

[image: Image 1]

[image: Image 2]

Jumpstart

Snowf lake

A Step-by-Step Guide to Modern

Cloud Analytics

—

 Second Edition

—

Dmitry Anoshin

Dmitry Foshin

Donna Strok

Jumpstart Snowflake

A Step-by-Step Guide to Modern

Cloud Analytics

Second Edition

Dmitry Anoshin

Dmitry Foshin

Donna Strok

 Jumpstart Snowflake: A Step-by-Step Guide to Modern Cloud Analytics, Second Edition

Dmitry Anoshin

Dmitry Foshin

North Vancouver, BC, Canada

Arcozelo, Portugal

Donna Strok

Seattle, WA, USA

ISBN-13 (pbk): 979-8-8688-1532-4

ISBN-13 (electronic): 979-8-8688-1533-1

https://doi.org/10.1007/979-8-8688-1533-1

Copyright © 2025 by Dmitry Anoshin, Dmitry Foshin and Donna Strok

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr

Acquisitions Editor: Shaul Elson

Development Editor: Laura Berendson

Coordinating Editor: Gryffin Winkler

Copy Editor: Kim Burton

Cover image by Lori Lo from Pixabay.com

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 New York Plaza, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a Delaware LLC and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to readers on GitHub (https://github.com/Apress). For more detailed information, please visit https://www.apress.com/gp/services/source-code.

If disposing of this product, please recycle the paper

 For all who embark on the journey of data

 and technology —May you resist the pull of buzzwords,

 choose fundamentals over fleeting trends, and craft

 solutions that stand the test of time.

Table of Contents

About the Authors �� xi About the Technical Reviewer ��� xiii Acknowledgments ���xv Introduction ���xvii

Chapter 1: Getting Started with Cloud Analytics �� 1

Time to Innovate ��� 2

Key Cloud Computing Concepts �� 6

Meet Snowflake �� 12

Summary��� 15

Chapter 2: Getting Started with Snowflake �� 17

Introduction ��� 17

Creating a Snowflake Account �� 18

Snowflake Editions �� 19

Cloud Providers and Regions ��� 19

Snowflake Pricing Model ��� 20

Creating an Account �� 21

Navigating Snowflake with Snowsight ��� 21

Creating a Database and Warehouse in Snowflake �� 23

Creating a Warehouse ��� 23

Create a Database ��� 26

Loading Data into Snowflake �� 28

Overview of Bulk Data Loading ��� 28

Bulk Data Loading Recommendations ��� 30

Summary��� 35

v

Table of ConTenTs

Chapter 3: Continuous Data Loading with Snowpipe and Dynamic Tables ������������� 37

Introduction to Data Loading Strategies for Snowflake �� 38

Loading Data Continuously ��� 42

Snowpipe Auto-Ingest ��� 42

Snowpipe REST API Using AWS Lambda ��� 53

Working with Dynamic Tables in Snowflake ��� 54

What Are Dynamic Tables? �� 54

Why Use Dynamic Tables? ��� 54

Summary��� 58

Chapter 4: Snowflake Administration and RBAC �� 59

Administering Roles and Users ��� 60

Enforcement Model ��� 62

Secondary Roles �� 64

Working with Roles and Users (with RBAC) ��� 65

New Role Types: Database Roles and Application Roles ��� 68

Using Permifrost for RBAC in Snowflake ��� 68

Dynamic Data Masking �� 71

Administering Databases and Warehouses ��� 73

Managing Warehouses �� 73

Managing Databases ��� 74

UNDROP DATABASE ��� 75

Zero-Copy Cloning ��� 75

Administering Account Parameters��� 77

Administering Database Objects ��� 78

Administering Data Shares ��� 79

Administering Clustered Tables��� 80

Snowflake Materialized Views �� 81

Summary��� 83

vi

Table of ConTenTs

Chapter 5: Secure Data Sharing ��� 85

Benefits of Snowflake Data Sharing ��� 86

Understanding Share Objects ��� 87

Implementing Secure Table Sharing ��� 89

Data Sharing Using a Secure View �� 93

Sharing Regular View vs� Materialized View ��� 98

Summary��� 99

Chapter 6: Getting Started with Snowpark ��� 101

Key Features of Snowpark �� 101

Setting up Snowpark �� 103

Snowpark DataFrame Operations ��� 106

User-Defined Functions ��� 109

Stored Procedures �� 110

Machine Learning Integration with Snowpark �� 112

Summary��� 115

Chapter 7: Snowflake with Apache Iceberg�� 117

Data Platform Architecture �� 118

Getting Started with Apache Iceberg �� 119

The Role of a Catalog��� 120

Summary��� 132

Chapter 8: Getting Started with Streamlit �� 133

Streamlit Basics �� 134

Key Features of Streamlit �� 134

Integration with Snowflake ��� 135

Creating a Basic Streamlit App ��� 136

Creating Interactive Streamlit Apps �� 139

Error Handling and Troubleshooting �� 142

Summary��� 144

vii

Table of ConTenTs

Chapter 9: Designing a Modern Analytics Solution with Snowflake �������������������� 145

Modern Analytics Solution Architecture �� 146

Snowflake Partner Ecosystem �� 148

Building Analytics Solutions with Matillion ETL and Tableau ��� 149

Building Analytics Solution with Open Source Software ��� 158

Running a dbt Project �� 162

Engineering Excellence with dbt Development ��� 167

Data Ingestion and Orchestration �� 169

Summary ��� 171

Chapter 10: Performance Optimization and Cost Monitoring ������������������������������� 173

Understanding Snowflake Architecture for Optimization �� 174

Data Read Optimization �� 175

Data Clustering and Partitioning �� 175

Data Storage Best Practices �� 177

Data Processing Optimization ��� 178

Analyze Query Execution ��� 178

Optimization Techniques�� 178

Leverage Caching �� 182

Warehouse Configuration Optimization ��� 183

Right-sizing Virtual Warehouses �� 183

Scaling Policies ��� 183

Administering Resource Consumption �� 184

Virtual Warehouse Usage ��� 184

Data Storage Usage ��� 185

Data Transfer Usage �� 187

viii

Table of ConTenTs

Chapter 11: Snowflake AI and ML �� 191

Overview and Key Features �� 191

Key Features �� 192

Data Discovery �� 200

Data Cleaning and Transformation �� 200

Best Practices for Using Snowflake ML ��� 201

Summary��� 202

Chapter 12: Migrating to Snowflake ��� 203

Data Warehouse Migration Scenarios ��� 204

Startup or Small Business Analytics Scenario ��� 204

On-Premise Analytics Scenario for Enterprises and Large Organizations ��������������������������� 205

Cloud Analytics Modernization with Snowflake ��� 207

Data Warehouse Migration Process �� 208

Organizational Part of the Migration Project ��� 208

Technical Aspects of a Migration Project��� 215

Real-World Migration Project �� 216

Additional Resources �� 219

Summary��� 219

Index ��� 221

ix

[image: Image 3]

[image: Image 4]

About the Authors

Dmitry Anoshin is an experienced data leader and

recognized expert in building and implementing business

and digital intelligence solutions, with extensive experience

across North America and Europe. Throughout his career,

he has successfully delivered analytics, data engineering,

and cloud transformation projects across various industries,

including retail, finance, marketing, and e-commerce.

Currently, Dmitry leads large-scale data initiatives,

overseeing the development of a petabyte-scale data

platform designed to support machine learning experiments, data science models, business intelligence reporting, and secure data exchange—all while maintaining a strong focus on privacy compliance and security.

In addition to his professional work, Dmitry is the founder of Surfalytics, a community platform dedicated to helping aspiring data engineers and analysts gain practical experience, share knowledge, and build real- world skills. You can learn more at Surfalytics.com.

Dmitry Foshin is a lead data engineer with over 12 years

of experience in IT and big data, specializing in delivering

end-to-end data solutions that drive business insights.

He has a strong track record of leading and implementing

full-stack data analytics platforms, ranging from ingestion

and transformation to data warehousing and reporting,

leveraging Azure cloud services, Databricks, and modern

business intelligence tools. Dmitry is a coauthor of multiple

editions of the Azure Data Factory Cookbook (Packt

Publishing) and has successfully delivered large-scale data

engineering initiatives for leading fast-moving consumer

goods (FMCG) corporations across Europe.

xi

abouT The auThors

Donna Strok is a passionate data enthusiast. She currently leads Data Science and Engineering at IMDb, an Amazon company. With over a decade of experience transforming data into insights, she has worked with industry leaders, including Expedia Group, JPMorgan Chase, and Amazon. She holds a bachelor’s degree in computer science and a master’s degree in computer information systems.

Based in the picturesque Pacific Northwest, she calls Seattle home, where she lives with her spouse and her cat, Dwayne. When not diving into data, she’s either planning her next international adventure or on a quest to discover hidden culinary gems and unique grocery stores around the world—believing that the best stories often start in the most unexpected places.

xii

[image: Image 5]

About the Technical Reviewer

Vijay Anand Karthikeyan is a seasoned data and analytics professional with nearly two decades of experience

delivering secure, scalable, and fault-tolerant analytics

platforms. Known for his customer-centric approach, Vijay

has led impactful data transformations across multiple

industries, enabling organizations to unlock the full

potential of their data. He is also recognized for his thought

leadership, technical blogs, and expert contributions to

Snowflake events. With deep expertise in big data, cloud

platforms, and advanced analytics, he leverages emerging AI/ML technologies to build intelligent data applications, empowering businesses to make data-driven decisions through innovative, high-performance solutions.

xiii

Acknowledgments

Thank you to my coauthors, Dmitry and Donna, for your collaboration and expertise.

I’m grateful to my wife, Maria, for her support and to my son, Miron, for his smiles along the way. I would also like to thank my parents, Valery and Galina, and my brother, Ilia, for always believing in me. And finally, to the Snowflake communities: your shared knowledge continues to inspire.

—Dmitry Foshin

xv

Introduction

Welcome to Jumpstart Snowflake, 2nd Edition—your practical guide to building and managing modern analytics solutions using one of the most powerful cloud data platforms available today.

Whether you’re a data engineer, analyst, architect, or technical decision-maker, this book is designed to help you harness the full potential of Snowflake’s cloud-native capabilities. As data ecosystems grow more complex, organizations demand scalable, secure, and high-performing platforms to deliver insights faster and more reliably.

Snowflake was built to address this exact challenge.

This edition reflects Snowflake’s rapid evolution and introduces new features that empower data professionals to build sophisticated analytics and data applications, including Snowpark, Apache Iceberg, and Streamlit. It also explores emerging use cases, such as integrating Snowflake with generative AI and cloud cost optimization—two areas of increasing relevance for modern data teams.

 Who This Book Is For

This book is ideal for

• Data engineers and architects transitioning from legacy data

warehouses

• Analytics professionals seeking to modernize their stack

• Teams adopting Snowflake for the first time or expanding its usage

• Anyone interested in building real-world data products and

applications using Snowflake

Some experience with SQL, cloud platforms, or data warehousing will be helpful but not strictly required.

xvii

InTroduCTIon

 How This Book Is Structured

The book is divided into 12 chapters, each designed to build on the last while remaining approachable as stand-alone topics.

• Chapter 1 introduces the modern analytics landscape and how Snowflake fits into it.

• Chapter 2 walks you through setting up and navigating Snowflake.

• Chapter 3 covers data ingestion strategies using Snowpipe and Dynamic Tables.

• Chapter 4 focuses on administration and security with RBAC.

• Chapter 5 introduces secure data sharing within and across organizations.

• Chapter 6 gets you started with Snowpark for writing complex applications.

• Chapter 7 dives into Apache Iceberg for managing large-scale, versioned data.

• Chapter 8 demonstrates how to build interactive data apps with Streamlit.

• Chapter 9 shows how to design full-stack analytics solutions using Snowflake.

• Chapter 10 covers best practices for performance tuning and cost monitoring.

• Chapter 11 explores the intersection of Snowflake and generative AI.

• Chapter 12 discusses strategies for migrating from legacy platforms to Snowflake.

We’ve taken a hands-on approach, using real-world examples and cases drawn from industry experience. You’ll find practical guidance, tips, and patterns that you can apply directly to your own projects.

We hope this book helps you not just adopt Snowflake—but leverage it as a foundation for scalable, secure, and innovative data solutions.

Let’s get started.

xviii

CHAPTER 1

Getting Started with Cloud

Analytics

 Don’t shoot for the middle. Dare to think big. Disrupt. Revolutionize. Don’t be afraid to form a sweeping dream that inspires, not only others, but yourself as well.

 Incremental innovation will not lead to real change—it only improves something slightly. Look for breakthrough innovations, change that will make a difference.

—Leonard Brody and David Raffa

Cloud technologies can change the way organizations do analytics. The cloud enables organizations to move quickly and utilize best-of-breed technologies. Traditionally, data warehouse and business intelligence (BI) projects were considered a serious investment and took years to build. They required a solid team of business intelligence, data warehouse, and data integration developers and architects. Moreover, they required significant investments, IT support, and hardware and resource purchases. Even if you had the team, budget, and hardware in place, there was still a chance you would fail.

The cloud computing concept isn’t new, but it has only recently begun to be widely used for analytics use cases. The cloud creates access to near-infinite, low-cost storage, provides scalable computing, and gives you tools for building secure solutions. Finally, you pay only for what you use.

1

© Dmitry Anoshin, Dmitry Foshin and Donna Strok 2025

D. Anoshin et al., Jumpstart Snowflake, https://doi.org/10.1007/979-8-8688-1533-1_1

[image: Image 6]

Chapter 1 GettinG Started with Cloud analytiCS

This chapter covers the analytics market trends over the past decade and the evolution of data warehouses. It also covers key cloud concepts and introduces the Snowflake data warehouse and its unique architecture.

 Time to Innovate

As data professionals, we have worked on many data warehouse projects. We have designed and implemented numerous enterprise data warehouse solutions across various industries. Some projects we built from scratch, and others we fixed. Moreover, we have migrated systems from “legacy” to modern massively parallel processing (MPP) platforms and leveraged extract-load-transform (ELT) to let the MPP data warehouse platform do the heavy lifting.

MPP is one of the core principles of analytics data warehousing, and it is still valid today. It is helpful to know about the alternative that existed before MPP was introduced, namely, symmetric multiprocessing. Figure 1-1 illustrates an easy example to help you understand the difference between symmetric multiprocessing (SMP) and MPP.

 Figure 1-1. SMP vs. MPP

Let’s look at a simple example. Imagine you have to do laundry. You have two options.

• Miss a party on Friday night, but visit the laundromat where you can run all your laundry loads in parallel because everyone else is at the

party (This is MPP.)

• Visit the laundromat on Saturday and use just one washing machine

(This is SMP.)

2

Chapter 1 GettinG Started with Cloud analytiCS

Running six washing machines at the same time should wash more clothes faster than running one at a time. It is this linear scalability of MPP systems that allows us to accomplish our tasks faster. Table 1-1 compares the SMP and MPP systems. If you work with a data warehouse, you are probably aware of these concepts. Snowflake innovates in this area and actually combines SMP and MPP.

 Table 1-1. MPP vs. SMP

Model

Description

Massively parallel

the coordinated processing of a single task by multiple processors, with processing (Mpp)

each processor using its own operating system (oS) and memory and

communicating with each other using some form of messaging interface.

usually, Mpp is a share-nothing architecture.

Symmetric

a tightly coupled multiprocessor system where processors share resources multiprocessing (SMp) such as single instances of the oS, memory, i/o devices, and a common bus. SMp is a shared-disk architecture.

In our past work, Oracle was popular across enterprise organizations. All the data warehouse solutions had one thing in common: they were extremely expensive and required the purchase of hardware. For consulting companies, the hardware drove revenue; you could have an unprofitable consulting project, but a hardware deal would cover the yearly bonus.

Later, we saw the rise of Hadoop and big data. The Internet was full of news about the replacement of traditional data warehouses with Hadoop ecosystems. It was a good time for Java developers, who could enjoy coding and writing MapReduce jobs until the community released a bunch of SQL tools such as Hive, Presto, and so on. Instead of learning Java personally, we applied Pareto principles, where we could solve 20 percent of tasks using traditional data warehouse platforms and SQL to bring 80 percent of the value. (In reality, we think it was more like 80 percent of the cases produced 95 percent of the value.)

Later, we saw the rise of data science and machine learning, and developers started to learn R and Python. However, we found that we still needed ELT/ETL and a data warehouse in place; otherwise, these local R/Python scripts had no value. It was relatively easy to get a sample dataset and build a model using data mining techniques.

However, it was a challenge to automate and scale this process because of a lack of computing power.

3

Chapter 1 GettinG Started with Cloud analytiCS

Then came data lakes. It was clear that a data warehouse couldn’t fit all the data, and we couldn’t store all the data in a data warehouse because it was expensive. If you aren’t familiar with data lakes, see https://medium.com/rock-your-data/getting-started-

with-data-lake-4bb13643f9.

Again, some parties argued that data lakes were new data warehouses, and everyone should immediately migrate their traditional solutions to data lakes using the Hadoop technology stack. We didn’t believe that data lakes could replace the traditional SQL data warehouses based on our experience with BI and business users. However, a data lake can complement an existing data warehouse solution when there is a large volume of unstructured data, and we don’t want to leverage the existing data warehouse because it lacks sufficient computing power and storage capabilities. Apache products such as Hive, Presto, and Impala helped us get SQL access for big data storage and leverage data lake data with traditional BI solutions. It is clear that this path is expensive, but it could work for large companies with sufficient resources and a strong IT team.

Data lakes offer a significant advantage over traditional data warehouses: a decoupling of compute and storage. Imagine a situation when you have a dedicated MPP cluster data warehouse, and you are out of storage or compute. You have to add one more node that has both storage and compute, and you have to pay for both, even if you are using only one of them. In data lake architecture, you could scale compute and storage independently. It offers numerous benefits, including the ability to scale analytics and achieve cost-effectiveness. However, this approach had disadvantages, such as the lack of ACID (atomicity, consistency, isolation, durability) capabilities that we had with traditional databases and data warehouse platforms. Table 1-2 covers ACID

properties and gives an example.

4

Chapter 1 GettinG Started with Cloud analytiCS

 Table 1-2. ACID Properties

Model

Description

atomicity

ensures that each transaction is treated as a single unit of work, which either completes fully or does not complete at all. if any part of the transaction fails, the entire transaction is rolled back, leaving the database in its previous state. For example, in a data warehouse, if you’re updating multiple tables during a data load, atomicity ensures that either all updates are applied or none are to maintain data integrity.

Consistency ensures that any transaction brings the database from one valid state to another, maintaining the integrity of the data based on predefined rules and constraints. For example, if there are constraints like foreign keys or data types, consistency ensures that after the transaction, the data adheres to those rules.

isolation

Guarantees that the execution of a transaction is independent of other transactions happening at the same time. this prevents conflicts between concurrent transactions.

For example, in an analytics query, isolation ensures that even if multiple users are running queries or updating the data at the same time, they won’t interfere with each other.

durability

ensures that once a transaction has been committed, it remains in the system, even in the case of a failure such as a power outage or system crash. For example, after loading data into a warehouse, durability guarantees that the data persists and is available even if the system restarts.

In 2013, we heard about data warehouses in the cloud, namely, Amazon Redshift. We didn’t see a difference between the cloud edition of Amazon Redshift and the on-premise Teradata, but it was obvious that we could get the same results without buying an extremely expensive appliance. Even at that time, we noticed the one benefit of Redshift. It was built on top of the existing open source database Postgres. This meant we didn’t really need to learn something new. We knew the MPP concept from Teradata, and we knew Postgres, so we could start to use Redshift immediately. It was a breath of fresh air in a world of big dinosaurs like Oracle and Teradata.

It should be obvious to you that Amazon Redshift wasn’t a disruptive innovation.

It was an incremental innovation that built on a foundation already in place. In other words, it was an improvement to the existing technology or system. That is the core difference between Snowflake and other cloud data warehouse platforms.

5

Chapter 1 GettinG Started with Cloud analytiCS

Amazon Redshift became quite popular, and other companies introduced their cloud data warehouse platforms. Nowadays, all big market vendors are building a data warehouse solution for the cloud.

As a result, Snowflake was a disruptive innovation. The founders of Snowflake collected all the pain points of the existing data warehouse platforms and came up with a new architecture and product that addresses modern data needs and allows organizations to move fast with limited budgets and small teams.

Everyone has their own journey. Some worked with big data technologies like Hadoop; others spent time with traditional data warehouse and BI solutions. But all of us have a common goal of helping our organizations to be truly data-driven. With the rise of cloud computing, we have many new opportunities to do our jobs better and faster. Moreover, cloud computing opened new ways of doing analytics. Snowflake was founded in 2012, came out in stealth mode in October 2014, and became generally available in June 2015. Snowflake brought innovation into the data warehouse world, and it is the new era of data warehousing.

Nowadays, we have three terms: data warehouse, data lake, and lake house.

Databricks introduced the term lake house in 2020. The idea was to combine the best elements from data lakes and data warehouses in a single platform. It means a lake house could decouple storage and compute that could scale independently and more or less support ACID. There are three popular open source solutions in the market: Apache Iceberg, Apache Delta, and Apache Hudi. This book covers Apache Iceberg because Snowflake supports this open table format, and it is quite popular.

Later in the chapter, we discuss Snowflake architecture, and you can decide whether Snowflake is a data warehouse or a lake house.

 Key Cloud Computing Concepts

Before jumping into Snowflake, let’s cover key cloud fundamentals to help you better understand the value of the cloud platform.

Basically, cloud computing is a remote virtual pool of on-demand shared resources offering compute, storage, database, and network services that can be rapidly deployed at scale. Figure 1-2 shows the key elements of cloud computing.

6

[image: Image 7]

Chapter 1 GettinG Started with Cloud analytiCS

 Figure 1-2. Key cloud computing terms

Table 1-3 defines the key terms of cloud computing. These are the building blocks for a cloud analytics solution as well as the Snowflake data warehouse.

 Table 1-3. Key Terms for Cloud Computing

Term

Description

Compute

the “brain” to process our workload. it has the Cpus and raM to run workloads and processes, in our case, data.

databases

traditional SQl or noSQl databases that we can leverage for our applications and analytics solutions to store structured data.

Storage

Saves and stores data in raw format as files. it could be traditional text files, images, or audio. any resource in the cloud that can store data is a storage resource.

network

provides resources for connectivity between other cloud services and consumers.

Ml/ai

provides special types of resources for heavy computations and analytics workloads.

It is important to mention hypervisors as a core element of cloud computing.

Figure 1-3 shows a host with multiple virtual machines (VMs) and a hypervisor that is used to create a virtualized environment that allows multiple VMs to be deployed on a single physical host.

7

[image: Image 8]

Chapter 1 GettinG Started with Cloud analytiCS

 Figure 1-3. Hypervisor role

Virtualization offers the following benefits.

• Reduces capital expenditure

• Reduces operating costs

• Provides a smaller footprint

• Provides optimization for resources

8

[image: Image 9]

Chapter 1 GettinG Started with Cloud analytiCS

There are three cloud deployment models, as shown in Figure 1-4.

 Figure 1-4. Cloud deployment models

The model you choose depends on the organization’s data handling policies and security requirements. For example, often government and health organizations that have a lot of critical customer information prefer to keep the data in a private cloud.

Table 1-4 defines the cloud deployment models.

 Table 1-4. Cloud Deployment Models

Model

Description

public cloud

the service provider opens the cloud infrastructure for organizations to use, and the infrastructure is on the premises of the service provider (data centers), but it is operated by the organization paying for it.

private cloud the cloud is solely owned by a particular institution, organization, or enterprise.

hybrid cloud

this is a mix of public and private clouds.

In most cases, we prefer to go with a public cloud. Amazon Web Services (AWS), Microsoft Azure, and Google Cloud Platform are all public clouds, and you can start building solutions and applications immediately.

It is also good to know about cloud service models (as opposed to on-premise solutions). Figure 1-5 shows the three main service models with an easy analogy:

“Hamburger as a Service.”

9

[image: Image 10]

Chapter 1 GettinG Started with Cloud analytiCS

 Figure 1-5. Cloud service models

One example of IaaS is a cloud virtual machine. Amazon EC2 is an example of IaaS. Amazon Elastic MapReduce (i.e., managed Hadoop) and Amazon Redshift are examples of PaaS, and DynamoDB (AWS NoSQL database) and Lambda are examples of SaaS, which is completely managed for you.

Note in a cloud software distribution model, SaaS is the most comprehensive service, and it abstracts much of the underlying hardware and software

maintenance from the end user. it is characterized by a seamless, web-based experience, with as little management and optimization as possible required of the end user. the iaaS and paaS models, comparatively, often require significantly more management of the underlying hardware or software.

Snowflake is a SaaS model also known as a data warehouse as a service (DWaaS).

Everything—from the database storage infrastructure to the compute resources used for analysis and the optimization of data within the database—is handled by Snowflake.

What does it mean for a data engineer? Let’s review an example with Amazon Redshift.

10

[image: Image 11]

Chapter 1 GettinG Started with Cloud analytiCS

Imagine that you are building a data warehouse, and you have to create a fact table with billions of rows. You have to decide on the data distribution style for this fact table.

Amazon Redshift is MPP, and it has multiple nodes. Our goal is to equally distribute the data. The performance of the data warehouse will depend on these decisions, and in case of wrong design, it would be painful and time-consuming to make the change.

By the way, this was the typical data engineering work. In the case of Snowflake, this process is managed by Snowflake. We could ingest terabytes of data into the fact table, and Snowflake would manage the data distribution and make sure it is stored in the most efficient way. You learn more about this in the book.

It is worth mentioning that despite the fact that Snowflake had a great start with its unique product offering, DWaaS, its close competitors are also heavily investing in innovations to match the offering for their customers. We already mentioned Amazon Redshift as the first true cloud MPP data warehouse. Redshift released new instance types RA3 at the end of 2019 to address their limitations of scaling compute and storage independently. AWS released Amazon Redshift Serverless in 2022, which allows you to manage workloads without setting up clusters.

A final aspect of cloud computing theory is the shared responsibility model (SRM).

Figure 1-6 shows the key elements of SRM.

 Figure 1-6. Cloud vendors shared responsibility model

SRM has many attributes, but the main idea is that the cloud vendor is responsible for the security of the cloud, and the customers are responsible for the security in the cloud. This means that the clients should define their security strategies and leverage best practices for their data to keep it secure.

When we talk about the cloud, you should know that cloud resources are hosted in data centers, and there is a concept of a region. You can find information about Snowflake availability for the different cloud vendors and regions at https://docs.

snowflake.net/manuals/user-guide/intro-regions.html.

11

[image: Image 12]

Chapter 1 GettinG Started with Cloud analytiCS

Before moving to the next section, refer to Figure 1-7, which shows how long data takes to upload to the cloud; this reference comes from the Google Cloud Platform presentation.

 Figure 1-7. Modern bandwidth

This table is a useful reference when migrating a data warehouse from an on-premise solution to the cloud. You learn more about data warehouse migration and modernization in Chapter 14.

 Meet Snowflake

Snowflake is the first data warehouse that was built for the cloud from the ground up, and it is a first-in-class DWaaS. Snowflake runs on the most popular cloud providers, such as Amazon Web Services and Microsoft Azure. Moreover, Snowflake has announced availability on Google Cloud Platform. As a result, we can deploy the data warehouse platform on any of the major cloud vendors. Snowflake is faster and easier to use and far more flexible than a traditional data warehouse. It handles all aspects of authentication, configurations, resource management, data protection, availability, and optimization.

12

[image: Image 13]

Chapter 1 GettinG Started with Cloud analytiCS

It is easy to get started with Snowflake. You just need to choose the right edition of Snowflake and sign up. You can start with a free trial and learn about the key features of Snowflake or compare it with other data warehouse platforms at https://

trial.snowflake.com. You can immediately load your data and get insights. All the components of Snowflake services run in a public cloud infrastructure.

Note Snowflake cannot be run on private cloud infrastructures (on-premises or hosted). it is not a packaged software offering that can be installed by a user.

Snowflake manages all aspects of software installation and updates.

Snowflake was built from the ground up and designed to handle modern big data and analytics challenges. It combines the benefits of both SMP and MPP architectures and takes full advantage of the cloud. Figure 1-8 shows the architecture of Snowflake.

 Figure 1-8. Snowflake architecture

Similar to an SMP architecture, Snowflake uses a central storage that is accessible from all the compute nodes. In addition, similar to an MPP architecture, Snowflake processes queries using MPP compute clusters, also known as virtual warehouses. As a result, Snowflake combines the simplicity of data management and scalability with a shared-nothing architecture (like in MPP).

13

Chapter 1 GettinG Started with Cloud analytiCS

As shown in Figure 1-8, the Snowflake architecture consists of three main layers.

Table 1-5 describes each layer.

 Table 1-5. Key Layers of Snowflake

Layer

Description

Service layer

it consists of services that coordinate Snowflake’s work. Services run on a dedicated instance and include authentication, infrastructure management, metadata management, query parsing and optimization, and access control.

Compute layer

it consists of virtual warehouses, and each is an Mpp compute cluster

comprising multiple compute nodes. each Vw is an independent compute

cluster that doesn’t share resources with other Vws.

Storage layer

it stores data in an internal compressed columnar format using cloud storage.

For example, in awS, it is S3; in azure, it is Blob storage. Snowflake manages all aspects of data storage, and customers don’t have direct access to file storage.

data is accessible only via SQl.

In other words, Snowflake offers almost unlimited computing and storage capabilities by utilizing cloud storage and computing. Let’s look at a simple example of a traditional organization with a data warehouse platform. For example, say you have a data warehouse, and you run ETL (extract-transform-load) processing overnight. During heavy ETL processing, business users can’t use the data warehouse a lot, and there aren’t many resources available.

At the same time, the marketing department should run complex queries to calculate the attribution model. The inventory team should run their reports and optimize inventory. In other words, every process and every team in the organization is important, but the data warehouse is a bottleneck. In the case of Snowflake, every team or department can have its own virtual warehouse that can be scaled up and down immediately, depending on the requirements. Moreover, the ETL process can have its own virtual warehouse that is running only overnight. This means the data warehouse isn’t a bottleneck anymore and allows the organization to unlock its data’s potential.

Moreover, the organization pays only for the resources it uses. You don’t have to buy expensive appliances or think about future workloads. Snowflake is truly democratizing data and gives almost unlimited power to business users.

14

Chapter 1 GettinG Started with Cloud analytiCS

In addition to scalability and simplicity, Snowflake offers many more unique features that didn’t exist before and aren’t available in other data warehouse platforms (cloud or on-premise), such as data sharing, time travel, database replication and failover, zero-copy cloning, and more that is discussed in this book.

 Summary

This chapter briefly reviewed the history of data warehousing and covered the fundamentals of cloud computing. This information provides some background, allowing you to gain a better understanding of why Snowflake was introduced to the market and why the cloud is the future of data warehousing and modern analytics. You also learned about the unique architecture of Snowflake and its key layers. In the next chapter, you learn how to start working with Snowflake.

15

CHAPTER 2

Getting Started

with Snowflake

Congratulations on choosing to get started with Snowflake! This chapter guides you through the essentials of this powerful cloud data platform. It covers planning your Snowflake environment, creating a Snowflake account, and navigating the web-based user interface. You learn how to create a database and a virtual warehouse in Snowflake.

The chapter also introduces data loading techniques, including using the VARIANT

data type and fundamental SQL queries. By the end of this chapter, you will be ready to embark on your cloud analytics journey and explore the more advanced capabilities of Snowflake covered in later chapters.

 Introduction

In today’s data-driven world, organizations need robust and scalable solutions to effectively manage and analyze their data. Snowflake has emerged as a leading cloud data platform, offering a unique architecture that separates storage and compute, enabling businesses to scale their data warehousing needs seamlessly. This chapter provides a comprehensive guide to help you get started with Snowflake and covers the following topics.

17

© Dmitry Anoshin, Dmitry Foshin and Donna Strok 2025

D. Anoshin et al., Jumpstart Snowflake, https://doi.org/10.1007/979-8-8688-1533-1_2

Chapter 2 GettinG Started with Snowflake

• Creating a Snowflake account: We walk you through the process of setting up your free trial Snowflake account, guiding you through the

choices of Snowflake editions, cloud providers, and regions.

• Navigating the Snowflake user interface: Become familiar with the intuitive web-based interface of Snowflake. We explore its key

components, including Worksheets for running queries, Databases

for storing data, and Warehouses for providing compute power.

• Creating a database and warehouse: Learn how to create your

first database to store your data and a virtual warehouse to process

your queries. We provide clear SQL examples to help you get started

quickly.

• Loading data into Snowflake: Discover how to load data from

various sources into Snowflake. We cover supported file formats,

the use of stages as temporary storage areas, and the essential PUT

and COPY INTO commands. Additionally, you learn how to leverage

the versatile VARIANT data type to handle semi-structured data

like JSON.

Let’s get started!

 Creating a Snowflake Account

It’s crucial to plan your Snowflake environment carefully. This section guides you through the essential considerations and steps to set up your Snowflake account. As a prerequisite, we touch on the following before creating your Snowflake account.

• Snowflake editions

• Cloud providers and regions

• Snowflake pricing model

• Types of Snowflake tools

18

Chapter 2 GettinG Started with Snowflake

 Snowflake Editions

Snowflake offers different editions to cater to various needs and budgets. Table 2-1 is a

concise overview of the Snowflake editions. Be sure to check Snowflake’s website for the latest offerings.

 Table 2-1. Snowflake Editions

Edition

Key Features and Considerations

Standard

ideal for small to medium-sized businesses with moderate data

needs

enterprise

designed for larger organizations with demanding performance

requirements

Business Critical

offers enhanced security and compliance features for sensitive

data

Virtual private Snowflake (VpS)

provides a dedicated Snowflake environment for maximum

isolation and control

 Cloud Providers and Regions

Snowflake is available on major cloud providers, including Amazon Web Services (AWS), Microsoft Azure, and Google Cloud Platform (GCP). Each cloud provider has data centers in many locations around the world. These locations are referred to as regions. Transferring data between regions can have cost implications. Therefore, region considerations are important because the costs can vary depending on your requirements.

Multiple regions may be necessary to address global data access speeds and replication needs. For example, if you have users located in different parts of the world, it might make sense to replicate or partition the data closer to your users. If you have a use case for multiple regions, then you need to create a Snowflake account for each region.

Note Snowflake accounts do not support more than one region. You must create a Snowflake account for each region.

19

Chapter 2 GettinG Started with Snowflake

Regions dictate only the geographic location of where the data is stored and the compute resources are provisioned, not the usage of the data. The data can be used from anywhere in the world. Also, the cloud platform that is chosen for each Snowflake account is completely independent of your other Snowflake accounts. You may choose to use a mix of cloud providers and regions; however, be aware that this impacts the cost of transferring data into your Snowflake account. Also, there might be limitations with the cloud provider or region you are considering. Please visit Snowflake’s website (https://docs.snowflake.com/en/user-guide/intro-regions) for the most update-to- date information.

 Snowflake Pricing Model

Snowflake’s pricing model is based on a consumption-based system of credits, meaning you pay only for the resources you actually use. Let’s explore how these credits relate to the core components: storage, compute, and data transfer.

Storage: Snowflake’s charge for data storage considers data

compression. This means that you only pay for the compressed

size of your data, which can lead to significant cost savings

compared to other data warehousing solutions that charge for

uncompressed data.

Compute: The compute costs are determined by the size of the

virtual warehouse you choose for processing queries and loading

data. Virtual warehouses are essentially clusters of compute

resources that can be scaled up or down as needed. Larger

warehouses offer more compute power but also consume credits

at a faster rate. Snowflake offers eight different virtual warehouse

sizes, each with a different credit consumption rate. For example,

assume you choose a “large” virtual warehouse for a particular

task. This warehouse size corresponds to 8 credits per hour. If the

task runs for 30 minutes (0.5 hours), you are billed for 4 credits (8

credits per hour * 0.5 hours).

Data transfer: While Snowflake doesn’t charge for loading data

from external stages like Amazon S3 or Microsoft Azure into your

Snowflake environment, you may incur egress fees from your

20

Chapter 2 GettinG Started with Snowflake

cloud storage provider if your data is stored in a different region

or network than your Snowflake account. Additionally, there are

charges for exporting data out of Snowflake to an external storage

location, which include the compute costs for the export query

and potential egress charges if the target location differs by region

or cloud provider.

 Creating an Account

Snowflake offers a 30-day free trial with a set amount of credits to explore its features.

To begin, navigate to www.snowflake.com and click Start for Free. You are prompted to provide information like your name, company name, email address, phone number, desired Snowflake edition, cloud provider, and region. After submitting the form, you receive an email with a link to activate your account. It’s essential to activate your account within 72 hours to avoid having to create a new trial account.

During your account creation, you received an email that notified you that your account has been provisioned. This email contains a link to your Snowflake web interface and a link to activate your account. Clicking Activate takes you to a web browser screen where you are prompted to create a username and password. Once you have entered your desired username and password, the “Welcome to Snowflake” web interface will appear. Congratulations, you have officially logged into Snowflake!

Once you’ve successfully activated your Snowflake account, you can access the Snowflake web interface, which is explored in the next section.

 Navigating Snowflake with Snowsight

Now that you’ve created your Snowflake account, you can set up your environment through the Snowflake user interface (UI). There are two that your account may have access to: Classic Console and Snowsight. Both UIs perform the same functions.

Snowflake is currently upgrading all accounts to Snowsight through stages. Eventually, all accounts will only have access to Snowsight; thus, this section focuses on Snowsight.

Snowsight is like a visual control panel for managing your data warehousing environment. Snowsight is made up of four key sections: the navigation menu, search, quick actions, and recently viewed (see Figure 2-1).

21

[image: Image 14]

Chapter 2 GettinG Started with Snowflake

• Navigation is the central hub for accessing and managing various components within Snowsight. You can use it to create and manage

your data products, notebooks, worksheets, databases, and other

related artifacts.

• Search bar enables you to quickly locate specific content within your Snowflake environment. You can search for navigation menu items

and database objects like tables, columns, functions, and more.

• Quick actions provides shortcuts to frequently used operations tailored to your current role. Examples of quick actions include

querying data using a sheet, uploading file directions to tables, and

worksheets for use with Python code.

• Recently viewed keeps track of activity, which helps navigate. You may also create different content types.

 Figure 2-1. Reviewing Snowsight UI

22

Chapter 2 GettinG Started with Snowflake

 Creating a Database and Warehouse in Snowflake

Databases and warehouses are fundamental components of Snowflake’s architecture, playing crucial roles in data storage and processing. Understanding these concepts is essential for efficient platform usage. A database acts as a logical container for storing related datasets in a structured manner. This logical separation helps organize data and manage access control. For instance, different departments within an organization or different applications might have separate databases. A warehouse provides the compute power necessary for querying and processing data stored in databases.

Warehouses operate independently of databases, allowing flexible scaling based on specific needs. Let’s start with creating a warehouse first.

 Creating a Warehouse

Let’s review the two ways to create a warehouse: through the Snowflake web interface and using a SQL command.

CREATE WAREHOUSE: WEB INTERFACE

1. log in to your Snowflake web interface.

2. Click Admin + Warehouses.

3. Click + Warehouse (upper right corner).

4. Give your warehouse a name and description. figure 2-2 shows the information entered into the web interface.

a. Choose a Type and Size. for this exercise, we left the defaults.

b. Make modifications to Advanced Options. for this exercise, we left the defaults.

23

[image: Image 15]

Chapter 2 GettinG Started with Snowflake

 Figure 2-2. Creating a new warehouse through the web interface CREATE WAREHOUSE: SQL COMMAND

this example executes the SQl command through a Snowflake worksheet through the Snowflake Ui, though you can use a SQl client that is already connected to your Snowflake account.

1. Click Worksheets.

2. Click + (Create SQL Worksheet) in the upper right corner.

3. execute the following CREATE WAREHOUSE command.

CREATE WAREHOUSE JUMPSTART_SNOWFLAKE_SQL

WITH WAREHOUSE_TYPE = 'STANDARD'

WAREHOUSE_SIZE = 'XSMALL'

24

[image: Image 16]

Chapter 2 GettinG Started with Snowflake

AUTO_SUSPEND = 600

AUTO_RESUME = TRUE;

4. figure 2-3 shows that our warehouse, JUMPSTART_SNOWFLAKE_SQL, has been successfully created.

 Figure 2-3. Using a Snowflake worksheet to execute a CREATE WAREHOUSE

 statement shows that the warehouse was successfully created

25

Chapter 2 GettinG Started with Snowflake

Caution always ensure that auto suspend and auto resume are set in your warehouse. By default, these settings are set for you when a virtual warehouse is provisioned. auto suspend stops a warehouse if it sits idle for a specified period of time, while auto resume starts a suspended virtual warehouse when queries are submitted to it. this is important because a running warehouse will consume Snowflake credits only when compute resources are being utilized. Shutting down your warehouse when it is not in use helps conserve energy and control costs.

 Create a Database

Now that you have created a warehouse, let’s create a database! Similar to a warehouse, you can also create a database through the Snowflake web interface or a SQL command.

While creating a database, users can specify several key parameters.

• Database name: Serves as a unique identifier for the database within the Snowflake account.

• Database owner: Has full privileges on the database.

• Other relevant properties: Parameters related to security,

replication, and more, depending on the specific needs.

CREATE DATABASE: WEB INTERFACE

1. Click Data + Databases.

2. Click +Database (upper right corner).

3. Give your database a Name and Comment (description) (see figure 2-4).

26

[image: Image 17]

[image: Image 18]

Chapter 2 GettinG Started with Snowflake

 Figure 2-4. Creating a new database through web interface

4. Click Create.

5. after the database is created, you may edit permissions, add schemas, clone, drop, or transfer ownership by clicking the ellipses (see figure 2-5).

 Figure 2-5. Clicking the ellipses gives options for your selected database CREATE DATABASE: SQL COMMAND

to create the same database using a SQl command, execute the following statement in a SQl client that is connected to your Snowflake database. You can execute SQl commands in Snowflake worksheets within the Snowsight web interface.

create DATABASE IDENTIFIER('"EXAMPLE_DATABASE"') COMMENT = 'Jumpstart Snowflake - creating a new database example'

27

Chapter 2 GettinG Started with Snowflake

 Loading Data into Snowflake

Now that you have set up your database and warehouse in Snowflake, you need to load your data. Snowflake is designed to efficiently handle this process and supports diverse data loading methods, sources, and formats. For smaller datasets or initial testing, you can load data directly from local files into Snowflake. However, as your data needs grow, using Snowflake’s integration with cloud storage services like Amazon S3, Azure Blob Storage, and Google Cloud Storage becomes more advantageous. Directly loading data from these platforms is especially beneficial for handling large datasets, enabling you to create robust and efficient data pipelines. This approach streamlines the data ingestion process and allows you to seamlessly integrate your data workflows with existing cloud storage solutions.

There are two ways to load data into Snowflake: bulk data loading with the COPY

statement and continuous data loading with Snowpipe. This chapter is focused on bulk data loading. It covers the following topics.

• Overview of bulk data loading: We explain what bulk data loading is, file load locations, supported file formats and encoding, compression

handling, and encryption options.

• Bulk data loading recommendations: We discuss file preparation, including file sizing and splitting, the CSV and semi-structured

formats, staging, loading, and querying.

Note Continuous data loading with Snowpipe is covered in Chapter 3.

 Overview of Bulk Data Loading

The bulk loading of data using COPY has been done longer than Snowflake has been around. Many other database management systems support using the COPY statement.

Therefore, it is no surprise that Snowflake offers the same support. To better understand bulk data loading, let’s review and answer some key questions.

• What is bulk data loading?

• Where can we bulk data load from?

28

Chapter 2 GettinG Started with Snowflake

• What are the compression and encryption options?

• What file formats are supported?

To get data into a database table, you need to insert it. Insert statements can take a while since they need to be executed one row at a time. Bulk copying can take a large amount of data and insert it into a database all in one batch. The bulk data loading option in Snowflake allows batch loading of data from files that are in cloud storage, like AWS S3.

If your data files are not currently in cloud storage, then there is an option to copy the data files from a local machine to a cloud storage staging area before loading them into Snowflake. This is known as Snowflake’s internal staging area. The data files are transmitted from a local machine to an internal, Snowflake-designated, cloud storage staging location and then loaded into tables using the COPY command.

Snowflake supports loading data from files staged in any of the following cloud storage locations, regardless of the cloud platform for your Snowflake account.

• Snowflake-designated internal storage staging location

• AWS S3, where files can be loaded directly from any user-supplied

S3 bucket

• GCP Cloud Storage, where files can be loaded directly from any user-

supplied GCP cloud storage container

• Azure Blob storage, where files can be loaded directly from any user-supplied Azure container

Note data transfer billing charges may apply when loading data from files staged across different platforms.

 Compression Handling

When staging uncompressed files in a Snowflake stage, the files are automatically compressed using gzip, unless compression is explicitly disabled. Snowflake can automatically detect gzip, bzip2, deflate, and raw_deflate compression methods.

Autodetection is not yet supported for brotli and zstandard. Therefore, when staging or loading files compressed with either of these methods, you must explicitly specify the compression method that was used.

29

Chapter 2 GettinG Started with Snowflake

 Encryption Options

When staging unencrypted files in an internal Snowflake location, the files are automatically encrypted using 128-bit keys. 256-bit keys can be enabled (for stronger encryption); however, additional configuration is required. Files that are already encrypted can be loaded into Snowflake from external cloud storage; the key used to encrypt the files must be provided to Snowflake.

 Supported File Formats and Encoding

Snowflake supports most of the common file formats used for loading data. These file formats include the following.

• Delimited files (any valid delimiter is supported; the default is

a comma)

• JSON and XML

• Avro, including the automatic detection and processing of staged

Avro files that were compressed using Snappy

• ORC, including the automatic detection and processing of staged

ORC files that were compressed using Snappy or zlib

• Parquet, including the automatic detection and processing of staged

Parquet files that were compressed using Snappy

For delimited files, the default character set is UTF-8. To use any other characters set, you must explicitly specify the encoding to use for loading. For all other supported file formats (JSON, Avro, etc.), the only supported character set is UTF-8.

 Bulk Data Loading Recommendations

Loading large datasets can affect query performance. Snowflake recommends dedicating separate warehouses to loading and querying operations to optimize the performance of each. This section covers the recommended ways to prepare the files.

30

Chapter 2 GettinG Started with Snowflake

 File Preparation and Sizing

The number of data files that can be processed in parallel is determined by the number and capacity of servers in a warehouse. If you follow the file sizing guidelines described in the following section, the data loading requires minimal resources. Note that these recommendations apply to both bulk data loads and continuous loading using Snowpipe. Here’s what to know about file sizing.

• The number of load operations that can run in parallel cannot exceed the number of data files to be loaded.

• To optimize the number of parallel operations for a load, Snowflake

recommends producing data files roughly 100 MB to 250 MB in size,

compressed.

• Aggregate smaller files to minimize the processing overhead for

each file.

• Split larger files into a greater number of smaller files to distribute the load among the servers in an active warehouse. The number of data

files processed in parallel is determined by the number and capacity

of servers in a warehouse.

• Snowflake recommends splitting large files by line to avoid records

that span chunks.

• Data loads of large Parquet files (e.g., greater than 3 GB) could time out. Split large files into files 1 GB in size (or smaller) for loading.

If your source database does not allow you to export data files in smaller chunks, use a third-party utility to split large CSV files. Windows does not include a native file split utility; however, Windows supports many third-party tools and scripts that can split large data files. Linux has the split utility, which enables you to split a CSV file into multiple smaller files.

Note Splitting larger data files allows the load to scale linearly. Using a larger warehouse (X-large, 2X-large, etc.) consumes more credits and may not result in any performance increase.

31

Chapter 2 GettinG Started with Snowflake

 CSV File Preparation

Consider the following guidelines when preparing your delimited text (CSV) files for loading.

• UTF-8 is the default character set; however, additional encodings

are supported. Use the ENCODING file format option to specify the

character set for the data files.

• Snowflake supports ASCII characters (including high-order

characters) as delimiters. Common field delimiters include the pipe (|), comma (,), caret (^), and tilde (~).

• A field can be optionally enclosed by double quotes, and, within the field, all special characters are automatically escaped, except the

double quote itself needs to be escaped by having two double quotes

right next to each other (""). For unenclosed fields, a backslash (\) is the default escape character.

• Common escape sequences can be used (e.g., \t for tab, \n for

newline, \r for carriage return, and \\ for backslash).

• Fields containing carriage returns should also be enclosed in quotes (single or double).

• The number of columns in each row should be consistent.

 Semi-Structured Data File Preparation and VARIANT values

Semi-structured data is data that does not conform to the standards of traditional structured data, but it contains tags or other types of markup that identify individual, distinct entities within the data.

Two of the key attributes that distinguish semi-structured data from structured data are nested data structures and the lack of a fixed schema.

• Structured data requires a fixed schema that is defined before the

data can be loaded and queried in a relational database system.

Semi-structured data does not require a prior definition of a schema

and can constantly evolve; i.e., new attributes can be added at

any time.

32

Chapter 2 GettinG Started with Snowflake

• In addition, entities within the same class may have different

attributes even though they are grouped together, and the order of

the attributes is not important.

• Unlike structured data, which represents data as a flat table,

semi-structured data can contain n level of hierarchies of nested information.

The steps for loading semi-structured data into tables are identical to those for loading structured data into relational tables. Snowflake loads semi-structured data into a single VARIANT column. You can also use a COPY INTO table statement during data transformation to extract selected columns from a staged data file into separate table columns.

When semi-structured data is inserted into a VARIANT column, what Snowflake is really doing is extracting information about the key locations and values and saving it into a semi-structured document. The document is referenced by the metadata engine for fast SQL retrieval.

Note VARIANT “null” values (not to be confused with SQl NULL values) are not loaded to the table. to avoid this, extract semi-structured data elements containing

“null” values into relational columns before loading them. alternatively, if the “null”

values in your files indicate missing values and have no other special meaning, Snowflake recommends setting the file format option STRIP_NULL_VALUES to TRUE when loading the semi-structured data files.

 File Staging

Both internal and external stage locations in Snowflake can include a path (referred to as a prefix in AWS). When staging regular datasets, Snowflake recommends partitioning the data into logical paths to identify details such as geographical location, along with the date when the data is written.

Organizing your data files by path allows you to copy the data into Snowflake with a single command. This allows you to execute concurrent COPY statements that match a subset of files, taking advantage of parallel operations.

33

Chapter 2 GettinG Started with Snowflake

For example, if you were storing data for a company that did business all over the world, you might include identifiers such as continent, country, and city in paths along with data write dates (e.g., NA/Mexico/Quintana_Roo/Cancun/2024/01/01/01/).

When planning regular data loads, such as with extract-transform-load (ETL) processing, it is important to partition the data in your internal (i.e., Snowflake) stage or external locations (S3 buckets or Azure containers) using logical, granular paths.

Create a partitioning structure that includes identifying details such as the application or location, along with the date when the data was written. You can then copy any fraction of the partitioned data into Snowflake with a single command. You can copy data into Snowflake by the hour, day, month, or even year when you initially populate tables.

Here are some examples of partitioned S3 buckets using paths.

• s3://bucket_name/brand/2024/07/01/11/

• s3://bucket_name/region/country/2024/07/01/14/

 Loading

The COPY command supports several options for loading data files from a stage.

• By path of internal location or prefix of external location

• By listing specific files to load (up to 1000 per COPY command)

• By using pattern matching to identify specific files by pattern

These options enable you to copy a fraction of the staged data into a Snowflake table with a single command. This allows you to execute concurrent COPY statements that match a subset of files, taking advantage of parallel operations. Do take special note that the file being copied must have the same data structure (i.e., number of columns, data type) as the table.

Tip listing specific files to load from a stage is generally the fastest option.

34

Chapter 2 GettinG Started with Snowflake

 Exercises

Snowflake has tutorials for bulk loading data from the local file system and S3. For more information, please see Snowflake’s tutorials.

• Local file systems: https://docs.snowflake.com/en/user-guide/

tutorials/data-load-internal-tutorial

• External data (S3): https://docs.snowflake.com/en/user-guide/

tutorials/data-load-external-tutorial

 Summary

This chapter has guided you through the essentials of getting started with Snowflake, the powerful cloud data platform. You’ve explored the different editions of Snowflake and learned how to create your free trial account. You should now be familiar with the various cloud providers and regions available, as well as the key considerations for selecting the best combination for your needs. Understanding Snowflake’s consumption-based pricing model, which charges you based on storage, compute, and data transfer, is crucial for managing costs.

You also learned how to create a database and a virtual warehouse, providing the foundation for your data warehousing activities. And you were introduced to data loading techniques in Snowflake, which is a fundamental aspect of any data warehousing solution. The knowledge and skills gained from this chapter empower you to explore the more advanced capabilities of Snowflake covered in later chapters.

35

CHAPTER 3

Continuous Data

Loading with Snowpipe

and Dynamic Tables

 You and I are streaming data engines.

— Jeff Hawkins

If you’re a data analyst or data scientist or you’re on an executive team, you know the value of access to continuous and timely data at any given time. You want to know that whenever you’re querying data, transforming it, or accessing it in any way, the data represents the most up-to-date information available to use for data analysis.

If you have stale data, you might make inaccurate conclusions or have skewed statistics that will lead to misinformed strategic decisions that can affect your company down the line. Access to continuous data is a beneficial thing for anyone, regardless of role.

Nowadays, we know that data is generated much faster than it ever used to be before.

In the past, corporate data would be updated infrequently, either daily, weekly, or even monthly, and added to your data warehouse. Data accumulates over time, which leads to it becoming more and more challenging to process.

37

© Dmitry Anoshin, Dmitry Foshin and Donna Strok 2025

D. Anoshin et al., Jumpstart Snowflake, https://doi.org/10.1007/979-8-8688-1533-1_3

[image: Image 19]

Chapter 3 Continuous Data LoaDing with snowpipe anD DynamiC tabLes

Now, we have app data, mobile data, and data sensors that generate this constant flow of useful analytical data, but it can really be a challenge to get it into a data warehouse because it’s being generated so quickly. Multitudes of tiny files are being generated, and that can definitely lead to problems.

This chapter begins with an overview of data loading strategies in Snowflake, highlighting their advantages and trade-offs. Next, we introduce Snowpipe, a serverless ingestion service that allows automated data loading as new files arrive in cloud storage.

You’ll learn how to set up Snowpipe auto-ingest for event-driven loading and use the Snowpipe REST API for custom integrations. Finally, we explore dynamic tables, which enable continuous transformation of streaming and batch data within Snowflake.

Hands-on exercises reinforce these concepts, guiding you through building pipelines using both Snowpipe and dynamic tables.

This chapter builds on earlier discussions of Snowflake’s architecture and ingestion methods, providing essential knowledge for those looking to implement near real-time data pipelines. Whether you are designing streaming analytics, real-time dashboards, or simply looking to minimize data latency, mastering these tools is key to optimizing your Snowflake-powered data ecosystem.

 Introduction to Data Loading Strategies

for Snowflake

Let’s look at the traditional way of dealing with loading data into a data warehouse.

Figure 3-1 shows data that’s being generated continuously, loaded into a staging environment like S3, and then batched daily or hourly into your database.

 Figure 3-1. Classical approach to loading into a data warehouse 38

Chapter 3 Continuous Data LoaDing with snowpipe anD DynamiC tabLes Unfortunately, this methodology allows loading data only daily or hourly, or even half-hourly. It does not provide fast access to the data that was generated. Users are often requesting the ability to analyze our data as quickly as it’s coming in to make important decisions based on the results being generated.

If you decide to implement a continuous loading system, you’re probably aware of the COPY command, which was designed for batch-loading scenarios. After accumulating data over some time, such as hours or days, you can then launch a COPY command to load data into your target table in Snowflake.

Note the

COPY command is mainly a sQL command for loading files into a

snowflake table. the command supports different options and file formats. please see the snowflake documentation at https://docs.snowflake.com/en/

user-guide/kafka-connector.

As a workaround for near real-time tasks, you may leverage a micro-batching approach by using the COPY command. It then takes a couple of minutes to use a COPY

statement on a schedule to load it. However, it is still not a fully continuous load because fresh data that arrives and is ready for loading into a data warehouse won’t be triggered itself. Usually, humans or a scheduler drives it.

If you have data that’s being generated continuously, you might think that it’d be great if there were an easily affordable, lightweight way to get your data up-to-date in Snowflake. Luckily, Snowflake agrees with you and created a service called Snowpipe.

Snowpipe is an autoscaling Snowflake cloud service that provides continuously loaded data into the Snowflake data warehouse from internal and external stages.

With a continuous loading approach like Snowpipe, you have a data-driven way for new data to arrive from Snowflake to your target table.

39

Chapter 3 Continuous Data LoaDing with snowpipe anD DynamiC tabLes Table 3-1 describes the data warehouse loading approaches.

 Table 3-1. Data Warehouse Loading Approaches

Approach

Definition

Snowpipe Options

batch

Data accumulates over time point at an s3 bucket and a destination table in (daily, hourly) and is then

your warehouse where new data is automatically

loaded periodically.

uploaded.

microbatch

Data accumulates over small a technical resource can interface directly using time windows (minutes) and a rest api along with Java and python sDKs to then is loaded.

enable highly customized loading use cases.

Continuously

every data item is loaded

also available is a way to integrate apache Kafka

(near real time)

individually as it arrives in

using a Kafka connector.

near real time.

With Snowpipe, you have two options. The first option is to use Snowpipe as an AWS

S3 bucket, where you define event notifications on your S3 bucket and then have these event notifications sent to Snowflake as soon as new files land in the S3 bucket. Those files are automatically picked up by Snowpipe and loaded into your target tables.

The second option is to build your own integration with Snowpipe using a REST

API. You can create your own applications that call the Snowpipe loader according to your criteria. Table 3-2 is a summary of the critical benefits of using Snowpipe’s service.

40

Chapter 3 Continuous Data LoaDing with snowpipe anD DynamiC tabLes

 Table 3-2. Key Snowpipe Benefits

Benefits

Description

Continuous loading, immediate insight Continuously generated data is available for analysis in seconds.

avoids repeated manual COPY

no manual effort is required for loading data into

commands, high level of availability for snowflake.

building custom integration

automated loading with no need for manual COPY

commands.

using a rest api and sDK, you can build your own data

pipeline system.

Full support for semi-structured data

availability of many industry-standard formats such as

on load

XmL, Json, parquet, orC, and avro.

no transformation is needed to load varying data

types, and there’s no trade-off between flexibility and

performance.

pay only for what you use

you pay only for the compute time you use to load data.

the “pay only for what you use” pricing model means idle

time is not charged for.

snowflake’s built-for-the-cloud solution scales storage

separately from compute, up and down, transparently, and

automatically.

it requires a full understanding of the cost of loading data.

there is a separate expense item for “loading data” in your

snowflake bill.

it has a serverless billing model via utilization-based

billing.

Zero management

no indexing, tuning, partitioning, or vacuuming on load.

serverless

serverless loading without contention.

no servers to manage and no impact on other workloads

thanks to unlimited concurrency.

41

[image: Image 20]

Chapter 3 Continuous Data LoaDing with snowpipe anD DynamiC tabLes

 Loading Data Continuously

Let’s take a closer look at some options for loading data.

• Snowpipe auto-ingest

• Snowpipe REST API using AWS Lambda

 Snowpipe Auto-Ingest

Snowpipe auto-ingest is a fully automatic mode that loads data from the block store into the target table. The speed and ease of configuration provided by using data definition language (DDL) allows any data engineer or analyst to configure their automatic continuous data loading process in minutes.

Figure 3-2 shows the main components of how this integration works.

 Figure 3-2. Snowflake continuous data loading approach using Snowpipe with Auto-Ingest

The data source provides continuous data feeds into services like AWS Kinesis, AWS

Managed Streaming for Kafka (MSK), and Hosted Apache Kafka. You can use them to stage your files into an external stage (e.g., S3 bucket) as soon as files arrive in the bucket.

S3 sends a notification via an SQS queue to Snowpipe, and as soon as that notification about a new file in the queue is received, Snowpipe runs a serverless loader application that loads the files from S3 into the target tables behind the scenes.

42

[image: Image 21]

Chapter 3 Continuous Data LoaDing with snowpipe anD DynamiC tabLes

 Building a Data Pipeline Using the Snowpipe Auto-Ingest Option

The following components are needed to build an example of a continuously loaded data pipeline.

• Stream Producer, a sample producer for Kinesis Data Firehose

(For simplicity, in this case, instead of a stream producer based on

the Lambda service, we can use Firehose Test Generator, which is

available when creating a Firehose stream.)

• Kinesis Data Firehose as stream delivery service

• S3 bucket as an external Snowflake stage

• The following Snowflake services

• Snowpipe

• Snowflake data warehouse

• Snowflake console

Figure 3-3 shows an overview of the component interaction.

 Figure 3-3. Snowpipe data loading using auto-ingest mode

43

[image: Image 22]

Chapter 3 Continuous Data LoaDing with snowpipe anD DynamiC tabLes

To understand how internal integration actually takes place, we need to dive a little bit into the internal structure of Snowpipe. Figure 3-4 shows the main steps of integration.

 Figure 3-4. Snowpipe data loading using auto-ingest mode, Snowpipe detail view First, we have to create an external stage and a pipe using the auto_ingest option.

When we execute the DDL, we have to get a unique identifier for an internal queue service (with AWS, it is based on SQS) that is already linked to the Snowpipe serverless loader.

Second, we must create a new S3 bucket and configure an S3 bucket event notification that has to send notification events into Snowpipe SNS. The Snowpipe loader gets events about the new file into an S3 bucket and queues pipe statements that contain specific COPY commands. Snowflake computes services fully and automatically scales when executing DDL statements from the pipe queue. The last step is to create and configure a stream that produces intensively a lot of events.

Caution you cannot control transaction boundaries for load with snowpipe.

BUILDING A DATA PIPELINE USING THE SNOWPIPE AUTO-INGEST OPTION

this exercise builds the pipeline shown in Figure 3-5. specifically, the following instructions show the process of creating a continuous data pipeline for snowflake using snowpipe.

1. Log in to your snowflake account and choose Worksheet.

2. Create snowflake external stages based on an s3 bucket.

44

Chapter 3 Continuous Data LoaDing with snowpipe anD DynamiC tabLes replace <your_AWS_KEY_ID> with your aws credentials, and replace <your_

s3_bucket> with your s3 bucket urL.

run the DDL statements on the worksheet, as shown in the following.

—- create a new database for testing snowpipe

create database snowpipe data_retention_time_in_days = 1;

show databases like 'snow%';

—- create a new external stage

create or replace stage snowpipe.public.snowstage

url='S3://<your_s3_bucket>'

credentials=(

AWS_KEY_ID='<your_AWS_KEY_ID>',

AWS_SECRET_KEY='<your_AWS_SEKRET_KEY>');

—- create target table for Snowpipe

create or replace table snowpipe.public.snowtable(

jsontext variant

);

—- create a new pipe

create or replace pipe snowpipe.public.snowpipe

auto_ingest=true as

copy into snowpipe.public.snowtable

from @snowpipe.public.snowstage

file_format = (type = 'JSON');

Note Variant is a universal semi-structured data type of snowflake for loading data in formats such as Json, avro, orC, parquet, or XmL. For more information, you can refer to the references given.

45

Chapter 3 Continuous Data LoaDing with snowpipe anD DynamiC tabLes the first part of the preceding code creates a new external stage called snowpipe.public.snowstage based on an s3 bucket; we provide the urL

s3 bucket and the credentials. additionally, you can set encryption options.

the next step is to define a target table called snowpipe.public.snowtable for the data that we want to load continuously. the table takes a variant column as input for the Json data.

the last part of the script is a definition of a new pipe called snowpipe.

public.snowpipe. you can see the pipe is set to auto_ingest=true, which means that we are using notifications from s3 into sQs to notify snowflake about newly arrived data that is ready to load. also, you can see that the pipe wraps a familiar COPY statement that defines the transformations and the data loading operations that we want to perform on the data as it becomes available.

3. Check the correctness of the configuration using the following commands.

using show statements, you can see the status of any pipes and stages.

—- check exists pipes and stages

show pipes;

show stages;

4. Copy the sQs arn link from the NotificationChannel field in the results of the show pipes command.

5. using a simple select statement, you can check the count of loaded data.

—- check count of rows in target table

select count(*) from snowpipe.public.snowtable

6. Log in to your aws account.

7. Create an aws s3 bucket called <accountname>-snowpipebucket, as shown in Figure 3-5.

46

[image: Image 23]

Chapter 3 Continuous Data LoaDing with snowpipe anD DynamiC tabLes

 Figure 3-5. Creating a new bucket for stream events

8. set notification events for s3 for snowpipe using the path s3 ➤

<accountname>-snowpipebucket ➤ properties ➤ advanced settings ➤

events, as shown in Figure 3-6.

47

[image: Image 24]

Chapter 3 Continuous Data LoaDing with snowpipe anD DynamiC tabLes

 Figure 3-6. Setting S3 bucket notifications via SQS

48

[image: Image 25]

Chapter 3 Continuous Data LoaDing with snowpipe anD DynamiC tabLes

9. specify the sQs queue, as shown in Figure 3-7.

 Figure 3-7. Setting S3 bucket notifications via SQS

10. Create a new Kinesis Data Firehose stream using the path amazon Kinesis ➤

Data Firehose ➤ Create Delivery stream.

11. set the source to a direct PUT command, as shown in Figure 3-8.

49

[image: Image 26]

[image: Image 27]

Chapter 3 Continuous Data LoaDing with snowpipe anD DynamiC tabLes

 Figure 3-8. Creating a new Kinesis Firehose delivery stream

12. Choose a destination for your s3 bucket, as shown in Figure 3-9.

 Figure 3-9. Configuration of Firehose, setting up S3 bucket as the destination 50

[image: Image 28]

Chapter 3 Continuous Data LoaDing with snowpipe anD DynamiC tabLes

13. enable logging using the Cloudwatch service, as shown in Figure 3-10.

 Figure 3-10. Enabling CloudWatch logging

14. Create an iam role with a policy as follows.

...

{

"Sid": "",

"Effect": "Allow",

"Action": [

"s3:AbortMultipartUpload",

"s3:GetBucketLocation",

51

[image: Image 29]

Chapter 3 Continuous Data LoaDing with snowpipe anD DynamiC tabLes

"s3:GetObject",

"s3:ListBucket",

"s3:ListBucketMultipartUploads",

"s3:PutObject"

],

"Resource": [

"arn:aws:s3:::snowpipebucket",

"arn:aws:s3:::snowpipebucket/*",

]

},

...

15. run the testing stream, as shown in Figure 3-11.

 Figure 3-11. Testing

16. Check the file in the s3 bucket.

17. Check the count of loaded data.

—- check count of rows in target table

select count(*) from snowpipe.public.snowtable

52

[image: Image 30]

Chapter 3 Continuous Data LoaDing with snowpipe anD DynamiC tabLes

 Snowpipe REST API Using AWS Lambda

If the auto-ingest option is not available to your account for some reason, you need a flexible way to integrate with other services so that you can still implement your code through the Snowpipe REST API.

Figure 3-12 shows how to build a pipeline with a custom app using the REST API.

 Figure 3-12. Snowpipe data loading using auto-ingest mode

Figure 3-12 shows the second option. On the left side, you can see your application.

This can be an actual application if you are running one on a virtual machine or a Docker container, but it also can be code that you are running on AWS Lambda. Your Lambda function or application then takes care of placing the load files in the S3 bucket as soon as the file is persisted there.

Snowpipe then adds these files to a queue behind the REST API endpoint. You invoke the REST API, and that invokes the Snowpipe loader service, which works off that queue to load the data into the target tables that you have defined. For step-by-step instructions to do this, you can refer to the official documentation.

53

Chapter 3 Continuous Data LoaDing with snowpipe anD DynamiC tabLes Working with Dynamic Tables in Snowflake

Dynamic tables are a powerful and unique feature in Snowflake that allows continuous and incremental transformations on streaming data. This enables near-real-time data pipelines and faster data processing, reducing the need for batch ETL operations. This recipe dives into how dynamic tables work, how to set them up, and how to integrate them into your Snowflake data architecture.

 What Are Dynamic Tables?

In Snowflake, dynamic tables provide a mechanism to automatically and continuously refresh table data based on underlying changes in the source tables. The key feature of dynamic tables is that they manage incremental transformations in a continuous manner without manual intervention or complex orchestration. This makes them particularly useful when working with high-velocity data that requires regular transformations or aggregations.

In essence, dynamic tables allow you to automate the materialization of SQL queries into tables while the system keeps track of changes and updates them as new data flows in. You can think of dynamic tables as a reactive layer in your data architecture, responding to upstream changes without requiring manual refreshes or scheduled batch jobs.

This reactive architecture fits well with Snowflake’s event-driven approach to data loading, specifically when used with Snowpipe, to ensure your data is always up to date.

 Why Use Dynamic Tables?

Let’s briefly go over the benefits of using dynamic tables.

• Continuous transformations: Unlike traditional batch processing, where transformations run periodically, dynamic tables ensure your

transformations run as soon as the source data is updated. This is

ideal for near real-time analytics.

54

Chapter 3 Continuous Data LoaDing with snowpipe anD DynamiC tabLes

• Automatic refresh: You don’t need to schedule jobs or manually refresh the tables. Snowflake keeps them updated by listening to

changes in the underlying data.

• Simplicity: Instead of writing complex logic to handle incremental data loads, dynamic tables handle the complexity for you, simplifying

your data pipelines.

• Scalability: They scale automatically with Snowflake’s elastic infrastructure, ensuring efficient performance even as data

volume grows.

USING DYNAMIC TABLES FOR CONTINUOUS DATA LOADING

Let’s walk through the steps to create and use dynamic tables in snowflake. this example assumes that there is already a data stream being ingested into snowflake via snowpipe. it demonstrates how to create a dynamic table that continuously transforms data from a Json column stored in a table SNOWTABLE created in the first exercise. our goal is to extract key fields from the Json data and store them in a new, structured table. Dynamic tables make it easy to set up continuous transformations as data changes or is loaded.

1. Log in to your snowflake account and choose Worksheet.

2. a warehouse is essential because it provides the compute resources to execute queries for dynamic tables. to create a warehouse, you can use the following sQL command.

—- Creating a Warehouse in Snowflake

CREATE WAREHOUSE IF NOT EXISTS my_warehouse

WITH

WAREHOUSE_SIZE = 'XSMALL'

AUTO_SUSPEND = 300

AUTO_RESUME = TRUE;

Note warehouse_siZe = ‘XsmaLL’: this specifies the size of the warehouse. you can adjust the size (XsmaLL, smaLL, meDium, etc.) based on your needs.

55

Chapter 3 Continuous Data LoaDing with snowpipe anD DynamiC tabLes AUTO_SUSPEND = 300 sets the warehouse to automatically suspend (stop) after 5 minutes of inactivity, helping you save costs.

AUTO_RESUME = TRUE allows the warehouse to automatically resume when a query needs to run, avoiding manual intervention.

3. after running the CREATE WAREHOUSE command, verify that the warehouse was actually created. you can check this by running.

SHOW WAREHOUSES;

4. next, define the dynamic table that automatically transforms the Json data and stores it in TRANSFORMED_JSON. here’s how to create the dynamic table using the sQL logic.

CREATE OR REPLACE DYNAMIC TABLE transformed_json_table

WAREHOUSE = 'MY_WAREHOUSE'

TARGET_LAG = '5 minutes'

AS

SELECT

json_key,

json_value

FROM (

WITH transformed_json AS (

SELECT

JSONTEXT,

PARSE_JSON(JSONTEXT) AS json_data

FROM

SNOWTABLE

),

flattened_json AS (

SELECT

t.JSONTEXT,

f.key AS json_key,

f.value AS json_value

FROM

transformed_json t,

LATERAL FLATTEN(input => t.json_data) f

)

56

Chapter 3 Continuous Data LoaDing with snowpipe anD DynamiC tabLes SELECT

json_key,

json_value

FROM

flattened_json

);

in this step, we define a dynamic table that automatically queries and

transforms data from SNOWTABLE.

each time new data is loaded into SNOWTABLE, snowflake updates

transformed_json_table.

after AS, there is a sQL query that transforms the Json column by

• Parsing the JSON string using PARSE_JSON.

• Flattening the JSON structure to extract key-value pairs.

snowflake dynamic tables process data updates periodically based on the target_Lag setting.

• if target_Lag = '5 minutes', the table refreshes every 5 minutes.

• Lower values (e.g., 1 minute) can provide near real-time updates

but may increase compute costs.

• The refresh history can be monitored via Snowsight to check

when the table was last updated.

5. test the dynamic table. similar to the first exercise in this chapter, you can test the process by uploading a Json file to the s3 bucket.

6. you may need to catch data in snowpipe by refreshing it.

ALTER PIPE SNOWPIPE REFRESH;

7. now, let’s validate the results in the dynamic table.

-- Query the transformed_json_table

SELECT * FROM transformed_json_table;

57

Chapter 3 Continuous Data LoaDing with snowpipe anD DynamiC tabLes in this recipe, you learned how to leverage snowflake's dynamic tables to automatically transform Json data stored in SNOWTABLE into a structured format. this example highlights how you can use snowpipe for continuous data loading and dynamic tables for real-time transformation without manual intervention.

by integrating snowpipe and dynamic tables, you can build robust, scalable data pipelines that require minimal ongoing management. Dynamic tables allow you to keep your transformations in sync with data ingestion, ensuring that your downstream tables are always up to date.

 Summary

This chapter explored the power of Snowpipe for continuous data loading, focusing on how to efficiently build and maintain data pipelines in Snowflake. We covered key features like Snowpipe integrations with cloud storage to enable near-real-time data ingestion, examined billing considerations, and explored various options for managing data ingestion.

In addition, the chapter introduced dynamic tables, a powerful tool for automating incremental transformations on streaming data. We demonstrated how to set up dynamic tables that continuously refresh based on underlying data changes, allowing seamless, real-time data transformations.

The next chapter dives into Snowflake administration, discussing the management of primary Snowflake objects such as warehouses, databases, and roles and how to optimize your Snowflake environment for scalability and performance.

58

CHAPTER 4

Snowflake Administration

and RBAC

Snowflake is a database, and as such, it comes with similar administration features as any other database. It was also the first data warehouse as a service, meaning that end users can minimize administration and maintenance.

This chapter provides an overview of options for managing your Snowflake account, geared primarily to Snowflake administrators. However, it is also useful for end users to understand the key concepts of Snowflake administration and management.

There are several main tasks required of administrators.

• Administering roles and users

• Role-based access control

• Administering account parameters

• Administering databases and warehouses

• Administering data shares

• Administering database objects

• Administering clustered tables

This chapter covers all these topics and shows how it works using our

Snowflake demo.

59

© Dmitry Anoshin, Dmitry Foshin and Donna Strok 2025

D. Anoshin et al., Jumpstart Snowflake, https://doi.org/10.1007/979-8-8688-1533-1_4

[image: Image 31]

Chapter 4 Snowflake adminiStration and rBaC

 Administering Roles and Users

Snowflake uses roles for managing access and operations. In other words, you can create custom roles with a set of privileges to control the granularity of the access granted.

For instance, let’s say we want to create a role for our marketing team that grants the team members access to the data and allows them to run SQL queries using a virtual warehouse. According to the Snowflake model, access to securable objects is managed by privileges assigned to roles. Moreover, roles can be assigned to other roles and users.

Snowflake now supports flexible hierarchical role structures with multi-level inheritance, allowing complex access patterns to be modeled efficiently. Additionally, dynamic data masking and row access policies provide fine-grained access control tied to roles.

Snowflake leverages the following access control models.

• Discretionary access control (DAC): Each object has an owner, and this owner can manage the access of the object.

• Role-based access control (RBAC): Roles are created and assigned privileges, and then the roles are assigned to users.

A securable object is a Snowflake entity to which access can be granted (i.e., database, table, access, and so on). A privilege is a level of access to an object.

Figure 4-1 illustrates an example of a marketing role that grants USAGE, MODIFY, and OPERATE privileges to the DATABASE and WAREHOUSE securable objects for marketing users.

 Figure 4-1. Example of marketing role that is granted specific privileges for marketing users

60

Chapter 4 Snowflake adminiStration and rBaC

When we launched our example Snowflake account, it had several predefined default roles.

• ACCOUNTADMIN: This account administrator role is the top-level role for a Snowflake account.

• SYSADMIN: This system administrator role is for creating and

managing databases and warehouses.

• PUBLIC: This is a pseudo-role that can be assigned to any object, but they are all available for all account users.

• SECURITYADMIN: This security administrator role is for creating and managing roles and users.

• USERADMIN: Dedicated to managing user accounts, including

creation, modification, suspension, and deletion of users, as well as

managing their authentication settings.

• ORGADMIN: Available only in multi-account organizations, this role provides organization-level management capabilities for cross-account features.

To create custom roles, you typically use the SECURITYADMIN role, or you can grant the CREATE ROLE privilege to another role. Snowflake’s role hierarchy should be carefully designed to ensure proper delegation of access and responsibilities.

Regular audits of roles can be performed using the ACCESS_HISTORY view to ensure compliance with access policies.

Figure 4-2 is an example of this hierarchy. It shows the Marketing role, which has privileges for the marketing database, schema, and warehouse that belong to the SYSADMIN role.

61

[image: Image 32]

Chapter 4 Snowflake adminiStration and rBaC

 Figure 4-2. An example of a custom role hierarchy

 Enforcement Model

When you log in to your Snowflake account via the web interface or through ODBC/

JDBC clients, a session is initiated. In that session, a current role is automatically set for you. This role determines the permissions you have during that session. You can manually switch to a different role during your session if you have been granted access to multiple roles. It is possible to change the role using the USE ROLE command or to switch roles by using the menu in the top-right corner of the worksheet you work in (see Figure 4-3).

62

[image: Image 33]

Chapter 4 Snowflake adminiStration and rBaC

 Figure 4-3. Role switching in the worksheet

It’s also available in the bottom-left corner by clicking the profile icon (see Figure 4-4).

63

[image: Image 34]

Chapter 4 Snowflake adminiStration and rBaC

 Figure 4-4. Role switching in the profile menu

When a user wants to perform any action in Snowflake, Snowflake compares the user’s role privileges against the required privileges.

Note You may be familiar with the concept of a super-user or super-role with other database vendors, but you do not find this functionality in Snowflake. all access requires the appropriate access privileges.

 Secondary Roles

Snowflake supports secondary roles, which allow users to activate multiple roles in a session in addition to their primary role. This feature helps simplify role management and reduces the need for frequent role switching during a session. When secondary 64

Chapter 4 Snowflake adminiStration and rBaC

roles are enabled, the user can access privileges granted to any of the active roles simultaneously, as long as those roles are assigned to the user. This is particularly useful for scenarios where a user needs to read data from one schema, write to another, and manage tasks—all under different roles. Secondary roles can be activated using the ALTER SESSION SET SECONDARY_ROLES = ('ALL') command or a similar configuration.

 Working with Roles and Users (with RBAC)

Snowflake allows you to control your data warehouse at a granular level within roles. To create a role, you can execute DDL commands or use the web interface. The following commands are used for role management.

• CREATE ROLE creates a new role.

• ALTER ROLE modifies an existing role.

• DROP ROLE deletes an existing role.

• SHOW ROLES displays a list of available roles.

• USE ROLE switches the active role for the session.

To create a role, ensure you are logged into your Snowflake account with a role that has the required privileges, such as SECURITYADMIN.

CREATE ROLE MARKETING_TEAM;

CREATE ROLE DATA_SCIENCE_TEAM;

These commands create two new roles: MARKETING_TEAM for the marketing

analysts and DATA_SCIENCE_TEAM for data scientists.

Next, grant permissions for this role and attach users. The following commands are available for managing users.

• CREATE USER creates a new user.

• ALTER USER modifies an existing user.

• DESCRIBE USER describes user details.

• SHOW PARAMETERS displays parameters associated with a user.

65

Chapter 4 Snowflake adminiStration and rBaC

In addition, you can specify the following options for users.

• userProperties include attributes like password, display name,

email, and so on.

• sessionParams are options such as default warehouse, namespace,

and query timeout settings.

Here’s how to create a new user and assign them to the MARKETING_TEAM role.

CREATE USER marketing_analyst

PASSWORD = 'RockYourData'

COMMENT = 'Marketing Analyst'

LOGIN_NAME = 'marketing_user1'

DISPLAY_NAME = 'Marketing_Analyst'

DEFAULT_ROLE = "MARKETING_TEAM"

DEFAULT_WAREHOUSE = 'COMPUTE_WH'

MUST_CHANGE_PASSWORD = TRUE;

GRANT ROLE "MARKETING_TEAM" TO USER marketing_analyst;

To allow the MARKETING_TEAM role to run SQL queries, you must grant it the necessary privileges on the virtual warehouse.

GRANT USAGE

ON WAREHOUSE COMPUTE_WH

TO ROLE MARKETING_TEAM;

The MARKETING_TEAM is now able to use the COMPUTE_WH virtual warehouse

to run queries but is not able to suspend or resume the warehouse.

CREATE USER data_scientist

PASSWORD = 'SecurePassword'

COMMENT = 'Data Scientist'

LOGIN_NAME = 'data_sci_user1'

DISPLAY_NAME = 'Data_Scientist'

DEFAULT_ROLE = "DATA_SCIENCE_TEAM"

DEFAULT_WAREHOUSE = 'COMPUTE_WH'

MUST_CHANGE_PASSWORD = TRUE;

66

[image: Image 35]

Chapter 4 Snowflake adminiStration and rBaC

GRANT ROLE "DATA_SCIENCE_TEAM" TO USER data_scientist;

GRANT USAGE

ON WAREHOUSE COMPUTE_WH

TO ROLE DATA_SCIENCE_TEAM;

GRANT OPERATE ON

WAREHOUSE COMPUTE_WH

TO ROLE DATA_SCIENCE_TEAM;

The DATA_SCIENCE_TEAM can use the warehouse for running queries (USAGE

permission), and it can also manage the warehouse, such as suspending and resuming the warehouse (OPERATE permission).

Note COMPUTE_WH is an X-Small virtual warehouse that was created by default, but you can use your own warehouse. for demo purposes, it is always good to use the smallest computing instance.

Again, the web interface can be used to perform the same actions. Then, you can log in with a new user, using login marketing_user1, and run this sample query.

SELECT * FROM "SNOWFLAKE_SAMPLE_DATA"."TPCH_SF1"."REGION"

You can perform all the preceding actions using the Snowflake web interface. To manage roles, users, and permissions, navigate to the Admin menu on the left navigation pane, and select the Users & Roles tab, as shown in Figure 4-5.

 Figure 4-5. Admin Users and Roles menu

67

Chapter 4 Snowflake adminiStration and rBaC

By default, the Admin menu is available for the ACCOUNTADMIN role. This menu is usually accessible to Snowflake administrators. It allows them to manage users and roles, control credit usage, and so on.

The following describes RBAC best practices.

• Least privilege: Always assign users the minimum permissions

necessary for their job functions. The MARKETING_TEAM role

should only have USAGE permissions, while the DATA_SCIENCE_

TEAM role should have more powerful permissions like OPERATE.

• Role hierarchy: You can create additional roles that inherit

permissions from others. For example, an ADMIN role could inherit

all privileges from DATA_SCIENCE_TEAM to manage warehouses at

a higher level.

• Audit: Regularly review the roles and permissions granted to ensure no one has more access than necessary. Monitor actions performed

by users with powerful privileges like OPERATE.

By implementing RBAC, you can ensure that your Snowflake environment is secure and well-organized and that access is tailored to the needs of each user.

 New Role Types: Database Roles and Application Roles

In addition to traditional account-level roles, Snowflake now supports database roles and application roles, providing more modular and secure access control. Database roles are scoped to individual databases, enabling more localized privilege management that can be transferred with the database itself—a valuable feature for data product teams or in cross-environment deployments. Application roles are used within Snowflake Native Apps, ensuring that access to app-specific objects is governed independently of account-level roles. These newer role types allow teams to build more reusable, isolated, and secure components within Snowflake, aligning access patterns more closely with modern data architecture practices.

 Using Permifrost for RBAC in Snowflake

Permifrost (https://pypi.org/project/permifrost/) is an open source tool that simplifies managing and deploying RBAC policies in Snowflake. It allows you to define 68

Chapter 4 Snowflake adminiStration and rBaC

Snowflake roles, users, and permissions declaratively using YAML files and ensures your access control policies are consistent and easy to manage.

Make sure you have the following prerequisites.

• A Snowflake account with an administrative role (SECURITYADMIN

or equivalent) to manage roles and permissions.

• Python is installed on your machine (Permifrost is a

Python- based tool).

• A Snowflake user account with a Snowflake private key for

authentication.

1. Install Permifrost using pip.

pip install permifrost

2. Create a YAML file (e.g., rbac_config.yaml) to define your roles,

users, and permissions. Here’s an example configuration.

roles:

- name: MARKETING_TEAM

grants:

warehouses:

- name: COMPUTE_WH

privileges:

- USAGE

schemas:

- name: "SNOWFLAKE_SAMPLE_DATA.TPCH_SF1"

privileges:

- USAGE

- SELECT

- name: DATA_SCIENCE_TEAM

grants:

warehouses:

- name: COMPUTE_WH

privileges:

- USAGE

- OPERATE

69

Chapter 4 Snowflake adminiStration and rBaC

schemas:

- name: "SNOWFLAKE_SAMPLE_DATA.TPCH_SF1"

privileges:

- USAGE

- SELECT

users:

- name: marketing_analyst

default_role: MARKETING_TEAM

roles:

- MARKETING_TEAM

- name: data_scientist

default_role: DATA_SCIENCE_TEAM

roles:

- DATA_SCIENCE_TEAM

The following are the roles in this configuration.

• MARKETING_TEAM can query the COMPUTE_WH warehouse

and access data in the TPCH_SF1 schema.

• DATA_SCIENCE_TEAM has additional permissions to manage

(OPERATE) the COMPUTE_WH warehouse.

The following users are in this configuration.

• marketing_analyst is assigned the MARKETING_TEAM role.

• data_scientist is assigned the DATA_SCIENCE_TEAM role.

3. To apply the RBAC policy, execute the following command.

permifrost apply --config rbac_config.yaml

Permifrost connects to your Snowflake account and ensures the defined roles, users, and permissions are configured correctly.

You can verify the applied RBAC configuration directly in Snowflake.

70

Chapter 4 Snowflake adminiStration and rBaC

The following describes the benefits of using Permifrost.

• Consistency: All RBAC policies are managed declaratively in a YAML file.

• Automation: Simplifies the deployment of roles and permissions across environments.

• Auditability: The YAML file serves as documentation for your RBAC

configuration.

• Ease of Use: Avoids manual SQL commands and reduces the risk

of errors.

By using Permifrost, managing RBAC in Snowflake becomes streamlined,

reproducible, and aligned with best practices for access control.

 Dynamic Data Masking

Snowflake is often used to store and process sensitive data, including Personally Identifiable Information (PII) and other confidential business data. Ensuring the security and privacy of this data is critical to maintaining compliance with regulations such as GDPR, CCPA, HIPAA, and internal corporate policies.

The following describes best practices for handling PII and confidential data.

• Data classification: Identify and classify sensitive data stored in Snowflake. Use tagging and metadata management to label PII and

confidential data appropriately.

• Access control and role-based security: Leverage Snowflake’s RBAC

to ensure only authorized users have access to sensitive data. Use

least privilege principles to restrict access.

• Data masking: Use dynamic data masking to obfuscate PII from

unauthorized users while allowing access for users who require it.

Snowflake provides built-in masking policies to enforce this at the

column level.

• Row-level security: Implement row access policies to ensure users only see data relevant to their roles and responsibilities.

71

Chapter 4 Snowflake adminiStration and rBaC

• Encryption: Ensure all data is encrypted both in transit and at rest.

Snowflake provides built-in AES-256 encryption for data storage and

TLS encryption for data movement.

• Tokenization and anonymization: For highly sensitive data,

consider tokenization or anonymization techniques to replace PII

with pseudonyms, reducing risk exposure.

• Audit logging and monitoring: Enable Snowflake’s Account

Usage views and query history logs to monitor access and usage of

sensitive data. Consider integrating with external security monitoring

solutions.

• Data retention and purging: Implement policies for data retention and deletion to ensure compliance with legal and regulatory

requirements. Use Time Travel and Fail-Safe features carefully to

manage the data lifecycle.

• Secure data sharing: When sharing data externally, use Snowflake’s Secure Data Sharing feature to control access without transferring

raw data. Apply additional restrictions like masking and row access

policies.

• User training and awareness: Regularly educate employees on

data security best practices, ensuring they understand the risks

and compliance requirements associated with handling PII and

confidential data. Dynamic Data Masking in Snowflake is a security

feature that enables organizations to protect sensitive data by

dynamically modifying query results based on user roles and

permissions. It ensures that unauthorized users only see masked or

obfuscated values while authorized users can access full data.

You can use SnowSight to create a masking policy.

CREATE MASKING POLICY ssn_masking_policy AS (val STRING) RETURNS STRING -> CASE WHEN CURRENT_ROLE() IN ('PII_ADMIN', 'DATA_ANALYST') THEN val ELSE

'XXX-XX-XXXX' END;

72

Chapter 4 Snowflake adminiStration and rBaC

Next, apply the masking policy to a column(s).

ALTER TABLE customers MODIFY COLUMN ssn SET MASKING POLICY ssn_

masking_policy;

You can verify the masking policy as follows.

SELECT ssn FROM customers;

If the current role is not PII_ADMIN or DATA_ANALYST, the output shows masked values (XXX-XX-XXXX). Otherwise, the actual SSN values are displayed. You can learn more about Dynamic Data Masking in Snowflake’s official documentation at https://

docs.snowflake.com/en/user-guide/security-column-ddm-intro.

 Administering Databases and Warehouses

Snowflake provides flexibility in managing databases and virtual warehouses through either the web interface or SQL commands. This section focuses on common administrative actions related to databases and warehouses.

 Managing Warehouses

As an administrator, you can use the following commands with warehouses.

• CREATE WAREHOUSE creates a new virtual warehouse.

• DROP WAREHOUSE deletes an existing warehouse.

• ALTER WAREHOUSE modifies the properties of a warehouse, such as

size, suspend settings, or other parameters.

• USE WAREHOUSE sets the active warehouse for the current session.

Let’s create a new warehouse by executing a command using the ACCOUNTADMIN role.

CREATE WAREHOUSE RYD

WITH WAREHOUSE_SIZE = 'XSMALL'

WAREHOUSE_TYPE = 'STANDARD'

AUTO_SUSPEND = 300

AUTO_RESUME = TRUE

COMMENT = 'Rock Your Data Virtual Warehouse';

73

Chapter 4 Snowflake adminiStration and rBaC

The following applies in this example.

• WAREHOUSE_SIZE = 'XSMALL' specifies the smallest possible

warehouse size.

• AUTO SUSPEND automatically suspends the warehouse after 300

seconds of inactivity.

• AUTO RESUME automatically resumes the warehouse when a query

requires it.

You also have an option to resize the warehouse using the ALTER WAREHOUSE

command. Finally, you can use the USE WAREHOUSE command to specify which warehouse to use for the current session.

Note ALTER WAREHOUSE is a unique feature. it exists only in Snowflake. this command suspends or resumes a virtual warehouse or aborts all queries (and other SQl statements) for a warehouse. it can also be used to rename or set/unset the properties for a warehouse. there are more details available at https://

docs.snowflake.com/en/sql-reference/sql/alter-warehouse.

 Managing Databases

In Snowflake, all data is stored in database tables structured as collections of columns and rows. Each database can have one or more schemas, and within schemas, you can create database objects such as tables, views, and more.

Note Snowflake doesn’t have a hard limit on the number of databases, schemas, or database objects.

The following are the main commands used to manage databases.

• CREATE DATABASE creates a new database.

• CREATE DATABASE CLONE creates a zero-copy clone of an existing

database.

74

Chapter 4 Snowflake adminiStration and rBaC

• ALTER DATABASE modifies database properties.

• DROP DATABASE deletes a database.

• UNDROP DATABASE restores a recently dropped database within the

retention window.

• USE DATABASE specifies the active database for the session.

• SHOW DATABASES lists all databases visible to the current role.

These commands could be executed via the web interface of SQL. Let’s create a database.

CREATE DATABASE MARKETING_SANDBOX;

You can grant privileges like CREATE SCHEMA, MODIFY, MONITOR, and USAGE to specific roles for database management.

Overall, the operations look similar to traditional databases. However, there are a couple of unique features that are worth mentioning.

 UNDROP DATABASE

Let’s imagine that you accidentally drop the production database. Restoring it from backup could take at least a day. But not with Snowflake; with UNDROP DATABASE you can instantly restore the most recent version of a dropped database if you are within the defined retention window for that database.

This window is controlled by the DATA_RETENTION_TIME_IN_DAYS parameter, which specifies how long dropped objects (like databases, schemas, and tables) can be recovered. By default, this is set to 1 day, but it can be increased up to 90 days for Enterprise edition accounts or higher.

 Zero-Copy Cloning

Another unique feature is zero-copy cloning, which creates a snapshot of a database. This snapshot is writable and independent. These types of features are like a “dream come true” for data warehouse DBAs.

There are many situations where people need to copy their database to test or experiment with their data to avoid altering their sensitive production database.

However, copying data can be painful and time-consuming because all the data 75

[image: Image 36]

Chapter 4 Snowflake adminiStration and rBaC

needs to be physically moved from the production database to the database copy.

This is extremely expensive because both copies of the data need to be paid for. When a production database gets updates, the database copy becomes stale and requires an update.

Snowflake takes a different approach. It enables you to test and experiment with your data more freely. It allows you to copy databases in seconds. Snowflake doesn’t physically copy data. It continues to reference the original data and stores new records only when you update or change the data; therefore, you pay for each unique record only once. Finally, you can use zero-copy cloning with the Time Travel feature.

Figure 4-6 shows an option for cloning a database using the web interface.

 Figure 4-6. Web interface for cloning a database

As usual, you have the option to execute a command. The following are examples of commands with definitions.

-- Clone a database and all objects within the database at its

current state:

CREATE DATABASE mytestdb_clone

CLONE mytestdb;

-- Clone a schema and all objects within the schema at its current state: CREATE SCHEMA mytestschema_clone

CLONE testschema;

-- Clone a table at its current state:

76

Chapter 4 Snowflake adminiStration and rBaC

CREATE TABLE orders_clone

CLONE orders;

-- Clone a schema as it existed before the date and time in the specified timestamp:

CREATE SCHEMA mytestschema_clone_restore

CLONE testschema BEFORE (TIMESTAMP => DATEADD(DAY, -7, CURRENT_TIMESTAMP));

-- Clone a table as it existed exactly at the date and time of the

specified timestamp:

CREATE TABLE orders_clone_restore

CLONE orders AT (TIMESTAMP => TO_TIMESTAMP_TZ('04/05/2023 01:02:03',

'MM/DD/YYYY HH24:MI:SS'));

 Administering Account Parameters

Parameters in Snowflake control the behavior of the account, individual user sessions, and specific objects. These parameters can be categorized into three types.

• Account parameters: Set at the account level and apply globally.

• Sessions parameters (majority): Set at the session, user, or account level; they usually affect query execution and session behavior.

• Object parameters: Set for specific objects, such as databases and warehouses, or at the account level for broader control.

To override the default parameters, you can use the following commands.

• ALTER ACCOUNT modifies account-level parameters.

• ALTER SESSION adjusts parameters for the current session.

• CREATE <object> or ALTER <object> sets parameters for objects during creation or modification.

To see the available parameters and their options, run the following.

show parameters;

Moreover, you can look at the parameters for a specific database or warehouse.

77

Chapter 4 Snowflake adminiStration and rBaC

The following are some examples of parameters.

• STATEMENT_TIMEOUT_IN_SECONDS specifies the amount of time after

which a running SQL statement is canceled by the system. It prevents

runaway or resource-intensive queries.

ALTER SESSION SET STATEMENT_TIMEOUT_IN_SECONDS = 300; -- 5 minutes

• MAX_CONCURRENCY_LEVEL sets the maximum number of concurrent

SQL statements that can execute in a warehouse cluster. It controls

workload concurrency.

ALTER WAREHOUSE my_warehouse SET MAX_CONCURRENCY_LEVEL = 10;

• TIMEZONE specifies the time zone setting for the session. It controls the time zone for timestamp-related operations.

ALTER SESSION SET TIMEZONE = 'Europe/Lisbon';

 Administering Database Objects

One of the most common administration tasks within Snowflake is to manage database objects such as tables, views, schemas, stages, file formats, and so on.

All database objects are created under the schema. Traditional database objects such as tables, views, materialized views, and sequences have similar options.

• CREATE creates an object.

• ALTER modifies an existing object.

• DROP deletes an object.

• SHOW lists details of objects.

• DESCRIBE views detailed metadata of an object.

Moreover, a Snowflake administrator may leverage Snowflake’s unique capabilities like UNDROP and zero-copy cloning.

Another set of schema-level objects that are used in Snowflake include the following.

78

Chapter 4 Snowflake adminiStration and rBaC

• Stage is used for storing data files, either internally (within Snowflake) or externally (in cloud storage like S3 or Azure Blob

Storage).

CREATE STAGE my_stage URL='s3://my-bucket/data/' CREDENTIALS=(AWS_

KEY_ID='key' AWS_SECRET_KEY='secret');

• File format specifies the structure of files for data loading or unloading.

CREATE FILE FORMAT my_format TYPE = 'CSV' FIELD_OPTIONALLY_

ENCLOSED_BY = '"';

• Pipe automates data loading using Snowpipe, allowing continuous ingestion.

CREATE PIPE my_pipe AS COPY INTO my_table FROM @my_stage FILE_

FORMAT = (FORMAT_NAME = my_format);

• UDF allows the creation of custom functions using SQL or JavaScript.

CREATE FUNCTION my_udf(x INT) RETURNS INT LANGUAGE SQL AS 'x * 2';

As a Snowflake administrator, you may need to manage these objects.

 Administering Data Shares

Secure Data Sharing is a unique Snowflake feature enabling seamless data sharing without copying data. Administrators can become data providers by creating shares using the following commands.

• CREATE SHARE creates a new share.

• ALTER SHARE modifies an existing share.

• DROP SHARE deletes a share.

• DESCRIBE SHARE views share details.

• SHOW SHARES lists available shares.

79

Chapter 4 Snowflake adminiStration and rBaC

Note as a share creator, you are responsible for data security. Before you create a share, you should spend some time learning more about data and use cases to prevent the sharing of sensitive data. Secure views and Udfs are handy to use when creating shares.

After share creation, an admin can view, grant, or revoke access to database objects using the following commands.

• GRANT <privilege> TO SHARE gives access to an object for a share.

• REVOKE <privilege> TO SHARE removes access from an object for

a share.

• SHOW GRANTS TO SHARE displays all object privileges granted to

a share.

• SHOW GRANTS OF SHARE lists all accounts using the share or

consuming shared data.

In some cases, if you don’t need to share anymore and want to drop it, you should consider the downstream impact for all consumers. As an option, you may revoke grants on some objects and see the result.

 Administering Clustered Tables

Snowflake, as a data warehouse as a service, simplifies operations by automatically handling aspects like data distribution, sorting, and table statistics.

One aspect of Snowflake’s performance is micro-partitioning. When loading data into Snowflake, it is automatically divided into micro-partitions with 50 MB to 500 MB

of compressed data. These micro-partitions are organized in a columnar fashion.

In addition, Snowflake collects and stores metadata in micro-partitions. This helps to optimize query plans and improve query performance by avoiding unnecessary scanning of micro-partitions through an operation known as partition pruning.

Snowflake also stores data in tables and tries to sort it along natural dimensions such as date and/or geographic regions. This is called data clustering, and it is a key factor for query performance. It is important, especially for large tables. By default, Snowflake uses automatic clustering. However, in some cases, you may define the clustering key within 80

Chapter 4 Snowflake adminiStration and rBaC

the CREATE TABLE statement to change the default behavior. This should be an exception rather than a rule. In most cases, admins do not need to cluster. The best practice is to avoid clustering unless there is a specific query pattern that does not meet the SLA. In general, you should not need to cluster unless the table is at least 1 TB.

As a Snowflake administrator, you may need to review table clustering and run reclustering processes to identify all the problem tables and provide the best possible performance.

There are two system functions that allow you to monitor clustering information for tables.

• SYSTEM$CLUSTERING_DEPTH calculates the average depth of clustering

for a table.

• SYSTEM$CLUSTERING_INFORMATION provides detailed clustering

metrics, including depth, for a specific table.

If you need to improve the clustering of data, you should create a new table with a new clustering key and insert data into the new table, or you can use materialized views to create a version of the table with the new cluster key. Then, the materialized view function automatically keeps data in sync with the new data added to the base table.

Note a table with clustering keys defined is considered to be clustered.

Clustering keys aren’t important for all tables. whether to use clustering depends on the size of a table and the query performance, and it is most suitable for multi-terabyte tables.

 Snowflake Materialized Views

According to Snowflake, a materialized view is a precomputed dataset derived from a query specification (SELECT in the view definition) and stored for later use. Because the data is precomputed, querying a materialized view is faster than executing the original query. This performance difference can be significant when a query is run frequently or is sufficiently complex.

81

[image: Image 37]

[image: Image 38]

[image: Image 39]

[image: Image 40]

[image: Image 41]

[image: Image 42]

[image: Image 43]

[image: Image 44]

[image: Image 45]

[image: Image 46]

[image: Image 47]

Chapter 4 Snowflake adminiStration and rBaC

Note materialized views are designed to improve query performance for workloads composed of common, repeated query patterns. however, materializing intermediate results incur additional costs. as such, before creating any materialized views, you should consider whether the costs are offset by the savings from reusing these results frequently.

There are a couple of use cases when you can benefit from using materialized views.

• The query results contain a small number of rows and/or columns

relative to the base table (the table on which the view is defined).

• The query results require significant processing, including the

following.

–

Analysis of semi-structured data (e.g., JSON, Avro)

–

Aggregates that take a long time to calculate

The main benefit of Snowflake materialized views is that they solve the issues of traditional ones. They are views that are automatically maintained by Snowflake. There is a background service that updates them after changes are made to the base table. This is more efficient and less error-prone than manually maintaining the equivalent of a materialized view at the application level.

Table 4-1 shows the key similarities and differences between tables, regular views, cached query results, and materialized views.

 Table 4-1. Key Similarities and Differences

Performance Security Simplifies Supports

Uses

Uses Credits for

Benefits

Benefits Query Logic Clustering

Storage Maintenance

regular table

regular view

Cached

query result

materialized

view

82

Chapter 4 Snowflake adminiStration and rBaC

 Summary

This chapter covered the main Snowflake administrative duties (e.g., user and role administration), RBAC, and Permifrost, and you learned about key Snowflake objects (e.g., warehouses and schema-level objects). The chapter also reviewed billing and usage information and discussed data shares, data clustering concepts, and materialized views.

The next chapter discusses one of the key elements of cloud analytics: security.

83

CHAPTER 5

Secure Data Sharing

In today’s interconnected world, secure and efficient data sharing is paramount for modern businesses. The ability to seamlessly exchange data within and outside an organization unlocks a wealth of opportunities for collaboration, innovation, and informed decision-making. Yet, traditional data sharing methods often present significant challenges, including cumbersome data transfers, security risks, and the burden of maintaining data consistency across multiple systems.

This chapter delves into the realm of secure data sharing, exploring the innovative features offered by Snowflake that revolutionize the data sharing landscape by enabling seamless and secure data exchange between different accounts within a region. We embark on a comprehensive journey to unravel the intricacies of Snowflake’s data sharing capabilities, empowering you with the knowledge and tools to leverage this transformative technology.

The chapter covers a range of essential topics.

• The benefits of Snowflake data sharing: We begin by examining the compelling advantages of using Snowflake for data sharing,

highlighting its speed, security, and flexibility.

• Understanding share objects: The concept of “share objects” lies at the heart of Snowflake’s data sharing architecture. We explore the

role of share objects in defining permissions and granting access to

specific database objects.

• Implementing secure table sharing: We provide a step-by-step

guide to sharing tables securely using Snowflake, including creating

share objects, granting privileges, and accessing shared data.

• Leveraging secure views for granular control: Secure views

empower data providers with fine-grained control over shared data.

We delve into the process of creating secure views and using them to

implement row-level access control.

85

© Dmitry Anoshin, Dmitry Foshin and Donna Strok 2025

D. Anoshin et al., Jumpstart Snowflake, https://doi.org/10.1007/979-8-8688-1533-1_5

Chapter 5 SeCure Data Sharing

By the end of this chapter, you should have a solid grasp of Snowflake’s secure data sharing features and be equipped to harness their power to foster seamless collaboration and unlock the full potential of your data assets.

 Benefits of Snowflake Data Sharing

Snowflake’s data sharing capabilities offer a compelling alternative to traditional data sharing methods, providing several key benefits for businesses.

• No data movement, no data copying: First and foremost, Snowflake eliminates the need for data movement or copying. With traditional methods, sharing data often involves extract-transform-load (ETL)

processes, leading to data duplication and potential inconsistencies.

Snowflake’s approach avoids these complexities by enabling

data consumers to access shared data directly in the provider’s

environment without physically transferring the data.

• Instant access to data: This approach not only streamlines the data sharing process but also ensures that consumers always access the

most up-to-date information as updates made by the provider are

instantly reflected.

• Security: Snowflake prioritizes security. While methods like FTP

or email exchange can pose security risks, Snowflake’s secure

data sharing model allows providers to grant limited access to

specific objects such as tables, secure views, or user-defined

functions (UDFs).

• Access control: Secure views play a crucial role in providing row-level access control, ensuring that consumers only see the data they

are authorized to access. This granular control over data visibility

enhances security and protects sensitive information.

86

Chapter 5 SeCure Data Sharing

 Understanding Share Objects

Having established the numerous advantages Snowflake data sharing offers, let’s delve into the mechanism that makes this seamless and secure exchange possible. At the heart of Snowflake’s data sharing architecture lies share objects. These objects play a pivotal role in defining how data is shared and accessed between different Snowflake accounts within a region.

It is important to understand that in the process of sharing, there is no real copying of data. Therefore, the data consumer pays only for the computing service but does not pay for the storage of this data since, physically, the data remains stored with the data provider. Since the information is not actually transferred, consumers get an instant update when the provider changes the data. A single data provider may have multiple data consumers, both within the company and with external consumers. Similarly, data consumers may have access to multiple providers, thereby forming a network of providers and consumers.

The data sharing feature provides the ability to share database objects between Snowflake’s accounts within a region by using a specific share object. Such objects can be tables, secure views, and secure UDFs. The data provider first creates a share object, which is a named Snowflake object that encapsulates information to share between the provider and consumer, such as the following.

• Permissions that allow access to the provider’s database and selected objects.

• Consumer database and objects that are shared.

The data sharing feature in Snowflake works only between Snowflake accounts.

If you want to grant access to the outside world, you need to use a reader account. A provider account can create reader accounts for those consumers who are not customers of Snowflake (see Figure 5-1).

87

[image: Image 48]

Chapter 5 SeCure Data Sharing

 Figure 5-1. Snowflake data sharing

Table 5-1 highlights the steps of the data sharing process in Figure 5-1.

88

Chapter 5 SeCure Data Sharing

 Table 5-1. Data Sharing Process

Step Description

1

the provider account creates a share object called Share_1 on the database Provider_

DB_1 and grants access to selected objects in table_1_1 .

2

the consumer account creates the read-only database from the Share_1 object. then, all shared objects are available to consumers. in Figure, the accounts are called Customer account #1 and Customer account #2.

3

if consumers do not have an account in Snowflake, the provider can create a reader account for them. in Figure 5-x, this is implemented for the Share_2 object .

4

Shared objects can be a table (like table_1_1), but the best practice is to use a secure view. a view can include multiple private tables from various databases.

5

in a secure view, as an option, you can use control data access by rows. For this, you must create a table in which there is a mapping of a group of records on users.

6

the consumer account grants permissions according to role-based access control.

For more information on reader accounts, see https://docs.snowflake.net/

manuals/user-guide/data-sharing-reader-create.html.

 Implementing Secure Table Sharing

If you have a table, then to organize access to the table, you need to perform the following steps.

1. Create a share object.

2. Add a table name to the share and grant privileges.

3. Add a consumer account to the share object.

4. Log in to a consumer account.

5. Add the available share to the account, and then you’re able to

query the share table.

89

Chapter 5 SeCure Data Sharing

CREATE AND SHARE A TABLE

Let’s look at how to share a table in practice by executing the code given in each step.

1. Log in to your Snowflake provider account.

2. Open a blank worksheet and run the following code.

-- Create a new database called samples and a schema

called finance

use role sysadmin;

create database samples;

create schema samples.finance;

-- Create a table named stocks_data in the samples.

finance schema

create or replace table samples.finance.stocks_data (

id int,

symbol string,

date date,

time time(9),

bid_price float,

ask_price float,

bid_cnt int,

ask_cnt int

);

-- Insert values into your stocks_data table.

insert into samples.finance.stocks_data

values(1,'TDC',dateadd(day, -1,current_date()), '10:15:00',

36.3, 36.0, 10, 10),

(2,'TDC', dateadd(month,-2,current_date()), '11:14:00', 36.5,

36.2, 10, 10),

(3,'ORCL', dateadd(day, -1,current_date()), '11:15:00',57.8,

59.9, 13, 13),

(4,'ORCL', dateadd(month,-2,current_date()), '09:11:00',57.3,

57.9, 12, 12),

90

[image: Image 49]

Chapter 5 SeCure Data Sharing

(5,'TSLA', dateadd(day, -1,current_date()), '11:01:00', 255.2,

256.4, 22, 22),

(6,'TSLA', dateadd(month, -2,current_date()), '11:13:00', 255.2,

255.7, 23, 23);

select * from samples.finance.stocks_data;

 Figure 5-2. The output of the samples.finance.stocks table after running the code in step 2

3. run the following code. it creates a share object and grant permissions to a new account.

Create and show share. Figure 5-3 shows how this displays

use role accountadmin;

create or replace share stocks_share;

show shares;

#Provide permissions on database samples and add to the

stocks_share share grant usage on database samples to share

stocks_share;

#Provide permissions to finance schema and add to the stocks_

share share grant usage on schema samples.finance to share

stocks_share;

#Provide permissions on stocks_data table and add to the stocks_

share share.

grant select on table samples.finance.stocks_data to share

stocks_share;

91

[image: Image 50]

[image: Image 51]

[image: Image 52]

Chapter 5 SeCure Data Sharing

Display the objects granted to stocks_share. Figure 5-4 shows how

this should look show grants to share stocks_share;

Add consumer access to the stocks_share for the <consumer_account> alter share stocks_share add accounts=<consumer_account>;

 Figure 5-3. Metadata of share object

 Figure 5-4. Grants on a share object

4. Show the available share in the consumer account by running this code use role accountadmin;

show shares;

desc share <consumer_account>.STOCKS_SHARE;

 Figure 5-5. The available shares in consumer account

5. Log in to the <consumer_account> used in the previous steps for grants and create a database based on the share by running this code. Once you’ve executed the code, you can see shared_db from the Snowsight ui, as shown in Figure 5-6.

create database shared_db from share <provider_account>.

STOCKS_SHARE;

92

[image: Image 53]

[image: Image 54]

Chapter 5 SeCure Data Sharing

 Figure 5-6. Available shared objects in the consumer account 6. Query the shared table from the database you created previously. Figure 5-7

shows the results.

select * from SHARED_DB.Finance.STOCKS_DATA;

 Figure 5-7. The results after querying the shared table

 Data Sharing Using a Secure View

Often, there is a situation where you have a base table, and you need to organize access to only part of the records of this table. The best practice is to use secure views. If you have a table, you need to perform these steps to organize access to the table within a secure view.

6. If needed, add a new column to a table to be able to filter data into meaningful groups.

7. Create a mapping table to track the name of the groups and the

name of the consumer Snowflake account.

93

Chapter 5 SeCure Data Sharing

8. Create a secure view of the table.

9. Create a share object.

10. Add the secure view to the share object and grant appropriate

privileges.

11. Add the consumer Snowflake account to the share object.

Note Step 1 may not be needed if your table already has a column where filtering the data can be accomplished. For example, if your table has a region column and you want to only share specific region data in your share object, you can use that column.

SHARING A TABLE USING A SECURE VIEW

Let’s look at how to provide access row-level sharing using a secure view.

1. Log in to your Snowflake account.

2. Switch to a worksheet and execute the following code to add a grouping column to the stocks_data table.

/* Add a grouping column to the stocks_data table. */

use role sysadmin;

alter table samples.finance.stocks_data

add column access_id string;

/* Updating the grouping column with appropriate grouping data

based on how you want to share the data. In this example we

divided the stock data into two groups, GRP_1 (for sharing with

IT companies) and GRP_2 (for sharing with auto companies). */

update finance.stocks_data

set access_id = 'GRP_1'

where id in (1,2,3,4);

update finance.stocks_data

set access_id = 'GRP_2'

94

[image: Image 55]

Chapter 5 SeCure Data Sharing

where id in (5,6);

/* Don′t forget to commit the changes */

commit;

/* See your changes */

select * from samples.finance.stocks_data;

 Figure 5-8. The output of how the changes look after running the code in step 2

3. use the following code to create a mapping table for tracking which Snowflake account has access to which access_id.

Create a mapping table to track access_id to Snowflake

consumer account

use role sysadmin;

create or replace table samples.finance.access_map (

access_id string,

account string

);

add access to tech companies for my account

insert into samples.finance.access_map values('GRP_1', current_

account());

add access to auto companies for my account

insert into samples.finance.access_map values('GRP_2',

'<consumer_account>');

commit;

select * from samples.finance.access_map;

95

[image: Image 56]

Chapter 5 SeCure Data Sharing

4. Create a secure view and apply the appropriate permissions. We used the current_account() function to dynamically identify the user account.

Create a new public schema.

create or replace schema samples.public;

Create a secure view called samples.public.stocks which based

on the table and the mapping table.

create or replace secure view samples.public.stocks as

select sd.symbol, sd.date, sd.time, sd.bid_price, sd.ask_

price, sd.bid_cnt, sd.ask_cnt

from samples.finance.stocks_data sd

join samples.finance.access_map am on sd.access_id =

am.access_id

and am.account = current_account();

Grant the appropriate rights to the view

grant select on samples.public.stocks to public;

5. test access to the table and the secure view.

select count(*) from samples.finance.stocks_data;

select * from samples.finance.stocks_data;

select count(*) from samples.public.stocks;

select * from samples.public.stocks;

select * from samples.public.stocks

where symbol = 'TDC';

6. test the access to the table and secure it by using the session parameter simulated data sharing consumer.

 Figure 5-9. The data of the secure view available to the consumer (in session simulated mode)

96

[image: Image 57]

Chapter 5 SeCure Data Sharing

alter session set simulated_data_sharing_

consumer=<consumer_name>;

select * from samples.public.stocks;

7. Create a share object. add the secure view and grant privileges.

Return back to the Producer account session

alter session set simulated_data_sharing_consumer='<provider_

account>';

use role accountadmin;

Create new share object called share_sv

create or replace share share_sv;

Grant privileges to share object, schema, and view

grant usage on database samples to share share_sv;

grant usage on schema samples.public to share share_sv;

grant select on samples.public.stocks to share share_sv;

show grants to share share_sv;

grant privileges to share with the consumer accounts

alter share share_sv set accounts = <consumer_accounts>;

show shares;

 Figure 5-10. The view available for the consumer

8. On the consumer account, create a database from the share object share_sv and grant appropriate privileges.

Create a database from the share object called share_sv.

use role accountadmin;

show shares;

create database shared_views_db from share <provider_account>.

share_sv;

97

[image: Image 58]

Chapter 5 SeCure Data Sharing

Grant import privileges to the share object to sysadmin

grant imported privileges on database shared_views_db to

sysadmin;

use role sysadmin;

check to ensure access has been granted.

show views;

use warehouse <warehouse_name>;

select * from stocks;

 Figure 5-11. The data of the secure view available to the consumer Sharing Regular View vs. Materialized View

In Snowflake, views provide a way to simplify and customize data access. A regular view is essentially a stored query. It doesn’t store the result set and instead acts as a virtual table that executes the underlying query against the base tables every time it’s queried.

This ensures that regular views always reflect the most current data. In contrast, a materialized view stores the result set of the query as a physical table. This precomputed data is automatically maintained and updated by Snowflake when changes occur in the underlying base tables.

Materialized views offer significantly faster query performance, especially for complex or frequently accessed data, but introduce a slight delay in data freshness as they are not updated instantaneously. Therefore, the choice between regular and materialized views depends on the specific needs of the application, balancing the need for up-to-the-minute data with the importance of query performance.

98

Chapter 5 SeCure Data Sharing

Note Both regular views and materialized views can be defined as “secure.”

Secure views provide an extra layer of security by preventing consumers from seeing the underlying query definition or accessing the base tables directly, even with direct queries. this is crucial for protecting sensitive data or intellectual property.

In summary, the choice between sharing regular views and materialized views depends on your specific needs and priorities regarding performance, data freshness, and cost considerations. Understanding these differences allows you to make informed decisions about how to best leverage Snowflake’s data sharing capabilities. Table 5-2 can help you determine which view type is best for your situation.

 Table 5-2. Regular Views vs. Materialized Views

Feature

Regular View

Materialized View

Shared Object

Query definition

pre-computed data

Data Source

provider’s base tables (queried in

Stored results set on the provider’s side

real-time)

performance

Can be slower

generally faster

Data Freshness always up-to-date

May have a short delay in updates

Cost impact

primarily consumer compute costs

provider storage and maintenance costs

 Summary

This chapter covered the Snowflake data sharing feature that provides an easy, fast, and secure way to distribute data. You learned about share objects and considered several basic options for using these features. And we walked through two examples: a simple way to share a table and an advanced way to share one by using a secure view.

99

CHAPTER 6

Getting Started

with Snowpark

Snowpark is a powerful developer framework provided by Snowflake, designed to simplify the process of building and deploying data-driven applications directly within Snowflake’s environment.

Snowpark leverages Snowflake’s inherent strengths, including automatic scaling, secure data sharing, zero-copy cloning, and Time Travel, to provide a unified and efficient environment for data engineering, data science, and application development.

Whether you’re transforming data, building complex pipelines, executing machine learning workflows, or embedding business logic, Snowpark equips you with the necessary tools and performance capabilities to excel.

It extends Snowflake’s capabilities by allowing developers to write code in their preferred programming languages, such as Python, Java, and Scala, while leveraging Snowflake’s scalability and performance.

 Key Features of Snowpark

• Language support: Snowpark provides native support for several popular programming languages.

• Python is a versatile and widely adopted language, particularly

strong in data science and machine learning.

101

© Dmitry Anoshin, Dmitry Foshin and Donna Strok 2025

D. Anoshin et al., Jumpstart Snowflake, https://doi.org/10.1007/979-8-8688-1533-1_6

Chapter 6 GettinG Started with Snowpark

• Java is a robust and enterprise-grade language well-suited for

building scalable applications.

• Scala is a functional and object-oriented language often used in

big data processing frameworks like Spark.

This multilanguage support empowers developers to choose the

language that best fits their expertise and project requirements,

providing flexibility and fostering collaboration across teams with

diverse skill sets. This chapter works with Snowpark in Python,

because it is the most commonly used language.

• Pushdown optimization: A key advantage of Snowpark is its ability to push computations directly to the Snowflake engine. Instead

of transferring data to a client machine for processing, Snowpark

translates the code written in Python, Java, or Scala into SQL-like

operations. It executes them within Snowflake’s compute resources.

This minimizes data movement, reduces latency, and maximizes

performance by leveraging Snowflake’s highly optimized query

engine and scalable infrastructure.

• Server-side DataFrame API: Snowpark introduces a DataFrame API that allows developers to work with data in a familiar, object-oriented manner. This API offers a rich set of operations for manipulating

data, including filtering, aggregation, joining, and transformation.

The DataFrame API simplifies the development of complex data

workflows by providing a consistent and intuitive interface, making it

easier to read, write, and maintain code.

• User-defined functions and stored procedures: Snowpark

enhances extensibility through UDFs and stored procedures.

Developers can define custom business logic using UDFs to execute

scalar operations on individual data rows, while stored procedures

allow encapsulating and executing complex workflows within

Snowflake.

• Seamless integration with Snowflake features: Snowpark fully

integrates with Snowflake’s security, data governance, and data

sharing features, providing a consistent and secure environment.

102

[image: Image 59]

Chapter 6 GettinG Started with Snowpark

This seamless integration streamlines data access control, ensures

compliance, and simplifies data sharing with internal and external

stakeholders.

 Setting up Snowpark

To get started with Snowpark in Python, you need to open an integrated development environment (IDE) on your local machine and create a new virtual Python environment (or use an existing one). You need a Python version of 3.8 or later.

Install Snowpark using the following command.

pip install snowflake-snowpark-python

Run the following to check if Snowpark is installed correctly.

pip show snowflake-snowpark-python

You see something similar to the screenshot shown in Figure 6-1.

 Figure 6-1. Verify Snowpark installation

In Snowflake, create a new database and schema (or use an existing one) using the worksheet.

create database snowpark_ch7;

create schema output;

Next, let’s go over authenticating and connecting to Snowflake.

103

Chapter 6 GettinG Started with Snowpark

In your IDE, create a new Python file: ch7_snowpark.py. Then, paste the following code to authenticate and connect to Snowflake.

from snowflake.snowpark import Session

def initiateSession():

connection_parameters = {

"account": <account_name>,

"user": <username>,

"password": <password>,

"role": "Accountadmin",

"warehouse": "compute_wh",

"database": "snowpark_ch7",

"schema": "output"

}

session = Session.builder.configs(connection_parameters).create()

return session

session = initiateSession()

print(session.sql("SELECT current_version()").collect())

Verify connection

In this Python function, you can get account_name from Admin ➤ Accounts

➤ Manage URLs. It is the first part of the URL in the Current URL field, before

.snowflakecomputing.com. It’s highlighted in Figure 6-2.

104

[image: Image 60]

Chapter 6 GettinG Started with Snowpark

 Figure 6-2. Get account_name from URL

You may use the username and password you usually use to log in to your Snowflake account.

Make sure to use the correct database name and schema name. Use this schema to save the transformed data to a table later.

Now, you can save your Python file and run it using your IDE (see Figure 6-3).

105

[image: Image 61]

Chapter 6 GettinG Started with Snowpark

 Figure 6-3. Initiate Snowpark session and verify connection

The current_version() function in this code returns the current version of Snowflake. In the example shown in Figure 6-2, '9.2.7' refers to the Snowflake database version.

 Snowpark DataFrame Operations

Snowpark DataFrame operations provide powerful ways to manipulate and analyze data.

The following command creates a DataFrame based on customer table data. The show command displays the output of the DataFrame (see Figure 6-4).

df = session.table("SNOWFLAKE_SAMPLE_DATA.TPCH_SF1.CUSTOMER") df.show()

106

[image: Image 62]

Chapter 6 GettinG Started with Snowpark

 Figure 6-4. Displaying a sample DataFrame

Now let’s make some transformations to the DataFrame and display the outputs to see the results.

Snowpark DataFrames allow developers to perform SQL-like operations

programmatically. The following are some common operations.

• Filtering allows you to select rows based on specific criteria; for example, filtering data for account balances greater than 5000 and less than 10000.

filtered_df = df.filter((df["C_ACCTBAL"] > 5000) &

(df["C_ACCTBAL"] < 10000))

• Aggregation enables you to perform calculations on groups of rows; for example, aggregating by nation key and computing the average account balance.

aggregated_df = df.group_by("C_NATIONKEY").agg

({"C_ACCTBAL": "avg"})

• Ordering allows you to sort rows based on one or more columns; for example, ordering data by account balance in descending order

ordered_df = df.sort("C_ACCTBAL", ascending=False)

• Joining tables combines data from multiple tables based on a related column; for example, joining customer and orders tables on customer key.

orders_df = session.table("SNOWFLAKE_SAMPLE_DATA.TPCH_SF1.ORDERS") joined_df = df.join(orders_df, df["C_CUSTKEY"] == orders_df

["O_CUSTKEY"])

107

[image: Image 63]

Chapter 6 GettinG Started with Snowpark

• Window functions allow you to perform calculations across a set of rows related to the current row.

The following example illustrates calculating the running total (see Figure 6-5).

from snowflake.snowpark.window import Window

from snowflake.snowpark.functions import sum, col

window = Window.order_by(col("O_ORDERDATE"))

orders_df = session.table("SNOWFLAKE_SAMPLE_DATA.TPCH_SF1.ORDERS") running_total_df = orders_df.with_column("running_total", sum(col("O_

TOTALPRICE")).over(window))

running_total_df.show()

 Figure 6-5. Displaying a DataFrame with calculated Running total column 108

Chapter 6 GettinG Started with Snowpark

You can write a DataFrame to a Snowflake database table using the following Snowpark command.

running_total_df.write.mode("overwrite").save_as_table("orders_

running_total")

 User-Defined Functions

Snowpark allows you to write custom user-defined functions (UDFs) in Python, Java, or Scala.

To create a Python UDF, register it in Snowflake and use it in a SQL query.

Define a Python function to calculate discount

def calculate_discount(price, discount):

return price * (1 - discount / 100)

Register the UDF with Snowflake

from snowflake.snowpark.types import FloatType

session.udf.register(

func=calculate_discount,

name="calculate_discount_udf",

input_types=[FloatType(), FloatType()],

return_type=FloatType()

)

Use the UDF in a SQL query

result_df = session.sql(

"""

SELECT O_CUSTKEY,

calculate_discount_udf(O_TOTALPRICE, 10) AS discounted_price

FROM SNOWFLAKE_SAMPLE_DATA.TPCH_SF1.ORDERS

"""

)

result_df.show()

109

[image: Image 64]

Chapter 6 GettinG Started with Snowpark

Figure 6-6 is a screenshot example.

 Figure 6-6. Displaying a DataFrame with a column calculated by created UDF

 Stored Procedures

Snowpark stored procedures enable you to encapsulate complex logic into reusable units that can be executed as a single unit.

The following is an example of copying data from one table to another.

from snowflake.snowpark.types import StringType

def copy_data(session: Session, source_table: str, target_table:

str) -> str:

source_df = session.table(source_table)

source_df.write.save_as_table(target_table, mode="overwrite") 110

[image: Image 65]

Chapter 6 GettinG Started with Snowpark

return f"Data successfully copied from {source_table} to

{target_table}"

session.sproc.register(

func=copy_data,

name="copy_data_sproc",

input_types=[StringType(), StringType()],

return_type=StringType(),

packages=["snowflake-snowpark-python"]

)

#Calling the stored procedure

result = session.call("copy_data_sproc", "MY_DATABASE.MY_SCHEMA.SOURCE_

TABLE", "MY_DATABASE.MY_SCHEMA.TARGET_TABLE")

print(result)

Figure 6-7 is a screenshot example.

 Figure 6-7. Executing stored procedure to copy data from one table to another Now, you can verify that the stored procedure is executed successfully by checking a new copied table in the output schema.

111

Chapter 6 GettinG Started with Snowpark

 Machine Learning Integration with Snowpark

Snowpark empowers you to integrate machine learning models directly into your Snowflake environment. You can leverage libraries such as scikit-learn to train and deploy machine learning models directly within Snowflake. Let’s train and deploy a simple model.

For this use case, you need to install the scikit-learn and pandas libraries. Use the following commands in your terminal.

pip install scikit-learn

pip install pandas

The following script demonstrates how to train a simple machine learning model using scikit-learn, store it in Snowflake, and deploy it as a UDF for real-time predictions using Snowpark.

from snowflake.snowpark.types import FloatType, StringType

from sklearn.linear_model import LinearRegression

import pandas as pd

import pickle

import base64

Step 1: Train a simple model

X = pd.DataFrame([1, 2, 3, 4, 5])

y = pd.DataFrame([2, 4, 5, 4, 5])

model = LinearRegression()

model.fit(X, y)

Create a simple linear regression model. The model is trained on five data points, where X represents input values, and y represents the target.

Step 2: Serialize the model (Base64 encoding)

model_bytes = pickle.dumps(model)

model_base64 = base64.b64encode(model_bytes).decode("utf-8")

Convert to Base64 string

Use pickle to serialize the trained model into a binary format. The binary data is then encoded into Base64 to ensure it can be stored as text in Snowflake.

112

[image: Image 66]

Chapter 6 GettinG Started with Snowpark

Step 3: Create a table to store the model (if not exists)

session.sql("CREATE TABLE IF NOT EXISTS model_storage (model VARIANT)").

collect()

Create a Snowflake table named model_storage with a VARIANT column to store the model. The VARIANT type is used because it supports JSON-like structures, allowing you to store Base64-encoded text.

Step 4: Store the model in Snowflake

session.sql(f"INSERT INTO model_storage SELECT PARSE_JSON('\"{model_

base64}\"')").collect()

print("c Model successfully stored in Snowflake!")

Insert the Base64-encoded model into the Snowflake table. The PARSE_JSON function ensures the value is stored as a valid JSON string.

You can verify that the model is saved in the model_storage table in Snowflake, as shown in Figure 6-8.

 Figure 6-8. Displaying the model_storage table created by Snowpark

Step 5: Define a UDF for model prediction

def predict(model_base64, input_value):

model_bytes = base64.b64decode(model_base64)

model = pickle.loads(model_bytes)

return model.predict([[input_value]])[0][0]

113

[image: Image 67]

Chapter 6 GettinG Started with Snowpark

session.udf.register(

func=predict,

name="predict_linear",

return_type=FloatType(),

input_types=[StringType(), FloatType()],

packages=["scikit-learn", "pandas", "numpy"], replace=True

)

print("✅ UDF 'predict_linear' registered successfully!")

Define a UDF that decodes the Base64 model, deserializes it into a usable Python object, and runs predictions on new input data.

The UDF is registered in Snowflake, allowing users to call predict_linear() directly in SQL queries.

Step 6: Retrieve and deserialize the model from Snowflake

stored_model_base64 = session.sql("SELECT model::STRING FROM model_

storage").collect()[0][0]

stored_model_bytes = base64.b64decode(stored_model_base64)

loaded_model = pickle.loads(stored_model_bytes)

Fetch the Base64-encoded model from Snowflake. The model is decoded and deserialized back into a usable Python object.

Step 7: Test the retrieved model

test_input = 6

predicted_output = loaded_model.predict([[test_input]])[0][0]

print(f"✅ Prediction for input {test_input}: {predicted_output}") Provide a new input value (6) and use the retrieved model to make a prediction. The predicted output is displayed.

The output with prediction is shown in Figure 6-9.

 Figure 6-9. Displaying the linear model prediction for imputed test value 114

Chapter 6 GettinG Started with Snowpark

This approach allows you to deploy ML models directly in Snowflake, making them available for real-time analytics and SQL-based predictions.

 Summary

Snowpark provides numerous benefits to organizations using Snowflake.

• Unified environment: Snowpark eliminates the need for ETL tools and enables direct computation within Snowflake.

• Scalability: Processes are executed on Snowflake’s cloud

infrastructure, ensuring scalability and reliability.

• Ease of use: Familiar programming paradigms and language support make it accessible to developers.

• Cost efficiency: Reduces data movement and enables cost-effective compute usage.

Snowpark offers a transformative approach to building data-driven applications within Snowflake. By extending Snowflake’s capabilities with support for popular programming languages, Snowpark empowers developers to leverage their existing skills and preferred programming paradigms. Whether you are performing data transformations, implementing machine learning workflows, or building end-to-end data pipelines, Snowpark provides the tools and performance capabilities needed to succeed.

115

CHAPTER 7

Snowflake with Apache

Iceberg

Apache Iceberg is a popular open source table format. It has a large community and support from top vendors. The adoption of the Iceberg format is increasing every year.

Snowflake also introduced integration with the Apache Iceberg format, which allows managed Iceberg catalog or integration with an external Iceberg catalog. In this chapter, you learn more about integration with Apache Iceberg and Snowflake.

Apache Iceberg allows you to build a lake house solution. You need to bring our computing and storage, and this would be enough to create a stand-alone analytics solution.

When thinking about the collaboration between Snowflake and Iceberg, we should rely on existing use cases that are supported by Snowflake as well as overall areas for using Iceberg with Snowflake.

In a typical implementation, Snowflake is used as a data warehouse with storage and computing capabilities like any other traditional data warehouse.

There are some cases when the use of Apache Iceberg might help as a

complementary tool.

• The size of a Snowflake implementation could be massive. It would

be expensive to process the data using Snowflake, and using external

computing could drop the cost of Snowflake.

• Some workloads require querying massive raw data. This data could

be stored in separate storage and registered in the Iceberg catalog.

117

© Dmitry Anoshin, Dmitry Foshin and Donna Strok 2025

D. Anoshin et al., Jumpstart Snowflake, https://doi.org/10.1007/979-8-8688-1533-1_7

[image: Image 68]

Chapter 7 Snowflake with apaChe iCeberg

• Big organizations might have multiple data solutions, including

Snowflake, Databricks, and other SQL engines. Iceberg might serve as

a standard format that connects data and allows the creation of your

own computing.

In other words, we mostly talk about the Iceberg in the context of convenience and cost optimization. We don’t compare speed and performance against Snowflake.

 Data Platform Architecture

Before exploring Iceberg and Snowflake integration, let’s examine the typical data platform architecture. Figure 7-1 highlights the key components of a data platform.

 Figure 7-1. Data platform components

Table 7-1 describes each element of the architecture.

118

Chapter 7 Snowflake with apaChe iCeberg

 Table 7-1. Key Elements of a Data Platform

Element

Description

file format

a file format of data such as CSV, JSon, parquet, and so on

table format

an abstraction layer over file formats, such as hive, iceberg, or Delta Catalog

Stores metadata about data such as location, statistics, and so on

Compute engine

Compute power that executes queries, reads, processes, and writes data

Storage engine

helps manage underlying data

Storage

a place for storing the data, such as cloud storage like awS S3, gCp Storage, azure Storage, hDfS, naS, or DaS

There are many data platform vendors on the market, and they offer different variations of components, starting from tightly coupled and closed systems to opened systems.

You might guess where Snowflake fit. It depends on the configuration. By default, it feels tightly coupled and close, even knowing that it decoupled storage and compute.

The more components used, such as external tables, the more open it becomes.

Table format is crucial in the Lakehouse approach. The table format answers the question about what data is in the table. Assume we have an AWS S3 bucket with a folder.

The folder contains lots of data files in JSON. JSON is a file format, and it would be hard to query this data. Table format provides the option to leverage metadata, including the schema of the table, and we can write queries against this data using SQL.

 Getting Started with Apache Iceberg

Apache Iceberg is an open source table format for high-performance analytics. It adds a table for compute engines like Spark, Trino, and Athena. The Iceberg table works and feels like an SQL table.

It has many benefits for data engineers and analytics workloads.

• schema evolution

• hidden partitions

119

Chapter 7 Snowflake with apaChe iCeberg

• partition evolution

• time travel

Snowflake has similar features, but they are hidden under the hood.

Apache Iceberg contains multiple key layers.

• The catalog has a reference to the current metadata file.

• Metadata contains three file types.

• Metadata files contain information about tables such as schema,

partitions, snapshots, location, and so on.

• Manifest files have metadata about files by collecting and storing

information about data, such as statistics or row count.

• Manifest lists contain manifest files per snapshot.

• Data is the actual storage layer where data is stored.

Later in the chapter, we create an Iceberg table and explore files.

 The Role of a Catalog

The primary goal of a catalog is to answer the question of where to find data. The table format tells you what is stored in the data.

Note according to apache iceberg documentation, “Catalogs manage a collection of tables that are usually grouped into namespaces. the most important responsibility of a catalog is tracking a table’s current metadata, which is provided by the catalog when you load a table.”

There are several options for Iceberg catalog implementations.

• REST API

• The Hive Metastore is tracked metadata.

• JDBC tracks metadata in the external relation database.

120

Chapter 7 Snowflake with apaChe iCeberg

• Nessie tracks metadata with git-like version control.

• AWS Glue catalog is a managed Hive Metastore. It tracks metadata

across AWS services, such as Athena, Glue, and Redshift Spectrum.

There are more catalogs existing on the market. Their primary goal remains the same—track metadata about the data and server as an entry point for working with data by different data tools.

 Snowflake and Iceberg Integrations

Snowflake announced integration with the Apache Polaris catalog.

Apache Polaris is an open source, fully featured catalog for Apache Iceberg. It implements Iceberg’s REST API, enabling seamless multi-engine interoperability across a wide range of platforms, including Apache Doris, Apache Flink, Apache Spark, StarRocks, and Trino. It allows the management of Iceberg tables and metadata.

It supports two options.

• Managed Iceberg catalog by Snowflake

• Use an external Iceberg catalog

Table 7-2 summarizes available options and highlights who is responsible for various elements of a data platform architecture.

 Table 7-2. Data Platform Available Options

Options

Storage

Compute

Catalog

Table

File

Storage

Engine

Engine

Format

Format

Snowflake Snowflake

Snowflake

Snowflake

Snowflake CSV, JSon, awS S3,

as is

orC,

azure blob

parquet,

Storage, gCp

Snowflake Snowflake

Snowflake,

Snowflake, iceberg

XMl

Storage

with apache

trino, flink,

polaris, glue

iceberg

Spark, DuckDb,

pyarrow

Snowflake with Apache Iceberg allows you to start using data in Apache Iceberg format stored in external storage accounts without ingesting it into Snowflake.

121

Chapter 7 Snowflake with apaChe iCeberg

Before the Iceberg integration, Snowflake allowed you to use external tables and query data with Snowflake compute. With the Polaris catalog, you can still use the external tables feature, but this allows you to query Apache Iceberg data. In addition, there is another option: use your own compute to query Iceberg tables.

This chapter reviews examples of the Snowflake-managed Iceberg catalog. In Snowflake documentation, you can review the example of using the external Iceberg catalog.

 Creating Snowflake Iceberg Table

Let’s create an Iceberg table using Python and Jupyter Notebook. We use Conda.

Follow the guide at https://docs.anaconda.com/miniconda/install/#quick-

command-line-install to install your operating system.

In the IDE of your choice, you need to create a new folder or project and add the environment.yml file.

Inside the file, specify all the dependencies.

name: iceberg-lab

channels:

- conda-forge

dependencies:

- findspark=2.0.1

- jupyter=1.0.0

- pyspark=3.5.0

- openjdk=11.0.13

You need to disable SSL.

conda config --set ssl_verify no

Then, create a virtual environment using Conda.

conda env create -f environment.yml

And activate the environment.

conda activate iceberg-lab

122

Chapter 7 Snowflake with apaChe iCeberg

Next, open SnowSight and create the required objects for our exercise.

CREATE WAREHOUSE iceberg_lab;

CREATE ROLE iceberg_lab;

CREATE DATABASE iceberg_lab;

CREATE SCHEMA iceberg_lab;

GRANT ALL ON DATABASE iceberg_lab TO ROLE iceberg_lab WITH GRANT OPTION; GRANT ALL ON SCHEMA iceberg_lab.iceberg_lab TO ROLE iceberg_lab WITH GRANT

OPTION;;

GRANT ALL ON WAREHOUSE iceberg_lab TO ROLE iceberg_lab WITH GRANT OPTION;; CREATE USER iceberg_lab

PASSWORD='Iceberglab2024!',

LOGIN_NAME='ICEBERG_LAB',

MUST_CHANGE_PASSWORD=FALSE,

DISABLED=FALSE,

DEFAULT_WAREHOUSE='ICEBERG_LAB',

DEFAULT_NAMESPACE='ICEBERG_LAB.ICEBERG_LAB',

DEFAULT_ROLE='ICEBERG_LAB';

GRANT ROLE iceberg_lab TO USER iceberg_lab;

GRANT ROLE iceberg_lab TO ROLE accountadmin;

GRANT ROLE accountadmin TO USER iceberg_lab;

In this case, we use AWS, and the external volume depends on AWS S3. Snowflake has a guide on external volumes at https://docs.snowflake.com/en/user-guide/

tables-iceberg-configure-external-volume-s3.

In the AWS console, create a new S3 bucket jumpstart-iceberg-snowflake. The bucket serves as an external storage for your data in Iceberg file format.

You should create a new policy in AWS Identity and Access Management (IAM): jumpstart-iceberg-policy. Figure 7-2 shows the AWS console policy permissions.

123

[image: Image 69]

Chapter 7 Snowflake with apaChe iCeberg

 Figure 7-2. AWS IAM policy

{

"Version": "2012-10-17",

"Statement": [

{

"Effect": "Allow",

"Action": [

"s3:PutObject",

"s3:GetObject",

"s3:GetObjectVersion",

"s3:DeleteObject",

"s3:DeleteObjectVersion"

],

"Resource": "arn:aws:s3:::jumpstart-iceberg-snowflake/*"

},

{

"Effect": "Allow",

"Action": [

124

[image: Image 70]

Chapter 7 Snowflake with apaChe iCeberg

"s3:ListBucket",

"s3:GetBucketLocation"

],

"Resource": "arn:aws:s3:::jumpstart-iceberg-snowflake",

"Condition": {

"StringLike": {

"s3:prefix": [

"*"

]

}

}

}

]

}

Next, add a new role in AWS IAM: jumpstart-iceberg-role. This role should have jumpstart-iceberg-policy. Figure 7-3 shows the IAM role menu in the AWS console.

 Figure 7-3. AWS IAM role

Copy the ARN from the role in the following format.

'arn:aws:iam::<YOUR ACCOUNT NUMBER>:role/jumpstart-iceberg-role'

The ARN is needed to establish a connection between the Snowflake AWS account and our AWS account, where we created the bucket.

125

Chapter 7 Snowflake with apaChe iCeberg

In SnowSight, you can create an external volume now.

USE ROLE accountadmin;

CREATE OR REPLACE EXTERNAL VOLUME iceberg_lab_vol

STORAGE_LOCATIONS =

(

(

NAME = 'iceberg-lab'

STORAGE_PROVIDER = 'S3'

STORAGE_BASE_URL = 's3://jumpstart-iceberg-snowflake'

STORAGE_AWS_ROLE_ARN = 'arn:aws:iam::<YOUR ACCOUNT NUMBER:role/

jumpstart-iceberg-role'

STORAGE_AWS_EXTERNAL_ID = 'iceberg_table_external_id'

)

);

GRANT ALL ON EXTERNAL VOLUME iceberg_lab_vol TO ROLE iceberg_lab WITH

GRANT OPTION;

Next, grant Snowflake’s IAM user permissions to access the S3 bucket in our AWS

account using the AWS trust policy.

To find Snowflake’s IAM role, run the following command.

DESC EXTERNAL VOLUME iceberg_lab_vol;

It looks similar to the "STORAGE_AWS_IAM_USER_ARN":"arn:aws:iam::881490105466

:user/a98t0000-s" example.

In the AWS account, open jumpstart-iceberg-role and select the Trust relationships tab. Figure 7-4 shows a menu of trust relationships between our account and the Snowflake account.

126

[image: Image 71]

Chapter 7 Snowflake with apaChe iCeberg

 Figure 7-4. Trust relationships

You should use your ARN and make sure the external ID matches your name.

Finally, create the Iceberg table in Snowflake. Open SnowSight and run the following SQL to create a table.

USE ROLE iceberg_lab;

USE DATABASE iceberg_lab;

USE SCHEMA iceberg_lab;

CREATE OR REPLACE ICEBERG TABLE customer_iceberg (

c_custkey INTEGER,

c_name STRING,

c_address STRING,

c_nationkey INTEGER,

c_phone STRING,

c_acctbal INTEGER,

c_mktsegment STRING,

c_comment STRING

)

CATALOG='SNOWFLAKE'

EXTERNAL_VOLUME='iceberg_lab_vol'

BASE_LOCATION='';

127

[image: Image 72]

Chapter 7 Snowflake with apaChe iCeberg

This example uses a Snowflake-managed catalog.

Next, ingest data using available sample data.

INSERT INTO customer_iceberg

SELECT * FROM snowflake_sample_data.tpch_sf1.customer;

The query inserts 150,000 rows into Iceberg format.

Use the Snowflake compute warehouse to query the data.

SELECT

*

FROM customer_iceberg c

INNER JOIN snowflake_sample_data.tpch_sf1.nation n

ON c.c_nationkey = n.n_nationkey;

Snowflake has written data into an external volume (S3 bucket) where we can review the data and metadata. Figure 7-5 shows metadata files for our table in a Snowflake-managed catalog.

 Figure 7-5. Iceberg metadata files in S3

128

[image: Image 73]

Chapter 7 Snowflake with apaChe iCeberg

Figure 7-6 shows actual data files in Parquet file format.

 Figure 7-6. Iceberg data files in S3

It is important to know that you can’t just read Iceberg files. Iceberg requires you to have the catalog.

 Query Iceberg Table with External Compute

Querying data in a Snowflake warehouse is simple. The biggest advantage of using Iceberg data is to replace external tables in Snowflake. It is proven that Iceberg tables are faster than traditional external tables with simple Parquet or JSON file format. However, it does not bring any cost savings. The true cost savings might happen if we bring external computing, such as Apache Spark, Trino, DuckDB, and ClickHouse.

Let’s review the example of using Apache Spark for querying our Snowflake Iceberg table.

Using the same Conda environment, you can launch Jupyter Notebook with

Apache Spark.

129

Chapter 7 Snowflake with apaChe iCeberg

The code is available in the code repo for this chapter. The notebook contains all commands, and you should complete the following parameters.

• Snowflake catalog URI

• Snowflake role

• Snowflake username and password

• AWS region

• AWS access and secret key

import os

os.environ['SPARK_HOME'] = '~/anaconda3/envs/iceberg-lab/lib/python3.12/

site-packages/pyspark'

import findspark

findspark.init()

findspark.find()

os.environ['SNOWFLAKE_CATALOG_URI'] = "jdbc:snowflake://gj91678.eu-central- 1.snowflakecomputing.com"

os.environ['SNOWFLAKE_ROLE'] = "ICEBERG_LAB"

os.environ['SNOWFLAKE_USERNAME'] = "ICEBERG_LAB"

os.environ['SNOWFLAKE_PASSWORD'] = "password"

Environment variables for AWS

os.environ['PACKAGES'] = "org.apache.iceberg:iceberg-spark-

runtime-3.5_2.12:1.4.1,net.snowflake:snowflake-jdbc:3.14.2,software.amazon.

awssdk:bundle:2.20.160,software.amazon.awssdk:url-connection-

client:2.20.160"

os.environ['AWS_REGION'] = "eu-central-1"

os.environ['AWS_ACCESS_KEY_ID'] = "AKIASUGB3VRQ2VETAWJZ"

os.environ['AWS_SECRET_ACCESS_KEY'] = "secret"

Start a Spark session.

import pyspark

from pyspark.sql import SparkSession

spark = SparkSession.builder.appName('iceberg_lab')\

.config('spark.jars.packages', os.environ['PACKAGES'])\

130

Chapter 7 Snowflake with apaChe iCeberg

. config('spark.sql.extensions', 'org.apache.iceberg.spark.extensions.

IcebergSparkSessionExtensions')\

.config("spark.driver.allowMultipleContexts","true")\

.getOrCreate()

Snowflake provided a list of environment variables to connect to a catalog.

This example connects AWS. However, there are options for Microsoft Azure and Google Cloud.

spark.conf.set("spark.sql.defaultCatalog", "snowflake_catalog") spark.conf.set("spark.sql.catalog.snowflake_catalog", "org.apache.iceberg.

spark.SparkCatalog")

spark.conf.set("spark.sql.catalog.snowflake_catalog.catalog-impl", "org.

apache.iceberg.snowflake.SnowflakeCatalog")

spark.conf.set("spark.sql.catalog.snowflake_catalog.uri",

os.environ['SNOWFLAKE_CATALOG_URI'])

spark.conf.set("spark.sql.catalog.snowflake_catalog.jdbc.role", os.environ['SNOWFLAKE_ROLE'])

spark.conf.set("spark.sql.catalog.snowflake_catalog.jdbc.user", os.environ['SNOWFLAKE_USERNAME'])

spark.conf.set("spark.sql.catalog.snowflake_catalog.jdbc.password", os.environ['SNOWFLAKE_PASSWORD'])

spark.conf.set("spark.sql.iceberg.vectorization.enabled", "false")

aws

spark.conf.set("spark.sql.catalog.snowflake_catalog.io-impl", "org.apache.

iceberg.aws.s3.S3FileIO")

spark.conf.set("spark.hadoop.fs.s3a.impl", "org.apache.hadoop.fs.s3a.

S3AFileSystem")

spark.conf.set("spark.hadoop.fs.s3a.aws.credentials.provider", "org.apache.

hadoop.fs.s3a.SimpleAWSCredentialsProvider")

spark.conf.set("spark.hadoop.fs.s3a.access.key", os.environ['AWS_ACCESS_

KEY_ID'])

spark.conf.set("spark.hadoop.fs.s3a.secret.key", os.environ['AWS_SECRET_

ACCESS_KEY'])

spark.conf.set("spark.hadoop.fs.s3a.endpoint", "s3.amazonaws.com") spark.conf.set("spark.hadoop.fs.s3a.endpoint.region", os.environ['AWS_REGION']) 131

[image: Image 74]

Chapter 7 Snowflake with apaChe iCeberg

After connecting to the Snowflake catalog, you can query the data using Spark SQL.

spark.sql("SHOW NAMESPACES IN ICEBERG_LAB").show()

spark.sql("USE ICEBERG_LAB.ICEBERG_LAB")

spark.sql("SHOW TABLES").show()

df = spark.table("iceberg_lab.iceberg_lab.customer_iceberg")

df.show()

 Summary

This chapter reviewed the integration with Apache Iceberg and learned about managing the Iceberg catalog. We created a Snowflake-managed Iceberg catalog and wrote data into S3. We also reviewed data in S3 and used Apache Spark as an external compute.

132

CHAPTER 8

Getting Started

with Streamlit

In today’s data-driven world, the ability to transform complex data into actionable insights is paramount. Streamlit emerges as a powerful Python library specifically designed to simplify this process, allowing you to build and share interactive web applications with remarkable ease. Whether you are a data scientist, machine learning engineer, or business analyst, Streamlit empowers you to showcase your work effectively without requiring extensive web development expertise. This chapter provides a comprehensive exploration of Streamlit’s capabilities, guiding you through the process of building and deploying interactive data applications. The following Streamlit topics are covered.

• Basics

• Integration with Snowflake

• Creating a basic Streamlit app

• Creating an interactive Streamlit app

• Error handling

This chapter equips you with the knowledge and skills to harness the power of Streamlit, enabling you to transform your data into insightful and impactful interactive web applications.

133

© Dmitry Anoshin, Dmitry Foshin and Donna Strok 2025

D. Anoshin et al., Jumpstart Snowflake, https://doi.org/10.1007/979-8-8688-1533-1_8

Chapter 8 GettinG Started with Streamlit

 Streamlit Basics

Streamlit is an open source Python library that facilitates the rapid creation of interactive web applications for data science and machine learning projects. Its intuitive API and straightforward design philosophy allow developers to focus on their core expertise, which is extracting insights from data, rather than grappling with the complexities of web development.

There are many use cases for using Streamlit with Snowflake, and many times, it just to easily automate data tasks, such as data exploration and visualization, self-service custom solutions, dynamic reporting, and more. By combining the power of Snowflake’s data platform with Streamlit’s ease of use, you can create a wide range of powerful and interactive data applications.

 Key Features of Streamlit

• Simple and intuitive: Streamlit’s minimalist syntax and declarative approach make it incredibly easy to learn and use, even for those

without prior web development experience.

• Rapid prototyping: Streamlit’s “write and see” development model enables you to iterate quickly on your ideas and see changes reflected

in real time, accelerating your development workflow.

• Interactive widgets: Streamlit provides a rich set of built-in interactive widgets, such as sliders, buttons, and dropdowns,

empowering you to create engaging and dynamic user interfaces.

• Seamless integration: Streamlit seamlessly integrates with popular Python data science libraries, including Pandas, NumPy, Scikit-learn, and TensorFlow, allowing you to leverage your existing code

and tools.

• Easy deployment: Streamlit offers hassle-free deployment options, making it straightforward to share your applications with colleagues,

clients, or the wider world.

134

Chapter 8 GettinG Started with Streamlit

 Integration with Snowflake

Even though you have the option of using Streamlit through its open source Python package, Snowflake makes it super easy to work with Streamlit as it comes included in the Snowflake UI. Instead of moving data and application code outside of the Snowflake environment, developers can use Streamlit to build applications that work directly with data within Snowflake. This integration offers several benefits.

• Simplified infrastructure management: Snowflake handles the

underlying compute and storage needs for Streamlit applications,

removing the overhead of managing external systems.

• Secure data access: Streamlit applications leverage Snowflake’s role-based access control to manage user access, ensuring data security.

• Seamless workflow: Streamlit applications run on Snowflake

warehouses and use internal stages for file and data storage, allowing

efficient data processing.

• Integration with Snowflake features: Streamlit works seamlessly with other Snowflake features like Snowpark, user-defined functions,

stored procedures, and the Snowflake Native App Framework.

• Rapid development: When using Snowsight, developers benefit from a side-by-side editor and application preview, enabling real-time

code adjustments and immediate visualization of changes.

This tight integration allows rapid prototyping and deployment of interactive data applications directly within the Snowflake environment. However, it’s important to be mindful of resource consumption, which directly impacts billing. Please be mindful that running a Streamlit app, as well as executing any SQL queries within the app, requires a virtual warehouse. This means that the chosen warehouse remains active as long as the app’s WebSocket connection is active, which is approximately 15 minutes after the last use.

Tip to control costs, developers can suspend the virtual warehouse or simply close the web page running the app, allowing the warehouse to auto-suspend.

135

Chapter 8 GettinG Started with Streamlit

 Creating a Basic Streamlit App

Let’s create a basic Streamlit app that displays the contents of a Snowflake table. The following exercise grants the needed permissions and runs Python code to output the contents of a table.

DISPLAY THE CONTENTS OF A SNOWFLAKE TABLE IN STREAMLIT

Before starting this exercise, make sure you have the appropriate setup and permissions. First, set up a separate database specifically for Streamlit apps.

1. Create a new worksheet or log in through SnowSQl to run the following ddl.

CREATE DATABASE STREAMLIT_APPS;

GRANT USAGE ON DATABASE STREAMLIT_APPS TO ROLE PUBLIC;

GRANT USAGE ON SCHEMA STREAMLIT_APPS.PUBLIC TO ROLE PUBLIC;

GRANT CREATE STREAMLIT ON SCHEMA STREAMLIT_APPS.PUBLIC TO

ROLE PUBLIC;

GRANT CREATE STAGE ON SCHEMA STREAMLIT_APPS.PUBLIC TO

ROLE PUBLIC;

Tip while not technically mandatory, using a separate database (or schema) for your Streamlit applications is a strong best practice for organization, security, resource management, and development lifecycle management. it’s highly

recommended, especially as your projects grow in complexity or if you have multiple developers working on them.

2. Click Projects + Streamlit. Click +Streamlit App, located on the upper right side of the screen. Fill in the values similar to what is in Figure 8-1.

136

[image: Image 75]

Chapter 8 GettinG Started with Streamlit

 Figure 8-1. The values in step 1 before clicking Create

3. You’ll see your new app load example Streamlit app. remove all the python code from that example and replace it with the following code.

Import python packages

import streamlit as st

import pandas as pd

from snowflake.snowpark.context import get_active_session

st.title() Displays the main title of your app. Should be used

sparingly and only once at the top.

st.title("EXERCISE 8.1: DISPLAY THE CONTENTS OF A SNOWFLAKE

TABLE IN STREAMLIT ")

Get the Snowflake credentials of the user logged in

session = get_active_session()

137

[image: Image 76]

Chapter 8 GettinG Started with Streamlit

Create dataframe from the NATION table, which will be

displayed on the screen

df = session.sql("SELECT * FROM SNOWFLAKE_SAMPLE_DATA.TPCH_SF1.

NATION;").to_pandas()

st.header() Displays a header for a section. Good for dividing

your app into logical parts.

st.header("Displaying the NATION table from the Dataframe")

Finally, display the contents of the table.

st.dataframe(df)

st.header("Displaying the NATION table from the Dataframe,

without the row Index")

st.dataframe(df, hide_index=True)

4. Click Run, located on the upper right side of the page.

Figure 8-2 shows an example of what you see once you complete this exercise. You should see the title, headers, and the data from the showflake_sample_data.

tpch.nation table displayed, one with the row index and one without.

 Figure 8-2. What you see once you complete this exercise

138

Chapter 8 GettinG Started with Streamlit

 Creating Interactive Streamlit Apps

Building interactive apps is surprisingly easy with Streamlit in Snowflake. Streamlit’s intuitive API and built-in components make it simple to create these interactive elements with Python code. A simple interactive Streamlit dashboard could include data displays, filters, drill-down capability, and more. For example, you could use the st.multiselect component as a way to select one or more options to filter and the st.

bar_chart component to display a bar chart of the selected data. These two components are used to build an interactive Streamlit app in the following exercise.

INTERACTIVE STREAMLIT APP

this exercise builds on the work done in the previous exercise and joins the natiOn table to the reGiOn and CUStOmer tables. this Streamlit app tells you the number of nations and number of customers for each region. this information is displayed in a table and bar chart.

in addition, there is an interactive filter that allows you to add or remove both regions and nations, which automatically updates a table and bar chart.

1. Create a new Streamlit app and remove all the example code to start with a blank slate.

2. add the following code, which includes the needed python packages, get session credentials, run the Snowflake query to a dataFrame, and give your app a title.

Import python packages

import streamlit as st

import pandas as pd

from snowflake.snowpark.context import get_active_session

st.title() Displays the main title of your app. Should be used

sparingly and only once at the top.

st.title("EXERCISE 8.2: INTERACTIVE STREAMLIT APP")

Get the current credentials

session = get_active_session()

query = "select N_NAME as NATION_NAME, R_NAME as REGION_NAME,

COUNT(C_CUSTKEY) TOTAL_CUSTOMERS \

from SNOWFLAKE_SAMPLE_DATA.TPCH_SF1.NATION \

139

Chapter 8 GettinG Started with Streamlit

join SNOWFLAKE_SAMPLE_DATA.TPCH_SF1.REGION \

join SNOWFLAKE_SAMPLE_DATA.TPCH_SF1.CUSTOMER \

on R_REGIONKEY = N_REGIONKEY AND N_NATIONKEY = C_NATIONKEY \

GROUP BY 1,2"

Create initial dataframe

df = session.sql(query).to_pandas()

3. add the following code to create an interactive filter menu. the filters include all the available regions and all the available nations.

Sidebar with filters

st.sidebar.header('Interactive Filter')

st.sidebar.divider()

st.sidebar.subheader('Regions')

regions = st.sidebar.multiselect(

"Select one or more regions:",

options=df["REGION_NAME"].sort_values().unique(),

default=df["REGION_NAME"].sort_values().unique()

)

nations = st.sidebar.multiselect(

"Select one or more nations:",

options=df["NATION_NAME"].sort_values().unique(),

default=df["NATION_NAME"].sort_values().unique()

)

Filter dataframe with selection in

df_filtered = df.query(

"REGION_NAME in @regions and \

NATION_NAME in @nations"

)

4. add a way for the data to aggregate dynamically when the user removes or adds a region or nation.

Aggregate the data dynamically

df_agg = df_filtered.groupby('REGION_NAME').agg(

TOTAL_NATIONS=('NATION_NAME', 'count')

140

[image: Image 77]

Chapter 8 GettinG Started with Streamlit

, TOTAL_CUSTOMERS=('TOTAL_CUSTOMERS', 'sum')

).reset_index()

st.subheader("Table: Total Nations and Customers per Region") st.dataframe(df_agg, hide_index=True)

st.subheader("Bar Chart: Total Customers per Region")

st.bar_chart(df_agg.set_index('REGION_NAME')[['TOTAL_

CUSTOMERS']])

5. Click Run one last time.

Your final product should look something like Figure 8-3. Only the total Customers per region data is shown in the bar chart. try adding an additional bar chart for the total nations per region to this app.

play around with the interactive filters and see how the data changes as you remove or add regions and nations.

 Figure 8-3. The final product of the interactive Streamlit app once you complete this exercise

141

Chapter 8 GettinG Started with Streamlit

 Error Handling and Troubleshooting

Now that you know how to build basic apps within Streamlit, it’s important to plan for errors and how to handle them. Think of error handling as a way to make your app smart. Instead of crashing or giving confusing messages to the user when something goes wrong, good error handling allows your app to catch those mistakes, show helpful messages, and keep things moving. It makes your app more reliable and user-friendly.

This section walks you through some common errors you might face and how to deal with them, ensuring your app runs smoothly and does not break when things go wrong.

When using Streamlit with Snowflake, you’ll likely run into a few types of errors, such as the following.

• Connection errors happen when your app can’t connect to

Snowflake. This could be due to wrong credentials, an issue with the

network, or Snowflake being temporarily unavailable.

• Query errors occur when your SQL query doesn’t run as expected. It might be a typo in the SQL or an invalid table name.

• Streamlit errors happen inside Streamlit itself. For example, if the app fails to render a table or plot because of missing data.

Most error handling or help with troubleshooting can be done with a try-except block. In Python, it is a mechanism used to handle exceptions or errors that may occur during program execution. How it works is the code within the try block is executed normally. However, if an error or exception occurs, the program immediately jumps to the except block where the error can be handled or logged. You can also specify more than one type of exception to catch specific errors and take appropriate actions. Using try-except helps to create more robust, fault-tolerant applications by handling potential issues instead of letting them disrupt the program flow. Let’s take a look at incorporating a try-except block in the first exercise’s code.

 Connection Errors

Figure 8-4 demonstrates how you could add a try-except block around the get_active_

session() function. This would catch any issues related to Snowflake authentication, connection, or session retrieval. When the connection fails, an error is displayed using st.error(). st.stop() is used to prevent the rest of the code from running, ensuring that we don’t try to execute queries without a valid connection.

142

Chapter 8 GettinG Started with Streamlit

try:session = get_active_session()

st.success("Successfully connected to Snowflake!")

except Exception as e:

If there is an issue with the connection, display the

errorst.error(f"Connection Error: {str(e)}")

st.stop() # Prevent further execution if connection fails

 Figure 8-4. Wrapping a try-except block around our Snowflake connection Query Errors

You can also wrap the query that fetches the data in a try-except block. This ensures that if the SQL query fails, the error is caught, and a message is displayed. An example of when a query would fail would be things like incorrect table names, network issues, or missing data. st.stop() is used to halt further execution of the app. Figure 8-5 shows how you can do this with the SQL query used in the first exercise in this chapter.

try: df = session.sql("SELECT * FROM

SNOWFLAKE_SAMPLE_DATA.TPCH_SF1.NATIONS;").to_pandas()

st.success("Data successfully loaded!")

except Exception as e:

st.error(f"Query Execution Error: {str(e)}")

st.stop()

 Figure 8-5. Wrapping a try-except block around our Snowflake query Streamlit Errors

After retrieving the data from Snowflake, st.dataframe() is used to display the dataframe in the Streamlit app. It is also wrapped in a try-except block to catch any potential rendering errors, such as issues with data formatting or visualization problems.

In this case, if rendering fails (perhaps due to an invalid dataframe or an issue with Streamlit’s internal handling), the error will be captured and displayed.

143

Chapter 8 GettinG Started with Streamlit

try:

Render the dataframe again without the index column

st.dataframe(df, hide_index=True)

except Exception as e:

st.error(f"Streamlit Rendering Error: {str(e)}")

st.stop()

Note there are other ways to handle errors in Streamlit besides using a try-except block. while try-except is the most common method, you can also

use Streamlit’s built-in functions and patterns to handle and display errors more effectively.

 Summary

This chapter explained that Streamlit is a powerful Python library for creating interactive web applications with minimal coding expertise. You worked directly with Streamlit to build a basic app and then another app with dynamic filtering. The chapter also addressed best practices for error handling to ensure robust and reliable application performance. To dive deeper into the world of Streamlit, check out the tutorials that Snowflake has available at https://docs.snowflake.com/en/tutorials. You should now feel ready to develop and make some impactful data-driven web applications.

144

CHAPTER 9

Designing a Modern

Analytics Solution

with Snowflake

You are now familiar with the Snowflake data warehouse and its advantages over similar solutions. However, a typical organization won’t be using Snowflake alone. Snowflake is part of an analytics solution that consists of multiple components, including business intelligence and data integration tools.

This chapter discusses a modern solution architecture and the role of Snowflake in it.

It covers the following topics.

• Modern analytics solution architecture

• Snowflake partner ecosystem

• Integration with ETL/ELT and BI tools

The chapter explains how to build an end-to-end solution using leading cloud tools for business intelligence and data integration. There are lots of tools on the market. They can be divided into the following buckets.

• Low-code and no-code vs. code applications

• Open source software vs. commercial

145

© Dmitry Anoshin, Dmitry Foshin and Donna Strok 2025

D. Anoshin et al., Jumpstart Snowflake, https://doi.org/10.1007/979-8-8688-1533-1_9

[image: Image 78]

Chapter 9 Designing a MoDern analytiCs solution with snowflake

Snowflake works equally well with low-code and open source applications.

You will launch Matillion ETL and load data into the Snowflake data warehouse, connect to Tableau Desktop, build dashboards, and learn about dbt and Airbyte.

 Modern Analytics Solution Architecture

Nowadays, every organization wants to be data-driven to generate more value for customers and stakeholders. The organization’s management understands the value of data and treats it as an asset. They are ready to invest in modern cloud solutions, such as Snowflake, that are scalable and secure. However, Snowflake is only one part of the analytical ecosystem. It is the core data storage for all organization data, and it provides robust access to the data.

You need more elements to build the right solution. These elements include data integration tools, business intelligence, and data modeling tools. Figure 9-1 highlights the key elements of a modern analytics solution.

 Figure 9-1. Modern analytics solution architecture

Figure 9-1 gives you an idea of how a typical analytics solution can look. I’ve already added Matillion ETL and Tableau to the diagram because we are going to use them in this chapter. However, you have a choice to use other products as welll.

146

Chapter 9 Designing a MoDern analytiCs solution with snowflake Table 9-1 describes additional information for each element of the architecture.

 Table 9-1. Key Elements of Architecture Diagram

Element

Description

source layer

the source layer includes all the data sources available at your organization.

this could include transactional databases, files, nosQl databases, business applications, external apis, sensors, and iot.

storage layer

the storage layer is the core of solution. you may hear about data platforms, data lakes, and data warehouses. this is the place for all of them. you are ingesting data into the storage layer from the source layers, and you store this data for further analysis, data discovery, or the decision-making process.

ai/Ml layer

Dedicated layer for Machine learning, generative ai, and Data science

workloads and applications.

access layer

the access layer is nontechnical. the main goal is to provide access for business users and allow them to interact with data through Bi and sQl.

stream

streaming is a method of data ingesting using real-time data injection. for example, you can collect data from sensors, and you have a strict sla to analyze the data and make decisions.

Batch

Batch processing is a method of data ingesting. for example, for Dws, we load data once per day. sometimes, we should load data more frequently.

snowflake

snowflake is cloud data warehouse that can serve as a data lake. it can collect data from both batching and streaming pipelines.

iceberg lakehouse Data platform with raw data in iceberg format

feature store

Dedicated data marts for Machine learning models.

Business

Visual analytics tools that connects to snowflake and provides access for the intelligence

business users and helps them slice/dice data and deliver insights. in other words, it is business intelligence tool.

ad-hoc queries

Custom sQl and python scripts to query snowflake data platform.

Data science tools

Data science tools provide advanced analytics capabilities. it could be an open source product, programming language (r/python), or enterprise solution like spark Databricks.

147

[image: Image 79]

Chapter 9 Designing a MoDern analytiCs solution with snowflake

In this chapter, we will show how to build simple solutions using Matillion ETL, Snowflake, and Tableau. We won’t spend much time on setting up a real source system and will use sample data sets that we will load into Snowflake with Matillion and then visualize with Tableau. Moreover, we won’t build a streaming solution or talk about lambda architecture. Based on our experience in 80 percent of use cases, using a data warehouse, business intelligence, and ELT is sufficient for a typical organization.

 Snowflake Partner Ecosystem

Snowflake has many technology partners, and it provides good integration with them. In addition, it has a convenient feature called Partner Connect that allows you to launch a solution via the Snowflake web interface, as shown in Figure 9-2.

 Figure 9-2. Snowflake Partner Connect page

Moreover, Snowflake provides native drivers like JDBC, ODBC, and others for connecting to third-party tools such as Tableau, SqlDBM, Spark, and others. Figure 9-3

shows the list of available drivers. Go to www.snowflake.com/en/, and select Developers

➤ Downloads to get to this menu.

148

[image: Image 80]

Chapter 9 Designing a MoDern analytiCs solution with snowflake

 Figure 9-3. Snowflake drivers

Our solution needs a data integration tool and a business intelligence (BI) tool.

Based on our rich experience with data warehouses, BI, and data integration, our favorite tools for working with Snowflake are Matillion ETL and Tableau. They are leaders in their area and allow building a modern analytics solution and meet business requirements and SLAs.

 Building Analytics Solutions with Matillion ETL

and Tableau

This solution demonstrates the use of commercial tools integrated with Snowflake, such as Tableau and Matillion. For the purposes of this book, we will leverage their free trial versions to walk through practical examples.

 Getting Started with Matillion ETL

Matillion ETL is cloud data integration tool. It is available for Snowflake, Redshift, and BigQuery. It increases development speed, secures data, provides rich data transformation functionality, and offers many prebuilt data connectors for Salesforce, Mailchimp, Facebook, and others. One of the biggest advantages of the tool is that it looks and feels like a traditional ETL tool with a friendly user interface where developers can drag and drop components to build their data pipeline.

149

Chapter 9 Designing a MoDern analytiCs solution with snowflake To start with Matillion ETL, click the Matillion box shown in Figure 9-2. This will open a new window and ask permission to create objects within a Snowflake account.

You can see the list of objects in Table 9-2.

 Table 9-2. List of Matillion Objects

Object

Object

Database

PC_MATILLION_DB

warehouse

PC_MATILLION_WH (X-small)

role

PC_MATILLION_ROLE

username

Snowflake-snowflake

After activation, the tool will immediately transfer you to the Matillion ETL web interface. This is connected to your Snowflake cluster, and you may start to work immediately. This decrease your time to market.

Let’s load some initial data into Snowflake using Matillion.

Note our snowflake cluster is hosted on aws. when we launched a Matillion etl instance from the partner Connect page, we created the eC2 instance with Matillion etl. it was created in a different aws account. we can launch Matillion etl in our aws account by finding it in the aws Marketplace.

RUNNING OUR FIRST JOB WITH MATILLION ETL

we will use a demo Matillion etl job and sample airport data in order to create our first elt job and then load and transform data for our snowflake Dw. let’s get started.

1. log into Matillion etl. you can use the url, password, and username that you’ve received in the Matillion activation e-mail.

2. navigate to Designer ➤ snowflake project. you will a demo job called greenwave pipelines.

150

[image: Image 81]

Chapter 9 Designing a MoDern analytiCs solution with snowflake

3. open the greenwave technologies Demo job by clicking it twice. in figure 9-4, we are showing key elements of the Matillion web interface.

 Figure 9-4. Matillion Pipeline example

when you are working with Matillion, you are working mostly from a browser. the same is true for snowflake. table 9-3 describes the key elements of the Matillion etl web interface shown in figure 9-4.

 Table 9-3. Key Elements of Matillion ETL Web Interface

Element in Description

Figure 9-4

1

pipelines panel (files panel) — shows all orchestration/transformation pipelines and folders in your project.

2

Components panel — lists available components (connectors, flow logic, iterators) specific to the pipeline type.

3

schemas panel — lets you browse database schemas, including tables, views, and other metadata.

4

Variables panel — displays pipeline and project variables (text, number, grid) for parameterizing jobs.

(continued)

151

Chapter 9 Designing a MoDern analytiCs solution with snowflake

 Table 9-3. (continued)

Element in Description

Figure 9-4

5

Designer canvas — the central workspace where components are dragged, arranged, and connected.

6

project / environment / branch info — shows project name (e.g. “snowflake project”), selected environment, and current git branch.

7

pipeline controls (“Validate”, “schedule”, “run”) — buttons to validate the pipeline, set schedules, and execute runs.

8

from the pane you can work with version control by commiting changes, pull or push changes ect.

9

task history and sample data panes are for monitoring and managing the execution of your etl jobs.

10

with Copilot, you can create data pipelines simply using plain language instructions.

you have learned about the key elements of the Matillion web interface, so you can now run a job. Click the Run button on the canvas. Matillion runs the current job using the environment named Snowflake. this job consists of multiple steps.

a. Create tables using the Create table component.

b. load data from s3 into the staging tables using the s3 load component.

c. execute the greenwave technologies Demo transformation job that transforms raw semi-structured data into a tabular format and loads it into a dimension table.

Note this exercise loads the Matillion sample dataset that is stored in an amazon s3 bucket. this bucket is public and is available to everyone. if you have snowflake on azure, then you load data from Blob storage.

152

[image: Image 82]

Chapter 9 Designing a MoDern analytiCs solution with snowflake

4. after the job is finished, go back to the snowflake web ui and check the new objects that were created by Matillion. figure 9-5 shows the list of snowflake tables that were created by the Matillion orchestration job.

 Figure 9-5. Snowflake tables created by Matillion ETL

we launched Matillion etl and loaded sample data into the snowflake data warehouse.

in a real-world scenario, you would create many more jobs and collect data from external sources. for example, for marketing analytics use cases, you need to load data from social media platforms such as facebook, twitter, youtube, and so on. Matillion etl provides prebuilt connectors that save time for data engineers or etl developers.

Moreover, for a quality solution, you should design a data model for querying our data. you might choose a technique like using Data Vault, dimensional modeling, and so on. the best choice for the snowflake data model is sqlDBM.

the final step is to connect to a Bi tool for simplifying access for nontechnical users. with tableau, business users can do data discovery using drag-and-drop methods and powerful analytics and visualization capabilities. for our sample solution, we installed tableau Desktop and connected it to the CUSTOMER_ACCOUNT table to visualize data.

153

[image: Image 83]

Chapter 9 Designing a MoDern analytiCs solution with snowflake

 Getting Started with Tableau

Tableau is a leading visual analytics platform. There are many tools available on the market, but Tableau stands out among them. We have worked with many different tools from leading vendors and found that Tableau is the most powerful tool for business intelligence and self-service. Moreover, it has a large and friendly community. If you have never worked with Tableau, now is a good time to try it. Connecting Tableau to Snowflake allows you to use best-of-breed technologies working together. Tableau is available in server and desktop versions. Moreover, it has a mobile application. Let’s get Tableau and connect to the Snowflake cluster.

BUILDING OUR FIRST VISUALIZATION WITH TABLEAU AND SNOWFLAKE

this exercise installs tableau Desktop and connects it to the snowflake data warehouse. then, you can visualize the CUSTOMER_ACCOUNT data.

1. let’s download and install tableau Desktop. go to www.tableau.com/

products/desktop/download and download a recent version of tableau Desktop. it is available for macos and windows. then install it.

2. open tableau Desktop and connect to snowflake, as shown in figure 9-6.

 Figure 9-6. Tableau Desktop connection to Snowflake

154

[image: Image 84]

Chapter 9 Designing a MoDern analytiCs solution with snowflake

Note to connect to the snowflake data warehouse, you need to download the oDBC driver from www.snowflake.com/en/developers/downloads/odbc/.

Download it and install it.

3. then, you should enter your credentials to connect to snowflake from tableau.

you can use the Matillion credentials that were created during the Matillion etl initializing, including the user role, or you can use your master credentials. you should use your admin snowflake credentials. figure 9-7 shows an example of the connection options.

 Figure 9-7. Snowflake connection window

155

Chapter 9 Designing a MoDern analytiCs solution with snowflake 4. Click Sign In and then enter the following.

a. warehouse: PC_MATILLIONLOADER_WH

b. Database: PC_MATILLIONLOADER_DB

c. schema: Public

then, drag and drop the CUSTOMER_ACCOUNT table to the connection canvas.

5. Click Sheet 1 to jump into the development area. you just created your first tableau live data source.

Note the tableau data source supports live and extract options. extract queries all data from the data source and cache it into an internal columnar data store called hyper. the live connection queries data from the data source on demand.

this is the right strategy for a big volume of data. with a live connection, snowflake does the heavy lifting, and tableau renders the result. this is the secret to doing big data analytics.

6. let’s create a quick visualization using the available data. suppose you want to know how many clients were born in the us. figure 9-8 shows the tableau Desktop interface and a simple report.

156

[image: Image 85]

Chapter 9 Designing a MoDern analytiCs solution with snowflake

 Figure 9-8. Tableau sheet

we built this report by dragging and dropping the (blue) Birth Country

dimension into the rows pane and Calculated field #Customer sk into the Columns pane. to create a calculated field, click the right button in the Measures pane and choose Create Calculated Field.

this counts the distinct (unique) number of customers.

7. it is interesting to look at snowflake to see what was happening when we built our report. from the snowflake web ui on the history tab, you can see the sQl query that was generated by tableau.

SELECT "CUSTOMER_ACCOUNT"."C_BIRTH_COUNTRY" AS "C_BIRTH_

COUNTRY",

COUNT(DISTINCT "CUSTOMER_ACCOUNT"."C_CUSTOMER_SK") AS "ctd:C_

CUSTOMER_SK:ok"

FROM "PC_MATILLIONLOADER_DB"."PUBLIC"."CUSTOMER_ACCOUNT"

"CUSTOMER_ACCOUNT"

GROUP BY 1

157

Chapter 9 Designing a MoDern analytiCs solution with snowflake Moreover, you can look at the execution plan. this is helpful when working with large datasets and multiple tables.

we connected the snowflake data warehouse with tableau Desktop. the next logical step is to publish the report to the tableau server and share it with stakeholders.

Note with tableau, you can leverage the unique features of snowflake such as querying and visualizing semi-structured data, working with the time travel feature, sharing data, implementing role-based security, and using custom aggregation.

 Building Analytics Solution with Open Source Software

You learned about the option of building a low-code data analytics solution using Matillion ETL and Tableau. This might be an excellent choice for a company with an established data team and a budget to cover licensing costs. However, for small companies or startups, this isn’t a feasible option. They are often restricted by budget constraints and are looking for open source alternatives. Snowflake remains a great choice, as it has already proven itself to be effective for many small companies and startups.

This section of the chapter discusses open source alternatives for BI and data integration/transformation. In the previous example, Matillion ETL handled both data ingestion and transformations. Now, let’s split these use cases and identify the right tools for each task. Table 9-4 lists tasks and potential open source tools.

158

Chapter 9 Designing a MoDern analytiCs solution with snowflake

 Table 9-4. Available Tools for Tasks

Task

Available Tools

Data ingestion

airbyte, Meltano, python Code

Data transformation

dbt Core, python libraries, apache spark

Data orchestration

apache airflow, prefect, Dagster, luigi, cron

Business intelligence

Metabase, redash, apache superset

There are many open source tools available in the market. Python can also be used.

Alternatively, you can choose any other programming language to create custom tools.

However, this approach is not scalable, is difficult to maintain, and often serves as an anti-pattern.

Each tool and approach has its own pros and cons. Before selecting any particular technology, you should typically run a proof of concept (PoC) and compile a list of use cases and scenarios to evaluate potential candidates. The outcome of the PoC should be a document highlighting the winner of the selection process, as well as details on costs, effort, and other relevant factors. This document helps with making an informed decision and securing approval from the executive team.

This exercise attempts to create a simple solution using dbt Core and Snowflake. We discuss end-to-end solution options but not in detail.

There are many options for hosting open source solutions in a production environment, which are often tied to managed Kubernetes clusters or container services provided by public cloud vendors such as AWS, Azure, or GCP.

Figure 9-9 outlines the high-level architecture of the solution.

159

[image: Image 86]

Chapter 9 Designing a MoDern analytiCs solution with snowflake

 Figure 9-9. Architecture

First, make sure you have a trial or real account of Snowflake. If you still don’t have it, feel free to create it at https://signup.snowflake.com/.

Figure 9-9 shows an open source version of Airbyte for data ingestion. The primary goal of Airbyte is data ingestion. It has a nice UI and lots of connectors to different applications such as Salesforce, Google Analytics, and Amplitude, with the ability to write data into Snowflake, BigQuery, Redshift, and so on.

If you want to add Airbyte, you can install it locally using the Airbyte command-line tool (https://docs.airbyte.com/using-airbyte/getting-started/oss-quickstart) or using minikube and Helm charts (https://artifacthub.io/packages/helm/

airbyte/airbyte). You can find more details in this chapter’s repository.

Apache Airflow is the most popular Python-based orchestration tool that can execute our pipelines and jobs with Direct Acyclic Graphs. You can install Airflow locally using multiple options, including Helm values (https://airflow.apache.org/docs/apache-

airflow/stable/installation/index.html).

Metabase is a popular SQL-based BI tool. This chapter runs Metabase in a Docker container to connect Snowflake.

160

Chapter 9 Designing a MoDern analytiCs solution with snowflake dbt Core is the most powerful and popular framework for data transformation inside your data warehouse. Usually, it works together with data ingestion software like Airbyte and Fivetran. As soon as data is ingested into a data warehouse, you can model it. DBT

has lots of advantages.

• Creates a unified SQL framework

• Transforms business login into SQL

• Allows application software engineering principles such as

continuous integration/continuous deployment, unit testing, pre-

commit, version control, blue-green deployment

• Easy to learn and maintain

• Allows to create reusable code snipes with Jinja macros

• Out-of-the-box development/production environment split

• Gives the option to write vendor-agnostic SQL queries that allow

migration from one vendor to another

Although we covered key tools for open source alternatives, Airbyte or Airflow aren’t used in our example because it could be tricky to reproduce. The GitHub repo highlights the steps to deploy it locally.

Let’s review the typical deployment process for a prototype. There are a couple options for local deployment.

• Using Docker Compose

• Using minikube

The choice depends on your preference and production deployment plans. For example, with Docker containers, you can deploy everything on AWS Elastic Container Services or similar alternatives in Azure and Google Cloud. When using Helm values, you can deploy everything to the minikube or Kubernetes cluster in the cloud.

161

Chapter 9 Designing a MoDern analytiCs solution with snowflake Running a dbt Project

As a starting point, you can clone the repo with materials. Examples are shared on macOS. If you are using Windows OS, the command would be different. The workaround could be using the free GitHub Codespaces (https://github.com/features/codespaces) as a cloud IDE.

Clone the repo into a local machine using this command in your IDE of choice.

git clone <Book Repo>

cd <Book Repo Folder>/chapter_9/

if you don’t have virtual env, we need to create one

ucomment following command

python3 -m venv venv

source venv/bin/activate

pip install -r requirements.txt

This installs dbt Core for Snowflake. In requirements.txt, there are two key packages related to this.

• dbt-core==1.8.7

• dbt-snowflake==1.8.3

Let’s test that the dbt is installed.

dbt --version

Core:

- installed: 1.8.7

Plugins:

- snowflake: 1.8.3

This repository already has a dbt project. First, open the /chapter_9/01_setup.sql file.

This query does the following.

• Creates a new user dbt_user

• Creates a new role jumpstart_admin

• Creates a new warehouse xscompute

• Creates a new database jumpstart

162

Chapter 9 Designing a MoDern analytiCs solution with snowflake

• Creates new schemas business and stg

• Grants permissions for accessing Snowflake Sample data

You can find the dbt profile in the chapter_9/snowflakebook/ folder. Place it in the default location: the ~/.dbt folder.

cp profiles.yml ~/.dbt/profiles.yml

The dbt project is in the snowflakebook folder, which was created using the dbt init command. You can create your own project in another folder if you want to start from scratch.

You need to connect to Snowflake to build dbt models. Dbt model contains SQL

logic for data transformations. During the model run, dbt compiles SQL and sends it to Snowflake for execution.

Let’s review the components of the dbt project.

• dbt_project.yml is the main configuration file.

• The models folder contains dbt models. Each dbt model is a SQL file

(i.e., transformation).

• profiles.yml defines the connection to Snowflake or any other

data warehouse platform. This file was used to copy into ~/.dbt/

profiles.yml.

Before you can run our models, you need to make sure dbt is connected to the Snowflake. For this purpose, you should make sure you have a proper dbt profile. It requires the SNOWFLAKE_ACCOUNT variable. You have to export it.

export SNOWFLAKE_ACCOUNT=<YOUR_ACCOUNT>

Our example used ah459331.east-us-2.azure.

Test your connection to Snowflake by running the dbt debug command; it should return “All checks passed!” This means you are good to go with dbt model development.

Note one of the advantages of dbt is a local development environment. it allows you to easily split the production and development environment to test and build models in the development schema without any risk of breaking the production environment. environments are configured in profiles.yml.

163

Chapter 9 Designing a MoDern analytiCs solution with snowflake After testing the connection, you should run dbt deps to install all dbt packages from packages.yml. There are lots of useful packages available in the dbt hub (https://

hub.getdbt.com).

Typical dbt projects consist of layers. You can leverage the approach of Medallion architecture with bronze, silver, and gold subfolders, or you can use anything you like.

In our case, we defined two layers in the Snowflake warehouse: stg as the staging layer and business as a layer for fact tables. The folder structure is for our convenience. You should match the folders in models with the dbt_project.yml file.

You can check the staging models in /chapter_9/snowflakebook/models/staging.

Based on the dbt_project.yml config, we chose +materialized: view (i.e., Snowflake creates views). But there is an option to create a table. Moreover, in production, we usually use different incremental models to avoid expensive reloads of data.

To run all our models and corresponding data tests, you can use the dbt build command. Alternatively, you can run only the models with dbt run or only the tests with dbt test. Moreover, you can run a given model with the dbt run --select <MODEL> command. In other words, Snowflake is creating a SQL query based on dbt models and executing it on the Snowflake side.

Briefly speaking, a dbt is a SQL framework that allows you to convert business logic into SQL dbt models with dependencies, data tests, and documentation; it is easy to use and onboard. A dbt doesn’t do any heavy lifting. You can review the SQL commands it generates in /chapter_9/snowflakebook/target or review logs in /chapter_9/

snowflakebook/logs/dbt.log.

The dbt run should create views in the jumpstart database. Figure 9-10 shows an example.

164

[image: Image 87]

Chapter 9 Designing a MoDern analytiCs solution with snowflake

 Figure 9-10. Snowflake views

Next, you can deploy Metabase BI and connect to Snowflake using the same dbt_user.

Metabase is a popular BI tool. It allows you to connect data warehouse and write SQL queries using browser. It is different from Tableau, where you can drag-and-drop dimensions and measure to build a dashboard. In Metabase, you should write a SQL for each table of visual element and then combine elements together in a dashboard.

It is available as managed version that isn’t free or community edition that is free.

Usually, Metabase is deployed in the container and might be hosted in container services like AWS Elastic Container Service and Azure Kubernetes Service.

Metabase is a great choice for a small company or as a complimentary BI tool for tools like Tableau and Looker.

165

Chapter 9 Designing a MoDern analytiCs solution with snowflake In the book repository, you can see the command to pull the last Metabase image and start the container /chapter_9/readme.md

Let’s run several commands in our terminal. It requires to run Docker Desktop application.

pull last official image with metabase

docker pull metabase/metabase:latest

start metabase container on port 3000

docker run -d -p 3000:3000 --name metabase metabase/metabase

Go to http://localhost:3000 in a browser to open Metabase. You can register with your email address, and you are ready to connect to the Snowflake data warehouse.

In Metabase, you can review sample dashboards in the Example collection at http://localhost:3000/collection/2-examples.

Go to the Admin console at http://localhost:3000/admin/databases, and

click Add Database. Choose Snowflake and enter the credentials for your Snowflake instance. You can use the same user and password that we used for dbt.

Ideally, in a production environment, every service should have its own user, role, and compute warehouse.

After establishing a connection with Snowflake, you are ready to write SQL queries and turn them into visuals.

Go back to the home page (http://localhost:3000/), and in the top-right corner, click New. It opens a window where you can insert a SQL query. You can get the SQL

query from the GitHub repo at /chapter_9/readme.md. Figure 9-11 is a screenshot from Metabase.

166

[image: Image 88]

Chapter 9 Designing a MoDern analytiCs solution with snowflake

 Figure 9-11. Metabase example

Metabase allows you to explore data, build visuals, and combine them into dashboards with filters and parameters for self-service BI. Another advantage of Metabase is API that allows you to programmatically execute reports from ETL tools, getting data or visuals and sending them over email or messengers, with a community edition, everything for free except engineering labor.

 Engineering Excellence with dbt Development

Before wrapping the chapter, we want to give you some guidance on best practices for working with dbt. Since dbt allows you to work with code, you can leverage best practices of software engineering such as pre-commit, CI/CD, containerization, unit tests, and so on.

Typically, dbt code and modules are stored in the git version system. Before starting work on development, you should create a development branch. For example, git checkout feature/new-dbt-model. This command creates a development

branch for us.

You can modify our existing code or add a new code. When done, we usually commit and push the code for code review. It is good practice to use pre-commit to automatically check with code before sharing it with the team. You can learn more about pre-commit at https://pre-commit.com.

167

Chapter 9 Designing a MoDern analytiCs solution with snowflake Let’s first review the pre-commit specifically for dbt and Snowflake. The repo provides an example of a pre-commit config for dbt and Snowflake. You can find this in the root directory as well as the dbt project /chapter_9/.pre-commit-config.yaml.

Table 9-5 describes each hook.

 Table 9-5. Pre-Commit Hooks

Hook

Description

trailing-

removes unnecessary whitespace at the end of lines to maintain clean and whitespace

consistent code formatting

check-yaml

Validates yaMl files to ensure they are syntactically correct and well-formed prettier

automatically formats code to enforce a consistent style across various programming languages and file types

black

provides an opinionated python code formatter that automatically resolves code style and formatting issues

flake8

Checks python code for style guide enforcement (pep 8) and identifies potential errors or code quality issues

dbt-checkpoint

runs additional checks and validations specific to dbt (data build tool) projects to maintain code quality and best practices

sqlfluff

automatically fixes sQl code to ensure consistent formatting and detect potential sQl syntax problems

Pre-commit is already installed with requirements.txt, and you can activate it by running the following.

pre-commit install

You also need to make sure to provide the SQLFluff config file. We provided

.sqlfluff in the repo.

You can run pre-commit with git commands.

git add .

git commit -m “Update dbt model”

Alternatively, you can run the following.

pre-commit run --all-files

168

Chapter 9 Designing a MoDern analytiCs solution with snowflake This runs our pre-commit hooks for the changed file. dbt models already linted with SQLFluff.

This is a great example of how to enforce the quality of dbt and data engineering quality.

 Data Ingestion and Orchestration

Our example used dbt on top of available data in Snowflake data share sample data. In a real-world scenario, you would need to ingest data into Snowflake.

For ingestion data, you may consider Airbyte or Meltano to deploy. Our example uses Airbyte.

Airbyte offers hundreds of connectors to source applications, databases, and APIs such as Postgres, Salesforce, Amplitude, and so on. Airbyte gives provides a user interface. It looks and feels similar to Fivetran.

There are two options available for deploying Airbyte.

• The Airbyte command-line tool (aclt)

• A Helm chart to deploy on minikube or Kubernetes cluster

You can check the examples for deploying Airbyte with aclt and a Helm chart at chapter_9/readme.md.

Let’s review an example of installing the Airbyte on a local minikube.

Note minikube is a lightweight kubernetes implementation that lets you run a single-node kubernetes cluster locally for development and testing purposes. you can learn how to install it locally using the guide at https://minikube.sigs.

k8s.io/docs/start/.

Once minikube is installed, the next step is to start it.

minikube start

Helm and kubectl are also needed.

Helm is a package manager for Kubernetes that simplifies the deployment and management of applications by using *charts*, which are pre-configured Kubernetes resources. You can learn how to install it locally at https://github.com/helm/helm.

169

Chapter 9 Designing a MoDern analytiCs solution with snowflake kubectl is the command-line tool used to interact with a Kubernetes cluster, allowing you to deploy, inspect, manage, and troubleshoot resources and applications within the cluster. minikube is a lightweight Kubernetes implementation that lets you run a single-node Kubernetes cluster locally for development and testing purposes.

You can learn how to install it locally using the guide at https://kubernetes.io/docs/

tasks/tools/.

helm repo add airbyte https://airbytehq.github.io/helm-charts

helm install airbyte airbyte/airbyte --version 1.2.0

The output should be similar to the following.

NAMESPACE: default

STATUS: deployed

REVISION: 1

NOTES:

1. Get the application URL by running these commands:

export POD_NAME=$(kubectl get pods --namespace default -l "app.

kubernetes.io/name=webapp" -o jsonpath="{.items[0].metadata.name}") export CONTAINER_PORT=$(kubectl get pod --namespace default $POD_NAME -o jsonpath="{.spec.containers[0].ports[0].containerPort}")

echo "Visit http://127.0.0.1:8080 to use your application"

kubectl --namespace default port-forward $POD_NAME 8080:$CONTAINER_PORT

Open Airbyte at http://localhost:8080.

Using the same minikube cluster, add the Airflow Helm chart.

helm repo add apache-airflow https://airflow.apache.org

helm upgrade --install airflow apache-airflow/airflow --namespace airflow

--create-namespace

You can learn more about this in Airflow documentation at https://airflow.

apache.org/docs/helm-chart/stable/index.html. If you are using Airflow hosted on Kubernetes, you should run dbt in KubernetesPodOperator. Every Airflow dbt DAG

starts a new pod with a dbt image and runs dbt models in it. You can learn about dbt and Airflow in the article at www.astronomer.io/blog/airflow-and-dbt/.

170

Chapter 9 Designing a MoDern analytiCs solution with snowflake To summarize, you can build a data stack for the Snowflake data warehouse using open source tools for data ingestion, transformation, and orchestration. One of the best options to deploy your open source stack is to run it on a Kubernetes cluster.

In addition, you can add tools for data observability, monitoring, and data governance using Helm charts and deploy them on Kubernetes.

 Summary

This chapter covered the Snowflake partner ecosystem. You learned about modern analytics architecture and its key elements. You connected to the best cloud ELT tool for Snowflake, Matillion ETL, and ran our first job. Then, you built a report with the Tableau visual analytics tool and discovered the open source data stack. You also learned about dbt Core, Metabase, Airbyte, and Airflow.

The next chapter discusses performance optimization and cost monitoring in Snowflake.

171

CHAPTER 10

Performance Optimization

and Cost Monitoring

Snowflake is a powerful, cloud-native data platform designed to support a wide variety of data workloads, from interactive analytics to batch processing and everything in between. But getting the best performance and value from Snowflake isn’t automatic—

it requires a clear understanding of how Snowflake works under the hood and how to make the most of its optimization features.

This chapter walks through practical strategies for improving the efficiency, speed, and cost-effectiveness of your Snowflake environment. Whether you’re working with large datasets, designing data pipelines, or managing compute resources, these recipes help you fine-tune your setup for real-world demands.

You’ll learn how to do the following.

• Understand and optimize data reads using clustering, partition

pruning, and pruning-aware data loading

• Improve data processing performance through query design and

task tuning

• Configure and scale virtual warehouses effectively to balance

performance and cost

• Monitor and control resource consumption to avoid unexpected

costs and inefficiencies

173

© Dmitry Anoshin, Dmitry Foshin and Donna Strok 2025

D. Anoshin et al., Jumpstart Snowflake, https://doi.org/10.1007/979-8-8688-1533-1_10

Chapter 10 performanCe optimization and Cost monitoring By the end of this chapter, you’ll be equipped with actionable techniques to get the most out of Snowflake’s performance capabilities—whether you’re a data engineer, architect, or platform owner.

 Understanding Snowflake Architecture

for Optimization

Snowflake’s architecture is built on a separation of compute and storage, offering distinct advantages for performance and cost control. To optimize effectively, you must understand its key architectural features.

• Virtual warehouses: Compute resources used for query execution.

Warehouses can be scaled up (more power) or out (more parallelism)

as needed. In Snowflake, this can be managed through the web

interface, SQL commands, or the Snowflake REST API. To scale up,

you can choose a larger warehouse size (e.g., XS to M) for increased

compute power. To scale out, you can enable multi-cluster warehouses,

allowing Snowflake to add additional clusters automatically based

on query concurrency. For example, for a small analytics task, an XS

warehouse might suffice, but a L or XL warehouse is more suitable for

processing terabytes of data in parallel.

• Centralized storage: Shared, cloud-based storage layer accessible by all virtual warehouses. Data in Snowflake is stored in a centralized repository using cloud-based object storage (e.g., AWS S3, Azure

Blob Storage, or Google Cloud Storage). Multiple teams can work

on different virtual warehouses accessing the same dataset stored

centrally without duplication.

• Cloud services layer: This layer manages metadata, query parsing, optimization, authentication, and security. It acts as the “brain” of

Snowflake’s architecture, coordinating operations across the storage

and compute layers. Features like automatic query optimization and

metadata-driven partition pruning are managed here. Snowflake

automates tasks like clustering and indexing, reducing administrative

overhead.

174

Chapter 10 performanCe optimization and Cost monitoring The Snowflake performance optimization techniques broadly fall into three separate categories.

• Data read optimization

• Data processing optimization

• Warehouse configuration optimization

 Data Read Optimization

 Data Clustering and Partitioning

Efficient data reading in Snowflake is largely driven by its automatic micro-partitioning system and optional clustering. These features work together to reduce the amount of data scanned during queries, improving performance and minimizing compute cost.

• Micro-partitioning overview

When data is loaded into a Snowflake table, it is automatically

divided into micro-partitions—contiguous units of storage typically

containing 50 MB to 500 MB of compressed data. Each partition

stores rich column-level metadata, including min/max values, null

counts, and more.

Snowflake uses this metadata to skip scanning irrelevant partitions

during query execution—a technique known as partition pruning.

This behavior is automatic and requires no manual configuration.

• Clustering keys

–

For large tables where query performance is critical, you can

define clustering keys to influence how data is physically orga-

nized across micro-partitions.

–

Choose columns frequently used in filters, JOINs, or GROUP BY

clauses (e.g., transaction_date, region_id).

–

Avoid using high-cardinality columns (e.g., UUIDs, unique IDs)

as clustering keys, as they may lead to inefficient or ineffective

clustering.

175

Chapter 10 performanCe optimization and Cost monitoring

–

Clustering is especially beneficial for time-series, event, and large

fact tables where filtering on a specific range or subset

is common.

• Monitoring clustering effectiveness

You can assess how well a table is clustered using the function.

SELECT SYSTEM$CLUSTERING_INFORMATION('your_table_name');

This returns metrics such as clustering depth, which indicates how

well data aligns with the clustering keys. A higher depth may signal

that the clustering has degraded over time due to new data inserts or

updates.

For tables with manual clustering (clustering defined but automatic

clustering not enabled), you can use ALTER TABLE RECLUSTER to

reorganize the data.

• Sorting data during loading

Sorting data on clustering key columns before loading into Snowflake

can improve query performance by ensuring that related records are

stored together in the same micro-partitions. This approach is often

referred to as natural clustering.

You can apply this technique by using the SORT BY clause in the COPY

INTO command or by pre-sorting the data in your ETL/ELT process.

For example, sorting sales data by region and order_date ensures

that queries filtering by these columns scan fewer micro-partitions

and return results faster.

While this method doesn’t replace defined clustering keys, it

complements them by improving the initial physical layout of

the data.

• Automatic clustering

Snowflake offers an automatic clustering feature that continuously

manages partition organization as new data is added.

176

Chapter 10 performanCe optimization and Cost monitoring

–

Once enabled, Snowflake automatically reclusters the table based

on the defined clustering keys; no manual action is required.

–

This feature incurs additional cost, so it should be evaluated

based on workload needs and query patterns.

• Best practices for partitioning large datasets

–

For time-series data, use date, datetime, or timestamp columns

as clustering keys to optimizing range queries (e.g., by month

or year).

–

For multi-dimensional filters, combine multiple columns in the

clustering key, such as region, product_id, and transaction_date.

–

Monitor performance and clustering depth regularly, especially

on large or fast-changing tables.

 Data Storage Best Practices

Store only the data you need and use Snowflake’s compression to minimize storage costs.

• TIME TRAVEL: This feature allows you to access historical data for a defined period (up to 90 days, depending on your Snowflake

edition). You can query, restore, or clone data from a specific point

in the past. It is useful for correcting accidental deletions or updates.

The following is an example of recovering a deleted table. Useful for

correcting accidental deletions or updates.

SELECT * FROM sales AT (TIMESTAMP => '2025-01-01 10:00:00');

• FAIL-SAFE: This is the seven-day recovery period after TIME

TRAVEL expires, designed for disaster recovery. Data in fail-safe is

only accessible by Snowflake support and incurs additional costs. It

acts as a safety net for critical data recovery.

177

Chapter 10 performanCe optimization and Cost monitoring Data Processing Optimization

Optimizing query performance is critical for reducing execution times and ensuring efficient resource utilization. Snowflake provides several tools and techniques to streamline queries.

 Analyze Query Execution

Snowflake provides tools like Query Profile to analyze execution plans.

• Identify bottlenecks such as large table scans or inefficient joins.

• Optimize join order by ensuring smaller datasets are processed first.

• Avoid repeated computation by materializing intermediate results

using temporary tables.

The following are some key metrics to examine.

• Elapsed time: Total time taken for query execution.

• Partition scanning: Number of partitions scanned during execution.

• Processing steps: Identify stages with high execution times.

One example would be a query scanning millions of partitions without proper filtering, which might indicate missing WHERE clauses or improperly clustered data.

 Optimization Techniques

–

Prune unnecessary data. Use filters and WHERE clauses to reduce

scanned data. For example, querying specific date ranges reduces

unnecessary data reads.

SELECT *

FROM sales

WHERE region = 'EMEA' AND sales_date >= '2024-01-01';

178

Chapter 10 performanCe optimization and Cost monitoring

–

Avoid SELECT * statements. Instead, specify required columns

explicitly to reduce data transfer and processing overhead.

SELECT customer_id, sales_date, total_amount

FROM sales;

–

Use joins effectively. Prefer inner joins over outer joins when possible and ensure join keys are indexed.

SELECT c.customer_name, o.order_id

FROM customers c

INNER JOIN orders o ON c.customer_id = o.customer_id;

–

Create materialized views. Pre-compute and store results of frequent queries to speed up subsequent access.

CREATE MATERIALIZED VIEW sales_summary AS

SELECT region, SUM(total_amount) AS total_sales

FROM sales

GROUP BY region;

–

Implement the search optimization service for point queries that require fast lookups in large datasets.

–

Remove unnecessary sorts.

The ORDER BY created_at DESC inside filtered_orders does

not affect the final result since the main query does not require

ordered data.

Sorting inside a CTE is expensive and unnecessary unless

explicitly needed for LIMIT or ROW_NUMBER() operations.

Removing it reduces query execution time and computational

costs in Snowflake see Figure 10-1.

179

[image: Image 89]

Chapter 10 performanCe optimization and Cost monitoring

 Figure 10-1. Removing sort

Choose window functions over self-joins. Without self-join, each row is processed only once. Snowflake applies the window function

efficiently over partitions, so the execution is faster. Also, the query is easier to understand see Figure 10-2.

180

[image: Image 90]

Chapter 10 performanCe optimization and Cost monitoring

 Figure 10-2. Window functions instead of self-joins

–

Avoid joins with an OR condition. Using OR conditions in JOIN

clauses can significantly degrade query performance because they

prevent efficient indexing and partition pruning, leading to full table scans see Figure 10-3.

181

[image: Image 91]

Chapter 10 performanCe optimization and Cost monitoring

 Figure 10-3. Avoid joins with an OR condition

–

Periodically review long-running queries in the Query History

dashboard to identify candidates for optimization.

 Leverage Caching

Snowflake caches data at multiple levels—result caching, query caching, and warehouse caching—to reduce redundant computation and enhance performance. If a user runs the same query twice within 24 hours and the underlying data has not changed, Snowflake returns the cached result immediately.

182

Chapter 10 performanCe optimization and Cost monitoring Warehouse Configuration Optimization

 Right-sizing Virtual Warehouses

Select an appropriate size based on query complexity and concurrency. If a marketing team is running ad hoc reports with minimal concurrency, an XS or S warehouse is cost-effective. For a nightly batch ETL process, a L warehouse may be more efficient.

 Scaling Policies

Use auto-scaling to dynamically adjust warehouse clusters based on demand. During business hours, enable auto-scaling to handle spikes in user activity and suspend the warehouse after hours to save costs.

Snowflake has introduced several recent features that can further improve performance and efficiency.

• Cluster size tuning: Independent from warehouse size, this allows better management of concurrency. Larger cluster sizes can process

more queries in parallel, reducing queue times.

• Query acceleration service (QAS): This optional feature uses

ephemeral compute resources behind the scenes to speed up large,

complex queries—especially useful in dashboards or high-

concurrency environments.

• Snowpark-optimized warehouses: Designed for memory-intensive

operations, these specialized warehouses provide more memory

per node and are optimized for workloads using Snowpark (e.g., ML

model training or large in-memory data transformations).

By leveraging these architectural features effectively, you can achieve a balance between performance and cost.

183

Chapter 10 performanCe optimization and Cost monitoring Administering Resource Consumption

The next important topic for Snowflake administrators is resource consumption.

Keeping track of storage and compute resources is critical for Snowflake customers.

Snowflake provides administrative capabilities for monitoring credit and storage usage as well as resource monitors that can send alerts on usage spikes and automatically suspend the virtual warehouse.

By default, only the ACCOUNTADMIN role has access to the billing information.

Access to this data can be extended to other roles by granting the appropriate privileges, such as the MONITOR USAGE or MONITOR ACCOUNT privileges.

Snowflake’s unique architecture separates compute resources (virtual warehouses) from data storage. Costs are based on the following.

• Compute costs: Measured in credits for the time virtual

warehouses run.

• Storage costs: Based on the volume of data stored in Snowflake.

When setting up a Snowflake demo account for this book, we were granted 400

credits to use, and Snowflake administrators can track credit consumption in real time.

 Virtual Warehouse Usage

Snowflake charges credits for using virtual warehouses (VWs), and the price depends on the number of VWs in use, their size, and usage duration.

Note Credits are billed per second, with a 60-second minimum per usage session.

You can use the WAREHOUSE_METERING_HISTORY table function that shows hourly credit usage, or you can use the web interface and click Admin ➤ Cost Management.

Let’s run this code to see the usage for the last seven days.

select * from table(information_schema.warehouse_metering_history(dateadd('

days',-7,current_date())));

Figure 10-4 shows an example of sample usage.

184

[image: Image 92]

Chapter 10 performanCe optimization and Cost monitoring

 Figure 10-4. Sample usage of credits for virtual warehouse

Note Use virtual warehouse auto-suspend and auto-resume settings to minimize compute costs.

-- auto-suspend after 60 seconds of inactivity.

ALTER WAREHOUSE my_warehouse SET AUTO_SUSPEND = 60, AUTO_

RESUME = TRUE ;

 Data Storage Usage

Another aspect of the price is storage. Snowflake calculates the price of storage monthly based on the average daily storage space. It includes files stored in the Snowflake stage, data stored in databases, and historical data maintained for a fail-safe. Moreover, time-traveling and cloned objects are consuming storage. The price is based on a flat rate per terabyte.

Note the terabyte price depends on the type of account (capacity or on-demand), region, and cloud provider.

You can review the usage data using the web interface, navigating to Admin ➤ Cost Management ➤ Consumption, and selecting Storage in the Usage Type menu. The result is shown in Figure 10-5.

185

[image: Image 93]

Chapter 10 performanCe optimization and Cost monitoring

 Figure 10-5. Snowflake usage report

Also, you can leverage table functions and a Snowflake view, as follows.

-- Database Storage for last 7 days

select * from table(information_schema.database_storage_usage_history(datea dd('days',-7,current_date()),current_date()));

-- Stage Storage for last 7 days

select * from table(information_schema.stage_storage_usage_history(dateadd(

'days',-7,current_date()),current_date()));

-- Table Storage utilization

select * from table_storage_metrics

Note make sure that data is in a compressed format in the snowflake staging area. another consideration is to use external storage options like amazon s3, where you can set the data lifecycle policy and archive cold data. reduce retention periods for non-critical data to minimize storage costs.

ALTER TABLE my_table SET DATA_RETENTION_TIME_IN_DAYS = 1;

186

Chapter 10 performanCe optimization and Cost monitoring Data Transfer Usage

Snowflake is available in multiple regions for AWS, Azure, and Google Cloud Platform.

You should take into consideration one more aspect of possible cost. If you are using an external stage (AWS S3 or Azure Blob Storage), you may be charged for data transfers between regions.

Snowflake charges a fee for unloading data into S3 or Blog Storage within the same region or across regions.

Note snowflake won’t charge you for loading data from external storage.

There is an internal Snowflake function that helps track this cost, as shown here.

-- Cost for the last 7 days

select * from table(information_schema.data_transfer_history(date_range_

start=>dateadd('day',-7,current_date()),date_range_end=>current_date())); Configure Resource Monitors

Resource monitors allow you to restrict the total cost a given warehouse can incur. You can use resource monitors for two purposes.

• To send a notification once costs reach a certain threshold

• To restrict a warehouse from costing more than a certain amount in a given time period

Snowflake can prevent queries from running on a warehouse if it has surpassed its quota.

Figure 10-6 is a screenshot of the Snowflake resource monitor.

187

[image: Image 94]

Chapter 10 performanCe optimization and Cost monitoring

 Figure 10-6. Snowflake resource monitor

Resource monitors are a great way to avoid surprises in your bill and prevent unnecessary costs from occurring in the first place.

 Configure Budgets

In addition to resource monitors, Snowflake now offers a more advanced feature: Budgets. Budgets provide a broader view of anticipated spending across the account and support more proactive financial planning.

The following are key features of budgets.

• Set spending limits over custom timeframes (monthly, quarterly, etc.)

• Monitor actual vs. forecasted credit consumption

• Receive alerts when spending is projected to exceed the budget

• Track usage across multiple objects, such as warehouses, services,

and features

Budgets can be especially helpful for finance and FinOps teams to anticipate overspending before it occurs rather than simply reacting to usage limits.

You can configure Budgets via SQL or the Snowsight UI under Admin ➤ Cost Management ➤ Budgets.

188

Chapter 10 performanCe optimization and Cost monitoring For more information, see the Snowflake Budgets documentation at https://docs.

snowflake.com/en/user-guide/budgets.

 Summary

Optimizing Snowflake isn’t just about performance—it’s about aligning architecture, workloads, and cost management in a way that scales with your organization’s needs.

This chapter explored practical strategies across warehouse configuration, query and data optimization, and spend governance. Whether it’s fine-tuning clustering keys, enabling auto-scaling, leveraging budgets, or monitoring credit usage, each decision contributes to a more responsive, efficient, and cost-effective data platform.

By applying these best practices, you’ll not only improve query speeds and resource utilization but also gain better control over your Snowflake environment—ensuring it delivers value at every level of usage.

189

CHAPTER 11

Snowflake AI and ML

Data is everywhere, and turning that raw data into real understanding can feel like searching for a needle in a haystack. There are times when we need to uncover the hidden stories, predict what’s coming next, or make smart decisions based on solid evidence. But that’s all changing with Snowflake ML. You don’t need to be a data scientist or have a PhD to get started, putting the power of artificial intelligence and machine learning within reach of anyone, regardless of their background. This chapter covers the following topics.

• Overview and key features

• Data preparation

• Best practices

After completing this chapter, you should have a high-level understanding of how to navigate and use Snowflake ML.

 Overview and Key Features

Snowflake ML is a powerful service integrated within the Snowflake AI Data Cloud.

It enables users to build, leverage, and maintain machine learning (ML) models.

Additionally, Snowflake AI and ML Studio incorporate large language models (LLMs) that enable advanced text generation, summarization, code completion, and other AI-powered tasks directly within Snowflake. You also have access to tools like Document AI, Cortex Playground, Cortex Search, Cortex Analyst, and Snowflake Copilot, which are all part of Snowflake ML.

191

© Dmitry Anoshin, Dmitry Foshin and Donna Strok 2025

D. Anoshin et al., Jumpstart Snowflake, https://doi.org/10.1007/979-8-8688-1533-1_11

[image: Image 95]

Chapter 11 Snowflake aI and Ml

 Key Features

This section provides a high-level overview of Snowflake ML’s key features, including core capabilities of the pretrained ML and LLM functions, custom model deployment, embeddings, and other services, demonstrating how they work together to empower users of all skill levels.

 Pretrained ML Models

Snowflake offers a library of pretrained ML models for common tasks such as classification, anomaly detection, forecasting, and more. These models can be used directly within SQL queries, eliminating the need for complex integrations or additional infrastructure.

 Classification

You are asked to predict what type of spender (i.e., high, medium, low) a new customer could become based on what they buy. Snowflake makes it easy with its predefined classification model. To prepare for use, you need to provide a training table with one or more features that correspond to the spend category into which these customers fall.

Then, you create another table that applies the model, which contains the same features.

Figure 11-1 shows how to get started.

 Figure 11-1. To get started, click + Create Classification ML under the Snowflake AI and ML Studio options

 Forecasting

Your finance team needs to forecast monthly revenue, and they’d like to account for variations with holidays and slow periods. Snowflake offers a way to easily create a forecasting ML model. Simply train using your time series data, and the forecast model will provide forecast data. Figure 11-2 shows how to get started.

192

[image: Image 96]

[image: Image 97]

Chapter 11 Snowflake aI and Ml

 Figure 11-2. To get started, click + Create Forecasting ML under the Snowflake AI and ML Studio options

 Anomaly Detection

You want to be proactive instead of reactive when it comes to discovering data quality issues. An anomaly detection model would help monitor your pipelines and alert you for any outliers or uncommon events that can affect your data quality. To utilize, the training dataset needs a timestamp column and at least one numeric column. Figure 11-3 shows how to get started.

 Figure 11-3. Create Anomaly Detection ML under the Snowflake AI and ML

 Studio options

 LLM Functions

Snowflake offers instant and easy access to well-known LLMs from companies like Anthropic and Meta through easy-to-use functions. These functions allow users to leverage the power of LLMs directly within Snowflake without a complicated setup. You can easily perform tasks such as text summarization, sentiment analysis, and language translation directly on data stored in Snowflake tables. For example, a user could use an LLM Function to automatically summarize customer reviews or analyze the sentiment of social media posts related to their brand. Figure 11-4 shows an example of how to use the SNOWFLAKE.CORTEX.COMPLETE() function within a simple SQL statement.

193

[image: Image 98]

Chapter 11 Snowflake aI and Ml

 Figure 11-4. Simple SQL Statement using the Complete function, one of many Snowflake LLM functions

For a complete list of LLM functions, please see Snowflake’s documentation at

https://docs.snowflake.com/en/user-guide/snowflake-cortex/llm-functions.

 Custom Model Deployment

Users can train and deploy their own ML models within Snowflake using Snowpark ML, which allows the use of Python-based frameworks like TensorFlow, PyTorch, and Scikit-learn. Snowflake has an excellent tutorial on how to deploy a custom model to the Snowflake Model Registry.

Tip read the deploying Custom Models to Snowflake Model registry tutorial at https://quickstarts.snowflake.com/guide/deploying_custom_

models_to_snowflake_model_registry/index.html#0.

 Embeddings

Snowflake supports vectorized data processing, enabling similarity searches and recommendation systems. This is particularly useful for applications such as image recognition, personalized recommendations, and NLP-based search functions. To use the embeddings vector functions, first store the embeddings in a Snowflake table and then perform the similarity comparisons. The following is an example of how easily you can use embeddings for cosine similarity.

194

Chapter 11 Snowflake aI and Ml

SELECT item_id, VECTOR_COSINE_SIMILARITY(embedding_column, input_vector) AS

similarity FROM my_embeddings_table ORDER BY similarity DESC LIMIT 10;

 Feature Store

Snowflake’s Feature Store is a centralized registry for ML features, which are datasets that are preprocessed and used for model inputs. Data preparation is discussed in the next section, with strategies on how to create Snowflake datasets for model training and inputs. But, adding a dataset to the Feature Store is simple. You can run a simple Python command. Please keep in mind that access to these datasets is managed by Snowflake roles.

from snowflake.ml.feature_store import FeatureStore, CreationMode

fs = FeatureStore(

session=session,

database="MY_DB",

name="MY_FEATURE_STORE",

default_warehouse="MY_WH",

creation_mode=CreationMode.CREATE_IF_NOT_EXIST,

)

Note Snowflake feature Store is an enterprise edition product and may require changes to your account. Contact Snowflake support for assistance on upgrading.

See Snowflake’s documentation on the feature Store for more information on role-based access and working with different types of datasets (https://docs.

snowflake.com/en/developer-guide/snowflake-ml/feature-store/

overview).

195

[image: Image 99]

Chapter 11 Snowflake aI and Ml

 Snowflake Copilot

An LLM assistant that helps users understand their data with natural language queries, generate and refine SQL queries, and learn about Snowflake’s features. Figure 11-5

shows how asking a question in Copilot generates a query that you can easily add and/or run within our Snowflake worksheet.

 Figure 11-5. Generate a query that you can easily add and/or run within a Snowflake worksheet

196

Chapter 11 Snowflake aI and Ml

TRY OUT SNOWFLAKE COPILOT

1. Select Database and Schema. In this example, we selected SNOWFLAKE_

SAMPLE_DATA.TPCH_SF

2. enter a question you’d like help with. the request in figure 11-5 is Help me create a query that shows the number of customers and count orders for each nation.

3. Click Run to move the query to the worksheet and run the query at the same time. If you only want to move the query to the worksheet without running, click +Add.

 Document AI

This feature intelligently processes and extracts structured data from unstructured content like PDFs, images, and Word files at scale, simplifying document handling. This is a very useful tool, and Snowflake offers a very useful tutorial on their site.

Tip Create a document processing pipeline with document aI. to start this tutorial, visit https://docs.snowflake.com/en/user-guide/snowflake-

cortex/document-ai/tutorials/create-processing-pipelines

 Cortex Search

A text search service that provides LLMs with context from your latest proprietary data, enabling more accurate and relevant results. Snowflake offers an easy walk-through guide the first time it is used. This guide can be started in the Snowflake AI and ML Studio.

197

[image: Image 100]

Chapter 11 Snowflake aI and Ml

 Figure 11-6. First screen of the Cortex Search tutorial, located in the Snowflake AI and ML Studio

 Cortex Analyst

Create an LLM-powered application using your business terms along with your data. This helps users ask questions as they would to an analyst—naturally and conversationally. The application would generate the necessary queries in the background and present the answers without the user having to write code or create dashboards. This helps scale your analytics team to work on more complex problems.

To try it out, Snowflake integrates a tutorial in the Snowflake AI and ML Studio. Find Cortex Analyst, click Try, and then click + Create new (see Figure 11-7).

198

[image: Image 101]

Chapter 11 Snowflake aI and Ml

 Figure 11-7. Cortex Analyst screen: to begin tutorial walk-through, click +

 Create New

Without high-quality, well-prepared data, even the most sophisticated models struggle to produce meaningful results. Snowflake, with its robust data management capabilities, provides an ideal environment for preparing data for generative AI projects.

This section delves into the essential steps involved in this process, from data discovery to ensuring data governance and security. Utilizing Snowflakes features for data discovery and transformation techniques for data cleaning that help improve your data quality is also covered.

199

Chapter 11 Snowflake aI and Ml

 Data Discovery

Data discovery is crucial for any AI project, as it helps identify relevant data sources and their characteristics and ensures that the project starts with a solid foundation of suitable data. Snowflake offers data profiling SQL commands and tagging as a way to facilitate your data discovery.

Snowflake has built-in SQL commands that allow you to quickly analyze the characteristics of your data. This includes identifying data types, distributions, null values, and other statistical properties. This information is crucial for understanding the data’s suitability for most AI projects while also identifying potential data quality issues.

You can use SQL commands like DESCRIBE TABLE, SHOW TABLES, and INFORMATION_

SCHEMA views to gain insights into your data.

The following shows how to get useful metadata about your tables from the INFORMATION_SCHEMA table.

SELECT column_name, data_type, null_count, distinct_count

FROM information_schema.columns

WHERE table_name = 'my_table';

Snowflake also allows you to tag data objects (i.e., tables, views, columns) with metadata. This enables you to organize and categorize your data, making it easier to discover relevant datasets. For example, you might tag a table containing customer reviews with “sentiment analysis” or a dataset of images with “image generation.”

The following is an example of how to add a tag to a table named customer_reviews.

ALTER TABLE customer_reviews SET TAG data_domain = 'customer_feedback'; By effectively using the data profiling SQL commands and tagging your datasets, you can quickly and efficiently identify and select the relevant data for your project.

 Data Cleaning and Transformation

Once you’ve identified suitable datasets, the next step is to clean and transform the data to make it suitable for use in AI projects. This often involves addressing several common data quality issues, which are missing values (nulls vs. blanks), irrelevant data, outlier detection and treatment, data type conversion, and more. There are entire books written on just this subject, but this book covers some ways you can clean your data with Snowflakes SQL functions or commands.

200

Chapter 11 Snowflake aI and Ml

 Handling Missing Values

Missing data can significantly impact model performance. The best method for handling missing values depends on several factors, including the amount of missing data, the type of data, and the impact of missing data. Snowflake provides functions that make it easy to handle missing values, including the following.

• Removing: Removing an entire row where any value is missing is the easiest to implement but may also reduce the number of rows. This

can be done by filtering using the WHERE clause.

• Imputation: Replacing missing values with another value, such as estimated values (e.g., mean, median, mode) or replacing NULL

or blanks with zero. This can be done using SQL’s COALESCE or NVL

functions.

 Outlier Detection and Treatment

Outliers can skew and lead to inaccurate or unintentional results. Snowflake offers many statistical functions that can be used to detect outliers, such as STDDEV(), STDDEV_

SAMP(), STDDEV_POP(), PERCENTILE_CONT(), and APPROX_PERCENTILE().

 Data Type Conversion

LLM prompts are in text format, which may require converting data in your table to text.

Snowflake has SQL functions like CAST and TO_VARCHAR that dynamically convert your non-text data into text.

 Best Practices for Using Snowflake ML

• Optimize data storage: Store only relevant features for ML models to reduce costs and improve query performance. For example,

instead of storing entire raw datasets, extract key attributes such as

transaction amounts and timestamps for fraud detection models.

201

Chapter 11 Snowflake aI and Ml

• Monitor model performance: Regularly evaluate the performance of deployed models and update them as needed. This can be done

by comparing model predictions against actual outcomes, such

as tracking the accuracy of a customer churn prediction model

over time.

• Workflow automation: Automate AI/ML pipelines using workflow

tools like Snowpark or Airflow. For instance, businesses can set up

automated workflows to retrain fraud detection models daily using

the latest transaction data.

• Caching: Take advantage of Snowflake’s caching mechanisms

to speed up AI/ML queries. For example, frequently queried

embeddings for recommendation systems can be cached to improve

performance and reduce computational costs. One way to cache

embeddings is by storing them in a dedicated Snowflake table with

optimized indexing and clustering. Additionally, materialized views

or temporary tables can be used to cache commonly accessed

embeddings, ensuring quick retrieval without recomputing them

repeatedly. This approach is particularly useful in applications like

real-time recommendation engines, where minimizing latency is

critical.

 Summary

The knowledge gained from this chapter sets the foundation for integrating machine learning into your workflows and driving meaningful outcomes for your organization.

Whether you are exploring pretrained models, preparing data for analysis, or implementing best practices, Snowflake ML provides the tools and flexibility needed to succeed. By combining powerful AI capabilities with the simplicity and scalability of the Snowflake platform, it empowers users to derive actionable insights and make data-driven decisions with ease.

202

CHAPTER 12

Migrating to Snowflake

Throughout the book, you have learned Snowflake’s key concepts, including its architecture and its security capabilities. You have also met some unique Snowflake features. Moreover, you saw how Snowflake can be integrated with third-party tools for ELT/ETL and business intelligence purposes, as well as big data and advanced analytics use cases with Spark.

This chapter highlights some key migration scenarios to give you an idea of how you can migrate your legacy solution to the cloud. In addition, some organizations may attempt to upgrade an existing cloud solution that is insufficient for a business use case or is too expensive.

Data warehouse modernization is a hot topic right now, and many organizations are seeking best practices to modernize their legacy, expensive, and ineffective solutions using the cloud. Snowflake is a good choice for organizations because it is available on major cloud platforms, including Amazon Web Services (AWS), Microsoft Azure, and Google Cloud Platform (GCP), and it enables you to achieve instant value by democratizing data across the organization.

This chapter covers the following topics.

• Data warehouse migration scenarios

• Common data architectures

• Key steps for a data warehouse migration

• Real-world project

• Additional resources for Snowflake migration

203

© Dmitry Anoshin, Dmitry Foshin and Donna Strok 2025

D. Anoshin et al., Jumpstart Snowflake, https://doi.org/10.1007/979-8-8688-1533-1_12

[image: Image 102]

Chapter 12 Migrating to Snowflake

 Data Warehouse Migration Scenarios

The goal of a data warehouse migration is to serve the growing data appetite of end users who are hungry for data insights. Before diving deep into this topic, let’s categorize the organizations and their data needs. We split organizations by their analytics maturity, as shown here.

• Startups and small businesses without a proper analytics solution

• Organizations with on-premise data solutions

• Organizations with a default cloud solution deployed on Azure,

GCP, or AWS

 Startup or Small Business Analytics Scenario

The easiest deployment process is for startup companies. They don’t have any analytics solution yet and are usually connecting to source systems using business intelligence (BI) tools or spreadsheets. They are looking for better alternatives, and they don’t want to invest in an expensive solution, but they want to be sure that they can start small and scale easily. With Snowflake, they get all the benefits of Snowflake and pay only for their workloads. Over time, they grow, and as a result, their Snowflake implementation grows.

Figure 12-1 shows an example architecture before Snowflake and with it for small companies.

 Figure 12-1. Before and with Snowflake for startups

204

Chapter 12 Migrating to Snowflake

Startups track key metrics, and it is important to get timely insights from data. As a result, analysts connect to the source systems and extract the data. This process is manual and not scalable. The next logical step is to hire a data engineer or analytics consulting company and deploy a data warehouse with Snowflake. This allows you to get insights into your data and grow the business.

 On-Premise Analytics Scenario for Enterprises

and Large Organizations

The second scenario is the biggest and the most popular. There are lots of enterprise organizations that are looking for a way to improve their existing on-premise solutions.

These solutions are extremely expensive, and they require lots of resources to maintain.

Moreover, they have lots of custom solutions for big data, streaming, and so on. The complexity of these solutions is extremely high, but the value isn’t high because on-premise solutions are a bottleneck, and it is not easy to scale a solution, even in the case of an unlimited budget. So, the best way is to migrate the existing on-premise solutions to the cloud and leverage an innovative analytics data platform such as Snowflake. With Snowflake, enterprises can migrate all their data to the cloud, use a single platform for a data warehouse, share data, and make use of machine learning.

Figure 12-2 shows an example architecture before and with Snowflake for enterprises and other large companies.

205

[image: Image 103]

Chapter 12 Migrating to Snowflake

 Figure 12-2. Before and with Snowflake for enterprises

The figure is a top-level overview of an on-premise organization with big data (a data lake, usually deployed on top of Hadoop) and an on-premise data warehouse massively parallel processing (MPP) solution such as Oracle, Teradata, or Netezza.

Usually, enterprises use enterprise-grade ETL solutions that are expensive and require powerful hardware. There are multiple options for streaming, and one of the most popular is Apache Kafka. Moreover, enterprises handle a large volume of data with a semi-structured format such as JSON, AVRO, Parquet, and so on. Figure 12-2 spotlights uploading JSON into a data lake and then parsing and loading it into a data warehouse.

Finally, some organizations have to share data. This isn’t an easy or cheap task for an on-premise solution.

With Snowflake, organizations migrate all their data into the cloud. Moreover, they use a single data platform for streaming use cases, storing semi-structured data, and querying the data via SQL without physically moving the data. So, there are lots of benefits that open new horizons for analytics and help to make business decisions driven by data.

206

[image: Image 104]

Chapter 12 Migrating to Snowflake

 Cloud Analytics Modernization with Snowflake

The last scenario is the trickiest one. Some modern organizations have already leveraged cloud vendors or migrated a legacy solution to the cloud. However, they may be facing challenges such as high cost, performance issues related to concurrency, or having multiple tools for various business scenarios such as streaming and big data analytics. As a result, they decide to try Snowflake and unify their data analytics with a single platform and get almost unlimited scalability and elasticity.

Figure 12-3 shows an example architecture before and with Snowflake for cloud deployments with Microsoft Azure.

 Figure 12-3. Before and with Snowflake for cloud analytics modernization on Microsoft Azure

On the left, there are multiple solutions from Azure for the data warehouse and data lake, such as Azure Data Factory and Azure Streaming. On the right, there is Snowflake, which is hosted on the Azure cloud, and we have leveraged another cloud ELT tool, Matillion ETL, that allows you to create complex transformations visually. However, we can still use Azure Data Factory for ELT. Finally, with this new architecture, you can leverage the data sharing capabilities without physically moving the data.

207

Chapter 12 Migrating to Snowflake

 Data Warehouse Migration Process

You just reviewed three common scenarios for Snowflake migrations. Let’s dive deep into the second scenario because it is one of the most popular and complex. The first scenario isn’t a real migration scenario; it is more a data warehouse design and implementation project. The third scenario is an evolution of the second; it has a similar idea, and usually, it is easier to perform since all the data is already in the cloud.

When we talk about data warehouse migration, there are two major approaches.

• Lift and shift: Copy the data as is with limited changes.

• Split and flip: Split a solution into logical functional data layers.

Match the data functionality with the right technology. Leverage the

wide selection of tools on the cloud to best fit the needs. Move data in phases such as prototype, learn, and perfect.

Despite the fact that “lift and shift” is a faster approach, it has limited value for long-term organizational goals. As a result, we always prefer to “split and flip.” This guarantees that we won’t sacrifice for short-term value.

The migration process can be split into two main buckets.

• The organizational part of the migration project

• The technical part of the migration project

Let’s review them in detail.

 Organizational Part of the Migration Project

Figure 12-4 shows a high-level overview of the steps needed to prepare and execute the migration of an existing system to Snowflake.

208

[image: Image 105]

Chapter 12 Migrating to Snowflake

 Figure 12-4. Key steps of the migration process

Let’s learn more about each of the migration steps that are recommended by Snowflake.

 Document the Existing Solution

You already know that Snowflake uses role-based access control; therefore, you must document the existing users, their roles, and their permissions. This allows you to replicate the data access and security strategy implemented in your legacy system. You should pay special attention to sensitive datasets and how they’re secured, as well as how frequently security provisioning processes run to create similar security within Snowflake. Finally, you want to ensure that you have an existing architectural diagram of the existing solution.

 Establish a Migration Approach

Then, you should establish a migration approach. You should list all the existing processes that you want to migrate. Moreover, you should identify all the processes that have to be refactored as well as the broken processes that need to be fixed. This allows you to draft these deliverables and create the data architecture diagram to present to the stakeholders.

209

Chapter 12 Migrating to Snowflake

Snowflake generally recommends minimal re-engineering for the first iteration unless the current system is truly outdated. To provide value for the business as soon as possible, you should avoid a single “big-bang” deliverable as the migration approach and instead break the migration into incremental deliverables that enable your organization to start making the transition to Snowflake more quickly. This process is called agile data warehousing and allows you to deliver fast value for the end users.

Moreover, organizations may want to change their development or deployment processes as part of the migration. You should document new tools that are introduced as a result of the migration, tools that need to be deprecated, and development environments that are needed for the migration. Whether the development and deployment processes change or not, you should capture the development environments that are used for the migration.

 Capture the Development and Deployment Processes

Modern organizations care about DevOps. If you haven’t widely used it before, it could be a good opportunity to start implementing DevOps/DataOps procedures that increase the quality of your analytics solution; for example, organizations usually have dev, QA, and prod environments.

Moreover, they have source control repositories and methods for capturing deployment changes from one environment to another. These are used for that migration. This information is critical to direct how the development and deployments are implemented.

The ideal candidates for starting the migration provide value to the business and require minimal migration effort.

 Prioritize Datasets for Migration

You should learn more about the available datasets in the legacy solutions. Rather than starting with the most complex datasets, we prefer to begin with a simple dataset that can be migrated quickly to establish a foundation through the development and deployment processes that can be reused for the rest of the migration effort. To prioritize datasets for migration, you should understand the dependencies among datasets.

Those dependencies need to be documented and conform with business stakeholders.

Ideally, this documentation can be captured using an automated process that collects information from existing ETL jobs, job schedules, and so on. This helps you avoid manual work for identifying and documenting changes.

210

Chapter 12 Migrating to Snowflake

Creating an automated process provides value throughout the migration project by more easily identifying the ongoing changes that occur, as the underlying systems are unlikely to remain static during the migration.

 Identify the Migration Team

Another important aspect is building the migration team. Some common roles required for the migration include developer, quality assurance, business owner, project manager, program manager, scrum master, and communication. When a Snowflake solution partner is engaged for migration, they may fulfill multiple needs, including solution design, gathering requirements, delivering migration projects, producing documentation, and conducting Snowflake training.

Based on our experience, the challenge is to change the paradigm from a traditional data warehouse to a cloud data warehouse. Engineers should be prepared to learn new skills and may consider enrolling in additional professional courses related to cloud foundations and Snowflake best practices.

 Define the Migration Deadlines and Budget

The expectations for any migration should be clear to all parties. However, the expectations need to be combined with other information that has been gathered to determine whether the deadlines can be met. One of the benefits of gathering all of this information is to establish and communicate achievable deadlines, even if the deadlines are different from what the business expects.

It is common in migration projects that deadlines are defined before evaluating the scope of the project to determine whether the deadlines are achievable, especially if the business is trying to deprecate the legacy system before the renewal date. In situations where the deadline can’t be moved, and the migration scope requires more time than is available before the deadline, work needs to be done with the business to agree on a path forward.

Understanding the budget that has been advocated to complete the migration is also critically important. The amount of migration work and the cost associated with the migration work both need to be compared to the available budget to ensure that there are sufficient funds to complete the work. Pausing in the middle of a migration or stopping it altogether is a bad outcome for all involved parties.

When planning the budget, you should estimate the cost of Snowflake deployment and the cost of the migration project.

211

Chapter 12 Migrating to Snowflake

 Determine the Migration Outcomes

Migration outcomes should be used to validate that the migration project is providing the overall benefit the business expects to achieve from the migration. For example, turning off the Oracle database system is one of the desired outcomes. That outcome should be achieved with the migration plan. This documentation can be expressed as success or failure criteria for the migration project and may also include benchmarks that compare process execution. Once compiled, this information should be used for communicating with stakeholders.

After identifying the migration outcomes, you should present them to the business along with the mitigation strategy and confirm the proposed approach meets their requirements. This should be done to set appropriate expectations from the beginning of the migration.

The escalation process needs to be documented, including who is responsible for working on the issue, who is responsible for communicating the progress of the issue, and a list of contexts from the business, Snowflake, and any other involved parties that are involved in resolving the issue.

 Establish Security

Depending on the security requirements, there may be a need to capture role creation, user creation, and the granting of users to roles for auditing purposes. While the existing database security can be a good starting point for setting up security within Snowflake, the security model should be evaluated to determine whether there are roles and users who are no longer needed or should be implemented differently as part of the migration to Snowflake. Additional roles may be required to restrict access to sensitive data.

Moreover, you can think about improving the solution security by implementing two-step authentication, collecting security logs, and so on.

 Develop a Test Plan

Develop a test plan by identifying the appropriate level and scope for each environment.

For example, schedules aren’t executed in dev but only in QA and prod. Automate as much as possible to ensure repeatable test processes with consistent output for validation purposes and to find agreed-on document acceptance criteria.

212

Chapter 12 Migrating to Snowflake

Moreover, you should involve business users in this process; they are subject-matter experts and help to evaluate solutions and help you quickly identify the data discrepancies and processes that are wrong.

 Prepare Snowflake for Loading

Despite the fact that Snowflake is a SQL data warehouse, it is different from other analytical data warehouse platforms.

When you have physical servers, you can use a dedicated server for each environment (dev, test, prod). The following shows the hierarchy for the on-premise solution.

• Physical server

–

Databases

• Schemas

• Tables/views/functions

In the case of Snowflake, you don’t have a physical machine. When you sign up for Snowflake, you get the link https://<our company name>.snowflakecomputing.com/, and you stick to this account. As a result, you don’t have a physical server layer, and you should think about the organization of environments. To solve this particular issue, you have several options.

• Use multiple accounts (different URLs).

• Create many databases with an environment prefix (FIN_DEV,

SALES_DEV, FIND_TEST, etc.).

• Create databases that represent your environments, and then create a schema that represents a database.

This requires you to modify data definition language (DDL) while you are moving the schema from the on-premise solution to the cloud. This is one of the biggest engineering efforts in migration. There are a number of tools available for this purpose that can do forward and reverse engineering. Moreover, you can leverage the Snowflake community and learn how others performed this step.

Finally, you should assign databases, database objects, and virtual warehouses to the appropriate security roles.

213

Chapter 12 Migrating to Snowflake

When you are ready, you can begin loading your initial data into your data warehouse. Many options are available for loading. For example, you can unload data into the cloud storage, such as S3, in the case of using AWS, and then collect this data via Snowflake. Alternatively, you can leverage cloud ETL tools such as AWS Glue (an AWS

product) or Matillion ETL (a third-party commercial product). You can even use open source solutions like Apache Airflow or even Python.

 Keep Up-to-Date Data (Executing the Migration)

After an initial load of data is complete, you should start to develop incremental load processes. This is the time when ETL/ELT tools are handy and help you to accelerate your development effort.

These processes should be scheduled and take into consideration the appropriate process dependency. The state of the data loading should be clearly understood and communicated. For example, loading is in progress, loading is completed successfully, and load failures occur that need to be addressed. Finally, begin comparing execution timings to ensure that SLAs are being met.

One of the key things is to constantly communicate with business users and allow them to visually track the load process. You can ensure this by collecting ETL logs on all stages of the ETL process and visualizing them with a BI tool.

 Implement the Test Plan (Executing the Migration)

Once an ETL/ELT process is in place, testing can begin. You can start with initial data comparisons. This allows you to quickly identify discrepancies and share these results with stakeholders. Additional groups should be engaged after the initial testing is completed. This helps to validate the data and fix issues within a new solution.

 Run Systems in Parallel (Executing the Migration)

As business units are engaged in testing, you should run both systems (the legacy data warehouse and the Snowflake data warehouse) in parallel to ensure the continued validation of data to facilitate comparing data. In some cases, you may export data from a legacy data warehouse, which can be used for comparing data at the raw level. These comparisons should take place in Snowflake, where resources can be provisioned to compare data without negatively impacting the system.

214

[image: Image 106]

Chapter 12 Migrating to Snowflake

You should attempt to minimize the time the two systems are running in parallel while still maintaining a sufficient validation process.

 Repoint Tools to Snowflake

Up until now, the migration process has been focused on raw data comparisons.

The final step is to point all business users’ connections to the new Snowflake data warehouse. After the business units have validated that their tools are producing the required results, they cut over to Snowflake, begin scheduling, and communicate the cutover plans to all stakeholders.

Once the cutover is complete, users should have the ability to log in to BI tools and repoint them to the Snowflake data warehouse.

 Technical Aspects of a Migration Project

Figure 12-5 shows the key elements of a migration project from a technical point of view for a traditional on-premise data warehouse.

 Figure 12-5. Simplified data warehouse migration flow

Let’s consider an example where we have an on-premise data warehouse to move to Snowflake. We should start with the DDL for moving the schemas, tables, views, and so on. There are many ways to replicate a data warehouse model in Snowflake, starting from the Python scripts that convert the source system’s DDL into Snowflake DDL. In addition, we can leverage data modeling tools like SqlDBM that have good integration 215

Chapter 12 Migrating to Snowflake

with Snowflake and can copy the source system DDL, convert it to Snowflake DDL, and deploy it into Snowflake. Moreover, we can use other tools that support forward and reverse engineering. This helps automate this process and saves time and money.

After the DDL, we should move data. There are many approaches to do this. We can leverage cloud ETL tool capabilities and migrate data from an on-premise solution to Snowflake. For example, Matillion ETL can connect to the on-premise data warehouse and load data directly to Snowflake using cloud data storage such as S3, Blob Storage, and so on. This is an efficient way of moving data. Or, you could leverage Snowflake’s SnowSQL CLI and load data with the help of SQL. It is totally up to you. In some extreme cases, for a large volume of data, you might use physical devices such as AWS Snowball or Azure Data Box.

Finally, the most complicated part is migrating the ETL/ELT logic. This is the longest part, and there is a linear correlation between the number of data warehouse objects and the time it takes to perform a migration. This is the time to decide whether you want to migrate existing logic as is (lift and shift) or to work closely with the business stakeholders and learn about the business logic behind the code so you can take it apart and improve it (split and flip).

From a tools standpoint, you can leverage scripting in Python, or you can leverage Snowflake Partner Connect and choose an ETL tool that was built specifically for the Snowflake data warehouse. Some tools are managed services, and others give you more freedom. For example, Matillion provides a virtual machine that is hosted in our virtual private cloud (VPC), and you can establish a mature security level. Moreover, when using ETL tools, you can create a pattern and then copy this pattern across the use cases. The tools also allow end users to follow the process and visually observe the data flow. Finally, Snowflake supports stored procedures, and this gives you the ability to implement an ETL solution with stored procedures like previously done in Oracle, Teradata, or SQL Server.

 Real-World Migration Project

Let’s look at a real-world project. Figure 12-6 shows an architecture diagram for an e-commerce company that is selling used books online.

216

[image: Image 107]

Chapter 12 Migrating to Snowflake

 Figure 12-6. Legacy data warehouse architecture

It is a straightforward solution that was built on an Oracle database technology stack.

It used PL/SQL as a main ETL tool, and with daily ETL, it was loading data from several transactional systems as well as consuming data from marketing-specific APIs and secure file transfer protocols (SFTPs). These were the challenges.

• The solution was expensive from a licensing perspective.

• ETL was complicated, and the database team owned the logic. They

were a kind of bottleneck for all new requests.

• The data warehouse had storage and compute limitations.

• The data warehouse required full-time DBA support (for patching,

backups, and so on).

• Performance was an issue and required deep knowledge of Oracle

sizing and tuning (indexes, keys, partitions, query plans, and so on).

The company decided to move to the cloud to get more room to grow and to get the benefits of a cloud infrastructure. Figure 12-7 shows an architecture diagram of the new solution. This organization decided to go with Snowflake because it wanted to have unlimited concurrency for queries, a consolidated data warehouse, and a big data solution on a single data platform, as well as dedicated virtual warehouses for analysts with heavy queries.

217

[image: Image 108]

Chapter 12 Migrating to Snowflake

 Figure 12-7. Modern data warehouse architecture with Snowflake Another major decision was made regarding the ETL tool. We reviewed several tools and decided to go with Matillion ETL because it was built specifically for Snowflake and allows you to solve previous challenges with “bottlenecks” in the ETL process. It has an intuitive user interface and doesn’t require any coding knowledge. In addition, the organization deployed Tableau as its primary BI tool and adopted self-service analytics; that’s why concurrency is a significant benefit of Snowflake. Moreover, the choice addressed another security requirement because it deploys within a private subnet in AWS VPC.

Snowflake helps leverage big data and streaming capabilities that were impossible with the legacy solution. For big data, we were processing web logs within Apache Spark deployed on top of the Amazon Elastic MapReduce (EMR), cluster. Snowflake accesses Parquet files, and we don’t need to load them into Snowflake. For the streaming use case, we leveraged DynamoDB streams and Kinesis Firehose, and all data is sent into an S3 bucket where Snowflake can consume it.

This core project with an Oracle data warehouse and ETL migration took us six months with a team of two engineers; it took another three to four months to design and implement the streaming and big data solutions. The organization also leveraged the AWS SageMaker service for machine learning and advanced analytics, which can be easily connected to Snowflake to query data from Snowflake and write model results back to it.

218

Chapter 12 Migrating to Snowflake

 Additional Resources

Working with Snowflake requires you to have a new set of skills related to cloud computing. If you want to succeed with Snowflake, you should learn the best practices for deploying cloud analytics solutions and follow the market trends by reviewing new tools and methods for data processing and transformation in the cloud.

Currently, Snowflake is available in AWS, Microsoft Azure, and GCP. We highly recommend you study a cloud vendor’s learning materials to get a better understanding of cloud computing and data storage. For example, if you deploy Snowflake using AWS, you may start with the AWS Technical Essentials course, which is free and gives you an overview of AWS. Then, you can go deeper with AWS analytics using big data specialization.

At the same time, you should learn Snowflake best practices using Snowflake training resources, community websites, and blog posts. This book is a good start.

 Summary

This chapter discussed the needs of organizations based on their maturity model and identified three common organizational types. Then, you learned about the legacy data warehouse modernization process and identified the key steps. Finally, you examined a real-world project of migrating to Snowflake and gained insight into its data architecture and project outcomes.

219

Index

A

trust relationships, 126, 127

virtual environment, 122

Access control models, 60

Atomicity, consistency, isolation,

ACCOUNTADMIN role, 61, 68, 73

durability (ACID), 4, 5

<accountname>-snowpipebucket, 46

AWS Kinesis, 42

ACID, see Atomicity, consistency,

AWS Lambda, 53

isolation, durability (ACID)

AWS Managed Streaming service for

Agile data warehousing, 210

Kafka, 42

Airbyte, 160, 169

AWS Snowball, 216

Amazon Redshift, 5, 6, 10

Azure Data Box, 216

Anomaly detection model, 193

Apache Airflow, 160, 214

Apache Iceberg, 119

B

actual data files, 129

Big data, 3, 4, 6, 13

benefits, 119

BI tool, 149, 204

catalog, 120

Budgets, 188, 189

integration, 121, 122

Bulk data loading, 28, 29

key layers, 120

Business intelligence (BI), 1, 4, 6

metadata files, 128

table

ARN, 125

C

AWS console, 123

Cache embeddings, 202

AWS IAM policy, 123–125

Cloud computing, 1, 6

AWS IAM role, 125

cloud deployment models, 9

creation, 122

cloud service models, 9, 10

external computing, 129–131

definition, 6

external volumes, 123, 126

hypervisors, 7, 8

IAM user permissions, 126

key elements, 6, 7

ingest data, 128

key terms, 7

queries, 128

migration, 12

SnowSight, 123

SRM, 11

SQL, 127

virtualization, 8

221

© Dmitry Anoshin, Dmitry Foshin and Donna Strok 2025

D. Anoshin et al., Jumpstart Snowflake, https://doi.org/10.1007/979-8-8688-1533-1

IndeX

Cloud providers, 12

Data sharing, 85

Cloud resources, 11

secure view, 97

Cloud service models, 9, 10

best practice, 93

Cloud software distribution model, 10

consumer account, 97, 98

Cloud technologies, 1

current_account() function, 96

CloudWatch logging, 51

data, 96

CloudWatch service, 51

mapping table, 95

Compression methods, 29

share object, 97

COPY command, 39, 41, 44

sharing table, 94

Cortex Analyst screen, 199

test access, 96

CREATE WAREHOUSE command, 56

Data warehouse as a service (DWaaS), 10–12

Data warehouse loading approaches, 40

D

Data warehouse migration

architecture, 204

DAC, see Discretionary access

business analytics, 204

control (DAC)

cloud analytics, 207

Databricks, 6, 118, 147

DW migration, 208

Data clustering, 80

goal, 204

Data clustering and partitioning,

on-premise analytics, 205, 206

175–177

organizational part

Data discovery, 199, 200

data, 214

Data lakes, 4, 6, 206, 207

data sets, 210

Data loading methods, 28

deadlines/budget, 211

bulk loading, 28

development/deployment

compression methods, 29

process, 210

CSV file preparation, 32

documentation, 209

encryption options, 30

migration approach, 209

file formats, 30

migration team, 211

file sizing, 31

outcomes, 212

file staging, 33, 34

repoint tools, 215

loading data files, 34

run, 214, 215

semi-structured data, 32, 33

security, 212

Data platform vendors, 119

Snowflake, 213

Data processing optimization

test plan, 212, 214

clustered data., 178

overview, 208, 209

execution plans, 178

technicalpart, 215, 216

tools and techniques, 178

Data warehouses, 3–6, 38, 39

DATA_SCIENCE_TEAM role, 65, 67, 68, 70

dbt code and modules, 167

222

IndeX

dbt Core, 159, 161, 162

I, J

Discretionary access control (DAC), 60

Identity and Access Management

DWaaS, see Data warehouse as a

(IAM), 123–126

service (DWaaS)

Dynamic data masking, 60, 71–74

Dynamic tables, 54

K

automatic refresh, 55

kubectl, 169, 170

feature, 54

Kubernetes clusters, 159, 161, 169–171

JSON data, 58

scalability, 55

steps to create, 55, 56

L

Lake house, 6

E

Large language models (LLMs),

191–194, 201

Encryption, 30, 72

LLM assistant, 196

ETL/ELT logic, 216

LLM function, 192–194

ETL/ELT tools, 214

ETL tools, 216

Extract-load-transform (ELT), 2

M, N

Extract-transform-load (ETL), 86

Machine learning (ML), 191, 205

Manual clustering, 176

F

Marketing role, 60, 61

MARKETING_TEAM role, 65, 66, 68, 70

File formats, 28, 30, 79, 119, 121

Massively parallel processing (MPP), 2–5,

Forecasting ML model, 192

11, 13, 206

Forecast model, 192

Materialized views, 81–82, 98–99, 202

Fraud detection models, 201

Matillion box, 150

Matillion ETL, 149–151, 153, 155, 216

G

Matillion Objects, 150

GitHub Codespaces, 162

Matillion web interface, 151, 152

GitHub repo, 161, 166

Metabase, 160, 165–167

Google Cloud Platform, 12

Missing data, 142, 143, 201

GreenWave Technologies, 152

ML, see Machine learning (ML)

Modern analytics solution architecture,

H

146, 147, 151

Modern solution architecture, 118, 119

Hadoop, 3, 4, 6, 206

AWS IAM policy, 124, 125

Hosted Apache Kafka, 42

AWS IAM role, 125, 126

223

IndeX

Modern solution architecture (cont.)

streaming, 218

Iceberg actual data files, S3, 129

Tableau, 218

Iceberg data files, S3, 129

Resource monitors, 184, 187, 188

key elements, 118, 119

Role-based access control (RBAC), 60

options, 121

best practices, 68

Monitor performance, 177

Permifrost, 68–71

MPP, see Massively parallel

working with roles and users, 65–68

processing (MPP)

R/Python scripts, 3

O

S

Optimization techniques, 175

Securable objects, 60

datasets, 179

Secure data sharing, 72, 79, 85–99

unnecessary data, 178

SECURITYADMIN role, 61, 65

Oracle, 3, 5, 206, 212, 216–218

Semi-structured data, 18, 32–33, 41, 82

Outliers, 193, 200, 201

Shared responsibility model (SRM), 11

SMP, see Symmetric

multiprocessing (SMP)

P, Q

Snowflake, 10, 146, 148, 150, 154, 158, 159,

Partition pruning, 80, 175

171, 174–177, 179, 180, 182–189,

Partner Connect, 148, 150, 216

191–194, 197–201, 205

Permifrost, 68–71

architectural features

Personally Identifiable Information

automatic query optimization, 174

(PII), 71, 72

cloud-based storage, 174

Pre-Commit Hooks, 168

warehouses, 174

Predefined classification model, 192

architecture, 13

Proof of concept (PoC), 159

cloud providers, 12

Public clouds, 9, 159

cloud storage and computing, 14

Python command, 195

competitors, 11

data sharing

advantages, 87

R

benefits, 86

Real-world project

database objects, 87

big data, 218

process, 87–89

challenges, 217

provider and consumer, 87

ETL tool, 218

dbt Core, 162

legacy DW architecture, 216, 217

dbt project, 163, 164

modern DW architecture, 217, 218

drivers, 149

224

IndeX

environment, 189

access control models, 60

ETL process, 14

DAC, 60

features, 13, 15

database and application roles, 68

key layers, 14

dynamic data masking, 73–75

Matillion, 148, 150

enforcement model, 62–64

pain points, data warehouse, 6

RBAC, 60

regular vs. materialized views, 98, 99

secondary roles, 64, 65

role, 145

using Permifrost for RBAC, 68–71

and SMP/MPP architectures, 13

table clustering, 81, 82

table sharing

UNDROP DATABASE, 75

consumer account, 92, 93

zero-copy cloning, 75–77

creation, 90

Snowflake connection window, 155

grants, 92

Snowflake DDL, 215

metadata, 92

Snowflake ML, 191, 202

results, 93

caching, 202

steps, 89

features, 201

stock data, 91

prediction model, 202

teams/departments, 14

workflow tools, 202

and traditional data warehouse, 12

Snowflake Model Registry, 194

views, 165

Snowflake’s architecture

worksheet, 196

create database, 26, 27

Snowflake account, 18

create warehouse, 23–25

cloud providers and regions, 19, 20

Snowflake services, 43

editions, 19

Snowflake’s Feature Store, 195

pricing model, 20

Snowflakes SQL functions, 200

Snowflake administration

Snowflake’s website, 20

account parameters, 77, 78

Snowflake user interface, 18

commands, manage users, 65

Snowpark

commands, role management, 65

benefits, 115

custom role hierarchy, 61, 62

DataFrame operations, 106–109

database objects, 78, 79

features, 101, 102

data shares, 79, 80

machine learning integration, 112

manage warehouses, 73, 74

Base64-encoded model, 114

managing databases, 74, 75

binary data, 112

MARKETING_TEAM role, 66

libraries, 112

materialized view, 81, 82

linear regression, 112

predefined default roles, 61

model_storage table, 113

roles and users, 60

prediction, 114

225

IndeX

Snowpark (cont.)

SRM, see Shared responsibility

predict_linear(), 114

model (SRM)

scikit-learn, 112

Streamlit, 134

setting up

basic Streamlit app, 136–138

get account_name, 104, 105

features, 134

current_version() function, 106

integration, 135

initiate session and verify

interactive apps, 139

connection, 105, 106

connection erros, 142

installation, 103

dashboard, 139

new database, 103

error handling, 142

Python file, 104

exercise, 139–141

stored procedures, 110, 111

query erros, 142, 143

transformative approach, 115

Streamlit erros, 142, 143

UDFs, 109, 110

troubleshooting, 142

Snowpipe

use cases, 134

as AWS S3 bucket, 40

Symmetric multiprocessing (SMP), 2, 3, 13

benefits, 41

SYSADMIN role, 61

using REST API, 40

Snowpipe auto-ingest, 42

T

build data pipeline, 43, 44

component interaction, 43

Tableau, 149, 154

components, 42

sheet, 157

configuration of Firehose, 50

Tableau Desktop, 146, 153, 154, 156, 158

create IAM role, 51

TARGET_LAG setting, 57

create new bucket for stream

Training dataset, 193

events, 47

set S3 bucket notifications, 48, 49

U

testing, 52

snowpipe.public.snowpipe, 46

User-defined functions (UDFs), 86, 102,

snowpipe.public.snowstage, 46

109, 110

snowpipe.public.snowtable, 46

UTF-8, 30, 32

Snowpipe REST API, 53

Snowsight, 21, 22, 27, 72

V

Sorting data, 176

SQL command, 27

Virtual machines (VMs), 7, 10, 53, 216

SqlDBM tool, 147, 148, 153, 215

Virtual private cloud (VPC), 216

SQL Statement, 74, 78, 194

Virtual warehouses (VWs), 184, 185

226

IndeX

W, X, Y

scaling policies, 183

Window functions, 180, 181

Warehouse configuration optimization

architectural features, 183

cluster sizes, 183

Z

ETL process, 183

Zero-copy cloning, 15, 75–78

227

Document Outline

	Table of Contents

	About the Authors

	About the Technical Reviewer

	Acknowledgments

	Introduction

	Chapter 1: Getting Started with Cloud Analytics

	Time to Innovate

	Key Cloud Computing Concepts

	Meet Snowflake

	Summary

	Chapter 2: Getting Started with Snowflake

	Introduction

	Creating a Snowflake Account

	Snowflake Editions

	Cloud Providers and Regions

	Snowflake Pricing Model

	Creating an Account

	Navigating Snowflake with Snowsight

	Creating a Database and Warehouse in Snowflake

	Creating a Warehouse

	Create a Database

	Loading Data into Snowflake

	Overview of Bulk Data Loading

	Compression Handling

	Encryption Options

	Supported File Formats and Encoding

	Bulk Data Loading Recommendations

	File Preparation and Sizing

	CSV File Preparation

	Semi-Structured Data File Preparation and VARIANT values

	File Staging

	Loading

	Exercises

	Summary

	Chapter 3: Continuous Data Loading with Snowpipe and Dynamic Tables

	Introduction to Data Loading Strategies for Snowflake

	Loading Data Continuously

	Snowpipe Auto-Ingest

	Building a Data Pipeline Using the Snowpipe Auto-Ingest Option

	Snowpipe REST API Using AWS Lambda

	Working with Dynamic Tables in Snowflake

	What Are Dynamic Tables?

	Why Use Dynamic Tables?

	Summary

	Chapter 4: Snowflake Administration and RBAC

	Administering Roles and Users

	Enforcement Model

	Secondary Roles

	Working with Roles and Users (with RBAC)

	New Role Types: Database Roles and Application Roles

	Using Permifrost for RBAC in Snowflake

	Dynamic Data Masking

	Administering Databases and Warehouses

	Managing Warehouses

	Managing Databases

	UNDROP DATABASE

	Zero-Copy Cloning

	Administering Account Parameters

	Administering Database Objects

	Administering Data Shares

	Administering Clustered Tables

	Snowflake Materialized Views

	Summary

	Chapter 5: Secure Data Sharing

	Benefits of Snowflake Data Sharing

	Understanding Share Objects

	Implementing Secure Table Sharing

	Data Sharing Using a Secure View

	Sharing Regular View vs. Materialized View

	Summary

	Chapter 6: Getting Started with Snowpark

	Key Features of Snowpark

	Setting up Snowpark

	Snowpark DataFrame Operations

	User-Defined Functions

	Stored Procedures

	Machine Learning Integration with Snowpark

	Summary

	Chapter 7: Snowflake with Apache Iceberg

	Data Platform Architecture

	Getting Started with Apache Iceberg

	The Role of a Catalog

	Snowflake and Iceberg Integrations

	Creating Snowflake Iceberg Table

	Query Iceberg Table with External Compute

	Summary

	Chapter 8: Getting Started with Streamlit

	Streamlit Basics

	Key Features of Streamlit

	Integration with Snowflake

	Creating a Basic Streamlit App

	Creating Interactive Streamlit Apps

	Error Handling and Troubleshooting

	Connection Errors

	Query Errors

	Streamlit Errors

	Summary

	Chapter 9: Designing a Modern Analytics Solution with Snowflake

	Modern Analytics Solution Architecture

	Snowflake Partner Ecosystem

	Building Analytics Solutions with Matillion ETL and Tableau

	Getting Started with Matillion ETL

	Getting Started with Tableau

	Building Analytics Solution with Open Source Software

	Running a dbt Project

	Engineering Excellence with dbt Development

	Data Ingestion and Orchestration

	Summary

	Chapter 10: Performance Optimization and Cost Monitoring

	Understanding Snowflake Architecture for Optimization

	Data Read Optimization

	Data Clustering and Partitioning

	Data Storage Best Practices

	Data Processing Optimization

	Analyze Query Execution

	Optimization Techniques

	Leverage Caching

	Warehouse Configuration Optimization

	Right-sizing Virtual Warehouses

	Scaling Policies

	Administering Resource Consumption

	Virtual Warehouse Usage

	Data Storage Usage

	Data Transfer Usage

	Configure Resource Monitors

	Configure Budgets

	Summary

	Chapter 11: Snowflake AI and ML

	Overview and Key Features

	Key Features

	Pretrained ML Models

	Classification

	Forecasting

	Anomaly Detection

	LLM Functions

	Custom Model Deployment

	Embeddings

	Feature Store

	Snowflake Copilot

	Document AI

	Cortex Search

	Cortex Analyst

	Data Discovery

	Data Cleaning and Transformation

	Handling Missing Values

	Outlier Detection and Treatment

	Data Type Conversion

	Best Practices for Using Snowflake ML

	Summary

	Chapter 12: Migrating to Snowflake

	Data Warehouse Migration Scenarios

	Startup or Small Business Analytics Scenario

	On-Premise Analytics Scenario for Enterprises and Large Organizations

	Cloud Analytics Modernization with Snowflake

	Data Warehouse Migration Process

	Organizational Part of the Migration Project

	Document the Existing Solution

	Establish a Migration Approach

	Capture the Development and Deployment Processes

	Prioritize Datasets for Migration

	Identify the Migration Team

	Define the Migration Deadlines and Budget

	Determine the Migration Outcomes

	Establish Security

	Develop a Test Plan

	Prepare Snowflake for Loading

	Keep Up-to-Date Data (Executing the Migration)

	Implement the Test Plan (Executing the Migration)

	Run Systems in Parallel (Executing the Migration)

	Repoint Tools to Snowflake

	Technical Aspects of a Migration Project

	Real-World Migration Project

	Additional Resources

	Summary

	Index

index-206_1.jpg
T10t6

Create Search Service menew

Let's create a new Cortex Search Service

We'll guide you through the steps of selecting a data source,
setting service parameters, and creating the Search Service.

Select a warehouse to power the service. This warehouse will
be used for materializing the results of the source query upon
creation and refresh.

Role ana Warehouse

@ ACCOUNTADMIN - COMPUTE WH [X-Small}

Database and Schema

No Database selected v

Name

my_search_service

View Documentation

index-204_1.jpg
@ N ;s W e

10
11
12

() ACCOUNTADMIN COMPUTE_WH (X-Small)

SNOWFLAKE_SAMPLE_DATA.TPCH_SF1 v

/* Generated by Snowflake Copilot */
SELECT

n.n_name AS nation_name,

COUNT (DISTINCT c.c_custkey) AS customer_count,

COUNT (DISTINCT o.o_orderkey) AS order_count
FROM

nation AS n

LEFT JOIN customer AS ¢ ON n.n_nationkey =
c.c_nationkey

LEFT JOIN orders AS o ON c.c_custkey = o.o_custkey
GROUP BY

n.n_name
ORDER BY

n.n_name;

Settings Q

COPILOT

Thank you for selecting the database and schema. Here are
some questions for you to get started.

help me create a query that shows me
the number of customers and count of
orders, for each nation

coPILOT & &P

I'll help you create a query that shows customer and order
counts by nation. Here's the approach:

+ Join [customer table with [nation | table using
nationkey

= Join with ' orders table using | custkey | to get order
information

= Group by nation details

= Count distinct customers and orders

Here's the SQL query:

saL (5]

SELECT
n.n_name AS nation_name,
COUNT (DISTINCT c.c_custkey) AS customer_cou
COUNT (DISTINCT o.o_orderkey) AS order_count
FROM
nation AS n
LEFT JOIN customer AS ¢ ON n.n_nationkey =
LEFT JOIN orders AS o ON c.c_custkey = o.o_

GROUP BY
n.n_name
ORDER BY
n.n_name;
® Valid query
Step3 + Add > Run

SWPR ks question ab

tables and colum

Step 1 B SNOWFLAKE_SAMPLE_DATA TPCH_SF1

index-135_1.jpg
umpstart-iceberg-role i

Link to switch roles in console

1B https://signin.aws.amazon.com/switchrole?roleName=jumpstart-iceberg-

role&account=180795190369

© G ®) Crenoe)

v | Attached entities

Summary
Creation date
December 08, 2024, 15:33 (UTC-08:00)
Last activity Maximum session duration
@ 2 months ago 1 hour
Permissions Trustrelationships ~ Tags LastAccessed Revoke sessions
Permissions policies (1) info
You can attach up to 10 managed policies.
Filter by Type
(Q search | Attypes v)
() | Policy name (2 a | Type

Customer managed

2

Add permissions ¥

index-134_1.jpg
jumpstart-iceberg-policy i

Policy details
Type Creation time Edited time
Customer managed December 08, 2024, 15:23 (UTC-08:00) December 08, 2024, 15:23 (UTC-08:00) +180795190369:policy/jumpstart-iceberg-

':“"‘Y versions | ast Accessed

Permissions Entities attached Tags

@ This policy defines some actions, resources, or conditions that do not provide permissions. To grant access, policies must have an action that has an applicable resou

Permissions defined in this policy o

Permissions defined in this policy document specify which actions are allowed or denied. To define permissions for an IAM identity (user, user group, or role), attach a policy to it
e
2 "Version": "2012-10-17",
3+ "Statement": [
A {

5 "Effect”
6+ “"Action'
7 "s3:Putlbject”,

8 "s3:GetObject",
9 "s3:GetObjectVersion",

10 "s3:Deletebject”,

1 "s3:DeleteObjectVersion”

12 1,

13 "Resource”:| "arn:aws:s3: : : jumpstart-iceberg-snowflake/*"

14 h

15+ {

16

17-

18 "s3:ListBucket”,

19 "s3:GetBucketLocation”

20

21 " : : ::: jumpstart-iceberg-snonflake”,

22-

23- “Stringlike": {

2- "s3:prefix": [

25

2% 1

27 }

28 3

29 }

30]

31 3

index-138_1.jpg
g o

e AmazonS3 > Buckets > jumpstart-iceberg-snowflake >

smazon 3 < metadata/

General purpose buckets

Objects Properties

Directory buckets

Table buckets

Access Grants Objects (3)

Access Points @* D) Copy S3 URI \ (B copyurt) (& powntoad) (" open (2) (pelete)

Object Lambda Access Points

Oblects are the fundamental entities stored in Amazon S3. You can use Amazon S3 inventory [2 to get a list of all

Batch Operations
objects in your bucket. For others to access your objects, you'll need to explicitly grant them permissions. Learn
[Vietadatalrilc QP more (2 =
[Q Find objects by prefix] <15 @
lic Access settings for this Last
account a Name - Type 5 modified v Size v Storage class v

¥ Storage Lens [oo002-

fobc7acé-

Dashboards

8f00-44cd- ':;;i’"be’ i
m ‘ Storage Lens groups 90ab- : 22KB Standard

2 15:55:27

AWS Organizations settings b31b96a869 (UTC-08:00)
Sc.metadata,| :
son

Feature spotlight]
1733701818 December 9,
422000000- 2024,
FESTECT d 7.2KB rd

mm, N Mackitaos 1653 L7RiZaeLWFa 15:55:27 2 Staacs

8qLARZMNHw. (UTC-08:00)
avro
B snap-
1733701818
422000000- December 9,
aZcbicef- 2024,
455-4572- 15:55:27 41K8 Standard
b107- (UTC-08:00)

6bac9968062
7.avro

index-137_1.jpg
jumpstart-iceberg-role i

Summary

Creation date ARN
December 08, 2024, 15:33 (UTC-08:00) I0) arn:aws:iam::180795190369:role/jumpstart-iceberg-role

Last activity Maximum session duration
@2 months 200 1 howr
Permissions Trust relationships Tags Last Accessed Revoke sessions

Trusted entities
Entities that can assume this role under specified conditions.
1-(g
2
3
4-
S
6
7
8
2 "Action"
10~ "Condition":
11~ "StringEquals": {
13 }
14 ¥
15 }
16]
17 ¥

"Version 012-10-17",

"sts:AssumeRole",

Link to switch roles in console
ID) https://signin.aws.amazon.com/switchrole?
roleName=jumpstart-iceberg-role&account=180795190369

I Edit trust policy |

index-142_1.jpg
| C_CUSTKEY |
b +—

1|Customer#000000001 | IVhzIApeRb ot,c,E|
2|Customer#000000002 | XSTf4,NCwDVaWNe6t. .. |
3| Customer#000000003 | MGOKATD2WBHm |
4|Customer#000000004 | XxVSIsLAGtn|
5|Customer#000000005 | KvpyuHCplrB84WgAi. .. |
6|Customer#000000006 | SKZz0CsnMD7mp4Xda. . . |
7 |Customer#000000007 | TcGe5gaZNgVePxU5k. .. |
8| Customer#000000008 | I0B10bBOAYmmC, OP... |
9|Customer#000000009 | xKiAFTjUsCuxfeleN... |
10| Customer#000000010 | 6LrEaV6KR6PLVCg12. .. |
11|Customer#000000011 | PkWS 3H1XqwTuzrKg... |
12| Customer#000000012 | 9PWKuhzT4Zr1Q|
13| Customer#000000013 | nsXQudoVjD7PM659u. . . |
14|Customer#000000014 | KXkletM1L2JQEA |
15| Customer#000000015 | YtWggXoOLdwdo7b@y. .. |
16 |Customer#000000016 | cYiaeMLZSMA0Q2 dow, |
17 |Customer#000000017 |izrh 6jdqtp2eqdtb...|
18 |Customer#000000018 | 3txGO AiuFux3zTeZ... |
19| Customer#000000019 |uc, 3bHIXx84H,wdrmL. .. |
20|Customer#000000020 | JrPk8Pqplj4dNe|

15|25-989-741-2988 |
13|23-768-687-3665 |
1|11-719-748-3364 |
4]14-128-190-5944 |
3|13-750-942-6364 |
20|30-114-968-4951 |
18|28-190-982-9759 |
17|27-147-574-9335 |
8]18-338-906-3675 |
5|15-741-346-9870 |
23|33-464-151-3439 |
13|23-791-276-1263 |
3|13-761-547-5974 |
1]11-845-129-3851 |
23|33-687-542-7601 |
10|20-781-609-3107 |
2|12-970-682-3487 |
6]16-155-215-1315 |
18|28-396-526-5053 |
22|32-957-234-8742 |

712|
122|
7498 |
2867
794|
7639
9562 |
6820
8324|
2754 |
-273|
3396
3857|
5266 |
2789
4681
6|
5494 |
8915|
7603 |

BUILDING|to the even, regu...|
AUTOMOBILE |l accounts. blith...|
AUTOMOBILE| deposits eat sly...|

MACHINERY| requests. final,...|
HOUSEHOLD |n accounts will h...|
AUTOMOBILE |tions. even depos... |
AUTOMOBILE |ainst the ironic,...|

BUILDING |among the slyly r...|
FURNITURE|r theodolites acc...|
HOUSEHOLD |es regular deposi...|

BUILDING |ckages. requests ...|
HOUSEHOLD| to the carefully...|

BUILDING |ounts sleep caref...|
FURNITURE|, ironic packages...|
HOUSEHOLD | platelets. regul...|

FURNITURE |kly silent courts...|
AUTOMOBILE |packages wake! bl...|

BUILDING|s sleep. carefull...|

HOUSEHOLD| nag. furiously c...|

FURNITURE |g alongside of th...|

index-223_1.jpg
ETL/ELT

index-139_1.jpg
e Amazon S3 > Buckets > jumpstart-iceberg-snowflake > > 53/ EC)

Amazon S3 < 53/ 15 Copy 53 URI
General purpose buckets

Directory buckets Objects Properties

Table buckets

Access Grants Objects (1)

Aecess Rolnts @ ('ﬁ Copy S3 URI) (O copy URL > (i Download) (Open [ﬂ)

Object Lambda Access Points

Multi-Region Access Points Create folder -

Batch Operations Objects are the fundamental entities stored in Amazon S3. You can use Amazon S3 inventory [to
get a list of all objects in your bucket. For others to access your objects, you'll need to explicitly
grant them permissions. Learn more [2

Q Find objects by prefix

IAM Access Analyzer for S3

Block Public Access settings for this

account <1 @
v Storage Lens [Name a I Type v | Last modifi
Dashboards
(]
Storage Lens groups snow_dz4lqGyiTAQ_AJBO_5IYDxg 0 parquet g;f:o";ber §

AWS Organizations settings 1_002.parquet

index-217_1.jpg
* Document the Existing Solution

* Establish a Migration Approach
P re p a re o r * Capture the Development and
Deployment Processes
* Prioritize Data Sets for Migration

. []
Migration REREESCH

and Budget

Prepare Snowflake for Loading

Exec ute t h e Keep Data Up-to-Date

Implement the Test Plan
Run Systems in Parallel

. .
M I ratl o n Repoint Tools to Snowflake
Shut Down Legacy System

index-148_1.png
EXERCISE 8.1: DISPLAY THE
CONTENTS OF A SNOWFLAKE
TABLE IN STREAMLIT

Displaying the NATION table from the
Dataframe

N_NATIONKEY ~N_NAME N_REGIONKEY ~N_COMMENT
0 0 ALGERIA 0 haggle. carefully final deposits detect slyly ag
1 1 ARGENTINA 1 alfoxes promise slyly according to the regular
2 2 BRAZIL 1y alongside of the pending deposits. carefully

3 3 CANADA 1 eas hang ironic, silent packages. slyly regular

a 4 EGYPT 4 yabove the carefully unusual theodolites. fina
5 5 ETHIOPIA 0 ven packages wake quickly. regu

6 6 FRANCE 3 refully final requests. regular, ironi

7 7 GERMANY 3 I platelets. regular accounts x-ray: unusual, re
8 8 INDIA 2 ss excuses cajole slyly across the packages. d
9 9 INDONESIA 2 slyly express asymptotes. regular deposits ha

Displaying the NATION table from the
Dataframe, without the row Index

N_NATIONKEY ~N_NAME N_REGIONKEY N_COMMENT

0 ALGERIA 0 haggle. carefully final deposits detect slyly agai

index-226_1.jpg
Source Systems Analytics Layer

Business Users
R A . Public subnet
TR r Mk
Postgres 1 it
Rl
Tableau Server |
Internet Gateway

Apache Logs | S3

\ Inspector CiloudFormation

index-147_1.jpg
Create Streamlit App
App will run with rights of E] ACCOUNTADMIN

App title

Basic Streamlit App

App location ®

B STREAMLIT_APPS <= PUBLIC

App warehouse ©
COMPUTE_WH

index-225_1.jpg
Source Systems Analytics Layer

crystalreports

Inventory

5o
B .o

Internal
Services

index-156_1.png
Source 1
Layer

Files, Logs, SFTP, etc|

Storage
Layer 2

Snowflake Cloud
Data Warehouse

8

Iceberg Lakehouse

AmL 3

12

ML models and
Al services

Feature
Store

Access
Layer 4

@10

Business Intelligence

11

Ad-Hoc queries

index-212_1.png
Source Systems

-

OLTP

~—
S

Files

=

SFTP

G

APls

Before Snowflake

Analytics Layer

Source Systems

-

OLTP

—
R

Files

-~

w_

SFTP

G—

APIs

DW Layer

Snowflake DW

With Snowflake

Analytics Layer

index-151_1.jpg
piSencivs Pk EXERCISE 8.2: INTERACTIVE
STREAMLIT APP

Table: Total Nations and Customers per Region

Regions

Select one or more regions:
REGION_NAME TOTAL_NATIONS TOTAL_CUSTOMERS
°- - s

ASIA 5 30,183
Select one or more nations:
EUROPE 5 30,197

ALGERIA x
MIDDLE EAST 5 29,904
ARGENTINA x

Bar Chart: Total Customers per Region
35000

25,000
20,000

15,000
10,000
o 5,000
:

ASIA

AFRICA
AMERICA
EUROPE

MIDDLE EAST

index-207_1.jpg
aYe
AT

+

@ «+ &# 0 OB £ D

DS

Cortex Studio Cortex Analyst rreview

Select a semantic model

Cortex Analyst leverages the concept of a semantic model to bridge the gap
between business user vocabulary and raw database schemas, providing
highly accurate resuits,

Role and warehouse
(2] ACCOUNTADMIN - COMPUTE_WH (X-Sma)
Make sure to select a role that has access to the stage to store your semantic

model and underlying data. We need a warehouse to fetch data to create a
semantic model and execute SQL generated by Cortex Analyst,

or

Drag and drop files here
Browse

or

index-215_1.png
Source Systems DW Layer Analytics Layer Source Systems DW Layer Analytics Layer

0

OLTP

J(

Azure

Files

Snowfidke DW Analytics Tools

e
s

APIs

«

-

Streaming
(Kafka, Snowpipe)

@ Azure Data Factory @
(Matillion ETL / Snowpipe)

Before Snowflake With Snowflake

Azure Stream Analytics

Mobile App Data Sharing Data Sharing

Mobile App

index-214_1.jpg
Source Systems DW Layer Analytics Layer Source Systems DW Layer Analytics Layer

Files
P
W Traditiohal DW Anaivtids Tools w Analytics Tools
E SFTP
APls APIs
' DatalLake ‘l . _‘ ‘Q >
Mobile App Streaming Data Sharing | Mobile App Streaming Data Sharing

Before Snowflake With Snowflake

cover_image.jpg

index-114_1.jpg
Name: snowflake-snowpark-python

Version: 1.27.0

Summary: Snowflake Snowpark for Python

Home-page: https://www.snowflake.com/

Author: Snowflake, Inc

Author-email: snowflake-python-libraries—dl@snowflake.com

License: Apache License, Version 2.0

Location: /Users/porshmac/opt/anaconda3/envs/myenv/lib/python3.9/site-packages

Requires: cloudpickle, protobuf, python-dateutil, pyyaml, setuptools, snowflake-connector-python, typing-extensions, tzlocal
heel

Required-by:

index-117_1.jpg
@ snowpark_ch7.py 6,U X

@ snowpark_chZ.py > & initiateSession
from snowflake.snowpark import Session

1

2

3

4 def initiateSession():|

5 connection_parameters = {
6

7

8

9

“account": "account_name",
“user": "username",

"password": "password",

10

11

12 "schema": "output"

13 }

14 session = Session.builder.configs(connection_parameters).create()

15 return session

16

17

18 session = initiateSession()

19

20 print(session.sql("SELECT current_version()").collect()) # Verify connection

21

22

23

PROBLEMS. QUTPUT TERMINAL PORTS AZURE DEBUG CONSOLE +v oA X
/Users/porshmac/opt/anaconda3/envs/myenv/bin/python /Users/porshmac/Projects/Porsh/jumpstart_snowflake_2/snowpark_ch7.py (] b zsh

® (myenv) (base) porshmac@Porshs-MacBook-Air jumpstart_snowflake_2 % /Users/porshmac/opt/anaconda3/envs/myenv/bin/python /Users/p
orshmac/Projects/Porsh/jumpstart_snowflake_2/snowpark_ch7.py
[Row(CURRENT_VERSION()='9.2.7")] i
> (myenv) (base) porshmac@Porshs-MacBook-Air jumpstart_snowflake_2 % []

| B python

index-116_1.jpg
Manage URLs
for "TS43290" as (£) ACCOUNTADMIN

Current URL ©
@ https://qUVKZir=ts43290 .snowflakecomputing.com

Previous Account URL ®

Previous Organization URL @
No URL

index-119_1.jpg
@ snowpark_ch7.py > ...

1 from snowflake.snowpark import Session
2

3

4 def initiateSession():

5 connection_parameters = {

6 “account": "qvvkzfr-ts4329e",
7 JSSFC7",

8 : "nBxWtDj2cHPwZ3r",
] 'Accountadmin",

10 “warehouse": “compute_wh",

11 "database": "snowpark_ch7",

12 “schema": “output"

13 }

14 session = Session.builder.configs(connection_parameters).create()
15 return session

16

17

18 session = initiateSession()

19

20 from snowflake.snowpark.window import Window

21 from snowflake.snowpark.functions import sum, col

22 window = Window.order_by(col("0_ORDERDATE"))
23 orders_df = session.table("SNOWFLAKE_SAMPLE_DATA.TPCH_SF1.0RDERS")
24 running_total_df = orders_df.with_column("running_total", sum(col("O_TOTALPRICE")).over(window))

25 running_total_df.show()
26

PROBLEMS ~ OUTPUT TERMINAL PORTS AZURE DEBUG CONSOLE

|"O_ORDERKEY" |"O_CUSTKEY" |"O_ORDERSTATUS" |"O_TOTALPRICE"
| "RUNNING_TOTAL" |

13600001 1106660 10 1130445.43

cajol 1131336010338.73 |

| 3600002 |106873 10 |226263.36

y after the requests. careful... |188990063715.81 |

|3600003 1112288 |F |110840.45

courts aft |50262294692.99 |

13600004 159149 10 145849.03

he blithely even decoys. |205968944120.57 |

3600005 42071 10 |124317.01

e fluffily pending excuses. p... |163895052496.83 |

13600006 1133325 |F |188542.47

into beans. blithely ironic p... |50445397989.49 |

13600007 186974 10 |142802.28

ep. carefully reqular instruct

1175038613453.70 |

|"0_ORDERDATE"

|1995-10-25
11997-06-26
|1993-06-19
11997-12-24
|1996-10-04
|1993-06-21
|1997-01-30

| "0_ORDERPRIORITY"

|3-MEDIUM
| 1-URGENT
|3-MEDIUM
|5-LOW
|5-LOW
|2-HIGH
|2-HIGH

|"0_CLERK"

|Clerk#000000776
|Clerk#000000337
|Clerk#000000319
|Clerk#000000011
|Clerk#000000121
|Clerk#000000079
|Clerk#000000841

| "0_SHIPPRIORITY"

python +v M @ - ~

|"0_COMMENT"

|nusual pinto bean
|ctions sleep busi
|ts. final, unusua
|s haggle against
|tes boost about t
|e ironic, ironic

|gular deposits sl

index-118_1.jpg
20 # Sample DataFrame
21 df = session.table("SNOWFLAKE_SAMPLE_DATA.TPCH_SF1.CUSTOMER")

22 df.show()
23
PROBLEMS @ OUTPUT TERMINAL

PORTS ~ AZURE DEBUG CONSOLE

© (myenv) (base) porshmacePorshs-MacBook-Air jumpstart_snowflake 2 % /Users/porshnac/opt/anaconda3/envs/myenv/bin/python /Users/porshmac/Projects/Porsh/junpstart_snowflake_2/snowpark_ch7.py

}"c_cusmsv" |C_NAME" |""C_ADDRESS" |"C_NATIONKEY" |"C_PHONE" |"CIACCTBAL" |"C_MKTSEGMENT" |"C_COMMENT"

60001 |Customer#600060001 |91142QnIcX 114 |24-678-784-9652 [9957.56 |HOUSEHOLD |1 theodolites boost slyly at the platelets: per...
160002 |Custoner#000060002 | ThGBMjDwKzkoOxhz 115 |25-782-500-8435 |742.46 |BUILDING | beans. fluffily regular packages

160003 |Customer#000066003 |Ed hbPtTXMTASGGhCr4HUTZK,Md2 116 |26-859-847-7640 |2526.92 |BUILDING |fully pending deposits sleep quickly. blithely ...
Emu |Customer#000060004 [NivCT2RVaavl, yUnKwBjDyMvB42WayXCnky 110 |120-573-674-7999 |7975.22 |AUTOMOBILE | furiously above the ironic packages. slyly bra...
{sms |Customer#00060005 | 1F3KM3CCEXELT, B22XmCMOWIML 112 122-741-208-1316 |2504.74 |MACHINERY |express instructions sleep quickly. ironic brai...
,«mos |Customer#000060006 |31siXW651fa8p 122 |32-618-195-8029 |9051.40 |MACHINERY | carefully quickly even theodolites. boldly
{soon |Custoner#000066007 |sp6KImx, TiSWOMPVhKQWFWTuhS14a50LNINpCGI |12 122-491-919-9470 |6017.17 | FURNITURE |bold packages. regular sheaves mold. blit

{sms |Customer#000060008 |3VteHZYOfbgQioA96tUELORT 12 |12-693-562-7122 |5621.44 |AUTOMOBILE |nal courts. carefully regular Tiresias lose qui...
{cme |Custoner#000860009 | S6@SNpR6wnacPBLeOXj xhvehf 19 |19-578-776-2699 |9548.01 | FURNITURE lefully even dependencies haggle furiously along...
}mm |Custoner#0@066010 | cAVEEaV1tdqLdw2oVuXp BN 121 |31-677-809-6961 |3497.91 |HOUSEHOLD |fter the quickly silent requests. slyly special...

index-122_1.jpg
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

PROBLEMS OUTPUT TERMINAL PORTS AZURE DEBUG CONSOLE

from snowflake.snowpark.types import StringType

def copy_data(session: Session, source_table: str, target_table: str) —> str:
source_df = session.table(source_table)
source_df.write.save_as_table(target_table, mode="overwrite")
return f"Data successfully copied from {source_table} to {target_table}"

session.sproc.register(
func=copy_data,
name="copy_data_sproc"”,
input_types=[StringType(), StringType()],
return_type=StringType(),
packages=["snowflake-snowpark-python"]

)

#Calling the stored procedure
result = session.call("copy_data_sproc", "SNOWFLAKE_SAMPLE_DATA.TPCH_SF1.CUSTOMER", "SNOWPARK_CH7.0UTPUT.CUSTOMER_COPY")
print(result)

JPython +~ [0 @ -+ ~

» (myenv) (base) porshmac@Porshs-MacBook-Air jumpstart_snowflake_2 % /Users/porshmac/opt/anaconda3/envs/myenv/bin/python /Users/porshmac/Projects/Porsh/jumps
art_snowf lake_2/snowpark_ch7.py
The version of package 'snowflake-snowpark-python' in the local environment is 1.27.8, which does not fit the criteria for the requirement 'snowflake-snowy
rk-python'. Your UDF might not work when the package version is different between the server and your local environment.
Data successfully copied from SNOWFLAKE_SAMPLE_DATA.TPCH_SF1.CUSTOMER to SNOWPARK_CH7.0UTPUT.CUSTOMER_COPY

index-121_1.jpg
@ snowpark_ch7.py > ...

17

18 session = initiateSession()

19

20

21 # Define a Python function to calculate discount
22 def calculate_discount(price, discount):

23 return price * (1 - discount / 100)

24

25 # Register the UDF with Snowflake

26 from snowflake.snowpark.types import FloatType

27

28 session.udf.register(

29 func=calculate_discount,

30 name="calculate_discount_udf",

31 input_types=[FloatType(), FloatType()],
32 return_type=FloatType()

33)

34

35 # Use the UDF in a SQL query
36 result_df = session.sql(

37

38 SELECT 0_CUSTKEY,

39 calculate_discount_udf(0_TOTALPRICE, 10) AS discounted_price

40 FROM SNOWFLAKE_SAMPLE_DATA.TPCH_SF1.0RDERS

a1 wnn

42)

43 result_df.show()

a4

PROBLEMS ~ OUTPUT TERMINAL PORTS AZURE DEBUG CONSOLE [>] Python +

@ (myenv) (base) porshmac@Porshs-MacBook-Air jumpstart_snowflake_2 % /Users/porshmac/opt/anaconda3/envs/myenv/bin/python /Users/porshmac/Pr
art_snowflake_2/snowpark_ch7.py

|"0_CUSTKEY" |"DISCOUNTED_PRICE" |

1145618 127158.292 |
|1481 |268199.667 |
1127432 |310894.542 |
147423 |122368.977 |
|84973 |188943.381 |
1135136 |126167. 68800000001 |
|78841 |268789.563 |
1124576 |158376.51 |
130247 |4171.842000000001 :

|5498 |313477.91099999996

index-125_1.jpg
@ (myenv) (base) porshmac@Porshs-MacBook-Air jumpstart_snowflake_2 % /Users/porshmac/opt/anaconda3/envs/myenv/bin/python /Users/porshmac/Projects/Porsh/jumpst
art_snowflake_2/snowpark_ch7.py
® Model successfully stored in Snowflake!
The version of package 'scikit-learn' in the local environment is 1.6.1, which does not fit the criteria for the requirement 'scikit-learn'. Your UDF might
not work when the package version is different between the server and your local environment.
@ UDF 'predict_linear' registered successfully!
® Prediction for input 6: 5.8

index-124_1.jpg
8 SNOWPARK_CH7 / OUTPUT / MODEL_STORAGE

B Table (£ ACCOUNTADMIN (D 1dayago =1 (3 1.5KB

Table Details Columns Data Preview Copy History Lineage PREVIEW

* COMPUTE_WH 1 Row. Updated 1 hour, 18 minutes ago o

MODEL

1 "gASVowEAAAAAAACMGNNrbGVhcm4ubGluZWFyX21vZGVsLIQiYXNIIwQTGIu...

index-128_1.jpg
Storage Engine Compute Engine Catalog

Table Format

File Format

Storage

index-190_1.jpg
o000 window_function_over_self_join.sql

-- Avoid self-joins
select
ol.date,
ol.customer_id,
sum(o2.order_value) as running_total_order_value
from orders as ol
inner join orders as 02
on ol.customer_id=02.customer_id
and ol.date >= o02.date
group by 1,2

-- Use window functions instead
with
daily_customer_value as (
select
date,
customer_id,
sum(order_value) as total_order_value
from orders
)
select
date,
customer_id,
sum(total_order_value)
over (partition by customer_id order by date) as running_total_order_value
from daily_customer_value

index-189_1.jpg
900 unnecessary_sort.sql

with
filtered_orders as (
select
*
from orders
where
status="'fulfilled'
and not test
and created_at > current_date - 90
order by created_at desc -- REMOVE THIS UNNECESSARY SORT!
)I

line_items as (
select
*
from line_items
where
created_at > current_date - 90

)
select
filtered_orders.order_id,
line_item.product_id
from filtered_orders
inner join line_items
on filtered_orders.order_id=1line_items.order_id

index-194_1.jpg
14 | select * from table(information_schema.warehouse_metering_history(dateadd('days',-7,current_date())));

15

START_TIME

2025-01-15 02:00:00.000 -0800
2025-01-15 07:00:00.000 -0800
2025-01-16 00:00:00.000 -0800
2025-01-14 00:00:00.000 -0800
2025-01-15 02:00:00.000 -0800
2025-01-15 07:00:00.000 -0800
2025-01-15 23:00:00.000 -0800

2025-01-16 00:00:00.000 -0800

END_TIME

2025-01-15 03:00:00.000 -0800
2025-01-15 08:00:00.000 -0800
2025-01-16 01:00:00.000 -0800
2025-01-14 01:00:00.000 -0800
2025-01-15 03:00:00.000 -0800
2025-01-15 08:00:00.000 -0800
2025-01-16 00:00:00.000 -0800

2025-01-16 01:00:00.000 -0800

WAREHOUSE_NAME
COMPUTE_WH
COMPUTE_WH
COMPUTE_WH
CLOUD_SERVICES_ONLY
CLOUD_SERVICES_ONLY
CLOUD_SERVICES_ONLY
CLOUD_SERVICES_ONLY
CLOUD_SERVICES_ONLY

CREDITS_USED
0.183867222
0.220118889
0.264108611
0.000004722
0.000017500
0.000023333
0.000005278

0.000005278

CREDITS_USED_COMPUTE
0.183333333
0.220000000
0.263333333
0.000000000
0.000000000
0.000000000
0.000000000

0.000000000

CREDITS_USED_CLOUD_SERVICES
0.000533889
0.000118889
0.000775278
0.000004722
0.000017500
0.000023333
0.000005278

0.000005278

index-191_1.jpg
(X N J avoid_or_in_join_condition.sql

-- Avoid have an OR statement in the join condition
select
events.x*,
event_map.description as event_description
from events
left join event_map
on events.code=event_map.code
or events.type=event_map.type

-- Instead, join twice
select
events.x,
coalesce(event_map_1.description, event_mape_2.description) as event_description
from events
left join event_map as event_map_1
on events.code=event_map_1.code
left join event_map as event_map_2
or events.type=event_map_2.type

index-197_1.jpg
New Resource Monitor
Creating as () ACCOUNTADMIN

account_resource_monitor

10

Account

Start Monitoring Immediately
End Monitoring Never Customize
Resets Daily

‘Specify an action o perform when the quota is Add
reached.

% ‘Suspend immediately and notify when this % of
credit is used. ®

‘Suspend and notfy when this % of credit is
used. @

Notify when this % of credit is used. ®

o (D

index-195_1.jpg
Cost Management * COMPUTE_WH

Organization Overview ~ AccountOverview ~ Consumption Budgets Resource Monitors

© Last7days v [@) ZK44608 v X | O AliTags ~ Usage Type Storage v All Objects v c

208.2 kE Jans,2025 By Object v By Day v
* SNOWFLAKE 215.6kB
Total 215.6K8.
* SNOWFLAK. . /-SAMPLE_DATA
320K8
256K8
1928
128K8
64k8
o8 Jang Jan 10 Jan 11 Jan12 Jan13 Jan 14 Jan1s Jan 16
oBJECT TYPE TAGS STORAGE SIZE & STORAGE BREAKDOWN smam
SNOWFLAKE DATABASE - 2600 kB o —
TASTY_BYTES_SAMPLE_DATA DATABASE = 15.5kB -

Stages STAGE - 680.0 bytes 1

index-201_1.jpg
Forecasting
ML - Structured data

+ Create

Train on historical time series data and forecast that time series
into the future with automated handling of seasonality, trend and
more.

index-200_1.jpg
Classification

ML - Structured data

Categorize data into predefined classes or labels to better make
recommendations based on patterns in the data.

+ Create

index-202_1.jpg
SNOWFLAKE_SAMPLE_DATA.TPCH_SF1 Settings Q

SELECT SNOWFLAKE,CORTEX.COMPLETE(
‘mistral-large’,
CONCAT(‘summarize the comment for the customer: <comment>', c_comment, '</comment>')
) FROM customer
LIMIT 109);

a o am:oo

SNOWFLAKE.CORTEX.COMPLETE('MISTRAL-LARGE', CONCAT('SUMMARIZE THE COMMENT FOR THE CUSTOMER: <COMMENT>', C_CCOMMENT, '</COMMENT>)) Query Details

TR

The comment seems to be a bit abstract and difficult to understand due to Its poetic and metaphorical language. It suggests that the theodolites (surveying instruments) are s Query duration
> The customer has commented on the beans, mentioning that they come in fluffly regular packages. This suggests that the packaging is consistent and perhaps has a soft o« 2
3 The customer's comment seems to indicata that they are waiting for their deposits to clear, and they are doing o with a sense of ease. They also mention unusual aCCOUNtS 3 ey 1D apnazanc

The customer’s comment seems to suggest that they are upset about the ironic packaging. However, they appreciate the clever and brave ideas that have been implemented Show more v

The comment seems 1o be a bit unclear due 10 its poetic and metaphorical language. However, it appears to be suggesting Instructions for falling asleep quickly, with some im

The customer's comment seems to suggest that they appreciate a balance of caution and speed, even when deaiing with precise instruments like theodoltes, and they value o Jve coprey covoy cre

The customer has mentioned that the packages are bold, the sheaves are regular and have mold, and there's an unclear term ‘blit’. It seems they might be referring to the con: 100% filled

The customer’s comment seems to be a bit unclear and fragmented, but it appears to mention "nal courts®, “Tiresias", “regular Tiresias", “lose quickly unusual packages”, and

index-25_1.jpg
On-Premise

Infrastructure as a

Service (laaS)

Platform as a
Service (PaaS)

Software as a
Service (SaaS)

Kitchen Kitchen Kitchen
Electricity Electricity Electricity
Grill Grill Grill
Hamburger
Homemade Rent Kitchen Cook Your Hamburg.er as
Hamburger a Service

Vendor
Manages

index-201_2.jpg
i

Anomaly Detection

ML - Structured data

Identify outliers in your time series data for data pipeline
monitoring and more.

+ Create

index-24_1.jpg
&ipd
8 2
Sl

10 ¢

Il
S0

index-27_1.jpg
Data Size

1Mbps

10 Mbps

100 Mbps

1Gbps

10Gbps

100 Gbps

12 days

1078 10078 1PB
124 days 3years 34 years 340years | 3404 years |34048 years
12 days 124 days 3years 34 years 340years | 3404 years
12 days 124 days 3years 34 years 340 years
12 days 124 days 3years 34 years
| |
| “ o
12days | 124days | 3years
‘ |
12 days 124 days

index-26_1.jpg
Responsible for security “in” the cloud Responsible for security “of” the cloud

index-36_1.jpg
Q Search
Projects
Data

Data Products

NEML
Monitoring

Admin

$400 cradits laft (0]

Triad ands In 30 cays

sTa Snowflake Test ...
ACCOUNTADMIN

Q Search this account, Marketplace, and documantation

Quick actions

£ o
Upload local files Load from cloud storage Query data

GQuickly convert data into tables Use 3 5QL templata to load data Craate SQL Workshest

Create a Notebook to visualize data and insights
Snowflake Notebooks anable you 1o write and axecute code in SOL, Python, or Markdown ta create

iterative flows, visualize results, and more. -

Gototutorial Learn more

All projects

Allprojects Worksheets Notebooks Streamlit Dashboards

Create a Notebook

Bring your Snowflake data alive with Python and
SQL, visualizations, and interactive analysis all
in one place

+ New Notebook

8
Create User

Provide access 10 collaborators

index-28_1.jpg
__

Virtual Private Cloud ;
—— [AdfenicatonandAunoricaton | («3)
Layer _-__ ’
Compute

Layer Virtual Virtual Virtual Virtual
Warehouse Warehouse Warehouse Warehouse | |

Storage
Layer

index-158_1.jpg
e snowflake

EERN

Data Products

Marketplace

Private Sharing
Provider Studio

*. AIEML

4+ Monitoring

@ Admin

Partner Connect

Q Search Partner Connect

All Categories Business Intelligence CI/CD Data Integration More v

£ Keboola

Keboola

Data Stack as a Service.
Accelerate your data use
cases & build data products
quickly and easily.

RI Rivery

matillion

Matillion Data Productivity
Cloud

Create data pipelines in one
unified platform and build Al

pipelines - all without code.

2/ Nexla

Nexla

Launch Snowfiake data
projects faster with Nexia's
ready-to-use data products
and automation that make
connecting any data at any
speed to and from Snowflake
easy.

B Stitch

ATalend Company

Providers All Status All

Qlik@

Qiik (Attunity) is the market
leader in real-time change
data capture and warehouse
automation.

° StreamSets

index-161_1.jpg
< 5 Snowllake Project 6

)
Pipelines CR snowfiake Project
. + [] GreenWave Pipelines
O 2 [¥) Calculate Profit and Revenue
Componants (7] Create SHEET_NAMES
(o) GreenWave Technologies Demo
89 3 (8] My first pipeline
Schemas

[snowflake-environment % main 8 (5. 0V

(8] GreenWave Technolo x
<5

e e
Welcome to the Designer = ey e ot 8 e ke i wik b it by 4 G

cred a1 53 backet. Th fh contin some Cutmer sout
r———

30 i it o ek o ctiond oy cood

o Groemhavs Tochmomgios Yo i b o 1 rcht e
1ot yous thgines. T wh a chastation ad Tamstetn
Capaitio 0 30 o oty 1 10 kv 0 Dty =
ey P

—L
e
= —-.~
.“

o e

Pty Senguy

e e e s 4 bt i i i
et of o werkahmet 1 exect s o You & e M)
o e 1 of morvunaets 40 Exe moMbch whh cartams 4
iy of cv e

Task Environment Pipeline Quoued
© Run snowflake-envionment GreenWave Pipelines/... 18:37:27

9 Taskhistory A Sample data \/

62%

+ 280

index-159_1.jpg
S_:-:'gsnowtlake Platform Solutions Customers Resources v Pricing @ v (conmcrsass ‘

BuILD LEARN CONNECT X
Snowflake for Documentation <j» Engineering Blog

Developers Reference docs, guides, Snowflake's technical leaders on GET STARTED WITH YOUR

Overview of the dev tutorials and what, why and how they build FIRST SNOWFLAKE

resources you need to bulld announcements &2 features NOTEBOOK .

5 Wite and execute code, visualize
and scale
results, and tel the story of your
[OQucstans 1, Community analysis all in one place.

©0 Solutions Center Tutortas to get up and running A5 Tips, tricks and discussion with

@O Reference architectures. use with Snowflake (2 fellow Snowflake develoy

cases and best practices

NORTHSTAR BUILDER
WORKSHOPS

Join other developers as you ol
p your sleeves and explore the
posshilties of Snowflake.

Open Source
Downloads Key projects Snowflake
The latest software versions, engs

neers maintain and

drivers, Wraries and support

relevant docs

. Builder Education
Online and in-person classes
and workshops to upskill on
Sriowfiake

S1ar 3AVING

index-164_1.jpg
Connect

Tableau Server

Microsoft Excel

Text file
JSON file
Microsoft Ac
PDF file
Spatial file
Statistical file

More

ft SQL Server

MySQL

Oracle

perstore

ators

Installed Connectors (71)
Actian Vector

Alibaba AnalyticDB for MySQL
Alibaba Data Lake Analytics.
Alibaba MaxCompute

Amazon Athena

Amazon Aurora for MySQL
Amazon EMR Hadoop Hive
Amazon Redshift

Anaplan (deprecated)

pre

Azure Data Lake Storage Gen2
Azure SQL Database

Azure Synapse Analytics

Box

Cloudera Hadoop

Databricks

Denodo (deprecated)

Google BigQuery
Google BigQuery (JOBC)

Google Cloud SQL

Google Drive

Hortomwarks Hadoop Hive

HPE Ezmeral Data Fabric (MapR)

18M DB2

1BM Netezza Performance Server
Impala

Intuit QuickBooks Online (deprecated)
Kyvos

Linkedin Sales Navigator (deprecated)
MariaD8

Marketing Cloud Intelligence

Marketo (deprecated)

MarkLogic (deprecated)

Microsoft SQL Server

Microsoft SQL Server Analysis Services
MonetoB

MongoDB BI Connector

MySQL

Obata

OneDrive and SharePoint Online
Oracle

Oracle Eloqua (deprecated)

Oracle Essbase

Pivotal Greenplum Database.
[

Progress OpenEdge

Qubole Presto (deprecated)
Salestorce

Salesforce Data Cloud

SAP HANA

SAP NetWeaver Business Warehouse
SAP Sybase ASE

SAP Sybase 1Q

ServiceNow ITSM (deprecated)
‘SharePoint Lists (deprecated)
SingleStore

Spark SQL
Splunk

Teradata

Teradata OLAP Connector

TIBCO Data Virtualization

Vertica

‘Web Data Connector (deprecated)

Other Databases (JDBC)
Other Databases (ODBEC)

Additional Connectors (38) ©

Actian JDBC by Actian
Actian ODBC by Actian
Agiloft by Agiloft

Altinity Connector for ClickHouse by
Altinity Inc

Amazon DocumentDB by Amazon
Amazon 3 by Tableau

81 Connector by Guidanz Inc
ClickHouse by ClickHouse:

Couchbase Analytics by Couchbase
Analytics

Data Cloud by Salesforce

Data Virtuality JOBC by Data Virtuality
Deita Sharing by Databricks by
Databricks.

Denodo JDBC by Denodo Technologies
Exasol JDBC by Exasol

Firebolt by Firebolt Analytics inc
Google Analytics 4 by Tableau
18M Informix by Tableau
Incorta by Incorta

Jethro ODBC by Jethro Data
Kyligence Connector by Kyligence
MarkLogic by MarkLogic
Ocient JOBC by Ocient
OpenSearch by Amazon

Oracle NetSuite by Tableau

Sortby Name(az) +

Palantir Foundry by Palantic

Qubole Hive by Qubole

Rockset by Rockset. Inc.

Salesforce Marketing Cloud by Tableau
SAP SuccessFactors by Tableau
ServiceNow by Tableau

Sharepoint Lists (JOBC) by Tableau
SingleStoreDB JOBC by Singlestore
‘Splunk by Tableau

SQream DB by SQream Technologies
Starburst Enterprise by Starburst
StarTree Tableau Connector by StarTree
Stratio Crossdata by Stratio B0
Yellowbrick by Yellowbrick Data

index-163_1.jpg
Q search c
i:' snowflake ’ © PC_MATILLIONLOADER_DB / PUBLIC
~ O PC_MATILLIONLOADER DB

+ Create > 2 INFORMATION_SCHEMA B Schema (&) ACCOUNTADMIN (D 2 hours ago
v € puBLIC
® Home G Schema Details Tables
£ CUSTOMER ACCOUNT
Q search 2 Tables QSearch | ATables C
) GW_SHEET_NAMES
6 Projects Sl SEORRLARE NAME 4 TYPE CLASSIFICATI... OWNER ROWS BYTES CREATED
B Dpata > B SNOWFLAKE_SAMPLE DATA £) CUSTOMERAC.. Table () PCMATILLIONLOAL 13K 36.0K8 2 minute...
e) GW_SHEETNA.. Table (5] PC_MATILLIONLOAT 3 1.0k8 1hour ago
Add Data

O Data Products

+ Al&ML

“ Monitoring

index-167_1.jpg
Tableau - Book1 - o0 X
File Data Worksheet Dashboard Story Analysis Map Format Server Window Help

| €>2=2-Q§ 8- - @ Do £2-8 -0 # LR = ShowMe

Dets [Miaytes<|[Pepm e, QT

£ CUSTOMER_ACCOUNT (.

earch 5 ¥ m- | Fiters

Tables

@ CBirth Country pad
= CBirthDay

= CBirth Month
CBirth Year W Map. ¥
C Customer Id 2 Fs) @
C Email Address. cter || tem || ot
CFirst Name
CLast Name & | &

Detat | Tooto

CLast Review Date
Clogin
C Preferred Cust Fag + CET
CSalutation
Measure Names

C Current Addr Sk For symbol maps try

-
C Current Cdemo Sk BT Dimension J

C Current Hdemo Sk

C Customer Sk 0 or more (CEIRIND
C First Sales Date Sk ot 2 (D)

CFirst Shipto Date Sk e S e b
CUSTOMER ACCOUNT (€. oo il
Latitude (generated)
Longitude (generated)
Measure Valves

Marks.

H

VKeepOnly oExclude & @ @« m

C8irth Co

Dist

try UNITED STATES
unt of C Customer Sk- 457,501

w J

FREREERGRR

PO @ e e

© 2024 Maphox © OpanSusetiop L2 unknown

0 Data Source Sheetl F B 0
100210marks 1rowbylcoumn SUMof CNTD(C Customer Sk) 457501

index-165_1.jpg
Snowflake

General Initial SQL Advanced

<your host>.snowflakecomputing.com _

Role

Optional

Warehouse

Optional

Authentication

Username and Password

Username

<user name>

Password

index-175_1.jpg
v B JUMPSTART
v %= BUSINESS
v Views
& DIM_CUSTOMER
& DIM_PRODUCT
(& FACT_ORDER
> %= INFORMATION_SCHEMA
v T STG
¥ \Views
(& STG_TPCH_CUSTOMER
& STG_TPCH_LINEITEM
(& STG_TPCH_NATION
(& STG_TPCH_ORDERS
& STG_TPCH_PART

& STG_TPCH_REGION

index-170_1.png
Source
Layer

Backend
databases

Files, Logs, SFTP, etc

Storage
Layer

Snowflake Cloud
Data Warehouse

X dbt

Access
Layer

Metabase BI

index-177_1.jpg
Started from Sales By Product Q Search n]

New question @2 Save
Data Display Axes Snowflake - i
3 seuecr
Years 1 dp.producttype, B
3 SNCfo.final_price) AS total_sales
PRODUCT TYPE + 4 FROM JUPSTART business. fact_order fo ©
- 5 JOIN JUWPSTART business. din.product dp
& ON fo.product key = dp.product key
Add series breakout 7 Gop B)
+ do.product_type
5 ORDR BY
Yeaxis 1 total_sales DESC =)
1 LDar 19
@ TOTAL SALES
[
ECONOMY ANODIZED STEEL

LARGE PLATED STEEL
PROMO BRUSHED BRASS
LARGE PLATED BRASS

£ oo

MEDIUM BURNISHED COPPER
SMALL POUSHED NICKEL
SMALLBRUSHED TN
PROMOPOUSHEDTIN
LARGE ANODIZEDTIN
o 200000000 00000000 400000000 200000000 1000000000 1200000000 1400000000 1400000000
TOTAL SALES

Showing 10rows 9 195 &

[o) T B

index-1_1.jpg

index-10_1.jpg

index-1_2.png

index-12_1.jpg

index-10_2.jpg

index-22_1.jpg
& & {

Compute Databases Storage Network ML/AI

index-17_1.jpg
HO 5D |
O [e) m
1O JHO |
o] O m
1O |HO |

index-23_1.jpg
Hypervisor - software used to create the
virtualized environment allowing for multiple
VMs to be installed on the same host

Hardware

index-66_1.jpg
Snowflakes Services

Snowpipe Services

owhake
= Exemal Stage

@ Aws
(Kinesis Firehose)

Ingestion Stream

Stream Producer
(AWS Lambda)

index-65_1.jpg
v Test with demo data info

Ingest simulated data to test the configuration of your Firehose stream. Standard Amazon Data Firehose charges apply.

This test runs a script in your browser to put demo data in your Amazon Data Firehose stream, which sends to your Amazon S3 destination.

"TICKER_SYMBOL": "QXZ",
"SECTOR" "HEALTHCARE",
"CHANGE": -0.05,

"PRICE": 84.51

VA WN -

Step 1

Start sending demo data to your Firehose stream. If you already have data streaming to this destination, demo data is sent along with your source records.

Start sending demo data

Step 2

Stop sending demo data to your Firehose stream after you've concluded your test to stop incurring usage charges.

Stop sending demo data

index-75_1.jpg
Marketing Marketing Marketing
Database Schema Warehouse

index-73_1.jpg
Objects: Marketing Database
Privilege: USAGE, MODIFY

Objects: Marketing Warehouse
Privilege: USAGE, OPERATE

index-77_1.jpg
Switch Role
2] ACCOUNTADMIN

Account

5 ZK44608

@& My profile

& Support

(» Appearance

2 Client download

[0 Documentation

<& Privacy notice

<] Sign Out

BB

2 S (0 S [jol

(v}

[be}

Run as role...

ACCOUNTADMIN Default

ORGADMIN

PUBLIC

SECURITYADMIN

SYSADMIN

USERADMIN

index-76_1.jpg
1 REN
~ Chart
CURRENT_ROLE()
ACCOUNTADMIN

No Database select

SELECT

S Results JPVRIIEN

CURRENT_ROLE()

ACCOUNTADMIN

Default

ORGADMIN

PUBLIC

SECURITYADMIN

SYSADMIN

USERADMIN

ACCOUNTADMIN

ORGADMIN

PUBLIC

SECURITYADMIN

SYSADMIN

USERADMIN

Default

COUNTADMIN COMPUTE_WH (X-Small) Share

+ MY_WAREHOUSE X-Small
Il (C]
22ms
1
b78bd-0004-¢06b:
CURRENT_ROLE()
100% filled

v

Ask Copilot

ACCOUNTADMIN COMPUTE_WH (x-Smal

COMPUTE_WH

9b949-0001-42

CURRENT_ROLE()

100% fille

index-89_1.jpg
Clone Database
) MARKETING_SANDBOX as (£) ACCOUNTADMIN

Create a copy of this database in the system. All
contents except for external tables and internal
stages will be copied.

Name

MARKETING_SANDBOX_CLONE

Comment (optional)

\
o (D

index-80_1.jpg
Sisnowflake

& 0D O0@ L D

® <

Data Products.
AEML

Monitoring

Biling & Terms.

Users Roles

Graph

7 Roles.

NAME 1

2 ® 8 8 B B B

ACCOUNTADMIN

SECURITYADMIN

Svsaomm

GRANTED ROLES.

°

GRANTED TO ROLES.

°

°

users

CREAT.

3 weeks.

16 hours...

Imeeks..

3 meeks.

Jmeeks..

3 weeks.

3 woeks.

OWNER

&) ACCOUNTADMIN

@ @ @ @ @

index-63_2.jpg
Destination settings info

Specify the destination settings for your Firehose stream.

S3 bucket

s3://]ssfc3-snowpipebucket

Format: s3://bucket

Browse Create [F

index-63_1.jpg
Amazon Data Firehose > Firehose streams » Create Firehose stream

Create Firehose stream .«

» Amazon Data Firehose: How it works

Choose source and destination

Specify the source and the destination for your Firehose stream. You cannot change the source and destination of your Firehose stream
once it has been created.

Source Info

Direct PUT v

Destination Info

Amazon S3 v

Firehose stream name

Firehose stream name

PUT-S3-stream

Acceptable characters are uppercase and lowercase letters, numbers, underscores, hyphens, and periods.

index-64_1.jpg
v Advanced settings

Server-side encryption not enabled; error logging enabled; IAM role KinesisFirehoseServiceRole-PUT-S3-strea-eu-north-1-
1728854420524; no tags.

Server-side encryption Info
You can use AWS Key Management Service (KMS) to create and manage keys and to control the use of encryption across a wide range of
AWS services in your applications.

[[] Enable server-side encryption for source records in Firehose stream

Amazon CloudWatch error logging info
Choose Enabled if you want Amazon Data Firehose to log record delivery errors to CloudWatch Logs.

(O Not enabled
© Enabled

Service access Info

Amazon Data Firehose uses this IAM role for all the permissions that the Firehose stream needs. To specify different roles for the different
permissions, use the API or the CLI.

© Create or update IAM role KinesisFirehoseServiceRole-PUT-S3-strea-eu-north-1-1728854420524

Creates a new role or updates an existing one and adds the required policy to it, and enables Amazon Data Firehose to assume it.

(O Choose existing IAM role

The role that you choose must have policies that include the permissions that Amazon Data Firehose needs.

Tags Info
You can add tags to organize your AWS resources, track costs, and control access.

No tags associated with the resource.

You can add up to 50 more tags.

index-51_1.jpg
Daily Load
" (Batches) >

)

Continuously Staged Files Accumulate Stale Data
Generated Files in Batches (Data Warehouse)

index-56_1.jpg
Snowflake
~ External Stage

1 LI) 1
! LU} 1
[— 1 ————
Stream Producer Ingestion Stream :Events Collector: 1 Snowpipe Snowflake Data ' Snowflake Web
(AWS Lambda) (Kinesis Firehose) ! (S3) : e Service Warehouse . Console
L v dan Sran s & 3N 1

index-55_1.jpg
#% Snowflakes Services

Snowflake
External Stage

Events Collector

. -

Amazon Kinesis

Countiniously
generated events

index-60_1.jpg
Services

Amazon S3) Buckets » Create bucket

Create bucket .«

Buckets are containers for data stored in S3.

General configuration

AWS Region
Europe (Stockholm) eu-north-1

Bucket type Info

© General purpose O Directory
Recommended for most use cases and access patterns. Recommended for low-latency use cases. These buckets
General purpose buckets are the original S3 bucket type. use only the 53 Express One Zone storage class, which
They allow a mix of storage classes that redundantly provides faster processing of data within a single
store objects across multiple Availability Zones. Availability Zone.

Bucket name Info

accountname-snowpipebucket

Bucket name must be unique within the global namespace and follow the bucket naming rules. See rules for bucket naming Z

Copy settings from existing bucket - optional
Only the bucket settings in the following configuration are copied.

Choose bucket

Format: s3://bucket/prefix

Object Ownership info

Control ownership of objects written to this bucket from other AWS accounts and the use of access control lists (ACLs). Object ownership
determines who can specify access to objects.

© ACLs disabled (recommended) O ACLs enabled
All objects in this bucket are owned by this account. Objects in this bucket can be owned by other AWS
Access to this bucket and its objects is specified using accounts. Access to this bucket and its objects can be
only policies. specified using ACLs.

Object Ownership

Bucket owner enforced

index-57_1.jpg
'
'
'

R
g
= 1
3
2 .
L
8 12
3
@
g9
S.W
® .3
' §
''$
'
'
'
'
'
'
'
'
'
3
£ 5
&2
32
:E
8
'

@ Aws

(Kinesis Firehose)

Ingestion Stream

Stream Producer
(AWS Lambda)

index-62_1.jpg
Destination

(@ Before Amazon S3 can publish messages to a destination, you must grant the Amazon S3 principal the

necessary permissions to call the relevant API to publish messages to an SNS topic, an SQS queue, or a
Lambda function. Learn more [4

Destination
Choose a destination to publish the event. Learn more [

(O Lambda function
Run a Lambda function script based on S3 events.

(O SNS topic

Fanout messages to systems for parallel processing or directly to people.
© 5QS queue
Send notifications to an SQS queue to be read by a server.
Specify SQS queue
(O Choose from your SQS queues
© Enter SQS queue ARN

SQS queue

arn:aws:sqs:eu-north-1:905418160770:sf-snowpipe-AIDASFTZAXKBPNEOKDTS5-SV5X

index-61_1.jpg
Amazon S3 > Buckets > |jssfc3-snowpipebucket > Create event notification

Create event notification .

To enable notifications, you must first add a notification configuration that identifies the events you want Amazon S3 to
publish and the destinations where you want Amazon S3 to send the notifications.

General configuration

Event name

snowpipe

Event name can contain up to 255 characters.

Prefix - optional
Limit the notifications to objects with key starting with specified characters.

images/

Suffix - optional
Limit the notifications to objects with key ending with specified characters.

Jpg

Event types

Specify at least one event for which you want to receive notifications. For each group, you can choose an event type for all events, or you
can choose one or more individual events.

Object creation
All object create events [] Put
s3:0ObjectCreated:* s3:0bjectCreated:Put
Post
s3:0bjectCreated:Post
Copy
s3:0bjectCreated:Copy
[] Multipart upload completed
s3:0bjectCreated:CompleteMultipartUpload
Object removal
[J All object removal events [] Permanently deleted
s3:0bjectRemoved:* s3:0bjectRemoved:Delete

Delete marker created
s3:0bjectRemoved:DeleteMarkerCreated

Object restore

All restore object events Restore initiated

index-39_1.jpg
—
6=
No Database selected v Settings
1 CREATE WAREHOUSE JUMPSTART_SNOWFLAKE_SQL
2 WITH WAREHOUSE_TYPE = 'STANDARD'
3 WAREHOUSE_SIZE = 'XSMALL'
4 AUTO_SUSPEND = 600
5 AUTO_RESUME = TRUE;

status

1 Warehouse JUMPSTART_SNOWFLAKE_SQL successfully created.

() ACCOUNTADMIN

No warehouse selected Share

Code Versions Q

Qim « @ 6

Query Details
Query duration 120ms
CEEESS——
Rows 1
Query ID 01b7aae1-0003-da95-0...

Show more v

1>

status

100% filled

index-38_1.jpg
New Warehouse
Creating as () ACCOUNTADMIN

JUMPSTART_SNOWFLAKE

Warehouse for Jumpstart Snowflake Database

Type: Standard v Size: X-Small v @

Advanced Options ~

Auto resume

Automatically resumes the warehouse when any statement that requires
a warehouse is submitted.

Auto suspend

Automatically suspends the warehouse if it is inactive for the specified
period of time.

Suspend After
5 min(s) of inactivity

Multi-cluster Warehouse
Scale compute resources as query concurrency needs change. Learn
more

Query Acceleration

Accelerate outlier queries with additional flexible compute resources.
Learn more

Cancel

index-41_2.jpg
Databases

3 Databases Q, Search Source Al | C
NAME 4 SOURCE OWNER CREATED
£ EXAMPLE_DATABASE Local [Z) ACCOUNTADMIN 10 minut.. 5] u-
b SNOWFLAKE Share Thour Egit
£ SNOWFLAKE_SAMPLE_DATA Share [Z) ACCOUNTADMIN 1hour Clone
Drop

Transfer Ownership

index-41_1.jpg
New Database
Creating as (2] ACCOUNTADMIN

Name

example_database

Comment (optional)

Jumpstart Snowflake - creating a new database ¢

index-104_1.jpg
Row | created_on kind name database_name to owner

3 2019-07-17 17.0... OUTBOUND Tow). STOCKS_SHARE SAMPLES ACCOUNTADMIN

index-103_1.jpg
ROWID

SYMBOL
TDC
TDC
ORCL
ORCL
TSLA

TSLA

DATE
2019-07-18
2019-05-19
2019-07-18
2019-05-19
2019-07-18

2019-05-19

TIME
10:15:00
11:14:00
11:15:00
09:11:00
11:01:00

11:13:00

BID_PRICE
36.3

36.5

57.8

§7.3

255.2

255.2

ASK_PRICE

36.2
59.9
57.9
256.4

255.7

BID_CNT
10
10
13

12

23

ASK_CNT
10
10
13
12
22

23

index-104_3.jpg
« QueryID SQL 164ms mmm—

Filter result...

Row created_on
1 2019-09-29 23...

2 2018-08-15 08:...

kind
INBOUND

INBOUND

2 rows

& Copy
name
== == .STOCKS_SHARE

SNOWFLAKE.ACCOUNT_USAGE

database_name
SHARED_DB

SNOWFLAKE

index-104_2.jpg
created_on privilege

2019-07-17 ...
2019-07-17 ...

2019-07-17 ...

USAGE
USAGE

SELECT

granted_on
DATABASE
SCHEMA

TABLE

name
SAMPLES
SAMPLES FINANCE

SAMPLES.FINANCE.STOCKS_DATA

SHARE
SHARE

SHARE

grantee_name
G222 STOCKS_SHARE
G22>2).STOCKS_SHARE

Gow¥). STOCKS_SHARE

grant_option

false
false

false

granted_by
SYSADMIN
SYSADMIN

SYSADMIN

index-105_2.jpg
9 select * from SHARED_DB.Finance.STOCKS_DATA;

Results Data Preview

v QueryID SQL
Filter result..

Row

1

433ms mmmm——— 6 rows

& Copy
SYMBOL DATE
TDC 2019-09-28
TDC 2019-07-29
ORCL 2019-09-28

ORCL 2019-07-29

TIME
10:15:00
11:14:00
11:15:00

09:11:00

BID_PRICE
36.3
36.5
57.8

57.3

ASK_PRICE
36

36.2

59.9

57.9

index-105_1.jpg
S SHARED_DB
=i* FINANCE
v Tables

B8 STOCKS_DATA

No Views in this Schema

index-108_1.jpg
QueryiD SQL 235ms w2 rows

| Finer resut.. & oo
1 TSLA 2019-09-28 10100 2552 2564
2 TSLA 2019-07-29 11300 2552 2557

index-107_1.jpg
ROWID

SYMBOL
TDC
TDC
ORCL
ORCL
TSLA

TSLA

DATE

2019-07-18

2019-05-19

2019-07-18

2019-05-19

2019-07-18

2019-05-19

TIME

10:15:00

11:14:00

11:15:00

09:11:00

11:01:00

11:13:00

BID_PRICE
36.3

36.5

57.8

573

2552

255.2

ASK_PRICE
36

36.2

59.9

57.9

256.4

255.7

BID_CNT
10
10
13
12
22

23

ASK_CNT
10
10
13

12

ACCESS_ID
GRP_1
GRP_1
GRP_1
GRP_1
GRP_2

GRP_2

index-110_1.jpg
View: SHARED.VIEWS_DB.PUBLIC.STOCKS -n

|Filter resu...

2 TSLA 2019-07-29 11:13:00 2552

B g

index-109_1.jpg
£ SHARED_VIEWS_DB

%2 PUBLIC
No Tables in this Schema
v Views

&2 sTocks

index-100_1.jpg
Reader Account #1
Inbound
Share_2

1
1
1
1
1
1
1
1
1
1
'
1
1
'
1
1
1
1
§ ' «
® 1 &
Q 1 O
& 5 8 o~
Q < (=4 |
3 i3 3%
e 3 °
M_m s€ .ms
S 1 3 2 =
S5 1 £ 8¢
_D- 3 Q
1
1
1 D 00 BN | b e e e o e e e e e e e e e e e e -
(N | Bl iUk T
'
1
1
1
1
I o™
1 S o
3§
" £8
1 =
1
1
1
1
B o o o o o o o o e o o e e o e o o e o o R e e e e e e e e e e e e e e e e e - el

index-95_3.png

index-95_5.png

index-95_4.png

index-95_7.png

index-95_6.png

index-95_9.png

index-95_8.png

index-95_11.png

index-95_10.png

index-95_2.png

index-95_1.png

