects of multicollinearity. 

7.4.4

Model Specification

The next step is to outline the model specification. There are various type of models that can be used. We start with a random forest. This choice is typically done due to the algorithm’s features, which is able to create multiple bootstrap samples (random samples with replacement) from the original dataset. Each bootstrap sample is used to train a

separate decision tree. 

7.4.5

Model 1: Random Forest

Rabies death rates may exhibit complex relationships with predictor variables. Random

forests are capable of capturing non-linear relationships between predictors and the target variable. 

Also, it handles multicollinearity, missing data, provides variables importance and is an

ensemble learning method, which means they combine the predictions of multiple individual

decision trees to produce a more accurate and stable prediction. 

In our simplified case this type of model will do random samples with replacement of data. 

In {tidymodels} we can select different types of engines, in the case of random forest we

could use random forest, ranger, and others. The difference between these engines derives

from the specific type of calculation used to make the estimation. The Ranger engine is

notably faster than random forest, so let’s use that for this example. 

rf_mod <- rand_forest(mtry = tune(), 

trees = tune(), 

min_n = tune(), 

mode = "regression", 

engine = "ranger")

wkf <- workflow(preprocessor = rec, 

spec = rf_mod)

rf_res <- tune_grid(object = wkf, 

resamples = folds, 

grid = 5, 

control = control_grid(save_pred = TRUE))

show_best(rf_res, metric = "rmse") %>%

select(-n, -std_err)

#> # A tibble: 5 x 7

#> 

mtry trees min_n .metric .estimator mean .config

#> 

<int> <int> <int> <chr> 

<chr> 

<dbl> <chr> 
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#> 1

4 1794

7 rmse

standard

0.692 Preprocessor1_Model1

#> 2

5

85

17 rmse

standard

1.38 Preprocessor1_Model5

#> 3

1

446

16 rmse

standard

2.15 Preprocessor1_Model4

#> 4

3 1338

34 rmse

standard

2.79 Preprocessor1_Model2

#> 5

2 1151

31 rmse

standard

2.91 Preprocessor1_Model3

rf_res_tuned <- select_best(rf_res, metric = "rmse")

rf_res_tuned

#> # A tibble: 1 x 4

#> 

mtry trees min_n .config

#> 

<int> <int> <int> <chr> 

#> 1

4 1794

7 Preprocessor1_Model1

rf_fit <- wkf %>%

finalize_workflow(select_best(rf_res, 

metric = "rmse")) %>%

fit(training)

rf_fit %>%

predict(new_data = test) %>%

bind_cols(test) %>%

rmse(truth = dalys_rabies, estimate = .pred)

#> # A tibble: 1 x 3

#> 

.metric .estimator .estimate

#> 

<chr> 

<chr> 

<dbl> 

#> 1 rmse

standard

0.506
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Figure 7.4 Predictions vs. Truth

7.4.6

Model 2: Generalised Linear Model (GLM)

Generalised Linear Models (GLMs) involve statistical estimation rather than the iterative

parameter tuning, common in many machine learning techniques. However, adding a machine

learning feature through parameter calibration can be done using techniques such as cross-

validation and grid search to find the best model settings. 
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To introduce a machine learning feature with parameter calibration into our modelling of the rabies data, we can use a technique like cross-validation combined with a regularisation method or an algorithm that supports parameter tuning. Here, we can employ a model

from the glmnet package, which fits a generalised linear model via penalised maximum

likelihood. The regularisation path is computed for the lasso or elastic-net penalty at a grid of values for the regularisation parameter lambda. 

Adding Machine Learning Features with {glmnet} and Cross-Validation

if (!require(glmnet)) install.packages("glmnet")

library(glmnet)

For glmnet, we need to input matrices rather than data frames, and create matrices for the independent variables (predictors) and the dependent variable (response). 

predictors <- model.matrix(dalys_rabies ~ ., 

data = dat)[, -1] # Remove intercept

response <- dat$dalys_rabies

Use cross-validation to find the optimal lambda value, which controls the strength of the

regularisation:

# Set seed for reproducibility

set.seed(123)

# Fit the model with cross-validation

cv_model <- cv.glmnet(predictors, 

response, 

family = "gaussian")

cv_model

#> 

#> Call: cv.glmnet(x = predictors, y = response, family = "gaussian")

#> 

#> Measure: Mean-Squared Error

#> 

#> 

Lambda Index Measure

SE Nonzero

#> min 0.09043

48 0.05662 0.01147

2

#> 1se 0.13120

44 0.06564 0.01192

2

Extracting the best model, we can see that  λ  is 0.165. 

# Get the best lambda value

best_lambda <- cv_model$lambda.min

paste("Best Lambda:", best_lambda)

#> [1] "Best Lambda: 0.0904304071218807" 

And plot the lambda selection with the plot() function. 

# Plot the lambda selection

plot(cv_model)
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Figure 7.5 Cross-Validation Optimal Lambda

Then, fitting the final model with the selected best lambda, we can predict and evaluate the model. 

final_model <- glmnet(predictors, 

response, 

family = "gaussian", 

lambda = best_lambda)

# Predict using the final model

predictions <- predict(final_model, 

# values of the penalty parameter lambda

s = best_lambda, 

# matrix of new values for x

newx = predictors

)

# Calculate Mean Squared Error

rmse <- sqrt(mean((response - predictions)ˆ2))

paste("Root Mean Squared Error:", rmse)

#> [1] "Root Mean Squared Error: 0.224854043214572" 

By incorporating glmnet and using lambda selection via cross-validation, we introduce a

machine learning feature—parameter calibration into our analysis. This approach not only helps in minimising overfitting but also enhances model performance by selecting the

most effective regularisation parameter. The cross-validation process used here is crucial for confirming that our model’s parameters are optimally tuned for the given data, embodying

a key aspect of machine learning methodologies. 
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7.4.7

Testing Multiple Models

In the example above, we used two models to predict DALYs due to rabies, a random forest

with {tidymodels} and a generalised linear model with {glmnet} with a Root Mean-Square

Error of 0.448 and 0.257 respectively. The Random Forest model has a higher RMSE, which

means it has a higher prediction error compared to the GLM model. However, we haven’t

applied any of the preprocessing steps, and there are many other models that could be used to predict DALYs such as:

1. Support Vector Machines (SVM): SVMs are a powerful machine learning

algorithm that can be used for both classification and regression tasks. They work

by finding the hyperplane that best separates the data into different classes or

groups. 

2. Extreme Gradient Boosting (XGBoost): Known for its high performance in

various prediction tasks, XGBoost can handle missing values and is effective for

large datasets. 

3. K-Nearest Neighbours (KNN) models are a type of instance-based learning

algorithm that stores all available cases and classifies new cases based on a

similarity measure. 

4. Long Short-Term Memory (LSTM) Networks: For temporal or sequential

health data, LSTM networks can capture dependencies over time, making them

suitable for time-series prediction of disease progression and outcomes. 

Each of these models has its own strengths and weaknesses, and the choice of model will

depend on the specific characteristics of the data and the goals of the analysis. By testing multiple models and comparing their performance, we can identify the best model for the

given data and task. 

Let’s use the {parsnip} package and the workflow_set() function to fit a set of models

to the rabies data. We will fit a Support Vector Machine (SVM), and a K-Nearest

neighbours (KNN) model to the data and compare their performance. 

linear_reg_spec <-

linear_reg(penalty = tune(), 

mixture = tune()) %>%
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set_engine("glmnet")

svm_p_spec <-

svm_poly(cost = tune(), 

degree = tune()) %>%

set_engine("kernlab") %>%

set_mode("regression")

knn_spec <-

nearest_neighbor(neighbor = tune(), 

dist_power = tune(), 

weight_func = tune()) %>%

set_engine("kknn") %>%

set_mode("regression")

library(rules)

library(baguette)

# Combine workflows into a workflow set

workflow_set <- workflow_set(preproc = list(scaled = rec1, 

yeo_johnson = rec2), 

models = list(linear_reg = linear_reg_spec, 

svm = svm_p_spec, 

knn = knn_spec))

grid_ctrl <-control_grid(save_pred = TRUE, 

parallel_over = "everything", 

save_workflow = TRUE)

# Fit and evaluate the models with hyperparameter tuning

grid_results <- workflow_set %>%

workflow_map(seed = 1503, 

resamples = folds, 

grid = 5, 

control = grid_ctrl)

# Show the results

grid_results %>%

collect_metrics() %>%

arrange(mean) %>%

select(1, 5, 7, 9) %>%

head()

#> # A tibble: 6 x 4

#> 

wflow_id

.metric mean std_err

#> 

<chr> 

<chr> 

<dbl> 

<dbl> 

#> 1 yeo_johnson_svm

rmse

0.148 0.0168

#> 2 yeo_johnson_knn

rmse

0.150 0.0331

#> 3 yeo_johnson_knn

rmse

0.173 0.0271

#> 4 yeo_johnson_svm

rmse

0.175 0.0177

#> 5 yeo_johnson_linear_reg rmse

0.178 0.0239

#> 6 yeo_johnson_linear_reg rmse

0.179 0.0243
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autoplot(grid_results, 

rank_metric = "rmse", 

metric = "rmse", 

select_best = TRUE) +

geom_text(aes(y = mean - 0.1, 

label = wflow_id), 

angle = 90, 

hjust = 1, 

color = "black", 

size = 3.5) +

lims(y = c(-1.5, 0.9)) +

theme(legend.position = "none")
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Figure 7.7 Model Performance

7.5

Summary

The integration of machine learning techniques into public health data analysis can significantly enhance the predictive power and robustness of models. By leveraging the capabilities of machine learning algorithms, we can extract valuable insights from complex health data, enabling more informed decision-making and policy formulation in public health contexts. 

The examples provided in this chapter illustrate the application of machine learning tech-

niques to health metrics data, demonstrating the importance of feature engineering, model

selection, and parameter calibration in enhancing the predictive accuracy and relevance

of models. By following best practices in machine learning, public health researchers and
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practitioners can harness the power of data-driven insights to address critical health challenges and improve population health outcomes. 

Best Practices for Machine Learning in Public Health:

• Conduct exploratory data analysis to understand the underlying structure of the data and relationships between variables. 

• Apply feature engineering techniques to create new variables and enhance the model’s

predictive power. 

• Select machine learning models that are contextually appropriate and robust for public

health data analysis. Such as Random Forest, Generalised Linear Models, and others. 

• Use parameter calibration techniques such as cross-validation, regularisation, monte carlo, and grid search to optimise model performance. 

• Evaluate model performance using appropriate metrics and visualisation tools to assess

predictive accuracy and relevance. 

The integration of machine learning methodologies into public health data analysis represents a significant opportunity to advance the field of public health and enhance our understanding of health metrics and disease dynamics. 

8

Essential R Packages for Machine

Learning

Learning Objectives

• Gain an overview of essential R packages for modelling and data analysis

• Apply various modelling frameworks using appropriate R tools

• Learn how to discover and evaluate new R packages for specific analytical tasks

This chapter provides an overview of the most suitable R-packages for machine learning. 

It also discusses the combination of packages and functions to achieve the desired results. 

Additionally, it explores how to find new R-packages and evaluate their suitability for a

given task. 

8.1

Inside and Outside of the Library Boxes

When it comes to R, the possibilities are endless. With over 15,000 packages available on

CRAN (Comprehensive R Archive Network) and countless others on GitHub and other

repositories, the universe of available packages is vast. How to untangle among all of them? 

Which one to choose? Sometimes, it is rather favourable to start by working out of the

library boxes, which means using functions provided in the built-in packages inside a fresh R installation. 

However, the vast majority of the time, the best way to start is by using the packages that are already available in the R ecosystem. These packages are designed to make your life

easier by providing pre-built functions for common tasks. They can help you save time and

effort by automating repetitive tasks and streamlining complex analyses. 

Life has become easier with the advent of wrapping functions and the reduction of lines of code through the use of functions found in packages. In the past, data analysis and modelling required extensive coding, often involving repetitive tasks and lengthy scripts. As a result, users can achieve sophisticated results more efficiently, without the need to write lengthy and intricate scripts from scratch. This shift has not only simplified the process of data analysis and modelling but has also democratised access to advanced statistical techniques, making them more accessible to a broader audience. 

DOI: 10.1201/9781032625935-8
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8.2

Essential R Packages for Machine Learning

Some of the most used modelling packages that are particularly useful for machine learning modelling of the spread of infectious diseases and evaluating DALYs variation due to infectious disease include:

8.2.1

Meta-Packages

1. {tidymodels}:1 This framework provides a collection of packages for modelling and machine learning tasks, including {tidyr}, {dplyr}, and ggplot2. It offers a

consistent and tidy workflow for data preprocessing, model building, evaluation, 

and visualisation. 

2. {caret}:2 The caret framework (short for Classification And REgression Training) provides a unified interface for training and evaluating machine learning models. It supports a wide range of algorithms and offers convenient functions for

hyperparameter tuning and model selection. 

3. {mlr3}:3 This is a modern and extensible framework for machine learning. It provides a unified interface for modelling tasks, making it easy to train and

evaluate a wide range of machine learning algorithms. 

8.2.2

Engines

Engines are the actual implementations of machine learning algorithms. They perform

the computations necessary to train and evaluate models. Engines can be integrated into

various meta-packages/frameworks to leverage their specific algorithms and computational

efficiencies. Each engine might have its own set of parameters and functionalities, which can be accessed through the high-level interfaces provided by meta-packages. 

1. {randomForest}: For random forest models. 

2. {xgboost}: An optimised distributed gradient boosting library designed to be

highly efficient, flexible, and portable. It implements machine learning algorithms

under the gradient boosting framework. 

3. {glmnet}: For lasso and ridge regression. Provides efficient procedures for fitting

generalised linear models via penalised maximum likelihood. 

4. {nnet}: For neural networks. 

5. {kernlab}: For kernel-based machine learning methods. 

6. {e1071}: For support vector machines and other functions. 

7. {lme4}: For linear and generalised linear mixed-effects models. 

8. {mgcv}: For generalised additive models. 

9. {rpart}: For recursive partitioning and regression trees. 

10. {h2o}: A powerful machine learning framework that can be efficiently integrated

with {tidymodels}. {h2o} offers a range of machine learning algorithms, including

linear models, tree-based models, and ensemble methods, with efficient handling

of large datasets and support for parallel computing. 

1Silge and Julia,  Tidy Modeling with r. 

2Max Kuhn,  The Caret Package, n.d., https://topepo.github.io/caret/. 

3“Mlr-Org,” n.d., https://mlr-org.com/. 
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11. {keras3}, the R interface to Keras, is a deep learning technique which provides

high-level neural networks API written in Python. Designed to enable fast

experimentation with deep learning models on top of {tensorflow} (an open-

source machine learning framework developed by Google). 

8.2.3

Time Series Analysis

1. {forecast}: For forecasting functions. 

2. {prophet}: Specifically designed for time series forecasting with an emphasis on

flexibility and ease of use. Developed by Facebook, prophet can handle various

time series patterns, including seasonality, holiday effects, and trend changes, 

making it suitable for modelling infectious disease trends over time. 

3. {fpp3}:4 This package is part of the Forecasting: Principles and Practice (3rd edition) book, offering data and tools for forecasting time series data, such as

the import of the {fable} package with the ARIMA() model which is relevant for

modelling disease spread over time. 

8.2.4

Bayesian Analysis

1. {brms}: For Bayesian generalised multivariate non-linear multilevel models using

Stan. 

2. {rstan}: For Bayesian inference using Stan. 

8.2.5

Specialized Tools

1. {spdep} is a powerful tools for spatial statistics, it provides a set of functions for

analysing spatial dependencies and autocorrelation in spatial data, particularly

relevant in infectious disease modelling. It also incorporates spatial effects into

models and allows for a better understanding of how infectious diseases spread

across space. 

2. {INLA}:5 Integrated Nested Laplace Approximations (INLA) is a package for Bayesian inference using the INLA method. It is particularly useful for spatial

and spatio-temporal modelling, which can be relevant for studying the spread of

infectious diseases. 

These packages offer a diverse set of tools and techniques for modelling infectious disease spread and assessing its impact on health metrics like DALYs. These packages provide

valuable insights into the dynamics of infectious diseases and can be used to inform public health interventions and policies. However, whether these packages are the most suitable

depends on various factors, including:

• the specific requirements of the analysis

• the expertise of the researcher

• the nature of the data being used

Each package has its strengths and weaknesses, and the choice of package often depends on

factors such as:

• the complexity of the modelling task

4 F orecasting: Principles and Practice (3rd Ed), n.d., https://otexts.com/fpp3/. 

5“R-INLA Project - What Is INLA?” n.d., https://www.r-inla.org/what-is-inla. 
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• the type of data available

• the preferred modelling approach (e.g., frequentist vs. Bayesian). 

For example, tidymodels provides a tidy and consistent workflow for modelling tasks, while mlr3 offers extensive support for machine learning algorithms and hyperparameter tuning. 

It’s also worth considering other packages that may be relevant for specific aspects of the analysis, such as spatial modelling (e.g., spdep) or time series forecasting (e.g., prophet). 

The features and capabilities of each package should carefully be evaluated in relation to their specific research objectives before choosing the one that best meets research needs

and objectives. And it is worth considering that experimenting with different packages and techniques may be beneficial to identify the most effective approach for a given analysis. 

8.3

Model Framework Application Examples

In this section we provide some examples of the application of different model frame-

works. Data are used, as introduced in Chapter 7, to demonstrate the application of model frameworks such as mlr3, h2o, and keras for machine learning tasks. 

We have already shown an application of the {tidymodels} meta-package in Chapter 6 and

Chapter 7, particularly useful for testing out different types of models with the help of key functions such as the workflow(), workflow_set(), and workflow_map(). 

8.3.1

Example: DALYs Due to Dengue with mlr3

The dataset for this example is from the {hmsidwR} package, which contains data on Deaths, DALYs, YLDs, YLLs, Prevalence, and Incidence due to selected infectious diseases from

1980 to 2021. 

library(tidyverse)

hmsidwR::infectious_diseases %>% names

#> [1] "year" 

"location_name" "location_id" 

"cause_name" 

#> [5] "Deaths" 

"DALYs" 

"YLDs" 

"YLLs" 

#> [9] "Prevalence" 

"Incidence" 

Let’s have a look at the locations where Dengue has been reported:

hmsidwR::infectious_diseases %>%

filter(cause_name == "Dengue") %>%

distinct(location_name)

#> # A tibble: 5 x 1

#> 

location_name

#> 

<chr> 

#> 1 Malawi

#> 2 Central African Republic

#> 3 Lesotho

#> 4 Eswatini

#> 5 Zambia

And look at how the health metrics shape up over the years for Dengue:
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Figure 8.1 Health Metrics due to Dengue

The trend of the metrics in some locations is quite flat ranging around zero, while in others it is more evident. YLLs are the leading cause of DALYs, but YLDs are also contributing to the burden of disease. 

We will focus on DALYs due to Dengue in three locations, Malawi, Zambia, and Central African Republic from 1990 to 2016 (26 years). The data from 2017 to 2021 is not included

in the analysis and held out to be used as new data for testing the model’s performance, as shown in Chapter 9. 

Data are preprocessed to remove missing values, the values of DALYs only appeared in 1990, and then grouped by location id; the location name is removed. 

dalys_dengue <- hmsidwR::infectious_diseases %>%

arrange(year) %>%

filter(cause_name == "Dengue", 

year<=2016, 

!location_name %in% c("Eswatini", "Lesotho")) %>%

drop_na() %>%

group_by(location_id) %>%

select(-location_name, -cause_name)

dalys_dengue %>%

head()

#> # A tibble: 6 x 8

#> # Groups:

location_id [3]

#> 

year location_id

Deaths DALYs YLDs

YLLs Prevalence Incidence

#> 

<dbl> 

<dbl> 

<dbl> <dbl> <dbl> <dbl> 

<dbl> 

<dbl> 

#> 1 1990

182 0.0330

7.59 5.35 2.24

33.7

560. 

#> 2 1990

191 0.00135

6.88 6.86 0.0229

42.4

713. 

#> 3 1990

169 0.000760 2.25 2.24 0.0186

13.1

222. 

#> 4 1991

191 0.00135

8.57 8.54 0.0230

52.5

884. 

#> 5 1991

182 0.0327

8.68 6.47 2.21

40.9

681. 

#> 6 1991

169 0.000760 2.23 2.22 0.0185

13.0

218. 

The {mlr3} is a meta-package particularly useful for its syntax, as it guides the user through the machine learning steps by providing a consistent naming convention. It is also useful for benchmarking different models. In addition to the {mlr3} package, the {mlr3learners}, 

{mlr3viz}, and {mlr3verse}, and {data.table} packages are also loaded. Each of these
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packages provides additional functionality for machine learning tasks. More information on these packages can be found in the respective documentation, and further details can be

found in the mlr3 book. In this example we use two types of models:

• regr.cv_glmnet: A cross-validated glmnet model with an alpha of 0.5 and a lambda of

0.1. 

• regr.xgboost: An xgboost model with 1000 rounds, a maximum depth of 6, and an eta

of 0.01. For this model the {xgboost} package is required. 

library(mlr3)

library(mlr3learners)

library(mlr3viz)

library(mlr3verse)

library(data.table)

# library(xgboost)

Define the task, where the id, backend, and target are specified. The backend is the data

that will be used for training the models. The task is the interface between the data and the learners; in this use-case the preprocessing steps are done beforehand, by removing missing and categorical values. 

task <- TaskRegr$new(id = "DALYs", 

backend = dalys_dengue, 

target = "DALYs")

task$data() %>%

select(year, DALYs, YLDs, YLLs) %>%

head()

#> 

year

DALYs

YLDs

YLLs

#> 

<num> 

<num> 

<num> 

<num> 

#> 1: 1990 7.591334 5.354059 2.23727545

#> 2: 1990 6.882299 6.859449 0.02285062

#> 3: 1990 2.253677 2.235120 0.01855750

#> 4: 1991 8.565327 8.542325 0.02300233

#> 5: 1991 8.682844 6.469088 2.21375567

#> 6: 1991 2.234340 2.215861 0.01847933

The learners are the model’s specifications. A full list of learners can be obtained with the function as.data.table(mlr_learners). 

learner_cv_glmnet <- lrn("regr.cv_glmnet", 

alpha = 0.5, 

s = 0.1)

learner_xgboost <- lrn("regr.xgboost", 

nrounds = 1000, 

max_depth = 6, 

eta = 0.01)

Then define a resampling strategy to estimate the generalization performance, then create a benchmark design to compare different learners:

118

 Essential R Packages for Machine Learning

resampling <- rsmp("cv", folds = 5)

design <- benchmark_grid(tasks = task, 

learners = list(learner_cv_glmnet, 

learner_xgboost), 

resamplings = resampling)

design

#> 

task

learner resampling

#> 

<char> 

<char> 

<char> 

#> 1: DALYs regr.cv_glmnet

cv

#> 2: DALYs

regr.xgboost

cv

Run the benchmark:

set.seed(19052024)

bmr <- benchmark(design, 

store_models = TRUE, 

store_backends = TRUE)

To access the content of an object such as bmr, use the $ operator, or for more options use the View() function. 

The score() function is used to extract the performance metrics of the models, in this case the mean squared error (MSE) is used. 

bmr$score()[, .(learner_id, 

task_id, 

iteration, 

regr.mse)]

#> 

learner_id task_id iteration

regr.mse

#> 

<char> <char> 

<int> 

<num> 

#> 1: regr.cv_glmnet

DALYs

1 0.009638128

#> 2: regr.cv_glmnet

DALYs

2 0.008946393

#> 3: regr.cv_glmnet

DALYs

3 0.013166374

#> 4: regr.cv_glmnet

DALYs

4 0.012098411

#> 5: regr.cv_glmnet

DALYs

5 0.008993369

#> 6:

regr.xgboost

DALYs

1 0.140507087

#> 7:

regr.xgboost

DALYs

2 0.087534489

#> 8:

regr.xgboost

DALYs

3 0.522633289

#> 9:

regr.xgboost

DALYs

4 0.207629600

#> 10:

regr.xgboost

DALYs

5 0.031557756

Here we see the results of the benchmark, the regr.mse is the mean squared error of the

models. The regr.rmse and regr.mae are also available. 

set.seed(349)

autoplot(bmr, measure = msr("regr.rmse"))

autoplot(bmr, measure = msr("regr.mae"))

Aggregate the results:

measures <- msrs(c("regr.rmse", "regr.mae"))

aggr <- bmr$aggregate(measures)
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Figure 8.2 BMR Regression RMSE and MAE

rr1 <- aggr$resample_result[[1]]

rr2 <- aggr$resample_result[[2]]

Create a data frame with the results, for plotting with ggplot2, consider data are shuffled in the resampling process, and need to be reordered:

regr.cv_glmnet <- as.data.table(rr1$prediction()) %>%

mutate(learner = "regr.cv_glmnet") %>%

# order data to match the original order

cbind(rr1$task$data()[rr1$prediction()$row_ids])

regr.xgboost <- as.data.table(rr2$prediction()) %>%

mutate(learner = "regr.xgboost") %>%

# order data to match the original order

cbind(rr2$task$data()[rr2$prediction()$row_ids])

dat <- rbind(regr.cv_glmnet, regr.xgboost)

Plot the results:

dat %>%

ggplot(aes(x = truth, y = response, 

group = learner)) +

geom_abline() +

geom_point(aes(color = learner)) +

scale_color_manual(values = c("regr.cv_glmnet" = "navy", 

"regr.xgboost" = "orange")) +

facet_wrap(~learner) +

labs(x = "Truth", y = "Response") +

theme(legend.position = "none")
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Figure 8.3 Truth vs Response for cv.glmnet and xgboost

dat %>%

group_by(location_id, learner) %>%

ggplot(aes(x = year)) +

geom_point(aes(y = truth), 

size = 0.2) +

geom_line(aes(y = response, 

linetype = learner), 

linewidth = 0.3) +

# create facets for each location and

# rename the location_id with the location_name

# with the labeller function

facet_wrap(vars(location_id), 

labeller = as_labeller(c(`182` = "Malawi", 

`191` = "Zambia", 

`169` = "Central African Republic")), 

scales = "free") +

labs(title = "Dalys due to Dengue 1990-2016: Truth vs Responses", 

caption = "Scale Free - Dots represent the Truth Values", 

x = "Year", y = "DALYs", linetype = "Model") +

theme(plot.title = element_text(hjust = 0.5))

In the next Chapter 9 we will see an application of these two models on remaining years from 2017 to 2021, to test the model performance as it was on new data. 

8.3.2

Example: DALYs Due to Rabies with H2O

The following example shows how to use the {h20} r package for running H2O via its REST

API. 

options(timeout = 6000)

install.packages("h2o")
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Figure 8.4 Models results on observed DALYs due to Dengue 1990-2016; Test Resampled Data with cv.glmnet and xgboost. 

library(h2o)

# Initialize the H2O cluster

h2o.init()

We use the rabies dataset from the {hmsidwR} package, which has been used in Section 7.4. 

The dataset contains information on the number of deaths and dalys due to rabies in different countries and regions. The dataset is preprocessed to remove unnecessary columns and

pivoted to create a wide format with the relevant health metrics. 

library(tidyverse)

rabies <- hmsidwR::rabies %>%

select(-upper, -lower) %>%

pivot_wider(names_from = measure, values_from = val) %>%

filter(cause == "Rabies",!is.na(DALYs)) %>%

rename(dx_rabies = Deaths, dalys_rabies = DALYs) %>%

select(-cause) %>%

mutate(across(where(is.character), as.factor))

rabies %>% head

#> # A tibble: 6 x 4

#> 

location year dx_rabies dalys_rabies

#> 

<fct> 

<dbl> 

<dbl> 

<dbl> 

#> 1 Asia

1990

0.599

33.1

#> 2 Asia

1992

0.575

31.9

#> 3 Asia

1994

0.554

30.7

#> 4 Asia

1991

0.585

32.3

#> 5 Asia

1995

0.551

30.5

#> 6 Asia

1997

0.502

27.9
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The h2o_rabies object is created by importing the rabies data frame to H2O with the

as.h2o() function. 

# Upload data to H2O

h2o_rabies <- as.h2o(rabies)

Set a response variable and predictors. 

response <- "dalys_rabies" 

predictors <- setdiff(names(rabies), response)

# Split data into training and testing sets

splits <- h2o.splitFrame(h2o_rabies, 

ratios = 0.8, 

seed = 1234)

train <- splits[[1]]

test <- splits[[2]]

Train three models:

• a linear regression model (family = “gaussian” or standard ordinary least squares (OLS)

linear regression)

• a GBM model (Gradient Boosting Machine)

• a random forest model

model_lm <- h2o.glm(x = predictors, 

y = response, 

training_frame = train, 

family = "gaussian")

model_gbm <- h2o.gbm(x = predictors, 

y = response, 

training_frame = train, 

validation_frame = test, 

ntrees = 1000, 

max_depth = 6, 

learn_rate = 0.01, 

seed = 1234)

model_rf <- h2o.randomForest(x = predictors, 

y = response, 

training_frame = train, 

ntrees = 100, 

max_depth = 20, 

seed = 1234)

Evaluate the models with the h2o.performance() function to evaluate the performance of

the models by calculating the metrics. 

perf_lm <- h2o.performance(model_lm, newdata = test)

perf_gbm <- h2o.performance(model_gbm, newdata = test)

perf_rf <- h2o.performance(model_rf, newdata = test)

Then extract the RMSE and MAE metrics:

h2o.rmse(<model>)
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h2o.mae(<model>)

#> 

model

rmse

mae

#> 1

lm 2.732294 2.2957256

#> 2

gbm 1.373425 0.9379672

#> 3

rf 1.399058 1.1779029

The best model is the one with the lowest RMSE and MAE values. In this case, the gbm

model is the best performing model among the three. 

To predict on the test data, we use the gbm model in the h2o.predict() function:

# Predict on test data

predictions <- h2o.predict(model_gbm, 

newdata = test)

Convert the predictions and actual values to data frames for plotting:

pred_df <- as.data.frame(predictions)

actual_df <- as.data.frame(test)

# Combine actual and predicted values

results_df <- data.frame(Actual = actual_df[, response], 

Predicted = pred_df[, 1])

The check for normality of the residuals is done with the qqnorm() and qqline() functions. 

The residuals are calculated as the difference between the actual and predicted values. 

# Calculate residuals

results_df$Residuals <- results_df$Actual - results_df$Predicted

# Plot Residuals vs Predicted

ggplot(results_df, 

aes(x = Predicted, y = Residuals)) +

geom_point(color = "navy", alpha = 0.5) +

geom_hline(yintercept = 0, 

color = "orange", linetype = "dashed") +

labs(title = "Residuals vs Predicted Values", 

x = "Predicted", y = "Residuals")

# Normality Test of the Residuals

qqnorm(results_df$Residuals)

qqline(results_df$Residuals, col = 2)

# Adding time to the results data frame

results_df$Time <- actual_df$year

# Plot Actual vs Predicted

p1 <- ggplot(results_df, 

aes(x = Actual, y = Predicted)) +

geom_point(color = "blue", alpha = 0.5) +

geom_abline(slope = 1, intercept = 0, 

color = "red", linetype = "dashed") +

labs(title = "Actual vs Predicted Values", 

x = "Actual", y = "Predicted")

# Plot Actual vs Predicted over time

p2 <- ggplot(results_df, aes(x = Time)) +
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Figure 8.5 H2O - GBM Model Results on DALYs due to Rabies; Residuals Distribution

and Normality Test

geom_line(aes(y = Actual, 

color = "Actual"), 

linetype = 1) +

geom_line(aes(y = Predicted, 

color = "Predicted"), 

linewidth = 1, 

linetype = "dashed") +

labs(title = "Actual vs Predicted Values Over Time", 

x = "Time", y = "Value") +

scale_color_manual(name = "Legend", 

values = c("Actual" = "navy", 

"Predicted" = "orange"))

In conclusion, the H2O GBM model performed well on the rabies dataset, with a low RMSE

and MAE. The residuals were normally distributed, indicating that the model’s predictions

were accurate. The actual vs predicted values plot shows a good fit, and the time series plot indicates that the model captured the trend in the data. 

h2o.shutdown(prompt = FALSE)

8.3.3

Example: General Infection with Keras

The following example shows how to use the {keras}, a package that facilitates the creation and training of neural networks and deep learning models. It provides a user-friendly interface to build models, whether they are simple neural networks or complex deep learning architectures, particularly useful for handling network connections. More detailed explanation of how a neural network works can be found in

In this case the SEIR model (susceptible, exposed, infected and recovered) is used, as seen in Chapter 6 chapter, to simulate the spread of a general infection in a population of 1000

individuals over 160 days. For some types of infections, the latency period is significant as it is the time during which infected individuals are not yet infectious themselves. During this period the individual is in compartment E (for exposed). 
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Figure 8.6 H2O - GBM Model Results on DALYs due to Rabies

Once the simulation of the infected population is done, the deep learning model acts by training social media data to predict the probability of infection based on social media activity. The model results are then used to adjust the SEIR parameters based on the

predicted infection status and re-run again on new data. 

install.packages("keras3")

keras3::install_keras(backend = "tensorflow")

library(keras3)

library(deSolve)

library(ggplot2)

To setup the SEIR compartments we start by defining the differential equations built by

considering the rates of change of each compartment ( S, E, I, R), the parameters ( β, σ, γ), the initial state value of the population ( N = 1000), and the length of time in days ( t = 160). 

Finally the ode() function is used to solve the differential equations and provide the output dataset. 

SEIR <- function(time, state, parameters) {

with(as.list(c(state, parameters)), {

# Differential equations

dS <- -beta * S * I / N

dE <- beta * S * I / N - sigma * E

dI <- sigma * E - gamma * I

dR <- gamma * I

# Return the rates of change

list(c(dS, dE, dI, dR))

})

}# Parameters

parameters <- c(beta = 0.3, # Infection rate

sigma = 0.2, # Incubation rate

gamma = 0.1 # Recovery rate

)

# Initial state values

N <- 1000

initial_state <- c(S = 999, E = 1, I = 0, R = 0)
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# Time points

times <- seq(0, 160, by = 1)

# Solve the model

output <- ode(y = initial_state, 

times = times, 

func = SEIR, 

parms = parameters

)

# Convert output to a data frame

output <- as.data.frame(output)

The social media data is simulated and consists of 1000 individuals ( n) over 10 ( p) days, with an infection vector, and 10 features ( xi), including social distancing adherence, mask usage (always, sometimes, never), hand hygiene frequency (times per day washing or sanitizing), 

work or study environment (remote versus in-person), participation in gatherings (number

of gatherings attended recently), and contact tracing status (exposure to a confirmed case), among others. All values are standardized obtained from a normal distribution. 

set.seed(123)

n <- 1000 # number of samples

p <- 10 # number of features

# Generate random features and labels

social_features <- matrix(rnorm(n * p), 

nrow = n, ncol = p)

infection_labels <- sample(0:1, n, replace = TRUE)

# Combine into a data frame

social_data <- data.frame(social_features)

social_data$infection <- infection_labels

social_data[1:4,c(1:3,11)]

#> 

X1

X2

X3 infection

#> 1 -0.56047565 -0.99579872 -0.5116037

0

#> 2 -0.23017749 -1.03995504 0.2369379

0

#> 3 1.55870831 -0.01798024 -0.5415892

0

#> 4 0.07050839 -0.13217513 1.2192276

1

Define the model by using the keras_model_sequential() function, and add layers with

the layer_dense() and layer_activation() functions. On each layer the model will apply

a transformation to the input data, and the activation function will introduce non-linearity to the model. 

Here we use a simple model with just two layers and a ReLU and a Sigmoid as activation functions. These functions have specific shapes that allow the model to learn complex

patterns in the data. Any time one layer is done the output is passed to the next layer. 

Although the layer_dropout() is not actually used in this application, it could be added

to the model as a layer that drops out output results under specified requirements. The

function is used to prevent overfitting by randomly setting a fraction of input units to zero during training. 

The model concludes with one more layer_dense() with activation used to finally activate

the output with a tailored function. In this case a sigmoid, but also a softmax function could be used. 

 Model Framework Application Examples

127

The decision of which activation function to use depends on the task type (classification

or regression), or due to performance considerations, such as the ReLU is computationally

simple and efficient. The sigmoid function is used in binary classification problems, where the output is a probability between 0 and 1. The softmax function is used in multi-class classification problems, where the output is a probability distribution over multiple classes. 

Sometimes, you try a few and see which works best through cross-validation or tuning. 

Given an input vector  x = [ x 1 , x 2 , ..., xp] of size  p, the model is composed of: 1. First Dense Layer Transformation:

 p

X

 z(1) =

 W (1) x

 i

 i +  b(1)

(8.1)

 i=1

where  W ϵR 1× p  are the weights,  b  is the bias, and  z  is the output. 

2. First Activation (ReLU):

 a(1) =  ReLu( z(1)) =  max(0 , z(1))

(8.2)

3. Second Dense Layer Transformation:

 p

X

 z(2) =

 W (2) x

 i

 i +  b(2)

(8.3)

 i=1

4. Output Activation (Sigmoid):

1

 a(2) =  Sigmoid( z(2)) =

(8.4)

1 +  e− z(2)

model <- keras_model_sequential(input_shape = c(p))

# simple model

model %>%

layer_dense(units = 1) %>%

layer_activation("relu") %>%

layer_dense(units = 1, activation = "sigmoid")

The model is then compiled using the compile() function which with the use of a loss

function optimises the results matching them against a minimum required value, and

specified metrics to reduce the error. 

 y = ˆ

 y +  ϵ

(8.5)

where  y  is the true value, ˆ

 y  is the predicted value, and  ϵ  is the error. 

The loss function is used to measure how well the model is performing, in this case a binary crossentropy loss function is used, to match the difference between original data and the model output, and apply model adjustments in case the difference is too high. The formula

for binary crossentropy is:
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 n

1 X

 L( y,  ˆ

 y) = −

 yi  log(ˆ

 yi) + (1 −  yi) log(1 − ˆ

 yi)

(8.6)

 n i=1

where  L  is the loss,  y  is the true value, ˆ

 y  is the predicted value, and  n  is the number of

samples. 

The optimizer_adam() function, used to update the model’s weights during training, in

Keras specifies the use of the Adaptive Moment Estimation (Adam) optimization algorithm for training a neural network. It updates the parameters of the neural network. 

Then finally, the model is evaluated on performance with the accuracy metric. 

# Compile the model

model %>% compile(loss = "binary_crossentropy", 

optimizer = optimizer_adam(), 

metrics = c("accuracy"))

Once the model is defined and compiled, the model is then trained using the fit() function with the training data, number of epochs, batch size, and validation split specified. The number of epochs is the number of times the model will go through the training data, the

batch size is the number of samples used in each training step, and the validation split is the fraction of the training data that will be used for validation. 

A particular object that is created in this type of models is the history object, which is used to store the training history of the model. This object contains information about the loss and accuracy of the model on the training and validation data during training. 

history <- model %>% fit(x = as.matrix(social_data[, 1:p]), 

y = social_data$infection, 

epochs = 30, 

batch_size = 128, 

validation_split = 0.2

)

The subsequent times the history object is created, the model is trained with half the

number of epochs and batch size. And this specifications can further be adjusted as needed. 

history2 <- model %>% fit(x = as.matrix(social_data[, 1:p]), 

y = social_data$infection, 

epochs = 30 / 2, 

batch_size = 128 / 2, 

validation_split = 0.2

)

Here are two attempts of the trained model with different parameters, the first with 30

epochs and a batch size of 128, and the second with 15 epochs and a batch size of 64. The

training history of both models is then plotted to compare their performance. 

The model is then used to predict the probability of infection based on the social media

data. The predictions are then converted to binary values using a threshold of 0.5, where

values greater than 0.5 are classified as 1 (infected) and values less than or equal to 0.5 are classified as 0 (not infected). 

new_social_data <- matrix(rnorm(p * 160), 

nrow = 160, ncol = p)

[image: Image 16]
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Figure 8.7 Model 1 and Model 2 Training History

predicted_infections <- model %>%

predict(new_social_data)

predicted_infections <- ifelse(predicted_infections > 0.5, 1, 0)

The adjustment is then done on the SEIR parameters based on predicted results. The beta

parameter is adjusted by multiplying it by the mean of the predicted infections. 

adjusted_parameters <- parameters

adjusted_parameters["beta"] <-

adjusted_parameters["beta"] * (1 + mean(predicted_infections))

The SEIR model is then re-run with the adjusted parameters to simulate the spread of the

infection in the population. 

adjusted_output <- ode(y = initial_state, 

times = times, 

func = SEIR, 

parms = adjusted_parameters

)

# Convert output to a data frame

adjusted_output <- as.data.frame(adjusted_output)

The output shows the impact of the social media adjustments on the spread of the infection. 

ggplot() +

geom_line(data = output, 

aes(x = time, y = I, 

color = "Original Infections")) +

geom_line(data = adjusted_output, 

aes(x = time, y = I, 

color = "Adjusted Infections")) +

labs(title = "SEIR Model - Social Media Adjustments", 

y = "Infectious Population", 

color = "Scenario") +
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scale_color_manual(values = c(

"Original Infections" = "navy", 

"Adjusted Infections" = "orange"))
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Figure 8.8 SEIR Model with and without Social Media Adjustments

This is just a simple example of how the {keras} package can be used to train a deep

learning model on social media data to predict the probability of infection. The model can be tested on using different layers, more specifications are found in the keras documentation. 

8.4

How to Find a New R-Package

Finding a new R-package can be a daunting task, given the vast number of packages available on CRAN and other repositories. A strategy to identify relevant packages for your specific needs would be to use some prebuilt packages which provide search functionalities. 

For example, the package_search() function from the {pkgsearch} package takes a text

string as input and uses basic text mining techniques to search all of CRAN. 

library(tidyverse) # for data manipulation

library(dlstats) # for package download stats

library(pkgsearch) # for searching packages

We search for packages related to  “excess of mortality”  and “infectious diseases”: excessPkg <- pkg_search(query = "excess of mortality", size = 200)

head(excessPkg$maintainer_name)

#> [1] "Rafael A. Irizarry" "Mathieu Fauvernier" "Juste Goungounga" 

#> [4] "Yohann Foucher" 

"Joonas Miettinen" 

"Rob Hyndman" 
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excessPkgShort <- excessPkg %>%

filter(maintainer_name != "ORPHANED", score > 100) %>%

select(score, package, downloads_last_month) %>%

arrange(desc(downloads_last_month))

head(excessPkgShort)

#> # A data frame: 5 x 3

#> 

score package

downloads_last_month

#> * <dbl> <chr> 

<int> 

#> 1 183. popEpi

1867

#> 2 682. survPen

1172

#> 3 274. RISCA

483

#> 4 1009. excessmort

317

#> 5 673. xhaz

180

excess_shortList <- excessPkgShort$package

excess_downloads <- cran_stats(excess_shortList)

ggplot(excess_downloads, aes(end, downloads, 

group = package, 

color = package)) +

geom_line() +

geom_point(aes(shape = package)) +

scale_y_continuous(trans = "log2")
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Figure 8.9 Excess of Mortality Packages Downloads
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Another example is the {cranly} package, which provides a simple interface to search for

packages on CRAN. The package provides comprehensive methods for cleaning up and

organising the information in the CRAN package database, making it easier to find relevant packages for your specific needs. 

library(cranly)

p_db <- tools::CRAN_package_db()

package_db <- clean_CRAN_db(p_db)

package_db %>%

filter(grepl("infectious diseases", 

description, 

ignore.case = TRUE)) %>%

select(package)

#> 

package

#> 1 EpiDynamics

#> 2

epitweetr

#> 3

pempi

#> 4

rts2

#> 5

seqDesign

#> 6 SMITIDstruct

#> 7

spaero

#> 8

ssrn

9

Predictive Modelling and Beyond

Learning Objectives

• Use model predictions to make informed decisions on new or unseen data

• Apply time series analysis to forecast the Socio-Demographic Index (SDI)

• Estimate Years Lived with Disability (YLDs) using mixed-effects models

In the dynamic landscape of public health, the ability to forecast and predict future trends is essential for effective decision-making and the implementation of timely interventions. 

This chapter provides an overview of predictive modelling, focusing on the challenges of applying predictions to new data, the use of time series analysis, and mixed models to anticipate the trajectory of infectious diseases and health metrics. By exploring the

underlying patterns and analysing historical data, we estimate the disease burden and

evaluate the impact of interventions on population health. We demonstrate how time series

analysis and mixed models can be tailored to address specific research questions, such

as predicting disease outbreaks, estimating disease burden, and assessing the impact of

interventions on population health. 

9.1

Predictions About the Future

The previous chapters provided an attempt at estimating future outcomes based on the

application of various type of statistical and machine learning techniques. Here we look at how to use these predictions on new data. 

When making predictions on new data, it is important to consider the generalisability of the model. A model that performs well on the training data may not necessarily generalise well to new, unseen data. To evaluate the performance of the model we used the cross-validation technique, but there are more such as hold-out validation, k-fold cross-validation, leave-one-out cross-validation, and bootstrapping. These methods help assess the model’s ability to make accurate predictions on data not used during training, providing a more reliable estimate of the model’s performance in real-world scenarios. 

Once the model has been trained and evaluated, it is used to make predictions on new data. 

This process involves applying the model to the new data to generate forecasts or estimates of the outcome of interest. For example, in the case of infectious diseases, predictive models can be used to forecast the trajectory of an outbreak, estimate the number of cases, or

evaluate the impact of interventions on disease transmission. By leveraging historical data and the insights gained from the model, we can effectively evaluate the model performance

and make informed decisions based on the predictions. 
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9.2

Example: Dengue Test Predictions for 2017-2021

Predictive modelling is a powerful tool for forecasting future trends. Here we test the Dengue’s model made with {mlr3} meta-package in Chapter 8. The model was trained on data from 1990 to 2016 and now tested for years 2017 to 2021. 

First we load the original data and name it old_data. 

library(tidyverse)

library(data.table)

old_data <- hmsidwR::infectious_diseases %>%

arrange(year)%>%

filter(cause_name == "Dengue", 

year<=2017, 

!location_name %in% c("Eswatini", "Lesotho")) %>%

drop_na() %>%

group_by(location_id) %>%

select(-location_name, -cause_name)

Then, we load Dengue data from 2017 to 2021 and name it new_data. 

new_data <- hmsidwR::infectious_diseases %>%

arrange(year)%>%

filter(cause_name == "Dengue", 

year>=2017, 

!location_name %in% c("Eswatini", "Lesotho")) %>%

drop_na() %>%

group_by(location_id) %>%

select(-location_name, -cause_name)

In the next step, we use the trained models from Chapter 8 to make predictions on the new data. The predictions are stored in new_pred_regr.cv_glmnet and

new_pred_regr.xgboost. The resampling results: rr1$learners and rr2$learners, con-

tain the trained models, in particular the first of 5 folds cross validation sample is used for the predictions. 

new_pred_regr.cv_glmnet <-

rr1$learners[[1]]$predict_newdata(new_data, 

task = rr1$task)

This object contains the predictions for the new data, and we can access the response data by:

new_pred_regr.cv_glmnet$`datà$response

With the support of data.table::as.data.table() we can see the data, and create a new

column ape to evaluate the Absolute Percentage Error (APE). Here are shown the first

6 rows of the data:

data.table::as.data.table(new_pred_regr.cv_glmnet) %>%

mutate(ape = round(abs(truth - response)/truth,3)*100) %>%

head()
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#> 

row_ids

truth response

ape

#> 

<int> 

<num> 

<num> <num> 

#> 1:

1 3.3219788 3.2615171

1.8

#> 2:

2 2.2361377 2.2855594

2.2

#> 3:

3 0.5021275 0.6403621 27.5

#> 4:

4 3.2737870 3.2193092

1.7

#> 5:

5 0.4893329 0.6327542 29.3

#> 6:

6 2.3045710 2.3715899

2.9

And calculate some metrics to evaluate the model performance on new data. We calculate

the Mean Absolute Percent Error (MAPE), the Mean Squared Error (MSE), 

and the Root Mean Squared Error (RMSE). The MAPE is a measure of prediction

accuracy, while the MSE and RMSE are measures of the average squared difference between

predicted and actual values. 

data.table::as.data.table(new_pred_regr.cv_glmnet) %>%

mutate(ape = round(abs(truth - response)/truth,3)*100) %>%

summarise(mape = mean(ape), 

mse = mean((truth - response)ˆ2), 

rmse = sqrt(mean((truth - response)ˆ2))) %>%

round(3)

#> 

mape mse rmse

#> 1 11.413 0.01 0.098

The model performs fairly well, with relatively low error:

• An average relative error of ~11% is typically considered acceptable in many forecasting or prediction tasks. 

• The small RMSE (0.098) and MSE (0.01) suggest that large errors are rare or small. 

Much more can be done to improve the models, such as hyperparameter tuning, feature engineering, and model ensembles, but this is a good point to start. We could also look at the confidence intervals of the predictions, to see how certain we are about the predictions, and so on. 

This is the result of the cv_glmnet application on new data:

regr.cv_glmnet_new <- as.data.table(new_pred_regr.cv_glmnet) %>%

mutate(learner = "regr.cv_glmnet") %>%

cbind(new_data)

regr.cv_glmnet_new %>%

ggplot(aes(x = year)) +

geom_line(data = old_data, aes(y = DALYs))+

geom_line(aes(y = DALYs), color = "brown") +

geom_line(aes(y = response), linetype = "dashed") +

facet_wrap(vars(location_id), 

labeller = as_labeller(c(`182` = "Malawi", 

`191` = "Zambia", 

`169` = "Central African Republic")), 

scales = "free_y") +

labs(title = "Dengue Predictions for 2017-2021: cv_glmnet", 

x = "Time (Year)")
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Dengue Predictions for 2017−2021: cv_glmnet
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Figure 9.1 Dengue Predictions for 2017-2021: cv_glmnet. The solid line shows the historical data, the brown line shows the new data, and the dashed line the predictions. 

The same steps are taken for the xgboost, and the results are shown below to compare the

two models. 

new_pred_regr.xgboost <-

rr2$learners[[1]]$predict_newdata(new_data, 

task = rr2$task)

regr.xgboost_new <- as.data.table(new_pred_regr.xgboost) %>%

mutate(learner = "regr.xgboost") %>%

cbind(new_data)

rbind(regr.cv_glmnet_new, 

regr.xgboost_new) %>%

mutate(ape = round(abs(truth - response)/truth, 3)*100) %>%

group_by(learner) %>%

summarise(mape = mean(ape), 

mse = mean((truth - response)ˆ2), 

rmse = sqrt(mean((truth - response)ˆ2)))

#> # A tibble: 2 x 4

#> 

learner

mape

mse

rmse

#> 

<chr> 

<dbl> 

<dbl> <dbl> 

#> 1 regr.cv_glmnet 11.4 0.00963 0.0981

#> 2 regr.xgboost

20.1 0.0567 0.238

The glmnet performs better than xgboost. The xgboost model may be overfitting or it is

just poorly tuned, given its higher error despite being a more complex model. 

regr.xgboost_new %>%

ggplot(aes(x = year)) +

geom_line(data = old_data, aes(y = DALYs))+
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geom_line(aes(y = DALYs), color = "brown") +

geom_line(aes(y = response), linetype = "dashed") +

facet_wrap(vars(location_id), 

labeller = as_labeller(c(`182` = "Malawi", 

`191` = "Zambia", 

`169` = "Central African Republic")), 

scales = "free_y") +

labs(title = "Dengue Predictions for 2017-2021: xgboost")

Dengue Predictions for 2017−2021: xgboost
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Figure 9.2 Dengue Predictions for 2017-2021: xgboost. The solid line shows the historical data, the brown line shows the new data, and the dashed line the predictions. 

In conclusion, predictive modelling is a valuable tool for forecasting future trends and making informed decisions based on historical data. By leveraging the insights gained from the

models, we can anticipate the trajectory of infectious diseases, estimate disease burden, and evaluate the impact of interventions on population health. The models can be further refined and optimised to improve their predictive performance and provide more accurate forecasts. 

By combining predictive modelling with time series analysis and mixed models, we can

gain a comprehensive understanding of the complex dynamics of public health and make

data-driven decisions to improve population health outcomes. 

9.3

Time Series Analysis

One important side of the analysis is to consider the evolution of the phenomenon in time. 

We can do this by using time as a factor in the model. Time series analysis serves as a tool for understanding and forecasting temporal patterns. Techniques such as AutoRegressive
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Integrated Moving Average (ARIMA) models offer a systematic approach to modelling

time-dependent data, capturing seasonal variations, trends, and irregularities to generate accurate forecasts. 

Mixed models, on the other side, provide a versatile framework for incorporating various sources of variability and correlation within the data. Also known as hierarchical models, multilevel models, or random effects models, are a type of statistical model that include both fixed effects and random effects. By combining fixed effects with random effects, mixed models accommodate complex data structures, such as hierarchical or longitudinal

data, while accounting for individual-level and group-level factors that may influence the outcome of interest. 

To analyse temporal data, where observations are collected at regular intervals over time, time series analysis allows for studying the patterns, trends, and dependencies present in the data to make forecasts or infer relationships. Time series data often exhibit inherent characteristics such as trend, seasonality, cyclic patterns, and irregular fluctuations, which can be explored using various methods such as decomposition, smoothing, and modelling. This analysis is widely used in fields like economics, finance, epidemiology, and environmental science

to understand and predict future trends, identify anomalies, and make informed decisions

based on historical patterns. 

Decomposition methods play a crucial role by pulling out the underlying structure

of temporal data. The components of a time series are trend, seasonality, and random

fluctuations. Understanding the trend allows for the identification of long-term changes

or shifts in the data, while detecting seasonal patterns helps uncover recurring fluctuations that may follow seasonal or cyclical patterns. 

By separating these components, through decomposition methods, it is possible to discover

the temporal dynamics within the data, facilitating more accurate forecasting and predictive modelling. Moreover, decomposing time series data can aid in anomaly detection, trend

analysis, and seasonal adjustment, making it a fundamental tool for interpreting complex

temporal phenomena. 

Modelling time series data often requires a combination of techniques to capture its complex nature. Mixed models, Splines, and ARIMA are powerful tools commonly used for this purpose. Splines provide a flexible way to capture nonlinear relationships and smooth out

the data, which is particularly useful for capturing trends or seasonal patterns. ARIMA

models, on the other hand, are best at capturing the autocorrelation structure present in

the data, including both short-term and long-term dependencies. 

Time series analysis can also be performed on estimated values produced by a machine

learning model. This involves using vectors of estimates, actual values (ground truth), 

and time (such as years). By incorporating these elements, the time series analysis can

help identify trends, seasonal patterns, and other temporal structures within the data. This approach enhances the robustness and accuracy of the predictions by combining the strengths of machine learning models with traditional time series techniques. 

9.4

Example: SDI Time Series Analysis

In this example, we provide a brief overview of the Socio-Demographic Index (SDI), its components, and how it can be predicted using time series analysis. From projecting the
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spread of emerging pathogens to assessing the long-term effects of public health policies, predictive modelling offers valuable insights into the future of global health. As discussed in Chapter 5, incorporating indicators such as the SDI can offer a more comprehensive understanding of how social and economic determinants influence health outcomes. 

The SDI is a composite index developed by the Global Burden of Disease (GBD) Study

to capture a country’s level of socio-demographic development, that combines various social and demographic factors to provide a comprehensive measure of a population’s health and

well-being. 

It is based on three components:

1. Total fertility rate (TFR) among women under age 25 (TFU25)

2. Average educational attainment in the population over age 15 (EDU15+)

3. Income per capita (lag-distributed)

It ranges from 0 to 1 but it is usually multiplied by 100 for a scale of 0 to 100. 

Standard Calculation of SDI

The SDI is calculated as the geometric mean of these three components:

√

 SDI = 3  T F U  25 ×  EDU  15 + × LDI

(9.1)

Each component TFU25, EDU15+, and LDI is normalised before taking the geometric mean

to ensure they are on a comparable scale. 

In particular, Total Fertility Rate (TFR) defined as the average number of children a woman would have over her lifetime given current age-specific fertility rates—is a key

demographic indicator with broad implications for national well-being. 

Standard Calculation of TFR

X

TFR =

(ASFR i × 5)

(9.2)

where ASFR i  represents the age-specific fertility rates for age group  i , and the sum is typically calculated over all childbearing age groups (often 5-year intervals from ages 15-49). 

The TFR formula is specific to calculating fertility rates, while the SDI formula incorporates a specific subset of the TFR (TFU25) along with education and income metrics to create a broader socio-demographic index. 

In general, the level of this index helps identify key drivers in the development of health outcomes. SDI can be used as a predictor in predictive models to estimate the burden of

diseases, mortality rates, and other health metrics. 

For example, the relationship between SDI and the incidence of a disease can be modelled

using a logistic regression model:



 p



log

=  β 0 +  β 1 × SDI +  β 2 ×  X 2 + · · · +  βk ×  Xk (9.3)

1 −  p
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Where,  p  is the probability of the incidence of the disease, log

 p

is the log-odds (logit)

1− p

of the disease incidence,  β 0 is the intercept term,  β 1 , β 2 , . . . , βk  are the coefficients for the predictor variables, and  X 2 , . . . , Xk  are other potential predictor variables that might influence the disease incidence. 

To convert the log-odds back to the probability of disease incidence given the value of SDI:

1

 p =

(9.4)

1 +  e−( β 0+ β 1×SDI)

9.4.1

SDI Data and Packages

In this example we use the SDI values from 1990 to 2019, for 3 locations plus the Global

region and evaluate the difference in SDI average across the time. 

We start by loading the data and required libraries. We use the {hmsidwR} package, which

contains the SDI data from 1990 to 2019, the data is available in the sdi90_19 object, and the {fpp3}1 package for time series analysis mentioned in Section 8.2.3. We also show how to use the |> native pipe operator to filter and manipulate the data, instead of the %>% pipe operator from the {dplyr} package. 

library(tidyverse)

library(hmsidwR)

library(fpp3)

hmsidwR::sdi90_19 |> head()

#> # A tibble: 6 x 3

#> 

location year value

#> 

<chr> 

<dbl> <dbl> 

#> 1 Global

1990 0.511

#> 2 Global

1991 0.516

#> 3 Global

1992 0.521

#> 4 Global

1993 0.525

#> 5 Global

1994 0.529

#> 6 Global

1995 0.534

sdi90_19 |> 

filter(location %in% c("Global", "Italy", 

"France", "Germany")) |> 

ggplot(aes(x = year, y = value, 

linetype = location)) +

geomtextpath::geom_textline(aes(label = location), 

hjust = 0, vjust = 0) +

labs(title = "Social Demographic Index (SDI) from 1990 to 2019")+

theme(legend.position = "none")

1 Forecasting. 
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Figure 9.3 Social Demographic Index (SDI) from 1990 to 2019

Grouping the data by location and calculating the average SDI, we can note that the highest average value is found in Germany, followed by France, Italy, and the Global average. 

sdi90_19 |> 

group_by(location) |> 

reframe(avg = round(mean(value), 3)) |> 

arrange(desc(avg)) |> 

filter(location %in% c("Global", "Italy", "France", "Germany"))

#> # A tibble: 4 x 2

#> 

location

avg

#> 

<chr> 

<dbl> 

#> 1 Germany 0.863

#> 2 France

0.79

#> 3 Italy

0.763

#> 4 Global

0.58

Focusing on France as the location of interest, we analyse the time series by decomposing the series into its components and evaluating the autocorrelation function to assess underlying temporal patterns, and apply an ARIMA(1,0,0) model. 

sdi_fr <- sdi90_19 |> 

filter(location == "France")

sdi_fr |> 

head() |> 

str()

#> tibble [6 x 3] (S3: tbl_df/tbl/data.frame)

#> $ location: chr [1:6] "France" "France" "France" "France" ... 
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#> $ year

: num [1:6] 1990 1991 1992 1993 1994 ... 

#> $ value

: num [1:6] 0.738 0.743 0.75 0.755 0.759 0.763

The {fpp3} package is a meta-package and contains other packages such as: tsibble, 

tsibbledata, feasts, fable, and fabletools. 

The {tsibble} package is used to set the data ready to be used inside the model. The

tsibble::as_tsibble() function coerce our data to be a tsibble object:

library(tsibble)

sdi_fr_ts <- tsibble::as_tsibble(sdi_fr, index = year)

sdi_fr_ts |> head()

#> # A tsibble: 6 x 3 [1Y]

#> 

location year value

#> 

<chr> 

<dbl> <dbl> 

#> 1 France

1990 0.738

#> 2 France

1991 0.743

#> 3 France

1992 0.75

#> 4 France

1993 0.755

#> 5 France

1994 0.759

#> 6 France

1995 0.763

sdi_fr_ts |> autoplot()
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Figure 9.4 Social Demographic Index (SDI) in France

Then, the fabletools::model() function is used to train and estimate models. In this case

we use the STL() (Multiple seasonal decomposition by Loess) function, which decomposes a

time series into seasonal, trend and remainder components. 

dcmp <- sdi_fr_ts |> 

model(stl = STL(value))
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components(dcmp) |> head()

#> # A dable: 6 x 6 [1Y]

#> # Key:

.model [1]

#> # :

value = trend + remainder

#> 

.model year value trend remainder season_adjust

#> 

<chr> <dbl> <dbl> <dbl> 

<dbl> 

<dbl> 

#> 1 stl

1990 0.738 0.738 -0.000400

0.738

#> 2 stl

1991 0.743 0.744 -0.000560

0.743

#> 3 stl

1992 0.75 0.749 0.00128

0.75

#> 4 stl

1993 0.755 0.754 0.00136

0.755

#> 5 stl

1994 0.759 0.758 0.000800

0.759

#> 6 stl

1995 0.763 0.762 0.000680

0.763

There are three main types of time series patterns: trend, seasonality, and cycles. When

a time series is decomposed into components, the trend and cycle are typically combined

into a single trend-cycle component, often referred to simply as the trend for the sake of simplicity. As a result, a time series can be understood as comprising three components: a trend-cycle component, a seasonal component, and a remainder component, which captures

any other variations in the series. 2

The components of a time series can be additive or multiplicative, depending on the nature of the data:

 yt =  St +  Tt +  Rt

(9.5)

 yt =  St ∗  Tt ∗  Rt

(9.6)

 log( yt) =  log( St) +  log( Tt) +  log( Rt) (9.7)

where:

•  yt  is the observed value of the time series at time t, 

•  St  represents the seasonal component, capturing regular fluctuations that repeat over fixed periods (e.g., annually or quarterly), 

•  Tt  is the trend component, reflecting the long-term progression or direction in the data (such as gradual increases or declines), 

•  Rt  denotes the remainder or residual component, accounting for short-term noise or random variation not explained by seasonality or trend. 

The equation Equation 9.5 assumes that the components combine additively and are

independent of one another, which is suitable when the seasonal variation remains relatively constant over time. The equation Equation 9.6 is used when seasonal or residual effects

vary proportionally with the trend (e.g., higher variability during periods of higher values). 

Finally, The equation Equation 9.7 represents a log-transformed multiplicative model, which stabilizes variance and allows for additive decomposition in the logarithmic scale—often

preferred when dealing with exponential growth or heteroscedasticity. 

The autoplot() function is from the {fabletools} package and allows for the visualization

of the components. In particular, the remainder component shown in the bottom panel is what is left over when the seasonal and trend-cycle components have been subtracted from

the data. 

2 Forecasting. 
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components(dcmp) |> fabletools ::autoplot()

components(dcmp) |> 

as_tsibble() |> 

autoplot(value) +

geom_line(aes(y = trend), 

linetype="dashed")+

labs(title = "Trend line of SDI in France")

STL decomposition
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Figure 9.5 Components of SDI in France

9.4.2

Autocorrelation and Stationarity

Autocorrelation is very important in time series analysis as it explains whether past values influence future values. If a variable today is similar to what it was yesterday or last month, we say it has autocorrelation at lag 1 or lag  k. 

P T

( yt − ¯

 y)( yt− k − ¯

 y)

 r

 t= k+1

 k =

(9.8)

P T

( y

 t=1

 t − ¯

 y)2

where:

•  rk is the autocorrelation coefficient at lag  k, 

•  yt  is the value of the time series at time  t, 

• ¯

 y  is the mean of the series, 

•  T  is the total number of time points. 

Time series that exhibit no autocorrelation, or no predictable relationship between observations at different time points, are referred to as white noise series, where each value is essentially a random draw from the same distribution, with constant mean and

variance, with no pattern recognition. 

On the contrary, the presence of autocorrelation, or statistically significant correlations between current and past values, indicates the absence of white noise. This means the time series has temporal structure, which can be modelled for prediction. For example, positive autocorrelation suggests that high (or low) values tend to be followed by similarly high (or low) values, while negative autocorrelation implies an alternating pattern. 
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 >  0 positive autocorrelation (e.g., trends)





 rk =

 <  0

negative autocorrelation (e.g., alternating pattern)

(9.9)



≈ 0

no autocorrelation (white noise)

To check for autocorrelation in our data, we can use the ACF() function from the {feasts}

package:

sdi_fr_ts |> 

ACF(value) |> 

autoplot()

0.5

acf

0.0

5

10

lag [1Y]

Figure 9.6 Autocorrelation Function of SDI in France. The blue dashed lines represent the 95% confidence interval for the null hypothesis: There is no autocorrelation at lag

k. 

The output clearly shows that our data displays autocorrelation, this validates the use of time series models such as ARIMA, which rely on autocorrelated structure. 

To assess whether the series is stationary, we use a specific test, the KPSS test3 or Augmented Dickey-Fuller test. If this test, generally defined as unit root test, indicates non-stationarity, we can apply a first-order difference to remove the trend and convert it into a stationary series. 

To apply the KPSS test we use the features() function from {fabletools} package and

specify the feature to be: unitroot_kpss. The {urca} might be needed for this task; if

needed install.packages("urca"). 

sdi_fr_ts |> 

features(value, 

3“KPSS Test,” October 12, 2023, https://en.wikipedia.org/w/index.php?title=KPSS_test&oldid=11797

51435. 
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features = unitroot_kpss)

#> # A tibble: 1 x 2

#> 

kpss_stat kpss_pvalue

#> 

<dbl> 

<dbl> 

#> 1

1.09

0.01

A  p −  value = 0 .  01, which is less than 0.05, indicates strong evidence against the null hypothesis of stationarity. 

In summary, the presence of autocorrelation combined with the non-stationarity result from the KPSS test suggests that the series has a trend or random walk component, and is

not stationary. 

A fundamental concept in time series analysis is stationarity. A time series is said to be stationary when its statistical properties do not change over time. This means the

mean, variance, and autocorrelation structure remain constant throughout the series. 

On the other hand, a non-stationary time series exhibits properties that change

over time—for example, a long-term trend, changing variability, or evolving seasonal

patterns. 

In this case we apply the first-order differencing (differences = 1) to the data before applying models that assume stationarity, such as ARIMA. 

 y′ =  y

 t

 t −  yt−1

(9.10)

Differencing transforms the series by subtracting each observation from its previous value, thereby removing trends and stabilizing the mean over time. This transformation often

makes the mean and variance more stable, and is essential because non-stationary time

series can lead to unreliable or misleading model results. 

# Apply first-order differencing to remove trend

sdi_fr_diff <- sdi_fr_ts |> 

mutate(diff_value = difference(value, differences = 1))

sdi_fr_diff |> head()

#> # A tsibble: 6 x 4 [1Y]

#> 

location year value diff_value

#> 

<chr> 

<dbl> <dbl> 

<dbl> 

#> 1 France

1990 0.738

NA

#> 2 France

1991 0.743

0.00500

#> 3 France

1992 0.75

0.00700

#> 4 France

1993 0.755

0.00500

#> 5 France

1994 0.759

0.00400

#> 6 France

1995 0.763

0.00400

sdi_fr_diff |> 

ggplot(aes(x = year, y = diff_value)) +

geom_line() +

labs(title = "First-order Differenced SDI (France)", 

x = "Year", y = "Differenced SDI")
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Figure 9.7 First-order Differenced SDI (France)

9.4.3

Partial Autocorrelations

The Partial Autocorrelation Function (PACF) removes the effects of intermediate lags. 

It is a measures of the direct relationship between a time series and its own lagged values. 

The PACF allows for a more specific identification of how many lags to include in the  AR

part of the ARIMA model. The number of autoregressive ( AR) terms ( p) is determined by the number of significant lags in the PACF plot. 

sdi_fr_ts |> 

PACF(value) |> 

autoplot()

sdi_fr_ts |> 

gg_tsdisplay(y = value, plot_type = "partial")
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Figure 9.8 Partial Autocorrelations of SDI in France
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In this plot we can see that the PACF shows a significant spike at lag 1, indicating that the first lag is important for predicting the current value. The subsequent lags are not significant, suggesting that only the first lag should be included in the ARIMA model. 

9.4.4

ARIMA model

The ARIMA model forecasts time series values based on past observations. 

In time series analysis, the terms forecast and predict are sometimes used interchange-

ably, but there’s a subtle distinction:

• Forecast typically refers to estimating future values based on a model trained on

historical data. 

• Predict can refer more generally to estimating outcomes, including within-sample

estimates (e.g., fitting values during model training). 

Auto-ARIMA model is used to establish the best fit by combining autoregressive, moving average, and differencing components. However, careful analysis of stationarity, autocorrelations, and the residuals is required to fine-tune the model and improve forecasting

accuracy. 

The ARIMA(value) function automatically selects the best p, d, and q values. 

In general, the ARIMA model is defined as:

ARIMA( p, d, q) = AR( p) + I( d) + MA( q)

(9.11)

where:

• AR( p) is the autoregressive part of the model, which uses past values of the time series to predict future values, 

• I( d) is the integrated part of the model, which represents the differencing of the time series to make it stationary, 

• MA( q) is the moving average part of the model, which uses past forecast errors to predict future values. 

The ARIMA() function from the {fable} package automatically selects the appropriate degree of differencing needed to achieve stationarity and fits the ARIMA model accordingly. The

report() function provides a summary of the fitted model, including parameter estimates

and diagnostic statistics. 

fit <- sdi_fr_ts |> 

model(ARIMA(value))

fit |> report()

#> Series: value

#> Model: ARIMA(1,1,0) w/ drift

#> 

#> Coefficients:

#> 

ar1 constant

#> 

0.5971

0.0013

#> s.e. 0.1562

0.0002

#> 
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#> sigmaˆ2 estimated as 8.634e-07: log likelihood=162.46

#> AIC=-318.92

AICc=-317.96

BIC=-314.82

The model suggests that the differenced series follows a stable upward trend, with moderate autocorrelation and low residual variance, implying a strong and reliable forecast model for the observed data. 

In particular, selected ARIMA(1,1,0) indicates:

• One autoregressive ( AR) term ( ar 1 = 0 .  5971): There is moderate persistence; the differenced value at time  t  is positively correlated with the previous time point

• First-order differencing ( d = 1) was applied to achieve stationarity

• No moving average ( M A) term ( q = 0)

• The model includes a drift term (constant = 0 .  0013), which accounts for a consistent upward trend in the differenced series. 

• Standard errors (s.e.) for both coefficients are small, suggesting estimates are fairly precise. 

•  σ 2 = 8 .  634 e − 07: Very low variance of the residuals, indicating a good fit. 

• Log-likelihood = 162 .  46: Used for model comparison. 

• AIC = −318 .  92, AICc = −317 .  96, BIC = −314 .  82: All are low values, which generally indicate a better-fitting model when compared to alternatives. 

9.4.5

ARIMA Forecast

The forecast() function from the {fable} package is used to generate forecasts based

on the fitted ARIMA model. The h parameter specifies the forecast horizon, which is the

number of future time points to predict. In this case we used  h = 10 for the next 10 years. 

fit |> 

forecast(h = 10) |> 

ggplot(aes(x = year, y = .mean)) +

geom_line(data = sdi_fr_ts, 

aes(y = value)) +

geom_line(color = "purple", linetype = "dashed")+

labs(title = "Forecast of SDI in France")

9.4.6

Model Ensembles

In time series analysis, an individual model trained on historical data to generate forecasts is known as a single learner, such as a single ARIMA model. However, a single learner may not be sufficient to capture the full complexity of the data, especially when dealing

with intricate patterns, nonlinear relationships, or multiple influencing factors, leading to poor generalisation on unseen data. 

Single approaches often fail to account for crucial factors like external shocks, structural changes, or nonlinear relationships, making them insufficient for capturing all aspects of the data, including trend and seasonality. 

This is where ensemble learning comes into play. 

By aggregating the predictions from multiple single learners, we can form a model ensemble, to improve predictive performance and generate more robust forecasts. 

Ensemble learning is a machine learning technique that leverages the diversity of individual models to make more accurate predictions and reduce overfitting. Ensemble methods can
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Figure 9.9 Forecast of SDI in France

reduce the variance and bias of the predictions, examples are techniques such as bagging, 

boosting, and stacking that leverage the diversity of individual models to create a stronger collective model that outperforms its components. 

These methods are widely used in machine learning and predictive modelling to enhance the

predictive power of the model and achieve better generalisation performance on unseen data. 

In this example, we will use the ARIMA() function to fit multiple ARIMA models with

different orders and compare their performance using the glance() function from the

{broom} package. 

caf_fit <- sdi_fr_ts |> 

model(

arima210 = ARIMA(value ~ pdq(2, 1, 0)), 

arima013 = ARIMA(value ~ pdq(0, 1, 3)), 

stepwise = ARIMA(value), 

search = ARIMA(value, stepwise = FALSE)

)

caf_fit |> 

pivot_longer(cols = everything(), 

names_to = "Model name", 

values_to = "Orders")

#> # A mable: 4 x 2

#> # Key:

Model name [4]

#> 

`Model nameÒrders

#> 

<chr> 

<model> 

#> 1 arima210

<ARIMA(2,1,0) w/ drift> 

#> 2 arima013

<ARIMA(0,1,3) w/ drift> 

#> 3 stepwise

<ARIMA(1,1,0) w/ drift> 

#> 4 search

<ARIMA(1,1,0) w/ drift> 
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glance(caf_fit) |> 

arrange(AICc) |> 

select(.model:BIC)

#> # A tibble: 4 x 6

#> 

.model

sigma2 log_lik

AIC AICc

BIC

#> 

<chr> 

<dbl> 

<dbl> <dbl> <dbl> <dbl> 

#> 1 stepwise 0.000000863

162. -319. -318. -315. 

#> 2 search

0.000000863

162. -319. -318. -315. 

#> 3 arima210 0.000000896

162. -317. -315. -311. 

#> 4 arima013 0.000000950

162. -314. -312. -308. 

The results of the model ensemble analysis reveal that both the stepwise and search ARIMA models outperform the others in terms of model fit, as indicated by their lower

AIC and AICc values. These two models exhibit identical log-likelihood values and minimal

residual variance, suggesting that they provide the most accurate forecasts while maintaining model simplicity. In contrast, the arima210 and arima013 models show slightly higher AIC and AICc values, indicating that they are less efficient at capturing the underlying

patterns in the data. 

Based on these findings, we select the search model with ARIMA(1,1,0), and visualize the residuals of the fitted model. 

caf_fit |> 

select(search) |> 

gg_tsresiduals()

caf_fit |> 

forecast(h = 5) |> 

filter(.model == "search") |> 

ggplot(aes(x = year, y = .mean)) +

geom_line(data = sdi_fr_ts, 

aes(y = value)) +

geom_line(color = "purple", linetype = "dashed")
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Figure 9.10 Residuals of ARIMA Models
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In conclusion, the analysis of the Socio-Demographic Index (SDI) in France from

1990 to 2019 demonstrates the effectiveness of time series analysis and mixed models in

understanding and forecasting complex health-related data. By employing techniques such

as decomposition, autocorrelation analysis, and ARIMA modelling, we can gain valuable

insights into the underlying patterns and trends in the data. The use of ensemble learning further enhances the predictive performance of the models, allowing for more accurate

forecasts and better-informed decision-making in public health. However, additional model

validation and diagnostic checks, such as residual analysis and cross-validation, should

be conducted to ensure that these models generalize well to unseen data and are not

overfitting. 

9.5

Mixed Models

Mixed models are a powerful statistical tool for analysing data with a hierarchical or nested structure, where observations are grouped within higher-level units. By incorporating both fixed and random effects, mixed models can account for the variability within and between groups, providing a flexible framework for modelling complex data structures. Mixed models are widely used in various fields, and particularly useful in fields like healthcare and infectious diseases where data might be collected across different subjects or time

points. 

In the following section, we will discuss the application of mixed models in estimating the Years Lived with Disability (YLDs) and the different ratios used in forecasting non-fatal disease burden. 

9.5.1

Mixed-Effects Models in Estimating YLDs

Mixed-effects models are particularly useful in estimating YLDs because they can handle

data that is hierarchically structured data. 

Fixed Effects: These are the primary effects of interest and include variables such as age, gender, year, and specific interventions or treatments. 

Random Effects: These capture the variability that is not explained by the fixed effects, such as differences between patients, clinics, or regions. 

By using mixed-effects models, we can better account for the within-subject and between-

subject variability, providing more accurate estimates of YLDs. 

9.6

Example: YLDs due to Tuberculosis - Mixed-Effects Models

In this example, we will demonstrate how estimated Years Lived with Disability (YLDs)

due to Tuberculosis can be used to predict future values using mixed-effects models. 
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We use the {lme4} package to fit mixed-effects models, enabling us to account for both fixed effects (e.g., year, prevalence) and random effects (e.g., variability across countries). 

This approach is particularly valuable for analysing grouped or repeated measures data, 

such as longitudinal health data, where observations are not independent over time or across different levels of analysis. 

Data are from the g7_hmetrics dataset in the {hmsidwR} package, which contains rates

(per 100,000 population) for YLDs, deaths, incidence, and prevalence of Respiratory infections and tuberculosis in 2010 and 2019 for selected countries. 

library(lme4)

library(tidyverse)

tuberculosis <- hmsidwR::g7_hmetrics %>%

filter(measure %in% c("Prevalence", 

"YLDs"), 

str_detect(cause, "Tuberculosis"), 

!year == 2021, 

!location == "Global", 

metric == "Rate", 

sex == "both") %>% # per 100,000 population

select(year, location, measure, val) %>%

pivot_wider(names_from = measure, 

values_from = val)

tuberculosis %>% head()

#> # A tibble: 6 x 4

#> 

year location YLDs Prevalence

#> 

<dbl> <chr> 

<dbl> 

<dbl> 

#> 1 2010 Japan

3.07

17720. 

#> 2 2019 Japan

2.03

14215. 

#> 3 2010 Germany

1.79

7758. 

#> 4 2019 Germany

1.55

6706. 

#> 5 2010 UK

2.67

8670. 

#> 6 2019 UK

1.84

7534. 

We can see how the level of YLDs due to tuberculosis has decreased in all selected countries over the 10-year period. 

library(ggpattern)

ggplot(tuberculosis, 

aes(x = fct_reorder(location, YLDs), 

y = YLDs, group = year)) +

ggpattern::geom_col_pattern(aes(pattern = factor(year)), 

position = "dodge", 

fill= 'white', 

colour= 'black') +

labs(title="YLDs for Tuberculosis by Location and Year", 

x = "Location", pattern = "Year")
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Figure 9.11 YLDs for Tuberculosis by Location and Year

The disability weight for tuberculosis in 2019 is set at 0.333 for the Global region. The

duration, derived from the GBD 2021 and based on a systematic review, was adjusted for

treated and untreated cases: it was estimated to be 3 years for untreated cases and 6 months for treated cases.4

The formula  Y LDs P revalence +  year + (1| location) specifies a linear mixed-effects model for predicting Years Lived with Disability (YLDs) due to tuberculosis. The model includes

fixed effects for prevalence and year, as well as a random intercept for location ((1| location)). 

This allows for the estimation of YLDs while accounting for variability across different

locations. 

# Define the formula

formula <- YLDs ~ Prevalence + year + (1 | location)

# Fit the mixed-effects model

model <- lmer(formula, data = tuberculosis)

model

#> Linear mixed model fit by REML ['lmerMod']

#> Formula: YLDs ~ Prevalence + year + (1 | location)

#> 

Data: tuberculosis

#> REML criterion at convergence: 34.6921

#> Random effects:

#> Groups

Name

Std.Dev. 

#> location (Intercept) 0.6202

#> Residual

0.1773

#> Number of obs: 12, groups: location, 6

#> Fixed Effects:

4Edine W. Tiemersma et al., “Natural History of Tuberculosis: Duration and Fatality of Untreated Pulmonary Tuberculosis in HIV Negative Patients: A Systematic Review,”  PLOS ONE  6, no. 4 (April 4, 2011): e17601, doi:10.1371/journal.pone.0017601. 
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#> (Intercept)

Prevalence

year

#> 67.7989019

0.0001619

-0.0336388

#> fit warnings:

#> Some predictor variables are on very different scales: consider rescaling

# Extract fixed effects

fixed_effects <- fixef(model)

fixed_effects

#> 

(Intercept)

Prevalence

year

#> 67.7989018583 0.0001619458 -0.0336387726

Considering only the fixed effects the model function becomes:

ˆ

 Y LDs = 67 .  79889 + 0 .  00016 ∗  P revalence − 0 .  03364 ∗  year (9.12)

In particular, a prevalence coefficient of 0.00016 means that for each unit increase in

prevalence, YLDs increase by 0.00016, while a year coefficient of -0.03364 means that for

each unit increase in year, YLDs decrease by 0.03364. 

Looking at the random effects, we can see how the model accounts for the variability across different locations. 

# Extract random effects

random_effects <- ranef(model)

random_effects

#> $location

#> 

(Intercept)

#> Canada -0.40736806

#> Germany 0.44667833

#> Italy

-0.09317570

#> Japan

-0.06401586

#> UK

0.87190488

#> US

-0.75402360

#> 

#> with conditional variances for "location" 

The model function with random_effects for each location becomes:

ˆ

 Y LDs = 67 .  79889

+0 .  00016 · Prevalence

(9.13)

−0 .  03365 · year

+ random effect for each location

Then, predictions are made for the YLDs due to tuberculosis using the mixed-effects model

on observed data and new data. The predictions are compared with the actual YLDs to

evaluate the model’s performance. 

# Predict YLDs for observed data

predictions <- predict(model, 

tuberculosis, 
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allow.new.levels = TRUE)

tuberculosis$predicted_YLD <- predictions

Predicted versus Estimated YLDs due to Tuberculosis are shown in the following plot:

ggplot(tuberculosis %>%

filter(!location=="Global"), 

aes(x = YLDs, y = predicted_YLD, 

group = location)) +

geom_point(aes(shape = factor(location))) +

geom_abline() +

facet_wrap(~ year) +

labs(title = "YLDs due to Tuberculosis", 

subtile = "Predicted vs Estimated", 

x = "YLDs", 

y = "Predicted YLD", 

shape = "Location")
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Figure 9.12 Predicted vs Estimated YLDs due to Tuberculosis

The plot shows a good fit between the predicted and estimated YLDs, indicating that the

model is able to capture the underlying trends in the data. The error is calculated as the absolute difference between the predicted and estimated YLDs, divided by the estimated

YLDs, multiplied by 100 to express it as a percentage. 

tuberculosis %>%

mutate(ape = abs(predicted_YLD - YLDs) / YLDs * 100) %>%

summarise(mape = mean(ape, na.rm = TRUE))

#> # A tibble: 1 x 1

#> 

mape

#> 

<dbl> 

#> 1 6.21
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The mean absolute percent error (MAPE) is 6.2%, indicating that the model is able

to predict YLDs with a reasonable level of accuracy. 

The residual sum of squared error (RSE) is also calculated as the square root of the sum of squared residuals divided by the number of observations minus the number of parameters

in the model. The RSE is a measure of how well the model fits the data, and a lower value

indicates a better fit. 

tuberculosis %>%

mutate(residuals = predicted_YLD - YLDs) %>%

summarise(

rse = sqrt(sum(residualsˆ2) / (nrow(tuberculosis) - length(fixef(model)))))

#> # A tibble: 1 x 1

#> 

rse

#> 

<dbl> 

#> 1 0.126

A RSE of 0.1262147 indicates that the model is able to predict YLDs with a reasonable level of accuracy. 

Let’s use the data for 2021 which we have left aside, and fit the model. 

tuberculosis_2021 <- hmsidwR::g7_hmetrics %>%

filter(measure %in% c("Prevalence", 

"YLDs"), 

str_detect(cause, "Tuberculosis"), 

year == 2021, 

!location == "Global", 

metric == "Rate", 

sex == "both") %>% # per 100,000 population

select(year, location, measure, val) %>%

pivot_wider(names_from = measure, 

values_from = val)

tuberculosis_2021

#> # A tibble: 6 x 4

#> 

year location YLDs Prevalence

#> 

<dbl> <chr> 

<dbl> 

<dbl> 

#> 1 2021 Japan

1.98

13567. 

#> 2 2021 Germany 1.54

6507. 

#> 3 2021 UK

1.53

7308. 

#> 4 2021 US

0.925

11313. 

#> 5 2021 Italy

1.38

9061. 

#> 6 2021 Canada

1.02

8767. 

# Predict YLDs for new data

predictions_2021 <- predict(model, 

tuberculosis_2021, 

allow.new.levels = TRUE)

Check how the model performed on the 2021 data. The predictions are compared with the

actual YLDs to evaluate the model’s performance. 
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tuberculosis_2021$predicted_YLD <- predictions_2021

tuberculosis_2021 <- tuberculosis_2021 %>%

select(-Prevalence) %>%

mutate(residuals = predicted_YLD - YLDs)

tuberculosis_2021

#> # A tibble: 6 x 5

#> 

year location YLDs predicted_YLD residuals

#> 

<dbl> <chr> 

<dbl> 

<dbl> 

<dbl> 

#> 1 2021 Japan

1.98

1.95

-0.0283

#> 2 2021 Germany 1.54

1.32

-0.229

#> 3 2021 UK

1.53

1.87

0.344

#> 4 2021 US

0.925

0.893

-0.0316

#> 5 2021 Italy

1.38

1.19

-0.190

#> 6 2021 Canada

1.02

0.827

-0.193
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Figure 9.13 YLDs due to Tuberculosis - Mixed-Model Results. Solid lines show the original values, the dashed lines show the original values for 2021, and the dots shaped are by location the predicted values. 

The plot shows the estimated YLDs due to tuberculosis for 2010, 2019, and 2021. The dashed lines represent the estimated YLDs for 2010 and 2019, while the solid lines represent the

predicted YLDs for 2021. The points represent the actual YLDs for 2021. The model is able

to predict YLDs with a reasonable level of accuracy, as indicated by the close fit between the predicted and actual values. 
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9.7

Summary

Predictive modelling is a valuable tool for forecasting future trends and making informed

decisions based on historical data. By leveraging the insights gained from the models, we

can anticipate the trajectory of infectious diseases, estimate disease burden, and evaluate the impact of interventions on population health. The models can be further refined and

optimised to improve their predictive performance and provide more accurate forecasts. 

By combining predictive modelling with time series analysis and mixed models, we can

gain a comprehensive understanding of the complex dynamics of public health and make

data-driven decisions to improve population health outcomes. 
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Data Visualization
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Introduction to Data Visualisation

Data visualisation is a powerful tool for transforming complex datasets into clear and

insightful graphical representations. It plays a central role in Exploratory Data Analysis (EDA), helping to reveal important patterns, trends, and hidden insights that are often obscured in raw data. The information contained within data highlights important patterns

and trends, and uncover hidden insights that might not be apparent from raw data alone. In the context of health metrics and infectious diseases, data visualisation plays a critical role in tracking disease outbreaks, understanding health trends, and communicating findings to

policymakers and the public. 

We have already seen how to create various types of plots using the {ggplot2} package. In

this chapter, we will discuss the history and evolution of data visualisation, delve deeper into the topic, introducing the concept of the Grammar of Graphics, exploring techniques for customising plots, adding annotations, labels, and themes, and creating interactive

visualisations. 

10.1

History of Data Visualisation

The history of data visualisation spans centuries. The roots of data visualisation can be

traced back to ancient times with rudimentary visual representations, but its modern form

began to take shape with the growth of statistics and graphical methods in the 17th and 18th centuries. One notable milestone was the publication of William Playfair’s “Commercial and Political Atlas” 1 in 1786, which introduced innovative graphical techniques like the line graph, bar chart, and pie chart. 

Throughout the 19th and 20th centuries, pioneers such as Florence Nightingale (1820-1910), John Snow (1813-1858), and Jacques Bertin further advanced the field, using visualisations to communicate complex data and uncover insights with his Semiology of

Graphics - 1967. 

Data visualisation was largely done manually or with the help of basic plotting tools. One example are the hand-drown visualisations made by W.E.B. Du Bois (1868-1963) in the early 20th century to illustrate the social and economic conditions of African Americans

in the United States. These visualisations are now considered iconic examples of data

visualisation and have been widely studied and digitally reproduced. 

The Digital Revolution

The digital revolution of the late 20th century, with the advent of powerful computing technologies, enabled the creation of interactive and dynamic visualisations. Early programming

1“William Playfair,” March 9, 2025, https://en.wikipedia.org/w/index.php?title=William_Playfair&oldi

d=1279573846. 
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languages like Fortran and BASIC were used to create simple plots, then the development

of specialised software like SAS and SPSS provided more robust tools for data analysis and visualisation. 

The emergence of the internet and web technologies in the 1990s led to the introduction of more sophisticated statistical software and programming environments. Tools like R, Python, and JavaScript, along with libraries like ggplot2, matplotlib, and D3.js, revolutionised

the field of data visualisation, making it more accessible and powerful. 

In summary, data visualisation plays a crucial role in fields like data science, business

analytics, scientific research, journalism, and public policy. It serves as a potent tool for communicating data while visualising patterns, trends, and relationships that might not be apparent from raw data alone. For instance, in public health, tracking disease outbreaks in real time, such as with COVID19, tools like dashboards and interactive maps are used extensively to monitor the spread of the virus and communicate the effectiveness of interventions. 

10.2

The Grammar of Graphics

One of the fundamental concepts in modern data visualisation is the Grammar of Graphics, which provides a structured approach to creating visualisations layer by layer. This concept is clearly interpreted in tools like the {ggplot2} R package, part of the {tidyverse}

ecosystem, developed by Hadley Wickham in 2005. 

The Grammar of Graphics allows for the creation of complex visualisations by combining

simple building blocks such as data, aesthetics, and geoms (geometric objects) in a structured manner. It provides a flexible framework for customising visualisations and

supports the creation of a wide range of plots, from basic scatter plots to intricate multi-layered visualisations. 

It starts with the ggplot() function, which initialises the plot. The function takes a data frame as its first argument and then additional arguments to specify the aesthetics of the plot, such as the x and y variables, colour, shape, and size. 

ggplot()

The aesthetics are defined using the aes() function, which maps variables in the data frame to visual properties of the plot, such as x and y coordinates, colour, shape, and size. The aes() function is the mapping part of the plot, and it can be called with the mapping

argument in the layers of the plot. 

ggplot(data = df, 

mapping = aes(x = x, y = y, color = z))

Data can also be called outside of the ggplot() function. 

data %>%

ggplot(aes(x = x, y = y, color = z))

And then additional layers are added using functions like geom_point() for a scatterplot, or geom_line() for a line plot, and so on. Then, with the labs() function, we can add titles, labels, and captions to the plot. 
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ggplot(data = df, aes(x = x, y = y, color = z))+

geom_point()+

labs(title = "Scatter Plot")

The {ggplot2} package provides a wide range of geoms, scales, and themes to customise

the appearance of the plot. By combining these elements, you can create visually appealing and informative visualisations that effectively communicate your data. 

It allows the user to create complex visualisations by combining simple building blocks, with each layer of the plot allowing for an aesthetic mapping of data to visual properties, such as colour, fill, shape, and size, making it easy to create a wide range of visualisations, or even new data. In this example there is also the use of an alternative to the labs() function with the ggtitle() function, which differs in the way the title is placed in the plot. 

ggplot(data = df, aes(x = x, y = y, color = z))+

geom_point()+

geom_point(data = df2, aes(x = x2, y = y2, color = z2))+

ggtitle("Scatter Plot")

In addition to functions provided by {ggplot2}, there are ggplot extensions, other functions and packages that can be used to create visualisations, such as {plotly}, {ggplotly}, 

{leaflet}, {tmap}, and {shiny}. These tools provide additional functionality for creating

interactive plots, maps, and dashboards, allowing for more engaging and dynamic data

visualisations. 

10.3

General Guidelines for Data Visualisation

There are many types of plots that can be used to visualise different types of data, such as cross tabulations for categorical variables, scatter plots for continuous variables, side-by-side box plots, and other summaries. 

Here are some specifications about the usage of common types of plots:

10.4

Example: Visualising Lung Cancer Deaths by Age in Germany

This is an example of visualising lung cancer deaths by age in Germany. It is a line plot

showing the number of deaths by age group. We have already seen how to create a line plot

using {ggplot2} in previous chapters, the focus here is on customising the plot to make it more visually appealing and informative. 

This is a basic output, and we will enhance it by customising patterns, colours, legend, and adjusting the layout. We will also explore how to save the plot as an image file for sharing or publication. 

library(ggplot2)

library(ggpattern)

[image: Image 19]

166

 Introduction to Data Visualisation

Figure 10.1 Basic Data Visualisation Rules

 Example: Visualising Lung Cancer Deaths by Age in Germany
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scatterplot <- hmsidwR::germany_lungc |> 

ggplot(aes(x = age, y = dx)) +

geom_point(aes(shape =sex)) +

labs(title = "Lung Cancer Deaths by Age in Germany", 

x = "Age", 

y = "Deaths")

lineplot <- hmsidwR::germany_lungc |> 

ggplot(aes(x = age, y = dx, group = sex)) +

geom_line(aes(linetype=sex)) +

geom_point() +

labs(title = "Lung Cancer Deaths by Age in Germany", 

x = "Age", 

y = "Deaths")

barplot <- hmsidwR::germany_lungc |> 

ggplot(aes(x = age, y = dx, group = sex)) +

ggpattern::geom_col_pattern(aes(pattern=sex), 

position="stack", 

fill= 'white', 

colour= 'black') +

labs(title = "Lung Cancer Deaths by Age in Germany", 

x = "Age", 

y = "Deaths")
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(b) Lineplot: Lung Cancer
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Figure 10.2 Scatterplot and Barplot of Lung Cancer Deaths by Age in Germany

All of these three plots have a grammar of graphic structure, which means that they are built using layers of data, aesthetics, and geometric objects. The ggplot() function initializes the plot, and then we add layers using geom_point(), geom_line(), and geom_col(), (or

geom_col_pattern() in this particular example), to create the visualisations. We can further customise these plots by adding titles, labels, and adjusting the appearance of the plot

elements. 

Finally, another way to visualise Lung Cancer Deaths by Age in Germany is to use the

geom_col() function and create a bar plot for each sex category. This is a basic bar plot, and we will enhance it by adjusting the layout. The facet_<> functions are used to create a grid of plots, where each plot represents a different subset of the data. In this case, we are using facet_grid() to create a grid of plots based on the sex variable. 
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hmsidwR::germany_lungc |> 

ggplot(aes(x = age, y = dx, group = sex)) +

geom_col(position="identity", 

fill= 'white', 

colour= 'black') +

# adjust the layout with three barplot one for each category

facet_grid(sex ~ .) +

labs(title = "Lung Cancer Deaths by Age in Germany", 

x = "Age", 

y = "Deaths") +

theme(axis.text.x = element_text(angle = 45, hjust = 1))
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Figure 10.3 Barplots Layout - Lung Cancer Deaths by Age in Germany

10.4.1

Colors and Patterns

Choosing the right colours for your visualisations is crucial. Colors can highlight important aspects of your data and improve readability. Many tools provide built-in color palettes, but you can also customise your own. Here we just add the scale_color_manual() function to

customise the original plot, with a new color palette. 

By typing ?scale_color_manual() in the R console, you can access the documentation

and explore other options for customising colours using the scale_<..>_<..>() functions. 

# Example: customising colours in a bar chart

lineplot +

scale_color_manual(values = c("brown", "navy", "orange"))
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In addition to colours, patterns can be used to differentiate between the groups in the plot. 

The {ggpattern} package provides a variety of patterns that can be used to fill the bars in a bar plot. Here we have used the geom_col_pattern() function to add patterns to the bars

in the plot. An example is in show in the plot with the barplot. Another way is to use the linetype or shape aesthetics to differentiate between groups in a line plot or scatter plot. 

10.4.2

Theme, Legends, and Guides

Legends and guides are essential for interpreting visualisations. They help the audience

understand what different colours, shapes, or sizes represent in the plot. Here we have just changed the title of the legend, but much more can be done, such as changing the position, and labels. To change the position of the legend we can use the theme() function as shown

below. 

In the R console, typing ?theme() will provide more information on customising the

appearance of your plots. In this case it is useful to adjust the angle of the text in the x-axis, and even this can be done specifying the angle parameter in the theme() function. 

The guides() function can be used to customise the legend, such as reversing the order of

the legend items. 

# Customising a legend to a plot

lineplot1 <- lineplot +

labs(linetype = "Sex", 

subtitle = "Year 2019", 

caption = "DataSource: hmsidwR::germany_lungc") +

guides(linetype = guide_legend(reverse = TRUE)) +

theme(legend.position = "top", 

axis.text.x = element_text(angle = 45, hjust = 1), 

plot.title = element_text(hjust = 0.5, face = "bold"))

lineplot2 <- lineplot1 +

scale_y_log10() +

coord_cartesian(clip = "off") +

annotate("text", x = Inf, y=Inf, 

hjust = 1, vjust = 0, 

label = "Log Scale")

10.4.3

Plot Layouts

The layout of your plots can significantly impact their effectiveness. Arranging multiple

plots in a grid can help compare different aspects of your data side-by-side. We can use

the grid.arrange() function from the {gridExtra} package to arrange multiple plots in a

grid layout. Or, we can use the layout() function to specify the layout of the plots. There are other packages that can be used such as {patchwork} and {cowplot}, which provide

additional functionalities for arranging plots. 

# Example: Arranging multiple plots

library(gridExtra)

grid.arrange(lineplot, lineplot1, lineplot2, ncol = 3)
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Lung Cancer Deaths by Age in Germany
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Figure 10.4 Customised Lineplots and Logarithmic Scale Transformation

10.4.3.1

Exercise

Replicate the plots above, customizing the legend and axis text to improve readability. Apply a logarithmic scale to the y-axis for better data visualization, and consider adding a caption to indicate the data source. 

10.4.4

Saving as an Image

Once you’ve created your visualisation, you might want to save it as an image file for sharing or publication. 

ggsave("lineplot.png", plot = lineplot2, width = 6, height = 4)

10.5

Practising Data Visualisation

To practise making data visualisations, there are numerous free resources available that

provide valuable information and opportunities to enhance your skills. By engaging with

these platforms, you can practise your abilities, share your final results, and receive feedback from the community. While the feedback may sometimes be critical, it is an essential part of the learning process and will help you improve if you stay persistent. 

Participating in competitions and challenges such as #TidyTuesday, #30DayChartChallenge, and #30DayMapChallenge offers a great way to refine your skills. These competitions encourage you to create and share visualisations on various themes, pushing you

to experiment with different techniques and styles. By consistently participating in these challenges and actively seeking feedback, you will steadily enhance your proficiency. Over time, you will find yourself becoming more adept and confident in your data visualisation

skills. 

11

Interpreting Model Results Through

Visualisation

Learning Objectives

• Visualize predicted vs. observed values and assess residuals

• Interpret model metrics with VIP, accuracy, and partial dependency plots

• Create and customize ROC curves and compute AUC for classification models

In the introduction to data visualisation (Chapter 10), we explored foundational techniques for effectively communicating model results and data insights through plots. We reviewed

essential plots used to visualise predictions and outcomes, such as scatter plots, line graphs, and bar charts. The chapter also covered how to customise these plots using colours, palettes, legends, and guides to improve clarity and visual appeal. Additionally, we discussed how to craft compelling data stories by organising multiple plots in a layout and saving them as

image files for reports or presentations. 

In this chapter, which is an essential part of the data visualisation section, we focus on how to effectively interpret and use the results from machine learning models in the context of health metrics and infectious diseases. 

We will explore how to visualise the results of:

• Regression models with a linear regression, and a generalized additive model (GAM)

• Classification models with decision trees, and random forest models. 

11.1

Practical Insights and Examples

The practice of visualising model results is essential for communicating insights from a model to stakeholders. 

Considerations for visualising model results include:

• Understanding the data: Before visualising the results, it is important to understand the data and the model used. This includes understanding the variables, their relationships, and the assumptions of the model. 

• Choosing the right visualisation: Different types of data and models require different types of visualisations. It is important to choose the right visualisation to effectively

communicate the results. 

DOI: 10.1201/9781032625935-11
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11.1.1

Example: Deaths due to Meningitis

Data are from the Institute for Health Metrics and Evaluation (IHME) and include

death rates due to meningitis, as well as two exposure levels of risk factors—particulate matter (PM2.5) and smoking—in the Sub-Saharan Africa (Central African Republic, Zambia, 

Eswatini, Lesotho, and Malawi) from 1990 to 2021. The data are in the {hmsidwR} package

and can be loaded as hmsidwR::meningitis. 

install.packages("hmsidwR")

# or

# install the development version of book package

devtools::install_github("Fgazzelloni/hmsidwR")

Let’s have a look at the first few rows of the data:

# Load libraries and data

library(tidyverse)

library(hmsidwR)

meningitis %>% head

#> # A tibble: 6 x 6

#> 

year location

deaths dalys smoking pm25

#> 

<dbl> <chr> 

<dbl> <dbl> 

<dbl> <dbl> 

#> 1 1990 Eswatini

12.6 669. 

5.91 55.0

#> 2 1990 Malawi

52.7 3160. 

7.57 78.7

#> 3 1990 Zambia

54.9 3101. 

6.71 66.9

#> 4 1990 Lesotho

10.1 541. 

10.6

61.2

#> 5 1990 Central African Republic

33.7 2142. 

6.61 80.0

#> 6 1991 Zambia

55.4 3101. 

6.71 66.6

Meningitis1 is a serious global health concern characterised by inflammation of the mem-branes surrounding the brain and spinal cord. It can arise from both infectious and non-

infectious causes and is often associated with a high risk of mortality and long-term complications. 

In this example, we explore how two environmental risk factors — particulate matter

(PM2.5) and smoking — may influence meningitis mortality. These variables represent aggregate exposure levels that could potentially contribute to meningitis-related deaths. 

Meningitis death rates vary considerably across countries and over time. To begin, we

visualise how these rates have changed from 1990 to 2021 in five Sub-Saharan African

countries. A scatter plot will show annual death rates by country, while a smooth line will reveal the overall trend, helping to contextualize patterns before moving to modelling. 

meningitis %>%

ggplot(aes(x = year, y = deaths)) +

geom_line(aes(group = location, 

linetype = location)) +

geom_smooth() +

labs(title = "Deaths due to Menigitis", 

subtitle = "from 1990 to 2021 in Sub-Saharan Africa", 

y = "Death Rates", x = "Time (Year)") +

theme(legend.position = "bottom", 

legend.title = element_blank())

1“Meningitis,” n.d., https://www.who.int/news-room/fact-sheets/detail/meningitis. 
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Figure 11.1 Deaths due to Menigitis from 1990 to 2021 in Sub-Saharan Africa. The solid ticker line represents the smooth line revealing the overall trend, while the other lines

represent the death rates for each country. 

To gain an idea of the estimated average of death rates in the population, we can fit a simple linear regression model with lm() function, with the formula deaths ~ 1, which means that

we are fitting a model with only an intercept (i.e., no predictors). Then we draw a simple Q-Q plot2 (a scatterplot created by plotting two sets of quantiles against one another) to check the normality of the residuals. 

mod0 <- lm(deaths ~ 1, data = meningitis)

summary(mod0)

#> 

#> Call:

#> lm(formula = deaths ~ 1, data = meningitis)

#> 

#> Residuals:

#> 

Min

1Q Median

3Q

Max

#> -17.092 -11.372 -3.745

6.822 32.369

#> 

#> Coefficients:

#> 

Estimate Std. Error t value Pr(>|t|)

#> (Intercept)

25.826

1.062

24.32

<2e-16 ***

#> ---

#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

2“Q–Q Plot,” March 20, 2025, https://en.wikipedia.org/w/index.php?title=Q%E2%80%93Q_plot&oldi

d=1281381233. 
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#> 

#> Residual standard error: 13.43 on 159 degrees of freedom

The summary of this model shows the intercept value to be the estimate average of the

death rates. We can look at the distribution of the death rates with an histogram:

hist1 <- meningitis %>%

ggplot(aes(x = deaths)) +

geom_histogram(bins = 10, 

fill = "grey70", color = "grey40") +

geom_vline(aes(xintercept = mean(deaths)), 

color = "black", 

size = 2, 

linetype = "dashed") +

labs(title = "Histogram of Death Rates due to Meningitis", 

x = "Death Rates", y = "Count") +

theme(legend.position = "bottom", 

legend.title = element_blank())

# Add log scale to x axis

hist2 <- hist1 +

scale_x_log10()
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Figure 11.2 The histogram of Death Rates due to Meningitis clearly show the right-skewness of the data. The dashed line represents the mean value of the death rates. 

To investigate the non linear relationship between the number of deaths and the two risk

factors, we can use a Generalized Additive Model (GAM) with s() function from the

{mgcv} package. The s() function is used to fit smooth terms in the model, which allows us to capture non-linear relationships between the predictors and the response variable. 

library(mgcv)

mod1 <- gam(deaths ~ s(smoking), data = meningitis)

mod2 <- gam(deaths ~ s(smoking) + s(pm25), 

data = meningitis)

To summarise, the models results in a table format, with the estimated coefficients for each model, we can see that the values for the intercept and the coefficients for smoking and
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PM2.5 are all positive and statistically significant (p < 0.05), indicating that higher levels of these risk factors are associated with higher death rates due to meningitis. 

Table 11.1 Estimated coefficients for the models

Model

Beta0

Beta1

Beta2

mod0 - linear model

25.83

NA

NA

mod1 - gam 1 predictor

25.83

25.99

NA

mod2 gam 2 predictors

25.83

14.68

1.18

plot(mod1)

plot(mod2)
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Figure 11.3 Summary Exposure Values: Smocking and PM2.5

A further comparison is done with the AIC() function:

AIC(mod1, mod2)

#> 

df

AIC

#> mod1 10.57829 1102.339

#> mod2 16.11216 1060.531

The second GAM model (mod2) is clearly better than the first one (mod1):

• The AIC drops by ~42 points, which is a substantial improvement (a drop of >10 is

considered strong evidence). 

• The additional smooth term s(pm25) significantly improves model fit, even after accounting for increased complexity (degrees of freedom increase from 10.6 to 16.1). 

Let’s now include the year variable in the model, to account for the temporal trend in the data. We can also include an interaction term between year and location to account for

the different trends in different countries. The by argument in the s() function allows us to fit separate smooth terms for each level of the location variable. 

We set the location to be a factor variable:

meningitis$location <- as.factor(meningitis$location)

Then we can fit the third model:

mod3 <- gam(deaths ~ s(smoking) + s(pm25) + s(year, by = location), 

data = meningitis)

The s(year, by = location) term allows for different smooth terms:
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par(mfrow = c(2, 3))

for (i in 1:5) {

plot(mod3, select = i + 2, shade = TRUE, 

main = levels(meningitis$location)[i])

}
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Figure 11.4 Meningitis Death Rates by Country. The solid line represents the smooth line revealing the overall trend, while the other lines represent the death rates for each country. 

Table 11.2 Model Metrics

Model

R2

DevExp

mod0 - linear model

0.7030403

0.7190617

mod1 - gam 1 predictor

0.7784592

0.7981222

mod2 gam 2 predictors

0.9957811

0.9968419

In conclusion, we began with a generalised additive model with just smoking as influencing factor, then we fit a second model where both smoking and PM2.5 were modelled as smooth

functions. This second model explained nearly 80% of the variance in meningitis death rates. 

However, by incorporating country-specific nonlinear time trends, we dramatically improved the model fit to over 99% of variance explained. This highlights the importance of accounting for temporal and spatial structure in health data, particularly when modelling long time

spans across multiple countries. 

There is still a consideration to be made related to the exposure effect of smocking and

PM2.5 on meningitis death rates. 
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Table 11.3 Model p-values

term

p.value_mod1

p.value_mod2

p.value_mod3

s(smoking)

0

7.69e-05

0.0000000

s(pm25)

0

0.00e+00

0.6979803

In the second model (mod2), both the smoking and PM2.5 terms have p-values below 0.05, 

indicating that they are statistically significant predictors of meningitis mortality. However, when incorporating temporal and spatial effects in mod3, the significance of these exposure variables changes — most notably, PM2.5 is no longer statistically significant. This shift suggests that the apparent association in the simpler model may be confounded by time

trends or country-level differences, highlighting the importance of accounting for structured variation in space and time. 

Let’s use both models to predict the number of deaths due to meningitis in the dataset. We can use the predict() function to obtain the predicted values for the model. The predicted values are added to the original dataset as a new column called predicted. 

meningitis$predicted_mod2 <- predict(mod2)

meningitis$predicted_mod3 <- predict(mod3)

ggplot(meningitis, 

aes(x = year, y = deaths, color = location)) +

geom_line() +

geom_line(aes(y = predicted_mod2), 

linetype = "dashed") +

facet_grid(location ~ ., scale = "free") +

labs(title = "Meningitis Death Rates by Country", 

subtitle = "Observed vs Predicted", 

y = "Death Rate", x = "Year") +

theme(legend.position = "none")

ggplot(meningitis, 

aes(x = year, y = deaths, color = location)) +

geom_line() +

geom_line(aes(y = predicted_mod3), 

linetype = "dashed") +

facet_grid(location ~ ., scale = "free") +

labs(title = "Meningitis Death Rates by Country", 

subtitle = "Observed vs Predicted", 

y = "Death Rate", x = "Year") +

theme(legend.position = "none")

We can notice that the model fits the data well, with the predicted values closely following the observed values, with mod3 clearly overfitting the data. 

Let’s check the residuals of mod2:

meningitis %>%

# calculate the residuals to see how well the model fits the data

mutate(residuals = deaths - predicted_mod2) %>%

select(deaths, predicted_mod2, residuals) %>%
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Figure 11.5 Meningitis Death Rates by Country. The dashed line represents the predicted values from the model, while the solid lines represent the observed values. 

head()

#> # A tibble: 6 x 3

#> 

deaths predicted_mod2 residuals

#> 

<dbl> 

<dbl[1d]> <dbl[1d]> 

#> 1

12.6

18.3

-5.76

#> 2

52.7

38.8

13.9

#> 3

54.9

50.3

4.62

#> 4

10.1

15.4

-5.31

#> 5

33.7

39.5

-5.83

#> 6

55.4

50.0

5.40

The residuals column represents the difference between the observed and predicted values. 

A positive residual indicates that the model underestimates the number of deaths, while a

negative residual indicates an overestimate. 

To evaluate model performance, we can visualize the residuals against the predicted values. In this plot, the dashed line marks the zero-residual baseline. Points above the line correspond to underestimation, and those below represent overestimation. The fact that most points

cluster closely around the zero line suggests that the model provides a reasonably good fit to the data. 

meningitis %>%

mutate(residuals = deaths - predicted_mod2) %>%

ggplot(aes(x = predicted_mod2, y = residuals)) +

geom_point() +

geom_hline(yintercept = 0, linetype = "dashed") +

facet_grid(location ~ ., scale = "free") +

labs(title = "Residuals vs Predicted", 

x = "Predicted Values", y = "Residuals") +

theme(legend.position = "none")

meningitis %>%

mutate(residuals = deaths - predicted_mod2) %>%

ggplot(aes(sample = residuals)) +
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geom_qq() +

geom_qq_line() +

facet_grid(location ~ ., scale = "free") +

labs(title = "QQ-plot of the residuals", 

x = "Theoretical Quantiles", y = "Sample Quantiles") +

theme(legend.position = "none")
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Figure 11.6 Residuals vs Predicted

Heteroskedasticity is a common problem in regression analysis, and it occurs when the variance of the residuals is not constant across all levels of the predictor variables. This can lead to biased estimates of the coefficients and incorrect conclusions about the significance of the predictors. In this case, we can see that the residuals are not evenly distributed around zero, indicating that there may be some heteroskedasticity in the data. 

11.1.1.1

Exercise: One Country Focus

Improve the model specifically for Lesotho by refining the smooth terms and including year as a covariate to capture temporal patterns:

1. Subset the data to include only observations from Lesotho

2. Adjust the smooth functions as needed for a better fit

3. Refit the model incorporating the year variable

4. Perform cross-validation by splitting the data into training and test sets, and

simulate model performance across multiple samples

Evaluate the model fit and compare it to previous results. Consider visualizing the residuals and predicted values for further insight. 

Lesotho_data <- meningitis %>%

filter(location == "Lesotho")

Lesotho_data$predicted_mod2 <- predict(mod2, newdata = Lesotho_data)

Lesotho_data %>%

ggplot() +

geom_point(aes(year, deaths)) +
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geom_line(aes(year, predicted_mod2), 

linetype = "dashed") +

labs(title = "Lesotho_data: Observed vs. Predicted", 

x = "Time(Year)", y = "Death Rates")

Lesotho_data %>%

ggplot(aes(x = year, y = deaths)) +

geom_point() +

geom_line(aes(year, predicted_mod2), 

linetype = "dashed") +

geom_segment(aes(xend = year, 

yend = predicted_mod2), 

linewidth = 0.1) +

labs(title = "Lesotho: Observed vs. Predicted", 

subtitle = "Segments represent the residuals", 

x = "Time(Year)", y = "Death Rates")
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Figure 11.7 Lesotho Death Rates by Country. The dashed line represents the predicted values from the model, while the solid lines represent the observed values. 

11.1.2

Example: Ischemic Stroke Decision Tree

In this example we have a look at how to visualise the results of a decision tree model for predicting Ischemic Stroke. 

Load necessary libraries and the data for the Ischemic Stroke. 3

# Ischemic Stroke decision tree

library(tidymodels)

library(rpart)

library(rpart.plot)

3“FES/Data_Sets/Ischemic_Stroke at Master · Topepo/FES,” n.d., https://github.com/topepo/FES/

tree/master/Data_Sets/Ischemic_Stroke. 
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Data are already split into training and test sets, we will combine them for the analysis. The stroke_train and stroke_test datasets contain 89, 37 observations respectively and 29

variables. Within the variables we have information on volume, proportion, area, thickness of the arterial wall, among others. The target variable is Stroke, which indicates whether the patient has had a stroke or not.4

We select the variables of interest for the analysis with any_of(), a function to select the variables based on their names. 

?any_of() for more infromation about the function. 

selected_train <- stroke_train %>%

dplyr::select(any_of(VC_preds), Stroke)

To check which columns in stroke_train dataset were not selected:

setdiff(names(stroke_train), names(selected_train))

#> [1] "NASCET" 

"age" 

#> [3] "sex" 

"SmokingHistory" 

#> [5] "AtrialFibrillation" 

"CoronaryArteryDisease" 

#> [7] "DiabetesHistory" 

"HypercholesterolemiaHistory" 

#> [9] "HypertensionHistory" 

Set up the recipe for the data with the recipe() function from the tidymodels package. We

will use the step_corr() function to remove highly correlated predictors, step_center()

and step_scale() to standardise the predictors, step_YeoJohnson() to transform the

predictors, and step_zv() to remove zero variance predictors. 

is_recipe <- recipe(Stroke ~ ., data = selected_train) %>%

#step_interact(int_form) %>%

step_corr(all_predictors(), threshold = 0.75) %>%

step_center(all_predictors()) %>%

step_scale(all_predictors()) %>%

step_YeoJohnson(all_predictors()) %>%

step_zv(all_predictors())

is_recipe %>%

prep() %>%

bake(new_data=NULL) %>%

select(1:5) %>%

head(5)

#> # A tibble: 5 x 5

#> 

CALCVolProp MATXVol MATXVolProp MaxCALCAreaProp MaxDilationByArea

#> 

<dbl> 

<dbl> 

<dbl> 

<dbl> 

<dbl> 

#> 1

-0.143 0.106

-0.161

0.0541

0.0249

#> 2

-1.35 -0.0530

0.858

-0.931

-0.748

#> 3

-0.784 1.03

0.218

0.284

-0.320

#> 4

1.06

0.587

-0.144

1.05

0.423

#> 5

-0.708 -0.107

-0.307

-0.203

-0.738

4Max Kuhn Johnson and Kjell,  2 Illustrative Example: Predicting Risk of Ischemic Stroke | Feature Engineering and Selection: A Practical Approach for Predictive Models, n.d., https://bookdown.org/max/F

ES/stroke-tour.html. 
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Set up the decision tree model with the decision_tree() function from the tidymodels

package. We will use the rpart engine for the decision tree model and set the mode to

classification. 

class_tree_spec <- decision_tree() %>%

set_engine("rpart") %>%

set_mode("classification")

Finally, we will fit the model with the fit() function from the tidymodels package and

visualise the results with the rpart.plot package. 

is_wfl <- workflow() %>%

add_model(class_tree_spec) %>%

add_recipe(is_recipe)

is_dt_fit_wfl <- is_wfl %>%

fit(data = selected_train, 

control = control_workflow())

is_dt_fit_wfl%>%

extract_fit_engine() %>%

rpart.plot::rpart.plot(roundint = FALSE)
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Figure 11.8 Decision Tree for Ischemic Stroke

In this plot, the decision tree is visualised with the rpart.plot and the information released evidences the importance of some specific predictors, such as max wall thickness, max

dilatation by area, volume proportion, and max remodelling ratio. The decision tree is

a useful tool for visualising the results of the model and understanding the relationships between the predictors and the target variable. 
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The interpretation of the decision tree is straightforward: each node represents a decision based on the value of a predictor, and the leaves represent the final classification. The tree can be pruned to reduce its complexity and improve its interpretability. The decision tree can be used to make predictions on new data by following the path from the root to a leaf

node based on the values of the predictors. 

11.1.3

Example: Ischemic Stroke Classification

In this second example we will demonstrate classification (stroke vs. no stroke) using patient and plaque imaging features, and visualise model insights for stakeholder communication. 

The objective is to visualise how well the model predict whether a patient experienced a

stroke (Stroke) based on imaging features (e.g., MaxStenosisByArea, CALCVolProp) and

risk factors (e.g., age, DiabetesHistory). 

Visualise:

• Variable importance

• Prediction performance (e.g., ROC curve)

• Partial dependence of key features

Load necessary libraries, and fit a random forest model to the data with the rand_forest() function from the {tidymodels} package. We will use the ranger engine for the random

forest model and set the mode to classification. 

library(tidyverse)

library(tidymodels)

library(vip)

library(DALEXtra)

library(pROC)

The model specify the number of trees to grow, the minimum number of observations in a

node before a split is attempted, and the maximum depth of the tree. The set_engine()

function specifies the engine to use for the model, in this case ranger, and the set_mode() function specifies the mode of the model, in this case classification. 

rf_spec <- rand_forest(trees = 500, min_n = 5) %>%

set_engine("ranger", importance = "impurity") %>%

set_mode("classification")

rf_wf <- workflow() %>%

add_formula(Stroke ~ .) %>%

add_model(rf_spec)

rf_fit <- rf_wf %>% fit(data = stroke_train)

11.1.3.1

Variable Importance

The object rf_fit contains the fitted model. We can extract the the model specification

and use the vip() function to visualise what are the predictors that most influence the

model. The vip() function creates a variable importance plot, which shows the importance

of each predictor in the model. The importance is calculated based on the Mean Decrease in Impurity (MDI) for each predictor. 

184

 Interpreting Model Results Through Visualisation

rf_fit %>%

extract_fit_parsnip() %>%

vip::vip(num_features = 10)
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Figure 11.9 Variable Importance for Ischemic Stroke

We

can

conclude

that

for

this

data

set, 

the

most

important

predictors

are

MaxStenosisByArea, CALCVolProp, MaxWallThickness, and MaxRemodellingRatio. 

Next step is to evaluate the model performance. We will use the predict() function to

make predictions on the test data set (stroke_test) and calculate the accuracy of the model. 

set.seed(05122025)

rf_preds <- predict(rf_fit, stroke_test, 

type = "prob") %>%

bind_cols(predict(rf_fit, stroke_test)) %>%

bind_cols(stroke_test %>% select(Stroke))

rf_preds %>% head()

#> # A tibble: 6 x 4

#> 

.pred_N .pred_Y .pred_class Stroke

#> 

<dbl> 

<dbl> <fct> 

<fct> 

#> 1

0.507

0.493 N

N

#> 2

0.395

0.605 Y

Y

#> 3

0.884

0.116 N

Y

#> 4

0.846

0.154 N

N

#> 5

0.839

0.161 N

N
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#> 6

0.683

0.317 N

N

11.1.3.2

Accuracy

The accuracy of the model is calculated as the proportion of correct predictions. The

accuracy() function from the yardstick package calculates the accuracy of the model

based on the predicted and observed values. 

rf_preds %>%

accuracy(truth = Stroke, .pred_class)

#> # A tibble: 1 x 3

#> 

.metric .estimator .estimate

#> 

<chr> 

<chr> 

<dbl> 

#> 1 accuracy binary

0.703

In this case, the accuracy of the model is 0.70, which means that the model correctly predicts whether a patient experienced a stroke or not 70% of the time. The accuracy is calculated

as the number of correct predictions divided by the total number of predictions. 

11.1.3.3

ROC Curve

The Receiver Operating Characteristic (ROC) curve is a graphical representation

of the performance of a binary classifier system as its discrimination threshold is varied. 

The ROC curve plots the true positive rate (TPR) against the false positive rate (FPR) at

various threshold settings. 

We can use the roc_curve() function from the yardstick package to calculate the ROC

curve and the area under the curve (AUC). The roc_curve object contains the specificity

and sensitivity values for each threshold, which can be used to calculate the AUC. 

roc_curve <- yardstick::roc_curve(data = rf_preds, 

truth = Stroke, .pred_N)

roc_curve %>% head()

#> # A tibble: 6 x 3

#> 

.threshold specificity sensitivity

#> 

<dbl> 

<dbl> 

<dbl> 

#> 1 -Inf

0

1

#> 2

0.0863

0

1

#> 3

0.226

0.0526

1

#> 4

0.284

0.105

1

#> 5

0.309

0.158

1

#> 6

0.319

0.211

1

The relationship between the True Positive Rate (TPR) and False Positive Rate

(FPR) is visualised in the ROC curve. The area under the curve (AUC) is a measure of the model’s performance, with values closer to 1 indicating better performance. The specificity and sensitivity of the model indicate the proportion of true positives and true negatives, respectively, and we can use the autoplot() function to visualise the ROC curve. 

autoplot(roc_curve)
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Figure 11.10 ROC Curve for Ischemic Stroke

Another way to extract the ROC curve is to use the pROC package and the roc() function. 

The roc() function takes the observed values and the predicted probabilities as arguments

and returns an object containing the ROC curve. 

roc_obj <- pROC::roc(rf_preds$Stroke, 

rf_preds$.pred_N)

roc_obj %>%

pROC::auc() %>%

round(2)

#> [1] 0.68

The roc_obj object provides information about the area under the ROC curve. In this case

we have an AUC is 0.68. The AUC is a measure of the model’s performance, values closer to

1 indicate better performance. 

11.1.3.4

Partial Dependence

“How does the prediction change when a specific feature changes, holding all others

constant?” 

Finally, we attempt an explanation of the model using DALEX and DALEXtra packages, and

some specific functions, such as: explain_tidymodels() and model_profile(). 

explainer_rf <-

DALEXtra::explain_tidymodels(rf_fit, 

data = select(stroke_train, -Stroke), 

y = stroke_train$Stroke)
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The explainer_rf object contains the model, the data, and the target variable and it will

be used to create the partial dependence plot with the model_profile() function. 

A Partial Dependence Plot (PDP) is a tool used in machine learning to help interpret black-box models like random forests. It shows the marginal effect of one (or two) features on the predicted outcome, while averaging out the influence of all other features. 

In this case we specify the MaxStenosisByArea variable, to see how changes in

MaxStenosisByArea influence the model’s predicted outcome, on average. A higher value

of MaxStenosisByArea indicates more severe arterial narrowing, which is a risk factor for

stroke or heart attack. 

DALEX::model_profile(explainer_rf, 

variables = "MaxStenosisByArea") %>%

plot() +

labs(

title = "Partial Dependence Plot for Ischemic Stroke", 

subtitle = "", 

x = "Value", 

y = "AVG Prediction") +

theme_minimal()

Partial Dependence Plot for Ischemic Stroke
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Figure 11.11 Partial Dependence Plot for Ischemic Stroke: MaxStenosisByArea (arterial narrowing)

The plot shows the partial dependence of the MaxStenosisByArea variable on the predicted

probability of having a stroke. The results indicate that MaxStenosisByArea has a positive influence on stroke risk, though this effect plateaus beyond a certain threshold. 
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11.2

Summary

In this chapter, we have learned how to visualise the results of a model. There are several important considerations when visualising the results of a model, and differences might arise due to the type of model used. We have seen how to use several packages and functions, 

such as ggplot2, vip, pROC, and DALEX to visualise the results of a model. We have also

seen how to interpret the results of a model and how to communicate them effectively. 

The examples provided in this chapter demonstrate how to use visualisation techniques to

enhance decision-making and communicate findings to various stakeholders. 

12

Spatial Data Modelling and Visualisation

Learning Objectives

• Learn how to model and visualise spatial data

• Understand the concepts of spatial data, spatial data models, and spatial models

• Create maps, simulate infections, and predict the spatial distribution of phenomena

In the previous chapters, we explored the fundamentals of data visualisation with various techniques for creating static and interactive plots. In this chapter, we will learn how to model and visualise spatial data, which involves analysing and representing data with spatial components. We will explore the concepts of spatial data, spatial data models, and spatial models, and learn how to create maps, simulate infections, and predict the spatial distribution of phenomena such as disease spread. By combining spatial data with machine

learning techniques, we can model the spatial dynamics of disease transmission and assess

the risks associated with the spread of infections. We will use various packages such as sf, ggplot2, and gstat to create spatial models and visualisations, and gain insights into the spatial distribution of infections in a specific region. 

12.1

Spatial Data, Spatial Data Models, and Spatial Models

Understanding the spatial distribution of phenomena such as disease spread, land cover

changes, or climate patterns requires the use of spatial data and spatial models. These tools are essential for analysing and predicting spatial processes and for informing data-driven decisions in public health, environmental management, and urban planning. 

A notable example is the Ebola Virus Disease outbreak in West Africa (2014–2016). 

The virus spread across countries like Guinea, Liberia, and Sierra Leone, driven by factors such as population density, healthcare infrastructure, and human mobility. By analysing

spatial data on cases, fatalities, and healthcare facilities and applying spatial models to simulate the virus’s spread, researchers gained valuable insights into the dynamics of the outbreak. This analysis helped identify high-risk areas for targeted interventions. 1

But what exactly distinguishes spatial data, spatial data models, and spatial models? 

• Spatial Data: This refers to data that includes geographic coordinates, addresses, or boundaries, representing the physical location of objects or events. Spatial data can be

stored in two main formats: vector and raster. Vector data models use geometric shapes

1Null null, “Ebola Virus Disease in West Africa — the First 9 Months of the Epidemic and Forward Projections,”  New England Journal of Medicine  371, no. 16 (October 16, 2014): 1481–95, 

doi:10.1056/NEJMoa1411100. 

DOI: 10.1201/9781032625935-12
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(points, lines, polygons) to represent features such as roads, cities, and boundaries. Raster data models, on the other hand, use a grid of cells or pixels, each with a value representing a variable like temperature, land cover, or elevation. 

• Spatial Data Models: These are frameworks for organizing and representing spatial data. They provide the structure for connecting real-world phenomena with their digital

representation through algorithms and spatial primitives (like spatial relationships and

topology). Spatial data models form the foundation for managing and processing spatial

information, enabling meaningful analysis and visualization. 

• Spatial Models: Unlike spatial data models, which organize data, spatial models simulate dynamic spatial processes—phenomena that change over time. Examples include the spread

of infectious diseases, flood development, or land use changes. Spatial models are crucial for understanding and forecasting the evolution of spatial phenomena, allowing researchers and decision-makers to plan interventions and management strategies effectively. 

For further information on spatial data models and spatial process models, refer to the

ArcGIS documentation for guidance on solving spatial problems and the Esri blog for in-depth discussions on spatial analysis. Additionally, R-Spatial.org offers a wealth of resources on spatial data analysis, including tutorials and the latest developments in the field. 

12.2

Making a Map

To learn how to make a map we first need spatial data. There are various sources and

packages that provide spatial data for different regions and purposes. One such package is

{rnaturalearth}, this package contains various types of boundaries of countries in the world. 

For more information type ?rnaturalearth. In particular, we use the ne_countries()

function to get the boundaries of Africa, with the option returnclass = "sf" to return the data as simple features. 

library(tidyverse)

library(sf)

library(rnaturalearth)

africa <- ne_countries(continent = "Africa", 

returnclass = "sf")

A simple feature object is a type of spatial data that contains the geometry of the spatial features (e.g., points, lines, polygons) and additional attributes such as the name of the country, population, and other information. 

This is a simple map of Africa, but we can make it more interesting by adding some colours to the countries. A better resolution of the colored map can be found in the online version of the book. 

ggplot(data = africa) +

geom_sf() +

coord_sf()

# Africa with colours

ggplot(data = africa) +

geom_sf(aes(fill=name), 

color= "white", 
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linewidth = 1, 

show.legend = F) +

coord_sf()

(a) Map of Africa

(b) Map of Africa with colors

Figure 12.1 Map of Africa

12.3

Coordinate Reference System (CRS)

A Coordinate Reference System (CRS) is a standardised way of defining the spatial

location of features on the Earth’s surface. It uses a set of coordinates to represent the position of points, lines, and polygons in space. There are different types of CRS, such

as geographic and projected CRS, which are used to represent the Earth’s surface in different ways. Geographic CRS (LatLong) represents locations on a curved surface using latitude and longitude for global mapping, while projected CRS or Universal Transverse

Mercator (UTM) projects the curved Earth onto a flat map, using metres for precise

mapping. In particular, the UTM system provides the distance in metres from the equator

and the central meridian of a specific zone. 

We use the {sf} package to define and transform CRS. The st_crs() function allows you

to retrieve the CRS of a spatial object, while the st_transform() function allows you to

transform the coordinates of a spatial object to a different CRS. 

africa_crs <- st_crs(africa)

africa_crs

#> Coordinate Reference System:

#> 

User input: WGS 84

#> 

wkt:

#> GEOGCRS["WGS 84", 

#> 

DATUM["World Geodetic System 1984", 

#> 

ELLIPSOID["WGS 84",6378137,298.257223563, 

#> 

LENGTHUNIT["metre",1]]], 

#> 

PRIMEM["Greenwich",0, 

#> 

ANGLEUNIT["degree",0.0174532925199433]], 

#> 

CS[ellipsoidal,2], 

#> 

AXIS["latitude",north, 
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#> 

ORDER[1], 

#> 

ANGLEUNIT["degree",0.0174532925199433]], 

#> 

AXIS["longitude",east, 

#> 

ORDER[2], 

#> 

ANGLEUNIT["degree",0.0174532925199433]], 

#> 

ID["EPSG",4326]]

For example, the CRS of the Africa map is WGS 84 or  World Geodetic System 1984

which is a reference system for the Earth’s surface that defines origin and orientation of the coordinate axes, called a datum (a fact known from direct observation). The EPSG is a structured dataset of CRS and Coordinate Transformations, it was originally compiled by

the, now defunct, European Petroleum Survey Group2. The EPSG code for WGS 84 is 4326. 

12.4

Example: Simulation of Infections in Central African Rep. 

Synthetic data are created for the Central African Republic. The simulation of the number

of infected individuals, their location, and temperature levels are obtained with random

numbers generating functions from the {stats} package, which is a base package. 

The Central African Rep. is a landlocked country in Central Africa, with a population of

approximately 5 million people. The country is known for its diverse wildlife and natural

resources, and has faced challenges such as political instability and armed conflict. 

ctr_africa <- africa %>%

filter(name == "Central African Rep.")

12.4.1

Bounding Box

We can use the st_bbox() function to retrieve the bounding box of the ctr_africa object, as a matrix with the minimum and maximum values of the coordinates. A bounding box

is a rectangular area defined by two points: the lower-left corner (minimum values of the

coordinates) and the upper-right corner (maximum values of the coordinates). It provides a quick way to determine the spatial extent of a region and is often used in spatial analysis to define the boundaries of a study area. 

bbox <- ctr_africa %>% st_bbox()

bbox

#> 

xmin

ymin

xmax

ymax

#> 14.45941 2.26764 27.37423 11.14240

12.4.2

Spatial Coordinates

The st_coordinates() function allows to extract the coordinates from a geometry vector

and release a matrix with 5 columns, where the first two columns are the longitude (X) and latitude (Y), and the other are indexes to group the coordinates into polygons. 

2https://www.nceas.ucsb.edu/sites/default/files/2020-04/OverviewCoordinateReferenceSystems.pdf
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The as.data.frame() function converts the matrix to a data frame, and the

dplyr::select() function selects the longitude and latitude columns. The summary()

function provides a summary of the data frame, including the mean, median, and quartiles

of the longitude and latitude values. 

ctr_africa_coords <- ctr_africa %>%

sf::st_coordinates() %>%

as.data.frame() %>%

dplyr::select(X, Y)

ctr_africa_coords %>%

summary()

#> 

X

Y

#> Min. 

:14.46

Min. 

: 2.268

#> 1st Qu.:16.58

1st Qu.: 4.648

#> Median :20.96

Median : 5.354

#> Mean

:20.70

Mean

: 6.294

#> 3rd Qu.:24.26

3rd Qu.: 8.145

#> Max. 

:27.37

Max. 

:11.142

Synthetic data are created as an image of the spread of infections observed in Central Africa on a specific point in time. Data are generated using random numbers for the number of

infected individuals, their location, and temperature levels. The temperature levels consider a min of 20.3 degrees Celsius (69 degrees Fahrenheit), a maximum of 29.2 °C (85 °F), and a daily average of 24.7 °C (76 °F). 

The synthetic data are created using the rbinom(), rnorm(), and rpois() functions from

the {stats} package. Data are generated for 100 locations in Central Africa, with 70% of

the locations infected and 30% non-infected. The latitude and longitude values are generated using the rnorm() function with mean values of 6.294 and 20.70, respectively. The number

of infected individuals is generated using the rpois() function with a mean value of 10, and the temperature levels are generated using the rnorm() function with a mean value of 25. 


Set the number of points:

num_points <- 100

12.4.3

Data Simulation

set.seed(21082024) # set seed for reproducibility

# simulate the presence of infection

# 1 = "infected" and 0 = "non_infected" 

longitude <- rnorm(n = num_points, mean = 20.70, sd = 1)

latitude <- rnorm(n = num_points, mean = 6.294, sd = 1)

presence <- rbinom(100, 1, prob = 0.3)

cases <- ifelse(presence == 1, 

rpois(n = num_points*0.7, lambda = 10), 0)

temperature <- rnorm(n = num_points, 

mean = 24.7, 

sd = (29.2 - 20.3) / 4)

# build a dataframe
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df <- data.frame(longitude, latitude, 

presence, cases, temperature)

head(df)

#> 

longitude latitude presence cases temperature

#> 1 21.09134 6.052162

0

0

20.58159

#> 2 22.25082 7.814450

0

0

29.77619

#> 3 21.52356 6.101959

0

0

23.97023

#> 4 19.76787 6.004291

0

0

28.53059

#> 5 21.25535 5.239799

0

0

22.16691

#> 6 20.10175 7.256303

0

0

20.66836

The str() function allows to inspect the structure of the data frame, showing the type of

each column and the first few rows of the data frame. 

df %>%

filter(presence == 1) %>%

head() %>%

str()

#> 'data.frame':

6 obs. of 5 variables:

#> $ longitude : num 18.8 20.3 22.9 20 20.1 ... 

#> $ latitude

: num 4.54 5.09 6.21 8.42 7.63 ... 

#> $ presence

: int 1 1 1 1 1 1

#> $ cases

: num 13 10 11 13 9 9

#> $ temperature: num 24 27.3 25.2 25.1 24.2 ... 

ggplot() +

geom_sf(data = africa) +

geom_sf(data = ctr_africa, fill = "brown") +

labs(title = "Map of Africa and Central African Rep.")

ggplot() +

geom_sf(data = africa) +

geom_sf(data = ctr_africa, 

fill = alpha("brown", alpha = 0.2)) +

geom_point(data = df, 

aes(x = longitude, y = latitude, 

color = factor(presence)), 

shape = ".") +

labs(title = "Synthetic Data Visualisation", 

color = "Infection Status") +

theme(legend.position = "top")

12.4.4

Correlation between Response and Predictor

The correlation coefficient between the number of infected individuals and the temperature can be calculated using the cor() function with the method set to “pearson”. This will

provide a measure of the strength and direction of the linear relationship between the two variables. A correlation coefficient close to 1 indicates a strong positive linear relationship, while a coefficient close to -1 indicates a strong negative linear relationship. A coefficient close to 0 indicates no significant linear relationship between the variables. 

 Example: Simulation of Infections in Central African Rep. 

195

Map of Africa and Central African Rep. 

Synthetic Data Visualisation

Infection Status

0

1

(a) Map of Africa and Central African Rep. 

(b) Map of Central African Rep. Simulation of

Infections

Figure 12.2 Map of Africa

cor(df$cases, df$temperature, method = "pearson")

#> [1] -0.05243272

The correlation coefficient is -0.052, suggesting that there is a weak negative linear relationship between the number of infected individuals and the temperature. This indicates that as

the temperature increases, the number of infected individuals decreases slightly, but the

relationship is not significant. 

12.4.5

Histogram and Scatter Plot

To visualise the distribution of the presence of infection in Central Africa, we can create a histogram of the presence variable using the geom_bar() function from the {ggplot2}

package. The histogram shows the frequency of infected and non-infected locations in Central Africa, with the x-axis representing the presence of infection and the y-axis representing the count of locations. 

ggplot(data = df, 

aes(x = factor(presence))) +

geom_bar() +

labs(title = "Histogram of Presence of Infection", 

x = "Presence", 

y = "Count") +

theme_minimal()

ggplot(data = df %>% filter(presence== 1), 

aes(x = temperature, y = cases)) +

geom_point() +

geom_smooth() +

labs(title = "Infected Individuals based on Temperature", 

x = "Temperature", 

y = "Number of Infected Individuals") +

theme_minimal()

The scatter plot shows the temperature on the x-axis and the number of infected individuals on the y-axis, with each point representing an infected location in Central Africa. The
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Figure 12.3 Histogram of Presence of Infection in Central African Rep. 

geom_point() function adds the points to the plot, while the geom_smooth() function fits a smooth curve to the data, showing the trend between independent and dependent variables, 

temperature and the number of infected individuals, respectively. The labs() function

adds titles and labels to the plot, specifying the title, x-axis label, and y-axis label. The theme_minimal() function sets the plot theme to a minimal style. 

12.4.6

Grid of Points

To create a grid of points we transform the df data as a simple features object

with the st_as_sf() function from the {sf} package, specifying the longitude and lat-

itude columns as the coordinates and the CRS as 43263. Then, intersect the data with st_intersection(ctr_africa) to keep only the points within the country. Finally, select

the relevant columns for the analysis. 

df_sf <- df %>%

st_as_sf(coords = c("longitude","latitude"), 

# or use crs = 4326

crs = "+proj=longlat +datum=WGS84") %>%

st_intersection(ctr_africa) %>%

st_make_valid()

grid <- df_sf %>%

st_bbox() %>%

st_as_sfc() %>%

st_make_grid(what = "centers", 

cellsize = .2, 

square = F)

To generate the grid of points to cover all Central African Republic we can also use the

expand_grid() function from the {tidyr} package, which generates a series of points

within specified bounding box, and the point in polygon (PtInPoly()) function from the

{DescTools} package. The pip vector contains the information if the point is inside the

polygon or not. 

3More information on the coordinate reference system is here: https://epsg.io/. 
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library(DescTools)

set.seed(240724) # set seed for reproducibility

bbox_grid <- expand_grid(x = seq(from = bbox$xmin, 

to = bbox$xmax, 

length.out = 100), 

y = seq(from = bbox$ymin, 

to = bbox$ymax, 

length.out = 100))

ctr_africa_grid_full <- data.frame(PtInPoly(bbox_grid, 

ctr_africa_coords))

ctr_africa_grid_full %>% head()

#> 

x

y pip

#> 1 14.45941 2.267640

0

#> 2 14.45941 2.357284

0

#> 3 14.45941 2.446928

0

#> 4 14.45941 2.536572

0

#> 5 14.45941 2.626216

0

#> 6 14.45941 2.715860

0

Mapping the grid of points on the map of the Central African Republic, we can visualise the spatial distribution of infected locations. 

# Window Grid

ggplot() +

geom_sf(data = ctr_africa)+

geom_sf(data = grid, shape = ".") +

geom_sf(data = df_sf %>% filter(presence == 1), 

aes(fill = presence), 

shape = 21, stroke = 0.3) +

coord_sf() +

labs(title = "Window Grid") +

theme(legend.position = "right")

# Central Africa Grid

ggplot(data = ctr_africa_grid_full) +

geom_point(aes(x, y, color = factor(pip)), shape = ".") +

geom_sf(data = df_sf %>% filter(presence == 1), 

aes(fill = presence), 

shape = 21, stroke = 0.3, 

show.legend = F,) +

coord_sf() +

scale_color_manual(values = c("1" = "grey20", "0" = "grey")) +

labs(title = "Grid Map", 

color = "PIP") +

theme(legend.position = "top")

[image: Image 20]
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Figure 12.4 Map of Central African Rep. 

12.4.7

Create a Raster of Temperature

To visualise the temperature data on the map of the Central African Republic we create a

raster template. The raster template has the same extent as the simulated infected locations and will be used to rasterize the temperature data. This means that the temperature data will be converted into a raster format, with each cell in the raster grid representing a specific temperature value. The rasterized temperature data will be visualised as a heatmap on the map, with warmer colours indicating higher temperatures. 

The raster template is created using the rast() function from the {terra} package, speci-

fying the number of rows and columns, the minimum and maximum values for the x and y

coordinates, and the coordinate reference system (CRS) of the raster. If you want to know

more about the package, type ?terra. 

The raster template is set to have 18 rows and 36 columns, with the x and y coordinates

ranging from 11 to 28 and 2 to 12, respectively. 

library(terra)

raster_template <- terra::rast(nrows = 18, ncols = 36, 

xmin = 11, xmax = 28, 

ymin = 2, ymax = 12, 

crs = st_crs(df_sf)$proj4string)

Rasterize the temperature data using the rasterize() function to convert the temperature

data from the data frame to a raster format based on the raster template. The temperature

data are assigned to the raster cells based on the latitude and longitude coordinates. 

ctr_africa_raster <- rasterize(df_sf, 

raster_template, 

field = "temperature", 

fun = max)

Before plotting the rasterized temperature data on the map of the Central African Republic, we need to convert the rasterized data to a data frame format. This will allow us to visualise the temperature data as a heatmap on the map. The rasterized data contains the temperature values for each cell in the raster grid, which are assigned based on the latitude and longitude
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coordinates of the temperature data. 

ctr_africa_raster_df <- as.data.frame(ctr_africa_raster, 

xy = TRUE)

ctr_africa_raster_df %>% head()

#> 

x

y

max

#> 200 20.20833 8.944444 24.09246

#> 203 21.62500 8.944444 21.51325

#> 205 22.56944 8.944444 23.46981

#> 234 19.26389 8.388889 25.77824

#> 235 19.73611 8.388889 25.11388

#> 268 18.31944 7.833333 25.24466

# Temperature Raster

ggplot() +

geom_raster(data = ctr_africa_raster_df, 

aes(x = x, y = y, fill = max)) +

viridis::scale_fill_viridis(name = "Temperature", 

na.value = "transparent") +

labs(title = "Rasterized Temperature") +

theme(legend.position = "right")

# Central Africa Raster

ggplot() +

geom_point(data = ctr_africa_grid_full %>% filter(pip == 1), 

aes(x = x, y = y), 

shape = ".") +

geom_raster(data = ctr_africa_raster_df, 

aes(x = x, y = y, fill = max)) +

geom_sf(data = df_sf %>% filter(presence == 1), 

aes(size = cases), 

shape = 21, stroke = 0.3) +

scale_fill_gradient(low = "white", high = "grey30", 

na.value = "transparent") +

labs(title = "Max Temperature in Central African Rep.", 

subtitle = "Simulated Values", 

size = "Number of Infections", 

fill = "Max Temperature") +

theme(legend.position = "right")

This plot shows the temperature data as a heatmap on the map of the Central African

Republic, with warmer colours indicating higher temperatures. The infected locations are

represented as circles with size indicating the number of infected individuals at each location. 

12.4.8

The Epicenter of Infection

A central point that represents the spatial distribution of infections in the region is the center of mass. It is a useful metric for understanding the spatial dynamics of disease spread and identifying critical zones for intervention. To calculate the coordinates of the center of massindex{Center of mass} for the infections, even called the epicenter of the infections, we use the center_of_mass() function. 

[image: Image 21]

[image: Image 22]
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(a) Temperature Raster

(b) Central African Rep. Map of Max Tempera-

ture Level

Figure 12.5 Central African Rep. Raster Map of Infections and Max Temperature Level The center of mass is the average of the latitude and longitude of the infected individuals, weighted by the number of infected individuals at each location. 

center_of_mass <- function(df) {

longitude <- sum(df$cases * df$longitude) / sum(df$cases)

latitude <- sum(df$cases * df$latitude) / sum(df$cases)

c(longitude, latitude)

}

df_com <- tibble(longitude = center_of_mass(df)[1], 

latitude = center_of_mass(df)[2])

df_com

#> # A tibble: 1 x 2

#> 

longitude latitude

#> 

<dbl> 

<dbl> 

#> 1

20.7

6.47

Finally, plot the infections on the map of the Central African Republic, with the temperature data represented as a raster layer. The temperature data are displayed as a heatmap, with warmer colours indicating higher temperatures. The infections are shown as points on the

map, with different colours representing infected and non-infected locations. 

Note, here a new package is used, the {ggnewscale} package, which is a package that allows you to add multiple colour scales to a single plot. This is useful when you want to visualise different variables with different colour scales in the same plot. 

# Location of Infections

ggplot() +

geom_sf(data = df_sf, aes(shape = factor(presence), 

color = factor(presence))) +

geom_point(data = df_com, 

aes(x = longitude, y = latitude), 

color = "red", size = 4) +

scale_colour_manual("Infection Status", 

values = c("1" = "red", "0" = "blue")) +

[image: Image 23]

[image: Image 24]
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# combine shape and colour legends

guides(color = guide_legend(title = "Infection Status"), 

shape = guide_legend(title = "Infection Status")) +

labs(title = "Simulated Locations in Central African Rep.", 

subtitle = "Synthetic Data with Infections Center of Mass") +

theme(legend.position = "right")

# Infections Size on Max Temperature

ggplot() +

geom_point(data = ctr_africa_grid_full %>% filter(pip == 1), 

aes(x = x, y = y), shape = ".") +

geom_sf(data = ctr_africa, fill = NA) +

geom_raster(data = ctr_africa_raster_df, 

aes(x = x, y = y, fill = max)) +

scale_fill_gradient(low = "white", high = "grey30", 

na.value = "transparent") +

geom_sf(data = df_sf %>% filter(presence == 1), 

mapping = aes(group = presence), 

alpha = 0.8, color = "red", size = 0.5) +

geom_sf(data = df_sf %>% filter(presence == 1), 

aes(size = cases), 

shape = 21, stroke = 0.3) +

geom_point(data = df_com, 

aes(x = longitude, y = latitude), 

color = "red", size = 4, shape = 13) +

labs(title = "Simulated Infections with Size on Max Temperature in CAR", 

subtitle = "Synthetic Data with Center of Mass", 

fill = "Temperature", 

size = "Number") +

theme(legend.position = "right")

Simulated Locations in Central African Rep. 

Simulated Infections with Size on Max Temperature in CAR

Synthetic Data with Infections Center of Mass

Synthetic Data with Center of Mass
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(a) Scatterplot of Simulated Locations

(b) Infected Locations in Central African Rep. 

Figure 12.6 Map of Central African Rep. 
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12.5

Dynamics of Disease Transmission

The spread of infectious diseases, fundamentally depends on the pattern of human contact4

and the spatial distribution of infected individuals. Understanding the spatial dynamics of disease transmission is crucial for predicting the risk of outbreaks and guiding public health interventions. 

To explore the dynamics of disease transmission in Central Africa by simulating the spread of infections we use a type of network characterised by a high degree of clustering and

short average path lengths between nodes called small-world network. It represents a realistic model of human contact patterns, where individuals are more likely to interact

with their neighbours but can also have long-range connections with other individuals. By

simulating the spread of infections in a small-world network, we can investigate how the

spatial structure of the network influences the transmission dynamics and identify critical nodes for disease control. 

We will use the {igraph} package to create a small-world network and simulate the spread

of infections through the network. The network will consist of nodes representing individuals in Central Africa, with connections between nodes based on a small-world topology. The

sample_smallworld() function generates a small-world network with the specified parame-

tres: the number of nodes N, the average degree k, and the rewiring probability p. The

average degree k determines the number of neighbours each node is connected to, while the

rewiring probability p controls the likelihood of rewiring connections to create long-range connections. By adjusting the parametres k and p, we can create small-world networks with

different topologies and study their impact on disease transmission dynamics. 

library(igraph)

N <- nrow(df_sf) # Number of nodes

k <- 3

# Each node connected to k nearest neighbours

p <- 0.1

# Rewiring probability

small_world <- sample_smallworld(dim = 1, 

size = N, 

nei = k, 

p = p)

Assign the small_world to a new variable small_world_dev and infect 10 random nodes. 

The status of the nodes is defined as “S” for susceptible and “I” for infectious. The colour of the nodes is assigned based on their infection status, with infectious nodes shown in red and susceptible nodes in gold. 

V(small_world)$color <- "grey" 

# Create a second network for development

small_world_dev <- small_world

# Infect 10 random nodes

V(small_world_dev)$status <- "S" # Susceptible

infected_nodes <- sample(V(small_world_dev), 10)

V(small_world_dev)$status[infected_nodes] <- "I" # Infectious

4Erik M. Volz et al., “Effects of Heterogeneous and Clustered Contact Patterns on Infectious Disease Dynamics,”  PLoS Computational Biology  7, no. 6 (June 2, 2011): e1002042, doi:10.1371/journal.pcbi.1002042. 
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# Assign colours based on infection status

V(small_world_dev)$color <-

ifelse(V(small_world_dev)$status == "I", 

"black", "grey80")

Plot the graphs:

par(mfrow = c(1,2))

set.seed(06082024)

plot(small_world, 

vertex.size = 8, 

vertex.label = NA, 

edge.arrow.size = 0.5, 

edge.width = 0.5)

plot(small_world_dev, 

vertex.size = 8, 

vertex.label = NA, 

edge.arrow.size = 0.5, 

edge.width = 0.5)

Figure 12.7 Visualization of a Small-World Network: Structure before and after the spread of infections. 

We use the Central African Rep. grid of points for prediction, and transform it to a simple features object, with the mean values of the covariates for simplicity. 

ctr_africa_grid <- ctr_africa_grid_full %>%

filter(pip == 1)

ctr_africa_grid_sf <- ctr_africa_grid %>%

st_as_sf(coords = c("x", "y"), crs = 4326) %>%

st_make_valid() %>%

mutate(temperature = mean(df$temperature))

infected_sf <- df_sf %>%

filter(presence == 1) %>%

st_make_valid()
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Visualise the grid of points and the observed infections on the map of the Central African Republic. To understand the spatial distribution of infections and the covariates for prediction, we use the small-world network made above, to simulate the connections between individuals. 

Assign the attributes to the nodes of the small-world network based on the synthetic data

(df_sf). The attributes include the type of individual (infected or non-infected), the latitude and longitude coordinates, and the number of infected individuals. The edges of the network represent the connections between nodes. 

coords <- st_coordinates(df_sf$geometry)

# Assign attributes to nodes

V(small_world)$presence <- df_sf$presence

V(small_world)$longitude <- coords[,1]

V(small_world)$latitude <- coords[,2]

V(small_world)$cases <- df_sf$cases

edges <- igraph::as_data_frame(small_world, what = "edges")

nodes <- coords %>%

as_tibble() %>%

rename(longitude = X, latitude = Y)%>%

mutate(id = 1:nrow(.))

edges <- edges %>%

left_join(nodes, by = c("from" = "id")) %>%

rename(lat_from = latitude, 

lon_from = longitude) %>%

left_join(nodes, by = c("to" = "id")) %>%

rename(lat_to = latitude, 

lon_to = longitude)

ggplot() +

geom_sf(data = ctr_africa_grid_sf, 

shape = 21, stroke = 0.5, 

fill = NA, size = 0.5, color = "grey") +

geom_sf(data = infected_sf, 

aes(size = cases), 

shape = 21, stroke = 0.2, color="black") +

scale_color_continuous(name = "Observed", 

low = "white", high = "red") +

labs(title = "Observed Infections") +

theme(legend.position = "right")

ggplot() +

geom_sf(data = ctr_africa, fill = NA) +

geom_sf(data = ctr_africa_grid_sf, 

shape = 21, stroke = 0.5, 

fill = NA, size = 0.5, color = "grey") +

geom_segment(data = edges, 

aes(x = lon_from, y = lat_from, 

xend = lon_to, yend = lat_to), 

color = "grey20", alpha = 0.2, linewidth = 0.2) +

geom_sf(data = df_sf, 
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aes(shape = factor(presence), 

color = factor(presence)), 

size = 0.5) +

geom_sf(data = infected_sf, 

aes(size = cases), 

shape = 21, stroke = 0.2, color="black") +

guides(color = "none") +

scale_color_manual(values = c("0" = "grey20", "1" = "red")) +

labs(title = "Small-World Network with Infection Status", 

x = "Longitude", y = "Latitude", shape = "Presence") +

theme(legend.position = "right")
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Figure 12.8 Map of Central African Rep. 

The clustering of close-proximity contacts that occurs within individuals is an important

factor in the spread of diseases and subject of many mathematical models. 

12.5.1

The Euclidean Distance

To estimate the likelihood of transmission between individuals based on their spatial proximity the Euclidean distance is used. It is calculated as the square root of the sum of the squares of the differences between corresponding coordinates of the two points. 

The Euclidean distance formula:

q

 di,j =

( xi −  xj)2 + ( yi −  yj)2

(12.1)

Where: ( xi, yi) are the coordinates (e.g., latitude and longitude) of the first point (A), e.g., infected individual, and ( xj, yj) are the coordinates of the second point (B), e.g., susceptible individual or location. 

It calculates the straight-line distance between two points in a two-dimensional space, which can be applied to model the spatial spread of infectious diseases based on the proximity of individuals or locations. 

To calculate the Euclidean distance we make a function that considers the distance between the center of mass and the infection coordinates. 
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B

d = 5

A

Figure 12.9 Representation of Euclidean Distance between Points A and B

# helper function for calculating euclidean distance metric

euclidean_distance <- function(longitude, latitude, 

long_com, lat_com) {

long_distances <- (longitude - long_com[1])ˆ2

lat_distances <- (latitude - lat_com[1])ˆ2

return((long_distances + lat_distances) * 0.5)

}

There are other type of distance metrics that can be used, such as the Manhattan distance, which calculates the sum of the absolute differences between the coordinates of two points, the Mahlanobis distance, which considers the correlation between the variables, and the Chebyshev distance, which calculates the maximum difference between the coordinates of two points. 

12.5.2

Spatial Autocorrelation

Spatial autocorrelation refers to the principle that spatial data points close to each other are more likely to have similar values than those further apart. By analysing the spatial distribution of cases, areas with high spatial autocorrelation indicated clusters where infections spread is particularly intense. 

Using tools like Moran’s I and its variants, infection hotspots can be detected by identifying areas where high case rates cluster together. To check the presence of spatial autocorrelation the Global Moran’s law is used:

 N  P N  P N

 w

 i=1

 j=1

 ij ( xi − ¯

 x)( xj − ¯

 x)

 I =

(12.2)

 W  P N ( x

 i=1

 i − ¯

 x)2

Where  xi  and  xj  are the values of the variable of interest at location  i  and  j, ¯

 x  is the mean

value and  N  indicates the number of spatial units, and  wij  are the spatial weight between locations. 

 I  measures the degree to which infection is clustered, dispersed or randomly distributed, with values ranging from -1 indicating perfect dispersion to +1 indicating perfect spatial clustering. A value of 0 indicates no spatial autocorrelation, suggesting a random spatial pattern. 
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We use the {spdep} package, which provide dnearneigh(), nb2listw(), and moran.test()

functions for calculating the neighbourhood contiguity by distance, the spatial weights for neighbours lists, and finally the Moran’s I test for spatial autocorrelation, respectively. 

library(spdep)

library(sp)

coordinates(df) <- ~longitude + latitude

# Define neighbours (using a distance threshold, for example)

# Neighbours within a distance of 2 units

nb <- dnearneigh(coordinates(df), 0, 2)

# Create spatial weights

lw <- nb2listw(nb, style="W")

# Calculate Moran's I for infections

moran_result <- moran.test(df$cases, lw)

moran_result

#> 

#> Moran I test under randomisation

#> 

#> data: df$cases

#> weights: lw

#> 

#> Moran I statistic standard deviate = -0.18432, p-value = 0.5731

#> alternative hypothesis: greater

#> sample estimates:

#> Moran I statistic

Expectation

Variance

#> 

-0.0126043530

-0.0101010101

0.0001844513

The result of the Moran’s I test of -0.013 shows a slight negative spatial autocorrelation, indicating that the location of infected individuals is slightly dispersed across the region. This suggests that the spatial distribution of infections is not significantly clustered or dispersed, but rather randomly distributed. The p-value of 0.5731 indicates that the observed Moran’s I value is not statistically significant, suggesting that the spatial distribution of infections is consistent with a random spatial pattern. And we know it is as we have simulated the data. 

12.5.3

Spatial Proximity with Kriging

Although the Moran’s I test is useful for understanding the overall spatial pattern of

infections, it does not provide detailed information on the spatial distribution of cases across the region. To estimate the spatial distribution of infections and predict the risk of outbreaks, we can use spatial interpolation techniques such as Kriging. 5

This method is used to estimate the spatial distribution of cases by creating a raster of the predicted spatial distribution of infections. It creates a continuous surface that estimates the risk of infection across the entire study area by interpolating the number of infected individuals across a region. 

5“Kriging,” July 18, 2024, https://en.wikipedia.org/w/index.php?title=Kriging&oldid=1235203584. 
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For example, the application of Kriging was used to predict the spatial distribution of

Dengue outbreaks in regions like Khyber Pakhtunkhwa, Pakistan. 6 Similarly, during the COVID-19 pandemic, Empirical Bayesian Kriging (EBK)7 was used to estimate the spatial distribution of COVID-19 cases in sub-Saharan Africa. This approach combined time

series data of confirmed cases with socio-demographic indicators to create detailed spatial risk maps, aiding in understanding and controlling the outbreak. 

Particularly useful for visualising the spatial dynamics of disease spread, while considering the impact of environmental factors such as temperature, or humidity on disease

transmission; Kriging requires an estimation of the variance of points at locations. 

For estimating the variance, a variogram model is fit to the observed data. The variogram is a function of the distance h that describes the degree of spatial dependence of a spatial random field or stochastic process. It takes consideration of the spatial auto-correlation of the data. This means, for instance, the number of cases observed in one location are

supposed to be correlated with the number of cases observed in nearby locations. This also considers the environmental variables that interact with the disease transmission. 

The variogram model formula:

 N ( h)

1

X

 γ( h) =

( Z( xi) −  Z( xi +  h))2

(12.3)

2 N ( h)  i=1

Where:  γ( h) is the semivariance,  N ( h) is the number of pairs of points separated by a distance  h,  Z( xi) is the value of the variable at location  xi, and  Z( xi +  h) is the value of the variable at location  xi +  h. 

We use the {gstat} package to perform Kriging with variogram()8, 9 fit.variogram(), and gstat() functions to perform Universal Kriging, a kriging method that allows to incorporate an external drift, such as temperature. The predictions are visualised on the

grid of points generated earlier, with warmer colours indicating higher predicted values. 

library(gstat)

v <- variogram(object = cases ~ temperature, data = df_sf)

v_model <- fit.variogram(v, model = vgm("Sph"))

plot(v, model = v_model)

6Hammad Ahmad et al., “Spatial Modeling of Dengue Prevalence and Kriging Prediction of Dengue Outbreak in Khyber Pakhtunkhwa (Pakistan) Using Presence Only Data,”  Stochastic Environmental Research and Risk Assessment  34, no. 7 (July 1, 2020): 1023–36, doi:10.1007/s00477-020-01818-9. 

7Amobi Andrew Onovo et al., “Using Supervised Machine Learning and Empirical Bayesian Kriging to Reveal Correlates and Patterns of COVID-19 Disease Outbreak in Sub-Saharan Africa: Exploratory Data Analysis,” n.d., doi:10.1101/2020.04.27.20082057. 

8Edzer J Pebesma, “Multivariable Geostatistics in s: The Gstat Package,”  Computers & Geosciences  30, no. 7 (August 1, 2004): 683–91, doi:10.1016/j.cageo.2004.03.012. 

9Hans Wackernagel, “Linear Regression and Simple Kriging,” ed. Hans Wackernagel (Berlin, Heidelberg: Springer, 2003), 15–26, doi:10.1007/978-3-662-05294-5_3. 
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Figure 12.10 Variogram of Infections and Temperature

Or, just use the kbfit() function, 10 which tries different initial values and models to find the best fit for the variogram, the function can be used directly from the book package

hmsidwR::kbfit(). 

Then, the Kriging technique is applied by using the gstat::gstat() function, 11 to predict the number of infected individuals at unobserved locations, based on the best variogram

model. 

Kriging Model Formula:

 n

X

 Z( u) =

 λiZ( xi)

(12.4)

 i=1

Where:  Z( u) is the predicted value at location  u,  λi  is the weight assigned to each observed value  Z( xi), and  n  is the number of observed values. 

The predictions are visualised on the grid of points generated earlier, with warmer colours indicating higher predicted values. The predictions are stored in the kpred object, which

contains the predicted values and the variance of the predictions. 

# Perform Kriging

k <- gstat::gstat(formula = presence ~ temperature, 

data = df_sf, 

model = v_model)

kpred <- predict(k, newdata = ctr_africa_grid_sf)

10“Kriging Best Fit: Kbfit - Fit Variogram Models and Kriging Models to Spatial Data and Select the Best Model Based on the Metrics Values — Kbfit,” n.d., https://fgazzelloni.github.io/hmsidwR/reference/

kbfit.html. 

11Paula Moraga,  Chapter 14  Kriging | Spatial Statistics for Data Science: Theory and Practice with R, n.d., https://www.paulamoraga.com/book-spatial/kriging.html?q=kri#kriging. 

[image: Image 25]
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#> [using universal kriging]

data.frame(geo = kpred$geometry, 

var = kpred$var1.var, 

pred = kpred$var1.pred) %>%

head()

#> 

geometry

var

pred

#> 1 POINT (14.58986 4.688027) 29.18857 0.3473599

#> 2 POINT (14.58986 4.777671) 29.18857 0.3473599

#> 3 POINT (14.58986 4.867316) 29.18857 0.3473599

#> 4 POINT (14.58986 4.95696) 29.18857 0.3473599

#> 5 POINT (14.58986 5.046603) 29.18857 0.3473599

#> 6 POINT (14.58986 5.136248) 29.18857 0.3473599

Visualise predictions:

ggplot() +

geom_sf(data = kpred, 

aes(fill = var1.pred), 

shape=21, stroke=0.5) +

geom_sf(data = infected_sf) +

scale_fill_viridis_c() +

labs(title = "Kriging Prediction in Central African Rep.") +

theme(legend.position = "right")

ggplot() +

geom_sf(data = kpred, 

aes(fill = var1.var), 

shape=21, stroke=0.5) +

geom_sf(data = infected_sf) +

scale_fill_viridis_c() +

labs(title = "Kriging Variance in Central African Rep.") +

theme(legend.position = "right")

Kriging Prediction in Central African Rep. 

Kriging Variance in Central African Rep. 

var1.pred

var1.var

29
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(a) Kriging Prediction in Central African Rep. (b) Kriging Variance in Central African Rep. 

Figure 12.11 Kriging Map of Central African Rep. 
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12.6

Mapping Risk of Infections

To map the risk of infections in Central Africa, we can combine the Kriging predictions with the spatial distribution of infections and the small-world network. The Kriging predictions provide an estimate of the risk of infections across the region, while the spatial distribution of infections and the small-world network represent the spatial dynamics of disease transmission. 

The risk of infections is visualised on the map of Central African Republic, with warmer

colours indicating higher predicted values. The spatial distribution of infections is shown as points on the map, with different colours representing infected and non-infected locations. 

The small-world network is overlaid on the map, showing the connections between nodes

and the spatial dynamics of disease transmission. 

This is a different way to visualise the Kriging predictions, first a data frame is created with the coordinates and the predicted values, and then the predictions plotted on the map of

Central African Republic. The predictions are shown as a raster layer. 

kriging_df <- kpred %>%

sf::st_coordinates() %>%

cbind(as.data.frame(kpred) %>% select(var1.pred)) %>%

rename(longitude = X, latitude = Y)

ggplot() +

geom_sf(data = ctr_africa, fill = "grey") +

geom_raster(data = kriging_df, 

aes(x = longitude, y = latitude, 

fill = var1.pred)) +

scale_fill_viridis_c() +

geom_segment(data = edges, 

aes(x = lon_from, y = lat_from, 

xend = lon_to, yend = lat_to), 

color = "grey", alpha = 0.2, linewidth = 0.2) +

geom_sf(data = df_sf %>% filter(presence == 1), 

aes(size = cases), 

# show.legend = F, 

shape = 21, stroke = 0.2) +

geom_sf(data = df_sf, 

aes(color = factor(presence)), 

shape = ".") +

scale_color_manual(values = c("0" = "grey", "1" = "red")) +

guides(size = guide_legend(order = 1), 

color = guide_legend(order = 2), 

fill = guide_colorbar(order = 3)) +

labs(title = "Kriging Prediction of Infections Size on Max Temperature", 

fill = "Prediction of Infections", 

size = "Infections Size", 

color = "Presence") +

ggthemes::theme_map() +

theme(legend.position = "bottom", 

legend.box = "vertical", 

[image: Image 27]

[image: Image 28]
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legend.key.size = unit(0.5, "cm"), 

legend.title = element_text(size = 8), 

legend.text = element_text(size = 6))

Kriging Prediction of Infections Size on Max Temperature
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16
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Figure 12.12 Kriging Prediction of Infections Size on Max Temperature

Finally, the last plot is made with the spplot() function from the {sp} package, which

creates a spatial plot of the Kriging predictions. The predictions are visualised as a heatmap on the map of the Central African Republic, with warmer colours indicating

higher predicted values. The plot provides a detailed view of the spatial distribution of

infections and the risk of outbreaks across the region. 

kriging_sp <- kriging_df

coordinates(kriging_sp) <- ~longitude+latitude

spplot(kriging_sp, "var1.pred", main = "Kriging Prediction of Infections")
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Kriging Prediction of Infections
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Figure 12.13 Kriging Prediction of Infections with a Spplot

12.7

Summary

In this chapter, we have explored the spatial dynamics of disease transmission in Central

Africa using a combination of spatial analysis techniques and visualisation tools. We have simulated the spatial distribution of infections, created a grid of points to cover the region, and visualised the spatial distribution of infections on the map of Central African Republic. 

We have used a small-world network to model the spatial connections between individuals and simulated the spread of infections through the network. We have shown how the Euclidean

distance between points is calculated, to estimate the likelihood of transmission based on spatial proximity and performed spatial autocorrelation analysis to understand the spatial pattern of infections. We have used Kriging to estimate the spatial distribution of infections and predict the risk of outbreaks across the region. The results provide valuable insights into the spatial dynamics of disease transmission and the spatial distribution of infections in Central Africa, which can inform public health interventions and guide efforts to control the spread of infectious diseases. 

13

Advanced Data Visualisation Techniques

Learning Objectives

• Learn advanced data visualisation techniques

• Create contour plots to visualise interaction effects

• Create a pyramid plot to visualise population distribution

In this chapter, we will learn how to create advanced data visualisation techniques using

ggplot2. We will create contour plots to visualise interaction effects and pyramid plots to visualise population distribution. 

13.1

Example: Detecting Interaction Effects with Contour Plots

Interaction effects can cause predictors to act together on the response variable, leading to additional variation in the response. Interaction effects occur when the combined effect of two or more predictors is different from what would be expected if the impact of each predictor were considered alone. For instance, in the case of cardiovascular disease (CVD) risk prediction, the interaction between age and cholesterol levels can have a significant impact on the risk of developing heart disease. In addition, if smoke is added to the model, the

effect of cholesterol levels on CVD risk may change depending on whether the individual is a smoker or non-smoker. So, smoke is said to interact with cholesterol levels in predicting CVD risk, as well as age, but in what way? 

 y =  β 0 +  β 1 x 1 +  β 2 x 2 +  β 3 x 3 +  ϵ

(13.1)

where  y  is the risk of developing heart disease,  β 0 is the intercept,  β 1 and  β 2 are the coefficients for the predictors  x 1 and  x 2, respectively, and  β 3 is the coefficient for the interaction term x 1 ∗  x 2. The error term  ϵ  accounts for the variability in the response variable that is not explained by the predictors. 

There are four type of interactions:

1. additive is when  β 3 ≈ 0

2. antagonistic is when  β 3  <  0

3. synergistic is when  β 3  >  0

4. atypical is when  β 3 ̸= 0

In order to simulate the interaction effects for each type of interaction, we cannot just

simulate random values for  y, we need to simulate different levels of interactions between DOI: 10.1201/9781032625935-13
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predictors setting up the values for the coefficients  β 0,  β 1,  β 2, and  β 3, and the predictors  x 1

and  x 2 and the error term  ϵ. 

Load the necessary libraries and set the seed for reproducibility. 

library(tidyverse)

set.seed(123)

Simulate the data ready for different interaction effects. 

beta0<- rep(0,200)

beta1<- rep(1,200)

beta2<- rep(1,200)

Then, simulate the predictors  x 1 and  x 2 and the error term  ϵ  for 200 observations. 

x1<- runif(200, min = 0, max = 1)

x2 <- runif(200, min = 0, max = 1)

e <- rnorm(200)

Then for each of the three cases we simulate a  β 3 based on antagonism, no interaction, or synergism with values -10, 0, and 10 respectively. 

Case 1: Antagonism

beta3 <- rep(-10,200)

Assemble the values for the coefficients and predictors into the equation, to obtaining the response variable  y. This will be our synthetic “observed” data. 

y1 = beta0 + beta1*x1 + beta2*x2 + beta3*(x1*x2) + e

Apply a linear model to the observed data to predict the response variable  y  based on interaction between  x 1 and  x 2. 

observed1 <- tibble(y1, x1, x2)

mod1 <- lm(y1 ~ x1*x2, data = observed1)

observed1$z <- predict(mod1, observed1)

Then create a grid of values for  x 1 and  x 2 to predict the response variable  y  based on the interaction between  x 1 and  x 2. 

grid <- with(observed1, 

interp::interp(x = x1, y = x2, z))

griddf <- subset(data.frame(x = rep(grid$x, nrow(grid$z)), 

y = rep(grid$y, 

each = ncol(grid$z)), 

z = as.numeric(grid$z)),!is.na(z))

p1 <- ggplot(griddf, aes(x, y, z = z)) +

geom_contour(aes(colour = after_stat(level), 

linetype = factor(after_stat(level))), 

linewidth = 2) +

scale_color_viridis_c()+

guides(linetype = "none")+
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labs(title="Antagonism", 

color="Prediction", x = "x1", y = "x2")+

theme(legend.position = "top")

Case 2: Additive (no interaction)

beta3 <- rep(0,200)

y2 = beta0 + beta1*x1 + beta2*x2 + beta3*(x1*x2) + e

observed2 <- tibble(y2, x1, x2)

mod2 <- lm(y2 ~ x1*x2, data = observed2)

observed2$z <- predict(mod2, observed2)

grid <- with(observed2, interp::interp(x = x1, y = x2, z))

griddf <- subset(data.frame(x = rep(grid$x, nrow(grid$z)), 

y = rep(grid$y, 

each = ncol(grid$z)), 

z = as.numeric(grid$z)),!is.na(z))

p2 <- ggplot(griddf, aes(x, y, z = z)) +

geom_contour(aes(colour = after_stat(level), 

linetype = factor(after_stat(level))), 

linewidth = 2) +

scale_color_viridis_c()+

guides(linetype = "none")+

labs(title="Antagonism", 

color="Prediction", x = "x1", y = "x2")+

theme(legend.position = "top")

Case 3: Synergism

beta3<- rep(10,200)

y3 = beta0 + beta1*x1 + beta2*x2 + beta3*(x1*x2) + e

observed3 <- tibble(y3, x1, x2)

mod3 <- lm(y3 ~ x1 * x2 , data = observed3)

observed3$z <- predict(mod3, observed3)

grid <- with(observed3, interp::interp(x=x1,y=x2,z))

griddf <- subset(data.frame(x = rep(grid$x, nrow(grid$z)), 

y = rep(grid$y, each = ncol(grid$z)), 

z = as.numeric(grid$z)),!is.na(z))

p3 <- ggplot(griddf, aes(x, y, z = z)) +

geom_contour(aes(colour = after_stat(level), 

linetype = factor(after_stat(level))), 

linewidth = 2) +

scale_color_viridis_c()+

guides(linetype = "none")+

[image: Image 29]

[image: Image 30]

[image: Image 31]
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labs(title="Antagonism", 

color="Prediction", x = "x1", y = "x2")+

theme(legend.position = "top")

library(patchwork)
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13.2

Example: Pyramid Plot

A pyramid plot is a type of bar chart that displays the distribution of a population by

age. We use the data from the {wpp2022} package, data(package = "wpp2022") which is a collection of population datasets, with population estimates. Data are from the United

Nations World Population Prospects 2022. 

library(wpp2022)

The data contains the following columns:

# load the data on the population

data(popAge1dt)

popAge1dt %>% head()

#> 

country_code

name year

age

popM

popF

pop

#> 

<int> <char> <int> <int> 

<num> 

<num> 

<num> 

#> 1:

900 World 1949

0 41312.32 39439.29 80751.61

#> 2:

900 World 1949

1 35761.05 34274.35 70035.40
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#> 3:

900 World 1949

2 33514.72 32065.08 65579.81

#> 4:

900 World 1949

3 31076.46 29780.73 60857.19

#> 5:

900 World 1949

4 28786.66 27647.06 56433.72

#> 6:

900 World 1949

5 28082.09 26882.94 54965.03

Check all Countries in the dataset with View():

popAge1dt %>% count(name) %>% View

Data are then aggregated to show the total population for all ages by year. Here, in particular, we show the use of geomtextpath::geom_textline() to add a label to the World line plot. 

{geomtextpath} is a nice R-package which allows you to add text along a path. 

all_ages <- popAge1dt %>%

group_by(year, name) %>%

reframe(tot_pop=sum(pop))

all_ages %>%

filter(!name == "World")%>%

ggplot(aes(x = year, y = tot_pop, group = name)) +

geom_line(color= "grey", linewidth =0.2) +

geomtextpath::geom_textline(data = all_ages %>% filter(name == "World"), 

aes(label=name), 

color = "red", linewidth = 1) +

labs(title = "United Nations World Population Prospects [1949 - 2021]", 

x = "Year", y = "Population in thousands", 

caption = "Data Source: UN World Pop 2022| Graphic: @fgazzelloni")

United Nations World Population Prospects [1949 − 2021]
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Data Source: UN World Pop 2022| Graphic: @fgazzelloni

Figure 13.3 Population for all ages from 1949 to 2021
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Data are then transformed to a long format to create a pyramid plot. We select the

columns name, year, age, popF, and popM and pivot the data to a long format using the

pivot_longer() function. We then create a new column value that contains positive values

for male population and negative values for females. 

data <- popAge1dt %>%

select(name, year, age, popF, popM) %>%

pivot_longer(cols = c(popM, popF), 

names_to = "sex", 

values_to = "population") %>%

mutate(value = ifelse(sex == "popF", 

as.integer(population * -1), 

as.integer(population)))

data %>% head()

#> # A tibble: 6 x 6

#> 

name

year

age sex

population value

#> 

<chr> <int> <int> <chr> 

<dbl> <int> 

#> 1 World 1949

0 popM

41312. 41312

#> 2 World 1949

0 popF

39439. -39439

#> 3 World 1949

1 popM

35761. 35761

#> 4 World 1949

1 popF

34274. -34274

#> 5 World 1949

2 popM

33515. 33514

#> 6 World 1949

2 popF

32065. -32065

Then, we can create pyramid plots that show the distribution of the population by age for

High-income countries, Lower-middle-income countries, and Low-income countries, and put them in one chunk with the option layout-ncol: 3. 

data %>%

filter(name == "High-income countries") %>%

ggplot(aes(x = age, y = value, fill = sex)) +

geom_bar(stat = "identity") +

scale_fill_manual(values = c("#CC6666", "#9999CC")) +

coord_flip() +

labs(title = "United Nations World Population Prospects 2022", 

subtitle = "High-income countries", 

x= "Age", y = "Population in thousands", fill = "", 

caption = "Data Source: UN World Pop | Graphic: @fgazzelloni") +

theme_minimal() +

theme(plot.title = element_text(face = "bold", 

hjust = 0.5), 

plot.subtitle = element_text(hjust = 0.5), 

axis.text = element_text(size = 10))

data %>%

filter(name == "Lower-middle-income countries") %>%

ggplot(aes(x = age, y = value, fill = sex)) +

geom_bar(stat = "identity") +

scale_fill_manual(values = c("#CC6666", "#9999CC")) +

coord_flip() +

labs(title = "United Nations World Population Prospects 2022", 

subtitle = "Lower-middle-income countries", 
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x= "Age", y = "Population in thousands", fill = "", 

caption = "Data Source: UN World Pop | Graphic: @fgazzelloni") +

theme_minimal() +

theme(plot.title = element_text(face = "bold", 

hjust = 0.5), 

plot.subtitle = element_text(hjust = 0.5), 

axis.text = element_text(size = 10))

data %>%

filter(name == "Low-income countries") %>%

ggplot(aes(x = age, y = value, fill = sex)) +

geom_bar(stat = "identity") +

scale_fill_manual(values = c("#CC6666", "#9999CC")) +

coord_flip() +

labs(title = "United Nations World Population Prospects 2022", 

subtitle = "Low-income countries", 

x= "Age", y = "Population in thousands", fill = "", 

caption = "Data Source: UN World Pop | Graphic: @fgazzelloni") +

theme_minimal() +

theme(plot.title = element_text(face = "bold", 

hjust = 0.5), 

plot.subtitle = element_text(hjust = 0.5), 

axis.text = element_text(size = 10))
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Figure 13.4 Pyramid Plots

pyramid <-

data %>%

filter(name == "World") %>%

ggplot(aes(x = age, y = value, fill = sex)) +

geom_bar(stat = "identity") +

scale_fill_manual(values = c("#CC6666", "#9999CC")) +

coord_flip() +

labs(title = "UN Pop 2022 - {closest_state}", 

x= "Age", y = "Population in thousands", fill = "", 

caption = "Data Source: UN World Pop | Graphic: @fgazzelloni") +

theme_minimal() +

theme(plot.title = element_text(face = "bold", 

hjust = 0.5), 

axis.text = element_text(size = 10))
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library(gganimate)

pyramid_gif <- pyramid +

transition_states(year, 

transition_length = 1, 

state_length = 2) +

enter_fade() +

exit_fade() +

ease_aes("cubic-in-out")

animate(pyramid_gif, 

fps = 72, duration = 6, 

width = 1200, height = 1400, res = 180, 

renderer = gifski_renderer("images/12_unp_pyramid.gif"))
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Introduction to Infectious Diseases

Learning Objectives

• Learn about the dynamics of infectious diseases and their impact on human health

• Understand the role of mathematical models in predicting infectious disease outbreaks

• Explore the components of infectious disease models and their implications

“Several infectious diseases are emerging and threatening human health

worldwide. The burden of infectious diseases is undeniably a global issue, 

causing millions of deaths annually.” 1

The advent of machine learning (ML) has revolutionised the field of infectious disease

research by providing robust tools for predicting outbreaks and understanding the dynamics of spread. In this chapter, we will enhance our understanding of these diseases and look at the effects on Disability-Adjusted Life Years (DALYs) by applying machine learning and data visualisation techniques learned in previous chapters (Chapter 6 and Chapter 10). To further improve the knowledge of the impact of infectious diseases on global health, we will explore how integrating ML models can improve the accuracy of disease burden estimations

and provide valuable insights into the impact of infectious diseases on public health. 

14.1

Infectious Diseases the Invisible Enemies

Emerging infectious diseases are a global concern, causing millions of deaths annually. 

Understanding their behaviour and predicting outbreaks is fundamental not only for public

health but also for advancing prediction techniques that can be applied in other fields. 

Microorganisms, including bacteria and viruses, adapt and evolve at a rate much faster than humans. For example, the generation time for bacteria can be as short as 20–30

minutes, while viruses can replicate in even shorter time frames. This rapid adaptation

allows pathogens to evolve quickly, developing resistance to treatments and evading the host’s immune system. 

Infectious diseases follow a multi-stage progression that begins when the infective agent, whether viral, bacterial, or parasitic, begins to thrive and multiply throughout the body2

and the process of infection starts. The rate at which the pathogen proliferates varies

significantly depending on the type of organism involved. Each infectious disease has a

1Omar Enzo Santangelo et al., “Machine Learning and Prediction of Infectious Diseases: A Systematic Review,”  Machine Learning and Knowledge Extraction  5, no. 1 (March 2023): 175–98, doi:10.3390/make5010013. 

2Broemeling,  Bayesian Analysis of Infectious Diseases. 

DOI: 10.1201/9781032625935-14
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unique incubation period, which is the interval between the initial establishment of the pathogen in the host and the onset of symptoms. 

The incubation period can range from a few hours to several months, influenced by factors

such as the pathogen’s growth rate, the host’s immune response, and the route of transmission. 

For example, the incubation period for the influenza virus is typically 1 to 4 days, whereas for diseases like hepatitis B, it can be as long as 6 months. Understanding the incubation period helps in identifying the time frame for potential exposure. 

Several factors influence an individual’s susceptibility to infection, including:

• Infection dose (quantity of invading germs)

• Virulence (the ability of the organism to cause disease)

• Immune status (the condition of the body’s immune system)

• Transmission route (contact with the source of infection for contagious diseases)

Figure 14.1 Pathogens and humans have co-evolved over centuries, each adapting in

response to the other. This ongoing adaptation shapes the future of health and disease. 

Viruses, word derived from the Latin word for “poisonous substance” , are intracellular parasites that can only replicate within living host cells. Their sizes range from 20 to 400

nm in diameter and can only be observed with an electron microscope. Outside of a living

cell, a virus is a dormant particle of various shapes. Once inside a cell, it replicates, often killing the cell or altering its functions. 

The following seven diseases are all caused by an infectious agent such as virus or bacteria, generally cause acute symptoms, ranging from mild to severe, and require prompt medical

attention to prevent complications and further spread:

1. Acute Respiratory Infection (ARI)

 Mathematical Models for Infectious Diseases
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2. COVID-19

3. Dengue

4. Influenza/Influenza-Like Illness (ILI)

5. Malaria

6. West Nile Virus

7. Zika

These diseases are transmitted through various means and can be grouped by transmission methods:

• Vector-Borne: Dengue, Malaria, West Nile Virus, and Zika are primarily spread through mosquito bites. 

• Respiratory Droplets: ARI, COVID-19, and Influenza/ILI are transmitted via respiratory droplets when infected individuals cough or sneeze. 

14.2

Mathematical Models for Infectious Diseases

The application of mathematical models to infectious diseases dates back over a century, with significant contributions from pioneers such as  Kermack  and  McKendrick, who established the foundations of the subject. 3 Their work introduced the concept of categorising individuals based on their epidemiological status: susceptible, infected, and recovered. 

14.2.1

The SIR Model

One of the simplest and most fundamental epidemiological models, the SIR model, to

which we had a quick look in the previous chapters (Chapter 6 and Chapter 7), is based on these three compartments and uses a system of differential equations to describe how

individuals move between these compartments based on infection rate and the recovery rate. These parameters help predict the epidemic’s progression, showing how the number of susceptible individuals decreases as the number of infected individuals increases, eventually leading to recovery and a decline in new infections, as shown in Equation 6.1. 

More complex models, includes:

• SEIR Model: This model introduces an exposed (E) compartment, which represents

individuals who have been infected but are not yet infectious. This compartmentalization

is particularly useful for diseases with significant incubation periods (e.g., COVID-19). 

Practical applications are in Section 6.3.2 and Section 15.3 . 

• SIS Model: In this model, individuals who recover from infection do not gain lasting immunity, meaning they return to the susceptible class and can become reinfected. 

• MSIR Model: In some diseases, such as measles, maternal antibodies provide temporary immunity to newborns. The M (maternal immunity) compartment is used in such cases. 

3M. J. Keeling and L. Danon, “Mathematical Modelling of Infectious Diseases,”  British Medical Bulletin 92, no. 1 (December 1, 2009): 33–42, doi:10.1093/bmb/ldp038. 
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14.3

Components of Infectious Disease Models

1. Infection Rate: This parameter, often denoted as  β (beta), controls how quickly the susceptible population becomes infected. It depends on factors such as contact

rate and the probability of transmission per contact. It is the rate at which

individuals move from the susceptible compartment to the infected compartment. 

The infection rate is proportional to the product of susceptible and infected

individuals. 4

 β = Contact Rate × Probability of Transmission per Contact

(14.1)

2. Recovery Rate: Denoted by  γ (gamma), this defines the rate at which infected individuals recover and either gain immunity or become susceptible again (depending on the model). The average duration of infection is the reciprocal of the

recovery rate. 

1

 γ =

(14.2)

Average Duration of Infection

3. Incubation Period: In models like SEIR, the incubation period is the average

time that exposed individuals take before they become infectious. This is a

critical factor in diseases like COVID-19 and Ebola. The incubation period is the

reciprocal of the rate at which individuals move from the exposed compartment

to the infected compartment.  σ  is the rate at which individuals move from the

exposed compartment to the infected compartment. 

1

Incubation Period =

(14.3)

 σ

4. Transmission Rate: The transmission rate often depends on how a disease

spreads—whether it’s through respiratory droplets, direct contact, vectors like

mosquitoes, or other means. Transmission rates are also influenced by human

behaviours, such as hygiene practices and social distancing measures. The trans-

mission rate is the product of the probability of transmission per contact and

the number of contacts.  β  is the probability of transmission per contact, and the number of contacts is the average number of people an infected individual comes

into contact with. 

Transmission Rate =  β × Number of Contacts

(14.4)

5. Reproduction Ratio ( R 0): A key metric that indicates the average number of secondary cases generated by one infectious individual in a fully

susceptible population is the basic reproduction ratio ( R 0). This value is calculated using the formula in Equation 14.5.  β  is the transmission rate and  γ  is

4Theodore Kolokolnikov and David Iron, “Law of Mass Action and Saturation in SIR Model with Application to Coronavirus Modelling,”  Infectious Disease Modelling  6 (November 16, 2020): 91–97, 

doi:10.1016/j.idm.2020.11.002. 
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the recovery rate. As the ratio of the transmission rate to the recovery rate,  R 0

provides a measure of the disease’s ability to spread. 

 β

 R 0 =

(14.5)

 γ

In summary, the SIR model is a simple yet powerful tool for understanding the dynamics of

infectious diseases. By tracking the movement of individuals between susceptible, infected, and recovered compartments, the model can predict the course of an epidemic and help

public health officials make informed decisions about disease control measures. The value of R 0 determines the epidemic threshold:

( >  1 = Epidemic

If  R 0

(14.6)

 <  1 = End of Infection Transmission

To accounts for changes in the population’s immunity, the effective reproduction number ( Reff ) is calculated on a susceptible population which is not completely susceptible, and value of  Reff  results less than  R 0 due to the presence of immune individuals in the population. 

Another critical concept in infectious disease is the herd immunity, which refers to the indirect protection from infectious diseases that occurs when a large percentage of

a population becomes immune to the infection, either through vaccination or previous

infections. The herd immunity is reached when the effective reproduction number is less

than 1, and the disease stops spreading. 

The SIR model shows the dynamics of an epidemic by looking at how it grows and eventually

declines. Initially, the number of cases rises exponentially, leading to a peak, but as the susceptible population start reducing in number due to various factors, the growth rate slows with subsequent decline. 

14.4

Advancements and Extensions

Mathematical modelling has evolved to include more complex factors such as age structure, 

stochasticity, and spatial dynamics. Age-structured models, for example, consider how

different age groups interact and contribute to the spread of diseases, which is particularly important for diseases like measles or COVID-19. Stochastic models account for random

events that can influence the course of an epidemic, such as the introduction of the disease into a new population. 

The use of machine learning algorithms such as decision trees, random forests, support vector machines, and deep-learning networks such as Long Short-Term Memory (LSTM) models, effectively improve the identification of patterns and trends that may not be obvious with mechanistic models. These models are able to improve prediction accuracy

working smoothly with large datasets. 

Combining models and data sources enhances prediction accuracy, various models and

techniques can be applied to reduce bias and the risk of overfitting. For instance, ensemble learning combines the predictions of multiple models to improve accuracy. In this context, we will explore how machine learning can predict infectious disease outbreaks and their

impacts on human health, ultimately aiming to reduce the burden of disease. 
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Another significant aspect to consider is the emerging use of transfer learning, which involves applying knowledge gained from one predictive task to another. This approach is

especially useful when data are limited and models need to be adapted. Although relatively under-explored in infectious disease research, transfer learning holds significant promise for improving predictions in areas with scarce data. By leveraging information from related

tasks, this technique can enhance model performance, leading to more accurate and reliable predictions in public health scenarios. 5

14.5

The Impact on DALYs

To understand the magnitude of infectious diseases impacts on DALYs, we can simply

consider the DALYs rate of change. The percentage change in total DALYs and DALYs due

to infectious diseases, in general or for a specific infective virus such as COVID19, allows us to assess the impact on the overall burden of disease. In the case of COVID19 for example, the percentage change in DALYs due to COVID19 can explain how this virus affected global

health and produced excess mortality and morbidity. 

DALYs due to Infectious Diseases

Percent change in DALYs =

× 100

(14.7)

Total DALYs

Where the  DALY s = P n

( Y LD

 i=1

 i +  Y LLi),  Y LD  and  Y LL  are the years lived with

disability and the years of life lost respectively. 

This percentage change provides a measure of the impact of infectious diseases on the overall burden of disease. The DALYs due to infectious diseases can be calculated as the sum of the DALYs for each disease, and the total DALYs can be calculated as the sum of the DALYs

for all diseases. The percentage change in DALYs due to infectious diseases can then be

calculated as the ratio of the DALYs due to infectious diseases to the total DALYs, multiplied by 100. 

Furthermore, the use of machine learning models used to predict the variation of number of DALYs due to infectious diseases over time can be a valuable tool to understand the impact of infectious diseases on global health. Two approaches can be valued:

1. DALYs as a function of the socio-demographic index (SDI): A composite

index of the average income per person, educational attainment, and total fertility

rate. The model function can be expressed as:

 DALYid =  f ( SDI) +  ϵ

(14.8)

where is the number of  DALY s  is the response variable,  SDI  the socio-

demographic index acting as predictor,  f ( . ) is the function that relates the number of DALYs to the socio-demographic index, and  ϵ  is the error term. 

2. DALYs as a function of the human development index (HDI): A composite

index of life expectancy, education, and per capita income indicators. The model

function can be expressed as:

 DALYid =  f ( HDI) +  ϵ

(14.9)

5Roster, Connaughton, and Rodrigues, “Forecasting New Diseases in Low-Data Settings Using Transfer Learning”. 
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where is the number of  DALY s  is the response variable,  HDI  the human development index where is the number of  DALY s  is the response variable,  HDI  the socio-demographic index acting as predictor,  f ( . ) is the function that relates the number of DALYs to the socio-demographic index, and  ϵ  is the error term. Big

data analytics with machine learning analysis are used to classify the patterns

of global disease burden by human development index (HDI) to have a better

understanding of DALYs caused by infectious diseases such as COVID19 given

different levels of HDI. 

This can help us to understand the trends and patterns of infectious diseases and their

impact on global health. 

15

COVID-19 Outbreaks

Learning Objectives

• Understand the key characteristics and impact of COVID-19

• Explore how COVID-19 spreads through populations and environments

• Learn to map and visualize COVID-19 outbreaks using spatial data

In this chapter, we explore the dynamics of COVID-19 disease outbreaks in more detail. 

We examine the results of various model’s applications that simulate the spread of the virus. 

15.1

Epidemiology

COVID-19, short for “Coronavirus Disease 2019,” is an infectious disease caused by the novel coronavirus SARS-CoV-2, a type of virus that is part of the Coronaviridae1 family of viruses that can cause illness in animals and humans alike. The disease was first identified in December 2019 in Wuhan, Hubei province, China, and has since then spread globally, 

leading to a pandemic. 2

The origin of the virus is still under investigation, 3 but it is believed to have zoonotic4 origins, with bats being the most likely reservoir. The virus has also been linked to pangolins, 5

mammals that are illegally trafficked for their scales and meat. The virus is thought to

have jumped from animals to humans, possibly through a wet market in Wuhan where live

animals were sold. 

Zoonotic diseases are a critical area of study in public health and epidemiology due to their significant impact on human populations and the potential for pandemics. As discussed by

MD Laura H. Kahn in One Health and the Politics of COVID-19, 6 the pandemic’s origins and spread highlight the critical need for a holistic understanding of health systems that integrates human, animal, and environmental health. Zoonotic viruses can be transmitted from animals to humans through direct contact, consumption of contaminated food or water, 

or exposure to infected animal products. These viruses can cause a range of diseases, from

1“Coronaviridae - Wikipedia,” n.d., https://en.wikipedia.org/wiki/Coronaviridae. 

2“Pandemic - Wikipedia,” n.d., https://en.wikipedia.org/wiki/Pandemic. 

3“WHO-Convened Global Study of Origins of SARS-CoV-2: China Part,” n.d., https://www.who.int/pu

blications/i/item/who-convened-global-study-of-origins-of-sars-cov-2-china-part. 

4“Zoonosis - Wikipedia,” n.d., https://en.wikipedia.org/wiki/Zoonosis. 

5Xing-Yao Huang et al., “A Pangolin-Origin SARS-CoV-2-Related Coronavirus: Infectivity, Pathogenicity, and Cross-Protection by Preexisting Immunity,”  Cell Discovery  9, no. 1 (June 17, 2023): 1–13, doi:10.1038/s41421-023-00557-9. 

6M. D. Laura H. Kahn,  One Health and the Politics of COVID-19 (Johns Hopkins University Press, 2024), doi:10.56021/9781421449326. 

DOI: 10.1201/9781032625935-15
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mild illnesses to severe respiratory infections, and can have devastating effects on public health and economies. 

Examples of Zoonotic Viruses:

1. Influenza (Flu) Viruses: Avian (bird) flu and swine (pig) flu. 

2. Coronavirus: SARS, MERS, and COVID-19 from fruit bats, pangolins. 

3. Ebola Virus: Likely originated from fruit bats. 

4. HIV/AIDS: Believed to have originated from non-human primates (chim-

panzees). 

5. Rabies: Spread from infected animals like dogs, bats, and raccoons. 

On January 30, 2020, The World Health Organization (WHO) declared the COVID-

19 Outbreak a  Public Health Emergency of International Concern, and a worldwide investigation started to understand more about the virus and its effects on humans. This

challenge involved the unprecedented identification of this type of virus, requiring thorough testing and confirmation of the incubation period, recovery rate, and infection rate through the collection of cases globally. 

The virus spreads primarily through respiratory droplets. Symptoms can include loss of

taste and smell, fatigue, muscle aches, and gastrointestinal issues, with fever, cough, and shortness of breath. Severe cases can lead to pneumonia, acute respiratory distress syndrome (ARDS), and death. The emergency was primarily due to the high number of deaths occurring without a known pharmacological intervention to contain it. 

Various preventive measures were established, but the presence of asymptomatic and symp-

tomatic cases created challenges in identifying the incubation time, leading governments

to impose restrictions through lockdowns of entire cities and regions in affected countries. 

These measures restricted movement and activities to curb the virus’s transmission. 

Some notable examples of lockdown measures include:

• China: The initial epicentre in Wuhan experienced strict lockdowns, with entire

cities quarantined and movement heavily restricted. These measures were effective

in reducing the initial spread of the virus. 

• Italy: One of the first European countries severely impacted, Italy imposed nationwide lockdowns in March 2020, closing schools, businesses, and restricting travel. 

• United States: Lockdown measures varied by state, with significant restrictions

during the early waves of the pandemic. These included stay-at-home orders, business

closures, and mask mandates. 

• India: Implemented one of the world’s largest lockdowns in March 2020, affecting

millions of people and including strict travel bans and business closures. 

• Australia: Used localised lockdowns effectively, particularly in cities like Melbourne, which saw extended periods of strict restrictions. 

• United Kingdom: Imposed several lockdowns, including a strict nationwide lock-

down in early 2021, along with tiered restrictions based on regional infection rates. 

The pandemic has led to widespread healthcare challenges, economic disruptions, and

significant changes to daily life, including social distancing measures, lockdowns, and travel restrictions. 

Since its identification, COVID-19 has caused multiple outbreaks globally. The incubation

period ranges from 2 to 14 days, during which an infected person may be asymptomatic but
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still contagious. As of May 2024, there have been over 775 million confirmed cases and more than seven million deaths worldwide. The impact of the pandemic has varied across regions, influenced by factors such as virus variants, public health responses, and vaccination rates. 

Public Health COVID-19 Prevention Measures:

• Diagnostic Tests: PCR (polymerase chain reaction) tests and rapid antigen tests

are used to detect active infections, while antibody tests determine past infections. 

• Treatment: While there is no specific antiviral treatment for COVID-19, support-

ive care, including oxygen therapy and mechanical ventilation, is used for severe

cases. Some antiviral medications and therapies have been repurposed or developed

specifically for COVID-19. 

• Vaccination: Vaccines have been developed and distributed globally to prevent

COVID-19. These vaccines, including mRNA vaccines (Pfizer-BioNTech and Mod-

erna), viral vector vaccines (AstraZeneca and Johnson & Johnson), and inactivated

virus vaccines (Sinovac and Sinopharm), have shown high efficacy in preventing

severe disease and reducing transmission. 

COVID-19 has had a profound impact on global health, economies, and daily life. Efforts to combat the pandemic have involved unprecedented levels of international cooperation, scientific research, and public health initiatives. Ongoing vaccination campaigns and adherence to public health guidelines are critical in controlling the spread of the virus and preventing further outbreaks. However, vaccine hesitancy and resistance, driven by concerns about

the speed of development and potential long-term effects, remain significant challenges in achieving widespread vaccination coverage. 

15.2

Mapping COVID-19 Outbreaks

Mapping COVID-19 outbreaks helps identify infection hotspots, track the virus’s spread, 

and inform public health interventions. Geographic Information Systems (GIS) and spatial

analysis techniques can visualise and analyse COVID-19 data, such as the number of cases, 

deaths, and recoveries, at local, regional, and global levels. 

15.3

Example: Modelling the Spread of COVID-19

Spatiotemporal modelling of COVID-19 outbreaks can provide valuable insights into the

pandemic’s dynamics and help guide public health responses. In this example, we’ll use the Susceptible-Exposed-Infected-Recovered (SEIR) model to simulate the spread of

COVID-19 infections, as we saw in Section 6.3.2. A Bayesian machine learning approach is used to predict the spread of the virus over time and across different regions. Bayesian methods handle uncertainties and allow for the integration of prior information into the

model. 
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15.3.1

SEIR Model

First, we use the SEIR model function to simulate the spread of the disease. The model compartments are: the number of susceptible (S), the exposed (E), the infected (I), and

R represents the number of recovered individuals. The parameters of the model are the

transmission rate ( β) and the recovery rate ( γ), ( texp) the latent period, and ( N ) is the total population. 

library(deSolve)

library(tidyverse)

# Define parameters

N <- 1e6 # Total population

beta <- 0.5 # Transmission rate

gamma <- 0.1 # Recovery rate

t_exp <- 5 # Latent period - or incubation period

# Initial conditions

init <- c(S = N - 1, E = 1, I = 0, R = 0)

# Define the SEIR model

seir_model <- function(t, y, parameters) {

with(as.list(y), {

dS <- -beta * S * I / N

dE <- beta * S * I / N - (1 / t_exp) * E

dI <- (1 / t_exp) * E - gamma * I

dR <- gamma * I

return(list(c(dS, dE, dI, dR)))

})

}

As seen previously, we’ll use the ode() function from the {deSolve} package to solve the

ordinary differential equations (ODEs) and simulate the spread of the virus over a period of 365 days:

times <- seq(0, 365, by = 1)

result <- ode(y = init, times = times, func = seir_model)

result %>% head()

#> 

time

S

E

I

R

#> [1,]

0 999999.0 1.0000000 0.0000000 0.000000000

#> [2,]

1 999999.0 0.8614244 0.1750967 0.009130285

#> [3,]

2 999998.8 0.8186971 0.3169955 0.033923201

#> [4,]

3 999998.6 0.8440094 0.4441703 0.072045032

#> [5,]

4 999998.4 0.9214811 0.5692891 0.122692748

#> [6,]

5 999998.1 1.0429872 0.7015882 0.186144186

ggplot(as.data.frame(result), aes(time, I, color = "Infected")) +

geom_line() +

geom_line(aes(time, R, color = "Recovered")) +

geom_line(aes(time, S, color = "Susceptible")) +

geom_line(aes(time, E, color = "Exposed")) +

scale_color_discrete(name = "Compartment") +

labs(x = "Time (days)", y = "Number of individuals")
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Figure 15.1 Simulation of the SEIR model for COVID-19

In reality, the spread of a virus is much more complex and influenced by many factors such as human behaviour, government policies, healthcare systems, vaccination campaigns, and

human contact. 

15.3.2

Bayesian Analysis

The use of Bayesian analysis in modelling infectious diseases offers several advantages in understanding and predicting the dynamics of the spread. We implement a Bayesian

regression model for COVID-19 cases using the {brms} package, which is an interface of

Stan for Bayesian analysis. The source for Stan is available at https://mc-stan.org/. 

The application of Bayesian analysis allows us to estimate the regression coefficients for the lag-1 and lag-7 cases, which can help predict the number of infected individuals over time, with the flexibility to incorporate prior knowledge and uncertainties into the model. 

The model is specified as follows:

 It ∼ Normal( β ×  It−1 +  γ ×  It−7 , σ)

where  It  is the number of infected individuals at time  t,  β  is the regression coefficient for the lag-1 cases,  γ  is the regression coefficient for the lag-7 cases, and  σ  is the error term. 

The model assumes that the number of infected individuals at time  t  is normally distributed around the predicted value based on the number of cases at times  t − 1 and  t − 7. 

We can specify the prior distributions for  β  and  γ  using expert knowledge and available data. 

For example, we might specify a gamma distribution with a mean of 0.1 and a standard

deviation of 0.05 for  β, and a gamma distribution with a mean of 0.05 and a standard deviation of 0.02 for  γ. 

result <- as.data.frame(result)
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cv19_data <- result %>%

mutate(date = as.Date(time, origin = "2022-01-01"), 

day_of_week = wday(date, label = TRUE), 

week_of_year = week(date), 

month = month(date), 

lag_1_cases = lag(I, 1), 

lag_7_cases = lag(I, 7)) %>%

drop_na()

cv19_data %>% head(n = 3) %>% glimpse()

#> Rows: 3

#> Columns: 11

#> $ time

<dbl> 7, 8, 9

#> $ S

<dbl> 999997.2, 999996.7, 999996.0

#> $ E

<dbl> 1.409890, 1.659350, 1.959605

#> $ I

<dbl> 1.016210, 1.211223, 1.439964

#> $ R

<dbl> 0.3565260, 0.4676444, 0.5998941

#> $ date

<date> 2022-01-08, 2022-01-09, 2022-01-10

#> $ day_of_week <ord> Sat, Sun, Mon

#> $ week_of_year <dbl> 2, 2, 2

#> $ month

<dbl> 1, 1, 1

#> $ lag_1_cases <dbl> 0.8484115, 1.0162103, 1.2112229

#> $ lag_7_cases <dbl> 0.0000000, 0.1750967, 0.3169955

In this example we do not split the data into training and testing sets, but in a real-world scenario, it is essential to validate the model’s performance on unseen data. Our data are made of 359 observations and 11 variables. 

cv19_data %>% dim()

#> [1] 359 11

The brm() function from the {brms} package, fits the Bayesian regression model to the data by specifying the outcome variable I (number of infected individuals) and the predictors

day_of_week, week_of_year, month, lag_1_cases, and lag_7_cases. We use a Gaussian

likelihood function and specify prior distributions for the regression coefficients and the error term. The Stan algorithm is used to sample from the posterior distribution of the model parameters. In particular, we use a normal prior distribution with a mean of 0 and

standard deviation of 10 for the regression coefficients and a Cauchy prior distribution with a scale of 5 for the error term. 

The decision to use a normal and a Cauchy prior is based on the properties of the data and the model assumptions. In this case, we assume that the regression coefficients are normally distributed around 0 with a standard deviation of 10, and the error term is distributed

according to a Cauchy distribution with a scale of 5. 

The model is run for 2000 iterations with a warmup of 1000 iterations and 4 chains. The reason for the warmup is to allow the Markov Chain Monte Carlo (MCMC) algorithm to

converge to the posterior distribution. The chains are run in parallel to explore the parameter space and estimate the posterior distribution of the model parameters. 

library(brms)
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# Define the Bayesian regression model

bayesian_model <- brm(

I ~ day_of_week + week_of_year + month + lag_1_cases + lag_7_cases, 

data = cv19_data, 

family = gaussian(), 

prior = c(set_prior("normal(0, 10)", class = "b"), 

set_prior("cauchy(0, 5)", class = "sigma")), 

iter = 2000, 

warmup = 1000, 

chains = 4, 

seed = 42

)

The bayesian_model object contains the fitted model, including the posterior samples of

the model parameters. We can inspect the summary of the model to assess the convergence

of the chains, the posterior distribution of the parameters, and the model fit statistics. 

summary(bayesian_model)$fixed %>%

rownames_to_column(var = "parameter") %>%

head(n = 3) %>%

glimpse()

#> Rows: 3

#> Columns: 8

#> $ parameter <chr> "Intercept", "day_of_week.L", "day_of_week.Q" 

#> $ Estimate

<dbl> 866.78250835, -0.04239118, -0.16213817

#> $ Est.Error <dbl> 145.09866, 10.17293, 10.07890

#> $ `l-95% CÌ <dbl> 576.67263, -19.85932, -19.61945

#> $ ù-95% CÌ <dbl> 1137.71086, 20.30390, 19.72001

#> $ Rhat

<dbl> 1.000109, 1.000764, 1.000761

#> $ Bulk_ESS

<dbl> 5660.295, 5486.962, 5309.553

#> $ Tail_ESS

<dbl> 3204.207, 2641.086, 2846.849

The model output tells us about the convergence of the chains, the posterior distribution

of the parameters, and the model fit statistics. We can see the mean, median, and 95%

credible intervals for the regression coefficients, as well as the standard deviation of the error term. The Rhat statistic measures the convergence of the chains, with values close to 1

indicating convergence. The n_eff statistic measures the effective sample size of the chains, with higher values indicating more reliable estimates. The looic statistic is the leave-one-out cross-validation information criterion, which measures the model’s predictive performance. 

Or access the formula used in the model:

bayesian_model$formula

#> I ~ day_of_week + week_of_year + month + lag_1_cases + lag_7_cases

After fitting the model, we can plot the model diagnostics to assess its performance with

the plot() function. The diagnostics include trace plots of the chains, density plots of the posterior distributions, and the Gelman-Rubin statistic, which measures the convergence

of the chains. The Gelman-Rubin statistic should be close to 1 for the model to have

converged. 

# Plot the model diagnostics

plot(bayesian_model)

[image: Image 35]
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Figure 15.2 Bayesian Model diagnostics

Then, finally we can make predictions using the fitted model and visualise the actual

vs. predicted COVID-19 cases over time. The predictions object is type matrix/array. 

predictions <- predict(bayesian_model, newdata = cv19_data)

predictions %>% head()

#> 

Estimate Est.Error

Q2.5

Q97.5

#> [1,] 779.2025 1263.317 -1657.152 3299.250

#> [2,] 837.3495 1270.743 -1627.192 3305.897

#> [3,] 813.2604 1283.773 -1696.402 3337.646

#> [4,] 877.0629 1271.697 -1580.855 3388.625

#> [5,] 823.5526 1294.345 -1754.888 3282.143

#> [6,] 820.5984 1277.846 -1770.321 3205.060

Create a new data frame with the actual and predicted values for COVID-19 cases, and

then plot the actual vs. predicted values over time. 

predictions <- as_tibble(predictions)

cv19_data_pred <- cv19_data %>%

mutate(predicted_cases = predictions$Estimate)

# Plot actual vs. predicted values

ggplot(data = cv19_data_pred, 

aes(x = I, y = predicted_cases)) +

geom_point() +

geom_abline() +

labs(title = "Actual vs. Predicted COVID-19 Cases", 

x = "Date", y = "Cases", color = "Legend")

ggplot(data = cv19_data_pred, aes(x = date)) +
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geom_point(aes(y = I, 

color = "Actual")) +

geom_line(aes(y = predicted_cases, 

color = "Predicted")) +

labs(title = "Actual vs. Predicted COVID-19 Cases", 

x = "Date", y = "Cases", color = "Legend")
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15.3.3

Ensemble Modelling - Combining Multiple Models

We have been able to simulate the spread of COVID-19 using the SEIR and predict the spread using the Bayesian regression model. However, combining the predictions of multiple models can provide more accurate and robust forecasts. This technique is known as ensemble

modelling. 

Ensemble modelling combines the predictions of multiple models to improve the overall

accuracy and robustness of predictions. This technique is particularly useful in infectious disease modelling to account for uncertainties and variability in data, providing more reliable estimates of disease spread. 

This method combines the strengths of different models to produce more accurate and

stable predictions by averaging the results of individual models or using more sophisticated techniques such as stacking or boosting. 

For example, ensemble models have been used to predict confirmed COVID-19 cases and

provide short-term forecasts by integrating multiple model types. Other methods combine

sub-epidemic models over various forecasting periods to enhance prediction accuracy. 7

In this example, we use the {tidymodels} meta-package and other key packages such as

{modeltimes}, and {stacks} to combine different types of models. We will use: Decision

Tree, Random Forest, K-Nearest Neighbours (KNN), and Support Vector Machines (SVM)

models to combine and predict the spread of COVID-19 cases. 

library(tidymodels)

library(modeltime)

library(stacks)

7Gerardo Chowell et al., “An Ensemble n-Sub-Epidemic Modeling Framework for Short-Term Forecasting Epidemic Trajectories: Application to the COVID-19 Pandemic in the USA,”  PLOS Computational Biology 18, no. 10 (October 6, 2022): e1010602, doi:10.1371/journal.pcbi.1010602. 
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We start by splitting the data into training and testing sets using the initial_split()

function from the {rsample} package. The training set will be used to train the models, 

while the testing set will be used to evaluate the models’ performance. 

set.seed(10011)

# Split the data into training and testing sets

cv_split <- initial_split(cv19_data, prop = 0.8)

cv_train <- training(cv_split)

cv_test <- testing(cv_split)

Create a vfold_cv() object for cross-validation with 10 folds. This object will be used to evaluate the models’ performance during training. 

set.seed(1001)

cv_folds <- vfold_cv(cv_train, v = 10)

We also define a recipe to preprocess the data, including log transformation and dummy

encoding of categorical variables. The recipe is then used to create a workflow that combines the preprocessing steps with the model specifications. 

cv_recipe <- recipe(I ~ ., data = cv_train) %>%

step_scale(all_numeric(), -all_outcomes()) %>%

step_dummy(all_nominal(), -all_outcomes())

To check the output of the recipe transformation: cv_recipe %>% prep() %>% juice()

Define the models’ specifications with the parameters to tune, and the engine to use:

# Decision Tree

cart <- decision_tree(cost_complexity = tune(), 

tree_depth = tune(), 

min_n = tune()) %>%

set_engine("rpart") %>%

set_mode("regression")

# Random Forest

rand_forest <- rand_forest(mtry = tune(), 

min_n = tune()) %>%

set_engine('ranger') %>%

set_mode('regression')

# K-Nearest Neighbors (KNN)

knn <- nearest_neighbor(neighbors = tune()) %>%

set_engine("kknn") %>%

set_mode("regression")

# Support Vector Machine (SVM)

svm <- svm_rbf(cost = tune(), 

rbf_sigma = tune()) %>%


set_engine("kernlab") %>%

set_mode("regression")

Then, create a workflow_set() that combines the predictions of different models:
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cv_wkf <- workflow_set(

preproc = list(id = cv_recipe), 

models = list(Decision_tree = cart, 

Random_Forest = rand_forest, 

Knn = knn, 

SVM = svm))

cv_wkf

#> # A workflow set/tibble: 4 x 4

#> 

wflow_id

info

option

result

#> 

<chr> 

<list> 

<list> 

<list> 

#> 1 id_Decision_tree <tibble [1 x 4]> <opts[0]> <list [0]> 

#> 2 id_Random_Forest <tibble [1 x 4]> <opts[0]> <list [0]> 

#> 3 id_Knn

<tibble [1 x 4]> <opts[0]> <list [0]> 

#> 4 id_SVM

<tibble [1 x 4]> <opts[0]> <list [0]> 

Create a workflow_map() to fit the models to the training data. We use the {finetune}

package to use the tune_race_anova function to tune the hyperparameters of the models. 

The race_ctrl object specifies the control parameters for the tuning process, such as the

number of resamples and the grid size. The parallel_over argument allows the tuning

process to run in parallel over multiple cores for faster computation. 

# Fit the models to the training data

library(finetune)

set.seed(112233)

race_ctrl <-

control_race(save_pred = TRUE, 

parallel_over = "everything", 

save_workflow = TRUE)

race_results <- cv_wkf %>%

workflow_map("tune_race_anova", 

seed = 1503, 

resamples = cv_folds, 

grid = 3, 

control = race_ctrl)

race_results

#> # A workflow set/tibble: 4 x 4

#> 

wflow_id

info

option

result

#> 

<chr> 

<list> 

<list> 

<list> 

#> 1 id_Decision_tree <tibble [1 x 4]> <opts[3]> <race[+]> 

#> 2 id_Random_Forest <tibble [1 x 4]> <opts[3]> <race[+]> 

#> 3 id_Knn

<tibble [1 x 4]> <opts[3]> <race[+]> 

#> 4 id_SVM

<tibble [1 x 4]> <opts[3]> <race[+]> 

Then we collect the metrics for the models to evaluate their performance. We filter the

results for the root mean squared error (rmse) and arrange them in ascending order to

identify the best-performing model. 

rmse <- collect_metrics(race_results) %>%

filter(.metric == "rmse") %>%
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select(wflow_id, .config, mean) %>%

arrange(mean)

rmse

#> # A tibble: 5 x 3

#> 

wflow_id

.config

mean

#> 

<chr> 

<chr> 

<dbl> 

#> 1 id_Random_Forest Preprocessor1_Model2 5595. 

#> 2 id_SVM

Preprocessor1_Model1 7642. 

#> 3 id_Decision_tree Preprocessor1_Model2 8057. 

#> 4 id_Knn

Preprocessor1_Model3 14034. 

#> 5 id_Knn

Preprocessor1_Model2 14817. 

Plot the root mean squared error (rmse) values for the models to visualise their performance. 

rmse %>%

ggplot(aes(x = fct_reorder(wflow_id, mean), y = mean)) +

geom_col(fill = "navy") +

labs(title = "Root Mean Squared Error (RMSE) for Models", 

x = "Model", y = "RMSE")
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Figure 15.5 Root Mean Squared Error (RMSE) for Models

The results of the race show that the Random Forest model has the lowest rmse value, 

indicating better performance compared to the other models. 
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Extract the model’s estimations:

race_results %>%

collect_predictions() %>%

ggplot(aes(x = I, y = .pred, 

group= model, 

shape= model, 

color = model)) +

geom_point() +

geom_abline()
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Figure 15.6 Actual vs. Predicted COVID-19 Cases

The plot shows the actual vs. predicted values for COVID-19 cases using the different models. 

The Random Forest model appears to have the best fit to the data, closely following the

45-degree line, indicating accurate predictions. 

So, let’s see how combined predictions look like:

race_results %>%

collect_predictions() %>%

group_by(I) %>%

summarise(mean_pred = mean(.pred)) %>%

ggplot(aes(x = I, y = mean_pred)) +

geom_point() +

geom_abline()
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Figure 15.7 Ensemble Predictions of COVID-19 Cases

Finally, we can combine the predictions of the models using the {stacks} package to create an ensemble model. The stack() function combines the predictions of the models using a

meta-learner, such as a linear regression model, to produce a final prediction. 

cv_stack <- stacks() %>%

add_candidates(race_results)

cv_stack

#> # A data stack with 4 model definitions and 5 candidate members:

#> #

id_Decision_tree: 1 model configuration

#> #

id_Random_Forest: 1 model configuration

#> #

id_Knn: 2 model configurations

#> #

id_SVM: 1 model configuration

#> # Outcome: I (numeric)

Blend the predictions of the models:

set.seed(2001)

cv_ens <- blend_predictions(cv_stack)

cv_ens

#> # A tibble: 3 x 3

#> 

member

type

weight

#> 

<chr> 

<chr> 

<dbl> 

#> 1 id_SVM_1_1

svm_rbf

0.751

#> 2 id_Random_Forest_1_2 rand_forest

0.190

#> 3 id_Knn_1_3

nearest_neighbor 0.147

autoplot(cv_ens, "weights")
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Figure 15.8 Ensemble Model Weights

fit_cv_ens <- fit_members(cv_ens)

fit_cv_ens

#> # A tibble: 3 x 3

#> 

member

type

weight

#> 

<chr> 

<chr> 

<dbl> 

#> 1 id_SVM_1_1

svm_rbf

0.751

#> 2 id_Random_Forest_1_2 rand_forest

0.190

#> 3 id_Knn_1_3

nearest_neighbor 0.147

cv_ens_test_pred <-

predict(fit_cv_ens, new_data = cv_test) %>%

bind_cols(cv_test)

cv_ens_test_pred %>%

ggplot(aes(x = I, y = .pred)) +

geom_point(alpha=0.5) +

geom_abline()

In summary, integrating machine learning models and advanced statistical techniques such

as Bayesian analysis and ensemble modelling can significantly enhance our ability to predict and understand the spread of infectious diseases like COVID-19. These models provide

critical insights that can inform public health responses and help mitigate the impact of

pandemics. 
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Figure 15.9 Ensemble Predictions of COVID-19 Cases

15.4

COVID-19 and DALYs

The influence of COVID-19 on global health can be measured using the DALYs. We use the

data from the JHU official GitHub repository CSSEGISandData8 to calculate the DALYs for COVID-19. The data includes the number of confirmed cases, deaths, and recovered

cases for each country and region. We will calculate the DALYs for the US, China, United

Kingdom, and Canada. 

Data are loaded from the repository with the read.csv() function, and need a bit of

adjustment before can be used. 

tidyverse_conflicts()

Here we use the pivot_longer() to combine all cases by day in one column, and see the

first rows:

cases1 <- cases %>%

pivot_longer(cols = starts_with("X"), 

names_to = "date", 

values_to = "cases") %>%

mutate(date = gsub("X", "", date), 

date = as.Date(date, format = "%m.%d.%y")) %>%

janitor::clean_names()

8https://github.com/CSSEGISandData/COVID-19
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cases1 %>% head()

#> # A tibble: 6 x 6

#> 

province_state country_region

lat long date

cases

#> 

<chr> 

<chr> 

<dbl> <dbl> <date> 

<int> 

#> 1 "" 

Afghanistan

33.9 67.7 2020-01-22

0

#> 2 "" 

Afghanistan

33.9 67.7 2020-01-23

0

#> 3 "" 

Afghanistan

33.9 67.7 2020-01-24

0

#> 4 "" 

Afghanistan

33.9 67.7 2020-01-25

0

#> 5 "" 

Afghanistan

33.9 67.7 2020-01-26

0

#> 6 "" 

Afghanistan

33.9 67.7 2020-01-27

0

The same is done with deaths:

deaths1 <- deaths %>%

pivot_longer(cols = starts_with("X"), 

names_to = "date", 

values_to = "deaths") %>%

mutate(date = gsub("X", "", date), 

date = as.Date(date, format = "%m.%d.%y")) %>%

janitor::clean_names()

deaths1 %>% head()

#> # A tibble: 6 x 6

#> 

province_state country_region

lat long date

deaths

#> 

<chr> 

<chr> 

<dbl> <dbl> <date> 

<int> 

#> 1 "" 

Afghanistan

33.9 67.7 2020-01-22

0

#> 2 "" 

Afghanistan

33.9 67.7 2020-01-23

0

#> 3 "" 

Afghanistan

33.9 67.7 2020-01-24

0

#> 4 "" 

Afghanistan

33.9 67.7 2020-01-25

0

#> 5 "" 

Afghanistan

33.9 67.7 2020-01-26

0

#> 6 "" 

Afghanistan

33.9 67.7 2020-01-27

0

Then, the next step is to join the two sets by province, country, lat, long, and date. Sum the number of cases and deaths and calculate the case fatality ratio (CFR) as deaths divided by cases. 

COVID19 <- cases1 %>%

left_join(deaths1, 

by = c("province_state", 

"country_region", 

"lat", "long", "date")) %>%

mutate(cases = ifelse(is.na(cases), 0, cases), 

deaths = ifelse(is.na(deaths), 0, deaths)) %>%

group_by(country_region, date) %>%

mutate(cases = sum(cases), 

deaths = sum(deaths), 

cfr = round(deaths / cases, 3)) %>%

filter(cases > 0) %>%

arrange(country_region, date)

COVID19 %>%

select(country_region, date, cases, deaths, cfr) %>%
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arrange(desc(date)) %>%

head()

#> # A tibble: 6 x 5

#> # Groups:

country_region, date [6]

#> 

country_region date

cases deaths

cfr

#> 

<chr> 

<date> 

<int> <int> <dbl> 

#> 1 Afghanistan

2023-03-09 209451

7896 0.038

#> 2 Albania

2023-03-09 334457

3598 0.011

#> 3 Algeria

2023-03-09 271496

6881 0.025

#> 4 Andorra

2023-03-09 47890

165 0.003

#> 5 Angola

2023-03-09 105288

1933 0.018

#> 6 Antarctica

2023-03-09

11

0 0

Now that the COVID19 set is human readable we can select our countries: US, China, United

Kingdom, and Canada. 

COVID19_4countries <- COVID19 %>%

filter(country_region %in%

c("US", "China", "United Kingdom", "Canada"))

COVID19_4countries %>%

select(- lat, -long) %>%

head()

#> # A tibble: 6 x 6

#> # Groups:

country_region, date [1]

#> 

province_state

country_region date

cases deaths

cfr

#> 

<chr> 

<chr> 

<date> 

<int> <int> <dbl> 

#> 1 Alberta

Canada

2020-01-23

2

0

0

#> 2 British Columbia Canada

2020-01-23

2

0

0

#> 3 Diamond Princess Canada

2020-01-23

2

0

0

#> 4 Grand Princess

Canada

2020-01-23

2

0

0

#> 5 Manitoba

Canada

2020-01-23

2

0

0

#> 6 New Brunswick

Canada

2020-01-23

2

0

0

Here we can see how COVID19 cases and deaths distributed along the years with a simple

line plot:

COVID19 %>%

ggplot(aes(x = date, y = cases, 

group = country_region)) +

geom_line(color = "grey", 

linewidth = 0.2) +

geomtextpath::geom_textline(

data = COVID19_4countries, 

aes(label = country_region), 

show.legend = F) +

scale_y_log10() +

labs(title = "COVID-19 Cases by Country", 

x = "Date", 

y = "Cases")

COVID19 %>%
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ggplot(aes(x = date, y = deaths, 

group = country_region)) +

geom_line(color = "grey", 

linewidth = 0.2) +

geomtextpath::geom_textline(

data = COVID19_4countries, 

aes(label = country_region), 

show.legend = F) +

scale_y_log10() +

labs(title = "COVID-19 Deaths by Country", 

x = "Date", 

y = "Deaths")
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Figure 15.10 COVID-19 Cases and Deaths by Country

Now, to visualise the total number of cases and deaths by selected countries on a map, we

use the map_data() function to retrieve the world geographic coordinates, and calculate the centroids by grouping by country_region. 

worldmap <- map_data("world") %>%

filter(!region == "Antarctica")

centroids <- COVID19 %>%

group_by(country_region, lat, long) %>%

reframe(tot_cases = sum(cases), 

tot_deaths = sum(deaths), 

avg_cfr = round(mean(cfr), 3)) %>%

distinct()

ggplot() +

geom_polygon(data = worldmap, 

aes(x = long, y = lat, group = group), 

fill = "grey", 

color = "white") +

geom_point(data = centroids, 

aes(x = long, y = lat, 

size = tot_cases, 

color = avg_cfr), 

[image: Image 36]
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alpha = 0.5) +

scale_size_continuous(name = "Total cases (M)", 

labels = scales::unit_format(unit = "M", 

scale = 1e-6)) +

scale_color_viridis_c(name = "Average CFR (log scale)", 

trans = "log", 

labels = scales::label_number(accuracy = 0.001)) +

guides(color = guide_colorbar(order = 1), 

size = guide_legend(order = 2)) +

coord_quickmap() +

labs(title = "COVID-19 Cases by Country", 

caption = "Data Source: JHU CSSEGISandData/COVID-19

\nCircle size: total cases, Color: average CFR", 

size= "Total cases (M)", 

color= "Avg CFR (log scale)", 

x = "", y = "") +

theme(axis.text = element_blank(), 

plot.subtitle = element_text(size = 8), 

legend.key.size = unit(0.5, "cm"), 

legend.text = element_text(size = 8), 

legend.title = element_text(size = 9))
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Figure 15.11 COVID-19 Cases by Country

The same graph is made with selected countries only. 

ggplot() +

geom_polygon(data = worldmap, 

aes(x = long, y = lat, group = group), 

fill = "grey", 

color = "white") +

geom_point(data = centroids %>%
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filter(country_region %in%

c("US", "China","United Kingdom", "Canada")), 

aes(x = long, y = lat, 

size = tot_cases, 

color = avg_cfr), 

alpha = 0.5) +

scale_size_continuous(name = "Total cases (M)", 

labels = scales::unit_format(unit = "M", 

scale = 1e-6)) +

scale_color_viridis_c(name = "Average CFR (log scale)", 

trans = "log", 

labels = scales::label_number(accuracy = 0.001)) +

guides(color = guide_colorbar(order = 1), 

size = guide_legend(order = 2)) +

coord_quickmap() +

labs(title = "COVID-19 Cases by Country", 

caption = "Data Source: JHU CSSEGISandData/COVID-19

\nCircle size: total cases, Color: average CFR", 

subtitle = "US, China, United Kingdom, Canada", 

size= "Total cases (M)", 

color= "Avg CFR (log scale)", 

x = "", y = "") +

theme(axis.text = element_blank(), 

plot.subtitle = element_text(size = 8), 

legend.key.size = unit(0.5, "cm"), 

legend.text = element_text(size = 8), 

legend.title = element_text(size = 9))

The difference in the number of cases and deaths between the US and China is striking. The US has the highest number of cases and deaths, while China has the lowest number of cases

and deaths. The United Kingdom and Canada have a similar number of cases and deaths, 

but the United Kingdom has a higher case fatality rate (CFR) than Canada. 

Let’s now calculate the DALYs for COVID-19, starting with the YLLs. We know that

the simplified formula for YLLs is the number of deaths multiplied by the standard life

expectancy at the age of death. The standard life expectancy for these countries varies, but we can use the global average of 72.6 years. 

Also, we group the date by 4 months cycles to calculate the YLLs. 

COVID19_yll_4months <- COVID19_4countries %>%

mutate(month = as.numeric(format(date, "%m")), 

year = as.numeric(format(date, "%Y")), 

month_cycle = case_when(month %in% 1:4 ~ "Jan-Apr", 

month %in% 5:8 ~ "May-Aug", 

month %in% 9:12 ~ "Sep-Dec")) %>%

group_by(country_region, year, month_cycle) %>%

summarise(cases = sum(cases), 

deaths = sum(deaths), 

cfr = round(deaths / cases, 3)) %>%

mutate(ylls = deaths * 72.6) %>%

arrange(year, month_cycle, ylls)

[image: Image 37]
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Figure 15.12 COVID-19 Cases by Selected Countries

COVID19_yll_4months %>%

select(year, month_cycle, ylls) %>%

head()

#> # A tibble: 6 x 4

#> # Groups:

country_region, year [4]

#> 

country_region year month_cycle

ylls

#> 

<chr> 

<dbl> <chr> 

<dbl> 

#> 1 Canada

2020 Jan-Apr

62225750. 

#> 2 US

2020 Jan-Apr

80674499. 

#> 3 China

2020 Jan-Apr

655246654. 

#> 4 United Kingdom 2020 Jan-Apr

800881092

#> 5 US

2020 May-Aug

1158612365. 

#> 6 Canada

2020 May-Aug

1165061568

And then plot the YLLs by country and month cycle, with the y axis representing the YLLs

formatted in millions. 

COVID19_yll_4months %>%

ggplot() +

geom_col(aes(x = month_cycle, y = ylls, 

fill = country_region)) +

scale_y_continuous(

labels = scales::unit_format(unit = "M", 

scale = 1e-6)) +

scale_fill_grey(start = 0.2, end = 0.8) +

labs(title = "YLLs by Country and Month Cycle", 
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fill = "Country", 

x = "4-Month cycle", 

y = "YLLs") +

facet_wrap(~year) +

theme(axis.text.x = element_text(angle = 45, hjust = 1))
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Figure 15.13 YLLs by Country and Month Cycle

The majority of YLLs are in the United Kingdom, followed by the US, Canada, and China. 

The YLLs are highest in the first 4-month cycle (Jan-Apr) and decrease in the following

cycles. 

Let’s now calculate the YLDs for COVID-19. The YLDs are calculated by multiplying the

number of cases by the disability weight. The Disability Weight applied is that for low

respiratory diseases which is 0.133. As of 2020, the Global Burden of Disease Study 2019

estimated that the DALYs for lower respiratory diseases was 1,000,000. We can use the

{hmsidwR} package to get the disability weight for lower respiratory diseases. 

hmsidwR::disweights %>%

filter(str_detect(sequela, "lower respiratory")) %>%

select(sequela, dw)

#> # A tibble: 4 x 2

#> 

sequela

dw

#> 

<chr> 

<dbl> 

#> 1 Moderate lower respiratory infections 0.051

#> 2 Severe lower respiratory infections

0.133

#> 3 Moderate lower respiratory infections 0.0506

#> 4 Severe lower respiratory infections

0.133
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We know that the simplified formula for YLDs is the prevalence of the disease multiplied by the disability weight. To calculate the prevalence, we need the population of each country. 

For this task we use the {wpp2022} package, which provides the population data from the

2022 revision of the United Nations World Population Prospects (WPP 2022). 

It includes both historical estimates and projections of demographic indicators such as

population counts and fertility rates, accommodating the challenges brought on by events

like the COVID-19 pandemic and transitioning from five-year to one-year data intervals. 

library(wpp2022)

# data(package = "wpp2022")

data(pop1dt)

pop_4countries <- pop1dt %>%

filter(

year %in% c(2020, 2021), 

name %in% c(

"United States of America", 

"China", 

"United Kingdom", 

"Canada")) %>%

mutate(name = ifelse(name == "United States of America", "US", name)) %>%

select(name, year, pop) %>%

arrange(year, name)

pop_4countries %>% head()

#> 

name year

pop

#> 

<char> <int> 

<num> 

#> 1:

Canada 2020

38019.18

#> 2:

China 2020 1425861.54

#> 3:

US 2020 336495.77

#> 4: United Kingdom 2020

67167.77

#> 5:

Canada 2021

38290.85

#> 6:

China 2021 1425925.39

Calculate the prevalence of COVID-19 cases per 1,000,000 people. 

 cases

 prevalence =

∗ 1 ,  000 ,  000

 population

COVID19_dalys <- COVID19_yll_4months %>%

full_join(pop_4countries, 

by = c("country_region" = "name", "year")) %>%

mutate(prevalence = cases / pop * 1000000, 

dw = 0.133, 

ylds = prevalence * dw, 

dalys = ylls + ylds) %>%

arrange(year, month_cycle, prevalence) %>%

select(country_region, year, 

month_cycle, ylls, ylds, dalys)

COVID19_dalys %>%
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head()

#> # A tibble: 6 x 6

#> # Groups:

country_region, year [4]

#> 

country_region year month_cycle

ylls

ylds

dalys

#> 

<chr> 

<dbl> <chr> 

<dbl> 

<dbl> 

<dbl> 

#> 1 US

2020 Jan-Apr

80674499. 

8342075. 

89016575. 

#> 2 China

2020 Jan-Apr

655246654. 21433596. 676680249. 

#> 3 Canada

2020 Jan-Apr

62225750. 60966727. 123192477. 

#> 4 United Kingdom 2020 Jan-Apr

800881092 107263600. 908144692. 

#> 5 China

2020 May-Aug

1434752563. 34879873. 1469632436. 

#> 6 US

2020 May-Aug

1158612365. 153456778. 1312069143. 

If we calculate the YLDs with the incidence instead of prevalence, we get the same results, because the incidence is the number of new cases in a given period, while the prevalence

is the number of existing cases in a given period. So, we should consider the cumulative

number of cases to calculate the prevalence. In order to calculate the cumulative number of cases, we need to group the data by year and month cycle. 

And then plot the YLDs by country and month cycle, with the y axis representing the YLDs

formatted in millions. 

COVID19_dalys %>%

filter(year %in% c(2020, 2021)) %>%

ggplot() +

geom_col(aes(x = month_cycle, y = ylds, 

fill = country_region)) +

scale_y_continuous(

labels = scales::unit_format(unit = "M", 

scale = 1e-6)) +

scale_fill_grey(start = 0.2, end = 0.8) +

labs(title = "YLDs by Country and Month Cycle", 

fill = "Country", 

x = "4-Month Cycle", y = "YLDs") +

facet_wrap(~year) +

theme(axis.text.x = element_text(angle = 45, hjust = 1))

We can see that the YLDs are highest in the United Kingdom, followed by the US, Canada, 

and China. The YLDs are highest in the first 4-month cycle (Jan-Apr) and decrease in the

following cycles. 
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Figure 15.14 YLDs by Country and Month Cycle

Finally, let’s plot the DALYs by country and month cycle, with the y axis representing the DALYs formatted in millions. 

COVID19_dalys %>%

filter(year %in% c(2020, 2021)) %>%

ggplot() +

geom_col(aes(x = month_cycle, y = dalys, 

fill = country_region)) +

scale_y_continuous(

labels = scales::unit_format(unit = "M", 

scale = 1e-6)) +

scale_fill_grey(start = 0.2, end = 0.8) +

labs(title = "DALYs by Country and Month Cycle", 

fill = "Country", 

x = "4-Month Cycle", y = "DALYs") +

facet_wrap(~year) +

theme(axis.text.x = element_text(angle = 45, hjust = 1))
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Figure 15.15 DALYs by Country and Month Cycle

15.5

Summary

This chapter examined the COVID-19 pandemic, covering its origin, spread, and global

impact. We explored the epidemiology of the virus, including its zoonotic origins, symptoms, and transmission methods. 

Key preventive measures such as diagnostic testing, treatments, and vaccination efforts were discussed, emphasizing strategies to control the pandemic. 

We also analysed COVID-19 modelling, using: - The SEIR model to simulate virus transmis-

sion, - Bayesian analysis for infection rate predictions, and - Ensemble modelling (Decision Tree, Random Forest, KNN, SVM) to enhance forecast accuracy. 

Additionally, we highlighted the use of GIS mapping to track and visualize outbreaks and

assessed COVID-19’s health burden through Disability-Adjusted Life Years (DALYs) using

JHU GitHub data. 

16

The Case of Malaria

Learning Objectives

• Understand the key characteristics and impact of Malaria

• Explore how Malaria spreads through populations and environments

• Learn to map and visualize Malaria outbreaks using spatial data

In this chapter, we explore the dynamics of Malaria transmission in more detail. We examine the results of various model’s applications that simulate the spread of the virus. 

16.1

Epidemiology

Malaria is a mosquito-borne infectious disease that affects humans and other animals. 

It is caused by parasitic protozoans belonging to the Plasmodium type. The disease is

transmitted through the bites of Anopheles mosquitoes. The symptoms of malaria

typically include fever, fatigue, vomiting, and headaches. If left untreated, malaria can be fatal. Malaria is a major public health concern in many tropical and subtropical regions, 

particularly in Africa. 

Malaria transmission dynamics are influenced by various factors, including the prevalence of infected individuals, the density of mosquito vectors, and environmental conditions. The

transmission of malaria occurs when an infected mosquito bites a human host, injecting

the Plasmodium parasites into the bloodstream. The parasites then multiply within the

host’s red blood cells, leading to the characteristic symptoms of malaria. The parasites can be transmitted back to mosquitoes when they feed on infected individuals, completing the

transmission cycle. 

16.2

Mapping Malaria Outbreaks

Mapping malaria outbreaks is essential for locating high-risk areas and guiding effective

public health interventions. Geographic Information Systems (GIS) enable the visualisation of malaria’s spatial distribution, revealing transmission patterns and hotspots. The analysis of malaria cases, alongside environmental factors, such as temperature, humidity, and vegetation cover, allows the identification of conditions that facilitate transmission and support the development of targeted control strategies. 

DOI: 10.1201/9781032625935-16
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In this example, we will use the malariaAtlas package to download malaria data for Nigeria and visualise the distribution of malaria cases in the country. We will plot the malaria

hotspots on a map of Nigeria to identify regions with the highest incidence of the disease. 

# Load necessary libraries

library(malariaAtlas)

library(tidyverse)

library(sf)

library(rnaturalearth)

tidyverse_conflicts()

To download malaria data we can use the getPR() function, it releases the data from the

Malaria Atlas Project API. The function requires the country and species of Plasmodium

to be specified. In this example, we will download data for Nigeria and the  Plasmodium falciparum species. 

nigeria_data <- getPR(country = "Nigeria", 

species = "Pf")

#> [1] NA NA

#> [1] 27 2

Data contains cases for 23 years spanning from 1985 to 2018. We can extract the relevant

information (year_start (of the survey), longitude, latitude, and number of positive cases) and convert the data to a spatial object using the st_as_sf() function from the sf package. 

nigeria_data <- nigeria_data %>%

arrange(year_start) %>%

select(year_start,longitude,latitude,positive) %>%

filter(!is.na(longitude) & !is.na(year_start))

nigeria_data_sf <- nigeria_data %>%

st_as_sf(coords = c("longitude", "latitude"), 

crs = 4326)

head(nigeria_data_sf)

#> Simple feature collection with 6 features and 2 fields

#> Geometry type: POINT

#> Dimension:

XY

#> Bounding box: xmin: 3.05 ymin: 6.316 xmax: 12.76 ymax: 11.1578

#> Geodetic CRS: WGS 84

#> 

year_start positive

geometry

#> 1

1985

113

POINT (3.132 6.501)

#> 2

1985

760

POINT (3.283 6.667)

#> 3

1987

7

POINT (3.05 7.167)

#> 4

1988

433 POINT (12.76 11.1578)

#> 5

1988

363 POINT (10.632 7.2333)

#> 6

1988

181

POINT (7.549 6.316)

To get the administrative boundaries of Nigeria we use the {rnaturlaearth} package:

nigeria_sf <- ne_countries(country = "Nigeria", 

returnclass = "sf")

[image: Image 38]
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And finally plot the malaria hotspots on a map of Nigeria to visualise the distribution of malaria cases in the country. 

# Plot Malaria Hotspots with expanded spatial data range

ggplot() +

geom_sf(data = nigeria_sf, 

fill = "gray90", 

color = "white")+

geom_sf(data = nigeria_data_sf, 

aes(size=positive, color = positive), 

alpha=0.5)+

scale_color_viridis_c(option = "plasma", name = "Malaria Cases") +

guides(size = "none") +

labs(title = "Malaria Hotspots in Nigeria", 

subtitle = "1985-2018", 

caption = "Source: Malaria Atlas Project | @fgazzelloni") +

theme(legend.position = "right")
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Source: Malaria Atlas Project | @fgazzelloni

Figure 16.1 The map shows the distribution of malaria cases in Nigeria, with the size and color of the points representing the number of positive cases. The map highlights regions with a high incidence of malaria, providing valuable information for public health interventions. 

Spatial data on climate, population density, and mosquito habitats are instrumental in

predicting high-risk areas for malaria, aiding preventive measures like bed net distribution and indoor residual spraying. In Tanzania, for example, spatial models identified villages with the highest malaria incidence, allowing the government and NGOs to prioritize these

areas for intervention. 1 This targeted approach enhances the cost-effectiveness of malaria

1Majige Selemani et al., “Assessing the Effects of Mosquito Nets on Malaria Mortality Using a Space

[image: Image 39]

262

 The Case of Malaria

control programs, reducing the disease burden by directing resources to areas with the

greatest need. 
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Figure 16.2 The map shows the distribution of malaria cases in Tanzania, with the size and color of the points representing the number of positive cases. The map highlights regions with a high incidence of malaria, providing valuable information for public health interventions. 

16.3

Example: Simulating Malaria Transmission Dynamics

In this example, we will use data for Malaria positive cases in Nigeria from the Malaria Atlas Project to evaluate the transmission dynamics using a simple mathematical model. 

We will use machine learning to predict future trends. 

To illustrate the modelling and prediction process we will use the {caret} package, which

provides a unified interface for training and evaluating machine learning models. We will

train a Random Forest model to predict future trends in malaria transmission based on

historical data. 

nigeria_cases <- nigeria_data %>%

group_by(year_start) %>%

reframe(positive = sum(positive)) %>%

rename(year = year_start) %>%

drop_na() %>%

select(year, positive)

Time Model: A Case Study of Rufiji and Ifakara Health and Demographic Surveillance System Sites in Rural Tanzania,”  Malaria Journal  15, no. 1 (May 4, 2016): 257, doi:10.1186/s12936-016-1311-9. 
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head(nigeria_cases)

#> # A tibble: 6 x 2

#> 

year positive

#> 

<int> 

<dbl> 

#> 1 1985

873

#> 2 1987

7

#> 3 1988

1276

#> 4 1989

134

#> 5 1990

352

#> 6 1992

92

Visualize the dynamics of malaria transmission in Nigeria using a line plot to show the

number of infected cases over time. 

nigeria_cases %>%

ggplot() +

geom_line(aes(x = year, y = positive), 

color = "navy", 

linetype = "solid") +

labs(title = "Malaria Transmission Dynamics in Nigeria", 

subtitle = "23 years spanning from 1985 to 2018", 

x = "Time(Year)", 

y = "Number of Infected Cases") +

theme_minimal()
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Figure 16.3 The plot shows the dynamics of malaria transmission in Nigeria from 1985

to 2018. The blue line represents the number of infected cases over time, highlighting the fluctuations in malaria incidence during this period. 
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16.3.1

Modelling with caret

To train a machine learning model to predict future trends in malaria transmission, we

will be using 80% of the original data to train the model and 20% to test it. Then, we will evaluate its performance using the Root Mean Squared Error (RMSE). 

The {caret} package provides a unified interface for training and evaluating machine

learning models in R (Chapter 8). It supports a wide range of algorithms and provides tools for hyperparameter tuning, cross-validation, and model evaluation. 

# Load libraries and check for conflicts

library(caret)

conflicted::conflicts_prefer(dplyr::lag)

16.3.1.1

Feature Engineering

Create lagged variables to capture the temporal dynamics of malaria transmission. For time series forecasting, it’s helpful to create variables, which represent past values of the target variable. This allows the model to learn trends from previous values. 

# Create lagged features (e.g., previous year's cases)

nigeria_cases <- nigeria_cases %>%

arrange(year) %>%

mutate(lag_1 = lag(positive, 1), 

lag_2 = lag(positive, 2), 

lag_3 = lag(positive, 3)) %>%

drop_na()

head(nigeria_cases)

#> # A tibble: 6 x 5

#> 

year positive lag_1 lag_2 lag_3

#> 

<int> 

<dbl> <dbl> <dbl> <dbl> 

#> 1 1989

134 1276

7

873

#> 2 1990

352

134 1276

7

#> 3 1992

92

352

134 1276

#> 4 1996

331

92

352

134

#> 5 1998

98

331

92

352

#> 6 1999

36

98

331

92

Create partition for training and testing data using the createDataPartition() function

from the caret package. 

set.seed(123)

train_index <- createDataPartition(nigeria_cases$positive, 

p = 0.8, list = FALSE)

train <- nigeria_cases[train_index, ]

test <- nigeria_cases[-train_index, ]

16.3.1.2

Model Selection and Training (Parameter Calibration)

Define the machine learning model specific for investigating Malaria dynamics. In this case, we will use the time and number of lagged cases to predict the number of infected cases. 
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We will use the train() function from the {caret} package to train the model. A suitable

model would be? List the models that can be used for this task:

• Random Forest (“rf”)

• Gradient Boosting (“gbm”)

• Support Vector Machines (“svm”)

• Neural Networks (“nnet”) - etc. 

In the method argument, specify the model to be used (e.g., “rf” for Random Forest). The

trControl argument specifies the cross-validation method for hyperparameter tuning, and

the tuneGrid argument defines the hyperparameter grid for tuning. 

# Define the training control with 5-fold cross-validation

train_control <- trainControl(method = "cv", 

number = 5)

# Define a tuning grid for mtry

# (number of variables sampled at each split)

tuning_grid <- expand.grid(mtry = c(1, 2, 3))

# Train the Random Forest model

set.seed(123)

rf_model <- train(

positive ~ lag_1 + lag_2 + lag_3, 

data = train, 

method = "rf", 

trControl = train_control, 

tuneGrid = tuning_grid, 

ntree = 500) # Number of trees

The parameter calibration (hyperparameter tuning) is performed by the train function

automatically using cross-validation to select the optimal hyperparameters for the model. 

16.3.1.3

Model Evaluation

Testing the model on observed data will show how the model performs in estimating the

number of infected cases. 

# Predict on the test data

nigeria_cases$pred <- predict(rf_model, 

newdata = nigeria_cases)

nigeria_cases %>%

ggplot(aes(x = year, y = positive)) +

geom_line(color = "navy", linetype = "solid") +

geom_line(aes(y = pred), 

color = "darkred", linetype = "dashed") +

labs(title = "Malaria Positive Cases in Nigeria", 

subtitle = "Observed vs Predicted - Random Forest", 

x = "Year", 

y = "Number of Positive Cases") +

theme_minimal()
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Figure 16.4 The plot shows the observed vs predicted malaria positive cases in Nigeria made with a Random Forest model. The blue line represents the observed cases, while the

red line represents the predicted cases. The model’s predictions are not closely aligned with the observed values, indicating potential limitations in capturing the dynamics of malaria transmission. 

To evaluate the model’s ability in predicting future trends, we predict the number of infected cases on the test data and calculate the Root Mean Squared Error (RMSE). Test data are

a subset of the original data that were not used for training the model and provide an

independent evaluation of the model’s performance. 

# Predict on the test data

test$pred <- predict(rf_model, 

newdata = test)

# View predictions alongside actual values

head(test[, c("year", "positive", "pred")])

#> # A tibble: 4 x 3

#> 

year positive pred

#> 

<int> 

<dbl> <dbl> 

#> 1 1999

36 340. 

#> 2 2004

340 255. 

#> 3 2006

148 232. 

#> 4 2008

528 157. 
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Visualize the predicted vs actual infected cases using a line plot to compare the model’s

predictions with the actual data. 

# Reshape data for plotting

plot_data_rf <- test %>%

select(year, positive, pred) %>%

rename(Observed = positive, Predicted = pred) %>%

pivot_longer(cols = c("Observed", "Predicted"), 

names_to = "Type", values_to = "Cases")

plot_data_rf %>% head()

#> # A tibble: 6 x 3

#> 

year Type

Cases

#> 

<int> <chr> 

<dbl> 

#> 1 1999 Observed

36

#> 2 1999 Predicted 340. 

#> 3 2004 Observed

340

#> 4 2004 Predicted 255. 

#> 5 2006 Observed

148

#> 6 2006 Predicted 232. 

# Plot observed vs predicted cases

ggplot(plot_data_rf, aes(x = year, y = Cases, 

color = Type, linetype = Type)) +

geom_line(size = 1) +

geom_point(size = 2) +

scale_color_manual(values = c("navy", "darkred")) +

labs(title = "Malaria Positive Cases in Nigeria", 

subtitle = "Observed vs Predicted - Random Forest", 

x = "Year", 

y = "Number of Positive Cases") +

theme_minimal() +

theme(legend.position = "top")

Evaluate the model’s performance using RMSE:

# Calculate RMSE

rmse <- sqrt(mean((test$positive - test$pred)ˆ2))

cat("RMSE:", rmse, "\n")

#> RMSE: 247.3936

A Root Mean Squared Error (RMSE) of 247.3936 indicates the average difference between

the predicted and actual values of infected cases. Lower RMSE values indicate better model performance. 

The output shows that the model’s predictions are not closely aligned with the observed

values, the predicted trend seems to be relatively flat or declining, while the observed cases show significant fluctuations. This mismatch suggests that the current model setup may not be effectively capturing the dynamics of malaria transmission in this dataset. 
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Figure 16.5 The plot shows the observed vs predicted malaria positive cases in Nigeria made with a Random Forest model. The blue line represents the observed cases, while the

red line represents the predicted cases. The model’s predictions are not closely aligned with the observed values, indicating potential limitations in capturing the dynamics of malaria transmission. 

16.4

Model Refinement

To improve the model’s performance, we can refine the model by adjusting parameters such

as ‘mtry’ in Random Forest. For example, increase the number of folds in cross-validation, adjust the tuning grid, or add additional features to improve the model’s performance. 

# Increase the number of folds in cross-validation

train_control <- trainControl(method = "cv", 

number = 10)

# Scaling data in caret

rf_model2 <- train(

positive ~ year + lag_1 + lag_2 + lag_3, 

data = train, 

method = "rf", 

trControl = train_control, 

tuneGrid = expand.grid(mtry = 2:4), 

preProcess = c("center", "scale"))
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Predict future trends using the trained adjusted Random Forest model on the test data. 

# Predict on the test data

test$pred_rf2 <- predict(rf_model2, 

newdata = test)

Visualize the predicted vs actual infected cases using a line plot to compare the adjusted Random Forest model’s predictions with the actual data. 

# Reshape data for plotting

plot_data_xgb <- test %>%

select(year, positive, pred_rf2) %>%

rename(Observed = positive, Predicted = pred_rf2) %>%

pivot_longer(cols = c("Observed", "Predicted"), 

names_to = "Type", values_to = "Cases")

plot_data_xgb %>% head()

#> # A tibble: 6 x 3

#> 

year Type

Cases

#> 

<int> <chr> 

<dbl> 

#> 1 1999 Observed

36

#> 2 1999 Predicted 326. 

#> 3 2004 Observed

340

#> 4 2004 Predicted 257. 

#> 5 2006 Observed

148

#> 6 2006 Predicted 247. 

# Plot observed vs predicted cases

ggplot(plot_data_xgb, aes(x = year, y = Cases, 

color = Type, linetype = Type)) +

geom_line(size = 1) +

geom_point(size = 2) +

scale_color_manual(values = c("navy", "darkred")) +

labs(title = "Malaria Cases in Nigeria", 

subtitle = "Observed vs Predicted - Adjusted Random Forest (XGBoost)", 

x = "Year", 

y = "Number of Positive Cases") +

theme_minimal() +

theme(legend.position = "top")
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Figure 16.6 The plot shows the observed vs predicted malaria positive cases in Nigeria made with an adjusted Random Forest model. The blue line represents the observed cases, 

while the red line represents the predicted cases. The model’s predictions show a closer

alignment with the observed values compared to the first Random Forest model, indicating

improved performance. 

Evaluate the model’s performance improvement using RMSE:

# Calculate RMSE

rmse <- sqrt(mean((test$positive - test$pred_rf2)ˆ2))

cat("RMSE:", rmse, "\n")

#> RMSE: 231.7169

To visualise the improvement in model’s performance, we can plot the observed vs predicted for both models:

In conclusion, the model’s performance can be further improved by adjusting hyperparame-

ters, adding additional features, or using more advanced algorithms. The iterative process of model refinement and evaluation is essential for developing accurate predictions of malaria transmission dynamics. 
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Figure 16.7 The plot shows the observed vs predicted malaria positive cases in Nigeria made with both Random Forest and XGBoost models. The blue line represents the observed

cases, while the red line represents the predicted cases from the Random Forest and XGBoost models. 

16.5

Summary

In this chapter, we explored the dynamics of malaria transmission and emphasized the importance of mapping outbreaks to guide public health interventions. Using the malariaAtlas

package, we downloaded malaria data for Nigeria and visualized the spatial distribution of cases across the country. Additionally, and demonstrated how machine learning techniques

can analyse historical data to predict future trends in malaria transmission. 
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Learning Objectives

• How health metrics vary across different countries

• Gain insights from the Global Burden of Disease (GBD) study on health metrics at the

country level

• Evaluate the implications of health metrics for global public health policy and interventions In the previous sections, we explored various aspects of health metrics, including tailored case studies, data sources, modelling, and visualisation techniques. We discussed key health metrics such as mortality rates, life expectancy, Disability-Adjusted Life Years (DALYs), 

Years of Life Lost (YLLs), and Years Lived with Disability (YLDs). We also examined the

role of risk factors, disease burdens, and health outcomes in shaping population health

profiles. 

In this final chapter, we will focus on visualising health metrics across countries to understand the state of health globally. We will explore the implications of cross-country comparisons of health metrics for public health policy and interventions. We will use data from the

Global Burden of Disease (GBD) study and the OECD’s Health at a Glance report to compare health indicators, disease burdens, and risk factors across different countries. 

By analysing health metrics at the country level, we can gain insights into public health

priorities, identify areas for improvement, and inform global public health policy. 

17.1

Data Sources for Health Metrics Comparison

Data availability is crucial for comparing health metrics across countries and regions. The OECD’s Health at a Glance report and the Global Burden of Disease (GBD) study offer comprehensive data on health indicators, disease burdens, and risk factors, enabling cross-country comparisons and insights into public health priorities. 

17.1.1

Example of OECD Health at a Glance Data

The OECD’s Health at a Glance report offers a comparative overview of health indicators among member countries. The report examines metrics such as life expectancy, health

expenditures, and major health trends. It also provides accessible insights into public health priorities and performance indicators, facilitating comparisons and helping to identify areas for improvement (www.oecd-ilibrary.org). 

In this example, we will download data from the OECD’s Health at a Glance report website

(https://data-explorer.oecd.org/) to compare Disability-adjusted life years (DALYs) DOI: 10.1201/9781032625935-17
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due to Ambient Particulate Matter as a risk exposure per 1 000 inhabitants (accessed Nov 2024). 

We can use the url for DALYs due to Ambient Particulate Matter found by searching for

the keyword DALYs in the search box of the OECD report website. 

The url is broken down into the following components:

• sdmx.oecd.org/public/rest/data/

• OECD.ENV.EPI,DSD_EXP_MORSC@DF_EXP_MORSC,1.0/

• .A.DALY.10P3HB.PM_2_5_OUT._T._T?startPeriod=2010

Data are available to download in the SDMX format, which is a standard for exchanging

statistical data. We will use the {rsdmx} package to download the data and convert it to a data frame for analysis. 

install.packages("rsdmx")

library(rsdmx)

library(tidyverse)

# Read the data

sdmx_data <- readSDMX(url)

# Convert SDMX data to a data frame

df <- as.data.frame(sdmx_data)

A glimpse of the data shows the structure of the data frame, including the column names

and data types. 

df %>%

janitor::clean_names() %>%

head(3) %>%

glimpse()

#> Rows: 3

#> Columns: 14

#> $ ref_area

<chr> "PRI", "PRI", "PRI" 

#> $ freq

<chr> "A", "A", "A" 

#> $ measure

<chr> "DALY", "DALY", "DALY" 

#> $ unit_measure

<chr> "10P3HB", "10P3HB", "10P3HB" 

#> $ risk

<chr> "PM_2_5_OUT", "PM_2_5_OUT", "PM_2_5_OUT" 

#> $ age

<chr> "_T", "_T", "_T" 

#> $ sex

<chr> "_T", "_T", "_T" 

#> $ unit_mult

<chr> "0", "0", "0" 

#> $ decimals

<chr> "2", "2", "2" 

#> $ conversion_type <chr> "_Z", "_Z", "_Z" 

#> $ price_base

<chr> "_Z", "_Z", "_Z" 

#> $ obs_time

<chr> "2017", "2018", "2019" 

#> $ obs_value

<dbl> 3.199, 3.417, 3.667

#> $ obs_status

<chr> "A", "A", "A" 

Observation time spans from 2010 to 2019 for 212 countries. We filter the data to include

only the relevant columns and arrange it by observation time to get a better understanding of the data. 
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dalys_pm25 <- df %>%

janitor::clean_names() %>%

select(ref_area, measure, risk, obs_time, obs_value) %>%

arrange(obs_time)

dalys_pm25 %>%

head()

#> 

ref_area measure

risk obs_time obs_value

#> 1

PRI

DALY PM_2_5_OUT

2010

2.474

#> 2

DZA

DALY PM_2_5_OUT

2010

14.680

#> 3

CHL

DALY PM_2_5_OUT

2010

6.758

#> 4

OECDA

DALY PM_2_5_OUT

2010

5.516

#> 5

NPL

DALY PM_2_5_OUT

2010

14.249

#> 6

MWI

DALY PM_2_5_OUT

2010

4.211

Then, to make the data more interpretable, we convert the ref_area column from ISO3

codes to country names using the {countrycode} package. Data provides information for

various regions and groups, which we exclude from the analysis. 

library(countrycode)

dalys_pm25 <- dalys_pm25 %>%

filter(!ref_area %in% c("A9", "ASEAN", "EA19", "EU27", 

"EU28", "F98", "G20", "OECD", 

"OECDA", "OECDE", "OECDSO", "W")) %>%

mutate(ref_area = countrycode::countrycode(ref_area, 

origin = "iso3c", 

destination = "country.name"))

Finally, to visualise the data we use a line plot to compare Disability-adjusted life years (DALYs) due to Ambient Particulate Matter as a risk exposure per 1 000 inhabitants for

Egypt, Serbia, Morocco, Italy, and Iceland. These countries were selected based on their

geographical location and varying levels of DALYs due to Ambient Particulate Matter. 

We can conclude that the Disability-adjusted life years (DALYs) due to Ambient Particulate Matter varied across countries from 2010 to 2019. This variation may be due to differences in environmental policies, air quality, and public health interventions aimed at reducing

exposure to particulate matter. In particular, countries like Egypt and Serbia experienced higher DALYs due to Ambient Particulate Matter compared to countries like Iceland and

Italy. 

In general, the data shows that regions with high air pollution, such as parts of East Asia, see increased DALYs from respiratory conditions. This is due to the high levels of particulate matter in the air, which can lead to respiratory diseases like asthma and chronic obstructive pulmonary disease (COPD). Countries with stringent air quality regulations, such as those in Western Europe, tend to have lower DALYs from air pollution-related conditions. 

17.1.2

Example of GBD Data Cross-Country Comparisons

The Global Burden of Disease GBD study by the Institute for Health Metrics and

Evaluation (IHME) provides comprehensive data on various health metrics covering a

vast array of diseases, injuries, and risk factors across 204 countries. To access the GBD data

(<www.healthdata.org>), we can use the Sustainable Development Goals (SDG) API
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Figure 17.1 Disability-adjusted life years (DALYs) due to Ambient Particulate Matter as a risk exposure per 1 000 inhabitants in selected countries from 2010 to 2019. 

provided by the IHME. The API allows users to access GBD data for specific indicators, 

locations, and years, enabling cross-country comparisons. In Section A.3 is provided a detailed guide on how to access and use the SDG API. 

In this example, we will compare the Tuberculosis Incidence Rate in 2019 for selected countries using the Sustainable Development Goals (SDG) API data. We will use the

{hmsidwR} package to download the data and visualise the results using a bar plot. 

# Install the hmsidwR package

install.packages("hmsidwR")

# or the development version

devtools::install_github("fgazzelloni/hmsidwR")

# Load the libraries

library(hmsidwR)

We download the data using the gbd_get_data function from the {hmsidwR} package. The

function requires the URL, API key, endpoint, indicator ID, location ID, and year as input parameters, as shown below:

data_1001 <- hmsidwR::gbd_get_data(

url = "https://api.healthdata.org/sdg/v1", 

key = "YOUR-KEY", 

endpoint = "GetResultsByIndicator", 

indicator_id = "1001", 

location_id = c("29","86","102"), 

year = "2019" 
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)

Filter the data by both gender and subset to include only the relevant columns:

data_1001 %>%

filter(sex_label=="Both sexes") %>%

select(location_name, indicator_short, mean_estimate)

#> 

location_name indicator_short

mean_estimate

#> 1

Tonga

TB Incid 31.80181440147271

#> 2

Italy

TB Incid 5.277028727101566

#> 3 United States of America

TB Incid 2.52029721501685

To compare the cross-countries results to identify disparities in Tuberculosis Incidence Rate in 2019 for selected countries, we can use a bar plot. 

Tuberculosis Incidence Rate in 2019

Italy, Tonga, and United States of America

Tonga
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United States of America
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Figure 17.2 A bar plot showing Tuberculosis Incidence Rate in 2019 for selected countries. 

Tonga is a country located in the South Pacific, east of Australia, and north of New Zealand. 

It is part of the region known as Oceania, being situated east of Fiji, south of Samoa, and west of the Cook Islands. Tonga is made up of 170 islands, where four-fifths of them are

uninhabited. 

Tuberculosis can still be a significant concern, even in smaller island nations, due to factors like limited healthcare infrastructure, high prevalence of co-morbidities, and socio-economic conditions. Tonga, a country located in the South Pacific, east of Australia, and north of New Zealand, part of the region known as Oceania, is made up of 170 islands, where four-fifths of them are uninhabited. The country faces challenges in managing infectious diseases like tuberculosis due to its geographical location and limited resources. The comparison of

Tuberculosis Incidence Rate in 2019 for Italy, Tonga, and the United States of America

highlights the disparities in disease burden and health outcomes across countries. 
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17.2

Key Determinants of Health Metrics Variation

Health metrics can vary significantly across countries due to a combination of factors that influence population health outcomes. Some of the key determinants of health metrics

variation include:

• Healthcare Infrastructure and Access

• Socioeconomic Status

• Environmental Factors

• Lifestyle and Behavioral Factors

• Public Health Policies and Interventions

• Cultural and Social Norms

These determinants influence health outcomes and disease burdens in different populations, shaping the overall health profile of a country. The availability and quality of healthcare services, income level, employment status, and education, are strongly linked to health

outcomes. Geographic factors, such as climate, also influence disease patterns; tropical

regions may have higher rates of vector-borne diseases like malaria and for this reason have higher DALYs due to these diseases. Countries that prioritize preventive health measures

often see long-term benefits in population health metrics. 

17.3

Example: Years Lived with Disability (YLDs) due to Injuries

The Global Burden of Disease (GBD) study provides detailed data on a wide range of

health metrics, including Years Lived with Disability (YLDs) due to injuries. Considered non fatal outcomes, YLDs measure the impact of injuries on population health by quantifying

the years lived with a disability caused by an injury. By comparing YLDs due to injuries

across countries with different Sustainable Development Index (SDI) levels, we can identify disparities in injury-related health outcomes and inform public health interventions to reduce the burden of injuries. 

In this example we will use the GBD data to compare the Years Lived with Disability

(YLDs) due to Injuries for high, middle, and low Sustainable Development Index

(SDI) countries from 1990 to 2021. Data are available on the GBD website at www.health

data.org1, and we will use the {ggplot2} package to create a line plot visualising the YLDs due to Injuries by country and SDI level. 

ylds_injuries %>% head(3) %>% glimpse()

#> Rows: 3

#> Columns: 4

#> $ year

<int> 1990, 1990, 1990

#> $ sex_name

<chr> "Both", "Both", "Both" 

#> $ location_name <chr> "High SDI", "High-middle SDI", "Low SDI" 

#> $ avg

<dbl> 0.8681205, 0.9437509, 0.5304269

1For reproducibility a copy of the “injuries” data are stored on the GitHub Repository of this book

(https://github.com/Fgazzelloni/hmsidR) in the data/inst/extdata folder. 
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ylds_injuries %>%

filter(!str_detect(location_name, "-middle")) %>%

ggplot(aes(x = year, y = avg, 

group = location_name)) +

geomtextpath::geom_textline(aes(label = location_name), 

hjust = 0.5, 

vjust = 0.5, 

size = 2) +

facet_wrap(~ sex_name, scales = "free") +

labs(title = "GBD-YLDs due to Injuries (1990 - 2021)", 

caption = "IHME Data | Graphic: @fgazzelloni", 

x = "Time (Year)", y = "Average Value") +

theme_minimal()
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Figure 17.3 GBD-YLDs due to Injuries (1990 - 2021) by country and SDI level. 

We can conclude that the Years Lived with Disability (YLDs) due to Injuries varied across

countries with different Sustainable Development Index (SDI) levels from 1990 to 2021. High SDI countries generally had lower YLDs due to Injuries compared to middle and low SDI

countries. This variation may be due to differences in healthcare infrastructure, access to preventive services, and public health interventions aimed at reducing injuries and their

impact on population health. 

Additionally, the data reveals a consistent decline in YLD rates due to injuries across all SDI levels (High, Middle, and Low) from 1990 to 2021. This trend reflects advancements

in injury prevention, improved healthcare access, and enhanced living conditions, which

have collectively reduced the disability burden of injuries among females. However, there is a notable crossover in injury-related YLD rates for females between middle and low SDI
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countries over time. This shift suggests changing dynamics in injury risk and healthcare

access, with middle SDI countries achieving greater reductions in disability from injuries, while low SDI countries experience a rising burden. 

17.4

Example: Injuries Cross-Country Variation by Type

In this example, we will use the GBD data to compare the types of injuries contributing

to the burden of disease in high, middle, and low SDI countries from 1990 to 20212. For example, we can compare the average number of injuries by type (e.g., road injuries, falls, self-harm) in high, middle, and low SDI countries. This comparison can help identify the

most common types of injuries and inform targeted public health interventions to reduce

the burden of injuries in different populations. 

injuries_types %>% head(2) %>% glimpse()

#> Rows: 2

#> Columns: 3

#> $ location_name <chr> "High SDI", "High SDI" 

#> $ cause_name

<chr> "Cyclist road injuries", "Foreign body in eyes" 


#> $ avg

<dbl> 1.2603803, 0.2409338

To compare the types of injuries contributing to the burden of disease in different countries, we can use a treemap visualisation. A treemap is a hierarchical chart that displays data in nested rectangles, with each rectangle representing a different category or subcategory. In this example, we will create a treemap to visualise the average number of injuries by type in high, middle, and low SDI countries. 

library(treemapify)

# ?geom_treemap

injuries_types %>%

filter(!str_detect(location_name, "-middle")) %>%

ggplot(aes(area = avg, 

label = cause_name, 

fill = cause_name)) +

geom_treemap(show.legend = F) +

geom_treemap_text(fontface = "bold", 

reflow = T, 

min.size = 1, 

color = "white", 

place = "centre", 

grow = TRUE) +

facet_wrap(~location_name, scales = "free") +

labs(title = "GBD-YLDs due to Injuries types - Treemap (1990 - 2021)", 

subtitle = "Average values", 

caption = "IHME Data | Graphic: @fgazzelloni")

2For reproducibility a copy of the “injuries” data are stored on the GitHub Repository of this book

(https://github.com/Fgazzelloni/hmsidR) in the data/inst/extdata folder. 
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GBD−YLDs due to Injuries types − Treemap (1990 − 2021)
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Figure 17.4 GBD-Injuries Treemap (1990 - 2021)

We can conclude that the types of injuries contributing to the burden of disease varied across high, middle, and low SDI countries from 1990 to 2021. Road injuries, falls, and self-harm were common types of injuries in all countries, with variations in the average number of

injuries by type. This information can help inform targeted public health interventions to reduce the burden of injuries and improve population health outcomes. 

17.5

Example: All Causes DALYs Rate by Country

In this example, we will visualise the Disability Adjusted Life Years (DALYs) Rate

by Country for all causes using the GBD data. We will use data from the {hmsidwR}

package, spatialdalys2021, to create a  choropleth  map showing the DALYs rate per 100,000

population for each country. The map will provide a visual representation of the burden of disease across different countries, highlighting disparities in health outcomes and disease burdens. 

hmsidwR::spatialdalys2021 %>%

ggplot(mapping=aes(x=long, y=lat, 

fill = value, map_id = location)) +

geom_polygon(aes(group=group)) +

# change the values of the fill scale

scale_fill_viridis_c(option = "plasma", 

labels = scales::number_format(scale = 1e-3), 

name = "DALYs") +

coord_sf() +

[image: Image 40]
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labs(title = "All Causes | DALYs Rate by Country (per 100,000)", 

subtitle = "Values in thousands", 

caption = "IHME Data 2021 | Graphic: @fgazzelloni") +

theme_void()

All Causes | DALYs Rate by Country (per 100,000)

Values in thousands

DALYs

80

60

40

20

IHME Data 2021 | Graphic: @fgazzelloni

Figure 17.5 All Causes | DALYs Rate by Country (per 100,000)

We can conclude that the Disability Adjusted Life Years (DALYs) Rate varied across

countries, with some countries experiencing higher DALYs rates compared to others. This

variation reflects differences in disease burdens, health outcomes, and the impact of different health conditions on population health. The choropleth map provides a visual representation of the burden of disease, highlighting disparities in health outcomes and informing public health interventions to improve population health. 

In general, what emerges from the GBD 2021 data is that low-income countries, particularly in sub-Saharan Africa, often exhibit the highest DALYs per capita. This is primarily due

to a heavy burden of infectious diseases (e.g., malaria, HIV/AIDS, tuberculosis), maternal and neonatal health issues, and malnutrition-related conditions. Countries like the Central African Republic, South Sudan, and Lesotho consistently report some of the highest DALYs

per capita. 

On the other hand, high-income countries, particularly in Western Europe, North America, 

and parts of East Asia (e.g., Japan, Singapore), tend to have the lowest DALYs per capita. 

These countries benefit from well-developed healthcare systems, lower prevalence of infectious diseases, and greater control over non-communicable diseases through early detection and

lifestyle interventions. Countries like Iceland, Switzerland, and Singapore consistently report some of the lowest DALYs per capita. 

Additionally, lifestyle-related factors like smoking and dietary habits play a significant role in the burden of cardiovascular diseases and cancers globally. 
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17.6

Implications for Global Public Health Policy

In summary, comparing health metrics across countries is essential for understanding the

state of health globally. Resources like the GBD study and the OECD’s Health at a Glance

report provide valuable insights into health metrics, enabling comparisons and identifying areas for improvement. By analysing health metrics across countries, we can gain insights

into public health priorities, disease burdens, and health outcomes, which are crucial for informing global public health policy and interventions. 

Analysing health metrics at a global level reveals key patterns in disease prevalence, mortality rates, and risk factors, offering insights into how socio-economic, environmental, and policy variables influence health outcomes. Such comparative analyses are critical for setting

international health priorities and targeting interventions in regions with the greatest need. 

Regional studies play an equally significant role in contextualizing global insights. For

instance, The State of Health in the European Union in 2019 (Santos et al., 

2019)3 highlights the importance of tailoring health policies to regional contexts. By focusing on EU countries, the study identifies unique challenges and opportunities, providing a blueprint for targeted interventions and efficient resource allocation. These findings

underscore that while global frameworks are valuable, effective public health strategies often require adaptation to local circumstances, cultures, and health systems. Investing in health metric comparisons strengthens global collaboration by fostering data sharing, capacity

building, and the exchange of best practices among nations. 

3J Vasco Santos et al., “The State of Health in the European Union in 2019,”  European Journal of Public Health  31, no. Supplement_3 (October 1, 2021): ckab164.043, doi:10.1093/eurpub/ckab164.043. 

Conclusions

This book represents more than just an academic effort—it is the result of a deeply personal journey to bridge the gap between traditional health metrics and advanced machine learning approaches in tackling global health challenges. The process of writing this book has been an exploration of not only the methodologies and tools that define health analytics but also the human stories and challenges embedded in the numbers. It has been a privilege to assemble

insights that illuminate the profound impact of diseases on populations and to shape them

into a resource for those working to make a difference in public health. 

At its core, this work reflects countless hours of research, analysis, and synthesis—navigating datasets, refining models, and translating complex concepts into practical applications. 

Disability-Adjusted Life Years (DALYs) and related metrics form the foundation of the book. 

These measures are more than statistics; they reflect the human toll of diseases and injuries, capturing the burden of ill health on individuals and societies in ways that drive meaningful action. 

Machine learning has emerged as a game-changing approach during this journey. Applying

techniques like transfer learning—where models are adapted to new, data-limited scenarios—

has demonstrated the immense potential of these methods in forecasting health trends and

designing targeted interventions. Witnessing these techniques in action was both challenging and rewarding, as they redefine how we approach complex health issues and open new

pathways for innovation. 

The process of writing this book required meticulous attention to every stage—data collection, preprocessing, exploratory analysis, model selection, and evaluation. Drawing on trusted

sources such as the Global Burden of Disease (GBD) study, the World Health Organization

(WHO), and the Institute for Health Metrics and Evaluation (IHME), the work reflects a

commitment to credibility and depth. At times, it was overwhelming to navigate the wide

range of global health data while uncovering patterns and connections that matter most. 

Yet the result is a comprehensive, adaptable framework for understanding health dynamics

and confronting the challenges posed by infectious diseases. 

Reflecting on this journey, I am inspired by the increasing significance of these tools and methodologies in today’s interconnected world. Pandemics, emerging diseases, and the effects of climate change underscore the urgent need for accurate predictions and informed responses. 

This work highlights the power of machine learning not only to refine health metrics but

also to expand our capacity to address crises with agility, precision, and foresight. 

This book also exemplifies the importance of collaboration and curiosity. Every dataset, 

case study, and insight included here is part of a larger puzzle—one that invites readers

to take these tools further. Whether you are a policymaker seeking to allocate resources

effectively, a researcher developing the next innovative model, or a student eager to make an impact, the findings provide a foundation for enhancing public health strategies and fostering meaningful change. Above all, this work demonstrates the profound value of evidence-based

decision-making in improving health outcomes and achieving greater equity in global health. 
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 Conclusions

As I reflect on this journey, I am reminded of the challenges and rewards of exploring such a complex and evolving field. This book is not just a resource but a reflection of a personal mission to contribute meaningfully to global health. My hope is that it equips readers with practical tools, sparks new ideas, and inspires future advancements that continue to push the boundaries of health metrics and analytics. The journey continues, with this work serving as a foundation for future efforts to improve innovation and data-driven insights in addressing the world’s most pressing challenges. 

Formulary

Statistical Distributions

Normal (Gaussian) Distribution

• Formula:

1

 f ( x) = √

 e− ( x− µ)2

2 σ 2

2 πσ 2

• Description: The normal distribution is a continuous probability distribution characterized by a bell-shaped curve. It is defined by the mean ( µ) and standard deviation ( σ). 

Binomial Distribution

• Formula:

 n

 P ( X =  k) =

 pk(1 −  p) n− k

 k

• Description: The binomial distribution represents the number of successes in a fixed number of independent Bernoulli trials, with a constant probability of success  p  in each trial. Here,  n  is the number of trials and  k  is the number of successes. 

Poisson Distribution

• Formula:

 λke− λ

 P ( X =  k) =

 k! 

• Description: The Poisson distribution represents the probability of a given number of events occurring in a fixed interval of time or space, given the average number of times the event occurs over that interval. Here,  λ  is the average number of events,  k  is the number of occurrences, and  e  is Euler’s number. 

Exponential Distribution

• Formula:

 f ( x) =  λe− λx

for  x ≥ 0

• Description: The exponential distribution represents the time between events in a Poisson process. It is defined by the rate parameter  λ. 
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Uniform Distribution

• Formula:

(

1

 a ≤  x ≤  b

 f ( x) =

 b− a

0

otherwise

• Description: The uniform distribution describes an equal probability for all values in the interval [ a, b]. It is a continuous distribution. 

Bernoulli Distribution

• Formula:

 P ( X =  x) =  px(1 −  p)1− x

for  x ∈ {0 ,  1}

• Description: The Bernoulli distribution is a discrete distribution representing the outcome of a single binary experiment with success probability  p. 

Beta Distribution

• Formula:

 xα−1(1 −  x) β−1

 f ( x) =

for 0 ≤  x ≤ 1

 B( α, β)

• Description: The beta distribution is a continuous distribution defined on the interval [0, 1], parameterized by  α  and  β, and is useful in Bayesian statistics. 

Gamma Distribution

• Formula:

 βαxα−1 e− βx

 f ( x) =

for  x ≥ 0

Γ( α)

• Description: The gamma distribution is a continuous distribution defined by shape parameter  α  and rate parameter  β. It generalizes the exponential distribution. 

Chi-Squared Distribution

• Formula:

1

 f ( x) =

 xk/ 2−1 e− x/ 2

for  x ≥ 0

2 k/ 2Γ( k/ 2)

• Description: The chi-squared distribution is a special case of the gamma distribution with  α =  k/ 2 and  β = 1 / 2, often used in hypothesis testing and confidence intervals. 

Student’s t-Distribution

• Formula:

Γ  ν+1  

 t 2 −  ν+1

2

 f ( t) =

2

√

1 +

 νπ Γ  ν 

 ν

2

• Description: The t-distribution is used to estimate population parameters when the sample size is small and the population variance is unknown. It is defined by the degrees

of freedom  ν. 
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F-Distribution

• Formula:



 d 1  / 2

 d 1

 xd 1 / 2−1

 d 2

 f ( x) =



( d 1 + d 2 ) / 2

 B d 1  , d 2  1 +  d 1  x

2

2

 d 2

• Description: The F-distribution is used to compare two variances and is defined by two degrees of freedom,  d 1 and  d 2. 

Multinomial Distribution

• Formula:

 n! 

 P ( X 1 =  x 1 , . . . , Xk =  xk) =

 px 1 · · ·  pxk

 x

1

 k

1! · · ·  xk ! 

• Description: The multinomial distribution generalizes the binomial distribution to more than two outcomes. It describes the probabilities of counts among categories. 

Geometric Distribution

• Formula:

 P ( X =  k) = (1 −  p) k−1 p

for  k ∈ {1 ,  2 ,  3 , . . . }

• Description: The geometric distribution represents the number of trials needed to get the first success in a sequence of independent Bernoulli trials with success probability  p. 

Hypergeometric Distribution

• Formula:

 K  N − K

 P ( X =  k) =

 k

 n− k

 N 

 n

• Description: The hypergeometric distribution describes the probability of  k  successes in n  draws from a finite population of size  N  containing  K  successes, without replacement. 

Log-Normal Distribution

• Formula:

1

 f ( x) =

√

 e− (ln  x− µ)2

2 σ 2

for  x >  0

 xσ  2 π

• Description: The log-normal distribution describes a variable whose logarithm is normally distributed. It is useful in modeling positively skewed data. 

Machine Learning Models

Linear Regression

• Formula:

 y =  β 0 +  β 1 x 1 +  β 2 x 2 + · · · +  βnxn +  ϵ
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• Description: Predicts a continuous target variable based on linear relationships between the target and one or more predictor variables. 

Logistic Regression

• Formula:



 P ( Y = 1)



logit( P ( Y = 1)) = ln

=  β 0 +  β 1 x 1 +  β 2 x 2 + · · · +  βnxn

1 −  P ( Y = 1)

• Description: Predicts a binary outcome based on linear relationships between the predictor variables and the log-odds of the outcome. 

Generalized Linear Model (GLM)

• Formula:

 g( E( Y )) =  β 0 +  β 1 x 1 +  β 2 x 2 + · · · +  βnxn

• Description: A generalized linear model is a flexible generalization of ordinary linear regression that allows for the dependent variable  Y  to have a distribution other than normal. The link function  g  relates the expected value of the response variable  E( Y ) to the linear predictors.  β 0 is the intercept, and  βi  are the coefficients for the predictor variables xi. 

Generalized Additive Model (GAM)

• Formula:

 g( E( Y )) =  β 0 +  f 1( x 1) +  f 2( x 2) + · · · +  fn( xn)

• Description: A generalized additive model is an extension of generalized linear models where the linear predictor depends linearly on unknown smooth functions of some predictor

variables, and it allows for non-linear relationships between the dependent and independent variables. Here,  g  is the link function,  E( Y ) is the expected value of the response variable Y ,  β 0 is the intercept

Decision Tree

• Formula: Recursive binary splitting

• Description: Splits the data into subsets based on the value of input features. Each internal node represents a “test” on an attribute, each branch represents the outcome of

the test, and each leaf node represents a class label or continuous value. 

Random Forest

• Formula: Aggregated decision trees

• Description: Combines the predictions of multiple decision trees to improve accuracy and control over-fitting. Each tree is trained on a bootstrapped sample of the data and

uses a random subset of features. 

Support Vector Machine (SVM)

• Formula:

 f ( x) = sign(w · x +  b)
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• Description: Finds the hyperplane that best separates the classes in the feature space. 

The formula represents the decision boundary, where w is the weight vector and  b  is the bias. 

K-Nearest Neighbors (KNN)

• Formula:

 k

1 X

ˆ

 y =

 yi

 k i=1

• Description: Classifies a data point based on the majority class among its  k  nearest neighbors. For regression, it predicts the average of the  k  nearest neighbors’ values. 

Naive Bayes

• Formula:

 P ( X| Y ) P ( Y )

 P ( Y | X) =

 P ( X)

• Description: Assumes independence between predictors. It uses Bayes’ theorem to predict the probability of a class given the predictors. 

Principal Component Analysis (PCA)

• Formula:

 Z =  XW

• Description: Reduces the dimensionality of the data by transforming the original variables into new uncorrelated variables (principal components), ordered by the amount of variance

they capture. 

K-Means Clustering

• Formula:

 k

X X

arg min

∥ x −  µi∥2

 S

 i=1  x∈ Si

• Description: Partitions the data into  k  clusters by minimizing the sum of squared distances between the data points and the cluster centroids  µi. 

Neural Networks

• Formula:

 a( l) =  σ( z( l))

 z( l) =  W ( l) a( l−1) +  b( l)

• Description: Composed of layers of interconnected nodes (neurons). Each neuron’s output is a weighted sum of its inputs passed through an activation function  σ. The parameters W ( l) and  b( l) are the weights and biases of layer  l. 
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Convolutional Neural Networks (CNN)

• Formula:

Z

∞

( f ∗  g)( t) =

 f ( τ ) g( t −  τ )  dτ

−∞

• Description: Uses convolutional layers to apply filters to the input, which helps in capturing spatial hierarchies in data, particularly useful for image and video processing. 

Recurrent Neural Networks (RNN)

• Formula:

 ht =  σ( Whht−1 +  Wxxt +  b)

• Description: Designed to recognize patterns in sequences of data by maintaining a hidden state  ht  that captures information from previous time steps. 

Gradient Boosting Machines (GBM)

• Formula:

 Fm( x) =  Fm−1( x) +  η ·  hm( x)

• Description: Builds an additive model in a forward stage-wise manner. Each base learner hm  is trained to reduce the residual error of the ensemble’s previous predictions. 

Long Short-Term Memory Networks (LSTM)

• Formula:

 ft =  σ( Wf · [ ht−1 , xt] +  bf )

 it =  σ( Wi · [ ht−1 , xt] +  bi)

˜

 Ct = tanh( WC · [ ht−1 , xt] +  bC )

 Ct =  ft ∗  Ct−1 +  it ∗ ˜

 Ct

 ot =  σ( Wo · [ ht−1 , xt] +  bo)

 ht =  ot ∗ tanh( Ct)

• Description: A type of RNN that can learn long-term dependencies by using gates to control the flow of information. 

[image: Image 41]
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Life Tables, Markov Chain, and APIs

A.1

Life Tables and Life Expectancy

Back in the 1700s the Swiss mathematician and physicist Daniel Bernoulli (1700 - 1782)

developed the use of a life table model by differentiating life tables based on specific causes of death.1

Originally made by the English scientist John Graunt (1620-1674), for the analysis of the mortality of the population of London and the impact of different diseases. Life tables contain fundamental statistics for the calculation of probabilities of deaths and the computation of life expectancy at birth and at different ages. 

Figure A.1 “Life tables”, William Farr (England 1859)

A.1.1

Life Tables Components

More recent life tables are standardized to be used for a population of 100 000 at age 0. 

 lx  survivors at age  x  it starts with a value of 100 000

 dx  deceased at age  x

 qx  probability of deaths

1“Life Table - an Overview | ScienceDirect Topics,” n.d., https://www.sciencedirect.com/topics/medicine-

and-dentistry/life-table. 

DOI: 10.1201/9781032625935-A
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 px  probability of survival

The probability of survival is given by:

 px = 1 −  qx

Let’s start constructing a life table

The Global Life Tables are included in the {hmsidwR} package as gho_lifetables dataset. 

This dataset has been released by the WHO, and contains various indicators. 

The construction of the Global Life Tables takes consideration of age-specific mortality

patterns, which is the main improvements made on life tables construction since the first

set of model life tables published by the United Nations in 1955, see2 for more information about a detailed procedure. 

To have a look at the package documentation for this dataset, use:

?hmsidwR::gho_lifetables

library(tidyverse)

hmsidwR::gho_lifetables %>%

count(indicator) %>%

select(-n)

#> # A tibble: 7 x 1

#> 

indicator

#> 

<chr> 

#> 1 Tx

#> 2 ex

#> 3 lx

#> 4 nLx

#> 5 nMx

#> 6 ndx

#> 7 nqx

The indicator of interest for re-building a life table are:

• lx - number of people left alive at age x

• age

These two key elements are crucial for building the life tables. 

lx <- hmsidwR::gho_lifetables %>%

distinct() %>%

filter(

indicator == "lx", 

year == "2019" 

)

x <- lx %>%

filter(sex == "female") %>%

select(x = age)

2“Modified Logit Life Table System: Principles, Empirical Validation, and Application: Population Studies: Vol 57, No 2,” n.d., https://www.tandfonline.com/doi/abs/10.1080/0032472032000097083. 
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lx_f <- lx %>%

filter(sex == "female") %>%

select(lx = value)

lx_m <- lx %>%

filter(sex == "male") %>%

select(lx = value)

The probability of survival is calculated as follow:

 lx

 px =  lx+1

px <- lx_f$lx / lag(lx_f$lx)

data.frame(

x, 

lx = round(lx_f), 

dx = round(c(-diff(lx_f$lx), 0)), 

px, 

qx = 1 - lead(px), 

Lx = c(

(lx_f$lx[1] + (lx_f$lx[2])) / 2, 

5 * (lx_f$lx[-1] + lead(lx_f$lx[-1])) / 2

)

) %>%

head()

#> 

x

lx

dx

px

qx

Lx

#> 1

<1 100000 2584

NA 0.025843406 98707.83

#> 2 01-04 97416 915 0.9741566 0.009393050 484790.72

#> 3 05-09 96501 366 0.9906069 0.003790526 481588.68

#> 4 10-14 96135 249 0.9962095 0.002588600 480052.07

#> 5 15-19 95886 305 0.9974114 0.003185671 478666.28

#> 6 20-24 95581 399 0.9968143 0.004179281 476903.98

hmsidwR::gho_lifetables %>%

distinct() %>%

mutate(indicator = gsub(" .*", "", indicator)) %>%

filter(

indicator == "nLx", 

year == "2019", 

sex == "female" 

) %>%

head()

#> # A tibble: 6 x 5

#> 

indicator year age

sex

value

#> 

<chr> 

<dbl> <ord> <chr> 

<dbl> 

#> 1 nLx

2019 <1

female 97857. 

#> 2 nLx

2019 01-04 female 387467. 

#> 3 nLx

2019 05-09 female 481589. 

#> 4 nLx

2019 10-14 female 480052. 
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#> 5 nLx

2019 15-19 female 478666. 

#> 6 nLx

2019 20-24 female 476904. 

A.1.2

Life Expectancy

Life expectancy is the expected number of years a person will live, based on current age and prevailing mortality rates. There are several methods to calculate life expectancy, but one common approach is to use the actuarial life table, which is a statistical table that provides the mortality rates for a population at different ages. The following steps can be used to calculate life expectancy using a life table:

Identify the relevant mortality rates for the population and time period of interest. Calculate the probability of surviving to each age, given the mortality rates. Multiply the probability of surviving to each age by the remaining life expectancy at that age to obtain the expected number of years of life remaining at each age. Sum the expected number of years of life

remaining at each age to obtain the total life expectancy. Note that life expectancy is a

statistical estimate and can be influenced by many factors, such as lifestyle, health, and environmental factors, so actual individual life expectancy can vary widely. 

Here are some key references for calculating life expectancy:

1. United Nations World Population Prospects - The UN provides detailed life tables

and population data, including life expectancy, for countries and regions around

the world. 

2. Centers for Disease Control and Prevention (CDC) - The CDC provides life tables

for the United States, as well as information on how life expectancy is calculated

and factors that affect it. 

3. World Health Organization (WHO) - The WHO provides information on global

health and life expectancy, including data and reports on trends in life expectancy

and mortality. 

4. Actuarial Science textbooks - Books such as “Actuarial Mathematics” by Bowers, 

Gerber, Hickman, Jones, and Nesbitt, or “An Introduction to Actuarial Mathe-

matics” by Michel Millar, provide comprehensive coverage of the methods and

mathematics used in calculating life expectancy. 

5. Journal articles - Articles in actuarial and demographic journals, such as the North

American Actuarial Journal or Demographic Research, often provide in-depth

coverage of the latest research and methods for calculating life expectancy. 

A.2

Markov Chain

A Markov chain is a stochastic model describing a sequence of possible events in which the probability of each event depends only on the state attained in the previous event. The

state space of a Markov chain is the set of all possible states of the system. The transition probabilities are the probabilities of moving from one state to another. The transition matrix is a square matrix that describes the transition probabilities between states. 
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The code for this replication of the Markov Chain is from Dobrow - Bayesian analysis of infectious diseases book (chapter4). It shows clearly how to create a Markov chain and calculate the transition probabilities. 

set.seed(000)

markov <- function(init, mat, n, labels) {

if (missing(labels)) labels <- 1:length(init)

simlist <- numeric(n + 1)

states <- 1:length(init)

simlist[1] <- sample(states, 1, prob = init)

for (i in 2:(n + 1)) {

simlist[i] <- sample(states, 1, prob = mat[simlist[i - 1], ])

}

labels[simlist]

}

P <- matrix(c(.51, .49, .49, .51), 

nrow = 2, ncol = 2, byrow = TRUE

)init <- c(1, 0)

markov(init = init, mat = P, n = 100)

# Define the number of transitions

n_transitions <- 10000

# Simulate Markov chain

simulated_chain <- markov(init, P, n_transitions)

# Calculate the transition probabilities

transition_counts <- table(

simulated_chain[-1], 

simulated_chain[-(n_transitions + 1)]

)transition_probabilities <- transition_counts / rowSums(transition_counts)

transition_probabilities

#> 

#> 

1

2

#> 

1 0.5140224 0.4859776

#> 

2 0.4844249 0.5155751

# Calculate prior probabilities

prior_probabilities <- table(

simulated_chain[-n_transitions]) / n_transitions

prior_probabilities

#> 

#> 

1

2

#> 0.4992 0.5008

# Calculate posterior probabilities

posterior_probabilities <- transition_probabilities %*% prior_probabilities
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posterior_probabilities

#> 

#> 

[,1]

#> 

1 0.4999776

#> 

2 0.5000249

A.3

Collecting Data with APIs

Collecting data for research analysis involves selecting sources and methods to optimize

computational time when downloading and reading files. Once the data are prepared and

ready to use, an additional step is required to make them suitable for the selected model. 

The source of the data is a critical variable. Generally, data can be downloaded using an

API (application programming interface), which allows users to access data directly from

the source through specified back-end computations. 

There are alternatives to using an API; data can be downloaded directly to a computer

or loaded through library packages. Available files are usually provided in various formats, such as delimited files (.csv), spreadsheets (.xls), JSON files (.json), and others. Below is an example of how to use an API to download a file directly to your computer. 

library(httr)

url <- "" 

httr::GET(url = url)

A.3.1

Download Data with APIs

A.3.1.1

IHME Data APIs

Head over https://ghdx.healthdata.org/ihme-api to get access to the IHME API’s page. 

The page provides IHME APIs for Sustainable Development Goals (SDG) data. Then, click

on https://api.healthdata.org/sdg to login and request an API key. More information on the methodology and data can be found at https://www.gatesfoundation.org/goalkeepers/

report/2024-report/data-sources/#ExploretheData. 

Load necessary libraries:

library(httr)

library(jsonlite)

library(tidyverse)

The IHME API provides the following queries. These queries might be updated in the future, so it is important to check the API documentation for the most recent queries. 

• SDG Query Input:

– GetGoal

– GetIndicator

– GetTarget

– GetLocation

– GetAgeGroup

– GetScenario
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– GetSex

– GetResultsByTarget

• Query Input for Results:

– GetResultsByTarget

– GetResultsByIndicator

– GetResultsByLocation

– GetResultsByYear

Use the function gbd_get_data to download data from the IHME API. The function requires

the following arguments in quotation marks:

• The url where to download the data, such as: " https://api.healthdata.org/sdg/v1" 

• An API key = “YOUR-KEY” 

• A sdg-endpoint, such as:

“GetResultsByLocation?location_id=86&indicator_id=1002&year=2019” 

The function returns a data frame with the results. 

gbd_get_data <- function(url, key, sdg) {

library(httr)

library(jsonlite)

url <- paste0(url, "/", sdg)

headers <- c("Authorization" = key)

res <- GET(url, add_headers(headers))

data <- fromJSON(rawToChar(res$content))

data <- data$results

}

Build the query to download results by adding specification of the data. Let’s start with:

• GetIndicator

indicator <- gbd_get_data(

url = "https://api.healthdata.org/sdg/v1", 

key = "YOUR-KEY", 

sdg = "GetIndicator" 

)

As an example, let’s see the first 6 indicators. 

library(tidyverse)

indicator %>%

select(indicator_id, indicator_name) %>%

arrange(indicator_id) %>%

head()

Then use the indicator_id to download the data for a specific indicator. 

agegroup <- gbd_get_data(

url = "https://api.healthdata.org/sdg/v1", 

key = "YOUR-KEY", 

sdg = "GetAgeGroup" 

)

[image: Image 42]
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Figure A.2 GBD-SDG Indicators

agegroup %>%

select(age_group_id, age_group_name) %>%

arrange(age_group_id) %>%

head()

Figure A.3 GBD-SDG Age Groups

dat19 <- gbd_get_data(

url = "https://api.healthdata.org/sdg/v1", 

key = "YOUR-KEY", 

sdg = "GetResultsByIndicator?indicator_id=1001&location_id=86&year=2019" 

)

dat19%>%

select(location_name, indicator_name, sex_label, mean_estimate)

Figure A.4 GBD-SDG Tuberculosis Data 2019
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The same data can be downloaded using the httr package. The following code downloads the

data for the indicator with indicator_id = 1001, location_id = 86, and year = 2019. 

We can use the GET() function with this url = https://api.healthdata.org/sdg/v1/GetResul

tsByIndicator?indicator_id=1001&location_id=86&year=2019

headers <- c("Authorization" = "YOUR-KEY")

res <- GET(url= url, 

add_headers(headers))

res$content%>%

rawToChar() %>%

fromJSON()

An advanced version of the gbd_get_data() function can be found in the {hmsidwR} package. 

The function hmsidwR::gbd_get_data() allows the user to endpoint customisation, instead

of using sdg argument with the long query string, an endpoint is used to specify the

starting point of the quesry, such as GetResultsByIndicator. Then, the user can specify

the indicator_id, location_id, and year to download the data for specific indicator, 

location, and year. 

The function requires the arguments to be within quotation marks:

hmsidwR::gbd_get_data(

url = "https://api.healthdata.org/sdg/v1", 

key = "YOUR-KEY", 

endpoint = "GetResultsByIndicator", 

indicator_id = "1001", 

location_id = "86", 

year = "2019" 

)

The output is still the same as Figure A.4 in the previous example. 

A.3.2

Package References

The {hmsidwR} package is available at https://github.com/Fgazzelloni/hmsidwR. The package provides data and functions to support this book. 

Download the package from CRAN or for the development version use GitHub:

# Download from CRAN

install.packages("hmsidwR")

# Download from GitHub

# install.packages("devtools")

devtools::install_github("Fgazzelloni/hmsidwR")

B

Tools Used to Make This Book

This appendix provides a comprehensive guide to replicating the environment and code used

in this book. To get started, you’ll need to install the R programming language along with RStudio IDE. Additionally, we’ll walk through the steps for setting up a Quarto book project, integrating it with GitHub for version control, and ensuring reproducibility with the {renv} package. This setup will allow you to restore the project’s environment

exactly as it was during the book’s creation, ensuring that all code examples run seamlessly. 

B.1

RStudio Installation

First, you’ll need to download and install R and RStudio Desktop. You can do this by

visiting the following link: RStudio Desktop Download. 

B.2

How to Set Up This Project with Quarto

Quarto is the next-generation version of RMarkdown, designed for a wide range of publishing tasks, including creating notes, presentations, websites, and books. This book has been

developed using Quarto, with the project versioned on GitHub. For more details on how to

publish a Quarto book, refer to the official Quarto documentation. 

To set up your project:

1. In RStudio, create a new project in a new directory. 

2. Enable Git for version control. 

3. Select “Quarto Book Project” as the project type. This will automatically generate

a _quarto.yml file with the following structure:

---

project:

type: book

---

4. To preview your book, use the terminal to run quarto preview. This command

will generate a _book directory containing the compiled book files. 
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B.2.0.1

GitHub Useful Commands

You can manage your project using GitHub directly from RStudio or via command line. To

connect your project with GitHub:

1. After creating your project, initiate a Git repository with:

git init

git remote add origin https://github.com/yourusername/your-repo.git

2. Commit your files and push them to the GitHub repository:

git branch -M main

git push -u origin main

B.2.0.2

Publish Your Book on GitHub Pages

To publish your Quarto book on GitHub Pages:

1. Modify the _quarto.yml file to specify the output directory as docs:

---

project:

type: book

output-dir: docs

---

2. Add a .nojekyll file to prevent GitHub Pages from ignoring files:

touch .nojekyll

3. Render your book with:

quarto render

This command will create a docs folder where the compiled book will be stored. 

B.2.0.3

Adding a Package

If you want to add a custom R package to your book project, follow these steps:

1. Create a new package using devtools:

devtools::create("yourpkg")

2. Add raw data processing scripts:

usethis::use_data_raw()

This command creates a .R script in the data-raw directory for processing your

data. 
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3. Save processed data for use in the package:

usethis::use_data(yourdata)

4. Document your package functions and datasets:

usethis::use_r("yourdataset")

devtools::document()

Use vignettes for additional documentation:

vignette("rd-other") # For datasets

vignette("rd")

Finally, build your package to include all new data and functions:

devtools::load_all(".")

B.2.0.4

Ensuring Reproducibility with renv

To ensure that all analyses and code examples in the book are reproducible, we’ve utilized the renv package. This package captures the specific versions of all R packages used in the project, storing them in an renv.lock file located in the root directory of the book’s GitHub repository. 

To restore the project environment to its original state:

1. Clone the project repository. 

2. Run the following command in your R console:

renv::restore()

This command reads the renv.lock file and reinstalls all packages with the exact

versions used during the book’s development. 

Using renv ensures that all code examples work as intended, regardless of future package updates, making it easier for readers to replicate analyses or adapt the code to their datasets. 

C

Tips on Converting to Python

Translating R code into Python can be a smooth transition with the right approach. Let’s start with the basics, from installing packages to loading libraries, and compare the equivalents between R and Python, including the popular tidyverse in R and its counterparts in Python. 

C.1

Packages and Libraries

1. Installing Packages:

•R:

install.packages("package_name")

•Python (using pip):

!pip install package_name

•Python (using conda):

!conda install package_name

2. Loading Libraries:

•R:

library(package_name)

•Python:

import package_name

C.2

Comparing tidyverse with its Python Equivalents

• tidyverse (R): tidyverse is a collection of R packages designed for data science, including dplyr for data manipulation, ggplot2 for data visualization, tidyr for data tidying, etc. 

library(tidyverse)

• Python Equivalents:

– pandas: Similar to dplyr, pandas provides powerful data manipulation tools. 
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import pandas as pd

– matplotlib/seaborn: Comparable to ggplot2, these libraries are used for data

visualization. 

import matplotlib.pyplot as plt

import seaborn as sns

– numpy: While not a direct equivalent to tidyr, numpy offers functionalities for array manipulation and numerical computing, which can be handy for data tidying tasks. 

import numpy as np

– scikit-learn: Provides tools for data preprocessing, modelling, and evaluation, re-sembling some functionalities of tidyverse packages like modelr. 

from sklearn import ... 

– tidyverse-like package: There isn’t a single package in Python that encompasses

the entire functionality of tidyverse, but you can combine pandas, matplotlib/seaborn, 

numpy, and scikit-learn to achieve similar results. 

By understanding these equivalences and leveraging the rich ecosystem of Python libraries, you can effectively translate your R code into Python, ensuring a smooth transition while

retaining the analytical power and flexibility you need for your projects. 

C.3

Creating Data Making Statistics

1. Creating Basic Data:

•R:

# Create a data frame

data <- data.frame(

x = c(1, 2, 3, 4, 5), 

y = c(2, 3, 4, 5, 6)

)

•Python (using pandas):

import pandas as pd

# Create a DataFrame

data = pd.DataFrame({

'x': [1, 2, 3, 4, 5], 

'y': [2, 3, 4, 5, 6]

})

2. Basic Statistics:

•R:

# Summary statistics

summary(data)
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•Python (using pandas):

# Summary statistics

print(data.describe())

C.4

Building a Linear Regression Model

• R:

# Load the lm function from the stats package

library(stats)

# Fit a linear regression model

lm_model <- lm(y ~ x, data = data)

# Summary of the model

summary(lm_model)

• Python (using statsmodels):

import statsmodels.api as sm

# Add a constant term for intercept

X = sm.add_constant(data['x'])

# Fit a linear regression model

lm_model = sm.OLS(data['y'], X).fit()

# Summary of the model

print(lm_model.summary())

• Python (using scikit-learn):

from sklearn.linear_model import LinearRegression

# Initialize the model

lm_model = LinearRegression()

# Fit the model

lm_model.fit(data[['x']], data['y'])

# Coefficients

print("Intercept:", lm_model.intercept_)

print("Coefficient:", lm_model.coef_)

While the syntax and libraries may differ slightly, the overall process remains conceptually similar. By understanding these comparisons, you can effectively transition between R and

Python for data analysis and modelling tasks. 

306

 Tips on Converting to Python

C.5

Example of a Model Workflow

1. Data Preprocessing:

import pandas as pd

from sklearn.preprocessing import StandardScaler

data = pd.read_csv('data.csv')

data.fillna(method='ffill', inplace=True)

scaler = StandardScaler()

scaled_data = scaler.fit_transform(

data[['feature1', 'feature2', 'feature3']]

)

2. Model Selection and Training:

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LinearRegression

from sklearn.metrics import mean_squared_error

X = data[['feature1', 'feature2', 'feature3']]

y = data['DALYs']

X_train, 

X_test, 

y_train, 

y_test = train_test_split(X, y, test_size=0.2, random_state=42)

model = LinearRegression()

model.fit(X_train, y_train)

y_pred = model.predict(X_test)

mse = mean_squared_error(y_test, y_pred)

print(f'Mean Squared Error: {mse}')

3. Time Series Forecasting Example:

from fbprophet import Prophet

ts_data = data[['date', 'DALYs']]

ts_data.rename(columns={'date': 'ds', 'DALYs': 'y'}, inplace=True)

model = Prophet()

model.fit(ts_data)

future = model.make_future_dataframe(periods=365)

forecast = model.predict(future)

model.plot(forecast)

4. The SIR Model Example:

Set-up the environment for running python in RStudio by loading the

{reticulate} package and the following commands:
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library(reticulate)

This is to configurate python and for installing necessary packages:

py_config()

# type <pip3 install scipy> on terminal

# type <pip3 install matplotlib> on terminal

import matplotlib

matplotlib.use('TkAgg') # Ensure you have an interactive backend

import matplotlib.pyplot as plt

import scipy.integrate as spi

import numpy as np

Set-up the parameters:

beta = 1.4247

gamma = 0.14286

TS = 1.0

ND = 70.0

S0 = 1 - 1e-6

I0 = 1e-6

INPUT = (S0, I0, 0.0)

Define differential equations:

def diff_eqs(INP, t):

Y = np.zeros((3))

V = INP

Y[0] = - beta * V[0] * V[1]

Y[1] = beta * V[0] * V[1] - gamma * V[1]

Y[2] = gamma * V[1]

return Y

t_start = 0.0; t_end = ND; t_inc = TS

t_range = np.arange(t_start, t_end + t_inc, t_inc)

RES = spi.odeint(diff_eqs, INPUT, t_range)

#Plotting

# Ensure interactive mode is on and plot

plt.ion()

plt.subplot(211)

plt.plot(RES[:, 0], '-g', label='Susceptibles')

plt.plot(RES[:, 2], '-k', label='Recovereds')

plt.legend(loc=0)

plt.title('SIR Model')

plt.xlabel('Time')

plt.ylabel('Susceptibles and Recovereds')

[image: Image 45]
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plt.subplot(212)

plt.plot(RES[:, 1], '-r', label='Infectious')

plt.xlabel('Time')

plt.ylabel('Infectious')

plt.show()

Figure C.1 SIR Model with Python

The code for this example is adapted from: Modeling Infectious Diseases in Humans and

Animals Matt J. Keeling & Pejman Rohani. 

By following these steps, you can analyze DALYs and infectious diseases, drawing trends, 

understanding relationships, and predicting future outcomes effectively. 

References

Ahmad, Hammad, Asad Ali, Syeda Hira Fatima, Farrah Zaidi, Muhammad Khisroon, Syed

Basit Rasheed, Ihsan Ullah, Saleem Ullah, and Muhammad Shakir. “Spatial Modeling of

Dengue Prevalence and Kriging Prediction of Dengue Outbreak in Khyber Pakhtunkhwa

(Pakistan) Using Presence Only Data.”  Stochastic Environmental Research and Risk

 Assessment  34, no. 7 (July 1, 2020): 1023–36. doi:10.1007/s00477-020-01818-9. 

“Alan Lopez,” December 11, 2023. https://en.wikipedia.org/w/index.php?title=Alan_Lope

z&oldid=1189335406. 

“Analytic Hierarchy Process.”  Wikipedia, March 2024. https://en.wikipedia.org/w/index.p

hp?title=Analytic_hierarchy_process&oldid=1214553274. 

“Approximate Bayesian Inference for Latent Gaussian Models by Using Integrated Nested

Laplace Approximations - Rue - 2009 - Journal of the Royal Statistical Society: Series b

(Statistical Methodology) - Wiley Online Library,” n.d. https://rss.onlinelibrary.wiley.co

m/doi/full/10.1111/j.1467-9868.2008.00700.x. 

Baker, Ruth E., Jose-Maria Peña, Jayaratnam Jayamohan, and Antoine Jérusalem. “Mecha-

nistic Models Versus Machine Learning, a Fight Worth Fighting for the Biological Com-

munity?”  Biology Letters  14, no. 5 (May 16, 2018): 20170660. doi:10.1098/rsbl.2017.0660. 

Bourke, Joanna.  Fear: A Cultural History. Catapult, 2007. 

Broemeling, Lyle D.  Bayesian Analysis of Infectious Diseases: COVID-19 and Beyond. New York: Chapman; Hall/CRC, 2021. doi:10.1201/9781003125983. 

Butcher, Brandon, and Brian J. Smith.  The American Statistician  74, no. 3 (July 2020): 308–9. doi:10.1080/00031305.2020.1790217. 

CDC. “About Rabies,” May 14, 2024. https://www.cdc.gov/rabies/about/index.html. 

Chowell, Gerardo, Sushma Dahal, Amna Tariq, Kimberlyn Roosa, James M. Hyman, 

and Ruiyan Luo. “An Ensemble n-Sub-Epidemic Modeling Framework for Short-

Term Forecasting Epidemic Trajectories: Application to the COVID-19 Pandemic

in the USA.”  PLOS Computational Biology  18, no. 10 (October 6, 2022): e1010602. 

doi:10.1371/journal.pcbi.1010602. 

“Christopher J. L. Murray,” January 1, 2024. https://en.wikipedia.org/w/index.php?title

=Christopher_J._L._Murray&oldid=1192936044. 

“Constitution of the World Health Organization,” n.d. https://www.who.int/about/accoun

tability/governance/constitution. 

“Coronaviridae - Wikipedia,” n.d. https://en.wikipedia.org/wiki/Coronaviridae. 

Dempsey, Mary. “Decline in Tuberculosis.”  American Review of Tuberculosis, April 23, 2019. 

https://www.atsjournals.org/doi/epdf/10.1164/art.1947.56.2.157?role=tab. 

———. “Decline in Tuberculosis.”  American Review of Tuberculosis, April 23, 2019. https:

//www.atsjournals.org/doi/epdf/10.1164/art.1947.56.2.157?role=tab. 

Devleesschauwer, Brecht, Scott A. McDonald, Niko Speybroeck, and Grant M. A. Wyper. 

“Valuing the Years of Life Lost Due to COVID-19: The Differences and Pitfalls.”  International Journal of Public Health  65, no. 6 (2020): 719–20. doi:10.1007/s00038-020-01430-2. 

“Disability-Adjusted Life Year,” December 8, 2023. https://en.wikipedia.org/w/index.php?t

itle=Disability-adjusted_life_year&oldid=1188922629. 

309

310

 References

“Disability-Adjusted Life Year,” December 8, 2023. https://en.wikipedia.org/w/index.php?t

itle=Disability-adjusted_life_year&oldid=1188922629. 

Dobrow, Robert P.  Introduction to Stochastic Processes with R. John Wiley & Sons, 2016. 

Dubos, R. “The State of Health and the Quality of Life.”  Western Journal of Medicine  125, no. 1 (July 1976): 8–9. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1237171/. 

———. “The State of Health and the Quality of Life.”  Western Journal of Medicine  125, no. 

1 (July 1976): 8–9. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1237171/. 

“Echoutcome,” October 8, 2016. https://web.archive.org/web/20161008010513/http:

//echoutcome.eu/. 

Ferrari, Alize J., Damian Francesco Santomauro, Amirali Aali, Yohannes Habtegiorgis Abate, Cristiana Abbafati, Hedayat Abbastabar, Samar Abd ElHafeez, et al. “Global Incidence, 

Prevalence, Years Lived with Disability (YLDs), Disability-Adjusted Life-Years (DALYs), 

and Healthy Life Expectancy (HALE) for 371 Diseases and Injuries in 204 Countries

and Territories and 811 Subnational Locations, 1990–2021: A Systematic Analysis for

the Global Burden of Disease Study 2021.”  The Lancet  403, no. 10440 (May 18, 2024): 2133–61. doi:10.1016/S0140-6736(24)00757-8. 

“FES/Data_Sets/Ischemic_Stroke at Master · Topepo/FES,” n.d. https://github.com/top

epo/FES/tree/master/Data_Sets/Ischemic_Stroke. 

 Forecasting: Principles and Practice (3rd Ed), n.d. https://otexts.com/fpp3/. 

Foreman, Kyle J., Rafael Lozano, Alan D. Lopez, and Christopher JL Murray. “Modeling

Causes of Death: An Integrated Approach Using CODEm.”  Population Health Metrics

10, no. 1 (January 2012): 1. doi:10.1186/1478-7954-10-1. 

Gilks, W. R., S. Richardson, and David Spiegelhalter, eds.  Markov Chain Monte Carlo in Practice. Chapman; Hall/CRC, 1995. doi:10.1201/b14835. 

“Global Health Estimates,” n.d. https://www.who.int/data/global-health-estimates. 

Haenszel, William. “A Standardized Rate for Mortality Defined in Units of Lost Years of

Life.”  American Journal of Public Health and the Nations Health  40, no. 1 (January 1950): 17–26. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1528498/. 

Hampson, Katie, Laurent Coudeville, Tiziana Lembo, Maganga Sambo, Alexia Kieffer, 

Michaël Attlan, Jacques Barrat, et al. “Estimating the Global Burden of Endemic

Canine Rabies.”  PLOS Neglected Tropical Diseases  9, no. 4 (April 2015): e0003709. 

doi:10.1371/journal.pntd.0003709. 

“Healthy Life Expectancy (HALE),” n.d. https://www.who.int/data/gho/data/themes/top

ics/indicator-groups/indicator-group-details/GHO/healthy-life-expectancy-(hale). 

“Healthy Life Years,” January 26, 2024. https://en.wikipedia.org/w/index.php?title=Healt

hy_Life_Years&oldid=1199224227. 

Holmes, David. “Report Triggers Quibbles over QALYs, a Staple of Health Metrics.”  Nature Medicine  19, no. 3 (March 1, 2013): 248–48. doi:10.1038/nm0313-248. 

Huang, Xing-Yao, Qi Chen, Meng-Xu Sun, Hang-Yu Zhou, Qing Ye, Wu Chen, Jin-Yu Peng, 

et al. “A Pangolin-Origin SARS-CoV-2-Related Coronavirus: Infectivity, Pathogenicity, 

and Cross-Protection by Preexisting Immunity.”  Cell Discovery  9, no. 1 (June 17, 2023): 1–13. doi:10.1038/s41421-023-00557-9. 

Hult, Marja, Olli Halminen, Miika Linna, Sakari Suominen, and Mari Kangasniemi. “Cost-

Effectiveness Calculators for Health, Well-Being and Safety Promotion: A Systematic

Review.”  The European Journal of Public Health  31, no. 5 (May 10, 2021): 997–1003. 

doi:10.1093/eurpub/ckab068. 

Hyder, Adnan A., Prasanthi Puvanachandra, and Richard H. Morrow. “Measuring the Health

of Populations: Explaining Composite Indicators.”  Journal of Public Health Research  1, no. 3 (December 2012): 222–28. doi:10.4081/jphr.2012.e35. 

 Ihmeuw/Ihme-Modeling. Institute for Health Metrics; Evaluation, 2024. https://github.com

/ihmeuw/ihme-modeling. 

 References

311

“Indicator Metadata Registry Details,” n.d. https://www.who.int/data/gho/indicator-

metadata-registry/imr-details/158. 

“Ipc2021,” n.d. https://ipc2021.popconf.org/abstracts/210817. 

“John Graunt,” January 24, 2024. https://en.wikipedia.org/w/index.php?title=John_Grau

nt&oldid=1198718407. 

“John Graunt,” January 24, 2024. https://en.wikipedia.org/w/index.php?title=John_Grau

nt&oldid=1198718407. 

Johnson, Max Kuhn, and Kjell.  2 Illustrative Example: Predicting Risk of Ischemic Stroke

 | Feature Engineering and Selection: A Practical Approach for Predictive Models, n.d. 

https://bookdown.org/max/FES/stroke-tour.html. 

Keeling, M. J., and L. Danon. “Mathematical Modelling of Infectious Diseases.”  British Medical Bulletin  92, no. 1 (December 1, 2009): 33–42. doi:10.1093/bmb/ldp038. 

Kolokolnikov, Theodore, and David Iron. “Law of Mass Action and Saturation in SIR Model

with Application to Coronavirus Modelling.”  Infectious Disease Modelling  6 (November 16, 2020): 91–97. doi:10.1016/j.idm.2020.11.002. 

Kovacheva, Ts. P. “Life Tables - Key Parameters and Relationships Between Them.”  International Mathematical Forum  12 (2017): 469–79. doi:10.12988/imf.2017.7225. 

“KPSS Test,” October 12, 2023. https://en.wikipedia.org/w/index.php?title=KPSS_test&o

ldid=1179751435. 

“Kriging,” July 18, 2024. https://en.wikipedia.org/w/index.php?title=Kriging&oldid=123

5203584. 

“Kriging Best Fit: Kbfit - Fit Variogram Models and Kriging Models to Spatial Data and

Select the Best Model Based on the Metrics Values — Kbfit,” n.d. https://fgazzelloni.gi

thub.io/hmsidwR/reference/kbfit.html. 

Kuhn, Max.  The Caret Package, n.d. https://topepo.github.io/caret/. 

Laura H. Kahn, M. D.  One Health and the Politics of COVID-19. Johns Hopkins University Press, 2024. doi:10.56021/9781421449326. 

Li, Ying, Thomas Hills, and Ralph Hertwig. “A Brief History of Risk.”  Cognition  203 (October 2020): 104344. doi:10.1016/j.cognition.2020.104344. 

“Life Expectancy for CP, VS, TBI and SCI,” n.d. https://www.lifeexpectancy.org/lifetable

.shtml. 

“Life Table - an Overview | ScienceDirect Topics,” n.d. https://www.sciencedirect.com/topi

cs/medicine-and-dentistry/life-table. 

Liu, Xiaoxue, Yan Guo, Fang Wang, Yong Yu, Yaqiong Yan, Haoyu Wen, Fang Shi, et al. 

“Disability Weight Measurement for the Severity of Different Diseases in Wuhan, China.” 

 Population Health Metrics  21 (May 2023): 5. doi:10.1186/s12963-023-00304-y. 

Lugnér, Anna K., and Paul F. M. Krabbe. “An Overview of the Time Trade-Off Method:

Concept, Foundation, and the Evaluation of Distorting Factors in Putting a Value on

Health.”  Expert Review of Pharmacoeconomics & Outcomes Research  20, no. 4 (August 2020): 331–42. doi:10.1080/14737167.2020.1779062. 

“Machine Learning.”  Wikipedia, April 2024. https://en.wikipedia.org/w/index.php?title=M

achine_learning&oldid=1220758567. 

“Meningitis,” n.d. https://www.who.int/news-room/fact-sheets/detail/meningitis. 

“Mlr-Org,” n.d. https://mlr-org.com/. 

“Modified Logit Life Table System: Principles, Empirical Validation, and Application:

Population Studies: Vol 57, No 2,” n.d. https://www.tandfonline.com/doi/abs/10.1080/

0032472032000097083. 

Moraga, Paula.  Chapter 14 Kriging | Spatial Statistics for Data Science: Theory and Practice with R, n.d. https://www.paulamoraga.com/book-spatial/kriging.html?q=kri#kriging. 

Murray, C. J. “Quantifying the Burden of Disease: The Technical Basis for Disability-

Adjusted Life Years.”  Bulletin of the World Health Organization  72, no. 3 (1994): 429–45. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2486718/. 

312

 References

Murray, C. J., A. D. Lopez, and D. T. Jamison. “The Global Burden of Disease in 1990:

Summary Results, Sensitivity Analysis and Future Directions.”  Bulletin of the World

 Health Organization  72, no. 3 (1994): 495–509. https://www.ncbi.nlm.nih.gov/pmc/artic

les/PMC2486716/. 

Murray, Christopher J. L., Aleksandr Y. Aravkin, Peng Zheng, Cristiana Abbafati, Kaja

M. Abbas, Mohsen Abbasi-Kangevari, Foad Abd-Allah, et al. “Global Burden of 87

Risk Factors in 204 Countries and Territories, 1990–2019: A Systematic Analysis for the

Global Burden of Disease Study 2019.”  The Lancet  396, no. 10258 (October 17, 2020): 1223–49. doi:10.1016/S0140-6736(20)30752-2. 

Murray, Christopher J. L., Joshua A. Salomon, Colin D. Mathers, Alan D. Lopez, and

Weltgesundheitsorganisation, eds.  Summary Measures of Population Health: Concepts, 

 Ethics, Measurement and Applications. World Health Organization, 2002. 

Murray, Christopher JL, and Julio Frenk. “Health Metrics and Evaluation: Strengthening

the Science.”  The Lancet  371, no. 9619 (April 5, 2008): 1191–99. doi:10.1016/S0140-

6736(08)60526-7. 

Muszyńska-Spielauer, Magdalena, and Marc Luy. “Well-Being Adjusted Health Expectancy:

A New Summary Measure of Population Health.”  European Journal of Population  38, no. 

5 (December 2022): 1009–31. doi:10.1007/s10680-022-09628-1. 

null, null. “Ebola Virus Disease in West Africa — the First 9 Months of the Epidemic and

Forward Projections.”  New England Journal of Medicine  371, no. 16 (October 16, 2014): 1481–95. doi:10.1056/NEJMoa1411100. 

Ock, Minsu, Bomi Park, Hyesook Park, In-Hwan Oh, Seok-Jun Yoon, Bogeum Cho, and

Min-Woo Jo. “Disability Weights Measurement for 289 Causes of Disease Considering

Disease Severity in Korea.”  Journal of Korean Medical Science  34, no. Suppl 1 (February 2019): e60. doi:10.3346/jkms.2019.34.e60. 

Onovo, Amobi Andrew, Akinyemi Atobatele, Abiye Kalaiwo, Christopher Obanubi, Ezekiel

James, Pamela Gado, Gertrude Odezugo, Dolapo Ogundehin, Doreen Magaji, and

Michele Russell. “Using Supervised Machine Learning and Empirical Bayesian Kriging to

Reveal Correlates and Patterns of COVID-19 Disease Outbreak in Sub-Saharan Africa:

Exploratory Data Analysis,” n.d. doi:10.1101/2020.04.27.20082057. 

“Pandemic - Wikipedia,” n.d. https://en.wikipedia.org/wiki/Pandemic. 

Pebesma, Edzer J. “Multivariable Geostatistics in s: The Gstat Package.”  Computers & Geosciences  30, no. 7 (August 1, 2004): 683–91. doi:10.1016/j.cageo.2004.03.012. 

Porst, Michael, Elena von der Lippe, Janko Leddin, Aline Anton, Annelene Wengler, Jan

Breitkreuz, Katrin Schüssel, et al. “The Burden of Disease in Germany at the National

and Regional Level.”  Deutsches Ärzteblatt International  119, no. 46 (November 2022): 785–92. doi:10.3238/arztebl.m2022.0314. 

“Q–Q Plot,” March 20, 2025. https://en.wikipedia.org/w/index.php?title=Q%E2%80%93Q

_plot&oldid=1281381233. 

“Quality-Adjusted Life Year,” December 27, 2023. https://en.wikipedia.org/w/index.php?t

itle=Quality-adjusted_life_year&oldid=1192021016. 

“Rabies,” n.d. https://www.who.int/news-room/fact-sheets/detail/rabies. 

Rehm, Jürgen, and Ulrich Frick. “Establishing Disability Weights from Pairwise Comparisons for a US Burden of Disease Study.”  International Journal of Methods in Psychiatric

 Research  22, no. 2 (May 2013): 144–54. doi:10.1002/mpr.1383. 

Reiner, Robert C., and Simon I. Hay. “The Overlapping Burden of the Three Leading Causes

of Disability and Death in Sub-Saharan African Children.”  Nature Communications  13, no. 1 (December 6, 2022): 7457. doi:10.1038/s41467-022-34240-6. 

“R-INLA Project - What Is INLA?” n.d. https://www.r-inla.org/what-is-inla. 

Roster, Kirstin, Colm Connaughton, and Francisco A. Rodrigues. “Forecasting New Diseases

in Low-Data Settings Using Transfer Learning.”  Chaos, Solitons, and Fractals  161 (August 2022): 112306. doi:10.1016/j.chaos.2022.112306. 

 References

313

Santangelo, Omar Enzo, Vito Gentile, Stefano Pizzo, Domiziana Giordano, and Fabrizio

Cedrone. “Machine Learning and Prediction of Infectious Diseases: A Systematic Re-

view.”  Machine Learning and Knowledge Extraction  5, no. 1 (March 2023): 175–98. 

doi:10.3390/make5010013. 

Selemani, Majige, Amina S. Msengwa, Sigilbert Mrema, Amri Shamte, Michael J. Mahande, 

Karen Yeates, Maurice C. Y. Mbago, and Angelina M. Lutambi. “Assessing the Effects

of Mosquito Nets on Malaria Mortality Using a Space Time Model: A Case Study of

Rufiji and Ifakara Health and Demographic Surveillance System Sites in Rural Tanzania.” 

 Malaria Journal  15, no. 1 (May 4, 2016): 257. doi:10.1186/s12936-016-1311-9. 

Silge, Max Kuhn, and Julia.  Tidy Modeling with r, n.d. https://www.tmwr.org/. 

Stanaway, Jeffrey D, Ashkan Afshin, Emmanuela Gakidou, Stephen S Lim, Degu Abate, 

Kalkidan Hassen Abate, Cristiana Abbafati, et al. “Global, Regional, and National

Comparative Risk Assessment of 84 Behavioural, Environmental and Occupational, and

Metabolic Risks or Clusters of Risks for 195 Countries and Territories, 1990–2017: A

Systematic Analysis for the Global Burden of Disease Study 2017.”  The Lancet  392, no. 

10159 (November 2018): 1923–94. doi:10.1016/s0140-6736(18)32225-6. 

Tiemersma, Edine W., Marieke J. van der Werf, Martien W. Borgdorff, Brian G. Williams, 

and Nico J. D. Nagelkerke. “Natural History of Tuberculosis: Duration and Fatality of

Untreated Pulmonary Tuberculosis in HIV Negative Patients: A Systematic Review.” 

 PLOS ONE  6, no. 4 (April 4, 2011): e17601. doi:10.1371/journal.pone.0017601. 

Tsugane, Shoichiro. “Why Has Japan Become the World’s Most Long-Lived Country: Insights

from a Food and Nutrition Perspective.”  European Journal of Clinical Nutrition  75, no. 

6 (2021): 921–28. doi:10.1038/s41430-020-0677-5. 

Vasco Santos, J, A Padron Monedero, B Bikbov, DA Grad, D Plass, E-A Mechili, 

F Gazzelloni, et al. “The State of Health in the European Union in 2019.”  Euro-

 pean Journal of Public Health  31, no. Supplement_3 (October 1, 2021): ckab164.043. 

doi:10.1093/eurpub/ckab164.043. 

Volz, Erik M., Joel C. Miller, Alison Galvani, and Lauren Ancel Meyers. “Effects of Heterogeneous and Clustered Contact Patterns on Infectious Disease Dynamics.”  PLoS Compu-

 tational Biology  7, no. 6 (June 2, 2011): e1002042. doi:10.1371/journal.pcbi.1002042. 

Vos, Theo, Stephen S. Lim, Cristiana Abbafati, Kaja M. Abbas, Mohammad Abbasi, Mitra

Abbasifard, Mohsen Abbasi-Kangevari, et al. “Global Burden of 369 Diseases and Injuries

in 204 Countries and Territories, 1990–2019: A Systematic Analysis for the Global

Burden of Disease Study 2019.”  The Lancet  396, no. 10258 (October 2020): 1204–22. 

doi:10.1016/S0140-6736(20)30925-9. 

Vos, Theo, Stephen S Lim, Cristiana Abbafati, Kaja M Abbas, Mohammad Abbasi, Mitra

Abbasifard, Mohsen Abbasi-Kangevari, et al. “Global Burden of 369 Diseases and Injuries

in 204 Countries and Territories, 1990–2019: A Systematic Analysis for the Global

Burden of Disease Study 2019.”  The Lancet  396, no. 10258 (October 2020): 1204–22. 

doi:10.1016/s0140-6736(20)30925-9. 

Wackernagel, Hans. “Linear Regression and Simple Kriging.” edited by Hans Wackernagel, 

15–26. Berlin, Heidelberg: Springer, 2003. doi:10.1007/978-3-662-05294-5_3. 

“Well-Being Adjusted Health Expectancy - a New Summary Measure of Population Health |

Population Europe,” n.d. https://population-europe.eu/research/books-and-reports/well-

being-adjusted-health-expectancy-new-summary-measure-population. 

“WHO-Convened Global Study of Origins of SARS-CoV-2: China Part,” n.d. https://ww

w.who.int/publications/i/item/who-convened-global-study-of -origins-of -sars-cov-2-

china-part. 

“William Playfair,” March 9, 2025. https://en.wikipedia.org/w/index.php?title=William_P

layfair&oldid=1279573846. 

314

 References

“World Malaria Report 2022,” n.d. https://www.who.int/publications-detail-redirect/97892

40064898. 

Wyper, Grant M. A., Ian Grant, Eilidh Fletcher, Neil Chalmers, Gerry McCartney, and

Diane L. Stockton. “Prioritising the Development of Severity Distributions in Burden of

Disease Studies for Countries in the European Region.”  Archives of Public Health  78, no. 

1 (January 2020): 3. doi:10.1186/s13690-019-0385-6. 

“Zoonosis - Wikipedia,” n.d. https://en.wikipedia.org/wiki/Zoonosis. 

Index

30DayChartChallenge, 170

Bootstrap, 104

30DayMapChallenge, 170

Bounding box, 192

Burden of disease, 230, 279

Absolute Percentage Error (APE), 134

Burden of diseases, 16, 36

Accuracy, 92, 128, 135, 184, 225

Activation function, 126

Calibration, 110

Actuarial, 39

Cancer, 17

Acute Respiratory Distress Syndrome

Cardiovascular Disease (CVD), 17, 55, 214

(ARDS), 233

Case Fatality Rate (CFR), 41, 49, 248, 252

Acute Respiratory Infection (ARI), 226

Case-incidence, 41

Adaptive Moment Estimation (Adam), 128

Categorical, 96

Adjusted R-squared, 92

Causal inference, 64

Aesthetics, 164

Causality, 64

Age at death, 49

Cause of death, 17

Age Specific Fertility Rates (ASFR), 139

Cause Specific Mortality Rate (CSMR), 41

Age Specific Mortality Rate (ASMR), 41

Cause-specific, 36, 40

Age-specific, 19

Causes, 55

Ageing , aging 56

Centers for Disease Control and Prevention

Agent-based models, 96

(CDC), 43

Alan Lopez, 10

Cholera, 74

All-ages, 22

Cholesterol, 214

Analytical Hierarchy Process (AHP), 47

Christopher J. L. Murray, 10

Anomaly detection, 138

Chronic Obstructive Pulmonary Disease

Area Under the Curve (AUC), 93, 185

(COPD), 274

Artificial Intelligence (AI), 70

Classification, 72, 183

Augmented Dickey-Fuller test, 145

Classification loss functions, 91

Autocorrelation, 141, 144

Classification models, 171

AutoRegressive Integrated Moving Average

Combining Results (CR), 47

(ARIMA), 96, 138, 141, 148

Comorbidity, 57

Comparative Risk Assessment (CRA), 58

Bacteria, 225

Compartmental model, 71, 96

Bagging, 150

Composite measures, 95

Batch size, 128

Comprehensive R Archive Network (CRAN), 

Bayesian analysis, 236

112

Bayesian machine learning, 234

Confidence intervals, 96

Bayesian modelling, 90

Confounding, 57

Bayesian models, 96

Confusion matrix, 93

Behavioural, 55

Continuous, 96

Benchmark design, 117

Coordinate Reference System (CRS), 191

Big data, 9

Correlation, 64, 103, 138

Bills of Mortality, 7, 9

Cost-effective, 58

Binary Cross-Entropy, 91, 127

Cost-effectiveness, 10, 93

Boosting, 150, 240

Cost-utility, 9, 93

315

316

 Index

COVID-19, 17, 44, 55, 227, 232

Euclidean distance, 205

Cross Validation, 101, 241, 264

European Commission, 10, 14

Cross-country, 17

European Petroleum Survey Group (EPSG), 

Crude Mortality Rate (CMR), 41

192

Cumulative incidence risk (cir), 42

Evaluation metrics, 92

Cycles, 96

Event proportions, 59

Cyclic patterns, 138

Excess of mortality, 130

Expected life expectancy, 16

Data visualisation, 163, 171, 189, 214, 225

Expected life years (ex), 38

Death rate, 19

Exploratory Data Analysis (EDA), 96, 163

Decision tree, 180, 240

Extreme Gradient Boosting (XGBoost), 108

Decision trees, 96, 229

Decomposition, 96, 138, 143

F1 Score, 93

Deep learning, 124

False Negative (FN), 93

Deep Learning Networks, 229

False Positive (FP), 93

Dengue, 116, 134, 227

False Positive Rate (FPR), 185

Deterministic model, 69

Fatal diseases, 17

Differential equations, 71, 227

Feasible, 58

Directed Acyclic Graph (DAG), 60

Feature engineering, 96, 110, 135

Disability, 11

Fixed effects, 138, 152, 153

Disability Adjusted Life Years (DALYs), 9, 

Florence Nightingale, 163

11, 15, 16, 28, 38, 43, 46, 50, 54, 63, Forecast, 148

94–96, 113, 225, 230, 247, 272, 273

Forecasting, 137

Disability Free Life Expectancy (DFLE), 12

Disability weights, 23, 36, 44, 46, 48

Gaussian, 88

Disease burden, 9, 17, 225, 272

Gelman-Rubin statistic, 238

Disease dynamics , 96

Generalised Additive Models (GAMs), 77, 87

immunity, 96

Generalised Linear Models (GLMs), 105

incubation periods, 96

Geographic Information Systems (GIS), 234, 

transmission rates, 96

259

Diseases, 9, 16

geoms (geometric objects), 164

Distance , 206

Global Burden of Disease (GBD), 9, 10, 17, 

Chebyshev, 206

36, 48, 55, 139, 272

Mahlanobis, 206

Global Burden of Diseases GBD, 43

Manhattan, 206

Global health, 225

Duration, 23, 49, 50

Global Health Observatory (GHO), 19, 38

Duration of exposure, 59

Global Health Observatory Life Tables, 18

Global life tables, 17

Ebola, 189, 228

Gradient Boosting (GB), 265

Education level over age 15 (EDU15+), 139

Grammar of Graphics, 163

Effective degrees of freedom (edf), 79

Grid, 196

Effective Reproduction Number (Reff), 229

Empirical Bayesian Kriging (EBK), 208

Hadley Wickham, 164

Empirically driven model, 71

Hazard Ratio (HR), 49

Ensemble learning, 81, 149, 229

Health Adjusted Life Expectancy (HALE), 

Environmental, 55

16, 46

Environmental factors, 56

Health Adjusted Life Years (HALY), 11

Epicenter, 199

Health Adjusted Life Years (HALYs), 11

Epidemic, 7, 227

Health expectancies, 9

Epidemiology, 9, 42, 43

Health gaps, 9

Epochs, 128

Health indicators, 272

 Index

317

Health interventions, 16

Japanese life expectancy, 17

Health metrics, 7, 9, 36, 50, 55, 95, 133, 163, John Graunt, 7, 9

171, 272

John Snow, 163

Health metrics , 36

Joseph S. Pliskin, 10

components, 36

Health Metrics Spread Infectious Diseases

k-Fold Cross-Validation, 101

with R (hmsidwR), 38

K-Nearest Neighbours (KNN), 108, 240

Health policy, 10

Keras, 128

Health risks, 40

Kermack, 227

Health surveys, 40

Key determinants, 277

Healthy Adjusted Life Expectancy (HALE), 

KPSS test (Kwiatkowski, Phillips, Schmidt, 

9

and Shin), 145

Healthy Life Expectancy (HALE), 12, 31

Healthy Life Years (HLYs), 12

Laplacian approximation, 88

Heart disease, 214

Learning method, 72

Hepatitis, 226

Life expectancy, 7, 11, 17–19, 36, 38, 49, 55, 

Herd immunity, 229

93, 272

Heteroscedasticity, 143

Life expectancy , 37

Heteroskedasticity, 179

at birth, 38

Hierarchical models, 138

standard, 37

Hinge Loss, 91

Life tables, 7, 17, 36, 37

HIV, 37

Lifestyle, 55

Human Development Index (HDI), 230

Linear regression, 74

Hyperparameter tuning, 135, 264, 265

Locally Estimated Scatterplot Smoothing

Hyperparameters, 72

(LOESS), 76

Log-odds, 140

Immunity, 227

Logistic regression, 74, 139

Incidence, 23, 36, 42

Long Short-Term Memory (LSTM), 96, 108, 

Incidence rate, 42, 59

229

Incidence-based approach, 23

Longitudinal data, 138

Income per capita, 139

Loss function, 91

Incubation period, 226, 228

Lung cancer, 51, 58, 165

Infant Mortality Rate (IMR), 41

Infected, 227

Machine learning, 9, 69, 70, 90, 95, 112, 171, Infection rate, 227, 228

225, 230

Infections, 17, 56

Machine learning algorithms, 74

Infectious disease, 225

Machine learning cycle, 70

Infectious disease modelling, 71

Malaria, 17, 41, 227, 259

Infectious diseases, 17, 48, 55, 95, 96, 113, 

Malaria Atlas Project, 262

163, 171

Markov Chain Monte Carlo (MCMC), 88

Inflammation, 17

Mary Dempsey, 9, 17

Influenza virus, 226

Maternal Immunity (MI), 227

Influenza/Influenza-Like Illness (ILI), 227

Maternal Mortality Rate (MMR), 41

Injuries, 9, 16, 56, 277

Maternal Susceptible Infected Recovered

Institute for Health Metrics and Evaluation

(MSIR), 227

(IHME), 14, 48, 172, 274

McKendrick, 227

Integrated Nested Laplace Approximation

Mean Absolute Error (MAE), 91

(INLA), 87

Mean Absolute Percent Error (MAPE), 135, 

Interaction effects, 214

157

Ischemic heart disease, 17

Mean Decrease in Impurity (MDI), 183

Mean Squared Error (MSE), 91, 118, 135

318

 Index

Mean Squared Logarithmic Error (MSLE), 

Plausible, 58

91

Pneumonia, 233

Measles, 227

Poisson distribution, 44

Mechanistic model, 71

Polymerase Chain Reaction (PCR), 234

Meningitis, 172

Population Attributable Fraction (PAF), 57, 

Metabolic, 55

64

Metric components, 16

Population health, 272

Microorganisms, 225

Population-wide, 36, 40

Minimum Risk Exposure, 58

Potential Years of Life Lost (PYLLs), 28

Mixed models, 133, 138, 152

Poverty, 56

Mixed-effects models, 153

Precision, 93

Model ensemble, 135, 149

Predict, 148

Monte Carlo simulation, 32

Prediction, 83

Moran law, 206

Predictions, 239

Morbidity, 9, 95

Predictive modelling, 96, 133, 134

Mortality, 7, 9, 11, 18, 40, 95

Prevalence, 36, 42

Mortality rates, 7, 36, 37

Prevalence-based approach, 23

Mosquito borne, 259

Principal Components Analysis (PCA), 104

Moving averages, 96

Probability of dying, 19

Multicollinearity, 95, 103

Probability of infection, 128

Multilevel models, 138

Probability of survival, 37, 38

Multiple linear regression, 76

Probability of transmission, 228

Programming languages , 164

National Institutes of Health Stroke Scale

BASIC, 164

(NIHSS), 24

Fortran, 164

Neglected Tropical Disease (NTD), 97

JavaScript, 164

Network analysis, 59

Python, 164

Network graph, 60

R, 164

Neural Networks (NNet), 124, 265

SAS, 164

Non Communicable Diseases (NCDs), 31

SPSS, 164

Public health, 16, 110, 233, 259

Obesity, 55

Pyramid plot, 217

Occupational, 55

Odds Ratio (OR), 49

Quality Adjusted Life Expectancy (QALE), 

OECD’s Health at a Glance, 272

9

One Health, 232

Quality Adjusted Life Years (QALYs), 93

Ordinary Differential Equations (ODEs), 235

Quality Adjusted Life Years (QALYs), 9–11

Outbreak, 229, 232, 259

Quality of life, 9

Outcome, 64

R-spatial, 190

Paired comparison, 47

R-squared (R2), 92

Pandemic, 234

Rabies, 97, 121

Parameter calibration, 265

Random Forest, 265

Partial Autocorrelation Function (PACF), 

Random effects, 138, 152, 153

147

Random effects models, 138

Partial Dependence Plot (PDP), 187

Random fluctuations, 138

Pathogens, 225

Random Forest, 71, 81, 104, 183, 240

Performance, 128

Random Forests, 104, 229

Person-time at risk, 59

Random process, 69

Person-years, 19, 37

Random walk, 88

Persons alive at age x (lx), 39

Raster, 198

 Index

319

Receiver Operating Characteristic (ROC), 

Spatial model, 190

185

Spatial models, 189

Receiver Operating Characteristic (ROC)

Specificity, 185

Curve, 93

Splines, 138

Recovered, 227

Stacking, 150, 240

Recovery rate, 227, 228

Standard life expectancy, 17, 49, 252

Regression, 72

Standardisation, 96

Regression

Standardised life tables, 17

lasso, 104

Standardized Rate for Mortality, 16

ridge, 104

Stationarity, 145, 146

Regression loss functions, 91

Statistical model, 69

Regression models, 171

Stochastic process, 69

Regression models , 95

Stroke, 17, 18, 26, 180

Lasso regression, 95

Sullivan’s Index, 12

linear regression, 95

Summary Measure of Population Health

Ridge regression, 95

(SMPH), 14

Relative Risk (RR), 49, 63

Summary Measures of Population Health

Relative Risk (RR) , Risk Ratio58

(SMPH), 9

Relative Risks (RRs), 57

Supervised learning, 72

Reproduction Ratio (R0), 228

Support Vector Machines (SVMs), 91

Resampling , 101

Support Vector Machines (SVM), 96, 108, 

bootstrap, 101

229, 240, 265

spatial, 101

Susceptible, 227

stratified, 101

Susceptible Exposed Infected Recovered

Resampling strategy, 117

(SEIR), 79, 124, 227, 234

Residual Sum of Squared Error (RSE), 157

Susceptible Infected Recovered (SIR), 69, 71, 

Risk, 55

227

Risk exposure, 62

Susceptible Infected Susceptible (SIS), 227

Risk factors, 9, 57, 63, 272

Sustainable Development Goals (SDG), 274

Risk-outcome, 57

Sustainable Development Index (SDI), 277

Risk-specific exposures, 57

Root Mean Squared Error (RMSE), 83, 92, 

Temporal data, 138

135, 242, 264, 266

Temporal dynamics, 264

Root Mean-Square Error (RMSE), 108

Testing, 82

Theoretical, 58

Seasonal, 138

Theoretical Minimum Risk Exposure Levels

Seasonality, 96, 138

(TMRELs), 57, 63

Sensitivity, 185

Threshold, 229

Sensitivity analyses, 96

TidyTuesday, 170

Sesitivity, 93

Time series, 96, 133, 137, 138, 264

Severity, 23, 46

Time series cross validation, 101

Simulation, 41, 44, 82

Time Trade-Off (TTO), 47

Single learner, 149

Total Fertility Rate (TFR), 57, 139

Smallworld network, 202

Total number of person-years (Tx), 39

Smoothing, 138

Trade-offs, 92

Socio Demographic Index (SDI), 57, 138, 230

Training, 82

Spatial analysis, 234

Transfer learning, 66, 230

Spatial data, 189

Transmission dynamics, 259, 262

Spatial data model, 190

Transmission methods , 227

Spatial interpolation technique (Kriging), 

respiratory droplets, 227

207

vector borne, 227

320

 Index

Transmission patterns, 259

West Nile Virus, 227

Transmission rate, 228

White noise, 144

Treatment, 64

William Haenszel, 16

Trend, 96, 138

William Playfair, 163

True Negative (TN), 93

World Bank, 10

True Positive (TP), 93

World Geodetic System 1984 (WGS 84), 192

True Positive Rate (TPR), 185

World Health Organization (WHO), 11, 14, 

Tuberculosis, 17, 37, 152, 275

19, 38, 43, 233

Tuning process, 84

World Population Prospects (WPP), 217, 

255

Universal Transverse Mercator (UTM), 191

Unsupevised learning, 72

xgboost, 136

Vaccines, vaccination, 234

Years Lived with Disabilities (YLDs), 11

Validation, 128

Years Lived with Disability (YLDs), 11, 15, 

Variability, 138

16, 28, 43, 46, 54, 95, 116, 152, 254, 

Variogram, 208

272, 277

Virus, 225, 226

Years of Life Lost (YLLs), 9, 11, 15–18, 28, 

Vital registration, 40

38, 43, 49, 54, 95, 116, 252, 272

Yeo-Johnson transformations, 103

W.E.B. Du Bois, 163

Well-being, 12

Zika, 227

Well-being Adjusted Health Expectancy

Zoonosis, 232

(WAHE), 14

Zoonotic, 232



Document Outline


	Cover

	Half Title

	Title Page

	Copyright Page

	Dedication

	Contents

	Preface

	Audience and Utility of the Book

	Prerequisites

	Acknowledgements

	How to Cite This Book





	About the Author

	Data Sources





	Author

	1. Introduction

	1.1. The Concept of Health

	1.1.1. The Culture

	1.1.2. A Global Perspective





	1.2. The Structure of the Book

	1.2.1. Navigating the Chapters and Key Concepts









	I. Health Metrics

	2. Introduction to Health Metrics

	2.1. The History of Health Metrics

	2.1.1. Quality-Adjusted Life Years (QALYs)

	2.1.2. Disability-Adjusted Life Years (DALYs)

	2.1.3. Health-Adjusted Life Years (HALY)

	2.1.4. Health-Adjusted Life Expectancy (HALE)

	2.1.5. Healthy Life Years (HLY)

	2.1.6. Well-being-Adjusted Health Expectancy (WAHE)





	2.2. How the Metrics are Used in Global Health

	2.3. Summary





	3. Methods and Calculations

	3.1. YLLs Calculation

	3.1.1. Example: YLLs Due to Stroke

	3.1.2. Exercise: All-Ages YLLs Estimation





	3.2. YLDs Calculation

	3.2.1. Example: YLDs Due to Stroke

	3.2.2. Exercise: All-Ages YLDs Estimation





	3.3. DALYs Calculation

	3.3.1. Example: DALYs Due to Stroke

	3.3.2. Exercise: Total DALYs Estimation





	3.4. How DALYs are Used

	3.4.1. General Application of DALYs





	3.5. HALE Calculation

	3.6. Summary





	4. Metrics Components

	4.1. Cause-Specific or Population-Wide

	4.2. Life Tables and Life Expectancy

	4.2.1. Global Health Observatory Life Tables





	4.3. Mortality Level and Rates

	4.3.1. Understanding Death Counts and Mortality Rates





	4.4. Incidence and Prevalence

	4.4.1. Use of Prevalence in DALYs Calculation





	4.5. Disability Weights and Severity Levels

	4.5.1. Methodology for Disability Weights





	4.6. Summary of the DALYs’ Components

	4.6.1. YLLs Components

	4.6.2. YLDs Components

	4.6.3. DALYs Components





	4.7. Case Study: Germany Lung Cancer Study





	5. Causes and Risks

	5.1. Conditions and Injuries

	5.2. Risk Measures

	5.2.1. Risk-Specific Exposures

	5.2.2. Relative Risks (RRs)

	5.2.3. Relative Risks and Network Analysis

	5.2.4. Theoretical Minimum-Risk Exposure Levels (TMRELs)

	5.2.5. Population Attributable Fractions (PAFs)





	5.3. Causal Inference

	5.4. Summarising the Relationship between Risk and Outcome









	II. Machine Learning

	6. Introduction to Machine Learning

	6.1. Deterministic and Stochastic Modelling

	6.2. Machine Learning Models

	6.2.1. Empirically Driven Models

	6.2.2. Learning Methods

	6.2.3. Parameters and Hyper-Parameters





	6.3. The Steps of Building a Model

	6.3.1. Example: Cholera

	6.3.2. Example: Epidemic X

	6.3.3. Example: Epidemic Y





	6.4. Measures of Machine Learning Models

	6.4.1. Loss Functions

	6.4.2. Evaluation Metrics

	6.4.3. Public Health Loss Functions









	7. Techniques for Machine Learning Applications

	7.1. Goals of the Analysis and Nature of Data

	7.2. Statistical and Machine Learning Methods

	7.3. Model Selection Strategies

	7.4. Example: Rabies

	7.4.1. Training Data and Resampling

	7.4.2. Data Preprocessing and Featuring Engineering

	7.4.3. Correlation, Multicollinearity, and Overfitting

	7.4.4. Model Specification

	7.4.5. Model 1: Random Forest

	7.4.6. Model 2: Generalised Linear Model (GLM)

	7.4.7. Testing Multiple Models





	7.5. Summary





	8. Essential R Packages for Machine Learning

	8.1. Inside and Outside of the Library Boxes

	8.2. Essential R Packages for Machine Learning

	8.2.1. Meta-Packages

	8.2.2. Engines

	8.2.3. Time Series Analysis

	8.2.4. Bayesian Analysis

	8.2.5. Specialized Tools





	8.3. Model Framework Application Examples

	8.3.1. Example: DALYs Due to Dengue with mlr3

	8.3.2. Example: DALYs Due to Rabies with H2O

	8.3.3. Example: General Infection with Keras





	8.4. How to Find a New R-Package





	9. Predictive Modelling and Beyond

	9.1. Predictions About the Future

	9.2. Example: Dengue Test Predictions for 2017-2021

	9.3. Time Series Analysis

	9.4. Example: SDI Time Series Analysis

	9.4.1. SDI Data and Packages

	9.4.2. Autocorrelation and Stationarity

	9.4.3. Partial Autocorrelations

	9.4.4. ARIMA model

	9.4.5. ARIMA Forecast

	9.4.6. Model Ensembles





	9.5. Mixed Models

	9.5.1. Mixed-Effects Models in Estimating YLDs





	9.6. Example: YLDs due to Tuberculosis - Mixed-Effects Models

	9.7. Summary









	III. Data Visualization

	10. Introduction to Data Visualisation

	10.1. History of Data Visualisation

	10.2. The Grammar of Graphics

	10.3. General Guidelines for Data Visualisation

	10.4. Example: Visualising Lung Cancer Deaths by Age in Germany

	10.4.1. Colors and Patterns

	10.4.2. Theme, Legends, and Guides

	10.4.3. Plot Layouts

	10.4.4. Saving as an Image





	10.5. Practising Data Visualisation





	11. Interpreting Model Results Through Visualisation

	11.1. Practical Insights and Examples

	11.1.1. Example: Deaths due to Meningitis

	11.1.2. Example: Ischemic Stroke Decision Tree

	11.1.3. Example: Ischemic Stroke Classification





	11.2. Summary





	12. Spatial Data Modelling and Visualisation

	12.1. Spatial Data, Spatial Data Models, and Spatial Models

	12.2. Making a Map

	12.3. Coordinate Reference System (CRS)

	12.4. Example: Simulation of Infections in Central African Rep. 

	12.4.1. Bounding Box

	12.4.2. Spatial Coordinates

	12.4.3. Data Simulation

	12.4.4. Correlation between Response and Predictor

	12.4.5. Histogram and Scatter Plot

	12.4.6. Grid of Points

	12.4.7. Create a Raster of Temperature

	12.4.8. The Epicenter of Infection





	12.5. Dynamics of Disease Transmission

	12.5.1. The Euclidean Distance

	12.5.2. Spatial Autocorrelation

	12.5.3. Spatial Proximity with Kriging





	12.6. Mapping Risk of Infections

	12.7. Summary





	13. Advanced Data Visualisation Techniques

	13.1. Example: Detecting Interaction Effects with Contour Plots

	13.2. Example: Pyramid Plot









	IV. Infectious Diseases

	14. Introduction to Infectious Diseases

	14.1. Infectious Diseases the Invisible Enemies

	14.2. Mathematical Models for Infectious Diseases

	14.2.1. The SIR Model





	14.3. Components of Infectious Disease Models

	14.4. Advancements and Extensions

	14.5. The Impact on DALYs





	15. COVID-19 Outbreaks

	15.1. Epidemiology

	15.2. Mapping COVID-19 Outbreaks

	15.3. Example: Modelling the Spread of COVID-19

	15.3.1. SEIR Model

	15.3.2. Bayesian Analysis

	15.3.3. Ensemble Modelling - Combining Multiple Models





	15.4. COVID-19 and DALYs

	15.5. Summary





	16. The Case of Malaria

	16.1. Epidemiology

	16.2. Mapping Malaria Outbreaks

	16.3. Example: Simulating Malaria Transmission Dynamics

	16.3.1. Modelling with caret





	16.4. Model Refinement

	16.5. Summary





	17. Summary: The State of Health

	17.1. Data Sources for Health Metrics Comparison

	17.1.1. Example of OECD Health at a Glance Data

	17.1.2. Example of GBD Data Cross-Country Comparisons





	17.2. Key Determinants of Health Metrics Variation

	17.3. Example: Years Lived with Disability (YLDs) due to Injuries

	17.4. Example: Injuries Cross-Country Variation by Type

	17.5. Example: All Causes DALYs Rate by Country

	17.6. Implications for Global Public Health Policy









	Conclusions

	Formulary

	Statistical Distributions

	Machine Learning Models





	A. Life Tables, Markov Chain, and APIs

	A.1. Life Tables and Life Expectancy

	A.1.1. Life Tables Components

	A.1.2. Life Expectancy





	A.2. Markov Chain

	A.3. Collecting Data with APIs

	A.3.1. Download Data with APIs

	A.3.2. Package References









	B. Tools Used to Make This Book

	B.1. RStudio Installation

	B.2. How to Set Up This Project with Quarto





	C. Tips on Converting to Python

	C.1. Packages and Libraries

	C.2. Comparing tidyverse with its Python Equivalents

	C.3. Creating Data Making Statistics

	C.4. Building a Linear Regression Model

	C.5. Example of a Model Workflow





	References

	Index






index-236_2.png





index-236_1.png





index-241_1.jpg
Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com





index-236_3.png





index-245_1.png
Who adapts to





index-243_1.jpg
Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com





index-270_1.png





index-258_1.png





cover_image.jpg
Health Metrics and
the Spread of
Infectious
Diseases: Machine
Learning

Federica Gazzelloni





index-231_1.png





index-229_2.png





index-231_2.png





index-185_1.png
L

Type of Plot

Scatter Plots

Line Plots

Bar Plots

Histograms

Box Plots

Heatmaps

Network Diagrams

Choropleth Maps

Sankey Diagrams

Treemaps

Description

Used to show the relationship between two variables.

Used to show trends over time or across categories.

Used to compare values across categories.

Used to show the distribution of a single variable.

Used to show the distribution of a variable across categories.

Used to show the relationship between two categorical variables.

Used to show the relationships between nodes in a network.

Used to show the distribution of a variable across geographic regions.

Used to show the flow of data between different categories.

Used to show hierarchical data as a series of nested rectangles.





index-219_1.png
Rasterized Temperature

Temperature
30

28
26

24

22






index-217_1.png





index-220_1.png





index-219_2.png
Simulated Infections with Size on Max Temperature in CAR
Synthetic Data with Center of Mass

Temperature
30

28
26
24

22






index-229_1.png





index-220_2.png





index-148_1.png
049

047

accuracy

045

0700

0698

loss

0696

0694

050

048

046

accuracy

044

data
042
= training

e~ validation 06855
0.6950

06945

loss

06940

06935

06930

10 15 20 25 30
epoch

(a) Model 1 History

.h‘-.‘-'-"""----..______________‘___.___.___.__-

5 10
epoch

(b) Model 2 History

15

data
= training

e~ validation





index-92_1.png
Data Collection
(Ensure data completeness)

l

Data Cleaning
(Handle missing values, remove outliers)

:

Feature Selection
(Select relevant variables)

:

Model Training
(Apply chosen algorithms)

l

Model Evaluation
(Assess model performance)

:

Model Tuning
(Optimize model parameters)

:

Model Deployment
(Integrate into real-world applications)





index-181_1.jpg
Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com





index-179_1.jpg
Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com





index-52_1.png
Prevalence o
sequelae by age-
cation-
year

Ith-state
specific disability

weights






index-30_1.png
Years of Life Lost (YLLs)

Disability-Adjusted Life Years
(DALYs)

Years Lived with Disability
(YLDs)





index-84_1.png
Formulate Hypothesis: Physical Inactivity -> Cardiovascular Disease

l

Choose Study Design: Cohort or RCT

l

Collect Data on Physical Activity, Cardiovascular Disease, and Confounders

l

Adjust for Confounders: Age, Diet, Smoking

l

Perform Causal Analysis (e.g., Regression, Propensity Score Matching)

:

Interpret Results: Assess Association Strength and Significance

l

Inform Public Health Actions: Intervention Planning





index-75_1.png
Chronic Diseases (Obesity, CVD, Cancer)






index-89_1.png
Machine Learning

Experience

Performance

Learning

Deep Learning
_______________ Neural Network

______________________ Machine Learning

_________________________________ Artificial Intelligence





index-87_1.jpg
Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com





index-281_1.png





index-310_1.jpg
3 TABLE E— THY DISTRICTS.  MALES.
g - (1) Sum of the living, |(x) The years which thel
Dytos oeion eaeor itiviy | SumStthe numbers tion, or the | @nd of the 1iving of every [ males at the age (x) and
i A Bom adlving | born ad living a h.’m"i““‘s i cach yearof | 886 (2) avd upwards to the [upwards will Tivey alsof -
g O e cach age. (onchage (@) from e o | 0O 0 e, | 1% age n the Tablos also.(1(2) the years whiol e
e last age in the. . (2) the years which the they have lived
‘males (&) will live, over 2.
Sdy. k. Ity ) =Les 134, =Pr. ZHQurt- Qe
*"_‘“ 5 =Yqu,+.+)99.).
= . b L Pr Q- Y. .
° 5767 s1125 2509635 46915% 24827, T
L 1501 45358 2458510 M;sf ms!:g §?§°’Z“ 2
2 953 43707 2413152 43201 2391268 ,429”
3 661 42814 2369385 42483 2347977 ;Z;ggg ;
: Z: :::: ::::j:; 41887 2305458 74439726 +
& 341 41194 2242797 ::3';: I :
7 275 40853 2201603 40716 D]
2 22 40578 2160750 40466 a"wsx’ Z
9 131 40355 2120172 PR 6;2;;2 -
1o 161 40169 2079817,
1 146 40008 1039648 o s 61349677 i
12 142, 39862 1999640 19791 1979708 591“3930 x:
23 14 39720 1959778 39648 1939917 s 1
4 154 39576 1920058 39499 1900269 ?iiiﬁfz; -3 :
15 168 39422 1880482 3
56 186 =T 284760 st o canih 5
17 205 39068 1801806 38065 178227x A910873 ;
18 227 33863 1762738 375 B 47908037 37
19 248 38636 1723875 ;:57: 1704556 m‘:' ;9 ;
20 267 38338 1685239 38254 1666044 Hol o
21 272 8121 1648851 37985 1627790 ekl <
= 277 37849 1608730 37711 1589805 o a2
23 281 37572 1570881 L 1352098 34790 2
34 234 37291 1533309 37149 1514663 ;Emi% ::
25 287 37007 1496018 6
26 288 36720 7439011 ;sgz Lt 34878736 0
27, 289 36432 1422291 36287 404074 33439704 o
:: = 36§4: 1385859 35998, 1367787 3022332: 3
2 ’; ;: s:! ’349;;6 35708 1331789 29261624 29
3 1313863 6 129608
31 292 35270 1278301 ;;ﬂ. l=z°66; iZ%:’“Z >
3 292 33978 1243031 34832 1325501 e Z
33 293 34686 1208053 34539 1190709 S ein %
34 293 34393 1173367 34247 1156170 ;'5::42:; %2
35 295 34100 1138974 | r1a
36 296 33805 1104874 | éégi; ms;gﬁ z;gnsgoz g
37 298 33509 1071069 { 33360 1054374, e ;
38 300 33211 1037560 33061 1020954 19720512 37
2 22 93 1024349 32760 987893 A ;)
39
40 306 33609 971438 32456 955133 6
41 310 32303 938829 32148 922677 elaots oe
S 315 31993 906526 31836 390529 15777037 4r
43 320 3!67; 874533 | 31518 858693 3;’;;23:‘ %
:: i; ;::; ’;4“55 31195 827175 15151!!; 2
11497 | 86. 3
46 3ax 30698 s | e o By 45
47 350 30357 749767 { 30182 734588 5o e
:‘; 360 3007 719470 1 20827 794406 :;;fz;; b4
370 29647 68 -~
9403 I 20462 674579 9401923 49

OILONTISNOD HHI NO IV TT

7.8






index-300_1.png





index-317_2.png
Description: df [6 X 2]

A VT A W N R

6 rows

age_group_id

<int>

1

P
3
4
5
6

age_group_name
<chr>

Under 5

Early Neonatal
Late Neonatal
Post Neonatal
lto 4

5to9





index-317_1.png
Description: df [6 x 2]

indicator_id indicator_name
<int> <chr>

1000 HIV incidence rate

1001 Tuberculosis incidence rate

1002 Malaria incidence rate

1004 Prevalence of 15 neglected tropical diseases

1035 Met need for family planning with modern contraception methods

1037 Coverage of essential health services, as defined by the UHC service coverage index

O v h WN =

6 rows





index-327_1.png
SIR Model

—— Susceptibles
—— Recovereds

@ @ ©vw ¢ N Q9
- ©o ©o ©o o o

spalanoday pue sa|qndadsns

Time

< N
o I
snofdau|

0.0

70

60

50

40

30

20

10

Time





index-317_3.png
Description: df [3 x 4]

location_name

<chr>
1 Italy
2 Italy
3 Italy

3 rows

indicator_name
<chr>

Tuberculosis incidence rate
Tuberculosis incidence rate
Tuberculosis incidence rate

sex_label
<chr>

Males

Females
Both sexes

mean_estimate
<chr>

6.7275038464861465
3.901111779672232
5.277028727101566





index-280_1.png





index-272_1.png





index-1_1.jpg
HEALTH METRICS
AND THE SPREAD OF
INFECTIOUS DISEASES

MACHINE LEARNING APPLICATIONS
AND SPATIAL MODELLING ANALYSIS WITH R

Federica Gazzelloni

A Chapman & Hall Book @ %&Sﬁm?ﬁup





index-7_1.jpg
Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com





index-3_1.jpg
Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com





index-17_1.jpg
Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com





index-13_1.jpg
Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com





index-25_1.jpg
Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com





index-19_1.jpg
Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com





index-27_1.png
Ancient Observations

The concept of health
metrics can be traced
back to ancient
civilizations where
observations on life
expectancy, birth rates,
and mortality were made.
However, these were
often anecdotal and
lacked systematic
measurement.

John Graunt (17th
Century)

In the 17th century, John
Graunt, an English
haberdasher, made
significant contributions
to health metrics. In
1662, he published
‘Natural and Political
Observations Made upon
the Bills of Mortality,’
which analysed weekly
and annual records of
deaths in London.
Graunt’s work laid the
foundation for modern
demography, introducing
concepts like life
expectancy and mortality
rates.

Life Tables (19th
Century)

The 19th century saw the
development of life
tables, providing a
systematic approach to
analysing mortality and
life expectancy. This
period marked a
transition from
descriptive observations
to more structured
methods in health
metrics.

Quality-Adjusted Life
Years (QALYs)

QALYs, another
important health metric,
emerged in the late 20th
century as a measure
combining both the
quality and quantity of
life lived. QALYs are
commonly used in health
economics and
healthcare
decision-making.

Global Burden of
Disease Study (1990)

A significant milestone in
contemporary health
metrics is the initiation of
the Global Burden of
Disease (GBD) Study in
1990. Led by Christopher
J. L. Murray and Alan D.
Lopez, this collaborative
effort between the World
Health organisation
(WHO) and the World
Bank aimed to quantify
the impact of diseases
and injuries on global
health.

Disability-Adjusted Life

Years (DALYs)

The GBD Study
introduced DALYs as a
metric in 1990. DALYs
combine years of life lost
due to premature
mortality and years lived
with disability, providing
a comprehensive
measure of disease
burden. This metric
became instrumental in
assessing the overall
health impact of different
conditions.

Advancements in
Technology and Data

With advancements in
technology, including
computing power and big
data analytics, health
metrics have become
more sophisticated.
Real-time tracking,
machine learning
applications, and global
health databases
contribute to a more
dynamic understanding
of population health.

Current Landscape

Today, health metrics
encompass a wide range
of measures, including
traditional mortality rates,
disease-specific metrics,
and broader indicators
like well-being and social
determinants of health.
These metrics play a
crucial role in shaping
public health policies,
healthcare interventions,
and global health
assessments.





